

loT·인공지능·빅데이터 개론 및 실습

Linear Models

서울대학교 전기·정보공학부 윤성로

Contents

- 1. Introduction
- 2. Linear Regression
 - 1 Introduction
 - 2 Learning Objective
 - 3 Linear Regression Algorithm
- 3. Logistic Regression
 - Introduction
 - **2** Logistic Regression Model
 - 3 Training by Gradient Descent

Contents

1. Introduction

- 2. Linear Regression
 - Introduction
 - 2 Learning Objective
 - 3 Linear Regression Algorithm
- 3. Logistic Regression
 - Introduction
 - 2 Logistic Regression Model
 - 3 Training by Gradient Descent

1 Three Linear Models

(1) 세 가지 중요한 문제

- **▶** Classification
 - 범주 예측 (예: 남녀 사진 구분)
- **▶** Regression
 - 연속값 예측 (예: 몸무게 → 키)
- **▶** Logistic regression
 - 확률값 예측 (예: 혈압 → 심장마비 확률)

(2) Perceptron: linear classification

- ► Model
 - first, compute $s = \sum_{i=0}^d w_i x_i = \mathbf{w}^\top \mathbf{x}$
 - then, get $h(\mathbf{x}) = \operatorname{sign}(s)$
- ► Training: PLA
 - 1. start with an arbitrary weight vector $\mathbf{w}(0)$
 - 2. then, at every time step $t \geq 0$
 - 2a. select any misclassified data point $(\mathbf{x}(t), y(t))$
 - 2b. update w:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + y(t)\mathbf{x}(t)$$

1 Three Linear Models

- (3) 비교
 - ► "signal"

$$s = \sum_{i=0}^{d} w_i x_i$$

- ► "activation"
 - different

2 Advantages of Linear Models

(1) Simplicity

► Easy to implement, test, and interpret

(2) Generalization

 \blacktriangleright Higher chance of $E_{\rm in}\approx E_{\rm out}$ than complex models

(3) Extension

- ► Non-linear transform, kernel trick (예: support vector machine)
- ► Basis for artificial neural network

Contents

- 1. Introduction
- 2. Linear Regression
 - 1 Introduction
 - 2 Learning Objective
 - 3 Linear Regression Algorithm
- 3. Logistic Regression
 - Introduction
 - 2 Logistic Regression Model
 - 3 Training by Gradient Descent

- (1) A method to study relationship between ${\bf x}$ and ${\bf y}$
 - x predictor variable/independent variable/feature
 - y response/dependent variable
- (2) Training data $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$
 - ▶ Noise ϵ is added to target: $y_n = f(\mathbf{x}_n) + \epsilon$
 - $\Rightarrow~y \sim P(y|\mathbf{x})$ instead of $y = f(\mathbf{x})$
- (3) Our goal
 - ▶ Find a model $g(\mathbf{x})$ that approximates y_n

(4) Concept

Contents

- 1. Introduction
- 2. Linear Regression
 - 1 Introduction
 - 2 Learning Objective
 - 3 Linear Regression Algorithm
- 3. Logistic Regression
 - 1 Introduction
 - 2 Logistic Regression Model
 - 3 Training by Gradient Descent

(1) Minimize squared error:

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}_n) - y_n)^2$$
 (1)

(2) Hypothesis h

ightharpoonup A linear combination of the components of x:

$$h(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = \mathbf{w}^{\top} \mathbf{x}$$
 (2)

 $ightharpoonup \mathbf{w}^{\top}\mathbf{x}$: also called "signal"

2 Learning Objective

(3) $\mathbf{w}_{\mathrm{lin}}$: the solution to linear regression

▶ Derived by minimizing $E_{\mathrm{in}}(\mathbf{w})$ over all $\mathbf{w} \in \mathbb{R}^{d+1}$

$$\mathbf{w}_{\text{lin}} = \underset{\mathbf{w} \in \mathbb{R}^{d+1}}{\operatorname{argmin}} E_{\text{in}}(\mathbf{w})$$

$$= \underset{\mathbf{w} \in \mathbb{R}^{d+1}}{\operatorname{argmin}} \frac{1}{N} ||X\mathbf{w} - \mathbf{y}||^{2}$$

$$= \underset{\mathbf{w} \in \mathbb{R}^{d+1}}{\operatorname{argmin}} \frac{1}{N} (\mathbf{w}^{\top} X^{\top} X \mathbf{w} - 2 \mathbf{w}^{\top} X^{\top} \mathbf{y} + \mathbf{y}^{\top} \mathbf{y})$$
(5)

