

# 方法精讲-数量 4

主讲教师:高照

授课时间:2017.05.30



粉笔公考·官方微信

#### 方法精讲-数量4(笔记)

#### 第八节 容斥原理

#### 【知识点】上节课程的内容进行梳理:

- 1. 经济利润问题:
- (1) 例 1. 经济利润问题要从问题着手,看题干信息,问销售额,销售额=单价\*数量,单价分成上午下午。
- (2) 例 2 问比盈利增长了+百分号,问比例;例 3 问利润率增长+百分号,问的也是比例;例 4 打折也是比例问题。一旦给比例问比例,可以采用赋值法。
- (3) 例 2 减少 40%可以赋值为 1 变成 0.6, 赋值 10 变成 6, 赋值 100 变成 60, 问比例都是可以约分的。利润率=利润/成本,总盈利=单个盈利\*数量。盈利下降 40%,数量增加 80%,赋值单个盈利今年为 x,那么去年为 0.6x,数量为 y,那么去年数量为 1.8y,总盈利分别为 xy 和 1.8\*0.6xy=1.08xy,xy 都可以约掉。总盈利上升 8%。
- (4) 例 3 成本下降 15%, 成本赋值为 100, 下降 15%变成 85。利润率=利润\*成本,都可以消掉。百分点是由百分号加减而来的。今年利润率是 10%, 去年利润率是 3%, 今年比去年增长 7 个百分点。题目中利润率比去年增长 24 个百分点,说明 (x+15) /85-x/100=24%。
- (5) 例 4 利润是原价的 40%, 赋值原价为 100, 数量售出 80%, 100 件的 80% 为 80 件, 10 件的 80%为 8 件, 1 件的 80%为 0.8 件, 但不是整数, 不建议这么设。

#### 2. 排列问题:

- (1) 什么时候去重复: 只分组(不牵扯排序): ①例如例 3 先红再蓝色, 无需去重。
- ②分子是相同的,都是蓝色的,假设 1 号、5 号位,或者 5 号和 1 号位,这两个都是蓝色没有任何关系。
- ③分组,分成多少人这种情况,10个人分成55组合,10个里面挑5个,C(10,5),剩下5个人不需要用挑,直接C(10,5)\*C(5,5)。如果第一次是

ABCDE,第二次是 JHGNL。反过来,第一次是 JHGNL,第二次是 ABCDE,情况相同需要在除以 A(2,2)。

④注意:有几组人数相同就直接除以 A 几几。10 个人分成 2, 2, 2, 4, C (10, 2) \*C (8, 2) \*C (6, 2) \*C (4, 4) /A (3, 3); 10 个人分成 2, 2, 3, 3, 为 C (10, 2) \*C (8, 2) \*C (6, 3) \*C (3, 3) /A (2, 2) \*A (2, 2)

- (2) 九宫格问题,建议: 把所有的九宫格向里面填数字,看看到底有多少种结果。
- (3) 162 页例 7. 题目说至少 3 项, 先每人先两项, 2\*3=6, 剩下 20-6=14 个, 14 个分给 3 个人,每人至少 1 个,14 个人 13 个空,分给 3 个人,插 2 板,A (13,2)。如果是至少 4 项,每人先 3 本,剩下的至少再一本。特征:至少 1 本/至少 n 本,适用于插空法。
- (4) 捆绑法是适用于排相邻的、在一起的。插板法问的是分配的方式。分 东西默认为是相同的。

【知识点】本节课授课内容为容斥原理和最值问题。工作中会有最坏的情况。转化为最值问题,考察的是一种能力。

容斥问题:两集合和三集合。



1. 在一张玻璃上放了一片纸 A, 再放一张蓝色的纸 B, 问两片纸覆盖的面积?

