

Inhaltsverzeichnis

		roduction	1				
	1.1	Overview	1				
	1.2	Chapter 1.1 - What is machine learning	1				
	1.3	Chapter 1.2 - What is deep learning	2				
		1.3.1 What is a neural network (NN)	3				
	1.4	Chapter 1.3 - Examples for Deep Learning	3				
2	Tools for Deep Learning 3						
_	2.1	Datasets	3				
	2.1	Datasets	5				
3		chine learning basics	3				
	3.1	Linear Algebra	4				
	3.2	Chapter 3.2 Random variable and probability distribution	4				
		3.2.1 One random vector	4				
		bildungsverzeichnis					
1	Intr 1.1 1.2	roduction Mathematical notations	1 1 2				
1	1.1	roduction	1				
1 2	1.1 1.2 1.3	roduction Mathematical notations	1 2				
2	1.1 1.2 1.3 Too l	Three steps of machine learning	1 2 3				
•	1.1 1.2 1.3 Tool	Three steps of machine learning	1 2 3				
2	1.1 1.2 1.3 Tool Mac 3.1	roduction Mathematical notations	1 2 3 3 4				
2	1.1 1.2 1.3 Tool Mac 3.1 3.2	roduction Mathematical notations	1 2 3 3				
2	1.1 1.2 1.3 Tool Mac 3.1	roduction Mathematical notations					

List of Equations

1 Introduction 1

2	Tools	for	Deep	Learning
---	--------------	-----	------	----------

3

3

3 Machine learning basics

Lecture 1: Introduction

Date: 03/05/2020

Lecturer: David Silver By: Nithish Moudhgalya

1.1. Overview

•p.4 expert talks are not relevant for the exam

• scalar: x, A, α

- column vector: $\underline{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = [x_i] \in \mathbb{R}^N$ with element $x_i = [\underline{x}]_i$
- matrix: $\mathbf{A} = [a_{ij}]_{1 \le i \le M, 1 \le j \le N} = [a_{ij}] \in \mathbb{R}^{M \times N}$ with element $a_{ij} = [\mathbf{A}]_{ij}$
- 3D, 4D **tensor**: $A = [a_{ijk}], A = [a_{ijkl}]$
- **transpose** of vector and matrix: $\mathbf{x}^T = [x_1, \dots, x_N], \mathbf{A}^T = [a_{ii}]_{ij}$
- determinant of a square matrix A: |A|
- inverse of a square matrix $A: A^{-1}$
- **trace** of a square matrix **A**: $tr(\mathbf{A}) = \sum_{i} a_{ii}$

Abbildung 1.1: Mathematical notations

•Element notation (element of vector): $[x_i = \underline{a} + \underline{b}]_i$

1.2. Chapter 1.1 - What is machine learning

- •Signal processing is not a subset of ML or the other way around, they are identical in the task
- •Basic difference is in how to design the processing rule
- •Regression means to calculate (SP,ML) a continuous-valued output in the real numbers from a signal, can be one-dimensional
- •Classification means to calculate (SP,ML) a discrete-valued output from the natural numbers
- •p. 1-5 filter in the middle is the view of a pixel and its 8 neighbours

Three steps of machine learning (1)

Abbildung 1.2: Three steps of machine learning

- •over-fitting just memorizes the training set so test set is needed
- •testerrorrate is similar to training error rate \rightarrow no over-fitting
- •Test set and training set need to be disjuct concatenated
- •TODO: Summary supervised learning and unsupervised learning

1.3. Chapter 1.2 - What is deep learning

- •feature extraction: a feature is a clustered subset of information for recognition
- •fish example: fish length, color etc.
- •Needs human experience, can't be calculated
- •DNN solves the problem without feature extraction

1.3.1. What is a neural network (NN)

•Cascaded pipeline of layers

Abbildung 1.3: Neural Network

1.4. Chapter 1.3 - Examples for Deep Learning

•Semantic image segmentation is pixelwise classification

Lecture 2: Tools for Deep Learning

Date: 02/05/2020

Lecturer: David Silver

By: Nithish Moudhgalya

2.1. Datasets

•Overview for Training Datasets up to ImageNet they are for teaching

Lecture 3: Machine learning basics

Date: 02/05/2020

Lecturer: David Silver

By: Nithish Moudhgalya

3.1. Linear Algebra

•TODO get Math nicely into the Context book

3.1 Linear algebra 3-4

Vector norms

Given a vector $\underline{x} = [x_i] \in \mathbb{R}^M$. There are different definitions for the vector norm:

- 2-norm or l_2 -norm or Euclidean norm: $||\underline{x}||_2 = \sqrt{\sum_{i=1}^M x_i^2} = \sqrt{\underline{x}^T \underline{x}}$ • 1-norm or l_1 -norm: $||\underline{x}||_1 = \sum_{i=1}^M |x_i|$ • 0-norm or l_0 -norm: $||\underline{x}||_0 =$ number of non-zero elements in \underline{x}

Comments:

- $||x||_2^2$ represents the energy of x.
- $||x||_0$ measures the sparsity of x.
- Different vector norms have different unit-norm contour lines $\{\underline{x} \mid ||\underline{x}||_p = 1\}$.

Abbildung 3.1: Vector Normes

3.2. Chapter 3.2 Random variable and probability distribution

3.2.1. 3.2.1 One random vector

- scalar: x, A, α
- column vector: $\underline{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = [x_i] \in \mathbb{R}^N$ with element $x_i = [\underline{x}]_i$
- matrix: $\mathbf{A} = [a_{ij}]_{1 \le i \le M, 1 \le j \le N} = [a_{ij}] \in \mathbb{R}^{M \times N}$ with element $a_{ij} = [\mathbf{A}]_{ij}$
- 3D, 4D **tensor**: $A = [a_{ijk}], A = [a_{ijkl}]$
- **transpose** of vector and matrix: $\underline{x}^T = [x_1, \dots, x_N], \mathbf{A}^T = [a_{ii}]_{ii}$
- determinant of a square matrix A: |A|
- inverse of a square matrix A: A^{-1}
- **trace** of a square matrix **A**: $tr(\mathbf{A}) = \sum_{i} a_{ii}$

Abbildung 3.2: One random vector

PDF for a discrete-valued RV: $p(\underline{x}) = \sum_i p_i \delta(\underline{x} - \underline{x_i},) \; \delta(\underline{x}:)$ Dirac function cumulative distribution function CCDF $F(\underline{x}) = \int_{-\infty}^{\infty} p(\underline{z}) d\underline{z}, \quad p(\underline{x}) = \frac{\partial^d F(\underline{x})}{\partial x_i ... \partial x_d}$

• scalar: x, A, α

• column vector:
$$\underline{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = [x_i] \in \mathbb{R}^N$$
 with element $x_i = [\underline{x}]_i$

- matrix: $\mathbf{A} = [a_{ij}]_{1 \le i \le M, 1 \le j \le N} = [a_{ij}] \in \mathbb{R}^{M \times N}$ with element $a_{ij} = [\mathbf{A}]_{ij}$
- 3D, 4D **tensor**: $A = [a_{ijk}], A = [a_{ijkl}]$
- **transpose** of vector and matrix: $\underline{x}^T = [x_1, \dots, x_N], \mathbf{A}^T = [a_{ii}]_{ii}$
- determinant of a square matrix A: |A|
- inverse of a square matrix A: A⁻¹
- **trace** of a square matrix **A**: $tr(\mathbf{A}) = \sum_{i} a_{ii}$

Abbildung 3.3: Moments of a vector

special case d = 1:
$$\underline{X} \to X \in \mathbb{R}$$
 $\mu \to \mu \in \mathbb{R}$ $\underline{\underline{C}} \to \text{variance of } X = Var(X) = \delta^2 = E[(X - \mu)^2] = \dots = E(X^2) - \mu^2$ $\delta = \sqrt{Var(X)}$: standard deviation For any function $g(\underline{X})$ of $\underline{X}: E[g(\underline{x})] = \int g(x) \cdot p(\underline{x}) d\underline{x} = (d.v.) \sum_i g(\underline{x}_i \cdot P(\underline{x}_i))$

Multivariate normal (Gaussian) distribution

PDF

$$\begin{split} \underline{X} \in \mathbb{R}^d &\sim N(\underline{\mu}, \mathbf{C}) \\ p(\underline{x}) &= \frac{1}{(2\pi)^{d/2} |\mathbf{C}|^{1/2}} e^{-\frac{1}{2}(\underline{x} - \underline{\mu})^T \mathbf{C}^{-1}(\underline{x} - \underline{\mu})} \\ \ln(p(\underline{x})) &= -\frac{d}{2} \ln(2\pi) - \frac{1}{2} \ln(|\mathbf{C}|) - \frac{1}{2} (\underline{x} - \underline{\mu})^T \mathbf{C}^{-1}(\underline{x} - \underline{\mu}) \end{split}$$

 $N(\underline{0}, \mathbf{I})$ is called the **standard normal distribution**.

1D-Visualization

Moments

Abbildung 3.4: Multivariate normal (Gaussian) distribution

one-hot coding: Only one bit is 1 e.g. 0100 one cold coding is the inverse

Coding for class label, random vector y of length c so the identity matrix with dimension c is used for class

Reforumulation of the PMF (categorical distribution) by one-hot coding of the classes

$$\underline{x} = [x_i] \in \{\underline{e}_1, \underline{e}_2, .., \underline{e}_c\} \text{ , i.e. all } x_i = 0 \text{ except for one single element equal to 1}$$

$$\text{PMF: } P(\underline{X} = \underline{x}) = P(\underline{x}) = \begin{cases} P_i \text{ if } \underline{x} = \underline{e}_1 \text{ or } x_1 = 1 \\ ... \\ P_c \text{ if } \underline{x} = \underline{e}_c \text{ or } x_c = 1 \end{cases} = p_1^{x_1} \cdot p_2^{x_2} \cdot , \ldots \cdot p_c^{x_c} = \prod_{i=1}^c p_i^{x_i} \cdot p_i^{x_i} \cdot p_i^{x_i} \cdot p_i^{x_i} = p_1^{x_i} \cdot p_i^{x_i} \cdot p_i$$

$$ln(P(\underline{x}) = sum_{i=1}^{c} x_{i} \cdot ln(p_{i}) = [x_{i}, ..., x_{c}] \cdot \begin{bmatrix} ln(P_{i}) \\ ... \\ ln(P_{c}) \end{bmatrix} = \underline{x}^{T} \cdot ln(\underline{P})$$

In function applied element wise