

Implementation of DSP IC

Lecture 9 Bit-Level Arithmetic Architecture

Fixed Point Representation

 A W-bit fixed point 2's complement number A is represented as:

$$A = a_{w-1} \circ a_{w-2} ... a_1 a_0$$

where the bits a_i , $0 \le i \le W-1$, are either 0 or 1, and the msb is the sign bit.

- The value of A is in the range of $[-1,1-2^{-W+1}]$ and is given by $A=-a_{w-1}+\sum a_{w-1-i}2^{-i}$
- For bit-serial implementations, constant word length multipliers are considered. For a W×W bit multiplication, the W most-significant bits of the (2W-1)-bit product are retained. (the others are discarded)

Fixed Point Multiplication

Let the multiplicand and the multiplier be A and B:

$$A = a_{w-1}.a_{w-2}...a_1.a_0 = -a_{w-1} + \sum_{i=1}^{W-1} a_{w-1-i} 2^{-i}$$

$$B = b_{w-1}.b_{w-2}...b_1.b_0 = -b_{w-1} + \sum_{i=1}^{W-1} b_{w-1-i} 2^{-i}$$

Their product is given by:

Full-precision

$$P = -p_{2W-2} + \sum_{i=1}^{2W-2} p_{2W-2-i} 2^{-i}$$
The radix point is to the right of the msb p_{2W-2}

In constant word length multiplication, W - 1 lower order bits in the product P are ignored and the Product is denoted as $X \leftarrow P = A \times B$, where

$$X = -x_{W-1} + \sum_{i=1}^{W-1} x_{W-1-i} 2^{-i}$$
 A constant word-length

representation

Example: W=4

•
$$A = a_3 \circ a_2 a_1 a_0 = -a_3 + a_2 2^{-1} + a_1 2^{-2} + a_0 2^{-3}$$

• B =
$$b_3 \circ b_2 b_1 b_0 = -b_3 + b_2 2^{-1} + b_1 2^{-2} + b_0 2^{-3}$$

Multiplication of A×B

Using Horner's rule, multiplication of A and B can be written as

P =
$$A \times (-b_{W-1} + \sum b_{W-1-i} 2^{-i})$$

= $-A \cdot b_{W-1} + [A \cdot b_{W-2} + [A \cdot b_{W-3} + [... + A \cdot b_{W-1}] 2^{-1}] 2^{-1}] 2^{-1}$

where 2-1 denotes scaling operation.

$A \times B$ with W = 4

Horner's rule

The additions cannot be carried out directly due to the terms with negative weight!!

$$A = a_3 \circ a_2 a_1 a_0 = -a_3 + a_2 2^{-1} + a_1 2^{-2} + a_0 2^{-3}$$

$$= (-a_3 2 + a_3) + a_2 2^{-1} + a_1 2^{-2} + a_0 2^{-3}$$

$$= a_3 a_3 \circ a_2 a_1 a_0 = \cdots$$

$$A \times 2^{-1} = (a_3 \circ a_2 a_1 a_0) 2^{-1} = (-a_3 + a_2 2^{-1} + a_1 2^{-2} + a_0 2^{-3}) 2^{-1}$$

$$= [(-a_3 2 + a_3) + a_2 2^{-1} + a_1 2^{-2} + a_0 2^{-3}] 2^{-1}$$

$$= -a_3 + a_3 2^{-1} + a_2 2^{-2} + a_1 2^{-3} + a_0 2^{-4}$$

$$= a_3 \circ a_3 a_2 a_1 a_0 \implies a_3 \circ a_3 a_2 a_1$$

The extension sign bit remains the msb position, while a_0 is eliminated !!

$A \times B$ with W = 4

Negative MSBs solved with sign extension, one in each partial product

Not used if the result is truncated

MICH THE WAY

2's Complement System

· 2's complement adder

		integer
X = 1011	x = -5	xi = 11
Y = 0101	y = 5	yi = 5
$\overline{W = 100000}$		w = 16
Z = 0000	z = 0	

2's complement

$$x+y+c_{in}=2^nc_{out}+z$$

To Speed Up Multiplication

- To accelerate accumulation
- To reduce the number of partial products

To record into signed-bit representation with fewer number of nonzero bits

5 partial products may be required

Booth's Modified Algorithm

- Recode binary numbers $x_i \in \{0,1\}$ to $y_i \in \{-2,-1,0,1,2\}$ (5-level Booth recoding)
- Five possible digits in y_i radix-5?
- Overlapping method is used to reach radix 4
- Five digits require coding by 3 binary bits, that is two binary and one overlapping bit is used.
- The digits x_{i+1} and x_i are recoded into signed digit y_i , with x_{i-1} serving as a reference bit.

