MTH 161 A1 Exam 1

University of Miami

Spring semester, 2025

Name:										
Points Distribution										
	Question:	1	2	3	4	5	6	Total		
	Points:	10	48	10	12	10	10	100		
	Score:									

Instructions:

- 1. You have **75 minutes** to complete the examination.
- 2. Write all your work and answers in this booklet.
- 3. NO CALCULATORS ARE ALLOWED ON THIS EXAM.
- 4. Please sign the Honor Code statement:

Honor	Code,	I certify	that I	have	neither	given	nor	received	any	aid on	this ex	aminati	on.
	Sign	nature:										_	

Good luck!

The page has been left intentionally blank.

1. (10 points) The graph of a function f has been given, where the dotted lines indicate the asymptotes. Answer the following questions.

- (a) $\lim_{x \to 0} f(x) =$ _____
- (b) f(0) =_____
- (c) $\lim_{x \to 1.5^+} f(x) =$ _____
- (d) $\lim_{x \to 3} f(x) =$ _____
- (e) f(3) =_____

2. (48 points) Evaluate the following limits. Show all work that lead to your answer. Using L'Hospital's rule or a table of values will not be considered supporting work.

(a)
$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

Answer:

(b) $\lim_{x \to 16} \frac{4 - \sqrt{x}}{16x - x^2}$

(c) $\lim_{x \to -6^-} \frac{3x + 18}{|x + 6|}$

Answer:

(d) $\lim_{x \to 0} \frac{\sin(3x)}{4x^2 + 7x}$

(e) $\lim_{x \to \infty} 3x - \sqrt{9x^2 + x}$

Answer:

(f) $\lim_{x \to \infty} \frac{-x\sqrt{x} + x}{x^{3/2} + 3x + 3}$

3. (10 points) Recall that the output of sine function always lies between -1 and 1, that is,

$$-1 \le \sin(u) \le 1$$
, for any $u \in \mathbb{R}$.

Use this and the Squeeze Theorem to evaluate

$$\lim_{x \to 0} x^2 \cdot \sin(\frac{1}{x}).$$

4. (12 points) Suppose $f(x) = \frac{1}{x^2}$.

(a) Evaluate f(2).

Answer:

(b) Write down the expression f(h+2).

Answer:

(c) Put (a) and (b) together, what is $\frac{f(2+h)-f(2)}{h}$?

Answer:

(d) Evaluate the same expression but now passing to the limit $h \to 0$, that is, evaluate

$$\lim_{h \to 0} \frac{f(h+2) - f(2)}{h}.$$

5. (10 points) Suppose

$$g(x) = \begin{cases} -3x^2 + 3, & \text{if } x < 0, \\ (x+1)^2 + 2, & \text{if } 0 \le x \le 2, \\ 13 - x, & \text{if } 2 < x. \end{cases}$$

Determine if g is a continuous function or not.

6. (10 points) Suppose

$$f(x) = \begin{cases} (x+c)^2 - 4, & \text{if } x < 0, \\ 2 - 3x + c, & \text{if } 0 \le x < 6. \end{cases}$$

Use the limit definition of continuity to find all real numbers c that makes f continuous at 0, or explain if such number does not exist.