Mathématiques Préparatoires I

Ce document est une synthèse du cours de mathématiques dispensé par M. Jean-François Mallordy en classe préparatoire au lycée Blaise Pascal, Clermont-Ferrand en 2022-2023. Il s'agit d'un complément au cours de Maths Spé et ne saurait en aucun cas y être un quelconque remplacement!

Paris, 2024

Mis en forme par Émile Sauvat emile.sauvat@ens.psl.eu

Introduction

Tout les éléments mathématiques seront déclarés et définis, les textes seront différenciés des formules mathématiques.

Contenu

0.1	Règle	es d'écriture	3
	0.1.1	Quantificateurs	3
	0.1.2	Conditions Nécessaires et Suffisantes	4
	0.1.3	Éléments de logique	4
0.2	Mode	s de démonstaration	4
	0.2.1	Modus Ponen	4
	0.2.2	Contraposée	4
	0.2.3	Disjonction de cas	4
	0.2.4	Absurde	5
	0.2.5	Analyse Synthèse	5
		Analyse	5
		Synthèse	5
	0.2.6	Récurrence	5
	0.2.7	Exemples	5
		Irrationnalité de $\sqrt{2}$	5
		Infinité de l'ensemble des nombres premiers	6
		Inégalité arithmético-géométrique	6

0.1 Règles d'écriture

0.1.1 Quantificateurs

En écriture mathématique, on utilise les quatificateurs suivants : \exists : Existence \forall : Quelque soit

Exemples:

$$\forall \ y \in \mathbb{R}, \ \exists \ x \in \mathbb{R} \ : \ y = x^7 - x \quad \neq \quad \exists \ x/ \in \mathbb{R} \ : \ y \in \mathbb{R}, \ y = x^7 - x$$

$$\forall \ \epsilon > \mathsf{o}, \ \exists \ n_\mathsf{o} \in \mathbb{N}: \ \forall \ n \in \mathbb{N} \ (n_\mathsf{o} \geq n \Rightarrow \mid u_n - l \mid \geq \epsilon) \quad \rightarrow \quad (u_n \ converge \ vers \ l)$$

0.1.2Conditions Nécessaires et Suffisantes

Une condition Q est nécessaire pour Une condition Q est suffisante pour avoir P avoir P si dès que P est vraie Q est vraie. si dès que Q est vraie P est vraie $Q \Rightarrow P$ $P \Rightarrow Q$

ABCD à 4 côtés égaux est une condition ABCD est un parrallélogramme est une suffisante pour que ABCD soit un losange.

condition nécessaire pour que ABCD soit un losange.

Si P est nécessaire et suffisante pour avoir Q alors P est nécessairement suffisante pour avoir Q. On dit aussi que P et Q sont logiquement équivalentes. $P \Leftrightarrow Q$ ABCD est un quadrilatère à 4 côtés égaux et ABCD est un losange sont logiquement équivalente.

0.1.3 Éléments de logique

En mathématiques, pour exprimer un raisonnement où une propriété, on utilise des assertions. Ce sont des formules logique ayant une valeurs de vérité "vraie" ou "fausse". ex : "Un carré a quatre côtés égaux" est une assertion vraie et "Un carré possède 5 angles" est une assertion fausse.

Pour assembler des assertions et les lier entre elles, on utilise les connecteurs logiques suivants:

	\vee	_ ¬	\Rightarrow	\Leftrightarrow
"et"	"ou"	"non"	"implique"	"équivalente"

0.2Modes de démonstaration

0.2.1 **Modus Ponen**

Soit P et Q deux assertions. On démontre que P est vraie et que P est une condition suffisante pour avoir Q. On a alors Q.

$$P \wedge (P \Rightarrow Q) \Rightarrow Q$$

On peut utiliser la transitivité de l'implication. $P \wedge ((P \Rightarrow Q) \wedge (Q \Rightarrow R)) \Rightarrow R$

0.2.2 Contraposée

$$(P \Rightarrow Q) \iff (\neg Q \Rightarrow \neg P)$$

Pour montrer que P est une condition suffisante pour avoir Q, on peut montrer que la négation de P est une condition suffisante pour avoir la négation de Q.

0.2.3 Disjonction de cas

Soient P, Q et R trois assertions.
$$(P \lor Q) \land (P \Rightarrow R) \land (Q \Rightarrow R) \Rightarrow R$$

Pour montrer qu'un condition A est suffisante pour en avoir une seconde B, on la sépare en plusieurs cas, puis on montre que chaque cas est une condition suffisante pour avoir В.

0.2.4 Absurde

$$(\neg P \Rightarrow Q \land \neg Q) \Rightarrow P$$

L'ensemble des nombres naturel est infini

0.2.5 Analyse Synthèse

Utilisé pour démontrer l'existence et l'unicité d'un objet mathématique.

Analyse On détermine un certain nombre de conditions nécessaires.

Synthèse On détermine une condition suffisante parmis les nécessaires.

0.2.6 Récurrence

On définit un prédicat dépendant d'une variable.

On montre alors que le prédicat est vrai pour un certain rang de la valeur.

On montre ensuie que le prédicat vraie à un certain rang (ou sur une série de rangs) est une condition suffisante pour avoir le prédicat vrai à un autre rang.

$$P(n) \Rightarrow P(n+1) \ / \ P(n_0) \land ... \land P(n) \Rightarrow P(n+1) \ / \ (P(n) \Rightarrow P(2n)) \land (P(n+1) \Rightarrow P(n))$$

Théorème 0.2.1. ch0th1Théorème : Premier principe de récurrenceThrecurrenceSoit P(n) un prédicat définit sur \mathbb{N}

Si on a
$$\left\{egin{array}{l} P(0) \ orall n\in\mathbb{N},\ P(n)\Rightarrow P(n+1) \
ight. \
ight.$$
 alors $orall n\in\mathbb{N},\ P(n)$

Démonstration. On suppose au contraire $\exists n_0 \in \mathbb{N}^*$ tel que $\neg P(n_0)$.

On considère alors $A = \{k \mid \neg P(k)\}$

On a alors $A \neq \emptyset$ car $n_0 \in A$ et $A \subset \mathbb{N}^*$ donc d'après le principe du bon ordre dans \mathbb{N}^* A admet un plus petit élément noté k_0 .

Par suite
$$k_0 - 1 \in A$$
 soit $P(k_0 - 1)$ puis d'après l'hérédité $P(k_0)$.

Théorème 0.2.2. ch1th1cCorollaire : Principe de récurrence forteRecForteSoit P(n) un prédicat défini sur $\mathbb N$

$$Si egin{cases} P(n_0) \ orall n \in \mathbb{N}, \ n \geq n_0, \ P(n_0) \wedge ... \wedge P(n) \ \Rightarrow \ P(n+1) \ Alors \ orall n \in \mathbb{N}, \ n \geq n_0, \ P(n) \end{cases}$$

Démonstration. On considère le prédicat $Q(n) = P(n_0) \wedge ... \wedge P(n)$

On a alors
$$\left\{egin{array}{l} Q(n_0) \ orall n\in \mathbb{N}, \ n\geq n_0, \ Q(n) \Rightarrow Q(n+1) \end{array}
ight.$$

D'où d'après le premier principe de récurrence on a $\forall n \in \mathbb{N}, n > n_0, P(n)$

0.2.7 Exemples

Irrationnalité de $\sqrt{2}$

Preuve 1 On suppose $\exists (p,q) \in \mathbb{N}^{*2}$: $\sqrt{2} = \frac{p}{q}$ avec q minimal. On considère alors

$$\frac{2q-p}{p-q} = \frac{2-\frac{p}{q}}{\frac{p}{q}-1} = \frac{\sqrt{2}(\sqrt{2}-1)}{\sqrt{2}-1} = \sqrt{2}$$

avec $p=\sqrt{2}q$ donc p<2q donc p-q<q.

Preuve 2 On suppose $\exists (p,q) \in \mathbb{N}^{*2}$: $\sqrt{2} = \frac{p}{q}$, soit $2q^2 = p^2$.

On a alors, d'après le théorème fondamental de l'arithmétique p² qui possède 2k fois 2 dans sa décomposition en facteurs premiers alors que 2q² le posssède 2k'+1 fois, ce qui est impossible par unicité de la décomposition.

Preuve 3 Pour $i \in \mathbb{N}$ on considère

$$\epsilon_i = (\sqrt{2} - 1)^i$$

On a $\frac{8}{4} < \frac{9}{4}$ donc par strcite croissance de $f: x \mapsto \sqrt{x} \sqrt{2} < \frac{3}{2}$ donc $0 < \sqrt{2} - 1 < \frac{1}{2}$

Donc
$$\forall i \in \mathbb{N}^* \ \epsilon_i < rac{1}{2^i}$$

D'autre part pour tout entier i il existe des entiers a_i et b_i tels que $(\sqrt{2}-1)^i=a_i+\sqrt{2}b_i$ Si $\exists (p,q) \in \mathbb{N}^{*2} : \sqrt{2} = \frac{p}{q}$ alors

$$\epsilon_i = a_i + b_i rac{p}{q} = rac{a_i q + b_i p}{q} = rac{\mathcal{A}_i}{q} \hspace{0.5cm} \mathcal{A}_i \in \mathbb{N}^*$$

Soit pour tout entier $i \epsilon_i \geq \frac{1}{a} d'où \frac{1}{a} < \frac{1}{2^i}$

Infinité de l'ensemble des nombres premiers

Lemme Tout entier supérieur ou égal à 2 admet un diviseur premier Preuve : Soit n un entier supérieur à 2 notons p le plus petit de ses diviseurs. On a alors p premier car tout diviseur de p divise n.

Preuve d'Euclide S'il y avait un nombre fini de nombres premiers, leur produit additionné de 1 serait divisible par l'un d'entre eux (Lemme), qui diviserait alors la différence, 1.

Inégalité arithmético-géométrique

Lemme de Couchy Soit
$$A$$
 un partie de \mathbb{N}^* qui contient 1 et telle que $\left\{ \begin{array}{l} (1) \ \forall n \in \mathbb{N}^*, \ n \in A \Rightarrow 2n \in A \\ (2) \ \forall n \in \mathbb{N}^*, \ n+1 \in A \Rightarrow n \in A \end{array} \right.$ alors $A = \mathbb{N}^*$

Preuve : On veut démontrer Q(p) : $\forall n \in [2^p, 2^{p+1}] \times \mathbb{N}, n \in A$ $\Leftrightarrow \forall n \in [0, 2^p] \times \mathbb{N}, 2^{p+1} - n \in A$

$$P(k): 2^k \in A \text{ avec } P(0)$$
 $H(0)$ $2^k \in A \Rightarrow 2 \times 2^k = 2^{k+1} \in A$ $Si \ H(n) \text{ et } n+1 \leq 2^p, \text{ on a } 2^{p+1}-(n+1) \in A$ $D'après \ le principe \ de récurrence on a $\forall k \in A$ $d'apèrs \ (2)$ $\mathbb{N}, 2^k \in A \ H(n): n>2^p \lor 2^{p+1}-n \in A \text{ avec}$ $D'après \ le principe \ de récurrence on a $\forall (p,n) \in \mathbb{N}^2, n>2^p \lor 2^{p+1}-n \in A$$$

Preuve de Cauchy On considère $A = \{ n \mid \forall (x_1,...,x_n) \in (\mathbb{R}_+^*)^n, \frac{x_1+...+x_n}{n} \geq \sqrt[n]{x_1...x_n} \}$ avec $1 \in A$ Soit le prédicat $P(n) : \forall (x_1,...,x_n) \in (\mathbb{R}_+^*)^n, \frac{x_1+...+x_n}{n} \geq \sqrt[n]{x_1...x_n}$ On a $P(1) \wedge P(2)$

Supposons $n \in A$ et considérons $(x_1, ..., x_n, x_1', ..., x_n') \in (\mathbb{R}_+^*)^{2n}$

$$rac{x_1 + ... + x_n + x_1' + ... + x_n'}{2n} = rac{rac{x_1 + ... + x_n}{n} + rac{x_1' + ... + x_n'}{n}}{2}$$

$$\geq \sqrt{rac{x_1+...+x_n}{n} imesrac{x'1+...+x'_n}{n}} \geq \sqrt[2]{\sqrt[n]{x_1...x_n} imes\sqrt[n]{x'_1...x'n}}$$
 $=\sqrt[2n]{x_1...x_nx'_1...x'_n} \quad ext{Soit } P(n) \Rightarrow P(2n)$

On considère maintenant $\forall (x_1,...,x_n,x_{n+1}) \in (\mathbb{R}_+^*)^{n+1}, \frac{x_1+...+x_n+x_{n+1}}{n+1} \geq \sqrt[n]{x_1...x_nx_{n+1}}$ Soit $\forall (x_1,...,x_n) \in (\mathbb{R}_+^*)^n$ Posons $x_{n+1} = \frac{x_1+...+x_n}{n}$ on a alors avec $P = x_1 \cdot \cdot \cdot x_n$ et $A = x_{n+1}$:

$$egin{aligned} rac{x_1+...+x_n+rac{x_1+...+x_n}{n}}{n+1} &\geq \sqrt[n+1]{rac{x_1}{n}}+...+(n+1)rac{x_n}{n}} \geq \sqrt[n+1]{PA} \ &\Leftrightarrow rac{x_1+...+x_n}{n} \geq \sqrt[n+1]{PA} \; \Leftrightarrow \; A \geq \sqrt[n+1]{PA} \ &\Rightarrow A^{n+1} \geq PA \Rightarrow A^n \geq P \Rightarrow A \geq \sqrt[n]{P} \;\; donc \; P(n+1) \Rightarrow P(n) \end{aligned}$$

Preuve d'Enguel Lemme : $\forall x \in \mathbb{R}^*$, $\ln x \le x - 1$ avec égalité ssi x = 1 Preuve : Soit $(x_1, ..., x_n) \in (\mathbb{R}^*_+)^n$ $A = \frac{1}{n} \sum_{i=1}^n x_i \ \forall i \in [\![i, n]\!]$, $\ln(\frac{x_i}{A}) \le \frac{x_i}{A} - 1$ En sommant on obtient :

$$\sum_{i=1}^n \ln(\frac{x_i}{A}) = \ln(\frac{x_1...x_n}{A^n}) \leq \sum_{i=1}^n (\frac{x_i}{A} - \mathbf{1}) = \mathbf{0} \quad \Rightarrow x_1...x_n \leq A^n \quad \Rightarrow \quad \frac{x_1 + ... + x_n}{n} \geq \sqrt[n]{x_1...x_n}$$

Ensembles et applications

Contenu	
1.1	Opérations sur les Parties
	1.1.1 Notations
	Complémentaire
	Union
	Intersection
	Différence
	1.1.2 Propriétés
1.2	Recouvrement disjoint et Partitions
	Famille de parties disjointes de E
	Recouvrement disjoint de B
	Partition de E
1.3	Éléments applicatifs
	1.3.1 Graphe
	1.3.2 Indicatrice
	Définition
1.4	Relations binaires
	Définition
	Caractéristiques
	Relation d'ordre
	Relation d'équivalence
	Classe d'équivalence

1.1 Opérations sur les Parties

1.1.1 Notations

Complémentaire Le complémentaire de A dans E est $E \setminus A = \overline{A} = A^c$

$$E \setminus A = \{x \in E \mid x \notin A\}$$

Union L'union de deux ensembles est

$$A \cup B = \{x \in E \mid x \in A \lor x \in B\}$$

Intersection L'intersection de deux ensembles est

$$A \cap B = \{x \in E \mid x \in A \land x \in B\}$$

Différence La différence de deux ensemble est

$$A \setminus B = \{x \in E \mid x \in A \land x \notin B\} = A \cap \overline{B}$$

1.1.2 Propriétés

Soit A et B deux parties de E

$$E \setminus (E \setminus A) \equiv A \qquad A \cup (B \cup C) \equiv (A \cup B) \cup C$$

$$A \cap (B \cap C) \equiv (A \cap B) \cap C \qquad A \cup (B \cap C) \equiv (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) \equiv (A \cap B) \cup (B \cap C) \qquad E \setminus (A \cup B) \equiv (E \setminus A) \cup (E \setminus B)$$

$$E \setminus (A \cap B) \equiv (E \setminus A) \cap (E \setminus B)$$

1.2 Recouvrement disjoint et Partitions

Soit E un ensemble et $(A_i)_{i\in I}$ une famille d'éléments de E.

Famille de parties disjointes de E (A_i) est une famille de parties disjointes de E si

$$\left\{egin{array}{l} orall (i,j) \in I^2, \ i
eq j \ \Rightarrow A_i \cap A_j = \varnothing \ orall i \in I, \ A_i \in \mathcal{P}(E) \end{array}
ight.$$

Recouvrement disjoint de B (A_i) est un recouvrement disjoint de B si

les A_i sont deux à deux disjoints et $B\subset \bigcup\limits_{i\in I}A_i=\{x\in E\mid \exists i\in I:x\in A_i\}$

Partition de E $(A_i)_{i \in I}$ est une partition de E si

$$E = igcup_{i \in I} A_i \quad \land \quad \left\{ egin{array}{ll} orall i \in I, A_i \in \mathbb{P}(E) \ orall i \in I, A_i
eq arnothing \ orall i, A_i
eq arnothing \ i, A_i
eq ar$$

Théorème 1.2.1. ch2P1Propriétés : Lois de MorganLoisMorgan Soit E un ensemble, $(A_i)_{i \in I}$ une famille de parties de E

Alors
$$\left(\bigcup_{i\in I}A_i\right)^c\equiv\bigcap_{i\in I}A_i^c$$
 et $\left(\bigcap_{i\in I}A_i\right)^c\equiv\bigcup_{i\in I}A_i^c$

1.3 Éléments applicatifs

1.3.1 **Graphe**

Soit un fonction $f \in \mathcal{F}(E, F)$, son graphe est :

$$\Gamma = \{(x, f(x)) \mid x \in E\} \in \mathcal{P}(E \times F)$$

1.3.2 Indicatrice

Définition On définit l'indicatrice de A dans E comme

$$\mathbb{1}_{A}\left(egin{array}{c} E \longrightarrow \{0;1\} \ x \mapsto \left\{egin{array}{c} 1 \ si \ x \in A \ 0 \ si \ x \in A^c \end{array}
ight)$$

Propriétés.

Soit A et B deux parties d'un ensemble E on a $A \equiv B \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B$ $\mathbb{1}_{A \cap B} = \mathbb{1}_A \cdot \mathbb{1}_B$ $\forall x \in E, \ \mathbb{1}_A + \mathbb{1}_{E \setminus A} = \mathbb{1}_E = \mathbb{1}$ $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_{A \cap B}$

1.4 Relations binaires

Définition Une relation binaire sur E est la donné d'une partie Γ de $E \times E$ telle que

$$\forall (x,y) \in E^2$$
, $x \mathcal{R} y \Leftrightarrow (x,y) \in \Gamma$

Γ est appelé graphe de la relation binaire R

$$-> \underline{ex}: \Gamma \subset \mathbb{R}^2 \quad (x,y) \in \Gamma \Leftrightarrow y \leq x$$

Caractéristiques Soit R une relation binaire sur un ensemble E

- 1) \mathcal{R} est <u>réflexive</u> si $\forall x \in E$, $x\mathcal{R}x$
- 2) \mathcal{R} est symétrique si $\forall (x,y) \in E^2$, $x\mathcal{R}y \Leftrightarrow y\mathcal{R}x$
- 3) \mathcal{R} est $\overline{antisym\acute{e}tr}$ ique si $\forall (x,y) \in E^2$, $x\mathcal{R}y \wedge y\mathcal{R}x \Rightarrow x=y$
- 4) \mathcal{R} est $\overline{\text{transitive si}} \ \forall (x,y,z) \in E^3$, $x\mathcal{R}y \wedge y\mathcal{R}z \Rightarrow x\mathcal{R}z$

Relation d'ordre Un relation binaire \mathcal{R} est une relation d'ordre si \mathcal{R} est réflexive, antisymétrique et transitive.

$$->\underline{ex}: orall (z,z')\in \mathbb{C}^2 \ \left(\Re(z)<\Re(z')
ight) ee \left(\Re(z)=\Re(z')\wedge\Im(z)\leq \Im(z')
ight) \ ext{est une relation d'ordre sur } \mathbb{C}$$

Caractère total Une relation d'ordre \mathcal{R} est dite totale si $\forall (x,y) \in E^2$, $x\mathcal{R}y \vee y\mathcal{R}x$

Relation d'équivalence Un relation binaire \mathcal{R} est une relation d'ordre si \mathcal{R} est réflexive, symétrique et transitive.

 $->\underline{ex}$: Si $a\in\mathbb{R}$, $\forall (x,y)\in\mathbb{R}^2$, $x\mathcal{R}y\Leftrightarrow\exists k\in\mathbb{Z}:y-x=ka$ \mathcal{R} est appelée relation de congruence modulo a et on note $x\equiv y[a]$

Classe d'équivalence $Si \ x \in E$ l'ensmeble $\{y \in E \mid x\mathcal{R}y\}$ souvent noté Cl(x) est la classe d'équivalence de x

Théorème 1.4.1. ch2P3PropriétéClEqPartESi $E \neq \emptyset$, les classes d'équivalence forment une partition de E

* * *

Calculus

Contenu

2.1	Sommes et Produits
	Somme et Produit Téléscopique
	Permutations
	Méthode de perturbation
	Sommes doubles
2.2	Coefficients binomiaux
	Calculs sur les coefficients binomiaux
	Binôme de Newton
2.3	Valeur absolue
	Somme et produit
2.4	Trigonométrie
	Formules majeures
	Tangente

2.1 Sommes et Produits

On considère une famille $(a_i)_{i \in I}$ de réels.

$$\sum\limits_{i\in I}$$
 est la **somme** de ses termes $\prod\limits_{i\in I}$ est le **produit** de ses termes

Somme et Produit Téléscopique

$$\sum_{k=1}^{n-1} (a_{k+1} - a_k) = a_n - a_1$$
 $\prod k = 1^{n-1} (\frac{a_{k+1}}{a_k}) = \frac{a_n}{a_1}$

Permutations Soit σ une bijection de I sur I, $\sum_{i \in I} a_{\sigma(i)} = \sum_{i \in I} a_i$ -> \underline{ex} : $\sum_{k=1}^n a_k = \sum_{k=1}^n a_{n+1-k}$

Méthode de perturbation $Soit (a_i)_{_{i \in I}}$ on note $S_n = \sum_{k=1}^n a_k$

$$\underline{S_{n+1}} = \underline{S_n} + a_{n+1} = a_1 + \sum_{k=2}^{n+1}$$

->ex: Soit
$$S_n = \sum_{k=1}^n 2^k$$

 $S_{n+1} = S_n + 2^{n+1} = 2 + \sum_{k=2}^{n+1} 2^k = 2 + 2 \times \sum_{k=1}^n 2^k \Rightarrow S_n + 2^{n+1} = 2S_n + 2$
 $\Rightarrow S_n = 2^{n+1} - 2$

Sommes doubles Soit $(a_i)_{i \in I}$ et $(b_j)_{j \in J}$ des familles de réels

$$\sum_{\substack{(i,j)\in I\times J}}a_ib_j = \left(\sum_{i\in I}a_i\right)\left(\sum_{j\in J}b_j\right) \qquad \qquad \sum_{\substack{(i,j)\in I\times J}}a_{ij} = \sum_{i\in I}\sum_{j\in J}a_{ij} = \sum_{j\in J}\sum_{i\in I}a_{ij}$$

$$\sum_{1\leq i< j\leq n}a_ib_j = \sum_{i=1}^{n-1}a_i\sum_{j=i+1}^nb_j$$

$$Si~(a_k)$$
 et (b_k) on la même monotonie $\sum\limits_{1 \leq j < k \leq n} (a_k - a_j)(b_k - b_j) \geq 0$

2.2 Coefficients binomiaux

$$orall (n,p) \in \mathbb{N}^2, \quad inom{n}{p} = \prod _k = \mathbf{1}^p rac{n-k+1}{k} = \begin{cases} ext{ o } si \ p > n \ rac{n!}{k!(n-k)!} \ sinon \end{cases}$$

Calculs sur les coefficients binomiaux

Relation de Pascal Si $1 \le p \le n$ alors $\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$

Propriété de symétrie $\forall (n,p) \in \mathbb{N}^2$, $p \leq n \Rightarrow \binom{n}{p} = \binom{n}{n-p}$

Formule d'absorbtion $\forall (n,p) \in \mathbb{N}^2$, $\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}$ ou $p\binom{n}{p} = n\binom{n-1}{p-1}$

Binôme de Newton

$$orall (a,b) \in \mathbb{R}^2, \;\; orall n \in \mathbb{N} \;, \;\; (a+b)^n \;=\; \sum_{k=1}^n inom{n}{k} a^k b^{n-k}$$

2.3 Valeur absolue

On note
$$a^+=\max(a, \mathtt{o})$$
 et $a^-=\max(-a, \mathtt{o})$. On a alors $orall a \in \mathbb{R}$, $a=a^+-a^-$ et $|a|=a^++a^-=\left\{egin{array}{l} a \ si \ a \geq \mathtt{o} \\ -a \ sinon \end{array}
ight.$

Somme et produit $\left|\prod\limits_{i=1}^n a_i\right| = \prod\limits_{i=1}^n |a_i|$ et $\left|\sum\limits_{i=1}^n a_i\right| \leq \sum\limits_{i=1}^n |a_i|$

2.4 Trigonométrie

On défini deux fonction **sin** et **cos** par la relation : $C(0; 1) = \{(\cos x, \sin x) \mid x \in \mathbb{R}\}$ ou encore $\forall x \in \mathbb{R}$, $\cos^2 x + \sin^2 x = 1$

$$\cos x = \cos a \Leftrightarrow \left\{ egin{array}{ll} x \equiv a[2\pi] \\ x \equiv -a[2\pi] \end{array}
ight. \qquad \sin x = \sin a \Leftrightarrow \left\{ egin{array}{ll} x \equiv a[2\pi] \\ x \equiv \pi - a[2\pi] \end{array}
ight.$$

Formules majeures

Addition
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

Duplication
$$\begin{vmatrix} \cos(2\alpha) &= 2\cos^2(\alpha) - 1 &= 1 - 2\sin^2(\alpha) \\ \sin(2\alpha) &= 2\sin\alpha\cos\alpha \end{vmatrix}$$

Dérivation
$$\begin{vmatrix} \cos' x &= -\sin x &= \cos(x + \frac{\pi}{2}) \\ \sin' x &= \cos x &= \sin(x + \frac{\pi}{2}) \end{vmatrix}$$

Tangente On définit
$$\tan x = \frac{\sin x}{\cos x}$$
 avec $\mathcal{D}_{tan} = \mathbb{R} \setminus \{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \}$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\cos x = rac{1- an^2(rac{x}{2})}{1+ an^2(rac{x}{2})}$$

$$\sin x = \frac{2\tan(\frac{x}{2})}{1+\tan^2(\frac{x}{2})}$$

Nombres Complexes

On définit i tel que $i^2=-1$ Attention On ne peut pas écrire $i=\sqrt{-1}$

Contenu

3.1	Calci	ul dans C
		Puissances de i
		Identitées remarquables
3.2	Conji	ugaison et module
	3.2.1	Opération de conjugaison
		Parties réelles et imaginaires
	3.2.2	Module du complexe
	3.2.3	Inégalité triangulaire
		Propriété préliminaire
3.3	Unim	odulaires et trigonométrie
		Calculs
		Formules d'Euler
	3.3.1	Technique de l'angle moitié

3.1 Calcul dans C

Puissances de
$$i$$
 $\forall p \in \mathbb{Z}$, $egin{array}{ccc} i^{4p} &=& 1 & & i^{4p+1} &=& i \ i^{4p+2} &=& -1 & & i^{4p+3} &=& -i \end{array}$

Identitées remarquables

$$Si \ z \in \mathbb{C} \ , \ n \in \mathbb{N} \ , \ \sum_{k=0}^n z^k = \left\{ egin{array}{ll} n+1 \ si \ z=1 \ rac{1-z^{n+1}}{1-z} \ sinon \end{array}
ight. \ Si \ (a,b) \in \mathbb{C}^2 \ , \ n \in \mathbb{N}^* \ , \ a^n-b^n = (a-b) \sum_{k=0}^{n-1} a^k b^{n-1-k} \ Si \ (a,b) \in \mathbb{C}^2 \ , \ n \in \mathbb{N}^* \ , \ (a+b)^n = \sum_{k=0}^n inom{n}{k} a^k b^{n-k} \end{array}$$

3.2 Conjugaison et module

3.2.1 Opération de conjugaison

On définit l'opération **involutive** de **conjugaison** : $\forall z=a+ib \in \mathbb{C} \ \varphi: a+ib \mapsto a-ib \ \text{et} \ \varphi\circ\varphi = \mathit{Id}_{\mathbb{C}}$

Avec
$$\forall (z_1, \cdots, z_n) \in \mathbb{C}^n$$
, $\overline{\sum_{k=0}^n z_k} = \sum_{k=0}^n \overline{z_k}$ et $\overline{\prod k=0}^n z_k = \prod k=0^n \overline{z_k}$

