Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação Curso de Ciência da Computação

Projeto e Análise de Algoritmos Parte 2

Raquel Mini raquelmini@pucminas.br

Força Bruta (Busca Exaustiva ou Enumeração Total)

Força Bruta

- Consiste em enumerar todos os possíveis candidatos de uma solução e verificar se cada um satisfaz o problema
- Geralmente possui uma implementação simples e sempre encontrara uma solução se ela existir
- O seu custo computacional é proporcional ao número de candidatos a solução que, em problemas reais, tende a crescer exponencialmente
- É tipicamente usada em problemas cujo tamanho é limitado ou quando não se conhece um algoritmo mais eficiente
- Também pode ser usado quando a simplicidade da implementação é mais importante que a velocidade de execução, como nos casos de aplicações críticas em que os erros de algoritmo possuem sérias consequências

- Considere um conjunto P de n pessoas e uma matriz M de tamanho n x n, tal que M[i][j] = M[j][i] = 1, se as pessoas i e j se conhecem e M[i][j] = M[j][i] = 0, caso contrário
- Problema: existe um subconjunto C (Clique), de r pessoas escolhidas de P, tal que qualquer par de pessoas de C se conhecem?
- Solução usando força bruta: verificar, para todas as combinações simples (sem repetições) C de r pessoas escolhidas entre as n pessoas do conjunto P, se todos os pares de pessoas de C se conhecem

 Considere um conjunto P de 8 pessoas representado pela matriz abaixo (de tamanho 8 x 8):

X	1	2	3	4	5	6	7	8
1	1	0	1	1	1	1	1	0
2	0	1	0	0	1	0	0	1
3	1	0	1	1	0	1	1	1
4	1	0	1	1	1	1	1	1
5	1	1	0	1	1	0	0	0
6	1	0	1	1	0	1	1	1
7	1	0	1	1	0	1	1	0
8	0	1	1	1	0	1	0	1

 Existe um conjunto C de 5 pessoas escolhidas de P tal que qualquer par de pessoas de C se conhecem?

• Existem 56 combinações simples de 5 elementos escolhidos dentre um conjunto de 8 elementos:

12345	12468	13578	23568
12346	12478	13678	23578
12347	12567	14567	23678
12348	12568	14568	24567
12356	12578	14578	24568
12357	12678	14678	24578
12358	13456	15678	24678
12367	13457	23456	25678
12368	13458	23457	3 4 5 6 7
12378	13467	23458	3 4 5 6 8
12456	13468	23467	3 4 5 7 8
12457	13478	23468	3 4 6 7 8
12458	13567	23478	35678
12467	13568	23567	45678

• Todos os pares de pessoas do subconjunto C={1,3,4,6,7} se conhecem:

X	1	3	4	6	7
1	1	1	1	1	1
3	1	1	1	1	1
4	1	1	1	1	1
6	1	1	1	1	1
7	1	1	1	1	1

 Como enumerar todas as combinações simples de r elementos de um conjunto de tamanho n?

Força Bruta – Combinação

```
#include<iostream>
using namespace std;
void combinacao(int n, int r, int x[], int next, int k){
   int i:
   if (k == r) {
      for (i = 0; i < r; i++)
         cout<<x[i]+1<<" ";
      cout<<endl;
   } else {
      for (i = next; i < n; i++) {
         x[k] = i;
         combinacao (n, r, x, i+1, k+1);
int main () {
   int n, r, x[100];
   cout<<"Entre com o valor de n: ";
   cin>>n:
   cout<<"Entre com o valor de r: ";
   cin>>r:
   combinacao(n,r,x,0,0);
   return 0;
```

- Considere um conjunto de n cidades e uma matriz M de tamanho n x n tal que M[i][j] = 1, se existir um caminho direto entre as cidades i e j, e M[i][j] = 0, caso contrário
- Problema: existe uma forma de, saindo de uma cidade qualquer, visitar todas as demais cidades, sem passar duas vezes por nenhuma cidade e, no final, retornar para a cidade inicial?
- Se existe uma forma de sair de uma cidade x qualquer, visitar todas as demais cidades (sem repetir nenhuma) e depois retornar para x, então existe um ciclo Hamiltoniano e qualquer cidade do ciclo pode ser usada como ponto de partida

- Como vimos, qualquer cidade pode ser escolhida como cidade inicial. Sendo assim, vamos escolher, arbitrariamente a cidade n como ponto de partida
- Solução usando força bruta: testar todas as permutações das n-1 primeiras cidades, verificando se existe um caminho direto entre a cidade n e a primeira da permutação, assim como um caminho entre todas as cidades consecutivas da permutação e, por fim, um caminho direto entre a última cidade da permutação e a cidade n
- Ciclo Hamiltoniano: $n \rightsquigarrow [p_1 \rightsquigarrow p_2 \rightsquigarrow p_3 \rightsquigarrow \cdots \rightsquigarrow p_{n-1}] \rightsquigarrow n$

 Considere um conjunto de 8 cidades representado pela matriz abaixo:

 Existe uma forma de, a partir da cidade 8, visitar todas as demais cidades, sem repetir nenhuma e, ao final, retornar para a cidade 8?

 Existem 5040 permutações das 7 primeiras cidades da lista original:

1234567	• • •	7652341
1234576	3645172	7652413
1234657	3645217	7652431
1234675	3645271	7653124
1234756	3645712	7653142
1234765	3645721	7653214
1235467	3647125	7653241
1235476	3647152	7653412
1235647	3647215	7653421
1235674	3647251	7654123
1235746	3647512	7654132
1235764	3647521	7654213
1236457	3651247	7654231
1236475	3651274	7654312
1236547		7654321

 Como enumerar todas as permutações de n valores distintos?

Força Bruta – Permutação

```
#include<iostream>
using namespace std;
void permutacao(int n, int x[], bool used[], int k){
   int i:
   if (k == n) {
      for (i = 0; i < n; i++)
         cout<<x[i]+1<<" ";
      cout<<endl:
   } else {
      for (i = 0; i < n; i++) {
         if (!used[i]) {
            used[i] = true;
            x[k] = i;
            permutacao(n, x, used, k+1);
            used[i] = false;
int main () {
   int i, n, x[100];
  bool used[100];
   cout<<"Entre com o valor de n: ":
   cin>>n;
   for (i = 0; i < n; i++)
      used[i] = false;
   permutacao(n,x,used,0);
   return 0;
```

Incremental

Incremental

A ordenação por inserção utiliza uma abordagem incremental: tendo ordenado o subarranjo A[1..j-1], inserimos o elemento isolado A[j] em seu lugar apropriado, formando o subarranjo ordenado A[1..j].

