题号	_	=	Е	四	五	六	七	总分	阅卷人
得分									

得分	阅卷人

- 一、判断正误题 (每小题 2分, 共 10分)
 - 1. Every matrix is row equivalent to a unique matrix in echelon form.
 - 2. If A is a 3×3 matrix, then det(2A) = 2det(A).
 - 3. If an augmented matrix $[A \ \mathbf{b}]$ is transformed into $[C \ \mathbf{d}]$ by elementary row operations, then the equations $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{d}$ have exactly the same solution sets.
 - 4. Rank **A** = dim(Nul **A**).
 - 5. If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto, then $\operatorname{rank} A = m$.

得分	阅卷人

- 二、填空题 (每小题 5 分, 共 15 分)
 - 6. $\ddot{\pi} \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} X = \begin{pmatrix} 4 & -6 \\ 2 & 1 \end{pmatrix}$, y = X = 1.
 - 7. 己知向量组

$$\alpha_1 = [1, -1, 2]^T, \alpha_2 = [0, 3, 1]^T, \alpha_3 = [3, 0, 7]^T$$

与向量组

$$\boldsymbol{\beta}_1 = [1, -2, 2]^{\mathrm{T}}, \boldsymbol{\beta}_2 = [2, 1, 5]^{\mathrm{T}}, \boldsymbol{\beta}_3 = [x, 3, 3]^{\mathrm{T}}$$

等秩,则 *x* =_____.

8. 向量组 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 2 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ 是线性

____(填相关或无关)的,它的一个极大线性无关组是

判断正误	1	2	3	4	5
答案					

填空题	6	7	8(1)	8(2)
答案				

得分	阅卷人

三、(15分) 求解下列齐次线性方程组:

$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + 7x_4 = 0 \\ 2x_1 - 3x_2 + 3x_3 - 2x_4 = 0 \\ 4x_1 + 11x_2 - 13x_3 + 16x_4 = 0 \\ 7x_1 - 2x_2 + x_3 + 3x_4 = 0 \end{cases}$$

得分	阅卷人

四、 (15分) 求可逆矩阵 P 和对角矩阵 D, 使 $A = PDP^{-1}$.

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}$$

得分	阅卷人

六、 (15 分) 设 $A \neq n \times m$ 矩阵, $B \neq m \times n$ 矩阵, 其中 n < m, 若 AB = E, 证明 B 的列向量线性无关.

得分	阅卷人

五、 (15 分) 设 $\mathcal{B} = \{b_1, b_2\}$ 和 $\mathcal{C} = \{c_1, c_2\}$ 是 \mathbb{R}^2 的两个基,求由 \mathcal{B} 到 \mathcal{C} 的坐标变换矩阵和由 \mathcal{C} 到 \mathcal{B} 的坐标变换矩阵.

$$\mathbf{b}_1 = \begin{bmatrix} 7 \\ 5 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -3 \\ -1 \end{bmatrix}, \mathbf{c}_1 = \begin{bmatrix} 1 \\ -5 \end{bmatrix}, \mathbf{c}_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

七、(15分)设