Solutions

For MEI students

12 Let $f(x) = \frac{x+2}{x^3-8}$ where -3 < x < 3.

(a) Write down the equation of the vertical asymptote of f(x).

(b) Sketch f(x). Clearly mark all asymptotes and points of interest.

13 Let $f(x) = \frac{a-x}{ax+1}$ where a is an integer and -2 < x < 2.

(a) Find the points where f(x) crosses the x and y axes in terms of a.

(b) Find the equation of the vertical asymptote of f(x) in terms of a.

(c) Hence sketch f(x) for a = 4.

(d) If $a \ge 1$, find the smallest value of x such that $f(x) \ge 1$.

14 The quadratic $ax^2 + bx + c$ has roots α and β .

(a) Form a new quadratic with the repeated root $\frac{1}{\alpha+\beta}$.

(b) Form a new quadratic with roots $\alpha - 1$ and $\beta - 1$.

15 You are given that $\frac{5}{r(r+5)} = \frac{1}{r} - \frac{1}{r+5}$.

(a) Evaluate the sum

$$\sum_{r=0}^{n} \frac{5}{r(r+5)}$$

(b) Hence find

$$\lim_{n \to \infty} \sum_{r=0}^{n} \frac{5}{r(r+5)}$$

 $=\frac{(n+5)-1}{n+5}=\frac{n+4}{n+5}$ b) when $n \rightarrow \infty$, $(\tau + s) \rightarrow \infty$ hence when $n \rightarrow \infty$ $\frac{1}{1} - \frac{1}{n+5} = \frac{1}{1} - \frac{1}{\infty}$ Cimit = I