Indice

1	Insiemi		1
	1.1	Concetti di base sugli insiemi	1
	1.2	Insieme delle parti e prodotto cartesiano	3
	1.3	Insiemi numerici fondamentali	3
2	Funzioni		
	2.1	Il concetto di funzione	5
3	Insiemi in $\mathbb R$		
	3.1	Intervalli	7
4	Limiti		
	4.1	Definizione di limite	9
	4.2	Limite destro e limite sinistro	10
	4.3	Operazioni tra limiti	11
	4.4	Cambiamento di variabile e continuità	12
	4.5	Relazione di asintotico e asintoti	13
		4.5.1 Asintoti	14
	4.6	Successioni	14
5	Continuità		17
	5.1	Punti di discontinuità	18
6	Der	rivate	19

Insiemi

1.1 Concetti di base sugli insiemi

Un *insieme* è un raggruppamento di oggetti detti *elementi*, che possono essere di natura qualsiasi, Si dice che gli elementi di un insieme *appartengono* all'insieme.

Simboli

Per indicare gli insiemi si usano solitamente lettere maiuscole, come

$$A, B, C \dots$$

Per indicare gli elementi di un insieme si usano solitamente lettere minuscole (a, b, c...) e per indicare che un elemento x appartiene all'insieme A scriviamo

$$x \in A$$
 oppure $A \ni x$

Rappresentazione

È possibile rappresentare un insieme elencando i suoi elementi, in caso questo sia finito. Ad esempio

$$A = \{1, 2, 5\}$$

significa che l'insieme A ha come elementi i numeri 1,2,5. In questo caso si dice che l'abbiamo definito per tabulazione.

Oppure è possibile rappresentare un insieme descrivendolo mediante una proprietà che lo caratterizzi univocamente. Ad esempio

$$X = \{n : n \text{ intero pari}\}\$$

Un insieme privo di elementi viene detto insieme vuoto e viene indicato con il simbolo \emptyset .

Relazioni tra insiemi: inclusione

Definizione 1.1. Si dice che un insieme X è un sottoinsieme di un insieme Y se ogni elemento di X appartiene ad Y. Si utilizza il simbolo di inclusione (larga) $X \subseteq Y$. Se X non coincide con Y, si usa il simbolo di inclusione stretta $X \subset Y$.

Relazioni tra insiemi: uguaglianza

Due insiemi sono uguali quando possiedono gli stessi elementi. Siano X e Y due insiemi. Allora X = Y se e solo se $X \subseteq Y$ e $Y \subseteq X$.

Operazioni insiemistiche

• Unione. L'unione di due insiemi X e Y è definita da:

$$X \cup Y = \{x : x \in X \text{ o } x \in Y\}$$

È l'insieme degli elementi che appartengono sia al primo sia al secondo insieme.

 \bullet Intersezione. L'intersezione di due insiemi X e Y è definita da:

$$X \cap Y = \{x : x \in X \in x \in Y\}$$

È l'insieme degli elementi che appartengono al primo e al secondo insieme, intendendo la "o" in modo non esclusivo.

 \bullet Unione. La differenza tra due insiemi X e Y è definita da:

$$X \setminus Y = \{x : x \in X \in x \notin Y\}$$

È l'insieme degli elementi che appartengono al primo ma non al secondo insieme.

• Complementare. È un tipo particolare di differenza. Siano X e Y insiemi con $X \subseteq Y$. Si definisce insieme complementare di X in Y l'insieme $Y \setminus X$. Si indica con il simbolo X^C .

Proprietà delle operazioni insiemistiche

• Proprietà dell'unione.

commutativa:
$$X \cup Y = Y \cup X$$

associativa:
$$/(X \cup Y) \cup Z = X \cup (Y \cup Z)$$

idempotenza:
$$X \cup X = X$$

• Proprietà dell'intersezione.

commutativa:
$$X \cap Y = Y \cap X$$

associativa:
$$/(X \cap Y) \cap Z = X \cap (Y \cap Z)$$

idempotenza:
$$X \cap X = X$$

• Proprietà distributive.

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$

• Formule di De Morgan. Siano $A, B \subseteq X$ e denotiamo con A^C e B^C i loro insiemi complementari in X.

$$(A \cup B)^C = A^C \cap B^C$$

$$(A\cap B)^C=A^C\cup B^C$$

1.2 Insieme delle parti e prodotto cartesiano

Insieme delle parti

Dato un insieme X, si dice *insieme delle parti* di X l'insieme di tutti i sottoinsiemi di X. Si indica con \mathcal{P}^X o con 2^X . Ad esempio, si consideri l'insieme $X = \{1, 4, 5\}$:

$$\mathcal{P}(X) = \{\emptyset, \{1\}, \{4\}, \{5\}, \{1,4\}, \{1,5\}, \{4,5\}, \{1,4,5\}\}\$$

Se X è un insieme finito con n elementi, allora $\mathcal{P}(X)$ è un insieme finito con 2^n elementi. Se X è un insieme infinito, allora anche $\mathcal{P}(X)$ è un insieme infinito.

