3.3 pd. A morphism f. y -> X of shower over Stopf. is representible if \ U \ Sch/s, and + \ \ \ \ \ \ \ \ (U) 3.4 lenner. If the diagnal $\Delta: \chi \to \chi \dot{\chi} \chi$ is representable, then $u \xrightarrow{\alpha} \chi$ is representable for all $\chi \in \chi(u)$, u schows. §9. From sch 4 20p, then to Chp. $\underline{Q,1},\underline{D}f.$ $\underline{Q,1},\underline{Q,1},\underline{D}f.$ $\underline{Q,1},\underline{Q,1},\underline{D}f.$ $\underline{Q,1},\underline{Q,1},\underline{D}f.$ $\underline{Q,1},\underline{Q,1},\underline{Q,1},\underline{D}f.$ $\underline{Q,1},\underline{Q,$ A rep. mor of show over Stars $\frac{Y \rightarrow X}{\forall U \in Schys}$, $\frac{Y \times U \rightarrow U}{\forall U \in Schys}$, $\frac{Y \times U \rightarrow U}{\forall U \mapsto P}$ solu > Y X U -> U & solu (2). X & Shu (Sfiff, Set) is an algebraic space over S. if (a), the drag. X > X & X rep.

sealled an atlas for X

(b) > surj et mov. U > X with Ue sch's. (by (0) (3.4) this is onto outo my. hence makes sense ш.) the cat of alg. spower is denoted by Esps. (3). Let Y => x mor of algorial space over Sout. A chart for f is a comm. drag obtained by this way.

with 1/ -> U in Sch/c.

over S if (a) the diag $\chi \rightarrow \chi \chi \chi$ is rep (by dg. spans)

(b) $\equiv surj$. sm (resp. &t) may $U \rightarrow \chi$ with $U \in Schs$ penoted the $\approx (2.1) - cat$ of alg. stacks over S by

Che/s.

(7). Let $y \xrightarrow{f} \chi$ mor in the /s, a chart of f $V \xrightarrow{sm,sn_i} y_{\chi} U \rightarrow U$ $y \xrightarrow{sm_i,sn_i} \chi U$ $y \xrightarrow{sm_i,sn_i} \chi U$ $y \xrightarrow{sm_i,sn_i} \chi U$

(8). Cat $\beta \geq 21$, sm, sm). $y \rightarrow \chi$ in Chaps.

has β if β a chart of β s.t.

(equiv. for all) $V \rightarrow U$ how β .

4. \(\frac{2}{2}\). Stochyler of aley spaces / stacks

N). BG: (Suh/s) \(^4\) copd. ulare G \(^2\) \(^2\) shu S-gg schoue.

Tors(T, G_T) \(^2\) shu S-gg schoue.

More generally, \(\times \in \) 2-9/s, \(^2\) \(^2\) copd.

Quting on \(\times \). define quotient steck

[\(\times \)/G]: (Suh/s) \(^4\) copd.

There

\(\times \) \(^2\) \(^2\) \(^2\) where

\(\times \) Tors(T, G_T), \(^2\) \(^2\) where

morphism of Shu(Tfmf).

• Pry z-Yoneda, $(1 \rightarrow [\times_G])$ amounts to

71 3 Xu Z F Tors (U, Gu).

• Fact: $[X_G] \in Chp_S$ $X \longrightarrow [X_G] \longleftrightarrow f: G_X \longrightarrow X$ $G_X^{"}X$

• In particular. BG = BsG = [S/G]

· Similarly, more simple.

action in free. ($G \times X \longrightarrow X \times X$)

Then $X_G := (T \longrightarrow X(T)_G)^{\#} \in Sep_S$.

called quotion space. with $X \longrightarrow X_G$ at as.

(2). Mg; (3ch/s) of Epd.

Times (CAT on proper with geo. fiber)

courr. genus g curve.

is a DM stack.

S. Cohomology of algebraic stacks $\frac{S.I.}{S}$ Def. The (big) Exale /flff Site χ_{EI} (χ_{IM}). de Jong χ_{EI} χ_{EI} (χ_{IM}). χ_{EI} (χ_{IM}).

U Ø -> W

covering: {U: > U}. is Ex (first) boolering when viewed on scheme over S.

(small & , lis- *+.)

52. Global Section: T = E1/fpf, Map f(x, -) $(x_{\tau}, -) : Al(x_{\tau}) \to Ab.$ $(x_{\tau}, -) : Al(x_{\tau}) \to Ab.$ $(x_{\tau}, -) : Al(x_{\tau}) \to Ab.$

5.). Functoriality. $y \rightarrow \chi$ nor. of stab. over S.

s. adj. Shu(y_{τ}) $\xrightarrow{f_{\kappa}}$ Shu(χ_{τ})

exact.

 $\frac{5.4}{5.4}$. Rule. For $X \in Sde/S$, this agrees with big $\frac{1}{5}$ for $\frac{1}{5}$ we have. RT ($\frac{1}{5}$ $\frac{1}{5}$ RT ($\frac{1}{5}$ $\frac{1}$

5.5 pet. (Crovbes). Let e be a site.

A stack y ∈ Shu (c), epd). is get be onor e if
 - (locally nonempty) ∀ U ∈ C, ∃ cov. & U; → U} s.f.
 _ (breally commerted)

Y(U;) ≠ Ø, ∀i'.

 $\frac{0}{\forall u \in C}$, $\forall x_i, y \in \mathcal{Y}(u)$, $\exists cov. \forall u_i \rightarrow u$ } $st. \forall x_i \subseteq y_i$, \dot{u} , \dot{u} , \dot{u} .

• If a gente y of ℓ is bound by $g \in Ab(\ell)$ [Giraud, [477]. We write $y \notin \ell$.

One way define g = equiv. between flow.

Cienb(ℓ , g) — full sub γ -cat of $slu(\ell, qpd)$.

2k. Trivid gerb. Ba ez schøs a s-81.

5.6 Cohomological descent. Let XC Chys. and $X \longrightarrow X$ an atlax $\beta \in Ab(X_{\epsilon})$. $X \cdot i \xrightarrow{Q^q} \xrightarrow{\text{Sup} / S} \xrightarrow{\text{NOT cdms.}} \text{be Cech verso.}$ Then $E_i^{pq} = H_{\tau}^q(X_p, F|_{X_p}) \Rightarrow H_{\tau}^{pqq}(X, F)$ whose Ed . Ez-page is $E_{2}^{pq} = H^{r}(X/x, \mathcal{H}_{r}^{q}(P)) \Rightarrow H_{1}^{pq}(x,F)$ the presbont U -> H2 (U,) (u) Xp = X x G x G ... y G GAT -9 T - X