Student Number: Name: Bryan Hoang

1. (25 points)

(a) Answer:

Proof. Let's start on the LHS.

$$R(0) = \min_{p(\hat{x}|x): Ed(X, \hat{X}) \le 0} I(X; \hat{X})$$
 by definition of $R(D)$
$$= \min_{p(\hat{x}|x): Ed(X, \hat{X}) \le 0} (H(X) - H(X \mid \hat{X})).$$
 (1)

Claim. $\forall p(\hat{x}|x) : Ed(X, \hat{X}) \leq 0, \ H(X \mid \hat{X}) = 0$

Proof. $\forall p(\hat{x}|x)$,

$$\begin{split} Ed(X,\hat{X}) &\leq 0 \\ \sum_{x \in \mathcal{X}} \sum_{\hat{x} \in \hat{\mathcal{X}}} p(x) p(\hat{x}|x) d(x,\hat{x}) &\leq 0 \\ \Rightarrow d(x,\hat{x}) &= 0 & \forall x \in \mathcal{X}, \ \hat{x} \in \hat{\mathcal{X}} \\ \Rightarrow x &= \hat{x} & \forall x \in \mathcal{X}, \ \hat{x} \in \hat{\mathcal{X}} \\ \Rightarrow H(X|\hat{X}) &= 0 \end{split}$$

With the claim, (1) becomes

$$\begin{split} R(0) &= \min_{p(\hat{x}|x): Ed(X, \hat{X}) \leq 0} H(X) \\ &= H(X). \end{split}$$

since H(X) doesn't depend on $p(\hat{x}|x)$.

(b) Answer:

Proof. By the non-increasing property of R(D), it is sufficient to show that $R(D^*) = 0$ to prove the result. First, let $\hat{x}^* \in \hat{X}$ be the element that achieve D^* . Then let

$$p(\hat{x}|x) = \begin{cases} 1, & \hat{x} = \hat{x}^* \\ 0, & \text{otherwise.} \end{cases}$$
 (2)

It follows that

$$Ed(X, \hat{X}) = \sum_{x \in \mathcal{X}} \sum_{\hat{x} \in \hat{\mathcal{X}}} p(x) p(\hat{x}|x) d(x, \hat{x})$$

$$= \sum_{x \in \mathcal{X}} p(x) d(x, \hat{x}^*)$$

$$= Ed(X, \hat{x}^*)$$

$$= D^*$$

which satisfies the constraint for minimizing $I(X; \hat{X})$. By (2), we also have that $X \perp \!\!\! \perp \hat{X}$ which means that $I(X; \hat{X}) = 0$. By the nonnegativity of mutual information,

$$R(D^*) = \min_{p(\hat{x}|x): Ed(X, \hat{X}) \le D^*} I(X; \hat{X})$$
$$= 0.$$

$$\therefore \forall D \geq D^*, \ R(D^*) = 0.$$

Student Number: Name: Bryan Hoang

(c) Answer:

Proof. (by contradiction)

Suppose that for $0 \le D \le D^*$, R(D) = 0. Then $\exists p(\hat{x}|x) : Ed(X,\hat{X}) \le D$ and that $I(X;\hat{X}) = 0$, which implies that $X \perp \!\!\! \perp \hat{X}$. But we also have that

So we have $Ed(X,\hat{X}) \geq D^*$, but that contradicts the assumption of $Ed(X,\hat{X}) \leq D \leq D^*$, leading to a contradiction. Therefore, for $0 \leq D \leq D^*$, R(D) > 0.