Summary

Time Evolution: (time independent Hamiltonian)

Method 1:

Solution via Energy Eigenstates:

Step 1: find eigenvectors $|\,E_{_{n}}\,\rangle$ and eigenvalue E_n of H Step 2: Expand initial state in eigenbasis

$$|\Psi(0)\rangle = \sum_n c_n \; |E_n\rangle \label{eq:psi}$$
 Step 3: Write down solution

$$|\Psi(t)\rangle = \sum_{n} c_n e^{-i\frac{E_n t}{\hbar}} |E_n\rangle$$

Method 2:

Calculate unitary time evolution operator

Step 1: find eigenvectors $|E_n\rangle$ and eigenvalue E_n of H

Step 2: calculate time evolution operator:

$$U(t) = \sum_{n} e^{-\frac{i}{\hbar}E_n t} |E_n\rangle\langle E_n|$$
$$U(t) = e^{-\frac{i}{\hbar}Ht}$$

Step 3: Write down solution

$$|\Psi(t)\rangle = U(t) |\Psi(0)\rangle$$

	Discrete	Continuous
State	$ \Psi angle$	$ \Psi angle$
coordinate representation	$\ket{\Psi} \stackrel{.}{=} \left(egin{array}{c} \Psi_1 \ dots \ \Psi_n \end{array} ight)$	$ \Psi angle \stackrel{.}{=} \langle x \Psi angle =: \Psi(x)$ wavefunction (complex valued!) (position representation)
completeness relations	$1\!\!1 = \sum_{k=1}^n \phi_k angle \langle \phi_k $ orthonormal basis	$1\!\!1 = \int_{-\infty}^{+\infty} dx \; x angle \langle x $ position states
dual vector	$\langle \Psi \stackrel{.}{=} \left(\begin{array}{cccc} \Psi_1^*, & \dots & \Psi_n^* \end{array} ight)$	$\langle\Psi \stackrel{.}{=}\langle\Psi x angle=\Psi(x)^*$
scalar product	$\langle \Phi \Psi angle = \sum_{k=1}^n \Phi_k^* \Psi_k$	$\langle \Phi \Psi \rangle = \int_{-\infty}^{+\infty} dx \; \Phi(x)^* \Psi(x)$
normalization	$1 \stackrel{!}{=} \langle \Psi \Psi \rangle = \sum_{k=1}^{n} \Psi_k ^2$	$1 \stackrel{!}{=} \langle \Psi \Psi \rangle = \int_{-\infty}^{+\infty} dx \ \Psi(x) ^2$
probability prediction	$\Pr(\mathrm{"k"}) = \langle \phi_k \Psi angle ^2 = \Psi_k ^2$ probability	$p(x) \; dx = \langle x \Psi \rangle ^2 \; dx = \Psi(x) ^2 \; dx$ probability density

Position Operator

$$\hat{X} = \int_{-\infty}^{+\infty} dx \; x |x\rangle\langle x|$$
 eight

eigenvector: $\hat{X}|x\rangle = x|x\rangle$

Momentum Operator

$$\hat{P} = \int_{-\infty}^{+\infty} dp \ p|p\rangle\langle p|$$

eigenvector: $\hat{P}|p\rangle = p|p\rangle$

(position) coordinate representation:

$$\hat{X} \doteq x \, \delta(x - x')$$

$$|x\rangle \doteq \Psi(x') = \langle x' | x \rangle = \delta(x - x')$$

$$\hat{X} | \Psi \rangle \doteq x \Psi(x)$$

(position) coordinate representation:

$$\hat{P} \stackrel{:}{=} (-i)\hbar \frac{d}{dx} \delta(x - x')$$

$$|p\rangle \stackrel{:}{=} \Psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \exp[\frac{ipx}{\hbar}]$$

$$\hat{P}|\Psi\rangle \stackrel{:}{=} (-i)\hbar \frac{d}{dx} \Psi(x)$$

General Coordinate Representation Rule

Solving Strategies: time evolution of free particle

$$\frac{d}{dt}|\Psi(t)\rangle = -\frac{i}{\hbar}H|\Psi(t)\rangle$$

Initial state: | Ψ (0) \rangle mass: m

1) Find Eigensystem of H:

$$\hat{H}=\frac{\hat{P}^2}{2m}$$
 eigenstates: $|\mathfrak{p}\,\rangle$, \mathfrak{p} in (-\infty,+\infty) and eigenvalues: $E=\frac{p^2}{2m}$ degenerates

