Максиминные планы эксперимента для коррелированных наблюдений

Андреев Роман Валерьевич

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., проф. Мелас В. Б.

Рецензент: к.ф.-м.н. Шпилев П. В.

Санкт-Петербург 2015г.

Постановка задачи

- ullet $y_i = \eta(x_i, heta) + arepsilon_i$ модель с параметром $heta \in \mathbb{R}^k$.
- $\xi = \{x_1, \dots, x_N\}$ план эксперимента, $x_1 < \dots < x_N$.
- ullet $arepsilon_i = arepsilon(x_i)$ ошибка эксперимента, $\mathbf{E}\,arepsilon_i = 0.$
- $\varepsilon(x)$ стационарный процесс с автоковариационной функцией $R(x_1-x_2)=\sigma^2\rho(|x_1-x_2|),\; \rho(0)=1.$
- ullet $\widetilde{ heta}$ априорная оценка параметра.
- ullet $\eta(x_i, heta)pprox \eta(x_i,\widetilde{ heta})+X_{i\cdot}(heta-\widetilde{ heta})$ линейная аппроксимация.
- $Y=X(\theta-\widetilde{\theta})+arepsilon$ классический линейный вид, где $X_{ij}=rac{\partial\eta}{\partial\theta_{i}}(x_{i},\widetilde{\theta}),\,Y_{i}=y_{i}-\eta(x_{i},\widetilde{\theta}).$

<u>Локально оптимальные планы</u>

Определение (Локально D-оптимальный план)

$$\xi_{opt}(\widetilde{ heta},R(x)) = rg\max_{\xi} \; \det M(\xi,\widetilde{ heta},R(x))$$
, где

$$M = X^{\mathrm{T}} \Sigma^{-1} X$$
 — информационная матрица,

$$\Sigma_{ij} = \mathrm{cov}(arepsilon_i,\,arepsilon_j) = R(x_i - x_j)$$
 — ковариационная матрица.

Корреляционные функции

- ullet Экспоненциальная $e^{-\lambda |x|^{
 u}}$,
- ullet Дробно-рациональная $rac{1}{1+\lambda|x|^{
 u}}.$

<u>Максиминные планы</u>

Определение (Эффективность плана)

$$\operatorname{eff}(\xi,\lambda) = \left(\frac{\det M(\xi,\lambda)}{\det M(\xi_{opt}(\lambda),\lambda)}\right)^{1/k}$$
,

$$\operatorname{eff}(\xi) = \min_{\lambda \in [L,R]} \operatorname{eff}(\xi,\lambda)$$
, где

 $\lambda \in [L,R]$ — неизвестный параметр корреляции,

k — размерность пространства параметра θ .

Определение (Максиминный план)

$$\xi_{maxmin} = \underset{\xi}{\arg\max} \ \text{eff}(\xi).$$

Рассматриваемые задачи

- **①** Построение ξ_{opt} при фиксированном λ .
- $oldsymbol{0}$ Изучение поведения $\xi_{opt}(\lambda)$ при $\lambda \in [L,R].$
- Построение максиминных планов.
- Исследование их эффективности.

Исследуемые модели

Полиномиальная модель:

$$\eta(x, a_0, a_1, \dots, a_d) = \sum_{i=0}^d a_i x^i,
|x| \le 1,
X_i = (x_i^0, x_i^1, \dots, x_i^d).$$

Экспоненциальная модель:

$$\eta(x, a_1, b_1, \dots, a_d, b_d) = \sum_{i=1}^d a_i e^{-b_i x},$$

$$x \ge 0, b_i > 0,$$

$$X_i = (e^{-b_1 x_i}, -x_i a_1 e^{-b_1 x_i}, \dots, e^{-b_d x_i}, -x_i a_d e^{-b_d x_i}).$$

Планы при фиксированном λ

Задача поиска $\arg\max\det M(\xi)$ в области $\Omega = ([x_{\min},x_{\max}]^N\cap \{x_1< x_2<\ldots < x_N\})\subset \mathbb{R}^N.$

Способы решения:

- Градиентные методы.
- Алгоритм Федорова (модификация градиентного метода):
 на каждом шаге меняется только одна из точек плана.

