Diabetes Data Analysis

Predicting hemoglobin A1c / diabetes diagnosis

The Data Science Process

A guided analysis framework

- 1. ASK
- 2. GET
- 3. EXPLORE
- 4. MODEL
- 5. REPORT

ASK

Problem Statement Using the CoNVO framework

- Context what is the context?
- Need what organizational need requires fixing?
- Vision what is required and what does success look like?
- Outcome how will the result work itself back into the organization?

The goal is to produce a model predicting hemoglobin A1c measurements based on various basic health metrics.

Problem statement

GET

The Dataset

diabetes.csv

- Flat file sourced from the Vanderbilt University Department of Biostatistics
- 19 variables
- 403 individuals from 1046 subjects
- Primarily individuals from counties in Virginia

VANDERBILT UNIVERSITY

Extract, Transform, Load Cleaning the data

- Remove index
- Remove location
- Missing data
 - Consolidate four blood pressure readings into two
 - Keep rows with missing data

Location

Extract, Transform, LoadCleaning the data

- Remove index
- Remove location
- Missing data
 - Consolidate four blood pressure readings into two
 - Keep rows with missing data

Variables Ready for analysis

Variables Ready for analysis

56.496

Positive diagnosis of diabetes

EXPLORE

Single variable exploratory data analysis

Single variable exploratory data analysis

Glycosylated hemoglobin (by diagnosis)

Single variable exploratory data analysis

MODEL

The "all in" model

 $R^2 = .60 \sigma = 1.43$

Correlation coefficients

.272 .226 Total cholesterol

.741 .520 Stabilized glucose

-.169 -.210 High-density lipoprotein

.355 .310 Cholesterol ratio

Glycosylated hemoglobin

.332 .427 Age

.048 .069 Gender

.052 .026 Height

.168 .223 Weight

.128 .009 Frame

Systolic blood pressure

Diastolic blood pressure

.248 .226 .152 .234 Waist

Hips

Lab postprandial time

Pearson's Spearman's

Reducing number of variables

Reducing number of variables

Reducing number of variables

Improvements

- Reducing number of variables
 glyhb ~ stab_glu + ratio + waist_hip + large + medium + bmi + age
- Domain knowledge, numerical to categorical glyhb ~ stab_glu + ratio + waist_hip + large + medium + bmi + age + obese + older + hypertension
- Interaction terms and transformations
 glyhb ~ stab_glu:numeric_diagnosis + ratio + waist_hip + large + medium + numeric_diagnosis + age
 glyhb ~ stab_glu_100 + ratio + waist_hip + large + medium + bmi + age
- Logarithmic transformation
 log_glyhb ~ stab_glu + ratio + waist_hip + large + bmi + age

Mean R²

.43 - .72

95% credible interval for R²

glyhb ~ stab_glu + ratio + waist_hip + large + medium + bmi + age

Cross validation

Five rounds of ten-fold cross validation

95% confidence interval for σ

.8936 - 2.4521%

95% confidence interval for R²

.1338 - .8210

95% confidence interval for *mean* σ

1.3879 - 1.6249%

95% confidence interval for mean R²

.5071 - .6006

Learning curves

REPORT

75 mg/dL

0.95

3.5

70 years

Small

20

75 mm/dL

0.95

3.5

70 years

Small

20

5.02%

200 mm/dl

1.25

4.5

45 years

Large

35

200 mm/dl

1.25

4.5

45 years

Large

35

8.24%

85.0%

Diagnosis accuracy with model prediction (pre-diabetic / diabetic)

90.3%

Diagnosis accuracy with model prediction (strictly diabetic)

Conclusion Overall thoughts

- Decent model
- Interesting data exploration and data cleaning
- Underwhelming dataset
- Logistic regression interests