Übungsblatt 4

Felix Kleine Bösing, Juri Ernesto Humberg, Leonhard Meyer

November 3, 2024

Aufgabe 1

Bestimmen Sie alle komplexen Zahlen $z=x+iy\in\mathbb{C}$ $(x,y\in\mathbb{R})$ mit $z^3=1$. Sie müssen beweisen, dass Sie keine Lösungen übersehen haben. Zeichnen Sie Ihre Lösungen im \mathbb{R}^2 .

Teil (a)

Beweis: Um alle komplexen Zahlen z = x + iy zu finden, für die $z^3 = 1$ gilt, gehen wir wie folgt vor:

1. Zunächst schreiben wir $z^3 = 1$ in der Form:

$$(x+iy)^3 = 1$$

2. Entwickeln wir $(x + iy)^3$ mithilfe des Binomischen Satzes:

$$(x+iy)^3 = x^3 + 3x^2(iy) + 3x(iy)^2 + (iy)^3$$
$$= x^3 + 3x^2 \cdot iy + 3x \cdot (i^2 \cdot y^2) + (i^3 \cdot y^3)$$

3. Da $i^2 = -1$ und $i^3 = -i$, vereinfacht sich der Ausdruck zu:

$$= x^3 + 3x^2 \cdot iy - 3x \cdot y^2 - iy^3$$

4. Gruppieren wir nun die Real- und Imaginärteile:

$$= (x^3 - 3xy^2) + i(3x^2y - y^3)$$

5. Damit $z^3=1$ ist, muss der Realteil $x^3-3xy^2=1$ und der Imaginärteil $3x^2y-y^3=0$ sein. Wir haben also das Gleichungssystem:

$$x^3 - 3xy^2 = 1$$

$$3x^2y - y^3 = 0$$

6. Betrachten wir die zweite Gleichung $3x^2y - y^3 = 0$. Diese können wir umformen zu:

$$y(3x^2 - y^2) = 0$$

Das liefert zwei Möglichkeiten:

- (a) y=0: Wenn y=0, wird z=x reell. Setzen wir y=0 in die erste Gleichung ein, erhalten wir $x^3=1$, was x=1 ergibt. Also ist eine Lösung z=1.
- (b) $3x^2 = y^2$: Wenn $y \neq 0$, dann gilt $y^2 = 3x^2$, also $y = \pm \sqrt{3}x$.
- 7. Setzen wir $y = \pm \sqrt{3}x$ in die erste Gleichung ein:

$$x^{3} - 3x(\pm\sqrt{3}x)^{2} = 1$$

$$x^{3} - 3x \cdot 3x^{2} = 1$$

$$x^{3} - 9x^{3} = 1$$

$$-8x^{3} = 1 \Rightarrow x^{3} = -\frac{1}{8} \Rightarrow x = -\frac{1}{2}$$

8. Damit sind die möglichen Werte von x und y:

$$x = 1, \quad y = 0 \Rightarrow z = 1$$

$$x = -\frac{1}{2}, \quad y = \pm \frac{\sqrt{3}}{2} \Rightarrow z = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$

Ergebnis: Die Lösungen sind also:

$$z_0 = 1$$
, $z_1 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, $z_2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$

Teil (b)

Figure 1: Darstellung der Lösungen im \mathbb{R}^2

Aufgabe 2

Sei $(z_n)_{n\in\mathbb{N}}$ eine komplexe Zahlenfolge mit

$$z_n := i^n + \frac{1}{2} \left(\frac{1+i}{\sqrt{2}} \right)^n$$

für alle $n \in \mathbb{N}$. Bestimmen Sie:

- (a) $\sup(\{\operatorname{Re}(z_n) : n \in \mathbb{N}\}).$
- (b) $\inf(\{\operatorname{Im}(z_n) : n \in \mathbb{N}\}).$
- (c) $\sup(\{|z_n|:n\in\mathbb{N}\}).$

Lösung:

Um die Teilaufgaben zu lösen, analysieren wir zunächst den Ausdruck für $z_n.$

Teil (a)

Betrachten wir den Realteil von z_n :

$$z_n = i^n + \frac{1}{2} \left(\frac{1+i}{\sqrt{2}} \right)^n$$

- 1. Der Term i^n wechselt periodisch in den Werten $i^0 = 1$, $i^1 = i$, $i^2 = -1$, $i^3 = -i$, und wiederholt sich dann alle vier Schritte. Somit hat der Realteil von i^n die Werte 1 und -1, abhängig davon, ob n gerade oder ungerade ist.
- 2. Der Ausdruck $\frac{1+i}{\sqrt{2}}$ hat den Betrag 1 und Argument $\frac{\pi}{4}$. Somit ist $\left(\frac{1+i}{\sqrt{2}}\right)^n$ eine Drehung um den Ursprung und oszilliert im Einheitskreis. Der Realteil von $\frac{1}{2}\left(\frac{1+i}{\sqrt{2}}\right)^n$ oszilliert daher ebenfalls zwischen $-\frac{1}{2}$ und $\frac{1}{2}$. Daraus folgt:

$$\operatorname{Re}(z_n) \in \left[-1 - \frac{1}{2}, 1 + \frac{1}{2} \right] = [-1.5, 1.5]$$

und daher ist

$$\sup(\{\operatorname{Re}(z_n):n\in\mathbb{N}\})=1.5.$$

Teil (b)

