

AKADEMIA WSB

DATA EXPLORATION METHODS

IAB.2 MULTIPLE LINEAR REGRESSION

Teacher:

Msc. Damian Skipiol

Student:

Alessandro Vavalà 48045

- What has the greatest impact on the success of a Startup (Profit)?
- Which Sturtups are the most profitable?
- What is the impact of the Startup Profit in the state in which it is launched? Which startups would you invest in?

The dataset is composed of 50 Startups and for each of them it is specified R&D Spend; Administration; Marketing Spend; State; Profit

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

	count	mean	std	min	25%	50%	75%	max
R&D Spend	50.0	73721.6156	45902.256482	0.00	39936.3700	73051.080	101602.8000	165349.20
Administration	50.0	121344.6396	28017.802755	51283.14	103730.8750	122699.795	144842.1800	182645.56
Marketing Spend	50.0	211025.0978	122290.310726	0.00	129300.1325	212716.240	299469.0850	471784.10
Profit	50.0	112012.6392	40306.180338	14681.40	90138.9025	107978.190	139765.9775	192261.83

VARIABLES DISTRIBUTION

	count	mean	std	min	25%	50%	75%	max
R&D Spend	50.0	73721.6156	45902.256482	0.00	39936.3700	73051.080	101602.8000	165349.20
Administration	50.0	121344.6396	28017.802755	51283.14	103730.8750	122699.795	144842.1800	182645.56
Marketing Spend	50.0	211025.0978	122290.310726	0.00	129300.1325	212716.240	299469.0850	471784.10
Profit	50.0	112012.6392	40306.180338	14681.40	90138.9025	107978.190	139765.9775	192261.83

Looking at the Histograms, the variable R&D Spend is the most balanced among all the variables. But the variables have a high standard deviation which indicates a high spread of the data. R&D Spend and Marketing Spend are the two variables with the highest range.

BOXPLOTS

Startups in New York State for R&D Spend, Administration and Marketing Spend have the highest data range. But for Profit, the least. The data range for California and Florida are similar in all variables.

	State	California	Florida	New York
Profit	count	17.000000	16.000000	17.000000
	mean	103905.175294	118774.024375	113756.446471
	std	44446.359357	35605.470428	41140.258117
	min	14681.400000	49490.750000	35673.410000
	25%	78239.910000	99147.922500	96479.510000
	50%	97427.840000	109543.120000	108552.040000
	75%	134307.350000	142719.627500	129917.040000
	max	191792.060000	191050.390000	192261.830000

Startup in Florida record the average highest profit

CORRELATIONS

The variable Profit is strongly positively correlated with R&D Spend (97%). It is possible to see this corraltion in the matrix: when R&D Spend increases, Profit increses as well.

Another Variable highly correlated with Profit is Marketing Spend (75%).

Even though, Startups in Florida have the highest mean Profit the correlation between Florida (encoded) and Profit is low (12%). Florida is the highest correlated State with Profit, in fact California has a negative correlation (also the lowest mean profit for Startups), and New York State close to 0

MULTIPLE LINEAR REGRESSION MODEL

Profit is the dependent variable and R&D Spend; Administration; Marketing Spend; California_State; Florida_State and New York_State are the independent variable. The dataset has been splitted in: 6/8 test set and 2/8 training set, random state = 120.

Here some statistics of the two sets are presented.

CHOOSING MODEL AND VARIBALES

Dep. Variable:		Profit	R-squared (u	incentered):		0.	
Model:		0LS	Adj. R-squar	Adj. R-squared (uncentered):			
Method:	Least	Squares	F-statistic:			60	
Date:	Thu, 07		Prob (F-stat			1.336	
Time:		10:17:57	Log-Likeliho	od:		8.2	
No. Observations:		12	AIC:			-6.	
Of Residuals:		7	BIC:			-4.	
Of Model:		5					
Covariance Type:	ı	nonrobust					
	coef	std err	t	P> t	[0.025	0.975	
R&D Spend	0.9386	0.113	8.302	0.000	0.671	1.20	
Administration	-0.0550	0.067	-0.815	0.442	-0.215	0.10	
larketing Spend	0.0437	0.079	0.555	0.596	-0.142	0.23	
State_California	-0.0211	0.039	-0.535	0.609	-0.114	0.07	
State_Florida	0.0063	0.032	0.195	0.851	-0.070	0.08	
State_New York	0.0149	0.034	0.445	0.670	-0.064	0.09	
Omnibus:		0.011	Durbin-Watso	n:	1.	921	
rob(Omnibus):		0.994	Jarque-Bera	(JB):	0.	161	
ikew:		0.042	Prob(JB):		0.	922	
Kurtosis:		2.438	Cond. No.		3.93e	+15	

Here is the results of the regressor created based on the training set.

