Dynamische Programmierung

Gegeben sei Instanz \mathcal{I} eines Problems.

Löse \mathcal{I} wie folgt:

- 1. Zerlege \mathcal{I} in Teilinstanzen $\mathcal{I}_1, \dots, \mathcal{I}_k$ für ein $k \geq 1$.
- 2. Löse die Teilinstanzen $\mathcal{I}_1, \ldots, \mathcal{I}_k$.
- 3. Kombiniere die Lösungen von $\mathcal{I}_1, \dots, \mathcal{I}_k$ zu Gesamtlösung von \mathcal{I} .

Dynamische Programmierung

Gegeben sei Instanz \mathcal{I} eines Problems.

Löse \mathcal{I} wie folgt:

- 1. Zerlege \mathcal{I} in Teilinstanzen $\mathcal{I}_1, \dots, \mathcal{I}_k$ für ein $k \geq 1$.
- 2. Löse die Teilinstanzen $\mathcal{I}_1, \ldots, \mathcal{I}_k$.
- 3. Kombiniere die Lösungen von $\mathcal{I}_1, \dots, \mathcal{I}_k$ zu Gesamtlösung von \mathcal{I} .

Unterschied zu Divide-and-Conquer: Speichere Lösungen der Teilinstanzen.

Fibonacci-Zahlen: Für $n \in \mathbb{N}_0$ sei die n-te Fibonacci-Zahl f_n wie folgt definiert:

$$f_n = egin{cases} 0 & ext{falls } n = 0, \ 1 & ext{falls } n = 1, \ f_{n-1} + f_{n-2} & ext{falls } n \geq 2. \end{cases}$$

Fibonacci-Zahlen: Für $n \in \mathbb{N}_0$ sei die n-te Fibonacci-Zahl f_n wie folgt definiert:

$$f_n = egin{cases} 0 & ext{falls } n = 0, \ 1 & ext{falls } n = 1, \ f_{n-1} + f_{n-2} & ext{falls } n \geq 2. \end{cases}$$

```
FIBREK(int n)

1 if (n == 0) return 0;

2 else if (n == 1) return 1;

3 else return FIBREK(n - 1)+FIBREK(n - 2);
```

Fibonacci-Zahlen: Für $n \in \mathbb{N}_0$ sei die n-te Fibonacci-Zahl f_n wie folgt definiert:

$$f_n = \begin{cases} 0 & \text{falls } n = 0, \\ 1 & \text{falls } n = 1, \\ f_{n-1} + f_{n-2} & \text{falls } n \ge 2. \end{cases}$$

FIBREK(int n)

- 1 if (n == 0) return 0;
- 2 else if (n == 1) return 1;
- 3 **else return** FibRek(n-1)+FibRek(n-2);

Fibonacci-Zahlen: Für $n \in \mathbb{N}_0$ sei die n-te Fibonacci-Zahl f_n wie folgt definiert:

$$f_n = egin{cases} 0 & ext{falls } n=0, \ 1 & ext{falls } n=1, \ f_{n-1}+f_{n-2} & ext{falls } n\geq 2. \end{cases}$$

FIBREK(int n)

- 1 if (n == 0) return 0;
- 2 else if (n == 1) return 1;
- 3 **else return** FibRek(n-1)+FibRek(n-2);

Exponentielle Laufzeit, da Teilprobleme mehrfach gelöst werden.

Zuschnittproblem

Eingabe: Länge $n \in \mathbb{N}$

Preise $p_1, \ldots, p_n \in \mathbb{N}$

Zuschnittproblem

Eingabe: Länge $n \in \mathbb{N}$

Preise $p_1, \ldots, p_n \in \mathbb{N}$

Ausgabe: optimaler Zuschnitt eines Brettes der Länge n

D. h. $\ell \in \{1,\ldots,n\}$ und Folge $i_1,\ldots,i_\ell \in \{1,\ldots,n\}$ mit $i_1+\ldots+i_\ell=n$

sodass Gesamterlös $\mathbf{p}_{i_1} + \ldots + \mathbf{p}_{i_\ell}$ größtmöglich ist.

