Topic 2

Linear Models and Matrix Algebra

Outline

- 1. What is matrix?
- 2. Matrix operations
- 3. Special matrices
- 4. Inverse of a square matrix
- 5. Determinant of a square matrix
- 6. Linear equation system
- 7. Elementary operations
- 8. Rank of a matrix

1. What is a matrix?

A matrix is a two dimensional rectangular array of numbers.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

- We say that the dimension (or size) of A is $m \times n$, denoted $A \in \mathbb{R}^{m \times n}$
- If m = n, then A is a square matrix
- If n = 1, the $m \times 1$ matrix is called a column (m dimensional) vector
- If m = 1, the $1 \times n$ matrix is called a row (n dimensional) vector
- If m = n = 1, A is just a number, called scalar

Examples:

m = 2, n = 3:	$2 \times 3 \text{ matrix } A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 9 & 0 \end{pmatrix}$
m = 2, n = 1	Two-dimensional column vector $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$
m = 1, n = 4	Four-dimensional row vector (1,3,2,5)
m = 1, n = 1	Scalar number 3.14

2. Matrix operations

- Equality: A = B iff dim(A) = dim(B) and $a_{ij} = b_{ij}$ for all i and j
- Addition and subtraction: if $\dim(A) = \dim(B)$, then A + B has a typical element $a_{ij} + b_{ij}$ while A B has a typical element $a_{ij} b_{ij}$.
- **Example**: Let $A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 9 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 6 \\ 3 & 5 & 1 \end{pmatrix}$, then $A + B = \begin{pmatrix} 2 & 2 & 9 \\ 2 & 14 & 1 \end{pmatrix}$, $A B = \begin{pmatrix} 2 & 0 & -3 \\ -4 & 4 & -1 \end{pmatrix}$
- Scalar multiplication: For a scalar c, cA has typical element ca_{ij} .
- **Example**: Let $A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 9 & 0 \end{pmatrix}$, then $3A = \begin{pmatrix} 6 & 3 & 9 \\ -3 & 27 & 0 \end{pmatrix}$

Transpose of a matrix:

• For an $m \times n$ matrix A, the transpose A' (or A^T) is defined as an $n \times m$ matrix such that the (i, j)th element of A' is equal the (j, i)th element of A

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \text{ then } A' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

• **Examples**: $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$, then, $A' = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$

$$x = (1,2,3)$$
, then or $(1,2,3)' = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

- Properties of matrix transpose
 - (A')' = A
 - $-(A+B)'=A'+B', (\alpha A)'=\alpha A'$ where a is a scalar

Matrix multiplication:

• if $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, then A and B can be multiplied to produce a matrix of dimension of $m \times p$. Specifically, if

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & & \vdots \\ b_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}$$

then C = AB is a matrix with $\dim(C) = m \times p$

$$C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{pmatrix}, \text{ where } c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

• Note, for AB to be meaningful, the number of columns of A should be equal to the number of rows of B

Examples

•
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 \times 5 + 2 \times 7 & 1 \times 6 + 2 \times 8 \\ 3 \times 5 + 4 \times 7 & 3 \times 6 + 4 \times 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

• Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 5 \end{pmatrix}$, then
$$AB = \begin{pmatrix} 7 & 25 \\ 19 & 28 \end{pmatrix}$$
, $BA = \begin{pmatrix} 9 & 12 & 3 \\ 19 & 26 & 9 \\ 20 & 25 & 0 \end{pmatrix}$

- It is important to note that usually, $AB \neq BA$.
- Even if AB exists, BA may not be defined, for example,

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$

Useful properties

- Transpose of product: (AB)' = B'A'
- Left distributive law: A(B + C) = AB + AC
- Right distributive law: (A + B)C = AC + BC
- Associative law: (AB)C = A(BC) = ABC,
- **Exercise**: Prove the above properties for 2×2 matrices A, B and C.

Exercises

- 1. Confirm the following three points by example
 - $-AB \neq BA$ except in special cases
 - -AB = 0 does not imply that A or B is 0
 - -AB = AC and $A \neq 0$ do not imply that B = C
- 2. Let A and B be $n \times n$ matrices. Show that $(A+B)(A-B) = A^2 B^2$ only when AB = BA

3. Special matrices

- Vectors: $x = (x_1, x_2, ..., x_n)'$, useful for modeling a wide variety of economic phenomenon because of because n-tuples of numbers have many useful interpretations
 - Special case: n=2, the vector represents a particular location in the plane
 - Vector (3,2)

• Scalar multiplication: u = (2,1)'

• Vector summation: (6,1)' + (1,2)' = (7,3)'

Vector subtraction: (6,1)' - (1,2)' = (5,-1)'

- $u=(u_1,u_2,\ldots,u_n)'$, $\mathbf{v}=(v_1,v_2,\ldots,v_n)'$ then uv' is $n\times n$ matrix, and $u'v=\sum_{i=1}^n u_iv_i$ is a scalar, called the inner product of the two vectors.
- The length (or norm) of a vector: $||u|| = \sqrt{u'u}$
- An n-dimensional vector can be viewed as a point in n-dimensional space.

Special matrices, continued

- Symmetrix metrix: If A = A' (A must be a square matrix)
- For any matrix B, B'B and BB' exist and are symmetric
- Diagonal matrix: A square matrix A is diagonal if $a_{ij}=0$ for all $i\neq j$, denoted $A=diag(a_{11},a_{22},\ldots,a_{nn})$
- For two diagonal matrices $B=diag(\beta_1,\beta_2,\ldots,\beta_n)$ and $C=diag(\mu_1,\mu_2,\ldots,\mu_n)$, $BC=diag(\beta_1\mu_1,\beta_2\mu_2,\ldots,\beta_n\mu_n)$
- For a diagonal matrix, it is particularly easy to compute powers: $D = diag(d_1, d_2, ..., d_n), \quad D^k = DD \cdots D = diag(d_1^k, d_2^k, \cdots d_n^k)$

- An Identity matrix $I_n \in R^{n \times n}$ is a diagonal matrix with all diagonal elements equal to 1.
- A zero matrix $O \in \mathbb{R}^{m \times n}$ is a matrix (not necessarily square matrix) with all its elements equal to zero.
- For $A \in \mathbb{R}^{m \times n}$

$$- O + A = A + O = A$$

$$-I_m A = AI_n = A$$

• Let e_i be the ith column of I_n , then

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \quad e_{n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

- If $A \in R^{m \times n}$, then $e_i'A = ith$ row of A, and $Ae_j = jth$ column of A. Note: $e_i \in R^m$, $e_i \in R^n$
 - Exercise: Verify the above for 2×2 matrix

• **Example**: Compare the following 2×2 matrices:

Square matrix:	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
Symmetric matrix:	$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$
Diagonal matrix:	$\begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$
Identity matrix:	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Zero matrix:	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

- Idempotent matrix: If $A^2 \triangleq AA = A$ (A must be square matrix, why?)
 - **Examples**: I_n , $O_{n \times n}$ and $A = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$ are idempotent
- Upper triangular matrix: A square matrix A is upper triangular if $a_{ij} = 0$ for all i > j, i.e. all the elements below the diagonal are zero.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

• Lower triangular matrix: A square matrix A is lower triangular if $a_{ij} = 0$ for all i < j, i.e. all the elements above the diagonal are zero.

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

4. Inverse of a square matrix

- For a scalar $a \neq 0$, if b satisfies ab = ba = 1, then $b = a^{-1}$
- If an $n \times n$ matrix A, if there exists a matrix B such that $AB = BA = I_n$, then B is the inverse of A, denoted $B = A^{-1}$. If A^{-1} exists, we say that A is non-singular or invertible. Otherwise, A is called singular.

