Introduction to Statistical Learning and Applications

Pedro L. C. Rodrigues

pedro.rodrigues@inria.fr

alexandre.wendling@univ-grenoble-alpes.fr

Alexandre Wendling

TD 1: Exercises on multivariate statistics

▶ Exercise 1

Let U and V be two independent random variables with uniform distribution over [0,1].

Let X = U + V and Y = U - V.

- (a) Compute the expectation and covariance matrix of $Z=\left(\begin{array}{cc} X & Y\end{array}\right)^T$.
- (b) Prove that X and Y are uncorrelated but not independent.

► Exercise 2

Let X be a random vector in \mathbb{R}^n and A be a deterministic $m \times n$ matrix.

(a) Prove that

$$K_X = \mathbb{E}\left[(X - \mathbb{E}[X]) (X - \mathbb{E}[X])^T \right] = \mathbb{E}[XX^T] - \mathbb{E}[X] \mathbb{E}[X]^T$$
.

(b) Prove that

$$K_{AX} = A K_X A^T$$
.

(c) Use the result obtained in (b) to derive again the results of Exercise 1.

► Exercise 3

Let $Z=\left(\begin{array}{cc} X & Y \end{array}\right)^T$ be a Gaussian vector with mean $\mu=\left(\begin{array}{cc} 1 & 2 \end{array}\right)^T$ and covariance $\Sigma=\left(\begin{array}{cc} 1 & -1 \\ -1 & 2 \end{array}\right)$.

- (a) Compute the probability density function of Z.
- (b) Using

$$f_{Y|X=x}(y) = \frac{f_{(X,Y)}(x,y)}{f_X(x)}$$

compute the distribution of Y given X = x.

(c) What is the best prediction of Y given X = x?

▶ Exercise 4

Let $\begin{pmatrix} X & Y \end{pmatrix}^T$ be a Gaussian vector in \mathbb{R}^2 . Let $Z = Y - \mathbb{E}[Y] - \frac{\text{Cov}(X,Y)}{\text{Var}[X]} (X - \mathbb{E}[X])$.

- (a) Compute $\mathbb{E}[Z]$ and Var[Z].
- (b) Prove that X and Z are independent.
- (c) Derive the distribution of Y given X = x.
- (d) Use (c) to derive again the result of Exercise 3.

▶ Exercise 5

Consider the Gaussian simple linear regression model presented in class

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$
 with $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

The estimates for the parameters of the model, $\hat{\beta}_0$ and $\hat{\beta}_1$, are obtained N paired samples (x_i, y_i) .

- (a) Show that the estimated parameters are unbiased.
- (b) Show that

$$\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{N} \frac{1}{s_X^2}$$
 and $\operatorname{Var}(\hat{\beta}_0) = \frac{\sigma^2}{N} \left(1 + \frac{\bar{X}^2}{s_X^2} \right)$

where
$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 and $s_X^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{X})^2$.

Using the estimated parameters, we can predict that for a given arbitrary value of X, say x (sometimes called the operation point), we have that on average Y will be

$$\hat{m}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$$

(c) Show that

$$\mathbb{E}\big[\hat{m}(x)\big] = \beta_0 + \beta_1 x$$

(d) Show that

$$\operatorname{Var}\left(\hat{m}(x)\right) = \frac{\sigma^2}{N} \left(1 + \frac{(x - \bar{X})^2}{s_X^2}\right)$$

Describe how the variance changes for different choices of the operation point.