PROBABILITÉS ET STATISTIQUES

TD NUMÉRO. 5

On considère deux joueurs Alice et Bob.

Alice commence le jeu en lançant deux dés, on note la somme des résultats par s_{A1} .

Alice lance à nouveau les dés, et la somme est notée par s_{A2} .

Le score, qu'on note s_A correspond à la plus grande valeur entre s_{A1} et s_{A2} .

Puis Bob lance une fois les deux dés, et on fait la somme qui définit son score noté s_B .

Bob gagne si son score est supérieur ou égal à celui d'Alice.

Sinon Alice gagne.

On note A la v.a. de Bernoulli de paramètre p_A qui associe 1 lorsque Alice gagne.

On note B la v.a. de Bernoulli de paramètre p_B qui associe 1 lorsque Bob gagne.

Partie I.

On admet que $p_A = \frac{28365}{46656}$.

- 1. Représenter par un tableau les lois de probabilités des v.a. A et B.
- 2. Que vaut A + B? Quelle est la loi de probabilité ? A + B est-elle une v.a. de Bernoulli ?
- 3. Déterminer $\mathbb{E}(A)$ et $\mathbb{E}(B)$.
- 4. Alice et Bob misent chacun 10 euros au début de la partie. Celui qui gagne remporte la mise totale (soit 20 euros).
 - (a) Soit X la v.a. qui associe le gain final de Alice et Y la v.a. qui associe le gain final de Bob.

Déterminer les lois de probabilités de X et Y.

- (b) X et Y sont-elles des v.a. de Bernoulli? Des multiples de v.a. de Bernoulli?
- (c) Déterminer $\mathbb{E}(X)$ et $\mathbb{E}(Y)$.
- (d) A qui le jeu est-il profitable?

Note: le jeu est profitable à celui qui a l'espérance de gain la plus grande.

- (e) Quel devrait être le montant des mises respectives de Alice et Bob pour que le jeu soit équitable, c'est-à-dire $\mathbb{E}(X) = \mathbb{E}(Y)$.
- 5. Alice et Bob décident de jouer 10 fois de suite à ce jeu.

On note Z la v.a. qui associe le nombre de victoires de Alice et G la v.a. qui associe le gain algébrique d'Alice.

(a) Montrer que Z est une v.a. de distribution binomiale dont on précisera les paramètres.

- (b) Calculer $\mathbb{P}(Z=1)$ et $\mathbb{P}(Z=5)$.
- (c) Déterminer le plus petit entier x tel que $\mathbb{P}(Z \ge x) < \frac{1}{2}$.
- (d) Montrer que G = 20Z 100.
- (e) Déterminer $\mathbb{P}(G=0)$.
- (f) Quel devrait-être le montant des mises respectives de Alice et Bob pour que le jeu soit équitable.

Partie II.

En utilisant les informations données ci-dessous, écrivez un programme qui pourra déterminer les lois de probabilités de s_A , s_B et (s_A, s_B) , et qui calcule la probabilité que Alice gagne $(s_A > s_B)$.

- 1. Construire deux tableaux contenant les probabilités de réalisation de s_{A1} et s_{A2} .
- 2. Construire un tableau ou une matrice P dont les éléments pour chaque (i, j) correspondent à la probabilité de réalisation du couple (s_{A1}^i, s_{A2}^j) , c'est-à-dire la $i^{\grave{e}me}$ valeur de s_{A1} et la $j^{\grave{e}me}$ valeur de s_{A2} . Comme s_{A1} et s_{A2} sont indépendantes, cette probabilité sera égale à $P(i, j) = \mathbb{P}(s_{A1}^i) \times \mathbb{P}(s_{A2}^j)$.
- 3. On construit un nouveau tableau P_A qui correspondra à la loi de probabilité de s_A . Pour chaque valeur $k = \overline{2,12}$ on détermine $P_A(k)$ en utilisant la formule suivante: $P_A(k) = \sum_{2 \le j \le k} P(k,j) + \sum_{2 \le i \le k-1} P(i,k)$.
- 4. Construire un tableau P_B avec la loi de probabilité de s_B (qui est la même que s_{A1} et s_{A2}).
- 5. En utilisant P_A et P_B , déduire la loi de probabilité de (s_A, s_B) , notée P_{AB} .
- 6. Utiliser P_{AB} pour déterminer la probabilité que Alice gagne.