In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
```

In [2]:

```
ds=load_boston()
```

```
In [3]:
```

ds

```
Out[3]:
```

```
{'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.96
90e+02,
        4.9800e+00],
        [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
        9.1400e+00],
        [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
        4.0300e+00],
        [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
        5.6400e+00],
        [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
        6.4800e+00],
        [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
         7.8800e+00]]),
 'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 1
8.9, 15.,
        18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
       15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
       13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
        21.2, 19.3, 20., 16.6, 14.4, 19.4, 19.7, 20.5, 25., 23.4, 18.9,
        35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5,
       19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
        20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
        23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
        33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
       21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
       20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,
       23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
       15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
       17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
        25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
       23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50.
        32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
        34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4,
        20., 21.7, 19.3, 22.4, 28.1, 23.7, 25., 23.3, 28.7, 21.5, 23.,
        26.7, 21.7, 27.5, 30.1, 44.8, 50., 37.6, 31.6, 46.7, 31.5, 24.3,
       31.7, 41.7, 48.3, 29., 24., 25.1, 31.5, 23.7, 23.3, 22., 20.1,
       22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
       42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
       36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
        32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
        20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
        20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
       22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
        21., 23.8, 23.1, 20.4, 18.5, 25., 24.6, 23., 22.2, 19.3, 22.6,
       19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7,
       32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
       18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,
       16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
       13.8, 15., 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
        7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2,
                                                  9.7, 13.8, 12.7, 13.1,
              8.5, 5., 6.3, 5.6, 7.2, 12.1,
                                                  8.3, 8.5,
                                                             5., 11.9,
        27.9, 17.2, 27.5, 15., 17.2, 17.9, 16.3,
                                                  7., 7.2,
                                                             7.5, 10.4,
        8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7,
                                                  8.3, 10.2, 10.9, 11.,
        9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4,
                                                  9.6, 8.7, 8.4, 12.8,
```

```
10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,
        15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20., 16.4, 17.7,
        19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
       29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
       20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
       23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.
9]),
 'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AG
E', 'DIS', 'RAD',
        'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'),
 'DESCR': ".. _boston_dataset:\n\nBoston house prices dataset\n------
    -----\n\n**Data Set Characteristics:** \n\n
                                                           :Number of Inst
ances: 506 \n\n
                  :Number of Attributes: 13 numeric/categorical predictiv
e. Median Value (attribute 14) is usually the target.\n\n
                                                             :Attribute In
formation (in order):\n
                               - CRIM
                                         per capita crime rate by town\n
- ZN
           proportion of residential land zoned for lots over 25,000 sq.f.
t.\n
                       proportion of non-retail business acres per town\n
           - INDUS
- CHAS
           Charles River dummy variable (= 1 if tract bounds river; 0 othe
rwise)\n
                NOX
                          nitric oxides concentration (parts per 10 milli
             - RM
                        average number of rooms per dwelling\n
on)\n
      proportion of owner-occupied units built prior to 1940\n
Ε
                                                                       - D
IS
       weighted distances to five Boston employment centres\n
                                                                      - RA
       index of accessibility to radial highways\n
                                                          - TAX
                                                                     full-
value property-tax rate per $10,000\n
                                             - PTRATIO pupil-teacher rati
o by town\n
                   - B
                              1000(Bk - 0.63)^2 where Bk is the proportion
of blacks by town\n
                           - LSTAT
                                     \% lower status of the population\n
- MEDV
          Median value of owner-occupied homes in $1000's\n\n
                             :Creator: Harrison, D. and Rubinfeld, D.L.\n
Attribute Values: None\n\n
\nThis is a copy of UCI ML housing dataset.\nhttps://archive.ics.uci.edu/m
l/machine-learning-databases/housing/\n\nThis dataset was taken from the
StatLib library which is maintained at Carnegie Mellon University.\n\nThe
Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\npric
es and the demand for clean air', J. Environ. Economics & Management,\nvo
1.5, 81-102, 1978.
                    Used in Belsley, Kuh & Welsch, 'Regression diagnostic
s\n...', Wiley, 1980.
                       N.B. Various transformations are used in the table
on\npages 244-261 of the latter.\n\nThe Boston house-price data has been u
sed in many machine learning papers that address regression\nproblems.
       \n.. topic:: References\n\n
                                   - Belsley, Kuh & Welsch, 'Regression
diagnostics: Identifying Influential Data and Sources of Collinearity', Wi
ley, 1980. 244-261.\n - Quinlan,R. (1993). Combining Instance-Based and
Model-Based Learning. In Proceedings on the Tenth International Conference
of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan
Kaufmann.\n",
 'filename': 'C:\\Users\\fambareen\\Anaconda3\\lib\\site-packages\\sklearn
\\datasets\\data\\boston_house_prices.csv'}
```

In []:

In [4]:

ds 1 = pd.DataFrame(ds.data)

In [41]:

ds**_1**

Out[41]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.67
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.08
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.64
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.48
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.88

506 rows × 13 columns

In [4]:

```
ds_1.head()
```

Out[4]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [43]:

```
ds_1.keys()
```

Out[43]:

RangeIndex(start=0, stop=13, step=1)

In [31]:

```
print(ds_1.keys())
```

RangeIndex(start=0, stop=13, step=1)

```
In [5]:
```

```
ds_1.columns= ds.feature_names
```

In [45]:

```
ds_1.head()
```

Out[45]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	;
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	:
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	!
4													•

In [6]:

```
ds_1["Price"]=ds.target
```

In [47]:

```
ds_1.head()
```

Out[47]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	,
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	!
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
4													•

In [7]:

```
X=ds_1.iloc[:, :-1]
y=ds_1.iloc[:, -1]
```

In [8]:

Χ

Out[8]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90
												•••
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90

506 rows × 13 columns

```
•
```

In [9]:

у

Out[9]:

```
24.0
0
       21.6
1
2
       34.7
3
       33.4
       36.2
       . . .
501
       22.4
       20.6
502
503
       23.9
```

Name: Price, Length: 506, dtype: float64

In [49]:

504

505

#Linear Regression

22.0

11.9

from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression

```
In [50]:
lr = LinearRegression()
In [51]:
#Mean Square Error
mse=cross_val_score(lr, X,y, scoring='neg_mean_squared_error', cv=5)
In [52]:
mse
Out[52]:
array([-12.46030057, -26.04862111, -33.07413798, -80.76237112,
       -33.31360656])
In [14]:
mean mse= np.mean(mse)
In [15]:
mean_mse
Out[15]:
-37.13180746769922
In [16]:
#Ridge Regression
from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV
r=Ridge()
In [17]:
parameters={'alpha':[1e-15, 1e-10, 1e-8, 1e-3, 1e-2, 1,5,10,20,30,35,40,45,50,55,100]}
ridge_regressor=GridSearchCV(r,parameters,scoring='neg_mean_squared_error',cv=5)
In [18]:
ridge_regressor.fit(X,y)
Out[18]:
GridSearchCV(cv=5, estimator=Ridge(),
             param_grid={'alpha': [1e-15, 1e-10, 1e-08, 0.001, 0.01, 1, 5, 1
0,
                                    20, 30, 35, 40, 45, 50, 55, 100]},
             scoring='neg_mean_squared_error')
```

```
In [19]:
ridge_regressor.best_params_
Out[19]:
{'alpha': 100}
In [20]:
ridge_regressor.best_score_
Out[20]:
-29.905701947540372
In [21]:
#Lasso Regression
from sklearn.linear_model import Lasso
from sklearn.model_selection import GridSearchCV
ls =Lasso()
In [25]:
parameters ={'alpha' :[1e-15, 1e-10, 1e-8, 1e-3, 1e-2, 1,5,10,20,30,35,40,45,50,55,100]}
ls.fit(X,y)
Out[25]:
Lasso()
In [39]:
coef = print(ls.sparse_coef_)
  (0, 0)
                -0.06343729004514066
  (0, 1)
                0.04916466550764739
  (0, 5)
                0.9498106999845143
                0.020909514944737546
  (0, 6)
  (0, 7)
                -0.6687900023707882
  (0, 8)
                0.26420643097453383
  (0, 9)
                -0.01521158979163473
  (0, 10)
                -0.7229663585199505
  (0, 11)
                0.00824703348549421
  (0, 12)
                -0.7611145367697878
In [31]:
print(ls.score)
<bound method RegressorMixin.score of Lasso()>
```

In [66]:

```
plt = sns.distplot(y_test-predict_lasso)
plt.show()
```

AttributeError: 'AxesSubplot' object has no attribute 'show'

In [67]:

import seaborn as sns
sns.distplot(y_test-predict_Ridge)

C:\Users\fambareen\Anaconda3\lib\site-packages\seaborn\distributions.py:255
1: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-l evel function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[67]:

<AxesSubplot:xlabel='Price', ylabel='Density'>

In []: