Лекция 9. Метод опорных векторов

ПАПУЛИН С.Ю. (PAPULIN.STUDY@YANDEX.RU)

Содержание

1.	Опо	рные векторы и зазор	3
1	.1.	Гиперплоскость	3
1	.2.	Разделяющая гиперплоскость	3
1	.3.	Расстояние от точки до гиперплоскости	4
1	.4.	Зазор и опорные векторы гиперплоскости	5
1	.5.	Уникальная гиперплоскость	6
2.	Мет	год опорных векторов для линейно разделимой выборки	6
2	.1.	Максимизация зазора	7
2	.2.	Прямая задача (primal problem)	7
2	.3.	Двойственная задача (dual problem)	7
3.	Мет	год опорных векторов для линейно неразделимой выборки	.12
3	.1.	Мягкий зазор	.12
3	.2.	Прямая задача	.13
3	.3.	Двойственная задача	15
	3.3.	1. Кусочно-линейная функция потерь (hinge loss)	15
	3.3.	2. Квадратичная функция потерь (quadratic loss)	17
4. He		инейный случай	18
5. Алг		оритмы обучения	21
6.	Мет	год опорных векторов для задачи регрессии	21
7.	Пре	имущества и недостатки SVM	2 3
Спи	ісок л	итературы	.24

1. Опорные векторы и зазор

1.1. Гиперплоскость

Пусть есть n точек в d размерном пространстве:

$$D = \{(x_i, y_i)\}_{i=1}^n,$$

где

$$x_i = [x_{i1} \ x_{i2} \ ... \ x_{id}]$$

И

$$y_i \in \{+1, -1\}$$

Гиперплоскость в d размерном пространстве представляется как множество всех точек $x \in \mathbb{R}^d$, которые удовлетворяют следующее условие:

$$h(x) = 0$$
,

где h(x) – функция гиперплоскости:

$$h(x) = w^T x + b = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b,$$

где w – вектор весов размерности d; b – скалярное значение, смещение.

Для точек, лежащих на гиперплоскости, имеем

$$h(x) = w^T x + b = 0.$$

1.2. Разделяющая гиперплоскость

Гиперплоскость разбивает исходное d-размерное пространство на два полупространства.

Набор данных называется линейно-разделимым, если каждая полуплоскость содержит точки только одного класса.

Если входной набор данных линейно-разделим, то мы можем найти разделяющую гиперплоскость h(x)=0, такую что все точки $y_i=-1$ будут лежать $h(x_i)<0$ и все точки $y_i=+1$ будут находиться $h(x_i)>0$.

Функция гиперплоскости $h(\pmb{x})$ служит как линейный классификатор или линейный дискриминант, который предсказывает класс \pmb{y} для любой заданной точки \pmb{x} в соответствии с правилом принятия решения:

$$y = \begin{cases} +1, \text{если } h(x) > 0 \\ -1, \text{если } h(x) < 0 \end{cases}$$

Пусть a_1 и a_2 две произвольные точки, которые лежат на гиперплоскости

$$h(a_1) = w^T a_1 + b = 0$$

$$h(a_2) = w^T a_2 + b = 0$$

Вычитаем одно выражение из другого, получаем

$$w^T(a_1 - a_2) = 0$$

Это означает, что вектор параметров w ортогонален гиперплоскости, потому что он ортогонален любому вектору (a_1-a_2) на гиперплоскости

 $oldsymbol{w}$ определяет направление нормальное к гиперплоскости, которое фиксирует ориентацию гиперплоскости

b фиксирует смещение гиперплоскости в d-размерном пространстве

Так как оба вектора ${\pmb w}$ и $-{\pmb w}$ нормальны к гиперплоскости, мы устраняем неопределенность за счет введения требования, что $h({\pmb x}_i) > 0$, когда $y_i = 1$, и $h({\pmb x}_i) < 0$ когда $y_i = -1$.

1.3. Расстояние от точки до гиперплоскости

Рассмотрим точку $x \in \mathbb{R}^d$, такие что х не лежит на гиперплоскости

Пусть x_p будет ортогональная проекция x на гиперплоскость и пусть r = x – x_p . Тогда

$$x = x_p + r$$

И

$$x = x_p + r \frac{w}{\|w\|}$$

где r – направленное расстояние до точки x из x_p , т.е. r указывает на смещение x от x_p по направлению единичного вектора параметров $\frac{\mathbf{w}}{\|\mathbf{w}\|}$

Смещение r — положительно, если направления ${m r}$ и ${m w}$ совпадают, и отрицательно, если направлены противоположно

Рисунок – Гиперплоскость h(x)=0 и проекция точки x на гиперплоскость [1]

Как получить расстояние между точкой \boldsymbol{x} и гиперплоскостью?

