

Programme: B.Tech.

Course Code: CT-16011

Branch: Computer Engineering & IT

## COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

## **END Semester Examination**

Semester: IV

Academic Year:2018-19

Course Name: Theory of Computation

| Duration: 3 Hrs Max Marks: 60                                             |                                                                                                                                                                                                                                                                                                                                          |          |     |      |      |     | a                                            |          |    |         |                |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|------|------|-----|----------------------------------------------|----------|----|---------|----------------|
| Student PRN No.                                                           |                                                                                                                                                                                                                                                                                                                                          | T        |     |      |      |     |                                              |          |    |         |                |
| Instructions:                                                             |                                                                                                                                                                                                                                                                                                                                          | <b>.</b> |     | I    |      | •   | <u>                                     </u> | <u> </u> |    | l.      | الــــ         |
| <ol> <li>Mobile</li> <li>Writing</li> <li>Excha</li> <li>Write</li> </ol> | es to the right indicate the full marks. e phones and programmable calculators are strictly programmable calculators are strictly programything on question paper is not allowed. ange/Sharing of stationery, calculator etc. not allowed. your PRN Number on Question Paper. al definitions and diagrams to the right indicates full ma |          | ed. |      |      |     |                                              |          |    |         |                |
|                                                                           |                                                                                                                                                                                                                                                                                                                                          |          |     |      |      |     |                                              | Mar      | ks | СО      | PO             |
| Q1 a                                                                      | Let $\Sigma = \{0,1\}$ and let $D = \{ w \mid w \text{ contains occurrences of the substrings 01 and 10} \}$ .                                                                                                                                                                                                                           | an e     | equ | al n | um   | ber | of                                           | 06       | 5  | 2,<br>3 | 1,<br>4,       |
|                                                                           | Thus $101 \in D$ because $101$ contains a single $01$ and a single $10$ , but $1010 \notin D$ because $1010$ contains two $10s$ and one $01$ . Show hat D is a regular language.                                                                                                                                                         |          |     |      |      |     |                                              |          |    |         | 6,<br>9,<br>11 |
| b                                                                         | The working of a vending machine can be automaton. Give four more examples of automaton in real life. Explain in brief.                                                                                                                                                                                                                  |          |     |      | -    |     |                                              | 06       | 5  | 2       |                |
| Q2 a                                                                      | Show by giving an example that if M is an language C, swapping the accept and non doesn't necessarily yield a new NFA to complement of C.                                                                                                                                                                                                | ı-acc    | ept | st   | ates | in  | M                                            | 06       | j  | 1       | 1,<br>9,<br>11 |
|                                                                           | Is the class of languages recognized by complement? Explain your answer.                                                                                                                                                                                                                                                                 | NFA      | s c | clos | ed   | und | er                                           |          |    |         |                |

# COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

|                       | <b>b</b> Consider language, ADD = $\{x = y + z \mid x, y \text{ and } z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z \}$ and $\Sigma = \{0, 1, +, =\}$ .        | 06 | 1   |                |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----------------|
|                       | Show that ADD is not regular.                                                                                                                                                                  |    | . • |                |
|                       |                                                                                                                                                                                                |    |     |                |
|                       |                                                                                                                                                                                                |    |     |                |
| <b>Q</b> <sub>3</sub> | a Give a context-free grammar that generates the language                                                                                                                                      | 06 | 2   | 1,             |
|                       | $A = \{a^i b^j c^k   i = j \text{ or } j = k \text{ where } i, j, k \ge 0\}.$                                                                                                                  |    | •   | 4,             |
|                       | Is your grammar ambiguous? Why or why not? If its ambiguous represent it in CNF.                                                                                                               | ·  |     | 6,<br>9,<br>11 |
|                       | <b>b</b> Design a Push Down Automata accepting languages either by final state or empty stack for following languages.                                                                         | 06 | 3   |                |
|                       | i. $L = \{ a^n b^m \mid n \le m \le 2n \}.$<br>ii. $L = \{ a^{2n} b^{3n} \mid n \ge 0 \}.$                                                                                                     |    |     |                |
|                       |                                                                                                                                                                                                |    |     |                |
| Q 4                   | a Design a Turing Machine to compare length of two strings of 1's, separated by a '0', for inequality. For example, if a=111 and b=11 are two strings then tape content will be 111011 and the | 06 | 3   | 1,<br>4,       |
|                       | machine will halt in $q_>$ . Where $q_>$ is accept state for $a>b$ and $q_<$                                                                                                                   |    | -   | 6,<br>9,       |
|                       | is accept state for a < b.                                                                                                                                                                     |    |     | 11             |
|                       | OR                                                                                                                                                                                             |    |     |                |
|                       | a Show that the following languages are context free:                                                                                                                                          | 06 | 1.  |                |
|                       | i. $L = \{xx^Ryy^Rzz^R \mid x, y, z \in \{a, b\}^*\}$<br>ii. $N = M \cap R$ , where $M = \{a^nb^m \mid n \ge m\}$ and                                                                          |    | 2   |                |
|                       | $R = \{(a \cup b)^* \mid \text{there is an odd number of a's and an even number of b's}\}.$                                                                                                    |    |     |                |



### **COLLEGE OF ENGINEERING, PUNE**

(An Autonomous Institute of Government of Maharashtra.)

**b** Describe the maximal set of distinguishable strings of the 06 3, language of the following Finite Automata.



- Q 5 a Robustness of a mathematical objects like proofs, definitions, 06 4 1, algorithms, methods, etc is measured by its invariance to 6, certain changes. Prove that Turing machine is robust to 9, following variation.
  - **b** Consider the language containing unreachable states of a 06 1 Turing Machine,

UselessState =  $\{ < M, q > | M \text{ is a Turing machine, } q \text{ is a state of } M, for every input string w, the computation of M on input w never visits state q}$ 

Prove that languages UselessState is Decidable.

