САМОСТОЯТЕЛЬНАЯ РАБОТА 5. (ЦЕНТР МАСС).

ВАРИАНТ 5.

- 1. Найти координаты центра масс стержня AB, если его длина равна 2, а масса имеет плотность распределения $\rho(x) = \frac{x}{1+x}$, где x-координата вдоль стержня, считая от точки A.
- 2. Найти координаты центра масс однородной пластины:

3. Найти координаты центра масс однородной пластины:

САМОСТОЯТЕЛЬНАЯ РАБОТА 5. (ЦЕНТР МАСС).

ВАРИАНТ 6.

- 1. Найти координаты центра масс стержня AB, если его длина равна $\frac{\pi}{2}$, а масса имеет плотность распределения $\rho(x) = \sin x$, где x координата вдоль стержня, считая от точки A.
- 2. Найти координаты центра масс однородной пластины:

3. Найти координаты центра масс однородной пластины:

САМОСТОЯТЕЛЬНАЯ РАБОТА 5. (ЦЕНТР МАСС). ВАРИАНТ 7.

- 1. Найти координаты центра масс стержня AB, если его длина равна $\frac{\pi}{3}$, а масса имеет плотность распределения $\rho(x) = \cos x$, где x координата вдоль стержня, считая от точки A.
- 2. Найти координаты центра масс однородной пластины:

3. Найти координаты центра масс однородной пластины:

САМОСТОЯТЕЛЬНАЯ РАБОТА 5. (ЦЕНТР МАСС). ВАРИАНТ 8.

- 1. Найти координаты центра масс стержня AB, если его длина равна 1, а масса имеет плотность распределения $\rho(x) = \frac{x}{1+x^2}$, где x координата вдоль стержня, считая от точки A.
- 2. Найти координаты центра масс однородной пластины:

3. Найти координаты центра масс однородной пластины:

