

Curso

Análise de Dados de Saúde e Clima: Estatísticas para Políticas Públicas

Análise de correlação -Revisão

Módulo 2: Análise descritiva e de correlação - 06/08/2024

Renata Yokota Felipe Freitas

Conteúdo

página

3

Revisão Conceitos básicos de estatística descritiva página

41

Correlação

Revisão

Conceitos básicos de estatística descritiva

1. Tipos de variáveis

Importante para escolha do melhor método de como apresentar e analisar os dados

1.1. Variáveis quantitativas (numéricas)

Contínua

- Medida em escala contínua
- Número infinito de valores
- Exemplos: temperatura (°C), umidade relativa (%), pluviosidade (mm)

Discreta

- Número finito de valores
- Geralmente números inteiros
- Não podem assumir valores intermediários entre dois valores consecutivos
- Exemplos: número de moradores no domicílio, número de filhos

1.2. Variáveis qualitativas (categóricas)

Binárias ou dicotômicas

- Duas categorias
- Sim/Não

Ordinal

- Categorias naturalmente ordenadas.
- Exemplos: faixa etária; grau de escolaridade

Nominal

- Categorias n\u00e3o ordenadas
- Exemplo: raça/cor (branca, preta, parda, amarela, indígena); sexo

1.2. Variáveis qualitativas (categóricas)

Binárias ou dicotômicas

- Duas categorias
- Sim/Não

Ordinal

- Categorias naturalmente ordenadas.
- Exemplos: faixa etária; grau de escolaridade

Nominal

- Categorias não ordenadas
- Exemplo: raça/cor (branca, preta, parda, amarela, indígena); sexo

Hierarquia dos tipos de variáveis

1. Tipos de variáveis

Desfecho

- Foco do estudo
- Variável que buscamos maior conhecimento com o estudo

Exposição

 Fatores que podem influenciar a ocorrência ou magnitude do desfecho

| | | | | |

Variável resposta Variável dependente

Variável explanatória Variável independente

Tipo de desfecho

Analise estatística

1. Tipos de variáveis

Qual a influência das variáveis climáticas na incidência de bronquiolite em crianças menores de 5 anos no Brasil? Desfecho? Exposições?

Desfecho

- Foco do estudo
- Variável que buscamos major conhecimento com o estudo

Variável resposta Variável dependente

Exposição

 Fatores que podem influenciar a ocorrência ou magnitude do desfecho

Variável explanatória Variável independente

2. Medidas de tendência central 2.1. Média

$$\bar{x} = \frac{\sum x}{n}$$

- Influenciada por valores extremos (outliers)
- Apropriada para variáveis quantitativas

A regressão linear é baseada na média

Indivíduo	Idade (x)
1	15
2	20
3	20
4	30
5	25
6	25
7	35
8	40
9	30
10	20
Σ	

Indivíduo	Idade (x)
1	15
2	20
3	20
4	30
5	25
6	25
7	35
8	40
9	30
10	20
Σ	260

Indivíduo	Idade (x)	Média (\overline{x})	Erro $(x - \overline{x})$
1	15	26	
2	20	26	
3	20	26	
4	30	26	
5	25	26	
6	25	26	
7	35	26	
8	40	26	
9	30	26	
10	20	26	
Σ	260	-	

Indivíduo	Idade (x)	Média (\overline{x})	Erro $(x - \overline{x})$
1	15	26	-11
2	20	26	-6
3	20	26	-6
4	30	26	4
5	25	26	-1
6	25	26	-1
7	35	26	9
8	40	26	14
9	30	26	4
10	20	26	-6
Σ	260	-	0

2. Medidas de tendência central

2.2. Mediana (P50)

- Divide a distribuição na metade
- Utilizada quando a distribuição possui valores extremos

2.3. Moda

- Medida mais frequente
- Distribuição bimodal

3.1. Intervalo

Intervalo = valor máximo – valor mínimo

- Baseado apenas em 2 observações
- Não informa como as demais observações estão dispersas entre esses 2 valores
- Influenciado por outliers

3.2. Intervalo interquartil

Intervalo interquartil = P75-P25

- Dispersão da distribuição entre P25 e P75
- Não é muito influenciado por valores extremos
- Utilizado no box plot
 - frequente
 - Distribuição bimodal

Box Plot

3.3. Variância

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{(n - 1)}$$
 Média do quadrado dos desvios (erros)

- s^2 = variância amostral
- *n* = tamanho amostral
- *x* = variável de interesse
- \bar{x} = média das observações

Por que a variância é elevada ao quadrado?

Grau de liberdade (GL) da variância (n-1)

- n 1 desvios são independentes
- 1 desvio pode ser calculado por meio dos outros: A soma dos outros "n" desvios=0
- Preciso estimar a média para calcular a variância "gasto de 1 GL"
- Em qual das duas curvas a média e mais informativa?

3.3. Variância – Exemplo: Idade

Indivíduo	Idade (x)	Média (\overline{x})	Erro $(x - \overline{x})$	$(x-\overline{x})^2$
1	15	26	-11	121
2	20	26	-6	36
3	20	26	-6	36
4	30	26	4	16
5	25	26	-1	1
6	25	26	-1	1
7	35	26	9	81
8	40	26	14	196
9	30	26	4	16
10	20	26	-6	36
Σ	260	-	0	540

3.3. Exemplo: Idade – cálculo da variância

$$s^2 = \frac{\sum (x - \bar{x})^2}{(n - 1)}$$

•
$$\sum (x - \bar{x})^2 = 540$$

•
$$s^2 = 540/9 = 60$$

3.4. Desvio-padrão

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{(n-1)}}$$

- *s* = desvio-padrão amostral
- n = tamanho amostral
- x = variável de interesse
- \bar{x} = média das observações

s = desvio-padrão da amostra σ = desvio-padrão da população

- > variação em relação à média, > s
- Muito influenciado por outliers

3.4. Exemplo: Idade – cálculo do desvio-padrão, média e mínimo dos quadrados

Lat	lale de	Média=10		Média=10 Média=24		Média=26		Média=30		Média=40	
ld	Idade	$(x-\overline{x})^2$	DP	$(x-\overline{x})^2$	DP	$(x-\overline{x})^2$	DP	$(x-\overline{x})^2$	DP	$(x-\overline{x})^2$	DP
1	15	25		81		121		225		625	
2	20	100		16		36		100		400	
3	20	100		16		36		100		400	
4	30	400		36		16		0		100	
5	25	225		1		1		25		225	
6	25	225		1		1		25		225	
7	35	625		121		81		25		25	
8	40	900		256		196		100		0	
9	30	400		36		16		0		100	
10	20	100		16		36		100		400	
Σ	260	3100	18,6	580	8,0	540	7,7	700	8,8	2500	16,7

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{(n - 1)} = \frac{540}{9} = 60$$

$$s = \sqrt{s^2} = \sqrt{60} = 7,7$$

3.4. Exemplo: Idade – cálculo do desvio-padrão, média e mínimo dos quadrados

1.4	Idada	Média=10 Média=24			Médi	a=26	Médi	a=30	Médi	a=40	
ld	Idade	$(x-\overline{x})^2$	DP								
1	15	25		81		121		225		625	
2	20	100		16		36		100		400	
3	20	100		16		36		100		400	
4	30	400		36		16		0		100	
5	25	225		1		1		25		225	
6	25	225		1		1		25		225	
7	35	625		121		81		25		25	
8	40	900		256		196		100		0	
9	30	400		36		16		0		100	
10	20	100		16		36		100		400	
Σ	260	3100	18,6	580	8,0	540	7,7	700	8,8	2500	16,7

$$s^{2} = \frac{\sum (x - \bar{x})^{2}}{(n - 1)} = \frac{540}{9} = 60$$

$$s = \sqrt{s^2} = \sqrt{60} = 7,7$$

3.4. Exemplo: Idade – Média e mínimo dos quadrados

• Diferença entre μ e \bar{x} : variação amostral

4.1. Erro-padrão

- Amostras independentes de mesmo tamanho, da mesma população dificilmente apresentarão a mesma média
- Distribuição amostral distribuição das médias dessas amostras da mesma população
 - A média da distribuição das amostras = média da população
 - Erro-padrão da média amostral:

$$Ep = \frac{s}{\sqrt{n}}$$

Mede a precisão da média amostral como estimativa da média da população

4.1. Exemplo

População (N=4)

$$x = idade$$

•
$$x_1 = 10$$

•
$$x_2 = 20$$

•
$$x_3 = 30$$

•
$$x_1 = 10$$
 • $x_2 = 20$ • $x_3 = 30$ • $x_4 = 40$

$$\bar{x}=25$$

Amostras aleatórias de 2 elementos com reposição

$$2^{n} = 2^{4} = 16$$
 amostras

Médias amostrais possíveis

$\overline{oldsymbol{x}}$	Frequência	Frequência relativa
10	1	0,0625
15	2	0,1250
20	3	0,1875
25	4	0,2500
30	3	0,1875
35	2	0,1250
40	1	0,0625

Teorema do limite central

A **distribuição amostral** das médias é **normal**, mesmo quando as observações individuais não possuem distribuição normal, desde que o tamanho amostral não seja muito pequeno (n>30?)

4.1. Desvio-padrão x Erro-padrão

Desvio-padrão

• Variabilidade da população

Erro-padrão

- Variabilidade da média amostral
- Indica o quanto a média amostral está próxima da média populacional

5. Distribuição Normal

5.1. Propriedades

- Formato de sino, com caudas assintóticas ao eixo $x(-\infty; +\infty)$
- Curva simétrica em relação à média
- Média = Moda = Mediana
- Area sob a curva = 1

95% da população apresenta valores de x entre –1,96s e +1,96s

5. Distribuição Normal

Exemplo: Temperatura média diária de Brasília no mês de julho: T~N(25,32)

$$\bar{x} = 25^{\circ}\text{C}$$
 $s = 3$

Conclusões

- 68% dos dias do mês de julho ("população de estudo") apresentam temperatura entre (25-3) 22°C e (25+3) 28°C
- 95% dos dias do mês de julho ("população de estudo) apresentam temperatura entre (25-6) 19°C e (25+6) 31°C
- Praticamente todos os dias do mês de julho apresentam temperatura entre (25-9) 14°C e (25+9) 34°C
- Probabilidade que uma pessoa da população tenha glicemia entre 25 e 28 é 34%

5. Distribuição Normal

5.2. Curva Normal Padronizada

(Normal reduzida)

- Se uma variável possui distribuição normal, a mudança da unidade de medida de uma variável não altera sua distribuição
- Mudança da média a curva é movida ao longo do eixo x
- Mudança do desvio-padrão alteração da altura e largura da curva
- Curva normal com
 média = o e desvio-padrão = 1 → N(o,1)

5.3. Padronização

 Subtração da média e divisão pelo desviopadrão

$$z(escore\ z) = \frac{x - \bar{x}}{s}$$

• z: diferença, em unidades de desviopadrão, entre um valor de x e a média.

Exemplo: Seleção de jovens com no mínimo 180cm de altura

$$\bar{x} = 175cm$$
 $s = 6$ $N = 140$

$$x = 175, z(escore\ Z) = \frac{x - \bar{x}}{s} = \frac{(175 - 175)}{6} = 0$$

 $x = 180, z(escore\ Z) = \frac{x - \bar{x}}{s} = \frac{(180 - 175)}{6} = 0,83$

- Área entre z=0 e z=0,83 (Tabela) = 0,2967
- Área além de 0.83 (0.5 0.2967) = 0.2033

Conclusão

• 20,33% (28 indivíduos) da população tem altura maior que 180cm

6. Intervalo de Confiança (IC)

6.1. IC_{95%} da média

$$IC95\% = \bar{x} \pm 1,96(\frac{s}{\sqrt{n}})$$

$$z_{\alpha/2} = 0,025$$

Interpretação

Se fossem selecionadas várias amostras independentes e aleatórias da mesma população e, para cada população, o IC95% fosse calculado, 95% dos IC conteriam a verdadeira média populacional e 5% dos IC não conteriam

6.2. IC_{95%} da diferença de duas médias

$$IC95\% = (\overline{x_1} - \overline{x_2}) \pm 1,96(\frac{s_1}{\sqrt{n_1}} + \frac{s_2}{\sqrt{n_2}})$$

• Erro-padrão da diferença entre médias – combinação dos erros de x_1 e x_2

7. Teste de hipótese

7.1 Definição das hipóteses

- Sempre comparam 2 ou mais parâmetros
- Tipos de hipóteses estatísticas:
 - Hipótese nula (H_o): ausência de diferença entre os parâmetros (exemplo: média)
 - Hipótese alternativa (H₁): hipótese contrária à hipótese nula. Hipótese que o pesquisador quer confirmar

7. Teste de hipótese

7.1 Definição das hipóteses

- Sempre comparam 2 ou mais parâmetros
- Tipos de hipóteses estatísticas:
 - Hipótese nula (H_o): ausência de diferença entre os parâmetros (exemplo: média)
 - Hipótese alternativa (H₁): hipótese contrária à hipótese nula. Hipótese que o pesquisador quer confirmar

7.2. Teste de hipóteses

• Z-escore

$$z = \frac{(\overline{x_1} - \overline{x_0})}{Ep} = \frac{(\overline{x_1} - \overline{x_0})}{(\frac{s_1}{\sqrt{n_1}} + \frac{s_2}{\sqrt{n_0}})}$$

7.3. Definição do nível de significância

• $\alpha = 0.05$

7.4. Determinação do valor crítico do teste

• $z_{0,05}$ =1,96

7.5. Decisão

- Se $|z| < z_{\alpha}$, não rejeita H_{o}
- Se $|z| \ge z_{\alpha}$, rejeita-se H_o

7.5. Conclusão

Exemplo: Diferença do IMC médio entre homens e mulheres

• IMC aferido em 100 adultos com idade de 30-40 anos

Grupo	N	Média de IMC	S	Ep da média do IMC
Homens	n ₁ =45	$\overline{x_1} = 31,5$	s ₁ =3,6	$Ep_1 = \frac{3.6}{\sqrt{45}} = 0.53$
Mulheres	n ₂ =55	$\overline{x_1} = 28,7$	s ₂ =5,7	$Ep_2 = \frac{5.7}{\sqrt{55}} = 0.76$

1. Definição das hipóteses

- H_0 : O IMC médio dos homens é igual ao IMC médio das mulheres; H_0 : $\overline{x_1} = \overline{x_2}$ ou H_0 : $\overline{x_1} \overline{x_2} = 0$
- H₁: O IMC médio dos homens é diferente ao IMC médio das mulheres; H₁: $\overline{x_1} \neq \overline{x_2}$ ou H₁: $\overline{x_1} \overline{x_2} \neq 0$

Exemplo: Diferença do IMC médio entre homens e mulheres

• IMC aferido em 100 adultos com idade de 30-40 anos

Grupo	N	Média de IMC	S	Ep da média do IMC
Homens	n ₁ =45	$\overline{x_1} = 31,5$	s ₁ =3,6	$Ep_1 = \frac{3.6}{\sqrt{45}} = 0.53$
Mulheres	n ₂ =55	$\overline{x_1} = 28,7$	s ₂ =5,7	$Ep_2 = \frac{5.7}{\sqrt{55}} = 0.76$

1. Definição das hipóteses

- H_0 : O IMC médio dos homens **é igual** ao IMC médio das mulheres; H_0 : $\overline{x_1} = \overline{x_2}$ ou H_0 : $\overline{x_1} \overline{x_2} = 0$
- H₁: O IMC médio dos homens é diferente ao IMC médio das mulheres; H₁: $\overline{x_1} \neq \overline{x_2}$ ou H₁: $\overline{x_1} \overline{x_2} \neq 0$

2. Teste de hipóteses

$$z = \frac{(\overline{x_1} - \overline{x_0})}{Ep} = \frac{(\overline{x_1} - \overline{x_0})}{(\frac{s_1}{\sqrt{n_1}} + \frac{s_2}{\sqrt{n_0}})} = \frac{31,5 - 28,7}{(\frac{3,6}{\sqrt{45}} + \frac{5,7}{\sqrt{55}})} = \frac{2,8}{0,53 + 0,76} = \frac{2,8}{1,29} = 2,17$$

3. Definição do nível de significância

• $\alpha = 0.05$

4. Determinação do valor crítico do teste

• $z_{0,05}=1,96$

Exemplo: Diferença do IMC médio entre homens e mulheres

5. Decisão

- Se |z| < z_α, não rejeita H_o
- Se $|z| \ge z_{\alpha}$, rejeita-se H_o
- Como |2,17| > 1,96, rejeita-se H_o

6. Conclusão

O IMC médio de homens difere significativamente do IMC médio das mulheres, portanto a média de IMC dos dois grupos não são iguais. O IMC médio dos homens é maior do que o IMC médio de mulheres, para um nível de significância de 0,05.

7.5. Teste de hipóteses para amostras pequenas (n<30)

- Baseado na distribuição t
- Robusto à violação do pressuposto de normalidade para amostras pequenas
- Também utilizado quando as duas populações comparadas possuem o mesmo desvio-padrão

Desvio-padrão "comum"

$$s = \sqrt{\left[\frac{(n_1 - 1)s_1^2 + (n_0 - 1)s_2^2}{(n_1 + n_0 - 2)}\right]}$$

7.6. Erro-padrão

$$Ep = s\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})}$$

7.8. IC_{95%} – baseado na distribuição t

$$IC = (\overline{x_1} - x_2) \pm (t_{\alpha,(n_1 + n_2 - 2)} \times Ep)$$

7.7. Teste t

$$t_{\alpha,(n_1+n_2-2)} = \frac{(\overline{x_1} - \overline{x}_0)}{Ep} = \frac{(\overline{x_1} - \overline{x}_0)}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

7.9. Comparação de duas variâncias – estatística F

- Baseado na distribuição F
- Grau de liberdade (numerador e denominador): n-1

$$F_{\alpha,glN,glD} = \frac{S_{maior}^2}{S_{menor}^2}$$

8. Valor de p

8.1. Definição

Considerando que a hipótese nula é verdadeira, o valor de p é a **probabilidade** de se obter uma diferença da média de dois grupos tão grande ou maior que a diferença observada

