CAUSALIDADE DE GRANGER

Entre os propósitos comuns na estimação de modelos VAR está a investigação de causalidade entre as variáveis.

A causalidade de Granger se baseia se baseia em inferir se valores passados de uma variável auxiliam na previsão de uma outra.

Dessa forma o teste de causalidade de Granger não nos informa nada a respeito de causalidade em termos literais mas oferece evidências estatísticas de que variações passadas de uma variável estão correlacionada com as de uma outra.

Se Y₂ ajuda prever Y₁, temos que Y₂ Granger-causa Y₁

A forma proposta para descobrir essa relação é usar um teste F convencional, válido quando os coeficientes de interesse puderem ser escritos de modo a multiplicar variáveis estacionárias.

Em um sistema bivariado, testar se Y2 Granger causa Y1 é equivalente a usar um teste F sob H0: B1=B2=O para equação:

$$y_{1,t} = c + \beta_{1,t-1}y_{1,t-1} + \dots + \beta_{1,t-p}y_{1,t-p} + \beta_{2,t-1}y_{2,t-1} + \dots + \beta_{2,t-k}y_{1,t-k} + \varepsilon_{1,t}$$

Ou seja, dada a equação:

$$y_{1,t} = c + \beta_{1,t-1}y_{1,t-1} + \dots + \beta_{1,t-p}y_{1,t-p} + \beta_{2,t-1}y_{2,t-1} + \dots + \beta_{2,t-k}y_{1,t-k} + \varepsilon_{1,t}$$

A hipótese nula, Ho:

Y₂ não granger causa Y₁

A estatística é calculada da seguinte maneira:

$$S_{1} = \frac{\frac{\left(e_{r}^{2} - e_{u}^{2}\right)}{p}}{\frac{e_{u}^{2}}{T - 2p - 1}} \rightarrow F(p, T - 2p - 1)$$

Se $S_1 > F^{5\%}$ então rejeita a hipótese nula que Y $_2$ não granger causa Y $_1$

Comando no R:

causality (x, cause=NULL,vcov.=NULL,....)

x: objeto contendo um VAR previamente estimado; cause: permite especificar a variável, de causa, quando necessário; vcov.: permite especificar manualmente a matriz de covariância;


```
suppressMessages(require(forecast))
suppressMessages(require(dplyr))
suppressMessages(require(vars))
suppressMessages(require(urca))
suppressMessages(require(pwt8))
data("pwt8.0")
View(pwt8.0)
br1 <- subset(pwt8.0, country=="Brazil",</pre>
             select = c("rgdpna","emp","xr","ctfp","hc"))
#Transformando em Variação
br <- data.frame()</pre>
    for (i in 1:62) {
      for (i in 1:5) {
        br[i,j] <- br1[i+1,j]/br1[i,j]
br <- br[1:61.]
colnames(br) <- c("PIB","Emprego","Cambio", "PTF","KHumano")</pre>
BR <- br[45:61,1:5]
```

•	PIB [‡]	Emprego [‡]	Cambio [‡]	PTF ‡	KHumano [‡]
45	1.0422359	1.0134818	1.3806069	1.0943210	1.018128
46	1.0215053	0.9763511	1.0952779	1.1580114	1.020528
47	1.0337525	1.0063349	1.0725218	0.9252626	1.020528
48	1.0003535	1.0110555	1.0765544	0.8882415	1.020528
49	1.0025407	1.0140536	1.5630390	0.9066425	1.020527
50	1.0430620	1.0574127	1.0085396	0.9381537	1.020528
51	1.0131312	1.0071050	1.2843566	0.9627153	1.013767
52	1.0265809	1.0373310	1.2429025	0.9598251	1.013767
53	1.0114662	1.0143850	1.0537988	0.9552369	1.013767
54	1.0571229	1.0531012	0.9504933	0.9811777	1.013767
55	1.0315967	1.0282393	0.8322361	0.9889952	1.013767
56	1.0395704	1.0209492	0.8935818	1.0103331	1.007783
57	1.0609141	1.0121827	0.8950648	1.0245924	1.007783
58	1.0516250	1.0324375	0.9418139	1.0182609	1.007783
59	0.9966869	1.0063951	1.0903395	0.9933127	1.007783
60	1.0753361	1.0325215	0.8798649	0.9975997	1.007783
61	1.0273288	1.0197677	0.9508887	0.9871948	1.000000


```
#Transformando em Variação
22
    br <- data.frame()</pre>
24
25 -
        for (i in 1:62) {
         for (j in 1:5) {
26 -
             br[i,j] <- br1[i+1,j]/br1[i,j]
27
28
29
   br <- br[1:61,]
    colnames(br) <- c("PIB","Emprego","Cambio", "PTF","KHumano")</pre>
    BR \leftarrow br [45:61,1:5]
33
```

