Zusatz
tutorium Mathe A ${\rm WS}19/20$

Anton Hanke, Maximillian Kohnen, Felix Schnabel Fragestunde: 27/11/19

Mathematische Logik

!!MACHT FELIX!!
Aussagen
!!MACHT FELIX!!
Implikationen
!!MACHT FELIX!!
Quantoren
!!MACHT FELIX!!
Beweise
!!MACHT FELIX!!
Mengen und algebraische Struckturen
Mengen sind Zusammenfassungen bestimmter, wohlunterscheidbarer Objekte. Für jedes Objekt ist eine klar zuordnung zur Menge erkentlich
Mengen sind keine Aussagen!!
sonder mengen & Mengen Relationen
• $\emptyset \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

- $A \subset B$! Aussage!
- $A \cap B$
- A ∪ B
- $A \setminus B \wedge B \setminus A$
- $A \times B = \{(a, b) : a \in A, b \in B\}$

Abbildungen

$$f: A \to B$$

- A = Definitionsmenge, von hier bilden wir ab.
- B = Zielmenge, hierdrauf wird abgebildet.
- Bildmenge: $\subset B$ welche sich aus f(A) ergibt.
- 1. Injektive Abbildung: $\forall i \in B | \#(a \in A) \leq 1 : f(a) \rightarrow i$
- 2. Surjektive Abbildung: $\forall i \in B | \#(a \in A) \ge 1 : f(a) \to i$
- 3. Bijektive Abbildung: $\forall i \in B \mid \#(a \in A) = 1 : f(a) \to i$ (1. \land 2.)

Gruppen (G, \oplus)

• Abgeschlossenheit

$$a \in G, b \in G : a \oplus b \in G$$

Assoziativität

$$(b \oplus a) \oplus c = a \oplus (b \oplus c)$$

• Neutrales Element D_0

$$\exists e \in G, \forall a \in G : a \oplus e = a$$

• Inverses Element

$$\forall a \in G, \exists \bar{a} \in G : a \oplus \bar{a} = e$$

• Kommultativität (abelsche Gruppe):

$$\forall a \in G, \forall b \in G : a \oplus b = b \oplus a$$

Ringe (M, \oplus, \otimes)

- 1. (M, \oplus) ablesche Gruppe
- 2. $a \otimes (b \otimes c) = (a \otimes b) \otimes c$ assoziativität gegeben.
- 3. Distributiv: $\forall a, b, c \in M : a \otimes (b \oplus c) = a \otimes b \oplus a \otimes c$.
- Kommutativ wenn: $a \otimes b = b \otimes a$
- unitär wenn: $\exists 1 \in M : a \otimes 1 = 1 \otimes a = a$.

Körper (K, \oplus, \otimes)

- 1. (K, \oplus) is abelsche Gruppe mit $D_0 = 0$.
- 2. $(K \setminus \{0\}, \otimes)$ abelsche Gruppe mit $D_0 = 1$.
- 3. Distributivgesetz gilt.
- Unterschied zu Ringen: (M, \otimes) keine abelsche Gruppe, kein Inverses!

Vektorrechnung

Vektoren sind tupel mit n elementen $(n = \dim V)$.

Sie erfüllen alle bedingungen eines Körpers und lassen sich nicht mit sich selbst multiplizieren.

• Linearkombination:

$$\vec{z} = \sum_{i=1}^{k} \mu_i \vec{x}_i \in V$$

Hierbei sind μ skalare ($\mu \in \mathbb{R}$)

• Skalarprodukt: "Vektor multiplikation".

$$\mathbb{R}^n\mathbb{R}^n=\mathbb{R}$$

Relevant ist, das beide Vektoren gleiche Dimension haben.

$$\vec{v} \cdot \vec{w} = \sum_{i=1}^{n} v_i w_i \in \mathbb{R}$$

· Vektor betrag:

$$\begin{split} |\vec{v}|^2 &= \vec{v} \cdot \vec{v} \\ \Rightarrow |\vec{v}| &= \sqrt{\sum_{i=1}^{n} v_i^2} \end{split}$$

Ein Vektor lässt sich normieren mit: $\vec{e}_v = \frac{\vec{v}}{|\vec{v}|}$. In \mathbb{R}^2 gilt: $\vec{e} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$

