

Team Contest Reference Team:

Roland Haase Thore Tiemann Marcel Wienöbst

System.out.println(42);

Contents

1	DP		2
	1.1	LongestIncreasingSubsequence	2
	1.2	LongestIncreasingSubsequence	2
2		Structures	3
	2.1	Fenwick-Tree	
	2.2	Range Maximum Query	
	2.3	Union-Find	3
3	Graj	ph	4
	3.1	2SAT	4
	3.2	Breadth First Search	4
	3.3	BellmanFord	
	3.4	Bipartite Graph Check	5
	3.5	Maximum Bipartite Matching	5
	3.6	Bitonic TSP	5
	3.7	Single-source shortest paths in dag	6
	3.8	Dijkstra	6
	3.9	EdmondsKarp	6
	3.10	Reference for Edge classes	6
	3.11	FloydWarshall	7
	3.12	Held Karp	7
	3.13	Iterative DFS	7
	3.14	Johnsons Algorithm	8
	3.15	Kruskal	8
	3.16	Prim	8
	3.17	Recursive Depth First Search	9
	3.18	Strongly Connected Components	9
	3.19	Suurballe	9
	3.20	Kahns Algorithm for TS	10
	3.21	Topological Sort	10
	3.22	Tuple	10
	3.23	Reference for Vertex classes	10
	3. AT . 43		11
4	Mat		11
	4.1	Binomial Coefficient	
	4.2	Binomial Matrix	
	4.3	Divisability	
	4.4	Graham Scan	
	4.5	Iterative EEA	
	4.6	Polynomial Interpolation	
	4.7	Root of permutation	
	4.8	Sieve of Eratosthenes	
	4.9	Greatest Common Devisor	
	4.10	Least Common Multiple	14

5	Miso		15
	5.1	Binary Search	15
	5.2	Next number with n bits set	15
	5.3	Next Permutation	15
6	Stri	ng	15
	6.1	Knuth-Morris-Pratt	15
	6.2	Levenshtein Distance	15
	6.3	Longest Common Subsequence	16
	6.4	Longest common substring	16
7	Mat	h Roland	16
	7.1	Divisability Explanation	16
	7.2	Combinatorics	16
	7.3	Polynomial Interpolation	17
		7.3.1 Theory	17
	7.4	Fibonacci Sequence	17
		7.4.1 Binet's formula	17
		7.4.2 Generalization	17
		7.4.3 Pisano Period	17
8	Java	n Knowhow	17
	8.1	System.out.printf() und String.format()	17
	8.2	Modulo: Avoiding negative Integers	17
	8.3	Speed up IO	

```
Runtime 100 \cdot 10^6 in 3s
            [10, 11]
                            \mathcal{O}(n!)
               < 22
                            \mathcal{O}(n2^n)
                            \mathcal{O}(n^4)
              \leq 100
              \leq 400
                            \mathcal{O}(n^3)
                            \mathcal{O}(n^2 \log n)
           \leq 2.000
                            \mathcal{O}(n^2)
         \leq 10.000
    \leq 1.000.000
                            \mathcal{O}(n \log n)
\leq 100.000.000
                            \mathcal{O}(n)
```

```
byte (8 Bit, signed): -128 ...127 short (16 Bit, signed): -32.768 ...23.767 integer (32 Bit, signed): -2.147.483.648 ...2.147.483.647 long (64 Bit, signed): -2^{63} \dots 2^{63} - 1
```

```
MD5: cat <string>| tr -d [:space:] | md5sum
```

```
int[] m = new int[N];
for (int i = N - 1; i >= 0; i--) {
  m[i] = 1; //init table
  for (int j = i + 1; j < N; j++) {
    // if arr[i] increases the length
    // of subsequence from array[j]
    if (arr[j] > arr[i])
      if (m[i] < m[j] + 1)</pre>
        // store lenght of new subseq
        m[i] = m[j] + 1;
// find max in array
int longest = 0;
for (int i = 0; i < N; i++) {</pre>
  if (m[i] > longest)
    longest = m[i];
return longest;
```

MD5: 7561f576d50b1dc6262568c0fc6c42dd $\mid \mathcal{O}(n^2)$

1 DP

1.1 LongestIncreasingSubsequence

Computes the length of the longest increasing subsequence and is easy to be adapted.

Input: array arr containing a sequence of length NOutput: length of the longest increasing subsequence in arr

```
// This has not been tested yet
// (adapted from tested C++ Murcia Code)
public static int LISeasy(int[] arr, int N) {
```

1.2 LongestIncreasingSubsequence

Computes the longest increasing subsequence using binary search. Input: array arr containing a sequence and empty array p of length arr.length for storing indices of the LIS (might be usefull to have) Output: array s containing the longest increasing subsequence

```
public static int[] LISfast(int[] arr, int[] p) {
    // p[k] stores index of the predecessor of arr[k]
    // in the LIS ending at arr[k]
    // m[j] stores index k of smallest value arr[k]
    // so there is a LIS of length j ending at arr[k]
```

```
int[] m = new int[arr.length+1];
     int l = 0;
     for(int i = 0; i < arr.length; i++) {</pre>
       // bin search for the largest positive j <= l
       // with arr[m[j]] < arr[i]</pre>
10
       int lo = 1;
11
       int hi = l;
12
       while(lo <= hi) {</pre>
13
         int mid = (int) (((lo + hi) / 2.0) + 0.6);
         if(arr[m[mid]] <= arr[i])
15
           lo = mid+1;
         else
17
           hi = mid-1;
18
19
       // lo is 1 greater than length of the
20
       // longest prefix of arr[i]
21
22
       int newL = lo;
23
       p[i] = m[newL-1];
24
       m[newL] = i;
25
       // if LIS found is longer than the ones
       // found before, then update l
26
27
       if(newL > l)
28
         l = newL;
29
    }
                                                               11
30
    // reconstruct the LIS
31
    int[] s = new int[l];
32
     int k = m[l];
     for(int i= l-1; i>= 0; i--) {
33
       s[i] = arr[k];
34
                                                               16
       k = p[k];
35
36
    return s;
37
38 }
```

MD5: $1d75905f78041d832632cb76af985b8e \mid \mathcal{O}(n \log n)$

2 DataStructures

2.1 Fenwick-Tree

Can be used for computing prefix sums.

```
1 //note that 0 can not be used
1 int[] fwktree = new int[m + n + 1];
public static int read(int index, int[] fenwickTree) {
     int sum = 0;
     while (index > 0) {
        sum += fenwickTree[index];
        index -= (index & -index);
     return sum;
10 }
public static int[] update(int index, int addValue,
      int[] fenwickTree) {
     while (index <= fenwickTree.length - 1) {</pre>
12
        fenwickTree[index] += addValue;
13
        index += (index & -index);
14
15
     return fenwickTree;
16
17 }
```

MD5: 410185d657a3a5140bde465090ff6fb5 | $\mathcal{O}(\log n)$

2.2 Range Maximum Query

process processes an array A of length N in $O(N \log N)$ such that query can compute the maximum value of A in interval [i,j]. Therefore M[a,b] stores the maximum value of interval $[a,a+2^b-1]$.

Input: dynamic table M, array to search A, length N of A, start index i and end index j

Output: filled dynamic table M or the maximum value of A in interval [i,j]

```
public static void process(int[][] M, int[] A, int N)
  for(int i = 0; i < N; i++)</pre>
    M[i][0] = i;
  // filling table M
  // M[i][j] = max(M[i][j-1], M[i+(1<<(j-1))][j-1]),
  // cause interval of length 2^j can be partitioned
  // into two intervals of length 2^(j-1)
  for(int j = 1; 1 << j <= N; j++) {
    for(int i = 0; i + (1 << j) - 1 < N; i++) {
      if(A[M[i][j-1]] >= A[M[i+(1 << (j-1))][j-1]])</pre>
        M[i][j] = M[i][j-1];
        M[i][j] = M[i + (1 << (j-1))][j-1];
  }
public static int query(int[][] M, int[] A, int N,
                                      int i, int j) {
  // k = | log_2(j-i+1) |
  int k = (int) (Math.log(j - i + 1) / Math.log(2));
  if(A[M[i][k]] >= A[M[j-(1 << k) + 1][k]])
    return M[i][k];
  else
    return M[j - (1 << k) + 1][k];</pre>
```

MD5: db0999fa40037985ff27dd1a43c53b80 $\mid \mathcal{O}(N \log N, 1)$

2.3 Union-Find

Union-Find is a data structure that keeps track of a set of elements partitioned into a number of disjoint subsets. UnionFind creates n disjoint sets each containing one element. union joins the sets x and y are contained in. find returns the representative of the set x is contained in.

Input: number of elements n, element x, element y

Output: the representative of element x or a boolean indicating whether sets got merged.

```
class UnionFind {
  private int[] p = null;
  private int[] r = null;
  private int count = 0;

public int count() {
   return count;
  } // number of sets

public UnionFind(int n) {
  count = n; // every node is its own set
```

```
r = new int[n]; // every node is its own tree with
            height 0
       p = new int[n];
       for (int i = 0; i < n; i++)</pre>
         p[i] = -1; // no parent = -1
15
16
17
     public int find(int x) {
18
       int root = x;
19
       while (p[root] >= 0) { // find root
         root = p[root];
21
22
       while (p[x] \ge 0) { // path compression
23
         int tmp = p[x];
24
         p[x] = root;
25
         x = tmp;
26
27
28
       return root;
29
30
     // return true, if sets merged and false, if already
31
          from same set
32
     public boolean union(int x, int y) {
33
       int px = find(x);
                                                               14
34
       int py = find(y);
                                                               15
35
       if (px == py)
         return false; // same set -> reject edge
36
                                                               17
       if (r[px] < r[py]) { // swap so that always h[px]
37
                                                               18
           ]>=h[py]
                                                               19
38
         int tmp = px;
                                                               20
         px = py;
39
                                                               21
         py = tmp;
40
                                                               22
41
                                                               23
       p[py] = px; // hang flatter tree as child of
42
                                                               24
           higher tree
                                                               25
       r[px] = Math.max(r[px], r[py] + 1); // update (
43
           worst-case) height
       count--;
44
       return true;
45
46
    }
47 }
```

