New claims

- A process for treating a textile, which comprises treating said textile with 1.
 - (a) at least one alkali metal or ammonium salt of a copolymer obtainable by copolymerization of
 - (a1) from 1% to 20% by weight of (meth)acrylic acid,
 - (a2) from 2% to 20% by weight of (meth)acrylonitrile,
 - (a3) from 30% to 80% by weight of at least one comonomer of the general formula I

$$R^2_{\overline{Z}_{\overline{A}_1}}$$
 O OR^3

10

5

(a4) from 0% to 20% by weight of at least one amide of the general formula II

$$\mathsf{R}^{5}_{Z_{\underline{\mathbf{t}}}} \underbrace{ \overset{\mathsf{O}}{\underset{\mathsf{R}^{4}}{\longrightarrow}} \mathsf{N}\mathsf{R}^{6}\mathsf{R}^{7} }_{\mathsf{R}^{4}} \qquad \qquad \mathsf{II}$$

15

20

=()

 $R^1,\,R^2,\,R^4$ and R^5 are each selected from hydrogen, branched $C_1\text{-}C_{10}\text{-}alkyl$ and unbranched C₁-C₁₀-alkyl,

 R^{s} and R^{7} are each selected from hydrogen, branched $C_{1}\text{-}C_{10}\text{-}alkyl$ and unbranched $C_1\text{-}C_{10}\text{-}alkyl,$ or R^6 and R^7 combine to form $C_2\text{-}C_{10}\text{-}alkylene,$ R^3 is selected from branched $C_1\text{-}C_{10}\text{-}alkyl$ and unbranched $C_1\text{-}C_{10}\text{-}alkyl/$

- (b) at least one polysiloxane,
 - (c) at least one solid material based on silicon dioxide,
 - (d) and water.

25

- The process according to claim 1 wherein said treating is effected in the 2. presence of
 - (e) at least one protective colloid.

- The process according to claim 1 or 2 wherein at least one alkali metal or ammonium salt of a copolymer (a) has a dynamic viscosity in the range from 30 to 1500 mPa·s.
- The process according to any of claims 1 to 3 wherein at least one solid material based on silicon dioxide (c) is a pyrogenic silica gel.
 - The process according to any of claims 1 to 4 wherein at least one polysiloxane (b) has a dynamic viscosity in the range from 100 to 2000 mPa·s.
 - An aqueous formulation comprising
 - (a) at least one alkali metal or ammonium salt of a copolymer obtainable by copolymerization of
 - (a1) from 1% to 20% by weight of (meth)acrylic acid,
 - (a2) from 2% to 20% by weight of (meth)acrylonitrile,
 - (a3) from 30% to 80% by weight of at least one comonomer of the general formula I

$$R^2_{Z_{\overline{Z}_1}}$$
 O OR^3

20

10

15

(a4) from 0% to 20% by weight of at least one amide of the general formula II

25 where

30

 R^1 , R^2 , R^4 and R^5 are each selected from hydrogen, branched C_1 - C_{10} -alkyl and unbranched C_1 - C_{10} -alkyl,

 R^6 and R^7 are each selected from hydrogen, branched C_1 - C_{10} -alkyl and unbranched C_1 - C_{10} -alkyl, or R^6 and R^7 combine to form C_2 - C_{10} -alkylene,

 R^3 is selected from branched C_{1} - C_{10} -alkyl and unbranched C_{1} - C_{10} -alkyl,

(b) at least one alkali metal or ammonium salt of a copolymer,

5

- (c) at least one polysiloxane,
- (d) at least one solid material based on silicon dioxide.
- 7. The formulation according to claim 6 further comprising
 - (e) at least one protective colloid.
- The formulation according to claim 6 or 7 wherein at least one alkali metal or ammonium salt of a copolymer (a) has a dynamic viscosity in the range from 40 to 800 mPa·s.
 - The formulation according to any of claims 6 to 8, wherein at least one solid material based on silicon dioxide (c) is a pyrogenic silica gel.
- 15 10. The formulation according to any of claims 6 to 9, wherein at least one polysiloxane (b) has a dynamic viscosity in the range from 100 to 200 mPa·s.
 - A use of the formulation according to any of claims 6 to 10 for treating a textile.
- 20 12. A process for treating a textile by using a formulation according to any of claims 6 to 10.