K-Anonymity & Algorithms

Guillaume Raschia — Polytech Nantes; Nantes Université

Last update: January 10, 2023

Contents

Introduction *k*-Anonymity

Privacy Model

Generalization Mechanism

Formal Risk Assessment Utility Metrics

k-Anonymization Algorithms

Limitations

[Source : A. Machanavajjhala - Duke Univ., 2012]

Introduction

Offline Data Publishing

Privacy-Preserving Data Publishing (PPDP)

The Non-Interactive (aka Offline) Scenario

Sample Microdata

SSN	Zip	Age	Nationality	Disease
631-35-1210	13053	28	Russian	Heart
051-34-1430	13068	29	American	Heart
120-30-1243	13068	21	Japanese	Viral
070-97-2432	13053	23	American	Viral
238-50-0890	14853	50	Indian	Cancer
265-04-1275	14853	55	Russian	Heart
574-22-0242	14850	47	American	Viral
388-32-1539	14850	59	American	Viral
005-24-3424	13053	31	American	Cancer
248-22-2956	13053	37	Indian	Cancer
221-22-9713	13068	36	Japanese	Cancer
615-84-1924	13068	32	American	Cancer
231-43-4582	13068	33	Chinese	Cancer

Removing SSN...

De-Identification

Zip	Age	Nationality	Disease
13053	28	Russian	Heart
13068	29	American	Heart
13068	21	Japanese	Viral
13053	23	American	Viral
14853	50	Indian	Cancer
14853	55	Russian	Heart
14850	47	American	Viral
14850	59	American	Viral
13053	31	American	Cancer
13053	37	Indian	Cancer
13068	36	Japanese	Cancer
13068	32	American	Cancer
13068	33	Chinese	Cancer

The Massachussets Governor

Privacy Breach [L. Sweeney, IJUFKS 2002]

Simple Demographics Often Identify People Uniquely

Linkage Attack

• Identity Disclosure Threat

Zip	Age	Nationality	Disease
13053	28	Russian	Heart
13068	29	American	Heart
13068	21	Japanese	Viral
13053	23	American	Viral
14853	50	Indian	Cancer

Other Well-Known Linkage Attacks

- AOL (live dataset http://search-id.com)
 TNYT. A Face Is Exposed for AOL Searcher No. 4417749, 2006
- Netflix
 - A. Narayanan,V. Shmatikov. How To Break Anonymity of the Netflix Prize Dataset, 2006
- 4 GSM points with timestamps = 95% unique Y.-A. de Montjoye et al., Unique in the Crowd: The privacy bounds of human mobility, Nature, 2013
- · 2 French children DoB is a unique footprint of mother id
- etc

k-Anonymity

k-Anonymity

Main Idea

Generalize, modify, or distort quasi-identifier values so that any individual is indistinguishable in a group of at least k

• In SQL, table T is k-anonymous if each value from SELECT COUNT(*) FROM T GROUP BY Quasi-Identifier is > k

 \cdot Parameter k gives the "degree" of anonymity

Generalization (Coarsening)

ORIGINAL MICRODATA

Zip	Age	Nationality	Disease	
13053	28	Russian	Heart	
13068	29	American	Heart	
13068	21	Japanese	Viral	
13053	23	American	Viral	
14853	50	Indian	Cancer	
14853	55	Russian	Heart	1
14850	47	American	Viral	
14850	59	American	Viral	
13053	31	American	Cancer	
13053	37	Indian	Cancer	
13068	36	Japanese	Cancer	
13068	32	American	Cancer	
13068	33	Chinese	Cancer	

4-ANONYMOUS RELEASE

	4-ANONTMOUS KELLASE						
	Zip	Age	Nationality	Disease			
	130**	<30	Any	Heart			
	130**	<30	Any	Heart			
	130**	<30	Any	Viral			
	130**	<30	Any	Viral			
	1485*	≥40	Any	Cancer			
>	1485*	≥40	Any	Heart			
	1485*	≥40	Any	Viral			
	1485*	≥40	Any	Viral			
	130**	[30,40)	Any	Cancer			
	130**	[30,40)	Any	Cancer			
	130**	[30,40)	Any	Cancer			
	130**	[30,40)	Any	Cancer			
	130**	[30,40)	Any	Cancer			

Equivalence Class: group of k-anonymous records that share the same quasi-identifier value

Alternative Transformations

- Suppression
 - · Remove non-anonymous values or tuples
 - · Can be combined with generalization btw of a suppression threshold
 - Handle outliers
- Clustering
- Microaggregation (stats)

