

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 068 809
B1

⑫

EUROPEAN PATENT SPECIFICATION

- ⑯ Date of publication of patent specification: **21.08.85** ⑮ Int. Cl.⁴: **B 04 C 5/081, B 04 C 5/13**
⑰ Application number: **82303277.6**
⑯ Date of filing: **23.06.82**

④ Cyclone separator.

⑩ Priority: **25.06.81 GB 8119565**

⑩ Date of publication of application:
05.01.83 Bulletin 83/01

⑯ Publication of the grant of the patent:
21.08.85 Bulletin 85/34

⑭ Designated Contracting States:
BE DE FR IT NL

⑯ References cited:
GB-A-1 583 730
US-A-4 237 006

⑬ Proprietor: **NATIONAL RESEARCH
DEVELOPMENT CORPORATION
101 Newington Causeway
London SE1 6BU (GB)**

⑰ Inventor: **Colman, Derek Alan
19 Osprey Close
Lordswood Southampton S01 8EX (GB)**
Inventor: **Thew, Martin Thomas
7 Court Close
Bitterne Southampton S02 5EJ (GB)**

⑰ Representative: **Neville, Peter Warwick
Patent Department National Research
Development Corporation 101 Newington
Causeway
London SE1 6BU (GB)**

EP 0 068 809 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

Description

This invention is about a cyclone separator. This separator may find application in removing a lighter phase from a large volume of a denser phase, such as oil from water, with minimum contamination of the more voluminous phase. Most conventional cyclone separators are designed for the opposite purpose, that is removing a denser phase from a large volume of a lighter phase, with minimum contamination of the less voluminous phase.

A cyclone for removing oil from a large volume of water has, however, been described in US Patent Specification 4237006. In this cyclone, as explained later in more detail, concentric outlet tubes were proposed for dealing with very dilute oil, but it has now been found that a small axial overflow outlet can be used by itself.

This invention is a cyclone separator defined as follows. The cyclone separator has a generally cylindrical first portion with a plurality of substantially identical substantially equally circumferentially spaced tangentially directed feeds (or groups of feeds), and, adjacent to the first portion and substantially coaxial therewith, a generally cylindrical/tapered second portion open at its far end. The first portion has an axial overflow outlet opposite the second portion (i.e. in its end wall). The second portion comprises a flow-smoothing taper converging towards its said far end, where it leads into a substantially coaxial generally cylindrical third portion. The internal diameter of the axial overflow outlet is d_0 , of the first portion is d_1 , of the divergent end of the taper comprised in the second portion is d_2 , of the convergent end of the taper is d_3 , and of the third portion is also d_3 . The internal length of the first portion is l_1 and of the second portion is l_2 . The total cross-sectional area of all the feeds measured at the points of entry normal to the inlet flow is A_1 . The shape of the separator is governed by the following relationships:

$$\begin{aligned} 10 &\leq l_2/d_2 \leq 25 \\ 0.04 &\leq 4A_1/\pi d_1^2 \leq 0.10 \\ d_0/d_2 &< 0.1 \\ d_1 &> d_2 \\ d_2 &> d_3. \end{aligned}$$

The half-angle of the convergence of the taper is preferably 20° to 2°, most preferably up to 1°. The taper is preferably frustoconical. Optionally the half-angle is such that half-angle (conicity) = $\arctan((d_2 - d_3)/2l_2)$, i.e. of such slight angle that the taper occupies the whole length of the second portion.

Preferably, d_3/d_2 is from 0.4 to 0.7. Preferably, where the internal length of the third portion is l_3 , l_3/d_3 is at least 15 and may be as large as desired, preferably at least 40. l_1/d_1 may be from 0.5 to 5, preferably from 1 to 4. d_1/d_2 may be from 1.5 to 3.

For maximum discrimination with especially dilute lighter phases, it was thought necessary to remove, through the axial overflow outlet, not

only the lighter phase but also a certain volume contributed by a near-wall flow travelling radially inwardly towards the axis (where, in operation, the lighter phase tends to collect on its way to the axial overflow outlet). It was accordingly proposed to provide, within the axial overflow outlet, a further concentric outlet tube of the desired narrowness, thus creating a third outlet from the cyclone separator into which the lighter phase is concentrated. While this design works entirely satisfactorily, it is complicated by reason of having three outlets and we now unexpectedly find that, when using merely a small axial overflow outlet, the near-wall flow tends to detach itself from the end wall before reaching that outlet, and recirculates (and is 're-sorted') within the cyclone separator, leading to a welcome simplification. Furthermore, the proportion of heavy fine solids in the overflow outlet falls because of advantageous changes in the flow pattern. (Such solids are generally preferably absent in that outlet).

