Основы алгебры логики

Содержание

russian

- Погические функции
 - Основы
 - Важнейшие логические функции
 - Формулы вместо функций трёх и более агрументов
- Формулы
 - Конструирование функций формулами
 - Запись формул
 - Алгебра логики
- Вазис
 - Основной логический базис
 - Логические базисы
 - Избыточность основного логического базиса

russian russian russian russian russian russian russian russian russian russian

Область определения и область значения

- Любое логическое выражение истинно либо ложно.
- Обозначим истину символом 1, а ложь символом 0.

Логическими функциями называются функции вида

$$f(x_1,\ldots,x_n),$$

где, как аргументы x_i , так и функция принимают значение либо 0, либо 1.

Способы задания логических функций

Таблица истинности

x_1		x_{n-1}	x_n	$f(x_1,\cdots,x_{n-1},x_n)$
0		0	0	$y_0=f(0,\cdots,0,0)$
0		0	1	$y_1=f(0,\cdots,0,1)$
0		1	0	$y_2 = f(0, \cdots, 1, 0)$
0	• • •	1	1	$y_3=f(0,\cdots,1,1)$
	,		• • •	
1	• • •	1	1	$y_{2^n-1}=f(1,\cdots,1,1)$

Каково количество всех возможных функций n аргументов?

Функции одного аргумента

X	f_0	f_1	f_2	f_3
0	0	0	1	1
1	0	1	0	1

Функций одного аргумента f(x) всего $2^{2^1} = 4$. Некоторые не представляют практического интереса, хотя и имеют название:

- ① Константа нуля для любого аргумента вернёт 0: $f_0(x) = 0$.
- $oldsymbol{ ext{O}}$ Константа единицы для любого аргумента вернет 1: $f_3(x)=1$,
- **3** Тождественная функция вернет значение аргумента: $f_1(x) = x$,
- **1** Инверсия вернет противоположное значение аргумента: $f_2(x) = \overline{x}$.

Функции одного аргумента

Отрицание, инверсия, *HE*, *NOT*

«HE(x)» также обозначается: « $\neg x$ », « \overline{x} ».

Функции двух аргументов

<i>x</i> ₁	X2	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
																	1
1																	1

Из $2^{2^2}=16$ функций двух аргументов лишь 9 имеют название (см., например, [5]).

Функции двух аргументов I

- $f_1(x_1, x_2) = x_1x_2$ коньюнкция
- $f_2(x_1,x_2) = x_1\overline{x_2} = \overline{x_1 o x_2} = x_1 \mapsto x_2$ левая коимпликация
- $f_3(x_1,x_2) = x_1\overline{x_2} \lor x_1x_2 = x_1$
- $f_5(x_1,x_2) = \overline{x_1}x_2 \lor x_1x_2 = x_2$
- $f_6(x_1,x_2) = \overline{x_1}x_2 \lor x_1\overline{x_2} = x_1 \oplus x_2$ сложение по модулю 2
- $f_7(x_1, x_2) = x_1 \lor x_2$ дизъюнкция
- $f_8(x_1,x_2)=\overline{x_1}\ \overline{x_2}=\overline{x_1}\ orall\ x_2=x_1\uparrow x_2$ стрелка Пирса (функция Вебба)
- $\mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0} (x_1, x_2) = \overline{x_1} \, \overline{x_2} \vee x_1 x_2 = x_1 \sim x_2$ эквивалентность
- $\mathbf{0} f_{10}(x_1, x_2) = \overline{x_2}$ отрицание

Функции двух аргументов II

- $f_{11}(x_1,x_2) = \overline{x_2} \lor x_1 = x_1 \leftarrow x_2$ правая импликация
- $f_{12}(x_1,x_2) = \overline{x_1}$ отрицание
- $f_{13}(x_1,x_2) = \overline{x_1} \lor x_2 = x_1 o x_2$ левая импликация
- $f_{15}(x_1,x_2)=1$ константа единицы

Функции двух аргументов

Конъюнкция, И, AND

1	x_2	$u(x_1, x_2)$			
0	0	0	Г	0	1
0	1	0	-	Ŏ.	
1	0	0			Г
1	1	1			J
				И	

 $\ll u(x,y)$ » также обозначается: $\ll x \wedge y$ », $\ll x \& y$ », $\ll x \cdot y$ » или $\ll xy$ ».

Функции двух аргументов Дизъюнкция, *ИЛИ*, *OR*

	x_1	x_2	или (x_1, x_2)	
•	0	0	0	
	0	1	1	- 1
	1	0	1	
	1	1	1	
				ИГ

 \ll или(x, y)» также обозначается: $\ll x \vee y$ ».

