2N5550 / 2N5551

NPN Silicon Epitaxial Planar Transistors

for general purpose, high voltage amplifier applications.

As complementary types the PNP transistors 2N5400 and 2N5401 are recommended.

On special request, these transistors can be manufactured in different pin configurations.

1. Emitter 2. Base 3. Collector TO-92 Plastic Package

Absolute Maximum Ratings (T_a = 25 °C)

Parameter		Symbol	Value	Unit	
Collector Base Voltage	2N5550 2N5551	V_{CBO}	160 180	V	
Collector Emitter Voltage	2N5550 2N5551	V _{CEO}	140 160	V	
Emitter Base Voltage		V_{EBO}	6	V	
Collector Current		I _C	600	mA	
Power Dissipation		P_{tot}	625	mW	
Junction Temperature		Tj	150	°C	
Storage Temperature Range		T_{stg}	- 55 to + 150	°C	

Dated: 16/08/2016 Rev: 01

Characteristics at T_a = 25 °C

Parameter		Symbol	Min.	Max.	Unit
DC Current Gain	ONEEEO	h	60		
at $V_{CE} = 5 \text{ V}$, $I_C = 1 \text{ mA}$	2N5550 2N5551	h _{FE} h _{FE}	60 80	_	_
at $V_{CE} = 5 \text{ V}$, $I_C = 10 \text{ mA}$	2N5550	h _{FE}	60	250	_
	2N5551	h _{FE}	80	250	_
at $V_{CE} = 5 \text{ V}, I_C = 50 \text{ mA}$	2N5550	h _{FE}	20	-	-
	2N5551	h_{FE}	30	-	-
Collector Base Cutoff Current					
at $V_{CB} = 100 \text{ V}$	2N5550	I_{CBO}	-	100	nA
at V _{CB} = 120 V	2N5551		-	50	
Emitter Base Cutoff Current		1	_	50	nA
at $V_{EB} = 4 \text{ V}$		I _{EBO}	-	50	IIA
Collector Base Breakdown Voltage					
at $I_C = 100 \mu A$	2N5550	$V_{(BR)CBO}$	160	-	V
	2N5551		180	-	
Collector Emitter Breakdown Voltage	0115550		4.40		
at $I_C = 1 \text{ mA}$	2N5550	$V_{(BR)CEO}$	140	-	V
	2N5551		160	-	
Emitter Base Breakdown Voltage		$V_{(BR)EBO}$	6	_	V
at $I_E = 10 \mu\text{A}$		(BIT)EBO			
Collector Emitter Saturation Voltage				0.15	
at $I_C = 10$ mA, $I_B = 1$ mA at $I_C = 50$ mA, $I_B = 5$ mA	2N5550	$V_{CE(sat)}$	_	0.15 0.25	V
at IC = 30 IIIA, IB = 3 IIIA	2N5551	, ,	-	0.23	
Base Emitter Saturation Voltage				¥ · =	
at $I_C = 10 \text{ mA}$, $I_B = 1 \text{ mA}$			-	1	
at $I_C = 50$ mA, $I_B = 5$ mA	2N5550	$V_{BE(sat)}$	-	1.2	V
	2N5551		-	1	
Gain Bandwidth Product		ı	100	200	N 41 1-
at $V_{CE} = 10 \text{ V}$, $I_C = 10 \text{ mA}$, $f = 100 \text{ MHz}$		f⊤	100	300	MHz
Collector Output Capacitance		C		6	nΕ
at $V_{CB} = 10 \text{ V}$, $f = 1 \text{ MHz}$		C_ob	_	6	pF

Fig. 5 $C_{ob}\ -\ V_{CB}$

