#DAY 2 - DATA VISULAIZATION WITH PYTHON - MATPLOLIB - 06/07/2021

#name - sekhar reddy #email - sekhareddy717.niper@gmail.com #number= 8331995717 **#TIME SERIES: LINE PLOT** #SINGLE DISCRETE VARIABLE : BAR PLOT , PIE PLOT #SINGLE CONTINUOUS VARIABLE: HISTOGRAM, DENSITY OR Kernel density plot KDE PLOT, BOX-WH **#TWO CONTINUOUS VARIABLE: SCATTER PLOT #LINE PLOT** import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline from numpy.random import randn , randint , uniform , sample x=[1,2,3,4,5,6,7,8,9]y1=[1,3,5,3,1,3,5,3,1]y2=[2,4,6,4,2,4,6,4,2]plt.plot(x,y1,label="line L")

plt.plot(x,y2,label="line H")

x=[1,2,3,4,5,6,7,8,9] y1=[1,3,5,3,1,3,5,3,1]

```
y2=[2,4,6,4,2,4,6,4,2]
plt.plot(x,y1,label="line L")
plt.plot(x,y2,label="line H")
plt.xlabel("x-axis" , color="r")
plt.ylabel("y-axis", color="b")
plt.title("line graph")
plt.legend()
plt.show()
```


#bar plot

```
x=[2,8,10]
y=[11,16,9]
x2=[3,9,11]
y2=[6,15,7]
plt.bar(x,y,color="r",label="x-y variation")
plt.bar(x2,y2, color="g",label="x2 - y2 variation")
plt.bar(x,y2,color="y",label="x-y2")
plt.bar(x2,y,color="b",label="x2-y")
plt.bar(x,x2,color="r",label="x-x2")
plt.barh(y,y2,color="g",label="y-y2")
plt.title("bar graph")
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.legend()
plt.show()
```

```
bar graph
                                             x-y variation
        16
                                             x2 - y2 variation
        14
                                             x-y2
                                             х2-у
        12
#exercise 1:
      ± °1
x1=[1,3,4,5,6,7,9]
y1=[4,7,2,4,7,8,3]
x2=[2,4,6,8,10]
y2=[5,6,2,6,2]
plt.bar(x1,y1,color="r",label="x1-y1")
plt.bar(x2,y2,color="b",label="x2-y2")
plt.xlabel("x-axis",color="b")
plt.ylabel("y-axis",color="r")
plt.legend()
plt.title("bar")
plt.show()
```



```
x1=[1,3,4,5,6,7,9]
y1=[4,7,2,4,7,8,3]
x2=[2,4,6,8,10]
y2=[5,6,2,6,2]
plt.barh(x1,y1,color="r",label="x1-y1")
plt.barh(x2,y2,color="b",label="x2-y2")
plt.xlabel("y-axis",color="b")
plt.ylabel("x-axis",color="r")
plt.legend()
plt.title("barh")
plt.show()
```


#range - density plot

```
a=np.array([22,25,87,66,5,43,56,73,55,54,11,20,51,5,79,31,27,100,101])
plt.hist(a,color="g",label="hist a")
plt.title("histogram",color="r")
plt.legend()
plt.show()
```


#seaborn

```
iris=sns.load_dataset("iris")
iris.head(5)
```

iris=sns.load_dataset("iris")
iris.head(10)

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
5	5.4	3.9	1.7	0.4	setosa
6	4.6	3.4	1.4	0.3	setosa
7	5.0	3.4	1.5	0.2	setosa
8	4.4	2.9	1.4	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa

iris=sns.load_dataset("iris")
iris.tail(5)

	sepal_length	sepal_width	petal_length	petal_width	species
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

iris=sns.load_dataset("iris")
iris.tail(10)

sns.get_dataset_names()

```
['anagrams',
 'anscombe',
'attention',
'brain_networks',
 'car_crashes',
 'diamonds',
 'dots',
 'exercise',
 'flights',
 'fmri',
 'gammas',
 'geyser',
 'iris',
 'mpg',
 'penguins',
 'planets',
 'tips',
 'titanic']
```

gammas=sns.load_dataset("gammas")
gammas.head(5)

	timepoint	ROI	subject	BOLD signal
0	0.0	IPS	0	0.513433
1	0.0	IPS	1	-0.414368
2	0.0	IPS	2	0.214695
3	0.0	IPS	3	0.814809
4	0.0	IPS	4	-0.894992

gammas=sns.load_dataset("gammas")
gammas.tail(5)

	timepoint	ROI	subject	BOLD signal
5995	10.0	V1	15	0.068646
5996	10.0	V1	16	0.827451
5997	10.0	V1	17	1.363256
5998	10.0	V1	18	0.570810
5999	10.0	V1	19	-0.048178

titanic=sns.load_dataset("titanic")
titanic.head(5)

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adu
0	0	3	male	22.0	1	0	7.2500	S	Third	man	
1	1	1	female	38.0	1	0	71.2833	С	First	woman	
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	
3	1	1	female	35.0	1	0	53.1000	S	First	woman	
4	0	3	male	35.0	0	0	8.0500	S	Third	man	

titanic=sns.load_dataset("titanic")
titanic.tail(8)

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	а
883	0	2	male	28.0	0	0	10.500	S	Second	man	
884	0	3	male	25.0	0	0	7.050	S	Third	man	
885	0	3	female	39.0	0	5	29.125	Q	Third	woman	
886	0	2	male	27.0	0	0	13.000	S	Second	man	
887	1	1	female	19.0	0	0	30.000	S	First	woman	
888	0	3	female	NaN	1	2	23.450	S	Third	woman	
889	1	1	male	26.0	0	0	30.000	С	First	man	
890	0	3	male	32.0	0	0	7.750	Q	Third	man	

iris=sns.load_dataset("iris")
iris.head(5)
iris['sepal_length'].plot.hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7f21e473bfd0>

iris.plot.hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7f21e39d54d0>

iris.plot(kind="hist", stacked = "False", bins =10)

<matplotlib.axes._subplots.AxesSubplot at 0x7f21e2db3110>

iris.plot(kind="hist", stacked = "True", bins =20)

<matplotlib.axes._subplots.AxesSubplot at 0x7f21e3486b50>

iris['sepal_width']

0	3.5
1	3.0

2 3.2

343.6

. . .

```
145
            3.0
     146
            2.5
     147
             3.0
     148
            3.4
     149
            3.0
     Name: sepal_width, Length: 150, dtype: float64
iris['sepal_length']
     0
            5.1
     1
            4.9
     2
            4.7
     3
            4.6
     4
            5.0
            . . .
     145
            6.7
     146
            6.3
     147
            6.5
     148
            6.2
     149
             5.9
     Name: sepal_length, Length: 150, dtype: float64
iris['petal_length']
     0
            1.4
     1
             1.4
     2
            1.3
     3
            1.5
     4
            1.4
            . . .
     145
            5.2
     146
            5.0
     147
             5.2
     148
            5.4
     149
             5.1
     Name: petal_length, Length: 150, dtype: float64
iris['petal_width']
     0
            0.2
     1
             0.2
     2
             0.2
     3
            0.2
            0.2
     145
            2.3
     146
            1.9
     147
            2.0
     148
            2.3
     149
             1.8
     Name: petal_width, Length: 150, dtype: float64
iris['species'].unique
     <bound method Series.unique of 0</pre>
                                                 setosa
     1
                setosa
     2
                setosa
```

```
3
               setosa
               setosa
     145
            virginica
     146
            virginica
     147
            virginica
     148
            virginica
     149
            virginica
     Name: species, Length: 150, dtype: object>
iris['species'].unique()
     array(['setosa', 'versicolor', 'virginica'], dtype=object)
iris['sepal_width']
     0
            3.5
     1
            3.0
     2
            3.2
     3
            3.1
            3.6
           . . .
     145
            3.0
     146
            2.5
     147
            3.0
     148
            3.4
     149
            3.0
     Name: sepal_width, Length: 150, dtype: float64
iris['sepal_width'].diff()
     0
            NaN
     1
           -0.5
     2
            0.2
     3
           -0.1
     4
            0.5
           . . .
     145
           -0.3
     146
           -0.5
     147
            0.5
     148
            0.4
     149
           -0.4
     Name: sepal_width, Length: 150, dtype: float64
iris['sepal_width'].diff().plot(kind="hist",stacked="True",bins=50)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f21e3af3650>

iris['sepal_width'].diff().plot(kind="hist",stacked="True",bins=15)

<matplotlib.axes._subplots.AxesSubplot at 0x7f21dea26910>

iris['sepal_width'].diff().plot(kind="hist",stacked="False",bins=50)

<matplotlib.axes._subplots.AxesSubplot at 0x7f21e2d2a150>

df=iris.drop(['species'], axis=1)
df.diff().head()

	sepal_length	sepal_width	petal_length	petal_width
0	NaN	NaN	NaN	NaN
1	-0.2	-0.5	0.0	0.0
2	-0.2	0.2	-0.1	0.0
3	-0.1	-0.1	0.2	0.0
4	0.4	0.5	-0.1	0.0

#pi chart

```
labels='python','C++','perl','C','D','R','java','php'
sizes=[215,130,245,210,70,780,901,450]
colors=['gold','green','yellow','red','blue','skyblue','lightskyblue','lightcoral']
plt.pie(sizes,labels=labels,colors=colors,
autopct='%1.2f%%',shadow=False)
plt.axis('equal')
plt.show()
```


series= pd.Series([0.2]*5)
series

- 0 0.2
- 1 0.2
- 2 0.2
- 3 0.2
- 4 0.2

dtype: float64

series= pd.Series([0.2]*5 , index=['a','b','c','d','e'] , name ='pie plot') series.plot.pie()

<matplotlib.axes._subplots.AxesSubplot at 0x7f21de71f510>

#SCATTER PLOT

df.plot.scatter(x='sepal_length',y='petal_length')

<matplotlib.axes._subplots.AxesSubplot at 0x7f21de35b390>

X