

Aprendizado de Máquina e Deep Learning

Regressão

Prof. Dr. Thiago Meirelles Ventura

Tipos de aprendizado

Tipos de aprendizado

- O objetivo é estimar valores contínuos
- Possibilita predição de valores desconhecidos ou ausentes
- Aplicações de exemplos de regressão são as que estimam o dado de uma temperatura ou do valor da bolsa de valores

- Vamos tentar estimar a nota de um aluno apenas sabendo a sua frequência nas aulas
- Dados: frequência e nota final

Frequência	Nota
100	9
95	10
90	7
85	8
87	7
75	7
80	6
77	6
55	6
60	4
45	1
25	0

 Baseado nos dados, é possível criar um gráfico que relaciona a frequência com a nota

• É possível criar uma equação que represente esses dados, por meio de um método de regressão

- Este método simples já permite a estimativas de notas
- Qual a nota estimada que um aluno terá comparecendo em 50% das aulas?

 Mesmo não tendo essa frequência na tabela, o método utilizado permite realizar a estimativa

Isso foi feito graças aos exemplos passados

- A Regressão Linear gera uma hipótese no formato
 - $h(x) = \alpha x + \beta$
- Onde
 - x é a frequência
 - α e ß devem ser estimados baseado no conjunto de treinamento

A Regressão Linear gera uma hipótese no formato

•
$$h(x) = \alpha x + \beta$$

• α e ß devem ter valores que consigam estimar com o menor erro possível todos os dados do conjunto de treinamento

• Das possibilidades abaixo, qual seria a melhor opção para os dados que foram passados?

• a)
$$\alpha = 1$$
; $\beta = 2$

• b)
$$\alpha = 0$$
; $\beta = 0$

• c)
$$\alpha = 0.5$$
; $\beta = -41$

• d)
$$\alpha = 0.1$$
; $\beta = -3$

• e)
$$\alpha = 0$$
; $\beta = 1.5$

• f)
$$\alpha = 3$$
; $\beta = -1$

Frequência	Nota
100	9
95	10
90	7
85	8
87	7
75	7
80	6
77	6
55	6
60	4
45	1
25	0

Considerando esses valores

•
$$\alpha = 0,1$$
; $\beta = -3$

- Quais as estimativas e erros desses exemplos?
 - Frequência = 91; Nota = 6
 - Frequência = 74; Nota = 10
 - Frequência = 57; Nota = 5
 - Frequência = 26; Nota = 8

Frequência	Nota
100	9
95	10
90	7
85	8
87	7
75	7
80	6
77	6
55	6
60	4
45	1
25	0

 Considerando os valores anteriores, qual o Erro Médio Absoluto do modelo?

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - d_i|$$

Programação

- Preparação dos dados
- Construção do modelo
- Avaliação dos resultados

Programação – preparação dos dados

```
import pandas as pd

df = pd.read_csv('matogrosso.csv')

x = df[['ESCOLARIZACAO']]
y = df['IDHM']
```


Programação – preparação dos dados

Programação – construção do modelo

```
from sklearn.linear_model import LinearRegression
regressao = LinearRegression()
regressao.fit(X train,y train)
```


Programação – avaliação dos resultados

```
predicao = regressao.predict(X_train)
plt.scatter(predicao,y_train)
plt.xlabel('IDHM real')
plt.ylabel('IDHM estimado')
```


Programação – avaliação dos resultados

from sklearn import metrics

```
print('r2:', metrics.r2_score(y_train, predicao))
print('MAE:', metrics.mean_absolute_error(y_train, predicao))
print('MSE:', metrics.mean_squared_error(y_train, predicao))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_train, predicao)))
```


script regressao.ipynb

- Melhore o desempenho do modelo
 - Teste novos atributos
 - Use mais de 1 atributo
- Qual foi o seu melhor resultado?
 - Escolha uma métrica
 - Informe o valor da métrica escolhida
 - Compare com os outros resultados
 - Informe o(s) atributo(s) utilizado(s)

