无网格计算方法的网格搜索方法

周吕文

2010年11月5日

Cell 2	Cell 4 ① ⑦ ③
Cell 1 (2)	Cell 3 6

Cell 2	Cell 4 1 7
Cell 1 (8) (2)	Cell 3 5 6

	1	2	3	4				
Head	8	0	6	7				
	1	2	3	4	5	6	7	8
Link	0	0	1	2	0	5	3	4

Cell 2	Cell 4 1 7
Cell 1 (8) (2)	Cell 3 5 6

	1	2	3	4				
Head	8	0	6	7				
	1	2	3	4	5	6	7	8
Link	0	0	1	2	0	5	3	4

Cell 2	Cell 4 1 7
Cell 1 (8) (2)	Cell 3

	1	2	3	4				
Head	8	0	6	7				
	1	2	3	4	5	6	7	8
Link	0	0	1	2	0	5	3	4

通过 Head 和 Link 来访问某个格子中所有的粒子,如访问第 4 个格子中的粒子:

▶ Head(4) = 7 找到第 4 个格子中最大号粒子即 7 号粒子

Cell 2	Cell 4 1 7
Cell 1 (2)	Cell 3

0	6	7				
2	3	4	5	6	7	8
0	1	2	0	5	3	4
;	2 0	2 3	2 3 4	2 3 4 5	2 3 4 5 6	2 3 4 5 6 7

通过 Head 和 Link 来访问某个格子中所有的粒子,如访问第 4 个格子中的粒子:

- ▶ Head(4) = 7 找到第 4 个格子中最大号粒子即 7 号粒子
- ▶ Link (7) = 3 找到第 4 个格子中次大号粒子即 3 号粒子

Cell 2	Cell 4 1 7
Cell 1 (2)	Cell 3

	1	2	3	4				
Head	8	0	6	7				
	1	2	3	4	5	6	7	8
Link	0	0	1	2	0	5	3	4

通过 Head 和 Link 来访问某个格子中所有的粒子,如访问第 4 个格子中的粒子:

- ▶ Head(4) = 7 找到第 4 个格子中最大号粒子即 7 号粒子
- ▶ Link (7) = 3 找到第 4 个格子中次大号粒子即 3 号粒子
- ▶ Link (3) = 1 找到第 4 个格子中次大号粒子即 1 号粒子

Cell 2	Cell 4 1 7
Cell 1 (2)	Cell 3

1	2	3	4				
8	0	6	7				
1	2	3	4	5	6	7	8
0	0	1	2	0	5	3	4
	_	8 0	1 2 3	8 0 6 7 1 2 3 4	8 0 6 7 1 2 3 4 5	8 0 6 7 1 2 3 4 5 6	8 0 6 7 1 2 3 4 5 6 7

通过 Head 和 Link 来访问某个格子中所有的粒子,如访问第 4 个格子中的粒子:

- ▶ Head(4) = 7 找到第 4 个格子中最大号粒子即 7 号粒子
- ▶ Link (7) = 3 找到第 4 个格子中次大号粒子即 3 号粒子
- ▶ Link (3) = 1 找到第 4 个格子中次大号粒子即 1 号粒子
- ▶ Link (1) = 0 0 表示第 4 个格子中没有其它可搜索粒子

生成 Link 和 Head 数组的伪代码

Algorithm 1: Generate Head and Link arrays

Initialize Link and Head

Do for all particles i form 1 to n

Icell = The number of cell which contain particle i

! Link to the previous occupant Link(i) = Head(Icell)

! The last one goes to the header Head(Icell) = i End do

访问某一格子中粒子的伪代码

```
Algorithm 2: Access All Particle in One Cell

i = Head(Number of one cell)

Do while I not equal 0

Access the i-th particle

i = Link(i)

End do
```

Data locality 方法

Cell 2	Cell 4 1 7
Cell 1 (8) (2)	Cell 3

	1	2	3	4	5	6	7	8
OldList	1	2	3	4	5	6	7	8
	1	2	3	4	5	6	7	8
NewList	2	4	8	5	6	1	3	7
	1	2	3	4	5			
CellEnd	0	3	3	5	8			

用 CellEnd 数组存放每个格子中所用粒子在 NewList 中的位置, 第 i 个格子中的所用粒子表示为

$$CellEnd(i) + 1 \cdots CellEnd(i+1)$$

生成 NewList 和 CellEnd 数组的伪代码

Algorithm 3: Generate NewList and CellEnd arrays

Initialize NewList, CellEnd and Temp

! Generate CellEnd array

Do for all particles i form 1 to n $|\mathsf{cell}| = \mathsf{The} \ \mathsf{index} \ \mathsf{of} \ \mathsf{cell} \ \mathsf{which} \ \mathsf{contain} \ \mathsf{particle} \ \mathsf{i} \\ \mathsf{CellEnd}(|\mathsf{lcell}+1:\mathsf{end}) = \mathsf{CellEnd}(|\mathsf{lcell}+1:\mathsf{end}) \ +1$

End do

! Generate NewList array

 $\mathsf{Temp} = \mathsf{CellEnd}$

Do for all particles i from n to 1

Icell = The index of cell which contain particle i

NewList(Temp(Icell+1)) = I

Temp(|cell+1) = Temp(|cell+1) - 1

End do

访问某一格子中粒子的伪代码

Algorithm 4: Access All Particle in One Cell Do for i form CellEnd(c)+1 to CellEnd(c+1) access particle NewList(i) End do

格子的编号

$$r = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix}$$

$$boxl = [L_x, L_y], Nc = [Nc_x, Nc_y]$$

$$\textit{CellSub}_i = \left[\lfloor \frac{x_i}{\textit{Nc}_x} \cdot \textit{L}_x \rfloor, \lfloor \frac{y_i}{\textit{Nc}_y} \cdot \textit{L}_y \rfloor \right] + 1$$

$$\textit{CellInd}_{\textit{i}} = \left[\textit{CellSub}_{\textit{i}} - [0,1]\right] \left[\begin{array}{c} 1 \\ \textit{Nc}_{\textit{x}} \end{array}\right]$$

搜索网格

搜索网格

```
Algorithm 5: half neighbors search base on Linked-list Cells (3D)
Do for all cells i
      CellInd i = i
      atom_i = Head(CellInd_i)
      Do while atom i not equal 0
            Do for all 14 cells j in the neighborhood of cell i
                  CellInd_j = Index of cells j
                  If CellInd_i equal CellInd_j then
                        atom_i = Link(atom_i)
                  Else
                        atom_i = head(CellInd_i)
                  Fnd if
                  Do while atom i not equal 0
                        compute the force between atom_i and atom_j in here
                        atom_j = link(atom_j)
                  End do
            End do
            atom_i = Link(atom_i)
      End do
End do
```

THE END