Für den Imaginärteil von z_n gilt analog:

- 1. Der Imaginärteil von i^n wechselt periodisch in den Werten 0, 1, 0, -1, ebenfalls abhängig von n modulo 4.
 - 2. Der Imaginärteil von $\frac{1}{2} \left(\frac{1+i}{\sqrt{2}} \right)^n$ oszilliert zwischen $-\frac{1}{2}$ und $\frac{1}{2}$. Daraus ergibt sich:

$$\operatorname{Im}(z_n) \in \left[-1 - \frac{1}{2}, 1 + \frac{1}{2}\right] = [-1.5, 1.5]$$

und daher ist

$$\inf(\{\operatorname{Im}(z_n):n\in\mathbb{N}\})=-1.5.$$

Teil (c)

Betrachten wir den Betrag von z_n :

$$|z_n| = \left| i^n + \frac{1}{2} \left(\frac{1+i}{\sqrt{2}} \right)^n \right|$$

Da i^n und $\frac{1}{2} \left(\frac{1+i}{\sqrt{2}} \right)^n$ beide Beträge höchstens 1 haben, gilt:

$$|z_n| \le |i^n| + \left|\frac{1}{2} \left(\frac{1+i}{\sqrt{2}}\right)^n\right| = 1 + \frac{1}{2} = 1.5$$

Somit ist

$$\sup(\{|z_n|:n\in\mathbb{N}\})=1.5.$$

Ergebnis: Die gesuchten Werte sind:

- (a) $\sup(\{\text{Re}(z_n) : n \in \mathbb{N}\}) = 1.5$
- (b) $\inf(\{\operatorname{Im}(z_n) : n \in \mathbb{N}\}) = -1.5$
- (c) $\sup(\{|z_n| : n \in \mathbb{N}\}) = 1.5$

Aufgabe 3

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} mit $a_n \to 0$ und $a_n > 0$ für alle $n \in \mathbb{N}$. Zeigen Sie, dass die Menge $\{a_n \mid n \in \mathbb{N}\}$ ein Maximum besitzt. Zeigen Sie auch, dass die Menge $\{a_n \mid n \in \mathbb{N}\}$ nicht notwendigerweise ein Maximum besitzt, falls nicht gefordert wird, dass $a_n > 0$ für jedes $n \in \mathbb{N}$ gilt.

Lösung:

Teil (a): Die Menge $\{a_n \mid n \in \mathbb{N}\}$ besitzt ein Maximum, wenn $a_n > 0$ für alle $n \in \mathbb{N}$

Beweis: Da (a_n) eine konvergente Folge ist und $a_n \to 0$, folgt, dass die Folge eine obere Schranke besitzt, d.h., es existiert ein M > 0, sodass $a_n \leq M$ für alle $n \in \mathbb{N}$. Da $a_n > 0$ für alle $n \in \mathbb{N}$, handelt es sich bei der Menge $\{a_n \mid n \in \mathbb{N}\}$ um eine Teilmenge von (0, M], die nach oben beschränkt ist.

Da $a_n \to 0$ und $a_n > 0$ für alle $n \in \mathbb{N}$, können wir schließen, dass die Folge von Werten $\{a_n \mid n \in \mathbb{N}\}$ am Anfang größere Werte annimmt und sich dann gegen 0 bewegt. Somit existiert ein Index $N \in \mathbb{N}$, für den $a_N = \sup(\{a_n \mid n \in \mathbb{N}\})$, da die Folge aufgrund der Konvergenz gegen 0 von einem Maximum ausgehend immer kleiner wird.

Damit besitzt die Menge $\{a_n \mid n \in \mathbb{N}\}$ ein Maximum.

Teil (b): Die Menge $\{a_n \mid n \in \mathbb{N}\}$ besitzt nicht notwendigerweise ein Maximum, wenn $a_n > 0$ für alle $n \in \mathbb{N}$ nicht gefordert wird

Beweis: Wenn die Bedingung $a_n > 0$ für alle $n \in \mathbb{N}$ entfällt, könnte die Folge (a_n) negative oder wechselnde Vorzeichen annehmen. Ein Beispiel für eine solche Folge ist $a_n = (-1)^n + \frac{1}{n}$.

