

# Global United Technology Services Co., Ltd.

Report No.: GTS201807000026F05

## **FCC REPORT**

**Applicant:** Quantum Creations LLC.

**Address of Applicant:** 15705 NW 13th Ave, Miami Gardens, Miami Beach, Florida

33169, United States

Manufacturer/Factory: MELE TECHNOLOGIES(SHENZHEN) CO.,LTD

3FW, Mele Building, No.28 Cuijing Road, Pingshan District, Address of

Shenzhen (518118) P.R.China Manufacturer/Factory:

**Equipment Under Test (EUT)** 

**Product Name:** Access3

Model No.: A-1164-AA3, A-1164-AA3-1, A-1164-AA3-2, A-1164-AA3-3,

A-1164-AA3-4, A-1164-AA3-5, A-1164-AA3-6, A-1164-AA3-7,

A-1164-AA3-8, A-1164-AA3-9, A-1164-AA3-10, A-1164-AA3-11, A-1164-AA3-12, A-1164-AA3-13, A-1164-AA3-14, A-1164-AA3-15, A-1164-AA3-16,

A-1164-AA3-17, A-1164-AA3-18

Trade Mark: **AZULLE** 

FCC ID: 2AFJI20171164

**Applicable standards:** FCC CFR Title 47 Part 15 Subpart C Section 15.407

Date of sample receipt: July 03, 2018

Date of Test: July 04-16, 2018

Date of report issued: July 16, 2018

PASS \* Test Result:

Authorized Signature:

Robinson Lo **Laboratory Manager** 

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



## 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | July 16, 2018 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

| Prepared By: | Bill. Yvan       | Date: | July 16, 2018 |
|--------------|------------------|-------|---------------|
|              | Project Engineer |       |               |
| Check By:    | Reviewer         | Date: | July 16, 2018 |



## 3 Contents

|   |                     |                                               | Page |
|---|---------------------|-----------------------------------------------|------|
| 1 | cov                 | ER PAGE                                       | 1    |
| 2 | VER                 | SION                                          | 2    |
| 3 | CON                 | ITENTS                                        | 3    |
|   |                     |                                               |      |
| 4 | IES                 | T SUMMARY                                     | 4    |
|   | 4.1                 | MEASUREMENT UNCERTAINTY                       | 4    |
| 5 | GEN                 | ERAL INFORMATION                              | 5    |
|   | 5.1                 | GENERAL DESCRIPTION OF EUT                    |      |
|   | 5.2                 | TEST MODE                                     |      |
|   | 5.3                 | DESCRIPTION OF SUPPORT UNITS                  |      |
|   | 5.4                 | TEST FACILITY                                 |      |
|   | 5.5                 | TEST LOCATION                                 |      |
|   | 5.6                 | ADDITIONAL INSTRUCTIONS                       | 8    |
| 6 | TES                 | T INSTRUMENTS LIST                            | 9    |
| 7 | TES                 | T RESULTS AND MEASUREMENT DATA                | 11   |
|   | 7.1                 | ANTENNA REQUIREMENT                           |      |
|   | 7.2                 | CONDUCTED EMISSIONS                           |      |
|   | 7.3                 | CONDUCTED PEAK OUTPUT POWER                   |      |
|   | 7.4                 | CHANNEL BANDWIDTH                             |      |
|   | 7.5                 | POWER SPECTRAL DENSITY                        |      |
|   | 7.6                 | BAND EDGES                                    |      |
|   | 7.6.1<br><b>7.7</b> |                                               |      |
|   |                     | Spurious Emission  1 Radiated Emission Method |      |
|   | 7.7.1<br><b>7.8</b> | FREQUENCY STABILITY                           |      |
|   |                     |                                               |      |
| 8 | IES                 | T SETUP PHOTO                                 | 55   |
| 9 | FUT                 | CONSTRUCTIONAL DETAILS                        | 56   |



## **Test Summary**

| Test Item                        | Section in CFR 47          | Result |
|----------------------------------|----------------------------|--------|
| Antenna requirement              | 15.203                     | Pass   |
| AC Power Line Conducted Emission | 15.207                     | Pass   |
| Conducted Peak Output Power      | 15.407(a)(3)               | Pass   |
| Channel Bandwidth                | 15.407(e)                  | Pass   |
| Power Spectral Density           | 15.407(a)(3)               | Pass   |
| Band Edge                        | 15.407(b)(4)               | Pass   |
| Spurious Emission                | 15.205/15.209/15.407(b)(4) | Pass   |
| Frequency Stability              | 15.407(g)                  | Pass   |

Remark: Test according to ANSI C63.10:2013.

Pass: The EUT complies with the essential requirements in the standard.

## 4.1 Measurement Uncertainty

| Test Item                        | Frequency Range                                                                                       | Measurement Uncertainty | Notes |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|-------|--|--|--|
| Radiated Emission                | 9kHz ~ 30MHz                                                                                          | ± 4.34dB                | (1)   |  |  |  |
| Radiated Emission                | 30MHz ~ 1000MHz                                                                                       | ± 4.24dB                | (1)   |  |  |  |
| Radiated Emission                | 1GHz ~ 40GHz                                                                                          | ± 4.68dB                | (1)   |  |  |  |
| AC Power Line Conducted Emission | 0.15MHz ~ 30MHz                                                                                       | ± 3.45dB                | (1)   |  |  |  |
| Note (1): The measurement u      | Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%. |                         |       |  |  |  |



## **5** General Information

## 5.1 General Description of EUT

| Product Name:          | Access3                                                                                                                                      |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:             | A-1164-AA3, A-1164-AA3-1, A-1164-AA3-2, A-1164-AA3-3,                                                                                        |
|                        | A-1164-AA3-4, A-1164-AA3-5, A-1164-AA3-6, A-1164-AA3-7,                                                                                      |
|                        | A-1164-AA3-8, A-1164-AA3-9, A-1164-AA3-10, A-1164-AA3-11,                                                                                    |
|                        | A-1164-AA3-12, A-1164-AA3-13, A-1164-AA3-14,                                                                                                 |
|                        | A-1164-AA3-15, A-1164-AA3-16, A-1164-AA3-17,                                                                                                 |
|                        | A-1164-AA3-18                                                                                                                                |
| Test Model No:         | A-1164-AA3                                                                                                                                   |
|                        | are identical in the same PCB layout, interior structure and electrical ould be the CPU, RAM, storage and/or operating system for commercial |
| Serial No.:            | 3305120784137                                                                                                                                |
| Test sample(s) ID:     | GTS201807000026-1                                                                                                                            |
| Sample(s) Status       | Engineer sample                                                                                                                              |
| Hardware version:      | PCHD27-APL3-272-V1.10                                                                                                                        |
| Software version:      | win10                                                                                                                                        |
| Operation Frequency:   | 802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 5745MHz ~ 5825MHz                                                                           |
|                        | 802.11n(HT40)/ 802.11ac(HT40) @ 5.8G Band: 5755MHz ~ 5795MHz                                                                                 |
|                        | 802.11ac(HT80): 5775MHz                                                                                                                      |
| Channel numbers:       | 802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 5                                                                                           |
|                        | 802.11n(HT40)/ 802.11ac(HT40) @ 5.8G Band: 2                                                                                                 |
|                        | 802.11ac(HT80): 1                                                                                                                            |
| Channel bandwidth:     | 802.11a/802.11n(HT20)/802.11ac(HT20) : 20MHz                                                                                                 |
|                        | 802.11n(HT40)/802.11ac(HT40) : 40MHz                                                                                                         |
| Modulation technology: | 802.11ac(HT80): 80MHz<br>802.11a/802.11n(H20)/802.11n(H40)/802.11ac(HT20)/802.11ac(HT40)                                                     |
|                        | /802.11ac(HT80):                                                                                                                             |
| A . ( T                | Orthogonal Frequency Division Multiplexing (OFDM)                                                                                            |
| Antenna Type:          | ANT 1: Integral Antenna                                                                                                                      |
|                        | ANT 2: FPCB Antenna                                                                                                                          |
| Antenna gain:          | ANT 1: 3.7dBi                                                                                                                                |
| <br>                   | ANT 2: 0.5dBi                                                                                                                                |
| Power supply:          | SWITCHING ADAPTER:                                                                                                                           |
|                        | Model No.:FJ-SW0503000N                                                                                                                      |
|                        | Input: AC 100~240V~50/60Hz 0.6A Max                                                                                                          |
|                        | Output: DC 5V 3A                                                                                                                             |



|                                                                         | Operation Frequency each of channel @ 5.8G Band |     |         |     |         |     |           |  |
|-------------------------------------------------------------------------|-------------------------------------------------|-----|---------|-----|---------|-----|-----------|--|
| Channel Frequency Channel Frequency Channel Frequency Channel Frequency |                                                 |     |         |     |         |     | Frequency |  |
| 149                                                                     | 5745MHz                                         | 151 | 5755MHz | 153 | 5765MHz | 155 | 5775MHz   |  |
| 157                                                                     | 5785MHz                                         | 159 | 5795MHz | 161 | 5805MHz | 165 | 5825MHz   |  |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| onamio coo bolow. |                                            |                                 |                |  |  |
|-------------------|--------------------------------------------|---------------------------------|----------------|--|--|
|                   |                                            | Frequency (MHz)                 |                |  |  |
|                   |                                            | 5.8G Band                       |                |  |  |
| Test channel      | 802.11a<br>802.11n(HT20)<br>802.11ac(HT20) | 802.11n(HT40)<br>802.11ac(HT40) | 802.11ac(HT80) |  |  |
| Lowest channel    | 5745                                       | 5755                            |                |  |  |
| Middle channel    | 5785                                       |                                 | 5775           |  |  |
| Highest channel   | 5825                                       | 5795                            |                |  |  |



#### 5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, the duty cycle>98%, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode           | Data rate |
|----------------|-----------|
| 802.11a        | 6Mbps     |
| 802.11n(HT20)  | 6.5Mbps   |
| 802.11n(HT40)  | 13Mbps    |
| 802.11ac(HT20) | 6.5Mbps   |
| 802.11ac(HT40) | 13.5Mbps  |
| 802.11ac(HT80) | 29.3Mbps  |

#### 5.3 Description of Support Units

None.

### 5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

#### • Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

#### 5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960



#### 5.6 Additional Instructions

**EUT Fixed Frequency Settings:** 

| Power level setup | Power level setup                      |                         |                    |  |  |  |  |
|-------------------|----------------------------------------|-------------------------|--------------------|--|--|--|--|
| Support Units     | Description                            | Manufacturer            | Model              |  |  |  |  |
|                   | Wideband Radio<br>Communication Tester | Rohde & Schwarz         | CMW 500            |  |  |  |  |
| Mode              | Channel                                | Channel Frequency (MHz) |                    |  |  |  |  |
| OFDM              | CH149                                  | 5745                    |                    |  |  |  |  |
|                   | CH151                                  | 5755                    |                    |  |  |  |  |
|                   | CH155                                  | 5775                    | TX level : default |  |  |  |  |
|                   | CH157                                  | 5785                    | TA level . delault |  |  |  |  |
|                   | CH159                                  | 5795                    |                    |  |  |  |  |
|                   | CH165                                  | 5825                    |                    |  |  |  |  |





## 6 Test Instruments list

| Radi | Radiated Emission:                     |                                |                             |                  |                        |                            |  |  |
|------|----------------------------------------|--------------------------------|-----------------------------|------------------|------------------------|----------------------------|--|--|
| Item | Test Equipment                         | Manufacturer                   | Model No.                   | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber           | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H)       | GTS250           | July. 03 2015          | July. 02 2020              |  |  |
| 2    | Control Room                           | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)       | GTS251           | N/A                    | N/A                        |  |  |
| 3    | EMI Test Receiver                      | Rohde & Schwarz                | ESU26                       | GTS203           | June. 27 2018          | June. 26 2019              |  |  |
| 4    | BiConiLog Antenna                      | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163                    | GTS214           | June. 27 2018          | June. 26 2019              |  |  |
| 5    | Double -ridged waveguide horn          | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D                 | GTS208           | June. 27 2018          | June. 26 2019              |  |  |
| 6    | Horn Antenna                           | ETS-LINDGREN                   | 3160                        | GTS217           | June. 27 2018          | June. 26 2019              |  |  |
| 7    | EMI Test Software                      | AUDIX                          | E3                          | N/A              | N/A                    | N/A                        |  |  |
| 8    | Coaxial Cable                          | GTS                            | N/A                         | GTS213           | June. 27 2018          | June. 26 2019              |  |  |
| 9    | Coaxial Cable                          | GTS                            | N/A                         | GTS211           | June. 27 2018          | June. 26 2019              |  |  |
| 10   | Coaxial cable                          | GTS                            | N/A                         | GTS210           | June. 27 2018          | June. 26 2019              |  |  |
| 11   | Coaxial Cable                          | GTS                            | N/A                         | GTS212           | June. 27 2018          | June. 26 2019              |  |  |
| 12   | Amplifier(100kHz-3GHz)                 | HP                             | 8347A                       | GTS204           | June. 27 2018          | June. 26 2019              |  |  |
| 13   | Amplifier(2GHz-20GHz)                  | HP                             | 84722A                      | GTS206           | June. 27 2018          | June. 26 2019              |  |  |
| 14   | Amplifier (18-26GHz)                   | Rohde & Schwarz                | AFS33-18002<br>650-30-8P-44 | GTS218           | June. 27 2018          | June. 26 2019              |  |  |
| 15   | Band filter                            | Amindeon                       | 82346                       | GTS219           | June. 27 2018          | June. 26 2019              |  |  |
| 16   | Power Meter                            | Anritsu                        | ML2495A                     | GTS540           | June. 27 2018          | June. 26 2019              |  |  |
| 17   | Power Sensor                           | Anritsu                        | MA2411B                     | GTS541           | June. 27 2018          | June. 26 2019              |  |  |
| 18   | Wideband Radio<br>Communication Tester | Rohde & Schwarz                | CMW500                      | GTS575           | June. 27 2018          | June. 26 2019              |  |  |
| 19   | Splitter                               | Agilent                        | 11636B                      | GTS237           | June. 27 2018          | June. 26 2019              |  |  |
| 20   | Loop Antenna                           | ZHINAN                         | ZN30900A                    | GTS534           | June. 27 2018          | June. 26 2019              |  |  |



| Conduc | Conducted Emission          |                             |                      |                  |                        |                            |  |  |
|--------|-----------------------------|-----------------------------|----------------------|------------------|------------------------|----------------------------|--|--|
| Item   | Test Equipment              | Manufacturer                | Model No.            | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1      | Shielding Room              | ZhongYu Electron            | 7.3(L)x3.1(W)x2.9(H) | GTS252           | May.16 2014            | May.15 2019                |  |  |
| 2      | EMI Test Receiver           | R&S                         | ESCI 7               | GTS552           | June. 27 2018          | June. 26 2019              |  |  |
| 3      | Coaxial Switch              | ANRITSU CORP                | MP59B                | GTS225           | June. 27 2018          | June. 26 2019              |  |  |
| 4      | Artificial Mains<br>Network | SCHWARZBECK<br>MESS         | NSLK8127             | GTS226           | June. 27 2018          | June. 26 2019              |  |  |
| 5      | Coaxial Cable               | GTS                         | N/A                  | GTS227           | N/A                    | N/A                        |  |  |
| 6      | EMI Test Software           | AUDIX                       | E3                   | N/A              | N/A                    | N/A                        |  |  |
| 7      | Thermo meter                | KTJ                         | TA328                | GTS233           | June. 27 2018          | June. 26 2019              |  |  |
| 8      | Absorbing clamp             | Elektronik-<br>Feinmechanik | MDS21                | GTS229           | June. 27 2018          | June. 26 2019              |  |  |

| Conc | Conducted:                                           |              |                  |            |                        |                            |  |  |
|------|------------------------------------------------------|--------------|------------------|------------|------------------------|----------------------------|--|--|
| Item | Test Equipment                                       | Manufacturer | Model No.        | Serial No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | MXA Signal Analyzer                                  | Agilent      | N9020A           | GTS566     | June. 27 2018          | June. 26 2019              |  |  |
| 2    | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | June. 27 2018          | June. 26 2019              |  |  |
| 3    | Spectrum Analyzer                                    | Agilent      | E4440A           | GTS533     | June. 27 2018          | June. 26 2019              |  |  |
| 4    | MXG vector Signal<br>Generator                       | Agilent      | N5182A           | GTS567     | June. 27 2018          | June. 26 2019              |  |  |
| 5    | ESG Analog Signal<br>Generator                       | Agilent      | E4428C           | GTS568     | June. 27 2018          | June. 26 2019              |  |  |
| 6    | USB RF Power Sensor                                  | DARE         | RPR3006W         | GTS569     | June. 27 2018          | June. 26 2019              |  |  |
| 7    | RF Switch Box                                        | Shongyi      | RFSW3003328      | GTS571     | June. 27 2018          | June. 26 2019              |  |  |
| 8    | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | June. 27 2018          | June. 26 2019              |  |  |
| 9    | Programmable Constant<br>Temp & Humi Test<br>Chamber | WEWON        | WHTH-150L-40-880 | GTS572     | June. 27 2018          | June. 26 2019              |  |  |

| General used equipment: |                                    |              |           |                         |               |                            |  |
|-------------------------|------------------------------------|--------------|-----------|-------------------------|---------------|----------------------------|--|
| Item                    | Test Equipment                     | Manufacturer | Model No. | Model No. Inventory No. |               | Cal.Due date<br>(mm-dd-yy) |  |
| 1                       | Humidity/ Temperature<br>Indicator | KTJ TA328    |           | GTS243                  | June. 27 2018 | June. 26 2019              |  |
| 2                       | Barometer                          | ChangChun    | DYM3      | GTS255                  | June. 27 2018 | June. 26 2019              |  |



#### 7 Test results and Measurement Data

### 7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### **E.U.T Antenna:**

The antenna 1 is Integral antenna. The best case gain of the antenna is 3.7dBi. The antenna 2 is FPCB antenna. The best case gain of the antenna is 0.5dBi. Directional Gain Calculations is below:

The Directional Gain = GANT + 10log(2) dBi = 3.7 + 3.01 dBi = 6.71dBi.







## 7.2 Conducted Emissions

| Test Method:  Test Frequency Range:  Class   Severity:  Receiver setup:  Class B  Receiver setup:  Frequency range (MHz)  Class B  Class B  Receiver setup:  Class B  Reference Plane  Class B  Class Class B  Class Cl | 46*<br>6                                                                                                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Class / Severity:   Class B   Receiver setup:   RBW=9KHz, VBW=30KHz, Sweep time=auto   Limit (dBuV)   Quasi-peak   Average     | 46*<br>6                                                                                                                                                                                              |  |  |  |
| Receiver setup:   RBW=9KHz, VBW=30KHz, Sweep time=auto   Limit:   Limit (dBuV)   Quasi-peak   Average (MHz)   Quasi-peak   Q   | 46*<br>6                                                                                                                                                                                              |  |  |  |
| Limit:   Limit (dBuV)   Quasi-peak   Average   | 46*<br>6                                                                                                                                                                                              |  |  |  |
| Prequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46*<br>6                                                                                                                                                                                              |  |  |  |
| 0.15-0.5   66 to 56*   56 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46*<br>6                                                                                                                                                                                              |  |  |  |
| 0.5-5   56   46     5-30   60   50     * Decreases with the logarithm of the frequency.    Reference Plane   LISN     40cm   80cm   LISN     40cm   80cm   LISN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                     |  |  |  |
| Test setup:    Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                       |  |  |  |
| * Decreases with the logarithm of the frequency.  Test setup:  Reference Plane  LISN  40cm  Bocm  LISN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                     |  |  |  |
| Test setup:  Reference Plane  LISN 40cm 80cm LISN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                       |  |  |  |
| LISN 40cm 80cm LISN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |  |  |  |
| 40cm 80cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                       |  |  |  |
| Remark: E.U.T  Remark: E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |  |  |  |
| line impedance stabilization network (L.I.S.N.). This provides 50ohm/50uH coupling impedance for the measuring equipmed.  2. The peripheral devices are also connected to the main power LISN that provides a 50ohm/50uH coupling impedance with termination. (Please refer to the block diagram of the test set photographs).  3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relationship.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed |  |  |  |
| Test Instruments: Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                       |  |  |  |
| Test mode: Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |  |  |  |
| Test results: Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                       |  |  |  |



#### Measurement data

Line:



| Freq<br>MHz | Reading<br>level<br>dBuV | LISN/ISN<br>factor<br>dB/m | Cable<br>loss<br>dB | Level<br>dBuV | Limit<br>level<br>dBuV | Over<br>limit<br>dB | Remark  |
|-------------|--------------------------|----------------------------|---------------------|---------------|------------------------|---------------------|---------|
| 0.15        | 43.33                    | 0.40                       | 0.07                | 43.80         | 66.00                  | -22.20              | QP      |
| 0.15        | 23.53                    | 0.40                       | 0.07                | 24.00         | 56.00                  | -32.00              | Average |
| 0.17        | 41.32                    | 0.40                       | 0.09                | 41.81         | 64.94                  | -23.13              | QP      |
| 0.17        | 23.93                    | 0.40                       | 0.09                | 24.42         | 54.94                  | -30.52              | Average |
| 0.22        | 37.18                    | 0.40                       | 0.11                | 37.69         | 62.96                  | -25.27              | QP      |
| 0.22        | 22.02                    | 0.40                       | 0.11                | 22.53         | 52.96                  | -30.43              | Average |
| 0.52        | 35.53                    | 0.31                       | 0.11                | 35.95         | 56.00                  | -20.05              | QP      |
| 0.52        | 28.92                    | 0.31                       | 0.11                | 29.34         | 46.00                  | -16.66              | Average |
| 0.63        | 32.41                    | 0.28                       | 0.12                | 32.81         | 56.00                  | -23.19              | QP      |
| 0.63        | 23.60                    | 0.28                       | 0.12                | 24.00         | 46.00                  | -22.00              | Average |
| 12.12       | 34.20                    | 0.20                       | 0.20                | 34.60         | 60.00                  | -25.40              | QP      |
| 12.12       | 27.94                    | 0.20                       | 0.20                | 28.34         | 50.00                  | -21.66              | Average |



#### Neutral:



10.45

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

0.20

3. Final Level =Receiver Read level + LISN Factor + Cable Loss

29.00

4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

29.40

50.00

-20.60

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Average



## 7.3 Conducted Peak Output Power

| Test Requirement: | FCC Part15 E Section 15.407(a)(3)                               |
|-------------------|-----------------------------------------------------------------|
| Test Method:      | KDB 789033 D02 General U-NII Test Procedures New Rules v02r01   |
| Limit:            | 30dBm                                                           |
| Test setup:       | Power Meter  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 6.0 for details                                |
| Test mode:        | Refer to section 5.2 for details                                |
| Test results:     | Pass                                                            |

#### **Measurement Data**

#### ANT: 1

| Test CH  | Peak Output Power (dBm) | Limit(dBm) | Result |  |
|----------|-------------------------|------------|--------|--|
| 1631 011 | 802.11a (SISO)          | Limit(dDm) |        |  |
| Lowest   | 6.97                    |            |        |  |
| Middle   | 5.98                    | 30         | Pass   |  |
| Highest  | 5.86                    |            |        |  |

#### ANT: 2

| Test CH     | Peak Output Power (dBm) | Limit(dBm)  | Result |  |
|-------------|-------------------------|-------------|--------|--|
| Test Off    | 802.11a (SISO)          | Limit(abin) |        |  |
| Lowest 7.02 |                         |             |        |  |
| Middle      | 5.88                    | 30          | Pass   |  |
| Highest     | 5.77                    |             |        |  |



#### ANT1 + ANT2:

| Test<br>mode       | Channel      | Read Level (dBm) |      | Read Level<br>(mW) | Total Peak<br>Output Power<br>(mW) | Total Peak<br>Output Power<br>(dBm) | Limit<br>(dBm) | Result |
|--------------------|--------------|------------------|------|--------------------|------------------------------------|-------------------------------------|----------------|--------|
|                    | Lowest       | ANT1             | 5.13 | 3.26               | 6.44                               | 8.09                                |                |        |
|                    | Lowest       | ANT2             | 5.02 | 3.18               | 0.44                               | 6.09                                |                |        |
| 802.11n<br>(HT20)  | Middle       | ANT1             | 4.82 | 3.03               | 6.36                               | 8.03                                |                |        |
| (MIMO)             | Middle       | ANT2             | 5.22 | 3.33               | 0.30                               | 6.03                                |                |        |
| ` ′                | Lighoot      | ANT1             | 6.62 | 4.59               | 8.88                               | 9.48                                |                |        |
|                    | Highest      | ANT2             | 6.32 | 4.29               | 0.00                               | 9.40                                |                | Pass   |
|                    | Lowest       | ANT1             | 5.97 | 3.95               | 7.90                               | 9 09                                |                |        |
|                    | Lowest       | ANT2             | 5.97 | 3.95               | 7.90                               | 8.98                                | 30             |        |
| 802.11a<br>c(HT20) | Middle       | ANT1             | 6.55 | 4.52               | 8.29                               | 9.18                                |                |        |
| (MIMO)             |              | ANT2             | 5.76 | 3.77               | 0.29                               |                                     |                |        |
| (                  | Highest      | ANT1             | 4.31 | 2.69               | 5.41                               | 7.33                                |                |        |
|                    |              | ANT2             | 4.33 | 2.71               | 5.41                               |                                     |                |        |
|                    | Lowest       | ANT1             | 5.67 | 3.69               | 6.82                               | 8.34                                |                |        |
| 802.11n<br>(HT40)  | rowest       | ANT2             | 4.96 | 3.13               | ხ.8∠                               |                                     |                |        |
| (MIMO)             | Highest      | ANT1             | 5.24 | 3.34               | 7.62                               | 8.82                                |                |        |
| ` ,                | Highest      | ANT2             | 6.31 | 4.28               | 7.02                               | 0.02                                |                |        |
|                    | Lowest       | ANT1             | 5.91 | 3.90               | 7.79                               | 8.91                                |                |        |
| 802.11a<br>c(HT40) | FOMESI       | ANT2             | 5.90 | 3.89               | 1.13                               | 0.91                                | -              |        |
| (MIMO)             | Highest      | ANT1             | 5.81 | 3.81               | 8.62                               | 9.35                                |                |        |
| ,                  | riigiiest    | ANT2             | 6.82 | 4.81               | 0.02                               | ყ.ან                                |                |        |
| 802.11a            | NA: al all a | ANT1             | 4.53 | 2.84               | 0.00                               | 2.24                                |                |        |
| c(HT80)<br>(MIMO)  | Middle       | ANT2             | 5.47 | 3.52               | 6.36                               | 8.04                                |                |        |



#### 7.4 Channel Bandwidth

| Test Requirement: | FCC Part15 E Section 15.407(e)                                        |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|
| Test Method:      | KDB 789033 D02 General U-NII Test Procedures New Rules v02r01         |  |  |  |
| Limit:            | >500KHz                                                               |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                      |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                      |  |  |  |
| Test results:     | Pass                                                                  |  |  |  |

#### **Measurement Data**

### Antenna 1:

|            | 5.8G Band |                   |                    |                   |                    |                    |                |        |
|------------|-----------|-------------------|--------------------|-------------------|--------------------|--------------------|----------------|--------|
| Toot       |           | l imit            |                    |                   |                    |                    |                |        |
| Test<br>CH | 802.11a   | 802.11n(H<br>T20) | 802.11ac(<br>HT20) | 802.11n(H<br>T40) | 802.11ac(<br>HT40) | 802.11ac(<br>HT80) | Limit<br>(KHz) | Result |
| Lowest     | 15.130    | 13.926            | 16.089             | 35.134            | 28.840             | N/A                |                |        |
| Middle     | 13.860    | 13.908            | 14.156             | N/A               | N/A                | 72.650             | >500           | Pass   |
| Highest    | 15.560    | 15.156            | 17.198             | 32.319            | 35.060             | N/A                |                |        |

#### Antenna 2:

|            | / titolina 2.           |                   |                    |                   |                    |                    |                |        |
|------------|-------------------------|-------------------|--------------------|-------------------|--------------------|--------------------|----------------|--------|
|            | 5.8G Band               |                   |                    |                   |                    |                    |                |        |
| Toot       | Channel Bandwidth (MHz) |                   |                    |                   |                    |                    |                |        |
| Test<br>CH | 802.11a                 | 802.11n(H<br>T20) | 802.11ac(<br>HT20) | 802.11n(H<br>T40) | 802.11ac(<br>HT40) | 802.11ac(<br>HT80) | Limit<br>(KHz) | Result |
| Lowest     | 15.079                  | 13.868            | 14.731             | 35.081            | 35.176             | N/A                |                |        |
| Middle     | 13.776                  | 13.249            | 15.117             | N/A               | N/A                | 63.902             | >500           | Pass   |
| Highest    | 15.121                  | 15.032            | 15.266             | 33.850            | 33.914             | N/A                |                |        |



#### Test plot as follows:

Test mode: 802.11a

#### Antenna 1:



#### Lowest channel



#### Middle channel



Highest channel

#### Antenna 2:



#### Lowest channel





Highest channel



Test mode: 802.11n(HT20) @ 5.8G Band

#### Antenna 1: Antenna 2:





#### Lowest channel



Lowest channel





Middle channel



Highest channel



Meas Setup Avg Number

Test mode: 802.11ac(HT20)

#### Antenna 1: Antenna 2:





#### Lowest channel



Lowest channel





Middle channel



Highest channel



Test mode: 802.11n(HT40) @ 5.8G Band

#### Antenna 1: Antenna 2:



## Lowest channel



Highest channel



#### Lowest channel



Highest channel



Test mode: 802.11ac(HT40)

Copyright 2000-2012 Agilent Technologies

## Antenna 1:

#### Meas Setup Avg Number Ch Freq 5.755 GHz **Trig** Free Occupied Bandwidth Avg Mode Repeat Ехр Atten 30 dB Max Hold Occ BW % Pwr 0BW Span 60,0000000 MHz Span 60 MHz \*VBW 300 kHz Sweep 5.76 ms (601 pts **x dB** -6.00 dB Occ BW % Pwr x dB Occupied Bandwidth 36.2478 MHz Optimize Ref Level Transmit Freq Error x dB Bandwidth -31.141 kHz 28.840 MHz

#### Antenna 2:



#### Lowest channel



Lowest channel



Highest channel

Highest channel



Test mode: 802.11ac(HT80)

## Antenna 1: Antenna 2:





Middle channel Middle channel



## 7.5 Power Spectral Density

| Test Requirement: | FCC Part15 E Section 15.407(a)(3)                             |  |  |  |
|-------------------|---------------------------------------------------------------|--|--|--|
| Test Method:      | KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 |  |  |  |
| Limit:            | 30dBm                                                         |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table                 |  |  |  |
|                   | Ground Reference Plane                                        |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                              |  |  |  |
| Test mode:        | Refer to section 5.2 for details                              |  |  |  |
| Test results:     | Pass                                                          |  |  |  |

#### **Measurement Data**

| 5.8G Band |                              |          |             |        |  |  |  |
|-----------|------------------------------|----------|-------------|--------|--|--|--|
| Took OU   | Power Spectral Density (dBm) |          |             |        |  |  |  |
| Test CH   | 802.11a(SI                   | SO)(dBm) | Limit (dBm) | Result |  |  |  |
| Lowest    | ANT 1                        | 0.90     |             |        |  |  |  |
| Lowest    | ANT 2                        | 1.30     |             |        |  |  |  |
| Middle    | ANT 1                        | 0.81     | 20.00       | Door   |  |  |  |
| iviidale  | ANT 2                        | 1.23     | 30.00       | Pass   |  |  |  |
| Highest   | ANT 1                        | 0.43     |             |        |  |  |  |
|           | ANT 2                        | 0.45     |             |        |  |  |  |



#### Antenna 1+Antenna 2:

| FOC D. I           |           |                  |       |                    |                 |             |        |  |  |  |
|--------------------|-----------|------------------|-------|--------------------|-----------------|-------------|--------|--|--|--|
| 5.8G Band          |           |                  |       |                    |                 |             |        |  |  |  |
| Test<br>mode       | Channel   | Read Level (dBm) |       | Read Level<br>(mW) | Total PSD (dBm) | Limit (dBm) | Result |  |  |  |
|                    | Lowest    | ANT1             | -0.19 | 0.96               | 2.96            |             |        |  |  |  |
|                    | LOWEST    | ANT2             | -0.09 | 1.02               | 2.90            |             |        |  |  |  |
| 802.11n<br>(HT20)  | Middle    | ANT1             | 0.18  | 1.04               | 2.90            |             |        |  |  |  |
| (MIMO)             | ivildale  | ANT2             | -0.42 | 0.91               | 2.90            |             |        |  |  |  |
| ,                  | Highest   | ANT1             | -0.31 | 0.93               | 2.75            |             | Pass   |  |  |  |
|                    | riigiiest | ANT2             | -0.49 | 0.95               | 2.13            |             |        |  |  |  |
|                    | Lowest    | ANT1             | -0.21 | 0.95               | 2.65            |             |        |  |  |  |
|                    | Lowest    | ANT2             | -0.51 | 0.89               | 2.03            | 30.00       |        |  |  |  |
| 802.11a<br>c(HT20) | Middle    | ANT1             | 0.08  | 1.02               | 2.93            |             |        |  |  |  |
| (MIMO)             |           | ANT2             | -0.25 | 0.94               | 2.93            |             |        |  |  |  |
|                    | Highest   | ANT1             | -0.59 | 0.87               | 2.58            |             |        |  |  |  |
|                    |           | ANT2             | -0.27 | 0.94               | 2.50            |             |        |  |  |  |
|                    | Lowest    | ANT1             | -3.39 | 0.46               | -0.11           |             |        |  |  |  |
| 802.11n<br>(HT40)  |           | ANT2             | -2.86 | 0.52               | -0.11           |             |        |  |  |  |
| (MIMO)             | Highest   | ANT1             | -3.38 | 0.46               | -0.21           |             |        |  |  |  |
| ` ′                | nignesi   | ANT2             | -3.07 | 0.49               | -0.21           |             |        |  |  |  |
|                    | Lowest    | ANT1             | -3.06 | 0.49               | -0.05           |             |        |  |  |  |
| 802.11a<br>c(HT40) | Lowest    | ANT2             | -3.07 | 0.49               | -0.05           |             |        |  |  |  |
| (MIMO)             | Highest   | ANT1             | -2.79 | 0.53               | 0.14            |             |        |  |  |  |
| ` ,                | riigilest | ANT2             | -2.95 | 0.51               | 0.14            |             |        |  |  |  |
| 802.11a            | N 41 1 11 | ANT1             | -7.43 | 0.18               | 4.05            |             |        |  |  |  |
| c(HT80)<br>(MIMO)  | Middle    | ANT2             | -6.72 | 0.21               | -4.05           |             |        |  |  |  |



### Test plot as follows:

Test mode: 802.11a

## Antenna 1:



## Antenna 2:



#### Lowest channel



Lowest channel



#### Middle channel



Middle channel



Highest channel

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Highest channel



Test mode: 802.11n(HT20) @ 5.8G Band

#### Antenna 1: Antenna 2:





#### Lowest channel

\* Agilent R T Peak Search 85 70 GHz 0.18 dBm Atten 30 dB Next Peak 20 dBm Next Pk Right Next Pk Left Min Search Pk-Pk Search Mkr → CF More 1 of 2 Center 5.785 00 GHz #Res BW 510 kHz Span 30 MHz Sweep 1 ms (601 pts) #VBW 1.5 MHz Converget 2000-2012 Agilent Technologies

