Massachusetts Institute of Technology 22.68J/2.64J

Superconducting Magnets

April 10, 2003

- •Lecture #7 Magnetic Instabilities
- Flux Flow; Bean's Critical State Model
- ➤ Magnetization; Flux Jumping

Magnetic Instabilities

- Derive from dissipative nature of flux motion in Type II superconductors
- Flux Flow → Flux Flow Resistivity
 - Key to understanding dissipation, local heating, and nature of magnetic instability
 - Requires understanding of the concept of the "critical state"
 - Leads to understanding of magnetization and hysteresis losses in changing magnetic fields

Measured Flux Penetration in a Type II Superconductor

Flux Enters in Quantized Vortices

Technical Type II Superconductors Display a Magnetic Hysteresis

Measured Flux Jumps in a Magnetization Loop

Fine Filaments in Nb₃Sn

Relevant Superconducting Wires are Complex Composites

Typical SSC Nb-47wt.%Ti strand (OST manufacture).

Typical reacted ITER Nb₃Sn strand (IGC manufacture).

Flux Jump Stability of High Temperature Superconductors

Table 5.2: Critical Size vs Temperature

T [K]	I_c [A]	J_c [MA/m ²]	C_s^* [kJ/m ³ K]	a_c [mm]
4	228	1932	0.8	0.2
10	217	1839	7.7	0.7
20	194	1644	68.5	2.4
30	163	1381	240	5.5
40	135	1144	534	9.8
50	108	915	881	16
60	80	678	1219	25
70	53	449	1540	43
80	24	203	1825	103

^{*} Copper heat capacity.

AC Losses

Twisting the superconducting filaments in the composite wire is necessary to electrodynamically decouple them

NbTi Billet Assembly

HTS Tape (BSCCO)

