4471028: 프로그래밍언어

Lecture 13 — 타입 추론 (3) Type Inference (3)

> 임현승 2020 봄학기

$\mathsf{typeof}: \mathit{Exp} \to \mathit{Type}$

$$Exp \quad E ::= n$$

$$\mid x$$

$$\mid E+E$$

$$\mid E-E$$

$$\mid iszero E$$

$$\mid if E then E else E$$

$$\mid let x = E in E$$

$$\mid fun x \rightarrow E$$

$$\mid E E$$

$$Type \quad T ::= int$$

$$\mid bool$$

$$\mid T \rightarrow T$$

$$\mid \alpha \ (\in TyVar)$$

타입 방정식 유도

• 타입 방정식(type equation):

TyEqn
$$U := \emptyset \mid T \doteq T \wedge U$$

• 생성 알고리즘(generation algorithm):

$$\mathcal{V}: (\mathit{Var} \to \mathit{Type}) \times \mathit{Exp} \times \mathit{Type} \to \mathit{TyEqn}$$

 $\mathcal{V}(\Gamma, E, T)$ generates a constraint U such that

$$\Gamma \vdash E : T$$

is true if *U* is satisfied.

- $\mathcal{V}([x \mapsto \text{int}], x+1, \alpha) =$
- $ightharpoonup \mathcal{V}(\emptyset, exttt{fun } x ext{ -> if } x ext{ then } 1 ext{ else } 2, lpha o eta) =$

타입 방정식 유도

$$\mathcal{V}(\Gamma,x,T) = T \doteq \Gamma(x)$$
 $\mathcal{V}(\Gamma,E_1+E_2,T) = T \doteq \operatorname{int} \wedge \mathcal{V}(\Gamma,E_1,\operatorname{int}) \wedge \mathcal{V}(\Gamma,E_2,\operatorname{int})$
 $\mathcal{V}(\Gamma,\operatorname{iszero} E,T) = T \doteq \operatorname{bool} \wedge \mathcal{V}(\Gamma,E,\operatorname{int})$
 $\mathcal{V}(\Gamma,\operatorname{if} E_1\operatorname{then} E_2\operatorname{else} E_3,T) = \mathcal{V}(\Gamma,E_1,\operatorname{bool}) \wedge \mathcal{V}(\Gamma,E_2,T) \wedge \mathcal{V}(\Gamma,E_3,T)$
 $\mathcal{V}(\Gamma,\operatorname{let} x = E_1\operatorname{in} E_2,T) = \mathcal{V}(\Gamma,E_1,\alpha) \wedge \mathcal{V}([x \mapsto \alpha]\Gamma,E_2,T) \text{ (new } \alpha)$
 $\mathcal{V}(\Gamma,\operatorname{fun} x \to E,T) = T \doteq \alpha_1 \to \alpha_2 \wedge \mathcal{V}([x \mapsto \alpha_1]\Gamma,E,\alpha_2)$
 $(\operatorname{new} \alpha_1,\alpha_2)$
 $\mathcal{V}(\Gamma,E_1E_2,T) = \mathcal{V}(\Gamma,E_1,\alpha \to T) \wedge \mathcal{V}(\Gamma,E_2,\alpha) \text{ (new } \alpha)$

 $\mathcal{V}(\Gamma, n, T) = T \doteq \text{int}$

연습 문제

- $\mathcal{V}(\emptyset, (\operatorname{fun} x \rightarrow x) 1, \alpha)$
- $\mathcal{V}(\emptyset, \operatorname{fun} f \rightarrow f 11, \alpha)$
- $\mathcal{V}([x \mapsto \mathsf{bool}], \mathtt{if}\ x \mathtt{then}\ (x-1) \mathtt{ else}\ 0, \alpha)$
- ullet $\mathcal{V}(\emptyset, \mathtt{fun}\, f ext{-> iszero}\, (f\, f), lpha)$

치환식(Substitution)

타입 방정식의 해는 치환식으로 표현됨:

$$S \in Subst = TyVar \rightarrow Type$$

치환식을 타입에 적용:

$$S(\text{int}) = \text{int}$$
 $S(\text{bool}) = \text{bool}$
 $S(\alpha) = \begin{cases} T & \text{if } \alpha \mapsto T \in S \\ \alpha & \text{otherwise} \end{cases}$
 $S(T_1 \to T_2) = S(T_1) \to S(T_2)$

통합(Unification)

현재 치환식을 등식(equality) $T_1 \doteq T_2$ 를 이용하여 업데이트.

$$\textbf{unify}: \textit{Type} \times \textit{Type} \times \textit{Subst} \rightarrow \textit{Subst}$$

$$\begin{array}{rcl} \text{unify}(\text{int, int, }S) & = & S \\ \text{unify}(\text{bool, bool, }S) & = & S \\ \\ \text{unify}(\alpha, T, S) & = & \begin{cases} \text{fail} & \alpha \text{ occurs in } T \\ \text{extend } S \text{ with } \alpha \stackrel{.}{=} T \end{cases} \text{ otherwise} \\ \\ \text{unify}(T, \alpha, S) & = & \text{unify}(\alpha, T, S) \\ \text{unify}(T_1 \rightarrow T_2, T_1' \rightarrow T_2', S) & = & \text{let } S' = \text{unify}(T_1, T_1', S) \text{ in } \\ \\ \text{let } T_3 & = S'(T_2) \text{ in } \\ \\ \text{let } T_4 & = S'(T_2') \text{ in } \\ \\ \text{unify}(T_3, T_4, S') \\ \end{cases} \\ \\ \text{unify}(-, -, -) & = & \text{fail} \\ \end{array}$$

Extension of *S* with $\alpha \doteq T$:

$$[\alpha \mapsto T]\{\alpha_1 \mapsto \{\alpha \mapsto T\}(T_1) \mid \alpha_1 \mapsto T_1 \in S\}$$

임현승 프로그래밍언어 7/12

연습 문제

- unify(α , int \rightarrow int, \emptyset) =
- unify(α , int $\rightarrow \alpha$, \emptyset) =
- unify($\alpha \to \beta$, int \to int, \emptyset) =
- unify $(\alpha \to \beta, \text{int} \to \alpha, \emptyset) =$

방정식 풀기

unifyall:
$$TyEqn \times Subst \rightarrow Subst$$

unifyall(\emptyset , S) = S

$$\mathsf{unifyall}(\psi,S) = S$$

 $\mathsf{unifyall}((T_1 \doteq T_2) \land U,S) = \mathsf{let} \, S' = \mathsf{unify}(S(T_1),S(T_2),S)$
 $\mathsf{in} \, \mathsf{unifyall}(U,S')$

typeof

```
\begin{array}{l} \mathsf{typeof}(E) = \\ \mathsf{let} \ S = \mathsf{unifyall}(\mathcal{V}(\emptyset, E, \alpha), \emptyset) \quad (\mathsf{new} \ \alpha) \\ \mathsf{in} \ S(\alpha) \end{array}
```

연습 문제

- typeof((fun $x \rightarrow x$) 1)
- typeof(let x = 1 in fun $y \rightarrow x + y$)

요약: 타입 추론

정적 타입 시스템의 설계와 구현:

- 타입을 추론하기 위한 선언적 논리 규칙(declarative logical rules)
- 타입을 추론하기 위한 알고리즘적 절차(algorithmic procedure)