This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

	<u></u>	
•		

DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat (c) 2004 EPO. All rts. reserv. 10558287 Basic Patent (No, Kind, Date): JP 4147542 A2 19920521 <No. of Patents: 002> Patent Family: Patent No Kind Date Applic No Kind Date JP 4147542 A2 19920521 JP 90270345 Α 19901011 (BASIC) JP 3010305 B2 20000221 JP 90270345 Α 19901011 Priority Data (No, Kind, Date): JP 90270345 A 19901011 PATENT FAMILY: JAPAN (JP) Patent (No, Kind, Date): JP 4147542 A2 19920521 ELECTRON EMITTING DEVICE AND MANUFACTURE THEREOF (English) Patent Assignee: CANON KK Author (Inventor): TAKEDA TOSHIHIKO; SAKANO YOSHIKAZU; MISHINA SHINYA; KANEKO TETSUYA; NOMURA ICHIRO; ONO HARUTO Priority (No, Kind, Date): JP 90270345 A 19901011 Applic (No, Kind, Date): JP 90270345 A 19901011 IPC: * H01J-029/46; H01J-001/30 CA Abstract No: ; 117(26)263053M Derwent WPI Acc No: ; G 92-222839 JAPIO Reference No: ; 160423E000130 Language of Document: Japanese Patent (No, Kind, Date): JP 3010305 B2 20000221 Patent Assignee: CANON KK Author (Inventor): TAKEDA TOSHIHIKO; SAKANO YOSHIKAZU; MISHINA SHINYA; KANEKO TETSUYA; NOMURA ICHIRO; ONO HARUTO Priority (No, Kind, Date): JP 90270345 A 19901011 Applic (No, Kind, Date): JP 90270345 A 19901011 IPC: * H01J-009/02; H01J-001/316; H01J-009/14

Language of Document: Japanese

THIS PAGE BLANK (SPTO)

(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3010305号 (P3010305)

(45)発行日 平成12年2月21日(2000.2.21)

(24)登録日 平成11年12月10日(1999.12.10)

(51) Int.CL'		識別記号	PΙ		
H01J	9/02		H01J	9/02	E
	1/316			1/30	E
	9/14			9/14	С

鯖求項の数1(全 5 頁)

(21) 出國番号	特展平2-270345	(73) 特許権者	999999999
			キヤノン株式会社
(22)出鹽日	平成2年10月11日(1990.10.11)		東京都大田区下丸子3丁目30番2号
		(72)発明者	武田 俊彦
(65)公開番号	特開平4-147542		東京都大田区下丸子3丁目30番2号 キ
(43)公開日	平成4年5月21日(1992.5.21)		ヤノン株式会社内
客查請求日	平成9年8月14日(1997.8.14)	(72)発明者	坂野 裏和
			東京都大田区下丸子3丁目30番2号 キ
			ヤノン株式会社内
		(72)発明者	三品 仲也
			東京都大田区下丸子3丁目30番2号 キ
			ヤノン株式会社内
		(74)代理人	99999999
			弁理士 豊田 着雄 (外1名)
		審查官	被多江 進
			最終頁に続く

(54) 【発明の名称】 電子放出装置の製造方法

1

(57)【特許請求の範囲】

【請求項】】基板上に表面伝導形電子放出素子用電極を 形成した後、基板上全面に第1層目の絶縁層を設け、そ の後少なくとも後に電子放出部が形成される部分に位置 する該第1層目の絶縁層をエッチング除去し、その後、 表面伝導形電子放出素子の電子放出部を形成し、その上 から少なくとも前記第1層目の絶縁層の一部及び電子放 出部を設電子放出部と異種の材料から成る保護用薄膜で 覆い、その後、基板上全面に第2層目の絶縁層を設け、 該第2層目の絶縁層の上に電子通過孔を有したグリッド 10 て、例えば、エム アイ エリンソン(M.I.Elinson) 電極を形成し、その後、電子放出部上方に位置する該第 2層目の絶縁層を、前記グリッド電極をマスクとしてエ ッチング除去して前記保護用薄膜を露出させ、その後、 少なくとも電子放出部上に存在する前記保護用薄膜を、 前記グリッド電極をマスクとしてエッチング除去すると

とを特徴とする電子放出装置の製造方法。

【発明の詳細な説明】

[産業上の利用分野]

本発明は、表面伝導形放出素子を用いた電子放出装置 の製造方法に関し、特に、種々の加工処理に耐え得る2 層の絶縁層及び放出部保護膜を有する電子放出装置の製 造方法に関する.

