ÔN TẬP HỆ THỐNG KIẾN THỰC 11 (PHẦN HỮU CƠ)

Dạng 1: Đốt cháy m_A gam chất hữu cơ A thu được m_{CO_2} và m_{H_2O} .

a/. Xác định khối lượng các nguyên tố có trong m_A gam chất hữu cơ A.

b/. Xác định % khối lượng các nguyên tố có trong m_A gam chất hữu cơ A. Giải:

a/.
$$m_{C} = \frac{12}{44}.m_{CO_{2}} = 12.n_{CO_{2}}(g)$$

$$m_{H} = \frac{12}{44}.m_{H_{2}O} = 12.n_{H_{2}O}(g)$$

$$m_{O} = m_{A} - (m_{C} + m_{H})$$

$$C\%(C) = \frac{m_{C}}{m_{A}}.100\%$$

$$C\%(H) = \frac{m_{H}}{m_{A}}.100\%$$

$$\%O = 100\% - (\%C + \%H)$$

Chú ý: Trong trường hợp đề bài toán cho thể tích khí CO_2 (ở đktc) thì $n_{CO_2} = \frac{V_{CO_2}(l)}{22.4} \Rightarrow m_C = 12.n_{CO_2}(g)$

Dạng 2: Đốt cháy m_A gam chat hữu cơ A thu được m_{CO_2} , m_{H_2O} và.

a/. Xác định khối lượng các nguyên tố có trong m_A gam chat hữu cơ A.

b/. Xác định % khối lượng các nguyên tố có trong m_A gam chất hữu cơ A. Giải:

a/.	$m_C = \frac{12}{44}.m_{CO_2} = 12.n_{CO_2}(g)$	$m_{H} = \frac{12}{44}.m_{H_{2}O} = 12.n_{H_{2}O}(g)$
	$m_N = \frac{14}{46} . m_{NO_2} = 14 . n_{NO_2}(g)$	$m_{\rm O} = m_{\rm A} - (m_{\rm C} + m_{\rm H} + m_{\rm N})$
b/.	$C\%(C) = \frac{m_C}{m_A}.100\%$	$C\%(H) = \frac{m_H}{m_A}.100\%$
	$C\%(N) = \frac{m_N}{m_A}.100\%$	%O = 100% - (%C + %H + %N)

Dạng 3: Đốt cháy m_A gam chất hữu cơ A thu được m_{CO_2} , m_{H_2O} và $m_{Na_2CO_3}$.

a/. Xác định khối lượng các nguyên tố có trong m_A gam chất hữu cơ A.

b/. Xác định % khối lượng các nguyên tố có trong m_A gam chất hữu cơ A. Giải:

a/.	$m_C = \frac{12}{44}.m_{CO_2} + \frac{12}{106}.m_{Na_2CO_3}$ = 12.n _{CO_2} +12.n _{Na_2CO_3} (g)	$m_H = \frac{12}{44}.m_{H_2O} = 12.n_{H_2O}(g)$			
	$m_{Na} = \frac{46}{106}.m_{Na_2CO_3} = 46.n_{Na_2CO_3}(g)$	$m_{\rm O} = m_{\rm A} - (m_{\rm C} + m_{\rm H} + m_{\rm Na})$			
b/.	$C\%(C) = \frac{m_C}{m_A}.100\%$	$C\%(H) = \frac{m_H}{m_A}.100\%$			
	$C\%(Na) = \frac{m_{Na}}{m_A}.100\%$	%O = 100% - (%C + %H + %Na)			

Dạng 4: Đốt cháy một khối lượng chất hữu cơ A cần V_{KK} (lít) không khí (dktc) thu được m_{CO_2} và m_{H_2O} . Biết rằng trong không khí oxi chiếm 20% thể tích, còn lại là nito.

a/. Xác ddingj khối lượng chất hữu cơ đem đốt.

b/. Xác định khối lượng các nguyên tố có trong m_A chất hữu cơ A.

c/. Xác định % khối lượng các nguyên tố có trong m_A gam chat hữu cơ A.

Giải:

a/.
$$V_{O_{2pu}} = \frac{20}{100} . V_{KK} \Rightarrow n_{O_2} = \frac{V_{O_{2pu}}(l)}{22.4} \Rightarrow m_{O_{2pu}} = 32. n_{O_{2pu}}$$

theo định luật bào toàn khối lượng ta có: $m_A + m_{O,pu} = m_{CO_2} + m_{H_2O}$

$$\Rightarrow m_A = m_{CO_2} + m_{H_2O} - m_{O_2pu}$$

a/.
$$m_{C} = \frac{12}{44}.m_{CO_{2}} = 12.n_{CO_{2}}(g)$$

$$m_{H} = \frac{12}{44}.m_{H_{2}O} = 12.n_{H_{2}O}(g)$$

$$m_{O} = m_{A} - (m_{C} + m_{H})$$
b/.
$$C\%(C) = \frac{m_{C}}{m_{A}}.100\%$$

$$C\%(H) = \frac{m_{H}}{m_{A}}.100\%$$

Dang 5: Xác định công thức phân tử:

1/. Công thức thứ nguyên:

Gọi công thức hữu cơ là C_xH_yO_zN_t

$$x: y: z: t = \frac{m_C}{12} = \frac{m_H}{1} = \frac{m_O}{16} = \frac{m_N}{14}$$

$$x: y: z: t = \frac{\%C}{12} = \frac{\%H}{1} = \frac{\%O}{16} = \frac{\%N}{14}$$

hoăc:

Vây công thức thứ nguyên là $(C_xH_vO_zN_t)_n$

Nếu đề bài cho biết them thong tin về khối lượng phân tử mol thì ta có thể tìm được CTPT của chất đó.

Ví dụ: Hãy xác định CTPT của chất hữu cơ A có công thức thứ nguyên (CH2O)n. Biết tỷ khối hơi của A đối với H₂ là 30.

Giải:
$$d_{A/H_2} = \frac{M_A}{M_{H_2}} \Rightarrow M_A = d_{A/H_2} M_{H_2} = 2.30 = 60 \Rightarrow (12 + 2 + 16).n = 60 \Rightarrow n = 2$$

Vậy CTPT của A là $(CH_2O)_2$ hay $C_2H_4O_2$.

(Lưu ý: Nếu tỉ khối hơi của A so với không khí thì ta luôn có công thức $d_{A/_{KK}} = \frac{M_A}{29} \Rightarrow M_A = d_{A/_{KK}}$.29)

2/. Dựa vào thành phần các nguyên tố.

Gọi công thức chất hữu cơ là C_xH_vO_zN_t

$$\frac{12x}{m_C} = \frac{y}{m_H} = \frac{16z}{m_O} = \frac{14t}{m_N} = \frac{M_A}{m_A}$$

hay:
$$\frac{12x}{\%C} = \frac{y}{\%H} = \frac{16z}{\%O} = \frac{14t}{\%N} = \frac{M_A}{100\%}$$

Lưu ý: Đối với cách này ta có thể suy thẳng ra CTPT luôn không cần thông qua công thức thực nghiệm.

3/. Dựa vào phương trình phản ứng đốt cháy.

$$C_x H_y O_z N_t + (\frac{4x + y - 2z}{2})O_2 \to xCO_2 + \frac{y}{2}H_2O + \frac{t}{2}N_2$$

$$\frac{1}{n_A} = \frac{4x + y - 2z}{4} = \frac{x}{n_{CO_2}} = \frac{\frac{y}{2}}{n_{H_2O}} = \frac{\frac{t}{2}}{n_{N_2}}$$

