1. Заполните пропуски в таблице:

•
T. Control of the con
1
1
1
l e
I .
L
1
TIONO MITTING TV
пара мнимых
-
HODOCOKSTOHIAVCG HDGMI IV
пересекающихся прямых
· -
!
1

$$y^2 + a^2 = 0$$

The state of the s
The state of the s
The state of the s
мнимый эллипс
мнимый эллинс
i i
i i
F
The state of the s
The state of the s
- I
The state of the s
T. Control of the Con
i i

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с $a=4,\, c=2.$

1 ноября 2018 г. Алесь Бінкевіч

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

1 ноября 2018 г. Алесь Бінкевіч

Дополнительные индивидуальные задания

1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?

- 2. Составить уравнение эллипса, если точка F(-6,2) является одним из фокусов, точка A(2,2) концом большой оси, эксцентриситет равен $\frac{2}{3}$.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с $a=4,\,c=2.$

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

Дополнительные индивидуальные задания

- 1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?
- 2. Составить уравнение эллипса, если точка F(-6,2) является одним из фокусов, точка A(2,2) концом большой оси, эксцентриситет равен $\frac{2}{3}$.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

c)
$$x' = x - y/2$$
,

пересекающихся прямых

$$y' = x/2 + y$$

b)
$$x' = x + \sqrt{12}$$

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = 4x/5 + 3y/5$$

мнимый эллипс

3. Запишите уравнения директрис для эллипса с a=4, c=2.

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

Дополнительные индивидуальные задания

- 1. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под наибольшим углом.
- 2. Составить уравнение эллипса, если точки $F_1(5,1)$ и $F_2(-1,1)$ являются фокусами, а прямая $x=\frac{31}{3}$ одной из директрис
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с a=4, c=2.

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

Дополнительные индивидуальные задания

- 1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?
- 2. Составить уравнение эллипса, если оси эллипса параллельны осям координат , точки A(4,0) и B(0,4) принадлежат эллипсу, а точка B находится на расстоянии $3\sqrt{2}$ от одного из фокусов и на расстоянии 6 от соответствующей директрисы.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с $a=4,\, c=2.$

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

Дополнительные индивидуальные задания

- 1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?
- 2. Составить уравнение эллипса, если оси эллипса параллельны осям координат , точки A(4,0) и B(0,4) принадлежат эллипсу, а точка B находится на расстоянии $3\sqrt{2}$ от одного из фокусов и на расстоянии 6 от соответствующей директрисы.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

,	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-			-	-	-	-	-	-		-	-
1																															
1																			П												
1																			1												
1													ı						ı												
1																			1												
1													ı						ı												
1																			1												
1																			1												
1													ı						ı												
1													ı						ı												
1																			•												
1				_			_	_	_			_			_	_	_	_													
Ē.	_	Ξ		Т	Т	_	Т		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_				_	_	_	1
1																															
1																															
1																															
1																															
г	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	_	_	-	•
1																															
1																															
1																															
1																															
ı																															

1	
1	
1	
1	
i	
1	
1	
!	
i	
i	пара мнимых
1	1
! Hen	есекающихся прямых
; ncp	ссскающихся примых
i	
1	
1	
1	
1	

$$y^2 + a^2 = 0$$

мнимый эллипс	1
	1
	i
	1
	i
	1
 	1

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с $a=4,\,c=2.$

1 ноября 2018 г. Гришкова Лиза

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

- b) 9xy + 4 = 0
- c) $9x^2 6xy + y^2 10 = 0$
- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:
 - a) $MF_1 = a ex$,
 - b) $MF_2 = a + ex$,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

1 ноября 2018 г. Гришкова Лиза

Дополнительные индивидуальные задания

1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?

- 2. Составить уравнение эллипса, если оси эллипса параллельны осям координат , точки A(4,0) и B(0,4) принадлежат эллипсу, а точка B находится на расстоянии $3\sqrt{2}$ от одного из фокусов и на расстоянии 6 от соответствующей директрисы.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с a=4, c=2.

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

Дополнительные индивидуальные задания

- 1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?
- 2. Составить уравнение эллипса, если оси эллипса параллельны осям координат , точки A(4,0) и B(0,4) принадлежат эллипсу, а точка B находится на расстоянии $3\sqrt{2}$ от одного из фокусов и на расстоянии 6 от соответствующей директрисы.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

 $y^2 + a^2 = 0$

a)
$$x' = 7x$$

c)
$$x' = x - y/2$$
,

пара мнимых

пересекающихся прямых

$$y' = x/2 + y$$

b)
$$x' = x + \sqrt{12}$$

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = 4x/5 + 3y/5$$

мнимый эллипс

3. Запишите уравнения директрис для эллипса с a=4, c=2.

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

Дополнительные индивидуальные задания

- 1. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под наибольшим углом.
- 2. Составить уравнение эллипса, если точка F(-6,2) является одним из фокусов, точка A(2,2) концом большой оси, эксцентриситет равен $\frac{2}{3}$.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

- 1		
- 1		
- 1		
- 1		-
- 1		-
- 1		-
- 1		1
i.		i
- 1		ď
- 1		- 1
- 5		-:
- 1		
- 1	пара совпавших прямых	- 1
- 1	I	
- 1		- 1
- 6		٦,
i.		i
i.		i
- 1		ď
- 1		
- 1		
- 1		1

1 1
1 1
Tope Manna IV
пара мнимых
пересекающихся прямых
1

$$y^2 + a^2 = 0$$

мнимый эллипс

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с a=4, c=2.

1 ноября 2018 г. Клюкин Михаил

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

1 ноября 2018 г. Клюкин Михаил

Дополнительные индивидуальные задания

1. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под наибольшим углом.

- 2. Составить уравнение эллипса, если точки $F_1(5,1)$ и $F_2(-1,1)$ являются фокусами, а прямая $x=\frac{31}{3}$ одной из директрис
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

1	
- 1	
- 1	
- 1	
- 1	
- i	
i i	
1	*****
1	пара мнимых
- 1	*
	пересекающихся прямых
- 1	пересекающихся примых
- 1	
- i	
i.	
1	
1	

$$y^2 + a^2 = 0$$

	мнимый эллипс	
1		

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с $a=4,\,c=2.$

Базовые обязательные задания

- 1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:
 - a) $25x^2 10x + y^2 + 2y = 0$
 - b) 9xy + 4 = 0
 - c) $9x^2 6xy + y^2 10 = 0$
- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:
 - a) $MF_1 = a ex$,
 - b) $MF_2 = a + ex$,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

- 1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?
- 2. Составить уравнение эллипса, если оси эллипса параллельны осям координат , точки A(4,0) и B(0,4) принадлежат эллипсу, а точка B находится на расстоянии $3\sqrt{2}$ от одного из фокусов и на расстоянии 6 от соответствующей директрисы.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

c)
$$x' = x - y/2$$
,

пересекающихся прямых

$$y' = x/2 + y$$

b)
$$x' = x + \sqrt{12}$$

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = 4x/5 + 3y/5$$

мнимый эллипс

3. Запишите уравнения директрис для эллипса с a=4, c=2.

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

- 1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?
- 2. Составить уравнение эллипса, если точка F(-6,2) является одним из фокусов, точка A(2,2) концом большой оси, эксцентриситет равен $\frac{2}{3}$.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

1	
1	
1	
1	
i	
1	
1	
!	
i	
i	пара мнимых
1	1
! Hen	есекающихся прямых
; ncp	есскающихся примых
i	
1	
1	
1	
1	

$$y^2 + a^2 = 0$$

1	1
The second secon	1
The second secon	1
The second secon	1
T. Control of the Con	1
T. Control of the Con	1
The second secon	1
1	,
The second secon	1
The state of the s	1
мнимый эллипс	1
MINIMINI SALAMIC	1
The second secon	1
The second secon	1
F	
T. Control of the Con	1
T. Control of the Con	1
The second secon	1
T. Control of the Con	1
T. Control of the Con	1
T. Control of the Con	1

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с a=4, c=2.