Preferably d_0/d_2 is at least 0.008, more preferably from 0.01 to 0.08, most preferably 0.02 to 0.06. The feeds are advantageously spaced axially from the axial overflow outlet. Pressure drop in the axial overflow outlet should not be excessive, and therefore the length of the " d_0 " portion of the axial overflow outlet should be kept low. The outlet may widen by a taper or step.

A flow-smoothing taper may be interposed between the first portion and the second portion, preferably in the form of a frustoconical internal surface whose larger-diameter end has a diameter d_1 and whose smaller-diameter end has a diameter d_2 and whose conicity (half-angle) is preferably at least 10°. For space reasons it may be desired to curve the third portion gently, and a radius of curvature of the order of 50 d_3 is possible.

The actual magnitude of d_2 is a matter of choice for operating and engineering convenience, and may for example be 10 to 100 mm.

Further successively narrower fourth, fifth ... portions may be added, but it is likely that they will increase the energy consumption to an extent outweighing the benefits of extra separation efficiency.

50 A lighter phase may be removed from a larger volume of a denser phase by a method comprising applying the phases to the feeds of a cyclone separator as set forth above, the phases being at a higher pressure than in the axial overflow outlet and in the far end of the third portion. The pressure drop to the end of the third portion (clean stream) is typically only about half that to the axial overflow outlet (dispersion-enriched stream), and the method must accommodate this feature.

55 60 65 This method is particularly envisaged for removing oil (lighter phase) from water (denser phase), such as oil-field production water or sea water, which may have become contaminated with oil as a result of spillage, shipwreck, oil-rig

blow-out or routine operations such as bilge-rinsing or oil-rig drilling.

The feed rate (in m^3/s) of the phases to the cyclone separator preferably exceeds $6.8d_2^{2.8}$ where d_2 is in metres. The method preferably further comprises, as a preliminary step, eliminating gas from the phases such that in the inlet material the volume of any gas is not more than $\frac{1}{2}\%$.

Where however the gas content is not too large, the gas itself may be treated as the lighter phase to be removed in the method. As liquids normally become less viscous when warm, water for example being approximately half as viscous at 50°C as at 20°C , the method is advantageously performed at as high a temperature as convenient.

The invention will now be described by way of example with reference to the accompanying drawing, which shows, schematically, a cyclone separator according to the invention. The drawing is not to scale.

A generally cylindrical first portion 1 has two identical equally-circumferentially-spaced groups of feeds 8 (only one group shown) which are directed tangentially, both in the same sense, into the first portion 1, and are slightly displaced axially from a wall 11 forming the 'left-hand' end as drawn, although, subject to their forming an axisymmetric flow, their disposition and configuration are not critical. Coaxial with the first portion 1, and adjacent to it, is a generally cylindrical second portion 2, which opens at its far end into a coaxial generally cylindrical third portion 3. The third portion 3 opens into collection ducting 4. The feeds may be slightly angled towards the second portion 2 to impart an axial component of velocity, for example by 5° from the normal to the axis.

The first portion 1 has an axial overflow outlet 10 opposite the second portion 2.

In the present cyclone separator, the actual relationships are as follows:

$d_1/d_2=2$. This is a compromise between energy-saving and space-saving considerations, which on their own would lead to ratios of around 3 and 1.5 respectively.

Taper half-angle= $40'$ (T_2 on Figure).

$d_3/d_2=0.5$.

$l_1/d_1=1.0$. Values of from 0.5 to 4 work well.

l_1/d_2 is about 22. The second portion 2 should not be too long.

The drawing shows part of the second portion 2 as cylindrical, for illustration. In our actual example, it tapers over its entire length.

$l_3/d_3=40$. This ratio should be as large as possible.

$d_0/d_2=0.04$. If this ratio is too large for satisfactory operation, excessive denser phase will overflow with the lighter phase through the axial overflow outlet 10, which is undesirable. If the ratio is too small, minor constituents (such as specks of grease, or bubbles of air released from solution by the reduced pressure in the vortex) can block the overflow outlet 10 and hence cause

fragments of the lighter phase to pass out of the 'wrong' end, at collection ducting 4. With these exemplary dimensions, about 1% by volume (could go down to 0.4%) of the material treated in the cyclone separator overflows through the axial overflow outlet 10. (Cyclones having d_0/d_2 of 0.02 and 0.06 were also tested successfully).

$4A_1/dn_1^2=1/16$. This expresses the ratio of the inlet feeds cross-sectional area to the first portion cross-sectional area.

