REVIEW

Matrices and Gaussian Elimination

Vector Spaces

Orthogonality

Determinants

Eigenvalues and Eigenvectors

Positive Definite Matrices

Matrix

- $\Box A + B, kA, AB$
- $\Box A^T$
- four fundamental subspaces
- Elementary operations
- Rank
- Matrix factorization

$$A = LU$$
 $A = LDU$
 $PA = LDU$

•••

Square matrix

□ Invertible: A^{-1}

Vector Spaces and Vectors

- Vector space
- Subspaces: Spanning sets and spanned subspaces
- Orthogonal Subspaces
- Orthogonal complement
- Linear combinations
- Linear dependence and linear independence.
- basis
- Inner product
- Length
- Cosines
- Orthogonal vectors

3.1 Orthogonal Subspaces

C(A) = column space of A; dimension r.

N(A) = nullspace of A; dimension n-r.

 $C(A^{T})$ = row space of A; dimension r.

 $N(A^{\mathrm{T}}) = \text{left nullspace of } A; \text{ dimension } \underline{m-r}.$

$$\subseteq \mathbf{R}^m$$

$$\subseteq \mathbf{R}^n$$
 $r + (n - r) = n$

$$\subseteq \mathbf{R}^n$$
 $r + (m - r) = m$

$$\subseteq \mathbf{R}^m$$

Theorem Let A be a matrix. Then the row space $C(A^T)$ is orthogonal to the nullspace N(A), and the column space C(A) is orthogonal to the left nullspace $N(A^T)$. Moreover, if A has size $m \times n$, then

$$N(A) = (C(A^T))^{\perp}$$
, and $N(A^T) = (C(A))^{\perp}$.

In other words: The nullspace is the orthogonal complement of the row space in \mathbb{R}^n . The left nullspace is the orthogonal complement of the column space in \mathbb{R}^m .

The true action $Ax = A(x_{row} + x_{null})$ of any m by n matrix.

3.2 Projection onto a Line

Proposition The projection proj_a satisfies

$$\operatorname{proj}_a(\boldsymbol{b}) = \frac{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}} \boldsymbol{a}.$$

Projection onto a line is carried out by a *projection matrix* P:

$$P = \frac{aa^{\mathrm{T}}}{a^{\mathrm{T}}a}.$$

P is a matrix of rank 1, and as a linear transformation, it transforms a vector b to its projection $\operatorname{proj}_a(b) = Pb$.

3.3 Least Squares

Theorem. If a system Ax = b is inconsistent (has no solution),

its least-squares solution minimizes $||Ax - b||^2$:

$$A^{\mathrm{T}}A\widehat{x} = A^{\mathrm{T}}b$$
. (Normal equations)

Moreover, if $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is invertible, then

$$\widehat{\boldsymbol{x}} = (\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathrm{T}}\boldsymbol{b}.$$
 (Best estimate)

The projection of b onto the column space is the nearest point $A\hat{x}$:

$$p = A\widehat{x} = A(A^{T}A)^{-1}A^{T}b.$$
 (Projection)

Projection onto the column space of a 3 by 2 matrix

$$Ax = b$$

- Consistent
 - □ It has a unique solution.
 - □ It has infinitely many solutions.

$$x = x_p + x_n$$

where $x_n \in N(A)$.

- Inconsistent
 - \square \widehat{x} : Least Squares solutions
 - \square The best \widehat{x} is the vector that minimizes the squared error

$$E^2 = ||Ax - b||^2.$$

3.4 Gram-Schmidt Orthogonalization

Convert a skewed set of axes into a perpendicular set

In \mathbb{R}^n , we try to make the independent vectors \boldsymbol{a} , \boldsymbol{b} , \boldsymbol{c} orthonormal.

Let $q_1 = a/||a||$ to make it a unit vector.

Take
$$\mathbf{B} = \mathbf{b} - \mathbf{\gamma}_{12} = \mathbf{b} - (\mathbf{q}_1^{\mathrm{T}} \mathbf{b}) \mathbf{q}_1$$
, and $\mathbf{q}_2 = \mathbf{B} / ||\mathbf{B}||$.

