Activity 1.7.1: Solving Problems Involving Linear Equations

Total points = 39

Answers

- 1. Let: y = value V of the equipment, ✓ $x = \text{time } t \text{ in years } \checkmark$ $y = mx + b\checkmark$ V = -40,000t + 200,000V = -40,000(4) + 200,000V = -160,000 + 200,000 $V = 40,000 \checkmark$
- 2. Let: $x = \text{speed of the truck} \checkmark$ x + 5 = speed of the car \checkmark 4x =distance covered by the truck√ 4(x + 5) =distance covered by the car√ 4x + 4(x + 5) = 3804x + 4x + 20 = 3808x + 20 - 20 = 380 - 20 $\frac{8x}{8} = \frac{360}{8} \checkmark$ $\vec{x} = 45$ kph (speed of the 5. Let: y = amount to save in truck) < x = 50 kph (speed of the car)
- 3. Let: t = time of runner running 🗸 $t-1.5 = \text{time of cyclist} \checkmark$ 6t = distance covered by

- 12(t-1.5) = distance coveredby cyclist ✓ $12(t-1.5) = 6t \checkmark$ $12t - 18 = 6t \checkmark$ 12t - 6t - 18 + 18 = 6t - 6t + 18t = 3 hours \checkmark
- 4. Let: y = fare, \checkmark x =distance covered minus 4 km ✓ $y = mx + b\checkmark$ y = 2x + 10 $y = 2(24) + 10\checkmark$ y = 48 + 10y = P58 the cost of a 28-km ride 🗸
- $x = \text{number of weeks } \checkmark$ 2,375 = 75x + 500 $2,375-500=75x+500-500\checkmark$ $\frac{1,875}{75} = \frac{75x}{75} \checkmark$ x = 25 number of weeksto save the amount for the

addition, <

Activity 1.7.1: Solving Problems Involving Linear Equations

Total points = 39

Answers

- 1. Let: y = value V of the equipment, ✓ $x = \text{time } t \text{ in years } \checkmark$ $y = mx + b\checkmark$ $V = -40,000t + 200,000\checkmark$ $V = -40,000(4) + 200,000\checkmark$ V = -160,000 + 200,000 $V = 40,000 \checkmark$
- 2. Let: $x = \text{speed of the truck} \checkmark$ x + 5 = speed of the car \checkmark 4x =distance covered by the truck 🗸 4(x + 5) =distance covered by the car√ 4x + 4(x + 5) = 3804x + 4x + 20 = 3808x + 20 - 20 = 380 - 20 $\frac{\tilde{8x}}{8} = \frac{360}{8} \checkmark$ truck) ✓ x = 50 kph (speed of the car)
- 3. Let: t = time of runner running √ $t-1.5 = \text{time of cyclist} \checkmark$ 6t = distance covered by

- 12(t-1.5) = distance coveredby cyclist ✓ $12(t-1.5) = 6t \checkmark$ $12t - 18 = 6t \checkmark$ 12t - 6t - 18 + 18 = 6t - 6t + 18t = 3 hours \checkmark
- 4. Let: $y = \text{fare}, \checkmark$ x =distance covered minus 4 km ✓ $y = mx + b\checkmark$ y = 2x + 10y = 2(24) + 10y = 48 + 10y = P58 the cost of a 28-km ride 🗸
- $\vec{x} = 45$ kph (speed of the 5. Let: y = amount to save in addition, < $x = \text{number of weeks } \checkmark$ 2,375 = 75x + 5002,375-500 = 75x+500-500 $\frac{1,875}{75} = \frac{75x}{75} \checkmark$ x = 25 number of weeksto save the amount for the shoes.

Activity 1.7.1: Solving Problems Involving Linear Equations

Total points = 39

Answers

- 1. Let: y = value V of the equipment, ✓ $x = \text{time } t \text{ in years } \checkmark$ $y = mx + b\checkmark$ $V = -40,000t + 200,000\checkmark$ V = -40,000(4) + 200,000V = -160,000 + 200,000V = 40,000
- 2. Let: $x = \text{speed of the truck} \checkmark$ x + 5 = speed of the car \checkmark 4x =distance covered by the 4(x + 5) =distance covered by the car√ 4x + 4(x + 5) = 3804x + 4x + 20 = 3808x + 20 - 20 = 380 - 20 $\frac{\tilde{8x}}{8} = \frac{360}{8} \checkmark$ x = 45 kph (speed of the 5. Let: y = amount to save in truck) ✓ x = 50 kph (speed of the car)
- 3. Let: t = time of runner running 🗸 $t-1.5 = \text{time of cyclist} \checkmark$ 6t = distance covered by runner 🗸

- 12(t-1.5) = distance coveredby cyclist ✓ $12(t-1.5) = 6t \checkmark$ $12t - 18 = 6t \checkmark$ 12t - 6t - 18 + 18 = 6t - 6t + 18 $\frac{6t}{6} = \frac{18}{6} \checkmark$ $t = 3 \text{ hours } \checkmark$
- 4. Let: y = fare, \checkmark x =distance covered minus 4 km ✓ $y = mx + b\checkmark$ y = 2x + 10y = 2(24) + 10y = 48 + 10y = P58 the cost of a 28-km ride √
- addition, < $x = \text{number of weeks } \checkmark$ 2,375 = 75x + 500 $2,375-500 = 75x+500-500\checkmark$ $\frac{1,875}{75} = \frac{75x}{75} \checkmark$ x = 25 number of weeksto save the amount for the shoes√

🛓 Activity 1.7.1: Solving Problems Involving Linear Equations

Total points = 39

Answers

- $\frac{1}{2}$ 1. Let: y = value V of the equipment, ✓ $x = \text{time } t \text{ in years } \checkmark$ $y = mx + b\checkmark$ $V = -40,000t + 200,000\checkmark$ V = -40,000(4) + 200,000V = -160,000 + 200,000V = 40,000
- 2. Let: $x = \text{speed of the truck} \checkmark$ x + 5 = speed of the car \checkmark 4x =distance covered by the 4(x + 5) =distance covered by the car√ 4x + 4(x + 5) = 3804x + 4x + 20 = 3808x + 20 - 20 = 380 - 20 $\frac{8x}{8} = \frac{360}{8} \checkmark$ x = 45 kph (speed of the 5. Let: y = amount to save in truck) ✓ x = 50 kph (speed of the car)
- 3. Let: t = time of runner running √ $t-1.5 = \text{time of cyclist} \checkmark$ 6t = distance covered by runner 🗸

- 12(t-1.5) = distance coveredby cyclist ✓ 12(t-1.5) = 6t \checkmark $12t - 18 = 6t \checkmark$ 12t - 6t - 18 + 18 = 6t - 6t + 18 $\frac{6t}{6} = \frac{18}{6} \checkmark$
- 4. Let: $y = \text{fare}, \checkmark$ x =distance covered minus 4 km ✓ $y = mx + b\checkmark$ $y = 2x + 10\checkmark$ y = 2(24) + 10y = 48 + 10y = P58 the cost of a 28-km ride √
- addition, < $x = \text{number of weeks } \checkmark$ 2,375 = 75x + 500 $2,375-500 = 75x+500-500\checkmark$ $\frac{1,875}{75} = \frac{75x}{75} \checkmark$ $\frac{75}{75} = \frac{75}{75}$ x = 25 number of weeks to save the amount for the shoes√