$d_2=58$ mm. This is regarded as the 'cyclone diameter' and for many purposes can be anywhere within the range 10–100 mm, for example 15–60 mm; with excessively large d_2 , the energy consumption becomes large to maintain effective separation while with too small d_2 unfavourable Reynolds Number effects and excessive shear stresses arise. Cyclones having $d_2=30$ mm proved very serviceable.

The cyclone separator can be in any orientation with insignificant effect.

The wall 11 is smooth as, in general, irregularities upset the desired flow patterns within the cyclone. For best performance all other internal surfaces of the cyclone should also be smooth. However, in the wall 11, a small up-standing circular ridge concentric with the outlet 10 may be provided to assist the flow moving radially inward near the wall, and the outer 'fringe' of the vortex, to recirculate in a generally downstream direction for resorting. The outlet 10 is a cylindrical bore as shown. Where it is replaced by an orifice plate lying flush on the wall 11 and containing a central hole of diameter d_0 leading directly to a relatively large bore, the different flow characteristics appear to have a slightly detrimental, though not serious, effect on performance. The outlet 10 may advantageously be divergent in the direction of overflow, with the outlet orifice in the wall 11 having the diameter d_0 and the outlet widening thereafter at a cone half-angle of up to 10° . In this way, a smaller pressure drop is experienced along the outlet, which must be balanced against the tendency of the illustrated cylindrical bore (cone half-angle of zero) to encourage coalescence of droplets of the lighter phase, according to the requirements of the user.

To separate oil from water (still by way of example), the oil/water mixture is introduced at 50°C through the feeds 8 at a pressure exceeding that in the ducting 4 or in the axial overflow outlet 10, and at a rate preferably of at least 160 litre/minute, with any gas in the inlet limited to $\frac{1}{2}\%$ by volume. The size, geometry and valving of the pipework leading to the feed 8 are so arranged as to avoid excessive break-up of the droplets (or bubbles) of the lighter phase, for best operation of the cyclone separator. For the same reason (avoidance of droplet break-up), still referring to oil and water, it is preferable for no dispersant to have been added. The feed rate (for best performance) is set at such a level that (feed rate/ $d_2^{2.8}$) >6.8 with feed rate in m^3/s and d_2 in metres. The mixture spirals within the first portion 1 and

its angular velocity increases as it enters the second portion 2. A flow-smoothing taper T_1 of angle to the axis 10° is interposed between the first and second portions. Alternatively worded, 10° is the conicity (half-angle) of the frustum represented by T_1 .

The bulk of the oil separates within an axial vortex in the second portion 2. The spiralling flow of the water plus remaining oil then enters the third portion 3. The remaining oil separates within a continuation of the axial vortex in the third portion 3. The cleaned water leaves through the collection ducting 4 and may be collected for return to the sea, for example, or for further cleaning, for example in a similar or identical cyclone or a bank of cyclones in parallel.

The oil entrained in the vortex moves axially to the axial overflow outlet 10 and may be collected for dumping, storage or further separation, since it will still contain some water. In this case too, the further separation may include a second similar or identical cyclone.

The smallness of the axial overflow outlet 10 in accordance with the invention is especially advantageous in the case of series operation of the cyclone separators, for example where the 'dense phase' from the first cyclone is treated in a second cyclone, from which the 'dense phase' is treated in a third cyclone. The reduction in the volume of 'light phase' at each stage, and hence of the other phase unwantedly carried over with the 'light phase' through the axial overflow outlet 10, is an important advantage, for example in a boat being used to clear an oil spill and having only limited space on board for oil containers; although the top priority is to return impeccably de-oiled seawater to the sea, the vessel's endurance can be maximised if the oil containers are used to contain only oil and not wasted on containing adventitious sea-water.

Claims

1. A cyclone separator having a generally cylindrical first portion with a plurality of substantially identical substantially equally circumferentially spaced tangentially directed feeds (or groups of feeds), and, adjacent to the first portion and substantially coaxial therewith, a tapered (and optionally partially cylindrical) second portion open at its far end,

the first portion having an axial overflow outlet opposite the second portion,

the second portion comprising a flow-smoothing taper converging towards its said far end, where it leads into a substantially coaxial generally cylindrical third portion,

The internal diameter of the axial overflow outlet being d_0 , of the first portion being d_1 , of the divergent end of the taper comprised in the second portion being d_2 , of the convergent end of the taper being d_3 , of the third portion being also d_3 , the internal length of the first portion being l_1 and of the second portion being l_2 , the total cross-sectional area of all the feeds measured at

the points of entry normal to the inlet flow being A_i ,

the shape of the separator being governed by the following relationships:—

$$\begin{aligned} 5 \quad & 10 \leq l_2/d_2 \leq 25 \\ & 0.04 \leq 4A_i/\pi d_1^2 \leq 0.10 \\ & d_1 > d_2 \\ & d_2 > d_3 \end{aligned}$$

10 characterized in that
 $d_0/d_2 < 0.1$.

15 2. A cyclone separator according to Claim 1, wherein the half-angle of the convergence of the taper is $20'$ to 2° .

3. A cyclone separator according to Claim 2, wherein said half-angle is up to 1° .

4. A cyclone separator according to any preceding claim, wherein d_3/d_2 is from 0.4 to 0.7.

20 5. A cyclone separator according to any preceding claim, wherein the internal length of the third portion is l_3 and l_3/d_3 is at least 15.

6. A cyclone separator according to any preceding claim, wherein l_1/d_1 is from 0.5 to 5.

25 7. A cyclone separator according to Claim 6, wherein l_1/d_1 is from 1 to 4.

8. A cyclone separator according to any preceding claim, wherein d_1/d_2 is from 1.5 to 3.

9. A cyclone separator according to any preceding claim, wherein d_0/d_2 is at least 0.008.

30 10. A cyclone separator according to Claim 9, wherein d_0/d_2 is from 0.01 to 0.08.

11. A cyclone separator according to Claim 10, wherein d_0/d_2 is from 0.02 to 0.06.

35 12. A cyclone separator according to any preceding claim, further comprising, interposed between the first portion and the second portion, a flow-smoothing taper.

13. A cyclone separator according to Claim 12, wherein the taper of Claim 12 is in the form of frustoconical internal surface whose larger-diameter end has a diameter d_1 and whose smaller-diameter end has a diameter d_2 .

40 14. A cyclone separator according to Claim 13, wherein the conicity (half-angle) of the frustoconical taper is at least 10° .

15. A cyclone separator according to any preceding claim, wherein d_2 is from 10 mm to 100 mm.

Patentansprüche

55 1. Cyclonabscheider mit einem im allgemeinen zylindrischen ersten Teil, der eine Vielzahl von im wesentlichen gleichen im wesentlichen in gleichem Umfang im Abstand angeordnete tangential gerichtete Zuführungen (oder Gruppen von Zuführungen) besitzt und zugeordnet zu diesem ersten Teil und im wesentlichen koaxial zu diesem einen sich verengenden (und gegebenenfalls teilweise zylindrischen) zweiten Teil, der am weitesten Ende offen ist, aufweist, der erste Teil ein axiale Überlauf-Ableitung gegenüber dem zweiten Teil und der zweite Teil eine die Strömung beruhigende Verjüngung besitzt, die

gegen das weite Ende konvergiert und in einen im wesentlichen koaxialen, im wesentlichen zylindrischen dritten Teil führt, wobei der Innendurchmesser der axiale Überlauf-Ableitung d_0 des ersten Teils d_1 des divergierenden Endes der Verjüngung im zweiten Teil d_2 des konvergierenden Endes der Verjüngung d_3 des dritten Teils ebenfalls d_3 ist und die innere Länge des ersten Teils l_1 und des zweiten Teils l_2 benannt sind und die gesamte Querschnittsfläche aller Zuführungen an den Stellen des Eintritts senkrecht zu der Eintrittsströmung mit A_i bezeichnet wird und in dem Abscheider folgende Beziehungen erfüllt sind:

$$\begin{aligned} 10 &\leq l_2/d_2 \leq 25 \\ 0,04 &\leq 4A_i/d_1^2 \leq 0,10 \\ d_1 &> d_2 \\ d_2 &> d_3 \end{aligned}$$

dadurch gekennzeichnet, daß $d_0/d_2 < 0,1$ ist.

2. Cyclonabscheider nach Anspruch 1, worin der Halbwinkel der Konvergenz der Verjüngung $20'$ bis 2° beträgt.

3. Cyclonabscheider nach Anspruch 2, worin der Halbwinkel bis zu 1° beträgt.

4. Cyclonabscheider nach einem der vorhergehenden Ansprüche, worin d_3/d_2 0,4 bis 0,7 ist.

5. Cyclonabscheider nach einem der vorhergehenden Ansprüche, worin die innere Länge des dritten Teils l_3 bezeichnet wird und das Verhältnis l_3/d_3 zumindest 15 beträgt.

6. Cyclonabscheider nach einem der vorhergehenden Ansprüche, worin l_1/d_1 0,1 bis 5 ist.

7. Cyclonabscheider nach Anspruch 6, worin l_1/d_1 1 bis 4 ist.

8. Cyclonabscheider nach einem der vorhergehenden Ansprüche, worin d_1/d_2 1,5 bis 3 ist.

9. Cyclonabscheider nach einem der vorhergehenden Ansprüche, worin d_0/d_2 zumindest 0,008 ist.

10. Cyclonabscheider nach Anspruch 9, worin d_0/d_2 0,01 bis 0,08 ist.

11. Cyclonabscheider nach Anspruch 10, worin d_0/d_2 0,02 bis 0,06 ist.

12. Cyclonabscheider nach einem der vorhergehenden Ansprüche, wobei sich zwischen dem ersten und zweiten Teil eine die Strömung beruhigende Verjüngung befindet.

13. Cyclonabscheider nach Anspruch 12, wobei die Verjüngung an der Innenfläche die Form eines Kegelstumpfs, dessen großer Durchmesser d_1 und dessen kleiner Durchmesser d_2 ist, hat.

14. Cyclonabscheider nach Anspruch 13, worin die Konizität (der Halbwinkel) der kegelstumpfförmigen Verjüngung zumindest 10° ist.

15. Cyclonabscheider nach einem der vorhergehenden Ansprüche, worin d_2 10 bis 100 mm ist.

Revendications

1. Séparateur à cyclone, ayant une première partie de forme générale cylindrique ayant plusieurs alimentations (ou groupes d'alimentations) sensiblement identiques, dirigées

tangentiellement et espacées sensiblement régulièrement en direction circonférentielle, et, près de la première partie et coaxialement sensiblement à celle-ci, une seconde partie évasée (et éventuellement partiellement cylindrique) ouverte à son extrémité éloignée,

la première partie ayant une sorte de débordement axial opposé à la seconde partie,

la seconde partie ayant une partie évasée à écoulement régulier convergeant vers cette extrémité éloignée à laquelle elle débouche dans une troisième partie de forme générale cylindrique et sensiblement coaxiale,

le diamètre interne de la sortie de débordement axial étant d_0 , celui de la première partie étant d_1 , celui de l'extrémité divergente de la partie évasée de la seconde partie étant d_2 , celui de l'extrémité convergente de la partie évasée étant d_3 , celui de la troisième partie étant aussi d_3 , la longueur interne de la première partie étant l_1 et celle de la seconde partie étant l_2 , la section totale de toutes les alimentations, mesurée aux points d'entrée, normalement au courant introduit, étant A_i ,

la configuration du séparateur satisfaisant aux relations suivantes:

$$\begin{aligned} 10 &\leq l_2/d_2 \leq 25 \\ 0,04 &\leq 4A_i/\pi d_1^2 \leq 0,10 \\ d_1 &> d_2 \\ d_2 &> d_3 \end{aligned}$$

caractérisé en ce que

$$d_0/d_2 < 0,1$$

2. Séparateur à cyclone selon la revendication 1, dans lequel le demi-angle de convergence de la partie évasée est compris entre $20'$ et 2° .

3. Séparateur à cyclone selon la revendication 2, dans lequel le demi-angle peut atteindre 1° .

4. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel d_3/d_2 est compris entre 0,4 et 0,7.

5. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel la longueur interne de la troisième partie est l_3 et l_3/d_3 est au moins égal à 15.

6. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel l_1/d_1 est compris entre 0,5 et 5.

7. Séparateur à cyclone selon la revendication 6, dans lequel l_1/d_1 est compris entre 1 et 4.

8. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel d_1/d_2 est compris entre 1,5 et 3.

9. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel d_0/d_2 est au moins égal à 0,008.

10. Séparateur à cyclone selon la revendication 9, dans lequel d_0/d_2 est compris entre 0,01 et 0,08.

11. Séparateur à cyclone selon la revendication 10, dans lequel d_0/d_2 est compris entre 0,02 et 0,06.

12. Séparateur à cyclone selon l'une quelconque des revendications précédentes, comprenant en outre, entre la première et la

seconde partie, une partie évasée à écoulement régulier.

13. Séparateur à cyclone selon la revendication 12, dans lequel la partie évasée de la revendication 12 est sous forme d'une surface interne tronconique dont l'extrémité de diamètre relativement grand a un diamètre d_1 , et dont l'extrémité

du diamètre relativement petit a un diamètre d_2 .

14. Séparateur à cyclone selon la revendication 13, dans lequel la conicité (demi-angle) de la partie évasée tronconique est d'au moins 10° .

5 15. Séparateur à cyclone selon l'une quelconque des revendications précédentes, dans lequel d_2 est compris entre 10 mm et 100 mm.

10

15

20

25

30

35

40

45

50

55

60

65

0 068 809