Examples

- Since $I_n I_n = I_n$, $I_n^{-1} = I_n$
- Let O be $n \times n$ matrix of zeros, then for any $n \times n$ matrix B OB = BO = O so O^{-1} does not exist, O is singular
- Let $A = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}$ for $a_1, a_2 \neq 0$, then $A^{-1} = \begin{pmatrix} a_1^{-1} & 0 \\ 0 & a_2^{-1} \end{pmatrix}$ If $a_1 = 0$ or $a_2 = 0$, then A^{-1} does not exist
- Let the diagonal matrix $B = diag(\beta_1, \beta_2, ..., \beta_n)$ for $\beta_1, \beta_2, ..., \beta_n \neq 0$, then $B^{-1} = diag(\beta_1^{-1}, \beta_2^{-1}, \cdots, \beta_n^{-1})$. If any of the $\beta_i = 0$, then B^{-1} does not exist.
- For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, verify that if $ad bc \neq 0$, $A^{-1} = \frac{1}{ad bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
- Verify that if $A^2 = 0$, then $(I A)^{-1} = I + A$

Properties of matrix inversion (verify)

- $(A^{-1})^{-1} = A$
- $(A')^{-1} = (A^{-1})'$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

5. Determinant of a square matrix

- Determinant can be used to check whether a square matrix is invertible
- |A| denote the determinant of a matrix
- If A is 1×1 , i.e., A = a is a scalar, then |A| = a
- If A is 2×2 , $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, then $|A| = a_{11}a_{22} a_{12}a_{21}$

• If
$$A$$
 is 3×3 , $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, then

$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31}$$
(complete expansion)
$$(2.1)$$

- For an $n \times n$ matrix A, the minor of a_{ij} is $M_{ij} = \left|A_{ij}\right|$ where A_{ij} is the $(n-1)\times(n-1)$ sub-matrix of A obtained by deleting the ith row and jth column of A
- The cofactor of a_{ij} is $C_{ij} = (-1)^{i+j} M_{ij}$
- Note that for 3×3 matrix A, $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$ (expansion along the 1st row)
- **Exercise**: For 3×3 matrix A, work out the complete expansion along the 2nd row:

$$a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23}$$

and compare with (2.1).

• Laplace Expansion of |A|

$$|A| = \sum_{j=1}^{n} a_{ij} C_{ij}$$
 [Expansion by the *ith* row]
 $= \sum_{i=1}^{n} a_{ij} C_{ij}$ [Expansion by the *jth* column]

• Exercise: Write out the definition of the determinant of a 4×4 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

in terms of the determinants of certain of its 3×3 submatrices. How many terms are there in the complete expansion of the determinant of a 4×4 matrix?

• Example: Let
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
, then

$$M_{11} = \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = 5 \times 9 - 6 \times 8 = -3; \quad M_{12} = \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = 36 - 42 = -6$$

$$M_{13} = \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = 32 - 35 = -3; \quad M_{21} = \begin{vmatrix} 1 & 3 \\ 8 & 9 \end{vmatrix} = 9 - 24 = -15$$

$$M_{22} = -3;$$
 $M_{23} = 9;$ $M_{31} = -9;$ $M_{32} = 0;$ $M_{33} = 6$

thus

$$C_{11} = M_{11} = -3;$$
 $C_{12} = -M_{12} = 6;$ $C_{13} = M_{13} = -3;$ $C_{21} = -M_{21} = 15$ $C_{22} = -3;$ $C_{23} = -9;$ $C_{31} = -9;$ $C_{32} = 0;$ $C_{33} = 6$

therefore

$$\sum_{j=1}^{3} a_{1j} C_{1j} = (2)(-3) + (1)(6) + (3)(-3) = -9 \text{ (expansion by first row)}$$

$$\sum_{j=1}^{3} a_{2j} C_{2j} = (4)(15) + (5)(-3) + (6)(-9) = -9 \text{ (expansion by second row)}$$

$$\sum_{j=1}^{3} a_{3j} C_{3j} = (7)(-9) + (8)(0) + (9)(6) = -9 \text{ (expansion by third row)}$$

Similarly (check out)

$$\sum_{i=1}^{3} a_{i1} C_{i1} = \sum_{i=1}^{3} a_{i2} C_{i2} = \sum_{i=1}^{3} a_{i3} C_{i3} = -9 \text{ (expansion by columns)}$$

Furthermore, expansion by alien cofactor

$$\sum_{i=1}^{3} a_{i1}C_{i2} = (2)(6) + (4)(-3) + (7)(0) = 0$$

(expansion by 1st row, cofactor of 2nd row)

In general

$$\sum_{j=1}^{n} a_{ij} C_{i'j} = 0 \quad (i \neq i') \quad [\text{expansion by } ith \text{ row and cofactor of } i'th \text{ row}]$$

$$\sum_{i=1}^{n} a_{ij} C_{ij'} = 0 \quad (j \neq j') \quad [\text{expansion by } jth \text{ column and cofactor of } j'th \text{ column}]$$

It is easy to verify that

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{pmatrix} = \begin{pmatrix} |A| & 0 & \cdots & 0 \\ 0 & |A| & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & |A| \end{pmatrix} = |A| I_n$$

• The adjoint of *A* is defined as

$$Adj(A) = C' = \begin{pmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{pmatrix}$$

- then $A \cdot adj(A) = |A|I_n$, when $|A| \neq 0$, $A \cdot [adj(A)/|A|] = I_n$
- Theorem: A square matrix A is invertible $\Leftrightarrow |A| \neq 0$ and $A^{-1} = adj(A)/|A|$

• **Example**: $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible when $|A|=ad-bc\neq 0$, and $C_{11}=d$, $C_{12}=-c$, $C_{21}=-b$, $C_{22}=a$ therefore, $A^{-1}=\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

• Example: Derive

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} -7 & 4 & 5 \\ 4 & -2 & -4 \\ -1 & 0 & 1 \end{pmatrix}$$

Determinant of special matrices

- If a square matrix A contains one zero row/column, then |A| = 0
- $|I_n| = 1$
- Determinant of upper triangular/lower triangular matrix is the product of its diagonal elements. Let

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \text{ and } B = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

then

$$|A| = |B| = a_{11}a_{22} \cdots a_{nn} = \det \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

6. Linear equation system

• The general linear system of m equations in n unknown variables can be written as

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(2.2)

• In matrix form, (2.2) can be written as Ax = b, where

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \text{and } b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

• Here, A is called the coefficient matrix, $\hat{A}=(A,b)$ is called the augmented matrix

• **Example**: Consider the problem of solving the linear equations

$$\begin{cases} 2x_1 + x_2 = 5\\ x_1 + 3x_2 = 10 \end{cases} \tag{2.3}$$

• In matrix form, it can be written as Ax = b, where

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad b = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$$

- the augmented matrix is $\hat{A} = \begin{pmatrix} 2 & 1 & 5 \\ 1 & 3 & 10 \end{pmatrix}$
- If A is a square matrix and A^{-1} exists, from

$$Ax = b$$
, we have $A^{-1}Ax = A^{-1}b$ or $x = A^{-1}b$ (solution)

• **Example** (application of inverse matrix), solve the simultaneous linear equations (2.3) using matrix inverse. Here

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad b = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$$

• Threfore $x = A^{-1}b$, where

$$A^{-1} = \frac{1}{2 \times 3 - 1} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$$
$$A^{-1} b = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 10 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

• So the solution to the simultaneous equations is $x_1 = 1$, $x_2 = 3$.

• Example: The Keynesian model:

$$\begin{cases} Y = C + I_0 + G_0 \\ C = a + bY \end{cases}$$

Can be written in matrix notation as Ax = b, where

$$A = \begin{pmatrix} 1 & -1 \\ -b & 1 \end{pmatrix}, \quad x = \begin{pmatrix} Y \\ C \end{pmatrix}, \quad b = \begin{pmatrix} I_0 + G_0 \\ a \end{pmatrix}$$

the solution to the model is

$$x^* = \begin{pmatrix} Y^* \\ C^* \end{pmatrix} = A^{-1}b = \begin{pmatrix} 1 & -1 \\ -b & 1 \end{pmatrix}^{-1} \begin{pmatrix} I_0 + G_0 \\ a \end{pmatrix}$$
$$= \frac{1}{1-b} \begin{pmatrix} 1 & 1 \\ b & 1 \end{pmatrix} \begin{pmatrix} I_0 + G_0 \\ a \end{pmatrix} = \frac{1}{1-b} \begin{pmatrix} I_0 + G_0 + a \\ b(I_0 + G_0) + a \end{pmatrix}$$

- Cramer's rule: an alternative way of solving system of linear equations.
- For the equation system Ax = b, if m = n and $|A| \neq 0$, then the solution is $x_j = \frac{|A_j|}{|A|}$, where A_j is obtained by replacing the jth column of A with b.
- **Example**: For the equation system (2.3) Ax = b with

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$$

Apply Cramer's rule, the solution is

$$x_{1}^{*} = \frac{\begin{vmatrix} 5 & 1 \\ 10 & 3 \end{vmatrix}}{\begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix}} = \frac{15 - 10}{6 - 1} = 1; \quad x_{2}^{*} = \frac{\begin{vmatrix} 2 & 5 \\ 1 & 10 \end{vmatrix}}{\begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix}} = \frac{20 - 5}{6 - 1} = 3$$

• **Example**: Two-good equilibrium model:

$$\begin{cases} c_1 P_1 + c_2 P_2 = -c_0 \\ \gamma_1 P_1 + \gamma_2 P_2 = -\gamma_0 \end{cases}$$

Apply Cramer's rule, the solution is

$$P_{1}^{*} = \frac{\begin{vmatrix} -c_{0} & c_{2} \\ -\gamma_{0} & \gamma_{2} \end{vmatrix}}{\begin{vmatrix} c_{1} & c_{2} \\ \gamma_{1} & \gamma_{2} \end{vmatrix}} = \frac{c_{2}\gamma_{0} - c_{0}\gamma_{2}}{c_{1}\gamma_{2} - c_{2}\gamma_{1}}, \quad P_{2}^{*} = \frac{\begin{vmatrix} c_{1} & -c_{0} \\ \gamma_{1} & -\gamma_{0} \end{vmatrix}}{\begin{vmatrix} c_{1} & c_{2} \\ \gamma_{1} & \gamma_{2} \end{vmatrix}} = \frac{c_{0}\gamma_{1} - c_{1}\gamma_{0}}{c_{1}\gamma_{2} - c_{2}\gamma_{1}}$$

Example: The Keynesian model including

a market for goods: and a market for money:

$$\begin{cases} Y = C + I + G_0 \\ C = a + bY \\ I = c - di \end{cases} \begin{cases} M^d = kY - ei \\ M^s = M_0 \\ M^d = M^s \end{cases}$$

• where G_0 , M_0 are exogenous variables, a, b, c, d, e, k are positive constants (parameters), the endogenous variables are Y, C, I, i. The two sets of equations imply

$$\begin{cases} Y - C - I = G_0 \\ -bY + C = a \end{cases}$$

$$I + di = c$$

$$kY - ei = M_0$$

• in matrix form:
$$\begin{pmatrix} 1 & -1 & -1 & 0 \\ -b & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ k & 0 & 0 & -e \end{pmatrix} \begin{pmatrix} Y \\ C \\ I \\ i \end{pmatrix} = \begin{pmatrix} G_0 \\ a \\ c \\ M_0 \end{pmatrix}$$

• since
$$\begin{vmatrix} 1 & -1 & -1 & 0 \\ -b & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ k & 0 & 0 & -e \end{vmatrix} = -k \begin{vmatrix} -1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & d \end{vmatrix} - e \begin{vmatrix} 1 & -1 & -1 \\ -b & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
$$= -kd \begin{vmatrix} -1 & -1 \\ 1 & 0 \end{vmatrix} - e \begin{vmatrix} 1 & -1 \\ -b & 1 \end{vmatrix} = -kd - e(1-b)$$

• Similarly
$$\begin{vmatrix} G_0 & -1 & -1 & 0 \\ a & 1 & 0 & 0 \\ c & 0 & 1 & d \\ M_0 & 0 & 0 & -e \end{vmatrix} = -M_0 d - e(c + G_0 + a)$$

• Therefore
$$Y^* = \frac{M_0 d + e(c + G_0 + a)}{kd + e(1 - b)}$$

7. Elementary operations

Elementary row operations

- 1. interchange two rows of a matrix $(R_i \leftrightarrow R_j)$
- 2. multiply a row by a non-zero scalar k ($R_i \rightarrow kR_i$)
- 3. multiply a row by a non-zero scalar k and add it to another row $(R_i \rightarrow R_i + kR_j)$

