<=> (3y)(<x,y>ER)V(3y) LI) 元素为く0.07く0.27く2.07 (くx,y>ES) (XEdom(R) V (2,27 $X \in dom(s) \implies x \in (dom(R) \cup dom(s))$ 12)元素为 <1,17 <4,27 : dom(RUS)=dom(R)Udom(S) 2). $\forall x. x \in dom(R \cap S)$ AUB= (<1.2>, <2.47, <3.37, <=>(∃y)(<x,y>ERNS) (∃y)(<x,y>∈R∧<x,y>∈S) (1.37, (4.27) AMB={<2,47} ⇒(34)(<x,y>ER)/(39)(<x,y> dom A = { 1, 2,3} ESI > XEDOMRAXEDOMS 此处为 domB={1.2,4} $x \in dom(R) \cap dom(s)$ $ran A = \{2, 3, 4\}$: dom(RAS) = dom(R) A dom(s) ran B= { 2,3,4} dom(AUB)= { 1, 2, 3, 4} (1) AXA有3个有序对,而关约AXA ran(AnB)={4} 的子集;有232=512种 (2) |P(AxA) |= 2 |AxA) = 2 n2种 3. YX. XE dom(RUS) <=>(3Y) CX.Y) ERUS) (=> (34) | CX.Y>ER VZX,Y>ES)

5. AXB= { < a, d >, < b, d >, < c, d >}

b. n=3月1, くX1, X2, X3フ=

<< x1, X2>, X3>

X3 >1X4>

れ=八日寸、くX、、X2・・・・Xn フ=

<< X1, X2; , Xn->, Xn>

, (' /	_
0 0 0 0 0 0 0	N.
1 1 100	3000
	1/2

(3) < 2,37<3,2><1,27 ... <1,4>

<4,17...</p>
<4,37<<3,47</p>

0	0	0	0	0
00	١)	١	0-0-
0	ı	0	1	0
0	1	1	0	1
0	1	0	1	0

N=4日かくか、Xz,Xz,X4フ=<<X,Xz, 互质定义:两个整数仪有」这一个

公母系改 1与4是互质的 但互质不对0有定义.

10.

 $\forall \langle x,y \rangle$. $\langle x,y \rangle \in R^{\circ}(SUT)$

<>> (∃Z)(<X,Z>E(SUT)/\∠Z,Y>

ER) <> (32) ((X,Z) ES V< X,Z)

ET) 1 (Z.Y) (R) (AZ) ((< X,Z)

ESAKZ, YZER) VIKX, ZZETAKZ, YZ

ERI)

·	
<=>(JZ)(<x,z>ES 1<z,y>ER)</z,y></x,z>	
V (32)(<x,2>ET/1<2,4>ER)</x,2>	
$\Leftrightarrow \langle x,y \rangle \in R^{\circ}S \vee (x,y) \in R^{\circ}T$	
$\angle R \circ (SUT) = (R \circ S)U(R \circ T)$	
· ·	