Cap. 5. Rezolvarea numerică a ecuațiilor și sistemelor de ecuații algebrice neliniare

5.0. Definiţii. Clasificare

Forma generală a ecuației:

$$f(x)=0, (1)$$

cu f : $I \subset R \rightarrow R$.

Categorii de metode

În particular, f – polinom / adus la o formă polinomială, dar și ecuațiile transcendente. Ecuații algebrice și transcendente.

Rezolvarea ecuației (1) = găsirea zerourilor funcției f, adică a valorilor x = c care satisfac (1).

Trei categorii de metode de rezolvare numerică a ecuațiilor algebrice neliniare:

Categorii de metode (cont'd 1)

- a) metode de *separare* sau *localizare* a soluţiilor ecuaţiei (1) de izolare a unor subdomenii ale domeniului de definiţie *I*, care să conţină câte unul din zerourile funcţiei f (a se vedea *şirul lui Rolle*);
- b) metode de *determinare, cu o precizie a priori fixată, a unei* soluții care a fost izolată în prealabil, pornind de la o valoare aproximativă a acesteia;
- c) metode de *determinare a tuturor soluțiilor* aplicabile, de regulă, în cazul în care f este un polinom.

Soluţie aproximativă

Se presupune că c este valoarea exactă a unei soluții a ecuației (1), iar c' o valoare aproximativă a acestei soluții. Soluția aproximativă se poate defini:

- 1) o valoare x=c': $|c'-c| < \varepsilon_x$, cu $\varepsilon_x > 0$ şi f(c)=0;
- 2) o valoare x=c': $|f(c')| < \varepsilon_f$, cu $\varepsilon_f > 0$ și f(c)=0.

Soluţie aproximativă (cont'd 1)

Soluţie aproximativă (cont'd 2)

Modul 2):

5.1. Metode de calcul al unei soluţii reale a unei ecuaţii algebrice neliniare

Soluţia reală a ecuaţiei (1) – separată în prealabil în intervalul [a,b]:

$$f(x) = 0, x \in [a, b].$$
 (1.1)

Două metode de partiţionare a intervalului, bisecţiei şi falsei poziţii.

Metoda bisecţiei (înjumătăţirii intervalului)

Este destinată rezolvării ecuației (1.1), pentru care s-a separat în prealabil o soluție în intervalul [a, b]:

$$f(a) \cdot f(b) < 0$$
. (1.2)

Se consideră f – continuă pe [a, b]. Soluția va fi determinată cu erorile admise ε_x (pentru soluție) și ε_f (pentru funcție).

Trăsătură caracteristică: pornind de la [*a*, *b*], la fiecare pas este restrâns domeniul în care este căutată soluția prin înjumătățirea intervalului de la pasul anterior, până la atingerea preciziei dorite.

Avantaj: simplă.

Dezavantaj: slab convergentă.

Algoritmul metodei bisecţiei – etape:

I) Iniţializarea limitelor intervalului de căutare, "r" şi "s", cu valorile limitelor intervalului în care s-a separat soluţia:

$$r^0 = a, \ s^0 = b$$
 (1.3)

(indicele superior – iteraţia curentă).

Metoda bisecţiei (cont'd 2)

II) La pasul de calcul k, k = 1, 2, 3, ..., se determină noua valoare a soluției

$$x^k = \frac{r^{k-1} + s^{k-1}}{2} \tag{1.4}$$

III) La acelaşi pas k se calculează $f(x^k)$ şi $f(r^{k-1}) \Rightarrow$ noile limite ale intervalului de căutare:

dacă
$$f(x^k) \cdot f(r^{k-1}) < 0 \implies r^k = r^{k-1} \text{ si } s^k = x^k;$$
 (1.5)

dacă
$$f(x^k) \cdot f(r^{k-1}) > 0 \implies r^k = x^k \text{ si } s^k = s^{k-1};$$
 (1.6)

dacă
$$f(x^k) \cdot f(r^{k-1}) = 0 \implies \text{calcul terminat } si \quad c = x^k; \quad (1.7)$$

Metoda bisecţiei (cont'd 3)

IV) Procesul de calcul se consideră terminat când sunt îndeplinite condițiile (1.8) și / sau (1.9):

$$|s^k - r^k| \le \varepsilon_X; \tag{1.8}$$

$$|f(x^k)| \le \varepsilon_f. \tag{1.9}$$

Interpretarea geometrică a metodei bisecţiei:

Metoda bisecţiei (cont'd 4)

Metoda bisecției (cont'd 5)

Exemplu: Se consideră ecuația

$$f(x) = 0$$
, $f(x) = 2 \cdot tgx - 10 \cdot x + 3$,

pentru care a fost separată o soluție în intervalul [-1, 1]. Să se determine soluția ecuației utilizând metoda bisecției, erorile admise fiind $\varepsilon_x = 10^{-3}$ și $\varepsilon_f = 10^{-2}$.

