DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2016**

MSc and EEE PART IV: MEng and ACGI

RADIO FREQUENCY ELECTRONICS

Thursday, 12 May 10:00 am

Time allowed: 3:00 hours

Corrected copy

There are SIX questions on this paper.

Answer FOUR questions.

All questions carry equal marks

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s): S. Lucyszyn

Second Marker(s): A.S. Holmes

This is a closed book examination.

Special instructions for students

None.

The Questions

1. An RF signal of 1 mW is input to a power amplifier with an output of 1 W. Design a suitable power amplifier to give the best overall performance using the following transistor stages.

Pout MAXLIN [dBm]	P _{DC} [mW]	IP ₃ [dBm]
25	600	40
30	2000	40
15	60	40

Table 1.1 Transistor Specifications.
(Note that all the transistors have perfect impedance matching)

[2]

[2]

a) From the design, calculate the following at each stage and the overall values for:

i)	Power gain	
ii)	Output power	[1]
iii)	Basic efficiency	[2]
iv)	PAE	[2]
v)	IP ₃	[2]
,		[2]
vi)	IMD ₃ for two-tone power level given in (ii)	[2]
vii)	Dissipated power	

b) From first principles, prove that the 3rd order intermodulation log-power gain slope is three times that of the desired output log-power slope. [2]

c) In linear operation, if the overall input power drops by 3 dB, what happens to the following:

i)	Output power	
ii)	I ₃ power	[1]
iii)	IMD_3	[1]
,	114167	[1]

2. a) Describe, with the aid of a diagram, a branch-line coupler having a distributedelement implementation, indicating lengths and impedances. Indicate its main characteristics.

[5]

b) Replace the distributed-element implementation in 2(a) with an equivalent lumped-element version. How does the performance compare with that in 2(a)? With a coupler having an impedance of $Zo = 50 \Omega$, calculate the components values for an operating frequency of 1.8 GHz.

[5]

Replace the lumped-element implementation in 2(b) with an equivalent lumped-distributed version. With a coupler having an impedance of $Zo = 50 \Omega$ and line sections of $\phi = 45^{\circ}$, calculate the components values for an operating frequency of 1.8 GHz.

[5]

d) Draw the topology of a balanced amplifier employing the coupler given in 2(a).

[5]

3.

a) Compare and contrast lumped-element impedance matching over the use of distributed-elements, in terms of frequency performance. How does this affect their role in DC biasing networks?

[4]

b) With lumped-element impedance matching, what terminating impedance conditions are best suited for L-match, π -match and T-match networks.

[4]

- c) A 2 GHz narrow-band amplifier has an output impedance of $(5 j7) \Omega$ and must be matched to a system impedance of 50 Ω . Design simple matching circuits to achieve maximum power transfer:
 - i) With the use of one lumped-element component and one distributedelement component

[4]

ii) With the use of two lumped-element components

[4]

d) With monolithic technology, discuss the difficulties implementing lumped-element and distributed-element components. How can micromachining technologies help to overcome some of the problems with monolithic implementations? How does this affect their role in filter networks?

[4]

- 4.
- a) Explain why filters having sharp frequency roll-off characteristics require large components to achieve low insertion losses.

[4]

b) Explain why impedance and admittance inverters are required for realising practical narrow bandwidth filters. In addition, with the use of simple block diagrams, explain how these inverters work.

[6]

c) Redesign the 1.8 GHz resonator topology shown in Figure 4.1, by employing all capacitor admittance inverters, so that the series tuned circuit can be replaced with a shunt parallel tuned circuit.

Figure 4.1: Lumped-element resonator.

[8]

d) What effect on the insertion phase does the all capacitor admittance inverter have? [2]

5.

Given a square wave signal generator, with a clock frequency that can vary between DC and 1000 MHz, propose how this could be used to generate a sinusoidal signal at a frequency of 1800 MHz.

[4]

(b) Design a lumped-element L-C high-pass filter to meet the following specifications:

Pass band attenuation ripple 0.1 dB -3 dB cut-off frequency: 1500 MHz Stop band frequency: 600 MHz Stop band attenuation: > 70 dB Source impedance, Z_s : 50Ω Load impedance, Z_l : 50Ω

[10]

(c) Determine the worst-case levels of return losses within both the pass band and the stop band for the filter in 5(b). How could the stop band return loss adversely affect the implementation of 5(a) and suggest a suitable topology for overcoming this problem?

[6]

6.

a) With the aid of a diagram, describe the S-parameter representation of a linear two-port circuit, stating the precise definitions of all parameters and the main power specifications.

[5]

b) State which RF components best described the following S-parameter matrices and calculate any relevant power specifications:

(i)
$$[S] = \begin{pmatrix} 0 & e^{-j720} \\ e^{-j720} & 0 \end{pmatrix}$$
 (6.1)

(ii)
$$[S] = \begin{pmatrix} 0 & 0.07e^{-j30} \\ e^{-j60} & 0 \end{pmatrix}$$
 (6.2)

(iii)
$$[S] = \begin{pmatrix} 0.1e^{-j30} & 0.3e^{-j80} \\ 9.7e^{-j80} & 0.15e^{-j60} \end{pmatrix}$$
 (6.2)

[5]

Derive an algebraic expression for the overall Γ_{in} , of a linear two-port network that is terminated at its output port with a one-port network represented by Γ_L .

[6]

d) Referring to the result in 6(c), state the condition for stability for the overall one-port network, for any value of generator source impedance. If the two-port network in 6(b)(ii) is terminated with a load impedance having $\Gamma_L = 0.5$, determine if the overall one-port network is stable.

[4]

Standard Filter Curves and Tables

Attenuation characteristics for Butterworth filters.

Attenuation characteristics for a Chebyshev filter with 0.01-dB ripple.

Attenuation characteristics for a Chebyshev filter with 0.1-dB ripple.

Attenuation characteristics for a Chebyshev filter with 0.5-dB ripple.

Chebyshev Low-Pass Prototype Element Values for 1.0-dB Ripple

Attenuation characteristics for a Chebyshev filter with 1-dB ripple.

Chebyshev Low-Pass Prototype Element Values for 1.0-dB Ripple

	alues for	1.0-dB R	ipple	
9	R _s		R _L	
R_{θ}/R_{t}	C ₁	L_2	C,	L
3.000 4.000 8.000 80 1.000 0.500 0.333 0.250 0.125 m 3.000 4.000 8.000	0.572 0.365 0.157 1.313 2.216 4.431 6.847 8.862 17.725 1.632 0.653 0.452 0.209 1.350	3.132 4.600 9.658 1.109 1.088 9.817 9.726 0.680 0.612 1.460 4.411 7.063 17.164 3.010	2.218 2.216 2.216 2.316 2.316 1.108 0.814 0.613 0.428 1.485	2.535 2.648 3.261 1.106
R_L/R_R	L,	С,	L_{z}	C.
₹ Ø	c; ‡	L. T.	RL	_

		\$		in_m.		RL		
rs.	R_{s}/R_{L}	C ₁	L ₂	C _a	L,	C.	La	C ₇
5	1.000 0.500 0.333 0.250 0.125	2.307 4.414 6.622 5.529 17.657 1.721	1.128 0.505 0.376 0.282 0.141 1.645	3.103 4.653 6.205 7.756 13.961 2.061	1,125 1,128 1,128 1,128 1,128 1,128 1,493	2.207 2.207 2.207 2.207 2.207 2.307 1.103		
8	3.000 4.000 8.000	0.679 0.481 0.227 1.378	3.873 5.844 13.310 8.097	0.771 0.476 0.198 1.690	4.711 7.351 15.740 2.074	0.969 0.849 0.726 1.494	2,406 2,532 2,800 1,102	
7	1,000 0,500 0,233 0,250 0,125	8.204 4.406 6.612 8.815 17.631 1.741	1,131 0,566 0,377 0,863 0,141 1,677	3.147 6.293 9.441 12.586 25.173 2.155	1,194 0,895 0,798 0,747 6,671 1,700	3.147 3.147 3.147 3.147 3.147 2.079	1,131 1,131 1,131 1,131 1,131 1,494	3.204 2.204 3.204 2.204 2.204 1,102
n	R_L/R_a	L_i	C ₂	L_4	C,	L,	C ₄	L
		S		Γ				

Butterworth Low-Pass
Prototype Flowert Volume

			Prototype	Element	Values	
		(- R:	[", [-rist R,≸	
	я	R_z/R_L	C ₁	L_2	C,	L_4
	3	1.111 1.250 1.429 1.667 2.000 2.500 3.333 5.000 10.000	1.035 0.849 0.697 0.505 0.448 0.342 0.342 0.158 0.074 1.414	1.835 2.181 2.439 2.828 3.346 4.095 5.313 7.707 14.814 0.707		,
	э	0.900 0.800 0.700 0.800 0.500 0.400 0.300 0.200 0.100	0.808 0.844 0.915 1.023 1.181 1.425 1.838 2.009 6.187 1.500	1.833 1.364 1.163 0.905 0.779 0.604 0.440 0.284 0.138 1.333	1.500 1.928 2.277 2.702 3.841 4.044 5.363 7.910 15.455 0.300	
	4	1.111 1.250 1.429 1.667 2.500 2.500 3.333 5.000 10.000	0.466 0.388 0.325 0.260 0.218 0.169 0.124 0.080 0.039	1,592 1,695 1,862 2,103 9,452 2,986 3,883 5,684 11,094 1,577	1.744 1.511 1.891 1.062 0.863 0.691 0.507 0.331 0.162 1.062	1.469 1.811 2.175 2.613 3.187 4.008 5.338 7.940 15.642 0.383
L	A	R _L /R _s	L	C _s	La	Ċ,
		5	c, 1	c' <u>T</u>	RL	

Butterworth Low-Pass Prototype Element Values

						200000			
		(c, <u>†</u>		RL			
п	R_a/R_L	C,	La	C,	L,	C.	La	C ₇	
5	0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.300	0.442 0.470 0.517 0.586 0.688 0.838 1.094 1.808 3.519 1.545	1.027 0.806 6.731 0.609 0.490 0.388 0.285 0.160 0.001	1.910 2.061 2.285 2.600 3.051 3.736 4.884 7.183 14.095	1.756 1.544 1.313 1.126 0.924 0.727 0.837 0.352 0.173 0.894	1.389 1.738 2.108 2.552 0.133 3.965 8.307 7,935 15.710 0.309			
đ	1.111 1.250 1.429 1.667 2.000 2.500 3.313 8.000 10.000	0.289 0.245 0.207 0.173 0.141 0.111 0.062 0.054 0.026 1.653	1.040 1.116 1.206 1.407 1.653 2.028 2.656 3.917 7.705 1.759	1.322 1.126 0.957 0.801 0.654 0.814 0.379 0.248 0.122 1.353	2.054 2.230 2.499 2.858 3.369 4.141 5.433 8.020 15.786 1.202	1.744 1.580 1.340 1.143 0.948 0.745 0.552 0.363 0.179 0.758	1.335 1.689 9.063 9.509 3.094 3.991 5.980 7.028 15.738 0.250		
7	0.900 0.800 0.700 0.800 0.500 0.400 0.300 0.200 0.100	0.299 0.322 0.357 0.406 0.480 0.590 0.778 1.145 2.257 1.538	0.711 0.806 0.515 0.432 0.354 0.278 0.206 0.135 0.067 1.799	1.404 1.517 1.658 1.928 2.273 2.795 3.671 5.427 10.700 1.659	1.489 1.278 1.091 0.917 0.751 0.592 0.437 0.287 0.142 1.397	2.125 2.334 2.618 3.005 1.553 4.380 5.761 6.526 16.882 1.055	1.727 1.546 1.350 1.150 0.051 0.754 0.560 0.360 0.183 0.656	1.896 1.652 9.028 9.477 3.064 3.904 5.258 7.908 15.748 0.223	
n	<u> </u>								

Chebyshev Low-Pass Element Values for 0.01-dB Ripple

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	c, Į	ا. 1سب	w.}	
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	n	Re/Re	C,	L	C,	L,
1.250 0.018 2.075 1.542 1.017 1.429 0.495 2.270 1.334 2.008 1.697 0.396 2.571 1.128 2.491 2.000 0.316 2.591 0.920 3.045 2.500 0.342 3.041 0.729 3.075 3.333 0.174 4.727 0.538 5.200 5.000 0.112 0.010 0.352 7.813 10.000 0.054 13.469 0.173 15.510 ∞ 1.529 1.694 1.312 0.523		1.111 1.250 1.429 1.667 2.500 1.500 10.000 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.100 0.100 0.100 0.100	1.847 0.943 0.739 0.809 0.479 0.353 0.253 0.164 0.078 1.413 1.181 1.097 1.197 1.197 1.274 1.433 1.734 2.219 3.193 6.141	1.985 1.997 2.344 2.757 3.277 4.033 5.253 7.659 14.749 0.742 1.821 1.600 1.443 1.224 0.829 0.945 0.475 0.475 0.475	1 460 1.508 2.145 8.509 3.164 3.974 5.280 7.834 15.390 0.591 1.761	
R./R. T. C. I. C.		1,550 1,429 1,667 2,000 2,500 3,333 5,000 10,000	0.018 0.493 0.300 0.310 0.542 0.174 0.112 0.054	2.075 2.279 2.571 2.994 3.041 4.727 6.910 13.469	1.542 1.334 1.128 0.920 0.729 0.538 0.352 0.173	1.617 2.008 2.401 3.045 3.875 5.209 7.813 15.510
The state of the state of	•	R_{ν}/R_{ν}	L_{i}	C,	L_{z}	C.

Chebyshev Low-Pass Element Values for 0.01-dB Ripple

Chebyshov Low-Pess Prototype Element Values for 0.1-dB Ripple

				прри		
	6	[c, T	k. ↓		
n	R_s/R_L	C,	L ₂	C _a	L,	٦
2	1.353 1.429 1.567 2.000 2.500 3.333 5.000 10.000	1,209 0.977 0.733 0.560 0.417 0.293 0.184 0.087 1,391	1.838 1.982 2.489 3.054 3.827 5.050 7.426 14.433 0.819	<u></u>		
3	1.000 0.900 0.800 0.700 0.600 0.800 0.400 0.300 0.200 0.100	1.403 1.426 1.451 1.521 1.648 1.853 2.186 2.760 0.942 7.512 1.513	1.594 1.494 1.356 1.193 1.017 0.838 0.800 0.486 0.317 0.155 1.510	1.433 1.622 1.871 2.190 2.603 3.159 3.968 5.279 7.850 15.466 0.716		
4	1.355 1.429 1.667 2.000 2.500 3.333 5.000 10,000	0.992 0.779 0.578 0.440 0.329 0.233 0.148 0.070 1.511	2.148 2.348 2.730 3.227 3.061 5.178 7.607 14.887 1.768	1,585 1,429 1,185 0,967 0,760 0,560 0,067 0,180 1,453	1.341 1.700 9.943 8.856 3.696 5.030 7.614 15.230 0.673	
ก	R_L/R_s	L_1	C_3	L,	C,	1
		c,]	c. <u>T</u>	RL		

Chebyshev Low-Pass Prototype Element Values for 0.1-dE Ripple

			R4	₩ ~ ~₩	m			
			Ø 4±	c, ‡	약구 약구	g, \$		
			I	Ţ	T = T	1		
				*	+ +	+		
n	R_{e}/R_{L}	C,	L_1	C _s	L_4	C.	L,	C _T
5	1.000 0.900	1.301 1.285	1.556	2.241	1.556	1.301		
	0.800	1.300	1.433 1.982	2.380	1,488	1.488		
	0.700	1.358	1.117	2.868	1.544	2.062		
	0.600	1.470	0.947	3.269	1.065	2.484		
	0.500	1.654	0.778	3.645	0.913	3.055		
	9.400	1.054	0.612	4.720	0.733	3.884		
	0.300	2477	0.451	6.196	0.580	5.837		
	0,800	3.546	0.225	9.127	0.386	7.889		
	0.100	6.757	0.215	17.957	0.182	15,745		
	40	1.541	1.807	1.700	1.417	0.651		
0	1.355	0.942	3.080	1,650	2.247	1.534	1.277	
	1.429	0.735	2.349	1,454	2.544	1.405	1.629	
	1.057 2.000	0.543	2.800	1.183	3.064	1.183	8.174	
	2.500	0.414 0.310	3.068	0.958	3.712	0.079	£704	
	3.333	0.310	3.785 4.927	0.749	4.651	0.77B	3.645	
	5.000	0.130	7.350	0.551	6.195	0.580	4.998	
	10.000	0.067	14.220	0.178	9.261 18.437	0.384	7.618	
	==	1.534	1.884	1.831	1.749	1.394	15.350	
7	1.000	1.561	1.520	2.930			0.638	
	0.900	1.242	1.395	2.361	1.680 1.578	2.230 2.307	1.520	1.562
	0.800	1.255	1.545	2.548	1.443	2.307	1.459	1.447
	0.700	1.310	1.083	2.819	1.263	2.942	1.933	1.897
	0.600	1.417	0.917	3.205	1.200	2.364	1.001	2.021
	0.500	1.595	0.753	3.764	0.928	4.015	0.014	3.016
	6.400	1.885	0.593	4.016	0.742	4.970	0.738	3.853
	0.300	2.392	0.437	8.054	0.558	0.509	0.557	5.217
	0.200	3.428	0.288	8.937	0.369	9,770	0.372	7,890
	0.100	6.570	0.141	17.603	0.184	19.376	0.166	15.813
		1,575	1.858	1.921	1.827	1:734	1.379	0.631
PS .	R_L/R_0	L,	C _s	L_{s}	C.	L_{a}	C.	L,
			- 6	L	L _k L _r			
			_شـشـ		ഫ്സംഫ്സ	_		
			<u></u>	1 . [ļ		
			<i>ලා</i> ය:	〒 二十	다 무 뭐	.}		
			1	1 1	- 1	}		
			•	- +	•	4		

Chebyshev Low-Pass Prototype Element Values for 0.5-dB Ripple

_					
	0	; ; <u>;</u>	C ₁	R.	
n	R_{A}/R_{L}	C,	La	C,	L,
3	1.984 2.000 2.500 3.333 5.000 10.000	0.983 0,909 0.564 0.375 0.228 0.105	1.950 2.103 3.165 4.411 6.700 13.322		
3	1.000 0.900 0.800 0.700 0.500 0.400 0.200 0.200	1.307 1.864 1.918 1.997 2.114 2.557 2.965 3.729 5.754 9.890	0.975 1.280 1.209 1.120 1.015 0.759 0.615 0.463 0.309 0.153	1.634 2.026 2.237 2.517 3.436 4.342 5.576 8.225 16.118	
4	1,984 2,000 2,500 3,333 5,000 10,000	1.572 0.920 0.845 0.516 0.344 0.210 0.098 1.436	1.518 2.586 2.720 3.766 5.120 7.706 15.352 1.889	0.932 1.304 1.238 0.869 0.821 0.400 0.194 1.521	1.826 1.985 3.121 4.480 6.987 14.262 0.913
n	R_L/R_R	L_1	C2	L,	Ċ,
		C1 -	- c-	RL	<u> </u>

Chebyshev Low-Pass Prototype Element Values for 0.5-dB Ripple

		(C1 C1	Ţ ^c , Ţ	R _L		
n	R_a/R_L	C,	L ₃	C ₁	L,	C.	L_1	C,
5	1.000	1.807	1.303	1.891	1.303	1.807		
	0.900	1.854	1.973	2.549	1.238	1.970		
	0.800	1.925	1.126	3.000	1.157	2.183		
	0.700	2.035 2.200	1.015	3.353	1.058	2.470		
	0.500	1.457	0.890 0.754	3.765	0.943	2.861		
	0.400	2.870	0.754	4.367 5.298	0.810 0.864	3.414		
	0.300	3.568	0.459	0.871	0.508	4.945 5.025		
	0.200	5.064	0.308	10.054	0.343	5.025 6.367		
	0.100	9.556	0.153	19.647	0.173	10.574		
	40	1.630	1.740	1.022	1.514	0.903		
6	1.984	0.905	2.577	1,300	2.713	1.199	I fine	
	2,000	0.830	2.704	1.291	2,872	1.337	1.796	
	2.500	0.500	1.722	0.890	4.109	0.881	3.103	
	3.333	0.337	5.055	0.632	5,699	0.635	4.481	
	8.000	0.205	7.615	0.408	6.732	0.412	7.031	
	10.000	0.096	15.186	0.197	17.681	0.202	24.433	
7	1.000	1,790	BQ2.1	2.718	1.385	2,718	1.298	1.790
	0.900	1.835	1.215	2.559	1.308	2.883	1.334	1.953
	0.800	1.905	1 118	3.076	1.215	3.107	1.155	1.108
	0.700	8.011	1.007	3.364	1.105	3.416	1.058	2.455
	0.800	2.174	0.882	3.772	0.979	3.852	0.944	2.848
	0.400	2.425 2.835	0.747	4.370	0.838	2.289	0.814	3.405
	0.300	3.546	0.455	5.295 6.807	0.685	5.470	0.009	4.243
	0.200	5.007	0.303	10.049	0.352	7:134 10:498	0.513	5.635 8.404
	0.100	9.456	0.151	19.649	0.178	20.631	0.348	16.863
	mg.	1.646	1.777	2.031	1.789	1.924	1.503	0.895
n	R_{ν}/R_{ν}	L_1	C,	La	C.	L ₁	C.	L
			ر دېښېږ د	- m	# ± #	~		

