Name	PAVITHRA.S
Register Number	720419104020
Team Size	4
Team ID	PNT2022TMID43503

Assignment -II

1) Importing
In []:
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
import warnings
warnings.filterwarnings('ignore')
2.Load the Dataset
In []:
data=pd.read_csv("Churn_Modelling.csv")
In [43]:
data
Out[43]:

Row	Cust	Sur	Cred	Geo	Ge	A	Te	Bal	NumO	Has	IsActiv	Estima	Ex
Num	omer	na	itSco	grap	nd	g	nu	anc	fProdu	CrC	eMem	tedSal	ite
ber	Id	me	re	hy	er	e	re	e	cts	ard	ber	ary	d

0	1	0.27 5616	Har gra ve	619	Fran	Fe ma le	4 2	2	0.00	1	1	1	101348 .88	1
1	2	0.32 6454	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	.58	0
2	3	0.21 4421	Oni o	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	.57	1
3	4	0.54 2636	Bon i	699	Fran ce	Fe ma le	3 9	1	0.00	2	0	0	93826. 63	0
4	5	0.68 8778	Mit chel	850	Spai n	Fe ma le	4 3	2	125 510. 82	1	1	1	79084. 10	0
•••														
9 9 9 5	9996	0.16 2119	Obi jiak u	771	Fran	Ma le	3 9	5	0.00	2	1	0	96270. 64	0
9 9 9 6	9997	0.01 6765	Joh nsto ne	516	Fran	Ma le	3 5	10	573 69.6 1	1	1	1	101699 .77	0
9	9998	0.07	Liu	709	Fran	Fe ma le	3 6	7	0.00	1	0	1	42085. 58	1

9														
9 9 8	9999	0.46 6637	Sab bati ni	772	Ger man y	Ma le	4 2	3	750 75.3 1	2	1	0	92888. 52	1
9 9 9	1000	0.25 0483	Wal ker	792	Fran ce	Fe ma le	2 8	4	130 142. 79	1	1	0	38190. 78	0

 $10000 \text{ rows} \times 14 \text{ columns}$

\sim	•	T •	- 1	•	. •		
	١.	/10	ual	17	oti	On	10
.).	v	. 19	ua	117.	au	w	10

a) Univariate Analysis

In [44]:

sns.displot(data.Gender)

Out[44]:

<seaborn.axisgrid.FacetGrid at 0x7f80cb07c690>

B)Bi-Variate Analysis

In [45]:

data.plot.line()

Out[45]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f80cb9a8a50>

C)Multi - Variate Analysis

In [46]:

sns.lmplot("Tenure","NumOfProducts",data,hue="NumOfProducts")

Out[46]:

<seaborn.axisgrid.FacetGrid at 0x7f80cb95fe10>

4)Perform descriptive statistics on the dataset.

In [47]:

data.describe()

Out[47]:

	Row Num ber	Custo merId	Credi tScore	Age	Tenur e	Balanc e	NumOf Produc ts	HasC rCar d	IsActiv eMemb er	Estimat edSalar y	Exite d
co un t	.0000	10000. 00000 0	10000. 00000 0	10000. 00000 0	10000. 00000 0	10000. 000000	10000.0	.0000	10000.0	10000.0	10000. 00000 0
m ea n	5000. 50000	0.5009 80	650.52 8800	36.533 900	5.0128 00	76485. 889288	1.53020 0	0.705 50	0.51510	100090. 239881	0.2037

st	2886.	0.2877	96.653	6.4738	2.8921	62397.	0.58165	0.455	0.49979	57510.4	0.4027
d	89568	57	299	43	74	405202	4	84	7	92818	69
mi	1.000	0.0000	350.00	20.000	0.0000	0.0000	1.00000	0.000	0.00000	11.5800	0.0000
n	00	00	0000	000	00	00	0	00	0	00	00
25	2500.	0.2513	584.00	32.000	3.0000	0.0000	1.00000	0.000	0.00000	51002.1	0.0000
%	75000	20	0000	000	00	00	0	00	0	10000	00
50	5000.	0.5001	652.00	37.000	5.0000	97198.	1.00000	1.000	1.00000	100193.	0.0000
%	50000	70	0000	000	00	540000	0	00	0	915000	00
75	7500.	0.7501	718.00	40.000	7.0000	127644 .24000	2.00000	1.000	1.00000	149388.	0.0000
%	25000	64	0000	000	00	0	0	00	0	247500	00
m	10000	1.0000	850.00	50.000	10.000	250898	4.00000	1.000	1.00000	199992.	1.0000
ax	0	00	0000	000	000	0	0	00	0	480000	00
\	11 .1 3										

5)Handle the Missing values.

In []:

 $data = pd.read_csv("Churn_Modelling.csv")$

pd.isnull(data["Gender"])

Out[]:

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False

...

