IN PRACTICE

- computing isogenies often **bottleneck** in efficiency of isogeny-based cryptography
- isogenies of degree 2^n are **most efficient**, for largest n with rational points of order 2^n
- can describe such an isogeny by a single point $K \in E[2^n](\mathbb{F}_q)$
- we **choose** our field \mathbb{F}_q and curve E such that we have many of such points/isogenies

FINDING POINTS

Q: How do we find a point K of order 2^n ?

- there is no $P \in E(\mathbb{F}_q)$ such that [2]P = K, otherwise, P has order 2^{n+1} (contradiction)
- so K is not a point in the subgroup $[2]E(\mathbb{F}_q)$
- for a point $P \in E(\mathbb{F}_q)$, can we quickly find out if

$$P \in E(\mathbb{F}_q) \setminus [2]E(\mathbb{F}_q)$$

YES!

IN PRACTICE

- computing isogenies often **bottleneck** in efficiency of isogeny-based cryptography
- isogenies of degree 2^n are **most efficient**, for largest n with rational points of order 2^n
- can describe such an isogeny by a single point $K \in E[2^n](\mathbb{F}_q)$
- we **choose** our field \mathbb{F}_q and curve E such that we have many of such points/isogenies

FINDING POINTS

Q: How do we find a point K of order 2^n ?

- there is no $P \in E(\mathbb{F}_q)$ such that [2]P = K, otherwise, P has order 2^{n+1} (contradiction)
- so K is not a point in the subgroup $[2]E(\mathbb{F}_q)$
- for a point $P \in E(\mathbb{F}_q)$, can we quickly find out if

$$P \in E(\mathbb{F}_q) \setminus [2]E(\mathbb{F}_q)$$

YES!

Theorem 2. The *Tate profile* is a linear map $t_{[2]}: E(\mathbb{F}_q) \to \mu_{[2]}$ such that its *kernel* are precisely the points $P \in [2]E(\mathbb{F}_q)$.

