

School of Computer Science and Engineering

J Component report

Programme: MTech Integrated (MIA)

Course Title : Deep Learning

Course Code : CSE4037

Slot : G1

Title: Liver Tumor Segmentation

Team Members:

Nithya Sharma | 19MIA1028

K Niharika Samyuktha| 19MIA1083

Faculty: Dr. R. Rajalakshmi

Date: 29-04-2021

Rota

CSE4037 - Deep Learning

J Component Report

A project report titled

Liver Tumor Segmentation

By

19MIA1028 - Nithya Sharma

19MIA1083 - K Niharika Samyuktha

Computer Science and Engineering with Specialization in Business Analytics

Submitted to

Dr. R. Rajalakshmi

School of Computer Science and Engineering

DECLARATION BY THE CANDIDATE

I hereby declare that the report titled "Liver Tumor Segmentation" submitted by me to VIT Chennai is a record of bona-fide work undertaken by me under the supervision of Dr. R. Rajalakshmi, Associate Professor, SCOPE, Vellore Institute of Technology, Chennai.

Signature of the Candidate

Willya. ... Willarika Eamyukha K.

ACKNOWLEDGEMENT

We wish to express our sincere thanks and deep sense of gratitude to our project guide, **Dr. R. Rajalakshmi**, School of Computer Science and Engineering for her consistent encouragement and valuable guidance offered to us throughout the course of the project work.

We are extremely grateful to **Dr. R. Ganesan, Dean,** School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology, Chennai, for extending the facilities of the School towards our project and for his unstinting support.

We express our thanks to our **Head of the Department** for his support throughout the course of this project.

We also take this opportunity to thank all the faculty of the School for their support and their wisdom imparted to us throughout the courses.

We thank our parents, family, and friends for bearing with us throughout the course of our project and for the opportunity they provided us in undergoing this course in such a prestigious institution.

BONAFIDE CERTIFICATE

Certified that this project report entitled "Liver Tumor Segmentation" is a bona-fide work of Nithya Sharma (19MIA1028) and K Niharika Samyuktha (19MIA1083) carried out the "Liver Tumor Segmentation" - Project work under my supervision and guidance for CSE4037 - Deep Learning

Dr. R. Rajalakshmi

SCOPE

TABLE OF CONTENTS

Ch. No	Chapter	Page Number
1	Introduction	8
2	Literature Survey	9
3	Proposed Methodology	15
4	Results and Discussion	17
5	Appendix	19
6	Conclusion	33
7	Reference	34

ABSTRACT

Automatic liver tumor segmentation would have a big impact on liver therapy planning procedures and follow-up assessment, thanks to standardization and incorporation of full volumetric information. We develop a fully automatic method for liver tumor segmentation in CT images based on a 2D fully convolutional neural network with an object-based postprocessing step. We describe our experiments on the LiTS challenge training data set and evaluate segmentation and detection performance. Liver tumor segmentation from CT image is very important to analyze the liver function, pathological and anatomical study of the liver. It is also important for the diagnosis of disease.

INTRODUCTION

Cancer is the second chief cause of death globally. As per the statistics from World Health Organization (WHO), it was accountable for 8.8 million fatalities in 2015 out of which 788,000 deaths were caused by liver cancer. Liver is largest gland and important metabolic organ of human body. Functions of liver are digestion, metabolism and detoxification. Liver cancers are categorized in two parts such as primary and secondary liver cancer depending upon cause of cancer. Primary liver cancer is cancer that instigates in the tissue of the liver. Primary liver cancer has two types such as Hepatocellular carcinoma and Hemangioma. Hepatocellular carcinoma (HCC), the development of cancer cells in the tissues of the liver, is the most frequent kind of liver cancer. A liver Hemangioma is made up of a tangle of blood vessels. Secondary metastatic liver cancer takes place due to spread of cancer from other body part. An abnormality in the liver causes the change in the liver texture and shape. Exaction and accurate segmentation of liver, its vessels and tumors is required in the disease diagnosis. However due to the intensity of homogeneity inside liver, shape of liver, low contrast, presence of adjacent abdominal organs it becomes challenging task of accurate liver segmentation. Liver diseases can be diagnosed through various medical imaging schemes such as computed tomography (CT), ultrasound (US), Magnetic Resonance Imaging (MRI) etc.

