

БЛОК ТЕПЛОВОЙ ЗАЩИТЫ

БТ3-3.1 БТ3-3.2

ООО «Поволжская электротехническая компания»

Почтовый адрес:

Российская Федерация, Чувашская Республика, 428000, г. Чебоксары, а/я 163

Тел./факс: (8352) 57-05-16, 57-05-19

E-mail: info@piek.ru *Caŭm:* www.piek.ru

Руководство по эксплуатации предназначено для ознакомления потребителя с блоком тепловой защиты (в дальнейшем - БТЗ) с целью обеспечения полного использования его технических возможностей и содержит следующие разделы:

описание и работа изделия;

использование по назначению:

хранение и транспортирование.

Приступать к работе с блоком тепловой защиты можно только после ознакомления с настоящим руководством по эксплуатации!

1. ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

1.1 Назначение изделия.

Блок тепловой защиты предназначен для защиты от чрезмерного повышения температуры обмоток двигателей как при медленно нарастающих, так и быстро нарастающих тепловых перегрузках.

БТЗ является частью системы температурной защиты, включающей в себя температурный датчик (терморезистор), БТЗ, контактное (ПМЛ) или бесконтактное (ФЦ-0620, ПБР и т.д) коммутирующее устройство для отключения обмоток электродвигателя.

- 1.2 Область применения: системы автоматического регулирования технологическими процессами в энергетической и других отраслях промышленности.
- 1.3 Условное обозначение блока тепловой защиты в зависимости от питающего напряжения БТЗ-3.1-переменное 220В или БТЗ-3.2 -постоянное 24В.
 - 1.4 Степень зашиты IP54.
 - 1.5 БТЗ предназначен для эксплуатации в следующих условиях:
 - температура окружающего воздуха от минус 10 до плюс 50°C;
 - относительная влажность до 95% при температуре 35°C без
 - конденсации влаги;
 - атмосферное давление от 84 до 106,7 кРа;
 - внешние магнитные постоянные и (или) переменные поля сетевой
 - частоты с напряженностью в пределах от 0 до 400 А/т;
 - рабочее положение любое, лицевой панелью к оператору;
 - вибрация с частотой до 25 Hz с амплитудой не более 0,1 mm.

Блок тепловой защиты должен быть защищен от прямого воздействия солнечной радиации и атмосферных осадков.

Блок тепловой защиты не предназначен для работы во взрывоопасных средах и в средах, содержащих агрессивные пары, газы и вещества, вызывающие разрушение покрытий, изоляции и материалов.

1.6 Технические характеристики

Основные технические данные БТЗ приведены в таблице 1.

Таблица 1.

Параметр	БТЗ-3.1	БТЗ-3.2
Напряжение питания блока БТЗ, В	~220	=24
Классификационное сопротивление датчиков двигателя (терморезисторов), Ом	1650	1720
Потребляемая мощность, Вт	3	2
Коммутационная способность контактов реле блока	8A/250V активная нагрузка 3A/250V индуктивная нагрузка (cos φ=0,6)	

Допустимое отклонение напряжения питания от номинального— 15% + 10% - для БТЗ-3.1 и -10%+ 10% для БТЗ-3.2.

Длина линии связи не должна превышать 300 м.

Блок тепловой защиты обеспечивает фиксацию аварийной ситуации. Повторное включение двигателя возможно только после устранения причины срабатывания - при нажатии кнопки оператором «Перегрев двигателя».

Блок тепловой защиты является восстанавливаемым ремонтируемым одно функциональным изделием. Ремонт БТЗ может осуществляться изготовителем блока.

1.7 Состав, устройство и работа изделия

Блок тепловой защиты выполнен в шкафном варианте (приложение А).

На корпусе блока расположены отверстия для крепления его к монтажной панели.

В крышке установлены:

- светодиоды индикация о состоянии температурных датчиков двигателя.
- кнопка-индикатор аварийного режима «Перегрев двигателя»
- сальниковые ввода для подключения внешних кабелей.

На плате блока размещены: источник питания, анализатор выходного сопротивления линии связи блока с защищаемым двигателем, триггер-защелка со схемами регенерации и сброса, блок индикации, коммутационное реле.

