Formelsammlung Mathematik

November 2016

Dieses Buch ist unter der Lizenz Creative Commons CC0 veröffentlicht.

0	0000	0 1 2 3	0
1	0001		1
2	0010		2
3	0011		3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	B	13
12	1100	C	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

$$\begin{split} &\sin(-x) = -\sin x \\ &\cos(-x) = \cos x \\ &\sin(x+y) = \sin x \cos y + \cos x \sin y \\ &\sin(x-y) = \sin x \cos y - \cos x \sin y \\ &\cos(x+y) = \cos x \cos y - \sin x \sin y \\ &\cos(x-y) = \cos x \cos y + \sin x \sin y \\ &\mathrm{e}^{\mathrm{i}\varphi} = \cos \varphi + \mathrm{i}\sin \varphi \end{split}$$

Polarkoordinaten

$$\begin{aligned} x &= r \cos \varphi \\ y &= r \sin \varphi \\ \varphi &\in (-\pi, \pi] \\ \det J &= r \end{aligned}$$

Zylinderkoordinaten

$$x = r_{xy} \cos \varphi$$
$$y = r_{xy} \sin \varphi$$
$$z = z$$
$$\det J = r_{xy}$$

Kugelkoordinaten

$$\begin{split} x &= r \sin \theta \, \cos \varphi \\ y &= r \sin \theta \, \sin \varphi \\ z &= r \cos \theta \\ \varphi &\in (-\pi, \pi], \; \theta \in [0, \pi] \\ \det J &= r^2 \sin \theta \end{split}$$

$$\theta = \beta - \pi/2$$

$$\beta \in [-\pi/2, \pi/2]$$

$$\cos \theta = \sin \beta$$

$$\sin \theta = \cos \beta$$

Inhaltsverzeichnis

1 Grundlagen	4	4.1.1 Norm	10
1.1 Arithmetik		4.1.2 Skalarprodukt	10
1.1.1 Binomischer Lehrsatz			10
1.2 Komplexe Zahlen	4	4.2.1 Quadratische Matrizen	10
1.2.1 Rechenoperationen	4		11
1.2.2 Betrag	4		11
1.2.3 Konjugation	4		11
1.3 Logik		4.3.2 Ebenen	11
1.3.1 Aussagenlogik	4		
1.3.2 Prädikatenlogik	5	5 Differentialgeometrie	13
1.4 Mengenlehre	6	5.1 Kurven	13
1.4.1 Definitionen		5.1.1 Parameterkurven	13
1.4.2 Boolesche Algebra	6		13
1.4.3 Teilmengenrelation	6		
1.4.4 Induktive Mengen	6	6 Kombinatorik	14
1.5 Mathematische Strukturen	6	6.1 Kombinatorische Funktionen	14
0 5 1	•		14
2 Funktionen	8	6.1.2 Binomialkoeffizienten	14
2.1 Elementare Funktionen			14
2.1.1 Winkelfunktionen	8		14
3 Analysis	9		
3.1 Konvergenz	-	7 Anhang	15
3.1.1 Umgebungen	_	7.1 Griechisches Alphabet	15
3.1.2 Konvergente Folgen	_		
3.2 Ableitungen			15
3.2.1 Differentialquotient	-		15
3.2.2 Ableitungsregeln		7.5 Einheiten	16
J.Z.Z /\bicitumgsregem	, ,		16
4 Lineare Algebra	10	· · · · · · · · · · · · · · · · · · ·	16
4.1 Grundbegriffe	10		16

1 Grundlagen

1.1 Arithmetik

1.1.1 Binomischer Lehrsatz

Sei R ein unitärer Ring. Für $a, b \in R$ mit ab = ba gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \tag{1.1}$$

und

$$(a-b)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k a^{n-k} b^k.$$
 (1.2)

Die ersten Formeln sind:

$$(a+b)^2 = a^2 + 2ab + b^2, (1.3)$$

$$(a-b)^2 = a^2 - 2ab + b^2, (1.4)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3, (1.5)$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3, (1.6)$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4, (1.7)$$

$$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4.$$
 (1.8)

1.2 Komplexe Zahlen

1.2.1 Rechenoperationen

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2},\tag{1.9}$$

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}.\tag{1.10}$$

1.2.2 Betrag

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$|z_1 z_2| = |z_1| |z_2|, (1.11)$$

$$z_2 \neq 0 \implies \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},\tag{1.12}$$

$$z\,\overline{z} = |z|^2. \tag{1.13}$$

1.2.3 Konjugation

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \qquad \overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2, \qquad (1.14)$$

$$\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2, \qquad z_2 \neq 0 \implies \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}, \quad (1.15)$$

$$\overline{\overline{z}} = z, \qquad |\overline{z}| = |z|, \qquad z\,\overline{z} = |z|^2,$$
 (1.16)

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \quad \operatorname{Im}(z) = \frac{z - \overline{z}}{2i}, \quad (1.17)$$

$$\frac{z}{\cos(z)} = \cos(\overline{z}), \qquad \frac{\sin(z)}{\sin(\overline{z})} = \sin(\overline{z}),$$

$$\overline{\exp(z)} = \exp(\overline{z}). \tag{1.19}$$

1.3 Logik

1.3.1 Aussagenlogik

1.3.1.1 Boolesche Algebra

Distributivgesetze:

$$A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C), \tag{1.20}$$

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C). \tag{1.21}$$

1.3.1.2 Zweistellige Funktionen

Es gibt 16 zweistellige boolesche Funktionen.

