What is claimed is:

14

1	1. A method for charge control of a photoflash
2	capacitor comprising the steps of:
3	detecting a voltage on the photoflash capacitor;
4	asserting and then latching a recharge signal when the
5	detected voltage is lower than a first reference
6	voltage;
7	de-asserting and then latching the recharge signal when
8	the detected voltage is higher than a second
9	reference voltage;
10	charging the photoflash capacitor when the recharge
11	signal is asserted; and
12	providing a pin for connection of a resistive element
13	which determines the first reference voltage.
1	2. The method as claimed in claim 1 further
2	comprising the steps of:
3	asserting and de-asserting a first output signal
4	respectively when the detected voltage is lower
5	and higher than the first reference voltage;
6	asserting and de-asserting a second output signal
7	respectively when the detected voltage is higher
8	and lower than the second reference voltage;
9	asserting the recharge signal when the first output
10	signal is asserted, until the second output
11	signal is asserted; and
12	de-asserting the recharge signal when the first output
13	signal is asserted, until the first output signal

is asserted.

6

7

8

9

11

12

- 3. 1 photoflash capacitor charger operating in 2 conjunction with a microprocessor, comprising:
- 3 a transformer receiving a primary input voltage to 4 induce a secondary output voltage on a photoflash 5 capacitor when a recharge signal is asserted; and
- recharge controller detecting a voltage on the photoflash capacitor, asserting and then latching the recharge signal when the detected voltage is lower than a first reference voltage, and de-10 . asserting and then latching the recharge signal when the detected voltage is higher than a second reference voltage;
- 13 wherein the first reference voltage is determined by 14 the microprocessor.
- 1 4. The photoflash capacitor charger as claimed in 2 claim 3, wherein the recharge controller comprises:
- 3 a first comparator circuit asserting and de-asserting a 4 output siqnal respectively when the 5 detected voltage is lower and higher than the 6 first reference voltage;
- 7 a second comparator circuit asserting and de-asserting 8 second output signal respectively when the 9 detected voltage is higher and lower than the 10 second reference voltage; and
- 11 a latch asserting the recharge signal when the first 12 output signal is asserted, until the second 13 output signal is asserted, and de-asserting the 14 recharge signal when the second output signal is

- asserted, until the first output signal is asserted.
 - 1 5. The photoflash capacitor charger as claimed in 2 claim 4, wherein the first comparator circuit comprises:
 - a voltage divider having a first and second resistor
 connected in series, and receiving the primary
 input voltage and generating the first reference
 voltage divided therefrom; and
- a comparator having a positive input receiving the
 first reference voltage and a negative input
 receiving the detected voltage, and outputting
 the first output signal;
- wherein one of the first and second resistor is adjustable.
- 1 6. The photoflash capacitor charger as claimed in 2 claim 4, wherein the second comparator circuit comprises:
- a voltage divider having a first and second resistor
 connected in series, and receiving the primary
 input voltage and generating the second reference
 voltage divided therefrom; and
- a comparator having a positive input receiving the
 detected voltage and a negative input receiving
 the second reference voltage, and outputting the
 second output signal.
- 7. The photoflash capacitor charger as claimed in claim 4, wherein the latch comprises:

- a first and second inverter wherein an input and output

 of the first inverter are respectively coupled to

 an output and input of the second inverter;
- a third inverter having an input coupled to the output

 of the second inverter and outputting the

 recharge signal;
- a first switch coupled between the input of the first inverter and the ground, and closed and opened respectively when the first recharge signal is asserted and de-asserted; and
- a second switch coupled between the input of the second inverter and the ground, and closed and opened respectively when the second output signal is asserted and de-asserted.
- 1 8. The photoflash capacitor charger as claimed in 2 claim 7, wherein each of the first, second and third 3 inverter comprises:
- a transistor having a collector as the output and an emitter coupled to the ground;
- a current source coupled to the collector of the transistor; and
- 8 a resistor having one end as the input and the other 9 end coupled to a base of the transistor.
- 9. The photoflash capacitor charger as claimed in claim 7, wherein each of the first and second switch is a transistor.
- 1 10. The photoflash capacitor charger as claimed in 2 claim 3 further comprising a voltage divider coupled with

3

second resistor connected in series, and generating the 4 5 detected voltage divided from a voltage difference across 6 the photoflash capacitor. 1 An integrated circuit for recharge control of a 2 photoflash capacitor, comprising: first, second, third and fourth pins respectively for 3 4 reception of a ground voltage, primary input 5 voltage, detected voltage from the photoflash 6 capacitor and connection with а resistive 7 element; 8 a first comparator circuit comprising: 9 a first comparator having a positive and negative 10 input respectively connected to the fourth 11 and third pin; and 12 a resistor connected between the second and fourth 13 pin; 14 a second comparator circuit comprising: 15 a voltage divider connected between the first and 16 second pins; and 17 a second comparator having a positive and negative 18 input respectively connected to the third 19 pin and an output of the voltage divider: 20 and 21 a latch comprising: a first and second inverter wherein an input and 22 23 output of the first inverter are 24 respectively connected to an output 25 input of the second inverter;

the photoflash capacitor in parallel, having a first and

26	a third inverter having an input connected to the
27	output of the second inverter and an output
28	for a recharge signal;
29	a first switch connected between the input of the
30	first inverter and the first pin; and
31	a second switch connected between the input of the
32	second inverter and the first pin.
1	12. The integrated circuit as claimed in claim 11,
2	wherein each of the first, second and third inverters
3	comprises:
4	a transistor having a collector as the output and an
5	emitter connected to the first pin;
6	a current source connected to the collector of the
7	transistor; and
8	a resistor having one end as the input and the other
9	end connected to a base of the transistor.
1	13. The integrated circuit as claimed in claim 11,
2	wherein each of the first and second switch is a transistor.
7	
1	14. The integrated circuit as claimed in claim 11
2	further comprising:
3	a fifth pin for connection with a primary winding of a
4	transformer; and
5	a current switch controlled by the recharge signal from
6	the third inverter and connected between the

fifth and first pins.

7