Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Отчёт по лабораторной работе №4 по дисциплине "Математическая статистика"

Выборочные коэффициенты корреляции и эллипсы рассеивания

Выполнил студент:

Мишутин Д. В.

Группа:

3630102/70301

Проверил:

К.ф.-м.н., доцент

Баженов Александр Николаевич

Санкт-Петербург

2020 г.

Оглавление

1 Постановка задачи	4
2 Теория	4
3 Реализация	4
4 Результаты	4
5 Выводы	15
6 Литература	
7 Приложения	16
Список иллюстраций и таблиц	
<u>Таблица 1 Двумерное стандартное нормальное распределение, n=20, r=0</u>	
<u>Таблица 2 Двумерное стандартное нормальное распределение, n=60, r=0</u>	
Таблица 3 Двумерное стандартное нормальное распределение, n=100, r=0	
<u>Таблица 4 Двумерное стандартное нормальное распределение, n=20, r=0.5</u>	
Таблица 5 Двумерное стандартное нормальное распределение, n=60, r=0.5	
Таблица 6 Двумерное стандартное нормальное распределение, n=100, r=0.5	
Таблица 7 Двумерное стандартное нормальное распределение, n=20, r=0.9	
Таблица 8 Двумерное стандартное нормальное распределение, n=60, r=0.9	
Таблица 9 Двумерное стандартное нормальное распределение, n=100, r=0.9	
<u>Таблица 10 Смесь распределений, n=20</u>	
<u>Таблица 11 Смесь распределений, n=60</u>	
<u>Таблица 12 Смесь распределений, n=100</u>	
<u>Рис. 1 Двумерное стандартное нормальное распределение для n=20, r=0</u>	
<u>Рис. 2 Двумерное стандартное нормальное распределение для n=60, r=0</u>	
<u>Рис. 3 Двумерное стандартное нормальное распределение для n=100, r=0</u>	
<u>Рис. 4 Двумерное стандартное нормальное распределение для n=20, r=0.5</u>	
<u>Рис. 5 Двумерное стандартное нормальное распределение для n=60, r=0.5</u>	
<u>Рис. 6 Двумерное стандартное нормальное распределение для n=100, r=0.5</u>	
<u>Рис. 7 Двумерное стандартное нормальное распределение для n=20, r=0.9</u>	
<u>Рис. 8 Двумерное стандартное нормальное распределение для n=60, r=0.9</u>	
<u>Рис. 9 Двумерное стандартное нормальное распределение для n=100, r=0.9</u>	
<u>Рис. 10 Смесь распределений для n=20</u>	

Рис. 11 Смесь распределений для n=60

- <u>Рис. 12 Смесь распределений для n=100</u>
- <u>Рис. 13 Эллипс рассеивания для 2-х точек при r=0</u>
- <u>Рис. 14 Эллипс рассеивания для 2-х точек при r=0.5</u>
- <u>Рис. 15 Эллипс рассеивания для 2-х точек при r=0.9</u>
- <u>Рис. 16 Эллипс рассеивания для 3-х точек при r=0</u>
- <u>Рис. 17 Эллипс рассеивания для 3-х точек при r=0.5</u>
- <u>Рис. 18 Эллипс рассеивания для 3-х точек при r=0.9</u>

1 Постановка задачи

Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения $N(x, y, 0, 0, 1, 1, \rho)$. Коэффициент корреляции ρ взять равным 0, 0.5, 0.9. Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции. Повторить все вычисления для смеси нормальных распределений:

$$f(x,y)=0.9 N(x,y,0,0,1,1,0.9)+0.1 N(x,y,0,0,10,10,-0.9)$$

Изобразить сгенерированные точки на плоскости и нарисовать эллипс рассеяния.

2 Теория

1. Двумерное стандартное нормальное распределение:
$$N(x,y,0,0,1,1,\rho) = \frac{1}{2\pi\sqrt{1-\rho^2}} e^{\frac{-1}{2(1-\rho^2)}(x^2-2\rho xy+y^2)}$$

2. Коэффициент корреляции Пирсона:

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

3. Коэффициент корреляции Спирмена:

$$\rho_n = 1 - \frac{6}{n^3 - n} \sum_{i=1}^n d_i^2$$

4. Квадрантный коэффициент корреляции:

$$r_Q = \frac{1}{n} \sum_{i=1}^{n} sign(x_i - medx) sign(y_i - medy)$$

3 Реализация

Был использован язык *Python 3.8.2*: модуль *питру* для вычисления описательных статистик, модуль scipy для генерации выборок на основе двумерного нормального распределения и расчёта коэффициентов корреляции, модуль matplotlib для построения и отображения графиков, модуль pandas для хранения статистических данных в таблицах и функция display из модуля IPython.display для их корректного отображения.

