Numbers, Sequences & Series

Lecture Notes, T1 2023

Silvio Fanzon

3 Sep 2023

Table of contents

Welcome	3
References	3
I Numbers	4
1 Introduction	5
II Sequences	6
2 Introduction	7
III Series	8
3 Introduction	9
License	10
Reuse	10
Citation	
References	11

Welcome

These are the Lecture Notes of **Numbers**, **Sequences** & **Series 400297** for T1 2023 at the University of Hull. I will follow these lecture notes during the course. If you have any question or find any typo, please email me at

S.Fanzon@hull.ac.uk

Up to date informations about the course and homework will be published on the course webpage

silviofanzon.com/blog/2023/NSS

A **pdf** version of the notes is available to download on the top-right.

References

We will study curves and surfaces in \mathbb{R}^3 . I will follow mainly the textbook by Pressley [6]. Other references that inspired these notes are the books by do Carmo [2], O'Neill [5] and Bär [1].

I will assume some knowledge from Analysis and Linear Algebra. A good place to revise these topics are the books by Zorich [7, 8]. In addition, it can be helpful to plot curves and surfaces to aid visualization. I will do this with Python 3. I recommend installation through Anaconda or Miniconda. The actual coding can then be done through, for example, Jupyter Notebook. Good references for scientific Python programming are [3, 4].

You are not expected to purchase any of the above books. These lecture notes will cover 100% of the topics you are expected to known in order to excel in the final exam.

Part I Numbers

1 Introduction

Part II Sequences

2 Introduction

Part III

Series

3 Introduction

License

Reuse

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Citation

For attribution, please cite this work as:

```
Fanzon, Silvio. (2023). Lecture Notes on Differential Geometry. https://silviofanzon.quarto.pub/2023-differential-geometry/
```

BibTex citation:

```
@electronic{fanzon-diff-geom-2023,
    author = {Fanzon, Silvio},
    title = {Lecture Notes on Differential Geometry},
    url = {https://silviofanzon.quarto.pub/2023-differential-geometry/},
    year = {2023}}
```

References

- [1] C. Bär. Elementary Differential Geometry. Cambridge University Press, 2010.
- [2] M. P. do Carmo. *Differential Geometry of Curves and Surfaces*. Second Edition. Dover Books on Mathematics, 2017.
- [3] R. Johansson. Numerical Python. Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib. Second Edition. Apress, 2019.
- [4] Q. Kong, T. Siauw, and A. Bayen. *Python Programming and Numerical Methods*. Academic Press, 2020.
- [5] B. O'Neill. Elementary Differential Geometry. Second Edition. Academic Press, 2006.
- [6] A. Pressley. Elementary Differential Geometry. Second Edition. Springer, 2010.
- [7] V. A. Zorich. Mathematical Analysis I. Second Edition. Springer, 2015.
- [8] V. A. Zorich. Mathematical Analysis II. Second Edition. Springer, 2016.