Notes on filtrations for logics that contain K5

Daniel Rogozin

1 Preliminaries

Definition 1. A normal modal logic is a set of formulas that contains all Boolean tautologies, formulas $\Diamond p \lor \Diamond q \leftrightarrow \Diamond (p \lor q)$ and $\Diamond \bot \leftrightarrow \bot$, and is closed under Modus Ponens, Substitution, and Monotonicity: from $\varphi \to \psi$ infer $\Diamond \varphi \to \Diamond \psi$.

Definition 2. An Kripke model is a triple $\mathcal{M} = \langle W, R, \vartheta \rangle$, where $R \subseteq W \times W$, $\vartheta : PV \to 2^W$, and the connectives have the following semantics:

- 1. $\mathcal{M}, w \models p \Leftrightarrow w \in \vartheta(p)$
- 2. $\mathcal{M}, w \models \neg \varphi \Leftrightarrow \mathcal{M}, w \not\models \varphi$
- 3. $\mathcal{M}, w \models \varphi \lor \psi \Leftrightarrow \mathcal{M}, w \models \varphi \text{ or } \mathcal{M}, w \models \psi$
- 4. $\mathcal{M}, w \models \Diamond \varphi \Leftrightarrow \exists v \in R(w) \mathcal{M}, v \models \varphi$

Definition 3. Let $\mathcal{M} = \langle W, R, \vartheta \rangle$ be a Kripke model. A Kripke model $\mathcal{M}' = \langle W', R', \vartheta' \rangle$ is a generated submodel of \mathcal{M} , where:

- 1. $\emptyset \neq W' \subseteq W$ and W' is R-closed, i.e., for each $u \in W'$ and $v \in W$, uRv implies $v \in W'$
- 2. $R' = R \cap W' \times W'$
- 3. for every propositional variable $p, \vartheta(p)' = \vartheta(p) \cap W'$

Fact 1. Let $\mathcal{M} = \langle W, R, \vartheta \rangle$ be a Kripke model and $\mathcal{M}' = \langle W', R', \vartheta' \rangle$ its generated submodel, then for each $w \in W'$

$$\mathcal{M}, w \models \varphi \text{ iff } \mathcal{M}', w \models \varphi$$

By **K5** we mean the logic $\mathbf{K} \oplus A5$, where $A5 = \Diamond p \to \Box \Diamond p$. It is known that **K5** is the modal logic of all Euclidean frames. A frame is called Euclidean if for each x, y, z, xRy and xRz implies yRz.

Proposition 1. K5 proves

- 1. $\Box^3 p \leftrightarrow \Box^2 p$
- 2. $\Box^2 \Diamond p \leftrightarrow \Box \Diamond p$
- $3. \Box \Diamond \Box p \leftrightarrow \Box \Box p$
- 4. $\Box \diamondsuit^2 p \leftrightarrow \Box \diamondsuit p$

Proposition 2. Let \mathcal{M} be a K5 model, xRy for $x, y \in W$ then one has

$$\mathcal{M}, x \models \Box \Diamond \varphi \text{ iff } \mathcal{M}, y \models \Box \Diamond \varphi.$$

Proof.

- 1. Suppose $\mathcal{M}, x \models \Box \Diamond \varphi$. Then $\mathcal{M}, y \models \Diamond \varphi$ and $\mathcal{M}, y \models \Box \Diamond \varphi$
- 2. Suppose $\mathcal{M}, y \models \Box \Diamond \varphi$, then $\mathcal{M}, x \models \Diamond \Box \Diamond \varphi$, so $\mathcal{M}, x \models \Box \Diamond \varphi$.

1.1 Filtrations: general definitions

Let $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$ be a Kripke model and Γ a set of formulas closed under subformulas. An equivalence relation \sim is set to have a finite index if the quotient set W/\sim is finite. The equivalence relation \sim_{Γ} induced by Γ is defined as

$$w \sim_{\Gamma} v \Leftrightarrow \forall \varphi \in \Gamma (\mathcal{M}, w \models \varphi \Leftrightarrow \mathcal{M}, v \models \varphi).$$

If Γ is finite, then \sim_{Γ} has a finite index. An equivalence relation \sim respects \sim_{Γ} , if $w \sim v$ implies $w \sim_{\Gamma} v$.

