

Principles of Communications

Requirement

- Co-requisites
 - EE3210 Signals and Systems, or
 - EE3118 Linear Systems and Signal Analysis

- Math background
 - Calculus
 - Probability

Online ref: http://www.ee.cityu.edu.hk/~zukerman/classnotes.pdf

References

- R. E. Ziemer and W. H. Tranter, *Principles of Communications: Systems, Modulation and Noise* (6th edition), John Wiley & Sons, 2010.
- B. P. Lathi and Z. Ding, *Modern Digital Analog Communication Systems* (4th edition), Oxford University Press, 2009.
- J. G. Proakis and M. Salehi, Communication Systems Engineering (2nd Edition), Prentice Hall, 2002.
- B. Sklar, *Digital Communications: Fundamentals and Applications* (2nd Edition), Prentice-Hall, 2001.
- S. Haykin, Communication Systems (4th Edition), John Wiley & Sons, 2001.
- M. P. Fitz, Fundamentals of Communications Systems, McGraw Hill, 2007.

Assessment

Two Tests

90%

Week 5, 11

Assignments

10%

For details, please refer to the Weekly Schedule Time in the Canvas.

Frequently Asked Questions

Before the tests/exam:

- What formulas should I memorize?
- You don't have to memorize any formulas if you truly understand them.
- Could you give us more exercises?
- You'll find many exercises in the reference books.

After the tests:

- Why are the questions DIFFERENT from those in tutorials?
- This is not a course that tests your memory.

After the final exam:

- Could you please LET ME PASS?
- Sorry, it's too late...

Lecture 1. Overview of Communication Systems

Block Diagram of Communication Systems

- Transmitter: to convert the electrical signal into a form that is suitable for transmission
- Receiver: to recover the message contained in the corrupted received signal

Source and Channel of Communication Systems

Source

- Text, voice, images, ...
- How to model the source?
 - Analog System: How to represent the source information as a superposition of sinusoidal waves?
 - Digital System: How to represent the source information as a series of bits?

Channel

- Cable, EM wave, Fiber, ...
- How to model the channel?
 - Baseband/Bandpass Channel:
 How to properly modulate
 the signals to pass the
 channel without distortion?
 - Additive White Gaussian Noise (AWGN) Channel: How to properly demodulate the signals to remove the effect of noise?

Course Organization

- ✓ How to model and characterize the analog and digital signals?

 Lectures 2 and 5
- ✓ Why and how to modulate/demodulate an analog signal?

Lectures 3-4

- ✓ Why do we prefer digital signal transmission and how to convert an analog signal to a digital signal?

 Lecture 6
- ✓ Why and how to modulate/demodulate a digital signal?

 Lectures 7-8

Course Organization

- Week 2: Lecture 2 Deterministic Signal Analysis
- Week 3: Lecture 3 Analog Communications Part I: Amplitude Modulation
- Week 4: Lecture 4 Analog Communications Part II: Frequency Modulation
- Week 5: Test 1 (Coverage: Lectures 1-4)
- Week 6: Lecture 5 Random Signal Analysis
- Week 7: Lecture 6 Digital Communications Part I: Sampling and Quantization
- Week 8-9: Lecture 7 Digital Communications Part II: Digital Modulation
- Week 10: Test 2 (Coverage: Lectures 5-7)
- Week 11-12: Lecture 8 Digital Communications Part III: Digital Demodulation
- Week 13: Test 3 (Coverage: Lectures 5-8)

Road Map

Performance Metrics of Communication Systems

Fidelity

 It measures how accurate the received message is for given amount of transmission power.

Spectral Efficiency (Bandwidth Efficiency)

It measures how efficient the spectrum is utilized.

Complexity

- The cost of complexity level changes over time.
- It is a quantity that requires engineering judgement to estimate.