Запишем уравнение гиперплоскости в следующем виде для заданной точки $oldsymbol{x}$

$$h(x) = h\left(x_p + r\frac{w}{\|w\|}\right) = w^T\left(x_p + r\frac{w}{\|w\|}\right) + b = \underbrace{w^Tx_p + b}_{h(x_p)} + r\frac{w^Tw}{\|w\|} = \underbrace{h\left(x_p\right)}_{0} + r\|w\| = r\|w\|$$

Тогда

$$r = \frac{h(x)}{\|\mathbf{w}\|}$$

Чтобы получить расстояние, которое должно быть неотрицательным, мы можем умножить r на метку класс y

$$\delta = y \cdot r = \frac{y \cdot h(x)}{\|\mathbf{w}\|}$$

Для точки начала координат $x=\mathbf{0}$, направленное расстояние есть

$$r = \frac{h(\mathbf{0})}{\|\mathbf{w}\|} = \frac{\mathbf{w}^T \mathbf{0} + b}{\|\mathbf{w}\|} = \frac{b}{\|\mathbf{w}\|}$$

1.4. Зазор и опорные векторы гиперплоскости

Для каждой точки x_i мы можем найти её расстояние до гиперплоскости, как

$$\delta_i = \frac{y_i h(x_i)}{\|\mathbf{w}\|} = \frac{y_i (\mathbf{w}^T x_i + b)}{\|\mathbf{w}\|}$$

Среди всех n точек мы определяем зазор линейного классификатора как минимальное расстояние от точки до разделяющей гиперплоскости, т.е.

$$\delta^* = \min_{\mathbf{x}_i} \left\{ \frac{y_i(\mathbf{w}^T \mathbf{x}_i + b)}{\|\mathbf{w}\|} \right\}$$

Заметим, что $\delta^* \neq 0$, так как полагаем, что h(x) разделяющая гиперплоскость.

Все точки (или векторы), которые соответствуют минимальному расстоянию, называются опорные векторы для гиперплоскости.

Другими словами, опорный вектор x^* есть точка, лежащая точно на зазоре классификатора, и таким образом удовлетворяет условие

$$\delta^* = \frac{y^*(\boldsymbol{w}^T \boldsymbol{x}^* + b)}{\|\boldsymbol{w}\|}$$

Числитель $y^*(\mathbf{w}^T\mathbf{x}^*+b)$ определяет абсолютное расстояние опорного вектора до гиперплоскости (функциональный зазор)

1.5. Уникальная гиперплоскость

Умножая обе части выражения гиперплоскости на некоторое скалярное значение s, получаем эквивалентную гиперплоскость:

$$s \cdot h(x) = s \cdot w^T x + s \cdot b = (s \cdot w)^T x + s \cdot b = 0$$

Чтобы получить уникальную (или каноническую) гиперплоскость, выберем такое значение s, при котором абсолютное расстояние опорного вектора до гиперплоскости будет равно 1:

$$s \cdot y^*(\mathbf{w}^T \mathbf{x}^* + b) = 1$$

Далее полагаем, что наша разделяющая гиперплоскость является канонической, т.е. полагаем, что выражение гиперплоскости масштабировано так, чтобы $y^*h(x^*)=1$ для опорного вектора x^*

Тогда зазор можно представить как

$$\delta^* = \frac{y^*h(x^*)}{\|w\|} = \frac{1}{\|w\|}$$

Рисунок – Зазор и опорные векторы при линейно разделимом случае [1]

В данном случае для каждого опорного вектора \pmb{x}_i^* с меткой \pmb{y}_i^* получаем

$$y_i^*h(\boldsymbol{x}_i^*)=1$$

а для любой точки, которая не является опорным вектором

$$y_i^*h(x_i^*) > 1$$

Для всех n точек из набор \boldsymbol{D} получаем следующее неравенство

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$
 для всех $\mathbf{x}_i \in D$

2. Метод опорных векторов для линейно разделимой выборки

2.1. Максимизация зазора

Если предположить, что точки набора данных линейно разделимы, то существует гиперплоскость, которая идеально классифицирует каждую точку. В данном случае существует бесконечное количество разделяющих гиперплоскостей. Какую необходимо выбрать?

Фундаментальная идея, состоящая в основе метода опорных векторов, заключается в том, чтобы выбрать каноническую гиперплоскость, определяемую вектором параметров \boldsymbol{w} и смещением b, которая дает максимальные зазор среди всех возможных гиперплоскостей.

Если δ_h^* представляет зазор для гиперплоскости $h(\mathbf{x})=0$, то целью является поиск оптимальной гиперплоскости h^* :

$$h^* = \underset{h}{\operatorname{argmax}} \{\delta_h^*\} = \underset{w,b}{\operatorname{argmax}} \left[\frac{1}{\|w\|}\right]$$

при условии

$$y_i(\mathbf{w}^T\mathbf{x}_i+b) \geq 1$$
 для всех $\mathbf{x}_i \in D$

2.2. Прямая задача (primal problem)

Заметим, что вместо максимизации зазора $\frac{1}{||\mathbf{w}||}$, мы можем минимизировать $||\mathbf{w}||$. Тогда получим

$$\min_{\boldsymbol{w},b} \left[\frac{\left| |\boldsymbol{w}| \right|^2}{2} \right]$$

при условии

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \forall \mathbf{x}_i \in D$$

Мы можем напрямую решить данную задачу по минимизации выпуклой функции с n линейными ограничениями, используя стандартные алгоритмы оптимизации.

2.3. Двойственная задача (dual problem)

Функция Лагранжа

Функция Лагранжа применяется, когда необходимо найти максимум или минимум целевой функции f(x) с ограничением h(x) = 0.

В этом случае для оптимального решения будет справедливо равенство

$$\nabla f(x^*) = \lambda^* \nabla h(x^*),$$

где λ^* – некоторая константа, называемая множителем Лагранжа.

Замечание: предыдущее выражение иногда записывают со знаком минус, т.е.

$$\nabla f(x^*) = -\lambda^* \nabla h(x^*)$$

Таким образом, функция Лагранжа с одним ограничением примет вид

$$L(x,\lambda) = f(x) - \lambda h(x)$$

Для поиска оптимальных значений решается система уравнений:

$$\nabla L(x,\lambda) = \begin{bmatrix} \frac{\partial L(x,\lambda)}{\partial x_1} \\ \frac{\partial L(x,\lambda)}{\partial x_2} \\ \vdots \\ \frac{\partial L(x,\lambda)}{\partial \lambda} \end{bmatrix} = \mathbf{0}$$

Если имеются p ограничений, то

$$L(x,\lambda) = f(x) - \sum_{i=1}^{p} \lambda_i h_i(x)$$

Прямая задача

Задача оптимизации в общей форме записывается как

$$\min_{x} f(x)$$

при условии

$$f_i(x) \le 0$$
 для $i = 1, ..., m$

И

$$h_i(x) = 0$$
 для $i = 1, ..., p$

Оптимальное решение представим как p^{st}

Данную задачу можно представить в виде функции Лагранжа

$$L(x,\lambda,\nu) = f(x) - \sum_{i=1}^{m} \lambda_i f_i(x) - \sum_{i=1}^{p} \nu_i h_i(x)$$

где λ_i и ν_i – множители Лагранжа

Заметим, что в такой записи x неограничен.

Двойственная задача

Двойственная функция Лагранжа:

$$g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) = \inf_{x \in D} \left[f(x) - \sum_{i=1}^{m} \lambda_i f_i(x) - \sum_{i=1}^{p} \nu_i h_i(x) \right],$$

где $g(\cdot,\cdot)$ – вогнутая функция

Двойственная задача примет вид:

$$\max_{\lambda,\nu} g(\lambda,\nu)$$

при условии

$$\lambda \ge 0$$

Оптимальное решение обозначим как d^{st}

Слабая двойственность:

$$p^* \ge d^*$$

Строгая двойственность:

$$p^* = d^*$$

Если f(x) является выпуклой квадратичной функцией и функции f_i и h_i – аффинные функции, то

$$p^* = d^*$$

Условие Слейтера — достаточное условие для строгой двойственности при выпуклой оптимизации

Аффинная функция есть y = Ax + c

Двойственную задачу, как правило, решают через метод множителей Лагранжа. Основная идея заключается в том, что вводятся множители α_i для каждого ограничения, которые удовлетворяют условия Каруша-Куна-Таккера (ККТ) оптимального решения:

$$\alpha_i(y_i(\mathbf{w}^T\mathbf{x}_i+b)-1)=0$$

$$\alpha_i \geq 0$$

Новая целевая функция называется функцией Лагранжа (Lagrangian), которая имеет следующий вид

$$L = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{n} \alpha_i (y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1)$$

L должна быть минимизирована по $oldsymbol{w}$ и b, и максимизирована по отношению к $lpha_i$

$$\max_{\alpha_i; \, \alpha_i \geq 0} \left[\min_{w, \, b} L(w, b, \alpha_i) \right]$$

Задача минимизации

Возьмем частные производные по параметрам и смещению:

• по параметрам **w**:

$$\frac{\partial}{\partial w}L = w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0$$
или

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

по смещению b:

$$\frac{\partial}{\partial b}L = \sum_{i=1}^{n} \alpha_i y_i = 0$$

Таким образом, вектор параметров может быть представлен как линейная комбинация точек набора данных с множителем Лагранжа (с учетом знака метки класс) в качестве коэффициентов.

Сумма же множителей Лагранжа с учетом знака метки класса должна быть равна нулю

Задача максимизации

Подставляя ранее полученные выражения при минимизации по параметрам и смещению в общее выражение, получим двойственную целевую функцию:

$$L_{dual} = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i (y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1) =$$

$$= \frac{1}{2} \mathbf{w}^T \mathbf{w} - \mathbf{w}^T \left(\sum_{i=1}^n \alpha_i y_i \mathbf{x}_i \right) - b \sum_{i=1}^n \alpha_i y_i + \sum_{i=1}^n \alpha_i =$$

$$= -\frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{i=1}^n \alpha_i =$$

$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

Тогда задачу оптимизации можно записать как

$$\max_{\alpha} L_{dual} = \max_{\alpha} \left[\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^T \boldsymbol{x}_j \right]$$

при условии

$$\alpha_i \geq 0, \forall i \in D$$
 и $\sum_{i=1}^n \alpha_i y_i = 0$

 L_{dual} есть выпуклая квадратическая задача оптимизации (по $\alpha_i \; \alpha_j$), которая может быть решена с использованием стандартных техник оптимизации.

Вектор весов и смещение

После нахождения значений α_i мы можем рассчитать параметры ${\pmb w}$ и смещение b. Заметим, что в соответствии с ККТ условиями мы имеем

$$\alpha_i(y_i(\mathbf{w}^T\mathbf{x}_i+b)-1)=0$$

Рассмотрим два случая:

$$lpha_i = 0$$
 и $y_i(oldsymbol{w}^Toldsymbol{x}_i + b) - 1 = 0$

- Если $a_i > 0$, то $y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$ и тогда точка \mathbf{x}_i должна быть опорным вектором;
- С другой стороны, если $y_i(\mathbf{w}^T\mathbf{x}_i+b)>1$, то $a_i=0$, т.е. если точка не является опорным вектором, тогда $\alpha_i=0$.

