Predicting Flight Delays

By: Sunny & Wes

Table of Contents

Introduction Workflow Model Selection Results Challenges

Introduction

Company: Sunley Airlines

Problem: Customer satisfaction is down due to an increase in flight delays.

Solution: Machine Learning modelling to retrieve insights into the cause of these delays.

Workflow

Model Process

- Adjust features
- Add weather data (type and severity)
- Merge with Fuel and Passenger tables

Potential Causes of Arrival Delays

Imbalanced Dataset / Outliers

Criteria: An arrival delay is defined as a delay greater than 15 minutes.

(https://www.fly.faa.gov/flyfaa/usmap.jsp)

Imbalance: 18.6% of our sample data is considered delayed.

Solution: Take a subsample of the data to perform our analysis.

Handling Outliers: Arrival delays that were greater than 180 minutes were removed.

Model 1 (Linear Regression)

Dep. Variable:	arr	delay	DLS Adj. R-squared: res F-statistic:			0.014	
Model:	303330 -	OLS				0.014	
Method:	Least So	uares				28.93	
Date:	Thu, 29 Jul	2021				1.54e-50	
Time:	12:37:40 18320 18310					-25866.	
No. Observations:						5.175e+04	
Df Residuals:						5.183e+04	
Df Model:		9					
Covariance Type:	nonrobust						
	coef	std (err	t	P> t	[0.025	0.975]
const	1.561e-16	0.0	907	2.13e-14	1.000	-0.014	0.014
crs dep time	-0.0113	0.0	910	-1.179	0.238	-0.030	0.007
arrival hour	0.0650	0.0	211	6.118	0.000	0.044	0.086
arr time	-0.0924	0.0	806	-10.947	0.000	-0.109	-0.076
actual elapsed time	-0.0648	0.6	020	-3.256	0.001	-0.104	-0.026
air_time	-0.0796	0.0	021	-3.711	0.000	-0.122	-0.038
distance	0.0986	0.6	948	2.075	0.038	0.005	0.192
miles_per_min	0.0126	0.0	216	0.767	0.443	-0.020	0.045
total_taxi_time	0.0452	0.0	8 09	4.828	0.000	0.027	0.063
avg_dest_taxi_time	0.0685	0.0	806	8.845	0.000	0.053	0.084
dest_traffic	0.0211	0.0	806	2.796	0.005	0.006	0.036
Omnibus:	20711.105		Durbin-Watson:			1.959	
Prob(Omnibus):	0.000 5.845					2366131.014	
Skew:						0.00	
Kurtosis:	5	7.434	Cor	nd. No.		4.44e+15	

Model 2 (Random Forest Regressor)

Feature Engineering

- Expected Miles per Minute
- Total Taxi Time
- Destination Traffic (Number of flights landing at each airport)
- Average Origin Taxi Time

Results

- MAE = 33.7845
- $R^2 = 0.5008$

Model 3 (Random Forest Regressor)

Feature Engineering (Exclusions)

- Total Taxi Time
- Destination Traffic

Feature Engineering (Additions)

- Average Destination Traffic Time
- Average Origin Departure Delay

Results

- MAE = 12.5642
- $R^2 = 0.5905$

Results

Feature Significance

• Average Origin Delay significantly improved the model.

Potential Scheduling Adjustments

- Prior to finalizing flight details, add additional time when departing from cities with a large departure delay.
- Plan flights from 12am-7am for the cities with the largest departure delays.
- Preemptively warn customers of potential delay to increase customer satisfaction

Challenges

Data Cleaning/Exploration

- Duplicate Data
- Missing Values
- Joining tables

Feature Selection/Engineering

- Over 80 different features
- Finding correlated features

References

- https://github.com/lighthouse-labs/mid-term-project-I
- https://www.fly.faa.gov/flyfaa/usmap.jsp
- https://en.wikipedia.org/wiki/Flight-length
- Bureau of Transportation Statistics