4 Результаты

Таблица 13 Двумерное стандартное нормальное распределение, n=20, r=0

n=20	Pearson	Spearman	quadrant
E(z)	0.012	0.011	0.003
E(z^2)	0.048	0.05	0.051
D(z)	0.048	0.049	0.051

Таблица 14 Двумерное стандартное нормальное распределение, n=60, r=0

n=60	Pearson	Spearman	quadrant
E(z)	0.004	0.004	0.003
E(z^2)	0.016	0.017	0.017
D(z)	0.016	0.017	0.017

Таблица 15 Двумерное стандартное нормальное распределение, n=100, r=0

n=100	Pearson	Spearman	quadrant
E(z)	0.001	0.001	-0.001
E(z^2)	0.01	0.01	0.011
D(z)	0.01	0.01	0.011

Таблица 16 Двумерное стандартное нормальное распределение, n=20, r=0.5

n=20	Pearson	Spearman	quadrant
E(z)	0.489	0.46	0.322
E(z^2)	0.271	0.246	0.148
D(z)	0.032	0.035	0.044

Таблица 17 Двумерное стандартное нормальное распределение, n=60, r=0.5

n=60	Pearson	Spearman	quadrant
E(z)	0.496	0.476	0.331
E(z^2)	0.255	0.237	0.124
D(z)	0.009	0.01	0.014

Таблица 18 Двумерное стандартное нормальное распределение, n=100, r=0.5

n=100	Pearson	Spearman	quadrant
E(z)	0.497	0.477	0.331
E(z^2)	0.253	0.233	0.118
D(z)	0.005	0.006	0.009

Таблица 19 Двумерное стандартное нормальное распределение, n=20, r=0.9

n=20	Pearson	Spearman	quadrant
E(z)	0.896	0.867	0.696
E(z^2)	0.806	0.756	0.513
D(z)	0.002	0.004	0.029

Таблица 20 Двумерное стандартное нормальное распределение, n=60, r=0.9

n=60	Pearson	Spearman	quadrant
E(z)	0.898	0.883	0.707
E(z^2)	0.808	0.78	0.508
D(z)	0.001	0.001	0.009

Таблица 21 Двумерное стандартное нормальное распределение, n=100, r=0.9

n=100	Pearson	Spearman	quadrant
E(z)	0.899	0.886	0.708
E(z^2)	0.809	0.786	0.507
D(z)	0	0.001	0.005

Таблица 22 Смесь распределений, n=20

n=20	Pearson	Spearman	quadrant
E(z)	-0.08	-0.078	-0.05
E(z^2)	0.061	0.061	0.056
D(z)	0.054	0.055	0.054

Таблица 23 Смесь распределений, n=60

n=60	Pearson	Spearman	quadrant
E(z)	-0.092	-0.086	-0.06
E(z^2)	0.025	0.024	0.021
D(z)	0.016	0.016	0.017

Таблица 24 Смесь распределений, n=100

n=100	Pearson	Spearman	quadrant
E(z)	-0.097	-0.092	-0.063
E(z^2)	0.019	0.019	0.014
D(z)	0.01	0.01	0.01

Рис. 19 Двумерное стандартное нормальное распределение для n=20, r=0

Рис. 20 Двумерное стандартное нормальное распределение для n=60, r=0

Рис. 21 Двумерное стандартное нормальное распределение для n=100, r=0

Рис. 22 Двумерное стандартное нормальное распределение для n=20, r=0.5

Рис. 24 Двумерное стандартное нормальное распределение для n=100, r=0.5

Рис. 25 Двумерное стандартное нормальное распределение для n=20, r=0.9

Рис. 26 Двумерное стандартное нормальное распределение для n=60, r=0.9

Рис. 27 Двумерное стандартное нормальное распределение для n=100, r=0.9

Рис. 28 Смесь распределений для n=20

Рис. 30 Смесь распределений для n=100

Рис. 31 Эллипс рассеивания для 2-х точек при r=0

Рис. 32 Эллипс рассеивания для 2-х точек при r=0.5

Рис. 34 Эллипс рассеивания для 3-х точек при r=0

Рис. 36 Эллипс рассеивания для 3-х точек при r=0.9

5 Выводы

Ближе всего к теоретическому коэффициенту корреляции находится коэффициент Пирсона.

По графикам видно, что

- при увеличении объёма выборки коэффициенты корреляции стремятся к теоретическим
- при уменьшении корреляции эллипс рассеивания стремится к окружности, а при увеличении вырождается в прямую с углом наклона в 45° против часовой стрелки
- для построения эллипса рассеивания нужно минимум 3 точки, а при 2-х точках эллипс вырождается в прямую под определённым углом

6 Литература

Основы работы с питру (отдельная глава курса)

<u>Документация по *scipy*</u>

Pandas обзор

7 Приложения

Код лабораторной