Build a Personalized Online Course Recommender System with Machine Learning

Souvik Chakraborty 23-11-2023

Outline

- Introduction and Background
- Exploratory Data Analysis
- Content-based Recommender System using Unsupervised Learning
- Collaborative-filtering based Recommender System using Supervised learning
- Conclusion
- Appendix

Introduction

- A course recommendation system will help in:
 - Finding better courses
 - Finding courses that well suits each person's interests
 - We aim to find the best courses to recommend to users based on their interests, their friend's interests, and the courses they are enrolled in.
- Obstacles
 - We have many approaches
 - Each approach has different assumptions

Exploratory Data Analysis

Course counts per genre

Course enrollment distribution

20 most popular courses

	TITLE	Enrolls
0	python for data science	14936
1	introduction to data science	14477
2	big data 101	13291
3	hadoop 101	10599
4	data analysis with python	8303
5	data science methodology	7719
6	machine learning with python	7644
7	spark fundamentals i	7551
8	data science hands on with open source tools	7199
9	blockchain essentials	6719
10	data visualization with python	6709
11	deep learning 101	6323
12	build your own chatbot	5512
13	r for data science	5237
14	statistics 101	5015
15	introduction to cloud	4983
16	docker essentials a developer introduction	4480
17	sql and relational databases 101	3697
18	mapreduce and yarn	3670
19	data privacy fundamentals	3624

Word cloud of course titles

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

Evaluation results of user profile-based recommender system

Score_threshold = 10.0

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
res_df['SCORE'].mean()
```

18.62679972290352

What are the most frequently recommended courses? Return the top-10 commonly recommended courses across all users

```
COURSE ID
TA0106EN
              608
GPXX0IBEN
              548
excourse22
              547
              547
excourse21
ML0122EN
              544
              533
excourse06
              533
excourse04
              533
GPXX0TY1EN
excourse31
              524
              516
excourse73
```

Flowchart of content-based recommender system using course similarity

Evaluation results of course similarity based recommender system

Threshold = 0.6

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
s = 0
for i in range(len(res_df['COURSE_ID'])):
    s+=len(res_df['COURSE_ID'].iloc[i])
avg = s/len(res_df['COURSE_ID'])
```

```
avg
11.377
```

What are the most frequently recommended courses? Return the top-10 commonly recommended courses

```
579
excourse22
excourse62
              579
DS0110EN
              562
excourse65
              555
excourse63
              555
excourse72
              551
              550
excourse68
              539
excourse67
excourse74
              539
              506
BD0145EN
```

Flowchart of clustering-based recommender system

Evaluation results of clustering-based recommender system

Number of clusters = 20

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
s = 0
for r in user_recommendations.value
    s+=r[1:].sum()
avg=s/len(user_recommendations)
print(avg)
5.733
```

What are the most frequently recommended courses? Return the top-10 commonly recommended courses

```
DS0103FN
              579
DA0101EN
              532
BD0111FN
              456
              444
DS0101EN
              428
BD0101EN
              386
PY0101EN
              319
DS0105EN
ML0101ENv3
              299
              296
BC0101EN
              286
ML0115EN
```

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

Flowchart of NMF based recommender system

Flowchart of Neural Network Embedding based recommender system

Compare the performance of collaborativefiltering models

Conclusions

- Similar performance of models
- User profile based has highest number of recommendations
- Stacking Classifier has best performance
- Similarity matrix's high complexity
- NMF as a solution

Appendix

•All materials link

https://drive.google.com/drive/folders/10Kcl56MRC4ShCSxeGA7x3dQPyf84i6rm?usp=sharing