MD5: $5c507168e1ffd9ead25babf7b3769cfd \mid \mathcal{O}(\alpha(n))$

3 Graph

3.1 2SAT

```
_{1} //We assume that ind(not a) = ind(a) + N, with N being
        the number of variables
2 //could however be changed easily
g public static boolean 2SAT(Vertex[] G) {
    //call SCC
    double DFS(G);
    //check for contradiction
    boolean poss = true;
                                                             14
    for(int i = 0; i < S+A; i++) {</pre>
                                                             15
      if(G[i].comp == G[i + (S+A)].comp) {
                                                             16
         poss = false;
10
                                                             17
      }
11
    }
12
13
    return poss;
14
  }
```

MD5: $6c06a2b59fd3a7df3c31b06c58fdaaf5 \mid \mathcal{O}(V+E)$

3.2 Breadth First Search

Iterative BFS. Uses ref Vertex class, no Edge class needed. In this version we look for a shortest path from s to t though we could also find the BFS-tree by leaving out t. *Input:* IDs of start and goal vertex and graph as AdjList *Output:* true if there is a connection between s and g, false otherwise

```
public static boolean BFS(Vertex[] G, int s, int t) {
  //make sure that Vertices vis values are false etc
  Queue<Vertex> q = new LinkedList<Vertex>();
  G[s].vis = true;
  G[s].dist = 0;
  G[s].pre = -1;
  q.add(G[s]);
  //expand frontier between undiscovered and
      discovered vertices
  while(!q.isEmpty()) {
    Vertex u = q.poll();
    //when reaching the goal, return true
    //if we want to construct a BFS-tree delete this
        line
    if(u.id = t) return true;
    //else add adj vertices if not visited
    for(Vertex v : u.adj) {
      if(!v.vis) {
        v.vis = true;
        v.dist = u.dist + 1;
        v.pre = u.id;
        q.add(v);
      }
    }
  }
  //did not find target
  return false:
}
```

MD5: 71f3fa48b4f1b2abdff3557a27a9a136 $|\mathcal{O}(|V| + |E|)$

3.3 BellmanFord

Finds shortest pathes from a single source. Negative edge weights are allowed. Can be used for finding negative cycles.

```
public static boolean bellmanFord(Vertex[] G) {
  //source is 0
 G[0].dist = 0;
  //calc distances
  //the path has max length |V|-1
  for(int i = 0; i < G.length-1; i++) {</pre>
    //each iteration relax all edges
    for(int j = 0; j < G.length; j++) {</pre>
      for(Edge e : G[j].adj) {
        if(G[j].dist != Integer.MAX_VALUE
        && e.t.dist > G[j].dist + e.w) {
          e.t.dist = G[j].dist + e.w;
        }
      }
   }
  //check for negative-length cycle
 for(int i = 0; i < G.length; i++) {</pre>
    for(Edge e : G[i].adj) {
      if(G[i].dist != Integer.MAX_VALUE
          && e.t.dist > G[i].dist + e.w) {
        return true;
```

MD5: d101e6b6915f012b3f0c02dc79e1fc6f | $\mathcal{O}(|V|\cdot|E|)$

3.4 Bipartite Graph Check

Checks a graph represented as adjList for being bipartite. Needs a^{26} little adaption, if the graph is not connected.

Input: graph as adjList, amount of nodes N as int *Output:* true if graph is bipartite, false otherwise

```
public static boolean bipartiteGraphCheck(Vertex[] G){32
    // use bfs for coloring each node
    G[0].color = 1;
    Queue<Vertex> q = new LinkedList<Vertex>();
    q.add(G[0]);
    while(!q.isEmpty()) {
      Vertex u = q.poll();
      for(Vertex v : u.adj) {
        // if node i not yet visited,
        // give opposite color of parent node u
10
                                                            41
        if(v.color == -1) {
11
                                                            42
          v.color = 1-u.color;
12
                                                            43
          q.add(v);
13
                                                            44
        // if node i has same color as parent node u
14
                                                            45
        // the graph is not bipartite
15
                                                            46
        } else if(u.color == v.color)
16
                                                            47
           return false;
17
                                                            48
         // if node i has different color
18
                                                            49
         // than parent node u keep going
19
20
21
    return true;
22
```

MD5: e93d242522e5b4085494c86f0d218dd4 $|\mathcal{O}(|V| + |E|)$

3.5 Maximum Bipartite Matching

Finds the maximum bipartite matching in an unweighted graph using DFS.

Input: An unweighted adjacency matrix boolean[M][N] with M anodes being matched to N nodes.

Output: The maximum matching. (For getting the actual matching, little changes have to be made.)

```
1 // A DFS based recursive function that returns true
2 // if a matching for vertex u is possible
boolean bpm(boolean bpGraph[][], int u,
              boolean seen[], int matchR[]) {
    // Try every job one by one
    for (int v = 0; v < N; v++) {
      // If applicant u is interested in job v and v
      // is not visited
      if (bpGraph[u][v] && !seen[v]) {
                                                          17
        seen[v] = true; // Mark v as visited
10
11
        // If job v is not assigned to an applicant OR
12
        // previously assigned applicant for job v
13
        // (which is matchR[v]) has an alternate job
14
        // available. Since v is marked as visited in
15
```

```
// the above line, matchR[v] in the following
      // recursive call will not get job v again
      if (matchR[v] < 0 ||
      bpm(bpGraph, matchR[v], seen, matchR)) {
        matchR[v] = u;
        return true;
    }
  }
  return false;
// Returns maximum number of matching from M to N
int maxBPM(boolean bpGraph[][]) {
  // An array to keep track of the applicants assigned
  // to jobs. The value of matchR[i] is the applicant
  // number assigned to job i, the value -1 indicates
  // nobody is assigned.
  int matchR[] = new int[N];
  // Initially all jobs are available
  for(int i = 0; i < N; ++i)</pre>
    matchR[i] = -1;
  // Count of jobs assigned to applicants
  int result = 0;
  for (int u = 0; u < M; u++) {</pre>
    // Mark all jobs as not seen for next applicant.
    boolean seen[] = new boolean[N];
    for(int i = 0; i < N; ++i)</pre>
      seen[i] = false;
    // Find if the applicant u can get a job
    if (bpm(bpGraph, u, seen, matchR))
      result++;
  }
  return result;
```

MD5: a4cc90bf91c41309ad7aaa0c2514ff06 | $\mathcal{O}(M \cdot N)$

3.6 Bitonic TSP

 $\it Input:$ Distance matrix $\it d$ with vertices sorted in x-axis direction. $\it Output:$ Shortest bitonic tour length

```
public static double bitonic(double[][] d) {
  int N = d.length;
  double[][] B = new double[N][N];
  for (int j = 0; j < N; j++) {</pre>
    for (int i = 0; i <= j; i++) {</pre>
      if (i < j - 1)
        B[i][j] = B[i][j - 1] + d[j - 1][j];
      else {
        double min = 0;
        for (int k = 0; k < j; k++) {
           double r = B[k][i] + d[k][j];
           if (min > r || k == 0)
             min = r;
        B[i][j] = min;
    }
  }
  return B[N-1][N-1];
}
```

MD5: 49fca508fb184da171e4c8e18b6ca4c7 $\mid \mathcal{O}(?)$

3.7 Single-source shortest paths in dag

Not tested but should be working fine Similar approach can be used for longest paths. Simply go through ts and add 1 to the largest longest path value of the incoming neighbors

```
public static void dagSSP(Vertex[] G, int s) {
    //calls topological sort method
    LinkedList<Integer> sorting = TS(G);
    G[s].dist = 0;
    //go through vertices in ts order
    for(int u : sorting) {
       for(Edge e : G[u].adj) {
        Vertex v = e.t;
                                                             11
         if(v.dist > u.dist + e.w) {
                                                             12
           v.dist = u.dist + e.w;
10
                                                             13
           v.pre = u.id;
11
12
         }
                                                             15
13
      }
                                                             16
    }
14
                                                             17
15 }
                                                             18
```

MD5: 552172db2968f746c4ac0bd322c665f9 | $\mathcal{O}(|V| + |E|)$

3.8 Dijkstra

Finds the shortest paths from one vertex to every other vertex in²⁶ the graph (SSSP).

For negative weights, add |min|+1 to each edge, later subtract from result.

To get a different shortest path when edges are ints, add an $\varepsilon = \frac{1}{k+1} \frac{31}{32}$ on each edge of the shortest path of length k, run again.

Input: A source vertex s and an adjacency list G.

Output: Modified adj. list with distances from s and predcessor²⁵ vertices set.

```
public static void dijkstra(Vertex[] G, int s) {
    G[s].dist = 0;
    Tuple st = new Tuple(s, 0);
    PriorityQueue<Tuple> q = new PriorityQueue<Tuple>();
    q.add(st);
    while(!q.isEmpty()) {
      Tuple sm = q.poll();
      Vertex u = G[sm.id];
      //this checks if the Tuple is still useful, both
10
           checks should be equivalent
      if(u.vis || sm.dist > u.dist) continue;
11
      u.vis = true;
12
      for(Edge e : u.adj) {
13
        Vertex v = e.t;
14
        if(!v.vis && v.dist > u.dist + e.w) {
15
          v.pre = u.id;
16
          v.dist = u.dist + e.w;
17
          Tuple nt = new Tuple(v.id, v.dist);
18
          q.add(nt);
19
20
21
22
23 }
```

MD5: e46eb1b919179dab6a42800376f04d7a $\mid \mathcal{O}(|E|\log|V|)$

3.9 EdmondsKarp

19

22

Finds the greatest flow in a graph. Capacities must be positive.

```
public static boolean BFS(Vertex[] G, int s, int t) {
  int N = G.length;
  for(int i = 0; i < N; i++) {</pre>
    G[i].vis = false;
  Queue<Vertex> q = new LinkedList<Vertex>();
  G[s].vis = true;
  G[s].pre = -1;
  q.add(G[s]);
  while(!q.isEmpty()) {
    Vertex u = q.poll();
    if(u.id == t) return true;
    for(int i : u.adj.keySet()) {
      Edge e = u.adj.get(i);
      Vertex v = e.t;
      if(!v.vis && e.rw > 0) {
        v.vis = true;
        v.pre = u.id;
        q.add(v);
    }
  }
  return (G[t].vis);
//We store the edges in the graph in a hashmap
public static int edKarp(Vertex[] G, int s, int t) {
  int maxflow = 0;
  while(BFS(G, s, t)) {
    int pflow = Integer.MAX_VALUE;
    for(int v = t; v!= s; v = G[v].pre) {
      int u = G[v].pre;
      pflow = Math.min(pflow, G[u].adj.get(v).rw);
    for(int v = t; v != s; v = G[v].pre) {
      int u = G[v].pre;
      G[u].adj.get(v).rw -= pflow;
      G[v].adj.get(u).rw += pflow;
    maxflow += pflow;
  return maxflow;
}
```

