Topología – 2° cuatrimestre 2015

Topologías iniciales y finales

Ejercicio para entregar

- 1. Sean X un espacio topológico, \sim una relación de equivalencia en X y \sim' una relación de equivalencia en $X/_{\sim}$. Pruebe que el espacio $(X/_{\sim})/_{\sim'}$ es homeomorfo a $X/_{\sim''}$, donde $x \sim'' y$ si y sólo si $q(x) \sim' q(y)$, con $q: X \to X/_{\sim}$ la proyección al cociente. Deduzca que el toro T es homeomorfo a $\mathbb{S}^1 \times I/_{[(z,0)\sim(z,1)]}$, y que la botella de Klein K es homeomorfa a $\mathbb{S}^1 \times I/_{[(z,0)\sim(\bar{z},1)]}$.
- 2. Sean $\{X_n\}_{n\in\mathbb{N}}$ una sucesión de espacios topológicos, y $f_n:X_n\to X_{n-1}$ funciones continuas. Consideramos $X=\{(x_n)\in\prod X_n:f_n(x_n)=x_{n-1}\ \forall n\in\mathbb{N}\},\ y\ p_n:X\to X_n$ las funciones definidas por $p_n((x_k))=x_n$. Le damos a X la topología inicial inducida por $\{p_n\}_{n\in\mathbb{N}}$. X es el límite inverso o límite proyectivo de $\{X_n\}$, y se denota $X=\varprojlim X_n$.
 - a) Pruebe la siguiente propiedad universal: dados Y espacio topológico y $g_n: Y \to X_n$ familia de funciones continuas tal que $f_n g_n = g_{n-1}$, existe una única $g: Y \to X$ función continua tal que $p_n g = g_n$.
 - b) Sea $f_n: \mathbb{R}^n \to \mathbb{R}^{n-1}$ la proyección a las primeras n-1 coordenadas. Pruebe que $\varprojlim \mathbb{R}^n$ es homeomorfo a \mathbb{R}^ω .

Demostración 1. Sea $q: X \to X/\sim$, $q_1: X \to X/\sim'$ y $q_2: X \to X/\sim''$. Consideremos $q: X \to X/\sim$ y veamos el diagrama:

Notemos que $q_1 \circ q: X \to X/\sim /\sim'$ es continua y que si $x \sim'' y$ entonces $q(x) \sim' q(y)$ y entonces $q_1 \circ q(x) = q_1 \circ q(y)$. Por ende por la PU del cociente el diagrama de arriba conmuta. Es claro que \widetilde{q} es continua y sobreyectiva e inyectiva (estoúltimo por la cuenta de arriba), nos bastaría ver que es abierta. Sea $U_2 \subset X/\sim''$ abierto, entonces $q_2^{-1}(U_2) = U$ es abierto. Entonces $\widetilde{q}(U_2)$ es abierto sii $q_1^{-1}(\widetilde{q}(U_2))$ es abierto sii $q_1^{-1}(\widetilde{q}(U_2)) = U$ es abierto. Por ende \widetilde{q} es abierta y entonces \widetilde{q} es homeo.

2. a) Dados Y y $\{g_n\}$ tal que el siguiente diagrama conmuta $\forall n$:

$$Y \xrightarrow{g_n} X_n$$

$$X_{n-1} \downarrow f_n \downarrow$$

$$X_{n-1} \downarrow$$

Debemos hallar una $g: Y \to X$ continua tal que el siguiente diagrama conmute:

$$Y \xrightarrow{g} X$$

$$X_n$$

Definamos $g: Y \to X$ dado por $y \mapsto (g_n(y))_{n \in \mathbb{N}}$. Y veamos que cumple la propiedad universal!

- g esta bien definida Sea $y \in Y$ veamos que $g(y) \in X!$ pero $g(y) \in X$ sii $f_n(g_n(y)) = g_{n-1}(y)$ y esto vale por hipótesis.
- g cumple el diagrama conmutativo de arriba Trivial por construcción, pues $p_n(g(y)) = p_n((g_k(y))_k) = g_n(y)$
- g es continua Como las $\{p_n\}$ son familia inicial, entonces g es continua sii $p_n \circ g = g_n$ es continua $\forall n \in \mathbb{N}$, pero esto vale por hipótesis. Por ende g es continua.
- Unicidad Sea $h: Y \to X$ otra función que hace conmutar el diagrama, entonces $p_n(g) = g_n = p_n(h) \ \forall n \in \mathbb{N}$, y por ende $p_n(g-h) = 0 \ \forall n$ y como las p_n son iniciales entonces g = h.
- b) Veamos que \mathbb{R}^{ω} cumple la propiedad universal! Sean Y y $g_n: Y \to \mathbb{R}^n$ tal que:

$$Y \xrightarrow{g_n} \mathbb{R}^n$$

$$\downarrow^{g_{n-1}} f_n \downarrow$$

$$\mathbb{R}^{n-1}$$

Y sea $g: Y \to \mathbb{R}^{\omega}$ dada por $y \mapsto ((g_n(y))_n)_{n \in \mathbb{N}}$ O sea en el lugar n-ésimo tenemos a la coordenada n-ésima de g_n . Entonces g cumple la PU! Por ende $\mathbb{R}^{\omega} \simeq \varprojlim \mathbb{R}^n$

1. Ejercicio 1

Demostración Debemos ver que $\{U \cap Z, U \subseteq A\} = \{V \cap Z, V \subseteq X\}.$

- ⊆) Como $U \subseteq A$ abierto, entonces al ser A subespacio tenemos que $U = V \cap A$ con V abierto en X, por ende $U \cap Z = V \cap A \cap Z$ y como $Z \subset A$ tenemos que $Z \cap A = Z$, por ende $U \cap Z = V \cap Z$ con V abierto en X.
- \supseteq) $V \cap Z = V \cap A \cap Z = U \cap Z \text{ con } U = V \cap A \text{ abierto de } A$

2. Ejercicio 2

Demostración a) Sea $I \times I \subset \mathbb{R} \times \mathbb{R}$ entonces tomemos al $\{\frac{1}{2}\} \times (\frac{1}{2}, 1] := A$ como $A = \{\frac{1}{2}\} \times (\frac{1}{2}, 2) \cap I^2$ tenemos que A es abierto para la topo subespacio, pero A claramente no es abierto en la topo del orden, pues un entorno del $(\frac{1}{2}, 1]$ incluye a (x, 0) con $x > \frac{1}{2}$ y $(x, 0) \notin A$.

- b) Veamoslo por partes!
 - Sea U=(a,b) un abierto básico de Y en la topología del orden, entonces ya es abierto de \mathbb{R}^2 .
 - Sea $U = V \cap Y$ con V = (a, b) en \mathbb{R}^2 , y sea $a' = \inf\{r \in (a, b) \mid r \in Y\}$, y $b' = \sup\{r \in (a, b) \mid r \in Y\}$. Por lo que $(a, b) \cap I^2 = (a', b')$, pero como Y es convexo tenemos que $(a', b') \subset Y$ y entonces es un abierto de la topología del orden. \P (Preguntar...)

3. Ejercicio 3

Demostración a) Abierto en ambos

- b) Abierto en I pero no es \mathbb{R}
- c) No abierto en ninguno de los dos

- d) Idem
- e) Dado que $\{\frac{1}{n}\} \cup 0 \cup \{-1,1\}$ es cerrado en ambos espacios, entonces este conjunto es abierto en ambos.
- f) Abierto en I pero no en \mathbb{R}
- 4. Ejercicio 4

Demostración $\{U\times V\ ,\ U\in\tau_A\ ,\ V\in\tau_B\}=\{U\times V\ ,\ U=Z\cap A\ ,\ V=W\cap B\}=\{(Z\cap A)\times (W\cap B)\}=\{(Z\times W)\cap (A\times B)\}$

5. Ejercicio 5

Demostración Sea $U \times V$ abierto en $A \times B$, entonces $i_1^{-1}(U \times V) = U$ que es abierto en X, por ende las inclusiones son continuas, por lo que las proyecciones son abiertas. No obstante $p_1(\{xy=0\}) = \{x>0\}$ y por ende no es cerrada.

6. Ejercicio 6

Demostración a) Notemos que $f_X = f \circ i_1$ y $f_Y = f \circ i_2$ y tanto f, i_1, i_2 son continuas, por ende f_X, f_Y son continuas.

- b) Infinitos ejemplos de A1
- 7. Ejercicio 7

Demostración Sea $x \in \overline{A \times B}$, entonces dado $U \ni x$ entorno abierto (que podemos suponer de la forma $V \times W$ con ambos abiertos respectivos), entonces $V \cap A \times W \cap B = V \times W \cap A \times B \neq \emptyset$, sii $V \cap A \neq \emptyset$, $W \cap B \neq \emptyset$, sii $x \in \overline{A} \times \overline{B}$.

8. Ejercicio 8

Demostración a) Sea $U \in \tau_{ord}$, sii $U = (a, b) = \{a_x\} \times (a_y, \infty) \bigcup_{a_x < x < b_x} \{x\} \times \mathbb{R} \cup \{b_x\} \times (-\infty, b_y)$. Entonces es claro que ambas son más finas que la topo usual de \mathbb{R}^2 .

- b) Ufff Vamos de a partes!
 - Sea $U=(a,b)\times(c,d)=\bigcup_{a_x< x< b_x}\{x\}\times(c,d)$ entonces como $\{x\}\times(c,d)$ es abierto básico de la topología del orden, tenemos que $U\in\tau_{ord}$
 - Por la misma cuenta de antes $U \in \tau_{d \times R}$
 - Por el item anterior $\tau_{ord} = \tau_{d \times \mathbb{R}}$

Por ende $\tau_{prod} \subsetneq \tau_{ord} = \tau_{d \times \mathbb{R}}$

9. Ejercicio 9

Demostración • $\mathbb{R}_l \times \mathbb{R}$

Sea $U = V \cap L$, entonces $V = [a, b) \times (c, d)$ y supongamos que L no es vertical, entonces U = [a', b') y como estos ya son una base, tenemos que $\tau_L = \mathbb{R}_l$. Por otro lado si L es vertical, tenemos que $L \simeq \mathbb{R}$ via p_2 la proyección.

 $\blacksquare \mathbb{R}_l \times \mathbb{R}_l$

Acá debemos separar en la pendiente de L! Si L es horizontal o vertical, es fácil ver que $L \simeq \mathbb{R}_l$ vía las proyecciones. Por otro lado si la pendiente es positiva, tenemos que $U = V \cap L = [a,b) \times [c,d) \cap L = [a',b')$ y por ende $\tau_L = \mathbb{R}_l$; pero si la pendiente es negativa tenemos que $U = V \cap L = [a,b) \times [c,d) \cap L = [a',b']$ y por ende como $[a',b'] \cap [b',c'] = \{b'\}$ tenemos que $\tau_L = \tau_d$

10. Ejercicio 10

- **Demostración** a) Veamoslo para f! Es claro que es inyectiva, por ende veamos que es inicial! Sea $U \subset X$ abierto, entonces $U = f^{-1}(U \times Y)$ y $U \times Y$ es abierto del producto. Por otro lado si $U \times V$ es abierto del producto, entonces $f^{-1}(U \times V) = U$ es abierto de X. Por ende $U \subseteq X$ es abierto sii $U = f^{-1}(V)$ con $V \subseteq X \times Y$ abierto. Por ende f es inicial!
 - b) Sea $(X \times X, \tau')$ otra topología que hace a d continua y consideremos $1_X : (X \times X, \tau') \to (X \times X, \tau)$, como p_X es inicial, sabemos que 1_X es continua sii $p_X \circ 1_X$ es continua, entonces tenemos el siguiente diagrama:

Como $U \subseteq (X, \tau_{sub})$ es abierto de X con la topología subespacio de la métrica sii tiene la topología métrica por d_{x_0} , entonces $U = B(x_0, r)$, pero $B(x_0, r) = d_{x_0}^{-1}((-r, r))$. Por ende (X, τ_{sub}) es inicial respecto a $\{d_{x_0}\}$. Por ende $p_X \circ 1_X$ sii $d_{x_0} \circ p_X \circ 1_X = d$ es continua. Por ende 1_X es continua y $\tau \subseteq \tau'$

11. Ejercicio 11

- **Demostración** a) Sean $\{0\} \in \mathbb{R}$, entonces es claro que son cerrados, pero $\prod_i \{0\}$ no es cerrado en $\prod_i \mathbb{R}$ con la topología producto, pues $\triangle_0^c = \prod_i \mathbb{R} \{0\}$ y $\mathbb{R} \{0\} \neq \mathbb{R}$ para infinitos índices. Por otro lado como $\prod_i A_i^c$ si es abierto en la topología caja, tenemos que $\prod_i A_i$ es cerrado en esta topología.
 - b) Sea $x \in \prod \overline{A_i}$, y sea $U \ni x$ un entorno abierto, como $x_i \in \overline{A_i}$ tenemos que $\exists y_i \in U_i \cap A_i$, por lo que $y = (y_i) \in U \cap \prod_i A_i$; por ende $x \in \overline{\prod_i A_i}$.

 Para el otro lado sea $x \in \overline{\prod_i A_i}$ y sea $x_j \in V_j \subset X_j$ abierto. Entonces como $\pi_j^{-1}(V_j) \subset \prod_i X_i$ es abierto y $x \in \pi_j^{-1}(V_j)$, entonces $\exists y \in \pi_j^{-1}(V_j) \cap \prod_i A_i$, por ende $y_j \in A_j \cap V_j$ y $x_j \in \overline{A_j}$. Por ende $x \in \prod_i \overline{A_i}$, y vale para ambas topologías.

12. Ejercicio 12

Demostración Sea f(t) = t, entonces f es continua sii $p_X \circ f$ es continua para todo X. Por otro lado f es continua si $x_\alpha \to x$ sii $f(x_\alpha) \to f(x)$ sii $p_X \circ f(x_\alpha) \to p_X \circ f(x)$. Por ende como $f(x_\alpha) = x_\alpha$ tenemos que $x_\alpha \to x$ sii $p_X(x_\alpha) \to p_X(x) \ \forall X$. Notemos que esto no es cierto para la topología caja! En efecto, sea $x_n = (x_n^m)$ dado por $x_n^m = \frac{1}{m+n}$. Entonces $p_m(x_n) \to 0 \ \forall m \in \mathbb{N}$, pero si tomo $U = (-\frac{1}{n+2}, \frac{1}{n+2}) \times \cdots \times (-\frac{1}{m+n+1}, \frac{1}{n+m+1}) \times \cdots$ tenemos que $U \ni 0$ es un entorno abierto tal que $x_n \not\in U \ \forall n \in \mathbb{N}$ y por ende $x_n \not\to 0$.

Demostración Cálculo Avanzado

14. Ejercicio 14

Demostración Veamoslo por partes!

- Topología producto Aquí notemos que $p_i(f) = i * t$, $p_i(g) = t$ y $p_i(h) = t/i$ y son todas continuas $\forall i$, por ende f, g, h son continuas con la topología producto.
- Topología caja Sea $U = (-1,1) \times (-1/4,1/4) \times \ldots$, entonces si f fuese continua tendríamos que $f(-\delta,\delta) \subset U$ por la continuidad en el 0, o sea que $p_i(-i\delta,i\delta) = (-i\delta,i\delta) \subset (-\frac{1}{i^2},\frac{1}{i^2}) \ \forall i \in \mathbb{N}$ Abs! Entonces fno es continua. Notemos que la misma cuenta vale para probar que g,h no son continuas.
- Topología uniforme Sea $U = B(0, r) = \{x \in \mathbb{R}^{\omega} / \sup(|x_n|) < r\}$, entonces $f^{-1}(U) = \{t \in \mathbb{R} / it < r \ \forall i\} = \{0\}$ que no es abierto, entonces f no es continua. Por otro lado notemos que $d(g(t), g(s)) = \sup(|s t|) = |s t|$, por ende g es homeo, y de la misma manera lo es h.

15. Ejercicio 15

Demostración Vagancia...

16. Ejercicio 16

Demostración • Sea $x \in \mathbb{R}^{\omega}$ y U un entorno en la topología producto, entonces $U = U_1 \times \cdots \times U_k \times \prod_{j>k} \mathbb{R}$ y tomemos $y = (x_1, \dots, x_k, 0, 0, \dots)$, entonces $y \in \mathbb{R}^{\infty} \cap U$ y entonces $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\omega}$

- Sea $x \notin \mathbb{R}^{\infty}$ y sea $W_n = B(x_n, |x_n|/2)$, y tomo $W = \prod_n W_n$ es un entorno abierto de x tal que $W \cap \mathbb{R}^{\infty} = \emptyset$, por ende $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\infty}$ en la topología caja.
- Sea $x = (x_n) \to 0$, entonces $\exists N \in \mathbb{N} / sup(|x_n|) < \epsilon \quad \forall n \geq N$, por ende $y = (x_1, \dots, x_N, 0 \dots) \in \mathbb{R}^{\infty}$ cumple que $d(y, x) = sup(|x_n|) < \epsilon$ y entonces $C_0 \subset \mathbb{R}^{\infty}$. Por otro lado es claro que si $x \in \mathbb{R}^{\infty}$ entonces $sup(|x_n y_n|) < \epsilon'$ y si N es tal que $y_n = 0 \quad \forall n \geq N$ tenemos que $sup(|x_n|) < \epsilon' \quad \forall n \geq N$ y entonces $x \to 0$.

17. Ejercicio 17

Demostración Cálculo avanzado.

18. Ejercicio 18

Demostración a) Veamos que es sobreyectiva y final!

Sea $y \in Y$ y consideremos $g(y) \in X$, entonces f(g(y)) = y y por ende f es sobreyectiva.

Por otro lado sea $h: Y \to Z$, si h es continua entonces $h \circ f$ es continua pues es composición de continuas. Por otro lado si $h \circ f$ es continua, entonces sea $h \circ f \circ g$ que es continua pues g es continua, pero $h \circ f \circ g = h \circ 1_Y = h$ y por ende h es continua. Por ende f es final.

- b) Sea $i_A: A \to X$, entonces $r \circ i_A = 1_A$ y por ende r es cociente.
- 19. Ejercicio 19

- **Demostración** a) $p_1|_X$ es cociente pues es retracción (con inversa $i_{\mathbb{R}}(r)=(r,0)$), Sea $F\subset X$ cerrado, entonces $F=[a,b]\times\{c\}$ o $F=\{a\}\times[b,c]$ y por ende $p_1|_X(F)=[a,b]$ o $\{a\}$ que son cerrados. Pero sea $U=\mathbb{R}_{>0}\times\{0\}\cup\{0\}\times\mathbb{R}_{>0}$ que es un abierto de X, entonces $p_1|_X(U)=\mathbb{R}_{\geq 0}$ y por ende $p_1|_X$ no es abierta.
 - b) Nuevamente tenemos que $p_1|_Y$ es cociente por ser retracción, y sea $U=[0,1)\times(2,3)$ que es abierto de Y, entonces $p_1|_Y(U)=[0,1)$ que no es abierto. Por otro lado sea $F=\{xy=0\ ,\ x>0\}$, que es cerrado de Y, pero $p_1|_Y(F)=\mathbb{R}_{>0}$ que es abierto, y entonces $p_1|_Y$ es un cociente ni abierto ni cerrado.

20. Ejercicio 20

- **Demostración** a) Es claro que g es cociente pues $g|_Z = 1_Z$ y por ende es retracción (Si le damos a Z la topología final por g para ser continua).
 - b) Sea $U \subseteq Z$ entonces es abierto sii $V = g^{-1}(U)$ es abierto. Notemos que $(a,b) \times \{0\}$ con $0 \notin (a,b)$ es abierto entonces pues $g^{-1}((a,b) \times \{0\}) = (a,b) \times \mathbb{R}$ que es abierto en $\mathbb{R} \times \mathbb{R}$, además $\{0\} \times (a,b)$ es abierto siempre pues $g|_{\{0\}} = 1_{\{0\} \times \mathbb{R}}$. Finalmente como $g^{-1}((0,0)) = (0,0)$ que no es abierto tenemos que $g^{-1}((a,b) \times \{0\}) = (a,0) \times \mathbb{R} \cup (0,b) \times \mathbb{R} \cup (0,0)$ si $0 \in (a,b)$ y este conjunto no es abierto en $\mathbb{R} \times \mathbb{R}$. Por ende $\tau_Z = \{\{0\} \times (a,b), (c,d) \times \{0\}, 0 \notin (c,d)\}$
- 21. Ejercicio 21

Demostración ???

22. Ejercicio 22

Demostración ???

