Work in progress

by

Alfred Alocias Mariadason

THESIS

for the degree of

MASTER OF SCIENCE

Faculty of Mathematics and Natural Sciences University of Oslo

May 2018

TODO: write creative commons licence

Abstract

Work in progress

${\bf Acknowledgements}$

Work in progress

Contents

1	1	Introduction				
2	1	Variational Principle	1 1 11			
	2 3	Lagrange Multiplier Method	11			
3	Mar 1	Iany-Body Quantum Theory 1 The Hamiltonian and the Born-Oppenheimer Approximation				
4			15			
	1	Hartree-Fock Theory				
		1.1 Assumptions	15			
	2	Quantum Monte Carlo				
		2.1 The Variational Principle and Expectation Value of Energy				
		2.2 The Trial Wave Function				
		2.3 Use Diffusion Theory and the PDF				
		2.4 Metropolis-Hastings Algorithm				
Α			19			

Symbols List

Work in progress make for $w_{i \rightarrow j} \equiv w\left(i|j\right)$

Source Code

Work in progress

- 1 Introduction
- 1.1 bleh

In this chapter we will list general theory regarding functions used in the methods mentioned in chapter 3 and show important properties used in later derivations.

1 Variational Principle

The Variational principle states that for any normalized function ψ in Hilbert Space » REF HILBERT « with a Hermitian operator H the minimum eigenvalue E_0 for H has an upper-bound given by the expectation value of H in the function ψ . That is

$$E_0 \le \langle H \rangle = \langle \psi | H | \psi \rangle = \int \psi^* H \psi dr \tag{2.1}$$

See [4] for proof and more.

2 Lagrange Multiplier Method

See [2, 3]. The optimization method of Lagrange multipliers maximizes (or minimizes) a function $f: \mathbb{R}^N \to \mathbb{R}$ with a constraint $g: \mathbb{R}^N \to \mathbb{R}$ We assume that f and g have continuous first derivatives in all variables (continuous first partial derivatives).

Given the above we can define a so-called Lagrangian \mathcal{L}

$$\mathcal{L}[x_1, \dots, x_N, \lambda_1, \dots, \lambda_M] = f(x_1, \dots, x_N) - \lambda g(x_1, \dots, x_N)$$
(2.2)

where the λ is called a Lagrange-multiplier. We now state that if $f(x_1^0,\ldots,x_N^0)$ is a maxima of $f(x_1,\ldots,x_N)$ then there exists a Lagrange-multiplier λ_0 such that $(x_1^0,\ldots,x_N^0,\lambda_0)$ is a stationary point for the Lagrangian. This then yields the N+1 Lagrange-equations

$$\sum_{i=1}^{N} \frac{\partial \mathcal{L}}{\partial x_i} + \frac{\partial \mathcal{L}}{\partial \lambda} = 0 \tag{2.3}$$

to be solved for x_1, \ldots, x_N and λ .

3 Gaussian Type Orbitals

Gaussian Type Orbitals or GTO's are functions of the following form » REF GTO here «

$$G_i^{\alpha}(x,A) \equiv (x-A)^i e^{-\alpha(x-A)^2}$$
(2.4)

We call α for the scaling parameter and i for the order of the GTO. The variable A is where the function is centered. These are in many literatures referred to as *primitive gaussians*.

Many-Body Quantum Theory

This chapter takes forth the theory regarding the basics of identical particles and many-body quantum mechanics. The reader is referred to [4] for an introductory text on quantum mechanics (for single particles) and also the so-called *Dirac-notation* used throughout the entire chapter.

1 The Hamiltonian and the Born-Oppenheimer Approximation

The task at hand is to solve the many-body system described by Schrödinger's equation

$$H|\Psi_i\rangle = E_i|\Psi_i\rangle \tag{3.1}$$

for some state $|\Psi_i\rangle$ with energy E_i . Usually the desired state is the ground-state energy E_0 of the system meaning we are primarily interested in the *ground-state* $|\Psi_0\rangle$.