LITERATURE SURVEY

S.	TITLE	JOURNAL/	DATASE	ALGORITHM	INTERPRETATION
No		YEAR OF	T USED	USED	OF RESULTS
		PUBLICA			
		TI ON			
1)	Liver	2018	LiTS	Neural network	The neural network is
	Cancer		Dataset		capable of detecting
	Detectio				bigger lesions (the
	n Using				longest axial diameter
	Hybridiz				≥10mm) more reliably
	ed Fully				than smaller ones
	Convolut				(<10mm). We presume,
	ional				based on the performed
	Neural				comparison of LiTS
	Network				annotations with those
	Based on				done by an experienced
	Deep				MTRA, that this can be
	Learning				attributed to a bigger
	Framew				inter-observer
	ork				variability with respect
					to detection of smaller
					lesions.

2)	Liver	2021	Scopus	Hybridized Fully	A deep end-to-end
	Cancer		Database	Convolutional	learning approach to
	Detectio			Neural Network	help discrimination in
	n Using			(HFCNN)	abdominal CT images
	Hybridiz				of the liver between
	ed Fully				liver metastases of
	Convolut				colorectal cancer and
	ional				benign cysts has been
	Neural				analyzed.
	Network				
	Based on				
	Deep				
	Learning				
	Framew				
	ork				

3)	Classifica	2020	Genomic	Neural	A total of 387 WSIs of
	tion and		Data	Network	HCC with corresponding
	mutation		Commons	(Inception	gene mutation information
	prediction		portal	V3)	were available. Besides, 67
	based on		(GDC-por		WSIs of HCC with
	histopath		tal,		histopathological grade and
	ology		https://por		related gene mutation
	Н&Е		tal.gdc.ca		information
	images in		ncer.gov/)		and 34 WSIs of normal
	liver				liver tissue were selected
	cancer				from Sir Run-Run
	using				Shaw Hospital (SRRSH).
	deep				After each WSI was
	learning				cropped into small
					"Tiles", there are 119,596
					"Tiles"(HCC vs. normal
					liver tissue, 87,422
					vs. 32,174), 84,149
					"Tiles"with
					histopathological grade
					(well vs.
					moderate vs. poor, 14,713
					vs. 41,370 vs. 28,066) and
					86,323 "Tiles"
					with corresponding gene
					mutation information.

4)	Automati	2018	LiTS	2D fully	Achieved segmentation
	c liver		Dataset	convolutio	quality for detected tumors
	tumor			nal neural	comparable to a human
	segmentat			network	expert and is able to detect
	ion in CT				77% of potentially
	with fully				measurable tumor lesions
	convoluti				in the LiTS reference
	onal				according to the RECIST
	neural				1.1 guidelines. They have
	networks				observed that the neural
	and				network is capable of
	object-bas				detecting bigger lesions
	ed				(the longest axial diameter
	postproce				≥10 mm) more reliably
	ssing				than smaller ones
					(<10 mm).
					Segmentation quality for
					detected tumors (mean
					Dice 0.69 vs. 0.72), but is
					inferior in the detection
					performance (recall 63%
					vs. 92%).

5)	Automati	2015	Private	Convoluti	Method uses a cascade of
	c liver		dataset	onal	registration methods to
	tumor		from a	Neural	define a well-fitted tumor
	segmentat		hospital.	Network	ROI on the follow-up scan
	ion in			(CNN)	based on the baseline
	follow-up				delineation. A
	СТ				Convolutional Neural
	studies				Network is trained on all
	using				baseline liver masking to
	Convoluti				class. The CNN is used as
	onal				a voxel classifier to
	Neural				produce the follow-up
	Networks				tumor segmentation. The
					segmentation leaks in the
					resulting tumor
					segmentation are then
					removed to produce the
					final result.

6)	Liver	2017	Not	Maching	The liver tumor is difficult
	Cancer		mentioned	Learning	to detect from the CT or
	Analysis			Techniques	MRI images because of two
	using				reasons: one is the
	Machine				difference in the liver and
	Learning				non-liver pixel intensities in
	Techniqu				CT images and another one
	es				is detection of liver from
					overlapped organs. Hence
					segmentation helps doctors
					to provide effective
					treatment by knowing
					nature of the tumor.

PROPOSED METHODOLOGY

DATASET:

Liver cancer is the fifth most commonly occurring cancer in men and the ninth most commonly occurring cancer in women. There were over 840,000 new cases in 2018.

The liver is a common site of primary or secondary tumor development. Due to their heterogeneous and diffusive shape, automatic segmentation of tumor lesions is very challenging.

In light of that, we encourage the development of automatic segmentation algorithms to segment liver lesions in contrast-enhanced abdominal CT scans. The data and segmentations are provided by various clinical sites around the world.

This dataset was extracted from LiTS – Liver Tumor Segmentation Challenge (LiTS17) organised in conjunction with ISBI 2017 and MICCAI 2017.

Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional NeuralNetworks and 3D Conditional Random Fields.

We trained CNNs using image patches centered at each pixel. These patches were divided into tumor and normal liver tissue. A given patch is labeled as positive sample if it contains at least 50% or more of liver tumor pixels, otherwise it is labeled as negative sample.

MODEL USED: U-Net

RESULTS AND DISCUSSION

Batch Normalization:

Batch Normalization is a process to make neural networks faster and more stable through adding extra layers in a deep neural network. The new layer performs the standardizing and normalizing operations on the input of a layer coming from a previous layer.

Conv2D:

Keras Conv2D is a 2D Convolution Layer, this layer creates a convolution kernel that is wind with layers input which helps produce a tensor of outputs.

Model: "model"			
Layer (type)	Output Shape	Param #	Connected to
input (InputLayer)	[(None, 64, 64, 1)]	0	[]
conv1_1 (Conv2D)	(None, 64, 64, 32)	320	['input[0][0]']
<pre>conv1_1_bn (BatchNormalization)</pre>	(None, 64, 64, 32)	128	['conv1_1[0][0]']
conv1_2 (Conv2D)	(None, 64, 64, 32)	9248	['conv1_1_bn[0][0]']
<pre>conv1_2_bn (BatchNormalization)</pre>	(None, 64, 64, 32)	128	['conv1_2[0][0]']
pool1 (MaxPooling2D)	(None, 32, 32, 32)	0	['conv1_2_bn[0][0]']
conv2_1 (Conv2D)	(None, 32, 32, 64)	18496	['pool1[0][0]']
<pre>conv2_1_bn (BatchNormalization)</pre>	(None, 32, 32, 64)	256	['conv2_1[0][0]']
conv2_2 (Conv2D)	(None, 32, 32, 64)	36928	['conv2_1_bn[0][0]']
<pre>conv2_2_bn (BatchNormalization)</pre>	(None, 32, 32, 64)	256	['conv2_2[0][0]']
pool2 (MaxPooling2D)	(None, 16, 16, 64)	0	['conv2_2_bn[0][0]']
conv3_1 (Conv2D)	(None, 16, 16, 128)	73856	['pool2[0][0]']
<pre>conv3_1_bn (BatchNormalization)</pre>	(None, 16, 16, 128)	512	['conv3_1[0][0]']
conv3_2 (Conv2D)	(None, 16, 16, 128)	147584	['conv3_1_bn[0][0]']

APPENDIX

CODE:

```
from keras.layers import Input, Conv2D, MaxPooling2D, concatenate,
Conv2DTranspose, Dropout
from keras.models import Model
from tensorflow.keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from keras import regularizers
from tensorflow.keras.layers import BatchNormalization as bn
from keras.callbacks import ModelCheckpoint, TensorBoard
from keras.models import model from json
import keras.backend as K
import tensorflow as tf
import nibabel as nib
from glob import glob
import matplotlib.pyplot as plt
import numpy as np
from random import shuffle
cd /content/drive/My Drive/DL/Dataset
img path = glob("volume-*.nii")
mask_path = glob("segmentation-*.nii")
print("Number of images :", len(img_path))
print("Image(volume) path example :", img path[:3])
print("Mask path example :", mask path[:3])
print("Number of slices : {0} / Size of each slice :
{1}".format(img_ex.shape[2], img_ex.shape[:2]))
fig, ([ax1, ax2], [ax3, ax4], [ax5, ax6]) = plt.subplots(3, 2, figsize =
(15, 15))
ax1.imshow(img_ex[:, :, img_ex.shape[2] // 2], cmap = 'bone')
ax1.set title("Image", fontsize = 'x-large')
ax1.grid(False)
ax1.set xticks([])
ax1.set_yticks([])
```

```
ax2.imshow(mask ex[:, :, mask ex.shape[2] // 2], cmap = 'bone')
ax2.set_title("Mask", fontsize = 'x-large')
ax2.grid(False)
ax2.set_xticks([])
ax2.set yticks([])
ax3.imshow(img ex[:, :, img ex.shape[2] // 2 + 36], cmap = 'bone')
ax3.set_title("Image", fontsize = 'x-large')
ax3.grid(False)
ax3.set xticks([])
ax3.set yticks([])
ax4.imshow(mask_ex[:, :, mask_ex.shape[2] // 2 + 36], cmap = 'bone')
ax4.set title("Mask", fontsize = 'x-large')
ax4.grid(False)
ax4.set xticks([])
ax4.set_yticks([])
ax5.imshow(img_ex[:, :, img_ex.shape[2] // 2 - 100], cmap = 'bone')
ax5.set_title("Image", fontsize = 'x-large')
ax5.grid(False)
ax5.set xticks([])
ax5.set_yticks([])
ax6.imshow(mask_ex[:, :, mask_ex.shape[2] // 2 - 100], cmap = 'bone')
ax6.set title("Mask", fontsize = 'x-large')
ax6.grid(False)
ax6.set xticks([])
ax6.set_yticks([])
class percentage = []
for i in range(mask ex.shape[2]):
 _, count = np.unique(mask_ex[: ,:, i], return_counts = True)
 if len(count) == 2:
   per = count[1] / np.sum(count) * 100
 else:
   per = 0
 class_percentage.append(per)
plt.plot(class percentage)
plt.xlabel("Index", fontsize = "x-large")
plt.ylabel("Class percentage (%)", fontsize = "x-large")
max_idx = class_percentage.index(max(class_percentage))
```

```
print("The index of maximum class percentage : {0}
[{1}%]".format(max_idx, format(class_percentage[max_idx], '.2f')))
max idx=120
fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (10, 10))
ax1.imshow(img_ex[:, :, max_idx], cmap = 'bone')
ax1.set title("Image", fontsize = 'x-large')
ax1.grid(False)
ax1.set xticks([])
ax1.set_yticks([])
mask_max = mask_ex[:, :, max_idx]
mask_max[mask_max == 1] = 0
ax2.imshow(mask max, cmap = 'bone')
ax2.set_title("Mask", fontsize = 'x-large')
ax2.grid(False)
ax2.set_xticks([])
ax2.set_yticks([])
max percentage = []
for path in mask path:
  mask ex = nib.load(path).get fdata()
  mask_ex[mask_ex == 1] = 0
  class percentage = []
  for i in range(mask_ex.shape[2]):
    _, count = np.unique(mask_ex[: ,:, i], return_counts = True)
    if len(count) == 2:
      per = count[1] / np.sum(count) * 100
    else:
     per = 0
    class percentage.append(per)
  max percentage.append(max(class percentage))
class percentage = []
plt.scatter(list(range(len(max percentage))), max percentage)
plt.xlabel("Image ", fontsize = "x-large")
```

```
plt.ylabel("Max Class percentage (%)", fontsize = "x-large")
print("\'Maximum\' Class percentage of all images :",
format(max(max_percentage), '.3f'), "%")
print("\'Minimum\' Class percentage of all images :",
format(min(max percentage), '.3f'), "%")
Patch Sampling
img_ex = nib.load(img_path[10]).get_fdata()
mask ex = nib.load(mask path[10]).get fdata()
mask\ ex[mask\ ex == 1] = 0
class percentage = []
for i in range(mask_ex.shape[2]):
  _, count = np.unique(mask_ex[: ,:, i], return_counts = True)
  if len(count) == 2:
   per = count[1] / np.sum(count) * 100
  else:
   per = 0
  class_percentage.append(per)
max_idx = class_percentage.index(max(class_percentage))
max idx
patch ratio = [0, 64, 128, 192, 256, 320, 384, 448, 512]
positive_patch = []
positive mask = []
for x bin in range(2, len(patch ratio)):
  for y_bin in range(2, len(patch_ratio)):
    mask patch = mask ex[patch ratio[x bin-2] : patch ratio[x bin],
patch_ratio[y_bin - 2] : patch_ratio[y_bin], 390]
    if 2 in np.unique(mask patch):
```

```
img patch = img ex[patch ratio[x bin-2] : patch ratio[x bin],
patch ratio[y bin - 2] : patch ratio[y bin], 390]
     positive patch.append(img patch)
     positive mask.append(mask patch)
len (positive mask)
fig, ([ax1, ax2], [ax3, ax4], [ax5, ax6], [ax7, ax8], [ax9, ax10]) =
plt.subplots(5, 2, figsize = (20, 20))
ax1.imshow(positive_patch[0], cmap = 'bone')
ax1.grid(False)
ax2.imshow(positive mask[0], cmap = 'bone')
ax2.grid(False)
ax3.imshow(positive patch[2], cmap = 'bone')
ax3.grid(False)
ax4.imshow(positive mask[2], cmap = 'bone')
ax4.grid(False)
ax5.imshow(positive patch[3], cmap = 'bone')
ax5.grid(False)
ax6.imshow(positive mask[3], cmap = 'bone')
ax6.grid(False)
ax7.imshow(positive_patch[4], cmap = 'bone')
ax7.grid(False)
ax8.imshow(positive_mask[4], cmap = 'bone')
ax8.grid(False)
ax9.imshow(positive patch[5], cmap = 'bone')
ax9.grid(False)
ax10.imshow(positive mask[5], cmap = 'bone')
ax10.grid(False)
patch ratio = [0, 64, 128, 192, 256, 320, 384, 448, 512]
def patch sampling(img, mask, patch ratio, threshold):
```

```
temp_mask[temp_mask == 1] = 0
  temp mask[temp mask == 2] = 1
  positive patch = []
  positive_mask = []
  for i in range(temp mask.shape[2]):
    mask_slice = temp_mask[:, :, i]
    if len(np.unique(mask slice)) != 0:
      for x bin in range(2, len(patch ratio)):
        for y_bin in range(2, len(patch_ratio)):
          mask_patch = mask_slice[patch_ratio[x_bin-2] :
patch_ratio[x_bin], patch_ratio[y_bin - 2] : patch_ratio[y_bin]]
          _, count = np.unique(mask_patch, return_counts = True)
          if len(count) == 2:
            mask percentage = count[1] / sum(count) * 100
            if mask percentage>0:
              img patch = img[patch ratio[x bin-2] : patch ratio[x bin],
patch_ratio[y_bin - 2] : patch_ratio[y_bin], i]
              positive patch.append(img patch)
              positive_mask.append(mask_patch)
  return positive patch, positive mask
img_ex = nib.load(img_path[5]).get_fdata()
mask_ex = nib.load(mask_path[5]).get_fdata()
patch, mask = patch_sampling(img_ex, mask_ex, patch_ratio, 0)
len (patch)
```

temp mask = mask

```
len (mask)
per = []
for i, slice in enumerate(mask):
  _, count = np.unique(slice, return_counts = True)
  temp = count[1] / sum(count) * 100
  per.append(temp)
plt.plot(sorted(per))
plt.imshow(mask[5], cmap = 'bone')
plt.grid(False)
def patch to slice (patch, patch ratio, input shape, conf threshold):
  slice = np.zeros((512, 512, 1))
  row_idx = 0
 col idx = 0
  for i in range(len(patch)):
    slice[patch ratio[row idx]:patch ratio[row idx + 2],
patch_ratio[col_idx]:patch_ratio[col_idx + 2]][patch[i] > conf_threshold]
= 1
    col idx += 1
    if i != 0 and (i+1) % 15 == 0:
     row idx += 1
     col idx = 0
  return slice
input shape = [64, 64, 1]
dropout_rate = 0.3
12 \ lambda = 0.0002
def u net(input shape, dropout rate, 12 lambda):
  # Encoder
  input = Input(shape = input_shape, name = "input")
  conv1 1 = Conv2D(32, (3, 3), padding = "same", activation='relu',
kernel_regularizer=regularizers.12(12_lambda), name = "conv1_1")(input)
```

```
conv1 1 = bn(name = "conv1 1 bn")(conv1 1)
  conv1_2 = Conv2D(32, (3, 3), padding = "same", activation='relu',
kernel regularizer=regularizers.12(12 lambda), name = "conv1 2")(conv1 1)
  conv1_2 = bn(name = "conv1_2 bn")(conv1_2)
 pool1 = MaxPooling2D(name = "pool1")(conv1 2)
 drop1 = Dropout(dropout rate) (pool1)
 conv2 1 = Conv2D(64, (3, 3), padding = "same", activation='relu',
kernel regularizer=regularizers.12(12_lambda), name = "conv2_1")(pool1)
  conv2 1 = bn(name = "conv2 1 bn")(conv2 1)
  conv2 2 = Conv2D(64, (3, 3), padding = "same", activation='relu',
kernel_regularizer=regularizers.12(12_lambda), name = "conv2_2")(conv2_1)
  conv2_2 = bn(name = "conv2_2_bn")(conv2_2)
 pool2 = MaxPooling2D(name = "pool2")(conv2 2)
 drop2 = Dropout(dropout rate) (pool2)
 conv3_1 = Conv2D(128, (3, 3), padding = "same", activation='relu',
kernel regularizer=regularizers.12(12 lambda), name = "conv3 1")(pool2)
  conv3_1 = bn(name = "conv3_1_bn")(conv3_1)
  conv3 2 = Conv2D(128, (3, 3), padding = "same", activation='relu',
kernel_regularizer=regularizers.12(12_lambda), name = "conv3_2")(conv3_1)
  conv3 2 = bn(name = "conv3 2 bn")(conv3 2)
 pool3 = MaxPooling2D(name = "pool3")(conv3 2)
 drop3 = Dropout(dropout rate) (pool3)
 conv4 1 = Conv2D(256, (3, 3), padding = "same", activation='relu',
kernel regularizer=regularizers.12(12 lambda), name = "conv4 1")(pool3)
  conv4 1 = bn(name = "conv4 1 bn")(conv4 1)
  conv4_2 = Conv2D(256, (3, 3), padding = "same", activation='relu',
kernel regularizer=regularizers.12(12 lambda), name = "conv4 2")(conv4 1)
  conv4 2 = bn(name = "conv4 2 bn")(conv4 2)
 pool4 = MaxPooling2D(name = "pool4")(conv4 2)
 drop4 = Dropout(dropout rate)(pool4)
  conv5 1 = Conv2D(512, (3, 3), padding = "same", activation='relu',
kernel_regularizer=regularizers.12(12_lambda), name = "conv5_1")(pool4)
  conv5 1 = bn (name = "conv5 1 bn") (conv5 1)
  conv5_2 = Conv2D(512, (3, 3), padding = "same", activation='relu',
kernel regularizer=regularizers.12(12 lambda), name = "conv5 2")(conv5 1)
  conv5_2 = bn(name = "conv5_2 bn")(conv5_2)
  upconv6 = Conv2DTranspose(256,(2, 2), strides=(2, 2),
padding='same') (conv5 2)
```

```
upconv6 = Dropout(dropout rate) (upconv6)
  concat6 = concatenate([conv4_2, upconv6], name = "concat6")
  conv6_1 = Conv2D(256, (3, 3), padding = "same",
kernel_regularizer=regularizers.12(12_lambda), name = "conv6_1")(concat6)
  conv6 1 = bn (name = "conv6 1 bn") (conv6 1)
  conv6_2 = Conv2D(256, (3, 3), padding = "same",
kernel regularizer=regularizers.12(12 lambda), name = "conv6 2")(conv6 1)
  conv6_2 = bn (name = "conv6_2 bn") (conv6_2)
 upconv7 = Conv2DTranspose(128,(2, 2), strides=(2, 2),
padding='same')(conv6 2)
 upconv7 = Dropout(dropout rate) (upconv7)
  concat7 = concatenate([conv3_2, upconv7], name = "concat7")
  conv7_1 = Conv2D(128, (3, 3), padding = "same",
kernel_regularizer=regularizers.12(12_lambda), name = "conv7_1") (concat7)
  conv7 1 = bn(name = "conv7 1 bn")(conv7 1)
 conv7_2 = Conv2D(128, (3, 3), padding = "same",
kernel regularizer=regularizers.12(12 lambda), name = "conv7 2")(conv7 1)
  conv7_2 = bn(name = "conv7_2 bn")(conv7_2)
 upconv8 = Conv2DTranspose(64,(2, 2), strides=(2, 2),
padding='same')(conv7 2)
  upconv8 = Dropout(dropout_rate) (upconv8)
  concat8 = concatenate([conv2 2, upconv8], name = "concat8")
  conv8_1 = Conv2D(64, (3, 3), padding = "same",
kernel regularizer=regularizers.12(12 lambda), name = "conv8 1")(concat8)
  conv8_1 = bn(name = "conv8_1_bn")(conv8_1)
  conv8 2 = Conv2D(64, (3, 3), padding = "same",
kernel_regularizer=regularizers.12(12_lambda), name = "conv8_2")(conv8_1)
  conv8 2 = bn(name = "conv8 2 bn")(conv8 2)
 upconv9 = Conv2DTranspose(32,(2, 2), strides=(2, 2),
padding='same')(conv8 2)
  upconv9 = Dropout(dropout_rate) (upconv9)
