TD ACCQ 201

Julien Béguinot, Duong Hieu Phan

Télécom Paris

1 Rappels

1.1 Définitions Essentiels

Definition 1. Soit G un groupe et H un sous-groupe de G. On dit que H est **distingué** dans G et on note $H \triangleleft G$ si $\forall g \in G, gH = Hg$. En d'autre termes les classes à droites et les classes à gauches de H dans G coincident.

Definition 2. Un groupe engendré par un seul élément est dit **monogène**. Un groupe monogène et fini est dit **cyclique**.

Definition 3. Le centre $\mathcal{Z}(G)$ est l'ensemble des éléments de G commutants avec tous les éléments de G. Pour x un élément de G le centralisateur de x dans G est l'ensemble des éléments de G commutant avec x.

Definition 4. Soit X un ensemble et G un groupe. On dit que G **agit** sur X s'il existe une fonction (une action de groupe): $\begin{cases} X \times G \mapsto G \\ (x,g) \mapsto g \cdot x \end{cases} \text{ tel que } (i) : \forall (s,g) \in G^2, \forall x \in X, s \cdot (g \cdot x) = (sg) \cdot x \text{ et } (ii) : e \cdot x = x. \text{ On note } \mathcal{O}_x = \{g \cdot x | g \in G\} \text{ l'orbite de } x \text{ et } \mathcal{S}_x = \{g \in G | g \cdot x = x\} \text{ le stabilisateur de } x.$

Definition 5. On appele **indicatrice d'Euler** noté $\varphi : \mathbb{N}^* \mapsto \mathbb{N}^*$ l'application qui donne l'ordre du groupe des inversibles (pour \times) de \mathbb{Z}_n . C'est une fonction multiplicative et on peut monter que si $N = \prod p_i^{\nu_i}$ alors

$$\varphi(N) = \prod p_i^{\nu_i - 1} (p_i - 1) p_i^{\nu_i - 1} = N \prod \left(1 - \frac{1}{p_i} \right).$$

1.2 Résultats Principaux

Lemma 1 (Lagrange). Soit G un groupe fini et H un sous-groupe de G. Alors l'ordre de H divise l'ordre de G. En particulier il existe un entier noté [G:H] apppelé ordre de H dans G tel que

$$|G| = [G:H]|H|.$$

Lemma 2 (Equation aux Classes). Soit X un ensemble et G un groupe fini agissant sur X. Alors pour tout x de X,

$$|G| = |\mathcal{O}_x||\mathcal{S}_x|.$$

En particulier en prenant un representant de chaque orbite dans un ensemble Θ on partitione X est donc

$$|X| = \sum_{x \in \Theta} |\mathcal{O}_x|.$$

2 TD ACCQ 201

Lemma 3 (Formule de Burnside). Soit G un groupe agissant sur l'ensemble X,

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)|$$

où $\text{Fix}(g) = \{x \in X | g \cdot x = x\}$ est l'ensemble des points fixe de X sous l'action de l'élement g.

Theorem 1 (Caractérisation des Groupes Cycliques). Soit G un groupe cyclique d'ordre n on a

$$G \simeq \mathbb{Z}_n$$
.

Theorem 2 (Théorème des Restes Chinois). Soit $n = \prod_{i=1}^d n_i$ avec n_1, \ldots, n_d premiers deux à deux. Alors

$$\theta: \begin{cases} \mathbb{Z}_n \mapsto \mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_d} \\ x[n] \mapsto (x[n_1], \ldots, x[n_d]) \end{cases}$$

est un isomorphise d'anneaux

Theorem 3. Soit $n \in \mathbb{N}^*$,

$$n = \sum_{d|n} \varphi(d).$$

Theorem 4 (Structure des Groupes Abéliens Finis). Soit G un groupe abélien fini d'odre N. Il existe une unique suite $d_r \ge \ldots \ge d_1 > 1$ avec $d_i | d_{i+1}$ tel que

$$G \simeq \mathbb{Z}_{d_1} \times \ldots \times \mathbb{Z}_{d_r}$$
.

Les entiers d_1, \ldots, d_r sont appelés les **invariants** du groupe (et caractérisent donc le groupe à isomorphisme près).

2 Exercices

Exercice 1 (Inverse du TRC). D'après le $TRC \theta : \mathbb{Z}_{35} \mapsto \mathbb{Z}_5 \times \mathbb{Z}_7$ est un isomorphisme. Construire explicitement son inverse θ^{-1} .

Solution 1. Clairement $\theta^{-1}(x,y) = 7*(7^{-1}[5])x + 5*(5^{-1}[7])y$ donne l'inverse. Il suffit donc de retrouver les inverses. Or -2*7+3*5=1. Finalement, $\theta^{-1}(x,y)=-14x+15y$ convient.

Exercice 2. Soit G un groupe abélien d'ordre 60. Décrire à isomorphisme prêt les structures possible pour G.

Solution 2. Par application direct du théorème de structure on obtient deux possibilités à savoir $\mathbb{Z}_2 \times \mathbb{Z}_{30}$ ou Z_{60} .

Exercice 3 (Centre et Abélianité). Soit G un groupe de centre Z.

- Montrer que $Z \triangleleft G$
- Montrer que si G/Z est monogène alors G est abélien.

Solution 3. Comme G/Z est monogène on dispose de g dans G tel que $G/Z = \{\bar{g}^k | k \in \mathbb{Z}\}$. Soit x,y deux éléments de G. On a $\bar{x} \in G/Z$ donc $x=g^iz_1$ pour un certain entier i et un $z_1 \in Z$. De même $y=g^jz_j$ pour un certain entier j et un $z_j \in Z$. Puis $xyx^{-1}=g^iz_1g^jz_2z_1^{-1}g^{-i}=g^jz_2=y$.

Exercice 4 (Lemme de Cauchy). Soit G un groupe fini dont l'ordre est un multiple de p un nombre premier. Montrer que G admet un élément d'ordre p.

Solution 4. On fait agir \mathbb{Z}_p sur l'ensemble $A=\{(x_1,\ldots,x_p)|x_1\ldots x_p=e\}$. Alors chaque orbite contient ou bien 1 élément si $x_1=\ldots=x_p$ ou p éléments sinon. On note r,N le nombre de tel orbite. Alors |A|=r+Np. Mais d'autres par $|A|=|G|^{p-1}$ donc il vient que p|r et donc r>1.

Exercice 5. Soit G un groupe fini d'ordre p ou p^2 avec p premier. Montrer que G est abélien. En déduire l'ensemble des structures possibles pour G à isomorphisme près.

Solution 5. Si $G \simeq \mathbb{Z}_p$ est d'ordre p alors il est cyclique donc abélien. Si G est d'ordre p^2 alors on considére son centre Z. Si Z est d'ordre p^2 on a fini. D'après l'équation aux classes Z ne peut pas être d'ordre 1 (Considérer l'action de conjugaison de G sur G). Si Z est d'ordre P alors G/Z est d'ordre P. Mais alors d'après l'exercice P0, P1, P2, P3, P4 est abélien ce qui est absurde. On a donc deux structure possible \mathbb{Z}_{p^2} ou \mathbb{Z}_p^2 .

Exercice 6 (Théorème du Rang). Soit G un groupe et $f: G \mapsto G$ un endomorphisme. Montrer que

$$|G| = |\operatorname{Ker} f||\operatorname{Im} f|.$$

Solution 6.

$$|G| = \sum_{y \in Im(f)} |f^{-1}(\{y\})| \tag{1}$$

$$= \sum_{y \in \operatorname{Im}(f)} |f^{-1}(y)\operatorname{Ker}(f)| \tag{2}$$

$$= \sum_{y \in \text{Im}(f)} |\text{Ker}(f)| \tag{3}$$

$$= |\mathrm{Ker} f| |\mathrm{Im} f| \tag{4}$$

Exercice 7. Soit G un groupe abélien d'ordre pq avec p,q deux nombres premiers. Montrer que G est un groupe cyclique. Et si G n'est pas abélien ?

Solution 7. D'après le théorème de Cauchy on dispose de g_1, g_2 d'ordre p, q respectivement. Soit $g = g_1g_2$ alors g est d'ordre pq. En effet, il ne peut pas etre d'odre p (ou q) car $g^p = g_1^p g_2^p = e g_2^p = g_2^p \neq e$. Si G n'est pas abélien cela ne fonctionne plus, par exemple le groupe des symétries du triangle équilatérale est d'ordre $6 = 2 \times 3$ mais n'est pas cyclique.

Exercice 8. Combien y-a-t'il de collier de perles différents formés à partir de 4 perles rouges et 4 perles bleu ?

Solution 8. On propose une solution élégante à l'aide de la formule de Burnside. On cherche $|X/\mathbb{Z}_8|$ avec X l'ensemble des octuplets contenant 4 fois la valeur B et 4 fois la valeur R. On a $|4| = {8 \choose 4}$. Puis on applique la formule de Burnside. Si $g = \bar{0}$ on a $|\operatorname{Fix}(g)| = |X|$. Si $g = \bar{1}, -1, \bar{3}, -3$ on a $|\operatorname{Fix}(g)| = 0$. Si $g = \bar{2}, -2$ on a $|\operatorname{Fix}(g)| = 2$. Finalement si $g = \bar{4}$ on a $|\operatorname{Fix}(g)| = 6$. Ainsi d'après la formule de Burnside $|X/\mathbb{Z}_8| = (70 + 2 + 2 + 6)/8 = 80/8 = 10$. Il n'y a donc que 10 colliers distincts.

Exercice 9. Soit G un groupe et H_1, H_2 deux sous-groupes de G. Il est connu que $H_1 \cap H_2$ est un sous-groupe de G. Qu'en est-il de $H_1 \cup H_2$?

Solution 9. On montre que $H_1 \subset H_2$ ou inversement. Supposons qu'il n'y ai pas de tel relation d'inclusion. Alors il existe au moins un élement g_1 de H_1 qui n'est pas dans H_2 et un élément g_2 de H_2 qui n'est pas dans H_1 . Mais alors $g = g_1g_2$ n'est ni dans H_1 ni dans H_2 donc n'est pas dans $H_1 \cup H_2$. Ainsi ce n'est pas un sous-groupe.

 $4 \hspace{3.1em} \text{TD ACCQ 201}$

Exercice 10. Soit G, H, L des groupes tels que $L \triangleleft H$ et $H \triangleleft G$. A-t-on $L \triangleleft G$?

Solution 10. Ce n'est pas vrai en général. On peut prendre un contre exemple. Par exemple $G = \mathcal{S}_4$, $L = \langle 1, (1,2)(3,4) \rangle$ and $H = \langle 1, (1,2)(3,4), (1,3)(2,4) \rangle$.