Лабораторная работа №2

«Интерполяционный многочлен Лагранжа» (ИМЛ)

Задание 1

1. Вычислить приближенно значение $\sqrt{117}$, взяв в качестве узлов интерполяции

X	100	121	144
\sqrt{x}	10	11	12

- а. 1 способ найти коэффициенты интерполяционного многочлена с помощью определителя Вандермонда. Подставить 117 в найденный многочлен.
- b. 2 способ с помощью интерполяционного многочлена Лагранжа. Значения должны совпасть!
- 2. Оценить погрешность, сравнив с точным значением, найти количество верных цифр.
- 3. Увеличится ли точность, если в таблицу добавить еще один узел (81, 9)? Новое значение вычислить одним из способов.

Задание 2. Погрешность интерполяции (остаточный член интерполяции)

Изучить параграф «Погрешность многочленной интерполяции» (Лапчик, с. 208-209, до формулы 4.23), законспектировать. Примечание: в учебнике используется обозначение $\Pi_{n+1}(x) = (x-x_0)(x-x_1)...(x-x_n)$

Для предыдущей задачи вычислить погрешность приближенного значения $\sqrt{117}$ по формуле 4.23.

Задание 3. Вычисление в электронных таблицах

- 1. Для заданной таблицы значений вычислить приближенное значение функции в точке x^* с помощью интерполяционного многочлена Лагранжа.
 - Рекомендация каждое слагаемое интерполяционного многочлена записывать в отдельной ячейке.
 - Проверка правильности: если в качестве x^* взять табличное значение x, то расчеты должны давать табличное значение y.
- 2. Оценить погрешность полученного значения по формуле 4.23

Вариант 1

 $x^* = 3.8$

X	1.3	2.1	3.7	4.5	6.1	7.7	8.5
$Y = 1/x \cdot \lg x + x^2$	1.7777	4.5634	13.8436	20.3952	37.3387	59.4051	72.3593

Вариант 2

 $x^* = 3.5$

X	1.2	1.9	3.3	4.7	5.4	6.8	7.5
$y = \ln 2.3x - 0.8/x$	0.3486	1.0537	1.7844	2.2103	2.3712	2.6322	2.7411

Вариант 3

$$x^* = 0.5$$

X	-3.2	-0.8	0.4	2.8	4.0	6.4	7.6
$y = 2.1 \sin 0.37x$	-1.9449	-0.6126	0.3097	1.8068	2.0913	1.4673	0.6797

Вариант 4

$$x^* = 4.8$$

X	2.6	3.3		6.1	7.5	8.2	9.6
$y = 1.7\sqrt[3]{x} - \cos(0.4 - 0.7x)$	2.1874	2.8637	3.8161	3.8524	3.1905	2.8409	2.6137

Вариант 5

$$x^* = 4.1$$

X	1.3	2.1	3.7	4.5	6.1	7.7	8.5
$Y = 1/x \cdot \lg x + x^2$	1.7777	4.5634	13.8436	20.3952	37.3387	59.4051	72.3593

Вариант 6

$$x^* = 3.9$$

X	1.2	1.9	3.3	4.7	5.4	6.8	7.5
$y = \ln 2.3x - 0.8/x$	0.3486	1.0537	1.7844	2.2103	2.3712	2.6322	2.7411

Вариант 7

$$x^* = 3.3$$

X	-3.2	-0.8	0.4	2.8	4.0	6.4	7.6
$y = 2.1\sin 0.37x$	-1.9449	-0.6126	0.3097	1.8068	2.0913	1.4673	0.6797

Вариант 8

$$x^* = 4.0$$

X	2.6			6.1		8.2	9.6
$y = 1.7\sqrt[3]{x} - \cos(0.4 - 0.7x)$	2.1874	2.8637	3.8161	3.8524	3.1905	2.8409	2.6137

Задание 4. Программа

Составить программу для вычисления приближенного значения функции с помощью ИМЛ. Реализовать ее на одном из уровней (по Вашему выбору).

Уровень П (профи)

Программа должна предоставлять пользователю выбор – ввод данных с клавиатуры (вариант А) или ввод данных из файла (вариант В).

Вариант А: пользователь вводит N (N<20), затем заполняет таблицу из N+1 узла, вводит значение x^* . Программа выводит приближенное значение функции в точке x^* , вычисленное по формуле Лагранжа

Вариант В: пользователь через диалоговое окно выбирает текстовый файл, в котором хранится размерность таблицы, ее значения и значение x^* , Программа выводит приближенное значение функции в точке x^* , вычисленное по формуле Лагранжа.

Дополнительная опция: построение графика интерполяционного многочлена Лагранжа с нанесением табличных точек.

Уровень М (мастер)

См. уровень П без дополнительной опции

Уровень С (средний)

 $C_{\rm M}$. уровень Π – реализовать один из вариантов – A или B