Клеммник X1 включает в себя:

- 1,2 клеммы для подачи напряжения питания,
- 3 клемма для заземления БТЗ и экрана кабеля,
- 4,5 клеммы сигнализации, используются для выдачи сигнала аварии на контроллер или непосредственно на центральный терминал.
 - 6,7 клеммы для подключения блока к терморезисторам двигателя,
 - 8,9,10,11 клеммы для включения БТЗ в управляющую цепь пускателя

Работа БТЗ основана на непрерывном измерении сопротивления трех включенных последовательно терморезисторов, находящихся в пазах статора двигателя и сравнении его с классификационным сопротивлением (соответствующем температуре срабатывания) терморезисторов. Если сопротивление терморезисторов меньше классификационного, то триггер- защелка сброшен и коммутационное реле замыкает цепи управления пускателем

(клемма 8 замкнута с клеммой 9, а клемма 10 замкнута с клеммой 11). Если сопротивление терморезисторов больше классификационного, то устройство сравнения устанавливает триггер-защелку, коммутационное реле размыкает цепи управления пускателем и двигатель останавливается.

Ручной сброс защиты (нажатием кнопки «Перегрев двигателя») становится возможным при снижении температуры двигателя ниже температуры срабатывания.

С целью диагностики линии связи с датчиком анализатор определяет состояния, соответствующие ее обрыву или короткому замыканию.

В этих случаях БТЗ также отключает двигатель, так как защита двигателя в этих условиях невозможна. Переход в дежурный режим произойдет после устранения неисправности на линии и сброса защиты. Информация о состоянии двигателя и линии может быть передана в контроллер или на центральный терминал через клеммы 4,5 по гальванически развязанному каналу с помощью оптопары.

При любой аварии цепь сигнализации разрывается. Максимальный ток цепи сигнализации 20 мA, напряжение 24 B.

Режим работы БТЗ длительный S1 по ГОСТ 183-74.

Схема подключения БТЗ к защищаемому двигателю и пускателю приведена в приложении А.

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ.

2.1 Подготовка изделия к использованию.

Блоки тепловой защиты отправляются с предприятия-изготовителя упакованными в транспортную тару. Получив груз, следует убедиться в полной сохранности тары. При наличии повреждений следует составить акт в установленном порядке и обратиться с рекламацией к транспортной организации.

Распаковать ящик и вынуть блок тепловой защиты. Осмотреть блок тепловой защиты и убедиться в отсутствии внешних повреждений. Проверить комплектность поставки блок тепловой защиты в соответствии с паспортом. Установить БТЗ в шкафу, предусмотрев возможность свободного наблюдения индикаторов блока и осуществления безопасного сброса защиты.

Установку блока тепловой защиты в шкаф необходимо проводить с соблюдением следующих мер безопасности:

- все работы с блоком тепловой защиты производить при полностью снятом напряжении питания;
- работы с блоком тепловой защиты производить только исправным инструментом.

Тщательно зачистить заземляющий проводник сечением не менее 1,5 mm2 (приложение A), вставить провод в клемму 3 и затянуть винт клеммы.

Сопротивление заземляющего устройства должно быть не более 10 ОМ.

Проверить работу блока тепловой защиты, для чего:

- подготовить кабель типа МКЭШВ ТУ 16 К13-027-2001 сечением 0,5mm2 с одной витой парой необходимой длины для соединения терморезисторов в двигателе с БТ3. На одном конце кабеля витую пару подсоединить к клеммам 6 и 7 (приложение A),
- а экранирующую оплетку соединить с клеммой 3, к витой паре второго конца кабеля подключить резистор С2-23 или аналогичный ему сопротивлением 360 Ом и мощностью 1 Вт.
- на клеммы 1 и 2 подать напряжение питания, при этом должен загореться индикатор «Питание».

- подключить к клеммам 8 и 9 (приложение А) омметр и измерить сопротивление.

При правильной работе БТЗ оно должно быть не более 1 Ом. Такое же сопротивление должно быть между клеммами 10 и 11;

- отключить резистор от кабеля. Должен загореться индикатор «ОБРЫВ».

Сопротивление между клеммами 8-9 и 10-11 должно увеличиться до бесконечности.

Снова подключить резистор к кабелю. Сопротивление между клеммами 8-9 и 10-11 не должно измениться.

Сбросить защиту нажатием кнопки «Перегрев двигателя». Красный индикатор на кнопке «Перегрев двигателя» должен погаснуть, а сопротивление между клеммами 8-9 и 10-11 должно уменьшиться до величины не более 1 Ом.

Замкнуть резистор 360 Ом «накоротко» должен загореться индикатор «КЗ», а сопротивление между клеммами 8-9 и 10-11 должно увеличится до бесконечности.

Разомкнуть резистор. Индикатор «КЗ» должен погаснуть, а сопротивление между клеммами 8-9 и 10-11 должно уменьшиться до величины не более 1 Ом.

Подключить второй конец кабеля к клеммам датчика на двигателе согласно схеме (Приложения A) (клемма - 6 блока должна соединяться с клеммой T1 двигателя).

После подачи питания БТЗ должен перейти в дежурный режим.

2.2 Использование изделия.

В процессе эксплуатации блоки тепловой защиты терморезисторы и линии связи должны подвергаться профилактике. Периодичность профилактических осмотров блоков тепловой защиты устанавливается в зависимости от производственных условий, но не реже чем 1 раз в год. Во время профилактических осмотров необходимо проводить следующие работы: проверка состояния кабелей связи (сопротивления жил и состояние изоляции).

Погонное сопротивление жил должно быть не более чем на 20% больше номинального погонного сопротивления используемого кабеля.

Сопротивление изоляции между жилами кабеля а также жилами и экраном при напряжении 1000 В должно быть не менее 10 МОм.

Проверка состояния клеммных соединений на БТЗ и на двигателе, вслучае необходимости затянуть клеммы БТЗ моментом 0,1 Nxm а двигателя 1 Nxm;

до +140 °C сопротивление терморезисторов должно находится в пределах от 60 до 1200 Ом.;

- проверка состояние заземляющего устройства, в случае необходимости (при наличии ржавчины) заземляющие элементы должны быть очищены и вновь покрыты консистентной смазкой.

Перечень часто встречающихся или возможных неисправностей и способы их устранения приведены в таблице 2.

Возможная неисправность	Вероятная причина	Способ устранения
При включении в сеть блок не работает, индикатор «питание» не загорается	Нарушение цепь питания	Проверить напряжение на входных цепях блока и устранить неисправность.
Защита не срабатывает при перегреве двигателя,	Ухудшилось сопротивление изоляции кабеля связи	Заменить кабель.
индикатор «перегрев» не загорается.	Вышли из строя терморезисторы.	Заменить двигатель.
Индикатор «перегрев» загорается, двигатель не отключается	Вышли из строя реле блока	Отправить на ремонт

3. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ.

- 3.1 Блок должен храниться в сухом отапливаемом помещении при температуре окружающего воздуха от плюс 5 до плюс 40°С и относительной влажности до 80% при 25°С. Воздух помещения не должен содержать пыль или примеси агрессивных паров и газов.
- 3.2 БТЗ в заводской упаковке могут транспортироваться всеми видами транспорта с защитой от дождя и снега на любое расстояние без ограничения скорости при температуре окружающего воздуха от минус 50 до плюс 50°C. Транспортирование на самолетах должно осуществляться в герметизированных отапливаемых отсеках.
- 3.3. Во время погрузочно-разгрузочных работ и транспортирования, упакованные блоки тепловой защиты не должны подвергаться резким ударам и воздействию атмосферных осадков. Способ укладки упакованных блоков тепловой защиты на транспортное средство должен исключать их перемещение.

4. УТИЛИЗАЦИЯ

Блок тепловой защиты не представляет опасности для жизни, здоровья людей и окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем блок тепловой защиты.

Приложение А

Габаритные размеры блока и Схема подключения блока БТЗ-3.1

Схема подключения блока БТЗ (рекомендцемое)

Габаритные размеры блока питания

