Liste der noch zu erledigenden Punkte

Layout!	2
so richtig?	2
Wort?	2
Skizze	2
skipped: Very fast intro: Matlab and images	2
motions?P.4	3
Matlab stuff	4
basis	5
hier fehlt noch das Kronecker underarrow	7
Matlab-Code	7
Layout S.12 u	9
Exercise ?!	9
Layout!	17
Im Skript hier noch Beispiele und soetwas p. 32f	17
Layout!	18
Layout!	20
Kapitel sollte noch fehlergelesen werden. Es könnte noch einiges aus dem Skript übernommen werden. Es braucht etwas Layout	20

1.Overview

• "image society" (webpages: 1995 text-based, 2005 image based, 2015 video based . . .) - data transfer rates ↑, compression rates ↑ critical shift: reading \rightarrow watching • "Photoshop"-ing (remove wrinkles, bumps, ...) • Images in medicine ("medical image proscessing"), x-ray, CT, MRI, ultrasound, ... ("modalities"). different questions: Layout! measurments $\stackrel{?}{\Rightarrow}$ image align bottom \exp l: tomography \Rightarrow difficult mathematical problems 2.) Image enhancements - denoising simple pixels/lines: "sandpaper" interpolation so richtig? global noise: smoothing - grayscale histogramm balancing (spreading) distortion makes straight lines (in real world) straight (in the images) - edge detection contour enhancement - segmentation detect and separate parts of the image sequence of images of the same object \Rightarrow Wort?, compare Skizze → object following in a movie Our Focus: - mathematical models/methods/ideas - (algorthms) - ((implementation))

skipped: Very fast intro: Matlab and images

2. What is an image?

2.1 Discrete and continuous images

There are (at least) two different points of view:

Abbildung 2.1: Discrete Image

 $\frac{\text{Continous} / \text{Analogue}}{V}$

Abbildung 2.2: Continous Image

object: matrix

tools: linear algebra (SVD, ...)

pros: (finite storage) storage, complexity

cons: limitations: zooming, rotations, ...

function
analysis (differentrage, integrate, ...)
freedom, tools, motions?P.4
(e.g. edge discontinuity)
storage (infinite amout of data)

arguably, one has:

- real life \Rightarrow continuous "images" (objects)
- digital camers \Rightarrow discrete images

In general we will say:

Definition 2.1 ((mathematical) image). A (mathematical) image is a function

$$u:\Omega\to F$$
,

where:
$$\Omega \subset \mathbb{Z}^d$$
 (discrete) or $\Omega \subset \mathbb{R}^d$ (continuous) . . . $domain$ $d=2$ (typical case 2D), $d=3$ ("3D image" = body or $2D + time$) $d=4$ (3D + time)

 $F \dots range \ of \ colours$

$$F = \mathbb{R}$$
 or $[0, \infty]$ or $[0, 1]$ or $\{0, \dots 255\}$, ... grayscale (light intensity)

 $F \subset \mathbb{R}^3 \dots RGB \text{ image (colored)}$

$$F = \{0, 1\} \dots \text{black/white}$$

 $\begin{array}{l} \text{3 Layers} \\ \Rightarrow \text{colored images:w} \end{array}$

Matlab stuff

Large parts of the course: analytical approach (i.e. continuous domain Ω) Since we want to differentiate, . . . the image u.

Still: need to assume that also F ist continuous (not as $\{0,1\}, \{0,1,\ldots,255\}$ or \mathbb{N}) since otherwise the only differentiable (actually, the only continuous) functions $u:\Omega\to F$ are constant functions \Leftrightarrow single-colour images

Also: We usually take F one-dimensional $(F \subset \mathbb{R})$. Think of it as either

- gray scaled image, or
- treating R,G & B layer separately

2.2 Switching between discrete and continuous images

continuous \rightarrow discrete:

- divide the continuous image in small squared pieces (boxes) (superimpose grid)
- now: represent each box by one value
 - strategy 1: take function value $u(x_i)$ for $x_i = \text{midpoint of box } B_i$
 - strategy 2: use mean value

$$\frac{1}{|B_i|} \int_{B_i} u(x) dx$$

 \Rightarrow discrete image

strategy 1: simple (and quick) but problematic $(u(x_i))$ might represent $u|_{B_i}$ badly; for $u \in L^p$, single point evaluation not even defined)

strategy 2: more complex but also more "democratic" (actually closer to the way how CCD Sensors in digital cameras work)

often the image value of the box B_i gets also digitized, i.e. fitted (by scaling & rounding) into range $\{0, 1, dots, 255\}$

$discrete \rightarrow continous$

This is of course more tricky ...

• Again: each pixel of the discrete image corresponds to a "box" of the continuous image (that is still to be constructed)

Usually: pixel value → function value at the *midpoint* of the box
Question: How to get the other function values (in the box)?

idea 1: just take the function value of the nearest midpoint ("nearest neighbour interpolation")

For each $x \in B_i : u(x) := u(x_j)$ where $|x - x_j| = \min_k |x - x_k|$

- \Rightarrow $u(x) = u(x_i)$ for all $x \in B_i$
- \Rightarrow each box is uni-color
- \Rightarrow the continuous image is essentially still discrete

idea 2: (bi-) linear interpolation

Let a, b, c, d... function values at 4 surrounding adjacent midpoints (\nearrow figure)

 $\alpha, \beta, 1 - \alpha, 1 - \beta...$ distance to dotted lines (\nearrow figure, w.l.o.g, bob is 1×1)

interpolation (linear) on the dotted line between a and b:

$$e := a + \alpha(b - a) = (1 - \alpha)a + \alpha b$$

(1D - interpolation, convex combination)

Similarly:
$$f = (1 - \alpha)c + \alpha d$$

Then: The same 1D-interpolation between e and f $\Rightarrow u(x) := (1 - \beta) \cdot e + \beta \cdot f$ $= (1 - \beta)[(1 - \alpha)a + \alpha b] + \beta[(1 - \alpha)c + \alpha d]$ $= (1 - \alpha)(1 - \beta)a + \alpha(1 - \beta)b + (1 - \alpha)\beta c + \alpha\beta d$ $\in [0, 1] \land \Sigma = 1$

 \Rightarrow convex combination of the function values a,b,c,d at the the surrounding 4 midpoints (on which points is the nearest, instead of taking just a,b,c or d - depending)

 \Rightarrow 2D linear interpolation, bi-linear interpolation (can be interpreted as spline interpolation with bilinear basis splines).

Beispiel 2.2. Rotate image

by angle $\phi \neq k \cdot \frac{\pi}{2}$

• continuous image case: no problem

$$x = D_{\varphi} y$$
 $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, D_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$

$$y = D_{\varphi}^{-1} \ x = D_{-\varphi} \ x$$

 $\Rightarrow v(x) := u(y) = u(D_{-\varphi} x) \quad \forall x \in \text{domain of the rotated image}$

• discrete image case: problem!

For $x \in \text{domain of notated image}$, in general $D_{-\varphi} x \notin \text{domain of original image}^1$ Way out: v(x) := interpolation between the $u(\cdot)$ of the 4 surrounding pixels of $D_{-\varphi}$

Something to think about:

What happens in the limit (?) if we, starting with an image (discrete or continuous), repeatedly switch between discrete and continuous, non-stop ...?

Does the answer depend on the way of switching ? (continuous \rightarrow discrete: midpoint or average, discrete \rightarrow continuous: nearest neighbour or bilinear?)

