

10/567597

- 1 JAP20 Reg'd PCT/PTO 03 FEB 2006

LE/fr 030088wo

24.06.04

all00835

5

ThyssenKrupp Presta SteerTec GmbH

Rather Str. 51

D-40476 Düsseldorf

10

Lenkgetriebe für ein Kraftfahrzeug

Die vorliegende Erfindung betrifft ein Lenkgetriebe für ein Kraftfahrzeug mit den Merkmalen des Oberbegriffs des Anspruchs

15 1.

Gattungsgemäße Zahnstangen-Servolenkungen sind so aufgebaut, dass ein Lenkungsgehäuse in seiner Einbaulage quer im Fahrzeug angeordnet ist und dass in diesem Lenkungsgehäuse eine Zahnstange ebenfalls in Querrichtung des Kraftfahrzeugs verschieblich gelagert ist. Die Zahnstange wird einerseits über ein Lenkrad und eine Lenksäule mit einem mit der Zahnstange kämmenden Lenkritzeln angetrieben. Andererseits ist seitlich von dem Eingriff des Ritzels in die Zahnstange beabstandet ein Servoantrieb mit einer Kolben-/Zylindereinheit angeordnet, der ebenfalls unmittelbar auf die Zahnstange wirkt. Die Zahnstange ist üblicherweise einstückig.

Der Abtrieb zu den gelenkten Rädern erfolgt bei gattungsgemäßen Servolenkungen über Spurstangen, die an den Stirnseiten der Zahnstange über Kugelgelenke angelenkt sind. In einigen

- 2 -

Fällen ist auch ein sogenannter Mittenabgriff vorgesehen, bei dem die Spurstangen im mittleren Bereich des Lenkgetriebes angelekt sind.

Bei zahlreichen Neuentwicklungen von Kraftfahrzeugen ist eine wesentliche Vorgabe an die Konstrukteure, den verfügbaren Innenraum bei vorgegebenen Außenmaßen möglichst groß zu gestalten und um diese Aufgabe zu lösen, ist es erforderlich, die wesentlichen Komponenten des Kraftfahrzeugs möglichst kompakt auszuführen. Die Bemühungen, herkömmliche Zahnstangen-
5 Servolenkungen kompakter auszuführen, sind jedoch dadurch begrenzt, dass bei einstückigen Zahnstangen mit koaxial neben-einander angeordneten Zahnstangenteil und Hydraulikteil die Länge der Zahnstange mit dem daran angeordneten Hydraulikantreib mindestens dem sechsfachen Hub der Lenkung in einer
10 Richtung entsprechen muss. Hinzu kommt der Verfahrweg der Zahnstange, der bei der Konstruktion des Kraftfahrzeugs als
15 Freiraum zu berücksichtigen ist.

Es ist deshalb Aufgabe der vorliegenden Erfindung, eine neue Lenkgetriebeanordnung zu schaffen, die mit den Vorteilen einer
20 hydraulischen Zahnstangen-Servolenkung besonders kompakte Abmessungen ermöglicht.

Diese Aufgabe wird von einem Lenkgetriebe mit den Merkmalen des Anspruchs 1 gelöst.

Weil die Zahnstange und die Kolbenstange in Axialrichtung parallel zueinander und quer zu der Axialrichtung voneinander be-abstandet angeordnet sind, reduziert sich der erforderliche Bauraum in Axialrichtung. Dadurch ergeben sich die angestrebten Vorteile für den Kraftfahrzeugkonstrukteur, der weniger räumliche Einschränkungen bei der Platzierung der Lenkung zu
25 30 beachten hat.

Vorzugsweise ist die Zahnstange mit der Kolbenstange in Axial-richtung fest verbunden, so dass eine zwangsweise Kopplung

zwischen beiden Bauelementen sichergestellt ist. Vorzugsweise ist der Zylinder mit Lenkgehäuse verbunden.

Der Zylinder kann dabei das Drehschieberventil tragen, so dass die erforderlichen, mit einer konventionellen Zahnstangenlenkung im wesentlichen baugleichen Komponenten nahe an dem Zylinder angeordnet sind.

