A ConvNet for the 2020s

Zhuang Liu, Hanzi Mao, Christoph Feichtenhofer, Chao-Yuan Wu, Trevor Darrell, Saining Xie Facebook Al Research, UC Berkeley CVPR 2022

An Evolution of ConvNets

AlexNet - "ImageNet moment" (2012)

VGGNet - stacking 3x3 layers (2014)

Inceptions -- parallel branches (2014)

ResNet - identity shortcuts (2015)

ResNeXt – grouped convolution (2016)

DenseNet - dense shortcut connection (2016)

MobileNets - depthwise conv; inverted residuals (2017/18)

EfficientNet – model scaling (2019)

• • • •

Behind the Success

Local Computation

• Translation Equivariance

Feature Hierarchy

A Step Change from Vision Transformers

• NLP: RNN -> Transformers since 2017

 CV: Vision Transformer (ViT) emerged in 2020

Self-Attention: Transformers' core module

Vision Transformer block

NLP Transformer block

Vanilla ViT's Challenges

- ViT's success was limited to image classification
 - but computer vision is not
- Global attention has quadratic complexity w.r.t. input size
 - compute becomes intractable with higher-resolution images

Hierarchical vision Transformers – Bringing back ConvNet priors

- Attention within local window
- Shared weights between windows
- Feature hierarchy
- SOTA across vision benchmarks
- ConvNet priors still much desired

But more complexity

Naïve implementation for sliding window attention --> expensive

Advanced techniques (e.g., cyclic shifting) --> complicated

ConvNets have the desired properties already!

ConvNet losing steam?

Appearances in paper titles at CV conferences

Query	Convolution, CNN, ConvNet	Attention, "-Former"
ECCV 2020	56	54
CVPR 2021	49	78
ICCV 2021	44	176
CVPR 2022	?	?

The only reason seems to be ...

Swin Transformer

```
State of the Art Object Detection on COCO test-dev (using additional training data)

State of the Art Instance Segmentation on COCO test-dev

State of the Art Semantic Segmentation on ADE20K (using additional training data)

Ranked #4 Action Classification on Kinetics-400 (using additional training data)
```

Credit is given to the "Transformer" part, but not the hidden "ConvNet" part

Vision Transformers and ConvNets

- Similar: ConvNet inductive biases
- Different
 - supposedly "core" component (attention vs. conv)
 - training procedures
 - subtle architectural designs

Too early to give credit to self-attention?

In this work

Identify the confounding variables

Test the limits of what a pure ConvNet can achieve

Level the playing field for ConvNets in post-ViT eras

To do this, we...

Start with a simple standard ResNet

 "Modernize" the architecture towards a hierarchical vision Transformer

 Central question: How do design choices in Transformers impact ConvNet's performance?

First step: change recipe

Typical Vision Transformer Training Recipe

Typical ResNet Training Recipe

ResNet-50 ImageNet top-1: 76.1% -> 78.7% 🚿

Next: a journey of Transformer-inspired architecture changes

Macro Design

Align Stage Compute Ratio

ResNet-50: 3:4:6:3

Swin-T: 1:1:3:1

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer					
conv1	112×112	7×7 , 64, stride 2									
			3×3 max pool, stride 2								
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$					
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $					
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $					
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $					
	1×1	average pool, 1000-d fc, softmax									
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9					

Macro Design

"Patchify" Stem

ResNet: 7x7 stride-2 conv, 3x3 stride-2 max pool

ViT: 16x16 stride-16 conv ("patch embedding")

Swin: 4x4 stride-4 conv

layer name	output size	18-layer	34-layer	152-layer						
conv1	112×112			7×7, 64, stride 2						
				3×3 max pool, stric	le 2					
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$				
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$\left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$				
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$				
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $				
	1×1		average pool, 1000-d fc, softmax							
FLO	OPs	1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9				

ResNeXt-ify

ResNet (dense convolution) vs. ResNeXt (grouped convolution)

ResNeXt-ify

- Popularized by MobileNets and Xception
- Evident in the weighted-sum operation in Transformers, also in a per-channel basis
- Grow width (64->96) as well, aligning with Swin-T

