Prediction Model for Bike Rental System

Supervised Machine Learning Capstone
Jimin Shin
August, 2019

Introduction

- Bike-sharing systems are the new generation of traditional bike rentals where the whole process from membership, rental and return back has become automatic.
- Today, there exists great interest in these systems due to their important role in traffic, environmental and health issues.
- Predicting the amount of bike rental is directly related to maintenance cost

Research Question

- Bike-sharing rental process is highly correlated to the environmental and seasonal settings.
 - weather conditions, precipitation, day of week, season, and hour of the day can affect the rental behaviors.
- Q1: How many extra bikes do we need to prepare?
 - Prediction of the number of unexpected customers (casual customers)
 by environmental or weather condition should be required.
- Q2: Which daily condition create situations to be needed extra bikes?

Data Source (kaggle)

- Rental Log: Capital Bikeshare system, Washington D.C., USA
 - Bike sharing counts aggregated on hourly basis.
 - Duration: two-year historical log from 2011 to 2012
 - Records: 17379 hours
- Weather information: http://www.freemeteo.com

Description of Variables

- Continuous variables
 - temp: Normalized temperature in Celsius.
 - atemp: Normalized feeling temperature in Celsius.
 - hum: Normalized humidity.
 - windspeed: Normalized wind speed.
 - casual: count of casual users
 - o **registered**: count of registered users
 - cnt: count of total rental bikes including both casual and registered

Description of Variables

- Categorical and time variables
 - dteday : date
 - yr: year (0: 2011, 1:2012)
 - o **mnth**: month (1 to 12)
 - hr: hour (0 to 23)
 - weekday: day of the week (0: Sunday ~ 6: Saturday)
 - season: season (1:winter, 2:spring, 3:summer, 4:fall)
 - holiday: weather day is holiday or not
 - workingday: if day is neither weekend nor holiday is 1, otherwise is 0.
 - weathersit: (1: clear, 2: cloudy, 3: light snow or rain, 4: heavy snow or rain)

Data Cleaning

- There is no missing value
- Add part_day variables using hr variable
 - 0 am ~ 6 am: 'night'
 - o 6 am ~ 12 pm: 'morning'
 - 12pm ~ 6 pm: 'afternoon'
 - o 6pm ~ 12am: 'evening'

	iotai	1 01001
cnt	0	0.0
weekday	0	0.0
dteday	0	0.0
season	0	0.0
yr	0	0.0
mnth	0	0.0
hr	0	0.0
holiday	0	0.0
workingday	0	0.0
registered	0	0.0
weathersit	0	0.0
temp	0	0.0
atemp	0	0.0
hum	0	0.0
windspeed	0	0.0
casual	0	0.0
instant	0	0.0

Total

Percent

Exploring Target

• Target: **casual**, count of casual users

Exploring Target

- Handling Non-normality with Box-Cox Transformation
- Use transformed values for the prediction model

Exploring Continuous Variables

- Temperature, Feeling Temperature, and Humidity are correlated with casual rental (> abs(0.30))
- Windspeed has relatively small correlation with casual rental (0.1)
- Temperature and Feeling Temperature are highly correlated (0.99)
 - <u>exclude Feeling Temperature</u>

- season variable is the similar concept with mnth variable
- exclude mnth variable out of the feature set.

- Holiday and Working day have a very similar concept and trend.
- In the weekday plot, casual bike rental increased in the weekend
- exclude weekday and holiday variable out of the feature set

casual bike rental count is changed by the weather situation

Hour variable can be explained by Parts of Day

Chosen Features

- Continuous: temp, hum, windspeed
- Categorical: season, weathersit, workingday, part_day

Q1: How many extra bikes do we need to

prepare?

