# **SmartPixels:** Predict track parameters and uncertainties

Speaker: Arghya Ranjan Das Purdue University

### **Challenges in High-Luminosity Environments**

- Event Rate: At 40 MHz, the Large Hadron Collider (LHC) generates enormous data volumes, creating a bottleneck in processing and storage.
- Pixel Detectors' Role: Pixel detectors have high granularity (future detectors will have even more granularity) which are essential for tracking, vertexing, and flavor tagging.
- Data Constraints:
  - Future detectors with high precision will produce extensive amount of data.
  - With Higher Luminosity we have more hits but also backgrounds
  - Low-level triggers prioritize other subsystems, leading to missed events if only pixel data indicate <u>new</u> <u>physics</u>, as in certain Beyond Standard Model (BSM) scenarios.



Build you own CMS detector from here

### **Proposed Solution: On-Sensor Machine Learning (ML)**

- Objective: Extraction of important pixel information for high-priority physics events by making data-driven decisions.
- Approach: Implement a compact, low-latency neural network (NN) directly on the sensor.
- Challenges with on-chip ML: Low Latency Requirements
  - The NN must have low latency.
  - Use highly quantized data (2-4 bits) to store charge cluster information.
  - The NN should have small number of parameters.
  - For data reduction process only the first and last time slices out of 20 time slices.
  - The NN should be be optimized further by pruning redundant weights.



#### Variable of interest

- Predict the beta  $(\beta)$  angle of the particle's trajectory.
- Use the predicted beta angle to estimate the particle's transverse momentum (PT).

$$\beta = \pi/2 - \Delta\phi - \arctan(y_0/R)$$
$$\sin(\Delta\phi) = qRB/(2p_T)$$

- x and y coordinates: To locate the position of the particle
- Also predict the alpha ( $\alpha$ ) angle, it can have some dependency on the beta ( $\beta$ ) angle.





First time step

Last time step

### **Angles and uncertainty**

By predicting the angle along with its uncertainty, we can define a cone of expected hit locations in the next detector layer. This helps to reduce combinatorial complexity:

 Smaller uncertainty results in a narrower cone, which further reduces potential hit combinations.

Hence, enables faster tracking and vertexing



### **Pixel Geometry and Dataset**

#### Assuming futuristic pixel geometry:

- 21x13 array of pixels
- 50x12.5 μm pitch, 100 μm thickness
- Located at radius of 30 mm
- 3.8 T magnetic field
- Time steps of 200 picoseconds (T(t=20)=4ns)

Dataset Link: here



#### Model Architecture (MDN)



SmartPix Model Diagram

Network Type: Mixture Density Network (MDN)

Loss function: Negative log-likelihood

Total number of parameters: 2,029

Model Quantization: 8/4 bits

Data Quantization: 4 bits

Output (14 variables)

- **4 target variables:** local x, local y, cot  $\alpha$ , cot  $\beta$
- **10 Co-variances:** Measure of uncertainties

### Model convergence



| Layer (type)                              | Output Shape      | Param # |
|-------------------------------------------|-------------------|---------|
| input_1 (InputLayer)                      |                   | 0       |
| q_separable_conv2d (QSepara<br>bleConv2D) | (None, 11, 19, 5) | 33      |
| q_activation (QActivation)                | (None, 11, 19, 5) | Θ       |
| q_conv2d (QConv2D)                        | (None, 11, 19, 5) | 30      |
| <pre>q_activation_1 (QActivation )</pre>  | (None, 11, 19, 5) | 0       |
| average_pooling2d (AveragePooling2D)      | (None, 3, 6, 5)   | Θ       |
| <pre>q_activation_2 (QActivation )</pre>  | (None, 3, 6, 5)   | 0       |
| flatten (Flatten)                         | (None, 90)        | Θ       |
| q_dense (QDense)                          | (None, 16)        | 1456    |
| $q_activation_3$ (QActivation)            | (None, 16)        | Θ       |
| q_dense_1 (QDense)                        | (None, 16)        | 272     |
| <pre>q_activation_4 (QActivation )</pre>  | (None, 16)        | Θ       |
| q_dense_2 (QDense)                        | (None, 14)        | 238     |
|                                           |                   |         |

