Методы оптимизации. Семинар 4. Сопряжённые множества. Лемма Фаркаша.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

1 октября 2017 г.

Напоминание

- Внутренность и относительная внутренность выпуклого множества
- Проекция точки на множество
- Отделимость выпуклых множеств
- Опорная гиперплоскость

Сопряжённое множество

Сопряжённое множество

Сопряжённым (двойственным) к множеству $X \subseteq \mathbb{R}^n$ называют такое множество X^* , что

$$X^* = \{ \mathbf{p} \in \mathbb{R}^n | \langle \mathbf{p}, \mathbf{x} \rangle \ge -1, \ \forall \mathbf{x} \in X \}.$$

Сопряжённый конус

Если $X\subseteq \mathbb{R}^n$ — конус, тогда $X^*=\{\mathbf{p}\in \mathbb{R}^n|\langle \mathbf{p},\mathbf{x}\rangle\geq 0,\; orall \mathbf{x}\in X\}.$

Сопряжённое подпространство

Если X — линейное подпространство в \mathbb{R}^n , тогда $X^* = \{\mathbf{p} \in \mathbb{R}^n | \langle \mathbf{p}, \mathbf{x} \rangle = 0, \ \forall \mathbf{x} \in X\}.$

Факты о сопряжённых множествах

$\mathsf{Theorem}$

Пусть X — произвольное множество в \mathbb{R}^n . Тогда $X^{**} = \overline{\text{conv}(X \cup \{0\})}$.

$\mathsf{Theorem}$

Пусть X — замкнутое выпуклое множество, включающее 0. Тогда $X^{**} = X$.

Theorem

Пусть $X_1 \subset X_2$, тогда $X_2^* \subset X_1^*$.

Примеры

Найти сопряжённые к следующим множествам:

- 1. Неотрицательный октант: \mathbb{R}^n_+
- 2. Конус положительных полуопределённых матриц: ${\sf S}^n_+$
- 3. $\{(x_1,x_2)||x_1|\leq x_2\}$
- 4. $\{\mathbf{x} \in \mathbb{R}^n | \|\mathbf{x}\|_2 \le r\}$
- 5. $\{(\mathbf{x},t)\in\mathbb{R}^{n+1}|\|\mathbf{x}\|\leq t\}$

Лемма Фаркаша

Lemma (Фаркаш)

Пусть $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax = b, x \ge 0$$

$$2) \; \boldsymbol{p}^{\mathsf{T}} \boldsymbol{A} \geq 0, \; \langle \boldsymbol{p}, \boldsymbol{b} \rangle < 0$$

Важное следствие

Пусть $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax \leq b$$

2)
$$\boldsymbol{p}^{\mathsf{T}}\boldsymbol{A}=0,\;\langle\boldsymbol{p},\boldsymbol{b}\rangle<0,\;\boldsymbol{p}\geq0$$

Применение

Если в задаче линейного программирования на минимум допустимое множество непусто и целевая функция ограничена на нём снизу, то задача имеет решение.

Геометрическая интерпретация

Геометрия леммы Фаркаша

 $\mathbf{A}\mathbf{x} = \mathbf{b}$ при $\mathbf{x} \geq 0$ означает, что \mathbf{b} лежит в конусе, натянутым на столбцы матрицы \mathbf{A} $\mathbf{p}^{\mathsf{T}}\mathbf{A} \geq 0, \ \langle \mathbf{p}, \mathbf{b} \rangle < 0$ означает, что существует разделяющая гиперплоскость между вектором \mathbf{b} и конусом из столбцов матрицы \mathbf{A} .

Резюме

- Сопряжённые множества
- Свойства сопряжённых множеств
- Лемма Фаркаша