19-Previsao e Função Impulso em VA × BR ×									
$\Leftrightarrow \Rightarrow$									
*	PIB [‡]	Emprego [‡]	Cambio [‡]	PTF [‡]	KHumano [‡]				
1	1.0489710	1.0266462	1.0045249	0.9608383	1.0069859				
2	1.0950908	1.0268261	1.0000000	1.0576892	1.0069860				
3	1.0508191	1.0270094	1.0795796	0.9785900	1.0069860				
4	1.0820352	1.0271960	1.5299026	1.0820572	1.0069859				
5	1.0645515	1.0273860	1.3636363	1.0013568	1.0069859				
6	1.0363008	1.0275796	1.1533334	0.9951280	1.0079469				
7	1.1004056	1.0277763	1.0578034	1.0507208	1.0079469				
8	1.0638197	1.0279767	1.2622951	1.0367908	1.0079469				
9	1.0771102	1.0281805	1.5800867	0.9721293	1.0079469				
10	1.0776185	1.0283876	1.8630137	1.0115239	1.0079469				
11	1.1407323	1.0231487	1.4411764	1.1029970	1.0087088				
12	1.0517305	1.0236216	1.4387756	1.0063758	1.0087089				
13	1.0644619	1.0241057	1.4822695	1.0226775	1.0087088				
14	1.0416311	1.0246004	2.1770336	0.9856143	1.0087089				
15	1.0696989	1.0251060	1.5164834	1.0028955	1.0087088				
16	1.0396388	1.0256225	1.1695652	0.9871906	1.0116851				
17	1.0573383	1.0261497	1.1995044	1.0470258	1.0116851				
18	1.1119982	1.0266876	1.2706612	1.0447176	1.0116851				
19	1.0641514	1.0272363	1.2032520	0.9637215	1.0116852				
20	1.1092334	1.0277953	1.1280676	1.0688871	1.0116851				
21	1.1134000	1.0485250	1.1511012	1.0557489	0.9935697				
22	1.1194000	1.0460604	1.1222518	1.0395163	0.9935697				

```
#Separando as variáveis
                         #Cria o vetor para variável PIB
36
37
    PIb \leftarrow ts(br\PIB, start = 1950, frequency = 1)
    Emprego <- ts(br$Emprego, start = 1950, frequency = 1)</pre>
38
    Cambio <- ts(br$Câmbio, start = 1950, frequency = 1)
    PTF \leftarrow ts(br$PTF, start = 1950, frequency = 1)
    KHumano \leftarrow ts(br\$KHumano, start = 1950, frequency = 1)
41
42
43
    Brasil <- cbind(BR$PIB,BR$Emprego,BR$Cambio,BR$PTF,BR$KHumano)</pre>
44
    Anos <- seq(from=1994, to=2011, by=1) #Cria um vetor para o tempo em anos de 1994 até 2011
45
    BRA \leftarrow ts(Brasil, start = 1994, frequency = 1)
    plot(BRA, main="Variação do PIB, Emprego, Cambio, PTF, Capital
46
         col=c("Blue","Black","Red","Green","Purple"), plot.type="
47
    grid(lty = "dotted",col = "lightgray")
```


52 correlacao <- cor(BR) 53 View(correlacao)

•	PIB [‡]	Emprego [‡]	Cambio [‡]	PTF [‡]	KHumano [‡]
PIB	1.0000000	0.4916812	-0.5281227	0.3135041	-0.3032975
Emprego	0.4916812	1.0000000	-0.2830392	-0.3876761	-0.1507691
Cambio	-0.5281227	-0.2830392	1.0000000	-0.1239067	0.5143638
PTF	0.3135041	-0.3876761	-0.1239067	1.0000000	-0.1519149
KHumano	-0.3032975	-0.1507691	0.5143638	-0.1519149	1.0000000


```
sāojudas
    #Estimando um Var
63
64
    modelobra = vars::VAR(y = BR, p = 1, type = "const")
65
    summary(modelobra)
66
                                                $Granger
    causality(modelobra)
                                                       Granger causality HO: Emprego do not Granger-cause PIB Cambio PTF KHumano
    causality(modelobra, cause = "Emprego")
                                                data: VAR object modelobra
    causality(modelobra, cause = "Cambio")
                                                F-Test = 1.1169, df1 = 4, df2 = 50, p-value = 0.3591
    causality(modelobra, cause = "PTF")
71 causality(modelobra, cause = "KHumano")
                                                $Instant
                                                       HO: No instantaneous causality between: Emprego and PIB Cambio PTF KHumano
                                                data: VAR object modelobra
                                                Chi-squared = 6.1254, df = 4, p-value = 0.19
                                                > causality(modelobra, cause = "Cambio")
                                                $Granger
                                                       Granger causality HO: Cambio do not Granger-cause PIB Emprego PTF KHumano
                                                data: VAR object modelobra
                                                F-Test = 1.9782, df1 = 4, df2 = 50, p-value = 0.1122
                                                $Instant
                                                       HO: No instantaneous causality between: Cambio and PIB Emprego PTF KHumano
                                                data: VAR object modelobra
                                                Chi-squared = 5.4406, df = 4, p-value = 0.245
```