HW3

2025-04-25

Question 3

Brain weight (g) vs Body weight (kg)

 \mathbf{b}

```
par(mfrow = c(1, 2))
hist(dat$brain,
    main = "Brain",
    xlab = "brain",
    breaks = 25)

hist(dat$body,
    main = "Body",
    xlab = "body",
    breaks = 25)
```



```
par(mfrow = c(1, 1))
```

It seems preferable to apply a log transformation.

```
par(mfrow = c(1, 2))
log_brain = log(dat$brain + 1)
log_body = log(dat$body + 1)

hist(log_brain,
    main = "log(Brain + 1)",
    xlab = "brain")

hist(log_body,
    main = "log(Body + 1)",
    xlab = "body")
```

log(Brain + 1)

log(Body + 1)


```
par(mfrow = c(1, 1))
```

 \mathbf{c}

log(Brain [g] + 1) vs log(Body [kg] + 1)

The plot after the log transformation appears approximately linear.

 \mathbf{d}

```
log_lm = lm(log_brain ~ log_body)
coef(log_lm)
```

```
## (Intercept) log_body
## 2.4854049 0.4889349
```

The regression coefficient for log_body is 0.489, indicating a positive linear relationship between log_body and log_brain.

 \mathbf{e}

Residuals vs log(Body weight + 1)

Residuals vs Body weight


```
par(mfrow = c(1, 1))
```

The transformed model fits, while the untransformed model does not, due to residual concentration below zero.

 \mathbf{f}

log(Brain + 1) vs log(Body + 1) with Regression Line

