IDS 560 – Final Project Report

DuPage Medical Group WE CARE FOR YOU

By, Koffi Agbavo Sree Pranavi Kanduri Vivek Reddy Devi Jonathan Nichols

Report Outline

Index	Contents	Page Number
1.	Business Motivation	3
	☐ Problem Statement	
	☐ Research Questions	
	☐ Overall Approach	
	☐ Key risks	
2.	Project Plan Overview	4
	☐ Project sponsor	
	☐ Team members	
	☐ Team responsibilities	
	☐ Milestones	
3.	Analytic Resources	5
4.	Data Preparation	5
	☐ What is in our data?	
	☐ Steps for data preparation	
5.	Descriptive Analysis	5
6.	Technical Approach	6,7,8
	☐ Step-wise explanation	
7.	Conclusion	9
	☐ Future Scope	

Business Motivation:

Problem Statement:

DuPage Medical group (DMG) is one of the largest and most successful independent multispecialty physician groups in Illinois. Working with large files of medical records, DMG faces issues with mapping the ICD-10 codes (International Classification of Diseases) with the respective medical condition. This results in a potential loss of revenue for the company. DMG makes money by treating its patients, billing their visits and getting reimbursed by the insurance company, the government, or the patients themselves for the service provided. Hence, it is vital for DMG to own a solution that helps identify patients' actual medical conditions they are being treated for and bill them accurately. Pertaining to our project, we have worked on the medical condition: Atherosclerosis.

Research Questions:

	How	ic	athero	oscler	neie	ide	ntifi <i>c</i>	ላየን
_	11011	13	autor	JOCICI	0313	Iuc	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	u:

- ☐ What does the unstructured clinical data comprise of?
- ☐ What are the target words to identify the signs or symptoms of atherosclerosis?
- ☐ What is the impact of our solution on the client's business?

Overall Approach:

An NLP solution is used to parse the information to map the medical conditions with the right ICD- 10 code. This could be identified by examining the context of the clinical notes which show the presence or absence of the disease. The project deliverable is the outcome of parsing our data through a PyContextNLP library built with Python, which is integrated into Dupage's SQL database for different stakeholders to query according to their business requirement.

Key Risks:

Misclassification of the different atherosclerosis keywords
Not having comprehensive keyword library (target words) for a greater classification

- ☐ Integration of our output onto DMG's environment
- ☐ Confidentiality of data

Project Plan Overview:

Project Sponsor: DuPage Medical Group (DMG) – Ayis Pyrros

Ayis Pyrros is the representative of DMG. He is responsible for defining the business problem, guiding the team, direct supervision, clarifying questions through the project's timeline.

Team Members:

Sree Pranavi Kanduri	Point of Contact, Data Modeling and Testing	
Koffi Agbavo	Data Acquisition and preparation	
Vivek Reddy Devi	Data Modeling and Testing	
Jonathan Nichols	Deployment and Hand-off	

Point of Contact responsibilities:

Coordinating team efforts to ensure the goals of the project are met, team communications and scheduling meetings with the project sponsor and course instructor.

Project team responsibilities and Milestones:

Project Milestones

*All project and subsidiary management plans were reviewed and approved by the project sponsor.

Analytic Resources:

Data: CSV and Tab delimited files containing electronic Health Records from Ayis Pyrros

Tools: SQL Server, Jupyter Notebook (Python 3)

Other Applications: Viscosity (VPN), Remote desktop connection

Libraries used in Python: pandas, numpy, pyodbc, pyContextNLP, pyContextNLP.helpers,

pyContextNLP.itemData

Data Preparation:

What o	does our data consist of ?
	MRN - Medical Record Number
	Order Proc ID - Patient ID
	Date - No significance
	Examination - Area where the x-ray was taken
	Line - Indexes of rows associated with each individual patient
	Narrative - Radiologist notes
Steps 1	for data preparation:
	The TSV files were uploaded onto the SQL server
	An ODBC connection was established between the SQL server and Python
	Merged the narrative column by rolling up to (MRN- Patient ID) level
	Eliminated the duplicate columns (i.e, Same patient IDs)
	Cleaned the narrative column in all the records to simple plain text
	Raw text from Narrative column is cleaned to create a Markup function to tag the target
	and modifiers terms
Desc	criptive Analysis:
	Total Records: 3 million rows
	Number of unique occurrences with "Artery": 18,086 rows
	Number of unique occurrences with "Atherosclerosis": 26,537 rows

Technical Approach:

To improve the identification of the assigned medical condition and categorize them into:

Negation, Experiencer, and Temporal Status within the health records, the Python library

"PyContextNLP" (an extension of a ConText Algorithm with user-defined modifiers) is used.

This helps us decide the presence or absence of atherosclerosis based on the Narrative column

from our data. PyContextNLP methodology was chosen as it can derive useful insight from

unstructured clinical text data.

The 'context algorithm' uses regular expressions to search for trigger words preceding or

following the indexed medical condition. A list of targets (medical condition)

modifiers(words that define the context of the medical condition). The final PyConText output

consists of the trigger terms with the following categories: negated, hypothetical, historical,

experienced.

Example: (Narrative notes) The intracranial segments of the internal carotid arteries as well as

the anterior and middle cerebral arteries are patent; minimal calcified plaque is present

along the pericavernous portion of the internal carotid arteries

Explanation: Here, "calcified plaque" is our target term and "is present" is one of the modifiers

in the forward direction which confirms the existence of the disease.

Output: evidence_of_calcplaq, probable_existence

Step-wise Explanation of the Process:

☐ Import the TSV data files on SQL server and conduct the basic exploratory data analysis

Note: CSV files were comma delimited which divided our entire narrative columns into

multiple columns hence we asked our sponsor for TSV files

☐ An ODBC connection from the SQL server to Python was established and an option to

input the data directly with a CSV or TSV file was made in the code

☐ Assigned labels to the columns and creating a data frame

6

The narrative columns were merged into a single cell at an MRN-Patient ID level, so the				
context of the entire sentence was not lost				
Only the relevant columns were retrieved as date, line and description were not				
necessary for our process and for efficient execution of the algorithm				
The narrative column was in an unstructured format and hence we needed to convert				
into simple plain text which is, ignoring the punctuations, double spaces etc.,				
Two CSV files were generated with the Targets and Modifiers to append to our code				
PFA the two files along with the document				
Created target and modifier items in our code using the github link for the above files				
Convert Modifiers and Targets CSV files into items (Lex, type, regular expressions)				
☐ Lex or Literal : Context within the notes				
☐ Type : definite existence, probable negated existence, probable existence				
definite negated existence, ambivalent existence				
☐ Regular Expression (Regex): Nomenclature or different ways the words				
of interest can be written to search in the text				

List of Targets:

Lex	Туре	Regex	
athero	evidence_of_atherosclerosis	(\batherosclerosis\b \batheroclerotic\b)	
vascular calc evidence_of_vascalc		\svascular\scalc	
arteriosclerosis	evidence_of_atherosclerosis	(\barteriosclerosis\b \barterioclerotic\b)	
arterial plaque	evidence_of_artplaque	\sarterial\splaque	
calcified plaque	evidence_of_calplaque	\s(\bcalcific\b \bcalcified\b)\splaque	

Example List of modifiers:

Direction	Lex	Regex	Туре	
backward	Is in the differential	Is\sin\sthe\sdifferential	Ambivalent_existence	
bidirectional	Ruled out	• •	Definite_negated_existence	
forward	Is negative	(is was) negative	Definite_negated_existence	

Parsed the XML format text and marked up the sentences with modifiers and targets.				
The ".xml" files are parsed to show the presence or absence of the medical condition				
using the modifiers and targets				
Two new columns were created to show:				
☐ <i>Category:</i> Evidence of athero, calcified plaque, vascular calc,				
arteriosclerosis				
Modifying category: The modifer target category such as				
definite_negated_existence etc.,				
When the target words are identified, the modifiers are assigned to specific phrases with				
the respective tags				
The result obtained is a ".xml" format where the targets and modifiers are appended for				
each record				
The result consists of all the previous columns that were present in the original dataset:				
MRN, order_proc_id, description, narrative, category, modifying category				
The final output is retrieved in a CSV file				

