Questions

#todo

- Why in LE example why D is advertiser and A scanner, but not the opposite?
- What if in <u>Scatternet</u> they use the same frequencies? Do they overlap?
- What Logical transport types is the Channel access BR EDR example

Table of contents

- Versions
- Architecture
 - Controllers
 - Basic rate or Enhanced data rate
 - Low Energy (LE)
 - Powe consumption
 - Speed
 - <u>Topology</u>
 - Scatternet
 - BR/EDR example
 - LE example
 - Layers
 - Bluetooth radio layer (physical)
 - BR/EDR
 - <u>LE</u>
 - Transmission power
 - Baseband layer (physical)
 - <u>Logical transport types</u>
 - BR/EDR
 - Channel access
 - States
 - Connection state sub-states
 - <u>LE</u>
 - Advertising/scanning mechanism
 - Piconet initialization
 - Roles
 - States
 - Addresses
 - MAC

- Piconet network
- LMP/LLP (Data link lower part)
- Host Controller Interface
- L2CAP (Data link upper part)
- RFCOMM (Application core)
- Audio (Application core)
- TCS (Application)
- AT (Application)
- OBEX (Application)
- ATT/GATT/GAP (Application core)
- SDP (Application core)
- SMP
- Security
 - Goals
 - Access model
 - Secure pairing BR/EDR
 - 1. Cryptographic keys
 - 2. Authentication
 - Common link key
 - 3. Encryption
 - Secure pairing BLE
 - Privacy
- Comparisons
 - ZigBee

Bluetooth

#card

- Bluetooth is a **collection of protocols** that are a **cable replacement technology** (pc, headphones, printers) that implement a personal area network
 - Lower cost and lower power consumption than <u>IEEE 802.11</u>
- It was more successful with smartphones
- Limited coverage (one room) up to 10 meters
- Slow versions because it's not a replacement of Wi-Fi, nowadays high speed versions uses Wi-Fi inside

Versions

- 3.0, uses a parallel <u>IEEE 802.11</u> channel to increase up to 24 Mbps, that is negotiated with Bluetooth
- 4.0 in 2010, defines: classic Bluetooth, high speed Bluetooth and low energy Bluetooth (i.e. BLE ~1 Mbps)
- 5.0 in 2016, BLE with burst up to 2Mbps (important for IoT) and increase capacity for connectionless services (location relevant navigation)

Applications

#card

- cable replacement (original idea)
- sync devices (e.g. smartbands)
- · access to the internet
- mobile social networking (e.g. Immuni or crowd sensing in general)

Architecture

- Host controller interface between hw/sw
- One host (logical layer), while one or more controllers for the physical layer for the different bluetooth versions
 - A bluetooth card contains the controller + L2CAP (logical link control and adaption protocol)
- Protocols (core in **bold**, others are adopted)
- Physical layer defines

- Radio, frequencies
- Baseband, low level procedures
- Data Link layer defines the setup and controller
 - Lower part
 - LMP (link management protocol for BR/EDR)
 - **LLP** (link layer protocol for BLE)
 - Upper part
 - L2CAP (Logical Link Control and Adaptation): higher-level protocol multiplexing (package segmentation)
- Application layer
 - Telephony AT, TCS
 - Management/discovery
 - SDP for service discovery
 - SMP, ATT/GATT (kind of a 1small <u>ZigBee</u> cluster library)
 - RFCOMM emulates serial port for cable replacement

Controllers

#card

- Basic rate (headphones for smartphone)
- Low Energy
- Alternate MAC, for high speed transport link <u>IEEE 802.11</u> (2 Mbps \rightarrow 24 Mbps)

Basic rate or Enhanced data rate

#card

- Operates at 2.4Ghz like <u>IEEE 802.15.4</u> and <u>IEEE 802.11</u>
- 1Mbps for BR, 3Mbps for EDR
- Forms a piconet: group of devices synchronized to a common clock and frequency hopping pattern <u>#todo</u>
 - Bluetooth BR/EDR is connection oriented, so piconet must be formed before, in order to communicate
- Logical links transport synchronous (like <u>IEEE 802.15.4</u>), asynchronous and isochronous data (start async and then for a period sync)
 - Synchronization is used to ensure low energy for BLE, because it's required at mac level and using sniff mode
- BR uses at peak 25mA

Low Energy (LE)

#card

- Compared to <u>Basic rate Enhanced data rate</u>
 - smaller packets to reduce TX/RX power consumption
 - less channels for discovery and connection (searching over a smaller n)
 - simpler state machine
 - used to expose the state rather than transferring
- Frequency division multiple access (FDMA) over 40 physical channels + Time division multiple access (TDMA).
- Physical channel divided with advertising and connection events, namely frame and its response
- other
 - latency 3ms
 - topology star
 - connections > 2billion
 - range 150m

Powe consumption

#card

- less than 20mA at peak with an average of less than 5µA
 - even devices with coin cell battery!

Speed

#card

up to 1Mbps nominal, but in reality for the overhead it's smaller

Topology

#card

It's the piconet, formed by master and slaves

- 1 Master than enforces the synchronization to enable the communication of the slaves, by controlling the access to the channels of the slaves
 - roles are not fixed
 - · hence slaves can only communicate when the master says so
- Types
 - Point to point
 - Point to multipoint
- BR/EDR

- Up to 7 slaves in a piconet, but other can be in parked mode to keep in sync with the master.
- LE
 - No limit to active slaves in a piconet
 - Just in one piconet

Scatternet

#card

- piconets share the same frequencies
- to extend the range by doing multi-hop communication
- there is no routing protocol defined by the standard
- no useful applications

BR/EDR example

#card #exam

- · Several piconets in an area
- A is the master, the other slaves
 - They can use different low level mechanism
- F is master, the other slaves
 - H is temporarily **deep low power mode** maybe using the sniff state
- E is a slave both in the piconet of A and F, so it need to keep in sync with both in different time
- D is a slave in A but a master in his piconet with J
- K is not connected to any piconet but scanning for it in order to communicate
- · Slaves cannot communicate point to point, but need to pass through the master

LE example

#card #exam

- communication
 - connection-oriented channels (grey one)
 - acts like the master in BR/EDR, so the master A will enforce the sync of the slaves B and C by telling them when to communicate
 - connection-less advertising channels, transparent
 - D is an **advertiser**, that is not being connected to a piconet but emitting periodically beacons to expose the state to any device in range that is scanning, in this case A is a **scanner**.
 - Be aware that D is not a slave, because there is no connection
 - I, H, J are not in a piconet, but they are advertising/scanners or just one of it.

Layers

Bluetooth radio layer (physical)

#card

defines the specification of the radio frequencies

BR/EDR

#card

- it operates in the 2.4GHz frequency band with a range of 83 MHz physical channel (synchronized to a common clock and hopping sequence).
- the frequency band is divided in sub-bands of 1MHz, obtaining 79 physical channels
- the master defines a pseudo-random sequence
- every time a frame needs to be transmitted, the next channel is computed (hopping) and the radio is set to transfer over that frequency band (channel).
 - there are 1600 hops/seconds

Why it doesn't conflict with **ZigBee**?

#card #question

- sub-bands in ZigBee are just 16, wider, and it stays always on the same channel
- if overlap with Bluetooth, there is change that one of the network is in low-power mode
- different encoding, so noise it's observed and then discarded

LE

#card

- 40 channels
 - frequency hopping only in the first 37 channels used for **connection oriented** (master/slave)

- 37, 38, 39 for connection, discovery and broadcast (search O(3) rather than O(40)), used by **advertisers** to emit beacon and by **scanners** for listening

Transmission power

#low-priority

- class 1: Tx power < 20 dBm (100 mW)
 - Long range (100 m);
- class 2: Tx power < 4 dBm (2.5 mW)
 - Normal range (10 m);
- class 3: Tx power < 0 dBm (1 mW)
 - Short range (10 cm).

