Supporting Information

The Challenge of Reproducing with Calculations Raw Experimental Kinetic Data for an Organic Reaction

Raúl Pérez-Soto¹, Maria Besora^{2,*}, Feliu Maseras^{1,*}.

Table of Contents

1. Computational Details	S2
2. Data extraction from experiment	S2
3. Benchmark with DFT and DLPNO-CCSD(T)	S4
4. DLPNO-CCSD(T) Solvation effect	S6
5. Microkinetic Study	S7
5.1 Microkinetic Model	S8
5.2 Hypotheses Tested	S13
5.3 Inspecting the microkinetic simulation results	S15
5.4 Effect of the Initial Water Content	S16
6. Revisiting the Benchmark	S17
7. Quasi-harmonic corrected models	S20
8. Python Script example with the values of section 5.1	S23
9. Geometries	S35
10 References	\$60

¹ Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalons, 16, 43007 Tarragona, Catalonia, Spain.

² Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007, Tarragona, Catalonia, Spain.

1. Computational Details

All the DFT calculations were carried out with Gaussian09¹ (Revision D.01) with a grid of 75 radial shells and 302 angular points per shell ("Finegrid" in Gaussian). Most of the work was done using B3LYP-D3^{2,3,4} (where D3 stands for GD3⁵ empirical dispersion) with RRHO approximations for the free energy corrections, implicit SMD⁶ solvation for dichloromethane (DCM) and reference state corrections⁷ for liquid phase at 1M and 298.15K. The basis set used for all atoms was cc-pVTZ⁸. Per each optimized structure a frequency calculation was performed to ensure the minima/transition state nature of the obtained structure. In all the optimizations the symmetry was disabled with the keyword nosymm. Quasi-harmonic corrections⁹ were obtained with a threshold of 100cm⁻¹, using the GoodVibes software. Microkinetic simulations were carried out with a script developed in-house, the details are discussed in Section 5 and an example script is provided in Section 8.

DFT calculations of Section 3 were carried out using the 6-31+g(d,p)¹¹ for all atoms unless specified otherwise. The DFT functionals used were BP86-D3, PBEPBE-D3 (generally known as PBE0-D3), PBE1PBE-D3, M06-D3, M06-2X-D3 and ωB97X-D. ^{12,13,14,15,16} From those PBEPBE-D3 and M06-2X-D3 were chosen to run kinetic simulations and therefore reoptimized with cc-pVTZ basis set for all atoms (Section 6). Single-point DLPNO-CCSD(T)¹⁷ calculations with the cc-pVTZ basis set were performed in ORCA4.0¹⁸ always with the autoaux¹⁹ option enabled to include matching auxiliary basis functions. Default NormalPNO ²⁰ options and TightSCF cutoff were employed. When the implicit solvation was included the SMD method for dichloromethane as implemented in ORCA4.0 was included.

2. Data extraction from experiment

As the experimental results were reported in a graphic we had to interpolate the experimental values from the graph. To obtain the numerical values we measured the relative position of the center of the data markers/axes ticks by visual inspection with an error of ± 1 pixel. When in doubt the mid value between the two pixel relative positions was considered.

First the ticks of the X and Y axes were measured. With the value that was indicated per each tick we calculated a conversion factor to convert pixel distances in times and concentrations this is summarized in Table S2. Next the factors obtained per each axis were averaged obtaining 27.3 ± 0.9 s/pixel for the X axis and 0.357 ± 0.009 mM/pixel for the Y axis. Finally the coordinates of each of the data points were measured and translated with the conversion factors to time-concentration pairs. Table S1 summarizes this final step and includes the values used as reference in the work.

Table S1: Pixel measurements on the Data points and estimated time-concentration values

	Relative	Position			Fi	nal Values
Point Id	X	\mathbf{Y}	$X-O_x$	Y-O _y	Time	Concentration
romit 10	(pixel)	(pixel)	(pixel)	(pixel)	(s)	(mM)
Origin	43.0	177.0	0.0	0.0	0.0	0.000
1	49.5	167.5	6.5	9.5	177.2	3.391
2	60.0	144.5	17.0	32.5	463.4	11.600
3	70.5	127.0	27.5	50.0	749.7	17.846
4	81.5	112.5	38.5	64.5	1049.5	23.021
5	92.0	102.0	49.0	75.0	1335.7	26.769
6	113.0	84.5	70.0	92.5	1908.2	33.015
7	134.5	72.0	91.5	105.0	2494.3	37.477
8	155.5	62.0	112.5	115.0	3066.8	41.046
9	198.0	48.0	155.0	129.0	4225.3	46.043

Table S2: Marker pixel measurements and values for the selection of a conversion factor from pixels to time and concentrations.

		Y Ax	is				X Axis	<u> </u>	
X Coord	Y Coord	Value	Y-O _y	Conv. Factor	X Coord	Y Coord	Value	X-O _x	Conv. Factor
(pixel)	(pixel)	(mM)	(pixel)	(mM/pixel)	(pixel)	(pixel)	(s)	(pixel)	(s/pixel)
	177.0	0	0.0		41.0		0	0.0	
	172.0	2	5.0	0.4000	61.0		500	20.0	25.00
	166.0	4	11.0	0.3636	78.5		1000	37.5	26.67
	160.0	6	17.0	0.3529	96.0	177.0	1500	55.0	27.27
	155.0	8	22.0	0.3636	114.0		2000	73.0	27.40
	149.0	10	28.0	0.3571	131.5		2500	90.5	27.62
	143.0	12	34.0	0.3529	149.0		3000	108.0	27.78
	138.0	14	39.0	0.3590	167.0		3500	126.0	27.78
	132.0	16	45.0	0.3556	184.5		4000	143.5	27.87
	126.5	18	50.5	0.3564	202.0		4500	161.0	27.95
	121.0	20	56.0	0.3571					
	115.0	22	62.0	0.3548					
	109.0	24	68.0	0.3529					
	104.0	26	73.0	0.3562					
	98.0	28	79.0	0.3544					
41.0	92.5	30	84.5	0.3550					
	87.0	32	90.0	0.3556					
	81.0	34	96.0	0.3542	1				
	75.0	36	102.0	0.3529					
	70.0	38	107.0	0.3551					
	64.0	40	113.0	0.3540					
	58.0	42	119.0	0.3529					
	53.0	44	124.0	0.3548					
	47.0	46	130.0	0.3538					
	42.5	48	134.5	0.3569					
	36.0	50	141.0	0.3546	1				
	30.0	52	147.0	0.3537	1				
	24.5	54	152.5	0.3541					
	19.0	56	158.0	0.3544	1				
	13.0	58	164.0	0.3537					
	8.0	60	169.0	0.3550					

3. Benchmark with DFT and DLPNO-CCSD(T)

In order to decide an appropriate theory level (method, functional, basis set, solvation model etc...) a small set of relevant structures were calculated. Initially only single point (SP) calculations over the structures optimized with B3LYP-D3/6-31+g(d,p) and SMD implicit solvation for dichloromethane. For some cases we did optimize the structure with the new theory level. The set of structures included the Aldehyde, Amine, Water, Hemiaminal, Imine and the Transition states for the dehydration of the hemiaminal (TS2, TS2W, TS2N, TS2NW and TS2WW) see Figure 1 of the main text. Table S3 compiles the relative free energies of the transition states, intermediates and products referred to the appropriate free molecules of reactants. For SP calculations the free energy of each structure was obtained $G_{SP} = U_{SP} + G^{ref} - U^{ref}$ where ref corresponds to B3LYP-D3/6-31+g(d,p) with SMD for that structure.

Entries 1, 2 and 5 show the effect of changing the basis set within the Pople Basis set family. The most significant difference is between entries 1 and 2 that switch the reaction from endergonic to exergonic. This clearly indicates the importance of polarization functions in the basis set for this system.

Entries 2, 3 and 4 show the effect of changing the solvation model as well as the reaction in vacuum. No significant difference was found between pcm and smd for this system. There is a significant difference for the transition state catalyzed by two waters in vacuum which is likely due to the lack of interactions of the Hydrogen's of the water and the solvent.

Entries 2, 7, 8, 9, 10, 11 and 12 show the effect of changing the DFT functional. In all of them GD3 empirical dispersion was added except for the $\omega B97X\text{-}D$ functional. The two pure functionals, BP86-D3 and PBEPBE-D3 (Entries 8 and 9), predict more stable structures than B3LYP-D3 overall. PBE1PBE-D3 functional gives similar results to B3LYP for the Transition states. PBE1PBE-D3 and M06-2X-D3 substantially stabilize the Hemiaminal. The Minnesota family (Entries 10 and 11) and $\omega B97X\text{-}D$ (Entry 12) predict slightly higher barriers.

Entries 13-16 show the effect of increasing the basis function for the DLPNO-CCSD(T) method. As the basis set is larger the predicted stabilities increase. However the large difference between Entry 6 and Entry 14 motivated the test done in the section 4 "DLPNO-CCSD(T) Solvation Effect". In Entry 16, the TS2NW was not included because the computational cost was high and, with the other results in sight, it was unlikely to provide any new insights.

Finally as B3LYP-D3 seems to have an intermediate behavior between the tested functionals we decided to move on with it and increased the basis set.

Table S3: DFT and DLPNO-CCSD(T) benchmark results.

Free		1M as reference mol ⁻¹)	state		Optimized	l relative energ	gies (SP relative	e energies)	
Entry	Method	Basis Set	Solvation Model	TS2	TS2W	TS2WW	TS2NW	Hemiaminal	Imine + Water
1 🛕	B3LYP-D3	6-31+g(d)	smd	43.1 (43.3)	30.7 (30.8)	24.4 (24.4)	28.2 (27.0)	10.1 (10.2)	0.8 (0.9)
2*▲	B3LYP-D3	6-31+g(d,p)	smd	41.1 (41.1)	28.3 (28.3)	22.1 (22.1)	24.3 (24.3)	8.8 (8.8)	-2.1 (-2.1)
3▲	B3LYP-D3	6-31+g(d,p)	pcm	41.7 (42.5)	27.4 (28.2)	20.7 (21.2)	24.2 (22.8)	8.2 (8.9)	-1.6 (-1.4)
4 ^{^}	B3LYP-D3	6-31+g(d,p)		47.0 (53.0)	25.8 (31.1)	16.0 (16.8)	21.5 (22.2)	5.5 (6.4)	-1.0 (-0.9)
5 ^	B3LYP-D3	6-311++g(d,p)	smd	41.2 (41.3)	29.4 (29.3)	23.3 (23.6)	26.4 (25.6)	9.7 (9.5)	-2.3 (-2.4)
6▲□	B3LYP-D3	cc-pVTZ	smd	47.7 ()	32.5 ()	22.4 ()	23.1 ()	9.2 ()	-1.1 ()
7▲	PBE1PBE-D3	6-31+g(d,p)	smd	42.8 (42.8)	27.8 (28.7)	21.3 (21.3)	23.6 (23.8)	3.0 (3.4)	-3.0 (-3.1)
8*	PBEPBE-D3	6-31+g(d,p)	smd	37.0 (38.2)	22.2 (23.7)	15.9 (16.0)	18.6 (18.7)	6.6 (6.7)	-2.8 (-2.9)
9▲	BP86-D3	6-31+g(d,p)	smd	36.6 (37.8)	20.7 (22.8)	14.8 (15.5)	18.0 (17.5)	6.6 (6.7)	-2.7 (-2.8)
10 [*]	M06-D3	6-31+g(d,p)	smd	44.8 (44.5)	32.0 (32.7)	28.1 (26.9)	31.2 (27.9)	5.5 (6.2)	-2.0 (-2.7)
11	M06-2X-D3	6-31+g(d,p)	smd	44.5 (44.5)	29.6 (30.8)	25.4 (24.9)	27.3 (27.3)	2.6 (2.5)	-3.6 (-4.4)
12	ωB97X-D	6-31+g(d,p)	smd	43.5 (43.7)	32.3 (31.9)	26.6 (26.2)	29.5 (27.4)	5.3 (5.1)	-1.9 (-2.5)
13	DLPNO	cc-pVDZ	smd	(72.6)	(47.8)	(37.5)	(44.2)	(7.3)	(-1.0)
14	DLPNO	cc-pVTZ	smd	(56.8)	(39.4)	(33.8)	(38.0)	(6.1)	(-3.5)
15	DLPNO	cc-pVQZ	smd	(50.3)	(37.2)	(33.5)	(36.7)	(6.0)	(-4.2)
16	DLPNO	cc-pV5Z	smd	(46.5)	(36.4)	(33.7)		(6.0)	(-4.6)

^{*} The geometries optimized with this theory level were used for the single point (SP) calculations. Empirical dispersion GD3 included. Manuscript structures. Energies referred to the free reactants (and free water for the TSs with water molecules as catalysts).

4. DLPNO-CCSD(T) Solvation effect

The effect of the solvation on the DLPNO-CCSD(T) energy was checked to discard that the increase in the barriers was due to an incorrect coupling between the DLPNO-CCSD(T) methodology and the SMD implicit solvation. First the geometries of each compound were optimized in B3LYP-D3/cc-pVTZ with implicit solvation for dichloromethane with SMD. Over those geometries a SP calculation was run in vacuum maintaining the theory level. Finally two SP calculations per structure were done with DLPNO-CCSD(T)/cc-pVTZ, one with SMD solvation and the other without it.

Table S4: Single point calculations on structures optimized in B3LYP-D3/cc-pVTZ with implicit solvation

C4	B3LYP-D3	3/cc-pVTZ	DLPNO-CCSI	D(T)/cc-pVTZ	B3LYP-D3	DLPNO	
Structure Name	$\mathbf{U_{vac}}$	$\mathbf{U_{sol}}$	$egin{array}{ccc} egin{array}{ccc} egin{array}{cccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{cccc} egin{a$		$\mathbf{U_{sol}}$ –	U _{vac}	
Name	har	tree	hart	tree	kcal mol ⁻¹		
Benzaldehyde	-345.706974	-345.719632	-344.959042	-344.966951	-7.9	-5.0	
NButylamine	-213.895670	-213.904198	-213.416621	-213.423305	-5.4	-4.2	
Water	-76.459829	-76.466651	-76.331990	-76.338910	-4.3	-4.3	
Hemiaminal	-559.611741	-559.630035	-558.389832	-558.401077	-11.5	-7.1	
Imine	-483.142477	-483.158753	-482.047899	-482.056414	-10.2	-5.3	
TS2	-559.534063	-559.563968	-558.292421	-558.318276	-18.8	-16.2	
TS2W	-636.029384	-636.067008	-634.660364	-634.691998	-23.6	-19.9	
TS2N	-773.472516	-773.501454	-771.760086	-771.779235	-18.2	-12.0	
TS2NW	-849.966431	-849.998025	-848.115925	-848.138254	-19.8	-14.0	
TS2WW	-712.539097	-712.566653	-711.039192	-711.060149	-17.3	-13.2	

As can be seen in Table S4 the difference in the solvation effect between one and the other theory level depends on the compound that we compare. It is generally smaller in the reactants and for the transition states, intermediates and products increases as the number of molecules within the calculation increase. In all cases the inclusion of implicit solvation implies a decrease in potential energy. As the main interest is discerning if the high barrier is due to the solvation, relative energies in vacuum and in solution need to be calculated and compared. This is what is reported in the Table 1 of the main text.

5. Microkinetic Study

Chart S1: Summary of the terms related to microkinetic simulations

As the usage of the term microkinetic modeling is relatively broad Chart S1 summarizes the different concepts related to microkinetic simulations as used for the following sections.

<u>Boundaries:</u> Isothermal (T=cte) liquid phase (V=cte) batch reactor model (Closed System) thus rendering the <u>Energy Balances</u> unnecessary for the simulations. Therefore temperature is only included in Thermodynamic and Kinetic Constant calculations.

<u>Thermodynamics</u>: Values are at 298.15K and 1 atm (default for Gaussian09 calculations). Since the reactions were in liquid phase free energies were corrected for a 1M reference state.

Kinetic Constants: The constants were calculated within the standard Transition State Theory with the Erying Equation: $k = \alpha_T \frac{k_B T}{n} e^{\frac{-\Delta G^{\dagger}}{RT}}$ using $\alpha_T = 1$. The constants were always used in the same format as Table S12, this is important due to the numeric nature of the solver and intrinsic limitations of computers, since in some of the simulations the usage of less decimal places led to numerical instability of the differential system. In this case the increase of the decimal places avoids the need of reducing the tolerance of the solver and therefore the time needed for the calculation.

Solver: The Solver employed was a deterministic numerical algorithm, the LSODA from the ODEPACK package 21 as used by the python Scipy library (version 1.3.0). 22 The relative tolerance (rtol) was set up to 10^{-6} and the absolute tolerance (atol) was set up to 10^{-11} as a tradeoff between performance and accuracy. The remaining parameters were the default values of the scipy.integrate.odeint function. The concentrations obtained were saved at intervals of 0.1s.

<u>Initial Conditions:</u> The initial conditions concentration of all species was zero except the benzaldehyde, 0.06M, n-butylamine 0.06M and the water 0.001M (Compounds C00, C01 and C02 in Table S5 respectively) unless specified otherwise.

5.1 Microkinetic Model

To explain the modeling criteria for the elemental steps used we will use the profile of the target reaction catalyzed by a single water molecule (red energy profile in Figure 1 of the manuscript). As the hemiaminal formation and dehydration cannot be modeled as bimolecular reversible elemental steps:

$$C_5H_5CHO + C_4H_9NH_2 + H_2O \iff C_{10}H_{17}ON + H_2O \iff C_{10}H_{15}N + H_2O + H_2O$$

The first hypothesis considered is that every bond-forming and bond-breaking reaction which involve a calculated TS are unimolecular, meaning that first the molecules form an adduct, and is this adduct the one that proceeds through the TS. Therefore for the hemiaminal formation (and similarly for the dehydration) is represented by the steps:

```
Step 1) C_5H_5CHO + C_4H_9NH_2 + H_2O \implies [C_5H_5CHO + C_4H_9NH_2 + H_2O]
Step 2) [C_5H_5CHO + C_4H_9NH_2 + H_2O] \implies [C_{10}H_{17}ON + H_2O]
Step 3) [C_{10}H_{17}ON + H_2O] \implies C_{10}H_{17}ON + H_2O
```

The second hypothesis considered is relative to steps 1) and 3). In order to form the adducts all the different combinations of 2 were considered, for step 1) those would be:

```
\begin{array}{lll} \text{Step 1a}) & C_5 H_5 \text{CHO} + C_4 H_9 \text{NH}_2 \leftrightarrows \left[ C_5 H_5 \text{CHO} + C_4 H_9 \text{NH}_2 \right] \\ \text{Step 1b}) & C_5 H_5 \text{CHO} + H_2 O \leftrightarrows \left[ C_5 H_5 \text{CHO} + H_2 O \right] \\ \text{Step 1c}) & C_4 H_9 \text{NH}_2 + H_2 O \leftrightarrows \left[ C_4 H_9 \text{NH}_2 + H_2 O \right] \\ \text{Step 1d}) & \left[ C_5 H_5 \text{CHO} + C_4 H_9 \text{NH}_2 \right] + H_2 O \leftrightarrows \left[ C_5 H_5 \text{CHO} + C_4 H_9 \text{NH}_2 + H_2 O \right] \\ \text{Step 1e}) & \left[ C_5 H_5 \text{CHO} + H_2 O \right] + C_4 H_9 \text{NH}_2 + H_2 O \right] \\ \text{Step 1f}) & C_5 H_5 \text{CHO} + \left[ C_4 H_9 \text{NH}_2 + H_2 O \right] \leftrightarrows \left[ C_5 H_5 \text{CHO} + C_4 H_9 \text{NH}_2 + H_2 O \right] \\ \end{array}
```

Any of these different adducts formations were all considered to be fast, diffusion-controlled elemental steps. By fast we refer to including a "fictional" barrier of 2 kcal mol⁻¹ in the endergonic direction of the reversible step.