Zuschnittproblem

Eingabe: Länge $n \in \mathbb{N}$

Preise $p_1, \ldots, p_n \in \mathbb{N}$

Ausgabe: optimaler Zuschnitt eines Brettes der Länge n

D. h. $\ell \in \{1, \ldots, n\}$ und Folge $i_1, \ldots, i_\ell \in \{1, \ldots, n\}$ mit $i_1 + \ldots + i_\ell = n$

sodass Gesamterlös $p_{i_1}+\ldots+p_{i_\ell}$ größtmöglich ist.

$$n = 5$$

Zuschnittproblem

Eingabe: Länge $n \in \mathbb{N}$

Preise $p_1, \ldots, p_n \in \mathbb{N}$

Ausgabe: optimaler Zuschnitt eines Brettes der Länge n

D. h. $\ell \in \{1,\ldots,n\}$ und Folge $i_1,\ldots,i_\ell \in \{1,\ldots,n\}$ mit $i_1+\ldots+i_\ell=n$

sodass Gesamterlös $p_{i_1}+\ldots+p_{i_\ell}$ größtmöglich ist.

Länge i	1	2	3	4	5	7	
Preis p _i	1	3	4	5	7		
	'	= 5					

Zuschnittproblem

Eingabe: Länge $n \in \mathbb{N}$

Preise $p_1, \ldots, p_n \in \mathbb{N}$

Ausgabe: optimaler Zuschnitt eines Brettes der Länge n

D. h. $\ell \in \{1,\ldots,n\}$ und Folge $i_1,\ldots,i_\ell \in \{1,\ldots,n\}$ mit $i_1+\ldots+i_\ell=n$

sodass Gesamterlös $\mathbf{p_{i_1}} + \ldots + \mathbf{p_{i_\ell}}$ größtmöglich ist.

Länge
$$i$$
 1
 2
 3
 4
 5

 Preis p_i
 1
 3
 4
 5
 7

$$n = 5$$

Für $i \in \{1, ..., n\}$ sei R_i optimaler Erlös eines Brettes der Länge i. Es gilt $R_0 = 0$ und $R_1 = p_1$.

Für $i \in \{1, ..., n\}$ sei R_i optimaler Erlös eines Brettes der Länge i.

Es gilt $R_0 = 0$ und $R_1 = p_1$.

Lemma 2.10

Für $i \in \{1, ..., n\}$ gilt $R_i = \max\{p_j + R_{i-j} \mid j \in \{1, ..., i\}\}.$

Für $i \in \{1, ..., n\}$ sei R_i optimaler Erlös eines Brettes der Länge i.

Es gilt $R_0 = 0$ und $R_1 = p_1$.

Lemma 2.10

Für
$$i \in \{1, ..., n\}$$
 gilt $R_i = \max\{p_j + R_{i-j} \mid j \in \{1, ..., i\}\}.$

Beweis:

Sei $j \in \{1, ..., i\}$.

Für $i \in \{1, ..., n\}$ sei R_i optimaler Erlös eines Brettes der Länge i.

Es gilt $R_0 = 0$ und $R_1 = p_1$.

Lemma 2.10

Für
$$i \in \{1, ..., n\}$$
 gilt $R_i = \max\{p_j + R_{i-j} \mid j \in \{1, ..., i\}\}.$

Beweis:

Für $i \in \{1, ..., n\}$ sei R_i optimaler Erlös eines Brettes der Länge i.

Es gilt $R_0 = 0$ und $R_1 = p_1$.

Lemma 2.10

Für
$$i \in \{1, ..., n\}$$
 gilt $R_i = \max\{p_j + R_{i-j} \mid j \in \{1, ..., i\}\}.$

Beweis:

Für $i \in \{1, ..., n\}$ sei R_i optimaler Erlös eines Brettes der Länge i.

Es gilt $R_0 = 0$ und $R_1 = p_1$.

Lemma 2.10

Für
$$i \in \{1, \ldots, n\}$$
 gilt $R_i = \max\{p_j + R_{i-j} \mid j \in \{1, \ldots, i\}\}.$

Beweis:

Sei i_1, \ldots, i_ℓ mit $i_1 + \ldots + i_\ell = i$ optimale Aufteilung.

Für $i \in \{1, ..., n\}$ sei R_i optimaler Erlös eines Brettes der Länge i.

Es gilt $R_0 = 0$ und $R_1 = p_1$.

Lemma 2.10

Für
$$i \in \{1, ..., n\}$$
 gilt $R_i = \max\{p_j + R_{i-j} \mid j \in \{1, ..., i\}\}.$

Beweis:

Für $i \in \{1, ..., n\}$ sei R_i optimaler Erlös eines Brettes der Länge i.

Es gilt $R_0 = 0$ und $R_1 = p_1$.

Lemma 2.10

Für
$$i \in \{1, ..., n\}$$
 gilt $R_i = \max\{p_j + R_{i-j} \mid j \in \{1, ..., i\}\}.$

Beweis:

Für $i \in \{1, ..., n\}$ sei R_i optimaler Erlös eines Brettes der Länge i.

Es gilt $R_0 = 0$ und $R_1 = p_1$.

Lemma 2.10

Für
$$i \in \{1, ..., n\}$$
 gilt $R_i = \max\{p_j + R_{i-j} \mid j \in \{1, ..., i\}\}.$

Beweis:

Sei i_1,\ldots,i_ℓ mit $i_1+\ldots+i_\ell=i$ optimale Aufteilung. $i_1 \qquad i-i_1$ $\Rightarrow R_i=p_{i_1}+\ldots+p_{i_\ell}\leq p_{i_1}+R_{i-i_1}.$ $\Rightarrow R_i\leq \max_i(p_i+R_{i-i})$

Lemma 2.10

Für $i \in \{1, ..., n\}$ gilt $R_i = \max\{p_j + R_{i-j} \mid j \in \{1, ..., i\}\}.$

```
ZUSCHNITTREK(int i)

1 if (i == 0) return 0;

2 R = -1;

3 for (j = 1; j <= i; j++)

4 R = \max\{R, p_j + \text{ZUSCHNITTREK}(i - j)\};

5 return R;
```

Lemma 2.10

```
Für i \in \{1, ..., n\} gilt R_i = \max\{p_j + R_{i-j} \mid j \in \{1, ..., i\}\}.
```

```
ZUSCHNITT(int n)

1  R_0 = 0;

2  for (i = 1; i <= n; i++) {

3  R_i = -1;

4  for (j = 1; j <= i; j++)

5  R_i = \max\{R_i, p_j + R_{i-j}\};

6  }

7  return R_n;
```

Lemma 2.10

```
Für i \in \{1, ..., n\} gilt R_i = \max\{p_j + R_{i-j} \mid j \in \{1, ..., i\}\}.
```

```
ZUSCHNITT(int n)

1  R_0 = 0;

2  for (i = 1; i <= n; i++) {

3  R_i = -1;

4  for (j = 1; j <= i; j++)

5  R_i = \max\{R_i, p_j + R_{i-j}\};

6  }

7  return R_n;
```

Theorem 2.11

Der Algorithmus Zuschnitt berechnet in Zeit $\Theta(n^2)$ den maximal erreichbaren Erlös R_n .

Ermittle nicht nur den Wert, sondern auch die Lösung.

```
ZUSCHNITT2(int n)
     R_0 = 0;
2 for (i = 1; i \le n; i++) {
     R_i = -1;
         for (j = 1; j <= i; j++) {
              if (p_i + R_{i-i} > R_i) {
 6
                   R_i = p_i + R_{i-i};
                   s_i = i:
10
     return R_n:
```

```
ZUSCHNITT2(int n)
     R_0 = 0;
    for (i = 1; i \le n; i++) {
          R_i = -1;
          for (j = 1; j <= i; j++) {
               if (p_i + R_{i-i} > R_i) {
                   R_i = p_i + R_{i-i};
                    s_i = i:
10
11
      return R_n;
```