HIDROCACBON

ANKAN

Công thức chung là C_nH_{2n+2} $(n \ge 1)$

Tên g**o**i = Số chỉ vi trí nhánh + tên nhánh + tên m**a**ch chính

	Tên ankan	Tên ankyl t ươ ng ứ ng
CH ₄	Metan	Metyl
C_2H_6	Etan	Etyl
C_3H_8	P rop an	Propy l
C_4H_{10}	B utan	But yl
C_5H_{12}	P ent an	Penty l
C_6H_{14}	Hexan	Hexyl
C_7H_{16}	H ept an	Hept yl

C_8H_{18}	Octan	Octyl
C_9H_{20}	Nonan	Nonyl
$C_{10}H_{22}$	D ec an	Decyl

$$\begin{array}{c} \text{CH}_2\text{-CH}_3 \\ \text{CH}_3\text{-CH-CH-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_3 & 3\text{-etyl-2-metylheptan} \\ 1 & |2 & 3 & 4 & 5 & 6 & 7 \\ \text{CH}_3 & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

Lưu ý: Chọn mạch chính là mạch dài nhất. Đánh số sau cho tổng số vị trí nhánh là nhỏ nhất. Tính chất hóa h**o**c:

a/. Phản ứng thế (halogen):

$$C_nH_{2n+2} + Cl_2 \xrightarrow{\text{as}} C_nH_{2n+1}Cl + HCl$$

VD: $CH_4 + Cl_2 \xrightarrow{\text{as}} CH_3Cl + HCl$

$$CH_3-CH_2-CH_3+$$
 CI_2
 $CH_3-CH_2-CH_2$
 $CH_3-CH_2-CH_3$
 CH_3-CH_3
 CH_3-CH_3
 CH_3
 C

b/. Phản ứng giảm mạch

$$C_nH_{2n+2} \xrightarrow{Crackinh,xt,t^0} C_{n'}H_{2n'+2} + C_mH_{2m}$$
ankan ankan anken
$$VD: C_5H_{12} \xrightarrow{Cracking,xt,t^0} C_3H_8 + C_2H_4$$

VD:
$$C_5H_{12} \xrightarrow{Cracking, xt, t^0} C_3H_8 + C_2H_4$$

c/. Phản ứng tăng mạch.

$$2C_nH_{2n+2} + 2Na \xrightarrow{t^0} C_nH_{2n+1} - C_nH_{2n+1} + 2NaCl$$

VD:
$$2C_2H_5Cl + 2Na \xrightarrow{t^0} C_2H_5 - C_2H_5 + 2NaCl$$

d/. Phản ứng cháy:

$$C_n H_{2n+2} + \frac{3n+1}{2} O_2 \to nCO_2 + (n+1)H_2O$$
 $(n_{CO_2} < n_{H_2O})$

e/. Điều chế:

$$Al_4C_3 + 12H_2O \rightarrow 4Al(OH)_3 + 3CH_4$$

$$Al_4C_3 + 12HCl \rightarrow 4AlCl_3 + 3CH_4$$

$$CH_3COONa + NaOH \rightarrow Na_2CO_3 + CH_4$$

 $RCOONa + NaOH \rightarrow Na_2CO_3 + RH$

ANKEN (Etylen: CH₂=CH₂)

Công thức chung là C_nH_{2n} ($n \ge 2$)

Tên g \mathbf{o} i = s \mathbf{o} chỉ vị trí nhánh + tên nhánh + tên g \mathbf{o} c hidrocacbon + s \mathbf{o} chỉ vị trí n \mathbf{o} i đôi + en <u>Ví du:</u>

$$\begin{array}{c} \mathsf{C_2H_5} \\ \mathsf{CH_3-CH-CH-CH-CH-CH_3} \\ \mathsf{6} \begin{array}{c} \mathsf{5} \\ \mathsf{4} \end{array} \begin{array}{c} \mathsf{3} \\ \mathsf{2} \end{array} \begin{array}{c} \mathsf{1} \\ \mathsf{CH_3} \end{array}$$

Lưu ý: Chọn mạch chính là mạch dài nhất có chứa lien kết bội, đánh số sao cho tổng số chỉ vị trí nhánh là nhỏ nhất.

