Mesure et intégration

Quizz 4

1) Préciser (sans faire de calcul) les limites quand n tend vers $+\infty$ de

$$u_n = \int_0^{+\infty} \frac{\cos(e^{-nx})}{1+x^2} dx, \ v_n = \int_0^{+\infty} \frac{e^{-x}}{2+\cos(x)^n} dx$$

2) On a

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} \frac{xy}{1+x^6+y^6} dx \right) dy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \frac{xy}{1+x^6+y^6} dy \right) dx$$

Vrai \square Faux \square

3) On note \mathcal{E} l'espace des fonctions étagées sur \mathbb{R} (muni de la tribu des boréliens)

Vrai \square Faux \square \mathcal{E} est un espace vectoriel normé pour la norme L^1 .

Vrai \square Faux \square L'espace \mathcal{E} est complet pour la norme L^1 .

4) Espace $L^1(\mathbb{R})$

Vrai \square Faux \square Une fonction continue de \mathbb{R} dans \mathbb{R} appartient à L^1 .

Vrai \square Faux \square Une fonction continue de \mathbb{R} dans \mathbb{R} , qui tend vers 0 quand x tend vers $\pm \infty$, appartient à $L^1(\mathbb{R})$.

Vrai \square Faux \square Une fonction continue de \mathbb{R} dans \mathbb{R} , à support compact (f(x)) est nul en dehors d'un intervalle borné), appartient à $L^1(\mathbb{R})$.

Vrai \square Faux \square Une fonction de $L^1(\mathbb{R})$ tend vers 0 quand |x| tend vers $+\infty$.