

이세환

목차

01. 개요

01-1. 조원 소개

01-2. 주제 선정 이유

01-3. 초기 분석 목표

02. 데이터 소개 및 분석 기법

02-1. 데이터 설명

02-2. 분석 기법 설명

03. 분석 결과 및 해석

03-1. 분석 결과 시각화

03-2. 분석 결과 해석

03-3. 활용 방안

조원 소개

김석준

PCA 활용

김성표

클러스터링 실행

임진혁

국산차와 외제차의 가격예측 모델

이세환

데이터 전처리 및 PP+제작

개요

주제선정 이유

"字型是从胜梦

71/50/ 78/4 180/ 3/4 180/

개요

주제선정 이유

개요

초기 분석 목표

외제차와 국산차의 가격 차이를 결정 짓는 요인은 무엇일까? 성능이 비슷하다면 가격의 차이는 디자인으로 결정되는 것이 아닐까?

제원이 차이가 확연히 난다. -> 비싼 값의 원인: 이유가 있었다.

제원이 차이가 별로 안난다. -> 1)제원에 없는 것이 영향을 준다. 2)괜히 비싸다.

데이터 설명

- 데이터 수집 방법 : www.enuri.com 직접 수집
- 데이터 종류 : 국산 52종 외제 105종 총 157대, 17개사의 차량 데이터
- 변수 설명 (총 22개의 변수)
 - 차종 : 차량 모델 이름
 - 브랜드: 제조사
 - 판매가 : 국내 판매가 (부가세 및 옵션 미포함)
 - 공식 연비 : 제조사 제공 공식 연비 / 1리터 또는 1갤런으로 갈 수 있는 거리
 - 배기량 : 제조사 제공 공식 배기량 / 실린더의 부피
 - 최고출력 : 제조사 제공 최고 마력
 - 최대토크 : 엔진의 회전력을 나타내는 수치
 - 엔진형식 : 엔진의 종류
 - 미션형식1: 자동 or 수동
 - 미션형식2: 기어 단수
 - 연료탱크 : 총 연료 탱크 량
 - 구동방식: 가솔린 or 경유
 - 공차중량:
 - 길이, 폭, 높이, 부피, 면적, 승차인원, 도어수
 - 타이어 : 타이어의 크기
 - 나라 : 국산 or 외제

데이터 설명

-헷갈릴 수 있는 변수 개념

엔진 형식(좌 v자 / 우 L자 형식)

데이터 설명

- 헷갈릴 수 있는 변수 개념

배기량 -> 엔진 실린더 내부의 체적 쉽게 말해 엔진의 크기. -> 높은 배기량->엔진의 폭력/출력이 강함

배기량이 높으면 그만큼 환경오염도가 높음 따라서 배기량에 따라 세금을 차등 부여

(1,000cc 경차
 (1,600cc 소형차
 (2,000cc 중형차
 그 이상 - 대형차

폭/너비/부피 등

분석기법- 뭘 어떻게 할 것인가!!

PCA: PCAMixdata 패키지를 사용

factor변수를 포함한 PCA를 실행할 수 있게 해주는 패키지

제원을 Pca로 표현하여 데이터를 평면에 시각화하고 외제차와 국산차에 큰 차이가 있는지 확인

클러스터링: K-means

가격 예측 모델 : 국산차의 가격을 예측해주는 모델을 만들고 그 모델에

외제차의 스펙을 넣어주면 어느 정도의 차이가 날까?

국산 및 외제차의 가격 비교

단위:만원

외제차 가격 요약

최대값 : 31,200

평균값: 7,102

최소값: 2,260

최대값: 6,798

평균값: 2,819

최소값: 908

분석 결과 시각화(PCA)

각 변수가 축소된 변수에 미친 영향 확인

2개의 변수로 차원축소 된 공간 내에서 데이터 분포

분석 결과 검정 (정규성 검정)

Shapiro-Wilk normality test

data: pca\$ind\$coord[, 1]
W = 0.98866, p-value = 0.2401

데이터들이 정규성을 적절히 따라가는 것을 알 수 있다.

귀무가설: 데이터는 정규분포이다

대립가설: 데이터는 정규분포가 아니다.

P-value가 0.05보다 크므로 귀무가설을 기각할

수 없다.

