Programowanie Liniowe Projekt 1 Michał Safuryn 288574

H1. Zwiększając n można uzyska
¢ obwód dowolnie bliski liczbie $2\Pi.$

Nie, zwiększając N nie będziemy zbliżać się do dowolnie bliskiej wartości 2Π

Przykład danych:

N	2PI	MY_2PI
10	6,28318531	6,18034
10010	6,28318531	6,28272
20010	6,28318531	6,28021
30010	6,28318531	6,28324
40010	6,28318531	6,28208
50010	6,28318531	6,28791
60010	6,28318531	6,28664
70010	6,28318531	6,2786
80010	6,28318531	6,28573
90010	6,28318531	6,27918

Powyższy wykres przedstawia jak zmienia się 2Π wyliczone z sumy długości wektorów. Można zauważyć, że od około 320010-wierzchłkowego wielokąta 2Π jest bardzo blisko tej stałej. Jednak dla większych N Pi zaczyna się zmieniać i oscyluje w okolicy 6.1 - 6.5

Na wykresie powyżej można zobaczyć błędy, różnicę między stałą 2Π , a wyliczaną. I widać ze wraz ze wzrostem N błąd też rośnie.

H2. Suma wszystkich wektorów wi daje dokładnie wektor zerowy.

Nie, nie daje ona dokładnie wektora zerowego. Daje ona natomiast bardzo blisko wektorowi zerowemu

Przykład danych:

N	Vec0_X	Vec0_Y	
10	0	0	
10010	-2,82E-07	2,00E-05	
20010	3,50E-06	-8,80E-04	
30010	-3,65E-06	0,00065923	
40010	1,95E-06	0,00049925	
50010	4,12E-07	0,00038958	
60010	7,55E-07	0,00033021	
70010	2,18E-06	0,00028729	
80010	-1,36E-06	0,00024819	
90010	-1,65E-06	0,00021839	
100010	-3,50E-06	0,00019455	

Jak można zauważyć zmienne nie są równe dokładnie [0, 0], ale są one dość blisko blisko.

Wykres pokazuje ze oscylują one w granicy 0,0. Jednak, gdy N rosną również błędy Podsumowując, NIE, nie dają dokładnie wektora zerowego.

H3. Sumy współrzędnych wektorów w_i można policzyć osobno, a następująca zmiana kolejności sumowania sprawi, że wynik będzie bliższy wektorowi zerowemu.

Dla moich danych TAK, 164/204 dane były bliżej wektora 0 po posortowaniu.

Pomarańczowe kropki przedstawiają posortowane dane i jest ich więcej bliższych [0, 0] niż tych nieposortowanych.

H4. Opisane zastosowanie metody Monte Carlo jest mniej efektywne niż metoda oparta o sumowanie wektorów.

Ciężko powiedzieć, ponieważ wyniki monte carlo zależą od wartości N. Zakładając że trafiamy około 75% wartości w ćwiartkę koła dla małych danych nasze wyniki mogą być niedokładne i wtedy sprawdza się lepiej metoda sumowania. Jednakże dla większych danych monte carlo działa lepiej i generuje błędy mniejsze niż sumowanie

Przykładowe dane:

N	Pi	MY_PI_monte	Points_In	MY_PI	Błąd_monte	Błąd_sum
10	3,141592654	3,6	9	3,09017	0,458407	0,051423
10010	3,141592654	3,1041	7768	3,14136	0,037493	0,000233
20010	3,141592654	3,12204	15618	3,140105	0,019553	0,001488
30010	3,141592654	3,12469	23443	3,14162	0,016903	0,000027
40010	3,141592654	3,13042	31312	3,14104	0,011173	0,000553
50010	3,141592654	3,13537	39200	3,143955	0,006223	0,002362
60010	3,141592654	3,14048	47115	3,14332	0,001113	0,001727
70010	3,141592654	3,14052	54967	3,1393	0,001073	0,002293
80010	3,141592654	3,14201	62848	3,142865	0,000417	0,001272
90010	3,141592654	3,14272	70719	3,13959	0,001127	0,002003
100010	3,141592654	3,14293	78581	3,145545	0,001337	0,003952
110010	3,141592654	3,14168	86404	3,145355	0,000087	0,003762
120010	3,141592654	3,1435	94313	3,145245	0,001907	0,003652

H5. Podobnie jak w H3 ale w celu sumowania każdego ze zbiorów wybieramy dwa najmniejsze (albo największe) elementy a sumę wstawiamy z powrotem do zbioru.

Używając kolejki możemy dostać niestety gorsze wyniki, dalsze wektorowi zerowemu niż sum.

Z testowanych pkt 28/204 było bliżej 0.

