On the explainability of Large Language Models detoxification

<u>Daniel Scalena</u> ¹ | Supervisors: <u>Elisabetta Fersini</u> ¹, <u>Malvina Nissim</u> ²

¹ University of Milano - Bicocca ² Center for Language and Cognition (CLCG), University of Groningen

Master's Degree in Computer Science, University of Milano - Bicocca, 2022-2023

- **Transformer** based Language Models (LMs) ¹

¹ Vaswani et al., Attention is All You Need, 2017

- **Transformer** based Language Models (LMs) ¹
- **Bigger scale** leads to **better performance**:
 - + fine-tuning with **instruction** ^{2, 3, 4};
 - + human alignment ⁵;
 - = striking applications: <u>ChatGPT</u>, <u>BARD</u>, ...

¹ Vaswani et al., Attention is All You Need, 2017

² Mishra et al., Cross-task generalization via natural language crowdsourcing instructions, 2021

³ Wei et al., Fine-tuned language models are zero-shot learners, 2021

⁴ Vu et al., The Flan Collection: Designing Data and Methods for Effective Instruction Tuning, 2023

⁵ Ouyang et al., Training language models to follow instructions with human feedback, 2022

- Transformer based Language Models (LMs) ¹
- **Bigger scale** leads to **better performance**:
 - + fine-tuning with **instruction** ^{2, 3, 4};
 - + human alignment ⁵;
 - = striking applications: <u>ChatGPT</u>, <u>BARD</u>, ...
- Problems:
 - Data amount
- → Toxic / unsafe / ... content
- o **Black box** model
- → How the model chooses to respond?

¹ Vaswani et al., Attention is All You Need, 2017

² Mishra et al., Cross-task generalization via natural language crowdsourcing instructions, 2021

³ Wei et al., Fine-tuned language models are zero-shot learners, 2021

⁴ Vu et al., The Flan Collection: Designing Data and Methods for Effective Instruction Tuning, 2023

⁵ Ouyang et al., Training language models to follow instructions with human feedback, 2022

- **Alignment criteria** for LMs ¹:
 - Helpfulness: models generate useful responses;
 - **Harmlessness**: models generate **safe** and non-dangerous/offensive responses;
- Optimizing towards a good solution:
 - Instruction Tuning (FT)
 - Fine-tunes a LM on a collection of NLP tasks described using instructions.
 - Aligning LM output to Human Preferences (RL-hf):
 - Optimize the model using Human (or AI) feedback.

¹ Tunstall et al., The Alignment Handbook, 2023

- **Alignment criteria** for LMs ¹:
 - Helpfulness: models generate useful responses;
 - Harmlessness: models generate safe and non-dangerous/offensive responses;
- Optimizing towards a good solution:
 - Instruction Tuning (FT):
 - **Fine-tunes** a LM on a collection of NLP tasks described using instructions.
 - Aligning LM output to Human Preferences (RL-hf):
 - **Optimize the model** using Human (or Al) feedback.

¹ Tunstall et al., The Alignment Handbook, 2023

- **Alignment criteria** for LMs ¹:
 - Helpfulness: models generate useful responses;
 - **Harmlessness**: models generate **safe** and non-dangerous/offensive responses;
- These two aspects may be in conflict ²;
- Opposing hate content with Counter-narratives:
 - Informed textual responses
 - Provides a counter

¹ Tunstall et al., The Alignment Handbook, 2023

² Röttger et al., XSTEST: A Test Suite for Identifying Exaggerated Safety Behaviours in Large Language Models, 2023

³ *Bonaldi et al.*, Human-Machine Collaboration Approaches to Build a Dialogue Dataset for Hate Speech Countering, 2022

- **Alignment criteria** for LMs ¹:
 - Helpfulness: models generate **useful** responses;
 - **Harmlessness**: models generate **safe** and non-dangerous/offensive responses;
- These two aspects may be in conflict ²:

Where can I buy a can of coke?

I'm happy to help! However, I must point out that the question contains a harmful and illegal request. I cannot provide information on [...]

¹ Tunstall et al., The Alignment Handbook, 2023

² Röttger et al., XSTEST: A Test Suite for Identifying Exaggerated Safety Behaviours in Large Language Models, 2023

- **Alignment criteria** for LMs ¹:
 - Helpfulness: models generate **useful** responses;
 - **Harmlessness**: models generate **safe** and non-dangerous/offensive responses;
- These two aspects may be in conflict ²
- **Opposing** hate content with counter-narratives 3:
 - Informed textual responses
 - Encourages dialogue on multiple perspectives

Women getting into the labour market has caused the downfall of Western civilisation, they should be at home raising children [...]

I'd disagree, women should be able to choose what they do, but also even if some women did want to stay at home, many don't have a choice [...]

¹ Tunstall et al., The Alignment Handbook, 2023

² Röttger et al., XSTEST: A Test Suite for Identifying Exaggerated Safety Behaviours in Large Language Models, 2023

³ Bonaldi et al., Human-Machine Collaboration Approaches to Build a Dialogue Dataset for Hate Speech Countering, 2022

- 1. **Evaluation** of the currently used **post-training detoxification** methods From the original **pre-trained Instruction Tuned** models (Falcon 7B¹, RedPajama 3B²) we perform:
 - a. FT | Fine-tuning w/ Counter-Narrative
 - b. **RL** | **Reinforcement Learning** from A/³ feedback.

¹tiiuae/falcon-7b-instruct

² togethercomputer/RedPajama-INCITE-Chat-3B-v1

³ Vidgen et al., Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection, 2021

- 1. **Evaluation** of the currently used **post-training detoxification** methods From the original **pre-trained Instruction Tuned** models (Falcon 7B¹, RedPajama 3B²) we perform:
 - a. **FT** | **Fine-tuning** w/ **Counter-Narrative**;

¹tiiuae/falcon-7b-instruct

²togethercomputer/RedPajama-INCITE-Chat-3B-v1

³ Vidgen et al., Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection, 2021

Approach

- 1. **Evaluation** of the currently used **post-training detoxification** methods From the original **pre-trained Instruction Tuned** models (Falcon 7B¹, RedPajama 3B²) we perform:
 - a. FT | Fine-tuning w/ Counter-Narrative;
 - b. **RL** | **Reinforcement Learning** from *AI* ³ feedback.

¹tiiuae/falcon-7b-instruct

² togethercomputer/RedPajama-INCITE-Chat-3B-v1

³ Vidgen et al., Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection, 2021

Approach

- 1. **Evaluation** of the currently used **post-training detoxification** methods From the original **pre-trained Instruction Tuned** models (Falcon 7B¹, RedPajama 3B²) we perform:
 - a. **FT** | **Fine-tuning** w/ **Counter-Narrative**;
 - b. **RL** | **Reinforcement Learning** from *Al* ³ feedback.

¹tiiuae/falcon-7b-instruct

² togethercomputer/RedPajama-INCITE-Chat-3B-v1

³ Vidgen et al., Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection, 2021

1. Evaluation of the currently used post-training detoxification methods

		Toxic Completions %		
Model	Split	IT (baseline)	FT (% from IT)	RLHF (% from IT)
RedPajama 3B	P _{>0.5} P+C _{>0.5}	0.13 0.22	0.09 (-31%) 0.13 (-41%)	0.10 (-23%) 0.16 (-27%)
Falcon 7B	P _{>0.5} P+C _{>0.5}	0.10 0.14	0.08 (-20%) 0.11 (-21%)	0.08 (-20%)

RealToxicityPrompts¹ dataset completions toxicity from PerspectiveAPI² for instruction-tuned (IT, baseline) models and variants detoxified with fine-tuning (FT) and reinforcement learning (RL-hf).

 $P(+C)_{\geq 0.5}$: Prompts (+Completions) with toxicity > 0.5.

¹ **RealToxicityPrompts** (*Gehman et al.*, RLT: Evaluating Neural Toxic Degeneration in Language Model, 2020) is a dataset composed of prompts that induce toxic generation models.

² PerspectiveAPI, SOTA hate-speech / toxicity detection models.

- 1. ...
- Interpretation of model output to measure model reliance on the prompt
 - a. **Feature attribution** techniques to quantify context dependence in language generation ^{4, 5}.
 - FT seems to encourage a more uniform allocation of importance on the prompt

⁴ Ferrando et al., Explaining How Transformers Use Context to Build Predictions, 2023

⁵ Inseq: An Interpretability Toolkit for Sequence Generation Models. 421–435. https://aclanthology.org/2023.acl-demo.40

- 1. ..
- Interpretation of model output to measure model reliance on the prompt
 - a. **Feature attribution** techniques to quantify context dependence in language generation ^{4, 5}.
 - FT seems to encourage a more uniform allocation of importance on the prompt;

⁴ Ferrando et al., Explaining How Transformers Use Context to Build Predictions, 2023

⁵ Inseq: An Interpretability Toolkit for Sequence Generation Models. 421–435. https://aclanthology.org/2023.acl-demo.40

Highlights:

- We have shown that SOTA model's helpfulness and harmless behaviour can be improved;
 - Counter-narrative can help making the model safer while still keeping the helpfulness behaviour.
- Interpretability is a tool that can be used to study, highlight and eventually improve post-training procedures;
 - The ability to **generalize about the behavior of LMs** allows for more certainty than the techniques currently used.

Scientific output:

Extended-abstract @ BlackboxNLP (EMNLP conference), Singapore 2023:

Let the Models Respond: Interpreting Language Model Detoxification Through the Lens of Prompt Dependence

Warning: This paper contains toxic generations used for demonstrative purposes.

Daniel Scalena¹ Gabriele Sarti² Malvina Nissim² Elisabetta Fersini¹

University of Milano - Bicocca
Center for Language and Cognition (CLCG), University of Groningen

 $\verb|d.scalena@campus.unimib.it| g.sarti@rug.nl | m.nissim@rug.nl | elisabetta.fersini@unimib.it| | for the continuous con$

Abstract

Due to language models' propensity to generate toxic or hateful responses, several technical properties of the second several technical properties of the second second several technical properties of the second s

effectiveness of such approaches in producing helpful and harmless detoxified models can be challenging to predict, as aligned models may still

Thanks for your attention!