Generalization-Suppression Example

ORIGINAL MICRODATA

	ID	QID			SA
num	Name	Marital Stat Age		Zip	Crime
01	Amy	Maried	35	32042	Murder
02	Bob	Single	20	32021	Theft
03	Carl	Widowed	54	31024	Trafic
04	David	Separated	22	32026	Assault
05	Ethan	Maried	31	32025	Piracy

2-ANONYMOUS RELEASE WITH SUPPRESSION

		QID			SA
num	group	Marital Stat	Age	Zip	Crime
01	1	Maried	30s	320**	Murder
05		Maried	30s	320**	Piracy
02	2	Not Maried	20s	3202*	Theft
04		Not Maried	20s	3202*	Assault
03	3	*	*	*	*

Quasi-Identifier

Attributes of a given dataset are either:

- · Direct Identifier: removed
- · Quasi-Identifier (QID): transformed
- Sensitive: preserved

How to set up QID?

- QID is a combination of attributes (that an adversary may know) that uniquely identify a large fraction of the population
- There can be many sets of QID: if $Q=\{A,B,C\}$ is a quasi-identifier, then $Q\cup\{D\}$ is also a quasi-identifier
- Need to guarantee k-anonymity against the largest QID

Generalization

- · Coarsen (or suppress) an attribute to a more general value
- '→' means one generalization step

Numeric Values

- Mask low significant bits: 12345 \rightarrow 1234* \rightarrow 123**
- Ranges : 23 \rightarrow [20-25]; or even (30.5N20.3E) \rightarrow box(30N-31N,20E-22E)

Generalization (cont'd)

- · Coarsen (or suppress) an attribute to a more general value
- '→' means one generalization step

Categorical Values

- Domain Generalization Hierarchies
 - State-gov occupation \rightarrow Government occupation \rightarrow Workclass

Generalization Models

Global Recoding

- There is one single generalized value for each value in an attribute
 - Every occurrence of 12345 is replaced with 1234* in the database
- Full domain generalization is the main instance of global recoding
 - Generalize all the values in an attribute to the same "level"
 - · Answering queries on such datasets is easier

Local Recoding

· Records may be independently generalized one with each other

Generalization Lattice

- Generalization step $D \rightarrow D'$ on one attribute
- · Generalization vector: each value is the level of generalization

Risk Assessment

- · Denote by f_i the frequency of a QID value i in the (anonymized) microdata D
- \cdot Risk for individuals that generalize to that QID value i is then $1/f_i$

Prosecutor Risk

- Target a specific individual
- Based on microdata uniqueness
- Is the worst case re-identification scenario for the individuals :

$$\frac{1}{\min_i f_i}$$

From Prosecutor Risk to k Parameter

k-Anonymity Guarantee

• Joining k-anonymous D to a demographic dataset using quasi-identifier results in at least k records per quasi-identifier value

How to retrieve *k* from microdata?

• Overall k value of D is the smallest size of all the equivalence classes :

$$k = \min_{i} f_i$$

• Prosecutor risk is then 1/k

k-Map and Alternative Risk Scenarios

${\color{red} \textbf{POPULATION}} \ U$

num	Zip	Age	Nationality	
01	13053	28	Russian	
02	13068	29	American	
03	13068	21	Japanese	
04	13053	23	American	
05	14853	50	Indian	
06	14853	55	Russian	\triangleright
07	14850	47	American	
08	14850	59	American	
09	13053	31	American	
10	13053	37	Indian	
11	13068	36	Japanese	
12	13068	32	American	
13	13068	33	Chinese	
			American	

4-ANONYMOUS RELEASE OF $\,U\,$

	Zip	Age	Nat.
	130**	<30	Any
	1485*	≥40	Any
>	1485*	≥40	Any
	1485*	≥40	Any
	1485*	≥40	Any
	130**	[30,40)	Any

k-Map

4-ANONYMOUS RELEASE OF $\it U$

num	Zip	Age	Nat.
01	130**	<30	Any
02	130**	<30	Any
03	130**	<30	Any
04	130**	<30	Any
05	1485*	≥40	Any
06	1485*	≥40	Any
07	1485*	≥40	Any
08	1485*	≥40	Any
09	130**	[30,40)	Any
10	130**	[30,40)	Any
11	130**	[30,40)	Any
12	130**	[30,40)	Any
13	130**	[30,40)	Any

4-ANONYMOUS RELEASE OF SAMPLE $D\subseteq U$

num	Zip	Age	Nat.	Disease
01	130**	<30	Any	Heart
06	1485*	≥40	Any	Heart
08	1485*	≥40	Any	Viral
09	130**	[30,40)	Any	Cancer
10	130**	[30,40)	Any	Cancer
11	130**	[30,40)	Any	Cancer
12	130**	[30,40)	Any	Cancer
13	130**	[30,40)	Any	Cancer
	01 06 08 09 10 11 12	01 130** 06 1485* 08 1485* 09 130** 10 130** 11 130** 12 130**	01 130** <30 06 1485* ≥40 08 1485* ≥40 09 130** [30,40) 10 130** [30,40) 11 130** [30,40) 12 130** [30,40)	01

Alternative Risk Scenarios

Let F_i be the frequency of QID i in the population U;

Re-identification risk in the k-map setting

1. Journalist: target an arbitrary individual

$$\frac{1}{\min_i F_i}$$
 where i are QID's from D

- The hard part : What is U? How to compute F_i ?
- Use estimators \hat{F}_i
- 2. Marketer: expect a high average risk

$$\frac{1}{|D|} \cdot \sum_{i} \frac{f_i}{F_i}$$

Utility Metrics

Quantifying Error

- Each generalization step incurs error
- · Larger equivalence classes also may yield to more error

Utility Metrics

- Average size of equivalence classes : $C_{\text{avg}}(D) = \frac{|D|}{\#\text{groups} \cdot k}$
- Discernibility metric

$$C_{\mathsf{dsc}}(D) = \sum_{f_i \ge k} f_i^2 + \sum_{f_i < k} f_i \cdot |D|$$

- Assign a penalty to each tuple
- · Penalty depends on how many other tuples are indistinguishable from it

Example

4-ANONYMOUS RELEASE

Zip	Age	Nationality	Disease
130**	<30	Any	Heart
130**	<30	Any	Heart
130**	<30	Any	Viral
130**	<30	Any	Viral
1485*	≥40	Any	Cancer
1485*	≥40	Any	Heart
1485*	≥40	Any	Viral
1485*	≥40	Any	Viral
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer

•
$$C_{\text{avg}}(D) = \frac{13}{3 \times 4} = 1.08$$

- ideal value is 1.0
- greater values mean less utility

·
$$C_{\rm dsc}(D) = 2 \times 4^2 + 5^2 = 57$$

• expect a value close to $k \cdot |D|$ i.e., $4 \times 13 = 52$

Utility Metrics (cont'd)

- Number of steps in the generalization lattice
 - Precision metric : $C_{\mathrm{prc}}(D) = 1 \frac{1}{\#\mathrm{cells}} \cdot \sum_{\mathrm{cells}} \frac{\mathrm{level}}{\mathrm{height}}$
- Shape of equivalence classes
 - · Numeric range or size of the domain
 - Penalty for each tuple = 1 1/#values that can generalize to that tuple
 - E.g., Penalty (14850, 47) = 1 1/1 = 0
 - Penalty (1485*, [40-50)) = $1 1/(10 \times 10) = 0.99$
 - · Generalized Information Loss:

$$C_{\text{gil}}(D) = \frac{1}{\text{\#cells}} \cdot \sum_{\text{cells}} \frac{|\text{cell}|}{|\text{dom}|}$$

Example

4-ANONYMOUS RELEASE

Zip	Age	Nationality	Disease
130**	<30	Any	Heart
130**	<30	Any	Heart
130**	<30	Any	Viral
130**	<30	Any	Viral
1485*	≥40	Any	Cancer
1485*	≥40	Any	Heart
1485*	≥40	Any	Viral
1485*	≥40	Any	Viral
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer

·
$$C_{\text{prc}}(D) = 1 - \frac{1}{13 \times 3} \cdot (\frac{9 \times 2}{5_7} + \frac{4}{5_7} + \frac{13}{3_A} + \frac{13}{1_N}) = 0.44$$

- depends on the height of each DGH : $5_{\text{Z}},\,3_{\text{A}},\,1_{\text{N}}$
- range in [0.0, 1.0] from low to high utility

$$C_{\text{gil}}(D) = \frac{1}{39} \cdot \left(\frac{9 \times 100}{100000_{\text{Z}}} + \frac{4 \times 10}{100000_{\text{Z}}} + \frac{4 \times 30}{100_{\text{A}}} + \frac{4 \times 60}{100_{\text{A}}} + \frac{5 \times 10}{100_{\text{A}}} + \frac{13 \times 10}{100_{\text{A}}} \right) = 0.438$$

Utility Metrics (cont'd)

Classification Metrics

- Assign a penalty to each tuple t:
 - If t's sensitive value is the majority value in the group: penalty is null
 - \cdot Otherwise, penalty is the size of equivalence class f_i

QID Distribution Metrics

- · Assessing the change in the distribution of the underlying data
- Kullback-Leibler Divergence

KL-Divergence

- \cdot Suppose records were sampled from some multi-dimensional distribution F
 - iid (identically and independently distributed)
- \cdot Given a table, we can estimate F with the empirical distribution \hat{F}

 \hat{F} (14850, 47, American) = 1/12 i.e., the fraction of tuples in the database with

· Zip = 14850 AND Age = 47 AND Nationality = American

KL-Divergence (cont'd)

· Similarly, given a k-anonymous table, we can compute the empirical distribution $\hat{F}_{k ext{anon}}$

$$\hat{F}_{kanon}$$
(14850, 47, American) = $\frac{1}{|D|} \cdot \sum_{\text{group } i} P[(14850, 47, \text{American}) \in i] \times f_i$

Example

4-ANONYMOUS RELEASE

Zip	Age	Nationality	Disease
130**	<30	Any	Heart
130**	<30	Any	Heart
130**	<30	Any	Viral
130**	<30	Any	Viral
1485*	≥40	Any	Cancer
1485*	≥40	Any	Heart
1485*	≥40	Any	Viral
1485*	≥40	Any	Viral
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer

•
$$\hat{F}_{k ext{anon}}$$
 (14850, 47, American) = $\frac{1}{13} \cdot P[(14850, 47, ext{American}) \in c_2] \times 4 = \frac{1}{13} \cdot \frac{4}{10 \times 60 \times 10} = 5 \cdot 10^{-5}$

KL-Divergence (cont'd)

Distance between \hat{F} and \hat{F}_{kanon} is a measure of the error due to anonymization

$$\sum_{x} p(x) \cdot \log \frac{p(x)}{p_{k \text{anon}}(x)}$$

where p(x) is estimated using the empirical distribution \hat{F} , and $p_{k \text{anon}}$ is estimated using $\hat{F}_{k \text{anon}}$

k-Anonymization Algorithms

k-Anonymization Problem

Given a table D, find a table D' such that

- 1. D' satisfies the k-anonymity condition
- 2. D' has the maximum utility (or the minimum information loss)

NP-Hard Problem

[Meyerson and Williams, PODS 2004]

- \cdot Reduction from the k-dimensional matching problem
- \cdot There is a $\log k$ approximation algorithm for some utility metrics

Algorithms

Optimal

- · allMin [Samarati, 2001]
- · minGen [Sweeney, 2002]
- · Incognito [LeFevre et al, 2005]
- k-OPTIMIZE [Bayardo et al, 2005]
- Flash [Kohlmayer et al, 2012]
- etc

Approximate

- Datafly [Sweeney, 1997]
- · Mondrian [LeFevre et al, 2006]
- · Hilbert [Ghinita et al, 2007]
- · BangA [Anjum et al, 2017]
- etc

Generalization Lattice: Gentle Reminder

Nationality	Zip	
•	1306*	
*	1305*	(1, 1)

1485*

Nationality	Zip
*	130**
*	130**
*	148**
44 61	

(1, 2)

(0,	2)
	1

Nationality	Zip
American	130**
Japanese	130**
Japanese	148**

(0, 1)

Nationality	Zip
American	1306*
Japanese	1305*
Japanese	1485*

A Very First Naive Algorithm

minGen

- 1. Enumerate each generalization (randomly traverse the all lattice)
- 2. Check for k-anonymity: discard non-anonymous generalizations
- 3. Evaluate utility and rank candidate releases
- 4. Pick one with the highest utility
 - minGen stands for k-minimal Generalization

Monotonicity

More Privacy Less Utility

Nationality	Zip	
*	1306*	
•	1305*	(1, 1)
*	1485*	

More Utility Less Privacy

Nationality	Zip
*	130**
*	130**
*	148**

(1, 2)

(0, 2)

Nationality	Zip
American	130**
Japanese	130**
Japanese	148**

(0, 1)

Nationality	Zip
American	1306*
Japanese	1305*
Japanese	1485*

Monotonicity (cont'd)

- In a single generalization step $D \to D'$, new equivalence classes are created by merging existing equivalence classes
- · If D satisfies k-anonymity, then D' also satisfies k-anonymity
 - · Equivalence classes are only becoming bigger
- D' has lower utility than D
 - Intuitively true: more information is hidden in D'
 - · Can be formally shown for all the utility metrics discussed
- · What is the impact of suppression on monotonicity?

