

HARMONY SEARCH HYPER-HEURISTIC WITH DIFFERENT PITCH ADJUSTMENT OPERATOR FOR SCHEDULING PROBLEMS

Khairul Anwar, Mohammed A. Awadallah, Mohammed Azmi Al-Betar

KHAIRUL ANWAR

Universiti Teknologi MARA (UiTM) Cawangan Sabah, Kampus Kota Kinabalu Beg Berkunci 71, 88997 Kota Kinabalu, Sabah, MALAYSIA.

4 - 5 AUGUST 2021

CONTENTS

- 1 INTRODUCTION
- 2 OBJECTIVES
- 3 LITERATURE REVIEW
- 4 HYPER-HEURISTIC
- 5 EXPERIMENTAL AND RESULTS
- 6 CONCLUSIONS

Introduction

Scheduling Problems

Scheduling problems occur in almost all fields or domains related to services especially in health, transportation and educational institutions.

FOR SCHEDULING PROBLEMS

Objectives

To produce a general method that able solve various scheduling problems

HYPER-HEURISTIC

Literature Review

Hyper-heuristic

Originally define as "heuristics to choose heuristics".

New definition - "search method or learning mechanism for selecting or generating heuristics to solve computational search problem" (Burke et al.,2009).

HH different with meta-heuristics which HH operates on the search space of heuristics rather than directly on the search space of solution

HSHH with Modified Pitch Adjustment (HSHH-MPA)

HSHH with Modified Pitch Adjustment (HSHH-MPA)

Three different heuristic selection in pitch adjustment

First selection (PAType1)

- Simple adjustment which the new index of h_i^\prime will be added/ subtracted by 1.

Second selection (PAType2)

- The new index of h_i^\prime will be selected from the best heuristic sequence in the HHM.

Third selection (PAType3)

- The new index of h_i^\prime will be selected based on the lowest heuristic's usage in the HHM

Experimental and results

Three scheduling problem were used to test the proposed method.

- 1. Un-capacitated examination timetabling problem (Carter's)
- 2. Nurse rostering problem (INRC2010)

Constraints – typically divided into two types:

- Hard constraints must be satisfied.
- Soft constraints are desired but not absolutely necessary.

The objective is to satisfied all the hard constraint and minimize the penalty value of the soft constraint violation in order to produce a quality timetable.

iCMS2021: 061-047

Comparative results of the proposed methods with B-HSHH for Carter dataset

Instance	B-HSHH	(PAType1)	(PAType2)	(PAType3)
CAR-S-91-1	6.09	6.13	6	6.04
CAR-F-92-1	4.88	4.92	4.88	4.97
EAR-F-83-1	38.71	37.22	38.22	37.26
HEC-S-92-1	11.16	10.75	10.74	11.05
KFU-S-93	14.71	14.82	14.78	14.87
LSE-F-91	11.97	12.37	12.02	12.09
RYE-S-93	10	10.04	9.83	9.84
STA-F-83-1	157.31	157.38	157.4	157.32
TRE-S-92	9.25	9.1	9.2	9.05
UTA-S-92-1	3.84	3.82	3.76	3.82
UTE-S-92	27.07	26.89	26.58	27.14
YOR-F-83	39.53	38.92	38.9	39.85

Comparative results of the proposed methods with B-HSHH for INRC2010 dataset

Instance	B-HSHH	(PAType1)	(PAType2)	(PAType3)
sprint early01	58	57	57	58
sprint early02	60	59	59	60
sprint early03	53	53	52	53
sprint early04	62	62	61	61
sprint early05	58	59	59	58
sprint early06	55	55	55	55
sprint early07	58	58	58	58
sprint early08	56	57	56	57
sprint early09	57	57	56	57
sprint early10	54	54	53	53
medium early01	249	251	250	249
medium early02	251	250	250	251
medium early03	247	246	246	249
medium early04	248	247	246	248
medium early05	315	312	313	314
long early01	214	213	214	212
long early02	245	242	241	243
long early03	248	245	246	245
long early04	317	316	316	317
long early05	298	292	295	296

Conclusions

In this study, the Harmony search-based hyper-heuristic with pitch adjustment operator (i.e., HSHHMPA) is presented with three types of heuristic selection mechanism (PAType1, PAType2, and PAType3).

The purpose of applying the pitch adjustment operator is to insert a different way of heuristic selection (e.g., using learning mechanism) instead of randomness in the memory consideration operator.

Apparently, by combining the HSHH with pitch adjustment operators (HSHH-MPA), it was slightly better compared to the original HSHH approach (B-HSHH) in most of problem instances in both datasets (Carter and INRC2010).

Based on the experimental performances, HSHH-MPA with PAType2 appeared to be the best selection mechanism. The computational results indicated that selecting the heuristic from best heuristics vector inside HHM, had led the algorithm to select the most appropriate heuristics. Thus, using the most appropriates heuristic at the right time could lead to better results.

The focus of this study is the selection mechanism for choosing low-level heuristics. It can be in the best interest of future work in the same field, to test the effectiveness of different ways of solution selection from solution harmony memory (SHM) and different move acceptance criteria with other methods.

21 THANK YOU

INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND STATISTICS

PAPER TITLE 13