

PCWG Tool: Analysis and Dataset File Structure

Alex Clerc, Peter Stuart, Joe Kane, Lee Cameron

March 25, 2015

Presentation Contents

- This presentation details the structure of PCWG Tool Analysis and Dataset configuration files
- Configuration files are written in XML format (eXtensible Markup Language)
- Configuration files can also be edited with the PCWG Tool GUI (note: some advanced features currently only supported by editing xml directly)

Key PCWG Tool Concept: Dataset and Analysis

The PCWG analysis tool is designed to logically separate input data from the analysis performed on them. This allows the same **Analysis** to be performed on multiple **Datasets**.

Note: a dataset is the data associated with a single power performance test and consists of power turbine data plus mast data and/or LiDAR data.

File Structure and GUI (1)

The PCWG Tool file structure is xml based. This means that settings can either be edited via the GUI or by directly editing the underlying files.

Dataset.dat

Time series data file in Comma Separated or Tab Separated Format.

Xml based file which configures the data in Dataset.dat

Analysis.xml

Xml based file which defines the analysis to be performed.

For a useful and free xml editor visit http://notepad-plus-plus.org

		76 PCWG	- NIR 310.1	X
1	<pre><?xml·version="1.0"·?></pre>	General Settings:		Hide
2	= <configuration xmlns="http://www.pcwg.org"></configuration>			Hiue
3		File Path:	C:/Users/aclerc/Documents/Tech	
4	-> <powercurveminimumcount>20</powercurveminimumcount>	Time Step In Seconds:	600	
5		Power Curve Minimum Count:	20	
6	─────────────────────────────────────	Filter Mode:	All 🔟	
7		The Model		
8	->> <powercurvepaddingmode>none</powercurvepaddingmode>	Base Line Mode:	Measured —	
9	□ → <powercurvebins></powercurvebins>	Power Curve Mode:	InnerTurbulenceMeasured —	
10	<pre></pre>	Power Curve Mode:	Inner i drodienceweasured —	
11	->-> <lastbincentre>30.000000</lastbincentre>	Power Curve Padding Mode:	none —	
12	→ <binsize>1.000000</binsize>	Power Curve Bins:		Hide
13				nide
14	□ → <datasets></datasets>	First Bin Centre:	1.0	
15	→ SDataset>DryRunDataset5.xml	Last Bin Centre:	30.0	
16		Bin Size:	1.0	
17	□ → <innerrange></innerrange>	Datasets:		Hide
18	->	▲ DryRunDataset5.xml	+ New	
19	InnerRangeUpperTurbulence>0.120000		- - 	
20	->	_	- Edit	
21	<pre></pre>	Inner Range Settings:		Hide
22		Inner Range Lower Turbulence:	0.08	
23	□ → <turbine></turbine>	Inner Range Upper Turbulence:	0.12	
24	<pre></pre>	Inner Range Lower Shear:	0.15	
25	CutOutWindSpeed>25.000000	Inner Range Upper Shear:	0.25	
26	<pre></pre>	Turbine Settings:		Hide
27	->	The state of the s	20	Tilue
28	->-> <diameter>90.000000</diameter>	Cut In Wind Speed:	3.0	
29	SpecifiedPowerCurve>DryRunPowerCurve.xml	Cut Out Wind Speed:	25.0	
30		Rated Power:	1000.0	
31	□ → < DensityCorrection >	Hub Height:	80.0	
32	Active>1	Diameter:	90.0	
33		Specified Power Curve:	DryRunPowerCurve.xml Edit	
34	TurbulenceRenormalisation>	Correction Settings:	<u> </u>	Hide
35	->-> <active>1</active>		⊽	
36		Density Correction Active		
37	□ → < Rotor Equivalent Wind Speed >	Turbulence Correction Active	₩	
38	->-> <active>0</active>	REWS Correction Active		
39	>			
40	L		OK Cancel	

Analysis xml Config File

Analysis GUI Editor

File Structure and GUI (3)

1	<pre><?xml·version="1.0" ·?></pre>				
2	F Configuration xmlns="http://www.pcwg.org">				
3					
4					
5	-> <enddate>2013-08-20:04:50:00</enddate>				
6					
7	-> <calibrationmethod>None</calibrationmethod>				
8	-> <densitymode>Specified</densitymode>				
9	中── <measurements></measurements>				
10	<pre>-> <inputtimeseriespath>DryRun5.txt</inputtimeseriespath></pre>				
11	<pre></pre>				
12	→ SDateFormat>%d/%m/%Y%H:%M				
13	->> <headerrows>0</headerrows>				
14	<pre></pre>				
15	<pre>>> <power>Power</power></pre>				
16	<pre></pre>				
17					
18	<referencewinddirection>ReferenceWindDirection</referencewinddirection>				
19	<pre></pre>				
20	>				
21	─────────────────────────────────────				
22					
23	<pre></pre>				
24	→ → < ProfileLevels/>				
25					
26	—> <filters></filters>				
27	—> <exclusions></exclusions>				
28 L					

Dataset xml Config File

Dataset GUI Editor

Key PCWG Tool Concept: Dataset and Analysis

The PCWG analysis tool is designed to logically separate input data from the analysis performed on them. This allows the same **Analysis** to be performed on multiple **Datasets**.

Note: a dataset is the data associated with a single power performance test and consists of power turbine data plus mast data and/or LiDAR data.

Datasets:

List of datasets which are to be analysed. At least 1 dataset configuration file must be specified.

Note if multiple datasets are specified, the tool combines them in to a single dataset before analysis and reporting. Therefore it is recommended that the datasets have similar instrumentation.