Total params: 2,029 Trainable params: 2,029 Non-trainable params: 0

### **Current Results**



### **Different Sensor Geometry (dataset 2s)**

- Training conducted on all geometries
- Example shown: Comparison for beta (see right)
- Visuals become cluttered with all geometries included
- To enhance visual clarity, selected only two types of geometries for comparison
- Thus we choose the geometries with same pitches but different thickness:
  - (100,25,150)um-175V
  - (100,25,100)um-100V

And we also study the **dependence** on the number of **time-slices**.



type1 type2

All Trainings are done with batch\_size = 5000

### **Different Sensor Geometry Results**



#### 2 Timeslices with different thickness

#### Geometry and Time Slice

- (100,25,150)um-175V-2t
- (100,25,100)um-100V-2t
- Intuitively the higher thickness should gives better accuracy.
- And as evident from the plots we are getting better accuracy for higher thickness (except for alpha).



#### 2 vs 20 timeslices

#### Geometry and Time Slice

- (100,25,150)um-175V-2t
- (100,25,150)um-175V-20t
- Used 2 time-slices for model training (full 20 may not be available)
- Observed performance improves with more time-slices due to increased information
- Found the performance loss when training with only 2 time-slices is small.



#### 2 vs 20 timeslices

#### Geometry and Time Slice

- (100,25,100)um-100V-2t
- (100,25,100)um-100V-20t
- We see for x, y, and beta the performance increased with more timeslices. Similar to the last slide.
- Except for the alpha angle.
   Somehow increasing the time-information decreases the accuracy.



### **Multi-Objective Optimization**

$$Loss = \mathcal{L} = L_0(\boldsymbol{ heta}) + \sum_{lpha=1}^N \lambda_lpha L_lpha(oldsymbol{ heta})$$

#### Penalty Method (ex: l1/l2 regularizers)

$$\dot{ heta_i} = -rac{\partial}{\partial heta_i} L_0(oldsymbol{ heta}) - \lambda rac{\partial}{\partial heta_i} L_1(oldsymbol{ heta})$$

We want to optimize LO subject to some constraint L1

- An optimal solution can be determined when the Pareto front is convex, but this does not hold for concave fronts.
- Generally, the Pareto front is unknown and is a mix of both the types.
- Thus there is no mathematical guarantee for optimizing multiple objectives simultaneously

Thus we see move to another method of using lagrange multipliers



J. Degrave & I. Korchunov

### BDMM (Basic Differential method of Multiplier)

Lagrange Multipliers: Optimal solution found we satisfy the condition

$$\frac{\partial \mathcal{L}}{\partial \theta_i} = 0$$
  $\frac{\partial \mathcal{L}}{\partial \lambda_i} = 0$ 

Pure gradient descent does not work with Lagrange multipliers due to saddle points. We perform gradient descent on weights and gradient ascent on Lagrange multipliers.

$$\dot{ heta_i} = -rac{\partial}{\partial heta_i} L_0(oldsymbol{ heta}) - \sum_{lpha=1}^N \lambda_lpha rac{\partial}{\partial heta_i} L_lpha(oldsymbol{ heta})$$

$$\dot{\lambda}_i = L_i(\boldsymbol{\theta})$$

Equation of motion of the weights

$$\ddot{ heta_i} + \sum_j (rac{\partial^2 L_0}{\partial x_i \partial x_j} + \sum_{lpha=1}^N \lambda_lpha rac{\partial^2 L_lpha}{\partial x_i \partial x_j}) \dot{x_j} + \sum_{lpha=1}^N L_lpha rac{\partial L_lpha}{\partial x_i} = 0$$

$$\dot{E} = -\sum_{i,j}\!\!\dot{x_i}(\!rac{\partial^2 L_0}{\partial x_i\partial x_j} + \!\sum_{lpha=1}^N\!\!\lambda_lpha \!rac{\partial^2 L_lpha}{\partial x_i\partial x_j})\dot{x_j} = -\sum_{i,j}\!\!\dot{x_i}A_{ij}\dot{x_j}$$

We need to add some damping





J. Degrave & I. Korchunov

### MDMM (Modified Differential method of Multiplier)

We use a technique termed MDMM which is similar to the last method with just and extra penalty term so as to facilitate damping

$$Loss = \mathcal{L} = L_0(\pmb{\theta}) + \sum_{\alpha=1}^N \lambda_\alpha L_\alpha(\pmb{\theta})$$
 Algorithm: Define the loss as (everything else stays