  concat9 = concatenate([conv1 2, upconv9], name = "concat9")
  conv9_1 = Conv2D(32, (3, 3), padding = "same",
kernel regularizer=regularizers.12(12 lambda), name = "conv9 1")(concat9)
  conv9_1 = bn(name = "conv9_1_bn")(conv9_1)
  conv9 2 = Conv2D(32, (3, 3), padding = "same",
kernel_regularizer=regularizers.12(12_lambda), name = "conv9_2")(conv9_1)
 conv9 2 = bn(name = "conv9 2 bn")(conv9 2)
 dropout = Dropout(dropout_rate) (conv9_2)
 conv10 = Conv2D(1, (1, 1), padding = "same", activation = 'sigmoid',
```

```
name = "conv10") (dropout)
 model = Model(input, conv10)
  return model
model = u_net(input_shape, dropout_rate, 12_lambda)
model.summary()
tf.keras.utils.plot_model(
    model,
    to_file='model.png',
    show_shapes=False,
    show layer names=True,
    rankdir='TB',
    expand_nested=False,
    dpi=96
)
print(len(img_path))
for i in range(20):
  print(img_path[i])
def slice to patch(slice, patch ratio):
  slice[slice == 1] = 0
  slice[slice == 2] = 1
  patch list = []
  for x_bin in range(2, len(patch_ratio)):
    for y_bin in range(2, len(patch_ratio)):
      patch = slice[patch_ratio[x_bin-2] : patch_ratio[x_bin],
patch_ratio[y_bin - 2] : patch_ratio[y_bin]]
      patch = patch.reshape(patch.shape + (1,))
      patch_list.append(patch)
  return np.array(patch_list)
```

```
def patch to slice (patch, patch ratio, input shape, conf threshold):
 slice = np.zeros((512, 512, 1))
 row_idx = 0
 col idx = 0
 for i in range(len(patch)):
    slice[patch ratio[row idx]:patch ratio[row idx + 2],
patch_ratio[col_idx]:patch_ratio[col_idx + 2]][patch[i] > conf_threshold]
= 1
   col idx += 1
    if i != 0 and (i+1) % 15 == 0:
     row idx += 1
     col_idx = 0
 return slice
def weighted_binary_crossentropy(y_true, y_pred):
    y_pred = tf.clip_by_value(y_pred, 10e-8, 1.-10e-8)
    loss = - (y true * K.log(y pred) * 0.90 + (1 - y true) * K.log(1 -
y_pred) * 0.10)
   return K.mean(loss)
smooth = 1.
def dice_coef(y_true, y_pred):
   y true f = K.flatten(y true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) +
K.sum(y_pred_f) + smooth)
Training
total_data = 0
total patch = []
total_mask = []
```

```
for i in range(len(img path) - 105):
  img_3D = nib.load(img_path[i]).get_data()
  mask 3D = nib.load(mask path[i]).get data()
  pos patch, pos mask, neg patch, neg mask = patch sampling(img 3D,
mask_3D, patch_ratio, 3, 3.0)
  total patch += (pos patch + neg patch)
  total_mask += (pos_mask + neg_mask)
  print("====== Step [{0} / {1}] : # of patches = {2} | # of total
training images = {3} ======".
        format(format(i+1, '>2'), len(img_path), format(len(pos_patch) +
len(neg_patch), '>5'), format(len(total_patch), '>5')))
mask_3D.shape
total_patch = np.array(total_patch).reshape((len(total_patch), 64, 64,
1))
total_mask = np.array(total_mask).reshape((len(total_mask), 64, 64, 1))
np.save("total patch.npy", total patch)
np.save("total_mask.npy", total_mask)
total mask.shape
adam = Adam(lr = 0.0001)
model.compile(optimizer = adam, loss = weighted binary crossentropy,
metrics = [dice_coef])
model.fit(total patch, total mask, batch size = 512, epochs = 10)
#model = model.get layer("model 7")
model json = model.to json()
with open("model json final.json", "w") as json file:
    json file.write(model json)
# serialize weights to HDF5
model.save_weights("model_weights_final.h5")
```

```
print("Saved model to disk")
model json = model.to json()
with open("model_json.json", "w") as json_file:
    json file.write(model json)
# serialize weights to HDF5
model.save weights("model weights.h5")
print("Saved model to disk")
Load
json file = open('model json.json', 'r')
loaded model json = json file.read()
json_file.close()
loaded model = model from json(loaded model json)
# load weights into new model
loaded model.load weights("model weights.h5")
print("Loaded model from disk")
loaded model.summary()
img_ex = nib.load(img_path[25]).get_data()
mask ex = nib.load(mask path[25]).get data()
mask\ ex[mask\ ex == 1] = 0
for i in range(mask_ex.shape[2]):
    _, count = np.unique(mask_ex[:, :, i], return_counts=True)
    if len(count) > 1 and count[1] > 300:
        patch_ex = slice_to_patch(img_ex[:, :, i], patch_ratio)
        prediction = loaded model.predict(patch ex)
        prediction mask = patch to slice(prediction, patch ratio,
input shape, conf threshold = 0.97)
        fig, (ax1,ax2,ax3) = plt.subplots(1, 3, figsize = ((15, 15)))
```

```
ax1.imshow(np.rot90(img_ex[:, :, i], 3), cmap = 'bone')
ax1.set_title("Image", fontsize = "x-large")
ax1.grid(False)
ax2.imshow(np.rot90(mask_ex[:, :, i], 3), cmap = 'bone')
ax2.set_title("Mask (True)", fontsize = "x-large")
ax2.grid(False)
ax3.imshow(np.rot90(prediction_mask.reshape((512, 512)), 3), cmap
= 'bone')
ax3.set_title("Mask (Pred)", fontsize = "x-large")
ax3.grid(False)
plt.show()
```

CONCLUSION

This paper discusses the Liver Tumor Segmentation from CT-scan slices.

U-Net a deep learning architecture was used. We observed that the neural network is capable of detecting bigger lesions (the longest axial diameter \geq 10 mm) more reliably than smaller ones (<10 mm). We see the method described in this paper as promising, but it is clear that more work needs to be done to match the human detection performance.

REFERENCES

- https://www.sciencedirect.com/topics/computer-science/tumor-segmentation
- Ayalew, Y. A., Fante, K. A., & Mohammed, M. A. (2021, March 1). Modified
 U-net for liver cancer segmentation from computed tomography images with a
 new class balancing method BMC Biomedical Engineering. BioMed Central.
 Retrieved May 10, 2022, from
 https://bmcbiomedeng.biomedcentral.com/articles/10.1186/s42490-021-00050
- Chlebus, G., Schenk, A., Moltz, J. H., van Ginneken, B., Hahn, H. K., & Meine, H. (2018, October 19). Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Nature News. Retrieved May 10, 2022, from https://www.nature.com/articles/s41598-018-33860-7
- Almotairi, S., Kareem, G., Aouf, M., Almutairi, B., & Salem, M. A.-M. (2020, March 10). Liver tumor segmentation in CT scans using modified segnet.
 MDPI. Retrieved May 10, 2022, from https://www.mdpi.com/1424-8220/20/5/1516
- Christ, P. F., Ettlinger, F., Grün, F., Elshaera, M. E. A., Lipkova, J., Schlecht, S., Ahmaddy, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Hofmann, F., Anastasi, M. D., Ahmadi, S.-A., Kaissis, G., Holch, J., Sommer, W., Braren, R., Heinemann, V., & Menze, B. (2017, February 23). Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv.org. Retrieved May 10, 2022, from https://arxiv.org/abs/1702.05970
- Rela, M., Rao, S. N., & Reddy, P. R. (n.d.). Liver tumor segmentation using Superpixel based fast fuzzy C means clustering. International Journal of Advanced Computer Science and Applications (IJACSA). Retrieved May 10, 2022, from https://thesai.org/Publications/ViewPaper?Volume=11&Issue=11&Code=IJACSA&SerialNo=49