Learning biases may prevent lexicalization of pragmatic inferences

A case study combining iterated (Bayesian) learning and functional selection

Thomas Brochhagen¹ Michael Franke ² Robert van Rooij ¹

CogSci 2016, Philadelphia, USA, 2016.08.13

¹ILLC, University of Amsterdam

²Department of Linguistics, University of Tübingen

The semantics-pragmatics distinction

Semantics

Literal meaning (truth-conditional)

Pragmatics

Information beyond literal meaning (e.g. defeasible inferences)

Scalar inferences

- (1) $\langle few, some, many, most, all \rangle$
 - a. All students came to class
 - \rightarrow Some students came to class
 - b. Some students came to class
 - Not all students came to class
- (2) $\langle may, should, must \rangle$
- (3) $\langle one, two, three, ... \rangle$
- (4) ...

The use of a less informative expression when a more informative one <u>could have been used</u>* can license a defeasible inference that the stronger alternatives do not hold

*The hearer assumes the addressee to be knowledgeable and cooperative

.

- Why are (pragmatically inferred) upper-bounds of weak(er) alternatives not part of semantics?
- 2. What justifies semantic structure in light of pragmatic enrichment?

Today's talk:

- Propose a model to address (2) and analyze dynamics of linguistic pressures more broadly
- Use (1) as a case study for (2)

Model

Components I: Cultural transmission

Two competing pressures:

- 1. Communicative efficiency
 - ... as replicator dynamics
- 2. Learnability
 - ... iterated Bayesian learning as mutator dynamics

Replicator-mutator dynamics

.

Components II: Probabilistic (pragmatic) language users

Varied lexica

 Varied production and comprehension behavior (here: parametrized literal or pragmatic) A player's type

Lexica

- s₁: Bill read all books
- s2: Bill read some but not all books

$$L_a = egin{array}{ccc} m_{
m some} & m_{
m all} \ s_1 & 1 & 1 \ s_2 & 1 & 0 \ \end{array}$$

$$L_b = egin{array}{ccc} m_{\mathsf{some}} & m_{\mathsf{all}} \ s_1 & 0 & 1 \ s_2 & 1 & 0 \ \end{array}$$

Literal behavior

$$R_0(s|m;L) \propto P^*(s)L_{sm} \tag{1}$$

$$S_0(m|s;L) \propto \exp(\lambda L_{sm})$$
 (2)

Pragmatic behavior

$$R_1(s|m;L) \propto P^*(s)S_0(m|s;L) \tag{3}$$

$$S_1(m|s;L) \propto \exp(\lambda R_0(s|m;L)^{\alpha})$$
 (4)

A player type t_i is a combination of signaling behavior and a lexicon

Functional pressure

Population of types x

$$x_i \propto \text{players } t_i \text{ in } x$$

• Fitness of type *i*

$$f_i = \sum_j x_j U(x_i, x_j)$$

Average fitness in the population

$$\Phi = \sum_i x_i f_i$$

Iterated learning

- $Q_{ji} \propto \sum_d P(d|t_j)P(t_i|d)$
- $d = \langle \langle s_h, m_n \rangle, ..., \langle s_l, m_o \rangle \rangle$ of length k
- ullet $P(d|t_j)$ corresponds to the production probabilities of t_j
- $P(t_i|d) \propto [P(t_i)P(d|t_i)]^l$, $l \geq 1$
- The prior encodes the learning bias of players prior to data exposure
 - $P(t_i) \propto n c \cdot r$, where n = |S| and r a count of semantically upper-bounded weak alternatives

Parametrized posterior $[P(t_i)P(d|t_i)]^{I}$

• l=1 corresponds to posterior sampling

ullet $I
ightarrow \infty$ approaches maximum a posteriori estimate

N.B.: I will add a picture to exemplify how the mechanisms select hypotheses from the space of types

Analysis

Types & lexica considered

$$L_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \quad L_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad L_3 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$L_4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad L_5 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad L_6 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Results I

N.B.: Plots that exemplify results (effect of bias on dynamics)

Results II

N.B.: Plots that exemplify results with a focus on our competing lexica (semantic upper-bounds vs. pragmatically inferred)

Results III

N.B.: Plots that exemplify results (effect of parametrized learning)

Conclusion & Outlook

Concluding remarks

- Combination of functional pressure, iterated Bayesian learning, and probabilistic hearer & speaker models
- Learnability steers language towards simpler semantics
- Pragmatics compensates for potential loss in expressivity

References

References I