Discrete Structures and Theory of Logic Lecture-35

Dharmendra Kumar December 11, 2020

Some other connectives

NAND Connective

It is denoted by \uparrow .

$$P \uparrow Q \Leftrightarrow \neg (P \land Q)$$

Truth table for this is the following

Р	Q	$P \uparrow Q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

1

NOR Connective

It is denoted by \downarrow .

$$P \downarrow Q \Leftrightarrow \neg (P \lor Q)$$

Truth table for this is the following

Р	Q	$P \downarrow Q$
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

2

Example: Express the connectives \neg , \land and \lor in the terms of \uparrow only.

Solution:

- 1. $\neg P \Leftrightarrow \neg P \lor \neg P \Leftrightarrow \neg (P \land P) \Leftrightarrow P \uparrow P$
- 2. $P \land Q \Leftrightarrow \neg \neg (P \land Q) \Leftrightarrow \neg (P \uparrow Q) \Leftrightarrow (P \uparrow Q) \uparrow (P \uparrow Q)$
- 3. $P \lor Q \Leftrightarrow \neg \neg (P \lor Q) \Leftrightarrow \neg (\neg P \land \neg Q) \Leftrightarrow (\neg P) \uparrow (\neg Q) \Leftrightarrow (P \uparrow P) \uparrow (Q \uparrow Q)$

3

Example: Express the connectives \neg , \land and \lor in the terms of \downarrow only.

Solution:

- 1. $\neg P \Leftrightarrow \neg P \land \neg P \Leftrightarrow \neg (P \lor P) \Leftrightarrow P \downarrow P$
- 2. $P \lor Q \Leftrightarrow \neg \neg (P \lor Q) \Leftrightarrow \neg (P \downarrow Q) \Leftrightarrow (P \downarrow Q) \downarrow (P \downarrow Q)$
- 3. $P \land Q \Leftrightarrow \neg \neg (P \land Q) \Leftrightarrow \neg (\neg P \lor \neg Q) \Leftrightarrow (\neg P) \downarrow (\neg Q) \Leftrightarrow (P \downarrow P) \downarrow (Q \downarrow Q)$

Note: NAND or NOR is functionally complete.

Exercise

- 1. Express $P \to (\neg P \to Q)$ in terms of \uparrow only. Express same formula in terms of \downarrow only.
- 2. Express $P \uparrow Q$ in terms of \downarrow only.
- 3. Show the following:-
 - (a) $\neg (P \uparrow Q) \Leftrightarrow \neg P \downarrow \neg Q$
 - (b) $\neg (P \downarrow Q) \Leftrightarrow \neg P \uparrow \neg Q$
- 4. Write a formula which is equivalent to the formula

$$P \wedge (Q \leftrightarrow R)$$

and contains the connective NAND(\uparrow) only. Obtain an equivalent formula which contains the connective NOR(\downarrow) only.

- 5. Show the following equivalences.
 - (a) $(P \rightarrow C) \land (Q \rightarrow C) \Leftrightarrow (P \lor Q) \rightarrow C$
 - (b) $((Q \land A) \rightarrow C) \land (A \rightarrow (P \lor C)) \Leftrightarrow (A \land (P \rightarrow Q)) \rightarrow C$
 - (c) $((P \land Q \land A) \rightarrow C) \land (A \rightarrow (P \lor Q \lor C)) \Leftrightarrow (A \land (P \leftrightarrow Q)) \rightarrow C$

Normal Form

There are following types of normal form.

Disjunctive normal form A statement formula is said to be in disjunctive normal form if it is the disjunction of conjunction.

Example: $(P \wedge Q) \vee (\neg Q \wedge R)$

Conjunctive normal form A statement formula is said to be in conjunctive normal form if it is the conjunction of disjunction.

Example: $(P \lor Q) \land (\neg Q \lor R)$

Principal disjunctive normal form A statement formula is said to be in principal disjunctive normal form if it is the disjunction of minterms only.

Example: $(P \land Q) \lor (\neg P \land Q)$

Principal conjunctive normal form A statement formula is said to be in principal conjunctive normal form if it is the conjunction of maxterms only.

Example: $(P \lor Q) \land (\neg P \lor Q)$

Exercise

- 1. Obtain disjunctive normal form of the followings:-
 - (a) $P \wedge (P \rightarrow Q)$
 - (b) $\neg (P \lor Q) \leftrightarrow (P \land Q)$

Also find the conjunctive normal form of above formulas.

- 2. Obtain the principal disjunctive normal form of the followings:-
 - (a) $\neg P \lor Q$
 - (b) $(P \wedge Q) \vee (\neg P \wedge R) \vee (Q \wedge R)$
 - (c) $P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$
- 3. Obtain the principal conjunctive normal form of the followings:-
 - (a) $(P \wedge Q) \vee (\neg P \wedge R) \vee (Q \wedge R)$
 - (b) $P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$
 - (c) $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$