Vidéo ■ partie 12.1. Éléments d'arithmétique Vidéo ■ partie 12.2. Cryptographie RSA

La sécurité des communications sur internet est basée sur l'arithmétique et en particulier sur le système de cryptographie RSA qui repose sur la difficulté de factoriser de très grands entiers avec un ordinateur classique. Nous présentons dans ce chapitre les notions essentielles d'arithmétique afin de comprendre plus tard l'algorithme de Shor qui permet de factoriser rapidement un entier à l'aide d'un ordinateur quantique.

1. Division et pgcd

1.1. Divisibilité

Définition.

Soient $a, b \in \mathbb{Z}$ avec b non nul. On dit que b divise a s'il existe un entier $k \in \mathbb{Z}$ tel que a = kb. On note alors b|a. On dit aussi que a est divisible par b ou encore que b est un diviseur de a.

Par exemple:

- 3|12 (« 3 divise 12 » ou bien « 12 est divisible par 3 »).
- Plus généralement les diviseurs positifs de 12 sont 1, 2, 3, 4, 6, 12.
- Quel que soit $b \in \mathbb{Z}$, non nul, on a b|0.

1.2. Division euclidienne

La *division euclidienne* permet de généraliser la notion de divisibilité. Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N} \setminus \{0\}$. Il existe des entiers $q, r \in \mathbb{Z}$, uniques, tels que

$$a = bq + r$$
 et $0 \leqslant r < b$

- L'entier q est le quotient et r est le reste.
- Exemple : a = 101, b = 7 alors q = 14 et r = 3 car $101 = 7 \times 14 + 3$.
- Le reste est nul si et seulement si *b* divise *a*.
- On note aussi (de façon un peu abusive) $r = a \pmod{b}$.
- Avec *Python* on calcule le quotient par q = a//b (à noter la double barre de division) et le reste r = a % b.

1.3. **Pgcd**

Soient $a, b \in \mathbb{Z}$ (non tous les deux nuls). Le pgcd de a et b est le plus grand entier qui divise à la fois a et b. Par exemple avec a = 42 et b = 24, les diviseurs positifs communs à a et b sont $\{1, 2, 3, 4, 6\}$, donc pgcd(42, 24) = 6.

1.4. Nombres premiers entre eux

Les entiers a et b sont premiers entre eux si leur pgcd vaut 1.

Par exemple a = 20 et b = 33 sont premiers entre eux, car le seul diviseur positif de ces deux entiers est 1. Autre exemple : deux entiers consécutifs sont toujours premiers entre eux. Preuve : si d > 0 divise a et a + 1 alors d divise (a + 1) - a, donc d divise 1, donc d égal 1.

1.5. Théorème de Bézout

Théorème 1 (Théorème de Bézout).

Soient a, b des entiers non nuls. Il existe des entiers $u, v \in \mathbb{Z}$ tels que

$$au + bv = \operatorname{pgcd}(a, b)$$

On a même une équivalence lorsque les entiers sont premiers entre eux :

Corollaire 1.

Soient a, b deux entiers non nuls. a et b sont premiers entre eux si et seulement si il existe u, $v \in \mathbb{Z}$ tels que

$$au + bv = 1$$

Exemples:

- a = 42 et b = 24. On a vu pgcd(42, 24) = 6. Avec u = -1 et v = 2, on obtient $42 \times (-1) + 24 \times 2 = 6$.
- a = 20 et b = 33. On a vu pgcd(20, 33) = 1. Avec u = 5 et v = -3, on obtient $20 \times 5 + 33 \times (-3) = 1$.

1.6. Algorithme d'Euclide

L'algorithme d'Euclide est une méthode efficace pour calculer le pgcd et sa version étendue permet de trouver des coefficients u, v du théorème de Bézout.

Soient $a, b \in \mathbb{N}^*$. Considérons la division euclidienne a = bq + r, où r est le reste. Alors

$$pgcd(a, b) = pgcd(b, r)$$

Pour en faire un algorithme on calcule des divisions euclidiennes successives. Le pgcd sera le dernier reste non nul car on sait que pgcd(a, 0) = a.

Exemple.

Calculons le pgcd d de a = 11466 et b = 1656.

- Division euclidienne de a par b: 11 466 = 6 × 1656 + 1530, donc le reste est r_1 = 1530. On utilise alors $d = \operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r_1)$, donc $\operatorname{pgcd}(11466, 1656) = \operatorname{pgcd}(1656, 1530)$.
- Division euclidienne de b=1656 par $r_1=1530$: $1656=1\times1530+126$, donc le reste est $r_2=126$. Notre pgcd d vaut maintenant pgcd(1530, 126).
- Division euclidienne de 1530 par 126 : $1530 = 12 \times 126 + 18$, donc le reste est $r_3 = 18$ et d = pgcd(126, 18).
- Division euclidienne de 128 par 18 : $126 = 7 \times 18 + 0$, donc le reste est nul. Or pgcd(18,0) = 18.

• Le pgcd est le dernier reste non nul, ainsi pgcd(11466, 1656) = 18.

L'algorithme d'Euclide est l'un des plus anciens algorithmes mais il est cependant très efficace! Le nombre d'étapes dans l'algorithme est assez faible : si a et b s'écrivent (en base 10) avec moins de n chiffres, alors il y a au plus 5n étapes dans l'algorithme d'Euclide. Donc par exemple, avec des entiers à 100 chiffres, il y a au plus 500 étapes.

1.7. Lemme de Gauss

Proposition 1 (Lemme de Gauss).

Soient $a, b, c \in \mathbb{Z}$ (avec a non nul).

$$Si \ a|bc \ et \ pgcd(a,b) = 1 \ alors \ a|c$$

Exemple : si un entier a divise (a + 1)c alors a|c (c'est le lemme de Gauss, sachant qu'on a toujours pgcd(a, a + 1) = 1).

Attention aux hypothèses : 6 divise 4×9 , mais 6 ne divise ni 4 ni 9. Cela ne contredit pas le lemme de Gauss car 6 n'est premier ni avec 4, ni avec 9.

La preuve découle du théorème de Bézout : comme par hypothèse pgcd(a, b) = 1, il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1. On multiplie cette égalité par c pour obtenir acu + bcv = c. Mais a|acu et par hypothèse a|bcv donc a divise acu + bcv = c.

2. Nombres premiers

2.1. Définition

Définition.

Un nombre premier p est un entier supérieur ou égal à 2 dont les seuls diviseurs positifs sont 1 et p.

Exemples.

- 2, 3, 5, 7, 11, 13, ... sont des nombres premiers.
- Un théorème d'Euclide nous dit qu'il y a une infinité de nombres premiers.
- Par définition, 1 n'est pas un nombre premier.

2.2. Décomposition en facteurs premiers

Théorème 2.

Tout entier $n \ge 2$ se décompose en produit de facteurs premiers :

$$n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \cdots \times p_r^{\alpha_r}$$

où les p_i sont des nombres premiers, et les exposants $\alpha_i \geqslant 1$ sont des entiers. De plus, cette décomposition est unique (à l'ordre des facteurs près).

2.3. Petit théorème de Fermat

Théorème 3 (Petit théorème de Fermat).

Si p est un nombre premier ne divisant pas a alors

$$a^{p-1} \equiv 1 \pmod{p}$$

Une variante : pour a un entier quelconque et p un nombre premier :

$$a^p \equiv a \pmod{p}$$

Nous reviendrons sur les congruences dans la section suivante.

2.4. Algorithmes et nombres premiers

Nous allons discuter de plusieurs algorithmes qui permettent de décider si un entier n donné est un nombre premier ou pas.

