به نام خالق ستارگان

دانشگاه تهران دانشکده مهندسی برق و کامپیوتر

تمرین سوم درس جداسازی کور منابع (BSS)

دكتر سعيد اخوان

سیده غزل موسوی	نام و نام خانوادگی
۸۱۰۱۰۰۲۵۹	شماره دانشجویی
14.4.17.77	مهلت ارسال پاسخ

ابتدا با دستور unifrnd منبع S_1 و S_2 به ترتیب در بازه S_3 از S_3 با اندازه $T \times T$ و همچنین تابع مخلوط کننده را transposed و می کنیم. توجه شود که منابع به صورت ماتریس ستونی تعریف شدهاند ولی برای تشکیل ماتریس S_3 از ماتریسهای منابع استفاده می کنیم.

طبق گفته سوال، ماتریس مخلوط کننده به صورت خطی و آنی است در نتیجه ماتریس مشاهدات از رابطه زیر به دست میآید.

$$\underline{X}_{3 \times T} = \underline{A}_{3 \times 2}. \underline{S}_{2 \times T}$$
 $A = \begin{bmatrix} 1 & -2 \\ 2 & -1 \\ 3 & -2 \end{bmatrix} \xrightarrow{\text{yl mislow } |z| \text{ and }$

آ) با استفاده از دستور scatter3، نمودار پراکندگی مشاهدات را رسم میکنیم و میبینیم که مشاهدات تقریبا روی یک صفحه دوبعدی دوبعدی پخش شدهاند. با توجه به اینکه مشاهدات ناشی از ترکیب خطی دومنبع هستند، انتظار میرفت که در یک صفحه دوبعدی پخش شوند.

شکل ۱. نمودار پراکندگی مشاهدات درفضای سه بعدی

همانطور که در درس مطرح شد هدف از تحلیل PCA یافتن پایههای یکه و متعامد است به گونهای که این پایهها به بهترین نحو ممکن دادهها را توصیف کند. سپس برای یافتن این پایهها به این مسئله بهینهسازی رسیدیم که باید اندازه تصویر هریک از دادهها را روی آن بردار پایه ماکسیمم کنیم و میدانستیم که منابع uncorrelated هستند. در نهایت این مسئله بهینهسازی را با استفاده

از روش لاگرانژ حل کرده و به این نتیجه رسیدیم که ماتریس بردارهای ویژه و مقادیر ویژه با استفاده از ماتریس کورولیشین مشاهدات

به دست می آید. در متلب با استفاده از دستور eig ماتریس بردارهای ویژه U و مقادیر ویژه D به دست آمد.

شکل ۲. ماتریس مقادیر و بردارهای ویژه

همانطور که مشاهده میشود یکی از مقادیر ویژه صفر است و این یعنی دادههای ما در راستای آن بردار پایه پراکندگی ندارد.

ب)

باتوجه به توضیحات در قسمت قبل ما در نهایت به مسئله بهینهسازی زیر رسیدیم:

$$\begin{cases} f(u_1) = \operatorname{argmax}\left(\underline{u_1^T} R_x \underline{u_1}\right) \\ s. t & \underline{u_1^T u_1} = 1 \end{cases}$$

روش steepest descend:

ابتدا بردار u_1 را با اندازه 1 imes 3 با مقادیر اولیه ۱ تعریف می کنیم و سپس در هرمرحله طبق رابطه زیر بردار u_1 را آپدیت می کنیم.

$$g = 2R_x \underline{u_1}$$

$$\underline{u_{1(k+1)}} = \underline{u_{1(k)}} + \mu \times 2R_x \underline{u_{1(k)}}$$

 $\mu=0.0001$ شرط توقف نیز زمانی است که مقدار تابع هدف در نقطه فعلی با نقطه قبلی به اندازه 0.0001 اختلاف داشته باشد. مقدار u_1 نرمال می شود. u_2 است. پس از هرآپدیت نیز اندازه بردار u_3 نرمال می شود.

