Statistica I

Unità P: la dipendenza tra variabili

Tommaso Rigon

Università Milano-Bicocca

Unità P

Argomenti affrontati

- Dipendenza in media e altre modalità di dipendenza.
- Confronto tra indice η^2 ed indice χ^2 .

Riferimenti al libro di testo

■ §7.4

Descrizione del problema

- È noto che i cuculi depongono le proprie uova nei nidi di altri uccelli, a cui viene poi lasciato il compito della cova.
- I cuculi scelgono differenti specie di uccello (ad es: pettirossi o scriccioli) da utilizzare come nidi, a seconda del territorio.
- È presente una forma di adattamento dell'uovo del cuculo a quella dell'uccello "ospite".
- Per verificare quest'idea sono state misurate le lunghezze (in mm) di alcune uova di cuculo trovate in nidi di pettirossi e di scriccioli in due territori.

I dati grezzi

Pettirossi

[1] 21.05 21.85 22.05 22.05 22.05 22.25 22.45 22.45 22.65 23.05 23.05 [12] 23.05 23.05 23.05 23.25 23.85

Scriccioli

[1] 19.85 20.05 20.25 20.85 20.85 20.85 21.05 21.05 21.05 21.25 21.45 [12] 22.05 22.05 22.05 22.25

 Queste osservazioni possono essere visti come un insieme di dati bivariati, organizzati come segue

Uovo	ospite	lunghezza
1	Pettirosso	21.05
2	Pettirosso	21.85
:	:	:
31	Scricciolo	22.25

I boxplot

Alcune analisi descrittive

- È evidente che le uova deposte nei nidi di scricciolo sono tendenzialmente più piccole.
- Questo è confermato anche dalla media e dalla mediana della variabile lunghezza.

Ospite	Numerosità	Media	Mediana	Deviazione standard
Pettirosso	16	22.575	22.55	0.663
Scricciolo	15	21.130	21.05	0.719

- **E** inoltre noto che la media complessiva dei dati è pari a $\bar{x} = 21.876$.
- Per valutare l'intensità di questa dipendenza in media, possiamo ottenere il rapporto di correlazione η^2 descritto nell'unità N.

Analisi della varianza

- Calcoliamo nel seguito le principali quantità di interesse per l'analisi della varianza.
- La devianza tra i gruppi è pari a

$$\mathscr{D}_{\mathrm{tr}}^2 = \sum_{i=1}^k n_j (\bar{x}_j - \bar{x})^2 = 16(22.575 - 21.876)^2 + 15(21.130 - 21.876)^2 = 16.16536.$$

■ La devianza entro i gruppi è pari a

$$\mathscr{D}_{\text{en}}^2 = d_1^2 + d_2^2 = (16 \times 0.4393750) + (15 \times 0.5162667) = 14.774,$$

per cui la devianza totale è $\mathcal{D}^2 = 16.16536 + 14.774 = 30.93936$.

■ Infine, il rapporto di correlazione η^2 è pari a

$$\eta^2 = \frac{\mathcal{D}_{tr}^2}{\mathcal{D}^2} = \frac{16.16536}{30.93936} = 0.522,$$

evidenziando quindi una forte dipendenza in media.

Tabelle di contingenza

- È possibile analizzare questi dati utilizzando gli strumenti dell'unità O.
- In altri termini, possiamo costruire una tabella di contingenza per le variabili ospite e lunghezza.
- Si noti infatti che la variabile lunghezza è discreta: alcuni valori sono ripetuti.
- Calcolando ad esempio l'indice di connessione χ^2 , è possibile stabilire se le due variabili sono o meno indipendenti in distribuzione.
- lacktriangle Si noti che l'indice di dipendenza in media η^2 era abbastanza grande, suggerendo che quindi anche l'indice χ^2 evidenzierà una forte dipendenza.

La distribuzione congiunta

Lunghezza	Pettirosso	Scricciolo	Totale
19.85	0	1	1
20.05	0	1	1
20.25	0	1	1
20.85	0	3	3
21.05	1	3	4
21.25	0	1	1
21.45	0	1	1
21.85	1	0	1
22.05	3	3	6
22.25	1	1	2
22.45	2	0	2
22.65	1	0	1
23.05	5	0	5
23.25	1	0	1
23.85	1	0	1
Totale	16	15	31

Le frequenze attese

Lunghezza	Pettirosso Scriccio		Totale
19.85	0.52	0.48	1
20.05	0.52	0.48	1
20.25	0.52	0.48	1
20.85	1.55	1.45	3
21.05	2.06	1.94	4
21.25	0.52	0.48	1
21.45	0.52	0.48	1
21.85	0.52	0.48	1
22.05	3.10	2.90	6
22.25	1.03	0.97	2
22.45	1.03	0.97	2
22.65	0.52	0.48	1
23.05	2.58	2.42	5
23.25	0.52	0.48	1
23.85	0.52	0.48	1
Totale	16	15	31

L'indice di connessione χ^2

L'indice di connessione χ^2 è pari a

$$\chi^2 = \frac{(0 - 0.52)^2}{0.52} + \frac{(1 - 0.48)^2}{0.48} + \dots + \frac{(0 - 0.48)^2}{0.48} = 19.98854.$$

■ L'indice di connessione χ^2 normalizzato è pari invece a

$$\chi^2_{\text{norm}} = \frac{\chi^2}{n \min\{h-1, k-1\}} = \frac{19.98854}{31} = 0.6447917.$$

• Questo evidenza una forte dipendenza in distribuzione tra le due variabili.

Dipendenza in media, dipendenza in distribuzione

- Le due distribuzioni della lunghezza condizionate all'ospite sono diverse, ovvero esiste dipendenza in distribuzione.
- Inoltre, le due medie erano diverse: tra le due variabili esiste dipendenza in media.
- In generale, una variabile numerica y è dipendente (indipendente) in media da un'altra variabile x se le medie delle distribuzioni condizionate sono diverse (uguali) tra loro.
- Queste due forme di dipendenza, seppur legate tra loro, non sono uguali.
- Altre forme di dipendenza sono possibili: dipendenza in mediana, dipendenza in varianza, etc.

Dipendenza in distribuzione

- Si noti che questi concetti di indipendenza (in media, mediana, etc.) sono più deboli di quello di indipendenza in distribuzione.
- In altri termini, l'indipendenza in distribuzione implica necessariamente indipendenza in media, mediana, etc. Ad esempio, avremo che

$$\chi^2 = 0 \implies \eta^2 = 0.$$

■ Il viceversa non è vero: indipendenza in media, mediana, etc., non necessariamente implicano l'indipendenza in distribuzione. Ad esempio:

$$\eta^2 = 0 \implies \chi^2 = 0$$

ovvero è possibile che $\eta^2 = 0$ e che $\chi^2 > 0$.

Discutiamo questo punto con riferimento alla sola indipendenza in media.

Indipendenza in distribuzione \implies indipendenza in media

Richiamiamo la definizione di tabella di contingenza e supponiamo che la variabile y sia numerica, ovvero che d_1, \ldots, d_k siano dei numeri.

	Variabile y					
Variabile x	d_1		d_j		d_k	Totale
c_1	n ₁₁		n_{1j}		n_{1k}	n_{1+}
:	:		:		:	:
c_i	n _{i1}		n _{ij}		n _{ik}	n_{i+}
:	:		÷		:	:
Ch	n _{h1}		n _{hj}		n_{hk}	n_{h+}
Totale	n ₊₁		n_{+j}		n_{+k}	n

Indipendenza in distribuzione \implies indipendenza in media

■ Le medie condizionate $\bar{y}_1, \ldots, \bar{y}_h$, condizionate a $x = c_i$, per $i = 1, \ldots, h$, sono dunque pari a:

$$\bar{y}_i = \frac{1}{n_{i+}} \sum_{j=1}^k n_{ij} d_j, \qquad i=1,\ldots,h.$$

■ In caso di indipendenza in distribuzione tra $y \in x$, dall'unità O sappiamo che le quantità $n_{ij}/n_{i+} = f_{+j}$ sono uguali, pertanto

$$ar{y}_i = \sum_{j=1}^k f_{+j} d_j, \qquad i = 1, \ldots, h,$$

che ovviamente implica che $\bar{y}_1 = \cdots = \bar{y}_h$.

 $f \dot E$ immediato quindi far vedere che se $\chi^2=0$ allora anche $\eta^2=0$.

Indipendenza in media ≠⇒ indipendenza in distribuzione

- Per quel che riguarda la seconda affermazione, possiamo procedere con un esempio.
- È facile infatti costruire una tabella di contingenza in cui esiste indipendenza in media ma non indipendenza in distribuzione.
- Si verifichi che questo è quello che accade con la seguente distribuzione congiunta.

	Variabile y					
Variabile x	3	4	5	6	7	Totale
	0	1	1	1	0	3
c ₂	1	0	1	0	1	3
Totale	1	1	1	1	1	6

Infatti, si noti che le medie condizionate sono uguali $\bar{y}_1 = \bar{y}_2 = 5$, pertanto $\eta^2 = 0$. Tuttavia, è anche facile verificare che $\chi^2 > 0$.