南科新青年讲堂

基于Python的科研数据分析入门

游正新,张家澍 2022/5/8

目录

- 简介
- 安装Python环境
- 案例1: 使用scikit-learn分析新冠数据
- · 案例2:使用PyTorch搭建神经网络
- 案例3: 使用Matplotlib进行数据可视化

https://github.com/Carl-Rabbit/sustech-youth-forum

目录

- 简介
- 安装Python环境
- 案例1: 使用scikit-learn分析新冠数据
- 案例2:使用PyTorch搭建神经网络
- 案例3:使用Matplotlib进行数据可视化

什么是Python

- Python是一种编程语言
- 语法简便,功能强大,广泛 应用于科研场景
 - 数据清洗
 - 数据分析
 - 数据可视化

目录

- 简介
- 安装Python环境
- 案例1: 使用scikit-learn分析新冠数据
- 案例2:使用PyTorch搭建神经网络
- 案例3:使用Matplotlib进行数据可视化

安装Python

- 以Windows环境为例,向大家介绍Python的安装
- 使用Anaconda安装Python
 - 免费的Python环境管理平台
 - 提供简便易用的桌面操作环境
 - 包括Python,常用的软件包以及开发环境

Anaconda

https://www.anaconda.com/

Data science technology for a better world.

Anaconda offers the easiest way to perform Python/R data science and machine learning on a single machine. Start working with thousands of open-source packages and libraries today.

For Windows

Python 3.9 • 64-Bit Graphical Installer • 510 MB

Get Additional Installers

Anaconda3 2021.11 (64-bit) Setup — 🗆 🗆									
ANACONDA.	Installing Please wait while Anaconda3 2021.1	1 (64-bit) is be	eing installed.						
Setting up the package cache									
Show details									
Anaconda, Inc.	< Back	Next >	Cancel						
	\ DBCK	THEAT?	Caricei						

创建虚拟环境

- 什么是虚拟环境?
 - 电脑上安装的Python本身是一个物理环境,我们可以 基于这个物理环境创建多个虚拟环境
- 为什么要创建虚拟环境?
 - 隔离不同的环境
 - 解决复杂的环境需求

安装Jupyter Notebook

Jupyter Notebook

• 在浏览器里写代码, 运行代码

localhost:8888/tree#

写下第一行代码

写下第一行代码

写下第一行代码

保存代码

目录

- 简介
- 安装Python环境
- 案例1: 使用scikit-learn分析新冠数据
- 案例2: 使用PyTorch搭建神经网络
- 案例3: 使用Matplotlib进行数据可视化

加载数据


```
import pandas as pd
```

注意需要设置dtype, 否则date列会被识别为浮点数

data = pd.read_csv('./data/covid-19-raw.csv', dtype={'date': str})

data

	date	year	newConfirm	newSuspect	newImportedCase	newInfect	newRecovered	newDeath	nowConfirm
0	04.05	2022.0	2263.0	0.0	32.0	19199.0	3357.0	87.0	280083
1	04.06	2022.0	2097.0	4.0	39.0	21784.0	2420.0	111.0	279649
2	04.07	2022.0	3096.0	4.0	36.0	22648.0	3358.0	97.0	279290
3	04.08	NaN	NaN	NaN	NaN	NaN	NaN	NaN	277812
4	04.09	2022.0	2049.0	0.0	33.0	25111.0	3491.0	63.0	276307

清理数据

- 删除不需要的数据列
- 对于数据中缺失的数据,有4种常用的填补方法:
 - •直接删除包含缺失数据的行
 - •用预设值填充
 - •用前一个或后一个合法值填充
 - •用均值或中值填充

- Scikit-learn是Python的一个免费机器学习库
- 它包含多个常用的机器学习模型,包括:
 - 支持向量机
 - 随机森林
 - 决策树
 - 神经网络

• ...

• 以新增确诊(newConfirm)为例

```
from sklearn.model_selection import train_test_split
from sklearn import linear model
# sklearn的输入是二维数组
x = [[d] for d in range(len(data))]
v = [[d] for d in data['newConfirm'].tolist()]
# 取7天用于预测,剩下的数据用于训练
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=7/len(data), shuffle=False)
# 创建并训练模型
model = linear_model.LinearRegression()
model.fit(x_train, y_train)
# 用模型进行预测
y_test_pred = model.predict(x_test)
print(f'Expression: y = \{model. coef_[0][0]\}x + \{model. intercept_[0]\}')
print(y test pred)
```

可视化结果

目录

- 简介
- 安装Python环境
- 案例1: 使用scikit-learn分析新冠数据
- · 案例2:使用PyTorch搭建神经网络
- 案例3: 使用Matplotlib进行数据可视化

https://pytorch.org/

安装PyTorch

- 参考PyTorch的官方文档
- https://pytorch.org/get-started/locally

安装PyTorch


```
×
 C:\Windows\system32\cmd.e: X
  idna
                     pkgs/main/noarch::idna-3.3-pyhd3eb1b0_0
  intel-openmp
                     pkgs/main/win-64::intel-openmp-2021.4.0-haa95532_3556
                     pkgs/main/win-64::jpeg-9e-h2bbff1b_0
  jpeg
 libona
                     pkgs/main/win-64::libpng-1.6.37-h2a8f88b_0
 libtiff
                     pkgs/main/win-64::libtiff-4.2.0-hd0e1b90_0
 libuv
                     pkgs/main/win-64::libuv-1.40.0-he774522_0
 libwebp
                     pkgs/main/win-64::libwebp-1.2.2-h2bbff1b_0
 lz4-c
                     pkgs/main/win-64::lz4-c-1.9.3-h2bbff1b_1
 mkl
                     pkgs/main/win-64::mkl-2021.4.0-haa95532_640
 mkl-service
                     pkgs/main/win-64::mkl-service-2.4.0-py39h2bbff1b_0
 mkl fft
                     pkgs/main/win-64::mkl_fft-1.3.1-py39h277e83a_0
 mkl_random
                     pkgs/main/win-64::mkl_random-1.2.2-py39hf11a4ad_0
                     pkgs/main/win-64::numpy-1.21.5-py39h7a0a035_2
 numpy
 numpy-base
                     pkgs/main/win-64::numpy-base-1.21.5-py39hca35cd5_2
 pillow
                     pkgs/main/win-64::pillow-9.0.1-py39hdc2b20a_0
                     pkgs/main/noarch::pyopenssl-22.0.0-pyhd3eb1b0_0
 pyopenssl
 pysocks
                     pkgs/main/win-64::pysocks-1.7.1-py39haa95532_0
 pytorch
                     pytorch/win-64::pytorch-1.11.0-py3.9_cpu_0
 requests
                     pkgs/main/noarch::requests-2.27.1-pyhd3eb1b0_0
 tk
                     pkgs/main/win-64::tk-8.6.11-h2bbff1b_0
 torchaudio
                     pytorch/win-64::torchaudio-0.11.0-py39_cpu
 torchvision
                     pytorch/win-64::torchvision-0.12.0-py39_cpu
 urllib3
                     pkgs/main/win-64::urllib3-1.26.9-py39haa95532_0
 win_inet_pton
                     pkgs/main/win-64::win_inet_pton-1.1.0-py39haa95532_0
 ΧZ
                     pkgs/main/win-64::xz-5.2.5-h8cc25b3_1
 zlib
                     pkgs/main/win-64::zlib-1.2.12-h8cc25b3_2
  zstd
                     pkgs/main/win-64::zstd-1.4.9-h19a0ad4_0
Proceed ([y]/n)? y
```

基于PyTorch编写代码

• 见neural-network-tutorial.ipynb

目录

- 简介
- 安装Python环境
- 案例1: 使用scikit-learn分析新冠数据
- · 案例2:使用PyTorch搭建神经网络
- · 案例3:使用Matplotlib进行数据可视化

• 大量的点图, 线图和柱图

Python绘图

• 在Python中,我们可以使用Matplotlib和Seaborn 等第三方数据可视化库

• 见plot-tutorial.ipynb

谢谢大家