BASES DE DADES

Grau en Enginyeria en Informàtica Universitat de Barcelona Curs 2017/18

TEMA 4 ENTITAT RELACIÓ

Objectius

- 1) Model i diagrama Entitat-Relació (part A)
- 2) Representació tabular del diagrama ER (part B)

Model Entitat-Relació

- Basat en una percepció del món real en la que tot es redueix a objectes bàsics (entitats) i a relacions entre les entitats
- És una simplificació considerable
- No obstant, aquest model s'ha aplicat, i s'aplica, a dissenyar bases de dades de bancs, de jocs olímpics, de sons*, d'estudiants i assignatures...

Entitat: definició

Una entidad:

- es una cosa u objeto del mundo real que es distinguible de todos los demás objetos. Una entidad
 puede ser un coche, una persona, un libro...No hay una receta; depende de la situación que
 estamos modelando,
- · tiene un conjunto de propiedades (atributos) con sus respectivos valores,
- · puede ser concreta o abstracta.

Un conjunto de entidades es un conjunto de entidades del mismo tipo que comparten las mismas propiedades o atributos.

Ε

conjunto de entidades

Entitat: exemple

staffNo	name	surname	position	sex	DOB	salary	branchNo
SL21	John	White	Manager	M	1-Oct-45	30000	B005
SG37	Ann	Beech	Assistant	F	10-Nov-6	12000	B003
SG14	David	Ford	Supervisor	M	24-Mar-58	18000	B003
SA9	Mary	Howe	Assistant	F	19-Feb-70	9000	B007
SG5	Susan	Brand	Manager	F	3-Jun-40	24000	B003
SL41	Julie	Lee	Assistant	F	13-Jun-65	9000	B005

Conjunt d'entitats BRANCH

Cada entitat és una fila

Entitat: atributs

- Els atributs (columnes) són propietats de les entitats
- Tipus d'atributs:

atributo

- Simples i compostos: Els simples no es poden dividir en parts, els compostos, sí
 - L'atribut direcció d'un conjunt d'entitats persona és un atribut compost (els components serien nom del carrer, pis, porta...)

Entitats: atributs

- Monovalorats i multivalorats: els monovalorats tenen un valor. Els multivalorats, en canvi, poden prendre més d'un valor dins d'un conjunt de valors
 - Per exemple, l'atribut telèfon del conjunt d'entitats Persona pot ser un atribut multivalorat, perquè una persona pot tenir més d'un número de telèfon (el mòbil i el de casa, per exemple)
- Observació: els atributs multivalorats no es modelen com llistes (més d'un valor a una cel·la de la taula). Això ho veurem més endavant.

Entitats: atributs

- **Derivats**: el valor d'aquest tipus d'atribut el calculem segons el valor d'un altre
 - El nombre de préstecs d'un client es pot derivar dels préstecs associats a un client
 - L'edat d'una persona també pot ser un atribut derivat. Si tenim la seva data de naixement, es pot calcular

atributo derivado

Entitat: dèbil

- Una entitat dèbil depèn d'una altra per la seva existència.
- La seva característica és que no es pot identificar unívocament utilitzant els seus atributs
- Per exemple: oficines de professors i departaments

Entitat: dèbil

Entitat o atribut?

- Algunes vegades podem dubtar. Per exemple, suposem el cas de persona i telèfon
 - Si modelem telèfon com una entitat, llavors "té vida" (pot tenir atributs, podem guardar informació: ubicació, tipus...).
 - Si modelem telèfon com un atribut, llavors "no té molta vida"; és una característica d'un conjunt d'entitats
- Solució? Depèn de la situació a modelar

Exercici: BBDD de la secció de futbol del Barça – identifica entitats i atributs

- El model ha de contemplar la categoria (per ex. infantil, cadet i juvenil) i la mascota de tots els equips, així com la informació bàsica (nom, cognoms, DNI, data de naixement i edat) de tots els treballadors de la secció.
- Cada equip té una mascota, que té un nom. Els treballadors de la secció (per ex. seguretat, neteja...) no són els futbolistes ni els entrenadors.
- Un futbolista pot jugar únicament a un equip. Un equip sempre té una categoria (cadet, juvenil...). Una categoria està formada per cap, 1 o N equips

Exercici: BBDD de la secció de futbol del Barça – identifica entitats i atributs

- Pels jugadors, a més del seu nom, cognom, DNI i data de naixement, s'ha de guardar també la seva demarcació al camp i a quin equip juguen. Dels equips ens interessa saber el nom.
- El model ha de permetre saber qui és el capità de cada equip i a quina data se li va assignar aquest rang. Un equip pot tenir més d'un capità, i un capità és capità únicament d'un equip.

