

Benchmarking, Monitoring, Observability and Experimenting for Big Data and Machine Learning Systems

Hong-Linh Truong
Department of Computer Science
linh.truong@aalto.fi, https://rdsea.github.io

Learning objectives

- Able to analyze the role of measurement, monitoring and observability in real-world cases for R3E
- Understand and develop methods with key steps and important tools for benchmarking, monitoring, observability and experimenting
- Able to apply these methods for big data/ML systems

The role of measurement, monitoring and observability

Reactive systems – an architectural style for R3E?

Reactive systems

Source: https://www.reactivemanifesto.org/

For R3E abilities, big data/ML systems can be designed with "reactive systems" principles:

Responsive:

 capture and respond to quality indicators, quality of analytics

Resilient:

deal within failures

Elastic:

 deal with different workload and quality of analytics

Message-driven:

 allow loosely coupling, isolation, asynchronous

Development vs Runtime activities

Design, test and benchmark R3E

- R3E for individual components
- model/capture complex dependencies
- design logs, metrics and traces for capturing states and complex dependencies

Monitoring/Observability and Runtime adaptation

- runtime monitoring and observability
- states, performance and failure analytics
- runtime controls (constraints, rules, actions)

Measurement, Monitoring and Observability for R3E

Instrumentation and sampling

- instrumentation: insert probes into systems to measure system behaviors directly or produce logs
- sampling: use components to sample system behaviors

Monitoring

 perform sampling or instrumentation to collect and share metrics, logs, traces; visualize what has been happened

Observability

- evaluate and interpret measurements for specific contexts
- understand and explain the systems states, dependencies, etc.

Methods

What/Which, Where, When, Who and How

Understand W4H aspects for analytics of big data/ML systems

Key steps – What/Which

- Understand and identify indicators/metrics characterizing big data/ML systems
- Common metrics and specific (ML)ones
 - different relevance/importance based on specific contexts
- Most critical problems are due to complex dependencies that are not common
 - Root cause analysis will be tricky
- For which purposes?
 - SRE, benchmarking, Test-Driven Development (TDD)

Key steps – Where and When

- Where: as a "space" dimension
 - Tightly coupled or isolated/loosely coupled
 - Identify the where
 - software/system layers, components and systems boundaries
 - dependencies among components
- When: as a "time" dimension
 - Design, Test/Training, Runtime (DevOps)
 - Further divided into sub states

Key steps - How

- Characterize dependencies among components
 - Include also data, software artefacts and execution environments
- Select tools for capturing metrics
- Understand what kind of changes/designs we must do
- Do monitoring and analysis
- Integrate many types of data for monitoring and observability

Apply W4H for dealing with benchmarking, monitoring, validation and experimenting

- Determines clearly system boundaries
 - the system under study, the system used to judge, and the environment
- Understands dependencies
 - among components in distributed big data/ML systems in distributed computing platforms
 - single layer as well as cross-layered dependencies
- Determines types of metrics and failures and break down problems along the dependency path (how)

Boundaries and dependencies?

What are the most critical metrics for your cases? Quality Time Quality Utilization Efficiency **Behaviors** of data Response **Throughput** Accuracy Completeness Latency time

Industry view: https://guidingmetrics.com/content/cloud-services-industrys-10-most-critical-metrics/ NIST: https://guidingmetrics.com/content/cloud-services-industrys-10-most-critical-metrics/ NIST: https://www.nist.gov/sites/default/files/documents/itl/cloud/RATAX-CloudServiceMetricsDescription-DRAFT-20141111.pdf

Contradiction/Tradeoffs between Efficiency versus Resiliency

Common performance metrics

- Timing behaviors
 - Communication
 - Latency/Transfer time
 - Data transfer rate, bandwidth
 - Processing
 - Response time (service latency/time)
 - Throughput
- Utilization
 - Network utilization
 - CPU utilization
 - Service utilization
- Efficiency/Scalability

Concurrent Executions
 are they enough for big data/ML systems?

Types of Failure

But unforeseen failures cannot be determined in advance \rightarrow design for handling failure

Check:https://arxiv.org/pdf/1910.11015.pdf for a "Taxonomy of Real Faults in Deep Learning Systems"

Data Quality

- Completeness
- Timeliness
- Currency
- Validity
- Format
- Accuracy
- Data Drift

Metrics for ML models

- Concept drift
 - (https://en.wikipedia.org/wiki/Concept_drift)
- Confusion matrix
- Accuracy
- Loss
- True positive rate
- False positive rate
- F1 Score/F-measure
- Etc.

(see https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234)

Benchmarking, Observability and R3E Handling

Benchmarking

- Benchmark: for comparing big data/ML systems w.r.t. selected (standard/common) workloads
- Where to be benchmarked
 - benchmark individual subsystems: message brokers and data ingestion, databases and ingestion/query, data processing, ML models, serving platform
- What to be benchmarked
 - data ingestion throughput, processing throughput and time, component CPU and memory
 - training and inferencing time and accuracy

Benchmarking

What should we do for a big data system?

Check:

https://www.sciencedirect.com/science/article/pii/S0140366419312344

https://www.benchcouncil.org/BigDataBench/

Benchmarking

If you have an end-to-end ML system, does it make sense to benchmark the whole system?

Benchmarking - ML

Examples:

Benchmark results (minutes)							
Image classification	Image segmentation (medical)	Object detection, light-weight	Object detection, heavy-weight	Speech recognition	NLP	Recom- mendation	Reinforce- ment Learning
ImageNet	KiTS19	coco	coco	LibriSpeech	Wikipedia	1TB Clickthrough	Go
ResNet	3D U-Net	SSD	Mask R-CNN	RNN-T	BERT [1]	DLRM	Minigo

Source: https://mlcommons.org/en/training-normal-10/

Also check: https://www.benchcouncil.org/AlBench/index.html

Service/Infrastructure Monitoring Tools

There are many powerful tools!

But only low-level, wellidentified monitoring information (infrastructures): pre-defined metrics exposed through interfaces with push/pull mechanism

From: https://prometheus.io/

Instrumentation for Observability

Code instrumentation: for many metrics and logs that cannot be obtained from the outside of the component

the developer can instrument the code to capture metrics/generate logs/traces

Can we capture data metrics on-the-fly? For which use cases?

Visualization

Metrics and Visualization

- Easy to visualize many types of metrics
- But only you can specify, define and map them to your applications

https://www.elastic.co/products/kibana

https://grafana.com/

Observability

- To monitor and understand the system as whole, end-to-end
 - Every component must be monitored
 - Dependencies/interactions must be captured
 - Metrics, logs, tracing, etc are needed to be integrated
- Understand the states and behaviors of the whole systems
- Complex problems in big data/ML systems as these systems
 - large-scale number of microservices in large-scale virtualized infrastructures
 - multi-dimensional states (code, models and data)

Do we understand the structure of big data/ML application Dependency Structure

Composable method

- divide a complex structure into basic common structures
- each basic structure has different ways to analyze specific failures/metrics
- Interpretation based on context/view
 - client view or service provider view?
 - conformity versus specific requirement assessment

a1(2,m)

Slow

Support an end-to-end view or not

End-to-end reflects the entire system

- e.g., data reliability: from sensors to the final analytics/inference results
- what if the developer/provider cannot support end-to-end?
- The user expects end-to-end R3E
 - e.g., specified in the expected accuracy
- Providers/operators want to guarantee end-to-end quality
 - need to monitor different parts, each has subsystems/components
 - coordination-aware assurance, e.g., using elasticity

Techniques for addressing problems in different system/software layers

- Immutable infrastructures: containers and orchestration
 - shared nothing for isolation, redundancy elasticity, auto-recovery

Services:

 redundancy, data/function sharding, microservices for isolation, elasticity/autoscaling-based, stateless

Tasks:

fault-tolerance, retries, delegation

Interactions/Requests

 service-based, well-defined protocols for isolation, asynchrononous modes for isolation, elasticity, handling cascading failures

Example: The goal is to avoid (cascading) failures in serving requests which is a common problem

Resilience techniques have to be applied in many places (due to many types of request)

Example: resilience implementation strategies for request handling

Component/service replication

multiple instances, both data and function sharding

Component/service isolation

 asynchronous communications among services, microservices (virtualization/containers), share nothing infrastructural design, failure isolation, well-defined protocols

Component/service function delegation

 hand over the tasks to other components through task distribution/orchestration via workflows, queues and serverless

Example: resilience implementation strategies for request handling

- Throttling Pattern
- Circuit breaker pattern
- Queue-based Load Levelling Pattern
 - https://docs.microsoft.com/enus/azure/architecture/patterns/queue-based-load-leveling
- Retry Pattern: exponential backoff
 - https://cloud.google.com/iot/docs/how-tos/exponential-backoff
- Many implementation guides and tools, e.g.
 - https://github.com/resilience4j/resilience4j

Circuit breaker pattern

Client 100000 requests/s Service

- What if service operations fail due to unexpected problems or cascade failures (e.g. busy → timeout)
 - Let the client retry and serve their requests may not be good

→ Circuit breaker pattern prevents clients to retry an operation that would likely fail anyway and to detect when the operation failure is resolved.

Circuit breaker patterm

Source: https://msdn.microsoft.com/en-us/library/dn589784.aspx

Source: http://martinfowler.com/bliki/CircuitBreaker.html

ML contract observability: QoA4ML

Big data/ML for Observability vs Observability for Big data/ML systems

- Big data of metrics, logs and traces
 - Large number of entities to be observed
 - High number of measurement dimensions
- ML for observability
 - Classification, prediction and detection of traffics/interactions anomaly behaviors, hidden relationships, etc.
 - Root-cause analysis
 - ML serving is in the edge and cloud

Experiment management

how do we manage important information for ML model?

Problems

We need to run many experiments

- testability/observability purposes: figure out suitable configurations
- how does this help to understand and support R3E?

Experiment management

- known domain and well-known books (e.g., "Design and Analysis of Experiments" by Douglas C. Montgomery)
- principles: capturing various configurations
- how does it work in big data and ML?

What do we need?

tools/frameworks for tracking experiments

Notions

A single run/trial

- inputs, results, required software artefacts
- computing resources, logs/metrics

Experiment

a collection of runs/trials/executions gathered in a specific context

Steps

- parameterization: generate different parameters
- deployment: prepare suitable environments
- execution: run and collect metrics
- analysis and sharing: analyze experiment data

Experiment tracking

But remember it is very large system! Which tools can we use?

Examples

- Experiment in Azure ML SDK
 - https://docs.microsoft.com/enus/python/api/overview/azure/ml/?view=azure-mlpy#experiment
- MLFlows https://mlflow.org/
- Kubeflows
 - https://www.kubeflow.org/docs/pipelines/overview/concepts/
- DVC: https://dvc.org/
- Verta: https://www.verta.ai/

Examples: MLFlow APIs

Experiment

```
mflow.start run()/end run()
```

Logs/metrics collection

```
mflow.set_tag()
mflow.log_*()
```

- Tracking data management
 - Local files, Databases, HTTP server, Databrick logs

(follow our hands-on tutorial)

Study log 2

Describe one big data/ML pipeline that you are familiar with and explain your thoughts on how would you support the aspects of "benchmarking", "monitoring", "observability", "experimenting" or "design pattern" for testing/implementing R3E aspects

- Is enough to focus on 1 pipeline and 1 aspect
- Be concrete, e.g., with metrics and possible tools
- Analyze if things can be done easily or where are the challenges that might be interesting for further investigation
- Optionally link to issues raised/addressed in a reading paper

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io