MD5: 6067fa877ff237d82294e7511c79d4bc | $\mathcal{O}(|V|^2 \cdot |E|)$

3.10 Reference for Edge classes

Used for example in Dijkstra algorithm, implements edges with weight. Needs testing.

```
int rw;
12
     Vertex t;
13
14
     int w;
15
     public Edge(Vertex t, int w) {
16
17
       this.t = t;
       this.w = w;
       this.rw = w;
21
     public Edge(int s, int t, int w) {...}
22
23
     public int compareTo(Edge other) {
24
       return Integer.compare(this.w, other.w);
25
26
27 }
```

MD5: aae80ac4bfbfcc0b9ac4c65085f6f123 | $\mathcal{O}(1)$

3.11 FloydWarshall

Finds all shortest paths. Paths in array next, distances in ans.

```
public static void floydWarshall(int[][] graph,
                                                               41
                         int[][] next, int[][] ans) {
                                                               42
    for(int i = 0; i < ans.length; i++)</pre>
       for(int j = 0; j < ans.length; j++)</pre>
                                                               44
         ans[i][j] = graph[i][j];
                                                               45
    for (int k = 0; k < ans.length; k++)</pre>
                                                               46
       for (int i = 0; i < ans.length; i++)</pre>
                                                               47
                                                               48
         for (int j = 0; j < ans.length; j++)</pre>
           if (ans[i][k] + ans[k][j] < ans[i][j]
10
                     && ans[i][k] < Integer.MAX_VALUE
                     && ans[k][j] < Integer.MAX_VALUE) {
12
             ans[i][j] = ans[i][k] + ans[k][j];
13
             next[i][j] = next[i][k];
                                                               51
14
                                                               52
15
                                                               53
16 }
```

MD5: a98bbda7e53be8ee0df72dbd8721b306 | $\mathcal{O}(|V|^3)$

3.12 Held Karp

Algorithm for TSP

```
public static int[] tsp(int[][] graph) {
    int n = graph.length;
     if(n == 1) return new int[]{0};
     //C stores the shortest distance to node of the
         second dimension, first dimension is the
         bitstring of included nodes on the way
     int[][] C = new int[1<<n][n];</pre>
     int[][] p = new int[1<<n][n];</pre>
     //initialize
     for(int k = 1; k < n; k++) {</pre>
       C[1<< k][k] = graph[0][k];
10
     for(int s = 2; s < n; s++) {</pre>
11
       for(int S = 1; S < (1<<n); S++) {</pre>
12
         if(Integer.bitCount(S)!=s || (S&1) == 1)
13
             continue;
         for(int k = 1; k < n; k++) {
14
           if((S & (1 << k)) == 0) continue;</pre>
15
```

```
//Smk is the set of nodes without k
      int Smk = S ^ (1 << k);
      int min = Integer.MAX_VALUE;
      int minprev = 0;
      for(int m=1; m<n; m++) {</pre>
        if((Smk & (1<<m)) == 0) continue;</pre>
        //distance to m with the nodes in Smk +
             connection from m to k
        int tmp = C[Smk][m] +graph[m][k];
        if(tmp < min) {</pre>
          min = tmp;
          minprev = m;
        }
      }
      C[S][k] = min;
      p[S][k] = minprev;
  }
}
//find shortest tour length
int min = Integer.MAX_VALUE;
int minprev = -1;
for(int k = 1; k < n; k++) {</pre>
  //Set of all nodes except for the first + cost
      from 0 to k
  int tmp = C[(1 << n) - 2][k] + graph[0][k];
  if(tmp < min) {</pre>
    min = tmp;
    minprev = k;
}
//Note that the tour has not been tested yet, only
    the correctness of the min-tour-value backtrack
    tour
int[] tour = new int[n+1];
tour[n] = 0;
tour[n-1] = minprev;
int bits = (1 << n) - 2;
for(int k = n-2; k>0; k--) {
  tour[k] = p[bits][tour[k+1]];
  bits = bits ^ (1<<tour[k+1]);
tour[0] = 0;
return tour;
```

MD5: f3e9730287dcbf2695bf7372fc4bafe0 | $\mathcal{O}(2^n n^2)$

3.13 Iterative DFS

37

55

56 57

58

Simple iterative DFS, the recursive variant is a bit fancier. Not tested.

MD5: 80f28ea9b2a04af19b48277e3c6bce9e | $\mathcal{O}(|V| + |E|)$

3.14 Johnsons Algorithm

```
13
                                                              14
public static int[][] johnson(Vertex[] G) {
                                                              15
     Vertex[] Gd = new Vertex[G.length+1];
                                                              16
     int s = G.length;
     for(int i = 0; i < G.length; i++)</pre>
      Gd[i] = G[i];
     //init new vertex with zero-weight-edges to each
     Vertex S = new Vertex(G.length);
     for(int i = 0; i < G.length; i++)</pre>
       S.adj.add(new Edge(Gd[i], 0));
10
     Gd[G.length] = S;
     //bellman-ford to check for neg-weight-cycles and to
12
          adapt edges to enable running dijkstra
     if(bellmanFord(Gd, s)) {
       System.out.println("False");
15
       //this should not happen and will cause troubles
       return null;
17
     //change weights
18
     for(int i = 0; i < G.length; i++)</pre>
19
       for(Edge e : Gd[i].adj)
20
         e.w = e.w + Gd[i].dist - e.t.dist;
21
     //store distances to invert this step later
22
     int[] h = new int[G.length];
23
     for(int i = 0; i < G.length; i++)</pre>
24
                                                              15
      h[i] = G[i].dist;
25
                                                              16
26
                                                              17
     //create shortest path matrix
27
     int[][] apsp = new int[G.length][G.length];
28
29
     //now use original graph G
30
     //start a dijkstra for each vertex
31
     for(int i = 0; i < G.length; i++) {</pre>
32
       //reset weights
33
                                                              23
       for(int j = 0; j < G.length; j++) {</pre>
34
                                                              24
        G[j].vis = false;
35
                                                              25
        G[j].dist = Integer.MAX_VALUE;
36
37
                                                              27
       dijkstra(G, i);
38
       for(int j = 0; j < G.length; j++)</pre>
39
                                                              29
         apsp[i][j] = G[j].dist + h[j] - h[i];
40
     }
41
                                                              31
     return apsp:
42
43 }
```

MD5: 0a5c741be64b65c5211fe6056ffc1e02 | $\mathcal{O}(|V|^2 \log V + VE)$

3.15 Kruskal

Computes a minimum spanning tree for a weighted undirected graph.

```
public static int kruskal(Edge[] edges, int n) {
 Arrays.sort(edges);
  //n is the number of vertices
 UnionFind uf = new UnionFind(n);
  //we will only compute the sum of the MST, one could
       of course also store the edges
  int sum = 0;
  int cnt = 0;
  for(int i = 0; i < edges.length; i++) {</pre>
    if(cnt == n-1) break;
    if(uf.union(edges[i].s, edges[i].t)) {
      sum += edges[i].w;
      cnt++;
    }
 }
 return sum;
```

MD5: 91a1657706750a76d384d3130d98e5fb | $\mathcal{O}(|E| + \log |V|)$

3.16 Prim

12

```
//s is the startpoint of the algorithm, in general not
    too important; we assume that graph is connected
public static int prim(Vertex[] G, int s) {
  //make sure dists are maxint
 G[s].dist = 0:
 Tuple st = new Tuple(s, 0);
 PriorityQueue<Tuple> q = new PriorityQueue<Tuple>();
  //we will store the sum and each nodes predecessor
 int sum = 0;
 while(!q.isEmpty()) {
   Tuple sm = q.poll();
   Vertex u = G[sm.id];
    //u has been visited already
    if(u.vis) continue;
    //this is not the latest version of u
    if(sm.dist > u.dist) continue;
    u.vis = true;
    //u is part of the new tree and u.dist the cost of
         adding it
    sum += u.dist;
    for(Edge e : u.adj) {
     Vertex v = e.t;
     if(!v.vis && v.dist > e.w) {
        v.pre = u.id;
        v.dist = e.w;
       Tuple nt = new Tuple(v.id, e.w);
        q.add(nt);
      }
   }
 }
 return sum;
```

3.17 Recursive Depth First Search

Recursive DFS with different options (storing times, connect-1.5 ed/unconnected graph). Needs testing.

Input: A source vertex s, a target vertex t, and adjlist G and the time (0 at the start)

Output: Indicates if there is connection between s and t.

```
1 //if we want to visit the whole graph, even if it is
      not connected we might use this
public static void DFS(Vertex[] G) {
    //make sure all vertices vis value is false etc
    int time = 0;
                                                            25
    for(int i = 0; i < G.length; i++) {</pre>
      if(!G[i].vis) {
        //note that we leave out t so this does not work _{28}
              with the below function
        //adaption will not be too difficult though
         //time should not always start at zero, change
                                                            32
        recDFS(i, G, 0);
10
                                                            33
11
      }
                                                            34
    }
12
                                                            35
13 }
15 //first call with time = 0
  public static boolean recDFS(int s, int t, Vertex[] G,
    //it might be necessary to store the time of
17
        discovery
    time = time + 1;
    G[s].dtime = time;
    G[s].vis = true; //new vertex has been discovered
22
    //when reaching the target return true
23
    //not necessary when calculating the DFS-tree
24
    if(s == t) return true;
    for(Vertex v : G[s].adj) {
25
      //exploring a new edge
26
      if(!v.vis) {
27
        v.pre = u.id;
28
        if(recDFS(v.id, t, G)) return true;
29
      }
30
    }
31
    //storing finishing time
32
    time = time + 1;
33
    G[s].ftime = time;
34
    return false;
35
36 }
```

MD5: 3cef44fd916e1aecfb0e3eacc355e2e3 $\mid \mathcal{O}(|V| + |E|)$

3.18 Strongly Connected Components

```
public static void fDFS(Vertex u, LinkedList<Integer> 18
      sorting) {
    //compare with TS
    u.vis = true;
                                                           21
    for(Vertex v : u.out)
                                                           22
      if(!v.vis)
                                                           23
        fDFS(v, sorting);
                                                           24
    sorting.addFirst(u.id);
                                                           25
    return sorting;
                                                           26
9 }
                                                           27
public static void sDFS(Vertex u, int cnt) {
```

```
//basic DFS, all visited vertices get cnt
  u.vis = true:
  u.comp = cnt;
  for(Vertex v : u.in)
    if(!v.vis)
      sDFS(v, cnt);
public static void doubleDFS(Vertex[] G) {
  //first calc a topological sort by first DFS
  LinkedList<Integer> sorting = new LinkedList<Integer
      >();
  for(int i = 0; i < G.length; i++)</pre>
    if(!G[i].vis)
      fDFS(G[i], sorting);
  for(int i = 0; i < G.length; i++)</pre>
    G[i].vis = false;
  //then go through the sort and do another DFS on G^T
  //each tree is a component and gets a unique number
  int cnt = 0;
  for(int i : sorting)
    if(!G[i].vis)
      sDFS(G[i], cnt++);
}
```

MD5: 1e023258a9249a1bc0d6898b670139ea | $\mathcal{O}(|V| + |E|)$

3.19 Suurballe

Finds the min cost of two edge disjoint paths in a graph. If vertex disjoint needed, split vertices.

