

ING2 – Électronique fondamentale

auteur : Maxime SCHNEIDER Co-auteurs : Thierry MINOT et Neil ROSTAND

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

La convention récepteur

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Convention récepteur

- Les composants sont passifs : ils se contentent de recevoir de l'énergie électrique délivrée par un ou plusieurs générateur(s).
 - la polarité (+) est donnée par le générateur.
 - les porteurs de charge négatifs (électrons), issus du pôle (-) veulent rejoindre le pôle (+).
 - ► Hors cas du générateur, il en résulte que les tensions et les courants sont de sens opposé.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

- En première approche,
 - en appliquant une différence de potentiel aux bornes d'un matériau conducteur, on génère un champ électrique.
 - La loi de Coulomb donne $\vec{F} = q\vec{E} \Leftrightarrow \vec{F} = -e\vec{E}$: les électrons subissent une force électromotrice de sens opposé au champ électrique (charge élementaire : $e = 1.6 \times 10^{-19}$ C)

 \rightarrow Tant qu'une différence de potentiel est maintenue et que les électrons ont un chemin (le circuit est fermé), les e^- subissent une force électromotrice qui les met en mouvement du pôle (-) vers le pôle (+) : un courant ($i=\frac{dq}{dt}$) est établi.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Les fondamentaux sur la conduction

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

La vitesse de dérive

- On parle de **vitesse de dérive** pour désigner la vitesse moyenne des électrons sous l'effet d'une différence de potentiel (\vec{E} est orienté dans le sens des potentiels décroissants)
- en l'absence d'un champ électrique :
 - ► mouvement brownien (thermique) des électrons libres à 20°C avec une vitesse instantanée des électrons : $\approx 10^6 m \, s^{-1}$
 - temps caractéristique entre les collisions : $\tau \approx 3 \times 10^{-14} s$
 - ► nombre d'électrons libres : $n \approx 10^{29}$ électrons par m^3
 - $v = 0 \rightarrow \text{pas de courant}$

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

• Principe du **modèle de Drude** :

On considère les électrons libres du métal comme des particules ponctuelles classiques baignant dans un champ électrostatique. Elles sont soumises à :

- Une force électrostatique : $q \vec{E}$, avec q la charge de l'électron.
- Une force de frottement fluide : $-h \vec{v}$, en considérant les particules freinées par les collisions avec le cœur des atomes. \vec{v} est la vitesse des électrons dans le conducteur (encore appelée : vitesse de dérive).
- On applique la deuxième loi de Newton au système « la particule chargée » dans un référentiel considéré galiléen :

$$m\frac{d\vec{v}}{dt} = q\vec{E} - h\vec{v}$$
$$\frac{d\vec{v}}{dt} + \frac{h}{m}\vec{v} = \frac{q}{m}\vec{E}$$

On a une équation différentielle du 1^{er} ordre avec second membre.

Equation homogène :
$$\frac{d\vec{v}}{dt} + \frac{h}{m}\vec{v} = 0$$
 En régime permanent : $\frac{h}{m}\vec{v} = \frac{q}{m}\vec{E}$ Solution : $\vec{v} = \vec{K}e^{-\frac{t}{\tau}}$ Avec : $\tau = \frac{m}{h}$ D'où la solution particulière : $\vec{v} = \frac{q}{h}\vec{E} = \frac{q\tau}{m}\vec{E}$

D'où la solution générale de l'équation avec second membre : $\vec{v} = \vec{K}e^{-\frac{t}{\tau}} + \frac{q\tau}{E}\vec{E}$

$$\vec{v} = \vec{K}e^{-\frac{t}{\tau}} + \frac{q\tau}{m}\vec{E}$$

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Solution générale de l'équation avec second membre :

$$\vec{v} = \vec{K}e^{-\frac{t}{\tau}} + \frac{q\tau}{m}\vec{E}$$

- Avec : $\vec{K}e^{-\frac{t}{\tau}}$ qui est un terme d'amortissement et qui devient négligeable pour $t>5\tau$. A ce moment là le régime permanent est atteint.
- Lorsque le régime permanent est atteint, la vitesse des porteurs de charges, c'est-à-dire les électrons, (ou encore vitesse de dérive) est :

$$\vec{v} = \frac{q\tau}{m}\vec{E}$$

Ici les porteurs de charges sont les électrons, donc q=-e

$$\Rightarrow \qquad \vec{v} = -\frac{e\tau}{m}\vec{E}$$

• On définit : $\mu = \frac{e\tau}{m}$ comme étant la mobilité des porteurs de charges.

