Relatório do $3^{\underline{0}}$ Projeto ASA 2024/2025

Grupo: AL019

Alunos: João Matreno (110246) e Samuel Gomes (110274)

Descrição do Problema e da Solução

crianças, $C = \{c_1, c_2, ..., c_t\}$ fábricas, $F = \{f_1, f_2, ..., f_n\}$ países, $P = \{p_1, p_2, ..., p_m\}$

 $c_k.F$ são as fábricas de onde a criança com id k pode receber os seus pedidos.

 f_i . C são as crianças que pediram brinquedos feitos na fábrica com id i.

 $c_k \in p_j$ indica que o país da criança k é aquele com id j.

 $f_i \in p_j$ indica que o país da fábrica i é aquele com id j.

• Variáveis do Problema: Para cada criança $c_k \Big|_{k=1}^t$ dizemos

 x_{ki} se $f_i \in c_k.F$

 $x_{ki} = 1$ se e só se c_k recebe o pedido de f_i

• O objetivo é maximizar o número de pedidos realizados, ou seja, a **função** objetivo será:

 $\max \sum_{c_k \in C} \sum_{f_i \in c_k.F} x_{ki}$

- Temos também de cumprir 4 restrições:
 - o Uma prenda, no máximo, por criança:

$$\sum_{f_i \in c_k.F} x_{ki} \le 1, \forall c_k \in C$$

Cada fábrica tem um stock máximo:

$$\sum_{c_k \in f_i.C} x_{ki} \le f max_i, \forall f_i \in F$$

• Mínimo de prendas distribuídas por país:

$$\sum_{c_k \in P_j} \sum_{f_i \in c_k.F} x_{ki} \ge pmin_j, \forall p_j \in P$$

o Máximo de exportações por país:

$$\sum_{f_i \in P_j} \sum_{c_k \in f_i, C} x_{ki} \le pmax_j, \forall p_j \in P$$

Análise Teórica

• O número de variáveis do programa linear é: O(nt)

$$\sum_{k=1}^{t} |c_k.F| \le \sum_{k=1}^{t} n = n \sum_{k=1}^{t} 1 = nt$$

- O número de restrições do programa linear é: $\Theta(n+m+t)$
 - \circ Uma prenda por criança: $\Theta(t)$
 - \circ Cada fábrica tem um stock máximo: $\Theta(n)$
 - o Mínimo de prendas por país: $\Theta(m)$
 - \circ Máximo de exportações por país: $\Theta(m)$

Relatório do $3^{\underline{0}}$ Projeto ASA 2024/2025

Grupo: AL019

Alunos: João Matreno (110246) e Samuel Gomes (110274)

Avaliação Experimental dos Resultados

Para fazer a análise experimental do nosso código medimos o tempo que demorava para encontrar a solução para inputs de diferentes tamanhos, gerados através do gerador fornecido, utilizando variance = 0.1, $\max_{cap} = 5$ e $\max_{requests} = 0.05n$, tal que:

$$n = 100 + 100k_1, \ k_1 \in \mathbb{Z}, \ 0 \le k_1 \le 13$$

 $m = 40 + 10k_2, \ k_2 \in \mathbb{Z}, \ 0 \le k_2 \le 2$
 $t = 100 + 125k_3, \ k_3 \in \mathbb{Z}, \ 0 \le k_3 \le 15$

Neste gráfico temos que f(n, m, t) = número de variáveis = nt.

Podemos observar que o tempo de resolução do probema cresce aproximadamente exponencialmeente com o número de variáveis de decisão. Este comportamento é esperado, dado que o problema envolve um modelo de programação linear.