APPLICAZIONI INDUSTRIALI ELETTRICHE ED ELETTRONICA - teoria

Ollari Ischimji Dmitri

Marzo 2022

T		1	•	
	n	А	1	ce
		l l		\mathbf{L}

1	Intr 1.1	roduzio Tensio 1.1.1	ne	٠.																			
\mathbf{E}	lene	co de	ell	\mathbf{e}	fig	ur	e																
	1	tension	ne				. .	 						•					•				2
\mathbf{E}	lene	co de	e11	e	tal	be	:116																

1 Introduzione

Le grandezze principali sono la **tensione**(campo elettrico) e la **corrente**(campo magnetico).

1.1 Tensione

Figura 1: tensione

La tensione V è:

$$\vec{E} = -gradV = -\frac{\delta V}{\delta x}\hat{x} - \frac{\delta V}{\delta y}\hat{y} - \frac{\delta V}{\delta z}\hat{z} \tag{1}$$

Detto anche potenziale elettrico, è l'energia potenziale elettrica normalizzata per la carica. La tensione è la differenza di potenziale elettrico(d.d.p.).

1.1.1 Unità di misura della tensione

La tensione si misura in **volt** [V].

- [q] = C "coulomb" = $A \cdot s$ "Ampere per secondo"
- $[E] = \frac{N}{C} = \frac{N}{A \cdot s} = \frac{Kg \cdot \frac{m}{s^2}}{A \cdot s}$
- $V = \frac{N \cdot m}{A \cdot s}$

Ricorda che la tensione dal punto B ad A si chiama V_{AB} e che $V_{AB} = -V_{BA}$.