# Представления регулярных языков. Критерий регулярности

Теория формальных языков  $2022 \ z$ .



### Недетерминированные КА

#### Определение

Недетерминированный конечный автомат (NFA) — это пятёрка  $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$ , где:

- Q множество состояний;
- Σ алфавит терминалов;
- $\delta$  множество правил перехода вида  $\langle q_i, (\alpha_i | \epsilon), M_i \rangle$ , где  $q_i \in Q$ ,  $\alpha_i \in \Sigma$ ,  $M_i \in \mathbb{Z}^Q$ ;
- $q_0 \in Q$  начальное состояние;
- F ⊆ Q множество конечных состояний.

Сокращаем:  $\langle q_1, \alpha, q_2 \rangle \in \delta \Leftrightarrow \langle q_1, \alpha, M \rangle \in \delta \& q_2 \in M$ .



## Недетерминированные КА

#### Определение

Недетерминированный конечный автомат (NFA) — это пятёрка  $\mathscr{A}=\langle Q, \Sigma, \mathfrak{q}_0, \mathsf{F}, \delta \rangle.$ 

- $\begin{array}{c} \bullet \ q \xrightarrow{\epsilon} q' \Leftrightarrow (q=q') \vee \exists p_1, \ldots, p_k (\langle q, \epsilon, p_1 \rangle \in \delta \ \& \\ \langle p_k, \epsilon, q' \rangle \in \delta \ \& \ \forall i, 1 \leqslant i < k \langle p_i, \epsilon, p_{i+1} \rangle \in \delta). \end{array}$
- $\begin{array}{l} \bullet \ q \overset{\alpha_1 \dots \alpha_k}{\longrightarrow} \ q' \Leftrightarrow \exists p_1, \dots, p_{k-1} (q \xrightarrow{\alpha_1} p_1 \ \& \ p_{k-1} \xrightarrow{\alpha_k} q' \ \& \\ \forall i, 1 \leqslant i < k 1 (p_i \xrightarrow{\alpha_{i+1}} p_{i+1})). \end{array}$



### Недетерминированные КА

#### Определение

Недетерминированный конечный автомат (NFA) — это пятёрка  $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$ .

- $\begin{array}{c} \bullet \ q \xrightarrow{\epsilon} q' \Leftrightarrow (q=q') \vee \exists p_1, \ldots, p_k (\langle q, \epsilon, p_1 \rangle \in \delta \ \& \\ \langle p_k, \epsilon, q' \rangle \in \delta \ \& \ \forall i, 1 \leqslant i < k \langle p_i, \epsilon, p_{i+1} \rangle \in \delta). \end{array}$
- $\begin{array}{c} \bullet \ q \overset{\alpha_1 \dots \alpha_k}{\longrightarrow} \ q' \Leftrightarrow \exists p_1, \dots, p_{k-1} (q \overset{\alpha_1}{\longrightarrow} p_1 \ \& \ p_{k-1} \overset{\alpha_k}{\longrightarrow} q' \ \& \\ \forall i, 1 \leqslant i < k 1 (p_i \overset{\alpha_{i+1}}{\longrightarrow} p_{i+1})). \end{array}$

#### Определение

Язык L, распознаваемый НКА  $\mathscr{A}$  — это множество слов  $\{w \mid \exists q \in F(q_0 \xrightarrow{w} q)\}.$ 



- A





## Детерминированный КА

#### Определение

Детерминированный конечный автомат (DFA) — это пятёрка  $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$ , где:

- Q множество состояний;
- Σ алфавит терминалов;
- $\delta$  множество правил перехода вида  $\langle q_i, \alpha_i, q_j \rangle$ , где  $q_i, q_j \in Q, \alpha_i \in \Sigma$ , причём  $\forall q_i, \alpha_i \exists q_j (\langle q_i, \alpha_i, q_j \rangle \in \delta \& \forall q_k (\langle q_i, \alpha_i, q_k \rangle \in \delta \Rightarrow q_k = q_j));$
- $q_0 \in Q$  начальное состояние;
- $F \subseteq Q$  множество конечных состояний.

 $\epsilon$ -переходов нет  $\Rightarrow$  q  $\stackrel{\alpha}{\longrightarrow}$  q'  $\Leftrightarrow$   $\langle$ q,  $\alpha$ , q' $\rangle$   $\in$   $\delta$ .