La mobilité des charges traduit leur aptitude à se déplacer dans le métal.

D'où une autre écriture de la vitesse de dérive des porteurs de charges (les électrons) :

$$\vec{v} = -\mu \vec{E}$$

La vitesse de dérive des électrons est opposée à \vec{E}

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Application numérique :

Nous avons rappelé précédemment que la norme du vecteur \vec{E} est : $E = \frac{u}{\rho}$

$$E = \frac{u}{\ell}$$

$$\text{Donc}: \quad \parallel \vec{v} \parallel = \parallel -\frac{e\tau}{m} \; \vec{E} \parallel \qquad \text{devient}: \qquad v = \frac{e\tau}{m_e} \frac{u}{\ell}$$

Avec :
$$e=$$
 charge élémentaire = 1.6×10^{-19} C $\tau=$ temps caractéristique entre les collisions : $\tau=3\times 10^{-14}$ s $m_e=$ masse de l'électron = 9.1×10^{-31} kg

Exemple: Fil de cuivre de longueur $\ell=10m$ soumis à une tension de u=10V

Vitesse des électrons :
$$v = \frac{1.6 \times 10^{-19} \times 3 \times 10^{-14}}{9.1 \times 10^{-31}} \times \frac{10}{10} = 5 \times 10^{-3} m. \, s^{-1} = 5 mm. \, s^{-1}$$

Remarque: pour parcourir 1m:
$$\Delta t = \frac{d}{v} = \frac{1000}{5} \approx 2000 \, s \approx 33 \, \text{min!}$$

 \rightarrow La vitesse de déplacement des e^- dépend du matériau, de sa longueur et de la différence de potentiel appliquée. Elle est relativement lente.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Le vecteur densité de courant

Considérons un conducteur élémentaire :

Ce conducteur possède :

- *n* atomes par unité de volume
- On considère que chaque atome porte une charge libre q ce qui permet de définir une densité volumique ρ_m de charges des électrons : (négative car électrons)

$$\rho_m = -en$$
 (= charge des e^- par unité de volume)

Comme ce conducteur est soumis à un champ \overrightarrow{E} , les charges libres se déplacent et créent un courant électrique i, défini comme étant un flux de porteur de charges à travers la surface dS.

$$i = \frac{dq}{dt}$$

Avec q charge variable

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

$$i = \frac{dq}{dt} \implies di = \frac{d^2q}{dt}$$

Ce volume élémentaire contient la charge élémentaire d^2q

On note \vec{v} la vitesse des porteurs de charges (= vitesse de dérive) définie précédemment et \vec{n} est le vecteur normal à la surface dS.

$$\implies$$
 Volume élémentaire $= \vec{v}dt \times dS \vec{n}$

 d^2q = charge par unité de volume \times volume élémentaire

$$d^2q = -ne \times \vec{v}dt \times ds \, \vec{n}$$

D'où :
$$di = \frac{d^2q}{dt} = -ne \times \vec{v} \times ds \vec{n}$$

$$\Rightarrow i = \int_{i} di = \iint_{S} -ne \times \vec{v} \times ds \, \vec{n}$$

On pose : $\vec{j} = -ne \ \vec{v}$ le vecteur densité de courant

$$\} \implies i = \iint_{S} \vec{j} \, dS \, \vec{n}$$

Sachant que la densité volumique de charges $\, \rho_m = -ne < 0 \,$, $\, \vec{j} \,$ s'écrit aussi :

$$\vec{j} = \rho_m \, \vec{v}$$

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Loi d'ohm locale

Reprenons les résultats précédents : (rq : le porteur de charges est l'électron)

