

Dipion mass spectrum in X(3872) decay

Baasansuren Batsukh Tomasz Skwarnicki

Theoretical input from: Adam Szczepaniak and Mikhail Mikhasenko

Update to the talk given by Baaska at BandQ on Mar 5, 2020: https://indico.cern.ch/event/879097/

Motivation

- > X(3872) might be a loosely bound $D^0\overline{D}^{*0}$ molecular state or tightly bound tetraquark.
- In this analysis, I am trying to separate interfering $\rho^0 \to \pi^+\pi^-$ and $\omega \to \pi^+\pi^-$ contributions to $B^+ \to K^+ X(3872), \ X(3872) \to \pi^+\pi^- J/\psi$. Their relative strength is important for X(3872) interpretations.
 - $X(3872) \rightarrow I/\psi \
 ho^0$, $ho^0 \rightarrow \pi^+ \pi^-$
 - Isospin violating decay of X(3872), isospin conserving decay of ρ^0
 - From the shape of m($\pi^+\pi^-$), dominant component in $X(3872) \to \pi^+\pi^- J/\psi$
 - $X(3872) o J/\psi$ ω , $\omega o \pi^+\,\pi^-\,\pi^0$
 - Isospin conserving decays of X(3872), isospin conserving decay of ω
 - Only low-mass tail of ω peak contributes to X(3872) decays.
 - BR($\omega \to \pi^+ \pi^- \pi^0$) = 89.3%
 - Observed by Belle [arXiv:hep-ex/0505037 (2005)] and BaBar [PRD 82, 011101 (2010)].
 - From Babar $r = BR(X(3872) \to J/\psi \omega) / BR(X(3872) \to \pi^+\pi^-J/\psi) = 0.8 \pm 0.3$
 - Unpublished LHCb results [Guido Andreassi, INFN, Rome, CERN-THESIS-2014-243].
 - $X(3872) \rightarrow J/\psi \omega, \omega \rightarrow \pi^+ \pi^-$
 - Isospin conserving decay of X(3872), isospin violating decay of ω
 - BR($\omega \to \pi^+ \pi^-$) = 1.5%.
 - Naively expect
 - $R_{\omega} \equiv \Gamma(X(3872) \to J/\psi \ \omega, \ \omega \to \pi^+ \ \pi^-) \ / \ \Gamma(X(3872) \to \pi^+ \pi^- J/\psi) = r \cdot BR(\omega \to \pi^+ \ \pi^-) = 0.012 \pm 0.005$
 - Small but its effect can be much bigger via ho^0 ω interference
 - CDF [PRL 96, 102002 (2006)] and Belle [PRD 84, 052004 (2011)] tried to establish this contribution, but had insufficient statistics (see next slides)

 $D^0 - \overline{D^{*0}}$ "molecule"

Diquark-diantiquark

CDF II analysis

PRL 96, 102002 (2006)

- \triangleright CDF II studied m($\pi^+\pi^-$) with low statistics data set.
- ➤ Analyzed 1260 ± 130 X(3872) candidates from prompt production i.e. with high background to subtract
- ➤ They considered rho-omega interference via Breit-Wigner (BW) sum
- ➤ Omega contribution insignificant
- R_{ω} < 10% (no systematic errors)

$$dN/dm_{\pi\pi} \varpropto |M|^2$$

$$M = BW_{\rho} + e^{i\phi}A_{\omega}BW_{\omega}$$

(they fixed the phase to $\phi = 95^{\circ}$)

Belle analysis

PRD 84, 052004 (2011)

- ➤ Analyzed 159 ± 15 X(3872) candidates from B decays (low background)
- ➤ Also use BW sum approach
- ➤ Omega contribution is insignificant (~1.3sigma)
- $R_{\omega} \sim 0.004 \pm 0.003$ (no systematic errors)
- They don't discuss how mass resolution was taken into account in the fit it matters in the ω region

$$dN/dm_{\pi\pi} \propto |M|^2$$

$$M = BW_{\rho} + e^{i\phi}A_{\omega}BW_{\omega}$$

(they also fixed the phase to $\phi = 95 \text{ deg}$)

$B^+ \to K^+ \pi^+ \pi^- J/\psi$ mass fit

With J/psi mass and vertex constraints

DSCB function was used for fit the signal peak and second order polynomial for the background signal.

