

FIG. 1

(a)

LacOperon Ub-Arg-

(b)

FIG. 2

k12-e1

	Met	Gln	Asp	Phe	Val	Lys	Thr	Leu	Thr	Gly	Lys	Thr	Asp	Leu	Gly	Val	Glu	Gly	Ser	Asp	Thr	Asp	Asn	Val	Lys	Ser	Lys	
S001	ACAGGAACAA	GCTATGCAGA	TITTCGTCAA	GACTTGTACC	GGTAAACCCA	TAACATTGGA	AGTTGAACCT	TCCGATACCA	TGCGAACCGT	TAAGTCGAAA	TGTCCTTGT	CGATACCGT	AAAGCAGT	CTGAACTGG	CCATTGTTGGT	ATTCATACCT	TCAACCTTGA	AGGCTATGGT	AGCTGTTGCA	ATTCAAGCTT								
S101	ATTCAGAGACA	AGGAAGGTAT	CCCTCCAGAT	CAACAAAGAT	TGATCTTTCG	CGGTAAAGCA	CTAGAAAGCC	GTAGAACCGT	GTCTGATTAC	AAACATTGAGA	TAAGTCCTGT	TCTTCCATA	GGGAGGTCTA	GTGTTTCTA	ACTAGAAACG	CCCATTCGTC	GATCTCTGC	CATCTTGCGA	CAGACTAAATG	TGTTAAGCT								
S201	TG	Glu	Ser	Thr	Leu	Asp	Arg	Lys	Asp	Gly	Asp	Leu	Asp	Asp	Gly	Arg	Thr	Leu	Asp	Asp	Asp	Asn	Asp	Asn	Asp	Asp	Asp	
S301	TCAGGADAT	CCCCCTTTCG	CCAGCTGGCG	TAATACCGAA	GAAGGCCGCA	CCGATCCCCT	TTTCCAAACG	TTGGCCAGCG	TTAATGCCGA	TTGGCCGTT	GGTCTGCTGA	GGTCTGCTGA	AAACGTCGCT	CCGACALACGG	GCAGGTGAC	CAA												

k12-e2

	Met	Gln	Asp	Phe	Val	Lys	Thr	Leu	Thr	Gly	Lys	Thr	Asp	Leu	Gly	Val	Glu	Gly	Ser	Asp	Thr	Asp	Asn	Val	Lys	Ser	Lys
S001	ACAGGAACAA	GCTATGCAGA	TITTCGTCAA	GACTTGTACC	GGTAAACCCA	TAACATTGGA	AGTTGAACCT	TCCGATACCA	TGCGAACCGT	TAAGTCGAAA	TGTCCTTGT	CGATACCGT	AAAGCAGT	CTGAACTGG	CCATTGTTGGT	ATTCATACCT	TCAACCTTGA	AGGCTATGGT	AGCTGTTGCA	ATTCAAGCTT							
S101	ATTCAGAGACA	AGGAAGGTAT	CCCTCCAGAT	CAACAAAGAT	TGATCTTTCG	CGGTAAAGCA	CTAGAAAGCC	GTAGAACCGT	GTCTGATTAC	AAACATTGAGA	TAAGTCCTGT	TCTTCCATA	GGGAGGTCTA	GTGTTTCTA	ACTAGAAACG	CCGATTCGTC	GATCTCTGC	CATCTTGCGA	CAGACTAAATG	TGTTAAGCT							
S201	TG	Glu	Ser	Thr	Leu	Asp	Arg	Lys	Asp	Gly	Asp	Leu	Asp	Asp	Gly	Arg	Thr	Leu	Asp	Asp	Asp	Asn	Asp	Asn	Asp	Asp	Asp
S301	AGGAGTCAC	CTTACATCTT	GTGCTAAGGC	TAAGAGGTGG	TTTGCACGGA	CCGGAGCTT	GGCTGTGCG	GTGCTCACTG	GTGAAAAAGA	AAACCAACCT	TCTCAGGTG	GAATGTAGA	CACGATTCACC	ATTCCTCACC	AAACGTGCGT	AGGCTGTGAA	CGCACAAACGG	GCAGACTGAC	CACCTTTCTT	TTTGGTGGGA							

k12-e3a

	Met	Gln	Asp	Phe	Val	Lys	Thr	Leu	Thr	Gly	Lys	Thr	Asp	Leu	Gly	Val	Glu	Gly	Ser	Asp	Thr	Asp	Asn	Val	Lys	Ser	Lys
S001	ACAGGAACAA	GCTATGCAGA	TITTCGTCAA	GACTTGTACC	GGTAAACCCA	TAACATTGGA	AGTTGAACCT	TCCGATACCA	TGCGAACCGT	TAAGTCGAAA	TGTCCTTGT	CGATACCGT	AAAGCAGT	CTGAACTGG	CCATTGTTGGT	ATTCATACCT	TCAACCTTGA	AGGCTATGGT	AGCTGTTGCA	ATTCAAGCTT							
S101	ATTCAGAGACA	AGGAAGGTAT	CCCTCCAGAT	CAACAAAGAT	TGATCTTTCG	CGGTAAAGCA	CTAGAAAGCC	GTAGAACCGT	GTCTGATTAC	AAACATTGAGA	TAAGTCCTGT	TCTTCCATA	GGGAGGTCTA	GTGTTTCTA	ACTAGAAACG	CCCATTCGTC	GATCTCTGC	CATCTTGCGA	CAGACTAAATG	TGTTAAGCT							
S201	TG	Glu	Ser	Thr	Leu	Asp	Arg	Lys	Asp	Gly	Asp	Leu	Asp	Asp	Gly	Arg	Thr	Leu	Asp	Asp	Asp	Asn	Asp	Asn	Asp	Asp	Asp
S301	GGCCAAACAT	ACCGAAACAT	CTCTCCCTAC	CCACCTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG	CACTTCTG

k12-n3

	Met	Lys	Lys	Pro	Asp	Threonine	Leu	Asp	Asp	Threonine	Leu	Asp	Ser	Ala	Ser	Thr	Met	Asp	Leu	Asp	Asp	Asn	Asp	Asp	Asp	Asp	Asp
S001	ACAGGAACAA	GCTATGCAGA	TTCGGATTAT	AGCCGGAGCA	GGCTTGTATTG	CGCTTGTATTG																					
S101	ATACGCTTGGC	TTACGCTTGGC																									

K12-n5

	Met	Gln	Gln	Gln	Gln	Asn	Arg	Lys	Thr	Ser	Ser	Thr	Met	Asp	Leu	Ala	Val	Val	Val	Leu	Gln	Arg	Arg	Asp	Asp	Asp	Gln	
S001	ACAGGAACAA	GCTATGCAGC	AGGAAGCCAA	GAACGCCAAA	ACCAAGCAGCA	CCATGATTAC	GGTATTGATC	GGCTTGTATTG	CGCTTGTATTG																			
S101	ATACGCTTGGC	TTACGCTTGGC																										

FIG 3a

(b)

FIG 3b

FIG. 4

FIG. 5

FIG. 6.

FIG. 7

(a)

FIG. 8

FIG. 9

FIG. 10

FIG 11

FIG. 12

(a)

(b)

	Met	Gln	Asn	Phe	Val	Iys	Thr	Leu	Thr	Gly	Lys	Thr	Asn	Thr	Leu	Glu	Val	Glu	Ser	Ser	Asp	Thr	Asp															
GGCGGATAACA	ATTTCACACAA	GGAAACAGCT	ATGCCAGATT	TGCTCAAGAC	TTTGACCGGT	AAAACCATAA	CATTGGAAGT	TGAATCTTC	GATACCATCG	CGCCTATTGT	AAAAGTGTGT	CCTTGTGCGA	TAGCTAAAA	AGCAGTCTG	AAACTGGCC	TTTTGGTATT	GTAAACCTTC	ACTTAGAAGG	CTATGGTAGC																			
Asp	Asn	Val	Lys	Ser	Lys	Asn	Gln	Arg	Lys	Gly	Asn	Pro	Pro	Asp	Gly	Gln	Arg	Leu	Asp	Gly	Arg	Thr	Leu	Ser														
ACAAAGCTAA	GTCGAAAATT	CAAGACAAGG	AAAGTATCCC	TCCAGATCAL	CAAAAGATTG	TCTTGC	TAAGCAGCTA	GAAGACGGTA	GAACGCTGTC	TGTTGCAATT	CAGCTTTAAC	GTTCGTTTCC	TTCCATAGGG	AGGTCTAGTT	GTTCTAACT	AGAACCGGCC	ATTCTGCGAT	CTTCTGCCAT	CTTGGACAG	Ser	Asp	Trp	Asn	Asp														
Ser	Asp	Trp	Asn	Asp	Gln	Iys	Glu	Ser	Thr	Leu	His	Leu	Val	Leu	Arg	Leu	Gly	Gly	Leu	Thr	Asp	Ser	Leu	Ala	Val	Val	Leu	Gln	Arg									
TGATTACAAC	ATTCAGAAGG	AGTCACCTT	ACATCTTGT	CTAAGGCTAA	GAGGTGGT	TGCTGCTG	TAAGGCTGCT	AGGCTGCTG	AGGCTGCTG	ACTAATGTTG	TAAGTCTTCC	TCAGGTGGAA	TGAGAACAC	GATTCCGATT	CTCCACCA	CTGCTGCTG	CTCCCTGCTG	AGGGCTGCTG	AGGGCTGCTG	AGGGCTGCTG	Arg	Asp	Trp	Glu	Asn	Pro	Gly	Val	Thr	Asp	Ser	Leu	Ala	Val	Val	Leu	Gln	Arg
Arg	Asp	Trp	Glu	Asn	Pro	Gly	Val	Thr	Gln	Leu	Asn	Arg	Leu	Ala	Ala	Pro	Pro	Pho	Ala	Ser	Trp	Arg	Asn	Ser	Glu	Gly	Ala	Arg	Thr	Asp	Arg	Pro						
CGCGACGGG	TTTACCCGCG	GGTAAACCAA	GTAAATACCA	TTTACACCA	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG	GGCGGTTG																	

FIG. 13

(a)

Figure 1. Fluorescence image of *Shewanella oneidensis* cells containing *lacZ* plasmid taken with a through-lens total internal reflection (TIR) fluorescence microscope. Each bright spot is a single cell, in which DDAO generated by the basal level expression of β -gal is detected with high sensitivity.

(b)

Figure 2. DDAO fluorescence generated by hydrolysis of DDAO-Gal with the wild-type *Shewanella oneidensis* cells (light gray lines), with cells containing *lacZ* plasmid (gray lines), and cells containing both *lacZ* and the ubiquitin-specific protease plasmid (black lines).

FIG 14

FIG. 1 (a)

(b)

1 ACGGATTAGA AGCCGCCGAG CGGGTGACAG CCCTCCGAAG GAAGACTCTC CTCCGTGCGT CCTCGTCTTC ACCGGTCGCG
TGCTTAATCT TCGGGCGCTC GCCCACTGTC GGGAGGCCTTC CTTCTGAGAG GAGGCACGCA GGAGCAGAAG TGGCCAGCGC
81 TTCCCTAACAC GCAGATGTGC CTGGCGCCGC ACTGCTCCGA ACAATAAAGA TTCTACAATA CTAGCTTTTA TGTTTATGAA
AAGGACTTTG CGTCTACACG GACCGCGGGCG TGACGAGGCT TGTTATTCTT AAAGATTTAT GATCGAAAAT ACCAATACCT
161 GAGGAAAAT TGGCACTAAC CTGGCCCCAC AACCTTCAA ATGAACGAT CAAATTAACA ACCATAGGAT GATAATGCGA
CTCCCTTTA ACCGTCATTG GACCGGGGTG TTTGGAAGTT TACTTGCTA GTTTAATTGT TGGTATCCTA CTATTACGCT
241 TTAGTTTTT AGCCCTTATTCT CGGGGTAAT TAATCAGCGA AGCCGATGATT TTGATGCTAT TAACAGATAT ATAAATGCAA
AATCAAAAAA TCGGAATAAA GACCCCATTA ATTAGTCGCT TCGCCTACTAA AACTAGATA ATTGTCTATA TATTTACGTT
321 AAACTGCATA ACCACTTAA CTAACTACTT CAACATTTG GTTGTGATT ACTTCTTATA CAAATGTAAT AAAAGTATCA
TTTGACTAT TGTTGAAATT GATTATGAAA GTTGTAAAAG CAAACATAA TAAAGAATAA GTTACATTA TTTTCAATAG
401 ACAAAAAAATT GTAAATATACCT CTCTATACCTT AAACGTCAGG GAGAAAAAAC CCCGGATCGG ACTACTAGCA GCTGTAATAC
TGTCTTTAA CAATTATATG GAGATATGAA ATTGCAGTC CTCTTTTGTG GGGCCTAGCC TGATGATCGT CGACATTATG
4 Met Gln Ile Phe Val Lys Thr Leu Gly Ile Ile Ile Ile Ile Ile Ile
481 GACTCACTAT AGGGAAATATT AAGCTTGGTA CCATGCAGAT TTTCGTCAAG ACTTTGACCG GTAAACCAT AACATTGGAA
CTGAGTGATA TCCCCTTATAA TTGCAACATT GGTACGCTA AAACCGAGTC TGAAACTGGC CATTGGTA TTGTAACCTT
5 Val Gn Ser Ser Asp Thr Ile Asp Val Lys Ile Gn Asp Lys Gn Gly Ile Pro Pro Asp Gn Gn Arg Leu
561 GTTGAATCTT CCGATACCA CGACAACGTT AAGTCGAAAAA TTCAAGACAA GGAAGGATTC CCTCCAGATC AACAAAGATT
CAACCTTAGAA GCCTATGGTA GCTGTTGCAA TTCAGCTTTT AAGTTCTGTT CCTTCCATAG GGAGGTCCTAG TTGTTCTAA
6 Ile D Phe Al Gg Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Ile Asn Ile Gln Lys Gln Ser Thr Leu His Leu Val
641 GATCTTGCC GGTAAAGCAGG TAGAACCGGG TGTAAACGCTG TGTGATTACA ACATTCAGAA GGAGTCCACC TTACATCTTG
CTGAAACGG CCATTCTGTCC ATCTTCTGCC ATCTTGGCAC AGACTAATGT TGTAAAGCTT CCTCAGGTGG AATGTAGAAC
7 Val Leu Arg Leu Arg Gg Gg Leu His Gy Ser Gg Al Ile Leu Leu Pro Val Ser Leu Val Ile Arg Lys Thr Thr Leu
721 TGCTAAGGCT AAGAGGTGGT TTGACGCGAT CCGGAGCTTG GCTGTTGCC GTCTCACTGG TGAAAGAAA AACCAACCTG
ACGATTCCGA TTCTCCACCA AACGTCGCTA GGCTCGACCA CGACAAACGGG CAGAGTGACCC ACTTTCTTT TTGGTGGGAC
8 Al Phe Asn Thr Gh Ser Pto Arg Al Leu Alb Asp Ser Leu Mn Gn Lnu Alu Arg Gn Val Ser Arg Leu Asn
801 GCGCCCAATA CGCAAACCGC CTCTCCCCGC GCGTGGCCCG ATTCAATTAA GCAGCTGGCA CGACAGGTTT CCCGACTTAA
CGCGGGTTAT GCGTTGGCG GAGAGGGCG CGCAACCGGC TAAGTAATA CGTCGACCGT GCTGTCCAAA GGCGTGAATT
9 Asn Arg Leu Alb Alb His Pro Pro Phe Ala Ser Tip Arg As Se Gn Glu Al Arg Thr Asp Arg Pto Ser Gin Gn Leu Arg
881 TCGGCTTGCA GCACATCCCC CTTCGCGCAG CTGGCGTAAT AGCGAAGAGG CCCGCACCGA TGCCCTTCC CAAACAGTTGC
AGCGGAACGG CCGTGTAGGG GAAAGCGTC GACGGCATTA TCCTCTCC GGGCGTGGCT AGCGGGAAAGG GTGTCACAG
10 Arg Ser Leu Asn Gg Gn Tip Arg Phe Ala Tip Phe Pro Ala Pro Glu Ala Val Pro Glu Ser Tip Leu Glu Gx Asp Leu
961 GCAGCCTGAA TGGCGAAATGG CGCTTTCGCT GTGTTCCGGC ACCAGAAGCG GTGCCGAAA GCTGGCTGGA GTGCCGATCTT
CGTCGGACTT ACCGCTTACCG GCGAACCGGA CCAAAGGCCG TGGTCTTCCG CACGGCTTT CGACGGACCT CACCGCTAGAA
11 Pro Glu
1041 CCTGAGG
GGACTCC

FIG. 15

FIG. 16

FIG. 17

7/16, 18