Yancong Lin

http://yanconglin.github.io/

Postdoc, Computer Vision Lab, Delft University of Technology, The Netherlands Office: $5.E.040 \star Building 28 \star Van Mourik Broekmanweg 6 \star 2628 XE Delft \star the Netherlands Phone: (+31)6.5555.4608 \star E-mail: y.lin-1@tudelft.nl$

SUMMARY	
	ative, hands-on researcher on 3D computer vision.
,	-wiring deep learning with geometric inductive priors.
EXPERIENCE	
1/2022 - 9/2022	Postdoc, Delft University of Technology, The Netherlands
EDUCATION	
9/2017 - 4/2022	PhD, Delft University of Technology, The Netherlands
Dissertation:	Data-efficient learning of geometric structures from single-view images
9/2014 - 6/2017	MEng in Computer Science, Tianjin Univ, China
9/2010 - 6/2014	BSc in Physics, Southwest Jiaotong Univ, China
RESEARCH	
1/2022 - 9/2022	Vision for Industrial Inspection - aircraft engines
,	Transfer learning from synthetic data to the real-world;
	3D reconstruction from a single video using NeRF.
3/2021 - 9/2021	3D symmetry plane detection from single-view images
	Incorporated 3D mirror geometry into CNNs;
	Reduced dependency on big data and achieved real-time inference.
3/2020 - 3/2021	Geometric priors for deep vanishing point detection
	Presented a differentiable mapping from image plane to spherical point coulds:
	Proposed a learning-based detector robust to domain shift (synthetic - real);
. / /	Gained experience in Graph-CNNs on point cloud data.
9/2017 - 3/2020	Deep Hough-Transform line priors
	Proposed a stand-alone Hough Transform module for end2end learning;
	Enhanced the performance of CNNs in a small-data regime;
	Extended Hough Transform to semi-supervised lane detection.
9/2015 - 1/2016	Engineering: Multi-view 3D video capture system
	Implemented real-time 3D display (16 cameras, 30 FPS, 1920×1080).

PUBLICATIONS

- 1. Deep vanishing point detection: Geometric priors make dataset variations vanish. Y. Lin, R. Wiersma, S. Pintea, K. Hildebrandt, E. Eisemann and J. C. van Gemert. CVPR 2022.
- 2. Deep Hough-Transform line priors. Y. Lin, S. Pintea, and J. C. van Gemert. ECCV 2020.
- 3. Investigating transformers in the decomposition of polygonal shapes as point collections. A. Alfieri, Y. Lin, and J. C. van Gemert. ICCV-workshop 2021, Best Student Paper.
- 4. Semi-supervised lane detection with deep Hough Transform. Y. Lin, S. Pintea, and J. C. van Gemert. ICIP 2021.
- 5. Data-efficient learning for 3D mirror symmetry detection. Y. Lin, S. Pintea, and J. C. van Gemert. Technical report, 2021.

ACADEMIC ACTIVITIES]
Teaching Assistan	$oldsymbol{\dot{t}}$
2019 - 2021	Seminar Computer Vision by Deep Learning (CS4245)
Reviewing	
2020 - Now	CVPR/ICCV/ECCV, Outstanding reviewer at CVPR'22
Workshops	
2020 - Now	Visual Inductive Priors for Data-Efficient Deep Learning Workshop
${f Awards}$	
2016	National Scholarship, Ministry of Education, China
Supervision (Msc)	
Chengming Feng	Synthetic pretraining for object detection, ongoing
Andrea Alfieri	On the decomposition of visual sets using Transformers, 2020
Kang Lang	Vertex-voting-based polygonal object detection, 2019
Skills]
Programming	Python, C++, CUDA (implemented Conv2d from scratch in PyTorch)
Social	Editor/journalist for school newspaper
Interests]
Fitness, Formula 1	, Premier League, NBA
REFERENCES]
Dr. Jan van Geme	ct Computer Vision Lab, TUDelft. J.C.vanGemert@tudelft.nl
Dr. Silvia-Laura P	•

 $\mathrm{May}\ 22,\ 2022$