Analog Filters

© Jiří Hospodka

Czech Technical University in Prague

Old Electronic circuits

Where the analog filters are used?

- Anti-aliasing filters before sampling (and conversion to digital) of analog signal,
- In communication frequency multiplex ≡ transmitting multiple signals (with different frequency) over a single line – for special applications or high frequency signals, where digital filters cannot be used,
- Interference (DC component, 50 Hz, noise, ...) suppression,
- Reconstruction filters, conversion of digital signals back to analog signal.

↓□ → ↓□ → ↓ = → ↑ = → ↑ Q €

 $f_c = 10$, resp. $f_c/2 = 5 \sin(2\pi 1t) + \sin(2\pi 5t)$, resp. $\sin(2\pi 1t)$

Amplifier for Electrocardiograph (ECG) sensing

$$\begin{array}{c|c} I_1 & I_2 \\ \hline U_1 & LS & U_2 \\ \hline \end{array} \quad \begin{array}{c} U_1(s) = \mathcal{L}\{u_1(t)\}, \quad U_2(s) = \mathcal{L}\{u_2(t)\}, \\ I_1(s) = \mathcal{L}\{i_1(t)\}, \quad I_2(s) = \mathcal{L}\{i_2(t)\}. \end{array}$$

$$\begin{bmatrix} I_1 \\ I_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} & y_{13} & \dots & y_{1n} \\ y_{21} & y_{22} & y_{23} & \dots & y_{2n} \\ y_{31} & y_{32} & y_{33} & \dots & y_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & y_{n3} & \dots & y_{nn} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ \vdots \\ U_n \end{bmatrix} \equiv \mathbf{I} = \mathbf{Y} \mathbf{U}$$

$$\begin{array}{c|c} I_1 & I_2 \\ \hline U_1 & LS & U_2 \\ \hline \end{array} \quad \begin{array}{c} U_1(s) = \mathcal{L}\{u_1(t)\}, & U_2(s) = \mathcal{L}\{u_2(t)\}, \\ I_1(s) = \mathcal{L}\{i_1(t)\}, & I_2(s) = \mathcal{L}\{i_2(t)\}. \end{array}$$

$$\mathbf{I} = \mathbf{Y} \ \mathbf{U} \Rightarrow U_k = \frac{1}{|\mathbf{Y}|} \sum_{i=1}^n |\mathbf{Y}|_{ik} \ I_i,$$

two-port description we get for reduction k = 1,2, and i = 1,2:

$$U_1 = \frac{|\mathbf{Y}|_{11}}{|\mathbf{Y}|} I_1 + \frac{|\mathbf{Y}|_{21}}{|\mathbf{Y}|} I_2 = z_{11} I_1 + z_{12} I_2,$$

$$U_2 = \frac{|\mathbf{Y}|_{12}}{|\mathbf{Y}|} I_1 + \frac{|\mathbf{Y}|_{22}}{|\mathbf{Y}|} I_2 = z_{21} I_1 + z_{22} I_2.$$

Impedance parameters (z-parameters)

$$\begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

$$z_{11} = \frac{U_1}{I_1} \Big|_{I_2 = 0}, \ z_{12} = \frac{U_1}{I_2} \Big|_{I_1 = 0},$$

$$z_{21} = \frac{U_2}{I_1} \Big|_{I_2 = 0}, \ z_{22} = \frac{U_2}{I_2} \Big|_{I_1 = 0},$$

For reciprocal networks $z_{12}=z_{21}$. For symmetrical networks $z_{11}=z_{22}$. For lossless networks all the $z_{\rm mn}$ are purely imaginary.

$$\begin{array}{c|c} I_1 & I_2 \\ \hline U_1 & LS & U_2 \\ \hline \end{array} \quad \begin{array}{c} U_1(s) = \mathcal{L}\{u_1(t)\}, \quad U_2(s) = \mathcal{L}\{u_2(t)\}, \\ I_1(s) = \mathcal{L}\{i_1(t)\}, \quad I_2(s) = \mathcal{L}\{i_2(t)\}. \end{array}$$

Admittance parameters (y-parameters)

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$

$$y_{11} = \frac{I_1}{U_1} \Big|_{U_2=0}, y_{12} = \frac{I_1}{U_2} \Big|_{U_1=0},$$

$$y_{21} = \frac{I_2}{U_1} \Big|_{U_2=0}, y_{22} = \frac{I_2}{U_2} \Big|_{U_1=0},$$

For reciprocal networks $y_{12} = y_{21}$. For symmetrical networks $y_{11} = y_{22}$. For lossless networks all the z_{mn} are purely imaginary ($\mathbf{Z} = \mathbf{Y}^{-1}$).

$$\begin{array}{c|c} I_1 \\ \hline U_1 \\ \hline \end{array} \quad \begin{array}{c|c} I_2 \\ \hline U_2 \\ \hline \end{array} \quad \begin{array}{c|c} U_1(s) = \mathcal{L}\{u_1(t)\}, & U_2(s) = \mathcal{L}\{u_2(t)\}, \\ \hline I_1(s) = \mathcal{L}\{i_1(t)\}, & I_2(s) = \mathcal{L}\{i_2(t)\}. \end{array}$$

Hybrid parameters (h-parameters)

$$\begin{bmatrix} U_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ U_2 \end{bmatrix}$$

$$h_{11} = \frac{U_1}{I_1} \Big|_{U_2 = 0}, h_{12} = \frac{U_1}{U_2} \Big|_{I_1 = 0},$$

$$h_{21} = \frac{I_2}{I_1} \Big|_{U_2 = 0}, h_{22} = \frac{I_2}{U_2} \Big|_{I_1 = 0},$$

$$\begin{array}{c|c} I_1 \\ \hline U_1 \\ \hline \end{array} \quad \begin{array}{c|c} I_2 \\ \hline U_2 \\ \hline \end{array} \quad \begin{array}{c|c} U_1(s) = \mathcal{L}\{u_1(t)\}, & U_2(s) = \mathcal{L}\{u_2(t)\}, \\ I_1(s) = \mathcal{L}\{i_1(t)\}, & I_2(s) = \mathcal{L}\{i_2(t)\}. \end{array}$$

Cascade (chain, or transmission line) parameters (a-parameters)

$$\begin{bmatrix} U_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} U_2 \\ -I_2 \end{bmatrix}$$

$$a_{11} = \frac{U_1}{U_2} \Big|_{I_2 = 0}, \ a_{12} = \frac{U_1}{-I_2} \Big|_{U_2 = 0},$$

$$a_{21} = \frac{I_1}{U_2} \Big|_{I_2 = 0}, \ a_{22} = \frac{I_1}{-I_2} \Big|_{U_2 = 0},$$

For reciprocal networks $a_{11}a_{22} - a_{12}a_{21} = 1$. For symmetrical networks $a_{11} = a_{22}$. For networks which are reciprocal and lossless, a_{11} and a_{22} are purely real while a_{12} and a_{21} are purely imaginary.

Description and transfer characteristics of the RC network

$$H_{RC}(s) = \frac{U_2(s)}{U_1(s)} = \frac{H_0}{1 + sRC}$$

$$H_0=1, \quad \omega_0=2\pi f_0=\frac{1}{RC}$$

$$s = j\omega \implies$$

Description and transfer characteristics of the RC network

$$H_{RC}(s) = \frac{U_2(s)}{U_1(s)} = \frac{H_0\omega_0}{s + \omega_0}$$

$$H_0 = 1, \quad \omega_0 = 2\pi f_0 = \frac{1}{RC}$$

$$H_{RC}(s) = \frac{U_2(s)}{U_1(s)} = \frac{H_0\omega_0}{s + \omega_0}$$

$$U_2$$

$$H_0 = 1, \quad \omega_0 = 2\pi f_0 = \frac{1}{RC}$$

$$0 \text{ at } \infty \uparrow j\omega$$

$$\sigma$$

$$\omega_0$$

$$h(t) = \mathcal{L}^{-1} \{ H(s) \cdot 1 \}$$
 $w(t) = \mathcal{L}^{-1} \{ H(s)/s \}$
 $h(t) = \frac{dw(t)}{dt}$
 $w(t) = \int_0^t h(\tau) d\tau$.

Laplace transform Definition

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st} dt$$

Properties

Linearity	af(t) + bg(t)	F(s) + bG(s)
Differentiation	$\frac{df(t)}{dt}$	$sF(s)-f(0^-)$
Integration	$\int_0^t f(\tau) d\tau = 1(t) * f(t)$	$\frac{1}{s}F(s)$
Convolution	$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$	$F(s) \cdot G(s)$
Damping	$e^{at}f(t)$	F(s-a)
Time scaling	f(at)	1/a F(s/a)
Time shifting	f(t-a)	$e^{-as}F(s)$
Initial value	$f(0^+) = \lim_{s \to \infty} sF(s)$	
Final value	$f(\infty) = \lim_{s \to 0} sF(s); \lim_{s \to 0} s \frac{1}{s} H(s) = H(0) = DCgain$	

Table of selected Laplace transforms

Function	Time domain	Laplace s-domain	
Unit impulse	$\delta(t)$	1	
Unit step	1 (t)	$\frac{1}{s}$	
Delayed unit step	1 (t- au)	$e^{-\tau s} \frac{1}{s}$	
ramp	$t \cdot 1(t)$	$\frac{1}{s^2}$	
exponential decay	$e^{-lpha t}\cdot 1(t)$	$\frac{1}{s+\alpha}$	
exponential approach	$(1-e^{-lpha t})\cdot 1(t)$	$\frac{\alpha}{s(s+\alpha)} = \frac{1}{s} - \frac{\alpha}{s+\alpha}$	
sine	$\sin(\omega t) \cdot 1(t)$	$\frac{\omega}{s^2 + \omega^2}$	
cosine	$\cos(\omega t) \cdot 1(t)$	$\frac{s}{s^2 + \omega^2}$	

see more, e.g. http://en.wikipedia.org/wiki/Laplace_transform

Transfer function	Poles, Zeros, Unit step response	Module and phase frequency response	Passive and active circuit realization
Ideal integrator $H(s) = \frac{1}{s\tau}$	$\begin{array}{c c} \circ \text{ at } \infty & j\omega \\ \hline & \sigma \\ \hline & 0 \end{array}$	$ \begin{array}{c} $	Realization by passive circuit does not exist. Inverting integrator $H(s) = -\frac{1}{s\tau}, \ \tau = \frac{1}{RC}$
Ideal derivator $H(s) = s \tau$	$\begin{array}{c} \times \text{ at } \infty \int j\omega \\ \hline \\ 0 \\ \hline \\ w(t) \\ 0 \\ \hline \\ 0 \\ \hline \\ Dirac(t) \\ \hline \\ 0 \\ \hline \\ \end{array}$	$ \begin{bmatrix} [\mathbf{g}] \\ [3] \\ [3] \\ [3] \\ [3] \\ [4] $	Realization by passive circuit does not exist. Inverting derivator R u_1 $H(s) = -s\tau, \ \tau = \frac{1}{RC}$

Transfer function	Poles, Zeros,	Module and phase	Passive and active
Transfer function	Unit step response	frequency response	circuit realization
Low pass (LP ₁) $H(s) = \frac{H_0\omega_0}{s+\omega_0}$ $\omega_0 > 0, H_\infty = 0$	$ \begin{array}{c c} \circ \text{ at } \infty & j\omega \\ \hline & \sigma \\ \hline & \omega_0 & 0 \\ \hline & & & \\ & & & \\ \hline \end{array} $	$\begin{array}{c c} \hline {\rm gp} \\ \hline \hline (3) \\ \hline (3) \\ \hline (3) \\ \hline (4) \\ \hline (4) \\ \hline (5) \\ \hline (5) \\ \hline (4) \\ \hline (5) \\ \hline (5) \\ \hline (6) \\ \hline (6) \\ \hline (7) \\ \hline (10) \\ \hline ($	$\begin{array}{c c} R \\ \hline u_1 & C \\ \hline u_2 \\ \hline \omega_0 = \frac{1}{RC}, H_0 = 1 \\ \hline R_2 \\ \hline R_1 & C \\ \hline \end{array}$
	$ \begin{array}{c c} \vdots \\ 0 \\ \hline $	$ \begin{array}{c} \widehat{3} \\ \widehat{5} \\ -\pi/2 \end{array} $	u_1 u_2 $u_0 = \frac{1}{R_2C}, H_0 = -\frac{R_2}{R_1},$
High pass (HP ₁) $H(s) = \frac{H_{\infty}s}{s + \omega_0}$	$ \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \omega_0 \end{array} $	$\begin{array}{c c} \hline & \hline & \\ \hline & &$	$u_1 \qquad U_2$ $u_0 = \frac{1}{RC}, H_{\infty} = 1,$
	H_{∞}	ω_0	R_1 C
$\omega_0 > 0, H_0 = 0$	$0 \xrightarrow{\hat{z}} 0.37H_{\infty}$ $0 \tau = 1/\omega_0$	$ \begin{array}{c} \widehat{3} \\ \widehat{5} \\ \widehat{5} \\ 0 \end{array} $ $ \begin{array}{c} \pi/4 \\ \omega_0 \end{array} $	$\omega_0 = \frac{1}{R_1C}, H_{\infty} = -\frac{R_2}{R_1}.$

	D 1 7		
Transfer function	Poles, Zeros,	Module and phase	Passive and active
Transfer rancolon	Unit step response	frequency response	circuit realization
$H(s) = H_{\infty} \frac{s + \omega_n}{s + \omega_0}$ $\omega_0 > 0, \omega_n > 0$	$\begin{array}{c c} \omega_n & j\omega \\ \hline 0 & \sigma \\ \hline 0 & \sigma \\ \hline \vdots & \sigma \\ \hline 0 & \tau = 1/\omega_0 \\ \hline 0 & \tau = 1/\omega_0 \\ \hline 0 & \tau = 1/\omega_0 \\ \hline 0 & \sigma \\ \hline 0 & \tau = 1/\omega_0 \\ \hline 0 & \sigma \\ \hline 0 $	$\begin{array}{c c} \hline \text{gr} \\ \hline \\ \hline \text{gr} \\ \hline \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$H(s) = H_{\infty} \frac{s - \omega_n}{s + \omega_0}$ $\omega_0 > 0, \omega_n > 0$	$\begin{array}{c c} & j\omega \\ & \omega_n \\ \hline & \omega_0 \\ \\ & \omega_0 \\ \end{array}$ step resp. is the same $H_0 = -H_\infty \frac{\omega_n}{\omega_0}$	module resp. is the same $\pi \uparrow \qquad $	$u_1 \downarrow g_m u_1 \downarrow Q_m Q_m Q_m Q_m Q_m Q_m Q_m Q_m Q_m Q_m$

Table: First-order all-pass section.

Frequency response of the one RC network, $f_0 = 10 \, \mathrm{kHz}$

Module frequency response of the one and six RC networks

Module frequency response of the one and six RC networks

Frequency Filters

Cascade structure of the filter – cascading transfer function

$$\begin{split} H(s) &= \frac{s^m + a_{m-1}s^{m-1} + \dots + a_0}{b_n s^n + b_{n-1}s^{n-1} + \dots + b_0} = H_{\infty} \frac{(s - s_{n_1})(s - s_{n_2}) \cdots (s - s_{n_m})}{(s - s_{p_1})(s - s_{p_2}) \cdots (s - s_{p_m})}, \\ \text{where} \quad s_{p_i} &= \sigma_{p_i} \pm j\omega_{p_i}, \text{ and } \omega_{0_i} = |s_{p_i}| = \sqrt{\omega_{p_i}^2 + \sigma_{p_i}^2}, \quad Q_i = \frac{1}{2} \frac{\omega_{0_i}}{|\sigma_{p_i}|} = \frac{1}{2\xi}, \\ \text{general } 2^{\text{nd}} \text{ order TF} \quad H_b(s) &= H_{\infty} \frac{(s - \omega_n)^2}{s^2 + \frac{\omega_0}{2}s + \omega_0^2}. \end{split}$$

$$\begin{array}{c|c}
\hline
U_{in}(s) & H_1(s) \\
\hline
U_1(s) & U_2(s) \\
\hline
U_2(s) & U_3(s) \\
\hline
U_3(s) & \dots
\end{array}$$

transfer function of the block k: $H_k(s) = \frac{U_k(s)}{U_{k-1}(s)}$,

transfer function after the block
$$k$$
: $H_{1\to k}(s) = \frac{U_k(s)}{U_{in}(s)} = \prod_{n=1}^k H_n(s)$.

Time response of the 2nd order (biquadratic) transfer function – biquad

$$H(s) = \frac{C(s - s_{n_1})}{(s - s_{p_1})(s - s_{p_2})} \stackrel{\mathcal{L}^{-1}}{\Rightarrow} h(t) = C_1 e^{s_{p_1} t} + C_2 e^{s_{p_2} t},$$

$$H(s) = \frac{C}{(s - s_{p_1})(s - s_{p_2})} \stackrel{\mathcal{L}^{-1}}{\Rightarrow} h(t) = \left| \frac{C}{s_{p_{12}} = \sigma_p \pm j\omega_p} \frac{C}{\omega_p} e^{\sigma_p t} \sin(t\omega_p),$$

$$H_{LP}(s) = \frac{H_0 \omega_0^2}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2} \quad \forall \ \sigma_p < 0$$
where poles are $s_{p_{12}} = \frac{\left(-1 \pm \sqrt{1 - 4Q^2}\right) \omega_0}{2Q},$

where $Q=rac{1}{2\xi}$ — quality factor of the biquad and $\xi=rac{1}{2Q}$ — damping factor.

