RISHABH DATTA

Email: rdatta@mit.edu • Website: ridatta.com • Linkedin: rishabh-datta

EDUCATION

Massachusetts Institute of Technology	2022-Present
Ph.D. in Mechanical Engineering; Major in Plasma Physics, Minor in Photonics	Cambridge, MA
Thesis: "Radiatively-cooled magnetic reconnection on the Z pulsed-power machine"	GPA: 5.0/5.0
Massachusetts Institute of Technology	2019-2022
S.M. in Mechanical Engineering	Cambridge, MA
Thesis: "High-Energy-Density Shocks in Magnetized Hypersonic Plasma Flows"	GPA: 5.0/5.0
Georgia Institute of Technology	2015-2019
B.S. in Mechanical Engineering (Highest Honors)	GPA: 3.97/4.0

RESEARCH EXPERIENCE

Research Assistant, Plasma Science & Fusion Center, MIT

2020-Present

Research Supervisor: Dr Jack D Hare

- First laboratory experiments of radiatively-cooled magnetic reconnection, relevant to extreme astrophysical objects
- Led the multi-institute MARZ collaboration (MIT, Sandia National Labs, Princeton, UMich, and others)
- Computational modeling (MHD, radiation transport, etc. in Python, Fortran) of high energy density plasmas
- Novel diagnostic development (machine learning with spectroscopy, tomography, shock-based imaging, etc.)
- Developed analysis and synthetic modeling software (visible/X-ray spectroscopy, interferometry, imaging, etc.)

Computational Intern, Technical University Munich

2018

Research Supervisor: Dr Stefan Adami

• Developed Riemann solver(s) in C++ for compressible multiphase flow modeling

Research Assistant, Solar Fuels & Technologies Lab, Georgia Tech

2017-2018

Research Supervisor: Dr Peter Loutzenhiser

• Thermodynamic characterization of novel fuels for thermochemical concentrated solar reactors

PUBLICATIONS (7 first author)

- [8] **Datta, R.**, Chandler, K., Myers, C.E., et al. (2024). Plasmoid formation and strong radiative cooling in a driven magnetic reconnection experiment. Phys. Rev. Lett. (Accepted).
- [7] **Datta, R.**, Chandler, K., Myers, C.E., et al. (2024). Radiatively-cooled magnetic reconnection driven by pulsed power. Invited Paper. Phys. Plasmas. (In Review).
- [6] **Datta, R.**, Crilly, A., Chittenden, J., et al. (2024). Simulations of radiatively cooled magnetic reconnection driven by pulsed-power. Journal Plasma Phys. (Accepted).
- [5] **Datta, R.**, Faez, A., Hare, J.D. (2023). Machine learning assisted analysis of visible spectroscopy in pulsed-power-driven plasmas. IEEE Transactions on Plasma Science. 10.1109/TPS.2024.3364975.
- [4] **Datta, R.**, Angel, J., Greenly, J.B., et al. (2023). Plasma flows during the ablation stage of an over-massed pulsed-power-driven planar wire array. Phys. Plasmas 30, 092104.
- [3] **Datta, R.,** Russell, D. R., Tang, I., Clayson, T., et al. (2022). The structure of 3-D collisional magnetized bow shocks in pulsed-power-driven plasma flows. Journal Plasma Phys., 88(6), 905880604.
- [2] **Datta, R.**, et al. (2022) Time-resolved velocity and ion sound speed measurements from simultaneous bow shock imaging and inductive probe measurements. Rev. Sci. Instrum., 93(10), 103530.
- [1] Bush, H. E., **Datta, R.**, & Loutzenhiser, P. G. (2019). Aluminum-doped strontium ferrites for a two-step solar thermochemical air separation cycle: Thermodynamic characterization and cycle analysis. Solar Energy, 188, 775-786.

SELECTED TALKS AND PRESENTATIONS

APS Division of Plasma Physics Meeting, Denver, CO. <i>Invited talk</i> .	2023
• Z Fundamental Science Workshop (Virtual). <i>Invited plenary</i> .	2023
• Dense Z Pinch Conference, Ann Arbor, MI. Contributed talk.	2023
• International Magnetic Reconnection Workshop, Japan. Contributed talk.	2023
• International Conference on Plasma Science, Santa Fe, NM. Contributed talk.	2023
• MIT PSFC-NSF Meeting, Cambridge, MA. Invited talk.	2023

Rishabh Datta (rdatta@mit.edu)

• MIT Machine Learning for Engineering Design Expo, Cambridge, MA. Contributed Poster. Best Post	ter Award. 2022
 APS Division of Plasma Physics Meeting, Spokane, WA. Contributed talk. 	2022
• High Temp. Plasma Diagnostics, Rochester, NY. Contributed poster.	2022
• APS Division of Plasma Physics Meeting, Pittsburgh, PA. Contributed poster.	2023
• MIT-Imperial College Meeting. Invited Talk.	2021
• MIT Graduate Association of Mechanical Engineers Lunch Seminar.	2021
AWARDS AND HONORS	
• Igor Alexeff Outstanding Student in Plasma Science Award (1 selected, international)	2024
• ZNetUS Program Grant (\$50,000 to study compression in magnetized oblique shocks)	2024
• Wunsch Foundation Silent Hoist and Crane Outstanding Student Award (2 selected, department)	2023
• MIT College of Engineering Exponent Fellowship (1 selected, institution)	2023
• Finalist, Best Student Paper, IEEE Plasma Science Conference (5 selected, conference)	2023
• Travel Award, International Magnetic Reconnection Workshop	2023
Best Poster, MIT Machine Learning for Engineering Design Poster Expo. MIT Med Wester Fall conditions	2022
MIT MathWorks FellowshipKeck Award in Thermal Sciences, MIT (1 selected, department)	2022 2021
GSC Conference Grant, MIT (1 selected, institute)	2021
Honorable Mention, Mechanical Engineering Research Exhibition, MIT	2021
President's Undergraduate Research Award, Georgia Tech	2018
Diversity, Equity and Inclusion Fellow, Georgia Tech	2018
Practical Research Experience Program Scholarship (20 selected, nationally)	2018
• Dean's List, Georgia Tech	2018
• Faculty Honors, Georgia Tech	2015, 2016, 2017, 2018
TEACHING & MENTORSHIP	
Teaching Assistant, 2.005 Thermofluids Engineering, MIT	2024
Prepared lectures and teaching materials for 75 junior/senior undergraduate students	2024
 Teaching Assistant, MechE Advanced Fluid Mechanics Qualifying Exam, MIT 	2022
• The Professor's Toolkit Teaching Course, MIT, Cambridge, MA	2024
Teaching Days Course, MIT, Cambridge, MA	2024
Graduate Student Coach, MIT, Cambridge, MA	2021-2022
• Undergraduate researcher (UROP) Advisor	2022-Present
Closely mentored 6 undergraduate students on research projects I proposed as part of my research.	
1. E. Neill (Spring 2023-Present): Measuring the adiabatic index in high energy density plasmas.	
2. O. Odiase (Spring-Summer 2023): Construction and testing of a 1kA pulsed-power device.	
3. D. Robinson (Spring 2023): Mach-Zehnder interferometry measurements in planar wire arrays.	
4. J. Atkinson (January 2023): Construction and testing of a 1kA pulsed-power device.	
5. J. Arevalo (Spring-Fall 2023): Design and modeling of a 1kA pulsed-power device.6. E. Wong (Fall 2022): Three-dimensional MHD modeling of planar wire arrays.	
6. E. Wong (Fall 2022): Three-dimensional MHD modeling of planar wire arrays.	
LEADERSHIP & ACTIVITIES	
MIT GSC Sustainability, Committee Chair	2020-2022
• MIT Sustainability Fund, Chair	2020-2022
Peer Mentor MIT Graduate Association of Mechanical Engineers	2022-2023
Housing and Community Affairs, MIT Graduate Student Council Only 1 St. 1 of Co. 1 MIT.	2020-2022
• Graduate Student Coach, MIT	2021
Diversity and Inclusion Fellow, Georgia Tech Evecutive Read Member Georgia Tech Montal Health Student Geolitican	2018
• Executive Board Member, Georgia Tech Mental Health Student Coalition	2017
 Chair, Council of Grad Life, Georgia Tech Diversity & Inclusion Chair, Student Center Programs Council, Georgia Tech 	2017-2019 2016-2017
Committee Chair Georgia Tech Student Government Association	2015-2017

Rishabh Datta (rdatta@mit.edu) 2

• Committee Chair, Georgia Tech Student Government Association

2015-2017

OTHER PROJECTS & EXPERIENCE

OTHER I ROJECTS & EAT ERIENCE	
Optimization and Machine Learning • Optimization of pulsed-power-driven loads Optimizing load geometry (using gradient-free optimization) based on electrostatic simulations.	2024
• Multi-objective optimization of linkage mechanisms Designed linkage mechanisms using genetic optimization algorithms (NSGA-II, SMS-EMOA, etc.)	2022
• Using Deep Generative models for topological design of truss structures Developed generative adversarial networks (GANs) and Variational Auto-Encoders (VAEs) in TensorFlow for generating novel diverse topologies of truss structures.	2023
Optics and Photonics • Surface Plasmon Polaritons on Anisotropic Interfaces Analytical and FDTD computational modeling in Lumerical of SPP generation.	2023
 Photonic band gaps in periodic double-negative multilayer structures Modeled (FEM, COMSOL) photonic band gaps in multilayer crystals with negative index materials. 	2023
• Tomographic reconstruction using Mach-Zehnder interferometry measurements Developed simultaneous algebraic reconstruction tomography software in Python.	2023
 Optical Modeling of Tunable Optical Plasma Metamaterials Designed tunable plasma metamaterials using geometric ray tracing and Fourier optics. 	2022
Computational Modeling and Design • Computational Intern, Emrgy Distributed Hydropower Solutions Performed CFD simulations, numerical finite-difference modeling, and electrical systems modeling of hydrokinetic devices using Simscale, MATLAB, Python, and VBA.	2019
• Design of a 10 kA micro-second pulsed power device Designed (in Simulink) and manufactured a table-top pulsed power device.	2023
• A finite-element Biot-Savart solver for electrostatic modeling of loads Developed software in MATLAB & Python to model the electrostatic magnetic field in pulsed-power-driven load.	2022 <i>Is</i> .
• Thermochemical energy storage for concentrated solar power plants Thermodynamic modeling for a 1.5 MW solar plant with a primary air cycle and a secondary Rankine cycle, and storage modeling using MnO ₂ /Mn ₂ O ₃ continuous flow systems.	2018-2019

Rishabh Datta (rdatta@mit.edu)