AIC/RL - Course Summary

Freek Stulp and Michèle Sebag

Université Paris-Saclay

I. MDP

Model-based Model-free

II. Dynamic Progr. → III. Discrete RL

Infinite (V. outlook: optimal control) ← IV. Continuous RL

Problem definition

$$\text{MDP} = \{S, A, \mathcal{P}_{ss'}^a, \mathcal{R}_{ss'}^a\}$$
 (1)
$$\mathcal{P}_{ss'}^a = Pr\{s_{t+1} = s' | s_t = s, a_t = a\}$$
 Transition function (2)
$$\mathcal{R}_{ss'}^a = \mathsf{E}\{r_{t+1} | s_t = s, a_t = a, s_{t+1} = s'\}$$
 Reward function (3)

$$\pi(s,a) = Pr\{a_t = a | s_t = s\}$$
 Policy (4)

Aim of the agent

$$\pi^* = argmax_{\pi} \, \mathsf{E}\{R|\pi\}$$
 Optimal policy (5)
$$R_t = \sum_{k=0}^{T} \gamma^k r_{t+k+1}$$
 Return (discounted) (6)

Values

• $V^{\pi}(s)$ is expected return when starting in s and following π

$$R_t = \sum_{k=0}^{T} \gamma^k r_{t+k+1}$$
 Return (discounted) (1)

$$V^{\pi}(s) = \mathsf{E}_{\pi} \left\{ R_t | s_t = s \right\}$$
 Value (SUBA3.7)

$$= \mathsf{E}_{\pi} \left\{ \sum_{k=0}^{T} \gamma^{k} r_{t+k+1} | s_{t} = s \right\} \tag{3}$$

- Return R_t is an actual observation, $V^{\pi}(s)$ is an expectation.
- Value $V^{\pi}(s)$ depends on future actions, i.e. which the policy will decide.

Recursive Bellman Equation

• Values are recursively defined in terms of other values!

$$V^{\pi}(s) = \mathsf{E}_{\pi} \left\{ R_t | s_t = s \right\} \tag{1}$$

$$= \sum_{s} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$
 (2)

Dynamic Programming

- Policy Evaluation: $V_{k+1}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right]$
- Policy Improvement: $\pi'(s) = \operatorname{argmax}_a \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V(s') \right]$
- · Value Iteration: Policy Evaluation + Policy Improvement

DP requires knowledge about $\mathcal{P}^a_{ss'}$ and $\mathcal{R}^a_{ss'}$: model-based!

Without a model?

• Use actual observations to estimate values $V^{\pi}(s)$

Monte-Carlo methods

- Wait until end of the episode to update estimates
- Batch method: average of list of returns $V^{\pi}(s) = mean(Returns(s))$
- Incremental method: $V^{\pi}(s) = V^{\pi}(s) + \alpha \left[R V^{\pi}(s) \right]$

Temporal Difference learning

- · Update estimates after each immediate reward
- TD(0): $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) V(s_t)]$

State values $V^{\pi}(s)$ vs. state/action values $Q^{\pi}(s, a)$

- Policy improvement: $\operatorname{argmax}_a \sum_{s'} \mathcal{P}_{ss'}^a V_k(s')$
 - Doesn't work in model-free case: we do not know $\mathcal{P}^a_{ss'}$
- Solution, use state/action values $Q^{\pi}(s, a)$
 - $Q^{\pi}(s,a) = \mathsf{E}_{\pi} \{ R_t | s_t = s, a_t = a \}$
 - Policy improvement simply becomes: argmax_a Q(s, a)
- How to estimate $Q^{\pi}(s, a)$ from observations?
 - MC and TD udpate rules for $Q^{\pi}(s, a)$ essentially same as for $V^{\pi}(s)$

Exploration/exploitation trade-off

- Only exploration or exploitation would be bad strategy
- Explore first, exploit later: ϵ -greedy exploration, with decaying ϵ

Continuous, infinite MDPs

- S State space $S \subseteq \mathbb{R}^{D_S}$ (D_S -dimensional vector)
- *A* Action space $A \subseteq \mathbb{R}^{D_A}$ (D_A -dimensional vector)
- *f* Transition rate function $f: S \times A \rightarrow \Delta S$
- *r* Reward function $r: S \times A \rightarrow \mathbb{R}$
- Bad news: infinite number of states and actions...
- Good news: smoothness, i.e. ΔS usually not so big

Function Approximation

- $V_{ heta}(s) = f_{ heta}(s)$ estimate V with parameterized function
 - · radial basis function network, neural network, decision tree
- $\theta_{t+1} = \theta_t + \frac{1}{2}\alpha\nabla_{\theta_t}\left[V^{\pi}(s_t) V_t^{\pi}(s_t)\right]^2$ gradient-descent

Direct policy search

- Value function not explicitly represented (!)
- Define parameterized policy $\pi_{\theta}(s)$
- Search directly in space of θ using optimization
 - · gradient based, evolution strategies

Case Study 1: Deep Reinforcement Learning

- Use a deep neural network to represent the function that approximates $Q^{\pi}(s, a)$
- Provide raw images as input the the function approximator
- Same algorithm (and its parameters) applied to many different Atari games

References

Playing Atari with Deep Reinforcement Learning

http://arxiv.org/abs/1312.5602

Human-level control through deep reinforcement learning. Nature, 2015.

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

Case Study 2: Learning to Manipulate

- Use direct policy search for continuous high-dimensional action spaces
- Applied to real robotic manipulation problems
- Such problems are very difficult to model

References

Learning Motion Primitive Goals for Robust Manipulation

 $\verb|http://freekstulp.net/publications/b2hd-stulp11learningmotion.html| \\$

 Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

http://freekstulp.net/publications/b2hd-stulp12reinforcement.html

