Efficient Counting with Optimal Resilience

Christoph Lenzen

MPI for Informatics

Joel Rybicki

MPI for Informatics & Aalto University / HIIT

DISC 2015

October 7, Tokyo

Fault-tolerant counters

Deterministic *round counters* tolerating:

- permanent failures (Byzantine faults)
- transient failures (self-stabilisation)

that are

- fast to stabilise
- communication-efficient

n state machines

- 1. broadcast
- 2. receive
- 3. update state

n state machines

- 1. broadcast
- 2. receive
- 3. update state

n state machines

- 1. broadcast
- 2. receive
- 3. update state

n state machines

- 1. broadcast
- 2. receive
- 3. update state

our adversary

Transient failures

arbitrary initial states

chosen by adversary!

= self-stabilisation

Byzantine failures

n state machines

f Byzantine failures

Byzantine failures

n state machines

f Byzantine failures

Byzantine failures

n state machines

f Byzantine failures

Correct nodes can observe different states for the system!

Counting mod c

0 1 2 0 1 2

increment counter +1 mod *c* each round

Synchronous counting

Counting

(3)

(4)

0	1	2	0	1	2
?	?	?	?	?	?
0	1	2	0	1	2
0	1	2	0	1	2

Synchronous counting

Sta	hil	lie	at	io	n
Jia			al	IU	

Counting

1									
	?	?	?	?	?	?	?	?	?
3									
4	1	2	1	0	1	2	0	1	2

Complexity measures

Time complexity: #rounds

Message size:

maximum number of bits broadcast (per node, each round)

Consensus bounds*

Resilience

Pease et al. (1980)

Time

More than f rounds to reach agreement

Fischer & Lynch (1982)

*deterministic

Counting bounds*

Resilience

Pease et al. (1980)

Time

More than f rounds to stabilise

Fischer & Lynch (1982)

*deterministic

Upper bounds

		Time	Resilience	Bits
	S. Dolev & Welch 2004	$2^{2(n-f)}$	< n/3	O(1)
	Ben-Or <i>et al.</i> 2008	O(1)	< n/3	$n^{O(1)}$
	D. Dolev & Hoch 2007	$\Theta(f)$	< n/3	$\Omega(f)$
_	PODC 2015	$\Theta(f)$	$n^{1-o(1)}$	$O(\log^2 f)$
	This result	$\Theta(f)$	< n/3	$O(\log^2 f)$

Time Resilience Bits

D. Dolev & Hoch 2007	$\Theta(f)$	< n/3	$\Omega(f)$	
PODC 2015	$\Theta(f)$	$n^{1-o(1)}$	$O(\log^2 f)$	

High-level idea

Counting low resilience

Counting once in a while high resilience

Consensus (phase king)

high resilience

Counting once in a while

	Aı	rbitra	ry	Co	ounti	ng	Ar	bitra	ry
1	1	0	2	0	1	2	2	1	0
	?	?	?	?	?	?	?	?	?
3	2	2	2	0	1	2	0	2	2
4	1	2	1	0	1	2	1	1	2

High-level idea

Counting low resilience

Counting once in a while high resilience

Consensus (phase king)

high resilience

Time Resilience Bits

D. Dolev & Hoch 2007	$\Theta(f)$	< n/3	$\Omega(f)$
PODC 2015	$\Theta(f)$	$n^{1-o(1)}$	$O(\log^2$
This result	$\Theta(f)$	< n/3	$O(\log^2$

Previous boosting lemma

Stabilisation time: T

Message size: S

$$T + O(k^k \cdot f)$$
$$S + O(\log f)$$

New boosting lemma

$$\approx n/2$$

 $\approx f/2$

n, f

Stabilisation time: T

Message size: S

$$T + O(f)$$
$$S + O(\log f)$$

Resilience does not degrade!

Boosting resilience

Boost resilience recursively

for log f steps

Stabilisation time: O(f)

Message size: $O(\log^2 f + \log c)$

Summary

	Time	Bits
S. Dolev & Welch 2004	$2^{2(n-f)}$	O(1)
Ben-Or <i>et al.</i> 2008	O(1)	$n^{O(1)}$
This paper (deterministic)	$\Theta(f)$	$O(\log^2 f)$

Reducing communication

Each node broadcasts

$$O(\log^2 f + \log c)$$

bits during stabilisation.

What about *after* stabilisation?

Quiet poly-counters

If $c = n^{O(1)}$ is a multiple of n then we get

- optimal stabilisation time
- optimal resilience

..and after stabilisation each node broadcasts **optimal** O(1) bits every $\Theta(n)$ rounds.

Summary

	Time	Bits
S. Dolev & Welch 2004	$2^{2(n-f)}$	O(1)
Ben-Or <i>et al.</i> 2008	O(1)	$n^{O(1)}$
This paper (deterministic)	$\Theta(f)$	$O(\log^2 f)$

Thanks!