- 23. Ejercicio 23
 - **Demostración** a) Sea $f(t) = e^{(2\pi it)}$, entonces tenemos que $f : \mathbb{R} \to S^1$ y $x \sim y$ sii $x, y \in \mathbb{Z} \iff f(x) = f(y) = (0, 1)$. Por ende por PU del cociente $\exists \tilde{f} : \mathbb{R}/\mathbb{Z} \to S^1$ continua. Notemos que \tilde{f} es continua, biyectiva y la inversa es $g(z) = arg(z)/2\pi$ que es continua. Por ende \tilde{f} es homeo.
 - b) Como $\mathbb{R} \simeq [0,1]$ entonces $\mathbb{R}^2 \simeq I^2$, entonces $\mathbb{R}^2/\mathbb{Z} \times \mathbb{Z} \simeq I^2 \times \mathbb{Z} \times \mathbb{Z} \simeq I/\mathbb{Z} \times I/\mathbb{Z}$ y por el item anterior $I/\mathbb{Z} \simeq S^1$, por ende $\mathbb{R}^2/\mathbb{Z} \times \mathbb{Z} \simeq T$
 - c) Es claro que $S^2 \simeq I^2/\sim$ donde $x\sim y \Longleftrightarrow x,y\in \partial(I^2)$ y centremos al cuadrado en el 0. Preguntar...
- 24. Ejercicio 24

Demostración Tenemos que ver que f es inicial! Sea $U \subset X$ abierto, tenemos que ver que $U = f^{-1}(V)$ con $V \subseteq Y$ abierto. Ahora como f es inyectiva tenemos que $U = f^{-1}(f(U))$ y como f es final f(U) es abierto sii $f^{-1}(f(U))$ es abierto, que lo es por hipótesis. Por ende probamos que $U \subset X$ es abierto sii $U = f^{-1}(V)$ con $V \subset Y$ abierto (y dio que V = f(U)). Por ende f es subespacio por ser inyectiva e inicial.

25. Ejercicio 25

Demostración Sea $V \subset Y$, como f es continua si V es abierto entonces $f^{-1}(V)$ es abierto. Ahora debemos ver que $V \subset Y$, tal que $U = f^{-1}(V)$ es abierto entonces V es abierto. Ahora sea $U = f^{-1}(V)$ abierto, como f es inicial U es abierto sii $U = f^{-1}(H)$ con $H \subset Y$ abierto, y como f es suryectiva $V = f(U) = f(f^{-1}(H)) = H$, por ende H = V y V es abierto. Por ende f es cociente por ser suryectiva y final.

26. Ejercicio 26

Demostración a) Recordemos que $1 - \chi_U = \chi_{U^c}$ y por ende nos dicen que U es abierto sii χ_{U^c} es continua.

- \Longrightarrow) Sea U abierto, entonces $\chi_{U^c}^{-1}(\{0\}) = U$ es abierto, por ende χ_{U^c} es continua.
- \Leftarrow) Sea χ_{U^c} continua, entonces $\chi_{U^c}^{-1}(\{0\}) = U$ es abierto.
- b) Sea $U \subset X$ abierto. Veamos que $U = \chi_{U^c}^{-1}(V)$ con $V \subset \mathfrak{S}$ abierto. Tomemos $V = \{0\}$, entonces $U = \chi_{U^c}^{-1}(\{0\})$, por ende la familia $\{\chi_U\}$ es inicial.
- 27. Ejercicio 27

Demostración ???

28. Ejercicio 28

Demostración Sea $U \subset X$ abierto sub-básico, entonces $U = f_j^{-1}(V)$ con $V \subset X_i$ abierto. Entonces $e(U) = (f_i(U))_{i \in I}$ sea $x \in e(U)$

29. Ejercicio 29

Demostración Como \mathcal{F} separa puntos, entonces e es inyectiva, en efecto si $x \neq y$, entonces $\exists i_0 / f_{i_0}(x) \neq f_{i_0}(y) \Longrightarrow e(x) \neq e(y)$. Además por el ejercicio anterior es abierta, por ende sea U abierto. Entonces $U = e^{-1}(e(U))$ por ser e inyectiva, y e(U) es abierto por ser e abierta. Por ende e es inyectiva e inicial, y por ende es subespacio.

30. Ejercicio 30

Demostración \longrightarrow

Sea $g:Y\to Z$ tal que $f\circ g:X\to Z$ es continua. Sea el diagrama:

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$X_i \xrightarrow{f_i} X$$

Como i_i es continua, entonces $i_i \circ f \circ g = f_i \circ g$ son continuas, pero como $\{f_i\}$ es final tenemos que g es continua. Por ende f es final.

Sea $g: Y \to Z$ tal que $f_i \circ g$ es continua, entonces $i_i \circ f \circ g$ es continua, pero como X tiene la topología final respecto a $\{i_i\}$ tenemos que $f \circ g$ es continua, y como f es final entonces g es continua. Por ende $\{f_i\}$ es final .