$$y_i = -2x_{i+1} + x_i + x_{i-1}$$

Radix-4 Modified Booth Algorithm

$$y_i = -2x_{i+1} + x_i + x_{i-1}$$

X _{i+1}	Χį	X _{i-1}	Уi				
0	0	0	0				
0	0	1	1				
0	1	0	1				
0	1	1	2				
1	0	0	-2				
1	0	1	-1				
1	1	0	-1				
1	1	1	0				

Examples:

$$X = 0\underline{1} \ 11 \ 01 \ 11 \ (0) \Rightarrow Y = \underline{02} \ 0\overline{1} \ 02 \ 0\overline{1}$$

$$X = 00 \ 10 \ 01 \ 11 \ (0) \Rightarrow Y = 01 \ 0\overline{2} \ 00 \ 0\overline{1}$$

$$X = 10 \ 11 \ 10 \ 11 \ (0) \Rightarrow Y = 0\overline{1} \ 00 \ 0\overline{1} \ 0\overline{1}$$

There will always be at least one "0" in each pair

					0	1	0	1			5							0	1	0	1					5
X					0	1	1	1			7		Х						2		-1					7
					0	1	0	1	1	Х	5			1	1	1	1	1	0	1	1				-	5
				0	1	0	1		2	Х	5		+		0	1	0	1				2	Х	4	Х	5
			0	1	0	1			4	Х	5			0	0	1	0	0	0	1	1					
+		0	0	0	0				0	Х	5															
	0	0	1	0	0	0	1	1																		

- -1 → 2's complement conversion
- 2 -> shift one step (or multiply by 2)
- -2 -2's complement conversion and shift

2-Operand Addition

1-bit adder (full-adder module)

$$z_i = (x_i + y_i + c_i) \bmod 2$$

$$c_{i+1} = \left| \frac{x_i + y_i + c_i}{2} \right|$$

Adder schemes:

- Switched carry-ripple adder
- Carry-skip adder
- · Carry-lookahead adder
- · Prefix adder
- · Carry-select adder
- · Conditional-sum adder
- · Carry-save adder
- · Signed-digit adder

Parallel Carry-Ripple Array (CRA) Multiplier

- The carry output of an adder is rippled to the adder input to the left in the same row.
- Bit-level dependence graph (DG) of 4×4-bit carry-ripple array multiplication:

THE THINK

Interleaved Approach for FIR

- Y(n)=x(n) + f x(n-1) + g x(n-2), f and g are constants
- To perform the computation and accumulation of partial products associated with f and g simultaneously
- Since the truncation is applied at the final step, it leads to better accuracy.
- If the coefficients are interleaved in such a way that their partial products are computed in different rows, the resulting architecture is called bit-plane architecture

Bit-serial 2's Complement Multiplier

Using Horner's rule, multiplication of A and B can be written as

P =
$$A \times (-b_{W-1} + \sum b_{W-1-i} 2^{-i})$$

= $-A$. $b_{W-1} + [A. b_{W-2} + [A. b_{W-3} + [... + [A. b_1 + A b_0 2^{-1}] 2^{-1}]...]2^{-1}] 2^{-1}$

where 2⁻¹ denotes scaling operation.

a3.a2a1a0 a3.a3a2a1

16

Derivation of implementable bit-serial 2's complement multiplier

The switching time instances can be derived by scheduling the bit-level computations (Fig. 13.16)

Lyon's bit-serial 2's complement multiplier

18

Bit-Serial

Digit-Serial

a)

Bit-serial Multiplication

LSB first in

Fixed Coefficient Multiplication

Saves more than 1/2 of the adders at an average

Bit-Serial FIR Filter

- Constant coefficients are decomposed and implemented using bit-serial shifts and adds.
- Apply feedforward cutset retiming and replacing the delayed scaling operators with switches, a feasible bit-serial pipelined bit-serial FIR filter can be derived.

Example

Wordlength=8

A word-level delay is equivalent to W bit-level delays

Bit-level pipelined bit-serial FIR filter, y(n) = (-7/8)x(n) + (1/2)x(n-1), where constant coefficient multiplications are implemented as shifts and adds as $y(n) = -x(n) + x(n)2^{-3} + x(n-1)2^{-1}$.