Dominated by
$$B^+ o J/\psi$$
 $K(...)^+$, $K(...)^+ o K^+\pi^+\pi^-$

X(3872)

After 2σ B mass cut, with B mass constraint

43 times larger data set than analyzed by Belle!

$\pi^+\pi^-$ mass spectrum

3/18/2020

We performed 2D fit to $\left[m_{J/\psi\pi}\right]$, $m_{\pi\pi}$ in the narrow $m_{\pi\pi}$ bins to get $\frac{dN_X}{dm_{\pi\pi}}$ distribution.

Essentially, fit to $m_{J/\psi\pi\pi}$ in $m_{\pi\pi}$ bins, but must keep $m_{\pi\pi}$ dependence because of the phase-space factor.

Phase-space factor (
$$J/\psi$$
 momentum in $X(3872)$ rest frame)

$$PDF\left(m_{J/\psi\pi\pi},m_{\pi\pi}\right) = P_{J/\psi}\left(m_{J/\psi\pi\pi},m_{\pi\pi}\right)\left[N_X\ DSCB\left(m_{J/\psi\pi\pi}\right) + b_0 + b_1\left(m_{J/\psi\pi\pi} - m_{X(3872)}\right) + b_2\left(m_{J/\psi\pi\pi} - m_{X(3872)}\right)^2\right]$$

$$P_{J/\psi} = \frac{\sqrt{\left(m_{J/\psi\pi\pi} - m_{J/\psi} - m_{\pi\pi}\right)\left(m_{J/\psi\pi\pi} - m_{J/\psi} + m_{\pi\pi}\right)\left(m_{J/\psi\pi\pi} + m_{J/\psi} - m_{\pi\pi}\right)\left(m_{J/\psi\pi\pi} + m_{J/\psi} + m_{\pi\pi}\right)}}{2m_{J/\psi\pi\pi}}$$

$\pi^+\pi^-$ mass spectrum (some examples of X(3872) fit)

Fit of ρ^0 alone to $\pi^+\pi^-$ mass spectrum

The PDF is corrected for the modest efficiency change with the mass and smeared with the detector resolution (see my previous presentation!)

$$PDF(m_{\pi\pi}) = \frac{dN}{dm_{\pi\pi}} = S p q |M|^2$$

$$PDF(m_{\pi\pi}) = \frac{dN}{dm_{\pi\pi}} = S p q |M|^{2}$$

$$M = BW_{\rho}(m_{\pi\pi}|m_{\rho}, \Gamma_{\rho}) = \frac{m_{\rho}\Gamma_{\rho}B_{1}(q, q_{\rho})}{m_{\rho}^{2} - m_{\pi\pi}^{2} - im_{\rho}\Gamma_{\rho}(m_{\pi\pi})}$$

S is an overall scaling factor.

p is the momentum of I/ψ meson in X(3872) rest frame.

q is the momentum of pion in ρ^0 rest frame. mass dependent width is

$$\Gamma(m_{\pi\pi}) = \Gamma_{\rho} \frac{q}{q_{\rho}} \frac{m_{\rho}}{m_{\pi\pi}} B_1(q, q_{\rho})^2$$

Momentum-barrier (including Blatt-Weiskopf factor)

$$B_1(q, q_\rho) = \frac{q}{q_\rho} \sqrt{\frac{1 + R^2 q_\rho^2}{1 + R^2 q^2}}$$

R is a hadron size (we use R=0.3 fm)

Fit of $\rho^0 + \omega$ (BW sum)

$$M = BW_{\rho}(m_{\pi\pi}|m_{\rho}, \Gamma_{\rho}) + e^{i\phi_{\omega}} A_{\omega} BW_{\omega}(m_{\pi\pi}|m_{\omega}, \Gamma_{\omega})$$

Significance of ω contribution (from $\Delta \chi^2$) is very large ~ 17σ !

I – integral of PDF with no efficiency and no mass smearing:

$$R_{\varrho} \equiv \frac{I_{\varrho}}{I_{tot}} = 1.367 \pm 0.005$$
 $R_{\omega} \equiv \frac{I_{\omega}}{I_{tot}} = 0.27 \pm 0.01 \quad R_{\omega/\rho} = 0.191 \pm 0.009$

Fit is better but still bad (p-value = 1×10^{-6})

Fit of $\rho + \omega + \rho'(1450)$ (BW sum)

X(3872) candidates per 5 MeV

Significance of ϱ' contribution (from $\Delta \chi^2$) is very large ~ $7.7\sigma!$

$$\begin{split} R_{\varrho} &= 1.65 \pm 0.03 \\ R_{\omega} &= 0.18 \pm 0.02 \quad R_{\omega/\rho} = 0.11 \pm 0.01 \\ R_{\rho\prime} &= 0.031 \pm 0.010 \quad R_{\rho\prime/\rho} = 0.019 \pm 0.005 \end{split}$$

Fit is very good! (p-value = 70%)

D-wave ρ ? (BW sum)

It has been suggested to investigate adding ρ (770) produced in D-wave decay of X(3872) – shape shown on the left.

The previous analysis of angular correlations in X(3872) decays showed that S-wave dominates. D-wave contribution to the rate < 4% at 95% CL [LHCb, PRD92, 01102 (2015)].

When added incoherently to the fits to the $m(\pi^+\pi^-)$ distribution (at any stage), fits always prefer to make this contribution negligible.

Other J^{PC} of $\pi^+\pi^-$? (BW sum)

It has been suggested to investigate other quantum numbers of $\pi^+\pi^-$ than 1⁻⁻.

Only odd J are allowed in X(3872) decays!

$$ho_3$$
(1690)
$$I^G(J^{PC}) = 1^+(3^{--})$$
 Mass $m = 1688.8 \pm 2.1$ MeV [/] Full width Γ = 161 ± 10 MeV [/] (S = 1.5)

Would be produced in D-wave decays of X(3872).

When added incoherently to the fits to the $m(\pi^+\pi^-)$ distribution (at any stage), fits always prefer to make this contribution negligible.

Fit of $\rho^0 + \omega + NR$ (1-channel K-matrix)

Using sum of Breit-Wigners for strongly overlapping resonances of the same quantum numbers is known to have bad theoretical properties (violates unitarity). Try K-matrix approach instead (1-channel i.e. $\pi\pi$).

X(3872) candidates per 5 MeV

$$\mathsf{M} = \frac{\frac{m_{\rho}\Gamma_{\rho}}{m_{\rho}^{2} - m_{\pi\pi}^{2}} B_{1}(q,q_{\rho}) + \frac{A_{\omega}m_{\omega}\Gamma_{\omega}}{m_{\omega}^{2} - m_{\pi\pi}^{2}} B_{1}(q,q_{\omega}) + A_{NR}B_{1}(q,q_{\rho})}{1 - i\left(\frac{m_{\rho}\Gamma_{\rho}}{m_{\rho}^{2} - m_{\pi\pi}^{2}} + \frac{m_{\omega}\Gamma_{\omega}}{m_{\omega}^{2} - m_{\pi\pi}^{2}} + C_{NR}\right)}$$

Good quality fits require ρ , ω and small, but significant non-resonant component

$$R_{\varrho} = 4.1 \pm 1.0$$
 $R_{\omega} = 0.86 \pm 0.62$ $R_{\omega/\rho} = 0.21 \pm 0.08$ $R_{NR} = 0.019 \pm 0.019$ $R_{NR/\rho} = 0.005 \pm 0.006$

Large negative interference of $\rho - \omega$. Their total magnitudes poorly constrained. Their ratio better determined.

Fit of $\rho + \omega + \rho'(1450)$ (1-channel K-matrix)

X(3872) candidates per 5 MeV

Instead of non-resonant component can also obtain good quality fits by adding ρ'

$$\begin{split} R_{\varrho} &= 3.13 \pm 0.25 \\ R_{\omega} &= 0.38 \pm 0.11 \quad R_{\omega/\rho} = 0.12 \pm 0.03 \\ R_{\rho\prime} &= 0.043 \pm 0.011 \quad R_{\rho\prime/\rho} = 0.014 \pm 0.004 \end{split}$$

In spite of different shapes, obtain similar rate fractions as with the BW sum approach

Fit of $\rho + (\rho - \omega)$ interference

$$M = BW_{\rho} \left(m_{\pi\pi} \middle| m_{\rho}, \Gamma_{\rho} \right) \left[1 + A_{\omega} \frac{m_{\pi\pi}^2}{m_{\omega}^2 - m_{\pi\pi}^2 - im_{\omega} \Gamma_{\omega}(m_{\pi\pi})} \right]$$

$$\begin{array}{c} 400 \\ 350 \\ 250 \\ 250 \\ 150 \\ 200 \\ 150 \\ 200 \\ 200 \\ 150 \\ 200 \\$$

Suggested by Mikhail Mikhasenko, following the paper on EM pion form-factors H. Leutwyler arXiv-ph/0212324 (2002). Often used as effective parameterization in other works.

$$\begin{split} R_{\varrho} &= 0.718 \pm 0.013 \\ R_{\varrho-\omega} &= 0.041 \pm 0.004 \ \ R_{\varrho-\omega/\rho} = 0.057 \pm 0.007 \end{split}$$

Positive $\rho - \omega$ interference in this approach.

Fit quality much better than other two-component models, but not perfect.

Misha: consistent with two channels, $\pi\pi$ and $\pi\pi\pi$, coupled in unitary way

Fit of $\rho + \omega + \pi\pi + \pi\pi\pi$ (4-channel K-matrix)

Derived by Adam Szczepaniak ("singles" K-matrix generalization)

$$t11 := \frac{\left(-\frac{G2\,g3l^2\,g42^2}{(m3-s)\,(m4-s)} + \frac{g4l^2}{m4-s} + \frac{g3l^2}{m3-s}\right)}{1 - \frac{g42^2\,G2}{m4-s} - \frac{g3l^2\,G1}{m3-s} - \frac{g4l^2\,G1}{m4-s} + \frac{g42^2\,g3l^2\,G1\,G2}{(m3-s)\,(m4-s)}}{1} :$$

$$t41 := \frac{g41}{1 - \frac{g42^2\,G2}{m4-s} - \frac{g3l^2\,G1}{m3-s} - \frac{g4l^2\,G1}{m4-s} + \frac{g42^2\,g3l^2\,G1\,G2}{(m3-s)\,(m4-s)}} :$$

$$t31 := \frac{g3l \cdot \left(1 - \frac{g42^2 \cdot G2}{m4-s}\right)}{1 - \frac{g42^2\,G2}{m4-s} - \frac{g3l^2\,G1}{m3-s} - \frac{g4l^2\,G1}{m4-s} + \frac{g42^2\,g3l^2\,G1\,G2}{(m3-s)\,(m4-s)}} :$$

$$t21 := \frac{g42^2\,G2}{1 - \frac{g42^2\,G2}{m4-s} - \frac{g3l^2\,G1}{m3-s} - \frac{g4l^2\,G1}{m4-s} + \frac{g42^2\,g3l^2\,G1\,G2}{(m3-s)\,(m4-s)}} :$$

Adam: coupled continuum states, $\pi\pi$ (1) and $\pi\pi\pi$ (2), and "bare" one-particle states, ρ (3) coupling to $\pi\pi$ and ω (4) coupling to $\pi\pi$ and $\pi\pi\pi$, in addition to ρ - ω mixing.

$$Pvec1 := 1 + GI \cdot tII$$

$$G1 = i \sqrt{1 - 4 \frac{m_{\pi}^2}{s}}$$

$$Pvec2 := G2 \cdot t21$$

$$Pvec3 := \frac{t3I}{m3 - s}$$

$$S = m_{\pi\pi}^2$$

$$mj = m_j^2$$

$$gjk = \sqrt{m_j \Gamma_j BR(j \to k)}$$

 $M = A_{\rho} Pvec3 + A_{\omega} Pvec4 + A_{\pi\pi} Pvec1 + A_{\pi\pi\pi} Pvec2$

Fit of $\rho + \omega + \pi\pi + \pi\pi\pi$ (4-channel K-matrix)

new

Very preliminary!

Good quality fit!

$$R_{\varrho} = 3.48 \pm 0.31$$

$$R_{\omega} = 0.77 \pm 0.27 \quad R_{\omega/\rho} = 0.22 \pm 0.06$$

$$R_{\pi\pi\pi} = 0.39 \pm 0.09 \quad R_{\pi\pi\pi/\rho} = 0.11 \pm 0.02$$

$$R_{\pi\pi} = 0.18 \pm 0.04 \quad R_{\pi\pi/\rho} = 0.052 \pm 0.015$$

Results for ρ and ω similar to 1-channel K-matrix results.

Better motivated theoretically.

Summary

- We have performed analysis of $m(\pi^+\pi^-)$ distribution in $X(3872) \to \pi^+\pi^- J/\psi$ decays, reconstructed from $B^+ \to K^+ X(3872)$ decays, with signal statistics 43 times larger than previously used in this type of analysis
- The decay is dominated by $\rho^0 \to \pi^+\pi^-$, but ω is very significant (> 17 σ), which is established for the first time
- Additional component(s) are required for a good quality fit, but they are model dependent: tail of $\rho(1450)$, non-resonant or $\pi\pi\pi$ coupled-channel.
- Good quality fits suggest large negative interference between ρ^0 and ω is at play. They point to even larger rate of isospin violating $X(3872) \to \rho^0 J/\psi$ decays then previously believed, which strengthens molecular interpretation of X(3872), which naturally predicts isospin violating decays. However, quantitative rate results are model dependent.

More results to come

BACKUP SLIDES

Selection

- $B^+ \rightarrow K^+ \pi^+ \pi^- J/\psi$
- Data: Using a full statistics. Run1+Run2 (2011,2012,2015,2016,2017,2018).
- Stripping line: **StrippingB2XMuMu_Line**
- Loose selection including PID cuts:
 - PIDK > -5 for kaons < 5 for pions
 - PIDK for pions smaller than for the kaon candidate

$\pi^+\pi^-$ mass spectrum

Mass resolution and Smearing

signal MC samples were generated. About 100K reconstructed events in this study. Using MC truth information, we get $m_{\pi\pi}^{true}$. For different bins of $m_{\pi\pi}^{true}$ distribution, we plotted $m_{\pi\pi}^{true}$ - $m_{\pi\pi}^{reco}$ and fitted with simple Gaussian function.

Use this as a look up table for $\sigma_m(m_{\pi\pi})$

$$PDF'(m_{\pi\pi}) = \int_{-3\sigma}^{+3\sigma} PDF(m_{\pi\pi}^{true})G(m_{\pi\pi}|m_{\pi\pi}^{true},\sigma_m(m_{\pi\pi})) \ d\ m_{\pi\pi}^{true}$$

Efficiency

To obtain relative variation of efficiency with $m_{\pi\pi}$:

- Obtain generator level histogram of $m_{\pi\pi}^{\rm true}$
- Smear $m_{\pi\pi}^{true}$ with $\sigma_m(m_{\pi\pi})$ to obtain generator level distribution in "reconstructed" mass $\left(\frac{dN}{dm_{\pi\pi}}\right)_{gen}$
- ightharpoonup Plot reconstructed $m_{\pi\pi}$ distribution in the signal MC $\left(\frac{dN}{dm_{\pi\pi}}\right)_{gen}$

$$\succ \varepsilon(m_{\pi\pi}) = \frac{\left(\frac{dN}{dm_{\pi\pi}}\right)_{reco}}{\left(\frac{dN}{dm_{\pi\pi}}\right)_{gen}}$$

Fit of $\rho^0 + \omega$ (K-matrix)

K-matrix shape of ω is much different than naïve BW:

Fit with K-matrix is much better than with BW sum but still not satisfactory (p-value = 0.1%)

3/18/2020

Effect of the ho – pole in ω contribution.

Even with no ρ in the numerator, ρ is present in the denominator and makes a dent in the ω tail at m_{ρ} . ω does peak at m_{ω} but this is beyond the X(3872) phase-space limit.

For illustration how K-matrix works

Change $m_{\!X}$ from 3872 MeV to 4000 MeV

Errors on rate ratios

Errors on *R* obtained via statistical simulations:

- The fit parameters varied around the fit results according to multivariate Gaussian distribution according to the fit covariance matrix.
- The distributions of *R* are not Gaussian (next below) will need to decide how to handle this (on the previous slide we used RMS very naïve).
- In the future, we also want to get away from Gaussian approximation by using the likelihood on the data.

Fit of $\rho^0 + \omega + NR$ (K-matrix) with complex phases

In proper K-matrix there should be no complex phases in the numerator!

Fit quality does not change when complex phases are allowed – the data speaks to validity of the K-matrix approach.

	$m_ ho$	m_{ω}	$\Gamma_{\! ho}$ (MeV)	$\Gamma_{\!\omega}$ (MeV)	χ^2/NDF	ϕ_{ω}	$\phi_{\it NR}$	A_{ω} (formula dependent)	A_{NR}	$I_ ho / I_{tot}$	$I_{\omega/_{I_{tot}}}$	I_{NR}/I_{tot}	$I_{\omega}/I_{ ho}$
ho alone (BW or K-matrix)	775.49	-	146.2	-	398.9/34	-	-	-	-	1	-	-	-
$ ho + \omega$ (BW sum)	775.49	782.65	146.2	8.49	86.8/33	1.7	-	48.6 ± 1.1	-	1.44	0.27	-	0.19
$ ho + \omega$ (BW sum)	775.49	782.65	146.2	8.49	86.8/32	2.1 ± 2.2	-	8.7 ± 35.7	-	1.43	0.27	-	0.19
$ ho + \omega$ (K-matrix)	775.49	782.65	146.2	8.49	63.4/33	-	-	10.6 ± 0.2	-	4.66	1.39	-	0.29
$ ho + \omega + NR$ (K-matrix)	775.49	782.65	146.2	8.49	25.7/31	-	-	8.9 ± 1.6	0.043 ± 0.025	4.00±0.97	0.85±0.61	0.02±0.02	0.21±0.08
$ ho + \omega + NR$ (K-matrix with phases)	775.49	782.65	146.2	8.49	25.7/29	3.1 ± 1.6	3.1 ± 5.4	8.9 ± 1.6	0.043 ± 0.026	4.00	0.84	0.02	0.21
$ ho + \omega + NR$ (K-matrix)	757.4 ± 24.3	782.65	146.2	8.49	24.6/30	-	-	3.6 ± 3.6	0.084 ± 0.029	1.53	0.03	0.02	0.02
$ ho + \omega + NR$ (K-matrix)	775.49	778.6 ± 4.3	146.2	8.49	24.6/30	-	-	9.1 ± 2.0	0.058 ± 0.017	5.22	1.31	0.04	0.25
$\rho + \omega + NR$ (K-matrix)	775.49	782.65	165.8 ± 20.7	8.49	24.2/30	-	-	10.0 ± 2.0	0.073 ± 0.048	4.46	0.93	0.04	0.21
$\rho + \omega + NR$ (K-matrix)	775.49	782.65	146.2	24 ± 23	24.2/30	-	-	2.4 ± 3.0	0.076 ± 0.059	3.63	0.56	0.05	0.15

- We fix rho and omega masses and widths to the PDG values in the default fit.
- When allowed to float obtain values consistent with the PDG, but with large errors. Also fit qualities don't improve much at all.
- The fitted omega mass has relatively small error astonishing that we can determine this mass, even though the pole is beyond the phase-space.
- This all speaks to validity of K-matrix approach!

Use BDT selection to probe selection cuts dependence

Training Variables:

- Log(B_Jpsi_Chi2NDoF)
- Log(B_ENDVERTEX_CHI2)
- Log(B FDchi2)
- Log(1-B_DIRA)
- Log(B_IPchi2)
- Log(min(Mu1_IPchi2 _ownpv,Mu2_IPchi2 _ownpv))
- Log(max(Mu1_IPchi2 _ownpv,Mu2_IPchi2 _ownpv))
- Log(min(Pi1_IPchi2 _ownpv,Pi2_IPchi2 _ownpv))
- Log(max(Pi1_IPchi2 _ownpv,Pi2_IPchi2 _ownpv))
- Log(K_IPchi2_ownpv)

Train not on MC but real data:

- Signal sample = $B^+ \to K^+ \psi(2S)$, $\psi(2S) \to \pi^+ \pi^- I/\psi$
- Background sample = X sideband data from B sidebands

BDT output

BDT output

Optimization

Bkg suppression

With X(3872) mass cut

$\pi^+\pi^-$ mass spectrum

	mass of $ ho$	mass of ω	$\Gamma_{\! ho}$	$\Gamma_{\!\omega}$	$\chi^2/ndof$	ϕ_{ω}	ϕ_{NR}	A_{ω}	A_{NR}	$I_{ ho}/I_{tot}$	$I_{\omega/I_{tot}}$	I_{NR}/I_{tot}	$I_\omega/I_ ho$
$ ho + \omega + NR$ (K-matrix)	775.49	782.65	146.2	8.49	23.5/31	-	-	8.8 ± 1.6	0.044 ± 0.024	3.93	0.81	0.02	0.20

Non-B bkg reduced substantially, with hardly any loss to signal efficiency. The fit results hardly change. **Selection cut systematics is negligible!**