EECS 203 Discussion 4

Proof by Contradiction, Proof by Cases

Admin Notes:

Homework:

- Homework/Groupwork 4 was due Sept. 21st
- Homework/Groupwork 5 should be released! It will be due Sept. 28th
 - Don't forget to match pages!
 - Please note as soon as you press submit you've successfully submitted by the deadline, you
 can still match the pages with no rush, that doesn't add to your submission time.
- Groupwork:
 - It can be done alone, but the problems tend to be more difficult, and the goal is for you to puzzle them out with others!
 - Discussion section is a great place to find a group!
 - There is also a pinned Piazza thread for searching for homework groups.

Proof Techniques

Making a Valid Argument (Writing a Proof)

- Argument/Proof: An argument for a statement S is a sequence of statements ending with S. S is called the conclusion. An argument starts with some beginning statements you assume are true, called the premises.
- Valid Argument/Proof: An argument is valid if every statement after the premises is implied (→) by the some combination of the statements before it.
 - Whenever the premises are true, the conclusion must be true.

Today we will be discussing word-style proofs

Proof Methods

- Direct Proof: Proves p → q by showing
 p → stuff → q
- Proof by Contraposition: Proves p → q by showing
 ¬q → stuff → ¬p
- Proof by Contradiction: Proves p → q by showing
 (p ∧¬q) → F → ¬(p ∧¬q) ≡ ¬p ∨ q ≡ p → q
- Proof by Cases: Proves p → q by showing
 p → p1 ∨ p2 ∨ ... ∨ pn → q

Some Methods of Proving $p \rightarrow q$

Direct Proof:

Proves $p \rightarrow q$ by showing $p \rightarrow stuff \rightarrow q$

Proof by Contraposition:

Proves $p \to q$ by showing $\neg q \to stuff \to \neg p$ (Once you show $\neg q \to \neg p$, you can immediately conclude $p \to q$ by contraposition)

Proof by Contradiction:

Assume p and $\neg q$ are true. Derive a contradiction (F), by arriving at a mathematically incorrect statement (ex: 0 = 2) or two statements that contradict each other (x = y and x \neq y). Therefore, p \rightarrow q.

$$(p \land \neg q) \rightarrow F \rightarrow \neg (p \land \neg q) \equiv \neg p \lor q \equiv p \rightarrow q$$

• Proof by Cases:

Break p into cases and show that each case implies q (in which case $p \rightarrow q$).

$$p \rightarrow p_1 \lor p_2 \lor ... \lor p_n \rightarrow q$$

- *Note: iff stands for if and only if (↔)
- Even: An integer x is even iff there exists an integer k such that x = 2k
- Odd: An integer x is odd iff there exists an integer k such that x = 2k + 1
- Rational: A number x is rational iff it can be written as the quotient of two integers. x = p/q
- Irrational: Not rational—cannot be written as the quotient of two integers
- Prime: A prime number p is a number greater than 1 whose only factors are 1 and itself. ∀x [x|p → (x=1 ∨ x=p)]
- Composite: A whole number p is composite if it has at least one divisor other than 1 and itself. ∃x [x≠1 ∧ x≠p ∧ x|p]

Proving "For All" and "There Exists" Statements

Claim: For all x, P(x).

Claim: There exists an x such that P(x).

Proof Template:

Let x be an **arbitrary** domain element

. . .

Thus, P(x).

Therefore, P(x) holds for all x in the domain.

Proof Template:

Consider x = ___ [specific domain element]

 \dots show that P(x) holds for that value of x.

Note: Assuming an arbitrary domain element "without loss of generality" (WLOG) can simplify proofs.

Proof by Contradiction

Proof by Contradiction

- When trying to prove p implies q, assume p is true and q is false. Derive a contradiction, (something that is always false, ex: 0 = 2, ex: x = y and x ≠ y). Therefore, p → q.
 - We assume the negation of what we want to prove
 - We arrive at something false
 - Therefore the negation of the thing we assumed must be true (ie the thing we wanted to prove)

Proof by Contradiction Template

Template: Proof by Contradiction

Claim: p

Special case: when the claim is an "if-then" statement

Claim: $a \rightarrow b$

Remember: the negation of $a \rightarrow b$ is a and $\neg b$

Proof Template

Seeking a contradiction, assume: [state the negation of p]

... (make some deductions, eventually leading to a contradiction) ...

