

1 1. A purified nucleic acid comprising a nucleotide sequence that encodes a naturally
2 occurring protein that: (a) shares at least 80% sequence identity with SEQ ID NO:2 and (b) has
3 at least one functional activity of native XB3.

1 2. The nucleic acid of claim 1, wherein the nucleotide sequence defines a
2 polynucleotide whose complement hybridizes under high stringency conditions to the nucleotide
3 sequence of SEQ ID NO:1.

1 3. The nucleic acid of claim 1, wherein the protein has an amino acid sequence
2 consisting of SEQ ID NO:2.

1 4. The nucleic acid of claim 1, wherein the protein specifically binds to XA21.

1 5. A vector comprising the nucleic acid of claim 1.

1 6. The vector of claim 5, wherein said nucleic acid is operably linked to one or
2 more expression control sequences.

1 7. A cell comprising the nucleic acid of claim 1.

1 8. A purified protein that: (a) comprises an amino acid sequence that shares at least
2 80% sequence identity with SEQ ID NO:2 and (b) has at least one functional activity of native
3 XB3.

1 9. The protein of claim 8 whose amino acid sequence is SEQ ID NO:2.

1 10. The protein of claim 8, wherein the protein is a fused heterologous polypeptide.

1 11. A purified protein comprising a polypeptide selected from the group consisting of
2 amino acid residues 1-10 of SEQ ID NO:2; amino acid residues 11-305 of SEQ ID NO:2; and
3 amino acid residues 319-385 of SEQ ID NO:2.

1 12. A purified antibody that specifically binds to the protein of claim 8.

1 13. The antibody of claim 12, further comprising a detectable label.

1 14. A screening method for identifying a substance that modulates binding of an XB3
2 protein to XA21, the method comprising the steps of:

- 3 (a) providing a sample containing the XB3 protein;
- 4 (b) adding to the sample a candidate substance;
- 5 (c) adding to the sample XA21; and
- 6 (d) detecting an increase or decrease in binding of the XB3 protein to XA21

7 in the presence of the candidate substance, compared to the binding of the XB3 protein to XA21
8 in the absence of the candidate substance, as an indication that the candidate substance
9 modulates binding of XB3 protein to XA21.

1 15. A method of producing an XB3 protein comprising the steps of:

2 (a) providing a cell transformed with an isolated nucleic acid comprising a
3 nucleotide sequence that encodes an XB3 protein;
4 (b) culturing the cell under conditions that allow expression of the XB3
5 protein; and
6 (c) collecting the XB3 protein from the cultured cell.

1 16. A screening method for identifying a substance that modulates expression of a
2 gene encoding XB3, the method comprising the steps of:

3 (a) providing a test cell;
4 (b) contacting the test cell with a candidate substance; and
5 (c) detecting an increase or decrease in the expression level of the gene
6 encoding XB3 in the presence of the candidate substance, compared to the expression level of
7 the gene encoding XB3 in the absence of the candidate substance, as an indication that the
8 candidate substance modulates the level of expression of the gene encoding XB3.

1 17. A method for isolating a substance that binds XB3 comprising the steps of:

2 (a) providing a sample of an immobilized XB3;

3 (b) contacting a mixture containing the XB3-binding substance with the

4 immobilized XB3;

5 (c) separating unbound components of the mixture from bound components

6 of the mixture; and

7 (d) recovering the XB3-binding substance from the immobilized XB3

8 protein.

18. The method of claim 17, wherein the XB3-binding substance is XA21.

1 19. A method of modulating disease resistance in a plant cell or seed, the method
2 comprising the steps of:

- (a) providing a plant cell or seed having a first disease resistance phenotype;

(b) introducing into the plant cell or seed a purified nucleic acid comprising a sequence that encodes a naturally occurring protein that: shares at least 80% sequence with SEQ ID NO:2 and has at least one functional activity of native XB3 to create a transformed plant cell or seed,

wherein the purified nucleic acid is selected such that it produces a second disease resistance phenotype in the transformed plant cell or seed that differs from the first disease resistance phenotype.

1 20. The method of claim 19, wherein the naturally occurring protein lacks at least one
2 functional activity of native XB3 selected from the group consisting of: ability to bind XA21,
3 ability to be phosphorylated by XA21, and ubiquitin ligase activity.

1 21. A method of modulating disease resistance in a plant cell or seed, the method
2 comprising the steps of:
3 (a) providing a plant cell or seed having a first disease resistance phenotype;
4 (b) introducing into the plant cell or seed a purified nucleic acid that
5 modulates expression of native XB3 to create a transformed plant cell or seed,
6 wherein the purified nucleic acid is selected such that it produces a second
7 disease resistance phenotype in the transformed plant cell or seed that differs from the first
8 disease resistance phenotype.

1 22. The method of claim 21, wherein the purified nucleic acid hybridizes under
2 stringent hybridization conditions to a nucleic acid selected from the group consisting of SEQ ID
3 NO:1 and the complement of SEQ ID NO:1.

1 23. A method of modulating disease resistance in a plant cell or seed, the method
2 comprising the steps of:

3 (a) providing a plant cell or seed having a first disease resistance phenotype;
4 (b) introducing into the plant cell or seed a purified nucleic acid that encodes
5 a polypeptide that inhibits a functional activity of native XB3 to create a transformed plant
6 cell or seed;
7 (c) culturing the transformed plant cell or seed under conditions in which the
8 polypeptide is expressed,

9 wherein expression of the polypeptide in the transformed plant cell or
10 seed produces a second disease resistance phenotype in the transformed plant cell or seed that
11 differs from the first disease resistance phenotype.

1 24. The method of claim 23, wherein the polypeptide shares at least 80% sequence
2 identity with SEQ ID NO:2 and has at least one functional activity of native XB3.