LINEAR ALGEBRA

Louis de Thanhoffer de Volcsey, Ph.D.

Contents

0	Ove	erview	1
1	the	Normal equation	1
2	the	(Moore-Penrose) Pseudo-inverse	3
3	Prir	ncipal Component Analysis	6
	3.1	the Principal component basis	6
	3.2	Application: Dimension Reduction	7
	3.3	Application: Dimension Reduction	8

0 Overview

1 the Normal equation

In this section, we'll refresh the reader on projections onto images of linear maps: The starting point of this construction is the following lemma:

Lemma 1.1. Let $W \subset V$ be a subspace of the inner product space V. Let $v \in V$ and $u \in W$. Then the following are equivalent:

1.
$$(v-u) \perp W$$

2.
$$\operatorname{argmin}_{w \in W} ||v - w|| = u$$

Proof. Let $w \in W$.

Assuming $u \in W$ satisfies the first condition, we have $v - u \perp u - w$ and by the Pythagorean theorem, we have:

$$||v - w||^2 = ||v - u||^2 + ||u - w||^2 \ge ||v - u||^2$$

Proving the second condition.

Conversely, we assume $u \in W$ satisfies the second condition and apply the following trick:

Consider the function:

$$\phi: \mathbb{R} \longrightarrow \mathbb{R}: t \mapsto ||v - u + tw||^2$$

Since $||v - u||^2$ is minimal, ϕ has a minimum at t = 0. Moreover, ϕ is differentiable so that $\phi'(0) = 0$. It's also easy to see that

$$\phi(t) = ||v - u||^2 + 2 \cdot t \langle v - u, w \rangle + t^2 ||w||^2$$

1

Hence
$$0 = \phi'(0) = 2 \langle v - u, w \rangle$$
, and $v - u \perp w$ as required

Lemma 1.2. Let $W \subset V$ be a subspace of a finite-dimensional inner product space. Then the map

$$\pi: V \longrightarrow W: v \mapsto \operatorname{argmin}_{w \in W} ||v - w||$$

is well defined

Proof. By the above lemma we need to show that for any $v \in V$, there exists a unique $\pi(v) \in W$ such that $v - \pi(v) \perp W$. To this end, we look at the following map $f \in W^*$

$$f: W \longrightarrow \mathbb{R}: w \mapsto \langle v, w \rangle$$

Since W^* is in turn an inner product space, f can be written in the form $\langle \pi(v), - \rangle$ for some unique $\pi(v) \in W$. The result now follows

The lemma above motivates the following definition:

Definition 1.3. Let $W \subset V$ be a subspace of a finite dimensional inner product space. Then the unique map $\pi: V \longrightarrow W$ defined by

$$\pi(v) \stackrel{\text{def}}{=} \operatorname{argmin}_{w \in W} ||v - w||$$

is the projection of V onto W

Corollary 1.4. Let $W = \operatorname{im}(f) \oplus \operatorname{im}(f)^{\perp}$ and $\pi_{\operatorname{im}(f)} : W \longrightarrow \operatorname{im}(f)$ be the canonical projection. Then $\pi_{\operatorname{im}(f)}$ coincides with the projection onto the subspace $\operatorname{im}(f) \subset W$ in the sense of Definition 1.3

X

Proof. This follows immediately from 1.1

Next, we consider a linear map $f \in \operatorname{Hom}_{\Bbbk}(U,V)$ and let W be the subspace $\operatorname{im}(f)$. One can give a more explicit description of the projection $\pi: V \longrightarrow W$:

Lemma 1.5. Let $f \in \text{Hom}(U, V)$ and and $v \in V$ Then the following are equivalent:

- 1. f(u) is the projection of v onto the subspace $\operatorname{im}(f) \subset V$
- 2. The vector $u \in U$ satisfies $(f^* \circ f)(u) = f^*(v)$

Proof. f(u) is the projection of v onto $\operatorname{im}(f)$ if and only if $\langle v - f(u), f(u') \rangle$ for any $u' \in U$ by Lemma 1.1. Now,

$$\langle v - f(u), f(u') \rangle = \langle f^*(v) - f^* f(u), u' \rangle$$

This last expression is 0 if and only if $f^*(v) - f^*f(u) = 0$ since the inner product is nondegenerate X

The above lemma justifies the following definition:

Definition 1.6. Let $f \in \text{Hom}(V, W)$ and $w \in W$.

