MODELOS

Contenido

- Introducción
- Modelos Físicos:
 - 3 generaciones de SD:
 - 1G: Temprana,
 - 2G Internet-Escala,
 - 3G Contemporaneos
- Modelos Arquitectónicos
 - Tipos de arquitecturas
 - Cliente Servidor
 - Clientes y un servidor, Multiples Servidores, Servicios proxy con chachés, Modelo Peer.
- Modelos Fundamentales descripción formal
 - Interacción, fallos y seguridad.

Robar un banco

- Modelo Físico: Cuántos somos y cómo somos
 - Somos 3, uno es ruso, otro sabe conducir
- Modelo Arquitectónico:
 - Quién será el líder? O, no hay?
 - ¿Durante la huida manda uno y durante el atraco otro?
- Modelo de Interacción:
 - Ponemos un tiempo límite para el atraco?
 - Sino lo conseguimos en ese tiempo abortamos al misión?
- Modelo de fallo:
 - Qué pasa si a uno le cogen?
 - Y si alguno es un infiltrado de la policía?

Modelo:

- Descripción abstracta simplificada pero consistente de cada aspecto relevante del diseño de un S.D.
- Todos los tipos de S.D. tienen características básicas:
 - Nodos conectados en red
 - Comunicación mediante paso de mensajes
- Pero existen aspectos importantes que pueden variar:
 - Tipos de nodos y de red.
 - Número de nodos
 - Responsabilidades de los nodos
 - Posibles fallos en los nodos o en la comunicación
 - Etc.

- Podemos definir tantos modelos como características queramos considerar en nuestro sistema.
 - Ejemplo: Si la seguridad es prioritaria podemos definir un modelo para considerar posibles ataques.

- S.D. deben ser diseñados para funcionar correctamente en todas las circunstancias y escenarios
- Modelos de S.D. ayudan a:
 - Clasificar y entender diferentes implementaciones
 - Identificar sus debilidades y fortalezas
- Deberíamos estudiar los modelos de S.D. desde diferentes perspectivas
 - Estructura, organización, ubicación de componentes.
 - Interacciones
 - Propiedades fundamentales de los sistemas

- La estructura y organización de un sistema y sus relaciones entre sus componentes debería ser diseñado con los siguientes objetivos en mente:
 - Cubrir el mayor rango posible de circunstancias
 - Hacer frente a posibles dificultades y amenazas
 - Satisfacer las demandas actuales y futuras
- Los modelos arquitectónicos proveen:
 - Un punto de inicio pragmático
 Una vista conceptual
 En tèrminos de modelos de implementación
 En tèrminos de vistas lógicas del Sistema, flujo de interacción y componentes

- Clasifica los elementos de hardware en un S.D.
 - Tipos de nodos y red, número de nodos
- Sirven para diferenciar las distintas generaciones de un S.D.
 - Los tipos de redes y nodos han variado desde 1960 hasta hoy
 - Y con ellos los desafíos más importantes:
 - Coordinación y sincronización (~1970-80)
 - Escalabilidad (1990-)
 - Heterogeneidad (1990 y especialmente 2000s)
 - Calidad (tolerancia a fallos, seguridad, concurrencia)

- 1ra. Generación
 - **[70-80s]**
 - Basadas en LAN
 - 10 100 nodos
 - Mayor problema: sincronizar y coordinar distintos nodos.

- 2da. Generación
 - [90s-2005]
 - Consolidado con el crecimiento de Internet
 - Aumenta el número de nodos (escala)
 - Clusters, grids, P2P (con nodos autónomos)

- 3ra. Generación
 - Contemporánea
 - Nodos dinámicos
 - Computación móvil
 - Computación ubicua
 - Computación en la nube

Generación	l ^a (Inicios) 1970-1985	2ª (Internet) 1985-2005	3ª (Contemporánea) 2005-
Escalabilidad	Baja	Alta	Muy alta
Heterogeneidad	Limitada (configuraciones homogéneas)	Significativa (plataformas, lenguajes, middleware)	Nuevas dimensiones, (arquitecturas, dispositivos)
Extensibilidad	No es una prioridad	Significativa (estándares)	Desafío (los estándares no cubren sistemas complejos)

Modelos Arquitectónicos

Tipos:

- Cliente servidor
 - Servicios proporcionados por múltiples servidores
 - Servicios proxis y chachés
 - Otros derivados
- Sistemas peer to peer
- Se diferencian en:
 - El reparto de responsabilidades entre los componentes de un SD
 - La ubicación de los componentes del sistema

- Un servidor puede también ser cliente de otros servidores
 - Un servidor web es cliente del servicio DNS que traduce nombres de dominio a direcciones IP.
 - Un servidor web es un cliente del servidor de la base de datos.
 - Un motor de búsqueda es un servidor y un cliente para otros servidores web

- Servicios proporcionados por múltiples servidores
 - Replicación para aumentar prestaciones y disponibilidad.
 - Muchos servicios web redirigen redirigen a varios servidores replicados.

Servidores proxy

 Usan cachés para almacenar los datos usados recientemente.

Derivados:

- Código móvil (applets)
- Agente móvil
- Programa gusano

Sistemas Peer to Peer

- Reduce los retardos en la comunicación
- Eliminación de intermediarios
- Ejemplos: voz: Skype; datos:bitTorrent

Trabajo

- Liste y explique 4 razones por las que compartir recursos es beneficioso?
- 2. En el contexto de sistema distribuido, que significa el término "Tolerancia a Fallas"
- Para cada uno de los desafíos de un S.D., explique porqué es un desafío, de un ejemplo para cada caso. (Transparencia, seguridad, heterogeneidad, apertura)
- 4. Qué es middleware en el contexto de un sistema distribuido?
- 5. Cuáles son las 3 maneras básicas de describir un S.D.?
- Dibuje un diagrama para cada uno de los modelos arquitectónicos, explique y de un ejemplo para:
 - Cliente-servidor
 - Servicios proporcionados por múltiples servidores
 - Servidores proxy y cachés
 - Peer to peer
- Los avances tecnológicos hace que los modelos cliente-servidor se adapten a dispositivos móviles y cloud computing, explique como los servidores cooperan en proveer un servicio, ejemplifique. Discuta las ventajas y desventajas de estos modelos.