Baseband layer (physical)

#card #low-priority

It creates the **abstraction of physical channel** that is the pseudo-random sequence, each piconet with a different sequence

- the slave connects and receive the sequence from the master that syncs the hop (frequencies) and the time
- Frequency hopping management (FH).
- management of the channel and of the link (to LMP/LLP)
 - Power control, Link control (packets retransmission, sync/async link)
 - Channel access by using time division duplex (TDD)
- Error correction

Logical transport types

#card #low-priority

They are abstraction over the physical channel

- Asynchronous Connection-Oriented (ACL)
 - BR/EDR or LE if piconet
 - a slave can respond or not
- Advertising broadcast (ADVB)
 - · LE for advertisers
 - there are no ACK, so unreliable and unidirectional
- Synchronous Connection-Oriented (SCO)
 - BR/EDR
 - slots are reserved for the master/slave communication (e.g. audio stream)
- Extended Synchronous Connection-Oriented (eSCO)

- Broadcast, can be used to sync the slaves
 - Active Slave Broadcast (ASB)
 - Parked Slave Broadcast (PSB)

BR/EDR

Channel access

#card #exam

- channel divided with TDD in slots of 625µs each
- master m uses odd slots, slave uses even slots for the master/slave communication
- master m chooses the frequency f(k) in the pseudo-random sequence generated previously
- m transmit first and the slave s1 receives in a time-slot of 625 μ s but the packet duration is less than 392 μ s, because the remaining is used to switch the frequency of the channel
- s1 only can respond in f(k+1)
- in f(k+2), it could be that m sends to s1 or even another s_n

States

#card

Bluetooth is organized as a state machine. There several sub-states, but the major one are where the devices spent most of the time:

STANDBY

- It is the initial state of devices, not yet in the piconet
- may be in low-power mode

CONNECTION

- in the piconet, so now master or slave and can exchange packets
- may go in low-power mode

- **PARK** (the device is in the piconet)
 - device is in the piconet, but only remain synchronized to the channel (keep receiving broadcasts)
 - Allow a very low duty cycle

Transitions among the states

#card #exam

- page, inquiry used to implement dynamic connection to the network
- STANDBY → Page scan, if a slave is searching for a piconet
- STANDBY → Page, if a master is available to receive connections for a piconet
 - looks for devices in *Page scan*, when they detect each other the master switches to *master response*, the slave switches to *slave response*, where the master sends the parameters (clock, hopping sequence)
 - then they switch to CONNECTION where they communicate
- CONNECTION ↔ PARKED, can be done by the salve sometimes
- The discovery of devices can be implemented with
 - STANDBY → Inquiry, discover other devices is the piconet by sending messages
 - STANDBY → Inquiry scan, if a device want to be discovered by listening to inquiry messages. It can optionally answer by sending back device parameters (address, name, supported services...)

Connection state sub-states

#card

- Active mode, normal master/slave communication where the slave can optionally go to PARK STATE
- Switching between active, sniff and hold is fast because address is the same

Sniff mode

#card #exam

- to reduce the duty cycle to save energy. The slave tells the master it will communicate only in a given specific slots that are smaller than all the available slots.
- it supports both sync/async

- duty cycle of the activate state is represented by all the slots divided with black horizontal line
- slave require to switch to sniff mode and agrees with the master a **sniff interval** divided by the **sniff anchor point** that defines the slot where the slave is available to receive communication
- it responds in the immediately after slots

Sniff mode duty cycle

#card

Considering a device operating in sniff mode in a Bluetooth piconet. What is the duty cycle the device, assuming that it may both receive and send to the master at each anchor point?