Definition 4. Let $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$ be a Kripke model and Γ be a Sub-closed set formulas. A Γ -filtration of \mathcal{M} is a model $\widehat{\mathcal{M}} = \langle \widehat{W}, \widehat{R_1}, \dots, \widehat{R_n}, \widehat{\vartheta} \rangle$ such that:

- 1. $\widehat{W} = W/\sim$, where \sim is an equivalence relation having a finite index that respects Γ
- $2. \ \widehat{\vartheta}(p) = \{ [x]_{\sim} \mid x \in W \& x \in \vartheta(p) \}$
- 3. For each $i \in I$ one has $\hat{R}_i^{min} \subseteq \hat{R}_i \subseteq \hat{R}_i^{max}$. $\hat{R}_{i,\sim}^{min}$ is the i-th minimal filtered relation on \widehat{W} defined as

$$\hat{x}\hat{R}_{i,\sim}^{min}\hat{y} \Leftrightarrow \exists x' \sim x \,\exists y' \sim y \, x R_i y$$

 $\widehat{R}_{\Gamma,i}^{max}$ is the i-th maximal filtered relation on \widehat{W} induced by Γ defined as

$$\hat{x}\hat{R}_{\Gamma,i}^{max}\hat{y} \Leftrightarrow \forall \Box_{i}\varphi \in \Gamma\left(\mathcal{M}, x \models \Box_{i}\varphi \Rightarrow \mathcal{M}, y \models \varphi\right)$$

If Φ is finite subset of Γ and $\sim = \sim_{\Phi}$, then $\widehat{\mathcal{M}}$ is a definable Γ -filtration of \mathcal{M} through Φ . If $\sim = \sim_{\Gamma}$, then such a filtration by means of the definiton above is called *strict*. A class of models \mathbb{M} admits strict filtrations for models (ASF), if for every Sub-closed set Γ and for every $\mathcal{M} \in \mathbb{M}$ there exists a Γ filtration of \mathcal{M} . A class of frames \mathbb{F} admits strict filtrations for frames, if for every Sub-closed set Γ and for every frame $\mathcal{F} \in \mathbb{F}$ and every model \mathcal{M} over \mathcal{F} there exists a Γ filtration of \mathcal{M} . If \mathcal{L} is canonical, then the ASF property for frames and ASF property for models are equivalent [1, Theorem 2.10].

Lemma 1. Let Γ be a finite set of formulas closed under subformulas and $\widehat{\mathcal{M}}$ a filtration of \mathcal{M} through Γ , then for each $x \in W$ and for each $\varphi \in \Gamma$ one has

$$\mathcal{M}, x \models \varphi \Leftrightarrow \widehat{\mathcal{M}}, \hat{x} \models \varphi$$

Definition 5. Let \mathbb{F} be a class of Kripke frames and Γ a finite set of formulas closed under subformulas. If for every model \mathcal{M} over $\mathcal{F} \in \mathbb{F}$ there exists a model that is a Γ -definable filtration of \mathcal{M} , then \mathbb{F} admits definable filtration. A class of models \mathbb{M} admits definable filtration if for every $\mathcal{M} \in \mathbb{M}$ there exists a model belonging to the same class that is a definable Γ -filtration of \mathcal{M} .

Lemma 2.

- 1. Let \mathcal{L} be a complete normal modal logic. If Frames(\mathcal{L}) admits filtration, then \mathcal{L} has the finite model property.
- 2. If the class of models $Mod(\mathcal{L})$ admits filtration, then \mathcal{L} has the finite model property and Kripke complete as well.

2 Filtration of Euclidean logics

First of all, let us ensure that a minimal filtration of an Euclidean frame is not necessary Euclidean. Let $[x] \sim_{\Gamma} [y]$ and $[x] \sim_{\Gamma} [z]$. Then for some $x' \in [x]$ $y' \in [y]$, one has x'Ry' and x''Rz' for some $x'' \in [x]$ and $z' \in [z]$. Clearly, we cannot claim that x' = x'' in general. Thus, minimal filtration does not preserve the required property.

Lemma 3. K5 admit filtrations.

