Module 03: Groundwater Hydraulics

Unit 03: Unsteady Two-Dimensional Flow using Finite Difference Method

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1 /

Learning Objective

 To solve unsteady state two dimensional groundwater flow equation using Finite Difference Method.

Dr. Anirban Dhar

Problem Definition to Solution

Problem Definition

Figure: Homogeneous Aquifer System

Problem Definition

Governing equation

A two-dimensional (in space) IBVP can be written as,

$$\Omega: \quad \frac{S}{T}\frac{\partial h}{\partial t} = \frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2}$$

$$S = 5 \times 10^{-5}$$
$$T = 200 \ m^2/day$$

Problem Definition

subject to

Initial Condition

$$h(x, y, 0) = h_0(x, y)$$

and

Boundary Condition

$$\Gamma_D^1: h(0, y, t) = h_1(y)$$

$$\Gamma_D^2$$
: $h(L_x, y, t) = h_2(y)$

$$\Gamma_N^3:\quad \frac{\partial h}{\partial y}\Big|_{(x,0,t)}=0$$

$$\Gamma_N^4: \quad \frac{\partial h}{\partial y}\Big|_{(x,L_y,t)} = 0$$

Domain Discretization

Space-Time Discretization Explicit Scheme

Explicit Scheme

From Lecture 10, the discretized finite difference equation can be written as,

$$\frac{S}{T} \frac{h_{i,j}^{n+1} - h_{i,j}^{n}}{\Delta t} = \frac{h_{i-1,j}^{n} - 2h_{i,j}^{n} + h_{i+1,j}^{n}}{\Delta x^{2}} + \frac{h_{i,j-1}^{n} - 2h_{i,j}^{n} + h_{i,j+1}^{n}}{\Delta y^{2}}$$
(1)

Explicit Scheme

From Lecture 10, the discretized finite difference equation can be written as,

$$\frac{S}{T} \frac{h_{i,j}^{n+1} - h_{i,j}^{n}}{\Delta t} = \frac{h_{i-1,j}^{n} - 2h_{i,j}^{n} + h_{i+1,j}^{n}}{\Delta x^{2}} + \frac{h_{i,j-1}^{n} - 2h_{i,j}^{n} + h_{i,j+1}^{n}}{\Delta y^{2}}$$
(1)

In simplified form,

$$h_{i,j}^{n+1} = \alpha_y h_{i,j-1}^n + \alpha_x h_{i-1,j}^n + \left[1 - 2(\alpha_x + \alpha_y)\right] h_{i,j}^n + \alpha_x h_{i+1,j}^n + \alpha_y h_{i,j+1}^n$$

with
$$\alpha_x = \frac{T\Delta t}{S\Delta x^2}$$
 and $\alpha_y = \frac{T\Delta t}{S\Delta y^2}$.

Neumann Boundary Condition

Top Boundary

Second Order Discretization

$$\frac{3h_{i,N}^{n+1}-4h_{i,N-1}^{n+1}+h_{i,N-2}^{n+1}}{2\Delta y}=0$$

$$h_{i,N}^{n+1} = \frac{4}{3}h_{i,N-1}^{n+1} - \frac{1}{3}h_{i,N-2}^{n+1}$$

Neumann Boundary Condition

Bottom Boundary

Second Order Discretization

$$\frac{-3h_{i,1}^{n+1} + 4h_{i,2}^{n+1} - h_{i,3}^{n+1}}{2\Delta y} = 0$$

$$h_{i,1}^{n+1} = \frac{4}{3}h_{i,2}^{n+1} - \frac{1}{3}h_{i,3}^{n+1}$$

Explicit Scheme: Time-stepping Algorithm

Data: S, T, Δx , Δy , Δt , h^n at time-step n

Explicit Scheme: Time-stepping Algorithm

Data: S, T, Δx , Δy , Δt , h^n at time-step n **Result:** Updated h^{n+1} at time-step n+1

Explicit Scheme: Time-stepping Algorithm

 $\begin{aligned} \mathbf{Data:} \ S, \ T, \ \Delta x, \ \Delta y, \ \Delta t, \ h^n \ \ \text{at time-step} \ n \\ \mathbf{Result:} \ \ \mathsf{Updated} \ h^{n+1} \ \ \mathsf{at time-step} \ n+1 \\ \mathbf{while} \ \ t < & \mathsf{end} \ \mathsf{time} \ \ \mathsf{do} \\ & \quad \mathsf{For interior points:} \\ & \quad h^{n+1}_{i,j} = \alpha_y h^n_{i,j-1} + \alpha_x h^n_{i-1,j} + [1-2(\alpha_x + \alpha_y)] \ h^n_{i,j} + \alpha_x h^n_{i+1,j} + \alpha_y h^n_{i,j+1} \end{aligned}$

Explicit Scheme: Time-stepping Algorithm

Stability Criteria

$$(\alpha_x + \alpha_y) < \frac{1}{2}$$

Implicit Scheme

Implicit Scheme

From Lecture 10, the discretized finite difference equation can be written as,

$$\frac{S}{T}\frac{h_{i,j}^{n+1}-h_{i,j}^n}{\Delta t} = \frac{h_{i-1,j}^{n+1}-2h_{i,j}^{n+1}+h_{i+1,j}^{n+1}}{\Delta x^2} + \frac{h_{i,j-1}^{n+1}-2h_{i,j}^{n+1}+h_{i,j+1}^{n+1}}{\Delta y^2}$$