Prodotto cartesiano

Si dice coppia un insieme ordinato di due elementi. Ad esempio:

$$\{3,7\} = \{7,3\}$$
: insieme non ordinato $\{3,7\} \neq \{7,3\}$: insieme ordinato (coppia)

Dati due insiemi X e Y, il prodotto cartesiano di X e Y è l'insieme delle coppie (x,y) in cui $x \in X$ e $y \in Y$.

$$X \times Y = \{(x, y) : x \in X \in Y \in Y\}$$

L'insieme dei numeri reali è indicato con \mathbb{R} , e il prodotto cartesiano $\mathbb{R} \times \mathbb{R}$ viene indicato con \mathbb{R}^2 .

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) : x, y \in \mathbb{R}\}$$

1.3 Insiemi numerici fondamentali

N insieme dei numeri naturali (interi positivi, zero compreso)

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, \dots\}$$

 \mathbb{Z} insieme dei numeri interi

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$$

O insieme dei numeri razionali (sono frazioni di numeri interi)

$$\mathbb{Q} = \{ \frac{a}{b} : a \in \mathbb{Z} \in b \in \mathbb{Z} \setminus 0 \}$$

 \mathbb{R} insieme dei numeri reali

 \mathbb{I} insieme dei numeri irrazionali ($\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$)

Funzioni

2.1 Il concetto di funzione

Definizione 2.1. Siano $X, Y \neq \emptyset$. Si dice funzione da X in Y una legge che fa corrispondere ad ogni elemento di X uno ed un solo elemento di Y. L'insieme X viene detto dominio della funzione mentre l'insieme Y viene detto codominio della funzione.

Viene utilizzata la seguente notazione:

$$f: X \to Y$$
 (f definita da X a Y) $f: x \mapsto f(x)$ (f associa $f(x)$ ad x)

Per ogni $x \in X$, l'elemento di Y che la funzione f fa corrispondere a x viene detto immagine di x mediante f e si indica con f(x). La proprietà caratteristica di f, affinchè la si possa chiamare funzione, è l'univocità della corrispondenza: assegnato l'elemento in "ingresso" $a \in A$, l'elemento in "uscita" b = f(a) dev'essere univocamente determinato.

Definizione 2.2. Siano $X, Y \neq \emptyset$ e sia $f: X \rightarrow Y$. Si dice grafico di F l'insieme

$$G(f) = \{(x, y) \in X \times Y : x \in X \text{ e } y = f(x)\}$$

Ossia, il grafico di una funzione f è l'insieme dei punti del piano di coordinate (x, y) con y = f(x) e x variabile nel dominio D.

Definizione 2.3. Siano $X, Y \neq \emptyset$ e sia $f: X \rightarrow Y$. Siano rispettivamente $A \subseteq X$ e $B \subseteq Y$. Si dice immagine di A il sottoinsieme di Y costruito dalle imagini dei singoli elementi di A. Tale insieme viene denotato con f(A). In altre parole si ha

$$f(A) = \{ f(x) \in Y : x \in A \} \subset Y$$

Si dice immagine inversa di B o controimmagine di B il sottoinsieme di X costituito da quegli elementi di X la cui immagine appartiene a B. Tale insieme viene denotato con $f^{-1}(B)$. In altre parole si ha

$$f^{-1}(B) = \{x \in X : f(x) \in B\} \subseteq X$$

Definizione 2.4. Siano $X,Y \neq \emptyset$ e sia $f: X \rightarrow Y$. Sia inoltre $A \subseteq X$ insieme non vuoto. Si dice restrizione di f all'insieme A la funzione

$$f_{|A}:A\to Y$$

Teorema 2.1. Siano $X,Y \neq \emptyset$ e sia $f:X \rightarrow Y$. Siano inoltre $A,B \subseteq X$ e $C,D \subseteq Y$. Valgono le seguenti conclusioni:

- 1. $f(A \cup B) = f(A) \cup f(B)$
- 2. $f(A \cap B) = f(A) \cap f(B)$
- 3. $f^{-1}(f(A)) \supset A$
- 4. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
- 5. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$
- 6. $f(f^{-1}(C)) \subseteq C$

Definizione 2.5. Siano X, Y, Z insiemi non vuoti. Siano $f: y \to Z$ e $g: X \to Y$. Viene detta composizione di f con g la funzione $f \circ g$ definita da

$$f \circ g: X \to Z$$

Definizione 2.6. Siano X e Y insiemi non vuoti e sia $f: X \to Y$. Si dice che f è iniettiva se elementi distinti del dominio X hanno immagini distinte:

$$x_1, x_2 \in X, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Definizione 2.7. Siano X e Y insiemi non vuoti e sia $f: X \to Y$. Si dice che f è suriettiva se ogni elemento del codominio Y è immagine di almeno un elemento del dominio X:

$$\forall y \in Y, \exists x \in X : f(x) = y$$

Definizione 2.8. Siano X e Y insiemi non vuoti e sia $f: X \to Y$. Si dice che f è biettiva (biiettiva o biunivoca) se è contemporaneamente iniettiva e suriettiva. In altre parole, si dice che f è biettiva se ogni elemento del codominio Y è immagine di esattamente un elemento del dominio X:

