Keeping our city safe from West Nile virus

Mosquito Monitoring Team

West Nile virus (WNV) - the facts

- Most commonly spread to people by the bite of an infected mosquito.
- Cases of WNV occur during mosquito season - July and August.
- There are no vaccines to prevent or medications to treat WNV in people.
- Fortunately, most people infected with WNV do not feel sick.
 - About 1 in 5 people who are infected develop a fever and other symptoms.
 - About 1 out of 150 infected people develop a serious, sometimes fatal, illness.

West Nile Virus Transmission Cycle

Problem statement

To develop a predictive model that will forecast the probability of WNV presence in 138 mosquito traps around Chicago over the course of a season. WNV is a communicable disease that is spread through its most common vector, mosquitoes

Information provided:

- Mosquito trap data: location of traps, how many mosquitos on which date, and whether they have the West Nile Virus
- Weather data: 2 Chicago weather station reports with many indicators (temperature, dew point, sunrise/sunset)
- Spray data: gis data for insecticide spraying by the city.

EDA

Mapped weather data across to training set

Final list of features selected -

- Latitude
- Longitude
- Tavg
- DewPoint
- Days since rain
- Tavg_rolling3day, Tavg_rolling7day, Tavg_rolling14day
- DewPoint_rolling3day, DewPoint_rolling7day, DewPoint_rolling14day

Visualising training data

Visualising weather data

Cost-Benefit Analysis

- Spraying not really worth it
- USD ~500 to spray 2000 m^2
- O'hare Airport would cost USD ~6,525,000
- Killing adult mosquitoes is not really effective in reducing WNV incidences
 - Instead, larvae should be targetted

Modelling

Model	AUC value for ROC curve	Kaggle private score	Kaggle public score
Logistic Regression	0.724	0.6095	0.6360
Decision Tree	0.788	0.6212	0.6544
Random Forest	0.770	0.6150	0.6432
ADA Boost	0.797	0.6586	0.6776
Gradient Boost	0.801	0.6540	0.6809
XG Boost	0.807	0.6737	0.7045

Selected model - XG Boost Classifier

Best params: {'learning rate': 0.1, 'max depth': 3, 'n estimators': 100}

Train score: 0.7681766273315569, Test score 0.73734722634665

actual WnV Not Present actual WnV Present

Predict WnV Not Present	1921	568
Predict WnV Present	41	97

** Accuracy %: 76.82% **
Misclassification %: 23.18&

Precision %: 0.1459 Recall: 0.7029

Specificity: 0.7718

Conclusion

- We would recommend against spraying on a large scale
 - Maybe areas with really high density of mosquitoes should be sprayed though
 - o Instead, educate population on how to prevent mosquito breeding
- O'hare Airport and River Grove areas should be focused on
- Maybe usage of weather forecasts might be useful

Limitations

No bird data (birds are WNV carriers as well)

Further work

Try out neural network (possible increase in performance)