Macroeconomics Lecture 8 – New Keynesian Model

Ilya Eryzhenskiy

PSME Panthéon-Sorbonne Master in Economics

Fall 2022

- 2 Firms
 - Flexible prices

The basic New Keynesian model

- ▶ Also uses the microfoundations as in RBC framework
 - rational expectations
 - ▶ representative, infinitely lived agents
 - optimizing behaviour
- ▶ But important differences
 - ▶ a large number (continuum) of consumption goods
 - \Rightarrow not perfectly substitutable for HH \Rightarrow no perfect competition \rightarrow monopolistic competition
 - ightharpoonup prices for goods not flexible ightarrow nominal rigidities
- \triangleright We will also make simplifications w.r.t. RBC: no capital accumulation \rightarrow production with labor only
- ▶ Versions of this model widespread in central banks, commercial banks, public authorities, international organizations...

The basic New Keynesian model

Households

- supply labour
- make saving in a nominal bond (zero in equilibrium)

Firms

- > a continuum of firms of measure one
- ▶ each producing a single, imperfectly substitutable good
- only using labour as factor input
- pricing the good
 - under monopolistic competition
 - given nominal rigidities (but we start with a flexible price version today)

- 2 Firms
 - Flexible prices

Household

Household utility has the form $E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, L_t)$, and we will work with *isoelastic* utility for both C and L:

$$U(C_t, L_t) = \frac{C_t^{1-\sigma}}{1-\sigma} - \frac{L_t^{1-\eta}}{1-\eta}$$

where C_t is a **consumption indicator** constructed with a large number of goods, each having index i.

 C_t calculated with **aggregator function** proposed by Dixit and Stiglitz:

$$C_t \equiv \left(\int_0^1 C_t(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}},$$

where $C_t(i)$ is the quantity of good i consumed by the household.

Each good has its own price $P_t(i)$ set by a firm producing the good.

Differentiated goods

- imperfectly-substitutable goods combined yield an aggregate good
 - ightharpoonup Sometimes assumed that intermediary firms combine the goods for the household \Rightarrow the aggregator is their production function

$$C_t \equiv \left(\int_0^1 C_t(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

- \triangleright ε is the constant elasticity of substitution (CES) between any pair of differentiated goods
- ▶ Properties of the aggregator

Household

Households maximize the consumption index C_t for any given level of expenditures $\zeta_t \equiv \int_0^1 P_t(i)C_t(i)di$. The solution yields a set of demand equations

$$C_t(i) = \left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon} C_t \quad \text{for all } i \in [0, 1],$$
 (1)

where $P_t \equiv [\int_0^1 P_t(i)^{1-\varepsilon} di]^{1/(1-\varepsilon)}$ is an aggregate price index. This allows to write total consumption expenditure as

$$\int_0^1 P_t(i)C_t(i)di = P_tC_t$$

Household budget constraint

The flow budget constraint is

$$\int_0^1 P_t(i)C_t(i)di + B_{t+1}^N \le (1+i_t)B_t^N + W_t^N L_t + \Pi_t^N$$

with $C_t(i)$ period t consumption of good i, $P_t(i)$ price of good i, L_t hours of work, $W_t^{\mathbf{N}}$ nominal (i.e. in units of currency) wage, $B_t^{\mathbf{N}}$ nominal value of bonds held at beginning of t, i_t the nominal interest rate, $\Pi_t^{\mathbf{N}}$ nominal profits.

Using consumption aggregator and price indicator, the constraint can be rewritten:

$$P_t C_t + B_{t+1}^n \le (1 + i_t) B_t^n + W_t^n L_t + \Pi_t^n$$

Households' optimization

Using same approach as in the RBC, we obtain the FOCs:

$$\beta E_0 \left[\frac{C_{t+1}^{-\sigma}}{C_t^{-\sigma}} \frac{P_t}{P_{t+1}} \right] = \frac{1}{1 + i_{t+1}}$$
$$-\frac{L_t^{\eta}}{C_t^{\sigma}} = \frac{W_t^N}{P_t}$$

We will use lowercase letters for logs of variables: $c_t = \ln C_t$, $I_t = \ln L_t$, etc.:

$$c_t = E_t[c_{t+1}] - \frac{1}{\sigma}(i_t - E_t[\pi_{t+1}] - \rho)$$

$$\sigma c_t + \eta I_t = w_t^N - p_t$$

with $\rho = -\ln \beta$ the discount rate (used in continuous time models)

