

Winning Space Race with Data Science

Nnadozie Ezenekwe 15/04/2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

• This project focused on gathering data on Falcon 9 and Falcon Heavy launches using web scraping techniques with Beautiful Soup and the requests library. The collected data was then cleaned and analysed to determine whether a rocket's first-stage landing was successful—a key factor in predicting launch costs. The workflow involved several steps, including Data Wrangling, Exploratory Data Analysis (EDA) with SQL and Python, and applying Machine Learning models to make landing predictions. Four classification models were tested: Logistic Regression, Support Vector Machine (SVM), Decision Tree Classifier, and K-Nearest Neighbours (KNN). The Decision Tree Classifier exhibited overfitting, while SVM and KNN delivered similar performances. Ultimately, Logistic Regression proved to be the most effective model for predicting successful landings.

Introduction

• Falcon 9 is a two-stage, medium-lift launch vehicle developed by SpaceX in the United States. Built for partial reusability, it helps reduce spaceflight costs while delivering payloads into orbit. The rocket's first stage (booster) provides initial thrust, propelling the vehicle to a set speed and altitude before detaching. Once separated, the second stage takes over, carrying the payload to its designated orbital path. Successfully landing the first stage is essential for cost estimation, as reusable boosters make space missions more economical.

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Sending a request to retrieve the Falcon 9 Launch Wikipedia page using its URL
- Extracting column headers from the HTML table to identify key data points
- Constructing a structured data frame to store and analyze the extracted information

EDA with SQL

- Retrieve a list of unique launch sites used in space missions.
- Show five records where launch sites start with "CCA".
- Calculate the total payload mass transported by boosters launched under NASA (CRS) missions.
- Determine the average payload mass carried by F9 v1.1 booster version.
- Identify the date of the first successful landing on a ground pad.
- Find the boosters that successfully landed on a drone ship with a payload mass between 4000 and 6000 kg.
- Count the number of successful and failed mission outcomes.
- List all booster versions that have carried the maximum payload mass.
- Extract records showing month names, failed landings on drone ships, booster versions, and launch sites for missions in 2015. Rank landing outcomes—like "Failure (drone ship)" and "Success (ground pad)"—from June 4, 2010, to March 20, 2017, in descending order.

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Launch Site Names Begin with 'CCA'

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	Nasa (Cots) Nro	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

SUM(PAYLOAD_MASS_KG_)
45596

Average Payload Mass by F9 v1.1

First Successful Ground Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

2015 Launch Records

Month	Landing_Outcome	Booster_Version	Launch_Site
01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Landing_Outcome	Outcome_Count
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

Launch

Total missions

Classification Accuracy

Confusion Matrix

Conclusions

• The Logistic Regression model delivered the strongest performance in predicting outcomes. Additionally, the Falcon 9 rocket has achieved more successful missions than failed ones.

