

3/38

FIG. 3

13A	
^{1}G .	

AN ADC END OF CONVERSION WILL CAUSE AN ADC WINDOW COMPARE INTERRUPT (ADWINT=1) IF THE RESULTING ADC DATA WORD IS < 0x0100 OR > 0x0200.

AN ADC END OF CONVERSION WILL CAUSE AN ADC WINDOW COMPARE INTERRUPT (ADWINT=1) IF THE RESULTING ADC DATA WORD IS < 0x0200 AND > 0x0100.

AMXOSL=0x00, AMX0CF=0x00, ADLJST=0,

AMX0SL=0x00, AMX0CF=0x00, ADLJST=0,

GIVEN:

0

ADCOLTH:ADCOLTL=0x0200, ADCOGTH:ADCOGTL=0x0100.

ADCOLTH:ADCOLTL=0x0100, ADCOGTH:ADCOGTL=0x0200.

		ADWINT=1		ADCOGTH:ADCOGTL	ADWINT	NOT AFFECTED	ADCOLTH:ADCOLTL		ADWINT=1		
ADC DATA WORD	0x0FFF		0x0201	0x0200	0x01FF	0x0101	0x0100	0x00FF		0x0000	
INPUT VOLTAGE (ADO-AGND)	REF x (4095/4096)			REF x (512/4096)			REF x (256/4096)			0	GIVEN:
		ADWINT NOT AFFECTED		ADCOLTH:ADCOLTL	ADWINT-1	€ ADWINI=	ADCOGTH:ADCOGTL		ADWINT NOT AFFECTED		
ADC DATA WORD	0x0FFF		0×0201	0x0200	0x01FF	0x0101	0×0100	0x00FF		0×0000	

REF x (256/4096)

REF x (512/4096)

REF x (4095/4096)

INPUT VOLTAGE (ADO—AGND)

TO FIG. 13B

13B			ADWINT=1		ADCOGTH:ADCOGTL	ADWINT	NOT AFFECTED	ADCOLTH:ADCOLTL		ADWINT=1		GIVEN: AMXOSL=0x00, AMXOCF=0x01, ADLJST=0, ADCOLTH:ADCOLTH=0xFFFF, ADCOGTH:ADCOGTL=0x0100. AN ADC END OF CONVERSION WILL CAUSE AN ADC WINDOW COMPARE INTERRUPT (ADWINT=1) IF THE RESULTING ADC DATA WORD IS < 0xFFFF OR > 0x0100. (TWO'S COMPLEMENT) MATH.)
FIG.	ADC DATA WORD	0x07FF		0x0101	0×0100	0×00FF	0x0000	0×FFFF	0xFFFE		0×F800	=0x01, ADLJS] FF, 00. RSION WILL (DWINT=1) IF FF OR > 0x0
3. 13A	INPUT VOLTAGE (ADO-AD1)	REF x (4095/4096)			REF x (256/4096)			REF x (-1/4096)			-REF	GIVEN: AMXOSL=0x00, AMXOCF=0x01, ADLJST=0, ADCOLTH:ADCOLTH=0xFFFF, ADCOGTH:ADCOGTL=0x0100. AN ADC END OF CONVERSION WILL CAUSE AN ADC WINDOW COMPARE INTERRUPT (ADWINT=1) IF THE RESULTING ADC DATA WORD IS < 0xFFFF OR > 0x0100. (TWO'S COMPLEME MATH.)
FROM FIG. 13A			ADWINT NOT AFFECTED		ADCOLTH:ADCOLTL	A OWINT - 1		ADCOGTH:ADCOGTL		ADWINT NOT AFFECTED		=0, AUSE AN ADC WINDOW THE RESULTING ADC FFF. (TWO'S
	ADC DATA WORD	0x07FF		0x0101	0×0100	0×00FF	0000×0	0xFFFF	OXFFFE		0xF800	AMXOCF=0x01, ADLJST=0, L=0x0100, IL=0xFFFF. CONVERSION WILL CAUS RUPT (ADWINT=1) IF THE < 0x0100 AND > 0xFFFF ATH.)
	INPUT VOLTAGE (AD0-AD1)	REF × (4095/4096)			REF x (256/4096)			REF x (-1/4096)			-REF	GIVEN: AMXOSL=0x00, AMXOCF=0x01, ADLJST=0, ADCOLTH:ADCOLTL=0x0100, ADCOGTH:ADCOGTL=0xFFF. AN ADC END OF CONVERSION WILL CAUSE AN ADC WINDOW COMPARE INTERRUPT (ADWINT=1) IF THE RESULTING ADC DATA WORD IS < 0x0100 AND > 0xFFFF. (TWO'S COMPLEMENT MATH.)

