Linear regression

COMS 4771 Fall 2019

Overview

- ► Statistical model for regression problems
- ► Linear regression models
- ► MLE and ERM

0/29

1 / 2

Real-valued predictions I

Figure 1: Galton board

Real-valued predictions II

- ▶ Physical model: hard
- ► Statistical model: final position of ball is random
 - Normal (Gaussian) distribution with mean μ and variance σ^2
 - Written $N(\mu, \sigma^2)$
- ► Goal: predict final position accurately, measure <u>squared loss</u> (also called <u>squared error</u>)

$$(prediction - outcome)^2$$

► Note: outcome is random, so look at <u>expected squared loss</u> (also called *mean squared error*)

2 / 29

Optimal prediction for mean squared error

- ▶ Predict $\hat{y} \in \mathbb{R}$; true final position is Y (random variable) with \underline{mean} $\mathbb{E}(Y) = \mu$ and $\underline{variance} \operatorname{var}(Y) = \mathbb{E}[(Y \mathbb{E}(Y))^2] = \sigma^2$.
- ▶ Squared error is $(\hat{y} Y)^2$.
- ► Bias-variance decomposition:

- lacktriangle So optimal prediction is $\hat{y}=$
- ▶ When parameters are unknown, can estimate from related data, . . .

Example: Old Faithful I

Figure 2: Old Faithful geyser in Yellowstone National Park

4 / 20

Example: Old Faithful II

- ► Example: When will "Old Faithful" geyser erupt?
- ► Predict "time between eruptions"
- ► Old Faithful Geyser Data

- ▶ Mean on past 136 observations: $\hat{\mu} = 70.7941$ minutes
 - So predict $\hat{y} = \hat{\mu} = 70.7941$

- ▶ Mean squared error on next 136 observations: 187.1894
 - ► Square root: 13.6817 minutes

Looking at the data

► Henry Woodward observed that "time between eruptions" seems related to "duration of latest eruption"

- lacktriangle Use "duration of latest eruption" as feature x
- ightharpoonup Can use x to predict time until next eruption, y

= / 0

Statistical model for regression

- ► Setting is same as for classification except:
 - ▶ Label is real number, rather than $\{0,1\}$ or $\{1,2,\ldots,K\}$
 - ► Care about squared error, rather than whether prediction is correct
 - **▶** *Risk* of *f*:

$$\mathcal{R}(f) := \mathbb{E}[(f(X) - Y)^2],$$

the expected squared loss of f on random example

Note: "error rate" is also "risk", but with different <u>loss function</u>, called <u>zero-one loss</u> $\mathbb{1}_{\{f(x)\neq y\}}$

Optimal prediction function for regression

 \blacktriangleright If (X,Y) is random test example, then *optimal prediction function* is

$$f^{\star}(x) = \mathbb{E}[Y \mid X = x]$$

- ► Also called the *regression function*
- ► Prediction function with smallest risk
- ightharpoonup Depends on conditional distribution of Y given X

Figure 3: Example of regression function

8 / 29

Linear regression models

- lackbox Suppose $oldsymbol{x}$ is given by d real-valued features, so $oldsymbol{x} \in \mathbb{R}^d$
- ightharpoonup Linear regression model for (X, Y):
 - $Y \mid X = x \sim N(x^T w, \sigma^2)$ (or really, any distribution with mean $x^T w$ and variance σ^2)
 - $oldsymbol{w} \in \mathbb{R}^d$ is parameter vector of interest
 - $ightharpoonup \sigma^2 > 0$ is another parameter (not important for prediction)
 - w and σ^2 not involved in marginal distribution of X (which we don't care much about)

Figure 4: A linear regression function

Upgrading linear regression

- ▶ Make linear regression more powerful by being creative about features
- Instead of using x directly, use $\varphi(x)$ for some transformation φ (possibly vector-valued)
- Examples:
 - Non-linear scalar transformations, e.g., $\varphi(x) = \ln(1+x)$
 - Logical formula, e.g., $\varphi(x) = (x_1 \land x_5 \land \neg x_{10}) \lor (\neg x_2 \land x_7)$
 - Trigonometric expansion, e.g., $\varphi(x) = (1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots)$
 - Polynomial expansion, e.g., $\varphi(\mathbf{x}) = (1, x_1, \dots, x_d, x_1^2, \dots, x_d^2, x_1x_2, \dots, x_{d-1}x_d)$
 - Headless neural network $\varphi(x) = N(x) \in \mathbb{R}^k$, where $N : \mathbb{R}^d \to \mathbb{R}^k$ is a map computed by a intermediate layer of a neural network

9 / 29

10 / 29

.

Example: Taking advantage of linearity

- \triangleright Example: y is health outcome, x is body temperature
 - Physician suggests relevant feature is (square) deviation from normal body temperature $(x - 98.6)^2$
 - ▶ What if you didn't know the magic constant 98.6?

Example: Affine expansion

- ► Another example: Woodward used affine expansion
 - \mathbf{P} $\varphi(x) = (1, x)$
 - Parameter vector $\mathbf{w} = (a, b)$
 - $\mathbf{\varphi}(x)^{\mathsf{T}} \mathbf{w} = a + bx, \text{ so } a \text{ is intercept term }$
 - \triangleright Generalizes to d features: just prepend the constant 1 feature $\varphi(\boldsymbol{x}) = (1, \boldsymbol{x}) \in \mathbb{R}^{d+1}$

Figure 5: Affine fit to Old Faithful data

Text features

- ► How to get features for text?
- ► Suppose input is a word (sequence of characters).
 - $x_{\text{starts_with_anti}} = 1_{\{\text{starts with "anti"}\}}$
 - $x_{\text{ends with ology}} = 1_{\{\text{ends with "ology"}\}}$
 - ... (same for all four- & five-letter prefixes & suffixes)
 - $x_{\mathsf{length} < 3} = \mathbb{1}_{\{\mathsf{length} \le 3\}}$
 - $ightharpoonup x_{\text{length} \le 4} = \mathbb{1}_{\{\text{length} \le 4\}}$
 - \blacktriangleright ... (same with all positive integers ≤ 20)
- Suppose input is a document (sequence of words).

 - $\begin{array}{l} \blacktriangleright \ x_{\rm contains_aardvark} = \mathbb{1}_{\{{\rm contains~``aardvark"}\}} \\ \blacktriangleright \ \dots \ \ \mbox{(same for all words in dictionary)} \end{array}$
 - $x_{\text{contains}_each_day} = 1_{\{\text{contains "each day"}\}}$
 - ... (same for all "bigrams" of words in dictionary)
 - $ightharpoonup x_{count aardvark} = \#$ appearances of "aardvark"
 - ▶ ... (same for all words, "bigrams", ...)
- ► End up with many features!

Sparse representations

- ► Sparse representation (e.g., via hash table)
 - ► E.g., "see spot run"
 - x = { "contains see":1, "contains spot":1, "contains_run":1, "contains_see_spot":1, "contains_spot_run":1 }
- ► C.f. dense representation, which stores a lot of zeros for all of the words / bigrams that don't appear.
- ▶ What is computational cost of computing x^Tz ?

Fitting linear regression models to data

- ► Treat training examples as iid, same distribution as test example $Y \mid X = x \sim N(x^{\mathsf{T}}w, \sigma^2)$
- ▶ Log-likelihood of $(\boldsymbol{w}, \sigma^2)$ given data $(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$:

$$\sum_{i=1}^n \left\{ -\frac{1}{2\sigma^2} (\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{w} - y_i)^2 + \frac{1}{2} \ln \frac{1}{2\pi\sigma^2} \right\} + \left\{ \text{terms not involving } (\boldsymbol{w}, \sigma^2) \right\}$$

lacktriangle The w that maximizes log-likelihood is same w that minimizes

$$\frac{1}{n}\sum_{i=1}^n(\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{w}-y_i)^2.$$

