Machine Learning in Economics (458657)

replication paper

Early Warning System of Fiscal Stress

comparing the traditional logistic regression approach versus a random forest algorithm

Department of Economics University of Bern

Spring Semester 2022

submitted by Bela Tim Koch

Contents

1	Introduction	3			
2	Literature Review				
3	Model Describtion3.1 Performance Metrics3.2 Logit Model with LASSO penalisation3.3 Random Forest				
4	Data Describtion4.1 Dependent Variable				
5	Empirical Results 5.1 Performance	4			
6	Conclusion	5			
7	References	6			

1 Introduction

DEFINITION OF EWS. This paper aims to design an early warning system which signals increased risk of a fiscal stress event in the near future.

test ob zitierung funktioniert Jarmulska (2020).

2 Literature Review

3 Model Describtion

3.1 Performance Metrics

3.2 Logit Model with LASSO penalisation

Hastie et al. (2009)

$$\hat{\beta}^{lasso} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le t$$
(1)

Lagrangian form

$$\hat{\beta}^{lasso} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$
 (2)

3.3 Random Forest

Gini index

$$g(w) = \sum_{k \neq j} p_{wk} p_{wj} = \sum_{k} p_{wk} (1 - p_{wk})$$
(3)

4 Data Describtion

4.1 Dependent Variable

definition of a fiscal stress event empirical/historical data about fiscal stress events

4.2 Explanatory Variables

5 Empirical Results

5.1 Performance

	Logit LASSO		Random Forest	
	advanced	GDP	advanced	GDP
	dummy	per capita	dummy	per capita
% of correctly	85.18	78.17	87.69	88.61
classified stress episodes	00.10	10.11	01.00	
% of correctly	55.86	66.21	67.64	68.89
classified tranquil episodes	99.00	00.21	01.01	
Average	70.52	72.19	77.66	78.75
AUROC	0.83	0.85	0.88	0.89

Table 1: Average prediction accuracy of early warning models for years 2009-2018 (all observations used)

5.2 Interpretability

5.2.1 Variable Importance and Shapley Values

5.2.2 Partial dependence plots and Accumulated local effects plots

NULL

NULL

6 Conclusion

7 References

Hastie, Trevor, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Vol. 2. Springer.

Jarmulska, Barbara. 2020. "Random Forest Versus Logit Models: Which Offers Better Early Warning of Fiscal Stress?" ECB Working Paper Series No 2408 / May 2020.