Fluid Mechanics: Assignment #1

Due on 2nd September, 2018

Aditya Vijaykumar

Problem 1

The *Knudsen Number* is given by,

$$Kn = \frac{\lambda}{L} = \frac{k_B T}{\sqrt{2\pi} d^2 p L}$$

where L is the characteristic length scale, and T and p are the temperature and pressure respectively. We can take some approximations for the the variations of T and p, but we note that data for the variation of T and p is also available publicly http://www.hyvac.com/tech_support/atmosphere%20vs%20pressure%202.htm. We import that data and use it to do our calculations. We also assume some standard values for all the other parameters.

Problem 2

$$\frac{\mathrm{d}C}{\mathrm{d}\eta} = \kappa \exp\left(\frac{-\eta^2}{4D}\right)$$

where $\eta = x/\sqrt{t}$. Performing the indefinite integral and substituting for η , one gets,

$$C(\eta) = \sqrt{D\pi}\kappa \operatorname{erf}\left(\frac{\eta}{2\sqrt{D}}\right) + \alpha = \sqrt{D\pi}\kappa \operatorname{erf}\left(\frac{x}{2\sqrt{D}\sqrt{t}}\right) + \alpha$$

where α is some integration constant. We now go ahead and impose boundary conditions

• The concentration at the flower (x = 0) is assumed to be a constant C_0 at all times. As erf(0) = 0, $\alpha = C_0$

• At t=0, any x would have zero concentration. As $\operatorname{erf}(x\to\infty)=1$, We get the condition that $\sqrt{D\pi}\kappa+C_0=0$ ie. $\kappa=-C_0/\sqrt{D\pi}$

Therefore, the final solution is,

$$C(x,t) = C_0 \left[1 - \operatorname{erf} \left(\frac{x}{2\sqrt{D}\sqrt{t}} \right) \right]$$

The function is plotted below for different t using standard value of diffusivity $D \approx 10^{-5}~m^2/s$,

Problem 3