Vitesse moyenne des électrons dans le conducteur, encore appelée vitesse de dérive : $\vec{v} = -\frac{e\tau}{m}\vec{E}$ $\vec{v} = -\frac{e\tau}{m}\vec{E}$ • e: charge élémentaire m: masse du porteur $\tau = 3 \times 10^{-14} \ s$

$$\vec{v} = -\frac{e\tau}{m}\vec{E}$$

•
$$\tau = 3 \times 10^{-14} \, s$$

Densité volumique de charges mobiles :

$$\rho_m = -ne$$

 $ho_m = -ne$ • n: nombre de porteurs par unité de volume

Vecteur densité de courant :

$$\vec{j} = \rho_m \, \bar{v}$$

 $\vec{j} = \rho_m \ \vec{v}$ • \vec{v} : vitesse du porteur

$$\Rightarrow \vec{J} = -ne \times (-\frac{e\tau}{m}) \vec{E}$$
$$\vec{J} = \frac{ne^2\tau}{m} \vec{E}$$

D'où la loi d'ohm locale :

$$\vec{j} = \gamma \; \vec{E}$$

$$\vec{J} = \gamma \; \vec{E}$$
 Avec : $\gamma = \frac{ne^2 \tau}{m}$ la conductivité du métal en $S.m^{-1}$, aussi notée σ

Application numérique :

•
$$\gamma_{Kcl,1mol.L^{-1}} = 10.2 \text{ S. } m^{-1}$$

•
$$\gamma_{Cu,m\acute{e}tal} = 59.6 \times 10^6 \, \text{S.} \, m^{-1} \, \text{!!!}$$

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Loi d'ohm

Reprenons les résultats précédents:

- Intensité dans un conducteur : $i = \iint_S \vec{j} \, ds \, \vec{n}$
- Vecteur densité de courant : $\vec{J} = \gamma \, \vec{E}$ avec $E = u/\ell$ u : tension
- E : champ électrique

 - ℓ : longueur du conducteur

$$\Rightarrow i = \iint_{S} \vec{j} \, ds \, \vec{n}$$

$$i = \iint_{S} \gamma \vec{E} \, ds \, \vec{n} = \gamma \, E \, S \qquad \text{Car } \vec{E} \text{ et } \vec{n} \text{ sont colinéaires}$$

$$i = \gamma \frac{u}{\ell} S$$
 ou encore : $i = \frac{\gamma S}{\ell} u$

$$\implies u = \frac{\ell}{\gamma S} i$$

D'où la loi d'ohm : u = Ri en posant : $R = \frac{\ell}{\nu S}$ la résistance du conducteur

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

R constant $\neq 0$, u_{AB} variable

Loi d'Ohm
$$u = R i$$

Analogie macroscopique

Vue microscopique

Loi d'Ohm locale
$$\vec{j} = \gamma \vec{E}$$

Conclusion : Si u augmente, alors \vec{E} augmente et donc la densité volumique de courant \vec{j} augmente.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Conductivité et résistivité

La résistance du conducteur est égale à : $R = \frac{\tau}{vS}$

- γ , souvent aussi appelée σ , est la conductivité du métal
- On pose ρ la résistivité du métal

$$\rho = 1/\gamma$$

D'où:
$$R = \frac{1}{\gamma} \frac{\ell}{S} = \rho \frac{\ell}{S}$$
 • $\gamma = \text{conductivit\'e en } \Omega^{-1} . m^{-1}$

$$extcolor{l}{ extcolor{l}{ ex$$

- ho= résistivité en Ω . m

Application numérique :

Fil de carbone de 10cm, de rayon r = 0.2mm soumis à une différence de potentiel de 10V. γ du carbone : 2,5 × 10⁴ Ω^{-1} . m^{-1}

$$R = \frac{0.1}{2.5 \times 10^4 \times \pi \times (2 \times 10^{-4})^2} = 31.8 \Omega$$
$$i = \frac{u}{R} = \frac{10}{31.8} = 0.314 A$$

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

• La résistance R d'un matériau est fixée par : $R = \rho \frac{x}{S}$ • la résistivité du matériau ρ

- A. La convention récepteur
- B. Fondamentaux sur La conduction

Vue

Loi d'Ohm

u = R i

Analogie

Vue

Loi d'Ohm

locale

 $\vec{j} = \gamma \vec{E}$

- 1. La vitesse de dérive
- 2. Vecteur densité de courant
- 3. Loi d'Ohm locale
- 4. Loi d'Ohm
- 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

u_{AB} constant $\neq 0$, R variable

Conclusion : Si R augmente, alors la conductivité γ diminue et donc la densité volumique de courant \vec{j} diminue.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité

C. Les composants

- 1. Généralités
- 2. La résistance
- 3. Le condensateur
- 4. Les circuits intégrés

Les composants

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Les composants : généralités

- Les composants électroniques sont des éléments conçus pour réaliser des fonctions électroniques.
 - un composant est dit passif lorsqu'il ne permet pas d'augmenter la puissance d'un signal. La plupart du temps, il la réduit par effet Joule.

Exemples: Résistance, Condensateur, Bobine.

un composant est dit actif lorsqu'il permet d'augmenter la puissance d'un signal à l'aide d'une alimentation externe. Il s'agit majoritairement de composants à semi-conducteurs.

<u>Exemples</u>: diode, amplificateur opérationnel, transistor, circuit intégré.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

- Classification par domaines d'application
 - Capteurs

► Electrotechnique / électronique de puissance

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

► Electronique analogique

∳ diode

transistor

régulateur de tension

• •

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

- ► Electronique numérique
- ♣ Portes logiques
 Ex: AND 4011

Bascules
EX: JK 7476

Décodeurs / démultiplexeurs Ex : 74138

👉 Microcontrôleur

EX: Atmel / Microchip ATMEGA328

♣ FPGA

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

► Interface humaine

← Interrupteurs

• • •

Pour information

Les boitiers des composants

Traversant

 Composants électroniques à pattes que l'on insère dans les trous d'un PCB.

Composant monté en surface = CMS

- Introduits dans les années 60
- populaire à partir des années 80

avantages

- Connections plus solides
 - raison pour laquelle les embrases de connecteurs sont traversants
 - encore utilisé dans les applications militaires (cartes soumises à des chocs, de grandes accélérations, etc.)
- facilement remplaçable → adapté pour prototypage sur breadboard

- ne nécessite pas de percer des trous, les composants peuvent être placés sur les deux faces
- meilleurs performances faces au bruit électromagnétique
- assemblage facilement automatisable
- composants plus petits
- la plupart du temps moins chers que les composants traversants

inconvénients

- prend plus de place
- à placer à la main

- difficiles à souder
- pas adaptés pour des tests rapides ou du prototypage
- pas adaptés pour les applications à haute puissance

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

La résistance

 La résistance est fonction du matériau utilisé et de la géométrie du composant :

$$R = \rho \frac{\ell}{S}$$

La résistivité croit avec la température : Loi de

$$\rho(T) = \rho_0[1 + \alpha(T - T_0)]$$

Matthiessen

Avec : α est un coefficient variant avec la température (empirique),

 T_0 est la température de référence et ρ_0 est la résistivité à la température T_0 .

Plus un conducteur est chaud, plus sa résistance va augmenter. Plus un isolant est chaud, plus sa résistance va diminuer.

- Au niveau électronique, cela correspond à 2 effets différents : Le conducteur a des électrons de conduction (qui peuvent se déplacer dans le matériau) à température nulle : il peut donc toujours conduire le courant. En augmentant la température cependant, l'agitation thermique désorganise le matériau, les électrons ont de plus en plus de mal à se déplacer, la résistance du matériau augmente.
- Cet effet de désorganisation du matériau existe aussi dans l'isolant, mais lui à température nulle n'a aucun électron de conduction. L'agitation thermique arrive à arracher quelques charges, l'augmentation de la température permet d'augmenter le nombre de charges, la résistivité du matériau diminue.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

- Intérêts de la résistance :
 - abaisser une tension

Ex: pont diviseur de tension

$$v_{out} = \frac{R_2}{R_1 + R_2} v_{in}$$

► augmenter une tension

<u>Ex</u>: amplificateur non inverseur

$$v_{out} = \left(1 + \frac{R_1}{R_2}\right) v_{in}$$

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

- Intérêts de la résistance :
 - ► limiter le courant <u>Ex</u> : résistances de tirage

Explication du montage pull-up:

- Lorsque le bouton n'est pas pressé, la résistance de tirage pull-up tire l'entrée du microcontrôleur vers le haut à +3,3 V, fournissant un niveau logique haut bien défini.
 Un certain courant circule à travers la résistance de tirage vers le haut dans ce cas, cependant, il est de faible intensité en raison de la valeur relativement élevée de la résistance.
- Lorsque le bouton est pressé, l'entrée du microcontrôleur est directement connectée (court-circuitée) à la masse (0 V), fournissant un niveau logique bas bien défini.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Les résistances traversantes

Pour information

- Les résistances traversantes comprennent :
 - des pattes ;
 - un corps fait à partir d'un matériau à haute résistivité;
 - des électrodes reliant les pattes au corps de la résistance;
 - une coque faite en un matériau isolant pour protéger la résistance de son environnement et renseigner sa valeur à l'aide d'un code couleur sur une couche de laque protectrice.

- La résistance au carbone aggloméré
 - le matériau résistif est un mélange de carbone broyé et compressé à chaud (la résistivité dépend du % de carbone)
 - les plus anciennes
 - anciennes et peu précises (tolérance 10 à 20%)

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

■ La résistance à couche de carbone

- technologie la plus récente et la plus utilisée
- constituée d'un cylindre en céramique sur lequel a été déposé un film de carbone en hélice pour augmenter le trajet des e^- et donc la résistance

Pour information

- différents boitier selon la puissance maximale
- meilleure tolérance : 10%, 5%, 2% ou 1%.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Pour information

La résistance à couches métalliques

- très précises et très stables dans le temps ;
- film mince de métal sur un substrat isolant (céramique ou verre). La résistance dépend de l'épaisseur du film et du % de matériau conducteur dans le film;
- puisque le film est mince, elles ne peuvent pas supporter de grandes puissances;
- reconnaissables par leur couleur bleue;
- plus coûteuses car plus difficile à fabriquer.

La résistance bobinée

- ▶ supporte de plus grandes puissances → alimentations ;
- > fil fait en un matériau de haute résistivité enroulé sur un tube en céramique ;
- ▶ de part leur bobinage, elles présentent une petite inductance → pas utilisé en HF.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Les résistances variables

Le rhéostat

- l'interaction externe (mécanique) induit un changement de résistance;
- constitué d'une piste circulaire en carbone sur laquelle vient frotter un contact que l'on peut déplacer à l'aide d'un tournevis.

$$R = \frac{\rho}{s} \ell$$

$$\operatorname{donc} R \propto \frac{\ell}{\ell_{MAX}} R_{MAX}$$

Exemple : $R_{MAX} = 10 k\Omega$

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Le potentiomètre

- ▶ l'interaction externe (mécanique) induit un changement de différence de potentiel
- un potentiomètre peut être utilisé comme résistance variable à condition de n'utiliser que 2 bornes successives.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Remarque sur l'utilité d'un AOP suiveur de tension

Sans suiveur

> Sans la résistance R,

$$u_s = \frac{R_2}{R_1 + R_2} u_e = \frac{10}{10 + 10} \times 5 = 2,5 \text{ V}$$

Avec la résistance R,

$$u_{s} = \frac{\frac{RR_{2}}{R+R_{2}}}{R_{1} + \frac{RR_{2}}{R+R_{2}}} u_{e} = \frac{\frac{1 \times 10}{1+10}}{10 + \frac{1 \times 10}{1+10}} \times 5 = 0,42 \text{ V}$$

Avec suiveur

Sans la résistance R,

$$u_s = \frac{R_2}{R_1 + R_2} u_e = \frac{10}{10 + 10} \times 5 = 2,5 \text{ V}$$

> Avec la résistance R,

$$u_s = \frac{R_2}{R_1 + R_2} u_e = \frac{10}{10 + 10} \times 5 = 2,5 \text{ V}$$

→ Un AOP monté en suiveur de tension (*buffer*) permet de maintenir la tension en sortie d'un pont diviseur de tension / potentiomètre constante quelle que soit la charge que l'on a en aval.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Pour information

Les résistances de surface

- Ces composants sont appelés CMS (Composant Monté en Surface) ou en anglais
 SMD (Surface Mounted Device)
- Presque toujours des résistances à film mince.
- De part leur petite taille, les résistances de surface ne supportent que des petites puissances (de $^1/_{10}$ à $^1/_4$ Watt)
- Le film est déposé sur une pièce en céramique (isolante) et relié à des électrodes. Le tout est protégé par une résine isolante sur laquelle est inscrite un code correspondant à la valeur de la résistance.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Pour information

Marquage CMS de 3 caractères ou 4 caractères

Système de codage à 3 caractères

- utilisé pour les résistances de tolérance standard ;
- les deux premiers chiffres sont les chiffres significatifs et le dernier est le multiplicateur
- \triangleright <u>ex</u>: "100" correspond à $10 \cdot 10^0 = 10 \Omega$
- Les résistances de moins de 10Ω utilisent la lettre 'R' pour renseigner la virgule (ex : $4R7 = 4,7\Omega$).

Système de codage à 4 caractères

- Résistances à haute tolérance : un chiffre significatif supplémentaire.
- ightharpoonup : "4702" correspond à 47,0 k Ω

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Marquage CMS code EIA-96

Pour information

- deux chiffres pour coder trois chiffres significatifs et une lettre pour le multiplicateur.
- 1 décoder les chiffres significatifs <u>Ex</u>: 65 correspond à 464

00-	10-	20-	30-	40-	50-	60-	70-	80-	90-
000	124	158	200	255	324	412	523	665	845
01-	11-	21-	31-	41-	51-	61-	71-	81-	91-
100	127	162	205	261	332	422	536	681	866
02-	12-	22-	32-	42-	52-	62-	72-	82-	92-
102	130	165	210	267	340	432	549	698	887
03-	13-	23-	33-	43-	53-	63-	73-	83-	93-
105	133	169	215	274	348	442	562	715	909
04-	14-	24-	34-	44-	54-	64-	74-	84-	94-
107	137	174	221	280	357	453	576	732	931
05-	15-	25-	35-	45-	55-	65-	75-	85-	95-
110	140	178	226	287	365	464	590	750	953
06-	16-	26-	36-	46-	56-	66-	76-	86-	96-
113	143	182	232	294	374	475	604	768	976
07-	17-	27-	37-	47-	57-	67-	77-	87-	
115	147	187	237	301	383	487	619	787	
-80	18-	28-	38-	48-	58-	68-	78-	88-	
118	150	191	243	309	392	499	634	806	
09-	19-	29-	39-	49-	59-	69-	79-	89-	
121	154	196	249	316	402	511	649	825	

2 décoder le multiplicateur Ex : C correspond à 10^2

 1Ω

 47.5Ω

 301Ω

$$475 \times 10^{-1} = 47,5$$

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Modèle de la résistance réelle

- La fabrication des composants induit des effets parasites
- On peut modéliser une résistance réelle comme suit :

Inductance série parasite L_s (au niveau des connexions) a un effet aux (très) hautes fréquences

Capacité parallèle parasite C_p (au niveau des électrodes) a un effet aux (très) hautes fréquences

Résistance parallèle de fuite R_L (due à un courant de fuite au niveau des matériaux isolants) a un impact non négligeable si R est grande et aux hautes tensions.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

- Par conséquent, l'impédance d'une résistance devient fonction de la fréquence aux (très) hautes fréquences.
- Pour les basses fréquences, la résistance est idéale et $Z_R=R$

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Le condensateur

- Le condensateur est un composant électronique qui des charges qui peuvent être restituées au circuit lorsque nécessaire.
- Ils sont constitués d'au moins deux armatures conductrices séparées par une ou plusieurs couches d'un matériaux isolant : le diélectrique.
- Ils sont caractérisés par leur capacité C exprimée en Farad et qui traduit leur capacité à accumuler des charges lorsqu'ils sont soumis à une certaine différence de potentiel

Relation caractéristique :
$$q = Cu$$
, De plus : $i = \frac{dq}{dt}$ d'où : $i = C\frac{du}{dt}$

$$i = C \frac{du}{dt}$$

La capacité est fonction de la géométrie du condensateur et des propriétés du diélectrique

$$C = \varepsilon \frac{S}{d}$$

Avec $\varepsilon = \varepsilon_0 \varepsilon_r$ la permittivité et $\varepsilon_0 = 8.85 \cdot 10^{-12} F \cdot m^{-1}$ est la permittivité du vide.

