Full Name:	
EEL 4750 / EEE 5502 (Fall 2021) – HW #6	Due: 4:00 PM ET, Oct. 4, 2021

Concept Questions 6

Question #1: Complete the Canvas questions here: https://ufl.instructure.com/courses/437179/assignments/4812579/

Question #2: Study for the exam next week. You can find old / practice exams here: http://smartdata.ece.ufl.edu/eee5502/lecture.html?lecture=18.

Theory Questions 6

Question #1:

Consider three signals $x_1(t)$ and $x_2(t)$ and $x_3(t)$ such that their Fourier transforms satisfy

$$X_1(\Omega) = 0$$
 , $30 \le |\Omega|$
 $X_2(\Omega) = 0$, $|\Omega| \le 15$, $|\Omega| \ge 20$
 $X_3(\Omega) = 10^{-\Omega}$, $|\Omega| < \infty$

Determine the minimum frequency Ω_s at which we must sample the following signals in order to prevent aliasing. If aliasing is unavoidable, write that instead of a frequency.

- (a) $x(t) = x_1(t) + x_2(t)$
- (b) $x(t) = x_1(t) * x_3(t)$
- (c) $x(t) = x_1(t)x_2(t)$
- (d) $x(t) = \cos(3.6\pi t + 9.23)$
- (e) x(t) = u(t-1) u(t-4)
- (f) $x(t) = \delta(t)$

Implementation Questions 6

In this assignment, we want to observe the effects of sampling and applying reconstruction filters. For this, it will be helpful to have an inverse continuous-time Fourier transform. Therefore, we are providing a new function x = ICTFT(X, t, w) that computes the ICTFT $X(\Omega)$ at desired angular frequencies w from x(t) (x) at times t. The function approximates the ICTFT by:

$$x[n] = \int_{-\infty}^{\infty} X(\Omega)e^{+j\omega t} d\Omega \approx \Delta W \sum_{n=-\infty}^{\infty} X(\Omega)e^{+jn(\Omega\Delta W)},$$

where ΔW is the difference between each consecutive value in the w vector.

Question #1: Use our CTFT function to plot the approximate continuous-time Fourier transform of the following "continuous-time" signals after sampling with the given cyclic sampling rate f_s . Then apply an **ideal** low pass reconstruction filter (i.e., do your filtering in the frequency domain) ¹ and compute the inverse CTFT. Use a time range for t from -10 to 10 and use a frequency range of w=-4*pi:pi/20:(4*pi-pi/20).

- (a) $x(t) = \cos((3\pi/4)t)$, $f_s = 1/2$
- (b) $x(t) = \cos((3\pi/4)t)$, $f_s = 1$
- (c) $x(t) = \cos((3\pi/4)t)$, $f_s = 4$
- (d) x(t) = u(t+3) u(t-3) , $f_s = 1/2$
- (e) x(t) = u(t+3) u(t-3) , $f_s = 1$
- (f) x(t) = u(t+3) u(t-3) , $f_s = 4$

Question #2: (Optional – Not Graded) In this class, we will use a linear frequency-modulated "chirp" signal as a common example signal, a signal whose instantaneous frequency $\omega[n]$ changes linearly with time. Chirp signals are commonly used in RADAR processing to extract time-varying time-shifts (distance from a target) and frequency/Doppler-shifts (velocity of a target). They are defined by

$$x[n] = \cos\left(2\pi (f_1/(2T))t^2\right) .$$

- (a) Create a function x = chirp(t, fl, T) that computes the chirp signal for final frequency fl and signal length T (in seconds).
- (b) Plot the time-domain and the CTFT magnitude response for a chirp signal for final frequency f1 = 2000, length T = 0.1 s. Choose your sampling rate so that x[n] is over-sampled.
- (c) Plot the time-domain and the CTFT magnitude response for a chirp signal for final frequency f1 = 2000, length T = 0.1 s. Choose your sampling rate so that x[n] is critically-sampled.
- (d) Plot the time-domain and the CTFT magnitude response for a chirp signal for final frequency f1 = 2000, length T = 0.1 s. Choose your sampling rate so that x[n] is under-sampled.

¹Note: Due to how this is setup (i.e., we are not zero-ing values but instead removing values), the gain for this filter will be 1, not T_s , as discussed in the lecture