FitchLearning

Dr. Claus Huber, CEFA, CFA, FRM Head of Quantitative Modelling & Analytics Helvetia Insurance, Basel

May 2022

Applications of Unsupervised Learning in Finance

- This module "Unsupervised Machine Learning 2" discusses more recent methods:
 - t-SNE
 - UMAP
 - Autoencoders
- Applications are in (examples):
 - Macro Forecasting
 - Portfolio Management
 - Asset Allocation
 - Trading (e.g., relative value)
 - Natural Language Processing
 - Visual Risk Analysis (e.g., return-based style classification of hedge funds)

t-SNE: t-Distributed Stochastic Neighbour Embedding

- t-SNE is a visualisation method proposed by van der Maaten / Hinton (2008)
 - Stochastic → not definite but random probability
 - Neighbour → concerned only about retaining the variance of neighbour points
 - Embedding → plotting data in lower dimensions
- For example, PCA works on retaining global variance while t-SNE focuses on retaining local variance
- Suitable for non-linear (curved manifolds, see next slide), highdimensional, large data sets
- t-SNE is designed for data visualisation
- t-SNE is extensively applied in image processing, natural language processing, genomic data and speech processing

Non-Linear, Curved Manifolds

- What is a non-linear, curved manifold and how can t-SNE help to better understand its structure?
- The structure of the high dimensional data space in practice will be less clear than in this example

This is what we have:

high dimensional

Image from:

https://science.sciencemag.org/content/sci/290/5500/2323/F1.

Applications of t-SNE in Finance

- Efimov et al. (2020) apply Generative Adversarial Networks to generate artificial datasets for credit card data
 - t-SNE deployed to visualise the data
- Data includes, for example, net income, number of defaults in the last Low Income, 10 years, debt level, etc.
- 2 mln data points, 471 features

 High Income, low debt level, no defaults

Applications of t-SNE in Finance

Grouping based on t-SNE and spectral clustering

- Husmann et al. (2020):
- Stocks are combined in groups with t-SNE in combination with another method, spectral clustering
- Data set comprises return data, balance-sheet data, social responsibility measures, etc.
- The stocks in the individual groups are equalweighted based on their t-SNE clustering in 2 to 20 groups
- Each group contains similar stocks
- Markowitz optimisation on the groups is used to determine the tangency portfolio
- Goal is to reduce noise in the optimisation process by reducing the number of input parameters (→ addressing the curse of dimensionality)

Use Case: Factor Clustering with t-SNE

- Greengard et al. (2020) compose 55 equity long-short portfolios
- Each portfolio represents 1 risk factor, e.g., Fama-French SMB (=Size)
 - Daily returns 03/1975 to 12/2019, ca. 11,000 data points for each risk factor
- Goal is to study similarities between the risk factors

Table 1: Strategy Description

This table reports the summary statistics of the 55 long-short strategies in Kozak, Nagel, and Santosh (2020). The average strategy returns and the CAPM alphas are reported. The numbers correspond to the t-SNE group numbers. *, **, *** denote significance levels at the 10%, 5%, and 1% based on the standard t-statistics.

Num	Strategy		Ret	α	Num	Strategy		Ret	α
1	Cfp	Cash Flow-Market Value	0.016**	0.021***	5	Shvol	Share Volume	-0.005	0.021**
1	Divp	Dividend Yield	0.010	0.020**	6	Accruals	Accruals	0.018***	0.016***
1	Dur	Cash Flow Duration	0.019**	0.021**	6	Aturnover	Asset Turnover	0.020***	0.021***
1	Lev	Leverage	0.009	0.005	6	Debtiss	Debt Issuance	0.007**	0.006*
1	Lrrev	Long-term Reversals	0.007	0.010	6	Divg	Dividend Growth	0.001	-0.000
1	Momrev	Momentum-Reversal	0.022**	0.025***	6	Fscore	Piotroski's F-score	0.003	0.005*
1	Sp	Sales-Price	0.021***	0.025***	6	Gltnoa	Growth in LTNOA	0.001	0.002
1	Value	Book-to-Market	0.017**	0.021**	6	Gmargins	Gross Margins	0.006	0.006
1	Valuem	Book-to-Market (monthly)	0.011	0.012	6	Noa	Net Operating Assets	0.024***	0.021***
2	Indmom	Industry Momentum	0.013	0.019	6	Prof	Gross Profitability	0.019***	0.016**
2	Mom	Momentum (6m)	0.009	0.012	6	Repurch	Share Repurchases	0.005	0.007**
2	Mom12	Momentum (1 year)	0.055***	0.059***	6	Season	Seasonality	0.033***	0.030***
2	Valmom	Value-Momentum	0.015*	0.020**	7	Age	Firm Age	-0.000	-0.007
2	Valmomprof	Value-Momentum-Profitability	0.032***	0.035***	7	Ciss	Composite Issuance	0.026***	0.034***
3	Growth	Asset Growth	0.012*	0.017**	7	Exchsw	Exchange Switch	0.007	0.008
3	Igrowth	Investment Growth	0.011*	0.016***	7	Indmomrev	Industry Momentum-Reversal	0.039***	0.040***
3	Inv	Investment	0.017**	0.022***	7	Indrrev	Industry Relative Reversals	0.034***	0.029***
3	Sgrowth	Sales Growth	-0.004	0.002	7	Indrrevlv	Industry Relative Reversals (low vol)	0.047***	0.044***
4	$E_{\mathbf{p}}$	Earnings-Price	0.028***	0.035***	7	Invaci	Abnormal Corporate Investment	0.004	0.003
4	Price	Price	0.014	0.017*	7	Ipo	Initial Public Offering	-0.005	-0.011
4	Roa	Return to Assets (m)	0.026***	0.032***	7	Nissa	Share Issuance (a)	0.031***	0.038***
4	Roaa	Return to Assets (a)	0.015**	0.022***	7	Nissm	Share Issuance (m)	0.025***	0.033***
4	Roe	Return to Book Equtiy (m)	0.013	0.022***	7	Shortint	Short Interest	-0.006	0.003
4	Roea	Return to Book Equity (a)	0.030***	0.039***	7	Size	Size	0.003	0.014**
4	Rome	Return to Market Equity	0.052***	0.062***	7	Strev	Short-term Reversal	0.014	0.006
5	Betaarb	Beta Arbitrage	0.001	0.038***	7	Sue	PEAD (SUE)	0.023***	0.025***
5	Invcap	Investment-Capital	0.006	0.021**	7	Valprof	Value-Profitability	0.030***	0.036***
5	Ivol	Idiosyncratic Volatility	0.032***	0.052***		-	-		