•

 També volem guardar qui és l'entrenador principal de cada equip i quants anys d'experiència té com entrenador.

Exercici: BBDD de la secció de futbol del Barça – identifica entitats i atributs

- Per a cada equip volem saber si disposa d'un sponsor amb la seva informació (nom i pressupost).
- Un equip pot tenir més d'un sponsor, i un mateix sponsor pot representar a més d'un equip
- Finalment, ens interessa saber a quina lliga juga cada equip. De les lligues, ens interessa el nom.
- Un equip pot jugar només a una lliga, però podem tenir més d'un equip a la mateixa lliga. De la lliga ens interessa el nom.

Relacions

- Una relació és una associació entre diferents entitats
 - Un verb (una persona té un cotxe...)
- Un conjunt de relacions és un conjunt de relacions del mateix tipus
- Podem tenir relacions recursives
 - En aquestes relacions s'indica el paper (rol) que juga cada exemplar del coniunt d'entitats que participen a la relació

conjunto de relaciones

Relacions: recursives

- Un conjunt de relacions també pot tenir de fet, és habitual – atributs descriptius
- Imaginem el següent cas. Tenim estudiants, assignatures i notes. Volem saber les notes dels estudiants a les diferents assignatures.

- Imaginem el següent cas. Tenim estudiants, assignatures i notes. Volem saber les notes dels estudiants a les diferents assignatures
- Què passa en aquest disseny?

- Imaginem el següent cas. Tenim estudiants, assignatures i notes. Volem saber les notes dels estudiants a les diferents assignatures
- Què passa en aquest disseny?

 Imaginem el següent cas. Tenim estudiants, assignatures i notes. Volem saber les notes dels estudiants a les diferents assignatures

I en aquest?

Relacions: exercici

 Troba les relacions (més precisament, els conjunts de relacions) a l'exercici de la base de dades de la secció de futbol del FC Barcelona

- Exemple: tutories grupals en els estudis d'informàtica UB
- Un tutor té assignat un grup d'estudiants.
- Un grup d'estudiants té assignat un únic tutor.

- Exemple: estudiants i grups de pràctiques (el Grup A, F...) en aquesta assignatura
- Podem dir que un estudiant pertany a un grup de pràctiques(o al grup A o al F), però un grup de pràctiques està format per N estudiants
- Relació de N a 1 d'estudiants a grups

- Exemple: professors i departaments
- Un departament està format per N professors.
- Un professor pertany (habitualment) a un departament
- Relació de 1-N de departament a professor

 Exemple: un estudiant pot realitzar N activitats extraescolars, i a una activitat extraescolar participen N estudiants

Relació de N a N

Restriccions: de participació

- La participació d'un conjunt d'entitats E en un conjunt de relacions R és total si cada entitat en E participa al menys en una relació en R
- Si únicament alguna de les entitats del conjunt E participa en les relacions en R la participació és parcial

Restriccions: de participació

- Per exemple, suposem que tenim R = conjunt de relacions PRESTATARIO (persona que té un préstec), E = conjunt d'entitats CLIENTS, i S = conjunt d'entitats PRESTECS
- Podem dir que la participació de PRESTECS en PRESTATARIO és total, i la participació de CLIENTS, parcial

Restriccions: de participació

- Podem dir que la participació de PRESTECS en PRESTATARIO és total, i la participació de CLIENTS, parcial
- Si existeix un préstec, aquest està relacionat (per força) amb un client
- D'altra banda, podem tenir clients sense cap préstec

Restriccions: exercici

 Identifica les restriccions de cardinalitat i participació (si n'hi ha) en el exercici de la base de dades de la secció de futbol del FC Barcelona

