<u>NOM</u> : PRENOM :..... GROUPE :....

Partiel 1 Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet

Exercice 1. Théorèmes de Millman et de superposition (6 points)

Soit le circuit suivant :

1. Les générateurs et les résistances sont supposés connus. En utilisant le théorème de Millman, déterminer l'expression de U et la simplifier. (On pourra choisir le point B comme référence des potentiels).

$$U = \frac{-T_{1} + \frac{E_{1}}{R_{1}} + T_{2} - \frac{E_{3}}{R_{3}}}{\frac{1}{R_{1}} + \frac{1}{R_{3}}}$$

$$= \frac{-T_{1} + T_{2} + \frac{E_{1}}{R_{1}} - \frac{E_{3}}{R_{3}}}{\frac{R_{1} + R_{3}}{R_{1} + R_{3}}}$$

$$= \frac{R_{1} + R_{3}}{R_{1} + R_{3}}$$

$$U = \frac{R_{1} R_{3} [T_{2} - T_{1}] + R_{3} E_{1} - R_{1} E_{3}}{R_{1} + R_{3}}$$

$$R_{1} + R_{3}$$

 Déterminer maintenant l'expression de U en utilisant le théorème de superposition et comparer le résultat avec l'expression obtenue à la question précédente.

*
$$E_1$$
, E_3 et I_2 dévactivées
$$U_1 = -I_1 \times \frac{R_1 R_3}{R_1 4 R_3}$$

$$U_1 = -I_2 \times \frac{R_1 R_3}{R_1 4 R_3}$$

$$42 = \frac{R_3}{R_1 + R_2} \in 1$$

PDT:

$$V_{2}$$
 \downarrow ϵ , \uparrow ϵ

*
$$I_1 E_1 I_2$$
 désatvée 1

PDT:

 $U_4 = -\frac{R_1}{R_1 + R_3} E_3$
 $U_4 P_{R_1} I_2$
 $E_3 I_4 P_{R_4}$

$$U = U_{1} + U_{2} + U_{3} + U_{4}$$

$$= - I_{1} \frac{R_{1}R_{3}}{R_{1}+R_{3}} + \frac{R_{3}}{R_{1}+R_{3}} = \frac{R_{1}}{R_{1}+R_{3}} - \frac{R_{1}}{R_{1}+R_{3}} = \frac$$

$$U = \frac{R_1 R_3 (I_2 - I_1) + R_3 E_1 - R_1 E_3}{R_1 + R_3}$$

Exercice 2.

Théorèmes de Thévenin et de Norton (6 points)

Soit le circuit suivant :

Le but de l'exercice est de déterminer les grandeurs suivantes : I, U_{AB} et la tension mesurée entre les points D et B, U_{DB} .

1. Déterminer le générateur de Thévenin équivalent à la partie encadrée du circuit.

2. Donner alors le circuit de Norton équivalent.

3. Donner alors l'expression de I, U_{AB} et U_{DB} .

$$VAB = R_{Y} \times I + E_{Y} = \frac{R_{Y}}{R_{Y} + R_{Y}} (E_{Y} - E_{Y}) + E_{Y}$$

$$VAB = VAB + R_{3} \times I = E_{Y} + I (R_{3} + R_{Y})$$

$$= \frac{R_{3} + R_{Y}}{R_{Y}} (E_{Y} - E_{Y}) + E_{Y}$$

4. <u>Application Numérique</u>: Calculer I, U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=1\Omega$, $R_2=9\Omega$, $R_3=2,1\Omega$ et $R_4=2\Omega$

$$F_{+N} = \frac{1 \times 9}{1+9} + 211 = 3 \text{ } \Omega$$

$$E_{+N} = \frac{9}{1+9} \times 40 = 36 \text{ } V$$

$$I = \frac{36-24}{3+2} = \frac{12}{5} = 214 \text{ } A$$

$$V_{AB} = 2 \times 214 + 24 = 28.8 \text{ } V$$

$$V_{DB} = 28.8 + (2.14 \times 2.4) = 57.04 \text{ } V$$

Exercice 3. Lois de Kirchoff (6,5 points)

Soit le circuit suivant :

Remarque préalable : les réponses attendues dépendent des positions des interrupteurs et sont indépendantes les unes des autres : ce n'est donc pas un "grand" exercice mais 4 "petits" à partir du même schéma.

Commencez donc par les cas qui vous paraissent les plus simples!

La tension E et les 3 résistances sont supposées connues.

On demande de déterminer les équations des courants DANS les 3 résistances (les indices des courants dans le tableau ci-dessous correspondent évidemment aux résistances correspondantes).

Remplir le tableau suivant (résultat seul, pas le détail des calculs). Les courants demandés ne devront dépendre QUE de E et/ou des résistances R_1 , R_2 ou R_3 (sauf s'ils sont nuls!) et PAS les uns des autres (donc PAS de loi des nœuds pour exprimer un courant en fonction d'un autre).

Posez-vous les bonnes questions ... vous aurez les bonnes réponses !!

K_1	K ₂	R _{eq} "vue" par E	I_1	I_2	I_3
0	0	R1+ R2	E RIARL	E RIAR2	
0	F	R2 B3 + R1			
F	0	(R1 + R2) R3 R1+R2+R3	E RIAR2	E RIAR2	E R ₃
F	F	R2 R3 R2 4R3	0	€ R2	E *3

Rq: O = Ouvert

F = Fermé

Exercice 4. Valeur Moyenne d'un signal sinusoïdal (1,5 points)

Soit un signal $s(t) = S. \sin(\omega t + \phi)$.

Montrer que la valeur moyenne de ce signal est nulle.

$$S_{moy} = \frac{1}{T} \int_{0}^{T} S_{sin}(wt+q) dt$$

$$= \frac{S}{T} \left[\frac{1}{w} (w + q) - (w + q) \right]$$

$$= \frac{S}{T} \left[-\frac{T}{2\pi} (w + q) - (w + q) \right]$$

$$= \frac{S}{T} \left[-\frac{T}{2\pi} (w + q) - (w + q) \right]$$

$$= \frac{S}{T} \left[-\frac{T}{2\pi} (w + q) - (w + q) \right]$$

$$= \frac{S}{T} \left[-\frac{T}{2\pi} (w + q) - (w + q) \right]$$

$$= \frac{S}{T} \left[-\frac{T}{2\pi} (w + q) - (w + q) \right]$$

$$= \frac{S}{T} \left[-\frac{T}{2\pi} (w + q) - (w + q) \right]$$

$$= \frac{S}{T} \left[-\frac{T}{2\pi} (w + q) - (w + q) \right]$$

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.