Part 10. Tree-based models - part 2

Dr. Nguyen Quang Huy

July 22, 2020

Tree-based model

- Tree-based model is a low-bias and high-variance method
- In this section, we introduce variance-reduction techniques in tree-based model including bagging, random forests, and boosting.
- These approaches reduce the variance of tree-based models by producing multiple trees which are then combined to yield a single prediction.
- The improvements in prediction accuracy of these approaches are at the expense of some loss in model interpretation.
- The topic to be discuss in this section
 - Bootstrapping
 - Bagging and random forest
 - Boosting

Boostrapping

Bootstrap is a widely applicable and extremely powerful statistical tool that can be used to quantify the uncertainty associated with a given estimator.

```
summary(lm(medv~lstat,data=Boston))
##
## Call:
## lm(formula = medv ~ lstat, data = Boston)
##
## Residuals:
##
       Min
                 10 Median
                                   30
                                          Max
## -15.168 -3.990 -1.318 2.034 24.500
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.55384   0.56263   61.41   <2e-16 ***
                -0.95005
                             0.03873 -24.53 <2e-16 ***
##
   lstat
   Dr. Nguyen Quang Huy
                       Part 10. Tree-based models - part 2
                                                     July 22, 2020
```

3 / 22

Boostrapping

```
N<-1000
beta2<-rep(0,N)
for (i in 1:N){
    x<-sample(1:nrow(Boston),nrow(Boston),replace=TRUE)
    beta2[i]<-lm(medv~lstat,data=Boston[x,])$coef[2]
}
plot(density(beta2))</pre>
```


Boostrapping

Boostrap is useful in situations in which it is hard to compute the standard deviation of an estimator

Bagging

- Given a set of n independent observations Z_1, \dots, Z_n , each with variance σ^2 , the variance of the mean \bar{Z} of the observations is given by σ^2/n .
- If we have n independent training data sets, we could calculate $\hat{f}_1, \dots, \hat{f}_n$ and average them in order to obtain a single low-variance model.
- It is not practical because we do not have access to multiple training sets. Instead, we can bootstrap, by taking repeated samples from the (single) training data set.
- Suppose that B different bootstrapped training data sets, we can train our method on the b^{th} bootstrapped training set in order to get $f^b(x)$, and finally average all the predictions

$$\hat{f}(x) = \frac{1}{B} \sum_{b=1}^{B} f^b(x)$$

Bagging

To apply bagging to regression trees,

- Construct *B* regression trees using *B* bootstrapped training sets.
- These trees are grown deep and are not pruned.
- Each individual tree has high variance, but low bias.
- Averaging these B trees to obtain prediction with lower variance than single tree

To apply bagging to classification trees, we can record the class predicted by each of the B trees, and take a majority vote: the overall prediction is the most commonly occurring majority class among the B predictions.

Bagging and Boston data set

```
library(randomForest)
dat<-Boston
standardize < -function(x) \{x < (x - mean(x, na.rm = TRUE)) / sd(x, na.rm
for (col in names(dat)){
  if((col!="medv")&class(dat[,col]) %in% c("integer", "numeric")
    dat[,col] <-standardize(dat[,col])</pre>
set.seed(1)
test index<-createDataPartition(dat$medv, times = 1, p = 0.2,1
train <-dat[-test index,]
test <- dat[test index,]
```

Bagging and Boston data set

[1] 2.942067

Increase the number of tree and observe the test error?

Bagging and Boston data set

Bagging - number of tree and test error

Bagging

- Bagging results in improved accuracy over prediction using a single tree.
- Unfortunately, it can be difficult to interpret the resulting model.
- Bagging improves prediction accuracy at the expense of interpretability.
- We can obtain an overall summary of the importance of each predictor using the RSS (for bagging regression trees) or the Entropy index (for bagging classification trees)

```
##
             %IncMSE IncNodePurity
## crim
           21.346694
                          999.88054
## zn
            2.203785
                           30.26316
                          231.67418
## indus
           12.217769
## chas
            0.418869
                           39.55540
## nox
           32.784004
                          838.88029
## rm
           68.741107
                        14131.42916
```

Random forest

- Random forests provide an improvement over bagged trees by way of a random small tweak that decorrelates the trees
- If there is one very strong predictor in the data set, along with a number of other moderately strong predictors, all of the trees in bagging will use the strongest predictor in the top split.
- The predictions from the bagged trees will be highly correlated.
- Averaging many highly correlated responses does not lead to as large of a reduction in variance.
- Random forests overcome this problem by forcing each split to consider only a subset of the predictors (m random predictors instead of all p predictors)
- ullet How to choose value of m, the number of random predictors using in each split, is out of scope of this course. In practice, they use

Random forest

Random forest

Random forest and Boston data set

Random forest and Default data set

Using bagging and random forest to predict default variables.

```
dat<-Default
standardize < -function(x) \{x < -(x-mean(x, na.rm=TRUE))/sd(x, na.rm = TRUE)\}
for (col in names(dat)){
  if((col!="default")&class(dat[,col]) %in% c("integer", "numer
    dat[,col] <-standardize(dat[,col])</pre>
set.seed(1)
test_index<-createDataPartition(dat$default, times = 1, p = 0</pre>
train<-dat[-test index,]
test <- dat[test index,]
```

Random forest and Default data set

Using bagging and random forest to predict *default* variables.

```
## bag.pred No Yes
## No 4788 114
## Yes 46 53
```

Boosting

- Boosting is a general approach that can be applied to many statistical learning methods for regression or classification.
- In random forest method, the trees are grown independently using multiple copies of the original training data set using the bootstrap.
- Applying boosting to tree-based model, the trees are grown sequentially: each tree is grown using information from previously grown trees
- Instead of growing some large trees which fit the data hard and potentially overfitting, the boosting approach learns slowly
- Boosting involves combining a large number of decision trees, f^1 , ..., f^B where f^{j+1} is the tree grown from fitting predictors to the residuals from f^j .

Boosting for regression tree

Boosting with parameter B, d, λ .

- Step 1: Let $\hat{f} = 0$ and $res_i = y_i$ for all i in the training set.
- Step 2: For each $b = 1, 2, \dots, B$
 - ullet Fit a d-nodes tree to (**X,res**) and get a prediction \hat{f}_b
 - Update the prediction: $\hat{f} = \hat{f} + \lambda \times \hat{f}_b$
 - Update the residual: $res = res \lambda \times \hat{f}_b$
- Step 3: Final output of boosted model:

$$Output = \sum_{b=1}^{B} \lambda \ \hat{f}_b$$

where B is the number of trees and λ is the learning rate. (Typical values of λ are 0.01 and 0.001)

Boosting

Boosting and Boston data set

```
library(gbm)
boost.fit<-gbm(medv~.,data=train,
          n.trees = 5000, # parameter B
          interaction.depth=5, # parameter d
          shrinkage = 0.005) # parameter lambda
## Distribution not specified, assuming gaussian ...
boost.pred<-predict(boost.fit, newdata=test, n.trees=5000)
sqrt(mean((boost.pred-test$medv)^2))
```

[1] 2.755437

Xgboost

[1] 2.572969