Today i
· concatenating matrices · images in MATLAB
'images in MATLAB
Reading: Ch 2 of main text Ch 2 of WLIL
Ch 2 if WLIL
J
Concatenating matrices
and the same
Ex: [132] [177 [71]
L 479) L71)
[13217] horizontal [4797] concatenation
[4797] Concarence
[132] [222]
Vertical
[132] Concotenation
10 0 1 10 1 1
L479 Column
L. MATIAD: A D . Is
In MATLAB: A B matrices
l. 11. L +
horizontal concatenation [A,B] [AB]
vertical concatenation [A;B]

Def: A (digital) pixel is a solid-colored square. 4×4 mage 4 x 4 x 3 color of a pixel is given by RGB values (r, g, b) -> determine a color 0 5 r , 8 , 6 - 255 Possible colors: 256 x 256 x 256 = 16777216 Pure, bright red = (255, 0, 0) Pure, dark red = (150, 0, 0) Dark blach = (0,0,0) Bright teal = (0,255, 255) 100 100 Grayscale mage: 0 600 rep. by a single intoyon between o (black) and 255 (white)

$$B(201:560,101:400,:) = AA;$$

Linear combinations:

These are the main players in linear alexbra!

Linear algebre involves algebre & add subtrect

Scalar multiplication:

$$a \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} av_1 \\ av_2 \end{bmatrix} = \begin{bmatrix} av_1 \\ av_2 \end{bmatrix} = \begin{bmatrix} ab_{11} & b_{12} & \cdots & b_{1n} \\ ab_{21} & b_{22} & \cdots & b_{2n} \\ b_{m_1} & b_{m_2} & \cdots & b_{mn} \end{bmatrix} = \begin{bmatrix} ab_{11} & ab_{12} \\ ab_{21} & ab_{22} \\ \vdots & \vdots & \vdots \\ av_{m_n} & \vdots & \vdots \\ av_{m_$$

$$2 \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$

Vector/Matrix addition:

$$\begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_3 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

Similarly for matrices!

Example:
$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix}
 131 \\
 010
 \end{bmatrix}
 +
 \begin{bmatrix}
 201 \\
 411
 \end{bmatrix}
 =
 \begin{bmatrix}
 332 \\
 421
 \end{bmatrix}$$

Def: A linear combination is what we get by using vector addition and scalar multiplication