برای بردارهای u_2 و u_3 نیز مشابه بالا عمل می کنیم با این تفاوت که شرط تعامد را نیز اعمال می کنیم و سپس نرمال می کنیم. $d_i=u_i^TR_xu_i$ برای متعامد شدن تصویر بردارها را بر روی بردار دیگر از خود بردار کم می کنیم سپس مقادیر ویژه نیز از رابطه به دست می آید.

```
Steepest Descent converged with mu = 0.01 after 4 iterations. Steepest Descent converged with mu = 0.01 after 4 iterations. Steepest Descent converged with mu = 0.01 after 2 iterations.
```

شکل ۳. همگراشدن مقادیر بردارهای ویژه

شکل ۴. ماتریس مقدار و بردار ویژه به دست آمده با روش steepest descend

روش Newton:

برای روش نیوتن آپدیت کردن به صورت زیر انجام می شود و مشابه روش قبلی شرط u_1 یکه بودن و شرط دو بردار پایه دیگر علاوه بر یکه بودن متعامد بودن بر دیگر بردارهای یکه نیز هست.

$$g = 2R_x \underline{u_1}$$

$$h = R_x \underline{u_1}$$

$$\underline{u_{1(k+1)}} = \underline{u_{1(k)}} + H^{-1} \times 2R_x \underline{u_{1(k)}}$$

شکل ۵. ماتریس مقادیر و بردارهای ویژه با استفاده از روش Newton

ماتریس U و U به دست آمده از هردو روش بسیار به جواب قسمت آ نزدیک و مشابه است منتها روش steepest descend خیلی دقیق تر به دست آمده است.

وقتی از inv استفاده می کردیم به مقدار خاطر نزدیک صفر وارنینگ می داد و از دستور pinv استفاده کردیم منتها مقادیر خطای بیشتری نسبت به بخش الف دارند.

شکل ۶. ماتریس مقادیر و بردارهای ویژه با روش نیوتن و استفاده pinv

ج)

 u_3 مقدار ویژه صفر همانطور که دربخش اول گفته شد مشاهدات در یک صفحه دو بعدی پخش شده است و در راستای بردار u_3 مقدار ویژه صفر شده است به این معنی که واریانس تصویر مشاهدات در راستای u_3 صفر است و در آن جهت پراکندگی ندارد.

*در واقع مشاهدات ترکیب خطی از بردار مکانی هستند و هر ستون ماتریس مخلوط کننده اثر هر منبع را روی ماتریس مشاهدات نشان می دهد و از آنجا که تنها دو منبع داشتیم انتظار می رفت که مشاهدات فقط در دو راستا پخش شده باشد و راستای سوم پراکندگی نداشته باشند که به این معنی است که بردار u_3 بر ماتریس a_1 یا در واقع هر ستون آن که a_2 و a_2 هستند عمود هستند.

$$u_3A =$$
 $1.0e-14 *$
 $0.0416 -0.1499$
 $0.0416 -0.1499$

همانطور که در صورت سوال گفته شد ضرب داخلی A و u_3 چون عمود هستند صفر است که تصویر بالا نیز این موضوع را تایید می کند.

*

شكل ٨. ماتريس ٢

د) برای اینکه دادهها را سفید کنیم:

۱) باید دادهها را uncorrelated کنیم.

۲) و واریانس دادهها را ۱ کنیم.

$$B = D^{-0.5}A$$

$$Z = D^{-\frac{1}{2}} I I^T X$$

$$R_{z} = ZZ^{T} = D^{-\frac{1}{2}}U^{T}XX^{T}UD^{-\frac{1}{2}} = D^{-\frac{1}{2}}U^{T}R_{x}UD^{-\frac{1}{2}} = D^{-\frac{1}{2}}U^{T}UDU^{T}UD^{-\frac{1}{2}} = I$$

ماتریسی که بتواند درفضای جدید دادهها را سفید کند ماتریس B است و درنهایت کورولیشین مشاهدات به دست آمده از ماتریس B ماتریسی همانی است که نشان می دهد واریانس دادهها B شده است.

$$B =$$

شكل ٩. ماتريس B

Rz =

شكل ۱۰. كوروليشين ماتريس مشاهدات سفيدشده

ه) برای اینکه بعد دادهها اولیه را کاهش دهیم به طوری که ۹۰ درصد انرژی کل مشاهدات حفظ شود باید ببینیم چندتا از مقادیر ویژه را نگه داریم تا نسبت مجموع آنها به مجموع کل مقادیر ویژه بیشتر از ۹۰ درصد شود. و از آنجا میفهمیم که تا چه ابعادی می توانیم کاهش دهیم.

اگر و d_1 و انگه داریم، ۱۰۰ درصد انرژی حفظ میشود.

Energy retention ratio after 2D reduction: 100.00

اگر به یک بعد کاهش دهیم و تنها d_1 را نگه داریم:

Energy retention ratio after 1D reduction: 96.13

در نتیجه می توان با حفظ حداقل انرژی ۹۰ درصد دادههای اولیه را به ۱ و ۲بعد کاهش ابعاد داد.