 $^{^1\}mathrm{it's}$ not an integer

3. Histogramm and first applicatsion

3.1 The histogramm

Definition 3.1 (histogram). Let $\Omega \subset \mathbb{Z}^d$, $F \subset \mathbb{R}$ discrete and $u : \Omega \to F$ a discrete discrete image. The function

$$H_u: F \to \mathbb{N}_0 \ (:= \mathbb{N} \cup \{0\})$$

with

$$H_u(k) := \# \{ x \in \Omega : u(x) = k \}, \quad k \in F$$

is called histogramm of the image u.

 $H_u(k)$ counts how often colour k appears in u.

$$\sum_{k \in F} H_u(k) = |\Omega| = \text{number of pixels in the whole image}$$

or

$$\frac{H_u(k)}{|\Omega|} = \text{relative frequence of colour } k \text{ in image } u$$
 (relative Häufigkeit)

Beispiel 3.2.

If u ist a continous image, H_u can be understood as a measure (generalized function)¹. Another way to write this:

$$H_u(k) = \sum_{x \in \Omega} \delta_{u(x)}(k), \ k \in F$$

$$H_u(k) = \int_{\Omega} \delta_{u(x)}(k) dx, \ k \in F$$

hier fehlt noch das Kronecker underarrow

Matlab-Code

¹density of a probability distribution

3.2 Application: contrast enhancement

If the image only uses a small part of the available colour/grayscale "palette" F, then its contrast can be improved by "spreading" the histogramm over all of F. Simple idea:

5

The above simple idea ("contrast stretching") corresponds to

$$\begin{split} \varphi: k_{\min} &\mapsto 0 \\ k_{\max} &\mapsto N \\ \text{and linear in between} \end{split}$$
 i.e
$$\varphi(k) &= \left[\frac{k-k_{\min}}{k_{\max}-k_{\min}}\right] \end{split}$$

Where $[\ \cdot\]$ means . . . rounding to the nearest integer (assuming that $F=\{0,1,\ldots,N\}.$ Example histogram:

A bit more sophisticated:

$$\varphi: (k_{\min} \mapsto 0)$$

$$k_{\max} \mapsto N$$
and **non** linear in between

such that colour ranges that occur more frequently in u can occupy a larger range of colours in u. (\Rightarrow visibility \uparrow)

Example histogramm spread out according to frequency of occurence:

 \Rightarrow ,,density" is equalized over $F = \{0, \dots, N\}$

Ideal would be:

Layout S.12 u

Note: The new colours (i.e the location of the bars in the histogramm of u) only depend on the frequencies / height of the bars in H_u but not on the colours/location of the bars in H_u

Finally: The formula

$$\varphi(k) = \left[\frac{N}{|\Omega|} \sum_{l=0}^{k} H_u(l) \right]$$

This process is called "histogramm equalization"

Exercise ?!

3.3 Another application: conversion to b/w

Task: convert grayscale image to black white

- interesting for object detection/segmentation ...!

Idea: Find a threshold $t \in T$ s.t. the histogramm splits into two "characteristic" parts

For $t \in F$ put

$$\begin{aligned} \text{black} &:= \{k \in F : k \leq t\} \\ \text{white} &:= \{k \in F : k > t\} \end{aligned}$$

and

$$\widetilde{u} := \begin{cases} 0, & u(x) \in \text{black} \\ 1, & u(x) \in \text{white} \end{cases} \quad \widetilde{F} = \{0, 1\}$$

How to find the threshold t:

1.) Shape based methods If the histogramm is "biomodal" Put $t := \frac{k_{\max_1} + k_{\max_2}}{2}$ or $t := k_{\min}$

4.Basic Morphological Operations

 $\ensuremath{\mathrm{B}}/\ensuremath{\mathrm{W}}$ Bild:

<u>Structural element</u>:

4.1 Operations on A and B

$$A+B:=\{a+b:a\in A,b\in B\}$$

This is called $\underline{\text{dilation}}$.

You might imagine that at every dark point in the image A the Structurelement is applied.

Image created in Matlab through:

```
I=imread('Bild1.png');
se=strel('disk',40,8);
I2=imcomplement(imdilate(imcomplement(I),se));%I am using the complement of the image
    here so that the structural element is applied to the dark parts of the image
imshow(I2);
```

$$A - B := \{a : a + B \subset A\}$$

This is called $\underline{\text{erosion}}$.

You can imagine that you search for the points in which the structural element fits.

Image created in Matlab thorugh:

```
1    I=imread('Bild1.png');
2    se=strel('disk',20,8);
3    I2=imcomplement(imerode(imcomplement(I),se));
4    imshow(I2);
```

One may quickly realize that $A \neq (A + B) - B$, so a new Operation is introduced:

$$A \bullet B := (A + B) - B$$

This is called $\underline{\text{closing}}$ and is used to e.g. remove noise. In the example image you might notice that the upper $\underline{\text{window}}$ is missing.

Image created in Matlab thorugh:

The inverse also exists:

$$A \circ B := (A - B) + B$$

This is called opening .

This time with a new example:

$$A =$$

Image created in Matlab thorugh:

```
I=imread('Bild2.png');
se=strel('line',10,90);
I2=imcomplement(imerode(imcomplement(I),se));
I3=imcomplement(imerode(imcomplement(I2),se));
imshow(I3);
```

5.Entrauschen: Filter und Co

5.1 Noise

Noise = Unwanted disturbances in an image. Mostly becaue of

- point wise
- random
- independent

We consider noise to be an additive disturbances (for multiplicative noise use log). Notation:

The quality of the denoised image u compared to the original image f_0 is described by norms:

$$\begin{split} &||f-f_0||\dots \text{ noise}\\ &||u-f_0||\dots \text{ absolute error}\\ &\frac{||u-f_o||}{||f-f_0||}\dots \text{ relative error} \quad \text{compared to the noise}\\ &\frac{||u-f_o||}{||f_0||}\dots \text{ relative error compared to the signal} \end{split}$$

Typically the chosen norm is:

$$||f|| = ||f||_2 = \sqrt{\int_{\Omega} |f(x)|^2 dx}$$

or in the discrete:

$$||f||_2 = \sqrt{\sum_{x \in \Omega} |f(x)|^2}$$

Closely connected is the Signal to noise ratio (SNR):

$$log(\underbrace{\frac{||f_0||_2}{||u-f_0||_2}}) \in [0, +\infty)$$
, where 0 is bad and $+\infty$ is good.

5.2 smoothing filter

Idea: (to simplify in 1D)

$$u(k) := \alpha \cdot f(k-1) + \beta \cdot f(k) + \gamma \cdot f(k+1) \tag{5.1}$$

where:

$$\alpha + \beta + \gamma = 1 \tag{5.2}$$

More precisely (5.1) means:

With (5.1) there is a mapping $f \mapsto u$, we write

 $u = m \otimes f$, this is called <u>Correlation</u>.

where:

$$(m \otimes f)(k) = \sum_{i \in supp(m)} m(i)f(k+i)$$
(5.3)

and:

If you set j := k + i in (5.1), then i = j - k, which means:

$$(m \otimes f)(k) = \sum_{i \in supp(m)} m(j-k)f(j)$$
(5.4)

To apply the mapping onto the boundary the image is reflected, in 1D:

in 2D:

Formula (5.4) might remind one of the <u>convolution</u>:

Layout!

$$(g * f)(k) = \sum_{j \in \mathbb{Z}} g(\underbrace{k - j}_{\text{Difference to (5.4)}}) \cdot f(j)$$
(5.5)

If you set $g(i) := m(-i) =: \tilde{m}(i)$, which corresponds to a reflection of the Mask, then

$$m \circledast f = g * f = \tilde{m} * f$$

Im Skript hier noch Beispiele und soetwas p. 32f

Properties of the convolution:

- 1. (f * g) * h = f * (g * h), Associativity
- 2. f * g = g * f, Commutativity
- 3. $\tilde{f} * \tilde{g} = \widetilde{f * g}$, Compatibility with reflection

Properties of the correlation:

1.
$$f \otimes (g \otimes h) = \tilde{f} * (\tilde{g} * h) \stackrel{\boxed{1}}{=} (\tilde{f} * \tilde{g}) * h \stackrel{\boxed{3}}{=} (\tilde{f} * g) * h = (f * g) \otimes h \neq (f \otimes g) \otimes h$$
, not associative!

