

Innate Immunity

Innate immunity, also called non-specific immunity, is a form of immunity that most animals have. It consists of two "lines of defence": the first being barriers that prevent pathogens from entering the body's tissues, and the second being a general immune response that is triggered if the first line of defence is breached.

	from pathogens involves preventing the pathogens from entering the body's arious physical and chemical barriers.
Match the barrier to the r	nechanism in the table below.
Barrier	Mechanism
	Acts as a physical barrier to prevent pathogens from entering the body from outside. Also secretes sebum: an acidic, oily substance that inhibits bacterial growth.
	Line the inside walls of various organs. Secrete mucus: a sticky substance that traps pathogens.
	Flushes potential pathogens out of the eyes.
	Traps and breaks down potential pathogens in the mouth.
	Extremely low pH (between 1 and 2 in humans) solution which kills most pathogens.
mucous membranes sa	aliva (tears) (skin) (stomach acid)

Part B First line of defence: lysozyme
Lysozyme is an enzyme found in mucus, saliva, and tears. It breaks down the glycosidic bonds in peptidoglycan (also called murein): a polymer consisting of long polysaccharide chains linked together by short peptide chains.
Which type of pathogen will be destroyed by lysozyme?
protists
bacteria
fungi
viruses

Part C

Second line of defence: inflammation

The "second line of defence" in innate immunity refers to what happens to pathogens that manage to break through the first line of defence i.e. enter the body's tissues. In the case of pathogens that break through the skin, this involves a response called "inflammation" (also referred to as an "inflammatory response"), which is characterised by the area of skin becoming red, hot, swollen, and painful.

Fill in the blanks below to explain how this response works.

Damage of a particular tissue activates (a type of white blo	od cell) within that
tissue. This causes these cells to release two types of chemicals: cytokines and hista	,
are chemicals that cause nearby blood vessels to	, thus
	and heat. The increase
increasing blood flow to this region. This is what causes the)
in blood flow ensures that more white blood cells can reach the site of damage. The	increase in temperature
inhibits pathogen reproduction (as the temperature is raised above the optimum tem	perature for most
pathogens). These chemicals also make the blood capillaries more leaky, allowing pl	asma (and the white
blood cells within it) to move out of the capillaries and into the damaged tissue. The	white blood cells can
then destroy the pathogens inside the tissues. The leakage of plasma into the tissues	is what causes the
are chemicals that attract (a type	of white blood cell) to
the site of damage. These are cells that engulf and destroy pathogens. There are two	main classes of this
cell type: macrophages and neutrophils.	
Items:	
redness Histamines Cytokines mast cells constrict phagocytes swelling	dilate

Created for isaacphysics.org by Lewis Thomson

enzymes from the lysosome digest the pathogen

a lysosome fuses with the phagosome to form a phagolysosome

the phagocyte membrane forms an infolding

Pathogen Phagocytosis

An important part of the innate immune response is the phagocytosis of pathogens by white blood cells called phagocytes. There are two main types of phagocytes involved in the innate immune response: macrophages and neutrophils.

Part A Phagocytosis process Drag the items below into the correct order on the right to show how pathogens are phagocytosed as part of the innate immune response. Available items phagocytes are attracted to the area containing pathogens by chemicals produced by mast cells and/or by the pathogens themselves the pathogen is engulfed in a vesicle called a phagosome phagocytes bind to pathogens and recognise them as non-self

Part B Non-self recognition
It is important that macrophages and neutrophils only phagocytose pathogens and not the body's own cells. To ensure this, these cells have membrane receptors for types of molecules that are commonly found on the surface of bacterial cells but not on the surface of the organism's own cells. Phagocytosis only occurs if these receptors bind to these molecules.
Which of the following types of molecules would you expect macrophages and neutrophils to have membrane receptors for? Select all that apply.
peptidoglycan/murein
lipopolysaccharides
proteins
phospholipids
carbohydrates
sterols

