Lecture 11 Signals and Systems (ELL205)

By Dr. Abhishek Dixit

Dept. of Electrical Engineering

IIT Delhi

Outline of the lecture

- Use h(t) to determine whether the system is:
 - Memoryless
 - Causal
 - Stable
 - Invertible
- Applications of h(t) to real-life scenarios
- System designing

Outline of the lecture

- Use h(t) to determine whether the system is:
 - Memoryless
 - Causal
 - Stable
 - Invertible
- Applications of h(t) to real-life scenarios
- System designing

Memoryless system: $h(t) = k\delta(t)$

Memoryless system: $h(t) = k\delta(t)$

Causal system: h(t) = 0 t < 0

Memoryless system: $h(t) = k\delta(t)$

Causal system: h(t) = 0 t < 0

Causal and linear system: Condition of initial rest

Memoryless system: $h(t) = k\delta(t)$

Causal system: h(t) = 0 t < 0

Causal and linear system: Condition of initial rest

Stability: $\int_{-\infty}^{\infty} |h(t)| dt < \infty$

Memoryless system:
$$h(t) = k\delta(t)$$

Causal system:
$$h(t) = 0$$
 $t < 0$

Causal and linear system: Condition of initial rest

Stability:
$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

Invertible:
$$h(t) * h_{inv}(t) = \delta(t)$$

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3				

Functions	Linear	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No		

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No	Yes		

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No	Yes	No	

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No	Yes	No	No

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No	Yes	No	No
$y[n] = 2x^2[n]$				

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No	Yes	No	No
$y[n] = 2x^2[n]$	No	Yes	Yes	Yes

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No	Yes	No	No
$y[n] = 2x^2[n]$	No	Yes	Yes	Yes
y[n] = 2x[n]				

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No	Yes	No	No
$y[n] = 2x^2[n]$	No	Yes	Yes	Yes
y[n] = 2x[n]	Yes	Yes	Yes	Yes

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No	Yes	No	No
$y[n] = 2x^2[n]$	No	Yes	Yes	Yes
y[n] = 2x[n]	Yes	Yes	Yes	Yes
y[n] = x[n]x[n+1]				

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No	Yes	No	No
$y[n] = 2x^2[n]$	No	Yes	Yes	Yes
y[n] = 2x[n]	Yes	Yes	Yes	Yes
y[n] = x[n]x[n+1]	No	No	Yes	Yes

Functions	Linear	Causal	Condition of initial rest	ZIZO
y[n] = 2x[n] + 3	No	Yes	No	No
$y[n] = 2x^2[n]$	No	Yes	Yes	Yes
y[n] = 2x[n]	Yes	Yes	Yes	Yes
y[n] = x[n]x[n+1]	No	No	Yes	Yes

Linearity: It must satisfy ZIZO

Linearity and Causality: It must satisfy "Condition of initial rest."

Linearity and it satisfies "condition of initial rest": It must satisfy "Causality." (Proof is in tutorials)

$$x(t) * h(t) * h_{inv}(t) = x(t)$$

$$x(t) * h(t) * h_{inv}(t) = x(t)$$

$$x(t) = \sin \omega t + C$$

$$y(t) = \frac{dx(t)}{dt}$$

$$x(t) = \sin \omega t + C$$

$$h_{inv}[n] * (\delta[n] + a\delta[n-1]) = \delta[n]$$

$$h_{inv}[n] + ah_{inv}[n-1] = \delta[n]$$

$$h_{inv}[0] = 1$$

$$h_{inv}[1] + ah_{inv}[0] = 0$$

$$h_{inv}[1] = -a$$
 $h_{inv}[2] = -ah_{inv}[1] = a^2$ $h_{inv}[n] = (-a)^n u[n]$

(1)
$$h_{inv}[n] = (-a)^n u[n]$$
 (2) $h_{inv}[n] = (a)^n u[n]$ (3) $h_{inv}[n] = n(-a)^n u[n]$ (4) $h_{inv}[n] = n(a)^n u[n]$

A causal system to inverse

$$y[n] = x[n] + e^{-\alpha}x[n-1] + e^{-2\alpha}x[n-2] + \dots$$

is:

(1)
$$h_{inv}[n] = \delta[n] - e^{-\alpha}\delta[n-1]$$
 (2) $h_{inv}[n] = \delta[n] - e^{\alpha}\delta[n-1]$ (3) $h_{inv}[n] = \delta[n] - e^{-\alpha}\delta[n+1]$ (4) $h_{inv}[n] = \delta[n] - e^{\alpha}\delta[n+1]$

A causal system to inverse

$$y[n] = x[n] + e^{-\alpha}x[n-1] + e^{-2\alpha}x[n-2] + \dots$$

is:

(1)
$$h_{inv}[n] = \delta[n] - e^{-\alpha}\delta[n-1]$$
 (2) $h_{inv}[n] = \delta[n] - e^{\alpha}\delta[n-1]$ (3) $h_{inv}[n] = \delta[n] - e^{-\alpha}\delta[n+1]$ (4) $h_{inv}[n] = \delta[n] - e^{\alpha}\delta[n+1]$

Outline of the lecture

- Use h(t) to determine whether the system is:
 - Memoryless
 - Causal
 - Stable
 - Invertible
- Applications of h(t) to real-life scenarios
- System designing

- 1) Communication System
- 2) Optical System

- 1) Communication System
- 2) Optical System

A twisted pair coax has an impulse response as shown:

The maximum bit rate is

1) 100 Kb/s	2) 1 Mb/s
3) 10 Kb/s	4) 1 Kb/s

A twisted pair coax has an impulse response as shown:

The maximum bit rate is

1) 100 Kb/s	2) 1 Mb/s
3) 10 Kb/s	4) 1 Kb/s

The maximum bit rate is:

how fast the transmitter can spit out the bits 1100001100000?

The maximum bit rate is:

how fast the transmitter can spit out the bits 1100001100000?