Contents

- 1. Introduction
- 2. Linear Regression
 - 1 Introduction
 - 2 Learning Objective
 - 3 Linear Regression Algorithm
- 3. Logistic Regression
 - 1 Introduction
 - **2** Logistic Regression Model
 - 3 Training by Gradient Descent

3 Linear Regression Algorithm

(1) Minimizing $E_{\rm in}(w)$

- ightharpoonup $\mathrm{E_{in}}(\mathbf{w})$: continuous, differentiable, and convex
- \blacktriangleright Find w that minimizes $\mathrm{E_{in}}(w)$ by requiring

$$\nabla E_{\rm in}(\mathbf{w}) = \mathbf{0} \tag{6}$$

► From Eq. (5)

$$\nabla \mathbf{E}_{\mathrm{in}}(\mathbf{w}) = \frac{2}{N} (X^{\top} X \mathbf{w} - X^{\top} \mathbf{y})$$
 (7)

3 Linear Regression Algorithm

(2) The solution

► Solve for w that satisfies the normal equations:

$$X^{\top} X \mathbf{w} = X^{\top} \mathbf{y} \tag{8}$$

(3) Two scenarios

S1: if
$$X^{\top}X$$
 is invertible, $\mathbf{w} = X^{\dagger}\mathbf{y}$

- $X^{\dagger} = (X^{\top}X)^{-1}X^{\top}$ is pseudo-inverse of X
- resulting w is the unique optimal solution to (3)

S2: if $X^{\top}X$ is not invertible

- pseudo-inverse defined, but no unique solution
- ullet many solutions for ${f w}$ that minimizes $E_{
 m in}$

(4) The linear regression algorithm

ightharpoonup Construct matrix X and vector y:

$$X = \begin{bmatrix} & -\mathbf{x}_1^\top - & \\ & -\mathbf{x}_2^\top - & \\ & \vdots & \\ & -\mathbf{x}_N^\top - & \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$
input data matrix

▶ Compute pseudo-inverse X^{\dagger} ; if $X^{\top}X$ is invertible,

$$X^{\dagger} = (X^{\top}X)^{-1}X^{\top}$$

► Return $\mathbf{w}_{\text{lin}} = X^{\dagger}\mathbf{y}$

3 Linear Regression Algorithm

(5) Example: oxygen and hydrocarbon levels

no.	x	y
1	0.99	90.01
2	1.02	89.05
3	1.15	91.43
4	1.29	93.74
5	1.46	96.73
6	1.36	94.45
7	0.87	87.59
8	1.23	91.77
9	1.55	99.42
10	1.40	93.65
11	1.19	93.54
12	1.15	92.52
13	0.98	90.56
14	1.01	89.54
15	1.11	89.85
16	1.20	90.39
17	1.26	93.25
18	1.32	93.41
19	1.43	94.98
20	0.95	87.33

y: purity (%) of oxygen

x: hydrocarbons (%)

3 Linear Regression Algorithm

- (5) Example: oxygen and hydrocarbon levels
 - ► training data:

```
89.05
                                                                                                           91.43
                                                                                                           93.74
                                                 1.46
                                                                                                           96.73
                                                 1.36
                                                                                                           94.45
\mathsf{data}\ \mathsf{matrix}\ X = \ ^{\mathsf{J}}
                                                 0.87
                                                                                                           87.59
                                                                                                           91.77
                                                 1.23
                                                1.55
1.40
1.19
1.15
0.98
                                                                                                           99.42
                                                                                                           93.65
93.54
                                                                 \mathsf{target}\ \mathsf{vector}\ \mathbf{y} =
                                                                                                           92.52
                                                                                                           90.56
                                                                                                           89.54
                                                                                                           89.85
                                                                                                           90.39
                                                                                                           93.25
                                                                                                           93.41
```