Soluţie: Sunt parcurse etapele metodei bisecţiei:

I) Iniţializări:

$$r^0 = -1$$
 , $s^0 = 1$, $|r^0 - s^0| = 2$.

Metoda bisecţiei (cont'd 6)

Iteraţia k = 1

II)
$$x^1 = \frac{r^0 + s^0}{2} = 0$$
;

III)
$$f(x^1) = f(0) = 3$$
, $f(r^0) = f(-1) = 9.885$,

$$f(x^1) \cdot f(r^0) > 0 \implies r^1 = x^1 = 0, \ s^1 = s^0 = 1.$$

Se verifică dacă sunt îndeplinite condițiile de terminare (1.8) și (1.9):

$$|r^1 - s^1| = 1 > \varepsilon_x$$
 si $|f(x^1)| = 3 > \varepsilon_f$.

Nu sunt îndeplinite ⇒ algoritmul se continuă cu

Metoda bisecţiei (cont'd 7)

Iterația k = 2

II)
$$x^2 = \frac{r^1 + s^1}{2} = 0.5$$
;
III) $f(x^2) = f(0.5) = -0.9074$, $f(r^1) = f(0) = 3$, $f(x^2) \cdot f(r^1) < 0 \implies r^2 = r^1 = 0$, $s^2 = x^2 = 0.5$.
 $|r^2 - s^2| = 0.5 > \varepsilon_x$ și $|f(x^2)| = 0.9074 > \varepsilon_f \implies$

Se trece la iteraţia următoare:

Metoda bisecţiei (cont'd 8)

Iteraţia k = 3

II)
$$x^3 = \frac{r^2 + s^2}{2} = 0.25$$
;
III) $f(x^3) = f(0.25) = 1.011$, $f(r^2) = f(0) = 3$,
 $f(x^3) \cdot f(r^2) > 0 \implies r^3 = x^3 = 0.25$, $s^3 = s^2 = 0.5$.
 $|r^3 - s^3| = 0.25 > \varepsilon_x$ și $|f(x^3)| = 1.011 > \varepsilon_f \implies$

Este continuat algoritmul:

Metoda bisecţiei (cont'd 9)

Iteraţia k = 4

II)
$$x^4 = \frac{r^3 + s^3}{2} = 0.375$$
;
III) $f(x^4) = f(0.375) = 0.037$, $f(r^3) = f(0.25) = 1.011$, $f(x^4) \cdot f(r^3) > 0 \implies r^4 = x^4 = 0.375$, $s^4 = s^3 = 0.5$.
 $|r^4 - s^4| = 0.125 > \varepsilon_x$ si $|f(x^4)| = 0.375 > \varepsilon_f$.

Erorile au scăzut, însă nu suficient de mult pentru ca cele două condiții de terminare să fie îndeplinite \Rightarrow alte iterații ...

Metoda falsei poziții (metoda împărțirii intervalului în părți proporționale)

Avantaj: mai rapid convergentă.

Trăsătură caracteristică: pornind de la [*a*, *b*], la fiecare pas se restrânge domeniul de căutare a soluţiei, prin împărţirea intervalului de la pasul anterior în raportul valorilor funcţiei la capetele intervalului.

Interpretarea geometrică:

Coarda:

$$\frac{x-a}{b-a} = \frac{f(x) - f(a)}{f(b) - f(a)},$$
(1.10)

Metoda falsei poziţii (cont'd 1)

 \Rightarrow abscisa punctului de intersecție cu Ox:

$$x_1 = \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)}$$
(1.11)

Algoritmul metodei falsei poziții – etape:

I) Iniţializarea limitelor intervalului curent de căutare, "r" şi "s":

$$r^0 = a, \ s^0 = b$$
 (1.12)

şi calculul lui $f(r^0)$ şi $f(s^0)$.

