PHYSICS 2426 Fall 2019 Equation Sheet Final Exam

Constants

$$m_e = 9.11 \times 10^{-31} \text{ kg}$$

$$e = 1.602 \times 10^{-19} \,\mathrm{C}$$
 $q_e = -e$

$$q_e = -\epsilon$$

$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 2.99 \times 10^8 \text{ m/s}$$
 $\mu_0 = 4\pi \times 10^{-7} \text{ T·m/A}$ $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N·m}^2$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$$

Newtonian Mechanics and Gravity

$$\sum \vec{F} = m\vec{a}$$

$$F_a = -mg$$

$$\sum \vec{F} = m\vec{a}$$
 $F_g = -mg$ $K = \frac{1}{2}mv^2$ $U_g = mgy$ $a_{cent} = \frac{v^2}{r}$

$$U_a = mgy$$

$$a_{cent} = \frac{v^2}{r}$$

Maxwell's Equations

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{encl}}}{\epsilon_0} \text{ (Gauss' Law)}$$

$$\oint \vec{B} \cdot d\vec{A} = 0$$
 (Gauss' Law for Magnetism)

$$\oint \vec{E} \cdot d\vec{l} = \varepsilon = -rac{d\Phi_B}{dt}$$
 (Faraday's Law of Induction)

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \left(i + \epsilon_0 \frac{d\Phi_E}{dt} \right)_{\text{encl}} \text{ (Ampere's Law)}$$

Electric Fields, Forces, Electric Potential and Electric Potential Energy

$$\vec{E}_{\rm pt} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$
 $\vec{r} \equiv \vec{r}_f - \vec{r}_s$

$$\vec{r} \equiv \vec{r}_f - \vec{r}_s$$

$$\vec{F}_E = q_0 \vec{E}$$

$$V_{\rm pt} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

$$U_{el} = q_0 V$$

$$V_{\rm pt} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$
 $U_{el} = q_0 V$ $V_a - V_b \equiv -\int_b^a \vec{E} \cdot d\vec{l}$ $\vec{E} = -\frac{dV}{dr} \hat{r}$

$$\vec{E} = -\frac{dV}{dr}\hat{r}$$

Magnetic Fields and Forces

$$\vec{F}_B = q\vec{v} \times \vec{B}$$

$$B_{long\ wire} = \frac{\mu_0 I}{2\pi r}$$

$$B_{solenoid} = \mu_0 nI$$

DC Circuits

$$R \equiv \frac{\rho L}{A}$$

$$V = IR$$

$$P = IV$$

 Σ (currents in) = Σ (currents out)

 Σ (voltages around a complete loop) = 0

Resistors in Series: $R_{eq} = R_1 + R_2 + R_3 + \cdots$ Resistors in Parallel: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} + \cdots$

Electromagnetic Waves

$$E(x,t) = E\cos(kx \pm \omega t)$$
 $E = cB$ $v = \lambda f$ $\omega \equiv 2\pi f$ $k \equiv \frac{2\pi}{\lambda}$

$$E = cE$$

$$v = \lambda f$$

$$\omega \equiv 2\pi f$$

$$k \equiv \frac{2\pi}{\lambda}$$

$$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0}$$

$$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0} \qquad I = S_{avg} = \frac{|\vec{S}|}{2}$$

$$\theta_r = \theta_a$$

$$\theta_r = \theta_a$$
 $n_a \sin \theta_a = n_b \sin \theta_b$

Geometric Optics

$$f_{mirror} = \frac{R}{2}$$

$$f_{mirror} = \frac{R}{2}$$
 $\frac{1}{f_{lens}} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$ $m \equiv \frac{y'}{y} = -\frac{s'}{s}$

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

$$m \equiv \frac{y'}{y} = -\frac{s'}{s}$$

Wave Interference

$$\Delta r = m\lambda$$

$$\Delta r = \left(m + \frac{1}{2}\right)\lambda$$

 $\Delta r = m\lambda$ $\Delta r = \left(m + \frac{1}{2}\right)\lambda$ $\Delta r \approx d \sin \theta$ when $d \ll$ distance to observation point