

L'efficienza e la valutazione delle performance

Concetti ed introduzione alla D.E.A.

Corso di Economia Industriale Lezione del 27/09/2010

Valutazione delle peformance

- <u>Obiettivo</u>: valutare le attività di organizzazioni quali imprese, istituzioni governative, ospedali, università, ...
- Esiste una grande varietà di valutazioni:
 - Costo unitario;
 - Profitto unitario;
 - Soddisfazione unitaria;
 - **–** ...
- Una misura di <u>efficienza</u> comunemente usata è il rapporto Output/Input, che, più che una vera e propria efficienza, rappresenta una misura della <u>produttività</u>.
 - output per ogni ora di lavoro;
 - output per operaio;
 - output per *MWh* di energia utilizzato;
 - **–** ...
- Le precedenti sono tutte misure di <u>produttività parziale</u>, differente dalla <u>produttività totale dei fattori</u>, che cerca di ottenere un unico indice che tenga conto di tutti gli input e gli output.

I diversi tipi di efficienza

Efficienza tecnica

- Dati i miei input, sto producendo gli output ottimali o dovrei produrre di più?
- Dati i miei output, sto utilizzando la giusta quantità di input o dovrei ridurla?

confronto tra il processo di produzione effettivamente realizzato e un altro processo corrispondente ad uno standard di ottimalità

Efficienza allocativa

 Dato il livello di output e la tecnologia, sto utilizzando l'input mix che minimizza i miei costi?

• Efficienza economica

Una combinazione delle due precedenti.

Non confondiamo l'efficienza con...

• Efficacia

- un' impresa è efficace quando raggiunge con successo gli obiettivi prefissati;
- i giudizi di efficacia implicano quindi una valutazione qualitativa ex-post del grado di raggiungimento degli obiettivi desiderati;
- tali obiettivi possono essere: il grado di soddisfazione della clientela, i guadagni conseguiti dall'azienda ecc.
 - *Efficacia interna o gestionale (output/obiettivi)* misura e indica la capacità di raggiungere determinati obiettivi
 - *Efficacia esterna o sociale (obiettivilrisultati)*misura e indica la capacità dell'azienda di soddisfare i bisogni

Economicità

 il concetto di economicità sintetizza la capacità dell'impresa nel lungo periodo di utilizzare in modo efficiente le proprie risorse raggiungendo in modo efficace i propri obiettivi.

Efficienza – Una prima definizione in termini di produttività

OUTPUT = INPUT => EFFICIENZA = 1

0≤ EFFICIENZA ≤1

OUTPUT 1 + OUTPUT 2

EFFICIENZA =

INPUT 1 + INPUT 2 + INPUT 3

 $0 \le EFFICIENZA \le 1$

Problema: valutare l'efficienza di un processo quando le unità di misura delle risorse di input e output non sono le stesse!

Qualità (n° di difetti)

EFFICIENZA =

Materiali (ton) + Energia (MWh)

 $0 \le EFFICIENZA \le 1$

Cosa possiamo dire?

- A parità di materiali ed energia, è più efficiente chi ha una maggiore qualità
- A parità di qualità è più efficiente chi utilizza meno materiali e/o meno energia

D.E.A. – Una soluzione al problema

- Data Envelopment Analysis (configurazione iniziale)
 - permette di superare il problema delle differenti unità di misura
 - consente di analizzare processi multi input/output
 - riguarda l'EFFICIENZA TECNICA del processo di trasformazione di input in output e quindi
 - SOLO QUANTITA' DI INPUT ED OUTPUT
 - NON PREZZI E COSTI
 - fornisce uno score di efficienza RELATIVA (tra differenti Decision Making Unit, DMU) e NON ASSOLUTA
 - Non determina stime probabilistiche e nemmeno spiega le cause dell'inefficienza
 - Non è l'unico strumento (frontiera stocastica principale alternativa), ma il più diffuso (e il più semplice!)

Come funziona?

• 1) Definire accuratamente il processo produttivo

- 2) Selezionare solo gli INPUT ed OUTPUT CRITICI.
- 3) Scelta del modello:
 - MINIMIZZAZIONE INPUT o MASSIMIZZAZIONE OUTPUT

$$w_{O1} \times O_{O1} + w_{O2} \times O_{O2}$$

EFF. della DMU =

$$\mathbf{w}_{I1} \times \mathbf{I}_1 + \mathbf{w}_{I2} \times \mathbf{I}_2 + \mathbf{w}_{I3} \times \mathbf{I}_3$$

- 4) Determino il livello di efficienza di ogni DMU.
- 5) Genero una frontiera costituita da iperpiani.