Use Case: Factor Clustering with t-SNE

- t-SNE chart below shows which clusters the risk factors are assigned to
- Greengard et al.
 (2020) also apply
 other UML
 methods
 - PCA
 - k-Means

Toy Examples: t-SNE

- Generate artificial 3D data:
 - Sphere 1: 500 uniform random numbers along [4, 1, 4]
 - Sphere 2: 100 uniform random numbersalong [1, 4, 1]
- How do the 2 spheres get mapped with t-SNE?
- We have original data X and want to map them onto a 2-dimensional plane Y
 - See R code "R 3D Plot Toy Example.R"

Kullback-Leibler Divergence: Idea & Formula

- How can we measure how close the distributions of X and Y are?
- The Kullback–Leibler Divergence is a measure of how one probability distribution (X) is different from a second probability distribution (Y)

$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

- See van der Maaten / Hinton (2008), p. 2583
- KLD can be used to gauge how close 2 probability distributions are
- A KLD = 0 indicates that distribution Y perfectly mirrors X (NOT that they are identical)
- Max(KLD) → ∞

Initialising Y

- Goal is to map a 3D dataset X to a 2D map Y: $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \rightarrow Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$
- In our example, Y is initialised with random numbers
 - Typically random numbers with small variance centred around the origin

Mapping Data from X on Y

- How do we arrange the elements of Y so that they reflect X?
 - If 2 points in X are close together, their corresponding parts in Y should also be close together
 - Change the position of the y_i in order to minimise KL Divergence
- First step: calculate the p_ij as in van der Maaten / Hinton (2008), Eq. (1),
 p. 2581:

$$p_{ij} = \frac{\exp(-||x_i - x_j||^2/2\sigma^2)}{\sum_{k \neq l} \exp(-||x_k - x_l||^2/2\sigma^2)}$$

- The 2-norm $\|x_i x_j\|^2$ is the Euclidean Distance
- Goal is to convert the high-dimensional Euclidean Distances between data points to conditional probabilities that represent similarities

Perplexity and Variance

- An important parameter is the Perplexity P that needs to be defined by the user
 - P determines the number of neighbours of each point in X
- The larger P, the larger the variance σ_i² and the more data points x_ij are included in the neighbourhood
- One feature of t-SNE is that the number of neighbours of x_i is to be the same irrespective of whether the data points are in a densely populated area or in a sparsely populated area
- To achieve this, σ_i varies:
 - In densely populated areas, σ_i is small
 - In sparsely populated areas, σ_i is large
- It is not likely that there is a single value of σ_i that is optimal for all data points in X because the density of the data is likely to vary:
 - In dense regions, a smaller value of σ_i is usually more appropriate than in sparser regions
- SNE performs a binary search for the value of σ_i, hence σ_i depends on P

Toy Example: Step 1

- 1
- We focus on the 4 points (1, 2, 3, 501) of the 3D chart

Sphere 1

• i = 1, j = 2, 3, 501

Sphere 2

- Points 1, 2, 3 are part of sphere 1, point 501 is part of sphere 2
- The larger we choose sigma (1.0, 0.3), the more points are taken into account when calculating probabilities
- Calculating the p_ij as in van der Maaten / Hinton (2018), p. 2584

see Excel s/sheet "t-SNE Example CQF.xslx", tab "t-SNE_sigma only"

			Original Data Set X								
						sigma:	1.0		0.3		
	_		X_x	Х_у	X_z	Euclidean Distance	Numerator	p_ij	Numerator	p_ij	
Sphere 2 Sphere 1		1	4.4606	0.6049	3.9272	NA	NA	0	NA	0	
		2	3.6705	0.5066	3.9192	0.7963	0.6716	0.50	0.0120	0.76	
	7	3	3.6988	1.2193	4.1365	1.0008	0.6063	0.45	0.0038	0.24	
	L	:		:				:		:	
		501	1.3071	4.3273	1.1504	5.6136	0.0604	0.05	0.0000	0.00	
		502		:	:			•		:	
	ן ר	:		:	:			•		:	
		600		:				:		:	
		Denominator:	NA	NA	NA	NA	1.3382	NA	0.0158	NA	
		Sum:	NA	NA	NA	NA	NA	1.00	NA	1.00	
H'i	tch	oorning		-		_		- 1	howledge Skill	s I Con	

