Classe: MASTER RAIA

CORRECTION TD N°2 INTERFACES DE COMMUNICATION

Exercice nº1

Nous allons brancher sur une carte Arduino un capteur de température infrarouge avec communication par bus IZC. Les Caractéristiques du capteur sont :

- le capteur fonctionne sur 12 bits
- plage de mesure : -40° C à 85° C
- la mesure est linéaire
- le capteur envoi d'abord les bits de poids faible (B7 à B0) puis ceux de poids plus forts (B11 à B8)
- La liaison I2C est classique donc les adresses sont sur 7 bits

1) Décodage de la trame :

- Entourez sur la trame le bit de START
- Relevez l'adresse du capteur. La mettre en hexadécimal : 0x48
- Entourez sur la trame le bit de R/W
- Quel est son état logique et que cela signifie-t-il ? R/W=1 : LECTURE
- Entourez sur la trame les bits d'acquittement (ACK)
- Entourez sur la trame les bits de données transmis par le capteur
- Entourez sur la trame les bits de non-acquittement (NACK)
- Entourez sur la trame le bit de STOP

2) Analyse des données :

- Calculez la résolution du capteur : $r = \frac{85 (-45)}{2^{12}} = 3.05\%$
- Donnez la valeur des 12 bits de mesure que le capteur a envoyé (lus sur la trame) :
 DDDDDD1110010111
- En déduire la température mesurée par le capteur : N= 919 ; T°C= 919*r= 28°C

Classe: MASTER RAIA

Exercice nº2

- ✓ SPI est l'abréviation de Serial Peripheral Interface
- ✓ SPI est un protocole série synchrone baptisé par Motorola
- ✓ Ce protocole utilise une relation maître/esclave entre les composants ; lorsque le maître initie la communication en sélectionnant un esclave, les données peuvent être transférées en mode full duplex.
- ✓ Il existe de nombreux composants compatibles SPI.
- ✓ Le protocole SPI utilise 4 signaux de communication (+ la masse) :
 - SS (choix de l'esclave) : actif à l'état bas, Select Slave.
 - MOSI (entrées de données) : Master Output, généré par le maitre.
 - MISO (sorties de données) : Master Input ? généré par l'esclave.
 - SCLK (horloge) : signal horloge généré par le maitre.
- ✓ Procédure de transfert de données :
 - Le maitre sélectionne un seul et unique esclave avec lequel il veut rentrer en communication par la mise à niveau logique zéro de SS puis, après 8 fronts d'horloge, l'octet de donnée est transféré.
 - La patte MISO de l'esclave non sélectionné est à l'état haut impédance. La seule limite aux nombres d'esclaves est en fait la possibilité de broches SS du maître.
 - L'esclave renvoie les données de la même manière sur le fil MISO.

Exercice nº3

Donner les avantages et les inconvénients du protocole SPI.

Avantages	Inconvénients
Communication en Full Duplex	Pas d'adressage possible
"Indépendant" du nombre de bits à transmettre	Utilisation sur très courte distance (même carte)
Pas de collision possible	Nécessite plus de fils que I ² C
Les esclaves utilisent l'horloge du maître pas de problème de précision de quartz	Pas d'acquittement (le maître ne sait pas s'il est écouté)
Beaucoup plus rapide que I ² C en mode standard	
Possibilité de configuration à plusieurs maîtres	