Inverted Bottleneck

MSA – input & output: C dim; qkv: 3C dim

MLP – input & output: C dim; intermediate layer: 4C dim

Fat in the middle, thin at two sides

Inverted Bottleneck

Left: Bottleneck proposed in original ResNets

Right: Inverted Bottleneck proposed in MobileNetV2

We use inverted bottlenecks

Large Kernels

ViT: global attention

• Swin: local attention, window size 7x7

Your typical ConvNet: 3x3

Large Kernels

- The spatial mixing MSA is before the channel-mixing MLP in Transformer block
- We move d.w. conv up before using large ks
- Reduces FLOPs w/ large ks

Large Kernels

Now we increase kernel size from 3 to 11

- The performance saturates at 7
- Swin's choice of local window size is also 7
- Note: the optimal kernel sizes depend on tasks and regularization strength

ReLU -> GELU (standard activations in Transformers)

Aggressively removing acts & norms

ResNet Block

Transformer Encoder Lx **MLP** Norm Multi-Head Attention Norm Embedded Patches

BN -> LN

Prior attempts failed

Don't need BN statistics no more! Say ** to BN-related engineering headaches

Use separate downsampling layers, and add corresponding norm layers

	downsp. rate (output size)	Swin-T	Swin-T Swin-S Swin-B		Swin-L
stage 1	4× (56×56)	concat 4×4 , 96-d, LN win. sz. 7×7 , 1×2 06 lead 2 $\times2$	concat 4×4, 96-d, LN win. sz. 7×7, iii. 06, band 2 × 2	concat 4×4, 128-d, LN win. sz. 7×7, win. 128 h = 144	concat 4×4, 192-d, LN win. sz. 7×7,
stage 2	8×	dim 96, head 3 ^ 2 concat 2×2, 192-d, LN	dim 96, head 3 ^ 2 concat 2×2, 192-d, LN	dim 128, head 4 ^ 2 concat 2×2, 256-d , LN	dim 192, head 6 ^ 2 concat 2×2, 384-d , LN
stage 2	(28×28)	$\begin{array}{c c} \text{Win. sz. } 7 \times 7, \\ \text{dim 192, head 6} \end{array} \times 2$	win. sz. /×/, dim 192, head 6 × 2	win. sz. 7×7, dim 256, head 8 × 2	win. sz. 7×7, dim 384, head 12 × 2
stage 3	16× (14×14)	concat 2×2, 384-d , LN win. sz. /×/, dim 384. head 12	concat 2×2, 384-d , LN win. sz. /×/, dim 384, head 12 × 18	concat 2×2, 512-d , LN win. sz. /×/, dim 512, head 16 × 18	concat 2×2, 768-d, LN win. sz. /×/, dim 768, head 24 × 18
-	32×	concat 2×2, 768-d, LN	concat 2×2, 768-d, LN	concat 2×2, 1024-d, LN	concat 2×2, 1536-d, LN
stage 4	(7×7)	$\begin{bmatrix} \text{win. sz. } 7 \times 7, \\ \text{dim } 768, \text{ head } 24 \end{bmatrix} \times 2$	$\begin{bmatrix} \text{win. sz. } 7 \times 7, \\ \text{dim } 768, \text{ head } 24 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 1024, head 32 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 1536, head 48 \end{bmatrix} \times 2$
		Table	7. Detailed architecture spec	cifications.	

79.4 stage ratio Macro Design "patchify" stem depth conv 78 ResNeXt width 1 80.5 Inverted inverting dims 80.6 **Bottleneck** - move ↑ d. conv 79.9 80.4 kernel sz. \rightarrow 5 Large kernel sz. \rightarrow 7 Kernel kernel sz. → 9 - kernel sz. → 11 ReLU→GELU 80.6 fewer activations Micro Design 4.2 fewer norms $BN \rightarrow LN$ 81.5 4.2 sep. d.s. conv 82.0 3 4.5 /NeXt-T/B 4.5 Swin-T/B ImageNet Top1 Acc (%) 78 80 82