- The simplified form of the matrix that we aim to arrive at is the reduced row echelon form, which satisfies the following four conditions:
 - 1. If there are any rows consisting only of zeros entries, then they appear at the bottom of the matrix
 - 2. The lower row starts with more zeros (called leading zeros) than the row above
 - 3. For each nonzero row, the leftmost nonzero entry is a 1 (known as the leading 1 of that row)
 - 4. Each column that contains a leading 1 has zero entries everywhere else.
- For example, the following matrices are in reduced row echelon form:

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 5 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

whereas the following are not:

$$\begin{pmatrix} 1 & 5 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 5 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

A matrix has a unique reduced row echelon form

• Example: For the equation system (2.3)

$$\begin{cases} 2x_1 + x_2 = 5\\ x_1 + 3x_2 = 10 \end{cases}$$

apply elementary row operations to the augmented matrix:

$$\begin{pmatrix} 2 & 1 & 5 \\ 1 & 3 & 10 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 3 & 10 \\ 2 & 1 & 5 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 3 & 10 \\ 0 & -5 & -15 \end{pmatrix}$$

$$\xrightarrow{R_2 \to -R_2/5} \begin{pmatrix} 1 & 3 & 10 \\ 0 & 1 & 3 \end{pmatrix} \xrightarrow{R_1 \to R_1 - 3R_2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$

which corresponds to the matrix equation:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
, or $x_1 = 1$, $x_2 = 3$

• **Example**: Apply elementary row operations to augmented matrices to systems of linear equations

$$I: \begin{cases} 2x - y = 7 \\ 3x - 4y = 3 \end{cases} \quad II: \begin{cases} 2x - y = 7 \\ -4x + 2y = -10 \end{cases} \quad III: \begin{cases} 2x - y = 7 \\ -4x + 2y = -14 \end{cases}$$

• For system I:

$$\begin{pmatrix}
2 & -1 & | & 7 \\
3 & -4 & | & 3
\end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 3 & -4 & | & 3 \\
2 & -1 & | & 7
\end{pmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & -3 & | & -4 \\
2 & -1 & | & 7
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & -3 & | & -4 \\
0 & 5 & | & 15
\end{pmatrix} \xrightarrow{R_2 \to R_2 / 5} \begin{pmatrix} 1 & -3 & | & -4 \\
0 & 1 & | & 3
\end{pmatrix}
\xrightarrow{R_1 \to R_1 - 3R_2} \begin{pmatrix} 1 & 0 & | & 5 \\
0 & 1 & | & 3
\end{pmatrix}$$

which corresponds to the matrix equation:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}, \text{ or } x_1 = 5, x_2 = 3$$

• For system II:
$$\begin{pmatrix} 2 & -1 & 7 \\ -4 & 2 & -10 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{pmatrix} 2 & -1 & 7 \\ 0 & 0 & 4 \end{pmatrix}$$

- Which corresponds to the matrix equation $\begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$
- $\bullet \quad \text{Or} \quad \begin{cases} 2x y = 7 \\ 0 = 4 \end{cases}$
- the second equation can never be hold, therefore, the system has no solution
- For system III,

$$\begin{pmatrix} 2 & -1 & 7 \\ -4 & 2 & -14 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{pmatrix} 2 & -1 & 7 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1/2} \begin{pmatrix} 1 & -0.5 & 3.5 \\ 0 & 0 & 0 \end{pmatrix}$$

• Or
$$x - 0.5y = 3.5$$

• thus, the system has infinite many solutions: $t \in R$

$$\begin{cases} x = 0.5t + 3.5 \\ y = t \end{cases}$$

- A system of real linear equations either has no solutions, one (unique) solution, or infinitely many solutions.
- If the number of variables is more than the number of equations, then there must be either no solution, or infinite many solutions.

