Vocabulaire:

- « rappeler » signifie donner le résultat directement, sans démonstration (证明).
- « déterminer » signifie utiliser les hypothèses (假设), expliquer le raisonnement (推理) et obtenir le résultat.

Exercice 1 : tracé de rayons

Les points représentés sont les foyers pour les lentilles et le centre pour le miroir.

Exercice 2: Images par un miroir plan et un miroir convexe

On place un objet lumineux A entre un miroir plan et un miroir convexe. Le miroir plan est perpendiculaire à CA, où C est le centre du miroir sphérique. L'objet est à la distance d_1 du miroir plan et à la distance d_2 du sommet S du miroir convexe. On note l'image A' donnée par le seul miroir plan et l'image A'' donnée par le seul miroir convexe. On observe que les images A' et A'' sont à <u>égale distance</u> de l'objet A lorsque $d_1 = 30$ cm et $d_2 = 40$ cm.

On veut déterminer le rayon du miroir convexe $R = \overline{SC}$.

Figure 1. Images par des miroirs.

- **1.a.** Déterminer l'image *A'B'* donnée par le <u>seul</u> miroir plan de l'objet *AB* représenté sur la figure 1. C'est-à-dire, faire la construction de l'image sur la figure 1.
- **1.b.** Selon la question 1.a., écrire la distance algébrique $\overline{AA'}$ en fonction de d_1 .

2.a. Rappeler la relation de conjugaison avec origine au sommet pour le miroir sphérique.

$$\frac{c}{\sqrt{32}} = \frac{\Lambda}{Ab} + \frac{\Lambda}{\sqrt{Ab}}$$

2.b. Déterminer la distance algébrique $\overline{SA''}$ en fonction de R et de d_2 . Faire attention, A'' est l'image de A donnée par le <u>seul</u> miroir convexe.

$$\frac{A}{\overline{SA''}} = \frac{2}{\overline{SV}} - \frac{A}{\overline{SA}} = \frac{2\overline{SA} - \overline{SV}}{\overline{SV} \cdot \overline{SA}}$$

$$i \cdot \cdot \cdot \cdot \overline{SV} = R \cdot \cdot \cdot \overline{SA} = -dz$$

$$\overline{AA''} - -dz R = -dz R$$

$$\Rightarrow \boxed{\sqrt[3]{A''}} = \frac{-d_2 R}{-2d_V - R} = \frac{d_2 R}{2d_2 + R}$$

2.c. En déduire la distance algébrique $\overline{AA''}$.

$$\overline{AA''} = \overline{AS} + \overline{SA''} = d_2 + \frac{d_2R}{2d_2+R} = \frac{2d_2(d_2+R)}{2d_2+R}$$

3.a. En déduire le rayon du miroir convexe R. Exprimer R en fonction de d_1 et d_2 .

3.b. Application numérique :

$$R = \frac{40 (40 - 30 \times 2)}{30 - 40} = 80 \text{ cm}$$

4. Vérifier les résultats par la construction de l'image dans la figure 1 *A"B"* donnée par le seul miroir convexe de l'objet *AB*.

Exercice 3 : Position du Soleil (太阳) vu par un poisson (鱼)

Les rayons du Soleil couchant (日落) viennent arriver la surface d'un lac (湖) sous une incidence égale à 90° . On assimile (近似看成) l'air au vide d'indice de réfraction égale à 1,00 et on prend l'indice de réfraction de l'eau n=1,33. Un faisceau de rayons est reçu par un poisson.

3

Figure 2. Soleil vu par un poisson.