Frequency Filters – effect of the pole position on the type of responses

$$H_{LP}(s) = rac{H_0\omega_0^2}{s^2 + rac{\omega_0}{Q}s + \omega_0^2} \, orall \, \sigma_{
ho} < 0, \quad ext{where} \quad s_{
ho_{12}} = rac{\left(-1 \pm \sqrt{1 - 4Q^2}
ight)\omega_0}{2Q},$$

 $Q < 1/2, \, \xi > 1$ two real poles,

 $Q=1/2,\,\xi=1$ double real pole,

 $Q>1/2,\,\xi<1$ complex conjugate poles, where special case

$$Q=\xi=1/\sqrt{2}$$
 – complex conjugate poles with $\sigma_{\it p}=\omega_{\it p}.$

Frequency Filters – effect of the pole position on the type of responses

Poles location of the biquad for $\omega_0 = 1$

Frequency Filters – effect of the pole position on the type of responses

Magnitude frequency responses of the biquad for

$$H_0 = H_{LP}(0) = 1$$

Phase frequency responses of the biquad

Time (unit step) responses of the biquad for $H_0=1$ and $\omega_0=1$

Frequency Filters – effect of the pole position on the type of responses

Magnitude Specification of the Ideal and Real Lowpass (LP) Filter

Ideal LP filter $(f_p = f_s = f_0)$ passband $\equiv \langle 0, f_0 \rangle$, $|H| = H_0$, transition band $\equiv 0$, stopband $\equiv \langle f_0, \infty \rangle$, |H| = 0

Real LP filter

passband $\equiv \langle 0, f_p \rangle$, $|H| = \langle H_0, H_0 - a_p \rangle$, transition band $\equiv (f_p, f_s)$, stopband $\equiv \langle f_s, \infty \rangle$, $|H| < H_0 - a_s$

Butterworth filter

$$f_{01} = 1 \text{ kHz}, \quad f_{02} = 1 \text{ kHz}, \quad f_{03} = 1 \text{ kHz}$$

 $Q_1 = 0.71, \quad Q_2 = 1.9, \quad Q_3 = 0.52.$

Chebyshev filter

$$f_{01} = 0.7 \text{ kHz}, \quad f_{02} = 0.96 \text{ kHz}, \quad f_{03} = 0.3 \text{ kHz}, \\ Q_1 = 3.5, \qquad Q_2 = 13, \qquad Q_3 = 1.$$

$$t_{02} = 0.96$$

 $Q_2 = 13$,

$$f_{03} = 0.3 \,\mathrm{kHz}$$

 $Q_3 = 1.$

Magnitude frequency responses of the filters

Magnitude frequency responses of the filters

Poles of the filters, poles and zeros of the Cauer and Inverse Chebyshev filter in p-plane for normalized frequency $\omega_0 = 1$.

Time (unit step) responses of the filters (Phase- and Amplitude errors cause linear distortions)

Phase frequency responses of the filters

Why do we need a good time response?

Filter for DC value of rectifier signal, ...

Why the phase frequency responses should be linear (not constant)?

Phase values of sinusoidal waveform for delay e.g. $\tau = 1/2 \, \text{ms}$.

f [kHz]	<i>T</i> [ms]	$ au=1/2\mathrm{ms}$
1	1	$T/2 \equiv 1\pi$
2	1/2	$1T \equiv \frac{2\pi}{2}$
6	1/6	$3T \equiv 6\pi$

Group delays of the filters

$$\Rightarrow H(s) = \frac{s^{m} + a_{m-1}s^{m-1} + \dots + a_{0}}{b_{n}s^{n} + b_{n-1}s^{n-1} + \dots + b_{0}}$$

Frequency Transformations

Filter Characteristic for Lowpass (LP), Highpass (HP), Bandpass (BP), Band-rejection (or Band-stop – BS) and Normalized Lowpass (NLP).

Magnitude Approximation

Magnitude Approximation

Comparison of Chebyshev A vs C type and Butterworth vs Bessel approximation

Comparison of phase and group delay characteristic of Butterworth and Bessel approximation

Magnitude Approximation

Results of Approximation Task

- secondary parameters of the filter (order, new stopband value, ...)
- zeros and poles of gain and characteristic function
- gain and characteristic function
- partial gain functions (parameters of biquads ω_0 , Q, $[\omega_n]$) appropriate for cascade filter synthesis

Analog filters realization

- Passive filters
 - Electromechanical filters, $10^1 \, \text{kHz} < f < 10^2 \, \text{kHz}$,
 - LC filters, $10^0 \, \text{kHz} < f < 1 \, \text{GHz}$,
 - Crystal (piezoelectric) filters, $10^1 \, \text{kHz} < f < 1 \, \text{GHz}$,
 - Surface Acoustic Wave (SAW) filters, 10 MHz < f < 2 GHz,
 - Microwave filter (cavity filters), $f > 1 \, \text{GHz}$.
- Active building blocks using
 - Op Amps ARC filters,
 - OTA transkonductance apmlifiers filters,
 - Current conveyors (current-mode filters),
 - Log-domain and Square-root domain filters,
 - Disrete time filters using SC or SI technique.

LC Filters

LC Filters

LC Filters

Active RC filters

ARC filters: very good dynamic range at low frequencies, tuning is problem.

- LC ladder simulation by signal-flow graphs or by element substitution (synthetic inductors, Bruton's transformation),
- Cascade synthesis (forming biquadratic sections biquads),
- Direct synthesis.

Active RC filters – LC ladder simulation

Impedance converter and its realization

$$Z_{vst}(s) = k(s)Z_5 = \frac{Z_1Z_3Z_5}{Z_2Z_4}$$

Inductor realization $Z_4 = 1/(sC)$ and $Z_1 = Z_2 = Z_3 = Z_5 = R$, then

$$Z_{vst}(p) = s CR^2$$

Double capacitor realization $Z_1 = Z_3 = 1/(sC)$ and

$$Z_1 = Z_2 = Z_4 = Z_5 = R$$
, then

$$Z_1 = Z_3 = 1/(sC)$$
 and

$$Z_{vst}(s) = \frac{1}{s^2 C^2 R}$$

Circuit realization of no-grounded double capacitor

Circuit realization of LP filter

Circuit realization of HP filter

$$\overline{U_{in}(s)}$$
 $H_1(s)$ $U_1(s)$ $U_2(s)$ $U_3(s)$ $U_3(s)$ $U_3(s)$ $U_3(s)$

transfer function of the block
$$k$$
: $H_k(s) = \frac{U_k(s)}{U_{k-1}(s)}$,

transer function after the block
$$k$$
: $H_{1\rightarrow k}(s) = \frac{U_k(s)}{U_{in}(s)} = \prod_{n=1}^k H_n(s)$.

