Differentiation - Parametric Functions

Some curves are defined by expressing x and y in terms of a third variable, called a parameter.

For example:

$$x = t^2$$
, $y = 3t + 1$ \Rightarrow t is a parameter.

To find
$$\frac{dy}{dx}$$

Example 1

Find the equation of the tangent to the curve $x = 4 + \cos \theta$, $y = \sin^2 \theta$ at the point $(4\frac{1}{2}, \frac{3}{4}).$

Exercise 1

1 Find $\frac{dy}{dx}$ in terms of t for the following curves.

(a)
$$x = t^3, y = 2t$$

(b)
$$x = \sin t, y = \cos t$$

(c)
$$x = 2\cos t$$
, $y = 3\sin t$

(d)
$$x = t^3 + t, y = t^2 - t$$

2 Find the gradients of the tangents to the following curves, at the specified values of t.

(a)
$$x = 3t^2$$
, $y = 6t$ when $t = 0.5$

(b)
$$x = t^3, y = t^2 \text{ when } t = 2$$

(c)
$$x = 1 - \frac{1}{t}$$
, $y = 1 + \frac{1}{t}$ when $t = 2$
 (d) $x = t^2$, $y = \frac{1}{t}$ when $t = 3$

(d)
$$x = t^2, y = \frac{1}{t}$$
 when $t = 3$

3 Find the gradients of the normals to the following curves, at the specified values of t.

(a)
$$x = 5t^2$$
, $y = 10t$ when $t = 3$

(b)
$$x = \cos^2 t$$
, $y = \sin^2 t$ when $t = \frac{1}{2}\pi$

(a)
$$x = 5t^2$$
, $y = 10t$ when $t = 3$
(b) $x = \cos^2 t$, $y = \sin^2 t$ when $t = \frac{1}{3}\pi$
(c) $x = \cos^3 t$, $y = \sin^3 t$ when $t = \frac{1}{6}\pi$
(d) $x = t^2 + 2$, $y = t - 2$ when $t = 4$

(d)
$$x = t^2 + 2$$
, $y = t - 2$ when $t = 4$

4 Show that the equation of the tangent to the curve $x = 3\cos t$, $y = 2\sin t$ when $t = \frac{3}{4}\pi$ is $3y = 2x + 6\sqrt{2}$.

5 (a) Find the gradient of the curve $x = t^3$, $y = t^2 - t$ at the point (1,0).

(b) Hence find the equation of the tangent to the curve at this point.

6 A curve has parametric equations $x = t - \cos t$, $y = \sin t$. Find the equation of the tangent to the curve when $t = \pi$.

7 Find the equations of the tangents to these curves at the specified values.

(a)
$$x = t^2$$
, $y = 2t$ when $t = 3$

(b)
$$x = 5\cos t, y = 3\sin t \text{ when } t = \frac{11}{6}\pi$$

8 Find the equations of the normals to these curves at the specified values.

(a)
$$x = 5t^2$$
, $y = 10t$ when $t = 3$

(b)
$$x = \cos t$$
, $y = \sin t$ when $t = \frac{2}{3}\pi$

9 (a) Find the equation of the normal to the hyperbola x = 4t, $y = \frac{4}{5}$ at the point

(b) Find the coordinates of the point where this normal crosses the curve again.

10 (a) Find the equation of the normal to the parabola $x = 3t^2$, y = 6t at the point where

(b) Find the coordinates of the point where this normal crosses the curve again.

Answers - Exercise 1

1 (a)
$$\frac{2}{3t^2}$$
 (b) $-\tan t$

(c)
$$-\frac{3}{2}\cot t$$
 (d) $\frac{2t-1}{3t^2+1}$

2 (a) 2 (b)
$$\frac{1}{3}$$
 (c) -1

2 (a) 2 (b)
$$\frac{1}{3}$$
 (c) -1 (d) $-\frac{1}{54}$
3 (a) -3 (b) 1 (c) $\sqrt{3}$ (d) -8

5 (a)
$$\frac{1}{3}$$
 (b) $3y = x - 1$

6 $x + y = 1 + \pi$

7 (a)
$$3y = x + 9$$

7 (a)
$$3y = x + 9$$
 (b) $5y = 3\sqrt{3}x - 30$

8 (a)
$$3x + y = 165$$

8 (a)
$$3x + y = 165$$
 (b) $y = -\sqrt{3}x$
9 (a) $y = 4x - 30$ (b) $\left(-\frac{1}{2}, -32\right)$

10 (a)
$$y = 2x - 36$$

Exercise 2 - Exam Based Questions

Question 1

The parametric equations of a curve are

$$x = a\cos^3 t$$
, $y = a\sin^3 t$,

where a is a positive constant and $0 < t < \frac{1}{2}\pi$.

(i) Express
$$\frac{dy}{dx}$$
 in terms of t.

[3]

[5]

(ii) Show that the equation of the tangent to the curve at the point with parameter t is

$$x\sin t + y\cos t = a\sin t\cos t.$$
 [3]

(iii) Hence show that, if this tangent meets the x-axis at X and the y-axis at Y, then the length of XY [2] [i) -tan t] is always equal to a.

Question 2

The parametric equations of a curve are

$$x = a(2\theta - \sin 2\theta),$$
 $y = a(1 - \cos 2\theta).$

Show that
$$\frac{dy}{dx} = \cot \theta$$
.

Question 3

A curve is given parametrically by the equations

$$x = t^2, \qquad y = \frac{1}{t}.$$

- (i) Find $\frac{dy}{dx}$ in terms of t, giving your answer in its simplest form. [3]
- (ii) Show that the equation of the tangent at the point $P(4, -\frac{1}{2})$ is

$$x - 16y = 12.$$
 [3]

(iii) Find the value of the parameter at the point where the tangent at P meets the curve again. [4]

Question 4

The parametric equations of a curve are $x = \ln(\cos \theta)$, $y = \ln(\sin \theta)$, $0 < \theta < \frac{\pi}{2}$. Find the

equation of the tangent to the curve at the point where $\theta = \frac{\pi}{4}$, leaving your answer in the form of y = ax + b where a and b are exact values to be found.

Explain, using an algebraic method, why the tangent will not meet the curve again.

$$\int y = -x - \ln 21$$

Question 5

The parametric equations of a curve C are

$$x = -1 - t^2$$
 and $y = \ln(2 - t)$, $t < 2$.

- (i) Find the equations of the normal to the curve at $(-1, \ln 2)$ and the tangent to the curve at $(-5, 2 \ln 2)$.
- (ii) Find exactly the coordinates of the point of intersection of the tangent and the normal.
- (iii) Find, in radians, the acute angle between the tangent and the normal.

i)
$$y = \ln 2$$
, $y = -\frac{x}{16} - \frac{5}{16} + 2\ln 2$
ii) $P = (16 \ln 2 - 5, \ln 2)$ iii) $\tan \theta = \frac{1}{16} \Rightarrow \theta = 0.0624$