• Winkel zwischen Vektoren: Sind vektoren ortogonal ($\alpha = 90^{circ}$) gilt: $\vec{u} \cdot \vec{v} = 0 \Leftrightarrow \vec{u} \perp \vec{v}$ Allgemein berechnet sich der Winkel mit:

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

Basis eines Vektorraums

Die Basis eines Vektorraums ist die Menge an vektoren, mit welchen sich über Linearkombination jeder Vektor im Vektorraum berechnen lässt, sie wird der span des Raums gennant:

$$\forall \vec{v} \in V : \exists \lambda_1, \dots, \lambda_k \in \mathbb{R} : \vec{v} = \sum_{i=1}^n \lambda_i \vec{e_i}$$

Die Vektoren dieser Basis spannen den Vektorraum auf und werden als spanV bezeichent, wobei $V:\Leftrightarrow\{\vec{v}_i,\ldots,\vec{v}_k\}\in\mathbb{R}$

Drei relevante Basen sind:

- 1. Kanonische Basis: $\mathbb{R}^n \{ \vec{e}_1 = (1, \dots, 0), \vec{e}_i = (0, \dots, 1, \dots, 0), \vec{e}_n = (0, \dots, 1) \}$ $i = 1, \dots, n$
- 2. normierte Basis: $\{\vec{v}_i \in X\} : |\vec{v}_i| = 1 \quad \forall i = 1, \dots, n$
- 3. orthogonale Basis: $\{\vec{v}_i \in X\}: \vec{v}_i \cdot \vec{v}_j = 0 \ \forall i, j = 1, \dots, n$

Alle Vektoren der Basis des Vektorraums müssen linear unabhängig voneinander sein:

$$\sum_{i=1}^{r} \lambda_1 \vec{v}_1 + \dots_i + \lambda_r \vec{v}_r^2 = \vec{O} \Leftrightarrow \lambda_i = 0 \quad i = 1, \dots, r$$

Lineare Abbhängigkeit ist gegeben, wenn $\exists \lambda \neq 0$ sodass $\lambda \vec{v}_1 \cdot \lambda \vec{v}_2 = \vec{0}$.

Die Dimension des (aufgespannten) Vektorraums entspricht der Anzahl an Basis oder Span Vektoren.

$$\dim V = \operatorname{span}(V)$$

Komplexe Zahlen und trignometrische Funktionen

Darstellungen Komplexer Zahlen

Kartesische Darstellung

Polarkoordinaten Darstellung

Euler Darstellung

Rechenoperationen Komplexer Zahlen

Trigonometrische Funktione

Geometrische Interpretation

Eigenschaften und wichtige Gleichungen

Wichtige Werte

Matrizen und Lineare Algebra

Lineare Gleichungssysteme stellen sich wie folgt da:

$$\begin{cases} \lambda_{1,1} x_1 + \lambda_{1,...} x_{...} + \lambda_{i,1} x_i &= b_1 & \text{Gl. 1} \\ \lambda_{1,...} x_1 + \lambda_{...,...} x_{...} + \lambda_{i,...} x_i &= b_{...} & \text{Gl. ...} \\ \lambda_{1,j} x_1 + \lambda_{...,j} x_{...} + \lambda_{i,j} x_i &= b_k & \text{Gl. } k \end{cases}$$

Dies lässt sich wie folgt umschreiben:

$$Ax = b$$

Dabei sind x und b vectoren. A ist eine Matrix.

$$A = \begin{pmatrix} \lambda_{1, 1} & \lambda_{1, \dots} & \lambda_{i, 1} \\ \lambda_{1, \dots} & \lambda_{\dots, \dots} & \lambda_{i, \dots} \\ \lambda_{1, j} & \lambda_{\dots, j} & \lambda_{i, j} \end{pmatrix}$$

Eine Matrix wird durch ihre Dimensionen beschreiben:

- m: # Zeilen
- n: # Spalten

Die Lösungsmenge eines LGS ist durch äquivalente umformungen unverändert.

Matrixrechung

Matrizen haben folgende Eigenschaften:

- 1. Assoziativ
- 2. Dissoziativ
- 3. nicht kommutativ!

Matrix addition/subtraktion

Matrizen müssen identische Dimensionen haben. Addition der einzelnen Elemente aufeinander.

Matrix multiplikation

Kriterium: innere Dimensionen gleich.

$$\underset{m \times n}{A} \times \underset{n \times p}{B} = \underset{m \times p}{C}$$

An sich ergibt sich die Ergebnismatrix aus Skalarprodukten der Zeilen und Spalten der Inputmatrizen.

$$\begin{pmatrix} i_1 & i_C & i_k \end{pmatrix} \begin{pmatrix} j_i \\ j_C \\ j_k \end{pmatrix} \begin{pmatrix} C_{ij} \end{pmatrix} \iff C_{i,j} = \sum_{k=1}^n a_{ik} \cdot b_{jk}$$

Das neutrale Element der Matrix multiplikation ist die Identitätsmatrix, eine Diagonalmatrix, mit der Determinante 1:

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Linearkombinationen für Berechnungen:

1. Spalten:

$$j_C = x_B^j \lambda_A + y_B^j \theta_A + z_B^j \mu_A$$

Die Spalte j von C ergibt sich aus der Vektorsumme der Spalten von A multipliziert mit den Elementen in der jten Spalte von B.

2. Zeilen:

$$i_C = x_A^i \lambda_B + y_A^i \theta_B + z_A^i \mu_B$$

Die Zeile i von C ergibt sich aus der Vektersumme der Zeilen von B multipliziert mit den Elementen in der iten Zeile von A.

Matrix transposition

"Rotation einer matrix":

$$A_{m \times n} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix} \longrightarrow A_{m \times n}^{T} = \begin{pmatrix} a_{1,1} & \cdots & a_{m,1} \\ \vdots & & \vdots \\ a_{1,n} & \cdots & a_{m,n} \end{pmatrix}$$

Spiegelung um die Diagonale.

Wenn gilt: $A = A^T$ so ist die Matrix Spiegelsymmetrisch.

Diagonalmatrizen immer Spiegelsymmetrisch.

Matrix inverse

Die Inverse Matrix ist das Inverse Element eines Elements in dem Körper der Matrix Multiplikation. Es gilt: $A^{-1}A = AA^{-1} = I$

Matrix Diagonalisierung und determinanten

Durch Diagonalisierung (alle Elemente der Matrix $\ddot{u}ber/unter$ Diagonale = 0) lassen sich die **Pivot Elemente** (Elemente auf Diagonale) bestimmen. Generel:

$$EA = A'$$

Dabei E = Eliminationsmatrix. Die Eliminationsmatrix die Benötigt wird um eine Matrix vollständig in eine Upper Diagnalmatrix zu überführen ist die lower Diagonalmatrix der Matrix A.

$$E' \underbrace{EA}_{A''}$$

Somit:

$$\underbrace{E''}_{ ext{under triangel}} A = \overbrace{A''}^{ ext{Upper triangel}}$$

Aus den Diagonalmatrizen kann man die Pivot Elemente a

- \blacktriangleright Beachte Multiplikationsreihenfolge, nicht kummutativ \blacktriangleleft
- \blacktriangleright E sind Einheitsmatrizen und somit 1 auf Diagnoalle!

Die Determinante einer matrix:

$$\det A = \prod \text{Pivot Elemente}$$

In einer Matrix mit det $A \neq 0$ gibt es entweder 0 oder ∞ viele Lösungen für Gleichungssysteme. Die Matrix ist Singulär und hat kein Inverses.

Spalten und Nullraum

Eliminationsverfahren

- 1. Gleichungssystem aufstellen
- 2. Gleichungen äquivalent umformen, bis eine dieser nurnoch von einer Variable abhängig ist. Erlaubte Umformungen:
 - Permutationen (Gleichungen vertauschen)
 - Skalieren von Gleichungen mit $\lambda \neq 0$
 - Linearkombination von Gleichungen
- 3. Auflösen der Variable.
- 4. Resubsititution und schrittweise ermittlung der weiteren Variablen.

Matrix Erweiterung und Gauß Verfahren

Erweiterte Matrix aufstellen (A|b):

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} & b_1 \\ \vdots & \ddots & \vdots & b_{\dots} \\ a_{m,1} & \cdots & a_{m,n} & b_m \end{pmatrix}$$

Lösbarkeit