

Laboratório 5 – Máscaras de rede e Rotas estáticas CORREÇÃO

1. Conversão de endereço IPv4 em binário

Decimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

1.1. Conversão do endereço 172.16.5.1 em binário sabendo que:

	128	64	32	16	8	4	2	1
172	1	0	1	0	1	1	0	0
16	0	0	0	1	0	0	0	0
5	0	0	0	0	0	1	0	1
1	0	0	0	0	0	0	0	1

Assim, temos

172	16	5	1
10101100	00010000	00000101	00000001

1.2. Converta o endereço 192.168.17.6

11000000.10101000.00010001.00000110

Vejamos a seguinte tabela:

	128	64	32	16	8	4	2	1
192	1	1	0	0	0	0	0	0
168	1	0	1	0	1	0	0	0
17	0	0	0	1	0	0	0	1
6	0	0	0	0	0	1	1	0

R. Marquês D'Ávila e Bolama, 6201-001 Covilhã, PORTUGAL

Telef.: +351 275 319 891 | Fax: +351 275 319 899

2. Verifique as máscaras de rede

Classe	Notação CIDR	Máscara	Nº de Redes	Nº de IPs
	/0	0.0.0.0	1	4.294.967.296
A	/8	255.0.0.0	1	16.777.216
	/16	255.255.0.0	1	65.534
	/17	255.255.128.0	2	132.766
	/18	255.255.192.0	4	16.328
В	/19	255.255.224.0	8	8.190
D	/20	255.255.240.0	16	4.094
	/21	255.255.248.0	32	2.046
	/22	255.255.252.0	64	1.022
	/23	255.255.254.0	128	510
/24		255.255.255.0	1	254
	/25	255.255.255.128	2	126
	/26	255.255.255.192	4	62
C	/27	255.255.255.224	8	30
	/28	255.255.255.240	16	14
	/29	255.255.255.248	32	6
	/30	255.255.255.252	64	2

3. Crie uma cópia da última topologia criada no Laboratório 2

3.1. Adicione 2 routers, um novo Switch e um novo computador

Nota: Os routers adicionados deverão de ser do mesmo modelo que o router R1 (2811).

Prof. Nuno M. Garcia BSc Bárbara Matos MSc Dmytro Vasyanovych MSc Carlos Romeiro R. Marquês D'Ávila e Bolama, 6201-001 Covilhã, PORTUGAL Telef.: +351 275 319 891 | Fax: +351 275 319 899

Tabela de endereços

Equipamento	Interface	Endereço IPv4	Máscara de Sub-Rede	Gateway
D1	Fa 0/0	192.168.31.1	255.255.255.192	
R1	Se 0/0	192.168.31.65	255.255.255.252	
R2	Fa 0/0	192.168.32.129	255.255.255.192	
K2	Se 0/1	192.168.32.1	255.255.255.252	
	Fa 0/0	192.168.30.1	255.255.255.224	
R3	Se 0/0	192.168.31.66	255.255.255.252	
	Se 0/1	192.168.32.1	255.255.255.252	
A	*	192.168.31.2	255.255.255.192	192.168.31.1
В	*	192.168.31.3	255.255.255.192	192.168.31.1
C	*	192.168.32.130	255.255.255.192	192.168.32.129
D	*	192.168.32.131	255.255.255.192	192.168.32.129
E	*	192.168.30.2	255.255.255.224	192.168.30.1

^{*} pode ser utilizada qualquer porta fastEthernet

- 4. Complete os espaços em branco da tabela de endereços.
- 5. Configure os computadores (end devices), com os dados presentes na tabela de endereços.

R. Marquês D'Ávila e Bolama, 6201-001 Covilhã, PORTUGAL

Telef.: +351 275 319 891 | Fax: +351 275 319 899

6. Configure o nome dos routeres para R1, R2 e R3 respetivamente.

Router(config)#hostname ____

7. Configure a interface FastEthernet do router R3 com os dados presentes na tabela.

R3(config)#int fa0/0 R3(config-if)#ip address 192.168.30.1 255.255.255.224 R3(config-if)#no shut

Prof. Nuno M. Garcia BSc Bárbara Matos MSc Dmytro Vasyanovych MSc Carlos Romeiro R. Marquês D'Ávila e Bolama, 6201-001 Covilhã, PORTUGAL Telef.: +351 275 319 891 | Fax: +351 275 319 899

 $E\text{-}mail: secretariado@di.ubi.pt \mid www.di.ubi.pt \\$

8. Configure a interface FastEthernet do router R1 com os dados presentes na tabela.

R1(config)#int fa0/0 R1(config-if)#ip address 192.168.31.1 255.255.255.192 R1(config-if)#no shut