Implicit Scheme

From Lecture 10, the discretized finite difference equation can be written as,

$$\frac{S}{T}\frac{h_{i,j}^{n+1}-h_{i,j}^n}{\Delta t} = \frac{h_{i-1,j}^{n+1}-2h_{i,j}^{n+1}+h_{i+1,j}^{n+1}}{\Delta x^2} + \frac{h_{i,j-1}^{n+1}-2h_{i,j}^{n+1}+h_{i,j+1}^{n+1}}{\Delta y^2}$$

In simplified form, this can be written as

$$\alpha_y h_{i,j-1}^{n+1} + \alpha_x h_{i-1,j}^{n+1} - \left[1 + 2(\alpha_x + \alpha_y)\right] h_{i,j}^{n+1} + \alpha_x h_{i+1,j}^{n+1} + \alpha_y h_{i,j+1}^{n+1} = -h_{i,j}^n$$

with
$$\alpha_x = \frac{T\Delta t}{S\Delta x^2}$$
 and $\alpha_y = \frac{T\Delta t}{S\Delta y^2}$.

Gauss-Seidel Method Iterative Approach

From Lecture 29, iteration starts with the guess value

$$\boldsymbol{h}^{n+1}|^{(0)} = \begin{bmatrix} h_{1,1}^{n+1}|^{(0)} & h_{1,2}^{n+1}|^{(0)} \dots & h_{M,N-1}^{n+1}|^{(0)} & h_{M,N}^{n+1}|^{(0)} \end{bmatrix}^T$$

Gauss-Seidel Method

Iterative Approach

From Lecture 29, iteration starts with the guess value

$$\mathbf{h}^{n+1}|^{(0)} = \begin{bmatrix} h_{1,1}^{n+1}|^{(0)} & h_{1,2}^{n+1}|^{(0)} \dots & h_{M,N-1}^{n+1}|^{(0)} & h_{M,N}^{n+1}|^{(0)} \end{bmatrix}^T$$

The Gauss-Seidel step can be written as,

$$\begin{split} h_{i,j}^{n+1}\big|^{(p)} &= h_{i,j}^{n+1}\big|^{(p-1)} + \frac{1}{\left[-1 - 2(\alpha_x + \alpha_y)\right]} \Big[-h_{i,j}^n - \left(\alpha_y h_{i,j-1}^{n+1}\big|^{(p)} + \alpha_x h_{i-1,j}^{n+1}\big|^{(p)} \right. \\ & \left. - \left[1 + 2(\alpha_x + \alpha_y)\right] h_{i,j}^{n+1}\big|^{(p-1)} + \alpha_x h_{i+1,j}^{n+1}\big|^{(p-1)} + \alpha_y h_{i,j+1}^{n+1}\big|^{(p-1)} \right) \Big] \end{split}$$

Gauss-Seidel Method

Iterative Approach

From Lecture 29, iteration starts with the guess value

$$\left| \boldsymbol{h}^{n+1} \right|^{(0)} = \left[h_{1,1}^{n+1} \right|^{(0)} \quad h_{1,2}^{n+1} \left|^{(0)} \dots \quad h_{M,N-1}^{n+1} \right|^{(0)} \quad h_{M,N}^{n+1} \left|^{(0)} \right]^{T}$$

The Gauss-Seidel step can be written as,

$$\begin{split} h_{i,j}^{n+1}\big|^{(p)} &= h_{i,j}^{n+1}\big|^{(p-1)} + \frac{1}{\left[-1 - 2(\alpha_x + \alpha_y)\right]} \Big[-h_{i,j}^n - \left(\alpha_y h_{i,j-1}^{n+1}\big|^{(p)} + \alpha_x h_{i-1,j}^{n+1}\big|^{(p)} \right. \\ & \left. - \left[1 + 2(\alpha_x + \alpha_y)\right] h_{i,j}^{n+1}\big|^{(p-1)} + \alpha_x h_{i+1,j}^{n+1}\big|^{(p-1)} + \alpha_y h_{i,j+1}^{n+1}\big|^{(p-1)} \right) \Big] \end{split}$$

In compact form

$$\left. h_{i,j}^{n+1} \right|^{(p)} = h_{i,j}^{n+1} \big|^{(p-1)} + \frac{Res_{i,j}}{[-1 - 2(\alpha_x + \alpha_y)]}, \quad \forall (i,j) \ p \geq 1$$

Dr. Anirban Dhar

NPTEL

Computational Hydraulics

Neumann Boundary Condition

Top Boundary

$$3h_{i,N}^{n+1} - 4h_{i,N-1}^{n+1} + h_{i,N-2}^{n+1} = 0$$

Bottom Boundary

$$-3h_{i,1}^{n+1} + 4h_{i,2}^{n+1} - h_{i,3}^{n+1} = 0$$

Implicit Scheme: Time-stepping Algorithm

Data: S, T, Δx , Δy , Δt , h^n at time-step n

Implicit Scheme: Time-stepping Algorithm

Data: S, T, Δx , Δy , Δt , h^n at time-step n

Result: Updated h^{n+1} at time-step n+1

Implicit Scheme: Time-stepping Algorithm

Data: S, T, Δx , Δy , Δt , h^n at time-step n

Result: Updated h^{n+1} at time-step n+1

while t < end time do

For interior and boundary points: Solve governing equation and

boundary conditions in discretized form.

$$n \leftarrow n+1$$

end

List of Source Codes

Unsteady Two Dimensional Groundwater Flow

- Explicit approach
 - unsteady_2D_explicit.sci
- implicit approach
 - unsteady_2D_implicit_iterative.sci

Thank You