II) La un pas oarecare k, k = 1, 2, 3, ..., al procesului iterativ de calcul, este calculată noua valoare a soluției:

Metoda falsei poziţii (cont'd 2)

$$x^{k} = \frac{r^{k-1} \cdot f(s^{k-1}) - s^{k-1} \cdot f(r^{k-1})}{f(s^{k-1}) - f(r^{k-1})}$$
(1.13)

III) La acelaşi pas k este calculată $f(x^k)$, rezultând noile limite ale intervalului de căutare, r^k şi s^k , conform (1.5) ... (1.7), împreună cu $f(r^k)$ şi $f(s^k)$.

IV) Calculul este terminat când sunt îndeplinite condiţiile (1.8) şi / sau (1.9).

Metoda falsei poziţii (cont'd 3)

Exemplu: Se consideră ecuația din cadrul exemplului anterior. Să se rezolve utilizând metoda falsei poziții.

Soluție: Se aplică algoritmul metodei falsei poziții:

I) Iniţializări:

$$r^0 = -1$$
, $s^0 = 1$,

sunt calculate valorile funcției f în r^0 și s^0 :

$$f(r^0) = f(-1) = 9.885$$
, $f(s^0) = f(1) = -3.885$.

Metoda falsei poziţii (cont'd 4)

Pentru k = 1, 2, 3, ..., se repetă etapele II) ... IV), până când sunt îndeplinite condițiile etapei IV).

Iteraţia k = 1

II) Este calculat x^1 cu (1.13):

$$x^{1} = \frac{r^{0} \cdot f(s^{0}) - s^{0} \cdot f(r^{0})}{f(s^{0}) - f(r^{0})} = \frac{-(-3.885) - 9.885}{-3.885 - 9.885} = 0.4357$$

III) Este determinată valoarea funcției f în x^1 :

Metoda falsei poziţii (cont'd 5)

$$f(x^1) = f(0.4375) = -0.426$$
.

$$f(x^1) \cdot f(r^0) < 0 \implies din (1.5): r^1 = r^0 = -1, s^1 = x^1 = 0.4357$$

și valorile corespunzătoare ale funcției f:

$$f(r^1) = f(-1) = 9.855$$
, $f(s^1) = f(0.4357) = -0.426$.

Sunt verificate condițiile de terminare a algoritmului:

$$|r^1 - s^1| = 1.4357 > \varepsilon_X$$
, $|f(x^1)| = 0.426 > \varepsilon_f$.

(1.8) şi (1.9) nu sunt satisfăcute \Rightarrow iteraţia următoare:

Metoda falsei poziţii (cont'd 6)

Iterația k = 2

II) Este calculat x^2 :

$$x^{2} = \frac{r^{1} \cdot f(s^{1}) - s^{1} \cdot f(r^{1})}{f(s^{1}) - f(r^{1})} = \frac{-(-0.426) - 0.4357 \cdot 9.885}{-0.426 - 9.885} = 0.3764$$

III) Este determinată valoarea $f(x^2)$:

$$f(x^2) = f(0.3764) = 0.265$$
.

$$f(x^2) \cdot f(r^1) > 0 \implies din (1.6): r^2 = x^{22} = 0.3764, s^2 = s^1 = 0.4357.$$

$$f(r^2) = f(0.3764) = 0.265$$
, $f(s^2) = f(0.4357) = -0.426$.

Metoda falsei poziţii (cont'd 7)

Sunt verificate din nou condiţiile de terminare a calculelor:

$$|r^2 - s^2| = 0.0587 > \varepsilon_X$$
, $|f(x^2)| = 0.265 > \varepsilon_f$.

(1.8) şi (1.9) nu sunt satisfăcute \Rightarrow iteraţia următoare.

Erorile au scăzut semnificativ, scăderea lor fiind mai rapidă decât în cazul metodei bisecţiei, însă încă nu s-a ajuns la îndeplinirea condiţiilor de terminare a calculelor \Rightarrow algoritmul se continuă ...

Alte metode: Newton, secantei, de punct fix.

5.2. Generalități privind soluționarea numerică a sistemelor de ecuații algebrice neliniare

Forma implicită a unui sistem de ecuații algebrice neliniare de ordinul n – întotdeauna posibilă:

$$\begin{cases}
f_1(x_1, x_2, ..., x_n) = 0 \\
f_2(x_1, x_2, ..., x_n) = 0 \\
...
\\
f_n(x_1, x_2, ..., x_n) = 0
\end{cases} (2.1)$$

 f_1 , f_2 , ..., f_n , de variabile x_1 , x_2 , ..., x_n – continue.

Sisteme

$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \underline{\mathbf{f}} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_n \end{bmatrix}, \tag{2.2}$$

Notații matriceale:

⇒ forma compactă a sistemului:

$$\underline{\mathbf{f}}(\underline{\mathbf{x}}) = \underline{\mathbf{0}} \ , \ \underline{\mathbf{f}} : D \subset \mathbf{R}^n \to \mathbf{R}^n \ . \tag{2.3}$$

Forme intermediare:

$$f(\underline{x}) = 0, i = 1 ... n.$$
 (2.4)

Determinarea unei soluții a sistemului (2.1) =

Sisteme (cont'd 1)

$$\underline{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix},$$
 găsirea unui set de valori
$$\begin{bmatrix} c \\ c_2 \end{bmatrix}$$
; care satisfac (2.1) $\Leftrightarrow \underline{f}(\underline{c}) = \underline{0}$.

Categorii de metode numerice:

- I. *metode de separare* a unei / unor soluții de interes;
- II. *metode de determinare*, cu o precizie fixată a priori, a unei soluţii separate în prealabil.

Sisteme (cont'd 2)

În categoria II.:

- a) metode bazate pe **exprimarea explicită echivalentă** a ecuaţiilor sistemului (2.1) *metode de aproximaţii* succesive;
- b) metode care utilizează derivatele parţiale ale funcţiilor f ; *metode de tip Newton*;
- c) metode de *descreştere* (de *coborâre*, de *gradient*).

 Doar a) și b).

5.3. Metode bazate pe exprimarea explicită echivalentă a ecuațiilor sistemului

Se cere să se determine o soluție \underline{c} a sistemului (2.1), separată în

prealabil în domeniul $D = \prod_{i=1}^n [a_i,b_i] \subset \mathbb{R}^n$, cu erorile maxim admise ε_{x} (pentru valorile variabilelor) și ε_{f} (pentru valorile funcțiilor).

Trăsătură caracteristică: înlocuirea exprimărilor implicite (2.1) ale ecuațiilor sistemului cu exprimările explicite echivalente

Exprimarea explicită echivalentă

$$\begin{cases} x_1 = g_1(x_1, x_2, ..., x_n) \\ x_2 = g_2(x_1, x_2, ..., x_n) \\ ... \\ x_n = g_n(x_1, x_2, ..., x_n) \end{cases}$$
, cu g_i , $i = 1 ... n - \text{continue.}$ (3.1)

Notație:
$$\underline{g} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix}, \tag{3.2}$$

Exprimarea explicită echivalentă (cont'd 1)

$$\Rightarrow$$
 exprimarea matriceală: $\underline{x} = \underline{g}(\underline{x}), \ \underline{x} \in D \subset \mathbb{R}^n$ (3.3)

cu forma intermediară:
$$x_i = g_i(\underline{x}), i = 1 ... n$$
. (3.4)

Exprimările explicite sunt întotdeauna posibile şi, în plus, uneori sunt posibile mai multe variante.

Algoritmul metodei aproximaţiilor succesive în versiunea Jacobi

I) Iniţializare (indicele superior – iteraţia curentă):

$$\underline{x}^{0} = \begin{bmatrix} x_{1}^{0} \\ x_{2}^{0} \\ \vdots \\ x_{n}^{0} \end{bmatrix} \in D \tag{3.5}$$

II) La un pas oarecare k, k = 1, 2, 3, ..., al procesului iterativ de calcul, se determină noile valori ale variabilelor:

Metoda Jacobi

$$x_i^k = g_i(x_1^{k-1}, x_2^{k-1}, \dots, x_n^{k-1}), i = \overline{1, n}$$
 (3.6)

III) Calculul este terminat atunci când sunt îndeplinite condiţiile (3.7) şi / sau (3.8):

$$\left|x_i^k - x_i^{k-1}\right| \le \varepsilon_x, \ i = \overline{1, n}$$
(3.7)

$$\left|\mathbf{f}_{i}(\underline{x}^{k})\right| \leq \varepsilon_{f}, \ i = \overline{1,n}$$
 (3.8)

Condițiile suficiente de convergență:

$$\left| \frac{\partial g_i(\underline{x})}{\partial x_i} \right| < 1, \ i, j = \overline{1, n}$$
(3.9)

Metoda aproximaţiilor succesive în versiunea Gauss-Seidel

Diferență: relația (3.6) modificată:

$$x_i^k = g_i(x_1^k, x_2^k, \dots, x_{i-1}^k, x_i^{k-1}, \dots, x_n^{k-1}), i = \overline{1, n}$$
 (3.10)

 \Leftrightarrow apar valorile "noi" ale variabilelor care au fost recalculate deja la iteraţia k.

Metoda Gauss-Seidel

Exemplu: Să se rezolve sistemul neliniar

$$\begin{cases} 2x_1^2 - x_2x_3 - 5x_1 + 1 = 0 \\ x_2^2 - 2x_1 - \ln x_3 = 0 \\ x_3^2 - x_1x_2 - 2x_3 - 8 = 0 \end{cases}$$

cu metoda Gauss-Seidel, cu erorile maxime admise $\varepsilon_x = 0,001$ şi $\varepsilon_f = 0,1$, cunoscând că s-a separat o soluţie în domeniul $D = [0; 10] \times [0; 10] \times [1; 10]$.

Metoda Gauss-Seidel (cont'd 1)

Soluție: Rescrierea sistemului într-o formă cu exprimarea explicită

$$\begin{cases} x_1 = \sqrt{0.5 \cdot (x_2 x_3 + 5 x_1 - 1)} \\ x_2 = \sqrt{2 x_1 + \ln x_3} \\ x_3 = \sqrt{x_1 x_2 + 2 x_3 + 8} \end{cases}$$
 a variabilelor, de forma (3.1):

Iterația k = 0

I) Iniţializare (exemplu):
$$\underline{x}^0 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix} .$$

Metoda Gauss-Seidel (cont'd 2)

Valorile funcțiilor f_1 , f_2 și f_3 pentru valorile inițiale ale variabilelor:

$$f_1(\underline{x}^0) = 2 \cdot 10^2 - 10 \cdot 10 - 5 \cdot 10 + 1 = 51$$
,

$$f_2(\underline{x}^0) = 10^2 - 2.10 - \ln 10 = 77.7$$
,

$$f_3(\underline{x}^0) = 10^2 - 10 \cdot 10 - 2 \cdot 10 - 8 = -28$$
.

Iniţializarea se poate face şi cu alte valori şi se pot urmări efectele asupra evoluţiei convergenţei procesului de calcul în funcţie de aceste valori iniţiale.

II)
$$(3.10) \Rightarrow$$

Metoda Gauss-Seidel (cont'd 3)

$$x_1^1 = \sqrt{0.5 \cdot (x_2^0 \cdot x_3^0 + 5 \cdot x_1^0 - 1)} = \sqrt{0.5 \cdot (10 \cdot 10 + 5 \cdot 10 - 1)} = 8.631$$

$$x_2^1 = \sqrt{2 \cdot x_1^1 + \ln x_3^0} = \sqrt{2 \cdot 8.631 + \ln 10} = 4.423$$

$$x_3^1 = \sqrt{x_1^1 \cdot x_2^1 + 2 \cdot x_3^0 + 8} = \sqrt{8.631 \cdot 4.423 + 2 \cdot 10 + 8} = 8.135$$

Se calculează erorile:

$$|x_1^1 - x_1^0| = |8.631 - 10| = 1.369 > \varepsilon_X$$
,
 $|x_2^1 - x_2^0| = |4.423 - 10| = 5.577 > \varepsilon_X$,
 $|x_3^1 - x_3^0| = |8.135 - 10| = 1.865 > \varepsilon_X$.

Metoda Gauss-Seidel (cont'd 4)

$$|f_1(\underline{x}^1)| = 70.86 > \varepsilon_f$$

$$|f_2(\underline{x}^1)| = 0.206 > \varepsilon_x$$

$$|f_3(\underline{x}^1)| = 3.73 > \varepsilon_x$$
.

Condiţiile de terminare a calculelor nu sunt îndeplinite ⇒ necesară continuarea algoritmului cu iteraţia următoare:

II) Se calculează \underline{x}^2 : (3.10) \Rightarrow

$$x_1^2 = \sqrt{0.5 \cdot (x_2^1 \cdot x_3^1 + 5 \cdot x_1^1 - 1)} = \sqrt{0.5 \cdot (4.423 \cdot 8.135 + 5 \cdot 8.631 - 1)} = 6.251$$

Metoda Gauss-Seidel (cont'd 5)

$$x_2^2 = \sqrt{2 \cdot x_1^2 + \ln x_3^1} = \sqrt{2 \cdot 6.251 + \ln 8.135} = 3.821$$

$$x_3^2 = \sqrt{x_1^2 \cdot x_2^2 + 2 \cdot x_3^1 + 8} = \sqrt{6.251 \cdot 3.821 + 2 \cdot 8.135 + 8} = 6.939$$

Se determină erorile:

$$|x_1^2 - x_1^1| = |6.251 - 8.631| = 2.38 > \varepsilon_X$$
,
 $|x_2^2 - x_2^1| = |3.821 - 4.423| = 0.602 > \varepsilon_X$,
 $|x_3^2 - x_3^1| = |6.939 - 8.135| = 1.196 > \varepsilon_X$.

Metoda Gauss-Seidel (cont'd 6)

$$|f_1(\underline{x}^2)| = 21.4 > \varepsilon_f,$$

$$|f_2(\underline{x}^2)| = 0.16 > \varepsilon_x,$$

$$|f_3(\underline{x}^2)| = 2.39 > \varepsilon_x$$
.

Erorile au scăzut, dar nu sunt încă îndeplinite condițiile de terminare a procesului de calcul \Rightarrow etapele II) și III) ale algoritmului se repetă pentru k = 3, 4, ..., 12.

II) Se calculează \underline{x}^{13} :

Metoda Gauss-Seidel (cont'd 7)

$$x_1^{13} = \sqrt{0.5 \cdot (x_2^{12} \cdot x_3^{12} + 5 \cdot x_1^{12} - 1)} = \sqrt{0.5 \cdot (3.292 \cdot 5.89 + 5 \cdot 4.531 - 1)} = 4.53$$

$$x_2^{13} = \sqrt{2 \cdot x_1^{13} + \ln x_3^{12}} = \sqrt{2 \cdot 4.53 + \ln 5.89} = 3.291$$

$$x_3^{13} = \sqrt{x_1^{13} \cdot x_2^{13} + 2 \cdot x_3^{12} + 8} = \sqrt{4.53 \cdot 3.291 + 2 \cdot 5.89 + 8} = 5.89$$

Se determină erorile:

$$|x_1^{13} - x_1^{12}| = |4.53 - 4.531| = 0.001 \le \varepsilon_X$$
,
 $|x_2^{13} - x_2^{12}| = |3.291 - 3.292| = 0.001 \le \varepsilon_X$,
 $|x_3^{13} - x_3^{12}| = |5.89 - 5.89| = 0 \le \varepsilon_X$.

Metoda Gauss-Seidel (cont'd 8)

$$|f_1(\underline{x}^{13})| = 0.008 \le \varepsilon_f$$
,
 $|f_2(\underline{x}^{13})| = 0.003 \le \varepsilon_f$,
 $|f_3(\underline{x}^{13})| = 0.004 \le \varepsilon_f$.

Erorile calculate sunt mai mici sau cel mult egale cu erorile maxim admisibile \Rightarrow algoritmul se oprește.

$$\Rightarrow$$
 soluţia aproximativă $\underline{x} = \begin{bmatrix} 4.43 \\ 3.291 \\ 5.89 \end{bmatrix}$.

5.4. Metode de tip Newton

Versiunea clasică a *metodei lui Newton* utilizează explicit *derivatele parțiale* de ordinul I ale funcțiilor f $_i(\underline{x})$, $i=1\dots n$. Se presupune că s-a ajuns la pasul k al procesului iterativ de calcul, ultima valoare aproximativă a soluției fiind \underline{x}^{k-1} . Se dorește determinarea unei corecții \underline{h}^{k-1} care, adăugată la \underline{x}^{k-1} , să conducă la soluția exactă \underline{c} :

$$\underline{c} = \underline{x}^{k-1} + \underline{h}^{k-1} . \tag{4.1}$$

Metode de tip Newton (cont'd 1)

Dezvoltând în serie Taylor funcţiile $f_i(\underline{x})$, i = 1 ... n,

în vecinătatea lui $\underline{x}^{k-1} \Rightarrow$

$$f_{i}(\underline{c}) = 0 \Leftrightarrow f_{i}(\underline{x}^{k-1} + \underline{h}^{k-1}) = 0 \Leftrightarrow$$

$$f_{i}(\underline{x}^{k-1}) + \frac{\partial f_{i}(\underline{x}^{k-1})}{\partial x_{1}}h_{1}^{k-1} + \frac{\partial f_{i}(\underline{x}^{k-1})}{\partial x_{2}}h_{2}^{k-1} + \dots + \frac{\partial f_{i}(\underline{x}^{k-1})}{\partial x_{n}}h_{n}^{k-1} + \dots = 0, i = \overline{1, n}$$

(4.2)

Dacă din această dezvoltare se reţin doar termenii care conţin derivatele de ordinul I (restul termenilor se neglijează) ⇒

Metode de tip Newton (cont'd 2)

se poate aproxima acea valoare a lui \underline{h}^{k-1} care nu va mai conduce la soluţia exactă \underline{c} , ci la noua valoare aproximativă \underline{x}^k a soluţiei (evident, mai bună decât \underline{x}^{k-1} , în cazul convergenţei).