Step 2: Calculate the q_ij (p. 2584)

- The map Y contains the same number of points as the data set X
- Y is often initialised with random numbers (or with PCA)
- For example, if Y_1 is randomly initialised with (0.46, 0.68):
 - Then in the first iteration X_1 (4.46, 0.61, 3.93) is mapped onto Y_1 (0.46, 0.68)
- Calculate the q_ij (p. 2585) and plug together with the p_ij into KLD formula:

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k - y_l\|^2\right)^{-1}}$$

- Utilising the t-distribution to measure the area around Y allows us to use the relatively simple formula above
- For the 4 points in our example, this gives a KLD of 0.478 (see Excel s/sheet "t-SNE Example CQF.xslx", tab "t-SNE, KLD", for exact calculation)

Step 3: Building Map Y by Gradient Descent

- How do we make Y reflect X? → Change the points Y until we find an acceptable match
- We want to know in which way we have to change y_1 in order to enhance the match between X and Y
 - Should y_1 be moved up, down, left, right and by how much?
- To this end, gradient descent is useful (eq. 5, p. 2586)

$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

- δy_i is a vector with #elements = dimension of Y (here: 2)
- $\frac{\delta C}{\delta y_i}$ is a scalar that gives the degree of change of the cost function

Step 3: Building Map Y by Gradient Descent

- For our example, if we assume $\delta y_i = \begin{pmatrix} -0.14 \\ -0.27 \end{pmatrix}$:
 - The first coordinate (y_11) will be: 0.46 0.14 = 0.32
 - -2^{nd} coordinate (y_12): 0.68 0.27 = 0.41
- The KL Divergence will change from 0.478 to a smaller value (i.e., ^{δC}/_{δy_i} < 0) → by changing Y according to the gradient we are moving closer to X
- The other coordinates are treated in the same way

Gradient Descent: Rationale

- First part of the gradient: (p_ij q_ij) measures how well the low-dim.
 distribution fits the high-dim. distribution
- If two map points in Y are far apart while the data points in X are close, the y_ij are attracted to each other:
 - If p > q ↔ p q > 0: p in high-dim. space covers more data points than q in low-dim.
 space → y_i and y_j should move closer together → attraction
- If y_ij are nearby while the data points in X are dissimilar, they are repelled:
 - If p < q ↔ p q < 0: p in high-dim. space covers fewer data points than q in low-dim.
 space → y_i and y_j should move further away → repulsion

Learning Via Gradient Descent: Elements

$$\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)$$

- $y^{(t)}$: the solution for Y at iteration t (matrix N x 2)
- η is the learning rate
 - η large: new solution is strongly affected by gradient, i.e., fast learning. η small: gradient has little impact on new solution, i.e., slow learning
 - Rtsne uses a default learning rate of 200 (can be changed)
 - For large data sets (N > 10k), Belkina et al. (2019) recommend $\eta = N/12$
- α(t) is the momentum at iteration t
 - α large: prior solutions get more weight in new solution, less pronounced changes induced by gradient descent
 - Works best if the momentum term is small until the map points have become moderately well organised
 - Rtsne starts with α =0.5 and towards the end of the learning process is α =0.8
- In our toy example, $\eta = 1$, $\alpha = 0$

The Curse of Dimensionality: Over-Crowding

- Data points in high-dimensional space that have a similar distance from the reference point get squashed together in low-dimensional space
- Even though the data points are different from each other, they get mapped onto the same points in **low**-dimensional space: over-crowding
 - There is **not enough space** in the **low**-dimensional space to allow clusters to separate

Clusters are forced to collapse on top of each other in low-dim. space → **Over-**Crowding

Fitch

The Curse of Dimensionality

- When dimensions (or variables) are added, the volume of the space increases so fast that the available data becomes sparse
 - This can impede our model to find reliable clusters
 - Value added by additional dimension is small compared to its contribution to find reliable clusters
 - Increases storage space and processing time

 Typical rule of thumb: min. 5 training examples for each dimension 10 data points, 3 dimensions, 10 data points, 1 feature 2 dimensions, 10 data points, 1 feature 1 dimension, 1 feature X_1 Knowledge | Skills | Conduct

Image from: https://www.kdnuggets.com/2015/03/deep-learning-curse-dimensionality-autoencoders.html/2²⁰

Over-Crowding

- How can we address the crowding problem?
- Increase the dimensionality of the low-dimensional map Y
 - This leaves more space in Y for clusters to separate
- Often the low-dimensional map has only 2 or 3 dimensions
 - · Hence increasing dimensionality in most cases not a viable option
- Ideally, attractive and repulsive forces in the optimisation manage to map the high-dimensional space X onto Y

t-Distribution

- Utilising the t-distribution helps t-SNE to deal with over-crowding effectively
- t-SNE employs a heavy-tailed distribution (t-distribution) in the low-dimensional space Y to alleviate both the crowding problem and the optimisation problems of SNE
- In order to build a lower-dimensional representation of X, t-SNE utilises the normal distribution to convert distances of data points to probabilities p_ij
- Map Y uses probabilities q_ij to reflect the original distances in lowerdimensional space with the t-distribution:
 - Distances in X → probabilities in X: p_ij→ probabilities in Y: q_ij → distances in Y

