Supersymmetry in a Chain of Majorana Fermions

Anthony REY

École Polytechnique Fédérale de Lausanne

May 9, 2022

Motivation

• Tricritical Ising (TCI) model in 2D described by CFT

Motivation

- Tricritical Ising (TCI) model in 2D described by CFT
- Exhibits SUSY

Motivation

- Tricritical Ising (TCI) model in 2D described by CFT
- Exhibits SUSY

Goal

Recover the phase diagram of E. O'Brien and P. Fendley, Phys. Rev. Lett. 120, 206403 (2018)

Motivation

- Tricritical Ising (TCI) model in 2D described by CFT
- Exhibits SUSY

Goal

Recover the phase diagram of E. O'Brien and P. Fendley, Phys. Rev. Lett. 120, 206403 (2018)

Method

Density Matrix Renormalization Group (DMRG)

Model

Call OF (O'Brien and Fendley) model

$$\mathcal{H} = 2\lambda_I \mathcal{H}_I + \lambda_3 \mathcal{H}_3 + \lambda_c \mathcal{H}_c$$

with

$$\mathcal{H}_{I} = i \sum_{a} \gamma_{a} \gamma_{a+1} \xrightarrow{JW} - \sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{z}$$

$$\mathcal{H}_{3} = -\sum_{a} \gamma_{a-2} \gamma_{a-1} \gamma_{a+1} \gamma_{a+2} \xrightarrow{JW} \sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{x} \sigma_{i+2}^{x} + \sigma_{i}^{x} \sigma_{i+1}^{x} \sigma_{i+2}^{z}$$

$$\mathcal{H}_{c} = -i \sum_{a} \gamma_{a} \gamma_{a+2} \xrightarrow{JW} \sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{y} - \sigma_{i}^{y} \sigma_{i+1}^{x}$$

where

- JW is Jordan-Wigner transformation
- γ_a is a Majorana fermion operator satisfying $\gamma_a=\gamma_a^\dagger$ and $\{\gamma_a,\gamma_b\}=2\delta_{ab}$
- from now on, $\lambda_c = 0$

Recall on DMRG

Ground state search Find MPS $|\psi\rangle$ minimizing

$$E = \frac{\langle \psi | \mathcal{H} | \psi \rangle}{\langle \psi | \psi \rangle}$$

Recall on DMRG

Ground state search

Find MPS $|\psi\rangle$ minimizing

$$E = \frac{\langle \psi | \mathcal{H} | \psi \rangle}{\langle \psi | \psi \rangle}$$

Algorithm

- 2-site update by applying \mathcal{H} as MPO, diagonalize with Lanczos (or improved) and then truncate to χ (bond dimension) by SVD
- Sweep through until convergence criteria

Transverse-Field Ising

• TFI model

$$\mathcal{H} = -J\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} - h\sum_{i} \sigma_{i}^{z}$$

Transverse-Field Ising

• TFI model

$$\mathcal{H} = -J\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} - h\sum_{i} \sigma_{i}^{z}$$

• Described by CFT with central charge $c=\frac{1}{2}$ at criticality |J|=|h|

Transverse-Field Ising

TFI model

$$\mathcal{H} = -J\sum_{i} \sigma_{i}^{x} \sigma_{i+1}^{x} - h\sum_{i} \sigma_{i}^{z}$$

• Described by CFT with central charge $c=\frac{1}{2}$ at criticality |J|=|h|

Central charge

For open boundary conditions, entanglement entropy given by Cardy-Calabrese formula

$$S(l) = \frac{c}{6} \ln \left[\frac{2L}{\pi} \sin \frac{\pi l}{L} \right] + \text{const}$$

on bond l (in MPS language) for system of length L

Figure: TFI with J=h, L=100, $\chi=100$

Figure: TFI with J=h, L=100, $\chi=100$

Figure: TFI with J = h, $\chi = 100$

OF model

• is in Ising CFT universality class for $\lambda_3/\lambda_I \in [0, 0.856] \Rightarrow c = 1/2$

OF model

- is in Ising CFT universality class for $\lambda_3/\lambda_I \in [0, 0.856] \Rightarrow c = 1/2$
- is in TCI CFT universality class for $\lambda_3/\lambda_I \simeq 0.856 \Rightarrow c = 7/10$