Input: Graph G, Source s, Target t

Output: Min cost as int

15

16

```
public static int suurballe(Vertex[] G, int s, int t){
  //this uses the usual dijkstra implementation with
      stored predecessors
  dijkstra(G, s);
  //Modifying weights
  for(int i = 0; i < G.length; i++)</pre>
    for(Edge e : G[i].adj)
      e.dist = e.dist - e.t.dist + G[i].dist;
  //reversing path and storing used edges
  int old = t;
  int pre = G[t].pre;
 HashMap<Integer, Integer> hm = new HashMap<Integer,</pre>
      Integer>();
 while(pre != -1) {
    for(int i = 0; i < G[pre].adj.size(); i++) {</pre>
      if(G[pre].adj.get(i).t.id == old) {
        hm.put(pre * G.length + old, G[pre].adj.get(i)
            .tdist);
        G[pre].adj.remove(i);
        break;
      }
    }
    boolean found = false;
    for(int i = 0; i < G[old].adj.size(); i++) {</pre>
      if(G[old].adj.get(i).t.id == pre) {
        G[old].adj.get(i).dist = 0;
        found = true;
        break;
      }
    }
    if(!found)
      G[old].adj.add(new Edge(G[pre], 0));
```

```
old = pre;
31
       pre = G[pre].pre;
32
33
     //reset graph
     for(int i = 0; i < G.length; i++) {</pre>
34
       G[i].pre = -1;
35
       G[i].dist = Integer.MAX_VALUE;
36
       G[i].vis = false;
37
38
39
     dijkstra(G, s);
     //store edges of second path
     old = t;
42
     pre = G[t].pre;
43
     while(pre != -1) {
44
       //store edges and remove if reverse
45
       for(int i = 0; i < G[pre].adj.size(); i++) {</pre>
         if(G[pre].adj.get(i).t.id == old) {
47
           if(!hm.containsKey(pre + old * G.length))
48
              hm.put(pre * G.length + old, G[pre].adj.get(
49
                  i).tdist);
           else
50
51
             hm.remove(pre + old * G.length);
52
           break;
53
         }
54
       }
       old = pre;
55
                                                               13
56
       pre = G[pre].pre;
57
                                                                15
58
     //sum up weights
     int sum = 0;
59
     for(int i : hm.keySet())
60
       sum += hm.get(i);
61
                                                                17
     return sum;
62
                                                                18
63 }
```

MD5: 222dac2a859273efbbdd0ec0d6285dd7 $\mid \mathcal{O}(VlogV + E) \mid$

3.20 Kahns Algorithm for TS

Gives the specific TS where Vertices first in G are first in the sorting

```
public static LinkedList<Integer> TS(Vertex[] G) {
    LinkedList<Integer> sorting = new LinkedList<Integer
         >();
    PriorityQueue<Vertex> p = new PriorityQueue<Vertex
        >();
    //inc counts the number of incoming edges, if they
        are zero put the vertex in the queue
    for(int i = 0; i < G.length; i++) {</pre>
      if(G[i].inc == 0) {
        p.add(G[i]);
        G[i].vis = true;
      }
    }
10
                                                            12
    while(!p.isEmpty()) {
11
                                                            13
      Vertex u = p.poll();
12
      sorting.add(u.id);
13
      //update inc
14
      for(Vertex v : u.out) {
15
        if(v.vis) continue;
16
        v.inc--;
17
        if(v.inc == 0) {
18
          p.add(v);
19
           v.vis = true;
20
```

```
}

return sorting;

}
```

MD5: e53d13c7467873d1c5d210681f4450d8 | $\mathcal{O}(V+E)$

3.21 Topological Sort

```
public static LinkedList<Integer> TS(Vertex[] G) {
  LinkedList<Integer> sorting = new LinkedList<Integer
      >();
  for(int i = 0; i < G.length; i++)</pre>
    if(!G[i].vis)
      recTS(G[i], sorting);
    //check sorting for a -1 if the graph is not
        necessarily dag
    //maybe checking if there are too many values in
        sorting is easier?!
    return sorting;
}
public static LinkedList<Integer> recTS(Vertex u,
    LinkedList<Integer> sorting) {
  u.vis = true;
  for(Vertex v : u.adj)
    if(v.vis)
      //the -1 indicates that it will not be possible
          to find an TS
      //there might be a much faster and elegant way (
      sorting.addFirst(-1);
    else
      recTS(v, sorting);
  sorting.addFirst(u.id);
  return sorting;
```

MD5: f6459575bf0d53344ddd9e5daf1dfbb8 | $\mathcal{O}(|V| + |E|)$

3.22 Tuple

Simple tuple class used for priority queue in Dijkstra and Prim

```
class Tuple implements Comparable<Tuple> {
  int id;
  int dist;

public Tuple(int id, int dist) {
    this.id = id;
    this.dist = dist;
}

public int compareTo(Tuple other) {
    return Integer.compare(this.dist, other.dist);
}
}
```

MD5: fb1aa32dc32b9a2bac6f44a84e7f82c7 | $\mathcal{O}(1)$

3.23 Reference for Vertex classes

Used in many graph algorithms, implements a vertex with its edges. Needs testing.

```
class Vertex {
    int id;
    boolean vis = false;
    int pre = -1;
    //for dijkstra and prim
    int dist = Integer.MAX_VALUE;
    //for SCC store number indicating the dedicated
10
         component
    int comp = -1;
11
12
    //for DFS we could store the start and finishing
13
         times
    int dtime = -1;
14
    int ftime = -1;
15
16
    //use an ArrayList of Edges if those information are
17
          needed
    ArrayList<Edge> adj = new ArrayList<Edge>();
18
    //use an ArrayList of Vertices else
19
    ArrayList<Vertex> adj = new ArrayList<Vertex>();
    //use two ArrayLists for SCC
21
    ArrayList<Vertex> in = new ArrayList<Vertex>();
22
    ArrayList<Vertex> out = new ArrayList<Vertex>();
23
24
    //for EdmondsKarp we need a HashMap to store Edges,
25
         Integer is target
    HashMap<Integer, Edge> adj = new HashMap<Integer,</pre>
26
         Edge>();
27
    //for bipartite graph check
28
                                                             11
29
    int color = -1;
                                                             12
30
                                                             13
    //we store as key the target
31
                                                             14
    public Vertex(int id) {
32
                                                             15
      this.id = id;
33
                                                             16
34
                                                             17
35 }
```

MD5: 90e8120ce9f665b07d4388e30395dd36 | $\mathcal{O}(1)$

4 Math

4.1 Binomial Coefficient

Gives binomial coefficient (n choose k)

```
public static long bin(int n, int k) {
   if (k == 0)
     return 1;
   else if (k > n/2)
     return bin(n, n-k);
   else
     return n*bin(n-1, k-1)/k;
   }
```

MD5: 32414ba5a444038b9184103d28fa1756 | $\mathcal{O}(k)$

4.2 Binomial Matrix

Gives binomial coefficients for all $K \le N$.

```
public static long[][] binomial_matrix(int N, int K) {
  long[][] B = new long[N+1][K+1];
  for (int k = 1; k <= K; k++)
    B[0][k] = 0;
  for (int m = 0; m <= N; m++)
    B[m][0] = 1;
  for (int m = 1; m <= N; m++)
    for (int k = 1; k <= K; k++)
        B[m][k] = B[m-1][k-1] + B[m-1][k];
  return B;
}</pre>
```

MD5: e6f103bd9852173c02a1ec64264f4448 | $\mathcal{O}(N \cdot K)$

4.3 Divisability

Calculates (alternating) k-digitSum for integer number given by M.

```
public static long digit_sum(String M, int k, boolean
    alt) {
  long dig_sum = 0;
  int vz = 1;
  while (M.length() > k) {
    if (alt) vz *= −1;
    dig_sum += vz*Integer.parseInt(M.substring(M.
        length()-k));
    M = M.substring(0, M.length()-k);
  }
  if (alt)
    vz *= −1;
  dig_sum += vz*Integer.parseInt(M);
  return dig_sum;
}
// example: divisibility of M by 13
public static boolean divisible13(String M) {
  return digit_sum(M, 3, true)%13 == 0;
}
```

