```
library(MASS)
library(ggbiplot)
library(tidyverse)
library(marginaleffects)
library(lme4)
library(car)
```

Figure 1: Packages loaded

low	lwt	smoke
no	113	no
no	95	yes
no	113	yes
no	120	no
no	190	no
no	131	no
yes	120	yes
no	121	yes
no	120	yes
no	130	no
no	90	yes
no	105	yes
no	113	no
no	160	no
no	121	yes

Figure 2: Low birth weight data (randomly chosen rows)

```
birthwt.1 <- glm(factor(low) ~ lwt + smoke, data = birthwt, family = "binomial")</pre>
summary(birthwt.1)
Call:
glm(formula = factor(low) ~ lwt + smoke, family = "binomial",
   data = birthwt)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
                       0.79592
                                0.781
(Intercept) 0.62200
                                         0.4345
           -0.01332
                       0.00609 -2.188
                                         0.0287 *
smokeyes
            0.67667
                       0.32470
                                2.084
                                         0.0372 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 224.34 on 186 degrees of freedom
AIC: 230.34
Number of Fisher Scoring iterations: 4
```

Figure 3: Low birth weight logistic regression

```
new <- datagrid(model = birthwt.1, lwt = c(110, 125, 140))
new</pre>
```

low	smoke	lwt
no	no	110
no	no	125
no	no	140

```
cbind(predictions(birthwt.1, newdata = new)) %>%
  select(smoke, lwt, estimate)
```

smoke	lwt	estimate
no	110	0.3007605
no	125	0.2604667
no	140	0.2238432

```
new <- datagrid(model = birthwt.1, smoke = c("no", "yes"))
new</pre>
```

low	lwt	smoke
no	130	no
no	130	yes

```
cbind(predictions(birthwt.1, newdata = new)) %>%
  select(smoke, lwt, estimate)
```

smoke	lwt	estimate
no	130	0.2478400
yes	130	0.3932927

Figure 4: Low birth weight predictions

time	panel	emergenc
17	1	1
14	1	1
15	2	1
12	2	1
21	3	1
24	3	1
25	1	2
24	1	2
22	2	2
19	2	2
29	3	2
28	3	2
31	1	3
24	1	3
28	2	3
31	2	3
32	3	3
37	3	3
14	1	4
13	1	4
9	2	4
10	2	4
15	3	4
19	3	4

Figure 5: Display panels data

display.1 <- aov(time ~ panel * emergenc, data = display)</pre>

```
summary(display.1)
               Df Sum Sq Mean Sq F value
                           116.4 20.094 0.000148 ***
                2 232.7
panel
emergenc
                3 1052.5
                           350.8 60.573 1.61e-07 ***
                    28.9
                            4.8
                                 0.832 0.567501
panel:emergenc 6
Residuals
               12
                    69.5
                             5.8
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
display.2 <- aov(time ~ panel + emergenc, data = display)</pre>
summary(display.2)
            Df Sum Sq Mean Sq F value
                                       Pr(>F)
panel
             2 232.7
                        116.4
                               21.29 1.81e-05 ***
emergenc
             3 1052.5
                        350.8
                               64.16 8.28e-10 ***
Residuals
            18
                98.4
                         5.5
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                            Figure 6: Display panels: two analyses
TukeyHSD(display.2)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = time ~ panel + emergenc, data = display)
$panel
                                   p adj
      diff
                 lwr
                            upr
2-1 -2.000 -4.983847 0.9838467 0.2284740
3-1 5.375 2.391153 8.3588467 0.0006236
3-2 7.375 4.391153 10.3588467 0.0000173
$emergenc
          diff
                      lwr
                                          p adj
                                   upr
2-1
               3.517810 11.14885716 0.0001980
      7.333333
3-1 13.333333
                9.517810 17.14885716 0.0000001
4-1 -3.833333 -7.648857
                          -0.01780951 0.0487057
      6.000000
                2.184476
                           9.81552383 0.0016255
4-2 -11.166667 -14.982190 -7.35114284 0.0000009
4-3 -17.166667 -20.982190 -13.35114284 0.0000000
```

