Содержание

1	Последовательности. 1.1 Арифметическая прогрессия. 1.2 Геометрическая прогрессия.	2 2 2
2	Производная и интеграл.	2
3	Предел.	3
4	Показательная функция.	3
5	Логарифм.	5

1 Последовательности.

Определение 1.1. Последовательность — объекты (элементы), пронумерованные последовательными натуральными числами. Последовательности бывают как конечными, так и бесконечными.

Определение 1.2. Стационарная последовательность — последовательность, у которой равны все элементы.

Заметка 1.1. Способы задания (правило, которое позволяет найти каждый элемент последовательности) последовательностей:

- Словесно/описательно.
- Таблица.
- Рекуррентно.
- Формульно.

1.1 Арифметическая прогрессия.

Пример: ряд натуральных чисел $1, 2, 3, \dots, n$.

Определение 1.3. Арифметическая прогрессия — последовательность, где каждый следующий элемент увеличивается на фиксированную величину. $a_{n+1} = a_n + d$, d — разность арифметической прогрессии.

Утверждение 1.1. Формулы.

$$\begin{aligned} a_n &= a_1 + (n-1) \cdot d. \\ a_n &= \frac{a_{n+1} + a_{n-1}}{2} \to a_n = \frac{a_{n+k} + a_{n-k}}{2}. \\ S_n &= \frac{a_1 + a_n}{2} \cdot n = \left(a_1 + \frac{(n-1) \cdot d}{2}\right) \cdot n = a_1 \cdot n + \frac{(n-1) \cdot n}{2} \cdot d. \end{aligned}$$

1.2 Геометрическая прогрессия.

Определение 1.4. Геометрической прогрессией называется такая последовательность, где первый член не нулевой, а каждый следующий в фиксированное число (не ноль) раз больше.

Определение 1.5. $b_n = b_{n-1} \cdot q, q -$ знаменатель $\Gamma \Pi$.

Определение 1.6. Если |q| < 1, тогда бесконечно убывающая $\Gamma\Pi$.

Утверждение 1.2. Формулы.

$$S_n=rac{b_{n+1}-b_1}{q-1}=rac{b_1\cdot (q^n-1)}{q-1}.$$
 Для бесконечно убывающей ГП верно: $rac{b_1}{b_2}=rac{S}{S-b_1}.$

2 Производная и интеграл.

Определение 2.1. Непрерывная функция —

- 1. Можно нарисовать не отрывая руки.
- 2. $\forall \varepsilon \exists \delta$.
- 3. Совпадают левый и правый предел. (Если пойти слева и справа, то придем в одну точку.)

Утверждение 2.1. Производная точки касания — наклон касательной $(k = f'(x_0), b = f(x_0) - f'(x_0) \cdot x_0)$.

Утверждение 2.2. Полное уравнение касательной $-y = f'(x_0)(x - x_0) + f(x_0)$.

Определение 2.2. Уравнение нормали (перпендикуляра) $-y = -\frac{1}{f'(x_0)}(x-x_0) + f(x_0)$.

Свойство 2.1. 1. $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$.

- $2. \ f'(x) = 0; x_i$ корни = подозрительный экстремум.
- 3. $f''(x) > 0 \Leftrightarrow выпукла вниз. <math>f''(x) < 0 \Leftrightarrow выпукла вверх.$

4.
$$(f^n(x))' = n \cdot f^{n-1}(x) \cdot f'(x)$$
.

5.
$$(f(x) + g(x))' = f'(x) + g'(x)$$
.

6.
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

7.
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}; \Leftrightarrow f(x) \cdot g^{-1}(x).$$

8.
$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$
.

Свойство 2.2. 1. (const)' = 0.

2.
$$(k \cdot x^n)' = kn \cdot x^{n-1}$$
.

3.
$$(k_1(k_2x+k_3)^n)'=nk_1(k_2x+k_3)^{n-1}\cdot k_2$$
.

4.
$$(\sin x)' = \cos x$$
.

$$5. (\cos x)' = -\sin x.$$

6.
$$tg'(x) = \frac{1}{\cos^2(x)}$$
.

7.
$$ctg'(x) = -\frac{1}{\sin^2(x)}$$
.

8.
$$(e^{f(x)})' = e^{f(x)} \cdot f'(x)$$
.

9.
$$(a^x)' = a^x \cdot \ln a.$$

10.
$$(e^x)' = e^x$$

11.
$$(\ln x)' = \frac{1}{x}$$

12.
$$(\log_a x)' = \frac{1}{x \cdot \ln a}$$

3 Предел.

Определение 3.1 (По Коши). $\lim_{x \to x0} f(x) = A \Leftrightarrow \varepsilon > 0 \ \exists \delta : |x - x_0| < \delta, \ mo \ |f(x) - A| < \varepsilon \ (f(x_0) = A).$

2.
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$
.

3.
$$\lim_{x \to a} f(x) = A$$
, $\lim_{y \to A} = B \Rightarrow \lim_{x \to a} g(f(x)) = B$.

4. Правило Лапиталя.

$$\lim_{x \to x0} f(x) = 0, \ \lim_{x \to x0} g(x) = 0 \Rightarrow \lim_{x \to x0} \frac{f(x)}{g(x)} = \lim_{x \to x0} \frac{f'(x)}{g'(x)}.$$

Утверждение 3.1. $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.

4 Показательная функция.

Определение 4.1. $f(x)=a^x$, где x — независимая переменная, $a>0,\ a\neq 1$.

Определение 4.2. Возведение в вещественную степень: $a^x = \lim_{n \to \infty} a^{x_n}$, x_n — число x с n знаками после запятой $\Leftrightarrow x_n = \frac{\lfloor x \cdot 10^n \rfloor}{10^n}$.

Свойство 4.1. 1. $D(x) = \mathbb{R}$.

2.
$$E(y) = (0; +\infty)$$
.

•
$$a \in (0;1)$$
: \downarrow

•
$$a \in (1; \infty)$$
: \uparrow

- 4. Ограниченность. Снизу 0.
- 5. \max / \min . Hem.
- 6. Асимптоты. y = 0.
- 7. Монотонность. \mathbb{R} .
- 8. Выпуклость. Выпукла вниз.
- 9. $\Gamma pa\phi u\kappa$
 - $a \in (0;1)$

• $a \in (1; \infty)$

10. Четность. Общего вида.

5 Логарифм.

Определение 5.1. $\log_a b$ — логарифм числа b по основанию a. $\log_a b$ — такое число,что если возведем a b эту степень, то получим b ($a^{\log_a b} = b$); $a > 0, a \ne 1, b > 0$.

Свойство 5.1. 1. $a^{\log_a b} = b$

2.
$$\log_a(bc) = \log_a|b| + \log_a|c|$$

3.
$$\log_a(\frac{b}{c}) = \log_a|b| - \log_a|c|$$

4.
$$\log_a b^r = r \log_a |b|$$

$$5. \log_{a^r} b = \frac{\log_{|a|} b}{r}$$

$$6. \log_a b = \frac{\log_c b}{\log_c a}$$

7.
$$\log_a b = \frac{1}{\log_b a}$$

8.
$$\log_a b \cdot \log_c a = \log_c b$$

9.
$$a^{\log_b c} = c^{\log_b a}$$

Заметка 5.1. $\lg b = \log_{10} b$, $\ln b = \log_e b$.