Proof. Let \mathcal{M} be a **K5**-model and Γ_0 a finite set of formulas closed under subformulas. Let us put $\Gamma = \Gamma_0 \cup \operatorname{Sub}(\{\Diamond \Box \psi \mid \Box \psi \in \Gamma_0\}) \cup \Psi$, where $\Psi = \nabla_1 \nabla_2 \dots \nabla_n \Box \psi$ for $\Box \psi \in \Gamma_0$ and $\nabla_i \in \{\Diamond, \Box\}$. By Proposition 1, any element of Φ has one of the four forms. Thus, $W \sim_{\equiv_{\Gamma}}$ has a finite index. We put $\hat{R} = R_{\Gamma}^{\max}$.

Definition 6. A first-order formula is called Horn if it has the following form:

$$\forall x_1, \ldots, x_n (x_{i_1} R x_{i_1} \wedge \cdots \wedge x_{i_s} R x_{i_s} \rightarrow x_k R x_l)$$

Definition 7. Let H be a Horn property and $\langle W, R \rangle$ a Kripke frame. A Horn closure of a binary relation R is the minimal relation R^H containing R and satisfying H.

Lemma 4.
$$R^H = \bigcup_{n < \omega} R_n$$
 where

- 1. $R_0 = R$.
- 2. $R_{n+1} = R_n \cup \{(a,b) \in W \mid \exists \vec{c} \in W \ P(a,b,\vec{c})\}, \text{ where } P \text{ is a premise of } H.$

E-closure (an Euclidean Horn closure of a binary relation) has the following equivalent definitions:

Lemma 5. Let $\mathcal{F} = \langle W, R \rangle$ be a Kripke frame. The following conditions are equivalent:

- 1. R^E is the smallest Euclidean relation containing R.
- 2. $R^E = \bigcup_{i < \omega} R_i$, where
 - $R_0 = R$
 - $R_{n+1} = R_n \cup (R_n^{-1} \circ R_n)$

3. xR^Ey iff there exists $n < \omega$ such that either xRy or $\exists z_1, \ldots, z_n$ with z_1Rx and $z_{n-1}Ry$ and for each $1 < i \le n$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} .

4.
$$R^E = R \cup \bigcup_{i < \omega} (R^{-1} \circ (R \circ R^{-1})^n \circ R).$$

Proof.

- 1. (1) \Rightarrow (2) Let us show that if R^E is the smallest Euclidean relation containing R, then $R^E = \bigcup_{i < \omega} R_i$. There are two inclusions:
 - $R^E \subseteq \bigcup_{i \leq \omega} R_i$. Recall that R^E has the form (?):

$$R^{E} = \bigcap \{ R' \mid R \subseteq R', \forall a, b \in W \ R'(a, b) \Rightarrow \exists x \in W \ R'(x, a) \& R'(x, b) \}$$

- $\bigcup_{i<\omega} R_i \subseteq R^E$. Let us show that xR_ny for each $n<\omega$ implies xR^Ey by induction on n. If n=0, then xRy, thus, xR^Ey , since R is a subrelation of R^E . Suppose n=m+1 and $xR_{m+1}y$. Let us show that xR^Ey . From $xR_{m+1}y$, one has $(x,y) \in R^n \cup (R_n^{-1} \circ R_n)$. There are two cases:
 - $-xR^{n}y$, one needs to merely apply the IH.
 - $-xR_n^{-1}\circ R_ny$. Then $\exists z\in W\ xR_n^{-1}z\ \&\ zR_n$. That is, zR_nx and zR_ny for some z. R_n is already a subrelation of R^E . Thus, zR^Ex and zR^Ey . That implies xR^Ey .
- 2. (2) \Rightarrow (3) Let $(x, y) \in R_m$, let us the statement by induction on m.
 - (a) Suppose m = 0, then xRy, and the statement is shown putting n = 0.
 - (b) Suppose m=p+1 and $xR_{p+1}y$. Assume that either xRy or $\exists z_1,\ldots,z_p$ with z_1Rx and $z_{p-1}Ry$ and for each $1 < i \le p$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} . $xR_{p+1}y$ implies $(x,y) \in R_p \cup (R_p^{-1} \circ R_p)$. If $(x,y) \in R_p$, then we merely apply the IH. Suppose $(x,y) \in R_p^{-1} \circ R_p$, then $(z,x) \in R_p$ and $(z,y) \in R_p$
- 3. (3) \Rightarrow (4) Suppose either xRy or there exist $n \geq 1$ and z_1, \ldots, z_n with z_1Rx and $z_{n-1}Ry$ and for each $1 < i \leq n$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} . If xRy, then we are done. Otherwise there exists $n \geq 1$ with the condition above. Then $(x,y) \in R_{n+1}$ that follows from the condition.

