

Squares and Square Roots Ex 3.1 Q5

Answer:

11: The perfect squares closest to 11 are 9 (9 = 3^2) and 16 (16 = 4^2). Since 3 and 4 are consecutive numbers, there are no perfect squares between 9 and 16, which means that 11 is not a perfect square.

12: The perfect squares closest to 12 are 9 (9 = 3^2) and 16 (16 = 4^2). Since 3 and 4 are consecutive numbers, there are no perfect squares between 9 and 16, which means that 12 is not a perfect square.

 $16 = 4^2$

32: The perfect squares closest to 32 are 25 $(25 = 5^2)$ and 36 $(36 = 6^2)$. Since 5 and 6 are consecutive numbers, there are no perfect squares between 25 and 36, which means that 32 is not a perfect square.

 $36 = 6^2$

50: The perfect squares closest to 50 are $49 (49 = 7^2)$ and $64 (64 = 8^2)$. Since 7 and 8 are consecutive numbers, there are no perfect squares between 49 and 64, which means that 50 is not a perfect square.

 $64 = 8^2$

79: The perfect squares closest to 79 are $64 (64 = 8^2)$ and $81 (81 = 9^2)$. Since 8 and 9 are consecutive numbers, there are no perfect squares between 64 and 81, which means that 79 is not a perfect square.

 $81 = 9^2$

111: The perfect squares closest to 111 are 100 ($100 = 10^2$) and 121 ($121 = 11^2$). Since 10 and 11 are consecutive numbers, there are no perfect squares between 100 and 121, which means that 111 is not a perfect square.

 $121 = 11^2$

Hence, the perfect squares are 16, 36, 64, 81 and 121.

********** END ********