• **Exercise**. Solve the following systems of linear equations, by writing out an augmented matrix, and then using elementary row operations to transform it to reduced row echelon form:

$$\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 = 7 \\ x_1 + 4x_2 - 2x_3 = -5 \\ 3x_1 + 9x_2 - 2x_3 + 3x_4 = -3 \end{cases}$$

- Elementary row operations can be used to find the inverse of a matrix
- The following statements are equivalent:
 - 1. A is invertible
 - 2. the reduced row echelon form of the matrix A is the identity matrix
 - 3. For $A, B \in \mathbb{R}^{n \times n}$, if the reduced row echelon form of (A, I) is (I, B), then $B = A^{-1}$

• **Example**: For
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
, find A^{-1}

- Recall:
$$A^{-1} = \frac{1}{|A|} adj(A) = -\begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

- Alternatively, use elementary row operations on $(A|I_2)$

$$- \begin{pmatrix} 0 & 1 | 1 & 0 \\ 1 & 1 | 0 & 1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 1 | 0 & 1 \\ 0 & 1 | 1 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & 0 | -1 & 1 \\ 0 & 1 | 1 & 0 \end{pmatrix}$$

- We obtain
$$A^{-1} = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

• **Exercise**: For
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 4 \\ 2 & -1 & 0 \end{pmatrix}$$
, find A^{-1} by performing elementary row operations on (A, I_3) .

8. Rank of a matrix

Consider the following data collected on monthly income in \$1000:

Husband's income	10	12	31	20	9	14
Wife's income	8	13	0	13	6	10
Couple's total income	18	25	31	33	15	24

The data matrix is

$$A = \begin{pmatrix} 10 & 12 & 31 & 20 & 9 & 14 \\ 8 & 13 & 0 & 13 & 6 & 10 \\ 18 & 25 & 31 & 33 & 15 & 24 \end{pmatrix}$$

• For this data set, obviously, one row is redundant, since you can get the third row by adding up the first two rows. In a way, rank is the number of rows that are not redundant. For this data set, rank(A) = 2.

- A matrix is in row echelon form if each row has more leading zeros than the row above it.
- **Example**: the matrices

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 4 & 2 \\ 0 & 0 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 0 & 5 \\ 0 & 0 \end{pmatrix}$$

are in row echelon form

• **Example**: the matrices

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 4 & 2 \\ 0 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 0 & 5 \\ 0 & 2 \end{pmatrix}$$

are not in row echelon form

 The Rank of a matrix is the number of nonzero rows in its row echelon form. • **Example**: Find the rank of the following matrix by performing elementary row operations:

$$A = \begin{pmatrix} 1 & 4 & 8 \\ 2 & 12 & 23 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & 4 & 8 \\ 0 & 4 & 7 \end{pmatrix}$$

therefore, rank(A) = 2

• **Example**: find the rank of $A' = \begin{pmatrix} 1 & 2 \\ 4 & 12 \\ 8 & 23 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 \\ 0 & 4 \\ 0 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 \\ 0 & 4 \\ 0 & 0 \end{pmatrix}$ therefore, rank(A') = 2

- **Facts**: for $A \in \mathbb{R}^{m \times n}$
 - rank(A) = rank(A')
 - $rank(A) \le min(m, n)$
 - $rank(A) \le rank(\hat{A})$
- If $rank(A) < rank(\hat{A})$, then there is no solution to Ax = b
- **Example**: the following system $\begin{cases} x_1 + x_2 = 1 \\ 2x_1 + 2x_2 = 3 \end{cases}$ has no solution.
 - check that $rank(A) < rank(\hat{A})$
- If $rank(A) = rank(\hat{A}) = r$, then there is at least one solution.
 - if r=n, there is a unique solution; If m=n, then A is invertible and the unique solution is $x^*=A^{-1}b$.
 - If r < n, there are infinitely many solutions.

• **Example**: the following equation system

$$\begin{cases} x_1 + x_2 = 1 \\ 2x_1 + 2x_2 = 2 \end{cases}$$

Has infinitely many solutions

- note that $rank(A) = rank(\hat{A}) = 1 < 2$
- **Example**: the following system

$$\begin{cases} x_1 + x_2 = 1 \\ 2x_1 + 3x_2 = 2 \end{cases}$$

has a unique solution.

- note that $rank(A) = rank(\hat{A}) = 2$