

planetmath.org

Math for the people, by the people.

examples of continuous functions on the extended real numbers

 ${\bf Canonical\ name} \quad {\bf Examples Of Continuous Functions On The Extended Real Numbers}$

Date of creation 2013-03-22 16:59:34 Last modified on 2013-03-22 16:59:34 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 9

Author Wkbj79 (1863)

Entry type Example Classification msc 12D99 Classification msc 28-00 Within this entry, $\overline{\mathbb{R}}$ will be used to refer to the extended real numbers. Examples of continuous functions on \mathbb{R} include:

- Polynomial functions: Let $f \in \mathbb{R}[x]$ with $f(x) = \sum_{i=0}^{n} a_n x^n$ for some $n \in \mathbb{N}$ and $a_0, \ldots, a_n \in \mathbb{R}$ with $a_n \neq 0$ if $n \neq 0$. Then \overline{f} is defined in the following manner:
 - 1. If n = 0, then $\overline{f}(x) = a_0$ for all $x \in \overline{\mathbb{R}}$.

2. If
$$n$$
 is odd and $a_n > 0$, then $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ x & \text{if } x \notin \mathbb{R}. \end{cases}$

3. If
$$n$$
 is odd and $a_n < 0$, then $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ -x & \text{if } x \notin \mathbb{R}. \end{cases}$

4. If
$$n \neq 0$$
 is even and $a_n > 0$, then $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ \infty & \text{if } x \notin \mathbb{R}. \end{cases}$

5. If
$$n \neq 0$$
 is even and $a_n < 0$, then $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ -\infty & \text{if } x \notin \mathbb{R}. \end{cases}$

• Exponential functions: Let $f(x) = a^x$ for some $a \in \mathbb{R}$ with a > 0 and $a \neq 1$. Then \overline{f} is defined in the following manner:

1. If
$$a < 1$$
, then $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ 0 & \text{if } x = \infty \\ \infty & \text{if } x = -\infty. \end{cases}$
2. If $a > 1$, then $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ \infty & \text{if } x = \infty \\ 0 & \text{if } x = -\infty. \end{cases}$

2. If
$$a > 1$$
, then $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ \infty & \text{if } x = \infty \\ 0 & \text{if } x = -\infty. \end{cases}$

• Miscellaneous

1. Let
$$f(x) = \arctan x$$
. Then \overline{f} is defined by $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ \frac{\pi}{2} & \text{if } x = \infty \\ -\frac{\pi}{2} & \text{if } x = -\infty. \end{cases}$

2. Let $f(x) = \tanh x$. Then \overline{f} is defined by $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ 1 & \text{if } x = \infty \\ -1 & \text{if } x = -\infty. \end{cases}$

2. Let
$$f(x) = \tanh x$$
. Then \overline{f} is defined by $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{R} \\ 1 & \text{if } x = \infty \\ -1 & \text{if } x = -\infty. \end{cases}$

Of course, not every function f that is continuous on \mathbb{R} extends to a continuous function on $\overline{\mathbb{R}}$. Common examples of these include the real functions $x \mapsto \sin x$ and $x \mapsto \cos x$. (It is proven that these are continuous on \mathbb{R} in the entry continuity of sine and cosine.)

On the other hand, there are some continuous functions $\overline{f}: \overline{\mathbb{R}} \to \overline{\mathbb{R}}$ that have no analogous function $f: \mathbb{R} \to \mathbb{R}$. For example, consider

$$\overline{f}(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \in \mathbb{R} \setminus \{0\} \\ \infty & \text{if } x = 0 \\ 0 & \text{if } x = \pm \infty. \end{cases}$$