

Predict Zillow Rent Index Values in 4 Metro Areas in Florida

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection and Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Research Questions/Motivations

 What models can we use to to predict the average monthly rent prices for all metro areas in Florida with a lower average error?

 What features are important in predicting the average monthly Zillow Rent Index in each of the 4 metro areas?

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection and Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Data Used

- (ACS) American Community Survey (5 year data)
- FRED State Total Housing Price Index
- BLS Florida Unemployment

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection and Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Why Florida, the Sunshine State?

- Many people have their second homes in Florida.
 Great for investment properties as well as primary residence.
- Steadily rising rents year over year
- Population have been growing even BEFORE Covid, influx of new residents from bigger cities and states
- The Mayor of Miami welcomes Silicon Valley and tech firms to move in, which can bring higher wages
- Yearly-round warm weather, popular travel destinations
- No personal state income tax (This is not legal or tax advice)
- Some say, "if you marry California and Texas, you'd get Florida"

'S QUARTERLY JOBS AND INCOME REPORT SHOWS NATIONAL GAINS WITH ORLANDO LEADING THE WAY

December 10, 2021

THESE SOUTHEAST FLORIDA NEIGHBORHOODS ARE THRIVING THANKS TO A GROWING BASE OF HIGH-INCOME RESIDENTS

October 18, 2021

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection and Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Visualization:

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection and Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

How We Cleaned the Data

- Removed ACS features with Nan values
 - ACS features with Nan values were 50%+ Nan

Feature Transformation

Standard Scaler (important for linear models)

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection and Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Clustering

Clustered based off economic conditions in the area.

Variables Used:

- Local unemployment population
- Local poverty rates
- Local median income
- Local median rent
- Local million-dollar housing units
- Local average percent income spent on rent

Clustering: Feature Importances

• Some features are more important for certain economic conditions

Clustering can help identify those

Feature Importance: Median Age

Some importance for middle class

Low importance otherwise

Feature Importance: Vacant Units for Rent

Some importance for lower class

Low importance otherwise

Feature Importance: Large Dwellings

- A large dwelling here is defined as a building with at least 50 housing units.
- Whether all of these are occupied is not considered

Clustering Algorithms

K Means vs Agglomerative

K Means

- Centroidal
- Minimizes Distance Between Clusters
- Initialized K Means++

Agglomerative

- Hierarchical
- Minimizes Variance Among Clusters (Ward's Method)

- "Dependent Variable" is the cluster mean of median YOY percentage rent increase
- All clusters between 2% and 5%
- The scatterplots represent a projection of each cluster onto average rent and annual income

Subset Clustering (prior variables - K Means)

Median YOY

Rent Change By Cluster,

Subset Clustering (prior variables - Agglomerative)

Median YOY Rent Change By Cluster, Agglomerative

0 0.043422

1 0.028761

2 0.038067

Subset Clustering (new variables, K Means)

Rent Change
By Cluster,
KMeans

0 0.036438

1 0.040498

2 0.042260

Median YOY

- Gini index
- Graduate_professional_degree
- income_per_capita

Subset Clustering (new variables - Agglomerative)

Median YOY Rent Change By Cluster, Agglomerative 0.043410 0.042049 2 0.027068

1.5

Income per Capita

- Gini index
- Graduate_professional_degree
- income_per_capita

Subset 3

- not_us_citizen_pop
- median_age
- Median_year_structure built

Subset 4

- total_pop
- unemployed_pop
- high_school_diploma

Subset 5

- mobile homes
- masters_degree
- no_car

Subset 6

- male_45_64_bachelors_degree
- male_45_64_graduate_degree
 male_45_64_bigh_sebsel
- male_45_64_high_school
- male 45 64 some college

Median YOY Rent Change By Cluster, KMeans

- 0 0.035157
- 1 0.044831
- 2 0.028834

Median YOY Rent Change By Cluster, KMeans

- 0.037521
- 0.041084
- 2 0.044045

Median YOY Rent Change By Cluster, KMeans

- 0 0.034445
- 1 0.042031
- 2 0.047845

Median YOY Rent Change By Cluster, KMeans

- 0 0.038863
- 1 0.042877
- 2 0.037594

Median YOY Rent Change By Cluster, Agglomerative

- 0.043953
- 1 0.032485
- 2 0.030442

Median YOY Rent Change By Cluster, Agglomerative

- 0 0.040125
- 1 0.041266
- 2 0.039659

Median YOY Rent Change By Cluster, Agglomerative

- 0 0.047845
- 0.033962
- 2 0.041427

Median YOY Rent Change By Cluster, Agglomerative

- 0 0.044496
- 1 0.041617
- 2 0.027575

Subset 7

- FLSTHPI_Yearly_Avg
- children
- employed_pop

Median YOY Rent Change By Cluster, KMeans

- 0 0.038370
- 1 0.041989
- 2 0.041271

Median YOY Rent Change By Cluster, Agglomerative

- 0 0.040720
- 1 0.038202
- 2 0.045297

Subset 8

- FLSTHPI_Yearly_Avg
- female_25_to_29
- female_30_to_34
- female_35_to_39

Median YOY Rent Change By Cluster, KMeans

- 0 0.041785
- 1 0.034797
- 2 0.046023

Median YOY Rent Change By Cluster, Agglomerative

- 0 0.039921
- 1 0.039125
- 2 0.046082

Subset 9

- FLSTHPI_Yearly_Avg
- income_50000_59999
- income_60000_74999
- income_75000_99999

Subset 10

- married_households
- children
- pop_25_64
- vacant_housing_units

Median YOY Rent Change By Cluster, KMeans

- 0.040067
- 1 0.038365
- 2 0.042988

Median YOY Rent Change By Cluster, Agglomerative

- 0 0.040248
- 1 0.037804
- 2 0.044888

Median YOY Rent Change By Cluster, KMeans

- 0 0.037689
- 1 0.040967
- 2 0.043154

Median YOY Rent Change By Cluster, Agglomerative

- 0 0.041652
- 1 0.040970
- 2 0.025457

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection
- Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Feature Selection

- To reduce multicollinearity
- Stepwise Selection (Forward Selection)
- Removed racial features to minimize potentially discriminatory biases
- Leaving these in could potentially make housing prices be affected by racial demographics
- Removed features that can cause data leakage
 (e.g. median rent, percentage of income spent on rent)
- Removed duplicated columns
- No historical rent prices were used as a feature

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection
- Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Target Transformation

Average monthly Zillow Rent Index for the corresponding year

(All observations are at the zip-code level; 145 zip codes from all 4 metro areas - Miami: 75, Orlando: 27, Tampa: 32, Jacksonville: 11)

Zip Code	Month	ZRI	Average Monthly ZRI in 2018
Zip Code 1	2018-Jan	1432	1532.41
Zip Code 1	2018-Feb	1540	1532.41
Zip Code 1	2018-Mar	1630	1532.41

Zip Code 1	2018-Nov	1574	1532.41
Zip Code 1	2018-Dec	1645	1532.41

Target Transformation

- New ACS data released annually; for simplicity to predict an annualized target
- Same amount of monthly rent in a 12-month lease
- Pros: less noise, months with a higher index are averaged out by those with a lower index
- For each zip code, Instead of having 12 rows of monthly data in a year, there's only 1 row of annualized data
- A simpler model with a little bias learn less from the noise, avoid overfitting
- Cons: less granular, no "true" monthly index prediction

Target, Training and Test Sets

- Target: Average Monthly Zillow Index in the respective year
- Train Set: American Community Survey (ACS) data from 2013 to 2017
- Test Set: American Community Survey (ACS) data from 2018

Trained the model with the ACS data from 2013-2017.

Tested the model with the ACS data from 2018 to predict the Average Monthly Zillow Index in 2018

Note: No ACS data from 2018 were used when training the models

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection and Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Models Used

- Model 1: Multiple Linear Regression
- Model 2: Lasso Regression
 - Hypertuned with Grid Search, 3-fold Cross Validation
- Model 3: Random Forest
 (For getting Feature Importances only but not prediction)

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection and Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Results

Miami	Multiple Linear Regression	Lasso Regression
RMSE	122.12	121.91
Average Monthly Index in 2018	1705.16	1705.16
% of Avg. Monthly Index in		
2018	7.16%	7.15%

Tampa	Multiple Linear Regression	Lasso Regression
RMSE	86.96	90.98
Average Monthly Index in 2018	1258.61	1258.61
% of Avg. Mthly Index in 2018	6.91%	7.23%

Orlando	Multiple Linear Regression	Lasso Regression
RMSE	107.2	86.32
Average Monthly Index in 2018	1350.46	1350.46
% of Avg. Mthly Index in 2018	7.94%	6.39%

