Assignment # 2 Commutative Algebra MATH 4107, MATH 5001

Due Oct. 29, 2020.

All rings are commutative with unity.

Recall that for an ideal I of a ring R we have:

$$V(I) = \{ p \in \operatorname{Spec} R \mid p \supseteq I \}.$$

- 1. Let R be a ring and let $e \in R$ be an idempotent. Show that Re and R(1-e) are non-unital subrings of R, i.e. they are subrings but their units are not necessarily 1_R . Show that R is a product of these rings $R = Re \times R(1-e)$.
- 2. Let

$$\mathbb{Z}_{(2)} = \{ a/b \, | \, a, b \in Z \text{ and } b \notin 2\mathbb{Z} \}$$

$$\mathbb{C}[x]_{(x)} = \{ f/g \, | \, f, g \in \mathbb{C}[x] \text{ and } g(0) \neq 0 \}.$$

Show that these are local rings.

- 3. Find the ideal in $\mathbb{R}[x,y]$ corresponding to the variety that is the parabola $y=x^2$ union the point (-1,-1) in \mathbb{R}^2 .
- 4. Describe the ideal in $\mathbb{R}[x, y, z]$ corresponding to the variety that is the intersection of the sphere $x^2 + y^2 + z^2 = 1$ and the cone $x^2 + y^2 = z^2$.
- 5. Let $\nu: \mathbb{C}^2 \to \mathbb{C}^4$ be the polynomial mapping given by

$$\nu(x,y) = (x^3, x^2y, xy^2, y^3).$$

Find the ideal of the image of ν , i.e. $I(\nu(\mathbb{C}^2))$. Let $\sigma = xy + yz + xz$. We define a map $p: \mathbb{C}^3 \to \mathbb{C}^4$ as

$$p(x, y, z) = (x\sigma, y\sigma, z\sigma, -xyz).$$

Find the ideal of the image.

6. Recall that for an ideal I of a ring R we have:

$$V(I) = \{ p \in \operatorname{Spec} R \mid p \supset I \}.$$

Let R be a ring and let I, J be ideals of R. Show that

- (a) $V(IJ) = V(I \cap J) = V(I) \cup V(J)$
- (b) $V(I + J) = V(I) \cap V(J)$.
- (c) $V(\sqrt{I}) = V(I)$.
- (d) Assume $I = \sqrt{I}$, show that $V(I:J) = \overline{V(I) \setminus V(J)}$
- 7. Let R, S be rings. Write \coprod for disjoint union. Show that $\operatorname{Spec}(R \times S) = \operatorname{Spec} R \coprod \operatorname{Spec} S$ as topological spaces.
- 8. Let $\phi^*: R \to S$ be a ring homomorphism with induced map of spectra $\phi: \operatorname{Spec} S \to \operatorname{Spec} R$. Let I be an ideal of R. Show that $V(\phi^*(I)S) = \phi^{-1}(V(I))$.
- 9. Let $\pi^* : \mathbb{C}[x] \to \mathbb{C}[x,y]/(y^2-x^3-x)$ be the natural inclusion of \mathbb{C} -algebras. and write $\pi : \operatorname{Spec} \mathbb{C}[x,y]/(y^2-x^3-x) \to \operatorname{Spec} \mathbb{C}[x]$ be the induced map of spectra.

- (a) Suppose we have a point $(a, b) \in \mathbb{C}^2$ that satisfies the equation $y^2 x^3 x$. Let $m_{(a,b)} = (x a, y b)$. Describe $\pi(m_{(a,b)})$.
- (b) For $a \in \mathbb{C}$ let $m_a = (x-a)$ be the corresponding maximal ideal of $\mathbb{C}[x]$. Relate the ideal $m_a\mathbb{C}[x,y]/(y^2-x^3-x)$ to the fibre of the map $\pi^{-1}(m_a)$ on spectra. Note the different behaviour for certain values of a.
- 10. Let R be a ring and let $a \in R$. Let M be an R-module.
 - (a) Show that $\{m \in M \mid am = 0\}$ is a submodule of M.
 - (b) Show that $\operatorname{Hom}_R(R/aR, M) = \{m \in M \mid am = 0\}$
- 11. Find and state the structure theorem that describes all finitely generated modules over a PID. Let us call this theorem FPID. We will use this theorem in the next questions.
 - (a) Derive the fundamental theorem of finite abelian groups from FPID.
 - (b) Let k be a field. Show that a k[x] module is given by a k-vector space V with a linear transformation $T = \rho_x$ where $\rho_x : V \to V$ is right multiplication by x.
 - (c) Suppose k is an algebraically closed field and let V be a finite dimensional k[x] module. What does FPID say about V as a k[x] module? Use FPID to find a basis for V where the linear transformation $T = \rho_x$ has Jordan canonical form.
 - (d) Repeat the above where k is not necessarily algebraically closed to derive the rational canonical form theorem.
- 12. Let k be a field. Prove that the category of finite dimensional vector spaces $\mathbf{Vect}_k^{\mathrm{fin}}$ is equivalent to the category \mathbf{Mat}_k as described in Lecture 10.
- 13. Find the 'free' functor defined to be the left adjoint of the following forgetful functors
 - (a) $\mathbf{Top} \to \mathbf{Set}$.
 - (b) **Rings** \rightarrow **Ab** by $R \mapsto (R, +)$.
 - (c) Rings \rightarrow Ab by $R \mapsto R^*$.
- 14. A morphism $\phi: R \to S$ in a category is an epi if for all $g_1, g_2: S \to T$ we have $g_1 \circ f = g_2 \circ f$ implies $g_1 = g_2$.
 - (a) Show that an epi in the category of sets is a surjection.
 - (b) Show that the ring inclusion $\mathbb{Z} \to \mathbb{Q}$ is an epi in the category of rings.