[従来の技術]

従来、簡単な構造で電子の放出が得られる素子とし 等によって発表された冷陰極素子が知られている[ラジ オ エンジニアリング エレクトロン フィジィッス (Radio Eng.Electron.Phys.) 第10巻、1290~1296頁、 1965年]。

との種の表面伝導形電子放出素子としては、前記エリ

ンソン等により開発されたSnO。(Sb)薄膜を用いたも の、AL薄膜によるもの [ジー・ディトマー: "スイン ソリド フィルムス"(G.Dittmer: "Thin Solid Film s"),9巻,317頁, (1972年)]、ITO薄膜によるもの [エムハートウェル アンド シー ジー フォンスタ ッド "アイ イー イー イー トランス" イー ディ ー コンフ (M.Hartwell and C.G.Fonstad: "IEEE Tran s.ED Conf.")519頁. (1975年)]、カーボン薄膜によ るもの[荒木久他: "真空",第26巻, 第1号,22頁, (1 983年)]などが報告されている。

これらは、成膜技術やフォトリソグラフィー技術の進 歩とあいまって、基板上に多数の素子を形成することが 可能となりつつあり、マルチ電子源を用いた各種画像形 成装置等への応用が期待されている。

[発明が解決しようとする課題]

しかしながら、表面伝導形電子放出素子は、小面積の 薄膜に電流を流すことにより電子放出が生ずる現象を利 用するもので、この放出現象は放出部表面の特性に大き く左右される。かかる素子を用いた電子放出装置を製造 する場合に、放出部を形成する薄膜表面は種々のダメー 20 起こしてしまう。 ジを受け易い。特に、放出部上に設けられた絶縁層の除 去時には、その影響が大きく、電子放出特性の劣化や放 出部の破壊等が生じるため、表面伝導形放出素子の応用 に著しく妨げとなっていた。

すなわち、本発明の目的とするところは、表面伝導形 電子放出素子を用いた電子放出装置において、電子放出 部が上述のような悪影響を受けない電子放出装置の製造 方法を提供することにある。

[課題を解決するための手段]

とするところは、基板上に少なくとも1個の表面伝導形 電子放出素子を設け、その上方に該素子から放出された 電子を誘導あるいは引き出すためのグリッド電極を設け て成る電子放出装置の製造方法において、

基板上に表面伝導形電子放出素子用電極を形成した 後、基板上全面に第1層目の絶縁層を設け、その後少な くとも後に電子放出部が形成される部分に位置する該第 1層目の絶縁層をエッチング除去し、その後、表面伝導 形電子放出素子の電子放出部を形成し、その上から少な くとも前記第1層目の絶縁層の一部及び電子放出部を該 40 電子放出部と異種の材料から成る保護用薄膜で覆い、そ の後、基板上全面に第2層目の絶縁層を設け、該第2層 目の絶縁層の上に電子通過孔を有したグリッド電極を形 成し、その後、電子放出部上方に位置する該第2層目の 絶縁層を、前記グリッド電極をマスクとしてエッチング 除去して前記保護用薄膜を露出させ、その後、少なくと も電子放出部上に存在する前記保護用薄膜を、前記グリ ッド電極をマスクとしてエッチング除去する電子放出装 置の製造方法としている点にある。

としては、金属、酸化物等種々のものが可能であり、保 護用薄膜形成後の製造工程中でダメージを受けないもの であればよい.

[作用]

本発明では、特に、第1層目の絶縁層及びその上に設 けた保護用薄膜に特徴があるわけであるが、これらの作 用について以下に述べる。

すなわち、前述したように、従来の様成のように、電 子放出部の上面をも含めて直接絶縁層を設けて、その 10 後、かかる電子放出部上部の絶縁層をエッチング除去し たのでは、電子放出部が種々のダメージを受け易い。そ こで、かかるダメージを抑えるために保護用薄膜を設け るわけであるが、保護用薄膜を電子放出部上面のみに設 けることは製造技術上困難である。どうしても、素子電 極あるいはその他の領域までをも含めて設けざるを得な

かかる状態で、後に保護用薄膜をエッチング除去して も、完全に除去することは難しく、かつ、材質が一般に 導電性であることも加味して、ショート等の問題を引き

そこで、少なくとも電子放出部を除いた他の領域 (表 面) に本発明でいう第1層目の絶縁層を設け、その後に 設ける保護用薄膜が素子の電極等に接触する領域を制限 し、後でかかる保護用薄膜をエッチング除去した際、残 留した保護用薄膜を素子電極上ではなく、第1層目の絶 縁層の上に残すことによって、素子電極等からの絶縁を 確保するものである。

以上述べたように、

①保護用薄膜は、製造段階における電子放出部の受ける 上記問題点を解決するために達成された本発明の特徴 30 ダメージを極力抑え、電子放出特性を良好なものとし、 ②第1層目の絶縁層は、残留保護用薄膜を素子電極等か ら絶縁し、同様に良好な電子放出特性を与えてくれると とになる.

[実施例]

以下、実施例により本発明を具体的に詳述する。

第1図は、本発明の製造方法を用いて作製した電子放 出装置の断面図である。同図において、1は絶縁性ガラ ス基板、2はSiQ.薄膜、3は表面伝導形放出素子の電 極、4は電子放出部を形成するパラジウム微粒子、5は 第1層目の絶縁層、6は放出部保護用薄膜、7は第2層 目の絶縁層、8は電子を引き出すためのグリッド電極で

ことで、上記構成の製造工程について第2図に基づい

- ①. 先ず、絶縁性ガラス基板 1 上に、SiO, を真空蒸着に よりほば5000A形成(Sio,薄膜2)した後、ほぼ10μm の間隔を有する一対の電価3を通常のフォトリソグラフ ィ技術等を用いて形成する。
- 尚、本発明で用いられる電子放出部保護用の薄膜材料 50 ②. 次に、RFスパッタにより第1層目の絶縁層5をSiQ

で形成した。かかるSiQ 膜の膜厚は3000Aである。その 後、このSia、層の後に電子放出部が形成される部分近傍 のみをリアクティブイオンエッチング (RIE) を用いて エッチング除去し、放出部電極を露出させた。

- ③. 次に、通常の真空蒸着とフォトリソグラフィ技術を 用いて、クロム薄膜によるマスクを形成した後、電極間 のみに有機パラジウム化合物を含む有機溶媒(奥野製薬 工業製キャタペーストーccp) を回転塗布し、さらに空 気中で300℃、10分間の焼成を行い、パラジウムを微粒子 化して電子放出部4を形成した。この後、パラジウムの 10 ッド電極、9は蛍光体基板、10は真空容器である。 パターニングに使用したクロムマスクを全てエッチング 除去し、表面伝導形電子放出素子部を完成した。
- ④. 次に、電子を引き出すためのグリッド電極8及びと れを支える第2層目の絶縁層7を設けるにあたり、図示 のように放出部全体を保護するための保護用薄膜6をア ルミニウムを用いて形成した。かかるアルミニウムの膜 厚はほぼ3000人であり、通常の蒸着及びリソグラフィ技 術を用いた.
- 5. 次に、上述工程で得られた基板上全面に、電子放出 素子とグリッド電極8とを電気的に絶縁するための第2 20 [発明の効果] 層目の絶縁層7をSiO。により形成した。かかる絶縁層7 の膜厚はほぼ10μmで、RFスパッタを用いて形成した。
- **⑤**. 次に、上述工程で得られた第2層目の絶縁層7上 に、ニッケル(厚さ5000A)を用いてグリッド電極8を 形成し、さらに、グリッド電極8上に絶縁層7のエッチ ングに対する保護層(図示せず)を設け、エッチングに より電子放出部鉛直上にグリッド孔(約35µm×150µ m)を開けた。
- の、次に、上述電子通過孔を有したグリッド電極8をマ スクとして、電子放出部上に積層されたSiQ、膜7をRIE 30 を有する電子放出装置が得られる、 (Reactive Ion Etching) を用いてエッチング除去し、 保護用薄膜 6 を露出させ、最後に、かかる保護用薄膜た るアルミニウム薄膜6を除去して電子放出装置を完成し

こうして得られた電子放出装置を真空容器中に入れ、 表面伝導形電子放出素子に140の電圧を印加し、グリッ ド電極8に0~+100Vの電圧を印加して放出される電流 を測定したところ、グリッド電極 (Vg) に比例した放出 電流が得られた。

比較例1

一方、保護用アルミニウム薄膜5を設けない他は、全 く上述実施例1と同様の工程で作製した場合において は、第2層目の絶縁層7をエッチングした際に、電子放 出部に設けたパラジウム微粒子4がSiQ.薄膜2とともに 剝離し、電子放出装置としての機能が得られなかった。

以上から、本発明による放出部保護用薄膜が有効に機 能していることが確認された。

実施例2

次に、第2の実施例として本発明により得られた電子 放出素子を用いて、電子線を用いた画像形成装置を作製 した。その斜視図を第3図に示す。同図において、1は ガラス基板、3は素子電極、4は電子放出部、8はグリ

とこで、電子放出素子、グリッド電極、絶縁層等の形 成方法は実施例1と同様であり、100mm×75mm角のガラ ス基板上に、1ライン当り72個の放出素子が並列接続さ れたものを64ライン形成した。

得られた基板 1 上に、ガラススペーサ(不図示)を介 して蛍光体基板9を設け、真空容器10に入れ、内部を1 ×10 Torr程度に真空排気したのち、素子駆動電圧15V。 蛍光板印加電圧 SKV、グリッド電圧 0~50Vでパルス駆動 したところ、グリッド電極8により変調が確認された。

以上説明したように、本発明の電子放出装置の製造方 法によれば、

- ①. 電子放出部上に保護用薄膜を設けておくことで、他 の工程における放出素子へのダメージを抑えることがで き、極めて良好な放出特性を有する電子放出装置が得ら れる.
- ②. 保護用薄膜を設ける際、第1層目の絶縁層を設けて その被覆領域を制限することで、残留保護用薄膜を索子 電極等から絶縁することができ、極めて良好な放出特性

といった効果がある。

【図面の簡単な説明】

第1図は、本発明の製造方法により得られた電子放出装 置の部分断面図を示す。

第2図は、本発明の製造方法を示した工程図である。 第3回は、本発明を用いて作製した画像形成装置の斜視

1 ……ガラス基板、2 …… SiO。 薄膜

3 ……素子電極、4 ……電子放出部

40 5……第1層目の絶縁層、6……放出部保護用薄膜

7……第2層目の絶縁層、8……グリッド電極

9 …… 蛍光体基板、10 …… 真空容器

【第1図】

【第2図(その1)】

【第2図(その2]

【第3図】

フロントページの続き

(72)発明者 金子 哲也

東京都大田区下丸子3丁目30番2号 キ

ヤノン株式会社内

(72)発明者 野村 一郎

東京都大田区下丸子3丁目30番2号 キ

ヤノン株式会社内

(72)発明者 小野 治人

東京都大田区下丸子3丁目30番2号 キ

ヤノン株式会社内

(56)参考文献 特開 昭63-13247 (JP, A)

(58)調査した分野(Int.C1.', DB名)

H01J 1/30,9/02 H01J 29/04,31/12

			•
			4
			<i>ş</i> .
			2.2
	4	*	
		•	
			,0
		Ŷ	. 2
	*		
		•	