Quiz 11 - Solutions

Monday, November 26, 2018 10:01 PM

Note: Your quiz might have different numbers.

Question 1:

Here is an SVM model. The weights are as follows:

w1 = 4

w2 = 3

w3 = -2 (note negative sign)

b = 1

And here is an object:

x1 = 5

x2 = 6

x3 = 30

What is the class of this object with respect to this SVM? (Note that the classes in SVM are represented as +1 or -1).

You should be able to calculate it without a calculator.

Question 2

We have a linear kernel SVM where weights can be calculated (slides 9 through 17). Here is a dataset and the corresponding α values.

X1	X2	Υ	α
1	1	+1	0
2	3	+1	8
2.5	3	-1	8
3	1	-1	0

Skylate wo and we what is without a calculator it without a calculator = < 16, 24 > - < 20, 24 > = < -4,0 >

Question 3

We have a linear kernel SVM where weights and the bias can be calculated. The data is linearly separable and hence we will use the hard-margin SVM (no slack variables). Here is a dataset and the corresponding α values.

	X1	X2	Υ	α
--	----	----	---	---

1	1	+1	0
2	3	+1	18
7/3	3	-1	18
3	1	-1	0

$$= \frac{2-6107}{41 \text{ Alternshirty}}$$

$$\frac{2-6107}{-12+6=1}$$

$$\frac{-12+6=1}{6=13}$$

$$\frac{-14+6=-1}{6=13}$$

Question 4

We have a hard-margin SVM with a Gaussian kernel (slide 19). We have 4 data points: d1, d2, d3, d4. Here is the corresponding dataset and α values.

Object	Υ	α
d1	+1	0
d2	+1	5
d3	-1	5
d4	-1	0

Swharks the biat have bare two 8s part vectors. We know that Note: if the above information is insufficient to calculate by then entired Xs have the following property in hard margin SVM, Support Vectors Xs have the following property For $d_2 = 5 \times (41) \times K(d_2, d_2) + 5 \times (-1) \times K(d_2, d_3) + b = +1$ Zdig; K(xi,xs) + 6 = 45 For d3: 5x(+1) xK(d3,d2) +5x(-1) xK(d3,d3) + b= -1 Note that K (02102) - K (03103) = 1 for Gaussian Kernels 5 - 5.K(d2,d2) + b = +1 Therefore 5x K(d3,d2) -5 + h= -1 All (1) 4 (2) · 2b=0 => b=0

11/27/2018 OneNote Online

Question 5

You need a calculator (or better yet, a python interpreter) to answer this question. We have a hard-margin SVM with a Gaussian kernel (slide 19). Here is a dataset and corresponding α values.

x1	x2	у	α
1.5	3	+1	0
2	3	+1	10
2.459	3	-1	10
3	3	-1	0

The Gaussian kernel parameter s is 1. What is the functional margin of the following data point?

Solutions credits, your total marking of <1,47 to

| 10 x (+1) x K (<1,47) <2,37) + 10 x (-1) x K (<1,47) <2,37)

| 10 x (+1) x K (<1,47) <2,37) + 10 x (-1) x K (<1,47) <2,37)

We know from question 4 that for a Gaussian kund, with two support vectors, the opposing labels, and equal of values, that b=0.

All we need is to calculate the above equation using a Pything unterpreter

For this porticular set of number, the answer is . 1.5865