- (a) Filter architecture with scaling operators;
- (b) feasible bit-level pipelined architecture

Bit-Serial IIR Filter

- Steps for deriving a bit-serial IIR filter architecture:
 - > A bit-level pipelined bit-serial implementation of the FIR section needs to be derived.
 - \succ The input signal x(n) is added to the output of the bitserial FIR section w(n).
 - \triangleright The resulting signal y(n) is connected to the signal y(n-1).
 - > The number of delay elements in the edge marked ?D needs to be determined.(see figure in next page)
- For, systems containing loop, the total number of delay elements in the loops should be consistent with the original SFG, in order to maintain synchronization and correct functionality.
- Loop delay synchronization involves matching the number of word-level loop delay elements and that in the bit-serial architecture. The number of bit-level delay elements in the bit-serial loops should be $W \times N_D$, where W is signal word-length and N_D denotes the number of delay elements in the word-level SFG.

IIR Example

$$Y(n) = (-7/8)y(n-1) + (1/2)y(n-2) + x(n)$$

where, signal word-length is assumed to be 8.

The filter equation can be re-written as follows:

$$w(n) = (-7/8)y(n-1) + (1/2)y(n-2)$$

 $Y(n) = w(n) + x(n)$

which can be implemented as an FIR section from y(n-1) with an addition and a feedback loop as shown below:

Bit-Serial IIR

- It is possible that the loops in the intermediate bit-level pipelined architecture may contain more than $W \times N_D$ number of bit-level delay elements \rightarrow the wordlength needs to be increased!!
- · The wordlength is a parameter
- The minimum feasible wordlength of a bit-level pipelined bit-serial system decides its maximum throughput.
- The minimum feasible wordlength is constrained by the iteration bound of the SFG.
- Note: the minimum wordlength of the above example is 6

IIR Examples

$$T_M + 2T_A$$

$$T_M + T_A$$

Minimum feasible wordlength=6

Throughput = 1 output/6 cycles (word)

Minimum feasible wordlength=5

Throughput = 1 output/5 cycles

Canonic Signed Digit (CSD)

- · For fixed constant coefficient multiplications
- Encoding a binary number such that it contains the fewest number of non-zero bit
- · Example: A sequence of ones can be replaced with
 - A "-1" at the least significant position of the sequence
 - A "1" at the position to the left of the most significant position of the sequence
 - Zeros between the "1" and the "-1"

It can save more than 2/3 of the adder cells in an average!!

Properties of CSD Numbers

- > No 2 consecutive bits in a CSD number are non-zero.
- The CSD representation of a number contains the minimum possible number of non-zero bits, thus the name canonic.
- > The CSD representation of a number is unique.
- \succ CSD numbers cover the range (-4/3,4/3), out of which the values in the range [-1,1) are of greatest interest.
- Among the W-bit CSD numbers in the range [-1,1), the average number of non-zero bits is $W/3 + 1/9 + O(2^{-W})$. Hence, on average, CSD numbers contains about 33% fewer non-zero bits than two's complement numbers.

Please refer to the reference.

Remarks

- Booth's Modified Algorithm
 - For variable coefficients
- Canonical Signed Digit
 - For fixed coefficients
 - Optimal

Horner's Rule for Precision Improvement

- The truncation errors introduced in the constant wordlength multiplier not only depend on the multiplicand and multiplier value, but also on the arrangement of the partial product accumulation.
- Horner's Rule: to delay the scaling operations common to the 2 partial products. That is, by applying partial products accumulation to reduce the truncation error.
- Example: $x2^{-5} + x2^{-3}$ can be implemented as $(x2^{-2}+x)2^{-3}$ to increase the accuracy

Horner's Rule Example

A CSD multiplier using linear arrangement of adders to compute $x \times 0.101001001001$

Rearrangement of the CSD multiplication of $x \times 0.10100100101001$ using Horner's rule for partial product accumulation to reduce the truncation error.

Latency Reduction

• With the same hardware complexity, the tree type arrangement can reduce the latency from $(N-1)T_A$ to $\lceil \log_2 N \rceil T_A$

Linear arrangement

Binary tree arrangement

Distributed Arithmetic

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} c_2 & c_2 & c_2 & c_2 \\ c_1 & c_3 & -c_3 & -c_1 \\ c_2 & -c_2 & -c_2 & c_2 \\ c_3 & -c_1 & c_1 & -c_3 \end{bmatrix} \times \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix}$$

 c_i are M-bit constants and x_i are W-bit numbers

$$x_i = -x_{i,W-1} + \sum_{j=1}^{W-1} x_{i,W-1-j} \times 2^{-j}$$

Bits in the word

$$Y = \sum_{i=0}^{N-1} c_i x_i = \sum_{i=0}^{N-1} c_i (-x_{i,W-1} + \sum_{j=1}^{W-1} x_{i,W-1-j} \times 2^{-j}) =$$

$$= -\sum_{i=0}^{N-1} c_i x_{i,W-1} + \sum_{i=0}^{N-1} \left[\sum_{j=1}^{W-1} c_i x_{i,W-1-j} \times 2^{-j} \right] =$$

$$= -\sum_{i=0}^{N-1} c_i x_{i,W-1} + \sum_{j=1}^{W-1} \left[\sum_{i=0}^{N-1} c_i x_{i,W-1-j} \right] \times 2^{-j} =$$

