Economic Growth

Exogenous Growth Models: The Solow Swan Model

$$Y = F(K, L)$$

Y: Aggregate real output

K: Aggregate capital stock

L: Aggregate labour input

- Property 1: Positive, diminishing marginal products.
- For all K > 0 and L > 0, F(·)
 exhibits positive and
 diminishing marginal
 products with respect to
 each input:

$$\frac{\partial F}{\partial K} > 0,$$
 $\frac{\partial^2 F}{\partial K^2} < 0$

$$\frac{\partial F}{\partial L} > 0,$$
 $\frac{\partial^2 F}{\partial L^2} < 0$

- Property 2: Constant Returns to Scale.
- The production function exhibits constant returns to scale, such that:

$$\lambda Y = F(\lambda K, \lambda L)$$

We can thus write the function in terms of output per worker:

$$y \equiv \frac{Y}{L} = F\left(\frac{K}{L}, 1\right) \equiv f(k)$$
 where $k \equiv \frac{K}{L}$

- Property 3: Inada Conditions.
- The marginal product of capital (or labour) approaches infinity as capital (or labour) approach 0. It approaches 0 as capital (or labour) approaches infinity:

 The Cobb-Douglas production function has the three properties we require:

$$Y = AK^{\alpha}L^{1-\alpha}$$

A > 0, $0 < \alpha < 1$

$$y = \frac{AK^{\alpha}L^{1-\alpha}}{L} = Ak^{\alpha} = f(k)$$

Positive first derivative

$$f'(k) = A\alpha k^{\alpha-1} > 0$$

Negative second derivative

$$f''(k) = -A\alpha(1-\alpha)k^{\alpha-2} < 0$$

Inada Conditions

$$\lim_{k\to\infty}f'(k)=0$$

$$\lim_{k\to 0} f'(k) = \infty$$

- Original papers:
 - Robert Solow, 'A Contribution to the Theory of Economic Growth' Quarterly Journal of Economics (1956) and later in his book Growth Theory (1970)
 - Trevor Swan 'Economic Growth and Capital Accumulation', Economic Record (1956)).
- The model starts with the relationship between saving, investment and the change in the stock of capital over time:

$$\frac{dK}{dt} \equiv \dot{K} = I - \delta K = s \cdot Y - \delta K = s \cdot F(K, L) - \delta K$$
Investment Depreciation at rate δ

$$\dot{K} = s \cdot F(K,L) - \delta K$$

• Divide both sides by *L*:

$$\frac{K}{L} = s \cdot \frac{F(K,L)}{L} - \delta \frac{K}{L} = s \cdot f(k) - \delta k$$

• Evolution of k = K/L):

$$\frac{\dot{k}}{k} \equiv \frac{\dot{K}}{K} - \frac{\dot{L}}{L}$$

Growth of K = Growth of K - Growth of L

 Multiply both sides by k

$$\dot{k} \equiv \frac{\dot{K}}{K} k - \frac{\dot{L}}{L} k = \frac{\dot{K}}{K} \frac{K}{L} - \left(\frac{\dot{L}}{L}\right) k$$

or
$$\dot{k} = \frac{\dot{K}}{I} - n\dot{k}$$

$$\frac{\dot{K}}{L} = s \cdot f(k) - \delta k$$
 $\dot{k} = \frac{\dot{K}}{L} - nk$

• therefore:

 $\dot{k} = s \cdot f(k) - (n + \delta)k$

Behaviour of k

- $\dot{k} > 0$ if $s \cdot f(k) > (n + \delta)k$
- $\dot{k} < 0$ if $s \cdot f(k) < (n + \delta)k$

- 'Steady-state' equilibrium
- $\dot{k} = 0$ if $s \cdot f(k) = (n + \delta)k$

- Now 'including' technical progress
- Let L be labour measured in 'efficiency units' L = AN
 - where N is the number of workers
 - and A is a measure of their efficiency 'labour augmenting technical progress'
- Assume that: $\frac{A}{A} = \lambda$ is the growth rate of A
- so the growth rate of L (= AN) is now $n + \lambda$
- and the evolution of k is now $\dot{k} = s \cdot f(k) (n + \lambda + \delta)k$

At *k**:

$$s \cdot f(k^*) = (n + \lambda + \delta)k^*$$

and $\dot{k} = 0$

At k(0):

$$s \cdot f(k(0)) > (n + \lambda + \delta)k(0)$$

and $\dot{k} > 0$

- Consider the case of a country with a savings rate of s₁ and in steady state equilibrium.
- y = Y/L & k = K/L are constant so Y & K are growing at the same rate as L, i.e. at rate n + λ
- The savings rate rises to s₂ and there is an increase in the steadystate y and k
- At the new steady state,
 y & k are again constant
 (at higher levels) so Y
 and K are again growing
 at the same rate as L, i.e.
 at rate n + λ

- There are two steadystate equilibria with Y & Kgrowing at $n + \lambda$, but one is at a *higher level*.
- To get from y₁* to y₂*, Y will have to grow faster than n y₂*
 + λ
- Growth of Y along the steady-state path is $n + \lambda$
- Growth of Y in transition between these paths is greater than $n + \lambda$
- If Y/L = Y/(AN) is constant in steady state, Y/N is growing at the same rate as A, i.e. at rate λ

- Until time t the economy is on low-level steady-state path labelled s = s₁
- At time t the savings rate rises from s_1 to s_2 giving the new path s = s
- Between the two, as k and y rise to new steady-state, output per worker grows faster than λ in the transitional phase