Secrect Sharing Progress

Joan Ngure

Report

Perfect Secrecy:

- 1. Choose a prime p.
- 2. Choose randomly $a_1, \dots, a_{t-1} \in \mathbb{Z}_p$
- 3. Form $f(x) = D + \sum_{i=1}^{t-1} a_i x^i \mod p$
- 4. Choose (x_l, x_z, \dots, x_n) uniformly and randomly from among all permutations of n distinct elements from $\{1, 2, \dots, p-1\}$. Let $D_i = (x_i, d_i)$, where $d_i = f(x_i)$.

How step 4 is done:

Using our previous example p=7, thus we randomly choose possible permutations of (1 2 3 4 5 6). The total permutations will be 6!. Choosing:

$$\begin{array}{l} x_1 = (1\ 2\ 3\ 4\ 5\ 6) \\ x_2 = (2\ 3\ 1\ 5\ 6\ 4) \\ x_3 = (3\ 2\ 5\ 6\ 4\ 1) \\ x_4 = (6\ 5\ 4\ 3\ 1\ 2) \end{array}$$

Using the first three participants:

 $P_1(1,5), P_2(2,5), P_3(3,6)$

$$\begin{array}{l} x_1 \to P_1(1,5), P_2(2,5), P_3(3,6) \\ x_2 \to P_1(1,6), P_2(2,6), P_3(3,4) \\ x_3 \to P_1(1,4), P_2(2,4), P_3(3,1) \\ x_4 \to P_1(1,1), P_2(2,1), P_3(3,2) \end{array}$$

For example using x_4 we can see:

$$\alpha(1) = 6
\alpha(2) = 5
\alpha(3) = 4
\alpha(4) = 3$$

$$\alpha(5) = 1$$
$$\alpha(6) = 2$$

Thus we replace for example $P_1(1,5)$ with $P_1(1,1)$ since $\alpha(5) = 1$ $D_i = (x_i, f(x_i))$

Calculating using interpolation formula we get:

$$D_1 = 6$$

$$D_2 = 5$$

$$D_3 = 5$$

$$D_4 = 3$$

Our set of possible secrets is $S = \{6, 5, 3\}$.

Recall our secret was 6. In case the three participants pool their secrets and the result $D_i \notin S$ then cheating occurred. However, it is possible to cheat and get $D_i \in S$. Thus there is a probability say ϵ of the cheater going undetected.

To increase the probability of detecting cheaters, we can add a dummy variable say s which is never used as the real value of the secret. Thus our secret is encoded in $D^1, D^2 \cdots D^t$ Where $D^i = D$ for some i uniformly and randomly chosen and $D^j = s$ for $i \neq j$. When k participants agree to pool there secrets together, they construct $D^1, D^2 \cdots$ one at a time until some $D^j \neq s$ is obtained and the protocol terminates since cheating has occurred and the D^j is not legal.

Let i denote the round $D^i = D$

Let e_i denote the event that the protocol does not terminate before round i and the cheaters submit fabricated shares at round i.

let
$$p(t) = Pr(e_i)$$
. Then $p(t) < (1 - e)^{-1}t^{-1}$

By induction on t:

Basis
$$(t = 1)$$
. $p(t) \le l < (1 - \epsilon)^{-1}$.

Induction (t > 1). Let P_t denote the probability with which the cheaters decide to submit fabricated shares at round 1. Let s_t denote the event that the protocol does not terminate in round 1. Then

$$\begin{split} p(t) = & Pr(i=1) Pr(e_i|i=1) + Pr(i>1) Pr(s_1|i>1) Pr(e_i|i>1 \text{ and } s_1) \\ = & t^{-1} p_1 + (t-1) t^{-1} (p_1 \epsilon + (1-p_1)) p(t-1) \\ < & t^{-1} (p_1 + (t-1)(p_1 \epsilon + (1-p_1))(1-e)^{-1}(t-1)^{-1}) \\ < & t^{-1} (p_1 \times \frac{1-\epsilon}{1-\epsilon} + (p_1 \epsilon + (1-p_1))(1-e)^{-1}) \times \frac{1-\epsilon}{1-\epsilon} \\ = & (1-\epsilon)^{-1} t^{-1} \end{split}$$