## Chapitre 29

# Groupe symétrique

| <b>29</b> | Groupe symétrique                                             | 1 |
|-----------|---------------------------------------------------------------|---|
|           | 29.26Lemme 26                                                 | 2 |
|           | 29.29Propriété fondamentale de la signature                   | 2 |
|           | 29.35 Décomposition d'une transposition à l'aide des $\tau_i$ |   |
|           | 29.37 Caractère générateur des transpositions                 |   |

#### 29.26 Lemme 26

Lemme 29.26

Soit  $\sigma \in \mathcal{S}_n$ . On a :

$$\left| \prod_{1 \le i < j \le n} (\sigma(i) - \sigma(j)) \right| = \prod_{X \in \mathcal{P}_2(\llbracket 1, n \rrbracket)} \delta_{\sigma}(X) = \prod_{1 \le i < j \le n} (j - i)$$

- La première égalité est justifiée car on a une bijection entre  $\{(i,j) \mid 1 \le i < j \le n\}$  et  $\mathcal{P}_2(\llbracket 1,n \rrbracket)$ .
- La seconde égalité est justifiée d'après (28.23).

### 29.29 Propriété fondamentale de la signature

Théorème 29.29

La signature est un morphisme de groupe de  $(S_n, \circ)$  dans  $(\{-1, 1\}, \times)$ .

Montrons que  $\epsilon(\sigma \circ \xi) = \epsilon(\sigma) \times \epsilon(\xi)$ . Pour  $\sigma, \xi \in \mathcal{S}_n$ :

$$\begin{split} \epsilon(\sigma \circ \xi) &= \frac{\prod\limits_{1 \leq i < j \leq n} (\sigma \circ \xi(j) - \sigma \circ \xi(i))}{\prod\limits_{1 \leq i < j \leq n} (j - i)} \times \frac{\prod\limits_{1 \leq i < j \leq n} (\xi(j) - \xi(i))}{\prod\limits_{1 \leq i < j \leq n} (\xi(j) - \xi(i))} \\ &= \epsilon(\xi) \times \prod\limits_{X \in \mathcal{P}([\![1,n]\!])} \tau_{\sigma}(\xi(X)) \\ &= \epsilon(\xi) \times \prod\limits_{X \in \mathcal{P}([\![1,n]\!])} \tau_{\sigma}(X) \\ &= \epsilon(\xi) \times \epsilon(\sigma) \end{split}$$

### 29.35 Décomposition d'une transposition à l'aide des $\tau_i$

Propostion 29.35

soit  $1 \le i < j \le n$  et  $\tau = (i, j)$ . Alors :

$$\tau = \tau_{i-1} \circ \cdots \circ \tau_{i+1} \circ \tau_i \circ \tau_{i+1} \circ \cdots \circ \tau_{i-1}$$

- Si k > j, alors pour tout  $p \in [[i, j-1]], \tau_p(k) = k$ . Donc  $\sigma(k) = k$ .
  - Cela reste vrai si k < i.
- On a :

$$\sigma(i) = \tau_{j-1} \circ \tau_{j-2} \circ \cdots \circ \tau_{i+1} \circ \tau_{i}$$

$$= \tau_{j-1} \circ \cdots \circ \tau_{i+1} (i+1)$$

$$= \tau_{j-1} (j-1)$$

$$= j$$

$$\sigma(j) = \tau_{j-1} \circ \cdots \tau_{i} \circ \cdots \circ \tau_{j-1} (j)$$

$$= \tau_{j-1} \circ \cdots \tau_{i} \circ \cdots \tau_{j-2} (j-1)$$

$$= \tau_{j-1} \circ \cdots \tau_{i} (i+1)$$

$$= \tau_{j-1} \circ \cdots \tau_{i+1} (i)$$

$$= i$$

— Si i < k < j, alors:

$$\sigma(k) = \tau_{j-1} \circ \cdots \circ \tau_i \circ \cdots \tau_k(k)$$

$$= \tau_{j-1} \circ \cdots \circ \tau_i \circ \cdots \tau_{k-1}(k+1)$$

$$= \tau_{j-1} \circ \cdots \circ \tau_k(k+1)$$

$$= \tau_{j-1} \circ \cdots \tau_{k+1}(k)$$

$$= k$$

#### 29.37 Caractère générateur des transpositions

Toute permutation  $\sigma \in \mathcal{S}_n$  est un produit de transposition.

On prouve le résultat par récurrence sur  $\mathbb{N} \setminus \{0, 1\}$ .

- pour n = 2,  $S_2 = \{id, \begin{pmatrix} 1 & 2 \end{pmatrix}\}$  et  $id = \begin{pmatrix} 1 & 2 \end{pmatrix}^2$ . On suppose le résultat vrai pour  $n \geq 2$ .
- Soit  $\sigma \in \mathcal{S}_{n+1}$ .
  - Si  $\sigma(n+1) = n+1$ ,  $\sigma$  induit naturellement une permutation  $\tilde{\sigma}$  sur  $S_n$ , donc  $\tilde{\sigma}$  est un produit de transpositions  $\tilde{\tau}$ , et chaque  $\tilde{\tau}$  se relève en une transposition  $\tau$  de  $\mathcal{S}_{n+1}$ .
  - Si  $\sigma(n+1) = i \in [1, n]$ , alors :

$$\varphi = (i \quad n+1) \circ \sigma \in \mathcal{S}_{n+1}$$

et  $\varphi(n+1) = n+1$ .

D'après le point précédent,  $\varphi$  est un produit de transposition.

Donc  $\sigma = \begin{pmatrix} i & n+1 \end{pmatrix} \circ \varphi$  est aussi un produit de transposition.