Gaussian vs. t-distribution with 1 DF

- The Gaussian is tighter around the reference point than the tdistribution
- There is a higher likelihood that the Gaussian leads to over-crowding
- Potentially the t-distribution allows more space around the reference point and hence reduces the effect of over-crowding

Gaussian vs. t-distribution with 1 DF

- t- vs. Normal Distribution seen from a bird's perspective
- At the same level of probability,
 t-distribution covers a wider
 area around the reference point
- There is more space to reflect similar data points
- Mismatched tails (bw. Normal and t-distribution) can compensate for mismatched dimensionalities
- → helps to mitigate over-crowding

t-SNE: Features

- t-SNE is a nonlinear dimensionality reduction technique for data visualisation
- t-SNE retains local variance (PCA → global variance)
- Distances between clusters of the resulting Y map are potentially meaningless and cannot be related to distances of clusters in X
 - t-SNE shrinks widespread data and expands densely packed data
 - This is due to determining the number of neighbours with perplexity, which varies σ_i
- t-SNE is stochastic (random initialisation): each run may lead to a different output

t-SNE: Similarity Ratio

- Similarity Ratio helps to interpret t-SNE results (Greengard et al. (2020))
 - Run N t-SNE maps
 - For each object, set indicator: 1 if object i on t-SNE map k is assigned to the same cluster as object j on t-SNE map n, 0 else

This figure reports the similarity ratios between any pairwise of strategies. Each entry in the heatmap shows a similarity ratio of the corresponding column strategy and row strategy. A darker color means higher similarity ratio

- Example (slide 6): object i = Cfp, object j = Divp. On map 1 both are assigned to cluster 1, on map 2 both are also assigned to cluster 1 → indicator set to 1
- On map 1 both are assigned to cluster 1, however, on map 3 Cfp is assigned to cluster 1 and Divp to cluster 7 → indicator set to 0
- Similarity Ratio(i, j) = Sum(indicator) / N. A graphical display of all Similarity Ratios is a heatmap
- Heatmap show 7 clusters along the diagonal (compare with table on slide 6)

100 Iterations (= Learning Steps) Each, Different Perplexities

- Data from toy example (600 data points, 2 clusters), R package tsne, see R code "R 3D Plot Toy Example.R"
- van der Maaten & Hinton (2008) recommend perplexity values in the range 5 to 50
 - With P = 5 (σ_i small), local variations dominate
 - P large (e.g., 100, σ i large) means Y map reflects more global structure, less local

Perplexity Always 50, Different Iterations

- 50 to 100 iterations sufficient for our toy example, **R package tsne**
- No significant improvement beyond 100 iterations

t-SNE: Initialisation PCA vs. Random

R package Rtsne

- PCA initialisation (upper 2 charts) provides stable global structure
- At the bottom are random initialisations without PCA
 - Perplexity 30 provides enough outreach to display global structure w/o PCA (bottom left)
 - Perplexity 50 projects all points in each of the spheres closely together (bottom right)

Toy Example Treated with PCA

- PCA of artificial data, see supplementary R code "R 3D Plot Toy Example.R"
- Inputs: 3-dimensional data, 600 data points
- PC1 explains by far most of the variance (screeplot)
- Factor loadings show V-shape for PC1, positive slope for PC2 (cf. interest rates)
 - Why is PC1 V-shaped? → lower sphere: $x \approx 1$, $y \approx 4$, $z \approx 1$; upper sphere: $x \approx 4$, $y \approx 1$, $z \approx 4$
 - PC2 of little relevance

t-SNE: Perplexity, PCA Initialisation & Learning Rate

- Simple rules of thumb (Kobak / Berens (2019)):
 - Perplexity = 1% of sample (i.e., 1 data point is connected to 1% of all data points)
 - P_min = 30
 - There are suggestions of data-driven variable perplexities (e.g., De Bodt et al. (2018)), but these are not part of standard software yet
 - PCA initialisation sets global structure
 - How many principal components to use? → for example, scree plot, or use the first 2 PCs
 - t-SNE algorithm optimises local structure
 - PCA initialisation is deterministic and reproducible and hence avoids large dependence of results on random initialisation
 - If PCA also gives bad results, then maybe there is not much structure in data
 - It is unusual that PCA works well but t-SNE does not
 - Learning rate $\eta = max(200, N / 12)$
 - η large: new solution is strongly affected by gradient, large weight changes
 - η small: gradient has little impact on new solution, small weight changes
- These rules particularly suited for larger data samples (N > 10k)

R Software for Running t-SNE

- R implementation:
 - Rtsne is probably closest to original paper by van der Maaten / Hinton (2008)
 - tsne contains fewer parameters and might be the more suitable package to start with
- PCA to initialise t-SNE: Rtsne allows to conveniently run initial PCA
 - Use the first two components from PCA, scaled so their standard deviations are initially 0.0001
 - · Automatic pre-processing with PCA is not available in tsne
- See also complementary R code "R 3D Plot Toy Example.R" and "R t-SNE, UMAP, AE, US YC, CQF.R"

