

Machine Learning - Module 1: Introduction to Supervised Learning and Linear Regression

Machine learning enables computers to learn from data and make predictions without fully understanding the underlying data-generating process.

Key Ideas

Machine Learning (ML): Learn models from data to predict unseen data.

Supervised Learning: Data consists of input-label pairs (x, y). Goal: learn the mapping:

$$\hat{y} = f(\Omega, \mathbf{x})$$

where Ω are the model parameters.

Task Types

Regression: y is continuous

- Example: Predict house prices from area, number of rooms, location
- Classification: y is discrete
 - Example: Detect spam from email content

Components of the Framework

1. Inputs

Features \mathbf{x} and labels \mathbf{y}

Example: 10,000 clothing images 28×28, 10 class labels

2. Model

Mapping $f(\Omega, x)$

Example: Logistic Regression, 2-layer MLP

3. Loss

J(y, ŷ) measures error between predictions and labels

Example: MSE for regression, Cross-Entropy for classification

4. Optimization

Update parameters Ω to reduce loss

Gradient Descent:

$$\Omega \leftarrow \Omega - \eta \nabla_{\Omega} J$$

5. Evaluation

Metrics such as MSE, Accuracy, Precision, Recall, F1-score

6. Hyperparameters

Parameters not learned from data

Example: learning rate, number of epochs, architecture, regularization

Core Formulas

Prediction

$$\hat{y} = f(\Omega, \mathbf{x})$$

Parameters:

• $\mathbf{x} = [x_1, x_2, ..., x_n]$: input features

• $\Omega = [w_1, ..., w_n, b]$: weights and bias

Purpose: Compute predicted value

Linear Regression Example:

$$\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Loss Functions

Mean Squared Error (MSE)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Purpose: Measure average squared deviation between predictions and labels

Example: y=[3,5,2], $\hat{y}=[2,7,2] \Rightarrow MSE \approx 1.667$

Mean Absolute Error (MAE)

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

Purpose: Measure average absolute deviation

Sigmoid Function

$$\sigma(z)=rac{1}{1+e^{-z}}$$

Purpose: Convert logit to probability in (0,1)

Example: $z=0 \Rightarrow \sigma(0)=0.5$

Binary Cross-Entropy (BCE)

$$L = -rac{1}{n}\sum_{i=1}^n \left[y_i \log \hat{p}_i + (1-y_i) \log (1-\hat{p}_i)
ight]$$

Purpose: Loss for binary classification

Example: y=1, \hat{p} =0.9 \Rightarrow L \approx 0.105

Softmax Function

$$ext{softmax}(z)_j = rac{e^{z_j}}{\sum_k e^{z_k}}$$

Purpose: Probability for multiple classes

Example: $z=[1,2,3] \Rightarrow \hat{p} \approx [0.09, 0.24, 0.67]$

Categorical Cross-Entropy (CCE)

$$L = -rac{1}{n} \sum_{i=1}^n \sum_{c=1}^C y_{i,c} \log \hat{p}_{i,c}$$

Purpose: Loss for multi-class classification

Example: label [0,1,0], prediction [0.1,0.7,0.2] \rightarrow L \approx 0.357

Classification Metrics

Accuracy

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

Example: TP=40, TN=50, FP=5, FN=5 → 0.90

Precision

$$\text{Precision} = \frac{TP}{TP + FP}$$

Example: TP=45, FP=15 \rightarrow 0.75

Recall

$$\text{Recall} = \frac{TP}{TP + FN}$$

Example: TP=40, FN=5 \rightarrow 0.889

F1-score

$$F1 = 2 rac{ ext{Precision} \cdot ext{Recall}}{ ext{Precision} + ext{Recall}}$$

Example: Precision=0.75, Recall= $0.9 \rightarrow 0.818$

Workflow (Pipeline)

- 1. Collect and preprocess data
- 2. Split into train, validation, test
- 3. Feature preprocessing: scaling, encoding
- 4. Choose model and loss
- 5. Train with an optimizer
- 6. Tune hyperparameters (cross-validation)
- 7. Evaluate with metrics
- 8. Deploy or interpret

Example: Churn Prediction

- Scale numeric columns, one-hot categorical columns
- Split 70% train, 15% val, 15% test
- Logistic Regression with LBFGS
- Tune C with GridSearchCV
- Evaluate AUC-ROC and F1
- Deploy as API

Hyperparameters

- Learning rate (η): Step size of the optimizer
- Batch size: Number of samples per gradient update
- Epochs: Number of training iterations
- Regularization: L2/weight decay
- Optimizer: SGD, Adam, AdamW
- Class weights & thresholding: Handle imbalance
- Normalization & initialization: Normalize features, BatchNorm, Xavier/Kaiming

Code Examples (Python)

Regression

from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import numpy as np

```
X = np.random.rand(200,3)
true_w = np.array([3.0,-2.0,1.0])
y = X @ true_w + 0.5 * np.random.randn(200)
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

```
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```

Classification

```
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

X, y = make_classification(n_samples=500, n_features=10, n_classes=2)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

clf = LogisticRegression(max_iter=1000)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
```

PyTorch Skeleton

```
import torch
from torch import nn, optim

# dataset, model, loss, optimizer
# example:
# model = nn.Linear(input_dim, 1)
# loss_fn = nn.MSELoss()
# optimizer = optim.Adam(model.parameters(), Ir=0.001)
# train loop ...
```

Quick Notes

- Feature scaling is important for Linear models, SVM
- Stratified split for classification imbalance
- Use Precision, Recall, F1, ROC-AUC for imbalanced targets
- Fix seed to reproduce results