Figure: Cascade structure of a filter.

Transfer function	Poles, Zeros, Unit step response	Module and phase frequency response	Circuit realization
Low pass (LP ₂) $H(s) = \frac{H_0 \omega_0^2}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$ $Q > 0, \ \omega_0 > 0,$ $H_{\infty} = 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} H_{max} & & & & & & & \\ \hline \vdots & & & & & & \\ \hline \vdots & H_0 & & & & & \\ \hline \vdots & & & & & & \\ \hline M & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	$u_1 \underbrace{\begin{array}{c} L \\ U_2 \\ H_0 = 1, \\ \omega_0 = \frac{1}{\sqrt{LC}}, Q = \omega_0 \frac{L}{R} \\ \\ \text{active realization} \\ \Rightarrow \text{see below} \end{array}}$
$\begin{aligned} & \text{High pass (HP}_2) \\ & H(s) = \\ & = \frac{H_\infty s^2}{s^2 + \frac{\omega}{Q} s + \omega_0^2} \\ & Q > 0, \omega_0 > 0, \\ & H_0 = 0 \end{aligned}$	$\begin{array}{c} j\omega \\ \omega_p \\ \omega_0 \\ $	$\begin{array}{c c} H_{max} & & Q H_{\infty} \\ \hline (H_{\infty} & & & \omega_{max} \\ \hline (H_{\infty} & & & & \omega_{max} \\ \\ (H_{\infty} & & & & & \omega_{max} \\ \hline (H_{\infty} & & & & \omega_{max} \\ \hline (H_{\infty} & & & & \omega_{max} \\ \hline (H_{\infty} & & & & \omega_{max} \\ \hline (H_{\infty} & & & & \omega_{max} \\ \hline (H_{\infty} & & & & \omega_{max} \\ \hline (H_{\infty} & & & & \omega_{max} \\ \hline (H_{\infty} & & & & \omega_{max} \\ \hline (H_{\infty} & & & & \omega_{m$	$u_1 \downarrow \qquad \qquad U_2 \\ u_2 \downarrow \qquad \qquad U_3 \\ u_0 = \frac{H_\infty = 1,}{\sqrt{LC}}, Q = \omega_0 \frac{L}{R} \\ u_1 \downarrow \qquad $

Transfer function	Poles, Zeros, Unit step response	Module and phase frequency response	Circuit realization
$\begin{aligned} & \text{Band pass (BP}_2) \\ & H(s) = \\ & = \frac{H_B \frac{\omega_0}{Q} s}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2} \\ & Q > 0, \ \omega_0 > 0, \\ & H_0 = H_\infty = 0 \end{aligned}$	$ \begin{array}{c} \circ \text{ at } \infty j\omega \\ \omega_p \omega_p \\ \omega_p \sigma \\ 0 2\overline{Q} \\ \omega_p -\omega_p \\ \omega_p -\omega_p \\ \vdots \\ 0 f = \frac{\omega_p}{2\pi} \\ \end{array} $	$ H_B $ $\frac{ H_B }{3\sqrt{2}}$ 0 0 0 0 0 0 0 0 0 0	$u_1 \bigvee_{\omega_1} \frac{L}{R \bigcup_{\omega_2}} u_2$ $u_2 \bigvee_{\omega_1} \frac{H_B = 1,}{\sqrt[4]{LC}, Q = \omega_0 \frac{L}{R}}$ active realization $\Rightarrow \text{see below}$

Table: Second-order filter section.

Table: Second-order eliptic filter section.

Table: Second-order eliptic filter section.

Transfer function	Poles, Zeros, Unit step response	Module and phase frequency response	Circuit realization
Notch (N) $H(s) = \\ = \frac{H_0(s^2 + \omega_0^2)}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$ $\omega_0 > 0, Q > 0$ $H_0 = H_{\infty}$	$w(t) = \begin{pmatrix} \omega_0 \\ w_0 \\ \omega_0 \\ w_0 \\ \omega_0 \\ w_0 \\ \omega_0 \\ \omega$	$ H_0 $ $ H_0 $ $ H_0 $ $ U_0 $ $ U_0$	R u_1 U_2 U_2 U_3 U_4 U_2 U_4 U_2 U_2 U_4 U_2 U_2 U_2 U_2 U_2 U_3 U_4

Table: Second-order eliptic filter section.

Cascade Filters

Transfer function	Poles, Zeros, Unit step response	Module and phase frequency response	Circuit realization
All pass (AP ₂) $H(s) =$ $= H_0 \frac{s^2 - \frac{\omega_0}{Q} s + \omega_0^2}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$ $\omega_0 > 0, Q > 0$ $H_0 = H_{\infty}$	$\begin{array}{c c} j\omega \\ \omega_p & \omega_p \\ \omega_0 & \omega_0 \\ \hline \omega_0 & \omega_0 \\ \hline 2Q & 2Q \\ \hline w(t) \\ H_0 & f = \frac{\omega_p}{2\pi} \\ \hline w(t) & w(t) \\ \hline \end{array}$	$(3) H$ 0 -2π -2π	$U_1 = U_2$ $U_1 = U_2$ $U_2 = U_2$ $U_3 = U_4$ $U_4 = U_4$ $U_2 = U_4$ $U_3 = U_4$ $U_4 = U_4$ $U_4 = U_4$ $U_4 = U_4$ $U_4 = U_4$ $U_5 = U_4$ $U_7 = U_8$ $U_8 = U_8$ $U_9 = U_9$ $U_9 $

$$\begin{split} H(s) &= \frac{U_2(s)}{U_1(s)} - \left(\frac{-2\frac{\omega_0}{Q}s}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2} + 1\right) = \\ &= -\frac{s^2 - \frac{\omega_0}{Q}s + \omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2} \end{split}$$

- Assignment particular zeros to corresponding poles, so-called pole-zero pairing to biquadratic functions are formed,
- determination of order in which the biquadratic functions (biquads) should be cascaded,
- choosing optimum gain distribution to particular biquads and
- electric circuit synthesis of particular biquad (choosing of appropriate circuit and element values calculation).