9995 False

9996 False

9997 False

9998 False

9999 False

Name: Gender, Length: 10000, dtype: bool

6)Find the outliers and replace the outliers

In [48]:

sns.boxplot(data['Age'])

Out[48]:

 $<\!matplotlib.axes._subplots. Axes Subplot\ at\ 0x7f80caeafc50\!\!>$

In [28]:

data['Age']=np.where(data['Age']>50,40,data['Age'])

data['Age']

Out[28]:

0 42

1 41

2 42

3 39

4 43

..

```
9995 39
```

9996 35

9997 36

9998 42

9999 28

Name: Age, Length: 10000, dtype: int64

In [49]:

sns.boxplot(data['Age'])

Out[49]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f80cb95fc10>

In [34]:

data['Age']=np.where(data['Age']<20,35,data['Age'])

data['Age']

Out[34]:

- 0 42
- 1 41
- 2 42
- 3 39

4 43

..

9995 39

9996 35

9997 36

9998 42

9999 28

Name: Age, Length: 10000, dtype: int64

7) Check for Categorical columns and perform encoding.

In [50]:

pd.get_dummies(data, columns=["Gender", "Age"], prefix=["Age", "Gender"]).head()

Out[50]:

	R o w N u m be	C us to m er Id	S u r n a m	C re di tS co re	G eo gr a p h	T e n u r e	B al a n c	Nu m Of Pr od uct s	H as C r C ar	Is Ac tiv eM em ber	 G e n d er - 4	G e n d er - 4	G e n d er - 4 3	G e n d er - 4	G e n d er - 4 5	G e n d er - 4	G e n d er - 5			
0	1	0. 27 56 16	H ar g ra v	61	Fr an ce	2	0. 0 0	1	1	1	0	1	0	0	0	0	0	0	0	0
1	2	0. 32	H il l	60	S pa in	1	8 3 8 0	1	0	1	1	0	0	0	0	0	0	0	0	0

		64					7.													
		54					8													
							6													
2	3	0. 21 44 21	O ni o	50 2	Fr an ce	8	1 5 9 6 6 0. 8 0	3	1	0	 0	1	0	0	0	0	0	0	0	0
3	4	0. 54 26 36	B o ni	69	Fr an ce	1	0. 0 0	2	0	0	0	0	0	0	0	0	0	0	0	0
4	5	0. 68 87 78	M it c h el	85 0	S pa in	2	1 2 5 5 1 0. 8 2	1	1	1	 0	0	1	0	0	0	0	0	0	0

 $5 \text{ rows} \times 45 \text{ columns}$

- 8) Split the data into dependent and independent variables.
- A) Split the data into Independent variables.

In [37]:

X = data.iloc[:, :-1].values

print(X)

```
[[1 15634602 'Hargrave' ... 1 1 101348.88]
[2 15647311 'Hill' ... 0 1 112542.58]
[3 15619304 'Onio' ... 1 0 113931.57]
[9998 15584532 'Liu' ... 0 1 42085.58]
[9999 15682355 'Sabbatini' ... 1 0 92888.52]
[10000 15628319 'Walker' ... 1 0 38190.78]]
B) Split the data into Dependent variables.
In [38]:
Y = data.iloc[:, -1].values
print(Y)
[1 0 1 ... 1 1 0]
9) Scale the independent variables
In [39]:
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
data[["CustomerId"]] = scaler.fit_transform(data[["CustomerId"]])
In [40]:
print(data)
   RowNumber CustomerId Surname CreditScore Geography Gender Age \
0
                                    619 France Female 42
        1 0.275616 Hargrave
1
        2 0.326454
                                 608
                        Hill
                                       Spain Female 41
2
        3 0.214421
                        Onio
                                  502 France Female 42
3
        4 0.542636
                                  699 France Female 39
                        Boni
        5 0.688778 Mitchell
                                   850 Spain Female 43
9995
        9996 0.162119 Obijiaku
                                       771 France Male 39
9996
        9997 0.016765 Johnstone
                                       516 France Male 35
```

9997	9998	0.075327	Liu	709	France Fem	ale 36	5
9998	9999	0.466637	Sabbatini	772	Germany	Male	42
9999	10000	0.250483	Walker	792	France F	emale	28

Tenure Balance NumOfProducts HasCrCard IsActiveMember \

0	2 0.00	1	1	1
1	1 83807.86	1	0	1
2	8 159660.80	3	1	0
3	1 0.00	2	0	0
4	2 125510.82	1	1	1
9995	5 0.00	2	1	0
9996	10 57369.61	1	1	1
9997	7 0.00	1	0	1
9998	3 75075.31	2	1	0
9999	4 130142.79	1	1	0

EstimatedSalary Exited

0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

```
[10000 rows x 14 columns]
10)Split the data into training and testing
In [42]:
from \ sklearn.model\_selection \ import \ train\_test\_split
train_size=0.8
X = data.drop(columns = ['Tenure']).copy()
y = data['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test\_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
Out[42]:
(None, None)
```