The vector c will not be in the plane of q_1 and q_2 , which is the plane of a and b.

Take

$$m{C} = m{c} - m{\gamma}_3 = m{c} - m{(q_1^T c)} m{q}_1 - m{(q_2^T c)} m{q}_2,$$
 and $m{q}_3 = m{C} / \| m{C} \|.$

QR Factorization

$$a = (\mathbf{q}_1^{\mathrm{T}} a) \mathbf{q}_1,$$

$$b = (\mathbf{q}_1^{\mathrm{T}} b) \mathbf{q}_1 + (\mathbf{q}_2^{\mathrm{T}} b) \mathbf{q}_2,$$

$$c = (\mathbf{q}_1^{\mathrm{T}} c) \mathbf{q}_1 + (\mathbf{q}_2^{\mathrm{T}} c) \mathbf{q}_2 + (\mathbf{q}_3^{\mathrm{T}} c) \mathbf{q}_3.$$

If we express that in matrix form we have *the new factorization* A = QR:

$$egin{aligned} oldsymbol{A} = [oldsymbol{a} & oldsymbol{b} & oldsymbol{c}] = [oldsymbol{q}_1 & oldsymbol{q}_2 & oldsymbol{q}_3] egin{bmatrix} oldsymbol{q}_1^{\mathrm{T}} oldsymbol{a} & oldsymbol{q}_1^{\mathrm{T}} oldsymbol{b} & oldsymbol{q}_1^{\mathrm{T}} oldsymbol{c} \\ oldsymbol{q}_2^{\mathrm{T}} oldsymbol{b} & oldsymbol{q}_2^{\mathrm{T}} oldsymbol{c} \\ oldsymbol{q}_3^{\mathrm{T}} oldsymbol{c} \end{bmatrix} = oldsymbol{Q} oldsymbol{R}. \end{aligned}$$

- **R** is *upper triangular* because of the way Gram-Schmidt was done.
- Q has orthonormal columns.

4.1-4.3 Formulas and Properties of Determinants

The definition of determinant is expanded along **row 1**. Actually it can be extended along any row, or any column, resulting in same value of the determinant.

Theorem The determinant of A can be calculated by expanding along row i,

$$|A| = (-1)^{i+1} a_{i1} |A_{i1}| + (-1)^{i+2} a_{i2} |A_{i2}| + \dots + (-1)^{i+n} a_{in} |A_{in}|,$$

and by expanding along column j,

$$|A| = (-1)^{1+j} a_{1j} |A_{1j}| + (-1)^{2+j} a_{2j} |A_{2j}| + \dots + (-1)^{n+j} a_{nj} |A_{nj}|.$$

Note: The determinant of the submatrix A_{ij} with the correct sign is also called the **cofactor** (代数余子式), denoted by $C_{ij} = (-1)^{i+j} |A_{ij}|$.

Pay attention to the sign! For example,
$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}, \quad \begin{vmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{vmatrix}$$

Summary of

The properties of Determinant

(可用于计算)

转置不改

换行反号

因子能提

行列可拆

倍加不变

三角化法

(Using elementary operations to find determinants)

4.4 Applications of Determinants

Define the **cofactor matrix** as

$$C = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}, \text{ and } A^* = C^T = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}.$$

A* is called the adjoint matrix (adjugate matrix, 伴随矩阵) of A.

The method to find the inverse of a matrix (求逆矩阵的**伴随矩阵法**):

- (1) Calculate the determinant of $A = [a_{ii}]$;
- (2) If A = 0, then A is not invertible;
- (3) If $/A / \neq 0$, then find the cofactor of each entry a_{ij} and the adjoint matrix of A, denoted by A^* , and finally we get $A^{-1} = \frac{1}{|A|}A^*.$

$$A^{-1} = \frac{1}{|A|}A^*$$
.

