14. Schrodinger's equation and unitary operations

$$|\psi(0)\rangle \rightarrow U \rightarrow |\psi(t)\rangle$$

Time evolution of the wavefunction

Up to this point we have considered the wavefunction to be static:

The wavefunction was just "given" to us from somewhere, and the only change that we could induce on the state was via a measurement

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
Measurement apparatus
$$p_0 = |\alpha|^2 |\psi_0^{meas}\rangle = |0\rangle$$

$$p_1 = |\beta|^2 |\psi_1^{meas}\rangle = |1\rangle$$

But just like classical physics, where the state (e.g. position, velocity etc.) can change in time $\chi(t), v(t)$ a quantum state can change in time.

A time-dependent quantum state is written by time-dependent coefficients.

$$|\psi(t)\rangle = \sum_{n=0}^{N} a_n(t)|n\rangle$$

The coefficients still always need to be normalized:

$$\langle \psi(t) | \psi(t) \rangle = 1$$

$$\sum_{n=0}^{N} |a_n(t)|^2 = 1$$

In the classical case, we can distinguish between cases where the state changes due to a "natural" evolution and "human intervention"

Quantum mechanics is exactly the same, the state evolution can happen "naturally" or due to "manipulation".

Schrodinger's equation

In classical physics, we can work out what the trajectory (i.e. state) of the ball is using Newton's laws.

$$F = ma$$

We need an equation that tells us how a wavefunction evolves with time, like Newton's law.

Schrodinger's equation

Or this can be written equivalently as

$$|\psi(t)\rangle = \exp(-\frac{it}{\hbar}H)|\psi(0)\rangle$$

Given the initial state, this gives a way of calculating the state at any time later

$$|\psi(t=0)\rangle \rightarrow |\psi(t)\rangle$$

Breaking down Schrodinger's Eq: Hamiltonian

$$|\psi(t)\rangle = \exp(-\frac{it}{\hbar}H)|\psi(0)\rangle$$

$$t = \text{time (in seconds)}$$

$$\hbar = \frac{h}{2\pi} \qquad h = 6.34 \times 10^{-34} \text{ Js (Planck constant)}$$

 $H=\$ Hamiltonian. This is a matrix that tells us what states have what values of energy.

$$H = \sum_{n} E_{n} \left| \varepsilon_{n} \right\rangle \left\langle \varepsilon_{n} \right|$$

$$\left\langle \varepsilon_{n} \middle| \varepsilon_{m} \right\rangle = \begin{cases} 1 & \text{if } n = m \\ 0 & \text{if } n \neq m \end{cases}$$

The energy states are orthogonal and normalized.

Example: Qubit Hamiltonians

Magnetic field on an atom

$$E_{1} = B$$

$$E_{0} = -B$$

$$|0\rangle$$

By applying a magnetic field on an atom, it is possible change the energy spacing of atoms ("Zeeman effect")

$$H = -B |0\rangle\langle 0| + B |1\rangle\langle 1| = -B \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -BZ$$

Laser applied to an atom

$$H = \Omega |+\rangle \langle +|-\Omega|-\rangle \langle -|=\frac{\Omega}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} - \frac{\Omega}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \Omega \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \Omega X$$

$$E_{1} = \Omega$$

$$E_{2} = -\Omega$$

Matrix exponentiation

Next, the Hamiltonian is placed in the argument of the exponential

$$|\psi(t)\rangle = \exp(-\frac{it}{\hbar}H)|\psi(0)\rangle$$

What does it mean to exponentiate a matrix? We know that the regular exponential function can be written as an infinite series

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

So the exponential of a matrix is defined in the same way

$$e^{M} = I + M + \frac{M^{2}}{2} + \frac{M^{3}}{6} + \dots = \sum_{n=0}^{\infty} \frac{M^{n}}{n!}$$

The exponential of a matrix is a matrix!

Having an "i" and constants in the exponents also need to be taken to the correct power

$$e^{iM} = I + iM - \frac{M^2}{2} - \frac{iM^3}{6} + \dots = \sum_{n=0}^{\infty} \frac{(iM)^n}{n!}$$

Example 1: Magnetic field on qubit

The Hamiltonian is

$$H = -BZ$$

Substitute into Schrodinger's equation

$$E_{1} = B$$

$$E_{0} = -B$$

$$|0\rangle$$

$$e^{-iHt/\hbar} = I + \frac{iBt}{\hbar} Z - \frac{(Bt)^2}{2\hbar^2} I - \frac{i(Bt)^3}{6\hbar^3} Z + \dots = \cos\frac{Bt}{\hbar} I + iZ\sin\frac{Bt}{\hbar} = \begin{pmatrix} e^{iBt/\hbar} & 0\\ 0 & e^{-iBt/\hbar} \end{pmatrix}$$

 $Z^2 = I$

Say initial state was

$$|\psi(0)\rangle = \alpha |0\rangle + \beta |0\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Then the state some time later is

$$\left|\psi(t)\right\rangle = e^{-iHt/\hbar}\left|\psi(0)\right\rangle = \begin{pmatrix} e^{iBt/\hbar} & 0 \\ 0 & e^{-iBt/\hbar} \end{pmatrix} \begin{pmatrix} lpha \\ eta \end{pmatrix} = \begin{pmatrix} lpha e^{iBt/\hbar} \\ eta e^{-iBt/\hbar} \end{pmatrix}$$

Example 2: Laser applied to a qubit

The Hamiltonian is

$$H = \Omega X$$

Substitute into Schrodinger's equation

$$E_1 = \Omega$$

$$E_0 = -\Omega$$

$$e^{-iHt/\hbar} = I - \frac{i\Omega t}{\hbar} X - \frac{(\Omega t)^2}{2\hbar^2} I + \frac{i(\Omega t)^3}{6\hbar^3} X + \dots = \cos\frac{\Omega t}{\hbar} I - iX \sin\frac{\Omega t}{\hbar} = \begin{bmatrix} \cos\frac{\Omega t}{\hbar} & -i\sin\frac{\Omega t}{\hbar} \\ -i\sin\frac{\Omega t}{\hbar} & \cos\frac{\Omega t}{\hbar} \end{bmatrix}$$
Say initial state was
$$|\psi(0)\rangle = |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Say initial state was

$$|\psi(0)\rangle = |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Then the state some time later is
$$\left|\psi(t)\right\rangle = e^{-iHt/\hbar}\left|\psi(0)\right\rangle = \begin{pmatrix} \cos\frac{\Omega t}{\hbar} & -i\sin\frac{\Omega t}{\hbar} \\ -i\sin\frac{\Omega t}{\hbar} & \cos\frac{\Omega t}{\hbar} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos\frac{\Omega t}{\hbar} \\ -i\sin\frac{\Omega t}{\hbar} \end{pmatrix}$$

 $X^2 = I$

© Tim Byrnes

The unitary matrix

The form of the Schrodinger equation is

$$\frac{|\psi(t)\rangle}{|\psi(t)\rangle} = \exp(-\frac{it}{\hbar}H) |\psi(0)\rangle$$

The operator (i.e. matrix) $U = \exp(-\frac{it}{\hbar}H)$ takes the state and time evolves it forward.

The Hamiltonian is a Hermitian matrix, and this makes U always a "unitary matrix"

$$U^{-1} = U^+$$

Generally it is not a simple task to find the explicit unitary matrix from a Hamiltonian, except in certain simple cases. Solving the Schrodinger's equation is a difficult task.

Hamiltonian=The physical process changing the state

t=The amount of time the process is applied for

U=The effect this has on the state

Unitary operations as basis rotations

The name "unitary" comes from the fact that applying a unitary matrix on a vector never changes its length

$$\left|\psi'\right\rangle = U\left|\psi\right\rangle \qquad \left\langle\psi'\left|\psi'\right\rangle = \left\langle\psi\right|U^{+}U\left|\psi\right\rangle = \left\langle\psi\right|U^{-1}U\left|\psi\right\rangle = \left\langle\psi\left|\psi\right\rangle = 1$$

In fact a unitary rotation is really always just a rotation of the vector in some space

The unitary property makes means that it is always possible to reverse the evolution of the Schrodinger equation just by applying

$$U^+ = \exp(+\frac{it}{\hbar}H)$$

Then
$$U^+ |\psi'\rangle = U^+ U |\psi\rangle = \exp(+\frac{it}{\hbar}H) \exp(-\frac{it}{\hbar}H) |\psi\rangle = |\psi\rangle$$

Question

A laser is applied on a qubit such that the Hamiltonian is

The laser is on for t=1ns, and the initial state is prepared in

What is the final state?

$$H = \Omega X$$

$$\Omega = 10^{-25} J$$

$$\left|\psi(0)\right\rangle = \frac{1}{2}\left|0\right\rangle + \frac{\sqrt{3}}{2}\left|1\right\rangle$$

Question

A laser is applied on a qubit such that the Hamiltonian is

$$H = \Omega X$$

$$\Omega = 10^{-25} J$$

The laser is on for t=1ns, and the initial state is prepared in

$$\left|\psi(0)\right\rangle = \frac{1}{2}\left|0\right\rangle + \frac{\sqrt{3}}{2}\left|1\right\rangle$$

What is the final state?

$$\left|\psi(t)\right\rangle = e^{-iHt/\hbar}\left|\psi(0)\right\rangle = \begin{pmatrix} \cos\frac{\Omega t}{\hbar} & -i\sin\frac{\Omega t}{\hbar} \\ -i\sin\frac{\Omega t}{\hbar} & \cos\frac{\Omega t}{\hbar} \end{pmatrix} \begin{pmatrix} 1/2 \\ \sqrt{3}/2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\cos\frac{\Omega t}{\hbar} - \frac{i\sqrt{3}}{2}\sin\frac{\Omega t}{\hbar} \\ \frac{\sqrt{3}}{2}\cos\frac{\Omega t}{\hbar} - \frac{i}{2}\sin\frac{\Omega t}{\hbar} \end{pmatrix} = \begin{pmatrix} 0.29 - 0.70i \\ 0.50 - 0.41i \end{pmatrix}$$

$$\frac{\Omega t}{\hbar} = 0.948$$