OF model

- is in Ising CFT universality class for $\lambda_3/\lambda_I \in [0, 0.856] \Rightarrow c = 1/2$
- is in TCI CFT universality class for $\lambda_3/\lambda_I \simeq 0.856 \Rightarrow c = 7/10$
- is gapped for $\lambda_3/\lambda_I > 0.856 \Rightarrow c = 0$

OF model

- is in Ising CFT universality class for $\lambda_3/\lambda_I \in [0, 0.856] \Rightarrow c = 1/2$
- is in TCI CFT universality class for $\lambda_3/\lambda_I \simeq 0.856 \Rightarrow c = 7/10$
- is gapped for $\lambda_3/\lambda_I > 0.856 \Rightarrow c = 0$

Figure: OF with $\lambda_3/\lambda_I \simeq 0.856$, $\chi = 100$

Problem

• Extrapolates to 0.772 instead of 0.7!

Problem

- Extrapolates to 0.772 instead of 0.7!
- Good way to extrapolate?

Problem

- Extrapolates to 0.772 instead of 0.7!
- Good way to extrapolate?
- Seems not as we approach $\lambda_3/\lambda_I \simeq 0.856$ \rightarrow need to go to larger L (difficult)

Figure: OF with $\chi = 100$

Compute ratios

 Energy ratios universal at critical point described by CFT

Compute ratios

- Energy ratios universal at critical point described by CFT
- Use them to improve characterization of tricritical point

Compute ratios

- Energy ratios universal at critical point described by CFT
- Use them to improve characterization of tricritical point

Excited spectrum

 Get excited energies directly through diagonalization of the effective Hamiltionian in 2-site update, follow N. Chepiga and F. Mila Phys. Rev. B 96, 054425 (2017)

Compute ratios

- Energy ratios universal at critical point described by CFT
- Use them to improve characterization of tricritical point

Excited spectrum

- Get excited energies directly through diagonalization of the effective Hamiltionian in 2-site update, follow N. Chepiga and F. Mila Phys. Rev. B 96, 054425 (2017)
- Works very well for critical TFI (expect slope 2)

Figure: TFI with $J=1, L=50, \chi=50$

Periodic boundary conditions

However ratios need PBCs energies

$$R_1 = \frac{A_0^- - P_0^+}{P_1^+ - P_0^+}, \ R_2 = \frac{P_0^- - P_0^+}{P_1^+ - P_0^+}, \ R_3 = \frac{P_1^- - P_0^+}{P_1^+ - P_0^+}$$

Periodic boundary conditions

However ratios need PBCs energies

$$R_1 = \frac{A_0^- - P_0^+}{P_1^+ - P_0^+}, \ R_2 = \frac{P_0^- - P_0^+}{P_1^+ - P_0^+}, \ R_3 = \frac{P_1^- - P_0^+}{P_1^+ - P_0^+}$$

• Proving 3-fold degeneracy of ground state at $\lambda_I = \lambda_3$ need PBCs too

Periodic boundary conditions

However ratios need PBCs energies

$$R_1 = \frac{A_0^- - P_0^+}{P_1^+ - P_0^+}, \ R_2 = \frac{P_0^- - P_0^+}{P_1^+ - P_0^+}, \ R_3 = \frac{P_1^- - P_0^+}{P_1^+ - P_0^+}$$

- Proving 3-fold degeneracy of ground state at $\lambda_I = \lambda_3$ need PBCs too
- DMRG with MPS as a loop is not suited (generalized eigenvalue problem + large χ)

Periodic boundary conditions

However ratios need PBCs energies

$$R_1 = \frac{A_0^- - P_0^+}{P_1^+ - P_0^+}, \ R_2 = \frac{P_0^- - P_0^+}{P_1^+ - P_0^+}, \ R_3 = \frac{P_1^- - P_0^+}{P_1^+ - P_0^+}$$

- Proving 3-fold degeneracy of ground state at $\lambda_I = \lambda_3$ need PBCs too
- DMRG with MPS as a loop is not suited (generalized eigenvalue problem + large χ)
- Can fold MPS and reformulate MPO (finalization...)