## Детерминированный КА

#### Определение

Детерминированный конечный автомат (DFA) — это пятёрка  $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$ , где:

- Q множество состояний;
- Σ алфавит терминалов;
- $\delta$  множество правил перехода вида  $\langle q_i, \alpha_i, q_j \rangle$ , где  $q_i, q_j \in Q, \alpha_i \in \Sigma$ , причём  $\forall q_i, \alpha_i \exists q_j (\langle q_i, \alpha_i, q_j \rangle \in \delta \& \forall q_k (\langle q_i, \alpha_i, q_k \rangle \in \delta \Rightarrow q_k = q_j));$
- $q_0 \in Q$  начальное состояние;
- F ⊂ Q множество конечных состояний.

$$\epsilon$$
-переходов нет  $\Rightarrow$  q  $\stackrel{\alpha}{\longrightarrow}$  q'  $\Leftrightarrow$   $\langle$ q,  $\alpha$ , q' $\rangle$   $\in$   $\delta$ .

Язык L, распознаваемый  $\mathscr{A}$  — это множество слов  $\{w \mid \exists q \in F(q_0 \xrightarrow{w} q)\}.$ 



## Sink/trap state (состояние–ловушка)

«Ловушка» — не конечное состояние с переходами лишь в себя. Нужны для корректного задания DFA, но иногда по умолчанию не описываются.





## Детерминизация NFA

### Ot $\mathscr{A} \kappa \mathsf{D}(\mathscr{A})$

Состояния DFA D( $\mathscr{A}$ ) — это состояния  $\mathfrak{m}_i \in 2^Q$ , где Q — состояния NFA  $\mathscr{A}$ .

- $m_0 = \{q_i \mid q_0 \stackrel{\epsilon}{\longrightarrow} q_i\};$
- $\bullet \ m_i \in F_D \Leftrightarrow \exists q_i, q_j \{q_i \in m_i \ \& \ q_j \in F(\mathscr{A}) \ \& \ q_i \stackrel{\epsilon}{\longrightarrow} q_j \};$
- $\bullet \ \langle m, \alpha, m' \rangle \in \delta_D \Leftrightarrow m' = \{q_i \, | \, \exists q_j \in m(q_j \stackrel{\alpha}{\longrightarrow} q_i)\}.$



### Пример детерминизации



$$\bullet \ \{q_0\} \stackrel{\alpha}{\longrightarrow} \{q_1, q_8\}, \{q_0\} \stackrel{b}{\longrightarrow} \{q_4, q_9\};$$

- $$\begin{split} \bullet & \left\{q_1, q_8\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1, q_2\right\}, \\ & \left\{q_1, q_8\right\} \stackrel{b}{\longrightarrow} \left\{q_3\right\}; \left\{q_1, q_8\right\} \sim \mathfrak{m}_1. \end{split}$$
- $$\begin{split} \bullet \ \ \{q_1,\,q_2\} & \stackrel{\alpha}{\longrightarrow} \{q_1,\,q_2\}, \\ \{q_1,\,q_2\} & \stackrel{b}{\longrightarrow} \{q_3\}; \{q_1,\,q_2\} \sim m_2. \end{split}$$
- $\bullet \ \{q_3\} \stackrel{\alpha}{\longrightarrow} \{q_1, q_2\}, \{q_3\} \stackrel{b}{\longrightarrow} \{q_3\};$
- $\begin{array}{c} \bullet \ \, \{q_4,\,q_9\} \stackrel{b}{\longrightarrow} \{q_4,\,q_6\}, \\ \{q_4,\,q_9\} \stackrel{a}{\longrightarrow} \{q_5\}; \{q_4,\,q_9\} \sim m_3; \end{array}$
- $\{q_4, q_6\} \xrightarrow{b} \{q_4, q_6\},\$  $\{q_4, q_6\} \xrightarrow{a} \{q_5\}; \{q_4, q_6\} \sim m_4.$
- $\bullet \{q_5\} \xrightarrow{b} \{q_4, q_6\}, \{q_5\} \xrightarrow{a} \{q_5\}.$



### Пример детерминизации



$$\bullet \ \{q_0\} \xrightarrow{\alpha} \{q_1, q_8\}, \{q_0\} \xrightarrow{b} \{q_4, q_9\};$$

