Q1.

1	(a)		work done in bringing/moving unit mass from infinity to the point		[2]
	(b)		potential at infinity defined as being zero	B1	[3]
	(c)	(i)	φ = -GM/R change = 6.67 x 10 ⁻¹¹ x 6.0 x 10 ²⁴ x({6.4 x 10 ⁶ } ⁻¹ - {1.94 x 10 ⁷ } ⁻¹ change = 4.19 x 10 ⁷ J kg ⁻¹ (ignore sign))C2 A1	
		(ii)	$1/2mv^2 = m\Delta\varphi$. $v^2 = 2 \times 4.19 \times 10^7 = 8.38 \times 10^7$ $v = 9150 \text{ m s}^{-1}$.		[5]
	(d)		acceleration is not constant	B1	[1]
Q2.					
3	(a)	(i) (ii)	(force) = $GM_1M_2/(R_1 + R_2)^2$ (force) = $M_1R_1 \omega^2$ or $M_2R_2 \omega^2$	B1 B1	[2]
	(b)		$\omega = 2\pi/(1.26 \times 10^8) \text{ or } 2\pi/T$ = 4.99 x 10 ⁻⁸ rad s ⁻¹ allow 2 s.f.: 1.59 π x 10 ⁻⁸ scores 1/2	C1 A1	[2]
	(c)	(i)	reference to either taking moments (about C) or same (centripeta force $M_1R_1=M_2R_2$ or $M_1R_1\omega^2=M_2R_2\omega^2$	B1 B1	ro.1
		(ii)	hence $M_1/M_2 = R_2/R_1$ $R_2 = 3/4 \times 3.2 \times 10^{11} \text{ m} = 2.4 \times 10^{11} \text{ m}$ $R_1 = (3.2 \times 10^{11}) - R_2 = 8.0 \times 10^{10} \text{ m}$ (allow vice versa) if values are both wrong but have ratio of four to three, then allow 1/2	A0 A1 A1	[2]
	(d)	(i)	$M_2 = \{(R_1 + R_2)^2 \times R_1 \times \omega^2\} I G \text{ (any subject for equation)}$ = $(3.2 \times 10^{11})^2 \times 8.0 \times 10^{10} \times (4.99 \times 10^{-8})^2 / (6.67 \times 10^{-11})$ = $3.06 \times 10^{29} \text{ kg}$	C1 C1 A1	
		(ii)	less massive (only award this mark if reasonable attempt at (i)) (9.17 x 10 ²⁹ kg for more massive star)	B1	[4]
			,	otal	[12]

Q3.

```
C<sub>1</sub>
     1 (a) (i) angular speed = 2\pi/T
                                        = 2\pi/(3.2 \times 10^7)
                                        = 1.96 \times 10^{-7} \text{ rad s}^{-1}
                                                                                                                 A<sub>1</sub>
                                                                                                                         [2]
              (ii) force = mr\omega^2 or force = mv^2/r and v = r\omega
                                                                                                                 C<sub>1</sub>
                            =6.0 \times 10^{24} \times 1.5 \times 10^{11} \times (1.96 \times 10^{-7})^2
                            = 3.46 \times 10^{22} \text{ N}
                                                                                                                 A1
                                                                                                                         [2]
         (b) (i) gravitation/gravity/gravitational field (strength)
                                                                                                                         [1]
              (ii) F = GMm/x^2 \text{ or } GM = r^3 \omega^2
                                                                                                                 C1
                    3.46 \times 10^{22} = (6.67 \times 10^{-11} \times M \times 6.0 \times 10^{24})/(1.5 \times 10^{11})^2
                                                                                                                 C<sub>1</sub>
                    M = 1.95 \times 10^{30} \text{ kg}
                                                                                                                 A1
                                                                                                                        [3]
Q4.
        (a) centripetal force is provided by gravitational force
                                                                                                                         B1
              mv^2/r = GMm/r^2
                                                                                                                         B1
             hence v = \sqrt{(GM/r)}
                                                                                                                         A0
                                                                                                                                 [2]
        (b) (i) E_K = \frac{1}{2}mv^2 = GMm/2r
                                                                                                                         B1
                                                                                                                                 [1]
              (ii) E_P = -GMm/r
                                                                                                                         B1
                                                                                                                                 [1]
              (iii) E_T = -GMm/r + GMm/2r
                                                                                                                         C1
                       = - GMm / 2r.
                                                                                                                         A<sub>1</sub>
                                                                                                                                 [2]
        (c) (i) if E_T decreases then - GMm / 2r becomes more negative
                   or GMm / 2r becomes larger
                                                                                                                         M1
                   so r decreases
                                                                                                                         A1
                                                                                                                                 [2]
              (ii) E_K = GMm / 2r and r decreases
                                                                                                                         M1
                   so (EK and) v increases
                                                                                                                         A1
                                                                                                                                [2]
Q5.
            (a) (region of space) where a mass experiences a force
                                                                                                                    B1
                                                                                                                               [1]
            (b) (i) potential energy = (-)GMm/x
                                                                                                                    C<sub>1</sub>
                       \Delta E_P = GMm/2R - GMm/3R
                                                                                                                   M1
                       = GMm/6R
                                                                                                                    A<sub>0</sub>
                                                                                                                               [2]
                 (ii) E_K = \frac{1}{2}m (7600^2 - 7320^2)
                                                                                                                   M1
                       = (2.09 \times 10^6) m
                                                                                                                    A<sub>0</sub>
                                                                                                                               [1]
            (c) (i) 2.09 \times 10^6 = (6.67 \times 10^{-11} \text{ M})/(6 \times 3.4 \times 10^6)
                                                                                                                    C<sub>1</sub>
                       M = 6.39 \times 10^{23} \text{ kg}
                                                                                                                    A<sub>1</sub>
                                                                                                                               [2]
                 (ii) e.g. no energy dissipated due to friction with atmosphere/air
                       rocket is outside atmosphere
                       not influenced by another planet etc.
                                                                                                                    B1
                                                                                                                               [1]
```

'	(a)	1010	e per unit mass (ratio luea essential)	ы	[i]
	(b)	8.6	GM/R^2 × $(0.6 \times 10^7)^2 = M \times 6.67 \times 10^{-11}$ = 4.6×10^{24} kg	C1 C1 A1	[3]
	(c)	(i)	either potential decreases as distance from planet decreases or potential zero at infinity and X is closer to zero or potential $\alpha - 1/r$ and Y more negative so point Y is closer to planet.	M1 A1	[2]
		(ii)	idea of $\Delta \phi = \frac{1}{2} v^2$ $(6.8 - 5.3) \times 10^7 = \frac{1}{2} v^2$ $v = 5.5 \times 10^3 \text{ ms}^{-1}$	C1 A1	[2]
Q7 .					
1	(a)		k done moving <u>unit</u> mass n infinity to the point	M1 A1	[2]
	(b)	(i)	at R , $\phi = 6.3 \times 10^7 \text{ J kg}^{-1} \text{ (allow } \pm 0.1 \times 10^7 \text{)}$ $\phi = GM/R$	B1	
			6.3 × 10 ⁷ = $(6.67 \times 10^{-11} \times M) / (6.4 \times 10^{6})$ $M = 6.0 \times 10^{24}$ kg (allow 5.95 \rightarrow 6.14) Maximum of 2/3 for any value chosen for ϕ not at R	C1 A1	[3]
		(ii)	change in potential = 2.1×10^7 J kg ⁻¹ (allow $\pm 0.1 \times 10^7$) loss in potential energy = gain in kinetic energy $\frac{1}{2} mv^2 = \phi$ m or $\frac{1}{2} mv^2 = GM/3R$ $\frac{1}{2} v^2 = 2.1 \times 10^7$	C1 B1 C1	
			$v = 6.5 \times 10^3 \text{ m s}^{-1}$ (allow 6.3 \rightarrow 6.6) (answer 7.9 \times 10 ³ m s ⁻¹ , based on $x = 2R$, allow max 3 marks)	A1	[4]
		(iii)	e.g. speed / velocity / acceleration would be greater deviates / bends from straight path (any sensible ideas, 1 each, max 2)	B1 B1	[2]
Q8 .					
1	(a)	(i)	force proportional to product of masses force inversely proportional to square of separation	B1 B1	[2]
		(ii)	separation <u>much</u> greater than radius / diameter of Sun / planet	B1	[1]
	(b)	(i)	e.g. force or field strength \propto 1 / r^{2} potential \propto 1 / r	B1	[1]
		(ii)	e.g. gravitational force (always) attractive electric force attractive or repulsive	B1 B1	[2]

```
(a) region (of space) where a particle / body experiences a force
                                                                                                                      B1
                                                                                                                                  [1]
          (b) similarity: e.g. force \propto 1/r^2
                           potential ∞ 1 / r
                                                                                                                      B1
                                                                                                                                  [1]
               difference: e.g. gravitation force (always) attractive
                                                                                                                      B1
                             electric force attractive or repulsive
                                                                                                                      B1
                                                                                                                                  [2]
          (c) either ratio is Q_1Q_2 / 4\pi\epsilon_0 m_1 m_2 G
                                                                                                                      C<sub>1</sub>
                        = (1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times (1.67 \times 10^{-27})^2 \times 6.67 \times 10^{-11}
                                                                                                                      C<sub>1</sub>
                                                                                                                      A1
                                                                                                                                  [3]
                        F_{\rm E} = 2.30 \times 10^{-28} \times R^{-2}
                        F_{\rm G} = 1.86 \times 10^{-64} \times R^{-2}
                        F_{\rm E} / F_{\rm G} = 1.2 \times 10^{36}
Q10.
          (a) work done in bringing unit mass from infinity (to the point)
                                                                                                                  B1
                                                                                                                                 [1]
           (b) gravitational force is (always) attractive
                                                                                                                  B1
                either as r decreases, object/mass/body does work
                          work is done by masses as they come together
                                                                                                                                 [2]
                                                                                                                  B1
          (c) either force on mass = mg (where g is the acceleration of free fall
                                                                   /gravitational field strength)
                                                                                                                  В1
                           g = GM/r^2
                                                                                                                  B1
                           if r @ h, g is constant
                                                                                                                  B1
                          \Delta E_P = force × distance moved
                                                                                                                  M1
                           = mgh
                                                                                                                  A0
                or
                          \Delta E_P = m\Delta \phi
                                                                                                                  (C1)
                           = GMm(1/r_1 - 1/r_2) = GMm(r_2 - r_1)/r_1r_2
                                                                                                                  (B1)
                          if r_2 \approx r_1, then (r_2 - r_1) = h and r_1 r_2 = r^2
                                                                                                                  (B1)
                           g = GM/r^2
                                                                                                                  (B1)
                          \Delta E_P = mgh
                                                                                                                                 [4]
                                                                                                                  (A0)
           (d) \frac{1}{2}mv^2 = m\Delta\phi
                v^2 = 2 \times GM/r
                                                                                                                  C1
                   = (2 \times 4.3 \times 10^{13}) / (3.4 \times 10^{6})
                                                                                                                  C1
                v = 5.0 \times 10^3 \,\mathrm{m \, s^{-1}}
                                                                                                                  A1
                                                                                                                                 [3]
                (Use of diameter instead of radius to give v = 3.6 \times 10^3 \,\text{m}\,\text{s}^{-1} scores 2 marks)
```

Q11.

1 (a) force proportional to product of masses and inversely proportional to square of separation (do not allow square of distance/radius) M1 (2) either point masses or separation (
$$\odot$$
 size of masses M1 [2] (b) (i) $\omega = 2\pi/(27.3 \times 24 \times 3600)$ or $2\pi/(2.36 \times 10^6)$ M1 $= 2.66 \times 10^6 \text{ prad}\text{ s}^{-1}$ A0 [1] (ii) $GM = r^2 \omega^2$ or $GM = v^2 r$ C1 $M = (3.84 \times 10^6 \times 10^3)^3 \times (2.66 \times 10^{-6})^2/(6.67 \times 10^{-11})$ M1 $= 6.0 \times 10^{24} \text{ kg}$ A0 [2] (special case: uses $g = GM/r^2$ with $g = 9.81$, $r = 6.4 \times 10^6$ scores max 1 mark) (c) (i) grav. force $= (6.0 \times 10^{24}) \times (7.4 \times 10^{22}) \times (6.67 \times 10^{-11})/(3.84 \times 10^6)^2$ C1 $= 2.0 \times 10^{20} \text{ N}$ (allow $1SF$) A1 [2] (ii) either $\Delta E_P = FX$ because F constant as $x + 1$ radius of orbit $\Delta E_P = 2.0 \times 10^{20} \text{ N}$ (allow $1SF$) A1 [3] or $\Delta E_P = GMm/r_1 - GMm/r_2$ C1 $= 8.0 \times 10^{18} \text{ J}$ (allow $1SF$) A1 [3] (a) $\Delta E_P = GMm/r_1 + GMm/r_2$ is incorrect physics so 0/3) (b) (i) force proportional to product of two masses force inversely proportional to the square of their separation where a mass experiences a force $\Delta E_P = GMm/r_1 + GMm/r_2$ or field strength $\Delta E_P = GM/r^2$ C1 $\Delta E_P = GMm/r_1 + GMm/r_2$ is incorrect physics so 0/3) (ii) field strength $\Delta E_P = GM/r^2$ or field strength $\Delta E_P = GM/r^2$ C1 $\Delta E_P = GM/r^2$ O1 field strength $\Delta E_P = GM/r^2$ O1

(allow working to be given in terms of acceleration)

(ii) $M = \{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\}$

 $= 2.0 \times 10^{30} \text{ kg}$

C₁

A1

[2]

1	(a)	satel	Itorial orbit / above equator lite moves from west to east / same direction as Earth spins Id is 24 hours / same period as spinning of Earth In ark for 'appears to be stationary/overhead' if none of above marks so	B1 B1 B1	[3]	
	(b)	GMn $\omega = 2$	tational force provides/is the centripetal force $n/R^2 = mR\omega^2$ or $GMm/R^2 = mv^2/R$ $2\pi/T$ or $v = 2\pi R/T$ or clear substitution working to give $R^3 = (GMT^2/4\pi^2)$		B1 M1 M1 A1	[4]
	(c)	= R = 4	$6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times (24 \times 3600)^2 / 4\pi^2$ 7.57×10^{22} 4.2×10^7 m sing out 3600 gives 1.8×10^5 m and scores 2/3 marks)		C1 C1 A1	[3]
Q1	4.					
4	(a) (i) ii)	$V_2mv^2 = GMm/R$ $v^2 = 2GM/R$ $g = GM/R^2$ clear algebra giving $v^2 = 2gR$	A0 M1	[3]	
	(b)		27	C1 C1	[4]	
Q1!	5.					
1	(a)	(i)	radial linespointing inwards			
		(ii)	no difference OR lines closer near surface of smaller sphere	E	31	[3]
	(b)	(i)	$F_G = GMm/R^2$ = $(6.67 \times 10^{-11} \times 5.98 \times 10^{24})/(6380 \times 10^3)^2$ = 9.80 N	¢	C1 A1	
		(ii)	$F_C = mR\omega^2$	(C1	
		(iii)	$F_G - F_C = 9.77 \text{ N}.$	/	41	[6]
	(c)		because acceleration (of free fall) is (resultant) force per unit mass acceleration = 9.77 m s ⁻²	E	31 31	[2]

Q16.