1) Find Eigensystem of H:
$$\hat{H} = \frac{\hat{P}^2}{2m} \text{ eigenstates: } |\text{p} \rangle \text{ , p in (-}\infty, +\infty \text{)} \\ \hat{E} = \frac{\hat{P}^2}{2m} \text{ degenerate} \\ \hat{E} = \frac{p^2}{2m} \text{ degenerate} \\ -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi_E(x) = E\Psi(x)_E \\ \text{solution: } |p\rangle \doteq \frac{1}{\sqrt{2\pi\hbar}} \exp(i\frac{px}{\hbar})$$

2) Decompose initial state into eigenstates of H

$$|\Psi(0)\rangle = \int dp \; \langle p | \Psi(0) \rangle \; |p \rangle$$

$$\begin{array}{ccc} \Psi_p(p,0) & = & \langle p|\Psi(0)\rangle \\ & = & \frac{1}{\sqrt{2\pi\hbar}}\int dx \; \Psi(x,0) \exp(-i\frac{xp}{\hbar}) \end{array}$$

3) Write down final solution

$$|\Psi(t)\rangle = \int dp \langle p|\Psi(0)\rangle e^{-i\frac{p^2}{2m}\frac{t}{\hbar}}|p\rangle$$

$$|\Psi(t)\rangle = \int dp \; \langle p|\Psi(0)\rangle \; e^{-i\frac{p^2}{2m}\frac{t}{\hbar}}|p\rangle \quad \boxed{\Psi(x,t) = \int dp \; \Psi_p(p,0) \; e^{-i\frac{p^2}{2m}\frac{t}{\hbar}}\frac{1}{\sqrt{2\pi\hbar}}e^{i\frac{xp}{\hbar}}}$$

Step-Potentials: Eigenstates 1) Mathematical Ansatz in each section

- $\Psi_E(x) = \left\{ \begin{array}{ll} A_+ \ e^{\kappa x} + A_- e^{-\kappa x} & E < V_0 \\ B_+ \ e^{ikx} + B_- \ e^{-ikx} & E > V_0 \end{array} \right.$ $\kappa = \frac{1}{\hbar} \sqrt{2m(V_0 - E)} \qquad k = \frac{1}{\hbar} \sqrt{2m(E - V_0)}$
- 2) Physical constraint

no exponential growth as $|x| \to \infty$

3) Matching conditions at interfaces

finite jumps: $\Psi_E(x)$ and $\frac{d}{dx}\Psi_E(x)$ continuous infinite jumps:

 $\Psi_E(x)$ continuous, while

 $\frac{d}{dx}\Psi_E(x)$ may make finite jump

Optional:

symmetric potential with respect to some x_0 :

→ each energy eigenstate is either

symmetric or anti-symmetric with respect to x₀

4) Normalization

 $\langle E_n | E_n \rangle = 1$ discrete spectrum

continuous spectrum $\langle E_n|E_m\rangle=\delta(E_n-E_m)$

Result classes for N sections

Step 1: Mathematical Ansatz

each section has 2 complex amplitude parameters

→ 2N parameters

Step 2: Physical constraints (0,1,or 2 constraints) for each section with $|x| \to \infty$

one complex amplitude is set to 0!

→ number of affected sections C_{ph}

Step 3: interfaces \rightarrow 2(N-1) constraints

finite jumps:

2 linear homogeneous constraints on amplitudes (wave function and derivative continuous)

infinite wall:

2 linear homogeneous constraints on amplitudes (wave function continuous,

amplitude in infinite potential zero)

- → 2N parameters
- \rightarrow C_{tot} = 2(N-1) + C_{ph} constraints!

 $C_{tot} = 2N-1$

- → unbound state
- → continuous spectrum
- → non-degenerate
- $C_{tot} = 2N-2$
- unbound state
- → continuous spectrum
- → degenerate

$C_{tot} = 2N$

V(x)

- → bound states
- → discrete spectrum
- → non-degenerate

Potential Step

Eigenstates of Hamiltonian

$$\hat{H} = \frac{\hat{P}_x^2}{2m} + V(\hat{X})$$

Eigenstates for energy eigenvalue range
$$0 < \mathbf{E} < \mathbf{V}_0$$
 non-degenerate continuous eigenvalues:
$$\Psi_E(x) = A_+ \left\{ \begin{array}{ll} e^{ikx} + \frac{k-i\kappa}{k+i\kappa} e^{-ikx} & x \leq 0 \\ \frac{2k}{k+i\kappa} e^{-\kappa x} & x > 0 \end{array} \right. \qquad k = \frac{1}{\hbar} \sqrt{2m(V_0 - E)}$$

$$\frac{\text{Eigenstates for energy eigenvalue range E>V}_0}{\text{Degenerate continuous eigenvalues:}} \\ \Psi_E(x) = A_+ \left\{ \begin{array}{ll} e^{ik_1x} + \frac{k_1 - k_2}{k_1 + k_2} e^{-ik_1x} & x \leq 0 \\ \frac{2k_1}{k_1 + k_2} e^{ik_2x} & x > 0 \end{array} \right.$$

