065

Assignement 3

Yassine ZAOUI

yassine.zaoui@ensta-paris.fr

001	1. Baseline Model and Initial Results	Improved Results	035
002	The baseline model consisted of a simple neural network,	These strategies significantly improved validation accu-	036
003	which exhibited heavy underfitting. Both test and validation	racy, which reached 63%, while training accuracy remained	037
004	accuracies increased marginally during the early epochs and	around 95%. However, the overfitting issue persisted.	038
005	plateaued at below 10%, even after 20 epochs. This indi-		
006	cated that the architecture was too simplistic to learn mean-	4. Exploration of Pretrained Models	039
007	ingful features for the classification task.	To further enhance performance, pretrained models were	040
		explored. Initially, the DinoV2 model was explored for	041
800	2. Improved Architectures	its state-of-the-art capabilities in feature extraction. While	042
		it effectively avoided overfitting, fine-tuning was com-	043
009	2.1. Adding Convolutional Layers	putationally expensive and resulted in validation accu-	044
010	To enhance feature extraction, we proposed a deeper archi-	racy stagnating at approximately 50%-60%. Consequently,	045
011	tecture with 5-6 convolutional layers. Each layer employed	ResNet-50 was chosen as an alternative. We took its ar-	046
012	primarily 3×3 kernels for computational efficiency, with	chitecture, replaced its fully connected layer with a new one	047
013	occasional 5×5 kernels to expand the receptive field. Out-	having 500 outputs. We introduced also a dropout layer	048
014	put channels were doubled after each layer, starting with	with fairly high rate 0.5 to reduce overfitting.	049
015	32 and ending with 512, closely matching the number of	4.1. Training modifications	050
016	classes.		
017	2.2. Global Average Pooling and Activation Func-	We introduced Mixup regularization to encourage	051
017	tions	generalization over overfitting, AdamW with bet-	052
010		ter weight regularization and fast convergence, Co- sine Annealing Warm restars to dynamically adjust	053 054
019	The final convolutional layer was followed by global av-	the learning rate, Mixed-Precision training using	055
020	erage pooling, reducing the feature dimensionality to 512	torch.cuda.amp.GradScaler, early stopping	056
021	before classification. LeakyReLU activation with a nega-	to detect when we fail to improve the validation accuracy	057
022	tive slope of 0.001 was used to prevent dead neurons and maintain gradient flow.	and finally label smoothing to the loss function to avoid	058
023	maintain gradient now.	being over confident predictions.	059
024	2.3. Results and Challenges		
005	Descrite these sharpes the model displayed examitting	4.2. Performance	060
		This approach achieved a better validation accuracy of	061
	•	roughly 70% proof of improvement. Nevertheless, no one	062
UZ1	sugnated around 50%, even after 50 epochs.		063
028	3 Mitigating Overfitting Data Augmentation	imentation to mitigate this problem.	064
025 026 027 028	Despite these changes, the model displayed overfitting: training accuracy exceeded 96%, while validation accuracy stagnated around 50%, even after 30 epochs. 3. Mitigating Overfitting:Data Augmentation		

References

and Batch Normalization

feature distributions.

To improve generalization, we applied data augmentation techniques, including random rotations, flips, and scaling.

Batch normalization was incorporated after each convolu-

tional layer to stabilize the learning process by normalizing

029

030

031

032

033 034