Parties réelles et imaginaires $\forall z \in \mathbb{C}$ on a $\Re(z) = \frac{z+\overline{z}}{2}$ et $\Im(z) = \frac{z-\overline{z}}{2}$

3.2.2 Module du complexe

On définit le **module** de $z\in\mathbb{C}$ comme le **réel** positif qui vérifie $|z|^2=z\overline{z}$ On a alors l'égalité $|z| = \sqrt{a^2 + b^2}$

3.2.3 Inégalité triangulaire

Propriété préliminaire On a $\forall z \in \mathbb{C}$, $\begin{cases} |\Re(z)| \leq |z| \\ |\Im(z)| < |z| \end{cases}$

Théorème 3.2.1. th5.1Inégalité TriangulaireInegT1

 $\forall (z, z') \in \mathbb{C}^2$ on a $|z + z'| \leq |z| + |z'|$

Avec égalité dans l'inégalité si et seuleument si $\exists \lambda \in \mathbb{R}^+$ tel que $z = \lambda z'$ ou si z' = 0

$$\begin{array}{ll} \textit{D\'{e}monstration.} \ \forall (z,z') \in \mathbb{C}^2 & |z+z'|^2 = |z|^2 + 2\Re(z\overline{z'}) + |z'|^2 \\ \textit{avec} \ \Re(z\overline{z'}) \leq \left|\Re(z\overline{z'})\right| \leq |zz'| = |z|\,|z'| \ \textit{d'où} \ |z+z'|^2 \leq (|z|+|z'|)^2 \end{array}$$

avec égalité si et seulement si $\Re(z\overline{z'}) = \left|\Re(z\overline{z'})\right| = \left|z\overline{z'}\right|$ soit $z\overline{z'} \in \mathbb{R}^+$

Si
$$z \neq 0$$
 alors $z\overline{z'} \in \mathbb{R}^+ \Leftrightarrow z\frac{\overline{z'}z'}{z'} \in \mathbb{R}^+ \Leftrightarrow z\frac{|z'|^2}{z'} \in \mathbb{R}^+$
 $\Leftrightarrow z = \lambda z'$ avec $\lambda = \frac{z}{z'} \in \mathbb{R}^+$

Théorème 3.2.2. th5.2Seconde inégalité triangulaireInegT2
$$\forall (z,z') \in \mathbb{C}^2$$
,
$$\begin{cases} |z-z'| \geq |z|-|z'| \\ |z'-z| \geq |z'|-|z| \end{cases} \Rightarrow |z-z'| \geq ||z|-|z'||$$

3.3 Unimodulaires et trigonométrie

Dans le plan complexe le cercle trigonométrique C(0,1) est l'ensemble des nombres complexes unimodulaires noté $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$

$$-> \mathbb{U} = \{\cos\theta + i\sin\theta \mid \theta \in [0, 2\pi[\} = \{e^{i\theta} \mid \theta \in [0, 1\pi[\}]\}$$

Calculs $\mathbb{U} \subset \mathbb{C}^*$ est stable par produit et quotient et $\forall z \in \mathbb{U}$, $\frac{1}{z} = \overline{z}$

Formules d'Euler $\forall z \in \mathbb{U}$, $z = e^{i\theta}$ $(\theta \in \mathbb{R})$

$$\Re(z) = \frac{z + \overline{z}}{2} \Leftrightarrow \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $\Im(z) = \frac{z - \overline{z}}{2i} \Leftrightarrow \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

3.3.1 Technique de l'angle moitié

$$\begin{array}{c|c} \textbf{Th\'{e}or\`{e}me 3.3.1.} \ \ th 5.3 Angle \ \ moiti\'{e} \ 1 Angle Moiti\'{e} \\ \forall t \in \mathbb{R} \ \ \begin{array}{c|c} 1 + e^{it} = 2\cos(\frac{t}{2})e^{i\frac{t}{2}} \\ 1 - e^{it} = 2i\sin(-\frac{t}{2})e^{i\frac{t}{2}} \end{array} \ \ \begin{array}{c|c} \forall (p,q) \in \mathbb{R}^2 \ \ e^{ip} + e^{iq} = 2\cos(\frac{p-q}{2})e^{i\frac{p+q}{2}} \\ e^{ip} - e^{iq} = 2i\sin(\frac{p-q}{2}e^{i\frac{p-q}{2}})e^{i\frac{p-q}{2}} \end{array} \end{array}$$

Théorème 3.3.2. th5.4Angle moitié 2AngleMoitié2
$$\forall (p,q) \in \mathbb{R}^2$$
 $\cos p + \cos q = 2\cos\frac{p-q}{2}\cos\frac{p+q}{2}$ $\cos p - \cos q = -2\sin\frac{p-q}{2}\sin\frac{p+q}{2}$ $\sin p + \sin q = 2\cos\frac{p-q}{2}\sin\frac{p+q}{2}$ $\sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}$

Fonctions

Toute les fonctions considéré sont des fonction d'une variable réelles à valeurs dans R définies sur $I\subset R$

Contenu

4.1	Généralités sur les fonctions	17
	Ensemble de définition	17
	Représentation graphique	17
	Périodicité	18
	Fonction croissante	18
4.2	Dérivation	18
	Dérivabilité en a	18
	Dérivabilité sur I	18
	Classe \mathcal{C}^1	19
4.3	Fonctions usuelles	19
	Logarithme népérien	19
	Exponnentielle	20
	Logarithme en base a	21
	Arcsinus	21
	Arccosinus	21
	Cosinus hyperbolique - Sinus hyperbolique	22
	Tangente hyperbolique	22
4.4	Dérivation d'une fonction complexe	22
	Dérivabilité en un point	22

4.1 Généralités sur les fonctions

Ensemble de définition $Si\ f$ est une fonction on défnit D_f son ensemble de définition comme la plus grande partie de R sur laquelle f est définie.

Représentation graphique Soit f un fonction la <u>représentation graphique de f</u> est la partie de \mathbb{R}^2 $C_f = \{(x, f(x)) \mid x \in D_f\}$

Théorème 4.1.1. ch5P1PropriétéPariteCourbeSoit f une fonction à valeurs réelles on a

- Si f est paire alors C_f admet (ox) comme axe de symétrie
- Si f est impaire alors C_f admet o comme centre de symétrie.

Périodicité On dit que f est périodique s'il existe $T \in \mathbb{R}^*$ tel que $\forall x \in D_f$, $x+T \in D_f$ et f(x+T) = f(x), on dit alors que f est T-périodique.

Rq : La périodicité n'est stable ni par somme, ni par produit.

Théorème 4.1.2. ch5P2Propriétés5-P2Soit f et q deux fonctions on a

- 1) Si f et g admettent un parité, alors f + g et f.g admettent la même parité.
- 2) Si f et g sont T-périodiques, alors f + g et f.g sont T- périodiques.
- 3) $g \circ f$ est paire si f est paire ou si f est impaire et g est paire.
- 4) $g \circ f$ est impaire si f et g le sont.

$$\forall (a,b) \in I^2, \ a \leq b \Rightarrow f(a) \leq f(b) \ (resp. \ a \leq b \Rightarrow f(a) \geq f(b))$$

On définie de même les strictes croissance et décroissance avec des inégalités strictes.

Théorème 4.1.3. ch5P3PropriétéCarFCroissf est croissante (resp. strictement) sur I si et seulement si

$$\forall (a,b) \in I^2$$
, $a \neq b \Rightarrow \frac{f(b)-f(a)}{b-a} \geq o \ (\textit{resp.} > o)$

4.2 Dérivation

Dérivabilité en a On dit que \underline{f} est dérivable en un point \underline{a} de I qui n'est pas une extremité de I si $\tau_a(f)$ admet une limite finie en \underline{a} . On note alors f'(a) cette limite.

Dérivabilité sur I On dit que \underline{f} est dérivable sur \underline{I} si \underline{f} est dérivable en tout point de \underline{I} . On note alors \underline{f}' la fonction définie sur \underline{I} qui à chaque point \underline{a} associe $\underline{f}'(\underline{a})$.

Théorème 4.2.1. ch5P4PropriétésOpeDerivSi f et g sont deux fonction dérivable en a on a

- 1) $\forall \alpha \in \mathbb{R}$, $\alpha f + g$ est dérivable en a et $(\alpha f + g)'(a) = \alpha f'(a) + g'(a)$
- 2) f.g est dérivable en a et (f.g)'(a) = f'(a).g(a) + f(a).g'(a)
- 3) Si $g(a) \neq 0$ alors $\frac{f}{g}$ est dérivable en a et $\left(\frac{f}{g}\right)'(a) = \frac{f'(a).g(a) f(a)g'(a)}{\left(g(a)\right)^2}$

Théorème 4.2.2. ch5P5PropositionDerivCompoSi f est dérivable en a et g est dérivable en f(a)

Alors $g\circ f$ est dérivable en a et $\big(g\circ f\big)'(a)=\big(g'\circ f\big)(a) imes f'(a)$

Théorème 4.2.3. ch5P6Proposition : Caractérisation des fonctions constantesCarFcC-teUne fonction définie sur I à valeurs réelles ou complexes est constante <u>si et seulement si</u> elle est dérivable sur I et sa dérivée est nulle sur I

Théorème 4.2.4. ch5P7PropriétéStrictCroissCNSSi f est dérivable sur I alors f est strictement croissante sur I

 $\Leftrightarrow \begin{cases} f' \text{ est positive sur } I \\ \exists I \text{ n'existe pas d'intervalle ouvert } I \subset J \text{ tel que } f'|_{J} = 0 \end{cases}$

Théorème 4.2.5. $ch5th1Th\acute{e}or\`{e}meDerStrictCroissSoit f dérivable qur un intervalle ouvert <math>I$ strictement monotone sur I

alors f réalise une bijection de I sur $f_a(I)=J$ et f^{-1} est continue et dérivable sur J avec $\forall b=f(a)\in J, \ \left(f^{-1}\right)'(b)=\frac{1}{f'(a)}=\frac{1}{f'\circ f^{-1}(b)}$

Théorème 4.2.6. ch $5P8PropriétéCfCf-1SymSi\ f$ est à valeurs réelles bijectives et R^2 rapporté à un repère orthonormé direct

Alors C_f et $C_{f^{-1}}$ sont symétriques par rapport à la première bisectrice.

Classe C^1 On dit que \underline{f} est de classe C^1 sur I à valeurs dans \underline{R} si f est dérivable sur I et so f' est continue sur I. On dit aussi que f est continuement dérivable sur I. On note $C^1(I,\underline{R})$ l'ensemble des fonctions de classe C^1 sur I à valeurs dans \underline{R} .

4.3 Fonctions usuelles

Logarithme népérien La fonction ln est l'unique primitive de $\begin{pmatrix} R_+^* & \longrightarrow & R \\ x & \longmapsto & \frac{1}{x} \end{pmatrix}$ avec $\ln(1)=0$.

Théorème 4.3.1. ch5P9PropriétésCalcln1) $\forall (a,b) \in \mathbb{R}_+^*$, $\ln(ab) = \ln(a) + \ln(b)$ 2) $\forall x \in \mathbb{R}_+^*$, $\ln\left(\frac{1}{x}\right) = -\ln(x)$

Théorème 4.3.2. ch5th2ThéorèmeInegFondAnalyse $\forall x \in \mathbb{R}^*_+$, $\ln(x+1) \le x$

Exponnentielle La fonction exp est la bijection réciproque de ln, définie sur R à valeurs dans R_+^* . Elle est dérivable sur R avec $\exp' = \exp$ et $\forall (x,y) \in R$, $\exp(x+y) = \exp(x) \times \exp(y)$

 $\forall (a,b) \in \mathbb{R}_+^* \times \mathbb{R}, \ a^b = \exp(b \times \ln(a))$

Logarithme en base a Soit $a \in \mathbb{R}_+^* \setminus \{1\}$, on appelle <u>logarithme en base a noté \ln_a </u> la fonction $\begin{pmatrix} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{\ln x}{\ln a} \end{pmatrix}$ et on note \exp_a sa bijection réciproque.

Théorème 4.3.3. $ch5L1LemmeCCln \forall \alpha \in \mathbb{R}^*_+$, on a 1) $\frac{\ln x}{x^\alpha} \xrightarrow[x \to +\infty]{} 0$ 2) $x^\alpha \ln x \xrightarrow[x \to 0]{} 0$

Théorème 4.3.4. ch5L1cCorollaireCCexp $\forall \alpha \in \mathbb{R}_+^*$, on a $\frac{x^{\alpha}}{e^x} \underset{x \to +\infty}{\longrightarrow}$ o

Théorème 4.3.5. ch5P10PropositionDefExpLimSoit $x \in \mathbb{R}$ alors $\left(\mathbf{1} + \frac{x}{t}\right)^t \underset{t \to +\infty}{\to} e^x$

Théorème 4.3.6. ch5P11PropositionInegExp $\forall x \in \mathbb{R}, \ e^x \geq x+1 \ avec \ égalité \Leftrightarrow x=0$

Arcsinus La restriction de sin à $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ réalise un bijection de $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ sur [-1,1]. On appelle <u>arcsinus noté arcsin</u> cette fonction telle que $\forall (x,y) \in [-1,1] \times \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, $y = \arcsin(x) \Leftrightarrow x = \sin(y)$

Théorème 4.3.7. ch5P12PropositionArcsinCroissDerLa fonction arcsin est continue strictement croissante sur [-1, 1] et dérivable sur]-1, 1[avec $\forall x \in]-1, 1[$, $\arcsin'(x)=\frac{1}{\sqrt{1-x^2}}$

Arccosinus La restriction de cos à $[0,\pi]$ réalise un bijection sur [-1,1]. On appelle <u>arccosinus noté arccos</u> cette fonction telle que $\forall (x,y) \in [-1,1] \times [0,\pi]$, $y = \arccos(x) \Leftrightarrow x = \cos(y)$

Théorème 4.3.8. $ch5P13PropriétéArcos+Arcsin \forall x \in [-1,1], \ \operatorname{arccos}(x) + \operatorname{arcsin}(x) = \frac{\pi}{2}$

Théorème 4.3.9. ch5th3Théorème - ArctangenteArctantan réalise un bijection de] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [sur \mathbf{R} , on appelle $\frac{\arctan}{\mathbf{R}}$ cette fonction. arctan est dérivable sur \mathbf{R} avec $\forall x \in \mathbf{R}$, $\arctan(x) = \frac{1}{1+x^2}$

Démonstration. tan est dérivable sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ donc arctan est dérivable en tout point $a=\tan(y)$

avec $\operatorname{arctan}'(a) = \frac{1}{\tan'(y)} = \frac{1}{1 + \tan^2(y)} = \frac{1}{1 + a^2}$

Théorème 4.3.10. $ch5P14PropositionArctan+inv \forall x \in \mathbb{R}$, $arctan(x)+arctan\left(\frac{1}{x}\right)=\frac{x}{|x|} \times \frac{\pi}{2}$

Cosinus hyperbolique - Sinus hyperbolique On appelle cosinus hyperbolique (resp. sinus hyperbolique) noté cosh (resp. sinh) la partie paire (resp. impaire) de exp.

$$orall x \in \mathbf{R}, \; egin{cases} \cosh(x) = rac{e^x + e^{-x}}{2} \ \sinh(x) = rac{e^x - e^{-x}}{2} \ ext{ent dérivables sur } \mathbf{R} \; ext{avec} \; ext{cos} \end{cases}$$

Ces fonctions sont indéfiniment dérivabl

Théorème 4.3.11. $ch5L2Lemmech>1\forall x\in \mathbb{R}$, $cosh(x)\geq 1$ avec égalité ssi x=0

Théorème 4.3.12. $ch5P15PropositionCh+Sh\forall x \in \mathbb{R}$, $cosh^2(x) - sinh^2(x) = 1$

Théorème 4.3.13. ch5P16Propriété5-P16 \forall (a, b) \in R², on a $\cosh(a+b) = \cosh(a)\cosh(b) + \sinh(a)\sinh(b)$

 $\sinh(a+b) = \sinh(a)\cosh(b) + \sinh(b)\cosh(a)$

 $\cosh(a-b) = \cosh(a)\cosh(b) - \sinh(a)\sinh(b)$

 $\sinh(a-b) = \sinh(a)\cosh(b) - \sinh(b)\cosh(a)$

Tangente hyperbolique La fonction tangente hyperbolique notée tanh est définie sur **R** par $tanh = \frac{sinh}{cosh}$

Théorème 4.3.14. ch5P17PropriétéPropriTanhtanh est impaire et indéfiniment dérivable sur R avec

$$\forall x \in \mathbf{R}$$
, $\tanh'(x) = \frac{1}{\cosh^2(x)} = 1 - \tanh^2(x)$

Dérivation d'une fonction complexe 4.4

On étudie ici des fonctions définies sur $I \subset R$ à valeurs dans C

Dérivabilité en un point On dit que f:I o C est dérivable en $x_0\in I$ si $rac{f(x)-f(x_0)}{x-x_0}$ possède une limite en x_0 . (Si $\forall \varepsilon > 0$, $\exists \delta > 0$: $\forall x \in I$, $|x - x_0| \leq \delta \Rightarrow |f(x) - f(x_0)| \leq \delta$ $\varepsilon)$

On note alors $f'(x_0)$ cette limite.

Théorème 4.4.1. ch5P18PropositionFderCCNSf:I o C est dérivable en $x_0\in I$ <u>si et seulement si</u> $\Re(f)$ et $\Im(f)$ sont dérivable en x_0 . On a alors $f'(x_0) = (\mathfrak{R}(f))'(x_0) + i(\mathfrak{I}(f))'(x_0)$

Théorème 4.4.2. ch5P19PropositionThOpFcComplLes théorèmes opératoires sur la somme, le produit, et la fraction sont identique pour des fonctions à valeurs complexes (pas la composition!)

Théorème 4.4.3. $ch5P20PropositionDerivExpComplSi\ \varphi$ est une fonction dérivable sur I de \mathbb{R} à valeurs complexes

Alors
$$\psi$$
 $\left(egin{array}{ccc} I & \longrightarrow & \mathbf{C} \\ t & \longmapsto & \exp\left(i \varphi(t)
ight) \end{array}
ight)$ est dérivable sur I et $orall t \in I, \; \psi'(t) = i \varphi'(t) e^{i \varphi(t)}$

* * *

Primitives et équations différentielles

Contenu

5.1	Calcul de primitives	24
	Primitive	24
	Exemples de référence	24
	Notation	25
5.2	Équations différentielles du premier ordre	25
	Définition	25
	Méthode de variation de la constante :	26
5.3	Équations différentielles linéaires d'ordre 2 à coefficients constants	27

5.1 Calcul de primitives

Primitive Si I est un intervalle de R on dit que F est une primitive de f définie sur I à valeurs complexes si F est dérivable sur I et $\forall x \in I$, F'(x) = f(x)

Théorème 5.1.1. $ch6P1PropositionPrimCteSi\ F$ est une primitive de f sur I, alors pour toute primitive G

de f il existe $C \in \mathbb{R}$ une constante telle que G = F + C

Théorème 5.1.2. $ch6P2PropositionPrim0enaSi\ f$ est une fonction continue sur I alors f admet des primitives sur I et

 $\forall x_0 \in I$, $\int_{x_0}^x f(t)t$ est l'unique primitive de f qui s'annulle en x_0 .

Exemples de référence

Soit $\lambda \in \mathbb{C}^*$; $n \in \mathbb{Z} \setminus \{-1\}$; $\alpha \in \mathbb{R} \setminus \{-1\}$; $a \in \mathbb{R}^*$ et $J \subset \{x \in \mathbb{R} \mid \cos(ax+b) \neq 0\}$

Notation On note $\int_{-\infty}^{\infty} f(t)t$ une primitive de f.

Théorème 5.1.3. ch6P3Proposition : Intégration par partieIPPSi u et v sont deux fonctions de classe C^1 sur I, $(a,b) \in I$, $\int_a^b u'(t)v(t)t = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)t$

Théorème 5.1.4. ch6P4Proposition : Formule du changement de variableChgtVarSoit φ une fonction de classe \mathcal{C}^1 sur un intervalle I de \mathbb{R} , f une fonction continue sur J avec $\varphi_d(I) \subset J$ $\forall (a,b) \in I^2$, $\int_a^b f(\varphi(t)) \times \varphi'(t) t = \int_{\varphi(a)}^{\varphi(b)} f(x) x$

Règles de Bioche : Soit f une fonction rationnelle en $\cos t$ et $\sin t$ et $\psi(t) = f(t)t$ On effectue les changements de variable suivants :

- ullet Si ψ est invariante par $t\mapsto \pi-t$ alors on pose $x=\sin t$
- Si ψ est invariante par $t\mapsto -t$ alors on pose $x=\cos t$
- ullet Si ψ est invariante par $t\mapsto t+\pi$ alors on pose x= an t

5.2 Équations différentielles du premier ordre

Définition Une équation fonctionnelle de la forme

$$y' + a(x)y = b(x)$$

Où a et b sont des fonctions réelles ou complexes définies sur un intervalle I de R s'appelle une <u>équation différentielle linéaire d'ordre 1</u> où les <u>inconnues y</u> sont des <u>fonctions dérivables sur I à valeurs dans R ou C</u>

Théorème 5.2.1. $ch6P5PropositionEquaHomogSi\ a$ et b sont deux fonctions continues $sur\ I$,

$$(E): y'+a(x)y=b(x),$$
 Alors $(E_0): y'+a(x)y=0$ est l'équation homogène associée à (E) de solution $y=C.e^{-A(x)}$ où $A(x)$ est une primitive de a sur I et C est une constante.

Théorème 5.2.2. ch6P6PropositionSoluceESi a et b sont deux fonctions continues de I de R à valeur dans K,

 φ_0 une solution particulière de (E) : y' + a(x)y = b(x)Alors toute solution de (E) est de la forme $x \mapsto \varphi_0(x) + \psi(x)$ où ψ est solution de (E_0) On notera $\mathscr{S}_{(E)} = \varphi_0 + \mathscr{S}_{(E_0)}$

Méthode de variation de la constante : y' + a(x)y = b(x) avec a et b continues sur I à valeurs dans K.

 (E_0) l'équation homogène associée à (E) admet pour solution générale $\varphi_0(x) = C.e^{-A(x)}$ avec A une primitive de asur I et C une constante de K.

On cherche une solution particulière de la forme $x \overset{\psi}{\mapsto} C(x).e^{-A(x)}$ avec C dérivable sur I

$$orall x \in I, \ \ \psi'(x) + a(x) \psi(x) = b(x) \ \Leftrightarrow$$

$$C'(x)e^{-A(x)}\underbrace{-C(x)a(x)e^{-A(x)}+C(x)a(x)e^{-A(x)}}_{=0}=b(x)$$

 $\Leftrightarrow \psi$ est solution de (E) si et seulement si $\forall x \in I$, $C'(x) = b(x)e^{A(x)}$

Théorème 5.2.3. ch6P7PropositionSolGESous les mêmes hypothèses et notations la solution générale de (E) est

$$\varphi(x) = \left(C + \int^x b(t)e^{A(t)}t\right).e^{-A(x)}$$

où A est une primitive de a sur I et C une constante de K

Théorème 5.2.4. ch6P8PropriétéEquaDiffPolSi $a \in K$ et P est une fonction polynômiale à coefficients dans K

Alors l'équation différentielle $y' + ay = e^{-\alpha(x)}P(x)$ admet une solution particulière de la forme $\varphi_0: x \mapsto e^{-\alpha(x)}Q(x)$ avec Q(x) un polynôme à coefficients dans Ket deg $Q = \deg P$ si $\alpha \neq a$ et deg $Q = \deg P + 1$ sinon.

Théorème 5.2.5. ch6P9Proposition: Principe de superpositionPrincSuperpoSi a, b_1, b_2 sont des fonctions continues sur I à valeurs dans K

 φ_1 solution particulière de $y' + a(x)y = b_1(x)$

 φ_2 solution particulière de $y' + a(x)y = b_2(x)$

Alors pour tout $(\lambda_1, \lambda_2) \in K$,

 $\lambda_1 arphi_1 + \lambda_2 arphi_2$ est solution particulière de $y' + a(x)y = \lambda_1 b_1(x) + \lambda_2 b_2(x)$

Théorème 5.2.6. ch6P10Proposition : Problème de CauchyPbCauchy $\forall (x_0, y_0) \in I \times K$, le problème de Cauchy $\left\{egin{array}{l} y'+a(x)y=b(x)\ y(x_0)=y_0 \end{array}
ight.$

Admet une unique solution
$$\varphi_0: x \mapsto \left(y_0 + \int_{x_0}^x b(t) e^{\int_{x_0}^x a(s)s} t\right) e^{-\int_{x_0}^x a(s)s}$$

5.3 Équations différentielles linéaires d'ordre 2 à coefficients constants

On considère ici (E): y'' + ay' + by = f(x)où a, b sont des constantes de K et f est définie et continue sur I de R à valeur dans K(E) s'appelle une équation différentielle linéaire d'ordre 2 à coefficients constants dans K

Théorème 5.3.1. ch6P11PropositionEquaCarSi $r \in K$ alors $\varphi_r : x \mapsto e^{rx}$ est solution de (E_0) si et seulement si $r^2 + ar + b = 0$ (équation caractéristique associée à (E) (e.c.))

Théorème 5.3.2. ch6P12PropositionSolGE02Avec les mêmes notations et en notant Δ le discriminant

de l'équation caractéristique associée à (E)

- $\Delta >$ 0 et r_1 , r_2 les solutions de e.c. alors la solution générale de (E_0) est donnée par $x \mapsto C_1 e^{r_1(x)} + C_2 e^{r_2(x)}$
- $\Delta = 0$ et r la solution double de e.c. alors la solution générale de (E_0) est donnée par $x \mapsto (C_1 x + C_2)e^{rx}$
- Δ < 0 et $r = \rho + i.\omega$ ($\omega \neq 0$) une solution de e.c. alors la solution générale de (E_0) est donnée par $x \mapsto (C_1 \cos(\omega x) + C_2 \sin(\omega x))e^{\rho x}$

Théorème 5.3.3. ch6P13PropositionSolGE2Si f est une fonction continue sur I, $(a, b) \in K^2$

Alors la solution générale de (E): y'' + ay' + by = f(x) est la somme d'une solution particulière et de la solution générale de l'équation homogène associée.

Théorème 5.3.4. ch6P14PropriétéEquaDiff2PolSoit P une fonction polynômiale sur I à valeurs dans K et $\alpha \in K$

L'équation (E) : $y'' + ay' + b = P(x)e^{\alpha x}$ admet une solution particulière de la forme $x \mapsto Q(x)e^{\alpha x}$ avec Q une fonction polynômiale à coefficients dans K et

 $\deg Q = \deg P \ si \ \alpha \ n'est \ pas \ solution \ de \ e.c.$

 $\deg Q = \deg P + 1$ si α est racine simple de e.c.

 $\deg Q = \deg P + 2$ si α est racine double de e.c.

Théorème 5.3.5. $ch6P14cCorollaireEquaDiff2TrigL'équation différentielle <math>y''+ay'+b=\cos(\omega x)e^{\alpha x}$

(respectivement $y'' + ay' + b = \sin(\omega x)e^{\alpha x}$) Admet une solution particulière de la forme $x \mapsto x^k (C_1 \cos(\omega x) + C_2 \sin(\omega x))e^{\alpha x}$ avec $(C_1, C_2) \in \mathbb{R}^2$ k = 0 si $\alpha + i.\omega$ n'est pas solution de e.c. k = 1 si $\alpha + i.\omega$ est une racine double de e.c. k = 2 si $\alpha + i.\omega$ est une racine simple de e.c. **Théorème 5.3.6.** ch6P15Propriété : Principe de superpositionPrincSuperpo2Soit $(a, b) \in K^2$ et (f_1, f_2) deux fonctions continues sur I à valeurs dans K

 $arphi_1$ une solution particulière de $y'' + ay' + by = f_1(x)$

 $arphi_2$ une solution particulière de $y'' + ay' + by = f_2(x)$

Alors pour tout $(\lambda_1, \lambda_2) \in K^2$,

 $\lambda_1 \varphi_1 + \lambda_2 \varphi_2$ est solution de $y'' + ay' + by = (\lambda_1 f_1(x) + \lambda_2 f_2(x))$

Théorème 5.3.7. ch6P16Proposition : Problème de CauchyPbCauchy2Si $(a, b) \in K^2$, f une fonction continue sur I à valeurs dans K,

 $x_0\in I,\; (y_0,y_0')\in \mathbf{K}^2$ le problème de Cauchy $\left\{ egin{array}{l} y''+ay'+by=f(x)\ y(x_0)=y_0\;;\; y'(x_0)=y_0'\ \end{array}
ight.$ admet une unique solution.