With the goal determined we can define the system to consist of N identical particles¹ with positions $\{r_i\}_{i=0}^{N-1}$ and A nuclei with positions $\{R_k\}_{k=0}^{A-1}$. The Hamiltonian H is then

$$H = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f\left(\mathbf{r}_{j}, \mathbf{r}_{j}\right) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g\left(\mathbf{R}_{k}, \mathbf{R}_{l}\right) + V\left(\mathbf{R}, \mathbf{r}\right)$$

$$(3.2)$$

The first and second terms represent the kinetic- and inter-particle interaction terms² for the N identical particles while the latter three represent kinetic- and interaction terms for the nuclei(with the last one being the nuclei-particle interaction). The constant M_k is the mass of nucleon k and Z_k is the corresponding atomic number.

We assume the nuclei to be much heavier than the identical particles, meaning they move much slower, at which the system can be viewed as electrons moving around the vicinity of stationary nuclei. This means the kinetic term for the nuclei vanish and the nuclei-nuclei interaction becomes a constant³. The approximation we end up with is the so-called *Born-Oppenheimer approximation* and the Hamiltonian is now

$$H = H_0 + H_I \tag{3.3}$$

where we have split the Hamiltonian in a one-body part and a two-body or interaction parts defined as

$$H_0 \equiv -\frac{1}{2} \sum_{i} \nabla_i^2 + V(\mathbf{R}, \mathbf{r})$$
(3.4)

and

$$H_{I} \equiv \sum_{i < j} f\left(\mathbf{r}_{j}, \mathbf{r}_{j}\right) \tag{3.5}$$

¹These are in both atomic physics and in the quantum dot case always fermions or bosons.

²This is usually the well-known Coulomb interaction.

³ Adding a constant to an operator does not alter the eigenvector, only the eigenvalues by the constant factor[9].

In this chapter we will address \gg LIST METHODS \ll regarding computational quantum mechanics and further deepen into Hartree-Fock methods and Variational Monte Carlo method. Optimization of calculation is also given while structure of program is given in \gg REF TO PROGRAM STRUCTURE CHAPTER \ll . General statistical theory used is given in \gg REF TO STATISTICS CHAPTER \ll

1 Hartree-Fock Theory

Hartree-Fock theory method is a method for approximating the wavefunction of a stationary many-body quantum state and thereby also obtain an estimate for the energy in this state. In this section we will derive the Hartree-Fock equations from scratch, following closely \gg REF SOMETHING HERE \ll by \gg REF AUTHOR \ll and find the so-called Roothaan-Hall equations known as Unrestricted Hartree-Fock method, which is also the method used for obtaining the results given in \gg REF RESULTS CHAPTER \ll .

1.1 Assumptions

Hartree-Fock method makes the following assumptions of the system

- The Born-Oppenheimer approximation, see » REF BO «.
- All relativistic effects are negligible.
- The wavefunction can be described by a single Slater determinant » REF SLATER « or permanent in case of bosons(former is for fermions).
- The Mean Field Approximation holds.

With these inherent approximations the last one is the most important to take into account as it can cause large deviations from test solutions (analytic solutions, experimental data etc.) since the electron correlations is in reality, for many cases, not negligible. There exists many methods that try to fix this problem » LIST METHODS «. The *Variational Monte Carlo* (or VMC) is the method for deeper explorations in this Thesis, see section 2 for more details.

1.2 Hartree-Fock Equations

1.3 Restricted Hartree-Fock

Restricted Hartree-Fock, or abbreviated to RHF, we assume a closed-shell system. This means that for a given system the all possible states for a given energy-level is filled. We can achieve this by grouping spin-orbitals with same spatial part, but opposite spin.

2 Quantum Monte Carlo

Quantum Monte Carlo, or QMC is a method for solving Schrödinger's equation by a statistical approach using so-called *Markov Chain* simulations (also called random walk). The nature of the wave function at hand is fundamentally a statistical model defined on a large configuration space with small areas of densities. The Monte Carlo method is perfect for solving such a system because of the non-homogeneous

2

distribution of calculation across the space. An standard approach with equal distribution of calculation would then yield a rather poor result with respect to computation cost.

We will in this chapter address the Metropolis algorithm which is used to create a Markov chain and derive the equations used in the variational method.

The chapter will use *Dirac Notation* [4] and all equations stated assume atomic units ($\hbar = m_e = e = 4\pi\varepsilon_0$) » REF HERE ATOMIC UNITS «.

2.1 The Variational Principle and Expectation Value of Energy

Given a Hamiltonian \hat{H} and a trial wave function $\Psi_T(\mathbf{R}; \boldsymbol{\alpha})$, the variational principle [4, 8] states that the expectation value of \hat{H}

$$E[\psi_T] = \left\langle \hat{H} \right\rangle = \frac{\left\langle \psi_T \middle| \hat{H} \middle| \psi_T \right\rangle}{\left\langle \Psi_T \middle| \Psi_T \right\rangle} \tag{4.1}$$

is an upper bound to the ground state energy

$$E_0 \le \left\langle \hat{H} \right\rangle \tag{4.2}$$

Now we can define our PDF as (see section 2.3 for a more detailed reasoning)

$$P(\mathbf{R}) \equiv \frac{|\psi_T|^2}{\langle \Psi_T | \Psi_T \rangle} \tag{4.3}$$

and with a new quantity

$$E_L(\mathbf{R}; \boldsymbol{\alpha}) \equiv \frac{1}{\Psi_T(\mathbf{R}; \boldsymbol{\alpha})} \hat{H} \Psi_T(\mathbf{R}; \boldsymbol{\alpha})$$
(4.4)

the so-called local energy, we can rewrite equation 4.1 as

$$E[\Psi_T(\mathbf{R}; \boldsymbol{\alpha})] = \langle E_L \rangle \tag{4.5}$$

The idea now is to find the lowest possible energy by varying a set of parameters α . The expectation value itself is found with the Metropolis algorithm, see section 2.4.

2.2 The Trial Wave Function

The trial wave function is generally an arbitrary choice specific for the problem at hand, however it is in most cases favorable to expand the wave function in the eigenbasis (eigenstates) of the Hamiltonian since they form a complete set. This can be expressed as

$$\Psi_T(\mathbf{R}; \boldsymbol{\alpha}) = \sum_i C_i \psi_i(\mathbf{R}; \boldsymbol{\alpha})$$
(4.6)

with the ψ_i 's are the eigenstates of the Hamiltonian.

2.3 Use Diffusion Theory and the PDF

The statistics describing the expectation value states that any distribution may be applied in calculation, however if we take a close look at the local energy (equation 4.4) we see that for all distributions the local energy is not defined at the zeros of $\Psi_T(\mathbf{R}; \alpha)$. This means that an arbitrary PDF does not guarantee generation of points which makes $\psi_T = 0$. This can be overcome by introducing the square of the wave function to be defined as the distribution function as given in equation 4.3.

Because of the inherent statistical property of the wave function Quantum Mechanics can be modelled as a diffusion process, or more specifically, an *Isotropic Diffusion Process* which is essentially just a random walk model. Such a process is described by the Langevin equation with the corresponding Fokker-Planck equation describing the motion of the walkers(particles). See [5] for details.

2

2.4 Metropolis-Hastings Algorithm

The Metropolis algorithm bases itself on moves (also called transitions) as given in a Markov process. \gg REF THIS HERE «. This process is given by

$$w_i(t+\varepsilon) = \sum_j w_{i\to j} w_j(t) \tag{4.7}$$

where $w(j \to i)$ is just a transition from state j to state i. In order for the transition chain to reach a desired convergence while reversibility is kept, the well known condition for detailed balance must be fulfilled » REF HERE DETAILED BALANCE «. If detailed balance is true, then the following relations is true

$$w_i T_{i \to j} A_{i \to j} = w_j T_{j \to i} A_{j \to i} \Rightarrow \frac{w_i}{w_j} = \frac{T_{j \to i} A_{j \to i}}{T_{i \to j} A_{i \to j}}$$

$$\tag{4.8}$$

We have here introduced two scenarios, the transition from configuration i to configuration j and the reverse process j to i. Solving the acceptance A for the two cases where the ratio in 4.8 is either 1(in which case the proposed state j is accepted and transitions is made) and when the ratio is less then 1. The Metropolis algorithm would in this case not automatically reject the latter case, but rather reject it with a proposed uniform probability. Introducing now a probability distribution function(PDF) P the acceptance A can be expressed as

$$A_{i \to j} = \min\left(\frac{P_{i \to j}}{P_{j \to i}} \frac{T_{i \to j}}{T_{j \to i}}, 1\right) \tag{4.9}$$

The so-called selection probability T is defined specifically for each problem. For our case the PDF in question is the absolute square of the wave function and the selection T is a Green's function derived in section 2.5. The algorithm itself would then be

- (i) Pick initial state i at random.
- (ii) Pick proposed state at random in accordance to $T_{i\rightarrow i}$.
- (iii) Accept state according to $A_{j\to i}$.
- (iv) Jump to step (ii) until a specified number of states have been generated.
- (v) Save the state i and jump to step (ii).

2.5 Importance Sampling

Using the selection probability mentioned in section 2.4 in the Metropolis algorithm is called an *Importance sampling* because is essentially makes the sampling more concentrated around areas where the PDF has large values.

In order to derive the form of this equation we use the statements presented in section 2.3. With

$$\frac{\partial r}{\partial t} = DF(r(t)) + \eta \tag{4.10}$$

the $Langevin\ equation\ REF\ HERE\ LANGEVIN\ and\ apply\ Euler's\ method\ (Euler-Maryama\ REF\ and\ obtain\ the\ new\ positions$

$$r^{\text{new}} = r^{\text{old}} + DF^{\text{old}}\Delta t + \xi \tag{4.11}$$

with the r's being the new and old positions in the Markov chain respectively and $F^{\text{old}} = F(r^{\text{old}})$. The quantity D is a diffusion therm equal to 1/2 due to the kinetic energy(remind of natural units) and ξ is a Gaussian distributed random number with 0 mean and $\sqrt{\Delta t}$ variance.

As mentioned a particle is described by the Fokker-Planck equation

$$\frac{\partial P}{\partial t} = \sum_{i} D \frac{\partial}{\partial x_{i}} \left(\frac{\partial}{\partial x_{i}} - \mathbf{F}_{i} \right) P \tag{4.12}$$

With P being the PDF (in current case the selection probability) and F being the drift therm. In order to achieve convergence, that is a stationary probability density, we need the left hand side to be zero in equation 4.12 giving the following equation

$$\frac{\partial^2 P}{\partial x_i^2} = P \frac{\partial \mathbf{F_i}}{\partial x_i} + \mathbf{F_i} \frac{\partial P}{\partial x_i}$$
(4.13)

with the drift-therm being on the form ${\pmb F}=g(x)\partial P/\partial x$ we finally have that

$$\mathbf{F} = \frac{2}{\psi_T} \nabla \psi_T \tag{4.14}$$

This is the so-called $Quantum\ Force$ which pushes the walkers towards regions where the wave function is large.

Appendix A

Introducing the so-called permutation operator P which interchanges the labels of particles meaning we can define

$$A \equiv \frac{1}{N!} \sum_{p} (-1)^p P \tag{A.1}$$

the so-called antisymmetrization operator. This operator has the following traits

- The Hamiltonian H and A commute since the Hamiltonian is invariant under permutation.
- A applied on itself (that is A^2) is equal to itself since permuting a permuted state reproduces the state.

We can now express our Slater Ψ_T in terms of A as

$$\Psi_T = \sqrt{N!} A \prod_{i,j} \psi_{ij} \tag{A.2}$$

where $\psi_{ij} = \psi_j(\mathbf{r}_i)$ is element i, j of the Slater matrix (the matrix associated with the Slater determinant Ψ_T).

