1 Tema 3. Exercicis de treball comú.

- 1. Sigui A un domini Dedekind, i K = Quot(A). Considera per IdEnter(A) el monoid amb la multiplicació d'ideals generat pels ideals maximals de A, i considerem (1) = A com element neutre en IdEnter(A).
 - (a) Definim IdFrac(A) pels ideals fraccionaris de A, on $J \in IdFrac(A)$ si $J \subset K$ és un A-mòdul i existeix $\beta \in A$ on $\beta \cdot J \subset A$ (en particular βJ és un ideal de A). Proveu primer que tot A-submòdul de K $(M \subset K)$ finit generat és un ideal fraccionari de A. Considerem IdFrac(A) amb l'operació multiplicació de A-mòduls, veieu que dóna a IdFrac(A) una estructura de monoïd.

Tot seguit demostreu que si $I \in IdFrac(A)$ llavors I(A:I) = A on

$$(I:A) = \{k \in K | kI \subset A\}.$$

i proveu que IdFrac(A) és un grup abelià lliure generat pels ideals primers de A i tot ideal fraccionari de A és un A-mòdul finit generat.

- (b) Diem que un ideal fraccionari és principal si es de la forma αA per cert $\alpha \in K^*$. Diem dos ideals fraccionaris $I_1 \equiv I_2$ si $I_1I_2^{-1}$ és un ideal fraccionari principal dins IdFrac(A). Veieu \equiv és una relació d'equivalència i $IdFrac(A)/\equiv$ és un grup abelià.
- (c) Demostreu un isomorfisme de grups entre $C\ell(A)$ i $IdFrac(A)/\equiv$.
- (d) Demostreu que tot ideal en un domini de Dedekind A està generat com a molt per 2 elements.
- 2. Considera K un cos algebraicament tancat de car(K) > d i L = K(X)[y]/f(y, X) on $f(Y, X) = Y^2 f(X)$ amb $f(X) \in K[X]$ un polinomi mònic de grau $d \geq 3$ sense arrels repetides. Considereu K[X] l'anell de polinomis en la variable X, i sigui B = K[X, y]/f(y, X).
 - (a) Observeu que L és un cos i proveu que B és la clausura entera de K[X] en L, en particular justifiqueu que B és un domini de Dedekind.
 - (b) Trobeu la descomposició en ideals primers en B de $(X \alpha)B$ amb $\alpha \in K$. Explicitant quins ideals $(X \alpha)K[X]$ ramifiquen en B i quins espliten completament en B.
 - (c) Trobeu B' la clausura entera de K[1/X] en el cos L i estudieu la descomposició dels ideals primers de K[1/X] en B'.
 - (d) Si K no és algebraicament tancat, imposem que f(X) factoritza en K[X] en polinomis de grau 1 coprimers dos a dos. Quins arguments dels apartats a),b)c) anteriors són vàlids encara en aquesta situació?
- 3. Sigui A un domini integrament tancat, i K = Quot(A). Sigui L/K una extensió finita i separable de cossos i escrivim $L = K(\alpha)$. Sigui B la clausura entera de A en L, on sempre podem pensar $\alpha \in B$. Considera $Irr(\alpha, K)[X] \in A[X]$ observa que $B \subseteq f'(\alpha)'A[\alpha]$.
 - (a) (Lemma de Nakayama) Si B' és un subanell de B contenint A i satisfent les dues condicions següents:
 - L és generat per B' com a K-espai vectorial,

- $B' + \mathfrak{m}B = B$ per a tot ideal primer no zero \mathfrak{m} de A.
- Demostreu llavors que B' = B.
- (b) Suposem $Irr(\alpha,K)[X] = \sum_{i=0}^d a_i X^i \in A[X]$ on existeix un ideal primer \mathfrak{m} de A on $a_i \in \mathfrak{m}$ per $i=0,\ldots,a_{d-1},\ a_d=1$ i $a_0 \notin \mathfrak{m}^2$ (diem $Irr(\alpha,K)[X]$ es un polinomi \mathfrak{m} -Eisenstein). Demostreu llavors $\mathfrak{m}B$ té en la seva factorització en ideals primers en B un únic ideal maximal, i es té $A[\alpha] + \mathfrak{m}B = B$.
- (c) Sigui B' un subanell de B contenint A, on B' genera L com K-espai vectorial i $Irr(\alpha,K)[X]$ is \mathfrak{m} -Eisenstein per un ideal maximal de A amb $\alpha \in B' \subset B$ i $L = K(\alpha)$. Demostreu en aquesta situació que B' = B.
- (d) Proveu que $\mathbb{Z}[\sqrt[3]{3}]$ és integrament tancat.
- 4. Sigui $K = \mathbb{Q}[\sqrt{m}]$ amb m un enter lliure de quadrats.
 - (a) Trobeu \mathcal{O}_K l'anell d'enters de K, i expliciteu per cada primer p com és $p\mathcal{O}_K$ com ideals primers de K, és dir si és el producte d'un ideal primer, de dos ideals primers diferents o bé dos ideals primers però iguals.
 - (b) Suposa que $m \equiv 2, 3 \pmod{4}$ fixat i suposem $C\ell(\mathbb{Q}[\sqrt{m}]) = 1$ en aquest apartat. Quines condicions hem d'imposar en $\mathbb{Z}[\sqrt{m}]$ i l'ideal primer $p\mathbb{Z}$ senar, per a que existeixen x,y enters on $x^2 my^2 = (x \sqrt{m}y)(x + \sqrt{m}y) = p$?
 - (c) (*) existeixen $x, y \in \mathbb{Z}$ complint $p = x^2 + 6y^2$ amb p primer, si i només si $p \equiv 1, 7$ mòdul 24.
 - (d) De teoria de Galois sabem que hi ha exactament un cos K (per cert m) entre $\mathbb{Q}[e^{2\pi i/p}]$ i \mathbb{Q} on p és un primer senar. Pensant en la ramificació d'ideals entre $\mathbb{Q}[e^{2\pi i/p}]/\mathbb{Q}$ i que K és un cos intermig podeu dir alguna cosa respecte qui pot ser aquest valor de m?

