INVESTMENT DASHBOARD

How Will Your Money Grow?

Aalok Devkota Gurcharan Singh Heather Marshall Stephanie Lin

PROJECT PURPOSE

How to Invest:

- Professional investment advisors are expensive just ask Aalok
- Dashboard will generate projected outcomes based on input

See How Your Money Grows:

 Generate visualizations based on amount invested, time of investment, and portfolio type

Will You Achieve Your Goal?

Probability of success dependent on dollar invested and portfolio type

WORK PROCESS

META DATA

```
₩ {

▼ "Meta Data": {
         "1. Information": "Monthly Prices (open, high, low, close) and Volumes",
         "2. Symbol": "SPY",
         "3. Last Refreshed": "2020-01-03",
         "4. Time Zone": "US/Eastern"
      },
    "Monthly Time Series": {
       "2020-01-03": {
              1. open : 323.5400",
             "2. high": "324.8900",
                                            ▼ "Meta Data": {
             "3 low" · "321 1000"
                                                   "1. Information": "Monthly Prices (open, high, low,
             "4. close": "322.4100",
                                                   "2. Symbol": "VBMFX",
              "5. volume": "136/45153
                                                   "3. Last Refreshed": "2020-01-02",
         },
                                                   "4. Time Zone": "US/Eastern"
       "2019-12-31": {
             "1. open": "314.5900",
                                             "Monthly Time Series": {
             "2. high": "323.8000",
                                                   "2020-01-02": {
             "3. low": "307.1300",
                                                        1. open : "11.0800",
             "4. close": "321.8600",
                                                       "2. high": "11.0800",
             "5. volume": "1281220574"
                                                       "4. close": "11.0800"
       "2019-11-29": {
                                                        '5. volume": "0
             "1. open": "304.9160",
                                                   },
             "2. high": "315.4800",
                                                 ▼ "2019-12-31": {
             "3. low": "304.7400",
                                                      "1. open": "11.0600",
             "4. close": "314.3100",
                                                       "2. high": "11.1200",
             "5. volume": "1035047008"
                                                       "3. low": "11.0400",
         },
                                                       "4. close": "11.0500",
       "2019-10-31": {
                                                       "5. volume": "0"
             "1. open": "297.7400",
             "2. high": "304.5500",
                                                   },
             "3. low": "284.8200",
                                                 "2019-11-29": {
             "4. close": "303.3300",
                                                       "1. open": "11.1100",
             "5. volume": "1404743524"
                                                       "2. high": "11.1100",
                                                       "3. low": "11.0000",
         },
       ▼ "2019-09-30": {
                                                      "4. close": "11.0900",
             "1. open": "290.5700",
                                                       "5. volume": "0"
             "2. high": "302.6300",
             "3. low": "289.2700",
```

Merge SPY and VBMFX DataFrames

```
In [6]: data = SPY_data.merge(VBMFX_data, on='Date')
          # Change all column dtypes to datetime or float as appropriate
          data['Date'] = pd.to_datetime(data['Date'])
          data['SPY_Close'] = pd.to_numeric(data['SPY_Close'])
          data['VBMFX_Close'] = pd.to_numeric(data['VBMFX_Close'])
          data = data.set_index('Date')
          data.dtypes
Out[6]: SPY Close
                           float64
         VBMFX Close
                           float64
         dtype: object
In [7]: # Sort date from high to low so the 12M calculation can be performed properly
          data = pd.DataFrame.sort_index(data, ascending=True);
          data
                                                               Calculate 12-Month Percentage Change
Out[7]:
                      SPY_Close VBMFX_Close
                                                       In [8]: data_12M_Return = data.pct_change(12)
                                                               data_12M_Return = data_12M_Return.dropna()
               Date
                                                               # Update columns to appropriate names
          2003-01-31
                           86.06
                                         10.34
                                                               data_12M_Return = data_12M_Return.rename(columns={'Date' : 'Date',
                                                                                                                'SPY_Close': 'SPY_Return',
          2003-02-28
                           84.90
                                         10.44
                                                                                                               'VBMFX_Close': 'VBMFX_Return'})
          2003-03-31
                           84.74
                                         10.38
                                                               data_12M_Return
           2003-04-30
                           91.91
                                         10.43
                                                      Out[8]:
                                                                         SPY_Return VBMFX_Return
          2003-05-30
                           96.95
                                         10.58
                                                                    Date
                                                               2004-01-30
                                                                           0.318615
                                                                                        0.001934
          2019-09-30
                          296.77
                                         11.12
                                                                2004-02-27
                                                                           0.354770
                                                                                       -0.000958
           2019-10-31
                          303.33
                                         11.12
                                                                           0.334671
                                                                                        0.007707
                                                               2004-03-31
                                                               2004-04-30
                                                                           0.207268
                                                                                       -0.026846
          2019-11-29
                         314.31
                                         11.09
                                                               2004-05-28
                                                                           0.164105
                                                                                       -0.048204
          2019-12-31
                          321.86
                                         11.05
          2020-01-09
                          326.65
                                         11.08
                                                               2019-09-30
                                                                           0.020810
                                                                                        0.073359
                                                                2019-10-31
                                                                           0.120829
                                                                                        0.083821
                                                               2019-11-29
                                                                           0.140250
                                                                                        0.077745
                                                               2019-12-31
                                                                           0.287852
                                                                                        0.057416
                                                               2020-01-09
                                                                           0.210129
                                                                                        0.052232
```

