for all $u \in E$, and since $f_{\varphi}(v_1+v_2)$ is the unique vector such that $\varphi(u, v_1+v_2) = \langle u, f_{\varphi}(v_1+v_2) \rangle$ for all $u \in E$, we must have

$$f_{\varphi}(v_1 + v_2) = f_{\varphi}(v_1) + f_{\varphi}(v_2).$$

For any $\lambda \in \mathbb{C}$ we have

$$\varphi(u, \lambda v) = \overline{\lambda} \varphi(u, v) \qquad \qquad \varphi \text{ is sesquilinear}$$

$$= \overline{\lambda} \langle u, f_{\varphi}(v) \rangle \qquad \qquad \text{by definition of } f_{\varphi}$$

$$= \langle u, \lambda f_{\varphi}(v) \rangle \qquad \qquad \langle -, - \rangle \text{ is sesquilinear}$$

for all $u \in E$, and since $f_{\varphi}(\lambda v)$ is the unique vector such that $\varphi(u, \lambda v) = \langle u, f_{\varphi}(\lambda v) \rangle$ for all $u \in E$, we must have

$$f_{\varphi}(\lambda v) = \lambda f_{\varphi}(v).$$

Therefore f_{φ} is linear.

Then by definition of $\|\varphi\|$, we have

$$|\varphi_v(u)| = |\varphi(u, v)| \le ||\varphi|| ||u|| ||v||,$$

which shows that $\|\varphi_v\| \leq \|\varphi\| \|v\|$. Since $\|f_{\varphi}(v)\| = \|\varphi_v\|$, we have

$$||f_{\varphi}(v)|| \le ||\varphi|| \, ||v||,$$

which shows that f_{φ} is continuous and that $||f_{\varphi}|| \leq ||\varphi||$. But by the Cauchy–Schwarz inequality we also have

$$|\varphi(u,v)| = |\langle u, f_{\varphi}(v) \rangle| \le ||u|| \, ||f_{\varphi}(v)|| \le ||u|| \, ||f_{\varphi}|| \, ||v||,$$

so $\|\varphi\| \leq \|f_{\varphi}\|$, and thus

$$||f_{\varphi}|| = ||\varphi||.$$

If φ is Hermitian, $\varphi(v, u) = \overline{\varphi(u, v)}$, so

$$\langle f_{\varphi}(u), v \rangle = \overline{\langle v, f_{\varphi}(u) \rangle} = \overline{\varphi(v, u)} = \varphi(u, v) = \langle u, f_{\varphi}(v) \rangle,$$

which shows that f_{φ} is self-adjoint.

Proposition 48.11. Given a Hilbert space E, for every continuous linear map $f: E \to E$, there is a unique continuous linear map $f^*: E \to E$, such that

$$\langle f(u), v \rangle = \langle u, f^*(v) \rangle \quad \text{for all } u, v \in E,$$

and we have $||f^*|| = ||f||$. The map f^* is called the adjoint of f.