Transport optimal, processus ponctuel déterminantaux et le noyau de Bergman

William Driot

RECH202

Processus ponctuels

Un processus ponctuel est une variable aléatoire à valeur dans l'espaces des α configurations α (= parties localement finies, de α par exemple muni de la tribu engendrée par le topologie de la convergence vague).

Processus ponctuels déterminantaux

Définition:

Un processus ponctuel sur E est **déterminantal** de noyau $k: E^2 \to \mathbf{C}$ si ses fonctions de corrélation s'écrivent :

$$\rho_n(x_1,...,x_n) = \det(k(x_i,x_j))_{1 \leqslant i,j \leqslant n}$$

où $k: E^2 \to \mathbf{C}$ est une fonction L^2 .

Théorème fondamental

Théorème: (fondamental)

Considérons un DPP de noyau k, dont les valeurs propres sont dans [0,1]. D'après le théorème de Mercer, on peut écrire

$$k(x, y) = \sum_{i \in \mathbb{N}} \lambda_i \phi_i(x) \overline{\phi_i(y)}$$

où les $(\lambda_i)_{i \in I}$ sont les valeurs propres de K dans [0,1].

La loi induite par k est la même que celle induite en tirant $(B_i)_{i\in I}$ des variables aléatoires de Bernoulli indépendantes de paramètres respectifs λ_i , puis la loi induite par

$$k_B(x,y) = \sum_{j \in I} B_j \phi_j(x) \overline{\phi_j(y)}$$

Noyaux de Ginibre et Bergman

Noyau de Ginibre sur $E = \mathbf{C}$:

$$k(x,y) = \frac{1}{\pi} e^{x\overline{y}} e^{-\frac{1}{2}(|x^2| + |y|^2)} = \sum_{n \in \mathbb{N}} \phi_n(x) \overline{\phi_n(y)}$$
$$\phi_n(x) = \frac{1}{\sqrt{\pi n!}} e^{-\frac{1}{2}|z|^2} z^n$$

Noyau de Bergman sur $E=\mathcal{B}(0,1)\subset \textbf{C}$:

$$k(x,y) = \frac{1}{\pi(1-x\overline{y})^2} = \frac{1}{\pi} \sum_{k=0}^{\infty} (k+1)(x\overline{y})^k$$

Noyaux de Ginibre et Bergman

Simulation

Problème : DPPs stationnaires (Ginibre) : les points s'étendent sur **C** tout entier.

Solution : Restriction à une partie Λ , opération mathématique qui construit une variante du DPP pour laquelle il n'y a que des points dans Λ .

Problème : ces DPPs présentent une infinité de points presque sûrement.

Solution : Troncation : On considère l'écriture de Mercer $\sum_{k=0}^{N-1}$ au lieu de $\sum_{k=0}^{\infty}$

Question : Ils sont donc impossibles à simuler stricto-censu. Mais on simule des processus différents! Ce ne sont plus les mêmes lois!

→ Quelle sont les pertes induites par de telles modifications?

1er résultat : Noyau de Bergman restreint

Théorème. Soit $\mathcal{B}(0,R)$ le disque de \mathbf{C} de centre 0 et de rayon R. On peut (et c'est assez rare pour le souligner) calculer explicitement les valeurs propres et les fonctions propres, et donc la décomposition de Mercer du noyau $k^R(x,y)$ du DPP de Bergman retreint à $\mathcal{B}(0,R)$:

$$k^{R}(x,y) = \sum_{n\geq 0} \lambda_{n}^{R} \phi_{n}^{R}(x) \overline{\phi_{n}^{R}(y)},$$

où les valeurs propres sont les

$$\lambda_k^R = R^{2k+2},$$

et les fonctions propres

$$\phi_k^R: x \mapsto \sqrt{\frac{k+1}{\pi}} \frac{1}{R^{k+1}} x^k.$$

Cet opérateur restreint est à trace donc il présente un nombre *fini* de points p.s. !

Troncation du Bergman projeté

Rappel : On ne peut pas simuler un nombre infini de variables aléatoires de Bernoulli. Où s'arrêter alors ?

Théorème: Soit

$$N_R := \sum_{n=0}^{\infty} R^{2n+2} = \frac{R^2}{(1-R)(1+R)}.$$

Soit \mathfrak{S}^R la loi de Bergman restreint au disque compact de rayon R centré en 0, et \mathfrak{S}^R_α la loi de sa troncation à α points. Si on tronque à βN_R points, on a

$$\mathcal{W}_{KR}(\mathfrak{S}^R,\mathfrak{S}^R_{\beta N_R})\leqslant N_R e^{-2\beta g(R)}$$

où
$$g(R) = \frac{R^2}{1+R}$$

Notations : $\mathfrak{S}^R=$ Bergman restreint à $\mathcal{B}(0,R)$, $\mathfrak{S}_N^R=$ Bergman restreint tronqué à N points

Distance de Kantorovitch-Rubinstein \mathcal{W}_{KR}

Distance de Kantorovitch-Rubinstein : Pour E= espace des configurations muni de la distance de variation totale $d(\xi,\zeta)=|\xi\Delta\zeta|$;

$$\mathcal{W}_{\mathit{KR}}(\mu,\nu) = \inf_{\substack{\mathsf{law}(\xi) = \mu \\ \mathsf{law}(\zeta) = \nu}} \mathbf{E}(|\xi\Delta\zeta|) = \inf_{\substack{\mathsf{law}(\xi) = \mu \\ \mathsf{law}(\zeta) = \nu}} \mathbf{E}(d(\xi,\zeta)).$$

C'est une distance entre lois de processus ponctuels issue du Transport Optimal.

Troncation du Bergman projeté

Théorème: Soit

$$N_R := \sum_{n=0}^{\infty} R^{2n+2} = \frac{R^2}{(1-R)(1+R)}.$$

Soit \mathfrak{S}^R la loi de Bergman restreinte du disque compact de rayon R centré en 0, et \mathfrak{S}^R_α la loi de sa troncation à α points. Si on tronque à βN_R points, on a

$$\mathcal{W}_{KR}(\mathfrak{S}^R,\mathfrak{S}^R_{\beta N_R})\leqslant N_R e^{-2\beta g(R)}$$

où
$$g(R) = \frac{R^2}{1+R}$$
Corollaire:

$$\mathbf{P}(\mathfrak{S}^R \neq \mathfrak{S}^R_{\beta N_R}) \leqslant N_R e^{-2\beta \frac{R^2}{1+R}}.$$

Autrement dit, tronquer au delà de N_R induit des distances (de Wasserstein) exponentiellement faibles entre les lois des processus. Donc N_R est un bon choix.

Théorème: (Decreusefond, Moroz, 2021)

Soit R>0. On tronque le Ginibre projeté à $N_R=(R+c)^2$ points. Soient ξ^R et $\xi^R_{N_R}$ des DPPs ayant ces lois (projeté / projeté et tronqué). Alors

$$\mathcal{W}_{\mathit{KR}}(\xi^{\mathit{R}},\xi^{\mathit{R}}_{\mathit{N}_{\mathit{R}}})\leqslant\sqrt{rac{2}{\pi}}\mathit{Re}^{-c^{2}}$$

Observation : En fait, il s'avère que R^2 n'est autre que l'espérance du nombre de points!

ightarrow ce résultat majore la **déviation** du nombre de points autour de son espérance.

Le nôtre aussi, et en est un analogue pour le processus de Bergman.

Convergence au sens de Wasserstein

Question : Notre borne ne tend pas vers 0 quand $R \to 1^-$. Mais a-t-on quand même convergence au sens de Wasserstein?

$$\mathcal{W}_{KR}(\mathfrak{S}^R,\mathfrak{S}^R_{N_R}) \xrightarrow[R \to 1^-]{} 0$$

Autre question : Tronquer à l'espérance ? Mais, par définition, une v.a. peut dépasser son espérance, non ?

Proposition : Pour tout $\delta > 0$, si on tronque à $N_R^{1+\delta}$, on a

$$\mathcal{W}_{\mathit{KR}}(\mathfrak{S}^R,\mathfrak{S}^R_{\mathit{N}^{1+\delta}_R}) \xrightarrow[R o 1^-]{} 0$$

Proposition : Plus généralement on a toujours la convergence au sens de Wasserstein si

$$N_R \sim_{R o 1^-} rac{1}{(1-R)^{1+\delta}}$$

et encore plus généralement, la borne tend vers 0 si et seulement si

$$2N_R \log(R) - \log(1-R) \xrightarrow[\varepsilon \to 0^+]{} -\infty$$

 \rightarrow CNS sur la croissance en R de N_R pour le choix du nombre de points (troncation) pour que la borne tende vers 0 (CS de Wasserstein convergence)

Convergences en loi

Théorème. On a

$$\mathfrak{S}_N^R \xrightarrow[N \to \infty]{} \mathfrak{S}^R$$
,

en loi.

En particulier, $\mathfrak{S}_{N_R}^R \xrightarrow[N \to \infty]{} \mathfrak{S}^R$ dès que $N_R \xrightarrow[R \to 1^-]{} \infty$, donc en particulier pour notre N_R précédent.

Théorème. On a, dès que $N_R \xrightarrow[R \to 1^-]{} + \infty$ (erreur ici! dans la preuve aussi!)

$$\mathfrak{S}_{N_R}^R \xrightarrow[R \to 1^-]{} \mathfrak{S},$$

en loi.