It's possible to state that:

- The model explains 97,7% of the change of Profit.
- Except for R&D all the variable have a high P-Value. It means that R&D Spend is a statistically significant variable
- The high positive coefficient of R&D Spend (0.9386) indicates the positive relationship between Profit and R&D Spend: the value of the independent variable increases and the mean of the dependent variable also tends to increase

Dropping State_Florida and running regression again because pvalue is: 0.8509642642298341
Dropping State_New York and running regression again because pvalue is: 0.8757574682889988
Dropping State_California and running regression again because pvalue is: 0.5888729810953166
Dropping Marketing Spend and running regression again because pvalue is: 0.7183204129431902
Dropping Administration and running regression again because pvalue is: 0.07841596657802424

		OL:	S Reg	gressio	n Results			
Dep. Variable:		Prof.			red (uncente			
Model:		0	LS	Adj. R	-squared (un	centered):		
Method:		Least Squar	es	F-stat	istic:			
Date:	T	hu, 07 Jul 20	22	Prob (F-statistic)	:		1.79
Time:		11:53:	50	Log-Li	kelihood:			5.
No. Observations	:		12	AIC:				-5
Df Residuals:	-			BIC:				-9
Df Model:			1					
Covariance Type:		nonrobu	st					
	coef	std err		t	P> t	[0.025	0.975]	
R&D Spend 8	.9651	0.054	17.	.866	0.000	0.846	1.084	
Omnibus:		4.0	60	Durbin	-Watson:		1.549	
Prob(Omnibus):		0.1	31	Jarque	-Bera (JB):		1.936	
Skew:				Prob(J			0.380	
Kurtosis:		3.1	87	Cond.	No.		1.00	

Also by using SelectKbest method, the best variable to predict 'Profit' is R&D Spend.

For a reliable Regressor model all the variables with a P-Value higher than 0.05. The only statistically significant variable is R&D Spend.

Index(['R&D Spend'], dtype='object')

RESULTS

Coefficient: 0.97007809

the positive coefficient indicates the positive relationship between R&D Spend and Profit. As it was stated before.

Intercept: 0.03648358766432768

Mean Squared Error: 0.07

The MSE is the average squared distance between the actual and predicted values. Lower is better the model has predicted.

R squared: 94%

The independent variable (R&D Spend) can explain a portion of 94% of the variance in the dependent variable (Profit).

Laboratory 2 - Data Exploration

26th June 2022

Multiple Linear regression

Import Libs

```
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
         import seaborn as sns
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.feature selection import SelectKBest, f regression
         from sklearn.linear model import LinearRegression, Ridge, Lasso
         from sklearn.model selection import train test split, cross val score
         from sklearn.neural network import MLPRegressor
         from sklearn.preprocessing import StandardScaler, MinMaxScaler
         from sklearn.preprocessing import PolynomialFeatures
         from sklearn.svm import SVR
         import statsmodels.api as sm
         import warnings
         warnings.filterwarnings('ignore')
         pd.set option('display.max.columns', None)
```

Data loading and overview

```
In [2]:
          df = pd.read_csv("50_Startups.csv")
          df.head()
            R&D Spend Administration Marketing Spend
Out[2]:
                                                           State
                                                                     Profit
            165349.20
                            136897.80
                                              471784.10 New York 192261.83
              162597.70
                                             443898.53 California 191792.06
          1
                             151377.59
         2
              153441.51
                             101145.55
                                             407934.54
                                                          Florida 191050.39
         3
              144372.41
                             118671.85
                                             383199.62 New York 182901.99
              142107.34
                              91391.77
                                             366168.42
                                                          Florida 166187.94
In [3]:
          # statistics of the dataset
          df.describe().T
                                                                                       50%
                        count
                                                      std
                                                                           25%
                                     mean
                                                               min
Out[3]:
```

	count	mean	std	min	25%	50%	
R&D Spend	50.0	73721.6156	45902.256482	0.00	39936.3700	73051.080	10160:
Administration	50.0	121344.6396	28017.802755	51283.14	103730.8750	122699.795	14484
Marketing Spend	50.0	211025.0978	122290.310726	0.00	129300.1325	212716.240	29946!
Profit	50.0	112012.6392	40306.180338	14681.40	90138.9025	107978.190	13976