Функции двух аргументов

«Исключающее или», «сложение по модулю два», XOR — eXclusive OR

x_1	x_2	$xor(x_1,x_2)$	
0	0	0	
0	1	1	- =1
1	0	1	
1	1	0	
0		· · · · · · · · · · · · · · · · · · ·	XOR

¹Гораздо проще запомнить эту функцию, как результат сложения в 2 СС двух бит с отброшенным переносом

Функции двух аргументов Импликация, *ЕСЛИ-ТО*

x_1	<i>x</i> ₂	если-то (x_1, x_2)
0	0	1
0	1	1
1	0	0
1	1	1

«*если-то*(x,y)» также обозначается: « $x \to y$ ». Это аналог высказывания «*если* x_1 , то x_2 ». Оно ложно лишь тогда, когда посылка x_1 истинна, а следствие x_2 ложно.

Функции двух аргументов

Штрих Шеффера, И-НЕ

x_1	<i>X</i> ₂	u -не (x_1, x_2)
0	0	1
0	1	1
1	0	1
1	1	0

 $\ll u$ -не(x, y)» также обозначается: $\ll x \mid y$ ».

Функции двух аргументов

Стрелка Пирса, ИЛИ-НЕ

x_1	<i>X</i> ₂	или-не (x_1, x_2)
0	0	1
0	1	0
1	0	0
1	1	0

«или-не(x,y)» также обозначается: $«x \uparrow y»$.

Функции трёх и более аргументов

Не имеет смысла рассматривать функции трех и большего количества аргументов, в силу того, что их можно выразить формулой, сконструированной из функций одного и/или двух аргументов.

Формула

Формулой будем называть выражение

$$f(t_1,\ldots,t_n),$$

где t_i — подформула, т.е. либо аналогичного вида формула, либо переменная, принимающая одно из значений 0, либо 1. Прежде чем найти значение формулы, нужно найти значения подформул, стоящих в аргументах.

Пример формулы

Example (Задача)

Найти значение формулы

или $(0, u(He(1), \mathfrak{P})).$

Решение.

или
$$(0, u(\text{He}(1), 1)) \Rightarrow$$
 или $(0, u(0, 1)) \Rightarrow$ или $(0, 0) \Rightarrow 0$

Конструирование функций формулами

Функции произвольного количества аргументов можно конструировать на основе вышеназванных функций одного и двух аргументов.

Example

Функция трёх аргументов задана формулой:

$$g(x_1, x_2, x_3) = u \pi u(x_1, u(He(x_2), x_3)).$$

Символы операций вместо функций

Вместо

- \bigcirc «*не*(*x*)» пишут «(¬*x*)» или «(\bar{x})»;
- u(x,y)» пишут $(x \wedge y)$ », (x & y)», $(x \cdot y)$ » или (xy)»;
- \bullet «или(x, y)» пишут « $(x \lor y)$ »;
- «или-не(x, y)» пишут « $(x \uparrow y)$ ».
- «xor(x, y)» пишут «(x \oplus y)»;
- \bigcirc «если-то(x,y)» пишут « $(x \rightarrow y)$ »;

Задавая приоритет операций, лишние скобки опускают.

Example

 $\langle \neg x \lor y \cdot z \rangle$ то же самое, что $\langle (\neg x) \lor (y \cdot z) \rangle$.

Операции вместо функций

Example

Функция

$$g(x_1, x_2, x_3) = u \pi u(x_1, u(He(x_2), x_3))$$

может быть записана с помощью обозначений операций:

$$g(x_1, x_2, x_3) = x_1 \vee \neg x_2 \cdot x_3$$

Ассоциативные операции

Элементы цифровой техники

Такие операции как U, UЛU, XOR ассоциативны. То есть, например,

$$(x \cdot y) \cdot z = x \cdot (y \cdot z) = x \cdot y \cdot z.$$

Поэтому на схемах допустимы трех и более-входовые элементы²:

²Которым соответствуют микросхемы, шаблоны ПЛИС и лд. 🚬 📜 📜

Алгебра логики I

Свойства операций

О Ассоциативность:

$$x_1 \cdot (x_2 \cdot x_3) = (x_1 \cdot x_2) \cdot x_3; \quad x_1 \vee (x_2 \vee x_3) = (x_1 \vee x_2) \vee x_3.$$

О Коммутативность:

$$x_1 \cdot x_2 = x_2 \cdot x_1$$
; $x_1 \lor x_2 = x_2 \lor x_1$.

Дистрибутивность:

$$x_1 \cdot (x_2 \vee x_3) = (x_1 \cdot x_2) \vee (x_1 \cdot x_3); \quad x_1 \vee (x_2 \cdot x_3) = (x_1 \vee x_2) \cdot (x_1 \vee x_3).$$

Идемпотентность:

$$x \cdot x = x$$
; $x \lor x = x$.

