Lógica de predicados

Clase 7

IIC 1253

Prof. Diego Bustamante

Outline

Obertura

Sintaxis de predicados

Semántica de predicados

Epílogo

El problema de consecuencia lógica

El siguiente es un caso de consecuencia lógica

Todas las personas son mortales.

Sócrates es persona.

Por lo tanto, Sócrates es mortal.

¿Podemos modelarlo/explicarlo con lógica proposicional?

Necesitamos más poder...

¿Qué le falta a la lógica proposicional?

- Objetos de un cierto conjunto.
- Predicados sobre objetos.
- Cuantificadores: para todo y existe.

Estudiaremos una nueva lógica con estos elementos.

Esta lógica nos permitirá expresar estructuras complejas.

Objetivos de la clase

- Comprender el concepto de predicado.
- □ Comprender sintaxis de predicados compuestos.
- □ Comprender semántica de la lógica de predicados.

Outline

Obertura

Sintaxis de predicados

Semántica de predicados

Epílogo

Ejemplos (versión 1.0)

¿Cuáles de los siguientes enunciados son proposiciones?

- x es par
- x ≤ y
- $x \triangle y$

(¿qué diablos es \triangle ?)

 $x \triangleleft y = z$

(¿qué diablos es ⊲?)

No admiten valor de verdad hasta ser evaluados e interpretados.

Ejemplos (versión 2.0)

Las siguientes son proposiciones:

- 2 es par
- 2 ≤ 4
- ullet 'h' \triangle 'hola' (cuando \triangle se interpreta como "es substring de")
- $4 \triangleleft 1 = 41$ (cuando \triangleleft se interpreta como suma de naturales)

El valor de verdad depende de: un dominio y la interpretación de los símbolos.

Definición

Un **predicado** P(x) es una afirmación abierta, cuyo valor de verdad depende del objeto en el cual es evaluado.

Ejemplos

- P(x) := x es par
- R(x) := x es primo
- M(x) := x es mortal

Definición

Para un predicado P(x) y un valor a, la valuación P(a) es el valor de verdad del predicado P(x) en a.

Ejemplos

$$P(x) \coloneqq x \text{ es par } R(x) \coloneqq x \text{ es primo } M(x) \coloneqq x \text{ es mortal}$$

- P(2) = 1
- P(3) = 0
- R(7) = 1
- M(Socrates) = 1
- M(Zeus) = 0

Definición

Un **predicado** n-ario $P(x_1,...,x_n)$ es una afirmación con n variables, cuyo valor de verdad depende de los objetos en el cual es evaluado.

Definición

Para un predicado n-ario $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la valuación $P(a_1,...,a_n)$ es el valor de verdad de P sobre $a_1,...,a_n$.

Ejemplos

 $O(x,y) \coloneqq x \le y$, $S(x,y,z) \coloneqq x + y = z$, $Padre(x,y) \coloneqq x$ es padre de y

- O(2,3) = 1
- S(5,10,15) = 1
- S(4,12,1) = 0
- Padre(Homero, Bart) = 1

Predicados y Dominio

Observación

Todos los predicados están restringidos a un dominio de evaluación.

Ejemplos

```
O(x,y):=x\leq y,\ S(x,y,z):=x+y=z,\ Padre(x,y):=x\ \text{es padre de }y
O(x,y):=x\leq y\qquad \text{sobre }\mathbb{N}
S(x,y,z):=x+y=z\qquad \text{sobre }\mathbb{Q}
Padre(x):=x\ \text{es padre de }y\qquad \text{sobre el conjunto de todas las personas}
```

Predicados y Dominio

Observación

Todos los predicados están restringidos a un dominio de evaluación.

Notación

- Para un predicado $P(x_1,...,x_n)$ diremos que $x_1,...,x_n$ son variables libres de P.
- Un predicado 0-ario es un predicado sin variables y tiene valor de verdadero o falso sin importar la valuación.

Sintaxis de predicados

Definición

Un predicado es compuesto si inductivamente es:

- 1. un predicado,
- 2. la negación (¬) de un predicado compuesto, o
- conjunción (∧), disyunción (∨), implicancia (→) o bidireccional (↔) de predicados compuestos sobre el mismo dominio.

