Cold Storage Notebook

Code ▼

Setting the working directory

Hide

setwd("D:\\chandrima\\BACP - GreatLearning\\Fndmntls Of Business Stat - Project")
getwd()

[1] "D:/chandrima/BACP - GreatLearning/Fndmntls Of Business Stat - Project"

Problem Statement -1

Importing the raw data within R and saving it as part of a dataframe for analysis

Hide

coldstorage_df=read.csv("Cold_Storage_Temp_Data.CSV", header = TRUE)
dim(coldstorage_df)

[1] 365 4

Hide

The imported dataset has 365 rows and 4 columns

A brief look at the data

Hide

head(coldstorage df,5)

	Season <fctr></fctr>	Month <fctr></fctr>	Date <int></int>	Temperature <dbl></dbl>
1	Winter	Jan	1	2.4
2	Winter	Jan	2	2.3
3	Winter	Jan	3	2.4
4	Winter	Jan	4	2.8
5	Winter	Jan	5	2.5

Hide

NA

tail(coldstorage_df,5)

	Season <fctr></fctr>	Month <fctr></fctr>	Date <int></int>	Temperature <dbl></dbl>
361	Winter	Dec	27	2.7
362	Winter	Dec	28	2.3
363	Winter	Dec	29	2.6
364	Winter	Dec	30	2.3
365	Winter	Dec	31	2.9
5 rows				

Code

Understanding the structure of the dataset

Hide

library(DataExplorer)

introduce(coldstorage_df)

r <int></int>	colu <int></int>	discrete_columns <int></int>	continuous_columns <int></int>	all_missing_columns <int></int>	total_miss
365	4	2	2	0	
1 row	1-6 of 9 co	olumns			
4					>

Hide

NA

Hide

plot_intro(coldstorage_df)

Checking the data types

Hide

str(coldstorage_df)

'data.frame': 365 obs. of 4 variables:

\$ Date : int 1 2 3 4 5 6 7 8 9 10 ...

\$ Temperature: num 2.4 2.3 2.4 2.8 2.5 2.4 2.8 2.3 2.4 2.8 ...

Hide

Date has been treated as an integer variable which needs to be converted into date variable

For Month variable, the factor levels need to be re-ordered

Hide

summary(coldstorage_df)

```
Season
                 Month
                                Date
                                            Temperature
                                  : 1.00
Rainy :122
                    : 31
                           Min.
                                                   :1.700
             Aug
                                           Min.
Summer:120
             Dec
                    : 31
                           1st Qu.: 8.00
                                            1st Qu.:2.500
Winter:123
                    : 31
                           Median :16.00
                                           Median :2.900
             Jan
             Jul
                    : 31
                           Mean
                                  :15.72
                                            Mean
                                                   :2.963
             Mar
                    : 31
                           3rd Qu.:23.00
                                            3rd Qu.:3.300
             May
                    : 31
                           Max.
                                  :31.00
                                           Max.
                                                   :5.000
             (Other):179
```

Changing the data type of Date variable

```
Hide
```

```
coldstorage_df$Date=as.Date(coldstorage_df$Date,origin = "2015-12-31")
str(coldstorage_df$Date)
```

```
Date[1:365], format: "2016-01-01" "2016-01-02" "2016-01-03" "2016-01-04" "2016-01-05" "2016-01-06" "2016-01-07" "2016-01-08" "2016-01-10" "2016-01-11" ...
```

Re-ordering the factor levels for the month variable

```
Hide
```

```
coldstorage_df$Month=ordered(coldstorage_df$Month, levels=c("Jan","Feb","Mar","Apr","May","Ju
n","Jul","Aug","Sep","Oct","Nov","Dec"))
str(coldstorage_df$Month)
```

```
Ord.factor w/ 12 levels "Jan"<"Feb"<"Mar"<...: 1 1 1 1 1 1 1 1 1 1 ...
```

Graphical exploration of the dataset

Univariate Analysis of Season

```
library(ggplot2)

ggplot(coldstorage_df,aes(x=coldstorage_df$Season,fill=coldstorage_df$Season))+
        geom_bar(colour="black") + scale_fill_manual(values = c("Summer" = "darkred", "Rainy" =
"grey40", "Winter"="turquoise"))+
        xlab("Season")+ geom_text(stat='count', aes(label=..count..), vjust=1.2,colour="black")+
        theme(text = element_text(size = 12),legend.position="none")
```


NA NA

Univariate analysis of Month

```
ggplot(coldstorage_df,aes(x=coldstorage_df$Month,fill=coldstorage_df$Month))+
    geom_bar(colour="black") + scale_fill_brewer(palette = "Set3")+
    xlab("Month")+ geom_text(stat='count', aes(label=..count..), vjust=1.2,colour="black")+
    theme(text = element_text(size = 12),legend.position="none")
```


