Контрольная работа 1-10

Вариант 11

За разговоры с соседом — -3 балла за каждый разговор.

- 1. (7 баллов) Ответьте на следующие вопросы:
 - для чего в мониторах Хора применяются условные переменные? Можно ли придумать задачу на взаимодействие процессов, которая решалась бы с помощью мониторов Хора без использования условных переменных?
 - b) Что понимается под термином «внешняя фрагментация» в различных схемах выделения процессам оперативной памяти? В каких известных вам схемах она возникает?
- (12 баллов) Рассмотрим однопроцессорную вычислительную систему разделения времени с объемом оперативной памяти 210 Мb, в которой используется схема организации памяти с динамическими (переменными) разделами. В очереди для входа в систему находятся пить заданий с различной длительностью, различным объемом занимаемой памяти и различными начальными приоритетами по следующей схеме:

Номер задания	Начальный приоритет	Время исполнения (CPU burst)	Объем занимаемой па- мяти
1	2	5	100 Mb
2	1	3	90 Mb
3	5	4	50 Mb
4	4	2	20 Mb
5	3	1	40 Mb

При долгосрочном планировании первым в систему загружается задание с наименьшим значением приоритета. Для краткосрочного планирования в системе применен алгоритм динамических приоритетов. На исполиение из очереди готовых для исполнения процессов выбирается процесс с наименьшим значением приоритета, которому предоставляется процессор на протяжении кванта времени. При наличии нескольких процессов с одинаковым значением приоритета предпочтение отдается процессу, ранее попавшему в состояние готовность. Если по истечении выделенного кванта времени исполнявшийся процесс не покинул систему, то он помещается в очередь готовых процессов с восстановлением начального значения приоритета. Пред началом планирования приоритеты всех остальных готовых к исполнению процессов большие 0, кроме процессов, вновь поступивших в очередь готовности, уменьшаются на 1. Вычислите среднее время между стартом задания и его завершением (turnaround time) и среднее время ожидания (waiting time) для следующих стратегий размещения процессов в памяти:

- a) best fit (наиболее подходящий);
- b) worst fit (наименее подходящий).

При вычислениях считать, что процессы не совершают операций ввода-вывода, величину кванта времени принять равной 2. Временами переключения контекста, рождения процессов и работы алгоритмов планирования пренебречь. Освобождение памяти, занятой процессами, происходит немедленно по истечении их CPU burst.

- 3. (18 баллов) В вычислительной системе моделируется движение автомобилей по Чуйскому тракту с паромной переправой через реку Катунь. Паром вмещает ровно N автомобилей. До заполнения парома полностью он не начинает движения. На паром может одновременно заехать только один автомобиль. Заполнение парома начинается после его полного освобождения. Каждый автомобиль с южной стороны переправы и с северной стороны переправы, как и паром, представляются отдельным процессом. Напишите корректную схему организации переправы, используя классические очереди сообщений и разделяемые переменные. Для определенности считайте, что изначально паром находится на южной стороне реки. Классические очереди сообщений используют примитивы send(A,message) и receive(A,message), где А имя очереди сообщений. Примечание: Допускается создание дополнительного инициализирующего процесса, заносящего сообщения в очереди сообщений до начала работы переправы.
- (6 баллов) В вычислительной системе с сегментно-страничной организацией памяти и 32-х битовым адресом максимальное количество сегментов у процесса — 128, а размер страницы памяти 512 Кb. Для некоторого процесса в этой системе таблица сегментов имеет вид:

Номер сегмента	Длина сегмента
0	0x00FFFFFF
1	0x01A00000

Таблицы страниц, находящихся в памяти, для сегментов 0, 1 приведены ниже:

49 8-W 3111183531149

Номер страницы	Номер кадра
	(десятичный)
0	5
3	4

Каким физическим адресам соответствуют логические адреса: 0x018213EE, 0x02081234, 0x02180005?