CANDONALA THANKS

4
7
٠,
<i>IG.</i>
7
\mathcal{H}

		ADWINT=1		ADCOGTH:ADCOGTL	ADWINT	NOT AFFECTED	ADCOLTH:ADCOLTL		ADWINT=1	_	=1, AUSE AN ADC WINDOW THE RESULTING ADC 300.
ADC DATA WORD	0xFFF0		0×2010	0×2000	0x1FF0	0×1010	0x1000	0x0FF0		0x0000	=0x00, ADLJST D0, 00. RSION WILL C RSION = 1) IF D0 OR > 0x20
INPUT VOLTAGE (ADO-AGND)	REF x (4095/4096)			REF x (512/4096)			REF x (256/4096)			0	GIVEN: AMXOSL=0×00, AMXOCF=0×00, ADLJST=1, ADCOLTH:ADCOLTL=0×1000, ADCOGTH:ADCOGTL=0×2000. AN ADC END OF CONVERSION WILL CAUSE AN ADC WINDOW COMPARE INTERRUPT (ADWINT=1) IF THE RESULTING ADC DATA WORD IS < 0×1000 OR > 0×2000.
		ADWINT NOT AFFECTED		ADCOLTH:ADCOLTL	THAINING A	ADWINI=I	ADCOGTH:ADCOGTL		ADWINT NOT AFFECTED		GIVEN: AMXOSL=0x00, AMXOCF=0x00, ADLJST=1, ADCOLTH:ADCOLTL=0x2000, ADCOGTH:ADCOGTL=0x1000. AN ADC END OF CONVERSION WILL CAUSE AN ADC WINDOW COMPARE INTERRUPT (ADWINT=1) IF THE RESULTING ADC DATA WORD IS < 0x2000 AND > 0x1000.
ADC DATA WORD	0xFFF0		0x2010	0×2000	0x1FF0	0x1010	0x1000	0x0FF0		0000×0	GIVEN: GIVEN: AMXOSL=0x00, AMXOCF=0x00, ADLJST=1, ADCOLTH:ADCOLTL=0x2000, ADCOGTH:ADCOGTL=0x1000. AN ADC END OF CONVERSION WILL CAUSE COMPARE INTERRUPT (ADWINT=1) IF THE DATA WORD IS < 0x2000 AND > 0x1000.
INPUT VOLTAGE (ADO—AGND)	REF x (4095/4096)			REF x (512/4096)		_	REF x (256/4096)			0	GIVEN: GIVEN: AMXOSL=0x00, AMXOCF=0x ADCOLTH-ADCOLTL=0x2000, ADCOGTH-ADCOGTL=0x1000. AN ADC END OF CONVERSI COMPARE INTERRUPT (ADW DATA WORD IS < 0x2000

Configuration

TO FIG. 148

4B			ADWINT=1		ADCOGTH:ADCOGTL	ADWINT	NOT AFFECTED	ADCOLTH:ADCOLTL		ADWINT—1	
F1G. 14B	ADC DATA WORD	0x7FF0		0x1010	0×1000	0x0FF0	0×0000	0xFFF0	0xFFE0		
14A	INPUT VOLTAGE (ADO—AD1)	REF x (4095/4096)			REF x (256/4096)			REF x (-1/4096)			
FROM FIG. 14A			ADWINT NOT AFFECTED		ADCOLTH:ADCOLTL	A CHINITAL T	ADMINI=I	ADCOGTH:ADCOGTL		ADWINT	NOT AFFECTED
	ADC DATA WORD	0x7FF0		0x1010	0×1000	0x0FF0	0000×0	0×FFF0	0xFFE0		
	INPUT VOLTAGE (ADO-AD1)	REF x (4095/4096)			REF x (256/4096)			REF x (-1/4096)			