We say that $v \in V$ satisfies the normal equation if and only if

$$(f^* \circ f)(v) = f^*w$$

In this terminology, we can restate lemma 1.5 as follows:

Lemma 1.7. Let $f \in \text{Hom}(V, W)$ and $w \in W$ Then the following are equivalent:

- 1. $w = \operatorname{argmin}_{u \in V} ||w f(u)||$
- 2. v is a solution to the normal equation $(f^* \circ f)(v) = f^*w$

It is finding the solutions to this equation that we are interested in. It turns out that one can give an explicit description of them using the so-called *Moore-Penrose pseudo-inverse*. Since this construction seems to be a little less well covered in standard linear algebra literature, we'll discuss in detail below:

2 the (Moore-Penrose) Pseudo-inverse

In this section, we will let V, W be finite-dimensional vector spaces and $f \in \operatorname{Hom}_{\mathbb{R}}(V, W)$.

It is well-known that f does not have an inverse in general. There is however a natural generalization of the notion of inverse which can be defined for any map: a pseudo-inverse. More precisely, if f either has a nonzero kernel or if the image of f is not the whole of W, then the inverse of f will not exist. One natural way to remediate this issue is to consider complements for both subspaces and write

$$V \stackrel{\text{def}}{=} \ker(f) \oplus U_V$$
 and $W \stackrel{\text{def}}{=} \operatorname{im}(f) \oplus U_W$

It's easy to see that restricting f to appropriate subspaces now does produce an invertible map as follows:

Lemma 2.1. the map $f: U_V \longrightarrow \operatorname{im}(f)$ is an isomorphism.

We'll denote the inverse of f on U_V by $f^{\sharp}: \operatorname{im}(f) \longrightarrow U_V$. A pseudo-inverse is now the natural lift of f^{\sharp} to the whole of W:

Lemma 2.2. There exists a unique map $f^{\sharp}: W \longrightarrow U_V$ making the following diagram commute:

Proof. The commutativity of the diagram means that for $u \in U_V$, we have

$$f^{\sharp}(w) \stackrel{\text{def}}{=} u \iff f^{\sharp}(\pi_{\text{im}(f)}(w)) = u \iff \pi_{\text{im}(f)}(w) = f(u)$$

Where the second equivalence follows from the fact that f^{\sharp} is the inver of f on U_V .

The claim will thus follow if we show that the above assignment is indeed a well-defined linear map. To this end assume that $u, u' \in U_V$ satisfy $f(u') = \pi_{\text{im}(f)}(w) = f(u)$.

Then $u - u' \in \ker(f)$, hence $u - u' \in \ker(f) \cap U_V$ in particular. Now since $\ker(f) \oplus U_V = V$, we have u - u' = 0, so that u = u', showing the well-definedness.

Χ

We leave the linearity to the reader.

It will be helpful to note that the map $f^{\sharp} \in \text{Hom}(W, V)$ can also be characterized by $\text{im}(f^{\sharp}) \subset U_V$ and $f \circ f^{\sharp} = \pi_{\text{im}(f)}$.