$$\forall y \in Y, \exists ! x \in X : f(x) = y$$

Dato un insieme X non vuoto, indicheremo con $Id_X: X \to X$ la funzione identità, cioè quella funzione che ad ogni $x \in X$ associa se stesso:

$$Id_X(x) = x \forall x \in X$$

Definizione 2.9. Siano X e Y insiemi non vuoti e sia $f: X \to Y$. Si dice che f è invertibile se esiste una funzione $g: Y \to X$ tale che $f \circ g = Id_Y$ e $g \circ f = Id_X$. In altre parole si ha che:

$$f(g(y)) = y \quad \forall y \in Y$$
 $g(f(x)) = x \quad \forall x \in X$

Se f è invertibile, una tale funzione g è unica e viene denominata funzione inversa di f. Si indica con il simbolo $f^{-1}: Y \to X$.

Teorema 2.2. Siano X e Y insiemi non vuoti e sia $f: X \to Y$. Allora f è invertibile se e solo se f è biettiva.

Definizione 2.10. Siano X e Y due insiemi non vuoti. Si dice che X e Y hanno la stessa cardinalità se esiste una funzione $f: X \to Y$ biettiva.

Non tutti gli insiemi infiniti hanno la stessa cardinalità. Gli insiemi con la stessa cardinalità di \mathbb{N} si dicono *numerabili*. Gli insiemi \mathbb{Z} e \mathbb{Q} sono numerabili ed hanno quindi la stessa cardinalità di \mathbb{N} , nonostante $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$. L'insieme \mathbb{R} dei numeri reali non è numerabile: ha una cardinalità di *ordine superiore* rispetto ad \mathbb{N} .

Insiemi in \mathbb{R}

3.1 Intervalli

Si dice intervallo un sottoinsieme di \mathbb{R} tale per cui ogni numero reale compreso tra due elementi di questo sottoinsieme appartiene al sottoinsieme medesimo.

Dati $a, b \in \mathbb{R}$ con a < b, si definiscono i seguenti intervalli:

$$[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a, b) = \{x \in \mathbb{R} : a < x < b\}$$

Anche un insieme costituito da un solo numero reale va considerato un intervallo.

Definizione 3.1. *Sia* $X \subseteq \mathbb{R}$ *un insieme nonn vuoto:*

1. si dice che X è limitato superiormente se esiste $a \in \mathbb{R}$ tale che

$$\forall x \in X \to x \le a$$

2. si dice che X è limitato inferiormente se esiste $a \in \mathbb{R}$ tale che

$$\forall x \in X \to x \ge a$$

3. si dice che X è limitato se è contemporaneamente limitato inferiormente e superiormente

Definizione 3.2. Sia $X \subseteq \mathbb{R}$ un insieme non vuoto:

1. si dice $a \in \mathbb{R}$ è un maggiorante di X se

$$\forall x \in X \to x \le a$$

2. $si\ dice\ a \in \mathbb{R}\ \dot{e}\ un\ minorante\ di\ X\ se$

$$\forall x \in X \to x \ge a$$

Definizione 3.3. Sia $X \subseteq \mathbb{R}$ un insieme non vuoto:

- 1. si dice che $a \in \mathbb{R}$ è un massimo (maxX) di X se a è un maggiorante di X e $a \in X$
- 2. si dice che $a \in \mathbb{R}$ è un minimo (minX) di X se a è un minorante di X e $a \in X$

Se X ammette un massimo, tale massimo è unico. Analogamente, se X ammette un minimo, tale minimo è unico.

Definizione 3.4. Sia $X \subseteq \mathbb{R}$ un insieme non vuoto:

- 1. si dice che $a \in \mathbb{R}$ è l'estremo superiore (supX) di X se a è il minimo dell'insieme dei maggioranti di X
- 2. si dice che $a \in \mathbb{R}$ è l'estremo inferiore (infX) di X se a è il massimo dell'insieme dei minoranti di X

Teorema 3.1 (Completezza di \mathbb{R}). Sia $X \subseteq \mathbb{R}$ un insieme non vuoto:

- 1. $se\ X\ è\ limitato\ superiormente,\ allora\ X\ ammette\ un\ estremo\ superiore$
- 2. se X è limitato inferiormente, allora X ammette un estremo inferiore

Limiti

4.1 Definizione di limite

Definizione 4.1. Sia $x_0 \in \mathbb{R}$ e sia R > 0. Si dice intorno di x_0 di raggio R l'intervallo $(x_0 - R, x_0 + R)$. Si ha che x appartiene all'intorno di raggio R se e soltanto se $|x - x_0| < R$.

