Question-1

Integer-Program

$$\min_{x} \sum_{e} c_{e} x_{e}$$
s.t.
$$\sum_{e \in P_{i}} x_{e} \ge 1$$

$$x_{e} \in \{0, 1\}$$

Dual of Relaxed problem

$$\max_{y} \sum_{i=1}^{k} y_{i}$$
s.t.
$$\sum_{i:e \in P_{i}} y_{i} \le c_{e} \quad \forall e \in E$$

$$y_{i} \ge 0$$

Algorithm 1 Primal-Dual Algorithm for Multi-Cut problem

```
 \begin{aligned} & \textbf{procedure} \ \text{MULTICUT}(T = (V, E), r \in V, c_e \geq 0 \ \forall e, (s_i, t_i) \ i = 1 \dots n) \\ & F \leftarrow \varnothing \\ & \textbf{while} \ F \ \text{is not a multi-cut do} \\ & i \ \text{be the index of the unseparated pair} \ (s_i, t_i) \ \text{having highest} \ depth(lct(s_i, t_i)) \\ & \text{Increase} \ y_i \ \text{such till edge} \ e \ \text{becomes tight} \\ & F \leftarrow F \cup \{e\} \\ & \textbf{end while} \\ & \textbf{end procedure} \end{aligned}
```

In reverse delete step, go through the edges in the reverse order in which they are addded to F. Delete an edge e if $F - \{e\}$ is a feasible multi-cut. Return F finally.

Theorem 1.

$$cost(F) = \sum_{e \in F} c_e \le 2 * OPT \tag{1}$$

Proof. Let y be the dual feasible solution given by the algorithm. Hence, $\sum_{i=1}^k y_i \leq OPT$. We also have

$$cost(F) = \sum_{e \in F} c_e$$

$$= \sum_{e \in F} \sum_{i: e \in P_i} y_i$$

$$= \sum_{i=1}^k y_i |F \cap P_i|$$
(Since, an edge is added only when tight)

Claim 1. $y_i > 0 \Rightarrow |F \cap P_i| \leq 2$

Proof. Let $a \leadsto b$ denote the set of edges in the path from a to b. Suppose there is an i such that $y_i > 0$ and $|F \cap P_i| > 2$. Let u be the lowest common ancestor of s_i and t_i . Let e be the edge which became tight by increasing y_i . (Note: e might have been deleted from F in deletion step). As $|F \cap P_i| > 2$, we can, without loss of generality assume that $|F \cap (s_i \leadsto u)| \ge 2$. Let e_1 , e_2 be two edges in $|F \cap (s_i \leadsto u)|$ such that e_1 is closer to r that e_2 . Let pair (s_l, t_l) caused the addition of e_1 and $(s_{l'}, t_{l'})$ caused the addition of e_2 . We claim

that our reverse deletion step would have deleted the edge e_2 and hence obtain a contradiction. Given that $y_i > 0$, we can conclude that $depth(lct(s_i, t_i)) > depth(lct(s_l, t_l))$ and $depth(lct(s_i, t_i)) > depth(lct(s_l, t_l))$. Otherwise, edges e_1 or e_2 would have been added to F earlier that e and y_i couldn't have been raised. We can also conclude that all the pairs for which e_2 is the earliest separator that has been added to F have their lct depth lower that $depth(lct(s_i, t_i))$. Again, otherwise, e_2 would have been added before e and hence y_i couldn't have been raised. This implies that all those pairs for which e_2 is the earliest separator that has been added to F have e_1 in the path between the nodes. It is also easy to see that e_1 has been added to F after e_2 . Thus, in reverse delete step we observe e_2 after e_1 and hence we will remove e_2 from F as e_1 separates all the pairs which require e_2 . Hence having e_1 and e_2 both in F is a contradiction. Which gives $y_i > 0 \Rightarrow |F \cap P_i| \leq 2$.

From the claim above, we have $y_i|F \cap P_i| \leq 2y_i$. Hence, the $cost(F) = \sum_{i=1}^k y_i|F \cap P_i| \leq \sum_{i=1}^k 2y_i \leq 2OPT$.

Question-4

Define $A \cdot X = \sum_{i,j} a_{ij} x_{ij}$. Primal SDP

$$\max_{X} \sum_{i < j} w_{ij} (1 - x_{ij})/2$$
s.t.
$$x_{ii} = 1 \quad \forall i$$

$$X \succeq 0$$

Dual

$$\min_{\gamma} \quad \frac{1}{2} \sum_{i < j} w_{ij} + \frac{1}{4} \sum_{i} \gamma_{i}$$
s.t.
$$W + diag(\gamma) \succeq 0$$

We have W is a symmetric matrix with $w_{ii} = 0$. To show weak duality, we need to show that given $X \succeq 0$, $x_{ii} = 1 \ \forall i, W + diag(\gamma) \succeq 0$, we have

$$\frac{1}{2} \sum_{i < j} w_{ij} (1 - x_{ij}) \le \frac{1}{2} \sum_{i < j} w_{ij} + \frac{1}{4} \sum_{i} \gamma_i$$

Lemma 2. If X, Y are positive semidefinite matrices, then $X \cdot Y \geq 0$

Proof. Given matrices X, Y we have $X \cdot Y = \operatorname{tr}(X^TY)$. As X, Y are p.s.ds, we can write $X = LL^T$ and $Y = MM^T$. Hence, $\operatorname{tr}(X^TY) = \operatorname{tr}(LL^TMM^T) = \operatorname{tr}(L^TMM^TL) = \operatorname{tr}(L^TM(L^TM)^T) = ||L^TM||_F^2 \geq 0$. Second equality follows from the fact that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Proof.

$$\frac{1}{2} \sum_{i < j} w_{ij} (1 - x_{ij}) \leq \frac{1}{2} \sum_{i < j} w_{ij} + \frac{1}{4} \sum_{i} \gamma_{i}$$

$$\Leftrightarrow \qquad -\frac{1}{2} \sum_{i < j} w_{ij} x_{ij} \leq \frac{1}{4} \sum_{i} \gamma_{i}$$

$$\Leftrightarrow \qquad -\frac{1}{4} \sum_{i \neq j} w_{ij} x_{ij} \leq \frac{1}{4} \sum_{i} \gamma_{i} \qquad \qquad \text{(Since, } x_{ij} = x_{ji} \& w_{ij} = w_{ji})$$

$$\Leftrightarrow \qquad -\frac{1}{4} \sum_{i,j} w_{ij} x_{ij} \leq \frac{1}{4} \sum_{i} \gamma_{i} \qquad \qquad \text{(Since, } w_{ii} = 0)$$

$$\Leftrightarrow \qquad 0 \leq \sum_{i,j} w_{ij} x_{ij} + \sum_{i} \gamma_{i}$$

$$\Leftrightarrow \qquad 0 \leq \sum_{i,j} w_{ij} x_{ij} + \sum_{i} \gamma_{i} x_{ii} \qquad \qquad \text{(Since, } x_{ii} = 1)$$

$$\Leftrightarrow \qquad 0 \leq (W + diag(\gamma)) \cdot X$$

Given that the last inequality is true as both matrices are p.s.ds, we can follow the bi-implications backward and obtain what is required. \Box