Corrigé de l'examen final Hiver 2000

Problème no. 1 (20 points)

a) La source v_s est une fonction échelon. Par conséquent, le courant i₃(t) sera de la forme suivante:

$$i_3(t) = \left[A + Be^{\frac{-t}{\tau}}\right]u(t)$$

 τ = RC est la constante de temps du circuit que l'on détermine à l'aide du circuit de base:

$$\begin{split} C &= 100 \ \mu F \\ R_1 &= 100 \ \Omega \\ R_2 &= 500 \ \Omega \\ R_3 &= 600 \ \Omega \\ R_4 &= 200 \ \Omega \end{split}$$

$$R = \frac{R_1 R_2}{R_1 + R_2} + \frac{R_3 R_4}{R_3 + R_4} = 233.33\Omega$$

$$\tau = RC = 233.33 \times 1 \times 10^{-4} = 0.0233 s$$

Les constantes A et B sont déterminées par les valeurs de $i_3(t)$ à t = 0 et à $t \to \infty$.

$$i_{s}(0+1) = \frac{120}{\frac{100 \times 600}{100 + 600} + \frac{500 \times 200}{500 + 200}} = 0.525 A$$

$$i_3(0+) = \frac{100}{100+600} \times i_s(0+) = 0.075A$$

 $\underline{\hat{a}} t \rightarrow \underline{\infty}$

On déduit:

Finalement:

$$i_3(t) = \left[0.15 - 0.075e^{\frac{-t}{\tau}}\right]u(t)$$

avec $\tau = 23.3 \text{ ms}$

$$i_3(\infty) = \frac{120}{600 + 200} = 0.15 \,\mathrm{A}$$

b) La durée du régime transitoire est égale à 5 fois la constante de temps du circuit:

$$d_{transitoire} = 5 \times \tau = 5 \times 23.3 \,ms = 116.7 \,ms$$

Problème no. 2 (20 points)

a) Circuit transformé (domaine de Laplace):

Le courant I_L est donné par:

$$I_{L} = \frac{V_{s}}{Ls + \frac{R_{1}Z_{2}}{R_{1} + Z_{2}}} = \frac{V_{s}(R_{1} + Z_{2})}{Ls(R_{1} + Z_{2}) + R_{1}Z_{2}}$$

Le courant \mathbf{I}_1 est calculé à l'aide de la loi du diviseur de courant:

$$\begin{split} I_1 &= \frac{Z_2}{R_1 + Z_2} \times I_L = \frac{Z_2}{R_1 + Z_2} \times \frac{V_s(R_1 + Z_2)}{Ls(R_1 + Z_2) + R_1 Z_2} = \frac{Z_2}{Ls(R_1 + Z_2) + R_1 Z_2} \times V_s \\ I_1 &= \frac{\frac{R_2 Cs + 1}{Cs}}{Ls\left(R_1 + \frac{R_2 Cs + 1}{Cs}\right) + R_1 \frac{R_2 Cs + 1}{Cs}} \times V_s = \frac{R_2 Cs + 1}{Ls(R_1 Cs + R_2 Cs + 1) + R_1(R_2 Cs + 1)} \times V_s \\ I_1 &= \frac{R_2 Cs + 1}{(R_1 + R_2)LCs^2 + (L + R_1 R_2 C)s + R_1} \times V_s \end{split}$$

Avec les valeurs numériques, on a:

$$I_{1} = \frac{2 \times 10^{-4} s + 1}{2.2 \times 10^{-5} s^{2} + 0.05 s + 200} \times \frac{50}{s} = \frac{0.01 s + 50}{s(2.2 \times 10^{-5} s^{2} + 0.05 s + 200)}$$

$$I_1 = \frac{0.01s + 50}{2.2 \times 10^{-5} s(s^2 + 2272.73s + 9.091 \times 10^6)}$$

Les pôles de I₁ sont:

$$p_1 = 0$$

$$p_2 = -1136.4 + j2792.8$$
 $p_3 = -1136.4 - j2792.8$

$$p_3 = -1136.4 - j2792.8$$

On décompose I₁ en fractions partielles:

$$I_1 = \frac{0.01s + 50}{2.2 \times 10^{-5} s(s + 1136.4 - j2792.8)(s + 1136.4 + j2792.8)}$$
A
B
B*

$$I_1 \; = \; \frac{A}{s} + \frac{B}{s+1136.4-j2792.8} + \frac{B^*}{s+1136.4+j2792.8}$$