MLE coincides with ERM

- **Empirical distribution** P_n on $(x_1, y_1), \dots, (x_n, y_n)$: distribution that puts probability mass 1/n on each training example.
- Execute the plug-in principle:
 - ▶ We want to find $f: \mathbb{R}^n \to \mathbb{R}$ that minimizes risk

$$\mathcal{R}(f) = \mathbb{E}[(f(\boldsymbol{X}) - Y)^2],$$

but we don't know distribution P of (X,Y) (or even conditional distribution of Y given X)

ightharpoonup Replace P with P_n to get empirical risk

$$\widehat{\mathcal{R}}(f) \coloneqq \frac{1}{n} \sum_{i=1}^{n} (f(\boldsymbol{x}_i) - y_i)^2,$$

which is the risk of f pretending that the distribution of (X,Y) is P_n .

- ► So find f to minimize empirical risk: *Empirical Risk Minimizer (ERM)*
- For linear functions $f(x) = x^{\mathsf{T}} w$, same as MLE for w in linear regression model (!!)

Geometric picture of empirical risk

Figure 6: Empirical risk of w is average of vertical squared distances from hyperplane to data points

ERM in matrix notation

$$\begin{array}{c} \blacktriangleright \text{ Let } \boldsymbol{A} = \frac{1}{\sqrt{n}} \begin{bmatrix} \leftarrow & \boldsymbol{x}_1^\mathsf{\scriptscriptstyle T} & \rightarrow \\ & \vdots & \\ \leftarrow & \boldsymbol{x}_n^\mathsf{\scriptscriptstyle T} & \rightarrow \end{bmatrix} \in \mathbb{R}^{n \times d} \text{ and } \boldsymbol{b} = \frac{1}{\sqrt{n}} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$

Empirical risk is

$$\widehat{\mathcal{R}}(oldsymbol{w}) = rac{1}{n} \sum_{i=1}^n (oldsymbol{x}_i^{\scriptscriptstyle\mathsf{T}} oldsymbol{w} - y_i)^2 = \|oldsymbol{A} oldsymbol{w} - oldsymbol{b}\|_2^2.$$

Normal equations

- ► From calculus:
 - Necessary condition for w to be minimizer of $\widehat{\mathcal{R}}$ is that gradient of $\widehat{\mathcal{R}}$ at w should vanish: $\nabla \widehat{\mathcal{R}}(w) = \mathbf{0}$
 - Equivalent to $(A^{\mathsf{T}}A)w = A^{\mathsf{T}}b$
 - \triangleright System of linear equations in w, called the *normal equations*
 - Every solution w to normal equations is a minimizer of $\widehat{\mathcal{R}}$:

Algorithm for ERM

- ▶ Algorithm for finding ERM: Gaussian elimination to solve normal equations
 - ightharpoonup Running time $O(nd^2)$
 - ightharpoonup Can get good approximate solution in linear time O(nd)
 - ► Also called *Ordinary Least Squares (OLS)*

Linear algebraic interpretation of ERM

- ▶ Write $A = \begin{bmatrix} \uparrow & & \uparrow \\ a_1 & \cdots & a_d \\ \downarrow & & \downarrow \end{bmatrix}$

 ▶ $a_j \in \mathbb{R}^n$ is j-th column of A

 - ▶ Span of a_1, \ldots, a_d is range(A), a subspace of \mathbb{R}^n
- $lackbox{f Minimizing} \|m{A}m{w}-m{b}\|^2$ over $m{w}\in\mathbb{R}^d$ is same as finding vector $\hat{m{b}}$ in $\operatorname{range}(\boldsymbol{A})$ closest to \boldsymbol{b}
- ▶ Solution \hat{b} is *orthogonal projection* of b onto range(A)

Figure 7: Projection of **b** onto range(A)

Performance of ERM

- ▶ How well does ERM solution \hat{w} work?
 - ► Study in context of IID model
 - ▶ Best linear predictor w^* : minimizer of $\mathcal{R}(w)$.
 - ▶ Hope that $\mathcal{R}(\hat{w}) \approx \mathcal{R}(w^*)$
- **Theorem**: In IID model, ERM solution \hat{w} satisfies

$$\mathcal{R}(\hat{\boldsymbol{w}}) \to \mathcal{R}(\boldsymbol{w}^{\star}) + rac{\operatorname{tr}(\operatorname{cov}(\varepsilon \boldsymbol{W}))}{n}$$

as $n \to \infty$, where $\boldsymbol{W} = \mathbb{E}[\boldsymbol{X}\boldsymbol{X}^{\mathsf{T}}]^{-1/2}\boldsymbol{X}$ and $\varepsilon = Y - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{w}^{\star}$.