Observemos que hasta aquí, la sintaxis es análoga al caso de fórmulas proposicionales.

Valuaciones

Definición

La valuación de un predicado compuesto corresponde a la valuación inductiva (recursiva) de sus conectivos lógicos y predicados básicos.

Ejemplos

 $P(x) := x \text{ es par y } O(x, y) := x \le y \text{ sobre } \mathbb{N}$:

- $P'(x) := \neg P(x)$
- $O'(x, y, z) := O(x, y) \wedge O(y, z)$
- $P''(x,y) := (P(x) \land P(y)) \to O(x,y)$
- P'(4) = 0

Cuantificador universal

Definición

Sea $P(x, y_1, ..., y_n)$ un predicado compuesto con dominio D. Definimos el cuantificador universal:

$$P'(y_1,...,y_n) = \forall x(P(x,y_1,...,y_n))$$

donde x es la variable cuantificada e $y_1, ..., y_n$ son las variables libres.

Definición

Para $b_1, ..., b_n$ en D, definimos la valuación:

$$P'(b_1,...,b_n)=1$$

si **para todo** a en D se tiene que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Cuantificador universal

Ejemplos

Para los predicados P(x) := x es par y $O(x, y) := x \le y$ sobre \mathbb{N} :

$$O'(y) := \forall x(O(x,y)) \cdots O'(2) = \forall x(O(x,2))$$

$$O''(x) \coloneqq \forall y (O(x,y)) \quad \cdots \quad O''(0) = \forall y (O(0,y))$$

$$P_0 := \forall x (P(x))$$

$$P_0' := \forall x (P(x) \vee \neg P(x))$$

Cuantificador existencial

Definición

Sea $P(x, y_1, ..., y_n)$ un predicado compuesto con dominio D. Definimos el cuantificador existencial:

$$P'(y_1,...,y_n) = \exists x (P(x,y_1,...,y_n))$$

donde x es la variable cuantificada y $y_1, ..., y_n$ son las variables libres.

Definición

Para $b_1, ..., b_n$ en D, definimos la valuación:

$$P'(b_1,...,b_n)=1$$

si **existe** a en D tal que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Cuantificador existencial

Ejemplos

Para los predicados P(x) := x es par y $O(x, y) := x \le y$ sobre \mathbb{N} :

- $O'(y) := \exists x (O(x,y)) \cdots O'(2) = \exists x (O(x,2))$
- $O''(x) := \exists y (O(x,y)) \cdots O''(0) = \exists y (O(0,y))$
- $O'''(x,y) := \exists z (O(x,z) \land O(z,y) \land \neg (x=z) \land \neg (y=z)) \cdots O'''(1,2)$
- $P_0 := \exists x (P(x))$

Un predicado binario que casi siempre estará disponible es la igualdad:

$$=(x,y)\coloneqq(x=y).$$

Como notación usaremos simplemente x = y o también $x \neq y$ para $\neg(x = y)$.

Ojo: el predicado menor estricto se puede definir sin igualdad $O_5(x,y) := O(x,y) \land \neg O(y,x).$

Es posible combinar cuantificadores

Ejemplos

Para los predicados P(x) := x es par y $O(x, y) := x \le y$ sobre \mathbb{Z} :

- $\forall x(\forall y(O(x,y)))$
- $\exists x(\exists y(O(x,y)))$
- $\forall x(\exists y(O(x,y)))$
- $\exists x(\forall y(O(x,y)))$ que es distinto de $\forall y(\exists x(O(x,y)))$
- $\forall x (P(x) \to \exists y (O(x,y)))$

Sintaxis de predicados (v 2.0)

(re)Definición

Decimos que un predicado es compuesto (o también fórmula) si es:

- 1. un predicado básico,
- 2. negación (¬) de un predicado compuesto,
- conjunción (∧), disyunción (∨), implicancia (→), bidireccional (↔) de predicados compuestos sobre el mismo dominio, o
- la cuantificación universal (∀) o existencial (∃) de un predicado compuesto.