Les constantes A et B sont calculées:

$$A = \frac{0.01s + 50}{2.2 \times 10^{-5} (s^2 + 2272.73s + 9.091 \times 10^6)} \bigg|_{s = 0} = 0.25$$

$$B = \frac{0.01s + 50}{2.2 \times 10^{-5} s(s + 1136.4 + j2792.8)} \bigg|_{s = -1136.4 + j2792.8} = 0.1287 \angle -2.902$$
ent i (t) ast ágala à la transformáa Laplace inverse de L.:

Le courant i₁(t) est égale à la transformée Laplace inverse de I₁:

$$i_1(t) = [0.25 + 0.2574e^{-1136.4t}\cos(2792.8t - 2.902)]u(t)$$

b) La durée du régime transitoire est
$$d_{transitoire} = \frac{5}{1136.4} = 4.4 \text{ ms}$$

Problème no. 3 (20 points)

Le commutateur S est à la position 1 depuis très longtemps. Le circuit équivalent à t = 0- est montré ci-dessous.

À t = 0, S change de position de 1 à 2 et demeure à cette position pour le reste du temps. Le circuit équivalent pour t > 0 est montré dans la figure suivante.

Circuit transformé (domaine de Laplace):

La tension \mathbf{V}_2 est calculée à l'aide de la loi du diviseur de tension:

$$V_2 = \frac{\frac{5000}{s}}{\frac{5000}{s} + \frac{10000}{s} + 100} \times \frac{90}{s} = \frac{450000}{s(100s + 15000)} = \frac{4500}{s(s + 150)}$$

On décompose V₂ en fractions partielles:

$$V_2 = \frac{A}{s} + \frac{B}{s + 150}$$

Les constantes A et B sont calculées:

$$A = \frac{4500}{(s+150)} \bigg|_{s=0} = 30$$

$$B = \frac{4500}{s} \bigg|_{s = -150} = -30$$

La tension $v_2(t)$ est: $v_2(t) = [30 - 30e^{-150t}]u(t)$

Problème no. 4 (20 points)

a) Calcul de l'impédance $Z_{ab}(j\omega)$ vue par la source V_s :

On calcule d'abord l'impédance
$$Z_{ab}(s)$$
:

$$Z_{ab}(s) = R + \frac{Ls \times \frac{1}{Cs}}{Ls + \frac{1}{Cs}} = R + \frac{Ls}{LCs^2 + 1}$$

On déduit l'impédance
$$Z_{ab}(j\omega)$$
:

$$Z_{ab}(j\omega) = R + j \frac{\omega L}{1 - LC\omega^2} = 200 + j \frac{0.01\omega}{1 - 1 \times 10^{-7}\omega^2}$$

Le module de
$$Z_{ab}(j\omega)\colon$$

$$\left| Z_{ab}(j\omega) \right| = \sqrt{200^2 + \left(\frac{0.01\omega}{1 - 1 \times 10^{-7} \omega^2} \right)^2}$$

La phase de
$$Z_{ab}(j\omega)$$
:

$$\angle Z_{ab}(j\omega) = arctg \left(\frac{0.01\omega}{\frac{1 - 1 \times 10^{-7}\omega^2}{200}} \right) = arctg \left(\frac{5 \times 10^{-5}\omega}{1 - 1 \times 10^{-7}\omega^2} \right)$$

Calcul de $Z_{ab}(j\omega)$ pour quelques valeurs de ω :

ω	0	1000	3000	3200	5000	∞
$ Z_{ab}(j\omega) $	200	200.31	365.5	1637	202.7	200
<u>/Z_{ab}(jω)</u>	0	3.2°	56.8°	-82.9°	-9.4°	0°

Avec ces quelques valeurs, on peut <u>tracer approximativement</u> le module et la phase de $Z_{ab}(j\omega)$ en fonction de ω . La figure suivante montre le module et la phase de $Z_{ab}(j\omega)$ en fonction de ω (tracé à l'ordinateur).

b) Circuit transformé en RSP avec $\omega = 1000\pi \text{ rad/s}$:

La tension $\mathbf{V}_{\mathbf{R}}$ est calculée par la loi du diviseur de tension:

$$V_{R} = \frac{R}{R + Z_{x}} \times V_{s} = \frac{200}{200 + j2409.3} \times 100 \angle 0^{\circ} = 8.27 \angle -85.2^{\circ} V$$

La tension $\mathbf{V}_{\mathbf{L}}$ est calculée par la loi du diviseur de tension:

$$V_{L} = \frac{Z_{x}}{R + Z_{x}} \times V_{s} = \frac{j2409.3}{200 + j2409.3} \times 100 \angle 0^{\circ} = 99.65 \angle 4.8^{\circ} V$$

On vérifie que $V_R + V_L = V_s$:

