

Outline

• Chapter 1.1 Periodic Array of Atoms (原子的周期性排列)

• Chapter 1.2 Symmetry of Crystals (晶体的对称性)

• Chapter 1.3 Typical Crystal Structures (典型晶体结构)

• Chapter 1.4 Reciprocal Lattice (倒易点阵)

Objectives

- > To learn the classification of crystal symmetries;
- > To understand the macroscopic symmetry of crystals and its properties;
- > To learn the microscopic symmetry of crystals.

> Symmetry

Symmetry is the exact correspondence in position of parts of an object with respect to a dividing plane, line, or point.

> Symmetry of Crystals

- Symmetry of a crystal of
- ❖ Focused on the **outer shape**
- ❖ Described by **point group**.

- Symmetry of crystal lattices of
- ❖ Focused on the **inner structure**
- ❖ Described by **space group**.

> Symmetry of Crystals

The macroscopic symmetry is essentially governed by the microscopic symmetry!

Macroscopic Symmetry of Crystals (晶体的宏观对称性)

- ➤ Macroscopic Symmetry of Crystals (晶体的宏观对称性)
 - The macroscopic symmetry of crystals is the symmetry associated with the outer shape of a crystal.

➤ Macroscopic Symmetry of Crystals (晶体的宏观对称性)

The macroscopic symmetry of crystals can be described in terms of certain symmetry elements and their associated symmetry operations.

- ➤ Symmetry Operations (对称操作)
 - Symmetry operation is **an action of rearranging atoms** such that the crystal is transformed into a state indistinguishable from the starting state.

Examples of symmetry operation (rotation) performed to some simple geometry shapes.

- ➤ Symmetry Operations (对称操作)
 - The physical properties of crystals are invariant with respect to symmetry operations.
 - ❖ Mathematically, a symmetry operation is an **orthogonal transformation (正交变换)** that keeps the crystal unchanged.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad A_{ij} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Coordinates After transformation

Coordinates **Before Transformation**

$$A_{ij} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Orthogonal Matrix (正交矩阵)

- ❖ The symmetry operations regarding to macroscopic symmetry include:
 - 1) Identity (恒等)
 - 2) Inversion (反演)
 - 3) Reflection (反映)
 - 4) Proper Rotation (旋转)
 - 5) Improper Rotation (瑕旋转)

- 1) Identity (恒等)
- The identity operation is doing nothing!

$$A_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$y \quad z \quad \rightarrow \quad x \quad y \quad z$$

- 2) Inversion (反演)
- * The inversion operation occurs through a single point (inversion center).

- 3) Reflection (反映)
- ❖ The reflection operation occurs through a plane (symmetry plane) dividing the object.

➤ Symmetry Operations (对称操作)

4) Proper Rotation (旋转)

- ❖ The proper rotation operation occurs w.r.t. a line (proper axis) that the object rotates.
- ❖ The proper axis is n-fold (n次旋转轴) when rotation by $2\pi/n$.

$$A_{ij} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x \quad y \quad z \quad \rightarrow \quad x' \quad y' \quad z$$

(Here, the proper axis is the z axis)

$$x' = x \cos \theta - y \sin \theta$$

$$y' = x \sin \theta + y \cos \theta$$

- ➤ Symmetry Operations (对称操作)
 - 5) Improper Rotation (瑕旋转)

- ❖ The improper rotation operation is a combination of rotation and reflection/inversion.
- ❖ It is also called rotoreflection (映转) or rotoinversion (倒转).

- ➤ Symmetry Operations (对称操作)
 - 5) Improper Rotation (瑕旋转)
 - ❖ Rotoreflection (映转):
 - **1)** rotation by $2\pi/n$;
 - 2) reflection through a plane perpendicular to the axis.

- ➤ Symmetry Operations (对称操作)
 - 5) Improper Rotation (瑕旋转)
 - ❖ Rotoinversion (倒转):
 - **1)** rotation by $2\pi/n'$;
 - 2) inversion through a inversion center on the axis.

➤ Symmetry Operations (对称操作)

5) Improper Rotation (瑕旋转)

- The rotoreflection and rotoinversion are essentially equivalent!
- \clubsuit They are only different in rotation with an angle of π .