(re)Definición

La valuación de un predicado compuesto corresponde a la valuación inductiva de sus cuantificadores, conectivos lógicos y predicados básicos.

Outline

Obertura

Sintaxis de predicados

Semántica de predicados

Epílogo

¿Son estas fórmulas equivalentes?

$$\forall x (\exists y (x \leq y)) \stackrel{?}{=} \exists x (\forall y (x \leq y))$$

Depende del dominio y la interpretación del símbolo <.

Notación

Desde ahora, para un dominio D diremos que:

- $P(x_1,...,x_n)$ es un símbolo de predicado y
- $P^D(x_1,...,x_n)$ es el predicado sobre D.

Definición

Sean $P_1, ..., P_m$ símbolos de predicados.

Una interpretación \mathcal{I} para $P_1, ..., P_m$ está compuesta de:

- $lue{}$ un dominio D que denotaremos $\mathcal{I}(\textit{dom})$ y
- un predicado P_i^D que denotaremos por $\mathcal{I}(P_i)$ para cada símbolo P_i .

Ejemplos

¿Cuáles pueden ser posibles interpretaciones para los símbolos P(x) y O(x,y)?

$$\begin{split} \mathcal{I}_1(\textit{dom}) &\coloneqq \mathbb{N} & \mathcal{I}_2(\textit{dom}) \coloneqq \mathbb{Z} \\ \mathcal{I}_1(P) &\coloneqq x \neq 1 & \mathcal{I}_2(P) \coloneqq x < 0 \\ \mathcal{I}_1(O) &\coloneqq y \text{ es múltiplo de } x & \mathcal{I}_2(O) &\coloneqq x + y = 0 \end{split}$$

Definición

Sean $\varphi(x_1,...,x_n)$ una fórmula e $\mathcal I$ una interpretación de los símbolos en φ . Diremos que $\mathcal I$ satisface φ sobre $a_1,...,a_n$ en $\mathcal I(dom)$:

$$\mathcal{I} \vDash \varphi(a_1,..,a_n)$$

si $\varphi(a_1,...,a_n)$ es verdadero al interpretar cada símbolo en φ según \mathcal{I} .

Si \mathcal{I} no satisface φ sobre $a_1,...,a_n$ en $\mathcal{I}(dom)$ lo denotamos como:

$$\mathcal{I} \not\models \varphi(\mathsf{a}_1,..,\mathsf{a}_n)$$

Observe que el símbolo ⊨ en predicados indica satisfacibilidad.

Definición

Sean $\varphi(x_1,...,x_n)$ una fórmula e \mathcal{I} una interpretación de los símbolos en φ . Diremos que \mathcal{I} satisface φ sobre $a_1,...,a_n$ en $\mathcal{I}(dom)$:

$$\mathcal{I} \vDash \varphi(a_1,..,a_n)$$

si $\varphi(a_1,...,a_n)$ es verdadero al interpretar cada símbolo en φ según \mathcal{I} .

Ejemplos

¿Cuáles pueden ser posibles interpretaciones para los símbolos P(x) y O(x,y)?

$$\begin{split} \mathcal{I}_1(\textit{dom}) &:= \mathbb{N} & \mathcal{I}_2(\textit{dom}) := \mathbb{Z} \\ \mathcal{I}_1(P) &:= x \neq 1 & \mathcal{I}_2(P) := x < 0 \\ \mathcal{I}_1(O) &:= y \text{ es múltiplo de } x & \mathcal{I}_2(O) := x + y = 0 \end{split}$$

- $\blacksquare \mathcal{I}_1 \vDash \forall x (\exists y (P(y) \land O(x,y)))$
- $\mathbb{I}_2 \not\models \forall x (\exists y (P(y) \land O(x,y)))$

Outline

Obertura

Sintaxis de predicados

Semántica de predicados

Epílogo

Objetivos de la clase

- Comprender el concepto de predicado.
- Comprender sintaxis de predicados compuestos.
- □ Comprender semántica de la lógica de predicados.