

Algebraic fractions

- Finding and identifying equivalent algebraic fractions
- Adding and subtracting algebraic fractions

Keywords

You should know

explanation 1a

explanation 1b

1 Find three number fractions that are equivalent to each of these fractions.

$$\frac{1}{3}$$

b
$$\frac{2}{5}$$

b
$$\frac{2}{5}$$
 c $\frac{4}{5}$ **d** $\frac{7}{8}$

$$\frac{7}{8}$$

$$e \frac{9}{10}$$

2 In each group of fractions, find the odd one out.

a
$$\frac{1}{2}$$
, $\frac{9}{16}$, $\frac{19}{38}$, $\frac{7}{14}$, $\frac{56}{112}$

a
$$\frac{1}{2}, \frac{9}{16}, \frac{19}{38}, \frac{7}{14}, \frac{56}{112}$$
 b $\frac{3}{5}, \frac{9}{15}, \frac{42}{75}, \frac{21}{35}, \frac{180}{300}$ **c** $\frac{4}{7}, \frac{46}{84}, \frac{36}{63}, \frac{12}{21}, \frac{28}{49}$

$$\frac{4}{7}, \frac{46}{84}, \frac{36}{63}, \frac{12}{21}, \frac{28}{49}$$

3 Find a pair of equivalent fractions in each group.

a
$$\frac{a}{3}, \frac{4a}{3}, \frac{4a}{12}$$

b
$$\frac{x}{8}, \frac{xy}{8}, \frac{3x}{24}$$

$$\frac{2b}{3}, \frac{6b}{12}, \frac{2b}{4}$$

a
$$\frac{a}{3}, \frac{4a}{3}, \frac{4a}{12}$$
 b $\frac{x}{8}, \frac{xy}{8}, \frac{3x}{24}$ **c** $\frac{2b}{3}, \frac{6b}{12}, \frac{2b}{4}$ **d** $\frac{ab}{4}, \frac{a+b}{4}, \frac{2(a+b)}{8}$

- Match each fraction in the left-hand column with an equivalent fraction from the right-hand column.
 - Write three other pairs of equivalent algebraic fractions.

$\frac{a}{2}$	$\frac{10(a+1)}{20}$
$\frac{2(a+1)}{4}$	$\frac{a^2}{2a}$
<u>2a</u> 8	$\frac{10(a+3)}{20}$
$\frac{2a+3}{2}$	10 <i>a</i> 30
$\frac{a}{3}$	$\frac{2(2a+3)}{4}$
$\frac{2(a+3)}{4}$	4 <u>a</u> 16

5 Copy these and fill in the missing expressions.

a
$$\frac{2m}{4} = \frac{\Box}{12}$$

b
$$\frac{3a+1}{4} = \frac{\square}{8}$$

$$\frac{5p-4}{5} = \frac{\square}{20}$$

d
$$\frac{3x+y}{6} = \frac{18}{18}$$

d
$$\frac{3x+y}{6} = \frac{\Box}{18}$$
 e $\frac{5x-3}{4} = \frac{\Box}{12}$ **f** $\frac{7a+4}{9} = \frac{\Box}{18}$