Interchanged summation order

Same bit weight

CORDIC Algorithm

- Iterative algorithm for circular rotations
 - Example: sin, cos, to derive polar coordinates, ...
- No multiplication
- · CORDIC
 - COordinate Rotation DIigital Computer
 - Presented by Jack E. Volder 1959

Twiddle Factor Multiplication

$$W_N^{nk} = e^{-j(2\pi nk/N)}$$

 $\stackrel{\triangle}{=} e^{-j\varphi} = \cos \varphi + j \sin \varphi,$
 $G = S \cdot W_N^{nk} = (s_r + j \cdot s_i) \cdot (\cos \varphi + j \sin \varphi)$

$$= (s_r \cdot \cos \varphi - s_i \cdot \sin \varphi) + j (s_r \cdot \sin \varphi + s_i \cdot \cos \varphi).$$

$$\begin{bmatrix} g_r \\ g_i \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \cdot \begin{bmatrix} s_r \\ s_i \end{bmatrix}.$$

Rotation

· Definition

Rotational Circuit

4 multiplications and 2 additions!!

$$\begin{bmatrix} x_{out} \\ y_{out} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} x_{in} \\ y_{in} \end{bmatrix} \stackrel{\triangle}{=} \mathbf{R} \cdot \begin{bmatrix} x_{in} \\ y_{in} \end{bmatrix}.$$

Basic Concept of CORDIC Operation

- To decompose the desired rotation angle θ into the weighted sum of a set of predefined elementary rotation angles $\theta^{(i)}$, i=0,1,2, ..., W
- Consequently, the rotation through each of them can be accomplished with simple shift-and-add operation
- No Multiplication at all !!

tion

Real Rotation v.s. Pseudo Rotation

 $x^{(1)}, y^{(1)}$

True

rotation

 α

Unit

Circle

Real Rotation

Find the *x*,*y*

coordinats for a given angle

Pseudo

rotation

 $x^{(0)}, y^{(0)} = 1, 0$

$$x^{(i+1)} = \frac{x^{(i)} - y^{(i)} \tan \alpha^{(i)}}{\sqrt{1 + \tan^2 \alpha^{(i)}}}$$

$$y^{(i+1)} = y^{(i)} \cos \alpha^{(i)} + x^{(i)} \sin \alpha^{(i)}$$

$$y^{(i+1)} = \frac{y^{(i)} + x^{(i)} \tan \alpha^{(i)}}{\sqrt{1 + \tan^2 \alpha^{(i)}}}$$

By definition

By definition

Example:

$$x^{(1)} = \frac{x^{(0)} - y^{(0)} \tan \alpha^{(i)}}{\sqrt{1 + \tan^2 \alpha^{(i)}}}$$

$$x^{(1)} = \frac{1}{\sqrt{1 + \tan^2 \alpha^{(i)}}}$$

$$y^{(1)} = \frac{y^{(0)} - x^{(0)} \tan \alpha^{(i)}}{\sqrt{1 + \tan^2 \alpha^{(i)}}}$$

$$y^{(1)} = \frac{\tan \alpha^{(i)}}{\sqrt{1 + \tan^2 \alpha^{(i)}}}$$

Example:

$$x^{(1)} = x^{(0)} - y^{(0)} \tan \alpha^{(i)} = 1$$

$$y^{(1)} = y^{(0)} + x^{(0)} \tan \alpha^{(i)} = \tan \alpha^{(i)}$$

However the length R > 1

$$R^{(i+1)} = R^{(i)} \frac{1}{\cos \alpha^{(i)}} =$$

$$= \left\{ \frac{1}{\cos^2 \alpha^{(i)}} = 1 + \tan^2 \alpha^{(i)} \right\} =$$

$$R^{(i+1)} = R^{(i)} \sqrt{1 + \tan^2 \alpha^{(i)}}$$

$$\begin{bmatrix} x_{out} \\ y_{out} \end{bmatrix} = \frac{1}{\sqrt{1+2^{-2i}}} \begin{bmatrix} 1 & -2^{-i} \\ 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x_{in} \\ y_{in} \end{bmatrix} \stackrel{\triangle}{=} \frac{1}{\sqrt{1+2^{-2i}}} \cdot \begin{bmatrix} \hat{x}_{out} \\ \hat{y}_{out} \end{bmatrix}$$

Bit-level Arithmetic (cwliu@twins.ee.nctu.edu.tw)

