CLAIMS:

A catalyst composition for the oxidative dehydrogenation of a compound having at least two adjacent carbons atoms bonded to one another and each carbon atom having at least one hydrogen atom bonded thereto comprising $A_aB_bSb_cV_dAl_cO_x$

wherein A is an alkali or alkaline earth metal; B is one or more optional elements selected from zinc, cadmium, lead, nickel, cobalt, iron, chromium, bismuth, gallium, niobium, tin and neodymium; and a is 0 to 0.3, b is 0 to 5, c is 0.5 to 10, d is 1, e is 3 to 10, $7 \le a+b+c+d+e \le 25$, and x is determined by the valence requirements of the elements present.

2. The catalyst of claim 1, wherein the catalyst composition is of an amorphous structure.

The catalyst of claim 1, having a surface area of from about 130 to about 150 meters squared per gram.

The catalyst of claim (1, wherein the catalyst was produced at a calcination temperature of from about 450 °C to about 650 °C.

The catalyst of claim A wherein to reach the calcination temperature an elevating temperature velocity of about 20 °C per minute was utilized.

The catalyst of claim 1, wherein the catalyst composition is on a support.

The catalyst of claim , wherein the support contains substantially no

054038.0006 96271 v2

aluminum.

1)
2	zirconia.

The catalyst of claim 7; wherein the support is silica, titania or

The catalyst of claim 1, wherein a is from about 0.01 to about 0.1; b is from about 0.1 to about 1; c is from about 0.5 to about 3; e is from about 4 to about 7; and x is determined by the valence of the elements present.

The catalyst of claim 1, wherein A is at least one of the elements selected from the group consisting of potassium, cesium, magnesium and barium and wherein B is at least one of the elements selected from the group consisting of zinc, nickel, cobalt, iron, bismuth and niobium.

11. A method for oxidative dehydrogenation of a compound having at least two adjacent carbons atoms bonded to one another and each carbon atom having at least one hydrogen atom bonded thereto comprising contacting said compound with a catalyst

 $A_aB_bSb_cV_dA_eO_x$

wherein A is an alkali or alkaline earth metal. B is one or more optional elements selected from zinc, cadmium, lead, nickel, cobalt, iron, chromium, bismuth, gallium, niobium, tin and neodymium; and a is 0 to 0.3, b is 0 to 5, c is 0.5 to 10, d is 1, e is 3 to 10, $7 \le a+b+c+d+e \le 25$, and x is determined by the valence requirements of the elements present in the presence of oxygen.

- 12. The method of claim 11, wherein the catalyst composition of an amorphous structure.
- 13. The method of claim 11, wherein the catalyst has a surface area of from about 130 to about 150 meters squared per gram.
- 14. The method of claim 11, wherein the catalyst was produced at a calcination temperature of from about 450 °C to about 650 °C.

054038.0006 96271 v2

1 2

1

2

1 2

1

2

2

1

support.

15.	The method of claim	14, wherein to	reach the ca	alcination tem	peratu	re
an elevating	temperature velocity of	about 20 °C pe	er minute was	utilized.		
	{					
16.	The method of clair	n 11, wherein	the catalyst	composition	is on	a

- 17. The method of claim 16, wherein the support is silica, titania or zirconia.
- 18. The method of claim 16, wherein the support contains substantially no aluminum.
- 19. The method of claim 11, wherein a is from about 0.01 to about 0.1; b is from about 0.1 to about 1; c is from about 0.5 to about 3; e is from about 4 to about 7; and x is determined by the valence of the elements present.
- 20. The method of claim 11, wherein A is at least one of the elements selected from the group consisting of potassium, cesium, magnesium and barium and wherein B is at least one of the elements selected from the group consisting of zinc, nickel, cobalt, iron, bismuth and niobium.