Lowest channel





Middle channel



Highest channel Highest channel



Test mode: 802.11ac(HT20)

## Antenna 1:

#### Antenna 2:





#### Lowest channel

Lowest channel





Middle channel





Highest channel

Highest channel



Test mode: 802.11n(HT40) @ 5.8G Band

#### Antenna 1: Antenna 2:





#### Lowest channel



Lowest channel



Highest channel

Highest channel



Test mode: 802.11ac(HT40)

## Antenna 1:

#### 

#### Antenna 2:



#### Lowest channel



Lowest channel



Highest channel

Highest channel



Test mode: 802.11ac(HT80)

#### Antenna 1: Antenna 2:





Middle channel Middle channel



## 7.6 Band edges

#### 7.6.1 Radiated Emission Method

| Test Requirement:     | FCC Part15 C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Section 15.209 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                               |                                                                                                                  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:          | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                  |  |  |  |  |
| Test Frequency Range: | 9kHz to 40GHz, only worse case is reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                  |  |  |  |  |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                  |  |  |  |  |
| Receiver setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VBW                                                                                                                                                                                           | Value                                                                                                            |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3MHz                                                                                                                                                                                          | Peak                                                                                                             |  |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3MHz                                                                                                                                                                                          | RMS                                                                                                              |  |  |  |  |
| Limit:                | more above or lat 25 MHz above below the band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pelow the band<br>we or below the below the below the band of<br>below the band of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | edge increa<br>cand edge,<br>g linearly to<br>edge, and f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | asing linearl<br>and from 29<br>a level of 1<br>rom 5 MHz                                                                                                                                     | Hz at 75 MHz or y to 10 dBm/MHz 5 MHz above or 5.6 dBm/MHz at 5 above or below the Hz at the band                |  |  |  |  |
| Test setup:           | Tum Table <150cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Receiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                               | aplifier+                                                                                                        |  |  |  |  |
| Test Procedure:       | the ground a determine the 2. The EUT was antenna, whi tower.  3. The antenna ground to de horizontal an measuremer  4. For each sus and then the and the rotathe maximum  5. The test-rece Specified Ba  6. If the emission the limit specified for the EUT was and the EUT was and the EUT was and the EUT was and the limit specified by the EUT was and the EUT was and the limit specified by the EUT was and the EUT was and the EUT was antenna to the EUT was ant | t a 3 meter came position of the set 3 meters a ch was mounted termine the mand vertical polarists. Spected emission antenna was turned a reading. Ever system was now ideal of the Ecified, then testiryould be reported the set of th | ber. The tand highest race way from the don the top of | ble was rotadiation. The interference of a variable meter to four e of the field the antenna was arrangulats from 1 magrees to 36 ak Detect Find Mode. The mode was stopped arrise the emissi | r meters above the d strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find |  |  |  |  |

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China



|                   | <ul> <li>peak or average method as specified and then reported in a data sheet.</li> <li>7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.</li> </ul> |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                               |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                               |
| Test results:     | Pass                                                                                                                                                                                                                                                                                           |

#### Remarks:

- 1. Only the worst case Main Antenna test data..
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02v02r01 section G) 1) d), for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m



#### Measurement data:

| IEEE 802.11a       |                         |                             |                       |                          |                   |                        |                       |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 5650.00            | 38.13                   | 32.36                       | 9.72                  | 23.83                    | 56.38             | 68.20                  | -11.82                | Horizontal   |  |
| 5700.00            | 38.54                   | 32.50                       | 9.79                  | 23.84                    | 56.99             | 105.20                 | -48.21                | Horizontal   |  |
| 5720.00            | 38.71                   | 32.53                       | 9.81                  | 23.85                    | 57.20             | 110.80                 | -53.60                | Horizontal   |  |
| 5725.00            | 46.40                   | 32.53                       | 9.83                  | 23.86                    | 64.90             | 122.20                 | -57.30                | Horizontal   |  |
| 5850.00            | 43.17                   | 32.70                       | 9.99                  | 23.87                    | 61.99             | 122.20                 | -60.21                | Horizontal   |  |
| 5855.00            | 36.18                   | 32.72                       | 9.99                  | 23.88                    | 55.01             | 110.80                 | -55.79                | Horizontal   |  |
| 5875.00            | 38.97                   | 32.74                       | 10.04                 | 23.89                    | 57.86             | 105.20                 | -47.34                | Horizontal   |  |
| 5925.00            | 38.30                   | 32.80                       | 10.11                 | 23.90                    | 57.31             | 68.20                  | -10.89                | Horizontal   |  |
| 5650.00            | 37.70                   | 32.36                       | 9.72                  | 23.83                    | 55.95             | 68.20                  | -12.25                | Vertical     |  |
| 5700.00            | 36.96                   | 32.50                       | 9.79                  | 23.84                    | 55.41             | 105.20                 | -49.79                | Vertical     |  |
| 5720.00            | 37.62                   | 32.53                       | 9.81                  | 23.85                    | 56.11             | 110.80                 | -54.69                | Vertical     |  |
| 5725.00            | 45.18                   | 32.53                       | 9.83                  | 23.86                    | 63.68             | 122.20                 | -58.52                | Vertical     |  |
| 5850.00            | 42.63                   | 32.70                       | 9.99                  | 23.87                    | 61.45             | 122.20                 | -60.75                | Vertical     |  |
| 5855.00            | 36.40                   | 32.72                       | 9.99                  | 23.88                    | 55.23             | 110.80                 | -55.57                | Vertical     |  |
| 5875.00            | 37.26                   | 32.74                       | 10.04                 | 23.89                    | 56.15             | 105.20                 | -49.05                | Vertical     |  |
| 5925.00            | 37.80                   | 32.80                       | 10.11                 | 23.90                    | 56.81             | 68.20                  | -11.39                | Vertical     |  |



|                    | IEEE 802.11n HT20       |                             |                       |                          |                   |                        |                       |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 5650.00            | 37.26                   | 32.36                       | 9.72                  | 23.83                    | 55.51             | 68.20                  | -12.69                | Horizontal   |  |
| 5700.00            | 38.06                   | 32.50                       | 9.79                  | 23.84                    | 56.51             | 105.20                 | -48.69                | Horizontal   |  |
| 5720.00            | 38.21                   | 32.53                       | 9.81                  | 23.85                    | 56.70             | 110.80                 | -54.10                | Horizontal   |  |
| 5725.00            | 45.93                   | 32.53                       | 9.83                  | 23.86                    | 64.43             | 122.20                 | -57.77                | Horizontal   |  |
| 5850.00            | 42.72                   | 32.70                       | 9.99                  | 23.87                    | 61.54             | 122.20                 | -60.66                | Horizontal   |  |
| 5855.00            | 37.83                   | 32.72                       | 9.99                  | 23.88                    | 56.66             | 110.80                 | -54.14                | Horizontal   |  |
| 5875.00            | 37.32                   | 32.74                       | 10.04                 | 23.89                    | 56.21             | 105.20                 | -48.99                | Horizontal   |  |
| 5925.00            | 37.22                   | 32.80                       | 10.11                 | 23.90                    | 56.23             | 68.20                  | -11.97                | Horizontal   |  |
| 5650.00            | 37.97                   | 32.36                       | 9.72                  | 23.83                    | 56.22             | 68.20                  | -11.98                | Vertical     |  |
| 5700.00            | 38.01                   | 32.50                       | 9.79                  | 23.84                    | 56.46             | 105.20                 | -48.74                | Vertical     |  |
| 5720.00            | 36.85                   | 32.53                       | 9.81                  | 23.85                    | 55.34             | 110.80                 | -55.46                | Vertical     |  |
| 5725.00            | 45.39                   | 32.53                       | 9.83                  | 23.86                    | 63.89             | 122.20                 | -58.31                | Vertical     |  |
| 5850.00            | 42.45                   | 32.70                       | 9.99                  | 23.87                    | 61.27             | 122.20                 | -60.93                | Vertical     |  |
| 5855.00            | 37.26                   | 32.72                       | 9.99                  | 23.88                    | 56.09             | 110.80                 | -54.71                | Vertical     |  |
| 5875.00            | 37.63                   | 32.74                       | 10.04                 | 23.89                    | 56.52             | 105.20                 | -48.68                | Vertical     |  |
| 5925.00            | 37.11                   | 32.80                       | 10.11                 | 23.90                    | 56.12             | 68.20                  | -12.08                | Vertical     |  |



| IEEE 802.11ac HT20 |                         |                             |                       |                          |                   |                        |                       |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 5650.00            | 37.57                   | 32.36                       | 9.72                  | 23.83                    | 55.82             | 68.20                  | -12.38                | Horizontal   |  |
| 5700.00            | 37.51                   | 32.50                       | 9.79                  | 23.84                    | 55.96             | 105.20                 | -49.24                | Horizontal   |  |
| 5720.00            | 37.33                   | 32.53                       | 9.81                  | 23.85                    | 55.82             | 110.80                 | -54.98                | Horizontal   |  |
| 5725.00            | 45.30                   | 32.53                       | 9.83                  | 23.86                    | 63.80             | 122.20                 | -58.40                | Horizontal   |  |
| 5850.00            | 42.08                   | 32.70                       | 9.99                  | 23.87                    | 60.90             | 122.20                 | -61.30                | Horizontal   |  |
| 5855.00            | 37.78                   | 32.72                       | 9.99                  | 23.88                    | 56.61             | 110.80                 | -54.19                | Horizontal   |  |
| 5875.00            | 37.22                   | 32.74                       | 10.04                 | 23.89                    | 56.11             | 105.20                 | -49.09                | Horizontal   |  |
| 5925.00            | 37.23                   | 32.80                       | 10.11                 | 23.90                    | 56.24             | 68.20                  | -11.96                | Horizontal   |  |
| 5650.00            | 37.38                   | 32.36                       | 9.72                  | 23.83                    | 55.63             | 68.20                  | -12.57                | Vertical     |  |
| 5700.00            | 37.60                   | 32.50                       | 9.79                  | 23.84                    | 56.05             | 105.20                 | -49.16                | Vertical     |  |
| 5720.00            | 37.84                   | 32.53                       | 9.81                  | 23.85                    | 56.33             | 110.80                 | -54.47                | Vertical     |  |
| 5725.00            | 46.22                   | 32.53                       | 9.83                  | 23.86                    | 64.72             | 122.20                 | -57.48                | Vertical     |  |
| 5850.00            | 43.01                   | 32.70                       | 9.99                  | 23.87                    | 61.83             | 122.20                 | -60.37                | Vertical     |  |
| 5855.00            | 37.44                   | 32.72                       | 9.99                  | 23.88                    | 56.27             | 110.80                 | -54.53                | Vertical     |  |
| 5875.00            | 37.41                   | 32.74                       | 10.04                 | 23.89                    | 56.30             | 105.20                 | -48.90                | Vertical     |  |
| 5925.00            | 37.55                   | 32.80                       | 10.11                 | 23.90                    | 56.56             | 68.20                  | -11.64                | Vertical     |  |



