Inteligencia Artificial: Toma de Decisiones

Universidad Nacional de Cuyo - Facultad de Ingeniería

Trabajo Práctico N°7 - Grupo 2: Avila J., Barrios F., Patricelli N.

Septiembre 2025

Temas Centrales del Trabajo Práctico

Teoría de Utilidad

Representación numérica de preferencias del agente

Valor de la Información

Ganancia y entropía en sistemas de decisión

Toma de Decisiones

Decisiones basadas en utilidad esperada

Algoritmos y Sistemas

Algoritmos de decisión y sistemas expertos

Definición

Una función de utilidad es una representación numérica de las preferencias de un agente. Asigna valores numéricos para expresar cuán deseable es un estado del mundo.

La elección preferida será aquella cuya **utilidad esperada** sea la más alta, ponderada por su probabilidad.

Principio Clave

Una elección no se toma en base a su esperanza (promedio probabilístico) sino en base a su utilidad para el agente.

Los Cinco Axiomas de la Utilidad

01

Axioma de Ordenación

Un agente racional puede comparar y ordenar cualquier par de resultados posibles. 02

Axioma de Transitividad

Las preferencias son consistentes: si A > B y B > C, entonces A > C.

03

Axioma de Monotonicidad

Se prefiere la mayor probabilidad de conseguir el resultado más deseable.

Análisis de Lotería: Valor Monetario Esperado

-\$0.8

-\$0.5

Juego 1

Juego 2

Premio \$10 con probabilidad 1/50

Premio \$1,000,000 con probabilidad 1/2,000,000

Ambos juegos tienen VME negativo, indicando pérdida promedio de capital. Es razonable comprar un boleto solo cuando VME > 0.

Problema de la Máquina Averiada

Escenario

• Reparación leve: \$300

• Reparación grave: \$1,200

• Probabilidad grave: 2/3

• Máquina usada: \$600

Valor esperado del arreglo: \$900

Decisiones por Agente

Agente Rojo (averso al riesgo):

Compra la máquina usada por \$600

Agente Verde (tolerante al

riesgo): Arriesga a reparar la

máquina

Sistema Experto: Análisis de Curación

Análisis de 14 casos de cobayas tratadas con sustancia experimental. La entropía global del sistema es 0.94029 bits.

Reglas de Decisión por Estado de Enfermedad

Estado Avanzado

Siempre resulta en curación (4/4 casos)

Estado Terminal

Condición fuerte → Defunción Condición débil → Curación

Estado Incipiente

Dosis ≤ $70 \Rightarrow$ Curación Dosis ≥ $85 \Rightarrow$ Defunción

Wlave as wank your waar at your CLIPS lUSIs expert system, usin ann answation in fhexpert systemss. it, anuval, for new baling programming, somiant eraywen in remrrad, CLIPS the CLIPS Inirt ustem like must Bening /ystem, aypert computten, ito witherw ualing new wlooyiaable office sytem. rentry wimt 1,

Implementación en CLIPS

```
; Sistema experto: Curación vs Defunción
(defrule r-avanzado-curacion
 (declare (salience 80))
 (not (decision (efecto?)))
 (paciente (estado avanzado))
 =>
 (assert (decision (efecto curacion))))
(defrule r-terminal-fuerte-defuncion
 (declare (salience 90))
 (not (decision (efecto?)))
 (paciente (estado terminal) (condicion fuerte))
 =>
 (assert (decision (efecto defuncion))))
```

El sistema experto utiliza reglas con diferentes niveles de prioridad (salience) para determinar el efecto del tratamiento.

Conclusiones y Aplicaciones

Teoría de Utilidad

Fundamental para modelar preferencias racionales y toma de decisiones bajo incertidumbre

Sistemas Expertos

Herramientas poderosas para automatizar decisiones complejas basadas en conocimiento

Aplicación Práctica

Los conceptos se aplican desde juegos de azar hasta diagnósticos médicos automatizados

Universidad Nacional de Cuyo - Facultad de Ingeniería

