

Coursework #1 EEE109

Guanying Chu
Xi'an Jiaotong-Liverpool University
guanying.chu02@xjtlu.edu.cn

September 19, 2023

Student Name:
Student ID:
Be cautious of following the rules:
(1) Handwriting only;
(2) Submit electronic copy via LMO in PDF format only;
(3) Do not be late: 0 mark after five working days;
(4) Wrong Submission: if you submit a wrong file, and you find out in five working days. Students can resubmit the correct file, but late submission. If you find out after five days and I can not help you!;
(5) Student can write the answer on this document (the blank area is enough for writing) or a new exercise

book;

(6) May luck be with you!

1 Question 1 (10 Marks)

Silicon is doped with 5×10^{16} arsenic $atoms/cm^{-3}$. Consider the following questions:

(a) Is the material n- or p-type? (2 marks)

(b) Calculate the electron and hole concentration at T=300K (4 marks)

(c) Calculate the electron and hole concentration at T=350K (4 marks)

Table 1.3 Semiconductor constants		
Material	Eg (eV)	$B \text{ (cm}^{-3} \text{ K}^{-3/2})$
Silicon (Si)	1.1	5.23×10^{15}
Silicon (Si) Gallium arsenide (GaAs)	1.4	2.10×10^{14}
Germanium (Ge)	0.66	1.66×10^{15}

2 Question 2 (15 Marks)

Consider the Zener Diode circuit shown in Figure 1. Consider the following parameters: $V_{\rm I}=20{\rm V},\,V_{\rm Z}=10{\rm V},\,R_{\rm i}=220\Omega$ and $P_{\rm Z}\,({\rm max})=440{\rm mW}.$

- (a) If the load resistor is $R_{\rm L}=380\Omega$. Please calculate the load current $I_{\rm L}$, zener diode current $I_{\rm Z}$, and input current $I_{\rm I}$ (6 marks)
- (b) Determine the value of $R_{\rm L}$ that will establish $P_{\rm Z}({\rm max})$ (5 marks)
- (c) Repeat part of (b) if $R_i = 175\Omega$ (4 marks)

Figure 1: zener diode circuit

3 Question 3 (10 Marks)

The input voltage source is a square wave, as shown in Figure 2.

Figure 2: input voltage source

- (a) Plot the waveform of output voltage $v_{\rm o}$ in circuit shown in Figure 3. Assume the turn-on voltage of the diode is $v_{\gamma}=0.6{\rm V}$. Please mark the maximum and minimum values on your figure. (5 marks)
- (b) Plot the waveform of output voltage v_0 in circuit shown in Figure 4. Assume the turn-on voltage of the diode is $v_{\gamma} = 0.6$ V. Please mark the maximum and minimum values on your figure. (5 marks)

Figure 3: circuit I

Figure 4: circuit II

4 Question 4 (15 Marks)

The two diodes circuit is shown in Figure 5. Calculate the output voltage v_0 and the diode current I_{D1} and I_{D2} for the following voltage conditions:

Figure 5: two diodes circuit

(a)
$$v_1 = 10V$$
 and $v_2 = 0V$ (5 marks)

(b)
$$v_1 = v_2 = 10V$$
 (5 marks)

(c)
$$v_1 = v_2 = 0V$$
 (5 marks)

5 Question 5 (15 Marks)

A full wave rectifier circuit with battery charging is shown in Figure 6. Assume $V_{\rm B}=9{\rm V},V_{\gamma}=0.7{\rm V}$ and $v_{\rm s}=15\sin\left[2\pi\left(60\right)t\right]$ (V).

Figure 6: full wave rectifier circuit with battery charging

- (a) Determine the resistance of R such that the peak battery charging current is 1.2A (5 marks)
- (b) Determine the average battery charging current (5 marks)
- (c) Determine the fraction of time that each diode is conducting (5 marks)

6 Question 6 (15 Marks)

The threshold voltage of each transistor in Figure 7 is $V_{\rm TP}=-0.4{\rm V}$. Please determine the region of operation of the transistor in:

Figure 7: three transistor circuits

(a) The transistor in (I) (5 marks)

(b) The transistor in (II) (5 marks)

(c) The transistor in (III) (5 marks)

7 Question 7 (10 Marks)

An npn transistor with $\beta = 80$ ic connected in a common-base configuration, as shown in Figure 8.

Figure 8: npn with common base configuration

- (a) The emitter is driven by a constant-current source with $I_{\rm E}=1.2{\rm mA}$. Determine the value of $I_{\rm B},~I_{\rm C},~\alpha$ and $V_{\rm C}$ (5 marks)
- (b) Repeat part (a) for $I_{\rm E}=0.8{\rm mA}$ (5 marks)

8 Question 8(10 Marks)

Consider the circuit shown in Figure 9. Use the Thevenin Equivalent Circuit to solve the following questions.

Figure 9: BJT circuit

- (a) Please determine the value of $R_{\rm TH},\,V_{\rm TH},\,I_{\rm BQ},\,I_{\rm CQ},\,{\rm and}\,\,V_{\rm ECQ}$ for $\beta=90$ (5 marks)
- (b) Determine the percent change in $I_{\rm CQ}$ and $V_{\rm ECQ}$ if for β is changed to for $\beta=150$ (5 marks)