Lecture 9: Machine Learning Árboles y Bosques

Big Data and Machine Learning en el Mercado Inmobiliario Educación Continua

Ignacio Sarmiento-Barbieri

Universidad de los Andes

September 13, 2021

Agenda

- 1) Más allá de la linealidad
- 2 Bagging and Random Forests
 - Comparación: Árboles y Bosques
- 3 Review & Next Steps
- 4 Para seguir leyendo
- 5 Break

Más allá de la linealidad

- ► El objetivo es predecir *Y* dadas otras variables *X*. Ej: precio vivienda dadas las características
- ► Asumimos que el link entre *Y* and *X* esta dado por el modelo:

$$Y = f(X) + u \tag{1}$$

- ► Hasta ahora vimos modelos lineables o linealizables.
 - Regresión lineal, polinomial, escalonadas, splines, regresión local
- ► Árboles (CARTs)
 - ► Modelo flexible e interpretable para la relación entre Y y X.
 - ► Para que? No-linealidades, interacciones.

- 1 Y es la variable a predecir, los insumos son X_1 y X_2
- 2 Partimos el espacio (X_1, X_2) en dos regiones, en base a una sola variable (particion horizontal o vertical).

- 1 Y es la variable a predecir, los insumos son X_1 y X_2
- 2 Partimos el espacio (X_1, X_2) en dos regiones, en base a una sola variable .
- 3 Dentro de cada región proponemos como predicción la media muestral de Y en cada región.
- 4 Punto: elegir la variable y el punto de partición de manera optima (mejor ajuste global).

- 1 Y es la variable a predecir, los insumos son X_1 y X_2
- 2 Partimos el espacio (X_1, X_2) en dos regiones, en base a una sola variable .
- Dentro de cada región proponemos como predicción la media muestral de Y en cada región.
- 4 Punto: elegir la variable y el punto de partición de manera optima (mejor ajuste global).

- 1 Y es la variable a predecir, los insumos son X_1 y X_2
- 2 Partimos el espacio (X_1, X_2) en dos regiones, en base a una sola variable (partición horizontal o vertical).
- Dentro de cada región proponemos como predicción la media muestral de Y en cada región.
- 4 Punto: elegir la variable y el punto de partición de manera optima (mejor ajuste global).
- 5 Continuamos partiendo

- ► Tenemos datos $Y n \times 1$ (precio) y $X n \times p$ (características)
- Definiciones
 - ightharpoonup j es la variable que parte el espacio y s es el punto de partición
 - Defina los siguientes semiplanos

$$R_1(j,s) = \{X | X_j \le s\} \& R_2(j,s) = \{X | X_j \ge s\}$$
 (2)

ightharpoonup El problema se reduce a buscar la variable de partición X_j y el punto s de forma tal que

$$\min_{j,s} \left[\min_{c_1} \sum_{x_i \in R_1(j,s)} (y - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j,s)} (y - c_2)^2 \right]$$
(3)

Para cada variable y punto, la minimización interna es la media

$$\hat{c}_m = \frac{1}{n_m} \sum (y_i | x_i \in R_m) \tag{4}$$

► El proceso se repite para todas las regiones

Para cada variable y punto, la minimización interna es la media

$$\hat{c}_m = \frac{1}{n_m} \sum (y_i | x_i \in R_m) \tag{4}$$

- ► El proceso se repite para todas las regiones
- ► El árbol final tiene M regiones

$$\hat{f}(x) = \sum_{m=1}^{M} \hat{c}_m I(x \in R_m)$$
(5)

- ► El árbol creció, como lo paramos?
- ► Si el árbol es muy grade, tenemos overfit
- ▶ Un árbol mas chico, puede tener menos regiones. Esto puede llevar a una varianza menor y mejor interpretación al costo de un poco sesgo.
- Solución: Pruning (poda)
 - ightharpoonup Dejar crecer un árbol muy grande T_0
 - Cortarlo te quedas con un sub-árbol (subtree)
 - Como determinamos la mejor forma de cortarlo? → menor error de predicción usando cross-validation

- Desventaja, calcular el error de predicción usando cross-validation para cada sub-árbol posible es demasiado (muchos sub-árboles posbiles)
- ▶ Solución: *Cost complexity pruning (cortar las ramas mas débiles)*
 - ► Indexamos los arboles con *T*.
 - Un sub-árbol $T \in T_0$ es un árbol que se obtuvo colapsando los nodos terminales de otro árbol cortando ramas.
 - ightharpoonup [T] = número de nodos terminales del arbol 3 T

Cost complexity del árbol *T*

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} n_m Q_m(T) + \alpha[T]$$
 (6)

- donde $Q_m(T) = \frac{1}{n_m} \sum_{x_i \in R_m} (y_i \hat{c}_m)^2$ para los árboles de regresión
- $\triangleright Q_m(T)$ penaliza la heterogeneidad dentro de la regresión y el número de regiones
- Objetivo: para un dado α , encontrar el pruning optimo que minimice $C_{\alpha}(T)$

14 / 28

- Mecanismo de búsqueda para T_α (pruning optimo dado α).
 - **Para Cada** α hay un sub-árbol único T_{α} que minimiza C α (T).
 - Ramas mas débiles: eliminar sucesivamente las ramas que producen un aumento mínimo en $\sum_{m=1}^{[T]} n_m Q_m(T)$
 - ▶ Idea: remover ramas es colapsar, esto aumenta la heterogenidad, ergo, colapsamos las particiones menos necesarias.
 - Esto eventualmente colapsa hasta el nodo inicial (stump) pero va a través de una sucesión de árboles, que va del mas grande al mas pequeño cortando las ramas mas débiles.
 - **b** Breiman et al. (1984): T_{α} pertenece a esta sequencia.
 - Uno puede enfocar la búsqueda en esta sucesión de sub-árboles.
 - ightharpoonup Elección de α : cross validation.

Árboles vs. Modelos Lineales

- ► Cuál modelo es mejor?
 - ► Si la relación entre los predictores y la respuesta es lineal, los modelos lineales clásicos, como la regresión lineal, superan a los árboles de regresión.
 - Por otro lado, si la relación entre los predictores no es lineal, los árboles de decisión superarían a los enfoques clásicos.
 - Arriba: el límite es lineal
 - ► Izquierda: modelo lineal (bueno)
 - Derecha: árbol
 - Abajo: el límite es no-lineal
 - ► Izquierda: linear model
 - ► Derecha: arbol (good)

Ventajas y Desventajas de los Árboles

Pros:

- Los árboles son muy fáciles de explicar a las personas (probablemente incluso más fáciles que la regresión lineal)
- Los árboles se pueden trazar gráficamente y son fácilmente interpretados incluso por no expertos. Variables más importantes en la parte superior
- Funcionan bien en problemas de clasificación y regresión.

Cons:

- Los árboles no son muy precisos o robustos (ensamblados, bosques aleatorios y boosting al rescate)
- ► Si la estructura es lineal, CART no funciona bien

Bagging

- ▶ Problema con CART: varianza alta.
- Podemos mejorar mucho el rendimiento mediante la agregación
- ► Bagging:
 - ▶ Obtenga repetidamente muestras aleatorias $(X_i^b, Y_i^b)_{i=1}^N$ de la muestra observada.
 - Para cada muestra de arranque, ajuste un árbol de regresión $\hat{f}^b(x)$
 - Promedie las muestras de bootstrap

$$\hat{f}_{bag} = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{b}(x) \tag{7}$$

- Básicamente estamos suavizando las predicciones.
- ▶ Idea: la varianza del promedio es menor que la de una sola predicción.

- ▶ Problema con el bagging: si hay un predictor fuerte, diferentes árboles son muy similares entre sí. Si hay alta correlación, ¿está realmente reduciendo la varianza?
- ▶ Bosques (forests): reduzca la correlación entre los árboles en el boostrap.
- ightharpoonup Si hay p predictores, en cada partición use solo m < p predictores, elegidos al azar.
- ightharpoonup Bagging es forests con m=p (usando todo los predictores en cada partición).
- ▶ Tipicamente $m = \sqrt{(p)}$

Trees:

Residuales en muestra

MSE Fuera de Muestra

Repaso & Próxima Clase

- Árboles
- ► Bagging y Bosques (Random Forests)
- Próxima Clase: Boosting

Para seguir leyendo

- ▶ Breiman, L. (2001). "Random Forests". In: Machine Learning. ISSN: 1098-6596. DOI: 10.1017/CBO9781107415324.004. eprint: arXiv:1011.1669v3.
- ► Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.
- ▶ James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
- ► Kasy M. (2019). Trees, forests, and causal trees. Mimeo.
- ► Taddy, M. (2019). Business data science: Combining machine learning and economics to optimize, automate, and accelerate business decisions. McGraw Hill Professional.

Volvemos en 5 min con Python