

TRI-STATE OCTAL BUFFERS

The SN54/74LS795 thru SN54/74LS798 device types provide a second source for the 71/81LS95 thru 71/81LS98 series. These devices are octal low power Schottky versions of the 70/8095 thru 70/8098 3-STATE Hex Buffers. The LS795 and LS797 are noninverting and the LS796 and LS798 are inverting functions. On each buffer, one of the two inputs is used as a control line to gate the output into the high impedance state, while the other input passes the data through the buffer. On the LS795 and LS796 access is through a 2-input NOR gate, with all eight 3-STATE enable lines common. On the LS797 and LS798, four buffers are enabled from one common line and the other four buffers from another common line. On all device types the 3-STATE condition is achieved by applying a high logic level to the enable pins.

TRUTH TABLES

LS795

II	NPUT	OUTPUT			
G1	G2	Α	Y		
Н	Х	Χ	Z		
Х	Н	Χ	Z		
L	L	Н	Н		
L	L	L	L		

LS796

II.	IPUT:	OUTPUT					
G1	G2	Α	Y				
Н	Х	Χ	Z				
Х	Н	Χ	Z				
L	L	Н	L				
L	L	L	Н				

LS797

INP	UTS	ОИТРИТ			
G	Α	Υ			
Н	Х	Z			
L	Н	Н			
L	L	L			

LS798

INPUTS		OUTPUT
G	Α	Y
Н	Х	Z
L	Н	L
L	L	Н

SN54/74LS795 SN54/74LS796 SN54/74LS797 SN54/74LS798

TRI-STATE OCTAL BUFFERS

LOW POWER SCHOTTKY

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
ТД	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
IOH	Output Current — High	54 74			-2.6 -5.0	mA
loL	Output Current — Low	54 74			8.0 16	mA

SN54/74LS795 • SN54/74LS796 SN54/74LS797 • SN54/74LS798

LOGIC DIAGRAMS

SN54/74LS795 THRU SN54/74LS798

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits						
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions		
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
Mar	Input LOW Voltage 54 74				0.7	V	Guaranteed Input LOW Voltage for All Inputs		
VIL					0.8]			
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA		
V	Output HIGH Voltage	54	2.5	3.5		V	\/ MIN I	_ MAY	
VOH	Output HIGH voltage	74	2.7	3.5		V	V _{CC} = MIN, I _{OH}		
M	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 8.0 mA	V _{CC} = V _{CC} MIN,	
VOL		74		0.35	0.5	V	I _{OL} = 16 mA	VIN = VIL or VIH per Truth Table	
lozh	Output Off Current — HIGH				20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V		
l _{OZL}	Output Off Current — LOW				-20	μΑ	V _{CC} = MAX, V _{OUT} = 0.4 V		
l	L AUROLIA				20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V		
ΊΗ	Input HIGH Current				-0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
I _{IL}	Input LOW Current A Input, Both G at 0.4 V G Input				-0.4 -0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
	A Input, Both G at 2	A Input, Both G at 2.0 V			-20	μΑ	V _{CC} = MAX, V _{IN} = 0.5 V		
los	Short Circuit Current (Note 1)		-30		-130	mA	V _{CC} = MAX		
laa	Power Supply	LS795/LS797			26	mA			
<u>l</u> cc	Current LS795/LS798				21	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		Limits								
		LS795/LS797		LS796/LS798						
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions	
tPLH tPHL	Propagation Delay		11 15	16 22		6.0 13	10 17	ns	V _{CC} = 5.0 V C _L = 15 pF	
^t PZH ^t PZL	Output Enable Time		16 13	25 20		17 16	27 25	ns		
^t PHZ ^t PLZ	Output Disable Time		13 19	20 27		13 18	20 27	ns	C _L = 5.0 pF	