Claus primàries dels conjunts de relacions

 Necessitem un mecanisme per identificar univocament les files (les relacions) dels conjunts de relacions

Sense atributs atributs:

```
clave-primaria (E1) \bigcup clave-primaria (E2) \bigcup ... clave-primaria (En)
```

Amb atributs descriptius:

```
clave-primaria (E1) \bigcup clave-primaria (E2) \bigcup ... clave-primaria (En) \bigcup { a1, a2...an }
```

Claus primàries dels conjunts de relacions

- En els dos casos, tenim superclaus
- Per què? L'estructura de la clau primària depèn de la correspondència de cardinalitat
 - 1-1: podem utilitzar la clau primària de qualsevol conjunt d'entitats com a clau primària del conjunt de relacions
 - 1-N: la clau primària del conjunt de relacions és la clau primària del conjunt d'entitats amb cardinalitat N
 - **N-1**: idem
 - N-N: la clau primària del conjunt de relacions és la unió de les claus primàries dels dos conjunts d'entitats

Claus primàries: 1-1

Per restricció de cardinalitat, les entrades en vermell són incorrectes. La clau primària de "es_tutor" és tutorNo o grupNo

Claus primàries: 1-N

departamentNo	<u>professorNo</u>
DEP1	PROFa
DEP1	PROFb
DEP2	PROFc
DEP2	PROFa

Per restricció de cardinalitat, l'entrada en vermell és incorrecta. L'atribut que distingeix unívocament cada fila és professorNo. En cap cas pot ser l'entitat amb cardinalitat 1

Claus primàries: N-1

Per restricció de cardinalitat, l'entrada en vermell és incorrecta. L'atribut que distingeix unívocament cada fila és estudiantNo. En cap cas pot ser grupNo (entitat amb cardinalitat 1)

Claus primàries: N-N

<u>estudiantNo</u>	<u>assignaturaNo</u>	<u>nota</u>
EST1	BBDD	8
EST1	PROGII	9
EST2	BBDD	8
EST2	BBDD	7

Quan tenim N-N, la clau primària del conjunt de relacions és la suma de la clau primària de cada conjunt d'entitats (més atributs descriptius, si s'escau)

Exercici: claus primàries conjunt de relacions

 Troba les claus primàries dels conjunts de relacions de l'exercici de la base de dades de la secció de futbol del FC Barcelona

Claus primàries entitats dèbils

Ubicació atributs relacions

- La restricció de cardinalitat pot afectar a la ubicació dels atributs a les relacions
 - 1-1: els atributs de la relació es posen al conjunt d'entitats, perquè no depenen de la relació
 - 1-N, N-1: els atributs de la relació es posen en la mateixa relació, o en el conjunt d'entitats amb cardinalitat N. És una decisió del dissenyador
 - N-N: els atributs de la relació es posen en la mateixa relació, perquè la relació determina l'atribut

Ubicació atributs relacions: 1-N

- Suposem: Un client té, o pot tenir, N comptes bancaris.
 Un compte bancari és propietat d'un client.
- Volem guardar l'última data d'accés als seus comptes
- Relació 1:N de CLIENTS A COMPTES
- Si data_acces fos atribut de CLIENT, la data d'accés a què faria referència?
- Necessitem que l'atribut data_acces estigui a COMPTES (entitat amb cardinalitat N) o a la relació

Ubicació atributs relacions: 1-N

clientNo	compteNo	Data-access
Client_A1	BA1	22-12-2017
Client_A1	BA2	22-02-2018

I si el client A1 accedeix a BA1 un cop més? El valor de l'atribut és substitueix pel nou (no podem inserir una nova fila, perque la clau primària estaria duplicada), i tenim la data de l'últim accés

Nota: Si volem guardar-nos totes les dates d'accés, necessitem un disseny Diferent. L'atribut és multivalorat, i això ho veurem més endavant.

Ubicació atributs relacions: N-N

Exercici

 Has trobat relacions amb atributs descriptius a l'exercici de la base de dades de la secció de futbol del FC Barcelona?

Generalització / especialització

És molt similar a herència (en POO)

Fundamentos bases de datos. Capítol 2

Exercici

• Es podria aplicar "herència" a l'exercici de la secció de futbol? En cas afirmatiu, indica com