To give the map f^{\sharp} a name, we first let $\Lambda(f)$ denote the set

$$\Lambda(f) \stackrel{\text{def}}{=} \{(U_V, U_W) | \ker(f) \oplus U_V = V \text{ and } \operatorname{im}(f) \oplus U_W = W \}$$

and conclude from Lemma 2.2 that there is a assignment:

$$\Phi: \Lambda(f) \longrightarrow \operatorname{Hom}_{\mathbb{R}}(W,V): (U_V,U_W) \mapsto f^{\sharp}$$

where $f^{\sharp} \in \operatorname{Hom}_{\mathbb{R}}(W, V)$ is the unique map satisfying

$$f \circ f^{\sharp} = \pi_{\mathrm{im}(f)}$$
 and $\mathrm{im}(f^{\sharp}) \subset U_V$

Let's denote the image of Φ by $\Pi(f)$. Summarizing the discussion, we make the following:

Definition 2.3. Let $(U_V, U_W) \in \Lambda(f)$. Then the pseudo-inverse of (U_V, U_W, f) is the map $\Phi(f)$. We say that $g \in \text{Hom}_{\mathbb{R}}(W, V)$ is a pseudo-inverse to f if $g \in \Pi(f)$

We can give a slightly different description of pseudo-inverses by describing them on the 2 components in the decomposition $\operatorname{im}(f) \oplus U_W = W$:

Lemma 2.4. Let (U_V, U_W) in $\Lambda(f)$. Then the following are equivalent:

- 1. f^{\sharp} is the pseudo-inverse to (U_V, U_W, f)
- 2. $f^{\sharp}|_{\operatorname{im}(f)}$ is the inverse to $f: U_V \longrightarrow \operatorname{im}(f)$ and $f^{\sharp}|_{U_W} = 0$

Proof. Since the pseudo=inverse to (U_V, U_W, f) is unique, it suffices to show that the pseudo-inverse indeed satisfies the conditions of (2). The fact that $f^{\sharp}|_{\text{im}(f)}$ is the inverse of $f|_{U_V}$ follows from

$$(f \circ f^{\sharp})|_{\operatorname{im}(f)} = (\pi_{\operatorname{im}(f)})|_{\operatorname{im}(f)} = \operatorname{Id}|_{\operatorname{im}(f)}$$

Moreover, if $w \in U_W$, then $\pi_{\mathrm{im}(f)}(w) = 0$ since $\mathrm{im}(f) \oplus U_W$. Hence $f^{\sharp}(w) = f^{\sharp}(\pi_{\mathrm{im}(f)}(w)) = 0$ by Lemma 2.2

Our next order of business is to give an explicit description of the set $\Pi(f)$ of pseudo-inverses to f. We begin by showing that we can describe the complements U_V and U_W solely by using the maps f and f^{\sharp} :

Lemma 2.5. Let f^{\sharp} be the pseudo-inverse to (U_V, U_W, f) . Then $U_V = \operatorname{im}(f^{\sharp})$ and $U_W = \ker(f^{\sharp})$

Proof. We have $\operatorname{im}(f^{\sharp}) \subset U_V$ by Definition 2.3. Moreover, f^{\sharp} is a composition of surjections and hence itself surjective, proving the first claim.

To prove the second claim, note that the second condition of Lemma 2.4 immediately implies that $U_W \subset \ker(f^{\sharp})$. We can also show the other inclusion by assuming that $w \in W$ satisfies $f^{\sharp}(w) = 0$, in which case $\pi_{\operatorname{im}(f)}(w) = f(f^{\sharp}(w)) = f(0) = 0$, implying that w lies in the component U_W of the decomposition $\operatorname{im}(f) \oplus U_W = W$ as required

Taking the above lemma one step further allows us to describe the set $\Pi(f)$ of pseudo-inverses as promised:

Lemma 2.6. Let $f \in \text{Hom}(V, W)$. Then the following are equivalent:

- 1. $g \in \Pi(f)$
- 2. $(f \circ g)|_{\operatorname{im}(f)} = \operatorname{Id} \ and \ (g \circ f)|_{\operatorname{im}(g)} = \operatorname{Id}$

Proof. Let g be a pseudo-inverse to f and define $U_V \stackrel{\text{def}}{=} \operatorname{im}(g)$ and $U_W \stackrel{\text{def}}{=} \ker(f)$. Then Lemma 2.5 shows that g is in fact the pseudo-inverse to the triple (U_V, U_W, f) . Now, since $g|_{\operatorname{im}(f)}$ is the inverse to $f|_{U_V}$ by Lemma 2.4, we have $(f \circ g)|_{\operatorname{im}(f)} = \operatorname{Id}$ and $(g \circ f)|_{\operatorname{im}(g)} = (g \circ f)|_{U_V} = \operatorname{Id}$.