Therefore, we modeled each bond-forming bond breaking event as a set of soft, diffusion-controlled, bimolecular collisions with fast diffusions that have apparent barriers of 2 kcal mol⁻¹. Only the barriers of the unimolecular bond breaking/formation steps (as step 2 of the example) were calculated using the energies of the corresponding transition state structures. Tables from S5 to S12 include all the information about the Microkinetic model as well as the thermodynamics derived from B3LYP-D3/cc-pVTZ. Section 8 shows an example of the python code used.

Table S5: List of Species/Compounds considered in the Microkinetic Model.

Compound ID	Model Label	Structure Name	G _{1atm, 298.15K} (hartree)	$\Delta G_{1M, 298.15K}$ (kcal mol ⁻¹)
C00	A	Benzaldehyde	-345.640471	0.0
C01	В	NButylamine	-213.785156	0.0
C02	W	Water	-76.463950	0.0
C03	[A+B]	A_N	-559.415509	4.5
C04	[A+W]	A_W	-422.097795	2.3
C05	[B+W]	N_W	-290.246742	-0.4
C06	[W+W]	W_W	-152.923000	1.2
C07	[B+B]	N_N	-427.560866	4.0
C08	[A+B+W]	A_N_W	-635.872800	6.7
C09	[A+B+B]	A_N_N	-773.193472	7.1
C10	[A+W+W]	A_W_W	-498.555875	4.1
C11	[B+W+W]	N_W_W	-366.706991	0.0
C12	[B+B+W]	N_N_W	-504.023772	2.8
C13	[W+W+W]	W_W_W	-229.382056	2.4
C14	[A+B+B+W]	A_N_N_W	-849.654737	6.9
C15	[A+B+W+W]	A_N_W_W	-712.337684	4.3
C16	Hemi	Hemiaminal	-559.408007	9.2
C17	[Hemi+W]	Int_W	-635.869928	8.5
C18	[Hemi+B]	Int_N	-773.187317	10.9
C19	[Hemi+B+W]	Int_N_W	-849.649184	10.4
C20	[Hemi+W+W]	Int_W_W	-712.332717	7.4
C21	I	Imine	-482.963413	-1.1
C22	[I+W]	I_W	-559.423021	-0.3
C23	[I+B]	I_N	-696.739874	2.5
C24	[I+W+W]	I_W_W	-635.882776	0.5
C25	[I+B+W]	I_N_W	-773.200786	2.5
C26	[I+B+W+W]	I_N_W_W	-849.662415	2.1
C27	[I+W+W+W]	I_W_W_W	-712.341547	1.8

Model Label corresponds to the encoding used in the reaction listing. The Structure Name corresponds to the name of the entry in the IOChemBD data collection. The energy values correspond to the structures optimized in B3LYP-D3/cc-pVTZ

Table S6: List of Transition State Structures considered for the microkinetic model.

Model Label	Structure Name	G _{1atm, 298.15K} (hartree)	ΔG _{1M, 298.15K} (kcal mol ⁻¹)
TS1	TS1 TS1 -5		36.7
TS2	TS2	-559.346617	47.7
TS1W	TS1W	-635.849649	21.3
TS2W	TS2W	-635.831806	32.5
TS1N	TS1N	-773.160610	27.7
TS2N	TS2N	-773.146697	36.4
TS1WW	TS1WW	-712.316303	17.7
TS2WW	52WW TS2WW -712.308845		22.4
TS1NW	S1NW TS1NW -849.632365		20.9
TS2NW	TS2NW	-849.628951	23.1

Table S7: List of reactions considered for the microkinetic model to describe the aggregation of the reactants.

E4 ID	Chamia I Faran	TC I - L - l	Reac	tion ID	Barriers (kcal mol ⁻¹)		
Event ID	Chemical Event	TS Label	Direct	Reverse	Direct	Reverse	
E01	$A + B \leftrightarrows [A+B]$		R000	R001	6.5	2.0	
E02	$A + W \leftrightarrows [A + W]$		R002	R003	4.3	2.0	
E03	$B + W \leftrightarrows [B+W]$		R004	R005	2.0	2.4	
E04	$B + B \leftrightarrows [B+B]$		R006	R007	6.0	2.0	
E05	$W + W \leftrightarrows [W+W]$		R008	R009	3.2	2.0	
E06	$A + [B+W] \leftrightarrows [A+B+W]$		R010	R011	9.1	2.0	
E07	$A + [B+B] \leftrightarrows [A+B+B]$		R012	R013	5.0	2.0	
E08	$A + [W+W] \leftrightarrows [A+W+W]$		R014	R015	4.9	2.0	
E09	$B + [A+B] \leftrightarrows [A+B+B]$		R016	R017	4.6	2.0	
E10	$B + [A+W] \leftrightarrows [A+B+W]$		R018	R019	6.5	2.0	
E11	$B + [B+W] \leftrightarrows [B+B+W]$		R020	R021	5.2	2.0	
E12	$B + [W+W] \leftrightarrows [B+W+W]$		R022	R023	2.0	3.2	
E13	$W + [A+B] \leftrightarrows [A+B+W]$		R024	R025	4.3	2.0	
E14	$W + [A+W] \leftrightarrows [A+W+W]$		R026	R027	3.8	2.0	
E15	$W + [B+W] \leftrightarrows [B+W+W]$		R028	R029	2.4	2.0	
E16	$W + [B+B] \leftrightarrows [B+B+W]$		R030	R031	2.0	3.2	
E17	$W + [W+W] \leftrightarrows [W+W+W]$		R032	R033	3.2	2.0	
E18	$[A+B] + [B+W] \leftrightarrows [A+B+B+W]$		R034	R035	4.8	2.0	

E19	$A+B + [W+W] \leftrightarrows [A+B+W+W]$	 R036	R037	2.0	3.4
E20	$[A+W] + [B+W] \leftrightarrows [A+B+W+W]$	 R038	R039	4.4	2.0
E21	$[A+W] + [B+B] \leftrightarrows [A+B+B+W]$	 R040	R041	2.6	2.0

Table S8: List of reactions considered for the microkinetic model to describe the Hemiaminal formation.

Event ID	Chemical Event	TS Label	Reac	tion ID	Barriers (kcal mol ⁻¹)	
Event ID	Chemical Event	15 Laber	Direct	Reverse	Direct	Reverse
E22	[A+B] ≒ Hemi	TS1	R042	R043	32.2	27.5
E23	$[A+B+W] \leftrightarrows [Hemi+W]$	TS1W	R044	R045	14.6	12.8
E24	$[A+B+B] \leftrightarrows [Hemi+B]$	TS1N	R046	R047	20.6	16.8
E25	$[A+B+W+W] \leftrightarrows [Hemi+W+W]$	TS1WW	R048	R049	13.4	10.3
E26	$[A+B+B+W] \leftrightarrows [Hemi+B+W]$	TS1NW	R050	R051	14.0	10.6

Table S9: List of reactions considered for the microkinetic model to describe the diffusion of the Hemiaminal-catalyst adducts.

Event ID	Chemical Event	TS Label	Reac	tion ID	Barriers (kcal mol ⁻¹)	
				Reverse	Direct	Reverse
E27	$[Hemi+W] \leftrightarrows Hemi + W$		R052	R053	2.6	2.0
E28	$[Hemi+B] \leftrightarrows Hemi + B$		R054	R055	2.0	3.8
E29	$[\text{Hemi+B+W}] \leftrightarrows \text{Hemi} + [\text{B+W}]$		R056	R057	2.0	3.6
E30	$[\text{Hemi+B+W}] \leftrightarrows [\text{Hemi+B}] + \text{W}$		R058	R059	2.6	2.0
E31	$[\text{Hemi+B+W}] \leftrightarrows [\text{Hemi+W}] + B$		R060	R061	2.0	3.8
E32	$[\text{Hemi+W+W}] \leftrightarrows \text{Hemi} + [\text{W+W}]$		R062	R063	5.0	2.0
E33	$[\text{Hemi+W+W}] \leftrightarrows [\text{Hemi+W}] + W$		R064	R065	3.2	2.0

Table S10: List of reactions considered for the microkinetic model to describe the dehydration of the Hemiaminal.

Event ID	Chemical Event	TS Label	Reac	tion ID	Barriers (kcal mol ⁻¹)	
Event ID	Chemical Event	15 Laber	Direct	Reverse	Direct	Reverse
E34	Hemi \leftrightarrows [I+W]	TS2	R066	R067	38.5	47.9
E35	$[\text{Hemi+W}] \leftrightarrows [\text{I+W+W}]$	TS2W	R068	R069	23.9	32.0
E36	$[Hemi+B] \subseteq [I+B+W]$	TS2N	R070	R071	25.5	33.9
E37	$[\text{Hemi+W+W}] \leftrightarrows [\text{I+W+W+W}]$	TS2WW	R072	R073	15.0	20.5
E38	$[\text{Hemi+B+W}] \leftrightarrows [\text{I+B+W+W}]$	TS2NW	R074	R075	12.7	21.0

Table S11: List of reactions considered for the microkinetic model to describe the diffusion of the products.

Event ID	Chemical Event	TS Label	Reac	tion ID		rriers l mol ⁻¹)
			Direct	Reverse	Direct	Reverse
E39	$[I+W] \subseteq I+W$		R076	R077	2.0	2.8
E40	$[I+W+W] \iff I + [W+W]$		R078	R079	2.0	2.4
E41	$[I+W+W] \iff [I+W] + W$		R080	R081	2.0	2.7
E42	$[I+B+W] \iff I+[B+W]$		R082	R083	2.0	6.0
E43	$[I+B+W] \iff [I+B] + W$		R084	R085	2.0	2.0
E44	$[I+B+W] \iff [I+W] + B$		R086	R087	2.0	4.7
E45	$[I+B+W+W] \iff I + [B+W+W]$		R088	R089	2.0	5.1
E46	$[I+B+W+W] \iff [I+B] + [W+W]$		R090	R091	3.6	2.0
E47	$[I+B+W+W] \iff [I+W] + [B+W]$		R092	R093	2.0	4.7
E48	$[I+B+W+W] \iff [I+W+W] + B$		R094	R095	2.0	3.6
E49	$[I+B+W+W] \iff [I+B+W] + W$		R096	R097	2.4	2.0
E50	$[I+W+W+W] \iff I + [W+W+W]$		R098	R099	2.0	2.6
E51	$[I+W+W+W] \iff [I+W] + [W+W]$		R100	R101	2.0	2.9
E52	$[I+W+W+W] \iff [I+W+W] + W$		R102	R103	2.0	3.4

Table S12: List of kinetic constants at 298.15K in s⁻¹ for the unimolecular steps and M⁻¹s⁻¹ for the bimolecular steps for the B3LYP-D3/cc-pVTZ calculated energies.

Event ID	Direct Constant	Reverse Constant
E01	1.1520016141E+08	2.1243982518E+11
E02	4.6522262685E+09	2.1243982518E+11
E03	2.1243982518E+11	1.0627425113E+11
E04	2.3472075016E+08	2.1243982518E+11
E05	2.8944452758E+10	2.1243982518E+11
E06	1.2474135377E+06	2.1243982518E+11
E07	1.2524507574E+09	2.1243982518E+11
E08	1.6652981977E+09	2.1243982518E+11
E09	2.5518729986E+09	2.1243982518E+11
E10	1.1386583655E+08	2.1243982518E+11
E11	9.4996816172E+08	2.1243982518E+11
E12	2.1243982518E+11	2.9848780886E+10
E13	4.5983410911E+09	2.1243982518E+11
E14	1.0360877187E+10	2.1243982518E+11
E15	1.0305446152E+11	2.1243982518E+11
E16	2.1243982518E+11	2.6258534710E+10
E17	2.9128971462E+10	2.1243982518E+11
E18	1.8163911446E+09	2.1243982518E+11

E19	2.1243982518E+11	2.0822723299E+10
E20	3.6580372751E+09	2.1243982518E+11
E21	8.1375555674E+10	2.1243982518E+11
E22	1.4846115923E-11	4.1907492732E-08
E23	1.3627835178E+02	2.9212843905E+03
E24	4.7620982072E-03	3.2277543932E+00
E25	9.0926246695E+02	1.7512558087E+05
E26	3.1831794500E+02	1.1404141794E+05
E27	7.4531321673E+10	2.1243982518E+11
E28	2.1243982518E+11	1.0627613561E+10
E29	2.1243982518E+11	1.4311551605E+10
E30	7.8918184665E+10	2.1243982518E+11
E31	2.1243982518E+11	1.0036851306E+10
E32	1.4207544383E+09	2.1243982518E+11
E33	2.9722595183E+10	2.1243982518E+11
E34	3.5961305166E-16	4.4655823739E-23
E35	1.8128732564E-05	2.2320322775E-11
E36	1.2863754590E-06	8.2046628228E-13
E37	6.4999399338E+01	5.6414819627E-03
E38	3.0671312390E+03	2.5170839485E-03
E39	2.1243982518E+11	5.2266979709E+10
E40	2.1243982518E+11	1.1028202726E+11
E41	2.1243982518E+11	6.1072075449E+10
E42	2.1243982518E+11	2.5466485201E+08
E43	2.1243982518E+11	2.0798187287E+11
E44	2.1243982518E+11	2.0691187767E+09
E45	2.1243982518E+11	1.0983092618E+09
E46	1.4131533551E+10	2.1243982518E+11
E47	2.1243982518E+11	2.1655291772E+09
E48	2.1243982518E+11	1.5057926667E+10
E49	1.0154287036E+11	2.1243982518E+11
E50	2.1243982518E+11	8.1548110537E+10
E51	2.1243982518E+11	4.5447672655E+10
E52	2.1243982518E+11	2.1539435241E+10

5.2 Hypotheses Tested

Figure 2 of the manuscript contains the total concentration of imine which was calculated as the sum of the concentrations of compounds C21 to C27. The direct simulation of the microkinetic model with the constants of Table S12 (purple line) yielded an unexpected result: the reaction can't proceed with those conditions. Two main hypotheses were introduced in order to introduce changes in the Mathematical Model and see if it improved or not the agreement with experiment.

The first hypothesis (see H1 in Chart S2) considered that only the TSs' energies were overestimated by DFT. Testing the mentioned hypothesis is straight forward, it just involves reducing the barriers for both direct and reverse reactions for the Hemiaminal formations and Hemiaminal Dehydrations. This in the mathematical model translates as only recalculating the barriers for those 20 reactions. Although simple, it gives a lot of information, since it has the same effect over the Mathematical Model as finding a lower-energy TS for the same reaction or even the impact on the kinetics of

Tunneling effects. Consistent with the hypothesis, we applied a correction to the TSs of the indicated reactions systematically and simultaneously. When at any of those reactions, the energy of any TS reached either the energy of its reactant or product we stopped decreasing the energy of that TS while we continued with the rest of TSs. The correction values used went from 0.00 to 8.00 kcal mol⁻¹ in steps of 0.25 kcal mol⁻¹ and therefore simulating a total of 33 free energy profiles. As can be clearly seen in the main text Figure 2 (top) this hypothesis was refuted.

Chart S2: Visual explanation of Hypotheses H1 and H2 and their effects on the free energy profile

The second hypothesis (see H2 in Chart S2), the systematic error, consists on assuming that every DFT calculation has an error that, at least for this system, can be considered constant. This hypothesis has no effect for unimolecular reactions but the system of study corresponds to a system with a big amount of bimolecular aggregations. The overall effect on the whole free energy profile of this hypothesis is that the compounds that require more reactants to be obtained will be more affected. But for the Hemiaminal formations and dehydrations, since we have modeled them as unimolecular reactions, the relative barrier will remain unchanged, but the stability of its reactants and products will change. This raises the effects of the concentration of each species. For the mathematical model, we are only changing the values of the kinetic constants. The correction values used went from 0 to 4 kcal mol⁻¹ and the steps considered were of 0.1 kcal mol⁻¹. Figure 2 (bottom) contains these results although the models with correction values in the interval (0,2.3] were not represented for clarity reasons. The best fitting model corresponds to the correction of 3.2 kcal mol⁻¹.

5.3 Inspecting the microkinetic simulation results.

Assuming that the systematic correction is the way to proceed we do analyze in detail the results of the microkinetic simulation to get some chemical insight. Figure S1 has the time evolution of the concentration of different concentrations described by the equations 1-5:

- 1) $[R + W]_{total} = [C04] + [C05] + [C08] + 2[C10] + 2[C11] + [C12] + [C14] + 2[C15]$
- 2) $[P + W]_{total} = [C22] + 2[C24] + [C25] + 2[C26] + 3[C27]$
- 3) $[Free W]_{total} = [C02] + 2 [C06] + 3 [C13]$
- 4) $[Aldehyde]_{total} = [C00] + [C03] + [C04] + [C08] + [C09] + [C10] + [C14] + [C15]$
- 5) $[Imine]_{total} = [C21] + [C22] + [C23] + [C24] + [C25] + [C26] + [C27]$

The concentration of the Hemiaminal species remains around 10⁻⁶ and 10⁻⁷ M and was not included in the plot for that reason. Looking at the dotted lines we can see how the water moves. Initially, due to the high concentration of reactants the water aggregates with them. In the first ca 1000s all the water produced with the imine formed is directly stolen by the reactants, as would be the case for any subproduct-catalyzed reaction. At that point the concentration of reactants has decreased significantly and the concentration of imine risen. As consequence of the further consumption of reactants the water is freed from them, and has two main sinks, either the black dotted lines (alone or forming water dimers or trimers) or the blue dotted line (forming adducts with the Imine).

Figure S1: Time Evolution of Water adducts, Aldehyde and Imine for the model corrected with a systematic correction of 3.2 kcal mol⁻¹

This provides some insight in how the water is moving in the system, clearly preferring to be with the reactants and products and pushed aside as the reactants disappear. However, this does not provide insight into which one is the preferential pathway and the rate limiting step. To do so we inspected the values of the rates of all the hemiaminal formation and dehydration step. However a simpler and more illustrative procedure is what we ended up with. This consists on simulating the same model, but "disabling" certain pathways. "Disabling" a pathway can be done in several manners. In order to keep the microkinetic model constant, to disable a certain reaction all what is needed is to set up its kinetic constant to 0. If it is a reversible reaction setting up both kinetic constants to 0 is all it takes. Figure S2 shows the results of removing either the reversible reaction E37 (TS2WW) or E38 (TS2NW).

Figure S2: Time evolution of the Total Imine concentration for the Full model and its versions.

When we move from the full model to the model without E38 (green) we see that the reaction does not happen. For the model without E37 (blue) we see an initial overlap that starts to diverge after ca 500s. Comparing Figure S1 with Figure S2 gives us the key to understand it. Initially the amount of water is so low that forming a dimer that can catalyze the reaction is very unlikely, on the other hand the amine is in high concentration, so initially the reaction proceeds through the amine-water catalyzed pathways. As water build up and amine is abundant the water forms adducts with the reactants. We can see in Figure S1 a crossing point between the red dotted line and the solid blue line more or less at the time where the two curves of Figure S2 start to diverge. Approximately at that point, the water concentration is enough for the Water-dimer-catalyzed pathway to start working. Around time 1000s is when we start seeing the water moving out of the reactants due their consumption which accentuates the divergence seen in Figure S2.

5.4 Effect of the Initial Water Content

Until now the initial water concentration was considered to be 1mM based on Sigma Aldrich datasheets. The effects of this estimate on the imine concentration evolution are inspected in this section. To do so the previously analyzed model (Section 5.3) was simulated at different initial water concentrations. To explore different orders of magnitude the concentration was sampled from 10^{-6} to 10^{-2} in exponential steps of 0.5. Figure S3 summarizes the results from these simulations.

Figure S3: Simulations For the Model Corrected with 3.2 kcal mol⁻¹ at different initial water concentrations.

Reducing the initial water concentration does not change the shape of the profile significantly but shifts it to the right, introducing an initial delay period in which the water necessary to start the catalysis via the TS2NW builds up. As increasing the correction shifts the curve towards the left in a similar fashion we can conclude that if the experimental initial water concentration was different we would have found a different value for the correction that would fit similarly since the shape of the predicted concentration evolution does not change significantly.

6. Revisiting the Benchmark

From the DFT methods attempted in Table S3 we selected two that displayed significantly different behaviors compared to B3LYP-D3. PBEPBE-D3 had a general stabilization of all species and M06-2X-D3 had a significant stabilization of the intermediate which were the reasons for their selection.

Per each of the newly selected functionals we re-optimized and re-calculated the frequencies for all the structures included in Table S5 and Table S6. The cc-pVTZ basis set was employed for these new calculations. Table S13 and Table S14 are the equivalents of Table S6 and Table S5 respectively. As the systematic error hypothesis approach gave good agreement with the experimental values, we also applied it to M06-2X-D3 and PBEPBE-D3.

 Table S13: Free Energies of structures corresponding to transition states.

		PBEPBE-D3	M06-2X-D3
Model Label	Structure Name	$G_{1atm,298.15K} \\ (hartree)$	G _{1atm, 298.15K} (hartree)
TS1	TS1	-558.628144	-559.084080
TS2	TS2	-558.607151	-559.054667
TS1W	TS1W	-635.027706	-635.533698
TS2W	TS2W	-635.002556	-635.506067
TS1N	TS1N	-772.115648	-772.749151
TS2N	TS2N	-772.102271	-772.726823
TS1WW	TS1WW	-711.410713	-711.965147
TS2WW	TS2WW	-711.399978	-711.946752
TS1NW	TS1NW	-848.503461	-849.186971
TS2NW	TS2NW	-848.487403	-849.167306

Table S14: Free Energies of the structures corresponding to minima

			PBEPBE-D3	M06-2X-D3
Compound ID	Model Label	Structure Name	$G_{1atm, 298.15K} $ (hartree)	G _{1atm, 298.15K} (hartree)
C00	A	Benzaldehyde	-345.204216	-345.482549
C01	В	NButylamine	-213.473811	-213.655803
C02	W	Water	-76.377566	-76.429318
C03	[A+B]	A_N	-558.669245	-559.128296
C04	[A+W]	A_W	-421.575321	-421.904397
C05	[B+W]	N_W	-289.850805	-290.081831
C06	[W+W]	W_W	-152.751291	-152.852759
C07	[B+B]	N_N	-426.939508	-427.299347
C08	[A+B+W]	A_N_W	-635.039977	-635.550808
C09	[A+B+B]	A_N_N	-772.135506	-772.772138
C10	[A+W+W]	A_W_W	-497.948640	-498.325321
C11	[B+W+W]	N_W_W	-366.227140	-366.504631
C12	[B+B+W]	N_N_W	-503.317954	-503.725971
C13	[W+W+W]	W_W_W	-229.125807	-229.275851
C14	[A+B+B+W]	A_N_N_W	-848.512752	-849.198224
C15	[A+B+W+W]	A_N_W_W	-711.420442	-711.975968
C16	Hemi	Hemiaminal	-558.664707	-559.131156

C17	[Hemi+W]	Int_W	-635.042635	-635.556037
C18	[Hemi+B]	Int_N	-772.133501	-772.775743
C19	[Hemi+B+W]	Int_N_W	-848.509617	-849.202810
C20	[Hemi+W+W]	Int_W_W	-711.420803	-711.982975
C21	I	Imine	-482.303116	-482.713941
C22	[I+W]	I_W	-558.677931	-559.137508
C23	[I+B]	I_N	-695.768724	-696.358570
C24	[I+W+W]	I_W_W	-635.052830	-635.561528
C25	[I+B+W]	I_N_W	-772.146455	-772.785180
C26	[I+B+W+W]	I_N_W_W	-848.522175	-849.208152
C27	[I+W+W+W]	I_W_W_W	-711.427680	-711.983994

Figure S4: Imine concentration for all the models obtained from systematic corrections to the M06-2X Free energy profile. Y axis is in logarithmic scale for visualization reasons.

As can be seen for M06-2X-D3 (Figure S4) was systematically corrected from 0.0 to 6.0 kcal mol⁻¹ at steps of 1.0 kcal mol⁻¹. Even with the correction, the imine is not formed. The main reason for this is likely the reason why we selected M06-2X-D3. The stability of the intermediate coupled with the overall increase of the energy of the transition state structures ends up creating a wall after the hemiaminal is formed in the free energy surface which cannot be surpassed at 298.15K even with the proposed catalysts.

Figure S5: Imine concentration for all the models obtained from systematic corrections to the PBEPBE Free energy profile.

PBEPBE-D3 (Figure S5) was systematically corrected from 0.0 to 2.5 kcal mol⁻¹ at steps of 0.1 kcal mol⁻¹ and displayed a completely different behavior. Without the correction the barriers are too small and upon the addition of the systematic correction we see that the reaction has an induction period and then proceeds in a very short time window. This indicates that the barriers predicted for the catalyzed pathways relative to the hemiaminal-catalyst adducts are too small. So when the stabilization of the adducts due to the systematic correction occurs and concentration is not limiting the hemiaminal dehydration, it goes too fast.

7. Quasi-harmonic corrected models

In order to refine the results quasi-harmonic corrections to the free energies for frequencies below 100 cm⁻¹ using the GoodVibes software as indicated in the section 1. Generally the magnitude of these corrections is not too large and it could be expected that a small improvement in the prediction of the experimental results could be obtained, either in the description of the overall equilibrium or in the shape of the concentration profiles. Table S15 has the values of the corrections obtained for each structure relevant to the Microkinetic Model.

Table S15: Quasi-harmonic corrections for each functional revisited.

	G _{qh} – G (kcal mol ⁻¹)			G _{qh} - G (kcal mol ⁻¹)		nol ⁻¹)	
Model Label	B3LYP	PBEPBE	M06-2X	Model Label	B3LYP	PBEPBE	M06-2X
A	0.1	0.1	0.0	TS1	1.6	1.6	1.6
В	0.1	0.1	0.1	TS2	1.3	1.4	1.3
W	0.0	0.0	0.0	TS1W	1.8	1.6	1.5
[A+B]	1.9	2.3	1.4	TS2W	2.1	1.9	1.9
[A+W]	1.0	0.9	1.0	TS1N	2.7	3.0	2.8
[B+W]	0.7	0.7	0.9	TS2N	3.1	3.1	2.8
[W+W]	0.1	0.2	0.0	TS1WW	2.0	2.3	1.9
[B+B]	2.0	2.0	1.4	TS2WW	2.2	2.4	2.0
[A+B+W]	2.7	2.6	2.9	TS1NW	3.0	3.9	3.2
[A+B+B]	4.7	4.6	3.7	TS2NW	7.1	3.5	3.6
[A+W+W]	1.9	2.0	1.7				
[B+W+W]	1.3	1.4	1.0				
[B+B+W]	3.2	3.3	2.6				
[W+W+W]	0.0	0.0	0.7				
[A+B+B+W]	4.6	4.6	3.5				
[A+B+W+W]	3.8	3.6	3.3				
Hemi	1.3	1.4	1.5				
[Hemi+W]	1.9	2.0	1.7				
[Hemi+B]	3.0	3.3	2.0				
[Hemi+B+W]	4.4	4.1	3.8				
[Hemi+W+W]	2.3	2.4	2.3				
I	1.2	1.2	0.9				
[I+W]	1.6	1.7	1.6				
[I+B]	3.2	3.1	2.4				
[I+W+W]	2.5	2.6	2.6				
[I+B+W]	3.7	4.0	3.7				
[I+W+W+W]	2.8	3.3	2.5				
[I+B+W+W]	4.6	4.1	3.6				

As seen in Figure S6, Figure S7 and Figure S8 the model without correction (purple line) remained mostly the same for the results with the different functionals. Therefore the same Systematic Correction applied previously was applied to these new sets of thermodynamic values.

Figure S6: Imine concentration for all the models obtained from systematic corrections to the M06-2X Free energy profile with quasi-harmonic corrections. Systematic correction steps of 1.0 kcal mol⁻¹

Figure S7: Imine concentration for all the models obtained from systematic corrections to the PBEPBE Free energy profile with quasi-harmonic corrections. Systematic correction steps of 0.1 kcal mol⁻¹

The shape of the curves obtained with M06-2X-D3 (Figure S6) and PBEPBE-D3 (Figure S7) did not improve the prediction of the experimental values. No significant change can be seen with M06-2X-D3 but in the case of PBEPBE-D3 a significant deterioration of the description of the equilibrium can be appreciated. In the case of B3LYP-D3 (Figure S8) not only did not improve, but did exactly the opposite. This is likely due to the large correction over the TS2NW structure of 7.1 kcal mol⁻¹ which overall reduces the relative barriers ca 3.0 kcal mol⁻¹ with respect to [I+B+W+W] and [Hemi+B+W].

Figure S8: Imine concentration for all the models obtained from systematic corrections to the B3LYP Free energy profile with quasi-harmonic corrections. Systematic correction steps of 0.5 kcal mol⁻¹ for the until 4.5 kcal mol⁻¹ and of 0.1 kcal mol⁻¹ until 6.0 kcal mol⁻¹

