Job No.:Shane GreenAddress:36 Mccathie Road, Ruakaka 0171, New ZealandDate:15/07/2024Latitude:-35.873885Longitude:174.442141Elevation:11.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.6 m
Wind Region	NZ1	Terrain Category	2.47	Design Wind Speed	36.65 m/s
Wind Pressure	0.81 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Medium	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 4.30 m Cpe = -0.9 pe = -0.65 KPa pnet = -0.65 KPa

For roof CP,e from 4.30 m To 8.60 m Cpe = -0.5 pe = -0.36 KPa pnet = -0.36 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 18 m Cpe = 0.7 pe = 0.51 KPa pnet = 0.75 KPa

For side wall CP,e from 0 m To 4.30 m Cpe = pe = -0.47 KPa pnet = -0.47 KPa

Maximum Upward pressure used in roof member Design = 0.65 KPa

Maximum Downward pressure used in roof member Design = 0.39 KPa

Maximum Wall pressure used in Design = 0.75 KPa

Maximum Racking pressure used in Design = 0.87 KPa

Design Summary

Purlin Design

Purlin Spacing = 800 mm Purlin Span = 5850 mm Try Purlin 240x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

 $K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.94$

K8 Upward =0.47 S1 Downward =13.82 S1 Upward =24.81

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.16 Kn-m	Capacity	2.73 Kn-m	Passing Percentage	235.34 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.64 Kn-m	Capacity	3.64 Kn-m	Passing Percentage	137.88 %
M0.9D-WnUp	-1.45 Kn-m	Capacity	-2.25 Kn-m	Passing Percentage	351.56 %
V _{1.35D}	0.79 Kn	Capacity	10.42 Kn	Passing Percentage	1318.99 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 1.61 Kn Capacity 13.89 Kn Passing Percentage 862.73 % $V_{0.9D-WnUp}$ -0.99 Kn Capacity -17.37 Kn Passing Percentage 1754.55 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 20.36 mm

Limit by Woolcock et al, 1999 Span/240 = 24.17 mm

Deflection under Dead and Service Wind = 23.59 mm

Limit by Woolcock et al, 1999 Span/100 = 58.00 mm

Reactions

Maximum downward = 1.61 kn Maximum upward = -0.99 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 6000 mm Internal Rafter Span = 9850 mm Try Rafter 2x400x63 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 6.26 S1 Upward = 6.26

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	24.56 Kn-m	Capacity	73.78 Kn-m	Passing Percentage	300.41 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	50.21 Kn-m	Capacity	98.38 Kn-m	Passing Percentage	195.94 %
$ m M_{0.9D-WnUp}$	-30.93 Kn-m	Capacity	-122.98 Kn-m	Passing Percentage	397.61 %
V1.35D	9.97 Kn	Capacity	85.9 Kn	Passing Percentage	861.58 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	20.39 Kn	Capacity	114.54 Kn	Passing Percentage	561.75 %
$ m V_{0.9D ext{-}WnUp}$	-12.56 Kn	Capacity	-143.18 Kn	Passing Percentage	1139.97 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 28.535 mm

Limit by Woolcock et al, 1999 Span/240 = 41.67 mm

Deflection under Dead and Service Wind = 36.725 mm

Limit by Woolcock et al, 1999 Span/100 = 100.00 mm

Reactions

Maximum downward = 20.39 kn Maximum upward = -12.56 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 126 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 29.11 Kn > -12.56 Kn

Rafter Design External

External Rafter Load Width = 3000 mm

External Rafter Span = 4809 mm

Try Rafter 290x45 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.89

K8 Upward =0.89 S1 Downward =15.23 S1 Upward =15.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	2.93 Kn-m	Capacity	3.78 Kn-m	Passing Percentage	129.01 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	5.98 Kn-m	Capacity	5.04 Kn-m	Passing Percentage	84.28 %
$M_{0.9D\text{-W}nUp}$	-3.69 Kn-m	Capacity	-6.29 Kn-m	Passing Percentage	170.46 %
V _{1.35D}	2.43 Kn	Capacity	12.59 Kn	Passing Percentage	518.11 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	4.98 Kn	Capacity	16.79 Kn	Passing Percentage	337.15 %
$ m V_{0.9D ext{-}WnUp}$	-3.07 Kn	Capacity	-20.98 Kn	Passing Percentage	683.39 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 14.83 mm

Deflection under Dead and Service Wind = 17.18 mm

Limit by Woolcock et al, 1999 Span/240= 20.83 mm Limit by Woolcock et al, 1999 Span/100 = 50.00 mm

Reactions

Maximum downward = 4.98 kn Maximum upward = -3.07 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 45 mm

4/10

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -21.73 \text{ kn} > -3.07 \text{ Kn}$

Single Shear Capacity under short term loads = -9.75 Kn > -3.07 Kn

Intermediate Design Front and Back

Intermediate Spacing = 3000 mm Intermediate Span = 3849 mm

Try Intermediate 2x190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward = 1.00 S1 Downward = 12.23 S1 Upward = 0.80

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 4.17 Kn-m Capacity 6.06 Kn-m Passing Percentage 145.32 %

V_{0.9D-WnUp} 4.33 Kn Capacity -27.5 Kn Passing Percentage 635.10 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 23.145 mm

Limit byWoolcock et al, 1999 Span/100 = 38.49 mm

Reactions

Maximum = 4.33 kn

Intermediate Design Sides

Intermediate Spacing = 2500 mm Intermediate Span = 4300 mm Try Intermediate 2x190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward = 1.00 S1 Downward = 12.23 S1 Upward = 0.85

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mw $_{\text{ind+Snow}}$ 2.17 Kn-m Capacity 6.06 Kn-m Passing Percentage 279.26 % V0.9D-WnUp 2.02 Kn Capacity 27.5 Kn Passing Percentage 1361.39 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 30.04 mm Limit by Woolcock et al, 1999 Span/100 = 43.00 mm

Reactions

Maximum = 2.02 kn

Girt Design Front and Back

Girt's Spacing = 1300 mm

Girt's Span = 3000 mm

Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.56 S1 Downward =12.23 S1 Upward =22.32

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 1.10 Kn-m Capacity 1.70 Kn-m Passing Percentage 154.55 % $V_{0.9D-WnUp}$ 1.46 Kn Capacity 13.75 Kn Passing Percentage 941.78 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 5.97 mm

Limit by Woolcock et al, 1999 Span/100 = 30.00 mm

Sag during installation = 6.06 mm

Reactions

Maximum = 1.46 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 2500 mm

Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.65 S1 Downward =12.23 S1 Upward =20.38

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 2.88 mm

Limit by Woolcock et al. 1999 Span/100 = 25.00 mm

Sag during installation = 2.92 mm

Reactions

Maximum = 1.22 kn

6/10

Middle Pole Design

Geometry

225 SED H5 (Minimum 250 dia. at Floor Level)	Dry Use	Height	4240 mm
Area	44279 mm2	As	33209.1796875 mm2
Ix	156100441 mm4	Zx	1314530 mm3
Iy	156100441 mm4	Zx	1314530 mm3
Lateral Restraint	4240 mm c/c		

Lateral Restraint

Loads

Total Area over Pole = 30 m2

Dead	7.50 Kn	Live	7.50 Kn
Wind Down	11.70 Kn	Snow	0.00 Kn
Moment wind	20.66 Kn-m		
Phi	0.8	K8	0.78
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	494.21 Kn	PhiMnx Wind	29.59 Kn-m	PhiVnx Wind	78.64 Kn
PhiNcx Dead	296.52 Kn	PhiMnx Dead	17.75 Kn-m	PhiVnx Dead	47.18 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.75 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.54 < 1 \text{ OK}$

Deflection at top under service lateral loads = 39.18 mm < 42.40 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30)) / (1+\sin(30))$				
Kp =	$(1+\sin(30))/(1-\sin(30))$				

Geometry For Middle Bay Pole

$D_S =$	0.6 mm	Pile Diameter
L=	1850 mm	Pile embedment length
f1 =	3450 mm	Distance at which the shear force is applied
f2 =	0 mm	Distance of top soil at rest pressure

Loads

Moment Wind = 20.66 Kn-m Shear Wind = 5.99 Kn

Pile Properties

Safety Factory 0.55

Hu = 10.64 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 22.03 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.94 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level)	Dry Use	Height	4400 mm
Area	35448 mm2	As	26585.7421875 mm2
Ix	100042702 mm4	Zx	941578 mm3
Iy	100042702 mm4	Zx	941578 mm3
Lateral Restraint	mm c/c		

Live

3.75 Kn

Loads

Dead

Total Area over Pole = 15 m^2

Wind Down	5.85 Kn	Snow	0.00 Kn
Moment Wind	6.89 Kn-m		
Phi	0.8	K8	0.64
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

3.75 Kn

Capacities

PhiNcx Wind	324.61 Kn	PhiMnx Wind	17.39 Kn-m	PhiVnx Wind	62.96 Kn
PhiNcx Dead	194.77 Kn	PhiMnx Dead	10.43 Kn-m	PhiVnx Dead	37.77 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.44 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.20 < 1 OK$

Deflection at top under service lateral loads = 22.05 mm < 45.88 mm

Ds = 0.6 mm Pile Diameter

L = 1400 mm Pile embedment length

f1 = 3450 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 15 m^2

Moment Wind = 6.89 Kn-m Shear Wind = 2.00 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.04 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 10.16 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.68 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1400 mm Pile embedment length

f1 = 3450 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 6.89 Kn-m Shear Wind = 2.00 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.04 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 10.16 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.68 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1850) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1850)

Skin Friction = 27.64 Kn

Weight of Pile + Pile Skin Friction = 31.88 Kn

Uplift on one Pile = 12.75 Kn

Uplift is ok