EDA

Distplot

We look at the distribution

```
In [4]: sns.distplot(df['R&D Spend'])
```

Out[4]: <AxesSubplot:xlabel='R&D Spend', ylabel='Density'>


```
In [5]: sns.distplot(df['Administration'])
```

Out[5]: <AxesSubplot:xlabel='Administration', ylabel='Density'>


```
In [6]: sns.distplot(df['Marketing Spend'])
```

Out[6]: <AxesSubplot:xlabel='Marketing Spend', ylabel='Density'>


```
In [7]: sns.distplot(df['Profit'])
```

Out[7]: <AxesSubplot:xlabel='Profit', ylabel='Density'>

Feature distribution is not normal

Barplot

```
In [8]: sns.barplot(x = 'State', y = 'R&D Spend', data = df)
```

Out[8]: <AxesSubplot:xlabel='State', ylabel='R&D Spend'>


```
In [9]: sns.barplot(x = 'State', y = 'Administration', data = df)
```

Out[9]: <AxesSubplot:xlabel='State', ylabel='Administration'>


```
In [10]: sns.barplot(x = 'State', y = 'Profit', data = df)
```

Out[10]: <AxesSubplot:xlabel='State', ylabel='Profit'>

Countplot

```
In [11]: sns.countplot(x = 'State', data = df)
```

Out[11]: <AxesSubplot:xlabel='State', ylabel='count'>

In []:

Boxplot

We look at outliers

```
In [12]: sns.boxplot(x = 'R&D Spend', data = df)
```

Out[12]: <AxesSubplot:xlabel='R&D Spend'>


```
In [13]: sns.boxplot(x = 'Administration', data = df)
```

Out[13]: <AxesSubplot:xlabel='Administration'>


```
In [14]: sns.boxplot(x = 'Marketing Spend', data = df)
```

Out[14]: <AxesSubplot:xlabel='Marketing Spend'>


```
In [15]: sns.boxplot(x = 'Profit', data = df)
```

Out[15]: <AxesSubplot:xlabel='Profit'>


```
In [16]: sns.boxplot(x = 'State', y = 'R&D Spend', data = df)
```

Out[16]: <AxesSubplot:xlabel='State', ylabel='R&D Spend'>


```
In [17]: sns.boxplot(x = 'State', y = 'Administration', data = df)
```

Out[17]: <AxesSubplot:xlabel='State', ylabel='Administration'>


```
In [18]: sns.boxplot(x = 'State', y = 'Marketing Spend', data = df)
```

Out[18]: <AxesSubplot:xlabel='State', ylabel='Marketing Spend'>


```
In [19]: sns.boxplot(x = 'State', y = 'Profit', data = df)
```

Out[19]: <AxesSubplot:xlabel='State', ylabel='Profit'>


```
In [20]: # profit statistics for each state
    df[['Profit', 'State']].groupby('State').describe().T
```

Out[20]:	State		California	Florida	New York	
	Profit	count	17.000000	16.000000	17.000000	
		mean	103905.175294	118774.024375	113756.446471	
		std	44446.359357	35605.470428	41140.258117	
		min	14681.400000	49490.750000	35673.410000	
		25%	78239.910000	99147.922500	96479.510000	
		50%	97427.840000	109543.120000	108552.040000	
		75%	134307.350000	142719.627500	129917.040000	
		max	191792.060000	191050.390000	192261.830000	

Striplot

Feature scattering

```
In [21]: sns.stripplot(x ='State', y= 'R&D Spend', data = df)
```

Out[21]: <AxesSubplot:xlabel='State', ylabel='R&D Spend'>


```
In [22]: sns.stripplot(x ='State', y= 'Administration', data = df)
```

Out[22]: <AxesSubplot:xlabel='State', ylabel='Administration'>


```
In [23]: sns.stripplot(x ='State', y= 'Marketing Spend', data = df)
```

Out[23]: <AxesSubplot:xlabel='State', ylabel='Marketing Spend'>


```
In [24]: sns.stripplot(x ='State', y= 'Profit', data = df)
```

