Balanced BSTs

Abstract Data Type	Operations	Data Structures
Dictionary		

Abstract Data Type	Operations	Data Structures
Dictionary	Search, Insert, Delete	

Operations	Data Structures
Search, Insert, Delete	BSTs

Suppose we start with a "balanced" BST

Suppose we start with a "balanced" BST

Insert keys 3, 4, 5, ..., n

Suppose we start with a "balanced" BST

Insert keys 3, 4, 5, ..., n

Suppose we start with a "balanced" BST

Insert keys 3, 4, 5, ..., n

height = $\Theta(n)$

n

Suppose we start with a "balanced" BST

Insert keys 3, 4, 5, ..., n

Search takes $\Theta(n)$!

height = $\Theta(n)$

Suppose we start with a "balanced" BST

Insert keys 3, 4, 5, ..., n

Search takes $\Theta(n)$!

Intuitively, we want BST trees with height $\Theta(\log n)$

height = $\Theta(n)$

n

Suppose we start with a "balanced" BST

Insert keys 3, 4, 5, ..., n

Search takes $\Theta(n)$!

Intuitively, we want BST trees with height $\Theta(\log n)$

We achieve this using balanced BSTs

height = $\Theta(n)$

n

Abstract Data Type	Operations	Data Structures
Dictionary	Search, Insert, Delete	BSTs Balanced BSTs

Abstract Data Type	Operations	Data Structures
Dictionary	Search, Insert, Delete	BSTs Balanced BSTs: - 2-3 trees - Red-Black Trees - B-Trees - AVL Trees

Abstract Data Type	Operations	Data Structures
Dictionary	Search, Insert, Delete	BSTs Balanced BSTs: - 2-3 trees - Red-Black Trees - B-Trees - AVL Trees

AVL Trees

• height(v):

 height(v): Number of edges in the longest path from v to a leaf

 height(v): Number of edges in the longest path from v to a leaf

 height(v): Number of edges in the longest path from v to a leaf

height(T): height of the root node of T

 height(v): Number of edges in the longest path from v to a leaf

height(T): height of the root node of T

 height(v): Number of edges in the longest path from v to a leaf

height(T): height of the root node of T

$$BF(v) =$$

BF(v) = height(right subtree of v)

BF(v) = height(right subtree of v) - height(left subtree of v)

BF(v) = height(right subtree of v) - height(left subtree of v) $BF(v) = h_R - h_I$

BF(v) = height(right subtree of v) - height(left subtree of v)

$$BF(v) = h_R - h_L$$

$$-1 \leq BF(v) \leq +1$$

$$-1 \leq BF(v) \leq +1$$

$$BF(\mathbf{v}) = \begin{cases} +1 \\ 0 \\ -1 \end{cases}$$

$$-1 \leq BF(v) \leq +1$$

$$BF(v) = \begin{cases} +1 & (v \text{ is "right-heavy"}) \\ 0 & \\ -1 & \end{cases}$$

$$-1 \leq BF(v) \leq +1$$

```
BF(v) = \begin{cases} +1 & (v \text{ is "right-heavy"}) \\ 0 & (v \text{ is "balanced"}) \end{cases}
```

Adelson-Velski-Landis Trees

An AVL tree T is a BST where for every node $v \in T$:

$$-1 \leq BF(v) \leq +1$$

```
H1 (v is "right-heavy")

BF(v) = 0 (v is "balanced")

-1 (v is "left-heavy")
```


Is this an AVL tree? Yes!

Is this an AVL tree? Yes!

Is this an AVL tree? Yes!

Is this an AVL tree? Yes!

Is this an AVL tree? Yes!

Is this an AVL tree?

Is this an AVL tree?

Is this an AVL tree?

Is this an AVL tree? No!

• AVL trees of n nodes has height $\Theta(\log n)$ [height $\leq 1.44 \log_2(n+2)$]

- AVL trees of n nodes has height $\Theta(\log n)$ [height $\leq 1.44 \log_2(n+2)$]
- Can do inserts, deletes while maintaining the tree balance in $\Theta(\log n)$ time

- AVL trees of n nodes has height $\Theta(\log n)$ [height $\leq 1.44 \log_2(n+2)$]
- Can do inserts, deletes while maintaining the tree balance in $\Theta(\log n)$ time

Elegant, relatively clean and simple, works well in practice

AVL tree operations

- Search(T, x)
- Insert(T, x)
- Delete(T, x)

- Insert x into T as in any BST :
 - x is now a leaf

- Insert x into T as in any BST :
 - x is now a leaf

- Insert x into T as in any BST :
 - x is now a leaf

- Insert x into T as in any BST :
 - x is now a leaf

• Go up from x to the root

- Insert x into T as in any BST :
 - x is now a leaf

 Go up from x to the root and for each node :

- Insert x into T as in any BST :
 - x is now a leaf

- Go up from x to the root and for each node :
 - Adjust the BF

- Insert x into T as in any BST :
 - x is now a leaf

- Go up from x to the root and for each node :
 - Adjust the BF
 - "Rebalance" if necessary i.e. if BF > 1 or BF < -1

Example: AVL of {1, 3, 7, 12, 14, 17, 19}

No rebalancing needed!

Step 1. Right rotate right subtree of 3

Step 1. Right rotate right subtree of 3

Step 1. Right rotate right subtree of 3 Step 2. Left rotate left subtree of 12 12 12 +2 Left Rotate After Right 8 Rotation 6 6