Basic turbine properties are defined in the Analysis File so the turbine type should be the same for all datasets

```
☐ C:\Users\aclerc\Documents\Tech\PowerPerformance\PCWG Data\DryRun\DryRun\DryRunAnalysis5.xml - Notepad++

<u>File Edit Search View Encoding Language Settings Macro Run Plugins Window ?</u>
 <?xml version="1.0"
                         xmlns="http://www.pcwg.org"
            <TimeStepInSeconds>600</TimeStepInSeconds>

<PowerCurveMinimumCount>20

            <FilterMode>All</FilterMode>
            <BaseLineMode>Measured
            <PowerCurveMode>InnerTurbulenceMeasured
            PowerCurvePaddingMode>none
PowerCurvePaddingMode>
  9
           -< PowerCurveBine>
                 <FirstBinCentre>1.000000
                 <LastBinCentre>30.00000
                ><BinSize>1.000000
 14
           ><Datasets>
                 <Dataset>DryRunDataset5.xml</Dataset>
 16
            </Datasets>

√InnerRange>

 18
                <InnerRangeLowerTurbulence>0.080000</InnerRangeLowerTurbulence>
 19
                 <InnerRangeUpperTurbulence>0.120000</InnerRangeUpperTurbulence>
 20
                 <InnerRangeLowerShear>0.150000</InnerRangeLowerShear>
                 <InnerRangeUpperShear>0.250000</InnerRangeUpperShear>
 22
            ></InnerRange>
 23
            <Turbine>
 24
                 <CutInWindSpeed>3.000000</CutInWindSpeed>
 25
                 <CutOutWindSpeed>25.000000</CutOutWindSpeed>
 26
                 <RatedPower>1000.000000</RatedPower>
 27
                 < HubHeight > 80.000000 < / HubHeight >
 28
                 <Diameter>90.000000</Diameter>
 29
                 <SpecifiedPowerCurve>DryRunPowerCurve.xml</SpecifiedPowerCurve>
 30
            </Turbine>
            ><DensityCorrection>
                 <Active>1</Active>
            </DensityCorrection>
 34
            <TurbulenceRenormalisation>
 35
                 <Active>1</Active>
 36
            </TurbulenceRenormalisation>
 37
            <RotorEquivalentWindSpeed>
 38
                 <Active>0</Active>
 39
           ></RotorEquivalentWindSpeed>
 40
 41
```


InnerRange:

Defines the inner Shear and TI range


```
C:\Users\aclerc\Documents\Tech\PowerPerformance\PCWG Data\DryRun\DryRun\DryRunAnalysis5.xml - Notepad++
<u>File Edit Search View Encoding Language Settings Macro Run Plugins Window ?</u>
 <?xml version="1.0" ?</pre>
                    n xmlns="http://www.pcwg.org">
          ><TimeStepInSeconds>600</TimeStepInSeconds>

<PowerCurveMinimumCount>20</PowerCurveMinimumCount>
          <FilterMode>All</FilterMode>
          <BaseLineMode>Measured/BaseLineMode>
          PowerCurveMode>InnerTurbulenceMeasured
  8
          ><PowerCurvePaddingMode>none</PowerCurvePaddingMode>
  9
          ><PowerCurveBins>
              ><FirstBinCentre>1.000000</FirstBinCentre>
               <LastBinCentre>30.000000</LastBinCentre>
              ><BinSize>1.000000
          ></PowerCurveBins>
 14
          ><Datasets>
               <Dataset>DryRunDataset5.xml</Dataset>
 16
          </Datasets>
         →<InnerRange>
 18
              <InnerRangeLowerTurbulence>0.080000</InnerRangeLowerTurbulence>
 19
              <InnerRangeUpperTurbulence>0.120000</InnerRangeUpperTurbulence>
 20
              <InnerRangeLowerShear>0.150000</InnerRangeLowerShear>
              <InnerRangeUpperShear>0.250000</InnerRangeUpperShear>
 22
          ></InnerRange>
 23
 24
               <CutInWindSpeed>3.000000</CutInWindSpeed>
               <CutOutWindSpeed>25.000000</CutOutWindSpeed>
 26
               <RatedPower>1000.000000
 27
               <hubHeight>80.00000</hubHeight>
 28
               <Diameter>90.00000</Diameter>
 29
               <SpecifiedPowerCurve>DryRunPowerCurve.xml</SpecifiedPowerCurve>
 30
          </Turbine>
          ><DensityCorrection>
              ><Active>1</Active>
          ></DensityCorrection>
 34
          ><TurbulenceRenormalisation>
 35
              <Active>1</Active>
 36
          </TurbulenceRenormalisation>
 37
          ><RotorEquivalentWindSpeed>
 38
             -><Active>0</Active>
 39
          </RotorEquivalentWindSpeed>
 40
 41
eXtensible Markup Language file
```


FilterMode:

Typically All. Used to filter the data set based on Shear and/or TI

FilterMode options are:

- All: use all data
- Inner: use TI and Shear Inner Range
- InnerTurb: use TI Inner Range
- InnerShear: use Shear Inner Range
- Outer: use TI and Shear Outer Range
- OuterTurb: use TI Outer Range
- OuterShear: use Shear Outer Range
- LowShearLowTurbulence
- LowShearHighTurbulence
- LowShearLowTurbulence
- LowShearHighTurbulence

```
C:\Users\aclerc\Documents\Tech\PowerPerformance\PCWG Data\DryRun\DryRun\DryRunAnalysis5.xml - Notepad++
<u>File Edit Search View Encoding Language Settings Macro Run Plugins Window ?</u>
 <2xml version="1.0"
                     xmlns="http://www.pcwg.org"
          <TimeStepInSeconds>600</TimeStepInSeconds>
          <FilterMode>All</FilterMode>
          <PowerCurveMode>InnerTurbulenceMeasured
          PowerCurvePaddingMode>none
PowerCurvePaddingMode>
         -< PowerCurveBine>
              <FirstBinCentre>1.000000
              <LastBinCentre>30.000000</LastBinCentre>
 12
              ><BinSize>1.000000/BinSize>
         ></PowerCurveBins>
 14
         ><Datasets>
              <Dataset>DryRunDataset5.xml</Dataset>
 16
          </Datasets>
         ><InnerRange>
 18
              <InnerRangeLowerTurbulence>0.080000</InnerRangeLowerTurbulence>
 19
              <InnerRangeUpperTurbulence>0.120000</InnerRangeUpperTurbulence>
 20
              <InnerRangeLowerShear>0.150000</InnerRangeLowerShear>
              <InnerRangeUpperShear>0.250000</InnerRangeUpperShear>
 22
          ></InnerRange>
 23
          ><Turbine>
 24
              <CutInWindSpeed>3.000000</CutInWindSpeed>
              <CutOutWindSpeed>25.000000</CutOutWindSpeed>
 26
              <RatedPower>1000.000000
 27
              < HubHeight > 80.000000 < / HubHeight >
 28
              <Diameter>90.000000</Diameter>
 29
              <SpecifiedPowerCurve>DryRunPowerCurve.xml</SpecifiedPowerCurve>
 30
          </Turbine>
          ><DensityCorrection>
              <Active>1</Active>
          ></DensityCorrection>
 34
          <TurbulenceRenormalisation>
 35
              <Active>1</Active>
 36
          </TurbulenceRenormalisation>
 37
          <RotorEquivalentWindSpeed>
 38
              <Active>0</Active>
 39
         →</RotorEquivalentWindSpeed>
 40
 41
```


PowerCurveMode:

Used to calculate baseline power curve (for power deviation matrices)

6 —><PowerCurveMode>InnerTurbulenceMeasured</

PowerCurveMode options are:

- Specified: Power curve read from file
- AllMeasured: Power curve based on all data
- InnerMeasured: Power curve based on Shear and TI Inner Range data
- InnerTurbulenceMeasured: Power curve based on TI Inner Range data
- OuterMeasured: Power curve based on Shear and TI Outer Range data
- OuterTurbulenceMeasured: Power curve based on TI Outer Range data

BaseLineMode:

Used to calculate a baseline energy yield (for benchmark tests)

5 SaseLineMode>Measured</BaseLineMode>

BaseLineMode options are:

- Hub: Baseline energy is calculated from hub wind speed and a power curve (specified by PowerCurveMode)
- **Measured**: Baseline energy is the sum of actual energy in the dataset

Turbine: Defines properties of the turbine

- REWS calculation requires turbine geometry
- 0% TI power curve calculation requires rated power and turbine geometry
- Specified Power Curve: used as the base line power curve if PowerCurveMode = Specified

Correction Activation Nodes: Activate various corrections to wind speed and power

- Density Correction: Calculate Density Corrected Wind Speed according to IEC 61400-12-1
- Turbulence Renormalisation: TI correction consistent with PCWG round robin exercises and IEC 61400-12-1
- Rotor Equivalent Wind Speed: REWS correction consistent with PCWG round robin exercises and IEC 61400-12-1

PowerCurveBins:

Defines the measured power curve wind speed bins

Nodes within **PowerCurveBins** are:

- FirstBinCentre: Centre of first wind speed bin, default 1.0 m/s
- LastBinCentre: Centre of last wind speed bin, default 30.0 m/s
- **BinSize**: Width of each wind speed bin, default 1.0 m/s

```
C:\Users\aclerc\Documents\Tech\PowerPerformance\PCWG Data\DryRun\DryRun\DryRunAnalysis5.xml - Notepad++
<u>File Edit Search View Encoding Language Settings Macro Run Plugins Window ?</u>
  `a 😝 🗎 🐚 'a 'a 'a 'a | ¼ 'a | în | a | c | de 🛬 | 🖎 🖎 | 🖫 🖂 🚍 🖫 🛛 📭 🚳 🔊 | 🕟 🗉 🕟 🕪 🖫
         <?xml version="1.0"
                          xmlns="http://www.pcwg.org"
             <TimeStepInSeconds>600</TimeStepInSeconds>

<PowerCurveMinimumCount>20

             <FilterMode>All</FilterMode>
             <BaseLineMode>Measured
             <PowerCurveMode>InnerTurbulenceMeasured/PowerCurveMode>
              <PowerCurvePaddingMode>none/PowerCurvePaddingMode
  9
            →< PowerCurveBine>
                  <FirstBinCentre>1.000000
                  <LastBinCentre>30.00000
                  <BinSize>1.000000</BinSize>
 14
             <Datasets>
                  <Dataset>DryRunDataset5.xml</Dataset>
 16
             </Datasets>
            ><InnerRange>
 18
                 <InnerRangeLowerTurbulence>0.080000</InnerRangeLowerTurbulence>
 19
                  <InnerRangeUpperTurbulence>0.120000</InnerRangeUpperTurbulence>
 20
                  InnerRangeLowerShear>0.150000</InnerRangeLowerShear>
                  <InnerRangeUpperShear>0.250000</InnerRangeUpperShear>
 22
             ></InnerRange>
 23
            ><Turbine>
 24
                  <CutInWindSpeed>3.000000</CutInWindSpeed>
 25
                  <CutOutWindSpeed>25.000000</CutOutWindSpeed>
                  <RatedPower>1000.000000
 26
 27
                  < HubHeight > 80.000000 < / HubHeight >
 28
                  <Diameter>90.000000</Diameter>
 29
                  <SpecifiedPowerCurve>DryRunPowerCurve.xml</SpecifiedPowerCurve>
 30
             </Turbine>
            ><DensityCorrection>
                  <Active>1</Active>
             ></DensityCorrection>
 34
             <TurbulenceRenormalisation>
 35
                  <Active>1</Active>
 36
             </TurbulenceRenormalisation>
 37
             <RotorEquivalentWindSpeed>
 38
                  <Active>0</Active>
 39
            </RotorEquivalentWindSpeed>
 40
 41
eXtensible Markup Language file
```


PowerCurveMinimumCount: Minimum data count required to calculate a power curve bin.

8 -><PowerCurveMinimumCount>20</Powe

A measured power will not be reported for bins which do not meet the data count requirement

Wind Speed	Measured Power	Data Count
18	2001.1	33
19		19
20	1999.0	20

```
C:\Users\aclerc\Documents\Tech\PowerPerformance\PCWG Data\DryRun\DryRun\DryRunAnalysis5.xml - Notepad++
<u>File Edit Search View Encoding Language Settings Macro Run Plugins Window ?</u>
 <?xml version="1.0" 2
                   n xmlns="http://www.pcwg.org"
          ><PowerCurveMinimumCount>20</PowerCurveMinimumCount>
          <BaseLineMode>Measured/BaseLineMode>
          PowerCurveMode>InnerTurbulenceMeasured
          PowerCurvePaddingMode>none
PowerCurvePaddingMode>
          ><PowerCurveBins>
              <FirstBinCentre>1.000000
              <LastBinCentre>30.00000
             ><BinSize>1.000000
         ></PowerCurveBins>
 14
         ><Datasets>
 15
              <Dataset>DryRunDataset5.xml</Dataset>
 16
          </Datasets>
         ><InnerRange>
 18
             →<InnerRangeLowerTurbulence>0.080000</InnerRangeLowerTurbulence>
 19
              <InnerRangeUpperTurbulence>0.120000</InnerRangeUpperTurbulence>
 20
              <InnerRangeLowerShear>0.150000</InnerRangeLowerShear>
              <InnerRangeUpperShear>0.250000</InnerRangeUpperShear>
 22
          ></InnerRange>
 23
          ><Turbine>
 24
              <CutInWindSpeed>3.000000</CutInWindSpeed>
              <CutOutWindSpeed>25.000000</CutOutWindSpeed>
              <RatedPower>1000.000000
 26
 27
              < HubHeight > 80.000000 < / HubHeight >
 28
              <Diameter>90.000000
 29
              <SpecifiedPowerCurve>DryRunPowerCurve.xml</SpecifiedPowerCurve>
 30
          ></Turbine>
         ><DensityCorrection>
             →<Active>1</Active>
          ></DensityCorrection>
          ><TurbulenceRenormalisation>
 35
              <Active>1</Active>
 36
          </TurbulenceRenormalisation>
 37
          ><RotorEquivalentWindSpeed>
 38
            -><Active>0</Active>
 39
         →</RotorEquivalentWindSpeed>
 40
 41
eXtensible Markup Language file
```


PowerCurvePaddingMode:

Used to fill in missing high wind speed bins in the measured power curve

7 —> < PowerCurvePaddingMode > none < / Power

PowerCurvePaddingMode options are:

- Linear: Linear interpolation between filled in bins, horizontal extrapolation otherwise
- Specified: Specified power curve (from file) used to fill in the measured power curve
- Observed: Last measured power bin used to fill in missing bins (horizontal extrapolation)
- Max: Max measured power bin used to fill in missing bins

```
☐ C:\Users\aclerc\Documents\Tech\PowerPerformance\PCWG Data\DryRun\DryRun\DryRunAnalysis5.xml - Notepad++

<u>File Edit Search View Encoding Language Settings Macro Run Plugins Window ?</u>
 xmlns="http://www.pcwg.org"
            <TimeStepInSeconds>600</TimeStepInSeconds>

<PowerCurveMinimumCount>20

            <FilterMode>All</FilterMode>
             <BaseLineMode>Measured/BaseLineMode>
                     CurveMode>InnerTurbulenceMeasured<
            ><PowerCurvePaddingMode>none</PowerCurvePaddingMode>
                  <FirstBinCentre>1.000000</FirstBinCentre>
                  <LastBinCentre>30.000000</LastBinCentre>
                 <BinSize>1.000000/BinSize>
            ></PowerCurveBins>
 14
 15
                  <Dataset>DryRunDataset5.xml</Dataset>
 16
            </Datasets>
            ><InnerRange>
 18
                 <InnerRangeLowerTurbulence>0.080000</InnerRangeLowerTurbulence>
 19
                 <InnerRangeUpperTurbulence>0.120000</InnerRangeUpperTurbulence>
 20
                 <InnerRangeLowerShear>0.150000</InnerRangeLowerShear>
                 <InnerRangeUpperShear>0.250000</InnerRangeUpperShear>
 22
            ></InnerRange>
 23
            <Turbine>
 24
                  <CutInWindSpeed>3.000000</CutInWindSpeed>
                  <CutOutWindSpeed>25.000000</CutOutWindSpeed>
 26
                  <RatedPower>1000.000000</RatedPower>
 27
                  < HubHeight > 80.000000 < / HubHeight >
 28
                  <Diameter>90.00000</Diameter>
 29
                  <SpecifiedPowerCurve>DryRunPowerCurve.xml
 30
            </Turbine>
            <DensityCorrection>
                 <Active>1</Active>
            </DensityCorrection>
 34
            <TurbulenceRenormalisation>
 35
                  <Active>1</Active>
 36
             </TurbulenceRenormalisation>
 37
            <RotorEquivalentWindSpeed>
 38
                 <Active>0</Active>
 39
            ></RotorEquivalentWindSpeed>
 40
 41
```


Key PCWG Tool Concept: Dataset and Analysis

The PCWG analysis tool is designed to logically separate input data from the analysis performed on them. This allows the same **Analysis** to be performed on multiple **Datasets**.

Note: a dataset is the data associated with a single power performance test and consists of power turbine data plus mast data and/or LiDAR data.

Name:

Name of the data set


```
<?xml version="1.0" ?
      Configuration xmlns="http://www.pcwg.org">
         →<Name>DryRun</Name>
          <startDate>2012-08-29 11:50:00</startDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
          <HubWindSpeedMode>Specified</HubWindSpeedMode>
          <CalibrationMethod></CalibrationMethod>
 8
          <DensityMode>Specified
9
          <Measurements>
10
              <InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</p>
11
              <BadDataValue>-99.990000</BadDataValue>
12
              ><DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
              <HeaderRows>0</HeaderRows>
14
              <TimeStamp>TimeStamp</TimeStamp>
15
              ><Power>Power>
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWindSpeed</p>
17
              <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev</R</p>
18
              <ReferenceWindDirection>ReferenceWindDirection</ReferenceWindDirection</p>
19
              <ReferenceWindDirectionOffset>0.000000</ReferenceWind</p>
20
              -<TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation</p>
21
              <HubWindSpeed>HubWindSpeed</HubWindSpeed>
22
              <HubTurbulence>HubTurbulence
23
              ><ShearMeasurements/>
24
              ><ProfileLevels/>
25
          </Measurements>
26
         →<Filters/>
27
       ----<Exclusions/>
      </Configuration>
```


Start and End Date:

Optional. Defines the first and last time stamp to be analysed

Note this is a special case of Exclusions, which allow specific time periods of the data to be filtered (more on this later)

```
?xml version="1.0"
                     xmlns="http://www.pcwg.org"
          <Name>DryRun</Name>
          <StartDate>2012-08-29 11:50:00</StartDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
          <HubWindSpeedMode>Specified</HubWindSpeedMode>
          <CalibrationMethod></CalibrationMethod>
 8
          <DensityMode>Specified
          <Measurements>
              <InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</pre>
              <BadDataValue>-99.990000</BadDataValue>
              <DateFormat>%d/%m/%Y %H:%M</DateFormat>
              <HeaderRows>0</HeaderRows>
14
              <TimeStamp>TimeStamp</TimeStamp>
15
              <Power>Power
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWind</p>
17
              <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev</R</p>
18
              <ReferenceWindDirection>ReferenceWindDirection</Refer</pre>
19
              <ReferenceWindDirectionOffset>0.000000</ReferenceWind</p>
20
              <TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation</p>
21
              <HubWindSpeed>HubWindSpeed/HubWindSpeed>
22
              <HubTurbulence>HubTurbulence/HubTurbulence>
23
              <ShearMeasurements/>
24
              <ProfileLevels/>
25
          </Measurements>
26
          <Filters/>
27
          <Exclusions/>
       (/Configuration)
```


TimeStepInSeconds:

Typically 600 (10 minutes). Used to convert kW to MWh.

