Shazam: Tuning clonal assignment thresholds by calculating distance to nearest neighbor

Namita Gupta 2016-02-20

Contents

Load Change-O data	1
Calculate nearest neighbor distances	1
Generate histogram	2

Estimating the optimal distance threshold for partitioning clonally related sequences is accomplished by calculating the distance from each sequence in the data set to its nearest neighbor and finding the break point in the resulting bi-modal distribution that separates clonally related from unrelated sequences. This is done via the following steps:

- 1. Load a Change-O tab-delimited database file.
- 2. Calculate the nearest neighbor distances for each sequence.
- 3. Generate a histogram of the nearest neighbor distances and inspect for the threshold separating the two modes.

Load Change-O data

A small example Change-O tab-delimited database file is included in the shazam package. Calculating the nearest neighbor distances requires the following fields (columns) to be present in the Change-O file: V_CALL, J_CALL, JUNCTION_LENGTH, and JUNCTION.

```
# Subset example data to one sample
library(shazam)
db <- subset(InfluenzaDb, BARCODE == "RL013")</pre>
```

Calculate nearest neighbor distances

The function for calculating distance between every sequence and its nearest neighbor takes a few parameters to adjust how the distance is measured. If a genotype has been inferred using the methods in the tigger package, and a V_CALL_GENOTYPED field has been added to the database, then this column may be used instead of the default V_CALL column by specifying the vCallColumn argument. This will allows the more accurate V call from tigger to be used for grouping of the sequences. Furthermore, for more leniency toward ambiguous V(D)J segment calls, the parameter first can be set to FALSE. Setting first=FALSE will use the union of all possible genes to group sequences, rather than the first gene in the field. The model parameter determines which underlying SHM model is used to calculate the distance. The default model is hs1f, a human Ig-specific single

nucleotide model similar to a transition/transversion model (Yaari et al, 2013). Other options include nucleotide Hamming distance (ham), amino acid Hamming distance (aa), single nucleotide (m1n) and 3-mer (m3n) mouse models (Smith et al, 1996), and a 5-mer model inferred from human data (hs5f) (Yaari et al, 2013). For models that are not symmetric (e.g., distance from A to B is not equal to the distance from B to A), there is a symmetry parameter that allows the user to specify taking the average or the minimum of the two distances to determine the overall distance.

Generate histogram

The primary use of the distance to nearest calculation in the Change-O pipeline is to determine the optimal threshold for separating clonally related sequences (represented by sequences with "near" neighbors) from singletons (sequences without "near" neighbor), which show up as two modes in a histogram.

In this example, the length normalized hs1f model distance threshold would be set to a value near 0.1.

In this example, the unnormalized hs5f model distance threshold would be set to a value near 4.