页式存储管理的基本原理

 \bigcirc

- 分页存储器将主存划分成 多个大小相等的页架
- 受页架尺寸限制,程序的逻辑地址也自然分成页
- •不同的页可以放在不同页架中,不需要连续
- 页表用于维系进程的主存完整性

进程页表

页0页架号页1页架号页2页架号页3页架号......

页式存储管理中的地址

• 页式存储管理的逻辑地址由两部分组成, 页号和单元号,逻辑地址形式:

页号 单元号

• 页式存储管理的物理地址也有两部分组成: 页架号和单元号, 物理地址形式:

页架号 单元号

• 地址转换可以通过查页表完成

页式存储管理的地址转换思路

页式存储管理的内存分配/去配

- •可用一张位示图来记录主存分配情况
- 建立进程页表维护主存逻辑完整性

0	1		14	15
0/1	0/1	• • • •	• 0/1	0/1
		•		
		•		
		•		
	<i>1</i> √	다 사.		
	全 团	习块数		

页的共享

- 页式存储管理能够实现多个进程共享程序和数据
- •数据共享:不同进程可以使用不同页号共享数据页
- •程序共享:不同进程必须使用相同页号共享代码页
 - 共享代码页中的(JMP <页内地址>)指令,使用不同页号是做不到