Last Name: _____ Student ID: _____

Derivatives and Their Applications (1)

1. For each case, find the critical points.

a.
$$f(x) = x^3 + 6x^2 + 9x + 2$$

b.
$$f(x) = x^3$$

c.
$$f(x) = \sqrt[3]{x}$$

d.
$$f(x) = \frac{x^4+1}{x^2+1}$$

2. For each case, find any local extremum using the first derivative test.

a.
$$f(x) = |x^2 - 4|$$

b.
$$f(x) = x^3 + 3x - 1$$

c.
$$f(x) = (\frac{1+x}{1-x})^2$$

- 3. For each case, find the absolute extrema (maximum or minimum) points.
- a. f(x) = -2x + 3, for $x \in [-1, 2]$
- b. $f(x) = \sqrt{x 2}$, for $x \in [2, 6]$

4. Let $f(x) = ax^4 + bx^2 + cx + d$. Find such that has a local maximum at (0, -6) and a local minimum at (1, -8).

5. Find the LM and Lm for $f(x) = x^n$, n is natural.

- **6.** For each case, use the first derivative sign to find the intervals of increase or decrease.
- a. $f(x) = x^2 2x$

b. $f(x) = \sqrt{x}(x - 1)$

c.
$$f(x) = x^3(x-1)^4$$

d.
$$f(x) = \begin{cases} \frac{x}{2} + 2, & x < 1 \\ x^3, & x \ge 1 \end{cases}$$

7. Determine the coordinates of the point P on the parabola $y = 9 - x^2$ that is closest to the point A(3, 9).

8. Determine the maximum and minimum values of the function $f(x) = sin^2x$ on the interval $0 \le x \le 2\pi$.

9. Find all the critical points of the function $f(x) = \cos(x + \frac{1}{x})$.