Algorithm: Define the loss as (everything else stays the same)

$$\mathcal{L} = L_0(oldsymbol{ heta}) + \sum_{lpha=1}^N ig(\lambda_lpha L_lpha(oldsymbol{ heta}) + rac{c}{2} |L_lpha(oldsymbol{ heta})|^2ig)$$

Do gradient descent on heta and a gradient ascent on  $\lambda$ 

**For Sparsity:** Using just I1 and I2 loss was causing the model to force all weights to zero causing poor accuracy.

Loss function used to facilitate sparsification using the MDMM technique  $L_1(\theta) = (target - S(\theta)) \sum_i |\theta_i|$ 



J. Degrave & I. Korchunov

### **Sparsification and Pruning with MDMM**

- The Baseline model has L1/L2 regularizers to have small weights (basically the penalty method).
- But the penalty method is not the best to do multi-objective optimizations.
- Hence we use MDMM to do the multiobjective optimization and use a function to measure the sparsity of the entire model and perform model sparsification.

- For multi-objective optimization, we have some secondary loss functions along with the primary loss function that we are going to minimize.
- Here NLL is the primary loss function and we chose (target sparsity- current sparsity)\*L1 to be the constraint loss function.

Where L1 = Sum(|weights|) and Sparsity is the fraction of weights less than some epsilon (here we chose epsilon = 1e-3)

### 66.8% Sparcification

- Final Sparsity of the layers: [0, 0.44, 0.76, 0.9, 0.71]
- Global Sparsity (Mean): 0.668
- epsilon = 1e-3
- So, 66.8 % of the weights are below the value of 1e-3
- Final NLL value: -15K

The figure on right shows the (layer-by-layer) evolution of sparsity as training progresses.







- Majority of sparsification is observed in the MLP layers.
- **Convolutional layers** exhibit less sparsification due to reuse of the same filters

### Physics performance comparison



Types
non\_mdmm (L1/L2 reg)
mdmm

- As expected, the sparse model shows a performance decrease.
- However, considering 66.8% of weights are effectively zero and removable, the performance drop is not substantial.
- Without regularizers or MDMM the system does not converges properly.

### Weights (non-MDMM vs MDMM)





- The **Green** plots shows the model weights trained with the MDMM.
- We see most of the weights are centered around the zero value
- The **Blue** plots shows the model weights trained without the **MDMM**. which is more distributed compared to the green plot.
- The red and orange plots are biases and not our concern at this moment



### Weights (non-MDMM vs MDMM)





- Thus there are better ways to implement sparsity than L1/L2 regularizations.
- We can give a target sparsity and achieve that.
- Also we can target specific layers and give different target sparsity to each layers
- As, we see the MLP layers high sparsity. So we can try training with a smaller model and see how the performances turns out to be



#### **Future Directions**

- **Further model quantization** to reduce the number of bits required.
- Compare the model sparsification with MDMM and regularizers of different hyper-parameters.
- Evaluate various model reduction techniques and its impact on actual **chip performance**, with some loss realistic function taking into account of the chip latencies.
- Apply techniques like **BatchNorm**, **LayerNorm** etc. to improve model performance.
- We can try training with a smaller model (got from MDMM) and see how the performances turns out to be.
- Sparsification on targeted layer by layer basis with MDMM.

#### References

- https://arxiv.org/pdf/2310.02474
- https://arxiv.org/pdf/2312.11676
- https://indico.fnal.gov/event/64625/contributions/295309/attac hments/179560/245237/NewPersp-SmartPix 2024.pdf
- https://github.com/jennetd/semiparametric/blob/gauss4d/timeslices-2/neurips-3x3-2conv/draw from weights.ipynb
- <a href="https://towardsdatascience.com/cross-entropy-negative-log-likeli-hood-and-all-that-jazz-47a95bd2e81">https://towardsdatascience.com/cross-entropy-negative-log-likeli-hood-and-all-that-jazz-47a95bd2e81</a>
- https://indico.slac.stanford.edu/event/7467/contributions/5966/ attachments/2869/8024/Dickinson 2023.05.17 LCWS vf.pdf
- https://www.statlect.com/glossary/log-likelihood