Tester les diviseurs un par un. On teste si d divise n pour d=2, d=3, d=4,... Cela se fait par un calcul de division euclidienne. Si on obtient un diviseur strictement inférieur à n, alors n n'est pas premier. Si on ne trouve pas de diviseur alors n est premier.

Améliorations possibles : on peut tester d=2, et ensuite ne tester que des entiers d impairs ; on peut aussi limiter la recherche des diviseurs à ceux vérifiant $d \le \sqrt{n}$ (critère de Napoléon).

Crible d'Ératosthène. On peut aussi dresser une longue liste de nombres premiers, au delà de l'entier n. L'avantage est qu'il suffit alors de vérifier si l'entier n est dans la liste pour savoir s'il est premier. Mais le crible est une méthode lente et ne permet pas d'obtenir de très grands nombres premiers.

Test probabiliste de Fermat. Le petit théorème de Fermat nous dit que si p est un nombre premier et a est un entier avec $1 \le a < p$ alors $a^{p-1} \equiv 1 \pmod{p}$.

Pour tester si un entier n est premier, on fixe un entier 1 < a < n, on calcule $a^{n-1} \pmod{n}$ (c'est très facile grâce à l'exponentiation rapide, voir plus loin).

- Si $a^{n-1} \not\equiv 1 \pmod{n}$ alors on est sûr que n n'est pas un nombre premier.
- Si $a^{n-1} \equiv 1 \pmod n$ alors on dit que n valide le test de Fermat pour l'entier a et qu'il est probablement premier. Cependant il existe des exceptions : certains entiers valident le test de Fermat mais ne sont pas des nombres premiers. Par exemple parmi tous les entiers $n \leqslant 1\,000\,000$, tous ceux qui passent le test de Fermat à la fois pour a=2, a=3, a=5 et a=7 sont des nombres premiers (il y en a 78 498) à l'exceptions de 19 entiers (le premier de la liste est $n=29\,341=13\times37\times61$).

Le test de Fermat permet de produire des entiers très grands qui sont probablement des nombres premiers : on choisit un entier impair n au hasard, on effectue un test de Fermat, si le test est concluant alors n est probablement un nombre premier, sinon on essaie l'entier n + 2...

Algorithmes modernes. Une amélioration du test de Fermat est l'algorithme de Miller-Rabin. Par ailleurs, il a été récemment démontré par Agrawal–Kayal–Saxena que le test de primalité peut être effectué en temps polynomial (algorithme AKS). Même si dans la pratique l'algorithme n'est pas très utile, c'est une grande avancée théorique. L'algorithme est basé sur le fait que si p est un nombre premier alors on a l'égalité polynomiale : $(X+1)^p \equiv X^p+1 \pmod p$.

2.5. Algorithmes et factorisation

Tester si un entier est premier ou donner sa factorisation sont au final deux problèmes distincts. On a vu, grâce au petit théorème de Fermat, qu'on peut décider qu'un entier n'est pas premier sans lui avoir trouvé de facteur. Le problème de factoriser un entier n, ou au moins de trouver un facteur non trivial, est donc plus difficile.

Tester les diviseurs un par un. Comme auparavant on peut tester les diviseurs un par un jusqu'à \sqrt{n} , la complexité est en $O(\sqrt{n})$. On peut bien sûr ne tester que les diviseurs premiers (ce qui est plus rapide) mais cela demande au préalable d'avoir une liste des premiers nombres premiers (ce qui est long). C'est donc une méthode efficace uniquement pour trouver les petits diviseurs.

Facteurs de Fermat. On peut essayer d'exprimer n comme différence de deux carrés, on obtient alors une factorisation. En effet, si c'est le cas :

$$n = a^2 - b^2 = (a - b)(a + b).$$

Réciproquement tout entier impair non premier est la différence de deux carrés. En effet, si n=cd alors $n=\left(\frac{c+d}{2}\right)^2-\left(\frac{c-d}{2}\right)^2$. Cela fournit un algorithme de recherche d'un facteur de n: prendre un entier a (généralement proche de \sqrt{n}), calculer si $b'=n-a^2$ est un carré de la forme b^2 , si c'est le cas, on obtient une factorisation (a-b)(a+b), sinon on recommence avec a+1. C'est une méthode efficace si les facteurs premiers sont grands, donc cette méthode est complémentaire de la précédente.

