

10

Lecture 7: ISS and IOS

Motivation: Unify state-space and i/o stability theory

Motivation: Merge Lyapunov/Zames

We have Lyapunov theory for systems without inputs and outputs

We have a rich theory for stability of input/output operators developed by George Zames, and many others

ISS allows us to combine features of both

We have a rich theory for stability of input/output operators developed by George Zames, and many others

Fruit American Stability theory of the stability theo

Input-to-State Stability Motivation for ISS

Motivation: $\dot{x} = f(x,0)$ Stable is not enough

For linear $\dot{x} = Ax + Bu$, A Hurwitz $\Rightarrow (u \rightarrow 0 \Rightarrow x \rightarrow 0)$ i.e. Bounded Input Bounded State (BIBS)

This is NOT true for nonlinear systems. Ex: $\dot{x} = -x + (x^2 + 1)u$

even though $\dot{x} = f(x,0)$ is GES: $\dot{x} = -x$.

Input-to-State Stability Motivation for ISS

Motivation: Require I/O boundedness

0

0

We must bound the solution $||x(t,x_0,u)||$ in a "nonlinear gain"

$$||x(t)||$$
 ("ultimately") $\leq \gamma(||u(\cdot)||_{\infty})$

$$\gamma \in \mathscr{K}_{\infty}:
\gamma(0) = 0
C^0, \nearrow +\infty$$

Figure: Example class \mathscr{K}_{∞} function γ

Lecture 7: ISS and IOS

Motivation: $\dot{x} = f(x,0)$ GAS

0

Repetition (from last lecture):

Global asymptotic stability (GAS) of the origin means

$$\exists \text{ class } \mathscr{K}\mathscr{L} \text{ function } \beta \text{ s.t. } \|x(t)\| \leq \beta(\|x(t_0)\|, t-t_0) \quad \forall t \geq t_0 \geq 0 \\ \forall \ \|x(t_0)\|$$

 $||x(t)|| \le \beta(||x(t_0)||, 0) \rightsquigarrow \text{ stability (small overshoot)}$

$$\|x(t)\| \leq \beta(\|x(t_0)\|, t-t_0) \xrightarrow{(t-t_0)\to\infty} 0 \sim \text{convergence}$$

Original definition

$$||x(t,x_0,u)|| \le \max\{\beta(||x(t_0)||,t-t_0),\gamma(||u||_{\infty})\}$$

Transient (overshoot) depends on x_0

When $(t-t_0)$ is large x(t) bounded by $\gamma(||u||_{\infty})$ independent of x_0

Input-to-State Stability Definition of ISS

Definition of ISS: Khalil

0

0

An alternative definition is found in Khalil

Definition

Consider

$$\Sigma : \dot{x} = f(t, x, u)$$

The system Σ is ISS if $\exists \beta \in \mathscr{KL}$ and $\exists \gamma \in \mathscr{K}$ such that $\forall u \in \mathscr{L}_p \text{ and } x_0 = x(0) \in \mathbb{R}^n \text{ (the solution } x(t) \text{ exists } \forall t \geq t_0 \text{ and)}$

$$\|x(t)\| \leq \beta(\|x_0\|, t-t_0) + \gamma(\sup_{t_0 \leq \tau \leq t} \|u(\tau)\|)$$

Input-to-State Stability

Linear case, for comparison

0

Example: Linear case

Given a stable linear system:

(i.e. the matrix *A* is Hurwitz: $Re(\lambda_i(A)) < 0 \quad \forall i = 1, ..., n$)

$$\dot{x} = Ax + Bu$$

Is this an input-to-state stable system?

Well-known that the system solution is:

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$||x(t)|| \le \left\| e^{A(t-t_0)} \right\| ||x(t_0)|| + \int_{t_0}^t \left\| e^{A(t-\tau)} \right\| ||B|| \, ||u(\tau)|| \, d\tau$$

Theorem 4.11: A Hurwitz $\Leftrightarrow \|e^{A(t-t_0)}\| \le ke^{-\lambda(t-t_0)}$ $k, \lambda > 0$

