IEQB Teste 1

Felipe Pinto - 61387 08/05 - 2021.1

Conteúdo

Questão 1		2	(iv)	$[CO_2]_o$	3
			(\mathbf{v})	$[N_2]_o$	3
Questão 2		2	(vi)	$[O_2]_o$	3
(i)	mol (Tot)/mol (Tot).	2			
(ii)	$[N_2]$	2	Questão 4		4
(iii)	$[CO_2]$	2	(i)	Reagente Limitante	4
(iv)	$[O_2]$		(ii)	$m_{1o} [et]_{1o} \ldots \ldots$	4
(\mathbf{v})	[CO]		(iii)	$m_{1o} \left[\mathcal{O}_2 \right]_{1o} \ldots \ldots$	4
			(iv)	$[C_2H_4O]_{1o} \dots \dots$	4
Questão 3		3	Q4 - a)		4
(i)		3	(i)	$[\mathrm{et}]_{1o}$	4
(ii)	$[\mathrm{CH}_4]_o$	3	(ii)	$[O_2]_{1o}$	4
(iii)	$[CO]_o$	3	(iii)	$[Inértes]_{1o} \dots \dots$	

Questão 1

 $= 10.4 \, m_{\rm H_2O} + 25 \, m_{\rm H_2O} = 35.4 \, m_{\rm H_2O}$

Questão 2

(i) mol (Tot)/mol (Tot)

$$=\frac{67\,\mathrm{g_{N_2}}}{100\,\mathrm{g_{Tot}}}\,\frac{\mathrm{mol_{N_2}}}{28\,\mathrm{g_{N_2}}}+\frac{14\,\mathrm{g_{CO_2}}}{100\,\mathrm{g_{Tot}}}\,\frac{\mathrm{mol_{CO_2}}}{44\,\mathrm{g_{CO_2}}}+\frac{16\,\mathrm{g_{O_2}}}{100\,\mathrm{g_{Tot}}}\,\frac{\mathrm{mol_{O_2}}}{32\,\mathrm{g_{O_2}}}+\frac{3\,\mathrm{g_{CO}}}{100\,\mathrm{g_{Tot}}}\,\frac{\mathrm{mol_{CO}}}{28\,\mathrm{g_{CO}}}\cong33\,\mathrm{mmol_{Tot}}\,\mathrm{g_{Tot}^{-1}}$$

(ii) [N₂]

$$\cong \frac{67\,\mathrm{g_{N_2}}}{100\,\mathrm{g_{Tot}}}\,\frac{\mathrm{mol_{N_2}}}{28\,\mathrm{g_{N_2}}}\,\frac{\mathrm{g_{Tot}}}{33\,\mathrm{mmol_{Tot}}} \cong \\ \cong 72\,\%\,\mathrm{mol_{N_2}/mol_{Tot}}$$

(iii) $[CO_2]$

$$\cong \frac{14\,\mathrm{g_{CO_2}}}{100\,\mathrm{g_{Tot}}}\,\frac{\mathrm{mol_{CO_2}}}{44\,\mathrm{g_{CO_2}}}\,\frac{\mathrm{g_{Tot}}}{33\,\mathrm{mmol_{Tot}}} \cong$$

$$\cong 9.6\,\%\,\mathrm{mol_{CO_2}/mol_{Tot}}$$

(iv) $[O_2]$

$$\cong \frac{16\,\mathrm{g}_{\mathrm{O}_2}}{100\,\mathrm{g}_{\mathrm{Tot}}}\,\frac{\mathrm{mol}_{\mathrm{O}_2}}{32\,\mathrm{g}_{\mathrm{O}_2}}\frac{\mathrm{g}_{\mathrm{Tot}}}{33\,\mathrm{mmol}_{\mathrm{Tot}}} \cong \\ \cong 15\,\%\,\mathrm{mol}_{\mathrm{O}_2}/\mathrm{mol}_{\mathrm{Tot}}$$

(v) [CO]

$$\cong \frac{3\,\mathrm{g_{CO}}}{100\,\mathrm{g_{Tot}}} \, \frac{\mathrm{mol_{CO}}}{28\,\mathrm{g_{CO}}} \, \frac{\mathrm{g_{Tot}}}{33\,\mathrm{mmol_{Tot}}} \cong$$
$$\cong 3.2\,\%\,\mathrm{mol_{CO}/mol_{Tot}}$$