- $$\begin{split} \bullet & \left\{q_1, q_8\right\} \stackrel{\alpha}{\longrightarrow} \left\{q_1, q_2\right\}, \\ & \left\{q_1, q_8\right\} \stackrel{b}{\longrightarrow} \left\{q_3\right\}; \left\{q_1, q_8\right\} \sim \mathfrak{m}_1. \end{split}$$
- $$\begin{split} \bullet \ \, \{q_1,\,q_2\} & \stackrel{\alpha}{\longrightarrow} \{q_1,\,q_2\}, \\ \{q_1,\,q_2\} & \stackrel{b}{\longrightarrow} \{q_3\}; \{q_1,\,q_2\} \sim m_2. \end{split}$$
- $\bullet \ \{q_3\} \stackrel{\alpha}{\longrightarrow} \{q_1, q_2\}, \{q_3\} \stackrel{b}{\longrightarrow} \{q_3\};$
- $\begin{array}{c} \bullet \ \, \{q_4,\,q_9\} \stackrel{b}{\longrightarrow} \{q_4,\,q_6\}, \\ \{q_4,\,q_9\} \stackrel{\alpha}{\longrightarrow} \{q_5\}; \{q_4,\,q_9\} \sim m_3; \end{array}$
- $\{q_4, q_6\} \xrightarrow{b} \{q_4, q_6\},\$  $\{q_4, q_6\} \xrightarrow{a} \{q_5\}; \{q_4, q_6\} \sim m_4.$
- $\bullet \ \{q_5\} \xrightarrow{b} \{q_4, q_6\}, \{q_5\} \xrightarrow{a} \{q_5\}.$



Гомоморфизм над свободной полугруппой (множеством слов) полностью определяется значениями на буквах, поскольку по определению  $h(a_1 \circ a_2 \circ \cdots \circ a_n) = h(a_1) \circ h(a_2) \circ \cdots \circ h(a_n)$ . Здесь  $\circ$  —конкатенация.

#### Утверждение

Пусть L — регулярный язык над Σ. Тогда регулярны:

- язык  $\Sigma^* \setminus L$ ;
- для любого гомоморфизма h язык  $\{h(w) | w \in L\};$
- $\bullet$  для любого гомоморфизма h язык  $\{w \mid h(w) \in L\}$ .



#### Утверждение

Пусть L — регулярный язык над Σ. Тогда регулярны:

- язык  $\Sigma^* \setminus L$ ;
- для любого гомоморфизма h язык  $\{h(w) | w \in L\};$
- для любого гомоморфизма h язык  $\{w \mid h(w) \in L\}$ .

Рассмотрим DFA  $\mathscr{A}=\langle Q, \Sigma, q_0, F, \delta \rangle$ , распознающий L. Построим  $\mathscr{A}'=\langle Q, \Sigma, q_0, Q \setminus F, \delta \rangle$ . Тогда  $w \notin L \Leftrightarrow w \in L(\mathscr{A}')$ .



#### Утверждение

Пусть L — регулярный язык над Σ. Тогда регулярны:

- язык Σ\* \ L;
- для любого гомоморфизма h язык  $\{h(w) \, | \, w \in L\};$
- для любого гомоморфизма h язык  $\{w \mid h(w) \in L\}$ .

Рассмотрим регулярное выражение R такое, что L(R)=L. Заменим в нём все  $\alpha_i\in \Sigma$  на  $h(\alpha_i)$ . Полученное таким образом выражение R' также регулярно, причём L(R')=h(L).



#### Утверждение

Пусть L — регулярный язык над  $\Sigma$ . Тогда регулярны:

- язык  $\Sigma^* \setminus L$ ;
- для любого гомоморфизма h язык  $\{h(w) | w \in L\};$
- для любого гомоморфизма h язык  $\{w \mid h(w) \in L\}$ .

Рассмотрим DFA  $\mathscr{A}=\langle Q, \Sigma, q_0, F, \delta \rangle$ , распознающий L. Построим  $\mathscr{A}'=\langle Q, \Sigma, q_0, F, \delta' \rangle$  такой, что  $\langle q_i, \alpha, q_j \rangle \in \delta' \Leftrightarrow q_i \stackrel{h(\alpha)}{\longrightarrow} q_j$  в исходном автомате  $\mathscr{A}$ .



