Softmax

交叉熵损失函数相对于 mse 损失函数的优点

- 1) 收敛速度交叉熵损失函数更快
- 2) mse 求出来的概率值可能在 0-1 之外

缺点

使用MSE的一个缺点就是其偏导值在输出概率值接近0或者接近1的时候非常小,这可能会造成模型刚开始训练时,偏导值几乎消失。

假设我们的MSE损失函数为: $J=rac{1}{2}(y_i-\hat{y_i})^2$,偏导为: $\dfrac{dJ}{dW}=(y_i-\hat{y_i})\sigma'(Wx_i+b)x_i$,其中 $\sigma'(Wx_i+b)$ 为 $\sigma(Wx_i+b)(1-\sigma(Wx_i+b))$ 。 可以看出来,在 $\sigma(Wx_i+b)$ 值接近0或者1的时候, $\dfrac{dJ}{dW}$ 的值都会接近于0,其函数图像如下:

这导致模型在一开始学习的时候速率非常慢,而使用交叉熵作为损失函数则不会导致这样的情况发 生。

$$\frac{\partial p_j}{\partial y_i} = \frac{\partial (\frac{e^{y_j}}{\sum\limits_{j=1}^K e^{y_j}})}{\partial y_i} = \frac{(e^{y_j})'\sum\limits_{j=1}^K e^{y_j} - e^{y_j}(\sum\limits_{j=1}^K e^{y_j})'}{(\sum\limits_{i=1}^K e^{y_j})} = \frac{0\sum\limits_{j=1}^K e^{y_j} - e^{y_j}e^{y_i}}{(\sum\limits_{k=1}^K e^{y_k})} = \frac{-e^{y_j}e^{y_j}}{(\sum\limits_{j=1}^K e^{y_j})} = -S(y_j)S(y_i)$$

• 再看 $\frac{\partial y_i}{\partial w_n}$

$$\frac{\partial y_i}{\partial w_n} = x_n$$

接下来我们只需要把上面的组合起来:

$$\begin{aligned} &=-p(i)(1-p(i))\sum_{i=1,i=j}^K \frac{y_i}{p_i}-p(i)p(j)\sum_{i=1,i\neq j}^K \frac{y_i}{p_j} \\ &\frac{\partial J}{\partial p_j}\cdot\frac{\partial p_j}{\partial y_i}\!=-(1-p(i))\sum_{i=1,i=j}^K y_i-p(i)\sum_{i=1,i\neq j}^K y_i \\ &=-\sum_{i=1,i=j}^K y_i+p(i)\sum_{i=1}^K y_i \end{aligned}$$

最后针对分类问题,给定的 y_i 中只会有一个类别是1,其他类别都是0,所以

$$\frac{\partial J}{\partial p_j} \cdot \frac{\partial p_j}{\partial y_i} \cdot \frac{\partial J}{\partial w_n} = \frac{\partial y_i}{\partial w_n} = (p(i) - 1)w_n$$

注意看,p(i)-1是啥?是不是 ${f SoftMax}$ 层的输出的概率-1,梯度就是这么容易计算!!! 太神奇了?!

就是为什么神经网络分类器要用交叉熵损失函数的原因!

softmax 思想

就是一个向量乘以 w 矩阵,目标为了将向量维度变为和目标类别同样维度,然后计算 exp (pi^) 即可