$$\frac{7a+4}{9} = \frac{18}{18}$$

g
$$\frac{2y+3}{y} = \frac{\Box}{2y}$$
 h $\frac{4-x}{2x} = \frac{\Box}{6x}$

$$h \quad \frac{4-x}{2x} = \frac{\Box}{6x}$$

$$\mathbf{i} \quad \frac{2a+5}{3} = \frac{\square}{9a}$$

explanation 2

6 Simplify these fractions by cancelling common numeric factors.

a
$$\frac{6y}{3}$$

b
$$\frac{4c}{2}$$

$$c \frac{2b}{8}$$

d
$$\frac{10f}{25}$$

e
$$\frac{16m^2}{4}$$
 f $\frac{7x^2}{56}$

f
$$\frac{7x^2}{56}$$

$$\frac{3ab}{12}$$

h
$$\frac{24xy}{16}$$

7 Simplify these fractions by cancelling all common factors.

a
$$\frac{3y}{yz}$$

b
$$\frac{c}{cd}$$

c
$$\frac{5ef}{f}$$

d
$$\frac{gh}{g^2}$$

e
$$\frac{4x}{xy}$$

$$f = \frac{s}{s^2}$$

$$\frac{pr}{2prq}$$

$$\mathbf{h} \quad \frac{8rst}{2st}$$

8 Match each expression in the top row with a simplified form from the bottom row.

$$\frac{10x^2}{5xy}$$

$$\frac{10x}{5x^2v}$$

$$\frac{5x^2}{10xy}$$

$$\frac{10x^2}{5xy}$$
 $\frac{10x}{5x^2y}$ $\frac{5x^2}{10xy}$ $\frac{5x}{10x^2y}$ $\frac{5x}{10xy^2}$ $\frac{10x}{5xy^2}$

$$\frac{5x}{10xv^2}$$

$$\frac{10x}{5xv^2}$$

$$\frac{2}{v^2}$$

$$\frac{2}{v^2}$$
 $\frac{1}{2v^2}$

$$\frac{2x}{y}$$

$$\frac{2x}{y}$$
 $\frac{1}{2xy}$ $\frac{2}{xy}$

$$\frac{2}{xy}$$

$$\frac{x}{2v}$$

explanation 3

Simplify each fraction by factorising and then cancelling common factors.

$$\frac{16 + 4m}{4}$$

b
$$\frac{7x + 21}{14}$$

b
$$\frac{7x+21}{14}$$
 c $\frac{2m^2+4}{6}$

d
$$\frac{10}{5y+15}$$

$$\frac{3x-9}{6}$$

$$f = \frac{12}{6-3y}$$

f
$$\frac{12}{6-3y}$$
 g $\frac{30}{25b+15}$ **h** $\frac{7x+21}{14x}$

h
$$\frac{7x + 21}{14x}$$

10 Simplify each fraction by factorising and then cancelling common factors.

a
$$\frac{x^2 + 3x}{x}$$

b
$$\frac{2m^2 - 8m}{m}$$

$$\frac{7h^2 - 14h}{h}$$

d
$$\frac{x-4}{2x-8}$$

e
$$\frac{5x+15}{x+3}$$

$$f = \frac{7}{14x + 21}$$

$$\frac{5x^2 - 10x}{x^2 - 2x}$$

$$\mathbf{h} \quad \frac{25g^3 + 10g^2}{5g^2 + 2g}$$

$$\frac{2x^2 - x}{4x - 2}$$

11 Peter is simplifying this expression in his maths lesson.

Explain what he has done wrong and then complete the problem correctly.

$$\frac{12xy^2 + 10y^2}{6y^2 + 2y} = \frac{2}{\cancel{6}y^2 + \cancel{2}y} = 10xy$$

explanation 4a

explanation 4b

12 Work out these additions.

$$\frac{3}{4} + \frac{8}{9}$$

a
$$\frac{3}{4} + \frac{8}{9}$$
 b $\frac{4}{7} + \frac{3}{11}$ **c** $\frac{5}{6} + \frac{2}{9}$ **d** $\frac{2}{5} + \frac{7}{8}$

$$\frac{5}{6} + \frac{2}{9}$$

d
$$\frac{2}{5} + \frac{7}{8}$$

13 Work out these subtractions.

$$\frac{4}{7} - \frac{2}{9}$$

a
$$\frac{4}{7} - \frac{2}{9}$$
 b $\frac{7}{8} - \frac{5}{6}$

$$\frac{11}{12} - \frac{2}{3}$$

d
$$\frac{7}{10} - \frac{3}{7}$$

14 Copy these and fill in the gaps.

$$\frac{a}{2} + \frac{a}{3} = \frac{3a}{6} + \frac{\Box}{6}$$

$$= \frac{\square}{8} = \frac{\square}{2}$$

a
$$\frac{a}{2} + \frac{a}{3} = \frac{3a}{6} + \frac{\Box}{6}$$
 b $\frac{y}{4} + \frac{2y}{8} = \frac{\Box}{8} + \frac{\Box}{8}$ **c** $\frac{2c}{5} + \frac{3c}{4} = \frac{\Box}{20} + \frac{\Box}{20}$

15 Add these fractions together and simplify your answers where possible.

First find the lowest common multiple of the denominators.

