# Supplementary Information for the independent and compreshensive evaluation of CAZyme classifiers

# Emma E. M. Hobbs, Tracey M. Gloster, Leighton Pritchard $\label{eq:June 2023} \text{June 2023}$

This document contains all supplementary information for the paper: Independent and comprehensive evaluation of CAZyme classifiers (Hobbs  $et\ al.,\ 2023$ ). The tables and figures are presented in the same order as they are referenced in the main manuscript.

#### Contents

| 1 | Test set composition                                                                                                                       | 2          |
|---|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2 | Evaluation of CAZyme/non-CAZyme classification 2.1 Summary of CAZyme/non-CAZyme classification                                             | <b>6</b> 6 |
| 3 | Taxonomic performance of CAZyme/non-CAZyme classification 3.1 Summary of taxonomic kingdom performance of CAZyme/non-CAZyme classification | <b>9</b>   |
| 4 | Evaluation of CAZy class classification across all CAZy class                                                                              | 12         |
| 5 | Evaluation of CAZy class classification per CAZy class                                                                                     | 14         |
| 6 | Taxonomic performance of CAZy class classification across all CAZy classes                                                                 | 16         |
| 7 | Overall performance of CAZy family classification (across all CAZy families and classes)                                                   | 18         |
| 8 | Multi-label classification of CAZyme families                                                                                              | 19         |

#### 1 Test set composition

#### SI Table 1: Genomes used to compile test sets (overleaf)

SI Table 1 lists the taxonomic classification of each genomic assembly used to generate test sets to evaluate the CAZyme classifiers. The number of CAZymes listed per species (\* encompassing all strains) and per genus is taken from the July 2023 CAZy database release. In the July 2023 CAZy database release: Streptomyces antimycoticus (GCA\_009936315.1) is classified Brettanomyces nanus; Brettanomyces nanus (GCA\_011074865.2) is classified as Brettanomyces bruxellensis Brettanomyces and Brettanomyces bruxellensis Brettanomyces and Brettanomyces listed as Brettanomyces bruxellensis Brettanomyces and Brettanomyces bruxellensis Brettanomyces bruxellensis

|                   |                                          |                                    |                                                                           |                      |                                                                     | Number of        | Number of               |
|-------------------|------------------------------------------|------------------------------------|---------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------|------------------|-------------------------|
|                   |                                          |                                    |                                                                           |                      |                                                                     | CAZymes for      | CAZymes for             |
|                   | Assembly name                            | Version accession                  |                                                                           | Kingdom              | -                                                                   | species in CAZy* | genus in CAZy*          |
| 515635<br>509190  | ASM2164v1<br>ASM9228v1                   |                                    | Dictyoglomus turgidum DSM 6724<br>Caulobacter segnis ATCC 21756           | Bacteria<br>Bacteria | Gram negative Gram negative; a-proteobacteria                       | 102<br>586       | 208<br>1975             |
| 192               | ASM131501v1                              | GCA_001315015.1                    | Azospirillum brasilense                                                   | Bacteria             | Gram negative; a-proteobacteria                                     | 1550             | 3057                    |
| 661488            | ASM797018v1                              |                                    | Pseudobacter ginsenosidimutans                                            | Bacteria             | Gram negative; CFB group bacteria                                   | 237              | 237                     |
| 562<br>562        | ASM522158v1<br>ASM522190v1               | _                                  | Escherichia coli Escherichia coli                                         | Bacteria<br>Bacteria | Gram negative; E. coli<br>Gram negative; E. coli                    | 110387<br>110387 | 122982<br>122982        |
| 561229            | ASM2356v1                                |                                    | Dickeya chrysanthemi Ech1591                                              | Bacteria             | Gram negative; Enterobacteriaceae                                   | 226              | 6498                    |
| 1334564           | ASM82877v1                               | GCA_000828775.1                    | Serratia marcescens SM39                                                  | Bacteria             | Gram negative; Enterobacteriaceae                                   | 819              | 17744                   |
| 571<br>1940567    | ASM290639v1<br>ASM340313v1               | GCA_002906395.1<br>GCA_003403135.1 | Klebsiella oxytoca<br>Dickeya dianthicola                                 | Bacteria<br>Bacteria | Gram negative; Enterobacteriaceae Gram negative; Enterobacteriaceae | 5943<br>1811     | 118339<br>6498          |
| 61645             | ASM394076v1                              | _                                  | Enterobacter asburiae                                                     | Bacteria             | Gram negative; Enterobacteriaceae                                   | 3772             | 38478                   |
| 1134687           | ASM1009300v1                             |                                    | Klebsiella michiganensis                                                  | Bacteria             | Gram negative; Enterobacteriaceae                                   | 9145             | 118339                  |
| 548               | ASM1160472v1                             | _                                  | Klebsiella aerogenes                                                      | Bacteria             | Gram negative; Enterobacteriaceae                                   | 6884             | 118339                  |
| 615<br>59203      | ASM1342615v1<br>31885_G02                | GCA_013426155.1<br>GCA_900635675.1 | Serratia marcescens Salmonella enterica subsp. arizonae                   | Bacteria<br>Bacteria | Gram negative; Enterobacteriaceae Gram negative; Enterobacteriaceae | 8192<br>48446    | 17744<br>51679          |
| 498211            | ASM1922v1                                | _                                  | Cellvibrio japonicus Ueda107                                              | Bacteria             | Gram negative; g-proteobacteria                                     | 912              | 2091                    |
| 1137651           | ASM34922v1                               | GCA_000349225.1                    | Xanthomonas citri subsp. citri Aw12879                                    | Bacteria             | Gram negative; g-proteobacteria                                     | 18260            | 70327                   |
| 1308541           | ASM81688v1                               | GCA_000816885.1                    | Xanthomonas citri subsp. citri A306                                       | Bacteria             | Gram negative; g-proteobacteria                                     | 18260            | 70327                   |
| 1583341<br>718    | PCPL58T<br> 55685_B01                    | GCA_900074915.1<br>GCA_900638075.1 | Pseudomonas cerasi<br>Actinobacillus equuli                               | Bacteria<br>Bacteria | Gram negative; g-proteobacteria Gram negative; g-proteobacteria     | 304<br>1688      | 97188<br>4578           |
| 1637999           | ASM97276v1                               | <del>-</del>                       | Verrucomicrobia bacterium IMCC26134                                       | Bacteria             | Gram negative; verrucomicrobia                                      | 375              | 375                     |
| 2026799           | ASM231049v1                              | GCA_002310495.1                    | Nibricoccus aquaticus                                                     | Bacteria             | Gram negative; verrucomicrobia                                      | 284              | 284                     |
| 203119            | ASM1586v1                                | GCA_000015865.1                    | Acetivibrio thermocellus ATCC 27405                                       | Bacteria             | Gram positive: firmicutes                                           | 828<br>168       | 1111<br>524             |
| 394503<br>720554  | ASM2206v1<br>ASM23708v1                  | GCA_000022065.1<br>GCA_000237085.1 | Ruminiclostridium cellulolyticum H10<br>Acetivibrio clariflavus DSM 19732 | Bacteria<br>Bacteria | Gram positive; firmicutes Gram positive; firmicutes                 | 168<br>145       | 52 <del>4</del><br>1111 |
| 1520              | ASM83310v2                               | _                                  | Clostridium beijerinckii                                                  | Bacteria             | Gram positive; firmicutes                                           | 1427             | 28279                   |
| 1292358           | ASM83514v1                               | GCA_000835145.1                    | Bacillus amyloliquefaciens KHG19                                          | Bacteria             | Gram positive; firmicutes                                           | 7463             | 111030                  |
| 36745<br>1352     | ASM200330v1                              | GCA_002003305.1                    | Clostridium saccharoperbutylacetonicum Enterococcus faecium               | Bacteria             | Gram positive: firmicutes                                           | 453<br>11568     | 28279<br>27760          |
| 304207            | ASM202504v1<br>ASM869410v1               | GCA_002025045.1<br>GCA_008694105.1 | Schleiferilactobacillus harbinensis                                       | Bacteria<br>Bacteria | Gram positive; firmicutes Gram positive; firmicutes                 | 435              | 435                     |
| 37734             | ASM970734v1                              | _                                  | Enterococcus casseliflavus                                                | Bacteria             | Gram positive; firmicutes                                           | 1368             | 22760                   |
| 1429244           | ASM50720v2                               |                                    | Paenibacillus polymyxa CR1                                                | Bacteria             | Gram positive; firmicutes                                           | 8515             | 36966                   |
| 1039<br>2665646   | ASM1479206v1<br>ASM1640612v1             |                                    | Bacillus amyloliquefaciens                                                | Bacteria<br>Bacteria | Gram positive; firmicutes Gram positive; firmicutes                 | 7463<br>442      | 111030<br>1232          |
| 479432            | ASM2486v1                                | GCA_016406125.1<br>GCA_000024865.1 | Alicyclobacillus sp. SO9<br>Streptosporangium roseum DSM 43021            | Bacteria             | Gram positive; high G+C                                             | 257              | 605                     |
| 749414            | ASM9238v1                                | GCA_000092385.1                    | Streptomyces bingchenggensis BCW-1                                        | Bacteria             | Gram positive; high G+C                                             | 387              | 100828                  |
| 212767            | ASM32856v1                               |                                    | Mycobacterium sp. JS623                                                   | Bacteria             | Gram positive; high G+C                                             | 9195             | 30430                   |
| 284038<br>228602  | ASM993631v1<br>ASM1180114v1              | _                                  | Streptomyces antimycoticus Nocardia arthritidis                           | Bacteria<br>Bacteria | Gram positive; high G+C Gram positive; high G+C                     | 140<br>180       | 100828<br>3932          |
| 2704468           | ASM1408410v1                             |                                    | Streptacidiphilus sp. P02-A3a                                             |                      | Gram positive; high G+C                                             | 449              | 499                     |
| 332648            | ASM14353v4                               | GCA_000143535.4                    | Botrytis cinerea B05.10                                                   | Eukaryote            | Ascomycete fungi                                                    | 1309             | 1371                    |
| 403677            | ASM159280v2                              |                                    | Peltaster fructicola                                                      |                      | Ascomycete fungi                                                    | 266              | 266                     |
| 318829<br>73501   | ASM434696v1<br>ASM808049v1               | _                                  | Pyricularia oryzae<br>Cordyceps militaris                                 |                      | Ascomycete fungi Ascomycete fungi                                   | 1757<br>323      | 1825<br>356             |
| 227321            | ASM901741v1                              |                                    | Aspergillus flavus                                                        |                      | Ascomycete fungi                                                    | 2516             | 7327                    |
| 660027            | ASM1308505v1                             | GCA_013085055.1                    | Fusarium oxysporum Fo47                                                   | Eukaryote            | Ascomycete fungi                                                    | 1827             | 8833                    |
| 500148            | ASM1342620v1                             |                                    | Metarhizium brunneum                                                      |                      | Ascomycete fungi                                                    | 393              | 490                     |
| 36651<br>182096   | ASM1676781v1<br>AchevalieriM1 assembly01 |                                    | Penicillium digitatum Aspergillus chevalieri                              |                      | Ascomycete fungi Ascomycete fungi                                   | 345<br>311       | 1037<br>7327            |
| 101028            | ASM1695230v1                             |                                    | Fusarium pseudograminearum                                                |                      | Ascomycete fungi                                                    | 1019             | 8833                    |
| 5516              | ASM1695235v1                             | _                                  | Fusarium culmorum                                                         |                      | Ascomycete fungi                                                    | 485              | 8833                    |
| 2747967           | ASM2310122v1                             |                                    | Fusarium solani-melongenae CRI 24-3                                       |                      | Ascomycete fungi                                                    | 681<br>2516      | 8833                    |
| 5059<br>5499      | ASM1478422v2<br>Cfulv R5 v5              |                                    | Aspergillus flavus CA14 Fulvia fulva Race5 Kim                            |                      | Ascomycete fungi Ascomycete fungi                                   | 2516<br>576      | 7327<br>576             |
| 63577             | ASM2064779v1                             | GCA_020647795.1                    | Trichoderma atroviride P1                                                 |                      | Ascomycete fungi                                                    | 586              | 3361                    |
| 101201            | ASM2064786v1                             | GCA_020647865.1                    | Trichoderma asperellum FT101                                              | Eukaryote            | Ascomycete fungi                                                    | 550              | 3361                    |
| 1491479<br>170446 | ASM1956561v1<br>ASM1690657v1             | GCA_019565615.1<br>GCA_016906575.1 | Trichoderma simmonsii GH-Sj1 Ceratobasidium sp. AG-Ba                     |                      | Ascomycete fungi Basidiomycota fungi                                | 483<br>1287      | 3361<br>1918            |
| 284590            | ASM251v1                                 |                                    | Kluyveromyces lactis                                                      |                      | Budding yeasts                                                      | 296              | 730                     |
| 573826            | ASM2694v1                                | GCA_000026945.1                    | Candida dubliniensis CD36                                                 | Eukaryote            | Budding yeasts                                                      | 146              | 3700                    |
| 284811            | ASM9102v4                                |                                    | Eremothecium gossypii ATCC 10895                                          |                      | Budding yeasts                                                      | 270              | 477                     |
| 796027<br>4911    | ASM164002v2<br>ASM185444v2               |                                    | Sugiyamaella lignohabitans<br>Kluyveromyces marxianus                     |                      | Budding yeasts Budding yeasts                                       | 150<br>434       | 150<br>730              |
| 1365886           | ASM198439v2                              |                                    | Zygosaccharomyces parabailii                                              |                      | Budding yeasts                                                      | 220              | 450                     |
| 498019            | ASM301371v2                              | GCA_003013715.2                    | [Candida] auris                                                           | Eukaryote            | Budding yeasts                                                      | 657              | 3700                    |
| 4909              | ASM305444v1                              |                                    | Pichia kudriavzevii                                                       |                      | Budding yeasts                                                      | 188              | 229                     |
| 2163413<br>28985  | ASM421770v1<br>ASM799369v1               | _                                  | Metschnikowia aff. pulcherrima<br>Kluyveromyces lactis                    |                      | Budding yeasts Budding yeasts                                       | 135<br>296       | 144<br>730              |
| 498019            | ASM827514v1                              |                                    | [Candida] auris                                                           |                      | Budding yeasts                                                      | 657              | 3700                    |
| 36911             | ASM949811v1                              | GCA_009498115.1                    | Clavispora lusitaniae                                                     | Eukaryote            | Budding yeasts                                                      | 686              | 686                     |
| 13502             | ASM1107486v2                             |                                    | Brettanomyces nanus                                                       |                      | Budding yeasts                                                      | 138              | 279                     |
| 5007<br>5478      | ASM1107488v2<br>ASM1421772v1             |                                    | Brettanomyces bruxellensis<br>Nakaseomyces glabratus                      |                      | Budding yeasts Budding yeasts                                       | 138<br>2152      | 279<br>2252             |
| 4652              | ASM1449061v1                             | GCA_014217725.1<br>GCA_014490615.1 | Yarrowia lipolytic                                                        |                      | Budding yeasts                                                      | 407              | 407                     |
| 230603            | ASM2755758v1                             | GCA_027557585.1                    | Saccharomyces uvarum CBS7001                                              | Eukaryote            | Budding yeasts                                                      | 541              | 17183                   |
| 296587            | ASM9098v2                                | _                                  | Micromonas commoda                                                        |                      | Green algae                                                         | 150<br>116       | 152                     |
| 436017<br>1764295 | ASM9206v1<br>ASM785969v1                 |                                    | Ostreococcus lucimarinus CCE9901<br>Chloropicon primus                    |                      | Green algae<br>Green algae                                          | 116<br>443       | 246<br>443              |
| 6239              | WBcel235                                 | GCA_000002985.3                    | Caenorhabditis elegans BRISTOL N2                                         | Eukaryote            | Nematodes                                                           | 1340             | 1880                    |
| 573729            | ASM22609v1                               | GCA_000226095.1                    |                                                                           |                      | Thermophile                                                         | 400              | 401                     |
| -                 |                                          |                                    |                                                                           | ·                    |                                                                     |                  |                         |

#### SI Table 2: Coverage of CAZy families (overleaf)

SI Table 2 lists the number of unique NCBI protein version accessions associated with each CAZy family in the CAZy database July 2023 release, as well as the total number and percentage of proteins from each CAZy family included across the test sets. CAZy families are grouped by their respective parent CAZy class.

| GH90<br>GH91<br>GH92<br>GH93<br>GH94<br>GH95<br>GH96<br>GH97<br>GH98<br>GH99<br>GH100<br>GH101<br>GH102<br>GH103<br>GH104<br>GH105<br>GH106                                                                                                                                                                                                                                                                                                                                                                                                                                  | Family 5 GH0 GH1 GH1 GH2 GH3 GH4 GH5 GH6 GH7 GH8 GH9 GH10 GH11 GH12 GH13 GH14 GH15 GH16 GH17 GH18 GH19 GH20 GH21 GH18 GH19 GH20 GH21 GH22 GH23 GH24 GH25 GH26 GH27 GH28 GH27 GH28 GH29 GH30 GH31 GH31 GH32 GH34 GH35 GH36 GH37 GH38 GH36 GH37 GH38 GH39 GH41 GH41 GH42 GH43 GH45 GH46 GH57 GH88 GH99 GH50 GH51 GH52 GH55 GH56 GH57 GH58 GH59 GH59 GH60 GH61 GH62 GH63 GH64 GH65 GH67 GH68 GH69 GH77 GH78 GH79 GH77 GH78 GH79 GH77 GH78 GH79 GH77 GH78 GH80 GH81 GH82 GH81 GH82 GH83 GH86 GH87 GH88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 5 0 2 42 9 14 27 0 8 2 1 1 0 1 14 23 8 3 10 0 0 1 1 0 0 1 1 5 6 6 16 1 1 0 0 0 2 2 5 4 8 16 1 1 1 1 2 2 0 0 1 1 1 1 2 2 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119 138 133 213 6179 140 161 21 162 213 664 40 22 20 323 4 4 46148 82 203 17 22 80 0 2 164 151 19 18 29 68 82 21 27 101 65 17 0 36 38 21 17 20 36 38 21 17 20 36 38 21 17 20 37 40 36 38 21 17 20 36 38 21 27 7 40 36 38 21 27 7 40 36 38 21 27 7 40 36 38 21 27 7 40 36 38 21 17 0 0 0 0 0 18 3 4 6 6 7 4 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G        |
| 1925 545 545 545 545 545 545 545 545 547 12989 5526 5533 15 5163 537 463 884 1053 12138 23647 3829 9288 2025 36 6891 2192 987 30 30 31824 1576 1950 1152 675 11 164 492 595 90 464 1576 1645 469 973 180 4662 153 180 4662 153 268 274 1217 1159 284 1841 168 886 1034 268 245 274 1217 1159 224 478 207 56 63 133 233 231 2764 1849 3826 0 0 2497 56 63 133 836 323 231 2754 1800 1055 53 4699 3926 0 0 2497 56 63 133 836 323 231 2764 1849 38926 0 0 2497 556 236 157 257 258 258 259 259 259 269 278 278 278 279 279 288 289 297 298 298 298 298 298 298 298 298 298 298 | Population   33642   61659   40275   58104   26324   4365   10823   9649   40275   58104   26324   4365   10823   9649   10823   9649   6420   8285   2753   2608   13325   13136   162804   1335   13136   162804   1335   13136   18481   8018   38371   15540   1842   120343   24476   18893   5238   4715   16335   11212   6225   23886   22942   10310   136977   9012   13045   11414   10833   5341   0 0   8914   35019   331   671   1383   5341   0 0   671   1383   2872   1707   75   1640   4764   4963   223   445   0   0   903   6166   1306   10961   474   4795   2260   60   993   6166   1306   10961   4771   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   1577   157   | GH       |
| 0.26 0 0.33 0.32 1.55 0.25 0.49 0 0.15 0.37 0.22 0 0.09 0.12 0.10 0.11 0.21 0.38 0.49 0 0.16 0 0.11 0 0.12 0.27 0 0 0.16 0 0.11 0 0.12 0.27 0 0 0.16 0 0.17 0 0.16 0 0.17 0 0.17 0 0.18 0.24 0.25 0.69 0.60 0.61 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37                                                                                                                                                                                                                                                                                                                     | Percentage in the test sets  0.32 0.33 0.37 0.25 0.62 0.36 0.15 0.22 0.36 0.15 0.22 0.36 0.15 0.25 0.48 0.77 0.2 0.3 0.3 0.35 0.11 0.14 0.12 0.1 0.11 0.14 0.21 0.11 0.14 0.22 0.28 0.16 0.3 0.3 0.35 0.11 0.14 0.21 0.11 0.14 0.22 0.28 0.16 0.13 0.10 0.11 0.14 0.21 0.11 0.14 0.21 0.11 0.14 0.21 0.11 0.14 0.21 0.15 0.00 0.11 0.14 0.21 0.15 0.00 0.11 0.14 0.21 0.15 0.00 0.11 0.14 0.21 0.15 0.00 0.11 0.15 0.00 0.11 0.15 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Da       |
| GT90 GT91 GT92 GT93 GT94 GT95 GT96 GT97 GT98 GT99 GT100 GT101 GT102 GT103 GT106 GT107 GT108 GT106 GT107 GT108 GT107 GT108 GT107 GT108 GT107 GT108 GT107 GT108 GT107 GT108 GT110                                                                                                                                                                                                                                                                                                                                                                                              | Family  Family  GT0  GT1  GT2  GT3  GT4  GT5  GT7  GT8  GT9  GT10  GT11  GT12  GT3  GT14  GT15  GT16  GT17  GT18  GT16  GT17  GT18  GT19  GT20  GT21  GT20  GT21  GT20  GT21  GT20  GT21  GT23  GT30  GT30  GT31  GT32  GT30  GT31  GT32  GT33  GT34  GT35  GT36  GT37  GT38  GT36  GT37  GT38  GT39  GT30  GT31  GT32  GT31  GT32  GT33  GT34  GT35  GT36  GT37  GT38  GT39  GT30  GT31  GT31  GT32  GT33  GT34  GT35  GT36  GT37  GT38  GT39  GT30  GT31  GT31  GT32  GT33  GT34  GT35  GT36  GT37  GT38  GT36  GT37  GT38  GT39  GT40  GT41  GT41  GT42  GT43  GT44  GT45  GT50  GT60  GT61  GT70  GT78  GT76  GT66  GT57  GT66  GT67  GT68  GT69  GT70  GT77  GT78  GT78  GT79  GT78  GT79  GT78  GT79  GT79  GT78  GT79  GT78  GT79   |          |
| 2 18 28 5 5 0 1 1 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Size  87 179 582 0 5 57 2 61 6 6 9 0 3 3 4 100 0 0 3 140 100 111 27 4 4 880 87 77 18 89 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 39 77 18 3 |          |
| 1462 238 461 18 805 150 119 131 207 158 442 778 455 144 3466 708 1143 3317 301 2374 577 1531 124 83 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GT       |
| 0.14 1.23 11.76 1.08 0 0.12 4 1.68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Percentage in the test sets  0.4 0.17 1.05 0.14 0.18 0 0.32 0.32 0.34 0.16 0.1 0.11 4.95 0.36 0.66 0.61 0.11 0.16 0.39 0.39 0.31 0.47 0.64 3.82 0.88 0.17 0.11 0.16 0.24 0.16 1.63 0.1 0.24 0.16 0.24 0.11 0.16 0.28 0.08 0.17 0.11 0.16 0.28 0.08 0.17 0.11 0.16 0.28 0.08 0.17 0.11 0.10 0.10 0.28 0.10 0.10 0.28 0.20 0.30 0.30 0.20 0.31 0.40 0.43 0.40 0.40 0.40 0.40 0.40 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Darrer : |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Family PIO PI.1 PI.2 PI.3 PI.4 PI.5 PI.6 PI.7 PI.8 PI.9 PI.10 PI.11 PI.12 PI.13 PI.14 PI.15 PI.16 PI.17 PI.18 PI.19 PI.20 PI.21 PI.20 PI.21 PI.23 PI.20 PI.21 PI.23 PI.24 PI.25 PI.26 PI.27 PI.28 PI.29 PI.30 PI.31 PI.32 PI.34 PI.35 PI.36 PI.37 PI.38 PI.39 PI.30 PI.31 PI.32 PI.34 PI.35 PI.36 PI.37 PI.38 PI.39 PI.30 PI.31 PI.32 PI.34 PI.35 PI.36 PI.37 PI.38 PI.39 PI.30 PI.31 PI.32 PI.34 PI.35 PI.36 PI.37 PI.38 PI.39 PI.30 PI.31 PI.32 PI.31 PI.32 PI.34 PI.35 PI.36 PI.37 PI.38 PI.39 PI.30 PI.31 PI.32 PI.31 PI.32 PI.34 PI.35 PI.36 PI.37 PI.38 PI.39 PI.30 PI.31 PI.32 PI.33 PI.34 PI.35 PI.36 PI.37 PI.38 PI.39 PI.40 PI.41 PI.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Size   2   3   4   18   9   1   1   2   11   4   7   7   13   2   2   0   0   0   1   1   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Population 2275 13024 856 2579 1278 1388 1589 941 3148 4438 3707 1118 21187 2099 120 410 483 424 1098 47 0 81 178 2388 342 62 56 1015 30 186 33 31 31 31 31 31 658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PL       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percentage in the test sets  10.48  0.48  0.47  0.7  0.7  0.7  0.7  0.06  0.21  0.38  0.63  0.63  0.69  0.10  0  0.10  0  0.11  0  0.12  0  0  0.21  0  0.34  0  0  0  0.34  0  0  0  0.34  0  0  0  0.34  0  0  0  0.59  1.33  0  0  0  0  0.59  1.33  0  0  0  0  0  0  0  0  0  0  0  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Berry    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Family  CE0 CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8 CE9 CE10 CE11 CE12 CE14 CE15 CE16 CE17 CE18 CE19 CE20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Size  31  22  5  4  95  40  3  11  39  45  0  13  5  16  0  1  1  1  1  1  1  1  1  1  1  1  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Population 3592 5659 958 645 44485 4979 648 3447 1132515 0 17605 4987 5522 8293 7541 28 47 356 4332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Œ        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percentage in the test sets 0.86 0.39 0.52 0.62 0.21 0.8 0.44 0.18 0 0.12 0.66 0.32 0.34 0.18 0 0.12 0.66 0.32 0.33 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Family  AA0  AA1  AA2  AA3  AA4  AA5  AA6  AA7  AA8  AA9  AA10  AA11  AA12  AA14  AA15  AA16  AA17  AA18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Size  5  85  12  75  3  14  36  4  5  24  16  11  7  1  4  0  5  0  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Population 139 6951 974 3412 88 996 874 143 223 101 10184 299 124 47 67 459 88 418 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percentage in the test sets 3.6 1.22 3.41 1.41 4.12 2.8 2.24 2.07 0.16 3.68 5.65 2.13 5.97 0 5.68 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Da       |
| CBM90<br>CBM91<br>CBM92<br>CBM93<br>CBM94<br>CBM95<br>CBM96<br>CBM96<br>CBM97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Family  CBM0 CBM1 CBM1 CBM2 CBM3 CBM4 CBM5 CBM6 CBM7 CBM8 CBM9 CBM11 CBM12 CBM12 CBM12 CBM13 CBM14 CBM15 CBM16 CBM17 CBM18 CBM16 CBM17 CBM18 CBM16 CBM17 CBM18 CBM19 CBM20 CBM21 CBM21 CBM20 CBM21 CBM21 CBM21 CBM21 CBM21 CBM21 CBM21 CBM22 CBM23 CBM21 CBM25 CBM26 CBM27 CBM26 CBM27 CBM26 CBM27 CBM26 CBM27 CBM26 CBM27 CBM26 CBM30 CBM41 CBM32 CBM30 CBM30 CBM31 CBM31 CBM32 CBM31 CBM32 CBM31 CBM32 CBM31 CBM31 CBM32 CBM31 CBM31 CBM31 CBM32 CBM31 CBM |          |
| 0<br>0<br>51<br>1<br>0<br>0<br>0<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample Size    Sample Size   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CE       |
| 16<br>22<br>11347<br>282<br>276<br>294<br>130<br>490<br>202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M Population 3541 2069 11256 2621 11274 112309 6383 30 6383 30 128 336 209 3536 16215 3734 19 1442 63 3734 19 1442 63 3123 1263 127 127 139 19 13822 0 0 9026 5437 72 1 39 19 18822 3095 4818 1482 1480 1488 1498 15970 1888 134 1208 57970 1882 149 1988 149 1995 1481 1481 1481 1481 1491 1591 1882 1491 1988 1344 1208 15937 1691 1898 1341 1208 15937 1691 1691 1691 1691 1691 1691 1691 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | М        |
| 0<br>0.45<br>0.11<br>0<br>0<br>0<br>0.41<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percentage in the test sets  0.45  0.45  0.17  0.05  0.64  0  0  0  1.15  2.38  0  0.2  0.27  0.05  0  0.55  1.59  1.96  5.68  0.84  2.5  0.54  0  0  0  0.13  0  0  1.39  0  0  1.39  0  0  1.39  0  0  1.39  0  0  1.39  0  0  1.39  0  0  1.39  0  0  1.39  0  0  1.39  0  0  1.39  0  0  1.39  0  0  1.39  0  0  1.39  0  0  0  1.39  0  0  0  0  0  0  0  0  0  0  0  0  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Days     |

#### 2 Evaluation of CAZyme/non-CAZyme classification

- 2.1 Summary of CAZyme/non-CAZyme classification
- 2.2 Output of testing for statistically significant difference in performance between the tools

SI Figure 1: Evaluation of binary CAZyme/non-CAZyme classification (overleaf)

SI figure ?? plots the value of each statistical parameter for each test, per CAZyme classifier.



Figure 1: One-dimensional scatter plot overlaying a box and whisker plot, where each scatter plot point represents a test set and the corresponding statistical parameter value. Dashed lines indicate statistical values of 0.9 and 0.95.

### SI Table 3: Tukey HSD test to measure the statistically significant difference between the mean F1-score for CAZyme/non-CAZyme classification (overleaf)

Tukey HSD test of the mean F1-score between the classifiers, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                                   | Mean Difference | Lower    | Upper    | P-Adj    |
|-----------------------------------|-----------------|----------|----------|----------|
| dbCAN_4:HMMER-dbCAN_4             | -0.04391        | -0.06969 | -0.01813 | 4.09E-05 |
| $dbCAN_4:DIAMOND-dbCAN_4$         | -0.00668        | -0.03246 | 0.019095 | 0.954057 |
| $dbCAN_4:dbCAN-sub-dbCAN_4$       | -0.01143        | -0.03721 | 0.014346 | 0.742466 |
| $\mathrm{CUPP\text{-}dbCAN\_4}$   | -0.06232        | -0.08809 | -0.03654 | 1.12E-09 |
| dbCAN_4:DIAMOND-dbCAN_4:HMMER     | 0.037227        | 0.011449 | 0.063005 | 0.00085  |
| $dbCAN_4:dbCAN_sub-dbCAN_4:HMMER$ | 0.032478        | 0.0067   | 0.058256 | 0.005531 |
| CUPP-dbCAN_4:HMMER                | -0.01841        | -0.04418 | 0.007373 | 0.28939  |
| dbCAN_4:dbCAN-sub-dbCAN_4:DIAMOND | -0.00475        | -0.03053 | 0.021029 | 0.986863 |
| CUPP-dbCAN_4:DIAMOND              | -0.05563        | -0.08141 | -0.02985 | 7.21E-08 |
| CUPP-dbCAN_4:dbCAN-sub            | -0.05088        | -0.07666 | -0.02511 | 1.09E-06 |

## SI Table 4: Tukey HSD test to measure the statistically significant difference between the mean sensitivity for CAZyme/non-CAZyme classification (overleaf)

Tukey HSD test of the mean sensitivity between the classifiers, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                                   | Mean Difference | Lower    | Upper    | P-Adj    |
|-----------------------------------|-----------------|----------|----------|----------|
| dbCAN_4:HMMER-dbCAN_4             | -0.09412        | -0.12691 | -0.06134 | 0        |
| $dbCAN_4:DIAMOND-dbCAN_4$         | -0.01475        | -0.04753 | 0.018034 | 0.732105 |
| $dbCAN_4:dbCAN-sub-dbCAN_4$       | -0.03438        | -0.06716 | -0.00159 | 0.034555 |
| $\mathrm{CUPP\text{-}dbCAN\_4}$   | -0.13025        | -0.16303 | -0.09747 | 0        |
| dbCAN_4:DIAMOND-dbCAN_4:HMMER     | 0.079375        | 0.046591 | 0.112159 | 1.05E-09 |
| $dbCAN_4:dbCAN_sub-dbCAN_4:HMMER$ | 0.05975         | 0.026966 | 0.092534 | 8.77E-06 |
| CUPP-dbCAN_4:HMMER                | -0.03613        | -0.06891 | -0.00334 | 0.022499 |
| dbCAN_4:dbCAN-sub-dbCAN_4:DIAMOND | -0.01963        | -0.05241 | 0.013159 | 0.472431 |
| CUPP-dbCAN_4:DIAMOND              | -0.1155         | -0.14828 | -0.08272 | 0        |
| CUPP-dbCAN_4:dbCAN-sub            | -0.09587        | -0.12866 | -0.06309 | 0        |

### SI Table 5: Tukey HSD test to measure the statistically significant difference between the mean accuracy for CAZyme/non-CAZyme classification (overleaf)

Tukey HSD test of the mean accuracy between the classifiers, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                                   | Mean Difference | Lower    | Upper    | P-Adj    |
|-----------------------------------|-----------------|----------|----------|----------|
| dbCAN_4:HMMER-dbCAN_4             | -0.03881        | -0.05992 | -0.01771 | 7.03E-06 |
| $dbCAN_4:DIAMOND-dbCAN_4$         | -0.00512        | -0.02623 | 0.015979 | 0.963624 |
| $dbCAN_4:dbCAN_sub-dbCAN_4$       | -0.00956        | -0.03067 | 0.011542 | 0.726883 |
| $\mathrm{CUPP\text{-}dbCAN}_{-4}$ | -0.05538        | -0.07648 | -0.03427 | 1.44E-11 |
| dbCAN_4:DIAMOND-dbCAN_4:HMMER     | 0.033688        | 0.012583 | 0.054792 | 0.000151 |
| $dbCAN_4:dbCAN-sub-dbCAN_4:HMMER$ | 0.02925         | 0.008146 | 0.050354 | 0.001577 |
| CUPP-dbCAN_4:HMMER                | -0.01656        | -0.03767 | 0.004542 | 0.200982 |
| dbCAN_4:dbCAN-sub-dbCAN_4:DIAMOND | -0.00444        | -0.02554 | 0.016667 | 0.978491 |
| CUPP-dbCAN_4:DIAMOND              | -0.05025        | -0.07135 | -0.02915 | 2.07E-09 |
| CUPP-dbCAN_4:dbCAN-sub            | -0.04581        | -0.06692 | -0.02471 | 5.94E-08 |

#### 3 Taxonomic performance of CAZyme/non-CAZyme classification

### 3.1 Summary of taxonomic kingdom performance of CAZyme/non-CAZyme classification

SI Figure 2: The specificity of CAZyme/non-CAZyme classification per taxonomic kingdom for each test set



Figure 2: Mean and 95% confidence interval of the specificity across all test sets per taxonomic kingdom (Bacteria shaded green; Eukaryote shaded Yellow; Both/All shaded red) for the CAZyme/non-CAZyme classification of protein sequences.

## SI Figure 3: The precision of CAZyme/non-CAZyme classification per taxonomic kingdom for each test set



Figure 3: Mean and 95% confidence interval of the precision across all test sets per taxonomic kingdom (Bacteria shaded green; Eukaryote shaded Yellow; Both/All shaded red) for the CAZyme/non-CAZyme classification of protein sequences.

## SI Figure 4: The accuracy of CAZyme/non-CAZyme classification per taxonomic kingdom for each test set



Figure 4: Mean and 95% confidence interval of the accuracy across all test sets per taxonomic kingdom (Bacteria shaded green; Eukaryote shaded Yellow; Both/All shaded red) for the CAZyme/non-CAZyme classification of protein sequences.

#### 4 Evaluation of CAZy class classification across all CAZy class

#### SI Table 6: Tukey HSD test to measure the statistically significant difference between the mean F1-score for CAZy class classification

Tukey HSD test of the mean F1-score between the classifiers, evaluating CAZyme class classification after aggregating all CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                                   | Mean Difference | $\mathbf{Lower}$ | Upper    | P-Adj    |
|-----------------------------------|-----------------|------------------|----------|----------|
| dbCAN_4:HMMER-dbCAN_4             | -0.06649        | -0.10568         | -0.0273  | 3.78E-05 |
| $dbCAN_4:DIAMOND-dbCAN_4$         | 0.010131        | -0.02906         | 0.04932  | 0.955216 |
| $dbCAN_4:dbCAN_sub-dbCAN_4$       | -0.00071        | -0.0399          | 0.038481 | 0.999999 |
| $\mathrm{CUPP\text{-}dbCAN}_{-4}$ | -0.20421        | -0.2434          | -0.16502 | 5.55E-11 |
| dbCAN_4:DIAMOND-dbCAN_4:HMMER     | 0.076621        | 0.037432         | 0.115809 | 1.04E-06 |
| $dbCAN_4:dbCAN-sub-dbCAN_4:HMMER$ | 0.065781        | 0.026592         | 0.10497  | 4.77E-05 |
| CUPP-dbCAN_4:HMMER                | -0.13772        | -0.17691         | -0.09853 | 5.56E-11 |
| dbCAN_4:dbCAN-sub-dbCAN_4:DIAMOND | -0.01084        | -0.05003         | 0.028349 | 0.943195 |
| CUPP-dbCAN_4:DIAMOND              | -0.21434        | -0.25353         | -0.17515 | 5.55E-11 |
| CUPP-dbCAN_4:dbCAN-sub            | -0.2035         | -0.24269         | -0.16431 | 5.55E-11 |

#### SI Table 7: Tukey HSD test to measure the statistically significant difference between the mean sensitivity for CAZy class classification

Tukey HSD test of the mean sensitivity between the classifiers, evaluating CAZyme class classification after aggregating all CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                                   | Mean Difference | $\mathbf{Lower}$ | Upper    | P-Adj    |
|-----------------------------------|-----------------|------------------|----------|----------|
| dbCAN_4:HMMER-dbCAN_4             | -0.09245        | -0.13391         | -0.05098 | 1.37E-08 |
| $dbCAN_4:DIAMOND-dbCAN_4$         | 0.022676        | -0.01879         | 0.064138 | 0.567019 |
| $dbCAN_4:dbCAN-sub-dbCAN_4$       | 0.001643        | -0.03982         | 0.043104 | 0.999969 |
| CUPP-dbCAN_4                      | -0.22089        | -0.26235         | -0.17942 | 5.55E-11 |
| dbCAN_4:DIAMOND-dbCAN_4:HMMER     | 0.115122        | 0.07366          | 0.156583 | 5.61E-11 |
| $dbCAN_4:dbCAN_sub-dbCAN_4:HMMER$ | 0.094089        | 0.052627         | 0.13555  | 7.05E-09 |
| CUPP-dbCAN_4:HMMER                | -0.12844        | -0.1699          | -0.08698 | 5.56E-11 |
| dbCAN_4:dbCAN-sub-dbCAN_4:DIAMOND | -0.02103        | -0.06249         | 0.020428 | 0.637387 |
| CUPP-dbCAN_4:DIAMOND              | -0.24356        | -0.28502         | -0.2021  | 5.55E-11 |
| $CUPP-dbCAN\_4:dbCAN-sub$         | -0.22253        | -0.26399         | -0.18107 | 5.55E-11 |

### SI Table 8: Tukey HSD test to measure the statistically significant difference between the mean accuracy for CAZy class classification

Tukey HSD test of the mean accuracy between the classifiers, evaluating CAZyme class classification after aggregating all CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                                   | Mean Difference | Lower    | Upper    | P-Adj    |
|-----------------------------------|-----------------|----------|----------|----------|
| dbCAN_4:HMMER-dbCAN_4             | -0.01489        | -0.02277 | -0.00702 | 2.66E-06 |
| $dbCAN_4:DIAMOND-dbCAN_4$         | 0.003211        | -0.00467 | 0.011088 | 0.799843 |
| $dbCAN_4:dbCAN-sub-dbCAN_4$       | -0.00056        | -0.00844 | 0.007314 | 0.999678 |
| $\mathrm{CUPP\text{-}dbCAN\_4}$   | -0.03001        | -0.03788 | -0.02213 | 5.56E-11 |
| dbCAN_4:DIAMOND-dbCAN_4:HMMER     | 0.018104        | 0.010227 | 0.025981 | 4.31E-09 |
| dbCAN_4:dbCAN-sub-dbCAN_4:HMMER   | 0.01433         | 0.006453 | 0.022207 | 7.29E-06 |
| CUPP-dbCAN_4:HMMER                | -0.01511        | -0.02299 | -0.00724 | 1.78E-06 |
| dbCAN_4:dbCAN-sub-dbCAN_4:DIAMOND | -0.00377        | -0.01165 | 0.004104 | 0.686372 |
| CUPP-dbCAN_4:DIAMOND              | -0.03322        | -0.04109 | -0.02534 | 5.56E-11 |
| CUPP-dbCAN_4:dbCAN-sub            | -0.02944        | -0.03732 | -0.02157 | 5.56E-11 |

### SI Table 9: Tukey HSD test to measure the statistically significant difference between the mean precision for CAZy class classification

Tukey HSD test of the mean precision between the classifiers, evaluating CAZyme class classification after aggregating all CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                                   | Mean Difference | Lower    | Upper    | P-Adj    |
|-----------------------------------|-----------------|----------|----------|----------|
| dbCAN_4:HMMER-dbCAN_4             | -0.01489        | -0.02277 | -0.00702 | 2.66E-06 |
| $dbCAN_4:DIAMOND-dbCAN_4$         | 0.003211        | -0.00467 | 0.011088 | 0.799843 |
| $dbCAN_4:dbCAN-sub-dbCAN_4$       | -0.00056        | -0.00844 | 0.007314 | 0.999678 |
| $\mathrm{CUPP\text{-}dbCAN\_4}$   | -0.03001        | -0.03788 | -0.02213 | 5.56E-11 |
| dbCAN_4:DIAMOND-dbCAN_4:HMMER     | 0.018104        | 0.010227 | 0.025981 | 4.31E-09 |
| dbCAN_4:dbCAN-sub-dbCAN_4:HMMER   | 0.01433         | 0.006453 | 0.022207 | 7.29E-06 |
| CUPP-dbCAN_4:HMMER                | -0.01511        | -0.02299 | -0.00724 | 1.78E-06 |
| dbCAN_4:dbCAN-sub-dbCAN_4:DIAMOND | -0.00377        | -0.01165 | 0.004104 | 0.686372 |
| CUPP-dbCAN_4:DIAMOND              | -0.03322        | -0.04109 | -0.02534 | 5.56E-11 |
| $CUPP-dbCAN\_4:dbCAN-sub$         | -0.02944        | -0.03732 | -0.02157 | 5.56E-11 |

#### 5 Evaluation of CAZy class classification per CAZy class

#### SI Table 10: Tukey HSD test to measure the statistically significant difference between the mean F1-score between CAZy classes and prediction tools

Tukey HSD test of the mean F1-score between the classifiers and CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

Showing only hits with a P-value; 0.05 where the classifier is the same and the CAZyme class is different.

| Class 1          | Class | Classifier 1    | Classifier 2    | Mean Dif- | Lower 95%  | Upper 95%  | Adjusted |
|------------------|-------|-----------------|-----------------|-----------|------------|------------|----------|
|                  | 2     |                 |                 | ference   | Confidence | Confidence | P-value  |
|                  |       |                 |                 |           | Interval   | Interval   |          |
| CBM              | AA    | CUPP            | CUPP            | -0.90105  | -0.97347   | -0.82863   | 5.07E-11 |
| $^{\mathrm{CE}}$ | CBM   | CUPP            | CUPP            | 0.925011  | 0.861476   | 0.988547   | 5.07E-11 |
| $_{ m GH}$       | CBM   | CUPP            | CUPP            | 0.946062  | 0.883346   | 1.008778   | 5.07E-11 |
| GT               | CBM   | CUPP            | CUPP            | 0.910716  | 0.848      | 0.973432   | 5.07E-11 |
| $_{\mathrm{PL}}$ | CBM   | CUPP            | CUPP            | 0.885018  | 0.81212    | 0.957915   | 5.07E-11 |
| $_{ m GH}$       | CBM   | dbCAN_4:DIAMOND | dbCAN_4:DIAMOND | 0.069222  | 0.006506   | 0.131937   | 0.011938 |
| GT               | CBM   | dbCAN_4:DIAMOND | dbCAN_4:DIAMOND | 0.067879  | 0.005163   | 0.130594   | 0.016339 |
| $_{\mathrm{PL}}$ | CBM   | dbCAN_4:DIAMOND | dbCAN_4:DIAMOND | 0.075289  | 0.002391   | 0.148187   | 0.032579 |
| $_{\rm CBM}$     | AA    | dbCAN_4:HMMER   | dbCAN_4:HMMER   | -0.34806  | -0.42047   | -0.27564   | 5.07E-11 |
| $^{\mathrm{CE}}$ | CBM   | dbCAN_4:HMMER   | dbCAN_4:HMMER   | 0.353329  | 0.289794   | 0.416865   | 5.07E-11 |
| $_{ m GH}$       | CBM   | dbCAN_4:HMMER   | dbCAN_4:HMMER   | 0.356254  | 0.293538   | 0.418969   | 5.07E-11 |
| GT               | CBM   | dbCAN_4:HMMER   | dbCAN_4:HMMER   | 0.32167   | 0.258954   | 0.384386   | 5.07E-11 |
| $_{ m PL}$       | CBM   | dbCAN_4:HMMER   | dbCAN_4:HMMER   | 0.378704  | 0.305806   | 0.451602   | 5.07E-11 |
| CBM              | AA    | dbCAN_4:sub     | dbCAN_4:sub     | -0.08535  | -0.15777   | -0.01293   | 0.003723 |
| $^{\mathrm{CE}}$ | CBM   | dbCAN_4:sub     | dbCAN_4:sub     | 0.104081  | 0.040545   | 0.167616   | 4.02E-07 |
| $_{ m GH}$       | CBM   | dbCAN_4:sub     | dbCAN_4:sub     | 0.107924  | 0.045208   | 0.170639   | 5.66E-08 |
| GT               | CBM   | dbCAN_4:sub     | dbCAN_4:sub     | 0.108752  | 0.046037   | 0.171468   | 4.10E-08 |
| $_{\mathrm{PL}}$ | CBM   | dbCAN_4:sub     | dbCAN_4:sub     | 0.1171    | 0.044202   | 0.189998   | 8.34E-07 |
| CBM              | AA    | dbCAN_4         | dbCAN_4         | -0.09171  | -0.16413   | -0.0193    | 0.000834 |
| $^{\mathrm{CE}}$ | CBM   | dbCAN_4         | dbCAN_4         | 0.109065  | 0.04553    | 0.172601   | 6.27E-08 |
| $_{ m GH}$       | CBM   | dbCAN_4         | dbCAN_4         | 0.112331  | 0.049615   | 0.175047   | 9.99E-09 |
| GT               | CBM   | dbCAN_4         | dbCAN_4         | 0.113027  | 0.050312   | 0.175743   | 7.56E-09 |
| PL               | CBM   | dbCAN_4         | dbCAN_4         | 0.119362  | 0.046464   | 0.192259   | 4.09E-07 |

#### SI Table 11: Tukey HSD test to measure the statistically significant difference between the mean F1-score between CAZy classes and prediction tools

Tukey HSD test of the mean F1-score between the classifiers and CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

Showing only hits with a P-value ; 0.05 where the CAZyme class is the same and the classifier is different.

| Class            | Class | Classifier 1    | Classifier 2    | Mean Dif- | Lower 95%  | Upper 95%  | Adjusted |
|------------------|-------|-----------------|-----------------|-----------|------------|------------|----------|
| 1                | 2     |                 |                 | ference   | Confidence | Confidence | P-value  |
|                  |       |                 |                 |           | Interval   | Interval   |          |
| GT               | GT    | CUPP            | dbCAN_4:DIAMOND | -0.06433  | -0.12704   | -0.00161   | 0.035824 |
| $_{ m PL}$       | PL    | CUPP            | dbCAN_4         | -0.08906  | -0.17089   | -0.00724   | 0.014939 |
| $_{\mathrm{PL}}$ | PL    | CUPP            | dbCAN_4:HMMER   | -0.08906  | -0.17089   | -0.00724   | 0.014939 |
| $_{\mathrm{PL}}$ | PL    | CUPP            | dbCAN_4:DIAMOND | -0.09744  | -0.17926   | -0.01561   | 0.003047 |
| $_{\mathrm{PL}}$ | PL    | CUPP            | dbCAN_4:sub     | -0.08971  | -0.17153   | -0.00789   | 0.013311 |
| CBM              | CBM   | dbCAN_4:HMMER   | dbCAN_4         | -0.25934  | -0.32206   | -0.19663   | 5.07E-11 |
| CBM              | CBM   | CUPP            | dbCAN_4         | -0.85472  | -0.91744   | -0.792     | 5.07E-11 |
| $_{\rm CBM}$     | CBM   | dbCAN_4:DIAMOND | dbCAN_4:HMMER   | 0.311787  | 0.249071   | 0.374503   | 5.07E-11 |
| CBM              | CBM   | dbCAN_4:sub     | dbCAN_4:HMMER   | 0.262249  | 0.199533   | 0.324964   | 5.07E-11 |
| CBM              | CBM   | CUPP            | dbCAN_4:HMMER   | -0.59538  | -0.65809   | -0.53266   | 5.07E-11 |
| CBM              | CBM   | CUPP            | dbCAN_4:DIAMOND | -0.90716  | -0.96988   | -0.84445   | 5.07E-11 |
| CBM              | CBM   | CUPP            | dbCAN_4:sub     | -0.85763  | -0.92034   | -0.79491   | 5.07E-11 |

#### SI Table 12: Tukey HSD test to measure the statistically significant difference between the mean sensitivity between CAZy classes and prediction tools

Tukey HSD test of the mean sensitivity between the classifiers and CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

Showing only hits with a P-value ; 0.05 where the CAZyme class is the same and the classifier is different.

| Class            | Class | Classifier 1    | Classifier 2    | Mean Dif- | Lower 95%  | Upper 95%  | Adjusted |
|------------------|-------|-----------------|-----------------|-----------|------------|------------|----------|
| 1                | 2     |                 |                 | ference   | Confidence | Confidence | P-value  |
|                  |       |                 |                 |           | Interval   | Interval   |          |
| GT               | GT    | dbCAN_4:HMMER   | dbCAN_4         | -0.09213  | -0.16198   | -0.02228   | 0.000321 |
| GT               | GT    | CUPP            | dbCAN_4         | -0.10425  | -0.1741    | -0.0344    | 1.01E-05 |
| GT               | GT    | dbCAN_4:DIAMOND | dbCAN_4:HMMER   | 0.109403  | 0.039555   | 0.179252   | 2.05E-06 |
| GT               | GT    | dbCAN_4:sub     | dbCAN_4:HMMER   | 0.08812   | 0.018271   | 0.157968   | 0.00091  |
| GT               | GT    | CUPP            | dbCAN_4:DIAMOND | -0.12153  | -0.19138   | -0.05168   | 3.56E-08 |
| GT               | GT    | CUPP            | dbCAN_4:sub     | -0.10024  | -0.17009   | -0.0304    | 3.34E-05 |
| $_{ m PL}$       | PL    | CUPP            | dbCAN_4         | -0.12285  | -0.21398   | -0.03172   | 0.000186 |
| $_{\mathrm{PL}}$ | PL    | CUPP            | dbCAN_4:HMMER   | -0.12285  | -0.21398   | -0.03172   | 0.000186 |
| $_{\mathrm{PL}}$ | PL    | CUPP            | dbCAN_4:DIAMOND | -0.14767  | -0.2388    | -0.05655   | 6.04E-07 |
| $_{\mathrm{PL}}$ | PL    | CUPP            | dbCAN_4:sub     | -0.1241   | -0.21523   | -0.03297   | 0.000143 |
| $_{\rm CBM}$     | CBM   | dbCAN_4:HMMER   | dbCAN_4         | -0.32544  | -0.39529   | -0.2556    | 5.07E-11 |
| CBM              | CBM   | dbCAN_4:DIAMOND | dbCAN_4         | 0.077849  | 0.008001   | 0.147698   | 0.010154 |
| CBM              | CBM   | CUPP            | dbCAN_4         | -0.79948  | -0.86933   | -0.72964   | 5.07E-11 |
| CBM              | CBM   | dbCAN_4:DIAMOND | dbCAN_4:HMMER   | 0.403294  | 0.333445   | 0.473142   | 5.07E-11 |
| $_{\rm CBM}$     | CBM   | dbCAN_4:sub     | dbCAN_4:HMMER   | 0.345283  | 0.275434   | 0.415131   | 5.07E-11 |
| CBM              | CBM   | CUPP            | dbCAN_4:HMMER   | -0.47404  | -0.54389   | -0.40419   | 5.07E-11 |
| CBM              | CBM   | CUPP            | dbCAN_4:DIAMOND | -0.87733  | -0.94718   | -0.80749   | 5.07E-11 |
| $_{\rm CBM}$     | CBM   | CUPP            | dbCAN_4:sub     | -0.81932  | -0.88917   | -0.74947   | 5.07E-11 |

#### SI Table 13: Tukey HSD test to measure the statistically significant difference between the mean precision between CAZy classes and prediction tools

Tukey HSD test of the mean precision between the classifiers and CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

Showing only hits with a P-value ; 0.05 where the CAZyme class is the same and the classifier is different.

| Class | Class | Classifier 1 | Classifier 2    | Mean Dif- | Lower 95%  | Upper 95%  | Adjusted |
|-------|-------|--------------|-----------------|-----------|------------|------------|----------|
| 1     | 2     |              |                 | ference   | Confidence | Confidence | P-value  |
|       |       |              |                 |           | Interval   | Interval   |          |
| CBM   | CBM   | CUPP         | dbCAN_4         | -0.95625  | -1.01961   | -0.89289   | 5.07E-11 |
| CBM   | CBM   | CUPP         | dbCAN_4:HMMER   | -0.9184   | -0.98176   | -0.85504   | 5.07E-11 |
| CBM   | CBM   | CUPP         | dbCAN_4:DIAMOND | -0.95711  | -1.02047   | -0.89375   | 5.07E-11 |
| CBM   | CBM   | CUPP         | dbCAN_4:sub     | -0.93759  | -1.00095   | -0.87423   | 5.07E-11 |

#### SI Table 14: Tukey HSD test to measure the statistically significant difference between the mean accuracy between CAZy classes and prediction tools

Tukey HSD test of the mean accuracy between the classifiers and CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

Showing only hits with a P-value ; 0.05 where the CAZyme class is the same and the classifier is different.

| Class      | Class | Classifier 1    | Classifier 2    | Mean Dif- | Lower 95%  | Upper 95%  | Adjusted |
|------------|-------|-----------------|-----------------|-----------|------------|------------|----------|
| 1          | 2     |                 |                 | ference   | Confidence | Confidence | P-value  |
|            |       |                 |                 |           | Interval   | Interval   |          |
| GT         | GT    | dbCAN_4:HMMER   | dbCAN_4         | -0.02787  | -0.04925   | -0.00649   | 0.000427 |
| GT         | GT    | CUPP            | dbCAN_4         | -0.03193  | -0.05331   | -0.01055   | 9.95E-06 |
| GT         | GT    | dbCAN_4:DIAMOND | dbCAN_4:HMMER   | 0.033533  | 0.012153   | 0.054913   | 1.96E-06 |
| GT         | GT    | dbCAN_4:sub     | dbCAN_4:HMMER   | 0.027036  | 0.005656   | 0.048416   | 0.000863 |
| GT         | GT    | CUPP            | dbCAN_4:DIAMOND | -0.03759  | -0.05897   | -0.01621   | 2.26E-08 |
| GT         | GT    | CUPP            | dbCAN_4:sub     | -0.0311   | -0.05248   | -0.00972   | 2.25E-05 |
| $_{ m GH}$ | GH    | CUPP            | dbCAN_4:DIAMOND | -0.02725  | -0.04863   | -0.00587   | 0.000724 |
| CBM        | CBM   | dbCAN_4:HMMER   | dbCAN_4         | -0.03267  | -0.05405   | -0.01129   | 4.74E-06 |
| CBM        | CBM   | CUPP            | dbCAN_4         | -0.0912   | -0.11258   | -0.06982   | 5.07E-11 |
| CBM        | CBM   | dbCAN_4:DIAMOND | dbCAN_4:HMMER   | 0.039355  | 0.017976   | 0.060735   | 2.85E-09 |
| CBM        | CBM   | dbCAN_4:sub     | dbCAN_4:HMMER   | 0.03251   | 0.01113    | 0.05389    | 5.58E-06 |
| CBM        | CBM   | CUPP            | dbCAN_4:HMMER   | -0.05853  | -0.07991   | -0.03715   | 5.10E-11 |
| CBM        | CBM   | CUPP            | dbCAN_4:DIAMOND | -0.09788  | -0.11926   | -0.07651   | 5.07E-11 |
| CBM        | CBM   | CUPP            | dbCAN_4:sub     | -0.09104  | -0.11242   | -0.06966   | 5.07E-11 |

## 6 Taxonomic performance of CAZy class classification across all CAZy classes

This section of the SI presents the data and figures for evaluation the performance of CAZy class classification across all CAZy classes.

#### SI table 15: Tukey HSD test to measure the statistically significant difference between the mean F1-score for CE CAZyme class classification (overleaf)

Tukey HSD test of the mean F1-score between the classifiers, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                          | Mean Difference | $\mathbf{Lower}$ | Upper    | P-Adj     |
|--------------------------|-----------------|------------------|----------|-----------|
| Eukaryote: dbCAN_4 -     | 0.050244        | -0.02676         | 0.127252 | 0.650193  |
| Bacteria: dbCAN_4        |                 |                  |          |           |
| Eukaryote: db-           | 0.072597        | -0.00441         | 0.149605 | 0.089366  |
| CAN_4:HMMER - Bacte-     |                 |                  |          |           |
| ria: dbCAN_4:HMMER       |                 |                  |          |           |
| Eukaryote: db-           | 0.043919        | -0.03309         | 0.120927 | 0.831691  |
| CAN_4:DIAMOND            |                 |                  |          |           |
| - Bacteria: db-          |                 |                  |          |           |
| CAN_4:DIAMOND            |                 |                  |          |           |
| Eukaryote :db-           | 0.049899        | -0.02711         | 0.126907 | 0.661286  |
| $CAN_4:dbCAN-sub - Bac-$ |                 |                  |          |           |
| teria: dbCAN_4:dbCAN-    |                 |                  |          |           |
| $\operatorname{sub}$     |                 |                  |          |           |
| Eukaryote: CUPP - Bac-   | 0.052876        | -0.02413         | 0.129885 | 0.5634086 |
| teria: CUPP              |                 |                  |          |           |

### SI table 16: Tukey HSD test to measure the statistically significant difference between the mean F1-score for AA CAZyme class classification (overleaf)

Tukey HSD test of the mean F1-score between the classifiers, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                          | Mean Difference | Lower    | Upper    | P-Adj    |
|--------------------------|-----------------|----------|----------|----------|
| Eukaryote: dbCAN_4 -     | -0.06949        | -0.20561 | 0.066629 | 0.919319 |
| Bacteria: dbCAN_4        |                 |          |          |          |
| Eukaryote: db-           | -0.07338        | -0.2095  | 0.062736 | 0.8813   |
| CAN_4:HMMER - Bacte-     |                 |          |          |          |
| ria: dbCAN_4:HMMER       |                 |          |          |          |
| Eukaryote: db-           | -0.05068        | -0.1868  | 0.085437 | 0.995013 |
| CAN_4:DIAMOND            |                 |          |          |          |
| - Bacteria: db-          |                 |          |          |          |
| CAN_4:DIAMOND            |                 |          |          |          |
| Eukaryote: db-           | -0.07398        | -0.2101  | 0.062141 | 0.874648 |
| $CAN_4:dbCAN-sub - Bac-$ |                 |          |          |          |
| teria: dbCAN_4:dbCAN-    |                 |          |          |          |
| $\operatorname{sub}$     |                 |          |          |          |
| Eukaryote: CUPP - Bac-   | -0.12837        | -0.26449 | 0.007754 | 0.088815 |
| teria: CUPP              |                 |          |          |          |

## SI table 17: Tukey HSD test to measure the statistically significant difference between the mean F1-score for CBM CAZyme class classification (overleaf)

Tukey HSD test of the mean F1-score between the classifiers, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                          | Mean Difference | Lower    | Upper    | P-Adj    |
|--------------------------|-----------------|----------|----------|----------|
| Eukaryote: dbCAN_4 -     | -0.14981        | -0.25398 | -0.04564 | 0.000121 |
| Bacteria: dbCAN_4        |                 |          |          |          |
| Eukaryote: db-           | -0.24181        | -0.34598 | -0.13764 | 0        |
| CAN_4:HMMER - Bacte-     |                 |          |          |          |
| ria: dbCAN_4:HMMER       |                 |          |          |          |
| Eukaryote: db-           | 0.093003        | -0.01117 | 0.197174 | 0.141534 |
| CAN_4:DIAMOND            |                 |          |          |          |
| - Bacteria: db-          |                 |          |          |          |
| CAN_4:DIAMOND            |                 |          |          |          |
| Eukaryote: db-           | -0.18155        | -0.28572 | -0.07738 | 4.67E-07 |
| $CAN_4:dbCAN-sub - Bac-$ |                 |          |          |          |
| teria: dbCAN_4:dbCAN-    |                 |          |          |          |
| $\operatorname{sub}$     |                 |          |          |          |
| Eukaryote: CUPP - Bac-   | 8.53E-16        | -0.10417 | 0.104171 | 1        |
| teria: CUPP              |                 |          |          |          |