Так как мы знаем α_i для всех точек, мы можем вычислить параметры выполнив суммирование только по опорным векторам:

$$\mathbf{w} = \sum_{i,\alpha_i > 0} \alpha_i y_i \mathbf{x}_i$$

Для вычисления смещения b сначала вычислим b_i для каждого опорного вектора:

$$b_i=rac{1}{y_i}-m{w}^Tm{x}_i=y_i-m{w}^Tm{x}_i$$
 (следует из $lpha_i(y_i(m{w}^Tm{x}_i+b)-1)=0$ и $y_i(m{w}^Tm{x}_i+b)=1)$

Чтобы получить b, усредним значения по всем b_i , полученные на предыдущем шаге.

$$b = \underset{0 < \alpha_i}{\operatorname{avg}} \{b_i\}$$

Классификатор

Для любой точки x_* предсказание класса будет определяться как

$$\hat{y} = \operatorname{sign}(h(\mathbf{x}_*)) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}_* + b),$$

где $sign(\cdot)$ – функция возвращает +1, если аргумент положительный, и -1, если отрицательный.

3. Метод опорных векторов для линейно неразделимой выборки

3.1. Мягкий зазор

Рассмотрим случай, когда точки разных классов не могут быть идеально разделимы.

Рисунок – Мягкий зазор и опорные векторы при линейно неразделимом случае [1]

Метод опорных векторов может быть использован для неразделимых точек за счет введения переменных мягкого зазора ξ_i (slack variables). Таким образом, ранее введенное ограничение примет следующий вид:

$$y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b)\geq 1-\xi_i,$$

где $\xi_i \geq 0$ – переменная мягкого зазора для точки x_i , которая показывает, как сильно точка может нарушить условие разделения, т.е. точка теперь может быть на расстоянии менее чем $\frac{1}{\|\mathbf{w}\|}$ от гиперплоскости.

Переменные ξ_i указывают на три типа точек:

- Если $\xi_i=0$, то соответствующая точка \pmb{x}_i по крайней мере на расстоянии $\frac{1}{\|\mathbf{w}\|}$ от гиперплоскости
- Если $0<\xi_i<1$, то точка в пределах зазора и всё ещё правильно классифицирована, т.е. на правильной стороне гиперплоскости
- Если $\xi_i \geq 1$, то точка неправильно классифицирована и находится не на правильной стороне гиперплоскости

В случае с неразделимым пространством целью метода опорных векторов заключается в том, чтобы найти гиперплоскость с максимальным зазором, которая также минимизирует значения переменных ξ_i . Целевая функция примет следующий вид

$$\min_{\mathbf{w}, b, \xi_i} \left[\frac{||\mathbf{w}||^2}{2} + C \sum_{i=1}^n (\xi_i)^k \right]$$

при условии

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \forall \mathbf{x}_i \in D,$$

 $\xi_i \ge 0 \ \forall \mathbf{x}_i \in D,$

где C и k – константы.

Величина $\sum_{i=1}^{n} (\xi_i)^k$ определяет потерю, т.е. оценку отклонения от случая, когда множество точек разделимы.

Скалярное значение C, которая выбирается эмпирически, есть константа регуляризации, которая контролирует компромисс между максимизацией зазора и минимизацией потерь.

- Если $C \to 0$, то компонент потери исчезает и целевая функция будет только максимизировать зазор
- Если $C \to \infty$, то зазор уже не имеет существенного значения, и целевая функция будет пытаться минимизировать потери.

Константа k управляет формой потерь

- Как правило, k устанавливается равным 1 (кусочно-линейная функция потерь hinge loss) или 2 (квадратичная функция потерь)
- Когда k=1, целью является минимизации суммы ξ_i ; когда k=2, то суммы квадратов ξ_i

3.2. Прямая задача

Задача оптимизации имеет следующий вид

$$\min_{\mathbf{w}, b, \xi_i} \left[\frac{||\mathbf{w}||^2}{2} + C \sum_{i=1}^n (\xi_i)^k \right]$$

при условии

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \forall \mathbf{x}_i \in D,$$

 $\xi_i \ge 0 \ \forall \mathbf{x}_i \in D,$

Рассмотрим случай k=1. Вводимые условия можно записать в виде кусочно-линейной функции

$$l_{\text{hinge}}(\boldsymbol{x}_i, y, b, \boldsymbol{w}) = \max(0, 1 - y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b))$$

или для всего набора данных

$$L_{\text{hinge}} = \sum_{i=1}^{n} \max(0, 1 - y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b))$$

Доказательство

Зафиксируем значения ${\pmb w}$ и ${\pmb b}$ и рассмотрим минимизацию по ${\pmb \xi}$. Возьмем некоторое i. ξ_i должна быть неотрицательной. Лучшим вариантом является, когда ξ_i равна нулю, если $y_i({\pmb w}^T{\pmb x}_i+b)\geq 1$, иначе $1-y_i({\pmb w}^T{\pmb x}_i+b)$. Таким образом, $\xi_i=\max\bigl(0,1-y_i({\pmb w}^T{\pmb x}_i+b)\bigr)$

Тогда задача оптимизации приобретает следующую форму

$$\min_{\mathbf{w}, b} \left[\frac{||\mathbf{w}||^2}{2} + CL_{\text{hinge}} \right] = \min_{\mathbf{w}, b} \left[\frac{||\mathbf{w}||^2}{2} + C\sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) \right]$$

Логистическая регрессия и метод опорных векторов

Общая форма записи задачи безусловной оптимизации с регуляризацией L2

$$\min_{w,b} \left[L + \lambda \big| |w| \big|^2 \right]$$
или
 $\min_{w,b} \left[CL + \frac{\big| |w| \big|^2}{2} \right]$

При использовании кросс-энтропии в качестве L получаем выражение для логистической регрессии с L2 регуляризацией:

$$\min_{\boldsymbol{w},b} \left[L_{CE} + \lambda \big| |\boldsymbol{w}| \big|^2 \right] = \min_{\boldsymbol{w},b} \left[\sum_{i=1}^n y_i \log h_{\theta,i} + (1-y_i) \log \left(1-h_{\theta,i}\right) + \lambda \big| |\boldsymbol{w}| \big|^2 \right]$$
 или
$$\min_{\boldsymbol{w},b} \left[CL_{CE} + \frac{\big| |\boldsymbol{w}| \big|^2}{2} \right] = \min_{\boldsymbol{w},b} \left[C\sum_{i=1}^n y_i \log h_{\theta,i} + (1-y_i) \log \left(1-h_{\theta,i}\right) + \frac{\big| |\boldsymbol{w}| \big|^2}{2} \right]$$

Если использовать кусочно-линейную функцию потерь (hinge), то выражение примет вид

$$\min_{\mathbf{w},b} \left[L_{\text{hinge}} + \lambda \big| |\mathbf{w}| \big|^2 \right] = \min_{\mathbf{w},b} \left[\sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) + \lambda \big| |\mathbf{w}| \big|^2 \right]$$

$$\min_{\mathbf{w},b} \left[CL_{\text{hinge}} + \frac{\big| |\mathbf{w}| \big|^2}{2} \right] = \min_{\mathbf{w},b} \left[C\sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) + \frac{\big| |\mathbf{w}| \big|^2}{2} \right]$$

что соответствует методу опорных векторов.

Также возможен вариант

$$\min_{\mathbf{w}, b} \left[\frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)) + \lambda ||\mathbf{w}||^2 \right]$$

Сравнение функций потерь кросс-энтропии и кусочно-линейной

Такую задачу можно решить, например, посредством стохастического градиентного спуска и др.

3.3. Двойственная задача

3.3.1. Кусочно-линейная функция потерь (hinge loss)

Задача оптимизации

Если взять k=1, то задача оптимизации примет вид

$$\min_{\boldsymbol{w}, \boldsymbol{b}, \boldsymbol{\xi}_i} \left[\frac{\left| |\boldsymbol{w}| \right|^2}{2} + C \sum_{i=1}^n \xi_i \right]$$

при условии

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \forall \mathbf{x}_i \in D,$$

 $\xi_i \ge 0 \ \forall \mathbf{x}_i \in D.$

Данную задачу можно решить за счет введения множителей Лагранжа α_i и β_i , которые удовлетворяют следующие условия ККТ:

$$lpha_i(y_i(\pmb{w}^T\pmb{x}_i+b)-1+\xi_i)=0$$
 при $lpha_i\geq 0$ и
$$eta_i(\xi_i-0)=0$$
 при $eta_i\geq 0$

Функция Лагранжа примет вид

$$L = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

Рассмотрим двойственную задачу. Для этого вычислим частные производные по \pmb{w}, b и ξ_i и приравняем их к нулю:

$$\frac{\partial L}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i = 0 \text{ или } \boldsymbol{w} = \sum_{i=1}^n \alpha_i y_i \boldsymbol{x}_i$$

$$\frac{\partial L}{\partial b} = \sum_{i=1}^n \alpha_i y_i = 0$$

$$\frac{\partial L}{\partial \xi_i} = C - \alpha_i - \beta_i = 0 \text{ или } \beta_i = C - \alpha_i$$

Функция Лагранжа для двойственной задачи примет вид:

$$L_{dual} = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \mathbf{w}^T \underbrace{\left(\sum_{i=1}^n \alpha_i y_i \mathbf{x}_i\right)}_{\mathbf{w}} - b \underbrace{\sum_{i=1}^n \alpha_i y_i}_{0} + \sum_{i=1}^n a_i + \sum_{i=1}^n \underbrace{(C - \alpha_i - \beta_i)}_{0} \xi_i = \underbrace{\sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j}_{0}$$

Определим задачу оптимизации

$$\max_{\alpha} L_{dual} = \max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

при условии

$$0 \le \alpha_i \le C$$
, $\forall i \in D$ и $\sum_{i=1}^n \alpha_i y_i = 0$

Заметим, что целевая функция такая же, как и в линейно-разделимом случае. Однако ограничения по $lpha_i$ отличаются, потому что появилось требования, что $lpha_i+eta_i=\mathcal{C}$, $lpha_i\geq 0$ и $eta_i\geq 0$, что в свою очередь приводит к $0\leq lpha_i\leq \mathcal{C}$.

