

SEGURANÇA CIBERNÉTICA – CISCO NETWORKING ACADEMY

SEGURANÇA CIBERNÉTICA CISCO NETWORKING ACADEMY

Prof. Everson Denis

SEGURANÇA CIBERNÉTICA – CISCO NETWORKING ACADEMY

Agenda

- Controle de acesso (Autenticação)
- **►** Uso de senhas
- **►** Uso de Hash (Integridade)

Gerador de Senhas Fortes.

- https://howsecureismypassword.net
- https://strongpasswordgenerator.com
- ► http://preshing.com/20110811/xkcd-password-generator
- https://passwordsgenerator.net

- Dicas para escolher uma boa senha:
 - ► Não use palavras do dicionário ou nomes em qualquer idioma
 - ► Não use erros ortográficos comuns de palavras do dicionário
 - ► Não use nomes de computador ou de contas
 - ➤ Se possível use caracteres especiais, como! @ # \$ % ^ & * ()
 - ➤ Use uma senha com 10 ou mais caracteres

OK	Good	Melhorou
allwhitecat	a11whitecat	A11whi7ec@t
Fblogin	1FBLogin	1.FB.L0gin\$
amazonpass	AmazonPa55	Am@z0nPa55
ilikemyschool	ILikeMySchool	!Lik3MySch00l
Hightidenow	HighTideNow	H1gh7id3Now

- Dicas para escolher uma boa senha:
 - Escolha uma frase significativa para você
 - ➤ Adicione caracteres especiais, como! @#\$%^&*()
 - ➤ Quanto maior melhor
 - Evite frases comuns ou famosas, como a letra de uma música famosa

- Impede que os criminosos acessem todas as suas contas on-line usando credenciais roubadas
- Use gerenciadores de senha para ajudar a lembrar das senhas
 - https://www.lastpass.com
 - https://www.dashlane.com

- Resumo das novas orientações da NIST:
 - No mínimo 8 caracteres e no máximo 64 caracteres
 - ➤ Não use senhas comuns e fáceis de ser descobertas, como a senha abc123
 - Nenhuma autenticação baseada em conhecimento, como informações de perguntas secretas compartilhadas, dados comerciais e histórico de transações
 - Melhore a precisão da digitação, evitando que o usuário veja a senha durante a digitação
 - ➤ Todas os caracteres e espaços são permitidos
 - ► Não use dicas para senhas
 - ➤ Não aplique expiração de senha periódica ou arbitrária

OK	Thisismypassphrase.	
Good	Acatthatlovesdogs.	
Melhorou	Acat th@tlov3sd0gs.	

CONTROLE DE ACESSO - MÉTODO DE AUTENTICAÇÃO

- O que você sabe senhas, frases secretas ou PINs são exemplos de algo que o usuário sabe. As senhas são o método mais popular usado para autenticação.
- O que você tem cartões inteligentes, tokens são exemplos de algo que os usuários têm.
- Quem você é uma característica física única, como uma impressão digital, retina ou voz, que identifica um usuário específico, é chamada de biometria.
- Autenticação multifator usa pelo menos dois métodos de verificação. Uma chave de segurança é um bom exemplo. Os dois fatores são algo que você sabe, como uma senha, e algo que você tem, como uma chave de segurança.

PRINCÍPIOS DA SEGURANÇA DA INFORMAÇÃO

- Princípios de Segurança da Informação
 - confidencialidade, integridade e disponibilidade

PRINCÍPIOS DA SEGURANÇA DA INFORMAÇÃO

Princípios de Segurança da Informação

 confidencialidade, integridade e disponibilidade

PRINCÍPIOS DA SEGURANÇA DA INFORMAÇÃO

- Princípios de Segurança da Informação
 - confidencialidade, integridade e disponibilidade

USO DO HASH – O QUE É?

- *hash*, também chamado de "digestor", é uma espécie de "assinatura" ou "impressão digital" que representa o conteúdo de um fluxo de dados. Com certa frequência os hashes são chamados de *checksum*. Um *hash* pode ser comparado com um selo de embalagem que indica clara e inequivocamente se a embalagem já foi aberta ou violada.
- *Hashes* não são cifragens, são digestos! As cifragens transformam os dados do texto claro num criptograma e vice-versa. *Hashes*, transformam os dados do texto (claro ou cifrado) num pequeno digesto, de **tamanho fixo**, numa **operação de mão única**.
- Os *hashes* produzem "selos de segurança" de comprimento fixo, não importa o comprimento do fluxo de dados ou do arquivo que representem. Qualquer alteração efetuada no arquivo, por mínima que seja, altera substancialmente o resultado hash. Isto ocorre porque, mesmo se apenas um dos bits do arquivo for alterado, muitos bits do resultado serão afetados. Este comportamento é conhecido como **efeito avalanche**.

USO DO HASH – O QUE É?

md5

Caracter	ASCI (decim	777	A (bi	SCII nário)							
A a	65 97		5773	0 0001 0 0001							
	.57.5		257								
Aldeia Num			db658								
ardera wum	вода	90.	11416	L203U	20002	03070	de2dF	21141			
3cdb6584	0011	1100	1101	1011	0110	0101	1000	0100			
9clf4lef	1001	1100	0001	1111	0100	0001	1110	1111			
	х.х.		хх	.x	x.	.x.,	.xx.	x.xx	12	bits	diferentes
25ee484e	0010	0101	1110	1110	0100	1000	0100	1110			
263026b0	0010	0110	0011	0000	0010	0110	1011	0000			
		xx	xx.x	xxx.	.xx.	xxx.	xxxx	xxx.	20	bits	diferentes
4bff3d45	0100	1011	1111	1111	0011	1101	0100	0101			
283676d6	0010	1000	0011	0110	0111	0110	1101	0110			
	.xx.	xx	хх	xx	.x	x.xx	хх	xx	16	bits	diferentes
83f6f851	1000	0011	1111	0110	1111	1000	0101	0001			
3df2lfdl	0011	1101	1111	0010	0001	1111	1101	0001			
	x.xx	xxx.	****	.x.,	xxx.	.xxx	х	****	14	bits	diferentes

USO DO HASH – APLICAÇÕES

Aplicações

- Autenticação de mensagens (Integridade de dados): qualquer tipo de arquivo, e um fluxo de dados que produz um resultado hash único. Uma das maneiras de poder verificar se o arquivo baixado é idêntico ao disponibilizado é conhecer o hash do arquivo original.
- Segurança de senhas: armazenar os resultados hash das senhas do que as próprias senhas. O uso de uma senha pressupõe que um usuário a digite. Tendo a senha como entrada, é fácil e rápido calcular o resultado hash da senha fornecida e compará-lo com o valor arquivado.
- Assinaturas digitais: Para se obter uma assinatura digital válida são necessárias duas etapas. A primeira é criar um hash do documento. Este hash identifica unicamente e inequivocamente o documento do qual ele se originou. A seguir, o assinante submete o hash a um método criptográfico usando sua chave privada. Como o hash criptografado só pode ser recuperado usando a chave pública do assinante, isto comprova a identidade da pessoa que assinou é a chamada assinatura digital e como o hash recuperado identifica o documento, a assinatura está associada unicamente a este documento.
- Detecção de intrusão e detecção de vírus: armazena os arquivos e se houver alterações no sistema, são identificadas.

USO DO HASH – EXEMPLO

- Exemplo:
- http://www.fileformat.info/tool/hash.htm
 - Mensagem: "abc"
 - > Hash:
 - ✓ MD5: 900150983cd24fb0d6963f7d28e17f72
 - ✓ SHA-1: a9993e364706816aba3e25717850c26c9cd0d89d
 - ✓ SHA-256: ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad
 - ✓ SHA-512: ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a2 74fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f

USO DO HASH – MELHORIAS (SALTING)

- Salting é usado para tornar o hash mais seguro. Se dois usuários tiverem a mesma senha, eles também terão os mesmos hashes de senha.
- Esse procedimento cria um resultado de hash diferente para as duas senhas. Um banco de dados armazena o hash e o salting.
 - https://www.symbionts.de/tools/hash/sha256-hash-salt-generator.html
 - https://crackstation.net

```
Salt Hash Value

Hash ("password" + QxLUF1blAdeQX) = b3bad1e5324f057753a4b8d7cef293e4

Hash ("password" + R9PelC7sxQXb8) = 713c7beb54841a26a7c81eb06d6cf066
```


USO DO HASH – MELHORIAS (HMAC)

- Hash-Based Message Authentication Code (HMACs) fortalecem os algoritmos de hash usando uma chave secreta adicional como entrada para a função hash.
- O uso do HMAC garante além da integridade, também a autenticação.
- Um HMAC usa um algoritmo específico que combina uma função de hash criptográfica com uma chave secreta.
- Usado em VPN (autentica a origem do pacote e garante a integridade dos dados), equipamentos de rede, AWS (assinatura HMAC-SHA + preenchimento dos campos)
- http://www.freeformatter.com/hmac-generator.html

SEGURANÇA CIBERNÉTICA

Bibliografia:

- Introduction to Cybersecurity (Cisco). Disponível em: https://www.netacad.com. Acesso em: 11 maio 2020.
- Cybersecurity Essentials (Cisco). Disponível em: https://www.netacad.com. Acesso em: 11 maio 2020.

