Теорема Брукса

Гусев Антон Сергеевич

Раскраски графов

Будем красить вершины так, что любые две соседние вершины имеют разные цвета (такие раскраски называются *правильными*).

Определение 1. Хроматическое число графа G — минимальное такое $n=\chi(G)\in\mathbb{N},$ что существует правильная раскраска G в n цветов.

Определение 2. Число независимости графа $G(\alpha(G))$ — размер максимального независимого множества вершин (внутри которого нет рёбер).

Теорема 1. Пусть
$$G=(V,E)$$
. Тогда $\chi(G)\geq \frac{|V|}{\alpha(G)}$.

Доказательство. Каждый цвет в раскраске — независимое множество, поэтому кол-во вершин каждого цвета не больше $\alpha(G)$, откуда и следует утверждение.

Теорема 2 (Брукс, 1941). Пусть G = (V, E) связен и $\forall v \in V \deg(v) \leq n$, кроме того, G — не нечётный цикл и не полный граф. Тогда $\chi(G) \leq n$.

Доказательство. Разберём несколько случаев:

- 1. Пусть в графе есть вершина степени меньше n. Тогда можно её удалить и в оставшемся графе есть вершина степени меньше n. Покрасим граф по индукции, затем покрасим удалённую вершину в один из цветов, не использованных в её соседях.
- 2. Пусть в графе есть вершина-мост (при удалении которой граф теряет связность). Удалим её, покрасим компоненты вместе с мостом (по 1- в компонентах у вершины-моста степень меньше n) так, что у удалённой вершины в раскрасках один и тот же цвет. Тогда получится правильная раскраска.
- 3. Пусть в графе есть мост из двух вершин.
 - (а) Вершины моста соединены ребром. Тогда сделаем то же самое, что и в 2.
 - (b) Вершины моста не соединены ребром. Сделаем то же самое, что и в 2. Тогда в раскрасках они либо одного цвета, либо разных. Если они одновременно одного цвета или одновременно разных цветов, то задача решена. Иначе рассмотрим ту компоненту, где они одного цвета. Если в ней есть вершина с двумя или более рёбрами в другую компоненту, уберём её, покрасим оставшуюся часть компоненты, затем покрасим удалённую вершину в цвет, не совпадающий с цветом другой вершины моста. Иначе обе вершины соединены с одной вершиной извне, и можно доказать, что одна из этих «пограничных» вершин соединена с одной вершиной извне. Тогда мы нашли вершину степени 2, следовательно, у всех вершин степень 2, значит, это нечётный цикл противоречие.

В обоих случаях мы красим граф в n цветов или попадаем в противоречие. \blacksquare

4. Есть три вершины v, u, w, такие, что $v \sim u, u \sim w, v \not\sim w$, и при удалении пары (v, w) граф не теряет связность. Тогда подвесим граф на вершину u, затем поставим v и w на уровень -1 и покрасим их в первый цвет. Идём снизу вверх по уровням графа. Заметим, что любую вершину на текущем нижнем уровне можно покрасить. Действительно, она соединена с n вершинами, но (хотя бы) одна из этих вершин находится на уровень выше и не даёт запретов. Красим так все уровни от последнего до первого. На нулевом уровне есть только вершина u, у неё n соседей, но хотя бы у двух -v и w — цвет совпадает, поэтому есть не запрещённый цвет.

Доказательство заканчивается вот так. Рассмотрим какие-то две вершины, не соединённые ребром, и рассмотрим между ними кратчайший путь. Тогда первые три вершины имеют вид u, v, w из 4. Тогда если при удалении двух из них граф не теряет связность — случай 4, иначе 3.

Лемма 3. У каждого члена парламента не больше семи врагов. ¹ Тогда их можно разбить на две палаты, что в каждой палате у каждого её члена не более трёх врагов.

Доказательство. Разобьём парламент на две палаты как угодно, затем за 1 шаг будем перемещать члена с 4 или более врагами в другую палату. Тогда после шага общее количество пар врагов в палатах уменьшается, и когда оно уменьшится до минимума, условие будет выполнено. ■

Лемма 4. Пусть в графе нет K_4 и $\deg(v) \le 7$. Тогда $\chi(G) \le 6$.

Доказательство. По 3 разобьём вершины на 2 компоненты. В каждой из них нет K_4 , поэтому работает теорема Брукса для n=3 и каждая из них красится не более в три цвета. Поэтому весь граф красится не более чем в шесть цветов.

Теорема 5 (Брукс-Super). Пусть в
$$G$$
 нет K_3 . Тогда $\chi(G) \leq \frac{9n}{\log_2 n}$ для $n > n_0$.

Лемма 6. Пусть в G нет K_3 и выполняется $n=2^k-1$. Тогда $\chi(G)<\frac{3}{4}n+1$. **Доказательство.** Применим 3k-2 раз. Это разобьёт граф на 2^{k-2} компонент так, что в каждой компоненте выполняется $\deg(v)\leq 3$. Тогда для этой компоненты можно применить теорему Брукса для n=3 — каждая из компонент красится не более чем в три цвета, значит, весь граф — не более чем в $3\cdot 2^{k-2}<\frac{3}{4}\cdot n+1$.

Теорема 7. В графе без K_3 хроматическое число может быть сколь угодно большим.

Доказательство. Доказываем по индукции, что для любого n существует граф G_n без K_3 такой, что $\chi(G_n)=n$. База для n=1 очевидна. Пусть у нас есть $G_n=\{\{v_1,v_2,\ldots,v_m\},E\}$. Будем строить G_{n+1} так. Добавим к G вершины u_1,u_2,\ldots,u_m,w . Для каждой пары $(v_i,v_j)\in E$ добавим рёбра (u_i,v_j) и (v_i,u_j) . Наконец, добавим все рёбра вида (w,u_i) . Тогда:

- 1. Пусть вершины (x, y, z) образуют треугольник. Тогда если $w \in (x, y, z)$, то остальные 2 вершины в u_i , что невозможно. Иначе одна из вершин в u_i , а остальные две в v_i , что противоречит предположению индукции. Следовательно, в G_{n+1} треугольников нет.
- 2. G_{n+1} красится в n+1 цвет. Действительно, можно покрасить w в цвет n+1, а все u_i в цвета соответствующих v_i .
- 3. $\chi(G_{n+1}) = n+1$. Действительно, пусть он красится в n цветов. Можно считать, что w покрашена в первый цвет. Тогда u_i не покрашены в первый цвет. Пусть какая-то v_i (для конкретного i) покрашена в первый цвет. Тогда перекрасим её в цвет соответствующей u_i . Докажем, что раскраска всё ещё правильная. Действительно, теперь возможные плохие рёбра имеют вид (v_i, v_j) . Тогда (u_i, v_j) тоже плохое противоречие. Следовательно, можно избавиться в G_n от первого цвета, т.е. этот граф красится правильным образом в n-1 цвет, что противоречит предположению индукции.

 $^{^{1}}$ Лемма обобщается до mn-1 врагов. Тогда, перемещая члена с n врагами в палату с минимальным количеством врагов, можно разбить парламент на m палат так, что в каждой палате у каждого её члена меньше n врагов.

Лемма 8. Пусть в графе нет K_3 и $\deg(v) \leq 7$. Тогда $\chi(G) \leq 4$.

Теорема 9 (Зачёт). В условиях 5 асимптотически верно $\chi(G) \leq \frac{n}{2} + k$.

Доказательство. Применим 3 для $m = \lceil \frac{n+1}{8} \rceil$, n = 8. Тогда по 8 граф разобьётся на $\lceil \frac{n+1}{8} \rceil$ компонент с хроматическим числом не более 4. Тогда $\chi(G) \leq 4 \lceil \frac{n+1}{8} \rceil$, что асимптотически равно $\frac{n}{2}$.

Теорема 10 (Гид, 1999). Если в графе G нет K_n и $\deg(v) \leq n$, то $\chi(G) \leq n-1$. Доказательство не рассказал, т.к. нужен вероятностный метод.

Определение 3. Охват графа o(G) — длина минимального цикла графа. Охват леса по определению равен $+\infty$.

Теорема 11 (Эрдёш, 1963). $\forall k, d \; \exists G : o(G) \geq d, \chi(G) \geq k.$ ²

Доказательство. Зафиксируем n — число вершин графа, δn — число рёбер графа. Будем считать матожидание величины X_l — количества циклов длины l. Заметим, что количество способов выбрать такой цикл в графе равно $\binom{n}{l} \cdot \frac{(l-1)!}{2}$, следовательно, суммарное количество циклов в этих графах — $\binom{n}{l} \cdot \frac{(l-1)!}{2} \cdot \binom{m-l}{\delta n-l}$, где $m = \binom{n}{2}$.

Тогда
$$\mathbb{E}X_l = \frac{\binom{n}{l} \cdot \frac{(l-1)!}{2} \cdot \binom{m-l}{\delta n-l}}{\binom{m}{\delta n}}.$$

$$\binom{n}{l} \cdot \frac{(l-1)!}{2} \leq \frac{n^l}{2l} \text{ M} \frac{\binom{m-l}{\delta n-l}}{\binom{m}{\delta n}} = \frac{(\delta n)!(m-l)!}{(\delta n-l)!m!} = \frac{\delta n(\delta n-1)\dots(\delta n-l+1)}{m(m-1)\dots(m-l+1)} < \left(\frac{\delta n}{m}\right)^l.$$

Тогда $\mathbb{E}X_l < \left(\frac{\delta n}{m}\right)^l \cdot \frac{n^l}{2l} = \frac{\delta^l}{2l} \cdot \left(\frac{n^2}{m}\right)^l = \left(1 + \frac{1}{n-1}\right)^l \cdot \frac{2^l \cdot \delta^l}{2l} \leq \frac{2^l \delta^l}{3} \leq \frac{2^l \cdot \delta^l}{3}$, где предпоследнее неравенство выполняется при достаточно больших n (т.к. l < g). Далее:

$$\mathbb{E}X := \sum_{i < g} \mathbb{E}X_i < \frac{1}{3} \cdot \sum_{l=3}^{g-1} (2\delta)^l \le \frac{1}{3} \cdot \frac{(2\delta)^g - 1}{2\delta - 1} \le \frac{(2\delta)^g}{6\delta - 3}.$$

Тогда можно взять очень большое δ так, что $\mathbb{E}X < \frac{n}{6}$. Тогда больше чем в половине графов число «маленьких» циклов не больше, чем $\frac{n}{3}$.

Теперь посчитаем матожидание Y_p — количество независимых множеств (антиклик) размера p. Их суммарное количество в графах — $\binom{n}{p} \cdot \binom{m-t}{\delta n}$, где $t = \binom{p}{2}$. Тогда

$$\mathbb{E}X_p = \frac{\binom{n}{p} \cdot \binom{m-t}{\delta n}}{\binom{m}{\delta n}} < 2^n \cdot \frac{\binom{\delta n}{m-t}}{\binom{m}{\delta n}} < 2^n \cdot \left(\frac{m-t}{m}\right)^{\delta n} = \left(2\left(\frac{m-t}{m}\right)^{\delta}\right)^n.$$
 Далее, т.к. $p = \frac{n}{c}$:

$$\frac{t}{m} = \frac{p(p-1)}{n(n-1)} < \frac{1}{c^2}.$$

Тогда (в предположении, что c фиксировано и n очень большое)

$$\mathbb{E}X_p = \left(2\left(1 - \frac{t}{m}\right)^{\delta}\right)^n < \left(2\left(1 - \frac{1}{c^2}\right)^{\delta}\right)^n < \frac{1}{2}.$$

Таким образом, больше чем в половине графов нет антиклик размера $\frac{n}{c}$. Значит, существует граф, в котором оба этих свойства выполнены — «маленьких» циклов не больше $\frac{n}{3}$ и число независимости не больше $\frac{n}{c}$. Удалим из каждого цикла по вершине. Тогда останется не меньше $\frac{2n}{3}$ вершин, значит, по 1 верно $\chi(G) \geq \frac{2c}{3}$. Подставим $c = \frac{3k}{2}$ и получим решение задачи.

 $^{^{2}7}$ — частный случай теоремы для d=4.