Данная задача может быть решена, например, посредством стохастического градиентного подъема.

Вектор параметров (весов)

Как и ранее $lpha_i=0$ для всех точек, которые не являются опорными векторами, и $lpha_i>0$ для опорных векторов. В последнем случае точки удовлетворяют равенство

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1 - \xi_i$$

Заметим, что опорные векторы включают все точки на зазоре ($\xi_i=0$) так же, как и все точки с положительным ξ_i .

Вектор параметров (весов):

$$\mathbf{w} = \sum_{i, q_i > 0} \alpha_i y_i \mathbf{x}_i$$

Смещение

Рассчитаем для β_i :

$$\beta_i = C - \alpha_i$$

Заменим eta_i в ККТ условиях на выражение выше

$$(C - \alpha_i)\xi_i = 0$$

Таким образом, для опорных векторов с $\alpha_i > 0$ существует два варианта:

- $\xi_i > 0$ откуда следует, что $\mathcal{C} \alpha_i = 0$ или $\alpha_i = \mathcal{C}$
- $\mathcal{C}-\alpha_i>0$, т.е. $\alpha_i<\mathcal{C}$. В этом случае $\xi_i=0$ (опорные векторы на зазоре)

Использую опорные векторы на зазоре ($0<lpha_i<\mathcal{C}$ и $\xi_i=0$), можно определить смещение b_i . Так одно из условий выглядит как

$$a_i(y_i(\mathbf{w}^T\mathbf{x}_i+b_i)-1)=0.$$

Если x_i является опорным вектором на зазоре, то

$$y_i(\mathbf{w}^T\mathbf{x}_i + b_i) = 1.$$

Смещение в этом случае для i-ой точки есть

$$b_i = \frac{1}{y_i} - \boldsymbol{w}^T \boldsymbol{x}_i = y_i - \boldsymbol{w}^T \boldsymbol{x}_i$$

Общее смещение можно вычислить усреднением

$$b = \underset{0 < \alpha_i < C}{\text{avg}} \{b_i\}$$

Предсказание

После определения оптимальной гиперплоскости предсказание для новой точки x_{st} есть

$$\hat{y} = \operatorname{sign}(h(x_*)) = \operatorname{sign}(w^T x_* + b)$$

3.3.2. Квадратичная функция потерь (quadratic loss)

При использовании квадратичной формы записи (k=2) задача оптимизации имеет вид

$$\min_{\mathbf{w}, b, \xi_i} \left[\frac{||\mathbf{w}||^2}{2} + C \sum_{i=1}^n \xi_i^2 \right]$$

при условии

$$y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b) \geq 1-\xi_i, \forall \boldsymbol{x}_i \in D.$$

Отметим, что отсутствует условие $\xi_i \geq 0 \; \forall x_i \in D$.

Функция Лагранжа примет вид

$$L = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i^2 - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i)$$

Дальнейшее решение аналогично ранее рассмотренному:

- Вычисляем частные производные по ${m w}, b$ и ξ_i и приравниваем их к нулю
- Формулируем двойственную задачу по отношению к α_i
- Максимизируем функцию Лагранжа для двойственной задачи и определяем α_i
- Вычисляем **w** и **b**

4. Нелинейный случай

Линейный метод опорных вектором может быть использован для набора данных с нелинейной границей принятия решения посредством трюка с ядром (kernel trick). Идея заключается в том, чтобы построить отображение точек x_i исходного d-размерного пространства в точки $\varphi(x_i)$ многомерного пространства признаков посредством нелинейного преобразования φ . Обеспечивая дополнительную гибкость за счет большего количества признаков, более вероятно, что точки $\varphi(x_i)$ будут линейно разделимы в пространстве признаков. Следуем отметить, что линейная поверхность принятия решения в действительности соответствует нелинейной поверхности принятия решения в исходном пространстве. Более того, трюк с ядром позволяет выполнять все операции посредством функции ядра, вычисляемой в исходном пространстве, нежели выполнять отображение точек в пространство признаков.

Рисунок – Пример с нелинейной границей принятия решения [1]

Функции ядра

Функция ядра должна удовлетворять следующее условие

$$K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$$

где $\varphi(\cdot)$ – функция отображения точки исходного пространства в точку пространства признаков

Полиномиальное ядро:

• однородное

$$K_a(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i^T \mathbf{x}_i)^q$$

• неоднородное

$$K_q(\mathbf{x}_i, \mathbf{x}_i) = \left(1 + \mathbf{x}_i^T \mathbf{x}_i\right)^q$$

Ядро Гаусса:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp \left[-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{2\sigma^2} \right]$$

