CURS #2

CONTINUTUL CURSULUI #2:

Metode de aproximare a soluțiilor ecuațiilor neliniare.

I.3. Metoda secantei.

I.4. Metoda poziției false.

Notă: Textele scrise cu roșu reprezintă material suplimentar.

Figure: Metoda secantei

I. Metode de aproximare a soluțiilor ecuațiilor neliniare.

I.3. Metoda secantei.

La pasul k, aproximarea x_k a soluției exacte x^* a ecuației f(x) = 0, $x \in [a,b]$ se obține prin intersecția cu axa Ox a secantei AB la graficul lui f, prin punctele $A(x_{k-1}, f(x_{k-1}))$ și $B(x_{k-2}, f(x_{k-2}))$. Prin urmare, nu se mai folosește tangenta la graficul lui f, deci nu mai este necesar caculul derivatei lui f.

$$AB: \frac{x - x_{k-1}}{x_{k-2} - x_{k-1}} = \frac{y - f(x_{k-1})}{f(x_{k-2}) - f(x_{k-1})} \tag{1}$$

$$\{x_k\} = AB \cap Ox \Rightarrow \frac{x_k - x_{k-1}}{x_{k-2} - x_{k-1}} = -\frac{f(x_{k-1})}{f(x_{k-2}) - f(x_{k-1})} \Rightarrow$$

$$x_k = x_{k-1} - f(x_{k-1}) \frac{x_{k-1} - x_{k-2}}{f(x_{k-1}) - f(x_{k-2})}$$

sau

$$x_k = \frac{x_{k-2}f(x_{k-1}) - x_{k-1}f(x_{k-2})}{f(x_{k-1}) - f(x_{k-2})}, k \ge 2$$
 (2)

unde $x_0, x_1 \in [a, b]$

Teorema ((I.3.) Convergența metodei secantei)

Presupunem că $f \in C^1([a,b]), f(a)f(b) < 0, f'(x) \neq 0, \forall x \in [a,b].$ Atunci $\exists !x^*$ astfel încât $f(x^*) = 0$. Mai mult, $\exists \delta > 0$, astfel încât, dacă $x_0, x_1 \in [x^* - \delta, x^* + \delta] \in [a,b]$, atunci șirul $(x_k)_{x \in 0}$ construit prin metoda secantei rămâne în intervalul $[x^* - \delta, x^* + \delta]$ și converge către x^* .

Demonstrație: Existența și unicitatea este asigurată de faptul că f(a)f(b) < 0 si $f'(x) \neq 0$, $\forall x \in [a, b]$.

 $f(a)f(b) < 0 \text{ si } f'(x) \neq 0, \forall x \in [a, b].$

Deoarece $f'(x^*) \neq 0$, putem considera $f'(x^*) = \mu > 0$. Din continuitatea derivatei f' rezultă că, pentru $\forall \varepsilon > 0, \exists \delta > 0$ astfel încât

$$|f'(x) - f'(x^*)| < \varepsilon, \quad \forall x \in [x^* - \delta, x^* + \delta] \subseteq [a, b]$$
 (3)

sau

$$-\varepsilon + \mu < f'(x) < \varepsilon + \mu$$

Fie $\varepsilon = \frac{\mu}{4}$, atunci

$$\frac{3}{4}\mu < f'(x) < \frac{5}{4}\mu, \quad \forall x \in [x^* - \delta, x^* + \delta]$$

(4)

Conform metodei secantei $x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$

Din dezvoltărea în serie Taylor a funcției
$$f$$
 în vecinătatea punctului x_k și evalută în x^* rezultă:
$$f(x^*) = f(x_k) + (x^* - x_k)f'(\xi_k), \quad \xi_k \in [x^*, x_k]$$

 $f(x_{\nu}) = -(x^* - x_{\nu})f'(\xi_{\nu})$

 $\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} = f'(\eta_k)$

 $x_{k+1} = x_k - \frac{f(x_k)}{f(x_k)}$

sau

Mai mult, aplicând teorema Lagrange pe intervalul
$$[x_{k-1},x_k]$$
 rezultă că $\exists \eta_k \in (x_{k-1},x_k)$ astfel încât:

Din (7) în (5) rezultă:

Astfel că, $x_{k+1} \in [x^* - \delta, x^* + \delta]$, deci șirul $(x_k)_{k \ge 0}$ rămâne în intervalul

 $[x^* - \delta, x^* + \delta]$. Mai mult, $|x^* - x_{k+1}| \le \frac{2}{3}|x^* - x_k| \le \dots \le \left(\frac{2}{3}\right)^{k+1}|x^* - x_0|$

rezultă că șirul $(x_k)_{k>0}$ este convergent la x^* .

Obs.: Se poate arăta că

 $\lim_{k\to\infty} \frac{|x^*-x_{k+1}|}{|x^*-x_k|^r} = \alpha, \alpha > 0$ unde $r=\frac{1}{2}(1+\sqrt{5})\approx 1,62$, astfel că metoda secantei este mai rapidă decât metoda liniară dar mai lentă decât cea pătratică.

schimbă monotonia (i.e. $f'(x) \neq 0, \forall x \in [a, b]$) și f(a)f(b) < 0.

Din punct de vedere computational valorile initiale x_0, x_1 se aleg din vecinătatea soluției x*, astfel încât la fiecare iterație se testează ca termenul x, să rămână în intervalul [a, b]. Pentru optimizarea metodei se va alege intervalul maxim [a, b] pe care functia f este definită, nu-si

iar conform cu (6) avem: sau

(6)

(13)

sau

 $x^* - x_{k+1} = x^* - x_k - \frac{(x^* - x_k)f'(\xi_k)}{f'(\xi_k)}$

 $x^* - x_{k+1} = (x^* - x_k) \left(1 - \frac{f'(\xi_k)}{f'(x_k)}\right)$

Din (4) rezultă următoarea estimare:

f. a. b. xn. x1. 8:

 $x^* - x_{k+1} = x^* - x_k + \frac{f(x_k)}{f(x_k)}$

 $|x^* - x_{k+1}| \le \frac{2}{3}|x^* - x_k| \le \frac{2}{3}\delta$

 $-\frac{2}{3} < 1 - \frac{f'(x)}{f'(y)} < \frac{2}{3}$ Fie $x_0, x_1 \in [x^* - \delta, x^* + \delta]$. Presupunem că $x_k \in [x^* - \delta, x^* + \delta]$ și vom demonstra că și $x_{k+1} \in [x^* - \delta, x^* + \delta]$. Se observă că

 $\eta_k, \xi_k \in [x^* - \delta, x^* + \delta]$, iar conform relației (10), din (9) rezultă

ALGORITM (Metoda secantei) Date de intrare: Date de iesire: STEP1: Se aleg $x_0, x_1 \in [a, b]; k = 1;$

STEP2: while $\frac{|x_k - x_{k-1}|}{|x_{k-1}|} \ge \varepsilon$ do

 $x_k = \frac{x_{k-2}f(x_{k-1}) - x_{k-1}f(x_{k-2})}{f(x_{k-1}) - f(x_{k-2})};$

Xanrox:

if $x_{\nu} < a$ or $x_k > b$ then OUTPUT('Introduceți alte valori pentru $x_0, x_1');$ STOP.

endif endwhile;

STEP3: $x_{aprox} = x_k$.

Curs #2

(8)

(9)

(10)

I.4. Metoda pozitiei false

Metoda pozitiei false construieste sirurile $(a_k)_{k>0}$, $(b_k)_{k>0}$, $(x_k)_{k>0}$ conform următoarei scheme grafice: la pasul k, aproximarea x_k a solutiei exacte x^* a ecuatiei f(x) = 0 se obține prin intersecția dreptei AB cu axa Ox. unde $A(a_k, f(a_k))$, $B(b_k, f(b_k))$, Intervalul $[a_k, b_k]$ se construieste conform metodei bisectiei.

$$AB: \frac{x - a_k}{b_k - a_k} = \frac{y - f(a_k)}{f(b_k) - f(a_k)}$$
 (14)

$$\{x_k\} = AB \cap Ox \Rightarrow \frac{x_k - a_k}{b_k - a_k} = \frac{-f(a_k)}{f(b_k) - f(a_k)} \Rightarrow \tag{15}$$

$$x_k = a_k - f(a_k) \frac{b_k - a_k}{f(b_k) - f(a_k)}$$
 (16)

Teorema (I.4. Teorema de convergentă a metodei poziției false)

Presupunem că $f \in C^2([a,b]), f(a)f(b) < 0$ și f', f'' nu se anulează pe

Curs #2

[a, b]. Atunci ecuatia f(x) = 0 are o solutie unică $x^* \in (a, b)$, iar șirul

 $(x_k)_{k>0}$ construit prin metoda pozitiei false converge la x^* .

sau

$$x_{k} = \frac{a_{k}f(b_{k}) - b_{k}f(a_{k})}{f(b_{k}) - f(a_{k})}$$
(17)

Avem astfel următoarea schemă generală: (a_k, b_k, x_k)

Figure: Metoda poziției false

ALGORITM (Metoda poziției false

Date de intrare: f, a, b, ε ; Date de ieşire: STEP1: k = 0; $a_0 = a$; $b_0 = b$; $x_0 = \frac{a_0 f(b_0) - b_0 f(a_0)}{f(b_0) - f(a_0)}$;

$$STEP2$$
: do $k=k+1;$ if $f(x_{k-1})=0$ then $x_k=x_{k-1};$

STOP.

elseif $f(a_{k-1})f(x_{k-1}) < 0$ then

elseif $f(a_{k-1})f(x_{k-1}) > 0$ then $a_k = x_{k-1}$; $b_k = b_{k-1}$; $x_k = \frac{a_k f(b_k) - b_k f(a_k)}{f(b_k) - f(a_k)}$;

Curs #2

 $a_k = a_{k-1}; b_k = x_{k-1}; x_k = \frac{a_k f(b_k) - b_k f(a_k)}{f(b_k) - f(a_k)};$

October 20, 2020

endif

while $\frac{|x_k - x_{k-1}|}{|x_k - x_k|} \ge \varepsilon$;

STEP3: $x_{aprox} = x_k$.

October 20, 2020