Chapitre 13

Loi des grands nombres

I. <u>Inégalités de concentration</u>

1) Inégalité de Markov

Définition:

Une variable aléatoire est dite **positive ou nulle** dans un univers Ω , lorsque toutes les valeurs prises par celle-ci sont des réels positifs ou nuls.

Remarque:

Autrement dit, pour tout $\omega \in \Omega$, $X(\omega) \ge 0$.

Exemple:

La variable aléatoire donnant le nombre de faces numérotées 1 sur 10 lancers d'un dé est positive ou nulle.

Propriété (inégalité de Markov) :

Soit X une variable aléatoire réelle positive ou nulle d'espérance E(X) et a un nombre réel strictement positif. On a :

$$p(X \ge a) \le \frac{E(X)}{a}$$
.

Démonstration:

Notons $\mathscr{E} = X(\Omega) = \{x_1; x_2; \dots; x_n\}$ où les valeurs x_i positives sont rangées par ordre croissant.

1

Le nombre a étant positif, il existe un entier k tel que $x_{k-1} < a \le x_k$.

L'espérance de X est alors :

$$E(X) = x_1 \times p(X = x_1) + ... + x_{k-1} \times p(X = x_{k-1}) + x_k \times p(X = x_k) + ... + x_n \times p(X = x_n).$$

$$E(X) \geqslant x_k \times p(X = x_k) + \ldots + x_n \times p(X = x_n).$$

$$E(X) \geqslant a \times p(X = x_k) + ... + a \times p(X = x_n).$$

$$E(X) \geqslant a \times (p(X = x_k) + \ldots + p(X = x_n)).$$

$$E(X) \ge a \times p(X \ge a)$$
.

Ainsi puisque a > 0, on a $p(X \ge a) \le \frac{E(X)}{a}$.

Remarques:

- Ce résultat signifie que la probabilité que X prennent des valeurs plus grandes que *a* est d'autant plus petite que *a* est grande.
- Si $a \le E(X)$, l'inégalité de Markov n'a pas d'intérêt (on dit qu'elle est triviale).

En effet la borne $\frac{E(X)}{a}$ est alors supérieure à 1 et donc nécessairement, à la probabilité $p(X \ge a)$

• Cette inégalité permet de trouver un majorant mais pas forcément le plus petit possible.

Exemples:

• Soit X une variable aléatoire positive d'espérance 1.

D'après l'inégalité de Markov, on a $p(X \ge 100) \le 0.01$.

Autrement dit, une variable aléatoire positive donc l'espérance vaut 1 a au plus une chance sur 100 de dépasser 100.

• En 2015, le salaire brut mensuel moyen en France était de 2442 €.

On choisit un salarié au hasard et on note X la variable aléatoire donnant son salaire. Les salaires étant positifs ou nuls, on sait que X est une variable aléatoire positive ou nulle.

On peut donc appliquer l'inégalité de Markov sur un exemple :

$$p(X \ge 7326) \le \frac{2442}{7326} \text{ soit } p(X \ge 7326) \le \frac{1}{3}$$

2) Inégalité de Bienaymé-Tchebychev

Propriété:

Soit X une variable aléatoire et soit a un nombre réel strictement positif. On a :

$$p(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$$
.

Démonstration:

Comme a > 0, les inégalités $|X - E(X)| \ge a$ et $[X - E(X)]^2 \ge a^2$ sont équivalentes.

De plus la variable $(X - E(X))^2$ est positive ou nulle.

On applique donc l'inégalité de Markov à la variable $[X - E(X)]^2$ et au réel a^2 .

Ainsi
$$p([X - E(X)]^2 \ge a^2) \le \frac{E[X - E(X)]^2}{a^2}$$
. Or $E([X - E(X)]^2) = V(X)$ donc

$$p([X - E(X)]^2 \ge a^2) \le \frac{V(X)}{a^2}$$
 et on a bien $p(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$.

Remarques:

• La probabilité que les valeurs prises par X s'écartent d'au moins a de l'espérance E(X) est d'autant plus petite que a est grand.

2

• L'inégalité peut donc aussi s'écrire $p(X \notin]E(X) - a$; $E(X) + a[) \leqslant \frac{V(X)}{a^2}$.

• $1 - p(|X - E(X)| \ge a) = p(E(X) - a < X < E(X) + a)$. L'inégalité peut donc aussi s'écrire $p(|X - E(X)| < a) \ge 1 - \frac{V(X)}{a^2}$.

- On dit que [E(X) a; E(X) + a] est un intervalle de fluctuation de X.
- L'inégalité de Bienaymé-Tchebychev est loin d'être optimale.
 En réalité il est possible que la probabilité soit bien inférieure au majorant obtenu.

Exemples:

• Dans une usine, la variable aléatoire L donnant la largeur, en millimètres, d'une puce électronique prise au hasard a pour espérance E(L) = 12 et pour variance V(L) = 0.01.

Si la largeur d'une puce n'appartient pas à]11 ; 13[, c'est-à-dire $|L-12| \ge 1$, la puce n'est pas commercialisable.

La probabilité qu'une puce ne soit pas commercialisable est donc :

$$p(|L-12| \ge 1)$$
 comme V(L) = 0,01, on a $p(|L-12| \ge 1) \le \frac{0,01}{1^2}$ et donc :

$$p(|L-12| \ge 1) \le 0.01$$

• Si $a = 2\sigma(X)$ où $\sigma(X)$ est l'écart-type de la variable X, alors :

$$p(|X - E(X)| \ge 2 \sigma(X)) \le \frac{V(X)}{(2\sigma(X))^2} = \frac{1}{4}$$
.

Autrement dit, la probabilité qu'une variable aléatoire prenne des valeurs éloignées de son espérance d'au moins le double de son écart-type est inférieure à $\frac{1}{4} = 0,25$.

Propriété:

Soit X une variable aléatoire et soit a un nombre réel strictement positif. On a :

$$p(|X - E(X)| \ge a\sigma) \le \frac{1}{a^2}$$
.

Remarque:

On mesure la dispersion d'une variable aléatoire autour de son espérance en nombre d'écarts-type.

Exemples:

• Dans une usine, la variable aléatoire L donnant la largeur, en millimètres, d'une puce électronique prise au hasard a pour espérance E(L) = 12 et pour variance V(L) = 0.01.

Donc
$$\sigma(L) = \sqrt{0.01} = 0.1$$
.

Ainsi la probabilité que la largeur de la puce soit éloignée d'au moins k = 5 écarts-type, c'est-à-dire $5 \times 0,1 = 0,5$ de son espérance 12 est inférieure ou égale à $\frac{1}{5^2} = 0,04$.

Il y a, au maximum, 4 % de chance que la largeur d'une puce soit inférieure ou égale à 12 - 0.5 = 11.5 mm ou supérieure ou égale à 12 + 0.5 = 12.5 mm.

• Pour X qui suit la loi $\mathcal{B}(20; 0.45)$,

on a E(X) =
$$20 \times 0.45 = 9$$
 et $\sigma(X) = \sqrt{20 \times 0.45 \times 0.55} \approx 2.22$.

Donc, d'après la propriété précédente, on a $p(|X - 9| \ge 2\sigma) \le \frac{1}{2^2}$.

Donc $p(|X - 9| \ge 2\sigma) \le 0.25$.

D'autre part $p(|X - 9| \ge 2\sigma) = p(X \le 9 - 2\sigma) + p(X \ge 9 + 2\sigma) = p(X \le 4) + p(X \ge 14)$ puisque X ne prend que des valeurs entières.

On peut vérifier que $p(X \le 4) + p(X \ge 14)$ semble très inférieure à 0,25.

II. Loi des grands nombres

1) L'inégalité de concentration

Définition:

On considère *n* expériences aléatoire identiques et indépendantes.

On note X_1, X_2, \ldots, X_n les variables aléatoires associées à ces expériences, toutes de même loi.

On note
$$S_n = X_1 + X_2 + ... + X_n$$
 et $M_n = \frac{S_n}{n}$.

 M_n s'appelle la **moyenne empirique** des variables X_1, X_2, \ldots, X_n .

Propriété (inégalité de concentration) :

On considère une expérience aléatoire et X la variable aléatoire associée à cette expérience, d'espérance E(X) et de variance V(X).

On répète n fois cette expérience de manière indépendante.

On obtient un échantillon de taille n composé de n variables aléatoires X_1, X_2, \ldots, X_n .

Les variables $X_1, X_2, ..., X_n$ ont la même loi (elles ont donc même espérance E(X) et même variance V(X)).

Pour tout réel a > 0,

$$p(|\mathcal{M}_n - \mathcal{E}(X)| \ge a) \le \frac{V(X)}{na^2}$$
.

<u>Démonstration</u>:

D'après les propriétés sur l'espérance et la variance de la variable aléatoire moyenne d'un échantillon, on a $E(M_n) = E(X)$ et $V(M_n) = \frac{V(X)}{n}$.

En appliquant l'inégalité de Bienaymé-Tchebychev à M_n , on obtient :

$$p(|\mathbf{M}_n - \mathbf{E}(\mathbf{M}_n)| \ge a) \le \frac{V(M_n)}{a^2}$$
, c'est-à-dire $p(|\mathbf{M}_n - \mathbf{E}(\mathbf{X})| \ge a) \le \frac{V(X)}{n a^2}$.

Exemple:

On lance n fois un dé équilibré à 8 faces et on nomme X_i la variable aléatoire donnant le résultat du i-ème lancer. On admet que $E(X_i) = 4.5$ et $V(X_i) = 5.25$ pour tout entier i entre 1 et n.

Les lancers étant indépendants, (X_1, X_2, \dots, X_n) est un échantillon de variables aléatoires d'espérance E(X) = 4,5 et V(X) = 5,25 et de moyenne $M_n = \frac{X_1 + X_2 + \dots + X_n}{n}$.

D'après l'inégalité de concentration pour n = 100 et a = 0.5, on a :

$$p(|\mathcal{M}_{100} - 4,5| \ge 0,5) \le \frac{5,25}{100 \times 0,5^2} \text{ soit } p(|\mathcal{M}_{100} - 4,5| \ge 0,5) \le 0,21.$$

La probabilité que l'écart entre M_{100} (la moyenne des 100 premiers résultats) et 4,5 soit supérieure ou égale à 0,5 est inférieure ou égale à 0,21.

2) Loi faible des grands nombres

Propriété:

Soient $(X_1; X_2; ...; X_n)$ un échantillon de variables aléatoires suivant la même loi et ayant pour espérance E(X) et $M_n = \frac{X_1 + X_2 + ... + X_n}{n}$ la variable aléatoire moyenne de cet échantillon.

Pour tout réel strictement positif a fixé,

$$\lim_{n\to\infty} p(|M_n-E(X)| \ge a) = 0$$

Démonstration:

On applique l'inégalité de concentration à la variable aléatoire M_n .

$$0 \leqslant p \big(\big| M_n - E(X) \big| \geqslant a \big) \leqslant \frac{V(X)}{n \, a^2} \quad \text{et puisque} \quad \lim_{n \to \infty} \frac{1}{n} = 0 \quad \text{, on a } \lim_{n \to \infty} \frac{V(X)}{n \, a^2} = 0 \quad \text{donc d'après le théorème des gendarmes,} \quad \lim_{n \to \infty} p \big(\big| M_n - E(X) \big| \geqslant a \big) = 0 \quad .$$

Remarque:

On dit que M_n converge en probabilité vers E(X) lorsque n tend vers $+\infty$.

Exemple:

On lance n fois un dé équilibré à 8 faces et on nomme X_i la variable aléatoire donnant le résultat du i-ème lancer. On admet que $E(X_i) = 4.5$ et $V(X_i) = 5.25$ pour tout entier i entre 1 et n.

Les lancers étant indépendants, (X_1, X_2, \dots, X_n) est un échantillon de variables aléatoires d'espérance E(X) = 4,5 et V(X) = 5,25 et de moyenne $M_n = \frac{X_1 + X_2 + \dots + X_n}{n}$.

Pour a = 0,1, d'après la loi des grands nombres, $p(|M_n - 4,5| \ge 0,1)$, que l'on peut également écrire $p(M_n \notin]4,4$; 4,6[), tend vers 0 lorsque la taille de l'échantillon tend vers $+\infty$.

On en déduit que $p(M_n \in]4,4$; 4,6[) tend vers 1 lorsque la taille de l'échantillon tend vers $+\infty$. Autrement dit, si l'on fait un nombre suffisamment grand de lancers, on peut rendre l'événement « la moyenne de l'échantillon est dans]4,4; 4,6[» aussi probable qu'on le souhaite en prenant n suffisamment grand.