The Matrix Eigenvalue Problem

Niels Henrik Abel 1802-1829

Niels Henrik Abel 1802-1829

Abel's Theorem: There are no formulas for finding the roots of generic polynomial of degree greater than 4.

Power Method and its Variations

Let $A \in \mathbb{C}^{n \times n}$ be diagonalizable with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$ satisfying

$$|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$$

and let $v_1, \ldots, v_n \in \mathbb{C}^n \setminus \{0\}$ such that $Av_i = \lambda_i v_i, i = 1, 2, \ldots n$. λ_1 is called the dominant eigenvalue of A and v_1 a corresponding dominant eigenvector.

Let $x \in \mathbb{C}^n$ such that $x = c_1 v_1 + \cdots + c_n v_n$ with $c_1 \neq 0$. Then,

$$\left\| \mathcal{A}^{j}(x)/\lambda_{1}^{j}-c_{1}v_{1}
ight\|
ightarrow0$$
 as $j
ightarrow\infty.$

Let $A \in \mathbb{C}^{n \times n}$ be diagonalizable with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$ satisfying

$$|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$$

and let $v_1, \ldots, v_n \in \mathbb{C}^n \setminus \{0\}$ such that $Av_i = \lambda_i v_i, i = 1, 2, \ldots n$. λ_1 is called the dominant eigenvalue of A and v_1 a corresponding dominant eigenvector.

Let $x \in \mathbb{C}^n$ such that $x = c_1 v_1 + \cdots + c_n v_n$ with $c_1 \neq 0$. Then,

$$\left\| \mathcal{A}^{j}(x)/\lambda_{1}^{j}-c_{1}v_{1}
ight\|
ightarrow0$$
 as $j
ightarrow\infty$.

Moreover, if $c_2 \neq 0$ and $|\lambda_2| > |\lambda_3|$, then the convergence is linear at the rate $|\lambda_2|/|\lambda_1|$, i.e.,

$$\lim_{j \to \infty} \frac{\left\| A^{(j+1)}(x) / \lambda_1^{(j+1)} - c_1 v_1 \right\|}{\left\| A^j(x) / \lambda_1^j - c_1 v_1 \right\|} = \frac{|\lambda_2|}{|\lambda_1|}$$

(Ex: Prove the above limit!)


```
Let x=[x_1,x_2,\cdots x_n]^T\in\mathbb{C}^n\setminus\{0\} be arbitrarily chosen. Set q_0=x/s_0 where s_0=x_i such that |x_i|=\|x\|_\infty. for j=1,2,\ldots Set \hat{q}_j=A(q_{j-1}) Find s_j=\hat{q}_j(i) such that |\hat{q}_j(i)|=\|\hat{q}_j\|_\infty. Set q_i=\hat{q}_i/s_i.
```

Let $x=[x_1,x_2,\cdots x_n]^T\in\mathbb{C}^n\setminus\{0\}$ be arbitrarily chosen. Set $q_0=x/s_0$ where $s_0=x_i$ such that $|x_i|=\|x\|_\infty$. for $j=1,2,\ldots$ $Set\ \hat{q}_j=A(q_{j-1})$ $Find\ s_j=\hat{q}_j(i)\ such\ that\ |\hat{q}_j(i)|=\|\hat{q}_j\|_\infty.$ $Set\ q_j=\hat{q}_j/s_j.$

(i) $\lim_{\substack{j\to\infty\\ \text{for }some}}q_j=\hat{v_1}$, where $A\hat{v_1}=\lambda_1\hat{v_1}$, with $\|\hat{v_1}\|_{\infty}=1$, and $\hat{v_1}(j)=1$ for $some\ 1\leq j\leq n$.

If $x = c_1 v_1 + \cdots + c_n v_n$ with with $c_1 \neq 0$, then

(ii) $\lim_{j\to\infty} s_j = \lambda_1$.