Двойное отрицание:

$$\overline{\overline{x}} = x$$
.

Алгебра логики II

Свойства операций

Овойства констант:

$$x \cdot 1 = x;$$
 $x \cdot 0 = 0;$ $x \vee 1 = 1$
 $x \vee 0 = x;$ $\overline{0} = 1;$ $\overline{1} = 0$

Закон де Моргана:

$$\overline{x_1 \cdot x_2} = \overline{x_1} \vee \overline{x_2}; \quad \overline{x_1 \vee x_2} = \overline{x_1} \cdot \overline{x_2}.$$

Закон противоречия:

$$x \cdot \overline{x} = 0$$
.

Закон «исключённого третьего»:

$$x \vee \overline{x} = 1$$
.

Алгебра логики I

Упрощение формул

Поглощение:

$$x \lor (x \cdot y) = x$$
; $x \cdot (x \lor y) = x$.

Оклеивание:

$$(x \cdot y) \lor (x \cdot \overline{y}) = x.$$

Обобщённое склеивание:

$$(x \cdot z) \lor (y \cdot \overline{z}) \lor (x \cdot y) = (x \cdot z) \lor (y \cdot \overline{z});$$

$$x \lor (\overline{x} \cdot y) = x \lor y;$$

$$x_1 \lor f(x_1, x_2, \dots, x_n) = x_1 \lor (\overline{x_1} \cdot f(0, x_2, \dots, x_n)) \lor$$

$$\lor (x_1 \cdot f(1, x_2, \dots, x_n)) = x_1 \lor f(0, x_2, \dots, x_n).$$

Функции И, ИЛИ, НЕ составляют основной логический базис. Любую функцию можно выразить формулой на их основе. Эти логические связки часто используются в обыденной жизни.

Конструирование функций трёх и более аргументов

Example (Задача)

Представить функцию $f(x_1, x_2, x_3)$ в основном логическом базисе.

x_1	<i>X</i> ₂	<i>X</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
_ 1	1	1	0

Конструирование функций трёх и более аргументов

Решение.

На наборе $x_1=0, \ x_2=1, \ x_3=0$ функция $f(x_1,x_2,x_3)$ должна равняться единице. При этом видно, что функция $f_2(x_1,x_2,x_3)=\overline{x_1}\cdot x_2\cdot \overline{x_3}$ равняется единице только на этом наборе. $f(x_1,x_2,x_3)$ также должна равняться 1 на наборе $x_1=1,\ x_2=1,\ x_3=0.$ $f_6(x_1,x_2,x_3)=x_1\cdot x_2\cdot \overline{x_3}.$ Стало быть $f(x_1,x_2,x_3)=f_2(x_1,x_2,x_3)\vee f_6(x_1,x_2,x_3)=(\overline{x_1}\cdot x_2\cdot \overline{x_3})\vee (x_1\cdot x_2\cdot \overline{x_3}).$

^аКонечно, это решение можно оптимизировать. Вдумавшись, можно видеть, что от x_1 функция не зависит: $f(x_1, x_2, x_3) = x_2 \cdot \overline{x_3}$. Такое представление называется ДНФ — дизъюнктивная нормальная форма. Оптимизацию формул здесь не рассматриваем

Функционально полные системы булевых функций

Функционально полной системой булевых функций называется совокупность таких функций, что произвольная булева функция может быть записана в виде формулы через функции этой совокупности.

Функционально полные системы булевых функций

Классы функций

$$f(x_1, ..., x_n)$$

- ① булевы функции, сохраняющие константу 0 f(0,0,...,0) = 0;
- ② булевы функции, сохраняющие константу $1 \ f(1,1,...,1) = 1;$
- $oldsymbol{0}$ самодвойственные булевы функции $f(x_1,...,x_n)=\overline{f(\overline{x_1},...,\overline{x_n})};$
- $m{0}$ линейные булевы функции $f(x_1,...,x_n)=c_0\oplus c_1x_1\oplus...\oplus c_nx_n$, где $c_i\in[0;1];$
- ullet монотонные булевы функции $f(x_1,...,x_n) \geqslant f(y_1,...,y_n)$, если $\langle x_1,...,x_n \rangle \geqslant \langle y_1,...,y_n \rangle$.

Логический базис Полнота

Критерий полноты Поста-Яблонского

Система булевых функций является полной тогда и только тогда, когда она:

- \bullet содержит функцию, не принадлежащую классу K_0 ;
- \bullet содержит функцию, не принадлежащую классу K_1 ;
- \bullet содержит функцию, не принадлежащую классу K_C ;
- ullet содержит функцию, не принадлежащую классу K_L ;
- \bullet содержит функцию, не принадлежащую классу K_M .