Die freien Enden der Zahnstangen sind bei einer Ausführungsform mit topfförmigen Hülsen gekapselt, die den erforderlichen Bewegungsraum der Zahnstange umschließen und nach außen abdichten. Sie können auch mit Schiebehülsen oder Faltenbälgen gekapselt sein, die geeignet sind, den axial neben der Zahnstange befindlichen Freiraum beispielsweise für einen Radeinschlag frei zu geben.

Das Drehschieberventil kann als Modul links oder rechts am Rahmen zu befestigen sein, so dass für rechts- und linksgeleakte Fahrzeuge nahezu alle Bauteile baugleich sein können.

In einer anderen Ausführungsform kann auch vorgesehen sein, dass die Zahnstange mit dem Zylinder in Axialrichtung fest verbunden ist. Dann wird der Zylinder mit der Zahnstange bewegt, während die Kolbenstange gegenüber dem Fahrzeug im wesentlichen unbeweglich gelagert ist. Das Drehschieberventil kann dabei an Rahmen und Kolbenstange rahmenfest montiert sein, während Zylinder und Zahnstange relativ dazu verschieblich gelagert sind.

25 Die Hydraulikflüssigkeit zur Betätigung des Servoantriebs kann zweckmäßig über die Stirnseiten (freien Enden) der Kolbenstange zugeführt werden. Ein Mittenabgriff für die zu betätigenden Spurstangen kann unmittelbar an dem Zylinder befestigt sein, was eine kompakte Bauweise weiter fördert.

30 Eine dritte Ausführungsform sieht vor, dass insgesamt drei parallele, axial beabstandete Stangen vorgesehen sind, nämlich eine Zahnstange, eine Kolbenstange und eine Führungsstange.

- 4 -

Bei den Ausführungsformen mit rahmenfestem Zylinder können die Spurstangen an den Stirnseiten der Kolbenstange angelenkt sein.

Nachfolgend werden Ausführungsbeispiele der vorliegenden Er-
5 findung anhand der Zeichnung beschrieben. Es zeigen:

Fig. 1: eine Lenkung nach einem ersten Ausführungsbeispiel mit
Kopplung von Zahnstange und Kolbenstange in einem
Querschnitt von oben;

10 Fig. 2: die Lenkung gem. Fig. 1 in einer perspektivischen Dar-
stellung;

Fig. 3: eine Lenkung nach einem zweiten Ausführungsbeispiel
mit Kopplung von Zahnstange und Zylinder in einem
Querschnitt von oben;

15 Fig. 4: die Lenkung gem. Fig. 3 in einer perspektivischen Dar-
stellung; sowie

Fig. 5: eine schematische Darstellung einer dritten Ausfüh-
rungsform mit separater Führungsstange in einer Drauf-
sicht.

20 In der Figur 1 ist ein erfindungsgemäßes Lenkgetriebe nach ei-
nem ersten Ausführungsbeispiel veranschaulicht. Das Lenkge-
triebe weist ein Lenkgehäuse 1 auf, welches eine in Querrich-
tung des Lenkgehäuses verlaufende Zylinderbohrung 2 und eine
parallel zur Zylinderbohrung 2 verlaufende Zahnstangenbohrung
3 aufweist. In der Zylinderbohrung 1 ist eine Kolbenstange 4
25 in Richtung der Bohrungssachse 5 verschieblich angeordnet. Die
Kolbenstange 4 trägt mittig einen Hydraulikkolben 6, der zu-
sammen mit der Bohrung 2 und zwei stirnseitigen Führungs- und
Dichtungselementen 7 einen linken Arbeitsraum 8 und einen
rechten Arbeitsraum 9 begrenzt.

30 In der Zahnstangenbohrung 3 ist eine Zahnstange 11 entlang ih-
rer Zahnstangenachse 12 längs verschieblich angeordnet. Die

- 5 -

Zahnstangenachse 12 verläuft parallel zu der Bohrungssachse 5. Weiter trägt das Lenkungsgehäuse 1 ein Ritzel 13, welches mit einem Verzahnungsabschnitt 14 der Zahnstange 11 kämmt und welches um eine senkrecht zur Zeichenebene orientierte Drehachse 5 15 drehbar in dem Lenkungsgehäuse 1 gelagert ist.

Das Lenkungsgehäuse 1 trägt an seiner der Zahnstangenbohrung 3 gegenüberliegenden Seite insgesamt 3 Gewindebohrungen 16, die zur Befestigung des Lenkungsgehäuses an dem Rahmen eines Kraftfahrzeugs dienen.

10 Die Kolbenstange 4 und die Zahnstange 11 sind im Bereich ihrer freien Ende über je eine Stirnplatte 20 miteinander verbunden. Die Stirnplatten 20 koppeln die beiden Bauelemente derart, dass sie sich in der Axialrichtung also in Richtung der Achsen 5 und 12, nicht gegeneinander verlagern können. Weiter trägt 15 die Kolbenstange 4 an beiden freien Ende je eine Kugelpfanne 21, die wiederum jeweils eine darin gelagerte Spurstange 22 tragen. Die Spurstangen 22 werden schließlich bei der Montage der Lenkung im Kraftfahrzeug und im Betrieb so mit den Achsschenkeln der gelenkten Räder des Kraftfahrzeugs verbunden, 20 dass eine Betätigung der Lenkung zu einem Verschwenken der gelenkten Räder führt.

Der Zahnstange 11 sind schließlich Faltenbälge 23 zugeordnet, die die freien Enden der Zahnstange 11 außerhalb der Bohrung 3 umgeben und nach außen dicht abschließen. In an sich bekannter Weise wird hierdurch eine Verschmutzung der Verzahnung 14 verhindert, die einerseits zu Verschleiß und Korrosion und andererseits zu einer Blockierung des Eingriffs zwischen dem Ritzel und der Verzahnung 14 führen könnte. Vorteilhaft ist hier, dass der Eingriff des Ritzels 13 in die Verzahnung 14 die Bohrung 3 nicht luftdicht verschließen muss, sodass ein Volumenausgleich zwischen den Faltenbälgen 23 bei einer Axialbewegung der Zahnstange 11 durch die Bohrung 3 hindurch erfolgen kann und keine separate Be- oder Entlüftung der Faltenbälge 23 vorgesehen sein muss.

- 6 -

In der Figur 2 ist die Lenkung gemäß Figur 1 in einer perspektivischen Darstellung veranschaulicht. Gleiche Bauelemente tragen gleiche Bezugsziffern.

Es ist ersichtlich, dass an der Oberseite des Lenkungsgehäuses 5 oberhalb des Ritzels 13 ein an sich bekanntes Drehschieberventil 30 angeordnet ist, von dem aus Hydraulikleitungen 31, 32 zu den Arbeitsräumen 8, 9 führen. Das Drehschieberventil 30 weist einen verzahnten Drehschieber 33 auf, der ebenfalls in üblicher Weise mit einer nicht dargestellten Lenksäule des 10 Kraftfahrzeugs zu verbinden ist.

Die Montage der in soweit beschriebenen Servolenkung erfolgt derart, dass das Lenkungsgehäuse 1 im Bereich der Gewindebohrungen 13 etwa mittig im Bereich der gelenkten Achse eines Kraftfahrzeugs angebracht wird, wobei die Achsen 5 und 12 in 15 Querrichtung des Kraftfahrzeugs, also horizontal und quer zur Fahrtrichtung angeordnet sind. Die Spurstangen 22 werden mit den Achsschenkeln der gelenkten Räder verbunden. Das Drehschieberventil 30 wird im Bereich von Anschlussbohrungen 34 mit einer Hydraulikpumpe und einem Rücklauf verbunden. Der 20 Drehschieber 33 wird schließlich mit einer Vielzahnklemmung einer Lenksäule drehfest verbunden.

Wenn im Betrieb der Fahrer des mit der beschriebenen Lenkung ausgerüsteten Kraftfahrzeugs an einem Lenkrad über die Lenksäule einen Drehwinkel erzeugt, der dem Wunsch nach Änderung 25 der Fahrtrichtung entspricht, so wird der Drehschieber 33 und damit auch das Ritzel 13 in an sich bekannter Weise verdreht. Ein Hydraulikstrom wird je nach Drehrichtung in die Leitungen 31 oder 32 eingeleitet, sodass der Druck in den Arbeitsräumen 8 oder 9 erhöht wird. Das Ritzel 13 bewirkt eine Verlagerung 30 der Zahnstange 11 in Querrichtung, wobei diese Bewegung über die Stirnplatten 20 synchron mit einer entsprechenden Bewegung der Kolbenstange 4 und der Spurstangen 22 erfolgt. Der Hydraulikdruck in einem der beiden Arbeitsräume unterstützt diese

- 7 -

Bewegung nach Art einer herkömmlichen Zahnstangen-Servolenkung.

Gegenüber herkömmlichen Lenkungen ergibt sich bei dieser Bauweise der Vorteil, dass der Verzahnungsabschnitt 14 bezie-

5 hungsweise die gesamte Zahnstange 11 nicht koaxial zu der Kolbenstange 4 angeordnet ist. Der Bauraum in Querrichtung, also in Richtung der Achse 5 wird dadurch reduziert, sodass diese Lenkung geringer Restriktionen bei der Anordnung im Kraftfahrzeug erfordert. Ein weiterer Vorteil liegt in dem nicht erforderlichen externen Druckausgleich in den beiden Faltenbälgen
10 23. Schließlich wird die Montage dieser Lenkung einfacher und prozesssicherer, weil die im Verzahnungsbereich 14 relativ scharfkantige Zahnstange 11 nicht in den Bereich der Hydraulikdichtungen der Endstücke 7 eingeführt werden muss. Eine Beschädigung dieser Dichtungen während der Montage wird dadurch sicher ausgeschlossen.

In der Figur 3 ist eine erfindungsgemäße Lenkung in einer anderen Ausführungsform dargestellt. Die Darstellung entspricht der Ansicht gemäß Figur 1. Gleiche Bauelemente tragen wiederum
20 gleiche Bezugsziffern.

Bei diesem Ausführungsbeispiel ist ein Lenkungsgehäuse 40 mit zwei Befestigungsbereichen 41 versehen. Das Lenkungsgehäuse 40 trägt die Kolbenstange 4 fest und unverschieblich, indem die Kolbenstange 4 nahe den Befestigungsbereichen 41 mit dem Lenkungsgehäuse 40 verschraubt ist. Die Kolbenstange 4 trägt auch hier einen Hydraulikkolben 6, der mit einem Zylinder 42 zwei Arbeitsräume 8 und 9 begrenzt. Der Zylinder 42 weist an seiner der Zahnstange 11 zugewandten Seite eine Brücke 43 auf, die in einer Gewindebohrung 44 fest mit der Zahnstange 11 verschraubt
25 ist. Die Zahnstange 11 ist wiederum in zwei Gleitlagern 45 in dem Lenkungsgehäuse 40 axial verschieblich gelagert.

30 Die Zahnstange 11 weist bei diesem Ausführungsbeispiel zwei freie Enden 46 auf, die zum Schutz gegen Umwelteinflüsse mit festen, topfförmigen Hülsen 47 gekapselt sind.

In der Figur 4 ist das Ausführungsbeispiel gemäß Figur 3 in einer perspektivischen Darstellung weiter veranschaulicht. In dieser Darstellung ist erkennbar, dass das Ritzel 13 ebenso wie im ersten Ausführungsbeispiel Teil einer Drehschieber-
5 anordnung 30, 33 ist. Weiter ist erkennbar, dass der Zylinder 42 bei dieser Ausführungsform einen Flansch mit Gewindebohrungen 48 trägt, an die bei der Montage nicht näher dargestellte Spurstangen angeschraubt werden können.