Let $x = [x_1, x_2, \cdots x_n]^T \in \mathbb{C}^n \setminus \{0\}$ be arbitrarily chosen. Set $q_0 = x/s_0$ where $s_0 = x_i$ such that $|x_i| = \|x\|_{\infty}$. for $j = 1, 2, \ldots$ Set $\hat{q}_j = A(q_{j-1})$ Find $s_j = \hat{q}_j(i)$ such that $|\hat{q}_j(i)| = \|\hat{q}_j\|_{\infty}$. Set $q_j = \hat{q}_j/s_j$.

(i) $\lim_{j\to\infty}q_j=\hat{v_1}$, where $A\hat{v_1}=\lambda_1\hat{v_1}$, with $\|\hat{v_1}\|_{\infty}=1$, and $\hat{v_1}(j)=1$ for some $1\leq j\leq n$.

If $x = c_1 v_1 + \cdots + c_n v_n$ with with $c_1 \neq 0$, then

(ii) $\lim_{j\to\infty} s_j = \lambda_1$.

(Ex: Prove these!)

Further, if $c_1, c_2 \neq 0$ and $|\lambda_1| > |\lambda_2| > |\lambda_3|$, then $\{q_j\}$ converges to \hat{v}_1 linearly at the rate $\frac{|\lambda_2|}{|\lambda_1|}$, that is,

$$\lim_{j\to\infty}\frac{\|q_{j+1}-\hat{v_1}\|}{\|q_j-\hat{v_1}\|}=\frac{|\lambda_2|}{|\lambda_1|},$$

Further, if $c_1, c_2 \neq 0$ and $|\lambda_1| > |\lambda_2| > |\lambda_3|$, then $\{q_j\}$ converges to \hat{v}_1 linearly at the rate $\frac{|\lambda_2|}{|\lambda_1|}$, that is,

$$\lim_{j \to \infty} \frac{\|q_{j+1} - \hat{v_1}\|}{\|q_j - \hat{v_1}\|} = \frac{|\lambda_2|}{|\lambda_1|},$$

(Ex: Prove this!)

Further, if $c_1, c_2 \neq 0$ and $|\lambda_1| > |\lambda_2| > |\lambda_3|$, then $\{q_j\}$ converges to \hat{v}_1 linearly at the rate $\frac{|\lambda_2|}{|\lambda_1|}$, that is,

$$\lim_{j \to \infty} \frac{\|q_{j+1} - \hat{v_1}\|}{\|q_j - \hat{v_1}\|} = \frac{|\lambda_2|}{|\lambda_1|},$$

(Ex: Prove this!)

The Power Method is used to compute a dominant eigenvector of the massive non-negative Google Matrix in Google's PageRank Algorithm. For details see:

K. Bryan and T. Leise. *The \$25,000,000,000 Eigenvector: The Linear Algebra behind Google.* SIAM Rev., 48(3), 569-581.

For $\rho \in \mathbb{C}$, the eigenvalues of $A - \rho I$ are $\lambda_i - \rho$, $i = 1, \dots n$ where the listing $\lambda_1, \dots, \lambda_n$ is determined by

$$|\lambda_1 - \rho| \ge \cdots \ge |\lambda_{n-1} - \rho| \ge |\lambda_n - \rho|.$$

Suppose that $|\lambda_{n-1} - \rho| \ge |\lambda_n - \rho|$.

For $\rho \in \mathbb{C}$, the eigenvalues of $A - \rho I$ are $\lambda_i - \rho$, $i = 1, \dots n$ where the listing $\lambda_1, \dots, \lambda_n$ is determined by

$$|\lambda_1 - \rho| \ge \cdots \ge |\lambda_{n-1} - \rho| \ge |\lambda_n - \rho|.$$

Suppose that $|\lambda_{n-1} - \rho| \ge |\lambda_n - \rho|$. Then $1/(\lambda_n - \rho)$ is a dominant eigenvalue of $(A - \rho I)^{-1}$.

For $\rho \in \mathbb{C}$, the eigenvalues of $A - \rho I$ are $\lambda_i - \rho$, $i = 1, \dots n$ where the listing $\lambda_1, \dots, \lambda_n$ is determined by

$$|\lambda_1 - \rho| \ge \cdots \ge |\lambda_{n-1} - \rho| \ge |\lambda_n - \rho|.$$

Suppose that $|\lambda_{n-1} - \rho| \ge |\lambda_n - \rho|$. Then $1/(\lambda_n - \rho)$ is a dominant eigenvalue of $(A - \rho I)^{-1}$.

Let $x = [x_1, x_2, \cdots x_n]^T \in \mathbb{C}^n \setminus \{0\}$ be arbitrarily chosen. Set $q_0 = x/s_0$ where $s_0 = x_i$ such that $|x_i| = ||x||_{\infty}$.

for
$$j = 1, 2, ...$$

Set $\hat{q}_j = (A - \rho I)^{-1}(q_{j-1})$
Find $s_j = \hat{q}_j(i)$ such that $|\hat{q}_j(i)| = ||\hat{q}_j||_{\infty}$.
Set $q_j = \hat{q}_j/s_j$.

For $\rho \in \mathbb{C}$, the eigenvalues of $A - \rho I$ are $\lambda_i - \rho$, $i = 1, \dots n$ where the listing $\lambda_1, \dots, \lambda_n$ is determined by

$$|\lambda_1 - \rho| \ge \cdots \ge |\lambda_{n-1} - \rho| \ge |\lambda_n - \rho|.$$

Suppose that $|\lambda_{n-1} - \rho| \ge |\lambda_n - \rho|$. Then $1/(\lambda_n - \rho)$ is a dominant eigenvalue of $(A - \rho I)^{-1}$.

Let $x = [x_1, x_2, \cdots x_n]^T \in \mathbb{C}^n \setminus \{0\}$ be arbitrarily chosen. Set $q_0 = x/s_0$ where $s_0 = x_i$ such that $|x_i| = ||x||_{\infty}$.

for
$$j=1,2,\ldots$$

Set $\hat{q}_j=(A-\rho I)^{-1}(q_{j-1})$ (Explicit inverse computation is a bad ideal)
Find $s_j=\hat{q}_j(i)$ such that $|\hat{q}_j(i)|=\|\hat{q}_j\|_{\infty}$.
Set $q_j=\hat{q}_j/s_i$.

```
for j = 1, 2, ...

Solve (A - \rho I)\hat{q}_j = q_{j-1} for \hat{q}_j.

Find s_j = \hat{q}_j(i) such that |\hat{q}_j(i)| = ||\hat{q}_j||_{\infty}.

Set q_j = \hat{q}_j/s_j.
```

```
for j=1,2,\ldots

Solve (A-\rho I)\hat{q}_j=q_{j-1} for \hat{q}_j.

(Costs 2n^3/3+O(n^2) flops. Still not good enough!)

Find s_j=\hat{q}_j(i) such that |\hat{q}_j(i)|=\|\hat{q}_j\|_{\infty}.

Set q_j=\hat{q}_j/s_j.
```

Best idea: Find a permutation matrix P, a unit lower triangular matrix L and upper triangular matrix U such that

$$P(A - \rho I) = LU$$

```
\begin{split} &\textit{for } j=1,2,\dots\\ &\textit{Set } b=Pq_{j-1}\\ &\textit{Solve } Ly=b \textit{ for } y \qquad \textit{(Costs } n^2 \textit{ flops)}\\ &\textit{Solve } U\hat{q}_j=y \textit{ for } \hat{q}_j \qquad \textit{(Costs } n^2 \textit{ flops)}\\ &\textit{Find } s_j=\hat{q}_j(i) \textit{ such that } |\hat{q}_j(i)|=\|\hat{q}_j\|_{\infty}.\\ &\textit{Set } q_j=\hat{q}_j/s_j. \end{split}
```

Best idea: Find a permutation matrix P, a unit lower triangular matrix L and upper triangular matrix U such that

$$P(A - \rho I) = LU$$

for
$$j=1,2,\ldots$$

Set $b=Pq_{j-1}$
Solve $Ly=b$ for y (Costs n^2 flops)
Solve $U\hat{q}_j=y$ for \hat{q}_j (Costs n^2 flops)
Find $s_j=\hat{q}_j(i)$ such that $|\hat{q}_j(i)|=\|\hat{q}_j\|_{\infty}$.
Set $q_j=\hat{q}_j/s_j$.