le unità efficienti stanno sulla frontiera

Rappresentazione della DEA

- Quindi la DEA
 - <u>Valuta</u> le performance di ciscuna DMU;
 - Quantifica queste performance in termini di EFFICIENZA TECNICA
- Pertanto se uno specifico set di DMU
 - è caratterizzato da uno specifico processo produttivo
 - produce differenti livelli di output
 - partendo da specifici bundle di input

La DEA assegna ad ogni unità uno specifico
livello di <u>EFFICIENZA TECNICA</u>
che è determinato dall'output prodotto
e che dipende dai valori degli input in ciascun input bundle

Rappresentazione della DEA

Minimizzare l'input

Massimizzare l'output

Determinazione del livello di efficienza

Gli esempi visti graficamente sono molto semplici (pochi input/output).

Ma come fa la DEA

a determinare il livello di efficienza per ciascuna DMU

in cui multi-input/output più complessi?

EFF. DMU =
$$\frac{u_1 y_1 + u_2 y_2 + ... + u_s y_s}{v_1 x_1 + v_2 x_2 + ... + v_m x_m}$$

Ogni y è una variabile di output
Ogni x è una variabile di input
I coefficienti u sono i pesi assegnati alle variabili di output
I coefficienti v sono i pesi associati alle variabili di input

Ma come fa la DEA a determinare i pesi u e v da assegnare alla DMU?

I pesi sono derivati direttamente dai dati e scelti in modo da assegnare ad ogni DMU un set di pesi ottimale. Cosa significa ottimale? Significa che assegnando a tutte le DMU i pesi scelti per la DMU *i-esima*, quest'ultima consegue il massimo score di efficienza.

$$u_1 y_1 + u_2 y_2 + ... + u_s y_s = v_1 x_1 + v_2 x_2 + ... + v_m x_m$$

La DMU è efficiente (EFF = 1) e sta sulla frontiera

$$u_1 y_1 + u_2 y_2 + \dots + u_s y_s \le v_1 x_1 + v_2 x_2 + \dots + v_m x_m$$

La DMU è inefficiente (EFF ≤ 1) e si vede assegnato uno score di efficienza pari al rapporto tra la somme pesate degli output e degli input.

Questi score permettono di ottenere un ranking delle diverse DMU

pio pratico

 Consideriamo 6 supe numero di impiegati questo caso è singolo

nput: il in

Store

Input 1

Input 2

Output

1)	$\leq 1 \ (j = A, B, C, D, E, F)$
v1 x1j + v2 x2j	

2)
$$v_{1}, v_{2} \ge 0$$

Sotto i vincoli

3)
$$\mathbf{u}$$
 ≥ \mathbf{o}

A questo punto considero poi B ... fino a F

Prod.

Eff. Relativa	0,86	0,67		1	1	0,545	
DEA - CCR	0,86	0,63	1	1	1	1	
V ₁	0,1429	0,0526	0,0833	0,1667	0,2143	0	
V ₂	0,1429	0,2105	0,3333	0,1667	0,1429	1	
u	0,8571	0,6316	1	1	1	1	

- Dal punto di vista matematico il problema può essere trasformato utilizzando la seguente formulazione.
- Nel caso di n DMU, s output e m input

$$\max \theta = \frac{u_1 y_{1o} + u_2 y_{2o} + ... + u_s y_{so}}{v_{,u} v_1 x_{1o} + v_2 x_{2o} + ... + v_m x_{mo}}$$

- Abbiamo visto nella slide precedente un'applicazione del modello CCR. Come funziona dal punto di vista matematico tale modello?
- Il problema frazionario è trasformato nell'equivalente lineare.

$$\max_{v,u} \theta = u_1 y_{1o} + u_2 y_{2o} + ... + u_s y_{so}$$

$$\begin{array}{lll} & v_1 \, x_{1\,o} + v_2 \, x_{2\,o} + \ldots + v_m x_{m\,o} = 1 \\ & u_1 \, y_{1j} + u_2 \, y_{2j} + \ldots + u_s y_{sj} \, \leq \, v_1 \, x_{1j} + v_2 \, x_{2j} + \ldots + v_m x_{mj} \\ & v_1, \, \ldots, \, v_m \, \geq 0 \\ & u_1, \, \ldots, \, u_s \, \geq 0 \end{array}$$

I diversi modelli DEA

- CCR I
- CCR O
- BCC − I
- BCC − O
- SBM C (V o GRS)
- SBM I C (V o GRS)
- SBM O C (V o GRS)
- Weighted SBM (I (O)) C (V o GRS)
- Hybrid C (V)
- FDH

Quanti input e output servono?

- Utilizzare solo le variabili chiave, ovvero quelle che hanno grande influenza sull'efficienza.
- Selezionare variabili chiave che sono indipendenti da altre variabili.
- Meno variabili chiave si utilizzano, migliori saranno i risultati.
- E' comunque sempre opportuno effettuare un test di sensitività sulle variabili scelte, per vedere se esse effettivamente influenzano l'efficienza di una DMU.
- Determinate le variabili, si fornisce al software il *dataset* con i valori delle variabili di input e output scelti per tutte le DMU del campione

Esiste un numero minimo di DMU necessario per poter applicare la DEA?

SI!!!

Esempio A: Esempio B: 3 input e 5 output 9 input e 6 output
$$3 \times 5 = 15$$
 $9 \times 6 = 54$ $5 + 3 = 8 \rightarrow 8 \times 3 = 24$ $9 + 6 = 15 \rightarrow 15 \times 3 = 45$

Il massimo tra i due è il numero minimo di DMU che si devono valutare.

- Un modello DEA appropriato usa la programmazione lineare per calcolare il set di pesi di input e output ottimale che fa di una DMU specifica la più efficiente.
- La somma delle variabili di output pesate viene divisa per la somma delle variabili di input pesate per determinare l'efficienza tecnica di ogni DMU.
- Le DMU con efficienza pari a 1 sono dette essere sulla frontiera, la superficie esterna di un'immaginaria superficie multidimensionale.
- Le DMU con efficienza minore di 1 sono contenute all'interno della stessa superficie o "inviluppate".
- La distanza di una DMU inefficiente dalla più vicine DMU efficienti (benchmark peers) indica direzione e quantità dei possibili improvements in ciascun input ed in ciascun output.

- Sanità
- Trasporti Trasporto aereo
 - efficienza aeroportuale
 - competizione tra aeroporti e tra compagnie aeree
 - impatto ambientale aeroporti
 - A disposizione diverse possibilità di tesi (sperimentale)
- Valutazione degli investimenti/progetti
- Sport
- Utilities (acqua, energia, gas, rifiuti)
- Agricoltura
- Finanziamento (fondi europei, del governo USA)
- Sempre più diffuse anche in ambiente aziendale (<u>interessante x curriculum!</u>)
 - ridimensionamento aziendale;
 - premi unità aziendali

Un esempio applicato alle squadre di calcio (serie A)

Increasing offensive or defensive efficiency? An analysis of Italian and Spanish football Bosca et al. (2006)

Offensive and defensive efficiency in the Italian league 2001/2002

Team	Offensive effic	ciency		Defensive efficiency				
	General	Home	Away	General	Home	Away		
Juventus FC	1.0000	1.0000	0.8779	1.0000	0.7792	1.0000		
AC Roma	0.9483	0.8614	0.8989	1.0000	1.0000	0.8307		
Inter.	1.0000	0.8762	1.0000	0.8443	0.5826	0.8421		
Milan AC	0.7525	0.6484	0.7375	0.7516	0.5442	0.7756		
Chievo	1.0000	0.8367	1.0000	0.6462	0.5352	0.6112		
SS Lazio	0.9205	1.0000	0.4577	0.8753	0.5714	0.8990		
Bologna	0.7153	0.7654	0.4936	0.7365	0.7283	0.5953		
Perugia	0.6755	0.6479	0.5285	0.7146	0.6095	0.6248		
Atalanta	0.9309	0.8021	0.8945	0.7016	0.5549	0.6984		
AC Parma	0.7200	0.5905	0.7674	0.7292	0.5841	0.6974		
Torino	0.7859	0.7816	0.5985	0.8339	0.6032	0.8221		
Piacenza	1.0000	0.9251	0.8537	0.8715	0.6038	0.8305		
Brescia	0.7808	0.8047	0.5746	0.5368	0.3590	0.5860		
Udinese	0.7690	0.5220	0.8764	0.6547	0.4322	0.7449		
Hellas Verona	0.8545	0.7156	0.7909	0.5739	0.6773	0.4698		
Leche	0.8463	0.5964	0.8563	0.6842	0.5066	0.6448		
Fiorentina AC	0.5836	0.5068	0.5015	0.5968	0.5300	0.4682		
Venecia	0.6292	0.5152	0.6271	0.7789	0.6740	0.6617		
Average	0.828	0.744	0.741	0.7517	0.6042	0.7113		
Std. deviation	0.136	0.160	0.180	0.1330	0.1394	0.1441		

Note: The teams are ordered according to their final league ranking.

