AMENDED CLAIM SET:

 (currently amended) A process for producing an allyl-containing compound represented by following Formula (3):

Docket No.: 3273-0185P

$$R^7 - Y \xrightarrow{R^3}_{P^4} R^6$$
 (3)

wherein R², R³, R⁴, R⁵ and R⁶ may be the same as or different from one another and each represent hydrogen atom or an organic group; R⁷ represents an organic group; and Y represents oxygen atom or sulfur atom, the process comprising the step of

reacting an allyl ester compound represented by following Formula (1):

wherein R¹ represents hydrogen atom or an organic group; and R², R³, R⁴, R⁵ and R⁶ are as defined above, with a compound represented by following Formula (2)

$$R^7-Y-H$$
 (2)

wherein \mathbb{R}^7 is an organic group; and Y is as defined above, wherein the compound represented by Formula (2) is one selected from the group consisting of alcohols[[,]] and thiol compounds, earboxylie acids, and thiocarboxylie acids, provided that the compound represented by Formula (2) is not a phenol,

in the presence of a catalytic amount of an iridium compound.

Docket No.: 3273-0185P

- 2. 4. (cancelled).
- (previously presented) The process of claim 1, wherein said iridium compound is an organic iridium complex.
- 6. (previously presented) The process of claim 5, wherein said organic iridium complex is a cationic iridium complex.
- (previously presented) The process of claim 5, wherein said organic iridium complex is selected from the group consisting of
 - di-μ-chlorotetrakis(cyclooctene)diiridium(I), di-μ-chlorotetrakis(ethylene)diiridium(I),
 - di-µ-chlorobis(1,5-cyclooctadiene)diiridium(I),
 - bis(1,5-cyclooctadiene)iridium tetrafluoroborate, and
 - (1,5-cyclooctadiene)(acetonitrile)iridium tetrafluoroborate.
- 8. (new) The process of claim 1, wherein the amount of a base in the reaction system in the process is less than 0.001 mole per 1 mole of the compound represented by Formula (2).