STAT 401 - Statistical Methods for Research Workers

Jarad Niemi

Iowa State University

19 September 2013

SAS code and output for one-way ANOVA

```
DATA mice;
INFILE 'U:\401A\Sleuth Datasets\CSV\case0501.csv' DSD FIRSTOBS=2;
INPUT lifetime diet $;

PROC GLM DATA=mice;
CLASS diet;
MODEL lifetime = diet;
LSMEANS diet / ADJUST=T;
RUN;
```

The GLM Procedure

Dependent Variable: lifetime

	Sum of				
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	12733.94181	2546.78836	57.10	<.0001
Error	343	15297.41532	44.59888		
Corrected Total	348	28031.35713			

What have we learned?

SAS code and output for one-way ANOVA

The GLM Procedure Least Squares Means

diet	lifetime LSMEAN	LSMEAN Number
N/N85	32.6912281	1
N/R40	45.1166667	2
N/R50	42.2971831	3
NP	27.4020408	4
R/R50	42.8857143	5
lopro	39.6857143	6

Least Squares Means for effect diet Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: lifetime

i/j	1	2	3	4	5	6
1		<.0001	<.0001	<.0001	<.0001	<.0001
2	<.0001		0.0166	<.0001	0.0731	<.0001
3	<.0001	0.0166		<.0001	0.6223	0.0293
4	<.0001	<.0001	<.0001		<.0001	<.0001
5	<.0001	0.0731	0.6223	<.0001		0.0117
6	<.0001	<.0001	0.0293	<.0001	0.0117	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

How many combinations when choosing 2 items out of 6?

How many combinations when choosing 2 items out of 6?

$$\binom{6}{2}$$

How many combinations when choosing 2 items out of 6?

$$\binom{6}{2} = \frac{6!}{2!(6-2)!} = \frac{6}{2! \cdot 4!} = \frac{6 \cdot 5}{2} = 15$$

How many combinations when choosing 2 items out of 6?

$$\binom{6}{2} = \frac{6!}{2!(6-2)!} = \frac{6}{2! \cdot 4!} = \frac{6 \cdot 5}{2} = 15$$

If 0.05 is our significance cutoff, what is the probability of falsely rejecting at least one true null hypothesis?

How many combinations when choosing 2 items out of 6?

$$\binom{6}{2} = \frac{6!}{2!(6-2)!} = \frac{6}{2! \cdot 4!} = \frac{6 \cdot 5}{2} = 15$$

If 0.05 is our significance cutoff, what is the probability of falsely rejecting at least one true null hypothesis?

$$1-(1-0.05)^{15}$$

How many combinations when choosing 2 items out of 6?

$$\binom{6}{2} = \frac{6!}{2!(6-2)!} = \frac{6}{2! \cdot 4!} = \frac{6 \cdot 5}{2} = 15$$

If 0.05 is our significance cutoff, what is the probability of falsely rejecting at least one true null hypothesis?

$$1 - (1 - 0.05)^{15} = 1 - (0.95)^{15} = 1 - 0.46 = 0.54$$

How many combinations when choosing 2 items out of 6?

$$\binom{6}{2} = \frac{6!}{2!(6-2)!} = \frac{6}{2! \cdot 4!} = \frac{6 \cdot 5}{2} = 15$$

If 0.05 is our significance cutoff, what is the probability of falsely rejecting at least one true null hypothesis?

$$1 - (1 - 0.05)^{15} = 1 - (0.95)^{15} = 1 - 0.46 = 0.54$$

So there is a greater than 50% probability of falsely rejecting a true null hypothesis!

How many combinations when choosing 2 items out of 6?

$$\binom{6}{2} = \frac{6!}{2!(6-2)!} = \frac{6}{2! \cdot 4!} = \frac{6 \cdot 5}{2} = 15$$

If 0.05 is our significance cutoff, what is the probability of falsely rejecting at least one true null hypothesis?

$$1 - (1 - 0.05)^{15} = 1 - (0.95)^{15} = 1 - 0.46 = 0.54$$

So there is a greater than 50% probability of falsely rejecting a true null hypothesis!

But we wanted the probability of making a mistake to be 0.05.

Confidence interval for the difference between group i and group i':

Confidence interval for the difference between group i and group i':

$$\overline{Y}_i - \overline{Y}_{i'} \pm M s_p \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}}$$

Confidence interval for the difference between group i and group i':

$$\overline{Y}_i - \overline{Y}_{i'} \pm M s_p \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}}$$

Confidence interval for the difference between group i and group i':

$$\overline{Y}_i - \overline{Y}_{i'} \pm M s_p \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}}$$

Procedure M	Use
-------------	-----

Confidence interval for the difference between group i and group i':

$$\overline{Y}_i - \overline{Y}_{i'} \pm M s_p \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}}$$

	Procedure	M	Use	
Γ	Tukey-Kramer	$q_{\mathrm{I},n-\mathrm{I}}(1-lpha)/\sqrt{2}$	All pairwise comparisons	

Confidence interval for the difference between group i and group i':

$$\overline{Y}_i - \overline{Y}_{i'} \pm M s_p \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}}$$

Procedure	M	Use
Tukey-Kramer	$q_{\mathrm{I},n-\mathrm{I}}(1-lpha)/\sqrt{2}$	All pairwise comparisons
Scheffé	$\sqrt{(\mathrm{I}-1)F_{(\mathrm{I}-1,n-\mathrm{I})}(1-lpha)}$	All contrasts

