Συναρτήσεις Συνέχεια Συνάρτησης

Κωνσταντίνος Λόλας

Όταν εμείς το υπολογίζαμε...

Μέχρι στιγμής πλησιάζαμε. Ήρθε ο καιρός να φτάσουμε!

Συνέχεια 1

Συνέχεια σε σημείο

Μία συνάρτηση είναι συνεχής στο x_0 αν $\lim_{x\to x_0}f(x)=f(x_0)$

Συνέχεια 2

Συνέχεια σε διάστημα

Μία συνάρτηση είναι συνεχής στο $[\alpha, \beta]$ όταν:

- $\bullet \lim_{x \to x_0} f(x) = f(x_0)$ για κάθε $x \in (\alpha, \beta)$
- $\bullet \ \lim_{x \to \alpha^+} f(x) = f(\alpha)$

Συνέχεια 3

Συνεχής συνάρτηση

Μία συνάρτηση είναι συνεχής όταν είναι συνεχής σε κάθε σημείο του πεδίου ορισμού της.

Γνωστές συνεχείς συναρτήσεις:

Πολυωνυμικές

Γνωστές συνεχείς συναρτήσεις:

- Πολυωνυμικές
- Εκθετικές

Γνωστές συνεχείς συναρτήσεις:

- Πολυωνυμικές
- Εκθετικές
- Λογαριθμικές

Γνωστές συνεχείς συναρτήσεις:

- Πολυωνυμικές
- Εκθετικές
- Λογαριθμικές
- Τριγωνομετρικές

Αν f και g συνεχείς τότε συνεχής f + g

- \bullet f+g
- \bullet f-g

- \bullet f+g
- \bullet f-g
- $\bullet f \cdot g$

- \bullet f+g
- \bullet f-g
- \bullet $f \cdot g$
- \bullet $\frac{f}{g}$

- \bullet f+g
- \bullet f-g
- \bullet $f \cdot g$
 - $\frac{f}{q}$
- \bullet $f \circ g$

- \bullet f+g
- \bullet f-g
- \bullet $f \cdot g$
- $\frac{f}{g}$
- \bullet $f \circ g$
- ΟΛΕΣ ΟΙ ΓΝΩΣΤΕΣ

Το μέλλον...

• Αντί να υπολογίζουμε όρια, θα υπολογίζουμε τιμές

Το μέλλον...

- Αντί να υπολογίζουμε όρια, θα υπολογίζουμε τιμές
- Αν δεν μπορούμε να υπολογίζουμε τιμές, θα υπολογίζουμε όρια

Το μέλλον...

- Αντί να υπολογίζουμε όρια, θα υπολογίζουμε τιμές
- Αν δεν μπορούμε να υπολογίζουμε τιμές, θα υπολογίζουμε όρια
- Αφού η συνάρτηση δεν "διακόπτεται" βγάζουμε ωραία θεωρήματα

Πιο άπειρο είναι μεγαλύτερο κάνει κουμάντο

- Υπάρχει μεγαλύτερο? το βγάζω κοινό παράγοντα
- Είναι ίσα? κάνω πράξεις και τα διώχνω

Να εξετάσετε, αν καθεμιά από τις παρακάτω συναρτήσεις είναι συνεχής στο x_0 :

10/36

Λόλας Συναρτήσεις

Να εξετάσετε, αν καθεμιά από τις παρακάτω συναρτήσεις είναι συνεχής στο x_0 :

①
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ 2, & x = 1 \end{cases}$$
, $x_0 = 1$

2
$$f(x) = \begin{cases} \frac{\eta \mu x}{x}, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$$
, $x_0 = 0$

10/36

Λόλας Συναρτήσεις

Να μελετήσετε τη συνάρτηση $f(x)=e^x+\ln(x+1)$ ως προς τη συνέχεια και να βρείτε το $\lim_{x\to 0}f(x)$.

Δίνεται η συνάρτηση
$$f(x)= egin{cases} e^x+\eta\mu x, & x<0 \\ 1, & x=0 \\ \sigma\upsilon\nu x\cdot\ln(x+1), & x>0 \end{cases}$$

- **1** Να μελετήσετε τη συνάρτηση f ως προς τη συνέχεια.
- ② Να αποδείξετε ότι η f είναι συνεχής στο διάστημα $[-\pi, 0]$.