9. Configure a interface FastEthernet do router R2 com os dados presentes na tabela.

R2(config)#int fa0/0
R2(config-if)#ip address 192.168.32.129 255.255.255.128
R2(config-if)#no shut

10. Configure as portas Serial

R1(config)#interface serial 0/0
R1(config-if)#ip address 192.168.31.65 255.255.255.252
R1(config-if)#no shut

R2(config)#int s0/1
R2(config-if)#ip add 192.168.32.1 255.255.252

R2(config-if)#no shut
R3(config)#int s0/0

R3(config-if)#ip add 192.168.31.66 255.255.255.252

R3(config-if)#no shut

R3(config)#int s0/1

R3(config-if)#ip add 192.168.32.2 255.255.255.252 R3(config-if)#no shut

11. Calcule as rotas de sumarização

11.1. Calcule uma rota sumarização para que R1 possa aceder as redes (LANs) em R2

11.1.1. Decomponha as redes 192.168.32.0/30 e 192.168.32.10/26 no formato binário.

192.168.32.0: 11000000.10101000.00100000.00000000 192.168.32.10: 11000000.10101000.00100000.00001010

11.1.2. Conte os bits correspondentes mais à esquerda para determinar a máscara para a rota sumarizada. Eles têm 24 bits em comum.

192.168.32.0 /30: **11000000.10101000.00100000** 000000000 192.168.32.128 /26: **11000000.10101000.00100000** 100000000

Bits em comum

11.1.3. Copie os bits correspondentes e preencha os bits restantes com zeros para determinar o endereço de rede sumarizado.

11000000.10101000.00100000.00000000

Prof. Nuno M. Garcia BSc Bárbara Matos MSc Dmytro Vasyanovych MSc Carlos Romeiro R. Marquês D'Ávila e Bolama, 6201-001 Covilhã, PORTUGAL Telef.: +351 275 319 891 | Fax: +351 275 319 899

11.1.4. Qual é o endereço de sumarização da rede? _____**192.168.32.0**

11.1.5. Qual é a máscara de sub-rede? /24 - 255.255.255.0

11.1.6. Configure a rota estática para que o R1 consiga aceder as redes em R3.

R1(config)#ip route 192.168.32.0 255.255.255.0 192.168.31.66

11.1.7. Qual o comando utilizado para realizar a configuração da rota estática?

ip route 192.168.32.0 255.255.255.0 192.168.31.66

11.1.8. Configure o router R1 para que possa comunicar com a rede em R2.

R1(config)#ip route 192.168.30.0 255.255.255.224 192.168.31.66

11.1.9. Define rota estática: _

12. Calcule uma rota de sumarização em R3

- **12.1.** Calcule uma rota de sumarização em R3 para que este possa aceder as LANs em R1 e R2.
 - **12.1.1.** Calcule a rota de sumarização para as redes 192.168.31.0/26, 192.168.31.64/30 e 192.168.33.0/27.

Dica: Decomponha as redes no formato binário. Conte os bits mais a esquerda para determinar a máscara para a rota de sumarização.

192.168.31.0: 11000000.10101000.0001111<mark>1</mark>1.000000000 192.168.31.64: 192.168.30.0: **11000000.10101000.0001111**0.10000000

Bits em comum

Assim, fica:

- 12.1.2. Qual é o endereço de sumarização da rede? __192.168.30.0
- **12.1.3.** Qual a sua máscara? /23 255.255.254.0
- 12.1.4. Configure a rota estática para que o R2 consiga aceder as redes em R1 e R2.

R2(config)#ip route 192.168.30.0 255.255.254.0 192.168.32.2

- 13. Configure as rotas de sumarização em R3
 - 13.1. Configure a rota de sumarização para que R3 possa comunicar com R1 R3(config)#ip route 192.168.31.0 255.255.255.192 192.168.31.65
 - 13.2. Configure a rota de sumarização para que R3 possa comunicar com R2 R3(config)#ip route 192.168.32.128 255.255.255.192 192.168.32.1
- 14. Guarde todas as configurações presentes nos routeres

R1#copy running-config startup-config

Prof. Nuno M. Garcia BSc Bárbara Matos MSc Dmytro Vasyanovych MSc Carlos Romeiro

R. Marquês D'Ávila e Bolama, 6201-001 Covilhã, PORTUGAL

E-mail: secretariado@di.ubi.pt | www.di.ubi.pt

Telef.: +351 275 319 891 | Fax: +351 275 319 899

R2#copy running-config startup-config

R3#copy running-config startup-config

- 15. Verifique a conectividade
 - 15.1. Verifique se qualquer computador da topologia consegue comunicar com os computadores de outra rede.

R. Marquês D'Ávila e Bolama, 6201-001 Covilhã, PORTUGAL

Telef.: +351 275 319 891 | Fax: +351 275 319 899