We
a
b
С
d

Nr.	dcba	Fkt.	Name
0	0000	0	Kontradiktion
1	0001	$\overline{A \vee B}$	NOR
2	0010	$\overline{B} \Rightarrow \overline{A}$	
3	0011	\overline{A}	
4	0100	$\overline{A \Rightarrow B}$	
5	0101	\overline{B}	
6	0110	$A \oplus B$	Kontravalenz
7	0111	$\overline{A \wedge B}$	NAND
8	1000	$A \wedge B$	Konjunktion
9	1001	$A \Leftrightarrow B$	Äquivalenz
10	1010	B	Projektion
11	1011	$A \Rightarrow B$	Implikation
12	1100	A	Projektion
13	1101	$B \Rightarrow A$	Implikation
14	1110	$A \vee B$	Disjunktion
15	1111	1	Tautologie

1.3.1.3 Darstellung mit Negation, Konjunktion und Disjunktion

$$A \Rightarrow B \iff \overline{A} \lor B,$$
 (1.22)

$$(A \Leftrightarrow B) \iff (\overline{A} \wedge \overline{B}) \vee (A \wedge B), \tag{1.23}$$

$$A \oplus B \iff (\overline{A} \wedge B) \vee (A \wedge \overline{B}).$$
 (1.24)

1.3.1.4 Tautologien

Modus ponens:

$$(A \Rightarrow B) \land A \implies B \tag{1.25}$$

Modus tollens:

$$(A \Rightarrow B) \land \overline{B} \implies \overline{A} \tag{1.26}$$

Modus tollendo ponens:

$$(A \lor B) \land \overline{A} \implies B \tag{1.27}$$

Modus ponendo tollens:

$$\overline{A \wedge B} \wedge A \implies \overline{B} \tag{1.28}$$

(1.18) Kontraposition:

$$A \Rightarrow B \iff \overline{B} \Rightarrow \overline{A}$$
 (1.29)

1.3. LOGIK 5

Tabelle 1.1: Rechenoperationen

Name	Operation	Polarform	kartesische Form
Identität	z	$=r\mathrm{e}^{\mathrm{i}\varphi}$	= a + bi
Addition	$z_1 + z_2$		$= (a_1 + a_2) + (b_1 + b_2)i$
Subtraktion	$z_1 - z_2$		$=(a_1-a_2)+(b_1-b_2)i$
Multiplikation	$z_{1}z_{2}$	$= r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$	$= (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i$
Division	$\frac{z_1}{z_2}$	$= \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$	$= \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}i$
Kehrwert	$\frac{1}{z}$	$= \frac{1}{r} e^{-i\varphi}$	$=\frac{\ddot{a}}{a^2+b^2}-\frac{b}{a^2+b^2}$ i
Realteil	$\operatorname{Re}(z)$	$=\cos\varphi$	=a
Imaginärteil	$\operatorname{Im}(z)$	$=\sin\varphi$	= b
Konjugation	\overline{z}	$= r e^{-\varphi i}$	=a-bi
Betrag	z	= r	$=\sqrt{a^2+b^2}$
Argument	arg(z)	$=\varphi$	$= s(b)\arccos\left(\frac{a}{r}\right)$

$$s(b) := \begin{cases} +1 & \text{if } b \ge 0, \\ -1 & \text{if } b < 0 \end{cases}$$

Tabelle 1.2: Boolesche Algebra

Disjunktion	Konjunktion	
$A \lor A \Leftrightarrow A$	$A \wedge A \Leftrightarrow A$	Idempotenzgesetze
$A \lor 0 \Leftrightarrow A$	$A \wedge 1 \Leftrightarrow A$	Neutralitätsgesetze
$A \lor 1 \Leftrightarrow 1$	$A \wedge 0 = 0$	Extremalgesetze
$A \vee \overline{A} \Leftrightarrow 1$	$A \wedge \overline{A} \Leftrightarrow 0$	Komplementärgesetze
$A \lor B \Leftrightarrow B \lor A$	$A \wedge B \Leftrightarrow B \wedge A$	Kommutativgesetze
$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$	Assoziativgesetze
$\overline{A \vee B} \Leftrightarrow \overline{A} \wedge \overline{B}$	$\overline{A \wedge B} \Leftrightarrow \overline{A} \vee \overline{B}$	De Morgansche Regeln
$A \lor (A \land B) \Leftrightarrow A$	$A \wedge (A \vee B) \Leftrightarrow A$	Absorptionsgesetze

Beweis durch Widerspruch:

$$(\overline{A} \Rightarrow B \wedge \overline{B}) \implies A$$
 (1.30)

$$P \lor \forall x[Q(x)] \iff \forall x[P \lor Q(x)],$$
 (1.37)

Zerlegung einer Äquivalenz:

$$(A \Leftrightarrow B) \iff (A \Rightarrow B) \land (B \Rightarrow A) \tag{1.31}$$

 $P \wedge \exists x [Q(x)] \iff \exists x [P \wedge Q(x)].$ (1.38)

Kettenschluss:

$$(A \Rightarrow B) \land (B \Rightarrow C) \implies (A \Rightarrow C) \tag{1.32}$$

Verallgemeinerte Distributivgesetze:

$$\exists x \in M [P] \iff (M \neq \{\}) \land P$$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 0 & \text{wenn } M = \{\}. \end{cases}$$

$$(1.39)$$

Ringschluss:

1.3.2

1.3.2.1

$$\begin{array}{l} (A\Rightarrow B) \wedge (B\Rightarrow C) \wedge (C\Rightarrow A) \\ \Longrightarrow (A\Leftrightarrow B) \wedge (A\Leftrightarrow C) \wedge (B\Leftrightarrow C) \end{array}$$
 (1.33)

 $\forall x \in M [P] \iff (M = \{\}) \vee P$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 1 & \text{wenn } M = \{\}. \end{cases}$$
 (1.40)

Ringschluss, allgemein:

$$(A_1 \Rightarrow A_2) \land \dots \land (A_{n-1} \Rightarrow A_n) \land (A_n \Rightarrow A_1)$$

$$\Rightarrow \forall i, j [A_i \Leftrightarrow A_j]$$

$$(1.34)$$

Äquivalenzen:

$$\forall x \forall y [P(x,y)] \iff \forall y \forall x [P(x,y)], \tag{1.41}$$
$$\exists x \exists y [P(x,y)] \iff \exists y \exists x [P(x,y)], \tag{1.42}$$

$$\forall x [P(x) \land Q(x)] \iff \forall x [P(x)] \land \forall x [Q(x)], \tag{1.42}$$

$$\forall x [P(x) \land Q(x)] \iff \forall x [P(x)] \land \forall x [Q(x)], \tag{1.43}$$

$$\exists x [P(x) \lor Q(x)] \iff \forall x [P(x)] \lor \forall x [Q(x)], \tag{1.44}$$

$$\exists x [P(x) \lor Q(x)] \iff \forall x [P(x)] \lor \forall x [Q(x)], \qquad (1.44)$$
$$\forall x [P(x) \Rightarrow Q] \iff \exists x [P(x)] \Rightarrow Q, \qquad (1.45)$$

$$\forall x[P(x) \Rightarrow Q] \iff \exists x[P(x)] \Rightarrow Q,$$
 (1.45)

$$\forall x[P \Rightarrow Q(x)] \iff P \Rightarrow \forall x[Q(x)],$$
 (1.46)

$$\exists x [P(x) \Rightarrow Q(x)] \iff \forall x [P(x)] \Rightarrow \exists x [Q(x)].$$
 (1.47)