|                    |                         |                             | IEE                   | E 802.11n                | HT40              |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value         | :                       |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5650.00            | 36.75                   | 32.36                       | 9.72                  | 23.83                    | 55.00             | 68.20                  | -13.20                | Horizontal   |
| 5700.00            | 36.93                   | 32.50                       | 9.79                  | 23.84                    | 55.38             | 105.20                 | -49.82                | Horizontal   |
| 5720.00            | 36.96                   | 32.53                       | 9.81                  | 23.85                    | 55.45             | 110.80                 | -55.35                | Horizontal   |
| 5725.00            | 39.83                   | 32.53                       | 9.83                  | 23.86                    | 58.33             | 122.20                 | -63.87                | Horizontal   |
| 5850.00            | 39.24                   | 32.70                       | 9.99                  | 23.87                    | 58.06             | 122.20                 | -64.14                | Horizontal   |
| 5855.00            | 36.74                   | 32.72                       | 9.99                  | 23.88                    | 55.57             | 110.80                 | -55.23                | Horizontal   |
| 5875.00            | 36.55                   | 32.74                       | 10.04                 | 23.89                    | 55.44             | 105.20                 | -49.76                | Horizontal   |
| 5925.00            | 37.22                   | 32.80                       | 10.11                 | 23.90                    | 56.23             | 68.20                  | -11.97                | Horizontal   |
| 5650.00            | 36.87                   | 32.36                       | 9.72                  | 23.83                    | 55.12             | 68.20                  | -13.08                | Vertical     |
| 5700.00            | 36.51                   | 32.50                       | 9.79                  | 23.84                    | 54.96             | 105.20                 | -50.24                | Vertical     |
| 5720.00            | 37.26                   | 32.53                       | 9.81                  | 23.85                    | 55.75             | 110.80                 | -55.05                | Vertical     |
| 5725.00            | 45.04                   | 32.53                       | 9.83                  | 23.86                    | 63.54             | 122.20                 | -58.66                | Vertical     |
| 5850.00            | 41.61                   | 32.70                       | 9.99                  | 23.87                    | 60.43             | 122.20                 | -61.77                | Vertical     |
| 5855.00            | 36.95                   | 32.72                       | 9.99                  | 23.88                    | 55.78             | 110.80                 | -55.02                | Vertical     |
| 5875.00            | 37.10                   | 32.74                       | 10.04                 | 23.89                    | 55.99             | 105.20                 | -49.21                | Vertical     |
| 5925.00            | 36.50                   | 32.80                       | 10.11                 | 23.90                    | 55.51             | 68.20                  | -12.69                | Vertical     |



|                    |                         |                             | IEE                   | E 802.11ac               | HT40              |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        | 1<br>1                  |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5650.00            | 37.57                   | 32.36                       | 9.72                  | 23.83                    | 55.82             | 68.20                  | -12.38                | Horizontal   |
| 5700.00            | 37.22                   | 32.50                       | 9.79                  | 23.84                    | 55.67             | 105.20                 | -49.53                | Horizontal   |
| 5720.00            | 37.28                   | 32.53                       | 9.81                  | 23.85                    | 55.77             | 110.80                 | -55.03                | Horizontal   |
| 5725.00            | 45.81                   | 32.53                       | 9.83                  | 23.86                    | 64.31             | 122.20                 | -57.89                | Horizontal   |
| 5850.00            | 42.55                   | 32.70                       | 9.99                  | 23.87                    | 61.37             | 122.20                 | -60.83                | Horizontal   |
| 5855.00            | 37.42                   | 32.72                       | 9.99                  | 23.88                    | 56.25             | 110.80                 | -54.55                | Horizontal   |
| 5875.00            | 37.24                   | 32.74                       | 10.04                 | 23.89                    | 56.13             | 105.20                 | -49.07                | Horizontal   |
| 5925.00            | 37.51                   | 32.80                       | 10.11                 | 23.90                    | 56.52             | 68.20                  | -11.68                | Horizontal   |
| 5650.00            | 37.60                   | 32.36                       | 9.72                  | 23.83                    | 55.85             | 68.20                  | -12.36                | Vertical     |
| 5700.00            | 37.45                   | 32.50                       | 9.79                  | 23.84                    | 55.90             | 105.20                 | -49.30                | Vertical     |
| 5720.00            | 37.98                   | 32.53                       | 9.81                  | 23.85                    | 56.47             | 110.80                 | -54.33                | Vertical     |
| 5725.00            | 45.59                   | 32.53                       | 9.83                  | 23.86                    | 64.09             | 122.20                 | -58.11                | Vertical     |
| 5850.00            | 42.30                   | 32.70                       | 9.99                  | 23.87                    | 61.12             | 122.20                 | -61.08                | Vertical     |
| 5855.00            | 38.08                   | 32.72                       | 9.99                  | 23.88                    | 56.91             | 110.80                 | -53.89                | Vertical     |
| 5875.00            | 37.27                   | 32.74                       | 10.04                 | 23.89                    | 56.16             | 105.20                 | -49.04                | Vertical     |
| 5925.00            | 37.97                   | 32.80                       | 10.11                 | 23.90                    | 56.98             | 68.20                  | -11.22                | Vertical     |



|                    |                         |                             | IEEI                  | E 802.11ac               | HT80              |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5650.00            | 37.29                   | 32.36                       | 9.72                  | 23.83                    | 55.54             | 68.20                  | -12.66                | Horizontal   |
| 5700.00            | 36.62                   | 32.50                       | 9.79                  | 23.84                    | 55.07             | 105.20                 | -50.13                | Horizontal   |
| 5720.00            | 36.53                   | 32.53                       | 9.81                  | 23.85                    | 55.02             | 110.80                 | -55.78                | Horizontal   |
| 5725.00            | 45.51                   | 32.53                       | 9.83                  | 23.86                    | 64.01             | 122.20                 | -58.19                | Horizontal   |
| 5850.00            | 42.04                   | 32.70                       | 9.99                  | 23.87                    | 60.86             | 122.20                 | -61.34                | Horizontal   |
| 5855.00            | 36.62                   | 32.72                       | 9.99                  | 23.88                    | 55.45             | 110.80                 | -55.35                | Horizontal   |
| 5875.00            | 36.61                   | 32.74                       | 10.04                 | 23.89                    | 55.50             | 105.20                 | -49.70                | Horizontal   |
| 5925.00            | 36.85                   | 32.80                       | 10.11                 | 23.90                    | 55.86             | 68.20                  | -12.34                | Horizontal   |
| 5650.00            | 37.07                   | 32.36                       | 9.72                  | 23.83                    | 55.32             | 68.20                  | -12.88                | Vertical     |
| 5700.00            | 37.33                   | 32.50                       | 9.79                  | 23.84                    | 55.78             | 105.20                 | -49.42                | Vertical     |
| 5720.00            | 37.20                   | 32.53                       | 9.81                  | 23.85                    | 55.69             | 110.80                 | -55.11                | Vertical     |
| 5725.00            | 44.85                   | 32.53                       | 9.83                  | 23.86                    | 63.35             | 122.20                 | -58.85                | Vertical     |
| 5850.00            | 41.84                   | 32.70                       | 9.99                  | 23.87                    | 60.66             | 122.20                 | -61.54                | Vertical     |
| 5855.00            | 37.22                   | 32.72                       | 9.99                  | 23.88                    | 56.05             | 110.80                 | -54.75                | Vertical     |
| 5875.00            | 36.43                   | 32.74                       | 10.04                 | 23.89                    | 55.32             | 105.20                 | -49.88                | Vertical     |
| 5925.00            | 37.27                   | 32.80                       | 10.11                 | 23.90                    | 56.28             | 68.20                  | -11.92                | Vertical     |



# 7.7 Spurious Emission

# 7.7.1 Radiated Emission Method

| Test Requirement:     | FCC Part15 C So                   | FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4) |       |                          |               |                      |  |  |  |  |
|-----------------------|-----------------------------------|------------------------------------------------------------|-------|--------------------------|---------------|----------------------|--|--|--|--|
| Test Method:          | ANSI C63.10:20                    | 13                                                         |       |                          |               |                      |  |  |  |  |
| Test Frequency Range: | 9kHz to 40GHz                     |                                                            |       |                          |               |                      |  |  |  |  |
| Test site:            | Measurement Di                    | stance: 3                                                  | m     |                          |               |                      |  |  |  |  |
| Receiver setup:       | Frequency                         | Detec                                                      | tor   | RBW                      | VBW           | Value                |  |  |  |  |
|                       | 30MHz-1GHz                        | Quasi-p                                                    | eak   | 120KHz                   | 300KHz        | Quasi-peak Value     |  |  |  |  |
|                       | Above 4011                        | Peal                                                       | k     | 1MHz                     | 3MHz          | Peak Value           |  |  |  |  |
|                       | Above 1GHz                        | Peal                                                       | k     | 1MHz                     | 3MHz          | RMS Value            |  |  |  |  |
| Limit:                | Frequenc                          | у                                                          | Value | Measurement<br>Distance  |               |                      |  |  |  |  |
|                       | 0.009MHz-0.49                     | 90MHz                                                      | 240   | 0/F(KHz)                 | QP            | 300m                 |  |  |  |  |
|                       | 0.490MHz-1.70                     | D5MHz                                                      | 2400  | 00/F(KHz)                | QP            | 300m                 |  |  |  |  |
|                       | 1.705MHz-30                       | )MHz                                                       |       | 30                       | QP            | 30m                  |  |  |  |  |
|                       | 30MHz-88N                         | ИHz                                                        |       | 100                      | QP            |                      |  |  |  |  |
|                       | 88MHz-216                         | MHz                                                        |       | 150                      | QP            | 3m                   |  |  |  |  |
|                       | 216MHz-960                        | MHz                                                        | 200   |                          | QP            | SIII                 |  |  |  |  |
|                       | 960MHz-10                         | GHz                                                        |       | 500                      |               |                      |  |  |  |  |
|                       |                                   | 1                                                          |       | '( / ID /N /             |               | Deved                |  |  |  |  |
|                       | Frequence<br>Above 1GI            |                                                            | LII   | Limit (dBm/MHz)<br>-27.0 |               | Remark<br>Peak Value |  |  |  |  |
| Test setup:           | Below 30MHz  Turn Table  < 80cm > | EUT                                                        |       | 1 m > +                  |               |                      |  |  |  |  |
|                       | Below 1GHz                        | Test Anten                                                 |       | Receiver                 | Preamplifier- | Γ                    |  |  |  |  |





# Above 1GHz



# Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or



|                   | average method as specified and then reported in a data sheet.                                                                                                                             |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                           |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                           |
| Test results:     | Pass                                                                                                                                                                                       |

Two antennas are tested, only the worst case's (Main Antenna) data was showed.

### **Measurement Data**

#### ■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

### ■ Below 1GHz

### Horizontal:





# Vertical:





# ■ Above 1GHz

# **ANT 1:**

802.11a,11n(HT20),11ac(HT20),11n(HT40),11ac(HT40),11ac(HT80) all have been tested ,Only the data of worst case at each channel plan (nominal bandwidth =20MHz, 40MHz, 80MHz) is reported.

