Instructions for homework submission

- 1. Complete two parts in this homework:
 - Math questions: Include your solution in LATEX document. Show your work. Submission with embedded photos of handwritten work will not be graded.
 - Programming questions: Complete the given skeleton Python code. For questions requiring visualization, analysis, and discussion, please include your solution in the same IATEX document.
- 2. Submit your work to Gradescope including:
 - A PDF document for written parts: FirstName_LastName_HW2.pdf. LATEX source code is not required.
 - A completed Python code: FirstName_LastName_HW2.py.
 - There are two separate submission portals on Gradescope: one for code and one for the report. Submitting your work to the wrong portal will result in a loss of marks.
 - Please assign your answer in PDF report to its corresponding question when submitting to Gradescope. Submitting your work without assigning corresponding question will result in a loss of marks.
- 3. Start early!
- 4. Total: 100 points.

This project utilizes the Bank Marketing dataset¹, provided by UCI Machine Learning Repository. We acknowledge and appreciate their efforts in collecting and maintaining this data.

Math Questions

Problem 1: Information Gain

Note: This is not a programming assignment, so you may **not** use programming tools to solve this problem. Show your work.

Suppose you are given 6 training points as shown below for a classification problem with two binary attributes X_1 and X_2 and three classes $Y \in \{1, 2, 3\}$. You will use a decision tree learner based on information gain.

- 1. Calculate the information gain for both X_1 and X_2 .
- 2. Report which attribute is used for the first split. Draw the decision tree using this split.
- 3. Conduct classification for the test example $X_1 = 0$ and $X_2 = 1$.

X_1	X_2	Y
1	1	1
1	1	1
1	1	2
1	0	2 3 2 3
0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	2
0	0	3

¹S. Moro, P. Rita, and P. Cortez. "Bank Marketing," UCI Machine Learning Repository, 2014. [Online]. Available: https://doi.org/10.24432/C5K306.

Problem 2: Entropy

Note: This is not a programming assignment, so you may **not** use programming tools to solve this problem. Show your work.

Suppose you are given the same training points as above for a classification problem with two binary attributes X_1 and X_2 and three classes $Y \in \{1, 2, 3\}$. You will use a decision tree learner based on entropy.

- 1. Calculate the conditional entropy for both X_1 and X_2 .
- 2. Report which attribute is used for the first split. Draw the decision tree using this split.
- 3. Conduct classification for the test example $X_1 = 0$ and $X_2 = 1$.

Programming Questions

Part A: Classification Tree (50 points)

In this problem, you will code up a classification tree from scratch. Trees are a special class of graphs with only directed edges and no cycles, also known as directed acyclic graphs (DAGs). Each child node has only one parent node.

1. Data Processing and EDA:

- (a) Split the dataset into train and validation sets. Please use a 80:20 split.
- (b) Read and print the training data. Add a short description in your pdf report about the data.
- (c) Extract the features and the label. The label is "y".
- (d) Plot histograms of all variables and provide a brief discussion.

2. Implementation:

- (a) Implement a classification tree from scratch. Do not use ML libraries.
- (b) Train the model using training data and validate it with the validation data.
- (c) Aim for F1 score > 0.4.

Part B: Boosting (20 points)

Use a decision-tree-based ensemble algorithm for the Bank Dataset.

- 1. Define a function train_XGBoost to train an XGBoost model with L2 regularization. Use bootstrapping (100 iterations) and evaluate different values of α in alpha_vals = [1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3]. Report the optimal α .
- 2. Initialize my_best_model given in the skeleton code with a XGBClassifier() on your best hyperparameters. You need to achieve F1 score > 0.55.
- 3. Plot the ROC curve and report the area under the curve (AUC). Include axes labels, legend, and title.