Figure 7: Display panels: Tukey analysis

year	education	vocabulary
1974	8	3
1994	12	5
1974	12	7
1974	15	5
1994	12	3
1974	13	10
1994	20	10
2014	14	6
2014	12	6
1994	12	5
1994	12	7
2014	19	6
2014	16	7
2014	20	9
1994	12	5
1994	12	9
1994	16	7
1974	14	9
1974	12	1
1974	18	9

Figure 8: Education and vocabulary data (some randomly chosen rows)

Figure 9: Scatterplot of education and vocabulary by year

```
vocab.1 <- lm(vocabulary ~ education * factor(year), data = vocab)
summary(vocab.1)</pre>
```

Call:

lm(formula = vocabulary ~ education * factor(year), data = vocab)

Residuals:

Min 1Q Median 3Q Max -5.1272 -1.3613 0.0457 1.2094 4.5447

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.09583	1.32000	1.588	0.11570	
education	0.33594	0.10909	3.080	0.00272	**
factor(year)1994	-0.73778	1.83257	-0.403	0.68816	
factor(year)2014	1.83017	1.84771	0.991	0.32447	
education:factor(year)1994	0.03545	0.14032	0.253	0.80111	
education:factor(year)2014	-0.14510	0.13968	-1.039	0.30158	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 $\,$

Residual standard error: 1.758 on 94 degrees of freedom Multiple R-squared: 0.2675, Adjusted R-squared: 0.2285 F-statistic: 6.866 on 5 and 94 DF, p-value: 1.679e-05

drop1(vocab.1, test = "F")

	Df	Sum of Sq	RSS	AIC	F value	Pr(>F)
	NA	NA	290.6165	118.6834	NA	NA
education:factor(year)	2	7.157061	297.7735	117.1163	1.157477	0.3187163

Figure 10: Education and vocabulary analysis of covariance

```
vocab.2 <- lm(vocabulary ~ education + factor(year), data = vocab)</pre>
summary(vocab.2)
Call:
lm(formula = vocabulary ~ education + factor(year), data = vocab)
Residuals:
   Min
            1Q Median
                            3Q
                                   Max
-5.1155 -1.3130 0.0278 1.1293 4.4720
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 2.59073
                            0.71278
                                      3.635 0.00045 ***
education
                 0.29373
                            0.05402
                                      5.438 4.1e-07 ***
factor(year)1994 -0.14335
                            0.45417
                                     -0.316 0.75297
factor(year)2014 -0.14745
                            0.46826 -0.315 0.75352
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.761 on 96 degrees of freedom
Multiple R-squared: 0.2495,
                               Adjusted R-squared: 0.226
F-statistic: 10.64 on 3 and 96 DF, p-value: 4.221e-06
```

Figure 11: Education and vocabulary analysis of covariance 2

animal	trt	day	weight
A1	A	0	233
A1	A	14	224
A1	A	28	245
A1	A	42	258
A1	A	56	271
A1	A	70	287
A1	A	84	287
A1	A	98	287
A1	A	112	290
A1	A	126	293
A1	A	133	297
A10	A	0	232
A10	A	14	240
A10	A	28	247
A10	A	42	263
A10	A	56	275
A10	A	70	286
A10	A	84	294
A10	A	98	302
A10	A	112	308
A10	A	126	319
A10	A	133	326
A11	A	0	234
A11	A	14	237
A11	A	28	259

Figure 12: Cattle data (some)

```
cattle %>%
  group_by(trt, day) %>%
  summarize(mean_weight = mean(weight)) %>%
  ggplot(aes(x = day, y = mean_weight, colour = trt, group = trt)) +
  geom_point() + geom_line()
```

`summarise()` has grouped output by 'trt'. You can override using the `.groups` argument.

