# **FUTURE VISION BIE**

One Stop for All Study Materials
& Lab Programs



# By K B Hemanth Raj

Scan the QR Code to Visit the Web Page



Or

Visit: https://hemanthrajhemu.github.io

Gain Access to All Study Materials according to VTU, Currently for CSE – Computer Science Engineering...

Join Telegram to get Instant Updates: https://bit.ly/VTU\_TELEGRAM

Contact: MAIL: futurevisionbie@gmail.com

INSTAGRAM: www.instagram.com/hemanthraj\_hemu/

INSTAGRAM: www.instagram.com/futurevisionbie/

WHATSAPP SHARE: https://bit.ly/FVBIESHARE

# B. E. Common to all Programmes

# Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - III

## ADDITIONAL MATHEMATICS - I

(Mandatory Learning Course: Common to All Programmes)

(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech. programmes)

| Course Code                 | 18MATDIP31 | CIE Marks  | 40 |
|-----------------------------|------------|------------|----|
| Teaching Hours/Week (L:T:P) | (2:2:0)    | SEE Marks  | 60 |
| Credits                     | 0          | Exam Hours | 03 |

# **Course Learning Objectives:**

- To provide basic concepts of complex trigonometry, vector algebra, differential and integral calculus.
- To provide an insight into vector differentiation and first order ODE's.

## **Module-1**

**Complex Trigonometry:** Complex Numbers: Definitions and properties. Modulus and amplitude of a complex number, Argand's diagram, De-Moivre's theorem (without proof).

**Vector Algebra:** Scalar and vectors. Addition and subtraction and multiplication of vectors- Dot and Cross products, problems.

#### Module-2

**Differential Calculus**: Review of successive differentiation-illustrative examples. Maclaurin's series expansions-Illustrative examples. Partial Differentiation: Euler's theorem-problems on first order derivatives only. Total derivatives-differentiation of composite functions. Jacobians of order two-Problems.

#### Module-3

**Vector Differentiation**: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl-simple problems. Solenoidal and irrotational vector fields-Problems.

### Module-4

**Integral Calculus**: Review of elementary integral calculus. Reduction formulae for sin<sup>n</sup>x, cos<sup>n</sup>x (with proof) and sin<sup>m</sup>xcos<sup>n</sup>x (without proof) and evaluation of these with standard limits-Examples. Double and triple integrals-Simple examples.

#### Module-5

**Ordinary differential equations (ODE's.** Introduction-solutions of first order and first-degree differential equations: exact, linear differential equations. Equations reducible to exact and Bernoulli's equation.

**Course Outcomes:** At the end of the course the student will be able to:

- CO1: Apply concepts of complex numbers and vector algebra to analyze the problems arising in related area.
- CO2: Use derivatives and partial derivatives to calculate rate of change of multivariate functions.
- CO3: Analyze position, velocity and acceleration in two and three dimensions of vector valued functions.
- CO4: Learn techniques of integration including the evaluation of double and triple integrals.
- CO5: Identify and solve first order ordinary differential equations.

# Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

# https://hemanthrajhemu.github.io

| Sl<br>No        | Title of the Book                | Name of the<br>Author/s | Name of the<br>Publisher | Edition and Year               |
|-----------------|----------------------------------|-------------------------|--------------------------|--------------------------------|
| Textbook        |                                  |                         |                          |                                |
| 1               | Higher Engineering Mathematics   | B. S. Grewal            | Khanna Publishers        | 43 <sup>rd</sup> Edition, 2015 |
| Reference Books |                                  |                         |                          |                                |
| 1               | Advanced Engineering Mathematics | E. Kreyszig             | John Wiley & Sons        | 10 <sup>th</sup> Edition, 2015 |
| 2               | Engineering Mathematics          | N. P .Bali and          | Laxmi Publishers         | 7th Edition, 2007              |
|                 |                                  | Manish Goyal            |                          |                                |
| 3               | Engineering Mathematics Vol. I   | Rohit Khurana           | Cengage Learning         | 1 <sup>st</sup> Edition, 2015  |