Neutrophils, as well as destroying pathogens by phagocytosis, also relea	se antimicro	bial enzymes from the
vesicles into the surrounding tissue by the process of	(some	etimes called
'degranulation" in the case of immune cells).		
Macrophages, as well as destroying pathogens by phagocytosis as part	of the	
mmune response, also play an important role in triggering the		immune response.
After digestive enzymes have broken down a pathogen into smaller mole	ecules, major	histocompatibility
complex (MHC) II molecules inside the cell will bind to these pathogen m	olecules, and	then move to (and
ntegrate within) the macrophage cell membrane, "presenting" the patho	gen molecule	es on the outside of th
membrane. If a matching membrane receptor of a	cell bind:	s to this pathogen
molecule, an active/specific immune response is triggered. Macrophages	s are therefor	re referred to (along
with a few other cell types) as professional, as	the pathoger	n molecules that they
oresent to other immune cells can act as		
tems:		
adaptive/specific antigen-presenting cells (APCs) exocytosis memory	B antigens)
(undgerr presenting eets (Ar es)	D (dittigetis)
(natural killer (NK) cells) (helper T) (antibodies) (innate/non-specific) (en	docytosis	

Adaptive Immunity

Adaptive immunity, also called specific immunity or acquired immunity, is a form of immunity that is unique to vertebrates. Unlike innate immunity, which involves general defence mechanisms against whole types of organisms (e.g. bacteria), adaptive immunity involves a specific response for each particular species/strain of pathogen.

Part A Cell-mediated immunity
Cell-mediated immunity refers to the destruction of pathogens that are the body's
cells. This response is carried out by a group of lymphocytes called
After a professional antigen-presenting cell (APC) has phagocytosed a pathogen, it migrates through the
lymphatic system to the nearest lymph node. in the lymph node with a matching
membrane receptor to the antigen will bind to the APC and become activated. This activation will cause
these cells to release : molecules that will stimulate other activated lymphocytes to
divide and differentiate. The cell itself will also divide and some cells will differentiate into memory cells:
long-lived cells that enable a more rapid response in the case of a future infection by the same pathogen.
with a matching membrane receptor to the pathogen's molecules will bind to infected cells (because infected cells display pathogen's molecules on their cell membranes) and become activated. These activated immune cells will then destroy the infected cells by releasing perforin: a protein that destroys the cell membrane and thus causes cell death. Upon stimulation (see above), these cells will divide and some will differentiate into memory cells.
outside of memory B cells Helper T cells antibodies Cytotoxic T cells (killer T cells) interleukins B cells (plasma cells) T cells inside

Humoral immunity refers to the destruction of pathogens that are the body's cells. This response is carried out by a group of lymphocytes called These cells have membrane receptors (also called membrane-bound), and every cell has a different type. When one of these cells binds to an antigen that matches its receptor, the cell becomes activated. It will then divide and the daughter cells will differentiate into two main types of cells. The first type are the , which will produce and secrete large numbers of These molecules, when bound to the pathogen, have various functions. They prevent the pathogen from entering the body's cells, and they may also act as anti-toxins by binding to toxins produced by the pathogen, thus making them harmless. They can also act as causing the pathogens to clump together in one place (thus preventing them from : molecules that phagocytes will recognise and bind spreading). Finally, they act as to, thus ensuring that the pathogens are destroyed by phagocytosis. The second type are the memory cells: long-lived cells that enable a more rapid response in the case of a future infection by the same pathogen. Items: B cells cytotoxic T cells (killer T cells) inside interleukins T cells outside agglutinins plasma cells (effector cells) helper T cells antibodies opsonins

Part B

Humoral immunity

atch the type of adaptive immunity to the description in the table below.	
Description	Type of adaptive immunity
carried out by B lymphocytes	
carried out by T lymphocytes	
involves antibodies binding to pathogens outside of cells (e.g. in blood plasma)	
involves immune cells killing infected cells (thus destroying pathogens inside those cells)	
cell-mediated (humoral)	

Immune Cell Types

The immune system involves many different types of leukocytes (white blood cells), and each type has its own specific function.

Part A Cell functions

	Match the	cell type	to the	function in	the	table below.
--	-----------	-----------	--------	-------------	-----	--------------

phagocytoses pathogens and presents their antigens to helper T cells to trigger a specific/adaptive immune response binds to specific antigen-MHC II complexes on the membranes of profession APCs and triggers a specific/adaptive immune response binds to specific antigen-MHC I complexes on the membranes of infected of and destroys those cells short-lived cell type that rapidly secretes large numbers of a specific antibination into the bloodstream long-lived cell type responsible for secondary immune response to a specific antibination of the pathogen ms: cytotoxic T cell (killer T cell) effector B cell (plasma cell) helper T cell macrophage mast cell)	Cell type	Function
phagocytoses pathogens and presents their antigens to helper T cells to trigger a specific/adaptive immune response binds to specific antigen-MHC II complexes on the membranes of profession APCs and triggers a specific/adaptive immune response binds to specific antigen-MHC I complexes on the membranes of infected or and destroys those cells short-lived cell type that rapidly secretes large numbers of a specific antibination into the bloodstream long-lived cell type responsible for secondary immune response to a specific antibination of the pathogen ms: cytotoxic T cell (killer T cell) effector B cell (plasma cell) helper T cell macrophage mast cell)		triggers inflammation response by releasing histamines and cytokines
trigger a specific/adaptive immune response binds to specific antigen-MHC II complexes on the membranes of profession APCs and triggers a specific/adaptive immune response binds to specific antigen-MHC I complexes on the membranes of infected of and destroys those cells short-lived cell type that rapidly secretes large numbers of a specific antibilinto the bloodstream long-lived cell type responsible for secondary immune response to a specific pathogen ems: cytotoxic T cell (killer T cell) effector B cell (plasma cell) helper T cell macrophage mast cell		destroys pathogens by phagocytosis and by exocytosis of antimicrobial compounds
APCs and triggers a specific/adaptive immune response binds to specific antigen-MHC I complexes on the membranes of infected of and destroys those cells short-lived cell type that rapidly secretes large numbers of a specific antibinito the bloodstream long-lived cell type responsible for secondary immune response to a specific pathogen ms: cytotoxic T cell (killer T cell) effector B cell (plasma cell) helper T cell macrophage mast cell		phagocytoses pathogens and presents their antigens to helper T cells to trigger a specific/adaptive immune response
and destroys those cells short-lived cell type that rapidly secretes large numbers of a specific antibinto the bloodstream long-lived cell type responsible for secondary immune response to a specific antibination of the bloodstream pathogen ms: cytotoxic T cell (killer T cell)		binds to specific antigen-MHC II complexes on the membranes of professional APCs and triggers a specific/adaptive immune response
into the bloodstream long-lived cell type responsible for secondary immune response to a spect pathogen ms: cytotoxic T cell (killer T cell)		binds to specific antigen-MHC I complexes on the membranes of infected cell and destroys those cells
ms: cytotoxic T cell (killer T cell)		short-lived cell type that rapidly secretes large numbers of a specific antibod into the bloodstream
cytotoxic T cell (killer T cell)		long-lived cell type responsible for secondary immune response to a specific pathogen
memory B cell neutrophil	cytotoxic T cell (killer T ce	
momer, p com moduleprint	memory B cell (neutrop	hil

,	type of immunity each cell t	ype carries out.
Cell type		Type of immunity
cytotoxic T cell (killer	T cell)	
effector B cell (plasm	a cell)	
macrophage		
mast cell		
memory B cell		
neutrophil		

•	rtes (white blood cells) can be categorised into different types. One of these groups is called cytes. These are responsible for the specific (adaptive) immune response, and include B cells and T
Vhich c	of the following statements about lymphocytes are correct? Select all that apply.
	B cells and T cells are both produced in the bone marrow
	B cells mature in the bone marrow whereas T cells mature in the thymus
	Lymphocyte maturation involves genetic rearrangement to produce a range of receptors/antibodies, and selection against receptors/antibodies that will bind to the body's own proteins/cells
	Lymphocyte activation involves the phagocytosis of pathogens by lymphocytes
	Lymphocyte maturation involves secreting antibodies (effector B cells/plasma cells) and killing infected cells (cytotoxic T cells)
	B cells are produced in the bone marrow whereas T cells are produced in the thymus
	Lymphocyte activation involves binding to an antigen and then proliferating and differentiating into memory cell and effector cells

Antibody Structure and Function

An antibody is a large protein consisting of four polypeptide chains: two "heavy chains" and two "light chains". Each antibody is symmetrical (i.e. the two heavy chains are identical to each other and the two light chains are identical to each other). Each antibody has a constant region (which is the same across all antibodies) and a variable region (which is unique to the antibodies produced by that particular cell).

Figure 1: Antibody structure. Four parts of the left side of the antibody are labelled (A-D).

Part A Heavy chains
Which letter(s) in Figure 1 represent(s) a heavy chain?
В
С
Part B Light chains
Which letter(s) in Figure 1 represent(s) a light chain?
В
С

Part C Constant region
Which letter(s) in Figure 1 represent(s) the constant region?
В
С
D D
Part D Variable region
Which letter(s) in Figure 1 represent(s) the variable region?
В
С
D D
Part E Cell type
What type of cell secretes antibodies?

Part F Functions
Which of the following are functions of antibodies? Select all that apply.
stimulate other activated lymphocytes to divide and differentiate
bind to pathogens and prevent them from entering the body's cells
cause dilation of nearby blood vessels
cause lysis of the membranes of cells infected with pathogens
clump pathogens together, thus preventing them from spreading
increase permeability of blood capillary walls
bind to toxins produced by pathogens, thus making them harmless
tag pathogens for phagocytosis by phagocytes
Created for isaacphysics org by Lewis Thomson

Human Antibody Diversity

An antibody is a protein composed of two identical heavy chains and two identical light chains. In humans, there is one gene that codes for antibody heavy chains, and two genes that code for antibody light chains. Each of these genes contain many coding segments, as shown in the table below. The heavy chain gene contains variable (V), diversity (D), and joining (J) segments, whereas the light chain genes only contain variable (V) and joining (J) segments.

Gene	Variable (V) segments	Diversity (D) segments	Joining (J) segments
Heavy chain	65	27	6
Light chain κ	40		5
Light chain λ	30		4

Within each gene, each coding segment produces a different protein sequence.

During B cell maturation in the bone marrow, these genes undergo a process called somatic recombination (also called V(D)J recombination) which involves randomly removing different gene segments until only 1 segment of each type remains. These remaining segments are recombined to form one continuous DNA sequence.

i.e.

- a heavy chain gene will only contain one V segment, one D segment, and one J segment after recombination
- a light chain gene will only contain one V segment and one J segment after recombination

Because this process is random, every mature B cell will have a unique DNA sequence for each of these three genes.

Each of these genes also contain a constant region which does not undergo somatic recombination. The recombined VDJ/VJ region will be translated to produce the variable region of the heavy chain/light chain protein, and the constant region will be translated to produce the constant region of the heavy chain/light chain protein.

In a mature B cell, an antibody is formed by combining two identical copies of the heavy chain protein with two identical copies of a light chain protein (**either** the light chain κ protein **or** the light chain λ protein).

The same process also occurs in T cells to produce a wide range of possible T cell receptors.

Part A Heavy chain possibilities
During maturation, how many possible heavy chain DNA sequences could be produced from the initial gene in a human B cell?
Part B Light chain κ possibilities
During maturation, how many possible light chain κ DNA sequences could be produced from the initial gene in a human B cell?
Part C Light chain λ possibilities
During maturation, how many possible light chain λ DNA sequences could be produced from the initial gene in a human B cell?

How many different antibodies can a human produce (in terms of variable regions), based on this process of V(D)J recombination? Give your answer to 2 significant figures.
Assume that both copies (maternal and paternal) of each gene are identical.
Created for isaacphysics.org by Lewis Thomson

Part D

Total antibody possibilities

Influenza Vaccination

The figure below shows the concentration of antibodies in a patient's bloodstream following an influenza (flu) vaccination, and then a subsequent infection with the influenza virus.

Figure 1: Concentration of antibodies in a patient's bloodstream following an influenza vaccination and subsequent influenza infection.

Part A Vaccination response
Which of the following statements about the response to vaccination in Figure 1 are correct? Select all that apply.
this is a primary immune response
this is a secondary immune response
the response is triggered by the binding of antigens to pre-existing memory B cells and memory T cells
the response is triggered by the binding of antigens to naïve B cells and T cells
the antibodies in the bloodstream are secreted by plasma cells (effector B cells)
the antibodies in the bloodstream are secreted by memory B cells
this is the humoral immune response
this is the cell-mediated immune response

Part B Infection response
Which of the following statements about the response to infection in Figure 1 are correct? Select all that apply.
this is a primary immune response
this is a secondary immune response
the response is triggered by the binding of antigens to pre-existing memory B cells and memory T cells
the response is triggered by the binding of antigens to naïve B cells and T cells
the antibodies in the bloodstream are secreted by plasma cells (effector B cells)
the antibodies in the bloodstream are secreted by memory B cells
this is the humoral immune response
this is the cell-mediated immune response

hy are	e secondary immune responses faster than primary immune responses? Select all that apply.
	memory B cells divide and differentiate into plasma cells (effector B cells) more quickly than naïve B cells do
	activation of immune cells (by binding to antigens) occurs more quickly
	there are more cells in the body with the correct membrane receptors/membrane-bound antibodies for the antigen
	the pathogen will always have evolved to become more deadly
	the existing antibodies replicate themselves to produce more antibodies
	memory B cells can produce and secrete antibodies into the bloodstream faster than naïve B cells