Using KVM as a Transparent Hardware Abstraction Layer

David Ahern

Agenda

Introduction

- Appliance-like, enterprise products
- Component lifecycles and impacts of their misalignments

Design Overview

 A high level look at how KVM is used as a solution for handling the impacts of the short lifecycle commodity H/W

Design Details

 A closer look at details such as installation, networking, monitoring, security and performance

Final Thoughts

Problem Introduction

Appliance-Like, Enterprise Products

- "Bundled" data center solution
 - Product tied to H/W and includes OS
- Closed-box design
 - Product handles firmware & BIOS updates, configures H/W (RAID & BIOS), and includes H/W in monitoring and serviceability
- Commodity x86 Hardware
 - Typical data center servers using
 Xeon-class processors: e.g., IBM x3250
 x3650, HP DL320 & DL380
- Enterprise Linux OS

Product Deployment

- Customer purchases specific version of product
 - Testing and evaluations (e.g., features & security) in lab environment before going into production environment
 - Time investment with a product version
- Preference to stay on version for several years
 - Significant impact to customer to change versions
 - Minor dot release updates might be acceptable
- Need for new servers over lifetime of deployment
 - Expansion add more nodes to expand capacity or increase fault tolerance
 - Server replacement in the case of hardware failures
- Original H/W model deployed may be past end-of-sale
 - Need support for newer H/W generations in "legacy" releases

Independent Component Lifecycles

Product with desired support for 5 years

Enterprise OS with support lifecycle of 7 years

- New hardware enablement limited to subset of lifetime
- Commodity x86 hardware revisions every 2-3 years

 Support window through OS lifetime, with N, N-1 preference (e.g., support for RHEL4 and RHEL5)

Lifecycle Misalignments

- Lifecycles of the H/W, OS and product will never align
 - Independent vendors, setting timelines based on their goals
- H/W changes cause the most pain
 - New H/W has to be added to product release which means re-spin, maintenance or dot release
 - New H/W typically requires an OS update
- OS updates introduce churn to the product
 - even "minor" ones inevitably have negative impacts
- Hardware and OS are "infrastructure"
 - Changes are essentially cost overhead for product, i.e., profit impacting

Handling H/W Turnover Within Release

- Lifetime buys of servers
 - Requires guess-timate on sales which will never be right
- Backport OS required for H/W version
 - Non-trivial amount of grunt work to change OS versions, especially if a major version change is required
- Reduce Product lifecycle
 - Shorten sales/support periods
 - Creates unhappy customers
- KVM as a transparent HAL
 - Separates H/W from revenue generating services
 - Use technology to address problem

Design Overview

Separating Product and H/W

- Leverage virtualization technology to provide an abstraction layer
 - HAL handles H/W
 - OS for revenue generating services sees compatible virtual H/W
- Isolates primary services from hardware
 - HAL is a translator between product OS and H/W
 - H/W and the HAL can change with less churn to the overall product

Hardware Abstraction Layer

- Just another layer below product OS
 - Like a BIOS or firmware
- HAL is a newer version of a Linux OS
 - Compatible with new H/W generation
 - e.g., RHEL5 for HAL, RHEL 3 or 4 for product OS
- HAL == Host OS
 - Use virtualization to run product
 - Focused 1:1 virtualization deployment

Start with Commodity Server

LinuxCon 2010 © 2010 Cisco Systems, Inc. All rights reserved.

12

Install Host OS

Host OS provides drivers to control real H/W

13

Start Virtual Machine

Virtual Machine created with H/W "allocation"

Install Product OS and Services

Product OS is compatible with VM H/W

15

Storage Device for Host OS

Internal USB key for host OS

16

Hard Drives Given to VM

Block devices in Host OS assigned as disks to VM

17

LinuxCon 2010

Memory Allocation

Some RAM held back for Host OS

18

Processors

of Vcpus == # of Pcpus (excluding hyperthreads)

19

Networking

LinuxCon 2010

First NIC of VM bridged to eth0 of host

© 2010 Cisco Systems, Inc. All rights reserved.

Console Display

Console of VM connected to tty1 of host

Serial Port

Serial port of VM connected to HW

USB Devices

USB devices passed to VM – a few exceptions

Marketing Constraints

- No change to end user experience
 - Installation, administration, monitoring, access
 - i.e., make HAL completely transparent to customer
- One DVD for product release that works for all supported hardware in the release
- HAL only installed on servers that need it
 - No user intervention required
- HAL removed upon upgrade to product release that recognizes H/W natively
 - No user intervention required
- Toggle between product releases enables/disables HAL
 - No user intervention required

Where Does KVM Fit In?

- KVM is the enabling technology for the HAL
 - behind the scenes
- qemu-kvm provides the virtual machine and device models
- KVM provides the virtualization efficiencies

Why KVM?

- KVM's architecture ideal for "embedded" use cases
 - Allows use of standard linux distribution as the host OS
 - Use of virtualization not relevant and can be hidden from enduser
- Host OS has same 'look-and-feel' as product OS
 - Install and runtime (development perspective) and diagnostics (customer support perspective)
 - Essentially creating a linux-on-linux stack load kernel module, start userspace command
- Qemu and Linux are both powerful Swiss Army knives
 - Plenty of options to meet transparency requirements and maintain appliance-like design

Installation, device handling, console, VM management, etc

26

HAL Design Details

Design Details

- Installation
- Networking
- Product CLI
- SNMP Monitoring
- Syslog and Alarm Generation
- Devices DVD and USB
- File Sharing
- Upgrades and Disabling HAL

• . . .

Product Installation

- Typical Install Sequence
 - Verify H/W is a supported platform
 - Update BIOS / firmware as needed
 - Configure BIOS and RAID
 - Install OS
 - Install product
 - Configure

Installation Impacts

- H/W aspects done during HAL install
 - Commands for H/W recognition, firmware updates, configuring RAID/BIOS, etc need to be moved to HAL
 - Updated for compatibility with Host OS
- HAL and product are two different OS installs
 - Each needs to be done within its context
 - Separate kernel + initrd.img for each OS
 - Co-exist on single DVD

Installation: One DVD For All Servers

- DVD boots HAL kernel + initrd
- Inspects H/W and decides if HAL is needed

- Non-HAL servers
 - Jump to product's OS happens quickly; install proceeds

Trampoline Kernel for DVD

- Some cases need a "trampoline" to jump between kernel versions
 - e.g., transitioning from RHEL5, 64-bit for HAL to RHEL3, 32bit for product
- Trampoline is a very small kernel + initrd
 - No ACPI, no kernel modules
 - Just enough runtime env for basic platform detection
 - Takes less than 1 second to run and jump to next kernel

Installation with HAL

- H/W interaction done by HAL installer
 - Valid platform detection
 - BIOS, firmware updates
 - RAID/BIOS configuration
- Finds block device for Host OS
 - e.g., internal USB key
- Installs Host OS
- Starts VM for product install in post-install phase
 - Leverage –kernel and –initrd options of qemu
 - No reboot between install of HAL and product
 - Allows DVD to be used for install in VM without user intervention (ie., re-inserting)

Product Install

- Product install starts seamlessly after HAL install
 - VM console on host's tty1
 - qemu started with –curses display option
 - stdin/stdout set to /dev/tty1
- Same installation sequence as bare metal
 - Minus the H/W updates/configuration
- Maintains current user experience with console based installs
- Put installer into 'text' mode (e.g., text option for Anaconda)

Initial Install Screen – HAL Installer

- Same sequence of input screens as bare metal
- First screen presented by HAL installer

Initial Product Install Screen

- Second input screen to user is from product installer
 - Slight loss in aesthetics due to qemu + curses path

- Installation
- Networking
- Product CLI
- SNMP Monitoring
- Syslog and Alarm Generation
- Devices DVD and USB
- File Sharing
- Upgrades and Disabling HAL

Networking

Main bridge connects
 VM to LAN

Networking

- Main bridge connects
 VM to LAN
- Host OS does not have an IP on LAN
 - MAC address for physical NIC passed to first NIC of VM

Networking

- Main bridge connects
 VM to LAN
- Host OS does not have an IP on LAN
 - MAC address for physical NIC passed to first NIC of VM
- Host-only bridge for Product-HAL "IPC"
 - Link-local addresses

Internal Network

- Basis for HAL Transparency
- Allows access to H/W and HAL from within product
 - e.g., configuration & diagnostics
 - Standard protocols used for HAL-Product IPC: SNMP, syslog, ssh, NFS
- HAL-VM communications restricted to the "internal" network
 - Firewall rules in both layers restrict traffic for the link-local addresses to expected interfaces

Details

- Installation
- Networking
- Product CLI
- SNMP Monitoring
- Syslog and Alarm Generation
- Devices DVD and USB
- File Sharing
- Upgrades and Disabling HAL

Product CLI

- Commands that configure or query H/W need to be run in Host OS
 - e.g., bonding, NIC or RAID status
- ssh over internal network
 - public key authentication
- CLI software modified to prepend HAL wrapper to backend commands
- Backend commands updated for Host OS

- Installation
- Networking
- Product CLI
- SNMP Monitoring
- Syslog and Alarm Generation
- Devices DVD and USB
- File Sharing
- Upgrades and Disabling HAL

SNMP Architecture – no HAL

- Master Agent receives request
- Adapter agent used to connect to H/W agents from vendors
 - Forward done over loopback interface

SNMP Architecture – with HAL

- H/W-based agents need to run in the Host OS
- Configure

 adapter agent
 to forward over
 internal
 address

- Installation
- Networking
- Product CLI
- SNMP Monitoring
- Syslog and Alarm Generation
- Devices DVD and USB
- File Sharing
- Upgrades and Disabling HAL

Syslog Forwarding

- syslog entries from HAL written locally and forwarded to product
 - Allow messages to be processed by product
 - e.g., HW alerts from Host OS enter product's alarming infrastructure
- Entries can also be forwarded to remote syslog daemon

syslogd

- Installation
- Networking
- Product CLI
- SNMP Monitoring
- Syslog and Alarm Generation
- Devices DVD and USB
- File Sharing
- Upgrades and Disabling HAL

Device "Passthrough"

- Emulation sense, not VT-d
- DVD device opened by VM when it boots
 - access to DVD for upgrades or other functions (e.g., password reset)
 - /dev/cdrom in Host OS maps to /dev/cdrom in VM
- H/W serial port connected to VM serial port via character device in Host OS
- USB devices added to and removed from VM when inserted/removed from hardware
 - udev script in Host OS
 - e.g., USB serial cable, audio device, storage device

- Installation
- Networking
- Product CLI
- SNMP Monitoring
- Syslog and Alarm Generation
- Devices DVD and USB
- File Sharing
- Upgrades and Disabling HAL

File Sharing

- Parts of HAL filesystem exported to VM using NFS
 - restricted to internal network only
- Allows access to HAL log files from within VM
- Allows product to push files to the HAL
 - HAL, BIOS, firmware upgrades

- Installation
- Networking
- Product CLI
- SNMP Monitoring
- Syslog and Alarm Generation
- Devices DVD and USB
- File Sharing
- Upgrades and Disabling HAL

Upgrades

- Dual boot partitions allows toggle between product releases
 - Use dual boot partitions for HAL too
- HAL can be upgraded as part of ongoing maintenance releases of product
 - From product perspective HAL update similar to BIOS or firmware update
- HAL can be disabled if new product version does not require it
 - Product upgrade to version with native support
 - e.g., Toggle boot order (for host OS running on USB key)

Automatic Enable / Disable of HAL

- HAL only installed on servers that need it
- Use Case: current product version requires HAL, upgrade to new version that recognizes H/W natively
 - HAL disabled on toggle to new version
 - On revert to older version, HAL re-enabled
- HAL runs from separate storage device
 - e.g., internal USB key
 - HAL enabled / disabled by modifying boot order
- Without HAL Product boots directly from harddrives
 - Recall: harddrives passed to VM, boot loader installed in typical fashion

- Installation
- Networking
- Product CLI
- SNMP Monitoring
- Syslog and Alarm Generation
- Devices DVD and USB
- File Sharing
- Upgrades and Disabling HAL

• ...

HAL Diagnostics

- HAL performance data collected using collected
 - System resource usage (storage, cpu, RAM)
 - Per-process statistics for processes running in Host OS
- Data sent to collectd peer running in VM
 - Provides access to HAL performance, trending data within product
- Root-level account can be mirrored from VM to HAL
- Syslog messages forwarded to syslog in VM

Restart & Shutdown

- HAL follows VM for "commanded" actions by user
 - if VM is restarted (ie., rebooted) HAL also reboots
 - If VM is shut down HAL also shuts down
- VM lockups
 - Guest manager running in Host OS exchanges heartbeats every 60 seconds with counterpart running in VM
 - VM restarted after N missed heartbeats
- HAL lockups
 - Handled by H/W functionality (e.g., ASR for HP)

HAL Security

- Minimal footprint OS
- VM runs as non-root user
- Leverage SELinux in Host OS
- Root disabled
- No default passwords
 - ssh public-key authentication for automated commands
 - sync root-level accounts when created/deleted within product
- HAL upgrades/patches applied via product
 - Like BIOS/firmware update

Performance

- Nehalem class processors
 - Overhead of virtualization layer is relatively low
- Newer hardware compensates for virtualization overhead
- Can leverage standard Linux OS features as needed
 - e.g., cpu affinity, huge pages, ksm

Net Results

- Transparency
 - Not 100%, but darn close e.g., Host OS boot messages
 - Primary goal met No interaction or intervention required from end user
- A Few Data Inconsistencies e.g., SNMP
 - MIBs from H/W vendors have some overlaps with standard MIBs
 - H/W agents and standard agents run in different OS'es → data retrieved from two different views of the hardware

Advantages of HAL Approach

- More cost-effective approach to meeting preferred product timelines
 - Lifetime buys money-based solution
 - OS backports staff-based solution
 - HAL technology-based solution
- Smaller development and test effort than OS backport
 - Changes primarily limited to new H/W
- Maintains closed-box, appliance model
- Forward looking
 - Leverages newer OS for HAL
 - Early experience with next OS that product will eventually move to with code re-use
- Re-usable design
 - Once hooks exist within product can be leveraged in future releases

Final Thoughts

- Not intended to allow products stay on an outdated OS indefinitely
 - Other factors drive need to change OS
 - e.g., Support for 3rd party code, security errata
- Lot of details had to be omitted for brevity
 - Please ask if you have questions

