

Features

- Fast Switching
- Low Gate Charge and R_{DS(on)}
- Low Reverse transfer capacitances

Product Summary

BVDSS	RDSON	ID
120V	10.5mΩ	60A

Applications

- DC-DC converter
- Portable Equipment
- Power management

100% DVDS Tested 100% Avalanche Tested

PDFN5060-8L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	120	V
V _G S	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	60	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	35	Α
I _{DM}	Pulsed Drain Current ²	220	Α
EAS	Single Pulse Avalanche Energy ³	210	mJ
las	Avalanche Current		Α
P _D @T _C =25°C	Total Power Dissipation ⁴	85	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-Ambient ¹			°C/W
Rejc	Thermal Resistance Junction-Case ¹		1.47	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	120			V	
⊿BV _{DSS} /⊿T _J	BV _{DSS} Temperature Coefficient	Reference to 25°C,I _D =1mA				V/°C	
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10 V, I _D =84A		10.5	14	mΩ	
1 103(014)	State Brain Source On Resistance	V _{GS} =4.5V , I _D =84A		12	16		
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} . I _D =250uA	1.4	1.8	2.2	V	
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	133,15 233				mV/°C	
	Drain Source Leakage Current	V _{DS} =120V , V _{GS} =0V , T _J =25°C			1		
I _{DSS}	Drain-Source Leakage Current	V _{DS} =120V, V _{GS} =0V , T _J =125°C			100	- uA	
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA	
gfs	Forward Transconductance	ard Transconductance V _{DS} =5V , I _D =84A				S	
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz				Ω	
Qg	Total Gate Charge			31			
Q _{gs}	Gate-Source Charge	V _{DS} =60V , V _{GS} =10V , I _D =20A		9.4		nC	
Q _{gd}	Gate-Drain Charge			7.5			
T _{d(on)}	Turn-On Delay Time			15			
Tr	Rise Time	V_{DD} =60V, $R_{G_{ext}}$ = 5 Ω ,		10			
T _{d(off)}	Turn-Off Delay Time	V _{GS} =10V, ID =20A		32		ns	
T _f	Fall Time			9			
C _{iss}	Input Capacitance			1807			
C _{oss}	Output Capacitance	V _{DS} =60V , V _{GS} =0V , f=1MHz		212		pF	
C _{rss}	Reverse Transfer Capacitance			6			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			60	А
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =84A , T _J =250			1.4	V
t _{rr}	Reverse Recovery Time	IF=40A ,di/dt=100A / μs ,		60		nS
Qrr	Reverse Recovery Charge	T _J = 2 5 C		100		nC

^{1.} The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width $\leq 300 us$, duty cycle $\leq 2\%$

^{3.}The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.5mH,

^{4.}The power dissipation is limited by 150°C junction temperature

^{5.} The data is theoretically the same as I_D and I_{DM} , in real applications , should be limited by total power dissipation.

Characteristics Curve:

Typ. output characteristics $I_D = f(V_{DS})$

Typ. drain-source on resistance $R_{DS(on)}=f(I_D)$

Typ. transfer characteristics $I_D=f(V_{GS})$

Drain-source on-state resistance

 $R_{DS(on)} \!\!=\!\! f(T_j); \ I_D \!\!=\!\! 20A; \ V_{GS} \!\!=\!\! 10V$

Gate Threshold Voltage $V_{TH}=f(T_i)$; $I_D=250uA$ 1.3 $V_{GS} = V_{DS}$ $I_D = 250\mu A$ 1.2 1.1 V_{GS(th)},(Normalized) Threshold Voltage 1 8.0 0.7 0.6 0.5 -25 25 50 75 100 125 150 -50

T_J,Junction Temperature(°C)

$\begin{array}{c} \textbf{Drain-source breakdown voltage} \\ V_{BR(DSS)} = f(T_j); \ I_D = 250 uA \end{array}$

Max. transient thermal impedance

 $Z_{thJC} = f(t_p)$

Test Circuit and Waveform:

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Package Mechanical Data-PDFN5060-8L-Single

Symbol	Common	Common				
	mm	mm				
	Mim	Max	Min	Max		
Α	1.03	1.17	0.0406	0.0461		
b	0.34	0.48	0.0134	0.0189		
С	0.824	0.0970	0.0324	0.082		
D	4.80	5.40	0.1890	0.2126		
D1	4.11	4.31	0.1618	0.1697		
D2	4.80	5.00	0.1890	0.1969		
E	5.95	6.15	0.2343	0.2421		
E1	5.65	5.85	0.2224	0.2303		
E2	1.60	/	0.0630	/		
е	1.27 BSC	1.27 BSC				
L	0.05	0.25	0.0020	0.0098		
L1	0.38	0.50	0.0150	0.0197		
L2	0.38	0.50	0.0150	0.0197		
Н	3.30	3.50	0.1299	0.1378		
1	/	0.18	/	0.0070		