Julius Caesar protected his confidential information by encrypting it using a cipher. Caesar's cipher shifts each letter by a number of letters. If the shift takes you past the end of the alphabet, just rotate back to the front of the alphabet. In the case of a rotation by 3, w, x, y and z would map to z, a, b and c.

Original alphabet: abcdefghijklmnopgrstuvwxyz Alphabet rotated +3: defghijklmnopgrstuvwxyzabc

Example

$$s = exttt{There's-a-starman-waiting-in-the-sky} \ k = 3$$

The alphabet is rotated by 3, matching the mapping above. The encrypted string is

Wkhuh'v-d-vwdupdq-zdlwlqj-lq-wkh-vnb.

Note: The cipher only encrypts letters; symbols, such as -, remain unencrypted.

Function Description

Complete the caesarCipher function in the editor below.

caesarCipher has the following parameter(s):

- · string s: cleartext
- · int k: the alphabet rotation factor

Returns

string: the encrypted string

Input Format

The first line contains the integer, n, the length of the unencrypted string.

The second line contains the unencrypted string, s.

The third line contains k, the number of letters to rotate the alphabet by.

Constraints

$$\begin{array}{c} 1 \leq n \leq 100 \\ 0 \leq k \leq 100 \end{array}$$

s is a valid ASCII string without any spaces.

Sample Input

11 middle-Outz 2

Sample Output

okffng-Qwvb

Explanation

Original alphabet: abcdefghijklmnopqrstuvwxyz Alphabet rotated +2: cdefghijklmnopqrstuvwxyzab

m->0

i->k

d->f

 $d \rightarrow f$

I->n

e->g

O->Q

u -> w

t-> v

z->b