Clustering Results Report

1. Overview

Dataset Description: The dataset includes customer transaction data, with information on customer purchases, product details, and customer demographics (e.g., region, signup date). The features considered for clustering include:

- Total transactions
- Total quantity purchased
- Total revenue
- Average transaction value
- Region-based one-hot encoding for geographical segmentation.

Clustering Algorithm Used: K-Means Clustering with K=2 clusters.

Number of Clusters Formed: 2 clusters were formed after applying KMeans clustering on the normalized feature data.

2. Number of Clusters Formed

Clusters Created: 2 clusters.

Cluster Size Distribution:

- Cluster 0: X0 customers
- Cluster 1: X1 customers

The clusters represent customer segments based on their transaction patterns, revenue, and geographical information.

3. Clustering Performance Metrics

Davies-Bouldin (DB) Index:

Value: Y (DB index score)

 Interpretation: The Davies-Bouldin Index quantifies the separation and compactness of clusters. A lower value indicates better clustering results with wellseparated and tight clusters.

Silhouette Score (optional, not calculated but can be added):

• If calculated, this score would show how well-separated the clusters are. A higher value close to +1 indicates that the clusters are well-separated and meaningful.

Inertia (within-cluster sum of squares):

- Value: W (inertia score)
- Interpretation: Inertia measures how well the clusters fit the data. Lower inertia values indicate that the clusters are compact and well-defined.

4. Cluster Centroids

Centroid Locations for K-Means Clustering (if available from kmeans.cluster_centers_):

- Cluster 0 Centroid: (x0, y0)
- Cluster 1 Centroid: (x1, y1)

5. Cluster Visualization

The customer clusters are visualized using a scatter plot of the first two principal components of the normalized feature data, with each point colored according to its cluster assignment.

Visualization Notes:

 Different colors and markers are used to represent the two clusters, with the axes corresponding to the first two principal components.

(Plot not generated here—this should appear in the analysis)

6. Cluster Separation

Euclidean Distance Between Centroids:

Distance between Cluster 0 and Cluster 1: D (calculated from the centroids)

This metric helps evaluate how distinct the clusters are from each other.

7. Summary of Clustering Results

The clustering analysis grouped customers into 2 distinct clusters based on their transactional behavior, revenue, and geographical features. Below is a summary of each cluster:

- Cluster 0:
 - Number of Customers: X0
 - Average Revenue: Y0
 - Average Quantity: Z0
- Cluster 1:
 - Number of Customers: X1
 - Average Revenue: Y1
 - Average Quantity: Z1

8. Conclusion and Recommendations

The clustering process has successfully grouped customers into two segments that appear to differ in transaction behavior, quantity purchased, and total revenue.

Possible Applications:

• The clusters can be used for targeted marketing strategies, where Cluster 0 and Cluster 1 represent two distinct customer profiles (e.g., high-revenue vs. low-revenue customers, or regional differences).

Potential Improvements:

 Adjusting the number of clusters or trying a different clustering algorithm (e.g., DBSCAN or hierarchical clustering) might yield more refined results, particularly in the case of overlapping clusters.