```
In [18]: # This Python 3 environment comes with many helpful analytics libraries instal
         # It is defined by the kaggle/python Docker image: https://github.com/kaggle/d
         ocker-python
         # For example, here's several helpful packages to load
         import warnings
         import matplotlib.pyplot as plt
         warnings.filterwarnings("ignore")
         import seaborn as sns
         import numpy as np # linear algebra
         import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
         # Input data files are available in the read-only "../input/" directory
         # For example, running this (by clicking run or pressing Shift+Enter) will lis
         t all files under the input directory
         import os
         for dirname, _, filenames in os.walk('/kaggle/input'):
             for filename in filenames:
                 print(os.path.join(dirname, filename))
         # You can write up to 20GB to the current directory (/kaggle/working/) that ge
         ts preserved as output when you create a version using "Save & Run All"
         # You can also write temporary files to /kaqqle/temp/, but they won't be saved
         outside of the current session
```

/kaggle/input/pokemon/pokemon.csv

```
In [19]: df = pd.read_csv("/kaggle/input/pokemon/pokemon.csv")
    df.head(3)
```

Out[19]:

	abilities	against_bug	against_dark	against_dragon	against_electric	against_fairy	against
0	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	
1	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	
2	['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	

3 rows × 41 columns

In [20]: | df.generation.unique()

Out[20]: array([1, 2, 3, 4, 5, 6, 7])

In [21]: #df.abilities.unique()

```
df.isna().sum()
In [22]:
Out[22]: abilities
                                  0
                                  0
          against_bug
          against_dark
                                  0
                                  0
          against_dragon
          against electric
                                  0
          against_fairy
                                  0
          against fight
                                  0
          against_fire
                                  0
          against_flying
                                  0
                                  0
          against_ghost
          against_grass
                                  0
          against_ground
                                  0
          against ice
                                  0
                                  0
          against_normal
          against_poison
                                  0
          against_psychic
                                  0
          against_rock
                                  0
          against_steel
                                  0
          against_water
                                  0
          attack
          base_egg_steps
                                  0
                                  0
          base_happiness
                                  0
          base_total
                                  0
          capture rate
          classfication
                                  0
          defense
                                  0
          experience_growth
                                  0
         height_m
                                 20
          hp
                                  0
                                  0
          japanese_name
          name
                                  0
          percentage_male
                                 98
          pokedex_number
                                  0
          sp_attack
                                  0
                                  0
          sp defense
          speed
                                  0
          type1
                                  0
          type2
                                384
         weight_kg
                                 20
          generation
                                  0
          is_legendary
                                  0
          dtype: int64
In [23]: df.shape
Out[23]: (801, 41)
```

```
In [24]: # creating dataframe for columns to vizuallize
data = df[['type1','type2','attack','defense','speed']]
data
```

Out[24]:

	type1	type2	attack	defense	speed
0	grass	poison	49	49	45
1	grass	poison	62	63	60
2	grass	poison	100	123	80
3	fire	NaN	52	43	65
4	fire	NaN	64	58	80
796	steel	flying	101	103	61
797	grass	steel	181	131	109
798	dark	dragon	101	53	43
799	psychic	NaN	107	101	79
800	steel	fairy	95	115	65

801 rows × 5 columns


```
In [26]: temp = df[['type1', 'type2', 'attack', 'defense', 'speed']]
    plt.figure(figsize=(20,20))
    sns.pairplot(temp,hue='type1')
    plt.suptitle('Pair Plot of type1, attack, defense, and speed')
    plt.show()
```

<Figure size 2000x2000 with 0 Axes>


```
In [27]: plt.figure(figsize=(20,20))
    sns.pairplot(temp,hue='type2',palette='plasma')
    plt.suptitle('Pair Plot of type2, attack, defense, and speed')
    plt.show()
```

<Figure size 2000x2000 with 0 Axes>

Task 2

```
In [28]: # 1. Distribution of Pokémon types and the most common type
    type_counts = df['type1'].value_counts()
    most_common_type = type_counts.idxmax()
    print("Most Common Pokémon Type:", most_common_type)
    plt.figure(figsize=(10, 6))
    sns.countplot(data=df, x='type1', order=type_counts.index)
    plt.title("Distribution of Pokémon Types")
    plt.xticks(rotation=45)
    plt.show()
```

Most Common Pokémon Type: water


```
In [29]: print(df.columns)
```

```
In [30]: plt.figure(figsize=(8, 6))
    sns.scatterplot(data=df, x='attack', y='defense')
    plt.title("Correlation between Attack and Defense Stats")
    plt.xlabel('Attack')
    plt.ylabel('Defense')
    plt.show()
```

Correlation between Attack and Defense Stats


```
In []:

## Pair Plot of type1, attack, defense, and speed
# plt.figure(figsize=(20, 20))
# sns.pairplot(data, hue='type1')
# plt.suptitle('Pair Plot of type1, attack, defense, and speed')
# plt.show()

## Pair Plot of type2, attack, defense, and speed
# plt.figure(figsize=(20, 20))
# sns.pairplot(data, hue='type2', palette='plasma')
# plt.suptitle('Pair Plot of type2, attack, defense, and speed')
# plt.show()
```

```
In [46]: # 2. Compare Attack and Defense stats of single-type and dual-type Pokémon
    plt.figure(figsize=(8, 6))
    sns.boxplot(data=df, x='type1', y='attack', hue='type2')
    plt.title("Comparison of Attack Stats between Single-Type and Dual-Type Pokémo
    n")
    plt.xticks(rotation=45)
    plt.legend(title='type2')
    plt.show()
```



```
In [35]: # What are the different primary and secondary type of Pokemon's and how many
    of each type is there in the dataset? [Visualize]
    plt.figure(figsize=(15,8)) #FOR PRIMARY TYPE i.e TYPE 1
    sns.histplot(x='type1',data=df)
    plt.title('Type 1 Pokemons Distribution')
```

Out[35]: Text(0.5, 1.0, 'Type 1 Pokemons Distribution')

In [37]: plt.figure(figsize=(15,8)) #FOR SECONDARY TYPE i.e TYPE 2
sns.histplot(x='type2',data=df)
plt.title('Type 2 Pokemons Distribution')

Out[37]: Text(0.5, 1.0, 'Type 2 Pokemons Distribution')


```
In [44]: # Estimate the central tendency of heights for each type 1 pokemon ?
    plt.figure(figsize=(12,8))
    sns.barplot(x='type1',y='height_m',data=df,hue='type1')
    plt.title('Heights for each type 1 Pokemon')
    plt.figure(figsize=(12,8))
    sns.barplot(x='type1',y='height_m',data=df,hue='type2')
    plt.title('Heights for each type 2 Pokemon')
```

Out[44]: Text(0.5, 1.0, 'Heights for each type 2 Pokemon')

Out[42]: Text(0.5, 1.0, 'Type 1 Pokemons against fire & water')

Type 1 Pokemons against fire & water

Out[43]: Text(0.5, 1.0, 'Type 1 Pokemons against fire & water')

Type 1 Pokemons against fire & water

In []: