

Mileage

Age

Brand

"Condition"

Paint color

Start simple...

RMSE (test): \$10948

(Mean \$: 12190)

When you don't succeed, try, try again...

RMSE (test): \$9223

175000

-20000

0

20000

Actual Price (\$)

40000

Predicted Price (\$)

60000

80000

Condition and Type of Vehicle Model

RMSE (test): \$8886

Mileage Age	Condition	Туре	Paint color	Brand	
-------------	-----------	------	-------------	-------	--

100000

Let's look at some p-values...

```
2.345e+04
                        255.690
                                  91.705
                                          0.000
                                                  2.29e+04
                                                             2.39e+04
   const
           -229.1697
                                 -39.986
                                                             -217.936
                          5.731
                                          0.000
                                                  -240.403
              -0.0622
                          0.001
                                 -81.055
                                          0.000
                                                     -0.064
                                                                -0.061
mileage
excellent -1731.0408
                        120.371
                                 -14.381
                                          0.000
                                                 -1966.971
          -5632.5516
                        267.040 -21.093
                                          0.000
                                                 -6155.957
                                                            -5109.146
          -4492.2881
                        139.602
                                 -32.179
                                          0.000
                                                 -4765.911
                                                            -4218.665
   good
                        179.208
                                          0.000
                                                   939.810
like new
           1291.0620
                                   7.204
                                                             1642.314
                        558.725
                                                  9420.679
                                                             1.16e+04
           1.052e+04
                                  18.821
                                          0.000
    new
           1592.3041
                        138.560
                                                  1320.723
                                                             1863.885
    SUV
                                  11,492
                                          0.000
           1.129e+04
                       1531.501
                                   7.375
                                          0.000
                                                  8292.799
                                                             1.43e+04
             26.3157
                        388.332
                                                  -734.824
                                   0.068
                                          0.946
                                                              787.456
mini-van
```

```
('age', -0.009816733299688369),
('mileage', -2.070858355/851332e-06),
```

2	age	mileage
age	1.000000	0.294187
mileage	0.294187	1.000000

Let's look at some p-values...

const	2.345e+04	255.690	91.705	0.000	2.29e+04	2.39e+04
age	-229.1697	5.731	-39.986	0.000	-240.403	-217.936
mileage	-0.0622	0.001	-81.055	0.000	-0.064	-0.061
excellent	-1731.0408	120.371	-14.381	0.000	-1966.971	-1495.110
fair	-5632.5516	267.040	-21.093	0.000	-6155.957	-5109.146
good	-4492.2881	139.602	-32.179	0.000	-4765.911	-4218.665
like_new	1291.0620	179.208	7.204	0.000	939.810	1642.314
new	1.052e+04	558.725	18.821	0.000	9420.679	1.16e+04
SUV	1592.3041	138.560	11.492	0.000	1320.723	1863.885
bus	1.129e+04	1531.501	7.375	0.000	8292.799	1.43e+04
mini-van	26.3157	388.332	0.068	0.946	-734.824	787.456

Omnibus:	29693.414	Durbin-Watson:	1.431
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1395603.745
Skew:	3.231	Prob(JB):	0.00
Kurtosis:	31.583	Cond. No.	1.18e+16

Still lots of heteroskedasticity even after transforming it

Missing Signal.

Ok, we need to add some complexity

RMSE: \$8880

(Worse than the linear regression of order 2 with an RMSE of \$8042)

Next Steps

 Focus on one dataset with more features before doing regularisation

Then grid search across lambdas to find optimal regularisation

 Cross-validate models to make estimates of error more robust

Or, I could just go to Kelley's Blue Book

Valid for ZIP Code 95695 through 02/08/2018

