

Course > Week 3 > Home... > Home...

Homework 3

☐ Bookmark this page

Homework 3-1

2.0/2.0 points (graded)

Fermat's Theorem on Sums of Two Squares is generalized into several directions. Fermat himself proved a prime number P is written as $P = X^2 + 3Y^2$ if and only if P = 3 or P is congruent to $1 \pmod{3}$. Fill a positive integer in each blank.

$$7 = A^2 + 3 \times B^2$$

$$31 = C^2 + 3 \times D^2$$

$$127 = E^2 + 3 \times F^2$$

$$A =$$
 $B =$
 $C =$
 $D =$
 $E =$
 $F =$
 1
 2
 3
 4
 1
 2
 3
 4
 1
 3
 4

Submit

Homework 3-2

2.0/2.0 points (graded)

Choose all the correct statements.

- \blacksquare 83 is not Quadratic Residue (mod 503).
- \blacksquare 503 is Quadratic Residue (mod 83).

Submit

Homework 3-3

2.0/2.0 points (graded)

Let M be the number of lattice points with even X-coordinates in the interior of the triangle (0,0)-(7,0)-(7,5). Let N be the number of lattice points in the interior of the triangle (0,0)-(7/2,0)-(7/2,5/2).

Find $oldsymbol{M}$ and $oldsymbol{N}$.

$$M =$$

7

$$N =$$

Submit

Homework 3-4

2.0/2.0 points (graded)

The Quadratic Reciprocity Law established by Gauss was generalized to Class Field Theory by Weber, Hilbert, Takagi, and Artin by the beginning of the 20th century. Today, there is a program furthur generalizing Class Field Theory using modular forms and automorphic forms. It becomes one of the central problems in number theory. Wiles's solution of Fermat's Last Theorem is considered as a partial solution of it.

What is it?

Lagrange's program
Lang's program
● Langlands's program ✔
Legendre's program

Submit

© All Rights Reserved

English ▼

© 2012–2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open edX logos are registered trademarks or trademarks of edX Inc. | 粤ICP备17044299号-2

