Systèmes dynamiques Feuille d'exercices 1

Beaucoup d'exercices intéressants dans les notes de Benoist et Paulin

Exercice 1. Points prépériodiques

Soit $f: X \to X$ une application définie sur une ensemble X. On dit qu'un point $x \in X$ est prépériodique si x n'est pas périodique et s'il existe $n \in \mathbb{N}$ tel que $f^n(x)$ est périodique.

- 1. Donner un exemple d'application ayant un point prépériodique. Peut-on trouver un exemple bijectif?
- 2. Montrer que si X est fini, alors tout point est périodique ou prépériodique. Montrer également qu'il existe des points périodiques.

Exercice 2. Familles d'applications transitives

Soit X un espace topologique à base dénombrable, localement compact et sans points isolés. Soit $(f_i)_{i \in \mathbb{N}}$ une famille d'applications continues et topologiquement transitives. Montrer qu'il existe $x \in X$ tel que $\omega_{f_i}(x) = X$ pour tout $i \in \mathbb{N}$.

Exercice 3. Transitivité des homéomorphismes

Soit X un espace topologique métrisable compact sans points isolés et $T: X \longrightarrow X$ un homéomorphisme. Supposons qu'il existe un point x dont l'orbite $\mathcal{O}_T(x) = \{T^i(x), i \in \mathbf{Z}\}$ est dense dans X. Montrer qu'il existe $y \in X$ tel que $\mathcal{O}_T^+(y)$ est dense dans X, i.e que T est topologiquement transitive.

Exercice 4. Ensemble non-errant

Soit X un espace topologique séparé et $f: X \to X$ une transformation continue. On dira que $x \in X$ est non errant si pour tout voisinage U de x, il existe $n \in \mathbb{N}^*$ tel que $f^n(U) \cap U \neq \emptyset$. On note $\Omega(f)$ l'ensemble des points non errants.

- 1. Montrer que si $x \in X$ est non errant et U un voisinage de x, alors pour tout $m \in \mathbb{N}$ il existe n > m tel que $f^n(U) \cap U \neq \emptyset$.
- 2. Montrer que $\Omega(f)$ est un fermé, invariant en avant et qu'il contient tous les ensembles ω -limites (et α -limites si f est inversible) de tous les points.
- 3. Montrer que l'on a

$$Per(f) \subset M(f) \subset R(f) \subset \Omega(f)$$
,

où Per(f) est l'ensemble des points périodiques de f, M(f) est la fermeture de l'union de toutes les parties minimales pour f et R(f) est la fermeture de l'ensemble des points récurrents pour f.

4. Montrer qu'il existe un système dynamique pour laquelle la dernière inclusion est stricte.

Exercice 5. Classes de conjugaison des applications expansives du cercle

On note $\mathbf{T} = \mathbf{R}/\mathbf{Z}$ le tore de dimension 1 et on note $[y] = y \mod 1$ pour tout $y \in \mathbf{R}$. On dit qu'une application continue $F : \mathbf{R} \to \mathbf{R}$ relève une application continue $f : \mathbf{T} \to \mathbf{T}$ si [F(x)] = f([x]) pour tout $x \in \mathbf{R}$.

1. Montrer que pour tout $f: \mathbf{T} \to \mathbf{T}$ continue, il existe un relèvement de f, et que tous les relèvements diffèrent d'un entier.

Dans toute la suite, on fixe une application continue $f: \mathbf{T} \to \mathbf{T}$.

2. Montrer qu'il existe $p \in \mathbf{Z}$ tel que F(x+1) = F(x) + p pour tout relèvement F de f et tout $x \in \mathbf{R}$. Cet entier s'appelle le degré de f.

On suppose dans la suite que $p \ge 1$.

- 3. Montrer que f a au moins p-1 points fixes.
- 4. En déduire que

$$\liminf_{n \to \infty} \frac{\log \# \operatorname{Fix}(f^n)}{n} \ge \log p,$$

où $Fix(f^n)$ est l'ensemble des points fixes de f^n .

5. On suppose que f possède un relèvement strictement croissant. Calculer $\#\text{Fix}(f^n)$.

On suppose dans la suite que f est de classe \mathcal{C}^1 et que $\partial_{\theta} f > 1$. On note \mathcal{E} l'ensemble des fonctions continues $H: \mathbf{R} \to \mathbf{R}$ telles que H(x+1) = H(x) + 1 pour tout $x \in \mathbf{R}$. Pour tout $H \in \mathcal{E}$ on définit une application $\Phi(H): \mathbf{R} \to \mathbf{R}$ par

$$\Phi(H)(x) = \frac{1}{p}H(F(x)), \quad x \in \mathbf{R}.$$

- 6. Montrer que Φ préserve \mathcal{E} et que $\Phi: \mathcal{E} \to \mathcal{E}$ a un unique point fixe H_0 .
- 7. Montrer que H_0 relève une application continue $h_0: \mathbf{T} \to \mathbf{T}$ de degré 1, et que

$$h_0 \circ f = E_p \circ h_0$$

où $E_p: \mathbf{T} \to \mathbf{T}$ est l'application $[x] \mapsto [px]$.

8. En considérant l'application $\Psi: \mathcal{E} \to \mathcal{E}$ définie par $\Psi(H)(x) = F^{-1}(H(px))$, montrer que h_0 est un homéomorphisme de \mathbf{T}^2 .