Definición 1.

Sean G_1 y G_2 gráficas tales que $V(G_1) \cap V(G_2) = \emptyset$. Se define a $G_1 * G_2 = (V, A)$ como la **gráfica de grados** con

$$V(G_1 * G_2) = V(G_1) \cup V(G_2) \quad y$$

$$A(G_1 * G_2) = \{uv \mid u \in V(G_1), v \in V(G_2), gr(u) = \delta(G_1) + l \quad y \quad gr(v) = con l = 0, 1, ..., |V(G_2)|\} \cup \{uv \mid u \in V(G_2), v \in V(G_1), v \in V(G_2)\}$$

 $gr(v) = \Delta(G_1) - I$, con $I = 0, 1, ..., |V(G_1)|$

Ejemplo 1.

Sean G_1 y G_2 gráficas como se muestra abajo. Para construir la gráfica de grados de G_1 y G_2 , se puede seguir el siguiente procedimiento:

- 1. Obtener el grado máximo y mínimo de cada gráfica. En este caso, $\delta(G_1)=1, \delta(G_2)=2, \Delta(G_1)=2$ y $\Delta(G_2)=4$.
- Elaborar dos tablas donde la primer fila esté conformada por los grados anteriormente obtenidos como se muestra a continuación:

$$\delta(G_1) = 1 \mid \Delta(\mid \delta(G_2) = 2 \mid \Delta(G_1) = 2$$

3. En las columnas de las tablas que corresponden a los grados máximos de cada gráfica, se coloca el número de la celda anterior disminuido en uno,

hasta llegar al cero. Mientras que las columnas que corresponden a los grados mínimos se coloca el número de la celda anterior aumentado en uno.

$\delta(G_1)=1$	$\Delta(G_2) = 4$			
2		$\delta(G_2)$:	= 2	$\Delta(G_1)=2$
3		3		1
4		4		0
5		0		

4. Por último, se dibujan los vértices de ambas gráficas y se hacen adyacentes aquellos que tengan el grado indicado en cada fila, en su respectiva gráfica.

Proposición 1.

Si G_1 y G_2 son gráficas, entonces $G_1 * G_2$ es bipartita.

Proposición 2.

Si G_1 y G_2 son gráficas, entonces $G_1 * G_2 = G_2 * G_1$.

Teorema 3.

Sean G_1 y G_2 gráficas tal que G_1 es r-regular. Si $V' = \{v \in V(G_2) \mid gr(v) = \delta(G_2) \mid gr(v) = \Delta(G_2)\}$, entonces

- I) la subgráfica inducida de $G_1 * G_2$ por $V(G_1) \cup V'$ es bipartita completa.
- II) Todo $v \in V(G_2) \setminus V'$ es aislado.

Corolario 4.

Sean G_1 y G_2 gráficas. Si G_1 es r-regular y $\forall v \in V(G_2)$ se da que $gr(v) = \delta(G_2)$ ó $gr(v) = \Delta(G_2)$, entonces $G_1 * G_2$ es bipartita completa.

Corolario 5.

Si G_1 y G_2 son gráficas r-regular y s-regular, respectivamente, entonces $G_1 * G_2$ es bipartita completa.

Observaciones.

- 1. $K_n * K_m$ es bipartita completa $\forall n, m \in \mathbb{N}$, pues K_n y K_m son (n-1)-regular y (m-1)-regular, respectivamente.
- 2. $C_n * C_m$ es bipartita completa $\forall n, m \in \mathbb{N}$, pues C_n y C_m son gráficas 2-regular.

Teorema 6.

Si G_1 y G_2 son gráficas, entonces $G_1 * G_2 = G_1^C * G_2^C$.

Teorema 7.

Sean G_1 y G_2 gráficas. Si para $u, v \in V(G_1)$ existe una uv-trayectoria en $G_1 * G_2$ entonces existe una uv-trayectoria T en $G_1 * G_2$ de longitud 2, con T = (u, w, v) donde $w \in V(G_2)$.

Teorema 8.

Sean G_1 y G_2 gráficas, con G_1 disconexa. Si $\delta(G_1) = \delta(G_2) < \Delta(G_1) = \Delta(G_2)$ entonces $G_1 * G_2$ es disconexa.