Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with

Recursion on

Linked Lists

Example - List

Sum

Example - List Append

How to Use Recursion

Exercises

COMP2521 24T2 Recursion

Sim Mautner

cs2521@cse.unsw.edu.au

recursion

Slides adapted from those by Kevin Luxa 2521 24T1

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -. Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use

Recursion

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

Works My History

with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Recursion...

is a problem solving strategy where problems are solved via solving smaller or simpler instances of the same problem

A recursive function calls itself

Example - Marking Exams

Definition

Example -Marking Exams

Example -Pyramid Example -

Factorial Example -Fibonacci

How Works

My History with

Recursion on **Linked Lists**

Example - List

Example - List Append

How to Use

Problem: I don't like marking exam papers

Solution 1: Give the exam papers to someone else to mark

Would this work if everyone applied this approach?

Solution 2: I do some of the work, and then delegate the rest

Draw a picture of how this would work

Example - Building a Pyramid

Definition

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Example - Building a Pyramid

Iteratively

Definition

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -. Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises Pacurciva

Example - Building a Pyramid Iteratively

Definition Example -

Marking Exams

Example -Pyramid

Example -Factorial

Example -**Fibonacci**

How Recursion Works

My History with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List **Append**

How to Use Recursion

To build a pyramid of width n:

- For each width w from n down to 1 (decrementing by 2 each time):
 - Build a $w \times w$ layer of blocks on top

Example - Building a Pyramid

Recursively

Definition

Example -Marking Exams

Example -Pyramid

Example -Factorial

Fibonacci

How Recursion Works

with Recursion

Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Example -My History Recursion on

Build a 7 x 7 layer of blocks

Build a pyramid of width 5 on top!

Example - Building a Pyramid

Recursively

Definition
Example -

Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List

Example - List Append

How to Use Recursion

Exercises

To build a pyramid of width n:

- **1** Build an $n \times n$ layer
- **2** Then build a pyramid of width n-2 on top

Example - Building a Pyramid Recursively

Definition

Example -Marking

Example -Pyramid

Example -Factorial

Example -**Fibonacci**

How Recursion Works

My History with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

To build a pyramid of width n:

- **1** Build an $n \times n$ layer
- 2 Then build a pyramid of width n-2 on top

What's wrong with this method?

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -**Fibonacci**

How Recursion

Works My History

with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

To build a pyramid of width n:

- 1 If $n \leq 0$, do nothing
- Otherwise:
 - **1** Build an $n \times n$ layer
 - **2** Then build a pyramid of width n-2 on top

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How

Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List

Sum

Example - List

Append

How to Use Recursion

Exercises

The factorial of n (where $n \geq 0$) denoted by n! is the product of all positive integers less than or equal to n.

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$

```
Definition
Example -
```

Marking Exams Example -

Pyramid Example -

Factorial

Example -**Fibonacci**

How Recursion Works

My History with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

```
Iterative method:
```

```
int factorial(int n) {
    int res = 1;
    for (int i = 1; i <= n; i++) {
        res *= i;
    return res;
```

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion

Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Observation:

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$
$$= n \times (n-1)!$$

For example:

$$4! = 4 \times 3 \times 2 \times 1$$
$$= 4 \times 3!$$

Example - Factorial Recursively

Definition

Example -Marking Exams Example -

Pyramid Example -

Factorial Example -

Fibonacci How Recursion

Works My History

with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List Append

How to Use Recursion

Pacurciva

Exercises

Recursive method:

```
int factorial(int n) {
    return n * factorial(n - 1);
```

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List **Append**

How to Use Recursion

Exercises

Recursive method:

```
int factorial(int n) {
    return n * factorial(n - 1);
```

What's wrong with this function?

Example -Pyramid Example -

Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Recursive method:

```
int factorial(int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorial(n - 1);
```

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -. Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion

Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Example:

Example -Marking

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on **Linked Lists**

Example - List

Example - List **Append**

How to Use

Exercises

The Fibonacci sequence is a sequence where each number is the sum of the two previous numbers, and the first two numbers in the sequence are 0 and 1.

$$F_0 = 0$$

$$F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

Example -Marking Exams

Example -Pyramid Example -

Factorial

Example -Fibonacci

How Recursion Works

My History with

Recursion on

Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Recursive method:

```
int fib(int n) {
    if (n == 0) {
        return 0;
    } else if (n == 1) {
        return 1;
    } else {
        return fib(n - 1) + fib(n - 2);
    }
}
```

Example -Marking Exams

Example -Pyramid Example -

Factorial
Example -

Fibonacci How Recursion

Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

- A recursive function calls itself
- This is possible because there is a difference between a function and a function call
- Each function call creates a new mini-environment, called a *stack frame*, that holds all the local variables used by the function call