Confidence interval for the difference between group i and group i':

$$\overline{Y}_i - \overline{Y}_{i'} \pm M s_p \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}}$$

Procedure	M	Use
Tukey-Kramer	$q_{\mathrm{I},n-\mathrm{I}}(1-lpha)/\sqrt{2}$	All pairwise comparisons
Scheffé	$\sqrt{(\mathrm{I}-1)F_{(\mathrm{I}-1,n-\mathrm{I})}(1-lpha)}$	All contrasts
Dunnett	• • • • • • • • • • • • • • • • • • • •	Compare all groups to control

Confidence interval for the difference between group i and group i':

$$\overline{Y}_i - \overline{Y}_{i'} \pm M s_p \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}}$$

Procedure	M	Use
Tukey-Kramer	$q_{\mathrm{I},n-\mathrm{I}}(1-lpha)/\sqrt{2}$	All pairwise comparisons
Scheffé	$\sqrt{(\mathrm{I}-1)F_{(\mathrm{I}-1,n-\mathrm{I})}(1-\alpha)}$	All contrasts
Dunnett	, , , , , , , , , , , , , , , , , , , ,	Compare all groups to control
LSD	$t_{n-1}(1-lpha)$	After significant <i>F</i> -test
	,	(no adjustment)

Confidence interval for the difference between group i and group i':

$$\overline{Y}_i - \overline{Y}_{i'} \pm M s_p \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}}$$

Procedure	M	Use
Tukey-Kramer	$q_{\mathrm{I},n-\mathrm{I}}(1-lpha)/\sqrt{2}$	All pairwise comparisons
Scheffé	$\sqrt{(\mathrm{I}-1)F_{(\mathrm{I}-1,n-\mathrm{I})}(1-lpha)}$	All contrasts
Dunnett	, , , , , , , , , , , , , , , , , , , ,	Compare all groups to control
LSD	$t_{n-\mathrm{I}}(1-lpha)$	After significant <i>F</i> -test
		(no adjustment)
Bonferroni	$t_{n-1}(1-lpha/2k)$	k tests
	$k=\mathrm{I}(\mathrm{I}-1)/2$	(most generic)

SAS code and output for one-way ANOVA

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Bonferroni

diet	lifetime LSMEAN	LSMEAN Number
N/N85	32.6912281	1
N/R40	45.1166667	2
N/R50	42.2971831	3
NP	27.4020408	4
R/R50	42.8857143	5
lopro	39.6857143	6

Least Squares Means for effect diet
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: lifetime

i/j	1	2	3	4	5	6
1		<.0001	<.0001	0.0009	<.0001	<.0001
2	<.0001		0.2488	<.0001	1.0000	0.0002
3	<.0001	0.2488		<.0001	1.0000	0.4402
4	0.0009	<.0001	<.0001		<.0001	<.0001
5	<.0001	1.0000	1.0000	<.0001		0.1751
6	<.0001	0.0002	0.4402	<.0001	0.1751	

6

SAS code and output for one-way ANOVA

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer

	lifetime	LSMEAN
diet	LSMEAN	Number
N/N85	32.6912281	1
N/R40	45.1166667	2
N/R50	42.2971831	3
NP	27.4020408	4
R/R50	42.8857143	5
lopro	39.6857143	6

Least Squares Means for effect diet Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: lifetime

i/j	1	2	3	4	5	6
1		<.0001	<.0001	0.0008	<.0001	<.0001
2	<.0001		0.1565	<.0001	0.4684	0.0002
3	<.0001	0.1565		<.0001	0.9964	0.2460
4	0.0008	<.0001	<.0001		<.0001	<.0001
5	<.0001	0.4684	0.9964	<.0001		0.1168
6	< .0001	0.0002	0.2460	< .0001	0.1168	

6

Frankly, we've learned very little.

Frankly, we've learned very little.

We've learned that if $\mu_i = \mu_j$ for the following pairs, the data are highly unlikely:

Frankly, we've learned very little.

We've learned that if $\mu_i = \mu_j$ for the following pairs, the data are highly unlikely:

- N/N85-N/R40
- N/N85-N/R50
- N/N85-NP
- N/N85-R/R50

- N/N85-lopro
- N/R40-NP
- N/R40-lopro
- N/R50-NP

- NP-R/R50
- NP-lopro

Frankly, we've learned very little.

We've learned that if $\mu_i = \mu_j$ for the following pairs, the data are highly unlikely:

- N/N85-N/R40
- N/N85-N/R50
- N/N85-NP
- N/N85-R/R50

- N/N85-lopro
- N/R40-NP
- N/R40-lopro
- N/R50-NP

- NP-R/R50
- NP-lopro

Is this information useful?

Frankly, we've learned very little.

We've learned that if $\mu_i = \mu_j$ for the following pairs, the data are highly unlikely:

- N/N85-N/R40
- N/N85-N/R50
- N/N85-NP
- N/N85-R/R50

- N/N85-lopro
- N/R40-NP
- N/R40-lopro
- N/R50-NP

- NP-R/R50
- NP-lopro

Is this information useful?

If you wanted the longest lifetime, which diet should you prefer?

Frankly, we've learned very little.

We've learned that if $\mu_i = \mu_i$ for the following pairs, the data are highly unlikely:

- N/N85-N/R40
- N/N85-lopro N/N85-N/R50 N/R40-NP

NP-R/R50

N/N85-NP

N/R40-lopro

N/N85-R/R50

N/R50-NP

NP-lopro

Is this information useful?

If you wanted the longest lifetime, which diet should you prefer?

Does it really make a difference?