Common contradictions: a number is an integer and is not an integer; a number is both even and odd; a number is both rational and irrational.

Since [restate contradictory statements], we have a contradiction.

Assuming $\neg p$ led to a contradiction. Therefore, p must be true.

(optional concluding sentence)

Notes:

• **Proof by Contraposition:** Proves $p \rightarrow q$ by showing

Proof by Contradiction: Proves p → q by showing

$$(p \land \neg q) \rightarrow F \rightarrow \neg (p \land \neg q) \equiv \neg p \lor q \equiv p \rightarrow q$$

Problem:

1. Contraposition vs Contradiction \star

Show that for all integers n, if $n^3 + 5$ is odd, then n is even, using

- a) a proof by contraposition.
- b) a proof by contradiction.

Note: The algebra in either case is the same. You don't need to rewrite the algebra for part (b), just reformat your proof from (a) into a proof by contradiction.

1. Contraposition vs Contradiction \star

Show that for all integers n, if $n^3 + 5$ is odd, then n is even, using

- a) a proof by contraposition.
- b) a proof by contradiction.

Note: The algebra in either case is the same. You don't need to rewrite the algebra for part (b), just reformat your proof from (a) into a proof by contradiction.

Solution:

a) We will prove the contrapositive of the proposition, which is: "if n is odd, then $n^3 + 5$ is even".

Since n is odd, n can be written as 2k + 1, where k is some integer. Then,

$$n^{3} + 5 = (2k + 1)^{3} + 5$$

$$= (8k^{3} + 12k^{2} + 6k + 1) + 5$$

$$= 8k^{3} + 12k^{2} + 6k + 6$$

$$= 2(4k^{3} + 6k^{2} + 3k + 3)$$

So $n^3 + 5 = 2m$, where m is the integer $4k^3 + 6k^2 + 3k + 3$. Because $n^3 + 5$ is two times some integer, we can say that $n^3 + 5$ is even.

1. Contraposition vs Contradiction \star

Show that for all integers n, if $n^3 + 5$ is odd, then n is even, using

- a) a proof by contraposition.
- b) a proof by contradiction.

Note: The algebra in either case is the same. You don't need to rewrite the algebra for part (b), just reformat your proof from (a) into a proof by contradiction.

b) We will use a proof by contradiction. Let $n^3 + 5$ be odd. Seeking a contradiction, assume that n is odd. Since n is odd, it can be written as 2k + 1, where k is some integer. So

$$n^{3} + 5 = (2k + 1)^{3} + 5$$

$$= (8k^{3} + 12k^{2} + 6k + 1) + 5$$

$$= 8k^{3} + 12k^{2} + 6k + 6$$

$$= 2(4k^{3} + 6k^{2} + 3k + 3)$$

Since $n^3 + 5 = 2m$, for an integer m ($m = 4k^3 + 6k^2 + 3k + 3$), then $n^3 + 5$ is even. Since the premise was that $n^3 + 5$ is odd, this completes the contradiction. Therefore, our assumption that n is odd must be false, leading to the conclusion that n is even.

Note:

You can also start this proof by contradiction by assuming the negation of the entire "if ... then" statement. Here, this would entail starting with "Seeking contradiction, assume that n^3+5 is odd and n is odd." From here, the logic of finding a contradiction by showing that n^3+5 is even is almost identical.

Notes:

- Even: An integer x is even iff there exists an integer k such that x = 2k
- Odd: An integer x is odd iff there exists an integer k such that x = 2k + 1

Problem:

2. Odd Proof III

Prove that for all integers a and b, if a divides b and a + b is odd, then a is odd.

2. Odd Proof III

Prove that for all integers a and b, if a divides b and a + b is odd, then a is odd.