Definition

Example -Marking

Example -Pyramid

Example -Factorial Example -

Fibonacci How

Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Recursion

Consider this program (no recursion):

```
int main(void) {
    a(5);
}

void a(int val) {
    b(val);
}

void b(int val) {
    printf("%d\n", val);
}
```

This is how the state of the stack changes:

Definition

Example -Marking

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List **Append**

How to Use Recursion

Exercises

```
Now consider factorial(2):
```

```
int factorial(int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorial(n - 1);
```

This is how the state of the stack changes:

Example -Marking

Definition

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion

Works

My History with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List **Append**

How to Use Recursion

Exercises

When the stack is growing, that is called "winding"

When the stack is shrinking, that is called "unwinding"

Example -Marking

Definition

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Pre-order operations

Operations before the recursive call occur during winding.

Post-order operations

Operations after the recursive call occur during unwinding.

My History with Recursion

Definition

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How

Recursion Works

My History with

Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

it might feel like in order to understand recursion, you must first understand recursion

but you don't

Recursion on Linked Lists

Recall that recursion is a problem solving strategy where problems are solved via solving smaller or simpler instances of the same problem

How do we apply recursion to linked lists?

Definition

Example -Marking

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

Works
My History

with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Recursion on Linked Lists

Recall that recursion is a problem solving strategy where problems are solved via solving smaller or simpler instances of the same problem

How do we apply recursion to linked lists?

smaller linked list

Definition

Example -Marking

Example -Pyramid Example -

Factorial

Example -

Fibonacci

How Recursion Works

My History with

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Recursive

Example - Summing a List

Definition

Example -Marking Exams

Example -Pyramid Example -

Factorial
Example -

Fibonacci How

Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion Example: summing values of a list

- Base case: empty list
 - Sum of an empty list is zero
- Non-empty lists
 - I can't solve the whole problem directly
 - But I do know the first value in the list
 - And if I can sum the rest of the list (smaller than whole list)
 - Then I can add the first value to the sum of the rest of the list, giving the sum of the whole list

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion

Works
My History

with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Example:

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

```
Recursive method:
```

```
struct node {
    int value;
    struct node *next;
};
int listSum(struct node *list) {
    if (list == NULL) {
        return 0;
    } else {
        return list->value + listSum(list->next);
```

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Example: append a value to a list

```
struct node *listAppend(struct node *list, int value) {
    ...
}
```

listAppend should insert the given value at the end of the given list and return a pointer to the start of the updated list.

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion

Works
My History

with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

What's wrong with this solution?

```
1  struct node *listAppend(struct node *list, int value) {
2    if (list == NULL) {
3       return newNode(value);
4    } else {
5        listAppend(list->next, value);
6       return list;
7    }
8 }
```

Example - List Append

```
Definition
```

Example -Marking

Example -Pyramid

Factorial

Example -

How Recursion

Works

My History with

Recursion on **Linked Lists**

Sum

Append

How to Use Recursion

Exercises

Example -

Fibonacci

Recursion

Example - List

Example - List

struct node *listAppend(struct node *list, int value) { if (list == NULL) { 3 return newNode(value); } else { listAppend(list->next, value); 6 return list; 8

Consider this list...

...and this function call:

```
listAppend(myList, 5);
```

Example -Marking Exams

Example -Pyramid

Factorial
Example -

Fibonacci

How Recursion Works

My History with

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

1 struct node *listAppend(struct node *list, int value) {
2 if (list == NULL) {
3 return newNode(value);
4 } else {
5 listAppend(list->next, value);
6 return list;
7 }
8 }

The recursive call on line 5 creates a new node and returns it...

...but this new node is not attached to the list! The node containing 4 still points to NULL.

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List

Example - List Append

How to Use Recursion

Exercises

Sum .

Correct solution:

```
struct node *listAppend(struct node *list, int value) {
   if (list == NULL) {
      return newNode(value);
   } else {
      list->next = listAppend(list->next, value);
      return list;
   }
}
```

Example - List Append

Definition

Example -Marking

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion

Works

My History with Recursion

Recursion on **Linked Lists**

Example - List

Example - List Append

How to Use

Exercises

Why does this work?

list->next = listAppend(list->next, value);

Consider the following list:

Two cases to consider:

- (1) The rest of the list is empty
- (2) The rest of the list is not empty

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

list->next = listAppend(list->next, value);

Case 1: The rest of the list is empty

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion

Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Recursio

list->next = listAppend(list->next, value);

Case 1: The rest of the list is empty

In this case, listAppend(list->next, value) will return a new node

Example -Marking

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History

with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

list->next = listAppend(list->next, value);

Case 1: The rest of the list is empty

In this case, listAppend(list->next, value) will return a new node
 list->next = ... causes list->next to point to this new node

