(10 points) (R-4) Let g be a Lebesgue measurable function on $\mathbb R$ such that $\|fg\|_1 \le \|f\|_1$ (for all $f \in L^1(\mathbb R)$).

Let c > 1 be a real number. Prove that

$$m(\{x \in \mathbb{R} : |g(x)| > c\}) = 0.$$

Let $E = \{ \{ \{ \} | \{ \} \} \} \}$. In the case that $M(E) = \emptyset$, we will consider $E_K = \{ \{ \} \} \} \}$ Assume for contradiction that M(E) > 0 (or $M(E_K) > 0$, but we'll stick to the fixth case).

Lef
$$f(x) = \chi_E(x)$$
. Then f is also L , and so

$$\int_{E} |g| = \int_{\mathbb{R}} \chi_{E} |g| = \|fg\|_{1} \leq \|f\|_{1} = \int_{\mathbb{R}} \chi_{E} = n(E)$$

Therefore
$$\int_{E} |g| \leq M(E)$$
. OTOH by Chebyshevis inequality,

$$\int_{E} |g| \geq C M(E)$$

$$> M(E) (as c>1 and M(E) > 0)$$

Therefore
$$|g| > m(E) \le .$$
 We conclude $m(E) = 0$.