- 1. Γράψτε ένα πρόγραμμα που βρίσκει και τυπώνει τον αριθμό των φωνηέντων σε μια ακολουθία χαρακτήρων. Τα φωνήεντα είναι, φυσικά, οι χαρακτήρες a, e, i, o, u.
- 2. Γράψτε ένα πρόγραμμα το οποίο μετράει τον αριθμό των ψηφίων ενός φυσικού αριθμού.
- 3. Γράψτε ένα πρόγραμμα το οποίο τυπώνει τον πίνακα της προπαίδειας στην εξής μορφή

- 4. Γράψτε ένα πρόγραμμα το οποίο με δεδομένο ένα φυσικό αριθμό n υπολογίζει και τυπώνει το άθροισμα $1+2+\cdots+n$. Κάντε το ίδιο για το άθροισμα των τετραγώνων των πρώτων n φυσικών αριθμών. Ελέγξτε τα αποτελέσματά σας χρησιμοποιώντας γνωστούς τύπους για τα συγκεκριμένα αθροίσματα.
- 5. Γράψτε ένα πρόγραμμα το οποίο ζητάει ένα θετικό ακέραιο n και υπολογίζει τον n-στό όρο της ακολουθίας Fibonacci. Υπενθυμίζουμε ότι οι όροι της ακολουθίας Fibonacci ορίζονται ως εξής: $F_0=0, F_1=1$ και $F_n=F_{n-1}+F_{n-2}$ για $n\geq 2$.
- 6. Γράψτε ένα πρόγραμμα το οποίο ελέγχει αν μια λέξη είναι παλινδρομική, δηλαδή διαβάζεται το ίδιο και από δεξιά και από αριστερά. Η λέξη πρέπει να δίνεται από τον χρήστη.
- 7. Μια Πυθαγόρεια τριάδα είναι ένα σύνολο τριών φυσικών αριθμών a < b < c τέτοιων ώστε $a^2 + b^2 = c^2$. Για παράδειγμα, το σύνολο $\{3,4,5\}$ είναι μια Πυθαγόρεια τριάδα γιατί $3^2 + 4^2 = 9 + 16 = 25 = 5^2$. Υπάρχει ακριβώς μία Πυθαγόρεια τριάδα $\{a,b,c\}$ για την οποία ισχύει επιπλέον ότι a+b+c=1000. Γράψτε ένα πρόγραμμα στην Python για να την βρείτε.
- 8. Δεδομένου ενός φυσιχού αριθμού k φτιάχνω την αχολουθία $(a_n), n \ge 0$ με τον εξής τρόπο:

Έτσι, αν ξεκινήσουμε με τον αριθμό 13 παράγουμε την ακολουθία $13 \to 40 \to 20 \to 10 \to 5 \to 16 \to 8 \to 4 \to 2 \to 1$. Αν φτάσουμε στον αριθμό 1 δεν χρειάζεται να συνεχίσουμε γιατί οι όροι που ακολουθούν είναι κατά σειρά $4,2,1,4,2,1,\ldots$ Γράψτε ένα πρόγραμμα σε Python το οποίο δεδομένου του φυσικού αριθμού k υπολογίζει και τυπώνει τους όρους της παραπάνω ακολουθίας.