Resistors. Ohm's Law

1-1 For the circuit below we know: $R_1=10\Omega$, $R_2=9\Omega$, $R_3=15\Omega$, $R_4=10\Omega$ and supplying voltage U=60V. Calculate: a) the equivalent resistance regarding the supplying terminals, R_e ; b) the total current absorbed by the resistances, I; c) the current through the resistance R_2 , I_2 ; d) the voltage on the resistance R_3 , U_{R3} ; the power dissipated in the resistance R_4 , P_{R4} .

Problem 1-8

1-2 Find the value of the equivalent resistance, R_{eq} , between terminals a and b, for the sub-circuit shown below.

Problem 1-13

1-3 Determine the current I_s generated by the current source in the circuit below if the power dissipated in the $2\Omega s$ resistance is 32W.

1-4 Determine the voltage E generated by the voltage source in the circuit below if the current flow to the 3Ω s resistance is I_0 =4A.

Problem 1-18

1-5 Determine the current I_s generated by the current source in the circuit below if the voltage drop on the $2\Omega s$ resistance is 4V.

Problem 1-21

Kirchhoff's Laws

2-1 For the circuit below we know: R_1 =5 Ω , R_2 =10 Ω , R_3 =6 Ω , R_4 =3 Ω , R_5 =2 Ω , E_1 =10V, E_2 =5V, E_5 =5V. Identify the number of nodes and circuit branches and calculate the branch currents using: a) the Kirchhoff Laws; b) the nodal analysis; c) the mesh analysis. Calculate the generated and removed power in the circuit and verify the power conservation theorem.

2-2 Find the currents I_1 , I_2 , I_3 for the circuit below and verify the power conservation theorem.

Problem 2-4

2-3 For the circuit below calculate the dissipated power in the 8Ω 's resistance.

Problem 2-5

2-4 Find the currents I, I_0 , I_1 for the circuit below and verify the power conservation theorem.

Problem 2-6

2-5 Find the currents I_1 , I_2 , I_3 for the circuit below and verify the power conservation theorem.

2-6 Find the currents I_1 for the circuit below and verify the power conservation theorem.

Problem 2-9

2-7 Find the currents I_X for the circuit below and verify the power conservation theorem.

Problem 2-10

2-8 Find the currents I₀, I₁, I₂, I₃, I for the circuit below and verify the power conservation theorem.

Problem 2-14

2-9 Suppress all the sources in the circuit below and calculate the equivalent resistance, R_{eq} , regarding to the terminals a and b.

2-10 Suppress all the sources in the circuit below and calculate the equivalent resistance, R_{eq} , regarding to the terminals a and b.

2-11 Suppress all the sources in the circuit below and calculate the equivalent resistance, R_{eq} , regarding to the terminals a and b.

Thevenin's and Norton's Theorem

2-12 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the $10\Omega s$ resistance (terminals a and b) for the circuit below. Find the current I through the $10\Omega s$ resistance.

Problem 2-23

2-13 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the 1Ω s resistance (terminals a and b) for the circuit below. Find the current I through the 1Ω s resistance.

2-14 Determine the Thevenin equivalent circuit (R_{eq} , U_0), viewed by the 3Ω s resistance (terminals a and b) for the circuit below. Find the current I through the 3Ω s resistance.

Problem 2-25

Nodal and Mesh Analysis

2-15 For the circuit below, use the nodal analysis to calculate the potential of the nodes. Find the currents in the circuit. The circuit parameters are: $R_1=R_4=4\Omega,\,R_2=2\Omega,\,R_3=6\Omega,\,R_5=3\Omega,\,R_S=10\Omega,\,E_1=E_3=6V,\,E_4=3V,\,E_5=4V,\,I_S=2A.$

Problem 2-31

2-16 For the circuit below, use the nodal analysis to calculate the potential of the nodes. Find the currents in the circuit.

Problem 2-32

2-17 For the circuit below, calculate the voltage U using: a) Norton's theorem; b) the nodal analysis. Calculate the current I using Thevenin's theorem.

Problem 2-35

2-18 For the circuit below, calculate the currents through the circuit using: a) the Kirchhoff laws; b) the nodal analysis; c) the mesh analysis. Verify the current I by using Thevenin's theorem. Verify the power conservation theorem.

Problem 2-36

2-19 For the circuit below, use the mesh analysis to find the currents in the circuit.

2-20 For the circuit below, determine the value of the resistance R which will absorb the greatest power from the circuit.

Problem 2-41