Travaux pratiques 7.4.2 : configuration avancée de DHCP et NAT

Diagramme de topologie

Table d'adressage

Périphérique	Interface	Adresse IP	Masque de sous-réseau
	S0/0/0	172.16.0.1	255.255.255.252
R1	Fa0/0	172.16.10.1	255.255.255.0
	Fa0/1	172.16.11.1	255.255.255.0
	S0/0/0	172.16.0.2	255.255.255.252
R2	S0/0/1	209.165.201.1	255.255.255.252
	Fa0/0	172.16.20.1	255.255.255.0
FAI	S0/0/1	209.165.201.2	255.255.255.252

Objectifs pédagogiques

À l'issue de ces travaux pratiques, vous serez en mesure d'effectuer les tâches suivantes :

- Préparer le réseau
- Effectuer des configurations de routeur de base
- Configurer un serveur DHCP Cisco IOS
- Configurer le routage statique et le routage par défaut
- Configurer la fonction NAT statique
- Configurer la fonction NAT dynamique à l'aide d'un pool d'adresses
- Configurer la surcharge de la fonction NAT

Scénario

Dans le cadre de cet exercice, vous apprendrez à configurer les services d'adressage IP sur le réseau représenté dans le diagramme de topologie. Si vous avez besoin d'aide, reportez-vous aux travaux pratiques consacrés à la configuration des paramètres de base des services DHCP et NAT. Essayez cependant de travailler en parfaite autonomie.

Tâche 1 : préparation du réseau

Étape 1 : câblage d'un réseau similaire à celui du diagramme de topologie

Vous pouvez utiliser n'importe quel routeur durant les travaux pratiques, à condition qu'il soit équipé des interfaces indiquées dans la topologie.

Remarque : il est possible que les sorties du routeur ainsi que les descriptions d'interface paraissent différentes si vous utilisez un routeur de type 1700, 2500 ou 2600.

Étape 2 : suppression de toutes les configurations existantes sur les routeurs

Tâche 2 : exécution des configurations de routeur de base

Configurez les routeurs R1, R2 et FAI conformément aux instructions suivantes :

- Configurez le nom d'hôte du périphérique.
- Désactivez la recherche DNS.
- Configurez un mot de passe de mode d'exécution privilégié.
- Configurez une bannière de message du jour.
- Configurez un mot de passe pour les connexions console.
- Configurez un mot de passe pour toutes les connexions de terminaux virtuels (vty).
- Configurez les adresses IP sur tous les routeurs. Plus loin dans cet exercice, les PC se verront attribuer des adresses IP par le service DHCP.
- Activez OSPF en utilisant l'ID de processus 1 sur R1 et R2. N'annoncez pas le réseau 209.165.200.224/27.

Remarque : Au lieu de relier un serveur à R2, vous pouvez configurer une interface de bouclage sur R2 de façon à utiliser l'adresse IP 192.168.20.254/24. De cette façon, il n'est pas nécessaire de configurer l'interface Fast Ethernet.

Tâche 3 : configuration d'un serveur DHCP Cisco IOS

Configurez le routeur R2 en tant que serveur DHCP pour les deux réseaux locaux (LAN) du routeur R1.

Étape 1 : exclusion des adresses attribuées de manière statique

Excluez les trois premières adresses de chaque pool.

Étape 2 : configuration du pool DHCP

Créez deux pools DHCP. Attribuez au premier pool le nom **R1_LAN10** pour le réseau 172.16.10.0/24 et attribuez au deuxième pool le nom **R1_LAN11** pour le réseau 172.16.11.0/24.

Pour chaque pool, configurez une passerelle par défaut et un serveur DNS simulé, à l'adresse 172.16.20.254.

Étape 3 : configuration de l'agent relais DHCP

Configurez des commandes helper-address de sorte que les broadcasts envoyés par un client soient acheminés vers le serveur DHCP.

Étape 4 : vérification de la configuration DHCP

Tâche 4 : configuration du routage statique et du routage par défaut

Sur FAI, configurez une route statique pour le réseau 209.165.201.0/27. Utilisez l'argument exit interface.

Configurez une route par défaut sur R2 et propagez-la dans OSPF. Utilisez l'adresse IP du tronçon suivant comme argument.

Tâche 5 : configuration de la traduction d'adresses de réseau (NAT) statique

Étape 1 : mappage statique d'une adresse IP publique à une adresse IP privée

Associez de manière statique l'adresse IP du serveur interne à l'adresse publique 209.165.201.30.

Étape 2 : désignation des interfaces de traduction d'adresses de réseau internes et externes

Étape 3 : vérification de la configuration de la traduction d'adresses de réseau statique

Tâche 6 : configuration d'un pool d'adresses pour la traduction d'adresses de réseau dynamique

Étape 1 : définition d'un pool d'adresses globales

Créez un pool appelé **NAT_POOL** pour les adresses IP 209.165.201.9 à 209.165.201.14 en utilisant le masque de sous-réseau /29.

Étape 2 : création d'une liste de contrôle d'accès standard permettant d'identifier les adresses internes traduites

Utilisez le nom NAT ACL et autorisez tous les hôtes reliés aux deux réseaux locaux sur R1.

Étape 3 : activation de la source de traduction dynamique

Associez le pool de traduction d'adresses de réseau à la liste de contrôle d'accès et autorisez la surcharge de traduction d'adresses de réseau.

Étape 4 : désignation des interfaces de traduction d'adresses de réseau internes et externes

Vérifiez si les interfaces de traduction d'adresses de réseau internes et externes sont correctement définies.

Étape 5 : vérification de la configuration

Tâche 7 : consignation des informations relatives au réseau

Exécutez la commande **show run** sur chaque routeur et capturez les configurations.

Tâche 8 : remise en état

Supprimez les configurations et rechargez les routeurs. Déconnectez le câblage et stockez-le dans un endroit sécurisé. Reconnectez le câblage souhaité et restaurez les paramètres TCP/IP pour les hôtes PC connectés habituellement aux autres réseaux (réseau local de votre site ou Internet).