1	(a)		$GM/R^2 = R\omega^2$ C2 $\omega = 2\pi / (24 \times 3600)$ C2 $6.67 \times 10^{-11} \times 6.0 \times 10^{24} = R^3 \times \omega^2$		
			$R^3 = 7.57 \times 10^{22}$ M $R = 4.23 \times 10^7$ m	-	[3]
	(b)((i)	$\Delta \Phi = GM/R_e - GM/R_o$ = (6.67 × 10 ⁻¹¹ × 6.0 × 10 ²⁴) (1/6.4 × 10 ⁶ – 1/4.2 × 10 ⁷)	1	
			= $5.31 \times 10^7 \text{ J kg}^{-1}$	1	
			$\Delta E_{P} = 5.31 \times 10^{7} \times 650$	1	
			= $3.45 \times 10^{10} \text{ J}$	1	[4]
	(c)		e.g. satellite will already have some speed in the correct direction B1	1	[1]
Q17	'.				
1 (a) e	eithe	r ratio of work done to mass/charge		
,		or wo	ork done moving unit mass/charge from infinity		
	C	or bo	th have zero potential at infinity	B1	[1]
(b) g	gravi	tational forces are (always attractive)	B1	
			ric forces can be attractive or repulsive	B1	
	10	or gr	ravitational, work got out as masses come together /mass moves from infinity	B1	
			ectric, work done on charges if same sign, work got out if opposite sign as charges		U.S.
	C	come	e together	B1	[4]
Q18	3.				
4	(a) ((i)	$GMm\{(R+h_1)^{-1}-(R+h_2)^{-1}\}$	B1	
	-/	(-)	GMm { $(R + h_1)^{-1} - (R + h_2)^{-1}$ } $\frac{1}{2}m \{v_1^2 - v_2^2\}$	B1	[2]
	(b)	2 <i>M</i> x	$(6.67 \times 10^{-11} \{(26.28 \times 10^{6})^{-1} - (29.08 \times 10^{6})^{-1}\} = 5370^{2} - 5090^{2} $ $(4.888 \times 10^{-19} = 2.929 \times 10^{6})^{-1} = 5370^{2} - 5090^{2})$	B1	
		M =	4.888 x 10 ⁻⁴ = 2.929 x 10 ⁻⁴ 6.00 x 10 ²⁴ kg	C1 A1	[3]
		(If ed	quation in (a) is dimensionally unsound, then 0/3 marks in (b), if dimensionally sound but trect, treat as e.c.f.)		[5]

Q19.

1	(a)	(i)	$F = GMm / R^2$	B1	[1]
		(ii)	$F = mR\omega^2$	B1	[1]
		(iii)	reaction force = $GMm / R^2 - mR\omega^2$ (allow e.c.f.)	B1	[1]
	(b)	07	either value of R in expression $R\omega^2$ varies or $mR\omega^2$ no longer parallel to GMm / R^2 / normal to surface becomes smaller as object approaches a pole / is zero at pole	B1 B1	[2]
		(ii)	1. acceleration = $6.4 \times 10^6 \times (2\pi / \{8.6 \times 10^4\})^2$ = 0.034 m s ⁻² 2. acceleration = 0	C1 A1 A1	[2] [1]
	(c)	e.g	. 'radius' of planet <u>varies</u> density of planet <u>not constant</u> planet spinning nearby planets / stars (any sensible comments, 1 mark each, maximum 2)	B2	[2]
Q20.					
1	(a)		er Mand m are point masses R >> diameter of masses(do not allow 'size')		[2]
	(b)	(i)	equatorial orbit	B1	[3]
		(ii)	gravitational force provides centripetal force / gives rise to centripetal acceleration(in 'words')	M1 M1	[3]
		(iii)	$\omega = 2\pi / (24 \times 3600) = 7.27 \times 10^{-5} \text{ rad s}^{-1}$ $9.81 \times (6.4 \times 10^{6})^{2} = x^{3} \times (7.27 \times 10^{-5})^{2}$ $x^{3} = 7.6 \times 10^{22}$ $x = 4.2 \times 10^{7} \text{ m}$	C1	[3]
			(use of $g = 10 \text{ m s}^{-2}$, loses 1 mark but once only in the Paper)		
				[Total	: 11]

1	(a)	(i)	force per (unit) mass(ratio idea essential)	B1	[1]
		(ii)	$g = GM / R^2$ $9.81 = (6.67 \times 10^{-11} \times M) / (6.38 \times 10^6)^2 \dots (all \ 3 \ s.f)$	C1 M1	101
			$M = 5.99 \times 10^{24} \text{ kg}$		[2]
	(b)	(i)	either GM = $\omega^2 r^3$ or $gR^2 = \omega^2 r^3$ either $6.67 \times 10^{-11} \times 5.99 \times 10^{24} = \omega^2 \times (2.86 \times 10^7)^3$ or $9.81 \times (6.38 \times 10^6)^2 = \omega^2 \times (2.86 \times 10^7)^3$	C1	
			$ω = 1.3 \times 10^4 \text{ rad s}^{-1}$ (use of $r = 2.22 \times 10^7 m$ scores max 2 marks)	A1	[3]
		(ii)	period of orbit = $2\pi / \omega$	A1	
			period for geostationary satellite is 24 hours (= 8.6 × 10 ⁴ s) so no		[3]
	(c)	sat	tellite can then provide cover at Poles	B1	[1]
				[Total:	10]
Q22					
1	(a)	forc	ce per unit mass (ratio idea essential)	B1	[1]
	(b)	gra	ph: correct curvature from $(R, 1.0 g_s)$ & at least one other correct point	M1 A1	[2]
	(c)	(i)	fields of Earth and Moon are in opposite directions either resultant field found by subtraction of the field strength	M1	
			or any other sensible comment so there is a point where it is zero (allow $F_E = -F_M$ for 2 marks)	A1 A0	[2]
		(ii)	$GM_{\rm E}/x^2 = GM_{\rm M}/(D-x)^2$ $(6.0 \times 10^{24})/(7.4 \times 10^{22}) = x^2/(60R_{\rm E}-x)^2$ $x = 54R_{\rm E}$	C1 C1 A1	[3]
		(iii)	graph: $g = 0$ at least $\frac{2}{3}$ distance to Moon g_E and g_M in opposite directions correct curvature (by eye) and $g_E > g_M$ at surface	B1 M1 A1	[3]

Q23.

1	(a)	(1)		change of angle / angular displacement out by radius	M1 A1	[2]
		(ii)	$\omega \times T$	= 2π	B1	[1]
	(b)	eith r ³ > GM	$ \begin{array}{ll} \text{ner} & mr(\\ \times 4\pi^2 = 0 \end{array} $	force is provided by the gravitational force $2\pi/T)^2 = GMm/r^2$ or $mr\omega^2 = GMm/r^2$ $GM \times T^2$ a constant (c)	B1 M1 A1 A1 A0	[4]
	(c)	(i)		$T^2 = (45/1.08)^3 \times 0.615^2$ or $T^2 = 0.30 \times 45^3$ 5 years	C1 A1	[2]
		(ii)	speed	= $(2\pi \times 1.08 \times 10^8) / (0.615 \times 365 \times 24 \times 3600)$ = 35 km s^{-1}	C1 A1	[2]
Q24	4.					
1	(a)	GM	$\frac{1}{m}r^2 =$	al force provides the centripetal force $mr\omega^2$ (must be in terms of ω) M and GM is a constant	B1 B1 B1	
	(b)	(i)	(9	r Phobos, $\omega = 2\pi/(7.65 \times 3600)$ = $2.28 \times 10^{-4} \text{ rad s}^{-1}$ $.39 \times 10^6)^3 \times (2.28 \times 10^{-4})^2 = 6.67 \times 10^{-11} \times M$ = $6.46 \times 10^{23} \text{ kg}$	C1 C1 A1	
			ω	$(39 \times 10^6)^3 \times (2.28 \times 10^{-4})^2 = (1.99 \times 10^7)^3 \times \omega^2$ = $7.30 \times 10^{-5} \text{ rad s}^{-1}$ = $2\pi/\omega = 2\pi/(7.30 \times 10^{-5})$ = $8.6 \times 10^4 \text{ s}$ = 23.6 hours	C1 C1	
		(ii)	either or	almost 'geostationary' satellite would take a long time to cross the sky	A1 B1	

Q25.

Q28.

1	(a)	squar	proportional to product of the two masses and inversely proportional to the e of their separation reference to point masses or separation >> 'size' of masses	M1 A1	[2]
	(b)	GMm	ational force provides the centripetal force $/R^2 = mR\omega^2$ e m is the mass of the planet $R^3\omega^2$	B1 M1 A1 A0	[3]
	(c)	$\omega = 2r$ either	$ \begin{array}{l} \pi \ / \ T \\ M_{\text{star}} \ / \ M_{\text{Sun}} = (R_{\text{star}} \ / \ R_{\text{Sun}})^3 \times (T_{\text{Sun}} \ / \ T_{\text{star}})^2 \\ M_{\text{star}} = 4^3 \times (1/2)^2 \times 2.0 \times 10^{30} \\ = 3.2 \times 10^{31} \text{kg} \\ M_{\text{star}} = (2\pi)^2 \ R_{\text{star}}^3 \ / \ GT^2 \\ = \{(2\pi)^2 \times (6.0 \times 10^{11})^3\} \ / \ \{6.67 \times 10^{-11} \times (2 \times 365 \times 24 \times 3600)^2\} \\ = 3.2 \times 10^{31} \text{kg} \end{array} $	C1 C1 A1 (C1) (C1) (A1)	[3]
Q29	•				
1	(a)		done bringing unit mass finity (to the point)	M1 A1	[2]
	(b)	E _P = -	$m\phi$	B1	[1]
	(c)	φ ∝ 1/2	x	C1	
		either	at 6 <i>R</i> from centre, potential is $(6.3 \times 10^7)/6$ (= $1.05 \times 10^7 \text{J kg}^{-1}$) and at 5 <i>R</i> from centre, potential is $(6.3 \times 10^7)/5$ (= $1.26 \times 10^7 \text{J kg}^{-1}$) change in energy = $(1.26 - 1.05) \times 10^7 \times 1.3$ = $2.7 \times 10^6 \text{J}$	C1 C1 A1	
		or	change in potential = $(1/5 - 1/6) \times (6.3 \times 10^7)$ change in energy = $(1/5 - 1/6) \times (6.3 \times 10^7) \times 1.3$ = 2.7×10^6 J	(C1) (C1) (A1)	[4]

Q30.

1	(a)	gravitational force provides/is the centripetal force $GMm/r^2 = mv^2/r$ $v = \sqrt{(GM/r)}$		[2]
		allow gravitational field strength provides/is the centripetal acceleration $GM/r^2=v^2/r$	(B1) (M1)	
	(b)	(i) kinetic energy increase/change = loss/change in (gravitational) energy $\frac{1}{2}mV_0^2 = GMm/x$ $V_0^2 = 2GM/x$ $V_0 = \sqrt{(2GM/x)}$	potential B1 C1	[3]
		(max. 2 for use of r not x)	A	[0]
		(ii) V_0 is (always) greater than v (for $x = r$) so stone could not enter into orbit	M1 A1	[2]
		(expressions in (a) and (b)(i) must be dimensionally correct)		
Q31	•			
1	(a)	$g = GM/R^2$ = $(6.67 \times 10^{-11} \times 6.4 \times 10^{23})/(3.4 \times 10^6)^2 = 3.7 \text{ N kg}^{-1}$	C1 A1 [2]]
	(b)	$\Delta E_{\rm P} = mg\Delta h$ because $\Delta h \ll R$ (or $1800{\rm m} \ll 3.4 \times 10^6{\rm m}$) g is constant $\Delta E_{\rm P} = 2.4 \times 3.7 \times 1800$ = $1.6 \times 10^4{\rm J}$ (use of $g = 9.8{\rm ms^{-2}}$ max. 1 for explanation)	B1 C1 A1 [3]]:
	(c)	gravitational potential <u>energy</u> = $(-)GMm/x$ $v^2 = 2GM/x$ $x = 4D = 4 \times 6.8 \times 10^6$	C1 C1 C1	
		$v^2 = (2 \times 6.67 \times 10^{-11} \times 6.4 \times 10^{23})/(4 \times 6.8 \times 10^6)$ = 3.14 × 10 ⁶ $v = 1.8 \times 10^3 \text{ ms}^{-1}$ (use of 3.5D giving 1.9 × 10 ³ m s ⁻¹ , allow max. 3)	A1 [4]
Q32	•			
2	(a)	smooth curve with decreasing gradient, not starting at $x = 0$ end of line not at $g = 0$ or horizontal	M1 A1	[2]
	(b)	straight line with positive gradient line starts at origin	M1 A1	[2]
	(c)	sinusoidal shape only positive values and peak/trough height constant 4 'loops'	B1 B1 B1	[3]