答: A+B 部分大于覆盖的面积,需要去掉  $A\cap B$  的部分, $\cap$  很显然  $A\cap B$  是两层,减去一层  $A\cap B$ ,空白的来说,属于既不喜欢 A 也不喜欢 B,叫做都不满足。

2. 两集合标准型公式: A+B-A∩B=总数-A、B都不满足的个数。

【例 1】(2015 天津)某高校大学生数学建模竞赛协会共有 240 名会员,今 欲调查参加过国家级竞赛和省级竞赛会员的人数,发现每个会员至少参加过一个级别的竞赛。调查结果显示:有的会员参加过国家级竞赛,有的会员两个级别的竞赛都参加过。问参加过省级竞赛的会员人数是多少人?()

A. 160 B. 120

C. 100 D. 140

【解析】例 1. 判定题型,两集合容斥问题。参加国家级的有 7/12\*240=140,两个都参加有 1/4\*240=60. 设省级竞赛 x 人,利用两集合公式, $A+B-A\cap B=$ 总数—都不,代入数据,140+x-60=240-0,解得 x=160。【选 A】

【例 2】(2014 国家)工厂组织职工参加周末公益活动,有 80%的职工报名参加,报名参加周六活动的人数与报名参加周日活动的人数比为 2: 1,两天的活动都报名参加的为只报名参加周日活动的人数的 50%,问未报名参加活动的人数是只报名参加周六活动的人数的()。

A. 20% B. 30%

C. 40% D. 50%

【解析】例 2. 给比例问比例,赋值法。出现只满足一个条件,只报名参加周日的,用画图法。2 天报名都参加为斜线位置。设只参加周日为 2 人,那么两天都参加的为 1 人,那么周日是 3 人参加。周六:周日是 2:1,那么周六是 6 人,那么只参加周六的为 6-1=5 人。已知有 80%的职工报名参加,共有 5+1+2=8 人报名参加,那么未报名参加的占 20%为 2 人,2/5=40%。【选 C】



【知识点】三集合标准型:



- 1. 例:如图, $A \cap B$ 部分、 $A \cap C$ 部分、 $B \cap C$ 部分都是 2 层,减  $A \cap B$ ,减  $B \cap C$ ,减  $A \cap C$ ,那中间减完就变成空的了,要再加上。同样的等于总个数减去都不满足。
- 2. 三集合标准型的公式: A+B+C-A∩B-B∩C-AC+A∩B∩C=总数-都不满足的个数。

### 三集合

标准型:  $A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C = 总数 - 都不满足个数$ 



【例 3】(2015 陕西)针对 100 名旅游爱好者进行调查发现,28 人喜欢泰山,30 人喜欢华山,42 人喜欢黄山,8 人既喜欢黄山又喜欢华山,10 人既喜欢泰山又喜欢黄山,5 人既喜欢华山又喜欢泰山,3 人喜欢这三个景点,则不喜欢这三个景点中任何一个的有()人。

| A. 20 | В. 18 |
|-------|-------|
| C. 17 | D. 15 |
| E. 14 | F. 13 |
| G. 12 | Н. 10 |

【拓展 1】某公司招聘员工,按规定每人至多可投考两个职位,结果共 42 人报名,甲、乙、丙三个职位报名人数分别是 22 人、16 人、25 人,其中同时报

甲、乙职位的人数为 8 人,同时报甲、丙职位的人数为 6 人,那么同时报乙、丙 职位的人数为:

A. 7 人 B. 8 人 C. 5 人 D. 6 人

【解析】拓展 1. 三个集合有交叉,容斥问题,三集合,同时报甲乙代表甲  $\cap$  乙,同时报甲丙的表示甲 $\cap$  丙,先加和,再去重复。设同时报乙丙的为 x 人,至多投考 2 个职位,所以三者相交部分为 0,42 人报名,报名当中没有不报名的,列示: 22+16+25-8-6-x+0=42-0,利用尾数法,左边尾数-8-6 尾数是-4,5-4 尾数是 1,2+6 尾数是 8,8+1 尾数为 9,左边尾数为 9-x,右边尾数为 2,x 尾数为 7。【选 A】

【注意】尾数法口诀: 左是左, 右是右, 要想快, 先消负。

例 1: 136+137+138-13-14-12+5=999-x,利用尾数法,左是左,右是右,消负数,-3与-4和7消掉了,8和-2合到一起是6,那么6+6+5=9-x,7=9-x,x 尾数为2。