Flux ONLY from $+ \infty$:

$$\Psi_E(x) = \begin{cases} \dots & x \le 0 \\ \dots & x > 0 \end{cases} \qquad k_1 = \frac{1}{\hbar} \sqrt{2mE} \\ k_2 = \frac{1}{\hbar} \sqrt{2m(E - V_0)}$$

Potential Step

Eigenstates of Hamiltonian

$$\hat{H} = \frac{\hat{P}_x^2}{2m} + V(\hat{X})$$

Eigenstates for energy eigenvalue range
$$0 < \mathbf{E} < \mathbf{V}_{\underline{0}}$$
 non-degenerate continuous eigenvalues:
$$\Psi_E(x) = A_+ \left\{ \begin{array}{ll} e^{ikx} + \frac{k-i\kappa}{k+i\kappa} e^{-ikx} & x \leq 0 \\ \frac{2k}{k+i\kappa} e^{-\kappa x} & x > 0 \end{array} \right. \qquad k = \frac{1}{\hbar} \sqrt{2m(V_0 - E)}$$

 $\begin{array}{ll} \underline{ \text{Eigenstates for energy eigenvalue range E>V_0} } \\ \underline{ \text{Degenerate continuous eigenvalues:}} \\ \underline{ \text{Flux ONLY from -} \infty :} \\ \end{array} \quad \Psi_E(x) = A_+ \left\{ \begin{array}{ll} e^{ik_1x} + \frac{k_1 - k_2}{k_1 + k_2} e^{-ik_1x} & x \leq 0 \\ \frac{2k_1}{k_1 + k_2} e^{ik_2x} & x > 0 \end{array} \right. \end{array}$

Flux ONLY from $+ \infty$:

$$\Psi_E(x) = \begin{cases} \dots & x \le 0 \\ \dots & x > 0 \end{cases} \qquad k_1 = \frac{1}{\hbar} \sqrt{2mE}$$

$$k_2 = \frac{1}{\hbar} \sqrt{2m(E - V_0)}$$

Probability Flux

$$k = \frac{1}{\hbar} \sqrt{2m(E - V)}$$

$$B_{+}e^{i(k'x-\frac{Et}{\hbar})}$$

$$k' = \frac{1}{\hbar} \sqrt{2m(E - V')}$$

Probability flux for each component: (applies only for E > V(x)!)

$$S_{comp} = \frac{\hbar}{m} k|A|^2$$

Reflection probability:

$$R = \frac{S_{reflect}}{S_{in}} = \frac{|A_{-}|^2}{|A_{+}|^2}$$

Transmission probability:

$$T = \frac{S_{transmit}}{S_{in}} = \frac{k' |B_{+}|^2}{k |A_{+}|^2}$$

Harmonic Oscillator

$$\hat{H} = \frac{1}{2m}\hat{P}^2 + \frac{1}{2}m\omega^2\hat{X}^2$$

$$\hat{P}^2 = i\hbar 1$$

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \mathbb{1} \right)$$

$$\hat{N} = \hat{a}^{\dagger} \hat{a}$$
 $\hat{N} | n \rangle = n | n \rangle$
 $\hat{H} | n \rangle = \hbar \omega (n + 1/2) | n \rangle$

ladder operators:

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{X} + \frac{i}{m\omega} \hat{P} \right)
\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{X} - \frac{i}{m\omega} \hat{P} \right)$$

$$\left[\hat{a},\hat{a}^{\dagger}\right]=1\!\!1$$

adder operators:
$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \begin{pmatrix} \hat{X} + \frac{i}{m\omega} \hat{P} \\ \hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \begin{pmatrix} \hat{X} - \frac{i}{m\omega} \hat{P} \\ \hat{x} - \frac{i}{m\omega} \hat{P} \end{pmatrix}$$

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$$
 commutator:
$$\hat{a} | n \rangle = \sqrt{n} | n-1 \rangle$$

PHYS 234:

Quantum Physics I

Norbert Lütkenhaus

Institute for Quantum Computing & Dept. Physics and Astronomy

Richard Feynman:

"I think I can safely say that nobody understands quantum mechanics."

John Wheeler:

"If you are not completely confused by quantum mechanics, you do not understand it."

But what does it mean to "understand"?