PCAMIX 설명

다중 대응 일치분석(MCA)

범주형 변수를 저차원에 뿌려주어 변수 간의 연관을 봄.

질적 및 양적 변수가 혼합 된 개인 또는 집합에 대한 주성분 분석을 수행한다. PCAmix는 특수한 경우로서 일반적인 주성분 분석 (PCA)과 다중 대응 분석 (MCA)을 포함한다.

-> pc1의 전체변수에 대한 설명력이 떨어짐..

분석 결과 시각화(PCA)

분석 결과 시각화(PCA)

확실히 수치값만 넣은 pca가 좀 더 분산 설명력이 높음 하지만 장점이 있으니..!! 이렇게 굳이 한 의미가 있으니!!

분석 결과 시각화 (각 클러스터 특징 설명)

분석 결과 시각화 (각 클러스터)

분석 결과 시각화 (군집내 가격 비교)

제원을 차원축소한 축을 기준으로 클러스터 내에서의 국산과 외제차 간의 판매가 비교 같은 제원(클러스터일 경우) 외제차가 가격이 더 높이 형성되어있음

활용 방안 (기본적인 자동차 추천 모델 구축)

다항 로지스틱 회귀 활용

Multinom 함수를 통해 다항로지스틱 회귀로 추천 시스템 개발

반응변수를 클러스터로 나머지 제원을 설명변수로 설정하였다.

```
m <- multinom(cluster ~ ., data = train)

predict(m, newdata = test, type = "class") # 예측데이터가 속하는 군집
predict(m, newdata = test, type = "probs") # 예측데이터가 해당되는 군집에 속할 확률

predicted <- predict(m, newdata = test)
sum(predicted == test$cluster)/NROW(test) # 정확도 측정
```


성능 검정

추천 시스템

다항 로지스틱 회귀를 활용한 자동차 추천 시스템

원하는 차량의 제원값을 넣으면, 가장 비슷한 차종들이 분류되어있는 군집단 번호를 제시

```
> # 가장 싸고, 평균적으로 성능을 내는, 그리고 브랜드는 기아(국산)꺼를 선호합니다 이에 맞는 차를 추천해주세요
> predict(m, newdata = data.frame(브랜드='기아',판매가=min(car$판매가),공식연비=mean(car$공식연비),배기량=mean(car$배기량),
+ 최고출력=mean(car$최고출력),최대토크=mean(car$최대토크),엔진형식='직렬4',미션형식1='자동',미션형식2='5단',연료항크=mean(car$연료탱크),구동방식='가솔린',공차중량=mean(car$공차중량),길이=mean(car$길이),폭=mean(car$폭),높이=mean(car$돈이),부피=mean(car$부피),면적=mean(car$면적),
+ 승차인원=mean(car$승차인원),도어수=mean(car$도어수),
+ 당이어=20,나라='국산'), type = "class")
[1] 1
Levels: 1 2 3 4 5
```


군집 내에서 가장 적절한 차량 몇 대를 추천

```
차종 브랜드 판매가
     스팅어
           기아 3500
149
     스토닉
150
           기아
                1910
151
      모닝
           기아
               1075
152
           기아
               1281
      레이
153 프라이드
           기아
                1456
>
```