Incremental

```
INSERTION-SORT(A)
for j \leftarrow 2 to n do
   chave \leftarrow A[j]
   i \leftarrow j - 1
   A[0] \leftarrow chave //sentinela
   while A[i] > chave do
        A[i+1] \leftarrow A[i]
        i \leftarrow i-1
   A[i+1] \leftarrow chave
```

Exercícios

1. Implemente um algoritmo que enumere todos os arranjos de tamanho $\bf r$ dentre um conjunto de $\bf n$ elementos.

Algoritmos Tentativa e Erros (*Backtracking*)

Ziviani – págs. 44 até 48

Backtracking

- Algoritmo para encontrar todas (ou algumas) soluções de um problema computacional, que incrementalmente constrói candidatas de soluções e abandona uma candidata parcialmente construída tão logo quanto for possível determinar que ela não pode gerar uma solução válida
- Pode ser aplicado para problemas que admitem o conceito de "solução candidata parcial" e que exista um teste relativamente rápido para verificar se uma candidata parcial pode ser completada como uma solução válida

Backtracking

- Quando aplicável, backtracking é frequentemente muito mais rápido que algoritmos de forca bruta, já que ele pode eliminar um grande número de soluções inválidas com um único teste
- Enquanto algoritmos de forca bruta geram todas as possíveis soluções e só depois verificam se elas são válidas, backtracking só gera soluções válidas

- Tabuleiro com n x n posições: cavalo se movimenta segundo regras do xadrez
- Problema: partindo da posição (x₀,y₀), encontrar, se existir, um passeio do cavalo que visita todos os pontos do tabuleiro uma única vez

Tenta um próximo movimento

```
Inicializa seleção de movimentos
repeat
Seleciona próximo candidato ao movimento
if aceitável
then Registra movimento
if tabuleiro não está cheio
then Tenta novo movimento
if não é bem sucedido
until (movimento bem sucedido) ∨ (acabaram-se candidatos ao movimento)
```

- O tabuleiro pode ser representado por uma matriz n x n
- A situação de cada posição pode ser representada por um inteiro para recordar o histórico das ocupações:
 - t[x][y] = 0, campo $\langle x, y \rangle$ não visitado
 - t[x][y] = i, campo $\langle x, y \rangle$ visitado no *i*-ésimo movimento, $1 \le i \le n^2$

Regras do xadrez para os movimentos do cavalo:


```
PASSEIODOCAVALO(n)

⊳ Parâmetro: n (tamanho do lado do tabuleiro)

    Variáveis auxiliares:
                                                          Contadores
      i, j
      t[1..n, 1..n]
                                                          \triangleright Tabuleiro de n \times n
                                                          Indica se achou uma solução
                                                          Movimentos identificados por um nº
      h[1..8], v[1..8]
                                                          Existem oito movimentos possíveis
1 s \leftarrow \{1, 2, 3, 4, 5, 6, 7, 8\}
2 h[1..8] \leftarrow [2, 1, -1, -2, -2, -1, 1, 2]
                                                          Conjunto de movimentos
                                                          Movimentos na horizontal
3 v[1..8] \leftarrow [1,2,2,1,-1,-2,-2,-1]
                                                          Movimentos na vertical
 4 for i \leftarrow 1 to n
                                                          Inicializa tabuleiro
       do for i \leftarrow 1 to n
5
              do t[i,j] \leftarrow 0
7 t[1,1] \leftarrow 1
                                                          Escolhe uma casa inicial do tabuleiro
                                                          Tenta o passeio usando backtracking
   TENTA(2, 1, 1, q)
9 if a
                                                          then print Solução
10
      else print Não há solução
```

```
\mathsf{TENTA}(i, x, y, q)
     ▶ Parâmetros: i (i-ésima casa); x, y (posição no tabuleiro); q (achou solução?)

⇒ Variáveis auxiliares: xn, yn, m, q1

 1 m \leftarrow 0
    repeat
 3
     m \leftarrow m + 1
     q1 \leftarrow \mathsf{false}
     xn \leftarrow x + h[m]
 5
 6
      yn \leftarrow y + v[m]
 7
        if (xn \in s) \land (yn \in s)
           then if t[xn, yn] = 0
 8
                   then t[xn,yn] \leftarrow i
 9
                          if i < n^2
10
11
                             then TENTA(i+1, xn, yn, q1)
12
                                   if \neg q1
13
                                     then t[xn, yn] \leftarrow 0
14
                            else q1 \leftarrow true
15 until q1 \lor (m = 8)
16 q \leftarrow q1
```

Resultado do Passeio do Cavalo em um tabuleiro 8 x 8

1	60	39	34	31	18	9	64
38	35	32	61	10	63	30	17
59	2	37	40	33	28	19	8
36	49	42	27	62	11	16	29
43	58	3	50	41	24	7	20
48	51	46	55	26	21	12	15
57	44	53	4	23	14	25	6
52	47	56	45	54	5	22	13

- Dado um labirinto representado por uma matriz de tamanho n x m, uma posição inicial $p_i = (x_i; y_i)$ e uma posição final $p_f = (x_f; y_f)$, tal que $p_i \neq p_f$, determinar se existe um caminho entre p_i e p_f
- Podemos representar o labirinto como uma matriz M tal que:

$$M[x,y] = \begin{cases} -2, \text{ se a posição } (x,y) \text{ representa uma parede} \\ -1, \text{ se a posição } (x,y) \text{ não pertence ao caminho} \\ i, \text{ tal que } i \geq 0, \text{ se a posição } (x,y) \text{ pertence ao caminho} \end{cases}$$

 Neste caso, vamos supor que o labirinto é cercado por paredes, eventualmente apenas com exceção do local designado como saída

A figura abaixo mostra um labirinto de tamanho 8 x 8

X	X	X	X	X	X	X	Χ
X	•						Χ
X	Χ		Χ				Χ
X			Χ	Χ	X		X
X		Χ	Χ				Χ
X		X				X	X
X				Χ			X
X	X	X	X	Χ	X	0	X

X: parede/obstáculo

•: posição inicial

o: posição final (saída do labirinto)

- Caminho encontrado usando a seguinte ordem de busca:
 - para esquerda
 - para baixo
 - para direita
 - para cima

X	X	Χ	Χ	Χ	Χ	Χ	X
X	00	01					X
X	X	02	X				Χ
X	04	03	Χ	Χ	X		X
X	05	Χ	Χ				Χ
X	06	Χ	10	11	12	Χ	X
X	07	80	09	X	13	14	X
X	Χ	Χ	Χ	Χ	Χ	15	X

- Caminho encontrado usando a seguinte ordem de busca:
 - para direita
 - para baixo
 - para esquerda
 - para cima

X	Χ	Χ	Χ	X	Χ	Χ	Χ
X	00	01	02	03	04	05	Χ
X	X		Χ			06	Χ
Χ			Χ	X	Χ	07	Χ
X		X	X		09	80	X
X		X			10	Χ	X
X				X	11	12	X
X	X	Χ	X	Χ	X	13	X

```
#include<iostream>
#include <iomanip>
#define MAX 10
using namespace std;
void imprimeLabirinto(int M[MAX][MAX], int n, int m) {
   int i, j;
   for (i = 0; i < n; i++) {
      for (j = 0; j < m; j++) {
        if (M[i][j] == -2) cout<<" XX";
        if (M[i][j] == -1) cout<<" ";
        if (M[i][j] >= 0) cout<<" "<<setw(2)<<M[i][j];</pre>
      cout<<"\n";
void obtemLabirinto(int M[MAX][MAX], int &n, int &m, int &Li, int &Ci, int &Lf, int &Cf) {
   int i, j, d;
   cin>>n; cin>>m; /* dimensoes do labirinto */
   cin>>Li; cin>>Ci; /* coordenadas da posicao inicial */
   cin>>Lf; cin>>Cf; /* coordeandas da posicao final (saida) */
   /* labirinto: 1 = parede ou obstaculo 0 = posicao livre */
   for (i = 0; i < n; i++)
      for (j = 0; j < m; j++) {
         cin>>d:
         if (d == 1)
            M[i][j] = -2;
         else
           M[i][j] = -1;
```

```
int labirinto(int M[MAX][MAX], int deltaL[], int deltaC[], int Li, int Ci, int Lf, int Cf) {
   int L. C. k. passos:
   if ((Li == Lf) && (Ci == Cf)) return M[Li][Ci];
   /* testa todos os movimentos a partir da posicao atual */
   for (k = 0; k < 4; k++) {
     L = Li + deltaL[k];
     C = Ci + deltaC[k];
     /* verifica se o movimento eh valido e gera uma solucao factivel */
     if (M[L][C] == -1) {
        M[L][C] = M[Li][Ci] + 1;
        passos = labirinto(M, deltaL, deltaC, L, C, Lf, Cf);
        if (passos > 0) return passos;
   return 0:
int main() {
   int M[MAX][MAX], resposta, n, m, Li, Ci, Lf, Cf;
   // define os movimentos validos no labirinto
   int deltaL[4] = { 0, +1, 0, -1};
   int deltaC[4] = \{+1, 0, -1, 0\};
   // obtem as informações do labirinto
   obtemLabirinto (M, n, m, Li, Ci, Lf, Cf);
   M[Li - 1][Ci - 1] = 0; /* define a posicao inicial no tabuleiro */
   /* tenta encontrar um caminho no labirinto */
   resposta = labirinto (M, deltaL, deltaC, Li - 1, Ci - 1, Lf - 1, Cf - 1);
   if (resposta == 0)
      cout<<"Nao existe solucao.\n";
   else {
      cout<<"Existe uma solucao em "<<resposta<<" passos.\n";
      imprimeLabirinto(M, n, m);
   return 0:
```