3 ——><TimeStepInSeconds>600</TimeStepInSeconds>

When multiple data sets are analysed at once, TimeStepInSeconds must be the same for all data sets

HubWindSpeedMode:

Method to determine wind speed at turbine hub height

6 →<HubWindSpeedMode>Specified</Hu

- Calculated: calculate hub wind speed from reference wind speed and site calibration
- **Specified:** read hub wind speed from the input time series
- None: equivalent to Specified

```
?xml version="1.0"
                      xmlns="http://www.pcwg.org"
          <Name>DryRun</Name>
          <StartDate>2012-08-29 11:50:00</StartDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
          <HubWindSpeedMode>Specified</HubWindSpeedMode>
          <DensityMode>Specified
               <InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</pre>
11
              <BadDataValue>-99.990000</BadDataValue>
12
              <DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
              <HeaderRows>0</HeaderRows>
14
              <TimeStamp>TimeStamp</TimeStamp>
15
              <Power>Power</Power>
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWind</p>
17
               <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev/ReferenceWindSpeedStdDev
18
               <ReferenceWindDirection>ReferenceWindDirection</Refer</pre>
19
               <ReferenceWindDirectionOffset>0.000000</ReferenceWind</pre>
20
               <TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation</p>
21
               <HubWindSpeed>HubWindSpeed</HubWindSpeed>
22
              <HubTurbulence>HubTurbulence/HubTurbulence>
23
              <ShearMeasurements/>
24
              <ProfileLevels/>
25
          </Measurements>
26
          <Filters/>
27
          <Exclusions/>
       </Configuration
```


DensityMode:

Name of the data set

Options in GUI:

- Calculated: calculate density from temperature and pressure
- Specified: read density directly from input time series
- None: No density

```
2xml version="1.0"
                      xmlns="http://www.pcwq.org"
          <Name>DryRun</Name>
          <StartDate>2012-08-29 11:50:00</StartDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
           <HubWindSpeedMode>Specified</HubWindSpeedMode>
           <CalibrationMethod></CalibrationMethod>
          <DensityMode>Specified
          <Measurements>
10
               <InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</pre>
11
              <BadDataValue>-99.990000</BadDataValue>
12
              <DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
              <HeaderRows>0</HeaderRows>
14
              <TimeStamp>TimeStamp</TimeStamp>
15
              <Power>Power
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWind</p>
17
               <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev/ReferenceWindSpeedStdDev
18
               <ReferenceWindDirection>ReferenceWindDirection</ReferenceWindDirection</pre>
19
              <ReferenceWindDirectionOffset>0.000000</ReferenceWind</p>
20
               <TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation</p>
21
               <HubWindSpeed>HubWindSpeed/HubWindSpeed>
22
              <HubTurbulence>HubTurbulence/HubTurbulence>
23
              <ShearMeasurements/>
24
              <ProfileLevels/>
25
          </Measurements>
26
          <Filters/>
27
          ><Exclusions/>
       </Configuration
```


The Measurements node describes the contents of the input data file

```
<?xml version="1.0" ?>
       Configuration xmlns="http://www.pcwg.org">
                <Name>DryRun</Name>
                <StartDate>2012-08-29 11:50:00</StartDate>
                <EndDate>2013-08-20 04:50:00</EndDate>
                <HubWindSpeedMode>Specified</HubWindSpeedMode>
                <CalibrationMethod></CalibrationMethod>
                <DensityMode>Specified</DensityMode>
 9
                <Measurements>
10
                     -<InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</p>
11
                      <BadDataValue>-99.990000</BadDataValue>
12
                      <DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
                     <HeaderRows>0</HeaderRows>
14
                     <TimeStamp>TimeStamp</TimeStamp>
15
                     <Power>Power
16
                     <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWindSpeed</p>
17
                     <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</ReferenceWindSpeedStdDev</re>
18
                      <ReferenceWindDirection>ReferenceWindDirection</ReferenceWindDirection</pre>
19
                      <ReferenceWindDirectionOffset>0.000000</ReferenceWind]</pre>
20
                     TurbineLocationWindSpeed>HubWindSpeed
21
                     <HubWindSpeed>HubWindSpeed</HubWindSpeed>
22
                      <HubTurbulence>HubTurbulence
23
                     <ShearMeasurements/>
24
                     ><ProfileLevels/>
25
               </Measurements>
26
              →<Filters/>
27
               <Exclusions/>
         </Configuration>
```


InputTimeSeriesPath: Identifies the input data file. This can be csv or tab separated.