When the additional conditions for the Power Method to converge for $(A - \rho I)^{-1}$ are satisfied, the sequence $\{q_j\}$ converges to an eigenvector of A linearly at the rate

$$\frac{|\lambda_n - \rho|}{|\lambda_{n-1} - \rho|}.$$

Let $q \in \mathbb{C}^n \setminus \{0\}$ and $A \in \mathbb{C}^{n \times n}$. Then $\rho := \frac{q^*Aq}{q^*q}$ is called the Rayleigh Quotient associated with A and q.

If q is an eigenvector of A, then ρ is a corresponding eigenvalue of A. Else, ρ is the unique scalar that solves $\min_{\mu \in \mathbb{C}} \|Aq - \mu q\|_2$.

Let $q \in \mathbb{C}^n \setminus \{0\}$ and $A \in \mathbb{C}^{n \times n}$. Then $\rho := \frac{q^*Aq}{q^*q}$ is called the Rayleigh Quotient associated with A and q.

If q is an eigenvector of A, then ρ is a corresponding eigenvalue of A. Else, ρ is the unique scalar that solves $\min_{\mu \in \mathbb{C}} \|Aq - \mu q\|_2$.

Theorem Let $A \in \mathbb{C}^{n \times n}$ and $q, v \in \mathbb{C}^n$ with $||q||_2 = ||v||_2 = 1$ and $Av = \lambda v$ for some scalar λ . Then $\rho := \frac{q^*Aq}{q^*q}$ satisfies

$$|\lambda - \rho| \le 2||A||_2||v - q||_2.$$


```
Set q_0=x/s_0 where x\in\mathbb{C}^n\setminus\{0\} and s_0=x_i satisfies |s_0|=\|x\|_\infty. Also set \rho_0=\frac{q_0^*Aq_0}{q_0^*q_0}. for j=1,2,\ldots Solve (A-\rho_{j-1}I)\hat{q}_j=q_{j-1} for \hat{q}_j Find s_j=\hat{q}_j(i) such that |\hat{q}_j(i)|=\|\hat{q}_j\|_\infty. Set q_j=\hat{q}_j/s_j and \rho_j=\frac{q_j^*Aq_j}{q_i^*q_j}.
```

```
Set q_0=x/s_0 where x\in\mathbb{C}^n\setminus\{0\} and s_0=x_i satisfies |s_0|=\|x\|_\infty. Also set \rho_0=\frac{q_0^*Aq_0}{q_0^*q_0}. for j=1,2,\ldots Solve (A-\rho_{j-1}I)\hat{q}_j=q_{j-1} for \hat{q}_j (Costs 2n^3/3+O(n^2) flops) Find s_j=\hat{q}_j(i) such that |\hat{q}_j(i)|=\|\hat{q}_j\|_\infty. Set q_j=\hat{q}_j/s_j and \rho_j=\frac{q_j^*Aq_j}{q_i^*q_i}.
```

Upper Hessenberg Matrices

A matrix $A \in \mathbb{F}^{n \times n}$ is said to be upper Hessenberg if $a_{ij} = 0$ for i > j + 1. Thus A is of the form

$$A = \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & \ddots & \ddots & \vdots \\ & & a_{n,n-1} & a_{nn} \end{array} \right].$$

A is said to be properly upper Hessenberg or an irreducible upper Hessenberg matrix if $a_{i+1,i} \neq 0$ for every i = 1, 2, ..., n-1.

Exercise: Finding a QR decomposition of an $n \times n$ upper Hessenberg matrix costs $O(n^2)$ flops. What is the special form of Q in this case?

Further, GEPP on an $n \times n$ upper Hessenberg matrix costs $O(n^2)$ flops.

Transformation to Upper Hessenberg form

Theorem 3 Given any matrix $A \in \mathbb{R}^{n \times n}$, there exists an orthogonal matrix Q and an upper Hessenberg matrix H such that $Q^TAQ = H$. If $A^T = A$, then, H is a symmetric tridiagonal matrix.

If $A \in \mathbb{C}^{n \times n}$, then there exists a unitary matrix Q such that $Q^*AQ = H$. In such a case if $A^* = A$, then H is a Hermitian tridiagonal matrix.

Find a unitary matrix Q and upper-Hessenberg matrix H such that $Q^*AQ = H$ and perform Rayleigh Quotient iterations on H!

[Costs $O(n^3)$ flops]

Find a unitary matrix Q and upper-Hessenberg matrix H such that $Q^*AQ = H$ and perform Rayleigh Quotient iterations on H!

[Costs $O(n^3)$ flops] Set $q_0=x/s_0$ where $x\in\mathbb{C}^n\setminus\{0\}$ and $s_0=x_i$ satisfies $|s_0|=\|x\|_\infty$. Also set $\rho_0=\frac{q_0^*Hq_0}{q_0^*q_0}$.

Find a unitary matrix Q and upper-Hessenberg matrix H such that $Q^*AQ = H$ and perform Rayleigh Quotient iterations on H!

```
[Costs O(n^3) flops] Set q_0=x/s_0 where x\in\mathbb{C}^n\setminus\{0\} and s_0=x_i satisfies |s_0|=\|x\|_\infty. Also set \rho_0=\frac{q_0^*Hq_0}{q_0^*q_0}. for j=1,2,\ldots Solve (H-\rho_{j-1}I)\hat{q}_j=q_{j-1} for \hat{q}_j (Costs O(n^2) flops) Find s_j=\hat{q}_j(i) such that |\hat{q}_j(i)|=\|\hat{q}_j\|_\infty. Set q_j=\hat{q}_j/s_j and \rho_j=\frac{q_j^*Hq_j}{q_i^*q_j}.
```

Find a unitary matrix Q and upper-Hessenberg matrix H such that $Q^*AQ = H$ and perform Rayleigh Quotient iterations on H!

[Costs
$$O(n^3)$$
 flops] Set $q_0=x/s_0$ where $x\in\mathbb{C}^n\setminus\{0\}$ and $s_0=x_i$ satisfies $|s_0|=\|x\|_\infty$. Also set $\rho_0=\frac{q_0^*Hq_0}{q_0^*q_0}$. for $j=1,2,\ldots$ Solve $(H-\rho_{j-1}I)\hat{q}_j=q_{j-1}$ for \hat{q}_j (Costs $O(n^2)$ flops) Find $s_j=\hat{q}_j(i)$ such that $|\hat{q}_j(i)|=\|\hat{q}_j\|_\infty$. Set $q_j=\hat{q}_j/s_j$ and $\rho_j=\frac{q_j^*Hq_j}{q_j^*q_j}$.

Rayleigh Quotient iterations may not converge!

Find a unitary matrix Q and upper-Hessenberg matrix H such that $Q^*AQ = H$ and perform Rayleigh Quotient iterations on H!

[Costs
$$O(n^3)$$
 flops] Set $q_0=x/s_0$ where $x\in\mathbb{C}^n\setminus\{0\}$ and $s_0=x_i$ satisfies $|s_0|=\|x\|_\infty$. Also set $\rho_0=\frac{q_0^*Hq_0}{q_0^*q_0}$. for $j=1,2,\ldots$ Solve $(H-\rho_{j-1}I)\hat{q}_j=q_{j-1}$ for \hat{q}_j (Costs $O(n^2)$ flops) Find $s_j=\hat{q}_j(i)$ such that $|\hat{q}_j(i)|=\|\hat{q}_j\|_\infty$. Set $q_j=\hat{q}_j/s_j$ and $\rho_j=\frac{q_j^*Hq_j}{q_i^*q_j}$.

Rayleigh Quotient iterations may not converge!

But when they do the convergence rate is usually quadratic. For Hermitian matrices, they convergence for *almost* all choices of starting vectors and when it happens, the convergence is cubic.