Cách viết đồng phân:

- Trước tiên viết mạch cacbon ra trước: thẳng và nhánh ((một nhánh, hay nhánh,...)
- Xác định vị trí đặt vị trí nối đôi.
- Điền đầy đủ hóa trị để đảm bào hóa trị cho C.

<u>VD</u>: Viết đồng phân của C₄H₈.

Đồng phân lập thể:

Điều kiện: - Phải có liên kết bội.

-
$$R_1 \neq R_2 v a R_3 \neq R_4$$

Đồng phân Cis (cùng phía với mạch chính); Trans (khác phía với mạch chính).

Tính chất hóa học:

a/. **Phản ứng cộng** (cộng H₂, cộng halogen, cộng HA)

- **Cộng H**₂:
$$C_n H_{2n} + H_2 \xrightarrow{Ni,t^0} C_n H_{2n+2}$$

VD:

$$\mathsf{CH_3} - \mathsf{CH} - \mathsf{CH_2} - \mathsf{CH_3} + \mathsf{H_2} \xrightarrow{\mathbb{N} \mathsf{i}, \mathsf{t}_{\emptyset}} \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_3}$$

- Cộng halogen: (làm mất màu dung dịch nước brom)

$$C_nH_{2n} + Br_2 \rightarrow C_nH_{2n}Br_2$$

VD:

- **Cộng HA** (HCl, HBr, H₂O)

$$C_n H_{2n} + HA \rightarrow C_n H_{2n+1} A$$

Qui tắc Maccopnhicop: HA (H⁺ và A⁻: Br, Cl, OH) thì H⁺ sẽ ưu tiên cộng vào C bậc thấp có nhiều hidro và A⁻ sẽ được ưu tiên cộng vào C bậc cao có ít hidro.

 $\overline{\text{VD}}$:

$$CH_2 = CH_2 + HBr \rightarrow CH_3 - CH_2Br$$

$$CH_2 = CH_2 + H_2O \rightarrow CH_3 - CH_2OH$$

$$CH_3 - CH_2 - CH = CH_2 + HCI \longrightarrow CH_3 - CH_2 - CH_2 - CH_2$$

$$CH_3 - CH_2 -$$

Người soạn: Sử Minh Trí b/. Phản ứng trùng hợp:

$$nCH_{2}=CH_{2} \xrightarrow{x t, t^{\circ}, p} \xrightarrow{CH_{2}-CH_{2}} n \text{ polietylen (P.E)}$$

$$nCH_{3}-CH=CH_{2} \xrightarrow{x t, t^{\circ}, p} \xrightarrow{CH_{2}-CH_{2}} n \text{ polipropylen (P.P)}$$

c/. Phản ứng oxi hóa:

c1/. Không hoàn toàn:

$$CH_{2} = CH_{2} + 2KMnO_{4} + 4H_{2}O \rightarrow 3CH_{2} - CH_{2} + 2MnO_{2} + 2KOH$$

$$OH OH$$

$$R - CH_{2} = CH_{2} - R + 2KMnO_{4} + 4H_{2}O \rightarrow 3R - CH_{2} - CH_{2} - R + 2MnO_{2} + 2KOH$$

$$OH OH$$

c2/. Hoàn toàn

$$C_n H_{2n} + \frac{3n}{2} O_2 \rightarrow nCO_2 + nH_2O$$
 $(n_{CO_2} = n_{H_2O})$

d/. Điều chế:

d1/. Khử nước của ancol đơn chức:

$$C_nH_{2n+1}OH \xrightarrow{H_2SO_4d,170^0C} C_nH_{2n} + H_2O$$

Qui tắc Zaixep: Khi tách HA ra khỏi halogen thì A⁻(OH, Br, Cl) sẽ được ưu tiên tách ra cùng với H của C bâc cao hơn.

<u>VD:</u>

d2/. Khử HX của dẫn xuất halogen:

$$C_n H_{2n+1} X + KOH \xrightarrow{t^0} C_n H_{2n} + KX + H_2O$$

Lưu ý: Phản ứng này vẫn phải tuân theo quy tắc Zaixep.

