Finite Field

AK Bhateja

Ring

- Definition: A ring is a set *R* together with two binary operations, '+' and '.', called addition and multiplication, such that:
 - -(R, +) is an abelian group
 - the product $r \cdot s$ of any two elements $r, s \in R$ is in R
 - Multiplication is associative
 - for all $r, s, t \in \mathbb{R}$: $r \cdot (s + t) = r \cdot s + r \cdot t$ and $(r + s) \cdot t = r \cdot t + s \cdot t$ (multiplication is distributive over addition).

Ring

- Commutative Ring: Ring R is said to be commutative if multiplication is commutative.
 - Example: Z set of integers and nZ are commutative rings
- Ring with unity: If there is an element 1 in R such that $r \cdot 1 = 1 \cdot r = r$ for any $r \in R$, then 1 is called an identity (or unit) element. As for groups the identity is unique if it exists.
- Zero divisors: If in a ring R there exists r and s in R s.t. rs = 0 when $r \neq 0$, $s \neq 0$, then r is called a left zero divisor and s a right zero divisor.
- Ring without zero divisors: A ring R is without zero divisors if $rs = 0 \Rightarrow r = 0$ or s = 0 for all $r, s \in R$, then R is called ring without zero divisors.

Integral Domain & Division Ring

- Integral domain: A ring is called integral domain if it
 - (i) is commutative
 - (ii) has unit element
 - (iii) is without zero divisors.

Example: Z set of integers is integral domain

- Skew field or a division ring: A ring R is called division ring or skew field if it
 - (i) has unity
 - (ii) is such that each non-zero element possesses multiplicative inverse

Example. Skew field: Set of matrices of the form

$$\begin{pmatrix} a & \overline{b} \\ -b & \overline{a} \end{pmatrix}$$

Field

- Field: A ring is called a field if it
 - (i) is commutative
 - (ii) has unity
 - (iii) is such that every non-zero element possesses multiplicative inverse

Example: Q, R, and C are fields.

Let p be prime. \mathbb{Z}_p is a field.

$$Z_p = \{0, 1, 2, 3, \dots, p-1\}$$

Theorem: Every field is an integral domain

Proof: Let $(F, +, \cdot)$ be a field

Let $a, b \in F$, with $a \neq 0$

Since $a \in F$, therefore a^{-1} exists.

Let
$$ab = 0 \Rightarrow a^{-1}ab = a^{-1}0 \Rightarrow b = 0$$

Similarly let $b \neq 0$ but $ab = 0 \Rightarrow ab \ b^{-1} = 0 \ b^{-1} \Rightarrow a = 0$

Thus *F* is without zero divisors. Hence *F* is an integral domain

Converse of this is not true.

Example: Z set of integers is integral domain but not a field.

Let *p* be prime. Z_p is a field. $Z_p = \{0, 1, 2, 3, ..., p-1\}$

Theorem: The integer ring $(Z_n, +, .)$ is a field if and only if n is prime.

Proof: Let n be prime & $m \in \{0, 1, ..., n-1\}$ and suppose that m has no inverse in \mathbb{Z}_n .

Then none of the *n* numbers 0m, 1m, 2m, . . . , (n-1)m under mod *n* can be equal to 1.

So this list must contain two numbers which are equal in \mathbb{Z}_n .

Hence we have $im \equiv jm \pmod{n}$ or $(i - j)m \equiv 0 \pmod{n}$ for some i, j with 0 < i - j < n.

Since p is prime one of the numbers i - j or m must be a multiple of n and considering their ranges the only possibility is m = 0

Hence 0 is the only element with no inverse and so Z_n is a field To complete the proof we show that if n is not prime, then Z_n is not a field.

If $n \ge 2$ is not prime then we can write n = qr for some $q, r \ge 2$. But now we have two nonzero elements q and r whose product is the zero element of Z_n .

Since this is not possible in a field it follows that Z_n is not a field.

• Definitions. A subset U of a field F is called a subfield of F, in symbols $U \le F$, if U is a subset of F and U is a field with respect to the operations in F.

