Rachel C. Kurchin

Curriculum Vitae

Carnegie Mellon University Wean Hall 3402, Hammerschlag Drive Pittsburgh, PA 15213 ${\bf rkurchin@cmu.edu} \\ {\bf rkurchin.gitub.io} \\ {\bf Scholar} \\$

EDUCATION

2019 Massachusetts Institute of Technology
PhD in Materials Science and Engineering

2014 University of Cambridge
MPhil in Materials Science and Metallurgy

2013 Yale University
BS in Physics (Intensive) with distinction (magna cum laude, GPA 3.9)

RESEARCH POSITIONS

09/2019 - present	Carnegie Mellon University, Department of Mechanical Engineering MFI Postdoctoral Fellow with Venkat Viswanathan
10/2014 - 07/2019	MIT, Department of Mechanical Engineering PhD Student with Tonio Buonassisi
Summers 2016, 2017	National Renewable Energy Laboratory Visiting Graduate Student with Vladan Stevanovic
10/2013 - 06/2014	University of Cambridge, Department of Materials Science and Metallurgy Master's student with Stoyan Smoukov
09/2012 - 05/2013	Yale University, Department of Electrical Engineering Undergraduate researcher with Minjoo Larry Lee
Summer 2012	Colorado School of Mines, REMRSEC REU student with Thomas Furtak
01/2012 - 05/2012	Yale University, Department of Chemical Engineering Undergraduate researcher with Chinedum Osuji
Summer 2011	Weizmann Institute of Science, Department of Earth and Planetary Sciences Undergraduate reseacher with Ilan Koren
Summer 2008	University of Rochester, Laboratory for Laser Energetics Undergraduate researcher with R. Stephen Craxton

TEACHING POSITIONS

01/2019 - 02/2019	Harbour Research Program, China
	Visiting Professor for "Academic Writing"
09/2018 - 12/2018	MIT, Department of Materials Science and Engineering
	$Teaching\ Assistant\ for\ class\ 3.23: Electronic, Optical, and\ Magnetic\ Properties\ of\ Materials$
2011 - 2013	Yale University, Dean's Office
	Science and QR Tutor

FELLOWSHIPS AND AWARDS

2019 MFI Postdoctoral Fellowship

 ${\bf CMU\; Manufacturing\; Futures\; Initiative}$

Graduate Student Teaching Award

MIT Department of Materials Science and Engineering

Graduate Student Teaching Award

MIT School of Engineering

CCE Symposium Poster Prize

MIT Center for Computational Engineering

2018 Materials Day Best Poster Award

MIT Materials Research Laboratory

2017 Blue Waters Graduate Fellowship

National Center for Supercomputing Applications

2016 Total Energy Fellowship

MIT Energy Initiative

Second Place, de Florez Award Competition

MIT Mechanical Engineering Department

2014 GRFP Honorable Mention

National Science Foundation

2013 Gates Cambridge Scholarship

Cambridge Gates Trust

Howard L. Schultz Prize

Yale Physics Department

2012 Mellon Grant

Pierson College at Yale University

REMRSEC REU Technical Achievement Award

Colorado School of Mines Renewable Energy Materials Research Science and Engineering Center

2009 Robert C. Byrd Honors Scholarship

US Department of Education

Intel STS Semifinalist

Intel Science Talent Search

PUBLICATIONS

- 2019 14. R. C. Kurchin, J. R. Poindexter, V. Vähänissi, C. del Cañizo, T. Buonassisi. "How much defect physics is in a current-voltage curve? Inferring defect properties from device-level electrical measurements and high-performance computing". In Preparation (2019)
 - 13. R. C. Kurchin, G. Romano, T. Buonassisi. "Bayesim: a tool for adaptive grid model fitting with Bayesian inference". Computer Physics Communications 239, 161–165 (2019)
- 2018 12. R. C. Kurchin, P. Gorai, T. Buonassisi, V. Stevanović. "Structural and Chemical Features Giving Rise to Defect Tolerance of Binary Semiconductors". Chemistry of Materials 30, 5583–5592 (2018)
 - J. Correa-Baena, L. Nienhaus, <u>R. C. Kurchin</u>, S. S. Shin, S. Wieghold, N. Hartono, M. Layurova, N. D. Klein, J. R. Poindexter, A. Polizzotti, S. Sun, M. G. Bawendi, T. Buonassisi. "A-site cation in inorganic A₃Sb₂I₉ perovskite influences structural dimensionality, exciton binding energy, and solar cell performance". Chemistry of Materials 30, 3734–3742 (2018)
- 2017 10. S. S. Shin, J. Correa-Baena, R. C. Kurchin, A. Polizzotti, J. J. Yoo, S. Wieghold, M. G. Bawendi, T. Buonassisi. "Solvent-Engineering Method to Deposit Compact Bismuth-Based Thin Films: Mechanism and Application to Photovoltaics". Chemistry of Materials 30, 336–343 (2017)
 - R. Brandt, R. C. Kurchin, V. Steinmann, D. Kitchaev, C. Roat, S. Levcenco, G. Ceder, T. Unold, T. Buonassisi. "Rapid semiconductor device characterization through Bayesian parameter estimation". Joule 1, 843–856 (2017)

- 08. R. Hoye, L. C. Lee, R. C. Kurchin, T. N. Huq, K. Zhang, M. Sponseller, L. Nienhaus, R. E. Brandt, J. Jean, J. A. Polizzotti, A. Kursumović, M. G. Bawendi, V. Bulović, V. Stevanović, T. Buonassisi, J. L. Macmanus-Driscoll. "Strongly Enhanced Photovoltaic Performance and Defect Physics of Air-Stable Bismuth Oxyiodide (BiOI)". Advanced Materials 29, (2017)
- 07. R. E. Brandt, J. Poindexter, P. Gorai, <u>R. Kurchin</u>, R. Hoye, L. Nienhaus, M. Wilson, J. A. Polizzotti, R. Sereika, Z. Raimundas, L. C. Lee, J. L. Macmanus-Driscoll, M. Bawendi, V. Stevanovic, T. Buonassisi. "Searching for "Defect-Tolerant" Photovoltaic Materials: Combined Theoretical and Experimental Screening". Chemistry of Materials 29, 4667–4674 (2017)
- 06. J. R. Poindexter, R. Hoye, L. Nienhaus, <u>R. C. Kurchin</u>, A. E. Morishige, E. E. Looney, A. Osherov, B. Lai, V. Bulovic, V. Stevanovic, M. G. Bawendi, T. Buonassisi. "High Tolerance to Iron Contamination in Lead Halide Perovskite Solar Cells". ACS Nano 11, 7101–7109 (2017)
- 2016 05. R. Hoye, P. Schulz, L. T. Schelhas, A. M. Holder, K. H. Stone, J. D. Perkins, D. Vigil-Fowler, S. Siol, D. O. Scanlon, A. Zakutayev, A. Walsh, I. C. Smith, B. C. Melot, R. C. Kurchin, Y. Wang, J. Shi, F. C. Marques, J. J. Berry, W. Tumas, S. Lany, V. Stevanović, M. F. Toney, T. Buonassisi. "Perovskite-inspired photovoltaics: Best practices in materials characterization and calculations". Chemistry of Materials 29, 1964–1988 (2016)
 - 04. D. B. Needleman, J. R. Poindexter, <u>R. C. Kurchin</u>, I. M. Peters, G. Wilson, T. Buonassisi. "Economically sustainable scaling of photovoltaics to meet climate targets". Energy & Environmental Science 9, 2122–2129 (2016)
 - 03. A. Gufan, Y. Lehahn, E. Fredj, C. Price, <u>R. C. Kurchin</u>, I. Koren. "Segmentation and Tracking of Marine Cellular Clouds observed by Geostationary Satellites". International Journal of Remote Sensing 37, 1055–1068 (2016)
- 2015 02. R. Hoye, R. E. Brandt, A. Osherov, V. Stevanović, S. D. Stranks, M. Wilson, H. Kim, A. J. Akey, <u>R. C. Kurchin</u>, J. R. Poindexter, E. N. Wang, M. G. Bawendi, V. Bulović, T. Buonassisi. "Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber". Chemistry A European Journal 22, 2605–2610 (2015)
 - 01. R. E. Brandt, R. C. Kurchin, R. Hoye, J. R. Poindexter, M. Wilson, S. Sulekar, F. Lenahan, P. Yen, V. Stevanović, J. C. Nino, M. G. Bawendi, T. Buonassisi. "Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications". The Journal of Physical Chemistry Letters 6, 4297–4302 (2015)

TALKS

- $10/25/2018 \qquad Semiconductor\ Parameter\ Extraction\ (and\ more!)\ with\ Bayesian\ Inference$ MIT Society of Industrial and Applied Mathematics, Cambridge, MA
- 08/18/2018 Computational Screening for Defect-Tolerant Semiconductors
 Gordon Research Seminar on Defects in Semiconductors, New London, NH
- 06/04/2018 Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors
 Blue Waters Research Symposium, Sunriver, OR
- 11/28/2017 Toward Quantitative Metrics to Screen for Defect Tolerance in Novel Semiconducting Materials
 Materials Research Society Fall Meeting and Exhibit, Boston, MA
- 04/29/2013 Cross-Sectional EBIC Characterization of III-V Semiconductors for Photovoltaic Applications
 Yale Physics Department, New Haven, CT
- 04/27/2012 Improving Active Layer Performance of Hybrid Photovoltaics by Nano Imprinting with Bulk Metallic Glass
 Yale Physics Department, New Haven, CT

