Nicholl-Lee-Nicholl Line Clipping

- generate region codes (Cohen-Suther.) & use trivial accept and reject
- when trivial case fails further subdivide regions:
 - consider $\mathbf{p_0}$ in 1 of 3 regions (other cases can be handled from symmetry)

Nicholl-Lee-Nicholl: p₁ subcases

• for each possible region (inside,corner,edge) for ${\bf p_0}$ further subdivide space into semi-infinite triangles based on possible locations for ${\bf p_1}$

"Edge" case sub-regions for p₁

• 4 regions LT LR LB

"Corner" case sub-regions for $\mathbf{p_1}$ (subcase I)

"Corner" case sub-regions for $\mathbf{p_1}$ (subcase II)

Determining region of p₁

•We determine the region of $\mathbf{p_1}$ by comparing slopes of line $\mathbf{p_0}\mathbf{p_1}$ and the line from $\mathbf{p_0}$ to the corners of the clipping window that define the different regions (L,LT, etc.)

•For example

p₁ is in LR when

 $\mathbf{p_1} \cdot x < wx_{max}$ (determined from standard region outcode)

LT

LB

 \mathbf{p}_{TR}

LR

 $\mathbf{p}_{\mathbf{BR}}$

Nicholl-Lee-Nicholl versus CS & LB

- using more regions avoids multiple line-intersection tests of Cohen-Sutherland (CS)
- •compared to both CS and Liang-Barsky (LB), NLN performs fewer comparisons and divisions
- •however, CS and LB can be applied to 3D clipping. NLN can't extend to 3D.