

Цель работы:

Экспериментально выявить участок сформированного течения, определить режимы ламинарного и турбулентного течения; определить число Рейнольдса.

В работе используются:

Металлические трубки, укрепленные на горизонтальной подставке; газовый счетчик; микроманометр типа ММН; стеклянная U-образная трубка; секундомер.

Описание работы

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, и слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vrp}{\eta}$$

В гладких трубах круглого сечения переход от ламинарного движения к турбулентному происходит при $\mathrm{Re} \approx 1000$.

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l (называемый расходом), определяется формулой Пуазейля:

$$Q_V = \frac{\pi r^4}{8l\eta} (P_1 - P_2)$$

При втекании газа в трубку из большого резервуара скорости слоев вначале постоянны по всему сечению (рис. 1).

Рис. 1. Формирование потока газа в трубе круглого сечения

По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней слои. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии а от входа в трубку, которое зависит от радиуса трубки г и числа Рейнольдса по формуле:

$$a \approx 0, 2r * Re$$

Экспериментальная установка:

А также подробная схема ММН:

Рис. 3. Микрометрический манометр типа ММН

Ход работы

Оценим расстояние, на котором происходит формирование потока при ламинарном течении. $a\approx 0, 2r*Re=0, 2*1, 95*10^{-2}*1000\approx 40$ (см)

Давление, измеряемое микроманометром, определяется по формуле:

$$P = K * h * 9,80665$$

где

Р - давление в Паскалях h отчет по шкале

K=0,2 - постоянная угла наклона Таблица измерений:

h, дел	6	16	32	50	66	81	88	101	122
V нач, л	2,6	4,6	0,7	4,0	0,0	2,5	2,0	3,0	2,0
V конеч, л	3,5	6,8	5,1	8,8	5,5	8,5	8,5	10,0	9,0
t, c	92	89	92	66	60	60	63	64	60
$q*10^2$, л/с	1,0	2,5	4,8	7,3	9,2	10,0	10,3	10,9	11,7

$$\Delta h=0,5$$
 дел

h, дел	133	143	166	188	202	213	229	253
V нач, л	3,5	1,5	3,0	0,0	0,0	0,0	0,0	0,0
V конеч, л	11,0	9,0	12,0	9,0	9,5	9,5	10,0	10,5
t, c	62	59	66	62	63	61	62	62
$q*10^2$, m^3/c	12,1	12,7	13,6	14,5	15,1	15,6	16,1	17,0

$$\Delta q = q\sqrt{2(\frac{\Delta V}{V})^2 + (\frac{\Delta t}{t})^2}$$

Построим график зависимости давления от расхода:

Выразим искомую вязкость через коэффициент наклона прямой α

$$h=\eta*\frac{8l}{\pi r^4K*8,80665}Q=\alpha Q$$

$$\eta = \frac{\pi r^4 K * 9,80665\alpha}{8l}$$

$$\begin{split} l &= (50, 0 \pm 0, 1) \text{ cm} \\ r &= (1, 95 \pm 0, 03) \text{ cm} \\ \epsilon_{\eta} &= \sqrt{4\epsilon_r^2 + \epsilon_{\alpha}^2 + \epsilon_l^2} = 0, 03 \\ \hline \eta &= (1, 61 \pm 0, 05) * 10^{-5} \text{ kg/m/c} \end{split}$$

Из графика видно, что ламинарный режим переходит в турбулентный на значениях $(8-9)*10^2~\mathrm{m}^3/\mathrm{c}$

$$Re = \frac{Qr\rho}{S\eta}$$

$$Re = (980 - 1100)$$

$$Re = 1040 \pm 60$$

При расходе, заведомо обеспечивающем ламинарность потока измерим распределение давления вдоль трубки:

l, см	0	10,5	40,5	80,5	130,5
h, дел	0	16	36	59	88

Построим график зависимости давления от расстояния:

Из графика видно, что установление потока происходит еще на 1-ом участке длиной 10,5 см. Теоретические расчеты дали длину установления порядка 40 см. То есть оценка, полученная по формуле, гораздо более грубая, чем результат, который мы наблюдаем в эксперименте.

Для всех трубок проведем измерения зависимости Q от P и обработаем их по формуле

$$\frac{8l\eta Q}{\pi(P_1 - P_2)} = r^n$$

$$\ln(\frac{8l\eta Q}{\pi(P_1 - P_2)}) = n \ln r$$

$$\ln 1 = n \ln 2$$

Таблица измерений:

Taleviniae nemepennin							
r, cm	1,50	1,95	2,95				
l, см	30	50	50				
h, дел	11	16	5				
V нач, л	4,0	4,6	1,7				
V конеч, л	5,3	6,8	3,0				
t, c	46	89	42				
$q*10^2$, л/с	2,17	2,47	3,10				
ln1	-25,65	-24,85	-23,46				
ln2	-6,5	-6,24	-5,83				

$$\begin{split} \Delta ln1 &= \sqrt{\epsilon_Q^2 + \epsilon_\eta^2 + \epsilon_{2h}^2} = 0,05 \\ \Delta ln2 &= \epsilon_r \end{split}$$

 $n=3,97\pm0,05$ Результат, прекрасно сходящийся с формулой Пуазейля

Вывод:

Данная лабораторная работа поражает точностью результатов. В каждом пункте мы получили значения, хорошо сходящиеся с теорией.

Литература

Лабораторный практикум по общей физике. Том 1 (Механика)/А.Д. Гладун - М, 2004 г