Exemplo de entrada:

```
8 8
2 2
1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 1
1 0 1 1 0 0 0 1
1 0 0 1 1 1 1 1
1 0 0 0 0 0 0 1
1 1 1 1 1 1 0 1
```

Exemplo de saída:

```
Existe uma solucao em 13 passos.

XX XX XX XX XX XX XX XX XX

XX 0 XX 4 5 6 7 XX

XX 1 2 3 XX 13 8 XX

XX 4 3 XX XX 12 9 XX

XX 5 XX XX 12 11 10 XX

XX 6 7 XX XX XX XX XX

XX 8 9 10 11 12 XX

XX XX XX XX XX XX XX
```

Backtracking – Problemas de Otimização

- Muitas vezes não estamos apenas interessados em encontrar uma solução qualquer, mas em encontrar uma solução ótima (segundo algum critério de otimalidade préestabelecido)
- Por exemplo, no problema do labirinto, ao invés de determinar se existe um caminho entre o ponto inicial e o final (saída), podemos estar interessados em encontrar uma solução que usa o menor número possível de passos

Branch and Bound

Branch and Bound

- Refere-se a um tipo de algoritmo usado para encontrar soluções ótimas para vários problemas de otimização
- Problemas de otimização podem ser tanto de maximização quando de minimização
- Consiste em uma enumeração sistemática de todos os candidatos à solução, com eliminação de uma candidata parcial quando uma dessas duas situações for detectada (considerando um problema de minimização):
 - A candidata parcial é incapaz de gerar uma solução válida (teste similar ao realizado pelo método backtracking)
 - A candidata parcial é incapaz de gerar uma solução ótima, considerando o valor da melhor solução encontrada até então (limitante superior) e o custo ainda necessário para gerar uma solução a partir da solução candidata atual (limitante inferior)

Branch and Bound

- O desempenho de um programa branch and bound está fortemente relacionado à qualidade dos seus limitantes inferiores e superiores
 - Quando mais precisos forem esses limitantes, menos soluções parciais serão consideradas e mais rápido o programa encontrará a solução ótima
 - O nome branch and bound refere-se às duas fases do algoritmo:
 Branch: testar todas as ramificações de uma solução candidata parcial
 Bound: limitar a busca por soluções sempre que detectar que o atual ramo da busca é infrutífero

Branch and Bound – Labirinto

- Podemos alterar o programa visto anteriormente para encontrar um caminho ótimo num labirinto usando a técnica branch and bound
- Podemos incialmente notar que se um caminho parcial já usou tantos passos quanto o melhor caminho completo previamente descoberto, então este caminho parcial pode ser descartado
- Mais do que isso, se o número de passos do caminho parcial mais o número de passos mínimos necessários entre a posição atual e a saída (desconsiderando eventuais obstáculos) for maior ou igual ao número de passos do melhor caminho previamente descoberto, então este caminho parcial também pode ser descartado

Branch and Bound – Labirinto

Branch and Bound - Labirinto

```
int main() {
  int M[MAX] [MAX], n, m, Li, Ci, Lf, Cf, min;
  // define os movimentos validos no labirinto
  int deltaL[4] = { 0, +1, 0, -1};
  int deltaC[4] = \{+1, 0, -1, 0\};
  // obtem as informacoes do labirinto
  obtemLabirinto (M, n, m, Li, Ci, Lf, Cf);
  M[Li - 1][Ci - 1] = 0; /* define a posicao inicial no tabuleiro */
  /* tenta encontrar um caminho no labirinto */
  min = INT MAX;
  labirinto (M, deltaL, deltaC, Li - 1, Ci - 1, Lf - 1, Cf - 1, min);
  if (min == 0)
      cout<<"Nao existe solucao.\n":
  else {
      cout<<"Existe uma solucao em "<<min<<" passos.\n";
      imprimeLabirinto(M, n, m);
   return 0;
```

Exercício

2. Proponha um algoritmo para a solução do problema das 8 rainhas utilizando *backtracking*. Dado um tabuleiro *de* xadrez (com 8 x 8 casas), o objetivo é distribuir 8 rainhas sobre este tabuleiro de modo que nenhuma delas fique em posição de ser atacada por outra rainha.

Divisão e Conquista

Ziviani – págs. 48 até 51

Cormen – págs. 21 até 28

Divisão e Conquista

- O paradigma divisão e conquista consiste em dividir o problema a ser resolvido em partes menores, encontrar soluções para as partes, e então combinar as soluções obtidas em uma solução global
- O paradigma divisão e conquista envolve três passos em cada nível de recursão:
 - Dividir o problema em um determinado número de subproblemas
 - Conquistar os subproblemas, resolvendo-os recursivamente. Se o tamanho dos subproblemas forem pequenos o bastante, basta resolver os subproblemas de maneira direta
 - Combinar as soluções dadas aos problemas a fim de formar a solução para o problema original

Divisão e Conquista - Esquema

```
void divide and conquer(Problem P, Solution S) {
   if (small(P))
      S = compute_solution(P);
   else {
      divida P em problemas menores do mesmo
                                                    DIVIDIR
          tipo do original, P1, P2, ..., Pk;
      divide_and_conquer(P1, S1);
                                           CONQUISTAR
                                            Resolvendo
                                           subproblemas
                                           recursivamente
      divide_and_conquer(Pk, Sk);
      recombine S1, S2, ..., Sk em S, uma solução para P;
                                           COMBINAR
```

Divisão e Conquista

• Análise de Complexidade:

- Se o tamanho do problema for pequeno o bastante $n \le c$, para alguma constante c, a solução direta demorará um tempo constante $\Theta(1)$
- Vamos supor que o problema seja dividido em a subproblemas, cada um dos quais com 1/b do tamanho do problema original
- D (n) é o tempo para dividir o problema em subproblemas
- C(n) tempo para combinar as soluções dadas aos subproblemas na solução para o problema original

$$T(n) = \begin{cases} \Theta(1) & \text{se } n \le c \\ aT(n/b) + D(n) + C(n) & \text{caso contrário} \end{cases}$$

Exemplo: Maior e Menor Elemento

- Exemplo: encontrar o maior e o menor elemento de um vetor de inteiros, A [0..n-1], n ≥ 1
- Cada chamada de MaxMin4 atribui à max e min o maior e o menor elemento em A[esq], A[esq+1],..., A[dir], respectivamente