Conventional CORDIC Algorithm

$$\begin{bmatrix} x^{(i+1)} \\ y^{(i+1)} \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x^{(i)} \\ y^{(i)} \end{bmatrix}$$

$$\begin{bmatrix} x^{(i+1)} \\ y^{(i+1)} \end{bmatrix} = \cos \alpha \cdot \begin{bmatrix} 1 & -\tan \alpha \\ \tan \alpha & 1 \end{bmatrix} \cdot \begin{bmatrix} x^{(i)} \\ y^{(i)} \end{bmatrix}$$

$$\begin{bmatrix} x^{(i+1)} \\ y^{(i+1)} \end{bmatrix} = \begin{bmatrix} 1 & -\mu_i 2^{-i} \\ \mu_i 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x^{(i)} \\ y^{(i)} \end{bmatrix}$$

where
$$\alpha_i = \tan^{-1}(\mu_i 2^{-i}) \approx \mu_i \tan^{-1}(2^{-i})$$

Pseudo Rotation Example

- The angle α is known.
- Derive x,y using three iterations
- The vector length R is increasing during each iterations

$$\alpha - \alpha^{(1)} - \alpha^{(2)} - \alpha^{(3)} \rightarrow 0$$

$$R^{(0)}=1$$

$$R^{(1)} = R^{(0)}\sqrt{1 + \tan^2 \alpha^{(1)}} = \sqrt{1 + \tan^2 45^\circ} = \sqrt{2} = 1.41$$

$$R^{(2)} = R^{(1)}\sqrt{1 + \tan^2\alpha^{(2)}} = \sqrt{2}\sqrt{1 + \tan^226.6^\circ} = \sqrt{\frac{5}{2}} = 1.58$$

$$R^{(3)} = R^{(2)}\sqrt{1 + \tan^2\alpha^{(3)}} = \sqrt{\frac{5}{2}}\sqrt{1 + \tan^2 14.0^\circ} = \sqrt{\frac{85}{32}} = 1.63$$

How to Choose the Angles

$$0 \qquad \tan \alpha^{(0)} \neq 0$$

1
$$\tan \alpha^{(1)} = 1$$

$$2 \tan \alpha^{(2)} = \frac{1}{2}$$

$$3 \qquad \tan \alpha^{(3)} = \frac{1}{4}$$

$$4 \qquad \tan \alpha^{(4)} = \frac{1}{8}$$

$$5 \qquad \tan \alpha^{(5)} = \frac{1}{16}$$

$$\alpha^{(0)} = \arctan 0 \neq 0$$

$$\alpha^{(0)} = \arctan 1 \neq 45^{\circ}$$

$$\alpha^{(0)} = \arctan \frac{1}{2} = 26.6^{\circ}$$

$$\alpha^{(0)} = \arctan \frac{1}{4} = 14.0^{\circ}$$

$$\alpha^{(0)} = \arctan \frac{1}{8} = 7.1^{\circ}$$

$$\alpha^{(0)} = \arctan \frac{1}{16} = 3.6^{\circ}$$

 $x^{(3)}, y^{(3)}$

x, y

 $R^{(3)}$

$$y^{(i+1)} = y^{(i)} + x^{(i)} \tan \alpha^{(i)}$$

$$\begin{cases} x^{(1)} = x^{(0)} - y^{(0)} \times 1 = 1 \\ y^{(1)} = y^{(0)} + x^{(0)} \times 1 = 1 \end{cases}$$

$$x^{(2)} = x^{(1)} - y^{(1)} \times \frac{1}{2} = \frac{1}{2}$$

$$y^{(2)} = y^{(1)} + x^{(1)} \times \frac{1}{2} = \frac{3}{2}$$

$$\int x^{(3)} = x^{(2)} - y^{(2)} \times \frac{1}{4} = \frac{1}{8}$$

$$y^{(3)} = y^{(2)} + x^{(2)} \times \frac{1}{4} = \frac{13}{8}$$

 $x^{(2)}, y^{(2)}$

 $R^{(2)}$

Bit-level Arithmetic (cwliu@twins.ee.nctu.edu.tw)