(5) Example: oxygen and hydrocarbon levels

 $ightharpoonup X^{\top}X$ is invertible

$$X^{\top}X = \begin{bmatrix} 20.00 & 23.92 \\ 23.92 & 29.29 \end{bmatrix} \Rightarrow (X^{\top}X)^{-1} = \begin{bmatrix} 2.15 & -1.76 \\ -1.76 & 1.47 \end{bmatrix}$$

 $\blacktriangleright (X^{\top}X)^{-1}X^{\top}y$ yields

$$\mathbf{w}_{\mathrm{lin}} = \left[\begin{array}{c} 74.28 \\ 14.95 \end{array} \right]$$

► the learned model:

$$g(x) = \mathbf{w}_{\text{lin}}^{\top} \mathbf{x}$$
$$= 74.28 + 14.95x$$

Contents

- 1. Introduction
- 2. Linear Regression
 - Introduction
 - 2 Learning Objective
 - 3 Linear Regression Algorithm
- 3. Logistic Regression
 - 1 Introduction
 - **2** Logistic Regression Model
 - 3 Training by Gradient Descent

(1) Motivating example

- ► Heart attack prediction:
 - based on cholesterol level, blood pressure, age, ...
- ► Cannot predict a heart attack with any certainty
- ► A more suitable model:
 - ullet output y that varies continuously between 0 and 1
 - ullet the closer y is to 1, the higher chance of heart attack

(2) Logistic regression: 'soft' binary classification

- Outputs probability of a binary response
 - e.g. heart attack or not, dead or alive
 - returns 'soft labels' (probability)
- ► Our new model: called logistic regression
 - output: real (like regression) but bounded (like classification)
- Linear classification vs logistic regression
 - both deal with a binary event
 - logistic regression: allowed to be uncertain

(3) Logistic regression model

► Linear classification: a hard threshold on signal

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x})$$

► Linear regression: no threshold

$$h(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$$

- ▶ New model: needs something between these two
 - smoothly restricts output to probability range [0,1]

$$h(\mathbf{x}) = \theta(\mathbf{w}^{\top}\mathbf{x})$$

• θ is so-called *logistic* function

(4) Logistic function θ

Definition

• for
$$-\infty < s < \infty$$
:

$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

$$1 - \theta(s) = \frac{e^{-s}}{1 + e^{-s}} = \theta(-s)$$

► Output lies between 0 and 1

• can be interpreted as probability for binary events

Contents

- 1. Introduction
- 2. Linear Regression
 - Introduction
 - 2 Learning Objective
 - 3 Linear Regression Algorithm
- 3. Logistic Regression
 - 1 Introduction
 - **2** Logistic Regression Model
 - 3 Training by Gradient Descent

(1) Big picture

(2) Learning target

▶ Probability of event y = +1 given input x

$$f(\mathbf{x}) = \mathbb{P}[y = +1 \mid \mathbf{x}]$$

- e.g. probability of a patient being at risk for heart attack given the characteristics of the patient
- ▶ We view data as
 - generated by target distribution $P(y|\mathbf{x})$

$$P(y|\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1\\ 1 - f(\mathbf{x}) & \text{for } y = -1 \end{cases}$$
 (9)

(3) Defining error measure

- Based on likelihood
 - how 'likely' is it to get output u from input x. if target distribution $P(y|\mathbf{x})$ was captured by $h(\mathbf{x})$?
- Based on (9), the likelihood would be

$$P(y|\mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1\\ 1 - h(\mathbf{x}) & \text{for } y = -1 \end{cases}$$
$$= \theta(y\mathbf{w}^{\top}\mathbf{x})$$
(10)

• recall: $h(\mathbf{x}) = \theta(\mathbf{w}^{\top}\mathbf{x})$ and $1 - \theta(s) = \theta(-s)$