Пример

Пример с полиномиальным неоднородным ядром второй степени Исходные векторы:

$$\mathbf{x}_i = [x_{i1} \ x_{i2}]^T$$
$$\mathbf{x}_j = [x_{j1} \ x_{j2}]^T$$

Преобразование исходного вектора в пространства полиномиальных признаков

$$\varphi(\mathbf{x}_i) = \begin{bmatrix} 1 & \sqrt{2} x_{i1} & \sqrt{2} x_{i2} & \sqrt{2} x_{i1} x_{i2} & x_{i1}^2 & x_{i2}^2 \end{bmatrix}$$

$$\varphi(\mathbf{x}_j) = \begin{bmatrix} 1 & \sqrt{2} x_{j1} & \sqrt{2} x_{j2} & \sqrt{2} x_{j1} x_{j2} & x_{j1}^2 & x_{j2}^2 \end{bmatrix}$$

$$K_q(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j) = 1 + 2x_{i1} x_{j1} + 2x_{i2} x_{j2} + 2x_{i1} x_{j1} x_{i2} x_{j2} + x_{i1}^2 x_{j1}^2 + x_{i2}^2 x_{j2}^2$$

То же самое можно выполнить посредством функции ядра без преобразования в пространство признаков

$$K_q(\mathbf{x}_i, \mathbf{x}_j) = (1 + x_{i1}x_{j1} + x_{i2}x_{j2})^2 = 1 + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} + 2x_{i1}x_{j1}x_{i2}x_{j2} + x_{i1}^2x_{j1}^2 + x_{i2}^2x_{j2}^2$$

Множество всех пар точек исходного пространства можно представить в виде матрицы ядра следующим образом

$$\mathbf{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \cdots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & \ddots & \vdots \\ K(\mathbf{x}_n, \mathbf{x}_1) & \cdots & K(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}$$

где $K(\cdot,\cdot)$ – функция ядра.

Применение функции ядра в методе опорных векторов

Чтобы применить трюк с ядром для нелинейной классификации в методе опорных векторов, необходимо все операции свести к вычислению функции ядра

$$K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$$

Новое пространство признаков будет иметь вид

$$D_{\varphi} = \{(\varphi(\mathbf{x}_i), y_i)\}_{i=1}^n$$

Сформулируем задачу оптимизации с учетом нового пространства

$$\min_{w,b,\xi_i} \left[\frac{||w||^2}{2} + C \sum_{i=1}^n (\xi_i)^k \right]$$

при условии

$$y_i(\mathbf{w}^T \boldsymbol{\varphi}(\mathbf{x}_i) + b) \ge 1 - \xi_i$$
, и $\xi_i \ge 0$, $\forall \mathbf{x}_i \in D$

Кусочно-линейная функция потерь

Двойственную задачу оптимизации при k=1 для введенного пространства признаков можно представить как

$$\max_{\alpha} L_{dual} = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi(\mathbf{x}_{i})^{T} \varphi(\mathbf{x}_{j}) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

при условии

$$0 \le \alpha_i \le C$$
, $\forall i \in D$ и $\sum_{i=1}^n \alpha_i y_i = 0$

Вектор параметров

Для вычисления параметров используется выражение

$$\mathbf{w} = \sum_{i,a_i > 0} \alpha_i y_i \boldsymbol{\varphi}(\mathbf{x}_i)$$

Можно заметить, что в этом случае не используется функция ядра, а значит точки x_i необходимо в явном виде преобразовывать в пространство признаков $\varphi(x_i)$. Однако как будет показано далее для предсказания нет необходимости отдельно вычислять параметры w.

Смещение

Смещения для одной точки, лежащей на зазоре, вычисляется как

$$b_i = y_i - \mathbf{w}^T \boldsymbol{\varphi}(\mathbf{x}_i) = y_i - \sum_{i, a_i > 0} \alpha_i y_i \boldsymbol{\varphi}(\mathbf{x}_i)^T \boldsymbol{\varphi}(\mathbf{x}_j) = y_i - \sum_{i, a_i > 0} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j)$$

Для определения общего смещения усредняем

$$b = \underset{0 < \alpha_i < C}{\text{avg}} \{b_i\}$$

Классификация

Предсказание для новой точки $oldsymbol{x}_*$ будет иметь вид

$$\hat{y} = \operatorname{sign}\left(h(\varphi(\mathbf{x}_*))\right) = \operatorname{sign}(\mathbf{w}^T \varphi(\mathbf{x}_*) + b) = \operatorname{sign}\left[\sum_{i,a_i > 0} \alpha_i y_i \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_*) + b\right]$$

$$= \operatorname{sign}\left[\sum_{i,a_i > 0} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_*) + b\right]$$

Таким образом, для обучения и классификации нам нет необходимости отображать точки исходного пространства в новое пространство признаков с большей размерностью, т.к. использование функции ядра позволяет производить вычисления над элементами исключительно исходного пространства.

5. Алгоритмы обучения

- Решение двойственной задачи. Стохастический градиентный подъем. Sequential minimal optimization (SMO)
- Решение прямой задачи. Оптимизация Ньютона

6. Метод опорных векторов для задачи регрессии

В качестве варианта применения методам опорных векторов к задаче регрессии рассмотрим линейную ϵ -SVM регрессию [2]. Наша задача найти такую функцию h(x), которая отклонялась бы не более чем на величину ϵ от действительного значений y для каждого наблюдения из обучающего множества. При этом мы хотим получить как можно более плоскую функцию.

Таким образом нам надо найти

$$h(x) = \mathbf{w}^T \mathbf{x} + b$$

такую, что

$$\frac{1}{2}\mathbf{w}^T\mathbf{w} \to \min$$

при условии

$$|y_i - (\mathbf{w}^T \mathbf{x}_i + b)| \leq \varepsilon$$

Чтобы ослабить условие и позволить наблюдениям выходить за установленный уровень ε (ε -канал), введем переменные ξ_i и ξ_i^* по аналогии с мягким зазором в задаче классификации. Данные переменные показывают на сколько действительное значение отклоняется от предсказанного за вычетом ε .

