Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Illinois
Department of
Transportation

Division of Water Resources

FLOODPLAIN MANAGEMENT STUDY

BUTTERFIELD CREEK AND TRIBUTARIES

COOK-WILL COUNTIES, ILLINOIS

2TC 424 .I3F56 copy 2

TABLE OF CONTENTS

		PAGE
DE NA FL SI ST AL GL SU FL	TRODUCTION SCRIPTION OF STUDY AREA TURAL VALUES OOD PROBLEMS ISTING FLOODPLAIN MANAGEMENT GNIFICANCE OF NATURAL STORAGE RUCTURAL MEASURES EVALUATED TERNATIVES FOR FLOODPLAIN MANAGEMENT OSSARY AND REFERENCES MMARY OF PEAK FLOWS AND ELEVATIONS OODPLAIN MAPS PENDICES	1 4 6 9 12 14 17 21 26 28
	APPENDIX A - FLOOD PROFILES APPENDIX B - TYPICAL CROSS SECTIONS APPENDIX C - STRUCTURAL MEASURES - DRAWINGS APPENDIX D - ALTERNATIVE COST ESTIMATES APPENDIX E - NATURAL STORAGE RESERVOIRS MAPS APPENDIX F - BUILDING AND FLOODWATER ELEVATIONS APPENDIX G - INVESTIGATIONS AND ANALYSES	
1 2 3 4 5 6	GURES - VICINITY MAP - PROBLEM AREA MAP - FLOODWAY SCHEMATIC - LOCATION OF STRUCTURAL MEASURES - PRESENT LAND USE - FUTURE LAND USE - FLOODPLAIN MAP INDEX	3 8 13 16 24 25 32
1 2 3 4 5 6	BLES - LAND USE - PROPERTIES FLOODED PRESENT LAND USE - TOTAL DAMAGES PRESENT LAND USE - PROPERTIES FLOODED FUTURE LAND USE - TOTAL DAMAGES FUTURE LAND USE - PEAK DISCHARGES PRESENT AND FUTURE - PROPERTIES FLOODED	6 9 10 11 11
	FUTURE WITHOUT NATURAL STORAGE - SUMMARY AND COMPARISON OF ALTERNATIVES	15 23

NATION L. TONG TONG - FREP.

FLOODPLAIN MANAGEMENT STUDY BUTTERFIELD CREEK AND TRIBUTARIES COOK AND WILL COUNTIES ILLINOIS

INTRODUCTION

This report defines the flood characteristics of Butterfield Creek and its tributaries in Cook and Will Counties. The tributaries studied are Flossmoor Tributary, East Branch of Butterfield Creek, and the Tributary to East Branch. This report defines the flood hazard of existing buildings located along or near these streams. This existing flood hazard is the basis used for the evaluation of measures to eliminate or reduce flood damages.

Several different alternatives were evaluated and are described in the report. No structural measure evaluated was determined to be cost effective ie: annual benefits exceeded annual costs. Appendix F provides information on existing building elevations in relation to the floodwater elevation for the 10 percent, 1 percent, and 0.2 percent chance (500 year) recurrent floods for present and future runoff conditions. This appendix has been published under separate cover and copies provided to the local governments involved. This report points out the importance of protecting existing storage, provides data on the impact of floodproofing 40 buildings, and provides data that can be used for regulation of new development in the floodplain areas.

Floodprone areas in many locations are a severe problem in Illinois. Watershed urbanization and development within and upstream of the floodplain areas intensify this problem. Currently there are 793 Illinois communities identified as having flood problems. As of March 1, 1985, 735 communities within Illinois are participating in the National Flood Insurance Program (NFIP). The Illinois Department of Transportation, Division of Water Resources (DWR) is the state agency assigned urban flood problems and for setting priorities for flood studies within the urban areas. A joint coordination agreement was executed between DWR and the Soil Conservation Service (SCS) on April 30, 1976 and was revised December 1978 to furnish technical assistance in carrying out these flood hazard studies. These studies are carried out in accordance with Federal Level Recommendation 3 of "A Unified National Program for Floodplain Management," and Section 6 of Public Law 83-566. A Plan of Work was executed by DWR and SCS in October 1984, for the Butterfield Creek and Tributaries Floodplain Management Study. The cost of this study was shared among DWR and SCS.

The Little Calumet River Watershed Plan published in 1978 (Reference 1), identified limited flood damages along Butterfield Creek and did not evaluate damages along the East Branch of Butterfield Creek. The June 1981 flood in the watershed showed significantly higher damages than predicted along Butterfield Creek. In addition, damages in Matteson along the East Branch of Butterfield Creek exceeded \$380,000. Therefore, it was apparent that total damages as evaluated by the Little Calumet Watershed Plan must be too low for the Butterfield Creek portion of the Little Calumet River Watershed.

Local officials feel that the frequency of flooding exceeds acceptable levels. They also feel that the new development planned in the upstream reaches will probably increase the flood problem. This report supports both of the above statements.

State of Illinois was asked to provide assistance to solve the flood problems associated with Butterfield Creek. Prior to committing funds for flood control, the State requires completion of a floodplain management study identifying existing hazards and alternative solutions. The State requests the study display the beneficial and adverse impacts of all alternatives considered.

This report is based on the results of a detailed hydrologic and hydraulic analysis of the Butterfield Creek Watershed and the damage analysis made for the identified floodprone areas. The maps and profiles in this report are adequate for floodplain regulation of the streams studied in detail. The floodway was delineated in accordance with Chapter 19, Illinois Revised Statutes of 1973, 65F (Reference 7). Floodwater elevations and first floor elevations for all surveyed buildings in the identified floodplain have been provided to each community in the watershed and to IDOT Division of Water Resources.

DESCRIPTION OF STUDY AREA

Butterfield Creek Watershed is located in Cook and Will Counties approximately 30 miles south of the Chicago Loop. Butterfield Creek is a perennial stream originating near Richton Park, Illinois (See Figure 1). The approximate drainage area of Butterfield Creek is 26 square miles at its confluence with Thorn Creek, a tributary of the Little Calumet River, Glenwood. The hydrologic sub-watershed number is 07120003-050.

The Butterfield Creek Floodplain Management Study is concerned with the floodplain along Butterfield Creek from its junction with Thorn Creek to upstream of Highway 30 (Lincoln Highway), and its tributaries (Flossmoor Tributary, East Branch Butterfield Creek, and the Tributary to the East Branch). The channels flow through the communities of Glenwood, Homewood, Flossmoor, Olympia Fields, Matteson, and Richton Park. In addition it flows through several country clubs and unincorporated Cook County.

The upper portion of the watershed has been undergoing rapid development in the last 20 years and is expecting extensive additional development in the next 20 years. See Figures 5 and 6 for present (1985) and estimated future (2005) land use in the watershed.

The formation of the soils in this watershed was influenced by the glaciers which covered the area. The topography varies from level and nearly level to rolling with numerous depressions. The parent materials are loess, coarse and medium textured glacial outwash, glacial till, alluvium, and organic deposits. (Reference 12, 13)

Drainage characteristics of the soils vary across the drainage scale; well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. Water is removed readily from well drained soils but is available to plants throughout the growing season. Drainage in well drained soils is not a limiting factor for most non-agricultural uses. At the other end of the drainage scale, water is removed from the soil so slowly that free water remains at or near the surface during most of the year. Artificial drainage is necessary for most crops to be grown. The very poorly drained soils have severe limitations on both agricultural and non-agricultural uses. Poor drainage can result from a high water table, a slowly pervious layer within the profile, seepage or a combination of these.

The well drained soil series are Markham, Morley, and Grays. The somewhat poorly drained soils are Beecher, Elliott, Frankfort, Martinton, and Mundelein. The poorly drained soils are Ashkum, Milford, and Sawmill. The very poorly drained soils are Houghton and Peotone.

The climate of the watershed is classified as humid continental which is characterized by warm summers, cold winters and relatively large daily, monthly and yearly variations in both temperature and precipitation. Average annual precipitation is 33 inches. March through October precipitation averages 3 inches monthly. Mean annual runoff is approximately 9 inches or about 27 percent of total precipitation (Reference 5 and 13).

During January, normally the coldest month, temperatures range from a normal maximum of 35 degrees F to a normal minimum of 19 degrees F. During July, normally the warmest month, temperatures range from a normal maximum of 87 degrees F to a normal minimum of 64 degrees F. The maximum temperature of 90 degrees F is exceeded on 30 days in a normal summer. The average frost-free season is 160 days (Reference 5 and 13).

Based upon the 1980 Census of population, the populations of Cook and Will Counties were 5,253,655 and 324,460 respectively. From the period 1970 to 1980 Cook County registered a 4.3 percent decrease in population while Will County experienced a 30.9 percent increase in growth. (Reference 14). Rich Township, which composes a significant portion of this watershed, had a 31% increase in population between 1970 and 1980 from 44,800 to 58,730. The number of housing units in Rich Township increased from 12,540 to 20,397 between 1970 and 1980.

The unemployment rate within the study area has been below state and national averages. According to the Illinois State Employment Security Office, the 1985 unemployment rate for both Cook and Will Counties was 8.8 percent versus a 7.5 and 9.1 for the United States and the State of Illinois respectively.

The per capita income for Cook County was higher than the State of Illinois and national averages for 1984 according to the Bureau of Economic Analysis. Cook County registered per capita personal income of \$14,199, while Will County was reported to be at \$12,747, as compared to \$12,772 and \$13,705 for the United States and State of Illinois respectively.

NATURAL VALUES

The Butterfield Creek Watershed is located in a extensively developed area with the upstream portions primarily undeveloped at this time. The new projected development will consist of a mix of commercial with single and multiple family residences. The portion of the watershed with most of the projected development is in Matteson near Highway 30 and Interstate 57. Other areas projected are located in Richton Park. The table which follows illustrates this rapid change:

Table 1

LAND USE	APPROXIMA	TE AREA (%	OF WATERSHED)
	1972	1985	2005 (Est.)
Urban	49%	59%	73%
Agricultural	32%	25%	14%
Open space	18%	15%	12%
Other	1%	1%	1%

The agricultural land is primarily located west of Crawford Avenue in the western portions of the watershed (See Figure 5). Most of the soils in the watershed are on the State list of prime farmland soils. Houghton Muck and Muskego are classified as important farmland. Currently it is estimated that 315 acres of farmland are in the floodplain identified in the detailed study area of this report. The detailed evaluation of the watershed shows that existing upland storage areas and low areas along the channels of the watershed provide over 1700 acre feet of storage during a 1% chance (100 year) flood. The study has identified 16 of these areas which include the man made reservoirs on the Tributary to East Branch in Richton Park. Appendix E includes detailed sketches of each of these storage areas. It is estimated that if these storage areas were lost the 100 year peak discharge would increase by 35% to 50%.

The significant wildlife habitat in the Butterfield Creek Watershed exists primarily in the natural wooded areas scattered throughout the watershed. Isolated wetland areas are located along the watershed divide in the Cook County Forest Preserve. The natural wetlands scattered along the drainageways provide both wildlife habitat and floodwater storage.

Primary plant communities in the wooded areas are upland hardwood forest and upland and lowland successional communities. The remaining part of the watershed is either used for row crop production, or is developed urban land. Wildlife habitat quality varies from poor to moderate in the intensively developed areas.

More than half of the Butterfield Creek Channel is in its natural condition. The remainder has been modified for drainage or development purposes. The Butterfield Creek channel in the farmland areas west of Cicero Avenue is a combination of natural channel and modified channel. In some reaches minor straightening and diking has occurred to reduce flooding damages to cropland.

Approximately 2500 acres (60%) of the land currently farmed has an average erosion rate of up to 10 tons per acre. It is estimated that 450 of these 2500 acres would be classified as critically eroding areas.

The channels of Butterfield Creek and most of the tributaries occur almost entirely in the poorly drained Milford silty clay loam or Sawmill silty clay loam soils. Surface runoff is very slow and often may be ponded. The potential of Milford or Sawmill for urban uses is poor because of the wetness problems. Natural vegetation is bottomland hardwoods, but significant portions of Butterfield Creek has been encroached upon by development and much of the natural vegetation is gone. The present vegetation is a mixture of native plants such as silver maple, elm, swamp white oak, willow, hawthorn, ash, bur oak, basswood, cottonwood, gray dogwood, American cranberry bush, and nannyberry and introduced landscaping plants such as honeysuckle, Siberian elm, buckthorn and other ornamentals. The upper portion of Butterfield Creek is through open grassland or land currently being used for row crops.

A rich variety of wildlife species are associated with the plant communities described above. Wetlands in particular provide very important habitat conditions. The environmental setting portion of the Little Calumet River Watershed Plan identified the following wetlands in Butterfield Creek watershed:

W5-SE 1/4 of SE 1/4, Sec 8, T35N, R13E. A type 4 wetland of about 5 acres. Surrounded by about 10 acres of type 3 inland shallow fresh marsh.

W6-SE1/4 of SW 1/4, Sec 9, T35N, R13E. A type 4 inland deep fresh marsh surrounded by a type 3 wetland. Total area equals about 40 acres.

W7-Center of Sec 9, T35N, R13E. A type 3 shallow fresh marsh of about 15 acres.

W8-SE 1/4 of SW 1/4 Sec 21, T35N, R13E. A type 5 wetland of about 5 acres.

W9-SE 1/4 of SE 1/4 Sec 28, T35N, R13E. A type 5 wetland of about 3 acres.

 $W10-SE\ 1/4$ of NW 1/4 Sec 14, T35N, R13E. A type 3 inland shallow marsh of about 4 acres.

W11-SW 1/4 of SE 1/4, Sec 11, T35N, R13E. A type 3 inland shallow marsh of about 5 acres.

Field review in 1986 indicates that W9, W10, and W11 have been modified by urban development since 1978.

The 1981 List of Endangered and Threatened Species of Illinois (Reference 4) cites 39 plant species known to exist in Cook County that are officially designated as endangered or threatened. That same list cites 2 species of animals that are designated as threatened.

No archaeological sites or historical sites have been identified in the detailed study area.

FLOOD PROBLEMS

The primary damage areas evaluated as part of this study are shown on Figure 2. The majority of the identified buildings subject to flood damage are residential dwellings. The primary commercial damage identified is along Highway 30 in Matteson. The following table summarizes the number of buildings flooded under present land use (1985) conditions by the 1% chance 100 year flood and the calculated average annual damage by evaluation reach. (See Figure 5 for Present Land Use).

Table 2
PROPERTIES FLOODED - PRESENT LAND USE
1% CHANCE FLOOD

	TW CHIMICE I ECOD	
LOCATION NUMBER (OF BUILDINGS	AVERAGE ANNUAL DAMAGES
Butterfield Creek		
downstream of Halsted	3	\$ 3700
between Dixie Hwy & Halsted	7	6600
between Vollmer & Dixie	24	36500
between Crawford & Vollmer	5	8200
between I-57 & Crawford	10	8400
upstream of I-57	2	300
East Branch Butterfield Creek		
between Conrail tracks & mout	ch 7	28400
between EJ&E RR & Conrail	55	30300
upstream of EJ&E RR	2	400
Tributary of East Branch		
entire length studied	12	23200
Flossmoor Tributary		
entire length studied	12	22700
TOTAL	139	\$1 68700

Table 2 shows that the largest number of buildings are flooded on the East Branch of Butterfield Creek between the Conrail tracks and the EJ&E Railroad tracks in Matteson. Most of these buildings are in the residential area located east of Governor's Highway along 217th Street, 216th Place, or Richton Road. These are predominately single family dwellings with basements, ranging in value between \$55,000 and \$75,000. Most of these buildings were damaged during the June 1981 flood.

The largest dollar damage reach is located between Vollmer Road and Dixie Highway in Flossmoor. These damages occur at 2 locations. The largest number of buildings, 20, are located on or near Dartmouth Road just west of Dixie Highway. Damages to these buildings are estimated to be \$25,700 annually. These buildings are single family dwellings, many with basements, ranging in value from \$125,000 to \$225,000. Many of these buildings were damaged by the June 1981 flood. The other damage area is near Butterfield Road west of Western Avenue. Four buildings here have an estimated annual damage of \$10,800. These buildings are residences valued in excess of \$300,000.

According to Flood Insurance data provided by FEMA, the June 1981 flood damaged more than 75 buildings with total damages well in excess of \$400,000. It is estimated that the June 1981 flood was from a rainfall event equal to or greater than a 4% chance storm. A review of existing gauge records shows that the average discharge passing the gauging station at Riegel Road has increased over the past 10 to 15 years. The number of floods over 600 cfs presently averages over 1.5 times per year while during the period 1960 to 1975 it averaged less than once per year. Local citizens feel that the upstream development on the East Branch of Butterfield Creek has caused most of this change in frequency of flooding.

The 3 golf courses located in the lower portion of the watershed all report increasing problems with flood damages and bank erosion. Based on the interview data it appears these problems are more serious on the Flossmoor and Olympia Fields Country Clubs than on Idlewild Country Club. Estimated annual damages to these clubs is \$25,000.

The existing natural storage in the watershed exceeds 1700 acre feet and this has had a significant effect on reducing the peak discharges throughout the Butterfield Creek Watershed. Many of these storage areas are zoned for commercial or residential usage. Loss of the storage will result in significant increases in peak discharges and increased flood damages.

The following table summarizes by frequency the evaluated urban damages for the Butterfield Creek Watershed for present land use conditions:

Table 3
TOTAL DAMAGES BY FREQUENCY
Present Without Project

Freque	ency		Total Buildings	Total Damage
·	% Chance	Year	(Number)	(1000 Dollars)
	0.2	500	213	6,153
	1.0	100	139	2,622
	2.0	50	107	1,648
	4.0	25	85	1,008
	10.0	10	61	440
	20.0	5	43	241
	50.0	2	1	5
			Average Annual Damage	s = \$168,700

The future condition without project evaluation was developed to predict runoff and damage conditions in the year 2005. The future condition land use is shown in Figure 6. The evaluation assumes all new development will have on-site detention storage amounting to 1.5 inches per acre of new development with a release rate of 0.5 cfs per acre. It is assumed that all existing natural storage (1700+ acre feet) will be maintained or compensated for when the new development occurs. This evaluation shows a slight increase in peak discharges for most locations in the watershed.

The following is a summary by reaches of the evaluated future condition damages to buildings using the land use shown on Figure 6.

