Statistics and Hypothesis Testing

CISC 3225 Spring 2024 DSFS 5, 6, 7

Introduction

When we ask questions about data, we often form a *hypothesis*: a supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation.

To formulate a hypothesis, it is useful to have domain knowledge or a familiarity with your data.

Wine example

Hypothesis: Sweeter wine has less alcohol than dry wine.

Basis:

- Wine-related domain knowledge (homebrewer, wine enthusiast)
- Familiarity with biological processes (yeast convert sugar to alcohol)
- Independent research

Wine example

Hypothesis: Sweeter wine has less alcohol than dry wine.

Exploratory analysis: Visualize the relationship

- It *appears like* there is more alcohol when there is less sugar, and less alcohol when there is more sugar.
- Good for a quick exploration, but...
- ...can we quantify this relationship?

Visualized from white wine dataset, outliers removed (residual sugar outside 99% quantile)

Statistical hypothesis testing allows us to determine whether our data supports a hypothesis.

Process for statistical hypothesis testing:

- 1. Formulate a hypothesis.
- 2. Gather relevant data (existing datasets or experiments)
- 3. Formulate a *null hypothesis* (H_0) that represents a default position
- 4. Formulate an alternative hypothesis (H₁) to compare with H₀
- 5. Use statistical tests to determine whether we can reject H_0

Null hypothesis (H_0): Default position Alternative hypothesis (H_1) compared with H_0

As a result of hypothesis testing, we can do one of the following:

- Reject the null hypothesis
- Fail to reject the null hypothesis

Null hypothesis (H_0): Default position Alternative hypothesis (H_1) compared with H_0

As a result of hypothesis testing, we can do one of the following:

- Reject the null hypothesis
- Fail to reject the null hypothesis

	Reality		
Test		H ₀ true	H ₀ false
	Fail to reject H ₀	OK	Type 2 error (False negative)
	Reject H ₀	Type 1 error (False positive)	OK

Flipping a Coin

Problem: How do we determine if a coin is fair?

- 2. Data: Flip a coin many times and count the number of heads (\underline{X}) .
- 3. H_0 : p = 0.5
- 4. H_1 : $p \neq 0.5$
- 5. Statistical tests: ???

Flipping a Coin: Results

X: Number of heads

 H_0 : p = 0.5 H_1 : p \neq 0.5

Results from flipping the coin 1000 times:

Easy case:

X: 500

Is the coin fair?

Flipping a Coin

If the coin were fair, what distribution of heads and tails would we expect to see?

A uniform distribution: There is equal chance of heads (1) or tails (0) occurring.

The density function of the uniform distribution is shown to the right:

 H_0 : p = 0.5 H_1 : p ≠ 0.5 Heads = 1 Tails = 0

Flipping a Coin

 H_0 : p = 0.5 H_1 : p ≠ 0.5 Heads = 1 Tails = 0

Cumulative distribution function (CDF): The probability that a random variable is less than or equal to a certain value.

Flipping a Coin: Results

Results from flipping the coin 1000 times:

Harder case:

X: 519

Is the coin fair?

X: Number of heads

$$H_0$$
: p = 0.5
 H_1 : p \neq 0.5

$$H_1$$
: p \neq 0.5

Flipping a Coin: Problem

This experiment produced perfectly uniform head counts.

This experiment did not.

X: Number of heads

$$H_0$$
: p = 0.5

$$H_1: p \neq 0.5$$

Flipping a Coin: Binomial variables

X: Number of heads in a coin-flipping experiment

X is a *random variable*: a variable whose possible values have an associated probability distribution.

X is a binomial random variable, which has two parameters:

- n: Total number of trials, each with a binary outcome (a Bernoulli trial)
- p: The probability of one trial outputting 1

520

560

Flipping a Coin: Results

Central question: If X is binomial random variable with p=0.5, n=1000, **how likely** is the outcome shown below?