Out[24]: <AxesSubplot:xlabel='State', ylabel='Profit'>

Matrix

Out[25]: <seaborn.axisgrid.PairGrid at 0x7fa69bd3d610>


```
In [26]: f, ax = plt.subplots(figsize=(10,8))
```

Out[26]: <AxesSubplot:>

Data preprocessing

dtype: int64

```
In [27]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 50 entries, 0 to 49
        Data columns (total 5 columns):
                           Non-Null Count Dtype
         # Column
        ___
            -----
                            -----
                           50 non-null
         0
            R&D Spend
                                         float64
         1
             Administration 50 non-null
                                         float64
         2
             Marketing Spend 50 non-null
                                         float64
         3
            State
                            50 non-null
                                          object
             Profit
                            50 non-null
                                           float64
        dtypes: float64(4), object(1)
        memory usage: 2.1+ KB
In [28]:
         df.isnull().sum()
Out[28]: R&D Spend
        Administration
        Marketing Spend
        State
        Profit
```

OneHotEncoder

```
In [29]:
           df.State.describe()
                           50
          count
Out[29]:
                            3
          unique
          top
                    New York
          freq
                           17
          Name: State, dtype: object
In [30]:
           # encoding the categorical features
           df = pd.get dummies(df, columns=['State'])
           df.head()
                                                                                     State_New
                  R&D
                                     Marketing
Out[30]:
                       Administration
                                                   Profit State_California State_Florida
                Spend
                                         Spend
                                                                                          York
            165349.20
                           136897.80
                                      471784.10 192261.83
                                                                      0
                                                                                  0
                                                                                             1
             162597.70
                           151377.59 443898.53 191792.06
                                                                                  0
                                                                                             0
          2
             153441.51
                           101145.55
                                     407934.54 191050.39
                                                                      0
                                                                                   1
                                                                                             0
             144372.41
                                                                      0
                                                                                  0
          3
                           118671.85 383199.62 182901.99
                                                                                             1
             142107.34
                            91391.77
                                     366168.42 166187.94
                                                                      0
                                                                                   1
                                                                                             0
In [31]:
           df.corr()['Profit'].sort_values()
Out[31]: State_California
                              -0.145837
          State New York
                               0.031368
          State Florida
                               0.116244
          Administration
                               0.200717
          Marketing Spend
                               0.747766
          R&D Spend
                               0.972900
          Profit
                               1.000000
          Name: Profit, dtype: float64
In [32]:
           f, ax = plt.subplots(figsize=(10,8))
          corr = df.corr()
           sns.heatmap(corr, annot=True, mask=np.zeros_like(corr, dtype=np.bool),
                      cmap = sns.diverging_palette(240, 10, as_cmap = True),
                       square = True, ax = ax)
Out[32]: <AxesSubplot:>
```


Modeling

We uses scalling

```
In [33]: # Normalization of the dataset
    std = StandardScaler()
    df_std = std.fit_transform(df)
    df_std = pd.DataFrame(df_std, columns = df.columns)
In [34]:    X = df_std.drop(['Profit'], axis = 1) # dataset of independent variables
    y = df_std.Profit #dependent variable
```

Train split test

print()

printing out the training sets and test sets, the size along with various s

```
print("X train Dataset Description and values:")
print(stats.describe(X train))
print("X train Array shape : " + str(X train.shape))
#print(X train)
print()
print("X test Dataset Description and values:")
print(stats.describe(X test))
print("X test Array shape: " + str(X test.shape))
#print(X test)
print()
print("y train Dataset Description and values:")
print(stats.describe(y train))
#print(y train)
print()
print("y test Dataset Description and values:")
print(stats.describe(y test))
#print(y_test)
print()
print("X Train and y train shape:")
print(X train.shape)
print(y train.shape)
X train Dataset Description and values:
DescribeResult(nobs=12, minmax=(array([-1.17717755, -1.99727037, -1.74312698,
-0.71774056, -0.68599434,
       -0.71774056]), array([2.01641149, 1.20641936, 2.15394309, 1.39326109,
1.45773797,
       1.39326109])), mean=array([-0.09271446, -0.18355409, -0.20978689, -0.18
999015, 0.0285831,
        0.16184346]), variance=array([0.72983213, 1.04907528, 1.18695436, 0.91
152163, 1.114082
       1.18160212]), skewness=array([ 1.07251991, -0.02661623, 0.60113141,
1.15470054, 0.70710678,
        0.3380617 ]), kurtosis=array([ 1.25506902, -0.89279112, -0.03488538, -
0.66666667, -1.5
       -1.885714291)
X train Array shape: (12, 6)
X test Dataset Description and values:
DescribeResult(nobs=38, minmax=(array([-1.62236202, -2.52599402, -1.74312698,
-0.71774056, -0.68599434,
       -0.71774056]), array([1.95586034, 2.2101405 , 1.9236004 , 1.39326109,
1.45773797,
      1.39326109])), mean=array([ 0.02927825,  0.05796445,  0.06624849,  0.05
999689, -0.00902624,
      -0.05110846]), variance=array([1.13070597, 1.02508625, 0.97969186, 1.06
495463, 1.01978914,
       0.98888644]), skewness=array([-0.011931 , -0.62240563, -0.26346215,
0.54554473, 0.79259392,
        0.79259392]), kurtosis=array([-1.06910775, 0.51401057, -0.78496263, -
1.70238095, -1.37179487,
       -1.37179487))
X test Array shape: (38, 6)
y train Dataset Description and values:
DescribeResult(nobs=12, minmax=(-1.1732089932266025, 2.0112033342229885), mean
=-0.05345667459201751, variance=0.7091016764498884, skewness=1.170408927728744
4, kurtosis=1.1423428522763723)
y test Dataset Description and values:
DescribeResult(nobs=38, minmax=(-2.4393132298487346, 1.9994299695211237), mean
=0.01688105513432062, variance=1.1393178731215392, skewness=-0.160211946277044
77, kurtosis=-0.3894092119289203)
X Train and y train shape:
(12, 6)
(12,)
```

```
In [37]: # regressor summary
    regressor = sm.OLS(y_train, X_train).fit()
    print(regressor.summary())

    X_train_dropped = X_train.copy()
```

```
OLS Regression Results
                    Profit R-squared (uncentered):
Dep. Variable:
0.977
Model:
                      OLS
                          Adj. R-squared (uncentered):
0.961
               Least Squares
Method:
                          F-statistic:
             Thu, 07 Jul 2022 Prob (F-statistic):
Date:
1.33e-05
                         Log-Likelihood:
Time:
                   18:26:10
8.2401
No. Observations:
                       12
                         AIC:
-6.480
                       7
                         BIC:
Df Residuals:
-4.056
Df Model:
Covariance Type:
                 nonrobust
______
              coef std err
                               t P>|t| [0.025
0.9751
______
R&D Spend
                     0.113
             0.9386
                            8.302
                                   0.000
                                            0.671
1,206
Administration
            -0.0550
                     0.067
                            -0.815
                                   0.442
                                            -0.215
0.105
Marketing Spend
             0.0437
                     0.079
                            0.555
                                    0.596
                                            -0.142
0.230
                     0.039
                            -0.535
                                    0.609
State_California
            -0.0211
                                            -0.114
0.072
                     0.032
             0.0063
                            0.195
                                    0.851
                                            -0.070
State Florida
0.082
                     0.034
                            0.445
                                    0.670
             0.0149
                                            -0.064
State New York
_____
                    0.011 Durbin-Watson:
Omnibus:
                    0.994 Jarque-Bera (JB):
                                                0.161
Prob(Omnibus):
                    0.042 Prob(JB):
Skew:
                                                0.922
                     2.438 Cond. No.
                                              3.93e+15
Kurtosis:
_____
```

Notes

- [1] ${\bf R}^2$ is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correct ly specified.
- [3] The smallest eigenvalue is 1.44e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

The function removes features with high p-value

```
while True:
    if max(regressor.pvalues) > 0.05:
        drop_variable = regressor.pvalues[regressor.pvalues == max(regressor.]
        print("Dropping " + drop_variable.index[0] + " and running regression
        X_train_dropped = X_train_dropped.drop(columns = [drop_variable.index
        regressor = sm.OLS(y_train, X_train_dropped).fit()
    else:
```

```
print("All p values less than 0.05")
break
```

Dropping State_Florida and running regression again because pvalue is: 0.8509642642298341

Dropping State_New York and running regression again because pvalue is: 0.8757 574682889988

Dropping State_California and running regression again because pvalue is: 0.58 88729810953166

Dropping Marketing Spend and running regression again because pvalue is: 0.718 3204129431902

Dropping Administration and running regression again because pvalue is: 0.0784 1596657802424

All p values less than 0.05

In [39]:

printing regression summary after having drop all the variables with high p print(regressor.summary())

OLS Regression Results

_____ ======= Profit R-squared (uncentered): Dep. Variable: 0.967 Model: Adj. R-squared (uncentered): OLS 0.964 Method: Least Squares F-statistic: 319.2 Thu, 07 Jul 2022 Prob (F-statistic): Date: 1.79e-09 Time: 18:26:11 Log-Likelihood: 5.9420 No. Observations: 12 ATC: -9.884 BIC: Df Residuals: 11 -9.399 Df Model: 1 Covariance Type: nonrobust

========	coef	std err	t	P> t	[0.025	0.975]
R&D Spend	0.9651	0.054	17.866	0.000	0.846	1.084
Omnibus: Prob(Omnibus Skew: Kurtosis:):	0.	.131 Jarq .979 Prob	in-Watson: ue-Bera (JB) (JB): . No.):	1.549 1.936 0.380 1.00

Notes:

- [1] ${\bf R}^2$ is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correct ly specified.

Uses SelectKBest

```
In [40]: # SelectKBest shows what the best number of feature for the model according to
    column_names = df.drop(columns = ['Profit']).columns
    no_of_features = []
    r_squared_train = []
    r_squared_test = []

for k in range(1, 6):
    selector = SelectKBest(f_regression, k = k)
    X_train_transformed = selector.fit_transform(X_train, y_train)
```

```
X_test_transformed = selector.transform(X_test)
regressor = LinearRegression()
regressor.fit(X_train_transformed, y_train)
no_of_features.append(k)
r_squared_train.append(regressor.score(X_train_transformed, y_train))
r_squared_test.append(regressor.score(X_test_transformed, y_test))
sns.lineplot(x = no_of_features, y = r_squared_train, legend = 'full')
sns.lineplot(x = no_of_features, y = r_squared_test, legend = 'full')
```

```
Out[40]: <AxesSubplot:>
```



```
In [41]: ### Best score k = 1
    selector = SelectKBest(f_regression, k = 1)
    X_train_transformed = selector.fit_transform(X_train, y_train)
    X_test_transformed = selector.transform(X_test)
    column_names[selector.get_support()]
```

Out[41]: Index(['R&D Spend'], dtype='object')

```
def regression_model(model):
    """
    Will fit the regression model passed and will return the regressor object
    """
    regressor = model
    regressor.fit(X_train_transformed, y_train)
    score = regressor.score(X_test_transformed, y_test)
    return regressor, score
```

```
In [43]: # checking which model perform better
    model_performance = pd.DataFrame(columns = ["Features", "Model", "Score"])

models_to_evaluate = [LinearRegression(), Ridge(), Lasso(), SVR(), RandomFored

for model in models_to_evaluate:
    regressor, score = regression_model(model)
    model_performance = model_performance.append({"Features": "Linear", "Model
    model_performance
```

Out[43]: Features Model Score

```
Features
                                                       Model Score
1
      Linear
                                                      Ridge()
                                                                 0.93
2
      Linear
                                                      Lasso()
                                                                -0.00
3
                                                        SVR()
      Linear
                                                                 0.69
4
              (DecisionTreeRegressor(max_features='auto', ra...
      Linear
                                                                 0.83
5
      Linear
                                              MLPRegressor()
                                                                 0.91
```

```
In [44]:
          from sklearn.metrics import r2 score, mean squared error, mean absolute error
          # Create linear regression object
          regr = LinearRegression()
          # Train the model using the training sets
          regr.fit(X train transformed, y train)
          # Make predictions using the testing set
          y_pred = regr.predict(X_test_transformed)
          # Eveluation metrics
          print("__ \n")
          print('Coefficients: \n', regr.coef )
          print("__ \n")
          print('Intercept: \n', regr.intercept_)
          print("__ \n")
          # The mean squared error
          print('Mean squared error: %.2f'
                % mean_squared_error(y_test, y_pred))
          print("__ \n")
          # The coefficient of determination: 1 is perfect prediction
          print('R-Squared: %.2f'
                % r2_score(y_test, y_pred))
          print("__ \n")
          print("MAE: %.2f" % mean_absolute_error(y_test, y_pred))
          print("__\n")
```

```
Coefficients:
[0.97007809]

—
Intercept:
0.03648358766432768

—
Mean squared error: 0.07

—
R-Squared: 0.94

—
MAE: 0.20
—
```

In []: