Ejercicio 1 Álgebra lineal	
$\chi_{n+1} = 4 \chi_n - \chi_n^2$; $\chi_b = 4 \sin^2 \theta$, $\chi_{n+1} = 4 \sin^2 (2^{m+1})$	()
$\chi_1 = 4(4 \sin^2 \theta) - (4 \sin^2 \theta)^2$	* Sin (26)=2 sin 0 cos 0
$\chi_1 = 16 \sin^2 \theta - 16 \sin^4 \theta$	Sin2 (20) = 45in20 Cos20
$\Rightarrow 16 \sin^2\theta(1-\sin^2\theta)$	
16 SIN ² O Cos ² O (4.4)	
= $4 \sin^2(2\theta)$ —> Se obtiene lo que se esperaba.	
Generalizando lo anterior	
$\chi_{n+1} = 4(4 \sin^2(2^n \theta))$	
$=16 \sin^4(2^n + 0)$	
= 16 SIN ² (2 ⁿ 0) (6) ² (2 ⁿ 0)	
$=4 \sin^2(22^n +)$	
$\chi_{n+1} = 4 \left(1n^2 \left(2^{n+1} + 4 \right) \right)$	
Ejercicio 5 de Álgebra Uneal	
$\chi_{l} = bi - \sum_{j=i+1}^{N} A_{ij} \chi_{j} \qquad j i = n, n-1,, 0$ Aii	
A es ma matriz triangular superior	
$ \begin{pmatrix} A_{11} \times_{1} + A_{12} \times_{2} + A_{13} \times_{3} + \cdots + A_{1n} \times_{n} \\ O + A_{22} \times_{2} + \cdots + A_{2n} \times_{n} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} $	
0 +	
$\chi_{n-2} = b_{n-2} - A_{n-1}, n-1$	$\frac{1}{1} \chi_{n-1} - A_{n-1}, n \chi_n$
$\chi_{N-1} = b_{N-1} - A_{N-1}, n \chi_n$ => $\chi_i = b_i - \sum_{j=i+1}^{N} A_{ij}$	
Αίί	