Potentiel chimique μ_i d'un constituant physicochimique A_i

Par définition

$$\mu_i = (\frac{\delta G}{\delta n_i})_{T,p,n_{j\neq i}}$$
 (μ_i en J.mol⁻¹)

Expression de $\Delta_r G$ en fonction des μ_i

Conséquence de la définition : $(dG)_{T,p} = \sum \mu_i dn_i$ Or $dn_i = \nu_i d\xi$ donc : $dG_{T,p} = \sum \nu_i \cdot \mu_i d\xi$

On en déduit :

$$\Delta_{r}G = \Sigma v_{\iota}\mu_{\iota}$$

Equilibre entre deux phases

$$A(\alpha) = A(\beta)$$

evolution dans le sens $1/d\xi > 0$ $(=)$ $1.7\xi_{\beta}(A) - 1.7\xi_{\alpha}(A) < 0$
 $(=)$ $1.7\xi_{\beta}(A) - 1.7\xi_{\alpha}(A) < 0$
 $(=)$ $1.7\xi_{\beta}(A) < 7\xi_{\alpha}(A)$

Lors d'un changement d'état :

da motiere "descend les folcutiels Chimiques à l'equilibre :
$$A = 3x G = 0$$

Sort $f(x)(A) = f(B)(A)$

deure shoses à l'equilibre ont même jotentiel Chimique.

À la température de fusion : $\Delta_{fus}G = 0$

Expression pratique du critère d'évolution

Expression de μ_i

$$\mu_i = \mu_i^{\circ}(T) + RTln(a_i)$$

οù μ_i°(T): potentiel chimique de A_i dans son état standard à T
 a_i: activité de A_i dans le milieu considéré (sans unité)

Rappel : Expression de ai dans un environnement idéal

Constituant physico-chimique	Expression de a _i	
Ai en phase gazeuse parfaite	$a_i = p_i/p^\circ$ où $p^\circ = 1$ bar	
Aien mélange liquide ou solide idéal	$a_i = x_i$	
A _i en solution aqueuse idéale - Solvant - Soluté	$a_i = x_i \approx 1$ $a_i = \frac{A_i}{C^\circ}$ où $C^\circ = 1 \text{ mol.L}^{-1}$	

Expression de μ_i dans un environnement non idéal

Les coefficients γ_i sont déterminés expérimentalement

Relation entre l'affinité chimique, Δ_r G° et Q_r

∆rG° nous renseigne sur la valeur de *K*°

$$\Delta_r G(\text{\'etat}) = \Delta_r G^\circ + RTInQ_r(\text{\'etat})$$

Relation entre $\Delta_r G^\circ$ et K°

$$\Delta_r G^\circ + RTInK^\circ = 0$$

Relation entre l'affinité chimique, K° et Q_r

Ecart au comportement idéal

<u>Figure 3</u>: Effet de la concentration en électrolyte sur des constantes d'équilibre exprimées en concentrations [4]

Cf TP Capteurs: loi de Nernst pH d'un tampon

En solution aqueuse : Modèle de Debye-Hückel

Coefficient d'activité moyen pour $C_{\nu_+}A_{\nu_-}$:

$$\gamma_{C,A}$$
 (ou γ_{\pm}) = $(\gamma_C^{\nu_+} \gamma_A^{\nu_-})^{\frac{1}{\nu_+ + \nu_-}}$ (sans dimension)

Force ionique:

$$I_m = \frac{1}{2} \sum_i m_i z_i^2 \pmod{\lg^{-1}}$$

(Relations de Debye-Hückel): a paramètre d'interaction ionique en solution; a_i diamètre « effectif » de l'ion solvaté en solution (cf. C et D).

Ref: Bernard et Busnot

Expression de G en fonction des μ_i

Toute grandeur *Z*extensive est
homogène de
degré 1 des n_i

Démonstration : Théorème d'Euler

Figure 2: Représentation G = $f(\xi)$ à T et p fixées [2]

Utilisation des tables thermodynamiques

Si
$$\mathscr{R}_1 = a_2 \mathscr{R}_2 + a_3 \mathscr{R}_3 + \ldots + a_N \mathscr{R}_N$$

alors $\Delta_r G^{\circ}_T(1) = a_2 \Delta_r G^{\circ}_T(2) + a_3 \Delta_r G^{\circ}_T(3) + \ldots + a_N \Delta_r G^{\circ}_T(N)$

L'enthalpie libre standard de formation d'un constituant physico-chimique A_i à la température T, notée $\Delta_f G^{\circ}_T(A_i)$, est l'enthalpie libre standard de la réaction de formation de 1 mole de A_i à partir des corps simples pris dans leur état standard de référence (en J.mol⁻¹). $\Delta_r G^{\circ}_T = \sum_i \nu_i \Delta_f G^{\circ}_T(A_i)$

$$\Delta_r G^{\circ}_T = \Delta_r H^{\circ}_T - T \Delta_r S^{\circ}_T$$

L'entropie molaire standard d'un constituant physico-chimique A_i à la température T, notée $S^{\circ}_{T}(A_i)$ (en J.K⁻¹.mol⁻¹), est l'entropie d'une mole de ce constituant pris dans son état standard à T.

$$\Delta_r S^{\circ}_T = \sum \nu_i S^{\circ}_T (A_i)$$

Signe de *∆rS*°

3^{ème} principe S(0K, Ai pur, cristallisé) = 0

Si
$$\mathcal{R}_1 = a_2 \mathcal{R}_2 + a_3 \mathcal{R}_3 + ... + a_N \mathcal{R}_N$$

alors $\Delta_r S^{\circ}_T(1) = a_2 \Delta_r S^{\circ}_T(2) + a_3 \Delta_r S^{\circ}_T(3) + ... + a_N \Delta_r S^{\circ}_T(N)$

Un bijou en argent est-il oxydé à 25°C à l'air libre ($P_{O2} = 0.2 \ bar$)? L'équilibre susceptible de s'établir est le suivant : $4Ag_{(s)} + O_{2(g)} = 2Ag_2O_{(s)}$ Même question si le bijou est cette fois porté à 300°C à l'ait libre ($P_{O2} = 0.2 \ bar$).

Données:

	$Ag_{(s)}$	$O_{2(g)}$	$Ag_2O_{(s)}$
$\Delta_{t}H^{\circ}_{298}/kJ.mol^{-1}$	0	O	-31
$S^{\circ}_{298}/J.K^{-1}.mol^{-1}$	42,5	205	121

Influence de T

Sur tout intervalle de température $[T_1, T_2]$ sur lequel il n'y a pas de changement d'état, on a :

$$\Delta_r S^{\circ}_{T_2} = \Delta_r S^{\circ}_{T_1} + \int_{T_1}^{T_2} \left(\sum_i v_i C^{\circ}_{p,i} \right) \frac{dT}{T} \right)$$

Si [T₁; T₂] pas trop grand

En général, l'influence de T sur $\Delta_r S^{\circ}_T$ est faible. Si l'influence de T est négligeable sur $\Delta_r S^{\circ}_T$ alors elle est négligeable sur $\Delta_r H^{\circ}_T$. et réciproquement.

Une approximation couramment faite sera de négliger l'influence de T sur $\Delta_r H^{\circ}$ et $\Delta_r S^{\circ}$ (approximation d'Ellingham).

L'influence de T sur $\Delta_r G^{\circ}$ ne peut pas être négligée.

La température pour laquelle $\Delta_r G^\circ = 0$ est appelée « **température d'inversion** » de la réaction

Déterminer la valeur de la constante d'équilibre à une température quelconque