 \Box The snapshot of the output:

	mrn	order_proc_id	description	narrative	category	modifyingCategory
1	EH2099390	220326324	US CAROTID DOPPLER BILAT - DIAG IMG (CPT=93880)	DATE OF SERVICE: 08.06.2018CAROTID DUPLEX ULTR	evidence_of_calcplaq	definite_negated_existence
2	EH2126972	229725890	US CAROTID DOPPLER BILAT - DIAG IMG (CPT=93880)	DATE OF SERVICE: 10.04.2018CAROTID DUPLEX ULTR	evidence_of_calcplaq evidence_of_calcplaq	definite_negated_existence definite_negated_e
3	GE00037573	211887120	US CAROTID DOPPLER BILAT - DIAG IMG (CPT=93880)	DATE OF SERVICE: 03.29.2018INDICATION: 72 year	evidence_of_calcplaq	definite_negated_existence
4	GE11178798	234948155	CT ANGIOGRAPHY, CAROTID ARTERIES W AORTIC ARCH	DATE OF SERVICE: 09.09.2018CTA OF THE NECK, WI	evidence_of_calcplaq	historical
5	GE11197178	204005432	CT CHEST LD LUNG SCREENING ANNUAL(CPT=G0297)	CT SCREENING FOR LUNG CANCERHISTORY: Personal	evidence_of_atherosclerosis	historical
6	GE11255048	237958418	US CAROTID DOPPLER BILAT - DIAG IMG (CPT=93880)	DATE OF SERVICE: 09.26.2018CAROTID DUPLEX ULTR	evidence_of_calcplaq	definite_negated_existence
7	GE11258906	200954577	XR CHEST PA + LAT CHEST (CPT=71020)	CHEST X-RAY, PA And Lateral Films, 2 Views, 1/	evidence_of_calcplaq	definite_negated_existence
8	GE11284449	211145374	CT ANGIOGRAPHY, MESENTERIC ARTERIES (CPT=74175)	CT ANGIOGRAPHY, MESENTERIC ARTERIES (CPT=74175	evidence_of_calcplaq	historical
9	GE11465559	219897041	CT ANGIOGRAPHY, AORTA AND LOWER EXT RUNOFF (SM	DATE OF SERVICE: 05.24.2018CT ANGIOGRAPHY, AOR	evidence_of_calcplaq	definite_negated_existence
10	GE11528449	216750392	CT ANGIOGRAPHY, AORTA AND LOWER EXT RUNOFF (SM	DATE OF SERVICE: 05.09.2018CT ANGIOGRAPHY, AOR	evidence_of_calcplaq	definite_negated_existence
11	GE11551477	226559231	CT BRAIN OR HEAD (70450)	DATE OF SERVICE: 07.06.2018CT OF THE HEAD, WIT	evidence_of_calcplaq	historical
12	GE11569703	225915215	US CAROTID DOPPLER BILAT - DIAG IMG (CPT=93880)	DATE OF SERVICE: 06.29.2018CAROTID DUPLEX ULTR	evidence_of_calcplaq	definite_negated_existence
13	GE11577539	197780552	NM BONE IMAGING SPECT (CPT=78320)	CLINICAL INDICATION:62 years-old Female with	evidence_of_calcplaq	probable_negated_existence
14	GF11593191	178579877	CT ANGIOGRAPHY,	CT ANGIOGRAPHY, CAROTIDS+NECK (CPT=70498)	evidence_of_calcplaq	historical

☐ *Validation:* Given our own input sentences with the medical condition present and absent to check for all the categories

Conclusion

The main motive of developing this NLP solution is to identify the medical condition "atherosclerosis" so that the right ICD- 10 code can be tagged to all the patients that have this condition. By tagging the right ICD-10 code, the right insurance is claimed. This solution will help DMG by not losing money because of misclassification of the diseases.

Future scope: This code can be used for other medical conditions by editing creating the required set of target items and modifiers.