Московский Физико-Технический Институт (государственный университет)

Работа 5.2.2/5.2.3

Цель работы:

Исследовать спектральные закономерности в оптических спектрах водорода и дейтерия. По резелутатам измерений вычилить постоянные Ридберга для этих двух изотопов водорода, их потенциалы ионизации, изотопические сдвиги линий.

Исследовать спектр поглощения паров йода в видимой области; по результатам измерения вычислить энергию колебательного кванта молекулы йода и энергия её диссоциации в основном и возбужденном состояниях.

1 Теоретическая часть

1.1 Спектр водорода

Атом водорода является простейшей квантовой системой, для которой уравнение Шрёдингера может быть решено точно. Это также верно для водородноподобных атомов, то есть атомов с одним электроном на внешней оболочке. Из решения уравнения Шрёдингера следует, что внешний электрон в таких атомах обладает дискретным энергетическим спектром:

$$E_n = -\frac{m_e(Ze^2)^2}{2\hbar^2} \frac{1}{n^2},\tag{1}$$

где n есть номер энергетического уровня, Z есть зарядовое число ядра рассматриваемого атома, которое в случае атома водорода равно 1.

При переходе электрона с *n*-го на *m*-й уровень излучается фотон с энергией

$$E_{\gamma} = E_n - E_m = \frac{m_e e^2}{2\hbar^2} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2} \right). \tag{2}$$

Длина волны соответствующего излучения $\lambda_{n,m}$ связана с номерами уровней следующим соотношением:

$$\lambda_{n,m}^{-1} = \frac{m_e e^2}{4\pi\hbar^3 c} Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2}\right) = \text{Ry}Z^2 \left(\frac{1}{m^2} - \frac{1}{n^2}\right),\tag{3}$$

где $Ry = \frac{m_e e^2}{4\pi \hbar^3 c}$ есть постоянная Ридберга.

В данной работе будет исследоваться серия Бальмера атома водорода, в которой электроны совершают переходы с некоторого уровня n на уровень m=2.

1.2 Спектр йода

В первом приближении энергия молекулы может быть представлена в виде:

$$E = E_e + E_o + E_r, (4)$$

где E_e есть энергия электронных уровней, E_o есть энергия колебательных уровней, E_r есть энергия вращательных уровней.

В настоящей работе рассматриваются оптические переходы, то есть переходы, связанные с излучением фотонов в видимом диапазоне длин волн. Они соответсвтуют переходам между различными электронными состояниями. При этом также происходят изменения вращательного и колебательного состояний, однако в реальности ввиду малости характерных энергий вращательные переходы ненаблюдаемы.

Более конкретно, изучаются переходы из колебательного состояния с номером n_1 освновного электронного уровня с энергией E_1 в колебательное состояние с номером n_2 на электронный уровень с энергией E_2 . Энергия таких переходов описывается формулой:

$$h\nu_{n_1,n_2} = (E_2 - E_1) + h\nu_2(n_2 + \frac{1}{2}) - h\nu_1(n_1 + \frac{1}{2}),$$
 (5)

где ν_1 и ν_2 суть энергии колебательных квантов на электронных уровнях с энергиями E_1 и E_2 .

При достаточно больших квантовых числах n_1 и n_2 колебательные уровни переходят в непрерывный спектр, что соответствует диссоциации молекулы. Наименьшая энергия, которую нужно сообщить молекуле в нижайшем колебательном состоянии, чтобы она диссоциировала, называется энергией диссоциации.

В данной работе определяются энергии диссоциации на первых двух электронных уровнях.

2 Экспериментальная установка

Для измерения длин волн спектральных линий в работе используется стеклянный призменный монохроматор-спектрометр УМ-2 (универсальный монохроматор), предназначенный для спектральных исследований в диапазоне от 0,38 до 1,00 мкм. Основные элементы монохроматора представлены на 1а.

Рис. 1: Экспериментальная установка.

В нашей работе спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания 1, питаемой от блока питания 2 (рис. 1b).