Condensateur polarisé branché à l'envers

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Applications

Découplage

→ Débruiter un signal, c'est-à-dire supprimer toute fréquence ≠ 0

C en parallèle entre alimentation et masse

Fréquence de coupure :

$$f_c = \frac{1}{2\Pi RC}$$

- Si basse fréquence à supprimer : f_c petit \Rightarrow C grand : condensateur électrolytique
- Si haute fréquence à supprimer : f_c grand ⇒ C petit : condensateur physique

Pour bien débruiter, il faut mettre les 2 types de condensateurs

type	fréquence	Capacité (Farad)	technologie	
Volume (stockage d'énergie)	Très basse 10 μ		álostrolytigus	
/f: +v	Basse /modérée	0,1 μ = 100 n	électrolytique	
Local (filtrage)	haute	0,000 1 μ = 100 p	céramique	

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Applications

- Couplage, ou encore liaison
 - → Bloquer la composante continue (offset) d'un signal

C en série entre la source du signal intéressant (ici GBF) et la suite du circuit (ici l'AO)

- Filtrage
 - → Ne laisser passer qu'une gamme de fréquences choisies

Ici filtre passe bas du second ordre

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Applications

- blocage (échantillonnage)
 - → Maintenir constante la valeur d'un signal afin de laisser le temps Au convertisseur analogique / numérique (ADC) de convertir

- \circ À l'instant d'échantillonnage, le signal de commande ferme l'interrupteur. Le condensateur se charge alors à la valeur de tension imposée par l'entrée analogique V_{in} . On appelle cette étape la **phase d'acquisition**.
- O Lorsque le signal de commande ouvre l'interrupteur, le condensateur ne peut se décharger dans l'amplificateur opérationnel, car celui-ci possède une impédance d'entrée infinie (du moins théoriquement). Le condensateur conserve ainsi sa charge électrique et la tension à ses bornes, ce qui maintient la tension AO en sortie constante quelle que soit la valeur de tension V_{in} en entrée. On appelle cette étape la **phase de mémorisation**.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Applications

- anti-rebond
 - → Atténuer les impulsions parasites générées lors de l'appui sur un bouton

- Interrupteur fermé : le condensateur est court-circuité, donc se décharge instantanément et $V_{RC0}=0$
- o Interrupteur ouvert (comme sur le schéma) : le condensateur se charge lentement jusqu'à obtenir la valeur de $V_{cc} \Longrightarrow V_{RC0} = V_{cc}$. Les rebonds de part la charge lente due à R et C ont disparu.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Pour information

Condensateurs traversants

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Pour information

Condensateurs traversants

Condensateurs non polarisés

- \triangleright petites valeurs ($\le 1 \mu F$)
- ▶ supporte de grandes tensions, (typiquement, $50 \le U_{SERVICE} \le 250 V$)
- souvent, la valeur est directement écrite dessus
 - Multiplicateur implicite : μF (ex : 0.1 \rightarrow 0,1 μF)
 - Multiplicateur inscrit (ex : 4n7 → 4.7 nF)

Exemple : condensateur céramique

- 2 chiffres significatifs;
 - 1 multiplicateur au-delà du pF.
 - Exemple: "104 » signifie $10 \cdot 10^4$ pF = 0.1 μ F

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Condensateurs polarisés

- grandes valeurs (≥ 1 μF);
- condensateurs électrolytiques
 - Peuvent surchauffer si connectés avec la mauvaise polarité;
 - Peuvent être axiaux (moins haut mais plus d'aire sur le PCB) ou radiaux (prennent moins de place sur le PCB mais sont plus hauts);
 - Les valeurs de C et de V sont clairement lisibles ;
 - Les tensions de service peuvent être basses \rightarrow à vérifier systématiquement!

Pour information

condensateurs au tantale

Plus cher mais plus petits

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Pour information

Condensateurs de surface

- les condensateurs de surface ne sont pas polarisés ;
- Condensateurs céramique multicouche (multilayer ceramic capacitor, MLCC)
 - Les plus utilisés ;
 - Même package que pour les résistances montées en surface.