Verneinung (De Morgansche Regeln):

Rechenregeln

Prädikatenlogik

$$\overline{\forall x[P(x)]} \iff \exists x[\overline{P(x)}],$$
 (1.35)

$$\overline{\exists x[P(x)]} \iff \forall x[\overline{P(x)}].$$
 (1.36)

Implikationen:

$$\exists x \forall y [P(x,y)] \implies \forall y \exists x [P(x,y)], \tag{1.48}$$

$$\forall x [P(x)] \lor \forall x [Q(x)] \implies \forall x [P(x) \lor Q(x)], \tag{1.49}$$

$$\exists x [P(x) \land Q(x)] \implies \exists x [P(x)] \land \exists x [Q(x)], \tag{1.50}$$

$$\forall x[P(x) \Rightarrow Q(x)] \implies (\forall x[P(x)] \Rightarrow \forall x[Q(x)]), \quad (1.51)$$

$$\forall x[P(x) \Leftrightarrow Q(x)] \implies (\forall x[P(x)] \Leftrightarrow \forall x[Q(x)]).$$
 (1.52)

1.3.2.2 Endliche Mengen

Sei $M = \{x_1, \dots, x_n\}$. Es gilt:

$$\forall x \in M [P(x)] \iff P(x_1) \wedge \ldots \wedge P(x_n), \qquad (1.53)$$

$$\exists x \in M [P(x)] \iff P(x_1) \vee \ldots \vee P(x_n). \tag{1.54}$$

1.3.2.3 Beschränkte Quantifizierung

$$\forall x \in M [P(x)] :\iff \forall x [x \notin M \lor P(x)] \\ \iff \forall x [x \in M \Rightarrow P(x)],$$
 (1.55)

$$\exists x \in M [P(x)] :\iff \exists x [x \in M \land P(x)], \tag{1.56}$$

$$\forall x \in M \setminus N [P(x)] \iff \forall x [x \notin N \Rightarrow P(x)]. \quad (1.57)$$

1.3.2.4 Quantifizierung über Produktmengen

$$\forall (x,y) [P(x,y)] \iff \forall x \forall y [P(x,y)], \tag{1.58}$$

$$\exists (x,y) [P(x,y)] \iff \exists x \exists y [P(x,y)]. \tag{1.59}$$

Analog gilt

$$\forall (x, y, z) \iff \forall x \forall y \forall z, \tag{1.60}$$

$$\exists (x, y, z) \iff \exists x \exists y \exists z \tag{1.61}$$

usw.

1.3.2.5 Alternative Darstellung

Sei $P: G \to \{0, 1\}$ und $M \subseteq G$. Mit P(M) ist die Bildmenge von P bezüglich M gemeint. Es gilt

$$\forall x \in M [P(x)] \iff P(M) = \{1\}$$

$$\iff M \subseteq \{x \in G \mid P(x)\}$$
 (1.62)

und

$$\exists x \in M [P(x)] \iff \{1\} \subseteq P(M) \\ \iff M \cap \{x \in G \mid P(x)\} \neq \{\}.$$
 (1.63)

1.3.2.6 Eindeutigkeit

Quantor für eindeutige Existenz:

$$\exists !x [P(x)]$$

$$:\iff \exists x \left[P(x) \land \forall y \left[P(y) \Rightarrow x = y \right] \right] \\ \iff \exists x \left[P(x) \right] \land \forall x \forall y \left[P(x) \land P(y) \Rightarrow x = y \right].$$
 (1.64)

1.4 Mengenlehre

1.4.1 Definitionen

Teilmengenrelation:

$$A \subseteq B :\iff \forall x [x \in A \implies x \in B].$$
 (1.65)

Gleichheit:

$$A = B :\iff \forall x [x \in A \iff x \in B]. \tag{1.66}$$

Vereinigungsmenge:

$$A \cup B := \{ x \mid x \in A \lor x \in B \}. \tag{1.67}$$

Schnittmenge:

$$A \cap B := \{ x \mid x \in A \land x \in B \}. \tag{1.68}$$

Differenzmenge:

$$A \setminus B := \{ x \mid x \in A \land x \notin B \}. \tag{1.69}$$

Symmetrische Differenz:

$$A\triangle B := \{x \mid x \in A \oplus x \in B\}. \tag{1.70}$$

1.4.2 Boolesche Algebra

Distributivgesetze:

$$M \cup (A \cap B) = (M \cup A) \cap (M \cup B), \tag{1.71}$$

$$M \cap (A \cup B) = (M \cap A) \cup (M \cap B). \tag{1.72}$$

1.4.3 Teilmengenrelation

Zerlegung der Gleichheit:

$$A = B \iff A \subseteq B \land B \subseteq A. \tag{1.73}$$

Umschreibung der Teilmengenrelation:

$$A \subseteq B \iff A \cap B = A$$

$$\iff A \cup B = B$$

$$\iff A \setminus B = \{\}.$$
(1.74)

Kontraposition:

$$A \subseteq B = \overline{B} \subseteq \overline{A}. \tag{1.75}$$

1.4.4 Induktive Mengen

Mengentheoretisches Modell der natürlichen Zahlen:

$$0 := \{\}, \quad 1 := \{0\}, \quad 2 := \{0, 1\},$$

 $3 := \{0, 1, 2\}, \quad \text{usw.}$ (1.76)

Nachfolgerfunktion:

$$x' := x \cup \{x\}. \tag{1.77}$$

Vollständige Induktion: Ist A(n) mit $n \in \mathbb{N}$ eine Aussageform, so gilt:

$$A(n_0) \wedge \forall n \ge n_0 [A(n) \Rightarrow A(n+1)]$$

$$\Rightarrow \forall n > n_0 [A(n)].$$
(1.78)

1.5 Mathematische Strukturen

Axiome:

E: Abgeschlossenheit.