- Note: consider only the duty cycle of the radio, disregard any other activity and assume the radio has to remain on for the entire duration of a slot.
- Hint: a slot in Bluetooth lasts 625 msec, although you can compute the duty cycle without this information
- ► ANSWER ^1623395938641

Hold mode

#card

acts like Sniff mode but only synchronous communication is possible

- if in two piconets, it can be used to make attend one of them
- to enter in low power mode

Park mode

#card

- gives away the address and communication is not possible anymore
- · actively listen for sync messages from the master

LE

Advertising/scanning mechanism

#card #exam

- devices uses just the last 3 channels (37, 38, 39)
- the advertiser publish an event all over the 3 channels
- a scanner can optionally respond on the same channel by asking more information, the advertiser then respond again

Piconet initialization

#card

- An advertiser issues a connectable advertising event
- The initiator, that is a scanner that is available to become the master, receives the
 event and starts the connection protocol by sending back the parameters (initiator
 rectangle, second from left)
- The initiator becomes the master of the piconet
- The advertiser becomes the slave

Roles

#card

A Bluetooth LE device can operate in four different device roles. Depending on the role, the devices behave differently.

- · connection-based, acts like BR/EDR but only asynchronous communication
 - A Peripheral device is a connectable advertiser that can operate as a slave in a connection (e.g. a health thermometer or a heart rate sensor).
 - A Central (initiator) device scans for advertisers and initiate connections. It
 operates as a master in one or more connections (e.g. smartphones and
 computers).
- connection-less (one-directional communication), async communication with advertising events (beacons) over a physical link to all scanners
 - A **Broadcaster** is a **non-connectable advertiser** (e.g. a temperature sensor or an electronic tag).
 - An Observer (scanner) scans for advertisements, but cannot initiate connections (e.g. a remote display or a tracking system).

a flag is used to indicate weather is connectable or not

States

#card

- based on the role that the device takes, it will take a subset of the following states
- Observer scanner: it will switch between scanning and standby in order to have a low duty cycle
- Central initiator device: as the observer but when it wants to create the network it
 will go the the initiating in order to see if there are available slaves, and then
 connection
- Broadcaster: switches between advertising and standby
- Peripheral device (slave): as the broadcaster, but when the initiator responds with parameters, it will switch to connection → standby

Addresses

MAC

#card

MAC address: IEEE 48 bits:

- BR/EDR: pre-assigned (24 bits company name, 24 bits company ID)
- **LE**: Randomly generated (slave in a piconet) or pre-assigned (if advertiser, 24 bits company name, 24 bits company ID)

Piconet network

#card

Network addresses in the piconet

- Active Member address: 3 bits for active slaves, 0 for broadcast.
- Parked Member address: 8 bits

LMP/LLP (Data link - lower part)

#card

It's the link manager layer that controls and negotiates the connections with the slaves

- roles
 - piconet management (clock sync, switch master/slave)
 - setup <u>Logical transport types</u>
 - link configuration (create, QoS)
- · protocols:
 - Link Management Protocol (LMP) for BR/EDR
 - Link Layer Protocol (LLP) for BLE

Host Controller Interface

#card

It's just a serial communication interface that allows the SW (host) to use the HW (controllers),

- firmware (controller), implement commands to access HW
- driver (host), manages the async events
- host controller transport layer, layer in between the previous two

L2CAP (Data link - upper part)

#card

Logical link control and adaptation protocol

- services
 - protocol multiplex/demultiplex, when a frame arrives from HW it needs to decide to which application protocol it must be delivered
 - segmentation/reassembly for data that is too long for a frame

- · Manages QoS and group communication
- no transmission of audio, no retransmission → no reliability

RFCOMM (Application core)

#card

Protocol that emulates serial line

Audio (Application core)

#card

No ACK because audio streams are in real time, so time would be wasted but correction with bits can be made

TCS (Application)

#card

Protocol to initiate calls

AT (Application)

#card

Protocol to control modem and phones

OBEX (Application)

#card

Object exchange protocol

ATT/GATT/GAP (Application core)

#card

Acts like the cluster library in **ZigBee**)

- Attribute Protocol (ATT), defines access methods to the services in order to expose the state by showing attributes of the server to the client
 - attribute: identified with UUID or local name, permissions (read/write)
 - operations: get/set, push/pull (for sensors to obtain a simple publish/subscribe), broadcast
 - optional for BR/EDR
- Generic Access Profile (GAP) defines a list of protocols that any device should implement in order to support for a specific configuration (what)
 - For example: BR/EDR should have audio, baseband, LMP, L2CAP, SDP,