3 Выполнение работы

- 1. Выполним градуировку монохроматора. Проведем серию измерений для спектра неона и ртути. Данные запишем в таблицу.
- 2. Построим график по получившимся данным. Итоговая функция представима в виде:

θ, дел	2599	2576	2515	2499	2462	2445	2433	2399	2391	2370	2344	2303	2300	2271	2257
λ, Α	7032	6929	6717	6678	6599	6533	6507	6402	6383	6305	6267	6164	6143	6096	6074
θ, дел	2219	2208	2183	2154	1892	1855	1848	2568	2328	2129	2120	1929	1520	864	310
λ, Α	5976	5945	5882	5852	5401	5341	5331	6907	6234	5791	5770	5460	4916	4358	4047

Рис. 2: Данные для градуировки монохроматора

Рис. 3: График градуировки монохроматора

$$y = a + b \cdot \exp^{x/c}$$

Получаем значения для коэффициентов:

	Значение	Погрешность
a	3727	36
b	267	16
С	1039	2

Имеем:

$$y = 3727 + 267 \cdot \exp^{x/1039}$$

- 3. Проведем измерения для водорода и заодно проверим формулу Бальмера (Таблица 1):
- 4. Используем МНК, чтобы проверить, является ли зависимость $\frac{1}{\lambda}(\frac{1}{n^2}-\frac{1}{m^2})$ линейной (проверить формулу Бальмера).

Получим зависимость вида y = ax + b:

	Значение	Погрешность
b	0.0170	0.0053
a	10.9567	0.0276

Работа 5.2.2/5.2.3 4 ВЫВОД

Линия спектра	θ , °	λ, \mathring{A}	m	$\frac{1}{n^2} - \frac{1}{m^2}$	$\frac{1}{\lambda}$, $10^{-4} \mathring{A}^{-1}$	$\sigma_{\frac{1}{\lambda}}, 10^{-4} \mathring{A}^{-1}$
H_{α}	2452	6554	3	0.139	1.528	0.092
H_{eta}	1464	4819	4	0.188	2.059	0.124
H_{γ}	838	4325	5	0.21	2.3	0.138
H_{δ}	415	4125	6	0.222	2.436	0.146

Таблица 1: Определение линий спектра водорода

Определим постоянную Ридберга:

$$R = 108453 \pm 6574 \text{cm}^{-1}$$

- 5. Перейдем к измерениям спектра молекулы йода. Найдем $\theta_{1,0}, \theta_{1,5}, \theta_{\rm rp}$:
 - $\theta_{1.0} \approx 2386 \Rightarrow \lambda_{1.0} \approx 6380 \mathring{A} \Rightarrow \nu_{1.0} \approx 4, 7 \cdot 10^{14} \Rightarrow h\nu_{1.0} \approx 1,95$
 - $\theta_{1.5} \approx 2282 \Rightarrow \lambda_{1.5} \approx 6128 \mathring{A} \Rightarrow \nu_{1.5} \approx 4,9 \cdot 10^{14} \Rightarrow h\nu_{1.5} \approx 2,03$
 - $\theta \approx 1616 \Rightarrow \lambda \approx 4991 \mathring{A} \Rightarrow \nu \approx 6, 0 \cdot 10^{14} \Rightarrow h\nu \approx 2,47$

Отсюда энергия колебательного кванта возбужденного состояния молекулы йода согласно (5)

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{5} = 0,0164 \pm 0,0079 \tag{6}$$

Вычислим по формуле (5) разницу $E_2 - E_1 = h\nu$, сделав сдвиг серии на 1 (вычтя $h\nu_1$):

$$h\nu = h\nu_{(1,0)} - \frac{1}{2}h\nu_{2} + \frac{3}{2}h\nu_{1} \approx 1,98 \pm 0,02$$
 (7)

Отсюда получаем энергии диссоциации частицы в основном (D_1) и возбужденном состоянии, считая $E_a = 0,94$ эВ:

4 Вывод

Мы изучили спектры в оптических спектрах водорода и йода, экспериментально проверили справедливость формулы Бальмера и нашли постоянную Ридберга, которая в пределах погрешность совпадает с табличной ($R=109678^{-1}$), заметим, что погрешность в большей степени возникает из-за представления зависимости калибровочных данных как функции экспоненты. Этот вклад ($\approx 6\%$) влияет на погрешность на протяжении всех измерений. Оценили энергии квантов возбужденного состояния молекулы, энергию диссоциации частиц и энергию электронного перехода.