TD - Générateur pseudo-aléatoire cryptographiquement sûr

Le générateur BBS (Blum Blum Shub) est un générateur crytographiquement sûr qui fonctionne comme suit:

- On choisit deux nombres premiers $p = 4.k_1 + 3$ et $q = 4.k_2 + 3$. On calcule l'entier de Blum n = pq.
- On choisit un entier x < n aléatoire et premier avec n.
- On pose $x_0 = x^2 \mod n$ et, pour $i \ge 1$, $x_i = x_{i-1}^2 \mod n$.

Le $i^{\text{ème}}$ bit b_i pseudo-aléatoire est alors le bit de poids faible de x_i , i.e. $b_i = x_i \mod 2$. Ce générateur est cryptographiquement sûr: sa sécurité (admise) repose sur la difficulté de factoriser n. Ce générateur est conjecturé sûr à gauche et à droite.

Question 1. On suppose que Bob, qui connait p et q, a choisi x_0 et veut calculer efficacement x_i .

- 1. Soit $u_i = 2^i \mod (p-1)(q-1)$; montrer que $x_i = x_0^{u_i} \mod n$.
- 2. En déduire un algorithme qui prend en entrée i, x_0, p, q et n et qui génère en sortie le bit b_i . Donner le coût de cet algorithme.
- 3. Quel est l'intérêt de cette propriété ?

Correction:

1. Soient $2^j \mod \phi(n)$ et $\rho = 2^j \div \phi(n)$ respectivement le reste et quotient dans la division euclidienne de 2^j par $\phi(n)$: $2^j = (2^j \mod \phi(n)) + \rho \cdot \phi(n)$. On a:

$$x_j = x_{j-1}^2 \mod n = x_0^{2^j} \mod n = x_0^{2^j \mod \phi(n)}.x_0^{\rho.\phi(n)} \mod n.$$

En outre, comme x et n sont premiers entre eux et $x_0 = x^2 \mod n$, alors x_0 et n sont premiers entre eux. Le théorème d'Euler s'applique et on a: $x_0^{\phi(n)} \mod n = 1$. Donc, $x_0^{\rho,\phi(n)} = 1 \mod n$ ce qui aboutit à:

$$x_j = x_0^{2^j} \mod n = x_0^{2^j \mod \phi(n)} \mod n.$$

2. L'algorithme est:

ui := FastExponentiation(2,i,(p-1)(q-1)) ;

xi := FastExponentiation (x_0, ui, x) ;

return LSB(xi);

Le coût est celui de deux exponentiations modulaires modulo deux entiers de $\log_2 n$ bits, soit $\tilde{O}(\log^2 n)$.

Plus précisément: The cost is the one of two modular exponentiations with two moduli of $\log_2 n$ bits: thus $\Theta(\log_2 i + \log^2 n)$ multiplications, each multiplications costing $\tilde{0}(\log n)$. Considering large primes p and q (more than one thousand bits), we may assume $\log_2 i \leq \log_2 n$, which leads to a cost $\tilde{0}(\log^2 n)$.

3. La propriété permet de générer directement et rapidement b_i à partir de x_0 sans avoir besoin de générer les bits intermédiaires.

Question 2. On suppose que Bob, qui connait p et q, connait x_i mais pas x_0 .

- 1. Montrer que $u_i = 2^i \mod (p-1)$ est premier avec l'entier $\frac{p-1}{2}$.
- 2. \star Soit v_i l'inverse de u_i modulo $\frac{p-1}{2}$. Donner un algorithme permettant de calculer $x_0 \mod p$ à partir de $x_i \mod p$ et en utilisant v_i .
- 3. En déduire un algorithme qui prend en entrée i, x_i, p, q et n et qui génère en sortie x_0 .

Correction:

- 1. On a p=4k+3 donc $\frac{p-1}{2}=2k+1$ est un entier impair. Il est donc premier avec 2^i . Donc, d'après Bezout, $\exists a,b$ integers such that: $a.2^i+b.\frac{p-1}{2}=1$ (E). On a aussi $2^i=\rho.(p-1)+(2^i \mod p-1)$ où $\rho=(2^i)$ div (p-1) est un entier. En remplaçant dans (E), on obtient: $a.(2^i \mod p-1)+(2a\rho+b).\frac{p-1}{2}=1$. On en déduit (d'après Bezout car a et $2a\rho+b$ sont entiers) que $(2^i \mod p-1)$ et $\frac{p-1}{2}$ sont premiers.
- 2. Let $v_i = u_i^{-1} \mod \frac{p-1}{2}$, which exists from previous question. Then $u_i.v_i = 1 + a.\frac{p-1}{2}$ with a integer. Thus, let $w = x_i^{v_i} \mod p = x_0^{1+a.\frac{p-1}{2}} \mod p$. Since $x_0 = x^2 \mod n$ and n = pq, we have $x_0 = x^2 \mod p$; so $w = x_i^{v_i} \mod p = x^{2+a.(p-1)} \mod p = x^2 \mod p = x_0$.
- 3. Donner un algorithme permettant de calculer $x_0 \mod p$ à partir de $x_i \mod p$ et en utilisant v_i .

Question 3. Le protocole de chiffrement de Blum-Goldwasser fonctionne comme suit. Pour envoyer un message $M = [M_1, \ldots, M_t]$ de t bits à Bob, Alice procède comme suit. Alice choisit une valeur x_0 aléatoire secrète; à partir de x_0 , elle génère avec le générateur BBS et la clef publique n de Bob une suite de t bits $B = [b_1, \ldots, b_t]$ pseudo-aléatoires et elle envoie à Bob le message chiffré $[M', x_t]$ où :

- $M' = [M_1 \oplus b_1, \dots, M_t \oplus b_t]$ est le ou exclusif de M et B;
- x_t est le t^{ime} itéré de la suite (x_i) générée

Justifier que cet algorithme est sûr. En utilisant les questions précédentes, donner l'algorithme qui permet à Bob de déchiffrer efficacement le message reçu.