Predicting Dota 2 Balance Outcomes

Trevor Fisher

3/9/16

What is Dota 2?

- Very popular 5v5 team PC game in the MOBA genre
- For each game, each team bans 5 heroes and selects 5 heroes
- Heroes are targeted according to perceived strength and synergy
- Periodic "Balance Patches" are released to address strength disparities

• X

Alliance PICK 3 Alliance.s4.HyperX IO NATURE'S PROPHET ? Alliance.Akke.HyperX Alliance.**Loda**.HyperX 意味物は **20** RESERVE TIME 0:33 BATTLE BEGINS BATRIDER **ALCHEMIST** RUBICK Na` Vi. Puppey Na` Vi.**XBOCT** Ra` Vi.Dendi 🧷 Na` Vi. kky

Na` Vi.Funn1k

Choosing a question

Some ideas:

- Recommending "last pick" heroes
 - Difficult to evaluate
- Predicting game outcomes after X minutes
 - Difficult to gather data
- Identifying unbalanced heroes before updates are released (!)
 - Not a priori clear that available data will have predictive power

Core research goal

Build features to predict the effect of a balance patch on hero selection in professional play

HERO	P+B	PICK	BAN	WIN	LOSE	WIN%	P+B %	
don	468	76	392	43	33	56	98.5	
E Z	463	257	206	132	125	51	97.4	
4	443	168	275	95	73	56	93.2	
	432	211	221	94	117	44	90.9	
	415	157	258	81	76	51	87.3	
PHILE	415	217	198	120	97	55	87.3	^ 1
Treat	402	238	164	123	115	51	84.6	
133	384	227	157	115	112	50	80.8	
	379	215	164	114	101	53	79.7	^ 1
117	313	119	194	63	56	52	65.8	^ 1
-	301	65	236	34	31	52	63.3	^ 1

HERO	P+B	PICK	BAN	WIN	LOSE	WIN%	P+B %	
(N)	426	95	331	49	46	51	86.9	
4 70	402	140	262	79	61	56	82.0	▲1
	395	218	177	97	121	44	80.6	
	380	117	263	75	42	64	77.5	▲1
13	374	261	113	136	125	52	76.3	
The Real Property lies	328	143	185	86	57	60	66.9	_1
The contract of	327	127	200	63	64	49	66.7	▲1
	323	153	170	66	87	43	65.9	
	319	165	154	82	83	49	65.1	^ 1
-	309	145	164	71	74	48	63.0	_1
2	295	199	96	85	114	42	60.2	▲1

Patch 6.85 Patch 6.86

Data sourcing

Aggregated historical data on professional games

- hero pick/ban%
- hero win rates
- same-team hero pairings
- head-to-head records

Hero and patch info

- raw text of patch notes
- hero roles
- hero item builds

Individual game info

- hero skill builds
- hero item purchases

NLP of patch notes

- Over the past 10 patches, there have been about 1200 hero changes
- I labeled 100 as positive or negative and predicted the rest

Challenges:

- "Increased" is not always positive
- Most changes are numeric
- Language used in writing patch notes has changed since 2012

Hero interactions

 Unchanged Heroes can still benefit significantly from improvements to synergistic partners IO TINY

 Similarly, Heroes can benefit or suffer from changes to their "counterpicks"

Modeling

- Target: post-patch pick+ban rate (%) for each hero in professional games
- Core features:
 - previous pick+ban rate (%)
 - previous winrate (%)
 - o probability that changes made to hero will improve hero (from NLP)
 - number and average size of numeric changes (from NLP)
 - weighted measure of +/- change to hero's common pairings
 - weighted measure of +/- change to hero's common opponents
- Model: Gradient Boosting Regressor

Regression

stochastic gradient boosting regressor least absolute deviation loss

- Patch 6.86: 25% reduction in MSE over baseline
- Noticeable "class" imbalance
- High variability among frequently-picked heroes

Classification

stochastic gradient boosting classifier exponential loss, 0.05 learning rate, 100 estimators

- New target: binary prediction of pick+ban rate > 50%?
- Evaluate based on ROC AUC score
- Patch 6.86: AUC score of 0.87

Classification

stochastic gradient boosting classifier exponential loss, 0.05 learning rate, 100 estimators

- New target: binary prediction of pick+ban rate > 50%?
- "One-patch-out" modeling
- Average AUC score (all patches) of 0.77

Next steps

Hero-item interactions (another round of NLP!)

- Hero distance from overall metagame trend (cosine similarity?)
- Scrape/NLP player attitudes to identify untapped potential in advance

Thank you!

Trevor Fisher trefish22@gmail.com github.com/shime-saba/moba_balance_prediction