

Discrete Problem

$$\min_{x,u} \sum_{i=1}^{N} J_i(x_i, u_i)$$
 s.t. $h_i(x_i, u_i) = 0$ $i = t, ..., N$

 $J_i(x_i, u_i)$ discretized goal function $h_i(x_i, u_i)$ equality condition at time i

The Lagrangian

$$L^{t}(y) = \sum_{i=t}^{N} J_{i}(x_{i}, u_{i}) + \sum_{i=t}^{N} \lambda_{i}^{T} h_{i}(x_{i}, u_{i})$$

$$y := (\lambda, x, u)$$

$$y^*$$
 optimal $\Leftrightarrow \nabla_y L^t(y^*) = 0$

The SQP Method

Find y^* :

$$y_{k+1} = y_k + s_k$$

$$\min_{s_k} \frac{1}{2} s_k^T \nabla^2 L(y_k) s_k + \nabla L(y_k)^T s_k$$

Quasi Newton-Method

Find s_k with:

$$\nabla L(y_k) + \nabla^2 L(y_k) s_k = 0$$

Approximate $\nabla^2 L(y_k)$ and solve:

$$H(y_k)s_k = -\nabla L(y_k)$$

What happens in interval [t-1, t]?

What happens in interval [t-1, t] ?

• calculate control u_{t-1} (Riccati Part II)

What happens in interval [t-1, t]?

- calculate control u_{t-1} (Riccati Part II)
- calculate y (Riccati Part II)

What happens in interval [t-1, t]?

- calculate control u_{t-1} (Riccati Part II)
- calculate y (Riccati Part II)

Finite Horizon

runtime error

N = 20

N=50

N = 100

Results