Les slides sont disponibles sur

https://github.com/cemosis/unistra.ufr.math

Analyse Fonctionnelle Avancée et EDP

Objectifs

- Préparation du M2MF 2015-2016
- Acquisition du vocabulaire et des outils mathématiques nécessaires à l'analyse des équations aux dérivées partielles

Objets

Étant donné $\Omega\subset\mathbb{R}^d, d=1,2,3$, les espaces $H^s(\Omega)$

$$H^{s}(\Omega) = \{ u \in L^{2}(\Omega) , \forall \alpha \leq s, D^{\alpha}u \in L^{2}(\Omega) \}$$

Questions

- Propriétés de ces espaces
- Applications aux EDP: cadre fonctionel pour montrer l'existence et unicité de solutions

Analyse Fonctionnelle Avancée et EDP

Quelques exemples d'EDP: problèmes d'évolution

Evolution d'une solution en temps t sur un domaine Ω . La solution est donnée implicitement par une équation, des conditions limites (au bord du domaine) et une donnée initiale. Formalisation sous la forme

$$\frac{du}{dt} + Au = 0, \ u(0) = u_0$$

Equation de la chaleur: modélise la distribution de température u dans un domaine Ω à l'instant t

$$\partial_t u - \Delta u = 0$$

Equation des ondes: modélise la propagation d'une onde (acoustique, électromagnétique...)

$$\partial_t^2 u - \Delta u = 0$$

Référence: Haïm Brezis, Analyse Fonctionnelle

Méthodes Numériques pour les EDP

(Courtesy V. Grandgirard) 5D mesh of 272 · 10⁹ points, 31 days on 8192 processors

Méthodes Numériques pour les EDP: Rao & Prud'homme

Objectifs

- Étude mathématique et numérique de la méthode des éléments finis qui propose un cadre général pour passer de formulations continues à discrètes
- le cadre théorique est donné par le cours d'Analyse
 Fonctionnelle Avancée

Questions

- Existence et unicité de solution pour des problèmes elliptiques linéaires coercifs aux niveaux continu et discret
- Construction de fonctions de bases, dites élément fini
- Erreur d'interpolation et d'approximation en norme L^2 et H^1
- Implémentation de la méthode et Vérification numériques des théorèmes

Vers le M2

M2R EDP 2015-2016

Dans le cadre du M2, les cours couvrent les aspects théoriques et approximations numériques.

- Systèmes hyperboliques (B. Rao, P. Helluy)
- Réductions de modèles
 - Méthodes des bases réduites (C. Prud'homme)
 - Méthodes multi-échelles pour des équations de transport (S. Hirstoaga)
- EDP paraboliques
 - Théorie et approximation (Z. Belhachmi)
 - Application à l'interaction fluide-structure (C. Murea)