SANTA MONICA COLLEGE Department of Mathematics

Math 10- Final Exam

Instructor: Kevin Arlin

June 6-8, 2021

Submit your work, typed, as a .pdf or .tex file on Canvas as usual.

This exam allows one sheet of handwritten notes. Handheld calculators are allowed. It is not open Internet. I take academic honesty during COVID even more seriously than usual, and have been known to be rather vindictive when I see solutions that were garnered online. Nobody wants that. Don't do it. I am generous with curves for honest students.

Show your work. Partial credit will be given when earned. Explanations are required unless explicitly not requested.

Distribution of Points

Question	Points	Score
1	14	
2	10	
3	4	
4	5	

Que	estion	Points	Score
	5	16	
	6	14	
Т	otal:	63	

- 1. For any string $s \in A^*$ where $A = \{a, b, c, d, \dots, x, y, z\}$, say another string in A^* avoids s if s does not occur as a substring.
 - (a) (4 points) Derive a recurrence relation for the number a_n of strings in A^* that avoid the string 'ck', including initial conditions.

Solution: $a_1 = 26$, and $a_2 = 26 * 25$ Let c_k be the number of strings in A^* that do **not** end in 'c' and avoid the string 'ck'. $c_k = a_{k-1} * 25$, removing 'c'. $a_n = 25 * c_{n-1} * 26$, avoiding 'k' when ending with 'c' and allowing any letter otherwise.

$$a_n = 25 * (a_{n-2} * 25) * 26 \tag{1}$$

- (b) (3 points) By finding a closed form for a_n , how many digits does a_{50} have? You may use a programming language or WolframAlpha for this.
 - (b) $19151123960735656846813146744436007044769689232586820865 * 10^{49}$
- (c) (4 points) Derive a recurrence relation for the number b_n of strings that avoid the string 'ack'.

Solution: $b_1 = 26$, $b_2 = 26 * 26$, $b_3 = 26 * 26 * 25$ Let c_k be the number of strings in A^* that do **not** end in 'ac' and avoid the string 'ack'. $c_k = a_{k-2} * 26 * 25$, removing 'c'. $b_n = 25 * c_{n-1} * 26$, avoiding 'ak' when ending with 'ac' and allowing any letter otherwise.

$$b_n = 25 * (b_{n-3} * 26 * 25) + 26$$

(d) (3 points) Compute b_5 using inclusion-exclusion.

Solution:

Excluded Strings: ackxx, xackx, and xxack

$$n(excluded) = 3 * 26^2$$

$$b_5 = 26^5 - 3 * 26^2 = 11879348$$

2. (a) (4 points) Explain which axioms of an equivalence relation fail for the relation "there is a driving route of length less than 0.25 miles between x and y" on the set of all points in Santa Monica.

Solution: The relation isn't transitive, as the route from point A to point B, and the route from point B to point C can both be less than 0.25 miles, that does not mean that the rounte $A \to B$ is less than 0.25 miles.

(b) (6 points) Give an example of an equivalence relation on the set \mathbb{Z} of integers under which all primes are equivalent, and such that the number of equivalence classes equals the total number of letters in your first and last name combined.

(b) <u>has the same number of factors modulo 17 as</u>

Solution: Since all primes only have themselves and 1 as factors, they all have 2 factors.

Furthermore, since I added the modulo 17, there are only 17 equivalence classes, as it wraps back around to 0.

3. (4 points) Give a natural example of a predicate P of domain the set H of all humans such that $\forall x \in H \exists y \in H(P(x,y))$ is true but $\exists y \in H \forall x \in H(P(x,y))$ is false.

3. P is whether x is a biological child of y

Solution: Since all humans x have a parent (excluding the edge case of first human, as that begets the chicken-egg problem), but there is no human y that is a child to ALL humans x, as humans typically have 2 biological parents.

4. (5 points) State and prove which natural numbers can be written in the form 6x + 10y for some $x, y \in \mathbb{N}$.

Solution:

Base case 16: 10(1) + 6(1) = 16

Inductive Case: Assume $a_{x,y}$ is can be written in the form 6x + 10y. Then $a_{x,y+1}$ can also be written as 6x + 10(y + 1), as $a_{x,y+1} = a_{x,y} + 10$.

Inductive Case: Assume $a_{x,y}$ is can be written in the form 6x + 10y. Then $a_{x+1,y}$ can also be written as 6(x+1) + 10y, as $a_{x+1,y} = a_{x,y} + 6$.

Therefore $16, 22, 26, 28, 32, 34, 36, \ldots$ can be written in the form 6x + 10y.

$$a_1 = 16 + 6 = 22$$
 $a_2 = 16 + 10 = 26$ $a_3 = 16 + 6 + 6 = 28$

Since from these we can add 10 any number of times, we get that all even numbers greater than 20 can be written in the form 6x + 10y.

5. Consider the graph $G = K_{3,4}$.

(a) (3 points) Does G have an Euler circuit? (Why not, if not?)

Solution: No, since there is no way to go from the last bottom node you have back to the start without going through a used top node.

(b) (3 points) Does G have a Hamilton circuit? (Why not, if not?)

Solution: No, since there is no euler circuit, it is impossible to get a Hamilton circuit.

(c) (4 points) Is G planar? If so, explain how to draw it without any edges crossing (you may upload a drawing in this case.) If not, prove it is not.

(d) (6 points) What are all the isomorphisms $\varphi: G \to G$?

Solution: Since the top and bottom have no set order, there are 3! * 4! = 144 ways to draw G.

- 6. Let's do some landscaping.
 - (a) (3 points) How many ways are there to choose six trees from a landscaper that sells orange, lemon, lime, and kumquat trees?

(a)
$$4^6 = 4096$$

Solution: Since there are 6 trees to choose from 4 variants.

(b) (4 points) Supposing I bought two orange, two lemon, and two lime trees, how many ways are there to distribute my trees among three identical bins for transport home?

(b)
$$3*2=6$$

Solution: Assuming we are distributing evenly.

Since there are 3 possible cominations to distribute the two orange trees, and another 2 possible cominations to distribute the two lime trees, and only one way to distribute the lemon trees (into the remaining spots).

(c) (7 points) Let n be the number of ways to arrange my six trees along my driveway. There are several possibilities for n depending on how my trees are distributed among the four species. What are all of these possibilities?

Solution:

$$\sum_{o=0}^{6} \sum_{l=0}^{6-o} \sum_{k=0}^{6-l-o} \frac{6!}{o! l! k! (6-o-l-k)!}$$

Counting the number of orange, lime, and kumquat (and the rest are lemon), sum all the possibilities.