In der Praxis wird die Lenkung nach diesem Ausführungsbeispiel
10 im Bereich der Anschlussflansche 41 mit dem Rahmen des Kraft-
fahrzeugs verschraubt. Die Spurstangen, die zu den gelenkten
Rädern führen, werden mit einem entsprechenden Gelenkteil an
den Zylinder 42 im Bereich der Bohrungen 48 angeschraubt. Bei
einer Drehung des Ritzels 13 wird über den Eingriff des Rit-
zels in den Verzahnungsbereich 14 die Zahnstange 11 in Quer-
richtung, also in Richtung der Achse 12 verlagert. Durch die
starre Befestigung der Zahnstange 11 über die Brücke 43 an dem
Zylinder 42 wird dieser ebenfalls in Querrichtung mit bewegt,
während die Kolbenstange 4 relativ zum Lenkungsgehäuse 40 und
20 damit relativ zum Rahmen des Kraftfahrzeugs ruht. Ein aus der
Verdrehung des Drehschieberventils 30 resultierendes hydrauli-
sches Steuersignal wird über die Hydraulikleitungen 31 und 32
an die Arbeitsräume 8 bzw. 9 weitergeleitet, um durch Drucker-
höhung in dem jeweiligen Arbeitsraum eine Servounterstützung
25 zu gewährleisten. Dabei kann vorteilhaft die Zuführung des Hy-
draulikfluids aus den Leitungen 31 und 32 über das Innere der
Kolbenstange 4 erfolgen.

Konstruktiv bietet auch dieses Ausführungsbeispiel den Vor-
teil, dass die Zahnstange 11 und die Kolbenstange 4 in Radial-
30 richtung voneinander beabstandet sind und nicht koaxial in
Querrichtung des Kraftfahrzeugs nebeneinander angeordnet sind.
Der erforderliche Bauraum in Querrichtung wird durch diese An-
ordnung erheblich verringert. Zum anderen ist bei diesem Aus-
führungsbeispiel ein Mittenabgriff im Bereich der Gewindeboh-
35 rungen 48 ausgesprochen einfach zu realisieren.

Da das Lenkungsgehäuse und die Bauelemente, insbesondere Dreh-
schieber und Zahnstange einen weitgehend modularen Aufbau er-
lauben, sind auch die erforderlichen Änderungen für die beiden
Varianten Rechtslenker/Linkslenker nur gering.

5 Die Figur 5 zeigt schließlich ein drittes Ausführungsbeispiel
in einer schematischen Darstellung entsprechend der Ansicht
aus Figur 1 und Figur 3.

Bei diesem Ausführungsbeispiel ist ein Lenkungsgehäuse 40 im
Bereich von Flanschen 41 an einen Rahmen 50 angeschraubt. Das
10 Lenkungsgehäuse 40 trägt die Kolbenstange 4, auf der der Zy-
linder 42 verschieblich angeordnet ist. Der Aufbau des Zylin-
ders 42 entspricht im wesentlichen demjenigen aus Figur 3. Die
Brücke 43 zu der Zahnstange 11 ist allerdings außermittig am
15 Zylinder 42 angebracht. Im Unterschied zu den bisherigen Aus-
führungsformen ist eine zusätzliche Führungsstange 51 parallel
zu der Kolbenstange 4 und der Zahnstange 11 vorgesehen, die in
einer Gleitführung 52 dazu angerichtet ist, an der Brücke 43
auftretende Kippmomente aufzufangen. Die Zahnstange 11 ist
durch diesen Aufbau frei von Kippmomenten. Die Zahnstange 11
20 kann deshalb im wesentlichen in der Länge auf den Hub des
Lenkgetriebes beschränkt werden, während bei dem Ausführungs-
beispielen gemäß Figur 1-4 die Länge der Servolenkung größer
ist.

Im Betrieb arbeitet dieses Lenkgetriebe entsprechend dem bis-
25 her beschriebenen Aufbau. Ein am Ritzel 13 eingeleitetes
Drehmoment führt zu einer Verlagerung der Zahnstange 11 in
Querrichtung. Die Zahnstange 11 nimmt dabei über die Brücke 43
den Zylinder 42 mit. Die in der Bauart Mittenabgriffs am Zy-
linder 42 angeordneten Spurstangen 22 leiten die Bewegung an
30 nicht dargestellte gelenkte Räder eines Kraftfahrzeugs weiter.
Ein mit dem Ritzel 13 verbundenes Drehschieberventil erzeugt
einen Hydraulikstrom in einen der beiden Arbeitsräume 8 oder
9, der im Wesentlichen proportional zu dem an dem Lenkrad ein-
geleiteten Drehmoment eine Servounterstützung zur Verfügung

- 10 -

stellt. Kippmomente werden im Gleitlager 52 aufgenommen und über die Führungsstange 51 und das Lenkgehäuse 40 an den Rahmen des Kraftfahrzeugs 50 weitergeleitet. Die Kolbenstange 4 und die Führungsstange 51 sind fest mit dem Lenkgehäuse 40
5 verbunden, während die Zahnstange 11 in Querrichtung verfahrbar ist. Diese drei Bauelemente sind achsparallel und radial voneinander beabstandet angeordnet.