8. Python Script example with the values of section 5.1

```
1 import sys
 2 import numpy as np
 3 import scipy.integrate
 5 OFile = 'Outputs/Scan 000.out'
   # alias for ode function
 8 odeint = scipy.integrate.odeint
10 # Calculations Memory Constraint
11 \text{ MaxMem} = 28*1E6
13 # Parameters
14 \text{ species} = 28
15 \text{ dt} = 1E-5 \# \text{Timestep s}
16 \text{ report\_t} = 1E-1 \# s
17 tfin = 5000 # Final Time
18 xini = np.zeros(species)
19 \times [0] = 0.06
20 \, \text{xini}[1] = 0.06
21 \times [2] = 0.001
22 # Model at T=298.15 K
23 def f(x,t):
            dxdt = np.zeros(28)
```

```
25
           #Constants
26
           k00 = 1.1520016141e+08
27
           k01 = 2.1243982518e+11
28
           k02 = 4.6522262685e+09
29
           k03 = 2.1243982518e+11
30
           k04 = 2.1243982518e+11
31
           k05 = 1.0627425113e+11
32
           k06 = 2.3472075016e+08
33
           k07 = 2.1243982518e+11
34
           k08 = 2.8944452758e+10
35
           k09 = 2.1243982518e+11
36
           k10 = 1.2474135377e+06
37
           k11 = 2.1243982518e+11
38
           k12 = 1.2524507574e+09
39
           k13 = 2.1243982518e+11
40
           k14 = 1.6652981977e+09
41
           k15 = 2.1243982518e+11
42
           k16 = 2.5518729986e+09
43
           k17 = 2.1243982518e+11
44
           k18 = 1.1386583655e+08
45
           k19 = 2.1243982518e+11
46
           k20 = 9.4996816172e+08
           k21 = 2.1243982518e+11
47
           k22 = 2.1243982518e+11
48
           k23 = 2.9848780886e+10
49
           k24 = 4.5983410911e+09
50
51
           k25 = 2.1243982518e+11
52
           k26 = 1.0360877187e+10
53
           k27 = 2.1243982518e+11
54
           k28 = 1.0305446152e+11
55
           k29 = 2.1243982518e+11
           k30 = 2.1243982518e+11
56
           k31 = 2.6258534710e+10
57
58
           k32 = 2.9128971462e+10
59
           k33 = 2.1243982518e+11
60
           k34 = 1.8163911446e+09
           k35 = 2.1243982518e+11
61
           k36 = 2.1243982518e+11
62
           k37 = 2.0822723299e+10
63
64
           k38 = 3.6580372751e+09
65
           k39 = 2.1243982518e+11
66
           k40 = 8.1375555674e+10
67
           k41 = 2.1243982518e+11
68
           k42 = 1.4846115923e-11
69
           k43 = 4.1907492732e-08
70
           k44 = 1.3627835178e+02
71
           k45 = 2.9212843905e+03
72
           k46 = 4.7620982072e-03
73
           k47 = 3.2277543932e+00
           k48 = 9.0926246695e+02
74
           k49 = 1.7512558087e+05
75
           k50 = 3.1831794500e+02
76
77
           k51 = 1.1404141794e+05
           k52 = 7.4531321673e+10
78
79
           k53 = 2.1243982518e+11
80
           k54 = 2.1243982518e+11
81
           k55 = 1.0627613561e+10
82
           k56 = 2.1243982518e+11
83
           k57 = 1.4311551605e+10
84
           k58 = 7.8918184665e+10
85
           k59 = 2.1243982518e+11
86
           k60 = 2.1243982518e+11
87
           k61 = 1.0036851306e+10
88
           k62 = 1.4207544383e+09
```

```
89
            k63 = 2.1243982518e+11
 90
            k64 = 2.9722595183e+10
 91
            k65 = 2.1243982518e+11
 92
            k66 = 3.5961305166e-16
 93
            k67 = 4.4655823739e-23
 94
            k68 = 1.8128732564e-05
 95
            k69 = 2.2320322775e-11
 96
            k70 = 1.2863754590e-06
 97
            k71 = 8.2046628228e-13
 98
            k72 = 6.4999399338e+01
 99
            k73 = 5.6414819627e-03
100
            k74 = 3.0671312390e+03
101
            k75 = 2.5170839485e-03
102
            k76 = 2.1243982518e+11
103
            k77 = 5.2266979709e+10
104
            k78 = 2.1243982518e+11
105
            k79 = 1.1028202726e+11
106
            k80 = 2.1243982518e+11
107
            k81 = 6.1072075449e+10
108
            k82 = 2.1243982518e+11
109
            k83 = 2.5466485201e+08
110
            k84 = 2.1243982518e+11
            k85 = 2.0798187287e+11
111
            k86 = 2.1243982518e+11
112
            k87 = 2.0691187767e+09
113
114
            k88 = 2.1243982518e+11
115
            k89 = 1.0983092618e+09
116
            k90 = 1.4131533551e+10
117
            k91 = 2.1243982518e+11
118
            k92 = 2.1243982518e+11
119
            k93 = 2.1655291772e+09
            k94 = 2.1243982518e+11
120
            k95 = 1.5057926667e+10
121
122
            k96 = 1.0154287036e+11
            k97 = 2.1243982518e+11
123
124
            k98 = 2.1243982518e+11
125
            k99 = 8.1548110537e+10
126
            k100 = 2.1243982518e+11
127
            k101 = 4.5447672655e+10
            k102 = 2.1243982518e+11
128
129
            k103 = 2.1539435241e+10
            #Rate laws
130
131
            r00 = k00*x[0]*x[1]
132
            r01 = k01*x[3]
133
            r02 = k02*x[0]*x[2]
134
            r03 = k03*x[4]
135
            r04 = k04*x[1]*x[2]
136
            r05 = k05*x[5]
137
            r06 = k06*x[1]*x[1]
            r07 = k07*x[7]
138
            r08 = k08*x[2]*x[2]
139
            r09 = k09*x[6]
140
141
            r10 = k10*x[0]*x[5]
142
            r11 = k11*x[8]
            r12 = k12*x[0]*x[7]
143
144
            r13 = k13*x[9]
145
            r14 = k14*x[0]*x[6]
146
            r15 = k15*x[10]
147
            r16 = k16*x[1]*x[3]
148
            r17 = k17*x[9]
149
            r18 = k18*x[1]*x[4]
150
            r19 = k19*x[8]
151
            r20 = k20*x[1]*x[5]
152
            r21 = k21*x[12]
```

```
r22 = k22*x[1]*x[6]
153
154
             r23 = k23*x[11]
155
             r24 = k24*x[2]*x[3]
156
            r25 = k25*x[8]
157
            r26 = k26*x[2]*x[4]
158
            r27 = k27*x[10]
159
            r28 = k28*x[2]*x[5]
160
            r29 = k29*x[11]
161
            r30 = k30*x[2]*x[7]
162
            r31 = k31*x[12]
163
            r32 = k32*x[2]*x[6]
164
            r33 = k33*x[13]
165
            r34 = k34*x[3]*x[5]
166
            r35 = k35*x[14]
167
            r36 = k36*x[3]*x[6]
168
            r37 = k37*x[15]
169
            r38 = k38*x[4]*x[5]
170
            r39 = k39*x[15]
171
            r40 = k40*x[4]*x[7]
172
            r41 = k41*x[14]
173
            r42 = k42*x[3]
174
            r43 = k43*x[16]
175
            r44 = k44*x[8]
            r45 = k45 * x[17]
176
177
            r46 = k46*x[9]
            r47 = k47 \times [18]
178
179
            r48 = k48 * x[15]
180
            r49 = k49*x[20]
181
            r50 = k50*x[14]
182
            r51 = k51*x[19]
            r52 = k52*x[17]
183
            r53 = k53*x[2]*x[16]
184
            r54 = k54*x[18]
185
            r55 = k55*x[1]*x[16]
186
187
            r56 = k56*x[19]
            r57 = k57*x[5]*x[16]
188
189
            r58 = k58 * x[19]
190
            r59 = k59*x[2]*x[18]
191
            r60 = k60 * x[19]
192
             r61 = k61*x[1]*x[17]
193
             r62 = k62 \times x[20]
194
             r63 = k63*x[6]*x[16]
195
            r64 = k64 * x[20]
196
            r65 = k65*x[2]*x[17]
197
            r66 = k66*x[16]
198
            r67 = k67*x[22]
199
            r68 = k68 * x[17]
200
            r69 = k69*x[24]
201
            r70 = k70 \times x[18]
            r71 = k71*x[25]
202
            r72 = k72 \times x[20]
203
            r73 = k73*x[27]
204
            r74 = k74 * x [19]
205
            r75 = k75*x[26]
206
207
            r76 = k76*x[22]
208
            r77 = k77*x[2]*x[21]
209
            r78 = k78 * x [24]
210
            r79 = k79*x[6]*x[21]
211
            r80 = k80*x[24]
212
            r81 = k81*x[2]*x[22]
213
            r82 = k82*x[25]
214
            r83 = k83*x[5]*x[21]
215
            r84 = k84 * x[25]
216
            r85 = k85*x[2]*x[23]
```

```
217
            r86 = k86*x[25]
218
            r87 = k87*x[1]*x[22]
            r88 = k88*x[26]
219
            r89 = k89*x[11]*x[21]
220
221
            r90 = k90*x[26]
222
           r91 = k91*x[6]*x[23]
           r92 = k92*x[26]
223
224
           r93 = k93*x[5]*x[22]
225
           r94 = k94 * x[26]
226
           r95 = k95*x[1]*x[24]
227
           r96 = k96*x[26]
228
           r97 = k97*x[2]*x[25]
229
           r98 = k98 * x[27]
230
           r99 = k99*x[13]*x[21]
231
            r100 = k100*x[27]
232
           r101 = k101*x[6]*x[22]
233
           r102 = k102 * x[27]
234
           r103 = k103*x[2]*x[24]
235
            #MassBalances
236
            dxdt[0] = -r00+r01-r02+r03-r10+r11-r12+r13-r14+r15
            dxdt[1] = -r00+r01-r04+r05-2.0*r06+2.0*r07-r16+r17-r18+r19-r20+r21-
237
r22+r23+r54-r55+r60-r61+r86-r87+r94-r95
            dxdt[2] = -r02+r03-r04+r05-2.0*r08+2.0*r09-r24+r25-r26+r27-r28+r29-
r30+r31-r32+r33+r52-r53+r58-r59+r64-r65+r76-r77+r80-r81+r84-r85+r96-r97+r102-
r103
239
            dxdt[3] = +r00-r01-r16+r17-r24+r25-r34+r35-r36+r37-r42+r43
240
            dxdt[4] = +r02-r03-r18+r19-r26+r27-r38+r39-r40+r41
            dxdt[5] = +r04-r05-r10+r11-r20+r21-r28+r29-r34+r35-r38+r39+r56-
241
r57+r82-r83+r92-r93
            dxdt[6] = +r08-r09-r14+r15-r22+r23-r32+r33-r36+r37+r62-r63+r78-
r79+r90-r91+r100-r101
            dxdt[7] = +r06-r07-r12+r13-r30+r31-r40+r41
243
244
            dxdt[8] = +r10-r11+r18-r19+r24-r25-r44+r45
245
            dxdt[9] = +r12-r13+r16-r17-r46+r47
246
            dxdt[10] = +r14-r15+r26-r27
            dxdt[11] = +r22-r23+r28-r29+r88-r89
247
248
            dxdt[12] = +r20-r21+r30-r31
249
            dxdt[13] = +r32-r33+r98-r99
250
            dxdt[14] = +r34-r35+r40-r41-r50+r51
251
            dxdt[15] = +r36-r37+r38-r39-r48+r49
252
            dxdt[16] = +r42-r43+r52-r53+r54-r55+r56-r57+r62-r63-r66+r67
253
            dxdt[17] = +r44-r45-r52+r53+r60-r61+r64-r65-r68+r69
254
            dxdt[18] = +r46-r47-r54+r55+r58-r59-r70+r71
255
            dxdt[19] = +r50-r51-r56+r57-r58+r59-r60+r61-r74+r75
256
            dxdt[20] = +r48-r49-r62+r63-r64+r65-r72+r73
257
            dxdt[21] = +r76-r77+r78-r79+r82-r83+r88-r89+r98-r99
            dxdt[22] = +r66-r67-r76+r77+r80-r81+r86-r87+r92-r93+r100-r101
258
259
            dxdt[23] = +r84-r85+r90-r91
            dxdt[24] = +r68-r69-r78+r79-r80+r81+r94-r95+r102-r103
260
261
            dxdt[25] = +r70-r71-r82+r83-r84+r85-r86+r87+r96-r97
262
            dxdt[26] = +r74-r75-r88+r89-r90+r91-r92+r93-r94+r95-r96+r97
263
            dxdt[27] = +r72-r73-r98+r99-r100+r101-r102+r103
264
            return dxdt
265
266
267 def Jacobian (x,t):
268
           Jac = np.zeros(shape=(28,28))
269
            #Constants
270
            k00 = 1.1520016141e+08
            k01 = 2.1243982518e+11
271
            k02 = 4.6522262685e+09
272
           k03 = 2.1243982518e+11
273
274
           k04 = 2.1243982518e+11
275
            k05 = 1.0627425113e+11
```

```
k06 = 2.3472075016e+08
276
277
            k07 = 2.1243982518e+11
278
            k08 = 2.8944452758e+10
279
            k09 = 2.1243982518e+11
280
            k10 = 1.2474135377e+06
281
            k11 = 2.1243982518e+11
282
            k12 = 1.2524507574e+09
283
            k13 = 2.1243982518e+11
284
            k14 = 1.6652981977e+09
285
            k15 = 2.1243982518e+11
286
            k16 = 2.5518729986e+09
287
            k17 = 2.1243982518e+11
288
            k18 = 1.1386583655e+08
289
            k19 = 2.1243982518e+11
290
            k20 = 9.4996816172e+08
291
            k21 = 2.1243982518e+11
292
            k22 = 2.1243982518e+11
293
            k23 = 2.9848780886e+10
294
            k24 = 4.5983410911e+09
295
            k25 = 2.1243982518e+11
296
            k26 = 1.0360877187e+10
297
            k27 = 2.1243982518e+11
            k28 = 1.0305446152e+11
298
299
            k29 = 2.1243982518e+11
300
            k30 = 2.1243982518e+11
301
            k31 = 2.6258534710e+10
302
            k32 = 2.9128971462e+10
303
            k33 = 2.1243982518e+11
304
            k34 = 1.8163911446e+09
305
            k35 = 2.1243982518e+11
306
            k36 = 2.1243982518e+11
307
            k37 = 2.0822723299e+10
            k38 = 3.6580372751e+09
308
            k39 = 2.1243982518e+11
309
310
            k40 = 8.1375555674e+10
311
            k41 = 2.1243982518e+11
312
            k42 = 1.4846115923e-11
313
            k43 = 4.1907492732e-08
314
            k44 = 1.3627835178e+02
315
            k45 = 2.9212843905e+03
316
            k46 = 4.7620982072e-03
317
            k47 = 3.2277543932e+00
318
            k48 = 9.0926246695e+02
319
            k49 = 1.7512558087e+05
320
            k50 = 3.1831794500e+02
321
            k51 = 1.1404141794e+05
322
            k52 = 7.4531321673e+10
323
            k53 = 2.1243982518e+11
324
            k54 = 2.1243982518e+11
325
            k55 = 1.0627613561e+10
326
            k56 = 2.1243982518e+11
327
            k57 = 1.4311551605e+10
328
            k58 = 7.8918184665e+10
329
            k59 = 2.1243982518e+11
330
            k60 = 2.1243982518e+11
331
            k61 = 1.0036851306e+10
332
            k62 = 1.4207544383e+09
333
            k63 = 2.1243982518e+11
334
            k64 = 2.9722595183e+10
335
            k65 = 2.1243982518e+11
336
            k66 = 3.5961305166e-16
337
            k67 = 4.4655823739e-23
338
            k68 = 1.8128732564e-05
339
            k69 = 2.2320322775e-11
```

```
340
                          k70 = 1.2863754590e-06
341
                          k71 = 8.2046628228e-13
342
                          k72 = 6.4999399338e+01
343
                          k73 = 5.6414819627e-03
344
                          k74 = 3.0671312390e+03
345
                          k75 = 2.5170839485e-03
                         k76 = 2.1243982518e+11
346
347
                         k77 = 5.2266979709e+10
348
                         k78 = 2.1243982518e+11
349
                         k79 = 1.1028202726e+11
350
                         k80 = 2.1243982518e+11
351
                         k81 = 6.1072075449e+10
352
                         k82 = 2.1243982518e+11
353
                         k83 = 2.5466485201e+08
354
                          k84 = 2.1243982518e+11
355
                          k85 = 2.0798187287e+11
356
                          k86 = 2.1243982518e+11
357
                         k87 = 2.0691187767e+09
358
                          k88 = 2.1243982518e+11
359
                          k89 = 1.0983092618e+09
                          k90 = 1.4131533551e+10
360
                          k91 = 2.1243982518e+11
361
362
                          k92 = 2.1243982518e+11
363
                          k93 = 2.1655291772e+09
364
                          k94 = 2.1243982518e+11
365
                          k95 = 1.5057926667e+10
366
                          k96 = 1.0154287036e+11
367
                          k97 = 2.1243982518e+11
368
                          k98 = 2.1243982518e+11
369
                          k99 = 8.1548110537e+10
370
                          k100 = 2.1243982518e+11
371
                          k101 = 4.5447672655e+10
372
                          k102 = 2.1243982518e+11
373
                          k103 = 2.1539435241e+10
374
                          # Partial Derivatives
375
                          Jac[0,0] = -k00*x[1]-k02*x[2]-k10*x[5]-k12*x[7]-k14*x[6]
376
                          Jac[0,1] = -k00*x[0]
377
                          Jac[0,2] = -k02*x[0]
378
                          Jac[0,3] = +k01
379
                          Jac[0,4] = +k03
380
                          Jac[0,5] = -k10*x[0]
381
                          Jac[0, 6] = -k14*x[0]
382
                          Jac[0,7] = -k12*x[0]
383
                          Jac[0,8] = +k11
384
                          Jac[0,9] = +k13
385
                          Jac[0,10] = +k15
386
                          Jac[1,0] = -k00*x[1]
                          Jac[1,1] = -k00*x[0]-k04*x[2]-2.0*k06*2.0*x[1]-k16*x[3]-k18*x[4]-k16*x[4]-k16*x[3]-k18*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]-k16*x[4]
k20*x[5]-k22*x[6]-k55*x[16]-k61*x[17]-k87*x[22]-k95*x[24]
388
                          Jac[1,2] = -k04*x[1]
389
                          Jac[1,3] = +k01-k16*x[1]
390
                          Jac[1, 4] = -k18*x[1]
391
                          Jac[1,5] = +k05-k20*x[1]
392
                          Jac[1, 6] = -k22*x[1]
393
                          Jac[1,7] = +2.0*k07
394
                          Jac[1,8] = +k19
395
                          Jac[1, 9] = +k17
396
                          Jac[1,11] = +k23
                          Jac[1, 12] = +k21
397
398
                          Jac[1,16] = -k55*x[1]
399
                          Jac[1,17] = -k61*x[1]
400
                          Jac[1,18] = +k54
401
                          Jac[1,19] = +k60
402
                          Jac[1,22] = -k87*x[1]
```

```
403
                               Jac[1,24] = -k95*x[1]
                               Jac[1,25] = +k86
404
                               Jac[1,26] = +k94
405
406
                               Jac[2,0] = -k02*x[2]
407
                               Jac[2,1] = -k04*x[2]
408
                                Jac[2,2] = -k02*x[0]-k04*x[1]-2.0*k08*2.0*x[2]-k24*x[3]-k26*x[4]-
k28 \times x[5] - k30 \times x[7] - k32 \times x[6] - k53 \times x[16] - k59 \times x[18] - k65 \times x[17] - k77 \times x[21] - k81 \times x[22] - x[22] - x[22] - x[22] - x[22] - x[22] - x[22]
k85*x[23]-k97*x[25]-k103*x[24]
409
                               Jac[2,3] = -k24*x[2]
410
                               Jac[2,4] = +k03-k26*x[2]
411
                               Jac[2,5] = +k05-k28*x[2]
412
                               Jac[2,6] = +2.0*k09-k32*x[2]
413
                               Jac[2,7] = -k30*x[2]
414
                               Jac[2,8] = +k25
415
                               Jac[2,10] = +k27
416
                               Jac[2,11] = +k29
417
                               Jac[2,12] = +k31
418
                               Jac[2,13] = +k33
419
                               Jac[2,16] = -k53*x[2]
420
                               Jac[2,17] = +k52-k65*x[2]
421
                               Jac[2,18] = -k59*x[2]
422
                               Jac[2,19] = +k58
423
                               Jac[2,20] = +k64
424
                               Jac[2,21] = -k77*x[2]
425
                               Jac[2,22] = +k76-k81*x[2]
                               Jac[2,23] = -k85*x[2]
426
427
                               Jac[2,24] = +k80-k103*x[2]
428
                               Jac[2,25] = +k84-k97*x[2]
                               Jac[2,26] = +k96
429
                               Jac[2,27] = +k102
430
                               Jac[3,0] = +k00*x[1]
431
432
                               Jac[3,1] = +k00*x[0]-k16*x[3]
                               Jac[3,2] = -k24*x[3]
433
434
                               Jac[3,3] = -k01-k16*x[1]-k24*x[2]-k34*x[5]-k36*x[6]-k42
435
                               Jac[3, 5] = -k34*x[3]
                               Jac[3, 6] = -k36*x[3]
436
437
                               Jac[3,8] = +k25
438
                               Jac[3,9] = +k17
439
                               Jac[3,14] = +k35
440
                               Jac[3,15] = +k37
441
                               Jac[3,16] = +k43
442
                               Jac[4,0] = +k02*x[2]
443
                               Jac[4,1] = -k18*x[4]
444
                               Jac[4,2] = +k02*x[0]-k26*x[4]
                               Jac[4,4] = -k03-k18*x[1]-k26*x[2]-k38*x[5]-k40*x[7]
445
446
                               Jac[4, 5] = -k38*x[4]
447
                               Jac[4,7] = -k40*x[4]
448
                               Jac[4,8] = +k19
                               Jac[4,10] = +k27
449
450
                               Jac[4,14] = +k41
451
                               Jac[4,15] = +k39
452
                               Jac[5,0] = -k10*x[5]
453
                               Jac[5,1] = +k04*x[2]-k20*x[5]
                               Jac[5,2] = +k04*x[1]-k28*x[5]
454
455
                               Jac[5,3] = -k34*x[5]
456
                               Jac[5, 4] = -k38*x[5]
457
                               Jac[5,5] = -k05-k10*x[0]-k20*x[1]-k28*x[2]-k34*x[3]-k38*x[4]-
k57*x[16]-k83*x[21]-k93*x[22]
458
                               Jac[5,8] = +k11
459
                               Jac[5,11] = +k29
460
                               Jac[5,12] = +k21
461
                               Jac[5,14] = +k35
462
                               Jac[5, 15] = +k39
463
                               Jac[5,16] = -k57*x[5]
```

```
464
            Jac[5,19] = +k56
465
            Jac[5,21] = -k83*x[5]
            Jac[5,22] = -k93*x[5]
466
            Jac[5, 25] = +k82
467
468
            Jac[5,26] = +k92
469
            Jac[6,0] = -k14*x[6]
470
            Jac[6,1] = -k22*x[6]
471
            Jac[6,2] = +k08*2.0*x[2]-k32*x[6]
472
            Jac[6,3] = -k36*x[6]
473
            Jac[6,6] = -k09-k14*x[0]-k22*x[1]-k32*x[2]-k36*x[3]-k63*x[16]-
k79*x[21]-k91*x[23]-k101*x[22]
474
            Jac[6,10] = +k15
475
            Jac[6,11] = +k23
476
            Jac[6,13] = +k33
477
            Jac[6, 15] = +k37
478
            Jac[6,16] = -k63*x[6]
479
            Jac[6,20] = +k62
480
            Jac[6,21] = -k79*x[6]
481
            Jac[6,22] = -k101*x[6]
482
            Jac[6,23] = -k91*x[6]
            Jac[6,24] = +k78
483
            Jac[6, 26] = +k90
484
485
            Jac[6,27] = +k100
486
            Jac[7,0] = -k12*x[7]
487
            Jac[7,1] = +k06*2.0*x[1]
488
            Jac[7,2] = -k30*x[7]
            Jac[7, 4] = -k40*x[7]
489
            Jac[7,7] = -k07-k12*x[0]-k30*x[2]-k40*x[4]
490
            Jac[7, 9] = +k13
491
            Jac[7, 12] = +k31
492
            Jac[7,14] = +k41
493
            Jac[8,0] = +k10*x[5]
494
            Jac[8,1] = +k18*x[4]
495
            Jac[8,2] = +k24*x[3]
496
            Jac[8,3] = +k24*x[2]
497
498
            Jac[8, 4] = +k18*x[1]
499
            Jac[8,5] = +k10*x[0]
500
            Jac[8,8] = -k11-k19-k25-k44
501
            Jac[8,17] = +k45
502
            Jac[9,0] = +k12*x[7]
503
            Jac[9,1] = +k16*x[3]
504
            Jac[9,3] = +k16*x[1]
505
            Jac[9,7] = +k12*x[0]
506
            Jac[9,9] = -k13-k17-k46
507
            Jac[9,18] = +k47
508
            Jac[10,0] = +k14*x[6]
509
            Jac[10,2] = +k26*x[4]
510
            Jac[10,4] = +k26*x[2]
511
            Jac[10,6] = +k14*x[0]
512
            Jac[10,10] = -k15-k27
513
            Jac[11,1] = +k22*x[6]
514
            Jac[11,2] = +k28*x[5]
515
            Jac[11,5] = +k28*x[2]
516
            Jac[11, 6] = +k22*x[1]
517
            Jac[11,11] = -k23-k29-k89*x[21]
518
            Jac[11,21] = -k89*x[11]
            Jac[11,26] = +k88
519
            Jac[12,1] = +k20*x[5]
520
521
            Jac[12,2] = +k30*x[7]
522
            Jac[12,5] = +k20*x[1]
523
            Jac[12,7] = +k30*x[2]
524
            Jac[12,12] = -k21-k31
525
            Jac[13,2] = +k32*x[6]
526
            Jac[13, 6] = +k32*x[2]
```

```
527
            Jac[13,13] = -k33-k99*x[21]
528
            Jac[13,21] = -k99*x[13]
529
            Jac[13,27] = +k98
            Jac[14,3] = +k34*x[5]
530
531
            Jac[14,4] = +k40*x[7]
532
            Jac[14,5] = +k34*x[3]
533
            Jac[14,7] = +k40*x[4]
534
            Jac[14,14] = -k35-k41-k50
535
            Jac[14,19] = +k51
536
            Jac[15,3] = +k36*x[6]
537
            Jac[15, 4] = +k38*x[5]
538
            Jac[15, 5] = +k38*x[4]
539
            Jac[15, 6] = +k36*x[3]
540
            Jac[15, 15] = -k37-k39-k48
541
            Jac[15,20] = +k49
542
            Jac[16,1] = -k55*x[16]
543
            Jac[16,2] = -k53*x[16]
544
            Jac[16,3] = +k42
545
            Jac[16, 5] = -k57*x[16]
546
            Jac[16, 6] = -k63*x[16]
547
            Jac[16,16] = -k43-k53*x[2]-k55*x[1]-k57*x[5]-k63*x[6]-k66
            Jac[16,17] = +k52
548
549
            Jac[16,18] = +k54
550
            Jac[16, 19] = +k56
551
            Jac[16,20] = +k62
552
            Jac[16,22] = +k67
553
            Jac[17,1] = -k61*x[17]
554
            Jac[17,2] = +k53*x[16]-k65*x[17]
555
            Jac[17,8] = +k44
            Jac[17,16] = +k53*x[2]
556
557
            Jac[17,17] = -k45-k52-k61*x[1]-k65*x[2]-k68
558
            Jac[17,19] = +k60
559
            Jac[17,20] = +k64
            Jac[17,24] = +k69
560
561
            Jac[18,1] = +k55*x[16]
562
            Jac[18,2] = -k59*x[18]
563
            Jac[18, 9] = +k46
564
            Jac[18,16] = +k55*x[1]
565
            Jac[18,18] = -k47-k54-k59*x[2]-k70
566
            Jac[18,19] = +k58
567
            Jac[18,25] = +k71
568
            Jac[19,1] = +k61*x[17]
569
            Jac[19,2] = +k59*x[18]
570
            Jac[19,5] = +k57*x[16]
571
            Jac[19,14] = +k50
572
            Jac[19,16] = +k57*x[5]
573
            Jac[19,17] = +k61*x[1]
574
            Jac[19,18] = +k59*x[2]
            Jac[19,19] = -k51-k56-k58-k60-k74
575
576
            Jac[19,26] = +k75
577
            Jac[20,2] = +k65*x[17]
578
            Jac[20,6] = +k63*x[16]
579
            Jac[20, 15] = +k48
580
            Jac[20,16] = +k63*x[6]
            Jac[20,17] = +k65*x[2]
581
582
            Jac[20,20] = -k49-k62-k64-k72
583
            Jac[20,27] = +k73
            Jac[21,2] = -k77*x[21]
584
585
            Jac[21,5] = -k83*x[21]
586
            Jac[21,6] = -k79*x[21]
587
            Jac[21,11] = -k89*x[21]
588
            Jac[21,13] = -k99*x[21]
            Jac[21,21] = -k77*x[2]-k79*x[6]-k83*x[5]-k89*x[11]-k99*x[13]
589
590
            Jac[21,22] = +k76
```

```
591
            Jac[21,24] = +k78
592
            Jac[21,25] = +k82
            Jac[21,26] = +k88
593
594
            Jac[21, 27] = +k98
595
            Jac[22,1] = -k87*x[22]
596
            Jac[22,2] = +k77*x[21]-k81*x[22]
597
            Jac[22, 5] = -k93*x[22]
598
            Jac[22, 6] = -k101*x[22]
599
            Jac[22,16] = +k66
600
            Jac[22,21] = +k77*x[2]
601
            Jac[22,22] = -k67-k76-k81*x[2]-k87*x[1]-k93*x[5]-k101*x[6]
602
            Jac[22,24] = +k80
603
            Jac[22,25] = +k86
604
            Jac[22,26] = +k92
605
            Jac[22,27] = +k100
606
            Jac[23,2] = -k85*x[23]
607
            Jac[23, 6] = -k91*x[23]
608
            Jac[23,23] = -k85*x[2]-k91*x[6]
609
            Jac[23,25] = +k84
            Jac[23, 26] = +k90
610
            Jac[24,1] = -k95*x[24]
611
            Jac[24,2] = +k81*x[22]-k103*x[24]
612
613
            Jac[24,6] = +k79*x[21]
            Jac[24,17] = +k68
614
615
            Jac[24,21] = +k79*x[6]
            Jac[24,22] = +k81*x[2]
616
            Jac[24,24] = -k69-k78-k80-k95*x[1]-k103*x[2]
617
            Jac[24,26] = +k94
618
            Jac[24,27] = +k102
619
            Jac[25,1] = +k87*x[22]
620
            Jac[25,2] = +k85*x[23]-k97*x[25]
621
622
            Jac[25, 5] = +k83*x[21]
623
            Jac[25, 18] = +k70
624
            Jac[25,21] = +k83*x[5]
625
            Jac[25,22] = +k87*x[1]
626
            Jac[25,23] = +k85*x[2]
627
            Jac[25, 25] = -k71-k82-k84-k86-k97*x[2]
628
            Jac[25, 26] = +k96
629
            Jac[26,1] = +k95*x[24]
630
            Jac[26,2] = +k97*x[25]
631
            Jac[26,5] = +k93*x[22]
632
            Jac[26, 6] = +k91*x[23]
633
            Jac[26,11] = +k89*x[21]
634
            Jac[26,19] = +k74
635
            Jac[26,21] = +k89*x[11]
636
            Jac[26,22] = +k93*x[5]
            Jac[26,23] = +k91*x[6]
638
            Jac[26,24] = +k95*x[1]
639
            Jac[26,25] = +k97*x[2]
640
            Jac[26, 26] = -k75-k88-k90-k92-k94-k96
641
            Jac[27,2] = +k103*x[24]
642
            Jac[27, 6] = +k101*x[22]
643
            Jac[27,13] = +k99*x[21]
644
            Jac[27,20] = +k72
            Jac[27,21] = +k99*x[13]
645
            Jac[27,22] = +k101*x[6]
646
647
            Jac[27,24] = +k103*x[2]
648
            Jac[27,27] = -k73-k98-k100-k102
649
            return Jac
650
651
652 # Calculation handling a maximum matrix size
653 if species*tfin/dt > MaxMem:
654
            tfin2 = MaxMem*dt/species
```

```
655
            ti = 0
656 else:
            tfin2 = tfin
657
658
            ti = 0
659 t = np.arange(0, tfin2+dt, dt)
660 \text{ xini2} = \text{xini}
661 # Time indexes and Out predefinition
662 Out index = []
663 t old = -(report t+1.0)
664 for i in range(len(t)):
665
            if t[i] - t old >= report t:
666
                     Out index.append(i)
667
                     t old = t[i]
668 Out = ['' for i \frac{1}{100} Out index]
669 while ti+tfin2 <= tfin:
            #print('Current interval: [{},{}] s'.format(ti,ti+tfin2))
671
            x = odeint(f,xini2,t,Dfun=Jacobian,rtol=1E-6,atol=1E-11)
672
            # Output Writing
673
            for j,i in enumerate(Out index):
674
                     Row = '\t'.join(map(str,x[i,:].tolist()))
                     Out[j] = '{} \setminus t{}'.format(ti+t[i],Row)
675
676
                     t old = t[i]
677
            with open('{}.txt'.format(OFile),'a') as F:
                     F.write('\n'.join(Out))
678
679
                     F.write('\n')
680
            xini2 = x[-1,:]
681
            ti += tfin2
682
683
```

9. Geometries

Benzaldehyde

Energy (POTENTIAL) = -345.719632320 Eh

Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	C	-1.6968	0.0685	-0.0001
2	C	-0.3000	0.0615	0.0004
3	C	0.4033	1.2594	-0.0001
4	C	-0.2894	2.4662	-0.0010
5	C	-1.6850	2.4790	-0.0014
6	C	-2.3877	1.2855	-0.0010
7	H	0.2288	-0.8840	0.0011
8	H	1.4850	1.2543	0.0003
9	H	0.2566	3.4005	-0.0013
10	H	-2.2163	3.4213	-0.0022
11	H	-3.4693	1.2754	-0.0014
12	C	-2.4231	-1.2136	0.0004
13	O	-3.6322	-1.3279	0.0006
14	Н	-1.7754	-2.1108	0.0016

NButylamine

Energy (POTENTIAL) = -213.904198497 Eh

Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	C	-3.5451	-1.0834	-0.0000
2	Н	-3.2750	-2.1440	0.0064
3	Н	-3.0914	-0.6563	-0.8997
4	C	-2.9526	-0.4069	1.2354
5	Н	-3.2206	0.6558	1.2297
6	Н	-3.3960	-0.8337	2.1401
7	C	-1.4365	-0.5351	1.3223
8	Н	-0.9910	-0.1276	0.4038
9	Н	-1.1656	-1.5937	1.3588
10	N	-0.9238	0.1047	2.5431
11	Н	0.0838	-0.0023	2.5908
12	Н	-1.0928	1.1046	2.4948
13	C	-5.0638	-0.9454	-0.0816
14	Н	-5.3616	0.1054	-0.1187
15	Н	-5.4630	-1.4356	-0.9718
16	Н	-5.5467	-1.3941	0.7898

Water

Energy (POTENTIAL) = -76.4666514750 Eh

Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	O	0.8096	0.1311	0.0000
2	Н	1.7728	0.1775	0.0000
3	Н	0.5317	1.0546	0.0000

Hemiaminal Energy (POTENTIAL) = -559.630034705 Eh Number of Imaginary Frequencies = 0

uniber of m	iaginary Freque	encies – 0		
	Atom	X	Y	Z
1	C	2.1965	1.1709	-0.0648
2	C	0.8511	1.1909	0.2798
3	C	0.1160	0.0068	0.3443
4	C	0.7492	-1.1993	0.0556
5	C	2.0969	-1.2217	-0.2961
6	C	2.8242	-0.0384	-0.3556
7	Н	0.3626	2.1325	0.4990
8	Н	0.1857	-2.1202	0.1132
9	Н	3.8726	-0.0562	-0.6235
10	N	-2.1182	0.4044	-0.4763
11	C	-3.5300	0.7523	-0.3133
12	Н	-3.6005	1.4408	0.5333
13	Н	-3.8300	1.3208	-1.1987
14	Н	-1.9765	-0.2783	-1.2117
15	Н	-1.3334	-1.3423	2.0752
16	C	-1.3654	0.0656	0.6888
17	Н	-1.5275	0.8603	1.4247
18	O	-1.8256	-1.1818	1.2592
19	C	-4.5133	-0.4064	-0.1186
20	Н	-4.2576	-0.9486	0.7923
21	Н	-4.3932	-1.1132	-0.9470
22	Н	2.7563	2.0964	-0.1057
23	Н	2.5782	-2.1652	-0.5198
24	C	-5.9652	0.0669	-0.0588
25	Н	-6.2104	0.6077	-0.9786
26	Н	-6.0753	0.7879	0.7576
27	C	-6.9576	-1.0769	0.1386
28	Н	-6.7584	-1.6146	1.0688
29	Н	-7.9864	-0.7131	0.1793
30	Н	-6.8937	-1.7996	-0.6786

Imine Energy (POTENTIAL) = -483.158752526 Eh Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	C	-8.8986	1.6627	2.8139
2	C	-9.6353	2.7188	3.3382
2 3	C	-9.0674	3.9849	3.4242
4	C	-7.7575	4.2095	2.9912
5	C	-7.0242	3.1393	2.4636
6	C	-7.5916	1.8776	2.3766
7	H	-9.3379	0.6763	2.7444
8	H	-9.6407	4.8087	3.8315
9	H	-6.0112	3.3109	2.1270
10	C	-7.1935	5.5638	3.1051
11	H	-7.8801	6.3226	3.5023
12	N	-6.0045	5.8587	2.7778
13	C	-5.5585	7.2299	2.9558
14	C	-4.4166	7.3067	3.9707
15	Н	-4.7796	6.9432	4.9370
16	Н	-3.6184	6.6271	3.6599
17	Н	-5.1962	7.5897	1.9881
18	Н	-6.3791	7.8901	3.2695
19	C	-3.8615	8.7217	4.1288
20	Н	-3.4892	9.0733	3.1617
21	Н	-4.6727	9.3996	4.4109
22	H	-7.0177	1.0566	1.9673
23	Н	-10.6500	2.5580	3.6778
24	C	-2.7452	8.8055	5.1670
25	H	-1.9073	8.1579	4.8979
26	H	-2.3617	9.8236	5.2589
27	H	-3.0998	8.4937	6.1523

W_W Energy (POTENTIAL) = -152.942640477 Eh Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	O	-1.1223	1.1696	0.1090
2	Н	-0.2446	1.4768	-0.1757
3	Н	-1.6951	1.3662	-0.6400
4	O	1.4317	2.0847	-0.7691
5	Н	2.1060	1.4100	-0.6180
6	Н	1.7188	2.8403	-0.2406

A_W Energy (POTENTIAL) = -422.195334037 Eh Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	C	-2.0892	-1.0248	-0.0772
2	C	-0.7263	-0.7732	0.0464
3	C	-0.2784	0.5332	0.1900
4	C	-1.1939	1.5892	0.2097
5	C	-2.5643	1.3298	0.0852
6	C	-3.0076	0.0262	-0.0577
7	Н	-2.4403	-2.0423	-0.1895
8	Н	0.7797	0.7428	0.2874
9	H	-3.2612	2.1566	0.1017
10	C	-0.6940	2.9585	0.3616
11	Н	0.4020	3.0547	0.4446
12	O	-1.3982	3.9552	0.3985
13	O	0.4603	6.0529	0.8034
14	H	0.5981	6.0141	1.7561
15	H	-0.2708	5.4310	0.6438
16	Н	-0.0189	-1.5912	0.0306
17	Н	-4.0652	-0.1796	-0.1543

N_W Energy (POTENTIAL) = -290.385672764 Eh Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	C	1.5520	-1.8817	-3.9961
2	C	2.2446	-1.2857	-2.7766
3	Н	2.0260	-0.2166	-2.7189
4	Н	3.3314	-1.3845	-2.8877
5	Н	0.4708	-1.7755	-3.8743
6	Н	1.7569	-2.9575	-4.0319
7	Н	3.0773	-1.3492	-5.4216
8	N	1.7505	-1.9096	-1.5360
9	O	-1.0339	-1.3887	-1.5239
10	Н	-1.0643	-0.4583	-1.7705
11	Н	-0.0702	-1.5965	-1.4782
12	C	1.9944	-1.2385	-5.3093
13	Н	1.7982	-0.1626	-5.2670
14	Н	2.2199	-1.5117	-0.7295
15	Н	1.9727	-2.9002	-1.5355
16	C	1.2919	-1.8361	-6.5263
17	Н	1.6219	-1.3607	-7.4520
18	Н	1.4949	-2.9063	-6.6112
19	Н	0.2089	-1.7104	-6.4553

N_N Energy (POTENTIAL) = -427.816638070 Eh Number of Imaginary Frequencies = 0

Number of Im	iaginary Freque			
	Atom	X	Y	Z
1	C	-3.0518	-0.6019	-0.8374
2	H	-2.1847	-0.8659	-1.4509
3	Н	-3.3351	0.4144	-1.1273
4	C	-2.6470	-0.6165	0.6355
5	Н	-3.5088	-0.3378	1.2523
6	H	-2.3724	-1.6323	0.9290
7	C	-1.4866	0.3190	0.9512
8	H	-1.7520	1.3393	0.6426
9	H	-0.6147	0.0268	0.3603
10	N	-1.1148	0.2334	2.3714
11	H	-0.3523	0.8703	2.5751
12	H	-1.8941	0.5290	2.9505
13	Н	-0.3541	-1.7705	2.8251
14	C	-3.3606	-4.5695	2.7887
15	H	-2.9793	-5.5939	2.8461
16	Н	-3.5614	-4.3762	1.7305
17	C	-2.2868	-3.6020	3.2836
18	H	-2.6678	-2.5775	3.2222
19	H	-2.0762	-3.7897	4.3409
20	C	-0.9830	-3.6919	2.4983
21	H	-1.2064	-3.5700	1.4280
22	H	-0.5610	-4.6945	2.6133
23	N	-0.0052	-2.7152	2.9951
24	H	0.8579	-2.7983	2.4687
25	C	-4.6640	-4.4658	3.5775
26	H	-5.0878	-3.4611	3.5052
27	H	-5.4133	-5.1689	3.2081
28	H	-4.5018	-4.6795	4.6368
29	C	-4.2009	-1.5604	-1.1427
30	H	-4.4743	-1.5349	-2.1994
31	H	-3.9298	-2.5894	-0.8943
32	Н	-5.0910	-1.3052	-0.5625

W_W_W Energy (POTENTIAL) = -229.424938835 Eh Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	O	-3.9675	2.9517	-1.8093
2	Н	-3.2529	3.5904	-1.9169
3	O	-6.0171	3.2425	-3.7022
4	Н	-4.4581	2.9700	-2.6536
5	Н	-5.9509	4.0363	-4.2463
6	O	-6.4731	3.9166	-1.0186
7	Н	-6.4430	3.5369	-2.8738
8	Н	-5.5385	3.6329	-1.0095
9	Н	-6.9444	3.2446	-0.5117

A_N Energy (POTENTIAL) = -559.632335083 Eh Number of Imaginary Frequencies = 0

uniber of mi	iaginary Preque	encies = 0		
	Atom	X	Y	Z
1	C	-1.1655	-0.7841	0.9657
2 3	C	0.0611	-0.1948	0.6563
	C	0.0968	1.0902	0.1079
4	C	-1.0847	1.7730	-0.1329
5	C	-2.3083	1.1777	0.1736
6	C	-2.3494	-0.0991	0.7260
7	H	-1.1859	-1.7847	1.3794
8	Н	1.0541	1.5328	-0.1307
9	Н	-3.2294	1.7110	-0.0215
10	C	1.3041	-0.9553	0.8808
11	H	1.1579	-1.9633	1.3071
12	O	2.4211	-0.5393	0.6438
13	N	1.0308	-2.4692	-1.7336
14	H	1.9923	-2.7089	-1.5193
15	C	-0.4493	-0.8763	-2.9018
16	C	0.9873	-1.2652	-2.5746
17	H	1.4621	-0.4552	-2.0163
18	H	1.5529	-1.3778	-3.5100
19	H	-1.0074	-0.7712	-1.9685
20	H	-0.9243	-1.6904	-3.4612
21	H	0.6454	-3.2585	-2.2420
22	C	-0.5508	0.4190	-3.7053
23	H	-0.0651	1.2234	-3.1452
24	Н	0.0075	0.3144	-4.6407
25	H	-1.0600	2.7643	-0.5651
26	H	-3.3000	-0.5589	0.9608
27	C	-1.9931	0.8137	-4.0132
28	H	-2.0420	1.7452	-4.5808
29	H	-2.4963	0.0407	-4.5992
30	H	-2.5648	0.9542	-3.0930

A_W_W Energy (POTENTIAL) = -498.672725819 Eh Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	C	-0.6293	0.5136	-0.8906
2	C	-1.4201	1.5976	-0.4947
3	C	-2.5849	1.3841	0.2293
4	C	-2.9612	0.0864	0.5618
5	C	-2.1752	-0.9990	0.1722
6	C	-1.0137	-0.7906	-0.5518
7	C	0.5897	0.7864	-1.6578
8	Н	-1.1168	2.6033	-0.7585
9	Н	-0.4010	-1.6279	-0.8551
10	Н	-3.8683	-0.0830	1.1270
11	O	1.3642	-0.0500	-2.0947
12	O	1.3752	-2.8320	-2.1385
13	Н	1.3805	-1.8550	-2.1369
14	Н	0.8937	-3.0811	-2.9362
15	O	3.9736	-3.9136	-1.9369
16	Н	3.0795	-3.5411	-2.0413
17	Н	4.0096	-4.1807	-1.0123
18	Н	0.7938	1.8554	-1.8383
19	Н	-3.1966	2.2223	0.5339
20	Н	-2.4737	-2.0044	0.4369

N_W_W Energy (POTENTIAL) = -366.866983514 Eh Number of Imaginary Frequencies = 0

	0 1			
	Atom	X	Y	Z
1	N	0.0780	-1.8566	-2.4095
2	C	1.1139	-1.9652	-3.4538
3	C	2.1930	-0.9080	-3.2588
4	Н	2.5855	-0.9859	-2.2424
5	Н	1.7421	0.0863	-3.3486
6	Н	1.5571	-2.9609	-3.3734
7	Н	0.6948	-1.8819	-4.4632
8	Н	-0.6552	-2.5403	-2.5656
9	Н	-0.3664	-0.9449	-2.4560
10	O	3.9011	-3.1801	-1.1917
11	Н	3.0471	-2.9378	-0.7806
12	Н	3.6930	-3.2972	-2.1241
13	O	1.4396	-2.4293	-0.0633
14	Н	1.5667	-1.6048	0.4201
15	Н	0.8885	-2.1837	-0.8568
16	C	3.3426	-1.0378	-4.2565
17	Н	3.7648	-2.0453	-4.1880
18	Н	2.9561	-0.9365	-5.2751
19	C	4.4476	-0.0119	-4.0192
20	Н	4.8827	-0.1326	-3.0245
21	Н	5.2522	-0.1154	-4.7499
22	Н	4.0615	1.0077	-4.0924

N_N_W Energy (POTENTIAL) = -504.298154258 Eh Number of Imaginary Frequencies = 0

inoci oi in	nagmary rreque	-110103 - 0		
	Atom	X	Y	Z
1	O	-6.4830	2.9667	-3.5701
2	Н	-4.3507	2.6624	-3.6094
3	Н	-6.5667	3.8216	-4.0063
4	Н	-6.5730	3.1655	-2.6028
5	Н	-5.8689	3.3299	-0.3420
6	Н	-7.4378	2.9145	-0.4254
7	Н	-3.0599	1.8314	-3.0758
8	C	-3.1585	3.7407	-2.3588
9	Н	-3.7112	3.5027	-1.4384
10	Н	-3.5620	4.6906	-2.7181
11	C	-1.6855	3.9192	-2.0143
12	Н	-1.1362	4.1807	-2.9239
13	Н	-1.2789	2.9607	-1.6716
14	C	-1.4465	4.9819	-0.9420
15	Н	-2.0129	4.7223	-0.0422
16	Н	-1.8472	5.9393	-1.2896
17	C	0.0286	5.1467	-0.5829
18	Н	0.1724	5.9150	0.1794
19	Н	0.4456	4.2133	-0.1967
20	Н	0.6168	5.4328	-1.4582
21	N	-3.3546	2.7413	-3.4166
22	C	-7.1158	4.9391	-0.6190
23	Н	-7.2820	5.1706	0.4399
24	Н	-8.0636	5.1076	-1.1359
25	C	-6.0521	5.8729	-1.1809
26	Н	-5.8914	5.6365	-2.2364
27	Н	-5.1013	5.6764	-0.6750
28	C	-6.4065	7.3513	-1.0348
29	Н	-7.3514	7.5490	-1.5500
30	Н	-6.5777	7.5815	0.0211
31	C	-5.3207	8.2715	-1.5886

32	H	-5.1487	8.0812	-2.6507
33	H	-5.5923	9.3231	-1.4789
34	H	-4.3720	8.1169	-1.0689
35	N	-6.7381	3.5294	-0.8271

A_N_W

Energy (POTENTIAL) = -636.108992967 Eh Number of Imaginary Frequencies = 0

idei oi iiii	agmary Preque	encies = 0		
	Atom	X	Y	Z
1	C	0.4664	1.5702	-1.8626
2	C	-0.1796	1.3625	-0.6517
3	C	0.3580	0.4811	0.2893
4	C	1.5514	-0.1926	0.0097
5	C	2.1943	0.0147	-1.2000
6	C	1.6529	0.8955	-2.1363
7	H	-1.1063	1.8771	-0.4297
8	H	1.9643	-0.8722	0.7416
9	H	2.1589	1.0555	-3.0794
10	N	-2.1984	-1.6968	0.5148
11	H	-1.3583	-2.2562	0.4097
12	C	-2.8896	-2.0696	1.7534
13	H	-3.2084	-3.1217	1.7647
14	H	-2.1785	-1.9473	2.5735
15	H	-2.7881	-1.8860	-0.2885
16	H	0.1463	-3.6919	2.1704
17	H	0.4575	-2.2089	1.9414
18	C	-0.3471	0.2867	1.5650
19	H	-1.2404	0.9151	1.7036
20	O	0.0145	-0.4656	2.4567
21	C	-4.1004	-1.1780	2.0017
22	H	-3.7703	-0.1350	2.0297
23	H	-4.7899	-1.2623	1.1541
24	O	0.5244	-3.0851	1.5242
25	C	-4.8415	-1.5185	3.2936
26	H	-5.1801	-2.5583	3.2538
27	H	-4.1441	-1.4549	4.1346
28	H	3.1168	-0.5063	-1.4185
29	H	0.0493	2.2525	-2.5909
30	C	-6.0360	-0.6031	3.5537
31	Н	-6.5502	-0.8681	4.4796
32	Н	-5.7210	0.4400	3.6354
33	Н	-6.7639	-0.6644	2.7409

A_N_N Energy (POTENTIAL) = -773.545187223 Eh Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	C	0.6180	1.9599	-1.6191
2	C	0.1379	1.5084	-0.3970
3	C	0.8163	0.5039	0.2958
4	C	1.9838	-0.0454	-0.2426
5	C	2.4628	0.4061	-1.4622
6	C	1.7799	1.4083	-2.1512
7	Н	-0.7703	1.9230	0.0220
8	Н	2.5059	-0.8173	0.3064
9	Н	2.1560	1.7593	-3.1033
10	N	-2.0774	-1.4633	0.5412
11	Н	-1.3578	-2.1218	0.2476
12	C	-2.5938	-1.8380	1.8614
13	Н	-3.0502	-2.8383	1.8755
14	Н	-1.7450	-1.8736	2.5485
15	Н	-2.8213	-1.5049	-0.1474

16	H	0.9058	-2.5903	0.7699
17	C	0.2867	0.0416	1.5917
18	Н	-0.5885	0.5994	1.9616
19	O	0.7662	-0.8632	2.2503
20	C	-3.6113	-0.8220	2.3679
21	Н	-3.1466	0.1689	2.3770
22	Н	-4.4450	-0.7654	1.6586
23	C	-4.1509	-1.1511	3.7590
24	Н	-4.6172	-2.1409	3.7416
25	Н	-3.3143	-1.2191	4.4612
26	Н	3.3671	-0.0163	-1.8798
27	Н	0.0902	2.7363	-2.1565
28	Н	1.0786	-3.6948	-0.4130
29	C	0.2378	-4.4455	1.3002
30	Н	-0.2596	-5.2785	0.7957
31	Н	-0.4648	-4.0730	2.0497
32	C	1.5011	-4.9498	1.9992
33	Н	2.2003	-5.3259	1.2442
34	Н	1.9942	-4.1019	2.4860
35	C	1.2247	-6.0417	3.0322
36	Н	0.7277	-6.8846	2.5420
37	Н	0.5185	-5.6603	3.7761
38	N	0.4502	-3.3763	0.3171
39	C	2.4880	-6.5343	3.7349
40	Н	2.2616	-7.3118	4.4674
41	Н	3.2000	-6.9508	3.0182
42	Н	2.9889	-5.7177	4.2606
43	C	-5.1587	-0.1227	4.2673
44	Н	-5.5324	-0.3846	5.2592
45	Н	-4.7078	0.8704	4.3341
46	Н	-6.0188	-0.0493	3.5972

A_N_W_W Energy (POTENTIAL) = -712.593621195 Eh Number of Imaginary Frequencies = 0

iloci oi ili	iaginary rreque	-		
	Atom	X	Y	Z
1	C	0.0341	-0.8077	-0.8500
2	C	0.4696	0.5176	-0.7737
3	C	-0.3865	1.5524	-1.1248
4	C	-1.6795	1.2640	-1.5512
5	C	-2.1198	-0.0579	-1.6274
6	C	-1.2672	-1.0921	-1.2779
7	C	0.9621	-1.8839	-0.4836
8	Н	1.4762	0.7292	-0.4360
9	Н	-1.5905	-2.1226	-1.3321
10	Н	-2.3480	2.0698	-1.8247
11	Н	1.6916	-1.9942	2.5932
12	O	0.6838	-3.0738	-0.5241
13	Н	2.0289	-4.1874	-0.0549
14	Н	3.4970	-4.5441	-0.3515
15	Н	3.0793	-3.7344	2.0543
16	Н	3.1494	-3.5661	3.6789
17	Н	1.9673	-1.5584	-0.1836
18	Н	0.1775	-2.0059	2.2749
19	Н	-0.0509	2.5789	-1.0654
20	Н	-3.1266	-0.2737	-1.9588
21	N	3.1617	-3.0509	2.8056
22	C	4.4278	-2.3126	2.6658
23	Н	4.5441	-1.6660	3.5388
24	Н	5.2973	-2.9826	2.6467
25	C	4.4186	-1.4622	1.4009
26	Н	4.2405	-2.1132	0.5383

27	H	3.5730	-0.7710	1.4478
28	C	5.7110	-0.6784	1.1839
29	H	5.8973	-0.0412	2.0539
30	Н	6.5535	-1.3741	1.1260
31	C	5.6710	0.1809	-0.0780
32	H	4.8593	0.9111	-0.0307
33	Н	6.6037	0.7305	-0.2188
34	H	5.5103	-0.4338	-0.9672
35	O	0.9137	-1.4032	2.4240
36	O	2.7759	-4.7359	0.2584

A_N_N_W Energy (POTENTIAL) = -850.030454675 Eh Number of Imaginary Frequencies = 0

nber of In	naginary Freque	encies = 0		
	Atom	X	Y	Z
1	C	-0.5867	-0.0720	-1.3738
2	C	-1.1793	1.0386	-0.7702
3	C	-2.5502	1.0635	-0.5497
4	C	-3.3315	-0.0223	-0.9350
5	C	-2.7442	-1.1330	-1.5408
6	C	-1.3765	-1.1592	-1.7589
7	C	0.8714	-0.0855	-1.5848
8	H	-0.5601	1.8748	-0.4699
9	H	-0.9022	-2.0138	-2.2207
10	Н	-4.3994	-0.0064	-0.7612
11	N	1.6903	0.0838	1.4051
12	C	2.8561	0.9488	1.1887
13	Н	1.9655	-0.7226	1.9602
14	C	3.9495	0.2057	0.4274
15	H	3.2790	1.3396	2.1257
16	H	2.5356	1.8181	0.6062
17	H	3.5376	-0.1701	-0.5130
18	H	4.2466	-0.1701 -0.6719	1.0090
19	O	1.4887	-1.0167	-2.0683
20	N N	2.3793	-3.3017	0.0383
20	H	2.3793		-0.4558
			-2.4167	
22	Н	3.0745	-3.8492	-0.4570
23	0	3.0825	-2.4709	2.6108
24	Н	2.8646	-2.8353	1.7122
25	Н	2.6501	-3.0646	3.2335
26	Н	1.3911	0.8402	-1.2923
27	H	0.9747	0.5755	1.9280
28	H	-3.0095	1.9222	-0.0787
29	Н	-3.3565	-1.9755	-1.8332
30	C	5.1784	1.0671	0.1437
31	H	4.8806	1.9438	-0.4403
32	Н	5.5806	1.4489	1.0872
33	C	1.0723	-3.9816	-0.0001
34	Н	0.6869	-4.0657	-1.0235
35	Н	1.2100	-4.9993	0.3729
36	C	0.0522	-3.2506	0.8650
37	Н	0.3990	-3.2482	1.9021
38	Н	0.0096	-2.2040	0.5544
39	C	-1.3462	-3.8586	0.7910
40	Н	-1.6890	-3.8462	-0.2476
41	Н	-1.3045	-4.9111	1.0890
42	C	6.2718	0.3066	-0.6037
43	Н	7.1407	0.9389	-0.7976
44	Н	6.6111	-0.5578	-0.0277
45	Н	5.9066	-0.0615	-1.5656
46	C	-2.3535	-3.1173	1.6668
47	Н	-3.3536	-3.5469	1.5812
-	==			· -

48	Н	-2.0628	-3.1570	2.7195
49	Н	-2.4176	-2.0652	1.3815
Int_W				
Energy (POT)	ENTIAL) = -63	36.113822802 E	Eh	
Number of In	naginary Freque			
	Atom	X	Y	Z
1	C	0.4143	1.6704	-1.9171
2	C	-0.2317	1.3735	-0.7202
3	C	0.2544	0.3736	0.1193
4 5	C	1.4012	-0.3284	-0.2543
5 6	C C	2.0477	-0.0334 0.9665	-1.4485
7	Н	1.5560 -1.1178	1.9268	-2.2838 -0.4336
8	H	1.7926	-1.1070	0.3862
9	H	2.0628	1.1963	-3.2119
10	N	-1.1761	-1.2401	1.2497
11	Н	0.1603	-2.4669	1.6470
12	C	-2.2472	-1.4890	2.2281
13	Н	-2.4567	-2.5615	2.2242
14	Н	-1.8458	-1.2507	3.2142
15	Н	-1.5328	-1.3247	0.3049
16	Н	0.7575	-3.3380	2.7867
17	Н	0.8514	-0.8600	2.5133
18	C	-0.4783	0.0429	1.4063
19	Н	-1.1734	0.8575	1.6269
20	O	0.3723	-0.0145	2.5412
21 22	C H	-3.5458	-0.7205	1.9833
23	н Н	-3.3448 -3.9284	0.3541 -0.9810	1.9699 0.9908
23 24	O	1.0090	-2.8018	2.0258
25	C	-4.6105	-1.0220	3.0378
26	H	-4.7916	-2.1009	3.0691
27	Н	-4.2260	-0.7464	4.0244
28	Н	0.0287	2.4521	-2.5587
29	Н	2.9369	-0.5839	-1.7273
30	C	-5.9275	-0.2931	2.7809
31	Н	-6.3508	-0.5768	1.8144
32	Н	-6.6681	-0.5245	3.5489
33	Н	-5.7834	0.7900	2.7740
Int_N				
		73.548127632 E	Eh	
Number of Im	naginary Freque	encies = 0		
	Atom	X	Y	Z
1	C	2.6975	2.2083	0.3520
2	С	1.5170	1.8910	1.0161
3	C	0.8931	0.6634	0.8030
4	C	1.4682	-0.2492	-0.0826
5	C	2.6458	0.0695	-0.7501
6 7	С	3.2640	1.2978	-0.5347 1.7041
7 8	H H	1.0755	2.6015	1.7041
8 9	н Н	0.9951 4.1825	-1.2081 1.5423	-0.2484 1.0522
10	н N	4.1825 -1.5168	0.5618	-1.0522 0.6068
10	H	-0.9001	-2.4756	0.3874
12	C	-2.8485	0.3403	1.1768
13	Н	-2.9686	-0.6809	1.5565
14	Н	-2.9606 -2.9606	1.0115	2.0331

-2.9606

-1.3918

-0.8230

0.3390

14

15

16

17

Н

Н

N H

1.0115

0.0105

-3.0457

-1.1707

2.0331

-0.2354

-0.4500

2.5281

18	C	-1.9285	-2.7662	-1.3709
19	H	-1.7660	-3.3477	-2.2832
20	H	-1.8646	-1.7148	-1.6660
21	C	-0.4172	0.3460	1.4972
22	H	-0.5455	1.0123	2.3559
23	O	-0.4426	-1.0219	1.9809
24	H	-0.8637	-4.0133	-0.1473
25	C	-3.9318	0.6291	0.1463
26	H	-3.7589	0.0027	-0.7343
27	H	-3.8433	1.6667	-0.1881
28	C	-3.3316	-3.0557	-0.8340
29	H	-3.3779	-4.1028	-0.5156
30	H	-3.5031	-2.4510	0.0619
31	C	-5.3419	0.3702	0.6736
32	H	-5.4120	-0.6654	1.0185
33	H	-5.5230	0.9986	1.5511
34	C	-4.4356	-2.7846	-1.8553
35	H	-4.2489	-3.3812	-2.7536
36	H	-4.3863	-1.7379	-2.1693
37	C	-5.8329	-3.0920	-1.3219
38	H	-6.6032	-2.8741	-2.0643
39	H	-5.9242	-4.1460	-1.0485
40	H	-6.0538	-2.5000	-0.4314
41	C	-6.4212	0.6317	-0.3742
42	H	-7.4187	0.4250	0.0184
43	H	-6.4029	1.6727	-0.7056
44	H	-6.2741	0.0024	-1.2545
45	H	3.0823	-0.6437	-1.4374
46	H	3.1758	3.1631	0.5282

Int_W_W
Energy (POTENTIAL) = -712.598744597 Eh
Number of Imaginary Frequencies = 0
Atom X

Atom	X	Y	Z
C	-0.4082	0.3686	-0.5850
C	-1.2350	1.4749	-0.3884
C	-2.5664	1.3111	-0.0229
C	-3.0882	0.0319	0.1455
C	-2.2714	-1.0759	-0.0564
C	-0.9382	-0.9090	-0.4197
C	1.0578	0.5915	-0.9290
Н	-0.8330	2.4720	-0.5261
Н	-0.3169	-1.7786	-0.5798
Н	-4.1251	-0.1000	0.4257
N	1.7861	0.8706	0.3248
C	3.1794	1.3313	0.1430
Н	1.6459	-0.4842	1.4932
C	4.2036	0.2027	0.2306
Н	3.3868	2.0595	0.9294
Н	3.2862	1.8543	-0.8150
Н	3.9929	-0.5366	-0.5435
Н	4.0897	-0.3046	1.1928
O	1.6570	-0.4564	-1.6402
O	1.9634	-2.7987	-0.1432
Н	1.7391	-1.2589	-1.0846
Н	2.8788	-3.0975	-0.1940
O	1.5925	-1.2900	2.0773
Н	1.8649	-2.3964	0.7503
Н	0.6742	-1.3309	2.3699
Н	1.1270	1.4573	-1.5991
Н	1.2669	1.5833	0.8249
C	5.6391	0.7047	0.0836
	C C C C C C C C H H H N C H C H H H H O O H H H H H H H H H H H	C -0.4082 C -1.2350 C -2.5664 C -3.0882 C -2.2714 C -0.9382 C 1.0578 H -0.8330 H -0.3169 H -4.1251 N 1.7861 C 3.1794 H 1.6459 C 4.2036 H 3.3868 H 3.2862 H 3.9929 H 4.0897 O 1.6570 O 1.9634 H 1.7391 H 2.8788 O 1.5925 H 1.8649 H 0.6742 H 1.1270 H 1.2669	C -0.4082

29	Н	5.8382	1.4626	0.8479
30	Н	5.7504	1.2064	-0.8827
31	Н	-2.6720	-2.0740	0.0654
32	Н	-3.1963	2.1788	0.1243
33	C	6.6694	-0.4166	0.1980
34	Н	7.6881	-0.0373	0.0968
35	Н	6.5958	-0.9195	1.1653
36	Н	6.5175	-1.1708	-0.5781

Int_N_W Energy (POTENTIAL) = -850.028529639 Eh Number of Imaginary Frequencies = 0

nber of Im	naginary Freque	encies $= 0$		
	Atom	X	Y	Z
1	C	0.8612	0.0938	-0.2614
2	C	0.6479	1.1540	0.6153
3	C	1.2500	1.1618	1.8710
4	C	2.0725	0.1102	2.2592
5	C	2.2916	-0.9515	1.3845
6	C	1.6874	-0.9583	0.1337
7	C	0.1731	0.0230	-1.6136
8	H	0.0100	1.9736	0.3168
9	H	1.8509	-1.7880	-0.5427
10	H	2.5425	0.1173	3.2340
11	N	-0.9725	-0.8135	-1.5324
12	C	-1.7298	-0.9993	-2.7673
13	H	-1.5786	-0.5377	-0.7552
14	C	-2.8208	-2.0464	-2.5765
15	Н	-1.0364	-1.3236	-3.5497
16	H	-2.1829	-0.0636	-3.1207
17	H	-3.4758	-1.7317	-3.1207
18	H	-2.3597	-2.9861	-2.2591
19	O			
	H	-0.2016	1.3529	-2.0932
20		0.8630	-0.3924	-2.3554
21	Н	0.5969	1.8800	-2.2267
22	O	-2.5788	2.5689	-1.3106
23	Н	-1.7479	2.1499	-1.6076
24	Н	-3.2547	2.2157	-1.8996
25	H	2.9324	-1.7729	1.6779
26	Н	1.0743	1.9905	2.5448
27	C	-3.6590	-2.2781	-3.8325
28	H	-4.1007	-1.3296	-4.1531
29	Н	-3.0065	-2.6035	-4.6487
30	N	-2.7961	0.2277	0.7343
31	H	-2.7177	1.1664	0.3524
32	Н	-2.3673	0.2366	1.6531
33	C	-4.2069	-0.1574	0.8277
34	Н	-4.6223	-0.1438	-0.1840
35	Н	-4.2577	-1.1958	1.1670
36	C	-5.0682	0.7193	1.7388
37	Н	-5.0073	1.7564	1.3919
38	Н	-4.6442	0.7037	2.7489
39	C	-6.5314	0.2800	1.7911
40	Н	-6.9482	0.2970	0.7791
41	Н	-6.5831	-0.7608	2.1256
42	C	-7.3867	1.1520	2.7078
43	Н	-7.3752	2.1949	2.3817
44	Н	-8.4267	0.8198	2.7208
45	Н	-7.0163	1.1241	3.7355
46	C	-4.7659	-3.3087	-3.6219
47	Н	-5.4529	-2.9912	-2.8336
48	Н	-5.3506	-3.4606	-4.5313
49	Н	-4.3515	-4.2758	-3.3270

I_W Energy (POTENTIAL) = -559.639118313 Eh Number of Imaginary Frequencies = 0

	ingiliary rroque	incres o		
	Atom	X	Y	Z
1	C	2.3993	1.3071	0.1528
2 3	C	1.0348	1.5536	0.0577
	C	0.1268	0.4999	-0.0921
4	C	0.6136	-0.8134	-0.1417
5	C	1.9748	-1.0566	-0.0447
6	C	2.8721	0.0008	0.1018
7	Н	0.6656	2.5709	0.0989
8	Н	-0.0745	-1.6391	-0.2544
9	Н	3.9336	-0.1959	0.1763
10	N	-2.2216	-0.0380	-0.3634
11	C	-3.6050	0.4069	-0.4292
12	Н	-3.6814	1.5004	-0.3824
13	Н	-4.0069	0.0857	-1.3949
14	Н	-2.1818	-1.8649	-0.6568
15	Н	-1.9781	-2.9075	-1.7677
16	C	-1.3036	0.8214	-0.1899
17	Н	-1.5472	1.8867	-0.1040
18	O	-2.1982	-2.8321	-0.8327
19	C	-4.4359	-0.2281	0.6867
20	Н	-4.0346	0.0919	1.6529
21	Н	-4.3204	-1.3142	0.6409
22	C	-5.9167	0.1375	0.5949
23	Н	-6.3070	-0.1883	-0.3740
24	Н	-6.0246	1.2260	0.6209
25	Н	3.0902	2.1317	0.2672
26	Н	2.3412	-2.0740	-0.0826
27	C	-6.7464	-0.4844	1.7155
28	Н	-7.8005	-0.2136	1.6296
29	Н	-6.6802	-1.5748	1.6948
30	Н	-6.3965	-0.1510	2.6955

I_N Energy (POTENTIAL) = -697.073287438 Eh Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	C	2.4227	1.5992	-0.2515
2	C	1.0419	1.7454	-0.3175
3	C	0.2002	0.6337	-0.2133
4	C	0.7689	-0.6351	-0.0375
5	C	2.1461	-0.7784	0.0276
6	C	2.9777	0.3363	-0.0785
7	H	0.6085	2.7291	-0.4509
8	Н	0.1289	-1.5025	0.0445
9	Н	4.0520	0.2177	-0.0265
10	N	-2.1059	-0.0960	-0.2312
11	C	-3.5185	0.2377	-0.2846
12	H	-3.6822	1.2993	-0.5144
13	H	-3.9658	-0.3486	-1.0926
14	H	-1.9307	-2.2909	-0.5185
15	Н	-1.8530	-3.6927	-1.3578
16	C	-1.2539	0.8420	-0.2861
17	Н	-1.5701	1.8875	-0.3916
18	C	-4.2147	-0.1257	1.0282
19	Н	-3.8150	0.5039	1.8286
20	H	-3.9638	-1.1564	1.2880
21	C	-5.7326	0.0288	0.9518
22	Н	-6.1112	-0.5786	0.1245

23	Н	-5.9827	1.0664	0.7111
24	H	3.0623	2.4679	-0.3341
25	H	2.5770	-1.7619	0.1625
26	C	-2.9234	-3.8351	0.3835
27	H	-2.7286	-4.8936	0.5800
28	H	-2.8957	-3.3329	1.3543
29	C	-4.3217	-3.6848	-0.2207
30	H	-4.3591	-4.2290	-1.1708
31	H	-4.4918	-2.6314	-0.4608
32	C	-5.4350	-4.1813	0.7010
33	H	-5.3752	-3.6460	1.6536
34	Н	-5.2692	-5.2378	0.9335
35	N	-1.8232	-3.2987	-0.4233
36	C	-6.8300	-4.0016	0.1063
37	H	-7.6052	-4.3622	0.7855
38	H	-7.0351	-2.9489	-0.1020
39	H	-6.9301	-4.5497	-0.8338
40	C	-6.4326	-0.3812	2.2450
41	Н	-7.5155	-0.2684	2.1664
42	Н	-6.2241	-1.4254	2.4888
43	Н	-6.0948	0.2283	3.0866

I_W_W Energy (POTENTIAL) = -636.118279666 Eh Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	C	0.2308	-0.5550	0.3711
2	C	1.3677	-1.3621	0.4792
3	C	2.6305	-0.8463	0.2145
4	C	2.7721	0.4878	-0.1512
5	C	1.6467	1.3057	-0.2435
6	C	0.3854	0.7919	0.0175
7	C	-1.0827	-1.1599	0.6268
8	Н	1.2567	-2.4011	0.7637
9	Н	-0.4795	1.4351	-0.0468
10	Н	3.7540	0.8927	-0.3573
11	N	-2.1874	-0.6138	0.3217
12	C	-3.4326	-1.2963	0.6380
13	Н	-2.4957	0.7885	-0.7463
14	C	-4.2936	-0.4411	1.5682
15	Н	-3.2513	-2.2809	1.0853
16	Н	-3.9707	-1.4513	-0.3021
17	Н	-4.4234	0.5483	1.1208
18	Н	-3.7558	-0.2910	2.5090
19	O	-0.5451	1.0395	-3.2159
20	Н	-1.0611	-2.1488	1.0974
21	Н	0.1353	0.6685	-2.6449
22	O	-2.6319	1.5452	-1.3717
23	Н	-1.2781	1.2471	-2.6065
24	Н	-3.5108	1.4188	-1.7466
25	Н	3.5010	-1.4835	0.2941
26	Н	1.7538	2.3460	-0.5201
27	C	-5.6595	-1.0658	1.8472
28	Н	-6.1879	-1.2121	0.9003
29	Н	-5.5221	-2.0613	2.2798
30	C	-6.5141	-0.2154	2.7841
31	Н	-6.6884	0.7777	2.3634
32	Н	-7.4873	-0.6759	2.9642
33	Н	-6.0242	-0.0830	3.7516

 I_N_W Energy (POTENTIAL) = -773.554713027 Eh

Number of Imaginary Frequencies = 0				
	Atom	X	Y	Z
1	C	3.0949	2.4337	-0.3142
2	C	1.7819	2.6798	0.0708
3	C	0.8713	1.6287	0.2136
4 5	C C	1.3028 2.6114	0.3198 0.0756	-0.0374 -0.4224
6	C	3.5125	1.1311	-0.5619
7	H	1.4566	3.6950	0.2625
8	Н	0.6056	-0.4980	0.0714
9	Н	4.5335	0.9359	-0.8626
10	N	-1.4000	1.0489	0.7960
11	H	-3.5883	-2.1199	1.0878
12	C	-2.7430	1.4608	1.1680
13 14	H H	-3.0078 -2.7979	0.9294 2.5378	2.0867 1.3761
15	н Н	-2.7979 -1.5106	-1.0713	0.8426
16	N	-1.8064	-2.0349	0.6875
17	Н	-4.7896	-3.0673	1.3063
18	C	-1.6103	-2.3922	-0.7252
19	Н	-0.5511	-2.3807	-1.0136
20	Н	-2.1067	-1.6284	-1.3281
21	C	-0.5097	1.9340	0.6182
22	Н	-0.7319	2.9991	0.7597
23	0	-4.5679	-2.1332	1.2335
24 25	H C	-1.2393	-2.6300	1.2821
25 26	H	-3.7484 -3.6551	1.0838 0.0180	0.0782 -0.1366
20 27	H	-3.4931	1.6216	-0.1300
28	C	-2.2075	-3.7579	-1.0437
29	H	-1.7489	-4.5105	-0.3923
30	Н	-3.2732	-3.7399	-0.7988
31	C	-2.0214	-4.1690	-2.5034
32	Н	-0.9534	-4.1895	-2.7414
33	Н	-2.4658	-3.4066	-3.1508
34	C	-5.1905	1.3913	0.4764
35	Н	-5.4272	0.8486	1.3953
36	Н	-5.2885	2.4568	0.7064
37 38	H H	2.9340 3.7895	-0.9390 3.2565	-0.6165 -0.4204
39	п С	-2.6398	-5.5289	-2.8201
40	H	-2.4965	-5.8001	-3.8679
41	Н	-2.1919	-6.3164	-2.2090
42	Н	-3.7143	-5.5274	-2.6209
43	C	-6.1912	1.0061	-0.6105
44	H	-6.1408	-0.0639	-0.8236
45	H	-7.2153	1.2377	-0.3106
46	Н	-5.9893	1.5415	-1.5416
T 337 337 337				
I_W_W_W		2 5002 401 42 F	1	
	ENTIAL) = -71		'n	
Number of Im	naginary Freque		V	7
1	Atom	X 0.5208	Y 0.7921	Z 0.1426
1 2	C C	0.5308 0.0903	-0.7831 0.1935	-0.1426 0.7593
3	C	0.9621	0.1933	1.6973
4	C	2.2854	0.2872	1.7529
5	Č	2.7307	-0.6887	0.8679
6	C	1.8560	-1.2240	-0.0701
7	C	-0.3329	-1.3492	-1.1853
8	H	-0.9283	0.5467	0.7132
9	Н	2.2029	-1.9799	-0.7631

10	Н	2.9640	0.7082	2.4829
11	N	-1.4854	-0.9070	-1.4836
12	C	-2.2427	-1.5671	-2.5374
13	Н	-2.3284	0.5844	-1.0215
14	C	-3.5841	-2.0757	-2.0093
15	Н	-1.6730	-2.3907	-2.9835
16	Н	-2.4279	-0.8274	-3.3216
17	Н	-4.1290	-1.2397	-1.5619
18	Н	-3.4006	-2.7981	-1.2084
19	O	1.4930	2.2060	-1.5910
20	Н	0.0893	-2.2022	-1.7271
21	Н	1.8192	1.6102	-0.9094
22	O	-0.8523	3.3339	-0.5011
23	Н	0.6787	2.5834	-1.2070
24	Н	-1.1148	4.0960	-1.0297
25	O	-2.8048	1.4396	-0.8505
26	Н	-1.5812	2.6838	-0.6075
27	Н	-3.3800	1.2690	-0.0960
28	Н	0.6145	1.4852	2.3816
29	Н	3.7562	-1.0307	0.9066
30	C	-4.4370	-2.7197	-3.1010
31	Н	-4.5987	-1.9950	-3.9046
32	Н	-3.8877	-3.5551	-3.5455
33	C	-5.7846	-3.2140	-2.5807
34	Н	-6.3680	-2.3923	-2.1586
35	Н	-6.3772	-3.6677	-3.3774
36	Н	-5.6543	-3.9634	-1.7963

I_N_W_W Energy (POTENTIAL) = -850.037095890 Eh Number of Imaginary Frequencies = 0

	Atom	X	Y	Z
1	C	0.6333	-0.7437	-0.2808
2	C	0.2721	-0.0196	0.8623
3	C	1.2442	0.4324	1.7398
4	C	2.5916	0.1698	1.4937
5	C	2.9614	-0.5502	0.3634
6	C	1.9870	-1.0039	-0.5182
7	C	-0.3538	-1.2066	-1.2665
8	H	-0.7696	0.1946	1.0475
9	H	2.2736	-1.5586	-1.4031
10	H	3.3473	0.5289	2.1797
11	N	-1.5994	-0.9844	-1.1817
12	C	-2.4648	-1.4728	-2.2418
13	H	-2.6608	0.6770	-0.2441
14	C	-3.5642	-2.3777	-1.6889
15	H	-1.8996	-2.0002	-3.0216
16	H	-2.9295	-0.5999	-2.7096
17	H	-4.0682	-1.8623	-0.8668
18	H	-3.1080	-3.2754	-1.2609
19	O	0.6495	2.1712	-2.0072
20	H	0.0647	-1.7600	-2.1159
21	H	1.1362	1.4622	-1.5749
22	O	-0.8461	3.2768	0.0739
23	H	0.1390	2.5833	-1.2810
24	H	-1.1715	4.1628	-0.1203
25	H	-1.6557	2.6877	0.0631
26	H	-3.6477	1.6071	0.6805
27	H	0.9558	0.9997	2.6147
28	H	4.0052	-0.7556	0.1663
29	C	-4.5860	-2.7697	-2.7547
30	Н	-5.0078	-1.8611	-3.1952

31	Н	-4.0787	-3.2978	-3.5676
32	N	-3.0268	1.6209	-0.1221
33	C	-3.7614	2.0237	-1.3313
34	Н	-3.0819	1.8977	-2.1773
35	Н	-3.9799	3.0930	-1.2634
36	C	-5.0562	1.2533	-1.5802
37	Н	-4.8388	0.1827	-1.5797
38	Н	-5.7405	1.4303	-0.7433
39	C	-5.7429	1.6294	-2.8924
40	Н	-5.0498	1.4559	-3.7212
41	Н	-5.9614	2.7017	-2.8954
42	C	-5.7138	-3.6383	-2.2042
43	Н	-6.2608	-3.1168	-1.4151
44	Н	-6.4295	-3.9043	-2.9845
45	Н	-5.3253	-4.5667	-1.7790
46	C	-7.0302	0.8438	-3.1321
47	Н	-7.7549	1.0242	-2.3345
48	Н	-7.4997	1.1225	-4.0773
49	Н	-6.8335	-0.2307	-3.1614

TS1 Energy (POTENTIAL) = -559.581410801 Eh Number of Imaginary Frequencies = 1 Atom X

ioci oi iiii	agmary rreque			
	Atom	X	Y	Z
1	C	-1.5715	-0.6122	-0.3110
2	C	-0.2040	-0.4003	-0.1384
3	C	0.2427	0.8570	0.2634
4	C	-0.6621	1.8917	0.4743
5	C	-2.0256	1.6764	0.2929
6	C	-2.4793	0.4196	-0.0977
7	H	-1.9275	-1.5908	-0.6090
8	H	1.3024	1.0016	0.4237
9	H	-2.7305	2.4799	0.4625
10	C	0.7932	-1.5142	-0.3925
11	H	0.2891	-2.4860	-0.2824
12	O	2.0077	-1.4125	0.2387
13	N	1.3561	-1.4678	-1.8352
14	H	2.3151	-1.4083	-1.0630
15	C	-0.2781	-2.7160	-3.2635
16	C	1.1444	-2.6222	-2.7255
17	H	1.8579	-2.5359	-3.5467
18	H	1.4031	-3.5170	-2.1569
19	H	-0.5126	-1.8009	-3.8165
20	H	-0.9763	-2.7618	-2.4247
21	H	1.1341	-0.5921	-2.3030
22	C	-0.4853	-3.9323	-4.1648
23	H	0.2233	-3.8929	-4.9974
24	H	-0.2493	-4.8402	-3.6017
25	H	-3.5389	0.2423	-0.2297
26	H	-0.3054	2.8644	0.7883
27	C	-1.9096	-4.0241	-4.7076
28	H	-2.0403	-4.9060	-5.3373
29	H	-2.6366	-4.0852	-3.8942
30	H	-2.1594	-3.1461	-5.3080

TS2 Energy (POTENTIAL) = -559.563968031 Eh Number of Imaginary Frequencies = 1

iloci oi ili	iaginary rroque			
	Atom	X	Y	Z
1	C	3.3622	1.9710	-0.5566
2	C	1.9990	2.2260	-0.6114
3	C	1.1287	1.3095	-1.2136

4	C	1.6550	0.1494	-1.8009
5	C	3.0158	-0.0951	-1.7534
6	C	3.8733	0.8088	-1.1236
7	H	1.5968	3.1290	-0.1708
8	H	1.0044	-0.5528	-2.3021
9	H	4.9360	0.6089	-1.0868
10	N	-1.2179	0.8862	-1.7184
11	C	-2.6269	1.2651	-1.7801
12	H	-2.7007	2.3187	-1.5098
13	Н	-2.9580	1.1633	-2.8159
14	Н	-1.0256	-0.1149	-1.6534
15	H	-0.2220	-0.7445	1.1179
16	C	-0.2806	1.6399	-1.2485
17	Н	-0.5615	2.6494	-0.9692
18	O	-0.6267	-0.2131	0.4210
19	C	-3.4877	0.4023	-0.8600
20	Н	-3.0310	0.3958	0.1305
21	H	-3.4567	-0.6323	-1.2144
22	Н	4.0244	2.6794	-0.0773
23	Н	3.4166	-0.9915	-2.2075
24	C	-4.9351	0.8882	-0.8177
25	H	-5.3492	0.9001	-1.8309
26	Н	-4.9578	1.9233	-0.4634
27	C	-5.8142	0.0230	0.0825
28	H	-6.8438	0.3853	0.1014
29	H	-5.8320	-1.0131	-0.2635
30	Н	-5.4416	0.0214	1.1093

TS1W Energy (POTENTIAL) = -636.091079011 Eh Number of Imaginary Frequencies = 1

	Atom	X	Y	Z
1	C	1.8080	1.4952	0.0770
2	C	1.2168	1.1828	1.2975
3	C	1.8103	0.2578	2.1545
4	C	3.0046	-0.3553	1.7788
5	C	3.5930	-0.0481	0.5576
6	C	2.9980	0.8783	-0.2953
7	Н	0.2932	1.6686	1.5902
8	Н	3.4587	-1.0786	2.4412
9	Н	3.4621	1.1204	-1.2424
10	N	0.2495	-1.3394	3.2126
11	Н	0.9695	-2.1354	3.3128
12	C	-0.8269	-1.5540	4.2180
13	Н	-1.1026	-2.6079	4.1737
14	H	-0.3787	-1.3664	5.1925
15	H	-0.1347	-1.3191	2.2706
16	Н	2.2018	-3.3085	4.6653
17	H	2.2838	-1.4859	4.3467
18	C	1.1439	-0.0865	3.4787
19	Н	0.4520	0.7161	3.7478
20	O	1.9797	-0.3907	4.5055
21	C	-2.0434	-0.6729	3.9806
22	Н	-1.7496	0.3792	3.9944
23	H	-2.4469	-0.8772	2.9837
24	O	2.3392	-2.7117	3.9229
25	C	-3.1279	-0.9089	5.0319
26	Н	-2.7081	-0.7269	6.0253
27	Н	-3.4281	-1.9606	5.0113
28	Н	4.5190	-0.5299	0.2717
29	H	1.3445	2.2213	-0.5781
30	C	-4.3515	-0.0205	4.8231

31	Н	-5.1106	-0.2051	5.5851
32	H	-4.0814	1.0370	4.8711
33	Н	-4.8086	-0.2012	3.8473

TS2W

Energy (POTENTIAL) = -636.067008258 Eh Number of Imaginary Frequencies = 1

IUCI UI III.	iaginary r reque			
	Atom	X	Y	Z
1	C	-3.5494	1.0050	-0.3293
2 3	C	-2.5620	0.0325	-0.5329
3	C	-1.2188	0.3681	-0.4495
4	C	-0.8489	1.6801	-0.1717
5	C	-1.8247	2.6566	0.0221
6	C	-3.1675	2.3244	-0.0551
7	C	-4.9304	0.5624	-0.4164
8	Н	-2.8595	-0.9823	-0.7610
9	Н	-3.9097	3.0989	0.0848
10	Н	0.1982	1.9456	-0.1111
11	N	-5.9548	1.2577	-0.0463
12	C	-7.3415	0.8001	-0.1893
13	Н	-5.8364	2.2158	0.2609
14	C	-8.1260	0.8373	1.1206
15	Н	-7.3077	-0.1990	-0.6212
16	Н	-7.8097	1.4633	-0.9190
17	Н	-9.1815	0.7743	0.8462
18	Н	-7.9919	1.8146	1.5963
19	O	-6.0615	-1.6461	-1.9859
20	Н	-5.1296	-0.4680	-0.7016
21	Н	-5.7218	-2.4170	-2.4490
22	O	-5.2098	0.4407	-2.8901
23	Н	-5.6156	-0.6089	-2.5541
24	Н	-4.2887	0.3042	-3.1324
25	C	-7.8148	-0.2797	2.1236
26	Н	-8.5825	-0.2493	2.9012
27	Н	-7.9244	-1.2458	1.6227
28	Н	-1.5348	3.6776	0.2297
29	Н	-0.4625	-0.3892	-0.6046
30	C	-6.4409	-0.2039	2.7919
31	Н	-5.6303	-0.4102	2.0945
32	Н	-6.2662	0.7852	3.2226
33	Н	-6.3666	-0.9341	3.6001