Exemplo: Maior e Menor Elemento

```
void MaxMin4(int A[], int esq, int dir, int &min, int &max) {
   int min1, min2, max1, max2, meio;
   if (dir-esq <= 1) {
      if (A[esq] < A[dir]) {</pre>
         min = A[esq];
         max = A[dir];
      else {
         min = A[dir];
         max = A[esq];
   else {
      meio = (esq+dir)/2;
      MaxMin4(A, esq, meio, min1, max1);
      MaxMin4(A, meio+1, dir, min2, max2);
      max = (max1 > max2) ? max1 : max2;
      min = (min1 < min2) ? min1 : min2;
```

Análise do Maior e Menor Elemento

• Seja T(n) o número de comparações entre os elementos de A

$$\begin{cases} T(n) = 2T\left(\frac{n}{2}\right) + 2 & para \ n > 2 \\ T(2) = 1 \end{cases}$$

• $T(n) = \frac{3n}{2} - 2$ para o melhor caso, pior caso e caso médio

Análise do Maior e Menor Elemento

- Conforme mostrado no início do curso, o algoritmo dado neste exemplo é ótimo
- Entretanto, ele pode ser pior que o MaxMin3 pois, a cada chamada recursiva, salva esq, dir, min e max além do endereço de retorno da chamada para o procedimento
- Além disso, uma comparação adicional é necessária a cada chamada recursiva para verificar se dir-esq≤1
- n+1 deve ser menor que a metade do maior inteiro que pode ser representado pelo compilador, para não provocar overflow na operação esq+dir

- O algoritmo de ordenação Mergesort obedece ao paradigma de dividir e conquistar
 - DIVIDIR: divide a sequência de n elementos a serem ordenados em duas subsequências de n/2 elementos cada uma
 - CONQUISTAR: ordena as duas subsequências recursivamente, utilizando o MERGE-SORT
 - COMBINAR: faz a intercalação das duas sequências ordenadas, de modo a produzir a resposta ordenada (função MERGE)


```
MERGE (A, p, q, r)
n1 \leftarrow q-p+1
n2 \leftarrow r-q
criar arranjos L[1..n1+1] e R[1..n2+1]
for i \leftarrow 1 to n1 do
    L[i] \leftarrow A[p+i-1]
for j \leftarrow 1 to n2 do
    R[i] \leftarrow A[a+i]
L[n1+1] \leftarrow \infty
R[n2+1] \leftarrow \infty
i \leftarrow 1
j ← 1
for k \leftarrow p to r do
    if L[i] \leq R[j] then
        A[k] \leftarrow L[i]
        i \leftarrow i+1
    else
         A[k] \leftarrow R[\dagger]
         j \leftarrow j+1
```

MERGE (A,9,12,16)

MERGE (A,9,12,16)

Análise do Mergesort

- Análise de Complexidade (supondo n par e que a operação relevante seja a comparação com os elementos do vetor):
 - Dividir: a etapa de dividir simplesmente calcula o ponto médio do subarranjo e não realiza comparação
 - Conquistar: resolvemos recursivamente dois subproblemas, cada um tem o tamanho n/2 e contribui com 2T (n/2) para o tempo de execução
 - Combinar: o procedimento MERGE leva o tempo n, onde n=r-p+1 é
 o número de elementos que estão sendo intercalados

$$\begin{cases} T(n) = 2T\left(\frac{n}{2}\right) + n & \text{se } n > 1 \\ T(1) = 0 & \end{cases}$$

$$T(n) = n \log n$$

Quando Utilizar Divisão e Conquista

- Existem três condições que indicam que a estratégia de divisão e conquista pode ser utilizada com sucesso:
 - Deve ser possível decompor uma instância em subinstâncias
 - A combinação dos resultados deve ser eficiente (muitas vezes, trivial)
 - As subinstâncias devem ser mais ou menos do mesmo tamanho

Exemplo: Quicksort

```
void partition (int a[], int esq, int dir, int &i, int &j) {
   int aux, x;
   i = esq;
   j = dir;
   x = a[(i+j)/2];
   while (i <= j) {
      while (x > a[i]) i++;
      while (x < a[j]) j--;
      if (i<=j) {
         aux = a[i];
         a[i] = a[j];
         a[j] = aux;
         i++;
         j--;
void quicksort (int a[], int esq, int dir) {
   int i, j;
   partition(a, esq, dir, i, j);
   if (esq < j)
      quicksort(a, esq, j);
   if (i < dir)
     quicksort(a, i, dir);
```

Exemplo: Seleção

Encontrar o kth menor elemento de um conjunto de números

```
int partition (int a[], int esq, int dir) {
   int i, j, aux, x;
   i = esq;
   j = dir;
   x = a[(i+j)/2];
   while (i <= j) {
      while (x > a[i]) i++;
      while (x < a[j]) j--;
      if (i<=j) {
        aux = a[i];
        a[i] = a[j];
      a[j] = aux;
      i++;
      j--;
      }
   }
   return (i-1);
}</pre>
```

```
int selection(int a[], int l, int r, int k) {
   int i;
   if (r > l) {
      i = partition(a, l, r);
      if (i == k)
         return (i);
   if (i > l+k-1)
        return (selection(a, l, i-1, k));
   if (i < l+k-1)
        return (selection(a, i+1, r, k-i));
   }
}</pre>
```

Exercício

3. Implemente a função merge com custo de n-1 comparações no pior caso. Encontre a função de complexidade do Mergesort quando o mesmo utiliza essa função merge.

4. Faça a análise de complexidade do melhor caso do Quicksort e do algoritmo para encontrar o kth menor elemento de um conjunto de números

Programação Dinâmica

Ziviani – págs. 54 até 57

Cormen – págs. 259 até 295

Programação Dinâmica

Divisão e Conquista

- Problema é partido em subproblemas que se resolvem separadamente
- A solução é obtida por combinação das soluções
- É top-down

Programação Dinâmica

- Resolvem-se os problemas de pequena dimensão e guardam-se as soluções
- A solução de um problema é obtida combinando as de problemas de menor dimensão
- É bottom-up
- Calcula a solução para todos os subproblemas, partindo dos subproblemas menores para os maiores, armazenando os resultados em uma tabela
- A vantagem é que uma vez que um subproblema é resolvido, a resposta é armazenada em uma tabela e nunca mais é recalculado

Encontrar o n-ésimo número de Fibonacci

```
f_0 = 0, f_1 = 1,

f_n = f_{n-1} + f_{n-2} \quad para \ n \ge 2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
```

```
unsigned int FibRec (unsigned int n) {
  if (n < 2)
    return n;
  else
    return (FibRec(n-1) + FibRec(n-2));
}</pre>
```

Simples!!! Elegante!!!

Mas vamos analisar o seu desempenho!!!

Problema do algoritmo recursivo: repetição de chamadas iguais

- Análise de Complexidade:
 - Considerando que a medida de complexidade de tempo T (n) é o número de adições, então

$$\begin{cases} T(n) = T(n-1) + T(n-2) + 1 & para \ n \ge 2 \\ T(n) = 0 & para \ n \le 1 \end{cases}$$

$$T(n) = \Theta(1,618^n)$$

Algoritmo recursivo é exponencial

Problema: repetição de chamadas

Solução iterativa

• Considerando que a medida de complexidade de tempo T(n) é o número de adições, então $T(n) = \Theta(n)$

Devemos evitar o uso de recursividade quando existe solução óbvia por iteração

Programação Dinâmica

- Abordagem
 - Resolva problemas menores
 - Armazene as soluções
 - Use aquelas soluções para resolver problemas maiores
- Algoritmos dinâmicos usam espaço!

Problema da Mochila

 O ladrão encontra o cofre cheio de itens de vários tamanhos e valores, mas tem apenas uma mochila de capacidade limitada. Qual é a combinação de itens que deve levar para maximizar o valor do roubo?

 Considerando que a mochila tem capacidade 17, qual é a melhor combinação?

Problema da Mochila

- Muitas situações de interesse comercial
 - Melhor forma de carregar um caminhão ou avião
- Tem variantes: número de itens de cada tipo pode ser limitado
- Abordagem programação dinâmica:
 - Calcular a melhor combinação para todas as mochilas de tamanho até M
 - Cálculo é eficiente se feito na ordem apropriada

Problema da Mochila

- cost [i]: maior valor que se consegue com mochila de capacidade i
- best[i]: último item acrescentado para obter o máximo
- Calcula-se o melhor valor que se pode obter usando só itens tipo A, para todos os tamanhos de mochila
- Repete-se usando só A´s e B´s, e assim sucessivamente

Problema da Mochila

- Quando um item j é escolhido para a mochila: o melhor valor que se pode obter é val[j] (do item) mais cost[i-size[j]] (para encher o resto)
- Se o valor assim obtido é superior ao que se consegue sem usar o item j, atualiza-se cost[i] e best[i]; senão mantêmse
- Conteúdo da mochila ótima: recuperado através do vetor best [i]
 - best[i] indica o último item da mochila
 - O restante é o indicado para a mochila de tamanho M-size [best [M]]
- Eficiência: A solução em programação dinâmica gasta tempo
 Θ(NM)

Problema da Mochila

```
8 9 10 11 12 13 14 15 16 17
     cost[k]
                                       12 12 12 16 16 16 20 20 20
j=1
      best[k]
                                   Α
                                       AAAAAAAA
                                    10 12 13 14 16 17 18 20 21 22
      cost[k]
j=2
                  ΑВ
                             \mathbf{A}
                                         A B
                                                В
                                В
                                     В
                                                    A
                                                        вв
      best[k]
                                10 10 12 14 15 16 18 20 20 22 24
      cost[k]
j=3
      best[k]
                                   В
                                        A CC
                                                   ACCACC
      cost[k]
                                 10 11 12 14 15 16 18 20 21 22 24
j=4
      best[k]
                             \mathbf{A}
                                 C
                                      D
                                          \mathbf{A}
                                              C
                                                    \mathbf{A}
                                                         CC
                  A B
                                                                D
                                    11 13 14 15 17 18 20
     cost[k]
j=5
      best[k]
                     В
                             \mathbf{A}
                                 \mathbf{C}
                                      D
                                          \mathbf{E}
                                              C
                                                 \mathsf{C}
                                                     \mathbf{E}
                                                            \mathbf{C}
```

Exercício

5. Considere os seguintes itens e que a mochila tem capacidade 20, qual é a combinação de itens que devemos levar para maximizar o valor?

Item	A	В	С	D
Tamanho	3	4	5	6
Valor	13	15	20	15

- Dada uma sequência de matrizes de dimensões diversas, como fazer o seu produto minimizando o esforço computacional
- Exemplo:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} \begin{bmatrix} c_{11} \\ c_{21} \\ c_{31} \end{bmatrix} \begin{bmatrix} d_{11} & d_{12} \end{bmatrix} \begin{bmatrix} e_{11} & e_{12} \\ e_{21} & e_{22} \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \end{bmatrix}$$

- Multiplicando da esquerda para a direita: 84 operações
- Multiplicando da direita para a esquerda: 69 operações
- Qual a melhor sequência?

- Multiplicar N matrizes $M_1M_2M_3...M_N$ na qual M_i tem r_i linhas e r_{i+1} colunas
- Multiplicação de uma matriz pxq por outra qxr produz uma matriz pxr requerendo q produtos para cada entrada, totalizando pqr operações de multiplicação
- Algoritmo em programação dinâmica:
 - Multiplicar 2 matrizes: só há uma maneira de multiplicar; registra-se o custo
 - Multiplicar 3 matrizes: o menor custo de realizar $M_1M_2M_3$ é calculado comparando os custos de multiplicar M_1M_2 por M_3 e de multiplicar M_1 por M_2M_3 ; registra-se o menor custo
 - O procedimento repete-se para sequências de tamanho crescente

No geral:

— Para $1 \le j \le N-1$ encontra-se o custo mínimo de calcular $M_i M_{i+1} \dots M_{i+j}$ encontrando, para $1 \le i \le N-j$ e para cada k entre i e i+j os custos de obter $M_i M_{i+1} \dots M_{k-1}$ e $M_k M_{k+1} \dots M_{i+j}$ somando o custo de multiplicar esses resultados

```
for (i=1; i \le N; i++)
   for (j = i+1; j \le N; j++) cost [i][j] = INT MAX;
for (i=1; i \le N; i++) cost[i][i] = 0;
for(j=1; j < N; j++)
   for (i=1; i \le N-j; i++)
       for (k = i+1; k <= i+j; k++)
           t = cost[i][k-1] + cost[k][i+j] +
           r[i] *r[k] *r[i+j+1];
           if( t < cost[i][i+j] )
               \{ cost[i][i+j] = t; best[i][i+j] = k;
```

- Para $1 \le j \le N-1$ encontra-se o custo mínimo de calcular $M_i M_{i+1} \dots M_{i+j}$
 - Para $1 \le i \le N-j$ e para cada k entre i e i+j calculam-se os custos para obter $M_iM_{i+1}...M_{k-1}$ e $M_kM_{k+1}...M_{i+j}$
 - Soma-se o custo de multiplicar esses 2 resultados
- Cada grupo é partido em grupos menores
 - Custos mínimos para os 2 grupos são vistos numa tabela
- Custo da multiplicação final $M_i M_{i+1} \dots M_{k-1}$ é uma matriz $r_i x r_k$ e $M_k M_{k+1} \dots M_{i+j}$ é uma matriz $r_k x r_{i+j+1}$, o custo de multiplicar as duas é $r_i r_k r_{i+j+k}$

- cost[1][r] \acute{e} o custo mínimo para $M_1M_{1+1}...M_r$
- Programa obtém cost[i][i+j] para 1≤i≤N-j com j de 1 a N-1
- Chegando a j=N-1, tem-se o custo de calcular $M_1M_2...M_N$
- Recuperar a sequência ótima
 - Guarda o registro das decisões feitas para cada dimensão
 - Permite recuperar a sequência de custo mínimo

	В	C	D	Е	F
A	24 [A][B]	14 [A][BC]	22 [ABC][D]	26 [ABC][DE]	36 [ABC][DEF]
В		6 [B][C]	10 [BC][D]	14 [BC][DE]	22 [BC] [DEF]
С			6 [C][D]	10 [C][DE]	19 [C] [DEF]
D				4 [D][E]	10 [DE] [F]
E					12 [E] [F]

Exercícios

6. Encontre uma colocação ótima de parênteses de um produto de cadeias de matrizes cuja sequência de dimensões é <5, 10, 3, 12, 5, 50, 6>

- Em pesquisa, as chaves ocorrem com frequências diversas; exemplos:
 - Verificador ortográfico: encontra mais frequentemente as palavras mais comuns
 - Compilador de C++: encontra mais frequentemente "if" e "for" que "main"
- Usando uma árvore de pesquisa binária, é vantajoso ter mais perto do topo as chaves mais usadas
- Algoritmo de programação dinâmica pode ser usado para organizar as chaves de forma a minimizar o custo total da pesquisa

- Problema tem semelhança com o dos códigos de Huffman (minimização do tamanho do caminho externo)
 - Mas, código de Huffman não requer a manutenção da ordem das chaves
 - Na árvore de pesquisa binária, os nós à esquerda de cada nó têm chaves menores e os nos à direita têm chaves maiores
- Problema é semelhante ao da ordem de multiplicação de uma cadeia de matrizes

• Exemplo:

Custo da árvore = 1x1+4x2+2x3+2x2+3x3+5x4+1x3 = 51

 Custo da árvore é o comprimento do caminho interno ponderado da árvore:

Multiplicar a frequência de cada nó pela sua distância à raiz Soma para todos os nós

Dados:

- Chaves $K_1 < K_2 < \ldots < K_n$
- Frequências r₁, . . . , r_n
- Construir árvore de pesquisa que minimize a soma, para todas as chaves, dos produtos das frequências pelas distâncias à raiz
- Abordagem em programação dinâmica
 - Calcular, para cada j de 1 a N-1, a melhor maneira de construir subárvores contendo K_i , K_{i+1} , . . . , K_{i+j} , para $1 \le i \le N-j$
 - Para cada j, tenta-se cada nó como raiz e usam-se os valores já computados para determinar as melhores escolhas para as subárvores
 - Para cada k entre i e i+j, construir a árvore ótima contendo K_i , K_{i+1} , ..., K_{i+j} com K_k na raiz
 - A árvore com K_k na raiz é formada usando a árvore ótima para K_i , K_{i+1} , . . . , K_{k-1} como subárvore esquerda e a árvore ótima para K_{k+1} , K_{k+2} , . . . , K_{i+j} como subárvore direita

```
for( i=1; i <= N; i++ )
    for (j = i+1; j \le N+1; j++) cost[i][j] = INT MAX;
for( i=1; i <= N; i++ ) cost[i][i] = f[i];
for (i=1; i \le N+1; i++) cost[i][i-1] = 0;
for (j=1; j < N-1; j++)
    for( i=1; i <= N-j; i++ )
        for (k = i; k <= i+j; k++)
            t = cost[i][k-1] + cost[k+1][i+j];
            if ( t < cost[i][i+j] )
                 \{ cost[i][i+j] = t; best[i][i+j] = k; \}
        for (k = i; k <= i+j; cost[i][i+j] += f[k++]);
```


Custo da árvore = 3x1+4x2+2x3+1x4+5x2+2x3+1x4 = 41

- O método para determinar uma árvore de pesquisa binária ótima em programação dinâmica gasta tempo $\Theta(N^3)$ e espaço $\Theta(N^2)$
- Examinando o código:
 - O algoritmo trabalha com uma matriz de dimensão N^2 e gasta tempo proporcional a N em cada entrada
- É possível melhorar:
 - Usando o fato de que a posição ótima para a raiz da árvore não pode ser muito distante da posição ótima para uma árvore um pouco menor, no programa dado k não precisa de cobrir todos os valores de i a i+j

Programação Dinâmica - Resumo

- Tradução iterativa inteligente da recursão
 - Resolvem problemas menores
 - Armazenam as soluções para estes problemas menores numa tabela
 - Usam as soluções dos problemas menores para obterem a solução de problemas maiores
- Cada instância do problema é resolvida a partir da solução de subinstâncias da instância original
- O problema deve ter estrutura recursiva: a solução de toda instância do problema deve "conter" soluções de subinstâncias da instância

Exercícios

7. Determine o custo e a estrutura de uma árvore de pesquisa binária ótima para um conjunto de n=7 chaves com seguinte frequência de ocorrência:

	Α	В	С	D	E	F	G
f	7	4	5	1	4	8	7

Algoritmos Gulosos

Ziviani – págs. 58 até 59

Cormen – págs. 296 até 323

Algoritmos Gulosos

- Para resolver um problema, um algoritmo guloso escolhe, em cada iteração, a melhor opção para o momento
- A opção escolhida passa a fazer parte da solução que o algoritmo constrói
- O algoritmo faz uma escolha ótima local esperando que esta o leve a uma solução ótima global
- Um algoritmo guloso jamais se arrepende ou volta atrás, as escolhas que faz em cada iteração são definitivas

Árvore Geradora Mínima

- Árvore Geradora Mínima é a árvore geradora de menor peso de G
- Dado um grafo G com pesos associados às arestas, encontrar uma árvore geradora mínima de G

- As arestas no conjunto A sempre formam uma árvore única
- A árvore começa a partir de um vértice de raiz arbitrária r e aumenta até a árvore alcançar todos os vértices em ∨
- Em cada etapa, uma aresta leve conectando um vértice de A a um vértice em V-A é adicionada à árvore
- Quando o algoritmo termina, as arestas em A formam uma árvore geradora mínima
- Durante a execução do algoritmo, todos os vértices que não estão na árvore residem em uma fila de prioridade mínima Q baseada em um campo chave
- Para cada vértice v, chave [v] é o peso mínimo de qualquer aresta que conecta v a um vértice na árvore
- $\pi[v]$ é o pai de v na árvore

```
MST-PRIM (G, w, r)
for cada u ∈ V[G] do
    chave[u] \leftarrow \infty
   \pi[u] \leftarrow \text{NIL}
\texttt{chave[r]} \leftarrow \texttt{0}
Q \leftarrow V[G]
while 0 \neq 0 do
    u ← EXTRACT-MIN(Q) INSERE NA AGM
    for cada v \in Adj[u] do
        if v \in Q \in w(u,v) < chave[v] then
            \pi[v] \leftarrow u
            chave[v] \leftarrow w(u,v)
```


Versões do Problema da Mochila

- Problema da Mochila 0-1 ou 0-1 *Knapsack Problem*:
 - O item i é levado integralmente ou é deixado
- Problema da Mochila Fracionário:
 - Fração do item i pode ser levada

Considerações sobre as duas versões

Possuem a propriedade de subestrutura ótima

Problema inteiro:

- Considere uma carga que pesa no máximo W com n itens
- Remova o item j da carga
- Carga restante deve ser a mais valiosa pesando no máximo $W-w_j$ com n-1 itens

Problema fracionário:

- Considere uma carga que pesa no máximo W com n itens
- Remova um peso w do item j da carga
- Carga restante deve ser a mais valiosa pesando no máximo W-w com n-1 itens mais o peso w_j-w do item j

Considerações sobre as duas versões

- Problema inteiro
 - Não é resolvido usando a técnica gulosa
- Problema fracionário
 - É resolvido usando a técnica gulosa
- Estratégia para resolver o problema fracionário:
 - Calcule o valor por unidade de peso v_i / w_i para cada item
 - Estratégia gulosa é levar tanto quanto possível do item de maior valor por unidade de peso
 - Repita o processo para o próximo item com esta propriedade até alcançar a carga máxima
- Complexidade para resolver o problema fracionário:
 - Ordene os itens i (i = 1,..., n) pelas frações v_i / w_i
 - $-\Theta(n \log n)$

Exemplo: Situação inicial Problema 0-1

Item	n Peso Valo		V/P	
1	10	60	6	
2	20	100	5	
3	30	120	4	

Carga máxima da mochila: 50

Exemplo: Estratégia Gulosa Problema 0-1

Exemplo: Estratégia Gulosa Problema 0-1

Considerações:

- Levar o item 1 faz com que a mochila fique com espaço vazio
- Espaço vazio diminui o valor efetivo da relação v/w
- Neste caso deve-se comparar a solução do subproblema quando:
 Item é incluído na solução X Item é excluído da solução
- Passam a existir vários subproblemas
- Programação dinâmica passa a ser a técnica adequada

Exemplo: Estratégia Gulosa Problema Fracionário

Item	Peso	Valor	Fração	
1	10	60	1	
2	20	100	1	
3	30	80	2/3	

- → Total = 240.
- → Solução ótima!

