

RQRAI es una herramienta QGIS para el análisis cuantitativo del riesgo (QRA) causado por movimientos del terreno, usando datos regionales de interferométria radar.

Características:

- Estimación peligrosidad por deformaciones del terreno (Sentinel-1)
- Valoración de la vulnerabilidad física de los elementos: curvas de fragilidad
- Valoración económica: base de datos PostGIS con edificios del Catastro y las carreteras y vías de ferrocarril del OpenStreetMap.
- Integración de todos los procesos de actualización y cálculo en un formulario.
- Generación de informes de QRA para la presentación de resultados.

La ecuación del Riesgo

Riesgo (probabilidad de perdida) = Peligrosidad x Vulnerabilidad x Exposición

Peligrosidad (%) = Probabilidad que ocurra un cierto evento dañino en un lugar determinado.

Vulnerabilidad [0 a 100] = respuesta de la infraestructura o edificio ante un una acción que genera daño. Se puede computar como perdida económica.

Exposición [0-1] = % del tiempo en que un elemento está expuesto al peligro.

• El cálculo de la acción se valora mediante la asignación de la intensidad deformación (v) de las Áreas de Deformación Activa (ADA) calculadas con datos de la interferometría de Satélite (Sentinel-1).

- Cálculo del daño se basa en la combinación entre la intensidad o velocidad de deformación del terreno de las Áreas de Deformación Activa (ADA) y las curvas de fragilidad.
- El plugin permite ajustar los índices de vulnerabilidad en relación a la deformación de cada tipología principal de elementos: (1) edificios, (2) red viaria y (3) red ferroviaria. Ejemplo para edificaciones:

INTENSIDAD ADA	VELOCIDAD MEDIA (mm / año)	
I1 - Baja	< 16	
12 – Media	16 - 32	
I3 – Alta	> 32	

TIPOLOGIA EDIFICACION	PERÍODO (AÑO)	ESTRUCTURA DEL EDIFICIO	RESISTENCIA (a partir de Heinimann, 1999)
А	≤1950	Estructuras ligeras (entibación simple) y mixtas (hormigos y entibación)	Baja a media
В	1951 – 1970	Hormigón y muros de ladrillo	Media
С	>1970	Hormigón y muros de ladrillo / Hormigón armado	Media a alta

Edificio tipo A < 1950, Resistencia de baja a media

Edificio tipo B < 1951-1970 Resistencia media

Edificio tipo A < 1950, Resistencia de baja a media

		TIPOLOGIA DE EDIFICACIÓN		
		Α	В	С
INTENSIDAD	l ₁	0,1 (S)	0,05 (S)	0,01 (S)
ADA	l ₂	0,2 (F)	0,1 (S)	0,05 (S)
	l ₃	0,4 (E)	0,2 (F)	0,1 (S)

Tipo de daño probable

(F)-Funcional

(E)-Estructural

Interface QGIS con un ejemplo de cálculo de vulnerabilidad en el delta del Llobregat