Out of sample mapping: As yet not available in standard software packages

Barnes-Hut t-SNE

- Barnes-Hut t-SNE (Van Der Maaten (2013)) is an algorithm that increases efficiency by treating clusters of faraway objects as single particles
 - Implemented in Rtsne
- Barnes-Hut is an approximation that brings complexity down and speeds up convergence
- An approximation used in Barnes-Hut t-SNE is to only calculate p_ij
 for n nearest neighbours of i, where n is a multiple of the userselected perplexity and to assume p_ij = 0 for all other j

US Yield Curve Data: t-SNE vs. PCA

- From lecture UML I: US interest rates (471 daily data points, 16 Feb 2016 29 Dec 2017, 471 days), see R code "R t-SNE & UMAP US YC, CQF.R"
- PCA chart on the right shows factors scores for PC1 and PC2
- Both points (30 Jun 2016, 22 Feb 2017) appear on distant places

UMAP: Uniform Manifold Approximation and Projection

- UMAP proposed by McInnes et al. (2018)
- UMAP can ultimately be described in terms of, construction of, and operations on weighted graphs
- UMAP's intuition is similar to t-SNE's:
- UMAP constructs a high-dimensional weighted k-neighbour graph representation of the original data X
- 2) UMAP optimises a **low-dimensional** graph to be as structurally similar as possible to map on Y

UMAP: Weighted Graphs

- In a weighted graph each edge has an associated weight or number
- The number can represent many things, such as a distance between
 2 locations on a map or between 2 connections in a network
- Typically a weighted graph refers to an edge-weighted graph, i.e., a graph where edges have weights or values
- Edge weights represent the likelihood that two points are connected, e.g., "7" between points 3 and 4 means probability these 2 are connected = 7%
- See also Adjacency Matrix

Weighted Graph

Adjacency Matrix

Simplicial Sets

- UMAP in high-dimensional space X from the reference point x_i expands radius σ_i until k nearest neighbours are covered (here: k = 3)
- Each point in X has exactly 1 representative in Y (similar to t-SNE)
- The nearest neighbours are connected via 1-simplex structures: •

UMAP: Building a Fuzzy Simplicial Complex

- To construct the initial high-dimensional graph of X, UMAP builds a "fuzzy simplicial complex"
- This is a representation of a weighted graph, with edge weights representing the likelihood that 2 points are connected
- The farther away 2 points are, the lower the likelihood that they belong to the same cluster
 - To determine connectedness, UMAP extends a radius σ_i outwards from each point i, connecting points when those radii overlap
 - Choosing this radius is critical too small a choice will lead to small, isolated clusters,
 while too large a choice will connect everything together

UMAP: Learning

The weighted graph for X grows in the course of learning

UMAP: Learning

- UMAP choses σ_i locally, based on the distance to each point's n-th nearest neighbour
 - Each point must be connected to at least its closest neighbour
 - This ensures that local structure is preserved in balance with global structure

UMAP uses local manifold approximations → similar to piecewise

linear regression models

- Idea is to glue together simple building blocks to reflect a more complex topography, i.e., the "fuzzy simplicial complex"
- Fuzzy simplicial set representations are used to construct a topological representation of X

UMAP: Hyper-Parameter n_neighbours

- The most important parameter is n_neighbours the number of approximate nearest neighbours used to construct the initial highdimensional graph
- n_neighbours controls how UMAP balances local versus global structure
 - low values will connect only few data points: UMAP to focus more on local structure
 - high values will connect many data points: UMAP represents the global structure while losing detail

UMAP: Toy Example, Varying n_neighbours

UMAP: Hyper-Parameter min-dist

- min-dist is a hyperparameter that affects the output Y
- If 2 points have a distance smaller than min-dist in Y, their distance is set to min-dist
- min-dist determines how closely together the points on Y can be mapped together:
 - min-dist low (for example, 0.1): potentially densely packed regions in Y
 - min-dist high (for example, 0.9): points on Y more spread out

McIness et al. regard min-dist as an "aesthetic parameter" that influences

visualisation

UMAP: Toy Example, Varying min_dist (n_neighbours = 25)

- As the min-dist parameter increases, UMAP tends to "spread out" the projected points, leading to decreased clustering of the data and less emphasis on local structure
- See R code "R 3D Plot Toy Example.R"
 - More examples on: https://pair-code.github.io/understanding-umap/

UMAP vs. t-SNE: Cost Functions

t-SNE cost function (source: McInnes et al. (2018)):

$$C_{t-SNE} = \sum_{i \neq j} p_{ij} \log p_{ij} - p_{ij} \log q_{ij}$$

Same formula as on slide 9, rearranged (11)

- The first part of eq. (11) concerns the high-dim. data X and is constant during the optimisation process
- Hyper parameter perplexity affects p_ij
- The second part (via the q_ij) addresses the low-dim. data Y and is changed during the optimisation process
- UMAP's cost function looks similar:

$$C_{UMAP} = \sum_{i \neq j} v_{ij} \log v_{ij} + (1 - v_{ij}) \log (1 - v_{ij})$$

$$-v_{ij} \log w_{ij} - (1 - v_{ij}) \log (1 - w_{ij})$$
(14)