Nombres réels et suites numériques

Contenu					
6.1	Ensembles de nombres réels				
		Entiers naturels			
		Entiers relatifs			
		Nombres rationnels			
		Approximation décimale propre			
		Nombres décimaux			
		Densité			
		Borne supérieure			
		Intervalle			
6.2	Suites réelles				
	6.2.1	Généralités			
		Suite stationnaire			
		Convergence			
		Divergence			
		Suites adjacentes			
		Extractrice			
		Suite extraite			
		Convergence (cas complexe)			
	6.2.2	Suites particulières			
		Suite arithmétique			
		Suite géométrique			
		Suite arithmético-géométrique			

6.1 Ensembles de nombres réels

Entiers naturels 0, 1, 2, . . . avec ≤ une relation d'ordre totale

Théorème 6.1.1. ch7P1Propriété : Principe de bon ordreBonOrdreN(i) Toute partie non vide de <math>N admet un plus petit élément.

(ii) Tout partie non vide et majorée de ${\bf N}$ admet un plus grand élément.

Théorème 6.1.2. ch7P2Proposition : Division euclidienne sur N Div $EuclN\forall(a,b) \in N \times N^*$, $\exists (q,r) \in N^2$, unique tel que a = bq + r avec $0 \le r < b$

Entiers relatifs $Z = N \cup (-N) = \{..., -2, -1, 0, 1, 2, ...\}$

La division euclidienne reste valable sur **Z**

Nombres rationnels $Q = \{\frac{p}{q} \mid p \in Z, q \in N^*\}$ On dit que $\frac{p}{q}$ est irréductible si p et q sont sans diviseurs communs.

Théorème 6.1.3. ch7P3PropriétéQStableQ est stable par somme, différence et produit.

Théorème 6.1.4. ch7P4PropositionEncadrDecimal $\forall x \in \mathbb{R}^+$, $\exists (x_k)_{k \in \mathbb{N}} \in \mathbb{N}^\mathbb{N}$ unique telle que $\forall n \in \mathbb{N}$ on a

$$\sum_{k=0}^n x_k.\mathbf{10}^{-k} \leqslant x < \sum_{k=0}^n x_k.\mathbf{10}^{-k} + \mathbf{10}^{-n}$$
 On a de plus $(x_k)_{k \in \mathbf{N}^*} \in \llbracket \mathtt{0}, \mathtt{9} \rrbracket^\mathbf{N}$ non stationnaire à 9

Approximation décimale propre Soit $x \in \mathbb{R}$, avec les même notations, on appelle approximation décimale propre de x à 10⁻ⁿ près la somme $\sum_{k=0}^{n} x_k$.10^{-k}

On appelle approximation décimale propre de x la **limite** :

$$n+\infty\sum_{k= ext{0}}^n x_k. ext{10}^{-k}=x_ ext{0}, x_ ext{1}x_ ext{2}\dots x_n\dots$$

Nombres décimaux On appelle <u>nombres décimaux</u> l'ensemble des nombres réels dont l'approximation décimale propre est **stationnaire** \hat{a} 0. Leur ensemble est noté $\mathbb D$ avec

$$\mathbb{D} = \{ x \in \mathbb{R} \mid \exists n \in \mathbb{N} : x \times 10^n \in \mathbb{Z} \} \subset \mathbb{Q}$$

Densité On dit que $X \in \mathcal{P}(R)$ est <u>dense dans R</u> si pour tout a < b de R on a $|a,b| \cap X \neq \emptyset$

Théorème 6.1.5. ch7P5PropriétéRatIrratDensesQ et $R \setminus Q$ sont denses dans R.

31

Borne supérieure Soit X un ensemble. Sous réserve d'existence, la borne supérieure de X, notée sup X est le plus petit éléments de l'ensemble des majorants de X.

Théorème 6.1.6. ch7th1ThéorèmeSupNonVideMajRToute partie non vide et majorée de **R** admet une borne supérieure.

Théorème 6.1.7. ch7P6Proposition : Caractérisation de la borne supérieureCarSupSoit A une partie de \mathbf{R} , α est la borne supérieure de A si et seulement si $\forall x \in A, \ x \leqslant \alpha \ \text{et} \ \forall \varepsilon > 0, \ \exists x' \in A \ \text{tel que} \ x' > \alpha - \varepsilon$

Intervalle On appelle intervalle toute partie X de R vérifiant

$$\forall (a,b) \in X^2 \text{ avec } a \leq b, [a,b] \subset X$$

Théorème 6.1.8. ch7P7PropriétéEcritureSegment $\forall (a, b) \in \mathbb{R}^2$ avec $a \leq b$ on a $[a, b] = \{\lambda a + (1 - \lambda)b \mid \lambda \in [0, 1]\}$

Théorème 6.1.9. ch7P8PropriétéIntersecIntervL'intersection de deux intervalles est un intervalle.

Toute intersection (même infinie) d'intervalles est un intervalle.

6.2 Suites réelles

6.2.1 Généralités

Suite stationnaire Une suite réelle (u_n) est dite stationnaire si

$$\exists n_{\scriptscriptstyle \mathsf{O}} \in \mathsf{N} \; : \; \forall n \in \mathsf{N}, \; (n \geqslant n_{\scriptscriptstyle \mathsf{O}} \Rightarrow u_n = u_{n_{\scriptscriptstyle \mathsf{O}}})$$

Théorème 6.2.1. ch7P9PropriétéSuiteBornéeUne suite (u_n) est bornée si et seulement si $(u_n)_{n\in\mathbb{N}}$ est majorée.

Convergence Si $\ell \in R$ et (u_n) est une suite réelle,

ullet On dit que \underline{u} converge vers l si

$$orall arepsilon >$$
 0, $\exists n_{ exttt{o}} \in \mathbf{N}$: $orall n \in \mathbf{N}$, $(n \geqslant n_{ exttt{o}} \Rightarrow u_n - \ell \leqslant arepsilon)$

ullet On dit que \underline{u} tend vers $+\infty$ (resp. $-\infty$) si

$$orall A \in \mathbf{R}, \; \exists n_{\mathsf{o}} \in \mathbf{N} \; : \; orall n \in \mathbf{N}, \; \left(n \geqslant n_{\mathsf{o}} \Rightarrow u_n \geqslant A \right) \; \; (\mathit{resp.} \; u_n \leqslant A)$$

Divergence Une suite réelle est dite divergente si elle ne converge pas.

Théorème 6.2.2. ch7P10Propriété : Unicité de la limiteUniLimSi (u_n) tend vers ℓ_1 et vers ℓ_2 alors $\ell_1 = \ell_2$

Théorème 6.2.3. ch7P11PropriétéConvImplBornToute suite réelle convergente est bornée.

Théorème 6.2.4. ch7P12PropriétéProdBornLimNulleLe produit d'une suite bornée et d'une suite de limite nulle est une suite de limite nulle.

Théorème 6.2.5. ch7P13PropriétésOpeLimSi (u_n) et (v_n) sont deux suites réelles convergentes dans \overline{R}

Alors pour tout λ , $\mu \in \mathbb{R}$, $\left(\lambda u_n + \mu v_n \right)_{n \in \mathbb{N}}$ et $\left(u_n v_n \right)_{n \in \mathbb{N}}$ convergent * avec

- $\lim(\lambda u_n + \mu v_n) = \lambda \lim u_n + \mu \lim v_n$
- $\lim(u_nv_n)=(\lim u_n)(\lim v_n)$

Théorème 6.2.6. ch7P14PropriétéQuotientLimSi (u_n) tend vers $\ell \in \overline{\mathbb{R}} \setminus \{0\}$ Alors (u_n) est non nulle à partir d'un certain rang n_0 et $\left(\frac{1}{u_n}\right)_{n \ge n_0}$ converge vers $\frac{1}{\ell} \in \overline{\mathbb{R}}$

Théorème 6.2.7. ch7L1Lemme7-L1Soit (u_n) une suite réelle avec $u_n \underset{n}{\to} \ell$ alors $u_n \underset{n}{\to} \ell$

Théorème 6.2.8. ch7th2Théorème : Passage à la limite dans les inégalités largesPass-LimInegLargesà compléter

Démonstration. On peut noter que si (u_n) une suite réelle quelconque est à termes positif à partir d'un certain rang et si (u_n) tends vers $\ell \in \overline{\mathbb{R}}$ alors $\ell \geqslant 0$, en effet : par unicité de la limite, $\ell = \ell \geqslant 0$

Soit donc (u_n) et (v_n) deux suites réelles convergente respectivement vers ℓ et ℓ' avec $u_n \geqslant v_n$ à partir d'un certain rang alors

- ullet Si $m\ell=m\ell'=+\infty$ ou si $m\ell=m\ell'=-\infty$ alors $m\ell=m\ell'$ et on a le résultat
- ullet Sinon on note $w_n=u_n-v_n$ et on a ainsi $w_n\geqslant$ o à partir d'un certain rang donc vu (w_n) converge vers $\ell''=\ell-\ell'$ alors $\ell\geqslant\ell'$

Si la somme et/ou le produit ne sont pas des formes indéterminée de \overline{R}

Théorème 6.2.9. ch7P15PropriétéCarConvSoit (u_n) et (v_n) deux suites réelles telles que (v_n) converge vers 0.

On suppose qu'il existe $\ell \in \mathbf{R}$ tel que apcr $u_n - \ell \leqslant v_n$ Alors (u_n) converge vers ℓ

Théorème 6.2.10. ch7th3Théorème d'encadrementThEncadrSoit (u_n) , (v_n) , (w_n) trois suites réelles que apcr $v_n \leqslant u_n \leqslant w_n$.

On suppose que (v_n) et (w_n) converge vers une même limite.

Alors (u_n) converge vers cette limite commune.

Démonstration. On a à partir d'un certain rang o $\leqslant u_n - v_n \leqslant w_n - v_n$ et $(w_n - v_n)$ converge vers o donc d'après la propriété précédente $(u_n - v_n)$ converge vers o, or pour tout $n \in \mathbb{N}$, $u_n = (u_n - v_n) + v_n$ d'où $\lim u_n = \lim (u_n - v_n) + \lim v_n = \lim v_n$

Théorème 6.2.11. ch7P16PropositionLimMinorMajSoit (u_n) et (v_n) deux suites réelle, on suppose aper $u_n \leq v_n$

on suppose aper
$$u_n \leqslant v_n$$

$$Alors \left\{ \begin{array}{l} \textit{Si } u_n \rightarrow +\infty \ \textit{alors } v_n \rightarrow +\infty \\ \textit{Si } v_n \rightarrow -\infty \ \textit{alors } u_n \rightarrow -\infty \end{array} \right.$$

Théorème 6.2.12. ch7th4 Théorème de la limite monotone ThLimMonotToute suite croissante et majorée (resp. décroissante et minorée) converge.

Démonstration. Soit (u_n) une suite réelle, on note $X = \{u_n \mid n \in \mathbb{N}\}$ partie non vide et majorée de \mathbb{R} , on note donc ℓ sa borne supérieur (qui existe). On a alors par croissance de (u_n) et caractérisation de la borne supérieur $u_n \to \ell$.

Suites adjacentes Deux suites réelles (u_n) et (v_n) sont dites <u>adjacentes</u> si elles sont de monotonies contraires et si $\lim (u_n - v_n) = 0$

Théorème 6.2.13. ch7L2Lemme7-L2Si (u_n) et (v_n) sont adjacentes avec (u_n) croissante et (v_n) décroissante.

Alors
$$\forall (p,q) \in \mathbb{N}^2$$
, $u_p \leqslant v_q$

Théorème 6.2.14. ch7th5Théorème des suite adjacentesThSuitesAdjacentesDeux suites adjacentes convergent vers une même limite.

Démonstration. Soit (u_n) et (v_n) deux suites adjacentes. On suppose sans perte de généralité (v_n) décroissante. D'après le lemme on a alors (u_n) croissante majorée par v_0 donc d'après le théorème de la limite monotone (u_n) converge vers $\ell \leqslant v_0$. De même (v_n) converge vers $\ell' \geqslant u_0$ puis vu $\lim (u_n - v_n) = 0$ on a $\ell = \ell'$

Extractrice On a appelle extractrice toute application $\sigma: N \to N$ strictement croissante.

Théorème 6.2.15. ch7P17PropriétéExtracSupNSi $\sigma: \mathbb{N} \to \mathbb{N}$ est une extractrice alors $\forall n \in \mathbb{N}, \ \sigma(n) \geqslant n$

Suite extraite Soit (u_n) et (v_n) deux suites réelles. On dit que (v_n) est extraite de (u_n) s'il existe $\sigma: \mathbb{N} \to \mathbb{N}$ un extractrice telle que

$$\forall n \in \mathbb{N}, \ v_n = u_{\sigma(n)}$$

Théorème 6.2.16. ch7P18PropositionLimStableExtracSi une suite possède une limite, toute ses suites extraites possèdent la même limite.

Théorème 6.2.17. ch7P19PropriétéSousSuitePairImpairSoit (u_n) une suite réelle On suppose que (u_{2n}) et (u_{2n+1}) tendent vers une même limite ℓ .

Alors (u_n) tend vers ℓ

Théorème 6.2.18. ch7th6 Théorème de Bolzano-Weierstrass ThBWTout suite réelle bornée admet une suite extraite qui converge.

Démonstration. Soit (u_n) une suite bornée.

On considère $A = \{ p \in \mathbf{N} \mid \forall n \in \mathbf{N}, \ n \geqslant p \Rightarrow u_n < u_p \}$

On construit alors une extractrice σ telle que $(u_{\sigma(n)})$ est strictement décroissante :

• Si A est infinie, on pose $\sigma(o) = \min A$ (principe de bon ordre) puis $\forall p \in \mathbb{N}$, on pose $\sigma(p+1) = \min (A \cap]\sigma(p), +\infty[$)

On a alors $(u_{\sigma(n)})$ strictement décroissante et minorée donc convergent d'après le théorème de la limite monotone.

• Si A est fini, on pose $\sigma(0) = \begin{cases} o \text{ si } A \text{ est vide} \\ \max A + 1 \text{ sinon} \end{cases}$

On a alors vu $\sigma(0) \notin A$, $\exists n > \sigma(0) : u_n \geqslant u_{\sigma(0)}$, ainsi on pose pour tout $p \in \mathbb{N}$, $\sigma(p+1) = \min\{n > \sigma(p) \mid u_n \geqslant u_{\sigma(p)}\}$ (qui existe vu $\sigma(p) \notin A$ $(u_{\sigma(p)})$ est donc croissante et majorée et par suite convergente.

Convergence (cas complexe) Soit $(u_n) \in \mathbb{C}^N$ on dit que (u_n) converge vers $\ell \in \mathbb{C}$ si

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ : \ \forall n \in \mathbb{N}, \ (n \geqslant n_0 \Rightarrow u_n - \ell \leqslant \varepsilon)$$

Théorème 6.2.19. ch7P20PropositionCNSConvComplSoit $(u_n) \in \mathbb{C}^N$ une suite complexe, alors (u_n) converge ssi $(\mathfrak{I}(u_n))_{n \in \mathbb{N}}$ et $(\mathfrak{R}(u_n))_{n \in \mathbb{N}}$ convergent.

On a alors
$$\left\{egin{array}{l} \mathfrak{R}(\lim u_n) = \lim \mathfrak{R}(u_n) \ \mathfrak{I}(\lim u_n) = \lim \mathfrak{I}(u_n) \end{array}
ight.$$

6.2. SUITES RÉELLES 37

Théorème 6.2.20. ch7th7Théorème de Bolzano-Weierstrass : cas complexe ThBWComplDe toute suite complexe bornée on peut extraire une suite qui converge.

Démonstration. Clair avec le théorème dans le cas réel vu $\forall z \in \mathbb{C}$, $\Re z \leqslant z$ et $\Im z \leqslant z$

Théorème 6.2.21. ch7P21Proposition : Caractérisation séquentielle de la densitéCar-SeqDensiteUn partie X de $\mathbf R$ est dense dans $\mathbf R$ si et seulement si tout réel peut s'écrire comme une suite d'éléments de X.

6.2.2 Suites particulières

Suite arithmétique On dit que $(u_n) \in K^N$ est une suite arithmétique si la suite $(u_{n+1} - u_n)_{n \in \mathbb{N}}$ est une suite constante appelée raison de la suite arithmétique.

Théorème 6.2.22. $ch7P22Propriété7-P22Si\ u$ est une suite arithmétique de raison r on a

$$\forall (p,q) \in \mathbb{N}^2, \ u_p = u_q + r(p-q)$$

Suite géométrique On dit que $(u_n) \in K^N$ est une suite géométrique si u est stationnaire à o où si u est telle que $(\frac{\overline{u_{n+1}}}{u_n})_{n \in \mathbb{N}}$ est une suite bien définie constante appelée raison de la suite géométrique.

Théorème 6.2.23. $ch7P23Propriété7-P23Si\ u$ est une suite géométrique de raison q alors

$$orall (m,n) \in \mathsf{N}^2, \; u_m = u_n imes q^{m-n} \ \sum_{k=n}^m u_k = \left\{egin{array}{ll} (m-n+1) imes u_n & si \; q=1 \ rac{u_n-u_m+1}{1-q} & sinon \end{array}
ight.$$

Suite arithmético-géométrique On dit que $(u_n) \in K^N$ est une suite arithmético-géométrique s'il existe $a \in K \setminus \{1\}$ et $b \in K$ tels que $u_0 \in K$ et $\forall n \in N$, $u_{n+1} = au_n + b$

Théorème 6.2.24. ch7P24PropriétéEcritureArthGeoSoit $(u_n) \in K^N$ une suite arithmético-géométrique, alors avec les mêmes notations

$$orall \in \mathbf{N}$$
, $u_n = a^n (u_{\scriptscriptstyle 0} - rac{b}{1-a}) rac{b}{1-a}$

Suite récurrente linéaire d'ordre 2 On dit que $(u_n) \in K^N$ est récurrente linéaire d'ordre 2 si $\exists (a,b) \in K^2$ tel que $\forall n \in \mathbb{N}, \ u_{n+2} = au_n + bu_n$

Théorème 6.2.25. ch7P25PropriétéSuiteRecLin2Soit $(u_n) \in K^N$ une suite récurrente linéaire d'ordre 2.

On considère (E) : $z^2 = az + b$ l'équation caractéristique associée alors

- $ightarrow Si \ \Delta \neq 0, \ (z_1, z_2) \in \mathbb{C}^2$ les racines distinctes de (E) alors $\exists (\lambda, \mu) \in \mathbb{C}^2$ tel que $\forall n \in \mathbb{N}, \ u_n = \lambda z_1^n + \mu z_2^n$
- ightarrow Si $\Delta=$ 0, z_0 la racine double de (E) alors
 - $\exists (\lambda,\mu) \in \mathbb{C}^2$ tel que $\forall n \in \mathbb{N}$, $u_n = (\lambda n + \mu)z_0^n$

 $\underline{Rq}: Si\ (u_n) \in \mathbf{R^N} \ \text{et}\ \Delta < \text{o}\ \text{alors}\ \lambda \ \text{et}\ \mu \ \text{sont conjugu\'e et on a en \'ecrivant}\ z_1 = \rho + \imath.\omega \ \overline{\exists (\lambda_r, \mu_r) \in \mathbf{R^2}}\ \text{tel que}\ \forall n \in \mathbf{N},\ u_n = \rho^n \big(\lambda_r \cos(n\omega) + \mu_r \sin(n\omega)\big)$

Chapitre 7

Fonctions d'une variable réelle

Les fonctions considérées sont définies sur un intervalle I de $\mathbb R$ non réduit à un point à valeur dans $\mathbb R$ sauf indications contraires.

Contenu

		Voisinage
7.1	Limit	tes et Continuité
	7.1.1	Limite d'une fonction en un point
		Limite d'une fonction
	7.1.2	Continuité en un point
		Continuité
		Prolongement par continuité 41
	7.1.3	Continuité sur un intervalle
		Définition
	7.1.4	Fonctions à valeurs complexes
7.2	Dériv	vabilité
		Dérivabilité en un point
		Dérivabilité sur un intervalle
	7.2.1	Extremum local et point critique
		Extremum local
		Point critique
	7.2.2	Théorèmes de Michel Rolle et des accroissements finis 44
		Fonction lipschitzienne
	7.2.3	Fonctions de classe , $(k \in \mathbb{N} \cup \{+\infty\})$
		Définitions
7.3	Conv	rexité
	7.3.1	Généralités
		Fonction convexe
		Fonction concave
	7.3.2	Fonctions convexes dérivables et deux fois dérivables 47

Voisinage Une propriété portant sur f définie sur I est vraie au voisinage de a si elle est vraie sur $]a + \delta$, $a - \delta[$ pour un certain $\delta > 0$ si $a \in \mathbb{R}$; sur]A, $+\infty[$ ou $]-\infty$, A[sinon.

7.1 Limites et Continuité

7.1.1 Limite d'une fonction en un point

Limite d'une fonction Soit f une fonction, f admet une limite ℓ en $a \in D_f$ notée $\lim_{x \to a} f(x) = \ell$ si :

$$\forall \varepsilon, \exists \delta < 0 : \forall x \in I, \ (|x-a| \leq \delta \Rightarrow |f(x) - \ell| \leq \varepsilon)$$

Théorème 7.1.1. ch8P1Propriété : Unicité de la limiteLimUniq Si la limite de f en a existe alors elle est unique

Théorème 7.1.2. ch8P2Proposition : Continuité en un pointContASi f est définie en a et admet une limite en a alors

xa = f(a)

On dit alors que f est continue en a

Théorème 7.1.3. ch8P3PropriétéLimBorneVoisSi f possède une limite finie en un point a

alors f est bornée sur un voisinage de a

Théorème 7.1.4. ch8P4Propriété : Signe au voisinage de aSignVoisLimit Si f admet une limite finie non nulle en α alors f est du signe (strict) de cette limite sur un voisinage de α

Théorème 7.1.5. ch8th1Théorème de caractérisation séquentielle de la limiteCarSeq-Lim f admet ℓ comme limite en $a \in I$ si, et seulement si pour toute suite $(u_n)_{n \in \mathbb{N}} \in I^{\mathbb{N}}$ qui tend vers a, $f(u_n)$ tend vers ℓ .

Démonstration. Soit ℓ la limite de f en $a \in I$

 \Rightarrow Soit $\varepsilon > 0$; soit $\delta > 0$ vérifiant la propriété de limite.

On considère $n_0 \in \mathbb{N}$ tel que $\forall n \geqslant n_0, \ u_n - a < \delta$ et on a ainsi

$$\forall n \in \mathbb{N}, \ n \geqslant n_0 \ \Rightarrow \ f(u_n) - \ell < \varepsilon$$

 \models Par contraposée, on considère $arepsilon_{ exttt{0}} >$ o tel que

 $\overline{orall n} \in \mathbf{N}$, $\exists x_{,} \in I$ tel que $x_n - a \leqslant \frac{1}{n+1}$ et $f(x_n) - \ell > arepsilon_0$

On a ainsi $(x_n) \in I^{\mathbb{N}}$ convergente vers a avec $(f(x_n))$ qui ne converge pas vers ℓ .

Les preuves pour pour les limites infinies et/ou en l'infini sont analogue.

Théorème 7.1.6. ch8P5Proposition : opérations sur les limitesOpeLimL'opérateur "limite" est stable par somme, produit, quotient* et composition.

^{*.} Dans ce cas seulement si la limite au dénominateur est non nulle et que le quotient n'est pas une forme indéterminée de $\overline{\bf R}$

Théorème 7.1.7. ch8P6PropositionLimInegLargeSoit a un point de I On suppose que $f \leqslant g$ sur un voisinage de a, $f(x) \underset{x \to a}{\longrightarrow} \ell$ et $g(x) \underset{x \to a}{\longrightarrow} \ell'$ Alors $\ell \leqslant \ell'$

Théorème 7.1.8. ch8th2Théorème d'encadrementThEncadrSoit f, g, h trois fonctions telles que sur un voisinage de $a \in I$ on a $h \leqslant f \leqslant g$. On suppose que h et g converge vers une même limite ℓ en a, alors f converge vers ℓ en a

Démonstration. Clair avec la définition et en considérant le plus petit δ

Théorème 7.1.9. ch8th3 Théorème de la limite monotone ThLimMonotSoit $(a,b) \in \mathbb{R}^2$ avec a < b et f une fonction croissante sur]a,b[. Alors f admet une limite à gauche et une limite à droite en tout point $x_0 \in]a,b[$ avec

 $xx_0^-f(x)\leqslant f(x_0)\leqslant xx_0^+f(x)$ Si de plus f est majorée (resp. minorée) sur]a, b[alors elle admet une limite à gauche en b (resp. à droite en a)

Démonstration. Soit $x_0 \in]a, b[$, on considère $f_a(]a, x_0[)$ et ℓ sa borne supérieure (existe). On peut ensuite montrer que $f(x) \underset{x \to x_0^-}{\longrightarrow} \ell$ puis on fait de même avec $f_a(]x_0, b[)$

7.1.2 Continuité en un point

Continuité Soit f définie sur I à valeur réelles, on dit que \underline{f} est continue au point $\underline{a \in I}$ si $f(x) \underset{x \to a}{\longrightarrow} f(a)$

Prolongement par continuité Si f admet une limite finie l en un point a de R et si f n'est pas définie en a, on appelle <u>prolongement par continuité de f en a</u> la fonction égale à f sur son domaine de définition et à l en a.

Théorème 7.1.10. ch8P7Proposition : caractérisation séquentielle de la continuitéCarSeqContf est continue en $a \in I$ si et seulement si pour toute suite $(u_n) \in I^N$ qui converge vers a, $(f(u_n))_{n \geqslant 0}$ converge vers f(a)

Théorème 7.1.11. ch8P8PropriétéOpeFContSi f et g sont deux fonction continues en un point a de I, alors f+g et fg sont continues en a. Si de plus $g(a) \neq o$ alors $\frac{f}{g}$ est continue en a. Si h est continue en h of est continue en h

7.1.3 Continuité sur un intervalle

Définition On dit que \underline{f} est continue sur \underline{I} si elle est continue en tout point de \underline{I} . On note $C^{\circ}(I, \mathbb{R})$ l'ensemble des fonctions continue sur \underline{I} à valeur dans \mathbb{R}

Théorème 7.1.12. ch8th4 Théorème des valeurs intermédiaires $TVISi\ f \in (I, \mathbb{R})\ et\ (a, b) \in I^2$

Alors f prend sur I toute les valeurs comprises entre f(a) et f(b).

Démonstration. On considère $\alpha = \sup\{x \in [a,b] \mid f(x) < c\}$ et on a alors par continuité de $f \neg (f(\alpha) < c \lor f(\alpha) > c) \Leftrightarrow f(\alpha) = c$

Théorème 7.1.13. ch8P9PropriétéContSegBornSoit f une fonction continue sur un segment alors f est bornée sur ce segment et f atteint ses bornes.

Théorème 7.1.14. ch8P9cCorollaireImgSegFContL'image d'un segment par une fonction continue est un segment.

Théorème 7.1.15. ch8P10Proposition8-P9Soit f est continue sur I à valeurs réelles, on suppose f est injective sur I Alors f est strictement monotone sur I

Démonstration. Soit $(a,b) \in I^2$ avec a < b, on suppose sans perte de généralité que f(a) < f(b) alors f est strictement croissante sur [a,b], en effet :

Par l'absurde, soit $(x,y) \in]a,b[^2$ tel que a < x < y < b et f(x) > f(y) On considère alors $g \begin{pmatrix} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & f \big((ta + (1-t)x) - f \big(tb + (1-t)y \big) \end{pmatrix}$ continue sur [0,1]

Vu g(0) = f(x) - f(y) > 0 et g(1) = f(a) - f(b) < 0 par le TVI g s'annule au moins une fois sur]0, 1[donc f prend deux fois la même valeur en deux points distincts de [a, b] ce qui est impossible d'où cqfd

Théorème 7.1.16. ch8th5Théorème de la bijection réciproqueThBijReciproqueToute fonction réelle définie et continue strictement monotone sur un intervalle admet une fonction réciproque de même monotonie sur l'intervalle image.

Démonstration. Soit f strictement croissante et continue sur I alors f réalise un bijection de I sur $J=f_d(I)$. On considère alors f^{-1}

D'après le théorème de la limite monotone f^{-1} est continue à droite et à gauche en tout point de l'intervalle ouvert et par injectivité ces limites sont égales donc f^{-1} est continue sur l'intervalle ouvert puis fermé donc strictement monotone avec les monotonie clairement identiques.

7.2. DÉRIVABILITÉ 43

7.1.4 Fonctions à valeurs complexes

f:I o C et x_0 un point ou une extrémité de I. f admet une limite $\ell\in C$ en x_0 si

$$\forall \varepsilon > \mathtt{0}, \ \exists \delta > \mathtt{0} \ : \ \forall x \in I, \ (x - x_\mathtt{0} \leqslant \delta \ \Rightarrow \ f(x) - \ell \leqslant \varepsilon)$$

Si $x_0 \in I$ alors $f(x_0) = \ell$ et f est continue en x_0 . On note $\ell = xx_0f(x)$

Théorème 7.1.17. ch8th6Théorème : caractérisation des limites par les parties réelles et imaginairesCarLimComplexef : $I \to \mathbf{C}$ admet une limite $\ell \in \mathbf{C}$ en x_0 si et seulement si $\mathfrak{R}(f)$ et $\mathfrak{I}(f)$ admettent des limites $(\ell_r, \ell_i) \in R^2$. On a alors $\ell = \ell_r + i\ell_i$

Démonstration. Clair vu $\forall z \in \mathbb{C}, \ z \leqslant \Re(z) + \Im(z)$ et $\max(\Re(z),\Im(z)) \leqslant z$

7.2 Dérivabilité

Dérivabilité en un point f est dérivable en un point a de I si

$$au_a(f) \, \left(egin{array}{ccc} I\setminus\{a\} & \longrightarrow & {
m R} \ x & \longmapsto & rac{f(x)-f(a)}{x-a} \end{array}
ight)$$

le taux d'accroissement de f en a admet une une limite finie $\ell \in R$ quand x tend vers a. On note f'(a) cette limite.

