Lie groups HW6

Matei Ionita

December 12, 2013

Problem 1 (Kirillov 6.5)

We introduce the following notation:

$$h_a = \begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix} \qquad H_{ab} = \begin{pmatrix} h_a & 0 \\ 0 & h_b \end{pmatrix} \qquad X = \begin{pmatrix} h_c & B \\ -B^T & h_d \end{pmatrix}$$

Note that X is the most general form for a $\mathfrak{so}(4)$ element. We want to show that $\mathfrak{h} = \{H_{ab}\}$ is its own centralizer. For this we compute:

$$[H_{ab}, X] = \begin{pmatrix} [h_a, h_c] & h_a B - B h_d \\ -h_a B^T + B^T h_b & [h_b, h_d] \end{pmatrix} = \begin{pmatrix} 0 & h_a B - B h_d \\ -h_a B^T + B^T h_b & 0 \end{pmatrix}$$

Therefore, if we seek $X \in C(\mathfrak{h})$, we must have $h_a B - B h_d = 0$ for all a, d. This happens iff B = 0, which shows that $C(\mathfrak{h}) = \mathfrak{h}$.

In order for \mathfrak{h} to be a Cartan, the adjoint action of all its elements must be diagonalizable. We prove this by explicitly computing the eigenvectors, which will also give the root space decomposition. Define:

$$m = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \quad n = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \quad p = \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} \quad q = \begin{pmatrix} -1 & i \\ i & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 0 & m \\ -m^T & 0 \end{pmatrix} \quad N = \begin{pmatrix} 0 & n \\ -n^T & 0 \end{pmatrix} \quad P = \begin{pmatrix} 0 & p \\ -p^T & 0 \end{pmatrix} \quad Q = \begin{pmatrix} 0 & q \\ -q^T & 0 \end{pmatrix}$$

(Note that these have a more intuitive description in terms of sigma matrices: $m = \sigma_0 - \sigma_2$, $n = i\sigma_1 + \sigma_3$, $p = \sigma_0 + \sigma_2$, $q = i\sigma_1 - \sigma_3$.) Then M, N, P, Q are eigenvectors for the adjoint action of each H_{ab} :

$$[H_{ab}, M] = i(a - b)M$$
$$[H_{ab}, N] = i(a + b)N$$
$$[H_{ab}, P] = -i(a - b)P$$
$$[H_{ab}, Q] = -i(a + b)Q$$

These are 4 eigenvalues, and the eigenspaces for each have dimension 1. Together with the zero eigenvalue space \mathfrak{h} of dimension 2, we get 6, which is the dimension of $\mathfrak{so}(4)$. This proves that all H_{ab} are diagonalizable. The root space decomposition is:

$$\mathfrak{so}(4) = \mathfrak{h} \oplus \mathbb{C}M \oplus \mathbb{C}N \oplus \mathbb{C}P \oplus \mathbb{C}Q$$

Problem 2 (Kirillov 7.2)

(1) The induced inner product on the dual space is:

$$(\alpha^{\vee}, \beta^{\vee}) = \frac{4}{(\beta, \beta)(\alpha, \alpha)}(\alpha, \beta)$$

We see that the induced inner product on E^* is just a rescaling of the one on E. In particular, if $R = \{\alpha_i\}$ span E, then $R^{\vee} = \{\alpha_i^{\vee}\}$ span E^* . Next we want to compute:

$$n_{\alpha^{\vee}\beta^{\vee}} = 2\frac{(\alpha^{\vee},\beta^{\vee})}{(\beta^{\vee},\beta^{\vee})} = 2\frac{4(\beta,\alpha)}{(\alpha,\alpha)(\beta,\beta)}\frac{(\beta,\beta)}{4} = \frac{2(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}$$

Finally, we need to show that the reflection $s_{\alpha^{\vee}}(\beta^{\vee}) \in R^{\vee}$. We can actually show that $s_{\alpha^{\vee}}(\beta^{\vee}) = (s_{\alpha}(\beta))^{\vee}$. To see this, let $\gamma \in E$ be arbitrary, and compute:

$$\langle \gamma, s_{\alpha^{\vee}}(\beta^{\vee}) \rangle = \langle \gamma, \beta^{\vee} \rangle - \frac{2(\alpha^{\vee}, \beta^{\vee})}{(\alpha^{\vee}, \alpha^{\vee})} \langle \gamma, \alpha^{\vee} \rangle$$
$$= \frac{2(\gamma, \beta)}{(\beta, \beta)} - \frac{4(\alpha, \beta)(\gamma, \alpha)}{(\beta, \beta)(\alpha, \alpha)}$$

$$\langle \gamma, (s_{\alpha}(\beta))^{\vee} \rangle = \frac{2(\gamma, s_{\alpha}(\beta))}{(s_{\alpha}(\beta), s_{\alpha}(\beta))}$$
$$= \frac{2(\gamma, \beta)}{(\beta, \beta)} - \frac{4(\alpha, \beta)(\gamma, \alpha)}{(\beta, \beta)(\alpha, \alpha)}$$

This holds for all γ , which proves the desired relation.

(2) We first show that a choice of positive roots for R induces a choice of positive roots for R^{\vee} . Let $t \in E$ be such that $(t, \alpha) \neq 0$ for all $\alpha \in R$, then R_+ is defined as the subset of R for which $(t, \alpha) > 0$. In order to define positive roots for R^{\vee} , consider t^{\vee} . Then:

$$(t^{\vee}, \alpha^{\vee}) = \frac{4}{(\alpha, \alpha)(t, t)}(\alpha, t)$$

We see that $(t^{\vee}, \alpha^{\vee}) \neq 0$ iff $(\alpha, t) \neq 0$, and also $(t^{\vee}, \alpha^{\vee}) > 0$ iff $(\alpha, t) > 0$. Therefore $R_{+}^{\vee} = \{\alpha^{\vee} | \alpha \in R_{+}\}$ is a choice of positive roots.

Now we look for the simple roots associated to this R_+^{\vee} . By equation (7.17), the simple roots Π^{\vee} are the $r = \dim E^* = \dim E$ positive roots such that:

$$C_+^\vee = \{\lambda^\vee \in E^* | (\lambda^\vee, \alpha^\vee) > 0, \ \forall \alpha^\vee \in R_+^\vee \} = \{\lambda^\vee \in E^* | (\lambda^\vee, \alpha^\vee) > 0, \ \forall \alpha^\vee \in \Pi^\vee \}$$

Working from the LHS we have:

$$C_{+}^{\vee} = \{ \lambda^{\vee} \in E^{*} | (\lambda, \alpha) > 0, \ \forall \alpha \in R_{+} \}$$
$$= \{ \lambda^{\vee} \in E^{*} | (\lambda, \alpha) > 0, \ \forall \alpha \in \Pi_{+} \}$$
$$= \{ \lambda^{\vee} \in E^{*} | (\lambda^{\vee}, \alpha^{\vee}) > 0, \ \forall \alpha \in \Pi \}$$

We found $r = |\Pi|$ positive coroots that make the relation hold, and so these must be the simple coroots.

Problem 3 (Kirillov 7.11)

(1) Using Lemma 7.39, we see that the longest element w_0 is the unique one such that $w_0(C_+) = C_-$, and that $l(w_0) = |R_+|$. For r = 2, we have $|R_+| = m$, so $l(w_0) = m$. Since $s_i^2 = 1$, we can only have a sequence that alternates between the two simple roots s_1 and s_2 . Therefore $w = s_1 s_2 s_1 \ldots$, with m terms.

Problem 4 (Kirillov 7.13)

(1) We know from theorem 7.52 that e_1, \ldots, e_r generate \mathfrak{n}_+ , and so it suffices to show that commutators of the form:

$$[...[[e_{i_1}, e_{i_2}], e_{i_3}]...e_{i_n}]$$

are zero for large enough n. We use the fact that $e_i \in \alpha_i$, and so:

$$[...[[e_{i_1}, e_{i_2}], e_{i_3}]...e_{i_n}] \in \mathfrak{g}_{\alpha_{i_1} + \dots + \alpha_{i_n}}$$

We know that all the simple roots α_i are positive, and so their sum will also be positive. Moreover, the height of $\alpha_{i_1} + \cdots + \alpha_{i_n}$ is n. But \mathfrak{g} is finite dimensional, so there is an upper bound m on the height of its positive roots. Then choose n = m + 1, so that $\mathfrak{g}_{\alpha_{i_1} + \cdots + \alpha_{i_n}} = 0$, and the fact that \mathfrak{n}_+ is nilpotent follows.

The statement for \mathfrak{n}_{-} is proved analogously; the only difference is that commutators of f_i will live in root spaces which are linear combinations of α_i with coefficients -1 instead of 1.

(2) The Serre relations give $[h_i, e_j] \in \mathfrak{n}_+$. Together with $[e_i, e_j] \in \mathfrak{n}_+$ and $[h_i, h_j] = 0$, this shows that the commutator of any elements in \mathfrak{b} is in \mathfrak{n}_+ . This reduces commutators of the form:

$$[[[b_1, b_2], [b_3, b_4]], \ldots]$$

to commutators in \mathfrak{n}_+ . But \mathfrak{n}_+ is nilpotent, so taking enough commutators give 0. Therefore \mathfrak{b} is solvable.

Problem 5 (Kirillov 16)

(1) We start from:

$$h_{\alpha} = i_{\alpha} \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$$

And the definition of the adjoint action:

$$\operatorname{Ad} S_{\alpha}(h_{\alpha}) = \frac{d}{dt} \Big|_{t=0} \left(S_{\alpha} e^{th_{\alpha}} S_{\alpha}^{-1} \right)$$

$$= \frac{d}{dt} \Big|_{t=0} \left[i_{\alpha} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \exp \left(ti_{\alpha} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right) i_{\alpha} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right]$$

$$= i_{\alpha} \frac{d}{dt} \Big|_{t=0} \left[\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} e^{t} & 0 \\ 0 & e^{-t} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right]$$

$$= i_{\alpha} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= -h_{\alpha}$$

Now if we have some h such that $\langle h, \alpha \rangle = 0$, we show that h commutes with $\frac{\pi}{2}(f_{\alpha} - e_{\alpha})$. Using the Serre relations:

$$[h, \frac{\pi}{2}(f_{\alpha} - e_{\alpha})] = \frac{\pi}{2}[h, f_{\alpha}] - \frac{\pi}{2}[h, e_{\alpha}]$$
$$= \frac{\pi}{2}\langle h, \alpha \rangle (-f_{\alpha} - e_{\alpha})$$
$$= 0$$

From this we deduce that $S_{\alpha}e^{th}=e^{th}S_{\alpha}$, which immediately implies that $\operatorname{Ad}S_{\alpha}(h)=h$. We define the action of S_{α} on \mathfrak{g}^* in the obvious way:

$$\langle \operatorname{Ad} S_{\alpha}(\lambda), \operatorname{Ad} S_{\alpha}(X) \rangle = \langle \lambda, X \rangle$$

We have seen above that $\operatorname{Ad} S_{\alpha}(h_{\beta}) \in \mathfrak{h}$, therefore $\operatorname{Ad} S_{\alpha}(\beta) \in \mathfrak{h}^*$. Moreover, $\operatorname{Ad} S_{\alpha}(h_{\alpha}) = -h_{\alpha}$ implies $\operatorname{Ad} S_{\alpha}(\alpha) = -\alpha$, and $\operatorname{Ad} S_{\alpha}(h_{\beta}) = h_{\beta}$ implies $\operatorname{Ad} S_{\alpha}(\beta) = \beta$. This shows that $\operatorname{Ad} S_{\alpha}|_{\mathfrak{h}^*} = s_{\alpha}$.

(2) We saw in part 1 that $\operatorname{Ad} S_{\alpha}|_{\mathfrak{h}^*} = s_{\alpha}$. Now we have to prove a similar statement for arbitrary w in the Weyl group. We prove it for $w = s_{\alpha}s_{\beta}$, and the proof for longer elements follows analogously. It's easy to see that:

$$(\operatorname{Ad} S_{\alpha} \operatorname{Ad} S_{\alpha})|_{\mathfrak{h}^*} = s_{\alpha} s_{\beta}$$

But $G \stackrel{\mathrm{Ad}}{\to} Gl(\mathfrak{g})$ is a homomorphism, so $\operatorname{Ad} S_{\alpha} \operatorname{Ad} S_{\alpha} = \operatorname{Ad}(S_{\alpha}S_{\beta})$.