- Eq. (14) also comprises a constant part (the term with the v_ij) and a changing part (w_ij)
- Hyper parameter n_neighbours affects the v_ij, min-dist affects the w_ij

UMAP: Similarities v_ij for X

• The similarities v_ij in the **high-dimensional** space are the local fuzzy simplicial set memberships (McInnes et al. (2018), p. 50):

$$v_{j|i} = \exp\left[\left(-d\left(x_i, x_j\right) - \rho_i\right) / \sigma_i\right] \tag{15}$$

- d(x_i, x_j) is the distance between x_i and x_j (e.g., Euclidean Distance)
- ρ_i is the distance of point i to its nearest neighbour
- σ_i is the normalisation factor, similar to σ_i in t-SNE
- Each point x_i has v_ij to connect to the other k nearest neighbours in
- Each x_i has an adjacency matrix that contains its v_ij
- The next 2 slides give examples for v_ij, given reference point x_i

UMAP: Similarities v_ij for X, how does v_ij change when x_j changes?

A point (orange) farther away from x_i gives a smaller v_ij

47

UMAP: Similarities v_ij for X, how does v_ij change when σ_i changes?

Reducing σ_i also reduces v_ij

-20 -15 -10 -5 0 5 10 15 -σ_i -σ_x_i -x_NN		хi	3.0	nputs)	I	ramete	rs for v_ij	
-20 -15 -10 -5 0 5 10 15					x_i>				
					-5				
	-20	-15	-10	-5	0	5	10	15	
					0				
						ullet			
					10				

Similarities v_ij=0.29, $d(x_i, x_j)=4.00$, $\rho_i=2.24$, $\sigma_i=5.00$

	Inputs			
x_i	3.0 8.0			
x_j	3.0 4.0			
x_NN	1.0	7.0		
σ_i	10.0			

Parameters for v_ij					
ρ_i	2.24				
d(x_i, x_j)	4.00				
v_ij	0.54				

	Inputs			
x_i	3.0	8.0		
x_ j	3.0	4.0		
x_NN	1.0	7.0		
σ <u>_</u> i	5.0			

Paramete	Parameters for v_ij				
ρ_i	2.24				
d(x_i, x_j)	4.00				
v_ij	0.29				

v_ij=0.29

UMAP: Similarities w_ij for Y

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longrightarrow Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

• The similarities w_ij in the **low-dimensional** space are calculated as (McInnes et al. (2018)):

$$w_{ij} = \left(1 + a \|y_i - y_j\|_2^{2b}\right)^{-1} \tag{17}$$

- a and b are determined with a search algorithm
 - With the UMAP default settings, the 2 parameters are found as a ≈ 1.93 and b ≈ 0.79
 - If we set a = b = 1, the t-distribution results
- By changing the y and hence the w_ij the goal is to minimise the cost function C_{UMAP} (eq (14)) via gradient descent

UMAP vs. t-SNE

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longrightarrow Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

- General idea of UMAP is similar to t-SNE:
 - A high-dimensional data space X is reflected in a low-dimensional map Y
 - UMAP uses **manifold approximation** and patches together local fuzzy simplicial sets (1-simplex) to construct a topological representation of X
 - t-SNE uses probabilities to reflect the structure in X
 - Optimise layout of Y to minimise error between the 2 topological representations using gradient descent
- There is one y_i for every x_i
- Y only has 2 dimensions, X has arbitrary dimensions
- Just as in t-SNE, the size of clusters relative to each other is essentially meaningless
 - UMAP uses local simplex structures to construct its high-dimensional graph representation

UMAP vs. t-SNE

- Local vs. global structure: UMAP allegedly preserves as much of the local structure as t-SNE and more of the global data structure
 - Losing global structure means loss of inter-cluster relationships
- When initialised randomly, UMAP exhibits less variation in the outputs than t-SNE
 - This is due to UMAP's increased emphasis on global structure in comparison to t-SNE
 - But t-SNE can be initialised with PCA (Kobak / Berens (2019))
- UMAP: shorter runtime than t-SNE?

US Yield Curve Data: UMAP vs. PCA

- From lecture UML I: US interest rates (471 daily data points, 16 Feb 2016 29 Dec 2017, 471 days), see R code "R t-SNE, UMAP, AE, US YC, CQF.R"
- PCA chart shows factor scores for PC1 and PC2
- Both points (30 Jun 2016, 22 Feb 2017) appear on distant places

Autoencoders: Unsupervised Deep Learning

General structure of an Autoencoder

architecture.png

Applications of Autoencoders

- Outlier Detection
 - Typically used for fraud detection
 - How can we apply outlier detection for manager selection?
 - We are interested in managers with unique strategies / return profiles
- AE are used to initialise other machine learning methods, for example,
 t-SNE or Deep Learning Networks

- Too few data points for the application of AE / Deep Learning in Finance?
- Like other neural networks, AE need large amounts of data for training

Parts of an Autoencoder

- Parts of an Autoencoder and their tasks:
- 1. Encoder: generate a compressed version of the input data
 - Encoding creates a more abstract description of the data → describing the latent features
- 2. Hidden Layer(s): "Bottleneck", contains the compressed data (i.e., the autoencoder's "principal components")
- 3. Decoder: reconstruct the input as accurately as possible using the compressed data from the hidden layers as inputs
- Errors are minimised via Backpropagation
- Loss function is typically MSE
- Undercomplete Autoencoder: fewer units on hidden layer than on input & output layer
- See also: https://www.jeremyjordan.me/autoencoders/

Autoencoders: Activation Functions

 Depending on the activation function in the middle h(x_i) the Autoencoder can process linear data (like PCA) ...

 Graphs

... or non-linear data:

Graphs from: https://cdn-images-1.medium.com/max/160 0/1*52pviFr_uDX_JeuBI 01e0g.png

On the following slides, we always use activation function tanh: scales from -1 to

Autoencoders: Hedge Fund Style Analysis

- Input: 1070 hedge funds, 48 monthly returns
- 9 hidden layers: 48, 20, 10, 5, 3, 2,
 3, 5, 10, 20, 48
- Chart shows each hedge fund's scores of the 2-dimensional hidden layer in the middle of the AE (analogy to PCA's factor scores)
- Individual areas reflect certain hedge fund styles, e.g.:
 - Credit: top middle of the chart
 - CTA: top right corner
 - Equity in the bottom left corner

Autoencoders: Portfolio Construction

- 1070 Hedge Funds, monthly data 2004 2007
- Sort managers by MSE
- Managers with high MSE are unique, those close to SPX are similar
- Managers with low MSE resemble the SPX
- In order to compose a portfolio of unique managers, which managers would we pick?
- Portfolios composed of unique managers tend to have very low beta
- Managers with low MSE tend have long equity exposure and to exhibit high correlations with each other
- Those with high MSE tend to have little equity long exposure (however, some are CTAs with directional equity exposure), also Fixed Income and Option

Autoencoders

- AE can be seen as some kind of non-linear PCA
- AE with a linear activation function → identical results to PCA
- The encoding part of the AE can be seen as the feature layer which can transform raw data from the input layer to a lower-dimensional representation in the hidden layer
- A feature is defined by the pattern of weights of all connections between a specific hidden layer node and all input nodes (global function approximator)
- AE are often used as step to pre-process data for later input to a supervised learning method
- What are PCA's factor loadings (i.e., elements of the principal components)? → weights of the Neural Network

AE: US interest rates (471 daily data points)

- 11 input units
- 2 AEs with 3 (5-2-5, left) or 5 (7-5-2-5-7, right) hidden layers
- Both AEs display similar structure in middle layer
- R code "R t-SNE, UMAP, AE, US YC, CQF.R"

Autoencoder vs. PCA, US Interest Rates

- PCA factor scores (on the right) and those of AE (on the left) exhibit similar shape
 - 2 extreme days appear in distant areas
- Not much gain from AE possibly due to linear structure in yield curve data

26 Dec 2017 (idx 468), flattening from short end, 1M: + 9bp, 10Y: -1 bp

Autoencoder: Toy Example 2 Spheres

- 3 input dimensions, 1000 training epochs
- Run with h2o, see R code "R 3D Plot Toy Example.R"
- Left side: 1 hidden layer with 2 units
 - · AE is able to separate the 2 clusters
 - Middle part: 600 data points sorted by MSE. Largest outliers are from both spheres
- Right side: 3 hidden layers (3, 2, 3)
 - No obvious improvement by adding hidden layers

Autoencoders for Portfolio Construction of Risk Premia

- JP Morgan (2020): use AE to divide a set of 23 risk premia into 2 clusters: Aggressive and Defensive
- Risk Premia are investment vehicles that try to harvest the premia from investment strategies like Equity Value, Momentum, Volatility, Low Vol, FX Carry, etc.
- Feed historical data for the risk premia (e.g., T x N = 104 weekly returns x 23) to the AE
- Each risk premium is assigned to 1 of the 2 clusters

Autoencoders for Portfolio Construction of Risk Premia

- The 2 dimensions of the hidden layer displayed visually
- Each dot in the chart represents 1 risk premium
- Stylised example for 1 point in time, e.g., 2020-01-01

Autoencoders for Portfolio Construction of Risk Premia

- Chart shows the 2 clusters and weights assigned by AE to each of the risk premia
 - AE weights are restricted to be long only, i.e., weights 0 ≤ w ≤ 1.
- Cluster 1: Defensive (e.g., FX Value), cluster 2: Aggressive (e.g., FX Momentum)
- Build portfolio by equal risk-weighting Aggressive & Defensive: each style gets 50% of the risk budget

Risk budget is then distributed across the risk premia in each of the assigned clusters → result is a

balanced portfolio

Figure 20: Encoder weights on each risk premia for the 2 clusters

- Similar to the SOM (see lecture Unsupervised ML I) there are global and local measures, for example:
- CPD (correlation-based pairwise distance, global measure): Spearman rank correlation between pairwise distances in the high-dimensional space and in the embedding (Kobak / Berens (2019))
 - For each data point, calculate the (Euclidean) distances to all other points for each X
 and Y → 2 distance matrices with the same dimensions N x N

Euclidean Distance Matrix X						
	1	2	3		Ν	
1	0.00	0.10	0.09		3.11	
2	0.10	0.00	0.15		3.04	
3	0.09	0.15	0.00		3.12	
	:					
N	3.11	3.04	3.12		0.00	
Sum	637.31	621.24	643.18		965.07	
rank X	172	196	164		5	

Euclidean Distance Matrix Y							
	1	2	3		N		
1	0.00	0.29	0.56		24.86		
2	0.29	0.00	0.68		25.02		
3	0.56	0.68	0.00		24.34		
	:	:					
N	24.86	25.02	24.34		0.00		
Sum	5163.30	5173.47	4985.44		7842.60		
rank Y	174	171	211		1		

• For each column of the 2 distance matrices, calculate the sum of the distances. This gives 1 vector with N elements for each distance matrix, together 2 vectors

- If the global structure is well preserved, the ranks of those distances should be about the same for both X and Y → calculate the Spearman rank correlation between the 2 vectors
 - High rank correlation → good approximation of X by Y
 - The higher CPD, the more global structure is preserved
 - CPD is a global measure: compare with Quantisation Error (SOM)
- See supplementary R code "R tSNE test & Goodness of Fit, CQF.R"

- KNN (local measure): The fraction of k-nearest neighbours in the original high dimensional data that are preserved as k-nearest neighbours in the model output (Kobak/Berens (2019) and Bibal / Frénay (2016))
 - For each data point, calculate the (Euclidean) distances to its K nearest neighbours for each X and Y
 - KNN is the fraction of k-nearest neighbours in X that are preserved as k-nearest neighbours in Y
 - KNN quantifies preservation of the **local** structure, cf. with Topographical Error (SOM)
 - The higher KNN, the more local structure is preserved
 - Kobak / Berens (2019) suggest K = 10

Example in table (K=4):

- For example, the first 4 rows in column 1 mean that for the 1st element in X the 4 nearest neighbours are elements 7, 5, 21, and 8
- The second 4 rows in column 1 mean that for the 1st element in Y the 4 nearest neighbours are 8, 6, 5, 23
- As 5 and 8 appear as NN in both X and Y, KNN(1) =
 2 / 4 = 0.5
- KNN = Sum(KNN(j)) / N = (0.5 + 0.25 + ... + 0.25) / N

Example:

		1	2	•••	Ν
	1	7	7		644
Х	2	5	90		135
^	3	21	91		88
	4	8	3		345
	1	8	87	•••	17
	2	6	7	•••	88
Υ	3	5	17	•••	131
	4	23	98	•••	99
KNN(j)		0.5	0.25		0.25

- Contrary to CPD, KNN looks at the immediate neighbourhood
- For our 3D toy example, we get:

	t-SNE	UMAP
CPD	0.57	0.35
KNN (K = 10)	0.03	0.11

→ t-SNE seems to preserve the global structure better, while UMAP keeps the neighbourhood more closely together

Criteria for choosing a specific method for UML (Sarlin (2015))

- Form of structure preservation
 - Which methods better assure trustworthy neighbours?
- Computational Cost
 - · Method becomes unwieldy if computations take too much time
- Flexibility for problematic data
 - Missing values, non-normal data
- Shape of the Output

Summary

- Unsupervised ML methods useful for:
 - Dimension reduction
 - Noise reduction
 - Understanding the structure of the data
- t-SNE, UMAP were designed for visualisation, AE's hidden layers can be used for that as well
- All 3 are recent methods of UML
- t-SNE, UMAP & AE try to mirror original high-dimensional data in lowdimensional space
 - t-SNE (local approximator) builds on determining probabilities of points that belong together
 - UMAP (local approximator) is based on the mathematical foundation of simplicial sets
 - AE (global approximator) is a deep learning methodology
- ML tools are powerful, but require caution and experience

References

- Belkina, A. C., Ciccolella, C. O., Anno, R., Halpert, R., Spidlen, J., & Snyder-Cappione, J. E. (2019). Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nature communications, 10(1), 1-12.
- Bibal, A., & Frénay, B. (2016, April). Interpretability of machine learning models and representations: an introduction. In ESANN.
- De Bodt, C., Mulders, D., Verleysen, M., & Lee, J. A. (2018). Perplexity-free t-SNE and twice Student tt-SNE. In ESANN.
- Efimov, D., Xu, D., Kong, L., Nefedov, A., & Anandakrishnan, A. (2020). Using generative adversarial networks to synthesize artificial financial datasets. arXiv preprint arXiv:2002.02271.
- Friedman, G. (2016). An elementary illustrated introduction to simplicial sets. arXiv preprint arXiv:0809.4221.
- Greengard, P., Liu, Y., Steinerberger, S., & Tsyvinski, A. (2020). Factor Clustering with t-SNE. Available at SSRN.

References

- Husmann, S., Shivarova, A., & Steinert, R. (2020). Company classification using machine learning. preprint arXiv:2004.01496.
- JP Morgan (2020): Quantitative Perspectives on Cross-Asset Risk Premia, Global Quantitative & Derivatives Strategy, 09 June 2020
- Kobak, D., & Berens, P. (2019). The art of using t-SNE for single-cell transcriptomics.
 Nature communications, 10(1), 1-14.
- McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. preprint arXiv:1802.03426.
- Sarlin, P. (2015). Data and dimension reduction for visual financial performance analysis. Information Visualization, 14(2), 148-167. Van Der Maaten, L. (2013). Barneshut-sne. arXiv preprint arXiv:1301.3342.
- Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(Nov), 2579-2605.
- Van Der Maaten, L. (2009, April). Learning a parametric embedding by preserving local structure. In Artificial Intelligence and Statistics (pp. 384-391).