Проблемы:

- Выбор стартового приближения.
- Может сойтись к локальному максимуму, а не к глобальному.

Планы при $\lambda \in [L,R]$, наивный алгоритм

Экспоненциальная модель, d=1, N=5, $\rho(x)=e^{-\lambda|x|}$.

Планы при $\lambda \in [L,R]$, двухпроходный алгоритм

Экспоненциальная модель, d=1, N=5, $\rho(x)=e^{-\lambda|x|}$.

Функциональный подход

Разложим $\xi_{opt}(\lambda)$ в ряд Тейлора в окрестности точки $\lambda_0.$

Полиномиальная модель, $d=3,\ N=5,\ \rho(x)=e^{-\lambda|x|}.$ Разложение x_4 в точке 0.5.

Планы при $\lambda \in [L,R]$, рекурсивный алгоритм с использованием функционального подхода

- Используя функциональный подход аппроксимируем планы для всех λ в целом отрезке [L,R].
- В результате работы алгоритма мы получим разбиение отрезка $[L,\,R]$ на подотрезки, на каждом из которых планы аппроксимируются соответствующим рядом Тейлора.

Построение максиминных планов

- Разобьем отрезок [L,R] точками λ_i .
- $\min_{\lambda \in [L,R]} \operatorname{eff}(\xi,\lambda) \approx \min_{i} \operatorname{eff}(\xi,\lambda_{i}).$
- Заранее построим аппроксимацию графика

$$f(\lambda) = \det M(\xi_{opt}(\lambda), \lambda), \ \lambda \in \lambda_i.$$

• Запускаем градиентный метод для вычисления $rg \max$.

Влияние корреляционной функции на максиминный план

Максиминные планы для различных корреляционных функций, экспоненциальная модель, $d=1,\ N=6,\ \lambda\in[0,100].$

$\rho \backslash \xi$	ξ_1	ξ_2	ξ_3	ξ_4	ξ_5	ξ_6
$\rho_1 = e^{-\lambda x ^{0.5}}$	0.829	0.818	0.716	0.778	0.590	0.665
$\rho_2 = \frac{1}{1+\lambda x ^{0.5}}$	0.828	0.858	0.715	0.776	0.588	0.663
$\rho_3 = e^{-\lambda x }$	0.761	0.770	0.876	0.841	0.805	0.834
$\rho_4 = \frac{1}{1+\lambda x }$	0.828	0.838	0.873	0.915	0.802	0.859
$\rho_5 = e^{-\lambda x ^{1.5}}$	0.718	0.721	0.824	0.840	0.937	0.913
$\rho_6 = \frac{1}{1 + \lambda x ^{1.5}}$	0.778	0.787	0.897	0.908	0.944	0.966

Влияние степени модели и числа точек плана на эффективность

• Эффективность максиминных планов для полиномиальной модели, $\rho(x) = \frac{1}{1+\lambda x^{1.5}}, \ \lambda \in [0,100].$

N / d	1	2	3	4
4	0.9051	0.9693	0.9692	
5	0.9347	0.9730	0.9705	0.9636

• Эффективность максиминных планов для экспоненциальной модели, $\rho(x)=\frac{1}{1+\lambda|x|^{1.5}},\ \lambda\in[0,100].$

ſ	$d \backslash N$	2	3	4	5	6
Ī	1	0.8865	0.8942	0.9473	0.9594	0.9663
	2			0.9233	0.9261	0.9320

Итоги

- Построены зависимости $\xi_{opt}(\lambda)$, а также максиминные планы.
- Показано, что максиминные планы имеют высокую эффективность.
- Найдено, что в случае экспоненциальной модели и малого числа измерений эффективность максиминных планов более чем в два раза превосходит эффективность планов, построенных без учета корреляции.
- Рассмотрено поведение эффективности максиминных планов при корреляционной модели, отличающейся от истинной.
- Изучена зависимость эффективности максиминных планов от числа точек плана и от степени модели.