Conversely, assume that g satisfies the conditions in (2).

We begin by showing that $(\operatorname{im}(g), \ker(g)) \in \Lambda(f)$. Let's show that $\operatorname{im}(f) \oplus \ker(g) = W$ by way of example. Indeed, first note that $\operatorname{im}(f) \cap \ker(g) = 0$, as any w in this intersection must satisfy $w = (f \circ g)(w) = f(0) = 0$. Moreover, if we write w = (w - f(g(w))) + f(g(w)), we see that trivially $f(g(w)) \in \operatorname{im}(f)$ and

$$g(w - f(g(w))) = g(w) - (g(f(g(w))) = g(w) - g(w) = 0$$

so that $(w-f(g(w))) \in \ker(g)$. This indeed shows that $\operatorname{im}(f) \oplus \ker(g) = W$. The proof of $\operatorname{im}(g) \oplus \ker(f) = V$ is completely analogous, allowing us to conclude that $(\operatorname{im}(g), \ker(g)) \in \Lambda(f)$.

It now remains to show that g is indeed a pseudo-inverse to the triple $(\operatorname{im}(g), \ker(f), f)$. By Lemma 2.4, it suffices to show that $g|_{\operatorname{im}(f)}$ is the inverse to $f|_{\operatorname{im}(g)}$ and that $g|_{\ker(g)} = 0$. The first claim follows immediately from the fact that g is a left inverse to $f: \operatorname{im}(g) \longrightarrow W$ and the second claim is trivial.

In order to summarize the previous 2 lemmas, we introduce the following assignment, which is well-defined by Lemma 2.5

$$\Psi: \Pi(f) \longrightarrow \Lambda(f): q \mapsto (\operatorname{im}(q), \ker(q))$$

We now have:

Lemma 2.7. Let $f \in \text{Hom}(V, W)$. Then:

- $\Pi(f) = \{g \in \operatorname{Hom}(W, V) \mid (f \circ g)|_{\operatorname{im}(f)} = \operatorname{Id} \ and \ (g \circ f)|_{\operatorname{im}(g)} = \operatorname{Id} \}$
- The assignments Φ and Ψ define 1:1 correspondences between $\Lambda(f)$ and $\Pi(f)$

Proof. The first claim simply restates Lemma 2.6. To prove the second, we note that $\Psi \circ \Phi = \operatorname{Id}$ by Lemma 2.5. Moreover, Φ is surjective by definition, implying that $\Phi \circ \Psi = \operatorname{Id}$ as well

We finish our discussion of pseudo-inverses by discussing a special choice of pseudo-inverse in $\Pi(f)$ that one can make if the vector spaces V and W are equipped with inner products. Indeed, recall the following standard result:

Lemma 2.8. Let $U \subset V$ be a subspace of a finite dimensional inner product space. Then $U \oplus U^{\perp} = V$

This leads us to the following Definition:

Definition 2.9. Let V, W be finite-dimensional inner product spaces and let $f \in \operatorname{Hom}_{\mathbb{R}}(V, W)$. Then the *Moore-Penrose pseudo-inverse* is the pseudo-inverse to the triple $(\ker(f)^{\perp}, \operatorname{im}(f)^{\perp}, f)$. We will denote it by f^+

It turns out that we can give a very satisfying description of Moore-Penrose pseudo-inverses:

Lemma 2.10. Let V, W be finite-dimensional inner product spaces and $f \in \text{Hom}(V, W)$. Then the following are equivalent:

- 1. g is the Moore-Penrose pseudo-inverse f^+ to f
- 2. g is a pseudo-inverse to f and $g \circ f$ and $f \circ g$ are self-adjoint linear maps
- 3. f and g satisfy $f \circ g \circ f = f$, $g \circ f \circ g = g$, $(g \circ f)^* = g \circ f$ and $(f \circ g)^* = f \circ g$

Proof. The equivalence $(2) \iff (3)$ is simply a restatement of Lemma 2.7.

We now prove $(2) \implies (1)$:

Assume that g is a pseudo-inverse to f and that $g \circ f$ and $f \circ g$ are both self-adjoint. then Lemma 2.5 implies that g is the pseudo-inverse to the triple $(\operatorname{im}(g), \ker(f), f)$. The claim will thus follow if we show that $\operatorname{im}(g) = \ker(f)^{\perp}$ and $\ker(g) = \operatorname{im}(f)^{\perp}$. By way of example, we will prove the former equality: First note that since $\operatorname{im}(g) \oplus \ker(f) = V$, it suffices to show that $\operatorname{im}(g) \perp \ker(f)$. Indeed, for $w \in W$ and $v \in \ker(f)$, we have:

$$\langle v\,,g(w)\,\rangle = \langle v\,,(g\circ f)(g(w))\,\rangle = \langle (g\circ f)^*(v)\,,g(w)\,\rangle = \langle (g\circ f)(v)\,,g(w)\,\rangle = \langle g(0)\,,g(w)\,\rangle = 0$$

The proof of $\ker(g) = \operatorname{im}(f)^{\perp}$ is analogous.

Finally, we show $(1) \implies (2)$:

Assume that g is the Moore Penrose pseudo-inverse to f. If g is the pseudo-inverse to the triple $(\ker(f)^{\perp}, \operatorname{im}(f)^{\perp}, f)$. We will show that $(f \circ g)$ is self-adjoint and leave the other claim to the reader. To this end, let $v, v' \in V$. Then

$$\langle v, g(f(v')) \rangle = \left\langle v - g(f(v)) + g(f(v)), g(f(v')) - v' + v' \right\rangle$$
$$= \left\langle v - g(f(v)), g(f(v')) \right\rangle + \left\langle g(f(v)), g(f(v')) - v' \right\rangle + \left\langle g(f(v)), v' \right\rangle$$

Now, since $f \circ g \circ f = f$, we conclude that v - g(f(v)) and g(f(v')) - v' lie in $\ker(f)$. Moreover, since $\ker(f) = \operatorname{im}(g)^{\perp}$, we conclude that

$$\langle v - g(f(v)), g(f(v')) \rangle = \langle g(f(v)), g(f(v')) - v' \rangle = 0$$

So that

$$\langle v, g(f(v')) \rangle = \langle g(f(v)), v' \rangle$$

implying that $f \circ g = (f \circ g)^*$. The equality $g \circ f = (g \circ f)^*$ is completely analogous.

Χ

As mentioned in the introduction of this section, our main motivation for studying the Moore-Penrose pseudo-inverse, is to provide a description of the projection of a vector onto the image of a linear map. We begin with the following preparatory lemma:

Lemma 2.11. Let V, W be finite-dimensional inner product spaces and $f \in \text{Hom}(V, W)$. Let $v \in V$ and $w \in W$. Finally denote the Moore-Penrose inverse of f by f^+ . Then the following are equivalent:

- 1. f(v) is the projection of w onto the subspace im(f)
- 2. v satisfies the normal equation $(f^* \circ f)(v) = f^*(w)$
- 3. v lies in the affine subspace $f^+(w) + \ker(f)$

Proof. The equivalence of $(1) \iff (2)$ is simply a restatement of Lemma 1.5.

