Simulating data: Theory

Without simulating data...

Why simulate data?...

Why simulate data?...

- Develop the model and hypotheses:
 - Useful for pre-registration/registered reports.
- Tests assumptions:
 - Do your stats tell you what you need to know?
 - Impossible analysis?
- Power analyses (when power cannot be computed directly):
 - Mixed-effects models.
 - Uncontrollable covariance between predictors.
 - Generalised linear models.

Why simulate data?...

- Develop model and hypotheses:
 - Useful for pre-registration/registered reports.
- Tests assumptions:
 - Do your stats tell you what you need to know?
 - Impossible analysis?
- Power analyses (when power cannot be computed directly):
 - Mixed-effects models.
 - Uncontrollable covariance between predictors.
 - Generalised linear models.

What is a model?

Parametric equations

• Describe how the DV is expected to change in response to the IV.

Probability distributions

- 'Shapes' that describe the spread of data points... around expectation.
 - Noise or error.
 - Random effects.

"All models are wrong, but some are useful."

George Box

Choosing a parametric equation

Expected relationship between variables:

- What do you think happens in the real world?
- What range of values can the IV and DV take?

Many options...

- Mean
- Linear
- Polynomial
- Exponential
- Sigmoid
- Power

Mean

Linear

Polynomial

Exponential

Sigmoid

Power (log-log analyses)

Choosing a probability distribution

Spread of random factors around what is expected:

- What do you think happens in the real world?
- What range of values can the IV and DV take?

Many options...

- Normal
- Gamma
- Beta
- Etc...

Normal distribution

Gamma distribution

Beta distribution

Estimating power from simulations

The sampling distribution

http://www.ltcconline.net/greenl/java/Statistics/clt/cltsimulation.html

Estimating power from simulations

Design efficiency

Efficiency finding a difference between X and Y.

Efficiency finding a difference between X+Y and zero.