▶ If (X, Y) follows linear regression model $Y \mid X = x \sim N(x^{\mathsf{T}} w^{\star}, \sigma^2)$ then theorem simplifies to

$$\mathcal{R}(\hat{\boldsymbol{w}}) \to \mathcal{R}(\boldsymbol{w}^{\star}) + \frac{\sigma^2 d}{n} = \left(1 + \frac{d}{n}\right)\sigma^2.$$

Risk vs empirical risk

- ▶ Let \hat{w} be ERM solution.
- ▶ How do $\widehat{\mathcal{R}}(\hat{\boldsymbol{w}})$ and $\mathcal{R}(\hat{\boldsymbol{w}})$ compare?
- ▶ **Theorem**: In IID model, $\mathbb{E}[\widehat{\mathcal{R}}(\hat{\boldsymbol{w}})] \leq \mathbb{E}[\mathcal{R}(\hat{\boldsymbol{w}})]$
- Over-fitting: when true risk is much higher than empirical risk.
- Note: Can estimate risk using test set, just as for classification problems.

Example of over-fitting

- $ightharpoonup \varphi(x) = (1, x, x^2, \dots, x^k)$, degree-k polynomial expansion
- ▶ Dimension is d = k + 1
- \blacktriangleright Any function of $\le k+1$ points can be interpolated by polynomial of degree $\le k$
- ▶ So if $n \leq k+1=d$, ERM solution $\hat{\boldsymbol{w}}$ will have $\widehat{\mathcal{R}}(\hat{\boldsymbol{w}})=0$, even if true risk is $\gg 0$.

Figure 8: Polynomial interpolation

24 / 29

Outliers

- ► Common issue with using squared loss: sensitive to *outliers*
 - ▶ Roughly: data points that don't fit the same pattern as the rest
 - ▶ Does removing the data point drastically change the fit?

Figure 9: Effect of single outlier

Absolute loss

- ► One "fix": change loss function
 - ► Common choice: <u>absolute loss</u> $|\hat{y} y|$

$$\min_{oldsymbol{w} \in \mathbb{R}^d} \quad rac{1}{n} \sum_{i=1}^n |oldsymbol{x}_i^{\intercal} oldsymbol{w} - y_i|$$

- ▶ Instead of solving linear system, now solve a linear program
- lacktriangle Less sensitive to abnormal y-values than squared loss
- ► However: changes what we are estimating . . .

Figure 10: Absolute loss vs squared loss

Heuristics for dealing with outliers

- ► Heuristic I: random sample consensus (RANSAC)
 - ► Pick a random subsample of data points hopefully no outliers are picked! and fit model to this subsample
 - ► If most of the remaining data are "well-fit", then halt
 - Else, try again
- ► Heuristic II: iterative trimming
 - Fit training data as usual
 - ► Throw out some of the least "well-fit" data points
 - ▶ Repeat until fit does not change too much
- ▶ Both heuristics are rather drastic!
 - ▶ What if outliers correspond to a subpopulation?
 - ► Should manually examine the putative outliers

Beyond empirical risk

- ► Recall plug-in principle
 - ▶ Want to minimize risk wrt (unavailable) P; use P_n instead
- \blacktriangleright What if we can't regard data as iid from P?
 - **Example:** Suppose we know P = 0.5M + 0.5F (*mixture distribution*)
 - ▶ We get size n_1 iid sample from M, and size n_2 iid sample from F, $n_2 \ll n_1$
 - ► How to implement plug-in principle?