Задания к воркшопу по аналитической геометрии

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

- b) 9xy + 4 = 0
- c) $9x^2 6xy + y^2 10 = 0$
- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x = \pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:
 - a) $MF_1 = a ex$,
 - b) $MF_2 = a + ex$,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

Дополнительные индивидуальные задания

1. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под наибольшим углом.

- 2. Составить уравнение эллипса, если точки $F_1(5,1)$ и $F_2(-1,1)$ являются фокусами, а прямая $x=\frac{31}{3}$ одной из директрис
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с a=4, c=2.

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

- 1. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под наибольшим углом.
- 2. Составить уравнение эллипса, если точка F(-6,2) является одним из фокусов, точка A(2,2) концом большой оси, эксцентриситет равен $\frac{2}{3}$.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с $a=4,\, c=2.$

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

- 1. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под наибольшим углом.
- 2. Составить уравнение эллипса, если точки $F_1(5,1)$ и $F_2(-1,1)$ являются фокусами, а прямая $x=\frac{31}{3}$ одной из директрис
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с a=4, c=2.

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

- 1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?
- 2. Составить уравнение эллипса, если оси эллипса параллельны осям координат , точки A(4,0) и B(0,4) принадлежат эллипсу, а точка B находится на расстоянии $3\sqrt{2}$ от одного из фокусов и на расстоянии 6 от соответствующей директрисы.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

c) $x' = x - y/2$,
 $y' = x/2 + y$

b)
$$x' = x + \sqrt{12}$$

d) $x' = 3x/5 - 4y/5$, $y' = 4x/5 + 3y/5$

3. Запишите уравнения директрис для эллипса с $a=4,\,c=2.$

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

- 1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?
- 2. Составить уравнение эллипса, если точки $F_1(5,1)$ и $F_2(-1,1)$ являются фокусами, а прямая $x=\frac{31}{3}$ одной из директрис
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB

1. Заполните пропуски в таблице:

2. Какие замены переменных являются допустимыми при приведении кривой к каноническому виду?

a)
$$x' = 7x$$

b)
$$x' = x + \sqrt{12}$$

c)
$$x' = x - y/2$$
,

d)
$$x' = 3x/5 - 4y/5$$
,

$$y' = x/2 + y$$

$$y' = 4x/5 + 3y/5$$

3. Запишите уравнения директрис для эллипса с a=4, c=2.

Базовые обязательные задания

1. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

a)
$$25x^2 - 10x + y^2 + 2y = 0$$

b)
$$9xy + 4 = 0$$

c)
$$9x^2 - 6xy + y^2 - 10 = 0$$

- 2. В данной СК эллипс имеет каноническое уравнение. Составьте его, если известно, что директрисами эллипса являются прямые $x=\pm 4$, а четырехугольник с вершинами в фокусах и концах малой оси квадрат;
- 3. Вычислите эксцентриситет эллипса, если известно, что отрезок между фокусом и дальней вершиной большой оси делится вторым фокусом в отношении 2:1
- 4. На эллипсе $\frac{x^2}{4} + y^2 = 1$ найти точки, из которых отрезок, соединяющий фокусы, виден под углом 60° .
- 5. Докажите, что для произвольной точки эллипса M(x,y) верны следующие соотношения:

a)
$$MF_1 = a - ex$$
,

b)
$$MF_2 = a + ex$$
,

где F_1 и F_2 — фокусы, a — длина большой полуоси, e — эксцентриситет.

- 1. Составьте уравнения сторон квадрата, вписанного в эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b > 0). Какую часть площади, ограниченной эллипсом, составляет площадь этого квадрата?
- 2. Составить уравнение эллипса, если оси эллипса параллельны осям координат , точки A(4,0) и B(0,4) принадлежат эллипсу, а точка B находится на расстоянии $3\sqrt{2}$ от одного из фокусов и на расстоянии 6 от соответствующей директрисы.
- 3. Пусть O цетр эллипса, a и b его полуоси, а A и B такие его точки, что прямые, содержащие OA и OB, взаимно перпендикулярны.
 - (a) Доказать, что величина $\frac{1}{|OA|^2} + \frac{1}{|OB|^2}$ постоянна для всех возможных пар точек A и B.
 - (b) Найти наибольшее и наименьшее значения длины отрезка AB