(4) Cross entropy

- ► Consider two pmfs
 - $\{p,1-p\}$ and $\{q,1-q\}$ with binary outcomes
 - e.g. $\mathbb{P}[\mathsf{pass}] = p$ and $\mathbb{P}[\mathsf{fail}] = 1 p$
- ► Cross entropy for these two pmfs:

$$\frac{p}{\log \frac{1}{q}} + (1 - \frac{p}{p}) \log \frac{1}{1 - q}$$
(11)

- ► Cross entropy measures 'error' for approximating
 - 'observed' pmf $\{{\color{red}p},1-{\color{red}p}\}$ by 'fitted' pmf $\{{\color{red}q},1-{\color{red}q}\}$

Logistic Regression Model

(5) Cross entropy error measure

▶ Recall:

$$P(y|\mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1\\ 1 - h(\mathbf{x}) & \text{for } y = -1 \end{cases}$$
$$= \theta(y\mathbf{w}^{\top}\mathbf{x})$$
(12)

► (12) can also be written as

$$P(y|\mathbf{x}) = h(\mathbf{x})^{\llbracket y = +1 \rrbracket} (1 - h(\mathbf{x}))^{\llbracket y = -1 \rrbracket} \tag{14}$$

Likelihood of data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$

$$\prod_{n=1}^{N} P(y_n | \mathbf{x}_n) = \prod_{n=1}^{N} h(\mathbf{x}_n)^{\llbracket y_n = +1 \rrbracket} (1 - h(\mathbf{x}_n))^{\llbracket y_n = -1 \rrbracket}$$

(5) Cross entropy error measure

► Negative log-likelihood (NLL) is given by

$$NLL(\mathbf{w}) \propto -\frac{1}{N} \log \left\{ \prod_{n=1}^{N} P(y_n | \mathbf{x}_n) \right\}$$

$$= -\frac{1}{N} \log \left\{ \prod_{n=1}^{N} h(\mathbf{x}_n)^{\llbracket y_n = +1 \rrbracket} (1 - h(\mathbf{x}_n))^{\llbracket y_n = -1 \rrbracket} \right\}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \left\{ \llbracket y_n = +1 \rrbracket \log \frac{1}{h(\mathbf{x}_n)} + \llbracket y_n = -1 \rrbracket \log \frac{1}{1 - h(\mathbf{x}_n)} \right\}$$

• this is also called cross-entropy error

Contents

- 1. Introduction
- 2. Linear Regression
 - 1 Introduction
 - 2 Learning Objective
 - 3 Linear Regression Algorithm
- 3. Logistic Regression
 - 1 Introduction
 - **2** Logistic Regression Model
 - 3 Training by Gradient Descent

(1) Training objective

► Maximizing likelihood = minimizing NLL:

$$-\frac{1}{N}\log\left\{\prod_{n=1}^{N}P(y_n|\mathbf{x}_n)\right\} = \frac{1}{N}\sum_{n=1}^{N}\log\frac{1}{P(y_n|\mathbf{x}_n)}$$
$$=\frac{1}{N}\sum_{n=1}^{N}\log\frac{1}{\theta(y_n\mathbf{w}^{\top}\mathbf{x}_n)}$$

- ► Substituting functional form for θ gives
 - in-sample error measure for logistic regression

$$\mathbb{E}_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \log \left(1 + e^{-y_n \mathbf{w}^{\top} \mathbf{x}_n} \right)$$
 (15)

(1) Training objective

► Implied pointwise error

$$\mathbf{e}(h(\mathbf{x}_n), y_n) = \ln\left(1 + e^{-y_n \mathbf{w}^{\top} \mathbf{x}_n}\right)$$

3 Training by Gradient Descent

(2) Minimizing $\rm E_{\rm in}$

- ightharpoonup Set $abla \mathrm{E}_{\mathrm{in}}(\mathbf{w}) = \mathbf{0}$ and solve for \mathbf{w}
- ▶ Unfortunately, ∇E_{in} for logistic regression:
 - not easy to manipulate analytically

$$\nabla E_{\rm in}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^{\rm T}} \mathbf{x}_n}$$
 (16)

$$= \frac{1}{N} \sum_{n=1}^{N} -y_n \mathbf{x}_n \theta(-y_n \mathbf{w}^{\mathrm{T}} \mathbf{x}_n)$$
 (17)