Algorithmes modernes.

Aucun algorithme connu n'a de complexité polynomiale. Plus précisément, on ne connaît pas d'algorithme de factorisation ayant une complexité polynomiale, mais on ne sait pas non plus prouver qu'un tel algorithme n'existe pas.

Le meilleur algorithme connu pour factoriser des grands entiers est l'algorithme GNFS (pour *General Number Field Sieve*), sa complexité est environ $O(n^{\frac{1}{3}})$ (c'est donc une complexité exponentielle par rapport à la taille de n qui est d'ordre $\ln(n)$).

3. Congruence modulo n

3.1. Modulo *n*

Définition.

Soit $n \ge 1$ un entier. On dit $a \equiv b \pmod{n}$ s'il existe $k \in \mathbb{Z}$ tel que a = kn + b, autrement dit si b - a est divisible par n. On dira a est congru a b modulo n.

Proposition 2.

Si $a \equiv b \pmod{n}$ et $a' \equiv b' \pmod{n}$ alors:

$$a + a' \equiv b + b' \pmod{n}$$
 et $a \cdot a' \equiv b \cdot b' \pmod{n}$.

De plus $a^k \equiv b^k \pmod{n}$, quel que soit $k \in \mathbb{N}$.

Exemples.

- $33 \equiv 3 \pmod{15}$ car $33 = 2 \times 15 + 3$.
- $1789 = 105 \times 17 + 4$ donc $1789 \equiv 4 \pmod{17}$, mais aussi $1789 = 104 \times 17 + 21$ et $1789 \equiv 21 \pmod{17}$.
- Un entier a est pair si et seulement si $a \equiv 0 \pmod{2}$.
- Par conséquent si a est impair alors a^k est impair. En effet a impair, implique $a \equiv 1 \pmod 2$, donc $a^k \equiv 1^k \equiv 1 \pmod 2$, donc a^k est impair.

3.2. Inverse modulo n

Définition.

Soit $n \ge 1$ un entier. On dit que a est *inversible* modulo n, s'il existe $b \in \mathbb{Z}$ tel que $a \cdot b \equiv 1 \pmod{n}$. On dit alors que b est l'inverse de a modulo n.

Exemples.

- Avec n = 15, a = 2 est inversible modulo 15, car avec b = 8 on $a \cdot b = 2 \times 8 = 16 \equiv 1 \pmod{15}$.
- Avec n = 15, a = 7 est inversible modulo 15, car avec b = 13 on $a \cdot b = 7 \times 13 = 91 \equiv 1 \pmod{15}$.
- Avec n = 15, a = 3 n'est pas inversible.

Proposition 3.

a est inversible modulo n si et seulement si pgcd(a, n) = 1.

Démonstration.

$$\operatorname{pgcd}(a,n) = 1 \iff \exists u,v \in \mathbb{Z} \quad au + nv = 1 \qquad \text{(par le th\'eor\`eme de B\'ezout)}$$

$$\iff \exists u,v \in \mathbb{Z} \quad au = 1 - nv$$

$$\iff \exists u \in \mathbb{Z} \quad au \equiv 1 \pmod n$$

$$\iff a \text{ est inversible modulo } n.$$

La preuve justifie que l'on peut trouver l'inverse de a modulo n à l'aide des coefficients de Bézout u, v. Ces coefficients se calculent à l'aide de l'algorithme d'Euclide étendu.