Linear case, for comparison

$$||x(t)|| \le ke^{-\lambda(t-t_0)} ||x(t_0)|| + \frac{k||B||}{\lambda} \sup_{t_0 \le \tau \le t} ||u(\tau)||$$

$$||x(t)|| \le ke^{-\lambda(t-t_0)} ||x(t_0)|| + \frac{k||B||}{\lambda} ||u(\tau)||_{\infty}$$

$$\longrightarrow$$
 $\|x(t)\| \le \beta(t) \|x(t_0)\| + \gamma \|u\|_{\infty}$

$$\beta(t) = ke^{-\lambda(t-t_0)} \xrightarrow{(t-t_0)\to\infty} 0$$

$$\gamma = \frac{k \|B\|}{\lambda}$$

This is a particular case of the ISS estimate

$$\|x(t,x_0,u)\| \le \beta(\|x(t_0)\|,t-t_0) + \gamma(\|u\|_{\infty})$$

Input-to-State Stability How to check ISS

How to check ISS?

0

0

Definition: ISS Lyapunov function (ISS-LF)

 $V:[0,\infty) \times \mathbb{R}^n \to \mathbb{R}$ is an ISS-LF for Σ iff

i) V is C^1

 $\exists \ \alpha_1, \alpha_2 \in \mathscr{K}_{\infty} \ \text{and} \ \rho \in \mathscr{K} \ \text{s.t.}$

ii)
$$\alpha_1(||x||) \le V(t,x) \le \alpha_2(||x||)$$

iii)
$$\dot{V}(t,x) = \frac{\partial V}{\partial x}f + \frac{\partial V}{\partial t} \le -W_3(x) \quad ||x|| \ge \rho(||u||) > 0$$

where $W_3(x)$ is a C^0 positive definite function on \mathbb{R}^n .

A Lyapunov-like theorem for ISS

0

Theorem 4.19

 \exists ISS-LF for $\Sigma \Rightarrow \Sigma$ is ISS

Sontag & Wang 1995

For autonomous systems: Σ is ISS $\Leftrightarrow \exists$ ISS-LF for Σ

$$\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$$

Example 0 Example $\dot{x}_1 = -x_1^3 + x_1^2 x_2$ $\dot{x}_2 = -kx_2 \quad k > 0$

GUAS

Use cascaded systems theory to prove that the origin $(x_1,x_2)=(0,0)$ of this system is globally uniformly asymptotically stable (GUAS)

Application example: Compressor 0 Plenum Compressor Duct V_p p p_2 T_p Throttle

$$\dot{m} = \frac{A_1}{L_c} (p_2(m, \omega) - p)$$

$$\dot{p} = \frac{a_{01}^2}{V_p} (m - m_t(p))$$

$$\dot{\omega} = \frac{1}{J} (\tau_d - \sigma r_2^2 |m| \omega)$$

$$\dot{p} = \frac{a_{01}^2}{V_p} \left(m - m_t(p) \right)$$

$$\dot{\boldsymbol{\omega}} = \frac{1}{I} \left(\tau_d - \sigma r_2^2 |m| \boldsymbol{\omega} \right)$$

- Objective: Active surge control
 - High efficiency
 - Avoid surging: pressure and mass flow oscillations
- Need mass flow observer
 - Bøhagen & Gravdahl (2004)
 - reduced order observer

Lecture 7: ISS and IOS

Suggested observer

$$\dot{z} = \frac{A_1}{L_c} (p_2 - p - u) + k_{\tilde{m}} (m_t(p) - \hat{m})$$

$$\hat{m} = z + k_{\tilde{m}} \frac{V_p}{a_{01}^2} p$$

Observer error is GES

$$\dot{\tilde{m}} = -k_{\tilde{m}}\tilde{m}$$

 CE control yields the cascade

$$\Sigma_1$$
: $\dot{x}_1 = f_1(x_1) + g(x_1, x_2)$

Interconnection

$$|g(x_1,x_2)| \le g_1|x_2|$$

0

- Hence, Σ_1 is ISS wrt x_2
- ⇒ The cascade is GUAS
- ullet Moreover, Σ_1 is 0-GES
 - The cascade is GES

4 □ > 4 ② > 4 ≥ 1

 $\Sigma_2: \dot{x}_2 = f_2(x_2)$

28

ecture 7: ISS and IOS

http://www.math.rutgers.edu/~sontag

4 D > 4

29

Lecture 7: ISS and IO