O Problema da Mochila Fracionária

 O algoritmo é guloso porque, em cada iteração, abocanha o objeto de maior valor específico dentre os disponíveis, sem se preocupar com o que vai acontecer depois. O algoritmo jamais se arrepende do valor atribuído a um componente de x

Exercício

8. Resolva o problema da mochila fracionária considerando uma mochila com capacidade 50 e 4 itens conforme peso e valor especificados na tabela abaixo

	Α	В	С	D	Ε	
Peso	40	30	20	10	20	
Valor	840	600	400	100	300	

Teoria da Complexidade

Introdução

- A maioria dos problemas conhecidos e estudados se divide em dois grupos:
 - Problemas cuja solução é limitada por um polinômio de grau pequeno

```
Pesquisa binária: Θ (log n)
Ordenação: Θ (n log n)
Multiplicação de matriz: Θ (n².81)
```

 Problemas cujo melhor algoritmo conhecido é nãopolinomial

```
Problema do Caixeiro Viajante: \Theta (n<sup>2</sup>2<sup>n</sup>)
Knapsack Problem: \Theta (2<sup>n/2</sup>)
```

Algoritmos Polinomiais X Algoritmos Exponenciais

- Algoritmos polinomiais são obtidos através de um entendimento mais profundo da estrutura do problema
- Um problema é considerado tratável quando existe um algoritmo polinomial para resolve-lo
- Algoritmos exponenciais são, em geral, simples variação de pesquisa exaustiva
- Um problema é considerado intratável se ele é tão difícil que não existe um algoritmo polinomial para resolve-lo

Algoritmos Polinomiais X Algoritmos Exponenciais

Entretanto,

- Um algoritmo Θ (2ⁿ) é mais rápido que um algoritmo Θ (n⁵) para n \leq 20
- Existem algoritmos exponenciais que são muito úteis na prática
 - Algoritmo Simplex para programação linear é exponencial mas, executa muito rápido na prática
- Na prática os algoritmos polinomiais tendem a ter grau 2 ou 3 no máximo e não possuem coeficientes muito grandes n¹⁰⁰ ou 10⁹⁹n² NÃO OCORREM

Decisão x Otimização

- Em um problema de **otimização** queremos determinar uma solução possível com o melhor valor.
- Em um problema de **decisão** queremos responder "sim" ou "não".
- Para cada problema de otimização podemos encontrar um problema de decisão equivalente a ele.

Problemas "Sim/Não" ou Problemas de Decisão

- Para o estudo teórico da complexidade de algoritmos é conveniente considerar problemas cujo resultado seja "sim" ou "não"
- Exemplo: Problema do Caixeiro Viajante
 - **Dados**: Um conjunto de cidades $C = \{c_1, c_2, \ldots, c_n\}$, uma distância $d(c_i, c_j)$ para cada par de cidades $c_i, c_j \in C$ e uma constante K.
 - Questão: Existe um roteiro para todas as cidades em C cujo comprimento total seja menor ou igual a K?

Classe P e NP

Classe P:

 Um algoritmo está na Classe P se a complexidade do seu pior caso é uma função polinomial do tamanho da entrada de dados

Classe NP:

- Classe de problemas "Sim/Não" para os quais uma dada solução pode ser verificada facilmente
- Existe uma enorme quantidade de problemas em NP para os quais não se conhece um único algoritmo polinomial para resolver qualquer um deles

Ordenação está em NP

```
VOrdenacao(A, n)
inicio
   ordenado ← verdadeiro
   para i \leftarrow 1 até n-1 faça
      se A[i] > A[i+1] então
         ordenado ← falso
      fim se
   fim para
   se ordenado = falso então
      escreva "NAO"
   senão
      escreva "SIM"
   fim se
fim
```

Complexidade: Θ (n)

Coloração de Grafos está em NP

```
VColoracao (G, C, K)
inicio
   colorido ← verdadeiro
   para i \leftarrow 1 até |E| faça
      se C[Ei.V1] = C[Ei.V2] então
          colorido \leftarrow falso
      fim se
   fim para
   se colorido = verdadeiro e |C| ≤ K então
      escreva "SIM"
   senão
      escreva "NAO"
   fim se
fim
```

• Complexidade: Θ (n²), onde n é o número de vértices

Algoritmos Não-deterministas

- Um computador não-determinista, quando diante de duas ou mais alternativas, é capaz de produzir cópias de si mesmo e continuar a computação independentemente para cada alternativa
- Um algoritmo não-determinista é capaz de escolher uma dentre as várias alternativas possíveis a cada passo (o algoritmo é capaz de adivinhar a alternativa que leva a solução)

Algoritmos Não-deterministas

Utilizam

- a função escolhe (C): escolhe um dos elementos de C de forma arbitrária.
- SUCESSO: sinaliza uma computação com sucesso
- INSUCESSO: sinaliza uma computação sem sucesso
- Sempre que existir um conjunto de opções que levam a um término com sucesso então, este conjunto é sempre escolhido
- A complexidade da função escolhe é Θ (1)

Exemplo: Pesquisa

• Pesquisar o elemento x em um conjunto de elementos $A[1..n], n \ge 1$

```
j ← escolhe(A,x)
se A[j] = x então
    SUCESSO
senão
    INSUCESSO
fim se
```

- Complexidade: Θ(1)
- Para um algoritmo determinista a complexidade é Θ (n)

Exemplo: Ordenação

• Ordenar um conjunto A contendo n inteiros $n \ge 1$

```
NDOrdenacao (A,n)
inicio
   para i \leftarrow 1 até n faça B[i] = 0;
   para i←1 até n faça
   inicio
       j \leftarrow escolhe(A, i);
       se B[j] = 0 então
          B[i] = A[i];
       senão
          INSUCESSO
       fim se
   fim para
   SUCESSO
fim
```

- B contém o conjunto ordenado
- A posição correta em
 B de cada inteiro de
 A é obtida de forma
 não-determinista

- Complexidade do algoritmo não-determinista: Θ (n)
- Complexidade do algoritmo determinista: Θ (n log n)

Algoritmos Deterministas X Algoritmos Não-deterministas

- Classe P (Polynomial-time Algorithms)
 - Conjunto de todos os problemas que podem ser resolvidos por algoritmos deterministas em tempo polinomial
- Classe NP (Nondeterministic Polinomial Time Algorithms)
 - Conjunto de todos os problemas que podem ser resolvidos por algoritmos não-deterministas em tempo polinomial

Como Mostrar que um Determinado Problema está em NP?

 Basta apresentar um algoritmo não-determinista que execute em tempo polinomial para resolver o problema

OU

 Basta encontrar um algoritmo determinista polinomial para verificar que uma dada solução é válida

Caixeiro Viajante está em NP

Algoritmo não-determinista em tempo polinomial

```
NDPCV(G, n, k)
inicio
   Soma \leftarrow 0
   para i \leftarrow 1 até n faça
       A[i] \leftarrow escolhe(G, n)
   fim para
   A[n+1] \leftarrow A[1]
   para i \leftarrow 1 até n faça
       Soma ← Soma + distancia entre A[i] e A[i+1]
   fim para
    se Soma < k então
       SUCESSO
   senão
       INSUCESSO
   fim se
fim
```

- Complexidade do algoritmo não-determinista: Θ (n)
- Complexidade do algoritmo determinista: Θ (n² 2n)

Caixeiro Viajante está em NP

Algoritmo determinista polinomial para verificar a solução

```
DPCVV(G,S,n,k)
inicio
    Soma ← 0
    para i ← 1 até n faça
        Soma ← Soma + distancia entre S[i] e S[i+1]
    se Soma ≤ k então
        escreva "SIM"
    senão
        escreva "NAO"
fim
```

Complexidade: Θ (n)

P = NP ou $P \neq NP$?

 Como algoritmos deterministas são apenas um caso especial de algoritmos não-deterministas, podemos concluir que

$$P \subseteq NP$$

O que não sabemos é se

$$P = NP \text{ ou } P \neq NP$$

- Será que existem algoritmos polinomiais deterministas para todos os problemas em NP?
- Por outro lado, a prova de que P ≠ NP parece exigir técnicas ainda desconhecidas

Descrição tentativa de NP

- P está contida em NP
- Acredita-se que NP seja muito maior que P

Consequências

- Existem muitos problemas práticos em NP que podem ou não pertencer a P (não conhecemos nenhum algoritmo eficiente que execute em uma máquina determinista)
- Se conseguirmos provar que um problema não pertence a P, então não precisamos procurar por uma solução eficiente para ele
- Como não existe tal prova sempre há esperança de que alguém descubra um algoritmo eficiente
- Quase ninguém acredita que NP = P
- Existe um esforço considerável para provar o contrário: MAS O PROBLEMA CONTINUA EM ABERTO!

Redução Polinomial

- Sejam Π_1 e Π_2 dois problemas "sim/não".
- Suponha que exista um algoritmo A2 para resolver Π_2 . Se for possível transformar Π_1 em Π_2 e sendo conhecido um processo de transformar a solução de Π_2 numa solução de Π_1 então, o algoritmo A2 pode ser utilizado para resolver Π_1
- Se estas duas transformações puderem ser realizadas em tempo polinomial então, Π_1 é polinomialmente redutível a Π_2 ($\Pi_1 \propto \Pi_2$)

Exemplo de Transformação Polinomial

Conjunto independente de vértices

- \forall ′ ⊆ \forall tal que todo par de vértices de \forall ′ é não adjacente, ou seja, se \forall , \forall ∈ \forall ′ ⇒ (\forall , \forall) ∉ \exists
- a, c, b, g é um exemplo de um conjunto independente de cardinalidade 4

Clique

- \forall ' ⊆ \forall tal que todo par de vértices de \forall ' é adjacente, \forall ' é um subgrafo completo, ou seja, se \forall , \forall ∈ \forall ' ⇒ $(\forall$, \forall) ∈ \exists
- d, b, e é um exemplo de um clique de cardinalidade 3

Exemplo de Transformação Polinomial

- Instância I do Clique
 - Dados: Grafo G (V, E) e um inteiro K > 0
 - Decisão: G possui um clique de tamanho ≥ k?
- Instância f (I) do Conjunto Independente
 - Considere o grafo complementar G de G e o mesmo inteiro K, f é uma transformação polinomial porque:
 - 1. G pode ser obtido a partir de G em tempo polinomial
 - 2. G possui clique de tamanho $\geq k$ se e somente se \overline{G} possui conjunto independente de vértices de tamanho $\geq k$

Exemplo de Transformação Polinomial

Se existir um algoritmo que resolva o conjunto independente em tempo polinomial, este algoritmo pode ser utilizado para resolver o clique também em tempo polinomial

Clique ∝ Conjunto Independente

Satisfabilidade

- Definir se uma expressão booleana E contendo produto de adições de variáveis booleanas é satisfatível
 - Exemplo: $(x_1 + x_2) * (x_1 + \overline{x_3} + x_2) * (x_3)$ onde x_i representa variáveis lógicas
 - + representa OR
 - * representa AND
 - x representa NOT
- Problema: Existe uma atribuição de valores lógicos (∨ ou F) às variáveis que torne a expressão verdadeira ("satisfaça")?

$$x_1=F$$
, $x_2=V$, $x_3=V$ Satisfaz!

- Exemplo: $(x_1) * (\overline{x_1})$ não é satisfatível

Satisfabilidade

```
NDAval(E,n)
inicio
  para i<-1 até n faça
      xi <- escolhe(true, false)
  se E(x1,x2,...,xn) = true então
      SUCESSO
  senão
      INSUCESSO
  fim se
fim</pre>
```

 O algoritmo obtém uma das 2ⁿ atribuições possíveis de forma não-determinista em O (n)

SAT ∈ NP

Teorema de Cook

- S. Cook formulou a seguinte questão (em 1971): existe algum problema em NP tal que se ele for mostrado estar em P então este fato implicaria que P=NP.
- Teorema de Cook: Satisfabilidade está em P se, e somente se, P = NP
- Isto é: Se existe um algoritmo polinomial determinista para a satisfabilidade então, todos os problemas em NP poderiam ser resolvidos em tempo polinomial

Teorema de Cook

- SAT está em P sse P = NP
- Esboço da prova
 - 1. SAT está em NP. Logo, se P = NP então SAT está em P.
 - 2. Se SAT está em P então P = NP
 - Prova descreve como obter de qualquer algoritmo polinomial não determinista de decisão A com entrada E uma fórmula Q(A,E) de forma que Q é satisfatível se e somente se A termina com sucesso para a entrada E. Isto significa que ele mostrou que para qualquer problema ∏ ∈ NP, ∏ ∞ SAT

NP-Completo

- Um problema de decisão ∏ é denominado NP-Completo se
 - 1. ∏ ∈ NP
 - 2. Todo problema de decisão $\Pi' \in NP$ satisfaz $\Pi' \propto \Pi$
- Apenas problemas de decisão (sim/não) podem ser NP-Completo

Como Provar que um Problema é NP-Completo

- Mostre que o problema está em NP
- 2. Mostre que um problema NP-Completo conhecido pode ser polinomialmente transformado para ele
- Porque:
 - Cook apresentou uma prova direta de que SAT é NP-Completo
 - Transitividade da redução polinomial

SAT
$$\propto \Pi_1 \in \Pi_1 \propto \Pi_2 \Rightarrow \text{SAT} \propto \Pi_2$$

Descrição tentativa de NP

Assumindo que P ≠ NP

- Se alguém encontrar um algoritmo polinomial que resolva algum problema NP-Completo então, todos os problemas em NP também terão solução polinomial, ou seja, P será igual a NP.
- Se alguém provar que um determinado problema em NP não tem solução polinomial então, todos os problemas em NP-Completo também não terão solução polinomial, ou seja, P será diferente de NP.

Qual é a Contribuição Prática da Teoria de NP-Completo?

- Fornece um mecanismo que permite descobrir se um novo problema é "fácil" ou "difícil"
- Se encontrarmos um algoritmo eficiente para o problema, então não há dificuldades. Senão, uma prova de que o problema é NP-Completo nos diz que se acharmos um algoritmo eficiente então estaremos obtendo um grande resultado.

Como Resolver Problemas NP-completos?

 Quando não existe solução polinomial é necessário usar algoritmos aproximados ou heurísticas que não garantem a solução ótima mas são rápidos

Algoritmos Aproximados e Heurísticas

Algoritmos aproximados:

- Algoritmos usados normalmente para resolver problemas para os quais não se conhece uma solução polinomial
- Devem executar em tempo polinomial dentro de limites "prováveis" de qualidade absoluta ou assintótica

Heurísticas:

- Algoritmos que têm como objetivo fornecer soluções sem um limite formal de qualidade, em geral avaliado empiricamente em termos de complexidade (média) e qualidade de soluções
- É projetada para obter ganho computacional ou simplicidade conceitual, possivelmente ao custo de precisão