3.3. Groupes

Pour être un peu plus théorique, on définit :

- $(\mathbb{Z}/n\mathbb{Z}, +)$ le groupe additif des entiers modulo n. C'est un groupe commutatif $(a + b \equiv b + a \pmod{n})$, ayant n éléments. L'élément neutre pour l'addition est 0, l'inverse d'un élément a est -a.
- $((\mathbb{Z}/n\mathbb{Z})^*, \times)$ le groupe des inversibles modulo n. C'est un groupe multiplicatif, commutatif $(a \times b \equiv b \times a \pmod{n})$. Son élément neutre est 1, l'inverse d'un élément a est son inverse modulo n, noté b, tel que $ab \equiv 1 \pmod{n}$. Le groupe $(\mathbb{Z}/n\mathbb{Z})^*$ possède $\varphi(n)$ éléments (où $\varphi(n)$ est défini juste après).

3.4. Indicatrice d'Euler

Définition.

Soit $n \ge 1$. L'indicatrice d'Euler $\varphi(n)$ est le nombre d'entiers a premiers avec n, tels que $1 \le a \le n$.

Une conséquence immédiate est que $\varphi(n)$ est le nombre d'éléments inversibles modulo $n: \varphi(n) = \operatorname{Card}(\mathbb{Z}/n\mathbb{Z})^*$.

Exemples.

- Soit n = 15. Les entiers a premiers avec 15 sont $\{1, 2, 4, 7, 8, 11, 13, 14\}$, donc $\varphi(n) = 8$.
- Si *p* est nombre premier alors $\varphi(p) = p 1$ car tout entier *a*, avec $1 \le a < p$, est premier avec *p*.

La proposition suivante permet de calculer $\varphi(n)$ à partir de la décomposition de n en facteurs premiers.

Proposition 4.

- Si n = pq (avec p, q deux nombres premiers distincts) alors $\varphi(n) = (p-1)(q-1)$.
- $S n = p^k$ (avec $k \ge 1$) alors $\varphi(n) = p^k p^{k-1}$.
- Formule générale. Si $n = p_1^{\alpha_1} \cdots p_\ell^{\alpha_\ell}$ alors

$$\varphi(n) = n \prod_{i=1}^{\ell} \left(1 - \frac{1}{p_i} \right).$$

Démonstration.

- Si n = pq alors les entiers a qui ne sont pas premiers avec n sont les p, 2p, 3p, ..., (q-1)p et les q, 2q, ..., (p-1)q et pq. Il y a en a donc (q-1)+(p-1)+1=p+q-1. Les autres sont premiers avec n et sont au nombre de pq-(p+q-1)=(p-1)(q-1).
- Si $n = p^k$ alors les entiers qui ne sont pas premiers avec n sont les multiples de p de la forme αp avec $1 \le \alpha \le p^{k-1}$. Il y en a donc p^{k-1} .
- Nous admettons la formule générale qui se prouve par récurrence à partir de la formule $\varphi(ab) = \varphi(a) \cdot \varphi(b)$ lorsque a et b sont premiers entre eux.

3.5. Théorème d'Euler

Le théorème d'Euler est une version généralisée du petit théorème de Fermat.

Théorème 4 (Théorème d'Euler).

Si a et n sont premiers entre eux alors :

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

On pourrait déduire ce résultat du théorème de Lagrange appliqué au groupe fini $(\mathbb{Z}/n\mathbb{Z})^*$ de cardinal $\varphi(n)$. Nous allons en donner une autre démonstration.

Démonstration. Fixons n et fixons a premier avec n. Notons $\mathcal{A}=\{a_1,a_2,\ldots,a_{\varphi(n)}\}$ l'ensemble des entiers inférieurs à n et premiers avec n (notre entier a est l'un de ces éléments et en fait $\mathcal{A}=(\mathbb{Z}/n\mathbb{Z})^*$). Considérons l'application $f:\mathcal{A}\to\mathcal{A}$, définie par $f(a_i)=a\cdot a_i\pmod n$. Comme a est inversible modulo n, alors f est bijective (sa bijection réciproque est $f^{-1}(a_i)=b\cdot a_i\pmod n$) où b est l'inverse de a modulo a). Ainsi $a'=\{a\cdot a_1,a\cdot a_2,\ldots,a\cdot a_{\varphi(n)}\}$ contient les mêmes termes que notre ensemble $a'=\{a_1,\ldots,a_{\varphi(n)}\}$ (mais les éléments sont permutés) : a'=a'. Comme ces ensembles sont égaux, alors le produit des éléments de a'0 est égal au produit des éléments de a'1.

$$\prod_{i=1}^{\varphi(n)} (a \cdot a_i) \equiv \prod_{i=1}^{\varphi(n)} a_i \pmod{n}$$

donc

$$a^{\varphi(n)}\prod_{i=1}^{\varphi(n)}a_i\equiv\prod_{i=1}^{\varphi(n)}a_i\pmod{n},$$

et comme les a_i sont inversibles modulo n, alors $a^{\varphi(n)} \equiv 1 \pmod{n}$.

3.6. Exponentiation

Fixons $n \ge 1$ et $a \in \mathbb{Z}$. Il s'agit de calculer $a^k \pmod{n}$, pour un entier $k \ge 0$.

Exponentiation classique. Si on a besoin de connaître tous les $a^k \pmod{n}$ pour k = 1, 2, 3, ... alors on les calcule successivement en utilisant la relation $a^{k+1} = a^k \cdot a$.

Exemple.

Calcul des $2^k \pmod{25}$.

$$2^{0} \equiv 1 \pmod{25}$$
 $2^{5} \equiv 2 \times 16 \equiv 7 \pmod{25}$ $2^{1} \equiv 2 \pmod{25}$ $2^{6} \equiv 2 \times 7 \equiv 14 \pmod{25}$ $2^{2} \equiv 2 \times 2 \equiv 4 \pmod{25}$ $2^{7} \equiv 2 \times 14 \equiv 28 \equiv 3 \pmod{25}$ $2^{3} \equiv 2 \times 4 \equiv 8 \pmod{25}$ $2^{8} \equiv 2 \times 3 \equiv 6 \pmod{25}$ $2^{4} \equiv 2 \times 8 \equiv 16 \pmod{25}$...

Noter que chaque calcul est une simple multiplication par *a* du résultat précédent et qu'on réduit immédiatement modulo *n* afin que les entiers en jeu restent de petite taille.

Exponentiation rapide. Si on a besoin de connaître un seul $a^k \pmod{n}$, alors on n'est pas obligé de calculer toutes les puissances précédentes, mais seulement celles dont l'exposant k est une puissance de 2.

Exemple.

On souhaite calculer 3²¹ (mod 31).

• On décompose l'exposant 21 en base 2:21=16+4+1.

• On calcule successivement 3^1 , 3^2 , 3^4 , 3^8 ,... en utilisant que $3^{2k} = (3^k)^2$. De plus tous les calculs se font modulo n = 31.

$$3^{1} \equiv 3 \pmod{31}$$

 $3^{2} \equiv 9 \pmod{31}$
 $3^{4} \equiv (3^{2})^{2} \equiv 9^{2} \equiv 81 \equiv 19 \pmod{31}$
 $3^{8} \equiv (3^{4})^{2} \equiv 19^{2} \equiv 361 \equiv 20 \pmod{31}$
 $3^{16} \equiv (3^{8})^{2} \equiv 20^{2} \equiv 400 \equiv 28 \pmod{31}$

• On combine les résultats :

$$3^{21} = 3^{16+4+1} = 3^{16} \times 3^4 \times 3^1 \equiv 28 \times 19 \times 3 \equiv 1596 \equiv 15 \pmod{31}$$
.