例 2: 173+137+731-120-110-119=999-x, 尾数法, 左是左, 右是右, 要想快, 先消负。左边 0、0 删掉, 3+7 也是 0, 1-9=2=9-x, x 尾数为 7。

#### 【知识点】三集合非标准型:

# 三集合非标准型



- 1. 计算的是一层的面积。观察图形,m+n+p 是两层,q 是三层,需要减掉一层 m+n+p,q 是三层需要减掉 2 层。
- 2. 三集合非标准型公式: A+B+C=满足两个条件-2\*满足三个条件=总数-都不满足的个数。前提: 出现只满足两个条件或者满足两个条件。
- 3. 注意满足两个条件指的是只满足两个条件的部分。例: A 粽子是金币, B 粽子里面是人民币, C 粽子是硬币, m 是有金币和人民币的, m 表示只是两个条件的,只满足两个条件和满足两个条件意思相同。

### 三集合非标准型

### 【前提:出现只满足两个条件或者满足两个条件】



 $A + B + C - 满足两个条件 - 2 \times 满足三个条件 = 总数 - 都不满足个数$ 

【例 4】(2014 广东)为丰富职工业余文化生活,某单位组织了合唱、象棋、羽毛球三项活动。在该单位的所有职工中,参加合唱活动的有 189 人,参加象棋活动的有 152 人,参加羽毛球活动的有 135 人,参加两种活动的有 130 人,参加三种活动的有 69 人,不参加任何一种活动的有 44 人。该单位的职工人数为()人。

A. 233 B. 252

C. 321 D. 520

【解析】例 4. 出现参加两项活动,属于三集合非标准型,A+B+C=满足两个条件-2\*满足三个条件=总数-都不满足的个数。设员工数为 x 人, 189+152+135-130-69\*2=x-44。尾数法。左是左,右是右,先消负数。8=x-4,x

#### 尾数为2。【选B】

【拓展 2】(2015 广东)某乡镇举行运动会,共有长跑、跳远和短跑三个项目。参加长跑的有 49 人,参加跳远的有 36 人,参加短跑的有 28 人,其中只参加两个项目的有 13 人,参加全部项目的有 9 人,那么参加该次运动会的总人数为多少

A. 75 B. 82 C. 88 D. 90

【解析】拓展 2. 出现只参加两项目的人数,三集合非标准型,A+B+C=满足两个条件-2\*满足三个条件=总数-都不满足的个数。设参加运动会的人数为 x,49+36+28-13-9\*2=总数-0,尾数法,左是左,右是右,先消负数。2=总数。【选B】

【注意】如何区分标准与非标准型: 1. 非标准型出现只参加或者参加两个项目。

2. 标准型出现  $A \cap B$ ,  $B \cap C$ ,  $A \cap C$  的数据。

【例 5】(2015 黑龙江)工厂组织工人参加技能培训,参加车工培训的有17人,参加钳工培训的有16人,参加铸工培训的有14人,参加两项及以上培训的人占参加培训总人数的2/3,三项培训都参加的有2人,问总共有多少人参加了培训?()

A. 24 B. 27 C. 30 D. 33

【解析】例 5. 出现参加两项及以上的人数代表参加两项的人和参加三项的人数。设总人数为 x,两项及以上占了 2/3x,三项是 2 人,参加两项的人数为 2/3\*x-2。三集合非标准型,A+B+C—满足两个条件—2\*满足三个条件=总数—都不满足的个数。设参加人数为 x,代入数据,17+16+14-(2/3\*x-2)-2\*2=x,整理 47-2/3\*x+2-4=x,45=5/3\*x,解得 x=27。【选 B】

【知识点】画图法(出现:只满足一个条件)

- 1. 提醒:每个封闭区域只有一个数。
- 2. 例: ABC 三者相交,只满足一个条件代表图中阴影部分。注意每个封闭区域只有一个数。

画图法(出现: 只满足一个条件)提醒: 每个封闭区域只有一个数。

【答案汇总】1-5: ACABB



【小结】容斥原理:

- 1. 判定题型: 有交叉部分。
- 2. 公式:
- (1) 两集合: A+B-AB=总数-都不。
- (2) 三集合标准型 (有 A∩B、A∩C、B∩C): A+B+C-AB-AC-BC+ABC=总数-都不。
- (3)三集合非标准型(出现满足两个条件): A+B+C-满足两个-满足三个\*2=总数-都不。
  - 3. 画图(适用于只满足一个条件):
  - (1) 画圈圈, 标数据, 去重复。
  - (2) 交叉部分重点标注。

【注意】作业: 题库中容斥原理的所有题目。

要求: 1. 判定题型。2. 用哪种方法。3. 计算能否用尾数法。

第九节 最值问题

#### 【知识点】最值问题

- 1. 最不利构造: 又叫抽屉原理。
- (1) 特征: 至少(最少) ……保证……
- (2) 方法: 答案=最不利情形+1
- 2. 举例:
- (1) 一个箱子中有3个红球、2个黄球、1个黑球,摸到红球回家休息,问高照老师至少摸多少次才能保证一定能摸到红球?

答: 高照老师连续摸了 2 个黄球,还剩下 3 红 1 黑,高照老师又摸了 1 个黑球,此时再摸一个无论如何都是红球,则至少要摸 2+1+1 次。

- (2) 大学60分及格,59分就是最坏的情况。
- (3)每天吃10个苹果可以很happy,只让你吃9个,这就是最坏的情况。
- (4)箱子里有 5 个红球、4 个黑球,问至少摸多少次可以摸到 1 个红球? 最坏的情况是 4 个黑球都摸完,此时再摸一次一定是红球,即 4+1 个。问至 少摸多少次可以摸到 2 个红球?则 4+1+1=6。
  - 3. 最不利: (1) 够, 那就少一个。(2) 不够, 那就全给你。

例 1 (2015 河北) 有软件设计专业学生 90 人,市场营销专业学生 80 人,财务管理专业学生 20 人及人力资源管理专业学生 16 人参加求职招聘会。问至少有多少人找到工作就一定保证有 30 名找到工作的人专业相同? ( )

A. 59 B. 75

C. 79 D. 95

【解析】例 1. 出现"至少……保证……",最不利构造=最不利+1。软件设计够 30,给 29 个,市场营销够 30,给 29 个,财务管理不够 30,20 个全给,人力资源管理不够 30,16 个全给。则 29+29+20+16+1=95。【选 D】

例 2 (2014 山东) 在 2011 年世界产权组织公布的公司全球专利申请排名中,中国中兴公司提交了 2826 项专利申请,日本松下公司申请了 2463 项,中国华为公司申请了 1831 项,分别排名前 3 位。问从这三个公司申请的专利中至少拿出多少项专利,才能保证拿出的专利一定有 2110 项是同一公司申请的专利? ( )

A. 6049 B. 6050

C. 6327 D. 6328

【解析】例 2. 出现"至少……保证",最不利构造问题,最不利+1。中兴 够 2110 项,给 2109 项,松下够 2110 项,给 2109 项,华为不够 2110 项,1831 项全给。则 2109+2109+1831+1,尾数为 0。【选 B】

【拓展 1】一副扑克牌(共 54 张),至少从中摸出多少张牌才能确保至少有 6 张牌的花色相同? ( )

A. 21 B. 22

C. 23 D. 24

【解析】拓展 1. 出现"至少……保证",最不利构造。扑克牌有 4 种花色,每种颜色有 13 张,外加大小王 2 张。要确保 6 张花色相同,则每种花色给 5 张,大小王全给,则 5+5+5+5+2+1=23。【选 C】

【注意】1. 扑克牌的来源:红桃、方片、梅花、黑桃4种花色代表四季,每个季节有13个星期,全年有52个星期,大小王代表太阳和月亮。

2. 扑克牌很基础, 而麻将普及率不高, 不会考。

例 3(2016 山东)某个社区老年协会的会员都在象棋、围棋、太极拳、交谊 舞和乐器五个兴趣班中报名了至少一项。如果要在老年协会中随机抽取会员进行 调查,至少要调查多少个样本才能保证样本中有 4 名会员报的兴趣班完全相同?

