#### 最短経路問題

離散数学・オートマトン 2021 年後期 佐賀大学理工学部 只木進一 ① 最短経路問題: Shortest Path

② Dijkstra 法

③ Dijkstra 法の正当性

### 最短経路問題とは

- 有向ネットワーク
  - 各辺に距離・コスト (正の実数)
- 始点から終点までの最短有向道を見つける
  - 辺の向きがそろった道
- 距離・コストの組み合わせ最適化問題

# すべての辺の距離が同じ場合 幅優先探索で十分



# 辺の長さがばらばらな場合



#### 幅優先探索では誤る



- $v_4$  への経路が  $v_0 \rightarrow v_1 \rightarrow v_4$  となり、距離が 5
- しかし、経路  $v_0 \rightarrow v_1 \rightarrow v_3 \rightarrow v_4$  のほうが距離 4
- 頂点の移動数が多くても、距離の短い道がある

## Dijkstra 法: 初期化

p(v) : 始点から頂点 v への距離

q(v) : 始点から頂点 v への経路の、v の一つ前の頂点

l(e): 辺eの長さ

U: 始点からの距離が仮に分かった頂点の集合

W: 始点からの距離が確定頂点の集合

$$\begin{split} U &= \{v_0\} \\ W &= \emptyset \\ p(v_0) &= 0 \\ p(u) &= +\infty \quad (\forall u \in U \setminus \{v_0\}) \\ q(v) &= \mathsf{NULL} \quad (\forall u \in V) \end{split}$$

## Dijkstra 法: アルゴリズム

#### **Algorithm 1** Dijkstra 法

```
while U \neq \emptyset do
w=U の要素のうち p(w) が最小の要素
for all e \in \delta^+ w do
   x = \partial^- w
                                             ▷ w の隣接頂点
                              ▶ e を使ったほうが近距離
   if p(x) > p(w) + l(e) then
       q(x) \leftarrow w
       p(x) \leftarrow p(w) + l(e)
   end if
   if x \notin U then
       U に x を追加
   end if
end for
wをWへ追加
```

## 例 1



黄色い頂点は U に属する。



黄色い頂点はUに属する。 赤い頂点はWに属する。



黄色い頂点はUに属する。 赤い頂点はWに属する。



#### $v_3$ の距離が変更になった。



#### $v_4$ の距離が変更になった。

### 例 1: 結果



## 例 1: まとめ

| W                                                      | U              | p            | q              |
|--------------------------------------------------------|----------------|--------------|----------------|
| Ø                                                      | $\{v_0\}$      | $p(v_0) = 0$ |                |
| $\{v_0\}$                                              | $v_1, v_2\}$   | $p(v_1) = 2$ | $q(v_1) = v_0$ |
|                                                        |                | $p(v_2) = 1$ | $q(v_2) = v_0$ |
| $\{v_0, \frac{\mathbf{v_2}}{2}\}$                      | $\{v_1,v_3\}$  | $p(v_3) = 4$ | $q(v_3) = v_2$ |
| $\{v_0, \textcolor{red}{v_1}, v_2\}$                   | $\{v_3, v_4\}$ | $p(v_3) = 3$ | $q(v_3) = v_1$ |
|                                                        |                | $p(v_4) = 5$ | $q(v_4) = v_1$ |
| $\{v_0, v_1, v_2, \frac{\mathbf{v_3}}{\mathbf{s_3}}\}$ | $\{v_4\}$      | $p(v_4) = 4$ | $q(v_4) = v_3$ |
| $\{v_0, v_1, v_2, v_3, v_4\}$                          | Ø              |              |                |

#### 赤文字は、変更箇所

# 例 2

















## 例 2: 結果



## 証明概要

- 補題 1 頂点は、始点からの距離が短い順に W に入る。また、W に入った頂点の距離を更新することはない
- 補題 2 U 及び W に属する頂点には、始点からの経路があり、その時点で最短である。

## 補題 1

• Dijkstra 法の実行に伴って、頂点が  $v_0$ 、 $v_1$ 、 $v_2$  という順に集合 W に追加されるとする。頂点名は、元のネットワークの頂点名でないことに注意

$$0 \le p(v_0) \le p(v_1) \le \cdots \le p(v_i) \le \cdots$$

• つまり W には、距離の小さい頂点から順に追加されていく。 従って、W に入った頂点 v に対する p(v) が後から更新され ることはない。

### 補題1が正しいこと

- Dijkstra 法の実行中に、以下が常に成り立つことを示す
  - ullet W の要素である頂点への距離は、W の要素でない任意の頂点への距離より大きいことはない

$$\max \{p(u) \mid u \in W\} \le \min \{p(u) \mid u \in V \setminus W\}$$

p(v) を更新することはない

$$\forall v \in U \subseteq V \setminus W, \forall u \in W \Rightarrow p(v) \ge p(u)$$



次のステップとして、 $v_3$  を起点に隣接頂点の距離を計算する。このとき、 $v_1$  の距離を更新することはない。更新したのは、 $v_4$  の距離で

## 補題 2

• U 及び W に属する頂点には、始点からの最短経路がある

### 補題2が正しいこと

- U 及び W に属する頂点には、始点からの最短経路がある:構成方法から
- U に属する頂点は、より短い経路が見つかる度に更新  $\Rightarrow$  やがて W に入り、距離確定