φ:* Cached quotients for fast lookups

Liam Eagen Dario Fiore IMDEA

Ariel Gabizon
Zeta Function Technologies

December 19, 2022

Abstract

We present a protocol for checking the values of a committed polynomial $\phi(X) \in \mathbb{F}_{< N}[X]$ over a multiplicative subgroup $\mathbb{H} \subset \mathbb{F}$ of size n are contained in a table $T \in \mathbb{F}^N$. After an $O(N \log N)$ preprocessing step, the prover algorithm runs in time $O(n \log n)$. Thus, we continue to improve upon the recent breakthrough sequence of results[ZBK+22, PK22, ?, ?] starting from Caulk [ZBK+22], which achieve sublinear complexity in the table size N. The two most recent works in this sequence [?, ?] achieved prover complexity $O(n \cdot \log^2 n)$.

Moreover, as in [ZBK⁺22, PK22, ?] our construction relies on homomorphic table commitments, which makes them amenable to vector lookups in the manner described in Section 4 of [GW20].

1 Introduction

The lookup problem is fundamental to the efficiency of modern zk-SNARKs. Somewhat informally, it asks for a protocol to prove the values of a committed polynomial $\phi(X) \in \mathbb{F}_{< n}[X]$ are contained in a table T of size N of predefined legal values. When the table T corresponds to an operation without an efficient low-degree arithmetization in \mathbb{F} , such a protocol produces significant savings in proof construction time for programs containing the operation. Building on previous work of $[BCG^+18]$, plookup [GW20] was the first to explicitly describe a solution to this problem in the polynomial-IOP context. plookup described a protocol with prover complexity quasilinear in both n and N. This left the intriguing question of whether the dependence on N could be made sublinear after performing a preprocessing step for the table T. Caulk $[ZBK^+22]$ answered this question in the affirmative by leveraging bi-linear pairings, achieving a run time of $O(n^2 + n \log N)$. Caulk+ [PK22] improved this to $O(n^2)$ getting rid of the dependence on table size completely.

^{*}Pronounced "seek you".

However, the quadratic dependence on n of these works makes them impractical for a circuit with many lookup gates. We resolve this issue by giving a protocol called \mathfrak{cq} that is quasi-linear in n and has no dependence on N after the preprocessing step.

1.1 Comparison of results

Table with relative proof size, prover ops, verifier ops caulk caulk+ flookup baloo this work

1.2 Overview

-logarithmic derivative method

- For large table problem is computing A that agrees with $M/(t+\beta)$ on $\mathbb V$
- Need way to compute A

2 Preliminaries

2.1 Notation:

ℍ- small space V- big space Lagrange bases for big and small space AGM - real and ideal pairing checks, agm - real and ideal pairing KZG

2.2 log derivative method

Lemma from mylookup

Lemma 2.1. Given $f \in \mathbb{F}^n$, and $t \in \mathbb{F}^N$, we have $f \subset t$ as sets if and only if for some $m \in \mathbb{F}^N$ the following identity of rational functions holds

$$\sum_{i \in [n]} \frac{1}{X + f_i} = \sum_{i \in [N]} \frac{m_i}{X + t_i}.$$

3 Cached quotients

Theorem 3.1. Fix $T \in \mathbb{F}_{\leq N}[X]$, and a subgroup $\mathbb{V} \subset \mathbb{F}$ of size N. There is an algorithm that after a preprocessing step of $O(N \cdot \log N)$ operations. Given input $f \in \mathbb{F}_{\leq n}[X]$ computes in $O(n \cdot \log n)$ \mathbb{G}_2 operations $\mathsf{cm} = [Q(x)]_2$ where $Q \in \mathbb{F}_{\leq N}[X]$ is such that

$$f(X) \cdot T(X) = Q(X) \cdot Z_{\mathbb{V}}(X) + R(X),$$

for $R(X) \in \mathbb{F}_{< N}[X]$

Lemma 3.2. Fix $T \in \mathbb{F}_{< N}[X]$, and a subgroup $\mathbb{V} \subset \mathbb{F}$ of size N. There is an algorithm that given the \mathbb{G}_1 elements $\{[x^i]_1\}_{i\in\{0,\dots,N\}}$ computes for $i\in[N]$, the elements $q_i:=[Q_i(x)]_1$ where $Q_i(X)\in\mathbb{F}[X]$ is such that

$$L_i(X) \cdot T(X) = t_i \cdot L_i(X) + Z_{\mathbb{V}}(X) \cdot Q_i(X)$$

in $O(N \cdot \log N)$ \mathbb{G}_1 operations.

Lemma 3.3. Fix $T \in \mathbb{F}_{< N}[X]$, and a subgroup $\mathbb{V} \subset \mathbb{F}$ of size N. There is an algorithm that given the \mathbb{G}_1 elements $\left\{ \begin{bmatrix} x^i \end{bmatrix}_1 \right\}_{i \in \{0,\dots,N\}}$ computes for $i \in [N]$, the elements $q_i := \begin{bmatrix} d-N \cdot Q_i(x) \end{bmatrix}_1$ where $Q_i(X) \in \mathbb{F}[X]$ is such that

$$L_i(X) \cdot T(X) = t_i \cdot L_i(X) + Z_{\mathbb{V}}(X) \cdot Q_i(X)$$

in $O(N \cdot \log N)$ \mathbb{G}_1 operations.

4 Main protocol

Definition 4.1. \mathcal{R} is all pairs (cm, f) such that cm is a commitment to f and $f|_{\mathbb{H}} \subset T$. ..bla problem is relation is defined only after srs is chosen

4.1 Definitions

Ad-hoc dfn of ks protocol for table lookup Relations dependent on srs. Tuple gen, $IsInTable_{\mathbb{H}}$

- ullet gen $(\mathfrak{t},N)
 ightarrow \mathrm{srs}$
- IsInTable_H a protocol between **P** and **V** where **P** has input $f \in \mathbb{F}_{< n}[X]$, **V** has $[f(x)]_1$. Both have \mathfrak{t} and srs. such that
 - Completeness:If $f|_{\mathbb{H}} \subset \mathfrak{t}$ then **V** outputs acc with probability one.
 - Knowledge soundness in the algebraic group model: For any $\mathfrak{t} \in \mathbb{F}^n$, the probability of any algebraic \mathcal{A} to win the following game is $\mathsf{negl}(\lambda)$
 - 1. Let $srs = gen(\mathfrak{t}, N)$.
 - 2. A sends a message cm and values f_1, \ldots, f_n such that cm = $\sum_{i \in [n]} f_i \cdot [L_i(x)]_1$.
 - 3. \mathcal{A} and \mathbf{V} engage in the protocol $\mathsf{IsInTable}_{\mathbb{H}}(\mathsf{t},\mathsf{cm})$ with \mathcal{A} taking the role of \mathbf{P} .
 - 4. \mathcal{A} wins if
 - * V outputs acc
 - * $f|_{\mathbb{H}} \not\subset \mathfrak{t}$.

Main protocol: Preprocessed inputs: $[Z_{\mathbb{V}}(x)]_2$, $[T(x)]_2$ Input (cm, f) .

- 1. **P** computes poly $m \in \mathbb{F}_{\leq N}[X]$ such that $m_i = \text{number of times } \mathfrak{t}_i$ appears in $f|_{\mathbb{H}}$
- 2. **P** sends $[m(x)]_1$.
- 3. V chooses and sends random $\beta \in \mathbb{F}$.
- 4. **P** computes $A \in \mathbb{F}_{\langle N}[X]$ such that for $i \in [N]$, $A_i = m_i/(\mathfrak{t}_i + \beta)$.

- 5. **P** sends $a := [A(x)]_1$.
- 6. **P** computes $q_a := [Q_A(x)]_2$ where $Q_A \in \mathbb{F}_{< N}[X]$ is such that

$$A(X)(T(X) + \beta) - m(X) = Q_A(X) \cdot Z_{\mathbb{V}}(X)$$

- 7. **P** computes $B \in \mathbb{F}_{< n}[X]$ such that for $i \in [n]$, $B_i = 1/(f_i + \beta)$.
- 8. **P** sends $q_b := [B(x)]_1$.
- 9. **P** computes $Q_B(X)$ such that

$$B(X)(f(x) + \beta) - 1 = Q_B(X) \cdot Z_{\mathbb{H}}(X)$$

- 10. **P** computes and sends the value $a_0 := A(0)$.
- 11. **V** sets $b_0 := (N \cdot a_0)/n$.
- 12. **V** sends random $\alpha \in \mathbb{F}$.
- 13. **P** computes and sends $p = [P(x)]_1$ where

$$P(X) := A(X) \cdot X^{d-N} + \alpha \cdot B(X)X^{d-n}$$

- 14. **V** sends random $\gamma \in \mathbb{F}$.
- 15. **P** sends $a_{\gamma} := A(\gamma), b_{\gamma} := B(\gamma), Q_{b,\gamma} := Q_B(\gamma), f_{\gamma} := f(\gamma).$
- 16. P sends KZG proofs to all these poly openings.
- 17. V checks that

$$e(a, [T(x)]_2 + [\beta]_2) = e(q_a, [Z_{\mathbb{V}}(x)]_2) \cdot e(m, [1]_2)$$

18. As part of checking the correctness of q_b , V computes $Z_{\mathbb{H}}(\gamma) = \gamma^n - 1$ and computes

$$Q_{b,\gamma} := \frac{b_{\gamma} \cdot (f_{\gamma} + \beta) - 1}{Z_{\mathbb{H}}(\gamma)}$$

19. As part of checking P is correct, \mathbf{V} computes

$$P_{\gamma} := a_{\gamma} \cdot \gamma^{d-N} + \alpha b_{\gamma} \cdot \gamma^{d-n}$$

- 20. To perform a batched KZG check for the correctness of the values $a_{\gamma}, b_{\gamma}, f_{\gamma}, Q_{b,\gamma}, P_{\gamma}$
 - (a) **V** sends random $\eta \in \mathbb{F}$. **P** and **V** separately compute

$$v := a_{\gamma} + \eta \cdot b_{\gamma} + \eta^{2} \cdot f_{\gamma} + \eta^{3} \cdot Q_{b,\gamma} + \eta^{4} \cdot P_{\gamma}$$

(b) **P** computes $\pi_{\gamma} := [h(x)]_1$ for

$$h(X) := \frac{A(X) + \eta \cdot B(X) + \eta^2 \cdot f(X) + \eta^3 \cdot Q_B(X) + \eta^4 \cdot P(X) - v}{X - \gamma}$$

(c) V computes

$$c := a + \eta \cdot b + \eta^2 \cdot f + \eta^3 \cdot q_b + \eta^4 \cdot p$$

and checks that

$$e(c - [v]_1, [1]_2) = e(\pi_{\gamma}, [x - \gamma]_2)$$

- 21. To perform a batched KZG check for the correctness of the values a_0, b_0
 - (a) **V** sends random $\lambda \in \mathbb{F}$. **P** and **V** separately compute

$$u := a_0 + \lambda \cdot b_0$$
.

(b) **P** computes and sends $\pi_0 := [h_0(x)]_1$ for

$$h_0(X) := \frac{A(X) + \lambda \cdot B(X)}{X}$$

(c) V computes

$$c_0 := a + \lambda b$$

and checks that

$$e(c_0 - [u]_1, [1]_2) = e(\pi_0, [x]_2)$$

Lemma 4.2. The element q_A in Step 6 can be computed in $n \log n$ \mathbb{G}_2 -operations and $O(n \log n)$ \mathbb{F} -operations

Lemma 4.3. The elements π_0, π_γ can be computed in $2 \cdot n \log n$ \mathbb{G}_1 -operations and $O(n \log n)$ \mathbb{F} -operations

Knowledge soundness proof: Look at the following events

References

- [BCG⁺18] J. Bootle, A. Cerulli, J. Groth, S. K. Jakobsen, and M. Maller. Arya: Nearly linear-time zero-knowledge proofs for correct program execution. In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology ASI-ACRYPT 2018 24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part I, volume 11272 of Lecture Notes in Computer Science, pages 595–626. Springer, 2018.
- [GW20] A. Gabizon and Z. J. Williamson. plookup: A simplified polynomial protocol for lookup tables. *IACR Cryptol. ePrint Arch.*, page 315, 2020.

- [PK22] J. Posen and A. A. Kattis. Caulk+: Table-independent lookup arguments. 2022.
- [ZBK⁺22] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin. Caulk: Lookup arguments in sublinear time. *IACR Cryptol. ePrint Arch.*, page 621, 2022.