### Примеры

Рассмотрим язык  $L' = \{a^nb^m \mid n \neq m\}$ . Предположим, L' регулярен. Тогда  $a^*b^* \setminus L' = \{a^nb^n\}$  также регулярен, а мы знаем, что это не так.  $\bot$ 



### Примеры

Рассмотрим язык  $L' = \{a^nb^m \mid n \neq m\}$ . Предположим, L' регулярен. Тогда  $a^*b^* \setminus L' = \{a^nb^n\}$  также регулярен, а мы знаем, что это не так.  $\bot$ 

Рассмотрим язык  $L^f = \{(abaabb)^n b^n\}.$ 

Попытка доказать его нерегулярность леммой о накачке породит перебор по накачиваемым строкам  $(abaabb)^+$ ,  $(abaabb)^*a$ ,  $(abaabb)^*aba$ ,  $(abaabb)^*aba$ ,  $(abaabb)^*aba$ ,  $\dots$  Рассмотрим гомоморфизм h(a)=abaabb, h(b)=b.  $h^{-1}(L^f)=\{a^nb^n\}$ , который был бы регулярен, если бы  $L^f$  был регулярен.  $\bot$ 



## Эквивалентность слов в DFA

Пусть дан DFA A. Положим

$$w_1 \equiv_{\mathscr{A}} w_2 \Leftrightarrow \exists q_\mathfrak{i} (q_0 \xrightarrow{w_1} q_\mathfrak{i} \& q_0 \xrightarrow{w_2} q_\mathfrak{i}).$$

Если  $w_1 \equiv_{\mathscr{A}} w_2$ , тогда  $\forall z (w_1 z \in \mathsf{L}(\mathscr{A}) \Leftrightarrow w_2 z \in \mathsf{L}(\mathscr{A})).$ 



## Эквивалентность слов в DFA

Пусть дан DFA  $\mathscr{A}$ . Положим

$$w_1 \equiv_{\mathscr{A}} w_2 \Leftrightarrow \exists q_i (q_0 \xrightarrow{w_1} q_i \& q_0 \xrightarrow{w_2} q_i).$$

Если  $w_1 \equiv_{\mathscr{A}} w_2$ , тогда  $\forall z (w_1 z \in \mathsf{L}(\mathscr{A}) \Leftrightarrow w_2 z \in \mathsf{L}(\mathscr{A}))$ . Рассмотрим более общее отношение. Положим

 $w_1 \equiv_L w_2 \Leftrightarrow \forall z (w_1 z \in L \Leftrightarrow w_2 z \in L)$ . Это отношение разбивает L на классы эквивалентности.

#### Теорема Майхилла-Нероуда

Язык L регулярен тогда и только тогда, когда множество его классов эквивалентности по  $\equiv_{\mathbb{I}}$  конечно.



## Критерий регулярности языка

### Теорема Майхилла-Нероуда

Язык L регулярен тогда и только тогда, когда множество классов эквивалентности по  $\equiv_{\mathbb{I}}$  конечно.



## Критерий регулярности языка

#### Теорема Майхилла-Нероуда

Язык L регулярен тогда и только тогда, когда множество классов эквивалентности по  $\equiv_{\rm L}$  конечно.

 $\Rightarrow$ : Пусть L регулярен. Тогда он порождается некоторым DFA  $\mathscr A$  с конечным числом состояний N. Значит, множество  $\{q_i \mid q_0 \stackrel{w}{\longrightarrow} q_i\}$  конечно, а для каждых двух  $w_1$ ,  $w_2$  таких, что  $q_0 \stackrel{w_1}{\longrightarrow} q_i$  и  $q_0 \stackrel{w_2}{\longrightarrow} q_i$ , выполняется  $w_1 \equiv_L w_2$ .



## Критерий регулярности языка

#### Теорема Майхилла-Нероуда

Язык L регулярен тогда и только тогда, когда множество классов эквивалентности по  $\equiv_{\mathsf{L}}$  конечно.

 $\Leftarrow$ : Пусть все слова в  $\Sigma^*$  принадлежат N классам эквивалентности  $A_1, \ldots, A_n$  по  $\equiv_L$ . Построим по ним DFA  $\mathscr{A}$ , распознающий L. Классы  $A_i$  объявим состояниями.

