Natural Language Processing

- Kathirmani Sukumar

Course Outline

- Session1: NLP Introduction and Basics of Text Pre-processing (& web scraping)
- Session2: Text Processing : Vectorisation & Word Embedding
- Session 3 : Sequence to Sequence (Seq2seq) Learning
- Session 4 : Transformer
- Session 5: Generative Al and Large Language Models (LLMs)
- Session 6 : Case Study

Session 1: NLP Introduction

- Introduction to Natural Language Processing
 - Need for NLP
 - Applications of NLP
- Introduction to Text Pre-processing
 - Challenges With Text Data
 - Importance of Text Processing
- Common Text Pre-processing / Cleaning Methods
- Brief Introduction to Web Scraping (Beautiful Soup)
- Name Entity Recognition
- Word Cloud
- NLP Essential Libraries : NLTK/Spacy

Session 2:

- Conceptual Text Processing Terminologies
- Elementary text to numeric conversion techniques
 - Count vectorizer
 - TFIDF
- Introduction to Word Embeddings
 - Word2vec -Skip Gram, CBOW
 - Global vector (GloVe)
 - FastText
 - Pre-Trained Word Embeddings
- Keras packages/methods for Text Processing
- Use Case : Sentiment Analysis
- Libraries : Genism, Glove, Keras

NLP Applications

Text classification

Intent Identification

Entity Extraction

Sentiment Analysis

Text generation

Information Retrieval

Text Summarization

Virtual Assistants

Machine Translation

Text Summarization

Speech Processing

Topic Modeling

Text Preprocessing

- Case conversations
- Tokenization
- Stop word removal
- Root word identification
 - Stemming
 - Lemmatization
- Special characters removal
- ...

- Standardization technique
- Advantages
 - Helps to compare smaller documents with larger documents
 - Reduces the weightage of those terms which appear almost in the documents
 - Attempts to give higher relevance scores to words that occur in fewer documents within the corpus

TF-IDF Transformation

Term Frequency (TF)

```
tf(t,D) = No. of times the term t, appeared in the document D
```

Inverse Document Frequency (IDF)

$$idf(t) = \log(\frac{Total\ no.of\ documents\ in\ the\ corpus}{No.of\ documents\ in\ which\ the\ terms\ appears})$$

Terms which appears in almost all the documents will have IDF close to zero

TF-IDF Transformation

• Term Frequency – Inverse Document Frequency (TF-IDF)

$$tfidf(t,D) = \frac{1}{D_N} * tf(t,D) * idf(t)$$

Where D_N is the no. of terms in the document D

Advantages

- Less importance to most frequent words appearing in all the documents (but not part of common stop words list)
- Larger documents (i.e. high document length) can be compared with smaller documents

DTM	Ţ <u>1</u>	T2	Т3	T4	T5
D1	1	0	2	1	2
D2	1	1	1	1	1
D3	0	0	3	1	0
D4	0	1	2	1	2
D5	5	0	0	0	1
D6	5	5	2	1	0

tf(t1, D1) = No. of times the term t1, appeared in the document D1 = 1

$$idf(t1) = \log\left(\frac{Total\ no.of\ documents\ in\ the\ corpus}{No.of\ documents\ in\ which\ the\ terms\ t\ appears}\right) = log_2\left(\frac{6}{4}\right) = 0.58$$

DTM	T1	T2	Т3	T4	T5
D1	1/6*0.58	0	2	1	2
D2	1	1	1	1	1
D3	0	0	3	1	0
D4	0	1	2	1	2
D5	5	0	1	0	1
D6	5	5	2	1	0

tf(t1, D1) = No. of times the term t1, appeared in the document D1 = 1

$$idf(t1) = \log\left(\frac{Total\ no.of\ documents\ in\ the\ corpus}{No.of\ documents\ in\ which\ the\ terms\ t\ appears}\right) = log_2\left(\frac{6}{4}\right) = 0.58$$

DTM	T1	T2	Т3	T4	T5
D1	1/6*0.58	0	2	1	2
D2	1/5*0.58	1	1	1	1
D3	0/4*0.58	0	3	1	0
D4	0/6*0.58	1	2	1	2
D5	5/7*0.58	0	1	0	1
D6	5/13*0.58	5	2	1	0

tf(t1, D1) = No. of times the term t1, appeared in the document D1 = 1

$$idf(t1) = \log\left(\frac{Total\ no.of\ documents\ in\ the\ corpus}{No.of\ documents\ in\ which\ the\ terms\ t\ appears}\right) = log_2\left(\frac{6}{4}\right) = 0.58$$

DTM	T1	T2	<u>T3</u>	T4	T5
D1	1/6*0.58	0	2	1	2
D2	1/5*0.58	1	1	1	1
D3	0/4*0.58	0	3	1	0
D4	0/6*0.58	1	2	1	2
D5	5/7*0.58	0	1	0	1
D6	5/13*0.58	5	2	1	0

tf(t3, D1) = No. of times the term t3, appeared in the document D1 = 2

$$idf(t3) = \log\left(\frac{Total\ no.of\ documents\ in\ the\ corpus}{No.of\ documents\ in\ which\ the\ terms\ t\ appears}\right) = \log_2\left(\frac{6}{6}\right) = 0$$

DTM	T1	T2	Т3	T4	T5
D1	1/6*0.58	0	2/6 * 0	1	2
D2	1/5*0.58	1	1/5 * 0	1	1
D3	0/4*0.58	0	3/4 * 0	1	0
D4	0/6*0.58	1	2/6 * 0	1	2
D5	5/7*0.58	0	1/7 * 0	0	1
D6	5/13*0.58	5	2/13 * 0	1	0

tf(t3, D1) = No. of times the term t3, appeared in the document D1 = 2

$$idf(t3) = \log\left(\frac{Total\ no.of\ documents\ in\ the\ corpus}{No.of\ documents\ in\ which\ the\ terms\ t\ appears}\right) = \log_2\left(\frac{6}{6}\right) = 0$$

Text Embeddings Evolution

Word2vec Architectures

Continuous Bag of Words (CBOW)

Skip Gram

Text classification using embeddings

RNN

RNN – Language Modeling

RNN – Language Modeling

RNN – Sequence Labeling

RNN – Document Classification

Bi-Directional RNN

Encoder - Decoder

RNN Architectures

b) sequence classification

c) language modeling

d) encoder-decoder

Unrolling a RNN

LSTM

LSTM Gates

Simple RNN vs LSTM