To show the equivalence of (1) \iff (3), we first note that $f(f^+w) = \pi_{\text{im}(f)}$, where $\pi_{im(f)}$ is the projection onto the subspace $\text{im}(f) \subset W$ by Lemma 1.4. This shows that the vector $f^+(w) \in V$ indeed satisfies the condition (1). Next, assume (1), so that $v \in V$ satisfies $f(v) = \pi_{\text{im}(f)}(v)$ and write $v = f^+(w) + v'$. Then

$$f(v) = \pi_{\operatorname{im}(f)(w)} \iff f(f^+(w) + v') = \pi_{\operatorname{im}(f)}(w) \iff \pi_{\operatorname{im}(f)}(w) + f(v') = \pi_{\operatorname{im}(f)}(w) \iff v' \in \ker(f)$$

This proves the claim X

This lemma has an interesting corollary which allows us to write the Moore-Penrose even more explicitly which will play an important role later on:

Corollary 2.12. Let V be a finite dimensional vector space and W a finite dimensional inner product space. Let $f \in \text{Hom}(V, W)$ be injective and choose any inner product on V. Then

$$f^+ = (f^* \circ f)^{-1} \circ f^*$$

Proof. Since f is injective (so that $\ker(f) = 0$), f^+ is the pseudo-inverse to the triple $(V, \operatorname{im}(f)^{\perp}, f)$ by Definition 2.9. It follows immediately that this condition is independent of the inner product on V. To prove the formula, simply note that $f^* \circ f$ is invertible if f is injective and apply the second criterium of Lemma 2.11

3 Principal Component Analysis

3.1. the Principal component basis Throughout this section V will denote a fd. Euclidean space with inner product $\langle -, - \rangle$. We will also consider a finite subset $\Delta \subset V$ of data. The goal of this section is to exhibit an orthonormal basis for V which is fits the data suitably. We begin by defining the principal components of Δ , a specific choice of lines which span an orthonormal basis particularly compatible with Δ .

To make our exposition clearer, we introduce the notation $\langle \Delta, u \rangle \stackrel{\text{def}}{=} \{\langle x, u \rangle\}_{x \in \Delta} \in \mathbb{R}^{\Delta}$. Recall from Probability (TODO) that Δ defines the random variable $1_{\Delta} : V \longrightarrow \mathbb{R}$ whose pushforward probability is the sample probability on \mathbb{R} . Moreover, we can also consider the following random variable

$$X_u \stackrel{\text{def}}{=} V \longrightarrow \mathbb{R} : x :\mapsto \langle x, y \rangle \cdot 1_{\Delta}$$

Whose pushforward probability is the explained probability. More generally, we will prefix the different probabilistic concepts pertaining to this RV with the word *explained*.

We begin by constructing the first principal component, whose existence is guaranteed by the following theorem:

Theorem 3.1. Let $\overline{\Delta} = \frac{1}{|\Delta|} \sum_{x \in \Delta} x$ and let L be the set of lines through $\overline{\Delta}$ in V. Then there is a unique line $\ell \in L$ minimizing

$$\sum_{x \in \Lambda} ||x - \pi_{\ell}(x)||^2$$

Moreover, if we write $\ell = \overline{\Delta} + \mathbb{R}u$ with ||u|| = 1, then the above three quantities coincide:

- $\sum_{x \in \Delta} ||x \pi_{\ell}(x)||^2$
- the explained variance of X_u
- The largest eigenvalue of $M^t \cdot M$ where $\phi : V \longrightarrow \mathbb{R}^{\Delta}$ is given by $\phi(u) = \langle \Delta, u \rangle$

Definition 3.2. The principal component of Δ is the line $\ell \in L$ defined in the above theorem

Lemma 3.3. Let $\ell = \mathbb{R}u$ where ||u|| = 1. Then the following are equivalent:

- The mean square error $\sum_{x \in \Delta} ||x \pi_{\ell}(x)||^2$ is minimal
- $\sum_{x \in \Delta} \langle x, u \rangle^2$ is minimal

3.2. Application: Dimension Reduction

Proof. This is an easy exercise in bilinear forms

X

Remark 3.4. Note that if $\overline{\Delta} = 0$ (an assumption commonly made in ML), then the latter quantity is the explained variance of Δ in our terminology.

