The group G is isomorphic to the projective special linear group PSL(2,11). Ordinary character table of $G \cong PSL(2,11)$:

	1a	2a	3a	5a	5b	6a	11 <i>a</i>	11 <i>b</i>
χ_1	1	1	1	1	1	1	1	1
χ_2	5	1	-1	0	0	1		$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$
χ_3	5	1	-1	0	0	1	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$
χ_4	10	-2	1	0	0	1	-1	-1
χ_5	10	2	1	0	0	-1	-1	-1
χ_6	11	-1	-1	1	1	-1	0	0
χ_7	12	0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	1
χ_8	12	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	1

Trivial source character table of $G \cong PSL(2,11)$ at p = 3:

Normalisers N_i				N_1		N_2
p-subgroups of G up to conjugacy in G				P_1		P_2
Representatives $n_j \in N_i$	1a $2a$	5a	5b	11a	11b	$\begin{vmatrix} 1a & 2c & 2b & 2a \end{vmatrix}$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	12 0	2	2	1	1	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	21 -3	1	1	-1	-1	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	15 3	0	0	$2*E(11) + E(11)^2 + 2*E(11)^3 + 2*E(11)^4 + 2*E(11)^5 + E(11)^6 + E(11)^7 + E(11)^8 + 2*E(11)^9 + E(11)^{10}$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	15 3	0	0	$E(11) + 2 * E(11)^2 + E(11)^3 + E(11)^4 + E(11)^5 + 2 * E(11)^6 + 2 * E(11)^7 + 2 * E(11)^8 + E(11)^9 + 2 * E(11)^{10}$	$2 * E(11) + E(11)^2 + 2 * E(11)^3 + 2 * E(11)^4 + 2 * E(11)^5 + E(11)^6 + E(11)^7 + E(11)^8$	$F + 2 * E(11)^9 + E(11)^{10} \mid 0 0 0$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	12 0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	12 0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	1	1	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1 1	1	1	1	1	1 1 1 1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10 2	0	0	-1	-1	1 -1 1 -1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10 -2	0	0	-1	-1	1 1 -1 -1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10 2	0	0	-1	-1	1 -1 -1 1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(3, 5, 8)(4, 11, 7)(6, 9, 10)]) \cong C3$

 $N_1 = Group([(2,10)(3,4)(5,9)(6,7),(1,2,11)(3,5,10)(6,8,9)]) \cong PSL(2,11)$ $N_2 = Group([(3,5,8)(4,11,7)(6,9,10),(1,2)(4,11)(5,8)(9,10),(1,2)(3,4,8,7,5,11)(6,9,10)]) \cong D12$