- 2 Firms
 - Flexible prices

Firms

- ▷ Continuum of firms indexed by $i \in [0,1]$ (1 firm 1 good)
- Production with common exogenous productivity for all firms A_t and labor: $Y_t(i) = A_t L_t(i)^{1-\alpha} \Rightarrow$ labor demand trivial: $L_t(i) = \left(\frac{Y_t(i)}{A_t}\right)^{\frac{1}{1-\alpha}}$
- ▶ Differentiated goods \Rightarrow monopoly power, setting price $P_t(i)$:
 - ho demand function given by $Y_t(i) = \left(rac{P_t(i)}{P_t}
 ight)^{-arepsilon} Y_t$ (from $C_t(i) = Y_t(i)$)
 - \triangleright continuum of goods \Rightarrow firm *i* doesn't influence Y_t , C_t , P_t

We will look at firm optimization and model equilibrium under **flexible prices** and **sticky prices** (Calvo pricing) in turn.

- 2 Firms
 - Flexible prices

Firm optimization – flexible prices

Maximize profits:

$$\max_{P_t(i), Y_t(i)} P_t(i) Y_t(i) - TC^N(Y_t(i))$$

Where:

▶ *TC*^N is nominal cost function:

$$TC^{N}(Y_{t}(i)) = W_{t}^{N}L_{t}^{d} = W_{t}^{N}\left(\frac{Y_{t}(i)}{A_{t}}\right)^{\frac{1}{1-\alpha}}$$

ho $Y_t(i)$ related to $P_t(i)$ via demand: $Y_t(i) = \left(rac{P_t(i)}{P_t}
ight)^{-arepsilon} Y_t.$

Unusual notation, but a familiar problem of monopolistic pricing. Solution:

$$P_t(i) = \frac{\varepsilon}{\varepsilon - 1} MC^N(Y_t(i))$$

Symmetric solution

All firms symmetric in flexible price equilibrium \Rightarrow drop the *i* index:

$$P_t = \frac{\varepsilon}{\varepsilon - 1} MC^N(Y_t)$$

and we can get the marginal cost as derivative of total cost:

$$MC^{N}(Y_t) = \frac{dTC^{N}(Y_t)}{dY_t} = \frac{d(W_t^N L^d(Y_t))}{dY_t} = \frac{1}{1-\alpha} W_t^N A_t^{\frac{1}{\alpha-1}} Y_t^{\frac{\alpha}{1-\alpha}}$$

so we can use it in the optimal price equation:

$$P_t = \frac{\varepsilon}{\varepsilon - 1} \frac{1}{1 - \alpha} W_t^N A_t^{\frac{1}{\alpha - 1}} Y_t^{\frac{\alpha}{1 - \alpha}}$$
or
$$p_t = \mu - \ln(1 - \alpha) + w_t^N + \left(\frac{1}{\alpha - 1}\right) a_t + \left(\frac{\alpha}{1 - \alpha}\right) y_t \text{ in logs}$$

where μ is log of the price markup: $\mu \equiv \ln(\frac{\varepsilon}{\varepsilon-1})$

Flexible price equilibrium

A flexible price equilibrium is a sequence of variables $\{Y(i)_t,C(i)_t,P_t(i),L(i)_t,W_t^N,A_t\}_{t=0}^{\infty} \text{ and aggregates} \\ C_t = \left(\int_0^1 C_t(i)^{\frac{\varepsilon-1}{\varepsilon}}di\right)^{\frac{\varepsilon}{\varepsilon-1}},\ Y_t = \left(\int_0^1 Y_t(i)^{\frac{\varepsilon-1}{\varepsilon}}di\right)^{\frac{\varepsilon}{\varepsilon-1}}, \\ P_t = \left(\int_0^1 P_t(i)^{1-\varepsilon}di\right)^{1/(1-\varepsilon)},\ L_t = \int_0^1 L_t(i)di \text{ such that, given an exogenous process for } A_t:$

- 1. The Euler equation holds: $\beta E_0 \left[\frac{C_{t+1}^{-\sigma}}{C_t^{-\sigma}} \frac{P_t}{P_{t+1}} \right] = \frac{1}{1+i_{t+1}}$
- 2. Consumption-labor optimality holds: $-\frac{L_t^{\eta}}{C_t^{\sigma}} = \frac{W_t^N}{P_t}$
- 3. **Optimal price** is set by each firm:

$$P_t(i) = \frac{\varepsilon}{\varepsilon - 1} \frac{1}{1 - \alpha} W_t^N A_t^{\frac{1}{\alpha - 1}} Y_t(i)^{\frac{\alpha}{1 - \alpha}}$$

- 4. Goods market clears: $Y_t(i) = C_t(i) \Rightarrow Y_t = C_t$, with $Y_t(i) = A_t L_t(i)^{1-\alpha}$
- 5. Bonds market clears: $B_t^N = 0$

Technically, we also need to impose a transversality condition in households' optimization: $\lim_{T\to\infty} E_t[B_t^N] \geq 0$

Flexible price equilibrium: monetary neutrality

As in RBC, nothing depends on nominal variables P_t , W_t^N , i_t in equilibrium. Consider equilibrium conditions (2)-(4) in logs (written without goods index i):

$$\sigma c_t + \eta I_t = w_t^N - p_t$$

$$p_t = \mu - \ln(1 - \alpha) + w_t^N + \left(\frac{1}{\alpha - 1}\right) a_t + \left(\frac{\alpha}{1 - \alpha}\right) y_t$$

$$y_t = c_t$$

$$y_t = a_t + (1 - \alpha)I_t,$$

where the last equation is the production function in logs. $w_t \equiv w_t^N - p_t$ can be introduced in the first two equations. We then have 4 equations, 4 unknowns y_t, c_t, l_t, w_t , that have a static solution each period that depends on a_t . Solution for log GDP is:

$$y_t = \frac{1 - \alpha}{(1 - \alpha)\sigma - \eta + \alpha} \left(-\mu + \ln(1 - \alpha) - \frac{1 + \eta}{1 - \alpha} \mathbf{a}_t \right)$$

The real interest rate

Real interest rate is a real quantity that can also be obtained in equilibrium using the log Euler equation:

$$c_t = E_t[c_{t+1}] - \frac{1}{\sigma}(i_t - E_t[\pi_{t+1}] - \rho)$$

Then, recall the definition of the **real interest rate**, a.k.a. the **Fischer equation**:

$$r_t = i - E_t \pi_{t+1}$$

combine the two and $y_t = c_t$ to obtain

$$r_t = \rho + \sigma E_t \Delta y_{t+1}$$

= $\rho + \sigma \frac{1+\eta}{\sigma(1-\alpha) + \eta + \alpha} E_t \Delta a_{t+1}$, (using the solution for y)

So the real interest rate is, too, driven by productivity. In a steady state, $\Delta a_t = 0$, so $r_t = \rho$, the real interest rate is the discount factor.

Central Bank in a neutrality economy

Suppose you only know the flexible price model (the sticky price one is much harder!), but your employer **really** wants you to say something about prices, interest rates, central bank, etc.

A neutral central bank with an inflation targeting Taylor Rule can be introduced:

$$i_t = \rho + \phi_\pi \pi_t$$
, with $\rho = \ln \beta$, the discount factor

and combine the two:

$$\phi_{\pi}\pi_{t} = E_{t}\pi_{t+1} + \hat{r}_{t}$$
 with $\hat{r}_{t} \equiv r_{t} - \rho$

 \hat{r}_t is the deviation of the real interest from its steady-state value ρ .

Inflation determinacy - the Taylor Principle

$$\phi_{\pi}\pi_{t} = E_{t}\pi_{t+1} + \hat{r}_{t}$$
 with $\hat{r}_{t} \equiv r_{t} - \rho$

If $\phi_{\pi} > 1$, the level of inflation is **determined** as a discounted sum of expected \hat{r}_t :

$$\pi_t = \sum_{k=0}^{\infty} \phi_{\pi}^{-(s+1)} E_t \hat{r}_{t+s}$$

Otherwise, we can write inflation dynamics as an AR(1)-type process:

$$\pi_{t+1} = \phi_{\pi} \pi_t - \hat{r}_t + \xi_{t+1}$$

Where ξ is a random variable with $E_t\xi_{t+1}=0$ and no economic meaning. This is a **sunspot shock** – a random factor affecting economic outcomes such as inflation, but with no economic explanation.

Bottom line: an active Taylor rule ($\phi_{\pi} > 1$) allows to determine level of inflation, otherwise – uncontrollable sunspot shocks. Not specific to neutral flexible price economy, – also with nominal rigidity economy, where monetary variables have real effects.