4.3 1次関数と図形

図形の面積の変化について調べてみよう

目標: 図形の辺上を動く点によってできる図形の面積の変化を, 1次関数の式やグラフで表すことができる。

- 調べてみよう **一**

右の図の長方形 ABCD で、点 P は A を出発して、辺上を点 P が A から xcm 動いたときの \triangle APD の面積は、どのように変化するでしょうか?

考えよう

点 P が動くとき、 \triangle ADP の面積はどのように変化するだろう。

STEP1: 点 P が、AB 上にあるとき、BC 上にあるとき、CD 上にあるとき、 \triangle ADP は、どのような形になるか、概形を下の図 1~図 3 に描きましょう。

図1 点 P が AB 上にあるとき

図2 点Pが BC 上にあるとき

図3 点 P が CD 上にあるとき

式:

式:

式:

STEP2: \triangle ADP の面積がどのように変化するか,予想してみましょう。 (話したことをメモしておこう)

STEP3: STEP1 のとき、y を x の式で表してみましょう。(図の下に書く) **STEP4:** \triangle ADP の面積の変化の様子をグラフに書き込んでみましょう。

STEP5: 1~4 の結果から、考えたことを話し合って書き留めておきましょう。

振り返り

目標 図形の辺上を動く点によってできる図形の面積の変化を,1 次関数の式やグラフで表すことができる。自分の理解度がどれに当てはまるか,近いものを \bigcirc で囲み,その理由を書きましょう。

自己評価	内容
4	xと y の関係を式グラフに描くことができた (STEP4)
3	xと y の関係を式で表すことができた (STEP3)
2	点 P が動くことによる面積の変化を捉えることができた。(STEP1~2)
1	点 P によって,△ADP どのように変化するか図に書き込むことができた。(STEP1)