|                 |                    |                              |                    |                              |                   | <u> </u>           |          |  |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|--|
| Test mode:      |                    | 802.11a                      |                    | Test channel:                |                   | lowest             |          |  |
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |  |
| V               | 11510              | 29.06                        | 21.64              | 50.70                        | 54(Note3)         | -3.30              | PK       |  |
| V               | 17265              | 26.79                        | 21.8               | 48.59                        | 54(Note3)         | -5.41              | PK       |  |
| Н               | 11510              | 26.86                        | 21.83              | 48.69                        | 54(Note3)         | -5.31              | PK       |  |
| Н               | 17265              | 25.66                        | 21.67              | 47.33                        | 54(Note3)         | -6.67              | PK       |  |

| Test mode:      |                    | 802.11a                      |                    | Test channel:                |                   | Middle             |          |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |
| V               | 11570              | 26.89                        | 21.64              | 48.53                        | 54(Note3)         | -5.47              | PK       |
| V               | 17355              | 25.58                        | 21.8               | 47.38                        | 54(Note3)         | -6.62              | PK       |
| Н               | 11570              | 23.24                        | 21.83              | 45.07                        | 54(Note3)         | -8.93              | PK       |
| Н               | 17355              | 23.90                        | 21.67              | 45.57                        | 54(Note3)         | -8.43              | PK       |

| Test mode:      |                    | 802.11a                      |                    | Test channel:                |                   | Highest            |          |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |
| V               | 11650              | 27.06                        | 21.64              | 48.70                        | 54(Note3)         | -5.30              | PK       |
| V               | 17475              | 24.67                        | 21.8               | 46.47                        | 54(Note3)         | -7.53              | PK       |
| Н               | 11650              | 24.90                        | 21.83              | 46.73                        | 54(Note3)         | -7.27              | PK       |
| Н               | 17475              | 22.96                        | 21.67              | 44.63                        | 54(Note3)         | -9.37              | PK       |



| Test mode:      |                    | 802.11ac(HT40)               |                    | Test channel:                |                   | Lowest             |          |  |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|--|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |  |
| V               | 11510              | 28.45                        | 21.67              | 50.12                        | 54(Note3)         | -3.88              | PK       |  |
| V               | 17265              | 27.06                        | 21.83              | 48.89                        | 54(Note3)         | -5.11              | PK       |  |
| Н               | 11510              | 27.59                        | 21.67              | 49.26                        | 54(Note3)         | -4.74              | PK       |  |
| Н               | 17265              | 26.86                        | 21.83              | 48.69                        | 54(Note3)         | -5.31              | PK       |  |

| Test mode:      |                    | 802.11ac(HT40)               |                    | Test channel:                |                   | Highest            |          |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |
| V               | 11590              | 29.15                        | 21.67              | 50.82                        | 54(Note3)         | -3.18              | PK       |
| V               | 17385              | 27.28                        | 21.83              | 49.11                        | 54(Note3)         | -4.89              | PK       |
| Н               | 11590              | 28.31                        | 21.67              | 49.98                        | 54(Note3)         | -4.02              | PK       |
| Н               | 17385              | 28.88                        | 21.83              | 50.71                        | 54(Note3)         | -3.29              | PK       |

| Test mode:      |                    | 802.11ac(HT80)               |                    | Test channel:                |                   | Middle             |          |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |
| V               | 11550              | 26.25                        | 21.65              | 47.90                        | 54(Note3)         | -6.10              | PK       |
| V               | 17325              | 24.38                        | 21.81              | 46.19                        | 54(Note3)         | -7.81              | PK       |
| Н               | 11550              | 23.72                        | 21.65              | 45.37                        | 54(Note3)         | -8.63              | PK       |
| Н               | 17325              | 23.18                        | 21.81              | 44.99                        | 54(Note3)         | -9.01              | PK       |

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



# ANT 2:.

| Test mode:      |                    | 802.11a                      |                    | Test channel:                |                   | lowest             |          |  |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|--|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |  |
| V               | 11510              | 28.87                        | 21.64              | 50.51                        | 54(Note3)         | -3.49              | PK       |  |
| V               | 17265              | 26.60                        | 21.8               | 48.40                        | 54(Note3)         | -5.60              | PK       |  |
| Н               | 11510              | 26.67                        | 21.83              | 48.50                        | 54(Note3)         | -5.50              | PK       |  |
| Н               | 17265              | 25.47                        | 21.67              | 47.14                        | 54(Note3)         | -6.86              | PK       |  |

| Test mod        | e:                 | 802.11a Test channel: Middle |                    |                              |                   |                    |          |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |
| V               | 11570              | 26.70                        | 21.64              | 48.34                        | 54(Note3)         | -5.66              | PK       |
| V               | 17355              | 25.39                        | 21.8               | 47.19                        | 54(Note3)         | -6.81              | PK       |
| Н               | 11570              | 23.05                        | 21.83              | 44.88                        | 54(Note3)         | -9.12              | PK       |
| Н               | 17355              | 23.71                        | 21.67              | 45.38                        | 54(Note3)         | -8.62              | PK       |

| Test mod        | Test mode: 802.1   |                              | Test chan          |                              |                   | Highest            |          |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |
| V               | 11650              | 26.87                        | 21.64              | 48.51                        | 54(Note3)         | -5.49              | PK       |
| V               | 17475              | 24.48                        | 21.8               | 46.28                        | 54(Note3)         | -7.72              | PK       |
| Н               | 11650              | 24.71                        | 21.83              | 46.54                        | 54(Note3)         | -7.46              | PK       |
| Н               | 17475              | 22.77                        | 21.67              | 44.44                        | 54(Note3)         | -9.56              | PK       |



| Test mod        | Test mode:         |                              | 802.11ac(HT40)     |                              | Test channel:     |                    | Lowest   |  |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|--|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |  |
| V               | 11510              | 28.26                        | 21.67              | 49.93                        | 54(Note3)         | -4.07              | PK       |  |
| V               | 17265              | 26.87                        | 21.83              | 48.70                        | 54(Note3)         | -5.30              | PK       |  |
| Н               | 11510              | 27.40                        | 21.67              | 49.07                        | 54(Note3)         | -4.93              | PK       |  |
| Н               | 17265              | 26.67                        | 21.83              | 48.50                        | 54(Note3)         | -5.50              | PK       |  |

| Test mod        | e:                 | 802.11ac(HT                  | 302.11ac(HT40)     |                              | Test channel:     |                    | Highest  |  |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|--|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |  |
| V               | 11590              | 28.96                        | 21.67              | 50.63                        | 54(Note3)         | -3.37              | PK       |  |
| V               | 17385              | 27.09                        | 21.83              | 48.92                        | 54(Note3)         | -5.08              | PK       |  |
| Н               | 11590              | 28.12                        | 21.67              | 49.79                        | 54(Note3)         | -4.21              | PK       |  |
| Н               | 17385              | 28.69                        | 21.83              | 50.52                        | 54(Note3)         | -3.48              | PK       |  |

| Test mode:      |                    | 802.11ac(HT80)               |                    | Test channel:                |                   | Middle             |          |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|--------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over limit<br>(dB) | Detector |
| V               | 11550              | 26.25                        | 21.65              | 47.90                        | 54(Note3)         | -6.10              | PK       |
| V               | 17325              | 24.38                        | 21.81              | 46.19                        | 54(Note3)         | -7.81              | PK       |
| Н               | 11550              | 23.72                        | 21.65              | 45.37                        | 54(Note3)         | -8.63              | PK       |
| Н               | 17325              | 23.18                        | 21.81              | 44.99                        | 54(Note3)         | -9.01              | PK       |

### Note:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.



# 7.8 Frequency stability

| Test Requirement: | FCC Part15 C Section 15.407(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013, FCC Part 2.1055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Limit:            | Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Test Procedure:   | a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 Minutes. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 Minute s. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record. |  |  |  |  |
| Test setup:       | Temperature Chamber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                   | Spectrum analyzer EUT  Att.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                   | Variable Power Supply  Note: Measurement setup for testing on Antenna connector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Test Instruments: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                   | Refer to section 5.10 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.



### Measurement data:

| Wicasuic                                                | Measurement data:      |                 |                                            |                 |                              |  |  |
|---------------------------------------------------------|------------------------|-----------------|--------------------------------------------|-----------------|------------------------------|--|--|
|                                                         |                        | Eraguan         | 802.11a                                    | 'ama            |                              |  |  |
| Frequency stability versus Temp.  Power Supply: AC 120V |                        |                 |                                            |                 |                              |  |  |
|                                                         | Operating              | 0 minute        | 2 minute                                   | 5 minute        | 10 minute                    |  |  |
| Temp.                                                   | Operating<br>Frequency | Measured        | Measured                                   | Measured        | Measured                     |  |  |
| (°C)                                                    | (MHz)                  | Frequency (MHz) | Frequency (MHz)                            | Frequency (MHz) |                              |  |  |
|                                                         | 5745                   | 5744.3274       | 5743.7761                                  | 5744.2730       | Frequency (MHz)<br>5743.7385 |  |  |
| -30                                                     | 5785                   | 5783.3450       | 5783.7046                                  | 5783.6769       | 5784.9857                    |  |  |
| -30                                                     | 5825                   | 5823.3093       | 5824.0740                                  | 5822.1217       | 5821.1940                    |  |  |
|                                                         | 5745                   |                 | 5743.8801                                  |                 |                              |  |  |
| 20                                                      |                        | 5743.2046       |                                            | 5744.8263       | 5744.3827                    |  |  |
| -20                                                     | 5785                   | 5783.1997       | 5783.4043                                  | 5784.1063       | 5784.8108                    |  |  |
|                                                         | 5825                   | 5824.2193       | 5823.2227                                  | 5824.9760       | 5824.2650                    |  |  |
|                                                         | 5745                   | 5744.1893       | 5744.9864                                  | 5744.9462       | 5744.1070                    |  |  |
| -10                                                     | 5785                   | 5783.2592       | 5783.8768                                  | 5784.6495       | 5784.4075                    |  |  |
|                                                         | 5825                   | 5823.4313       | 5823.3236                                  | 5824.8217       | 5824.4484                    |  |  |
|                                                         | 5745                   | 5743.6351       | 5743.9628                                  | 5744.8639       | 5744.3051                    |  |  |
| 0                                                       | 5785                   | 5783.9976       | 5784.3474                                  | 5784.2042       | 5784.0015                    |  |  |
|                                                         | 5825                   | 5824.3763       | 5824.2119                                  | 5824.4563       | 5823.1768                    |  |  |
|                                                         | 5745                   | 5744.3230       | 5744.6060                                  | 5743.9963       | 5744.3536                    |  |  |
| 10                                                      | 5785                   | 5783.0413       | 5784.3446                                  | 5784.0667       | 5784.0793                    |  |  |
|                                                         | 5825                   | 5823.6193       | 5823.2873                                  | 5823.2302       | 5823.9883                    |  |  |
|                                                         | 5745                   | 5744.7453       | 5744.3525                                  | 5744.9126       | 5744.2896                    |  |  |
| 20                                                      | 5785                   | 5783.1393       | 5783.5857                                  | 5784.2335       | 5784.2814                    |  |  |
|                                                         | 5825                   | 5824.9792       | 5824.4859                                  | 5823.6263       | 5824.4421                    |  |  |
|                                                         | 5745                   | 5743.2664       | 5743.8363                                  | 5743.2393       | 5744.6168                    |  |  |
| 30                                                      | 5785                   | 5783.0821       | 5784.1688                                  | 5783.0840       | 5784.1531                    |  |  |
|                                                         | 5825                   | 5823.2774       | 5823.5386                                  | 5824.5996       | 5823.9830                    |  |  |
|                                                         | 5745                   | 5743.5410       | 5743.3353                                  | 5744.2453       | 5744.4750                    |  |  |
| 40                                                      | 5785                   | 5783.8785       | 5783.8067                                  | 5784.8213       | 5784.4708                    |  |  |
| 40                                                      | 5825                   | 5824.2855       | 5823.4734                                  | 5823.6764       | 5823.4370                    |  |  |
|                                                         | 5745                   | 5744.2972       | 5744.6410                                  | 5744.0375       | 5743.9310                    |  |  |
| 50                                                      | 5785                   | 5784.1175       | 5784.6197                                  | 5784.9190       | 5784.4334                    |  |  |
| 30                                                      | 5825                   | 5823.2776       | 5823.4698                                  | 5823.0151       | 5824.4159                    |  |  |
|                                                         | 3623                   |                 |                                            |                 | 3024.4139                    |  |  |
|                                                         |                        |                 | cy stability versus Vo<br>emperature: 25°C | onage           |                              |  |  |
| Power                                                   | Operating              | 0 minute        | 2 minute                                   | 5 minute        | 10 minute                    |  |  |
| Supply                                                  | Frequency              | Measured        | Measured                                   | Measured        | Measured                     |  |  |
| (V <sub>AC</sub> )                                      | (MHz)                  | Frequency (MHz) | Frequency (MHz)                            | Frequency (MHz) | Frequency (MHz)              |  |  |
| (VAC)                                                   | 5745                   | 5744.3156       | 5744.0955                                  | 5743.2083       | 5743.2680                    |  |  |
| 102                                                     | 5785                   | 5783.2930       |                                            |                 | 5784.5461                    |  |  |
| 102                                                     |                        |                 | 5783.3974                                  | 5783.1407       |                              |  |  |
|                                                         | 5825<br>5745           | 5824.9551       | 5824.8848                                  | 5823.0010       | 5824.6149                    |  |  |
| 400                                                     | 5745                   | 5743.4360       | 5744.4234                                  | 5743.5912       | 5743.4197                    |  |  |
| 120                                                     | 5785                   | 5783.4541       | 5783.2977                                  | 5783.1990       | 5784.8249                    |  |  |
|                                                         | 5825                   | 5824.4800       | 5823.3782                                  | 5823.4660       | 5823.8377                    |  |  |
| 4.0                                                     | 5745                   | 5743.0634       | 5744.2396                                  | 5743.9116       | 5743.5638                    |  |  |
| 138                                                     | 5785                   | 5784.4720       | 5784.1247                                  | 5784.9658       | 5783.8357                    |  |  |
|                                                         | 5825                   | 5824.7770       | 5824.9115                                  | 5824.4711       | 5823.2252                    |  |  |