Field $(F, +, \cdot)$ is called an extension field (or extension) of the field $(U, +, \cdot)$

- U is a subfield of F, and $U \neq F$, then $(U, +, \cdot)$ is called a proper subfield of $(F, +, \cdot)$, in symbols U < F.
- Prime field: A field *P* is called a prime field if it has no proper sub fields.

Example: Q is a prime, R is not prime.

The field Z_p is prime field.

Characteristics

- Definition. Characteristic of a ring/field: The characteristic of R is the smallest natural number k with k $r = r + \cdots + r$ (k-times) equal to $0 \forall r \in R$. Then we write char R = k.
- Characteristic is order under addition
- If no such *k* exists, then *R* is said to be of characteristic zero or infinite.
- Z has characteristic 0, because 1 has infinite order under addition.
- Z_n has characteristic n
- If $Z_6 = \{0, 1, 2, 3, 4, 5\}$, characteristic of the ring $(Z_6, +_6, \times_6)$ is 6 since $6x = 0 \ \forall \ x \in \mathbb{R}$
- So if k = char R, all elements in the group (R, +) have an order dividing k.

Theorem: The characteristic of an integral domain D is either 0 or a prime number.

Proof; (By contradiction): Suppose that it is not true that the characteristic is either 0 or prime.

Then the characteristic is a +ve non-prime number. Let it be mn.

Then mn(r) = 0, $\forall r \in R$, by definition of characteristic. Therefore

$$0 = r + r + r + ... + r$$
 (mn times)

$$0 = (r + r + ... + r) + (r + r + ... + r) + ... + (r + r + ... + r)$$
 (*m* groups of *n r*'s)

$$0 = n r + n r + ... + n r (m \text{ times}) = n mr = (n)(m r) \text{ or } m(n r)$$

But neither *nr* nor *mr* is 0

This means D has zero divisors, contradicting the fact that D is an integral domain.

This contradiction proves the theorem.

Characteristic of a field

- Every field is an integral domain, therefore the characteristic of any field is either 0 or a prime number.
- A field of non-zero characteristic is called a field of finite characteristic or positive characteristic or prime characteristic.

Vector Space

- Definition. Let $(F, +, \cdot)$ be a field. A nonempty set V is said to be a vector space over the field F if
 - 1. Set V is an abelian group under '+'
 - 2. For every $a \in F$, $\alpha \in V$; $a\alpha \in V$ i.e. V is closed under '·' (scalar multiplication)
 - 3. The two compositions '+' (vector addition) and '.' (scalar multiplication) satisfy the following:
 - (i) $a \cdot (\alpha + \beta) = a \cdot \alpha + a \cdot \beta \quad \forall \ a \in F, \ \forall \ \alpha, \beta \in V$
 - (ii) $(a+b)\cdot\alpha = a\cdot\alpha + b\cdot\alpha \quad \forall \ a, b \in F, \ \forall \ \alpha \in V$
 - (iii) $(a\ b)\cdot\alpha = a\cdot(b\cdot\alpha)\ \forall\ a\ ,b\in F,\ \forall\ \alpha\in V$
 - (iv) $1 \cdot \alpha = \alpha \ \forall \ \alpha \in V \& 1$ is the unity element of the field F.

The elements of field F are called scalars and the elements of elements of the vector space are called vectors.

Vector space V over F is denoted by V(F)

Example 1: Let F be a field and let K be a field which contains F as a subfield i.e. $F \le K$. We consider K as a vector space over F.

Justification: K is a field, therefore (K, +) is an abelian group.

 $F \le K$, therefore $a\alpha \in K$ for every $a \in F$, $\alpha \in K$

1 is the unity element of K, then 1 is also unity element of the subfield F.

The following conditions will also be true.

(i)
$$a(\alpha + \beta) = a\alpha + a\beta \quad \forall \ a \in F, \ \forall \ \alpha, \beta \in V$$

(ii)
$$(a+b) \alpha = a\alpha + b\alpha \quad \forall \ a, b \in F, \ \forall \ \alpha \in V$$

(iii)
$$(a \ b) \ \alpha = a \ (b \ \alpha) \ \forall \ a \ , b \in F, \ \forall \ \alpha \in V$$

(iv) $1\alpha = \alpha \quad \forall \ \alpha \in V$ and 1 is the unity element of the field F.

Example 2: *C* is a vector space over *R*.

Note: If F is any field, then F itself is a vector space over the field F.

Basis of a Vector Space

- Definition. A subset S of a vector space V(F) is said to be a basis of V(F) if
 - (i) S consists of linearly independent vectors.
 - (ii) S generates V(F) i.e. L(S) = V i.e. each vector in V is a linear combination of a finite number of elements of S.

Example: A set S consisting of *n* vectors

$$e_1 = (1, 0, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, 0, 0, ..., 1)$$
 is a basis of $V_n(F)$

- The number of elements in the basis S is called Dimension of the vector space.
 - e.g. Dimension of $V_n(F)$ is n.

Polynomial over a field

• Let *F* be a field and let *x* (called an indeterminate) be any symbol not an element of *F*. Expression

 $f(x) = a_0 + a_1 x + a_2 x^2 + \dots$ where a_0 , a_1 , a_2 ... are elements of F and only finite number of them are non-zero elements of F.

• Set of all polynomials over a Field *F*:

 $F[x] = \{a_0 + a_1x + a_2x^2 + \dots \mid a_i \in F \text{ and only finite number of them are non-zero}\}$

Theorem: If F is a field, then the set F[x] of all polynomials over F is an integral domain, not a field.

Proof: It is easy to prove that F[x] is integral domain.

To prove F[x] is not a field:

Let f(x) be a non-zero polynomial.

Unity element of F[x] is $1 + 0x + 0x^2 + ...$ deg[unit polynomial] = 0

Suppose g(x) be a non-zero polynomial, which is inverse of f(x).

$$deg [f(x), g(x)] = deg f(x) + deg g(x) > 0,$$

while $deg[unit polynomial] = 0$

Thus f(x) does not possess multiplicative inverse.

Therefore F[x] is not a field.

Irreducible Polynomial

- Definition. Let $p, q \in R[x]$. We say that p divides q (denoted by $p \mid q$) if $q = p \cdot r$ for some $r \in R[x]$. If deg q > deg p > 0, then p is called a proper divisor of q.
- Definition. Irreducible polynomial: A polynomial q with deg $q \ge 1$ which has no proper divisors is called irreducible.
- Every polynomial of degree 1 is, irreducible.
- A monic irreducible polynomial is called a **prime** polynomial
- In $Z_3[x]$, $x^2 + 2x$ has non-trivial divisors x, x + 2 and is not irreducible

Definition. (Mobius function):

The mapping
$$\mu: \mathbb{N} \to \{0, 1, -1\}$$
 defined by

$$\mu(1) = 1$$
,

$$\mu\left(p_1\cdots p_t\right) = (-1)^t$$

 $\mu(p_1 \cdots p_t) = (-1)^t$ if p_i are distinct primes,

$$\mu\left(n\right) =0,$$

if $p^2 \mid n$ for some prime p

is called the **Mobius function** or μ -function.

The number of monic irreducible polynomials of degree m over Z_p is given by

$$N_p(m) = \frac{1}{m} \sum_{d/m} \mu(d) p^{m/d}$$

The probability of a random monic polynomial of degree m in $Z_p[x]$ being irreducible over Z_p is

$$\frac{N_p(m)}{p^m} \approx \frac{1}{m}$$

- Euclidean Division: Let F be a field and f, $g \in F[x]$ with $g \neq 0$. Then there exist uniquely determined q, $r \in R[x]$ s.t. f = gq + r and $deg \ r < \deg g$.
- Greatest common divisor of two polynomials:
 Let f and g ∈ F[x] with f ≠ 0 or g ≠ 0, then there exists a monic polynomial of greatest degree d in F[x] s.t.
 d | f and d | g then gcd(f, g) = d.
- The polynomials f and g are called relatively prime (or coprime) if gcd(f, g) = 1.
- An element r of a field F is a root of the polynomial $p \in F[x]$ iff x- r divides p.

