Notes du Cours : MATH2308P

Cours assuré par Sébastien GODILLON

Fiche 译正X rédigé par Corentin 邱天意 Semestre 2024-2025-2

Table des matières

Ι	Espaces vectoriels normés	3
1	Cours 18 février : Normes et distances	3

Première partie

Espaces vectoriels normés

On commence notre travail avec les espaces vectoriels normés.

Dans tout ce chapitre, E désigne un \mathbb{K} -espace vectoriel, où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et on note 0_E le vecteur nul de E.

1 Cours 18 février : Normes et distances

Définition 1.1

Une **norme** sur E est une application de E dans \mathbb{R} . Elle a pour notation N, et elle vérifie les propriétés suivantes :

$$-- \forall x \in E, N(x) = 0 \Rightarrow x = 0_E$$
 (séparation)

$$-- \forall (\lambda, x) \in \mathbb{K} \times E, N(\lambda x) = |\lambda| N(x)$$
 (homogénéité absolue)

$$-- \forall (x,y) \in E^2, \quad N(x+y) \le N(x) + N(y)$$
 (sous-additivité)

Dans le deuxième point, $|\lambda|$ peut représenter la valeur absolue(en \mathbb{R}) ou le module(en \mathbb{C}), et ça dépend de l'ensemble dans lequel on se place.

Définition 1.2

Si N est une norme sur E, alors on dit que (E, N) est un **espace vectoriel normé**.

Proposition 1.1

Soit N une norme sur E, alors on a:

$$-N(0_E)=0$$
 (réciproque de la séparation)

$$-- \forall x \in E, \quad N(x) \ge 0$$
 (positivité)

$$("continuité") - \forall (x,y) \in E^2, \quad |N(x) - N(y)| \le N(x-y)$$

Petit remarque 1 : la première nous donne l'équivalence dans la propriété de séparation :

$$\forall x \in E, N(x) = 0 \Longleftrightarrow x = 0_E$$

Petit remarque 2 : dans la troisième, |N(x)-N(y)| désigne la valeur absolue puisque la norme est une application dans $\mathbb R$.

Preuve : Soient $(x, y) \in E^2$.

- $N(0_E) = N(0.x) = |0|N(x) = 0$, donc on a : $N(0_E) = 0$.

Remarque : ne mélangez pas 0_E et 0.

— D'après la propriété qu'on vient de démontrer, on a :

$$0 = N(0_E) = N(x - x) = N(x + (-x))$$

De plus, par sous-additivité, on a :

$$N(x + (-x)) \le N(x) + N(-x) = N(x) + |-1|N(x) = 2N(x)$$

On obtient $N(x) \geq 0$ en mettent les deux relations ensemble.

— Rappel: $|x| \ge k \iff -k \le x \le k$.

Donc il faut démontrer les inégalités à gauche et à droite.

- $N(x) = N(x y + y) \le N(x y) + N(y)$ (par sous-additivité), et on trouve la relation $N(x) N(y) \le N(x y)$.
- De même façon on trouve l'autre, en utilisant N(y) au début : $-N(x-y) \le N(x) N(y)$.

Ces deux inégalités nous donnent le résultat : $\forall (x,y) \in E^2$, $|N(x)-N(y)| \leq N(x-y)$.

Remarque 1.1

Dans la troisième on reconnaît une propriété de continuité. Si x est proche de y ("tend vers"), alors x-y est proche du vecteur nul. Donc N(x,y) devient proche de 0, |N(x)-N(y)| aussi(par séparation). Donc N(x) est proche de N(y).

Exemple 1.1

La valeur absolue de $\mathbb R$

On dit que l'application $N: x \mapsto |x|$ est une norme sur \mathbb{R} , parce qu'elle vérifie les conditions :

- $-\forall x \in \mathbb{R}, |x| < 0 \iff x = 0.$
- $-- \forall (\lambda, x) \in \mathbb{R}^2, |\lambda x| = |\lambda||x|.$
- $\forall (x,y) \in \mathbb{R}^2, |x+y| \leq |x| + |y|$ (l'inégalité triangulaire).

Le module de $\mathbb C$

De même, $N: x \mapsto |x|$ est une norme sur \mathbb{C} .

On peut remarquer que $(\mathbb{K}, |.|)$ est un espace vectoriel normé.

Remarque 1.2

Les normes sont les objets qui généralisent la valeur absolue et le module pour les espaces vectoriels plus grands que \mathbb{K} .

Rappel 1.1

Pour qu'on puisse commencer à étudier les distances, on rappelle que :

- La valeur absolue du réel a représent la distance entre 0 et a sur la droite réelle.
- Même chose pour le module pour les complexes, mais cette fois on trouve la distance sur le plan complexe.
- Plus généralement |a-b| représent la distance entre a et b.

Définition 1.3		
_		
_		
_		
Définition 1.4		
Definition 1.4		
Propriété 1.1		
_		
Remarque 1.3		