5.1 Eigenvalues and Eigenvectors

A **Process** for finding eigenvalues and eigenvectors of a matrix **A**:

1. Compute the determinant of $A - \lambda I$.

With λ subtracted along the diagonal, this determinant is a polynomial of degree n. It starts with $(-\lambda)^n$.

2. Find the roots of this polynomial.

The n roots are the eigenvalues of A.

3. For each eigenvalue solve the equation $(A - \lambda I) x = 0$.

Since the determinant is zero, there are solutions other than x = 0. Those are the eigenvectors.

$$A \longrightarrow |A - \lambda I| = 0 \longrightarrow (A - \lambda_i I) x = 0$$

求特征值 λ_i 求特征向量

5.2 Diagonalization of a Matrix

algebraic multiplicity \geq geometric multiplicity

(几何重数总是不超过代数重数)

The matrix *A* is diagonalizable if and only if <u>algebraic multiplicity</u>

= geometric multiplicity for each eigenvalue λ_i .

(矩阵A 可以对角化 当且仅当 对于每一个特征值 λ_i 都有:

其代数重数与几何重数相等)

5.5 Complex Matrices

实数域 R		复数域 C	
Name	Definition	Name	Definition
Real symmetric matrix	$A^{\mathrm{T}} = A$	Hermitian matrix	$A^{\mathrm{H}} = A$
Real normal matrix	$A^{\mathrm{T}}A = AA^{\mathrm{T}}$	Normal matrix	$A^{\mathrm{H}}A = AA^{\mathrm{H}}$
Orthogonal matrix	$A^{\mathrm{T}}A = AA^{\mathrm{T}} = I$	Unitary matrix	$A^{\mathrm{H}}A = AA^{\mathrm{H}} = I$

iteal versus complex	Real	versus	Comp	lex
----------------------	------	--------	------	-----

$$\begin{array}{llll} \mathbf{R}^n \ (n \ \text{real components}) & \leftrightarrow & \mathbf{C}^n \ (n \ \text{complex components}) \\ \text{length: } \|x\|^2 = x_1^2 + \dots + x_n^2 & \leftrightarrow & \text{length: } \|x\|^2 = |x_1|^2 + \dots + |x_n|^2 \\ \text{transpose: } A_{ij}^T = A_{ji} & \leftrightarrow & \text{Hermitian transpose: } A_{ij}^H = \overline{A_{ji}} \\ (AB)^T = B^TA^T & \leftrightarrow & (AB)^H = B^HA^H \\ \text{inner product: } x^Ty = x_1y_1 + \dots + x_ny_n & \leftrightarrow & \text{inner product: } x^Hy = \overline{x}_1y_1 + \dots + \overline{x}_ny_n \\ (Ax)^Ty = x^T(A^Ty) & \leftrightarrow & (Ax)^Hy = x^H(A^Hy) \\ \text{orthogonality: } x^Ty = 0 & \leftrightarrow & \text{orthogonality: } x^Hy = 0 \\ \text{symmetric matrices: } A^T = A & \leftrightarrow & \text{Hermitian matrices: } A^H = A \\ A = Q\Lambda Q^{-1} = Q\Lambda Q^T \ (\text{real } \Lambda) & \leftrightarrow & A = U\Lambda U^{-1} = U\Lambda U^H \ (\text{real } \Lambda) \\ \text{skew-symmetric } K^T = -K & \leftrightarrow & \text{skew-Hermitian } K^H = -K \\ \text{orthogonal } Q^TQ = I \ \text{or } Q^T = Q^{-1} & \leftrightarrow & \text{unitary } U^HU = I \ \text{or } U^H = U^{-1} \\ (Qx)^T(Qy) = x^Ty \ \text{and } \|Qx\| = \|x\| & \leftrightarrow & (Ux)^H(Uy) = x^Hy \ \text{and } \|Ux\| = \|x\| \end{array}$$

The columns, rows, and eigenvectors of Q and U are orthonormal, and every $|\lambda| = 1$

5.6 Similarity Transformations

 Tw_1

 Tw_2

How is **A** related to **B**?

Answer: *A* is similar to *B*.

Furthermore, if

$$[\boldsymbol{w}_1 \quad \boldsymbol{w}_2] = [\boldsymbol{v}_1 \quad \boldsymbol{v}_2] \boldsymbol{M}$$

Then $B = M^{-1}AM$.

When A is diagonalizable:
$$S^{-1}AS = \Lambda$$

$$S = \begin{bmatrix} | & | & \cdots & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & \cdots & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}.$$

$$\Lambda = \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda \end{bmatrix}$$

 x_1, \dots, x_n : eigenvectors

independent

 $\lambda_1, \dots, \lambda_n$: eigenvalues

When A is real symmetric: $Q^{-1}AQ = \Lambda$

$$Q = \begin{bmatrix} | & | & \cdots & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & \cdots & | \\ | & & | & \cdots & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}. \quad \begin{array}{c} Q : \text{ orthogonal } \\ \text{matrix} \end{array}$$

S: invertible

matrix

When A is Hermitian: $U^{-1}AU = \Lambda$

$$U = \begin{bmatrix} | & | & \cdots & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & \cdots & | \\ | & | & \cdots & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

$$orthonormal$$

$$\lambda_1, \dots, \lambda_n : real$$

U: unitary matrix

 $\lambda_1, \ldots, \lambda_n$: real

Review

Some special matrices

Real matrices	Complex matrices	Eigenvalues
Symmetric $A^{T} = A$	Hermitian $A^{H} = A$	All λ 's are real (on the real axis)
Skew-symmetric $A^{T} = -A$	Skew-Hermitian $A^{\rm H} = -A$	All λ 's are imaginary (including 0 sometimes) (on the imaginary axis)
Orthogonal $\boldsymbol{Q}^{\mathrm{T}} = \boldsymbol{Q}^{-1}$	Unitary $\boldsymbol{U}^{\mathrm{H}} = \boldsymbol{U}^{-1}$	all $ \lambda = 1$ (on the unit circle)

Theorem A matrix is diagonalized by a unitary matrix if and only if it is a normal matrix.

(In other words, A matrix \mathbf{A} is a normal matrix if and only if there exists a unitary matrix \mathbf{U} such that $\mathbf{U}^{-1}\mathbf{A}\mathbf{U}$ is diagonal.)

The Spectral Theorem for Real Symmetric Matrices

An $n \times n$ real symmetric matrix A ($A \in \mathbb{R}^{n \times n}$ and $A = A^{T}$) has the following properties:

- a. **A** has *n* real eigenvalues, counting multiplicities. (**A**有*n*个实特征值, 包含重复的特征值)
- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation. (对于每一个特征值 λ , 对应特征子空间的维数等于 λ 作为特征方程的根的重数, 即: 几何重数=代数重数)
- c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal. (特征子空间相互正交, 这种正交性是在特征向量对应不同特征值的意义下成立的)
- d. A is orthogonally diagonalizable. (A可以正交对角化)

The Spectral Theorem for Hermitian Matrices

An $n \times n$ Hermitian matrix A ($A \in \mathbb{C}^{n \times n}$ and $A = A^{H}$) has the following properties:

 $(- \uparrow n \times n)$ 厄米特矩阵具有下面的特性)

- a. *A* has *n* real eigenvalues, counting multiplicities. (*A*有*n*个实特征值,包含重复的特征值)
- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation. (对于每一个特征值 λ , 对应特征子空间的维数等于 λ 作为特征方程的根的重数, 即: 几何重数=代数重数)
- c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal. (特征子空间相互正交, 这种正交性是在特征向量对应不同特征值的意义下成立的)
- d. **A** can be diagonalized by a unitary matrix. (**A**可以用酉矩阵 对角化)