2 Alguns resultats a conèixer

Per fer els exercicis anteriors podeu usar sense demostrar els següents resultats, en cas d'utilitat.

Sempre en el que segueix A és un domini de Dedekind, amb K = Quot(A) i L/K una extensió finita separable de cossos on B la clausura entera de A en L. Podem pensar L com K-espai vectorial i donat $\beta \in L$ tenim $\beta : L \to L$ on $\beta(l) := \beta l$ és un morfisme de K-espai vectorials, i es defineix la $Tr_{L/K}(\beta)$ la traça de la matriu associada a l'aplicació K-lineal β en una K-base fixada de L (on és pot demostrar que aquest valor no depén de la K-base triada). És defineix l'ideal fraccionari de L:

$$\mathcal{D}(B/A)^{-1} := \{ \alpha \in L | Tr_{L/K}(\alpha B) \subseteq A \}$$

i es demostra que $B \subseteq \mathcal{D}(B/A)^{-1}$ i la different correspon a l'ideal de B:

$$\mathcal{D}(B/A) = \{ b \in B | b \cdot \mathcal{D}(B/A)^{-1} \subset B \}.$$

Fet 2.1. Un ideal primer \mathfrak{m} de B és ramificat sobre A si i només si $\mathfrak{m}|\mathcal{D}(B/A)$.

Fet 2.2. Suposa $\alpha \in B$ i $B = A[\alpha]$ Si $Irr(\alpha, K)[X] \in A[X]$ llavors

$$\mathcal{D}(B/A) = (f'(\alpha))$$

com ideals de B on f' denota la derivada de f.

1

Fet 2.3. $Si\ L = K(\alpha)\ i\ Irr(\alpha, K)[X] \in A[X]$. Llavors

$$\mathcal{D}(B/A)^{-1} \subseteq f'(\alpha)^{-1}A[\alpha].$$

En particular, tenim $f'(\alpha)B \subset \mathcal{D}(B/A)$, i un ideal primer \mathfrak{m} de B on $f'(\alpha) \notin \mathfrak{m}$ és no-ramificat en L.

Fet 2.4. Sigui $\alpha \in B$ i $L = K(\alpha)$. I sigui $f(X) = Irr(\alpha, K)[X] \in A[X]$. Sigui \mathfrak{p} un ideal primer de A no-zero i pensem

$$\mathfrak{p}B = \beta_1^{e_1} \dots \beta_s^{e_s}$$

amb β_i ideals primers de B diferents, i e_j naturals ≥ 1 .

Suposem a més que $f'(\alpha) \notin \beta_i$, d'on s'obté que $e_i = 1$.

Amb aquestes hipòtesis, tenim:

1. Factoritzem f(x) modul \mathfrak{p} en $A/\mathfrak{p}[X]$ en producte de polinomis irreductibles en $A/\mathfrak{p}[X] =: \kappa[X]$:

$$f(X) = f_1(X) \cdot \ldots \cdot f_h(X) \in \kappa[X].$$

Llavors, s = h, a més per a cada $1 \le i \le g$ (fent una reordenació si cal) tenim $\beta_i = \mathfrak{p}B + \tilde{f}_i(\alpha)B$ on $\tilde{f}_i \in A[X]$ monic on $\tilde{f}_i = f_i(mod \mathfrak{p})$. A més per cada i entre 1 i g tenim:

$$\kappa[X]/(f_i(X)) \cong B/\beta_i; \ X \mapsto \alpha \ mod \ \beta_i$$

i per tant el grau residual de β_i sobre \mathfrak{p} és igual al grau del polinomi $f_i(X) \in \kappa[X]$.

¹No sempre la clausura entera de A en L és de la forma $A[\alpha]$ on $L = K(\alpha)$

2. Suposem que L/K és una extensió Galois, llavors tots els graus dels f_i 's són iguals i en particular: $\mathfrak p$ descomposa totalment en L si i només si f té una arrel en $\kappa[X]$, si i només si f(X) factoritza en polinomis de grau 1 en $\kappa[X]$.