- Начальным состоянием объявим класс эквивалентности  $A_0$  такой, что  $\varepsilon \in A_0$ .
- Конечными объявим такие  $A_i$ , что  $\forall w \in A_i (w \in L)$ .
- Если  $w \in A_i$ ,  $w \alpha_k \in A_j$ , тогда добавляем в  $\delta$  правило  $\langle A_i, \alpha_k, A_j \rangle$ .  $\forall w_1, w_2 \in A_i, w_1 \alpha_k$  и  $w_2 \alpha_k$  всегда принадлежат одному и тому же  $A_j$ .



## Минимизация DFA

- **П**остроим таблицу всех двухэлементных множеств  $\{q_i, q_i\}, q_i, q_i ∈ Q.$
- **②** Пометим все множества  $\{q_i, q_j\}$  такие, что одно из  $q_i, q_i$  из F, а второе нет.
- Пометим все множества  $\{q_i, q_j\}$  такие, что  $\exists \alpha(q_i \xrightarrow{\alpha} q_1' \& q_j \xrightarrow{\alpha} q_2' \& \{q_1', q_2'\}$  помеченная пара).
- Продолжаем шаг 3, пока не будет появляться новых помеченных пар.

Пары, оставшиеся непомеченными, можно объединить.





| $m_1$ |       |                  |                  |                |       |       |
|-------|-------|------------------|------------------|----------------|-------|-------|
| $m_2$ |       |                  |                  |                |       |       |
| $q_3$ |       |                  |                  |                |       |       |
| $m_3$ |       |                  |                  |                |       |       |
| $m_4$ |       |                  |                  |                |       |       |
| $q_5$ |       |                  |                  |                |       |       |
|       | $q_0$ | $\mathfrak{m}_1$ | $\mathfrak{m}_2$ | q <sub>3</sub> | $m_3$ | $m_4$ |





| $\overline{m_1}$ |                |          |          |                |          |                |
|------------------|----------------|----------|----------|----------------|----------|----------------|
| $m_2$            |                |          |          |                |          |                |
| q <sub>3</sub>   | <b>√</b>       | <b>√</b> | <b>√</b> |                |          |                |
| $m_3$            |                |          |          | <b>√</b>       |          |                |
| $m_4$            |                |          |          | <b>√</b>       |          |                |
| $q_5$            | <b>√</b>       | <b>√</b> | <b>√</b> |                | <b>√</b> | <b>√</b>       |
|                  | q <sub>0</sub> | $m_1$    | $m_2$    | q <sub>3</sub> | $m_3$    | m <sub>4</sub> |





| $\mathfrak{m}_1$ |                |                  |                  |                |          |                |
|------------------|----------------|------------------|------------------|----------------|----------|----------------|
| $m_2$            |                |                  |                  |                |          |                |
| q <sub>3</sub>   | <b>√</b>       | <b>√</b>         | <b>√</b>         |                |          |                |
| $m_3$            |                |                  |                  | <b>√</b>       |          |                |
| $m_4$            |                |                  |                  | <b>√</b>       |          |                |
| $q_5$            | <b>√</b>       | <b>√</b>         | <b>√</b>         |                | <b>√</b> | <b>√</b>       |
|                  | q <sub>0</sub> | $\mathfrak{m}_1$ | $\mathfrak{m}_2$ | q <sub>3</sub> | $m_3$    | m <sub>4</sub> |
| _                |                |                  |                  |                |          | <u> </u>       |





| $\mathfrak{m}_1$ | $\checkmark$   |          |          |                |          |                |
|------------------|----------------|----------|----------|----------------|----------|----------------|
| $\mathfrak{m}_2$ | $\checkmark$   |          |          |                |          |                |
| q <sub>3</sub>   | <b>√</b>       | <b>√</b> | <b>√</b> |                |          |                |
| $m_3$            |                |          |          | <b>√</b>       |          |                |
| $m_4$            |                |          |          | <b>√</b>       |          |                |
| q <sub>5</sub>   | <b>√</b>       | <b>√</b> | <b>√</b> |                | <b>√</b> | <b>√</b>       |
|                  | q <sub>0</sub> | $m_1$    | $m_2$    | q <sub>3</sub> | $m_3$    | m <sub>4</sub> |