Extension Field

- *K* is vector space over *F*. Suppose *F* is a field. Then a field *K* is called an extension of *F* if *F* is a subfield of *K*.
- If *K* is extension field of *F* then *K* is vector space over *F*.
- Degree of extension field: Dimension of vector space K(F) is the degree of K. Degree of extension field is denoted by [K:F].
- Finite field extension: Let *K* be an extension field of *F*. Then *K* is said to be a finite extension of *F* if the degree of *K* over *F* is finite.

Extension Field: Examples

- If F is any field then F can be regarded as a subfield of F. Therefore F can be thought of as an extension of F.
- The field C of complex numbers is a finite extension of the field R of real numbers.
- [C:R] = 2, because $\{1, i\}$ is basis of the vector space C(R).

The set $\{1, i\}$ generates the elements of C.

Set
$$C = \{a + bi : a, b \in R\}$$

Theorem. Let *L* be a finite extension of *K* and let *K* be a finite extension of *F*. Then

$$[L:K][K:F] = [L:F].$$

Proof: Let $\{\alpha_i \mid i \in I\}$ be a basis of L over K and let $\{\beta_i \mid j \in J\}$ be a basis of K over F.

It is not hard to verify that the $|I| \cdot |J|$ elements $\{\alpha_i \beta_j \mid i \in I, j \in J\}$ form a basis of L over F.

Theorem. Let F be a finite field of characteristic p. Then F contains p^n elements, where $n = [F : Z_p]$.

Proof: The field F, considered as a vector space over its prime field Z_p , contains a finite basis of n elements.

Each element of F can be expressed as a unique linear combination of the n basis elements with coefficients in Z_p . Therefore there are p^n elements in F.

Let basis of F be $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and α be any element of F, then $\alpha = a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n$ where $a_i \in Z_p$

Primitive elements

• Let F be a finite field with q elements. The multiplicative group (F^*, \cdot) of the nonzero elements of F is cyclic of order q - 1.

$$F = \{0, 1, \alpha, \alpha^2, ..., \alpha^{q-2}\}\$$
, where $\alpha^{q-1} = 1$

- Such an element α is called a primitive root modulo q.
- A generator of the cyclic group of a finite field *F* is called a primitive element.

Constructing field extensions by adjoining elements

Example 1: Consider the field $Q(\sqrt{2})$.

$$Q(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in Q\}$$

Multiplication works by

$$(a + b\sqrt{2}) (c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}.$$

$$[Q(\sqrt{2}):Q] = 2$$
, The set $\{1, \sqrt{2}\}$ is a basis of $Q(\sqrt{2})$.

Example 2: The field $Q(\sqrt{2}, \sqrt{3})$ is a finite extension of Q.

$$Q(\sqrt{2}, \sqrt{3}) = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{2}\sqrt{3} : a, b, c, d \in Q\}$$

$$[Q(\sqrt{2}, \sqrt{3}): Q] = 4.$$

Basis of
$$Q(\sqrt{2}, \sqrt{3})$$
 is $\{1, \sqrt{2}, \sqrt{3}, \sqrt{2}, \sqrt{3}\}$

Algebraic & Transcendental elements

- Algebraic element: Let K be an extension field of F. An element $\alpha \in K$ is said to be algebraic over F, if there exists a non-zero polynomial $f(x) \in F[x]$ for which $f(\alpha) = 0$
 - i.e. $\alpha \in K$ is algebraic over F if \exists elements a_0, a_1, \ldots, a_n in F, not all 0, such that $a_0 + a_1 \alpha + \ldots + a_n \alpha^n = 0$
- The degree of the minimal polynomial $f(x) \in F[x]$ for which $f(\alpha) = 0$ is called degree of an algebraic element α .
- Transcendental element: Let K be an extension field of F. An element $\alpha \in K$ is said to be transcendental over F if it is not algebraic over F.
- Example:

$$\alpha_1 = \sqrt{2}$$
, $\alpha_2 = \sqrt[3]{7}$ are algebraic over Q.