193 rows x 2 columns

EXTRACT

TRANSFORM

Calculate 12-Month Percentage Change

SPY_Return VBMFX_Return

Out[8]:

		Date
0.001934	0.318615	2004-01-30
-0.000958	0.354770	2004-02-27
0.007707	0.334671	2004-03-31
-0.026846	0.207268	2004-04-30
-0.048204	0.164105	2004-05-28
***	***	***
0.073359	0.020810	2019-09-30
0.083821	0.120829	2019-10-31
0.077745	0.140250	2019-11-29
0.057416	0.287852	2019-12-31
0.052232	0.210129	2020-01-09

193 rows x 2 columns

Calculate 12-Month Rolling Returns for Five New Portfolios

The weight for the portfolios are:

- * Very Aggressive: 100% Stock (SPY)
- * Aggeressive: 80% SPY and 20% Bonds (VBMFX)
- * Moderate: 50% SPY and 50% VBMFX
- * Conservative: 20% SPY and 80% VBMFX
- * Very Conservative: 100% VBMFX

```
In [9]: data_12M_Return['Very_Aggressive'] = data_12M_Return.SPY_Return

data_12M_Return['Aggressive'] = .8*data_12M_Return.SPY_Return + .2* data_12M_Return.VBMFX_Return

data_12M_Return['Moderate'] = .5*data_12M_Return.SPY_Return + .5* data_12M_Return.VBMFX_Return

data_12M_Return['Conservative'] = .2*data_12M_Return.SPY_Return + .8* data_12M_Return.VBMFX_Return

data_12M_Return['Very_Conservative'] = data_12M_Return.VBMFX_Return

data_12M_Return['Very_Conservative'] = data_12M_Return.VBMFX_Return
```

Out[9]:

SPY_Return VBMFX_Return Very_Aggressive Aggressive Moderate Conservative Very_Conservative

0.318615	0.001934	0.318615	0.255279	0.160275	0.065270	0.001934
0.354770	-0.000958	0.354770	0.283625	0.176906	0.070188	-0.000958
0.334671	0.007707	0.334671	0.269278	0.171189	0.073100	0.007707
0.207268	-0.026846	0.207268	0.160445	0.090211	0.019977	-0.026846
0.164105	-0.048204	0.164105	0.121643	0.057951	-0.005742	-0.048204
	0.354770 0.334671 0.207268	0.354770 -0.000958 0.334671 0.007707 0.207268 -0.026846	0.354770 -0.000958 0.354770 0.334671 0.007707 0.334671 0.207268 -0.026846 0.207268	0.354770 -0.000958 0.354770 0.283625 0.334671 0.007707 0.334671 0.269278 0.207268 -0.026846 0.207268 0.160445	0.354770 -0.000958 0.354770 0.283625 0.176906 0.334671 0.007707 0.334671 0.269278 0.171189 0.207268 -0.026846 0.207268 0.160445 0.090211	0.354770 -0.000958 0.354770 0.283625 0.176906 0.070188 0.334671 0.007707 0.334671 0.269278 0.171189 0.073100 0.207268 -0.026846 0.207268 0.160445 0.090211 0.019977