<u>ANKADIEN</u>

Công thức chung là C_nH_{2n} $(n \ge 3)$

Tên $g\mathbf{\hat{o}}_{i} = s\mathbf{\hat{o}}_{i}$ chỉ vị trí nhành + tên nhánh + tên $g\mathbf{\hat{o}}_{i}$ hidrocacbon + $s\mathbf{\hat{o}}_{i}$ chỉ vị trí nối đôi + tiếp đầu ng $\mathbf{\hat{u}}_{i}$: đi, tri, tetra, penta,...+en

Ví du:

$$CH_2$$
— CH — CH — CH_2 buta-1,3-dien

Lưu ý: Chọn mạch chính là mạch dài nhất có chứa lien kết bội, đánh số sao cho tổng số chỉ vị trí nhánh là nhỏ nhất.

Tính chất hóa h**o**c:

a/. Phản ứng cộng

a1/. Cộng hidro: $C_nH_{2n} + H_2 \xrightarrow{Ni,t^0} C_nH_{2n+2}$

VD:

$$\mathsf{CH}_{2} = \mathsf{CH} - \mathsf{CH} = \mathsf{CH}_{2} + \mathsf{H}_{2} \quad \xrightarrow{\text{\mathbb{N} i,t}^{\circ}$} \mathsf{CH}_{3} - \mathsf{CH}_{2} - \mathsf{CH}_{2} - \mathsf{CH}_{3}$$

a 2/. Cộng halogen: mất màu dung dịch brom

a3/. Cộng HX.

b/. Phản ứng trùng hợp:

$$nCH_{2} = CH - CH = CH_{2} \xrightarrow{t^{\circ}, x t, p} - \left(CH_{2} - CH = CH - CH_{2}\right)_{n}$$

polibuta-1,3-dien (cao su Buna)

nCH₃-CH=C-CH=CH₂
$$\xrightarrow{t^{\circ},\chi t, p}$$
 \leftarrow CH₂-CH=C-CH=CH $\xrightarrow{CH_3}$ n poliisopren (cao su thiên nhiên)

c/. Phản ứng đốt cháy:

$$C_n H_{2n-2} + \frac{3n-1}{2} O_2 \to nCO_2 + (n-1)H_2O$$
 $(n_{CO_2} > n_{H_2O})$

d/. Điều chế:

d1/. Buta-1,3-dien

*Điều chế từ axetylen:

$$2CH \equiv CH \xrightarrow{CuCl+NH_{4cl}} CH_2 = CH - C \equiv CH$$

$$CH_2 = CH - C \equiv CH + H_2 \xrightarrow{Pd,t^0} CH_2 = CH - CH = CH_2$$

*Điều chế từ ancol etylic

$$\overbrace{2CH_3 - CH_2 - OH \xrightarrow{Al_2O_3/ZnO}}^{Al_2O_3/ZnO} \rightarrow CH_2 = CH - CH = CH_2 + H_2 + 2H_2O$$

ANKIN (Axetylen: CH = CH)

Công thức chung là C_nH_{2n-2} $(n \ge 2)$

Tên gọi = số chỉ vị trí nhánh + tên nhánh + tên gốc hidrocacbon + số chỉ vị trí nối ba + in \underline{VD} :

$$\begin{array}{c} C_2H_5\\ CH_3-CH-CH-CH_2-C = CH \quad \text{4-etyl-5-metylhex-1-in}\\ CH_3\\ CH_3-C = C-CH-CH-CH_3 \quad \text{4,5-dimetylhept-2-in}\\ CH_3 \quad C_2H_5\\ \end{array}$$

Tính chất hóa học:

a/. Phản ứng cộng:

a1/. Cộng H₂:
$$C_n H_{2n-2} + H_2 \xrightarrow{Pd,t^0} C_n H_{2n}$$

 $C_n H_{2n-2} + 2H_2 \xrightarrow{Ni,t^0} C_n H_{2n+2}$

VD:

$$CH \equiv CH + H_2 \xrightarrow{Pd,t^0} CH_2 = CH_2$$

$$CH \equiv CH + 2H_2 \xrightarrow{Ni,t^0} CH_3 - CH_3$$

a2/. Cộng halogen: $C_n H_{2n-2} + 2Br_2 \rightarrow C_n H_{2n-2} Br_4 \rightarrow \text{làm mất màu dung dịch brom.}$ VD:

$$CH \equiv CH + 2Br_2 \rightarrow CHBr_2 - CHBr_2$$

a3/. Cộng HX:
$$C_n H_{2n-2} + HX \xrightarrow{Hg^{2+}} C_n H_{2n-1} X$$

 $C_n H_{2n-2} + 2HX \xrightarrow{Hg^{2+}} C_n H_{2n} X_2$

Lưu ý: Khi cộng HX thì phải tuân theo quy tắc Maccopnhicop

VD:

$$CH \equiv CH + HBr \xrightarrow{Hg^{2+}} CH_2 = CHBr$$

$$CH \equiv CH + 2HBr \longrightarrow CH_3 - CHBr_2$$

$$CH_3 - C \equiv CH + HBr \xrightarrow{Hg^{2+}} CH_3 - CBr = CH_2$$

$$CH_3 - C \equiv CH + HBr \rightarrow CH_3 - CBr_2 - CH_3$$

a3/. Cộng H₂O (giống như cộng HX như sản phản tạo thành không bền nên sẽ bị phân hủy thành chất mới.)

<u>VD</u>:

$$CH \equiv CH + H_2O \xrightarrow{Hg^{2+}} \left[CH_2 = CHOH \right] \rightarrow CH_3 - CHO$$

$$CH_{3}-C\equiv CH+H_{2}O\xrightarrow{-Hg^{2+}}\left\lceil CH_{3}-COH=CH_{2}\right\rceil \rightarrow CH_{3}-CO-CH_{3}$$

a4/. Phản ứng thế với ion kim loại bạc:

$$AgNO_3 + 2NH_3 + H_2O \rightarrow [Ag(NH)_2]OH + NH_4NO_3$$

$$CH \equiv CH + 2[Ag(NH)_2]OH \rightarrow AgC \equiv CAg + 4NH_3 + 2H_2O$$

Lưu ý: Phản ứng chỉ xảy ra đối với Ank-1-in hay xảy ra đối với những ankin có lien kết ba đầu mach.

b/. Phản ứng đốt cháy:

$$C_n H_{2n-2} + \frac{3n-1}{2} O_2 \to nCO_2 + (n-1)H_2O$$
 $(n_{CO_2} > n_{H_2O})$

c/. Điều chế:

*Điều chế từ CaCO3, C, nước hoặc HCl

$$CaCO_3 \xrightarrow{1000^0 C} CaO + CO_2$$

$$CaO + C \xrightarrow{2000^{0}C} CaC_{2} + CO$$

$$CaC_2 + H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

$$Hora{o}_{c}: CaC_2 + 2HCl \rightarrow CaCl_2 + C_2H_2$$

*Điều chế từ metan:

$$2CH_4 \xrightarrow{1500^{0}C} C_2H_2 + 3H_2$$

BENZEN VÀ ANKYLBENZEN

Công thức chung là C_nH_{2n-6} ($n \ge 6$)

Cách 1:Tên gọi = số chỉ vị trí nhánh tên nhánh + tên nhánh + benzen

Các 2: $T\hat{e}n g\phi i = o$; m-; p- + $t\hat{e}n nhánh$ + benzen

Tính chất hóa học

Quy tắc thể:

X: -OH, -OCH₃, -NH₂, -CH₃ ưu tiên thế \vec{o} vị trí \vec{o} -, \vec{p} -

X: -COOH, -NO₂, -SO₃H ưu tiên thế ở vị trí m-

a/. Phản ứng thế

a1/. Phán ứng halogen hóa (brom khan)

khi có xúc tác ánh sáng thì phản ứng thế vào nhánh. Khi xúc tác là bột sắt thì phản ứng thế vào vòng.

<u>VD:</u>

$$CH_3$$
 + Br_2 $\xrightarrow{\delta S}$ + HBr benzylbromua CH_3 + Br_2 $\xrightarrow{F \ell}$ O -bromtoluen CH_3 + Br_2 $\xrightarrow{F \ell}$ + Br_2 + Br_2

a2/. Phản ứng nitro hóa

+ HONO₂
$$\xrightarrow{\mathbb{H}_{2} \S \ 0_{4} \ \mathbb{d}}$$
 NO₂ + H₂O nitrobenzen

NO₂ + HONO₂ $\xrightarrow{\mathbb{H}_{2} \S \ 0_{4} \ \mathbb{d}}$ NO₂ + H₂O O₂N m- dinitrobenzen

O₂N NO₂ + HONO₂ $\xrightarrow{\mathbb{H}_{2} \S \ 0_{4} \ \mathbb{d}}$ NO₂ + H₂O O₂N 3,5- trinitrobenzen

$$\begin{array}{c} \text{CH}_3\\ \text{+} \text{H}_2\text{O}\\ \text{-} \text{-} \text{nitrotoluen}\\ \text{CH}_3\\ \text{+} \text{H}_2\text{O}\\ \text{-} \text{p-nitrotoluen}\\ \text{NO}_2\\ \end{array}$$

b/. Ph**ả**n **ứ**ng c**ộ**ng

Benzen và ankylbenzen **không làm mất màu** dung dịch brom.

 $C_6H_6 + 3H_2 \xrightarrow{Ni,t^0} C_6H_{12}$ sản phẩm tạo thành là **xiclo**-

c/. Phản ứng oxi hóa

- Benzen không làm mất màu dung dịch KmnO₄
- Ankylbenzen làm mất màu dung dịch KmnO₄ ở nhiệt độ cao (đun nóng)

$$C_n H_{2n-6} + \frac{3n-3}{2} O_2 \rightarrow nCO_2 + (n-3)H_2O$$

d/. Điều chế

$$CH_3[CH_2]_4CH_3 \xrightarrow{xt,t^0} C_6H_6 + 4H_2$$

$$CH_{3}[CH_{2}]_{5}CH_{3} \xrightarrow{xt,t^{0}} C_{6}H_{5}CH_{3} + 4H_{2}$$

$$C_6H_6 + CH_2 = CH_2 \xrightarrow{xt,t^0} C_6H_5CH_2CH_3$$

STIREN

Công thức phân tử là C₈H₈

Tính chất hóa học

a/. **Phản ứng cộng** (phản ứng cộng giống như đối với anken do phản ứng tập trung chủ yếu ở mach nhánh).

b/. Phản ứng trùng h**ợ**p

poli butadien-stiren (caosubuna-S)

c/. Phản ứng oxi hóa

Stiren làm mất màu dung dịch KmnO₄ ở nhiêt độ thường.

DÂN XUÂT HALOGEN

*Tên thông thường:

Một số dẫn xuất halogen thường gặp: clorofom (CHCl₃); bromofom (CHBr₃); iodofom (CHI₃)

*Tên gốc chức:

Tên $g\mathbf{\hat{o}}$ i = tên $g\mathbf{\hat{o}}$ c hidrocacbon + halogenua

VD:

CH₂=CH-Cl: vinylclorua

 CH_2 =CH- CH_2Br : anlylbromua

CH₂Cl₂: metylenclor**ua**

 $C_6H_5CH_2I$: benzyliodua

CH₃CHCH₂Cl:isobutylclor**ua** CH₃

*Tên thay thế:

Tên gọi = số chỉ vị trí nhánh + tên nhánh + tên mạch chính

Lưu ý: Ở đây halogen được xem như một nhánh.