	Länge i	1	2	3	4	5	6	7	8	9
•	Preis p_i									13
	s_i									
	R_i									

```
ZUSCHNITT2(int n)
                      R_0 = 0;
for (i = 1; i <= n; i++) {

R_i = -1;

for (j = 1; j <= i; j++) {

for (j = 1; j <= i; j++) {

for (j = 1; j <= i; j++) {

for (j = 1; j <= i; j++) {

for (j = 1; j <= i; j++) {

for (j = 1; j <= i; j++) }

for (j = 1; j <= i; j++) }

for (j = 1; j <= i; j++) }

for (j = 1; j <= i; j++) }
10
11
                        return R_n;
```



```
ZUSCHNITT2(int n)
      R_0 = 0;
    for (i = 1; i <= n; i++) {
2
3
4
5
6
7
8
9
      R_i = -1;
          for (j = 1; j <= i; j++)
                if (p_i + R_{i-i} > R_i) {
                    R_i = p_i + R_{i-i};
                    s_i = i:
10
11
      return R_n;
```



```
ZUSCHNITT2(int n)
     R_0 = 0;
    for (i = 1; i <= n; i++) {
      R_i = -1;
          for (j = 1; j <= i; j++) {
               if (p_i + R_{i-i} > R_i) {
                   R_i = p_i + R_{i-i};
                   s_i = i:
10
11
     return R_n;
```

Länge	i	1	2	3	4	5	6	7	8	9
Preis	p_i	1	3	5 🔻	5	9	10	10	11	13
s_i		1	2	3						
R_i		1	3	5						
				-1/						
			+3							


```
ZUSCHNITT2(int n)
      R_0 = 0;
    for (i = 1; i <= n; i++) {
2
3
4
5
6
7
8
9
      R_i = -1;
          for (j = 1; j <= i; j++) {
                if (p_i + R_{i-i} > R_i) {
                     R_i = p_i + R_{i-i};
                     s_i = i:
10
11
      return R_n;
```

Länge i	1	2	3	4	5	6	7	8	9
Preis p_i	1	3	5	5	9	10	10	11	13
s_i	1	2	3	1					
R_i	1	3	5	6^{\prime}					
-	•	+5	+3						


```
ZUSCHNITT2(int n)
     R_0 = 0;
    for (i = 1; i <= n; i++) {
          R_i = -1;
          for (j = 1; j <= i; j++) {
               if (p_i + R_{i-i} > R_i) {
                    R_i = p_i + R_{i-i};
                    s_i = i:
10
11
      return R_n;
```

Länge i	1	2	3	4	5	6	7	8	9		
Preis p_i	1	3	5	5	9	10	10	11	13		
s_i	1	2	3	1	5						
R_i	1	3	5	6	9'						
16, 13											


```
ZUSCHNITT2(int n)
      R_0 = 0;
    for (i = 1; i <= n; i++) {
2
3
4
5
6
7
8
9
           R_i = -1;
           for (j = 1; j <= i; j++) {
                if (p_i + R_{i-i} > R_i) {
                     R_i = p_i + R_{i-i};
                     s_i = i:
10
11
      return R_n;
```

Länge i	1	2	3	4	5	6	7	8	9			
Preis p_i		3			9	10	10	11	13			
s_i	1	2	3	1	5	1						
R_i	1	3	5	6	9	10						
	19 +8 +5											


```
ZUSCHNITT2(int n)
      R_0 = 0;
    for (i = 1; i <= n; i++) {
2
3
4
5
6
7
8
9
           R_i = -1;
           for (j = 1; j <= i; j++) {
                if (p_i + R_{i-i} > R_i) {
                     R_i = p_i + R_{i-i};
                     s_i = i:
10
11
      return R_n;
```

Länge i	1	2	3	4	5	6	7	8	9			
Preis p_i	1	3	5	5	9	10	10	11	13			
s_i	1	2	3	1	5	1	2					
R_i	1	3	5	6	9	10	12^{\prime}					
	+10 +9 +5 +5 +3 +1											


```
ZUSCHNITT2(int n)
      R_0 = 0;
    for (i = 1; i <= n; i++) {
2
3
4
5
6
7
8
9
           R_i = -1;
           for (j = 1; j <= i; j++) {
                if (p_i + R_{i-i} > R_i) {
                     R_i = p_i + R_{i-i};
                     s_i = i:
10
11
      return R_n;
```

Länge i	1	2	3	4	5	6	7	8	9		
Preis p_i	1	3	5	5	9	10	10	11	13		
s_i	1	2	3	1	5	1	2	3			
R_i	1	3	5	6	9	10	12	14^{\prime}			
+12+10+0+5+5+3+1											


```
ZUSCHNITT2(int n)
      R_0 = 0;
    for (i = 1; i <= n; i++) {
2 3 4 5 6 7 8 9
           R_i = -1;
           for (j = 1; j <= i; j++) {
                if (p_i + R_{i-i} > R_i) {
                     R_i = p_i + R_{i-i};
                     s_i = i:
10
11
      return R_n;
```

Länge i	1	2	3	4	5	6	7	8	9			
Preis p_i	1	3	5	5	9	10	10	11	13			
s_i	1	2	3	1	5	1	2	3	1			
R_i	1	3	5	6	9	10	12	14+1	15'			
+14 +10 +10 +5 +5 +3 +1												

2.3.2 Rucksackproblem

Rucksackproblem (Knapsack Problem (KP))

Eingabe: Nutzen $p_1, \ldots, p_n \in \mathbb{N}$

Gewichte $w_1, \ldots, w_n \in \mathbb{N}$

Kapazität $t \in \mathbb{N}$

Ausgabe: $x_1, \ldots, x_n \in \{0, 1\}$, sodass Gesamtnutzen $p_1 x_1 + \ldots + p_n x_n$ maximal

unter der Bedingung $w_1x_1 + \ldots + w_nx_n \le t$

2.3.2 Rucksackproblem

Rucksackproblem (Knapsack Problem (KP))

Eingabe: Nutzen $p_1, \ldots, p_n \in \mathbb{N}$

Gewichte $w_1, \ldots, w_n \in \mathbb{N}$

Kapazität $t \in \mathbb{N}$

Ausgabe: $x_1, \ldots, x_n \in \{0, 1\}$, sodass Gesamtnutzen $p_1 x_1 + \ldots + p_n x_n$ maximal

unter der Bedingung $w_1x_1 + \ldots + w_nx_n \le t$

Wie sehen geeignete Teilprobleme aus?

Sei $W = \max_{i \in \{1,\dots,n\}} w_i$.

Für jede Kombination aus $i \in \{1, \dots, n\}$ und $w \in \{0, \dots, nW\}$ sei

$$P(i, w) = \max\{p_1x_1 + \ldots + p_ix_i \mid w_1x_1 + \ldots + w_ix_i \leq w\}.$$

Rucksackproblem (Knapsack Problem (KP))

Eingabe: Nutzen $p_1, \ldots, p_n \in \mathbb{N}$

Gewichte $w_1, \ldots, w_n \in \mathbb{N}$

Kapazität $t \in \mathbb{N}$

Ausgabe: $x_1, \ldots, x_n \in \{0, 1\}$, sodass Gesamtnutzen $p_1 x_1 + \ldots + p_n x_n$ maximal

unter der Bedingung $w_1x_1 + \ldots + w_nx_n \le t$

Wie sehen geeignete Teilprobleme aus?

Sei $W = \max_{i \in \{1,...,n\}} w_i$.

Für jede Kombination aus $i \in \{1, \dots, n\}$ und $w \in \{0, \dots, nW\}$ sei

$$P(i, w) = \max\{p_1x_1 + \ldots + p_ix_i \mid w_1x_1 + \ldots + w_ix_i \leq w\}.$$

Dies ist das Rucksackproblem gegeben durch Objekte $1, \ldots, i$ und Kapazität w.

