

Findings of the Second Workshop on Automatic Simultaneous Translation

Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He, Hua Wu, Haifeng Wang

Baidu Inc.

Shared Task of Automatic Simultaneous Translation (AST)

1. Text-to-text Track

Source	今天	上午	我	要	去趟	公司。	
Target		This	morning,	I	will	go to	the company.

2. Speech-to-text Track

Evaluating AST Systems

Translation Quality: BLEU

Latency: Consecutive Wait (CW)
Average Lagging (AL)

. . .

Two examples of the results submitted by two teams

Evaluating AST Systems ——Monotonic Optimal Sequence

Optimal Point:

One result is considered optimal if

there is no other point or line

above it at an identical latency. In
this case, the result is of the highest
translation quality at that latency and
we define it as an Optimal Point.

Evaluating AST Systems

—— Optimal Points

Optimal Point:

One result is considered optimal if

there is no other point or line

above it at an identical latency. In

this case, the result is of the highest

translation quality at that latency and
we define it as an Optimal Point.

Evaluating AST Systems —— Monotonic Optimal Sequence

$$S_{T_i} = N(p_{t_i}^*)/N(p_{t_i})$$

Evaluating AST Systems ——Iterative Monotonic Optimal Sequence

Results of the shared task

—6 systems evaluated on the two tracks

Discussion

——important challenges for AST

Data Scarcity

- BSTC is still insufficient to the data-hungry E2E speech translation models.

Evaluation Dilemma

 It remains open to question whether it is reasonable to compare two systems with no intersection in latency.

Applications

Robustness and controllability