Table 4
PROPERTIES FLOODED - FUTURE LAND USE
1% CHANCE FLOOD

LOCATION NUMBER OF	BUILDINGS	AVERAGE ANNUAL DAMAGES
Butterfield Creek		
downstream of Halsted	3	\$ 3700
between Dixie Hwy & Halsted	8	8300
between Vollmer & Dixie	25	43800
between Crawford & Vollmer	6	14600
between I-57 & Crawford	10	10900
upstream of I-57	1	700
East Branch Butterfield Creek		
between Conrail tracks & mouth	11	42500
between EJ&E RR & Conrail	57	30800
upstream of EJ&E RR	2	300
Tributary of East Branch		
entire length studied	12	22900
Flossmoor Tributary		
entire length studied	12	21800
TOTAL	147	\$200300

The largest increase in damages in this evaluation is along Highway 30 on the East Branch of Butterfield Creek. This increase is primarily due to the increased peaks caused by the change in timing because of the new development.

Table 5

TOTAL DAMAGES BY FREQUENCY
Future Without Project

Frequency	Total Buildings	Total	Damage
% Chance Year	(Number)		Dollars)
0.2 500	229		7,301
1.0 100	147		3,442
2.0 50	118		1,939
4.0 25	89		1,141
10.0 10	62		576
20.0 5	45		270
50.0 2	2		5

Average Annual Damages = \$200,300

Several major roads are flooded during flood events. The most serious problem occurs where Governor's Highway goes under the EJ&E RR in Matteson. This underpass carries the majority of the flow during most storms. The existing culverts under the EJ&E tracks will not carry the 2 year storm without water going through the underpass. Other roads flooded historically include Dixie Highway, Vollmer Road, and Central Avenue. Estimated annual damages caused by these traffic interruptions are estimated to be \$5,000.

EXISTING FLOODPLAIN MANAGEMENT

Currently, all the communities in the watershed, unincorporated Cook County and unincorporated Will County, are participating in the Regular Phase of the National Flood Insurance Program (NFIP). This program provides data to the local government so that they can adopt floodplain management measures. Each flood insurance study includes a flood boundary map with a floodway designated to assist the community in enforcing the rules it will use to regulate land use. There are existing flood boundary maps and profiles available for most of Butterfield Creek and the tributaries. These maps and profiles are being used to regulate new construction in the areas subject to flooding. In addition, existing ordinances in the communities call for compensatory storage when new development occurs in the identified floodplain.

These existing flood boundary maps did not identify many of the areas flooded during the June 1981 flood (estimated to be a 4% chance flood). Therefore, not all areas subject to flooding by the 1% chance flood were being regulated because not all are identified on the maps being used for regulation.

Since the June 1981 flood, the existing hazard to many of the unmapped areas have been recognized by local governments. The communities involved have assisted in the evaluation of the flooding problem throughout this study and recognize that the maps included in this report will be available for use by the Federal Emergency Management Agency (FEMA) to update the flood insurance maps for the communities involved in accordance with guidance from Congress. This report includes both the 100 year (1% chance) floodplain and the 500 year (0.2% chance) floodplain.

In order to provide a national standard without discrimination, the 100 year flood (1% chance) has been adopted by State and Federal agencies as the base flood for purposes of floodplain management measures. The 500 year (0.2% chance) flood is employed to indicate areas of additional flood risk within a community. For all the streams studied in detail, the boundaries of the 100 year and 500 year flood for present runoff conditions have been delineated. These flood boundaries have been determined by using the flood elevations calculated for each valley cross section. Between the surveyed cross sections, the floodplain boundaries were interpolated using topographic maps prepared at a scale 1 inch - 200 feet (contour interval of 2 foot). In cases where the 100 year and 500 year flood boundaries are close together, only the 100 year boundary has been shown. The boundaries of the floodplains are shown on the floodplain maps.

Small areas within the flood boundaries may lie above the flood elevations and therefore not be subject to flooding. However, due to the limiting scale of the topographic maps used to prepare the floodplain maps, such areas are not shown. The profile sheets in Appendix A should be used to ascertain flood elevations for any specific point along Butterfield Creek and Tributaries for present runoff conditions. Copies of the future condition profile sheets will be provided to each of the local governments currently regulating land use in the watershed. In addition, Appendix F lists the present and future 10 year, 100 year and 500 year flood elevations for all buildings surveyed in the floodplain. Encroachment on floodplains, such as artificial barriers, reduces the water carrying capacity and increases flood heights thus increasing flood hazards in areas beyond the encroachment itself. One aspect of floodplain management involves balancing the economic gain from the floodplain development against the resulting increased flood hazard.

For purposes of the NFIP, the concept of a floodway is used as a tool to assist local communities in this aspect of floodplain management. Under this concept, the 100 year floodplain is divided into floodway and a floodway fringe. The floodway is the channel of the stream plus any adjacent floodplain areas that must be kept free of encroachment in order that the 100-year flood discharge can be carried without a substantial increase in flood heights. In this case, blockage of the adjacent floodplain areas without blocking the channel will result in increasing the flood elevations. The floodway fringe area ie: all the floodplain except floodway, is not required to convey the flows but does act as a storage area on flat streams (See Figure 3 for sketch).

In Illinois, the minimum standard used to define the 100 year floodway is described in the Illinois Revised Statutes of 1973 under 65F, Chapter 19 (Reference 7). In this standard, the encroachment in the floodplain is limited to that which will cause only an insignificant increase in flood heights. The Illinois Division of Water Resources has recommended that the floodway be determined using no more than a 0.1 foot surcharge (Reference 3). The floodway proposed for this study, using the 0.1 foot surcharge, was computed by equal conveyance reduction from each side of the floodplain.

As shown on the flood boundary and floodway maps, the floodway boundaries were determined at individual cross sections. Between the cross sections the boundaries are interpolated.

The area between the floodway and boundary of the 100 year flood is termed the floodway fringe. The floodway fringe thus encompasses the portion of the floodplain that could be completely obstructed without effecting the conveyance in such a manner as to increase the water surface elevation of the 100 year flood more than 0.1 of a foot at any point. The typical relationship between the floodway fringe and the floodway are shown in the floodway schematic (Figure 3).

FIGURE 3

FLOODWAY SCHEMATIC

The preservation of existing natural storage is of major importance to this watershed. The following table shows the impact of this natural storage on the peak discharges along Butterfield Creek and Tributaries for present runoff conditions and future runoff conditions.

Table 6

Location	PEAK Drainage Area	With Pres 10yr	Natural ent	RESENT / Storage Future 10yr cfs	e e 100yr	Without Na Fut 10yr	tural Stor ure 100yr fs	age
mouth Butterfld Butterfld @ Dixie Butfld @ Crawfd Butfld @ I-57	26.0	1720 1650 510 345	2740 2770 830 470	1760 1690 530 345	2890 3000 860 470	2270 2280 940 1350	3990 4050 1660 2000	
E Branch @ mouth E Branch @ Conrai E Branch @ Sauk T		1000 900 650	1400 1270 1050	1050 930 650	1450 1300 1050	1570 1570 650	2480 2640 1050	
Trib to E Branch Conrail tracks Trib to E Branch Cicero Av	2.4	630 480	790 700	650 480	810 700	830 480	1350 700	

The future runoff condition evaluation assumed that all new development will include on-site detention storage of 1.5 inches with a release rate of 0.5 cfs/acre. This is one way of describing what the current on-site storage requirements are in the communities located in the Butterfield Creek watershed. In addition, the future evaluation, used to predict annual damages in 2005, assumes that all existing natural storage, over 1700 acre feet, is maintained in the watershed. See Appendix E for detailed information on the 16 storage areas.

The future without natural storage evaluation assumes all upstream natural storage except that located on the Cook County Forest Preserve and that constructed on the Tributary to East Branch is not maintained. This is an extreme evaluation as probably 30% of this storage would be maintained if current compensatory storage requirements are enforced. Most of the existing ordinances require compensatory storage for any new development in an identified floodplain. However, many of the upstream storage areas have a drainage area of less than 1 square mile and thus are not included in flood insurance maps and therefore not subject to current compensatory storage ordinances.

The following table summarizes the estimated number of buildings and damages that would occur if this natural storage is lost and existing bridge sizes are maintained.

Table 7 Properties Flooded - Future Land Use - Without Natural Storage

Location	Number of B 1% Chance F	lood		Average Annual Damages		
Butterfield Creek downstream of Halstead between Dixie & Halstea between Vollmer & Dixie between Crawford & Vollme between I-57 & Crawford upstream of I-57	38	Non- Residential 2 1 2 - 1	\$1,300 15,700 111,900 62,000 109,000 143,500	Non- Residential \$2,400 4,800 200 - - 282,9001/		
East Branch Butterfield Cr between Conrail tracks & between EJ&E & Conrail upstream of EJ&E tracks		10 - 3	22,000 86,600 300	272,300 <u>2</u> / - 300		
Tributary to East Branch entire length studied	41	3	41,300	14,800		
Flossmoor Tributary entire length studied	42	<u>5</u>	87,400	39,000		
Subtotal	322	27	\$681,000	\$616,700		
TOTAL	349		\$1,297,7	00		

Damage to school near Central Avenue.

 $[\]frac{1}{2}$ Damage to school near Central Average/ Includes damages to Lincoln Mall.

STRUCTURAL MEASURES EVALUATED

The following describes the different structural measures evaluated as part of the study. Since the damage areas are widely scattered it was readily apparent that no one structural measure could solve all of the problems. Therefore, several different structures were evaluated and their impacts determined. The following discussion describes the most feasible of these structural measures. See Appendix C for sketches of each measure, Appendix D for detailed information on costs, and Figure 4 for the location of these measures.

Dixie Channel

A total of 3 different lengths of 20 foot bottom width channel with 3:1 side slopes near Dixie Highway were evaluated. These were 3500 ft, 1200 ft, and 750 ft. The first two include 450 ft of channel downstream of Dixie Highway on Idlewild Golf Course with the remainder located upstream of Dixie Highway in Flossmoor. The following summarizes the components, costs and benefits of these evaluated channels.

Components				
	Units	3500 Ft	1200 Ft	750 Ft
Excavation	cu yds	16,400	11,150	7,740
Bridges	ea	3	4*	1
Land rights	acres	8	3	1.7
* Includes re	eplacing Dixie	Hwy bridge.		
Costs				
Construction	\$	270,800	369,200	76,090
Engr & PA	\$	54,200	73,800	15,210
Land rights	\$ \$	320,000	120,000	68,000
Total	•	645,000	563,000	159,300
Av Annual	\$ (8 7/8%)	57,200	50,000	14,140
OM&R	\$	1,700	1,700	1,160
Total Annual	Cost \$	58,900	51,700	15,300
Benefits				
Total Annual	\$	22,200	17,500	15,100
Benefits				
Net Benefits		-36,700	-34,200	-200
Benefit/cost	Ratio	0.38:1	0.34:1	0.98:1

Additional Effects: The installation of the 3500 ft channel would involve the removal of trees from the back yards of 15 to 20 homeowners and the reshaping of the existing channel. Several of the homeowners present at the March 1987 public meeting stated they did not want their existing channel conditions changed. The 3500 channel would lower the 100-year profile from 1.0 to 2.0 ft for a length of 4000 feet. The 3500 foot channel would have enough impact on the valley hydraulics and valley storage to increase the expected peak discharges downstream of Dixie Highway. The increase is not large but would result in an increase of flood stages of 0.1 ft to 0.2 ft.

The shorter channel reaches start at station B0300 and go downstream. Here the channel would be located on the far side of the existing channel such that no existing trees in back yards or on the streambank closest to the houses would be removed.

The 750 foot channel would reduce flood stages by 0.5 to 1.0 foot for a 1000 foot length. This would reduce valley storage in this reach but downstream discharges would not increase enough to cause a 0.1 foot rise in floodwater elevations.

Reservoir 8

Components: The excavation of 57,260 cubic yards of material from the 100 year floodplain of East Branch Butterfield Creek south of the EJ&E Railroad tracks and west of Governor's Highway. The overflow would still enter the Governor's Highway underpass at the railroad tracks. This component would be combined with the EJ&E Channel on the north side of the railroad tracks and the raising of the Governor's Highway Dike. The EJ&E Channel takes overflows at elevation 699.0 back to the existing reservoir along the East Branch of Butterfield Creek north of the EJ&E railroad tracks.

Costs: The total cost of this measure including the EJ&E Channel and the raised dike is \$498,400 with average annual costs estimated to be \$46,000 which includes OM&R of \$1760.

Effects: This reservoir would provide temporary storage of an additional 20.2 acre-feet of runoff below elevation 702.0. Total storage @ 702.0 equals 41 acre-feet. The 100 year peak discharge at the EJ&E railroad for future runoff conditions would increase from 1500 to 1505 cfs. The 100 year water surface elevation south of the EJ&E tracks would be reduced from 704.0 to 703.1. A total of 15 acres of grassland and woodland would be dedicated to reservoir storage usage. Average annual damages in the East Branch Butterfield Creek area would be reduced by \$26,800. This includes the benefits from EJ&E Channel and the Governor's Highway Dike.

The benefit/cost ratio for this element is 0.60:1.

Reservoir 9A

Components: The excavation of 39,500 cubic yards of material from the 100 year floodplain of East Branch Butterfield Creek north of the EJ&E Railroad and near the existing detention pond. This measure would be in combination with the EJ&E Channel and the Governor's Highway Dike to compensate for the loss of temporary storage associated with the EJ&E channel.

The EJ&E channel would take overflows from the Governor's Highway underpass at elevation 699.0 and carry the water back to the existing reservoir area along the East Branch of Butterfield Creek north of the EJ&E railroad tracks.

Costs: The total cost of this measure including the EJ&E Channel and the Governor's Highway Dike is \$449,200 with average annual costs of \$41,500 which includes OM&R of \$1620.

Effects: This reservoir would provide an additional 18 acre/feet of storage between elevation 696.0 and 700.0. Total storage added below the 100 year flood elevation of 702.4 is 22.5 acre feet. The 100 year peak discharge at the Conrail tracks would go down about 15 cfs from 1300 cfs to 1285 cfs.

A total of 6 acres of land presently platted for development but in the 100 year floodplain would be set aside for storage of floodwater. Existing flood elevations for all frequencies would be maintained or reduced with the installation of this reservoir plus the EJ&E Channel and the Governor's Highway Dike. Average annual damages in the East Branch Butterfield Creek area would be reduced by \$27,000. This includes the benefits from the EJ&E Channel and the Governor's Highway Dike.

The benefit/cost ratio for this element is 0.65:1.

Reservoir 16

Components: The excavation of 513,000 cubic yards from the 100 year floodplain increasing the size of an existing reservoir, north of the EJ&E tracks and west of Governor's Highway along the East Branch of Butterfield Creek. This reservoir would be in combination with the EJ&E Channel that takes overflows from the Governor's Highway underpass at elevation 698.0 and conveys them to this reservoir along the north side of the railroad tracks.

Costs: The total cost of this measure including the EJ&E Channel is \$2,944,200 with average annual costs estimated to be \$264,000 which includes OM&R of \$2700.

Effects: This reservoir along with existing storage would provide 410 acre/feet of flood storage below elevation 700.0. The 100 year peak discharge at the Conrail tracks for future runoff conditions would be reduced from 1300 to 1085cfs. A total of 41 acres of grassland and woodland would be dedicated to reservoir storage usage. Average annual damages along the East Branch Butterfield Creek would be reduced by \$56,800. Additional benefits downstream on the main channel total approximately \$11,000 annually. These total benefits of \$67,800 include the benefits from the EJ&E Channel.

The estimated benefit/cost ratio = 0.26:1.

Governor's Highway Dike

There is an existing dike located along the east side of Governor's Highway just north of the EJ&E Railroad. This dike now overtops during the 20% or 5 year frequency flood. The top of the present dike is at elevation 701.9.

Components: The work consists of raising the dike from 701.9 to 703.0 and extending the dike approximately 300 feet to the north. The new dike would have a 12 foot top width and 3 to 1 side slopes. The total length of the new dike would be 700 feet. Total earthfill required would be approximately 600 cubic yards.

Costs: The cost of this measure is \$28,000 with average annual costs estimated to be \$2800 which includes \$300 for OM&R.

Benefits: This measure in combination with the EJ&E Channel reduces the frequency the dike would be overtopped from once in 4 - 5 years to once in 100 years. Annual damages in the area east of Governor's Highway will be reduced by \$26,800 with the installation of these 2 measures. The installation of these two measures will reduce the temporary storage in the floodplain by approximately 18 to 20 acre/feet. Based on current ordinances and the hydraulic evaluation it is assumed that this much storage would be constructed near the EJ&E Railroad to assure no change in downstream hydrologic conditions when the dike and channel are constructed. Either Reservoir 8 or Reservoir 9A described in this report would compensate for this loss of temporary storage.

The combined benefit/cost ratio for the dike, EJ&E Channel, and one of the Reservoirs will be less than 0.65 to 1.

EJ&E Channel

Components: The excavation of 5,120 cubic yards when in combination with Reservoir 8 and the excavation of 5,430 cubic yards when in combination with Reservoir 16. This channel would be located on the north side of the EJ&E tracks starting west of the Governor's Highway underpass and proceeding west for 685 feet to the existing reservoir.

This channel is trapezoid in shape with a 40 foot bottom width, 4:1 side slopes and has a 50 foot level section near Governor's Highway at elevation 699.0. The slope of the channel from the level section to the existing reservoir is 0.0079 ft/ft. The lower 470 ft of the channel would have a 20 foot wide rock riprapped center section.

Costs: The total cost of this measure when combined with Reservoir 8 or 9A is \$118,200 with average annual costs estimated to be \$11,200 which includes OM&R of \$710. The total cost of this measure when used with Reservoir 16 is \$119,400 with average annual costs estimated to be \$11,300 which includes OM&R of \$710.

Effects: This channel when combined with Reservoir 8 or 9A would allow overflows above elevation 699.0 at the Governor's Highway underpass to be conveyed west toward the existing reservoir along the East Branch of Butterfield Creek. This channel when combined with Reservoir 16 would allow overflows above elevation 698.0 at the Governor's Highway underpass to be conveyed west toward the existing reservoir that has been expanded in size. The 100 year peak discharge at the EJ&E railroad for future conditions would be increased from 1500 to 1505 cfs with the Reservoir 8 combination and from 1500 to 1550 cfs with the Reservoir 9A or 16 combination. A total of 1 acre of grassland would be dedicated to bypass channel usage. Average annual damages in the East Branch Butterfield Creek would be reduced by \$26,800 with the Reservoir 8 or 9A combination and reduced by \$56,800 with the Reservoir 16 combination. Benefit/cost ratio for this increment by itself was not calculated because it would increase downstream discharges unless constructed with a reservoir like 8, 9A, or 16.

The channel reduces the depth and frequency of flooding in the 217th Street area.

ALTERNATIVES FOR FLOODPLAIN MANAGEMENT

Several floodplain management strategies were evaluated including a) no action, b) nonstructural measures, c) structural measures, and d) a combination of measures. A brief description of the alternatives follows: (See Appendix C for sketches of the different structural measures and Appendix D for cost details.) Since none of the structural measures were incrementally feasible, this section does not include an alternative with structural measures.

Alternative A - Future Without Project (No Action)

Components: This alternative assumes no additional action beyond what is currently being done in the watershed. All new development will be regulated by the communities, Cook County or Will County. The new development will need to meet the existing on-site detention ordinances. These ordinances require all new development to provide approximately 1.5 inches of storage for the area being developed with a release rate of about 0.5 cfs/acre. Compensatory storage will be provided for any development in an identified floodplain. Existing homeowners in floodprone areas will continue to purchase flood insurance to reduce the financial impact of flooding. Areas currently experiencing flood damages will continue to experience flood damages.

<u>Costs</u>: The costs of this alternative will be determined by the number of individuals who purchase flood insurance (\$250 + per household per year) and the costs to the local governments for implementation of floodplain regulations.

Effects: The average annual damages will increase as peak discharges increase somewhat in response to the additional development with on-site detention. A total of 147 buildings will still be flooded by the 1% chance flood. Some existing home owners and business owners may attempt to relocate due to the uncertainty of when their property will be damaged. The communities involved will continue to receive complaints about flooding and will be monitoring flood levels on Butterfield Creek and Tributaries during all storm events. It is estimated average annual damages to buildings will be over \$200,300 per year in 2005. Other estimated average annual damages are \$5000 for traffic disruption and \$25,000 to the three golf courses.

Alternative B - Nonstructural Measures

Components: The primary components consist of administrative actions such as zoning, on-site detention requirements, building codes or flood insurance and non-structural measures such as a flood warning system, floodproofing which includes low dikes or fills, and sewer check valves. All local governments in the detailed study area are currently cooperating with the National Flood Insurance Program and flood insurance is available for all residents of the floodprone areas shown on the floodplain maps. The maps and profiles prepared as part of this report are provided for possible revision of the regulatory maps for the areas involved. It is estimated that 40 homeowners would be willing to construct flood protection (tloodproofing) measures consisting of low fills of 15 inches or less around their houses and raising existing window wells for the lower story of their nomes. These measures will reduce frequency of flooding by keeping water out of basements until water reaches the 4% chance flood level or first floor, whichever is lower. Many of the existing homeowners have already installed check valves on their sewer lines to prevent sewer backup. The IDOT Division of Water Resources is considering the funding of the engineering services required to determine type of floodproofing required. Floodwater elevations and first floor elevation data has been provided to IDOT Division of Water Resources and to each community in the identified floodplain.

Costs: It is estimated that flood insurance will cost the same as the no action situation, approximately \$250/building. The floodproofing of homes would cost \$128,000 with an estimated annual cost of \$13,600 including \$2,100 annual 0&M. The flood warning system would consist of monitoring Butterfield Creek and East Branch flows and warning floodprone areas when water is approaching bank full at various locations in the watershed. Estimated cost to do this is \$3000 per year. The total installation cost of this alternative is \$128,000 for floodproofing with an annual cost of \$13,600 which includes OM&R.

Total annual cost including flood warning system = \$16,600.

Effects: All residences subject to first floor damage by floodwater would have the peace of mind of knowing the flood insurance policies would cover them for damages over \$200 in a given year. Most of the damages to basements is not covered by flood insurance. The 40 properties where the floodproofing measures, consisting of 15 inches or less of fill and raising existing window wells, are installed will see their annual damages reduced by a total of approximately \$50,000 per year. All of these 40 properties will still be subject to damage by the 50, 100, and 500 year floods. A total of 147 buildings will still be subject to damage by the 1% chance (100 year) flood and 22 would still be subject to damage by the 10 year flood.

All residents who install the sewer check valves will reduce the worry and damages from sewer backup. Damages to property from sewer backup has not been estimated as part of this study.

The Benefit/Cost Ratio for floodproofing the 40 properties is 3.7:1. The composite Benefit/Cost ratio for this alternative is 3:1.

Remaining average annual damages to buildings would be \$150,300. The damages to traffic (\$5000) and the golf courses (\$25000) will remain the same as before.

Table 8 SUMMARY AND COMPARISON OF ALTERNATIVES 1/ FUTURE LAND USE (2005)

ITEM Components	ALTERNATIVE A On-site detention, compensatory storage, floodplain regulation, flood insurance, sewer check valves	ALTERNATIVE B On-site detention, compensatory storage flood warning system, flood proofing 40 bldgs to 25yr flood level, sewer check valves
Total project installation cost	-	\$128,000
Annual Cost <u>2</u> /	-	16,600
Annual Benefits	-	50,000
Net Annual Benefits	-	33,400
Benefit/Cost Ratio		3.0:1
Remaining Building Damages	\$200,300	150,300
Traffic Damage	5,000	5,000
Golf Course Damage	25,000	25,000
Number of Buildings flooded (100 yr)	147	147
Number of Buildings flooded (10yr)	62	22

 $[\]frac{1}{2}$ All costs, damages and benefits shown are in dollars. $\frac{2}{1}$ 100 year period 8 7/8%.

GLOSSARY AND REFERENCES

Glossary

Avg. Annual Damage- The estimated average yearly damage expected to occur

during the project evaluation periods.

Encroachment-Obstruction in part of a floodplain which reduces

floodwater carrying capacity, therefore increasing flood

stages.

Floodway-The portion of a floodplain required to convey floodwaters

without causing significant increases in flood heights or

velocities.

Floodway Fringe

Area-

Portions of the floodplain outside of the floodway subject to shallow inundation and low velocity flow.

Flood-

An overflow of water onto land not normally covered by water. This inundation of land is temporary, and the land is normally adjacent to a river or stream, lake, or other body of water. Normally, a "flood" is considered as any temporary rise of stream flow or stage that causes a significant adverse effect. Adverse effects would be damage to property, sewer backup, creation of unsanitary conditions, erosion, sedimentation, accumulation of debris, traffic disruption or other problems.

Flood Crest-

The maximum stage or elevation reached by the waters of flood at a given location. It may be referred to as flood stage or high water elevation.

Flood Peak-

The maximum instantaneous discharge at a given location. It usually occurs at or near the time of the flood crest.

Floodplain-

The relatively flat area or low lands adjoining the stream channel, or water course, lake, or other body of water, which has or may experience flood inundation.

Head Loss-

The effect of natural or man-made obstructions such as small bridge openings, buildings, fill, or accumulation of debris which limits the conveyance of water, causing a rise in upstream water surface elevation.

Profile-

A graph showing the relationship of water surface elevation and natural ground elevations to location along the water course. The profile is normally drawn for a specific flood. Also referred to as water surface profile.

100 Year Flood-

A flood having a 1% chance of being equaled or exceeded in any one year. It may occur in any year. It is based on a statistical analysis of precipitation and gage records. Also referred to as a flood with a 100 year recurrence

interval.

References

- 1. U.S. Dept. of Agriculture, Soil Conservation Service, Little Calumet River Watershed Plan and Environmental Impact Statement, November 1981.
- 2. U.S. Dept. of Housing and Urban Development, Federal Insurance Administration, Flood Insurance Studies.
- 3. Governor's Task Force on Flood Control, <u>State of Illinois Guidelines for Floodplain Studies</u>, Illinois State Water Survey Division and Illinois Division of Water Resources, March 1975.
- 4. Sheviak, C.J. and R.H. Thorn, Illinois Department of Conservation, Endangered and Threatened Species of Illinois, 1981.
- 5. Illinois Department of Registration and Education, Division of Industrial Planning and Development, Water Resources and Climate, 1958.
- 6. State of Illinois, Department of Transportation, Division of Water Resources, Protect Your Home From Flood Damage, Local Assistance Series 3B, March, 1982.
- 7. State of Illinois, Department of Transportation, Division of Water Resources, Rules and Regulations, Regulation of Construction Within Floodplains Established Pursuant to Section 65f, Chapter 19, Illinois Revised Statutes, Springfield, 1973.
- 8. USDA, Soil Conservation Service, <u>Computer Program for Project Formulation</u>, Hydrology Technical Release No. 20, Washington, DC, Draft, May 1983.
- 9. USDA, Soil Conservation Service, <u>WSP-2</u> <u>Computer Program</u>, Technical Release No. 61. May 1976.
- 10. USDA, Soil Conservation Service, Floodway Determination Computer Program, Technical Release 64, June 1978.
- 11. U.S. Department of Agriculture, Soil Conservation Service, <u>Guide for Selecting Roughness Coefficient "n" Values for Channels</u>, Lincoln.

 Nebraska, December 1963.
- 12. USDA, Soil Conservation Service, <u>Soil Survey of DuPage and Part of Cook Counties</u>, Illinois, May, 1979.
- 13. USDA, Soil Conservation Service, Soil Survey of Will County Illinois.
- 14. U.S. Department of Commerce, Bureau of the Census, 1980 Census of Population, August 1982.
- 15. USDA, Soil Conservation Service, <u>Urban Floodwater Damage Economic Evaluation Program (URBI)</u>, Fort Worth, Texas, January 1982.

