Finer structure inside P

Definition

A function $t: \mathbb{N} \to \mathbb{N}$ is said to be time constructible if the there exists a TM that on input 1^n , it outputs t(n) in time O(t(n)).

Examples

 n^2 , $n \log n$.

Theorem

Let $t : \mathbb{N} \to \mathbb{N}$ be a time constructible function. There exists a language L such that $L \in TIME(t(n)^2)$, but $L \notin TIME(o(t(n)))$.

As a result of the theorem we have

For any $i \ge 2$ and $1 > \epsilon > 0$, $TIME(n^i) \subseteq TIME(n^{2i+\epsilon})$.

Polynomial time reductions and NP-hardness

Definition

A function $f: \Sigma^* \to \Sigma^*$ is polynomial time computable if there is a polynomial time Turing machine TM, say M, such that on any input $w \in \Sigma^*$, M stops with only f(w) on its tape.

Polynomial time reductions and NP-hardness

Definition

A language L_1 is said to be polynomial time reducible to another language L_2 , denoted as $L_1 \leq_m L_2$, if there exists a polynomial time computable function f such that for all $w \in \Sigma^*$, $w \in L_1 \Leftrightarrow f(w) \in L_2$.

Polynomial time reductions and NP-hardness

Definition

A language L is said to be NP-hard if for every language $L' \in NP$, there is a polynomial time reduction such that $L' \leq_m L$.

Definition

A language L is said to be NP-complete if the following two conditions hold:

L is in NP.

L is NP-hard.

Theorem ([Cook-Levin, 1970])

SAT is NP-complete.

Space bounded Turing Machines

The Turing Machine model with space bounds

The input tape is assumed to be read-only.

The space required to write down the input is not counted towards the space of the machine.

The output tape assumed to be write-only.

The space required to write down the output is not counted towards the space of the machine.

Space complexity and complexity classes

Let $s: \mathbb{N} \to \mathbb{N}$.

Definition

A language $L \subseteq \Sigma^*$ is said to be in class SPACE(s(n)) if there exists a deterministic Turing machine M such that $\forall x \in \Sigma^*$,

M halts on x using at most space O(s(|x|)),

where |x| indicates the length of x.

if $x \in L$ then M accepts x.

if $x \notin L$ then M rejects x.

$$L = SPACE(\log n)$$

$$PSPACE = \bigcup_{k} SPACE(n^{k})$$

Examples

 $Min = \{(w_1, w_2, \dots, w_n, i) \mid w_i \text{ is the minimum among } w_1 \dots w_n\}.$

Deg =
$$\{(G = (V, E), d, i) | v_i \text{ has degree } d\}.$$

ADD =
$$\{(u, v, i) | i \text{th bit of } u + v \text{ is } 1\}.$$

=
$$\{(\phi, a) \mid a = a_1, a_2, \dots, a_n \text{ is an assignment satisfying } \phi\}$$
.