Dynamic Programming + Li Chao Tree

Problema: Sea A[1,...,N] un arreglo de N enteros, $1 \le A[i] \le 10^6$, $1 \le N \le 10^4$. Definimos el costo del subarreglo A[l,...,r] como $(A[r]-A[l])^2$. Dado $1 \le K \le \min\{N,100\}$, debemos particionar el arreglo en K subarreglos no vacíos tal que el costo total de los subarreglos sea mínimo, es decir, la suma de los costos de cada subarreglos sea mínima, e imprimir dicho costo total.

Solución: Consideremos la siguiente $DP[\][\]$ de dos estados:

DP[m][i] =el costo total mínimo de partir A[1, ..., i] en m subarreglos, $m \le i$.

Notemos $DP[1][i] = (A[1] - A[i])^2$ para todo i y DP[m][m] = 0. A continuación veremos la transición de la DP.

Al particionar el arreglo $A[1,\ldots,i]$, tenemos que escoger en índice k en el que empezará el m-ésimo subarreglo, y después partir el subarreglo $A[1,\ldots,k-1]$ en m-1 subarreglos. Como debe haber al menos m-1 elementos en $A[1,\ldots,k-1]$, entonces $m \leq k \leq i$. Así, el costo total mínimo de partir $A[1,\ldots,i]$ en m subarreglos es escoger el k que minimiza $(A[k]-A[i])^2$ el costo de $A[k,\ldots,i]$ más el costo total mínimo de partir $A[1,\ldots,k-1]$ en m-1 subarreglos. Es decir,

$$DP[m][i] = \min_{m \le k \le i} \{DP[m-1][k-1] + (A[k] - A[i])^2\}. \quad (\star)$$

Para calcular el mínimo en (\star) , usaremos el Li Chao Tree. Supongamos $c_{m,k} = DP[m-1][k-1]$ ya está calculado para $m \le k \le i$ y consideremos el conjunto de funciones $\{f_{m,k}\}_{m \le k \le i}$ dadas por

$$f_{m,k}(x) = c_{m,k} + (A[k] - x)^2 = c_{m,k} + A[k]^2 - 2A[k]x + x^2.$$

Estas funciones se intersectan a lo más una vez ya que

$$c_{m,k} + A[k]^2 - 2A[k]x + x^2 = f_{m,k}(x) = f_{m,k'}(x) = c_{m,k'} + A[k']^2 - 2A[k']x + x^2$$

$$\Leftrightarrow 0 = 2x(A[k'] - A[k]) + A[k]^2 - A[k']^2 + c_{m,k} - c_{m,k'},$$

y esta última ecuación tiene a lo más una solución para x. De modo que podemos encontrar el mínimo de estas funciones evaluadas en x = A[i] con el Li Chao-Tree en $\log N$, y entonces encontraremos

$$DP[m][i] = \min_{m \le k \le i} \{ f_{m,k}(A[i]) \}$$

de manera óptima.

Iremos llenando la matriz $DP[\][\]$ por filas. Para llenar la fila m necesitamos de la fila m-1. La primer fila ya mencionamos cómo se llena. También mencionamos DP[m][m]=0. Supongamos ya tenemos calculado DP[m][i] y tenemos un Li Chao Tree con las funciones $f_{m,k}, k=m,\ldots,i$. Para calcular DP[m][i+1], simplemente agregamos la función $f_{m,i+1}$ al Li Chao Tree que teníamos anteriormente en $\log N$ y buscamos la función que minimiza la evaluación en A[i+1] también en $\log N$. De esta manera podemos ver que llenar la matriz $DP[\][\]$ tendrá complejidad $O(KN\log N)$.