A: Assoziativgesetz.

N: Existenz des neutralen Elements.

I: Zu jedem Element gibt es ein Inverses.

K: Kommutativgesetz.

I*: zu jedem Element außer dem additiven neutralen Element gibt es ein Inverses.

DI: Linksdistributivgestz.

Dr: Rechtsdistributivgesetz.

D: Dl und Dr.

T: Nullteilerfreiheit

U: Die neutralen Elemente bezüglich Addition und Multiplikation sind unterschiedlich.

Strukturen mit einer inneren Verknüpfung:

EA	Halbgruppe
EAN	Monoid
EANI	Gruppe
EANIK	abelsche Gruppe

Tabelle 1.3: Boolesche Algebra

Vereinigung	Schnitt	
$A \cup A = A$	$A \cap A = A$	Idempotenzgesetze
$A \cup \{\} = A$	$A \cap G = A$	Neutralitätsgesetze
$A \cup \tilde{G} = G$	$A \cap \{\} = \{\}$	Extremalgesetze
$A \cup \overline{A} = G$	$A \cap \overline{A} = \{\}$	Komplementärgesetze
$A \cup B = B \cup A$ $(A \cup B) \cup C = A \cup (B \cup C)$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $A \cup (A \cap B) = A$	$ \begin{vmatrix} A \cap B = B \cap A \\ (A \cap B) \cap C = A \cap (B \cap C) \\ \overline{A \cap B} = \overline{A} \cup \overline{B} \\ A \cap (A \cup B) = A \end{vmatrix} $	Kommutativgesetze Assoziativgesetze De Morgansche Regeln Absorptionsgesetze
G: Grundmenge		

Strukturen mit zwei inneren Verknüpfungen:

EANIK	EA D	Ring
EANIK	EAK D	kommutativer Ring
EANIK	EAN D	unitärer Ring
EANIK	EANI*K DTU	Körper

2 Funktionen

2.1 Elementare Funktionen

2.1.1 Winkelfunktionen

2.1.1.1 Additionstheoreme

Für alle $x,y\in\mathbb{C}$ gilt:

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y),$$
 (2.1)
 $\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y),$ (2.2)

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y), \qquad (2.3)$$

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y). \tag{2.4}$$

3 Analysis

3.1 Konvergenz

3.1.1 Umgebungen

Sei (X, d) ein metrischer Raum und $x \in X$.

Definition. ε -Umgebung:

$$U_{\varepsilon}(x) := \{ y \in X \mid d(x, y) < \varepsilon \}. \tag{3.1}$$

Punktierte ε -Umgebung:

$$\dot{U}_{\varepsilon}(x) := U_{\varepsilon}(x) \setminus \{x\}. \tag{3.2}$$

Für einen normierten Raum ist durch d(x,y) := ||x-y|| eine Metrik gegeben. Speziell für $X = \mathbb{R}$ oder $X = \mathbb{C}$ wird fast immer d(x,y) := |x-y| verwendet.

Sei (X,T) ein topologischer Raum und $x \in X$.

Definition. Umgebungsfilter:

$$\mathfrak{U}(x) := \{ U \subseteq X \mid x \in O \land O \in T \land O \subseteq U \}. \quad (3.3)$$

Ein $U \in \mathfrak{U}(x)$ wird Umgebung von x genannt.

3.1.2 Konvergente Folgen

Eine Folge $(a_n): \mathbb{N} \to X$ heißt konvergent gegen g, wenn

$$\forall U \in \mathfrak{B}(g) \,\exists n_0 \,\forall n > n_0 \colon a_n \in U. \tag{3.4}$$

Man schreibt dann $\lim_{n\to\infty} a_n = g$ und bezeichnet g als Grenzwert.

Für eine Folge $(a_n): \mathbb{N} \to \mathbb{R}$ wird (3.4) zu:

$$\forall \varepsilon > 0 \,\exists n_0 \,\forall n > n_0 \colon |a_n - g| < \varepsilon. \tag{3.5}$$

3.2 Ableitungen

3.2.1 Differential quotient

Sei $U \subseteq \mathbb{R}$ ein offenes Intervall und sei $f: U \to \mathbb{R}$. Die Funktion f heißt differenzierbar an der Stelle $x_0 \in U$, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (3.6)

existiert. Dieser Grenzwert heißt Differentialquotient oder Ableitung von f an der Stelle x_0 . Notation:

$$f'(x_0), \qquad (Df)(x_0), \qquad \frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big|_{x=x_0}.$$
 (3.7)

3.2.2 Ableitungsregeln

Sind f, g differenzierbare Funktionen und ist a eine reelle Zahl, so gilt

$$(af)' = af', (3.8)$$

$$(f+g)' = f' + g', (3.9)$$

$$(f - g)' = f' - g', (3.10)$$

$$(fg)' = f'g + g'f,$$
 (3.11)

$$\left(\frac{f}{g}\right)'(x) = \frac{(f'g - g'f)(x)}{g(x)^2}.$$
 (3.12)

3.2.2.1 Kettenregel

Ist g differenzierbar an der Stelle x_0 und f differenzierbar an der Stelle $g(x_0)$, so ist $f \circ g$ differenzierbar an der Stelle x_0 und es gilt

$$(f \circ g)'(x_0) = (f' \circ g)(x_0) g'(x_0). \tag{3.13}$$

4 Lineare Algebra

4.1 Grundbegriffe

4.1.1 Norm

Definition. Eine Abbildung $v \mapsto ||v||$ von einem \mathbb{K} -Vektorraum V in die nichtnegativen reellen Zahlen heißt Norm, wenn für alle $v, w \in V$ und $a \in \mathbb{K}$ die drei Axiome

$$||v|| = 0 \implies v = 0, \tag{4.1}$$

$$||av|| = |a| \, ||v||, \tag{4.2}$$

$$||v + w|| \le ||v|| + ||w|| \tag{4.3}$$

erfüllt sind.

Eigenschaften:

$$||v|| = 0 \iff v = 0, \tag{4.4}$$

$$||-v|| = ||v||, \tag{4.5}$$

$$||v|| \ge 0. \tag{4.6}$$

Umgekehrte Dreiecksungleichung:

$$|||v|| - ||w||| \le ||v - w||. \tag{4.7}$$

4.1.2 Skalarprodukt

4.1.2.1 Axiome

Axiome für v,waus einem reellen Vektorraum und λ ein Skalar:

$$\langle v, w \rangle = \langle w, v \rangle, \tag{4.8}$$

$$\langle v, \lambda w \rangle = \lambda \langle v, w \rangle, \tag{4.9}$$

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \tag{4.10}$$

$$\langle v, v \rangle \ge 0, \tag{4.11}$$

$$\langle v, v \rangle = 0 \iff v = 0. \tag{4.12}$$

Axiome für v,w aus einem komplexen Vektorraum und λ ein Skalar:

$$\langle v, w \rangle = \overline{\langle w, v \rangle},\tag{4.13}$$

$$\langle \lambda v, w \rangle = \overline{\lambda} \langle v, w \rangle, \tag{4.14}$$

$$\langle v, \lambda w \rangle = \lambda \langle v, w \rangle,$$
 (4.15)

$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \tag{4.16}$$

$$\langle v, v \rangle \ge 0, \tag{4.17}$$

$$\langle v, v \rangle = 0 \iff v = 0. \tag{4.18}$$

4.1.2.2 Eigenschaften

Das reelle Skalarprodukt ist eine symmetrische bilineare Abbildung.

4.1.2.3 Winkel und Längen

Definition. Der Winkel φ zwischen v und w ist definiert durch die Beziehung:

$$\langle v, w \rangle = ||v|| \, ||w|| \cos \varphi. \tag{4.19}$$

Definition. Orthogonal:

$$v \perp w :\iff \langle v, w \rangle = 0. \tag{4.20}$$

Ein Skalarprodukt $\langle v, w \rangle$ induziert die Norm

$$||v|| := \sqrt{\langle v, v \rangle}. \tag{4.21}$$

4.1.2.4 Orthonormalbasis

Sei $B = (b_k)_{k=1}^n$ eine Basis eines endlichdimensionalen Vektorraumes.

Definition. Gilt $\langle b_i, b_j \rangle = 0$ für alle i, j mit $i \neq j$, so wird B Orthogonalbasis genannt. Ist B nicht unbedingt eine Basis, so spricht man von einem Orthogonalsystem.

Definition. Ist B eine Orthogonalbasis und gilt zusätzlich $\langle b_k, b_k \rangle = 1$ für alle k, so wird B Orthonormalbasis (ONB) genannt. Ist B nicht unbedingt eine Basis, so spricht man von einem Orthonormalsystem.

Sei $v = \sum_k v_k b_k$ und $w = \sum_k w_k b_k$. Mit \sum_k ist immer $\sum_{k=1}^n$ gemeint.

Ist B eine Orthonormalbasis, so gilt:

$$\langle v, w \rangle = \sum_{k} \overline{v_k} \, w_k. \tag{4.22}$$

Ist B nur eine Orthogonalbasis, so gilt:

$$\langle v, w \rangle = \sum_{k} \langle b_k, b_k \rangle \overline{v_k} \, w_k \tag{4.23}$$

Allgemein gilt

$$\langle v, w \rangle = \sum_{i,j} g_{ij} \overline{v_i} w_j \tag{4.24}$$

mit $g_{ij} = \langle b_i, b_j \rangle$. In reellen Vektorräumen ist die komplexe Konjugation wirkungslos und kann somit entfallen. Ist B eine Orthogonalbasis und $v = \sum_k v_k b_k$, so gilt:

$$v_k = \frac{\langle b_k, v \rangle}{\langle b_k, b_k \rangle}. (4.25)$$

Ist B eine Orthonormalbasis, so gilt speziell:

$$v_k = \langle b_k, v \rangle. \tag{4.26}$$

4.1.2.5 Orthogonale Projektion

Orthogonale Projektion von v auf w:

$$P[w](v) := \frac{\langle v, w \rangle}{\langle w, w \rangle} w. \tag{4.27}$$

4.1.2.6 Gram-Schmidt-Verfahren

Für linear unabhängige Vektoren v_1, \ldots, v_n wird durch

$$w_k := v_k - \sum_{i=1}^{k-1} P[w_i](v_k)$$
(4.28)

ein Orthogonalsystem w_1, \ldots, w_n berechnet.

Speziell für zwei nicht kollineare Vektoren v_1, v_2 gilt

$$w_1 = v_1, (4.29)$$

$$w_2 = v_2 - P[w_1](v_2). (4.30)$$

4.2 Matrizen

4.2.1 Quadratische Matrizen

Eine quadratiche Matrix $A=(a_{ij})$ heißt symmetrisch, falls gilt $a_{ij}=a_{ji}$ bzw. $A^T=A$.

Jede reelle symmetrische Matrix besitzt ausschließlich reelle Eigenwerte und die algebraischen Vielfachheiten stimmen mit den geometrischen Vielfachheiten überein.

Jede reelle symmetrische Matrix A ist diagonalisierbar, d. h. es gibt eine invertierbare Matrix T und eine Diagonalmatrix D, so dass $A = TDT^{-1}$ gilt.

Sei V ein K-Vektorraum und $(b_k)_{k=1}^n$ eine Basis von V. Für jede symmetrische Bilinearform $f\colon V^2\to K$ ist die Darstellungsmatrix

$$A = (f(b_i, b_j)) \tag{4.31}$$

symmetrisch. Ist $A \in K^{n \times n}$ eine symmetrische Matrix, so ist

$$f(x,y) = x^T A y. (4.32)$$

eine symmetrische Bilinearform für $x, y \in K^n$. Ist $K = \mathbb{R}$ und A positiv definit, so ist (4.32) ein Skalarprodukt auf \mathbb{R}^n .

4.2.2 Determinanten

Für Matrizen $A, B \in K^{n \times n}$ und $r \in K$ gilt:

$$\det(AB) = \det(A)\det(B), \tag{4.33}$$

$$\det(A^T) = \det(A),\tag{4.34}$$

$$\det(rA) = r^n \det(A), \tag{4.35}$$

$$\det(A^{-1}) = \det(A)^{-1}. (4.36)$$

Für eine Diagonalmatrix $D = diag(d_1, \ldots, d_n)$ gilt:

$$\det(D) = \prod_{k=1}^{n} d_k. \tag{4.37}$$

Eine linke Dreiecksmatrix ist eine Matrix der Form (a_{ij}) mit $a_{ij} = 0$ für i < j. Eine rechte Dreiecksmatrix ist die Transponierte einer linken Dreiecksmatrix.

