ANIMA: Adaptive Neurological Interface for Multimodal Applications

Mike Kozak June 1, 2016

ANIMA - Overview

ANIMA uses a minimally invasive sensor to detect the attention levels of the user and adapts dynamically to return focus to the areas of the interface that require it.

ANIMA - Implementation

ANIMA – Intervention Strategies

ANIMA – Additional Features

Configurable

 ANIMA provides the ability to set a number of important features such as key window, alert color, and personal "neutral" EEG level

Flexible

 A robust architecture scales well to additional sensors and more complicated attention algorithms through the use of Java Interfaces, decoupled design, and listeners.

Relevant

 Research into attention management is actively being pursued and funded by organizations such as DARPA, AFRL, and Universities like Drexel

BACKUP

ANIMA - Overview

Purpose

- Use a minimally invasive sensor to detect the attention levels of the user and adapt dynamically to return focus to the areas of the interface that require it.
- Demonstrate an attention management system that dynamically modifies the UI to attract a user that has "zoned out"

Users

- Designed for workers whose jobs require long periods of visual attention where distraction can be costly or fatal (pilots/surgeons).
- Primarily used by high and low education working adults who are not necessary fluent in computer use and may be colorblind.

Goals

 To quickly capture attention lapses to maintain focus on high priority tasks