Λόλας Συναρτήσεις 12/36

Δίνεται η συνάρτηση
$$f(x)= egin{cases} 4\alpha e^x+\beta\sigma\upsilon\nu x, & x<0 \\ x+2, & 0\geq x\geq 1 \\ \ln x+\alpha x-\beta, & x>1 \end{cases}$$

Να βρείτε τις τιμές των α και β για τις οποίες η f είναι συνεχής.

13/36

Λόλας Συναρτήσεις

Να βρείτε το όριο
$$\lim_{x \to +\infty} \left(2x - |x^3 - x - 1|\right)$$

- $\bullet \lim_{x \to +\infty} \sqrt{4x^2 2x + 1}$
- $\bullet \lim_{x \to -\infty} \left(\sqrt{x^2 + 5} x \right)$

$$\bullet \lim_{x \to +\infty} \left(\sqrt{4x^2 + 2x + 1} - 2x \right)$$

$$\bullet \ \lim_{x \to +\infty} \left(\sqrt{4x^2 + 2x + 1} - 2x \right)$$

Να βρείτε το όριο $\lim_{x\to +\infty} \left((a-1)x^3-2x+1\right)$, για τις διάφορες τιμές του $a\in\mathbb{R}$

17/36

Λόλας Συναρτήσεις

Να βρείτε τις τιμές του $\mu \in \mathbb{R}$, για τις οποίες το $\lim_{x\to +\infty} \frac{(\mu-1)x^3+\mu x^2-2}{(\mu-2)x^2+3x+1}$, είναι πραγματικός αριθμός

Λόλας Συναρτήσεις 18/36

Για τις διάφορες πραγματικές τιμές του μ , να υπολογίσετε το $\lim_{x\to -\infty}\left(\sqrt{4x^2+1}+\mu x\right)$

Δίνεται η συνάρτηση $f(x)=\frac{x^n+x-1}{x^2+1}$, $n\in\mathbb{N}^*$. Να βρείτε το $\lim_{x\to+\infty}f(x)$ για τις διάφορες τιμές του $n\in\mathbb{N}^*$.

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ □ ⟨○⟩

Έστω
$$f:\mathbb{R}\to\mathbb{R}$$
 μια συνάρτηση, για την οποία ισχύει $\lim_{x\to+\infty}\left(xf\left(\frac{x-1}{x}\right)\right)=2$, να υπολογίσετε το $\lim_{x\to1}\frac{f(x)}{x-1}$.

Έστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση, για την οποία ισχύει $\lim_{x \to 1} f(x) = -\infty$, να υπολογίσετε τα όρια

Έστω $f:\mathbb{R}\to\mathbb{R}$ μια συνάρτηση, για την οποία ισχύει $\lim_{x\to 1}f(x)=-\infty$, να υπολογίσετε τα όρια

- $1 \quad \lim_{x \to 1} \, \frac{2f^2(x) + f(x) 1}{f^3(x) f(x) 2}$

Έστω $f:(-\infty,0)\to\mathbb{R}$ μια συνάρτηση, για την οποία ισχύει $f:(-\infty,0)\to\mathbb{R}$ μια συνάρτηση, για την οποία ισχύει

$$\lim_{x\to -\infty} \frac{xf(x)-2x+3}{x+2} = 1$$

- 🛈 να βρείτε τα όρια:
 - $\mathbf{1} \quad \lim_{x \to -\infty} f(x)$

Έστω $f:(-\infty,0)\to\mathbb{R}$ μια συνάρτηση, για την οποία ισχύει $\lim_{x\to-\infty} \frac{xf(x)-2x+3}{x+2}=1$

- 🛈 να βρείτε τα όρια:
 - $\mathbf{1} \quad \lim_{x \to -\infty} f(x)$
 - 2 $\lim_{x \to -\infty} \frac{3x^2 f(x) x^2 + 1}{x f(x) + 3}$
- An epipléon iscúei $f\left((-\infty,0)\right)=(3,+\infty)$, na breíte to $\lim_{x\to-\infty}\frac{x}{f(x)-3}$

Έστω $f:(0,+\infty)\to\mathbb{R}$ μια συνάρτηση, για την οποία ισχύουν

$$\lim_{x\to +\infty}\frac{f(x)}{x}=5\ \mathrm{kal}\ \lim_{x\to +\infty}\left(f(x)-5x\right)=2$$

Nα βρείτε το $\lambda \in \mathbb{R}$, ώστε

$$\lim_{x \to +\infty} \frac{3f(x) + \lambda x - 2}{xf(x) - 5x^2 + 1} = 3$$

Λόλας

- $1\hspace{-.1cm} \lim_{x\to +\infty} \eta \mu \tfrac{2x-1}{x^2+1}$
- $2 \lim_{x \to +\infty} \frac{x}{x^2+1} \sigma v \nu x$

- $\lim_{x \to +\infty} \frac{\eta \mu x}{x} = 0$

- $\lim_{x \to -\infty} x \eta \mu \frac{1}{x} = 1$
- $\lim_{x \to +\infty} \frac{\eta \mu x}{x} = 0$

- $\lim_{x \to -\infty} x \eta \mu \frac{1}{x} = 1$
- $\lim_{x \to +\infty} \frac{\eta \mu x}{x} = 0$
- $4 \lim_{x \to +\infty} \frac{x \eta \mu x}{x 1} = 1$

- $\lim_{x \to +\infty} \frac{x}{2 \eta \mu x}$

$$\lim_{x\to+\infty} \lim_{3^x-5^x-2} \frac{e^x-2^x+1}{3^x-5^x-2}$$

$$\lim_{x \to -\infty} \frac{3^x - 5^x}{3^x - 2^x}$$

Nα βρείτε το
$$\lim_{x\to +\infty} \frac{2^x-a^x}{2^x+3a^x}$$
, $a>0$

- $\lim_{x \to +\infty} e^{-x^2 + 1}$
- $\lim_{x \to 0^{-}} e^{-\frac{1}{x}}$

- $\lim_{x \to +\infty} e^{-x^2+1}$
- $\lim_{x \to 0^{-}} e^{-\frac{1}{x}}$
- $\lim_{x \to 0} \frac{1}{e^{x^2} 1}$

Να βρείτε τα όρια:

 $\mathbf{1} \lim_{x \to 0} \frac{1}{x} - \ln x$

- $\lim_{x \to 0} \frac{x}{\ln x}$

- $\mathbf{1} \lim_{x \to 0} \frac{1}{x} \ln x$
- $\begin{array}{cc}
 \text{2} & \lim_{x \to 0} \frac{x}{\ln x}
 \end{array}$
- $\lim_{x \to 1} \frac{1 + \sqrt{x 1}}{\ln x}$

- $\mathbf{1} \lim_{x \to 0} \frac{1}{x} \ln x$
- $\begin{array}{cc}
 2 & \lim_{x \to 0} \frac{x}{\ln x}
 \end{array}$
- $\lim_{x \to 1} \frac{1 + \sqrt{x 1}}{\ln x}$
- $\begin{array}{cc}
 4 & \lim_{x \to 0} \frac{\ln x}{\eta \mu x}
 \end{array}$

- $\lim_{x \to +\infty} \left(\ln x + e^{-\frac{1}{x}} \right)$
- $\lim_{x \to 1} \ln \frac{x}{x-1}$

- $\lim_{x \to +\infty} \left(\ln x + e^{-\frac{1}{x}} \right)$
- $\lim_{x \to 1} \ln \frac{x}{x-1}$

- $\lim_{x \to +\infty} (\ln x + \sigma v \nu x)$
- $\lim_{x \to +\infty} \frac{\sigma v \nu x}{\ln x}$

Δίνεται η συνάρτηση $f(x) = \ln x + \sqrt{x-1}$ με σύνολο τιμών το $[0,+\infty)$

① Να δείξετε ότι η f αντιστρέφεται

Δίνεται η συνάρτηση $f(x) = \ln x + \sqrt{x-1}$ με σύνολο τιμών το $[0,+\infty)$

- Να δείξετε ότι η f αντιστρέφεται
- ② Να βρείτε το $\lim_{x \to +\infty} \left(x^2 f^{-1}(x) \right)$

Δίνεται η συνάρτηση
$$f(x)=x^x$$
, $x>0$. Να βρείτε το $\lim_{x\to +\infty}f(x)$

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση