Enhancing Machine Learning and Data Visualization Pipelines with Isomorphisms

Jason A. Grafft Knowledge Engineer, relationalAI jason@grafft.co

Graph Isomorphism*

An **isomorphism of graphs** G and H is a bijection between the vertex sets of A and B

^{* -} Definition and images from Wikipedia, https://en.wikipedia.org/wiki/Graph isomorphism

Bijection*

^{* -} Definition and images from Wikipedia, https://en.wikipedia.org/wiki/Bijection

{enhanchment} [] {innovation, optimization, performance, . . }

- Thanks to their relationship with entropy, set combinations can pose a significant challenge to deployment
- Expansion and reduction of entropy require compute resources
- The application of these compute resources is defined by code

ergo,

- 1. Isomorphisms will not "free" us from performance issues, or necessarily increase performance
- 2. They are a relation defined by *theory*, so the difficulties of translating theory to practice apply
- 3. Working to realize stricter forms of relations across a system has a good deal of longitudinal value

Fischer's Iris Data Set*

SW

^{* -} UCI Machine Learning Repository, 1988.

Relational View (6NF)

- Sixth Normal Form (6NF) was introduced by C.J. Date in the 1990s
- Excellent form for temporal data
- "[I]ntended to decompose relation variables to irreducible components."*

i	petal_length	i	petal_width	i	sepal_length	i	sepal_width	i	species
1	5.1	1	3.5	1	1.4	1	0.2	1	setosa
2	4.9	2	3.0	2	1.4	2	0.2	2	setosa
3	4.7	3	3.2	3	1.3	3	0.2	3	setosa
4	4.6	4	3.1	4	1.5	4	0.2	4	setosa
5	5.0	5	3.6	5	1.4	5	0.2	5	setosa
6	5.4	6	3.9	6	1.7	6	0.4	6	setosa
7	4.6	7	3.4	7	1.4	7	0.3	7	setosa
	• • •		· • • •		· • • •		• • •		• • •

 $[\]hbox{* - https://en.wikipedia.org/wiki/Sixth_normal_form}$

k-Nearest Neighbors (kNN) Classification

Naive kNN

```
egin{aligned} orall (x \in X_{test}: & top[1, & \\ & count[\ell: & labels_{Xtrain} & \\ & \wedge & top[k, orall (y \in X_{train}: & \\ & dist[x,y] & )] & \\ & ] & ] \end{aligned}
```

- 1. For each element of the "test" set, calculate a distance from each element in the "train" set
- 2. sort these via "nearest first" (lowest dist value) then take the top k tuples
- 3. join the top k tuples with their labels
- 4. count the number of each label in the set just formed
- 5. sort these via "most frequent" then take the first (top[1, ...]) tuple in the relation

Now you know why naive kNN scales at $O(dn^2)$

In our case that's $4 \cdot 150^2 = 4 \cdot 22500 = 90000$

for 150 tuples of airity 4

$data_{input} ightarrow kNN() ightarrow labels_P ightarrow viz()$

$data_{input} ightarrow kNN() ightarrow labels_P ightarrow viz()$

$data_{input} ightarrow kNN() ightarrow labels_P ightarrow viz()$

End-to-End Operation

data ightarrow orall

dist o top

$top o \wedge$

$\wedge o count$

$count \rightarrow top$

$count \rightarrow top$

// out =>
$$labels_P = [\ell_1; \ell_2; \ell_3; \ell_4; \ell_5; \ell_6; \ell_7; \dots; \ell_n]$$

$data ightarrow data_{out}$

$data_{out} ightarrow concat$

$concat \rightarrow VegaLite$

Finished Operation

Enhancements

- 1. Accountability of operations
- 2. Easier identification of potential fail points
- 3. Identification of areas that generate excessive facts
- 4. Resource allocation and planning
- 5. Stable interface for data vizualization API
 - <u>Vega-Lite</u>, in our case

References

1988, Dua, Dheeru, and Graff, Casey
UCI Machine Learning Repository

Appendix

Euclid distance for tuples of airity n

```
\exists (r_1,\ldots,r_n \in R \land s_1,\ldots,s_n \in S: \ sqrt[ \ sum[ \ squared[ \ (s_1-r_1;\ldots;s_n-s_n) \ ] \ ] \ ]
```