## 7 Overall performance of CAZy family classification (across all CAZy families and classes)

#### SI Table 18: Tukey HSD test to measure the statistically significant difference between the mean F1-score for CAZy family classification

Tukey HSD test of the mean F1-score between the classifiers, evaluating CAZyme family classification after aggregating all CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                                   | Mean Difference | $\mathbf{Lower}$ | Upper    | P-Adj    |
|-----------------------------------|-----------------|------------------|----------|----------|
| dbCAN_4:HMMER-dbCAN_4             | -0.03553        | -0.10033         | 0.029273 | 0.564396 |
| $dbCAN_4:DIAMOND-dbCAN_4$         | 0.037334        | -0.02782         | 0.102486 | 0.520279 |
| $dbCAN_4:dbCAN_sub-dbCAN_4$       | -0.01065        | -0.07555         | 0.054252 | 0.991671 |
| $\mathrm{CUPP\text{-}dbCAN}_{-4}$ | -0.23454        | -0.29975         | -0.16934 | 0        |
| dbCAN_4:DIAMOND-dbCAN_4:HMMER     | 0.072864        | 0.00786          | 0.137867 | 0.019015 |
| $dbCAN_4:dbCAN-sub-dbCAN_4:HMMER$ | 0.024881        | -0.03987         | 0.089633 | 0.832207 |
| CUPP-dbCAN_4:HMMER                | -0.19901        | -0.26407         | -0.13396 | 0        |
| dbCAN_4:dbCAN-sub-dbCAN_4:DIAMOND | -0.04798        | -0.11308         | 0.017119 | 0.260215 |
| CUPP-dbCAN_4:DIAMOND              | -0.27188        | -0.33728         | -0.20648 | 0        |
| CUPP-dbCAN_4:dbCAN-sub            | -0.2239         | -0.28905         | -0.15874 | 0        |

### SI Table 19: Tukey HSD test to measure the statistically significant difference between the mean sensitivity for CAZy family classification

Tukey HSD test of the mean sensitivity between the classifiers, evaluating CAZyme family classification after aggregating all CAZyme classes, reporting the lower and upper 95% confidence interval, and the adjusted p-value (P-Adj).

|                                   | Mean Difference | $\mathbf{Lower}$ | Upper    | $\mathbf{P}	ext{-}\mathbf{Adj}$ |
|-----------------------------------|-----------------|------------------|----------|---------------------------------|
| dbCAN_4:HMMER-dbCAN_4             | -0.04254        | -0.1073          | 0.022217 | 0.377403                        |
| dbCAN_4:DIAMOND-dbCAN_4           | 0.037767        | -0.02734         | 0.102874 | 0.507826                        |
| $dbCAN_4:dbCAN_sub-dbCAN_4$       | -0.00958        | -0.07443         | 0.05528  | 0.994441                        |
| $\mathrm{CUPP\text{-}dbCAN\_4}$   | -0.25794        | -0.32309         | -0.19278 | 0                               |
| dbCAN_4:DIAMOND-dbCAN_4:HMMER     | 0.080307        | 0.015348         | 0.145266 | 0.006742                        |
| $dbCAN_4:dbCAN_sub-dbCAN_4:HMMER$ | 0.032964        | -0.03174         | 0.097672 | 0.633438                        |
| CUPP-dbCAN_4:HMMER                | -0.2154         | -0.28041         | -0.15039 | 0                               |
| dbCAN_4:dbCAN-sub-dbCAN_4:DIAMOND | -0.04734        | -0.1124          | 0.017715 | 0.272619                        |
| CUPP-dbCAN_4:DIAMOND              | -0.2957         | -0.36106         | -0.23034 | 0                               |
| CUPP-dbCAN_4:dbCAN-sub            | -0.24836        | -0.31347         | -0.18325 | 0                               |

#### 8 Multi-label classification of CAZyme families

SI Table 20: Tukey HSD test to measure the statistically significant difference between the mean Adjusted Rand Index across prediction tools and taxonomic groups

Showing only hits with a P-value ; 0.05 where the CAZyme class is the same and the classifier is different

| Class    | Class      | Classifier 1      | Classifier 2    | Mean Dif- | Lower 95%  | Upper 95%  | Adjusted |
|----------|------------|-------------------|-----------------|-----------|------------|------------|----------|
| 1        | 2          |                   |                 | ference   | Confidence | Confidence | P-value  |
|          |            |                   |                 |           | Interval   | Interval   |          |
| Eukaryot | e Eukaryot | e dbCAN_4:HMMER   | dbCAN_4         | -0.02826  | -0.04061   | -0.01591   | 9.65E-13 |
| Eukaryot | e Eukaryot | e dbCAN_4:DIAMOND | dbCAN_4         | 0.018578  | 0.006231   | 0.030924   | 3.42E-05 |
| Eukaryot | e Eukaryot | e CUPP            | dbCAN_4         | -0.0528   | -0.06514   | -0.04045   | 0        |
| Eukaryot | e Eukaryot | e dbCAN_4:DIAMOND | dbCAN_4:HMMER   | 0.046837  | 0.03449    | 0.059183   | 0        |
| Eukaryot | e Eukaryot | e dbCAN_4:sub     | dbCAN_4:HMMER   | 0.026545  | 0.014199   | 0.038892   | 3.23E-11 |
| Eukaryot | e Eukaryot | e CUPP            | dbCAN_4:HMMER   | -0.02454  | -0.03688   | -0.01219   | 1.67E-09 |
| Eukaryot | e Eukaryot | e dbCAN_4:sub     | dbCAN_4:DIAMOND | -0.02029  | -0.03264   | -0.00794   | 2.59E-06 |
| Eukaryot | e Eukaryot | e CUPP            | dbCAN_4:DIAMOND | -0.07137  | -0.08372   | -0.05903   | 0        |
| Eukaryot | e Eukaryot | e CUPP            | dbCAN_4:sub     | -0.05108  | -0.06343   | -0.03874   | 0        |
| All      | All        | $dbCAN_4:HMMER$   | dbCAN_4         | -0.03178  | -0.04051   | -0.02305   | 0        |
| All      | All        | $dbCAN_4:DIAMOND$ | dbCAN_4         | 0.009785  | 0.001055   | 0.018516   | 0.012146 |
| All      | All        | CUPP              | dbCAN_4         | -0.05268  | -0.06141   | -0.04395   | 0        |
| All      | All        | dbCAN_4:DIAMOND   | dbCAN_4:HMMER   | 0.041563  | 0.032833   | 0.050293   | 0        |
| All      | All        | $dbCAN_4:sub$     | dbCAN_4:HMMER   | 0.03232   | 0.023589   | 0.04105    | 0        |
| All      | All        | CUPP              | dbCAN_4:HMMER   | -0.0209   | -0.02963   | -0.01217   | 2.32E-13 |
| All      | All        | $dbCAN_4:sub$     | dbCAN_4:DIAMOND | -0.00924  | -0.01797   | -0.00051   | 0.025872 |
| All      | All        | CUPP              | dbCAN_4:DIAMOND | -0.06246  | -0.0712    | -0.05373   | 0        |
| All      | All        | CUPP              | dbCAN_4:sub     | -0.05322  | -0.06195   | -0.04449   | 0        |
| Bacteria | Bacteria   | $dbCAN_4:HMMER$   | dbCAN_4         | -0.0353   | -0.04764   | -0.02295   | 1.82E-13 |
| Bacteria | Bacteria   | CUPP              | dbCAN_4         | -0.05256  | -0.06491   | -0.04022   | 0        |
| Bacteria | Bacteria   | dbCAN_4:DIAMOND   | dbCAN_4:HMMER   | 0.03629   | 0.023943   | 0.048636   | 1.25E-13 |
| Bacteria | Bacteria   | $dbCAN_4:sub$     | dbCAN_4:HMMER   | 0.038094  | 0.025747   | 0.050441   | 1.43E-13 |
| Bacteria | Bacteria   | CUPP              | dbCAN_4:HMMER   | -0.01727  | -0.02961   | -0.00492   | 0.00021  |
| Bacteria | Bacteria   | CUPP              | dbCAN_4:DIAMOND | -0.05356  | -0.0659    | -0.04121   | 0        |
| Bacteria | Bacteria   | CUPP              | dbCAN_4:sub     | -0.05536  | -0.06771   | -0.04301   | 0        |