CS 341

These notes are meant to be supplementary to lecture slides & the textbook, and so may not contain all covered materials. Here I've chosen content which might not be easy to remember and/or is helpful to look at when doing assignments.

Asymptotic Analysis

- Order Notations:
 - $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$
 - \circ f "grows no faster than" g
 - $f(n) \in \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n) \ \forall n \ge n_0$
 - \circ f "grows no slower than" g
 - $f(n) \in \Theta(g(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0$
 - \circ f ang g have the same complexity
 - $f(n) \in o(g(n))$ if $\forall c > 0, \exists n_0 > 0$ such that $0 \le f(n) < cg(n) \ \forall n \ge n_0$
 - \circ f has lower complexity than g
 - $f(n) \in \omega(g(n))$ if $\forall c > 0, \exists n_0 > 0$ such that $0 \le cg(n) < f(n) \ \forall n \ge n_0$
 - \circ f has higher complexity than g
 - $f \in O(g)$ and $f \in \Omega(g) \iff f \in \Theta(g)$
- Limit method: suppose $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$
 - $f \in o(g) \text{ if } L = 0$
 - $f \in \Theta(q)$ if $0 < L < \infty$
 - $f \in \omega(g)$ if $L = \infty$
- Useful facts for first-principles proofs:
 - \bullet log $n \ge 1 \ \forall \ n \ge 2$; i.e. log n grows faster than 1
 - \blacksquare log $n \le n \ \forall \ n \ge 0$; i.e. log n grows slower than n
- Useful limit laws:
 - $\blacksquare \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\log(f(n))}{\log(g(n))}$
 - $\blacksquare \lim_{n\to\infty} f(n)^k = (\lim_{n\to\infty} f(n))^k$
- Some math rules:
 - Summing a polynomial: $\sum_{i=1}^{n} i^{k} \in \Theta(n^{k+1})$

■ Summing an exponential (special case of geometric series):

$$\sum_{i=1}^{n} c^{i} \in \begin{cases} \Theta(c^{n+1}) & \text{if } c > 1\\ \Theta(n) & \text{if } c = 1\\ \Theta(1) & \text{if } c < 1 \end{cases}$$

- \bullet $a^{\log_b n} = n^{\log_b a}$ (Useful for recursion trees)
- Geometric series:

$$\sum_{i=0}^{n-1} ar^{i} = \begin{cases} a\frac{r^{n}-1}{r-1} \in \Theta(r^{n}) & \text{if } r > 1\\ na \in \Theta(n) & \text{if } r = 1\\ a\frac{1-r^{n}}{1-r} \in \Theta(1) & \text{if } r < 1 \end{cases}$$

- $a \ge b + c$ if $a \ge 2 \cdot \max(b, c)$ (useful for asymtotic proofs)
- $\blacksquare \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ if it exists (L'Hopital's Rule)}$
- $\log(n!) \in \Theta(n \log n)$ (Stirling's Approximation)

Divide and Conquer

• Recursion-tree method:

- Given the recurrence T(n) = aT(n/b) + f(n), T(1) = c:
 - \circ a is the # of recursive calls made (# of subproblems)
 - \circ b is the # by which the input size n is divided in each recursive call
 - \circ f(n) is the runtime of the "work done outside of the recursive calls"
 - \circ c is the constant-time work done in each recursive call in the base case
- Each node of the recursion tree represents the cost of the work done other than making recursive calls
- Each row represents the total cost of work done in all recursive calls at that recursion "level"
- The height of the tree depends on the factor that the input size is divided by; i.e. $\log_b n$
- E.g.: Picture this as a tree where each node (except for leaves) has a children;

Level 0:
$$f(n)$$
 total = $f(n)$
Level 1: $f(n/b)$... $f(n/b)$ total = $af(n/b)$
Level 2: $f(n/b^2)$... $f(n/b^2)$ total = $a^2f(n/b^2)$
...

Level k : $f(n/b^k)$... $f(n/b^k)$ total = $a^kf(n/b^k)$
...

Level $\log_b n$: c ... c total = $ca^{\log_b n} = cn^{\log_b a}$

• Total runtime of recursion tree is (summing every row total):

$$T(n) \in \Theta\left(\sum_{i=0}^{\log_b n-1} a^i f(n/b^i)\right) + \Theta(n^{\log_b a})$$

• Use geometric series formula to find a simplified value

■ Example: $T(n) = 3T(n/4) + n^2$

$$T(n) \in \Theta\left(\sum_{k=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^k n^2 + n^{\log_4 3}\right) \in \Theta(n^2)$$

• Master method:

■ Given the recurrence T(n) = aT(n/b) + f(n) where $f(n) \in \Theta(n^d)$:

$$T(n) \in \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b^d \\ \Theta(n^d \log n) & \text{if } a = b^d \\ \Theta(n^d) & \text{if } a < b^d \end{cases}$$

Greedy Algorithms

- Two methods of proving greedy algorithms:
- Greedy stays ahead (induction)
 - Show that S_g is better than S at every step
 - Base case: show $S_g[1] > S[1]$
 - Inductive hypothesis: assume $S_g[k-1] > S[k-1]$; show that $S_g[k] > S[k]$
 - o Often by contradiction; i.e. suppose $\exists S^*$ such that $S_g[k] < S^*[k]$, and derive some contradiction
- Exchange argument (swapping)
 - \blacksquare Let $S_g =$ greedy solution, S = some arbitrary solution
 - Show that (any) S can be transformed into S_g step-by-step without getting worse at any point
 - \circ i.e. compare the cost of before & after swapping 2 elements in S, show that it doesn't change or improves

Graphs

• Breadth-first search

- Forward edges cannot exist in BFS trees; cross & back edges can
- Cross edges indicate presence of an odd cycle graph is <u>not bipartite</u>
- Depth-first search

```
function DFS-visit(G, s) { // s = starting vertex
   mark s as visiting
   for each unvisited neighbour u of s:
        DFS(G, u)
   set s as finished
}

function DFS(G) { // creates DFS forest
   mark all vertices as unvisited
   for each unvisited v in G.V:
        DFS-visit(G, v)
}
```

■ Iterative implementation using a stack is also possible

• Topological sorting

- Order the nodes such that for every $(u, v) \in E$, u precedes v
- Algorithm 1: remove source nodes iteratively
- Algorithm 2: run DFS with finishing times of each node, then order by decreasing finish time
- Strongly connected components
 - An SCC = a maximal subset of vertices such that every pair u, v are reachable from each other
 - \circ i.e. \exists path from $u \to v$ and $v \to u$

- The component graph of G, G^{SCC} , is a DAG
- Kosaraju's Algorithm:

```
function find_SCCs(G) {
    compute G_rev
    DFS(G) -> keep track of finish times
    for each unvisited v in G.V, by decreasing finishing time:
        DFS(G, v) -> label as SCC
}
```

• Minimum spanning tree:

- Sum of edge weights is minimal
- General greedy MST algorithm:
 - Add the minimum weighted edge crossing the cut formed by the tree "so far" & the rest of the graph
 - \circ Repeat for n-1 times
- Prim's Algorithm: general greedy algorithm but with heap-based priority queue
 - \circ Runtime = $O(m \log n)$
- Kruskal's Algorithm:
 - Sort edges by weight; choose the minimum weighted edge that doesn't create a cycle
 - \circ Runtime = $O(m \log n)$

• Shortest path:

- SSSP in DAG:
 - Use DP, and the recurrence: $SD[v] = min_{(u,v) \in E}SD[u] + w(u,v)$
 - \circ i.e. subproblem is the SSSP to the vertices preceding v

■ Dijkstra's Algorithm:

- At each step, pick the vertex with the shortest distance so far
- o "Overwrite" distance-so-far of a vertex if a shorter path to it has been found
- \circ Runtime = $O(m \log n)$
- Floyd-Warshall's Algorithm (all-pairs shortest path):
 - o D[i, j, k] =shortest path from i to j that only goes through $v_1 \dots v_k$ as intermediate vertices
 - \circ Recurrence: $D[i, j, k] = \min(D[i, j, k-1], D[i, k, k-1] + D[k, j, k-1])$
 - \circ Runtime = $O(n^3)$

Intractability

- P: solvable in polynomial time
- NP: verifiable in polynomial time
 - A verification algorithm takes 2 inputs:
 - Problem instance a particular set of parameters of the problem
 - e.g. a graph, with vertices and edges
 - \blacksquare Certificate a given "solution" of the problem that shows the instance returns yes
 - o e.g. a ordered list of vertices, used to verify that a Hamiltonian cycle indeed exists
- $P \subseteq NP$

• Reducibility:

- $L_1 \leq_P L_2$ " L_1 is polynomial-time reducible to L_2 "
- There exists a P-time computable function f that maps instances of L_1 to L_2
- \blacksquare e.g. If problem instance I returns yes for L_1 , then f(I) also returns yes for L_2

- If $L_1 \leq_P L_2$, then $L_2 \in P \implies L_1 \in P$
 - \circ i.e. if L_2 is solvable in P-time, then L_1 is as well
 - \circ i.e. L_1 is no harder than L_2
- Contrapositive:
 - \circ i.e. if L_1 is known to be *not* solvable in P-time, then L_2 can't be either
 - \circ i.e. L_2 is as hard as L_1
- Mainly used for reducing decision problems as part of NPC proofs

• Turing reduction:

- A reduction $L_1 \leq^T L_2$ used to solve L_1 , where L_2 is known, e.g. available as a subroutine
- $L_1 \leq_P^T L_2$ polynomial-time Turing reduction
- L_1, L_2 don't have to be decision problems
- \blacksquare Mainly used for reducing optimization problem \rightarrow decision problem

• NP-Completeness:

- \blacksquare L is NPC if:
 - \circ $L \in NP$, and
 - $\circ \quad \forall \ L' \in NP, L' \leq_P L \text{ (this is definition of } \underline{NP-hard})$
- i.e. NPC = set of problems in NP such that all other NP problems can be can be

reduced to X

- \blacksquare NPC = NP \cap NP-hard
- \blacksquare Because of these properties, to prove a problem L is NPC:
 - Show that $L \in NP$
 - Show that $L' \leq_P L$ for some $L' \in NPC$
- Reduction relationships between NPC problems:

• Undecidability:

- No algorithm can solve the problem
- Show that the existence of an algorithm leads to a contradiction
- Example: the Halting Problem
- Reduce an undecidable problem to another problem to show that it's also undecidable