RÓWNANIA RÓŻNICZKOWE, II ROK MATEMATYKI LISTA 6

Zadanie 1. Pokazać, że rozwiązanie zagadnienia początkowo-brzegowego dla równania ciepła $u_t = u_{xx} \le (0,1) \times (0,T)$, u(x,0) = g(x), u(0,t) = u(1,t) = 0, otrzymane przez zastosowanie metody Fouriera w postaci

$$u(x,t) = \sum_{k=1}^{\infty} c_k \sin(k\pi x) \exp(-k^2 \pi^2 t),$$

gdzie $g(x) = \sum_{k=1}^{\infty} c_k \sin(k\pi x)$, jest gładkie wewnątrz prostokąta $(0,1) \times (0,T)$ jeżeli (np.) $g \in C^1(0,1)$, oraz $\lim_{x\to 0} g(x) = \lim_{x\to 1} g(x) = 0$ i istnieją pochodne jednostronne g'(0), g'(1). Zbadać co się dzieje w przypadku gdy g(x) = 0 dla 0 < x < a i b < x < 1, g(x) = 1 dla $a \le x \le b$ (0 < a < b < 1).

Zadanie 2. Udowodnić, że jeżeli g jest ograniczoną funkcją ciągłą na \mathbb{R}^n , f, ∇f są ograniczone i ciągłe na $\mathbb{R}^n \times (0,T)$, to (jedyne ograniczone) rozwiązanie niejednorodnego równania ciepła $u_t = \Delta u + f(x,t)$ z warunkiem u(x,0) = g(x) jest rozwiązaniem klasycznym: $u \in C^{2,1}(\mathbb{R}^n \times (0,T))$ i zachodzi wzór Poissona

$$u(x,t) = \int_0^t \int (4\pi(t-s))^{-n/2} \exp\left(\frac{-|x-y|^2}{4(t-s)}\right) f(y,s) \, dy \, ds$$
$$+(4\pi t)^{-n/2} \int \exp\left(\frac{-|x-y|^2}{4t}\right) g(y) \, dy.$$

Zadanie 3. Rozwiązać następujące zagadnienie brzegowo-początkowe $u_t + u = u_{xx}$, 0 < x < L, u(0,t) = u(L,t) = 0, u(x,0) = 1.

Zadanie 4. Znaleźć rozwiązanie stacjonarne U=U(x) równania $u_t=u_{xx}+1$ z warunkami brzegowymi $u(0,t)=0,\ u(1,t)=1.$ Zbadać, czy $\lim_{t\to\infty}u(x,t)=U(x).$

Zadanie 5.** Załóżmy, że $q \in L^{\infty}(\mathbb{R}^n)$ spełnia warunek

$$\lim_{R \to \infty} \frac{1}{\omega_n R^n} \int_{|x| < R} g(x) \ dx = a.$$

Udowodnić, że rozwiązanie zagadnienia Cauchy'ego $u_t = \Delta u$, u(x,0) = g(x), stabilizuje się do a gdy $t \to +\infty$, tzn. $\lim_{t\to\infty} u(x,t) = a$ niemal jednostajnie ze względu na x.

Zadanie 6.** Podać przykład funkcji $u: \mathbb{R} \times [0,T] \to \mathbb{R}, \ u \not\equiv 0$, takiej, że $u_t = u_{xx}, \ u(x,0) = 0$.

Wsk. Istnieje $0 \not\equiv f \in C^{\infty}(\mathbb{R})$ o nośniku w [0,1] taka, że $f^{(m)}(0) = 0$ oraz $|f^{(m)}(s)| \leq C^m m^{m(1+\varepsilon)}$ dla $m \in \mathbb{N}$, pewnej stałej C i pewnego $\varepsilon > 0$ (w istocie $\forall \varepsilon > 0 \; \exists C > 0$). Następnie przyjąć

$$u(x,t) = \sum_{m=0}^{\infty} \frac{f^{(m)}(t)x^{2m}}{(2m)!}.$$

Literatura: W. Rudin, Analiza rzeczywista i zespolona, rozdział 19, o funkcjach quasianalitycznych.

Zadanie 7. Pokazać, że zagadnienie Cauchy'ego dla nieliniowego równania Burgersa

$$u_t = u_{xx} - uu_x, \quad u(x,0) = f(x),$$

przy pomocy zamiany zmiennych $u = -2v_x/v$ sprowadza się do zagadnienia Cauchy'ego dla równania ciepła $v_t = v_{xx}$ z warunkiem początkowym $v(x,0) = \exp\left(-\frac{1}{2}\int_0^x f(s) \ ds\right)$.

15 maja 2020

Piotr Biler