

## **Mechanik (Translation)**

GRUNDLA-GEN



SCAN ME

LÖSUN-GEN



**SCAN ME** 

## Aufgabenstellung

Eine Tennisballwurfmaschine soll einen Tennisball möglichst weit schleudern. Erstellen Sie ein dynamisches Modell (in LTSpice) eines Tennisballs unter dem Einfluss der Erdbeschleunigung  $\left(g=9.81\frac{m}{s^2}\right)$  und der Newtonschen Reibung. Bestimmen Sie die zugehörigen Wurfparabeln für die Startwinkel 20°, 30°, 40° und 50°. Unter welchem Startwinkel wird die größte Wurfweite erreicht.

| Balldurchmesser | $d_B = 67mm$                    | Ballmasse       | $m_B = 57g$            | c <sub>w</sub> -Wert | 0,45       |
|-----------------|---------------------------------|-----------------|------------------------|----------------------|------------|
| Luftdichte      | $\rho_L = 1.225 \frac{kg}{m^3}$ | Geschwindigkeit | $v_0 = 65 \frac{m}{s}$ | Starthöhe            | $y_0 = 1m$ |



| Fragen /Aufgaben |                                                                                                                     |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| 1.               | Erstellen Sie die Bewegungsgleichung über den Impulssatz.                                                           |  |  |
| 2.               | Modellbildung über konzentrierte Ersatzelemente mittels LTSpice. Entwerfen Sie ein Schaltbild der Aufgabenstellung. |  |  |
| 3.               | Berechnen Sie die Wurfparabeln über die Simulation in LTSpice.                                                      |  |  |
| 4.               | Wie groß ist die maximale Wurfweite bei den gegebenen Startwinkeln?                                                 |  |  |