( )

A. 93 B. 94

C. 96 D. 97

【解析】例 3. 出现"至少……保证",最不利构造。象棋、围棋、太极拳、交谊舞和乐器五个兴趣班中至少选 1 项,选 1 项为 C (5, 1) =5 种选法,选 2 项为 C (5, 2) =10 种选法,选 3 项为 C (5, 3) =C (5, 2) =10 种选法,选 4 项为 C (5, 4) =C (5, 1) =5 种选法,选 5 项为 C (5, 5) =1 种选法,共 31 种选法。要保证 4 名完全相同,则最坏的情况为每种选法报 3 名,31\*3+1=93+1=94。

#### 【选 B】

【注意】1. 考点:最不利构造(问法:至少保证)+排列组合(出现了"至少一项")。

2. 出现"至少1项":有可能1项,有可能2项,有可能3项……

例 4(2014 联考)箱子里有大小相同的 3 种颜色玻璃珠各若干颗,每次从中摸出 3 颗为一组,问至少摸出多少组才能保证至少有 2 组玻璃珠的颜色组合是一样的? ( )

A. 11 B. 15

C. 18 D. 21

【解析】例4. 出现"至少……保证",判定为最不利构造。颜色组合情况(假设有a、b、c三种颜色): (1)一种颜色: aaa、bbb、ccc,共3种; (2)两种颜色: aab、aac、bba、bbc、cca、ccb,共6种; (3)三种颜色: abc,共1种;或者用排列组合,共C(3,1)+C(3,1)\*C(2,1)+C(3,3)=10种情况。即颜色组合情况共10种,至少保证2组颜色组合,则每种组合先给1种,至少要10+1=11组才能保证有2组玻璃珠的颜色组合是一样的。【选A】

#### 【小结】最不利构造:

- 1. 特征: 至少(最少) ……保证……。
- 2. 方法: 答案=最不利情形+1。

注意: (1) 有难度的需要自己找情况数(用枚举法或者排列组合)。

(2) 够,那就少一个;不够,那就全给你。

#### 构造数列

- 1. 特征:某个主体 ……最 ……。
- (1) 最……最……。
- (2) 排名第几……最……。
- 2. 方法: (1) 构造一个名次。
- (2) 求谁设谁。
- (3) 反向推其它。

#### (4) 加和求解。

【引例】4个人分100张一元的钱,每人都能分到钱,分到的钱均为整数 且互不相等。分到最多的人,最多分( )钱?

【解析】引例. (1) 构造名次:分别为第一名、第二名、第三名、第四名(默认前面的大于后面的)。(2) 求谁设谁:假设第一名为 x。(3) 反向推其它:要使最多的最多,则其它的最少为 1、2、3。(4) 加和求解: x+1+2+3=100,则 x=100-6=94。



【注意】1. 若问第二多的最多为多少?

答:设第二名为 x,要使第二名的多,则其他的尽量少,则第一名最少为 x+1,第三名为 2 元,第四名为 1 元,列式: x+1+x+1+2=100,解出 x 即可。



注意: 看条件中是否相等, 是否不等。

2. 若问最多的最少分多少钱?

答: 设第一名为 x,要使第一名最少,则其它的尽量多,则 2-4 名分别为 x-1、x-2、x-3,则 x+x-1+x-2+x-3=100。



例 5 (2015 广东) 在一次抽奖活动中,要把 18 个奖品分成数量不等的 4 份各自放进不同的抽奖箱。则一个抽奖箱最多可以放多少个奖品? ( )

A. 6

C. 12 D. 15

【解析】例5. "最……最……",构造名次,设第一名的为x,要使第一名的多,则其它的尽量少,由于数量不等,则2-4名分别为3、2、1,加和求解: x+3+2+1=18,解得: x=12。【选C】



