Local Polynomial Regression Statistical Machine Learning - individual project

Leonardo Stincone

Università degli Studi di Trieste

18th July 2019

Problem statement: Lidar dataset

LIDAR = Light Detection And Ranging

- it is a surveying method that measures distance to a target by illuminating the target with laser light and measuring the reflected light with a sensor
- x: distance travelled before the light is reflected back to its source
- y: logarithm of the ratio of received light from two laser sources

The objective is to estimate:

$$f(x) = E[Y \mid X = x]$$

Problem statement: Lidar dataset

LIDAR = Light Detection And Ranging

- it is a surveying method that measures distance to a target by illuminating the target with laser light and measuring the reflected light with a sensor
- x: distance travelled before the light is reflected back to its source
- y: logarithm of the ratio of received light from two laser sources

The objective is to estimate:

$$f(x) = E[Y \mid X = x]$$

What does local means?

If we had enough point with $x = x_0$

What does local means?

If we had enough point with $x=x_0$

We can consider points "close" to x_0

k nearest neighbors

$$\hat{f}(x) = \frac{1}{k} \sum_{i=1}^{n} y_i I_{N_k(x)}(x_i)$$

Neighborhood of radius h

$$\hat{f}(x) = \frac{\sum_{i=1}^{n} y_i I_{[0,h]}(|x - x_i|)}{\sum_{i=1}^{n} I_{[0,h]}(|x - x_i|)}$$

Nadaraya-Watson kernel regression

$$\hat{f}(x) = \sum_{i=1}^{n} \ell_i(x) y_i$$

with:

$$\ell_i(x) = \frac{K\left(\frac{x - x_i}{h}\right)}{\sum_{j=1}^n K\left(\frac{x - x_j}{h}\right)}$$

where $K(\cdot)$ is a kernel function that satisfies:

- $K(x) \ge 0$
- $\int K(x)dx = 1$
- $\int xK(x)dx = 0$
- $\int x^2 K(x) dx > 0$

Some proposed kernels

-2 -1 0 1 2

Design bias, boundary bias and concavity bias

Design bias: what's happening?

Locally the Nadaraya-Watson estimator is a Weighted Least Square Estimator:

$$\hat{f}_{NW}(x_0) = \underset{a}{\operatorname{argmin}} \sum_{i=1}^{n} K\left(\frac{x_i - x_0}{h}\right) (y_i - a)^2$$

Idea: instead of approximating $f(x_0)$ with a constant value a, we could approximate it with a polynomial $p_{x_0}(u, a)$.

Taylor polynomial approximation

$$p_{x_0}(u, \mathbf{a}) = a_0 + a_1(u - x) + \frac{a_2}{2!}(u - x)^2 + \dots + \frac{a_d}{d!}(u - x)^d$$

Locally the Nadaraya-Watson estimator is a Weighted Least Square Estimator:

$$\hat{f}_{NW}(x_0) = \underset{a}{\operatorname{argmin}} \sum_{i=1}^{n} K\left(\frac{x_i - x_0}{h}\right) (y_i - a)^2$$

Idea: instead of approximating $f(x_0)$ with a constant value a, we could approximate it with a polynomial $p_{x_0}(u, \mathbf{a})$.

Taylor polynomial approximation:

$$p_{x_0}(u, \mathbf{a}) = a_0 + a_1(u - x) + \frac{a_2}{2!}(u - x)^2 + \ldots + \frac{a_d}{d!}(u - x)^d$$

Local polynomial regression: estimation

We can estimate the coefficients of $p_{x_0}(u; \boldsymbol{a})$ as:

$$\hat{\boldsymbol{a}}(x_0) = \underset{\boldsymbol{a}}{\operatorname{argmin}} \sum_{i=1}^n K\left(\frac{x_i - x}{h}\right) \left(y_i - p_{x_0}(x_i; \boldsymbol{a})\right)^2$$

Thus, we can define the estimator for f(x) in x_0 just computing $p_{x_0}(u;\hat{\boldsymbol{a}})$ in x_0 :

$$\hat{f}(x_0) = p_{x_0}(x_0; \hat{\boldsymbol{a}})$$

Then we can repeat the process for each value of x in a grid and obtain $\hat{f}(x)$.

Design bias, boundary bias and concavity bias

Local Polynomial Regression on LIDAR dataset

Bibliography

Fan, Gijbels Local Polynomial Modelling and its Applications Springer (1996)

Ruppert, Wand, Carroll Semiparametric Regression Cambridge University Press (2003)

