

BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning

Xiao Xu^{1,2}, Chenfei Wu², Shachar Rosenman³, Vasudev Lal³, Wanxiang Che¹, Nan Duan²

¹Harbin Institute of Technology, ²Microsoft Research Asia, ³Intel Labs

Presenter: Xiao Xu

Vision-Language Pre-training Background

[1] Word Embedding

[2] Transformer Encoder

[7] Dot Product

[8] Transformer Encoder

[9] Transformer Decoder

[10] Transformer Encoder (MoE)

[3] Linear Projection

[4] CNN

[5] Object Detector

[6] Vision Transformer

	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]

[2] Transformer Encoder

[7] Dot Product

[6] Vision Transformer

	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]

[1] Word Embedding

[8] Transformer Encoder

[5] Faster R-CNN

	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]

Textual Tower Tower

[8] Transformer Encoder

[2] RoBERTa

[6] CLIP-ViT / Swin Transformer

	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]

[1] Word Embedding

- [8] Transformer Encoder
- [9] Transformer Decoder

[4] ResNet (the first three blocks)

	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]

Cross-Modal
Fusion

Textual
Tower

Tower

[10] Transformer Encoder (MoE)

[1] Word Embedding

[3] Linear Projection

	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]

Motivation

Two-Tower architecture only use the last-layer uni-modal features.

Numerous works proved: different layers encode different types of semantic information.

Question: can we build a bridge between different layers of uni-modal towers and the cross-modal fusion module?

Two-Tower vs BridgeTower

Two-Tower

only fuse the last layer features

Brogeower

gradually fuse multiple top layer features

Our BridgeTower Architecture

Ablation Study

Design I: Definition of Bridges

Design II: Number of Layers

Design III: Number of Bridges

Design I: Definition of Bridges

$\operatorname{BridgeLayer}(x,y)$	# Params	Test-Dev	RSUM
(a) $x + y$	18.4K	75.18	533.8
(b) $x \odot y$	18.4K	73.41	530.4
(c) $\alpha x + (1 - \alpha) y, \alpha \in \mathbb{R}^{D_Z}$	26.0K	75.09	532.9
(d) $\alpha x + (1 - \alpha) y, \alpha = \sigma(\mathbf{W}[x; y])$	11.8M	75.13	533.1
(e) $\mathbf{W}[x;y]$	11.8M	74.55	532.2
(f) $\mathbf{W}_2\left(\operatorname{GeLU}\left(\mathbf{W}_1[x;y]\right)\right)$	35.4M	74.26	530.2
(g) MCA (x, y)	23.6M	73.67	514.3
(h) FFN (MCA (x, y))	70.8M	73.54	511.1
(i) $x + y + \mathbf{W}_* [x; y]$	11.8M	75.10	533.1

x: the output cross-modal representation of the previous layer

y: the corresponding input uni-modal representation

Design II: Number of Layers

Ι_	# Params	VQA	v2 Test-Dev	Flickr.	30K RSUM
L_Z	# Parailis	METER	Ours	METER	Ours
2	37.8M	72.84	74.12 († 1.28)	526.0	527.1 († 1.1)
3	56.8M	73.47	74.36 († 0.89)	526.5	528.6 († 2.1)
4	75.6M	73.71	75.00 († 1.29)	527.9	529.7 († 1.8)
5	94.6M	73.80	74.98 († 1.18)	528.8	531.8 († 3.0)
6	113.4M	74.04	75.18 († 1.14)	530.7	533.8 († 3.1)
8	151.2M	73.97	75.07 († 1.10)	530.0	531.6 († 1.6)
10	189.0M	73.45	75.06 († 1.61)	529.6	531.7 († 2.1)
12	226.8M	71.88	74.94 († 3.06)	528.7	531.4 († 2.7)

Design III: Number of Bridges

	# Internal	# External	VQAv2 Test-Dev	Flickr30K RSUM
BridgeTower ————	- 6	0	75.18	533.8
	4	2	75.06 (\psi 0.12)	533.1 (\psi 0.7)
	3	3	74.97 (\psi 0.21)	532.8 (\ 1.0)
	2	4	74.71 (\psi 0.47)	532.3 (\ 1.5)
Two-Tower(METER) ——	0	6	74.04 (\ 1.14)	530.7 (\psi 3.1)

Apply Different Uni-modal Backbones

Textual Tower

Visual

Visual	Textual	VQA	v2 Test-Dev	Flickr	30K RSUM
Backbone	Backbone	METER	Ours	METER	Ours
DeiT B-224/16	RoBERTa	69.98	70.83 († 0.85)	448.0	455.7 († 7.7)
ViT B-224/16	RoBERTa	70.26	72.24 († 1.98)	472.7	476.9 († 4.2)
ViT B-384/16	RoBERTa	70.52	72.38 († 1.86)	472.8	477.1 († 4.3)
CLIP-VIT-B/32	RoBERTa	72.19	72.91 († 0.72)	508.8	512.0 († 3.2)
CLIP-VIT-B/16	BERT	74.09	74.89 († 0.80)	522.1	526.5 († 4.4)
CLIP-VIT-B/16	RoBERTa	74.04	75.18 († 1.14)	530.7	533.8 († 3.1)

Pre-training Settings

Pre-training Objectives

- Masked Language Modeling MLM
- Image-Text Matching ITM

Pre-training Datasets

• 4M Images, ~9M Image-Text Pairs

	COCO	VG	CC	SBO
# Images	113K	108K	2.9M	860K
# Captions	567K	4.8M	2.9M	860K

Hyperparameters	BRIDGETOWERBASE	BridgeTowerlarge
Number of Layers	6	6
Hidden size	768	1,024
FFN inner hidden size	3,072	4,096
Number of Attention heads	12	16
Dropout Ratio	0.1	0.1
Attention dropout	0.1	0.1
Total Steps	100k	100k
Batch Size	4,096	4,096
Textual Encoder	RoBERTa _{BASE}	RoBERTa _{LARGE}
Visual Encoder	CLIP-ViT-B	CLIP-ViT-L
Patch Size	16	14
Image Resolution	288	294

Results on VQAv2 Dataset

Model	# Pre-train	Visual	Test-Dev		Test-Sta	ndard	
Model	Images	Backbone	Overall	Yes/No	Number	Other	Overall
Base-Size Models							
ViLT _{BASE} (Kim, Son, and Kim 2021)	4M	ViT-B-384/32	71.26	-	-	-	-
UNITER _{BASE} (Chen et al. 2020) *	4M	Faster R-CNN	72.70	-	-	-	72.91
VILLA _{BASE} (Gan et al. 2020) *	4M	Faster R-CNN	73.59	-	-	-	73.67
UNIMO _{BASE} (Li et al. 2021b)	4M	Faster R-CNN	73.79	-	-	-	74.02
ALBEF _{BASE} (Li et al. 2021a) *	4M	DeiT-B-224/16	74.54	-	-	-	74.70
ALBEF _{BASE} (Li et al. 2021a) *	14 M	DeiT-B-224/16	75.84	-	-	-	76.04
VinVL _{BASE} (Zhang et al. 2021)	5.7M	ResNeXt-152	75.95	-	-	-	76.12
VLMO _{BASE} (Wang et al. 2021a)	4M	BEiT-B-224/16	76.64	-	-	-	76.89
BLIP _{BASE} (Li et al. 2022b) *	14 M	DeiT-B-224/16	77.54	-	-	-	77.62
METER _{BASE} (Dou et al. 2022)	4M	CLIP-ViT-B-224/16	77.68	92.49	58.07	69.20	77.64
mPLUG (Li et al. 2022a) *	4M	CLIP-ViT-B-224/16	77.94	-	-	-	77.96
OFA _{BASE} (Wang et al. 2022b) * \star	54M	ResNet-101	77.98	-	-	-	78.07
SimVLM _{BASE} (Wang et al. 2021c) \star	1.8B	ResNet-101	77.87	-	-	-	78.14
BLIP _{BASE} (Li et al. 2022b) *	129M	DeiT-B-224/16	78.24	-	-	-	78.17
BridgeTower _{base} (Ours)	4M	CLIP-ViT-B-224/16	78.66	92.92	60.69	70.51	78.73
$BRIDGETOWER_{BASE}$ (Ours) *	4M	CLIP-ViT-B-224/16	79.10	93.06	62.19	70.69	79.04
Large-Size Models							
UNITER _{LARGE} (Chen et al. 2020) *	4M	Faster R-CNN	73.82	-	-	-	74.02
VILLA _{LARGE} (Gan et al. 2020) $*$	4M	Faster R-CNN	74.69	-	-	-	74.87
UNIMO _{LARGE} (Li et al. 2021b)	4M	Faster R-CNN	75.06	-	-	-	75.27
VinVL _{LARGE} (Zhang et al. 2021)	5.7M	ResNeXt-152	76.52	92.04	61.50	66.68	76.63
SimVLM _{LARGE} (Wang et al. 2021c)	1.8B	ResNet-152	79.32	-	-	-	79.56
VLMO _{LARGE} (Wang et al. 2021a)	4M	BEiT-L-224/16	79.94	-	-	-	79.98
OFA _{LARGE} (Wang et al. 2022b) * \star	54M	ResNet-152	80.43	93.32	67.31	72.71	80.67
BridgeTowerlarge (Ours)	4M	CLIP-ViT-L-224/14	81.25	94.69	64.58	73.16	81.15
BridgeTower _{Large} (Ours) *	4M	CLIP-ViT-L-224/14	81.52	94.80	66.01	73.45	81.49