8.2. Interpretação

- ↑ valor de p (≥0,05): os dados não fornecem evidência contrária à hipótese nula: existe probabilidade de que a diferença observada foi devido à variação amostral
- **Valor de p (<0,05):** uma diferença tão grande quanto a observada é pouco provável de ocorrer se a hipótese nula for verdadeira; logo, existe forte evidência contrária à hipótese nula

8. Valor de p x IC95%

8.3. IC_{95%}

- Intervalo de valores no qual apresentamos confiança razoável de que o parâmetro da população se encontra
- Se o IC_{95%} não contem a nulidade o valor de p **provavelmente** é <0,05
- Depende do tamanho amostral quanto ♥ amostra, ♠ o IC_{95%}

8.4. Valor de p

• Força de evidência contrária à hipótese nula que o parâmetro na população é = 0

Correlação

Mede a força da associação linear entre duas variáveis contínuas X e Y

- Não possui unidade de medida
- Fornece a direção (positiva ou negativa) da relação linear
- \bullet -1 \leq r \leq +1
- Antes de avaliar o valor do coeficiente de regressão (r), é importante observar o diagrama de dispersão

- Relação linear perfeita: se conheço x, estimo y e vice-versa
- Relação Positiva: X↑ quando Y↑ ou X↓ quando Y↓
- Relação negativa: X↑ quando Y↓ ou X↑ quando Y↓

Coeficiente de correlação = 0, sem relação linear

Atenção: r = 0 não significa que x e y não estão relacionados, mas que a linha reta não é útil para descrever a relação de x e y

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^2 \sum (y - \overline{y})^2\right]}}$$

r = coeficiente de correlação

 $x = \exp \operatorname{osição}$

 \bar{x} = média da variável de exposição

y = desfecto

 \bar{y} = média da variável de desfecho

1.1 Valores de referência

Valor de r	Classificação		
0 - 0,25	Correlação baixa		
0,26 – 0,50	Correlação moderada		
0,51 – 0,75	Correlação Boa		
> 0,75	Correlação excelente		

1.2. limitações

Se a relação entre as variáveis x e y não forem linear, não fornece uma medida válida de relação

- Sensível a outliers
- Necessidade de distribuição simétrica entre as duas variáveis
- Forte correlação não necessariamente significa uma relação causal

1.3. Coeficiente de correlação de Pearson

• x e y possuem distribuição normal

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{S_x} \right) \left(\frac{y_i - \overline{y}}{S_y} \right)$$

r = coeficiente de correlação

n= tamanho amostral

 x_i = valor de x para cada observação i

 \bar{x} = média das observações i de x

 y_i = valor de y para cada i observação de y

 \bar{y} = média das i observações de y

 S_x = desvio-padrão de x

 S_v = desvio-padrão de y

1.4. Coeficiente de correlação de Spearman

- x e y não possuem distribuição normal
- Técnica não-paramétrica
- Ordenação de x e y por valores (rank)

$$r_s = \frac{\sum_{i=1}^{n} (x_{ri} - \bar{x}_r)(y_{ri} - \bar{y}_r)}{\sqrt{\left[\sum_{i=1}^{n} (x_{ri} - \bar{x}_r)^2\right]\left[\sum_{i=1}^{n} (y_{ri} - \bar{y}_r)^2\right]}}$$

 r_s = coeficiente de correlação de Spearman

- - - F - - - -

 y_{ri} = valor de rank de y para cada observação i de y

n= tamanho amostral

 $\overline{y_r}$ = média das observações i de y

 x_{ri} = valor de rank de x para cada observação i

 S_x = desvio-padrão de x

 $\overline{x_r}$ = média das i observações de x

 S_v = desvio-padrão de y

Referências

- 1. Kirkwood BR, Sterne JAC. Essential Medical Statistics, 2nd Edition. Blackwell Science.
- 2. Callegari-Jacques SM. Bioestatística Princípios e Aplicações. Artmed, 2003.
- 3. Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE. Data Regression methods in biostatistics: linear, logistic, survival, and repeated measures models. Springer, 2005.
- 4. Kutner MH, Nachtsheim CJ, Neter J, Li W. Applied Linear Statistical Models. McGraw-Hill, 2005.
- 5. Rosner B. Fundamentals in Biostatistics. Brooks/Cole, 2011.

Obrigado!

felipetmf@gmail.com

MINISTÉRIO DA SAÚDE GOVERNO FEDERAL

CLIMA
BRONQUIOLITE