The interaction part of H is then

$$\langle \Psi_T | H_I | \Psi_T \rangle = N! \prod_{i,j} \langle \psi_{ij} | AH_I A | \psi_{ij} \rangle \tag{A.3}$$

The interaction H_I and A commute since A commutes with H giving

$$AH_I A |\psi_{ij}\rangle = \frac{1}{N!^2} \sum_{i < j} \sum_{p} (-1)^{2p} f_{ij} P |\psi_{ij}\rangle$$
 (A.4)

$$= \frac{1}{N!^2} \sum_{i < j} f_{ij} (1 - P_{ij}) |\psi_{ij}\rangle \tag{A.5}$$

The factor $1 - P_{ij}$ comes from the fact that contributions with $i \neq j$ vanishes due to orthogonality when P is applied. The final expression for the interaction term is thus

$$\langle \Psi_T | H_I | \Psi_T \rangle = \sum_{i < j} \prod_{k,l} \left[\langle \psi_{kl} | f_{ij} | \psi_{kl} \rangle - \langle \psi_{kl} | f_{ij} | \psi_{lk} \rangle \right]$$
(A.6)

Writing out the product and realizing the double summation over pairs of states we end up with

$$\langle \Psi_T | H_I | \Psi_T \rangle = \frac{1}{2} \sum_{i,j} \left[\langle \psi_{ij} \psi_{ji} | f_{ij} | \psi_{ij} \psi_{ji} \rangle - \langle \psi_{ij} \psi_{ji} | f_{ij} | \psi_{ji} \psi_{ij} \rangle \right] \tag{A.7}$$

More comprehensive details and derivations are given in [6, 12].

Bibliography

- [1] John Dirk Walecka Alexander L. Fetter. Quantum theory of many-particle systems. First Edition. Pure & Applied Physics. Mcgraw-Hill College, 1971. ISBN: 9780070206533.
- [2] Bruce van Brunt. The calculus of variations. 1st ed. Universitext. Springer, 2004. ISBN: 9780387402475.
- [3] Bernard Dacorogna. *Introduction to the calculus of variations*. Imperial College Press; Distributed by World Scientific, 2004. ISBN: 9781860945083.
- [4] Griffiths D.J. Introduction to quantum mechanics. 2nd Edition. Pearson PH, 2005. ISBN: 0131911759.
- [5] Nicola Bruti-Liberati (auth.) Eckhard Platen. Numerical Solution of Stochastic Differential Equations with Jumps in Finance. 1st ed. Stochastic Modelling and Applied Probability 64. Springer-Verlag Berlin Heidelberg, 2010. ISBN: 9783642120572.
- [6] Morten Hjort-Jensen. Computational Physics: Hartree-Fock methods and introduction to Many-Body Theory. https://www.github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/pub/basicMB/pdf. 2017.
- [7] Morten Hjort-Jensen. Computational Physics: Variational Monte Carlo methods. https://www.github.com/CompPhysics/ComputationalPhysics2/blob/gh-pages/doc/pub/vmc/pdf. 2017.
- [8] Henri Orland John W. Negele. *Quantum many-particle systems*. Advanced BOOK Classics. Perseus BOOKs, 1998. ISBN: 9780738200521.
- [9] David C. Lay. Linear Algebra and Its Applications (4th Edition). 4th. Addison Wesley / Pearson, 2011. ISBN: 9780321385178.
- [10] James P. Sethna. Statistical mechanics: Entropy, Order parameters and complexity. illustrated edition. Oxford Master Series in Physics. Oxford University Press, USA, 2006. ISBN: 9780198566779.
- [11] Jack Sherman and Winifred J. Morrison. "Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix". In: *The Annals of Mathematical Statistics* 21 (1950). DOI: 10.1214/aoms/1177729893.
- [12] J. M. Thijssen. *Computational Physics*. 2nd Edition. Cambridge University Press, 2013. ISBN: 9781107677135.
- [13] Dimitri Van Neck Willem H. Dickhoff. Many-body theory exposed!: propagator description of quantum mechanics in many-body systems. World Scientific, 2005. ISBN: 981256294X.