Create Summary Statics for the Five Portfolios

Mean, STD and Max will be used for the model calculations

```
In [11]: data_summary = data_12M_Return.describe()
    data_summary
```

Out[11]:

	Very_Aggressive	Aggressive	Moderate	Conservative	Very_Conservative
count	192.000000	192.000000	192.000000	192.000000	192.000000
mean	0.083490	0.067506	0.043530	0.019554	0.003570
std	0.147658	0.118420	0.075651	0.038279	0.029540
min	-0.447541	-0.363486	-0.237403	-0.111319	-0.056200
25%	0.031594	0.030721	0.019771	-0.000007	-0.019016
50%	0.109241	0.088634	0.053453	0.021531	0.003810
75%	0.155522	0.122171	0.080124	0.042480	0.021414
max	0.497903	0.407932	0.272976	0.138019	0.090814

```
In [12]: # Drop unnecessary rows
data_summary = data_summary.drop(['count', 'min', '25%', '50%', '75%'])
data_summary
```

Out[12]:

	Very_Aggressive	Aggressive	Moderate	Conservative	Very_Conservative
mean	0.083490	0.067506	0.043530	0.019554	0.003570
std	0.147658	0.118420	0.075651	0.038279	0.029540
max	0.497903	0.407932	0.272976	0.138019	0.090814

TRANSFORM

Send DataFrames to PostgreSQL

```
<!DOCTYPE html>
<html lang="en">
<html lang="utf-8">
<html l
```

```
<!-- Plot scripts -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/5.5.0/d3.js"></script>
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<!-- Bootstrap Libraries -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"></script>
<!-- Main script file to load charts with scraped data -->
<script src="\{\{\text{url_for('static', filename='./static/js/app.js')}\}\]"></script>
```

HTML

FLASK APP

```
@app.route("/portfolio")
   aa = request.args.get('pv')
   bb = request.args.get('iv')
   cc = request.args.get('yr')
   Portfolios = ['Very_Conservative', 'Conservative', 'Moderate', 'Aggressive', 'Very_Aggressive']
   big_lst = []
   for x in range(0, 5):
       time horizon = int(cc)
       i = mean_list[x]
       for year in range(time_horizon):
           ending = pv * (1 + i) + additions
           lst.append(pv)
       high_value = lst[-1]
       low_value = high_value * (1 - max_list[x])
       new_lst = [Portfolios[x], high_value, low_value]
       big_lst.append(new_lst)
   data = pd.DataFrame(big_lst)
   data = data.rename(columns={0: 'Portfolios', 1: 'High_Value', 2: 'Low_Value'})
   data = data.set_index('Portfolios')
   print(f"=> Data: {data.head()}")
   return data.to_json()
```

```
Reg ex for Time Invested
Reg Ex for Investment Amount
Whole Numbers, two or more digits
                                      1-45 years
 Expression
                                         Expression
 /[1-9][0-9]{2,}/g
                                         /\b([1-9]|[0-4][0-5])\b/g
                                         Text
 Text
  000617
                                         5
  455
                                         99
  100
                                         0.6
  99
  75
                                         23
                                         20
  1-
                                         25
  0
                                         45
                                         55
                                         50
                                         46
                                         100
var pvRegex = [1-9][0-9]{2,};
var ivRegex = [1-9][0-9]{2,};
var timeRegex= \b([1-9]|[0-4][0-5])\b;
var pvResult = pvRegex.test(presentValue);
var ivResult = ivRegex.test(investmentValue);
var horResult= timeRegex.test(horizon);
<input type="number" min="1" required pattern= "[1-9][0-9]{2,}" id="presentValue"</pre>
```

<input type="number" min="1" required pattern="[1-9][0-9]{2,}" id="investmentValue"
<input type="number" min="1" max="45" required pattern="\b([1-9]|[0-4][0-5])\b" id="horizon"</pre>

FORM VALIDATION

DASHBOARD

All the components together creates this:

Investment Dashboard