 \Rightarrow relaţiile (4.2) conduc la sistemul liniar de ordinul n în necunoscutele $h_1^{k-1}, h_2^{k-1}, \dots, h_n^{k-1}$:

Metode de tip Newton (cont'd 4)

$$\begin{cases}
\frac{\partial f_1}{\partial x_1} h_1^{k-1} + \frac{\partial f_1}{\partial x_2} h_2^{k-1} + \dots + \frac{\partial f_1}{\partial x_n} h_n^{k-1} &= -f_1(\underline{x}^{k-1}) \\
\frac{\partial f_2}{\partial x_1} h_1^{k-1} + \frac{\partial f_2}{\partial x_2} h_2^{k-1} + \dots + \frac{\partial f_2}{\partial x_n} h_n^{k-1} &= -f_2(\underline{x}^{k-1}) \\
\frac{\partial f_n}{\partial x_1} h_1^{k-1} + \frac{\partial f_n}{\partial x_2} h_2^{k-1} + \dots + \frac{\partial f_n}{\partial x_n} h_n^{k-1} &= -f_n(\underline{x}^{k-1})
\end{cases}$$
(4.3)

la care toate derivatele sunt calculate în x^{k-1} .

Metode de tip Newton (cont'd 5)

$$\underline{J}^{k-1} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}, \quad (4.4)$$

Matricea Jacobian:

⇒ sistemul (4.3) rescris sub formă restrânsă:

$$\underline{J}^{k-1} \cdot \underline{h}^{k-1} = -\underline{\mathbf{f}}^{k-1} . \tag{4.5}$$

Metode de tip Newton (cont'd 6)

Algoritmul versiunii clasice a metodei lui Newton:

- I) Se iniţializează \underline{x} cu $\underline{x}^0 \in D$ (indicele superior iteraţia curentă).
- II) La un pas oarecare k, k = 1, 2, ..., al procesului iterativ de calcul, se calculează elementele vectorului \underline{f}^{k-1} și matricea \underline{J}^{k-1} pentru $\underline{x} = \underline{x}^{k-1}$.
- III) La acelaşi pas se rezolvă sistemul $(4.5) \Rightarrow$ noile valori ale variabilelor:

Metode de tip Newton (cont'd 7)

$$\underline{x}^k = \underline{x}^{k-1} + \underline{h}^{k-1} . \tag{4.6}$$

Calculul este terminat când sunt îndeplinite condiţiile (4.7) şi / sau (4.8):

$$\left|h_i^{k-1}\right| \le \varepsilon_x, \ i = \overline{1,n} \tag{4.7}$$

$$\left|\mathbf{f}_{i}(\underline{x}^{k})\right| \leq \varepsilon_{f}, \ i = \overline{1,n}$$
 (4.8)

Exemplu: Să se rezolve sistemul de ecuații din exemplul anterior utilizând metoda clasică a lui Newton,

cu erorile maxim admise $\varepsilon_x=0.01$ și $\varepsilon_f=0.1$, cunoscând că s-a separat o soluție în domeniul $D = [0; 10] \times [0; 10] \times [1; 10]$.

Soluție: Se parcurg etapele algoritmului:

I) Iniţializarea:
$$\underline{x}^0 = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix}$$
. Iteraţia $k = 1$

Iterația k = 1

II) Se calculează elementele vectorului $\underline{f}^0 = \underline{f}(\underline{x}^0)$:

Metode de tip Newton (cont'd 9)

$$\underline{\mathbf{f}}^{0} = \begin{bmatrix} 2(x_{1}^{0})^{2} - x_{2}^{0}x_{3}^{0} - 5x_{1}^{0} + 1 \\ (x_{2}^{0})^{2} - 2x_{1}^{0} - \ln x_{3}^{0} \\ (x_{3}^{0})^{2} - x_{1}^{0}x_{2}^{0} - 2x_{3}^{0} - 8 \end{bmatrix} = \begin{bmatrix} 51 \\ 77.697 \\ -28 \end{bmatrix}$$

