原创 孙树兵 夕小瑶的卖萌屋 2020-06-10 10:10:00 手机阅读

来自专辑 卖萌屋@自然语言处理

一只小狐狸带你解锁炼丹术&NLP秘籍

作者: 孙树兵 学校:河北科技大学 方向: QA/NLU/信息抽取

编辑:小轶

中有着广泛的应用。2020年的文本纠错自然也离不开 BERT 的表演。但原生的 BERT 在一些NLP任 务如error detection、NER中表现欠佳,说明预训练阶段的学习目标中对相关模式的捕获非常有限, 需要根据任务进行一定改造。在文本纠错任务中亦是如此。 此前文本纠错的SOTA方法采用了基于 Bert 的 seq2seq 结构,直接生成纠错后的字符序列。但是经观

文本纠错(Spelling Error Correction)技术常用于文本的预处理阶段。在搜索引擎、输入法和 OCR

察发现,这样的方法总是倾向于不进行任何纠错,错误检测能力很低。一种可能的解释是 Bert 在预训 练时只掩码了15%的字符,所以并不能够充分学习所有字符的上下文。 为了提高错误检测能力,本文在SOTA方法的基础上又添加了一个错误检测网络。分错误检测和纠正

两步走。先检测每一个字的错误概率,然后根据检测结果将可能的错别字 soft-mask, 其实就是错误 概率: (滑动查看完整公式) $p \times [mask]embedding + (1-p) \times$ 原字符的 embedding

再输给基于Bert的修正网络。这样就强制修正网络学习了错别字的上下文。下面将详细为大家介绍模

型的实现细节。 论文链接: https://arxiv.org/pdf/2005.07421.pdf

Arxiv访问慢的小伙伴也可以在订阅号后台回复关键词【0610】下载论文PDF。

本文提出的 Soft-Masked Bert 模型可分为三个部分:

• 用错误概率对 input embedding 做 soft-mask。soft-mask 是传统 hard-mask 的延伸。当错误概

• 检测网络采用 Bi-GRU 预测字符在每个位置出现错误的概率。

- 率等于1时,前者退化为后者。 • 修正网络为原文中每个位置挑选替换字。实现过程与单纯使用BERT的SOTA方法相似。

$E=(e_1,e_2,\ldots,e_n)$ 。其中 e_i 表示字符 x_i 的 character embedding (即word embedding, position

embedding 和 segment embedding 的总和)。输出是标签序列 $G=(g_1,g_2,\ldots,g_n)$ 。 g_i 为第 i 个 字符的标签,等于 1 表示字符错误,0 表示正确。我们记 p_i 为 g_i 等于 1 的概率。 本文采用双向 GRU(Bi-GRU) 实现检测网络。字符错误概率 p_i 可以定义为

检测网络是一个二分类的序列标注模型。模型的输入是character embedding序列

 $p_i = P_d(g_i = 1|X) = \sigma(W_d h_i^d + b_d)$ 其中, $P_d(g_i=1|X)$ 表示检测网络给出的条件概率, σ 是 sigmoid 函数, h_i^d 为 Bi-GRU 的隐状态,

$$W_d$$
 和 b_d 是参数。隐状态可以定义为:

 $\overrightarrow{h_i^d} = \text{GRU}(\overrightarrow{h}_{i-1}^d, e_i)$ $\overleftarrow{h_i^d} = \text{GRU}(\overleftarrow{h}_{i+1}^d, e_i)$ $h_i^d = [\overrightarrow{h_i^d}; \overleftarrow{h_i^d}]$

率得到。第i个字符的 soft-masked embedding 可形式化地定义为:

修正网络

出。

训练过程

Test Set

SIGHAN

Soft-Mask

 e_i 是 input embedding, e_{mask} 是 mask embedding。如果错误概率很高,则 e'_i 接近 e_{mask} 。

 $e_i = p_i \cdot e_{mask} + (1 - p_i) \cdot e_i$

修正网络是一个基于 Bert 的多类别序列标注模型。输入为 soft-masked embedding 序列 $E=(e_1',e_2',\ldots,e_n')$,输出为替换字符序列 $Y=(y_1,y_2,\ldots,y_n)$ 。

X,字符 x_i 被替换为候选字符表中第 j 个字符的条件概率为 $P_c(y_i = j|X) = softmax(Wh'_i + b)[j]$

BERT 由12个相同的 block 组成。每个 block 包含一次 multi-head self-attention 操作和一个前馈神经

网络。我们将BERT最后一层的隐状态序列记为 $H^c=(h_1^c,h_2^c,\ldots,h_n^c)$ 。则给定待纠错的字符序列

其中,W 和 b 为参数; h_i' 是 e_i 和 Bert 最后一层隐状态 h_i^c 通过残差连接后得到的,即 $h_i' = h_i^c + e_i$

。校正网络的最后一层采用 softmax 函数,从候选字符列表中选择概率最大的字符作为字符作为输

数分别为: $\mathcal{L}_d = -\sum_{i=1}^n \log P_d(g_i|X)$ $\mathcal{L}_c = -\sum_{i=1}^n \log P_c(y_i|X)$

Soft-masked BERT 的训练是 Seq2seq 进行的。训练目标包括错误检测和错误纠正两部分,其目标函

Prec.

42.2

71.7

80.3

56.6

67.6

66.8

3.6

Acc.

42.2

60.1

70.1

74.2

6.8

Detection

Rec.

41.8

33.6

53.3

69.4

60.0

73.1

7.0

F1.

42.0

45.7

64.0

62.3

63.5

69.8

4.7

Acc.

39.0

56.4

69.2

73.7

5.2

Correction

Rec.

35.2

26.1

51.5

59.1

59.5

3.8

F1.

36.6

37.5

62.5

57.1

62.6

64.9

2.6

Prec.

38.1

66.3

79.7

66.6

71.5

2.0

总目标函数为两者的线性组合: $\mathcal{L} = \lambda \cdot \mathcal{L}_c + (1 - \lambda) \cdot \mathcal{L}_d$ 。其中 $\lambda \in [0, 1]$ 。

Method

NTOU (2015)

NCTU-NTUT (2015)

HanSpeller++ (2015)

Hybird (2018b)

FASPell (2019)

Confusionset (2019)

BERT-Pretrain

	BERT-Finetune	80.0	73.0	70.8	71.9	76.6	65.9	64.0	64.9
	Soft-Masked BERT	80.9	73.7	73.2	73.5	77.4	66.7	66.2	66.4
News Title	BERT-Pretrain	7.1	1.3	3.6	1.9	0.6	0.6	1.6	0.8
	BERT-Finetune	80.0	65.0	61.5	63.2	76.8	55.3	52.3	53.8
	Soft-Masked BERT	80.8	65.5	64.0	64.8	77.6	55.8	54.5	55.2
总结									

使用Bert的基线模型。并且这一方法具有较强的普适性,也可用于其他语言的纠错任务。

正两个部分。通过Soft-mask技术将检测结果编码到修正网络。实验结果表明该方法的性能优于单纯

来撩噢~(手慢无

本文收录于原创专辑: 《卖萌屋@自然语言处理》

• ACL20 | 让笨重的BERT问答匹配模型变快! • 7款优秀Vim插件帮你打造完美IDE

• NLP中的少样本困境问题探究

- 卖萌屋原创专辑首发,算法镇魂三部曲! • GPT-3诞生, Finetune也不再必要了! NLP领域又一核弹!
- 夕小瑶的卖萌屋

• 告别自注意力,谷歌为Transformer打造新内核Synthesizer