Problemas planificación brazo disco

Problema 7

Dado un disco de cabeza móvil con 200 cilindros, numerados de 0 a 199 se considera que:

- Actualmente sirve una solicitud en el cilindro 143.
- Previamente se solicitó el acceso al cilindro 125.
- La cola de solicitudes se mantiene en orden FIFO: 86, 147, 91, 177, 94, 150, 102, 175, 130.

Se pide:

Determinar el movimiento total de la cabeza necesario para satisfacer estas solicitudes con los siguientes algoritmos de planificación de disco:

- FCFS.
- SSTF.
- SCAN.
- LOOK.
- C-SCAN.

Solución:

Algoritmo FCFS: Las peticiones se sirven en orden de llegada.

Cil. actual	Cil. a servir	Desplaz.	(cil.)
143	86	143 - 86 =	57
86	147	147 - 86 =	61
147	91	147 - 91 =	56
91	177	177 - 91 =	86
177	94	177 - 94 =	83
94	150	150 - 94 =	56
150	102	150 - 102 =	48
102	175	175 - 102 =	73
175	130	175 - 130 =	45
		TOTAL:	565

Algoritmo SSTF: Se sirve primero aquella petición que implique un menor desplazamiento. El asterisco (*) simboliza la posición actual de la cabeza de lectura/escritura. El cilindro a servir aparece subrayado.

Cil. actual	Cilindros pendientes	Desplaz.	(cil.)
143	86, 91, 94, 102, 130, *, <u>147</u> , 150, 175, 177	147 - 143 =	4
147	86, 91, 94, 102, 130, *, <u>150</u> , 175, 177	150 - 147 =	3
150	86, 91, 94, 102, <u>130</u> , *, 175, 177	150 - 130 =	20
130	86, 91, 94, <u>102</u> , *, 175, 177	130 - 102 =	28
102	86, 91, <u>94</u> , *, 175, 177	102 - 94 =	8
94	86, <u>91</u> , *, 175, 177	94 - 91 =	3
91	86, *, 175, 177	91 - 86 =	5
86	*, <u>175</u> , 177	175 - 86 =	89
175	*, <u>177</u>	177 - 175 =	2
		TOTAL:	162

Algoritmo SCAN: Ya que el último cilindro servido fue el 125 y nos encontramos en el 143, supondremos que la dirección de servicio es ascendente. Se realizan dos pasadas, la primera ascendente en la que servimos todos los cilindros entre la posición actual y

el final del disco (cilindro 199). Tras esto partimos del cilindro 199 en dirección descendente y servimos todos los cilindros pendientes.

Direc. servicio	Cilindros servidos	Desplaz.	(cil.)
Ascendente	147, 150, 175 y 177	199 - 143 =	56
Descendente	130, 102, 94, 91 y 86	199 - 86 =	113
		TOTAL:	169

Algoritmo LOOK: Igual que el anterior, pero al servir en orden ascendente no llegamos al final del disco sino que invertimos el sentido de servicio al llegar al cilindro 177.

Direc. servicio	Cilindros servidos	Desplaz.	(cil.)
Ascendente	147, 150, 175 y 177	177 - 143 =	34
Descendente	130, 102, 94, 91 y 86	177 - 86 =	91
		TOTAL:	125

Algoritmo SCAN circular (C-SCAN): Suponemos sentido de servicio ascendente. Al llegar al último cilindro del disco (el 199), volvemos al cilindro 0 sin servir ninguna petición y desde allí iniciamos de nuevo el servicio en orden ascendente.

Direc. servicio	Cilindros servidos	Desplaz.	(cil.)
Ascendente	147, 150, 175 y 177	199 - 143 =	56
Descendente	Ninguno	199 - 0 =	199
Ascendente	86, 91, 94, 102 y 130	130 - 0 =	130
		TOTAL:	385

Problema 8

Dado un disco de cabeza móvil con 200 cilindros, numerados de 0 a 199 y con un tiempo promedio de acceso (rotación+ transferencia) de 20 unidades de tiempo se trata de determinar el tiempo total de servicio que se requiere para atender las siguientes peticiones:

(0,30), (40,10), (45,40), (60,60), (100,50), (120,5), (140,100), (160,120)

donde la primera componente de cada petición se refiere al instante de tiempo en el que se efectúa dicha petición y la segunda componente indica el cilindro al que se pretende acceder. Se considera que el tiempo de posicionamiento entre cilindros contiguos es igual a 1 unidad de tiempo.

Aplicar para el cálculo del tiempo total de servicio los siguientes algoritmos:

- FCFS.
- SSTF.
- SCAN.
- LOOK.
- C-SCAN.

Nota: El cabezal del disco se encuentra inicialmente posicionado en el cilindro 0 y el servicio de las peticiones se realiza en el sentido de números de cilindro crecientes.

Solución:

Emplearemos las siguientes abreviaturas:

CA: Cilindro actual.

CS: Cilindro a servir.

Desp: Desplazamiento en cilindros desde el actual al que debe ser servido.

TS: Tiempo de servicio del cilindro a servir. Incluye posicionamiento, rotación y transferencia.