$$\frac{b}{2} + \frac{b}{4}$$

b
$$\frac{d}{5} + \frac{d}{6}$$

a
$$\frac{b}{2} + \frac{b}{4}$$
 b $\frac{d}{5} + \frac{d}{6}$ **c** $\frac{x}{3} + \frac{x}{6}$

d
$$\frac{2m}{5} + \frac{m}{2}$$

$$e \frac{5s}{4} + \frac{3t}{3}$$

$$f = \frac{4x}{7} + \frac{3y}{14}$$

$$\frac{5r}{5} + \frac{4s}{4}$$

e
$$\frac{5s}{4} + \frac{3t}{3}$$
 f $\frac{4x}{7} + \frac{3y}{14}$ **g** $\frac{5r}{5} + \frac{4s}{4}$ **h** $\frac{x+1}{2} + \frac{3y}{4}$

$$\frac{2a+5}{5} + \frac{a}{3}$$

$$\frac{x-2}{10} + \frac{3x}{5}$$

$$\frac{x-y}{4} + \frac{x+y}{3}$$

i
$$\frac{2a+5}{5} + \frac{a}{3}$$
 j $\frac{x-2}{10} + \frac{3x}{5}$ k $\frac{x-y}{4} + \frac{x+y}{3}$ l $\frac{n+m}{12} + \frac{n+3m}{4}$

$$\frac{a^2}{3} + \frac{2a^2}{4}$$

$$\frac{3b^2}{5} + \frac{b^2}{4}$$

$$\frac{3n^2}{7} + \frac{4n^2}{3}$$

m
$$\frac{a^2}{3} + \frac{2a^2}{4}$$
 n $\frac{3b^2}{5} + \frac{b^2}{4}$ **o** $\frac{3n^2}{7} + \frac{4n^2}{3}$ **p** $\frac{x^2 - 1}{3} + \frac{2x^2}{4}$

16 Find the errors in these pupils' calculations. Write out each calculation correctly.

a

$$\frac{q}{9} + \frac{3q}{5} = \frac{4q}{14}$$
 χ $\frac{r}{3} + \frac{3r}{4} = \frac{2r}{4}$ χ

b

$$\frac{r}{3} + \frac{3r}{4} = \frac{2r}{4}$$

c

$$\frac{x+2}{3} + \frac{2x}{4} = \frac{3x+2}{12}$$

17 Work out these subtractions and simplify your answers where possible.

a
$$\frac{g}{3} - \frac{g}{5}$$

b
$$\frac{h}{2} - \frac{h}{4}$$

$$\frac{3x}{2} - \frac{5x}{6}$$

c
$$\frac{3x}{2} - \frac{5x}{6}$$
 d $\frac{5m}{2} - \frac{7m}{10}$

e
$$\frac{5y}{3} - \frac{3y}{4}$$

e
$$\frac{5y}{3} - \frac{3y}{4}$$
 f $\frac{3b+2}{5} - \frac{2b}{10}$ g $\frac{a-b}{3} - \frac{a}{5}$ h $\frac{g-f}{3} - \frac{g}{6}$

$$\frac{a-b}{3} - \frac{a}{5}$$

h
$$\frac{g-f}{3} - \frac{g}{6}$$

i
$$\frac{5x+3}{4} - \frac{x+2}{12}$$

i
$$\frac{5x+3}{4} - \frac{x+2}{12}$$
 j $\frac{3m-3}{5} - \frac{2m+4}{10}$ k $\frac{n^2}{3} - \frac{n}{2}$ l $\frac{3y^2}{7} - \frac{2y^2}{21}$

$$k \frac{n^2}{3} - \frac{n}{2}$$

$$1 \quad \frac{3y^2}{7} - \frac{2y^2}{21}$$

18 Sam has done this algebra problem. She has made one mistake. Explain her error and write out the calculation correctly.

$$\frac{2x+1}{2} - \frac{x-3}{5} = \frac{10x+5}{10} - \frac{2x-6}{10} = \frac{10x+5-2x-6}{10} = \frac{8x-1}{10}$$

explanation 5

19 The expression in each rectangle is the sum of the expressions in the circles. Copy and complete each problem.

20 In these addition pyramids, the expression in each brick is the sum of the expressions in the two bricks below.

Copy and complete each pyramid.