Jacksonville	Multiple Linear Regression	Lasso Regression
RMSE	67.82	37.86
Average Monthly Index in 2018	1065.16	1065.16
% of Avg. Mthly Index in 2018	6.37%	3.55%

Feature Importances for Miami

	Random Forest	Lasso Signs of	of Coefficients
1	owner_occupied_housing_units_median_value	pop_25_years_over	(+)
2	income_200000_or_more	children	(-)
3	commute_less_10_mins	mortgaged_housing_units	(-)
4	male_male_households	housing_units	(-)
5	not_us_citizen_pop	owner_occupied_housing_units_median_value	(+)
6	gini_index	children_in_single_female_hh	(+)
7	dwellings_50_or_more_units	FL_Unemployment	(-)
8	dwellings_5_to_9_units	owner_occupied_housing_units	(+)
9	children_in_single_female_hh	income_125000_149999	(+)
10	male_35_to_39	male_5_to_9	(+)

Feature Importances for Orlando

	Random Forest	Lasso Sign	ns of Coefficients
1	owner_occupied_housing_units_median_value	dwollings 50 or more units	(+)
2		<u> </u>	(+)
2	FL_Unemployment	FLSTHPI_Yearly_Avg	(+)
3	FLSTHPI_Yearly_Avg	commute_less_10_mins	(+)
4	unemployed_pop	male_male_households	(+)
5	male_85_and_over	commuters_by_bus	(+)
6	income_15000_19999	children	(-)
	two_parents_mother_in_labor_force_families_	employed_arts_entertainment_	
7	with_young_children	recreation_accommodation_food	(+)
8	children_in_single_female_hh	dwellings_20_to_49_units	(-)
9	male_male_households	male_85_and_over	(-)
	employed_arts_entertainment_recreation_		
10	accommodation_food	median_year_structure_built	(-)

Feature Importances for Tampa

	Random Forest	Lasso	Signs of Coefficients
1	unemployed_pop	dwellings_50_or_more_units	(+)
2	income_40000_44999	pop_25_years_over	(+)
3	income_30000_34999	not_us_citizen_pop	(+)
4	income_200000_or_more	children_in_single_female_hh	(+)
5	FL_Unemployment	owner_occupied_housing_units_ median_value	(+)
6	FLSTHPI_Yearly_Avg	some_college_and_associates_ degree	(-)
7	Owner_occupied_housing_units_ median_value	FL_Unemployment	(-)
8	male_45_64_grade_9_12	commuters_by_bus	(-)
9	income_15000_19999	income_125000_149999	(-)
10	dwellings_50_or_more_units	unemployed_pop	(-)

Feature Importances for Jacksonville

	Random Forest	Lasso	igns of Coefficients
		Owner_occupied_housing_units_	
1	households_public_asst_or_food_stamps	median_value	(+)
		employed_arts_entertainment_	
2	owner_occupied_housing_units_median_value	recreation_accommodation_food	(-)
3	income_200000_or_more	vacant_housing_units_for_rent	(-)
4	commuters_by_bus	female_62_to_64	(-)
5	median_year_structure_built	children_in_single_female_hh	(+)
		employed_transportation_	
6	walked_to_work	warehousing_utilities	(-)
7	income_125000_149999	commute_35_44_mins	(+)
8	FL_Unemployment	median_year_structure_built	(+)
9	income_30000_34999	some_college_and_associates_degree	(-)
10	FLSTHPI_Yearly_Avg	in_grades_5_to_8	(+)

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection and Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Conclusion

- Lasso in general achieved a higher accuracy than Multiple Linear Regression with a smaller average error/RMSE, with proper hyperparameter tuning
- Within different economic classes, variables can have smaller or lager effects on the price, especially the number of dwellings with 50 or more housing units

Also, using algorithms that do not directly predict the rent level, we can also
offer important guidance to property developers and other stakeholders as to
the growth profile for smaller areas within a larger metro area

- Research Questions and Motivation
- Data Used
- Why Florida
- Data Visualization
- Data Cleaning
- Clustering
- Feature Selection and Target Transformation
- Modeling
- Results
- Conclusion
- Future Work

Next Steps/Future Work

- Clean the data more. Remove outliers
- Real Estate often has very localized trends, talking to domain experts in each area should provide more insight.
- Incorporate time series analysis for future predictions
- Use more counties. Zip codes get more scarce than you appreciate as you drill down
- Normalize the data for KMeans clustering
- Analyze columns with large amounts of nans to investigate better imputation methods

You've Got Questions.

We've Got You Covered