Рисунок – Метод опорных векторов для классификация (а) и регрессия (б)[3]

Прямая задача

$$\min_{m{w},b,\xi_i} \left[rac{ig|m{w}ig|^2}{2} + C \sum_{i=1}^n (\xi_i + \xi_i^*)
ight]$$
 при условии $y_i - (m{w}^Tm{x}_i + b) \leq \varepsilon + \xi_i,$ $(m{w}^Tm{x}_i + b) - y_i \leq \varepsilon + \xi_i^*,$ $\xi_i, \xi_i^* \geq 0 \ orall m{x}_i \in D,$

Таким образом, мы наказываем те предсказания, которые выходят за пределы установленного значения ε . Штраф выражается в добавлении в целевую функцию значения ξ_i или ξ_i^* в зависимости положения наблюдения, выше или ниже функции предсказания.

Замечание

Прямую задачу можно представить с использованием кусочно-линейной функции

$$\min_{\boldsymbol{w}, b} \left[C \sum_{i=1}^{n} \max(0, |y_i - (\boldsymbol{w}^T \boldsymbol{x}_i + b)| - \varepsilon) + \frac{\left| |\boldsymbol{w}| \right|^2}{2} \right]$$

<u>Двойственная задача</u>

$$\max_{\alpha} L_{dual} = \max_{\alpha} \left[\sum_{i=1}^{n} y_i (\alpha_i - \alpha_i^*) - \epsilon \sum_{i=1}^{n} (\alpha_i + \alpha_i^*) - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \pmb{x}_i^T \pmb{x}_j \right]$$
 при условии

$$\sum_{i=1}^{n} (\alpha_i - \alpha_i^*) = 0,$$

Замечание

Двойственную форму записи можно представить в виде минимизации с сохранением условий следующим образом

$$\min_{\alpha} \left[\sum_{i=1}^{n} y_i (\alpha_i^* - \alpha_i) + \varepsilon \sum_{i=1}^{n} (\alpha_i + \alpha_i^*) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) \boldsymbol{x}_i^T \boldsymbol{x}_j \right]$$

или в матричном виде

$$\min_{\alpha} \left[\mathbf{y}^{T} (\boldsymbol{\alpha}^* - \boldsymbol{\alpha}) + \varepsilon \mathbf{e}^{T} (\boldsymbol{\alpha} + \boldsymbol{\alpha}^*) + \frac{1}{2} (\boldsymbol{\alpha} - \boldsymbol{\alpha}^*)^{T} Q (\boldsymbol{\alpha} - \boldsymbol{\alpha}^*) \right]$$

где $m{e}$ – единичный вектор размера n; $Q_{ij} = m{x}_i^T m{x}_j$ или в более общем виде $Q_{ij} = Km{x}_i, m{x}_j$

KKT

$$\alpha_i(\varepsilon + \xi_i - y_i + \mathbf{w}^T \mathbf{x}_i + b) = 0$$

$$\alpha_i^*(\varepsilon + \xi_i^* + y_i - \mathbf{w}^T \mathbf{x}_i - b) = 0$$

$$\xi_i(C - \alpha_i) = 0$$

$$\xi_i^*(C - \alpha_i^*) = 0$$

Для всех наблюдений, находящихся в пределах ε -канала, множители Лагранжа будут равны нулю, то есть $\alpha_i=0$ и $\alpha_i^*=0$. Если один из множителей α_i или α_i^* не равен нулю, то такое наблюдение называется опорным вектором.

Предсказание

$$\hat{y}_* = \mathbf{w}^T \mathbf{x}_* + b = \sum_{i=1}^n (\alpha_i - \alpha_i^*) \mathbf{x}_i^T \mathbf{x}_* + b$$

Решение задачи оптимизации посредством алгоритмов квадратичного программирования (quadratic programming – QP) может быть ресурсозатратным. Поэтому используют такие методы как:

- Методы разложения (Decomposition methods)
- Последовательная минимальная оптимизация (Sequential minimal optimization SMO)

7. Преимущества и недостатки SVM

Преимущества

Подходит для многоразмерных данных

- Можно использовать, если количество наблюдений меньше количества признаков
- Подходит для нелинейной границы принятия решения
- Устойчив к шумам/выбросам
- Имеет хорошую обобщающую способность

Недостатки

- Плохо подходит для больших наборов данных
- Не дает вероятностные значения
- Выбор гиперпараметров (коэффициента регуляризации и ядра)
- При использовании ядра требуется хранить матрицу значений

Список литературы

- 1. Zaki, Mohammed & Meira Jr, Wagner. Data Mining and Analysis: Fundamental Concepts and Algorithms. 2014.
- 2. MathWorks Documentation. Understanding Support Vector Machine Regression. URL: https://www.mathworks.com/help/stats/understanding-support-vector-machine-regression.html
- 3. Rodríguez-Pérez, R., Bajorath, J. Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery. J Comput Aided Mol Des 36, 355–362 (2022). https://doi.org/10.1007/s10822-022-00442-9