Théorème 7.2.1. ch8P11PropositionDerImplContSi f est dérivable en <math>a alors f est continue en a.

Théorème 7.2.2. ch8P12PropriétéCarDerf est dérivable en a si et seulement si il existe une fonction ε

définie sur un voisinage de o telle que

$$f(a+h)=f(a)+h imes \ell+h\varepsilon(h)$$

où $\ell \in \mathbb{R}$ et $ho\varepsilon(h) = 0$. On a alors $\ell = f'(a)$

Dérivabilité sur un intervalle On dit que f est dérivable sur I si elle est dérivable en tout point de I. On note alors f' sa fonction dérivée qui à tout point a de I associe f'(a)

Théorème 7.2.3. ch8P13PropriétésOpeFDerSoit f, g deux fonction dérivables en a alors

- ullet f+g est dérivable en a et (f+g)'(a)=f'(a)+g'(a)
- ullet fg est dérivable en a et (fg)'(a)=f'(a)g(a)+f(a)g'(a)
- Si $g'(a) \neq 0$ alors $\frac{f}{g}$ est dérivable en a et $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{\left(g(a)\right)^2}$

Soit h dérivable en f(a)

Alors $h \circ f$ est dérivable en a et $(h \circ f)'(a) = f'(a) \times h'(f(a))$

Théorème 7.2.4. ch8P14ProriétéDerBijSi f est bijective de I sur J dérivable en $a \in I$ Alors f^{-1} est dérivable en f(a) = b si et seulement si $f(a) \neq 0$. On a alors $(f^{-1})'(b) = \frac{1}{f'(a)}$

7.2.1 Extremum local et point critique

Extremum local

Maximum On dit que \underline{f} présente un maximum local en $\underline{a} \in \underline{I}$ s'il existe $\delta > 0$ tel que

$$\forall x \in [a - \delta, a + \delta] \cap I, \ f(x) \leqslant f(a)$$

Minimum La définition est analogue

Point critique Un point critique est un zéro de la dérivée.

Théorème 7.2.5. ch8P15PropriétéExtremumCritiqueSoit a est un point intérieur à <math>I et f dérivable en a.

On suppose que f présente un extremum local en a, alors a est un point critique. <u>Rq</u>: Si a un point intérieur à I est un point critique et si f ne présente pas d'extremum local en a, on dit que <u>a est un point d'inflexion de f</u>.

7.2.2 Théorèmes de Michel Rolle et des accroissements finis

Théorème 7.2.6. ch8th7 Théorème de Michel Rolle ThRolleSoit $a,b \in \mathbf{R}$ avec a < b et f continue sur [a,b] et dérivable sur]a,b[à valeurs réelles. On suppose f(a)=f(b) Alors il existe $c \in]a,b[$ tel que f'(c)=0

Démonstration. Si f est constante sur [a, b] c'est vrai. Sinon l'image continue de 5a, b] par f est un segment [M, m] avec M ou m différent de f(a) = f(b) atteint en $c \in]a, b[$ qui est alors un point critique de f d'où cqfd

Théorème 7.2.7. ch8th8Théorème des accroissements finisThAccrFinisSoit $a, b \in \mathbb{R}$ avec a < b et f continue sur [a, b] à valeurs réelles et dérivable sur]a, b[Alors $\exists c \in]a, b[$ tel que f(b) - f(a) = f'(c)(b-a)

7.2. DÉRIVABILITÉ 45

Démonstration. On considère $h_{a,b}$ la corde à \mathcal{C}_f joignant les points d'abscisse b et a. Soit ensuite

$$g:x\mapsto f(x)-h_{a,b}(x)=f(x)-\left(f(a)+(x-a)rac{f(b)-f(a)}{b-a}
ight)$$

On a alors g continue sur [a,b] et dérivable sur]a,b[avec g(a)=o=g(b) soit donc d'après le théorème de Michel Rolle né à Ambert en 1652 $c\in]a,b[$ tel que g'(c)=o or $g'(c)=f'(c)-\frac{f(b)-f(a)}{b-a}$ d'où cqfd

Théorème 7.2.8. ch8th8cCorollaire : Inégalité des accroissements finisInegAccrFinis-Soit f continue sur [a,b] et dérivable sur]a,b[à valeurs dans R ou C, On suppose $\exists k \in R$ tel que $\forall x \in]a,b[$, $f'(x) \leqslant k$ Alors $f(b) - f(a) \leqslant kb - a$

Fonction lipschitzienne On dit que \underline{f} est k-lipschitzienne sur \underline{I} si

$$\forall x \in]x, y[\in I^2, f(x) - f(y) \leqslant kx - y$$

On dit que \underline{f} est lipschitzienne sur \underline{I} s'il existe $k \in \mathbf{R}$ tel que \underline{f} est k-lipschitzienne

Théorème 7.2.9. ch8P16PropriétéLipContSi f est lipschitzienne sur I alors f est continue sur I

Théorème 7.2.10. ch8P17PropriétéInegAFLipSi f est dérivable sur I telle que $\forall x \in I$, $f'(x) \leqslant k$

Alors f est k-lipschitzienne sur I

Théorème 7.2.12. ch8th9Théorème de la limite de la dérivéeThLimDerSoit $a \in I$. Si f est continue sur I et dérivable sur $I \setminus \{a\}$ On suppose $f'(x) \xrightarrow{x \to a} \ell \in \mathbb{R}$ alors f est dérivable en a et $f'(a) = \ell$

Démonstration. Pour tout $x \in I \setminus \{a\}$, il existe par le théorème des accroissements finis c_x strictement compris entre x et a tel que $f(x) - f(a) = f'(c_x) \times (x - a)$. Si x tend vers a alors par encadrement c_x tend vers a et par composition de limites $f(c_x)$ tend vers ℓ .

Ainsi
$$au_a(f)(x) \underset{x o a}{\longrightarrow} \ell = f'(a)$$

st. Ceci reste vrai si f est définie sur I à valeurs complexes

Théorème 7.2.13. ch8th9cCorollaire8-th9cSi f est continue sur I et dérivable sur $I \setminus \{a\}$ avec $xaf'(x) = +\infty$

Alors f n'est pas dérivable en a et C_f admet une tangente verticale en a

7.2.3 Fonctions de classe, $(k \in \mathbb{N} \cup \{+\infty\})$

Définitions Une fonction f est dite de <u>classe sur I</u> si elle est continue sur I. Elle est dite de <u>classe sur I</u> si elle est k fois dérivable sur I et si sa dérivée k-ième est continue sur I. Elle est dite de <u>classe \mathscr{C}^{∞} sur I</u> si elle est de classe sur I pour tout $k \in \mathbb{N}$

Théorème 7.2.14. ch8P19PropriétéExsFCinfLes fonction polynômiales sont de classe \mathscr{C}^{∞} sur R.

Les fonction rationnelles (quotient de fonctions polynômiales) sont de classe \mathscr{C}^{∞} sur leur ensemble de définition. Les fonctions sin et cos sont de classe \mathscr{C}^{∞} sur \mathbf{R} Les fonction exponentielles sont de classe \mathscr{C}^{∞} sur \mathbf{R} (5) Les fonction logarithme et puissances sont de classe \mathscr{C}^{∞} sur \mathbf{R}^+

Théorème 7.2.15. $ch8P2OPropositionClasseP+QSoit\ f$ une fonction et $(p,q) \in \mathbb{N}^2$ Alors f est de classe C^{p+q} sur I si et seulement si $f^{(p)}$ est de classe C^q sur I On a alors $(f^{(p)})^{(q)} = f^{(p+q)}$

Théorème 7.2.16. ch8P21PropositionSommeClassCkSoit $k \in \mathbb{N}$. Soit $f, g \in (I, \mathbb{R})$ Alors $f + g \in (I, \mathbb{R})$ et $(f + g)^{(k)} = f^{(k)} + g^{(k)}$

Théorème 7.2.17. ch8th10Théorème : Formule de LeibnizFormuleLeibnizSoit $n \in \mathbb{N}$; soit f et g deux fonctions de classe \mathcal{C}^n sur I Alors fg est de classe \mathcal{C}^n sur I et $(fg)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(n)} g^{(n-k)}$

Démonstration. Clair par récurrence sur n.

Théorème 7.2.18. ch8P22Proposition : Formule de Faa Di BrunoCompClasseCnSoit $n \in \mathbb{N}^*$, si f est de classe \mathbb{C}^n sur I à valeur dans un intervalle J non trivial, g est de classe \mathbb{C}^n sur J Alors $g \circ f$ est de classe \mathbb{C}^n

Théorème 7.2.19. ch8P22cCorollaire1/FCnSoit $n \in \mathbb{N}^*$, si f et g sont de classe C^n sur I avec $0 \notin g_d(I)$

Alors $\frac{1}{g}$ et $\frac{f}{g}$ sont de classe \mathbb{C}^n sur I

7.3. CONVEXITÉ 47

Théorème 7.2.20. ch8P23PropositionBijRecCnSoit $n \in \mathbb{N}^*$, si f est bijective de I sur J de classe \mathbb{C}^n sur I et si f ne s'annule pas sur I alors f^{-1} est de classe \mathbb{C}^n sur J.

7.3 Convexité

7.3.1 Généralités

Fonction convexe Soit f une fonction à valeurs réelles. On dit que \underline{f} est convexe sur \underline{I} si

$$\forall (x,y) \in I^2, \ \forall \lambda \in [0,1], \ f(\lambda x + (1-\lambda)y) \leqslant \lambda f(x) + (1-\lambda - f(y))$$

Fonction concave On dit que \underline{f} est concave sur \underline{I} si -f est convexe sur \underline{I}

Théorème 7.3.1. ch8th11Théorème : Inégalité de JensenInegJensenSi f est convexe sur I alors $\forall n \in \mathbb{N}, \ n \geqslant 2$

$$orall (x_1,\ldots,x_n) \in I^n, \ orall (\lambda_1,\ldots,\lambda_n) \in \mathbf{R}^n_+ \ avec \ \sum_{k=1}^n \lambda_k = 1 \ f\Big(\sum_{i=1}^n \lambda_i x_i\Big) \leqslant \sum_{i=1}^n \lambda_i f(x_i)$$

Démonstration. On a le résultat par récurrence en barycentrant en divisant par 1 $-\lambda_{n+1}$ (cas $\lambda_n+1=1$ trivial) puis en appliquant la propriété au rang 2 (inégalité de convexité)

Théorème 7.3.2. ch8P24Propriété : Lemme des pentesLemmePentesSoit $f: I \to \mathbb{R}$ on a équivalence entre les propriétés suivantes :

f convexe sur I

$$\forall (a,b,c) \in I^3 \text{ avec } a < b < c, \ \frac{f(b)-f(a)}{b-a} \leqslant \frac{f(c)-f(a)}{c-a} \leqslant \frac{f(c)-f(b)}{c-b}$$

$$\forall x_0 \in I, \ \tau_{x_0}(f) \text{ est croissant}$$

7.3.2 Fonctions convexes dérivables et deux fois dérivables

Théorème 7.3.3. ch8P25Proposition : Caractérisation des fonctions convexes dérivablesCarFConvexeDerSoit f un fonction dérivable sur I alors f est convexe sur I si et seulement si f' est croissante sur I.

Théorème 7.3.4. ch8P25cCorollaireCfConvexeSurTangSi f est convexe sur I alors C_f est située au-dessus de ses tangentes.

Théorème 7.3.5. ch8P26PropositionCarFConvexe2DerSoit f une fonction deux fois dérivable sur I alors

f est convexe sur I si et seulement si f'' est positive sur I.

* * *

Chapitre 8

Arithmétique dans Z

Contenu				
8.1	Relation de divisibilité dans Z			
	8.1.1	Principe de bon ordre	49	
	8.1.2	Multiples et partie aZ	50	
		Notation	50	
		Multiple	50	
8.2	Algor	ithme de division euclidienne	50	
8.3	pgcd	et ppcm	50	
	8.3.1	Egalité de Bézout	50	
		pgcd	50	
	8.3.2	Algorithme d'Euclide	51	
		Algorithme	51	
		ppcm	51	
8.4	Entie	rs premiers entre eux	51	
		Définition	51	
		Entiers premiers entre eux dans leur ensemble	52	
8.5	Nombres premiers			
		Définition	52	
		Valuation <i>p</i> -adique	53	
8.6	Cong	ruences	53	
		Définition	53	
		Ention inversible	E 4	

8.1 Relation de divisibilité dans Z

8.1.1 Principe de bon ordre

Théorème 8.1.1. ch9th1Théorème : Pincipe de bon ordre dans NBonOrdreToute partie **non vide** de N aadmet un plus petit élément.

Théorème 8.1.2. ch9th1cCorollaire : Propriété archimédiennePropArchiSoit $a, b \in \mathbb{N}^*$ il existe $n \in \mathbb{N}$ tel que $a \times n \geq b$.

8.1.2 Multiples et partie aZ

Notation Si $a \in Z$ alors on note $aZ = \{ka \mid k \in Z\}$ Si $(a, b) \in Z^2$ alors $aZ + bZ = \{ka + lb \mid (k, l) \in Z^2\}$.

Théorème 8.1.3. ch9P1PropriétéPartZstableaZToute partie de Z stable par somme est une partie de la forme mZ avec $m \in N$.

Multiple Soit $(a, b) \in \mathbb{Z}^2$ on dite que b est un multiple de a (ou a divise b) et on note $a \mid b$ s'il existe $k \in \mathbb{Z}$: b = ka.

Théorème 8.1.4. ch9P2Propriété9P2Si $(a,b) \in \mathbb{Z}^2$ alors on a $a|b \Leftrightarrow b\mathbb{Z} \subset a\mathbb{Z}$

8.2 Algorithme de division euclidienne

Théorème 8.2.1. ch9th2ThéorèmeDivEuclidSoit $a \in \mathbb{Z}$, $b \in \mathbb{N}^*$ alors il existe $(q, r) \in \mathbb{Z}^2$ unique tel que a = bq + r et $0 \le r < b$ On appelle q et r le quotient et le reste de la division euclidienne de a par b.

Démonstration. Unicité : claire

Existence: On considère $S = \{a - bk \mid k \in \mathbb{Z} \land a - bk \ge 0\}$ on a alors $S \ne \emptyset$ puis on pose $r = \min(S)$ avec r < b sinon $r - b = a - b(k_0 + 1) \ge 0$ donc $0 \le r < b$

8.3 pgcd et ppcm

8.3.1 Egalité de Bézout

Théorème 8.3.1. ch9L1Lemme9-L1Si $a \mid b$ et $b \neq 0$ Alors $a \leq b$

pgcd Pour tout $a, b \in \mathbf{Z}^*$, le plus grand commun diviseur de a et b est l'entier naturel a vérifiant les conditions suivantes : $\begin{cases} a \mid a \mid a \text{ et } a \mid b \\ a \mid b \text{ et } c \mid b \end{cases} \Rightarrow c \leq d$

Théorème 8.3.2. ch9P3PropriétéEgalBezoutSoit $a, b \in \mathbb{Z}^*$ il existe $(u, v) \in \mathbb{Z}^2$ tel que $au + bv = a \wedge b$

Théorème 8.3.3. $ch9P4Propriétés9-P4Soit (a,b) \in (\mathbf{Z}^*)^2$ et $m \in \mathbf{Z}$ Alors $-> a \wedge (b+ma) = a \wedge b = a \wedge (-b)$ $-> ma \wedge mb = m(a \wedge b)$ $-> si \ d = a \wedge b, \ \frac{a}{a} \wedge \frac{b}{d} = 1$ $-> si \ g \in \mathbf{Z}^*, \ g|a \ \text{et} \ g|b \ \Rightarrow \ \frac{a}{g} \wedge \frac{b}{g} = \frac{1}{g}(a \wedge b)$

8.3.2 Algorithme d'Euclide

Théorème 8.3.4. ch9L2LemmeLemmeAlgoEuclideSoit (q, r) le quotient et le reste de la division euclidienne de $a \in \mathbf{Z}$ par $b \in \mathbf{N}^*$ Alors $a \wedge b = b \wedge r$

Démonstration. $a \wedge b = (a - bq) \wedge b = r \wedge b$

Algorithme Soit $a \in \mathbb{Z}$, $b \in \mathbb{N}^*$ On pose $r_0 = a$, $r_1 = b$ et r_2 le reste de la division euclidienne de r_0 par r_1 .

-> Si $r_n = 0$ alors $a \wedge b = r_{n-1}$ sinon on considère r_{n+1} le reste de la division euclidienne de r_{n-1} par r_n avec $r_{n-1} \wedge r_n = r_{n-2} \wedge r_{n-1} = \cdots = a \wedge b$

Algorithme d'Euclide étendu

Si on souhaite obtenir les coefficients de Bézout en même temps que le pgcd, on détermine à chaque étape $(u_k, v_k) \in \mathbf{Z}^2$ tels que $r_k = \alpha u_k + bv_k$ avec

$$\left\{egin{array}{l} u_{n+1} = u_{n-1} - q_n u_n \ v_{n+1} = v_{n-1} - q_n v_n \end{array}
ight.$$

ppcm Soit $(a,b) \in (\mathbf{Z}^*)^2$ le plus petit commun multiple de a et b est l'entier naturel m vérifiant les conditions suivantes : $\begin{cases} \binom{a}{b} & a|m \text{ et } b|m \\ \binom{a}{c} & \forall c \in \mathbf{Z}, \ a|c \text{ et } b|c \Rightarrow m \leq c \end{cases}$

Théorème 8.3.5. $ch9P5PropriétéppcmZSoit\ a,b\in Z^*\ Alors\ aZ\cap bZ=(a\vee b)Z$

Théorème 8.3.6. ch9P6Propriété9-P6Soit $(a,b) \in (\mathbb{Z}^*)^2$ Alors $(a \land b)(a \lor b) = ab$

8.4 Entiers premiers entre eux

Définition Deux entiers $a, b \in Z^*$ sont dits premiers entre eux si $a \land b = 1$

Théorème 8.4.1. ch9P7PropositionEgalBezout1Soient $a, b \in \mathbb{Z}^*$ deux entiers alors a et b sont premiers entre eux si et seulement si il existe $(u, v) \in \mathbb{Z}^2$ tel que au + bv = 1

Théorème 8.4.2. ch9L3Lemme de GaussLemmGaussSoient $a, b, c \in \mathbf{Z}$ on a Si c divise ab et c est premier avec a alors c divise b.

Théorème 8.4.3. ch9P8Propriété9-P10Soient $a_1, \ldots, a_n \in \mathbb{Z}$ on a $Si \forall i \in [1, n], a_i$ est premier avec c alors $\prod_{i=1}^n a_i$ est premier avec c

Théorème 8.4.4. *ch9L4LemmePGCDDistribSoient* a, b, $c \in \mathbf{Z}^*$ *Alors* $(a \land b) \land c = a \land (b \land c) = a \land b \land c$

Entiers premiers entre eux dans leur ensemble Soit $(a_1, \ldots, a_n) \in (\mathbb{Z}^*)^n$ On dit que (a_1, \ldots, a_n) sont premiers entre eux dans leur ensemble si $a_1 \wedge \cdots \wedge a_n = 1$, Ceci équivaut à l'existence de $(u_1, \ldots, u_n) \in \mathbb{Z}^n$ tel que $\sum_{i=1}^n u_i a_i = 1$

8.5 Nombres premiers

Définition On dit qu'un entier naturel p est (un nombre) premier si $p \ge 2$ et si les seuls diviseurs dans N de p sont 1 et lui-même

Un nombre qui n'est pas premier est dit composé.

Théorème 8.5.1. ch9L5LemmeDivisPremierTout entier $n \ge 2$ admet un diviseur premier

Théorème 8.5.2. ch9L5cCorollaireNPinfiniL'ensemble des nombres premiers est inifini.

Théorème 8.5.3. ch9L6Lemme9-L6Si p est un nombre premier et $a \in \mathbb{N}$ Alors $a \land p = 1 \Leftrightarrow p \not\mid a$

Théorème 8.5.4. ch9L7Lemme d'EuclideLemmeEuclidSoit p un nombre premier et $a, b \in \mathbb{Z}$ Si p|ab alors p|a ou p|b

Théorème 8.5.5. ch9th3 Théorème fondamental THFondArithmTout nombre entier supérieur à 2 s'écrit comme produit de facteurs premiers. Cette décomposition est unique à l'ordre des facteurs près.

8.6. CONGRUENCES 53

<u>Démonstration</u>. <u>Existence</u>: Par récurrence forte avec l'existence d'un diviseur premier <u>Unicité</u>: Si $p = \prod_{i=1}^m p_i^{\alpha_i} = \prod_{j=1}^l q_j^{\beta_j}$ avec p_i , q_j premiers distincts

On pose $i_0 \in \llbracket \mathbf{1}, m \rrbracket$ et on a alors $p_{i_0} | \prod_{j=1}^l q_j^{\beta_j}$ donc il existe j_0 tel que $p_{i_0} | q_{j_0}^{\beta_{j_0}}$ soit $p_{i_0} = q_{j_0}$ Ainsi $\{p_1, \ldots, p_m\} = \{q_1, \ldots, q_l\}$ et m = l On suppose $p_k = q_k$ et $\alpha_k < \beta_k$ avec $k \in \llbracket \mathbf{1}, m \rrbracket$ alors $q_k^{\beta_k - \alpha_k} | \prod_{i=i \in \llbracket \mathbf{1}, m \rrbracket \setminus \{k\}} p_i^{\alpha_k}$ soit $q_k | p_i$; $q_k = p_i$ avec $k \neq i$ impossible

Valuation p-adique Soit p un nombre premier et $n \in \mathbb{N}^*$, on appelle valuation p-adique de n l'exposant de p dans la décomposition de n en produits de facteurs premiers.

Théorème 8.5.6. ch9L8LemmeDivisValu $\forall (m,n) \in (\mathbb{N}^*)^2$ on a $m|n \Leftrightarrow \forall p \in \mathbb{N}$ premier, $v_p(m) \leq v_p(n)$

Théorème 8.5.7. $ch9P9PropositionValPGCDPPCM \forall (a,b) \in (\mathbf{N}^*)^2$, $a \land b = \prod\limits_{p \text{ premier}} p^{\min\left(v_p(a),v_p(b)\right)} \text{ et } a \lor b = \prod\limits_{p \text{ premier}} p^{\min\left(v_p(a),v_p(b)\right)}$

Théorème 8.5.8. $ch9P10PropriétéVpLog \forall (a_1, \ldots, a_n) \in (\mathbb{N}^*)^n$, $\forall p \text{ premier, } v_p \Big(\prod_{i=1}^n a_i\Big) = \sum_{i=1}^n v_p(a_i)$

8.6 Congruences

Définition Soit $n \in \mathbf{Z}$ la relation de congruence modulo n est définie par $a \equiv b[n] \Leftrightarrow n|a-b$ a est congru à b modulo n.

Théorème 8.6.1. ch9P11Propriétés9-P11 $\forall (a, b, c, d) \in \mathbb{Z}^4, n \in \mathbb{N}$ on a

- 1) $a \equiv b[n]$ et $c \equiv d[n] \Rightarrow ac \equiv bd[n]$
- 2) $a \equiv b[n]$ et $c \equiv d[n]$ \Rightarrow $a + c \equiv b + d[n]$
- 3) $a \equiv b[n] \Rightarrow \forall k \in \mathbb{Z}, \ ka \equiv kb[n]$
- 3) $a \equiv b[n] \quad \Rightarrow \quad \forall k \in \mathbb{N}, \ a^k \equiv b^k[n]$

Théorème 8.6.2. ch9L9LemmePremierDivBinomSi $p \in \mathbb{N}$ est un nombre premier et $k \in [1, p-1]$ Alors $p \mid \binom{p}{k}$

Théorème 8.6.3. ch9th5Petit théorème de FermatPThFermatSoit $p \in \mathbb{N}$ un nombre premier

Alors 1)
$$\forall a \in \mathbb{Z}, \ a^p \equiv a[p]$$

2) Si $a \land p = 1$ alors $a^{p-1} \equiv 1[p]$

Démonstration. 1) si p=2: $\forall a \in \mathbb{Z}$, a^2 et a on la même parité d'où $a^2 \equiv a[2]$ $\underline{p \geq 3 \text{ (impair)}}$: Par récurrence sur $a \in \mathbb{N}$ vu $(a+1)^p \equiv a^p + 1[p]$ $\underline{2}$) $\forall a \in \mathbb{Z}$, $\underline{p} \mid a^p - a = a(a^{p-1} - 1)$ donc si $a \wedge p = 1$ on a $a^{p-1} \equiv 1[p]$ (Lemme de Gauss)

Entier inversible On dit que $\underline{a \in Z^*}$ est inversible modulo \underline{n} $(n \in Z^*)$ s'il existe $\underline{a'} \in Z$ tel que $\underline{a \times a'} \equiv \underline{1}[\underline{n}]$

Théorème 8.6.4. ch9P12PropriétéCNSInversibleSoit $a \in \mathbf{Z}^*$ alors a est inverible \underline{si} et seulement \underline{si} $a \wedge n = 1$

* * *

Chapitre 9

Structures algébriques usuelles

Contenu						
9.1	Lois de composition interne					
		Définition				
		Partie stable				
9.2	Struc	cture de groupe				
		Groupe				
		Groupe abélien				
		Groupe produit				
		Sous-groupe				
		Morphisme de groupe				
		Image et noyau				
		Isomorphisme de groupe				
9.3	Structure d'anneau et de corps					
	9.3.1	Structure d'anneau				
		Loi distributive				
		Anneau				
		Anneau intègre				
		Sous-anneau				
		Morphisme d'anneau				
	9.3.2	Structure de corps				
		Corps				
		Sous-corps				

9.1 Lois de composition interne

Définition Une loi de composition interne sur un ensemble E est une application

$$* \left(egin{array}{ccc} \mathsf{E} imes \mathsf{E} & \longrightarrow & \mathsf{E} \ (x,y) & \longmapsto & x*y \end{array}
ight)$$

- $\rightarrow *$ est <u>associative</u> si $\forall (x, y, z) \in E^3$, (x * y) * z = x * (y * z)
- ightarrow * est <u>commutative</u> si $\forall (x,y) \in E^2$, x*y=y*x
- \rightarrow * admet un <u>élément neutre e</u> si $\forall x \in E$, e * x = x * e = x
- $o x \in E$ est dit <u>inversible</u> s'il existe e un élément neutre et $x' \in E$: x*x' = x'*x = e

Sous réserve d'existence, l'élément neutre et l'inverse sont uniques et on note $x'=x^{-1}$

Exemple \times sur Z est une loi de composition interne associative et commutative de neutre 1.

Les seuls éléments inversible pour \times sur \mathbb{Z} sont 1 et -1.

Théorème 9.1.1. ch10P1PropriétéProdInvSoit E muni d'une loi de composition interne associative *.

Si x et y sont deux éléments inversibles de EAlors x*y est inversible et $(x*y)^{-1}=y^{-1}*x^{-1}$

Partie stable Soit E muni d'une loi de composition interne *. On dit que $F \in \mathcal{P}(E)$ est stable pour * si

$$\forall (x, y) \in E \times F, \ x * y \in F \ et \ y * x \in F$$

9.2 Structure de groupe

Groupe Soit un ensemble G muni d'un loi de composition interne *, on dit que (G,*) est un groupe si * est associative; $e \in G$ est un élément neutre pour * et tout élément $x \in G$ est inversible.

Groupe abélien On dit que (G,*) est un groupe abélien (ou commutatif) si (G,*) est un groupe et * est commutative sur G.

Groupe produit Soit $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes on appelle groupe produit de G_1 et G_2 l'ensemble $G_1 \times G_2$ muni de la loi * définie par

$$\forall ((x_1, y_1), (x_2, y_2)) \in G_1^2 \times G_2^2, (x_1, x_2) * (y_1, y_2) = (x_1 *_1 y_1, x_2 *_2 y_2)$$

Théorème 9.2.1. $ch10P2PropriétéGrProdGrG_1 \times G_2, *)$ est un groupe.

Sous-groupe Soit (G,*) un groupe. On dit que $F \subset G$ est un sous-groupe de G si $F \neq \emptyset$; F est stable par * et $\forall x \in F$, $x^{-1} \in F$.

Théorème 9.2.2. ch10P3PropriétéSGGrSi F est un sous-groupe de (G,*) alors (F,*) est un groupe.

Théorème 9.2.3. ch10P4PropriétéCarSGSoit $F \subset G$ alors F est un sous-groupe de $G \Leftrightarrow F \neq \emptyset$ et $\forall (x, y) \in F^2$, $x * y^{-1} \in F$

Morphisme de groupe Soit $(G_1, *-1)$ et $(G_2, *_2)$ deux groupe et $f : G_1 \to G_2$. On dit que f est un morphisme de groupe si

$$\forall (x, y) \in G_1^2, \ f(x *_1 y) = f(x) *_2 f(y)$$

Théorème 9.2.4. ch10P5PropriétéImSGMorphSoit $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes et $f: G_1 \to G_2$ un morphisme de groupe $\forall F_1 \subset G_1$ sous-groupe de G_1 , $f(F_1)$ est un sous-groupe de G_2 $\forall F_2 \subset G_2$ sous- groupe de G_2 , $f^{-1}(F_2)$ est un sous-groupe de G_1

Image et noyau Soit $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes et $f: G_1 \to G_2$ un morphisme de groupe, on défini l'image et le noyau de f et on note respectivement $Im(f) = f(G_1)$ et $Ker(f) = f^{-1}(\{e_2\})$ (Im(f) et Ker(f) sont des sous-groupes respectifs de G_2 et G_1)

Théorème 9.2.5. ch10P6PropositionMorphSurjInjSoit $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes et $f: G_1 \to G_2$ un morphisme de groupe Alors $\begin{cases} f \text{ est surjectif} \Leftrightarrow Im(f) = G_2 \\ f \text{ est injectif} \Leftrightarrow Ker(f) = \{e_1\} \end{cases}$

Isomorphisme de groupe Soit $f:(G_1,*_1) \to (G_2,*_2)$ un morphisme de groupe. On suppose que f est bijectif, alors $f^{-1}:(G_2,*_2) \to (G_1,*_1)$ est un morphisme de groupe bien défini.

On appelle isomorphisme un tel morphisme.

Démonstration. Soient $x', y' \in G_2$; soient $x, y \in G_1$ tels que $x = f^{-1}(x')$ et $y = f^{-1}(y')$, on a $f(x *_1 y) = f(x) *_2 f(y) = x' *_2 y'$ donc $f^{-1}(x' *_2 y') = x *_1 y = f^{-1}(x') *_1 f^{-1}(y')$ d'où cqfd

9.3 Structure d'anneau et de corps

9.3.1 Structure d'anneau

Loi distributive Soit E un ensemble muni de deux lois de composition interne \oplus et \otimes . On dit que \otimes est distributive par rapport à \oplus si

$$\forall (x, y, z) \in E^3, \ \left\{ egin{array}{l} x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z) \ (x \oplus y) \otimes z = (x \otimes z) \oplus (y \otimes z) \end{array} \right.$$

Anneau Soit A un ensemble muni de deux lois de composition internes \oplus et \otimes . On dit que (A, \oplus, \otimes) est un anneau si

- (A, ⊕) est un groupe abélien
- ⊗ est associative et distributive par rapport à ⊕
- Il existe un élément neutre 1_A pour ⊗

On notera maintenant de manière équivalente \otimes , \times et . ainsi que \oplus et +

Théorème 9.3.1. ch10P7PropriétéA*GrSoit $(A, +, \times)$ un anneau, si on note A^* l'ensemble des éléments inversible de A alors (A, \times) est un groupe.

Anneau intègre Soit (A, +, .) un anneau, on dit que (A, +, .) est intègre si

$$\forall (a,b) \in A^2$$
, $ab = 0 \Leftrightarrow a = 0$ ou $b = 0$

Sous-anneau Soit $A(+, \times)$ un anneau et $B \subset A$ alors B est un sous-anneau de A si B est un sous-groupe de A pour +, $1_A \in B$ et B est stable par \times .

Théorème 9.3.2. ch10P8PropriétéSAAnnUn sous-anneau est un anneau pour les lois induites.

Morphisme d'anneau Soit $(A_1, +_1, \times_1)$ et $(A_2, +_2, \times_2)$ deux anneaux et $f : A_1 \to A_2$, Alors f est un morphisme d'anneaux si

$$egin{aligned} f(x+_1y) &= f(x)+_2f(y) \ orall (x,y) \in A_1^2, & f(x imes_1y) &= f(x) imes_2f(y) \ f(1_{A_1}) &= 1_{A_2} \end{aligned}$$

Théorème 9.3.3. ch10P9PropriétésPropMorphAnnSoit $(A_1, +_1, \times_1)$ et $(A_2, +_2, \times_{\cdot 2})$ deux anneaux et $f: A_1 \to A_2$ un morphisme d'anneaux Alors $\forall a \in A_1^*$, $f(a) \in A_2^*$ avec $(f(a))^{-1} = f(a^{-1})$

9.3.2 Structure de corps

Corps Soit K un ensemble muni de deux lois de compositions interne + et \times on dit que $(K, +, \times)$ est un corps si

- $(K, +, \times)$ est un anneau commutatif
- Tout élément de K différent de o_K est inversible $(K^* = K \setminus \{0\})$

Sous-corps Soit $(K, +, \times)$ un corps et $P \subset K$ alors P est un sous-corps si P est un sous-anneau de K, $P^* = P \setminus \{0\}$ et $\forall x \in P^*$, $x^{-1} \in P$

Théorème 9.3.4. ch10P10Propriété10-P10Soit $(K, +, \times)$ un corps et $P \subset K$, les trois assertions suivantes sont équivalentes :

- 1) P est un sous-corps de K 2) $(P, +, \times)$ est un corps
- 3) P est un sous-groupe de K pour + et $P\setminus\{0\}$ est un sous groupe de K^* pour \times

Théorème 9.3.5. ch10P11Propriété10-P11Soit $(K, +_1, \times_1)$ un corps et $(A, +_2, \times_2)$ un anneau

Soit $f: K \to A$ un morphisme d'anneaux, alors f est injectif

* * *

Chapitre 10

Calcul matriciel et systèmes linéaires

Contenu

10.1 Opér	ations sur les matrices	60
	Définition d'une matrice	60
10.1.1	Somme et Produit matriciel	61
	Somme	61
	Combinaison linéaire	61
	Produit	61
10.1.2	Matrice élémentaire	61
	Produit de matrices élémentaires	62
10.1.3	Matrices colonnes	62
10.1.4	Matrice transposée	62
	Définition	62
0.2 Opér	ations élémentaires	63
).3 Systè	mes linéaires	63
	Système homogène	64
	Système compatible	64
.0.4 A nne	au des matrices carrées	64
	Matrice scalaire	64
	Matrice symétrique	64
	Matrice antisymétrique	64
	Matrice diagonale	65
	Matrice triangulaire	65
	Matrice inversible	65

10.1 Opérations sur les matrices

Définition d'une matrice Soit $(n, p) \in (\mathbb{N}^*)^2$ Une matrice à n lignes et p colonnes est une application

$$M\left(egin{array}{cccc} \llbracket 1,n
rbracket & \chi & \llbracket 1,p
rbracket & -
bracket & iggr) \ (i,j) \mapsto M_{i,j} & iggr) \end{array}
ight)$$
 On note $M=\left(egin{array}{cccc} m_{1,1} & \cdots & m_{1,p} \ m_{2,1} & \ddots & dots \ & \ddots & m_{i,j} & dots \ m_{n,1} & \ldots & m_{n,p} \end{array}
ight)$

10.1.1 Somme et Produit matriciel

Somme $\forall (A, B) \in \mathcal{M}^2_{n,p}(\mathbb{K}),$ $A + B = C \iff \forall (i, j) \in \llbracket 1, n \rrbracket \times \llbracket 1, p \rrbracket, \quad a_{i,j} + b_{i,j} = c_{i,j}$

Théorème 10.1.1. ch11P1StructureStructMnpK $\forall (n,p) \in (\mathbb{N}^*)^2$ $(\mathcal{M}_{n,p}(\mathbb{K}),+)$ est un groupe abélien et $O_{\mathcal{M}_{n,p}(\mathbb{K})} = O_{n,p}$

Combinaison linéaire $Si \ l \in \mathbb{N}^*$, $(A_i)_{i \in \llbracket 1, l \rrbracket} \in \mathcal{M}^l_{n,p}(\mathbb{K})$, $(\lambda_i)_{i \in \llbracket 1, l \rrbracket} \in \mathbb{K}^l$ $\sum_{i=1}^l \lambda_i A_i \ est \ une \ combinaison \ linéaire \ de \ (A_i)_{i \in \llbracket 1, l \rrbracket}$

Produit On peut effectuer le produit matriciel de A et B si A a autant de colonnes que B a de lignes. Soit donc $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $B \in \mathcal{M}_{p,q}(\mathbb{K})$, $C = A.B \in \mathcal{M}_{n,q}(\mathbb{K})$

$$orall (i,j) \in \llbracket exttt{1}, n
rbracket imes \llbracket exttt{1}, q
rbracket imes c_{i,j} = \sum\limits_{k=1}^p a_{i,k} b_{k,j}$$

Note Le produit matriciel est bilinaire et associatif.

$$\forall (A, A') \in \mathcal{M}_{n,p}^{2}(\mathbb{K}), \ \forall B \in \mathcal{M}_{p,q}(\mathbb{K}), \ \forall (\lambda, \lambda') \in \mathbb{K}^{2} \qquad (\lambda A + \lambda' A').B = \lambda AB + \lambda' A'B$$

$$\forall (A, B, C) \in \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,q}(\mathbb{K}) \times \mathcal{M}_{q,l}(\mathbb{K}) \qquad ((A.B).C) = (A.(B.C)$$

10.1.2 Matrice élémentaire

Les matrices élémentaires de $\mathcal{M}_{n,p}(\mathbb{K})$ sont les matrices $(E_{i,j})_{(i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,p\rrbracket}$ dont tout le coefficients sont nuls celui en ligne i et colonne j qui vaut 1.

$$orall (k,l) \in \llbracket \mathtt{1},n
rbracket imes \llbracket \mathtt{1},p
rbracket imes ec{\mathsf{E}}_{i,j}(k,l) = \delta_{i,k}\delta_{j,l}$$

Théorème 10.1.2. ch11P2PropriétéCombLinEij Toute matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ est une combinaison linéaire de matrices élémentaires. De plus, cette décomposition est unique.

$$\begin{array}{l} \textit{D\'{e}monstration.} \ \ A = (a_{i,j}))_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]} \in \mathcal{M}_{n,p}(\mathbb{K}) \ \ \text{donc} \ \ A = \sum\limits_{i=1}^n \sum\limits_{j=1}^p a_{i,j} E_{i,j} \\ \text{et} \ \ (\sum\limits_{i=1}^n \sum\limits_{j=1}^p m_{i,j} E_{i,j})(k,l) = m_{k,l} \ \ \text{donc} \ \ \sum\limits_{i=1}^n \sum\limits_{j=1}^p a_{i,j} E_{i,j} = \sum\limits_{i=1}^n \sum\limits_{j=1}^p a_{i,j}' E_{i,j} \ \ \text{si et seulement si} \\ \forall (i,j) \in [\![1,n]\!] \times [\![1,p]\!] \ \ \text{on a} \ \ a_{i,j} = a_{i,j}' \end{array}$$

Produit de matrices élémentaires $Si(E_{i,j}^{n,p})_{(i,j)\in[\![1,n]\!]\times[\![1,p]\!]}$ sont les matrices élémentaires $de \mathcal{M}_{n,p}(\mathbb{K})$ et $(E_{k,l}^{p,q})_{(k,l)\in[\![1,p]\!]\times[\![1,p]\!]}$ celles $de \mathcal{M}_{p,q}(\mathbb{K})$.

$$E_{i,j}^{n,p} \times E_{k,l}^{p,q} = \delta_{j,k} E_{i,l}^{n,q}$$

10.1.3 Matrices colonnes

Une matrice colonne est $X \in \mathcal{M}_{n,1}(\mathbb{K})$ soit

$$X = \left(egin{array}{c} x_1 \ dots \ x_n \end{array}
ight)$$

Théorème 10.1.3. ch11P3Produit matriciel AXProdMatCol Si $(A, X) \in \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,1}(\mathbb{K})$

Alors AX est une combinaison linéaire des colonnes de A.

Démonstration.

$$A = (C_1 \quad \cdots \quad C_2) = \begin{pmatrix} a_{1,1} \\ & \ddots \\ & a_{n,p} \end{pmatrix}$$

$$A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (C_1 \quad \cdots \quad C_2) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = Y$$

$$\text{avec } \forall j \in \llbracket 1, n \rrbracket, \ y_j = \sum_{k=1}^p a_{j,k} x_k \ \text{donc } Y = \sum_{k=1}^p x_k C_k$$

10.1.4 Matrice transposée

Définition Le transposée de $A \in \mathcal{M}_{n,p}(\mathbb{K})$ notée A^T est la matrice $B \in \mathcal{M}_{p,n}(\mathbb{K})$ telle que

$$orall (i,j) \in \llbracket \mathtt{1}, n
rbracket imes \llbracket \mathtt{1}, p
rbracket, \ a_{i,j} = b_{j,i}$$

Théorème 10.1.4. $ch11P5CalculsCalcsTranspo \rightarrow \forall (A, B) \in (\mathcal{M}_{n,p}(\mathbb{K}))^2, \ \forall (\lambda, \mu) \in \mathbb{K}^2, \ (\lambda A + \mu B)^T = \lambda A^T + \mu B^T \rightarrow \forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \ \forall B \in \mathcal{M}_{p,q}(\mathbb{K}), \ (AB)^T = B^T A^T$

$$egin{align*} egin{align*} & A = (a_{i,j}) & A^T = (a'_{i,j}) \ B = (b_{i,j}) & B^T = (b'_{i,j}) & orall (i,j) \in \llbracket 1,n
rbracket X = \llbracket 1,p
rbracket X = \{a_{i,j}\} & B^T = (b'_{i,j}) & orall (i,j) \in \llbracket 1,n
rbracket X = \{a_{i,j}\} + \mu B(j,i) = \{a_{i,j}\} + \mu B^T(i,j) & A^T(i,j) + \mu B^T(i,j) & A^T(i,j) = \{a_{i,j}\}, & B = \{b_{i,j}\}, & C = AB = \{c_{i,j}\} & orall (i,j) \in \llbracket 1,n
rbracket X = \{a_{i,j}\} & A^T(i,j) = \{a_{i,j}\} & A^T(i,j)$$

10.2 Opérations élémentaires

Pour $i \neq j$ des indices de lignes ou colonnes on considère les 4 opérations élémentaires suivantes :

$$L_i \leftrightarrow L_j$$
 $L_i \leftarrow \lambda L_i (\lambda \neq 0)$ $L_i \leftarrow L_i + L_j$ $L_i \leftarrow L_i + \lambda L_j$

Théorème 10.2.1. ch11P6PropositionEquivOpElemMatChacunes des opérations ci-dessus sur les lignes (resp. les colonnes) d'une

matrice $A \in \mathcal{M}_{n,p}(\mathbf{K})$ se traduit par la multiplication à gauche (resp. à droite) par la matrice obtenue en effectuant cette opération sur I_n (resp. I_p) ex :

Théorème 10.2.2. ch11L1LemmeProdMatDistrib $\forall A \in \mathcal{M}_{n,p}(\mathbf{K}), \ \forall (B,C) \in (\mathcal{M}_{p,q}(\mathbf{K}))^2$ on a A(B+C)=AB+AC

10.3 Systèmes linéaires

On considère le système linéaire d'inconnues $(x_1, \ldots, x_p) \in K^p$ suivant :

$$(S) = \left\{ egin{array}{llll} a_{1,1}x_1 & + & \cdots & + & a_{1,p}x_p & = & b_1 \ dots & & dots & & dots \ a_{n,1}x_1 & + & \cdots & + & a_{n,p}x_p & = & b_n \end{array}
ight.$$

En notant $A = (a_{i,j})_{(i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket} \in \mathcal{M}_{n,p}(K)$;

$$B = (b_i)_{i \in \llbracket 1,n \rrbracket} \in \mathcal{M}_{n,1}(K) ; X = (x_j)_{j \in \llbracket 1,p \rrbracket} \in \mathcal{M}_{p,1}(K) \text{ on a}$$

$$(S) \Leftrightarrow AX = B$$

Système homogène Le système homogène associé à (S) est :

$$\left(S_0
ight)=\left\{egin{array}{ccccccc} a_{1,1}x_1&+&\cdots&\overline{+}&a_{1,p}x_p&=&0\ dots&&dots&dots&&dots&AX=0\in\mathcal{M}_{n,1}(K)\ a_{n,1}x_1&+&\cdots&+&a_{n,p}x_p&=&0 \end{array}
ight.$$

Système compatible Un système est dit compatible s'il admet au moins une solution.

Théorème 10.3.1. ch11P7PropriétéCompBCombLinColASi(S) s'écrit matriciellement <math>AX = B

Alors (S) est compatible si B est une combinaison linéaire des colonnes de A.

Théorème 10.3.2. ch11P8Structure le l'ensemble des solutions d'un système compatibleStructSolSCompLes solutions du système compatible AX = B sont les matrices $X_0 + Y$

où X_0 est une solution particulière du système et Y décrit l'ensemble des solutions du système associé.

10.4 Anneau des matrices carrées

Soit $n \in \mathbb{N}^*$, $\mathcal{M}_n(\mathbb{K})$ est l'ensemble des matrices carrée d'ordre n

Cet anneau n'est pas intègre. Théorème 10.4.1. ch11P9PropriétéMnKAnneau $\left(\mathcal{M}_n(\mathbf{K}),+,.\right)$ est un anneau non commutatif si $n\geq 2$

Matrice scalaire On appelle matrice scalaire d'ordre n toute matrice de la forme

$$A = \lambda I_n = \begin{pmatrix} \lambda & & & (0) \\ & \ddots & \\ & & \lambda \end{pmatrix} \lambda \in K$$

Matrice symétrique On appelle <u>matrice symétrique d'ordre n</u> toute matrice $A \in \mathcal{M}_n(K)$ telle que $A^T = A$ et on note $\mathcal{S}_n(K)$ l'ensemble des matrices symétriques d'ordre n

Matrice antisymétrique On appelle <u>matrice antisymétrique d'ordre n</u> toute matrice $A \in \mathcal{M}_n(K)$ telle que $A^T = -A$ et on note $\mathcal{A}_n(K)$ l'ensemble des matrices antisymétriques d'ordre n

Théorème 10.4.2. ch11P10Propriété $A=U+V \forall A \in \mathcal{M}_n(K), \exists (U,V) \in \mathcal{S}_n(K) \times \mathcal{A}_n(K)$ unique tel que A=U+V

Théorème 10.4.3. ch11P11PropositionIdRemarq $\forall (A, B) \in \mathcal{M}_n^2(K)$ tel que A.B = B.AAlors on a

1) $\forall p \in \mathbb{N}$, $A^p - B^p = (A - B) \sum_{k=1}^{p-1} A^k B^{p-k}$ 2) $\forall p \in \mathbb{N}$, $(A + B)^p = \sum_{k=0}^p \binom{p}{k} A^k B^{p-k}$

2)
$$\forall p \in \mathbb{N}$$
, $(A+B)^p = \sum_{k=0}^p \binom{p}{k} A^k B^{p-k}$

Théorème 10.4.4. ch11L2LemmeMScalCommutLes matrices scalaires commuttent avec toutes les matrices.

Matrice diagonale $A \in \mathcal{M}_n(K)$ est dite diagonale si $\forall (i,j) \in [1,n]^2, i \neq j \Rightarrow A(i,j) =$

Théorème 10.4.5. ch11P12PropriétéDiagoStableLe produit de deux matrices diagonales d'ordre n est une matrice diagonale d'ordre n; en particulier,

$$si A \in \mathcal{M}_n(K), A = \begin{pmatrix} d_1 & & (0) \\ & \ddots & \\ (0) & & d_n \end{pmatrix}; \forall p \in \mathbb{N}, A^p = \begin{pmatrix} d_1^p & & (0) \\ & \ddots & \\ (0) & & d_n p \end{pmatrix}$$

Matrice triangulaire On dit que $A \in \mathcal{M}_n(K)$ est triangulaire supérieure (resp. inférieure)

 $\mathsf{si} \ \forall (i,j) \in \llbracket 1, n
rbracket^2, \ i > j \Rightarrow \mathsf{A}(i,j) = \mathsf{0} \ (\mathsf{resp.} \ i < j \Rightarrow \mathsf{A}(i,j) = \mathsf{0})$

On note $\mathcal{T}_n^+(K)$ (resp. $\mathcal{T}_n^-(K)$) l'ensemble des matrices triangulaires supérieures (resp. *inférieures*)

Théorème 10.4.6. ch11P13PropriétéMTriStable $\forall n \in \mathbb{N}^*$, $\mathcal{T}_n^+(K)$ et $\mathcal{T}_n^-(K)$ sont stable par produit matriciel.

Matrice inversible On dit que $A \in \mathcal{M}_n(K)$ est inversible s'il existe $B \in \mathcal{M}_n(K)$ telle que $A.B = B.A = I_n$ et on note $\mathcal{GL}_n(K)$ le groupe des matrices inversibles d'ordre n.

Théorème 10.4.7. ch11P14PropriétéTranspoInversible $\forall A \in \mathcal{M}_n(K), A \in \mathcal{GL}_n(K) \Rightarrow$ $A^T \in \mathcal{GL}_n(\mathsf{K}) \ \ \text{et} \ \left(A^T\right)^{-1} = \left(A^{-1}\right)^T$

Théorème 10.4.8. ch11P15PropriétéMOpéElemInvLes matrices correspondantes aux opérations élémentaires sont inversibles.

$$orall n \in \mathbf{N}^*, \ orall (i,j) \in \llbracket 1,n
Vert^2 : egin{array}{c} P_n(i,j) = I_n - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i} \ T_{i,j}(\lambda) = I_n + \lambda E_{i,j} \ D_n(\lambda) = I_n + (\lambda - 1) E_{i,i} \end{array} \in \mathcal{GL}_n(\mathsf{K})$$

Théorème 10.4.9. ch11P15cCorollaireOpéElemPresInvLes opérations élémentaires préservent l'inversibilité.

Théorème 10.4.10. ch11th1ThéorèmeMTriInvCNSndUne matrice triangulaire est inversible <u>si et seulement si</u> tout ses coefficients diagonaux sont non nuls.

Théorème 10.4.11. ch11P16Propriété11-P16Soit
$$A \in \mathcal{M}_n(K)$$
, alors $A \in \mathcal{GL}_n(K) \Leftrightarrow (\forall X \in \mathcal{M}_{n,1}(K), (AX = O \Rightarrow X = 0))$

Théorème 10.4.12. ch11P16cCorollaireMDiagInvCNSUne matrice $A \in \mathcal{M}_n(K)$ diagonale est inversible <u>si et seulement si</u> ses coefficients diagonaux sont tous non nuls. Son inverse est alors la matrice diagonale des inverses des coefficients diagonnaux de A.

Théorème 10.4.13. ch11P17PropriétéInvMatTriTriSi une matrice triangulaire supérieure (resp. inférieure) est inversible alors son inverse est une matrice triangulaire supérieure (resp. inférieure)

Chapitre 11

Polynômes et fractions rationnelles

Contenu

11.1 Annea	au des polynômes à 1 indéterminée	67
	Anneau des polynômes $(\mathbb{K}[X],+,\times)$	67
11.1.1	Degré d'un polynôme	68
	Degré de la somme et du produit	68
	Ensemble	68
	Intégrité de l'anneau $(\mathbb{K}[X],+, imes)$	68
11.1.2	Composition de polynômes	68
	Degré du polynôme composé	69
	Coefficient dominant	69
11.2 Divisi	bilité et Division Euclidienne	69
11.2.1	Divisibilité des polynômes	69
	Propriété	69
11.2.2	Polynômes associés	69
	ightarrow	69
11.2.3	Division euclidienne polynômiale	69
11.3 Fonct	ions polynômiales et racines	70
11.3.1	Fonction polynômiale associée	70
	Calculs	70
11.3.2	Racines du polynôme	70
	Nombre de racines	71
	Corollaire : Caractérisation du polynôme nul	71
11.3.3	Ordre de multiplicité	71
	ightarrow	71
11.3.4	Méthode de Horner pour l'évaluation polynômiale	71
11.3.5	Polynôme scindé	72
11.4 Dériy	ation	72

11.1 Anneau des polynômes à 1 indéterminée

Anneau des polynômes ($\mathbb{K}[X]$, +, \times **)** Soit $\mathbb{K}^{(\mathbb{N})}$ l'ensemble des suites à valeurs dans \mathbb{K} sationnaires nulles.

$$orall u \in \mathbb{K}^{(\mathbb{N})}$$
, $\exists n_{ exttt{o}} \in \mathbb{N}$: $orall n \in \mathbb{N}$, $(n \leq n_{ exttt{o}} \Rightarrow u_n = exttt{o})$

On définit une addition et une multiplication :

$$orall n \in \mathbb{N}$$
, $(u+v)(n) = u_n + v_n$

$$orall n \in \mathbb{N}$$
 , $(uv)(n) = \sum_{k=0}^n u(k)v(n-k)$

On considère la suite X=(0,1,0,0,...) et on a alors $X^n=(0,...,0,1,0,...)$ et $X^0=1_{\mathbb{K}}=(1,0,0,...)$ On peut noter $\mathbb{K}^{(\mathbb{N})}$) comme $\mathbb{K}[X]$.

$$P = (a_0, a_1, ..., a_n, o, ...) = \sum_{k=0}^{n} a_k X^k \in K[X]$$

 $(\mathbb{K}^{(\mathbb{N})}[X], +, \times)$ est l'anneau des polynômes.

Utilisation
$$(1+X)^{n+m}=(1+X^n(1+X)^m)$$

 $\sum\limits_{l=0}^{n+m} \binom{n+m}{l} X^l = \sum\limits_{k=0}^{n} \binom{n}{k} X^k = \sum\limits_{j=0}^{m} \binom{m}{j} X^j$ Qui donne

$$inom{n+m}{l}=\sum_{k=0}^{l}inom{n}{k}inom{m}{l-k}$$

11.1.1 Degré d'un polynôme

Si $P \in \mathbb{K}[X]$, $P \neq 0$ on appelle degré de P noté deg(P) ou d°(P):

$$deg(P) = max\{n \in \mathbb{N} | a_n \neq 0\} \ \ (P = \sum_{k=0}^{+\infty} a_k X^k)$$

avec par convention le polynôme nul de degré $-\infty$.

Degré de la somme et du produit Soit $(P, Q) \in (K[X])^2$

$$deg(P+Q) \leq max\{deg(P), deg(Q)\}$$

égalité si $deg(P) \neq deg(Q)$

$$deg(PQ) = deg(P) + deg(Q)$$

Ensemble Si $n \in \mathbb{N}$, $\mathbb{K}_n[X]$ est l'ensemble des polynômes de degré au plus n.

$$\mathbb{K}_n[X] = \{ P \in \mathbb{K}[X] \mid deg(P) < n \}$$

Remarque $\mathbb{K}_n[X]$ est stable par combinaison linéaire

$$\forall (\lambda, \mu) \in \mathbb{K}^2, \ \forall (P, Q) \in (\mathbb{K}_n[X])^2 \qquad \lambda P + \mu Q \in \mathbb{K}_n[X]$$

Intégrité de l'anneau ($\mathbb{K}[X], +, \times$) $\forall (P, Q) \in (\mathbb{K}[X])^2$

$$PQ = 0$$
 $\Leftrightarrow deg(PQ) = -\infty$
 $\Leftrightarrow deg(P) + deg(Q) = -\infty$
 $\Leftrightarrow deg(P) = -\infty \text{ ou } deg(Q) = -\infty$
 $\Leftrightarrow P = 0 \text{ ou } Q = 0$

11.1.2 Composition de polynômes

$$Si(P,Q) \in (\mathbb{K}[X])^2 \text{ avec } P = \sum_{k=0}^{+\infty} a_k X^k$$

$$P \circ Q = \sum_{k=0}^{+\infty} a_k Q^k$$

Degré du polynôme composé $Si(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \mathbb{K}_0[X]$

$$deg(P \circ Q) = deg(P) \times deg(Q)$$

Coefficient dominant $Si\ P = \sum_{k=0}^{+\infty} a_k X^k \in \mathbb{K}[X] \setminus \{0\}$

 a_{degP} s'appelle le coefficient dominant de P. Si il vaut 1 P est dit unitaire.

11.2 Divisibilité et Division Euclidienne

11.2.1 Divisibilité des polynômes

Si $(A, B) \in (\mathbb{K}[X])^2$ On dit que A divise B si il existe $Q \in \mathbb{K}[X]$ tel que B = AQOn note alors A|B (sinon $A \nmid B$)

Propriété Soit $A \in \mathbb{K}[X] \setminus \{0\}$ et $B \in \mathbb{K}[X]$ $A|B \Rightarrow degA \leq degB$

Preuve $A = BQ \Rightarrow degA = degB + degQ > degB$

11.2.2 Polynômes associés

 $(A,B) \in (K[X])^2$ est un couple de polynômes associés si

$$A|B \quad B|A$$

→ (A, B) est un couple de polynômes associés si et seulement si

$$\exists \lambda \in \mathbb{K} * : A = \lambda B$$

11.2.3 Division euclidienne polynômiale

Si
$$B \neq 0$$
 , $B = \sum_{k=0}^{m} b_k X^k$ avec $b_m \neq 0$

 $Si \ A \in \mathbb{K}[X] \setminus \mathbb{K}_{m-1}[X] \ il \ existe \ (Q_0, R_0) \in (\mathbb{K}[X])^2 : \ A = BQ_0 + R_0 \ et \ degR_0 < degA$ $(Si \ A = \sum\limits_{k=0}^n a_k X^k \ il \ suffit \ de \ considérer \ Q_0 = rac{a_n}{b_m} X^{n-m})$

Théorème de la division euclidienne polynômiale. Si $B \in \mathbb{K}[X] \setminus \{0\}$ alors pou tout $A \in \mathbb{K}[X]$

$$\exists (Q,R) \in (\mathbb{K}[X])^2 : \begin{vmatrix} A = BQ + R \\ degR < degB \end{vmatrix}$$

De plus Q et R sont uniques appelés quotient et reste de la division euclidienne de A par B.