și elementele matricei Jacobian:

$$\underline{J}^{0} = \begin{bmatrix} 4x_{1}^{0} - 5 & -x_{3}^{0} & -x_{2}^{0} \\ -2 & 2x_{2}^{0} & -\frac{1}{x_{3}^{0}} \\ -x_{2}^{0} & -x_{1}^{0} & 2x_{3}^{0} - 2 \end{bmatrix} = \begin{bmatrix} 35 & -10 & -10 \\ -2 & 20 & -0.1 \\ -10 & -10 & 18 \end{bmatrix}.$$

$$\begin{cases} 35h_1^0 - 10h_2^0 - 10h_3^0 = -51 \\ -2h_1^0 + 20h_2^0 - 0.1h_3^0 = -77.697 \\ -10h_1^0 - 10h_2^0 + 18h_3^0 = 28 \end{cases}$$

III) Se rezolvă sistemul
$$\Rightarrow$$
 $\underline{h}^0 = \begin{bmatrix} -3.445 \\ -4.243 \\ -2.716 \end{bmatrix}$.

$$\Rightarrow \text{ noile valori ale lui } \underline{x}^{1} = \underline{x}^{0} + \underline{h}^{0} = \begin{bmatrix} 6.555 \\ 5.757 \\ 7.284 \end{bmatrix}.$$

Metode de tip Newton (cont'd 11)

Însă
$$|h_1^0|=|3.445|>arepsilon_{X}$$
, $|h_2^0|>arepsilon_{X}$, $|h_3^0|>arepsilon_{X}$ \Rightarrow

nu sunt îndeplinite condițiile de terminare a calculelor \Rightarrow algoritmul se continuă cu iterația următoare:

II) Se calculează elementele vectorului $\underline{f}^1 = \underline{f}(\underline{x}^1)$ și ale matricei Jacobian:

Metode de tip Newton (cont'd 12)

$$\underline{\mathbf{f}}^{1} = \begin{bmatrix} 2(x_{1}^{1})^{2} - x_{2}^{1}x_{3}^{1} - 5x_{1}^{1} + 1 \\ (x_{2}^{1})^{2} - 2x_{1}^{1} - \ln x_{3}^{1} \\ (x_{3}^{1})^{2} - x_{1}^{1}x_{2}^{1} - 2x_{3}^{1} - 8 \end{bmatrix} = \begin{bmatrix} 12.227 \\ 18.047 \\ -7.248 \end{bmatrix}$$

$$\underline{J}^{1} = \begin{bmatrix} 4x_{1}^{1} - 5 & -x_{3}^{1} & -x_{2}^{1} \\ -2 & 2x_{2}^{1} & -\frac{1}{x_{3}^{1}} \\ -x_{2}^{1} & -x_{1}^{1} & 2x_{3}^{1} - 2 \end{bmatrix} = \begin{bmatrix} 21.22 & -7.284 & -5.757 \\ -2 & 11.514 & -0.137 \\ -5.757 & -6.555 & 12.568 \end{bmatrix}.$$

Metode de tip Newton (cont'd 13)

 \Rightarrow sistemul (4.5):

$$\begin{cases} 21.22h_1^1 - 7.284h_2^1 - 5.757h_3^1 = -12.227 \\ -2h_1^1 + 11.514h_2^1 - 0.137h_3^1 = -18.047 \\ -5.757h_1^1 - 6.555h_2^1 + 12.568h_3^1 = 7.248 \end{cases}$$

III) Rezolvarea sistemului
$$\Rightarrow \frac{\underline{h}^1}{-1.84} = \begin{bmatrix} -1.498 \\ -1.84 \\ -1.069 \end{bmatrix}$$

$$\Rightarrow \text{ noile valori ale lui } \underline{x}\text{:} \qquad \underline{x}^2 = \underline{x}^1 + \underline{h}^1 = \begin{bmatrix} 5.057 \\ 3.917 \\ 6.215 \end{bmatrix} \text{.}$$

Însă, din nou $|h_1^1|=|1.498|>\mathcal{E}_X$, $|h_2^1|>\mathcal{E}_X$, $|h_3^1|>\mathcal{E}_X$ \Rightarrow calculele se continuă cu iterația următoare ...

Alte variante ale metodei lui Newton: eliminarea calculului derivatei.