4. Cryptographie RSA

4.1. Chiffrement à clé secrète

Jusqu'à récemment pour que Bob envoie un message à Alice, sans que personne ne puisse prendre connaissance du contenu, on utilisait un *chiffrement à clé secrète*. Une méthode (très basique) consiste par exemple à décaler chaque lettre d'un certain rang C. Par exemple si C = 3, Bob chiffre son message BAC en EDF. Alice peut facilement déchiffrer le message si elle connaît la clé C.

On représente ce protocole ainsi : Bob dépose son message dans un coffre fort pour Alice, Alice et Bob étant les seuls à posséder la clé du coffre.

La grande difficulté est que Alice et Bob doivent d'abord se communiquer la clé.

4.2. Chiffrement à clé publique

Le chiffrement à clé publique est une petite révolution : n'importe qui peut envoyer un message chiffré à Alice en utilisant la clé publique d'Alice, mais seule Alice peut déchiffrer le message à l'aide d'une clé secrète qu'elle est la seule à connaître.

De façon imagée, si Bob veut envoyer un message à Alice, il dépose son message dans la boîte aux lettres d'Alice, seule Alice pourra ouvrir sa boîte et consulter le message. Ici la clé publique est symbolisée par la

boîte aux lettres, tout le monde peut y déposer un message, la clé qui ouvre la boîte aux lettres est la clé privée d'Alice.

Si Bob veut envoyer un message secret à Alice, le processus se décompose ainsi :

- 1. Alice prépare une clé publique et une clé privée,
- 2. Bob utilise la clé publique d'Alice pour chiffrer son message,
- 3. Alice reçoit le message chiffré et le déchiffre grâce à sa clé privée.

Pour chiffrer un message, on commence par le transformer en un –ou plusieurs– nombres. Dans toute la suite le message que Bob envoie est un entier.

4.3. Principe du chiffrement RSA

Voici en résumé le protocole RSA.

- On choisit deux nombres premiers p et q que l'on garde secrets et on pose $n = p \times q$. Le principe étant que même connaissant n il est très difficile de retrouver p et q.
- La clé secrète et la clé publique se déterminent à l'aide de l'algorithme d'Euclide et des coefficients de Bézout.
- Les calculs de chiffrement se feront modulo n.
- Le déchiffrement fonctionne grâce au théorème d'Euler.

Et voici un schéma qui présente le chiffrement et le déchiffrement :

- n, e forment la clé publique d'Alice
- d est la clé privée d'Alice,
- m est le message secret que Bob souhaite transmettre à Alice,
- x est le message chiffré que Bob calcule à partir de la clé publique d'Alice et qu'il lui transmet,
- seule Alice peut retrouver m par un calcul à partir de x et de sa clé privée.

4.4. Protocole du chiffrement RSA

Choix de deux nombres premiers

Alice effectue, une fois pour toutes, les opérations suivantes (en secret) :

- elle choisit deux nombres premiers distincts p et q (dans la pratique ce sont de très grands nombres, jusqu'à des centaines de chiffres),
- elle calcule $n = p \times q$,
- elle calcule $\varphi(n) = (p-1) \times (q-1)$.

Vous noterez que le calcul de $\varphi(n)$ n'est possible que si la décomposition de n sous la forme $p \times q$ est connue. D'où le caractère secret de $\varphi(n)$ même si n est connu de tous.

Choix d'un exposant et calcul de son inverse

Alice continue:

- elle choisit un exposant e tel que $pgcd(e, \varphi(n)) = 1$,
- elle calcule l'inverse d de e modulo $\varphi(n)$: $d \times e \equiv 1 \pmod{\varphi(n)}$. Ce calcul se fait par l'algorithme d'Euclide étendu.

Clé publique/clé privée

La *clé publique* d'Alice est constituée des deux nombres :

Et comme son nom l'indique, Alice communique sa clé publique au monde entier. Alice garde pour elle sa *clé privée* :

Noter que le calcul de $\frac{d}{d}$ nécessite $\frac{\varphi(n)}{q}$, qu'Alice est la seule à connaître. Alice peut détruire $\frac{d}{d}$, q et $\frac{\varphi(n)}{q}$ qui ne sont plus utiles. Elle ne conserve secrètement que sa clé privée.

Message chiffré

Le message est un entier m, tel que $0 \le m < n$.

Bob récupère la clé publique d'Alice, n et e, avec laquelle il calcule :

$$x \equiv m^e \pmod{n}$$

Il transmet ce message x à Alice.

Déchiffrement du message

Alice reçoit le message x chiffré par Bob, elle le déchiffre à l'aide de sa clé privée d, par l'opération :

$$m \equiv x^d \pmod{n}$$

Nous allons prouver dans le lemme 1 que cette opération permet à Alice de retrouver le message original m de Bob.

4.5. Exemple

Mise en place par Alice.

- Alice choisit p = 5 et q = 11, elle calcule $n = p \times q = 55$.
- Elle calcule aussi $\varphi(n) = (p-1)(q-1) = 4 \times 10 = 40$.
- Alice choisit par exemple l'entier e = 3 qui est bien premier avec $\varphi(n)$.
- Alice calcule d, l'inverse de e modulo $\varphi(n)$, ici elle trouve d = 27 car $3 \times 27 = 81 \equiv 1 \pmod{40}$.
- La clé publique d'Alice est (n, e) = (55, 3), sa clé privée est d = 27.

Envoi du message de Bob à Alice.

- Bob souhaite envoyer le message m = 41 à Alice.
- Bob calcule $x \equiv m^e \pmod{n}$ à l'aide de la clé publique d'Alice. Ici

$$x \equiv m^e \equiv 41^3 \equiv 68921 \equiv 6 \pmod{55}$$
.

- Bob transmet x = 6 à Alice.
- Seule Alice peut déchiffrer le message à l'aide de sa clé secrète d, en effet le calcul de $x^d \pmod n$ redonne le message original m. Ici

$$x^d \equiv 6^{27} \equiv 41 \pmod{55}$$
.

Ainsi Alice obtient bien le message m = 41. (Pour le calcul de 6^{27} (mod 55) on utilise les techniques d'exponentiation vues précédemment).

4.6. Lemme de déchiffrement

Le principe de déchiffrement repose sur le théorème d'Euler.

Lemme 1.

Soit d l'inverse de e modulo $\varphi(n)$.

Si
$$x \equiv m^e \pmod{n}$$
 alors $m \equiv x^d \pmod{n}$.

Ce lemme prouve bien que le message original m de Bob, chiffré à l'aide de la clé publique d'Alice (e, n) en le message x, peut-être retrouvé par Alice à l'aide de sa clé secrète d.

Démonstration.

- Que d soit l'inverse de e modulo $\varphi(n)$ signifie $d \cdot e \equiv 1 \pmod{\varphi(n)}$. Autrement dit, il existe $k \in \mathbb{Z}$ tel que $d \cdot e = 1 + k \cdot \varphi(n)$.
- On rappelle que, par le théorème d'Euler, lorsque *m* et *n* sont premiers entre eux

$$m^{\varphi(n)} \equiv 1 \pmod{n}$$
.

• Supposons pgcd(m, n) = 1.

Notons $x \equiv m^e \pmod{n}$ et calculons x^d :

$$x^d \equiv (m^e)^d \equiv m^{e \cdot d} \equiv m^{1 + k \cdot \varphi(n)} \equiv m \cdot m^{k \cdot \varphi(n)} \equiv m \cdot (m^{\varphi(n)})^k \equiv m \cdot (1)^k \equiv m \pmod{n}.$$

• On admet que si *m* et *n* ne sont pas premiers entre eux, le résultat reste vrai (il faut adapter les arguments précédents).

Note. Certains passages de ce chapitre sont extraits du chapitre « Arithmétique » du livre « Algèbre » d'Exo7. La section sur le chiffrement RSA est tirée du cours « Cryptographie » écrit avec François Recher.