1. Quelle est la direction apparente (显现的) du Soleil qui se couche (日落) pour un poisson dans le lac? C'est-à-dire, d' ta manua l'angle i.

loi che réfrentier.
$$1 \cdot \text{sm} \frac{\pi}{2} = n \cdot \text{sm} \Gamma$$

$$\Rightarrow \hat{I} = \Gamma = \text{art sm} \frac{4}{n}$$
A.N. $\hat{I} = \text{art sm} \left(\frac{4.00}{4.33}\right) = 48.8^{\circ}$

2. Déteminer une position du Soleil pour laquelle sa direction apparente pour le poisson coïncide (重合) avec sa direction réelle.

$$\Lambda \times \sin i = N \times \sin i$$
 et il fant $i = i$, alon $i = i = 0^{\circ}$

Exercice 4: Étude simplifiée d'un photocopieur (复印机)

Le procédé (过程) de reprographie (复印) est la formation de l'image du document à travers l'objectif de reproduction sur une plaque (板,片) photosensible (感光的) qui peut être considérée comme un récepteur (接收器). La reproduction d'un document de format A_4 peut se faire au même échelle (比例) $(A_4 \to A_4)$, en échelle $(A_4 \to A_3)$ (la surface du document est doublée (增加一倍)), ou encore en échelle $(A_4 \to A_5)$ (la surface est divisée par deux). Ces différentes échelles sont obtenus par la modification (改 变) de la position relative des lentilles à l'intérieur de l'objectif.

La distance entre le document et le récepteur photosensible est D=38,4 cm. Une première lentille L_1 de distance focale $f_1'=-9,00$ cm est placée à d=18,0 cm du récepteur.

Figure 3. Modèle (模型) optique d'un photocopieur.

1.bEst-ce qu'on peut obtenir une image du document sur le récepteur avec la seule lentille L_1 ? Expliquer pourquei.

Vobjet et seel (QA <0). la lentille 11 et direigente i fi <0). $\frac{1}{\overline{QA}} = \frac{1}{\overline{f_1}} + \frac{\Delta}{\overline{QA}} < 0$.

Alas 11 re pent pas danner une mage séclle (QA' >0, direitement observable

On place une lentille L' devant L_1 à d'=d=18,0 cm du document. Soit A_1B_1 l'image intermédiaire (中间的) de AB à travers L' et A'B' l'image définitive (最后的) de AB à travers les deux lentilles L' et L_1 (voir la figure 3).

2.a. Écrire la relation suivante avec le point et les lentilles décrits dans le sujet. Remplir (填空) des trois "?".

$$A \xrightarrow{?} ? \xrightarrow{?} A' \qquad A \xrightarrow{L'} A_1 \xrightarrow{L_1} A'$$

م. Rappeler la relation de conjugaison avec origine au <u>centre</u> O pour la lentille mince.

$$\frac{1}{0A'}$$
 - $\frac{1}{0A}$ = $\frac{1}{f'}$

2.b. Montrer que la distance focale f' de la lentille L' pour que l'image du document se forme sur le récepteur est égale à :

$$f' = \frac{d[D(f'_1 - d) + d(2d - f'_1)]}{D(f'_1 - d) + d^2}$$

$$\downarrow \frac{A}{0'A_4} - \frac{A}{0'A} = \frac{A}{1'}$$

$$\downarrow 1 \cdot \frac{A}{0'A_4} - \frac{A}{0'A_4} = \frac{A}{1}$$

$$\Rightarrow \frac{1}{0.4} - \frac{1}{0.4} + \frac{1}{1} \Rightarrow \frac{0.4}{0.4} = \frac{0.4}{0.4} + \frac{1}{1}$$

$$\frac{1}{\overline{01A}}, = \frac{1}{\overline{01A}}, -\frac{1}{\overline{11}}, \Rightarrow \overline{01A}, = \frac{\overline{01A} \cdot \underline{11}'}{\overline{11}' - \overline{01A}'}$$

id.
$$\overline{O'A} = -cl' = -cl$$
. $\overline{OAA} = cl$. on a $\overline{O'A_1} = \overline{O'O_4} + \overline{O_0A_1} = cD - 2cl$ $+ \overline{O_0A_1}$

$$\Rightarrow \frac{-dt'}{-d+t'} = D-1d + \frac{d+1'}{t'-d} = \frac{dt'}{d-t'}$$

$$f' = \frac{d[D(f_1'-d) + d(2d - f_2')]}{D(f_1'-d) + d^2}$$

2.C. Application numérique :

$$f' = \frac{18.0 \left[38.4 \left(-\frac{9}{9} - 18.0 \right) + 18.0 \left(\frac{36.0 + 9.00}{38.4} \right) \right]}{38.4 \left(-\frac{9.00 - 18.0}{38.0} + \frac{118.0}{38.0} \right)^{2}} = 5.73 \text{ CW}$$

3.a. Rappeler la <u>définition</u> du grandissement transversal notée γ .

$$\gamma \stackrel{\text{det}}{=} \frac{\overline{A'B'}}{\overline{AB}}$$

3.b. Rappeler la formule du grandissement transversal avec origine au centre optique O d'une lentille.

$$\gamma = \frac{\overline{O} N'}{\overline{O} A}$$

3.c. Déterminer le grandissement transversal γ_1 de l'association des deux lentilles en fonction de f_1', f' et d.

$$\frac{\boxed{\gamma_1}}{AB} = \frac{\boxed{A'B'}}{AB} = \frac{\boxed{A'B'}}{AB} \cdot \frac{\boxed{A4B_1}}{AB} = \frac{\boxed{O_1A'}}{O_1A_1} \cdot \frac{\boxed{O'A_1}}{O'A}$$

$$= \frac{\cancel{X}}{\cancel{At1'}} \cdot \frac{\cancel{At'}}{\cancel{1_1'}-\cancel{A}} \cdot \frac{\cancel{At'}}{-\cancel{A'}} = \frac{\cancel{1'} \cdot \cancel{1_1'}-\cancel{A}}{\cancel{1_1'} \cdot \cancel{1_1'}-\cancel{A}}$$

$$= \frac{\cancel{1'} \cdot \cancel{1_1'}-\cancel{A}}{\cancel{1_1'}-\cancel{A}} \cdot \frac{\cancel{A'}}{\cancel{1_1'}}$$

$$= \frac{\cancel{1'} \cdot \cancel{1_1'}-\cancel{A}}{\cancel{1_1'}-\cancel{A}}$$

3.d. Application numérique :

$$\gamma_1 = \frac{5.73 \times (-9.00 - 18.0)}{-9.00(5.73 - 18.0)} = -1.40$$

3.6. Quel type d'échelle permet cet objectif? Justifier (说明理由).

On a done
$$Y_1^2=1.96\cong 2$$
: la nutare du document est multipliée par 2 . L'échelle est donc $A_4\to A_3$.

En fait, la lentille L' est constituée de deux lentilles <u>accolées</u> L_2 et L_3 . Deux lentilles minces sont accolées si leurs centres sont quasi (几乎) -confondus. L_2 est identique (相同的) à L_1 .

4.a. Rappeler la définition de la vergence v d'une lentille.

$$V \stackrel{\text{out}}{=} \frac{1}{4}$$

4.b. On note v' la vergence de la lentille L' et v_1 la vergence de L_1 . Déterminer la vergence v_3 de la lentille L_3 .

poin deux lentilles accolées and
$$v' = V_2 + V_3 = V_1 + V_3$$

$$\Rightarrow V_3 = v' - V_1$$

4.c. En déduire la distance focale f_3' de la lentille L_3 en fonction des distances focales f_1' et f'.

4.d. Application numérique :

$$f_3' = \frac{5, \frac{3}{3}(-9.00)}{-9.00-5, \frac{3}{3}} = 3.50 \text{ cm}$$

On déplace la lentille L_3 pour que L_3 soit accolée à L_1 .

5.a. Justifier que l'image du document se forme encore sur le récepteur.

longue la lentille 2 s glise pour s'accoler à 21. on a 12' = 5.73 cm et f'=f'=9.00 cm. À condition que la lumrère se propage en reus innerse. D'après le principe du retour illiere, les relations de conjugaison sont toujours résipées. L'image se fait toujours sur le résupteur.

5.b. Déduire le grandissement tranversal γ_2 de l'association de ces trois lentilles en fonction de γ_1 d'après la question 5.a..

D'après la dernière question, on sait que
$$Y_2 - \frac{1}{y_2}$$

5.c. En déduire le type d'échelle obtenu. Justifier.

On a alors $Y_2 \stackrel{*}{=} \frac{1}{2}$. In install do document est réduite d'un faiteur 2. l'échelle obtenue st $A4 \longrightarrow As$.