# Thank you

Github: https://github.com/ArghyaDas112358/570Al Final Project

## **Backup**

#### What we have? What we will have?





#### **Other Geometries**

# Dataset 2s (Barrel, physical pT) dataset2s type1: 50 um x 10 um x 100 um sensor @ 100V dataset2s type2: 50 um x 12.5 um x 100 um sensor @ 100V dataset2s type3: 50 um x 15 um x 100 um sensor @ 100V dataset2s type4: 50 um x 20 um x 100 um sensor @ 100V dataset2s type5: 50 um x 25 um x 100 um sensor @ 100V dataset2s type6: 100 um x 25 um x 100 um sensor @ 100V dataset2s type7: 100 um x 25 um x 150 um sensor @ 175V # Dataset 3s (Barrel, flat pT) dataset3s type1: 50 um x 10 um x 100 um sensor @ 100V dataset3s type2: 50 um x 12.5 um x 100 um sensor @ 100V dataset3s type3: 50 um x 15 um x 100 um sensor @ 100V dataset3s type4: 50 um x 20 um x 100 um sensor @ 100V dataset3s type5: 50 um x 25 um x 100 um sensor @ 100V dataset3s type6: 100 um x 25 um x 100 um sensor @ 100V dataset3s type7: 100 um x 25 um x 150 um sensor @ 175V # Dataset 4s (End-caps, physical pT) dataset4s type1: 50 um x 10 um x 100 um sensor @ 100V dataset4s type2: 50 um x 12.5 um x 100 um sensor @ 100V dataset4s type3: 50 um x 15 um x 100 um sensor @ 100V dataset4s type4: 50 um x 20 um x 100 um sensor @ 100V dataset4s type5: 50 um x 25 um x 100 um sensor @ 100V dataset4s type6: 100 um x 25 um x 100 um sensor @ 100V dataset4s type7: 100 um x 25 um x 150 um sensor @ 175V

#### Variables (code)

```
df['sigmax'] = abs(df['M11'])
 df['sigmay'] = np.sqrt(df['M21']**2 + df['M22']**2)
 df['sigmacotA'] = np.sqrt(df['M31']**2+df['M32']**2+df['M33']**2)
 df['sigmacotB'] = np.sqrt(df['M41']**2+df['M42']**2+df['M43']**2+df['M44']**2)
 '''df['cov'] = np.sqrt(df['M11']*df['M21'])'''
 df['pullx'] = (df['xtrue']-df['x'])/df['sigmax']
 df['pully'] = (df['ytrue']-df['y'])/df['sigmay']
 df['pullcotA'] = (df['cotAtrue']-df['cotA'])/df['sigmacotA']
df['pullcotB'] = (df['cotBtrue']-df['cotB'])/df['sigmacotB']
 fig, axes = plt.subplots(2,2,sharex=True,sharey=True,figsize=(8,6))
 pull plot(axes[0][0],'pullx',r'$x$ pull')
 pull plot(axes[0][1],'pully',r'$y$ pull')
 pull plot(axes[1][0],'pullcotA',r'$\cot\alpha$ pull')
 pull plot(axes[1][1],'pullcotB',r'$\cot\beta$ pull')
Mean -0.029727496110678025
Sigma -0.9297218351149932
Mean -0.10882627175349704
Sigma 0.8644523573719014
Mean -0.12909672012398107
Sigma -0.8106461105972753
Mean -0.2167140557412369
Sigma 0.8842340287636578
```

### Pixel AV: <a href="https://cds.cern.ch/record/687440?ln=en">https://cds.cern.ch/record/687440?ln=en</a>

- Provides an accurate model of charge deposition, particularly from hadronic tracks.
- Includes a realistic mapping of the electric field.
- Incorporates an established model for charge drift physics.
- Accounts for electronic noise, response, and threshold effects.
- Models the time evolution of drift and induced currents within the pixel sensor.



### **Negative Log-Likelihood**

$$f(x_i) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right)$$

$$f(x_i; \mu, \sigma^2) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right)$$

$$L(\theta; \xi) = f(\xi; \theta) = \prod_{i=1}^n f_X(x_i; \mu, \sigma^2)$$

$$= \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right)$$

$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$

$$\begin{split} &l(\theta;\xi) = \ln[L(\theta;\xi)] \\ &= \ln\left[ \left( 2\pi\sigma^2 \right)^{-n/2} \exp\left( -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right) \right] \\ &= \ln\left[ \left( 2\pi\sigma^2 \right)^{-n/2} \right] + \ln\left[ \exp\left( -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right) \right] \\ &= -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \\ &= -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \end{split}$$