Note: The worst case is FL=5743.0051MHz, FH=5825.9982MHz



|                       |                                  |                 | 802.11n(HT20)          |                 |                 |  |  |  |
|-----------------------|----------------------------------|-----------------|------------------------|-----------------|-----------------|--|--|--|
|                       | Frequency stability versus Temp. |                 |                        |                 |                 |  |  |  |
| Power Supply: AC 120V |                                  |                 |                        |                 |                 |  |  |  |
|                       | Operating                        | 0 minute        | 2 minute               | 5 minute        | 10 minute       |  |  |  |
| Temp.                 | Frequency                        | Measured        | Measured               | Measured        | Measured        |  |  |  |
| (°C)                  | (MHz)                            | Frequency (MHz) | Frequency (MHz)        | Frequency (MHz) | Frequency (MHz) |  |  |  |
|                       | 5745                             | 5747.4584       | 5743.3235              | 5743.0007       | 5747.6960       |  |  |  |
| -30                   | 5785                             | 5786.3640       | 5784.5895              | 5784.6967       | 5785.5274       |  |  |  |
|                       | 5825                             | 5825.9668       | 5824.9294              | 5824.5987       | 5825.9142       |  |  |  |
|                       | 5745                             | 5745.4124       | 5744.9030              | 5744.5470       | 5745.0291       |  |  |  |
| -20                   | 5785                             | 5785.2835       | 5784.4482              | 5784.4787       | 5785.0474       |  |  |  |
|                       | 5825                             | 5825.3046       | 5824.1528              | 5824.6132       | 5825.7543       |  |  |  |
|                       | 5745                             | 5745.6518       | 5744.9658              | 5744.2733       | 5745.9911       |  |  |  |
| -10                   | 5785                             | 5785.1470       | 5784.0389              | 5784.5219       | 5785.3065       |  |  |  |
|                       | 5825                             | 5825.2593       | 5824.5105              | 5824.5055       | 5825.0036       |  |  |  |
|                       | 5745                             | 5745.0343       | 5744.8499              | 5744.5620       | 5745.0113       |  |  |  |
| 0                     | 5785                             | 5785.2595       | 5784.4958              | 5784.5837       | 5785.2426       |  |  |  |
|                       | 5825                             | 5825.4670       | 5824.8031              | 5824.9473       | 5825.8363       |  |  |  |
|                       | 5745                             | 5745.0616       | 5744.9571              | 5744.5948       | 5745.9467       |  |  |  |
| 10                    | 5785                             | 5785.2408       | 5784.6794              | 5784.9896       | 5785.4856       |  |  |  |
|                       | 5825                             | 5825.0579       | 5824.0512              | 5824.5986       | 5825.7133       |  |  |  |
|                       | 5745                             | 5745.1027       | 5744.9109              | 5744.4051       | 5745.7684       |  |  |  |
| 20                    | 5785                             | 5785.1142       | 5784.2583              | 5784.8026       | 5785.4660       |  |  |  |
|                       | 5825                             | 5825.4378       | 5824.8468              | 5824.4214       | 5825.5400       |  |  |  |
|                       | 5745                             | 5745.5389       | 5744.8642              | 5744.6072       | 5745.2323       |  |  |  |
| 30                    | 5785                             | 5785.8800       | 5784.9441              | 5784.9868       | 5785.1304       |  |  |  |
|                       | 5825                             | 5825.5812       | 5824.5160              | 5824.5838       | 5825.1619       |  |  |  |
|                       | 5745                             | 5745.7587       | 5744.1634              | 5744.8943       | 5745.3496       |  |  |  |
| 40                    | 5785                             | 5785.1617       | 5784.0012              | 5784.7387       | 5785.9846       |  |  |  |
|                       | 5825                             | 5825.0017       | 5824.9372              | 5824.1111       | 5825.4316       |  |  |  |
|                       | 5745                             | 5745.7490       | 5744.9843              | 5744.2197       | 5745.3469       |  |  |  |
| 50                    | 5785                             | 5785.8661       | 5784.4730              | 5784.4652       | 5785.2763       |  |  |  |
|                       | 5825                             | 5825.7279       | 5824.1717              | 5824.4087       | 5825.3719       |  |  |  |
|                       |                                  |                 | cy stability versus Vo | oltage          |                 |  |  |  |
|                       |                                  | Ţ               | emperature: 25°C       |                 |                 |  |  |  |
| Power                 | Operating                        | 0 minute        | 2 minute               | 5 minute        | 10 minute       |  |  |  |
| Supply                | Frequency                        | Measured        | Measured               | Measured        | Measured        |  |  |  |
| (V <sub>AC</sub> )    | (MHz)                            | Frequency (MHz) | Frequency (MHz)        | Frequency (MHz) | Frequency (MHz) |  |  |  |
|                       | 5745                             | 5746.1544       | 5747.8827              | 5744.7802       | 5743.2929       |  |  |  |
| 102                   | 5785                             | 5785.3811       | 5787.5291              | 5784.9678       | 5784.2933       |  |  |  |
|                       | 5825                             | 5825.3522       | 5826.6570              | 5824.1398       | 5824.5510       |  |  |  |
|                       | 5745                             | 5745.4607       | 5745.9835              | 5744.1166       | 5744.1666       |  |  |  |
| 120                   | 5785                             | 5785.4077       | 5785.2020              | 5784.5679       | 5784.1993       |  |  |  |
|                       | 5825                             | 5825.0971       | 5825.0359              | 5824.6906       | 5824.9384       |  |  |  |
|                       | 5745                             | 5745.5859       | 5745.5028              | 5744.9771       | 5744.5892       |  |  |  |
| 138                   | 5785                             | 5785.6618       | 5785.7376              | 5784.4150       | 5784.3062       |  |  |  |
|                       | 5825                             | 5825.6850       | 5825.7167              | 5824.1221       | 5824.1715       |  |  |  |

Note: The worst case is FL=5743.0046MHz, FH=5825.9985MHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China



|                       |                                  |                 | 802.11ac(HT20)         |                 |                 |  |  |  |
|-----------------------|----------------------------------|-----------------|------------------------|-----------------|-----------------|--|--|--|
|                       | Frequency stability versus Temp. |                 |                        |                 |                 |  |  |  |
| Power Supply: AC 120V |                                  |                 |                        |                 |                 |  |  |  |
|                       | Operating                        | 0 minute        | 2 minute               | 5 minute        | 10 minute       |  |  |  |
| Temp.                 | Frequency                        | Measured        | Measured               | Measured        | Measured        |  |  |  |
| (°C)                  | (MHz)                            | Frequency (MHz) | Frequency (MHz)        | Frequency (MHz) | Frequency (MHz) |  |  |  |
|                       | 5755                             | 5742.3029       | 5743.4232              | 5744.5844       | 5741.8414       |  |  |  |
| -30                   | 5795                             | 5782.4878       | 5783.4391              | 5784.6192       | 5782.6049       |  |  |  |
| 00                    | 5755                             | 5822.6985       | 5824.6005              | 5824.2278       | 5824.2538       |  |  |  |
|                       | 5795                             | 5744.9537       | 5744.0443              | 5744.0399       | 5744.6938       |  |  |  |
| -20                   | 5755                             | 5784.7641       | 5784.6341              | 5784.0451       | 5784.1863       |  |  |  |
| 20                    | 5795                             | 5824.0805       | 5824.2947              | 5824.8552       | 5824.9915       |  |  |  |
|                       | 5755                             | 5744.8675       | 5744.1607              | 5744.1271       | 5744.0025       |  |  |  |
| -10                   | 5795                             | 5784.8983       | 5784.6461              | 5784.3551       | 5784.0949       |  |  |  |
| -10                   | 5755                             | 5824.2423       | 5824.6271              | 5824.0775       | 5824.3799       |  |  |  |
|                       | 5795                             | 5744.4832       | 5744.3477              | 5744.8891       | 5744.0819       |  |  |  |
| 0                     | 5755                             | 5784.3137       | 5784.6811              | 5784.8023       | 5784.9070       |  |  |  |
| U                     | 5795                             | 5824.9856       | 5824.5463              | 5824.7325       | 5824.5854       |  |  |  |
|                       | 5755                             | 5744.0431       | 5744.2398              | 5744.4580       | 5744.6958       |  |  |  |
| 10                    | 5795                             | 5784.7033       | 5784.0525              | 5784.7533       | 5784.2999       |  |  |  |
| 10                    | 5755                             | 5824.3196       | 5824.6950              | 5824.4612       | 5824.2490       |  |  |  |
|                       | 5795                             | 5744.9316       | 5744.0645              | 5744.6016       |                 |  |  |  |
| 20                    | 5755                             | 5744.9316       | 5784.0645              | 5744.6016       | 5744.5760       |  |  |  |
| 20                    | 5795                             | 5824.7650       | 5824.2490              | 5824.9928       | 5784.4475       |  |  |  |
|                       | 5755                             | 5744.3711       |                        |                 | 5824.1911       |  |  |  |
| 20                    |                                  |                 | 5744.5333              | 5744.1176       | 5744.3594       |  |  |  |
| 30                    | 5795                             | 5784.4769       | 5784.2266              | 5784.3200       | 5784.2419       |  |  |  |
|                       | 5755                             | 5824.8160       | 5824.0236              | 5824.3011       | 5824.0928       |  |  |  |
| 40                    | 5795                             | 5744.9369       | 5744.0489              | 5744.6046       | 5744.2586       |  |  |  |
| 40                    | 5755                             | 5784.3983       | 5784.5518              | 5784.8309       | 5784.2584       |  |  |  |
|                       | 5795                             | 5824.0054       | 5824.1500              | 5824.6635       | 5824.1702       |  |  |  |
| 50                    | 5755                             | 5744.5794       | 5744.3719              | 5744.1779       | 5744.7348       |  |  |  |
| 50                    | 5795                             | 5784.4230       | 5784.2958              | 5784.8449       | 5784.1696       |  |  |  |
|                       | 5755                             | 5824.3688       | 5824.7567              | 5824.9860       | 5824.4067       |  |  |  |
|                       |                                  |                 | cy stability versus Vo | oitage          |                 |  |  |  |
| <u> </u>              | 0                                |                 | emperature: 25°C       | F (-            | 40              |  |  |  |
| Power                 | Operating                        | 0 minute        | 2 minute               | 5 minute        | 10 minute       |  |  |  |
| Supply                | Frequency                        | Measured        | Measured               | Measured        | Measured        |  |  |  |
| (V <sub>AC</sub> )    | (MHz)                            | Frequency (MHz) | Frequency (MHz)        | Frequency (MHz) | Frequency (MHz) |  |  |  |
| 400                   | 5745                             | 5742.0649       | 5743.0506              | 5745.7539       | 5747.1092       |  |  |  |
| 102                   | 5785                             | 5784.6235       | 5784.5323              | 5785.3885       | 5787.1693       |  |  |  |
|                       | 5825                             | 5824.6407       | 5824.7014              | 5825.6293       | 5827.1064       |  |  |  |
| 400                   | 5745                             | 5744.2129       | 5744.0180              | 5745.3807       | 5745.9562       |  |  |  |
| 120                   | 5785                             | 5784.6145       | 5784.6099              | 5785.5960       | 5785.0070       |  |  |  |
|                       | 5825                             | 5824.3913       | 5824.9486              | 5825.0369       | 5825.1955       |  |  |  |
|                       | 5745                             | 5744.6327       | 5744.1464              | 5745.2453       | 5745.4137       |  |  |  |
| 138                   | 5785                             | 5784.9682       | 5784.5252              | 5785.4697       | 5785.3300       |  |  |  |
|                       | 5825                             | 5824.7066       | 5824.0364              | 5825.5959       | 5825.3935       |  |  |  |

Note: The worst case is FL=5743.1164MHz, FH=5826.9784MHz



|                    |                                  |                 | 802.11n(HT40)         |                 |                 |  |  |
|--------------------|----------------------------------|-----------------|-----------------------|-----------------|-----------------|--|--|
|                    | Frequency stability versus Temp. |                 |                       |                 |                 |  |  |
|                    |                                  |                 | ver Supply: AC 120V   |                 |                 |  |  |
| Tomn               | Operating                        | 0 minute        | 2 minute              | 5 minute        | 10 minute       |  |  |
| Temp.              | Frequency                        | Measured        | Measured              | Measured        | Measured        |  |  |
| (°C)               | (MHz)                            | Frequency (MHz) | Frequency (MHz)       | Frequency (MHz) | Frequency (MHz) |  |  |
| -30                | 5755                             | 5755.3909       | 5752.6607             | 5753.8496       | 5757.7175       |  |  |
| -30                | 5795                             | 5795.1389       | 5793.1360             | 5793.7288       | 5797.2226       |  |  |
| 20                 | 5755                             | 5755.1563       | 5754.6466             | 5754.1370       | 5756.9623       |  |  |
| -20                | 5795                             | 5795.8918       | 5794.5462             | 5794.4780       | 5796.8483       |  |  |
| 40                 | 5755                             | 5755.7611       | 5754.2780             | 5754.0447       | 5755.5418       |  |  |
| -10                | 5795                             | 5795.3013       | 5794.2865             | 5794.7123       | 5795.8360       |  |  |
| 0                  | 5755                             | 5755.7394       | 5754.3674             | 5754.3595       | 5755.0033       |  |  |
| 0                  | 5795                             | 5795.3911       | 5794.2867             | 5794.5413       | 5795.5064       |  |  |
| 40                 | 5755                             | 5755.4685       | 5754.1894             | 5754.3653       | 5755.4659       |  |  |
| 10                 | 5795                             | 5795.9492       | 5794.6291             | 5794.6770       | 5795.7269       |  |  |
| 00                 | 5755                             | 5755.8347       | 5754.2501             | 5754.7951       | 5755.7015       |  |  |
| 20                 | 5795                             | 5795.8452       | 5794.1796             | 5794.2099       | 5795.4754       |  |  |
| 20                 | 5755                             | 5755.8857       | 5754.5432             | 5754.0233       | 5755.3041       |  |  |
| 30                 | 5795                             | 5795.8105       | 5794.0079             | 5794.7676       | 5795.9528       |  |  |
| 40                 | 5755                             | 5755.1099       | 5754.8211             | 5754.9009       | 5755.6328       |  |  |
| 40                 | 5795                             | 5795.8355       | 5794.0008             | 5794.5290       | 5795.9306       |  |  |
|                    | 5755                             | 5755.6569       | 5754.4440             | 5754.1435       | 5755.7408       |  |  |
| 50                 | 5795                             | 5795.5782       | 5794.1510             | 5794.3402       | 5795.3159       |  |  |
|                    |                                  | Frequenc        | y stability versus Vo | oltage          |                 |  |  |
|                    |                                  | T               | emperature: 25°C      |                 |                 |  |  |
| Power              | Operating                        | 0 minute        | 2 minute              | 5 minute        | 10 minute       |  |  |
| Supply             | Frequency                        | Measured        | Measured              | Measured        | Measured        |  |  |
| (V <sub>AC</sub> ) | (MHz)                            | Frequency (MHz) | Frequency (MHz)       | Frequency (MHz) | Frequency (MHz) |  |  |
| 102                | 5755                             | 5756.9024       | 5753.2530             | 5755.5323       | 5754.0472       |  |  |
| 102                | 5795                             | 5795.9468       | 5793.5383             | 5795.5580       | 5794.1282       |  |  |
| 120                | 5755                             | 5755.7707       | 5753.3233             | 5755.1337       | 5754.8054       |  |  |
| 120                | 5795                             | 5795.1950       | 5794.4497             | 5795.5291       | 5794.5182       |  |  |
| 138                | 5755                             | 5755.7702       | 5754.1697             | 5755.1487       | 5754.8128       |  |  |
| 130                | 5795                             | 5795.6305       | 5794.1290             | 5795.1891       | 5794.2132       |  |  |

Note: The worst case is FL=5753.0192MHz, FH=5796.9196MHz



|           |                       |                 | 802.11ac(HT40)        |                 |                 |  |  |
|-----------|-----------------------|-----------------|-----------------------|-----------------|-----------------|--|--|
|           |                       | Frequen         | cy stability versus T | emp.            |                 |  |  |
|           | Power Supply: AC 120V |                 |                       |                 |                 |  |  |
| Tomn      | Operating             | 0 minute        | 2 minute              | 5 minute        | 10 minute       |  |  |
| Temp.     | Frequency             | Measured        | Measured              | Measured        | Measured        |  |  |
| (°C)      | (MHz)                 | Frequency (MHz) | Frequency (MHz)       | Frequency (MHz) | Frequency (MHz) |  |  |
| 20        | 5755                  | 5755.4562       | 5752.8146             | 5756.0730       | 5751.6324       |  |  |
| -30       | 5795                  | 5795.4299       | 5794.6868             | 5795.6054       | 5791.7317       |  |  |
| 20        | 5755                  | 5755.3611       | 5754.2168             | 5755.3822       | 5752.1218       |  |  |
| -20       | 5795                  | 5795.6051       | 5794.6554             | 5795.7183       | 5793.1222       |  |  |
| 40        | 5755                  | 5755.1946       | 5754.7274             | 5755.8049       | 5753.2006       |  |  |
| -10       | 5795                  | 5795.9795       | 5794.0872             | 5795.8654       | 5794.1104       |  |  |
| 0         | 5755                  | 5755.6173       | 5754.7191             | 5755.8355       | 5754.0107       |  |  |
| 0         | 5795                  | 5795.6656       | 5794.4773             | 5795.0719       | 5794.7806       |  |  |
| 40        | 5755                  | 5755.1311       | 5754.7133             | 5755.8831       | 5754.3847       |  |  |
| 10        | 5795                  | 5795.0832       | 5794.4691             | 5795.4597       | 5794.6854       |  |  |
| 00        | 5755                  | 5755.6597       | 5754.4141             | 5755.7623       | 5754.0111       |  |  |
| 20        | 5795                  | 5795.8465       | 5794.7630             | 5795.9515       | 5794.6480       |  |  |
| 20        | 5755                  | 5755.1450       | 5754.3417             | 5755.8099       | 5754.7054       |  |  |
| 30        | 5795                  | 5795.0732       | 5794.3286             | 5795.9138       | 5794.0762       |  |  |
| 40        | 5755                  | 5755.1710       | 5754.2317             | 5755.1237       | 5754.3347       |  |  |
| 40        | 5795                  | 5795.4798       | 5794.6667             | 5795.7822       | 5794.0702       |  |  |
| <b>50</b> | 5755                  | 5755.8999       | 5754.7977             | 5755.1157       | 5754.3244       |  |  |
| 50        | 5795                  | 5795.4662       | 5794.6313             | 5795.0372       | 5794.4186       |  |  |
|           |                       | Frequenc        | y stability versus Vo | oltage          |                 |  |  |
|           |                       | T               | emperature: 25°C      |                 |                 |  |  |
| Power     | Operating             | 0 minute        | 2 minute              | 5 minute        | 10 minute       |  |  |
| Supply    | Frequency             | Measured        | Measured              | Measured        | Measured        |  |  |
| (Vdc)     | (MHz)                 | Frequency (MHz) | Frequency (MHz)       | Frequency (MHz) | Frequency (MHz) |  |  |
| 102       | 5755                  | 5757.6868       | 5751.8336             | 5757.1692       | 5753.6960       |  |  |
| 102       | 5795                  | 5796.9747       | 5791.5355             | 5795.0460       | 5794.7567       |  |  |
| 120       | 5755                  | 5756.3898       | 5753.4316             | 5755.3361       | 5754.7780       |  |  |
| 120       | 5795                  | 5795.6932       | 5793.1035             | 5795.8769       | 5794.8626       |  |  |
| 138       | 5755                  | 5755.3818       | 5754.5793             | 5755.4696       | 5754.6367       |  |  |
| 130       | 5795                  | 5795.1221       | 5794.0480             | 5795.2976       | 5794.3053       |  |  |

Note: The worst case is FL=5754.0210MHz, FH=5795.9946MHz



|                    |                                  |                 | 802.11ac(HT80)         |                 |                 |  |  |
|--------------------|----------------------------------|-----------------|------------------------|-----------------|-----------------|--|--|
|                    | Frequency stability versus Temp. |                 |                        |                 |                 |  |  |
|                    |                                  | Pov             | ver Supply: AC 120V    |                 |                 |  |  |
| Tomp               | Operating                        | 0 minute        | 2 minute               | 5 minute        | 10 minute       |  |  |
| Temp.              | Frequency                        | Measured        | Measured               | Measured        | Measured        |  |  |
| (°C)               | (MHz)                            | Frequency (MHz) | Frequency (MHz)        | Frequency (MHz) | Frequency (MHz) |  |  |
| -30                | 5775                             | 5777.2191       | 5777.6572              | 5774.7916       | 5773.4616       |  |  |
| -20                | 5775                             | 5777.2416       | 5776.6434              | 5774.4887       | 5774.0258       |  |  |
| -10                | 5775                             | 5775.1858       | 5775.5867              | 5774.6373       | 5774.3190       |  |  |
| 0                  | 5775                             | 5775.2406       | 5775.7467              | 5774.0600       | 5774.7027       |  |  |
| 10                 | 5775                             | 5775.6324       | 5775.2121              | 5774.9188       | 5774.4906       |  |  |
| 20                 | 5775                             | 5775.2939       | 5775.4764              | 5774.2430       | 5774.9849       |  |  |
| 30                 | 5775                             | 5775.9702       | 5775.0979              | 5774.1842       | 5774.0141       |  |  |
| 40                 | 5775                             | 5775.9557       | 5775.7342              | 5774.0344       | 5774.9214       |  |  |
| 50                 | 5775                             | 5775.3258       | 5775.7668              | 5774.9905       | 5774.7081       |  |  |
|                    |                                  | Frequenc        | cy stability versus Vo | oltage          |                 |  |  |
|                    |                                  | T               | emperature: 25°C       |                 |                 |  |  |
| Power              | Operating                        | 0 minute        | 2 minute               | 5 minute        | 10 minute       |  |  |
| Supply             | Frequency                        | Measured        | Measured               | Measured        | Measured        |  |  |
| (V <sub>AC</sub> ) | (MHz)                            | Frequency (MHz) | Frequency (MHz)        | Frequency (MHz) | Frequency (MHz) |  |  |
| 102                | 5775                             | 5774.0805       | 5777.2337              | 5777.7019       | 5775.7879       |  |  |
| 120                | 5775                             | 5774.7970       | 5775.9508              | 5775.0437       | 5775.9125       |  |  |
| 138                | 5775                             | 5772.3015       | 5775.7464              | 5776.0789       | 5776.1420       |  |  |

Note: The worst case is FL=5774.0028MHz, FH=5776.9986MHz



# 8 Test Setup Photo

**Radiated Emission** 







Conducted Emission



# 9 EUT Constructional Details

Reference to the test report No. GTS201807000026F01

-----END-----