4. $(4) \Rightarrow (1)$

Lemma 6. Let $\mathcal{F} = \langle W, R \rangle$ be a Kripke frame. Let us define $R^E = \bigcup_{i \leq w} R_i$ where:

1. $R_0 = R$

2. $R_{n+1} = R_n \cup (R_n^{-1} \circ R_n)$

Then R^E is Euclidean.

Proof. Let $(x,y), (x,z) \in R^E$, one needs to show that $(y,z) \in R^E$. Clearly that $(x,y) \in R_i$ and $(x,z) \in R_j$ for some $i,j < \omega$. Thus, we need $(y,z) \in R_m$ for some m depending on i and j. Let us consider the following cases:

1. i = 0 and j = 0

Suppose $(x, y), (x, z) \in R_0 = R$, then $(y, z) \in R^{-1} \circ R$. Thus, $(y, z) \in R_1$

2. i = 0 and j = k + 1

Suppose $(x,y) \in R$ and $(x,z) \in R_{k+1} = R_k \cup (R_k^{-1} \circ R_k)$. Clearly that $(x,y) \in R_{k+1}$ as well. It is obviously that $(y,z) \in R_{k+2}$ since $(y,x) \in R_{k+1}^{-1}$ and $(x,z) \in R_{k+1}$.

- 3. The case with i = k + 1 and j = 0 is similar to the previous one.
- 4. Suppose i=m+1 and j=k+1. That is, $(x,y) \in R_{m+1} = R_m \cup (R_m^{-1} \circ R_m)$ and $(x,z) \in R_{k+1} = R_k \cup (R_k^{-1} \circ R_k)$. Consider the following four subcases:
 - (a) Suppose $(x,y) \in R_m$ and $(x,z) \in R_k$ and $m \le k$ without loss of generality. $m \le k$ implies $R_m \subseteq R_k$ and $(x,y) \in R_k$ in particular. Thus, $(y,z) \in R_k^{-1} \circ R_k$, so $(y,z) \in R_{k+1}$.

(b) The rest of the cases are similar to the first one.

Theorem 1. K45 admits strict filtrations.

Proof. Let $\mathcal{M} = \langle W, R, \vartheta \rangle$ be a transitive Euclidean model and $\overline{\mathcal{M}} = \langle \overline{W}, \overline{R}, \overline{\vartheta} \rangle$ its minimal filtration through Γ , where Γ is finite and Sub-closed. Let us put $\widehat{R} = \overline{R}^+ \cup \overline{R}^E$. Let us show that $\overline{R}^+ \cup \overline{R}^E \subseteq \overline{R}^{max}$.

That is, if $\mathcal{M}, y \models \varphi$ for $\Diamond \varphi \in \Gamma$ and $\hat{x}\hat{R}\hat{y}$, then $\mathcal{M}, x \models \Diamond \varphi$.

Let $\hat{x}\hat{R}\hat{y}$. Let us consider the case when $(\hat{x},\hat{y}) \in \overline{R}^E$

- 1. Suppose $(\hat{x}, \hat{y}) \in \overline{R}$, then $\mathcal{M}, x \models \Diamond \varphi$ holds trivially by the definition of the minimal filtration
- 2. Suppose the statement holds \overline{R}_n and $(\hat{x}, \hat{y}) \in \overline{R}_{n+1} = \overline{R}_n \cup (\overline{R}_n^{-1} \circ \overline{R}_n)$. We consider the case of $(\hat{x}, \hat{y}) \in (\overline{R}_n^{-1} \circ \overline{R}_n)$.

Then there exists \hat{z} such that $(\hat{z}, \hat{x}), (\hat{z}, \hat{y}) \in \overline{R}_n$.

By IH, $\mathcal{M}, z \models \Diamond \varphi$.

 $(\hat{z}, \hat{y}) \in \overline{R}_n$ iff there are $\hat{u}_1, \dots, \hat{u}_n$ such that

$$\hat{z} \underset{\hat{R}}{\longleftarrow} \hat{u}_1 \xrightarrow{\hat{R}'} \hat{u}_2 \xrightarrow{\hat{R}'} \dots \xrightarrow{\hat{R}'} \hat{u}_{n-1} \xrightarrow{\hat{R}'} \hat{u}_n \xrightarrow{\hat{R}} \hat{y}$$

where \hat{R}' is either \hat{R} or \hat{R}^{-1} .

