

Automated Registration of Multi-mode Nondestructive Evaluation Data

Peter W. Spaeth^a, Erik L. Frankforter^{*a}, William C. Schneck^a,
Matthew R. Webster^a, Matthew Godbold^b, Daniel F. Perey^a

^aNondestructive Evaluation Sciences Branch, NASA Langley Research Center, Hampton, VA USA

^bMcNAIR Aerospace Center, University of South Carolina, Columbia, SC, USA

SPIE Smart Structures and Nondestructive Evaluation, 13 March 2023, Long Beach CA

Outline

1. Registration cases & datasets

- Lithium-metal (Li-metal) pouch cells
- Additive manufacturing fatigue specimens

2. Image registration approach

3. Registration results

- Li-metal pouch cells
- Additive manufacturing porosity

Registration case #1: Li-metal batteries

Material layup

X-ray system

Composite digital radiograph (DR)

Ultrasonic (UT) nondestructive evaluation (NDE)
using captured water column

Representative UT waveform

C-Scan of pouch cell

Registration case #2: additive manufacturing porosity

Fatigue specimen¹, 3.3 mm thick
(red box showing X-ray computational tomography (CT) region)

Conceptual sketch of UT pulse-echo NDE

Rescale
→

Slice from X-ray CT in neck region,
rescaled to same 0.005" resolution as UT image

Ultrasonic (UT) C-scan of first back-wall reflection
showing specimen porosity

¹Additive manufacturing fatigue samples, presented in:
Yeratapally, Saikumar Reddy, Christopher Lang, and Edward H. Glaessgen. "A computational study to investigate the effect of defect geometries on the fatigue crack driving forces in powder-bed AM materials." *AIAA Scitech 2020 Forum*. 2020.

Image registration approach

Normalized mutual information

Log-entropy (Shannon information)

$$H(A) = \sum p_i \log \frac{1}{p_i}$$

- A random variable (e.g., image)
- Rare events contribute more information

High entropy

Low entropy

Normalized mutual information²

$$Y(A, B) = \frac{H(A) + H(B)}{H(A, B)}$$

- (A, B) joint random variable

Goal of the registration:
concentrate the joint
histogram into the fewest
number of bins with
respect to the entropy of
the overlap.

²Normalized Mutual Information introduced in:

C. Studholme, D. Hill and D. Hawkes, "An overlap invariant entropy measure of 3D medical image alignment," Pattern Recognition, vol. 32, no. 1, pp. 71-86, 1999.

Computing the optimal translation

Formulated as a two-dimensional template matching problem – find the translation that maximizes mutual information

Powell's method³ for computing the information-maximizing translation:

- Gradient free method
- Quadratically convergent

³M. Powell, "An efficient method for finding the minimum of a function of several variables without calculating derivatives," Computer Journal, vol. 7, no. 2, pp. 155-162, 1964.

Image registration results

Li-metal pouch cells

- Lower resolution UT data set mapped into higher resolution digital radiograph DR
- DR is first rescaled to match UT pixel resolution
- Optimal translation of UT into DR selected to optimize normalized mutual information

Comparing the matched images

Additive manufacturing registration results

UT

Mapped CT

Overlay

Translation space

A local max occurs at approximately (41mm, 6mm) in translation space

Accuracy and time-complexity

	Ti-64Al-4V AM coupon	Lithium Metal Pouch Cell
Estimated registration error	0.649 (mm)	0.648 (mm)
	For both cases, global registration produced ~3 pixel local error in landmark locations	

	Computational time	Problem size	Time-complexity estimate N
Ti-64Al-4V AM coupon	0.59 (s)	101 pixels by 21 pixels	N/A
Lithium Metal Pouch Cell	13.04 (s)	139 pixels by 153 pixels	1.29
Lithium Metal Pouch Cell	74.19 (s)	307 pixels by 297 pixels	1.35
Lithium Metal Pouch Cell	189.41 (s)	418 pixels by 469 pixels	1.28

$$N \log \frac{n_1}{n_2} = \log \frac{t_1}{t_2}$$

Suggestive of approximately linear relationship between run time and problem size, with total run time feasible for routine registration uses cases

Conclusions

- Demonstrates feasibility of mutual information methodology to register images derived from different NDE modalities
 - Radiography to UT NDE registration (and vice versa)
 - Applied to laser powder bed fusion additive manufacturing and Li-metal battery NDE datasets
- For both cases, global registration produced ~3 pixel local error in landmark locations
- Enabler for NDE data fusion methodologies, for combined defect recognition using information from multiple techniques