$$q_0 \xrightarrow{\alpha} m_1, m_4 \xrightarrow{\alpha} q_5$$
 $m_1 \xrightarrow{\alpha} m_2, m_4 \xrightarrow{\alpha} q_5$ 

$$m_1 \xrightarrow{\alpha} m_2, m_3 \xrightarrow{\alpha} q$$
  
 $m_2 \xrightarrow{\alpha} m_2, m_4 \xrightarrow{\alpha} q$ 





| $m_1$ | <b>√</b> |          |          |                |          |          |
|-------|----------|----------|----------|----------------|----------|----------|
| $m_2$ | <b>√</b> |          |          |                |          |          |
|       | <b>√</b> | <b>√</b> | <b>√</b> |                |          |          |
| $m_3$ | <b>√</b> | <b>√</b> | <b>√</b> | <b>√</b>       |          |          |
| $m_4$ | <b>√</b> | <b>√</b> | <b>√</b> | <b>√</b>       |          |          |
| $q_5$ | <b>√</b> | <b>√</b> | <b>√</b> |                | <b>√</b> | <b>√</b> |
|       | $q_0$    | $m_1$    | $m_2$    | q <sub>3</sub> | $m_3$    | $m_4$    |

$$\{m_3, m_4\} \xrightarrow{\alpha} q_5 \qquad \{m_3, m_4\} \xrightarrow{b} m_4$$

$$q_3 \xrightarrow{\alpha} m_2, q_5 \xrightarrow{\alpha} m_4$$





| $m_2$          |              |                  |                  |                |          |                |
|----------------|--------------|------------------|------------------|----------------|----------|----------------|
|                | <b>√</b>     |                  |                  |                |          |                |
| q <sub>3</sub> | $\checkmark$ | <b>√</b>         | <b>√</b>         |                |          |                |
| m <sub>3</sub> | $\checkmark$ | <b>√</b>         | <b>√</b>         | <b>√</b>       |          |                |
| m <sub>4</sub> | <b>√</b>     | <b>√</b>         | <b>√</b>         | <b>√</b>       |          |                |
| $q_5$          | <b>√</b>     | <b>√</b>         | <b>√</b>         | <b>√</b>       | <b>√</b> | <b>√</b>       |
|                | $q_0$        | $\mathfrak{m}_1$ | $\mathfrak{m}_2$ | q <sub>3</sub> | $m_3$    | m <sub>4</sub> |

Можно объединить состояния  $m_1$  и  $m_2$  и состояния  $m_3$  и  $m_4$ .



| $m_1$            | <b>√</b>       |                  |                  |                |          |          |
|------------------|----------------|------------------|------------------|----------------|----------|----------|
| $m_2$            | <b>√</b>       |                  |                  |                |          |          |
| q <sub>3</sub>   | <b>√</b>       | <b>√</b>         | <b>√</b>         |                |          |          |
| m <sub>3</sub>   | <b>√</b>       | <b>√</b>         | <b>√</b>         | <b>√</b>       |          |          |
| m <sub>4</sub>   | <b>√</b>       | <b>√</b>         | <b>√</b>         | <b>√</b>       |          |          |
| $\overline{q_5}$ | <b>√</b>       | <b>√</b>         | <b>√</b>         | <b>√</b>       | <b>√</b> | <b>√</b> |
|                  | q <sub>0</sub> | $\mathfrak{m}_1$ | $\mathfrak{m}_2$ | q <sub>3</sub> | $m_3$    | $m_4$    |

Меньше чем пятью состояниями не обойтись. Рассмотрим слова  $\epsilon$ ,  $\alpha$ , b,  $\alpha b$ ,  $b \alpha$ . Каждые два из них различаются по  $\equiv_L$  при выборе одного из трёх z:  $\epsilon$ ,  $\alpha$  или b.



### Бисимуляция

Скажем, что состояния  $s_1$ ,  $s_2$  системы переходов  $\mathscr{A}$  находятся в отношении бисимуляции ( $s_1 \sim s_2$ ), если выполняются условия:

• 
$$\forall t_1, \alpha(s_1 \xrightarrow{\alpha} t_1 \Rightarrow \exists t_2(s_2 \xrightarrow{\alpha} t_2 \& t_1 \sim t_2));$$

$$\bullet \ \, \forall t_2 \text{, } \alpha(s_2 \stackrel{\alpha}{\longrightarrow} t_2 \Rightarrow \exists t_1(s_1 \stackrel{\alpha}{\longrightarrow} t_1 \And t_1 \sim t_2)).$$

Бисимуляция — более сильное свойство, чем эквивалентность!







## Связь М.- N. и производных

Пусть  $w^{-1}U$  — это производная U по w, т.е.  $\{v, | wv \in U\}$ . Тогда выполнено  $x \equiv_U y \Leftrightarrow x^{-1}U = y^{-1}U$ .

- Количество производных (как языков) регулярного языка конечно.
- Конструкция Брзозовки порождает минимальный DFA.



## Связь М.– N. и производных

Пусть  $w^{-1}U$  — это производная U по w, т.е.  $\{v, | wv \in U\}$ . Тогда выполнено  $x \equiv_U y \Leftrightarrow x^{-1}U = y^{-1}U$ .

- Количество производных (как языков) регулярного языка конечно.
- Конструкция Брзозовки порождает минимальный DFA.

Но проблема с правилами переписывания (АСІ):

- $(w_1|w_2)|w_3=w_1|(w_2|w_3)$
- $w_1 | w_2 = w_2 | w_1$
- $\bullet w | w = w$



## Применение теоремы М.- N.

#### Задача

Дан язык L. Показать, что он не регулярен, пользуясь теоремой Майхилла–Нероуда.

#### Стандартный подход

- Подобрать бесконечную последовательность префиксов  $w_1, \ldots, w_n, \ldots$
- **⑤** Доказать, что в таблице конкатенаций все строки различны (значит,  $\forall i, j \exists k(w_i z_k \in L \& w_i z_k \notin L)$ ).



## Диагональная конструкция

Рассмотрим язык  $L = \{a^nb^n\}$ . Положим  $w_i = a^i, z_i = b^i$ . Тогда таблица конкатенаций  $w_i, z_j$  будет выглядеть следующим образом. Здесь + — это то же, что « $\in$  L», — читаем как « $\notin$  L».

|             | $ z_1 = b $ | $z_2 = b^2$ | $z_3 = b^3$ | $\dots z_n = b^n \dots$ |
|-------------|-------------|-------------|-------------|-------------------------|
| $w_1 = a$   | +           | _           | _           | _                       |
| $w_2 = a^2$ | _           | +           | _           | _                       |
| $w_3 = a^3$ | -           | _           | +           | _                       |
|             |             |             |             |                         |
| $w^n = a^n$ | -           | _           | _           | +                       |
|             |             |             |             |                         |



## Доказательство минимальности

Так же можно обосновывать минимальность DFA. Рассмотрим минимальный автомат из примера выше. Его язык — слова в  $\{a, b\}^*$ , начинающиеся и заканчивающиеся одной и той же буквой. Построим таблицу классов эквивалентности по  $w_i \in \{\varepsilon, a, b, ab, ba\}$ .

|    | ε | a | b |
|----|---|---|---|
| ε  | + | + | + |
| a  | + | + | _ |
| b  | + | _ | + |
| ab | _ | + | _ |
| ba | _ | _ | + |
| ba | — | _ | + |

В этой таблице все строчки различны, значит, выбранные  $w_i$  действительно лежат в различных классах эквивалентности, и DFA, распознающий язык L, не может иметь меньше пяти состояний.

При доказательстве минимальности DFA достаточно подобрать  $[\log_2 n] + 1$  различающих суффиксов  $z_i$ , где n — число состояний автомата.



## О порождении новых алгоритмов

Пусть  $\mathscr{A}$  — NFA. Тогда  $\det(\text{reverse}(\det(\text{reverse}(\mathscr{A}))))$  — минимальный DFA, эквивалентный  $\mathscr{A}$ .

Многие алгоритмы для порождения малых (не минимальных) NFA являются комбинациями нескольких базовых операций.

- Обращение автомата
- Детерминизация
- Удаление ε-правил
- Минимизация
- Разметка



### Автомат Томпсона

- Единственное начальное состояние
- Единственное конечное состояние
- Не больше двух переходов из каждого состояния





## Несколько конструкций

- Автомат Глушкова: rmeps(Th(R));
- Автомат Антимирова: rmeps(deannote(minimize(rmeps(annote\_eps(Th(R)))));
- Автомат Илия-Ю: deannote(minimize(rmeps(annote(Th(R))))).