 π and e (both irrational numbers) are transcendental over Q but algebraic over the field of real numbers R.

Algebraic Field Extension

- A field extension [K : F] is called **algebraic** if every element of K is algebraic over F.
 - i.e. if every element of *K* is a root of some non-zero polynomial with coefficients in *F*.
- Field extensions that are not algebraic, i.e. which contain transcendental elements, are called **transcendental field extension**.
- For example, the field extension [R:Q], that is the field of real numbers as an extension of the field of rational numbers, is transcendental, while the field extensions [C:R] and $[Q(\sqrt{2}):Q]$ are algebraic.

Splitting Field

- A polynomial $f(x) \in F[x]$ is said to *split* in an extension K of F if f(x) factors completely into linear factors in K[x].
- The field K is called a splitting field of f(x) over F if f(x) splits in K, but does not split in any proper subfield of K containing F.
- Degree of this extension field K is n (degree of the polynomial f(x)).
- Examples: C is splitting field of $x^2 + 1$ over R

Definition: Let K be a field and let $f(x) \in K[x]$ be a monic irreducible polynomial (prime polynomial) of degree n. Then

$$K[x]/(f) = \{a_0 + a_1x + \dots + a_{n-1}x^{n-1} \text{ where } a_0, a_1, \dots, a_{n-1} \in K\}$$

Theorem: Let K be a field and let $f \in K[x]$ be a monic irreducible polynomial (prime polynomial). Then K[x]/(f) is a field.

Proof: K[x]/(f) is a ring.

Let $g \in K[x]$ as a polynomial of degree less than f.

Since f is irreducible, and deg $g < \deg f$

By the Euclidean algorithm for polynomials

we obtain some $h, k \in K[x]$ with gh + fk = 1 as elements of K[x].

$$\Rightarrow gh - 1 = -fk \text{ in } K[x]$$

$$\Rightarrow gh = 1 \mod f(x)$$

 \Rightarrow Polynomial h is inverse of g under modulo f(x).

Hence K[x]/(f) is a field.

Note: For a prime p and positive integer n, there is an irreducible polynomial f(x) of degree n in $Z_p[x]$, and $Z_p[x]/(f(x))$ is a field of order p^n .

Example: Consider field $Z_2 = \{0, 1\}$, then $Z_2[x]/(x^2 + x + 1)$ is a field of order 4.

The polynomial $x^2 + x + 1$ is irreducible in \mathbb{Z}_2 , because it has no root in \mathbb{Z}_2 .

Therefore $Z_2[x]/(x^2+x+1)$ is a field of order 4.

$$Z_2[x]/(x^2 + x + 1) = \{a + b\alpha : a, b \in \mathbb{Z}_2, \text{ where } \alpha \text{ satisfies } f(x)\}\$$

i.e., $\alpha^2 + \alpha + 1 = 0$,

which means that $\alpha^2 = \alpha + 1$.

Hence $Z_2[x]/(x^2 + x + 1)$ is a field with four elements:

$$Z_2[x]/(x^2+x+1) = \{0, 1, \alpha, 1+\alpha\}.$$

For instance, $\alpha(1 + \alpha) = \alpha + \alpha^2 = \alpha + \alpha + 1 = 1$.

Addition & Multiplication tables of $Z_2[x]/(x^2 + x + 1)$

+	0	1	α	$1 + \alpha$
0	0	1	α	$1 + \alpha$
1	1	0	$1 + \alpha$	α
α	α	$1 + \alpha$	0	1
$1 + \alpha$	$1 + \alpha$	α	1	0

•	0	1	α	$1 + \alpha$
0	0	0	0	0
1	0	1	α	$1 + \alpha$
α	0	α	$1 + \alpha$	1
$1 + \alpha$	0	$1 + \alpha$	1	α

References

- Rudolf Lidl & Gunter Pilz, "Applied Abstract Algebra", Springer
- I.N. Herstein, "Topics in Algebra", Wiley
- Alfred J. Menezes, Pall C. van Oorschot, Scott A. Vanstone, "Handbook of Applied Cryptography", CRC Press