Ethereum Sharding Concept 以太坊分片概说

Asia-Pacific Ethereum Community Meetup @ Shenzhen Dec 3, 2017

Ethereum Research Hsiao-Wei Wang (王筱維)

Outline

- Ethereum 1.0 node, 以太坊 1.0 节点
- Scalability issue of Blockchain, 区块链的可扩展性问题
- Sharding, 分片
- · What's new? 分片上的新设计

If I am an Ethereum <u>1.0</u> full node

以太坊 1.0 节点

Ethereum is a blockchain system

P2P Network

- Receive / Broadcast transactions and blocks 接收 / 广播交易与区块
- full sync / fast sync (geth) / warp sync (parity)
- Mainnet / Testnet (ROPSTEN, KOVAN, RINKEBY...) 主链 / 测试链

Verification

• Execute EVM (Ethereum Virtual Machine) bytecode 执行 EVM bytecode

State Transition

state_transition_function(state, block) -> state'

- Access the tx-related accounts
- Computation
- Update/Write the state

Verification

- Execute EVM (Ethereum Virtual Machine) bytecode 执行 EVM bytecode
- Verify the merkle proofs 验证 merkle proofs

Hash Function

State Trie and Merkle Proof

balance + nonce + codehash + storage

if eth_mining

- Collect transactions from tx mempool 从交易池中选出交易
- Execute EVM (Ethereum Virtual Machine) code 执行 EVM bytecode
- Create merkle proofs
 建立 merkle proofs
- Run Ethash PoW algorithm 运行 Ethash 工作量证明演算法

Scalability Issues

可扩展性问题

Scalability Issues

- Every full node executes each transaction and store the whole (or pruned) state trie for security and decentralized 为了安全性與去中心化,每个全节点都执行每一笔交易,并储存整个(或修整过的) state trie
- Parallelizability of EVM execution EVM 的平行化执行

Blockchain Trilemma

blockchain systems can only at most have two of the following three properties

- Vitalik Buterin, Sharding FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ

Scalability 可扩展性

Decentralized 去中心化

Security 安全性

Solutions

State channels
 状态通道

Plasma chain
 Plasma 链

• Interactive verification for scalable computation 交互式验证

Solutions

- State channels
 状态通道
- Plasma chain
 Plasma 链
- Interactive verification for scalable computation 交互式验证
- Sharding 分片

Sharding

The brand new chains!

Sharding in Blockchain

- Create many new shard chains 创建许多的新的分片链
- Each shard chain is a new galaxy 每个分片都是一个新的小星系
- The fork choice rule of shard chain is based on main chain (Ethereum Mainnet)

分片上的分岔选择规则是根据主链上的分岔状况

Main Chain <-> Shard Chain

Main Chain	Shard Chain
Block BlockHeader	Collation CollationHeader
Block Proposer (or Miner in PoW chain)	Collator
Ethash (PoW) Casper (PoS)	Via validator manager contract on main chain

Basic Sharding - Quadratic 二次分片

Basic Sharding - Tracking on Main Chain

Validator Manager Contract

- deposit
- withdraw
- get_eligible_proposer / sample
- add_header

https://github.com/ethereum/sharding/blob/develop/sharding/contracts/validator_manager.v.py

Main chain

Shard 1

Shard 2

Main chain

Shard 1

Shard 2

Main chain

Shard 1

Shard 2

Basic Sharding - Fork Choice Rule

Basic Sharding - Fork Choice Rule

Basic Sharding - Fork Choice Rule

"There's NO ShardCoin ICO!" 没有 ShardCoin ICO!

Vitalik Buterin ♥ @VitalikButerin · 11 月 19 日

I just had another person ask me if Casper and sharding will be a new coin and if so will there be an ICO. This makes me cry.

We can try something new design in the new shards!

我们可以在新的分片上尝试一些新的设计

Make the client "stateless"

无状态客户端

Unique Address Growth Chart

Some Numbers

~12.7 Millions ~104,123

30.8 GB

Distinct Addresses

New Address/Day

Geth w/ FAST Sync

Source: etherscan.io

Dec 1st, 2017

Pre-state

Post-state

State Transition

```
state_transition_function(state_root, collation, witness)

→ state_root', read_set, write_set
```

- Senders provide transaction witness
 送出交易者提供 transaction witness
- Archival node provide collation witness
 全状态节点提供 collation witness
- Stateless full node only have to store state roots 无状态全节点只需存 state roots

Stateless Regular Client

Stateless Light Client

Stateless Regular Client


```
tx = [
   version_num,
   chain_id,
   shard_id,
   account,
   gas,
   data
]
```


Stateless Light Client

Stateless Regular Client


```
tx = [
   version_num,
   chain_id,
   shard_id,
   account,
   gas,
   data
]
```


Stateless Light Client

Stateless Regular Client

Get necessary data

Broadcast (tx, witness)

Stateless Client Validator

I'm the collator of the fourth next period

Stateless Client Validator

I'm the collator of the fourth next period

Stateless Fast Sync

Stateless Client Validator

I'm the collator of the fourth next period

Research Topics for Optimization

- Stateless client
- Account redesign
- Account abstraction
- Binary state trie
- Parallelizability
- EVM 2.0
-etc.

Research Topics of Hard Problems

- Data availability
- Guaranteed scheduled call (atomic transaction)
- 1% attack problem
- Censorship resistance
- Partition state
- Cryptoeconomics
-etc.

Conclusion 结论

Conclusion

The scalability problems will be improved with multiple phases

以太坊可扩展性问题将由不同解决方案与多个阶段逐步改善

 In the new shards, we will have opportunities to try some revolutionary cool ideas

在新的分片,我们有机会尝试各种大幅度的的強化

Resource and Acknowledgements

Sharding FAQ

https://github.com/ethereum/wiki/wiki/Sharding-FAQ

Ethereum Research

https://ethresear.ch/c/sharding

> Sharding PoC

https://github.com/ethereum/sharding/

gitter ethereum/casper-scaling-and-protocoleconomics channel

https://gitter.im/ethereum/casper-scaling-and-protocol-economics

Thanks!

You can find me on gitter: @hwwhww

Icons made by DinosoftLabs from www.flaticon.com is licensed by CC 3.0 BY