	Adaboosting Hyper Parameter Tuning							
Sno	base_estimator	n_estima tors	learning_ rate	loss	random_ state	R^2 value		
1	DecisionTreeRegressor	100	0.5	linear	0	0.860		
2	DecisionTreeRegressor	100	1.0	linear	0	0.856		
3	${\sf Decision Tree Regressor}$	1000	1.0	linear	None	0.852		
4	${\sf Decision Tree Regressor}$	1000	1.0	square	None	0.452		
5	DecisionTreeRegressor	1000	1.0	exponential	None	0.472		
6	${\sf Decision Tree Regressor}$	10000	1.0	linear	0	0.856		
7	DecisionTreeRegressor	10	0.1	linear	0	0.879		
8	${\sf Decision Tree Regressor}$	10	0.01	linear	0	0.880		
9	${\bf Decision Tree Regressor}$	10	0.01	exponential	0	0.881		
10	RandomForestRegresso r(max_depth=100)	10	0.01	exponential	0	0.865		
11	RandomForestRegresso r(max_depth=100)	10	0.01	linear	0	0.866		

Gradient Boosting Hyper Parameter Tuning						
Sno	n_estimators	loss	criterion	max_feature s	random_ state	R^2 value
		squared_	friedman			
1	100	error	_mse	None	None	0.883
		absolute	squared_			
2	100	_error	error	sqrt	0	0.868
			friedman			
3	100	huber	_mse	None	None	0.892
			friedman			
4	100	quantile	_mse	None	None	0.667
			friedman			
5	1000	huber	_mse	None	None	0.851
			friedman			
6	10000	huber	_mse	None	0	0.778
			friedman			
7	10000	huber	_mse	log2	0	0.810
			friedman			
8	10	huber	_mse	None	None	0.772
		squared_	squared_			
9	100	error	error	None	None	0.883

XGBoosting Hyper Parameter Tuning								
Sno	eta(learning rate)	gamma	subsample	R^2 value				
1	0.3	0	1	0.832				
2	0.6	1	0.05	0.830				
3	1	10	0.9	0.768				
4	0	0.5	0.5	-1.142				
5	0.9	100	0	0.797				
6	0.1	1000	0.1	0.857				

Comparing all 3 boosting alogirthm's hyper parameter tuning, we infer that Gradient Boosting gives better accuracy in terms of R^2. Hence we can consider Gradient Boosting as final model