Performance Analysis for Projection-Correction Methods in Motion Deblurring Problems

Sara Casadio, Enrico Ferraiolo, Giovanni Savoca

Alma Mater Studiorum - Università di Bologna Corso di Laurea in Informatica

20 maggio 2025

Problem Description

- The project analyzes the performance of two Projection-Correction algorithms for reconstructing medical images affected by motion blur.
- The studied algorithms are:
 - Diffusion Posterior Sampling (DPS)
 - Regularization by Denoising with Diffusion (RED-Diff)
- Both methods are based on pre-trained diffusion models.
- Objective: evaluate the effectiveness of these methods in recovering degraded images.

Approach to the Problem

- Objective: Analyze the performance of Projection-Correction methods
 DPS and RED-Diff for motion blur removal on medical images
- Phase 1: Dataset preprocessing (128x128)
- Phase 2: Data augmentation to increase dataset diversity
- Phase 3: Training a DDIM diffusion model on medical data
- Phase 4: Simulation of motion blur and its removal
- Phase 5: Implementation and comparison of Projection-Correction methods: DPS and RED-Diff
- Phase 6: Quantitative evaluation of performance using metrics such as PSNR and SSIM

Mayo Clinic CT Dataset

- Released by the Mayo Clinic for research purposes.
- Contains chest Computed Tomography (CT) scans.
- Images are in grayscale (black and white) format.
- Focus on lung nodules and early detection of lung cancer.
- Widely used in machine learning and AI medical imaging research.

Training Pipeline

- Obiettivo: Train a denoising diffusion model (DDIM U-Net) su immagini in scala di grigi
- Componenti principali:
 - Oata Augmentation
 - OataLoader
 - Compilazione del modello
 - Loop di training con mixed-precision

Data Augmentation

- Base Dataset: Dataset Mayo
 - ullet Grayscale o 1 channel
 - ullet Resize images to 128 imes 128
- Augmentations (8 types):
 - None: no transformation
 - Rotation ±5° (rotation + centering)
 - Flip horizontal
 - Gaussian noise (mean=0, std=10)
 - Salt and pepper noise (prob=2%)
 - Brightness (factor=1.2)
 - Contrast (factor=1.3)
- Implementazione essenziale:

Schedulers for Diffusion

- DDPMScheduler for training diffusion process
 - Timesteps 1000
- DDIMScheduler for sampling
 - Timesteps 1000

Compiling the Model

- Why: optimize the model for better performance
- Usage:

```
model = torch.compile(model)
```

• Benefits: improved batch throughput

Mixed-Precision with AMP

- GradScaler amd autocast:
 - GradScaler for scaling gradients
 - autocast for automatic mixed precision
- Reduce memory usage and speed up training

Training Loop

- Loss function: MSE
- Start the training model.train()
- For each epoch:
 - Move images to GPU (if available)
 - Generate noise and timesteps
 - Compute noise prediction on the input data
 - Prediction + MSE loss
 - Optimization + scheduler.step()
- Save validation samples to visualize the model performance during training
- Compute and log average losses
- Save model weights each epoch

Validation and Checkpointing

- Validation:
 - model.eval() to set the model to evaluation mode
 - MSE loss on validation set
- Checkpoint:
 - Save the model weights to a .pth file
 - Update loss history in loss_history.txt
- Monitor train vs validation loss over epochs

Loss Plot

- Loss Plot: visualizes the training and validation loss over epochs
- Purpose:
 - Monitor the model's performance

Conclusioni

Grazie per l'attenzione