Visione Artificiale Prova del dd-Mmm-yyyy (90 minuti)	Cognome	Matricola: Nome:	
) Descrivere gli operatori di Sobel e illustrarne breveme	ente alcune possib	ili applicazioni.	
2) Come è possibile, con la morfologia matematica, "rier	mpire" piccoli "bu	ichi" in un'immagine?	
3) In cosa consiste il "template matching"?			

- 4) Utilizzando NumPy e OpenCV, implementare in Python la funzione *esercizio(img)* che riceve un'immagine grayscale *img* (con un byte per pixel) e deve eseguire le seguenti operazioni:
- 1) Calcolare, per ciascuna riga dell'immagine, la somma dei valori dei pixel: sia Ym la coordinata y della riga dell'immagine con la somma minore.
- 2) Binarizzare img, utilizzando come unica soglia la media dei livelli di grigio dei pixel con coordinata y minore o uquale a Ym.
- 3) Applicare, al risultato del passo precedente, un'operazione morfologica di dilatazione con un cerchio di diametro 3 pixel come elemento strutturante: sia img3 il risultato.
- 4) Costruire un'immagine contenente solo i bordi (con uno spessore di 2 pixel) delle componenti connesse dell'immagine ottenuta al punto precedente. Suggerimento: questo risultato può essere ottenuto con la differenza fra l'immagine e il risultato dell'erosione con un cerchio di diametro 2*2+1 pixel.
- 5) Determinare tutti i pixel di background di img3 con distanza maggiore di 4 pixel (secondo la metrica d_{θ}) dal foreground.
- 6) Restituire un'immagine a colori in formato BGR in cui i pixel di bordo individuati al passo 4 sono blu, i pixel individuati al punto 5 verdi e i restanti pixel hanno un valore, nel solo canale R, pari alla metà (arrotondata all'intero inferiore) della corrispondente luminosità in imq.

·			
import numpy as np			
import cv2 as cv			
<pre>def esercizio(img):</pre>			
Ym = np.argmin(np.sum(img, 1))			
_, img2 = cv.threshold(img, np.mean(img[:Ym+1,]), 255, cv.THRESH_BINARY)			
img3 = cv.morphologyEx(img2, cv.MORPH_DILATE, cv.getStructuringElement(cv.MORPH_ELLIPSE, (3,3)))			
img4 = img3 - cv.morphologyEx(img3, cv.MORPH_ERODE, cv.getStructuringElement(cv.MORPH_ELLIPSE, (5,5)))			
img5 = np.where(cv.distanceTransform(255-img3, cv.DIST_C, 3)>4, 255, 0).astype(np.uint8)			
return cv.merge((img4, img5, (img & (~(img4 img5)))//2))			
	<pre>Promemoria: alcune funzioni che potrebbero essere utili cv.threshold(src, thresh, maxval, type) -> retval, dst cv.morphologyEx(src, op, kernel) -> dst cv.getStructuringElement(shape, ksize) -> retval cv.distanceTransform(src, distanceType, maskSize) -> dst</pre>		
	Promemoria: alcune costanti che potrebbero essere utili cv.THRESH_BINARY		
	cv.MORPH_ELLIPSE cv.MORPH_ERODE, cv.MORPH_DILATE cv.DIST_C		