Definizione 4.2. Sia $X \subseteq \mathbb{R}, X \neq \emptyset$. Sia $f: X \to \mathbb{R}$. Sia $x_0 \in \mathbb{R}$ tale per cui esista R > 0 tale che

$$X \supseteq (x_0 - R, x_0 + R) \setminus \{x_0\}$$

Sia $\ell \in \mathbb{R}$. Si dice che ℓ è il limite di f per x che tende a x_0 se

$$\forall \varepsilon > 0, \exists \delta > 0 : |x - x_0| < \delta \implies |f(x) - \ell| < \varepsilon$$

 x_0 non deve necessariamente far parte del dominio della funzione.

Definizione 4.3. Sia $X \subset \mathbb{R}, X \neq \emptyset$. Sia $f: X \to \mathbb{R}$. Sia $x_0 \in \mathbb{R}$ tale per cui esista R > 0 tale che

$$X \supset (x_0 - R, x_0 + R) \setminus \{x_0\}$$

1. si dice che $+\infty$ è il limite di f per x che tende a x_0 se

$$\forall M > 0, \exists \delta > 0 : |x - x_0| < \delta \implies f(x) > M$$

2. si dice che $-\infty$ è il limite di f per x che tende a x_0 se

$$\forall M > 0, \exists \delta > 0 : |x - x_0| < \delta \implies f(x) < -M$$

Definizione 4.4. $Sia\ X \subset \mathbb{R}, X \neq \emptyset.$

1. Supponiamo che esista $a \in \mathbb{R}$ per cui si abbia

$$X \supset (a, +\infty)$$

Sia $f: X \to \mathbb{R}$. Sia $\ell \in \mathbb{R}$. Si dice che ℓ è il limite di f per x che tende $a + \infty$ se

$$\forall \varepsilon > 0, \exists N > 0 : x > N \implies |f(x) - \ell| < \varepsilon$$

2. Supponiamo che esista $a \in \mathbb{R}$ per cui si abbia

$$X \supseteq (-\infty, a)$$

Sia $f: X \to \mathbb{R}$. Sia $\ell \in \mathbb{R}$. Si dice che ℓ è il limite di f per x che tende $a - \infty$ se

$$\forall \varepsilon > 0, \exists N > 0 : x < -N \implies |f(x) - \ell| < \varepsilon$$

Definizione 4.5. Sia $X \subset \mathbb{R}, X \neq \emptyset$.

1. Supponiamo che esista $a \in \mathbb{R}$ per cui si abbia

$$X \supseteq (a, +\infty)$$

Sia $f: X \to \mathbb{R}$. Si dice che $+\infty$ è il limite di f per x che tende $a + \infty$ se

$$\forall M > 0, \exists N > 0 : x > N \implies f(x) > M$$

2. Supponiamo che esista $a \in \mathbb{R}$ per cui si abbia

$$X \supseteq (a, +\infty)$$

Sia $f: X \to \mathbb{R}$. Si dice che $-\infty$ è il limite di f per x che tende $a - \infty$ se

$$\forall M > 0, \exists N > 0 : x > N \implies f(x) < -M$$

3. Supponiamo che esista $a \in \mathbb{R}$ per cui si abbia

$$X \supseteq (-\infty, a)$$

Sia $f: X \to \mathbb{R}$. Si dice che $+\infty$ è il limite di f per x che tende $a - \infty$ se

$$\forall M > 0, \exists N > 0 : x < -N \implies f(x) > M$$

4. Supponiamo che esista $a \in \mathbb{R}$ per cui si abbia

$$X \supseteq (-\infty, a)$$

Sia $f: X \to \mathbb{R}$. Si dice che $-\infty$ è il limite di f per x che tende $a - \infty$ se

$$\forall M > 0, \exists N > 0 : x < -N \implies f(x) < -M$$

4.2 Limite destro e limite sinistro

Definizione 4.6 (Limite destro). $Sia\ X \subset \mathbb{R}, X \neq \emptyset$. $Sia\ f: X \to \mathbb{R}$. $Sia\ x_0\ tale\ per\ cui\ esista\ R > 0$ tale che

$$X \supseteq (x_0x, x_0 + R)$$
 (X contiene un intorno destro di x_0)

1. Sia $\ell \in \mathbb{R}$. Si dice che ℓ è il limite destro di f per x che tende a x_0 da destra se

$$\forall \varepsilon > 0, \exists \delta > 0 : |x \in (x_0, x_0 + \delta) \implies |f(x) - \ell| < \varepsilon$$

2. Si dice che $+\infty$ è il limite destro di f per x che tende a x_0 da destra se

$$\forall M > 0, \exists \delta > 0 : |x \in (x_0, x_0 + \delta) \implies f(x) > M$$

3. Si dice che $-\infty$ è il limite destro di f per x che tende a x_0 da destra se

$$\forall M > 0, \exists \delta > 0 : |x \in (x_0, x_0 + \delta) \implies f(x) < -M$$

Definizione 4.7 (Limite sinistro). Sia $X \subset \mathbb{R}, X \neq \emptyset$. Sia $f: X \to \mathbb{R}$. Sia x_0 tale per cui esista R > 0 tale che

$$X \supseteq (x_0x, x_0 + R)$$
 (X contiene un intorno destro di x_0)