Некоторые логические базисы

```
\{\uparrow\} – ИЛИ-НЕ – базис Пирса (базис Вебба) \{|\} – И-НЕ – базис Шеффера \{\to,0\}, \{\to,\neg\} – импликативные базисы \{\&,\neg\} – И, НЕ – коньюнктивный базис Буля \{\lor,\neg\} – ИЛИ, НЕ – дизьюнктивный базис Буля \{\oplus,\&,\neg\} – базис Жегалкина
```

Избыточность основного логического базиса

Например, функцию U можно выразить через функции $U \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$ и H E:

$$x_1 \cdot x_2 = \overline{\overline{x_1} \vee \overline{x_1}},$$

в чём нетрудно убедиться непосредственной проверкой:

$x_1 \cdot x_2$	<i>x</i> ₁	X_2	$\overline{X_1} \vee \overline{X_1}$
0	0	0	0
0	0	1	0
0	1	0	0
1	1	1	1

Следовательно, базис образуют функции ИЛИ и НЕ!

Избыточность основного логического базиса

Например, функцию U можно выразить через функции U Л U и H E:

$$x_1 \cdot x_2 = \overline{\overline{x_1} \vee \overline{x_1}},$$

в чём нетрудно убедиться непосредственной проверкой:

$x_1 \cdot x_2$	<i>x</i> ₁	<i>x</i> ₂	$\overline{\overline{x_1} \vee \overline{x_1}}$
0	0	0	0
0	0	1	0
0	1	0	0
1	1	1	1

Следовательно, базис образуют функции ИЛИ и НЕ!

Базис из одной функции

Стрелка Пирса, ИЛИ-НЕ

x_1	<i>X</i> ₂	$x_1 \uparrow x_2$
0	0	1
0	1	0
1	0	0
1	1	0

Достаточно выразить, например функции НЕ и ИЛИ:

- HE: $\neg x = x \uparrow x$;
- $VJJU: x \lor y = \neg(x \uparrow y) = (x \uparrow y) \uparrow (x \uparrow y);$

Программирование

Логические операции в ЯВУ и в процессорах

Оператор языка С/С++	Действие оператора		
x=y	Присвоить переменной х значение у		
x==y	Сравнить значения переменных х и у		
~x	Битовое НЕ		
хІу	Битовое ИЛИ		
x&y	Битовое И		
x^y	Битовое XOR		
x< <n< td=""><td>Сдвиг значения x на n бит влево</td></n<>	Сдвиг значения x на n бит влево		
x>>n	Сдвиг значения x на n бит вправо		

Программирование

Логические операции в ЯВУ и в процессорах

х

1	6	5	4	3	2	1	U
0	0	1	1	1	1	0	0
0	1	0	1	1	0	1	0

z1 = ~x z2 = x|y z3 = x&y z4 = x^y z5 = x<<1 z6 = x>>2

1	1	0	0	0	0	1	1
0	1	1	1	1	1	1	0
0	0	0	1	1	0	0	0
0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	0
0	0	0	0	1	1	1	1

В заключение

Основы алгебры логики даны практически во всех учебниках.

Фундаментальное изложение можно найти в [1, 6].

С точки зрения программиста в [5, 2].

Доступно и кратко в [3].

Работа над битами с помощью арифметико-логических команд процессора [4].

Библиография I

- В.А.Горбатов. Дискретная математика: учебник для студентов ВТУЗов / В.А.Горбатов, А.В.Горбатов, М.В.Горбатова. — М.: ООО «Издательство АСТ» and ООО «Издательство Астрель», 2003.
- Г.Хаггард. Дискретная математика для программистов: учебное пособие / Г.Хаггард, Дж.Шлипф, С.Уайтсайдс.— М.: Бином. Лаборатория знаний, 2010.
- С.В.Судоплатов. Дискретная математика: Учебник / С.В.Судоплатов, Е.В.Овчинникова. — М.: ИНФРА-М;Новосибирск;Изд-во НГТУ, 2005.
- Г.Уоррей-мл. Алгоритмические трюки для программистов / Г.Уоррен-мл. — 2 изд. —
 - М.: Издательский дом «Вильямс», 2014.

Библиография II

Ф.А.Новиков. Дискретная математика для программистов / Ф.А.Новиков. —

СПб.: Питер, 2000.

С.В.Яблонский. Введение в дискретную математику: учебное пособие для вузов / С.В.Яблонский; Под ред.

В.А.Садовничего. —

М.: Высшая школа, 2001.