Digital Signal Processing

Theory & Laboratory

Chap 1, Introduction 1

Chapter 1 Introduction

BACKGROUND

▲ Applied area of DSP

engineering, science, medicine, economics, social science, ...

▲ Things that we can do with DSP?

- detect trends in a signal
- extract a wanted signal from noise-contaminated signal
- assess frequency components in a signal

Chap 1, Introduction 3

SCOPE OF DIGITAL SIGNAL PROCESSING

▲ What is frequency component in a signal?

- discovery by Fourier
- \bigcirc - every signal can be represented by combination of sinusoids

Run m_ex_spectrum0.m

- shows relationship b/w time-domain and freq-domain representations of a signal
- k-th harmonic means freq component that completes k cycles in 1 period of origianl signal

Digital signal processors

▲ What are they?

- difference equation

Chap 1, Introduction 5

SCOPE OF DIGITAL SIGNAL PROCESSING

DSP scheme

- ADC(analog-to-digital converter): sample and quantize
- DAC(digital-to-analog converter): zero-order hold
- Analog filter before ADC: limit freq. range of input signal before sampling
- Analog filter after DAC: remove sharp transitions from DAC output

SOME PRACTICAL APPLICATIONS

▲ Moving Average (MA)

- reveals underlying trends of data
- MA as DSP

low pass filter

Chap 1, Introduction 7

SCOPE OF DIGITAL SIGNAL PROCESSING

▲ Equations for 200-Day MA

- nonrecursive form 🖸

$$y[n] = \frac{1}{200} \{x[n] + x[n-1] + x[n-2] + \dots x[n-199] \}$$
$$= 0.005 \sum_{k=0}^{199} x[n-k]$$

- recursive form D

$$y[n+1] = 0.005\{x[n+1] + x[n] + x[n-1] + \dots x[n-198]\}$$

= $y[n] + 0.005\{x[n+1] - x[n-199]\}$

or

$$y[n] = y[n-1] + 0.005\{x[n] - x[n-200]\}$$

Chap 1, Introduction 8

▲ Medical application □

- filter equation (60Hz notch for 1.2KHz sampling)

$$y[n] = 1.8523y[n-1] - 0.94883y[n-2] + x[n] - 1.9021x[n-1] + x[n-2] \bigcirc$$

Chap 1, Introduction 9

SAMPLING & AD CONVERSION

▲ How often should we sample analog signal?

- (a) too slow to pick out rapid fluctuations
- (b) (maybe) too fast giving too many data

▲ Sampling Theorem by Shannon □

$$f \geq 2f_{\max}$$
 or $T \leq \frac{1}{2f_{\max}}$

f [Hz], T[s]: sampling frequency and interval $f_{\rm max}$ [Hz]: maximum frequency component in analog signal

- Otherwise, aliasing occurs.

Terminology

Nyquist frequency = half the sampling frequency $(=\frac{f}{2})$

Chap 1, Introduction 11

SAMPLING & AD CONVERSION

Ambiguity in sampled sinusoid

Run m_sampledsinusoid.m

(1)
$$f = 10Hz$$
, $f1 = 3Hz$, $f2 = 13Hz$

(2)
$$f = 10Hz$$
, $f1 = 3Hz$, $f2 = 7Hz$

12

Aliasing

(Time Domain)

- With slow sampling, sampled signal (digital) looks slower than original signal (analog).

(Frequency Domain)

- Sampling causes original spectrum of analog signal to repeat around multiples of sampling frequency

Chap 1, Introduction 13

SAMPLING & AD CONVERSION

Spectrum

frequency spectrum

▲ Effect of sampling in frequency domain

- consider pure sinusoid: $10\cos(2\pi f_a t)$ where $f_a = 3Hz$
- frequency spectrum

Q: Negative frequencies? Half amplitude?