가격 예측 모델

먼저 회귀식으로!!

```
Call:
lm(formula = 판매가 ~ . - 차종, data = a)
Residuals:
   Min
           10 Median
                         30
-3400.4 -562.1 -53.5
                      577.5 5095.9
Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
             1.694e+03 4.951e+03 0.342 0.73288
브랜드기아
           -2.528e+03 9.908e+02 -2.552 0.01210 *
브랜드닛산
           -7.274e+02 1.220e+03 -0.596 0.55210
브랜드도요타
          -1.371e+03 1.126e+03 -1.217 0.22605
브랜드랜드로버 2.321e+03 1.148e+03 2.021 0.04573 *
브랜드벤츠
          2.219e+03 9.776e+02 2.270 0.02516 *
브랜드벤틀리
          3.031e+04 2.847e+03 10.648 < 2e-16 ***
브랜드볼보
           -7.748e+02 9.284e+02 -0.835 0.40578
브랜드삼성
           -9.755e+02 1.046e+03 -0.932 0.35325
브랜드쉐보레K -1.859e+03 1.315e+03 -1.413 0.16036
브랜드쌍용
           -1.785e+03 9.064e+02 -1.969 0.05149.
브랜드아우다.
          1.293e+02 7.102e+02 0.182 0.85588
브랜드포드
           -1.927e+03 1.061e+03 -1.816 0.07205.
브랜드폭스바겐 -3.163e+02 8.388e+02 -0.377 0.70685
브랜드푸조
           1.470e+02 9.394e+02 0.156 0.87598
브랜드현대
           -1.779e+03 7.903e+02 -2.252 0.02634 *
브랜드혼다.
           -1.140e+03 1.125e+03 -1.013 0.31316
공식연비
          3.506e+02 1.086e+02 3.227 0.00165 **
배기량
           4.152e-02 6.691e-01 0.062 0.95063
최고출력
            1.741e+01 7.102e+00 2.452 0.01579 *
            8.402e+01 4.396e+01 1.911 0.05857 .
최대토크
엔진형식v10 8.718e+03 2.726e+03 3.199 0.00180 **
엔진형식v6
         -1.235e+03 2.070e+03 -0.597 0.55205
엔진형식v6
          -1.084e+03 1.241e+03 -0.874 0.38421
           2.638e+03 1.928e+03 1.369 0.17390
엔진형식v8
엔진형식w12
           -1.862e+04 3.192e+03 -5.833 5.56e-08 ***
엔진형식직렬3 -1.131e+03 2.287e+03 -0.495 0.62185
엔진형식직렬4
           -4.889e+02 1.070e+03 -0.457 0.64868
엔진형식직렬5
          -6.300e+02 1.549e+03 -0.407 0.68502
엔진형식직렬6
          3.038e+02 1.352e+03 0.225 0.82264
미션형식1자동
          5.378e+02 5.891e+02 0.913 0.36330
미션형식25단
           -2.421e+03 1.897e+03 -1.276 0.20451
미션형식26단
           -2.253e+03 1.783e+03 -1.263 0.20911
미션형식27단
           -2.645e+03 1.852e+03 -1.428 0.15617
미션형식28단
           -2.330e+03 1.870e+03 -1.246 0.21543
미션형식2무단
           -3.021e+03 1.954e+03 -1.546 0.12488
연료탱크
            6.872e+01 2.961e+01
                                2.321 0.02213 *
コケルムは0
            2 200-.02 0 124-.02
```

```
> summary(fit3)
Call:
lm(formula = 판매가 ~ . - 차종 - 브랜드 - 엔진형식 - 미션형식1 -
    미션형식2 - 길이 - 높이. data = a)
Residuals:
   Min
           10 Median
                           30
                                 Max
-6040.6 -1293.6 228.7 1322.2 14247.2
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.065e+03 3.919e+03 -2.058 0.041446 *
공식연비
           6.689e+02 1.493e+02 4.480 1.52e-05 ***
배기량
           2.597e+00 6.036e-01 4.303 3.12e-05 ***
최고출력
          -1.172e+01 8.062e+00 -1.453 0.148348
최대토크
       3.576e+02 5.137e+01 6.961 1.15e-10 ***
연료탱크
           4.823e+01 4.123e+01 1.170 0.244082
구동방식경유 -6.395e+03 1.012e+03 -6.317 3.23e-09 ***
공차중량
           3.777e+00 2.099e+00 1.799 0.074080 .
폭
           -4.292e-02 3.091e-01 -0.139 0.889768
부피
           8.064e+01 2.545e+02 0.317 0.751819
면적
           -2.112e+03 5.994e+02 -3.523 0.000575 ***
승차인원
          -6.388e+01 2.856e+02 -0.224 0.823313
도어수
          -3.266e+01 4.021e+02 -0.081 0.935389
타이어
         -1.202e+01 8.101e+01 -0.148 0.882217
나라외제
           6.722e+02 5.845e+02 1.150 0.252058
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2700 on 142 degrees of freedom
Multiple R-squared: 0.8207, Adjusted R-squared: 0.803
```

F-statistic: 46.42 on 14 and 142 DF. p-value: < 2.2e-16

분석 결과 해석

✓ 성능이 비슷한 차라도 외제차가 국산차에 비해 비싼 경향을 보인다.

✓ 단순히 정형 데이터로 확인할 수 있는 성능(제원)을 넘어서 디자인과 인지도 같은 비정형 요소가 가격에 영향을 미친다고 생각할 수 있다.

Thank you