Geometry Problems, with emphasis on Brocard

- 1. Let ABC be an acute angled triangle and $D \in BC$, $E \in AC$, $F \in AB$. Prove that circles $C(AEF) \cap C(BDF) \cap C(CDE) = \{P\}$. In this case P is called the Brocard point for triangle DEF with respect to ABC. Denote this point by P_{DEF} .
- 2. Prove that $P_{DEF} = P_{D'E'F'} \iff \Delta DEF \sim \Delta D'E'F'$.
- 3. Prove that is DEF, D'E'F' are two similar triangles inscribed in triangle ABC then we can think of them in the following way: rotate DEF around P_{DEF} and then use a homothety to make it equal to D'E'F'.
- 4. Let ABC be a triangle and DEF, D'E'F' two inscribed similar triangles. Let $\{M\} = EF \cap E'F', \{N\} = FD \cap F'D', \{P\} = DE \cap D'E'$. Prove that $\mathcal{C}(DD'PN), \mathcal{C}(EE'MP), \mathcal{C}(FF'NM)$ exist and they intersect in a point.
- 5. Let ABC be a triangle and DEF a triangle inscribed in ABC and similar to it. Prove that $\frac{area(DEF)}{area(ABC)} \ge \frac{1}{4}$. (Hint: take the median triangle. What is its Brocard point?)
- 6. Let ABC be an acute angled triangle and DEF, D'E'F' two inscribed triangles similar to ABC. Prove that $\frac{DD'}{BC} = \frac{EE'}{AC} = \frac{FF'}{AB}$ if and only if ABC is equilateral. (Hint: same as before)
- 7. Let $A_1A_2A_3$ be a triangle and $M_{iu} \in (A_jA_k)$ for any permutation $\{i, j, k\} = \{1, 2, 3\}$ and any $u \in \{1, 2, 3\}$. Also, for any $u, v \Rightarrow \Delta M_{1u}M_{2u}M_{3u} \sim M_{1v}M_{2v}M_{3v}$.

 a. If $M_{i1}M_{i2} \cdot M_{i2}M_{i3}$ is constant for all i then find the angles of triangles $\Delta M_{1u}M_{2u}M_{3u}$.

 b. If $M_{i1}M_{i2} \cdot M_{i2}M_{i3} \cdot A_jA_k^2$ is constant for all permutations $\{i, j, k\} = \{1, 2, 3\}$ then find the angles of triangles $\Delta M_{1u}M_{2u}M_{3u}$. (Hint: Consider the podar triangle of P. What is its Brocard point?)

Compiled by Andrei Jorza