Regression task

Ordinary Least Square Regression

		The St. 1
Obs	Regression	Kesults

Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	OLS Least Squares Tue, 13 Aug 2019 22:35:15 13903 13891 11 nonrobust		Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.726 0.726 3349. 0.00 -19179. 3.838e+04 3.847e+04	
	coef	std err	t	P> t		0.975]
const	0.7162	0.036	20.129	0.000	0.646	
temp	4.5434	0.045	100.588	0.000	4.455	4.632
hum			-27.218			
windspeed	-0.3645	0.071	-5.102	0.000	-0.504	-0.224
season Fall	0.5005	0.021	24.127	0.000	0.460	0.541
season Spring	0.4939	0.020	24.718	0.000	0.455	0.533
weathersit CLEAR	0.5651	0.034	16.649	0.000	0.499	0.632
weathersit MIST	0.5939	0.034	17.454	0.000	0.527	0.661
weathersit_MIST workingday_HOLIDAY	0.7907	0.020	39.024	0.000	0.751	0.830
workingday WORK	-0.0745	0.019	-3.836	0.000	-0.113	-0.036
part_day_afternoon part_day_evening	1.1885	0.017	71.300	0.000	1.156	1.221
part day evening	0.5099	0.017	30.848	0.000	0.477	0.542
part day morning	0.3941	0.018	22.517	0.000	0.360	0.428
part_day_night	-1.3762	0.019	-73.337	0.000	-1.413	-1.339
Prob(Omnibus):		0.000	Durbin-Watson: Jarque-Bera (J Prob(JB):	B):	221.497	
Skew:		-0.308	Prob(JB):	e-sale	7.99e-49	
Kurtosis:		3.048	Cond. No.		1.98e+16	

OLS Test Statistics

```
R-squared of the model in the training set is: 0.7261810614058843
----Test set statistics----
R-squared of the model in the test set is: 0.7219751347292657
Mean absolute error of the prediction is: 0.7652868112309262
Mean squared error of the prediction is: 0.9429975805953963
Root mean squared error of the prediction is: 0.97108062517764
```


Ordinary Least Square Regression

- Our model is not complex, it doesn't have overfit problem with small generalization gap.
- Casual bike rental is estimated by the factors below

	Coeffecient
temp	4.543439
hum	-1.486907
windspeed	-0.364458
season_Fall	0.500453
season_Spring	0.493905
weathersit_CLEAR	0.565076
weathersit_MIST	0.593935
workingday_HOLIDAY	0.432591
workingday_WORK	-0.432591
part_day_afternoon	1.009447
part_day_evening	0.330806
part_day_morning	0.215008
part_day_night	-1.555261

Q2: Which daily condition create situations to be needed extra bikes?

Classification task

Assumption: 50 bikes are always prepared for casual rental When do we need to prepare extra bikes if casual bike rental is over 50?

Which classifier performs best?

	Decision tree	Random forest	SVM classifier	Gradient Boosting	Logistic Regression	KNN classifier
count	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000
mean	0.830833	0.823177	0.830833	0.844870	0.846365	0.824156
std	0.063483	0.061881	0.063483	0.067566	0.075188	0.067813
min	0.721519	0.730725	0.721519	0.742232	0.723245	0.720368
25%	0.787255	0.770138	0.787255	0.795311	0.810127	0.771864
50%	0.866475	0.839711	0.866475	0.873921	0.859240	0.843457
75%	0.879282	0.878722	0.879282	0.897194	0.904647	0.879009
max	0.888377	0.890679	0.888377	0.916571	0.940161	0.897642

Gradient Boosting model has the best performance regarding average accuracy with low variation

Logistic Regression model also has the best value of average accuracy, however, it has a high level of variation.

Gradient Boosting Classifier Detail - depth

Gradient Boosting Classifier Detail - confusion matrix

2482 (true negative)	170 (false positive)		
191	633		
(false negative)	(true positive)		

Sensitivity = 0.77

Specificity = 0.94

Gradient Boosting Classifier Detail - feature importance

Summary

- Predicting the amount of bike rental is directly related to maintenance cost
- **Temperature** is the important factor that affects to casual bike rental.
- According to regression and classification modeling, in the holiday afternoon with high temperature and low humidity, casual bike rental is increased, therefore the bike rental system might need to prepare extra bikes. (regression)

Discussion and Future Work

- Target value, casual bike rental, is not normally distributed.
 - obtain more data sets as much as possible
- We can consider adding **location** information because the location of the bike station should be important for the variation of bike rental.
- We can think about adding economic factors on the prediction models. This
 can affect people's emotional or economical situation.