NA

NA NA

Univariate analysis of Temperature

Hide

hist(coldstorage_df\$Temperature, main = "Temperature Distbn", col = "grey", xlab = "Temperatu
re")

OutVals = boxplot(coldstorage_df\$Temperature, main="Temperature Distbn",col = "grey",outcol = "red" , horizontal = TRUE)\$out

Temperature Distbn

Looks to be a normal distriution with outlier;

Hide

OutVals

[1] 5 5

Hide

2 outlier present with the value of 5

Exploring the data distribution for Temperature

Hide

library(psych)

describe(coldstorage_df\$Temperature,IQR = T,quant = c(0.25,0.50,0.75))

vars <dbl></dbl>	n <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	median <dbl></dbl>	trimmed <dbl></dbl>		min <dbl></dbl>		range <dbl></dbl>
1	365	2.96	0.51	2.9	2.93	0.59	1.7	5	3.3
1 row 1-	10 of 17	columns							

Hide

NA

Any value which lies beyond Q3+1.5IQR is an outlier. Instead of removing outliers altogether, the outlier values have been capped at Q3+1.5IQR level

A new field is introduced here - TemperatureAdjusted - where only the outlier values have been adjusted, retaining all other values of original Temperature

Hide

coldstorage_df\$TemperatureAdjusted=ifelse(coldstorage_df\$Temperature>4.5,4.5,coldstorage_df\$T
emperature)

boxplot(coldstorage_df\$TemperatureAdjusted, main="Temperature Adjusted Distbn",col = "grey",
 outcol ="red" , horizontal = TRUE)

Temperature Adjusted Distbn

Exploring the data distribution of the new field - TemperatureAdjusted

Hide

 $describe(coldstorage_df$TemperatureAdjusted,IQR = T,quant = c(0.25,0.50,0.75))$

vars <dbl></dbl>	n <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	median <dbl></dbl>	trimmed <dbl></dbl>	mad <dbl></dbl>	min <dbl></dbl>		range <dbl></dbl>
1	365	2.96	0.5	2.9	2.93	0.59	1.7	4.5	2.8
1 row 1-1	10 of 17	columns							

Hide

NA

Find mean cold storage temperature for Summer, Winter and Rainy Season

Hide

library(dplyr)

Attaching package: 拗牠dplyr坳蚱

The following objects are masked from 恸拖package:stats恸蚱:

filter, lag

The following objects are masked from '物物package:base'物特:

intersect, setdiff, setequal, union

Hide

coldstorage_df %>% group_by(Season) %>% summarise(MeanBySeason=mean(Temperature), MeanBySeason_Adjusted=mean(TemperatureAdjus ted))

Season <fctr></fctr>	MeanBySeason <dbl></dbl>	MeanBySeason_Adjusted <dbl></dbl>
Rainy	3.039344	3.031148
Summer	3.153333	3.153333
Winter	2.700813	2.700813
3 rows		

Hide

NA

Mean for the full year - taking the original Temperature values #####

Hide

mean(coldstorage_df\$Temperature)

[1] 2.96274

Mean for the full year - taking the outlier adjusted Temperature values

Hide

mean(coldstorage_df\$TemperatureAdjusted)

[1] 2.96

Standard deviation for the full year - taking the original Temperature values

Hide

sd(coldstorage_df\$Temperature)

[1] 0.508589

Standard deviation for the full year - taking the outlier adjusted Temperature values

Hide

sd(coldstorage_df\$TemperatureAdjusted)

[1] 0.4988338

Assume Normal distribution, what is the probability of temperature having fallen below 2 C?

Hide

pnorm(2, mean = 2.96274, sd=0.508589, lower.tail=TRUE)

[1] 0.02918142

Hide

2.92% probability that the temperature will fall below 2C

Assume Normal distribution, what is the probability of temperature having gone above 4 C?

Hide

pnorm(4, mean = 2.96274, sd=0.508589, lower.tail=FALSE)

[1] 0.02070079

Hide

2.07% probability that the temperature will go above 4c

Therefore it is statistically proven that the probability of the temperature falling below 2C or going above 4C is 0.02918142 + 0.02070079 = 0.04988221 or 4.99%. Therefore the penalty should be 10% of AMC

Problem Statement - 2

Importing the raw data within R and saving it as part of a dataframe for analysis

Hide

Mar2018_df=read.csv("Cold_Storage_Mar2018.CSV", header = TRUE)

Postulating the null and alternative hypothesis

Ho: mean <=3.9 Ha: mean >3.9

A brief look at the data

head(Mar2018_df,3)

	Season <fctr></fctr>	Month <fctr></fctr>	Date <int></int>	Temperature <dbl></dbl>
1	Summer	Feb	11	4.0
2	Summer	Feb	12	3.9
3	Summer	Feb	13	3.9
3 rc	ows			

Hide

NA

Understanding the structure of the dataset

Hide

introduce(Mar2018_df)

r <int></int>	colu <int></int>	discrete_columns <int></int>	continuous_columns <int></int>	all_missing_columns <int></int>	total_miss
35	4	2	2	0	
1 row	1-6 of 9 c	olumns			
4					>

Hide

NA

Hide

plot_intro(Mar2018_df)

Checking the data types

str(Mar2018_df)

'data.frame': 35 obs. of 4 variables:

\$ Season : Factor w/ 1 level "Summer": 1 1 1 1 1 1 1 1 1 1 1 ...
\$ Month : Factor w/ 2 levels "Feb", "Mar": 1 1 1 1 1 1 1 1 1 1 ...

\$ Date : int 11 12 13 14 15 16 17 18 19 20 ...

\$ Temperature: num 4 3.9 3.9 4 3.8 4 4.1 4 3.8 3.9 ...

summary(Mar2018_df)

Season Month Date Temperature :3.800 Summer:35 Feb:18 : 1.0 Min. Min. 1st Qu.: 9.5 Mar:17 1st Qu.:3.900 Median :14.0 Median :3.900 :14.4 :3.974 Mean Mean 3rd Qu.:19.5 3rd Qu.:4.100 :28.0 Max. Max. :4.600

Changing the data type of Date variable

Hide

Hide

Mar2018_df\$Date=as.Date(Mar2018_df\$Date,origin = "2018-01-31")
class(Mar2018_df\$Date)

[1] "Date"

Univariate analysis of temperature

Hide

hist(Mar2018_df\$Temperature, main = "Temperature Distbn",col = "grey", xlab = "Temperature")

Hide

outvals2=boxplot(Mar2018_df\$Temperature, main="Temperature Distbn",col = "grey",outcol ="red"
, horizontal = TRUE)\$out

Temperature

Temperature Distbn

Hide

Not a normal distribution and there is outlier present

Hide

outvals2

[1] 4.6

Hide

One outlier present with the value 4.6

Exploring the data distribution for Temperature

Hide

 $describe(Mar2018_df$Temperature,IQR = T,quant = c(0.25,0.50,0.75,0.95,0.99,1))$

vars <dbl></dbl>	n <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	median <dbl></dbl>	trimmed <dbl></dbl>	mad <dbl></dbl>		max <dbl></dbl>	range <dbl></dbl>
1	35	3.97	0.16	3.9	3.96	0.15	3.8	4.6	0.8
		_							

1 row | 1-10 of 20 columns

Hide

NA

Any value which lies beyond Q3+1.5IQR is an outlier. Instead of removing the outlier, the outlier value has been capped at 95th quantile level A new field is introduced here - TemperatureAdjusted - where only the outlier values have been adjusted, retaining all other values of original Temperature

Hide

Mar2018_df\$TemperatureAdjusted=ifelse(Mar2018_df\$Temperature>4.2,4.2,Mar2018_df\$Temperature)

boxplot(Mar2018_df\$TemperatureAdjusted, main="Temperature Adjusted Distbn",col = "grey",outco
l ="red" , horizontal = TRUE)

Temperature Adjusted Distbn

Finding the mean of the sample using both Temperature and TemperatureAdjusted

Hide

mean(Mar2018_df\$Temperature)

[1] 3.974286

Hide

mean(Mar2018_df\$TemperatureAdjusted)

[1] 3.962857

Finding the standard deviation of the sample using both Temperature and TemperatureAdjusted

```
1/29/2020
                                                   Cold Storage Notebook
    sd(Mar2018_df$Temperature)
    [1] 0.159674
                                                                                                    Hide
    sd(Mar2018_df$TemperatureAdjusted)
    [1] 0.1238731
  Using t-test for hypothesis testing using both Temperature and TemperatureAdjusted
                                                                                                    Hide
    t.test(Mar2018_df$Temperature, mu=3.9, alternative = "greater")
        One Sample t-test
    data: Mar2018 df$Temperature
    t = 2.7524, df = 34, p-value = 0.004711
    alternative hypothesis: true mean is greater than 3.9
    95 percent confidence interval:
     3.928648
    sample estimates:
    mean of x
     3.974286
                                                                                                    Hide
```

```
t.test(Mar2018_df$TemperatureAdjusted,mu=3.9, alternative = "greater")
```

```
One Sample t-test
data: Mar2018_df$TemperatureAdjusted
t = 3.002, df = 34, p-value = 0.0025
alternative hypothesis: true mean is greater than 3.9
95 percent confidence interval:
3.927452
               Inf
sample estimates:
mean of x
 3.962857
```

In both the cases since the p values of 0.004711 and 0.0025 are less than alpha=0.1, therefore the alternative hypothesis is accepted that the mean temperature in the Cold Storage Plant is exceeding the maximum accepted level of 3.9C