SAR ADC

DESIGN & VERIFICATION

BY: Khaled Ahmed Hamed

ADC Winter 2025 Training

Under supervision of **Dr. Hesham Omran**

Contents

Part 1: Behavioral Models
Part 2: SAR Logic
Part 3: Transmission Gate
Part 4: SAR ADC Design
Part 5: DC Functional Test
Part 5: Sine Wave Test
Figures
Figures
Figure 1: Inverter Circuit
Figure 2: Inverter Testbench
Figure 3: NAND Circuit
Figure 4: NAND Testbench
Figure 5: NOR Circuit
Figure 6: NOR Testbench
Figure 7: D Flip Flop Circuit
Figure 8: D Flip Flop Testbench
Figure 9: Comparator Circuit
Figure 10: : Comparator Testbench
Figure 11: SAR Logic Circuit
Figure 12: SAR testbench when CMP all ones
Figure 13: SAR testbench when CMP alternating (0 VDD)
Figure 14: SAR testbench when CMP all zeros
Figure 15: Transmission Gate Circuit
Figure 16: Bottom Plate Circuit
Figure 17: Cap DAC Circuit
Figure 18: SAR ADC Circuit
Figure 19: SAR ADC Final Testbench
Figure 20: SAR ADC DC Test
Figure 21: SAR ADC DC Test CTD
Figure 22: SAR ADC DC Test last shot
Figure 23: SAR ADC SIN Test
Figure 24: Octave VSAH Output

Part 1: Behavioral Models

```
MODELS

.include $::180MCU_MODELS/design.ngspice
sI lib $::180MCU_MODELS/sm141064.ngspice typical

*inverter model
a1 A Yi my_inv
.model my_inv d_inverter(rise_delay = 1e-9 fall_delay = 1e-9
+ input_load = 1e-12)

*force netlisting of digital outputs
v1 Yi Y 0
```

Figure 1: Inverter Circuit

Figure 2: Inverter Testbench

```
MODELS

.include $::180MCU_MODELS/design.ngspice
.lib $::180MCU_MODELS/sm141064.ngspice typical

*I

*nand model
a1 [A b] Yi my_nand
.model my_nand d_nand(rise_delay = 1e-9 fall_delay = 1e-9

AD

A

*force_netlisting_of_digital_outputs
v1 Yi Y 0
```

Figure 3: NAND Circuit

Figure 4: NAND Testbench

```
#nor model
a1 [A b] Yi my_nor
.model my_nor d_nor(rise_delay = 1e-9 fall_delay = 1e-9
input_load = 1e-12)

*force netlisting of digital outputs
v1 Yi Y 0
```

Figure 5: NOR Circuit

Figure 6: NOR Testbench

Figure 7: D Flip Flop Circuit

Figure 8: D Flip Flop Testbench

Figure 10: : Comparator Testbench

2: SAR Logic

Figure 11: SAR Logic Circuit

Figure 12: SAR testbench when CMP all ones

Cycle	DW<7>	DW<6>	DW<5>	DW<4>	DW<3>	DW<2>	DW<1>	DW<0>	СМР
1 (reset)	1	0	0	0	0	0	0	0	
2	1	0	0	0	0	0	0	0	1
3	1	1	0	0	0	0	0	0	1
4	1	1	1	0	0	0	0	0	1
5	1	1	1	1	0	0	0	0	1
6	1	1	1	1	1	0	0	0	1
7	1	1	1	1	1	1	0	0	1
8	1	1	1	1	1	1	1	0	1
9	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	

Figure 13: SAR testbench when CMP alternating (0 VDD)

Cycle	DW<7>	DW<6>	DW<5>	DW<4>	DW<3>	DW<2>	DW<1>	DW<0>	CMP
1 (reset)	1	0	0	0	0	0	0	0	
2	1	0	0	0	0	0	0	0	1
3	1	1	0	0	0	0	0	0	0
4	1	0	1	0	0	0	0	0	1
5	1	0	1	1	0	0	0	0	0
6	1	0	1	0	1	0	0	0	1
7	1	0	1	0	1	1	0	0	0
8	1	0	1	0	1	0	1	0	1
9	1	0	1	0	1	0	1	1	0
10	1	0	1	0	1	0	1	0	

