

- 1. Use dark blue or black pen for markings.
- 2. Do not write or scribble anything extra.
- 3. Do not fold, tear, wrinkle or staple.
- 4. Mark only one choice per question.
- 5. Correct marking: 0 • 0 0
- 6. Incorrect markings: $\otimes \emptyset \odot \Theta$

awa c 11 W 1 1			
SIWS College, Wadala			
Invigilator:			
Name :			
Class: Div:			
Exam: U1			
Subject : Mathematics			

	(a)	(b)	(c)	(d)
01	0	0		0
02	0		0	0
03	0		0	0
04	0	0		0
05		0	0	0
06	0	0		0
07		0	0	0
08	0	0	0	
09		0	0	0
10		0	0	0

	(a)	(b)	(c)	(d)
11		0	0	0
12		0	0	0
13		0	0	0
14	0	0	0	
15	0	0	0	
16	0	0		0
17	0	0	0	0
18	0	0	0	0
19	0	0	0	0
20	0	0	0	0

MODEL QUESTION PAPER FOR THE FIRST UNIT TEST

PORTION: LOCUS, DETERMINANTS, LOGARITHMS, COMLEX NUMBERS

- If the origin is shifted to (-a, p), then the old co-ordinates of (b, -q) are

 - (a) (-a b, -q p) (b) (-a b, p + q)
- (c) (b a, p q)
- (d) (a b, p q)

- The value of $\begin{vmatrix} 2 & 1 & -4 \\ -1 & 3 & 2 \\ 2 & 4 & 2 \end{vmatrix}$
 - (a) 40
- (b) 42
- (c) 44
- (d) 46

- If $\begin{vmatrix} x-7 & x-2 \\ x-3 & x+5 \end{vmatrix} = 0$ then the value of x is
 - (a) -41/3
- (b) 41/3
- (c) 3/41
- (d) -3/41

The value of $[\log_{25}\sqrt{5}][\log_3(1/9)]$ is

- (a) -2
- (b) -3/2
- (c) -1/2
- (d) none of these

- The value of $\sqrt{0.0091}$ is 5.
- [Given $\log 91 = 1.9590$]
- (d) antilog $\overline{2}$.9542

- (a) antilog $\overline{2}$.9795 (b) antilog $\overline{2}$.9925
- (c) antilog $\overline{2}$.9295
- Page No 1 Model U1

[1]

[1]

[1]

[1]

[1]

8.	The equation of the locus of a point P such that the join of A(-2, 8) and B(5, 4) subtends a right at P is (a) $x^2 + y^2 + 3x - 12y + 22 = 0$ (b) $x^2 + y^2 - 3x - 12y - 22 = 0$				
	(c) $x^2 + y^2 + 3x + 12y$	+22=0	(d) $x^2 + y^2 - 3x - 12y + 22 = 0$		
9.			3x + 4y - 5 = 0 are consist		[2]
	(a) k = 5	U) K = -1	(c) $k = 7$	(d) $k = -5$	
10.	If area of the triangle for	rmed by the points (8, 6),	(3, 4), (k, 8) is 14 square	units, then	[2]
	(a) $k = 27$ or -1	(b) $k = -27$ or 1	(c) $k = 27$ or 1	(d) $k = -1$ or -27	
11.	If $\begin{vmatrix} x+1 & x-3 & x \\ x-3 & x+5 & x \\ x+5 & x+1 & x \end{vmatrix}$	$\begin{vmatrix} +5 \\ +1 \\ -3 \end{vmatrix} = 0$, then			[2]
	, ,	(b) $x = 1$	* *	(d) None of these	
12.		og x + log y) then $\frac{x}{y}$			[2]
	(a) 10	(b) 6	(c) 8	(d) none of these	
13.	If $\log_3(t+2)^2 + \log_3(t+2)^2$	$-6)^2 = 4$ then the value of	of't'is		[2]
	(a) -3 or 7	(b) 3 or - 7	(c) 3 or 7	(d) 1 or -8	
14.			$\frac{1+3i}{2-5i} \ + \frac{1-5i}{2+5i} \ = \ x +$		[2]
	(a) $x = \frac{-36}{29}$, $y = \frac{4}{29}$	(b) $x = \frac{-26}{21}$, $y = \frac{31}{21}$	(c) $x = \frac{-36}{29}$, $y = \frac{-2}{29}$	$\frac{2}{9}$ (d) none of these	
15.	If $x = 1 - 2i$, then the v	value of $x^3 - 3x^2 + 7x + 1$	3 is		[2]
	(a) -2	(b) -3	(c) 13	(d) 18	
16.	If x and y are real numb	pers and $\pm(x + yi)$ is the s	equare root of $4 + 6\sqrt{5}i$,	then	[2]
	(a) $y = 2\sqrt{5}$	(b) $x = 2\sqrt{5}$	(c) $y = \sqrt{5}$	(d) $x = 2$	
	End				

(c) a = 3, b = 2

(c) x - y - 5 = 0.

(d) a = -3, b = 2

(d) x - y + 5 = 0.

[1]

[1]

If a and b are real numbers and (1+i)a + (2-i)b - 7 = i, then

(b) a = 3, b = -2

(b) x + y - 5 = 0.

The equation of the locus of a point which is equidistant from A(-1, -3) and B(-2, -4) is

6.

7.

(a) a = -3, b = -2

(a) x + y + 5 = 0.