Statics

The Phases of PLs

Static Phase: Well-formedness of programs; e.g., parsing and type checking.

Dynamic Phase: Execution of programs.

Statics

A collection of rules, called typing rules, for deriving typing judgments stating that an expression is a well-formed for a certain type.

Statics

Types mediate interaction between the various constituent parts of a program by predicting the execution behavior of the parts so that we are sure that they fit together properly at run time.

Statics: Example

Suppose we have a function f, and an input x, then what can we say about the application f(x)?

Statics: Example

Suppose we have a function f: Int -> Int, and an input x:Int, then what can we say about the application "f(x)"?

Statics: Syntax

Тур	τ	::=	num	num	numbers
			str	str	strings
Exp	e	::=	\boldsymbol{x}	$\boldsymbol{\mathcal{X}}$	variable
			num[n]	n	numeral
			$\mathtt{str}[s]$	"s"	literal
			$plus(e_1;e_2)$	$e_1 + e_2$	addition
			$times(e_1;e_2)$	$e_1 * e_2$	multiplication
			$cat(e_1;e_2)$	<i>e</i> ₁ ^ <i>e</i> ₂	concatenation
			len(e)	e	length
			$let(e_1; x.e_2)$	$\mathtt{let}x\mathtt{be}e_1\mathtt{in}e_2$	definition

Statics: Typing

```
\frac{\Gamma \vdash e_1 : \text{num} \quad \Gamma \vdash e_2 : \text{num}}{\Gamma \vdash \text{times}(e_1; e_2) : \text{num}} \text{ Times}
      \frac{\Gamma \vdash e_1 : \mathsf{str} \quad \Gamma \vdash e_2 : \mathsf{str}}{\Gamma \vdash \mathsf{cat}(e_1; e_2) : \mathsf{str}} Cot
                          \frac{\Gamma \vdash e : \mathsf{str}}{\Gamma \vdash \mathsf{len}(e) : \mathsf{num}} Len
\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \mathsf{let}(e_1; x . e_2) : \tau_2}_{\mathsf{Let}}
```

Statics: Properties

Lemma (Unicity of Typing): For every context Γ and expression e, there exists at most one τ such that $\Gamma \vdash e : \tau$.

Statics: Properties

Lemma (Inversion for Typing): Suppose $\Gamma \vdash e : \tau$.

- 1. If $e = \text{plus}(e_1; e_2)$, then $\tau = \text{num}$, $\Gamma \vdash e_1 : \text{num}$, and $\Gamma \vdash e_2 : \text{num}$.
- 2. If $e = times(e_1; e_2)$, then $\tau = num$, $\Gamma \vdash e_1 : num$, and $\Gamma \vdash e_2 : num$.
- 3. If $e = \text{cat}(e_1; e_2)$, then $\tau = \text{str}$, $\Gamma \vdash e_1 : \text{str}$, and $\Gamma \vdash e_2 : \text{str}$.
- 4. If $e = \text{len}(e_1)$, then $\tau = \text{num}$, $\Gamma \vdash e_1$: str.
- 5. If $e = \text{let}(e_1; x \cdot e_2)$, then $\Gamma \vdash e_1 : \tau_1$ and $\Gamma, x : \tau_1 \vdash e_2 : \tau$