《高等微积分1》第二次习题课材料

1 给定实数 a. 定义数列

$$a_0 = a$$
, $a_n = \sin a_{n-1}$, $\forall n \in \mathbf{Z}_+$.

求极限 $\lim_{n\to\infty} a_n$.

2 设映射 $f:[0,1] \to [0,1]$ 满足: 存在实数 0 < c < 1 使得

$$|f(x) - f(y)| \le c|x - y|, \quad \forall x, y \in [0, 1].$$

- (1) 证明: f 是连续映射.
- (2) 任意给定 $a \in [0,1]$, 定义序列 $\{a_n\}_{n\geq 0}$ 为:

$$a_0 = a$$
, $a_{n+1} = f(a_n)$, $\forall n \ge 0$.

证明: 序列 $\{a_n\}_{n\geq 0}$ 收敛.

- (3) 证明: 上述极限 $\lim_{n\to\infty}a_n$ 是 f 的不动点 (称 b 为 f 的不动点, 如果 f(b)=b).
- 3 (讲评作业题) 设 $\lim_{x \to a} f(x) = A$.
 - (1) 证明: 对于正奇数 k, 有 $\lim_{x\to a} \sqrt[k]{f(x)} = \sqrt[k]{A}$.
 - (2) 证明: 对于正偶数 k, 如果 A > 0, 则有 $\lim_{x \to a} \sqrt[k]{f(x)} = \sqrt[k]{A}$.
- 4 函数极限.
 - (1) 求极限 $\lim_{x \to \infty} (\sin \sqrt{x^2 + 2} \sin \sqrt{x^2 + 1}).$
 - (2) 给定 a > 1, k > 0. 求极限 $\lim_{x \to +\infty} \frac{x^k}{a^x}$.

- (3) 已知 $\lim_{x \to +\infty} (\sqrt{x^2 x + 1} ax b) = 0$. 求 a, b 的值.
- (4) 极限 $\lim_{x\to 1} \left[\frac{1}{x}\right]$ 是否存在? 其中 $\left[\frac{1}{x}\right]$ 表示 $\frac{1}{x}$ 的整数部分.
- (5) 求极限 $\lim_{x\to 0} \left(\frac{2 + e^{1/x}}{1 + e^{4/x}} + \frac{\sin x}{|x|} \right).$
- (6) 求极限 $\lim_{x\to 0+} x^x$.
- (7) 求极限 $\lim_{x\to+\infty} x^{1/x}$.
- (8) 求极限 $\lim_{x\to 0} \frac{\log_a(1+x)}{x}$.
- (9) 求极限 $\lim_{x\to 0} \frac{a^x 1}{x}$.
- 5 (讲评作业题) (1) 设 $\{a_n\}_{n=1}^{\infty}$ 是不减的数列, 且极限为 A. 证明: 对任何正整数 n, 有 $a_n \leq A$.
 - (2) 令 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. 证明: 对正整数 n, 有

$$(1+\frac{1}{n})^n \le e \le (1+\frac{1}{n})^{n+1}.$$

(3) 利用 (2) 的结论, 证明: 对正整数 n, 有

$$\frac{(n+1)^n}{e^n} \le n! \le \frac{(n+1)^{n+1}}{e^n}.$$

(4) 利用 (3) 的结论, 计算极限

$$\lim_{n\to\infty} \sqrt[n]{\frac{n!}{n^n}}.$$

- 6 (讲评作业题) 设 $\lim_{x \to x_0} f(x) = 0$, $\lim_{x \to x_0} (f(x)g(x)) = K$.
 - (1) 定义函数 $h:(-1,+\infty)\to \mathbf{R}$ 为

$$h(y) = \begin{cases} \frac{\ln(1+y)}{y}, & \text{如果} y \neq 0\\ 1, & \text{如果} y = 0. \end{cases}$$

证明: $\lim_{x \to x_0} (h \circ f)(x) = 1$.

(2) 利用 (1) 的结论, 证明:

$$\lim_{x \to x_0} g(x) \ln (1 + f(x)) = K.$$

注意: 这个结论不是显然的. 因为, 不一定能找到 x_0 的去心邻域 $N^*(x_0,r) = B_r(x_0) \setminus \{x_0\}$, 使得在其中 f(x) 处处非零, 这样, 利用简单的换元法计算上述极限是不严谨的.

7 给定 n 个正实数 $a_1,...,a_n$. 求极限 $\lim_{x\to 0}(\frac{a_1^x+...+a_n^x}{n})^{1/x}$. (提示: 利用第 6 题的结论)