Für eine linke oder rechte Dreiecksmatrix $A = (a_{ij})$ gilt:

$$\det(A) = \prod_{k=1}^{n} a_{kk}.$$
 (4.38)

4.3 Analytische Geometrie

4.3.1 Geraden

4.3.1.1 Parameterdarstellung

Punktrichtungsform:

$$p(t) = p_0 + t\underline{v},\tag{4.39}$$

 p_0 : Stützpunkt, \underline{v} : Richtungsvektor. Die Gerade ist dann die Menge $g = \{p(t) \mid t \in \mathbb{R}\}.$

Der Vektor \underline{v} repräsentiert außerdem die Geschwindigkeit, mit der diese Parameterdarstellung durchlaufen wird: $p'(t) = \underline{v}$.

Gerade durch zwei Punkte: Sind zwei Punkte p_1, p_2 mit $p_1 \neq p_2$ gegeben, so ist durch die beiden Punkte eine Gerade gegeben. Für diese Gerade ist

$$p(t) = p_1 + t(p_2 - p_1) (4.40)$$

eine Punktrichtungsform. Durch Umformung ergibt sich die ${\sf Zweipunkteform:}$

$$p(t) = (1 - t)p_1 + tp_2. (4.41)$$

Bei (4.41) handelt es sich um eine Affinkombination. Gilt $t \in [0, 1]$, so ist (4.41) eine Konvexkombination: eine Parameterdarstellung für die Strecke von p_1 nach p_2 .

4.3.1.2 Parameterfreie Darstellung

Hesse-Form:

$$g = \{ p \mid \langle \underline{n}, p - p_0 \rangle = 0 \}, \tag{4.42}$$

 p_0 : Stützpunkt, n: Normalenvektor.

Die Hesse-Form ist nur in der Ebene möglich. Form (4.42) hat in Koordinaten die Form

$$g = \{(x,y) \mid n_x(x-x_0) + n_y(y-y_0) = 0\}$$

= \{(x,y) \cdot n_xx + n_yy = n_xx_0 + n_yy_0\}. (4.43)

Hesse-Normalform: (4.42) mit $|\underline{n}| = 1$.

Sei $v \wedge w$ das äußere Produkt.

Plückerform:

$$g = \{ p \mid (p - p_0) \land \underline{v} = 0 \} \tag{4.44}$$

In der Ebene gilt speziell:

$$g = \{(x,y) \mid (x - x_0)\Delta y = (y - y_0)\Delta x\}$$
 (4.45)

mit $\underline{v} = (\Delta x, \Delta y)$.

Sei $a := \Delta y$ und $b := -\Delta x$ und $c := ax_0 + by_0$. Aus (4.45) ergibt sich:

$$g = \{(x,y) \mid ax + by = c\}. \tag{4.46}$$

Im Raum ergibt sich ein Gleichungssystem:

$$g = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{vmatrix} (x - x_0)\Delta y = (y - y_0)\Delta x \\ (y - y_0)\Delta z = (z - z_0)\Delta y \\ (x - x_0)\Delta z = (z - z_0)\Delta x \end{vmatrix} \right\}$$
(4.47)

mit $v = (\Delta x, \Delta y, \Delta z)$.

4.3.1.3 Abstand Punkt zu Gerade

Sei $p(t):=p_0+t\underline{v}$ die Punktrichtungsform einer Geraden und sei q ein weiterer Punkt. Bei $\underline{d}(t):=p(t)-q$ handelt es sich um den Abstandsvektor in Abhängigkeit von t.

Ansatz: Es gibt genau ein t, so dass gilt:

$$\langle \underline{d}, \underline{v} \rangle = 0. \tag{4.48}$$

Lösung:

$$t = \frac{\langle \underline{v}, q - p_0 \rangle}{\langle v, v \rangle}.$$
 (4.49)

4.3.2 Ebenen

4.3.2.1 Parameterdarstellung

Seien u, v zwei nicht kollineare Vektoren.

Punktrichtungsform:

$$p(s,t) = p_0 + s\underline{u} + t\underline{v}. \tag{4.50}$$

4.3.2.2 Parameterfreie Darstellung

Seien $\underline{v},\underline{w}$ zwei nicht kollineare Vektoren. Durch

$$E = \{ p \mid (p - p_0) \land \underline{v} \land \underline{w} = 0 \}. \tag{4.51}$$

wird eine Ebene beschrieben.

4.3.2.3 Abstand Punkt zu Ebene

Sei $p(s,t) := p_0 + s\underline{u} + t\underline{v}$ die Punktrichtungsform einer Ebene und sei q ein weiterer Punkt. Bei $\underline{d}(s,t) := p - q$ handelt es sich um den Abstandsvektor in Abhängigkeit von (s,t).

Ansatz: Es gibt genau ein Tupel (s, t), so dass gilt:

$$\langle d, u \rangle = 0 \land \langle d, v \rangle = 0.$$
 (4.52)

Lösung: Es ergibt sich ein LGS:

$$\begin{bmatrix} \langle \underline{u}, \underline{v} \rangle & \langle \underline{v}, \underline{v} \rangle \\ \langle \underline{v}, \underline{v} \rangle & \langle \underline{u}, \underline{v} \rangle \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} \langle \underline{v}, q - p_0 \rangle \\ \langle \underline{u}, q - p_0 \rangle \end{bmatrix}. \tag{4.53}$$

Bemerkung: Die Systemmatrix g_{ij} ist der metrische Ten-

sor für die Basis $B=(\underline{u},\underline{v}).$ Die Lösung des LGS ist:

$$s = \frac{\langle g_{12}\underline{v} - g_{12}\underline{u}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2},\tag{4.54}$$

$$s = \frac{\langle g_{12}\underline{v} - g_{12}\underline{u}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2},$$

$$t = \frac{\langle g_{12}\underline{u} - g_{12}\underline{v}, q - p_0 \rangle}{g_{11}^2 - g_{12}^2}.$$
(4.54)

5 Differentialgeometrie

5.1 Kurven

5.1.1 Parameterkurven

Definition. Sei X ein topologischer Raum und I ein reelles Intervall, auch offen oder halboffen, auch unbeschränkt. Eine stetige Funktion

$$f: I \to X$$
 (5.1)

heißt Parameterdarstellung einer Kurve, kurz Parameterkurve. Die Bildmenge f(I) heißt Kurve.

Eine Parameterdarstellung mit einem kompakten Intervall I=[a,b] heißt Weg.

Für einen Weg mit I = [a, b] heißt f(a) Anfangspunkt und f(b) Endpunkt. Ein Weg mit f(a) = f(b) heißt geschlossen. Ein Weg dessen Einschränkung auf [a, b) injektiv ist, heißt einfach, auch doppelpunktfrei oder Jordan-Weg.

Bsp. für einen einfachen geschlossenen Weg:

$$f: [0, 2\pi] \to \mathbb{R}^2, \quad f(t) := \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}.$$
 (5.2)

Die Kurve ist der Einheitskreis.

Bsp. für einen geschlossenen Weg mit Doppelpunkt:

$$f: [0, 2\pi] \to \mathbb{R}^2, \quad f(t) := \begin{bmatrix} 2\cos t \\ \sin(2t) \end{bmatrix}.$$
 (5.3)

Die Kurve ist eine Achterschleife.

5.1.2 Differenzierbare Parameterkurven

Definition. Eine Parameterkurve $f:(a,b)\to\mathbb{R}^n$ heißt differenzierbar, wenn die Ableitung f'(t) an jeder Stelle t existiert. Die Ableitung f'(t) wird Tangentialvektor an die Kurve an der Stelle t genannt.

Ein C^k -Kurve ist ein Parameterkurve, dessen k-te Ableitung eine stetige Funktion ist. Ein unendlich oft differenzierbare Parameterkurve heißt glatt.

Eine Parameterkurve heißt regulär, wenn:

$$\forall t \colon f'(t) \neq 0. \tag{5.4}$$

6 Kombinatorik

6.1 Kombinatorische Funktionen

6.1.1 Faktorielle

6.1.1.1 Fakultät

Definition. Für $n \in \mathbb{Z}$, n > 0:

$$n! := \prod_{k=1}^{n} k. \tag{6.1}$$

Rekursionsgleichung:

$$(n+1)! = n! (n+1) \tag{6.2}$$

Die Gammafunktion ist eine Verallgemeinerung der Fakultät:

$$n! = \Gamma(n+1). \tag{6.3}$$

6.1.1.2 Fallende Faktorielle

Definition. Für $a \in \mathbb{C}$ und $k \geq 0$:

$$a^{\underline{k}} := \prod_{j=0}^{k-1} (a-j). \tag{6.4}$$

Für $a, k \in \mathbb{C}$:

$$a^{\underline{k}} := \lim_{x \to a} \frac{\Gamma(x+1)}{\Gamma(x-k+1)}.$$
(6.5)

Für $n \ge k$ und $k \ge 0$ gilt:

$$n^{\underline{k}} = \frac{n!}{(n-k)!}. ag{6.6}$$

6.1.1.3 Steigende Faktorielle

Definition. Für $a \in \mathbb{C}$ und $k \geq 0$:

$$a^{\overline{k}} := \prod_{j=0}^{k-1} (a+j).$$
 (6.7)

Für $a, k \in \mathbb{C}$:

$$a^{\overline{k}} := \lim_{x \to a} \frac{\Gamma(x+k)}{\Gamma(x)}.$$
 (6.8)

Für $n \ge 1$ und $n + k \ge 1$ gilt:

$$n^{\overline{k}} = \frac{(n+k-1)!}{(n-1)!}. (6.9)$$

6.1.2 Binomialkoeffizienten

Definition. Für $a \in \mathbb{C}$ und $k \in \mathbb{Z}$:

$$\begin{pmatrix} a \\ k \end{pmatrix} := \begin{cases} \frac{a^k}{k!} & \text{wenn } k > 0, \\ 1 & \text{wenn } k = 0, \\ 0 & \text{wenn } k < 0. \end{cases}$$
 (6.10)

Für $a, b \in \mathbb{C}$:

$$\begin{pmatrix} a \\ b \end{pmatrix} := \lim_{x \to a} \lim_{y \to b} \frac{\Gamma(x+1)}{\Gamma(y+1)\Gamma(x-y+1)}. \tag{6.11}$$

Für $0 \le k \le n$ gilt die Symmetriebeziehung

$$\binom{n}{k} = \binom{n}{n-k} \tag{6.12}$$

und die Rekursionsgleichung

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}.\tag{6.13}$$

Für $a \in \mathbb{C}$ und $k \in \mathbb{Z}$ gilt:

$$\binom{-a}{k} = (-1)^k \binom{a+k-1}{k}.$$
 (6.14)

6.2 Formale Potenzreihen

6.2.1 Binomische Reihe

Definition. Für $a \in \mathbb{C}$:

$$(1+X)^{a} := \sum_{k=0}^{\infty} {a \choose k} X^{k}$$
 (6.15)

Es gilt:

$$(1+X)^{a+b} = (1+X)^a (1+X)^b (6.16)$$

und

$$(1+X)^{ab} = ((1+X)^a)^b. (6.17)$$

7 Anhang

7.1 Griechisches Alphabet

$\begin{array}{c} A \\ B \\ \Gamma \\ \Delta \end{array}$	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	Alpha Beta Gamma Delta	N Ξ О П	$ \begin{array}{c} \nu\\\xi\\o\\\pi\end{array} $	Ny Xi Omikron Pi
Ε Ζ Η Θ	$egin{array}{c} arepsilon \ \zeta \ \eta \ heta \end{array}$	Epsilon Zeta Eta Theta	$\begin{array}{c} R \\ \Sigma \\ T \\ Y \end{array}$	$egin{array}{c} arrho \ \sigma \ arrho \ arrho \end{array}$	Rho Sigma Tau Ypsilon
Ι Κ Λ Μ	$egin{array}{c} \iota & & \ \kappa & & \ \lambda & & \ \mu & & \end{array}$	Jota Kappa Lambda My	Φ Χ Ψ Ω	$\begin{array}{c} \varphi \\ \chi \\ \psi \\ \omega \end{array}$	Phi Chi Psi Omega

7.2 Frakturbuchstaben

A a B b C c D d	A a	O o	O o
	B b	P p	P p
	C c	Q q	Q q
	D d	R r	R t
$\begin{array}{c} E \ e \\ F \ f \\ G \ g \\ H \ h \end{array}$	E e	S s	S s
	F f	T t	T t
	G g	U u	U u
	H	V v	V v
I i	I i	$\begin{array}{ccc} W \ w \\ X \ x \\ Y \ y \\ Z \ z \end{array}$	W w
J j	I j		X r
K k	K t		Y y
L l	L l		3 3
${f M}{f m}$ ${f N}{f n}$	M m N n		

7.3 Mathematische Konstanten

- 1. Kreiszahl $\pi = 3{,}14159\ 26535\ 89793\ 23846\ 26433\ 83279\dots$
- 2. Eulersche Zahl e = 2,71828 18284 59045 23536 02874 71352 . . .
- 3. Euler-Mascheroni-Konstante $\gamma = 0{,}57721\ 56649\ 01532\ 86060\ 65120\ 90082\dots$
- 4. Goldener Schnitt, $(1+\sqrt{5})/2$ $\varphi = 1,61803\ 39887\ 49894\ 84820\ 45868\ 34365\dots$
- 5. 1. Feigenbaum-Konstante $\delta = 4,66920\ 16091\ 02990\ 67185\ 32038\ 20466\dots$
- 6. 2. Feigenbaum-Konstante $\alpha = 2,50290\ 78750\ 95892\ 82228\ 39028\ 73218\dots$

7.4 Physikalische Konstanten

- 1. Lichtgeschwindigkeit im Vakuum c = 299792458 m/s
- 2. Elektrische Feldkonstante $\varepsilon_0 = 8,854~187~817~620~39\times 10^{-12}~\mathrm{F/m}$
- 3. Magnetische Feldkonstante $\mu_0 = 4\pi \times 10^{-7} \, \mathrm{H/m}$
- 4. Elementar ladung $e = 1,602\ 176\ 6208\ (98) \times 10^{-19}\ {\rm C}$
- 5. Gravitationskonstante $G = 6,674~08~(31)\times 10^{-11}~{\rm m}^3/({\rm kg}\,{\rm s}^2)$
- 6. Avogadro-Konstante $N_A = 6{,}022~140~857~(74) \times 10^{23}/\mathrm{mol}$
- 7. Boltzmann-Konstante $k_B = 1{,}380~648~52~(79) \times 10^{-23}~{\rm J/K}$
- 8. Universelle Gaskonstante $R = 8{,}314 4598 (48) \text{ J/(mol K)}$
- 9. Plancksches Wirkungsquantum $h=6{,}626$ 070 040 (81) × $10^{-34}\,\mathrm{Js}$
- 10. Reduziertes planksches Wirkungsquantum $\hbar = 1,054$ 571 800 (13) × 10^{-34} Js
- 11. Masse des Elektrons $m_e = 9{,}109~383~56~(11)\times 10^{-31}~\mathrm{kg}$
- 12. Masse des Neutrons $m_n = 1{,}674\ 927\ 471\ (21)\times 10^{-27}\ {\rm kg}$
- 13. Masse des Protons $m_p = 1,672~621~898~(21) \times 10^{-27} \,\mathrm{kg}$

16 KAPITEL 7. ANHANG

7.5 Einheiten

7.5.1 SI-System

Newton (Kraft):

$$N = kg m/s^2. (7.1)$$

Watt (Leistung):

$$W = kg m^2/s^3 = VA.$$
 (7.2)

Joule (Energie):

$$J = kg m^2/s^2 = Nm = Ws = VAs.$$
 (7.3)

Pascal (Druck):

$$Pa = N/m^2 = 10^{-5} bar.$$
 (7.4)

Hertz (Frequenz):

$$Hz = 1/s. (7.5)$$

Coulomb (Ladung):

$$C = As. (7.6)$$

Volt (Spannung):

$$V = kg m^2 / (A s^3)$$
 (7.7)

Tesla (magnetische Flussdichte):

$$T = N/(A m) = Vs/m^2.$$
 (7.8)

7.5.2 Nicht-SI-Einheiten

Einheit	Symbol	Umrechnung
Zeit:	-	
Minute	min	= 60 s
Stunde	h	= 60 min = 3600 s
Tag	d	= 24 h = 86400 s
m Jahr	a	$= 356,25 \mathrm{d}$
Druck:		
bar	bar	$= 10^5 \mathrm{Pa}$
mmHg	mmHg	= 133,322 Pa
Fläche:		
Ar	a	$= 100 \mathrm{m}^2$
Hektar	ha	$= 100 a = 10000 m^2$
Masse:		
Tonne	t	= 1000 kg
Länge:		
Liter	L	$= 10^{-3} \mathrm{m}^3$

7.5.3 Britische Einheiten

Einheit	Abk.	Umrechnung
inch	in.	= 2,54 cm
foot	ft.	$= 12 \mathrm{in.} = 30,48 \mathrm{cm}$
yard	yd.	= 3 ft. = 91,44 cm
chain	ch.	$= 22 \mathrm{yd.} = 20{,}1168 \mathrm{m}$
furlong	fur.	$= 10 \mathrm{ch.} = 201{,}168 \mathrm{m}$
mile	mi.	$= 1760 \mathrm{yd.} = 1609,3440 \mathrm{m}$

Stichwortverzeichnis

```
Ableitung, 9
Additions theoreme, 8
Binomialkoeffizient, 14
Determinante, 11
Differential quotient, 9
differenzierbar, 9
Ebene, 11
Faktorielle, 14
Fakultät, 14
Gerade, 11
Grenzwert, 9
konvergente Folge, 9
Kurve, 13
Matrix, 10
Norm, 10
Orthogonal, 10
Orthogonalbasis, 10
Orthogonal system, 10
Orthonormalbasis, 10
Orthonormalsystem, 10
Parameterdarstellung
    einer Ebene, 11
    einer Geraden, 11
Punktrichtungsform, 11
quadratische Matrix, 10
Skalarprodukt, 10
Umgebung, 9
Umgebungsfilter, 9
Weg, 13
```