CORDIC Transform

$$x, y \approx \frac{x^{(3)}}{R^{(3)}}, \frac{y^{(3)}}{R^{(3)}}$$
 $\alpha - \alpha^{(1)} = 30 - 45 = -15^{\circ} \implies \text{Neg. Rot.}$ $\alpha - \alpha^{(1)} - \alpha^{(2)} = -15 + 26.6 = 11.6^{\circ} \implies \text{Pos. Rot.}$ $\alpha - \alpha^{(1)} - \alpha^{(2)} - \alpha^{(3)} = 11.6 - 14 = -2.4 \implies \text{Neg. Rot.}$

$$\alpha - \alpha^{(1)} = 30 - 45 = -15^{\circ} \implies \text{Neg. Rot}$$

$$\alpha - \alpha^{(1)} - \alpha^{(2)} = -15 + 26.6 = 11.6^{\circ} \implies \text{Pos. Rot.}$$

$$\alpha - \alpha^{(1)} - \alpha^{(2)} - \alpha^{(3)} = 11.6 - 14 = -2.4 \implies \text{Neg. Rot.}$$

The sign determines the rotation

Bit-level Arithmetic (cwliu@twins.ee.nctu.edu.tw)

CORDIC

Start at
$$(x^{(0)}, y^{(0)}) =$$

$$= (\frac{1}{R^{(3)}}, 0) =$$

$$=(\sqrt{\frac{32}{85}},0)$$

New start vector (No need for multiplication)

Derive new coordinats

$$(x, y) \approx (x^{(3)}, y^{(3)})$$

Derive $\cos \alpha$ and $\sin \alpha$

$$x^{(3)} = R^{(3)} \left[x^{(0)} \cos \sum \alpha^{(i)} - y^{(0)} \sin \sum \alpha^{(i)} \right] =$$

$$= \cos \sum \alpha^{(i)} \approx \cos \alpha$$

$$y^{(3)} = R^{(3)} \left[y^{(0)} \cos \sum \alpha^{(i)} + y^{(0)} \sin \sum \alpha^{(i)} \right]$$

$$y^{(3)} = R^{(3)} \left[y^{(0)} \cos \sum \alpha^{(i)} + x^{(0)} \sin \sum \alpha^{(i)} \right]$$
$$= \sin \sum \alpha^{(i)} \approx \sin \alpha$$

Derive $\tan \alpha$

$$\tan \alpha^{(i)} = \frac{\sin \sum \alpha^{(i)}}{\cos \sum \alpha^{(i)}} \approx \tan \alpha;$$
 (division needed)

Basic CORDIC Transform

$$x^{(i+1)} = x^{(i)} - d_i y^{(i)} \frac{1}{2^i}$$

$$y^{(i+1)} = y^{(i)} + d_i x^{(i)} \frac{1}{2^i}$$

$$\alpha^{(i+1)} = \alpha^{(i)} - d_i \arctan \frac{1}{2^i}$$

Each CORDIC iteration require

- 3 ADD/SUB
- 2 Shifts

$$d_i = \operatorname{sign}(\alpha^{(i)})$$

Elementary Angle Sets

Iteration Index	Elementary Angle	Value in Radius
i = 0 $i = 1$ $i = 2$ $i = 3$ $i = 4$ $i = 5$ $i = 6$ $i = 7$	$a(0) = \tan^{-1}(2^{-0})$ $a(1) = \tan^{-1}(2^{-1})$ $a(2) = \tan^{-1}(2^{-2})$ $a(3) = \tan^{-1}(2^{-3})$ $a(4) = \tan^{-1}(2^{-4})$ $a(5) = \tan^{-1}(2^{-5})$ $a(6) = \tan^{-1}(2^{-6})$ $a(7) = \tan^{-1}(2^{-7})$	0.785398 0.463648 0.244979 0.124355 0.062419 0.031240 0.015624 0.007812

Conventional CORDIC with N=W=8

CORDIC Harware

Each CORDIC iteration require

- 3 ADD/SUB
- 2 Shifts

- +++;
 - Simple shift-and-add operation
 - Small area
- ---
 - It needs n iterations to obtain n-bit precision
 - Slow carry-propagate addition
 - Area consuming shifts (Barrel Shifter)

Both micro-rotation and scaling phases

% Initialization

Given x(0), y(0), and z(0)

% Micro-rotation phase

FOR
$$i=0$$
 to $N-1$

$$\begin{bmatrix} x(i+1) \\ y(i+1) \end{bmatrix} = \begin{bmatrix} 1 & -\mu(i)2^{-i} \\ \mu(i)2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x(i) \\ y(i) \end{bmatrix}$$
% Angle updating
$$z(i+1) = z(i) - \mu(i)a(i), \text{ where } a(i) = \arctan(2^{-i})$$

END

% Scaling phase

$$\left[\begin{array}{c} x_f \\ y_f \end{array}\right] = P \left[\begin{array}{c} x(N) \\ y(N) \end{array}\right] = \frac{1}{\prod_{i=0}^{N-1} \sqrt{1 + 2^{-2i}}} \left[\begin{array}{c} x(N) \\ y(N) \end{array}\right]$$

THE STATE OF THE S

Modes of CORDIC Operations

- Vector rotation mode (θ is given)
 - The objective is to compute the final vector $[x_f, y_f]^T$
- Usually, we set $z(0) = \theta$

$$z(0)-z(N) = \theta-z(N) = \sum_{i=0}^{N-1} \mu_1 \alpha_m(i)$$

 $|\theta - z(N)| \rightarrow 0$ after the N-th iteration

Rotational Sequence

$$\mu_i$$
= sign of z(i)

Scaling Operation

 Scaling operation is used to maintain the "norm" of the original vector

$$P = \left(\prod_{i=0}^{R_m - 1} \sqrt{1 + 2^{-2s(i)}}\right)^{-1}.$$

Enhancement of CORDIC

MC III

- · Architecture
 - Pipelined architecture
 - Faster adder
- Algorithm
 - Radix-4 CORDIC
 - MVR-CORDIC
 - EEAS-CORDIC

Pipelined architecture

- Expand folded CORDIC processor to achieve the pipelined architecture
- Shifting can be realized by wiring

Faster Adder (CSA)

Ripple Adder and its sign calculation

CSA VMA and its sign calculation

Critical Path of CSA

- In on-line approach, we want to get sign bit as soon as possible!
- * Redundant Number System to be used to obtain the sign bit quickly

Radix-4 CORDIC

- Reduce Iteration Numbers
 - High radix CORDIC.(e.g. Radix-4, Radix-8)
- 1 stage of Radix-4 = two stages of Radix-2
 - Faster computation at higher cost
- Employ the Radix-4 micro-rotations to
 - Reduce the stage number.

Modified Vector Rotation (MVR)

- Skip some micro-rotation angles
 - For certain angles, we can only reduce the iteration number but also improve the error performance.
 - For example, $\theta = \pi/4$

Conventional CORDIC
$$\overline{\mu} = \begin{bmatrix} 1, & -1, & \underline{1}, & 1, & 1, & \cdots \end{bmatrix}$$

$$\xi_m = 7.2*10^{-3}$$

$$MVR\text{-CORDIC} \quad \overline{\mu} = \begin{bmatrix} 1, & 0, & 0, & 0, & 0, & \cdots \end{bmatrix}$$

$$\xi_m = 0$$

- Repeat some micro-rotation angles
 - Each micro-rotation angle can be performed repeatedly
 - For example, $\theta = \pi/2$: execute the micro-rotation of a(0) twice
- Confine the number of micro-rotations to R_m
 - In conventional CORDIC, number of iteration=W
 - In the MVR-CORDIC, R_m << W
 - Hardware/timing alignment

The state of the s

MVR CORDIC Algorithm

With above three modification

$$\theta = \sum_{i=0}^{R_m - 1} \alpha(i)\theta(s(i)) + \xi_m,$$

where

- $s(i) \in \{0, 1, 2, ..., W\}$ is the rotational sequence that determines the micro-rotation angle in the i^{th} iteration
- $\alpha(i) \in \{-1, 0, 1\}$ is the directional sequence that controls the direction of the i^{th} micro-rotation

Constellation of Reachable Angles

- (a) Conventional CORDIC with N=W=4
- (b) MVR-CORDIC with W=4 and R_m =3

Extended Elementary Angle Set (EEAS)

· Apply relaxation on elementary angle set (EAS) of

$$S_1 = \left\{ \tan^{-1} \left(\alpha^* \cdot 2^{-s^*} \right) : \alpha^* \in \{-1, 0, 1\}, \ s^* \in \{0, 1, \dots, N - 1\} \right\}.$$

- EAS is comprised of arctangent of single singedpower-of-two (SPT) term
- Effective way to extend the EAS is to employ more SPT terms

$$S_2 = \left\{ \tan^{-1} \left(\alpha_0^{\star} \cdot 2^{-s_0^{\star}} + \alpha_1^{\star} \cdot 2^{-s_1^{\star}} \right) : \right.$$

$$\alpha_0^{\star}, \alpha_1^{\star} \in \{-1, 0, 1\}, \ s_0^{\star}, s_1^{\star} \in \{0, 1, \dots, W - 1\} \}.$$

Example of EAS and EEAS

Elementary Angle	Value in Radius	Elementary Angle	Value in Radius
$r(1) = \tan^{-1}(-2^{-0})$	-0.785398	$r(5) = \tan^{-1}(2^{-2})$	0.244979
$r(2) = \tan^{-1}(-2^{-1})$	-0.463648	$r(6) = \tan^{-1}(2^{-1})$	0.463648
$r(3) = \tan^{-1}(-2^{-2})$	-0.244977	$r(7) = \tan^{-1}(2^{-0})$	0.785398
$r(4) = \tan^{-1}(0)$	0.0		