Restriction à un anneau (cf. observations)

Théorème. Soit T(r,R) l'anneau compact centré en 0, de rayon intérieur r et de rayon extérieur R. La décomposition de Mercer du noyau $k_{r,R}(x,y)$ du processus ponctuel déterminantal de Bergman restreint à T(r,R) est

$$k_{r,R}(x,y) = \sum_{n\geq 0} \lambda_n^{r,R} \phi_n^{r,R}(x) \overline{\phi_n^{r,R}(y)}$$

où les valeurs propres sont

$$\lambda_k^R = R^{2k+2} - r^{2k+2}$$

et les vecteurs propres

$$\phi_k^R : x \mapsto \sqrt{\frac{k+1}{\pi(R^{2k+2} - r^{2k+1})}} x^k$$

Autrement dit, on peut restreindre à un anneau aussi. D'ailleurs,

Proposition. On peut calculer la loi de la plus petite distance entre un point et l'origine est $\sim x^2$ quand $x \to 0$.

Ceci montre qu'il y a de toute manière très peu de points à l'origine.

Restriction à un anneau de rayon extérieur 1?

Notation: Dans la suite, on note

$$Z(A) = \{z \in \mathbb{C}, |z| \in A\}.$$

Ces parties sont invariantes par rotation.

Théorème:

La restriction du Bergman à toute région de la forme Z(A), $A \subset [0,1]$ contenant $Z([1-\varepsilon,1])$ présente presque sûrement un nombre infini de points. Autrement dit, pour la simulation, il faut abandonner l'idée de vouloir absolument simuler les points au voisinnage du cercle unité $Z(\{1\})$.

Simuler les points au voisinnage du cercle unité?

Théorème. Soit $(u_n)_{n\geqslant 0}$ une suite de nombres positifs telle que

$$\sum_{n\geq 0}u_n<+\infty.$$

Soient $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ deux suites à valeurs dans (0,1) avec $0 < a_0 < b_0 < 1$ qui satisfont la relation de récurrence suivante :

$$orall n \in \mathbf{N}, \left\{ egin{aligned} a_{n+1} \in (b_n,1) \ & \ b_{n+1} = \sqrt{rac{a_{n+1}^2 + u_n(1-a_{n+1}^2)}{a_{n+1}^2 + (1+u_n)(1-a_{n+1}^2)}} \end{aligned}
ight.$$

Alors le processus ponctuel déterminantal de Bergman restreint à

$$Z\left(\bigcup_{n\geq 0}[a_n,b_n]\right)$$

présente presque sûrement un nombre fini de points. De plus, si on choisit $a_n \to 1$, cette région adhère au cercle unité, et si on prend $b_0 \geqslant 1 - \delta < 1$, la mesure de Lebesque de cette région est proche de π !

Résultats généraux autour des DPPs

Théorème. Soit \mathfrak{S} un DPP et \mathfrak{S}_n sa troncation à n points. On note m_n la moyenne du nombre de points de \mathfrak{S}_n et σ_n^2 sa variance.

Alors

$$\frac{|\mathfrak{S}_n|-m_n}{\sigma_n^2\sqrt{n}}\xrightarrow[n\to\infty]{}\mathcal{N}(0,1)$$

en loi.

Résultats généraux autour des DPPs

Théorème. Soit $\mathfrak S$ un processus ponctuel déterminantal. Supposons que l'opérateur intégral associé soit à trace. Notons m le nombre moyen de points de $\mathfrak S$.

Alors, m est fini, et pour tout $c \in (0,1)$, on a

$$\mathbf{P}(|\mathfrak{S}| \leqslant (1-c)m) \leqslant \exp\left(-m(c+(1-c)\log(1-c))\right),$$

et pour tout c > 0,

$$\mathbf{P}(|\mathfrak{S}| \geqslant (1+c)m) \leqslant \exp\left(-m\left((1+c)\log(1+c)-c\right)\right).$$

Fonctions de corrélation

Définition:

Soit ξ un processus ponctuel, λ une mesure de référence sur E. ξ admet (ρ_n) pour fonctions de corrélations si pour toutes parties $A_1, ..., A_n$ mesurables deux à deux disjointes de E, on a

$$\mathbb{E}\left[\prod_{k=1}^n \xi(A_k)\right] = \int_{A_1 \times ... \times A_n} \rho_n(x_1, ..., x_n) d\lambda^{\otimes n}$$

Les fonctions de corrélation $(\rho_n)_{n\in\mathbb{N}}$ caractérisent la loi d'un processus ponctuel.

Écriture de Mercer

Théorème : (Mercer)

Sur (E, μ) , soit $k \in L^2$ un noyau. On suppose que k est de type positif et que l'opérateur intégral K associé à k est auto-adjoint.

Alors les valeurs propres λ_i de l'opérateur intégral K associé à k sont positives, et il existe une base hilbertienne $(\phi_n)_{n\in\mathbb{N}}$ de L^2 formée de vecteurs propres pour K, telle que

$$k(x,y) = \sum_{n \in \mathbb{N}} \lambda_n \phi_n(x) \overline{\phi_n(y)}$$