# EFFECTS OF OYSTER CULTURE ON NATIVE ELGRASS AND RELATED NATURAL RESOURCES IN THE PUGET SOUND

A Geographic Information System Based Model

John L Marshall

Geography 562 GIS Coastal Resources - Final Project: Fall 2017

**University of Washington** 







### PUGET SOUND AREA OF INTEREST

## PROBLEM STATEMENT AND RESEARCH QUESTION

### ► Research Problem:

Significant portions of intertidal habitat in the Puget Sound are dedicated to oyster aquaculture operations under the premise that they are inherently biologically and ecologically compatible with undisturbed estuarine and marine structure and function. However, history informs us that aquaculture is a type of agriculture that can have serious direct and indirect adverse impacts on native species and the natural habitats they depend on.

### ► Research Question:

What are the focal stressors on native eelgrass (*Zostera marina*) and associated native eelgrass dependent species that stem from oyster aquaculture operations in the Puget Sound and what is the ordinal magnitude and geographic distribution of these stressors?

### > Research Task:

This project attempts to isolates one key habitat type, native eelgrass, itemize focal stressors, and use a Geographic Information System (GIS) based model to spatially evaluate the geographic distribution and relative magnitude of these stressors in the Puget Sound area of Washington State.



### MODEL OVERVIEW





### CREDITS DEBITS

| Production           | n: 0 to 500 | Structural Displacement: | 0 to -300 |
|----------------------|-------------|--------------------------|-----------|
| +                    | =           | Structural Impairment:   | 0 to -300 |
| Food Chain: 0 to 500 |             | Lethal Direct:           | 0 to -250 |
| +                    |             | Lethal Indirect          | 0 to -250 |
|                      |             | Sublethal Direct:        | 0 to -200 |
| Cover:               | 0 to 500    | Sublethal Indirect:      | 0 to -200 |

= Total Potential Credit (1500) x Acres | = Total Potential Debit (0 to -1500) x Acres

NET CREDIT: Total Potential Credit Value + Total Potential Debit Value

#### Pre-Record Net Credit Classification Table

| Range            | Value         |
|------------------|---------------|
| <=500            | Low           |
| > 500 and <=750  | Moderate Low  |
| > 750 and <=1000 | Moderate      |
| >1000 and <=1275 | Moderate High |
| >1275            | High          |

### MODEL OYSTER PLAT RECORD CREDIT / DEBIT METHODS AND CLASSES





#### Credits

| Production | Native eelgrass provides spawning substrate for Pacific Herring.                                                                     |                                                                                                                                  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Food Chain | Pacific Herring are forage fish for sea<br>birds and marine mammals. Wintering<br>Black Brant feed almost exclusively on<br>eelgrass | Diatoms, bacteria, and detritus gathers<br>on eelgrass leaves providing food for<br>many invertebrates; including some<br>clams. |  |
| Cover      | Juvenile salmon use eelgrass to avoid predators.                                                                                     | Native crabs use eelgrass to avoid predators.                                                                                    |  |

| Debits                     |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structural<br>Displacement | Oyster bottom culture, longline, and rack and stake can result in mechanical tearing of fragile eelgrass blades eliminating them from an entire plat. The reduction in light from shellfish bed structures can be associated with reduced eelgrass presence. | Oyster bottom culture, longline, and rack and stake can result in prevention of new eelgrass growth over an entire plat. High-density structures may increase sediment deposition, reducing eelgrass growth. Digging and dredging activities immediately reduce eelgrass presence. |
| Structural<br>Impairment   | Oyster bottom culture, longline, and rack and stake can result in mechanical tearing of fragile eelgrass blades decreasing blade density or eliminating it from entire sections of a plat.                                                                   | Oyster bottom culture, longline, and rack and stake can result in prevention of new eelgrass growth over significant sections of a plat.                                                                                                                                           |
| Lethal Direct              | Pesticides used to control native<br>burrowing shrimp kill these<br>important estuarine species utilizing<br>areas inside oyster plats.                                                                                                                      | Pesticides used to control burrowing<br>shrimp likely expose and kill other<br>'non-target' native species (e.g.,<br>juvenile salmon and crabs) when they<br>use eelgrass in oyster plats.                                                                                         |
| Lethal Indirect            | Pesticides can persist and drift from<br>the application areas into other<br>estuarine areas indiscriminately<br>killing many organisms in its path.                                                                                                         | Nonnative parasites on native<br>burrowing shrimp hosts may be<br>decimating their hosts over large areas<br>in Pacific Northwest estuaries.                                                                                                                                       |
| Sublethal Direct           | Oyster boats transporting growers<br>and growers walking in their plats<br>tending and / or harvesting oysters<br>disturb black brant off their feeding<br>areas diminishing their winter<br>reserves for the spring migration.                              | Pesticides used to control native<br>burrowing shrimp may impair these<br>important estuarine species utilizing<br>areas inside oyster plats and make them<br>more susceptible to disease and<br>predation.                                                                        |
| Sublethal Indirect         | Oyster boats and growers travelling<br>to their plats and walking on their<br>plats disturb nearby black brant off<br>their feeding areas diminishing their<br>winter reserves for the spring<br>migration.                                                  | Pesticides can persist and drift from the application areas into other estuarine areas indiscriminately impairing numerous organisms in its path, making them more susceptible to other perturbations.                                                                             |







### ASSUMPTIONS SUPPORTING CREDITS AND DEBITS

<sup>&</sup>lt;sup>1</sup>This is highly speculative consequence of oyster culture.

## PS\_Water\_AOI OYSTER\_PLATS\_Eval\_Zoneofl nfluence Clip (3) Multiple Ring Buffer OYSTER\_PLATS\_ Evaluation\_Clip1 Clip (2) Polygon to Raster OYSTER\_PLATS\_ Evaluation\_Raster OYSTER\_PLATS \_Base\_Clip OYSTER\_PLATS \_Base\_Raster

## MODEL APPLICATION DIAGRAM



| Name                     | Direction | Туре     | Data Type                           | Value                                                                                                                   |
|--------------------------|-----------|----------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Input Features           | Input     | Required | Feature Layer                       | C:\University of Washington GIS\UOWFall2017\InVest\RESEARCH\myWork22<br>\SCRATCH_PSOE.gdb\OYSTER_PLATS_Evaluation_Clip  |
| Value field              | Input     | Required | Field                               | TDValue                                                                                                                 |
| Output Raster<br>Dataset | Output    | Required | Raster Dataset or Raster<br>Catalog | C:\University of Washington GIS\UOWFall2017\InVest\RESEARCH\myWork22<br>\SCRATCH_PSOE.gdb\OYSTER_PLATS_Evaluation_Clip3 |
| Cell assignment<br>type  | Input     | Optional | String                              | CELL_CENTER                                                                                                             |
| Priority field           | Input     | Optional | Field                               | TDValue                                                                                                                 |
| Cellsize                 | Input     | Optional | Analysis Cell Size                  | 10                                                                                                                      |

⚠ WARNING 000258: Output C:\University of Washington GIS\UOWFall2017\InVest\RESEARCH\myWork22\SCRATCH\_PSOE.gdb\OYSTER\_PLATS\_Evaluation\_Clip3 already exists (258)

#### **≉Raster Calculator**

Tool Name: Raster Calculator

Tool Source:c:\program files (x86)\arcgis\desktop10.4\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Map Algebra\RasterCalculator

#### **\*Parameters:**

| Name                   | Direction | Type     | Data Type                       | Value                                                                                               |
|------------------------|-----------|----------|---------------------------------|-----------------------------------------------------------------------------------------------------|
| Map Algebra expression | Input     |          | Raster Calculator<br>Expression | "%OYSTER_PLATS_Base_Raster%" + "%OYSTER_PLATS_Evaluation_Raster%"                                   |
| Output raster          | Output    | Required |                                 | C:\University of Washington GIS\UOWFall2017\InVest\RESEARCH\myWork22<br>\SCRATCH_PSOE.gdb\NetCredit |

#### **☆Messages:**

## SAMPLE MODEL RUN DOCUMENTATION

```
ASS = "C:\\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\PSOE EIP.gdb\\SUBVEG\\EELGRASS"
      ISTER PLATS Evaluation Clip = "C:\\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\SCRATCH PSOE.gdb\\OYSTER PLATS Eva
    OYSTER PLATS Evaluation Clip1 = "C:\\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\SCRATCH PSOE.gdb\\OYSTER PLATS Ex
30 PS Water AOI = "C:\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\PSOE EIP.qdb\\FOCALAREA\\PS Water AOI"
31 OYSTER PLATS Eval ZoneofInfluence = "C:\\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\SCRATCH PSOE.qdb\\OYSTER PLAT
32 OYSTER PLATS Base = "C:\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\PSOE EIP.gdb\\AQUACULTURE\\OYSTER PLATS Base'
33 OYSTER PLATS Base Clip = "C:\\University of Washington GIS\\UOWFall2017\\Invest\\RESEARCH\\myWork22\\SCRATCH PSOE.qdb\\OYSTER PLATS Base Clip
34 OYSTER PLATS Base Raster = "C:\\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\SCRATCH PSOE.qdb\\OYSTER PLATS Base Cl
   OYSTER PLATS Evaluation Raster = "C:\\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\SCRATCH PSOE.gdb\\OYSTER PLATS I
   NetCredit = "C:\\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\SCRATCH PSOE.qdb\\NetCredit"
37
    # Set Geoprocessing environments
    arcpy.env.scratchWorkspace = "C:\\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\SCRATCH PSOE.gdb"
   arcpy.env.workspace = "C:\\University of Washington GIS\\UOWFall2017\\InVest\\RESEARCH\\myWork22\\PSOE EIP.gdb"
    # Process: Clip (2)
    arcpy.Clip analysis(OYSTER PLATS Evaluation, EELGRASS, OYSTER PLATS Evaluation Clip, "")
    # Process: Multiple Ring Buffer
    arcpy.MultipleRingBuffer analysis(OYSTER PLATS Evaluation Clip, OYSTER PLATS Evaluation Clip1, "100;1000;10000", "Feet", "distance", "ALL",
    # Process: Clip (3)
   arcpy.Clip analysis(OYSTER PLATS Evaluation Clip1, PS Water AOI, OYSTER PLATS Eval ZoneofInfluence, "")
    # Process: Clip
    arcpy.Clip analysis(OYSTER PLATS Base, EELGRASS, OYSTER PLATS Base Clip, "",
53
    # Process: Polygon to Raster
    arcpy.PolygonToRaster conversion(OYSTER PLATS Base Clip, "TCVAL", OYSTER PLATS Base Raster, "CELL CENTER", "TCVAL", "10")
56
    # Process: Polygon to Raster (2)
    arcpy.PolygonToRaster conversion(OYSTER PLATS Evaluation Clip, "TDValue", OYSTER PLATS Evaluation Raster, "CELL CENTER", "TDValue", "10")
59
    # Process: Raster Calculator
   arcpy.gp.RasterCalculator sa("\"%0YSTER PLATS Base Raster%\" + \"%0YSTER PLATS Evaluation Raster%\"", NetCredit)
63
```

