Working with time series data in pandas

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Ryan Grossman

Data Scientist, EDO

Exploratory Data Analysis

- Exploratory Data Analysis (EDA)
- Working with time series data
- Uncovering trends in KPIs over time

Review: Manipulating dates & times

Example: Week Two Conversion Rate

- Week 2 Conversion Rate Users who subscribe in the second week after the free trial
- Users must have:
 - Completed the free trial
 - Not subscribed in the first week
 - Had a full second week to subscribe or not

Using the Timedelta class

• Lapse Date: Date the trial ends for a given user

```
import pandas as pd
from datetime import timedelta
# Define the most recent date in our data
current_date = pd.to_datetime('2018-03-17')
# The last date a user could lapse be included
max_lapse_date = current_date - timedelta(days=14)
# Filter down to only eligible users
conv_sub_data = sub_data_demo[
    sub_data_demo.lapse_date < max_lapse_date]</pre>
```

Date differences

- Step 1: Filter to the relevant set of users
- Step 2: Calculate the time between a users lapse and subscribed dates

```
# How many days passed before the user subscribed
sub_time = conv_sub_data.subscription_date - conv_sub_data.lapse_date
# Save this value in our dataframe
conv_sub_data['sub_time'] = sub_time
```

Date components

- Step 1: Filter to the relevant set of users
- Step 2: Calculate the time between a users lapse and subscribed dates
- Step 3: Convert the sub_time from a timedelta to an int

```
# Extract the days field from the sub_time
conv_sub_data['sub_time'] = conv_sub_data.sub_time.dt.days
```

Conversion rate calculation

```
# filter to users who have did not subscribe in the right window
conv_base = conv_sub_data[(conv_sub_data.sub_time.notnull()) | \
    (conv_sub_data.sub_time > 7)]
total_users = len(conv_base)
```

```
total_subs = np.where(conv_sub_data.sub_time.notnull() & \
    (conv_base.sub_time <= 14), 1, 0)
total_subs = sum(total_subs)</pre>
```

```
conversion_rate = total_subs / total_users
```

0.0095877277085330784

Parsing dates - on import

```
pandas.read_csv(...,
    parse_dates=False,
    infer_datetime_format=False,
    keep_date_col=False,
    date_parser=None,
    dayfirst=False,...)
customer_demographics = pd.read_csv('customer_demographics.csv',
```

```
parse_dates=True,
infer_datetime_format=True)

uid     reg_date     device gender     country     age
```

```
54030035.0
              2017-06-29
                                                     USA
                                                                19
                                and
72574201.0
              2018-03-05
                                iOS
                                                     TUR
                                                                22
64187558.0
              2016-02-07
                                                     USA
                                iOS
                                                                16
92513925.0
              2017-05-25
                                                     BRA
                                                                41
                                and
99231338.0
              2017-03-26
                                iOS
                                                     FRA
                                                                59
```


Parsing dates - manually

```
pandas.to_datetime(arg, errors='raise', ..., format=None, ...)
```

strftime

```
1993-01-27-- "%Y-%m-%d"
```

Let's practice!

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Creating time series graphs with matplotlib

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Ryan Grossman

Data Scientist, EDO

Conversion rate over time

Useful Ways to Explore Metrics

- By user type
- Over time

Monitoring the impact of changes

Week one conversion rate by day

```
import pandas as pd
from datetime import timedelta
# The maximum date in our dataset
current_date = pd.to_datetime('2018-03-17')
# Limit to users who have had a week to subscribe
max_lapse_date = current_date - timedelta(days=7)
conv_sub_data = sub_data_demo[
    sub_data_demo.lapse_date < max_lapse_date]</pre>
# Calculate how many days it took the user to subscribe
conv_sub_data['sub_time'] = (conv_sub_data.subscription_date
    - conv_sub_data.lapse_date.dt.days)
```

Conversion Rate by Day

The lapse date is the first day a user is eligible to subscribe

```
# Find the convsersion rate for each daily cohort
conversion_data = conv_sub_data.groupby(
    by=['lapse_date'],as_index=False
).agg({'sub_time': [gc7]})

# Clean up the dataframe columns
conversion_data.head()
```

```
lapse_date sub_time
0 2017-09-01 0.224775
1 2017-09-02 0.223749
...
```

Plotting Daily Conversion Rate

• Use the .plot() method to generate graphs of DataFrames

```
# Convert the lapse_date value from a string to a
# datetime value
conversion_data.lapse_date = pd.to_datetime(
    conversion_data.lapse_date
# Generate a line graph of the average conversion rate
# for each user registration cohort
conversion_data.plot(x='lapse_date', y='sub_time')
```

Plotting Daily Conversion Rate

```
# Print the generated graph to the screen
plt.show()
```


Trends in different cohorts

- See how changes interact with different groups
- Compare users of different genders
- Evaluate the impact of a change across regions
- See the impact for different devices

Trends across time and user groups

Is the holiday dip consistent across different countries?

```
conversion_data.head()
```

Conversion rate by day, broken out by our top selling countries

ı		lapse_date	country	sub_time
ı	0	2017-09-01	BRA	0.184000
ı	1	2017-09-01	CAN	0.285714
ı	2	2017-09-01	DEU	0.276119
ı	3	2017-09-01	FRA	0.240506
ı	4	2017-09-01	TUR	0.161905

Conversion rate by country

```
# Break out our conversion rate by country
reformatted_cntry_data = pd.pivot_table(
    conversion_data, # dataframe to reshape
    values=['sub_time'], # Our primary value
    columns=['country'], # what to break out by
    index=['reg_date'], # the value to use as rows
    fill_value=0
)
```

lap	ose_date	BRA	CAN	DEU	
201	17-09-01	0.184000	0.285714	0.276119	
201	17-09-02	0.171296	0.244444	0.276190	
201	17-09-03	0.177305	0.295082	0.266055	

Plotting trends in different cohorts

```
# Plot each countries conversion rate
reformatted_cntry_data.plot(
    x='reg_date',
    y=['BRA','FRA','DEU','TUR','USA','CAN']
)
```

```
plt.show()
```


Let's practice!

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Understanding and visualizing trends in customer data

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Ryan Grossman

Data Scientist, EDO

Further techniques for uncovering trends

Subscribers Per Day

```
# Find the days-to-subscribe of our loaded usa subs data set
usa_subscriptions['sub_day'] = (usa_subscriptions.sub_date -
    usa_subscriptions.lapse_date).dt.days
# Filter out those who subscribed in the past week
usa_subscriptions = usa_subscriptions[usa_subscriptions.sub_day <= 7]</pre>
# Find the total subscribers per day
usa_subscriptions = usa_subscriptions.groupby(
    by=['sub_date'], as_index = False
 .agg({'subs': ['sum']})
```

Weekly seasonality and our pricing change

```
# plot USA subscribcers per day
usa_subscriptions.plot(x='sub_date', y='subs')
plt.show()
```

- Weekly Seasonality: Trends following the day of the week
 - Potentially more likely to subscribe on the weekend
 - Seasonality can hide larger trends...the impact of our price change?

Correcting for seasonality with trailing averages

- Trailing Average: smoothing technique that averages over a lagging window
 - Reveal hidden trends by smoothing out seasonality
 - Average across the period of seasonality
 - 7-day window to smooth weekly seasonality
 - Average out day level effects to produce the average week effect

Calculating Trailing Averages

- Calculate the rolling average over the USA subscribers data with .rolling()
 - Call this on the Series of interest
 - window : Data points to average
 - o center: If true set the average at the center of the window

```
# calling rolling on the "subs" Series
rolling_subs = usa_subscriptions.subs.rolling(
    # How many data points to average over
    window=7,
    # Specify to average backwards
    center=False
)
```

Smoothing our USA subscription data

```
sub_datesubsrolling_subs2018-03-148994.7142862018-03-159695.4285712018-03-1610296.142857
```

- .rolling like groupby specifies a grouping of data points
- We still need to calculate a summary over this group (e.g. _.mean())

Noisy data - Highest SKU purchases by date

Noisy Data: data with high variation over time

```
# Load a dataset of our highest sku purchases
high_sku_purchases = pd.read_csv(
    'high_sku_purchases.csv',
    parse_dates=True,
    infer_datetime_format=True
)
# Plot the count of purchases by day of purchase
high_sku_purchases.plot(x='date', y='purchases')
plt.show()
```


Smoothing with an exponential moving average

- Exponential Moving Average: Weighted moving (rolling) average
 - Weights more recent items in the window more
 - Applies weights according to an exponential distribution
 - Averages back to a central trend without masking any recent movements

Smoothed purchases by date

- ewm() : exponential weighting function
- span : Window to apply weights over

```
# Calculate the exp. avg. over our high sku
# purchase count
exp_mean = high_sku_purchases.purchases.ewm(
    span=30)
```

```
# Find the weighted mean over this period
high_sku_purchases['exp_mean'] = exp_mean.mean()
```

High Sku Purchase Data

Summary - Data Smoothing Techniques

- Trailing Average:
 - Smooths seasonality by averaging over the periodicity
- Exponential Moving Average:
 - Reveals trends by pulling towards the central tendency
 - Weights the more recent values relative to the window more heavily
- You can use .rolling() and .ewm() for many more methods of smoothing

Let's practice!

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Events and releases

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Ryan GrossmanData Scientist, EDO

Exploratory analysis - issues in our ecosystem

Visualizing the drop in conversion rate (3 Years)

```
import pandas as pd
import matplotlib.pyplot as plt
# Remove users who lapsed within the past week
conv_sub_data = sub_data_demo[
    sub_data_demo.lapse_date <= max_lapse_date]</pre>
# Calculate the week one conversion rate by lapso
sub_time = (conv_sub_data.subscription_date -
    conv_sub_data.lapse_date).dt.days
conv_sub_data['sub_time'] = sub_time
conversion_data = conv_sub_data.groupby(
    by=['lapse_date'], as_index=False
 .agg({'sub_time': [gc7]})
```

```
# Plot our conversion rate over time
conversion_data.plot()
plt.show()
```


Visualizing the drop in conversion rate (6 Months)

```
# Find the date boundries to limit our data by
current_date = pd.to_datetime('2018-03-17')
# 6 * 28 to reprsent the past 6 months
start_date = current_date - timedelta(days=(6*28
# A mask for our conversion rate data
conv_filter = (
    conversion_data.lapse_date >= start_date) &
    (conversion_data.lapse_date <= current_date)</pre>
# Filter our conversion rate data
con_data_filt = conversion_data[conv_filter]
```

```
conv_data_filt.plot(x='lapse_date', y='sub_time'
plt.show()
```


Investigating the conversion rate drop

- Is this drop impacting all users or just a specific cohort
- This could provide clues on what the issue may be
- Ecosystems within our data
 - Distinct countries
 - Specific device (Android or iOS)

Splitting our data by country and device

```
# After filtering and calculating daily conversion...
# Pivot the results to have one colum per country
conv_data_cntry = pd.pivot_table(
    conv_data_cntry, values=['sub_time'],
    columns=['country'], index=['lapse_date'],fill_value=0
# Pivot the results to have one colum per device
conv_data_dev = pd.pivot_table(
    conv_data_dev, values=['sub_time'],
    columns=['device'], index=['lapse_date'],fill_value=0
```

Breaking out by Country

- All countries experience the drop
- It is most pronounced in Brazil & Turkey
 - Our two most android heavy countries

Breaking out by Device

• The drop only appears on Android devices

Annotating datasets

• events: Holidays and events impacting user behavior

```
events = pd.read_csv('events.csv')
```

• releases: iOS and Android software releases

```
releases = pd.read_csv('releases.csv')
releases.head()
```

```
Date Event

2018-03-14 iOS Release

2018-03-03 Android Release

2018-01-13 iOS Release

2018-01-15 Android Release
```


Plotting annotations - events

- plt.axvline() : Plots vertical line at the xintercept
 - color : Specify the color of the plottedline
 - linestyle: The type of line to plot

```
# Plot the conversion rate trend per device
conv_data_dev.plot(
    x=['lapse_date'], y=['iOS', 'and']
# Iterate through the events and plot each one
events.Date = pd.to_datetime(events.Date)
for row in events.iterrows():
    tmp = row[1]
    plt.axvline(
        x=tmp.Date, color='k', linestyle='--'
```

Plotting annotations - releases

```
# Iterate through the releases and plot each one
releases.Date = pd.to_datetime(releases.Date)
for row in releases.iterrows():
    tmp = row[1]
   # plot iOS releases as a blue lines
    if tmp.Event == 'iOS Release':
        plt.axvline(x=tmp.Date, color='b', linestyle='--')
   # plot Android releases as red lines
    else:
        plt.axvline(x=tmp.Date, color='r', linestyle='--')
plt.show()
```

Annotated conversion rate graphs

- Android release in Feb/Mar aligns with our dip in conversion rate
- This release may contain a bug impacting the conversion rate!

Power and limitations of exploratory analysis

- Visualize data over time to uncover hidden trends
 - While useful it has its limitations
- To truly explore relationships in data we need A/B testing

Let's practice!

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

