910; on on [0] + = A (a 6) A - B d

- 5. For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2 \times 2 matrix and v is an eigenvector of A corresponding to an eigenvalue λ then 2v is an eigenvector of A corresponding to the eigenvalue 2λ .
- b) If V is a subspace of \mathbb{R}^2 and \mathbf{w} is a vector such that $\operatorname{proj}_V \mathbf{w} = -\mathbf{w}$ then \mathbf{w} must be the zero vector.
- c) If A is a square matrix which is both symmetric and orthogonal then A^2 is the identity matrix.

d) If A and B are 2 x 2 matrices which are both orthogonally diagonalizable, then the matrix

A + B is also orthogonally diagonalizable.

A = [0 2] then [0 2 - h] qives h=1, 2 for h=1 Expensector = [0]

A = [0 2] then [0 2 - h] qives h=1, 2 for h=1 Expensector = [0]

A = [0 2] then [0 2 - h] qives h=1, 2 for h=1 Expensector = [0]

The streethed for Popular (w. y) R w saw rector (w. y) - 0

The streethed for Popular (w. y) R w saw rector (w. y) - 0

The transfer of the sequential to A = A and orthogonal

A = I. A = I. A will be equivalent to A = A as A = A there

For capatry to the identity matrix.

The only symptome 2x matrices and a symmetric matrix

Plus another symetric matrix will be symmetric.

Tratse, if V=-W then ProjeW=(-w2)-w=1+w)=-W
therefore w can be a non-zero vector