Group 4 Presentation (2) MTH-404

By:Jeesun S.
Paul Ycay
Ali Syed

13.15 Corporate Profits In order to study the relationship of advertising and capital investment with corporate profits, the following data, recorded in units of \$100,000, were collected for 10 medium-sized firms in the same year. The variable y represents profit for the year, x_1 represents capital investment, and x_2 represents advertising expenditures.

y	<i>X</i> ₁	X 2	<i>y</i>	<i>X</i> ₁	<i>X</i> ₂
15	25	4	1	20	0
16	1	5	16	12	4
2	6	3	18	15	5
3	30	1	13	6	4
12	29	2	2	16	2

a. Using the model

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

and an appropriate computer software package, find the least-squares prediction equation for these data.

- **b.** Use the overall F-test to determine whether the model contributes significant information for the prediction of y. Use $\alpha=.01$.
- c. Does advertising expenditure x_2 contribute significant information for the prediction of y, given that x_1 is already in the model? Use $\alpha = .01$.
- d. Calculate the coefficient of determination, R². What percentage of the overall variation is explained by the model?

Excel Data

\mathbf{A}	Α	В	С	D	E	F	G	Н	I	J	К	L
1	y	x_{I}	\boldsymbol{x}_2									
2	15	25	4									
3	16	1	5									
4	2	6	3									
5	3	30	1									
6	12	29	2									
7	1	20	0									
8	16	12	4									
9	18	15	5									
10	13	6	4									
11	2	16	2									
12												
13												
14												
15												
16												
17												
18												

Regression equation:

$$y = -8.18 + 0.29x_1 + 4.43x_2$$

	Coefficie	Standard			Lower	Upper	Lower	Upper
	nts	Error	t Stat	P-value	95%	95%	99.0%	99.0%
Intercept	-8.17702	4.205988	-1.94414	0.092967	-18.1226	1.768562	-22.8958	6.541765
x1	0.292132	0.135714	2.152556	0.068355	-0.02878	0.613044	-0.1828	0.767061
x2	4.434303	0.800243	5.541193	0.000868	2.542028	6.326578	1.633864	7.234741

Analysis of variance

Source	DF	SS	MS	F	Р
Regression	2	355.22	177.61	16.28	0.002
Residual Error	7	76.38	10.91		
Total	9	431.60			

Source	DF	Seq SS
X1	1	20.16
X2	1	335.05

A) From the analysis of variance, we can conclude that the least square prediction equation is $\hat{y}=-8.18+0.29x_1+4.43x_2$

B) Use the overall F-test to determine whether the model contributes significant information for the prediction of y. Use $\alpha = 0.01$ h(o): $\beta 1 = 0$

$$h(a)$$
: $\beta 1 \neq 0$

$$f = MSR/MSE$$

$$f = 177.61 / 10.91$$

$$f = 16.28$$

						ff ₁				
df_2	ex	1	2	3	4	5	6	7	8	9
10	0.100	3.29	2.92	2.73	2.61	2.52	2,46	2.41	2.38	2.35
	0.050	4.96	4.10	3.71	3.48	3.33	3,22	3.14	3.07	3.02
	0.025	6.94	5.46	4.83	4.47	4.24	4,07	3.95	3.85	3.78
	0.010	10.04	7.56	6.55	5.99	5.64	5,39	5.20	5.06	4.94
	0.005	12.83	9.43	8.08	7.34	6.87	6,54	6.30	6.12	5.93
11	0.100	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.2
	0.050	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.9
	0.025	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.5
	0.010	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.6
	0.005	12.23	8.91	7.60	6.88	6.42	6.10	5.86	5.68	5.5
12	0.100	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.2
	0.050	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.8
	0.025	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.4
	0.010	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.3
	0.005	11.75	8.51	7.23	6.52	6.07	5.76	5.52	5.35	5.2
3	0.100	3.14	2.76	2.56	2.43	2.35	2,28	2.23	2,20	2.1
	0.050	4.67	3.81	3.41	3.18	3.03	2,92	2.83	2,77	2.7
	0.025	6.41	4.97	4.35	4.00	3.77	3,60	3.48	3,39	3.3
	0.010	9.07	6.70	5.74	5.21	4.86	4,62	4.44	4,30	4.1
	0.005	11.37	8.19	6.93	6.23	5.79	5,48	5.25	5.08	4.9
4	0.100	3.10	2.73	2,52	2.39	2.31	2.24	2.19	2.15	2.1
	0.050	4.60	3.74	3,34	3.11	2.96	2.85	2.76	2.70	2.6
	0.025	6.30	4.86	4,24	3.89	3.66	3.50	3.38	3.29	3.2
	0.010	8.86	6.51	5,56	5.04	4.69	4.46	4.28	4.14	4.0
	0.005	11.06	7.92	6,68	6.00	5.56	5.26	5.03	4.86	4.7
5	0.100	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.0
	0.050	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.5
	0.025	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.1
	0.010	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.8
	0.005	10.80	7.70	6.48	5.80	5.37	5.07	4.85	4.67	4.5
6	0.100	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.0
	0.050	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.5
	0.025	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.0
	0.010	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.7
	0.005	10.58	7.51	6.30	5.64	5.21	4.91	4.69	4.52	4.3
7	0.100	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.0
	0.050	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.4
	0.025	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.9
	0.010	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.6
	0.005	10.38	7.35	6.16	5.50	5.07	4.78	4.56	4.39	4.2
8	0.100	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.0
	0.050	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.4
	0.025	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.9
	0.010	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.6
	0.005	10.22	7.21	6.03	5.37	4.96	4.66	4.44	4.28	4.1
9	0.100	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.9
	0.050	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.4
	0.025	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.8
	0.010	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.5
	0.005	10.07	7.09	5.92	5.27	4.85	4.56	4.34	4.18	4.0
0	0.100	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.9
	0.050	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.3
	0.025	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.8
	0.010	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.4
	0.005	9.94	6.99	5.82	5.17	4.76	4.47	4.26	4.09	3.9

 f_a = 0.01 with df_1 =2 and df_2 =7 is non existent in table 6, so we go to the p-value. Since the p-value, from ANOVA table was 0.002 < α = 0.01, we reject the Null **Hypothesis** and conclude that there is a significant evidence for the prediction of y.

F-Test

$$F_{.01,2,7} = 9.55$$

$$\because$$
 our $f > f_a$

We Can conclude that the regression to be highly significant. At least, one of the predictor variables is contributing significant information for the prediction of the response variable y. That is, profits for the year.

c. Does advertising expenditure x_2 contribute significant information for the prediction of y, given that x_1 is already in the model? Use $\alpha = 0.01$.

	Coefficie	Standard			Lower	Upper	Lower	Upper
	nts	Error	t Stat	P-value	95%	95%	99.0%	99.0%
Intercept	-8.17702	4.205988	-1.94414	0.092967	-18.1226	1.768562	-22.8958	6.541765
x1	0.292132	0.135714	2.152556	0.068355	-0.02878	0.613044	-0.1828	0.767061
x2	4.434303	0.800243	5.541193	0.000868	2.542028	6.326578	1.633864	7.234741

h(o): = x_2 is not significant h(a): = x_2 is significant

From the table above, the t-stat associated with x_2 is 5.54. Looking in the table, the p-value associated with x_2 is 0.0008, which is less than $\alpha = 0.01$. Since it is less than, we can reject the null hypothesis and claim the significance of x_2 . Calculating the p-value by hand was difficult since df of 7 with t stat 5.54 exceeded the t-table, thus excel had to interpret the p-value.

	cum. prob	t.50	t .75	t.80	t .85	t.90	t.95	t .975	t.99	t .995	t .999	t .9995
	one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
	two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
•	df	1.00	0.00	0.40	0.00	0.20	0.10	0.00	0.02	0.01	0.002	0.001
	1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
	2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
	3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
	4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
	8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
	9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
	15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
	16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
	22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
	23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
	24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
	25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
	27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
	40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
	60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
	100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
	1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
	Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
		0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
						Confid	dence Le	evel				

d. Calculate the coefficient of determination, R². What R percentage of the overall variation is explained by the model?

r²=SSR/Total SS

=355.251/431.6

=0.823102409

Standard Error = 3.30335 R-Sq = 82.3% R-Sq(adj) = 77.2%

•• A 82% overall variation is explained by the model, meaning this model works well with the given data

Regression Statistics									
Multiple									
R	0.907204								
R Square	0.823019								
Adjusted									
R Square	0.772453								
Standard									
Error	3.30335								
Observat									
ons	10								