Đánh số ưu tiên cho liên kết bội, đánh số sao cho tổng số chỉ vị trí là nhỏ nhất.

VD:

$$\begin{array}{c} C_2H_5\\ CH_3-CH-CH-CH-CH-CH-CH_3\\ CH_3\\ CI\\ CH_3-CH-CH-CH_2-CH_2-Br\\ CH_3-CH-CH-CH_2-CH_2-Br\\ C_2H_5\\ \end{array}$$

Tính chất hóa học

- a/. Phản ứng thế nguyên tử halogen bằng nhóm OH (Phản úng dùng để nhận biết các loại dẫn xuất halogen: no , không no, thơm)
- Dẫn xuất halogen no, không no: Đun sôi với NaOH (KOH) gạn bỏ nước, axit hóa bằng HNO₃ nhỏ vào giọt AgNO₃ thì thấy có kết tủa vàng.

VD:

 $CH_3CH_2CH_2Cl + NaOH \xrightarrow{t^0} CH_3CH_2CH_2OH + NaCl$

 $CH_2 = CHCH_2Cl + NaOH \xrightarrow{t^0} CH_2 = CHCH_2OH + NaCl$

 $AgNO_3 + NaOH \rightarrow AgCl \downarrow + NaNO_3$

- Dẫn xuất halogen không no: Đun sôi với nước, gạn bỏ nước, axit hóa bằng HNO_3 , nhỏ vài giọt $AgNO_3$ có kết tủa vàng.

$$CH_2 = CHCH_2Cl + HOH \xrightarrow{t^0} CH_2 = CHCH_2OH + HCl$$

 $AgNO_3 + HCl \rightarrow AgCl \downarrow + HNO_3$

- Dẫn xuất halogen thơm khó tham gia phản ứng ở nhiệt độ thường, chỉ xảy ra ở nhiệt độ cao.

b/. Phản ứng tách HX

Quy tắc Zaixep: Khi tách HX (HA) thì X (A) s**ẽ ư**u tiên tách ra cùng v**ớ**i H c**ủ**a nguyên t**ử** cacbon bậc thấp nhiều hidro.

VD:

$$CH_3CH_2Cl + KOH \xrightarrow{ancol,t^0} CH_2 = CH_2 + KCl + H_2O$$

Hoặc:
$$CH_3CH_2Cl \xrightarrow{KOH,ancol,t^0} CH_2 = CH_2 + HCl$$

c/. Phản ứng cơ magie: (phản ứng dùng để điều chế axit hoặc ancol)

$$CH_3CH_2Cl + Mg \xrightarrow{ete \ khan} CH_3CH_2MgCl$$

VD:

 $CH_3CH_2CH_2Cl + Mg \xrightarrow{ete\ khan} CH_3CH_2CH_2MgCl$

 $CH_3CH_2CH_2MgCl + CO_2 \rightarrow CH_3CH_2CH_2COOMgCl$

 $CH_{3}CH_{2}COOMgCl + H_{2}O \xrightarrow{H+,t0} CH_{3}CH_{2}CH_{2}COOH + Mg(OH)Cl$

ANCOL

Công thức chung là $C_nH_{2n+1}OH$ $(n \ge 1)$

*Tên thông thường:

Tên $g\mathbf{\hat{o}}i = ancol + tên g\mathbf{\hat{o}}c hidrocacbon + ic$

VD:

(CH₃)₂CHOH: ancol *isopropylic* CH₂=CHCH₂OH: ancol anlylic C₆H₅CH₂OH: ancol benzylic

*Tên thay thế:

Tên $g\dot{\mathbf{o}}_{i} = s\dot{\mathbf{o}}_{i}$ chỉ vị trí nhánh + tên nhánh + tên $g\dot{\mathbf{o}}_{i}$ hidrocacbon t**ươ**ng **ứ**ng + $s\dot{\mathbf{o}}_{i}$ chỉ vị trí nhóm OH +ol

VD: