Classificazione firme statiche utilizzando i Hidden Markov Models

Alexandru PRIGOREANU

Università degli studi di Padova

Dipartimento di Matematica Corso di laurea in Informatica

Relatore

Prof. Tullio VARDANEGA

Dicembre 13, 2013

Contenuti

- Analisi
 - Classificazione di firme statiche
 - Processi generali
 - Metodi di classificazione
 - Casi d'uso
- Progettazione
 - Scelte effettuate
 - Hidden Markov Models
- Implementazione
- 4 Consuntivo
 - Risultati
 - Consuntivo

Analisi Progettazione mplementazione Consuntivo Classificazione di firme statiche Processi generali Metodi di classificazione Casi d'uso

Classificazione di firme statiche Obiettivo e difficoltà

Obiettivo: Decidere se una firma è autentica/falsa

Classificazione di firme statiche Obiettivo e difficoltà

- Obiettivo: Decidere se una firma è autentica/falsa
- Variazioni intrapersonali: Le firme personali possiedono grande variabilità, dovuta allo stato emotivo dei sottoscrittori, alla posizione di raccolta, ecc...

Alex Prigoriano Alex Prigoriano Alex Prigoriano

Classificazione di firme statiche

- Obiettivo: Decidere se una firma è autentica/falsa
- Variazioni intrapersonali: Le firme personali possiedono grande variabilità, dovuta allo stato emotivo dei sottoscrittori, alla posizione di raccolta, ecc...
- Differenze interpersonali: Le firme di persone diverse possiedono caratteristiche elementari distinte

Davida Leui sau

Towners Cortellous

Analisi Progettazione nplementazione Consuntivo Classificazione di firme statiche Processi generali Metodi di classificazione Casi d'uso

Terminologia

Tipi di falsificazione

(a) genuine

Analisi Progettazione mplementazione Consuntivo Classificazione di firme statiche Processi generali Metodi di classificazione Casi d'uso

Terminologia

Tipi di falsificazione

Falsificazioni Casuali

(a) ganuino

Lutem Sula-

(b) random forgery

Analisi Progettazione nplementazione Consuntivo Classificazione di firme statiche Processi generali Metodi di classificazione Casi d'uso

Terminologia

Tipi di falsificazione

- Falsificazioni Casuali
- Falsificazioni Semplici

for the factor of

a) genuine

Lutem Sula-

(b) random forgery

face bel Rank Jaic

(c) simple forgery

Analisi Progettazione Classificazione di firme statiche

Terminologia

Tipi di falsificazione

- Falsificazioni Casuali
- Falsificazioni Semplici
- Falsificazioni Accurate

(a) genuine

(b) random forgery

(c) simple forgery

face bol Rank Jaic

(d) skilled forgery

Terminologia

Tipi di falsificazione

- Falsificazioni Casuali
- Falsificazioni Semplici
- Falsificazioni Accurate

(a) genuine

(b) random forgery

face bol Rank Jaic

(c) simple forgery

(d) skilled forgery

Valutazione della performance

Classificazione di firme statiche Processi generali Metodi di classificazione Casi d'uso

Terminologia

Tipi di falsificazione

- Falsificazioni Casuali
- Falsificazioni Semplici
- Falsificazioni Accurate

full fautofor-

(a) genuine

Lutem Sula-

(b) random forgery

Aderbol Rank Forio

(c) simple forgery

bull faute forz

(d) skilled forgery

Valutazione della performance

False Acceptance Rate (FAR)

Terminologia

Tipi di falsificazione

- Falsificazioni Casuali
- Falsificazioni Semplici
- Falsificazioni Accurate

full factors-

(a) genuine

Lutem Sula-

(b) random forgery

Aderbal Rank Foria

(c) simple forgery

all fairle for

(d) skilled forgery

Valutazione della performance

- False Acceptance Rate (FAR)
- False Rejection Rate (FRR)