(a)

Elementary Angle	Value in Radius	Elementary Angle	Value in Radius
$r(1) = \tan^{-1}(-2^{-0} - 2^{-0})$	-1.107149	$r(9) = \tan^{-1}(2^{-2})$	0.244979
$r(2) = \tan^{-1}(-2^{-0} - 2^{-1})$	-0.982793	$r(10) = \tan^{-1}(2^{-1})$	0.463648
$r(3) = \tan^{-1}(-2^{-0} - 2^{-2})$	-0.896055	$r(11) = \tan^{-1}(2^{-1} + 2^{-2})$	0.643501
$r(4) = \tan^{-1}(-2^{-0})$	-0.785398	$r(12) = \tan^{-1}(2^{-0})$	0.785398
$r(5) = \tan^{-1}(-2^{-1} - 2^{-2})$	-0.643501	$r(13) = \tan^{-1}(2^{-0} + 2^{-2})$	0.896055
$r(6) = \tan^{-1}(-2^{-1})$	-0.463647	$r(14) = \tan^{-1}(2^{-0} + 2^{-1})$	0.982793
$r(7) = \tan^{-1}(-2^{-2})$	-0.244979	$r(15) = \tan^{-1}(2^{-0} + 2^{-0})$	1.107149
$r(8) = \tan^{-1}(0)$	0.0		

(b)

Example of elementary angles of (a) EAS S_1 , (b) EEAS S_2 , with wordlength W=3.

Bit-level Arithmetic (cwliu@twins.ee.nctu.edu.tw)

Constellation of elementary angles of (a) EAS S_1 , (b) EEAS S_2 , with wordlength W=8.

Angle Quantization

- Approximation is applied on "ANGLE"
- · Decompose target angle into sub-angles

$$\xi_m \stackrel{\triangle}{=} \theta - \sum_{i=0}^{N_A - 1} \theta_i,$$

Angle Quantization (Cont.)

- Two key design issues in AQ process
 - Determine (construct) the sub-angle, and each subangle needs to be easy-to-implementation in practical implementation.
 - 2) How to combine sub-angles such that angle quantization can be minimized.

Angle Quantization (Cont.)

 AQ process is conceptually similar to Sum-of-Power-of-Two (SPT) quantization

Angle Quantization (Cont.)

	Canonical Signed Digit (CSD)	Angle Quantization (AQ)
Target of Approximation Basic element Basic operation Approximation equation	Coefficient, h_k Non-zero digit, 2^{-i} Shift-and-add operation $h_k \approx \sum_{j=0}^{N_D-1} g_j \cdot 2^{-d_j}$	Rotation angle, θ Sub-angle, θ_i Shift-and-add operation $\theta \approx \sum_{j=0}^{N_A-1} \theta_j$

Conclusion

- Rotational Engine plays an important role in modern DSP systems
- The conventional CORDIC is an interesting idea to reduce VLSI hardware cost in implementing the rotation operation (as well as other arithmetic operations).
- The idea of Angle Quantization is firstly introduced in Ref. [4,5]. It is analogous to the SPT concept in quantizing floating-point numbers.
- Most CORDIC-related algorithms can be explained using the AQ design framework

Reference

- 1. Y.H. Hu,, "CORDIC-based VLSI architectures for digital signal processing", IEEE Signal Processing Magazine, Vol. 9, Issue: 3, pp. 16-35, July 1992.
- 2. E. Antelo, J. Villalba, J.D. Bruguera, and E.L. Zapata," High performance rotation architectures based on the radix-4 CORDIC algorithm", *IEEE Transactions on Computers*, Vol. 46, Issue: 8, Aug. 1997.
- 3. C.S Wu and A.Y. Wu, "Modified vector rotational CORDIC (MVR-CORDIC) algorithm and architecture", *IEEE Trans. Circuits and systems-II: analog and digital signal processing*, vol. 48, No. 6, June 2001.
- 4. A.Y. Wu and C.S. Wu, "A unified design framework for vector rotational CORDIC family based on angle quantization process", *In Proc. of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing*, Vol. 2, pp. 1233 -1236.
- 5. A. Y. Wu and Cheng-Shing Wu, "A Unified View for Vector Rotational CORDIC Algorithms and Architectures based on Angle Quantization Approach," in *IEEE Trans. Circuits and Systems Part-I: Fundamental Theory and Applications*, vol. 49, no. 10, pp. 1442-1456, Oct. 2002.
- 6. C. S. Wu and A. Y. Wu, "A novel trellis-based searching scheme for EEAS-based CORDIC algorithm" In Proc. of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp. 1229 -1232.