GIVEN:

0x8000

-RF

0x8000

뜐

GIVEN:

AMXOSL=0x00, AMXOCF=0x01, ADLJST=1, ADCOLTH:ADCOLTH=0xFFF0, ADCOGTH:ADCOGTL=0x1000

AN ADC END OF CONVERSION WILL CAUSE AN ADO WINDOW COMPARE INTERRUPT (ADWINT=1) IF THE RESULTING ADC DATA WORD IS < 0xFF0 OR > 0x1000. (TWO'S COMPLEMENT MATH.)

COMPARE INTERRUPT (ADWINT=1) IF THE RESULTING ADC DATA WORD IS < 0x1000 AND > 0xFFF0. (TWO'S

AN ADC END OF CONVERSION WILL CAUSE AN ADC WINDOW

AMXOSL=0x00, AMXOCF=0x01, ADLJST=1, ADCOLTH:ADCOLTL=0x1000, ADCOGTH:ADCOGTL=0xFFF0.

COMPLEMENT MATH.)

JG.

19/38

	(THIS BLOCK LOCKED ONLY IF ALL OTHER BLOCKS ARE LOCKED) RESERVED	0x807F 0x8000 0x7FFF 0x7E00
	READ LOCK BYTE	0x7DFF
PROGRAM	WRITE/ERASE LOCK BYTE	0x7DFE
MEMORY SPACE	SOFTWARE READ LIMIT	0x7DFD
Į		0x0000

READ AND WRITE/ ERASE SECURITY BITS. (BIT 7 IS MSB.)

	•
BIT	MEMORY BLOCK
7	0x7000-0x7DFD
6	0x6000-0x6FFF
5	0x5000-0x5FFF
4	0x4000-0x4FFF
3	0x3000-0x3FFF
2	0x2000-0x2FFF
1	0x1000-0x1FFF
0	0x0000-0x0FFF

FLASH READ LOCK BYTE

BITS7-0: EACH BIT LOCKS A CORRESPONDING BLOCK OF MEMORY. (BIT 7 IS MSB.)

0: READ OPERATIONS ARE LOCKED (DISABLED) FOR CORRESPONDING BLOCK ACROSS THE JTAG INTERFACE.

1: READ OPERATIONS ARE UNLOCKED (ENABLED) FOR CORRESPONDING BLOCK ACCROSS THE JTAG INTERFACE.

FLASH WRITE/ERASE LOCK BYTE

BITS 7-0: EACH BIT LOCKS A CORRESPONDING BLOCK OF MEMORY.

0: WRITE/ERASE OPERATIONS ARE LOCKED (DISABLED) FOR CORRESPONDING BLOCK ACROSS THE JTAG INTERFACE.

1: WRITE/ERASE OPERATIONS ARE UNLOCKED (ENABLED) FOR CORRESPONDING BLOCK ACROSS THE JTAG INTERFACE.

FLASH ACCESS LIMIT REGISTER (FLACL)

THE CONTENT OF THIS REGISTER IS USED AS THE HIGH BYTE OF THE 16-BIT SOFTWARE READ LIMIT ADDRESS. THE 16-BIT READ LIMIT ADDRESS VALUE IS CALCULATED AS 0xNN00 WHERE NN IS REPLACED BY CONTENT OF THIS REGISTER ON RESET. SOFTWARE RUNNING AT OR ABOVE THIS ADDRESS IS PROHIBITED FROM USING THE MOVX AND MOVC INSTRUCTIONS TO READ, WRITE, OR ERASE, LOCATIONS BELOW THIS ADDRESS. ANY ATTEMPTS TO READ LOCATIONS BELOW THIS LIMIT WILL RETURN THE VALUE 0x00.

FIG. 21

TX (CLK 0UT)

27/38

FIG. 40

er vergelegt op State planerg

-11 - 75

36/38

TU