Solution: Proof by Contradiction

- We are supposed to prove: $[(a \text{ divides } b) \land (a+b \text{ is odd})] \rightarrow a \text{ is odd}$
- Seeking contradiction, assume the negation of the above statement: \neg [[a divides b $\land a + b$ is odd] $\rightarrow a$ is odd], which is (a divides b) \land (a + b is odd) \land (a is even).
- Since a is even, a = 2k for some integer k.
- Since a divides b we have $b = m \cdot a$.
- So, a+b becomes 2k+m(a)=2k+m(2k)=2(k+km)=2p, where p is an integer equal to k+km
- Thus a+b=2p and is even. However, we had originally assumed that a+b is odd. This leads to our **contradiction**.
- Hence the assumption in the second bullet point is false, and $[(a \text{ divides } b) \land (a+b \text{ is odd})] \rightarrow a \text{ is odd}$

Notes:

 Rational: A number x is rational iff it can be written as the quotient of two integers. x = p/q

Problem:

3. Proof Practice \star

Prove or disprove that for all irrational numbers x and rational numbers y, 2x-y is irrational.

3. Proof Practice *

Prove or disprove that for all irrational numbers x and rational numbers y, 2x-y is irrational.

Solution: Proof by Contradiction

We prove the statement via proof by contradiction. Let x be an arbitrary irrational number. Let y be an arbitrary rational number such that $y = \frac{a}{b}$ with a and b as integers and $b \neq 0$. We assume that 2x - y is rational, which means that $2x - \frac{a}{b}$ is rational. Then we can write $2x - \frac{a}{b} = \frac{p}{q}$ for some integers p and q with $q \neq 0$. This gives $2x = \frac{p}{q} + \frac{a}{b} = \frac{pb+aq}{bq}$, so $x = \frac{pb+aq}{2bq}$. Note that both the numerator and the denominator are integers, and that $2bq \neq 0$ since b and q were both nonzero. Therefore, x is, by definition, a rational number, which is a contradiction since x was assumed to be irrational. Hence, it must be that the sum of a rational number and an irrational number is irrational.

Proof by Cases

Proof by Cases

Break p into cases and show that each case implies q (in which case $p \rightarrow q$).

$$p \rightarrow p_1 \lor p_2 \lor ... \lor p_n \rightarrow q$$

 $p_1 \vee p_2 \vee ... \vee p_n$ should cover all possible cases for p.

- We break our statement into all possible cases
- We show that each case leads to the conclusion we want

Proof by Cases Template

Proof by cases (at top level)

Notes:

 Rational: A number x is rational iff it can be written as the quotient of two integers. x = p/q

Problem:

4. Polynomial Proof ★

Prove that there does not exist a rational number x satisfying the equation $x^3 + x + 1 = 0$.

Hint: Use the fact that 0 is an even number.

You can use the following lemmas without proving:

- Odd \times Even = Even
- $Odd \times Odd = Odd$
- Even \times Even = Even
- Odd + Even = Odd
- Odd + Odd = Odd
- Even + Even = Even

4. Polynomial Proof ★

Prove that there does not exist a rational number x satisfying the equation $x^3 + x + 1 = 0$.

Hint: Use the fact that 0 is an even number.

You can use the following lemmas without proving:

Solution:

Suppose there is. Let a solution be $\frac{a}{b}$, with a, b in reduced form.

Then we know that $\frac{a^3}{b^3} + \frac{a}{b} + 1 = 0 \iff a^3 + ab^2 + b^3 = 0.$

Since the RHS is even, LHS should be even as well.

Case 1: a, b both odd.

Then we have LHS = odd + odd \times odd + odd = odd.

Case 2: a is odd, b is even.

Then we have LHS = odd + even + even = odd.

Case 3: a is even, b is odd.

(note that WLOG does not apply here since a, b are not symmetric; there is a term ab^2).

Then we have LHS = even + even + odd = odd.

Case 4: a, b are both even.

This cannot occur since a, b is in reduced form.

Each case results in LHS being odd which is a contradiction if LHS = 0. Thus we have proved by contradiction that the equation $x^3 + x + 1$ has no solution in \mathbb{Q} .

Notes:

Prime: A prime number p is a number greater than 1 whose only factors are 1 and itself. ∀x [x|p → (x=1 ∨ x=p)]

Problem:

5. Prime Proof *

Show that for any prime number p, $p^2 + 11$ is composite (not prime). Recall that a prime p is defined to be a positive integer ≥ 2 such that p and 1 are the only positive integers that divide p.

5. Prime Proof *

Show that for any prime number p, $p^2 + 11$ is composite (not prime). Recall that a prime p is defined to be a positive integer ≥ 2 such that p and 1 are the only positive integers that divide p.

Solution: We can consider two cases: either p is even, or it is odd.

- Case 1: Consider the even primes, which is just p = 2. $p^2 + 11 = 15$, and $15 = 5 \cdot 3$ is composite.
- Case 2: Now we consider the odd primes, or any prime greater than 2. Since p is odd, we have p = 2k + 1 for some integer k > 1. Then

$$p^{2} + 11 = (2k + 1)^{2} + 11 = 4k^{2} + 4k + 12 = 2(2k^{2} + 2k + 6).$$

Hence, p^2+11 can be factored into 2 and $2k^2+2k+6$, therefore p^2+11 is composite.

We have exhausted all non-overlapping cases and proved that for all primes p, $p^2 + 11$ is composite.

Disproof

To **disprove** a statement means to **prove the negation** of that statement:

Disprove
$$P(x) \equiv Prove \neg P(x)$$

Note that if the statement you are trying to disprove is a for-all statement, all you need to disprove it is a singular counter example since $\neg \forall x P(x) \equiv \exists x \neg P(x)$.

Example: Disprove it's raining today **≡ Prove** it's not raining today *****

Example: Disprove $P \rightarrow Q \equiv Prove \neg (P \rightarrow Q) \equiv \neg (\neg P \lor Q) \equiv (P \land \neg Q)$

Problem:

6. Rational Proof ★

- 1. Prove or disprove: For all nonzero rational numbers x and y, x^y is rational
- 2. Prove or disprove: For all nonzero integers x and y, x^y is rational

- 6. Rational Proof ★
 - 1. Prove or disprove: For all nonzero rational numbers x and y, x^y is rational
 - 2. Prove or disprove: For all nonzero integers x and y, x^y is rational

Solution:

- 1. This is false. Let x=2 and $y=\frac{1}{2}$. Then $x^y=\sqrt{2}$ which is irrational.
- 2. This is true. We prove this by cases. Case 1: y > 0 Then x^y is x multiplied by itself y times and thus x^y is an integer. As we know all integers are rational, x^y must be rational. Case 2: y < 0 Then $x^y = \frac{1}{x^{-y}}$. As y < 0, -y > 0 so x^{-y} is an integer. As both 1 is an integer, and x^{-y} is an integer, we know $\frac{1}{x^{-y}}$ is rational.

Problem:

7. Proving the Triangle Inequality

Prove the triangle inequality, which states that for all real numbers x and y, we have $|x| + |y| \ge |x + y|$ (where |x| represents the absolute value of x, which equals x if $x \ge 0$ and equals -x if x < 0).

Solution: This is a proof by cases. There are 4 cases to consider:

- x and y are both nonnegative
- x and y are both negative
- $x \ge 0, y < 0, x \ge -y$
- $x \ge 0, y < 0, x < -y$

Since x and y play symmetric roles (you can switch the values of x and y without impacting the validity of the triangle inequality), we can assume without loss of generality (WLOG) for the last two cases that $x \ge 0$ and y < 0.

- Case 1: If x and y are both nonnegative, then |x| + |y| = x + y = |x + y|.
- Case 2: If x and y are both negative, then |x| + |y| = (-x) + (-y) = -(x+y) = |x+y|.
- Case 3: If $x \ge 0$ and y < 0 and $x + y \ge 0$, then |x| + |y| = x + (-y) is some number greater than x. |x + y| is some positive number less than x since y is negative. Thus, $|x| + |y| \ge x \ge |x + y|$.
- Case 4: If $x \ge 0$ and y < 0 and x + y < 0, then |x| + |y| = x + (-y) is some number greater than -y. |x + y| = -(x + y) = (-x) + (-y) which is some positive number less than or equal to -y, since -x is nonpositive. Thus, we have $|x| + |y| \ge -y \ge |x + y|$.

We have now proved for all cases that the triangle inequality is valid. This example is purposely lengthy to show in full detail a proof by cases.