MD5: 33b3094ebf431e1e71cd8e8db3c9cdd6 | $\mathcal{O}(|M|)$

4.4 Graham Scan

Multiple unresolved issues: multiple points as well as collinearity. N denotes the number of points

```
public static Point[] grahamScan(Point[] points) {
  //find leftmost point with lowest y-coordinate
  int xmin = Integer.MAX_VALUE;
  int ymin = Integer.MAX_VALUE;
  int index = -1;
  for(int i = 0; i < points.length; i++) {</pre>
    if(points[i].y < ymin || (points[i].y == ymin &&</pre>
        points[i].x < xmin)) {</pre>
      xmin = points[i].x;
      ymin = points[i].y;
      index = i;
   }
 }
  //get that point to the start of the array
 Point tmp = new Point(points[index].x, points[index
      1.y);
  points[index] = points[0];
 points[0] = tmp;
```

```
for(int i = 1; i < points.length; i++)</pre>
       points[i].src = points[0];
18
    Arrays.sort(points, 1, points.length);
19
    //for collinear points eliminate all but the
    boolean[] isElem = new boolean[points.length];
21
    for(int i = 1; i < points.length-1; i++) {</pre>
22
       Point a = new Point(points[i].x - points[i].src.x, 77
            points[i].y - points[i].src.y);
       Point b = new Point(points[i+1].x - points[i+1].
           src.x, points[i+1].y - points[i+1].src.y);
      if(Calc.crossProd(a, b) == 0)
         isElem[i] = true;
26
    }
27
    //works only if there are more than three non-
         collinear points
29
    Stack<Point> s = new Stack<Point>();
    int i = 0;
30
                                                            87
    for(; i < 3; i++) {
31
                                                            88
      while(isElem[i++]);
32
33
      s.push(points[i]);
34
35
    for(; i < points.length; i++) {</pre>
                                                            92
36
      if(isElem[i]) continue;
                                                            93
37
      while(true) {
                                                            94
         Point first = s.pop();
38
                                                            95
         Point second = s.pop();
39
         s.push(second);
40
         Point a = new Point(first.x - second.x, first.y
41
             - second.y);
         Point b = new Point(points[i].x - second.x,
42
             points[i].y - second.y);
         //use >= if straight angles are needed
43
         if(Calc.crossProd(a, b) > 0) {
44
           s.push(first);
45
           s.push(points[i]);
46
           break;
47
48
49
    }
50
    Point[] convexHull = new Point[s.size()];
51
    for(int j = s.size()-1; j >= 0; j--)
52
      convexHull[j] = s.pop();
53
    return convexHull;
54
    /*Sometimes it might be necessary to also add points
55
          to the convex hull that form a straight angle.
         The following lines of code achieve this. Only
         at the first and last diagonal we have to add
         those. Of course the previous return-statement
         has to be deleted as well as allowing straight
         angles in the above implementation. */
56
  class Point implements Comparable<Point> {
57
    Point src; //set seperately in GrahamScan method
58
    int x;
59
    int y;
60
    public Point(int x, int y) {
62
      this.x = x;
63
      this.y = y;
64
65
    //might crash if one point equals src
67
    //major issues with multiple points on same location
    public int compareTo(Point cmp) {
    Point a = new Point(this.x - src.x, this.y - src.y);
    Point b = new Point(cmp.x - src.x, cmp.y - src.y);
```

```
//checks if points are identical
  if(a.x == b.x && a.y == b.y) return 0;
  //if same angle, sort by dist
  if(Calc.crossProd(a, b) == 0 && Calc.dotProd(a, b) >
    return Integer.compare(Calc.dotProd(a, a), Calc.
        dotProd(b, b));
  //angle of a is 0, thus b>a
  if(a.y == 0 \&\& a.x > 0) return -1;
  //angle of b is 0, thus a>b
  if(b.y == 0 \&\& b.x > 0) return 1;
  //a ist between 0 and 180, b between 180 and 360
  if(a.y > 0 && b.y < 0) return -1;
  if(a.y < 0 && b.y > 0) return 1;
  //return negative value if cp larger than zero
  return Integer.compare(0, Calc.crossProd(a, b));
  }
}
class Calc {
  public static int crossProd(Point p1, Point p2) {
    return p1.x * p2.y - p2.x * p1.y;
  public static int dotProd(Point p1, Point p2) {
    return p1.x * p2.x + p1.y * p2.y;
```

MD5: 2555d858fadcfe8cb404a9c52420545d $| \mathcal{O}(N \log N) |$

4.5 Iterative EEA

Berechnet den ggT zweier Zahlen a und b und deren modulare Inverse $x=a^{-1} \mod b$ und $y=b^{-1} \mod a$.

```
// Extended Euclidean Algorithm - iterativ
public static long[] eea(long a, long b) {
  if (b > a) {
    long tmp = a;
    a = b;
    b = tmp;
  long x = 0, y = 1, u = 1, v = 0;
 while (a != 0) {
    long q = b / a, r = b % a;
    long m = x - u * q, n = y - v * q;
    b = a; a = r; x = u; y = v; u = m; v = n;
 long gcd = b;
  // x = a^-1 % b, y = b^-1 % a
  // ax + by = gcd
 long[] erg = { gcd, x, y };
  return erg;
```

MD5: 81fe8cd4adab21329dcbe1ce0499ee75 $\mid \mathcal{O}(\log a + \log b)$

4.6 Polynomial Interpolation

```
public class interpol {

   // divided differences for points given by vectors x
        and y

public static rat[] divDiff(rat[] x, rat[] y) {
   rat[] temp = y.clone();
}
```

```
int n = x.length;
       rat[] res = new rat[n];
       res[0] = temp[0];
       for (int i=1; i < n; i++) {</pre>
         for (int j = 0; j < n-i; j++) {</pre>
           temp[j] = (temp[j+1].sub(temp[j])).div(x[j+i].77
11
                sub(x[j]));
         }
         res[i] = temp[0];
13
       }
       return res;
17
     // evaluates interpolating polynomial p at t for
     // x-coordinates and divided differences
19
20
     public static rat p(rat t, rat[] x, rat[] dD) {
21
       int n = x.length;
22
       rat p = new rat(0);
       for (int i = n-1; i > 0; i--) {
23
         p = (p.add(dD[i])).mult(t.sub(x[i-1]));
24
25
26
       p = p.add(dD[0]);
27
       return p;
28
    }
29 }
30
31 // implementation of rational numbers
32 class rat {
33
                                                               100
     public long c;
34
                                                               101
     public long d;
35
                                                               102
36
                                                               103
     public rat (long c, long d) {
37
                                                               104
       this.c = c;
38
                                                               105
       this.d = d;
39
       this.shorten();
40
41
42
     public rat (long c) {
43
       this.c = c;
44
       this.d = 1;
45
46
47
     public static long ggT(long a, long b) {
48
       while (b != 0) {
49
         long h = a\%b;
50
         a = b;
51
52
         b = h;
53
54
       return a;
55
56
     public static long kgV(long a, long b) {
57
58
       return a*b/ggT(a,b);
59
     public static rat[] commonDenominator(rat[] c) {
61
       long kgV = 1;
62
       for (int i = 0; i < c.length; i++) {</pre>
63
         kgV = kgV(kgV, c[i].d);
64
65
       for (int i = 0; i < c.length; i++) {</pre>
66
67
         c[i].c *= kgV/c[i].d;
         c[i].d *= kgV/c[i].d;
69
       return c;
70
71
```

```
public void shorten() {
    long ggT = ggT(this.c, this.d);
    this.c = this.c / ggT;
    this.d = this.d / ggT;
    if (d < 0) {
      this.d *= -1;
      this.c *= -1;
  }
  public String toString() {
    if (this.d == 1) return ""+c;
    return ""+c+"/"+d;
  }
  public rat mult(rat b) {
    return new rat(this.c*b.c, this.d*b.d);
  public rat div(rat b) {
    return new rat(this.c*b.d, this.d*b.c);
  public rat add(rat b) {
    long new_d = kgV(this.d, b.d);
    long new_c = this.c*(new_d/this.d) + b.c*(new_d/b.
        d);
    return new rat(new_c, new_d);
  }
  public rat sub(rat b) {
    return this.add(new rat(-b.c, b.d));
}
```

MD5: e7b408030f7e051e93a8c55056ba930b | $\mathcal{O}(?)$

Root of permutation

92

93

94

95

96

97

98

99

15

16

17

18

19

20

21

22

Calculates the K'th root of permutation of size N. Number at place i indicates where this dancer ended. needs commenting

```
public static int[] rop(int[] perm, int N, int K) {
  boolean[] incyc = new boolean[N];
  int[] cntcyc = new int[N+1];
  int[] g = new int[N+1];
  int[] needed = new int[N+1];
  for(int i = 1; i < N+1; i++) {</pre>
    int j = i;
    int k = K;
    int div;
    while(k > 1 \&\& (div = gcd(k, i)) > 1) {
      k /= div:
      j *= div;
    needed[i] = j;
    g[i] = gcd(K, j);
  HashMap<Integer, ArrayList<Integer>> hm = new
      HashMap<Integer, ArrayList<Integer>>();
  for(int i = 0; i < N; i++) {</pre>
    if(incyc[i]) continue;
    ArrayList<Integer> cyc = new ArrayList<Integer>();
    cyc.add(i);
    incyc[i] = true;
```

```
int newelem = perm[i];
       while(newelem != i) {
25
         cyc.add(newelem);
26
         incyc[newelem] = true;
27
         newelem = perm[newelem];
28
29
       int len = cyc.size();
30
       cntcyc[len]++;
31
       if(hm.containsKey(len)) {
32
         hm.get(len).addAll(cyc);
33
       } else {
34
         hm.put(len, cyc);
35
36
     }
37
     boolean end = false;
38
     for(int i = 1; i < N+1; i++) {</pre>
39
40
       if(cntcyc[i] % g[i] != 0) end = true;
41
42
     if(end) {
43
       //not possible
       return null;
44
45
     } else {
46
       int[] out = new int[N];
47
       for(int length = 0; length < N; length++) {</pre>
48
         if(!hm.containsKey(length)) continue;
49
         ArrayList<Integer> p = hm.get(length);
         int totalsize = p.size();
50
         int diffcyc = totalsize / needed[length];
51
         for(int i = 0; i < diffcyc; i++) {</pre>
52
           int[] c = new int[needed[length]];
53
           for(int it = 0; it < needed[length]; it++) {</pre>
54
             c[it] = p.get(it + i * needed[length]);
55
56
           int move = K / (needed[length]/length);
57
           int[] rewind = new int[needed[length]];
58
           for(int set = 0; set < needed[length]/length;</pre>
59
                set++) {
              int pos = set * length;
60
                                                               11
              for(int it = 0; it < length; it++) {</pre>
61
                                                               12
                rewind[pos] = c[it + set * length];
62
                                                               13
                pos = ((pos - set * length + move) %
63
                                                               14
                    length)+ set * length;
                                                               15
             }
64
65
           int[] merge = new int[needed[length]];
66
           for(int it = 0; it < needed[length]/length; it</pre>
67
              for(int set = 0; set < length; set++) {</pre>
68
                merge[set * needed[length] / length + it]
69
                    = rewind[it * length + set];
             }
70
71
           for(int it = 0; it < needed[length]; it++) {</pre>
72
              out[merge[it]] = merge[(it+1) % needed[
73
                  length]];
74
       return out;
77
78
```

MD5: b446a7c21eddf7d14dbdc71174e8d498 | $\mathcal{O}(?)$

4.8 Sieve of Eratosthenes

Calculates Sieve of Eratosthenes.

Input: A integer N indicating the size of the sieve.

Output: A boolean array, which is true at an index i iff i is prime.

```
public static boolean[] sieveOfEratosthenes(int N) {
  boolean[] isPrime = new boolean[N+1];
  for (int i=2; i<=N; i++) isPrime[i] = true;
  for (int i = 2; i*i <= N; i++)
    if (isPrime[i])
      for (int j = i*i; j <= N; j+=i)
            isPrime[j] = false;
  return isPrime;
}</pre>
```

MD5: 95704ae7c1fe03e91adeb8d695b2f5bb | $\mathcal{O}(n)$

4.9 Greatest Common Devisor

Calculates the gcd of two numbers a and b or of an array of numbers input.

Input: Numbers a and b or array of numbers input

Output: Greatest common devisor of the input

```
private static long gcd(long a, long b) {
    while (b > 0) {
        long temp = b;
        b = a % b; // % is remainder
        a = temp;
    }
    return a;
}

private static long gcd(long[] input) {
    long result = input[0];
    for(int i = 1; i < input.length; i++)
    result = gcd(result, input[i]);
    return result;
}</pre>
```

MD5: 48058e358a971c3ed33621e3118818c2 $\mid \mathcal{O}(\log a + \log b)$

4.10 Least Common Multiple

Calculates the lcm of two numbers a and b or of an array of numbers input.

 ${\it Input:}\ {\it Numbers}\ a\ {\it and}\ b\ {\it or}\ {\it array}\ {\it of}\ {\it numbers}\ input$

Output: Least common multiple of the input

```
private static long lcm(long a, long b) {
    return a * (b / gcd(a, b));
}

private static long lcm(long[] input) {
    long result = input[0];
    for(int i = 1; i < input.length; i++)
    result = lcm(result, input[i]);
    return result;
}</pre>
```

5 Misc

5.1 Binary Search

Binary searchs for an element in a sorted array.

Input: sorted array to search in, amount N of elements in array, array, array, array

Output: returns the index of a in array or -1 if array does not contain a

```
public static int BinarySearch(int[] array,
                                                               12
                                          int N, int a) {
    int lo = 0;
                                                               14
    int hi = N-1;
                                                               15
    // a might be in interval [lo,hi] while lo <= hi</pre>
                                                               16
    while(lo <= hi) {</pre>
                                                               17
       int mid = (lo + hi) / 2;
                                                               18
       // if a > elem in mid of interval,
       // search the right subinterval
       if(array[mid] < a)</pre>
10
                                                               21
         lo = mid+1;
11
       // else if a < elem in mid of interval,
12
       // search the left subinterval
13
       else if(array[mid] > a)
14
         hi = mid-1;
15
       // else a is found
16
       else
17
         return mid;
18
    }
19
    // array does not contain a
20
    return -1;
21
22 }
```

MD5: 203da61f7a381564ce3515f674fa82a4 $| \mathcal{O}(\log n) |$

5.2 Next number with n bits set

From x the smallest number greater than x with the same amount $\frac{1}{4}$ of bits set is computed. Little changes have to be made, if the calculated number has to have length less than 32 bits.

Input: number x with n bits set (x = (1 << n) - 1)

Output: the smallest number greater than x with n bits set

```
public static int nextNumber(int x) {
    //break when larger than limit here
    if(x == 0) return 0;
    int smallest = x & -x;
    int ripple = x + smallest;
    int new_smallest = ripple & -ripple;
    int ones = ((new_smallest/smallest) >> 1) - 1;
    return ripple | ones;
    }
}
```

MD5: 2d8a79cb551648e67fc3f2f611a4f63c $\mid \mathcal{O}(1)$

5.3 Next Permutation

Returns true if there is another permutation. Can also be used to compute the nextPermutation of an array.

Input: String a as char array

 $\it Output: true, if there is a next permutation of \it a, false otherwise$

```
public static boolean nextPermutation(char[] a) {
  int i = a.length - 1;
  while(i > 0 && a[i-1] >= a[i])
    i--:
  if(i <= 0)
    return false;
  int j = a.length - 1;
  while (a[j] <= a[i-1])
    j--;
  char tmp = a[i - 1];
  a[i - 1] = a[j];
  a[j] = tmp;
  j = a.length - 1;
  while(i < j) {</pre>
    tmp = a[i];
    a[i] = a[j];
    a[j] = tmp;
    i++;
  }
  return true:
}
```

MD5: 7d1fe65d3e77616dd2986ce6f2af089b | $\mathcal{O}(n)$

6 String

6.1 Knuth-Morris-Pratt

Input: String s to be searched, String w to search for. *Output:* Array with all starting positions of matches

```
public static ArrayList<Integer> kmp(String s, String
  ArrayList<Integer> ret = new ArrayList<>();
  //Build prefix table
  int[] N = new int[w.length()+1];
  int i=0; int j =-1; N[0]=-1;
  while (i<w.length()) {</pre>
    while (j>=0 && w.charAt(j) != w.charAt(i))
      j = N[j];
    i++; j++; N[i]=j;
  }
  //Search string
  i=0; i=0;
  while (i<s.length()) {</pre>
    while (j>=0 && s.charAt(i) != w.charAt(j))
      j = N[j];
      i++; j++;
      if (j==w.length()) { //match found
      ret.add(i-w.length()); //add its start index
      j = N[j];
  }
  return ret;
}
```

MD5: 3cb03964744db3b14b9bff265751c84b $\mid \mathcal{O}(n+m) \mid$

6.2 Levenshtein Distance

21 22

Calculates the Levenshtein distance for two strings (minimum number of insertions, deletions, or substitutions).

```
Input: A string a and a string b.Output: An integer holding the distance.
```

```
_{
m 1} public static int levenshteinDistance(String a, String _{
m 31}
        b) {
    a = a.toLowerCase();
    b = b.toLowerCase();
    int[] costs = new int[b.length() + 1];
    for (int j = 0; j < costs.length; j++)</pre>
       costs[j] = j;
    for (int i = 1; i <= a.length(); i++) {</pre>
       costs[0] = i;
10
       int nw = i - 1;
11
       for (int j = 1; j <= b.length(); j++) {</pre>
12
         int cj = Math.min(1 + Math.min(costs[j], costs[j
13
           a.charAt(i - 1) == b.charAt(j - 1) ? nw : nw +
14
                 1):
15
         nw = costs[j];
16
         costs[j] = cj;
17
18
    }
    return costs[b.length()];
19
20
  }
                                                                11
```

MD5: 79186003b792bc7fd5c1ffbbcfc2b1c6 | $\mathcal{O}(|a| \cdot |b|)$

6.3 Longest Common Subsequence

Finds the longest common subsequence of two strings.

Input: Two strings string1 and string2.

Output: The LCS as a string.

```
22
  public static String longestCommonSubsequence(String
      string1, String string2) {
    char[] s1 = string1.toCharArray();
    char[] s2 = string2.toCharArray();
    int[][] num = new int[s1.length + 1][s2.length + 1];
    // Actual algorithm
    for (int i = 1; i <= s1.length; i++)</pre>
      for (int j = 1; j <= s2.length; j++)</pre>
        if (s1[i - 1] == s2[j - 1])
          num[i][j] = 1 + num[i - 1][j - 1];
        else
          num[i][j] = Math.max(num[i - 1][j], num[i][j -
11
                1]);
    // System.out.println("length of LCS = " + num[s1.
12
         length][s2.length]);
    int s1position = s1.length, s2position = s2.length;
13
    List<Character> result = new LinkedList<Character>()
14
    while (s1position != 0 && s2position != 0) {
15
      if (s1[s1position - 1] == s2[s2position - 1]) {
16
        result.add(s1[s1position - 1]);
17
        s1position--;
18
        s2position--;
19
      } else if (num[s1position][s2position - 1] >= num[
20
           s1position][s2position])
        s2position--;
21
      else
22
        s1position--;
23
24
    Collections.reverse(result);
25
    char[] resultString = new char[result.size()];
    int i = 0;
```

```
for (Character c : result) {
   resultString[i] = c;
   i++;
}
return new String(resultString);
}
```

MD5: 4dc4ee3af14306bea5724ba8a859d5d4 | $\mathcal{O}(n \cdot m)$

6.4 Longest common substring

gets two String and finds all LCSs and returns them in a set

```
public static TreeSet<String> LCS(String a, String b)
  int[][] t = new int[a.length()+1][b.length()+1];
  for(int i = 0; i <= b.length(); i++)</pre>
    t[0][i] = 0;
  for(int i = 0; i <= a.length(); i++)</pre>
    t[i][0] = 0;
  for(int i = 1; i <= a.length(); i++)</pre>
    for(int j = 1; j <= b.length(); j++)</pre>
      if(a.charAt(i-1) == b.charAt(j-1))
        t[i][j] = t[i-1][j-1] + 1;
      else
        t[i][j] = 0;
  int max = -1;
  for(int i = 0; i <= a.length(); i++)</pre>
    for(int j = 0; j <= b.length(); j++)</pre>
      if(max < t[i][j])
        max = t[i][j];
  if(max == 0 || max == -1)
    return new TreeSet<String>();
  TreeSet<String> res = new TreeSet<String>();
  for(int i = 0; i <= a.length(); i++)</pre>
    for(int j = 0; j <= b.length(); j++)</pre>
      if(max == t[i][j])
        res.add(a.substring(i-max, i));
  return res;
```

MD5: 9de393461e1faebe99af3ff8db380bde | $\mathcal{O}(|a|*|b|)$

7 Math Roland

15

16

17

18

19

20

21

7.1 Divisability Explanation

 $D \mid M \Leftrightarrow D \mid \mathsf{digit_sum}(\mathsf{M},\mathsf{k},\mathsf{alt}),$ refer to table for values of D,k,alt.

7.2 Combinatorics

- Variations (ordered): k out of n objects (permutations for k = n)
 - without repetition: $M = \{(x_1, \dots, x_n) : 1 \le x_i \le n, x_i \ne x_i \text{ if } i \ne i\}$
 - $M = \{(x_1, \dots, x_k) : 1 \le x_i \le n, \ x_i \ne x_j \text{ if } i \ne j\},\ |M| = \frac{n!}{(n-k)!}$
 - with repetition: $M = \{(x_1, ..., x_k) : 1 \le x_i \le n\}, |M| = n^k$
- Combinations (unordered): k out of n objects

- without repetition: $M = \{(x_1, \dots, x_n) : x_i \in$ $\{0,1\}, x_1 + \ldots + x_n = k\}, |M| = \binom{n}{k}$
- with repetition: $M=\{(x_1,\ldots,x_n):x_i\in\{0,1,\ldots,k\},\ x_1+\ldots+x_n=k\},\ |M|=\binom{n+k-1}{k}$
- Ordered partition of numbers: $x_1 + \ldots + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 2 solutions)
 - #Solutions for $x_i \in \mathbb{N}_0$: $\binom{n+k-1}{k-1}$
 - #Solutions for $x_i \in \mathbb{N}$: $\binom{n-1}{k-1}$
- Unordered partition of numbers: $x_1 + \ldots + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 1 solution)
 - #Solutions for $x_i \in \mathbb{N}$: $P_{n,k} = P_{n-k,k} + P_{n-1,k-1}$ where $P_{n,1} = P_{n,n} = 1$
- \bullet Derangements (permutations without fixed points): !n $n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} = \lfloor \frac{n!}{e} + \frac{1}{2} \rfloor$

7.3 **Polynomial Interpolation**

7.3.1 Theory

Problem: for $\{(x_0, y_0), \dots, (x_n, y_n)\}\$ find $p \in \Pi_n$ with $p(x_i) =$ y_i for all $i = 0, \ldots, n$.

