Oblig 1b: Terningdropp Analysis

Gormery K. Wanjiru

January 27, 2024

1 Introduction

Briefly describe the objective of the assignment and the methods used.

2 Data Collection

2.1 CSV Data

```
# Reading CSV data in R
df <- read.csv("./terningDroppXY.csv")</pre>
```

3 Linear Regression Analysis

3.1 First 5 Measurements

```
\mathbf{lm\_first5} \leftarrow \mathbf{lm}(\operatorname{Lengde} \ \tilde{\ } \operatorname{Dropp} \, , \ \mathbf{data} \!\!=\!\! \mathbf{df}[1\!:\!5 \, , \ ])
```

Calculated Regression Line: Include your manual calculation or calculator output here.

3.2 Entire Dataset

```
lm_full <− lm(Lengde ~ Dropp, data=df)
```

4 Data Visualization

	4.1	Scatter P	lot of Data	Points		
scatterplot.png			Tot of Data			

Scatter plot of the Dropp vs Lengde data.

Regression Line Plot 4.2 regression_plot.png $Scatter\ plot\ with\ regression\ line.$ 5 Residual Analysis Sum of Squared Residuals 5.1 5.1.1 First 5 Measurements

```
ssr_first5 \leftarrow sum(residuals(lm_first5)^2)
```

SSR for First 5 Measurements:

$$SSR = < calculated_value >$$

5.1.2 Entire Dataset

 $ssr_full \leftarrow sum(residuals(lm_full)^2)$

SSR for Entire Dataset:

 $SSR = < calculated_value >$

5.2 Standard Error

5.2.1 First 5 Measurements

se_first5 <- sqrt(ssr_first5 / lm_first5\$df.residual)</pre>

Standard Error for First 5 Measurements:

 $SE = \langle calculated_value \rangle$

5.2.2 Entire Dataset

 $se_full \leftarrow sqrt(ssr_full / lm_full df.residual)$

Standard Error for Entire Dataset:

 $SE = < calculated_value >$

6 Conclusion

Summarize your findings and observations from the assignment.