Tnum < AND, OR xor AND > Proof

2.24.21

- a) Let A be the set of concrete values represented by thum a.
- b) Let a_{and} , a_{or} represent functions that perform bitwise AND and bitwise OR, respectively, on all members of set A:

$$A = \{a_1, a_2, a_3, ..., a_n\}$$

$$a_{and} = a_1 \wedge a_2 \wedge a_3 \wedge ... \wedge a_n$$

$$a_{or} = a_1 \vee a_2 \vee a_3 \vee ... \vee a_n$$

Observation 0.1 If all members of set A contain 1 in the ith bit, then a_{and} will return 1 in the ith bit. This corresponds to the known 1's in the tnum.

Observation 0.2 If all members of set A contain 0 in the ith bit, then a_{or} will return 1 in the ith bit. This corresponds to the known 0's in the tnum.

Observation 0.3 Any 1 in the ith bit of the resulting bitvector $a_{or} \oplus a_{and}$ corresponds to uncertain bits in the tnum. Let $a_{uncertain} = a_{or} \oplus a_{and}$ (where \oplus represents bitwise xor)

Observation 0.4 Any 0 in the ith bit of the resulting bitvector $a_{or} \oplus a_{and}$ corresponds to certain bits in the tnum.

Observation 0.5 Any 1 in the ith bit of the resulting bitvector $\neg(a_{or} \oplus a_{and})$ corresponds to certain bits in the tnum. Let $a_{certain} = \neg(a_{or} \oplus a_{and})$

Definition 1 (Well-formed tnum) $a.value \land a.mask = 0.$

Definition 2 (Trum membership) $x \in a \iff x \land \neg a.mask = a.value.$

Theorem 3 Given a set of concrete values A, a correct and maximally precise trum a can be derived with the following formulation: $\langle a_{and}, a_{or} \oplus a_{and} \rangle$ where $a_{and} = a.value$ and $a_{or} \oplus a_{and} = a.mask$.

Proof: [Soundness]. First, we can show that our formulation produces a well formed thum in the following way:

a.value
$$\wedge$$
 a.mask = 0
= $a_{and} \wedge (a_{or} \oplus a_{and}) = 0$
= $(a_{and} \wedge a_{or}) \oplus (a_{and} \wedge a_{and}) = 0$
= $(a_{and} \wedge a_{or}) \oplus (a_{and} \wedge a_{and}) = 0$
= $a_{and} \oplus a_{and} = 0$

Let A_k be an arbitrary member of A and $A_k[i]$ denote the *i*th bit of member A_k . Now, using case analysis, we show that all members of A are represented by the tnum $\langle a_{and}, a_{or} \oplus a_{and} \rangle$ by satisfying the definition of tnum membership:

$$A_i \wedge \neg a.mask = a.value$$

= $A_k \wedge \neg (a_{or} \oplus a_{and}) = a_{and}$
= $A_k[i] \wedge a_{certain}[i] = a_{and}[i]$

- 1) $A_k[i] = 0$. This implies that $a_{and}[i] = 0$ since a_{and} will capture any 0 in the *i*th of a member of A if such exists. Thus the bitwise operation $A_k[i] \wedge a_{certain}[i] = a_{and}[i]$ holds regardless of the value of $a_{certain}[i]$.
- 2) $A_k[i] = 1$ and $a_{and}[i] = 1$. In this case the *i*th bit must be a certain 1 since it is contained by a_{and} . This implies that $a_{certain}[i] = 1$, which means that $A_k[i] \wedge a_{certain}[i] = a_{and}[i]$ must also be true.
- 3) $A_k[i] = 1$ and $a_{and}[i] = 0$. In this case, the 1 in the *i*th bit is uncertain since it is not present in a_{and} which implies that $a_{certain} = 0$. Thus, $A_k[i] \wedge a_{certain}[i] = a_{and}[i]$ must hold in this case as well.

Proof: [Maximal precision]. Here we show that $\langle a_{and}, a_{or} \oplus a_{and} \rangle$ is also maximally precise.

Definition 4 Let min(|a|) denote the minimal cardinality of thum a that can represent all members of set A. Then thum a is maximally precise if |a| = min(|a|).

Lemma 5 Given an n-bit tnum a, $|a| = 2^{n-k}$ where k denotes the number of certain bits in tnum a.

^{*}note that, by definition, $a_{and} \subseteq a_{or}$ which implies that $a_{and} \wedge a_{or} = a_{and}$.

Proof: Given an n-bit number, the number of possible values we can represent is 2^n . Let k denote the number of certain bits in thum a. From our observations above, we know that every 0 in the ith bit of the thum mask $(a_{or} \oplus a_{and})$ represents a certain bit. It follows that every such certain bit must be present in all members of thum a. Then the combinatorial question we seek to answer is: how many values out of the 2^n possible representable values contain k certain bits. Therefore, $|a| = \frac{2^n}{2^k} = 2^{n-k}$.

It follows from Lemma 5 that in order to find the maximally precise trum, $\min(|a|) = \min(2^{n-k})$, k must be the maximum value possible given set A - meaning that all certain bits of set A must be captured in the mask. If this is not the case, then trum a is not maximally precise.

Lemma 6 $a_{or} \oplus a_{and}$ will capture all certain bits in a given set A.

Proof: By contradiction, let's assume $a_{or} \oplus a_{and}$ does not capture all certain bits in a given set A. Then a_{and} will return 0 in the *i*th bit if all set members contain 1 in the *i*th bit and a_{or} will return 1 in the *i*th bit if all set members contain 0 in the *i*th bit. This, however, is contradicting to the nature of the bitwise operations defined above and thus cannot be true.

By Lemma 5 and Lemma 6 and Definition 4, we have that $\langle a_{and}, a_{or} \oplus a_{and} \rangle$ must be maximally precise and we conclude that Theorem 3 must hold.