Documentação Técnica - Projeto de Monitoramento Automático

Amanda Ribas Lima Arthur Giombelli Pupo Artur Pires Amador Gustavo Tavares Espenchitt

13 de junho de 2025

Sumário

1	Project Chart	2
	1.1 Problemática	2
	1.2 Objetivo	
	1.3 Requisitos Funcionais	2
	1.4 Restrições	2
	1.5 Descrição Sucinta da Solução	2
	1.6 Especificação Técnica	2
	1.7 Lista de Componentes	2
2	Arquitetura Geral da Solução	3
3	Esquema Elétrico Simplificado	3
4	Esquema Mecânico Simplificado	4
5	Diagrama de Sequência	4
6	Diagrama de Máquina de Estados	5

1 Project Chart

1.1 Problemática

O monitoramento de umidade do solo e do nível de água em reservatórios domésticos ou de pequeno porte é feito geralmente de forma manual, com baixa frequência e pouca precisão. Isso pode levar ao desperdício de água e falhas em cultivos ou sistemas automatizados.

1.2 Objetivo

Desenvolver um sistema embarcado de baixo custo utilizando uma Raspberry Pi para monitorar a umidade do solo e o nível de água, acionando uma bomba automaticamente e uma interface para que o sistema que possa ser comandado remotamente.

1.3 Requisitos Funcionais

- Medir umidade do solo usando Higrômetro via conversão analógico-digital (ADS1115).
- Medir nível de água com chave boia IP67.
- Acionar uma bomba submers 'ivel via móodulo relé.
- Enviar comandos para o sistema remotamente.
- Visualizar estado dos sensores e atuadores via interface.

1.4 Restrições

- Alimentação limitada a fontes 5V.
- Componentes simples, sem sensores industriais.
- Dependência de rede local para comunicação.

1.5 Descrição Sucinta da Solução

O sistema embarcado utiliza uma Raspberry Pi 3B conectada a um ADS1115 para leitura da umidade via sensor higrômetro. Uma chave boia IP67 indica o nível de água. A Raspberry Pi aciona uma bomba de água via módulo relé sempre que o solo estiver seco e houver água suficiente. O usuáio pode monitorar o sistema remotamente, enviando comandos e visualizando status.

1.6 Especificação Técnica

- Microcomputador: Raspberry Pi 3B (4GB RAM)
- Conversor A/D: Módulo ADS1115
- Sensores: Higrômetro (umidade do solo), micro boia IP67 (nível de água)
- Atuadores: Mini bomba submers'ivel, módulo relé 1 canal
- Software embarcado: C++
- Interface: Python + Flask

1.7 Lista de Componentes

- 1x Raspberry Pi 3B (4GB RAM)
- 1x Módulo ADS1115

- 1x Higrômetro
- 1x Chave boia de nível (IP67)
- 1x Módulo relé 1 canal
- 1x Mini bomba submersível
- Cabos, jumpers, protoboard, fonte 5V

2 Arquitetura Geral da Solução

Figura 1: Arquitetura da solução com Raspberry Pi e sensores embarcados

3 Esquema Elétrico Simplificado

Figura 2: Esquema Elétrico com Higrômetro, ADS1115 e Relé 12V

4 Esquema Mecânico Simplificado

Figura 3: Esquema Mecânico com sensores e Módulos embarcados

5 Diagrama de Sequência

Figura 4: Diagrama de Sequência do sistema de monitoramento

6 Diagrama de Máquina de Estados

Figura 5: Diagrama de estados do sistema embarcado