WS12:7

SUMMARY OF PEAK FLOWS AND ELEVATIONS BY VALLEY SECTIONS BUTTERFIELD CREEK

Map	Cross Section		Q 2	Year Elev	Q 10	Year Elev	100 Q	Year Elev	500 Q	Year Elev
1 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6	B0010 B0023 B0033 B0059 B0089 B0114 B0124 B0168 B0189 B0208 B0235 B0244 B0276 B0281 B0287 B0300 B0313 B0340 B0366 B0401 B0421 B0425 B0428 B0450 B0454 B0473	603.6 606.8 606.5 606.9 610.2 610.2 613.0 617.8 620.5 624.0 623.8 625.5 624.8 627.0 627.8 629.5 630.7 632.5 638.2 639.0 638.5 642.5 644.2 645.5 644.2 645.2	950 950 940 935 935 930 925 930 940 945 955 965 975 985 970 960 950 925 890 885 875 870	609.2 612.1 613.1 614.5 617.4 617.9 619.8 625.4 626.9 629.7 631.6 632.6 634.8 635.1 635.6 637.8 637.8 637.8 637.8 637.8 637.9 647.9 649.3 647.9 649.3 650.0 651.4 652.3 656.3	1720 1710 1710 1710 1700 " " 1690 " 1685 1675 " 1665 " 1650 1685 1710 1730 1750 1730 1750 1730 1740 1440 1470 1445 1460	611.9 613.3 614.4 615.6 618.8 619.3 621.3 626.7 632.8 630.7 632.8 633.9 636.2 636.5 637.2 640.0 642.4 644.6 646.9 648.9 650.8 651.6 652.5 657.0 660.9	2470 2750 "2760 "2770 "2790 2810 2800 2805 2790 2785 2780 2775 2810 2860 2900 2935 2890 2870 2840 2750 2520 2430 2350	614.7 615.2 616.0 616.8 620.4 620.7 622.6 627.8 632.9 634.5 635.5 637.4 637.8 640.7 641.5 643.7 645.8 649.7 650.4 652.3 652.3 655.5 658.0 661.7	3725 3750 3755 3750 3755 3790 3850 3900 3945 3935 3930 3925 3920 3960 4050 4090 4040 4000 3955 3900 3525 3475 3400 3300	615.0 615.7 616.7 617.5 621.8 622.1 623.9 628.9 632.8 633.8 635.5 636.6 639.5 641.6 642.4 644.7 646.7 648.4 650.6 651.5 653.2 653.8 654.4 656.5 658.7 662.2
15 15 15 20 15,20 20 20 19 19 19 19	B0561 B0592 B0624 B0646 B0666 D B0716 B0726 B0747 B0795 B0817 B0852 B0861 B0863 B0870	653.3 657.1 658.8 659.3 660.0 665.8 664.3 667.3 668.4 671.3 673.2 674.1 676.0 676.0	860 870 875 " " 880 " " 890 300	661.2 662.9 665.9 666.8 667.7 671.7 672.5 674.7 676.0 677.7 679.8 681.7 682.0	1480 1490 "1480 1470 1460 "1440 515	662.7 663.8 666.9 667.7 668.7 672.4 673.2 676.6 677.7 679.0 681.1 683.0 683.2 683.3 683.6	2350 2355 " 2350 2300 2260 2220 2200 2180 2140 2100 2040 835	663.6 664.7 667.7 668.4 669.6 673.2 673.9 679.3 681.0 682.8 684.2 684.5 684.7	3275 3250 3225 3200 3150 3100 3050 3000 2900 2850 2800 2700 1050	664.2 665.4 668.4 669.1 670.3 673.8 674.5 682.2 682.4 682.8 684.4 685.5 685.7 685.9

SUMMARY OF PEAK FLOWS AND ELEVATIONS BY VALLEY SECTIONS BUTTERFIELD CREEK

Мар	Cross Section		2 Q	Year Elev	Q 1	.0 Year Elev	100 Q) Year Elev	500 Q	Year Elev
19 19 19 14 14 14 14 9,14 9 13,8 13 13	B0877 B0880 B0900 B0916 B0933 B0946 B0958 B1030 B1047 B1065 B1108 B1113 B1121 B1133	675.1 677.6 676.6 679.5 680.7 680.8 681.6 682.6 683.5 684.1 684.7 685.7 686.1 685.5	300 " 290 290 " 265 " 260 250 230	682.5 682.6 684.4 686.0 687.4 687.9 688.6 690.1 691.6 692.2 692.6 693.9 694.0 694.1 694.7	510 505 500 490 485 480 475 470 405 " 380 360 350	683.7 683.9 685.9 687.7 689.2 689.6 690.2 691.5 693.0 693.6 694.0 695.2 695.3 695.4 695.9	810 800 780 770 760 740 700 680 540 " 520 490 470	685.0 685.2 687.7 689.2 691.4 691.6 691.8 692.6 693.9 694.6 694.9 696.0 696.0 696.3 696.7	1020 1000 980 960 940 920 900 820 620 " 590 570 540	686.1 686.6 688.8 689.9 692.1 692.3 692.4 693.1 694.4 695.0 695.3 696.3 696.7 697.0
13 13 13,17 12,17 16 16 16,21 21 21 21 21,22 22,25	7 B1228 7 B1250 B1289 B1302 B1333 B1376 B1420 B1436 B1444	687.0 687.6 687.6 689.3 689.9 692.3 694.2 695.4 697.4 698.0 698.7 699.4 699.5	230 "535 390 320 300 280 170 165 145 135 105 60	694.8 694.9 695.3 696.4 696.7 698.9 699.9 700.4 702.2 704.0 704.5 704.7 704.8 705.0	350 855 650 580 545 490 440 280 255 225 170 90 90	696.0 696.1 696.3 697.2 697.6 699.3 700.7 701.5 703.1 705.3 706.0 706.1 706.2 706.3	470 "1270 1015 930 900 795 725 435 375 340 245 120 120	696.7 696.8 697.0 697.8 698.2 700.0 701.8 702.9 703.9 706.4 706.9 707.3 707.3	540 "1640 1270 1140 1120 960 900 530 450 400 295 140	697.1 697.2 697.3 698.1 698.6 700.2 702.4 703.5 704.2 706.8 707.3 707.7

SUMMARY OF PEAK FLOWS AND ELEVATIONS BY VALLEY SECTIONS

EAST BRANCH BUTTERFIELD CREEK

Мар	Cross Section		2 Q	Year Elev		Year Elev	100 Q	Year Elev	500 Q	Year Elev
19 19 19,24 19,24 19 19 19 19 19 18 18 24 24 24 24 24 24 26 26 26		678.4 678.0 678.7 679.1 678.9 682.2 683.5 683.6 683.9 685.0 685.2 686.8 686.5 687.3 690.9	615 610 " 605 " 600 595 590 585 580 570 560 555 " 625 320	683.0 684.0 684.7 686.0 686.2 686.4 687.7 689.5 690.6 692.3 692.8 692.8 692.8 693.1 693.5 696.3 697.1 698.7 699.4 699.4 699.7	1005 1000 "995 "990 "980 "975 970 "950 930 915 905 900 "1330 690	684.1 685.1 686.1 687.3 687.6 688.1 690.8 692.2 693.6 693.9 694.1 694.3 694.5 694.7 697.2 697.9 700.9 701.3 701.3 701.3	1405 1400 " 1395 1390 " 1380 1370 1365 1360 1350 1340 1320 1280 1270 1280 2030 1230	685.3 686.1 687.3 688.5 688.8 689.6 690.2 692.1 693.4 694.5 695.6 695.5 695.6 695.8 697.8 701.8 702.3 702.3 702.3	1715 1710 " 1705 " 1700 " 1695 1690 1685 1675 1670 1650 1610 1595 1580 " 1600 2450 1540	686.4 687.1 688.5 689.5 689.7 690.9 691.4 693.2 694.2 695.2 695.4 696.4 " 696.6 698.2 698.9 702.2 702.8 702.8 702.8
26 26 26 26 28 28 28 28 28 28 30 30 30 30 31 31	BET216 BET226 BET236 BET241 BET245 BET272 BET278 BET278 BET303 BET309 BET309 BET341 BET375 BET380 BET380 BET380 BET380 BET380	698.5 700.5 697.6 700.5 700.8 700.6 699.1 702.1 704.0 705.9 711.1 715.1 719.0 724.3 727.1 729.0	320 335 330 330 325 320 315 310 300 290 280 220 "	701.5 701.7 702.7 702.8 703.0 704.1 704.8 705.1 708.2 709.8 711.0 712.0 718.5 724.8 727.1 729.4 732.5 739.0	690 720 700 680 670 660 650 640 620 600 580 565 420 "	702.5 702.6 703.5 703.7 703.9 704.7 705.6 705.9 708.7 710.5 711.7 713.5 725.9 727.8 729.7 733.0 739.5	1230 1200 1170 1130 1050 1070 1055 1030 1015 1000 950 915 660	703.4 703.6 704.3 704.4 704.6 705.3 706.2 706.6 709.0 710.9 712.1 714.5 720.3 726.8 728.4 730.0 733.4 739.9	1540 "1530 1490 1430 1400 1370 1350 1330 1310 1290 1270 1150 820 "	704.0 704.2 704.7 704.8 705.0 705.6 706.6 707.1 709.3 711.1 712.3 714.8 720.8 727.2 728.7 730.2 733.6 740.2

NOTE: The high water elevations for the ponding area north of EJ&E Railroad and east of Governor's Highway are as follows: 2 years = 701.4, 10 year = 702.5, 100 year = 703.2, and 500 year 703.6

SUMMARY OF PEAK FLOWS AND ELEVATIONS BY VALLEY SECTIONS

TRIBUTARY TO EAST BRANCH

Map	Cross Section	Bottom Elev	2 Q	Year Elev	Q 10	Year Elev	100 Q	Year Elev	500 Q	Year Elev
26 26 25 27 27 27 27 29 29 29	TEB004 TEB026 TEB061 TEB073 TEB110 TEB125 TEB129 TEB173 TEB181 TEB199 TEB220	694.4 697.0 700.3 704.4 706.2 710.0 709.0 716.0 720.5	350 340 " 325 250 240 " 285 345 280 250	699.5 700.3 703.0 704.9 708.9 710.4 716.0 720.0 720.8 727.9 728.9	680 660 " 470 460 " 485 560 490 460	701.4 702.0 704.1 707.0 710.6 712.1 717.8 721.6 722.0 729.5 730.5	880 860 840 1150 710 690 700 800 740 700	702.3 703.0 704.7 710.8 711.5 713.5 718.9 723.0 724.2 729.9 730.7	1000 980 970 1390 800 780 " 765 1100 950 880	702.8 703.5 705.1 712.0 712.6 714.2 719.2 725.2 725.8 730.1 731.0
FLOSSMOOR TRIBUTARY										
5 5 5 5 5 5 5 5 5 5	FT023 FT028 FT033 FT040 FT050 FT060 FT079 FT088 FT092 FT107	652.7 653.2 654.8 657.0 662.1 667.3 674.2 677.9 683.5 688.0	143 " 260 " 210 190 190 180	655.3 656.8 658.7 667.7 668.2 671.9 679.3 684.1 687.1	157 " 500 " 460 440 " 420	655.5 656.8 658.7 669.8 670.1 672.9 680.6 684.5 687.8 693.5	170 " 168 795 " 760 740 "	655.6 656.9 658.8 671.4 671.7 673.9 681.5 685.8 688.5 693.7	175 175 173 990 950 890	655.8 656.9 658.8 672.1 672.4 674.4 682.1 686.5 688.7 693.9

RESERVOIR 9A
BUTTERFIELD CREEK W/S
COOK COUNTY, ILLINOIS
APPENDIX C

APPENDIX D BUTTERFIELD CREEK WATERSHED FLOODPLAIN MANAGEMENT STUDY ALTERNATIVE B COST ESTIMATE

Item	Quantity	Unit Price	Total Price
Floodproofing (25 year frequency)	40 buildings	\$3200/buldg	\$128,000
Construction cost =	\$128,000		
Average annual cost (.0 (8 7/8 for 100 yrs)	08875) = \$ 11,360		
0&M (\$56/buldg) =	\$ 2,240		
Flood warning system = (annual cost)	\$ 3,000		
Total annual cost =	\$ 16,600		

APPENDIX D BUTTERFIELD CREEK WATERSHED FLOODPLAIN MANAGEMENT STUDY COST ESTIMATE Dixie Channel (3500 ft)

<u>Item</u>		Quantity	Unit Price	Total Price
new bridge @ new bridge @ new bridge @ Excavation Seed, fertil	sta 149+00 sta 159+00	1 job 1 job 16,400 cu yds	\$3,000/acre Subtotal	\$ 23,000 96,000 13,000 90,200 24,000 \$ 246,200 24,600 \$ 270,800
Construction Engr Service (20% of con	s & Proj Ad	\$270,800 lmin 54,200		
Land rights: 8.0 acre @ \$	40,000/ac	320,000		
Installation	cost =	645,000		
Average annual cost (.088 (8 7/8% for 100 yrs)	8875) 57,200			
0&M Annual cost		1,700 \$58,900		

Note: Does not include costs for utility relocation or any bank protection.

APPENDIX D BUTTERFIELD CREEK WATERSHED FLOODPLAIN MANAGEMENT STUDY COST ESTIMATE Dixie Channel (1200 ft)

<u>Item</u>	Quantity	Unit Price	Total Price
new bridge @ sta 146+50 new bridge @ sta 149+00 new bridge @ Dixie Hwy new bridge @ sta 159+00 Excavation Clear and grub Seed, fertilize & mulch	1 job 1 job 1 job 11,150 cu yds 1.7 acres	1 lump sum 1 lump sum 1 lump sum 1 lump sum 55.50/cu yds \$5000/acre \$3,000/acre Subtotal Total	96,000
Construction cost Engr services & Proj Ad Land Rights Installation cost Average annual cost (.0 0&M Annual cost	120,000 563,000		

APPENDIX D BUTTERFIELD CREEK WATERSHED FLOODPLAIN MANAGEMENT STUDY

COST ESTIMATE Dixie Channel (750 ft)

<u>Item</u>	Quantity	Unit Price	Total Price
new bridge @ sta 159+00 Excavation Clear & grub Seed, fertilize & mulch	1 job 7,740 cu yds 1.7 acres 1.7 acres 10% Contingenc	1 lump sum \$5.50/cu yds \$5000/ac \$3,000/acre Subtotal	13,000 42,570 8,500 5,100 \$ 69,170 6,920
		Total	\$ 76,090
Construction cost Engr services & Proj Admin Land Rights Installation cost Average annual cost (.08875) O&M Annual cost	\$ 76,090 15,210 68,000 159,300 14,140 1,160 15,300		

APPENDIX D BUTTERFIELD CREEK WATERSHED FLOODPLAIN MANAGEMENT STUDY COST ESTIMATE Reservoir 8

Item	Quantity	Unit Price	Total Price
Excavation Seed, fertilize & mulch	57,260 cu yds 14 acres 10% Contingenc	\$3,000/acre Subtotal	171,780 42,000 \$213,780 21,380
		Total	\$235,160
Construction cost Engr services & Proj Admin Land Rights Installation cost Average annual cost (.08875) OM&R Annual cost	\$235,160 47,030 70,000 352,190 31,260 740 32,000	(use 352,200) (8 7/8% for 100 years)	

APPENDIX D BUTTERFIELD CREEK WATERSHED FLOODPLAIN MANAGEMENT STUDY COST ESTIMATE Reservoir 9A

<u>Item</u>	Quantity	Unit Price	Total Price
Excavation Seed, fertilize & mulch Temp seeding of spoil	39,500 cu yds 6 acres 10 acres 10% Contingenc	\$3,000/acre \$900/acre Subtotal	88,875 18,000 9,000 \$115,875 11,590
		Total	127,465
Construction cost Engr services & Proj Admin Land Rights	\$127,465 25,495		
6 ac @ \$20,000 10 ac @ \$ 3,000	120,000 30,000		
Installation cost	302,960	(use 303,000)	
Average annual cost (.08875) OM&R Annual cost	26,900 600 27,500	(8 7/8% for 1	00 years)

Note: The 10 acres are for placement of spoil and will be returned to original owner after construction.

APPENDIX D BUTTERFIELD CREEK WATERSHED FLOODPLAIN MANAGEMENT STUDY COST ESTIMATE Reservoir 16

<u>Item</u>	Quantity	<u>Unit Price</u>	Total Price
Excavation Rock riprap (SW inlet) Seed, fertilize & mulch Temporary seeding		\$80/cu yds \$3,000/acre \$900/acre Subtotal	1,154,250 72,000 123,000 47,700 1,396,950 139,700
		Total	1,536,650
Construction cost Engr services & Proj Admin Land Rights 41 acres @ \$20,000/ac 54 acres @ \$ 3,000/ac Installation cost	\$1,536,650 307,350 820,000 162,000 2,826,000	(20% of Constr	uction Cost)
Average annual cost (.08875) OM&R	250,800 2,000	(8 7/8% for 10	O years)
Total Annual cost	252,800		

Note: The 54 acres are for placement of spoil. The land will be returned to the owner following construction.

APPENDIX D BUTTERFIELD CREEK WATERSHED FLOODPLAIN MANAGEMENT STUDY COST ESTIMATE Governor's Highway Dike

<u>Item</u>	Quantity	Unit Price	Total Price
Earthfill Seed, fertilize & mulch	585 cu yds 1 acre 10% Contingenc	\$5.00/cu yds \$3,000/acre Subtotal y	\$2,925 3,000 \$5,925 595
		Total	\$6,520
Construction cost Engr services & Proj Admin Land Rights Installation cost	\$ 6,520 1,340 20,000 27,860	(20% of constr (use \$28,000)	ruction cost)
Average annual cost (.08875) OM&R Annual cost	2,490 310 2,800	(8 7/8% for 10	00 years)

APPENDIX D BUTTERFIELD CREEK WATERSHED FLOODPLAIN MANAGEMENT STUDY COST ESTIMATE EJ&E Channel

<u>Item</u>	Quantity	Unit Price	Total Price
Excavation Rock riprap Seed, fertilize & mulch	5120 cu yds 700 cu yds 1 acre 10% Contingend	\$3.00/cu yds \$80/cu yd \$3,000/acre Subtotal	\$15,360 56,000 3,000 \$74,360 7.440
		Total	\$81,800
Construction cost Engr services & Proj Admin Land Rights Installation cost	\$81,800 16,400 20,000 118,200		
Average annual cost (.08875) OM&R Annual cost	10,490 710 11,200	(8 7/8% for 10	00 years)

Note: When the EJ&E Channel is constructed with Reservoir 16, the level section is at elevation 698.0. This increases the excavation to 5430 cu yd. The revised construction cost is \$82,800 and the revised installation cost is \$119,400. The new total annual cost is \$11,300.

APPENDIX F

CLUSTER LOCATION MAP

BUTTERFIELD CREEK WATERSHED FLOODPLAIN MANAGEMENT STUDY

APPENDIX F BUTTERFIELD CREEK FLOODPLAIN MANAGEMENT STUDY BUILDING AND FLOOD WATER ELEVATIONS

Location: Butterfield Creek near Glenwood & Homewood Cluster 1 & 2

Present Runoff Conditions Future 10% chance 1% chance 100 year 500 year 10 year	611.9 614.7 615.0 611.9	= :	= =											619.3 620.6 622.7	6.36.0 6.27.1		631.9 632.7	628.5 632.0 632.7 628.5	628.8 632.2 632.9 628.9	634.4 635.1	032.4 034.1 034.9 032.5 " " " "	634.4 635.3	632.1 633.9 634.7 632.1
Low Water Entry	616.8	615.2	614.8	015.1	015.2 615.5	616.9	617.0	616.5	010.4	615.8	612.9	614.0	610.8	627.2	620.3	631.5	34	631.5	628.6	634.7	633.4 633.3	635.6	633.0
First Floor	616.8	616.4	614.8	6.010	012.0	616.9	617.0	619.7	010.4 616.1	615.8	612.9	614.0	617.8	627.2	636.3	634.8	634.3	631.5	632.4	636.2	634.7	635.6	633.0
Channel Station	550													5800	-	8750	0066	10050	se N of channel10250	12350	12150	12300	12000

Eval. Numbe 1-1 1-2 1-3 1-4 1-5 1-9 1-10 1-12 1-12 1-13 1-14 1-15 1-15 1-16 1-16				
--	--	--	--	--

APPENDIX G INVESTIGATIONS AND ANALYSIS

Surveys and Mapping

All surveys were performed by the State of Illinois, Department of Transportation, Division of Water Resources (DWR) as part of its contribution as co-sponsors of this study. Detailed surveys included valley cross sections and centerline of roads along with bridge and culvert dimensions for use in analyzing hydraulic characteristics. They also obtained first floor and low water entry elevations for residences, businesses and related structures for use in flood damage analysis.

Detailed topographic maps prepared by IDOT-DWR with 1 inch = 200 feet scale and 2 foot contour interval were used for the initial evaluation of the floodprone areas.

The IDOT maps were used as base maps for alternative evaluation, economic evaluation, expanded basic data, and preparation of floodplain and floodway maps included in this report.

Hydrology

Hydrologic modeling for this study was completed through the use of the SCS Computer Program for Project Formulation (Technical Release 20, Reference 8). This program is an advanced hydrologic model which simulates flood stages and discharges. The stages and discharges are related to watershed characteristics such as drainage area, hydrologic soil group, land use and cover, time of concentration, and channel and floodplain hydraulic characteristics. Given these characteristics and rainfall amounts, the model will develop hydrographs for local drainage areas and perform a specified series of channel and reservoir routings as well as hydrograph additions. The result is peak discharges, hydrograph shape, and runoff volumes at specified locations throughout the watershed.

The present condition model for this study was based on 1985 land use in the watershed area and was checked for reasonableness against the historic floods of 1981. The evaluation is based on the SCS type 2 storm distribution with twenty-four hour rainfall values as presented in Technical Paper 40, US Department of Commerce - Weather Bureau, May 1961. This analysis included the evaluation of the existing storage areas described in Appedix D. The total storage in these areas exceeds 1700 acre feet during the 1% chance storm.

The future condition model, for the year 2005, was developed by modifying runoff curve numbers and times of concentration to reflect increased urban development. Based on input from local governments and the steering committee the future condition model also incorporates the installation of on-site detention basins on all new development which store 1.5 inches of runoff from the development and releases the water at a rate of 0.5 cfs per acre of newly developed land draining into the basin. Once the inflow exceeds the storage capacity of the basin the outflow was estimated to be 2 cfs/acre for the first foot above the capacity of the basin. Beyond that elevation a large cfs/acre was used to indicate no storage effect on these flows.

The areas that were included as developed in 2005 were based on existing zoning maps of Cook County and the communities involved along with input from the steering committee on the areas likely to develop. Many of the areas are already platted.

The future condition model assumes that all existing natural storage is being maintained in the watershed. Appendix E shows the location of the 16 existing storage areas included in the TR-20 model. The largest of these is reservoir #4 located west of I-57 in Matteson. This reservoir stores over 500 acre feet during the 1% chance storm. According to the communities, they require compensatory storage when the new development is located in floodprone areas beyond the on-site detention requirement.

The flood discharges were submitted for certification in accordance with the state Floodplain Study Review Procedure. The review is conducted by the Illinois State Water Survey with certification by the Illinois Division of Water Resources.

Hydraulics

An analysis of the hydraulic characteristics of the creek was carried out to provide stage estimates for floods of selected recurrence intervals. The water surface elevations (stage) were established utilizing the physical characteristics of the channel including channel size and shape, floodplain size and shape, bridge sizes and shapes, and estimates of Manning's roughness coefficients. The hydraulic computations were made using the SCS Hydraulic Model WSP-2 (Technical Release 61, Reference 9). This model employed the standard step method for backwater profiles which is a computational procedure that estimates total energy at each stream cross section accounting for friction losses between sections. The bridge effects on stream hydraulics were accounted for using the Bureau of Public Roads Method. The bridge method, which is included in WSP-2, was formulated using the principle of conservation of energy. The model employs this principle between the point of maximum backwater upstream from the bridge and a point downstream from the bridge at which normal stage has been established. Culverts were also evaluated using the principle of conservation of energy and depth of headwater and tailwater, the barrel shape and dimensions, type of inlet, and shape of headwall.

The hydraulic model requires the input of peak discharges in addition to the physical characteristics listed above. The peaks were taken from the hydrologic model at appropriate locations. Starting configuration was based on estimated water surface elevations of Thorn Creek. These range from 609.0 for the two year storm to 615.0 for the 500 year storm. Manning's roughness coefficients were estimated on the basis of field observations using the SCS procedures (Reference 11). All elevations are National Geodetic Vertical Datum.

The floodway was determined for all studied reaches. It was computed on the basis of equal conveyance reduction from each side of the floodplain using the SCS Floodway Computer Program (Technical Release 64, Reference 10).

Flood Damage Analysis

The economic data for floodwater damages for this study was gathered by personal interviews with floodplain residents during the fall and spring of 1985 and 1986. Data regarding damages to personal property, business property, loss of income, and the effects of flooding to safety and health was gathered. The final economic evaluation of personal property losses from floodwater was done by use of the Urban Floodwater Damage Economic Evaluation program (URB 1), (Reference 15).

Properties within the floodplain were classified by major type that included basement structures, slab on grade, bi-level, tri-level, apartment, commercial and industrial. Engineering surveys were conducted to determine low water entry point, basement elevation and first floor elevations for each property. Coefficient damage curves published by the Federal Insurance Administration (FIA) and from the other urban studies were used in the URB 1 program to compute damages for each property. Occasionally these were adjusted to correlate with interview data. The coefficient damage curves represent percent damage factors by flood depth for buildings and contents of respective houses or other types of buildings. The URB 1 program locates each property based upon surveyed location and computes damages based upon frequency and depth of flooding related to the damage factors for that respective property.

The program lists the properties damaged for each alternative, and includes the following items for each property.

a) damage to property (building) by each storm

b) damage to contents by each storm

c) sum of property (building) and contents damage by each storm

d) sequence number listing of buildings

- e) frequency of each damaging storm in flood series
- f) total (building and contents) average annual damage for the property

g) flood elevation for each damaging storm

h) depth of flood in relation to first floor of building

i) frequency damages begin

j) computation of average annual damages for property and contents

Example of URB 1 output.

HOUSE NO. 342 STATION: 111900 (SECTION: ET215 STATION: 111800)

PROPERTY DAMAGE	CONTENTS DAMAGE	PROPERTY & CONTENTS	PCT PROB	FLOOD FLEV	TO 1ST FLOOR		ANN. DAMA	AGE JATOT
45000 14400 13500 12780 12059 10980 8500	18000 9720 9000 8460 7920 7110	63000 24120 22500 21240 19979 18090	VAL 0.2 1.0 2.0 4.0 10.0 20.0	703.60 703.20 703.00 702.80 702.50 702.00	2 • 4 0 2 • 0 0 1 • 8 0 1 • 6 0 1 • 3 0	29 112 131 248 691	19 75 87 164 451	48 187 218 412 1142
0	0	13600	25.0	701.90 TOTAL	0.80 0.70 AVG. ANN.	974 213 2398	611 128 1535	1585 341 3933

The effects of floodwater damages were evaluated for present conditions, future without project, and several structural alternatives.

All damage estimates were based upon current values (1986 price base). Damages from increased values of floodplain property due to expansion of existing facilities or the construction of new units were not evaluated. All of the alternatives were evaluated using a 100 year project life and a discount rate of 8 7/8 percent.

Public Involvement

The local people contacted the Illinois Division of Water Resources requesting that something be initiated to solve the flooding problem made apparent by the flood of 1981. The information provided by the local people indicated that the flooding in the area of Dixie Highway and on the golf courses was increasing as new development occurred upstream of Governor's Highway.

The steering committee that was formed to provide guidance for this study included representatives from the local governments as well as representatives of interested organizations such as the IDOT, Division of Highways, homeowners associations, and the country clubs involved. Also in attendance at several of the steering committee meetings were the Illinois State Representative for this district.

Public meetings were held March 10 and 11, 1987, in Matteson and Flossmoor. Approximately 75 people attended these meetings along with representatives from the local press.