• we need iterative optimization

(3) Gradient descent

- Basic idea
 - \bullet $E_{in}(\mathbf{w})$ is a 'surface' in high-dimensional space
 - in step 0, we start somewhere on this surface, at $\mathbf{w}(0)$
 - \bullet try to roll down the surface, thereby decreasing $E_{\rm in}$

► Two things to decide

- 1. which direction?
- 2. how much?

$$\Delta \mathbf{w} = -\nabla \mathbf{E}_{\mathrm{in}}(\mathbf{w}(t))$$
 η : learning rate

3 Training by Gradient Descent

(4) Example

► Global minimum 0 at (1,1)

- ► Start at (0,0)
 - $\bullet \;\; \# \; iterations \; (steps) = 20$
 - $\bullet \ \ {\rm step \ size} \ \eta = 0.3$

(4) Example

3 Training by Gradient Descent

(5) Logistic regression algorithm

- 1: initialize weights at time step t = 0 to $\mathbf{w}(0)$
- 2: for $t = 0, 1, 2, \dots$ do
- 3: compute the gradient

$$\nabla \mathbf{E}_{\mathrm{in}}(\mathbf{w}(t)) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^{\top}(t) \mathbf{x}_n}}$$

- 4: set the direction to move: $\mathbf{v}_t = -\nabla \mathbf{E}_{in}(\mathbf{w}(t))$
- 5: update weights: $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \mathbf{v}_t$
- 6: iterate to next step until it is time to stop
- 7: return final weights w

- **3** Training by Gradient Descent
- (6) Termination criteria
 - ► Combination works reasonably well
 - maximum number of iterations
 - marginal error improvement
 - small value for the error itself

3 Training by Gradient Descent

(7) Variants of gradient descent

- **▶** Batch gradient descent
 - ullet use all N examples in each iteration
- ► Stochastic gradient descent
 - use 1 example in each iteration
- ► Mini-batch gradient descent
 - ullet use b examples in each iteration
 - b: mini-batch size (typically $2 \sim 100$)

Summary

► Three linear models considered

- ► Respective goals, error measures, and algorithms
 - nonetheless, share similar sets of linear hypotheses
- ► You should first try a linear model
 - simplicity, generalization, extension

Summary

	linear classification	linear regression	logistic regression
\mathcal{Y}	$\{-1, +1\}$	\mathbb{R}	$\{-1, +1\}$
$\hat{y} = h(\mathbf{x})$	$\mathrm{sign}(\mathbf{w}^{\top}\mathbf{x})$	$\mathbf{w}^{\top}\mathbf{x}$	$\theta(\mathbf{w}^{\top}\mathbf{x})$
$e(\hat{y},y)$	0-1 loss $[\![\hat{y}\neq y]\!]$	squared error $(\hat{y}-y)^2$	cross-entropy error $ \llbracket y = +1 \rrbracket \ln \frac{1}{\hat{y}} \\ + \llbracket y = -1 \rrbracket \ln \frac{1}{1-\hat{y}} $
$E_{\rm in}(h)$	$\frac{1}{N} \sum_{n=1}^{N} \llbracket h(\mathbf{x}_n) \neq y_n \rrbracket$	$\frac{1}{N}\sum_{n=1}^{N}(h(\mathbf{x}_n)-y_n)^2$	$\frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n \mathbf{w}^{\top} \mathbf{x}_n} \right)$
opt.	combinatorial optimization (NP-hard)	$\begin{array}{l} \text{set } \nabla E_{\mathrm{in}}(\mathbf{w}) = 0 \\ \text{(closed-form} \\ \text{solution exists)} \end{array}$	$\begin{array}{l} \text{set } \nabla E_{\mathrm{in}}(\mathbf{w}) = 0 \\ \text{iterative optimization} \\ \textit{(e.g. gradient descent)} \end{array}$

 $[\]star$ logistic sigmoid $\theta(s) = 1/(1+e^{-s})$