POSTERS	
05/06/2019	Measuring Real-World Quantities from Computer Simulation with Bayesian Inference MIT de Florez Award Competition, Cambridge, MA
03/18/2019	Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian Inference Methods MIT CCE Symposium, Cambridge, MA
10/18/2018	Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian Inference Methods MIT Materials Day, Cambridge, MA
08/18/2018	Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors Gordon Research Seminar on Defects in Semiconductors, New London, NH
06/04/2018	Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors Blue Waters Research Symposium, Sunriver, OR
06/14/2018	Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian Inference Methods World Conference on Photovoltaic Energy Conversion, Waikoloa, HI
05/11/2018	Design Principles for Defect-Tolerant Photovoltaic Absorbers MIT de Florez Award Competition, Cambridge, MA
12/01/2016	Quantitative Metrics for Defect Tolerance in Semiconductors Materials Research Society Fall Meeting and Exhibit, Boston, MA
10/14/2016	Photovoltaics R&D: Thin Flm Materials MIT Energy Night, Cambridge, MA
05/05/2016	Bayes-Sun Inference: Next-Generation Photovoltaics through Advanced Probabilistic Modeling MIT de Florez Award Competition, Cambridge, MA
04/12/2016	Statistical Inference of Materials Properties from Solar Cell Measurements Beyond 2016: MIT's Frontiers of the Future symposium, Cambridge, MA
12/03/2015	$Improving\ the\ Accuracy\ of\ Novel\ Materials\ Screening:\ Growing\ Defect-Tolerant\ Photovoltaic\ Absorbers\ MRS\ Fall\ Meeting\ and\ Exhibit,\ Boston,\ MA$
10/14/2015	Toward Algorithmic Screening of Novel, Defect-Tolerant Solar Materials MIT Materials Day, Cambridge, MA
09/10/2015	Solar Energy Technology & Innovation in Mexico MIT Energy Initiative Solar Day, Cambridge, MA
07/22/2015	Toward Algorithmic Screening of Novel, Defect-Tolerant Solar Materials NREL HOPE workshop, Golden, CO
01/20/2013	Raman Spectroscopy of Silicon Quntum Dots Northeast Conference for Undergraduate Women in Physics, Ithaca, NY
08/02/2012	Raman Spectroscopy of Silicon Quntum Dots REMRSEC REU poster session, Golden, CO
SERVICE	
2018 - present	Member, Graduate Student Advisory Group for Engineering MIT School of Engineering
2018 - present	Co-President, Women of Materials Science MIT Department of Materials Science
2017 - present	Reviewer ACS Applied Energy Materials, RSC Energy & Environmental Science

Spring 2017 Graduate Student Mentor, Solar Spring Break

MIT Energy Initiative

2016 - present Student Representative, Energy Education Task Force

MIT Energy Initiative

2016 - present Graduate Student Representative, Solar Test Bed Steering Committee

MIT Office of Sustainability

2015 Conference Organizer

Solar Energy Technology & Innovation in Mexico workshop

2015 - 2017 Solar/Grid Community Co-Leader

MIT Energy Club

January 2015 **Graduate Student Panelist**

Northeast Conference for Undergraduate Women in Physics

March 2014 Science Demonstrator

Cambridge Hands-On Science

Project Bright Co-Leader 2012 - 2013

Yale University

2012 SPS Co-President

Yale Society of Physics Students

2011 - 2012 Conference Organizer

Northeast Conference for Undergraduate Women in Physics

COMPUTER SKILLS

SimulationVASP, SCAPS-1D, PC1D

Languages/EnvironmentsPython (incl. numpy, scipy, pandas, matplotlib, Jupyter), MATLAB, LATEX, Unix

Have earned allocations on and used both Intel and Cray systems including Peregrine HPC

(NREL), NERSC (LBL), Blue Waters (UIUC), Supercloud (MIT)

GeneralHardware maintenance/repair

OTHER SKILLS AND ACTIVITIES

Foreign Languages

Spanish Proficient Hebrew Intermediate

Music - Violinist

2018 - 2019	MIT Musical Theatre Guild
2014 - 2017	MIT Gilbert and Sullivan Players
2014 - 2016	MIT Chamber Music Society
2009 - 2013	Jonathan Edwards College Philharmonic
2009 - 2013	Pit orchestras for the Yale Dramat, Yale Gilbert and Sullivan Society, Opera Theatre of Yale College,
	and various independent theatrical productions
Athletics	

2018 - 2019	Treasurer, MIT Triathlon Team
2014,2018	Finisher, Stockholm and Marine Corps Marathons
2013 - 2014	Rower, Churchill College Boat Club (1st women's VIII in May Bumps 2014)
2009 - 2012	Member (2009 – 2012), Manager (2010 – 2011), Yale Bulldog Cycling Team