1. In diesem Fall konvergiert a_n ebenfalls gegen 0, aber die Werte der Folge oszillieren und erreichen kein Maximum. 2. Da die Folge $a_n = (-1)^n + \frac{1}{n}$ abwechselnd positive und negative Werte annimmt, ist die Menge $\{a_n \mid n \in \mathbb{N}\}$ nicht nach oben beschränkt und besitzt daher kein Maximum.

Dieses Beispiel zeigt, dass die Bedingung $a_n > 0$ für alle $n \in \mathbb{N}$ entscheidend dafür ist, dass die Menge $\{a_n \mid n \in \mathbb{N}\}$ ein Maximum besitzt. Ohne diese Bedingung könnte die Folge wechselnde Vorzeichen oder auch negative Werte annehmen, was dazu führt, dass die Menge kein Maximum besitzt.

Ergebnis:

- 1. Die Menge $\{a_n \mid n \in \mathbb{N}\}$ besitzt ein Maximum, wenn $a_n > 0$ für alle $n \in \mathbb{N}$.
- 2. Die Menge $\{a_n \mid n \in \mathbb{N}\}$ besitzt nicht notwendigerweise ein Maximum, wenn die Bedingung $a_n > 0$ für alle $n \in \mathbb{N}$ nicht gegeben ist.

Aufgabe 4

Untersuchen Sie die folgende Folgen auf Konvergenz beziehungsweise Divergenz.

Teil (a):
$$(a_n)_{n\in\mathbb{N}}$$
 mit $a_n:=(-1)^n$

Lösung: Die Folge $a_n = (-1)^n$ oszilliert zwischen den Werten 1 und -1, je nachdem, ob n gerade oder ungerade ist. Da die Folge keine feste Zahl als Grenzwert hat, ist sie divergent.

 $\lim_{n\to\infty} a_n$ existiert nicht $\Rightarrow (a_n)$ ist divergent.

Teil (b):
$$(b_n)_{n\in\mathbb{N}}$$
 mit $b_n:=\frac{n^2}{n^3+1}$

Lösung: Um das Verhalten der Folge $b_n = \frac{n^2}{n^3+1}$ für $n \to \infty$ zu untersuchen, betrachten wir den höchsten Exponenten im Zähler und Nenner.

$$b_n = \frac{n^2}{n^3 + 1} = \frac{n^2}{n^3 \left(1 + \frac{1}{n^3}\right)} = \frac{1}{n \left(1 + \frac{1}{n^3}\right)}$$

Da $\frac{1}{n} \to 0$ für $n \to \infty,$ folgt:

$$\lim_{n\to\infty}b_n=0$$

Also konvergiert die Folge (b_n) gegen 0.

Teil (c): $(c_n)_{n \in \mathbb{N}}$ mit $c_n := \frac{4n^2 - 6n}{n^2 + 1}$

Lösung: Wir untersuchen das Verhalten von $c_n = \frac{4n^2 - 6n}{n^2 + 1}$ für $n \to \infty$, indem wir den höchsten Exponenten im Zähler und Nenner betrachten.

$$c_n = \frac{4n^2 - 6n}{n^2 + 1} = \frac{n^2(4 - \frac{6}{n})}{n^2(1 + \frac{1}{n^2})} = \frac{4 - \frac{6}{n}}{1 + \frac{1}{n^2}}$$

Da $\frac{6}{n} \to 0$ und $\frac{1}{n^2} \to 0$ für $n \to \infty$, ergibt sich:

$$\lim_{n \to \infty} c_n = \frac{4 - 0}{1 + 0} = 4$$

Also konvergiert die Folge (c_n) gegen 4.

Teil (d): $(d_n)_{n\in\mathbb{N}}$ mit $d_n := \frac{n^2+1}{3n}$

Lösung: Wir untersuchen das Verhalten von $d_n = \frac{n^2+1}{3n}$ für $n \to \infty$, indem wir den höchsten Exponenten im Zähler und Nenner betrachten.

$$d_n = \frac{n^2 + 1}{3n} = \frac{n \cdot \left(n + \frac{1}{n}\right)}{3n} = \frac{n + \frac{1}{n}}{3} = \frac{n}{3} + \frac{1}{3n}$$

Da der Term $\frac{n}{3} \to \infty$ für $n \to \infty$, divergiert die Folge (d_n) gegen ∞ .

$$\lim_{n\to\infty} d_n = \infty \Rightarrow (d_n)$$
 ist divergent.

Ergebnis:

- (a) Die Folge $(a_n) = (-1)^n$ ist divergent.
- (b) Die Folge $(b_n) = \frac{n^2}{n^3+1}$ konvergiert gegen 0.
- (c) Die Folge $(c_n) = \frac{4n^2 6n}{n^2 + 1}$ konvergiert gegen 4.
- (d) Die Folge $(d_n) = \frac{n^2+1}{3n}$ ist divergent gegen ∞ .