Frequency Response of the Feedback Structure

$$H(s) = \frac{U_o(s)}{U_i(s)} = \frac{A(s)}{A(s)\beta + 1}$$

$$H(0) \doteq \frac{1}{\beta} \quad \forall \quad A(0)\beta \gg 1$$

$$\textbf{1} \quad H_1(s) = \frac{A_0}{(1+s/\omega_1)(1+s/\omega_2)}, \\ \text{where } A_0 = 10^5, \ \omega_1 = 2\pi 100, \ \omega_2 = 2\pi 2 \cdot 10^6$$

②
$$H_2(s) = \frac{A_0}{(1 + s/\omega_1)(1 + s/\omega_2)(1 + s/\omega_3)}$$
, where $A_0 = 10^5$, $\omega_1 = 2\pi 100$, $\omega_2 = 2\pi 2 \cdot 10^6$, $\omega_2 = 2\pi 4 \cdot 10^6$

Magnitude frequency responses of the feedback system $H_1(s)$ for $\beta = 0, 1/100, 1/10, 1, 10$.

Poles location of the feedback system $H_1(s)$ for $\beta = 0$, 1/100, 1/30, 1/20, 1/10, 1, 10.

Magnitude frequency responses of the feedback system $H_2(s)$ for $\beta = 0, 1/100, 1/10, 1, 10$.

Poles location of the feedback system $H_2(s)$ for $\beta = 0, 1/100, 1/40, 1/26, 1/15, 3/5, 1.$

Biquad Realization using Circuits Working in Continuous Time

- Single amplifier Sallen-Key circuit for LP, HP and BP filters with a small Q-factor
- Generalized Impedance Converter (GIC) biquad for BP filters with Q < 60.
- Åckerberg-Mossberg (AM) or Tow-Thomas (TT) circuit for LP and BP filters with higher Q-factors.
- General biquad based on the TT circuit for eliptic and HP filters.
- Alternatively a single amplifier circuit using double T-network for elliptic filters with small Q-factors.

Example of biquad realization, *LTC6601 – pin configurable gain and filter response up to 27 MHz*: anti-aliasing filter for ADC.

ARC filters: very good dynamic range at low frequencies, tuning is problem.

New blocks for analog filter design

OTA - Operational Transkonductance Amplifier

New blocks for analog filter design

OTA - Operational Transkonductance Amplifier

New blocks for analog filter design

OTA - Operational Transkonductance Amplifier

- $ullet g_m = 10^1 \, \mu {
 m S}, \ g_o = 10^1 \, n {
 m S},$
- OPA860: B 80 MHz, SR 900 V/ μ s, g_m 95 mS, bipolar OT for wide-bandwith systems (video and RF, IF circuitry).

New blocks for analog filter design

OTA - Operational Transkonductance Amplifier

OTA integrator

$$v_0(t) = \frac{1}{C} \int i(t) dt =$$

$$= \frac{1}{C} \int g_m v_1(t) dt$$

$$H(s) = \frac{v_2}{v_1} = \frac{g_m}{sC}$$

OTA damped integrator

$$v_x = v_y$$
, $i_z = \pm i_x$, $i_y = \alpha i_x$,

- $\alpha \leq 1$, CCI,
- $\alpha = 0$, CCII,
 - $\alpha = -1$, CCIII.

$$v_x = v_y$$
, $i_z = \pm i_x$, $i_y = \alpha i_x$,

- $\alpha \leq 1$, CCI,
- $\alpha = 0$, CCII,
 - $\alpha = -1$, CCIII.

$$v_x = v_y$$
, $i_z = \pm i_x$, $i_y = \alpha i_x$,

- $\alpha \leq 1$, CCI,
- $\alpha = 0$, CCII,
 - $\alpha = -1$, CCIII.

$$v_x = v_y$$
, $i_z = \pm i_x$, $i_y = \alpha i_x$,

- $\alpha \leq 1$, CCI,
- ullet $\alpha=0$, CCII,
 - $\alpha = -1$, CCIII.

$$CC$$
 – Current Conveyor

$$v_x = v_y$$
, $i_z = \pm i_x$, $i_y = \alpha i_x$,

- $\alpha = -1$. CCIII.

$$v_0(t) = \frac{1}{C} \int i_C(t) dt =$$

$$= \frac{1}{RC} \int v_{in}(t) dt$$

$$H(s) = \frac{V_2}{V_1} = \frac{1}{sCR}$$

Cascade Filters – ARC Biquad Realization

Biquad realization using ARC, OTA

Biquad realization in "mixed" current mode using CC

Biquad realization in "mixed" current mode using CC

$$\begin{split} \frac{i_{LP}}{i_{in}} &= \frac{1}{s^2 R_1 R_2 C_1 C_2 + s R_1 C_1 + 1}, \quad \frac{i_{BP}}{i_{in}} = \frac{s R_1 C_1}{s^2 R_1 R_2 C_1 C_2 + s R_1 C_1 + 1}, \\ \frac{i_{HP}}{i_{in}} &= \frac{s^2 R_1 R_2 C_1 C_2}{s^2 R_1 R_2 C_1 C_2 + s R_1 C_1 + 1}, \quad \frac{i_{BS}}{i_{in}} = \frac{i_{LP} + i_{HP}}{i_{in}} = \\ &= \frac{s^2 R_1 R_2 C_1 C_2 + 1}{s^2 R_1 R_2 C_1 C_2 + s R_1 C_1 + 1}, \quad \frac{i_{AP}}{i_{in}} = \frac{i_{LP} + i_{HP} - i_{BP}}{i_{in}} \end{split}$$

Principle of Switched Capacitor Circuits

$$Q_1 = C V_1, \quad Q_2 = C V_2, \Rightarrow \Delta Q = Q_1 - Q_2 = C(V_1 - V_2)$$

Relation for equivalent average current i_{eo} in one switched period $T_c=1/f_c$ can be derived

$$i_{eo} = \frac{\partial Q}{\partial t} \doteq \frac{\Delta Q}{\Delta t} = \frac{C(V_1 - V_2)}{T_c} \Rightarrow \frac{V_1 - V_2}{R_{SC}} \Rightarrow R_{SC} = \frac{1}{f_c C}.$$

$$K(\omega) = \frac{V_2}{V_1} = \frac{1}{1 + j\omega R_{SC} C_2} = \frac{1}{1 + j\frac{\omega}{f_2} \frac{C_2}{C_1}}$$

$$K(\omega) = \frac{V_2}{V_1} = \frac{1}{1 + j\omega R_{SC} C_2} = \frac{1}{1 + j\frac{\omega}{f} \frac{C_2}{C_1}}$$

$$\omega_0 \sim \frac{f_c C_1}{C_2}$$

$$K(\omega) = \frac{V_2}{V_1} = \frac{1}{1 + j\omega R_{SC} C_2} = \frac{1}{1 + j\frac{\omega}{f_c} \frac{C_2}{C_1}}$$

$$\omega_0 \sim \frac{f_c C_1}{C_2}$$

- Easy tunable, easy to integrate!
- high accuracy only for ratio's of C_i , could be 0.2%,
- possibility to realize high values of resistance ($f_c=100\,\mathrm{kHz}$ and $C=1\,\mathrm{pF}\to10\,\mathrm{M}\Omega$),
- ullet only capacitors to drive o low power,
- only for $f \ll f_c$.

$$K(\omega) = \frac{V_2}{V_1} = \frac{1}{1 + j\omega R_{SC}C_2} = \frac{1}{1 + j\frac{\omega}{f_c}\frac{C_2}{C_1}}$$

$$\omega_0 \sim \frac{f_c C_1}{C_2}$$

- Easy tunable, easy to integrate!
- high accuracy only for ratio's of C_i , could be 0.2%,
- possibility to realize high values of resistance ($f_c=100\,\mathrm{kHz}$ and $C=1\,\mathrm{pF} \to 10\,\mathrm{M}\Omega$),
- ullet only capacitors to drive o low power,
- only for $f \ll f_c$.

$$K(\omega) = \frac{V_2}{V_1} = \frac{1}{1 + j\omega R_{SC} C_2} = \frac{1}{1 + j\frac{\omega}{f_c} \frac{C_2}{C_1}}$$

$$\omega_0 \sim \frac{f_c C_1}{C_2}$$

- Easy tunable, easy to integrate!
- high accuracy only for ratio's of C_i , could be 0.2%,
- possibility to realize high values of resistance ($f_c=100\,\mathrm{kHz}$ and $C=1\,\mathrm{pF} \to 10\,\mathrm{M}\Omega$),
- ullet only capacitors to drive o low power,
- only for $f \ll f_c$.

$$K(\omega) = \frac{V_2}{V_1} = \frac{1}{1 + j\omega R_{SC} C_2} = \frac{1}{1 + j\frac{\omega}{f_c} \frac{C_2}{C_1}}$$

$$\omega_0 \sim \frac{f_c C_1}{C_2}$$

- Easy tunable, easy to integrate!
- high accuracy only for ratio's of C_i , could be 0.2%,
- possibility to realize high values of resistance ($f_c=100\,\mathrm{kHz}$ and $C=1\,\mathrm{pF} \to 10\,\mathrm{M}\Omega$),
- ullet only capacitors to drive o low power,
- only for $f \ll f_c$.

$$K(\omega) = \frac{V_2}{V_1} = \frac{1}{1 + j\omega R_{SC} C_2} = \frac{1}{1 + j\frac{\omega}{f_c} \frac{C_2}{C_1}}$$

- Easy tunable, easy to integrate!
- high accuracy only for ratio's of C_i , could be 0.2%,
- possibility to realize high values of resistance ($f_c=100\,\mathrm{kHz}$ and $C=1\,\mathrm{pF} \to 10\,\mathrm{M}\Omega$),
- ullet only capacitors to drive o low power,
- only for $f \ll f_c$.

Spectrum of switched sinusoidal signal

Spectrum of switched sinusoidal signal

$$\approx A \frac{\tau}{T_c} \sum_{k=0}^{\infty} \frac{\sin(k\omega_c \pm \omega_0) \frac{\tau}{2}}{(k\omega_c \pm \omega_0) \frac{\tau}{2}} \sin((k\omega_c \pm \omega_0) t + \varphi(k))$$

- Spectrum of sampled signal is periodical period given by f_c .
- The spectrum is constrictive with factor $\frac{\tau}{T_c} \frac{\sin(\pi f \tau)}{\pi f \tau}$,

• i.e.
$$\frac{1}{2} \frac{\sin\left(\frac{\pi f}{2f_c}\right)}{\frac{\pi f}{2f_c}}$$
 for $\tau = T_c/2$.

