Real-time Regression Analysis of Streaming Health Datasets

Lan Luo
This work is supervised by Professor Peter X.K. Song.

March 25, 2019

Motivation

Challenges:

- storage for cumulatively growing datasets;
- recomputation when new data batch arrives.

Image sources: https://unixtitan.net/explore/see-clipart-smart-watch/, https://www.idownloadblog.com/2018/01/11/health-app-data-murder-investigaation/, http://medtechasia.in/new-medical-devices-being-regulated-under-the-drugs-and-cosmetics-act/

Motivation

Objective: updating the association between 5-year graft failure and demographic features of donors/recipients based on yearly updated kidney transplant data.

Introduction

HMMcopy.pdf

- Rule: Updating the objective statistics without historical raw data but only summary statistics.
- A simple example:

$$M(D_1, D_2) = \frac{1}{n_1 + n_2} \left(\sum_{i=1}^{n_1} x_{1i} + \sum_{i=1}^{n_2} x_{2i} \right) = \frac{1}{n_1 + n_2} \left(n_1 M(D_1) + \sum_{i=1}^{n_2} x_{2i} \right).$$

Question: Can the maximum likelihood estimation (MLE) in generalized linear models (GLM) be updated sequentially like the sample mean?

Model and Notations

- GLM: continuous, binary and count data;
- Suppose $(y_i, \mathbf{x}_i) \sim f(y, \mathbf{x}; \boldsymbol{\beta}_0, \phi_0)$ independently for $i = 1, \dots, N_B$;
- Goal: fit a regression model with mean $\mathbb{E}(y_i \mid \mathbf{x}_i) = g(\mathbf{x}_i^T \boldsymbol{\beta})$.

notation.pdf

Existing Methods

Methods	Pros	Cons (i) store large data (ii) refit model	
Oracle MLE	(i) asymptotically unbiased(ii) statistical efficient		
AI-SGD	online point estimation and bootstrap inference	large bias and standard error	
OLSE	online point estimation and inference linear model		
CEE/CUEE	online point estimation and inference	restriction: $B \ll n_b$	

Table: AI-SGD denotes the averaged implicit stochastic gradient descent (Toulis & Airoldi, 2015); OLSE, CEE and CUEE are three online meta-type estimation methods (Schifano *et al.*, 2016).

Renewable Estimation

• A simple scenario with two data batches D_1 and D_2 , we aim to solve $\hat{\beta}_2^{\star}$ satisfying

$$\mathbf{U}_{1}(D_{1}; \hat{\beta}_{2}^{\star}) + \mathbf{U}_{2}(D_{2}; \hat{\beta}_{2}^{\star}) = \mathbf{0},$$

ullet Taking the first-order Taylor expansion of the first term around \hat{eta}_1 leads to

$$\mathbf{U}_{1}(D_{1}; \hat{\beta}_{1}) + \mathbf{J}_{1}(D_{1}; \hat{\beta}_{1})(\hat{\beta}_{1} - \hat{\beta}_{2}^{*}) + \mathbf{U}_{2}(D_{2}; \hat{\beta}_{2}^{*}) + \frac{O_{p}(\|\hat{\beta}_{2}^{*} - \hat{\beta}_{1}\|^{2})}{2} = \mathbf{0}.$$

ullet The error term may be asymptotically ignored. We propose a new estimator \tilde{eta}_2 satisfies the following equation:

$$m{J}_1(D_1;\hat{eta}_1)(\hat{eta}_1- ilde{eta}_2)+m{U}_2(D_2; ilde{eta}_2)=m{0}.$$

• $\tilde{\beta}_2$ is a renewable estimator of β_0 , and the above equation is termed as an incremental estimating equation.

Renewable Estimation

• Generalizing to an arbitrary time point B, $\tilde{\beta}_B$ is the solution to the following incremental estimating equation:

$$\sum_{b=1}^{B-1} \boldsymbol{J}_b(D_b; \tilde{\boldsymbol{\beta}}_b)(\tilde{\boldsymbol{\beta}}_{B-1} - \tilde{\boldsymbol{\beta}}_B) + \boldsymbol{U}_B(D_B; \tilde{\boldsymbol{\beta}}_B) = \boldsymbol{0}$$

• Solving via incremental updating algorithm:

$$\tilde{\beta}_{B}^{(r+1)} = \tilde{\beta}_{B}^{(r)} + \left\{ \sum_{b=1}^{B-1} J_{b}(D_{b}; \tilde{\beta}_{b}) + J_{B}(D_{B}; \tilde{\beta}_{B-1}) \right\}^{-1} \\
\times \left\{ \sum_{b=1}^{B-1} J_{b}(D_{b}; \tilde{\beta}_{b})(\tilde{\beta}_{B-1} - \tilde{\beta}_{B}^{(r)}) + U_{B}(D_{B}, \tilde{\beta}_{B}^{(r)}) \right\} \\
= \tilde{\beta}_{B}^{(r)} + \left\{ \tilde{J}_{B-1} + J_{B}(D_{B}; \tilde{\beta}_{B-1}) \right\}^{-1} \tilde{U}_{B}^{(r)}$$

ullet Key components from historical data: $\Big\{ ilde{eta}_{B-1}, ilde{oldsymbol{J}}_{B-1}\Big\}.$

Theoretic Justification

Main Theorem

Under some regularity conditions, as $N_B = \sum_{b=1}^B n_b \to \infty$,

- **1** consistency: $\tilde{\beta}_B \stackrel{p}{\to} \beta_0$;
- 2 asymptotic efficiency: $\sqrt{N_B}(\tilde{\beta}_B \beta_0) \stackrel{d}{\to} \mathcal{N}(\mathbf{0}, \mathcal{I}^{-1}(\beta_0));$
- **③** ignorable error to the oracle MLE: $\|\tilde{m{\beta}}_B \hat{m{\beta}}_B^\star\|_2 = \mathcal{O}_p(1/N_B)$.

Implementation

- No historical data storage;
- Real-time estimation and inference.

algorithmcol.pdf

Data Example

- Total sample size: 244,614 samples ($N > 10^5$);
- Model: logistic regression;
- Outcome: 1 for graft failure at the 5-th year after transplantation and 0 otherwise;
- Objective: update *p*-values based on yearly-arrived data batches.

Data Example

Data Example

March 25, 2019

Conclusions and Future Directions

- Conclusions:
 - A novel renewable estimation method in the generalized linear model;
 - Ignorable error to the oracle MLE;
 - Our method is computationally efficient;
 - Real-time regression analysis without strong regularity conditions on relative scale of data batch size n_b and total number of batches B.
- Puture Directions:
 - Model homogeneity is assumed, and addressing partial homogeneous model is an undergoing direction.
- Questions?

March 25, 2019

References

Schifano, Elizabeth D, Wu, Jing, Wang, Chun, Yan, Jun, & Chen, Ming-Hui. 2016. Online updating of statistical inference in the big data setting. *Technometrics*, **58**(3), 393–403.

Toulis, Panos, & Airoldi, Edoardo M. 2015. Scalable estimation strategies based on stochastic approximations: classical results and new insights. *Statistics and computing*, **25**(4), 781–795.

Simulation Design

- B data streams with N_B independent observations (y_i, \mathbf{x}_i) from GLMs with mean model $\mathbb{E}(y_i \mid \mathbf{x}_i) = g(\mathbf{x}_i^T \beta_0)$;
- $\beta_0 = (0.2, -0.2, 0.2, -0.2, 0.2)'$, $\mathbf{x}_{i[2:5]} \sim \mathcal{N}_4(\mathbf{0}, \mathbf{V}_4)$ where \mathbf{V}_4 is a compound symmetry covariance matrix with correlation 0.5.

Scenarios:

- (1) divide a fixed $N_B=10^5$ evenly into
- B = 50, 100, 200, 500, 1000, 2000 data streams;
- (2) fix sub-sample size $n_b = 100$, b = 1, ..., B and let B increase from 10^5 to 10^6 .

Simulation 1 - Bias

- Average bias in Al-SGD is the largest;
- $\bullet \ \ In \ linear \ model, \ OLSE = Renew = MLE;$
- In logistic or Poisson model, as B increases, CEE > CUEE \gg Renew \approx MLE.

Simulation 1 - Coverage probability

- In linear model, OLSE = Renew = MLE;
- In logistic or Poisson model, 95% \approx MLE \approx Renew \gg CUEE >CEE \approx 0 as b increases;
- AI-SGD does not apply here.

Simulation 1 - Computation time

- Computation time = data loading time + processing time;
- In linear model, MLE > Renew > OLSE;
- ullet In logistic or Poisson model, CUEE > CEE > MLE > Renew.

Simulation 2

Fix $n_b = 100$, increase B from 10^3 to 10^4 :

	Logistic Model ($p = 5, n_b = 100$)					
	$B=10^3, N_B=10^5$					
	MLE	Renew	AI-SGD	CEE	CUEE	
A.bias($\times 10^{-3}$)	5.023	5.020	8.581	12.696	6.218	
Std. err. $(\times 10^{-3})$	6.538	6.539	-	6.576	6.581	
Cov. prob.	0.956	0.958	-	0.556	0.898	
C.Time (seconds)	2.951	0.663	-	3.022	5.763	
R.Time (seconds)	0.471	0.487	0.165	2.846	5.587	
	$B=10^4, N_B=10^6$					
A.bias($\times 10^{-3}$)	1.626	1.626	8.581	12.978	4.157	
Std. err. $(\times 10^{-3})$	2.067	2.067	-	2.136	2.081	
Cov. prob.	0.958	0.956	-	0	0.644	
C.Time (seconds)	323.566	8.149	-	34.483	68.642	
R.Time (seconds)	98.362	5.257	1.119	31.594	65.750	

- Increasing N_B helped to reduce bias in MLE and Renew, but not in Al-SGD;
- CEE and CUEE failed because B is much larger than n_b .

