## CME4456 Reconfigurable Computing – Homework 1

Due to: 22.03.2022

## Cem Hafizoğulları - 2016510034

Write VHDL code to Design an arithmetic-logic circuit with 3-bit opcode variables  $P_2P_1P_0$  and two 4-bits data inputs A and B by using full-adder blocks (FA). The circuit generates the following arithmetic, and logic operations. Draw the logic diagram with carry ( $C_{OUT}$ ) and overflow (OF) outputs. Test your design with using Altera MuxPlus II or Quartus programme)



| - 1      | D     | П | П            | OPCODE | ODED ATION               |
|----------|-------|---|--------------|--------|--------------------------|
| <b>,</b> | $P_2$ | P | <u>i l P</u> | OPCODE | OPERATION                |
| <u></u>  | 0     | 0 | 0            | SUB    | A - B                    |
|          | 0     | 0 | 1            | ADD    | A + B                    |
|          | 0     | 1 | 0            | AND    | $A \wedge B$             |
|          | 0     | 1 | 1            | OR     | $A \lor B$               |
|          | 1     | 0 | 0            | ASR    | Arithmetic Shift Right A |
|          | 1     | 0 | 1            | ASL    | Arithmetic Shift Left A  |
|          | 1     | 1 | 0            | CSR    | Circular Shift Right A   |
|          | 1     | 1 | 1            | CSL    | Circular Shift Left A    |

```
end ALU;
architecture ALU a of ALU is
signal temp: STD_LOGIC_VECTOR(4 downto 0);
       begin
PROCESS(A, B, P)
       BEGIN
       COUT <= '0';
       OVERFLOW <= '0';
              CASE P IS
                     WHEN "000" =>
                            if (B > A) then
                                   OVERFLOW <= '1';
                            else
                                   OVERFLOW <= '0';
                            end if;
                            Q \leq A - B:
                     WHEN "001" =>
                            temp <= std_logic_vector((unsigned("0" & A) + unsigned(B)));</pre>
                            Q \le temp(3 downto 0);
                            COUT \le temp(4);
                            if (temp > 16) then
                                   OVERFLOW <= '1';
                            end if;
                     WHEN "010" =>
                            Q \leq A and B;
                     WHEN "011" =>
                            Q \leq A \text{ or } B;
                     WHEN "100" =>
                            Q <= std_logic_vector(shift_right(unsigned(A), 1));
                     WHEN "101" =>
                            Q <= std_logic_vector(shift_left(unsigned(A), 1));
                     WHEN "110" =>
                            Q <= std_logic_vector(rotate_right(unsigned(A),1));
                     WHEN "111" =>
                            Q <= std logic vector(rotate left(unsigned(A),1));
              END CASE:
END PROCESS;
end ALU_a;
```

**WAVEFORM:** 



## Waveform with increment by 1;

A:5 ns B:10 ns P:40 ns



## Waveform with increment by 1;

A: 10 ns B:5 ns P:40 ns

|          |        | Value at | 0 ps  | 40.0    | ns     | 80    | .0 ns | 1            | 20.0 r           | ns   | 160.  | 0 ns   | 2     | 200.0     | ns           | 24   | 0,0 n  | s      | 280    | .0 ns |       | 320.0    | 0 ns         | 3        | 60,0        | ns    | 40   | 0,0   | ns    | 44         | 0,0 r | ıs   | 48    | 0,0 n | s          | 520  | 0.0 ns   | s     | 560   | 0 ns |       | 600.0    | ns)    | 6      | 40.0         | ns    | 68    | 0.0 ns      | - 7   | 720.0 r  |
|----------|--------|----------|-------|---------|--------|-------|-------|--------------|------------------|------|-------|--------|-------|-----------|--------------|------|--------|--------|--------|-------|-------|----------|--------------|----------|-------------|-------|------|-------|-------|------------|-------|------|-------|-------|------------|------|----------|-------|-------|------|-------|----------|--------|--------|--------------|-------|-------|-------------|-------|----------|
|          | Name   | 0 ps     | 0 ps  |         |        |       |       |              |                  |      |       |        |       |           |              |      |        |        |        |       |       |          |              |          |             |       |      |       |       |            |       |      |       |       |            |      |          |       |       |      |       |          |        |        |              |       |       |             |       |          |
| <u> </u> | > A    | B 0000   | 900X  | 1)(1)(1 | 10(10) | 11)(1 | X00X2 | 0(21)        | )<br>)<br>)<br>) | X10X | 1)(1) | (O)(2  | 0(01) | (1)(1     | 0\10         | 11/1 | 1/20   | (O)(   | 1)(51  | (10)  | 10/11 | XIIX     | <b>50</b> /5 | <b>)</b> | 51XI        | 0)(10 | XIIX | 11/00 | 000   | (i)        | 1/10  | (10) | 11/1  | 100   | <b>⊚</b> ( | 1)(1 | (10)     | 10(1  | 1)(11 | (00X | 0\(21 | X01X     | 10)(10 | )(11)  | 11)(1        | 0(10  | (1)(E | 1/10/       | 10/11 | X11X20   |
| <u> </u> | > B    | B 0000   | WXXX  | XXXX    | XXXX   | (XXX  | XXXX  | <b>(XXX)</b> | XXX              | XXX  | XXXX  |        | 000   |           | ()()()       |      | ⋘      | XXX    | XXX    | XXX   | XXX   | XXX      | 000          | 000      | 000         | ¢Χ    | XXX  | XXX   | 000   | ΦX         | XX    | XXX  | 000   | 000   | Q(X        | XXX  | XXX      | 000   | WX    | OOX) | œ     | XXX      | XXX    | (000)  | (XX)         | 000   |       | 000X        | XXXX  | XXXXX    |
| <u> </u> | > P    | B 000    | 000   | X       | 00     | 1     | X     | 010          | $\supset$ C      | 01   | 1     | $\Box$ | 100   | $\supset$ | 10           | )1   | Х      | 110    |        | X     | 111   | $\Box$ X | ▭            | 000      | $\supset$ X | 0     | 01   | Х     | 0:    | 10         | Х     | 01   | 1     | X     | 10         | )    | X        | 101   |       | ⊂    | 110   | $\Box$ X | 1      | 111    | $\mathbb{X}$ | 0     | 30    | X           | 001   | $\Box$ X |
| eut<br>E | > Q    | B 0000   | (III) | 10/10   | XXXX   | (XXX  | X000  | (X)          | XXX              | XIIX | XIII) | 0000   | 00    | 01        | <b>0</b> (1) | 10/1 | 1)(10) | (10)(1 | 10)(10 | (30)  | 1 (10 | ΧūΧ      | 00           | Œ(       | 0           | 0XX   | XXX  | XX    | oc(() | <b>⊚</b> ( | XX    | XIIX | )(iii | X00   | 00 X       | 0001 | <b>X</b> | (I)(i | 0(11  | 10(  | 0 (10 | X10X     | 00(2)  | 1)(10) | (I)()        | (i)(i | 1(10) | <b>@</b> ⟨X | XXXX  | XXX0     |
| out      | COUT   | В 0      |       |         |        |       | ш     |              |                  | Ш    | 1     |        |       |           |              |      |        |        |        |       |       |          |              |          |             | J     |      | l     | L     |            |       |      |       |       |            | 1    |          |       |       |      |       |          |        |        |              |       |       |             | Г     | TL       |
| out      | OVERFL | B 0      |       | П       |        |       | ш     |              |                  | Ш    |       |        |       |           |              |      |        |        |        |       | 1     | Ш        | ſ            | T        | ┖           |       | П    | l     |       |            |       |      |       |       |            |      |          |       |       |      |       |          |        |        |              | Т     |       | ┺           | ╜     | TL       |
|          |        |          |       |         |        |       |       |              |                  |      |       |        |       |           |              |      |        |        |        |       |       |          |              |          |             |       |      |       |       |            |       |      |       |       |            |      |          |       |       |      |       |          |        |        |              |       |       |             |       |          |