CLAIMS

1. A complex of eletriptan and a cyclodextrin derivative of formula (I):-

5

$$R^{19}CH_{2}$$
 O $CH_{2}R^{1a}$ O $CH_{2}R^{1a}$ O R^{3a} O R^{2f} O $R^$

wherein

 R^{1a-g} , R^{2a-g} and R^{3a-g} each independently represent -OH or -

- 10 O(CH₂)₄SO₃H; provided that at least one of R^{1a-g} represents -O(CH₂)₄SO₃H: or a pharmaceutically acceptable salt thereof.
- A complex according to claim 1, wherein the average number of -O(CH₂)₄SO₃H groups per molecule of the derivative of the formula (I) is in the range of from 6.1 to 6.9.
 - 3. A complex according to claim 1 wherein each $-O(CH_2)_4SO_3H$ group present in the derivative of the formula (I) is in the form of an alkali metal salt.
- 20 4. A complex according to claim 1 wherein the molar ratio of eletriptan:cyclodextrin derivative of the formula (I) is from 1:1 to 15:1.

15

- 5. A complex according to claim 4 wherein the molar ratio of eletriptan:cyclodextrin derivative of the formula (I) is from 1:1 to 10:1.
- 6. A complex according to claim 1 wherein eletriptan is present in the form 5 of the hemisulphate salt.
 - 7. A pharmaceutical formulation including a complex according to claim 1 and a pharmaceutically acceptable excipient, diluent or carrier.
- 10 8. A formulation according to claim 7 wherein from 50 to 120 mg/g of eletriptan hemisulphate is present.
 - 9. A formulation according to claim 7 wherein from 15 to 25% weight/weight of the sulphobutylether-beta-cyclodextrin is present.
 - 10. A formulation according to claim 7, including one or more of an antioxidant, a co-solvent and an organic polymer.
- 11. A formulation according to claim 10 wherein the anti-oxidant is ascorbic20 acid.
 - 12. A formulation according to claim 11 wherein from 0.25 to 0.80% weight/weight of ascorbic acid is present.
- 25 13. A formulation according to claim 10 wherein the co-solvent is glycerol.
 - 14. A formulation according to claim 13 wherein from 10.0 to 25.0% weight/weight of glycerol is present.
- 30 15. A formulation according to claim 10 wherein the organic polymer is carboxymethylcellulose or polyvinylpyrrolidone.

- 16. A formulation according to claim 15 wherein from 0.05 to 0.20% weight/weight of carboxymethylcellulose or polyvinylpyrrolidone is present.
- 17. A formulation according to claim 7 that is in the form of an aqueous 5 solution.
 - 18. An aqueous formulation according to claim 17 that has a pH of from 4.0 to 5.0.
- 10 19. A formulation according to claim 7 which is adapted for parenteral administration.
 - 20. A formulation according to claim 7 which is adapted for intranasal administration.

15

- 21. A formulation according to claim 7 which is adapted for inhalation.
- 22. A formulation according to claim 7 that is an aqueous solution comprising:
- 20 80mg/g of eletriptan hemisulphate;

20% weight/weight of the sulphobutylether-beta-cyclodextrin derivative of formula (I) having an average sulphobutylether substitution of 6.5 per cyclodextrin molecule with each sulphobutylether unit present as its sodium salt;

- 25 20% weight/weight of glycerol; and
 - 0.7% weight/weight of ascorbic acid: with the formulation having been adjusted to from pH 4.0 to 5.0, preferably about pH 4.5, using aqueous sodium hydroxide solution.
- 30 23. A formulation according to claim 7 that is an aqueous solution comprising:

80 mg/g of eletriptan hemisulphate;

5

20

20% weight/weight of the sulphobutylether-beta-cyclodextrin derivative of formula (I) having an average sulphobutylether substitution of 6.5 per cyclodextrin molecule with each sulphobutylether unit present as its sodium salt;

- 0.10% weight/weight of polyvinylpyrrolidone; and
 - 0.7% weight /weight ascorbic acid: with the composition having been adjusted to from pH 4.0 to 5.0, preferably about pH 4.5, using aqueous sodium hydroxide solution.
- 10 24. A method of treating in a mammal a disease for which a 5H_{1B/1D} receptor agonist is indicated including treating said mammal with an effective amount of a complex according to claim 1.
- 25. A method of treating in a mammal migraine or preventing migraine
 15 recurrence in a mammal including treating said mammal with an effective amount of a complex according to claim 1.
 - 26. A process for the preparation of a complex according to claim 1 which comprises combining eletriptan, or a pharmaceutically acceptable salt thereof, with the cyclodextrin derivative, or a pharmaceutically acceptable salt thereof.
- 27. A process for the preparation of a formulation according to claim 7 which comprises combining either (i) the complex comprising eletriptan and the cyclodextrin derivative of formula (I), or (ii) eletriptan, or a pharmaceutically acceptable salt thereof, and the cyclodextrin derivative, or a pharmaceutically acceptable salt thereof, with a pharmaceutically acceptable excipient, diluent or carrier.