Data Mining

Classification IV - Random Forests (Part C)

Dr. Jason T.L. Wang, Professor
Department of Computer Science
New Jersey Institute of Technology

Where am I?

- ➤ Part A explains how the random forests algorithm works.
- Part B presents an example to show how the algorithm grows a tree.
- ➤ Part C shows how the algorithm grows three trees and how the algorithm uses the three trees to classify an unlabeled test record.

Phone_Usage	Income_Source	Living_Place	Current_Carrier	Change_Plan
>150	1	Town	AT&T	Yes
<75	1	Town	AT&T	No
<75	2	City	Sprint	No
75150	2	City	MCI	Yes
75150	2	City	Sprint	Yes
75150	1	Town	MCI	Yes

Current_Carrier: MCI oth	nerwise
Yes Phone_Usage: <75 No	otherwise

Phone_Usage	Income_Source	Living_Place	Current_Carrier	Change_Plan
75150	1	Town	MCI	Yes
75150	2	City	AT&T	Yes
<75	1	City	Sprint	No
<75	2	Town	AT&T	No
>150	1	City	MCI	Yes

	\wedge		
N	Phone_Usage: <75	otherwise	
,	No	Yes	

Phone_Usage	Income_Source	Living_Place	Current_Carrier	Change_Plan
>150	2	Town	Sprint	Yes
>150	2	Town	MCI	Yes
75150	2	Town	MCI	Yes
>150	2	City	AT&T	No
>150	2	City	MCI	No
75150	2	Town	AT&T	No
<75	2	Town	AT&T	No

Here we show 3 randomly picked training sets and the CART tree built for each training set.

Classifying an unlabeled test record

Phone_Usage	Income_Source	Living_Place	Current_Carrier	Change_Plan
<75	2	Town	MCI	?

The majority vote is "Yes", so we classify the unlabeled test record to the "Yes" class.

End of Random Forests Module (Part C)