Numerical Methods, Spring 2023 Assignment 10 [State Space Models - 2] Total: 160, Deadline: 19 May

I. SUGGESTED READING

• [1], Chapter 18 State space models

II. EXERCISES

1. (25) Consider a familiar LDS, but this time with non-stationary variance of the noise:

$$x_t = x_{t-1} + u_{t-1} + \epsilon_{t-1}, \quad z_t = x_t + \eta_t$$
 (1)

with $\epsilon_t \sim \mathcal{N}(0, \sigma_t)$ and $P(\eta_t) \sim \mathcal{N}(0, \rho_t)$. Using all data available in 10_1.pickle [pickled dict of u_t , σ_t and ρ_t], compute the smoothed trajectory of the hidden state x_t . Plot it as a function of time together with the error bar. Compute the prediction for the location of the object at T+1 (that is for the time instant, following the latest available observation).

2. (35) Consider 2D motion with random acceleration. Let z_{1t} and z_{2t} be the horizontal and vertical locations of the object, and \dot{z}_{1t} and \dot{z}_{2t} be the corresponding velocity. We can represent this as a state vector $z_t \in R^4$ as follows:

$$z_t = (z_{1t}, z_{2t}, \dot{z}_{1t}, \dot{z}_{2t})^T.$$

Let us assume that the object would-be-moving at constant velocity, but its motion is perturbed by random Gaussian noise (e.g., due to the wind). Additionally, we can only observe the noised location of the object $y_t \in \mathbb{R}^2$, but not its velocity. We can model the system dynamics as follows:

$$z_t = A_t z_{t-1} + \epsilon_t, \quad y_t = C_t z_t + \delta_t,$$

with

$$A_t = \begin{pmatrix} 1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad C_t = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

and

$$\epsilon_t \sim \mathcal{N}(0, \sigma \hat{1}), \quad \delta_t \sim \mathcal{N}(0, \rho \hat{1}).$$

For the data in 10_2.pickle [pickled dict of y_t , Δ , σ and ρ], compute the filtered trajectory z_t . Draw the filtered trajectory on the plane together with the observations and compute the prediction for the location of the object at T+1 (that is for the time instant, following the latest available observation).

- 3. (50) Consider the model in Eq. (1) with stationary but unknown σ and ρ and constant velocity, $u \equiv 1$. You are given a series of T observations $z_1, ..., z_T$ in 10_3.pickle [pickled dict of z_t]. Your task is to estimate the parameters σ and ρ using the EM (expectation–maximization) algorithm.
 - Derive expression for the log-likelihood $\ln P(x, z, \sigma, \rho)$ where x and z are the hidden state and observed time series.

Pick some reasonable estimates for σ and ρ (lets denote them σ_0 and ρ_0 correspondingly). Iterate the following two steps (i = 0, 1, ...), until reasonable convergence:

• Compute expected value of $\ln P(x, z, \sigma, \rho)$ – that is, average over x with the distribution, given by $x \sim P(x, z, \sigma_i, \rho_i)$. The result is a function $C_i(\sigma, \rho)$ of a very simple analytical form, only the coefficients are to be computed numerically.

• Maximize the function $C_i(\sigma, \rho)$ over its arguments and set $(\sigma_{i+1}, \rho_{i+1}) = \operatorname{argmax}_{\sigma, \rho} C_i(\sigma, \rho)$.

What are the estimated values of σ and ρ ?

- 4. (50) Consider the model in Eq. (1) with stationary but unknown σ and ρ and constant velocity, $u \equiv 1$. You are given a series of T observations $z_1, ..., z_T$ in 10_4.pickle [pickled dict of z_t]. Your task is to estimate the parameters σ and ρ using maximization of the log-likelihood function.
 - The likelihood of given values of σ and ρ is proportional to $P(\sigma, \rho) \propto \int P(x, z, \sigma, \rho) dx$, where the integral can be evaluated explicitly. Using JAX, write fast code to compute $\ln P(\sigma, \rho)$ and its gradients up to the 2nd order.
 - Perform numerical maximization to find the optimize values for σ and ρ .

What are the estimated values of σ and ρ ?

5. (75*) Consider the local linear trend model:

$$y_t = a_t + \epsilon_t^y, \quad \epsilon_t^y \sim \mathcal{N}(0, \sigma_y)$$
$$a_t = a_{t-1} + b_{t-1} + \epsilon_t^a, \quad \epsilon_t^a \sim \mathcal{N}(0, \sigma_a)$$
$$b_t = b_{t-1} + \epsilon_t^b, \quad \epsilon_t^b \sim \mathcal{N}(0, \sigma_b)$$

with unknown parameters σ_y , σ_b . For the data in 10_5.pickle [pickled numpy array with observed time series of y_t and σ_a], compute, using the likelihood maximization (in spirit of Exercise 4 above), the most probable values of σ_y , σ_b . With these values, compute the smoothed trajectory of the local slope coefficient b_t^* and plot it as a function of time. Compute the prediction for y_{T+1} (that is for the time instant, following the latest available observation).

REFERENCES

[1] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.