Direct Proof

If n is odd integer, then n^2 is odd integer.

$$p \rightarrow q$$
 assume p is true

$$n = 2k + 1, \exists k \in Z$$

$$n^{2} = (2k + 1)^{2}$$

$$n^{2} = 4k^{2} + 2k + 1$$

$$n^{2} = 2(2k^{2} + k) + 1$$

$$n^{2} = 2m + 1, \exists m \in Z$$

q is also true

Direct Proof

If a and b are odd integers, then a+b is even integer.

assume p is true

$$a = 2x + 1$$
 and $b = 2y + 1$ $\exists x, y \in Z$
 $a + b = 2x + 1 + 2y + 1$
 $a + b = 2x + 2y + 2$
 $a + b = 2(x + y + 1)$
 $a + b = 2m, \exists m \in Z$

q is also true

Direct Proof

If m and n are perfect squares, then m.n is also a perfect square.

→ q assume p is true

 $m = x^2$ and $n = y^2$, $\exists x, y \in Z$ $m.n = x^2y^2$ $m.n = (x, y)^2$ $m.n = k^2$, $\exists k \in Z$

q is also true

Proof by Contraposition

If 3n + 2 is an odd integer, then n is odd integer

 $p \rightarrow q$ assume p is true

$$3n + 2 = 2k + 1, \exists k \in Z$$

 $3n = 2k - 1$
 $n = \frac{2k - 1}{3}$

Proof by Contraposition p → q ≡ ~q → ~p

If
$$3n + 2$$
 is an odd integer, then n is odd integer

If n is not odd integer, then
$$3n + 2$$
 is not odd integer ~ 0

assume
$$\sim$$
q is true n

$$n = 2k$$
, $\exists k \in Z$
 $3n + 2 = 6k + 8$
 $3n + 2 = 2(3k + 4)$
 $3n + 2 = 2m$, $\exists m \in Z$
 $\sim p$ is also true

Proof by Contraposition $p \rightarrow q \equiv \sim q \rightarrow \sim p$

Prove that for all real numbers x and y, if $x + y \ge 100$, then $x \ge 50$ or $y \ge 50$.

assume ~q is true

x < 50 and y < 50

$$x + y < 100$$

~p is also true

Proof by Contradiction

• Prove that if 3n+2 is an odd integer, then n is odd integer

Assuming 'p $\land \sim q$ is not true' leads us a contradiction.

3n + 2 is an odd integer and n is even integer. (p $\wedge \sim q$)

n = 2k, $\exists k \in Z$. So 3n + 2 = 6k + 2 = 2(3k + 1) = 2m, $\exists m \in Z$

3n + 2 is an even integer. (Contradiction!)

Proof of Equivalence (to prove two statements p and q are equal, the statement of the form p⇔q should be proved)

$$(\mathsf{d} \leftarrow \mathsf{b}) \lor (\mathsf{b} \leftarrow \mathsf{d}) \leftrightarrow (\mathsf{b} \leftrightarrow \mathsf{d})$$

n is odd integer if and only if 5n + 4 is odd integer

 $q \rightarrow p$ (proof by contraposition)

 $p \rightarrow q$ (direct proof)

assume p is true n = 2k + 1, $\exists k \in Z$ 5n + 4 = 10k + 9 5n + 4 = 2(5k + 4) + 15n + 4 = 2m + 1, $\exists m \in Z$

q is true

assume
$$\sim$$
p is true
 $n = 2k$, $\exists k \in Z$
 $5n + 4 = 10k + 4$
 $5n + 4 = 2(5k + 2)$
 $5n + 4 = 2m$, $\exists m \in Z$
 \sim q is true