Solution: $p(x) = \sum_{i=0}^{n} \gamma_{0,i} \prod_{j=0}^{i-1} (x-x_i)$ where $\gamma_{j,k} = y_j$ for k=0 and $\gamma_{j,k} = \frac{\gamma_{j+1,k-1} - \gamma_{j,k-1}}{x_{j+k} - x_j}$ otherwise.

Efficient evaluation of p(x): $b_n = \gamma_{0,n}$, $b_i = b_{i+1}(x - x_i) + \gamma_{0,i}$ for $i = n - 1, \dots, 0$ with $b_0 = p(x)$.

7.4 Fibonacci Sequence

Binet's formula

$$\begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow f_n = \frac{1}{\sqrt{5}} (\phi^n - \tilde{\phi}^n) \text{ where }$$

$$\phi = \frac{1+\sqrt{5}}{2} \text{ and } \tilde{\phi} = \frac{1-\sqrt{5}}{2}.$$

7.4.2 Generalization

$$g_n=\frac{1}{\sqrt{5}}(g_0(\phi^{n-1}-\tilde{\phi}^{n-1})+g_1(\phi^n-\tilde{\phi}^n))=g_0f_{n-1}+g_1f_n$$
 for all $g_0,g_1\in\mathbb{N}_0$

7.4.3 Pisano Period

Both $(f_n \mod k)_{n \in \mathbb{N}_0}$ and $(g_n \mod k)_{n \in \mathbb{N}_0}$ are periodic.

Java Knowhow 8

System.out.printf() und String.format()

Syntax: %[flags][width][.precision][conv] flags:

left-justify (default: right)

always output number sign

zero-pad numbers

space instead of minus for pos. numbers (space)

group triplets of digits with,

width specifies output width

precision is for floating point precision

conv:

byte, short, int, long d

- f float, double
- char (use C for uppercase)
- String (use S for all uppercase)

8.2 **Modulo: Avoiding negative Integers**

int mod = (((nums[j] % D) + D) % D);

Speed up IO 8.3

Use

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

Use

	Theoretical	Computer Science Cheat Sheet	
	Definitions	Series	
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$	
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \geq cg(n) \geq 0 \ \forall n \geq n_0$.	$i=1$ $i=1$ $i=1$ In general: $ \frac{n}{2} $	
$f(n) = \Theta(g(n))$		$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$	
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$	
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:	
$\sup S$	least $b \in$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$	
$\inf S$	greatest $b \in \text{ such that } b \leq s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$	
$\liminf_{n\to\infty} a_n$	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \}.$	Harmonic series: $n = n + 1 =$	
$\limsup_{n\to\infty}a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$	
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$	
$\left[egin{array}{c} n \\ k \end{array} ight]$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$1. \ \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \ \sum_{k=0}^{n} \binom{n}{k} = 2^{n}, \qquad 3. \ \binom{n}{k} = \binom{n}{n-k},$	
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an <i>n</i> element set into <i>k</i> non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$	
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	$8. \ \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad \qquad 9. \ \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$	
$\langle\!\langle {n \atop k} \rangle\!\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$	
	Catalan Numbers: Binary trees with $n+1$ vertices.	$12. \begin{Bmatrix} n \\ 2 \end{Bmatrix} = 2^{n-1} - 1, \qquad 13. \begin{Bmatrix} n \\ k \end{Bmatrix} = k \begin{Bmatrix} n-1 \\ k \end{Bmatrix} + \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix},$	
		$16. \ \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \ \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$	
I		$\begin{Bmatrix} n \\ -1 \end{Bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$	
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n} \right\rangle$	$\begin{pmatrix} n \\ -1 \end{pmatrix} = 1,$ 23. $\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix}$	$\binom{n}{n-1-k}$, $24. \left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (n-k) \left\langle \binom{n-1}{k-1} \right\rangle$,	
$25. \ \left\langle \begin{array}{c} 0 \\ k \end{array} \right\rangle = \left\{ \begin{array}{c} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{array} \right. $ $26. \ \left\langle \begin{array}{c} n \\ 1 \end{array} \right\rangle = 2^n - n - 1, $ $27. \ \left\langle \begin{array}{c} n \\ 2 \end{array} \right\rangle = 3^n - (n+1)2^n + \binom{n+1}{2}, $			
$28. \ \ x^n = \sum_{k=0}^{\infty} \left\langle {n \atop k} \right\rangle {x+k \choose n}, \qquad 29. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{\infty} {n+1 \choose k} (m+1-k)^n (-1)^k, \qquad 30. \ \ m! \left\{ {n \atop m} \right\} = \sum_{k=0}^{\infty} \left\langle {n \atop k} \right\rangle {k \choose n-m},$			
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n} \cdot$	$\left\{ {n\atop k} \right\} \binom{n-k}{m} (-1)^{n-k-m} k!,$	32. $\left\langle \left\langle \begin{array}{c} n \\ 0 \end{array} \right\rangle = 1,$ 33. $\left\langle \left\langle \begin{array}{c} n \\ n \end{array} \right\rangle = 0$ for $n \neq 0$,	
\\ //	$+1$ $\left\langle \left\langle \left$		
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{k}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \!\! \right\rangle \left(\begin{array}{c} x+n-1-k \\ 2n \end{array} \right),$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$	

Identities Cont.

$$\mathbf{38.} \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{2}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad \mathbf{39.} \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\!\! \begin{pmatrix} n \\ k \end{pmatrix} \!\!\! \right\rangle \binom{x+k}{2n},$$

40.
$$\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

144.
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k},$$

46.
$$\left\{ n - m \right\} = \sum_{k} {m \choose m+k} {m+n \choose n+k} {m+k \choose k},$$

48.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k},$$
 49.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}.$$

41.
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (-1)^{m-k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} {\binom{n+1}{k+1}} {\binom{k}{m}} (-1)^{m-k}, \quad \textbf{45.} \quad (n-m)! {\binom{n}{m}} = \sum_{k} {\binom{n+1}{k+1}} {\binom{k}{m}} (-1)^{m-k}, \quad \text{for } n \ge m,$$

46.
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose n+k} {m+k \choose k},$$
 47.
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$

49.
$$\begin{bmatrix} n \\ \ell + m \end{bmatrix} \begin{pmatrix} \ell + m \\ \ell \end{pmatrix} = \sum_{k} \begin{bmatrix} k \\ \ell \end{bmatrix} \begin{bmatrix} n - k \\ m \end{bmatrix} \begin{pmatrix} n \\ k \end{pmatrix}$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are d_1, \ldots, d_n :

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n)=aT(n/b)+f(n),\quad a\geq 1, b>1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n, \quad T(1) = 1.$$

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$
$$\vdots \qquad \vdots$$

$$3^{\log_2 n - 1} \big(T(2) - 3T(1) = 2 \big)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

$$\sum_{i \geq 0} g_{i+1} x^i = \sum_{i \geq 0} 2g_i x^i + \sum_{i \geq 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$

$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$

$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

	Theoretical Computer Science Cheat Sheet				
	$\pi \approx 3.14159, \qquad e \approx 2.7$		1828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	1.61803, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$	
i	2^i	p_i	General	Probability	
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If	
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$	
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	J_a then p is the probability density function of	
4	16	7	Change of base, quadratic formula:	X. If	
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$	
6	64	13	Su	then P is the distribution function of X . If	
7	128	17	Euler's number e : $e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	P and p both exist then	
8	256	19	2 0 24 120	$P(a) = \int_{-a}^{a} p(x) dx.$	
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$\sigma = \infty$	
10	1,024	29	$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$.	Expectation: If X is discrete	
11	2,048	31	(117	$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$	
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then	
13	8,192	41	Harmonic numbers:	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$	
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J-\infty$ $J-\infty$	
$\frac{15}{16}$	32,768	47		Variance, standard deviation:	
16	65,536	53	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$	
17	131,072	59	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{\text{VAR}[X]}.$	
18	262,144	61	Factorial, Stirling's approximation:	For events A and B: $P_{\mathbf{p}}[A \setminus B] = P_{\mathbf{p}}[A] + P_{\mathbf{p}}[B] = P_{\mathbf{p}}[A \land B]$	
19	524,288	67 71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$ $\Pr[A \land B] = \Pr[A] \cdot \Pr[B]$	
$\frac{20}{21}$	1,048,576	71 73	1, 2, 0, 24, 120, 120, 3040, 40320, 302000,	$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$ iff A and B are independent.	
22	2,097,152 4,194,304	73 79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$		
23	8,388,608	83		$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$	
$\frac{23}{24}$	16,777,216	89	Ackermann's function and inverse:	For random variables X and Y :	
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$	
26	67,108,864	101	$\begin{cases} a(i-1,a(i,j-1)) & i,j \geq 2 \end{cases}$	if X and Y are independent.	
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X + Y] = E[X] + E[Y],	
28	268,435,456	107	Binomial distribution:	E[cX] = c E[X].	
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q=1-p,$	Bayes' theorem:	
30	1,073,741,824	113	$11[A - h] - \binom{k}{p} q \qquad , \qquad q = 1 - p,$	$\Pr[A_i B] = \frac{\Pr[B A_i] \Pr[A_i]}{\sum_{i=1}^{n} \Pr[A_i] \Pr[B A_i]}.$	
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k} = np.$	$\sum_{j=1} \Pr[A_j] \Pr[B A_j]$ Inclusion-exclusion:	
32	4,294,967,296	131	$\mathbb{E}[\mathbb{F}_1] = \sum_{k=1}^n \binom{k}{p} q = np.$	n n	
	Pascal's Triangle		Poisson distribution:	$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$	
	1		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \operatorname{E}[X] = \lambda.$	1-1 1-1	
1 1			Normal (Gaussian) distribution:	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j}\right].$	
1 2 1					
1 3 3 1			$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	Moment inequalities:	
1 4 6 4 1			The "coupon collector": We are given a	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$	
1 5 10 10 5 1			random coupon each day, and there are n different types of coupons. The distribu-	$\Pr\left[\left X - \mathrm{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$	
1 6 15 20 15 6 1			tion of coupons is uniform. The expected] , \	
1 7 21 35 35 21 7 1			number of days to pass before we to col-	Geometric distribution: $\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$	
	1 8 28 56 70 56 28		lect all n types is	\sim	
	9 36 84 126 126 84		nH_n .	$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$	
$1\ 10\ 45$	5 120 210 252 210 1	20 45 10 1		k=1 P	