Figure 13: Cattle data interaction plot

```
cattle.1 <- lmer(weight ~ trt * factor(day) + (1 | animal), data = cattle)
drop1(cattle.1, test = "Chisq")</pre>
```

	npar	AIC	LRT	Pr(Chi)
	NA	4866.584	NA	NA
trt:factor(day)	10	4881.634	35.04987	0.0001224

```
cattle.1a <- lmer(weight ~ trt + factor(day) + (1 | animal), data = cattle)
drop1(cattle.1a, test = "Chisq")</pre>
```

	npar	AIC	LRT	Pr(Chi)
	NA	4881.634	NA	NA
trt	1	4879.839	0.2047196	0.650938
factor(day)	10	6721.837	1860.2032319	0.000000

Figure 14: Cattle data mixed model analysis

```
# pivot wider
cattle %>%
    pivot_wider(names_from = day, values_from = weight) -> cattle_wider
# set up for manova
cattle_wider %>% select(-animal, -trt) %>%
    as.matrix() -> response
cattle.2 <- lm(response ~ trt, data = cattle_wider)
times <- colnames(response)
times.df <- data.frame(times = factor(times))
cattle.3 <- Manova(cattle.2, idata = times.df, idesign = ~times)</pre>
```

Figure 15: Cattle repeated measures MANOVA code

```
summary(cattle.3)$univariate.tests
              Sum Sq num Df Error SS den Df
                                               F value
                                                          Pr(>F)
(Intercept) 53035479
                              133128
                                         58 23106.1031 < 2.2e-16 ***
                         1
                 455
                              133128
                                         58
                                                0.1982 0.6578077
trt
                          1
              846142
                         10
                               37638
                                        580 1303.9048 < 2.2e-16 ***
times
                2264
                         10
                               37638
                                        580
                                                3.4891 0.0001767 ***
trt:times
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(cattle.3)$sphericity
          Test statistic
                            p-value
               3.399e-05 8.9223e-85
times
              3.399e-05 8.9223e-85
trt:times
summary(cattle.3)$pval.adjustments
             GG eps
                    Pr(>F[GG])
                                    HF eps
                                              Pr(>F[HF])
          0.2415572 2.496758e-96 0.2528023 1.100120e-100
trt:times 0.2415572 2.535322e-02 0.2528023 2.346705e-02
attr(,"na.action")
(Intercept)
                    trt
                      2
attr(,"class")
[1] "omit"
```

Figure 16: Cattle repeated measures MANOVA output

species	nasal.length	nasal.width	ramus.height	zygomatic.width	mandible.depth	lacrymal.width
fuliginosus	552	205	751	919	194	454
giganteus	755	268	754	902	206	467
fuliginosus	574	212	641	822	191	405
giganteus	756	249	731	903	198	467
melanops	565	204	556	764	156	385
giganteus	687	223	688	873	205	432
giganteus	682	253	706	875	194	455
fuliginosus	522	190	629	799	179	374
fuliginosus	719	253	765	946	215	473
fuliginosus	554	195	657	837	188	392
melanops	893	260	824	994	216	499
fuliginosus	625	250	739	934	211	470
fuliginosus	497	167	648	807	178	390
giganteus	629	222	643	824	181	416
giganteus	616	220	652	805	180	412
melanops	800	245	813	939	240	492
fuliginosus	737	278	880	1090	271	535
melanops	690	242	708	855	210	451
giganteus	626	226	651	839	173	441
giganteus	734	245	724	920	193	462

Figure 17: Kangaroo skull data, variables of interest, randomly chosen rows

Figure 18: Kangaroo skull analysis 1

```
kanga.1 <- lda(species ~ nasal.length + nasal.width + ramus.height +
                 zygomatic.width + mandible.depth + lacrymal.width, data = kanga)
kanga.1
Call:
lda(species ~ nasal.length + nasal.width + ramus.height + zygomatic.width +
   mandible.depth + lacrymal.width, data = kanga)
Prior probabilities of groups:
fuliginosus
              giganteus
                           melanops
  0.3564356
              0.3663366
                          0.2772277
Group means:
           nasal.length nasal.width ramus.height zygomatic.width
fuliginosus
                614.1944
                            222.4722
                                         728.5000
                                                         912.6944
giganteus
                707.3243
                            246.8919
                                         686.4595
                                                         869.8649
melanops
                684.1071
                            233.2857
                                         695.2143
                                                         860.5000
            mandible.depth lacrymal.width
fuliginosus
                  205.7500
                                 442.3056
                  194.3784
                                 444.2973
giganteus
melanops
                  194.7500
                                 444.3214
Coefficients of linear discriminants:
                         LD1
                                      LD2
nasal.length
                 0.027729200 0.003536769
nasal.width
                -0.006006286 -0.067051346
ramus.height
                -0.013524008 0.016312892
zygomatic.width -0.025345101 -0.032317300
mandible.depth -0.008867705 -0.003186253
lacrymal.width
                0.022430867 0.060543739
Proportion of trace:
  LD1
         LD2
0.9359 0.0641
```

Figure 19: Kangaroo skulls, discriminant analysis

Note that the points on the plot are distinguished by both colour and shape (plotting symbol).

Figure 20: Kangaroo skulls, further analysis

Figure 21: Kangaroo skulls, a table

Baseball	Football	Basketball	Tennis	Cycling	Swimming	Jogging
7	5	1	6	4	3	2
7	5	6	3	4	1	2
7	5	6	3	4	1	2
4	1	5	7	3	2	6
6	5	7	1	2	3	4
2	5	4	1	6	7	3
3	1	5	4	6	7	2
3	4	1	7	6	5	2
2	1	3	5	4	7	6
1	3	5	7	4	6	2
4	2	3	5	6	7	1
7	4	3	2	1	5	6
3	1	4	7	6	2	5
4	7	5	6	2	3	1
6	7	5	3	2	1	4

Figure 22: Sports preference data

```
my_dist <- function(d, i, j) {
    d %>% slice(i, j) %>%
    mutate(indiv = c("row1", "row2")) %>%
    pivot_longer(-indiv, names_to = "sport", values_to = "rating") %>%
    pivot_wider(names_from = indiv, values_from = rating) %>%
    summarize(diss = sqrt(sum((row1 - row2)^2))) %>%
    pull(diss)
}
```

Figure 23: Function to compute dissimilarity for sports ranking data

The data in ranks were first turned into a dist object, called rank_dist, and then the following code was run:

```
ranks.1 <- hclust(rank_dist, method = "ward.D")
plot(ranks.1)
rect.hclust(ranks.1, 3)</pre>
```

Cluster Dendrogram

rank_dist
hclust (*, "ward.D")

```
ranks.1$merge
```

```
[,1] [,2]
 [1,]
         -2
              -3
 [2,]
         -7
             -11
 [3,]
             -13
 [4,]
         -5
             -15
 [5,]
         -1
               -8
 [6,]
       -10
                2
 [7,]
                4
          1
 [8,]
         -9
                6
 [9,]
        -14
                5
[10,]
                8
         -6
                7
[11,]
        -12
[12,]
          3
                9
[13,]
               12
         10
[14,]
         11
               13
```

Figure 24: Cluster analysis for sports data

id	cluster	Baseball	Football	Basketball	Tennis	Cycling	Swimming	Jogging
1	1	7	5	1	6	4	3	2
4	1	4	1	5	7	3	2	6
8	1	3	4	1	7	6	5	2
13	1	3	1	4	7	6	2	5
14	1	4	7	5	6	2	3	1
2	2	7	5	6	3	4	1	2
3	2	7	5	6	3	4	1	2
5	2	6	5	7	1	2	3	4
12	2	7	4	3	2	1	5	6
15	2	6	7	5	3	2	1	4
6	3	2	5	4	1	6	7	3
7	3	3	1	5	4	6	7	2
9	3	2	1	3	5	4	7	6
10	3	1	3	5	7	4	6	2
11	3	4	2	3	5	6	7	1

Figure 25: Individuals (in column id) and cluster memberships for sports preference data

Carname	Length	Wheelbase	Width	Height	${\bf FrontHd}$	RearHd	${\rm FrtLegRoom}$
NissanPulsarNX	-1.3333333	-1.2	-1.0	-4.0	1	-2.0	-1
InfinitiQ45	2.3333333	2.2	2.0	0.5	-2	-0.5	0
HondaPrelude	-0.1111111	-0.2	-0.5	-3.0	-4	-2.0	2
HondaAccord	0.6666667	1.0	0.0	-0.5	2	0.0	1
FordAerostar	-0.444444	3.4	2.0	16.5	3	1.5	1
Chevrolet Cavalier	0.0000000	-0.2	-1.0	0.0	1	1.0	-1
Porsche944	-1.1111111	-1.4	0.0	-4.0	0	-2.0	4
SubaruLoyale	-0.444444	-1.0	-1.5	-1.0	-2	0.0	-1
GEOMetro	-3.222222	-1.8	-2.5	-1.5	-2	-0.5	-1
Mazda626	0.0000000	-0.2	-0.5	-0.5	0	0.0	-2
BuickRiviera	2.1111111	1.2	2.5	-1.5	0	0.0	0
PontiacLeMans	-0.7777778	-0.6	-1.0	0.0	3	0.5	0
Chevrolet Lumina	2.1111111	1.2	1.5	1.0	2	1.5	1
ToyotaCelica	-0.555556	-0.6	0.5	-3.0	-3	-2.0	1
PontiacBonneville	2.2222222	1.8	2.0	0.5	1	2.0	1

Figure 26: Cars data (some rows and columns)

```
cars.1 <- princomp(cars_numeric, cor = TRUE)
summary(cars.1)</pre>
```

Importance of components:

```
Comp.3
                          Comp.1
                                    Comp.2
                                                          Comp.4
                                                                     Comp.5
Standard deviation
                       2.1859859 1.4764164 1.3821796 0.82691759 0.73804436
Proportion of Variance 0.4344122 0.1981641 0.1736746 0.06216297 0.04951904
Cumulative Proportion 0.4344122 0.6325763 0.8062509 0.86841391 0.91793295
                           Comp.6
                                                  Comp.8
                                       Comp.7
                                                              Comp.9
                                                                         Comp.10
Standard deviation
                       0.55143677 \ 0.44712743 \ 0.41450063 \ 0.308496259 \ 0.269616682
Proportion of Variance 0.02764386 0.01817481 0.01561916 0.008651813 0.006608469
Cumulative Proportion 0.94557681 0.96375163 0.97937079 0.988022601 0.994631070
                          Comp.11
Standard deviation
                       0.24301900
Proportion of Variance 0.00536893
Cumulative Proportion 1.00000000
```

ggscreeplot(cars.1)

Figure 27: Cars principal components analysis and scree plot

```
Comp.1
                            Comp.2
                                        Comp.3
Length
            0.36800447
                        0.26491429
                                    0.15382216
Wheelbase
            0.39303399
                        0.19208728
                                    0.16487812
Width
            0.36271313
                        0.08827474
                                    0.37020532
Height
            0.25231975 -0.48930844
                                    0.04282917
FrontHd
            0.27563231 -0.27414127 -0.05442509
RearHd
            0.32033083 -0.37823667 -0.19691964
                                   0.32261159
FrtLegRoom 0.03600793 0.41677436
RearSeating 0.28877687
                        0.13354004 -0.45373369
FrtShld
            0.39776393 -0.04124462
                                    0.27343479
RearShld
                        0.09344998 -0.46883122
            0.28585066
Luggage
            0.10803017
                        0.47489313 -0.40497703
```

Figure 28: Cars data: loadings of first three principal components

```
cars.2 <- factanal(cars_numeric, 3, scores = "r")
cars.2$loadings</pre>
```

Loadings:

	${\tt Factor1}$	${\tt Factor2}$	Factor3
Length	0.837		0.346
Wheelbase	0.810	0.172	0.309
Width	0.959	0.157	
Height	0.193	0.935	
FrontHd	0.318	0.481	0.150
RearHd	0.200	0.831	0.291
FrtLegRoom	0.341	-0.361	
${\tt RearSeating}$	0.180	0.251	0.803
FrtShld	0.867	0.388	
RearShld	0.123	0.343	0.822
Luggage	0.106	-0.400	0.799

Factor1 Factor2 Factor3 SS loadings 3.382 2.472 2.295 Proportion Var 0.307 0.225 0.209 Cumulative Var 0.307 0.532 0.741

Figure 29: Cars data: factor analysis and factor loadings

cars.2\$uniquenesses

Length Wheelbase Width Height FrontHd RearHd 0.18046602 0.21837389 0.05494901 0.08052403 0.64476164 0.18494410 FrtLegRoom RearSeating FrtShld RearShld Luggage 0.75282443 0.25953381 0.09399943 0.19096693 0.18980421

Figure 30: Cars data: uniquenesses