Irreducible triangulations of the 4-gon and 4-connectedness

Sander Beekhuis, nr. 0972717

October 5, 2016

 $\mathcal{C}_{|_{\mathcal{W}}}$ versus $\mathcal{C}_{\mathcal{W}}$ And then $\mathcal{C}_{|_{\mathcal{W}}}|\mathcal{W}$ versus $\mathcal{C}_{\mathcal{W}}|\mathcal{W}$

Notational concerns We will use C to indicate the current sweep line cycle. Note that we can consider the path $C \setminus S$. We will order it from W to E.

We will let \mathcal{W} denote a interior walk. Given such a walk of k vertices we index it's nodes w_1, \ldots, w_k in such a way that w_1 is closer to W then w_k is (and thus that w_k is closer to E then w_1 is).

FiXme: have i defined this already

Then w_1 and w_k indicate the two unique vertices of the walk that are also part of the cycle. We will then let $\mathcal{C}_{|_{\mathcal{W}}}$ denote the part of $\mathcal{C} \setminus S$ that is between w_1 and w_k (including). $\mathcal{C}_{\mathcal{W}}$ will denote the closed walk formed when we paste $\mathcal{C}_{|_{\mathcal{W}}}$ and \mathcal{W} .

Since paths are a subclass of walks all of the above notation can also be used for a path \mathcal{P} . Note that the closed walk $\mathcal{C}_{\mathcal{P}}$ in this case will actually be a cycle.

prelim nondistinct corner.

1 Outline

We will show that there is a algorithm if there are no 4 cycles.

If graph G has non-distinct corners we remove them.

The main algorithm will recieve as input a extended graph G without nondistinct corners and will return a regular edge labeling such that all red faces are $(1-\infty)$ using a sweepcycle approach inspired by Fusy [?].

We will start by creating a walk W. This walk may not be a valid path, it doesn't even have to be a path. During the algorithm we will make a number of moves that will turn this candidate walk into a valid path. In each move we shrink C by employing a valid path and change the candidate walk.

One invariant we will always maintain is that the area bounded by $\mathcal{C}_{\mathcal{W}}$ will never have interior vertices. .

1.1 The initial candidate walk

We define the *level* of a vertex of G as the distance of this vertex to the cycle minus $S \mathcal{C} \setminus \{S\}$. Let v_i denote all the level 0 vertices in G in the order that they occur on \mathcal{C} That is $\mathcal{C} \setminus \{S\}$ is given by $Wv_1 \dots v_n E$. As candidate walk we will start with W, we will then take the level 1 vertices adjacent to v_1 in clockwise

FiXme: spelling Fusy and cite

FiXme: What is exactly the area bounded by a closed walk order, followed by the level 1 vertices adjecent to v_2 in clockwise order (in so far they didn't already occur) and so further until we add the level 1 vertices adjacent to v_n and finish with E.

FiXme: To proof:This is a walk

1.2 moves

The candidate walk can have two kinds of problems. It either is non-simple or it has chords. Otherwise it is a valid path.

FiXme: cf Kusters. Where there are also two problems for a proper boundary path