Frequency response

$$\frac{V_3}{V_1} = \frac{1}{1 + j\omega C_2 R_{eq}} = \frac{1}{1 + j\frac{\omega}{f_c} \frac{C_2}{C_1}} \tag{1}$$

$$K_{13} = \frac{V_{3e}}{V_{1e}} = \frac{C_1}{z(C_1 + C_2) - C_2}, \qquad z = e^{j\omega T_c}$$
 (2)

for
$$\mathit{f_c}=10^4\,[Hz],~\mathit{C_1}=6,\!2\,[nF]$$
 and $\mathit{C_2}=10\,[nF].$

Frequency response

$$\frac{V_3}{V_1} = \frac{1}{1 + j\omega C_2 R_{eq}} = \frac{1}{1 + j\frac{\omega}{f_c}\frac{C_2}{C_1}} \tag{1}$$

$$K_{13} = \frac{V_{3e}}{V_{1e}} = \frac{C_1}{z(C_1 + C_2) - C_2}, \qquad z = e^{j\omega T_c}$$
 (2)

for
$$f_c=10^5\,[\mathrm{Hz}],~C_1=6.2\,[\mathrm{nF}]$$
 and $C_2=10\,[\mathrm{nF}].$

Cascade Filters - SC Biquad Realization

Biquad realization using ARC, SC

Realization using Switched Capacitor Circuits based on LTC 1060 Chip

- LTC1060 consists of two SC biquads
- LP, HP, BP, BS and allpass
- operates up to 30 kHz ($f_{clk} = 1.5 \,\text{MHz}$)
- center frequency Q-product up to 1.6 MHz
- 88 dB dynamic range at $\pm 2.5 \,\text{V}$ supply

Cascade Filters – SC Biquad Realization

Example of SC filter realization, LTC6603 – programmable lowpass filter for communications receivers and transmitters

BW up to 2.5MHz Gain (0/6/12/24 dB) 9th Order Linear Phase Response APP.: WCDMA, UMTS, radio links, modems, 802.11x receivers

Principle of Switched Current Circuits

$$\Phi_1: t = (n - 1/2)T_c I_d = I_{1e}((n - 1/2)T_c) + I$$

$$\Phi_2: t = (n)T_c I_{2o} = I - I_d = -I_{1e}((n - 1/2)T_c)$$

$$I_{2o}(z) = -z^{-1/2}I_{1e}(z) \quad \Rightarrow \quad \frac{I_{2o}(z)}{I_{1e}(z)} = -z^{-1/2} = -\frac{1}{\sqrt{z}}$$

Biquad realization in "clear" current mode using SI

$$v_{g} = \frac{R}{r_{g}}(u_{g} - u_{1}); \quad u_{1} = \frac{1}{sc_{1}R}(v_{g} - v_{2} - sc_{2}R(u_{1} - u_{3}));$$

$$v_{2} = \frac{R}{sl_{2}}(u_{1} - u_{3}); \quad u_{3} = \frac{1}{sc_{3}R}(v_{2} - v_{4} + sc_{2}R(u_{1} - u_{3}) - sc_{4}R(u_{3} - u_{5}));$$

$$v_{4} = \frac{R}{sl_{4}}(u_{3} - u_{5}); \quad u_{5} = \frac{1}{sc_{5}R}(v_{4} - v_{6} + sc_{4}R(u_{3} - u_{5}));$$

$$v_{6} = \frac{R}{sl_{4}}(u_{5} - u_{7}); \quad u_{7} = \frac{r_{2}}{R}v_{6}.$$

$$v_{g} = \frac{R}{r_{g}}(u_{g} - u_{1}); \quad u_{1} = \frac{1}{sc_{1}R}(v_{g} - v_{2} - sc_{2}R(u_{1} - u_{3}));$$

$$v_{2} = \frac{R}{sl_{2}}(u_{1} - u_{3}); \quad u_{3} = \frac{1}{sc_{3}R}(v_{2} - v_{4} + sc_{2}R(u_{1} - u_{3}) - sc_{4}R(u_{3} - u_{5}));$$

$$v_{4} = \frac{R}{sl_{4}}(u_{3} - u_{5}); \quad u_{5} = \frac{1}{sc_{5}R}(v_{4} - v_{6} + sc_{4}R(u_{3} - u_{5}));$$

$$v_{6} = \frac{R}{sl_{6}}(u_{5} - u_{7}); \quad u_{7} = \frac{r_{2}}{R}v_{6}.$$

 $C_{Ij} = c_j g_{mj} R, j=1,3,5; C_{Ik} = I_k g_{mk} / R, k=2,4,6; C_{x(m)} = C_m g_m R, m=2,4 \cdot 2$

http://syntfil.feld.cvut.cz

WWW Interface - Filter Type Selection

SYNThesis of electrical FILters

[Project :: Aproximation :: LC realization :: ARC realization :: Transfer function :: Help]

Choosing selection requiest approximate and order filter

Approximation

Approximation	Keeping of required parameters			Filter with lower order		
		Order	New value of as		Order	New value of a
Butterworth	С	8	21.085211	С	7	18.195003
Chebyshev	•	4	21.810501	С	3	14.449014
Inverzní Chebyshev A	С	4	21.810501	С	3	14.449014
Inverzní Chebyshev B	С	4	21.810501 $(\Omega_{\rm s}$ =1.457638)	С	2	7.772117 (Ω ₈ =1.708801)
Cauer A	С	3	26.194390	С	2	12.957894
Cauer B	С	4	39.698595 $(\Omega_8$ =1.480785)	С	2	12.957894 (Ω ₈ =1.825298)
Cauer C	С	4	39.698595 (Ω _s =1.566231)	С	2	12.957894 (Ω _s =2.379796)

WWW Interface - Results of the Approximation

Result from aproximate analyzis

NLP (Norm Low pass)

Transfer function

$$H(p) = \frac{0.163445}{1.000000p^4 + 0.716215p^3 + 1.256482p^2 + 0.516798p + 0.205765}$$

graph

Zeros and poles

Zeros	Poles						
	104887252238877+.957952960166620*I						
	104887252238877957952960166620*I						
	253220226875144+.396797108216470*l						
	253220226875144396797108216470*l						

graph

Coeficient Gc

WWW Interface - LC ladder Synthesis

WWW Interface – ARC Cascade Filter Synthesis

WWW Interface - Frequency Response of Designed Filter

Analog Filters – References

- Schaumann, R., Valkenburg, M.E.V.: *Design of Analog Filters*. Oxford University Press, 2001.
- Bičák J., Laipert M., Vlček M.: *Lineární obvody a systémy*, Monografie ČVUT, Praha 2006.
- Sedra, A. S., Smith, K. C.: *Microelectronic Circuits*, 5th edition, Oxford University Press, Inc., New York 2004. ISBN 0-19-514-251-9.

Thank you for your attention!

