Покажем, что модификация Маундера конструкции Кана-Тёрстона может давать для двумерного симплекса (треугольника) двумерный комплекс с нетривиальной фундаментальной группой. Построение будем вести последовательно.

Сначала мы имели нульмерный остов, состоящий из 3 вершин $L = \{0, 1, 2\}$. В этом случае конус $CL = \{[3, 0], [3, 1], [3, 2]\}$. Конструкция Кана-Тёрстона TL совпадёт с L и пространство UL совпадёт с CL. Отображение пар $t: (UL, TL) \to (CL, L)$ будем считать тождественным.

Шаг 1. Приклеим 1-симплекс $\sigma = [0,1]$ к комплексу L и получим комплекс K. Тогда $C\partial\sigma$ будет «рогом» $[3,0]\cup[3,1]$, и $t^{-1}(C\partial\sigma) = [3,0]\cup[3,1]$, и $t^{-1}(\partial\sigma) = [0]\cup[1]$. Значит, $TK = TL \sqcup_{t^{-1}(\partial\sigma)} t^{-1}(C\partial\sigma) = [0,1]\cup[2]$ — это объединение отрезка и точки, причём при отображении t вершина конуса [3] отображается в середину отрезка [0,1].

Пространство $X = t^{-1}(C\partial\sigma) \sqcup_{t^{-1}(\partial\sigma)} t^{-1}(C\partial\sigma) = [3,0] \cup [3,1] \cup [3',0] \cup [3',1]$ — это окружность $K(\mathbb{Z},1)$.

Далее, мы должны приклеить к объединение $UL \cup TK$ к пространству X. В результате получится:

Теперь нужно приклеить к пространству $(UL \cup TK) \cup X$ цилиндр отображения $K(\mathbb{Z},1) \to K(\mathrm{Hig}_4),1$, и мы получим пространство UK. Обозначим для удобства дальнейшего изложения получившееся образования за A:=UK.

Шаг 2. Переобозначим полученную комплексов через (UL, TL) и будем приклеивать следующий 1-симплекс [1,2].

Пока мы имеем такие данные:

В результате, в качестве пространства UK будет выступать пространство с двумя копиями A, причём вторая копия A будет подклеиваться к «рогу» $[3,2] \cup [3,1]$.

Шаг 3. Приклеим третье ребро [0,2]. В результате подклеится ещё одна копия пространства типа A с прошлого шага, но уже к рогу $[3,2] \cup [3,0]$ — в случае построения нового UK. Пространство Кана-Тёрстона же будет по-прежнему совпадать с исходным пространством, то есть будет границей треугольника.

Шаг 4. Подклейка двумерной клетки к границе треугольника. В итоговой конструкции $T\Delta^2$ будет иметься уже три образования типа A, склеенных вдоль рогов трёх рогов с общей вершиной [3] и остальными вершинами [0], [1], [2]. Приведём здесь схему расположения «рогов»:

Таким образом, $T\Delta^2$ получено не является стягиваемым пространством по теореме ван Кампена, поэтому $T\Delta^2$ не гомеоморфно Δ^2 .