Tutorial 6B: Inductive proofs

Exercise 1: Below is an inductive definition of the Church numerals.

$$N'_0 = x$$
 $N'_{m+1} = f N'_m$ $N_m = \lambda f \cdot \lambda x \cdot N'_m$

Using this definition:

- b) Prove by induction on $\,m\,$ that $\,N_m'[N_k'/x]=N_{m+k}'\,.$
- c) Use this to prove that $\ \ \operatorname{\mathsf{add}}\ N_m\ N_k \to_\beta^* N_{m+k}$.
- d) Prove by induction on m that $N_m'[\lambda x. N_k'/f] \to_{eta}^* N_{m imes k}'$, using (b) above.
- e) Use this to prove that $\ \, \mathop{\mathsf{mul}} \, N_m \, \, N_k \to_{eta}^* \, N_{m imes k} \, .$