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$

Identities:
$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{x}{2} - \cot x,$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x},$$

$$\cos 2x = \cos^2 x - \sin^2 x, \qquad \cos 2x = 2\cos^2 x - 1,$$

$$\cos 2x = 1 - 2\sin^2 x, \qquad \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}, \qquad \cot 2x = \frac{\cot^2 x - 1}{2\cot x},$$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{i\hat{x}} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.01 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden Multiplication:

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Matrices

Determinants: det $A \neq 0$ iff A is non-singular.

$$\det A\cdot B=\det A\cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

$$= \frac{aei + bfg + cdh}{-ceg - fha - ibd}.$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$
 Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$$

Identities:

$\cosh^2 x - \sinh^2 x = 1,$	$\tanh^2 x + \operatorname{sech}^2 x = 1$
$\coth^2 x - \operatorname{csch}^2 x = 1,$	$\sinh(-x) = -\sinh x,$
$\cosh(-x) = \cosh x,$	$\tanh(-x) = -\tanh x,$
$\sinh(x+y) = \sinh x \cosh$	$y + \cosh x \sinh y$,
$\cosh(x+y) = \cosh x \cosh$	$y + \sinh x \sinh y$
$\sinh 2x = 2\sinh x \cosh x,$	
$\cosh 2x = \cosh^2 x + \sinh^2 x$	2 x ,
$\cosh x + \sinh x = e^x,$	$\cosh x - \sinh x = e^{-x},$
$(\cosh x + \sinh x)^n = \cosh$	$nnx + \sinh nx, n \in \mathbb{Z},$
$2\sinh^2\frac{x}{2} = \cosh x - 1,$	$2\cosh^2\frac{x}{2} = \cosh x + 1$

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{3}$ $\frac{\pi}{2}$	1	0	∞

... in mathematics you don't understand things, you just get used to them. – J. von Neumann More Trig.

 $c^2 = a^2 + b^2 - 2ab\cos C.$

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2\sin A\sin B}{2\sin C}$$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

 $\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$

 $\sin x = \frac{\sinh ix}{i}$

 $\tan x = \frac{\tanh ix}{i}$

Theoretical Computer Science Cheat Sheet Number Theory Graph Theory Definitions:

The Chinese remainder theorem: There exists a number C such that:

 $C \equiv r_1 \mod m_1$

: : :

 $C \equiv r_n \mod m_n$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

 $1 \equiv a^{\phi(b)} \mod b$.

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$\gcd(a,b)=\gcd(a \bmod b,b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff

$$(n-1)! \equiv -1 \bmod n.$$

Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1.\\ 0 & \text{if } i \text{ is not square-free.}\\ (-1)^r & \text{if } i \text{ is the product of}\\ r & \text{distinct primes.} \end{cases}$

$$i^{-1}$$
 if i is the product of i^{-1} distinct primes.

Tf

$$G(a) = \sum_{d|a} F(d),$$

then

$$F(a) = \sum_{d \mid a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

LoopAn edge connecting a vertex to itself.

DirectedEach edge has a direction. Graph with no loops or Simplemulti-edges.

WalkA sequence $v_0e_1v_1\ldots e_\ell v_\ell$. TrailA walk with distinct edges. Path trail with distinct vertices.

ConnectedA graph where there exists a path between any two vertices.

Componentmaximalconnected subgraph.

TreeA connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

CutA set of edges whose removal increases the number of components.

Cut-setA minimal cut. Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

 $\forall S \subseteq V, S \neq \emptyset$ we have k-Tough $k \cdot c(G - S) \le |S|.$

k-Regular A graph where all vertices have degree k.

k-Factor Α k-regular spanning subgraph.

Matching A set of edges, no two of which are adjacent.

CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n-m+f=2, so

$$f < 2n - 4$$
, $m < 3n - 6$.

Any planar graph has a vertex with degree < 5.

Notation: E(G)

Edge set V(G)Vertex set

c(G)Number of components G[S]Induced subgraph

Degree of vdeg(v)

 $\Delta(G)$ Maximum degree $\delta(G)$ Minimum degree

 $\chi(G)$ Chromatic number

 $\chi_E(G)$ Edge chromatic number G^c Complement graph K_n Complete graph

Complete bipartite graph K_{n_1,n_2}

Ramsey number $r(k,\ell)$

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero. $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$

Cartesian Projective (x, y)(x, y, 1)

(m, -1, b)y = mx + bx = c(1,0,-c)

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2}$$
 abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$.

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others. it is because I have stood on the shoulders of giants.

- Issac Newton

Wallis' identity:

$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

$$A = \left[\frac{N(x)}{D(x)} \right]_{x=a}.$$

For a repeated factor

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
,

$$\mathbf{1.} \ \frac{d(cu)}{dx} = c\frac{du}{dx}, \qquad \mathbf{2.} \ \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}, \qquad \mathbf{3.} \ \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx},$$

3.
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$4. \ \frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \qquad 5. \quad \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \qquad 6. \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

$$6. \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$$

12.
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

14.
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx},$$

$$\mathbf{16.} \ \frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1 - u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

20.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

$$dx = \frac{1}{u\sqrt{1-u^2}} dx$$

$$22. \frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^{2} u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$29. \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

$$1. \int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}$$
, $n \neq -1$, 4. $\int \frac{1}{x} dx = \ln x$, 5. $\int e^x dx = e^x$,

4.
$$\int \frac{1}{x} dx = \ln x,$$
 5. $\int e^x$

6.
$$\int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

10.
$$\int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|.$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$$

$$\mathbf{19.} \int \sec^2 x \, dx = \tan x,$$

$$\mathbf{20.} \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad$$
27. $\int \sinh x \, dx = \cosh x, \quad$ **28.** $\int \cosh x \, dx = \sinh x,$

29.
$$\int \tanh x \, dx = \ln |\cosh x|$$
, **30.** $\int \coth x \, dx = \ln |\sinh x|$, **31.** $\int \operatorname{sech} x \, dx = \arctan \sinh x$, **32.** $\int \operatorname{csch} x \, dx = \ln |\tanh \frac{x}{2}|$,

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$$

35.
$$\int \operatorname{sech}^2 x \, dx = \tanh x,$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

$$\mathbf{38.} \ \int \operatorname{arccosh} \frac{x}{a} dx = \left\{ \begin{aligned} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{aligned} \right.$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$ **45.** $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2 \sqrt{a^2 - x^2}}$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2-x^2}\,dx = -\frac{1}{3}(a^2-x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 + a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

69.
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2},$$

72.
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) \, dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) \, dx$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$E f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \operatorname{E} v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

Sums:

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v)\,\delta x = \sum u\,\delta x + \sum v\,\delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum \mathbf{E} \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{x^{\underline{n+1}}}, \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

 $x^{\underline{0}} = 1$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$
$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{o} = 1$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}} (x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$= 1/(x + 1)^{\overline{-n}},$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x + n - 1)^{\underline{n}}$$

$$= 1/(x - 1)^{\underline{-n}},$$

$$x^n = \sum_{k=1}^n {n \brace k} x^{\underline{k}} = \sum_{k=1}^n {n \brack k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x-a)^i}{i!}f^{(i)}(a).$$

Expansions:

Expansions:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^3x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^nx^2 + 3^nx^3 + 4^nx^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} x^i i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\tan^{-1}x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n-2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{120}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{1}{\sqrt{1-4x}} = \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{1}{\sqrt{1-4x}} = \frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{ni}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power serie

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theore:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$x A'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers: all the rest is the work of man. - Leopold Kronecker

Escher's Knot

Expansions:

Expansions:
$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \binom{i}{n} x^i,$$

$$x^{\overline{n}} = \sum_{i=0}^{\infty} \binom{n}{i} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \binom{i}{n} \frac{n!x^i}{i!}$$

$$\left(\ln \frac{1}{1-x}\right)^n = \sum_{i=0}^{\infty} \binom{i}{n} \frac{n!x^i}{i!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)!}$$

$$\tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{ix},$$

$$\zeta(x) = \sum_{i=1}^{\infty} \frac{0}{ix},$$

$$\zeta(x$$

Stieltjes Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

If the integrals involved exis

$$\begin{split} & \int_a^b \left(G(x) + H(x) \right) dF(x) = \int_a^b G(x) \, dF(x) + \int_a^b H(x) \, dF(x), \\ & \int_a^b G(x) \, d \big(F(x) + H(x) \big) = \int_a^b G(x) \, dF(x) + \int_a^b G(x) \, dH(x), \\ & \int_a^b c \cdot G(x) \, dF(x) = \int_a^b G(x) \, d \big(c \cdot F(x) \big) = c \int_a^b G(x) \, dF(x), \\ & \int_a^b G(x) \, dF(x) = G(b) F(b) - G(a) F(a) - \int_a^b F(x) \, dG(x). \end{split}$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x) F'(x) dx.$$

Cramer's Rule

 $\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=0}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}$$
.

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

- William Blake (The Marriage of Heaven and Hell)

 $00 \ \ 47 \ \ 18 \ \ 76 \ \ 29 \ \ 93 \ \ 85 \ \ 34 \ \ 61 \ \ 52$ 86 11 57 28 70 39 94 45 02 63 $59 \ 96 \ 81 \ 33 \ 07 \ 48 \ 72 \ 60 \ 24 \ 15$ $73 \ 69 \ 90 \ 82 \ 44 \ 17 \ 58 \ 01 \ 35 \ 26$ 68 74 09 91 83 55 27 12 46 30 $37\ \ 08\ \ 75\ \ 19\ \ 92\ \ 84\ \ 66\ \ 23\ \ 50\ \ 41$ $14 \ 25 \ 36 \ 40 \ 51 \ 62 \ 03 \ 77 \ 88 \ 99$ 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i , $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left(\phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$