Processi generali

Processi generali

Preprocessings

- Cropping
- Resizing
- Binarization
- Thinning

Processi generali

Preprocessings

- Cropping
- Resizing
- Binarization
- Thinning

Features

- Calibre
- Spacing
- Distribution of pixels
- Slant

Metodi di classificazione

Metodi di classificazione

Analisi Progettazione plementazione Consuntivo

Classificazione di firme statiche Processi generali Metodi di classificazione

Metodi di classificazione

Casi d'uso

Casi d'uso

Requisito di qualità

Garantire un'accuracy media del 80%

Modello di ciclo di vita

Modello incrementale

Modello di ciclo di vita

Modello incrementale

Strumenti

- Java
- Eclipse
- Hidden Markov Models

Modello di ciclo di vita

Modello incrementale

Librerie Java

- ImageJ
- Jahmm
- JScience
- jhmm

Strumenti

- Java
- Eclipse
- Hidden Markov Models

Modello di ciclo di vita

Modello incrementale

Librerie Java

- ImageJ
- Jahmm
- JScience
- jhmm

Strumenti

- Java
- Eclipse
- Hidden Markov Models

Design Pattern

- Model View Controller
- Composite

$$\lambda = (A, B, \pi)$$

$$\lambda = (A, B, \pi)$$

• un insieme S = {S₁,S₂,...,S_N} di stati nascosti

$$\lambda = (A, B, \pi)$$

- un insieme $S = \{S_1, S_2, ..., S_N\}$ di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = S_j \mid q_t = S_i)$

$$\lambda = (extbf{ extit{A}}, extbf{ extit{B}}, \pi)$$

- un insieme $S = \{S_1, S_2, ..., S_N\}$ di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = S_i \mid q_t = S_i)$
- una matrice $\Pi = \{\pi_i\}$: $\pi_i = P(q_1 = S_i)$

$\lambda = (extbf{ extit{A}}, extbf{ extit{B}}, \pi)$

- un insieme $S = \{S_1, S_2, ..., S_N\}$ di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = S_j | q_t = S_i)$
- una matrice $\Pi = \{\pi_i\}$: $\pi_i = P(q_1 = S_i)$
- un insieme $V = \{V_1, V_2, ..., V_M\}$ di simboli di osservazione

$\lambda = (A, B, \pi)$

- un insieme $S = \{S_1, S_2, ..., S_N\}$ di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = S_i \mid q_t = S_i)$
- una matrice $\Pi = \{\pi_i\}$: $\pi_i = P(q_1 = S_i)$
- un insieme $V = \{V_1, V_2, ..., V_M\}$ di simboli di osservazione
- al t-esimo istante il processo emette uno fra i simboli a disposizione: o_t ∈ {V₁,V₂,...,V_M}

$\lambda = (A, B, \pi)$

- un insieme $S = \{S_1, S_2, ..., S_N\}$ di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = S_j | q_t = S_i)$
- una matrice $\Pi = \{\pi_i\}$: $\pi_i = P(q_1 = S_i)$
- un insieme V = {V₁,V₂,...,V_M} di simboli di osservazione
- al t-esimo istante il processo emette uno fra i simboli a disposizione: o_t ∈ {V₁,V₂,...,V_M}
- una matrice $B = \{b_j(k)\} : b_j(k) = P(o_t = k \mid q_t = j)$

$\lambda = (extbf{ extit{A}}, extbf{ extit{B}}, \pi)$

- un insieme $S = \{S_1, S_2, ..., S_N\}$ di stati nascosti
- una matrice $A = \{a_{ij}\} : a_{ij} = P(q_{t+1} = S_j | q_t = S_i)$
- una matrice $\Pi = \{\pi_i\}$: $\pi_i = P(q_1 = S_i)$
- un insieme $V = \{V_1, V_2, ..., V_M\}$ di simboli di osservazione
- al t-esimo istante il processo emette uno fra i simboli a disposizione: o_t ∈ {V₁,V₂,...,V_M}
- una matrice B = $\{b_i(k)\}$: $b_i(k) = P(o_t = k | q_t = j)$
- vale la proprietà di Markov:

$$P(q_{t+1} = S_j \mid q_t = S_i, \, q_{t-1} = S_k, \, ..., \, q_1 = S_1) = P(q_{t+1} = S_j \mid q_t = S_i)$$

