EXAMEN FONDAMENTAUX DU MACHINE LEARNING MASTER IASD - 2022

Duration: 3 hours. You are allowed to bring 4 sheets of paper recto/verso (manuscripted or not).

Consider a set of labeled data $(\mathbf{x}_i, y_i)_{i=1}^n$ and $y_i \in \{+1, -1\}$. We want to solve a variant of the SVM problem. The underlying optimization problem is:

$$\min_{\mathbf{w},b,\xi_i} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i^2$$
s.t. $y_i (\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i \in \{1 \dots N\}$

- (1) Write the lagrangian of this problem and the optimality conditions of the lagrangian with respect to the variables \mathbf{w} and b.
- (2) Give the condition under which an example is a support vector
- (3) Write the dual of this problem.

2. Exercice - Scoring Losses (5 points)

In this exercise, we define the label space as $\mathcal{Y} = \{-1, 1\}$ and the prediction space $\hat{\mathcal{Y}} = \mathbb{R}$. Let us define the squared hinge loss $\ell(\hat{y}, y) = \max(0, 1 - \hat{y}y)^2$.

For your information, the derivative of this loss is

$$\frac{d\ell(\hat{y},y)}{d\hat{y}} = \begin{cases} 2(\hat{y}-y) & \text{if } y\hat{y} < 1\\ 0 & \text{otherwise} \end{cases}$$

- (1) Is this loss a phi-loss? Is this loss calibrated? why?
- (2) What is the Bayes predictor for this loss? what is its Bayes risk?
- (3) Show how to derive a criterion for decision trees based on this loss.
- (4) Show how to apply gradient boosting on this loss (give the complete algorithm, with sufficient details to implement it in Python)
- (5) Class Probability Estimate (CPE) functions. Let h be scoring classifier $h : \mathbb{R}^d \mapsto \hat{\mathcal{Y}}$. Let σ be the sigmoid function. Let $g = \sigma \circ h$, the CPE classifier obtained by putting a sigmoid function on top of h. Show that learning the scoring classifier h with the scoring loss ℓ is equivalent to learning the CPE function q with a CPE-loss ℓ^{CPE} . What is this CPE-loss? (bonus question: show ℓ^{CPE} is not proper)

3. Exercice - Chernoff bound (3 points)

- (1) Consider a biased coin with the probability of getting heads being an unknown parameter p, which is known to be at least a, for some a>0. A natural procedure for estimating the coin bias is to flip the coin N times, and estimate p as the fraction of times it lands on head. Denote this estimate by \hat{p} and suppose that for a given parameter we want to have $|p-\hat{p}| \le \epsilon p$ with probability greater than $1-\delta$. How many flips do we need in function of a, δ and ϵ ?
- (2) Show that with the same number of flips, we will have $|p-\hat{p}| \le \epsilon$ with probability greater than $1-\delta$.
- (3) Assume we have a finite class of functions \mathcal{F} , on which we want to learn with the ERM principle using the 0/1 loss. Assume we know that *all* functions in \mathcal{F} have a risk bigger than a. With the help of the union bound, use the above answer to show immediately if N is bigger than some formula you have to determine, then $\sup_{f \in \mathcal{F}} \left| R(f) \hat{R}(f) \right| \leq \epsilon$ with probability at least 1δ .

4. Exercise - Rademacher/Pac/Mdl (3 points)

In this exercise, we will focus on the zero-one loss $\ell(\hat{y}, y) = \mathbf{1} [\hat{y} \neq y]$. Let $\mathcal{X} = \mathbb{R}$ be the space of examples and $\mathcal{Y} = \hat{\mathcal{Y}} = \{0, 1\}$ the space of predictions and labels. Let $\mathcal{P}oly$ be the class of polynomials mapping \mathbb{R} to \mathbb{R} and of arbitrary degree. For example, the polynomial $x \to x^{18} - 3x + 4$ belongs to this class, for $x \in \mathbb{R}$. Define the following class of functions $\mathcal{F} = \{\mathbf{1} [p(x) \geq 0] : p \in \mathcal{P}oly\}$ where $\mathbf{1} [\cdot]$ is the indicator function. Let $\mathcal{G} = \ell \circ \mathcal{F} = \{(x,y) \to \ell(f(x),y) : f \in \mathcal{F}\}$. Consider a dataset $S = (x_i,y_i)_{i=1}^N$ drawn i.i.d. from an unknown distribution. Recall that if $x_i \neq x_j$ for all $i \neq j$, there exists a polynomial of degree N-1 going exactly through all the points in S.

- (1) Rademacher Complexity. Show (with as much details as needed) what is the Rademacher complexity of \mathcal{F} on S. Deduce the Rademacher complexity of \mathcal{G} . What can we deduce from this result if we wanted to implement a learning algorithm for the class \mathcal{F} based on ERM?
- (2) Minimum Description Length Principle. The Chernoff-Hoeffding says that for a single given function f, if the loss function is the 0/1 loss, then we have $\left|R(f) \hat{R}(f)\right| \leq \sqrt{\frac{1}{2N} \ln \frac{2}{\delta}}$ with probability at least 1δ , where R and \hat{R} denote the risk and the empirical risk over the dataset S. Define $\delta_k = \frac{1}{k!}$ for all $k \in \{1, 2...\}$. Note that $\sum_{k=1}^{\infty} \delta_k = 1 e$ and that $\ln(k!) \simeq k \ln k k$. Show precisely what bound the implementation of the MDL principle on the class \mathcal{F} with the 0/1 loss would give us. Explain in one short sentence the impact on learning of using this $\delta_k = \frac{1}{k!}$ rather than $\delta_k = 2^{-k}$.

5. Exercise - Latent models and Probabilistic PCA (2 points)

This exercise studies a simplified version of Probabilistic Principle Component Analysis, so we are in an unsupervised setting. Let $\mathcal{X} = \mathbb{R}^d$ be the space of examples. Let k be an integer lower than d. In the following, Id_k refers to the identity matrix of dimension $k \times k$. Assume that we have a dataset $(x_i)_{i=1}^N$, which has been generated according to the following generative model:

- For each $i \in \{1 \dots N\}$
 - (1) draw $z_i \sim \mathcal{N}(0, Id_k)$
 - (2) draw $\epsilon_i \sim \mathcal{N}(0, Id_d)$
 - (3) $x_i = Wz_i + \epsilon_i$

Here, $W \in \mathbb{R}^{d \times k}$ is an unknown matrix, and $z_i \in \mathbb{R}^k$ is the unknown latent variable associated to example x_i . Recall that the density of a multivariate normal law is:

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{-\frac{1}{2}}} \exp\left(-\frac{1}{2} (x - \mu)^{\top} \Sigma^{-1} (x - \mu)\right)$$

so in the specific case of Identity covariance matrix, we get

$$\mathcal{N}(x \mid \mu, Id_d) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(-\frac{1}{2} \|x - \mu\|^2\right)$$

- (1) Write the complete joint density $p(x_i, z_i \mid W)$.
- (2) We want to solve this problem with the variational-EM framework.
 - (a) which kind of distribution $q_x(z)$ should you choose?
 - (b) Write the ELBO (Evidence Lower Bound).

 Here, I do not expect fully developed/simplified formulas from you. This would require lots of tedious calculations. I just want to see that you understand the ideas of variational EM, not that you master the calculus of gaussian densities, so just give a precise formula applied to this setting without developping everything.
 - (c) Write the algorithm.