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -**Fibonacci**

How Recursion Works

My History with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List Append

Recursion

Exercises

How to Use

list->next = listAppend(list->next, value);

Case 2: The rest of the list is **not** empty

Example -Marking

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion

Works My History

with

Recursion on **Linked Lists**

Example - List Sum

Example - List Append

How to Use

Exercises

list->next = listAppend(list->next, value);

Case 2: The rest of the list is **not** empty

In this case, listAppend(...) will append the value to the rest of the list and return a pointer to the (start of the) rest of the list

Example -Marking Exams

Example -Pyramid

Example -Factorial Example -

Fibonacci How Recursion

Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Case 2: The rest of the list is **not** empty

In this case, listAppend(...) will append the value to the rest of the list and return a pointer to the (start of the) rest of the list

How to Write a Recursive Function

Definition

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion Consider whether using recursion is appropriate

- Can the solution be expressed in terms of a smaller instance of the same problem?
- ② Identify the base case(s)
- 3 Identify the subproblem(s)
 - Assume that the function works for the subproblem(s)
 - · Like in mathematical induction!
- Think about how to relate the original problem to the subproblem(s)

Example -Marking Exams

Example -Pyramid Example -

Factorial

Example Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Exercise 1:

• Given a linked list, print the items in the list in reverse.

Exercise 2:

• Given a linked list and an index, return the value at that index. Index 0 corresponds to the first value, index 1 the second value, and so on.

Exercise 3:

 Given a linked list and a value, delete the first instance of the value from the list (if it exists), and return the updated list.

Definition

Example -Marking Exams

Example -Pyramid Example -

Factorial
Example -

Fibonacci How Recursion

Works My History

with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Sometimes, recursive solutions require recursive helper functions

- Data structure uses a "wrapper" struct
- Recursive function needs to take in extra information (e.g., state)

Wrapper structs

Definition

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion

Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Wrapper struct for a linked list:


```
struct node {
    int value;
    struct node *next;
};

struct list {
    struct node *head;
};
```

Recursive Helper Functions Wrapper structs

ipper structs

Definition

Example -Marking Exams

Example -Pyramid Example -

Factorial
Example -

Fibonacci

How Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

Example: Implement this function:
void listAppend(struct list *list, int value);

Example -Marking Example -

Pyramid Example -Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on **Linked Lists**

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

void listAppend(struct list *list, int value);

We can't recurse with this function because our recursive function needs to take in a struct node pointer.

Solution: Use a recursive helper function!

```
Definition
```

Example -Marking

Example -Pvramid Example -

Factorial Example -Fibonacci

How

Works

My History with Recursion

Recursion on Linked Lists

Example - List

Example - List Append

How to Use

Exercises

```
void listAppend(struct list *list, int value) {
    list->head = doListAppend(list->head, value);
struct node *doListAppend(struct node *node, int value) {
   if (node == NULL) {
        return newNode(value);
    } else {
        node->next = doListAppend(node->next, value);
        return node:
```

Our convention for naming recursive helper functions is to prepend "do" to the name of the original function.

Passing extra information

Definition

Example -Marking Example -

Pyramid Example -Factorial

Example -Fibonacci

How Works

My History with

Recursion on **Linked Lists**

Example - List

Example - List Append

How to Use

Exercises

Problem:

 Print a linked list in a numbered list format, starting from 1. void printNumberedList(struct node *list);

Example:

- Suppose the input list contains the following elements: [11, 9, 2023]
- We expect the following output:
 - 1. 11
 - 2.9
 - 3, 2023

Passing extra information

Definition

Example -Marking Exams

Example -Pyramid Example -

Factorial
Example -

Fibonacci How

Recursion Works

My History with Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

We need to keep track of the current number.

Solution:

• Use a recursive helper function that takes in an extra integer

```
void printNumberedList(struct node *list) {
    doPrintNumberedList(list, 1);
}

void doPrintNumberedList(struct node *list, int num) {
    if (list == NULL) return;

    print("%d. %d\n", num, list->value);
    doPrintNumberedList(list->next, num + 1);
}
```

Example -Marking

Example -Pyramid Example -

Factorial

Example -Fibonacci

How Recursion Works

My History with Recursion

Recursion on **Linked Lists**

Example - List

Example - List **Append**

Exercises

How to Use

- If there is a simple iterative solution, a recursive solution will generally be slower
 - Due to a stack frame needing to be created for each function call
- A recursive solution will generally use more memory than an iterative solution

Example -Marking Exams

Example -Pyramid

Example -Factorial

Example -Fibonacci

How Recursion Works

My History with

Recursion

Recursion on Linked Lists

Example - List Sum

Example - List Append

How to Use Recursion

Exercises

https://forms.office.com/r/riGKCze1cQ