- Generic Attribute Profile (GATT) defines a profile for a service that is the list of attributes that provides
 - service: a collection of data and associated behaviors to accomplish a function of the device
 - is accepts ATT requests
 - e.g. computer (client) temperature sensor (server)
 - optional for BR/EDR
- are supported by the device, because Bluetooth devices have same host, but the controllers are just a subset of all the possible one that can be implemented

SDP (Application core)

#card

Service discovery by asking to the server the available services and the attributes

- based on a client/server model by searching with a service UUID or get the whole list of services
- simpler than <u>ZigBee</u>, because it's a start network

SMP

Security management protocol uses the L2CAP channel for the

• pairing of devices (key generation, distribution)

Security

Goals

#card

Protections against

- · passive eavesdropping;
- man-in-the-middle attacks;

Access model

#card

Pair a device with a piconet if they not share a key for mutual authentication (no crypto keys). Different types depending on the device's capabilities:

- just works
 - security is given intrinsically by the low range of devices (e.g. earbuds)

usually there is no display

numeric comparison

- display is needed to show a 6 digit number and let the user check weather it's the same on both devices
- here the alternative channel is the human

· out of band

other channels (no bluetooth) to transfer the cryptographic codes

passkey entry

 one device with input and one with output capability. e.g. computer and bluetooth keyboard that needs to be paired

Secure pairing BR/EDR

1. Cryptographic keys

For the link-level security the following elements are needed:

- BD_ADDR, 48 bit
 - this can be easily eavesdropped with inquiry
- Private key authentication (link key), 128 bit
 - obtained during initialization
 - semi-permanent or temporary (only one session of connection between master/slave)
- Private key encryption, 8-128 bit
 - the one used to encrypt
 - renewed at every session obtained from the authentication
- **Random n**, 128 bit

2. Authentication

Implemented at <u>LMP</u> layer to authenticate two devices when the slave wanna-be joins the network

- mutual authentication, first one direction and then the other one
- mechanisms
 - common link key
 - not have a common link key and they need to build it with a PIN

Common link key

#card #exam

Also called challenge/response mechanism

- 1. There are the verifier v and the climant c
- 2. c makes the request to v to be authenticated
- 3. v generates random number (**challenge**)
- 4. both of them know the Link key and the BD_ADDR of c
- 5. c receives the challenge and computes the ACO (Athenticated Cyphering Offset, namely the encryption key)
- 6. c sends the **response** to v verifies and respond
- 7. if they match, now they share the same encryption key

3. Encryption

#card

Semi-permanent key						
Broadcast communications	Unicast communications					
Not encrypted	Not encrypted					
Not encrypted	Encrypted with the semi-permanent key					
Temporary key, K _{master}						
Tempor	ary key, K _{master}					
Broadcast communications	Unicast communications					
Broadcast communications	Unicast communications					

Secure pairing BLE

Requirements are totally different than <u>Secure pairing BR EDR</u>, because computational power is less

Privacy

To reduce the possibility of being tracked as a BLE device, the MAC can be changed frequently

 in order to being recognized by the "right" devices, the binding is done with private addresses

Comparisons

Ò	Voice	Data	Audio	Video	State		
Bluetooth ACL/HS	х	Υ	Υ	х	х		
Bluetooth SCO/eSCO	Υ	х	x	X	х		
Bluetooth low energy	Х	Х	X	X	Υ		
Wi-Fi	(VoIP)	Υ	Υ	Υ	х		
Wi-Fi Direct	Υ	Υ	Υ	X	х		
ZigBee	X	х	X	X	Υ		
ANT	X	х	x	X	Υ		
State = low bandwidth, low latency data Low Power							

bluetooth SCO/eSCO is the synchronized one used by BR/EDR

ZigBee

Compared to **ZigBee**

- Bluetooth is widely available in different kind of devices, <u>ZigBee</u> is constrained over loT devices
- Beginning of 2000 there was the need in the E-health sector and <u>IEEE 802.15.4</u> was not even there
- Only start topology
- Technically multi-hop is doable, but not known use-cases
- A device can switch between master/slave role