

Intelligent Systems

Exercise 2- Design

Simon Reichhuber

5. November 2019

Christian-Albrechts-Universität zu Kiel, Winter Semester 2019

CONTENT

- 1. Organisatorial issues
- 2. Observer/Controller Pattern
- 3. Distribution variants
- 4. Python Visualization: WSA Lübeck

Organisatorial issues

ORGANISATORIAL ISSUES

 $\bullet \ \, \text{Inquiry} \rightarrow \\ \text{https://terminplaner4.dfn.de/uTaUnai9DBgI2II7liza3seg/admin}$

• Team forming

ORGANISATORIAL ISSUES

- Inquiry

 https://terminplaner4.dfn.de/uTaUnai9DBgI2II7liza3seg/admin
- New exercise date:
 Time and place: Monday 18:00 19:30, LMS2 R.Ü1 from 11.11.2019 to 27.1.2020
- Team forming

ROADMAP

Exercise 1	Organisation & Python Intro	/	29.10.2019
Exercise 2	Design / Signature Task I	/	05.11.2019
Exercise 3	Design II / Signature Task II		12.11.2019
Exercise 4	Preprocessing / Signature Task III		19.11.2019
Exercise 5	Representation		26.11.2019
Exercise 6	Similarities		03.12.2019
Exercise 7	Segmentation / Clustering		10.12.2019
Exercise 8	Classification / Anomaly Detection		17.12.2019
Exercise 9	Evaluation / Order		07.01.2020
Exercise 10	Quantification		14.01.2020
Exercise 11	Modelling		21.01.2020
Exercise 12	Learning/ Mutual Influences / Opt.		28.01.2020

Tabelle 1: Exercise schedule

Observer/Controller - Pattern

EXERCISE 1 - OBSERVER/CONTROLLER PATTERN

Explain the Observer/Controller pattern by choosing your own example. In detail, start with a real-world application and explain how the system can be optimised with the O/C Pattern by Observation and Control.

OBSERVER/CONTROLLER PATTERN

OBSERVER/CONTROLLER PATTERN - HOW TO

Be sure to define the following things:

- System boundaries
- Goal
- Sensors (internal/external)
- Actions

OBSERVER/CONTROLLER PATTERN - EXAMPLES

Example from the lecture Traffic light. Other candidates:

- Self-controlled heating system
- Elevator
- Cam Stabilizer
- ...

Distribution variants

EXERCISE 2 - DISTRIBUTION VARIANTS

- A. Classify the following distriuted systems into one of the categories: fully centralised, fully decentralised, and hybrid.
- B. Explain your decision by describing communication channels, process flows, and the level of autonomy.

MULTI LEVEL

- Additional layer 2 for offline learning
- Complex optimisation techniques on layer 2 (EA, Simulations, etc.)
- Different time scales (online/offline) for learning on layer 1 and layer 2

DISTRIBUTION VARIANTS - FULLY CENTRALISED

- System parameters globally accessible/adaptable
- No homogeneous agents
- Superagent

DISTRIBUTION VARIANTS - FULLY DECENTRALISED

- No global state accessible; but agent-specific local view and neighborhoods
- Homogeneous agents possible

DISTRIBUTION VARIANTS - HYBRID

- Global state accessible and agent-specific local view and neighborhoods
- Heterogenous structure of agents

EXERCISE 2 - DISTRIBUTION VARIANTS

- A. Classify the following distriuted systems into one of the categories: fully centralised, fully decentralised, and hybrid.
- B. Explain your decision by describing communication channels, process flows, and the level of autonomy.

EXERCISE 2 - DISTRIBUTION VARIANTS DISTRIBUTION AND COMMUNICATION

Name	Dist.	Communication Channel
P2P-Network	originally: fully-decentralised	Network packages
VCS GIT	fully-centralised	ssh
Ant colony	fully-decentralised	pheromones
Internet	hybrid	Internet protocol

Tabelle 2: Distribution variant examples

EXERCISE 2 - DISTRIBUTION VARIANTS PROCESSES AND AUTONOMY

Name	Process flow	Autonomy
P2P-Network	Ask / Provide	no autonomy
VCS GIT	pull/change/add/commit/push	deep copy of root
Ant colony	exploration / exploitation	no autonomy
Internet	REST-Queries	"no" client state

Tabelle 3: Distribution variant examples

Python Visualization: WSA

Lübeck

PYTHON

 $Python\ Visualization:\ WSA\ L\"{u}beck \\ \rightarrow https://www.pegelonline.wsv.de/webservices/files/Wasserstand+Rohdaten/OSTSEE/LT+KIEL$