Su valor será igual, en este problema, a:

Algoritmo FCFS:

Inst.	CA	Cola petic.	CS	Desp	TS
0	0	30	30	30	50
50	30	<u>10,</u> 40	10	20	40
90	10	<u>40,</u> 60	40	30	50
140	40	<u>60,</u> 50, 5, 100	60	20	40
180	60	<u>50,</u> 5, 100, 120	50	10	30
210	50	<u>5,</u> 100, 120	5	45	65
275	5	<u>100</u> , 120	100	95	115
390	100	<u>120</u>	120	20	40
430	120	Vacía	-	-	-

Algoritmo SSTF:

Inst.	CA	Cola petic.	CS	Desp	TS
0	0	*, <u>30</u>	30	30	50
50	30	10, *, <u>40</u>	40	10	30
80	40	10, *, <u>60</u>	60	20	40
120	60	5, 10, <u>50</u> , *	50	10	30
150	50	5, <u>10</u> , *, 100	10	40	60
210	10	<u>5,</u> *, 100, 120	5	5	25
235	5	*, <u>100</u> , 120	100	95	115
350	100	*, <u>120</u>	120	20	40
390	120	Vacía	-	-	-

Algoritmo SCAN: Suponemos que una vez se ha programado una operación SEEK sobre el controlador de disco no hay manera de abortarla. Además, cuando no queden peticiones en el sentido actual, se programa un SEEK hasta el final del disco en ese sentido.

Inst.	CA	Cola petic.	CS	Desp	TS
0	0	\rightarrow , 30	30	30	50
50	30	$10, \rightarrow, \underline{40}$	40	10	30
80	40	$10, \to, \underline{60}$	60	20	40
120	60	5, 10, 50, →	199	139	139
259	199	5, 10, 50, 100, <u>120</u> , ←	120	79	99
358	120	5, 10, 50, <u>100</u> , ←	100	20	40
398	100	5, 10, <u>50</u> , ←	50	50	70
468	50	5, <u>10</u> , ←	10	40	60
528	10	<u>5,</u> ←	5	5	25
553	5	Vacía	-	-	-

Algoritmo LOOK:

Inst.	CA	Cola petic.	CS	Desp	TS
0	0	\rightarrow , 30	30	30	50
50	30	$10, \rightarrow, \underline{40}$	40	10	30
80	40	$10, \rightarrow, \underline{60}$	60	20	40
120	60	5, 10, <u>50</u> , ←	50	10	30
150	50	5, <u>10</u> , ←, 100	10	40	60
210	10	<u>5,</u> ←, 100, 120	5	5	25
235	5	\rightarrow , <u>100</u> , 120	100	95	115
350	100	\rightarrow , 120	120	20	40
390	120	Vacía	-	-	-

Algoritmo C-SCAN: Suponemos que una vez se ha programado una operación SEEK sobre el controlador de disco no hay manera de abortarla. Además, cuando no queden peticiones en el sentido actual, se programa un SEEK hasta el final del disco en ese sentido.

Inst.	CA	Cola petic.	CS	Desp	TS
0	0	\rightarrow , 30	30	30	50
50	30	$10, \to, 40$	40	10	30
80	40	$10, \to, \underline{60}$	60	20	40
120	60	5, 10, 50, →	199	139	139
259	199	5, 10, 50, 100, 120, ←	0	199	199
458	0	\rightarrow , 5 , 10, 50, 100, 120	5	5	25
483	5	→, <u>10</u> , 50, 100, 120	10	5	25
508	10	→, <u>50</u> , 100, 120	50	40	60
568	50	→, <u>100</u> , 120	100	50	70
638	100	\rightarrow , 120	120	20	40
678	120	Vacía	-	-	-

Problema 9

Se sabe que un disco duro posee 500 cilindros (enumerados del 0 al 499). Se sabe que el cabezal ha descrito una trayectoria que viene dada por los siguientes números de cilindro: 135, 150, 195, 330, 410, 450, 10, 25, 30 y 50.

Indique si es posible que el manejador de dispositivo haya utilizado cada uno de los algoritmos que se muestran a continuación, en caso afirmativo indique bajo que condiciones se ha podido realizar esta: posición inicial del cabezal, dirección del cabezal (Ascendente y/o Descendente) y cola inicial de peticiones. Se supone que no llegan más peticiones después del instante inicial.

Solución:

Algoritmo	¿Posible? (Si/No)	Cilindro Inicial	Dirección Inicial	Cola Inicial de peticiones
FCFS	SI	Indiferente	Indiferente	135, 150, 195, 330, 410, 450, 10, 25, 30 y 50
SSTF	NO	Si se hubier de la 10.	a utilizado SS	TF, tras la petición 450 se habría servido la 50, en lugar
LOOK	NO	Si se hubiera utilizado LOOK, tras la petición 450 se habría servido la 50, en lugar de la 10.		
C-LOOK	SI	51-134	Ascendente	Es indiferente el orden de los números de cilindros citados en el enunciado

Problema 10

Se tiene un disco de cabeza móvil con 100 cilindros, numerados de 0 a 99 y, un tiempo promedio de acceso (latencia+transferencia) de 10 unidades de tiempo y un tiempo de posicionamiento entre pistas contiguas de 1 unidad de tiempo. Indique el recorrido del cabezal del disco para las siguientes peticiones:

(0,40) (0,80) (5,60) (5,80) (10,35) (40,20) (50,60) (69,90) con los algoritmos:

a) SSTF

- b) SCAN c) LOOK

Suponga que el cabezal se encuentra inicialmente sobre el cilindro 50 y el servicio de las peticiones se realiza en sentido ascendente.

Solución:

SSTF	50,40,35,60,60,80,80,90,20
SCAN	50,80,80,99,90,60,60,40,35,20
LOOK	50,80,80,60,60,40,35,20,90