CSCI 6315 Applied Database Systems
ASSIGNMENT 3: Functional Dependencies and

Normalization

02/27/2020 00:30

Ulvi Bajarani

Student ID 20539914

E-mail: ulvi.bajarani01@utrgv.edu

Initial Relationship R:

$$R = (A, B, C, D, E)$$

Initial set F of Functional Dependencies holds on R:

$$A \to BC$$

$$CD \to E$$

$$B \to D$$

$$E \to A$$

Answers:

1) Suppose that we decompose the schema R into $R_1 = (A, B, C)$ and $R_2 = (A, D, E)$. Show that this decomposition is a lossless-join decomposition with respect to F.

To understand if the decomposition is a lossless-join, we should understand if A has a functional dependency with either B or C. It helps do define if A is a superkey or not.

Knowing $A \to BC$, we might also define $A \to B$ and $A \to C$ by the decomposition rule. Then, by transitivity we define that $A \to D$, and as a result, $AC \to E$, which might be reduced to $A \to E$.

Knowing $R_1 \cap R_2 = (A, B, C) \cap (A, D, E) = (A)$, $A \to A, B, C, D, E$ it is defined that $A \to R_1$. It proves that the decomposition is a lossless-join decomposition with respect to F.

2) Suppose that we decompose the schema R into $R_1 = (A, B, C)$ and $R_2 = (C, D, E)$. Show that this decomposition is not a lossless-join decomposition.

We use the same approach and the functional dependencies as in the Problem 1:

To understand if the decomposition is a lossless-join, we should understand if C has a functional dependency with either D or E. After using calculations in Problem 1, it might be seen that C is not enough to imply E alone: only with a combination in D, $AD \to E$.

Knowing $R_1 \cap R_2 = (A, B, C) \cap (C, D, E) = (C)$, $C \to D$ it is defined that $C \not\to R_1$ and $C \not\to R_2$. It proves that the decomposition is **not** a lossless-join decomposition with respect to F.

3) Compute $(BC)^+$.

The steps:

- $1) (BC)^+ \Rightarrow (BC)$
- 2) $(BC)^+ \Rightarrow (BCD)$ due to $B \to D$
- 3) $(BC)^+ \Rightarrow (BCDE)$ due to $B \to D$ and $CD \to E$
- 4) $(BC)^+ \Rightarrow (ABCDE)$ due to $E \rightarrow A$

The answer is: $(BC)^+ \Rightarrow (ABCDE)$

4) Compute the canonical cover F_c .

$$F_c=(A\to B, A\to C, CD\to E, B\to D, E\to A)$$
 which are $F_c\to F$ and $F\to F_c$

5) Show that the decomposition of R into $R_1 = (A, B, C)$ and $R_2 = (A, D, E)$ is not a dependency-preserving decomposition.

Because of the fact that B and D are in different tables, the decomposition could not be a dependency-preserving.

For Problem 6 and Problem 7, we have to define candidate keys for the relationships. They are A, E, CD, BC.

6) Give a lossless-join decomposition into BCNF of R.

In the functional dependency $B \to D$, B is not a superkey, so we have to decompose R = (A, B, C, D, E) into $R_0 = (B, D)$ and $R_1 = R - D = (A, B, C, E)$. While R_1 is in BCNF form, R_2 is not due to $A \to BC$, where A is not a superkey. So, we have to decompose $R_1 = (A, B, C, E)$ into $R_2 = (A, B, C)$ and $R_3 = R_1 - (B, C) = (A, E)$. Finally, all tables are in BCNF form.

The answer is:

 $R_0 = (A, B, C)$ that has $F_0^+ = (A \to B, A \to C)$.

 $R_1 = (B, D)$ that has $F_1^+ = (B \to D)$.

 $R_2 = (A, E)$ that has $F_2^+ = (E \rightarrow A)$.

7) Give a lossless-join, dependency preserving decomposition into 3NF of R.

Knowing $F_c = (A \to B, A \to C, CD \to E, B \to D, E \to A)$ We might create tables:

$$R_0 = (A, B)$$
 that has $F_0^+ = (A \to B)$.

$$R_1 = (A, C)$$
 that has $F_1^+ = (A \to C)$.

$$R_2 = (C, D, E)$$
 that has $F_2^+ = (CD \to E)$.

$$R_3 = (B, D)$$
 that has $F_3^+ = (B \to D)$.

$$R_4 = (E, A)$$
 that has $F_4^+ = (E \to A)$.

Due to the fact that the key BC doesn't occur in the relations, we have to create

 $R_5 = (B, C, D)$ that has $F_5^+ = (BC \to D)$, because $(A \to B)$, $(B \to D)$, and $(A \to C)$. Also, we might composite it with R_2

We might simplify R_0 and R_1 as (A, B, C)

The answer is:

$$R_0 = (A, B, C)$$
 that has $F_0^+ = (A \to B, A \to C)$.

$$R_1 = (C, D, E)$$
 that has $F_1^+ = (CD \rightarrow E)$.

$$R_2 = (B, C, D)$$
 that has $F_2^+ = (BC \to D)$.

$$R_3 = (E, A)$$
 that has $F_3^+ = (E \rightarrow A)$.