Конспект по Дискретной математике.

Чепелин В.А.

Содержание

1	Информация о курсе
2	Введение в дискретную вероятность.
9 1	$1 - \frac{1}{2}$ vermathreekoe benogthoe inoethauetho

1 Информация о курсе

Поток — y2024.

Группы М3138-М3142.

Преподаватель — Станкевич Андрей Сергеевич.

В данном семестер фокусируются 2 темы: Дискретная теория вероятности и представление слов (токенов) в компьютере.

2 Введение в дискретную вероятность.

2.1 Аксиматическое вероятное пространство.

Пусть у нас есть Ω - элементарные исходы и связанная с ним функция $p:\Omega\to [0,1]$ - дискретная вероятностная мера (плотность вероятности) - функция, которая по элементарному исходу возвращает вероятность.

А также $\sum_{w \in \Omega} p(w) = 1$, а также $0 \le p_i \le 1$ А также мы считаем, что $|\Omega|$ не более чем счетно. Для множеств мощности континуума нам нужна более сложная теория.

Рассмотрим примеры:

1. Честная монета:

$$\Omega = \{0, 1\}. \ p(0) = p(1) = \frac{1}{2}.$$

2. Нечестная монета или распределение Бернулли:

$$\Omega = \{0, 1\}. \ p(0) = 1 - p(1) = q.$$

3. Честная игральная кость:

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$
 $p(w) = \frac{1}{6}.$ $p(w) = \frac{1}{52}.$

4. Колода карт:

$$\Omega = \{ \langle c, r \rangle \ 1 \le c \le 4, 1 \le r \le 15 \}$$

5. Геометрическое распределение:

$$\Omega = \mathbb{N}, \, p(i) = \frac{1}{2^i}$$

Замечание. Не существует равномерного распределения на счетном множестве.

<u>Событие</u> — множество $A \subset \Omega$. $P(A) = \sum_{w \in A} p(w)$. (Иногда используют \Pr).

P(A) = 1 — достоверное событие.

P(A) = 0 — невозможное событие.

Рассмотрим примеры на честной игральной кости:

1. Только четные: $P(A) = \frac{3}{6} = \frac{1}{2}$.

2. Больше 4-ex: $P(A) = \frac{2}{6} = \frac{1}{3}$.

Замечание: нельзя с равной вероятностью выбрать случайное целое число.

Независимые события — A,B независимы, если $P(A \cap B) = P(A) \cdot P(B)$.

$$\frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(\Omega)}$$
 — независимы (если выполнилось В, то вероятность не поменялась)

$$P(A|B) = \frac{P(A\cap B)}{P(B)}$$
— вероятность A при условии B — **условная вероятность**.

Произведение вероятностных пространств.

Пусть у нас есть $\Omega_1.p_1$, а также Ω_2, p_2 , тогда произведение вероятностных пространств:

$$\Omega = \Omega_1 \times \Omega_2$$
$$p(\langle w1, w2 \rangle) = p_1(w_1) \cdot p_2(w_2)$$

.

Утв. $\forall A \subset \Omega_1, B \subset \Omega_2$.

 $A \times \Omega_2$ и $\Omega_1 \times B$ независимы.

Пусть у нас есть n - событий: A_1, A_2, \ldots, A_n .

Тогда обычно **независимость п событий** подразумевает:

- 1. A_i, A_j независимы $\forall i, j$
- 2. $\forall I \subset \{1, 2, 3, \dots, n\}. \ P(\bigcup_{i \in I} A_i) = \prod_{i \in I} P(A_i)$

Формула полной вероятности

$$\Omega = A_1 \cup A_2 \cup \ldots \cup A_n, \, \forall i \neq j : A_i \cap A_j = \emptyset -$$
полная система событий.

Возьму В - какое-то событие.

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

Пример: Урна с шариками. Сначала выбираете урну, потом достаете шарик.

Формула Байеса.

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{j=1}^{n} P(B|A_j) \cdot P(A_j)}$$