Pruning Using Monotonicity

Basic Incognito Algorithm

Zip-Sex-Birthdate Microdata

Step 1

- · Start with 1 dimensional quasi-identifier
- \cdot Traverse bottom-up to check when k-anonymity is satisfied

Basic Incognito Algorithm (cont'd)

Step 2
Move to 2 dimensional marginals

Basic Incognito Algorithm (cont'd)

Step 3

3 dimensional quasi-identifier

Summary of Incognito Algorithm

Problem

Amongst all tables that satisfy k-anonymity, find the one that has maximum utility

Solution

- · Generalizations form a lattice
- Privacy and Utility are monotonic
- Only need to find the boundary of "minimal" generalizations that satisfy privacy
- · Lattice can be efficiently pruned using bottom up traversal
- Checking k-anonymity is efficient (think: precompute counts)

Datafly Algorithm: Example from Sweeney, 2002

Race	BirthDate	Gender	ZIP	#occurs							
black	9/20/65	male	02141	1	t1						
black	2/14/65	male	02141	1	t2						
black	10/23/65	female	02138	1	t3						
black	8/24/65	female	02138	1	t4						
black	11/7/64	female	02138	1	t5						
black	12/1/64	female	02138	1	t6	Race	BirthDate	Gender	ZIP	#occurs	
white	10/23/64	male	02138	1	t7	black	1965	male	02141	2	t1,t2
white	3/15/65	female	02139	1	t8	black	1965		02138	2	t3, t4
white	8/13/64	male	02139	1	t9				02138	2	t5, t6
white	5/5/64	male	02139	1 1	t10		1964		02138	1	t7
white	2/13/67		02138	1	t11				02139	1	t8
									02139	2	t9, t10
white	3/21/67		02138	1	t12	white	1967	male	02138	2	t11, t12
2	12	2	3			2	3	2	3		
	\mathbf{A}						В				

Figure 9 Intermediate stages of the core Datafly algorithm

Race	BirthDate	Gender	ZIP	Problem
black	1965	male	02141	short of breath
black	1965	male	02141	chest pain
black	1965	female	02138	painful eye
black	1965	female	02138	wheezing
black	1964	female	02138	obesity
black	1964	female	02138	chest pain
white	1964	male	02139	obesity
white	1964	male	02139	fever
white	1967	male		vomiting
white	1967	male	02138	back pain

Figure 10 Table MGT resulting from Datafly, k=2, QI={Race, Birthdate, Gender, ZIP}

Datafly Algorithm

Limitations

Attack 1: Homogeneity

4-ANONYMOUS RELEASE

Zip	Age	Nationality	Disease
130**	<30	Any	Heart
130**	<30	Any	Heart
130**	<30	Any	Viral
130**	<30	Any	Viral
1485*	≥40	Any	Cancer
1485*	≥40	Any	Heart
1485*	≥40	Any	Viral
1485*	≥40	Any	Viral
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer

Name	Zip	Age	Nat.
Bob	13053	35	French

Bob has cancer

Attack 2: Background Knowledge

4-ANONYMOUS RELEASE

Zip	Age	Nationality	Disease
130**	<30	Any	Heart
130**	<30	Any	Heart
130**	<30	Any	Flu
130**	<30	Any	Flu
1485*	≥40	Any	Cancer
1485*	≥40	Any	Heart
1485*	≥40	Any	Viral
1485*	≥40	Any	Viral
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer
130**	[30,40)	Any	Cancer

Name	Zip	Age	Nat.
Umeko	13068	24	Japan

- Japanese have a very low incidence of Heart disease
- · Umeko has flu

k-Anonymity Limitations

Attribute Disclosure

- Homogeneity Attack
- Background Knowledge Attack
- "Gaydar"-like inference of sensitive values in Online Social Networks

 Zheleva and Getoor. To join or not to join: The illusion of privacy in social networks with mixed public and private user profiles, WWW 2009
- ✓ ℓ -diversity, t-closeness, etc

k-Anonymity Limitations (cont'd)

Multiple Releases

- Linkage Attack using successive k-anonymous releases
- ✓ m-uniqueness, τ -safety

Syntactic/Deterministic Approach Only

- \cdot Attacker gains knowledge about individuals thx to the k-anonymous release
- ✓ Differential Privacy comes to the rescue