Similarity Transformations

- 1. **A** is **diagonalizable**: The columns of **S** are eigenvectors and $S^{-1}AS = \Lambda$.
- 2. A is arbitrary: The columns of M include "generalized eigenvectors" of A, and the Jordan form $M^{-1}AM = I$ is block diagonal.
- 3. A is arbitrary: The unitary U can be chosen so that $U^{-1}AU = T$ is triangular.
- 4. A is *normal*, $AA^{H} = A^{H}A$: then U can be chosen so that $U^{-1}AU = \Lambda$.
- Special cases of normal matrices, all with orthonormal eigenvectors:
- (a) If $\mathbf{A} = \mathbf{A}^{H}$ is Hermitian, then all λ_{i} are real.
- (b) If $A = A^{T}$ is real symmetric, then Λ is real and U = Q is orthogonal.
- (c) If $A = -A^{H}$ is skew-Hermitian, then all λ_i are purely imaginary.
- (d) If **A** is orthogonal or unitary, then all $|\lambda_i| = 1$ are on the unit circle.

6.1-6.2 Positive Definiteness

Theorem (**Test for** *positive definiteness*) Each of the following tests is a <u>necessary</u> and <u>sufficient condition</u> for the real symmetric matrix *A* to be *positive definite*:

(正定性判别:以下任何一个都是判定一个实对称矩阵A正定的 充要条件)

- (I) $x^T Ax > 0$ for all nonzero real vectors x. (Definition)
- (II) All the eigenvalues of **A** satisfy $\lambda_i > 0$.
- (III) All the upper left submatrices A_k have positive determinants.
- (IV) All the pivots (without row exchanges) satisfy $d_k > 0$.
- (V) There is a matrix R with independent columns such that $A = R^T R$.

Theorem Each of the following tests is a necessary and sufficient condition for a symmetric matrix *A* to be *positive semidefinite*:

- (I') $x^T A x \ge 0$ for all vectors x. (This defines positive semidefinite)
- (II') All the eigenvalues of **A** satisfy $\lambda_i \geq 0$.
- (III') No principal submatrices have negative determinants.
- (判定半正定性时,不仅要检查左上角各阶子矩阵的行列式,即顺序主子式,而且检查所有各阶主子矩阵的行列式即主子式)
- (IV') No pivots are negative.
- (V') There is a matrix R, possibly with dependent columns, such that $A = R^{T}R$.

For an invertible matrix C, the linear transformation $A \to C^T A C$ is called a **congruence transformation** (合同变换), which transforms the vector \mathbf{y} to the vector $\mathbf{x} = C\mathbf{y}$, and the quadratic form $\mathbf{x}^T A \mathbf{x}$ to the quadratic form $\mathbf{y}^T C^T A C \mathbf{y}$.

Theorem (The Principal Axes Theorem, 主轴定理)

Let A be an $n \times n$ real symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x} = Q\mathbf{y}$ (i.e., \mathbf{Q} is an orthogonal matrix), that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into a quadratic form $\mathbf{y}^T \Lambda \mathbf{y}$ with no cross-product term (不含交叉乘积项) (i.e., Λ is a diagonal matrix).

$$\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{y}^{\mathrm{T}}\mathbf{\Lambda}\mathbf{y} = \lambda_{1}y_{1}^{2} + \dots + \lambda_{n}y_{n}^{2}$$
 (二次型的标准形),

where $\lambda_1, \dots, \lambda_n$ are eigenvalues of \boldsymbol{A} , and their orthonormal eigenvectors go into the columns of \boldsymbol{Q} . $(\boldsymbol{Q}^T \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{\Lambda})$

Matrix A	Operations (变换)	Matrix B	Invariants (不变量)
A is any $m \times n$ matrix	Elementary operations	B = PAQ (where P and Q are invertible $m \times m$ and $n \times n$ matrices)	Rank
A is any $n \times n$ matrix	Similarity transformation (相似变换)	$B = M^{-1}AM$ (where M is an invertible $n \times n$ matrix)	Eigenvalues; Determinant; Trace; Rank
A is any real symmetric $n \times n$ matrix	Congruence transformation (合同变换)	$\mathbf{B} = \mathbf{C}^{\mathrm{T}} \mathbf{A} \mathbf{C}$ (where \mathbf{C} is an invertible $n \times n$ matrix)	Symmetry; Rank; Number of positive eigenvalues, negative eigenvalues, and zero eigenvalues

6.3 Singular Value Decomposition

Facts about $A^{T}A$ and AA^{T} ($A \in \mathbb{R}^{m \times n}$)

- \neg rank (A^TA) = rank (AA^T) = rank(A) = r.
- □ $A^{T}A$ and AA^{T} are real symmetric (degree n and m respectively), and positive semidefinite. ($A^{T}A$ and AA^{T} 的特征值为非负实数)
- \Box The eigenvalues of $A^{T}A$ and AA^{T} :
 - \square $A^{\mathsf{T}}A$ has n eigenvalues $\lambda_1, \dots, \lambda_n$, then

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r > 0 = \lambda_{r+1} = \cdots = \lambda_n.$$

 \square AA^{T} has m eigenvalues μ_1, \dots, μ_m , then

$$\mu_1 \ge \mu_2 \ge \dots \ge \mu_r > 0 = \mu_{r+1} = \dots = \mu_m.$$

- We have the following conclusion: $\lambda_i = \mu_i > 0$, i = 1, ..., r. ($A^T A$ and AA^T 的非零特征值集合相同)
- **Definition**: $\sigma_i = \sqrt{\lambda_i} = \sqrt{\mu_i} > 0$ (i = 1, ..., r) are called the singular values (奇异值) of A.

Theorem (Singular Value Decomposition -- "SVD")

Any $m \times n$ real matrix with rank r can be factored into

$$A = U\Sigma V^{\mathrm{T}}$$

(orthogonal) (rectangular diagonal) (orthogonal)

where U is orthogonal of degree m, V is orthogonal of degree n, and Σ is diagonal (but rectangular: $m \times n$).

Further, the columns of U are eigenvectors of AA^T , the columns of V are eigenvectors of A^TA , and the r positive entries $\sigma_1, \ldots, \sigma_r$ (called 'singular values') on the diagonal of Σ are the square roots of the nonzero eigenvalues of both AA^T and A^TA .

The factorization is called a **singular value decomposition** (奇异 值分解), or **SVD** for short.

$$A_{m \times n} = \mathbf{U}_{m \times m} \begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \mathbf{0}_{r \times (n-r)} \\ & & \ddots & & \\ & & \sigma_r & & & \\ & & & \mathbf{0}_{(m-r) \times (n-r)} \end{bmatrix}_{m \times n}^T$$

(orthogonal) (rectangular diagonal) (orthogonal) where $\sigma_1, \sigma_2, \dots, \sigma_r$ are the square roots of the nonzero eigenvalues of both AA^T and A^TA .

- U: the columns are orthonormal eigenvectors for AA^{T} .
- V: the columns are orthonormal eigenvectors for $A^{T}A$.

Diagonal entries are eigenvalues for AA^{T}

Diagonal entries are eigenvalues for $A^T A$

How to construct the matrix V

 \mathbf{V} : the columns are orthonormal eigenvectors for $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

Let
$$v_1, v_2, \cdots, v_n$$
 are columns of V , and let
$$V = \begin{bmatrix} v_1 & \cdots & v_r & v_{r+1} & \cdots & v_n \end{bmatrix} = \begin{bmatrix} V_r & \vdots & V_{n-r} \end{bmatrix}$$
Then $A^TA = V(\Sigma^T\Sigma)V^T$ becomes
$$A^TA[v_1 & \cdots & v_r & v_{r+1} & \cdots & v_n \end{bmatrix}$$

$$= \begin{bmatrix} v_1 & \cdots & v_r & v_{r+1} & \cdots & v_n \end{bmatrix} \begin{bmatrix} \sigma_1^2 & & & & \\ & \ddots & & & \\ & & \sigma_r^2 & & & \\ & & & \ddots & & \\ & & & & & 0 \end{bmatrix}$$

$$A^TAv_1 = \sigma_1^2 v_1, \cdots, A^TAv_r = \sigma_r^2 v_r, A^TAv_{r+1} = \mathbf{0}, \cdots, A^TAv_n = \mathbf{0}$$

 v_1, \dots, v_r are eigenvectors of A^TA belonging to nonzero eigenvalues $\sigma_1^2, \dots, \sigma_r^2$ respectively.

 v_{r+1}, \dots, v_n are eigenvectors of $A^T A$ belonging to $\lambda = 0$.

How to construct the matrix U

$$A_{m \times n} = \mathbf{U}_{m \times m} \begin{bmatrix} \sigma_1 & & & & & \\ & \sigma_2 & & & & \\ & \ddots & & & & \\ & & \sigma_r & & & \\ & & & & \sigma_r & & \\ & & & & & \sigma_r & \\ & & & & & & \sigma_r & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & &$$

$$\Rightarrow A_{m \times n} V_{n \times n} = U_{m \times m} \Sigma_{m \times n}$$

$$A[v_1 \quad \cdots \quad v_r \quad v_{r+1} \quad \cdots \quad v_n] = [u_1 \quad \cdots \quad u_r \quad u_{r+1} \quad \cdots \quad u_m] \begin{bmatrix} \Sigma_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Comparing the first r columns of each side, we see that

$$A\mathbf{v}_{j} = \sigma_{j}\mathbf{u}_{j}, j = 1, \dots, r \Longrightarrow \mathbf{u}_{j} = \frac{1}{\sigma_{j}}A\mathbf{v}_{j}, j = 1, \dots, r$$

It follows from that each \mathbf{u}_j , $j=1,\cdots,r$, is in the column space of A.

The dimension of the column space is r, so u_1, u_2, \cdots, u_r form an orthonormal basis for C(A). The vector space $C(A)^{\perp} = N(A^{T})$ has dimension m - r. u_{r+1}, \cdots, u_m is an orthonormal basis for $N(A^{T})$.

Type The Factors **Notes** Form **P**: permutation matrix The permutation matrix P is LUPA = LUneeded when there are row factorization **L**: lower triangular matrix (A is any $m \times n$ exchanges during the row with unit diagonal (Gaussian matrix) reduction. (Otherwise, A = $U: m \times n$ echelon matrix *elimination*) LU)

triangular.)

matrix.)

invertible

matrix

A = QR

(A is any $m \times n$

 $A = U \Sigma V^{\mathrm{T}}$

(A is any $m \times n$

matrix with rank

matrix with

independent

columns)

r)

QR

factorization

(Gram-Schmidt

orthogonalization)

Singular Value

Decomposition

(SVD)

(When m = n, U is upper

Q: matrix with orthonormal

columns (When m = n, Q

becomes an orthogonal

R: upper triangular and

 $U: m \times m$ orthogonal

 Σ is diagonal (but

rectangular: $m \times n$).

 $V: n \times n$ orthogonal matrix

PA = LDU if U is upper

triangular with unit diagonal.

When m = n, any invertible

matrix can be factorized as a

product of an orthogonal

matrix and an upper

The columns of \boldsymbol{U} are

eigenvectors of AA^{T} , the

eigenvectors of $A^{T}A$, and

eigenvalues of both AA^T

the *r* positive entries on the

diagonal of Σ are the square

triangular matrix.

columns of V are

roots of the nonzero

and $A^{T}A$.

Review

For any rectangular diagonal matrix Σ :

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}, \quad \boldsymbol{\Sigma}^+ = \begin{bmatrix} 1/\sigma_1 & & \\ & \ddots & \\ & & 1/\sigma_r \end{bmatrix},$$

$$\boldsymbol{x}^+ = \boldsymbol{\Sigma}^+ \boldsymbol{b} = \begin{bmatrix} b_1/\sigma_1 \\ \vdots \\ b_r/\sigma_r \end{bmatrix}, \quad and \ obviously \ (\boldsymbol{\Sigma}^+)^+ = \boldsymbol{\Sigma}.$$

Theorem If
$$A = U\Sigma V^T$$
 (the SVD), then its **pseudoinverse** is $A^+ = V\Sigma^+U^T$.

The End