```
In [2]: import pandas as pd
        import numpy as np
        from sklearn.preprocessing import StandardScaler
        from sklearn.feature_selection import SelectKBest, f_regression
        import seaborn as sns
        import matplotlib.pyplot as plt
        from scipy import stats
        def load_and_prepare_data(file_path):
            """Load and prepare the merged dataset."""
            print("Loading data...")
            df = pd.read_csv(file_path)
            # Convert timestamp to datetime
            df['timestamp'] = pd.to_datetime(df['timestamp'])
            return df
        def create_time_features(df):
            """Create time-based features."""
            print("Creating time-based features...")
            # Extract time components
            df['hour_sin'] = np.sin(2 * np.pi * df['hour']/24)
            df['hour_cos'] = np.cos(2 * np.pi * df['hour']/24)
            # Create peak hour flags
            df['is_morning_peak'] = df['hour'].between(6, 9)
            df['is_evening_peak'] = df['hour'].between(16, 19)
            # Add day of week encoding
            df['day_of_week_num'] = pd.to_datetime(df['date']).dt.dayofweek
            # Create weekend dummy (already exists but ensuring numeric)
            df['is_weekend'] = df['is_weekend'].astype(int)
            return df
        def create_weather_features(df):
            """Create weather-related features."""
```

```
print("Creating weather-related features...")
   # Create weather condition categories
   weather_severity = {
        'Clear': 0,
        'Clouds': 1,
        'Mist': 2,
        'Fog': 3,
        'Rain': 4,
        'Snow': 5,
        'Thunderstorm': 6
   df['weather_severity'] = df['weather_main'].map(weather_severity)
   # Create visibility categories
   df['visibility_category'] = pd.cut(df['visibility'],
                                     bins=[0, 1000, 5000, 10000, float('inf')],
                                     labels=['Very Low', 'Low', 'Moderate', 'Good'])
   # Create temperature categories
   df['temp_category'] = pd.cut(df['temperature'],
                                bins=[-float('inf'), 32, 50, 70, 85, float('inf')],
                                labels=['Freezing', 'Cold', 'Moderate', 'Warm', 'Hot'])
    return df
def create_traffic_features(df):
    """Create traffic-related features."""
   print("Creating traffic-related features...")
   # Calculate rolling averages
   df['rolling_avg_3h'] = df.groupby('direction')['traffic_count'].transform(
        lambda x: x.rolling(window=3, min_periods=1).mean())
   # Calculate traffic density (traffic_count relative to daily_total)
   df['traffic_density'] = df['traffic_count'] / df['daily_total']
   # Create congestion levels
   df['congestion_level'] = pd.qcut(df['traffic_count'],
                                    q=4
                                    labels=['Low', 'Moderate', 'High', 'Severe'])
```

```
return df
def select_features(df):
    """Perform feature selection and analysis."""
   print("Analyzing feature importance...")
   # Prepare numeric features for correlation analysis
    numeric_features = df.select_dtypes(include=[np.number]).columns
    numeric_df = df[numeric_features].copy()
   # Calculate correlation with traffic_count
    correlations = numeric_df.corr()['traffic_count'].sort_values(ascending=False)
    # Create correlation heatmap
    plt.figure(figsize=(12, 8))
    sns.heatmap(numeric_df[numeric_features].corr(), annot=True, cmap='coolwarm', center=0)
    plt.title('Feature Correlation Heatmap')
    plt.tight_layout()
    plt.savefig('correlation_heatmap.png')
    plt.close()
    return correlations
def main():
   # Load data
   df = load_and_prepare_data('merged_traffic_weather_data.csv')
   # Feature engineering
   df = create_time_features(df)
   df = create_weather_features(df)
   df = create_traffic_features(df)
    # Feature selection
    correlations = select_features(df)
   # Save engineered features
    output_file = 'engineered_traffic_data.csv'
   df.to_csv(output_file, index=False)
    print(f"\nData saved to {output_file}")
    # Print feature correlations with traffic count
    print("\nFeature Correlations with Traffic Count:")
```

Loading data...
Creating time-based features...
Creating weather-related features...
Creating traffic-related features...
Analyzing feature importance...

Data saved to engineered_traffic_data.csv

Feature Correlations with Traffic Count:

traffic_count	1.000000
traffic_density	0.959020
rolling_avg_3h	0.949396
hour	0.399000
daily_total	0.233870
temperature	0.070084
humidity	0.047557
wind_speed	0.046900
weather_severity	0.040620
precipitation	0.004272
day_of_week_num	-0.016191
visibility	-0.019112
month	-0.031066
is_weekend	-0.052858
hour_sin	-0.341407
hour_cos	-0.822100
Name: traffic count	t dtyne: float64

Name: traffic_count, dtype: float64

Summary of Key Features:

	traffic_count	rolling_avg_3h	traffic_density	temperature	١
count	16107.000000	16107.000000	16107.000000	16107.000000	
mean	900.273670	900.277416	0.041764	70.566155	
std	566.625179	546.606876	0.025816	12.375593	
min	23.000000	33.333333	0.001169	31.930000	
25%	295.000000	328.666667	0.014198	62.830000	
50%	1033.000000	1014.333333	0.049053	72.160000	
75%	1420.000000	1411.833333	0.063703	79.660000	
max	1918.000000	1842.333333	0.102131	100.220000	

visibility wind_speed count 16107.000000 16107.000000 mean 9690.925002 8.674384

```
4.475895
std
        1432.086361
         201.000000
                         0.000000
min
25%
       10000.000000
                         5.750000
       10000.000000
                         8.050000
50%
75%
       10000.000000
                         11.500000
       10000.000000
                        31.070000
max
```

Unique values in categorical features:

```
weather_main:
Clear
                8862
Clouds
                3151
Rain
                2329
Mist
                 913
                 236
Haze
                 210
Fog
Drizzle
                 190
                 175
Thunderstorm
                  39
Smoke
Squall
                    2
```

Name: weather_main, dtype: int64

visibility_category:

Moderate 15566 Low 377 Very Low 164 Good 0

Name: visibility_category, dtype: int64

temp_category:

Warm 7384 Moderate 5697 Hot 1883 Cold 1141 Freezing 2

Name: temp_category, dtype: int64

congestion_level:

Low 4034 High 4034 Moderate 4021 Severe 4018

Name: congestion_level, dtype: int64

In []: