$12a_{0741} (K12a_{0741})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -9.22629 \times 10^{114} u^{52} - 2.74007 \times 10^{115} u^{51} + \dots + 4.77254 \times 10^{116} b + 2.56825 \times 10^{117}, \\ &1.04478 \times 10^{116} u^{52} + 3.89252 \times 10^{116} u^{51} + \dots + 1.90902 \times 10^{118} a - 3.41478 \times 10^{118}, \\ &u^{53} + 2u^{52} + \dots + 329u + 160 \rangle \\ I_2^u &= \langle u^{38} + u^{37} + \dots + a + 2, \ 2u^{38} a + 14u^{38} + \dots + 6a + 14, \ u^{39} + u^{38} + \dots + 2u + 1 \rangle \\ I_3^u &= \langle b - 1, \ 16a^4 - 32a^3 + 16a^2 + 1, \ u + 1 \rangle \\ I_4^u &= \langle -4u^2 a + au - 13u^2 + 23b + 10a + 9u - 25, \ -70u^2 a + 25a^2 + 40au + 151u^2 - 130a - 62u + 309, \\ u^3 - u^2 + 2u - 1 \rangle \\ I_5^u &= \langle b + 1, \ 8a^3 + 12a^2 + 6a + 1, \ u - 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 144 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -9.23 \times 10^{114} u^{52} - 2.74 \times 10^{115} u^{51} + \dots + 4.77 \times 10^{116} b + 2.57 \times 10^{117}, \ 1.04 \times 10^{116} u^{52} + 3.89 \times 10^{116} u^{51} + \dots + 1.91 \times 10^{118} a - 3.41 \times 10^{118}, \ u^{53} + 2u^{52} + \dots + 329u + 160 \rangle$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.00547287u^{52} - 0.0203902u^{51} + \cdots - 5.89017u + 1.78876 \\ 0.0193320u^{52} + 0.0574133u^{51} + \cdots - 12.8760u - 5.38131 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0243283u^{52} + 0.0637946u^{51} + \cdots - 4.49363u + 0.406738 \\ 0.0256578u^{52} + 0.0667823u^{51} + \cdots - 17.0251u - 4.63953 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0430776u^{52} + 0.111948u^{51} + \cdots - 16.2352u - 2.68638 \\ 0.0138491u^{52} + 0.0344025u^{51} + \cdots - 11.7889u - 3.25117 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0196369u^{52} + 0.0612628u^{51} + \cdots - 3.78192u - 4.37932 \\ -0.00126582u^{52} - 0.00958516u^{51} + \cdots - 0.909111u + 0.348371 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0151668u^{52} + 0.0328572u^{51} + \cdots - 12.7531u - 1.36568 \\ -0.0100144u^{52} - 0.0235824u^{51} + \cdots + 0.705795u - 0.528707 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0138591u^{52} + 0.0370231u^{51} + \cdots - 18.7662u - 3.59254 \\ 0.0193320u^{52} + 0.0574133u^{51} + \cdots - 12.8760u - 5.38131 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.0241663u^{52} - 0.0663621u^{51} + \cdots + 3.16247u + 1.51646 \\ 0.00213415u^{52} + 0.00509088u^{51} + \cdots - 1.04158u - 0.257202 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.00119343u^{52} - 0.0121666u^{51} + \cdots - 6.31916u + 1.10586 \\ -0.0242121u^{52} - 0.0727143u^{51} + \cdots + 5.31037u + 2.13761 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.102716u^{52} + 0.362833u^{51} + \cdots + 2.34272u 23.6794$

Crossings	u-Polynomials at each crossing
c_1	$u^{53} + 25u^{52} + \dots - 112u - 64$
c_2, c_8	$u^{53} - 3u^{52} + \dots - 12u + 8$
<i>c</i> ₃	$u^{53} + 3u^{52} + \dots + 91812u + 11464$
c_4, c_5, c_{11} c_{12}	$u^{53} - u^{52} + \dots - 2u + 1$
c_6, c_{10}	$u^{53} + 2u^{52} + \dots + 329u + 160$
c_7, c_9	$128(128u^{53} - 64u^{52} + \dots - 13u + 1)$

Crossings	Riley Polynomials at each crossing
c_1	$y^{53} + 9y^{52} + \dots - 3840y - 4096$
c_{2}, c_{8}	$y^{53} + 25y^{52} + \dots - 112y - 64$
c_3	$y^{53} - 7y^{52} + \dots + 828536208y - 131423296$
c_4, c_5, c_{11} c_{12}	$y^{53} + 17y^{52} + \dots - 18y - 1$
c_6, c_{10}	$y^{53} - 22y^{52} + \dots + 992401y - 25600$
c_7, c_9	$16384(16384y^{53} - 208896y^{52} + \dots - 135y - 1)$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.010500 + 0.277494I		
a = -0.309112 + 0.248738I	-3.60132 - 1.23088I	-8.16326 + 5.88240I
b = -1.230130 + 0.452325I		
u = 1.010500 - 0.277494I		
a = -0.309112 - 0.248738I	-3.60132 + 1.23088I	-8.16326 - 5.88240I
b = -1.230130 - 0.452325I		
u = -1.016340 + 0.336995I		
a = 0.237630 + 0.305698I	-5.96983 + 5.72038I	-11.2924 - 8.5433I
b = 1.31165 + 0.53324I		
u = -1.016340 - 0.336995I		
a = 0.237630 - 0.305698I	-5.96983 - 5.72038I	-11.2924 + 8.5433I
b = 1.31165 - 0.53324I		
u = 0.894368 + 0.170124I		
a = -1.173990 + 0.551696I	-4.05202 + 3.78789I	-10.53464 - 4.24172I
b = 0.192195 - 0.262622I		
u = 0.894368 - 0.170124I		
a = -1.173990 - 0.551696I	-4.05202 - 3.78789I	-10.53464 + 4.24172I
b = 0.192195 + 0.262622I		
u = 0.889815 + 0.158884I		
a = -0.558076 + 0.216460I	-2.84156 - 0.53577I	-2.03217 + 7.98267I
b = -1.237620 + 0.182509I		
u = 0.889815 - 0.158884I		
a = -0.558076 - 0.216460I	-2.84156 + 0.53577I	-2.03217 - 7.98267I
b = -1.237620 - 0.182509I		
u = 0.856411 + 0.685171I		
a = 0.23931 - 1.74388I	-4.04273 + 0.39813I	-11.01909 + 4.12127I
b = 0.468215 + 0.785484I		
u = 0.856411 - 0.685171I		
a = 0.23931 + 1.74388I	-4.04273 - 0.39813I	-11.01909 - 4.12127I
b = 0.468215 - 0.785484I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.357016 + 1.088740I		
a = 0.29731 + 1.45796I	0.44124 - 4.68393I	-8.30547 + 4.38111I
b = -0.487890 - 1.101780I		
u = -0.357016 - 1.088740I		
a = 0.29731 - 1.45796I	0.44124 + 4.68393I	-8.30547 - 4.38111I
b = -0.487890 + 1.101780I		
u = -1.107520 + 0.302023I		
a = 0.185994 + 0.166983I	-7.15683 - 1.71285I	-15.0160 - 0.3603I
b = 1.135680 + 0.628747I		
u = -1.107520 - 0.302023I		
a = 0.185994 - 0.166983I	-7.15683 + 1.71285I	-15.0160 + 0.3603I
b = 1.135680 - 0.628747I		
u = -0.246858 + 1.143050I		
a = 0.22408 + 1.48798I	3.35515 - 13.11250I	-5.16195 + 8.65922I
b = -0.507181 - 1.240200I		
u = -0.246858 - 1.143050I		
a = 0.22408 - 1.48798I	3.35515 + 13.11250I	-5.16195 - 8.65922I
b = -0.507181 + 1.240200I		
u = 0.285314 + 1.165920I		
a = -0.23055 + 1.46085I	5.76708 + 7.70183I	-2.26158 - 5.23055I
b = 0.460429 - 1.210720I		
u = 0.285314 - 1.165920I		
a = -0.23055 - 1.46085I	5.76708 - 7.70183I	-2.26158 + 5.23055I
b = 0.460429 + 1.210720I		
u = -1.190920 + 0.164534I		
a = 0.595741 + 0.422528I	-1.54684 + 0.49363I	-7.46237 - 2.14913I
b = 0.162888 - 0.445268I		
u = -1.190920 - 0.164534I		
a = 0.595741 - 0.422528I	-1.54684 - 0.49363I	-7.46237 + 2.14913I
b = 0.162888 + 0.445268I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.957980 + 0.787698I		
a = -0.37852 - 1.57550I	-0.60629 + 4.29298I	-8.00000 - 7.47231I
b = -0.434771 + 0.898967I		
u = -0.957980 - 0.787698I		
a = -0.37852 + 1.57550I	-0.60629 - 4.29298I	-8.00000 + 7.47231I
b = -0.434771 - 0.898967I		
u = 1.041380 + 0.692963I		
a = 0.56731 - 1.66360I	-4.64111 - 8.53246I	-11.2112 + 9.6162I
b = 0.542920 + 0.942914I		
u = 1.041380 - 0.692963I		
a = 0.56731 + 1.66360I	-4.64111 + 8.53246I	-11.2112 - 9.6162I
b = 0.542920 - 0.942914I		
u = -0.738902 + 0.118991I		
a = 0.839648 + 0.253541I	-4.61573 - 3.33353I	-5.28986 + 1.76068I
b = 1.328440 + 0.061804I		
u = -0.738902 - 0.118991I		
a = 0.839648 - 0.253541I	-4.61573 + 3.33353I	-5.28986 - 1.76068I
b = 1.328440 - 0.061804I		
u = 1.309210 + 0.191706I		
a = -0.150987 - 0.150085I	-5.84739 + 0.86218I	0
b = -0.689475 + 0.753211I		
u = 1.309210 - 0.191706I		
a = -0.150987 + 0.150085I	-5.84739 - 0.86218I	0
b = -0.689475 - 0.753211I		
u = 0.455502 + 1.311390I		
a = -0.229330 + 1.339160I	7.73147 + 4.14673I	0
b = 0.293604 - 1.116830I		
u = 0.455502 - 1.311390I		
a = -0.229330 - 1.339160I	7.73147 - 4.14673I	0
b = 0.293604 + 1.116830I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.253370 + 0.652070I		
a = -0.94701 - 1.36034I	-2.43644 + 10.92000I	0
b = -0.633605 + 1.227090I		
u = -1.253370 - 0.652070I		
a = -0.94701 + 1.36034I	-2.43644 - 10.92000I	0
b = -0.633605 - 1.227090I		
u = -1.29214 + 0.64007I		
a = -1.01211 - 1.27074I	0.0577 + 19.4085I	0
b = -0.64920 + 1.30689I		
u = -1.29214 - 0.64007I		
a = -1.01211 + 1.27074I	0.0577 - 19.4085I	0
b = -0.64920 - 1.30689I		
u = 1.28693 + 0.65572I		
a = 0.96664 - 1.27292I	2.5806 - 14.1172I	0
b = 0.61846 + 1.29081I		
u = 1.28693 - 0.65572I		
a = 0.96664 + 1.27292I	2.5806 + 14.1172I	0
b = 0.61846 - 1.29081I		
u = 1.28431 + 0.72559I		
a = 0.80342 - 1.23877I	4.89820 - 11.20600I	0
b = 0.498243 + 1.251700I		
u = 1.28431 - 0.72559I		
a = 0.80342 + 1.23877I	4.89820 + 11.20600I	0
b = 0.498243 - 1.251700I		
u = -1.27009 + 0.77458I		
a = -0.70606 - 1.24445I	4.39290 + 5.76841I	0
b = -0.441345 + 1.205700I		
u = -1.27009 - 0.77458I		
a = -0.70606 + 1.24445I	4.39290 - 5.76841I	0
b = -0.441345 - 1.205700I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.62038 + 1.36139I		
a = 0.247137 + 1.266590I	6.83679 + 1.68050I	0
b = -0.239949 - 1.046860I		
u = -0.62038 - 1.36139I		
a = 0.247137 - 1.266590I	6.83679 - 1.68050I	0
b = -0.239949 + 1.046860I		
u = -1.50653 + 0.08391I		
a = 0.136195 - 0.401648I	-1.12611 - 2.71991I	0
b = 0.397232 + 0.840006I		
u = -1.50653 - 0.08391I		
a = 0.136195 + 0.401648I	-1.12611 + 2.71991I	0
b = 0.397232 - 0.840006I		
u = -0.18082 + 1.50804I		
a = -0.025191 - 1.242950I	5.62880 + 2.99985I	0
b = -0.035651 + 0.846395I		
u = -0.18082 - 1.50804I		
a = -0.025191 + 1.242950I	5.62880 - 2.99985I	0
b = -0.035651 - 0.846395I		
u = 1.52320 + 0.19708I		
a = -0.031722 - 0.366987I	-3.01084 + 7.94270I	0
b = -0.453417 + 0.944633I		
u = 1.52320 - 0.19708I		
a = -0.031722 + 0.366987I	-3.01084 - 7.94270I	0
b = -0.453417 - 0.944633I		
u = -0.279211 + 0.248748I		
a = 0.598547 - 0.883823I	-0.533461 + 0.879212I	-9.52326 - 7.63662I
b = -0.239491 + 0.269538I		
u = -0.279211 - 0.248748I		
a = 0.598547 + 0.883823I	-0.533461 - 0.879212I	-9.52326 + 7.63662I
b = -0.239491 - 0.269538I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.349659 + 0.074107I		
a = -2.23401 + 1.00440I	-3.95805 + 3.86479I	-11.90700 - 4.97851I
b = 0.596328 - 0.151333I		
u = 0.349659 - 0.074107I		
a = -2.23401 - 1.00440I	-3.95805 - 3.86479I	-11.90700 + 4.97851I
b = 0.596328 + 0.151333I		
u = -0.337034		
a = 1.65164	-1.01554	-10.2060
b = -0.453134		

$$I_2^u = \langle u^{38} + u^{37} + \dots + a + 2, \ 2u^{38}a + 14u^{38} + \dots + 6a + 14, \ u^{39} + u^{38} + \dots + 2u + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{38} - u^{37} + \dots - a - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\-u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5}a + u^{6} - 2u^{3}a - 2u^{4} + au + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{38}a - 4u^{38} + \dots - 2a - 2\\u^{5}a + u^{6} - 2u^{3}a - 2u^{4} + au + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{38}a - 4u^{38} + \dots - 2a - 3\\1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{38}a - 10u^{38} + \dots - a - 10\\u^{38} - u^{37} + \dots + a + 4 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{38}a - 3u^{37}a + \dots + 12u + 7\\-2u^{38} - 2u^{37} + \dots + au + 2u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{38} - u^{37} + \dots - 2u - 2\\-u^{38} - u^{37} + \dots - a - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{38}a + 10u^{38} + \dots + 4a + 13\\-2u^{38} - 2u^{37} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{38}a - 11u^{38} + \dots + 24u + 6\\u^{37}a - u^{38} + \dots + au + 2u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{array}{l} -4u^{38} + 44u^{36} + 4u^{35} - 232u^{34} - 40u^{33} + 752u^{32} + 192u^{31} - 1620u^{30} - 564u^{29} + \\ 2316u^{28} + 1092u^{27} - 1948u^{26} - 1380u^{25} + 284u^{24} + 980u^{23} + 1508u^{22} - 16u^{21} - \\ 1892u^{20} - 728u^{19} + 776u^{18} + 660u^{17} + 444u^{16} - 64u^{15} - 692u^{14} - 332u^{13} + 236u^{12} + \\ 252u^{11} + 128u^{10} + 4u^9 - 132u^8 - 96u^7 + 20u^6 + 40u^5 + 20u^4 + 8u^3 - 8u^2 - 12u - 14 \\ \end{array}$$

Crossings	u-Polynomials at each crossing
c_1	$(u^{39} + 19u^{38} + \dots + 2u^2 - 1)^2$
c_2, c_8	$(u^{39} + u^{38} + \dots + 2u^3 - 1)^2$
c_3	$(u^{39} - u^{38} + \dots - 18u - 17)^2$
c_4, c_5, c_{11} c_{12}	$u^{78} + 3u^{77} + \dots + 788u + 173$
c_6, c_{10}	$(u^{39} + u^{38} + \dots + 2u + 1)^2$
c_7, c_9	$u^{78} - 21u^{77} + \dots + 448674u + 57751$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{39} + 3y^{38} + \dots + 4y - 1)^2$
c_2, c_8	$(y^{39} + 19y^{38} + \dots + 2y^2 - 1)^2$
<i>c</i> ₃	$(y^{39} - 13y^{38} + \dots + 3588y - 289)^2$
c_4, c_5, c_{11} c_{12}	$y^{78} + 47y^{77} + \dots + 318100y + 29929$
c_6, c_{10}	$(y^{39} - 21y^{38} + \dots + 2y^2 - 1)^2$
c_7, c_9	$y^{78} + 27y^{77} + \dots - 879585708y + 3335178001$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.913577 + 0.379498I		
a = -1.64226 - 0.07520I	1.22606 + 1.25772I	-10.67108 - 2.89583I
b = -0.477548 + 0.774232I		
u = -0.913577 + 0.379498I		
a = 0.62112 + 1.52499I	1.22606 + 1.25772I	-10.67108 - 2.89583I
b = -0.068253 - 1.290290I		
u = -0.913577 - 0.379498I		
a = -1.64226 + 0.07520I	1.22606 - 1.25772I	-10.67108 + 2.89583I
b = -0.477548 - 0.774232I		
u = -0.913577 - 0.379498I		
a = 0.62112 - 1.52499I	1.22606 - 1.25772I	-10.67108 + 2.89583I
b = -0.068253 + 1.290290I		
u = -0.867921 + 0.539600I		
a = 0.510917 + 0.983764I	3.26214 + 7.71489I	-5.96279 - 8.94046I
b = -0.18434 - 1.52434I		
u = -0.867921 + 0.539600I		
a = -1.238810 - 0.665421I	3.26214 + 7.71489I	-5.96279 - 8.94046I
b = -0.787918 + 1.001630I		
u = -0.867921 - 0.539600I		
a = 0.510917 - 0.983764I	3.26214 - 7.71489I	-5.96279 + 8.94046I
b = -0.18434 + 1.52434I		
u = -0.867921 - 0.539600I		
a = -1.238810 + 0.665421I	3.26214 - 7.71489I	-5.96279 + 8.94046I
b = -0.787918 - 1.001630I		
u = 0.824609 + 0.517095I		
a = -0.377205 + 0.997280I	5.20022 - 2.98443I	-2.14009 + 4.48194I
b = 0.24151 - 1.45331I		
u = 0.824609 + 0.517095I		
a = 1.37439 - 0.72790I	5.20022 - 2.98443I	-2.14009 + 4.48194I
b = 0.683848 + 1.053830I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.824609 - 0.517095I		
a = -0.377205 - 0.997280I	5.20022 + 2.98443I	-2.14009 - 4.48194I
b = 0.24151 + 1.45331I		
u = 0.824609 - 0.517095I		
a = 1.37439 + 0.72790I	5.20022 + 2.98443I	-2.14009 - 4.48194I
b = 0.683848 - 1.053830I		
u = 1.027710 + 0.074094I		
a = 3.84195 + 7.80158I	-0.87783 - 3.61917I	-14.0650 + 4.3346I
b = -0.025359 + 0.910828I		
u = 1.027710 + 0.074094I		
a = -7.85413 + 3.84314I	-0.87783 - 3.61917I	-14.0650 + 4.3346I
b = -0.015457 - 1.071100I		
u = 1.027710 - 0.074094I		
a = 3.84195 - 7.80158I	-0.87783 + 3.61917I	-14.0650 - 4.3346I
b = -0.025359 - 0.910828I		
u = 1.027710 - 0.074094I		
a = -7.85413 - 3.84314I	-0.87783 + 3.61917I	-14.0650 - 4.3346I
b = -0.015457 + 1.071100I		
u = -0.898181		
a = -5.31152 + 5.23221I	1.82692	-10.3980
b = -0.086796 - 1.011240I		
u = -0.898181		
a = -5.31152 - 5.23221I	1.82692	-10.3980
b = -0.086796 + 1.011240I		
u = 0.704254 + 0.512490I		
a = -0.054845 + 0.799959I	5.54691 - 1.23434I	-0.76309 + 3.43750I
b = 0.392937 - 1.328450I		
u = 0.704254 + 0.512490I		
a = 1.51387 - 1.03796I	5.54691 - 1.23434I	-0.76309 + 3.43750I
b = 0.516935 + 1.213000I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.704254 - 0.512490I		
a = -0.054845 - 0.799959I	5.54691 + 1.23434I	-0.76309 - 3.43750I
b = 0.392937 + 1.328450I		
u = 0.704254 - 0.512490I		
a = 1.51387 + 1.03796I	5.54691 + 1.23434I	-0.76309 - 3.43750I
b = 0.516935 - 1.213000I		
u = -0.632327 + 0.547010I		
a = -0.020576 + 0.552941I	3.92367 - 3.33294I	-3.97830 + 2.50936I
b = -0.503524 - 1.265570I		
u = -0.632327 + 0.547010I		
a = -1.45180 - 1.22116I	3.92367 - 3.33294I	-3.97830 + 2.50936I
b = -0.443589 + 1.320110I		
u = -0.632327 - 0.547010I		
a = -0.020576 - 0.552941I	3.92367 + 3.33294I	-3.97830 - 2.50936I
b = -0.503524 + 1.265570I		
u = -0.632327 - 0.547010I		
a = -1.45180 + 1.22116I	3.92367 + 3.33294I	-3.97830 - 2.50936I
b = -0.443589 - 1.320110I		
u = -0.139221 + 0.807285I		
a = 0.299849 - 0.814758I	-0.17425 - 8.12134I	-7.90397 + 6.02892I
b = -0.880048 + 0.059607I		
u = -0.139221 + 0.807285I		
a = -0.60927 - 1.40465I	-0.17425 - 8.12134I	-7.90397 + 6.02892I
b = 0.471332 + 1.226850I		
u = -0.139221 - 0.807285I		
a = 0.299849 + 0.814758I	-0.17425 + 8.12134I	-7.90397 - 6.02892I
b = -0.880048 - 0.059607I		
u = -0.139221 - 0.807285I		
a = -0.60927 + 1.40465I	-0.17425 + 8.12134I	-7.90397 - 6.02892I
b = 0.471332 - 1.226850I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.114960 + 0.441427I		
a = 0.96280 + 1.05055I	0.79891 + 1.59434I	-7.82288 - 0.43137I
b = 0.305249 - 1.203980I		
u = -1.114960 + 0.441427I		
a = -0.392949 + 0.110127I	0.79891 + 1.59434I	-7.82288 - 0.43137I
b = -0.685928 + 0.085145I		
u = -1.114960 - 0.441427I		
a = 0.96280 - 1.05055I	0.79891 - 1.59434I	-7.82288 + 0.43137I
b = 0.305249 + 1.203980I		
u = -1.114960 - 0.441427I		
a = -0.392949 - 0.110127I	0.79891 - 1.59434I	-7.82288 + 0.43137I
b = -0.685928 - 0.085145I		
u = -0.076025 + 0.793162I		
a = 0.273987 - 0.956855I	-1.95085 - 0.25023I	-10.76221 - 0.26522I
b = -0.679913 + 0.270947I		
u = -0.076025 + 0.793162I		
a = -0.45840 - 1.35614I	-1.95085 - 0.25023I	-10.76221 - 0.26522I
b = 0.460844 + 1.007450I		
u = -0.076025 - 0.793162I		
a = 0.273987 + 0.956855I	-1.95085 + 0.25023I	-10.76221 + 0.26522I
b = -0.679913 - 0.270947I		
u = -0.076025 - 0.793162I		
a = -0.45840 + 1.35614I	-1.95085 + 0.25023I	-10.76221 + 0.26522I
b = 0.460844 - 1.007450I		
u = 0.132738 + 0.775160I		
a = -0.231485 - 0.830100I	2.28825 + 3.25758I	-4.69216 - 2.50620I
b = 0.751940 + 0.013317I		
u = 0.132738 + 0.775160I		
a = 0.56771 - 1.46731I	2.28825 + 3.25758I	-4.69216 - 2.50620I
b = -0.382264 + 1.186640I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.132738 - 0.775160I		
a = -0.231485 + 0.830100I	2.28825 - 3.25758I	-4.69216 + 2.50620I
b = 0.751940 - 0.013317I		
u = 0.132738 - 0.775160I		
a = 0.56771 + 1.46731I	2.28825 - 3.25758I	-4.69216 + 2.50620I
b = -0.382264 - 1.186640I		
u = 1.142370 + 0.483180I		
a = -0.935088 + 1.044860I	1.19227 - 6.17588I	-6.65093 + 6.87938I
b = -0.477838 - 1.271590I		
u = 1.142370 + 0.483180I		
a = 0.272499 - 0.151704I	1.19227 - 6.17588I	-6.65093 + 6.87938I
b = 0.929505 - 0.024096I		
u = 1.142370 - 0.483180I		
a = -0.935088 - 1.044860I	1.19227 + 6.17588I	-6.65093 - 6.87938I
b = -0.477838 + 1.271590I		
u = 1.142370 - 0.483180I		
a = 0.272499 + 0.151704I	1.19227 + 6.17588I	-6.65093 - 6.87938I
b = 0.929505 + 0.024096I		
u = -1.194180 + 0.388571I		
a = 0.760362 + 0.937327I	-1.60456 + 0.66747I	-9.40097 - 0.84813I
b = 0.321822 - 0.694203I		
u = -1.194180 + 0.388571I		
a = 0.390346 + 0.318847I	-1.60456 + 0.66747I	-9.40097 - 0.84813I
b = -0.353940 - 0.520941I		
u = -1.194180 - 0.388571I		
a = 0.760362 - 0.937327I	-1.60456 - 0.66747I	-9.40097 + 0.84813I
b = 0.321822 + 0.694203I		
u = -1.194180 - 0.388571I		
a = 0.390346 - 0.318847I	-1.60456 - 0.66747I	-9.40097 + 0.84813I
b = -0.353940 + 0.520941I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.213030 + 0.378072I		
a = -0.662575 + 1.045760I	-4.23928 + 4.12434I	-12.59821 - 2.83806I
b = -0.425457 - 0.498391I		
u = 1.213030 + 0.378072I		
a = -0.617933 + 0.190406I	-4.23928 + 4.12434I	-12.59821 - 2.83806I
b = 0.373755 - 0.738426I		
u = 1.213030 - 0.378072I		
a = -0.662575 - 1.045760I	-4.23928 - 4.12434I	-12.59821 + 2.83806I
b = -0.425457 + 0.498391I		
u = 1.213030 - 0.378072I		
a = -0.617933 - 0.190406I	-4.23928 - 4.12434I	-12.59821 + 2.83806I
b = 0.373755 + 0.738426I		
u = 1.210580 + 0.415258I		
a = -0.826285 + 1.053700I	-5.75156 - 3.95701I	-14.5927 + 3.7511I
b = -0.562463 - 0.775475I		
u = 1.210580 + 0.415258I		
a = -0.314458 + 0.021623I	-5.75156 - 3.95701I	-14.5927 + 3.7511I
b = 0.625189 - 0.563346I		
u = 1.210580 - 0.415258I		
a = -0.826285 - 1.053700I	-5.75156 + 3.95701I	-14.5927 - 3.7511I
b = -0.562463 + 0.775475I		
u = 1.210580 - 0.415258I		
a = -0.314458 - 0.021623I	-5.75156 + 3.95701I	-14.5927 - 3.7511I
b = 0.625189 + 0.563346I		
u = 1.185450 + 0.504016I		
a = -0.94362 + 1.05600I	-0.78771 - 7.98510I	-8.00000 + 5.54137I
b = -0.69021 - 1.27161I		
u = 1.185450 + 0.504016I		
a = 0.109545 - 0.319832I	-0.78771 - 7.98510I	-8.00000 + 5.54137I
b = 1.113180 - 0.221223I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.185450 - 0.504016I		
a = -0.94362 - 1.05600I	-0.78771 + 7.98510I	-8.00000 - 5.54137I
b = -0.69021 + 1.27161I		
u = 1.185450 - 0.504016I		
a = 0.109545 + 0.319832I	-0.78771 + 7.98510I	-8.00000 - 5.54137I
b = 1.113180 + 0.221223I		
u = -1.200000 + 0.486246I		
a = 0.93326 + 1.06775I	-5.24646 + 4.91106I	-13.8091 - 3.0612I
b = 0.720212 - 1.161810I		
u = -1.200000 + 0.486246I		
a = -0.008020 - 0.279310I	-5.24646 + 4.91106I	-13.8091 - 3.0612I
b = -1.043390 - 0.337545I		
u = -1.200000 - 0.486246I		
a = 0.93326 - 1.06775I	-5.24646 - 4.91106I	-13.8091 + 3.0612I
b = 0.720212 + 1.161810I		
u = -1.200000 - 0.486246I		
a = -0.008020 + 0.279310I	-5.24646 - 4.91106I	-13.8091 + 3.0612I
b = -1.043390 + 0.337545I		
u = -1.194900 + 0.512673I		
a = 0.95104 + 1.05959I	-3.28896 + 12.96900I	-10.9187 - 9.0478I
b = 0.74829 - 1.29366I		
u = -1.194900 + 0.512673I		
a = -0.089777 - 0.373592I	-3.28896 + 12.96900I	-10.9187 - 9.0478I
b = -1.179310 - 0.254876I		
u = -1.194900 - 0.512673I		
a = 0.95104 - 1.05959I	-3.28896 - 12.96900I	-10.9187 + 9.0478I
b = 0.74829 + 1.29366I		
u = -1.194900 - 0.512673I		
a = -0.089777 + 0.373592I	-3.28896 - 12.96900I	-10.9187 + 9.0478I
b = -1.179310 + 0.254876I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.180542 + 0.637095I		
a = 0.064504 - 0.748110I	3.93259 + 1.83013I	-2.77518 - 3.69155I
b = 0.495256 - 0.410729I		
u = 0.180542 + 0.637095I		
a = 0.68301 - 1.84952I	3.93259 + 1.83013I	-2.77518 - 3.69155I
b = -0.100757 + 1.244120I		
u = 0.180542 - 0.637095I		
a = 0.064504 + 0.748110I	3.93259 - 1.83013I	-2.77518 + 3.69155I
b = 0.495256 + 0.410729I		
u = 0.180542 - 0.637095I		
a = 0.68301 + 1.84952I	3.93259 - 1.83013I	-2.77518 + 3.69155I
b = -0.100757 - 1.244120I		
u = -0.339086 + 0.540694I		
a = -0.372018 - 0.331028I	3.03920 + 2.27932I	-4.43670 - 3.34383I
b = -0.515841 - 0.801258I		
u = -0.339086 + 0.540694I		
a = -1.21813 - 1.86370I	3.03920 + 2.27932I	-4.43670 - 3.34383I
b = -0.081651 + 1.313520I		
u = -0.339086 - 0.540694I		
a = -0.372018 + 0.331028I	3.03920 - 2.27932I	-4.43670 + 3.34383I
b = -0.515841 + 0.801258I		
u = -0.339086 - 0.540694I		
a = -1.21813 + 1.86370I	3.03920 - 2.27932I	-4.43670 + 3.34383I
b = -0.081651 - 1.313520I		

III.
$$I_3^u = \langle b-1, \ 16a^4 - 32a^3 + 16a^2 + 1, \ u+1 \rangle$$

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a\\1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a+1\\-1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a\\-1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -a^{2} + 2a - 1\\-a \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2a^{3} - 5a^{2} + 3a - 1\\2a^{2} - a - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a+1\\1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -a^{2} - a + 1\\-a + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2a^{3} - 9a^{2} + \frac{15}{2}a - \frac{1}{4}\\4a^{3} - 6a^{2} + 3a - \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $16a^2 16a 16$

Crossings	u-Polynomials at each crossing
c_1	$(u^2 - 2u + 2)^2$
c_2, c_8	$u^4 + 2u^2 + 2$
c_3	$u^4 - 2u^2 + 2$
c_4, c_5, c_{10}	$(u-1)^4$
c_6, c_{11}, c_{12}	$(u+1)^4$
<i>C</i> ₇	$16(16u^4 + 32u^3 + 16u^2 + 1)$
<i>c</i> ₉	$16(16u^4 - 32u^3 + 16u^2 + 1)$

Crossings	Riley Polynomials at each crossing
c_1	$(y^2+4)^2$
c_{2}, c_{8}	$(y^2 + 2y + 2)^2$
<i>c</i> ₃	$(y^2 - 2y + 2)^2$
$c_4, c_5, c_6 \\ c_{10}, c_{11}, c_{12}$	$(y-1)^4$
c_7, c_9	$256(256y^4 - 512y^3 + 288y^2 + 32y + 1)$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.049340 + 0.227545I	-5.75727 - 3.66386I	-16.0000 + 4.0000I
b = 1.00000		
u = -1.00000		
a = 1.049340 - 0.227545I	-5.75727 + 3.66386I	-16.0000 - 4.0000I
b = 1.00000		
u = -1.00000		
a = -0.049342 + 0.227545I	-5.75727 + 3.66386I	-16.0000 - 4.0000I
b = 1.00000		
u = -1.00000		
a = -0.049342 - 0.227545I	-5.75727 - 3.66386I	-16.0000 + 4.0000I
b = 1.00000		

IV.
$$I_4^u = \langle -4u^2a + au - 13u^2 + 23b + 10a + 9u - 25, -70u^2a + 151u^2 + \cdots - 130a + 309, u^3 - u^2 + 2u - 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.173913au^{2} + 0.565217u^{2} + \cdots - 0.434783a + 1.08696 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.434783au^{2} - 2.11304u^{2} + \cdots + 1.08696a - 4.01739 \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.434783au^{2} - 2.28696u^{2} + \cdots + 0.913043a - 4.58261 \\ 0.869565au^{2} - 0.173913u^{2} + \cdots + 0.826087a + 1.43478 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.6852174au^{2} + 1.09043u^{2} + \cdots + 0.565217a - 2.11304 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.565217au^{2} - 3.75304u^{2} + \cdots + 0.565217a - 2.11304 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.565217au^{2} - 3.75304u^{2} + \cdots + 1.08696a - 6.77739 \\ 0.391304au^{2} + 0.521739u^{2} + \cdots + 0.521739a + 1.69565 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.173913au^{2} + 0.565217u^{2} + \cdots + 0.565217a + 1.08696 \\ 0.173913au^{2} + 0.565217u^{2} + \cdots + 0.434783a + 1.08696 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.130435au^{2} + 2.90087u^{2} + \cdots + 0.173913a - 2.23478 \\ 0.130435au^{2} - 0.0260870u^{2} + \cdots + 0.173913a - 2.23478 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.17391au^{2} - 2.19478u^{2} + \cdots + 1.56522a - 3.75304 \\ -0.782609au^{2} + 0.956522u^{2} + \cdots - 0.0434783a + 1.60870 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 + 4u 8$

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u^3 - u^2 + 2u - 1)^2$
c_2, c_8	$u^6 + u^4 + 2u^2 + 1$
<i>c</i> ₃	$u^6 + 5u^4 + 10u^2 + 1$
c_4, c_5, c_{11} c_{12}	$(u^2+1)^3$
C ₇	$25(25u^6 + 40u^5 + 87u^4 + 26u^3 + 56u^2 + 6u + 1)$
<i>C</i> 9	$25(25u^6 - 40u^5 + 87u^4 - 26u^3 + 56u^2 - 6u + 1)$
c_{10}	$(u^3 + u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_{10}	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_8	$(y^3 + y^2 + 2y + 1)^2$
<i>C</i> ₃	$(y^3 + 5y^2 + 10y + 1)^2$
c_4, c_5, c_{11} c_{12}	$(y+1)^6$
c_{7}, c_{9}	$625(625y^6 + 2750y^5 + 8289y^4 + 8638y^3 + 2998y^2 + 76y + 1)$

	Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.215080 + 1.307140I		
a =	0.024694 + 1.101050I	6.31400 - 2.82812I	-0.49024 + 2.97945I
b =	-1.000000I		
u =	0.215080 + 1.307140I		
a =	0.17657 - 1.61809I	6.31400 - 2.82812I	-0.49024 + 2.97945I
b =	1.000000I		
u =	0.215080 - 1.307140I		
a =	0.024694 - 1.101050I	6.31400 + 2.82812I	-0.49024 - 2.97945I
b =	1.000000I		
u =	0.215080 - 1.307140I		
a =	0.17657 + 1.61809I	6.31400 + 2.82812I	-0.49024 - 2.97945I
b =	-1.000000I		
u =	0.569840		
a =	2.59873 + 2.48086I	2.17641	-7.01950
b =	-1.000000I		
u =	0.569840		
a =	2.59873 - 2.48086I	2.17641	-7.01950
b =	1.000000I		

V.
$$I_5^u = \langle b+1, 8a^3 + 12a^2 + 6a + 1, u - 1 \rangle$$

a₁) Are colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a + 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a^{2} + 2a + 1 \\ -a \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2a^{2} - \frac{3}{2}a - \frac{3}{4} \\ 2a^{2} + a - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a - 1 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -a^{2} + a + 1 \\ a + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2a^{2} + 3a + \frac{1}{2} \\ 4a^{2} + 4a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $34a^2 + 34a \frac{7}{2}$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_8	u^3
c_4, c_5, c_{10}	$(u+1)^3$
c_6, c_{11}, c_{12}	$(u-1)^3$
C ₇	$512(2u-1)^3$
<i>c</i> ₉	$512(2u+1)^3$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_3 \ c_8$	y^3
c_4, c_5, c_6 c_{10}, c_{11}, c_{12}	$(y-1)^3$
c_7, c_9	$262144(4y-1)^3$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.500000	-3.28987	-12.0000
b = -1.00000		
u = 1.00000		
a = -0.500000	-3.28987	-12.0000
b = -1.00000		
u = 1.00000		
a = -0.500000	-3.28987	-12.0000
b = -1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{3}(u^{2} - 2u + 2)^{2}(u^{3} - u^{2} + 2u - 1)^{2}(u^{39} + 19u^{38} + \dots + 2u^{2} - 1)^{2}$ $\cdot (u^{53} + 25u^{52} + \dots - 112u - 64)$
c_2, c_8	
<i>c</i> ₃	$u^{3}(u^{4} - 2u^{2} + 2)(u^{6} + 5u^{4} + 10u^{2} + 1)(u^{39} - u^{38} + \dots - 18u - 17)^{2}$ $\cdot (u^{53} + 3u^{52} + \dots + 91812u + 11464)$
c_4,c_5	$((u-1)^4)(u+1)^3(u^2+1)^3(u^{53}-u^{52}+\cdots-2u+1)$ $\cdot (u^{78}+3u^{77}+\cdots+788u+173)$
c ₆	$((u-1)^3)(u+1)^4(u^3-u^2+2u-1)^2(u^{39}+u^{38}+\cdots+2u+1)^2$ $\cdot (u^{53}+2u^{52}+\cdots+329u+160)$
<i>C</i> ₇	$26214400(2u - 1)^{3}(16u^{4} + 32u^{3} + 16u^{2} + 1)$ $\cdot (25u^{6} + 40u^{5} + 87u^{4} + 26u^{3} + 56u^{2} + 6u + 1)$ $\cdot (128u^{53} - 64u^{52} + \dots - 13u + 1)$
c_9	$ (u^{78} - 21u^{77} + \dots + 448674u + 57751) $ $ 26214400(2u + 1)^{3}(16u^{4} - 32u^{3} + 16u^{2} + 1) $ $ (25u^{6} - 40u^{5} + 87u^{4} - 26u^{3} + 56u^{2} - 6u + 1) $ $ (128u^{53} - 64u^{52} + \dots - 13u + 1) $ $ (u^{78} - 21u^{77} + \dots + 448674u + 57751) $
c_{10}	$((u-1)^4)(u+1)^3(u^3+u^2+2u+1)^2(u^{39}+u^{38}+\cdots+2u+1)^2$ $\cdot (u^{53}+2u^{52}+\cdots+329u+160)$
c_{11}, c_{12}	$((u-1)^3)(u+1)^4(u^2+1)^3(u^{53}-u^{52}+\cdots-2u+1)$ $\cdot (u^{78}+3u^{77}+\cdots+788u+173)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{3}(y^{2}+4)^{2}(y^{3}+3y^{2}+2y-1)^{2}(y^{39}+3y^{38}+\cdots+4y-1)^{2}$ $\cdot (y^{53}+9y^{52}+\cdots-3840y-4096)$
c_2, c_8	$y^{3}(y^{2} + 2y + 2)^{2}(y^{3} + y^{2} + 2y + 1)^{2}(y^{39} + 19y^{38} + \dots + 2y^{2} - 1)^{2}$ $\cdot (y^{53} + 25y^{52} + \dots - 112y - 64)$
c_3	$y^{3}(y^{2} - 2y + 2)^{2}(y^{3} + 5y^{2} + 10y + 1)^{2}$ $\cdot (y^{39} - 13y^{38} + \dots + 3588y - 289)^{2}$ $\cdot (y^{53} - 7y^{52} + \dots + 828536208y - 131423296)$
$c_4, c_5, c_{11} \\ c_{12}$	$((y-1)^7)(y+1)^6(y^{53}+17y^{52}+\cdots-18y-1)$ $\cdot (y^{78}+47y^{77}+\cdots+318100y+29929)$
c_6, c_{10}	$((y-1)^7)(y^3 + 3y^2 + 2y - 1)^2(y^{39} - 21y^{38} + \dots + 2y^2 - 1)^2$ $\cdot (y^{53} - 22y^{52} + \dots + 992401y - 25600)$
c_7, c_9	$687194767360000(4y-1)^{3}(256y^{4}-512y^{3}+288y^{2}+32y+1)$ $\cdot (625y^{6}+2750y^{5}+8289y^{4}+8638y^{3}+2998y^{2}+76y+1)$ $\cdot (16384y^{53}-208896y^{52}+\cdots-135y-1)$ $\cdot (y^{78}+27y^{77}+\cdots-879585708y+3335178001)$