Das dritte Ausführungsbeispiel ist in der Figur 5 nur rein schematisch dargestellt. Die genaue Ausführung wird sich ähnlich gestalten wie bei dem Ausführungsbeispielen nach den Figuren 1 bis 4.
10

- 11 -

LE/cc 030088wo

24.06.04

all00835

5

P a t e n t a n s p r ü c h e

1. Lenkgetriebe mit
einem Lenkgehäuse,
10 einer eine Axialrichtung definierenden Zahnstange, die
mit einem Lenkritzel kämmt,
mit einem hydraulischen Servoantrieb
mit einer einen Kolben, eine in Axialrichtung verlaufende
Kolbenstange und einen Zylinder aufweisenden Kol-
15 ben/Zylindereinheit,
dadurch gekennzeichnet, dass
die Zahnstange und die Kolbenstange in Axialrichtung par-
allel zueinander und quer zu der Axialrichtung voneinan-
der beabstandet angeordnet sind.
- 20 2. Lenkgetriebe nach Anspruch 1, dadurch ge-
kennzeichnet, dass die Zahnstange mit der Kol-
benstange in Axialrichtung fest verbunden ist.
3. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Zy-
25 linder mit dem Lenkgehäuse verbunden ist.
4. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Zy-
linder das Drehschieberventil trägt.
5. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
30 dadurch gekennzeichnet, dass die

- 12 -

freien Enden der Zahnstangen mit vorzugsweise topfförmigen Hülsen gekapselt sind, die den Bewegungsraum der Zahnstange umschließen und nach außen abdichten.

6. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
5 **dadurch gekennzeichnet**, dass die freien Enden der Zahnstangen mit Schiebehülsen oder Faltenbälgen gekapselt sind, die den axial neben der Zahnstange befindlichen Freiraum beispielsweise für einen Radeinschlag frei zu geben.
- 10 7. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass das Drehschieberventil als Modul in einem außermittig am Rahmen liegenden Bereich befestigt ist.
- 15 8. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Zahnstange mit dem Zylinder in Axialrichtung fest verbunden ist.
- 20 9. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Kolbenstange gegenüber dem Fahrzeug im wesentlichen unbeweglich gelagert ist.
- 25 10. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass Mittenabgriff für die zu betätigenden Spurstangen unmittelbar an dem Zylinder befestigt ist.
11. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass Hydraulikfluid zur Betätigung des Servoantriebs über die Stirnseiten (freien Enden) der Kolbenstange zugeführt wird.
- 30 12. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass insgesamt drei parallele, axial beabstandete Stangen vorgese-

- 13 -

hen sind, nämlich Zahnstange, Kolbenstange und Führungsstange.

13. Lenkgetriebe nach einem der vorhergehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , dass Spur-
5 stangen an den Stirnseiten der Kolbenstange angelenkt
sind.

LE/fr 030088wo

24.06.04

a1100835

Z u s a m m e n f a s s u n g

Die Erfindung betrifft ein Lenkgetriebe mit einem Lenkgehäuse, einer eine Axialrichtung definierenden Zahnstange, die mit einem Lenkritzel kämmt, mit einem hydraulischen Servoantrieb mit einer einen Kolben, eine in Axialrichtung verlaufende Kolbenstange und einen Zylinder aufweisenden Kolben/Zylindereinheit, die dadurch besonders kompakt ausführbar ist, dass die Zahnstange und die Kolbenstange in Axialrichtung parallel zueinander und quer zu der Axialrichtung voneinander beabstandet angeordnet sind.

Figur 1

1/5

Fig. 1

2/5

Fig 2

3/5

Fig. 3

415

Fig. 4

515

Fig. 5