CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cs3102

CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cs3102

Donald Knuth

Why Study Theory?

Consider a Mayan Astronomer

Computers

How Does it Work?

How Does it Work?

How would I power Charlottesville with a drinking bird?

How does a nuclear power plant work?

Carnot Engine

- Model of any heat engine
- Independent of specifics of construction
- Provides fundamental limits on efficiency

Nicolas Lèonard Sadi Car (1796-1832)

Goals

- Create an awesome learning experience
- Instill enthusiasm for problem solving
- Give broad perspective on Computer Science
- Have fun!

Warning

- This will be a difficult class
 - Material is very subtle
 - Focussed on making strong/elegant/compelling arguments
- Lots of opportunities to succeed!

Office Hours

- Nate's
 - Rice 209
 - W 3:30pm-5:30pm
 - By appointment
- TA
 - TBD

Requirements

- Discrete Math (CS 2102)
- Software Development Methods (CS 2110)
- Tenacity
- Inquisitiveness
- Creativity

Text

• Sipser, *Introduction to the Theory of Computation*. 2nd or 3rd edition

Homework

- ~9 assignments total
- Mix of written and programming assignments
- Written:
 - 2/3 of all assignments
 - Must be typeset in LaTeX (tutorial is HW0)
 - Submit as zip folder containing tex file and pdf
- Programming:
 - 1/3 of all assignments

Acadmic Integrity

- Collaboration Encouraged!
 - Groups of up to 4 per assignment (no limit on extra credit)
 - List your collaborators
- Write-ups/code written independently
- Be able to explain any solution you submit!
- DO NOT seek published solutions online

Late Policy

- $grade = grade_{earned}e^{-\frac{1}{\phi}days}$
- Exponential decay
- Accepted until solutions posted

Exams

- Midterm
 - Est. March 5
 - Take home / in-class hybrid
- Final
 - Registrar's official date/time
 - Saturday May 6, 9am

Grade Breakdown

- 60% homework
- 20% Midterm
- 20% Final
- 10% Extra Credit
- 1% Questionnaire

Questionnaire

- Due TONIGHT!
 - I expect it will take ~15 minutes
- I will use this feedback when making decisions about lecture/assignment content

Questionnaire

- Due TONIGHT!
 - I expect it will take ~15 minutes
- I will use this feedback when making decisions about lecture/assignment content

Regrades

- Conducted in person
 - Office hours in syllabus/on calendar

Extra Credit

- Given for implementations of course content
 - Turing machine simulators
 - GUIs for programming assignments
 - Videos/graphics of concepts
 - Extensions of programming assignments
 - Another idea? Just ask!
- Must be something you can "show off"

Feedback

- I am not a course dictator, I am a civil servant
- I'm open to any suggestion to help you learn
- Let me know!
 - In person
 - Email
 - − @ProfNateB >

Waitlist