For the next lemma we recall that the spectral theorem tells us that a symmetric endomorphism always has basis of eigenvectors which can be chosen to be orthonormal.

Lemma 3.5. Assume $\overline{\Delta} = 0$. Consider the linear map

$$\phi: V \longrightarrow \mathbb{R}^{\Delta}: u \mapsto \langle \Delta, u \rangle$$

Let $u_1, \ldots u_n$ be an orthormal basis of eigenvectors for $\phi^t \circ \phi \in \operatorname{End}_{\mathbb{R}}(V)$. Then

- The eigenvalue for u_i is $\lambda_i \stackrel{\text{def}}{=} \sum_{x \in \Delta} \langle x, u_i \rangle$
- $\sup_{u \in B(0,1)} \sum_{x \in \Delta} \langle x, u \rangle = \max_i \{\lambda_i\}$

Proof. Let $u \in V$. Then the explained variance of Δ with respect to u is

$$\sum_{x \in \Delta} \langle x, u \rangle^2 = ||\phi(u)||_{\mathbb{R}^{\Delta}}^2 = \langle \phi(u), \phi(u) \rangle = \langle u, (\phi^t \circ \phi)(u) \rangle$$

Writing $u \stackrel{\text{def}}{=} \sum \alpha_i u_i$ wrt the orthonormal basis of eigenvectors then yields

$$\sum_{x \in \Lambda} \langle x, u \rangle^2 = \langle u, (\phi^t \circ \phi)(u) \rangle = \left\langle \sum_{x \in \Lambda} \alpha_i u_i, (\phi^t \circ \phi)(\sum_{x \in \Lambda} \alpha_i u_i) \right\rangle = \left\langle \sum_{x \in \Lambda} \alpha_i u_i, (\sum_{x \in \Lambda} \lambda_i \alpha_i u_i) \right\rangle = \sum_{x \in \Lambda} \lambda_i \alpha_i^2$$

In particular if $u = u_i$, we obtain the first claim. To prove the second, we assume additionally that $u \in B(0,1)$ and let λ_n be the largest eigenvalue. Then

$$\sum_{x \in \Delta} \langle x, u \rangle^2 = \sum_{i} \lambda_i \alpha_i^2 \le \lambda_n \sum_{i} \alpha_i^2 = \lambda_n$$

And this value indeed gets reached by u_n

X

proof of Theorem 3.1. First we claim that wlog we can assume that $\overline{\Delta} = 0$. Indeed

Next, by Lemma 3.3, we need to maximize the explained variance $\sum_{x \in \Delta} \langle x, u \rangle^2$ which by lemma 3.5 coincides with the largest eigenvalue. The line ℓ is now spanned by any corresponding eigenvector.

Since the endomorphism $\mathcal{L} \stackrel{\text{def}}{=} \phi^t \circ \phi$ plays a crucial role in our discussion, we give a more explicit description:

Lemma 3.6. The map $\mathcal{L}^t : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is given by the matrix whose (i, j)-component is $\langle x_i, u_j \rangle$.

Proof. Let M be said matrix. Then the j-th column is given by $M \cdot e_j$ (where e_j is of course the jth standard basisvector for \mathbb{R}^n).

Definition 3.7. the principal component basis of Δ is the orthonomormal basis of eigenvectors for the map \mathcal{L} .

3.3. Application: Dimension Reduction One can use PCA to find a way to reduce the dimension of the dataspace:

Definition 3.8. The reduction of order n of the dataset $\Delta \subset V$ is the image of the map

Definition 3.9. The pc reconstruction of order n of the dataset Δ is