Lecture 18: Character of induced representation

Let G be a group & $H \leq G$. Let V be a G-repr & $W \subseteq V$ a H-stable subspace. We say $V = Ind_H W$ if $V = \widehat{H} = \widehat{$ Note: G = GL(N) & H = GL(N)For $1 \le i \le n$ For $1 \le i \le n$ $1 \le j_i \le n$ Let $\{w_i, -, w_m\}$ be a basis of y_i The $y_i = y_i$ $y_i = y$ Note: G - GL(V) & H - GL(W) $= \underbrace{\sum_{1 \leq i \leq n} \{ \{g_{i}^{(i)} \} \}_{i}^{n} \{ g_{i}^{(i)} \}_{i}^{n} \{ g_{i}^{(i)} \}_{i}^{n} \}_{i}^{n} \}_{i}^{n} \{ g_{i}^{(i)} \}_{i}^{n} \}_{i}^{n} \}_{i}^{n} \}_{i}^{n} \}_{i}^$ (: K = 9; 89;) (-; gigg: EH Her for y= 8:h + h=H ygy EH

Representations of Dn, dihedral group d'order 2n. $= \left\{ \begin{array}{l} 3^{j}, 33^{j} \mid 1 \leq j \leq n \\ \end{array} \right\} \leq S_{n}$ Never 1-divil represgroup homo Dn -> C* $\varphi: \mathbb{D}_n \longrightarrow \mathbb{C}^*$ grap homo $\Longrightarrow \varphi(\mathfrak{H}^z) = 1$ $\begin{pmatrix}
\varphi(\mathfrak{A}s) = \varphi(s\mathfrak{A}^{-1}) \\
\varphi(\mathfrak{A}) \varphi(s) = \varphi(\mathfrak{A}^{-1}) \varphi(s) \\
\varphi(\mathfrak{A}^{2}) = 1$ $\angle \varphi(s^2) = 1$ p(x) = 1 or -1 + p(s) = 1 or -11-din repr of Du

n odd then (91) = 1 & p(s) = 1 & pr - 1 $\Rightarrow 2 & 1 - din'l & seps & Dn$ Frotation by $k(2\pi i)$ ker 2-link 3+link 3Even case 1 4K5m1 4 + a4 = 2h $1+\alpha=\frac{\pi}{2}$ $\alpha=\frac{\pi}{2}$ $1+\alpha=\frac{\pi}{2}$ $1+\alpha=\frac{\pi}{2}$ 1+