18.100A Final

Octavio Vega

June 21, 2023

Problem 1

We complete the following **negations**:

(i)

Let $S \subset \mathbb{R}$. A function $f: S \to \mathbb{R}$ is **not continuous** at $c \in S$ if $\exists \epsilon_0 > 0$ such that $\forall \delta > 0$ if $|x - c| < \delta$, $|f(x) - f(c)| \ge \epsilon_0$.

(ii)

Let $S \subset \mathbb{R}$. A function $f: S \to \mathbb{R}$ is **not uniformly continuous** on S if $\exists x_0 \in S$ such that $\forall \delta > 0 \ \exists \epsilon_0 > 0$ such that if $|x_0 - x| < \delta$, then $|f(x) - f(x_0)| \ge \epsilon_0$.

(iii)

Let $S \subset \mathbb{R}$. A sequence of functions $f_n : S \to \mathbb{R}$ does not converge uniformly to $f : S \to \mathbb{R}$ if $\exists \epsilon_0 > 0$ such that $\forall M \in \mathbb{N} \exists n \geq M$ and $x \in S$ such that $|f_n(x) - f(x)| \geq \epsilon_0$.

Problem 2

- (a)
- (i)

A continuous function on (0,1) with neither a global minimum or maximum:

Let $f(x) = 1 \ \forall x \in (0,1)$. Then $\forall x,y \in (0,1), \ f(x) = f(y)$ so f has no absolute maximum or minimum, and f is constant and therefore continuous.

(ii)

A function on [0,1] with absolute minimum at 0, absolute maximum at 1, and such that $\exists y \in (f(0), f(1))$ not in the range of f:

Define f via

$$f(x) := \begin{cases} x, & x \in (0, \frac{1}{2}) \cap (\frac{1}{2}, 1] \\ -1, & x = 0 \\ -\frac{1}{2}, & x = \frac{1}{2}. \end{cases}$$
 (1)

Then, for example, $-\frac{3}{4} \in (-1,1) = (f(0),f(1))$, but $-\frac{3}{4}$ is not in the range of f. Also, f has an absolute minimum and maximum at 0 and 1, respectively.

(b)

Proof. Let $\epsilon > 0$. Since f is continuous, then $\exists \delta_0 > 0$ such that if $|x - c| < \delta_0$ then $|f(x) - f(c)| < \frac{\epsilon}{2}$. Similarly, since g is continuous, then $\exists \delta_1 > 0$ such that if $|x - c| < \delta_1$ then $|g(x) - g(c)| < \frac{\epsilon}{2}$.

Choose δ_0, δ_1 such that |f(x)| + |g(c)| < 2, and let $\delta = \min\{\delta_0, \delta_1\}$. Then if $|x - c| < \delta$, we have

$$|f(x)g(x) - f(c)g(c)| = |f(x)g(x) - f(x)g(c) + f(x)g(c) - f(c)g(c)|$$
 (2)

$$\leq |f(x)||g(x) - g(c)| + |g(c)||f(x) - f(c) \tag{3}$$

$$<|f(x)|\frac{\epsilon}{2}+|g(c)|\frac{\epsilon}{2}$$
 (4)

$$<\epsilon$$
. (5)

Therefore, the product fg is continuous at c.