

2.5 Random Forrests

SS 2019 Prof. Dr. Rainer Lienhart

www.multimedia-computing.{de,org}

Reference

- Friedman, J., Hastie, T. and Tibshirani, R. Additive Logistic Regression: a Statistical View of Boosting Annals of Statistics 28(2), 337-407. 2000.
 - → Figures and notation are taken from this reference

What is Boosting

- Meta-Learning algorithm
- Boosting is a way of combining the performance of many "weak" classifiers to produce a powerful "committee".
- Fits an additive model $\sum_{m} f_{m}(x)$ in a forward stagewise manner
- Several variants:
 - Discrete Adaboost
 - Real AdaBoost
 - LogitBoost
 - Gentle AdaBoost

Discrete AdaBoost

Discrete AdaBoost [Freund and Schapire (1996b)]

- 1. Start with weights $w_i = 1/N, i = 1, ..., N$.
- 2. Repeat for m = 1, 2, ..., M:
 - (a) Fit the classifier $f_m(x) \in \{-1, 1\}$ using weights w_i on the training data.
 - (b) Compute $\operatorname{err}_m = E_w[1_{(y \neq f_m(x))}], c_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m).$
 - (c) Set $w_i \leftarrow w_i \exp[c_m 1_{(y_i \neq f_m(x_i))}]$, i = 1, 2, ..., N, and renormalize so that $\sum_i w_i = 1$.
- 3. Output the classifier sign[$\sum_{m=1}^{M} c_m f_m(x)$].

Algorithm 1. E_w represents expectation over the training data with weights $w=(w_1,w_2,\ldots,w_N)$, and $1_{(S)}$ is the indicator of the set S. At each iteration, AdaBoost increases the weights of the observations misclassified by $f_m(x)$ by a factor that depends on the weighted training error.

Logit-transform: $]0,1[\rightarrow]-\infty,+\infty[$

Example (1)

Training Set

R

$$x \leftarrow c(1, 1.5, 3, 0.5, 4, 3.5, 3.1)$$

 $y \leftarrow c(3.1, 1, 1.5, 2, 2, 3, 1.3)$
 $w \leftarrow rep(1/7, 7)$
 $c \leftarrow c('+', '+','+', '-','-','-')$
 $plot(x,y,pch = c)$

Example (2)

Sort with respect to 'x'

correct class.

Sort with respect to 'y'

		# correct class	
V	С	>+	+<
		3	4
1	+		
		2	5
1.3	_		
		3	4
1.5	+		
		2	5
2.0	_		
2.0	_	_	
		4	3
3	_	_	0
2 1		5	2
3.1	+	4	2
		4	3

Example (3)

Choose x

$$f_1(x, y) = \begin{cases} +1 & if (x < 3.05) \\ -1 & otherwise \end{cases}$$

$$E_w(1_{f_1(x,y)\neq c(x,y)}) = 1/7$$

$$c_1 = \log \frac{6/7}{1/7} = \log \frac{6}{1} = \log 6$$

$$\exp(\log(6)) = 6$$

Round 2

$$W < -1/12*(1,1,1,6,1,1,1)$$

Example (4)

Sort with respect to 'x'

Sort with respect to 'y'

Example (5)

Choose x

$$f_2(x, y) = \begin{cases} +1 & if (y < 1.7) \\ -1 & otherwise \end{cases}$$

$$E_w(1_{f_2(x,y)\neq c(x,y)}) = 2/12$$

$$c_2 = \log \frac{10/12}{\frac{12}{2/12}} = \log 5$$

$$\exp(\log(5)) = 5$$

Round 3

• ...

Real AdaBoost

Real AdaBoost

- 1. Start with weights $w_i = 1/N$, i = 1, 2, ..., N.
- 2. Repeat for m = 1, 2, ..., M:
 - (a) Fit the classifier to obtain a class probability estimate $p_m(x) = \hat{P}_w(y = 1|x) \in [0, 1]$, using weights w_i on the training data.
 - (b) Set $f_m(x) \leftarrow \frac{1}{2} \log p_m(x) / (1 p_m(x)) \in R$.
 - (c) Set $w_i \leftarrow w_i \exp[-y_i f_m(x_i)]$, i = 1, 2, ..., N, and renormalize so that $\sum_i w_i = 1$.
- 3. Output the classifier sign[$\sum_{m=1}^{M} f_m(x)$].

ALGORITHM 2. The Real AdaBoost algorithm uses class probability estimates $p_m(x)$ to construct real-valued contributions $f_m(x)$.

Example1

Fig. 3.14 Comparison between classification forests and boosting on two examples. Forests produce a smooth, probabilistic output. High uncertainty is associated with regions between different classes or away from training data. Capitalized produces a hard output. Interpreting the output of a boosted strong classifier as real valued does not seem to produce meaningful confidence. The forest parameters are: D=2, T=200, and we use axis-aligned weak learners. Boosting was also run with 200 axis-aligned stumps and the remaining parameters optimized to achieve best results.

Figure taken from:

Antonio Criminisi, Jamie Shotton, Ender Konukoglu . Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning. In Foundations and Trends® in Computer Graphics and Vision, Vol. 7: No 2-3, pp 81-227, 2011.

Example 2

 Later when we talk about fast object detection.