Árvores Balanceadas AVL

Prof: Sergio Souza Costa

Sobre mim

φ+

Sérgio Souza Costa Professor - UFMA Doutor em Computação Aplicada (INPE)

prof.sergio.costa@gmail.com

https://sites.google.com/site/profsergiocosta/home

http://www.slideshare.net/skosta/presentations?order=popular

https://twitter.com/profsergiocosta

http://gplus.to/sergiosouzacosta

 As árvores binárias de busca permitem a organização da informação com o objetivo a otimizar as buscas.

- As árvores binárias de busca permitem a organização da informação com o objetivo a otimizar as buscas.
- Ela permite o acesso mais rapido aos elementos dado que os elementos estão organizados na árvore, obedecendo uma certa propriedade.
 - Esquerda são os menores que a raiz
 - Direita são os maiores que a raiz

 As Árvores binárias de busca (ABB) estudadas têm uma séria desvantagem que pode afetar o tempo necessário para recuperar um item armazenado.

Insiram os seguintes valores em uma árvore binária de busca (ABB):

1, 2, 3, 4, 5, 6, 7

4, 6, 2, 5, 1, 7, 3

O que vocês concluem com isso?

A desvantagem é que o desempenho da ABB depende da ordem em que os elementos são inseridos.

A desvantagem é que o desempenho da ABB depende da ordem em que os elementos são inseridos.

Idealmente, deseja-se que a árvore esteja **balanceada**, para qualquer nó **p** da árvore.

A desvantagem é que o desempenho da ABB depende da ordem em que os elementos são inseridos.

Idealmente, deseja-se que a árvore esteja **balanceada**, para qualquer nó **p** da árvore.

Como saber se a árvore está balanceada?

A desvantagem é que o desempenho de dado. da ordem em que os elementos são

A **altura** dos **nós** é um importante dado.

Idealmente, deseja-se que a árvore esteja **balanceada**, para qualquer nó **p** da árvore.

Como saber se a árvore está balanceada?

- O nome AVL vem de seus criadores Adelson Velsky e Landis (1962).
- Uma árvore binária de pesquisa T é denominada AVL se:
 - Para todos nós de T, as alturas de suas duas sub-árvores diferem no máximo de uma unidade.

 Como saber se a árvore está desbalanceada?

- Como saber se a árvore está desbalanceada?
 - Verificando se existe algum nodo "desregulado".

- Como saber se a árvore está desbalanceada?
 - Verificando se existe algum nodo "desbalanceado".

 Como saber se um nodo está desbalanceado ?

- Como saber se a árvore está desbalanceada?
 - Verificando se existe algum nodo "desbalanceado".

- Como saber se um nodo está desbalanceado ?
 - Subtraindo-se as alturas das suas sub-árvores.

Fator de balanceamento

- O fator de balanceamento é dado por:
 - altura (SAE) altura(SAD)
- . Ou,
 - altura (SAD) altura(SAE)

Fator de balanceamento

- O fator de balanceamento é dado por:
 - altura (SAE) altura(SAD)
- . Ou,
 - altura (SAD) altura(SAE)
- O fator de balanceamento de um nodo é dado pelo seu peso em relação a sua sub-árvore.
 - Um nodo pode ter um fator balanceado de 1, 0, ou -1.
 - Um nodo com fator de balanceamento -2 ou 2 (diferença de 2 elementos) é considerado desbalanceado e requer um balanceamento.

Coloque as alturas de cada nó

Coloque as alturas de cada nó

Coloque as alturas de cada nó
Calcule o fator de balanceamento
altura (SAE) - altura (SAD)

Uma árvore binária de pesquisa **T** é denominada **AVL** se:

 Para todos nós de T, as alturas de suas duas sub-árvores diferem no máximo de uma unidade.

Uma árvore binária de pesquisa **T** é denominada **AVL** se:

Para todos nós de **T**, as alturas de suas duas sub-árvores diferem **no máximo de uma unidade**.

Atividades

Insira os seguintes valores em uma árvore binária, coloque os fatores de balanceamento e diga se é ou não uma AVL e qual nó esta desbalanceado:

- a) [30,15, 50, 5,10, 20]
- b) [80, 40, 100, 120, 90, 30]
- c) [10, 50, 4, 90, 20, 8]

Como balancear?

Como balancear?

Através de operações de rotações!!!!

Existem quatro operações de rotações:

Rotação simples à Esquerda Rotação simples à Direita Rotação Dupla à Esquerda Rotação Dupla à Direita

Existem quatro operações de rosimples

As duplas são derivadas das simples

Rotação simples à Esquerda Rotação simples à Direita Rotação Dupla à Esquerda Rotação Dupla à Direita

- . Quando usar as Rotações ?
 - Na inserção de um elemento
 - e na remoção de um elemento
- É provado que no máximo uma rotação é suficiente para realizar o balanceamento de uma árvore quando é inserido ou removido um elemento

Rotações e balanceamento

Vamos ver primeiro as operações de rotação e depois usa-las para balanceamento.

Rotação a direita

Imagine a seguinte árvore....

Imagine a seguinte árvore....

Imagine a seguinte árvore....

Atividades

Insiram os seguintes valores e depois rotacione para a direita a partir da raiz:

- a) [40,30, 20]
- b) [40, 30, 20, 35]
- c) [40, 50, 30, 20, 35]

Rotação a esquerda

Rotação a esquerda

Atividades

Insiram os seguintes valores e depois rotacione para a esquerda a partir da raiz:

- a)[40, 50, 60]
- b) [40, 50, 10, 60]
- c) [40, 20, 10, 50, 60, 70]

Rotação dupla a esquerda

Rotação dupla a esquerda

Atividades

Insiram os seguintes valores e depois rotacione dupla a esquerda a partir da raiz:

- a)[20, 40, 30]
- b) [20, 40, 30, 50]
- c) [20, 10, 40, 30, 50, 12]

Rotação dupla a direita

Rotação dupla a direita

Atividades

Insiram os seguintes valores e depois rotacione dupla a direita a partir da raiz:

- a) [40, 20, 30]
- b) [40, 20, 30, 50]
- c) [40, 20, 30, 10,50, 80]

Como usar as rotações para manter uma árvore balanceada, ou seja, uma AVL?

Balanceamento

Ao inserir um novo elemento em uma árvore, pode ser que um dos seus nós ascendentes se torne desbalanceado, avô, bisavô ...

Balanceamento

Algoritmo:

A cada inserção, checa-se os nós ascedentes.

Balanceamento

Algoritmo:

- Aplica-se, o mesmo algoritmo de inserção da árvore binária de busca.
- A cada inserção, checa-se os nós ascedentes.
- Caso o nó esteja desbalanceado, existem quatro diferentes configurações, como veremos a seguir.
 - Para cada configração, existe uma rotação indicada.

There are 4 cases in all, choosing which one is made by seeing the direction of the first 2 nodes from the unbalanced node to the newly inserted node and matching them to the top most row.

Root is the initial parent before a rotation and Pivot is the child to take t root's place.

[10, 20, **30**]

Rotação simples a esquerda.

[10, 20, 30, **40**]

Atividades

A partir de uma árvore AVL, insiram os seguintes valores:

- a) [10, 20, 15, 45, 67, 81, 91, 10]
- b) [1, 5,80,20,67,91,8,10]
- c) [10,20,30, 50, 5, 15, 30]