1. Sia $\ell \in \mathbb{R}$. Si dice che ℓ è il limite sinistro di f per x che tende a x_0 da destra se

$$\forall \varepsilon > 0, \exists \delta > 0 : |x \in (x_0 - \delta, x_0) \implies |f(x) - \ell| < \varepsilon$$

2. Si dice che $+\infty$ è il limite sinistro di f per x che tende a x_0 da destra se

$$\forall M > 0, \exists \delta > 0 : |x \in (x_0 - \delta, x_0) \implies f(x) > M$$

3. Si dice che $-\infty$ è il limite sinistro di f per x che tende a x_0 da destra se

$$\forall M > 0, \exists \delta > 0 : |x \in (x_0 - \delta, x_0) \implies f(x) < -M$$

Teorema 4.1. Sia $X \subset \mathbb{R}, X \neq \emptyset$. Sia $f: X \to \mathbb{R}$. Sia $x_0 \in \mathbb{R}$ tale per cui esista R > 0 tale che

$$X \supseteq (x_0 - R, x_0 + R) \setminus \{x_0\}$$

Allora

$$\lim_{x \to x_0} f(x)$$

esiste se e solo se esistono e coincidono tra di loro

$$\lim_{x \to x_0^-} f(x) \qquad \qquad \lim_{x \to x_0^+} f(x)$$

4.3 Operazioni tra limiti

Teorema 4.2. Sia $X \subset \mathbb{R}, X \neq \emptyset$. Sia $f: X \to \mathbb{R}$. Supponiamo che le funzioni f e g ammettano limiti finiti. Allora si ha:

1.
$$\lim_{x\to x_0} (f(x) + g(x)) = \ell_1 + \ell_2$$

2.
$$\lim_{x\to x_0} (f(x) - g(x)) = \ell_1 - \ell_2$$

3.
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \ell_1 \cdot \ell_2$$

4. se
$$c \in \mathbb{R}$$
, $\lim_{x \to x_0} cf(x) = c \lim_{x \to x_0} f(x)$

5. se
$$g(x) \neq 0$$
 e $\ell_2 \neq 0$, $\lim_{x \to x_0} (f(x)/g(x)) = \ell_1/\ell_2$

4.4 Cambiamento di variabile e continuità

Teorema 4.3 (Cambiamento di variabile). Siano $X,Y \subseteq \mathbb{R}$ insiemi non vuoti e siano date due funzioni $f:Y \to \mathbb{R}$ e $g:X \to \mathbb{R}$. Siano $x_0,y_0 \in \mathbb{R} \cup \{\pm \infty\}$ e sia $\ell \in \mathbb{R} \cup \{\pm \infty\}$ tali che si abbia

$$\lim_{x \to x_0} g(x) = y_0 \qquad \qquad \lim_{y \to y_0} f(y) = \ell$$

Supponiamo inoltre che $g(x) \neq y_0$ per ogni $x \in X \setminus \{x_0\}$. Allora si ha

$$\lim_{x \to x_0} f(g(x)) = \ell$$

Supponiamo di dover calcolare un limite che si presenta nella forma:

$$\lim_{x \to x_0} f(g(x))$$

Si introduce una nuova variabile y = g(x):

$$x \to x_0 \implies y = g(x) \to y_0 \implies y \to y_0$$

sostituisco g(x) con y nel limite:

$$\lim_{y \to y_0} f(y)$$

Definizione 4.8 (Continuità). Sia $X \subseteq \mathbb{R}$ non vuoto e sia $f: X \to \mathbb{R}$. Dato $x_0 \in X$ si dice che f è continua in x_0 se vale la seguente condizione:

$$\forall \varepsilon > 0, \exists \delta > 0 : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Si dice che f è continua su $A \subseteq X$ se è continua in ogni punto di A.

Se x_0 e X sono tali per cui esiste R > 0 per cui $(x_0 - R, x_0 + R) \subseteq X$ allora f è continua in x_0 se e soltanto se $\lim_{x \to x_0} f(x) = s(x_0)$.

Le funzioni elementari sono continue in ogni punto del loro dominio naturale.

Teorema 4.4 (Teorema del confronto). Sia $X \subset \mathbb{R}$ e siano $f: X \to \mathbb{R}$ e $g: X \to \mathbb{R}$ tali che

$$f(x) < q(x), \forall x \in X$$

Supponiamo che esistano, finiti o infiniti, i limiti

$$\lim_{x \to x_0} f(x) \qquad \qquad \lim_{x \to x_0} g(x)$$

 $con \ x_0 \in \mathbb{R} \cup \{\pm \infty\}$. Allora si ha

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

Dimostrazione. Dalla definizione di limite si deduce che

$$\forall \varepsilon > 0, \exists \delta_1 > 0 : |x - x_0| < \delta_1 \implies |f(x) - \ell_1| < \varepsilon$$

$$\forall \varepsilon > 0, \exists \delta_2 > 0 : |x - x_0| < \delta_2 \implies |g(x) - \ell_2| < \varepsilon$$

Posto $\delta = min\{\delta_1, \delta_2\}$ per ogni $x \in X$ tale che $0 < |x - x_0| < \delta$ si ha:

$$|f(x) - \ell_1| < \varepsilon \implies \ell_1 - \varepsilon < f(x) < \ell_1 + \varepsilon$$

$$|g(x) - \ell_2| < \varepsilon \implies \ell_2 - \varepsilon < g(x) < \ell_2 + \varepsilon$$

ed in particolare si ottiene

$$\ell_1 - \varepsilon < f(x) \le g(x) < \ell_2 + \varepsilon \implies \ell_1 - \varepsilon < \ell_2 + \varepsilon \implies \ell_1 - \ell_2 < 2\varepsilon \implies \ell_1 \le \ell_2$$

Teorema 4.5 (Teorema dei due Carabinieri). $Sia\ X\subseteq\mathbb{R}\ e\ siano\ f:X\to\mathbb{R}, g:X\to\mathbb{R}, h:X\to\mathbb{R}$ tali che

$$g(x) \le f(x) \le h(x) \quad \forall x \in X$$

Supponiamo che

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x)$$

e sia $\ell \in \mathbb{R} \cup \{\pm \infty\}$ il valore comune di questi due limiti. Allora anche f ammette limite per $x \to x_0$ ed inoltre

$$\lim_{x \to x_0} f(x) = \ell$$

Dimostrazione. Dalla definizione di limite si deduce che

$$\forall \varepsilon > 0, \exists \delta_1 > 0 : |x - x_0| < \delta_1 \implies |g(x) - \ell| < \varepsilon$$
$$\forall \varepsilon > 0, \exists \delta_2 > 0 : |x - x_0| < \delta_2 \implies |h(x) - \ell| < \varepsilon$$

Posto $\delta = \min\{\delta_1, \delta_2\}$ per ogni $x \in X$ tale che $0 < |x - x_0| < \delta$ si ha:

$$|g(x) - \ell| < \varepsilon \implies \ell - \varepsilon < g(x) < \ell + \varepsilon$$

$$|h(x) - \ell| < \varepsilon \implies \ell - \varepsilon < h(x) < \ell + \varepsilon$$

ed in particolare si ottiene

$$\ell - \varepsilon < g(x) \le f(x) \le h(x) < \ell + \varepsilon \implies \ell - \varepsilon < f(x) < \ell + \varepsilon \implies |f(x) - \ell| < \varepsilon$$

4.5 Relazione di asintotico e asintoti

Definizione 4.9. Sia $X \subseteq \mathbb{R}$ e siano $f: X \to \mathbb{R}$, $g: X \to \mathbb{R}$. Sia $x_0 \in \mathbb{R} \cup \{\pm \infty\}$ tale che X contenga $U \setminus \{x_0\}$ con U intorno di x_0 . Supponiamo che $f(x) \neq 0$ e $g(x) \neq 0$ per ogni $x \in X \setminus \{x_0\}$. Si dice che f(x) è asintotica a g(x) per $x \to x_0$ se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Si usa la notazione

$$f(x) \sim g(x)$$
 per $x \to x_0$

Si tratta di una relazione di equivalenza poichè possiede la proprietà riflessiva, simmetrica e transitiva.

- proprietà riflessiva: $f(x) \sim f(x)$ per $x \to x_0$
- proprietà simmetrica: se $f(x) \sim g(x)$ per $x \to x_0$, allora per $g(x) \sim f(x)$ per $x \to x_0$
- proprietà transitiva: se $f(x) \sim g(x)$ e $g(x) \sim h(x)$ per $x \to x_0$, allora $f(x) \sim h(x)$ per $x \to x_0$

Nel calcolo dei limiti si potrà sostituire in alcune situazioni una funzione con un'altra ad essa asintotica. Le funzioni asintotiche si possono sostituire solo in presenza di moltiplicazione e divisione.

4.5.1 Asintoti

Asintoto verticale

Si dice che una funzione f possiede un asintoto vertical in x_0 se almeno uno tra

$$\lim_{x \to x_0^+} f(x) \qquad e \qquad \lim_{x \to x_0^-} f(x)$$

esiste ed è infinito. In tal caso, si dice che la retta verticale di equazione $x = x_0$ è un asintoto verticale per f.

Asintoto orizzontale

Si dice che una funzione f possiede un asintoto orizzontale a $+\infty$ se esiste ed è finito

$$\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$$

In tal caso si dice che la retta orizzontale di equazione $y = \ell$ è un asintoto orizzontale per f a $+\infty$. Analogamente si parla di asintoto orizzontale a $-\infty$ se esiste ed è finito

$$\lim_{x \to -\infty} f(x) = \ell \in \mathbb{R}$$

In tal caso si dice che la retta orizzontale di equazione $y = \ell$ è un asintoto orizzontale per f a $-\infty$.

Asintoto obliquo

Si dice che una funzione f possiede un asintoto obliquo a $+\infty$ se esistono e sono finiti i seguenti limiti

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} \in \mathbb{R} \setminus \{0\}, q = \lim_{x \to +\infty} [f(x) - mx]$$

In tal caso si dice che la retta di equazione y = mx + q è un asintoto orizzontale per f a $+\infty$.