ResNet-50/200

GFLOPs

Block Comparison

Swin Transformer Block

Overall Architecture

	output size	• ResNet-50	ConvNeXt-T	o Swin-T
stem	56×56	7×7 , 64, stride 2 3×3 max pool, stride 2	4×4, 96, stride 4	4×4, 96, stride 4
res2	56×56	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 96 \\ 1 \times 1, 384 \\ 1 \times 1, 96 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 96 \times 3 \\ MSA, w7 \times 7, H=3, rel. pos. \\ 1 \times 1, 96 \\ 1 \times 1, 384 \\ 1 \times 1, 96 \end{bmatrix} \times 2$
res3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} d7 \times 7, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 192 \times 3 \\ MSA, w7 \times 7, H=6, \text{ rel. pos.} \\ 1 \times 1, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 2$
res4	14×14	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} d7 \times 7, 384 \\ 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix} \times 9$	$\begin{bmatrix} 1 \times 1, 384 \times 3 \\ MSA, w7 \times 7, H=12, rel. pos. \\ 1 \times 1, 384 \\ \begin{bmatrix} 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix} \times 6$
res5	7×7	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 768 \times 3 \\ MSA, w7 \times 7, H=24, rel. pos. \\ 1 \times 1, 768 \end{bmatrix} \times 2$ $\begin{bmatrix} 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix}$
	FLOPs	4.1×10^{9}	4.5×10^{9}	4.5×10^9
#	params.	25.6×10^{6}	28.6×10^{6}	28.3×10^{6}

ConvNeXt Variants

- One appealing property of Transformers is its scaling behavior
 - Model/compute size
 - Data size

- We build ConvNeXt variants to compete
 - ConvNeXt-T: C = (96, 192, 384, 768), B = (3, 3, 9, 3)
 - ConvNeXt-S: C = (96, 192, 384, 768), B = (3, 3, 27, 3)
 - ConvNeXt-B: C = (128, 256, 512, 1024), B = (3, 3, 27, 3)
 - ConvNeXt-L: C = (192, 384, 768, 1536), B = (3, 3, 27, 3)
 - ConvNeXt-XL: C = (256, 512, 1024, 2048), B = (3, 3, 27, 3)

ImageNet-1K/22K Results

model	image size	FLOPs	throughput (image / s)	IN-1K / 22K trained, 1K acc.
o Swin-T	224^{2}	4.5G	1325.6	81.3 / -
ConvNeXt-T	224^{2}	4.5G	1943.5 (+47%)	82.1 / –
Swin-S	224^{2}	8.7G	857.3	83.0 / -
ConvNeXt-S	224^{2}	8.7G	1275.3 (+49%)	83.1 / -
o Swin-B	224^{2}	15.4G	662.8	83.5 / 85.2
ConvNeXt-B	224^{2}	15.4G	969.0 (+46%)	83.8 / 85.8
Swin-B	384^{2}	47.1G	242.5	84.5 / 86.4
ConvNeXt-B	384^{2}	45.0G	336.6 (+39%)	85.1 / 86.8
Swin-L	224^{2}	34.5G	435.9	- /86.3
ConvNeXt-L	224^{2}	34.4G	611.5 (+40%)	84.3 / 86.6
o Swin-L	384^{2}	103.9G	157.9	- /87.3
ConvNeXt-L	384^{2}	101.0G	211.4 (+34%)	85.5 / 87.5
ConvNeXt-XL	224^{2}	60.9G	424.4	- /87.0
ConvNeXt-XL	384^{2}	179.0G	147.4	- /87.8

Downstream Transfers

backbone	FLOPs	FPS	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}	$AP^{mask} \\$	$AP_{50}^{mask} \\$	AP_{75}^{mask}
Mask-RCNN 3× schedule								
o Swin-T	267G	23.1	46.0	68.1	50.3	41.6	65.1	44.9
ConvNeXt-T	262G	25.6	46.2	67.9	50.8	41.7	65.0	44.9
	Cas	cade N	/lask-RC	CNN 3×	schedu	le		
ResNet-50	739G	11.4	46.3	64.3	50.5	40.1	61.7	43.4
• X101-32	819G	9.2	48.1	66.5	52.4	41.6	63.9	45.2
• X101-64	972G	7.1	48.3	66.4	52.3	41.7	64.0	45.1
o Swin-T	745G	12.2	50.4	69.2	54.7	43.7	66.6	47.3
ConvNeXt-T	741G	13.5	50.4	69.1	54.8	43.7	66.5	47.3
o Swin-S	838G	11.4	51.9	70.7	56.3	45.0	68.2	48.8
ConvNeXt-S	827G	12.0	51.9	70.8	56.5	45.0	68.4	49.1
o Swin-B	982G	10.7	51.9	70.5	56.4	45.0	68.1	48.9
ConvNeXt-B	964G	11.4	52.7	71.3	57.2	45.6	68.9	49.5
∘ Swin-B [‡]	982G	10.7	53.0	71.8	57.5	45.8	69.4	49.7
 ConvNeXt-B[‡] 	964G	11.5	54.0	73.1	58.8	46.9	70.6	51.3
o Swin-L [‡]	1382G	9.2	53.9	72.4	58.8	46.7	70.1	50.8
 ConvNeXt-L[‡] 	1354G	10.0	54.8	73.8	59.8	47.6	71.3	51.7
 ConvNeXt-XL[‡] 	1898G	8.6	55.2	74.2	59.9	47.7	71.6	52.2

backbone	input crop.	mIoU	#param.	FLOPs			
ImageNet-1K pre-trained							
o Swin-T	512^{2}	45.8	60M	945G			
ConvNeXt-T	512^{2}	46.7	60M	939G			
o Swin-S	512^{2}	49.5	81M	1038G			
ConvNeXt-S	512^{2}	49.6	82M	1027G			
o Swin-B	512^{2}	49.7	121M	1188G			
ConvNeXt-B	512^{2}	49.9	122M	1170G			
Imag	eNet-22K pre-tra	ined					
o Swin-B [‡]	640^{2}	51.7	121M	1841G			
 ConvNeXt-B[‡] 	640^{2}	53.1	122M	1828G			
o Swin-L [‡]	640^{2}	53.5	234M	2468G			
 ConvNeXt-L[‡] 	640^{2}	53.7	235M	2458G			
• ConvNeXt-XL [‡]	640 ²	54.0	391M	3335G			

ADE20K Semantic Segmentation

Robustness Benchmarks

Model	Data/Size	FLOPs / Params	Clean	C (↓)	$\bar{\mathbf{C}}\left(\downarrow\right)$	A	R	SK
ResNet-50	1K/224 ²	4.1 / 25.6	76.1	76.7	57.7	0.0	36.1	24.1
Swin-T [42]	1K/224 ²	4.5 / 28.3	81.2	62.0	-	21.6	41.3	29.1
RVT-S* [44]	$1K/224^2$	4.7 / 23.3	81.9	49.4	37.5	25.7	47.7	34.7
ConvNeXt-T	$1K/224^2$	4.5 / 28.6	82.1	53.2	40.0	24.2	47.2	33.8
Swin-B [42]	$1K/224^2$	15.4 / 87.8	83.4	54.4	-	35.8	46.6	32.4
RVT-B* [44]	$1K/224^2$	17.7 / 91.8	82.6	46.8	30.8	28.5	48.7	36.0
ConvNeXt-B	1K/224 ²	15.4 / 88.6	83.8	46.8	34.4	36.7	51.3	38.2
ConvNeXt-B	22K/384 ²	45.1 / 88.6	86.8	43.1	30.7	62.3	64.9	51.6
ConvNeXt-L	$22K/384^{2}$	101.0 / 197.8	87.5	40.2	29.9	65.5	66.7	52.8
ConvNeXt-XL	$22K/384^{2}$	179.0 / 350.2	87.8	38.8	27.1	69.3	68.2	55.0

ConvNeXt is easy to implement and use

~100 lines of PyTorch

available timm (pytorch-image-models library)

available in torchvision; with even higher accuracy

Summary

ConvNeXt, a simple and pure ConvNet

As good as SOTA hierarchical vision Transformers

Modifications inspired by Transformers; architecture not novel

Challenge some beliefs and rethink the importance of convolution