CSCI 2021, Spring 2015 Homework Assignment I

Problem 1:

In the following questions assume the variables a and b are signed integers and that the machine uses two's complement representation. Also assume that MAX_INT is the maximum integer, MIN_INT is the minimum integer, and W is one less than the word length (e.g., W = 31 for 32-bit integers).

Match each of the descriptions on the left with a line of code on the right (write in the letter). You will be given 2 points for each correct match.

1. One's comp.	lement of a

$$a.$$
 ~(~a | (b ^ (MIN_INT + MAX_INT)))

c.
$$1 + (a << 3) + ~a$$

d. (a
$$<<$$
 4) + (a $<<$ 2) + (a $<<$ 1)

e.
$$((a < 0) ? (a + 3) : a) >> 2$$

$$f.$$
 a ^ (MIN_INT + MAX_INT)

$$g.$$
 ~((a | (~a + 1)) >> W) & 1

h.
$$\tilde{\ }$$
 ((a >> W) << 1)

Problem 2:

We are running programs on a machine with the following characteristics:

- Values of type int are 32 bits. They are represented in two's complement, and they are right shifted arithmetically. Values of type unsigned are 32 bits.
- Values of type float are represented using the 32-bit IEEE floating point format, while values of type double use the 64-bit IEEE floating point format.

We generate arbitrary values x, y, and z, and convert them to other forms as follows:

```
/* Create some arbitrary values */
int x = random();
int y = random();
int z = random();
/* Convert to other forms */
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
double dx = (double) x;
double dy = (double) y;
double dz = (double) z;
```

For each of the following C expressions, you are to indicate whether or not the expression *always* yields 1. If so, circle "Y". If not, circle "N". You will be graded on each problem as follows:

- If you circle no value, you get 0 points.
- If you circle the right value, you get 2 points.
- If you circle the wrong value, you get -1 points (so don't just guess wildly).

Expression		Always True?	
(x <y) =="(-x">-y)</y)>		N	
((x+y) << 4) + y-x == 17*y+15*x		N	
~x+~y+1 == ~(x+y)		N	
ux-uy == -(y-x)		N	
(x >= 0) (x < ux)		N	
((x >> 1) << 1) <= x		N	
(double) (float) $x == (double) x$		N	
dx + dy == (double) (y+x)		N	
dx + dy + dz == dz + dy + dx	Y	N	
dx * dy * dz == dz * dy * dx	Y	N	

Problem 3: Consider a **6-bit** two's complement representation. Fill in the empty boxes in the following table:

Number	Decimal Representation	Binary Representation
Zero	0	
n/a	-1	
n/a	5	
n/a	-10	
n/a		01 1010
n/a		10 0110
TMax		
TMin		
TMax+TMax		
TMin+TMin		
TMin+1		
TMin-1		
TMax+1		
-TMax		
-TMin		

Problem 4:

Textbook Question 2.86

Problem 5:

Textbook Question 2.87

Problem 6:

Textbook Question 2.89

Problems 3 and 4 should be submitted for grading.