Figure 14: SAR testbench when CMP all zeros

Cycle	DW<7>	DW<6>	DW<5>	DW<4>	DW<3>	DW<2>	DW<1>	DW<0>	СМР
1 (reset)	1	0	0	0	0	0	0	0	
2	1	0	0	0	0	0	0	0	0
3	0	1	0	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0	0
5	0	0	0	1	0	0	0	0	0
6	0	0	0	0	1	0	0	0	0
7	0	0	0	0	0	1	0	0	0
8	0	0	0	0	0	0	1	0	0
9	0	0	0	0	0	0	0	1	0
10	0	0	0	0	0	0	0	0	

Explanation:

The Successive Approximation Register (SAR) algorithm begins by setting the most significant bit (MSB) to 1 and comparing the Digital-to-Analog Converter (DAC) output with the input voltage. If the input voltage is higher than the DAC output, the bit remains 1; otherwise, it is reset to 0. This process continues iteratively for each subsequent bit, refining the digital approximation step by step until reaching the least significant bit (LSB).

At each stage, the algorithm determines whether to retain or clear the bit based on a comparison between the DAC output and the input voltage. It starts by testing the midscale value—if the input voltage exceeds it, the MSB remains 1; otherwise, it is set to 0. The algorithm then proceeds through a structured sequence, evaluating progressively smaller bit positions, such as (x1xx xxxx), (xx1x xxxx), and so forth, until the full digital representation of the input voltage is achieved. This method ensures an accurate digital approximation through successive comparisons.

Part 3: Transmission Gate

Figure 15: Transmission Gate Circuit

Part 4: Bottom Plate

Figure 16: Bottom Plate Circuit

Part 5: SAR ADC Design

Figure 17: Cap DAC Circuit

Figure 18: SAR ADC Circuit

Figure 19: SAR ADC Final Testbench

Part 6: DC Functional Test

Figure 20: SAR ADC DC Test

Figure 21: SAR ADC DC Test CTD

Figure 22: SAR ADC DC Test last shot

Part 7: Sine Wave Test

Figure 23: SAR ADC SIN Test

Figure 24: Octave VSAH Output

Analysis of Spectrum and Reported Specifications

The given spectrum plot and results provide key performance metrics for the system under test. Below is a summary of the reported specifications and their implications:

1. Effective Number of Bits (ENOB):

- o Reported value: 7.8 bits
- ENOB indicates the actual resolution of the system, considering noise and distortions. A
 value close to 8 bits suggests that the system is performing near the ideal 8-bit
 resolution but is slightly affected by noise and distortions.

2. Signal-to-Noise and Distortion Ratio (SINAD):

- o Reported value: 56.4 dB
- SINAD measures the total signal quality by considering both noise and harmonic distortions. A higher value indicates better performance. This value suggests a relatively clean signal with minimal distortion.

3. Signal-to-Noise Ratio (SNR):

- Reported value: 49.5 dB
- SNR quantifies the ratio of signal power to noise power, excluding distortion. A value of
 49.5 dB suggests that noise is relatively low but still present in the system.

4. Spurious-Free Dynamic Range (SFDR):

- Reported value: 48.7 dB
- SFDR represents the ratio between the fundamental signal and the largest spurious (unwanted) tone. A value of 48.7 dB indicates that the highest spurious component is significantly lower than the main signal, meaning good spectral purity.

5. Total Harmonic Distortion (THD):

- o Reported value: -56.4 dB
- THD quantifies the distortion introduced by harmonics in the system. A value of -56.4 dB (negative because it's typically represented as a power ratio) indicates minimal harmonic distortion, which is desirable.

6. Signal Power:

• The signal power is -9 **dBFS** (6 dB + 3 dB(Equals multiplying by 2 in linear domain) as we took half of the frequency range only), By analysis: 20log(0.5^2 /4)=9dB.

7. DC Power:

The DC component is shown as **0 dBFS**, meaning it is at the full-scale level. A high DC component can indicate unwanted offsets in the system, which might need compensation.