<InputTimeSeriesPath>DryRun2.txt</In</pre>

```
TimeStamp \longrightarrow Power \longrightarrow ReferenceWindDirection \rightarrow Density ReferenceWindSpee
     29/8/2012 13:30 841.6530397 130 1.229544059 10.63537484 1.544049384 1
     29/8/2012 13:40 632.8862526 99 - 1.231356466 9.449451787 1.050402636 6
     29/8/2012 14:00 > 266.9697117 > 116 > 1.228385035 > 6.843022013 > 0.626663943 > 6
     29/8/2012 · 14:30 → 378.9063434 → 85 → 1.201910095 → 7.903026818 → 0.717340117 → 7
     29/8/2012 14:40 > 298.4273468 > 142 > 1.204267418 > 7.076111476 > 0.694863346 > 6
     29/8/2012 · 14:50 » 356.2446574 » 105 » 1.225554939 » 7.67866622 \rightarrow 0.731989235 » 7
     29/8/2012 15:10 278.834147 -> 316 21.210217046 6.940579395 20.709735683 20.709735683
     29/8/2012 · 15:20 > 398.4477145 > 328 > 1.197010478 > 7.285855028 > 0.651707523 > 7
     29/8/2012 15:30 271.1492249 203 1.213025988 6.881744956 0.685807436 5
     29/8/2012 · 16:20 → 374.0686352 → 299 → 1.221412213 → 6.838636358 → 0.75045522 → €
     29/8/2012 · 16:30 > 428.8797349 > 199 > 1.229326878 > 7.642919558 > 0.673154149 > 7
     29/8/2012 ·17:20 > 693.7623411 > 299 > 1.20693028 → 8.875768812 > 0.885750336 > €
    29/8/2012 17:30 825.7046348 221 1.192475931 10.22730038 1.155188889 1
     29/8/2012 \cdot 17:40 \cdot 700.0211578 \cdot 143 \cdot 1.190595393 \cdot 9.765084245 \cdot 1.15625671 \rightarrow 1
    29/8/2012 18:00>720.4817599>85 -- 1.228873203>9.753640599>1.077858324>9
    29/8/2012 18:10>680.2797543>149>1.226839898>9.845629495>1.012179528>9
    29/8/2012 · 19:00 > 760.8013565 > 249 > 1.218103451 > 9.765247579 > 0.933879504 > 9
    29/8/2012 19:10>644.3067957>181>1.185809549>9.602528856>0.916291821>9
20 29/8/2012 19:20 > 670.3477743 > 24 → 1.222253238 > 8.81025957 → 0.825898081 > 9
```

```
(?xml version="1.0")
                     xmlns="http://www.pcwg.org"
          <Name>DryRun</Name>
          <StartDate>2012-08-29 11:50:00</StartDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
          <HubWindSpeedMode>Specified</HubWindSpeedMode>
          <CalibrationMethod></CalibrationMethod>
          <DensityMode>Specified
9
          <Measurements>
10
              <InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</p>
11
              <BadDataValue>-99.990000</BadDataValue
12
              <DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
              <HeaderRows>0</HeaderRows>
14
              <TimeStamp>TimeStamp</TimeStamp>
15
              <Power>Power
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWind</p>
17
              <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev</R</p>
18
              <ReferenceWindDirection>ReferenceWindDirection</Refer</p>
19
              <ReferenceWindDirectionOffset>0.000000</ReferenceWind</p>
20
              <TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation</p>
21
              <HubWindSpeed>HubWindSpeed/HubWindSpeed>
22
              <HubTurbulence>HubTurbulence/HubTurbulence>
23
              <ShearMeasurements/>
             ><ProfileLevels/>
          </Measurements>
25
26
         →<Filters/>
       </Configuration
```


BadDataValue:

The value indicating bad/missing data. Typically -99.99 or NA

<BadDataValue>-99.990000</BadDataVal

```
(?xml version="1.0" ?
    Configuration xmlns="http://www.pcwg.org">
          <Name>DryRun</Name>
          <StartDate>2012-08-29 11:50:00</StartDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
          <HubWindSpeedMode>Specified</HubWindSpeedMode>
          <CalibrationMethod></CalibrationMethod>
 8
          <DensityMode>Specified
9
          <Measurements>
10
               <InputTimeSeriesPath>DrvRun2 txt</InputTimeSe</p>
11
              <BadDataValue>-99.990000</BadDataValue>
12
              <DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
              <HeaderRows>0</HeaderRows>
14
              <TimeStamp>TimeStamp</TimeStamp>
15
              <Power>Power
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWind</p>
17
              <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev</Re</pre>
18
              <ReferenceWindDirection>ReferenceWindDirection</ReferenceWindDirection</p>
19
              <ReferenceWindDirectionOffset>0.000000</ReferenceWind</p>
20
              <TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation</p>
21
              <HubWindSpeed>HubWindSpeed</HubWindSpeed>
22
              <HubTurbulence>HubTurbulence
23
              <ShearMeasurements/>
24
              ><ProfileLevels/>
25
          </Measurements>
26
         →<Filters/>
       ----<Exclusions/>
      </Configuration>
```


DateFormat:

Format of time stamps in data file

<DateFormat>%d/%m/%Y %H:%M</DateForm</pre>

Example time formats

- %Y-%m-%d %H:%M:%S
 - e.g. 2015-03-14 9:26:53
- %d/%m/%Y %H:%M
 - e.g. 14/3/2015 9:26
- %m/%d/%y %H:%M
 - e.g. 3/14/15 9:26

```
?xml version="1.0"
      Configuration xmlns="http://www.pcwg.org">
          <Name>DryRun</Name>
          <StartDate>2012-08-29 11:50:00</StartDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
          <HubWindSpeedMode>Specified</HubWindSpeedMode>
          <CalibrationMethod></CalibrationMethod>
 8
          <DensityMode>Specified
 9
          <Measurements>
10
              <InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</p>
11
              <BadDataValue>-99.990000</BadDataValue>
12
              ><DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
              <HeaderRows>0</HeaderRows>
14
              <TimeStamp>TimeStamp</TimeStamp>
15
              <Power>Power
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWind</p>
17
              <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev</R</p>
18
              <ReferenceWindDirection>ReferenceWindDirection</ReferenceWindDirection</pre>
19
              <ReferenceWindDirectionOffset>0.000000</ReferenceWind</p>
20
              <TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation</p>
21
              <HubWindSpeed>HubWindSpeed/HubWindSpeed>
22
              <HubTurbulence>HubTurbulence/HubTurbulence>
23
              <ShearMeasurements/>
24
              <ProfileLevels/>
25
          </Measurements>
26
          <Filters/>
          <Exclusions/>
       </Configuration
```

The PCWG Tool uses C standard date time formats, for more information on date time formatting see: https://docs.python.org/2/library/time.html

HeaderRows:

Number of rows to skip before reading data. Does not include column names.

```
<HeaderRows>0</HeaderRows>
```

```
1 TimeStamp → Power → 1
2 29/8/2012 ·13:30 → 841.4
3 29/8/2012 ·13:40 → 632.4
4 29/8/2012 ·14:00 → 266.4
```

For HeaderRows = 0, column names are on row 1 and data begins on row 2

```
?xml version="1.0" 
      Configuration xmlns="http://www.pcwg.org">
          <Name>DryRun</Name>
          <StartDate>2012-08-29 11:50:00</StartDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
          <HubWindSpeedMode>Specified</HubWindSpeedMode>
          <CalibrationMethod></CalibrationMethod>
 8
          <DensityMode>Specified
 9
          <Measurements>
10
              <InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</pre>
11
              <BadDataValue>-99.990000</BadDataValue>
12
              <DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
              ><HeaderRows>0</HeaderRows>
14
              ><TimeStamp>TimeStamp</TimeStamp>
15
              <Power>Power
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWind</p>
17
              <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev</R</p>
18
              <ReferenceWindDirection>ReferenceWindDirection</ReferenceWindDirection</pre>
19
              <ReferenceWindDirectionOffset>0.000000</ReferenceWind</p>
20
              <TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation</p>
21
              <HubWindSpeed>HubWindSpeed/HubWindSpeed>
22
              <HubTurbulence>HubTurbulence
23
              <ShearMeasurements/>
24
              ><ProfileLevels/>
          </Measurements>
26
          <Filters/>
          ><Exclusions/>
      </Configuration>
```


Data column definitions:

Relate dataset fields to the names of columns in the data file

```
<TimeStamp>TimeStamp</TimeStamp>
<Power>Power</Power>
<ReferenceWindSpeed>ReferenceWindSpeed</I</pre>
```

In many PCWG worked examples the data file column names are the same as the names of dataset fields (example above). For data files from the real world this is not usually the case (example below).

```
?xml version="1.0"
                     xmlns="http://www.pcwg.org"
          <Name>DryRun</Name>
          <StartDate>2012-08-29 11:50:00</StartDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
          <HubWindSpeedMode>Specified</HubWindSpeedMode>
          <CalibrationMethod></CalibrationMethod>
          <DensityMode>Specified
9
          <Measurements>
10
              <InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</pre>
11
              <BadDataValue>-99.990000</BadDataValue>
12
              <DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
              <HeaderRows>0</HeaderRows>
14
              <TimeStamp>TimeStamp</TimeStamp>
15
              <Power>Power</Power>
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWind</p>
17
              <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev/F
18
              <ReferenceWindDirection>ReferenceWindDirection</Refer</pre>
19
              <ReferenceWindDirectionOffset>0.000000</ReferenceWind</pre>
20
              <TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation</p>
21
              <HubWindSpeed>HubWindSpeed/HubWindSpeed>
22
              <HubTurbulence>HubTurbulence/HubTurbulence>
23
              <ShearMeasurements/>
24
              <ProfileLevels/>
          </Measurements>
26
          <Filters/>
          <Exclusions/>
        Configuration
```

```
→<TimeStamp>DateTime</TimeStamp>
```

^{→&}lt;Power>m740L0Zybr046PowerTransducerMean_(195/630324/010/1,0m)

^{→&}lt;ReferenceWindSpeed>m640LOZybr096AnemometerMean_(12102674,75.43m,331deg)</Re</p>

Data column definitions:

Relate dataset fields to the names of columns in the data file

```
<TimeStamp>TimeStamp</TimeStamp>
<Power>Power</Power>
<ReferenceWindSpeed>ReferenceWindSpeed
```

Fields supported in the GUI:

- Time Stamp
- Power
- Hub Wind Speed and Turbulence
- Reference Wind Speed and StDev
- Reference Wind Direction
- Reference Wind Direction Offset
 - Constant offset for the tool to apply, e.g. to correct from Magnetic N to Grid N
- Turbine Location Wind Speed (can be used to calculate site calibration)

```
?xml version="1.0"
                     xmlns="http://www.pcwg.org"
          <Name>DryRun</Name>
          <StartDate>2012-08-29 11:50:00</StartDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
          <HubWindSpeedMode>Specified</HubWindSpeedMode>
          <CalibrationMethod></CalibrationMethod>
          <DensityMode>Specified
 9
          <Measurements>
10
              <InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</pre>
11
              <BadDataValue>-99.990000</BadDataValue>
12
              <DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
              <HeaderRows>0</HeaderRows>
14
              <TimeStamp>TimeStamp</TimeStamp>
15
              <Power>Power</Power>
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWind</p>
17
              <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev/F
18
              <ReferenceWindDirection>ReferenceWindDirection</Refer</pre>
19
              <ReferenceWindDirectionOffset>0.000000</ReferenceWind</pre>
20
              <TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation
21
              <HubWindSpeed>HubWindSpeed/HubWindSpeed>
22
              <HubTurbulence>HubTurbulence/HubTurbulence>
23
              <ShearMeasurements/>
24
              <ProfileLevels/>
          </Measurements>
26
          <Filters/>
          <Exclusions/>
        Configuration
```


Fields supported in the GUI (continued):

- Shear Measurements
- Arbitrarily many REWS Profile levels. Example from Dataset 1:

```
→<UpperWindSpeed>Mast - 89.1m Wind Speed Mean</UpperWindSpeed>
→<UpperWindSpeedHeight>89.100000</UpperWindSpeedHeight>
→<ProfileLevels>
    →<ProfileLevel>
      --><Height>52.500000</Height>
       -><ProfileWindSpeed>LiDAR - 52.5m Wind Speed Mean</ProfileWindSpeed>
        →<ProfileWindDirection>LiDAR - 52.5m Wind Direction Mean</ProfileWindDirection>
    ></ProfileLevel>
    →<ProfileLevel>
       \rightarrow<Height>67.500000</Height>
       →<ProfileWindSpeed>LiDAR - 67.5m Wind Speed Mean</ProfileWindSpeed>

→<ProfileWindDirection>LiDAR - 67.5m Wind Direction Mean</ProfileWindDirection>
    →</ProfileLevel>
    ><ProfileLevel>
        →<Height>77.500000</Height>

→<ProfileWindDirection>LiDAR - 77.5m Wind Direction Mean</ProfileWindDirection>
    ></ProfileLevel>
     <ProfileLevel>
        \rightarrow<Height>137.500000</Height>
```


REWS node:

Defines how to calculate REWS and hub height wind speed from Profile Levels

- NumberOfRotorLevels: number of levels to use in calculation, generally equal to number of Profile Levels
- RotorMode: how to assign profile measurements to rotor areas (levels)
 - **ProfileLevels:** Levels are defined according to measurement heights. This can result in unevenly spaced levels if measurement heights are irregular.
 - **EvenlySpacedLevels:** Levels are interpolated to be evenly spaced. Requires odd number of profile measurements so that the central level represents the hub.
- Hub Mode: method to calculate wind speed at hub height from profile
 - Interpolated: Linear interpolation
 - Piecewise Exponent: Interpolation assuming power law profile

Exclusions

• Exclusions can be defined to filter out specific time periods of a dataset:

```
→<ns1:Exclusions>
76
      \longrightarrow <!-- site cal is from 09/11/12 13:20 12/01/13 04:10-->
77
         →<!-- PP test is from 18 October 2013 00:00 to 20 December 2013 08:00-->
78
79
             \rightarrow <!-- \cdot start \cdot of \cdot site \cdot cal \cdot period--> \longrightarrow \longrightarrow
              →<ns1:Exclusion>
80
                 -><ns1:ExclusionStartDate>2000</ns1:ExclusionStartDate>
81
82
                  -<ns1:ExclusionEndDate>2012-11-09 13:20</ns1:ExclusionEndDate>
                  →<ns1:ExclusionActive>1</ns1:ExclusionActive>
83
84

</ns1:Exclusion> → → →

→<!-- end of site cal period to start of PP test--> → → → →
85
86
               →<ns1:Exclusion> ·
                  -><ns1:ExclusionStartDate>2013-01-12 04:10</ns1:ExclusionStartDate>
87
88
                  -><ns1:ExclusionEndDate>2013-10-18 00:00</ns1:ExclusionEndDate>
                  →<ns1:ExclusionActive>1</ns1:ExclusionActive>
89
               →</ns1:Exclusion>
90
91
               \rightarrow<!--\cdot end \cdot of \cdot PP \cdot test--> \rightarrow \longrightarrow
               ><ns1:Exclusion>
92
                  -><ns1:ExclusionStartDate>2013-12-18 12:00</ns1:ExclusionStartDate>
93
94
                  -><ns1:ExclusionEndDate>2020-12-20 08:00</ns1:ExclusionEndDate>
95
                  →<ns1:ExclusionActive>1</ns1:ExclusionActive>
              →</ns1:Exclusion>
96
          →</ns1:Exclusions>
97
```

Filters

- Dataset filters can be defined in the Filters node (currently not supported in the GUI)
- Each Filter must have:
 - Data Column
 - Filter Type (Above, Below or Between)
 - Inclusive (if 1, remove data equal to the Filter Value)
 - Filter Value
 - Active (1 for active, 0 to disable)

Filters

• If using Between, two FilterValues are required. This is specified as a comma separated list

Filters

 A filter can contain a Relationship node which allows multiple filters (defined in Clause nodes) to be combined using the AND or OR operation (Conjunction)

```
→<ns1:Filter>
   →<ns1:Active>1</ns1:Active>
   →<ns1:Relationship>
   > <ns1:Conjunction>OR</ns1:Conjunction>
      →<ns1:Clause>
        →<ns1:FilterType>Below</ns1:FilterType>
         ><ns1:Inclusive>0</ns1:Inclusive>
         ><ns1:FilterValue>600</ns1:FilterValue>
      →</ns1:Clause>
      ><ns1:Clause>
         →<ns1:DataColumn>m758LOZybr029ScadaAvailabilityMax (Tbn Connected To Grid,1m)</ns1:DataColumn>
        →<ns1:FilterType>Above</ns1:FilterType>
         →<ns1:Inclusive>1</ns1:Inclusive>
         →</ns1:Clause>····
   →</ns1:Relationship>
→</ns1:Filter>
```

Site Calibration

CalibrationMethod: Method of site wind speed calibration

7 → CalibrationMethod></Calibrati

Options in GUI:

- Specified: read calibration from Dataset config file
- LeastSquares: Perform least squares fit of turbine wind speed to reference wind speed
- None: No calibration

Also supported:

- RatioOfMeans
- York

```
?xml version="1.0"
                      xmlns="http://www.pcwg.org"
          <Name>DryRun</Name>
          <StartDate>2012-08-29 11:50:00</StartDate>
          <EndDate>2013-08-20 04:50:00</EndDate>
          <HubWindSpeedMode>Specified</HubWindSpeedMode>
          <CalibrationMethod></CalibrationMethod>
           <DensityMode>Specified</DensityMode>
9
          <Measurements>
10
               <InputTimeSeriesPath>DryRun2.txt</InputTimeSeriesPath</pre>
11
              <BadDataValue>-99.990000</BadDataValue>
12
              <DateFormat>%d/%m/%Y %H:%M</DateFormat>
13
              <HeaderRows>0</HeaderRows>
14
              <TimeStamp>TimeStamp</TimeStamp>
15
              <Power>Power
16
              <ReferenceWindSpeed>ReferenceWindSpeed</ReferenceWind</p>
17
               <ReferenceWindSpeedStdDev>ReferenceWindSpeedStdDev/ReferenceWindSpeedStdDev
18
               <ReferenceWindDirection>ReferenceWindDirection</Refer</pre>
19
               <ReferenceWindDirectionOffset>0.000000</ReferenceWind</pre>
20
               <TurbineLocationWindSpeed>HubWindSpeed</TurbineLocation</p>
21
               <HubWindSpeed>HubWindSpeed/HubWindSpeed>
22
              <HubTurbulence>HubTurbulence/HubTurbulence>
23
              <ShearMeasurements/>
24
              <ProfileLevels/>
25
          </Measurements>
26
          <Filters/>
27
          <Exclusions/>
       </Configuration
```

Site Calibration

- A site calibration can be calculated if Reference Wind Speed and Turbine Location Wind Speed are available in the file. The Calibration node contains:
 - Number of Sectors: typically 36
 - Center of First Sector: generally 5 or 0
 - Calibration Start and End Date (special case Exclusion)
 - Calibration Filters: collection of filters which have the same format as the Filters node

Site Calibration

 Alternatively the calibration results can be specified directly in a CalibrationDirections node, in this case Calibration Method must be set to Specified

Summary

- Analysis file structure defines:
 - What dataset(s) will be analysed
 - What baseline the data will be compared to
 - Inner range
 - Turbine details
 - Power curve analysis method e.g. binning, corrections (Density, TI, REWS)
- Dataset file structure defines:
 - Measurements (description of input file)
 - Exclusions
 - Filters
 - Site Calibration

Any Questions?