## MODEL SAMPLE PYTHON SCRIPT



## PRELIMINARY TRIAL CLASSIFICATION TEST SITE A



## PRELIMINARY TRIAL CLASSIFICATION TEST SITE A2 (ZONE OF INFLUENCE)









## PRELIMINARY TRIAL CLASSIFICATION TEST SITE B1



## PRELIMINARY TRIAL CLASSIFICATION TEST SITE B2 (ZONE OF INFLUENCE)





## PRELIMINARY TRIAL CLASSIFICATION TEST SITE C1



## PRELIMINARY TRIAL CLASSIFICATION TEST SITE C2 (ZONE OF INFLUENCE)



### Model Weaknesses

- The model base assumptions are coarse and nonspecific about the management practices contributing to perturbation (debit) ranges as well as the ecological foundation for the process and function (credit) ranges.
- No attempt was made to research specific management plans by oyster plat and individual oyster plat credit and debit values were selected arbitrarily for model test runs.
- 3. The model does not provide a graphical user interface (GUI) for users to input new data into the model as it becomes available.
- 4. Model net credit values only addresses areas where native eelgrass and oyster plats overlap.
- 5. The algorithm used to evaluate the carrying capacity (credit) and oyster plat related perturbations (debit) to subsequently derive the remaining carrying capacity (net credit) is highly simplistic and likely unrepresentative of actual adverse effects of cited perturbations on a specific area's carrying capacity.
- 6. The model's evaluation focus on areas of eelgrass overlapped by oyster plats does not account for the overall size of the eelgrass patches or their positions and geometric shapes relative to one another and other natural resources.
- Zone of influence distances are arbitrary and not based on documentation, nor is there any attempt to assign them a credit or debit value.

## MODEL WEAKNESSES

### **EELGRASS**

- ORIGINATOR: Washington State Department of Ecology
- ► PUBLICATION DATE: April 2011
- ► TITLE: Aquatic Unit
- GEOSPATIAL DATA PRESENTATION FORM:
   vector digital data

### OYSTER TRACTS AND RESERVES

- Originator: Washington Department of Natural Resources
- ▶ PUBLICATION DATE: Unknown
- ▶ TITLE: AQUATIC PARCEL
- GEOSPATIAL DATA PRESENTATION FORM:
   vector digital data

## GENERALIZED PUGET SOUND EELGRASS POLYGONS

Originator: Washington Department of

Natural Resources, Aquatic Resources Division, Nearshore

Habitat Program

> PUBLICATION DATE: October 3, 2017

> TITLE: Submerged Vegetation Monitoring

Program 2000-2015 Database

GEOSPATIAL DATA PRESENTATION FORM: vector digital data

### PUGET SOUND TOPOGRAPHIC/BATHYMETRIC DEM:

https://topotools.cr.usgs.gov/topobathy\_viewer/dwndata .htm

> ORIGINATOR:

U.S. GEOLOGICAL SURVEY, NOAA National Ocean Service, Coastal and Marine Geology Program -

USGS

► PUBLICATION DATE: July 14, 2005

Puget Sound topographic/bathymetric DEM

GEOSPATIAL DATA PRESENTATION FORM:

raster digital data

Spatial Reference: NAD 1983 Lambert Conformal

Conic

North American Horizontal Datum of 1983

North American Vertical Datum of 1988