Rotoreflection:
$$A_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \cos \theta' & -\sin \theta' & 0 \\ \sin \theta' & \cos \theta' & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $\begin{cases} x & y & z \to x' & y' & -z \\ x' = x \cos \theta' - y \sin \theta' \\ y' = x \sin \theta' + y \cos \theta' \end{cases}$

$$x \quad y \quad z \quad \to \quad x' \quad y' \quad -z$$

$$x' = x \cos \theta' - y \sin \theta'$$

$$y' = x \sin \theta' + y \cos \theta'$$

Rotoinversion:
$$A_{ij} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \cos \theta'' & -\sin \theta'' & 0 \\ \sin \theta'' & \cos \theta'' & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{array}{c} x & y & z & \rightarrow & x'' & y'' & -z \\ x'' = x \cos \theta'' - y \sin \theta'' \\ y'' = x \sin \theta'' + y \cos \theta'' \end{array}$$

$$x \quad y \quad z \quad \to \quad x'' \quad y'' \quad -z$$

$$x'' = x \cos \theta'' - y \sin \theta''$$

$$y'' = x \sin \theta'' + y \cos \theta''$$

$$x'' = -x'$$

$$y'' = -y'$$

$$\theta'' = \theta' \pm \pi$$

$$\theta^{\prime\prime}=\theta^\prime\pm\pi$$

➤ Symmetry Operations (对称操作)

2019级崇新学堂同学"科学可视化"作品

杨天池, 靳明昊, 胡欣然 李宁萍, 刘姿含, 郭美婧

- ➤ Symmetry Elements (对称元素)
 - ❖ A symmetry element is a **point of reference** about which symmetry operations can take place.

In particular, symmetry elements include:

➤ Symmetry Elements (对称元素)

Symmetry Operations 对称操作	Symmetry Elements 对称元素	Notation 符号		
		International Notation 国际符号	Schoenflies Notation 熊夫利符号	
Identity 恒 等	Identity 恒等	1	E	
Inversion 反演	Inversion Center 对称中心 /反演中心	<u>1</u>	i	
Reflection 反映	Symmetry Plane 对称面 /反映面	m	σ	
Proper Rotation 旋转	Proper Axis 旋转轴	1, 2, 3, 4, 6	C ₁ , C ₂ , C ₃ , C ₄ , C ₆	
Improper Rotation 瑕旋转/映转/倒转	Improper Axis 反轴 /映转轴/倒转轴	3, 4, 6	C _{3i} , S ₄ , C _{3h}	

- ➤ Symmetry Elements (对称元素)
 - ❖ In periodic crystals, there are only 8 independent symmetry elements:

1, 2, 3, 4, 6, i, m,
$$\overline{4}$$

(Note: $\overline{1} = i$, $\overline{2} = m$, and $\overline{3}$ and $\overline{6}$ are not independent because $\overline{3} = 3 + i$; $\overline{6} = 3 + m$)

➤ Symmetry Elements (对称元素)

❖ In practice, for simplicity, only the symmetry elements (instead of the symmetry operations) are listed in order to describe the symmetry properties of a crystal.

The symmetry elements of a cube.

- ➤ Crystallographic Restriction Theorem (晶体学限制定理)
- The rotational symmetries of a crystal are limited to only 1-fold, 2-fold, 3-fold, 4-fold, and 6-fold, i.e., the **symmetry elements of 1, 2, 3, 4, and 6**. We cannot find a lattice that goes into itself under other rotations, such 5-fold, 7-fold, ...

Figure 5 A fivefold axis of symmetry cannot exist in a periodic lattice because it is not possible to fill the area of a plane with a connected array of pentagons. We can, however, fill all the area of a plane with just two distinct designs of "tiles" or elementary polygons.

(基泰尔书, page 5)

➤ Quasicrystal (准晶)

❖ The discovery of quasicrystal (准晶) in 1984 broke the crystallographic restriction theorem and proved that there exists 5-fold rotation symmetry in real crystals.

Electron Diffraction Pattern of AlMn Quasicrystal

A Sample of Ho_{8.7}Mg_{34.6}Zn_{56.8} Quasicrystal

Nobel Prize in Chemistry 2011

Dan Shechtman (1941-) Israeli Material Scientist

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, *Phys. Rev. Lett.* **53, 1951** (1984).

➤ Quasicrystal (准晶)

❖ The discovery of quasicrystal (准晶) in 1984 broke the crystallographic restriction theorem and proved that there exists 5-fold rotation symmetry in real crystals.

	Crystals		
Properties	Periodic Crystals	Quasicrystals	
Long-Range Order?	Yes	Yes	
Translational Symmetry?	Yes	No	
The Crystallographic Restriction Theorem Applies?	Yes	No	

- ➤ Crystallographic Point Group (晶体学点群)
- ❖ Mathematically, a group (群) is a set (e.g., G) consisting of a group of elements.

- ❖ All elements in the group G satisfy:
 - 1. Closure (闭合性): If A,B∈G, then AB=C∈G
 - 2. Associativity (结合律): A(BC)=(AB)C
 - 3. Identity Element (单位元素): There exists E such that all elements meet AE=A
 - 4. Inverse Element (逆元素): Each element has an inverse element in the group that AA-1=E

➤ Crystallographic Point Group (晶体学点群)

❖ A crystallographic point group, or **point group** (点群) for short, is a set of symmetry operations that leave at least one point fixed during the operations, i.e., **point symmetry operations** (点对称操作).

$$G = \{1, 2, 3, 4, 6, i, m, \overline{4}\}$$

❖ For a periodic crystal, the point group must be consistent with maintenance of the 3D translational symmetry. (注意: "点对称操作"不包含"平移对称操作").

➤ Crystallographic Point Group (晶体学点群)

❖ In periodic crystals, the combination of point symmetry operations lead to 32 point groups.

符号	符号意义	对称类型	数目
C_n	具有n重旋转对称轴	C ₁ , C ₂ , C ₃ , C ₄ , C ₆	5
C_i	对称中心 (i)	$C_i (= S_2)$	1
C_s	对称面 (m)	C_s	1
C_{nh}	h代表除n重轴外还有与轴垂直的水平对称面	$C_{2h}, C_{3h}, C_{4h}, C_{6h}$	4
C_{nv}	v代表除n重轴外还有通过该轴的铅锤对称面	C _{2v} , C _{3v} , C _{4v} , C _{6v}	4
D_n	具有n重轴和n个与之垂直的2重轴	D ₂ , D ₃ , D ₄ , D ₆	4
D_{nh}	h意义与前同	D _{2h} , D _{3h} , D _{4h} , D _{6h}	4
D_{nd}	d表示还有1个平分两个2重轴间夹角的对称面	D _{2d} , D _{3d}	2
S_n	经n重旋转后,再经垂直该轴的平面镜像	S ₄ , S ₆	2
Т	4个3重轴和3个2重轴 (四面体对称性)	Т	1
T_h	h意义与前同	T_h	1
T_d	d意义与前同	T_d	1
0	3个互相垂直的4重轴及6个2重轴和4个3重轴	O, O _h	2
共计			32

➤ Crystal Systems (晶系)

❖ Since some symmetry elements may be shared by certain types of crystals, the 32 point groups can be further classified into **7 crystal systems**.

The unit cells characteristic of the 7 crystal systems.

➤ Crystal Systems (晶系)

All crystals of each crystal system have the same set of **point groups** and **unit cell**.

Crystal System	晶系	对称性特征	晶胞参数	所属点群
Triclinic	三斜	只有C₁或C _i	$\mathbf{a} \neq \mathbf{b} \neq \mathbf{c}$ $\alpha \neq \beta \neq \gamma$	C ₁ , C _i
Monoclinic	单斜	唯一C ₂ 或C _s	a≠b ≠c α=γ=90° ≠β	C_2 , C_S , C_{2h}
Orthorhombic	正交	三个C ₂ 或C _s	a≠b ≠c α= β =γ= 90°	D_2 , C_{2V} , D_{2h}
Rhombohedral	三方	唯一C ₃ 或S ₆	a=b=c $\alpha=\beta=\gamma\neq90^{\circ}$	C_3 , S_6 , D_3 C_3 , D_{3d}
Tetragonal	四方	唯一C ₄ 或S ₄	a=b ≠c α= β =γ= 90°	C_4 , S_4 , C_{4h} , D_4 C_{4V} , D_{2d} , D_{4h}
Hexagonal	六方	唯一C ₆ 或S ₃	a=b ≠c α= β = 90°γ=120°	C_6 , C_{3h} , C_{6h} , D_6 , C_{6V} , D_{3h} , D_{6h}
Cubic	立方	四个C ₃	a=b=c α = β = γ = 90°	$T_{v}^{v} T_{h}^{v}, T_{d}^{v}$ $O_{v}^{v} O_{h}^{v}$

➤ Bravais Lattices (布拉维格子)

❖ By considering how the lattice sites are located in the unit cells of the 7 crystal systems, it ends up with 14 Bravais lattices in 3D.

❖ Any real periodic crystal corresponds to one of the 14 Bravais lattices!

➤ Bravais Lattices (布拉维格子)

There are 4 centering types identifying the location of the lattice sites in the unit cell:

➤ Bravais Lattices (布拉维格子)

❖ The 14 Bravais lattices in 3D:

晶系	原始格子(P)	底心格子(C)	体心格子(I)	面心格子(F)	合计
三斜	y pc	C = I	I = F	F = P	1
单斜	β ≠ 90° α ≠ c	$\beta \neq 90^{\circ}$ $a \neq c$ b	I = F	F = C	2
正交	<i>a</i> ≠ <i>b</i> ≠ <i>c a b</i>	a ≠ b ≠ c a b	a ≠ b ≠ c a b	<i>a</i> ≠ <i>b</i> ≠ <i>c a b</i>	4
四方	a # c	C = P	a # c	F = I	2
三方	$ \begin{array}{c} \alpha \neq 90^{\circ} \\ \alpha \\ \alpha \\ \alpha \end{array} $	与本晶系 对称不符	I = F	$\mathbf{F} = \mathbf{P}$	1
六方	y=120°	与本晶系 对称不符	与空间格子 的条件不符	与空间格子 的条件不符	1
立方	a a	与本晶系 对称不符	a	a a	3

共计14

Microscopic Symmetry of Crystals (晶体的微观对称性)

➤ Microscopic Symmetry of Crystals (晶体的微观对称性)

- ➤ Translational Symmetry (平移对称性)
 - ❖ The translational symmetry can be described in terms of translational symmetry elements and the corresponding translational symmetry operations.
 - ❖ The translational symmetry elements include:

Translation Axis (平移轴)

Screw Axis (螺旋轴)

Glide Plane (滑移面)

➤ Translational Symmetry (平移对称性)

金刚石结构中的4度螺旋轴

取上下底面心的连线,再沿单胞边长平移 a/4就是一个4度螺旋轴。晶体绕该轴转90°后,再沿该轴平移 a/4,能自身重合。

曾长淦,《固体物理讲义》

38

SE 19 01 LE STONG UNIVERSITA

➤ Translational Symmetry (平移对称性)

氯化钠结构中的滑移反映面

曾长淦,《固体物理讲义》

➤ Crystallographic Space Group (晶体学空间群)

❖ The translational symmetry operations give rise to **14 translation groups** (平移群, as many as the number of Bravais lattices).

In 3D periodic crystals, the combination of point symmetry operations and translational symmetry operations lead to 230 crystallographic space groups.

➤ Crystallographic Space Group (晶体学空间群)

表 2.3 7个晶系,14个布拉维格子和 73个简单空间群			
晶系	单胞基矢特性	布拉维格子	空间群
三斜	a≠b≠c α≠β≠γ	简单三斜(P)	P1, P1
单斜	$a \neq b \neq c$ $\alpha = \beta = 90^{\circ} \neq \gamma$	简单单斜(P) 底心单斜(B或 A)	P2, Pm, P2/m B2, Bm, B2/m
正交	$a \neq b \neq c$ $a = \beta = \gamma = 90^{\circ}$	简单正交(P) 底心正交(C,A 或 B) 体心正交(I) 面心正交(F)	P222, Pmm2, Pmmm C222, Cmm2, Amm2, Cmmm I222, Imm2, Immm F222, Fmm2, Fmmm
四方	$a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	简单四方(P) 体心四方(I)	P4, P4, P4/m, P422, P4mm, P42m, P4m, P4m, P4m, P4m, P4m, P4mm, P4m, P4
三角	$a=b=c$ $\alpha=\beta=\gamma<120^{\circ}$ $\neq 90^{\circ}$	三角(R,P)	142m, 14m2, 14/mmm. R3, R3, R32, R3m, R3m P3, P3, P312, P321, P3m1 P31m, P31m, P3m1
六角	$a=b\neq c$ $\alpha=\beta=90^{\circ};$ $\gamma=120^{\circ}$	六角(P)	P6, P6, P6/m, P622, P6mm, P6m2, P62m, P6/mmm
立方	$a=b=c$ $\alpha=\beta=\gamma=90^{\circ}$	简单立方(P) 体心立方(I) 面心立方(F)	P23, Pm3, P432, P43m, Pm3m I23, Im3, I432, I43m, Im3m F23, Fm3, F432, F43m, Fm3m

Space groups can be used to give more detailed classifications of real crystals.

Not all space groups have found examples of real crystals.

- > The Case of 3D
 - **❖** In 3D periodic crystals, there exist:

- > The Case of 2D
 - **❖** In 2D periodic crystals, there exist:

> The Case of 2D

4 Crystal Systems and 5 Bravais Lattices:

Summary (总结)

➤ Summary (总结)

Symmetry of Crystals:

- 1) Macroscopic symmetry; 2) Microscopic symmetry
- ***** Macroscopic Symmetry:
 - 1) Symmetry Operations;
 - 2) Symmetry Elements;
 - 3) Point Group;
 - 4) Crystal Systems;
 - 5) Bravais Lattices.
- Microscopic Symmetry.

Chapter 1.2: 课后作业

- 列出硅(silicon)晶体所属的点群、晶系、布拉维格子等信息,并在单胞中画出可能的点对称元素。
- 2. 用 Materials Studio 软件画出硅晶体的一个单胞(截图到作业纸上),标出任意 一条4度螺旋轴,并熟悉 Materials Studio 软件的使用。

(Materials Studio 下载链接: https://pan.baidu.com/s/1zQ5qVycOEhFmpxZZTpTZWQ?pwd=m8m5 提取码: m8m5)

提交时间: 3月3日之前

提交方式:手写(写明姓名学号)后拍照,通过本班课代表统一提交电子版