Tre problemi (in genere intrattabili)

Evaluation problem

Tre problemi (in genere intrattabili)

- Evaluation problem
- ② Decoding problem

Tre problemi (in genere intrattabili)

- Evaluation problem
- ② Decoding problem
- Learning problem

Tre problemi (in genere intrattabili)

- Evaluation problem
- ② Decoding problem
- Learning problem

Tre soluzioni (utilizzando la Programmazione Dinamica)

Forward algorithm

Utilizzo dei HMM

Tre problemi (in genere intrattabili)

- Evaluation problem
- ② Decoding problem
- Learning problem

Tre soluzioni (utilizzando la Programmazione Dinamica)

- Forward algorithm
- Viterbi's algorithm

Utilizzo dei HMM

Tre problemi (in genere intrattabili)

- Evaluation problem
- ② Decoding problem
- Learning problem

Tre soluzioni (utilizzando la Programmazione Dinamica)

- Forward algorithm
- Viterbi's algorithm
- Baum-Welch algorithm

Preprocessings

- Cropping
- Binarization
- Skeletonization
- Segmentation

Preprocessings

- Cropping
- Binarization
- Skeletonization
- Segmentation

Preprocessings

- Cropping
- Binarization
- Skeletonization
- Segmentation

Preprocessings |

- Cropping
- Binarization
- Skeletonization
- Segmentation

Features

- Slant
- DCT

Preprocessings

- Cropping
- Binarization
- Skeletonization
- Segmentation

Features

- Slant
- DCT

v01 v02	v03 v04	v05 v06	v07 v08	
v09 v10	v11 v12	v13 v14	v15 v16	
v17 v18	v19 v20	v21 v22	v23 v24	
v25 v26	v27 v28	v29 v30	v31 v32	
v33 v34	v35 v36	v37 v38	v39 v40	
v41 v42	v43 v44	v45 v46	v47 v48	
v49 v50	v51 v52	v53 v54	v55 v56	
v57 v58	v59 v60	v61 v62	v63 v64	
Ov1	Ov2	Ov3	Ov4	

Inizializzazione HMM

Feature Extraction Output

Metrica Software	HmmGui	HmmTraining	HmmTesting
Complessità ciclomatica	2.50	5.50	2.33

Metrica Software	HmmGui	HmmTraining	HmmTesting
Complessità ciclomatica	2.50	5.50	2.33
Media parametri per metodo	0.77	0.60	0.65

Metrica Software	HmmGui	HmmTraining	HmmTesting
Complessità ciclomatica	2.50	5.50	2.33
Media parametri per metodo	0.77	0.60	0.65
Linee di codice (LOC) per metodo	13.69	26.83	12.43

Metrica Software	HmmGui	HmmTraining	HmmTesting
Complessità ciclomatica	2.50	5.50	2.33
Media parametri per metodo	0.77	0.60	0.65
Linee di codice (LOC) per metodo	13.69	26.83	12.43
Linee di commento per LOC	15.60	29.40	17.50

Verifica e Validazione

- Analisi
- Progettazione
- Implementazione
- Documentazione

Cause

- Scelte progettuali
- Overfitting
- Tempo

Cause

- Scelte progettuali
- Overfitting
- Tempo

Possibili sviluppi

- Features
- Continuous HMM
- HMM scoring
- Pseudocounts
- Regularization
- Weighting
- Genetic Algorithms

Altre informazioni quantitative

É stato un privilegio poter trascorrere questi anni nelle aule e nei laboratori del *Dipartimento di Matematica* dell'*Università di Padova* a studiare materie che mi appassionano. Ora che sono giunto quasi alla fine di questo percorso di laurea triennale in *Informatica*, voglio ringraziare le persone il cui contributo non deve essere dimenticato.

Innanzitutto ringrazio il professor *Vardanega* per avermi seguito durante lo *stage* e per avermi fornito utili consigli per la stesura della relazione.

É stato un privilegio poter trascorrere questi anni nelle aule e nei laboratori del *Dipartimento di Matematica* dell'*Università di Padova* a studiare materie che mi appassionano. Ora che sono giunto quasi alla fine di questo percorso di laurea triennale in *Informatica*, voglio ringraziare le persone il cui contributo non deve essere dimenticato.

Innanzitutto ringrazio il professor *Vardanega* per avermi seguito durante lo *stage* e per avermi fornito utili consigli per la stesura della relazione.

É stato un privilegio poter trascorrere questi anni nelle aule e nei laboratori del *Dipartimento di Matematica* dell'*Università di Padova* a studiare materie che mi appassionano. Ora che sono giunto quasi alla fine di questo percorso di laurea triennale in *Informatica*, voglio ringraziare le persone il cui contributo non deve essere dimenticato.

In secondo luogo ringrazio i professori del *Corso di Laurea in Informatica* dai quali ho avuto l'opportunità di ampliare le mie (modeste) conoscenze. Ringrazio i seguenti professori e professoresse (in ordine di apparizione): *Alessandro Sperduti, Federico Menegazzo, Gilberto Filè, Antonio Grioli, C.E. Palazzi, Carla De Francesco, Lorenzo Finesso, Francesca Rossi, Livio Colussi, Massimo Marchiori, Francesco Tapparo, Paolo Baldan, Silvia Crafa, Luigi De Giovanni, Ombretta Gaggi.*

É stato un privilegio poter trascorrere questi anni nelle aule e nei laboratori del *Dipartimento di Matematica* dell'*Università di Padova* a studiare materie che mi appassionano. Ora che sono giunto quasi alla fine di questo percorso di laurea triennale in *Informatica*, voglio ringraziare le persone il cui contributo non deve essere dimenticato.

Ringrazio l'azienda *Corvallis* e in particolare il *tutor* interno *Alberto Pietrogrande* per l'esperienza di stage vissuta.

É stato un privilegio poter trascorrere questi anni nelle aule e nei laboratori del *Dipartimento di Matematica* dell'*Università di Padova* a studiare materie che mi appassionano. Ora che sono giunto quasi alla fine di questo percorso di laurea triennale in *Informatica*, voglio ringraziare le persone il cui contributo non deve essere dimenticato.

Ringrazio i compagni di corso (ormai amici), coi quali ho svolto alcuni dei progetti didattici, per avermi accettato e sopportato pazientemente (soprattutto quando ero in errore). In particolare ringrazio il gruppo SevenTech, formatosi per il progetto di Ingegneria del Software, composto da Alessio, Enrico Bo., Enrico Br., Giulio, Nicola, Pietro. Ringrazio il gruppo IMangiaLibri, formatosi per il progetto di Tecnologie Web, composto da Alberto e Dario. Ringrazio il gruppo GeoNav, formatosi per il progetto di Gestione di Imprese Informatiche, composto da Fabio e Fabrizio.

É stato un privilegio poter trascorrere questi anni nelle aule e nei laboratori del *Dipartimento di Matematica* dell'*Università di Padova* a studiare materie che mi appassionano. Ora che sono giunto quasi alla fine di questo percorso di laurea triennale in *Informatica*, voglio ringraziare le persone il cui contributo non deve essere dimenticato.

Come ultimo ma non meno importante, ringrazio la mia famiglia per aver reso possibile il proseguimento dei miei studi.