Démonstration. Existence Récurence sur degA

Initialisation Si degA < degB

$$A = B \times 0 + A = BQ + R$$

Hérédité On suppose la propriété vraie pour tout polynôme de degré k < n avec $n \geq$ degB. D'après la remarque préliminaire on a :

$$\exists (Q_0, R_0) \in (\mathbb{K}[X])^2 : A = BQ_0 + R_0 \quad degR_0 < degA = n$$

d'après l'hyspothèse de récurrence
$$\exists (Q_1, R_1) \in (\mathbb{K}[X])^2$$

 $R_0 = BQ_1 + R_1$ avec $degR_1 < degB$ soit

$$A = B(Q_0 + Q_1) + R_1$$

Unicité

Supposons $A=BQ_1+R_1=BQ_2+R_2$ avec $degR_1, degR_2 < degB$ alors $B(Q_1-Q_2)=R_1-R_2$ donc

$$degB + deg(Q_1 - Q_2) = deg(R_1 - R_2) \leq max\{degR_1, degR_2\} < degB$$
 d'où $deg(Q_1 - Q_2) = -\infty$ soit $Q_1 = Q_2$ puis $R_1 = R_2$

11.3 Fonctions polynômiales et racines

11.3.1 Fonction polynômiale associée

À tout polynôme $P=\sum\limits_{k=0}^{n}a_{k}X^{k}\in\mathbb{K}[X]$ on peut associer la fonction polynômiale

$$\widetilde{P}\left(egin{array}{c} \mathbb{K} \longrightarrow \mathbb{K} \ x \mapsto \sum\limits_{k=0}^n a_k x^k \end{array}
ight)$$

Calculs $\forall (P,Q) \in (\mathbb{K}[X])^2 \ \forall (\lambda,\mu) \in \mathbb{K}^2$

$$\widetilde{\lambda P + \mu Q} = \lambda \widetilde{P} + \mu \widetilde{Q}$$

$$\widetilde{PQ} = \widetilde{PQ} \qquad \widetilde{P \circ Q} = \widetilde{P} \circ \widetilde{Q}$$

11.3.2 Racines du polynôme

 $a \in \mathbb{K}$ est une racine de $P \in \mathbb{K}[X]$ si

$$\widetilde{P}(a) = 0$$

On notera ensuite $\mathcal{Z}(P)$ l'ensemble des racines (ou zéros) de P.

Divisibilité par (X - a) (1). $\forall P \in \mathbb{K}[X]$ $\forall (a_1, \dots, a_n) \in \mathbb{K}^n$ distincts

$$\{a_1, \cdots, a_n\} \subset \mathcal{Z}(P) \Leftrightarrow \prod_{i=1}^n (X-a_i)|P$$

Démonstration. Récurrence sur n : P(n)(??)

<u>Initialisation</u> (x-a)|P si et seulement si $\exists Q: P = (X-a)Q$ alors

$$\widetilde{P}(a) = \widetilde{(X-a)}(a)\widetilde{Q}(a) = 0$$

Si
$$a \in \mathcal{Z}(P)$$
 et $P = \sum\limits_{k=0}^{n} \alpha_k X^k$

$$egin{align} P &= P - P(a) = \sum_{k=0}^n lpha_k X^k - \sum_{k=0}^n lpha_k a^k = \sum_{k=0}^n lpha_k (X^k - a^k) \ &= (X - a) \sum_{k=0}^n lpha_k \sum_{l=0}^{k-1} a^{k-1-l} X^l = (X - a) Q \ \end{cases}$$

<u>Hérédité</u> Supposons P(n) et considérons $\{a_1, \dots, a_n, a_{n+1}\} \in \mathbb{K}^{n+1}$ distincts Par l'hypothèse de récurrence on a

$$\exists Q \in \mathbb{K}[X] : P = (\prod_{i=1}^{n} (X - a_i))Q$$
 $a_{n+1} \in \mathcal{Z}(P) \Leftrightarrow \widetilde{P}(a_{n+1}) = 0 \Leftrightarrow (\prod_{i=1}^{n} (a_n + 1 - a_i))\widetilde{Q}(a_{n+1}) = 0$ $\Leftrightarrow a_{n+1} \in \mathcal{Z}(Q) \Leftrightarrow X - a_{n+1}|Q$

Nombre de racines Le nombres de racines d'un polynôme <u>non nul</u> est majoré par son degré.

dem. Par récurrence si $deg(\prod\limits_{i=1}^n (X-a_i))=n$ et P
eq O

$$\prod_{i=1}^n (X-a_i)|P \implies n \leq P$$

Corollaire : Caractérisation du polynôme nul Le seul polynôme admettant une infinité de racines ou n+1 racines est le polynôme nul.

appli. Soit $E = \{P \in \mathbb{K}[X] | \exists T \in \mathbb{K}* : \forall x \in \mathbb{K}, \ \widetilde{P}(x+T) = \widetilde{P}(x) \}$, déterminons E. $\mathbb{K}_0[X] \subset E$

Réciproquement si $\P \in E$ T – périodique $(T \neq 0)$ et $Q = P - \widetilde{P}(0)$ on a $T\mathbb{Z} \subset \mathcal{Z}(P)$ d'où $P - \widetilde{P}(0) = 0$ donc $P = \widetilde{P}(0) \in \mathbb{K}_0[X]$ En conclusion on a $E = \mathbb{K}_0[X]$.

11.3.3 Ordre de multiplicité

 $\forall P \in K[X]$

Si $a \in \mathbb{K}$, $k \in \mathbb{N}$ et $(X - a)^n | P$ on dit que a est une racine de P d'ordre de multiplicité au moins n.

Si de plus (X - a) P alors a est une racine de P d'ordre de multiplicité exactement n.

 \rightarrow a est une racine de P d'ordre de multiplicité k si et seulement si $\exists Q \in K[X]$ tel que

$$P = (X - a)^k Q$$
 et $a \notin \mathcal{Z}(P)$

11.3.4 Méthode de Horner pour l'évaluation polynômiale

Soit $\sum_{k=0}^{n} a_k X^k$ et $x_0 \in \mathbb{K}$ on veut déterminer $\widetilde{P}(x_0)$. On considère la suite $\left\{ \begin{array}{l} u_0 = a_n \\ u_{k+1} = u_k x_0 + a_{n+1-k} \end{array} \right.$

$$u_k=a_nx_0^k+\ \cdots\ +a_{n_k}$$
 et $u_n=\widetilde{P}x_0$

11.3.5 Polynôme scindé

Un polynôme $P \in K[X]$ est <u>scindé</u> s'il peut s'écrire comme produit de polynômes de degré 1.

Théorème 11.3.1. th12Formule de VietefViete

Relations entre les coefficients et les racines d'un polynôme scindé

Soit P un polynôme scindé,
$$P = \sum_{k=0}^n a_k X^k = \lambda \prod_{k=1}^n (X - x_k)$$

$$egin{aligned} n & \geq 2 \ a_n &
eq 0 \end{aligned} igg| & \Leftrightarrow \left\{egin{aligned} a_n & = \lambda \ a_{n-l} & = \lambda \prod_{1 \leq i_1 \leq \cdots \leq i_l \leq n} \sum\limits_{r=1}^l (-x_{i_r}) \ \Leftrightarrow \left\{egin{aligned} \prod_{1 \leq i_1 \leq \cdots \leq i_l \leq n} \sum\limits_{r=1}^l x_{i_r} & = rac{(-1)^l a_{n-l}}{a_n} \end{aligned}
ight.$$

Démonstration. Faire arbre

11.4 Dérivation

Si $P = \sum_{k=0}^{+\infty} a_k X^k \in \mathbf{K}[X]$ on appelle polynôme dérivé de P

$$P' = \sum_{k=1}^{+\infty} k a_k X^{k-1} = \sum_{k=0}^{+\infty} (k+1) a_{k+1} X^k$$

puis par récurrence avec
$$\forall n \in \mathbb{N}$$
 $P^{(n+1)} = (P^{(n)})'$ $P^{(n)} = \sum_{k=n}^{+\infty} k(k-1) \cdots (k-n+1) a_k X^{k-n} = \sum_{k=0}^{+\infty} (k+n)(k+n-1) \cdots (k+1) a_{k+n} X^k = \sum_{k=n}^{+\infty} \frac{k!}{(k-n)!} a_k X^{k-n} = \sum_{k=0}^{+\infty} \frac{(k+n)!}{k!} a_{k+n} X^k$

$$\underline{Calcul:} \forall (P,Q) \in (\mathbb{K}[X])^2$$

$$D\'{e}monstration. \ P = \sum_{k=0}^{+\infty} a_k X^k \ Q = \sum_{k=0}^{+\infty} b_k X^k$$

$$\rightarrow (\lambda P + \mu Q)' = (\sum_{k=0}^{+\infty} (\lambda a_k + \mu b_k) X^k)' = \sum_{k=1}^{+\infty} k(\lambda a_k + \mu b_k) X^{k-1}$$

$$= \lambda (\sum_{k=1}^{+\infty} k a_k X^{k-1}) + \mu (\sum_{k=1}^{+\infty} k b_k X^{k-1}) = \lambda P' + \mu Q'$$

$$\rightarrow PQ = \sum_{k=0}^{+\infty} c_k X^k \ c_k = \sum_{l=0}^{k} a_l b_{k-l} \ donc \ (PQ)' = \sum_{k=0}^{+\infty} (k+1) c_{k+1} X^k$$

$$avec \ P' = \sum_{k=0}^{+\infty} (k+1) a_{k+1} X^k \ et \ Q' = \sum_{k=0}^{+\infty} (k+1) b_{k+1} X^k$$

$$PQ' = \sum_{k=0}^{+\infty} d_k X^k \ d_k = \sum_{l=0}^{k} a_l (k+1-l) b_{k+1-l}$$

$$P'Q = \sum_{k=0}^{+\infty} \delta_k X^k \delta_k = \sum_{l=0}^{k} (l+1) a_{l+1} b_{k-l}$$

$$d_k + \delta_k = \sum_{l=0}^{k} a_l (k+1-l) b_{k+1-l} + \sum_{l=0}^{k} (l+1) a_{l+1} b_{k-l}$$

$$= a_0 (k+1) b_{k+1} + (k+1) a_{k+1} b_0 + \sum_{l=1}^{k} a_l (k+1-l) b_{k+1-l} + \sum_{l=1}^{k} l a_l b_{k+1-l}$$

$$= (k+1) \sum_{k=1}^{k+1} a_l b_{k+1} = (k+1) c_{k+1}$$

Chapitre 12 Analyse asymptotique

Espaces vectoriels et applications linéaires

Matrices II

Contenu

14.1 Matrices et applications linéaires	75
14.1.1 Matrice d'une application linéaire dans des bases	75
Matrice représenntative d'un vecteur	75
Matrice représentative d'une famille	76
Matrice représentative d'une application linéaire	76
14.1.2 Application linéaire canoniquement associée	77
Définition	77
Noyau, image et rang	77
14.1.3 Systèmes linéaires	77
Système de Cramer	78
14.2 Changement de bases	78
Matrice de passage	78
14.3 Équivalence et similitude	79
14.3.1 Matrices équivalentes et rang	79
Équivalence	79
Matrice extraite	79
Matrice échelonnée	80
14.3.2 Matrices semblables et trace	80
Matrices semblables	80
Trace	80
Trace d'un endomorphisme	81

14.1 Matrices et applications linéaires

14.1.1 Matrice d'une application linéaire dans des bases

Matrice représentative d'un vecteur Soit E un K espace vectoriel de dimension finie et $B=(e_1,\ldots,e_n)$ une base de E. On considère $x=\sum_{i=1}^n x_ie_i\in E$. La <u>matrice représentative de x dans la base B</u>

est la matrice colonne
$$X=\left(\begin{array}{c}x_1\\ \vdots\\ x_n\end{array}\right)=\left[\begin{array}{c}\mathit{Mat}_{\mathcal{B}}(x)\end{array}\in\mathcal{M}_n(\mathsf{K})\right]$$

Matrice représentative d'une famille Soit E un K espace vectoriel de dimension finie et $B=(e_1,\ldots,e_n)$ une base de E.

On considère (x_1, \ldots, x_p) une famille de p vecteurs de E. La matrice représentative de cette famille dans cette base est la matrice de $\mathcal{M}_{n,p}(K)$ notée $Mat_B(x_1, \ldots, x_p)$ dont la j^e colonne est donnée par $Mat_B(x_j)$, $\forall j \in \llbracket 1, p \rrbracket$

Matrice représentative d'une application linéaire Soit E et F deux K espaces vectoriels de dimensions finies respectives p et n avec $e = (e_1, \ldots, e_p) \text{ une base de } E$ On considère $u \in \mathcal{L}(E,F)$. La matrice représentative de u dans les bases e et f est la matrice de $\mathcal{M}_{n,p}(K)$ notée $Mat_{e,f}(u)$ définie par $Mat_{e,f}(u) = Mat_f(u(e_1), \ldots, u(e_p))$ $Si \ u \in \mathcal{L}(E)$ on note $Mat_e(u) = Mat_e(u) = Mat_e(u(e_1, \ldots, u(e_n))$

Théorème 14.1.1. ch15P1PropositionMatIsoEVSi E et F sont des K-ev de dimensions p et n rapportés à des bases e et f, alors $\phi \begin{pmatrix} \mathcal{L}(E,F) & \longrightarrow & \mathcal{M}_{n,p}(K) \\ u & \mapsto & Mat_{e,f}(u) \end{pmatrix} \text{ est un isomorphisme d'espace vectoriel.}$

Théorème 14.1.2. ch15P1cCorollaireIsoInduitBaseLe choix d'une base B sur E induit un iomorphisme de $\mathcal{L}(E)$ sur $\mathcal{M}_n(K)$:

$$\left(egin{array}{ccc} \mathcal{L}(E) & \longrightarrow & \mathcal{M}_n(\mathsf{K}) \ u & \longmapsto & \mathit{Mat}_B(u) \end{array}
ight)$$

Théorème 14.1.3. $ch15P2PropositionApLinMatSoit\ E, F\ deux\ K-ev\ de\ dimensions\ p\ et\ n\ rapportés\ à des\ bases\ e\ et\ f$

Soit $u \in \mathcal{L}(E, F)$; $x \in E$, on considère $y = u(x) \in F$ et on note $X = Mat_e(x)$; $Y = Mat_f(y)$; $A = Mat_{e,f}(u)$ Alors Y = AX

Théorème 14.1.4. ch15P3PropositionMatComposeeE de dimension p et $e = (e_1, \ldots, e_p)$ une base de E.

F de dimension q et $f=(f_1,\ldots,f_q)$ une base de F. G de dimension n et $g=(g_1,\ldots,g_n)$ une base de G. Soit $u\in\mathcal{L}(E,F),\ v\in\mathcal{L}(F,G)$; $A=Mat_{e,f}(u),\ B=Mat_{f,g}(v)$ $Alors\ C=Mat_{e,g}(v\circ u)=AB$

Théorème 14.1.5. ch15th1 Théorème Endo Inv Mat Inv Soit E et F deux K-ev de dimension finie n rapportés à des bases e et f

Soit $u \in \mathcal{L}(E,F)$ on a $(u \text{ est un isomorphisme}) \Leftrightarrow (Mat_{e,f}(u) \text{ est inversible})$ Dans ce cas on a $(Mat_{e,f}(u))^{-1} = Mat_{e,f}(u^{-1})$

14.1.2 Application linéaire canoniquement associée

Définition Si $A \in \mathcal{M}_{n,p}(K)$ on appelle <u>Application linéaire canoniquement associée à A</u> l'unique application linéaire, notée u_A telle que $Mat_{C(K^p),C(K^n)}(u_A) = A$

Noyau, image et rang $Si A \in \mathcal{M}_{n,p}(K)$ on appelle

- ullet noyau de A noté Ker(A) défini par $Ker(A) = Ker(u_A)$
- image de A notée Im(A) définie par $Im(A) = Im(u_A)$
- ullet rang de \overline{A} noté rg(A) défini par $rg(A) = rg(u_A)$

Théorème 14.1.6. ch15P4PropriétéImKerColLignLes colonnes de A engendre Im(A) et ses lignes donnent un système d'équation de Ker(A)

Théorème 14.1.7. ch15P5PropositionAInvCNSSoit $A \in \mathcal{M}_n(K)$ alors $A \in \mathcal{GL}_n(K) \Leftrightarrow \mathcal{K}er(A) = \{0\} \Leftrightarrow K^n = Vect(C_1(A), \ldots, C_n(A)) \Leftrightarrow rg(A) = n$

Théorème 14.1.8. ch15P5cCorollaireMatTriInvCNSUne matrice triangulaire est inversible <u>si et seulement si</u> ses coefficients diagonnaux sont tous non nuls.

Démonstration. Soit $A \in \mathcal{T}^+(K)$

 \sqsubseteq Si les coefficients $(a_j j)_{1 \le j \le n}$ sont tous non nuls alors (C_1, \ldots, C_n) est une famille libre donc une base de K^n d'où $A \in \mathcal{GL}_n K$

$$\Rightarrow$$
 Par contraposée si $\exists k_0 \in \llbracket 1, n \rrbracket$ tel que $a_{k_0, k_0} = 0$ alors $\dim(Vect(C_1, \ldots, C_{k_0})) \le k_0 - 1$ donc $\dim A \le n - 1$ d'où $A \notin \mathcal{GL}_n(K)$

Théorème 14.1.9. ch $15P6Propriété15-P6Si\ E$ est un **K**-ev de dimension n rapporté à une base B

Soit (x_1, \ldots, x_p) une famille de p vecteurs de E

$$egin{aligned} extit{Alors } rg(x_1,\ldots,x_p) &= \dim\Bigl(Vectig(Mat_B(x_1),\ldots,Mat_B(x_p) ig) \Bigr) \ &= \dim\Bigl(Imig(X_1\cdots X_p ig) \Bigr) = rg(u_A) \ \ \ O\grave{u} \ A = ig(X_1\ X_2\cdots X_p ig) \ \in \mathcal{M}_{n,p}(\mathbf{K}) \end{aligned}$$

Théorème 14.1.10. ch15P7PropriétéInvDGUne matrice $A \in \mathcal{M}_n(K)$ inversible à gauche ou à droite est inversible.

14.1.3 Systèmes linéaires

Résoudre le système homogène associé à (S) c'est déterminer le noyau de A Par le théorème du rang, la dimension de l'espace des solutions du système homogène est donnée par p-rg(A) $(\geq p-n)$

L'ensemble des solution de (S) à une structure de sous-espace affine de K^p <u>si il est compatible</u>, soit si X_0 est une solution particulière

$$S = X_0 + Ker(A) \subset K^p$$

Système de Cramer Si $A \in \mathcal{GL}_n(K)$ alors le systèle (S) est compatible et admet une unique solution $A^{-1} \times B$.

14.2 Changement de bases

Matrice de passage On appelle matrice de passage d'une base e à un base e' d'un même espace vectoriel E et on note $P_e^{e'}$ la matrice de $\mathcal{M}_n(K)$ représentative des vecteurs de e' dans la base e

$$P_e^{e'} = egin{pmatrix} a_{1,1} & \cdots & a_{1,n} \ dots & \ddots & \ a_{n,1} & & a_{n,n} \end{pmatrix} \qquad \qquad orall j \in \llbracket \mathtt{1}, n
rbracket, \ e'_j = \sum_{i=1}^n a_{i,j} e_i$$

Théorème 14.2.1. ch15P8PropriétéMatPassInvSi $P \in \mathcal{M}_n(K)$ est la matrice de passage de e à e' alors P est inversible et P^{-1} est la matrice de passage de e' à e.

Théorème 14.2.2. ch15P9PropriétéMatPassUtilSoit E un K-ev rapporté successivement à des bases e et e'

On considère $x \in E$ avec $X = Mat_e(x)$; $X' = Mat_{e'}(x)$ et $P = P_e^{e'}$ Alors $X = P \times X'$

Théorème 14.2.3. $ch15th2Th\acute{e}or\`{e}meMatPassApLSoit\ E\ et\ F\ deux\ K-ev\ de\ dimensions\ finies\ p\ et\ n$

rapporté successivement à des bases e, e' et f, f'. Soit $u \in \mathcal{L}(E,F)$ On note $A = Mat_{e,f}(u)$; $A' = Mat_{e',f'}(u)$ et $Q = P_f^{f'}$; $P = P_e^{e'}$ Alors $A' = Q^{-1} \times A \times P$

Démonstration. Soit $(x,y) \in E \times F$ tel que y = u(x) alors on a $Y = AX \Leftrightarrow Y' = A'X'$ avec Y = QY'; X = PX'

Ainsi
$$Y = AX \Leftrightarrow QY' = APX' \Leftrightarrow Y' = Q^{-1}APX' \Leftrightarrow A' = Q^{-1}AP$$

Théorème 14.2.4. ch15th2cCorollaireMatPassEndoSoit E un K-ev de dimension n rapporté à deux bases e et e'

Soit
$$u \in \mathcal{L}(E)$$
, on note $A = Mat_e(u)$; $A' = Mat_{e'}(u)$ et $P = P_e^{e'}$
Alors $A' = P^{-1} \times A \times P$

14.3 Équivalence et similitude

14.3.1 Matrices équivalentes et rang

Théorème 14.3.1. ch15P10PropositionEquiJrSoit E et F deux K-ev de dimensions p et n et $u \in \mathcal{L}(E, F)$

Soit $r \in [1, n]$, si rg(u) = r alors it existe un couple de base (e, f) tel que $Mat_{e,f}(u) = J_r \in \mathcal{M}_{n,p}(K)$

Démonstration. D'après la forme géométrique du théorème du rang u induit un isomorphisme de S sur Im(u) où S est un supplémentaire de Ker(u)

Soit (e_1,\ldots,e_n) une base de E adaptée à $Ker(u)\oplus S$ avec (e_1,\ldots,e_r) base de S. On a alors $(f_1=u(e_1),\ldots,f_r=u(e_r))$ une base de Im(u) que l'on complète en une base de F

Équivalence Deux matrice $A, B \in \mathcal{M}_{n,p}(K)$ sont dites <u>équivalentes</u> si il existe $Q \in \mathcal{GL}_n(K)$ et $P \in \mathcal{GL}_p(K)$ tels que $B = Q^{-1}AP$. On note $A \sim B$

Théorème 14.3.2. ch15P11PropositionCNSrgrUne matrice $A \in \mathcal{M}_{n,p}(K)$ est de rang r si et seulement $A \sim J_r$.

Théorème 14.3.3. ch15th3ThéorèmeRgInvTranspoLe rang d'une matrice est invariant par transposition.

Démonstration. Soit $A \in \mathcal{M}_n(\mathsf{K})$; ${}^t ig(J^{n,p}_r ig) = J^{p,n}_r$

On a alors $rg(A) = r \Leftrightarrow \exists (Q, P) \in \mathcal{GL}_n(K) \times \mathcal{GL}_p(K) : A = Q^{-1}J_r^{n,p}P$ $\Leftrightarrow {}^tA = \underbrace{{}^tP}_{\in \mathcal{GL}_p(K)} \times {}^t(J_r^{n,p}) \times \underbrace{{}^t(Q^{-1})}_{\in \mathcal{GL}_n(K)} = Q'^{-1}J_r^{p,n}P' \Leftrightarrow rg({}^tA = r)$

Matrice extraite Si $A \in \mathcal{M}_{n,p}(K)$ on appelle matrice extraite de A toute matrice obtenue à partir de A par suppression de lignes et/ou colonnes de A.

$$\Big($$
 $A' = ig(a_{i,j}ig)_{_{(i,j)\in I imes J}}$ où $I\subset \llbracket\mathtt{1},n
rbracket$ et $J\subset \llbracket\mathtt{1},p
rbracket$

Théorème 14.3.4. ch15P12PropriétéRgExtraitSi A' est extraite de A alors on a $rg(A') \le rg(A)$

Théorème 14.3.5. ch15P13Proposition15-P14Si $A \in \mathcal{M}_{n,p}(K)$ alors $rg(A) = \max\{k \in \mathbb{N} \mid A' \in \mathcal{GL}_k(K) \text{ et } A' \text{ extraite de } A\}$

Théorème 14.3.6. ch15P14PropriétéOpeElemPresImKerLes opérations élémentaires sur les colonnes préservent l'image. Celles sur les lignes préservent le noyau.

Théorème 14.3.7. ch15P14cCorollaireOpeElemPresRgLes opérations élémentaires sur les lignes ou les colonnes de A conservent le rang de A.

Matrice échelonnée Une matrice <u>échelonnée en ligne</u> est une matrice $A = (a_{i,j})_{(i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket}$ telle que si on note $l_i(A) = \min\{j \in \llbracket 1,p \rrbracket \mid a_{i,j} \neq 0\} \ \forall i \in \llbracket 1,n \rrbracket \ (par \ convention \ \min \varnothing = +\infty)$ Alors $(l_i(A))_{1 \leq i \leq n}$ est une suite croissante.

14.3.2 Matrices semblables et trace

Matrices semblables Deux matrices $A, B \in \mathcal{M}_n(K)$ sont dites semblables s'il existe $P \in \mathcal{GL}_n(K)$ telle que $B = P^{-1}AP$. Deux matrices semblables sont équivalentes.

Théorème 14.3.8. ch15P15PropriétéSemblCNSDeux matrices A et B sont semblables <u>si et seulement si</u> elles représentent un même endomorphisme d'un **K**-ev de dimension finie dans deux bases différentes.

Trace Si $A=\left(a_{i,j}\right)_{1\leq i,j\leq n}\in\mathcal{M}_n(\mathsf{K})$ on appelle <u>trace de A</u> le scalaire $tr(A)=\sum_{i=1}^n a_{i,i}$.

Théorème 14.3.9. $ch15P16PropriétéTrFLintr \in (\mathcal{M}_n(K))^*$ $avec \, \forall (A, B) \in (\mathcal{M}_n(K))^2$, tr(AB) = tr(BA)

Théorème 14.3.10. ch15th4ThéorèmeTrInvSimLa trace est invariante par similitude. $(\forall (A, B) \in (\mathcal{M}_n(K))^2,$

$$ig(\exists P \in \mathcal{GL}_n(\mathsf{K}) ext{ telle que } B = P^{-1}APig) \Rightarrow ig(tr(B) = tr(A)ig)$$

Démonstration. Soit un tel couple $(A, B) \in (\mathcal{M}_n(K))^2$ Alors $tr(B) = tr(P^{-1}AP) = tr(APP^{-1}) = tr(A)$ Trace d'un endomorphisme Si u est un endomorphisme d'un K-ev de dimension finie E, on appelle $\underline{trace\ de\ u}$ le scalaire $tr(u) = tr(Mat_e(u))$ où e est une base de E.

Théorème 14.3.11. $ch15P17PropriétéTrFLinEndotr \in (\mathcal{L}(E))^*$ $avec \forall (u,v) \in (\mathcal{L}(E))^2$, tr(uv) = tr(vu)

Théorème 14.3.12. ch15P18PropositionTrProjecteurSoit E un K-ev de dimension finie et p un projecteur de E Alors tr(p) = rg(p)

* * *

Groupe symétrique et déterminant

Intégration

Contenu

16.1 Continuité uniforme	83
Définition	83
16.2 Intégrations des fonctions en escalier	84
16.2.1 Subdivision d'un segment	84
Définition	84
Subdivision adaptée	84
Intégrale d'une fonction en escalier	84
16.3 Fonctions continues par morceaux	85
16.3.1 Généralités	85
Définition	85
16.3.2 Intégrale d'une fonction continue par morceaux	85
Définition	85
Valeur moyenne	86
16.4 Sommes de Riemman	87
Définition	87
Somme de Riemman associée	87
16.5 Lien entre intégrales et primitives	87
16.6 Formules de Taylor globales	88

Dans tout le chapitre, $(a, b) \in \mathbb{R}^2$ avec a < b

16.1 Continuité uniforme

Définition Soit $I \subset \mathbb{R}$ intervalle et $f: I \to \mathbb{R}$, f est dite <u>uniformément continue sur I</u> si $\forall \varepsilon > 0$, $\exists \delta > 0$ tel que $\forall (x,y) \in I^2$, $(|x-y| \le \delta \Rightarrow |f(x) - f(y)| \le \varepsilon$

Théorème 16.1.1. ch17P1PropriétéLipschImplUC0Soit $f: I \to \mathbb{R}$ on a 1) Si f est lipschitzienne sur I alors f est uniformément continue sur I 2) Si f est uniformément continue sur I alors f est continue sur I

Théorème 16.1.2. ch17th1 Théorème de Heine ThHeineSoit $(a, b) \in \mathbb{R}^2$, a < b Si f est continue sur [a, b] alors f est uniformément continue sur [a, b].

Démonstration. Par l'absurde :

On suppose $\exists \varepsilon >$ o tel que $\forall n \in \mathbb{N}^*$, $\exists (x_n,y_n) \in [a,b]^2$ tq $(|x_n-y_n| \leq \frac{1}{n}$ et $|f(x_n)-f(y_n)| > \varepsilon$

D'après le théorème de Bolzano-Weierstrass $\exists \varphi: \mathbf{N} \to \mathbf{N}$ et $\psi: \mathbf{N} \to \mathbf{N}$ extractrices tels que $x_{\varphi(n)} \xrightarrow[n]{} l \in [a,b]$ et $y_{\varphi(\psi(n))} \xrightarrow[n]{} l' \in [a,b]$ donc $\left| x_{\varphi(\psi(n))} - y_{\varphi(\psi(n))} \right| \leq \frac{1}{\varphi(\psi(n))} \leq \frac{1}{n}$ d'où l = l'

Ainsi par continuité de f on a $f(x_{\varphi(\psi(n))}) - f(y_{\varphi(\psi(n))}) \stackrel{\rightarrow}{\underset{n}{\to}} f(l) - f(l') = 0 > \varepsilon > 0$

16.2 Intégrations des fonctions en escalier

On note $\mathcal{E}[]([a,b], \mathbb{R})$ l'ensemble des fonctions en escalier de [a,b] dans \mathbb{R} .

16.2.1 Subdivision d'un segment

Définition Une subdivision de [a, b] est une suite finie strictement croissante $\sigma = (c_0 = a < c_1 < \cdots < c_n = b)$.

On note $\delta(\sigma)$ le pas de σ définit par $\delta(\sigma) = \max_{0 \le i \le n-1} (c_{i+1} - c_i)$.

On dit que σ est à pas constant si la suite $(c_i)_{0 \le i \le n}$ est arithmétique.

Soit σ' une subdivision de [a,b], on dit que σ' est <u>plus finie</u> que σ si tout point de σ est un point de σ' . On notera ici $\sigma \subset \sigma'$.

Subdivision adaptée Soit $f:[a,b] \to \mathbb{R}$ une fonction en escalier sur [a,b], on considère $\sigma=(c_0,\ldots,c_n)$ une subdivision de [a,b]. On dit que σ est adaptée à f si

$$orall i \in \llbracket exttt{o}, - exttt{1}
rbracket, \; \exists \lambda_i \in exttt{R} \; : \; f|_{
bracket_{i-1}}
bracket = \widetilde{\lambda_i}$$

Théorème 16.2.1. ch17P2PropositionEscaStable $\mathcal{E}([a,b],\mathbf{R})$ est stable par somme, produit et passage à la valeur absolue.

Intégrale d'une fonction en escalier Soit $f \in \mathcal{E}([a,b],R)$; soit $\sigma = (c_0,\ldots,c_n)$ une subdivision adaptée à f.

On appelle intégrale de f sur [a,b] le scalaire

$$\int_{[a,b]} f = \sum_{i=0}^{n-1} \lambda_i (c_{i+1} - c_i)$$

Théorème 16.2.2. ch17P3Propriétés17-P3Soit f et g des fonctions en escalier sur [a,b] 1) Si $f \ge 0$ sur [a,b] alors $\int_{[a,b]} f \ge 0$ 2) Si pour tout $x \in [a,b]$, $f(x) \ge g(x)$ alors $\int_{[a,b]} f \ge \int_{[a,b]} g$ 3) $\left| \int_{[a,b]} f \right| \log \int_{[a,b]} |f| \le (b-a) \sup_{[a,b]} |f|$

Théorème 16.2.3. $ch17P4PropositionChaslesEscSoit <math>f \in \mathcal{E}([a,b], \mathbb{R})$ et $c \in [a,b]$ alors $\int_{[a,b]} f = \int_{[a,c]} f|_{[a,c]} + \int_{[c,b]} f|_{[c,b]}$

16.3 Fonctions continues par morceaux

16.3.1 Généralités

Définition Soit $f:[a,b] \to \mathbb{R}$, on dit que f est continue par morceaux sur [a,b] s'il existe $\sigma=(c_0,\ldots,c_n)$ une subdivision de [a,b] telle que $\forall i\in [0,n-1]$, $f|_{]c_i,c_{i+1}[}$ est continue et prolongeable par continuité en c_i et c_{i+1} .

On note C_{pm}° l'ensemble des fonctions continues par morceaux de [a,b] dans R.

Théorème 16.3.1. ch17P5PropriétéCpmBorneeSi $f \in \mathcal{C}^{0}_{pm}$ alors f est bornée sur [a,b]

Théorème 16.3.2. ch17L1LemmeCpmEntreEscSi $f \in \mathcal{C}_{pm}^0$ alors $\forall \varepsilon > 0$, $\exists (\varphi, \psi) \in \left(\mathcal{E}([a,b],\mathbf{R})\right)^2$ telles que $\forall x \in [a,b], \ \varphi(x) \leq f(x) \leq \psi(x)$ et $\psi(x) - \varphi(x)$ leq ε

Théorème 16.3.3. ch17P6PropriétéCpmStable C_{pm}^{o} est stable par produit, combinaison linéraire et valeur absolue.

16.3.2 Intégrale d'une fonction continue par morceaux

 $\begin{array}{l} \textbf{D\'efinition} \quad \textit{Soit} \ f \in \mathcal{C}^{\circ}_{pm} \\ \textit{On note} \ \mathcal{I}^{+}(f) = \Big\{ \int_{[a,b]} \psi \mid \psi \ \textit{en escalier sur} \ [a,b] \ \textit{et} \ f \leq \psi \Big\} \\ \textit{Alors} \ \inf \big(\mathcal{I}^{+}(f) \big) \ \textit{existe, on appelle int\'egrale de } f \ \textit{sur} \ [a,b] \ \textit{not\'ee} \ \int_{[a,b]} f \ \textit{cette valeur.} \\ \underline{\textit{Rq}} \ : \int_{[a,b]} f - \inf \big(\mathcal{I}^{+}(f) \big) - \sup \big(\mathcal{I}^{-}(f) \big) \\ \end{array}$

Théorème 16.3.4. ch17P7PropriétéLineIntSoit $(f,g) \in \left(\mathcal{C}_{pm}^{\circ}\right)^2$; $(\alpha,\beta \in \mathbb{R}^2 \text{ alors } \int_{[a,b]} \alpha f + \beta g = \alpha \int_{[a,b]} f + \beta \int_{[a,b]} g$

Théorème 16.3.5. ch17th2Théorèmes opératoiresThOperIntSoit $f,g \in \left(\mathcal{C}_{vm}^{\circ}\right)^2$ on a

- 1) Si $f \ge 0$ sur [a,b] alors $\int_{[a,b]} f \ge 0$ 2) Si $\forall x \in [a,b], \ g(x) \ge f(x)$ alors $\int_{[a,b]} g \ge \int_{[a,b]} f$

3)
$$\left| \int_{[a,b]} f \right| \le \int_{[a,b]} |f| \le \sup_{x \in [a,b]} |f(x)|$$

Démonstration. Clair d'après le lemme .

Théorème 16.3.6. ch17th3Théorème : Inégalité de Cauchy-SchwartzInegCauchySchwartzSoient $f,g \in \mathcal{C}^0_{pm}$ alors $\left(\int_{[a,b]} fg\right)^2 \leq \int_{[a,b]} f^2 imes \int_{[a,b]} g^2$

Démonstration. On pose $P(\lambda) = \int_{[a,b]} (\lambda f + g)^2 = \lambda^2 \int_{[a,b]} f^2 + 2\lambda \int_{[a,b]} fg + \int_{[a,b]} g^2 \ge 0$ Si $\int_{[a,b]} f^2 = 0$ alors $2 \int_{[a,b]} fg = 0$ et l'inégalité est vrai

Sinon
$$\int_{[a,b]} f^2 > 0$$
 et $\Delta = 4 \Big(\big(\int_{[a,b]} fg \big)^2 - \int_{[a,b]} f^2 \times \int_{[a,b]} g^2 \le 0$

Valeur moyenne Soit $f \in C_{pm}^{\circ}$ on appelle valeur moyenne de f sur [a, b] le scalaire

$$\frac{1}{b-a}\int_{[a,b]}f$$

Théorème 16.3.7. ch17P8PropositionIntNulleSoit f une fonction continue sur [ab] à valeur dans R+ On suppose $\int_{[a,b]} f = 0$ alors f = 0

Théorème 16.3.8. ch17P9PropriétéEgCSLieeSoit $f, g \in C_{pm}^0$ alors $\left(\int_{[a,b]}fg\right)^2=\int_{[a,b]}f^2\times\int_{[a,b]}g^2 \Leftrightarrow (f,g) \text{ sont Liées.}$

Théorème 16.3.9. ch17P10PropriétéChgtVarInt Soit $f \in \mathcal{C}_{pm}^{\circ}$ et $\forall u \in \mathbf{R}$ on pose f_u $\begin{pmatrix} [a+u,b+u] & \longrightarrow & \mathbf{R} \\ x & \longmapsto & f(x-u) \end{pmatrix}$ alors $\int_{[a+u,b+u]} f_u = \int_{[a,b]} f$

Théorème 16.3.10. ch17th4Théorème : Relation de ChaslesRelChaslesSoit f continue par morceaux sur un segment S de \mathbb{R} et $(a,b,c) \in S^3$ alors $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$

Théorème 16.3.11. ch17P11PropriétéIntFcImpaireSoit $a \in \mathbb{R}$; $f \in C_n^0 m([-a, a], \mathbb{R})$, on suppose que f est paire (resp. impaire) alors $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ (resp. $\int_{-a}^{a} f(x) dx = 0$)

Théorème 16.3.12. ch17P12PropriétéIntTperioSoit f continue par morceaux sur $I \subset \mathbb{R}$, on suppose que f est T- périodique alors $\forall a \in I$, $\int_a^{a+T} f(x) dx = cte$ (ne dépend pas de a)

16.4 Sommes de Riemman

Définition Si f est continue sur [a,b] et $\sigma=(c_0,\ldots,c_n)$ est une subdivision de [a,b], on appelle somme de Riemman associée à f sur [a,b] l'expression

$$\sum_{i=0}^{n-1} (c_{i+1} - c_i) imes f(\xi_i) \; avec \; \xi_i \in [c_i, c_{i+1}]$$

Somme de Riemman associée Soit $f \in C_{pm}^0$ et $\sigma = (c_0, \ldots c_n)$ une subdivision adaptée à f sur [a, b] on pose pour $i \in [0, n-1]$, $\varphi_i = f|_{]c_i, c_{i+1}[}$ que l'on prolonge par continuité sur $[c_i, c_{i+1}]$.

On appelle somme de Riemmann associée une somme de sommes de Riemman associées aux φ_i

Théorème 16.4.1. ch17P13PropriétéLimSommRiemmanSoit $f \in C^o_{pm}$ alors $\frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n}) \rightarrow \int_a^b f(t)dt$

16.5 Lien entre intégrales et primitives

Théorème 16.5.1. ch17th5 Théorème fondamental du calcul intégral ThFondIntSoit f un fonction continue sur un intervalle I de R et $a \in I$, Alors $F: x \mapsto \int_a^x f(t)dt$ est l'unique primitive de f qui s'annulle en a.

Démonstration. F est bien définiesur I, on considère alors $c \in I$; soit $x \in I \setminus \{c\}$ Il existe alors ξ_x compris entre x et c tel que $\frac{F(x)-F(c)}{x-c}=f(\xi_x) \xrightarrow[x\to c]{} f(c)$ par C° de f en c Donc F est dérivable en c et f'(c)=f(c)

Théorème 16.5.2. ch17th5cCorollaireIntDifPrimPour toute primitive F de f sur I on a $\int_a^b f(t)dt = F(b) - F(a) = [F(t)]_a^b$

Théorème 16.5.3. ch17th5c2CorollaireDL1fSoit f continue sur I et $a \in I$, on suppose $f \in \mathcal{C}^1(I, \mathbb{R})$ alors $\forall x \in I$, $f(x) = f(a) + \int_a^x f'(t) dt$

16.6 Formules de Taylor globales

Théorème 16.6.1. ch17th6Théorème : Formule de Taylor avec reste intégralForm-TaylRstIntSoit $f \in C^{n+1}(I, \mathbb{R}), a \in I$

Alors
$$orall x \in I$$
, $f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$

$$\begin{array}{l} \textit{D\'{e}monstration.} \text{ Par r\'{e}currence sur } n: \\ \underline{\text{Initialisation}}: f(x) = f(a) + \int_a^x f'(t)dt \text{ d'après le corollaire pr\'{e}c\'{e}dant} \\ \underline{\text{H\'{e}r\'{e}dit\'{e}}}: \text{ On suppose la propri\'{e}t\'{e} vraie au rang } n \text{ et on consid\`{e}re } f \in \mathcal{C}^{n=2}(I,\mathbf{R}). \\ \text{Comme } f \in \mathcal{C}^{n+1}(I,\mathbf{R}) \text{ on a } f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t)dt \end{array}$$

$$=\sum_{k=0}^nrac{(x-a)^k}{k!}f^{(k)}(a)+ig[-rac{(x-t)^{n+1}}{(n+1)!}f^{(n+1)}(t)ig]_a^x+\int_a^xrac{(x-t)^{n+1}}{(n+1)!}f^{(n+2)}(t)dt$$

$$=\sum_{k=0}^{n+1}rac{(x-a)^k}{k!}f^{(k)}(a)+\int_a^xrac{(x-t)^{n+1}}{(n+1)!}f^{(n+2)}(t)dt$$
 par IPP

Théorème 16.6.2. ch17th6cCorollaire: Inégalité de Taylor-LagrangeInegTaylLagrSoit $f \in \mathcal{C}^{n+1}(I,\mathsf{R}), \ a \in I$ et M un majorant de $\left|f^{(n+1)}\right|$ sur I

Alors
$$\forall x \in I$$
, $\left| f(x) - \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) \right| \leq M \times \frac{|x-a|^{n+1}}{(n+1)!}$

Dénombrement

Contenu

17.1 Cardinal d'un ensemble	89
17.1.1 Généralités	89
Équipotence	89
Ensemble fini - Cardinal	89
17.1.2 Lemme des Bergers et principe des Tirroirs	90
17.1.3 Calcul sur les cardinaux	91
17.2 Listes et Combinaisons	92
Arrangement	92
Combinaison	92
Formule de Vandermonde	92

17.1 Cardinal d'un ensemble

17.1.1 Généralités

Équipotence On dit que deux ensembles \underline{E} et F sont équipotents s'il existe une bijection de E sur F. On note alors $E \sim F$

Ensemble fini - Cardinal Soit E un ensemble, on dit que \underline{E} est fini s'il est **vide** ou s'il existe $n \in \mathbb{N}^*$ tel que $E \sim [\![1,n]\!]$

On appelle alors n le <u>cardinal de E</u> noté |E| (ou Card(E)) dont on admet l'unicité, sous réserve d'existence avec par convention $|\varnothing| = 0$

Théorème 17.1.1. ch18L1LemmeSousEns1nPour tout $n \in \mathbb{N}^*$; soit $F \subset \llbracket 1, n \rrbracket$ Alors F est fini et $|F| \leqslant n$

Théorème 17.1.2. ch18L1cCorollaire18-L1Si E et F sont des ensembles avec F fini et $E \subset F$

Alors E est fini et $|E| \leq |F|$ avec égalité si et seulement si E = F

Remarque : Définition avec l'indicatrice Soit $A \in \mathcal{P}(E)$

$$\mathbb{1}_A \ : \left(\begin{array}{ccc} E \longrightarrow & \{\mathtt{0},\mathtt{1}\} \\ x \longmapsto & \left\{ \begin{smallmatrix} \mathtt{1} \ si \ x \in A \\ \mathtt{0} \ si \ x \in \mathcal{C}_E A \end{smallmatrix} \right. \end{array} \right) \ \text{et si E est fini alors } |A| = \sum_{x \in E} \mathbb{1}_A(x)$$

Théorème 17.1.3. ch18P1PropositionAppliCard Si E et F sont deux ensembles finis et $f: E \to F$ alors

- 1) Si f injective |f(E)| = |E| et $|E| \le |F|$
- 2) Si f surjective $|F| \leq |E|$
- 3) Si |F| = |E| alors f est injective si et seulement si f est surjective.

Théorème 17.1.4. ch18P2PropriétéCardComplSoit E un ensemble fini et $A \in \mathcal{P}(E)$ alors $|C_E A| = |E| - |A|$

Théorème 17.1.5. ch18P2cCorollaireCardDiffSi A et B sont finis alors $A \setminus B$ est fini et $|A \setminus B| = |A| - |B|$

Théorème 17.1.6. ch18P3PropositionCardUnion Si A et B sont finis alors $A \cup B$ est fini et $|A \cup B| = |A| + |B| - |A \cap B|$

17.1.2 Lemme des Bergers et principe des Tirroirs

Théorème 17.1.7. ch18P4PropositionCardPartSi P est une partition de E alors $|E| = \sum_{X \in P} |X|$

Théorème 17.1.8. ch19th1Lemme des Bergerslemme bergersSoit E, F deux ensembles finis et $f: E \to F$ telle que

$$\exists p \in \mathbb{N}^*$$
 : $\forall y \in F$, $\left|f_r^{-1}(\{y\})\right| = p$ alors $|E| = p|F|$

 $\begin{array}{ll} \textit{D\'{e}monstration.} & \left(f_r^{-1}(\{y\})\right)_{y\in F} \text{ est une partition de } E \text{ et on a alors} \\ |E| &= \sum_{y\in F} \left|f_r^{-1}(\{y\})\right| &= \sum_{y\in F} p = p \left|F\right| \end{array}$

Théorème 17.1.9. ch19th2Principe des Tirroirs de Dirichletprinc.tirroirsSoit E et F deux ensemble finis de cardinaux respectifs n et $p \in \mathbb{N}^*$

 $f: \mathsf{E} o \mathsf{F}$ telle que s'il existe $k \in \mathbb{N}: \; n > kp$ alors $\exists y \in \mathsf{F}: \; |f_r^{-1}(\{y\})| > k$

Démonstration. On suppose que $\forall y \in F$, $\left|f_r^{-1}(\{y\})\right| \leq k$ alors d'après le Lemme des Bergers $|E| \leq kp$

17.1.3 Calcul sur les cardinaux

Théorème 17.1.10. $ch18P5PropositionCalculCardSoit\ E\ et\ F\ deux\ ensembles\ finis\ alors$

$$\rightarrow |E \times F| = |E| \times |F|$$

Théorème 17.1.11. ch18P6PropriétéCardBij Soit E et F deux ensemble de même cardinal n alors

- By(E, F) l'ensemble des bijections de E sur F est de cardinal n!
- ullet $\mathcal{P}(E)$ est un ensemble fini de cardinal 2^n

Théorème 17.1.12. ch18P6cCorollaireCardPermutLe cardinal de l'ensemble des permutations d'un ensemble à <math>n éléments es n!

17.2 Listes et Combinaisons

Arrangement On appelle arrangement de k éléments parmi n toute **application injective** de $[\![1,k]\!]$ dans $[\![1,n]\!]$ soit une **k-liste** d'éléments distincts de $[\![1,n]\!]$.

On note $A_{k,n}$ l'ensemble des arrangements de k éléments parmis n.

Théorème 17.2.1. ch18P7PropriétéCardArrangLe nombre d'arrangement de k éléments parmis n, noté A_n^k vérifie

$$|\mathcal{A}_n^k| = |\mathcal{A}_{k,n}| = \left\{egin{array}{ll} 0 & si \ k > n \ rac{n!}{(n-k)!} & si \ 0 \leq k \leq n \end{array}
ight.$$

Combinaison On appelle combinaison de k objets parmis n toute **partie** à k éléments d'un ensemble à n objets et on note $\mathcal{P}_k(E)$ l'ensemble des combinaisons à k éléments de E.

Théorème 17.2.2. ch18P8PropriétéNbCombinLe nombre de combinaisons de k éléments parmis n est $\binom{n}{k}$

Formule de Vandermonde

$$(1+X)^n(1+X)^m=(1+X)^{n+m}\ \Rightarrow\ \binom{n+m}{k}=\sum_{i+j=k}\binom{n}{i}\binom{m}{j}$$

* * *

Probabilités

On désigne par expérience aléatoire toute expérience dont le résultat est soumis au hasard.

Contenu

18.1 U	nivers, évènements et variables aléatoires	
	Ensemble des évènements	
	Système complet d'événements	
	Probabilité	
	Variable aléatoire	
18.2 E	spaces probabilisés finis, probabilité uniforme	
18	.2.1 Équiprobabilités	
18	.2.2 Probabilités conditionnelles	
	Définition	
18.3 L	oi d'une variable aléatoire	
	Loi de probabilité	
18	.3.1 Variable uniforme sur une ensemble fini non vide	
	Loi uniforme	
18	.3.2 Variable de Bernoulli	
	Loi de Bernoulli	
18	.3.3 Loi binomiale	

18.1 Univers, évènements et variables aléatoires

<u>Modéliser</u> une expérience aléatoire, c'est associer à cette expérience ε trois objets mathématiques : Ω un univers fini (des possibles), $\mathscr{A} = \mathcal{P}(\Omega)$ l'ensemble des évènements associés à ε et P une probabilité.

 $(\Omega, \mathcal{P}(\Omega), P)$ est un espace probabilisé.

Ensemble des évènements On appelle <u>ensemble des évènements associés à ε </u> toute partie \mathscr{A} de $\mathcal{P}(\Omega)$ vérifiant :

$$\Omega \in \mathscr{A} \text{ et } \varnothing \in \mathscr{A}$$
$$\forall A \in \mathscr{A}, \ \overline{A} \in \mathscr{A}$$

alors

Soit I un ensemble fini ou dénombrable et $(A_i)_{i\in I}$ une famille d'évènements

$$\bigcup_{i\in I}A_i\in\mathscr{A}\ et\ \bigcap_{i\in I}A_i\in\mathscr{A}$$

Dans le cas où $|\Omega| < +\infty$ on prend $\mathscr{A} = \mathcal{P}(\Omega)$

Système complet d'événements

 $\forall A, B \in \mathcal{P}(\Omega)$, A et B sont dits incompatibles si $A \cap B = \emptyset$ On appelle système complet d'événements toute famille $(A_i)_{i \in I}$ d'événements deux à deux incompatibles et dont la réunion est l'événement certain

Probabilité $Si(\Omega, \mathcal{A})$ est un espace probabilisable, on appelle probabilité sur \mathcal{A} toute application telle que

$$\mathcal{P}(\Omega) = 1$$

 $\forall (A, B) \in \mathcal{A}^2, \ A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$

Dans le cas fini, (Ω, \mathcal{A}, P) est un espace probabilisé fini.

Théorème 18.1.1. $ch19P1PropriétésPropProbaP(\emptyset) = 0$ $\forall A \in \mathcal{P}(\Omega), \ P(A) = 1 - P(A)$ $\forall (A, B) \in \mathcal{P}^2(\mathscr{A}), \ P(A \setminus B) = P(A) - P(A \cup B)$ $\forall (A, B) \in \mathcal{P}^2(\Omega), \ A \subset B \Rightarrow P(A) \leqslant P(B)$ (5) $\forall (A, B) \in \mathcal{P}^2(\Omega), P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Variable aléatoire On appelle variable aléatoire toute application définie sur Ω à valeurs dans un ensemble E. Si $E \subset \mathbb{R}$ on dit que $X : \Omega \to E$ est une variable aléatoire réelle.

Notations Si X est une variable aléatoire, on note

- Pour $A \in \mathcal{P}(E)$, $X_r^{-1}(A) = (X \in A)$
- Si $e \in E$, $X_r^{-1}(\{e\}) = (X = e)$ Si $E = \mathbb{R}$, $X_r^{-1}([a, b]) = (a \leqslant X < b)$

18.2 Espaces probabilisés finis, probabilité uniforme

18.2.1 Équiprobabilités

Si $|\Omega| < +\infty$, une hypothèse classique est de considérer une probabilité P telle que $\forall \omega \in \Omega$, $P(\omega) = \frac{1}{|\Omega|}$ C'est bien une probabilité, dite <u>équiprobabilité</u> car tout les événement réduits à une issue on la même probabilité

18.2.2 Probabilités conditionnelles

Définition Si A et B sont deux événements de (Ω, \mathcal{A}, P) de probabilités non nulles, on défini

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Théorème 18.2.1. ch19P2PropriétéPCondProbaSi B est un événement de probabilité non nulle dans un

espace probabilisé fini (Ω, \mathcal{A}, P)

Alors
$$\forall B \in \mathcal{P}(\Omega), \left(\begin{array}{cc} \mathcal{P}(\Omega) & \longrightarrow & \mathbf{R} \\ A & \longmapsto & P(A|B) \end{array}\right)$$

est une probabilité

Théorème 18.2.2. ch19P3Proposition \heartsuit ProbaIntersecSi A_1, \ldots, A_n sont des événements d'un espace

probabilisé fini $(\Omega, \mathcal{P}(\Omega), P)$ alors

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \times P(A_2|A_1) \times \cdots \times P(A_n|A_1 \cap \cdots \cap A_{n-1})$$

Théorème 18.2.3. ch19P4Propriété : Formule des probabilités totalesProbaTotSi B est un événement et $(A_i)_{i \in [\![1,n]\!]}$ est un système

complets d'événements de $(\Omega, \mathcal{P}(\Omega), P)$

Alors
$$P(B) = \sum_{i=1}^{n} P(B|A_i) \times P(A_i)$$

Théorème 18.2.4. ch19P5Proposition : Formule de BayesFormuleBayesSoit A un événement de $(\Omega, \mathcal{P}(\Omega), P)$ tel que $P(A) \neq 0$

 $Si(B_1, ..., B_n)$ est un système complet d'événements

Alors
$$\forall i \in \llbracket 1, n \rrbracket$$
, $P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{k=1}^n P(A|B_k)P(B_k)}$

18.3 Loi d'une variable aléatoire

Loi de probabilité Si X est une variable aléatoire définie sur un espace probabilisé fini $(\Omega, \mathcal{P}(\Omega), P)$ à valeur dans E on appelle <u>loi de probabilité de la variable X</u> (ou distribution) l'application

$$P_X \left(egin{array}{ccc} \mathcal{P}(E) & \longrightarrow & [0,1] \\ A & \longmapsto & P(X \in A) \end{array}
ight)$$

Théorème 18.3.1. ch19P6PropriétéDistribEstProbaSi X est une variable aléatoire sur un espace probabilisé fini $(\Omega, \mathcal{P}(\Omega), P)$

Alors P_X est une probabilité sur E

Notation Si X est Y sont deux variables aléatoire définies sur un même espace probabilisé fini à valeurs dans E on note $X \sim Y$ si $P_X = P_Y$

Théorème 18.3.2. ch19P7PropriétéFcVARSoit $X : \Omega \to E$ est une variable aléatoire et $f : E \to F$

Alors
$$f(X) = f \circ X : \Omega \to F$$
 est une variable aléatoire avec $\forall B \in \mathcal{P}(F), \ P_{f(X)}(B) = P(f(X) \in B) = P(X \in f_r^{-1}(B)) = P_X(f_r^{-1}(B))$

18.3.1 Variable uniforme sur une ensemble fini non vide

Soit E un ensemble fini non vide.

Loi uniforme On dit que X variable aléatoire suit une loi uniforme sur E si

que X variable alcatoire <u>suit une loi uniforme sui E</u> si

$$\left\{egin{array}{l} X(\Omega) = E \ orall x \in E, \ P(X = x) = rac{1}{|E|} \end{array}
ight.$$

On écrit alors $X \sim \mathcal{U}(E)$

On prend un objet au hasard parmi |E| objets qui on tous la même probabilité d'être choisis et on note X cet objet.

18.3.2 Variable de Bernoulli

On appelle expérience de Bernoulli une expérience aléatoire à deux issues. On appelle succès l'une des issues et échec l'autre. On peut donc lui associer une variable aléatoire réelle qui prend la valeur 1 en cas de succès et la valeur 0 en cas d'échec.

Loi de Bernoulli On dit que X suit une loi de Bernoulli de paramètre $p \in [0,1]$ si

$$\begin{cases} X(\Omega) = \{0, 1\} \\ P(X = 1) = p \end{cases}$$

On note alors $X \sim \mathcal{B}(p)$

18.3.3 Loi binomiale

Si on répète n fois une expérience de Bernoulli, la variable aléatoire associée au nombre de succès suit une loi de Bernoulli de paramètres n et p.

Espaces préhilbertiens réels

Dans ce chapitre, E est un R-espace vectoriel.

Contenu

19.1 Produit scalaire	
Définition	
Espace euclidien	
Produit scalaires canoniques	
19.2 Norme associée à un produit scalaire	
Norme	
Distance	
19.3 Orthogonalité	
19.3.1 Résultats théoriques	
Vecteur orthogonal	
Ensemble orthogonal	
Famille orthogonale	
19.3.2 Procédé d'orthonormalisation de Gram-Schmidt 100	
Construction par récurrence	
19.4 Bases orthonormées	
19.5 Projection orthogonale sur un sous-espace de dimension finie 102	
Projection orthogonale	
Distance à un ensemble	

19.1 Produit scalaire

Définition Un produit scalaire $\langle x,y \rangle$ est une application $\varphi : E \times E \to \mathbb{R}$ telle que 1) φ est bilinéaire $\varphi(\lambda x + \lambda' x', y) = \lambda \varphi(x, y) + \lambda' \varphi(x', y) \varphi(x, \mu y + \mu' y') = \mu \varphi(x, y) + \mu' \varphi(x, y')$ 2) φ est symétrique $\varphi(x,y) \in E^2$, $\varphi(x,y) = \varphi(y,x)$ 3) φ est définie positif $\varphi(x,x) \geqslant 0 \land \varphi(x,x) = 0 \Leftrightarrow x = 0_E$

Espace euclidien Soit $(E, \langle ., . \rangle)$ un espace préhilbertien réel, on dit que $(E, \langle ., . \rangle)$ est un espace euclidien si E est de **dimension finie**.

Produit scalaires canoniques

Sur
$$\mathbb{R}^n$$
 $\langle x, y \rangle = \langle \sum_{i=1}^n x_i, \sum_{i=1}^n y_i \rangle = \sum_{i=1}^n x_i.y_i$

Sur
$$\mathcal{M}_{np}(\mathbb{R})$$
 $\langle X, Y \rangle = \operatorname{tr}(X \times^{T} Y) = \sum_{i=1}^{p} \sum_{k=1}^{n} a_{ki}.b_{ki}$

Sur
$$\mathcal{C}^{0}([a,b],\mathbb{R})$$
 $(a < b)$ $\langle f,g \rangle = \int_{a}^{b} f(t).g(t) dt$
On a aussi sur $\mathbb{R}_{n}[X]$, $\varphi(P,Q) = \sum_{k=0}^{n} P(k).Q(k)$ et $\psi(P,Q) = \sum_{k=0}^{n} P^{(k)}(0).Q^{(k)}(0)$

19.2 Norme associée à un produit scalaire

Norme Si E est un R-espace vectoriel on dit que $N: E \to R^+$ est une norme si $\forall x \in E, \ \forall \lambda \in R, \ N(\lambda x) = |\lambda| . N(x)$

 $\forall x \in E$, $N(x) = 0 \Leftrightarrow x = 0_E$ $\forall (x, y) \in E^2$, $N(x + y) \leqslant N(x) + N(y)$

Distance Si E est un R-espace vectoriel on dit que $\underline{d: E \times E \to R^+}$ est une distance si $\forall (x,y) \in E^2$, d(x,y) = d(y,x) $\forall (x,y) \in E^2$, $d(x,y) = 0 \Leftrightarrow x = y$ $\forall (x,y,z) \in E^3$, $d(x,z) \leqslant d(x,y) + d(y,z)$

 \underline{Rq} : Si (E,N) est un espace normé alors d $\begin{pmatrix} E \times E & \to & R \\ (x,y) & \longmapsto & N(x-y) \end{pmatrix}$ est une distance.

Théorème 19.2.1. ch20th1Théorème : Inégalité de Cauchy-SchwartzInegCSSoit $(E, \langle ., . \rangle)$ un espace préhilbertien réel alors

$$\forall (x, y) \in E^2, \langle x, y \rangle^2 \leqslant \langle x, x \rangle \langle y, y \rangle$$

Avec égalité si et seulement si x et y sont liés (égaux à un scalaire près)

Démonstration. On pose pour tout $\lambda \in \mathbb{R}$, $P(\lambda) = \langle x + \lambda y, x + \lambda y \rangle \geqslant \in \mathbb{R}[X]$ On a alors $P(\lambda) = \lambda^2 \langle y, y \rangle + 2\lambda \langle x, y \rangle + \langle x, x \rangle$

- Si $\langle y, y \rangle = 0$ alors y = 0 et on a l'égalité.
- Sinon vu $p(\lambda) \leqslant 0$ on a $\Delta = 4(\langle x,y \rangle^2 \langle x,x \rangle \langle y,y \rangle) \leqslant 0$

Si on a égalité alors il existe $\lambda_0 \in \mathbf{R}$ tel que $P(\lambda_0) = 0 \ \Rightarrow \ x + \lambda_0 y = 0$

Réciproquement si $x=\lambda y$ alors $\langle x,y\rangle^2=\lambda\ \langle y,y\rangle\times\lambda\ \langle y,y\rangle=\langle \lambda y,\lambda y\rangle\ \langle x,x\rangle=\langle x,x\rangle\ \langle y,y\rangle$

Théorème 19.2.2. ch20P1PropositionNormEuclidSi $(E, \langle ., . \rangle)$ est un espace préhilbertien réel

Alors $x \mapsto \sqrt{\langle x, x \rangle}$ est une norme sur E dite norme euclidienne ($\|.\|$)

Théorème 19.2.3. ch20P2PropriétéInegTriAmelio $\forall (x,y) \in E^2$ si N est la norme euclidienne associée à $\langle .,. \rangle$

 $N(x+y) \leqslant N(x) + N(y)$ avec égalité si et seulement si il existe $\lambda \in \mathbb{R}^+$ tel que $x=\lambda y$ ou $y=\lambda x$

Théorème 19.2.4. ch20P3PropriétéIdRemNormSoit $(E, \langle ., . \rangle)$ un espace préhilbertien réel et $\|.\|$ la norme euclidienne associée.

On a les identités remarquables suivantes :

$$\forall (x,y) \in E^2, \begin{cases} \|x+y\|^2 = \|x\|^2 + 2 \langle x,y \rangle + \|y\|^2 \\ \|x-y\|^2 = \|x\|^2 - 2 \langle x,y \rangle + \|y\|^2 \\ \|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2) \end{cases}$$

On en déduit les formules de polarisation suivantes :

$$\forall (x,y) \in E^2, \ \begin{cases} \langle x,y \rangle = \frac{1}{2} \big(\|x+y\|^2 - \|x\|^2 - \|y\|^2 \big) \\ \langle x,y \rangle = \frac{1}{2} \big(\|x\|^2 + \|y\|^2 - \|x-y\|^2 \big) \\ \langle x,y \rangle = \frac{1}{4} \big(\|x+y\|^2 - \|x-y\|^2 \big) \end{cases}$$

 $Rq: N: E o R^+$ est une norme euclidienne sur E si et seulement si $\varphi(x,y) = rac{1}{4} ig(N^2(x+Y) - N^2(x-y) ig)$ est un produit scalaire.

19.3 Orthogonalité

19.3.1 Résultats théoriques

Vecteur orthogonal $Si(E, \langle ., . \rangle)$ est un espace préhilbertien réel, \underline{x} et \underline{y} sont orthogonaux Si(x, y) = 0. On note alors $\underline{x} \perp \underline{y}$

Ensemble orthogonal Si $(E, \langle ., . \rangle)$ est un espace préhilbertien réel et $F \in \mathcal{P}(E)$ on appelle orthogonal de F noté F^{\perp} l'ensemble

$$\{y \in E \mid \forall x \in F, \ y \perp x\}$$

Théorème 19.3.1. ch20P4PropositionOrthSousEspace $\forall F \in \mathcal{P}(E)$, F^{\perp} est un sousespace de E

Théorème 19.3.2. ch20P5Propriété20-P5Soit $(E, \langle ., . \rangle)$ un espace préhilbertien réel, $\forall (F,G) \in \mathcal{P}^2(E), \ F \subset G \ \Rightarrow \ G^\perp \subset F^\perp$ $F^\perp = \left(\operatorname{Vect}(F) \right)^\perp$ $F \subset \left(F^\perp \right)^\perp$ avec égalité si et seulement si F est une sous-espace vectoriel.

Famille orthogonale Soit I un ensemble, $(E, \langle ., . \rangle)$ un espace préhilbertien réel et $(x_i)_{i\in I}$ une famille de vecteurs de E.

On dit que $(x_i)_{i \in I}$ est orthogonale si

$$\forall (i,j) \in I^2, i \neq j \Rightarrow x_i \perp x_j$$

On dit de plus que la famille est orthonormée (ou orthonormale) si les vecteurs sont normés (ou unitaires), càd

$$orall i \in I$$
, $\|x_i\| = 1$ \Leftrightarrow $orall (i,j) \in I^2$, $\langle x_i, x_j
angle = \delta_{i,j}$

Théorème 19.3.3. ch20P6PropositionFamOrthoNonNulleLibreToute famille $(x_i)_{i \in I}$ d'un espace préhilbertien réel orthogonale et ne contenant pas le vecteur nul est libre.

Toute famille orthonormée est libre.

Théorème 19.3.4. ch20th2Théorème de PythagoreThPythagoreSoit (E, \langle, \langle) un espace préhilbertien réel

$$x\perp y\Leftrightarrow \|x+y\|^2=\|x\|^2+\|y\|^2$$

Si $\left(x_i
ight)_{_{i\in I}}$ est une famille orthogonale alors

$$\forall \left(\lambda_i
ight)_{i \in I} \in \mathbf{R}^{(I)}, \ \left\|\sum_{i \in I} \lambda_i x_i
ight\|^2 = \sum_{i \in I} \lambda_i^2 \left\|x_i
ight\|^2$$

Démonstration. $\forall (x,y) \in E^2$

$$\begin{array}{lll} x\perp y \;\Leftrightarrow\; \langle x,y\rangle = \mathsf{o} \;\Leftrightarrow\; \frac{1}{2}\big(\,\|x+y\|^2 - \|x\|^2 - \|y\|^2\,\big) = \mathsf{o} \;\;\Leftrightarrow\; \|x+y\|^2 = \|x\|^2 + \|y\|^2 \\ \left\|\sum_{i\in I}\lambda_i x_i\right\|^2 = \left\langle\sum_{i\in I}\lambda_i x_i\;,\; \sum_{j\in I}\lambda_j x_j\right\rangle = \sum_{i\in I}\sum_{j\in I}\lambda_i \lambda_j\,\langle x_i,x_j\rangle = \sum_{i\in I}\lambda_i^2\,\|x_i\|^2 \end{array}$$

19.3.2 Procédé d'orthonormalisation de Gram-Schmidt

 $egin{array}{c} egin{array}{c} egin{array}$ en une famille $(arepsilon>0)_{i\in\llbracket 1,n
rbracket}$ orthonormée de telle sorte que

$$\forall k \in \llbracket \mathtt{1}, n
rbracket, F_k = \mathsf{Vect}(\{e_1, \ldots, e_k\}) = \mathsf{Vect}(\{\varepsilon_1, \ldots, \varepsilon_k\}) = F_k'$$

Pour tout $k \in \llbracket exttt{1}, exttt{n}
rbracket$ on pose $u_k = \sum_{i=1}^{k-1} \left\langle arepsilon_i, e_k
ight
angle arepsilon_i$

Construction par récurrence

Initialisation $\{e_1\}$ est libre car $e_1 \neq 0$ on pose donc $\varepsilon_1 = \frac{e_1}{\|e_1\|}$ qui convient.

Hérédité Soit $k \in [1, n]$ tel que $(\varepsilon_1, \ldots, \varepsilon_{k-1})$ vérifie les contraintes et on considère $u_k' = e_k - u_k$. On peut vérifier que $u_k' \in F_{k-1}'^{\perp}$; en effet :

$$\forall l \in \llbracket \mathbf{1}, k - \mathbf{1} \rrbracket \;, \; \; \left\langle u_k', \varepsilon_k \right\rangle = \left\langle e_k - \sum_{i=1}^{k-1} \left\langle \varepsilon_i, e_k \right\rangle \varepsilon_i \;, \; \varepsilon_l \right\rangle = \left\langle e_k, \varepsilon_l \right\rangle - \underbrace{\sum_{i=1}^{k-1} \left\langle \varepsilon_i, e_l \right\rangle \left\langle \varepsilon_i, \varepsilon_l \right\rangle}_{=\left\langle \varepsilon_k, e_l \right\rangle} = 0$$

On a par contraposée $u_k'
eq 0$ (sinon $e_k \in F_{k-1}$), on peut donc considérer $ec{arepsilon_k} = \dfrac{u_k'}{\|u_k'\|}$.

Vérifions que ε_k *convient :*

On a déjà $(\varepsilon_1,\ldots,\varepsilon_k)$ est orthonormée vu $\varepsilon_k\in F_{k-1}^{\prime\perp}$. De plus $u_k'\in F_k$ d'où $\varepsilon_k\in F_k$ donc $F_k'\subset F_k$. Réciproquement $F_{k-1}'=F_{k-1}$ et $e_k\in \mathrm{Vect}(\varepsilon_1,\ldots,\varepsilon_{k-1},u_k')$ d'où $F_k\subset F_k'$

On a ainsi une famille $\left(arepsilon_{i}
ight)_{i\in I}$ orthonormée vérifiant les contraintes.

19.4 Bases orthonormées

Théorème 19.4.1. ch20th3ThéorèmeBaseOrthEEuclidTout espace euclidien admet une base orthonormée.

Démonstration. Tout espace E euclidien admet une base (dimension finie) donc on peut construire avec le procédé d'orthonormalisation de Gram-Schmidt une famille orthonormée génératrice de E donc une base orthonormée de E

Théorème 19.4.2. ch20th4Théorème de la base orthonormée incomplèteThBaseOrthoIncompleteSi $(E, \langle .,. \rangle)$ est un espace euclidien de dimension n, pour tout $k \in [\![1,n]\!]$, soit (e_1,\ldots,e_k) une famille orthonormée de vecteurs de E Alors cette famille peut être complétée en une base orthonormée de E.

Démonstration. Comme (e_1, \ldots, e_k) est orthonormée elle est libre, on peut donc la compléter en une base de E à laquelle on pourra appliquer le procédé d'orthonormalisation de Gramm-Schmidt pour obtenir une base orthonormée de E.

Théorème 19.4.3. $ch20P7PropriétéCoordBaseSi(E, \langle ., . \rangle)$ est un espace euclidien muni d'une base

$$(e_1,\ldots,e_n)$$
 orthonormée on a $orall x\in E$, $x=\sum_{i=1}^n \langle x,e_i
angle$. e_i $orall (x,y)\in E^2$, $\langle x,y
angle=\sum_{i=1}^n \langle x,e_i
angle$ $\langle y,e_i
angle$

Théorème 19.4.4. ch20P7cCorollaire 120-P7cSi $(E, \langle ., . \rangle)$ est un espace euclidien rapporté à une base orthonormée e

Théorème 19.4.5. ch20P7c2Corollaire 2NormBaseESi $x \in E$, E euclidien rapporté à une base (e_1, \ldots, e_n) orthonormée Alors $\|x\|^2 = \sum_{i=1}^n \langle x_i, e_i \rangle^2$

19.5 Projection orthogonale sur un sous-espace de dimension finie

Théorème 19.5.1. ch20P8PropositionSupplOrthoSi F est un sous-espace de dimension finie de $(E, \langle ., . \rangle)$ espace préhilbertien réel

Alors f^{\perp} est un supplémentaire de F dans E appelé supplémentaire orthogonal

de F dans E. On note $F \stackrel{\perp}{\oplus} F^{\perp}$

Théorème 19.5.2. ch20P8cCorollaireThRangOrthoSi F est un sous-espace vectoriel d'un espace $(E, \langle ., . \rangle)$ euclidien

Alors dim $F^{\perp} = \dim E - \dim F$

En particulier si H est un hyperplan de E tout vecteur **non nul** de H^{\perp} est dit vecteur normal à H

Projection orthogonale Si F est un sous-espace de dimension finie d'une espace préhilbertien réel $(E, \langle ., . \rangle)$ rapporté à une base orthonormée (e_1, \ldots, e_p) , alors $\sum_{i=1}^p \langle x, e_i \rangle e_i$ est la projection de x sur F parallèlement à F^\perp autrement appelée projection orthogonale de x sur F parfois notée $p_E^\perp(x)$

Distance à un ensemble Si F est un sous-espace de dimension finie d'un espace préhilbertien réel $(E, \langle ., . \rangle)$, pour $x \in E$, on appelle <u>distance de x à F</u> et on note d(x, F) le réel définit par

$$d(x,F) = \inf_{y \in F} \{ \|x - y\| \}$$

Théorème 19.5.3. ch20P9PropriétéEcritureDistanceEnsembleSi F est rapporté à une base orthonormée (e_1, \ldots, e_p)

Alors
$$d(x,F) = \|x-p_{\digamma}^{\perp}(x)\| = \|p_{\digamma}^{\perp}(x)\| = \|x-\sum_{i=1}^p \langle x,e_i \rangle \, e_i\|$$

Théorème 19.5.4. ch20P10Proposition20-P10Si u est un vecteur non nul d'un espace euclidien $(E, \langle ., . \rangle)$ on a :

$$orall x \in \mathcal{E}, \ p_{(extsf{Vect}(\mathsf{u}))^{\perp}}^{\perp}(x) = x - rac{\langle x, u
angle u}{\|u\|^2} \ et \ dig(x, (extsf{Vect}(u))^{\perp}ig) = rac{|\langle x, u
angle u}{\|u\|}$$

Procédés sommatoires discrets

Fonctions de deux variables

21.1 Continuité

21.1.1 Notion d'ouvert

```
\begin{array}{l} \frac{Rappel}{Si\ la\ norme} \parallel . \parallel \ d\'{e}rive\ d'un\ produit\ scalaire\ on\ a\ : \\ \forall x \in \mathbb{R}^2,\ \|x\| \geqslant 0 = (0,0) \qquad \qquad x \in \mathbb{R}^2,\ \|x\| = 0 \Leftrightarrow x = 0 \\ \forall x \in \mathbb{R}^2,\ \forall \lambda \in \mathbb{R},\ \|\lambda.x\| = |\lambda| \ \|x\| \\ \forall (x,y) \in (\mathbb{R}^2)^2,\ \|x+y\| \leqslant \|x\| + \|y\| \\ \quad avec\ \'{e}galit\'{e}\ si\ et\ seulement\ si\ \exists (\lambda,\mu) \in \mathbb{R}^2 \setminus \{(0,0)\}\ tel\ que\ \lambda x + \mu y = 0 \\ (5)\ \forall (x,y) \in (\mathbb{R}^2)^2,\ \|x-y\| \geqslant \|x\| - \|y\| \end{array}
\begin{array}{l} \text{Th\'{e}or\`{e}me\ 21.1.1.}\ ch22P1Propri\'{e}t\'{e}NormSupComposantesSi\ \|x\| = \sqrt{x_1^2 + x_2^2}\ avec\ x = (x_1,x_2) \in \mathbb{R}^2 \\ \quad Alors\ \|x\| \geqslant |x_1|,\ \|x\| \geqslant |x_2|\ et\ \|x\| \leqslant |x_1| + |x_2| \end{array}
```

Boules Soit $x_0 \in \mathbb{R}^2$ et $r \in \mathbb{R}^*_+$ on appelle

ullet Boule ouvert de centre $x_{
m o}$ et de rayon R l'ensemble

$$B(x_0, r) = \{x \in \mathbb{R}^2 \mid \|x - x_0\| < r\}$$

ullet Boule fermée de centre $x_{ ext{o}}$ et de rayon r l'ensemble

$$\overline{B(x_0, r)} = \{x \in \mathbb{R}^2 \mid ||x - x_0|| \leqslant r\}$$

Ouvert Une partie U de R² est dit ouvert lorsque

$$\forall x \in \mathit{U}, \ \exists r > \mathrm{o} \ : \ \mathit{B}(x,r) \subset \mathit{U}$$

Rq: Un partie de R^2 est dite fermée si son complémentaire dans $/R^2$ est un ouvert.

Théorème 21.1.2. ch22P2Propriétés22-P2Ø et R^2 sont des parties ouvertes de R^2 Une union d'ouverts de R^2 est un ouvert de R^2 Une intersection **finie** d'ouverts de R^2 est un ouvert de R^2

21.1.2 Fonctions de deux variables

Définition Si U est un ouvert de \mathbb{R}^2 toute application $f:U\to\mathbb{R}$ est une fonction de deux variables réelles.

Continuité Si U est un ouvert de \mathbb{R}^2 , $f:U\to\mathbb{R}$ et $x_0\in U$ on dit que \underline{f} est continue en x_0 si

$$\forall \varepsilon > 0, \ \exists r > 0 : \ \forall x \in U, \ (x \in B(x_0, r) \Rightarrow |f(x_0) - f(x)| \leqslant \varepsilon)$$

Théorème 21.1.3. ch22P3PropriétéPolynomXYToute fonction polynômiale en <math>x et y est continue sur \mathbb{R}^2

Théorème 21.1.4. $ch22P4PropositionOpéF2VarSoit f et g définies sur un ouvert U de <math>\mathbb{R}^2$ à valeurs réelles

Soit $x_0 \in U$, on suppose que f et g sont continues en x_0 , alors $\forall (\lambda,\mu) \in \mathbb{R}^2$, $\lambda f + \mu g$ est continue en x_0 Si de plus $g(x_0) \neq 0$, il existe r > 0 tel que $\forall x \in B(x_0,r)$, $g(x) \neq 0$ et $\frac{f}{g}$ est continue en x_0 21.2. DÉRIVATION 107

Applications partielles Soit $f: U \to \mathbb{R}$ et $x = (x_1, x_2) \in U$ on définit les fonctions d'une variable réelle f_1 et f_2

$$f_1(t) = f(x_1, t)$$
 et $f_2(t) = f(t, x_2)$

 $f_{\scriptscriptstyle 1}$ et $f_{\scriptscriptstyle 2}$ sont dites <u>applications partielles de f au point $x=(x_{\scriptscriptstyle 1},x_{\scriptscriptstyle 2})$ </u>

Théorème 21.1.5. ch22P5PropriétéContApplPartSi $f:U\to \mathbb{R}$ est continue en $(x_1,x_2)\in U$

Alors f_1 et f_2 sont continues respectivement en X_2 et x_1

21.2 Dérivation

21.2.1 Dérivée partielles

Fonction différentiable Soit $f: U \to \mathbb{R}$ avec U un ouvert de \mathbb{R}^2 et $x = (x_1, x_2) \in U$ On dit que f est différentiable en x par rapport à la première variable si

$$t\mapsto rac{f(x_1+t,x_2)-f(x_1,x_2)}{t}$$

admet une limite en o, notée $\frac{\partial f}{\partial x_i}(x)$ sous réserve d'existence.

On considère une définition analogue en x_2

Dérivées partielles Soit $f: U \to \mathbb{R}$ avec U un ouvert de \mathbb{R}^2 , on note \mathscr{D}_f l'ensemble des points x de U tels que f soit différentiable en x selon la première variable. On définie la dérivée partielle de f selon la première variable

$$rac{\partial f}{\partial x_1}:\mathscr{D}_f o \mathtt{R}$$

qui à tout x de \mathscr{D}_f associe $rac{\partial f}{\partial x_1}(x)$

On définit de même la dérivée partielle de f selon la deuxième variable.

Si f est différentiable en x selon la première variable, on dit aussi que f admet une dérivée partielle selon la première variable.

On a de même pour la deuxième variable.

Dérivabilité selon un scalaire Si $f: U \to \mathbb{R}$, $h \in \mathbb{R}^2$ et $x \in U$ on dit que \underline{f} est dérivable en x selon h lorsque

$$\frac{f(x+th)-f(x)}{t}$$

admet une limite finie quand t o extstyle 0, notée $f_x(h)$

On dit que $\underline{f}:U \to \mathbf{R}$ est de classe sur U si $\frac{\partial f}{\partial x_1}$ et $\frac{\partial f}{\partial x_2}$ sont définies et Classe continues sur U

Théorème 21.2.1. ch22P7PropriétésCalcDer2VarSi f et g sont de classe sur U ouvert de R² alors

$$\forall (\lambda,\mu) \in \mathbf{R}^2, \ \lambda f + \mu g \ \text{est de classe} \ \ \text{sur } U \ \text{avec}$$

$$\forall x \in U, \ \frac{\partial (\lambda f + \mu g)}{\partial x_i}(x) = \lambda \frac{\partial f}{\partial x_i}(x) + \mu \frac{\partial g}{\partial x_i}(x)$$

$$fg \ \text{est de classe} \ \ \text{sur } U \ \text{avec}$$

$$\forall x \in U, \ \frac{\partial (fg)}{\partial x_i}(x) = f(x) \frac{\partial g}{\partial x_i}(x) + g(x) \frac{\partial f}{\partial x_i}(x)$$

$$Si \ g \ \text{ne s'annule pas sur } U \ \text{alors} \ \frac{f}{g} \ \text{est de classe} \ \ \text{sur } U \ \text{avec}$$

$$orall x \in \mathit{U}, \;\; rac{\partial (fg)}{\partial x_i}(x) = f(x) rac{\partial g}{\partial x_i}(x) + g(x) rac{\partial f}{\partial x_i}(x)$$

$$orall x \in extstyle U, \;\; rac{\partial (f/g)}{\partial x_i}(x) = rac{rac{\partial f}{\partial x_i}(x)g(x) - f(x)rac{\partial g}{\partial x_i}(x)}{g^2(x)}$$

21.2.2 Différentielle

Fonction négligeable Soit $f: U \to \mathbb{R}$ avec $(0,0) \in U$ on dit que f(h) est négligeable devant $\|h\|$ au voisinage de (0,0) si

$$\forall \varepsilon > 0, \ \exists \eta > 0 : \ \forall h \in U, \ (\|h\| \leqslant \eta \Rightarrow |f(h)| \leqslant \varepsilon \|h\|)$$

 \underline{R}_{0} $\underline{$ admet des dérivées selon tout vecteur en (0,0) nulles.

Théorème 21.2.2. ch22th1Théorème : Développement limité à l'ordre 1 en (x_0, y_0) DL1x0y0Si $f:U o \mathsf{R}$ est de classe $\ \mathsf{sur}\ U\ \mathsf{et}\ (x_\mathtt{0},y_\mathtt{0})\in U$

Alors pour tout
$$h=(h_1,h_2)\in \mathbb{R}^2$$

$$f(x_0 + h_1, y_0 + h_1) = \int_{h \to (0,0)} f(x_0, y_0) + h_1 \frac{\partial f}{\partial x}(x_0, y_0) + h_2 \frac{\partial f}{\partial y}(x_0, y_0) + o(\|h\|)$$

Démonstration. Ce résultat est admis.

Théorème 21.2.3. ch22th1cCorollaireC12VarImplContSi f est de classe sur U alors f est continue sur U.

Théorème 21.2.4. ch22P8PropositionEcritureDer2VarSi $f: U \rightarrow R$ est de classe sur

Alors pour tout $h=(h_1,h_2)\in \mathbf{R}^2$, f admet une dérivée en x selon h donnée par $f_x(h)=h_1\frac{\partial f}{\partial x_1}(x)+h_2\frac{\partial f}{\partial x_2}(x)$

Table des matières - Première année

Table des matières - Deuxième année

22	Suite	es et séries
	22.1	Norme
		22.1.1 Généralités
		22.1.2 Normes euclidiennes
		22.1.3 Exemple de normes
	22.2	Suites
	22.3	Normes équivalentes
		22.3.1 Définition
		22.3.2 Cas de espaces de dimension fini
	22 4	Comparaisons asymptotiques
		Séries dans un K espace vectoriel de dimension finie
		Complément sur les séries numériques
	22.0	22.6.1 Règle de <u>Dalembert</u>
		22.6.2 Séries alternées
		22.6.3 Sommation des relations de comparaisons
	22.7	Produit de deux séries absolument convergentes
		Dualité série-suite
	22.0	Dualite Serie-Suite
23	I imi	tes et continuité 13
		Ouverts et fermés
	25.1	23.1.1 Intérieurs
		23.1.2 Ouverts
		23.1.3 Fermés
		23.1.4 Adhérence
	23.2	Limites
	25.2	23.2.1 Cas général
		23.2.2 Produit fini d'espaces vectoriels normés
	22.2	
	23.3	
		9
	00.4	23.3.2 Cas des applications linéaires
		Image réciproque et continuité
	23.5	Compacité
		23.5.1 Compacité dans un espace vectoriel normé quelconque 24
		23.5.2 Compacité en dimension finie
		23.5.3 Applications aux séries en dimension finie
	23.6	Connexité par arcs
21	Dári	vation et intégration 28
∠4		
		Dérivées successives
		Fonctions convexes
	24.4	Intégration sur un segment
		24.4.1 Fonctions continues par morceaux
		24.4.2 Propriétés de l'intégrale

		24.4.3 Inégalités34Théorème fondamental34Formules de Taylor35	4
25	Suite	es de fonctions 3	7
	25.1	Convergences	7
	25.2	Série de fonctions	9
	25.3	Intégration et dérivation	0
		25.3.1 Cas général	0
		25.3.2 Application aux matrices	2
	25.4	Approximations uniformes A'	2