Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра электропривода

ЛАБОРАТОРНАЯ РАБОТА №2

по электронике Исследование выпрямителей Вариант № 4

Студент Группа:	dfhdfh
1АП-18-2	
Руководитель	Правильников В.А.

1 Однополупериодная схема выпрямления

Все показания с осциллографов показаны в Таблице 4

Рисунок 1- Показания первого осциллографа при минимальной нагрузке

Рисунок 2 — Показания 2 осциллографа при минимальной нагрузке Таблица 1- показания приборов при увеличении нагрузки

Нагрузка	U(XMM2),B	I(XMM3),mA		
5% (минимальная	14,9	31,3		
нагрузка)				
10%	14,8	33		
15%	14,7	34,9		
20%	14,7	37		
30%	14,7	42		
40%	14,6	48,7		
50%	14,4	57,8		
60%	14,2	71,1		
70%	13,8	92,5		
80%	13,2	132,3		
90%	11,6	232,3		
95%	9,3	373,5		

Рисунок 3 – Показания 1 осциллографа при максимальной нагрузке

Рисунок 4 – Показания 2 осциллографа при максимальной нагрузке

Рисунок 5- График зависимости U=f(I)

Uобр=Umax

U2=Umax/ $\sqrt{2}$ =49/ $\sqrt{2}$ ≈34,6 B

Ucp расч.=0,45*U2 =0,45*34,6≈15,47 В

Рисунок 6- Напряжение Ucp

Рисунок 7- Падение напряжение на резисторе R1

Вывод: Исходя из проделанного опыта можно сделать вывод о том, что Ucp расч отличается от Ucp примерно на 0,5 В, которые мы теряем на резисторе R1, и при последующем увеличении нагрузки падение напряжения на R1 будет расти из-за чего Ucp будет уменьшаться, а ток будет возрастать.

2 Двухполупериодная схема выпрямления со средним отводом

Рисунок 8 - Двухполупериодная схема выпрямления со средним отводом

Все показания с осциллографов показаны в Таблице 4

Рисунок 9 – Осциллограф 1 при минимальной нагрузке

Рисунок 10 - Осциллограф 2 при минимальной нагрузке

Таблица 2 - показания приборов при увеличении нагрузки

Нагрузка	U(XMM2),B	I(XMM3),mA
5% (минимальная	23,3	49
нагрузка)		
10%	23,2	51,7
15%	23,2	54,9
20%	23,1	57
30%	23	65
40%	22,8	76,2
50%	22,6	90,6
60%	22,3	111.6
70%	21,7	145,3
80%	20,8	208,3
90%	18,3	367,8
95%	14,9	596,8

Рисунок 11 – График зависимости U=f(I)

Рисунок 12 - Осциллограф 1 при максимальной нагрузке

Рисунок 13 - Осциллограф 2 при максимальной нагрузке

Uобр=2*Umax=2*38,6=77,7 В U2=Umax/ $\sqrt{2}$ =38,6/ $\sqrt{2}$ ≈27,3 В Ucp расч=0,9*U2 =0,9*27,3≈24,48 В

Рисунок 14 – Значение Ucp

Рисунок 15 – Падение напряжения на R1

Вывод: Исходя из проделанного опыта мы можем сделать вывод о том что обратное напряжение в два раза больше максимального, Ucp расч отличается от опытного примерно на 1 вольт, который мы теряем на резисторе R1, и при последующем увеличении нагрузки падение напряжения на R1 будет расти из-за чего Ucp будет уменьшаться, а ток будет возрастать. Так же следует отметить что в отличие от предыдущей схемы в данной используется два диода вместо одного.

3 Мостовая схема

Рисунок 16 — Мостовая схема двухполупериодного выпрямителя Все данные с осциллографов внесены в таблицу 4

Рисунок 17 — Показания 2 осциллографа при минимальной нагрузке Таблица 3 - показания приборов при увеличении нагрузки

Нагрузка	U(XMM2),B	I(XMM3),mA
5% (минимальная	22,6	47,6
нагрузка)		
10%	22,5	50,2
15%	22,5	53
20%	22,4	56,2
30%	22,3	63,8
40%	22,1	73,8
50%	21,9	87,6
60%	21,5	107,8
70%	21	140,1
80%	20	200,1
90%	17,5	350,5
95%	14	562

Рисунок $18 - \Gamma$ рафик зависимости U=f(I)

Рисунок 19 – Показания 1 осциллографа при максимальной нагрузке нагрузке

Рисунок 20 – Показания 2 осциллографа при максимальной нагрузке нагрузке

Uобр=Umax=38 В

 $U2=Umax/\sqrt{2}=38/\sqrt{2}\approx 26.8 B$

Ucp расч=0,9*U2 =0,9*26,8≈24,1 В

Вывод: Исходя из проделанного опыта мы можем сделать вывод о том, что в отличие от схемы со средним отводом Uобр=Umax, так же Ucp отличается от U ср расч приблизительно на 1 В, который мы теряем на резисторе R1, и при последующем увеличении нагрузки падение напряжения на R1 будет расти из-за чего Ucp будет уменьшаться, а ток будет возрастать. Так же следует отметить, что данная схема отличается от схемы со средним отводом тем, что здесь находятся 4 диода которые работают попарно.

Полученные	Umax	U2	Uобр	Расчёт	U2	Ucp	Uобр
данные				ные			
				данные			
Однополупериод	49	34,6	49	-	34,6	15,57	49
ная схема							
выпрямителя							
Двухполупериод	38,6	26,4	77,7	-	27,2	24,6	77,7
ная схема							
выпрямителя							
Двухполупериод	38	26,8	38	-	26,8	24,1	38
ная схема							