2.
$$f \otimes g = \tilde{f} * g = g * \tilde{f} = \tilde{g} * \tilde{$$

3.
$$\tilde{f} \otimes \tilde{g} = \tilde{\tilde{f}} * \tilde{g} = \widetilde{\tilde{f}} * \tilde{g} = \widetilde{\tilde{f}} * \tilde{g} = \widetilde{\tilde{f}} \otimes \tilde{g}$$
, Compatibility with reflection

$$\begin{tabular}{l} $ \mathbb{E}$ und * definiert man auf: $\ell^1(\mathbb{Z}^d):=\left\{f=(f_i)_{i\in\mathbb{Z}^d}: \underbrace{\sum_{i\in\mathbb{Z}^d}|f_i|<\infty}_{:=||f||_1}\right\} $ \end{tabular}$$

Man kann zeigen (Übung): $f,g \in \ell^1 \Rightarrow f * g \in \ell^1$ und $||f * g||_1 \leq ||f||_1 \cdot ||g||_1$. Wobei oft die Gleichheit gilt.

Alles gilt auch in der Kontinuierlichen Version:

$$L^{1}(\mathbb{R}^{d}) := \left\{ f : \mathbb{R}^{d} \to \mathbb{R} : \underbrace{\int_{\mathbb{R}^{d}} |f| \, dx}_{:=||f||_{1}} < \infty \right\}$$

$$f,g\in L^1(\mathbb{R}^d): (g*f)(x)=\int_{\mathbb{R}^d}g(x-y)f(y)dy,\ y,x\in\mathbb{R}^d$$

Beispiel für den kontinueirlichen Fall:

Hierbei gilt $\int_{\mathbb{R}} g(x)dx = 1$

 $g \otimes f = \text{gleitendes Mittel}$.

Layout!

Weitere Eigenschaften der Faltung:

Für alle $f, g \in L^1$ or ℓ^1

$$(g_1 + g_2) * f = (g_1 * f) + (g_2 * g)$$
$$(\alpha g) * f = \alpha (g * f)$$
 = Linearität

Somit ist:

$$g \mapsto f * g$$

ein linearer Operator.

Formt ℓ^1 bzw. L^1 eine Algebra mit neutralem Element δ ? ℓ^1 ?:

Ja!

 L^1 ?: Für ein solches Element muss gelten:

$$\forall f \in L^1 : d * f = f$$

$$\forall x \in \mathbb{R} : \int_{\mathbb{R}^d} \underbrace{\delta(x - y)}_{=0 \forall x \neq y} f(y) dy = f(x)$$

Diese Funktion wird <u>Dirac-Impuls</u> gennant ist aber kein Element von L^1 . Nun zu Masken in 2D:

$$u = m * f \text{ mit } m = \boxed{ \begin{array}{c|c} \alpha \\ \beta & \gamma & \delta \\ \hline & \epsilon \end{array} }$$

wobei $\alpha + \beta + \gamma + \delta + \epsilon = 1$

Kurzschreibweise: $u_{ij}:=u(x)$ wobei $x=\binom{i}{j}\in\mathbb{Z}^2$, analog für f_{ij} .

$$\Rightarrow u_{ij} = \alpha f_{i-1,j} + \beta f_{i,j-i} + \gamma f_{ij} + \delta f_{i,j+1} + \epsilon f_{i+1,j}$$

$$u = m \otimes f = \tilde{m} * f \text{ mit } \tilde{m} = \boxed{ \begin{array}{c|c} \epsilon \\ \delta & \gamma & \beta \\ \hline \alpha & \end{array} }$$

Symmetrischer Fall:

$$\tilde{m} = \boxed{\alpha} \boxed{\gamma} \boxed{\alpha} \text{ mit } \gamma = 1 - 4\alpha$$

$$u_{ij} = (1 - 4\alpha)f_{ij} + \alpha(f_{i-1,j} + f_{i,j-1} + f_{i,j+1} + f_{i+1,j})$$

$$\text{Erinnerung:} \boxed{f_0} \xrightarrow{+ \text{Rauschen}} \boxed{f} \boxed{\text{Entrauschen}} \boxed{u}$$
Sauberes Bild Gestörtes Bild Resultat

Annahme: $f_{ij} = f_{ij} + r_{ij}$ mit $r_{ij} \sim N(0, \sigma^2)$ iid. z.z.: $Var(u_{ij}) \leq Var(f_{ij})$

$$Var(f_{ij}) = E(\underbrace{f_{ij} - Ef_{ij}}_{r_{ij}})^2 = \sigma^2$$

Layout!

$$Var(u_{ij}) = E(u_{ij} - Eu_{ij})^{2} = E((1 - 4\alpha)(\underbrace{f_{ij} - f_{ij}^{0}}_{r_{ij}}) + \alpha(\underbrace{(f_{i-1,j} - f_{i-1,j}^{0})}_{r_{i-1,j}} + \dots + \underbrace{(f_{i+1,j} - f_{i+1,j}^{0})}_{r_{i+1,j}}))^{2}$$

$$= E((1 - 4\alpha)^{2}r_{ij}^{2} + \alpha^{2}(r_{i-1,j}^{2} + r_{i,j-1}^{2} + r_{i,j+1}^{2} + r_{i+1,j}^{2}) + 2(1 - 4\alpha)\alpha r_{ij}r_{i-1,j}\dots)$$

$$= (1 - 4\alpha)^{2}\underbrace{Er_{i,j}^{2}}_{\sigma^{2}} + \alpha^{2}(Er_{i-1,j}^{2} + \dots + Er_{i+1,j}^{2}) + 2(1 - 4\alpha)\alpha\underbrace{E(r_{ij}r_{i-1,j})}_{0} + \underbrace{\dots}_{0})$$

$$= (1 - 4\alpha)^{2}\sigma^{2} + \alpha^{2}4\sigma^{2} = (1 - 8\alpha + 16\alpha^{2} + 4\alpha^{2})\sigma^{2}$$

Da $0 \le \alpha$ und $0 \le 1 - 4\alpha \Rightarrow 0 \le \alpha \le \frac{1}{4}$:

$$(1 - 8\alpha + 16\alpha^{2} + 4\alpha^{2})\sigma^{2} = \underbrace{1 + \underbrace{20\alpha}_{\geq 0}(\alpha - \frac{2}{5})}_{\leq 1}$$

$$\Rightarrow Var(u_{ij}) \leq Var(f_{ij}) \text{ für } \alpha \in [0, \frac{1}{4}]$$

Dabei gilt: $Var(u_{ij}) \stackrel{\alpha}{\to} d\min \iff 1 - 8\alpha + 20\alpha^2 \stackrel{\alpha}{\to} \min \iff -8 + 40\alpha = 0 \iff \alpha = \frac{1}{5}$

$$\Rightarrow \text{bester Filter}: \begin{array}{|c|c|}\hline \frac{1}{5}\\ \hline \frac{1}{5} & \frac{1}{5} & \frac{1}{5}\\ \hline \frac{1}{5} & \frac{1}{5}\\ \hline \end{array}$$

Kapitel sollte noch fehlergelesen werden. Es könnte noch einiges aus dem Skript übernommen werden. Es braucht etwas Layout

5.3 Frequenzfilter