SISSER WILLIAM	UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA	FÍSICA 2 C	NOTA:
	ESCUELA DE CIENCIAS DEPARTAMENTO DE FÍSICA	1S2023	
	INGA. CLAUDIA CECILIA CONTRERAS FOLGAR DE ALFARO	AUX. ANGEL QUIM	

CARNÉ:	202200089	FECHA:	03/04/2023	
NOMBRE:	Franklin Orlando Noj Pérez			

Hoja de Trabajo No.06

 ¿Cuántos electrones pasan a través de un resistor de 20-Ω en 10 minutos si se aplica una diferencia de potencial de 30 Volts en sus extremos?

a. 5.6×10^{21}	b. 7.5×10^{21}	c. 9.4×10^{21}	d. 1.1×10^{21}	e. 3.8×10^{21}

$$R = 20 \Omega$$

$$7 = 10 \text{ mayos}$$

$$\Delta V = 30 V$$

$$I = \frac{30}{20} - 0 \frac{3}{2}$$

 Un alambre (longitud = 2.0 m, diámetro = 1.0 mm) tiene una resistencia de 0.45Ω. ¿Cuál es la resistividad del material utilizado para hacer el alambre?

a.5.6 × $10^{-7} \Omega \cdot m$ b. $1.2 \times 10^{-7} \Omega \cdot m$ c. $1.8 \times 10^{-7} \Omega \cdot m$ d. $2.3 \times 10^{-7} \Omega \cdot m$ e. $7.1 \times 10^{-7} \Omega \cdot m$

L= 2.0m

Dranentro = 1.00mm

h=0.45.0

1= = 1 x03m

A= zz

A=11 (2X10)

Cool es P

$$R = P.L$$
 $P = R.A$ = $O(0.45)(785.39 \times 10^{9})$

3. La densidad de portadores de carga libres en el cobre es de 8.49 × 10²⁸ electrones/m³. Cuando fluye una corriente de 1.00A en un alambre de cobre de sección transversal de 0.40 cm², ¿cuál es la velocidad de deriva de los electrones, en m/s, cuál es su dirección relativa definida con base a la dirección de la densidad de corriente?

	,	1.04		F 40, 105	
a. -1.84×10^{-6}	b. $+1.84 \times 10^{-6}$	c1.84	d. -5.43×10^5	e. $+5.43 \times 10^5$	
	8 11 -				-
n= 8,49 x10	9 m3		$T = n A \parallel$	d.q-Daga	
11-03117			7 110,100	0.9	
I=1.00A	_		.11 . T	_ 1	
7=1,004	c 1.2		W=		
A=0,40cm2	(Ints) - who	7	W 1	d - 20	
H-01400111	0 - 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10	XLOM ~ (11.40	4 (8 yaxin)	(40x106) (1.60x10 ¹⁹)
, ((100cm)			. 60011110001	2,1040 \((1,00x10 \)
			11) 1 00	-6	
INd en Ms	1		_Vd=1.89 x1	D	
1 100 011 175					
1	T (X	1 11 00	h	
drecein tele	atra	72 + 1,84	(XII) 1975	D .	
Wilmon II (00			'	N/	
	'				

4. Una pequeña bombilla disipa 7.5 W cuando opera a 125 V. Un filamento de tungsteno tiene un coeficiente de resistividad de $\alpha = 4.5 \times 10^{-3} / {}^{\circ}\text{C}$. Cuando está funcionando el filamento se calienta y su temperatura es siete veces la temperatura ambiente (20 °C). ¿Cuál es la resistencia del filamento (en ohms) a temperatura ambiente?

b. 1350 c. 1911 4530

Discipa 7.5W - Como destablica

V= 125V

L=4.5×103/2 To=20°C

Tf=140°C

Sugarando

R(T)= ho SIH (T-To)

h(T)= ho) 1+4.5x10 (140-20)

Wats = Rotarda.
$$W = IR$$

$$W = P = I^{2}R = IR = IR$$

$$7.5 = I^{2}R$$

$$I = \frac{7.5}{\Delta V} = \frac{7.5}{125} = \frac{7.5}{0.06} = \frac{105}{6.06} = \frac{105}{6.06} = \frac{105}{0.06} = \frac{$$

R (140) = 2083

16 X (16)

$$h_0 = \frac{2083.333}{144.500^3(140-20)}$$

= 1352.81

5. Un conductor de radio r y longitud l tiene una resistividad ρ . Se funde y se fabrica un nuevo conductor también cilíndrico con ¼ de longitud del original. ¿Cuál es la

b. R/4 d. 4R e. 16R

Lo=l Lf= f

h= Col ho= pol

remoded = p

Lo que combra es

$$I = U = 9$$

 $V = 9$
 $V = 9$
 $V = 2117.697$

Utilizando las leyes de Kirchhoff a) Encuentre la corriente en cada resistor b) Encuentre la diferencia de potencial entre los puntos c y f. ¿Qué punto está a mayor potencial? R:\ 0.38mA; 2.69mA; 3.07mA; $V_{ef} = 69.2V$ R_1 Maya Izquierda Muya Dochu Contrardo de 6 -70-IIRI-IRZ+IZRZ+60 =0 80-4000 Iz-60-3000 Iz-1300 II 3000 I1 -7000 I2 +20 =0 -10 -I2000 -I300 +Iz3000 =0 300 JI -700 Jz = -20 3000 Tz -5000 I, -10=0 _5000I, +3000 Iz=10 Calabo en I1= -3, 8461X10 = Divecom feed $I_z = 2.6923 \times 10^{-3}$ Potencial de Caf Purto Vc -60 -3000 (3.07 x103) = Vf AVef = 69.2 V T_3 TIDOTO ユ $I_1+I_2=I_3$ hi = 0.38 mA 2.69×10-3+3.84 61×10 Rz = 2,69 mA R3 = 3.07 MA I3=3.07 km Voltage cf=69.2V El punto f esta a Mayor. Poteveral Iz la para abajo