Questão 3

$\%\mathrm{mol/mol}$	i	$\mathrm{mol_o/mol_i}$ $\mathrm{_{Tot}}$	О
CH_4	9	1.4	1.6
O_2	19	4.4	5.1
CO		1.4	1.6
CO_2		6.3	7.3
N_2	72	72	84
Total	100	86	

$$=9\,\%\,\mathrm{mol}_{\mathrm{CH_4}}\,\frac{(7/2)\,\mathrm{mol}_{\mathrm{O_2}}}{2\,\mathrm{mol}_{\mathrm{CH_4}}}\cong16\,\%>16\,\%^*$$

Aqui era 19 mas escrevi 16 na hora sem pensar

(ii) $[CH_4]_o$

$$= [CH_4]_i - [CH_4]_i \frac{15 \% \text{ mol}_{CH_4}}{\text{mol}_{CH_4}} +$$

$$- [CH_4]_i \frac{70 \% \text{ mol}_{CH_4}}{\text{mol}_{CH_4}} =$$

$$= [CH_4]_i (1 - 15 \% - 70 \%) =$$

$$= 9 \% (1 - 0.15 - 0.70) \approx 1.4 \% \text{ mol}_{CH_4}/\text{mol}_{Tot}$$

$(vi) [O_2]_o$

$$= [O_2]_i - \frac{6 \text{ MolCh}_4}{\text{mol}_{\text{Tot}}} \frac{(5/2) \text{ MolCh}_2}{\text{mol}_{\text{CH}_4}} \frac{15 \text{ Mol}_{\text{CH}_2}}{\text{mol}_{\text{CH}_4}}$$

$$\cong 4.4 \% \text{ mol}_{\text{O}_2} / \text{mol}_{\text{Tot}}$$

(iii) $[CO]_o$

$$\begin{split} &= \frac{9\,\%\,\mathrm{mol}_{\mathrm{CH_4}}}{\mathrm{mol}_{\mathrm{Tot}}}\,\frac{15\,\%\,\mathrm{mol}_{\mathrm{CH_4}}}{\mathrm{mol}_{\mathrm{CH_4}}}\,\frac{1\,\mathrm{mol}_{\mathrm{CO}}}{1\,\mathrm{mol}_{\mathrm{CH_4}}} \cong \\ &\cong 1.4\,\%\,\mathrm{mol}_{\mathrm{CO/mol}_{\mathrm{Tot}}} \end{split}$$

(iv) $[CO_2]_o$

$$= \frac{9\% \, \mathrm{mol_{CH_4}}}{\mathrm{mol_{Tot}}} \, \frac{70\% \, \mathrm{mol_{CH_4}}}{\mathrm{mol_{CH_4}}} \, \frac{1 \, \mathrm{mol_{CO_2}}}{1 \, \mathrm{mol_{CH_4}}} \cong$$

$$\cong 6.3\% \, \mathrm{mol_{CO_2/mol_{Tot}}}$$

$$(\mathbf{v})$$
 $[\mathbf{N_2}]_o$

$$= [\mathrm{N_2}]_i = 72\,\%\,\mathrm{mol_{\mathrm{N_2}}/mol_{\mathrm{Tot}}}$$

$$= [\mathcal{O}_2]_i - \frac{9 \% \, \mathrm{mol}_{\mathcal{CH}_4}}{\mathrm{mol}_{\mathrm{Tot}}} \, \frac{(3/2) \, \mathrm{mol}_{\mathcal{O}_2}}{\mathrm{mol}_{\mathcal{CH}_4}} \, \frac{15 \, \% \, \mathrm{mol}_{\mathcal{O}_2}}{\mathrm{mol}_{\mathcal{O}_2}} - \frac{9 \, \% \, \mathrm{mol}_{\mathcal{CH}_4}}{\mathrm{mol}_{\mathrm{Tot}}} \, \frac{2 \, \mathrm{mol}_{\mathcal{O}_2}}{\mathrm{mol}_{\mathcal{CH}_4}} \, \frac{70 \, \% \, \mathrm{mol}_{\mathcal{O}_2}}{\mathrm{mol}_{\mathcal{O}_2}} \cong \\ \cong 4.4 \, \% \, \mathrm{mol}_{\mathcal{O}_2} / \mathrm{mol}_{\mathrm{Tot}}$$

Questão 4

$$2\,\mathrm{C_2H_4} + \mathrm{O_2} \xrightarrow{70\,\%\,\mathrm{(et)}} 2\,\mathrm{C_2H_4O}$$

•
$$1 = 1i.1$$

•
$$3 = 10 = 2i$$
 • $5 = 202$

•
$$5 = 202$$

•
$$7 = 202.2$$

•
$$4 = 201$$

•
$$6 = 202.1 = 1i.2$$

$\%\mathrm{mol/mol}$	1i.1	1i	<u>1o 2i</u>	201	202	202.1	1i.2	202.2
$ m C_2H_4$		46	14					
O_2		52						
$\mathrm{C_2H_4O}$				100				
Inértes	0.4	2						
$\overline{\operatorname{Total}\left(\mathrm{kmol}\mathrm{h}^{-1}\right)}$				1600				

Reagente Limitante

$$\begin{split} \frac{46\,\%\,\mathrm{mol_{et}}}{\mathrm{mol_{tot}}}\,\frac{\mathrm{mol_{O_2}}}{2\,\mathrm{mol_{et}}} &= 26\,\%\,\mathrm{mol_{O_2}/mol_{Tot}} < \\ &< 52\,\%\,\mathrm{mol_{O_2}/mol_{Tot}} \end{split}$$

∴ etileno é o reag limitante

(ii)
$$m_{1o} [et]_{1o}$$

$$= m_{1i}[et]_{1i} \frac{30 \% \text{ mol}_{\text{et}}}{\text{mol}_{\text{et}}} = m_{1i} 46 \% * 30 \% \cong$$

$$\cong m_{1i} 14 \% \text{ mol}_{\text{et}}$$

(iii) $m_{1o} [O_2]_{1o}$

$$= m_{1i} [O_2]_{1i} - m_{1i} [et]_{1i} \frac{70 \% \text{ mol}_{et}}{\text{mol}_{et}} \frac{\text{mol}_{O_2}}{2 \text{ mol}_{et}} =$$

$$= m_{11} \left(52 \% \text{ mol}_{O_2} - 46 \% \text{mol}_{et} \frac{70 \% \text{ mol}_{et}}{\text{mol}_{et}} * \frac{\text{mol}_{O_2}}{2 \text{ mol}_{et}} \right) = m_{1i} 20 \% \text{ mol}_{O_2}$$

(iv)
$$[C_2H_4O]_{1o}$$

$$= m_{1o} [et]_{1o} \frac{70 \% \text{ mol}_{\text{et}}}{\text{mol}_{\text{et}}} \frac{2 \text{ mol}_{\text{et}}}{\text{mol}_{\text{et}}} = m_{1o} 32 \% \text{ mol}_{\text{C}_2\text{H}_4\text{O}}$$

Q4 - a

(i)
$$[et]_{1o}$$

$$= [\text{et}]_{1i} \frac{30\% \,\text{mol}_{\text{et}}}{\text{mol}_{\text{et}}} \frac{m_{1o}}{m_{1i}} = 46\% \frac{30\% \,\text{mol}_{\text{et}}}{\text{mol}_{\text{et}}} \cong$$

$$\cong 14\% \,\text{mol}_{\text{et}}/\text{mol}_{\text{Tot i}}$$

(ii)
$$[O_2]_{1o}$$

$$\begin{split} &= \left([\mathcal{O}_2]_{1i} - [et]_{1o} \, \frac{70 \, \% \mathrm{mol_{et}}}{\mathrm{mol_{et}}} \, \frac{\mathrm{mol_{O_2}}}{2 \, \mathrm{mol_{et}}} \right) \, \frac{m_{1o}}{m_{1i}} = \\ &= 52 \, \% \, \mathrm{mol_{O_2}} - 46 \, \% \, \mathrm{mol_{et}} \, \frac{70 \, \% \, \mathrm{mol_{et}}}{\mathrm{mol_{et}}} \, \frac{\mathrm{mol_{O_2}}}{2 \, \mathrm{mol_{et}}} \cong \\ &\cong 36 \, \% \, \mathrm{mol_{O_2}/mol_{Tot \, i}} \end{split}$$

 ${f (iii)} \quad \overline{f [In\'ertes]_{1o}}$

=