Results on VQAv2 Dataset

Model	# Pre-train Visual		Test-Dev		Test-Sta		
Model	Images	Backbone	Overall	Yes/No	Number	Other	Overall
Large-Size Models			•				
UNITER _{LARGE} (Chen et al. 2020) *	4M	Faster R-CNN	73.82	-	-	-	74.02
VILLA _{LARGE} (Gan et al. 2020) *	4M	Faster R-CNN	74.69	-	-	-	74.87
UNIMO _{LARGE} (Li et al. 2021b)	4M	Faster R-CNN	75.06	-	-	-	75.27
VinVL _{LARGE} (Zhang et al. 2021)	5.7M	ResNeXt-152	76.52	92.04	61.50	66.68	76.63
SimVLM _{LARGE} (Wang et al. 2021c)	1.8B	ResNet-152	79.32	-	-	-	79.56
VLMO _{LARGE} (Wang et al. 2021a)	4M	BEiT-L-224/16	79.94	-	-	-	79.98
OFA _{LARGE} (Wang et al. 2022b) * \star	54M	ResNet-152	80.43	93.32	67.31	72.71	80.67
BridgeTower _{large} (Ours)	4M	CLIP-ViT-L-224/14	81.25	94.69	64.58	73.16	81.15
BridgeTower _{large} (Ours) *	4M	CLIP-ViT-L-224/14	81.52	94.80	66.01	73.45	81.49
Huge or even Larger Size Models							
SimVLM _{HUGE} (Wang et al. 2021c)	1.8B	ResNet-101	80.03	93.29	66.54	72.23	80.34
METER _{HUGE} (Dou et al. 2022)	14 M	Florence-CoSwin-H	80.33	94.25	64.37	72.30	80.54
mPLUG (Li et al. 2022a) *	14 M	CLIP-ViT-L-224/14	81.27	-	-	-	81.26
GIT2 (Wang et al. 2022a) *	10.5B	DaViT(4.8B)	81.74	92.90	67.06	75.77	81.92
OFA _{HUGE} (Wang et al. 2022b) * \star	54M	ResNet-152	82.0	94.66	71.44	73.35	81.98
Flamingo (Alayrac et al. 2022) ★	2.3B	NFNet-F6	82.0	-	-	-	82.1
CoCa (Yu et al. 2022) ★	4.8B	ViT-G-288/18	82.3	94.55	70.25	74.46	82.33
BEiT-3 (Wang et al. 2022c)	28M	BEiT-3	84.19	96.43	73.63	75.92	84.18
PaLI (Chen et al. 2022)	1.6B	ViT-E-224	84.3	96.13	69.07	77.58	84.34

Results on SNLI-VE and Flickr30K Dataset

Model	# Pre-train	SNL	I-VE	Flickr30K (1K test set)						
Model	Images	dev	test	IR@1	IR@5	IR@10	TR@1	TR@5	TR@10	RSUM
Pre-trained on More Data										
ALIGN _{BASE} (Jia et al. 2021)	1.8B	-	-	84.9	97.4	98.6	95.3	99.8	100.0	576.0
ALBEF _{BASE} (Li et al. 2021a)	14 M	80.80	80.91	85.6	97.5	98.9	95.9	99.8	100.0	577.7
Pre-trained on CC, SBU, MSCOCO and	VG datasets									
ViLT _{BASE} (Kim, Son, and Kim 2021)	4M	-	-	64.4	88.7	93.8	83.5	96.7	98.6	525.7
UNITER _{LARGE} (Chen et al. 2020)	4M	79.30	79.38	75.6	94.1	96.8	87.3	98.0	99.2	550.9
VILLA _{LARGE} (Gan et al. 2020)	4M	80.18	80.02	76.3	94.2	96.8	87.9	97.5	98.8	551.5
UNIMO _{LARGE} (Li et al. 2021b)	4M	81.11	80.63	78.0	94.2	97.1	89.4	98.9	99.8	557.5
ALBEF _{BASE} (Li et al. 2021a)	4M	80.14	80.30	82.8	96.7	98.4	94.3	99.4	99.8	571.4
METER-CLIP-ViT _{BASE} (Dou et al. 2022)	4M	80.86	81.19	82.2	96.3	98.4	94.3	99.6	99.9	570.7
BridgeTower _{BASE} (Ours)	4M	81.11	81.19	85.8	97.6	98.9	94.7	99.6	100.0	576.6

KL Divergence Visualization

Higher/lower KL divergence means that different attention heads pay attention to different/similar tokens.

Conclusion & Future

Conclusion:

- We introduced BridgeTower, a simple but effective architecture for VL pre-training.
- We studied different design choices for bridges.
- We show that BridgeTower achieves SOTA results on multiple downstream tasks.

• Future:

- More Pre-training Objectives (currently we only use two)
- Larger-Scale Pre-training (currently only 4M data)
- More Modalities (currently only two modalities)

Integrated into Hugging Face – Transformers

BridgeTower

Overview

The BridgeTower model was proposed in

This paper has been accepted to the AAAI'23 conference.

The abstract from the paper is the following:

Vision-Language (VL) models with the TWO-TOWER architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder. Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BRIDGETOWER, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the crossmodal encoder. This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BRIDGETOWER achieves state-of-the-art performance on various downstream vision-language tasks. In particular, on the VQAv2 test-std set, BRIDGETOWER achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs. Notably, when further scaling the model, BRIDGETOWER achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets.

BridgeTower

Overview

Usage

BridgeTowerConfig

BridgeTowerTextConfig

BridgeTowerVisionConfig

BridgeTowerImageProcesso

BridgeTowerProcessor

BridgeTowerModel

BridgeTowerForMaskedLM

BridgeTowerForImageAndText

Retrieva

• Source Code: https://github.com/huggingface/transformers/tree/main/src/transformers/models/bridgetower

Documentation: https://huggingface.co/docs/transformers/main/en/model_doc/bridgetower

Integrated into Hugging Face – Transformers

- Pre-trained models released on Hugging Face Model Hub
 - https://huggingface.co/BridgeTower

- Model Variants
 - Number of parameters:

	Textual Encoder	Visual Encoder	Cross-Modal Encoder	Total
BridgeTower _{Base}	124M	86M	113M	323M
BridgeTower _{Large}	355M	304M	200M	859M

Usage – Image-Text Matching

```
from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval
import requests
from PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
processor = BridgeTowerProcessor.from pretrained("BridgeTower/bridgetower-base-itm-mlm")
model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
# forward pass
scores = dict()
for text in texts:
    # prepare inputs
    encoding = processor(image, text, return_tensors="pt")
    outputs = model(**encoding)
    scores[text] = outputs.logits[0,1].item()
# {'An image of two cats chilling on a couch': 4.8437371253967285,
# 'A football player scoring a goal': -6.897047996520996}
```


Usage – Masked Language Modeling

```
from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000360943.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
text = "a <mask> looking out of the window"
processor = BridgeTowerProcessor.from pretrained("BridgeTower/bridgetower-base-itm-mlm")
model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
# prepare inputs
encoding = processor(image, text, return_tensors="pt")
# forward pass
outputs = model(**encoding)
results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist())
print(results)
# a cat looking out of the window.
```


Next Steps

- ☐ Pre-training Scripts for BridgeTower
- ☐ Fine-tuning Scripts and Notebooks for More Downstream Tasks

Thanks & QA

Xiao Xu^{1,2}, Chenfei Wu², Shachar Rosenman³, Vasudev Lal³, Wanxiang Che¹, Nan Duan²

¹Harbin Institute of Technology, ²Microsoft Research Asia, ³Intel Labs

Presenter: Xiao Xu

Microsoft*