- Unlikely: Reject the null hypothesis
- Likely: Fail to reject the null hypothesis

X: Number of heads

$$H_0$$
: p = 0.5
 H_1 : p \neq 0.5

$$H_1$$
: p \neq 0.5

Binomial Distribution (p=0.5, n=1000)

Flipping a Coin: Results

Central question: If X is binomial random variable with p=0.5, n=1000, **how likely** is the outcome shown below?

- Unlikely: Reject the null hypothesis
- Likely: Fail to reject the null hypothesis

X: Number of heads

 H_0 : p = 0.5 H_1 : p \neq 0.5

Binomial Distribution (p=0.5, n=1000)

500

540

560

Side note: The normal distribution

The classic bell curve.

Probability density function:
$$f(x|\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Two parameters:

- μ (Mu): Mean, or center of the bell
- σ (Sigma): Standard deviation, or how wide the bell is

Side note: The normal distribution CDF

Approximating binomial variables

$$H_0$$
: p = 0.5
 H_1 : p ≠ 0.5
Heads = 1

Tails = 0

Variables:

- p: Probability of flipping heads (0.5)
- 1-p: Probability of flipping tails (0.5)
- n: Number of trials (1000)

$$\mu = pn = (0.5)(1000) = 500$$

$$\sigma = \sqrt{(p(1-p)n)} = \sqrt{((0.5)(0.5)(1000))} = \sqrt{250} \approx 15.8$$

If H₀ is true, X should be distributed approximately normally with mean 500 and standard deviation 15.8

Should we reject the null hypothesis?

Alternate question: How willing are we to make a type 1 (false positive) error? (Significance)

By convention, the significance is usually **5%** (low tolerance for type 1) or **1%** (very low tolerance for type 1)

Null hypothesis (H_0): Default position Alternative hypothesis (H_1) compared with H_0

As a result of hypothesis testing, we can do one of the following:

- Reject the null hypothesis
- Fail to reject the null hypothesis

	Reality		
Test		H ₀ true	H ₀ false
	Fail to reject H0	OK	Type 2 error (False negative)
	Reject H0	Type 1 error (False positive)	OK

Significance of 5%:

Reject the null hypothesis if X falls outside of 95% of the distribution.

Fail to reject the null hypothesis if X falls within 95% of the distribution.

We fail to reject the null hypothesis.

Significance of 5%:

Alternate interpretation: There is a 5% chance that a value of X falls below 469.03 or above 530.97.

This test will show the correct result 95% of the time.

With 20 coin flip trials, assuming H_0 is true, p=0.5, n=1000, we will make a Type 1 error once.

Significance of 1%:

Alternate interpretation: There is a 1% chance that a value of X falls below 459.30 or above 540.70.

This test will show the correct result 99% of the time.

With 100 coin flip trials, assuming H_0 is true, p=0.5, n=1000, we will make a Type 1 error once.

p-values

Definition of *p*-value:

- Assuming H₀ is true...
- ...and we observe some value X...
- ...p is the probability that we would see a value at least as extreme as X

Computing *p*-values

X is greater than the mean.

Computing *p*-values

X is greater than the mean, the *tail* is everything greater than X.

Computing *p*-values

X is greater than the mean, the *tail* is everything greater than X.

p equals 2 * the probability of encountering a value in the tail. (multiply 2 to consider both sides)

$$p = 0.115 * 2 \approx 0.23$$

$$H_0$$
: p = 0.5
 H_1 : p \neq 0.5

p-values and significance testing

If p is less than or equal to our significance level (5% or 1%), reject the null hypothesis.

If *p* is greater than our significance level, fail to reject the null hypothesis.

$$p = 0.115 * 2 \approx 0.23 > 0.05$$

→ Fail to reject the null hypothesis

The coin is likely a fair coin.

Closing notes

- p values are a simple and commonly used method of hypothesis testing.
- Many statistical tests output a *p* value:
 - o p-values can be interpreted as a signal of the strength of what you are testing.
 - o p-values are controversial, and some research relies on them too much.
 - o p-values are susceptible to p-hacking, a technique to manipulate results.