A: Come from expressing sinusoid as sum of two exponentials

$$A\cos(\omega t) = \frac{A}{2}exp(j\omega t) + \frac{A}{2}exp(j(-\omega)t)$$

- \Rightarrow $\{A,\,\omega\}$ can be represented by $\left\{rac{A}{2},\,-\omega
 ight\},\,\left\{rac{A}{2},\,\omega
 ight\}$

Chap 1, Introduction

SAMPLING & AD CONVERSION

frequency spectrum after sampling (Fs: sampling freq)

→ amplitudes repeats by sampling freq!

▲ Effect of Sampling in time domain

- Q: We saw that sampled sinusoid contains so many freq components.

 Which one among them does sampled sinusoid look like in time domain?
- A: The lowest frequency.

Chap 1, Introduction 17

Lack Ex. Aliasing Examples

1) sinusoid freq = 120Hz, sampling freq = 100Hz amplitudes repeats by sampling freq: ..., -180, -80, 20, 120, ... amplitude spectrum is even: ..., -180, -120, -80, -20, 20, 120, 180, ... lowest freq = 20Hz

SAMPLING & AD CONVERSION

- 2) sinusoid freq = 120Hz, sampling freq = 150Hz 120 - 150 = -30, 30Hz with opposite phase
- 3) sinusoid freq = 430Hz, sampling freq = 150Hz 430 - 150 - 150 - 150 = -20, 20Hz with opposite phase

Run again m_sampledsinusoid.m for above cases.

- signal freq can be negative

Aliasing for general signal

- consider analog signal with $f_{\rm max}$ = 3kHz

- after sampling

- (a) sampled signal (f = 8kHz)
- (b) sampled signal (f = 6kHz)
- (c) sampled signal $(f = 5kHz) \Rightarrow$ aliasing

Chap 1, Introduction

SAMPLING & AD CONVERSION

Anti-aliasing filter

- analog filter before ADC

- ensures $f_{\max} \leq \frac{f}{2}$

Q: Why must anti-aliasing filter be an analog filter?

f(kHz)-

A: If it is a digital filter, sampling must come before this filter and sampling causes aliasing.

QUANTIZATION

continuous amplitude

quantization

finitely many amplitudes (binary code)

quantization error

- difference b/w actual data and quantized data
- more bits (= better resolution) gives smaller error

Chap 1, Introduction 21

SAMPLING & AD CONVERSION

Run m_quantize.m to understand quantization.

DAC

- input: digital data
- output: zero-order-hold of input

Smoothing Filter

- analog filter after DAC
- used when staircase waveform is not acceptable

DIGITAL SIGNAL

DIGITAL SIGNALS

▲ Most important signals

- impulse
- step
- ramp
- exponential
- sinusoid

STEP, IMPULSE, AND RAMP

Note: n is an integer.

Chap 1, Introduction 25

DIGITAL SIGNAL

Plot basic digital signals.

n = -10 : 10

n = n'

y1 = f_impulse(n)

 $y2 = f_step(n)$

 $y3 = f_{mp}(n)$

stem(n,y1)

stem(n,y2)

stem(n,y3)

Ex. Find expression.

(a)
$$x[n] = -2u[-n-4]$$

(b)
$$x[n] = u[n+3] - u[n-5]$$

(c)
$$x[n] = \delta[n-8]$$

(d)
$$x[n] = 2r[n+6] - 2r[n+2]$$

Plot (b) and (d).

$$y = f_{step(n+3)} - f_{step(n-5)};$$

 $stem(n,y)$

$$y = 2*f_{ramp(n+6)} - 2*f_{ramp(n+2)};$$

stem(n,y)

DIGITAL SIGNAL

EXPONENTIAL

Exponential signal

$$x[n] = A \exp(\beta n)$$

Practical exponential signal

$$x[n] = A \exp(\beta n), n \ge 0$$
 or $x[n] = A \exp(\beta)u[n]$
= 0, $n < 0$

Plot exponential signal.

$$y = 3*exp(-0.1*n);$$

stem(n,y)

SINUSOID

digital sinusoid

cosine: $A_{\cos}(\Omega n)$, sine: $A_{\sin}(\Omega n)$

a can be expressed as an exponential with imaginary power

$$x[n] = A \exp(j \Omega n) = A \cos(\Omega n) + jA \sin(\Omega n)$$

$$A\cos(\Omega n) = Re(A\exp(j\Omega n))$$

$$= \frac{A}{2}exp(j\Omega n) + \frac{A}{2}exp(-j\Omega n)$$

$$A\sin(\Omega n) = Im(A\exp(j\Omega n))$$

$$= \frac{A}{2j}exp(j\Omega n) - \frac{A}{2j}exp(-j\Omega n)$$

Chap 1, Introduction 29

DIGITAL SIGNAL

Plot 3cos(0.5n) and 3sin(0.5n) using exp.

```
y = 3*exp(0.5i*n)

stem(n, real(y)); stem(n, imag(y))
```


▲ Time concept in sampled sinusoid

$$x(t) = \sin(\omega_a t)$$

$$\downarrow \quad t = nT, \quad n = ..., 0, 1, 2, ...$$

$$x[n] = \sin(n\omega_a T) \quad \text{or} \quad x[n] = \sin\left(\frac{n2\pi f_a}{f}\right)$$

$$\downarrow \quad \text{let} \quad \Omega = \omega_a T$$

$$x[n] = \sin(\Omega n)$$

where

 ω_a [rad/s], f_a [Hz]: analog sinusoid

T[s], f[Hz]: sampling

Chap 1, Introduction 31

DIGITAL SIGNAL

Sampled sinusoid

- periodic only when $\Omega/2\pi$ is a rational number (ratio of two integers)

n = -30 : 30

stem(n, sin(0.5*n)) % sin(0.5n) is not periodic

Period

- period is represented by N (= # of samples/cycle)
- Ω (frequency) has unit [rad].

Ex. Find period

1)
$$x[n] = \cos(0.2\pi n)$$

2)
$$x[n] = \sin(\frac{7\pi}{6}n)$$

3)
$$x[n] = \sin(0.5n)$$

4)
$$x[n] = \cos(\frac{2\pi}{3}n) + 0.7\sin(\frac{\pi}{2}n)$$

▲ Sol.

$$2) N = 12$$

- 3) aperiodic $(0.5n \ (n: integer)$ never becomes a multiple of $2\pi)$
- 4) first term: N = 3, second term: $N = 4 \Rightarrow N = 12$

Chap 1, Introduction 33

DIGITAL SIGNAL

Sinusoid with exponential amplitude

 \Leftrightarrow when β is complex (= $\beta_0 + j\Omega$) in $A \exp(\beta n)$,

$$x[n] = A \exp(\{\beta_0 + j\Omega\}n) = A \exp(\beta_0 n) \exp(j\Omega n)$$

$$\Rightarrow \begin{cases} x[n] = A \exp(\beta_0 n) \sin(\Omega n) \\ x[n] = A \exp(\beta_0 n) \cos(\Omega n) \end{cases}$$

Ex.

$$x[n] = \exp\left(\frac{n}{15}\right) \sin\left(\frac{\pi n}{6}\right)$$

$$y = \exp((1/15+1/6*pi*1i)*n);$$

stem (n, imag (y))

$$x[n] = \exp\left(\frac{-n}{5}\right)\cos(n)u[n]$$

34

Digital Sinusoid

- A digital sinusoid with frequency Ω is identical to those with $\Omega\pm 2\pi$, $\Omega\pm 4\pi$, ...

$$x[n] = \exp(j \Omega n) = \exp(j \{\Omega + 2\pi\} n)$$

Chap 1, Introduction 35

DIGITAL SIGNAL

▲ Effect of frequency increase in digital sinusoid

$$x[n] = \cos(\Omega n) = \cos\left(\frac{2\pi m}{8}n\right)$$
, (m = 0,1,2, ...)

$$\Omega = 0 \sim \pi \ (m = 0 \sim 4)$$
 \Rightarrow rate of oscillation increases

$$\Omega = \pi \sim 2\pi \, (m = 4 \sim 8)$$
 \Rightarrow rate of oscillation decreases

$$\Omega > 2\pi$$
 \Rightarrow pattern for $\Omega \in [0, 2\pi]$ repeats

Run m_freqincrease.m

- shows effect when increasing m in digital sinusoid $x[n] = \cos\left(\frac{2\pi m}{8}n\right)$

Summary of digital sinusoid

- In $x[n] = \cos(\Omega n)$, no ambiguity when $\Omega \le \pi$, but aliasing when $\Omega > \pi$ (such effect does not happen in analog sinusoid, $x(t) = \cos(\omega t)$)
- $\Omega=\pi$ corresponds to $f_a=\frac{f}{2}$ (Nyquist freq) i.e., fastest freq for a given sampling.

A Ex.

 $x[n] = \cos(5\pi n)$ was obtained by sampling analog sinusoid with 10Hz freq. Find freq of original analog signal.

Sol)
$$\Omega = \omega_a T \quad \Rightarrow \quad 5\pi = \omega_a \times 0.1 = 2\pi f_a \times 0.1 \quad \Rightarrow \quad f_a = 25 Hz$$

We sampled 25Hz sinusoid by 10Hz sampling! Aliasing!

It will look like 5Hz sinusoid after sampling. (5Hz = 25 - 10 - 10)

Chap 1, Introduction 37

DIGITAL SYSTEM

LINEAR TIME-INVARIANT(LTI) SYSTEMS

▲ Form of digital processor (= system)

- CPU that is programmed for DSP task
- dedicated digital H/W

linearity

linear system = system that obeys Principle of Superposition

unknown: 1)
$$x_1[n] + x_2[n]$$
 linear system \rightarrow ?

2) $ax_1[n]$ linear system \rightarrow ?

ans: 1)
$$y_1[n] + y_2[n]$$
 2) $ay_1[n]$

DIGITAL SYSTEM

frequency preservation

$$A\cos(\Omega n)$$
 \longrightarrow linear system \longrightarrow $B\cos(\Omega(n+M))$

output contains only those frequencies present in the input

time invariance

system properties don't change with time

$$\begin{array}{c|c} x[n] & \hline \\ x[n-n_0] & \text{Time-invariant} \\ \text{system} & y[n-n_0] \end{array}$$

Chap 1, Introduction 39

DIGITAL SYSTEM

Block diagram (used for dedicated HW implementation)

- elements: summation, gain, delay T

- (a) $y[n] = x[n] + x[n-1] + x[n-2] + \cdots$
- (b) y[n] = y[n-1] + x[n]
- (c) y[n] = 1.8523y[n-1] 0.94833y[n-2] + x[n] 1.9021x[n-1] + x[n-2]

DIGITAL SYSTEM

MORE SYSTEM PROPERTIES

causality

Output depends only on present and previous values of input.

stability

System gives bounded output in response to bounded input.

invertibility

If system gives y[n] in response to x[n], its inverse gives x[n] in response to y[n].

memory

Output depends on previous input values.

Chap 1, Introduction 41

DIGITAL SYSTEM

Ex. Determine properties of following systems

(linearity, time invariance, causality, stability, invertibility, memory)

- (a) y[n] = 3x[n] 4x[n-1] \Rightarrow all six properties hold
- (b) y[n] = 2y[n-1] + x[n+2] \Rightarrow noncausal, unstable
- (c) y[n] = nx[n] \Rightarrow time-variant, no memory
- (d) $y[n] = \cos(x[n])$ \Rightarrow nonlinear, time-invariant, noninvertible, no memory

42