Calculus SC-107

$\begin{tabular}{ll} End Semester Examination 2022 \\ \hline Full marks 50, Time 2 Hours 30 Minutes \\ \end{tabular}$

	Student ID:	Student Name:
	uestion (Q1 to Q16) carry 2 marks. In o	ded for each of the questions (Q1-Q16). Each questions Q17 to Q20, you have to write full espace provided.
1.	The principal argument of $z = \frac{i}{1+i}$ is –	
2.	Let z be a complex number such that value of $ z - (2 + 2i) $ is	$\frac{z-i}{z-1}$ is purely imaginary. Then the minimum
3.	Let $f(x,y) = x^4 + y^4 - 6(x^2 + y^2) + 8xy$. and local minimum at ar	
4.	The value of the integral $\iint_E e^{y/x} dx dx$ $y = x, y = 0$, and $x = 1$ is	y, where E is the region bounded by the lines
5.	At the same point $(1,2)$ the function f	has derivative 2 in the direction toward $(2,2)$. (x,y) has derivative -2 in the direction toward $(1,2)$ in the direction toward the point $(4,6)$.
6.	Find the area of the region R bounded $r^2 = a^2 \sin 2\theta$, where $a > 0$. Correct Answer:	by one loop of the lemniscate

7. The value of the integral

$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} (x^2 + y^2)^{3/2} dy dx$$

is ————

- 8. Consider the function $f(z) = (1 z^3)e^{\left(\frac{1}{z}\right)}$. Then which of the following is true?
 - (a) f(z) has an essential singularity at z=0 with principal part $\sum_{n=1}^{\infty} \left(\frac{1}{n!} + \frac{1}{(n+3)!}\right) \frac{1}{z^n}$
 - (b) f(z) has a removable singularity at z = 0
 - (c) f(z) has an essential singularity at z=0 with principal part $\sum_{n=1}^{\infty} \frac{1}{n!} \frac{1}{z^n}$
 - (d) f(z) has an essential singularity at z=0 with principal part $\sum_{n=1}^{\infty} \left(\frac{1}{n!} \frac{1}{(n+3)!}\right) \frac{1}{z^n}$

Correct Answer: —

9. Does the limit $\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2y^2+1}-1}{x^2+y^2}$ exist? If yes what is the value?

Correct Answer: —

13. The general solution of $y'' + 2y' = \cos 2x$ is —

14. The general solution of $\frac{dy}{dx} + y \tan x = \sec x + 2x \cos x$ is

15. Consider the region bounded above by the line y=1, bounded below by the curve $y=\sqrt{\cos x}$ and on the sides by the lines $x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2}$. The volume of the solid generated by revolving the above region about x-axis is

16. If $\int_0^{x^2} f(t)dt = x\cos(\pi x)$, then the value of f(4) is

17. Evaluate the integrals (i)
$$\int_{|z|=1} \frac{z+3}{z^4+az^3}dz, \quad |a|>1$$
 (ii)
$$\int_{|z|=5} \frac{z+5}{z^2-3z-4}dz$$

(ii)
$$\int_{|z|=5} \frac{z+5}{z^2-3z-4} dz$$

18. Let f(z) = u + iv be an analytic function in a domain D. If $v = u^2$ then prove that f(z) is a constant function. [3]

19. Find the maximum and minimum value of the function $f(x,y) = x^3 + 3xy - y^3$ in the triangular region R with vertices (1,2), (1,-2) and (-1,-2). [5]

20. Solve the differential equation
$$\frac{d^2y}{dx^2} + y = \sec^2 x$$
, $\frac{-\pi}{2} < x < \frac{\pi}{2}$. [5]