As it is known, $\Diamond \Diamond \varphi \rightarrow \Box \Diamond \varphi \in \mathbf{K}45$.

 $\hat{u}_1\hat{z}$, that is, $u_1'Rz'$ for some $u_1' \in \hat{u}_1$ and $z' \in \hat{z}$. That is, $\mathcal{M}, u_1' \models \Diamond \Diamond \varphi$, so $\mathcal{M}, u_1' \models \Diamond \varphi$ and $\overline{\mathcal{M}}, \hat{u}_1 \models \Diamond \varphi$.

We have $\hat{u}_1\hat{R}'\hat{u}_2$. Suppose $\mathcal{M}, u_1'' \models \Diamond \varphi$ and $u_1''Ru_2'$. We also have $\mathcal{M}, u_1'' \models \Box \Diamond \varphi$, thus, $\mathcal{M}, u_2' \models \Diamond \varphi$.

Suppose $\hat{u}_2 \hat{R} \hat{u}_1$ and $u'_2 R u''_1$, then $\mathcal{M}, u'_2 \models \Diamond \varphi$.

Similarly, we have $\mathcal{M}, u_i \models \Diamond \varphi$ iff $\mathcal{M}, u_{i+1} \models \Diamond \varphi$, whenever $\hat{u}_i \hat{R}' \hat{u}_{i+1}$.

Finally, we have $\hat{u}_n \hat{R} \hat{x}$. Thus, $u'_n R x'$ for some $u'_n \in \hat{u}_n$ and $x' \in \hat{x}$. $\mathcal{M}, u'_n \models \Diamond \varphi$, so $\mathcal{M}, u'_n \models \Box \Diamond \varphi$. Then $\mathcal{M}, x' \models \Diamond \varphi$.

Theorem 2. K5 does not admit strict filtrations.

Proof. Let us consider a K5 model whose Euclidean closure of the minimal filtration does not give us a filtration.

Let us consider a frame called \mathcal{F}_{bad} . We define this frame with the following graph:

Let us define a valuation ϑ such that $\vartheta(p) = \{w_5\}$ and $\vartheta(q) = \{w_1\}$. Let us consider a minimal filtration of \mathcal{M}_{bad} through the Sub-closure of $\Gamma = \{\neg p, \neg \diamondsuit p\}$.

Clearly that $w_2 \sim_{\Gamma} w_3$, since $\neg p$ and $\neg \diamondsuit p$ are true both at w_2 and w_3 .

Moreover, $R_{min} \cup (R_{min}^{-1} \circ R_{min})$ is not a subset of R_{max} since $(\hat{w_1}, \hat{w_5}) \in (R_{min}^{-1} \circ R_{min})$, but $\diamond p$ is not true at w_5 .

Let us also note that strict filtrations of this model is not Euclidean. Suppose by contrary that $\hat{R}^{\mathcal{E}}$ is a strict filtraction of that model. So $R_{min}^{E} \subseteq \hat{R}^{\mathcal{E}}$, since R_{min}^{E} is the minimal Euclidean relation containing R_{min} . On the other hand, $R_{min}^{E} \subseteq R_{max}$, so is not $\hat{R}^{\mathcal{E}}$.

3 Filtration for K4

Proposition 3. Let R be a binary relation on $W \neq \emptyset$. Define $R^+ = \bigcup_{i < \omega} R_i$

 $1. R_0 = R$

2. $R_{n+1} = R_n \circ R$

Then R^+ is transitive

Lemma 7. Let $\mathcal{M} = \langle W, R, \vartheta \rangle$ be a transitive model and $\overline{\mathcal{M}} = \langle \overline{W}, \overline{R}, \overline{\vartheta} \rangle$ its minimal filtration through a finite Sub-closed set of formulas Θ .

Then $\overline{\mathcal{M}}^+ = \langle \overline{W}, (\overline{R})^+, \overline{\vartheta} \rangle$ is a Θ -filtration of \mathcal{M} .

Proof. $(\overline{R})^+$ obviously contains R. By the previous proposition, $(\overline{R})^+$ is transitive. Let us show that $(\overline{R})^+ \subseteq R^{max}_{\square}$.

Let $\hat{x}, \hat{y} \in \overline{W}$ with $\hat{x}(\overline{R})^+ \hat{y}$ and $\Box \varphi \in \Theta$ with $\mathcal{M}, x \models \Box \varphi$. Let us show that $\mathcal{M}, y \models \varphi$. If $\hat{x}(\overline{R})^+ \hat{y}$, then there exist equivalence classes $\hat{x}_1, \ldots, \hat{x}_n$ such that

$$\hat{x}\overline{R}\hat{x}_1\overline{R}\dots\overline{R}\hat{x}_n\overline{R}\hat{y}$$

 $\mathcal{M}, x \models \Box \varphi \text{ implies } \mathcal{M}, x \models \Box \Box \varphi. \text{ Thus, } \overline{M}, \hat{x} \models \Box \Box \varphi.$

 $\hat{x}\overline{R}\hat{x}_1$, so there are $x_1 \in \hat{x}$ and $x_2 \in \hat{x}_1$ with x_1Rx_2 . In particular, $\mathcal{M}, x_2 \models \Box \varphi$, so $\overline{\mathcal{M}}, \hat{x}_2 \models \Box \varphi$, and et cetera.

For each $i \in \{1, ..., n\}$ we have $\mathcal{M}, x_i \models \Box \varphi$ which is shown inductively:

If $\mathcal{M}, x_i \models \Box \varphi$ for $x_i \in \hat{x}_i$, so $\mathcal{M}, x_i \models \Box \Box \varphi$, but there exist $x_i' \in \hat{x}_i$ and $x_{i+1} \in \hat{x}_{i+1}$, so $\mathcal{M}, x_{i+1} \models \Box \varphi$.

Finally, we have $\mathcal{M}, x_n \models \Box \varphi$ for $x_n \in \hat{x}_n$, but $\hat{x}_n \overline{R} \hat{y}$, so $\mathcal{M}, y' \models \varphi$ for each $y' \in \hat{y}$. Thus, φ is true at y as well.

Proof. Let $\hat{x}, \hat{y} \in \overline{W}$ with $\hat{x}(\overline{R})^+ \hat{y}$ and $\Box \varphi \in \Theta$ with $\mathcal{M}, x \models \Box \varphi$. Let us show that $\mathcal{M}, y \models \varphi$. If $\hat{x}(\overline{R})^+ \hat{y}$, then there exist equivalence classes $\hat{x}_1, \ldots, \hat{x}_n$ such that

$$\hat{x}\overline{R}\hat{x}_1\overline{R}\dots\overline{R}\hat{x}_n\overline{R}\hat{y}$$

Let us show that $\mathcal{M}, \hat{x}_i \models \Box \varphi$ inductively:

1. n = 1 We have the following sequence:

$$\hat{x}\overline{R}\hat{x}_1\overline{R}\hat{y}$$

 $\hat{x}\overline{R}\hat{x}_1$, so there are $x' \in \hat{x}$ and $x'_1 \in \hat{x}_1$ such that $x'Rx'_1$. $\Box \varphi$ is true at x', so is $\Box \Box \varphi$. Then $\mathcal{M}, x'_1 \models \Box \varphi$ since $x'_1 \in R(x')$. So $\overline{\mathcal{M}}, \hat{x}_1 \models \Box \varphi$.

2. n = i + 1 The case is the following:

$$\hat{x}\overline{R}\hat{x}_1\overline{R}\dots\overline{R}\hat{x}_i\overline{R}\hat{x}_{i+1}\overline{R}\hat{y}$$

By IH, $\Box \varphi$ is true at \hat{x}_i , so is $\Box \Box \varphi$. Hence, we have $\overline{\mathcal{M}}, \hat{x}_{i+1} \models \Box \varphi$ since $\hat{x}_i \overline{R} \hat{x}_{i+1}$.

That is, for each $0 < n < \omega$, if we have a sequence of equivalence classes with $\hat{x}\overline{R}\hat{x}_1\overline{R}\dots\overline{R}\hat{x}_n\overline{R}\hat{y}$ where $\overline{\mathcal{M}}, \hat{x} \models \Box \varphi$, then $\overline{\mathcal{M}}, \hat{x}_n \models \Box \varphi$.

If $\hat{x}_n \overline{R} \hat{y}$, then there are $x'_n \in \hat{x}_n$ and $y' \in \hat{y}$ with $x'_n R y'$. $\mathcal{M}, x'_n \models \Box \varphi$ implies $\mathcal{M}, y' \models \varphi$, but y' and y are Γ -equivalent and $\varphi \in \Gamma$, so $\mathcal{M}, y \models \varphi$.

4 Finite "canonical" models

Let \mathcal{L} be a normal modal logic, $\mathcal{M}_{\mathcal{L}}$ its canonical model, and Γ a finite Sub-closed set of formulas. Let us put $\Gamma' = \operatorname{Sub}(\varphi) \cup \{\neg \psi \mid \psi \in \operatorname{Sub}(\varphi)\}.$

A subset $\Delta \subseteq' \Gamma$ is a *finite* \mathcal{L} -consistent set if $\neg \bigwedge \Delta \notin \mathcal{L}$. A subset Δ is maximal, if (the following are obviously equivalent):

- 1. Δ is maximal amongst finite \mathcal{L} -consistent sets,
- 2. For each $\psi \in \text{Sub}(\varphi)$ either $\psi \in \Delta$ or $\neg \psi \in \Delta$.

Every finite \mathcal{L} -theory is clearly can be extended to some maximal one. It is the finite version of Lindenbaum's lemma.

Definition 8. Let \mathcal{L} be a modal logic and Γ be a finite Sub-closed set of formulas. A finite "canonical" model is a triple $\mathcal{M}_{\mathcal{L}}^{\Gamma} = \langle W_{\mathcal{L}}^{\Gamma}, R_{\mathcal{L}}^{\Gamma}, \vartheta_{\mathcal{L}}^{\Gamma} \rangle$, where

- 1. $W_{\mathcal{L}}^{\Gamma}$ is the set all maximal theories that extend finite \mathcal{L} -theories
- 2. $R_{\mathcal{L}}^{\Gamma}$ is a relation such that $\langle W_{\mathcal{L}}^{\Gamma}, R_{\mathcal{L}}^{\Gamma} \rangle$ is an \mathcal{L} -frame and

$$\forall \Box \psi \in \operatorname{Sub}(\varphi) \ \forall \Delta_1 \in W_{\mathcal{L}}^{\Gamma} \ (\Box \psi \in \Delta_1 \Leftrightarrow \forall \Delta_2 \in R_{\mathcal{L}}^{\Gamma}(\Delta_1) \ \psi \in \Delta_2)$$

3. $\vartheta^{\Gamma}_{\mathcal{L}}(p) = \{\Delta \in W^{\varphi}_{\mathcal{L}} \mid p \in \Delta\} \text{ for every variable } p \in \Gamma.$

Lemma 8. Let \mathcal{L} be a modal logic and $\varphi \notin \mathcal{L}$, then $\mathcal{M}_{\mathcal{L}}^{Sub(\varphi)} \not\models \varphi$.

Lemma 9. Let \mathcal{L} be a modal logic and Γ a finite Sub-closed set of formulas, then if \mathcal{L} admits strict filtrations, then there exists a finite "canonical" model $\mathcal{M}_{\mathcal{L}}^{\Gamma}$ such that $\mathcal{M}_{\mathcal{L}}^{\Gamma} \models \mathcal{L}$.

Proof. (\Rightarrow) Let Γ be a finite Sub-closed of formulas. \mathcal{L} admits strict filtrations, so the filtration of the canonical model $\mathcal{M}_{\mathcal{L}}$ through Γ is also an \mathcal{L} -model. The underlying set of $\mathcal{M}_{\mathcal{L}}/\sim_{\Gamma}$ consists of maximal \mathcal{L} theories up to Γ-equivalence and this quotient set is finite.

It is readily checked that the quotient model $\mathcal{M}_{\mathcal{L}}/\sim_{\Gamma}$ satisfies Definition 8.

The converse implication does not have to true generally. **GL** might be an example of a logic that has the "finite canonical" model property with no filtrations.

References

[1] Stanislav Kikot, Ilya Shapirovsky, and Evgeny Zolin. Completeness of logics with the transitive closure modality and related logics. arXiv preprint arXiv:2011.02205, 2020.