4.6 Successioni

Sia X un insieme non vuoto. Una funzione $a: \mathbb{N} \to X$ viene detta successione. Quando $X = \mathbb{R}$ si parla di successioni reali o successioni in \mathbb{R} .

Definizione 4.10. Sia $\{a_n\}$ una successione in \mathbb{R} .

1. Si dice che $\ell \in \mathbb{R}$ è il limite di $\{a_n\}$ per $n \to +\infty$ se

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : n > N \implies |a_n - \ell| < \varepsilon$$

Si scrive

$$\lim_{n \to +\infty} a_n = \ell$$

2. Si dice che $+\infty$ è il limite di $\{a_n\}$ per $n \to +\infty$ se

$$\forall M > 0, \exists N \in \mathbb{N} : n > N \implies a_n > M$$

Si scrive

$$\lim_{n \to +\infty} a_n = +\infty$$

4.6. SUCCESSIONI

3. Si dice che $-\infty$ è il limite di $\{a_n\}$ per $n \to +\infty$ se

$$\forall M > 0, \exists N \in \mathbb{N} : n > N \implies a_n < -M$$

 $Si\ scrive$

$$\lim_{n \to +\infty} a_n = -\infty$$

Le tecniche di calcolo dei limiti delle successioni sono essentialmente le stesse che si usano per il calcolo dei limiti per $x \to +\infty$ nel caso delle funzioni di variabile reale.

Anche nelle successioni è possibile definire relazioni di asintotico: date due successioni $\{a_n\}$ e $\{b_n\}$ con $a_n \neq 0$ e $b_n \neq 0$ per ogni $n \in \mathbb{N}$ si dice che

$$a_n \sim b_n$$
 per $n \to +\infty$ se $\lim_{n \to +\infty} \frac{a_n}{b_n} = 1$

Continuità

Definizione 5.1 (Continuità). Sia $X \subseteq \mathbb{R}$ non vuoto e sia $f: X \to \mathbb{R}$. Dato $x_0 \in X$ si dice che f è continua in x_0 se vale la seguente condizione:

$$\forall \varepsilon > 0, \exists \delta > 0 : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Si dice che f è continua su $A \subseteq X$ se è continua in ogni punto di A.

Teorema 5.1. Sia $X \subseteq \mathbb{R}$ insieme non vuoto e siano $f: X \to \mathbb{R}$ e $g: X \to \mathbb{R}$. Supponiamo che f e g siano continue in un punto $x_0 \in X$. Allora valgono le seguenti:

- 1. f + g è continua in x_0
- 2. $f g \ \dot{e} \ continua \ in \ x_0$
- 3. $f \cdot g \ \dot{e} \ continua \ in \ x_0$
- 4. se $g(x) \neq 0$ per ogni $x \in X$ allora $\frac{f}{g}$ è continua in x_0

Teorema 5.2 (Continuità delle funzioni composte). Siano $X,Y \subseteq \mathbb{R}$ insiemi non vuoti e siano $f:Y \to \mathbb{R}$ e $g:X \to Y$. Supponiamo che g sia continua in un punto $x_0 \in X$ e che f sia continua in $y_0 = g(x_0) \in Y$. Allora la funzione composta $f \circ g:X \to \mathbb{R}$ è continua in x_0 .

Definizione 5.2 (Massimo e minimo di una funzione). Sia X insieme non vuoto e sia

$$f: X \to \mathbb{R}$$

1. Si dice che f ammette massimo in X se l'insieme f(X) ammette massimo. Si pone inoltre

$$\max_{x \in X} f(x) = \max(f(X))$$

2. Si dice che f ammette minimo in X se l'insieme f(X) ammette massimo. Si pone inoltre

$$\min_{x \in X} f(x) = \min(f(X))$$

Definizione 5.3 (Estremo superiore ed estremo inferiore di una funzione). Sia X insieme non vuoto e sia $f: X \to \mathbb{R}$

1. Si dice che f ammette estremo superiore in X se l'insieme f(X) ammette estremo superiore. Si pone inoltre

$$\sup_{x \in X} f(x) = \sup(f(X))$$

2. Si dice che f ammette estremo inferiore in X se l'insieme f(X) ammette estremo inferiore. Si pone inoltre

$$\inf_{x \in X} f(x) = \inf(f(X))$$

Una funzione reale ammette sempre estremo superiore ed inferiore purchè si ammettano come loro possibili valori rispettivamente $+\infty$ e $-\infty$.

Teorema 5.3 (Weierstrass). Siano $a, b \in \mathbb{R}$ con $a \leq b$. Sia $f : [a, b] \to \mathbb{R}$ continua in [a, b]. Allora f ammette massimo e minimo in [a, b].

Teorema 5.4 (Teorema di Continuità della Funzione Inversa). Siano $I, J \subseteq \mathbb{R}$ intervalli e sia $f: I \to J$ una funzione invertibile. Se f è continua in I allora la funzione inversa $f^{-1}: J \to I$ è continua in J.

5.1 Punti di discontinuità

I punti di discontinuità vengono classificati in tre specie. Sia $I \subseteq \mathbb{R}$ un intervallo di estremi a e b:

$$a=\inf I\in\mathbb{R}\cup\{-\infty\},b=\sup I\in\mathbb{R}\cup\{+\infty\}$$

Sia $f: I \to \mathbb{R}$ e sia $x_0 \in (a, b)$. In tal modo la funzione f è definita sia a destra che a sinistra di x_0 .

Discontinuità di prima specie o salto

Si dice che x_0 è un punto di discontinuità di prima specie o di tipo salto se esistono finiti ma diversi tra loro

$$\lim_{x \to x_0^-} f(x) \qquad e \qquad \lim_{x \to x_0^+} f(x)$$

Discontinuità di seconda specie

Si dice che x_0 è un punto di discontinuità di seconda specie se almeno uno tra

$$\lim_{x \to x_0^-} f(x) \qquad e \qquad \lim_{x \to x_0^+} f(x)$$

non esiste oppure è infinito.

Discontinuità di terza specie o eliminabile

Si dice che x_0 è un punto di discontinuità di terza specie o eliminabile se esiste ed è finito

$$\lim_{x \to x_0} f(x)$$

ma è diverso fa $f(x_0)$.

Derivate

Definizione 6.1. Siano $a, b \in \mathbb{R}$ con a < b. Siano $f : (a, b) \to \mathbb{R}$ $e \ x_0 \in (a, b)$. La seguente funzione

$$\varphi_{x_0}: (a,b) \setminus \to \mathbb{R}, \varphi_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0} \quad \forall x \in (a,b) \setminus \{x_0\}$$

viene detta rapporto incrementale.

Definizione 6.2. Siano $a, b \in \mathbb{R}$ con a < b. Siano $f : (a, b) \to \mathbb{R}$ $e \ x_0 \in (a, b)$. Si dice che $f \ \grave{e}$ derivabile in x_0 se esiste ed \grave{e} finito

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

In tal caso si pone

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Con il cambiamento di variabile si può scrivere:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

La retta passante per un punto (x_0, y_0) di coefficiente angolare m è

$$y = y_0 + m(x - x_0)$$

Nel nostro caso $y_0 = f(x_0)$ ed $m = f'(x_0)$:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Definizione 6.3. Siano $a, b \in \mathbb{R}$ con a < b. Siano $f : (a, b) \to \mathbb{R}$ $e \ x_0 \in (a, b)$.

1. Si dice che f è derivabile da destra in x_0 se esiste ed è finito

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

In tal caso questo limite viene detto derivata destra di f in x_0 .

2. Si dice che f è derivabile da sinistra in x_0 se esiste ed è finito

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

In tal caso questo limite viene detto derivata sinistra di f in x_0 .

Teorema 6.1. Siano $a, b \in \mathbb{R}$ con a < b. Siano $f : (a,b) \to \mathbb{R}$ e $x_0 \in (a,b)$. Allora f è derivabile in x_0 se e soltanto se f è derivabile sia da destra che da sinistra ed inoltre le derivate destra e sinistra coincidono.

Teorema 6.2 (Continuità delle funzioni derivabili). Sia $I \subseteq \mathbb{R}$ un intervallo e sia $x_0 \in I$. Sia $f: I \to \mathbb{R}$ derivabile in x_0 . Allora f è continua in x_0 .

Dimostrazione. Se f è derivabile in x_0 , allora

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

deve esistere ed è finito. Ma il denominatore tende a 0 e l'unico modo per avere un rapporto con limite finito è che il numeratore tenda anch'esso a 0. Ciò dimostra che f è continua in x_0 .

Teorema 6.3. Sia $I \subseteq \mathbb{R}$ un intervallo e sia $x_0 \in I$. Siano $f: I \to \mathbb{R}$ e $g: I \to \mathbb{R}$ derivabili in x_0 . Allora valqono le sequenti conclusioni:

1. f + g è derivabile in x_0 ed inoltre

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

$$cf'(x_0) = cf'(x_0)$$

3. $f-g \ e$ derivabile in x_0 ed inoltre

$$(f-g)'(x_0) = f'(x_0) - g'(x_0)$$

4. $fg \ e derivabile in x_0 e dinoltre$

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

5. $fg \ e$ derivabile in x_0 ed inoltre

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$$

Teorema 6.4 (Derivazione della funzione composta). Siano $I, J \subseteq \mathbb{R}$ intervalli e siano $f: J \to \mathbb{R}$ e $g: I \to J$. Sia $x_0 \in I$ e sia g derivabile in x_0 . Posto $y_0 = g(x_0) \in J$ si supponga che f sia derivabile in y_0 . Allora $f \circ g: I \to \mathbb{R}$ è derivabile in x_0 ed inoltre

$$(f \circ g)'(x_0) = f'(y_0)g'(x_0) = f'(g(x_0))g'(x_0)$$