Un esempio applicato alle squadre di calcio (Premier League)

Productive Efficiency of English Football Teams - A D.E.A. Approach Haas (2003)

Table 2. DEA Results for Three Inputs and Two Outputs

Final rank	Club	CRS-efficiency	VRS-efficiency	Scale-efficiency	reference-set VRS ^a
1	Manchester United	1	1	1	$\lambda_1 = 1.00$
2	FC Arsenal	0.68	0.70	0.97	$\lambda_1 = 0.39, \ \lambda_5 = 0.51, \ \lambda_9 = 0.10$
3	FC Liverpool	0.64	0.75	0.85	$\lambda_1 = 0.21, \ \lambda_5 = 0.78, \ \lambda_9 = 0.01$
4	Leeds United	0.75	0.78	0.96	$\lambda_1 = 0.33, \ \lambda_5 = 0.66, \ \lambda_9 = 0.01$
5	Ipswich Town	1	1	1	$\lambda_5 = 1.00$
6	FC Chelsea	0.61	0.64	0.95	$\lambda_1 = 0.57, \ \lambda_5 = 0.34, \ \lambda_9 = 0.09$
7	Sunderland	1	1	1	$\lambda_7 = 1.00$
8	Aston Villa	0.62	0.62	1	$\lambda_1 = 0.09, \ \lambda_5 = 0.89, \ \lambda_9 = 0.01$
9	Charlton Athletic	1	1	1	$\lambda_9 = 1.00$
10	FC Southampton	0.57	0.72	0.79	$\lambda_5 = 0.99, \ \lambda_9 = 0.01$
11	Newcastle United	0.57	0.59	0.97	$\lambda_1 = 0.20, \ \lambda_5 = 0.80, \ \lambda_9 = 0.01$
12	Tottenham Hotspur	0.70	0.71	0.98	$\lambda_1 = 0.25, \ \lambda_5 = 0.65, \ \lambda_9 = 0.10$
13	Leicester City	0.47	0.49	0.96	$\lambda_5 = 0.99, \ \lambda_9 = 0.02$
14	FC Middlesbrough	0.44	0.5	0.88	$\lambda_5 = 0.95, \ \lambda_7 = 0.05, \ \lambda_9 = 0.01$
15	West Ham United	0.59	0.63	0.94	$\lambda_1 = 0.05, \ \lambda_5 = 0.62, \ \lambda_7 = 0.32, \ \lambda_9 = 0.01$
16	FC Everton	0.68	0.79	0.86	$\lambda_5 = 0.67, \ \lambda_7 = 0.23, \ \lambda_9 = 0.10$
17	Derby County	0.45	0.57	0.79	$\lambda_5 = 0.99, \ \lambda_9 = 0.01$
18	Manchester City	0.78	0.79	0.99	$\lambda_1 = 0.05, \ \lambda_5 = 0.95, \ \lambda_9 = 0.01$
19	Coventry City	0.47	0.63	0.75	$\lambda_5 = 0.99, \ \lambda_9 = 0.02$
20	Bradford City	0.29	0.72	0.40	$\lambda_5 = 0.99, \ \lambda_9 = 0.01$

^aFigures may not add up to 1.00 due to rounding. CRS: constant returns to scale; VRS: variable returns to scale. Source: Own calculation.

- Immaginate di essere un funzionario della Regione Lombardia incaricato di suddividere una parte dei finanziamenti (pari a 12 milioni di euro) tra i 12 ospedali della regione specializzati in un determinato tipo di cure sulla base dell'efficienza tecnica di ciascuna struttura. Le informazioni a vostra disposizione sono riassunte in tabella.
 - Si analizzino criticamente le variabili a disposizione sulla base delle caratteristiche del processo produttivo e della DEA.
 - Si determinino la produttività (assoluta e relativa di ciascuna unità).
 - Si determinare l'efficienza di ciascuna unità (supponendo di poter scegliere tra 3 set di pesi).
 - Quali sono le strutture più efficienti?
 - Come spartireste il finanziamento di 12 milioni di Euro tra i 12 ospedali?

	Ospedali	Α	В	С	D	Е	F	G	Н	I	J	K	L
	Dottori	20	19	25	27	22	55	33	31	30	50	53	38
INPUT	Infermieri	151	131	160	168	158	255	235	206	244	268	306	284
	Posti letto	75,5	65,5	80	84	79	127,5	117,5	103	122	134	153	142
	Dimissioni	100	150	160	180	94	230	220	152	190	250	260	250
OUTPUT	Ricoveri	90	50	55	72	66	90	88	80	100	100	147	120
	Ricavi	100	1000	1050	1080	280	1400	1320	720	900	1500	1130	1300