Für jede Kombination aus $i \in \{1, \dots, n\}$ und $w \in \{0, \dots, nW\}$ sei

$$P(i, w) = \max\{p_1x_1 + \ldots + p_ix_i \mid w_1x_1 + \ldots + w_ix_i \leq w\}.$$

Randfälle:

$$P(1, w) = \begin{cases} 0 & \text{falls } w < w_1 \\ p_1 & \text{falls } w \ge w_1 \end{cases}$$

Für jede Kombination aus $i \in \{1, ..., n\}$ und $w \in \{0, ..., nW\}$ sei

$$P(i, w) = \max\{p_1x_1 + \ldots + p_ix_i \mid w_1x_1 + \ldots + w_ix_i \leq w\}.$$

Randfälle:

$$P(1, w) = \begin{cases} 0 & \text{falls } w < w_1 \\ p_1 & \text{falls } w \ge w_1 \end{cases}$$

Konvention:

$$P(i, 0) = 0 \text{ und } P(i, w) = -\infty \text{ für alle } i \in \{1, ..., n\} \text{ und } w < 0.$$

Sei für ein $i \ge 2$ und für alle $w \in \{0, ..., nW\}$ der Wert P(i - 1, w) bekannt.

Ziel: Berechnung von P(i, w) für $w \in \{0, \dots, nW\}$.

Sei für ein $i \ge 2$ und für alle $w \in \{0, ..., nW\}$ der Wert P(i - 1, w) bekannt.

Ziel: Berechnung von P(i, w) für $w \in \{0, ..., nW\}$.

Sei $I \subseteq \{1, \ldots, i\}$ mit $\sum_{i \in I} w_i \le w$ und größtmöglichem Nutzen, d. h. $\sum_{i \in I} p_i = P(i, w)$.

Sei für ein $i \ge 2$ und für alle $w \in \{0, ..., nW\}$ der Wert P(i - 1, w) bekannt.

Ziel: Berechnung von P(i, w) für $w \in \{0, ..., nW\}$.

Sei $I \subseteq \{1, \dots, i\}$ mit $\sum_{i \in I} w_i \le w$ und größtmöglichem Nutzen, d. h. $\sum_{i \in I} p_i = P(i, w)$.

• Falls $i \notin I$, so ist $I \subseteq \{1, \dots, i-1\}$ mit $\sum_{j \in I} w_j \leq w$.

Sei für ein $i \ge 2$ und für alle $w \in \{0, ..., nW\}$ der Wert P(i - 1, w) bekannt.

Ziel: Berechnung von P(i, w) für $w \in \{0, ..., nW\}$.

Sei $I \subseteq \{1, \ldots, i\}$ mit $\sum_{i \in I} w_i \leq w$ und größtmöglichem Nutzen, d. h. $\sum_{i \in I} p_i = P(i, w)$.

• Falls $i \notin I$, so ist $I \subseteq \{1, \dots, i-1\}$ mit $\sum_{j \in I} w_j \le w$. $\Rightarrow P(i, w) = P(i-1, w)$

Sei für ein $i \ge 2$ und für alle $w \in \{0, ..., nW\}$ der Wert P(i - 1, w) bekannt.

Ziel: Berechnung von P(i, w) für $w \in \{0, \dots, nW\}$.

Sei $I \subseteq \{1, \ldots, i\}$ mit $\sum_{i \in I} w_i \le w$ und größtmöglichem Nutzen, d. h. $\sum_{i \in I} p_i = P(i, w)$.

- Falls $i \notin I$, so ist $I \subseteq \{1, ..., i-1\}$ mit $\sum_{j \in I} w_j \le w$. $\Rightarrow P(i, w) = P(i-1, w)$
- Falls $i \in I$, so ist $I \setminus \{i\} \subseteq \{1, \dots, i-1\}$ mit $\sum_{j \in I \setminus \{i\}} w_j \le w w_i$.

Sei für ein $i \ge 2$ und für alle $w \in \{0, ..., nW\}$ der Wert P(i - 1, w) bekannt.

Ziel: Berechnung von P(i, w) für $w \in \{0, ..., nW\}$.

Sei $I \subseteq \{1, \ldots, i\}$ mit $\sum_{i \in I} w_i \leq w$ und größtmöglichem Nutzen, d. h. $\sum_{i \in I} p_i = P(i, w)$.

- Falls $i \notin I$, so ist $I \subseteq \{1, \dots, i-1\}$ mit $\sum_{j \in I} w_j \le w$. $\Rightarrow P(i, w) = P(i-1, w)$
 - $\Rightarrow P(i, w) = P(i-1, w)$
- Falls $i \in I$, so ist $I \setminus \{i\} \subseteq \{1, \dots, i-1\}$ mit $\sum_{j \in I \setminus \{i\}} w_j \le w w_i$. $\Rightarrow \sum_{i \in I \setminus \{i\}} p_i = P(i-1, w - w_i)$

Sei für ein $i \ge 2$ und für alle $w \in \{0, ..., nW\}$ der Wert P(i - 1, w) bekannt.

Ziel: Berechnung von P(i, w) für $w \in \{0, ..., nW\}$.

Sei $I \subseteq \{1, \ldots, i\}$ mit $\sum_{i \in I} w_i \leq w$ und größtmöglichem Nutzen, d. h. $\sum_{i \in I} p_i = P(i, w)$.

- Falls $i \notin I$, so ist $I \subseteq \{1, \ldots, i-1\}$ mit $\sum_{j \in I} w_j \leq w$.
 - $\Rightarrow P(i, w) = P(i-1, w)$
- Falls $i \in I$, so ist $I \setminus \{i\} \subseteq \{1, \ldots, i-1\}$ mit $\sum_{j \in I \setminus \{i\}} w_j \leq w w_i$.

$$\Rightarrow \sum_{j \in I \setminus \{i\}} p_j = P(i-1, w-w_i)$$

$$\Rightarrow P(i, w) = P(i - 1, w - w_i) + p_i$$

Sei für ein i > 2 und für alle $w \in \{0, ..., nW\}$ der Wert P(i - 1, w) bekannt.

Ziel: Berechnung von P(i, w) für $w \in \{0, ..., nW\}$.

Sei $I \subseteq \{1, \ldots, i\}$ mit $\sum_{i \in I} w_i \leq w$ und größtmöglichem Nutzen, d. h. $\sum_{i \in I} p_i = P(i, w)$.

- Falls $i \notin I$, so ist $I \subseteq \{1, \ldots, i-1\}$ mit $\sum_{i \in I} w_i \leq w$.
 - $\Rightarrow P(i, w) = P(i 1, w)$
- Falls $i \in I$, so ist $I \setminus \{i\} \subseteq \{1, \dots, i-1\}$ mit $\sum_{i \in I \setminus \{i\}} w_i \leq w w_i$.

$$\Rightarrow \sum_{j \in I \setminus \{i\}} p_j = P(i-1, w-w_i)$$

\Rightarrow P(i, w) = P(i-1, w-w_i) + p_i

$$\Rightarrow P(i, w) = P(i-1, w-w_i) + p_i$$

Inspessant folgt $P(i, w) = \max\{P(i-1, w), P(i-1, w-w_i) + p_i\}.$

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,...,n\} und w < 0.

2  W = \max_{i \in \{1,...,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1, w) = 0;

4  for (w = w_1; w <= nW; w++) P(1, w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

Theorem 2.12

Der Algorithmus DYNKP bestimmt in Zeit $\Theta(n^2W)$ den maximal erreichbaren Nutzen einer gegebenen Instanz des Rucksackproblems.

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	v					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$													
1	2	2	$-\infty$													
3	4	3	$-\infty$													

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	,					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0												
3	4	3	$-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	υ					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$ $-\infty$	0_	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	-0											
3	4	3	$-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	υ					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$ $-\infty$	0	0_	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1										
3	4	3	$-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	,					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$ $-\infty$	0	0	0_	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2									
3	4	3	$-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	v					
p_i			< 0													
2	3	1	$-\infty$ $-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2^{\prime}								
3	4	3	$-\infty$													

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	v					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$ $-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3							
3	4	3	$-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	,					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$ $-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3						
3	4	3	$-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	,					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$ $-\infty$ $-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3					
3	4	3	$-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	v					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$ $-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3				
3	4	3	$-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	v					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$ $-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3			
3	4	3	$-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	v					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2 .	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3		
3	4	3	$-\infty$ $-\infty$ $-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	v					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$ $-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3	3	
3	4	3	$-\infty$													

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										v	v					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$ $-\infty$ $-\infty$	0	0	0	2	2	2	2	2	2	2	2	_2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$	0												

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										ι	U					
p_i	w_i		< 0													12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$ $-\infty$ $-\infty$	0_{+}	0 🧎	1	2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$	0	0											

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										ι	υ					
p_i			< 0													12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0_{+}	₃ 1 🧎	2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1										

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	v					
p_i	w_i		< 0													12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1_+	₃ 2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1	2									

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										ι	υ					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	₃ 2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1	2	3								

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	,					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1	2	3	-3							

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	,					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1	2	3	3	4						_

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	υ					
p_i	w_i		< 0													
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1	2	3	3	4	5					_

```
DYNKP

1  // Sei P(i, 0) = 0 und P(i, w) = -\infty für i \in \{1, ..., n\} und w < 0.

2  W = \max_{i \in \{1, ..., n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1, w) = 0;

4  for (w = w_1; w <= nW; w++) P(1, w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i, w) = \max\{P(i-1, w), P(i-1, w-w_i) + p_i\};

8  return P(n, t);
```

										u	,					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1	2	3	3	4	5	5				

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	v					
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1	2	3	3	4	5	5	6			

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

										u	v					
p_i			< 0													
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1	2	3	3	4	5	5	6	6		

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

			w														
p_i			< 0														
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2	
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3	3	3	
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1	2	3	3	4	5	5	6	6	6		

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

			w													
p_i	w_i		< 0													
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	2	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$ $-\infty$	0	0	1	2	3	3	4	5	5	6	6	6	6

```
DYNKP

1  // Sei P(i,0) = 0 und P(i,w) = -\infty für i \in \{1,\ldots,n\} und w < 0.

2  W = \max_{i \in \{1,\ldots,n\}} w_i;

3  for (w = 1; w < w_1; w++) P(1,w) = 0;

4  for (w = w_1; w <= nW; w++) P(1,w) = p_1;

5  for (i = 2; i <= n; i++)

6  for (w = 1; w <= nW; w++)

7  P(i,w) = \max\{P(i-1,w), P(i-1,w-w_i) + p_i\};

8  return P(n,t);
```

			w													
p_i	w_i	i	< 0	0	1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	$-\infty$	0	0	0	2	2	2	2	2	2	2	2	2	2
1	2	2	$-\infty$	0	0	1	2	$\frac{2}{4}$	3	3	3	3	3	3	3	3
3	4	3	$-\infty$ $-\infty$	0	0	1	2	3	3	4	5	5	6	6	6	6

Beispiel: Kapazität t = 8 P(3,8) = 5 optimale Lösung $\{1,3\}$

Kann der Algorithmus DYNKP als effizient angesehen werden?

Laufzeit von DYNKP beträgt $\Theta(n^2W)$.

Kann der Algorithmus DYNKP als effizient angesehen werden?

Laufzeit von DYNKP beträgt $\Theta(n^2W)$.

Unterschied zu Laufzeiten der bisherigen Algorithmen: Die Laufzeit hängt nicht nur von der Anzahl der Objekte, sondern zusätzlich von dem maximalen Gewicht W ab.

Kann der Algorithmus DYNKP als effizient angesehen werden?

Laufzeit von DYNKP beträgt $\Theta(n^2W)$.

Unterschied zu Laufzeiten der bisherigen Algorithmen: Die Laufzeit hängt nicht nur von der Anzahl der Objekte, sondern zusätzlich von dem maximalen Gewicht W ab.

⇒ Bereits Eingaben, die sich mit wenigen Bytes codieren lassen, können zu einer sehr großen Laufzeit führen.