XSens DOT

Both Wrists Data

Left Wrist:

Right Wrist:

Acceleration

Euler

CNN: Right Wrist

Approach

Approach

Exporter

	Accuracy
Sukor et al.	
Bayat et al.	
da Silva et al.	90%
Drumond et al.	96%
Gomes et al.	
Pavai	

- Using wearable inertial sensors to track everyday human motion has been a popular subject in previous papers in classifying and recognising human activities.
- Plenty of projects involving human activity recognition have already been explored and published.
- However, identifying dance motions from wearable inertial sensors to determine the accuracy of a dance choreography has not been well inspected.

Author	Approach	Data	Accuracy
Bayat et al.	Combination of Classifiers	Accelerometer	91.15%
Gomes et al.	KNN	Accelerometer	97%
Sukor et al.	LSTM	Accelerometer	96.11%
da Silva et al.	LSTM	Motion Capture	90%
Drumond et al.	LSTM	Accelerometer	96%
Pavai	Bidirectional LSTM	Accelerometer	90+%
Our Approach	Biderctional LSTM	Accelerometer	60+%