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Pour information

Condensateurs électrolytiques de surface

- de plus en plus utilisées ;
- possibilité d'avoir de grandes valeurs de capacité ;
- ► faible coût ;
- deux numérotations :
 - Valeur en μF (<u>ex</u>: 47 10V \rightarrow 47 μF , pour 10 V maximum)

• Code : une lettre indiquant la tension de service puis trois chiffres : 2 pour les chiffres significatifs et un pour le multiplicateur au-delà du pF (ex : G106 \rightarrow 10 μF , pour 4 V maximum).

Lettre	е	G	J	A	С	D	Е	V	Н
Tension de service	2.5	4	6.3	10	16	20	25	35	50

Condensateurs au tantale de surface

pour les grandes valeurs

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Modèle du condensateur réel

- La fabrication des composants induit des effets parasites
- On peut modéliser un condensateur réel comme suit :

résistance série parasite R_{ESR}

- résistance apportée par les connections
- dissipation de courant aux hautes fréquences
- donne une idée de la vieillesse de C

résistance parallèle de fuite R_L

- due à un courant de fuite au niveau des matériaux isolants
- particulièrement importante pour les condensateurs électrolytiques

(de l'ordre de 5-20 nA par μ F)

inductance série parasite L_{ESL}

- créée par les connexions et les armatures
- particulièrement élevée pour les C électrolytiques de part leur géométrie

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Modèle du condensateur réel

Impédance complexe du condensateur idéal : Z_C = \frac{1}{jC\omega}

Soit une impédance : $Z_C = \frac{1}{C2\Pi f}$

 Evolution de l'impédance du condensateur réel en fonction de la fréquence :

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Les circuits intégrés

Pour information

- Les circuits intégrés (CI) sont le résultat de l'assemblage de multiples couches de matériaux semi-conducteurs sur un die de Silicium de quelques dizaines de μm^2 , ensuite encapsulé dans un **boîtier** afin d'être manipulable par l'homme <u>Ex</u>: AOP, NE555, portes logiques, microcontrôleurs, FPGAs, etc...
- La connexion entre le die et les pattes du circuit intégré se fait à l'aide petits fils d'or

Les CI sont polarisés dans la mesure où chaque pin a un rôle unique

- la pin n° 1 est renseignée un petit disque ou par une encoche sur la partie supérieure, auquel cas la pin 1 est sur la gauche
- la numérotation des pins suit le sens antihoraire

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Pour information

CI traversant

Package Dual in Line (PDIP)

- boitîer traversant le plus communément utilisé
- ► forme rectangulaire à deux rangées symétriques
- chaque centre de pin est espacé de 0.1" (2.54mm), espacement standard approprié aux breadboards
- **de** 4 à 64 pins

DIP-4

DIP-28

DIP-64

- peuvent être soudés directement sur un PCB ou en utilisant un socket.
- Ils permettent de placer et de remplacer un CI sans souder / dessouder
- ils sont utilisés pour :
 - les phases de prototypages, permettant ainsi de changer rapidement le CI
 - pour remplacer facilement un CI fragile qui aurait été endommagé
 - permet de développer une carte où le CPU sera au choix

DIP socket

ZIF socket

CI non traversant

Small-Outline (SOP)

- parmi les boîtiers de surface les plus faciles à souder
- espacement standard entre les centres des pins de 0.05" (1.27mm)
- SSOP (shrink small-outline package)
- TSOP (thin small-outline package)
- TSSOP (thin-shrink small-outline package)

SOP-8

TSSOP-20

TQFP-100

Quad Flat packages (QFP)

- boîtier carré ayant des pins sur ses 4 faces
- ▶ de 8 (32 au total) à 70 (280 au total) pins par face
- Les pins sont espacées d'une distance variant de 0,4 à 1 mm
- ► thin (TQFP)
- very thin (VQFP)
- low-profile (LQFP)

A COMEGA

Matrice de bille (Ball grid array, BGA)

- composé d'une matrice de billes de soudures
- compact, haute densité

- A. La convention récepteur
- B. Fondamentaux sur La conduction
 - 1. La vitesse de dérive
 - 2. Vecteur densité de courant
 - 3. Loi d'Ohm locale
 - 4. Loi d'Ohm
 - 5. Conductivité et résistivité
- C. Les composants
 - 1. Généralités
 - 2. La résistance
 - 3. Le condensateur
 - 4. Les circuits intégrés

Fin du cours