Definition: Binomial Coefficient

Definition: Binomial Coefficient

The **binomial coefficient** $\binom{n}{k}$ (read "n choose k") counts the number of ways to choose k objects from n objects without regard to order.

Formal Definition

For non-negative integers n and k with $k \leq n$, the binomial coefficient is defined as:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

where n! denotes the factorial of n.

Alternative Formulations

- 1. In terms of Combination: $\binom{n}{k} = C(n,k)$ the number of k-combinations from n elements
- 2. In terms of Permutation: $\binom{n}{k} = \frac{P(n,k)}{k!}$ where P(n,k) is the number of k-permutations
- 3. Recursive definition:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

1

with base cases $\binom{n}{0} = \binom{n}{n} = 1$

Special Values

- $\binom{n}{0} = 1$ (one way to choose nothing) $\binom{n}{1} = n$ (n ways to choose one item) $\binom{n}{n} = 1$ (one way to choose everything) $\binom{n}{k} = 0$ if k > n (cannot choose more items than available)

Properties

- 1. Symmetry: $\binom{n}{k} = \binom{n}{n-k}$
- 2. Pascal's Identity: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- 3. Binomial Theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$

Applications

- Counting subsets of a given size
- Expansion of binomial expressions
- Probability calculations in discrete distributions
- ullet Pascal's triangle construction

Dependency Graph

Local dependency graph