TS1N

Energy (POTENTIAL) = -773.519736497 Eh

Number of Imaginary Frequencies = 1

	Atom	X	Y	Z
1	C	1.6550	1.1809	-0.0117
2	C	1.0622	0.8125	1.1912
3	C	1.7910	0.1350	2.1711
4	C	3.1322	-0.1431	1.9305
5	C	3.7336	0.2232	0.7291
6	C	2.9952	0.8825	-0.2486
7	Н	0.0224	1.0630	1.3724
8	H	3.6898	-0.6425	2.7111
9	H	3.4599	1.1707	-1.1827
10	N	0.0198	-1.3022	3.1247
11	H	0.7721	-2.4500	3.0356
12	C	-0.9678	-1.5041	4.1974
13	Н	-1.4364	-2.4830	4.0567
14	H	-0.4034	-1.5496	5.1304
15	Н	-0.4478	-1.0338	2.2647
16	N	1.6812	-3.2522	3.2450

17	H	1.3842	-4.0182	3.8420
18	H	2.2183	-2.5614	3.8074
19	C	2.3826	-3.7345	2.0407
20	Н	2.7222	-2.8556	1.4935
21	Н	3.2680	-4.3058	2.3273
22	C	1.1537	-0.2783	3.5124
23	H	0.6018	0.6146	3.8789
24	O	1.9697	-0.8118	4.4061
25	C	1.4639	-4.5760	1.1665
26	H	1.1085	-5.4382	1.7402
27	H	0.5801	-3.9852	0.9075
28	C	-2.0504	-0.4309	4.2735
29	H	-1.5875	0.5496	4.4087
30	H	-2.5853	-0.3956	3.3180
31	H	4.7789	-0.0018	0.5576
32	H	1.0762	1.7048	-0.7620
33	C	2.1511	-5.0581	-0.1101
34	H	2.5014	-4.1910	-0.6775
35	H	3.0430	-5.6334	0.1555
36	C	-3.0451	-0.6824	5.4066
37	H	-2.5022	-0.7259	6.3556
38	H	-3.5064	-1.6657	5.2717
39	C	1.2376	-5.9086	-0.9891
40	H	0.3503	-5.3478	-1.2921
41	H	1.7497	-6.2357	-1.8957
42	Н	0.8994	-6.8013	-0.4577
43	C	-4.1343	0.3841	5.4908
44	H	-4.8290	0.1809	6.3081
45	Н	-3.7029	1.3737	5.6593
46	Н	-4.7136	0.4301	4.5654

TS2N Energy (POTENTIAL) = -773.501454343 Eh Number of Imaginary Frequencies = 1

idei di iiii	agmary rreque			
	Atom	X	Y	Z
1	C	3.2275	1.0516	0.8225
2	C	1.8833	1.0773	1.1730
3	C	0.8915	0.7418	0.2467
4	C	1.2806	0.3998	-1.0501
5	C	2.6255	0.3645	-1.4013
6	C	3.6051	0.6876	-0.4670
7	H	1.5951	1.3586	2.1788
8	H	0.5244	0.1824	-1.7909
9	H	4.6513	0.6660	-0.7432
10	N	-1.4819	0.6821	-0.2748
11	H	-0.8491	-1.8717	0.2599
12	C	-2.8400	0.9615	0.1753
13	H	-3.2186	0.1466	0.8103
14	H	-2.8611	1.8645	0.8025
15	H	-1.4050	-0.6961	-0.7497
16	N	-1.2617	-1.8613	-0.6959
17	H	0.2112	-0.8179	2.1831
18	C	-2.5223	-2.6288	-0.7696
19	H	-2.9503	-2.4833	-1.7619
20	H	-3.2085	-2.1870	-0.0471
21	C	-0.5422	0.7670	0.6654
22	H	-0.7285	1.4227	1.5170
23	O	-0.6086	-0.7919	1.6778
24	H	-0.5791	-2.1908	-1.3722
25	C	-3.7870	1.1463	-1.0057
26	Н	-3.7426	0.2537	-1.6391
27	Н	-3.4282	1.9774	-1.6213

28	C	-2.3220	-4.1098	-0.4795
29	Н	-1.6015	-4.5212	-1.1938
30	Н	-1.8777	-4.2187	0.5145
31	Н	3.9799	1.3179	1.5537
32	Н	2.9091	0.0947	-2.4107
33	C	-5.2339	1.3997	-0.5877
34	Н	-5.5818	0.5664	0.0309
35	Н	-5.2752	2.2897	0.0480
36	C	-3.6252	-4.9045	-0.5513
37	Н	-4.0680	-4.7825	-1.5445
38	Н	-4.3424	-4.4835	0.1593
39	C	-3.4289	-6.3902	-0.2590
40	Н	-4.3730	-6.9347	-0.3204
41	Н	-2.7362	-6.8436	-0.9720
42	Н	-3.0205	-6.5437	0.7426
43	C	-6.1772	1.5798	-1.7751
44	Н	-7.2030	1.7635	-1.4490
45	Н	-5.8708	2.4245	-2.3971
46	Н	-6.1858	0.6902	-2.4101

TS1WW Energy (POTENTIAL) = -712.579697000 Eh Number of Imaginary Frequencies = 1

2 C -1.4928 1.4409 - 3 C -2.8160 1.1811 0 4 C -3.2521 -0.1335 0 5 C -2.3596 -1.1805 - 6 C -1.0357 -0.9211 - 7 C 0.8508 0.7205 - 8 H -1.1572 2.4653 - 9 H -0.3485 -1.7391 - 10 H -4.2821 -0.3409 0 11 N 1.5813 1.0049 0 12 C 3.0310 1.3328 0 13 H 1.4962 0.1216 1 14 C 3.3007 2.6373 -	Z
3 C -2.8160 1.1811 0 4 C -3.2521 -0.1335 0 5 C -2.3596 -1.1805 - 6 C -1.0357 -0.9211 - 7 C 0.8508 0.7205 - 8 H -1.1572 2.4653 - 9 H -0.3485 -1.7391 - 10 H -4.2821 -0.3409 0 11 N 1.5813 1.0049 1 12 C 3.0310 1.3328 0 13 H 1.4962 0.1216 1 14 C 3.3007 2.6373 -	0.5285
3 C -2.8160 1.1811 0 4 C -3.2521 -0.1335 0 5 C -2.3596 -1.1805 - 6 C -1.0357 -0.9211 - 7 C 0.8508 0.7205 - 8 H -1.1572 2.4653 - 9 H -0.3485 -1.7391 - 10 H -4.2821 -0.3409 0 11 N 1.5813 1.0049 1 12 C 3.0310 1.3328 0 13 H 1.4962 0.1216 1 14 C 3.3007 2.6373 -	0.3229
5 C -2.3596 -1.1805 - 6 C -1.0357 -0.9211 - 7 C 0.8508 0.7205 - 8 H -1.1572 2.4653 - 9 H -0.3485 -1.7391 - 10 H -4.2821 -0.3409 0 11 N 1.5813 1.0049 0 12 C 3.0310 1.3328 0 13 H 1.4962 0.1216 1 14 C 3.3007 2.6373 -	0.0165
6 C -1.0357 -0.9211 - 7 C 0.8508 0.7205 - 8 H -1.1572 2.4653 - 9 H -0.3485 -1.7391 - 10 H -4.2821 -0.3409 0 11 N 1.5813 1.0049 0 12 C 3.0310 1.3328 0 13 H 1.4962 0.1216 1 14 C 3.3007 2.6373 -	0.1481
7 C 0.8508 0.7205 - 8 H -1.1572 2.4653 - 9 H -0.3485 -1.7391 - 10 H -4.2821 -0.3409 0 11 N 1.5813 1.0049 0 12 C 3.0310 1.3328 0 13 H 1.4962 0.1216 1 14 C 3.3007 2.6373 -	0.0614
8 H -1.1572 2.4653 - 9 H -0.3485 -1.7391 - 10 H -4.2821 -0.3409 0 11 N 1.5813 1.0049 0 12 C 3.0310 1.3328 0 13 H 1.4962 0.1216 1 14 C 3.3007 2.6373 -	0.3996
9 H -0.3485 -1.7391 - 10 H -4.2821 -0.3409 (11 N 1.5813 1.0049 (12 C 3.0310 1.3328 (13 H 1.4962 0.1216 1 14 C 3.3007 2.6373 -	0.8785
10 H -4.2821 -0.3409 0 11 N 1.5813 1.0049 0 12 C 3.0310 1.3328 0 13 H 1.4962 0.1216 1 14 C 3.3007 2.6373 -	0.4361
11 N 1.5813 1.0049 (1) 12 C 3.0310 1.3328 (1) 13 H 1.4962 0.1216 14 C 3.3007 2.6373	0.5598
12 C 3.0310 1.3328 (13 H 1.4962 0.1216 14 C 3.3007 2.6373	0.4069
13 H 1.4962 0.1216 14 C 3.3007 2.6373	0.4461
14 C 3.3007 2.6373 -	0.3191
	1.0892
15 II 2.4072 0.4010	0.4127
15 H 3.4972 0.4919 -	0.1883
16 H 3.4203 1.3722	1.3363
17 H 2.7349 3.4448	0.0631
18 H 2.9496 2.5657 -	1.4443
19 O 1.5351 -0.2171 -	1.6019
20 O 1.8677 -2.3396 -	-0.2423
	1.0816
	-0.3251
	1.8620
	0.8893
	2.2149
	1.4292
	0.9170
	0.1687
	0.0349
	0.4118
	-0.8746
	0.6208
	1.1469
	0.6844
	1.1365
36 H 4.7696 4.2334 -	2.1903

TS2WW

Energy (POTENTIAL) = -712.566653188 Eh

Number	of In	naoinary	Free	mencies	= 1
Tullioci	01 111	nazma y	1100	luciicics	- 1

ioci oi iiii	agmary rreque			
	Atom	X	Y	Z
1	C	-3.5036	1.0547	-0.2586
2	C	-4.0465	1.8041	0.7914
3	C	-3.2761	2.0924	1.9070
4	C	-1.9613	1.6381	1.9903
5	C	-1.4142	0.8974	0.9479
6	C	-2.1803	0.6109	-0.1739
7	C	-4.2619	0.7105	-1.4598
8	H	-5.0581	2.1793	0.7267
9	Н	-1.7559	0.0418	-0.9910
10	Н	-1.3652	1.8663	2.8639
11	N	-5.5573	0.7174	-1.5218
12	C	-6.3009	0.4052	-2.7399
13	Н	-6.1003	1.2442	-0.8276
14	C	-7.5961	-0.3317	-2.4254
15	Н	-5.6587	-0.1864	-3.3920
16	H	-6.5121	1.3517	-3.2436
17	Н	-8.1925	0.2782	-1.7417
18	Н	-7.3622	-1.2634	-1.9026
19	O	-3.7182	2.5174	-2.6784
20	Н	-3.7385	0.1822	-2.2408
21	Н	-2.9731	2.9144	-2.2155
22	O	-5.6808	3.8296	-2.1052
23	Н	-4.6691	3.1812	-2.4108
24	H	-6.1265	4.0800	-2.9196
25	O	-7.2236	2.6485	-0.4294
26	H	-6.6602	3.1995	-1.0814
27	Н	-7.3321	3.1810	0.3644
28	C	-8.4068	-0.6320	-3.6853
29	Н	-8.6161	0.3051	-4.2094
30	H	-7.8044	-1.2394	-4.3675
31	H	-0.3925	0.5472	1.0068
32	H	-3.6988	2.6768	2.7132
33	C	-9.7184	-1.3516	-3.3817
34	Н	-10.2794	-1.5579	-4.2950
35	Н	-9.5379	-2.3049	-2.8793
36	H	-10.3546	-0.7490	-2.7294

TS1NW

Energy (POTENTIAL) = -850.013761948 Eh

Number of Imaginary Frequencies = 1

	Atom	X	Y	Z
1	C	-0.4631	0.2587	-0.5582
2	C	-1.2353	1.2664	0.0244
3	C	-2.5483	1.0271	0.4136
4	C	-3.1171	-0.2280	0.2096
5	C	-2.3636	-1.2308	-0.3915
6	C	-1.0470	-0.9860	-0.7729
7	C	0.9998	0.5065	-0.9764
8	Н	-0.8125	2.2540	0.1717
9	Н	-0.4524	-1.7596	-1.2368
10	Н	-4.1393	-0.4177	0.5103
11	N	1.7478	0.9206	0.3216
12	C	3.1429	1.3477	0.0596
13	Н	1.6773	-0.1218	1.1889
14	C	4.1586	0.2194	0.2175
15	Н	3.3850	2.1560	0.7527
16	Н	3.2072	1.7572	-0.9528
17	Н	3.8417	-0.6203	-0.4005
18	Н	4.1614	-0.1263	1.2559

19	O	1.6093	-0.5010	-1.5885
20	O	1.8977	-2.7314	-0.3959
21	Н	1.7787	-1.8310	-0.8932
22	Н	2.7831	-3.0362	-0.6185
23	Н	1.7495	-1.9128	1.2434
24	Н	1.0002	1.4400	-1.5821
25	Н	1.2503	1.6964	0.7466
26	Н	-3.1291	1.8179	0.8711
27	Н	-2.8008	-2.2065	-0.5622
28	C	5.5708	0.6529	-0.1699
29	Н	5.8678	1.5165	0.4341
30	Н	5.5688	0.9914	-1.2104
31	C	6.5966	-0.4656	-0.0011
32	Н	6.3390	-1.3292	-0.6191
33	Н	7.5977	-0.1387	-0.2890
34	Н	6.6435	-0.8044	1.0368
35	Н	2.3799	-1.1393	2.5716
36	C	0.3122	-1.2565	2.6249
37	Н	-0.4623	-1.3523	1.8661
38	Н	0.3005	-2.1670	3.2277
39	C	0.0456	-0.0362	3.4943
40	Н	0.0733	0.8601	2.8687
41	Н	0.8476	0.0683	4.2326
42	C	-1.3030	-0.1140	4.2076
43	Н	-2.0925	-0.2430	3.4619
44	Н	-1.3266	-1.0061	4.8403
45	C	-1.5969	1.1224	5.0529
46	Н	-1.6234	2.0235	4.4354
47	Н	-2.5606	1.0385	5.5586
48	Н	-0.8317	1.2687	5.8192
49	N	1.6049	-1.1408	1.9144

TS2NW Energy (POTENTIAL) = -849.998025454 Eh Number of Imaginary Frequencies = 1

1001 01 1111	agmary rroque	incres 1		
	Atom	X	Y	Z
1	C	-3.7194	1.0141	-0.0959
2	C	-4.3166	1.5715	1.0412
3	C	-3.5447	1.8771	2.1526
4	C	-2.1754	1.6245	2.1478
5	C	-1.5763	1.0595	1.0254
6	C	-2.3440	0.7538	-0.0882
7	C	-4.4724	0.6568	-1.2942
8	H	-5.3791	1.7654	1.0625
9	H	-1.8815	0.3258	-0.9674
10	H	-1.5786	1.8627	3.0184
11	N	-5.7316	0.8781	-1.4537
12	C	-6.4670	0.5113	-2.6612
13	H	-6.2183	1.5986	-0.8652
14	C	-7.7812	-0.1804	-2.3175
15	H	-5.8333	-0.1323	-3.2706
16	H	-6.6356	1.4402	-3.2098
17	H	-8.3470	0.4486	-1.6262
18	H	-7.5711	-1.1165	-1.7923
19	O	-3.4837	2.3151	-2.7448
20	H	-3.9802	0.0299	-2.0222
21	H	-2.9419	2.7866	-2.1046
22	O	-5.5704	3.5613	-2.8987
23	H	-4.4809	2.9549	-2.8386
24	Н	-5.4350	4.3602	-3.4159
25	Н	-6.4636	3.5590	-1.3146
26	Н	-6.7320	3.7401	0.3172

27	C	-8.6273	-0.4567	-3.5592
28	Н	-8.8184	0.4870	-4.0782
29	Н	-8.0584	-1.0810	-4.2545
30	Н	-0.5136	0.8579	1.0195
31	Н	-4.0127	2.3082	3.0274
32	C	-9.9534	-1.1360	-3.2268
33	Н	-10.5398	-1.3256	-4.1277
34	Н	-9.7918	-2.0940	-2.7271
35	Н	-10.5577	-0.5141	-2.5622
36	C	-8.4321	3.2723	-0.7364
37	Н	-8.6328	2.7997	-1.7010
38	Н	-8.7879	4.3079	-0.8186
39	C	-9.2205	2.5553	0.3533
40	Н	-8.8642	1.5229	0.4251
41	Н	-9.0041	3.0244	1.3197
42	C	-10.7288	2.5605	0.1120
43	Н	-11.0831	3.5939	0.0514
44	Н	-10.9379	2.1080	-0.8623
45	C	-11.5064	1.8168	1.1955
46	H	-11.1933	0.7715	1.2552
47	Н	-11.3423	2.2672	2.1775
48	Н	-12.5804	1.8306	0.9993
49	N	-6.9865	3.1967	-0.4998

10. References

- (1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
- (2) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, *J. Phys. Chem.* **1994**, 98, 11623-11627.
- (3) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, *Phys. Rev. B* **1988**, *37*, 785-789.
- (4) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange, *J. Chem. Phys.* **1993**, 98, 5648-5652.
- (5) Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction, *J. Comput. Chem.* **2006**, *27*, 1787-1799.
- (6) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, *J. Phys. Chem. B* **2009**, *113*, 6378-6396.
- (7) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation, *J. Phys. Chem. B* **2011**, *115*, 14556-14562.
- (8) Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, *J. Chem. Phys.* **1989**, *90*, 1007.
- (9) Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional *Theory Chem. Eur. J.* **2012**, *18*, 9955-9964.
- (10) Funes-Ardoiz, I.; Paton, R. S., GoodVibes 2.0.2, 2016, http://doi.org/10.5281/zenodo.595246.
- (11) a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules *J. Chem. Phys.* **1971**, 54, 724–728. b) Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies *Theor. Chim. Acta* **1973**, 28, 213–222.
- (12) a) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior *Phys. Rev. A* **1988**, *38*, 3098. b) Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas *Phys. Rev. B* **1986**, *33*, 8822
- (13) Adamo, C. Toward reliable density functional methods without adjustable parameters: The PBE0 model *J. Chem. Phys.* **1999**, *110*, 6158.
- (14) Ernzerhof, M.; Scuseria G. E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional *J. Chem. Phys.* **1999**, *110*, 5029.
- (15) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.
- (16) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atomatom dispersion corrections *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615-6620.

- (17) Riplinger, C.; Neese, F. An Efficient and near linear scaling pair natural orbital based local coupled cluster method, *J. Chem. Phys.* **2013**, *138*, 034106.
- (18) Neese, F. Software update: the ORCA program system, version 4.0, *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* **2017**, 8, e1327.
- (19) Stoychev, G. L.; Auer A. A.; Neese, F. Automatic Generation of Auxiliary Basis Sets, *J. Chem. Theory Comput.*, **2017**, *13*, 554-562
- (20) Neese, F.; Hansen, A.; Liakos, D. G. Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis, *J. Chem. Phys.* **2009**, *131*, 064103
- (21) Hindmarsh, A. C. ODEPACK, A Systematized Collection of ODE Solvers, *IMACS Transactions on Scientific Computation* **1983**, *1*, 55-64.
- (22) a) Oliphant, T. E. Python for Scientific Computing, *Computing in Science & Engineering* **2007**, 9, 10-20. b) Millman, K. J.; Aivazis, M. Python for Scientists and Engineers, *Computing in Science & Engineering* **2011**, *13*, 9-12.
- (23) Sigma Aldrich webpage. Specification sheet, product 237027. https://www.sigmaaldrich.com/catalog/product/aldrich/237027 (accessed Dec 20, 2019)