Percolation, sliding, localization and relaxation in glassy circuits

Daniel Hurowitz, Doron Cohen,

Ben-Gurion University

D. Hurowitz and D. Cohen, arXiv (2014)

Brownian motion

Simple random walk [Einstein]

uniform lattice - all rates are equal w,

$$D = a^2 w$$

Random lattice - random, symmetric transition rates w_n

$$P(w) \propto w^{\alpha - 1}$$

D = resistor network calculation

Percolation related transition to subdiffusion for $\alpha < 1$

Rates allowed to be asymmetric $\overrightarrow{w}_n/\overleftarrow{w}_n = e^{\mathcal{E}_n}$

Stochastic field: $\mathcal{E}_n \sim [s - \sigma, s + \sigma]$

Sliding transitions for $\langle e^{-\mathcal{E}\mu} \rangle = 1$, defines s_{μ}

$$D = 0 \text{ for } s < s_{1/2}$$

$$v = 0$$
 for $s < s_1$

Dynamics

Stochastic rate equation

$$\frac{d\mathbf{p}}{dt} = \mathbf{W}\mathbf{p}, \quad \mathbf{W} = \begin{bmatrix} -\gamma_1 & w_{1,2} & 0 & \dots \\ w_{2,1} & -\gamma_2 & w_{2,3} & \dots \\ 0 & w_{3,2} & -\gamma_3 & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

with transition rates across n^{th} bond $w_n e^{\pm \mathcal{E}_n/2}$

Probability conservation $\sum_{n} w_{nm} = 0$

Affinity (closed ring)
$$S_{\circlearrowleft} = \sum_{n=1}^{N} \log \left(\frac{\overrightarrow{w}_n}{\overleftarrow{w}_n} \right) = Ns$$

Relaxation modes of closed ring λ_k

How do spectral properties of W depend on (α, σ, s) ?

- What is the threshold bias s_c for complex eigenvalues (delocalization)?
- How is s_c related to the percolation transition? to the sliding transition?
- Implications of conservativity?

The spectrum

- $\lambda_0 = 0$ due to conservativity
- Complex eigenvalues → oscillating density
- Complex bubble at bottom of band
- Complexity saturation

The spectral equation

Characteristic polynomial
$$\prod_{k=0}^{N-1} (z - \lambda_k) = 0$$

Hatano, Nelson form
$$\prod_{k=0}^{N-1} \left(\frac{z + \epsilon_k(s)}{\overline{w}} \right) = 2 \left[\cosh \left(\frac{S_{\circlearrowleft}}{2} \right) - 1 \right]$$

The associated Hermitian matrix H

Open chain

Gauge away bias $\boldsymbol{H} = e^{\boldsymbol{U}/2} \boldsymbol{W} e^{-\boldsymbol{U}/2}$

H symmetric matrix with real eigenvalues $\epsilon_k(s)$

Density of states $\rho(\epsilon) \propto \epsilon^{\mu-1}$ (for small ϵ)

Field disorder

$$s = s_{\mu} = \frac{1}{\mu} \ln \left(\frac{\sinh(\sigma \mu)}{\sigma \mu} \right)$$

For $s > s_{\infty} = \sigma$, gap opens

Resistor network disorder

$$\mu = \min \left\{ \frac{\alpha}{1+\alpha}, \ \frac{1}{2} \right\}$$

For large bias, \boldsymbol{H} is trivially localized, $\mu = \alpha$

Closed ring

Gauge away disorder $\tilde{\boldsymbol{W}} = \mathrm{e}^{\boldsymbol{U}/2} \boldsymbol{W} \mathrm{e}^{-\boldsymbol{U}/2}$ (cannot gauge away asymmetry)

Associated hermitian matrix \boldsymbol{H} with real eigenvalues $\epsilon_k(s)$ by setting $\mathcal{S}_{\circlearrowleft}=0$

Electrostatic picture

2D Electrostatic potential
$$\Psi(z) = \sum_{k} \ln(z - \epsilon_k) \equiv V(x, y) + iA(x, y)$$

The secular equation
$$V(x,y) = V(0) = \ln \left[2(\cosh(S_{\circlearrowleft}/2) - 1) \right]; \quad A(x,y) = 2\pi * \text{integer}$$

Condition for complexity $V(\epsilon) < V(0)$

Continuum approximation

Density of states \iff charge density $\rho \propto \epsilon^{\mu-1}$

Potential along real axis
$$V(\epsilon) = \int \ln(|\epsilon - x'|) \rho(x') dx'$$

Derivative at origin
$$V'(\epsilon) \approx \frac{\epsilon^{\mu-1}}{\epsilon_c^{\mu}} \pi \mu \cot(\pi \mu)$$
, changes sign at $\mu = 1/2$

Condition for complexity $V'(\epsilon) < 0$

Examples

Stochastic field, $\mu = \mu_s(\sigma)$

$$s_c = s_{1/2} < s_1$$

Resistor network, $\mu = \mu_{\alpha}$

$$\alpha < 1/2 \Rightarrow s_c = \infty$$

 $\alpha > 1/2 \Rightarrow s_c \sim 1/N$ [Numerically verified]

Sparse disorder

Clean ring with $M \ll N$ defects $s_c \sim 1/N \ll s_1$ For M field defects $s_c = \sigma \sqrt{M}/N$

Complexity saturation

Recall the spectral determinant

$$\prod_{k=0}^{N-1} \left(\frac{z + \epsilon_k(s)}{\overline{w}} \right) = 2 \left[\cosh \left(\frac{S_{\circlearrowleft}}{2} \right) - 1 \right]$$

For large s

Non conservative \sim entire spectrum becomes complex Conservative \sim complexity saturation Trivial localization $\sim \epsilon_n = w_n e^{\mathcal{E}_n/2}$

Upper cutoff ϵ_c determined by $\overline{\ln \left[\epsilon - w e^{\mathcal{E}/2}\right]} = s/2$