【注意】明确说明奖品为4份,故最少不能为0。

#### 【答案汇总】1-5: DBBAC

例 6(2013 国考)某单位 2011 年招聘了 65 名毕业生,拟分配到该单位的 7个不同部门,假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名?( )

A. 10 B. 11

C. 12 D. 13

【解析】例6. 行政部门的人数比其他部门都多,则行政部门的人最多,判定题型为"最······最·····"。构造名次,分为1-7名,设第一名为x人,要使第一名

少,则其它人尽量多,由于题目未说明各个部门人数不等,则2-7名均为x-1人。 列式: 7x-6=65, 7x=71, 解得: x=71/7=10.1428571, 则行政部门最少为10.14, 不能到10, 取11。【选B】



例 7 (2014 国考) 某连锁企业在 10 个城市共有 100 家专卖店,每个城市的专卖店数量都不同。如果专卖店数量排名第五多的城市有 12 家专卖店,那么专卖店数量排名最后的城市,最多有几家专卖店? ( )

【解析】例7. "排名第几最……",判定为构造数列,题目说明第五名12家,设第10名为x家,要使最少的尽量多,则其它的尽量少,故第九名为x+1,第八名为x+2,第七名为x+3,第六名为x+1,第四名为13,第三名为14,第二名为15,第一名为16,列式: 70+5x+10=100,解得: x=4。【选C】



【注意】1. 若第六名为11家,则第六名为最多为11家,但本题要求11名尽量少,故推算为x+4;同理,第四名最少为13人。

- 2. 问排名最后的最多为多少? 若算出来为4.1,能否到5?
- 答: 最多为4.1,不到5。
- 3. 算出非整数怎么办?
- (1) 某个主体……最少: 向上取整。
- ①常见问法:最多……最少……;最少……最少……。
- ②例子: 若算出来为4.5,最少为4.5,不能到达4,则向上取整为5。
- (2) 某个主体……最多: 向下取整。
- ①常见问法:最多……最多……;最少……最多。
- ②例子: 若算出来为4.5, 最多为4.5, 不能到达5, 则向下取整为4。如例6,

问最少,则向上取整为11。

例 8 (2015 陕西) 植树节到来之际,120 人参加义务植树活动,共分成人数不等且每组不少于 10 人的 6 个小组,每人只能参加一个小组,则参加人数第二多的组最多有多少人?())

| A. 32 | В. 33 |
|-------|-------|
| C. 34 | D. 35 |
| E. 36 | F. 37 |
| G. 38 | Н. 39 |

【解析】例8. "第二······最",第一步: 以组数构造名次: 一、二、三、四、五、六。第二步: 反向推其他,设第二名为x,第一名最少为x+1,不少于即大于等于,则第3<sup>6</sup>名依次为13、12、11、10。第三步: 加和求解,2x+1+46=120,2x+47=120, x=73/2=36.5,问最多向下取整为36,最多36.5人到不了37人。【选E】

例 9 (2014 联考) 某工厂有 100 名工人报名参加了 4 项专业技能课程中的一项或多项,已知 A 课程与 B 课程不能同时报名参加。如果按照报名参加的课程对工人进行分组,将报名参加的课程完全一样的工人分到同一组中,则人数最多的组最少有多少人?()

【解析】例 9. "最……最"构造数列。假设有 ABCD 四项专业技能课程,只报一项为 C (4, 1) =4,报 2 项有 AC、AD、BC、BD、CD 五种,或 C (4, 2) -1=6-1=5种,报 3 项有 ACD、BCD 两种,或 C (4, 3) -ABC-ABD=4-2=2,报 4 项有 0 种,共 11 组。构成名次:1、2、3……10、11,设第一名为 x,要想第一名少,其他尽量多,题目没有要求各不相等,第 2 $^{\sim}$ 11 名最多均为 x,对照例 6,"行政……都多",此时其他要比行政少 1。假设小学考试拿了 99 分,其他人也考了 99 分,回家会说我第一名,我的分数最高,没有人比我高,因此可以并列。列方程:11x=100,解得 x=100/11 $\approx$ 9.1,问最少向上取整为 10。【选 D】

【注意】最不利构造中,最值问题和排列组合放在一起时,可以用枚举法。 本题中只说最多,没有说明比其他都多,且没有说其他主体各不相同,因此可以 都为 x。

#### 【知识点】多集合反向构造:

- 1. 特征: 都……至少。
- 2. 方法: 反向-求和-做差。

例: 粉笔有 100 名女老师,80 人皮肤白,70 人是富人,90 人是美人,问白富美至少多少人?

答:有"容"无"斥",因此不能用容斥原理。反向求,"都······至少"的反向是不都是白富美至多有多少人,不白=20人,不富=30人,不美=10人,尽量多则让这三者不重合,20+30+10=60,白富美=100-60=40人。

总结:给白富美,问最多,多集合反向构造,不白、不富、不美是反向,求和做差:100-60=40人。

例 10 (2015 广东) 阅览室有 100 本杂志,小赵借阅过其中 75 本,小王借阅过 70 本,小刘借阅过 60 本,则三人共同借阅过的杂志最少有()本。

A. 5

C. 15 D. 30

【解析】例 10. 判定题型: "都……至少",第一步反向: 25、30、40,第 二步求和: 95,第三步做差: 100-95=5。【选 A】

#### 【答案汇总】6-10: BCEDA

例 11(2014 政法干警)甲、乙、丙同时给 99 盆花浇水,已知甲浇了 75 盆, 乙浇了 66 盆,丙浇了 58 盆,那么三人都浇过的花至少有几盆?( )

A. 1 B. 2

C. 3 D. 4

【解析】例 11. 判定题型: "都……至少"。第一步反向: 24、33、41,第

### **Fb** 粉笔直播课

二步加和: 24+33+41=57+41=98, 第三步做差: 99-98=1。【选 A】

【知识点】最值思维:此消彼长。

例: 高照老师和你共 300 斤, 老师重 100 斤, 则你重 200 斤, 老师重 10斤, 则你重 290 斤, 是此消彼长的。

例 12 (2013 江苏) 甲、乙两种笔的单价分别为 7 元、3 元,某小学用 60 元 钱买这两种笔作为学科竞赛一、二等奖奖品,钱恰好用完。则这两种笔最多可买的支数是()。

A. 12 B. 13 C. 16 D. 18

【解析】例 12. "最……"最值问题。列方程: 7x+3y=60, 3y、60 均能被 3整除,可知 x 能被 3 整除,要想买的多,代表贵的 x 越少越好,x 最小为 3,当 x=3 时,y=13,最多买 16 支。【选 C】

【注意】模考第二季数量中第八题: 4m+5n=200, 问 m+n 最多是多少? 答: 4m+4n+n=200, 4 (m+n) +n=200, 要想 m+n 多,则 n 越少越好。

【答案汇总】11-12: AC



#### 【小结】最值问题:

- 1. 最不利构造类: 从问法上突破。
- (1) 判定: "至少……保证"。
- (2) 方法: 最不利的情况+1。
- 2. 构造数列类:要看清题目中是否有相等/比别人多,如例 6、例 9。非整数问最多向下取整,问最少向上取整。如最少是 4.5,到不了 4 向上取整。
  - (1) 判定: 最多/少的 …… 至多/少 ……
  - (2) 方法: ①排序定位; ②反向构造数; ③加和求解。
- (3)提示:①主体个数是否可以并列。②非整数:问最多向下取整,问最少向上取整。
  - 3. 多集合反向构造。
  - (1) 判定: 都满足的至少。
  - (2) 方法: 反向、求和、作差。
  - 4. 复杂最值问题:此消彼长的思维。
  - (1) 判定: 至多(少) ……
  - (2) 方法: 考虑最极端的情况,正向解题若复杂可考虑逆向思维。

#### 【答案汇总】

容斥原理: 1-5: ACABB

最值问题: 1-5: DBBAC; 6-10: BCEDA; 11-12: AC

## 遇见不一样的自己

come to meet a different you

