Pons Nicolas Note: 7/20 (score total : 7/20)

+112/1/54+

QCM THLR 4

	Nom et prénom, lisibles : Identifiant (de haut en bas) :
	Nicolar 2 3 4 5 6 7 8 9
2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « 🗶 » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I j'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +112/1/xx+···+112/2/xx+.
	Q.2 Le langage $\{ \stackrel{\bullet}{=}^n \stackrel{\bullet}{\cong}^n \mid \forall n \in \mathbb{N} \}$ est
2	□ non reconnaissable par automate □ fini □ rationnel □ vide
	Q.3 Le langage $\{ \Delta^n \Delta^n \mid \forall n \in \mathbb{N} \}$ est
2	☐ fini rationnel non reconnaissable par automate vide
	Q.4 Un automate fini qui a des transitions spontanées
/2	\square n'accepte pas ε $@$ accepte ε \boxtimes n'est pas déterministe \square est déterministe
2	 Q.5 Un langage quelconque ☑ est toujours inclus (⊆) dans un langage rationnel ☐ peut avoir une intersection non vide avec son complémentaire ☐ peut n'être inclus dans aucun langage dénoté par une expression rationnelle ☐ n'est pas nécessairement dénombrable Q.6 Si un automate de n états accepte aⁿ, alors il accepte
2	
	Q.7 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
2	\square Il n'existe pas. \square $n+1$ \square $\frac{n(n+1)}{2}$ \boxtimes 2^n
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
2	\boxtimes 2 ⁿ \square Il n'existe pas. \square 4 ⁿ \square $\frac{n(n+1)(n+2)(n+3)}{4}$
	Q.9 Déterminiser cet automate: a, b, a, b, a, b

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

 \square $Det(T(Det(T(Det(\mathcal{A})))))$ \Box $T(Det(T(Det(\mathcal{A}))))$ \Box $T(Det(T(Det(T(\mathcal{A})))))$ 2/2 \square $Det(T(Det(T(\mathscr{A}))))$

Fin de l'épreuve.