Group 'A'

 $[11 \times 1 = 11]$

The statement $p \lor \sim p$ is a

- a) Contradiction b) Tautology
- c) Contrapositive
- d) None of these
- For two non-empty sets A and B, then A-B=
 - a) $A \cap \overline{B}$

b) B n Ā

c) B-A

- d) $\bar{A} \cap \bar{B}$
- The function $f: R \to R$ defined by $f(x) = x^2$ is
 - a) one to one b) onto
 - c) one to one and onto
- d) neither one to one nor onto
- If A is a square matrix, then $A A^T$ is a 4.
 - a) skew-symmetric matrix (b) symmetric matrix
 - c) diagonal matrix
- d) identity matrix
- If α and β are the roots of the equation $3x^2 2x 1 = 0$ then the value 5. of $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to

 - a) -2 b) -2/3 c) -1/3
- d) 1/2

- If $=\frac{1}{1+2i}$, then $\bar{Z}=$ 6.
- a) $\frac{1}{5} \frac{2}{5}i$ b) $\frac{1}{5} + \frac{2}{5}i$ c) $-\frac{1}{5} + \frac{2}{5}i$
- d) $-\frac{1}{5} \frac{2}{5}i$
- The perpendicular distance between the two lines 4x 3y = 12 and 7.

$$4x - 3y = 2 \text{ is}$$

- a) 12/5
- 2/5

8.	The obtuse angle between the line pair $2x^2 + 7xy + 3y^2 = 0$ is	
	a) 120° b) 135° c) 150° d) none of them	
9.	If the direction ratios of a line 1,2,-2 then its direction cosines are	
	a) 1/4,1/2,-1/2 b) 1/9,2/9,-2/9	
	c) 1/5,2/5,-2/5 d) 1/3,2/3,-2/3	
O.	The two vectors (3,-6) and (1,4) are	
	a) linearly independent b) linearly dependent	
	c) collinear d) none of them	
11.	If $\lim_{x \to 3} \frac{x^{n-3^n}}{x^{-3}} = 108$ then the value of n=	
	a) 6 b) 5 c) 4 d) 3	
	Group 'B' [8 × 5	
12. a)	Define conditional of two statements	[1]
b)	Compute the truth table of the statement $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$	[2]
c)	Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$	[2]
13. a)	For any two real numbers x and y prove that $ x - y \ge x - y $	[2]
b)	For any two real numbers x and y prove that $ x - y \ge x - y $ Solve the inequality $x^2 - 2x - 3 \ge 0$	[3]
14. a)	Show that $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$	[3]
b)	Given a matrix $\begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix}$ find a matrix $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ such that they are in	nverse
	of each other.	[2]
15. a)	Determine the nature of the roots of $x^2 - 6x + 5 = 0$	[1]
b)	If $a + b + c = 0$ solve the equation	
	$(b+c)x^2 + (c+a)x + (a+b) = 0$	[2]
	Prove that $(1-i^3)^6 \cdot \left(1-\frac{1}{i^3}\right)^6 = 64$	[2
c)	Flove that $(1-i^2)^2 \cdot (1-\frac{1}{i^3})^2 = 04$	[*

16. a)	i) Define absolute value of a complex number.	
	ii) Write down its any four properties.	[1]
b)		[1]
. 0)	Find the equation of the two straight line drawn through the point (0,a)) on
	which the perpendicular drawn from the point (2a,2a) are each of length a	.[3]
17. a)	Find the equation to the straight lines passing through (1,1) and paralle	l to
	the lines represented by $x^2 - 5xy + 4y^2 + x + 2y - 2 = 0$	[3]
b)	Find the point where the line joining the points (2,-3,1) and (3,-4,-5)	cuts
	the plane $2x + y + z = 7$.	[2]
18. a)	Define collinear of a vector.	[1]
b)	Show that the $\vec{a} - 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} - 4\vec{c}$ and $-\vec{b} + 2\vec{c}$ are colling	near
	vector.	[2]
c)	Evaluate $\lim_{x \to \infty} (\sqrt{x} - \sqrt{x-3})$ [2]	
9. a)	Define continuity of a function at a point.	[1]
b) 1	Discuss the continuity of function at a given point	A.
,	$f(x) = \begin{cases} 2 - x^2 & for \ x \le 2 \\ x - 4 & for \ x > 2 \end{cases} \text{ at } x = 2$	[2]
c) F	Find the derivative of $\frac{x^2-a^2}{x^2+a^2}$	[2]

20. a) If
$$A = \begin{pmatrix} 2 & 4 & 3 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix}$$

i) find A^T

[1]

- ii) Show that the sum of the given matrix and its transpose is a symmetric matrix.
- iii) Show that the difference of the given matrix and its transpose is a skew-symmetric matrix.
- iv) Express the given matrix A as the sum of the symmetric and skew-symmetric matrix form.
- b) If Z and W are two complex numbers, prove that $|Z W| \ge |Z| |W|$ [4]
- Prove that the straight lines joining the origin to the point of intersection of line $\frac{x}{a} + \frac{y}{b} = 1$ and the curve $x^2 + y^2 = c^2$ are right angles if $\frac{1}{a^2} + \frac{1}{b^2} = \frac{2}{c^2}$ [4]

Find the direction cosines of two lines which satisfy the relation:

l+m+n=0 and 2lm-mn+2nl=0 also find the angle between the lines. [4]

22. a) Evaluate $\lim_{x \to \theta} \frac{x\cos\theta - \theta\cos x}{x - \theta}$ [3]

b) Use the chain rule find $\frac{dy}{dx}$ of $y = \frac{t}{t^2 - 1}$ and $t = 3x^2 + 1$ [2]

c) Find from the first principles, the derivative of $\cos^2 x$ [3]