HipSpec

Automating Inductive Proofs using Theory Exploration

Dan Rosén

Koen Claessen, Moa Johansson, Nicholas Smallbone

Chalmers University of Technology

May 31, 2013

```
rotate :: Nat -> [a] -> [a]
rotate Z xs = xs
rotate (S n) [] = []
rotate (S n) (x:xs) = rotate n (xs ++ [x])
rotate 1 [1,2,3,4] = [2,3,4,1]
rotate 2[1,2,3,4] = [3,4,1,2]
rotate 3[1,2,3,4] = [4,1,2,3]
rotate 4 [1,2,3,4] = [1,2,3,4]
```

```
rotate :: Nat -> [a] -> [a]
rotate Z xs = xs
rotate (S n) [] = []
rotate (S n) (x:xs) = rotate n (xs ++ [x])
rotate 1 [1,2,3,4] = [2,3,4,1]
rotate 2[1,2,3,4] = [3,4,1,2]
rotate 3[1,2,3,4] = [4,1,2,3]
rotate 4 [1,2,3,4] = [1,2,3,4]
        \forall xs.rotate (length xs) xs = xs
```

```
rotate :: Nat -> [a] -> [a]
rotate Z xs = xs
rotate (S n) [] = []
rotate (S n) (x:xs) = rotate n (xs ++ [x])
        \forall xs.rotate (length xs) xs = xs
       rotate (length (x:xs)) (x:xs) =
       rotate (S (length xs)) (x:xs) =
       rotate (length xs) (xs ++ [x]) =
```

```
rotate :: Nat -> [a] -> [a]
rotate Z xs = xs
rotate (S n) [] = []
rotate (S n) (x:xs) = rotate n (xs ++ [x])
        \forall xs.rotate (length xs) xs = xs
       rotate (length (x:xs)) (x:xs) =
       rotate (S (length xs)) (x:xs) =
       rotate (length xs) (xs ++ [x]) =
```

Stuck!

HipSpec vs Rotate

 $\forall xs, ys. rotate (length xs) (xs ++ ys) = ys ++ xs$

HipSpec vs Rotate

```
\forall xs, ys. rotate (length xs) (xs ++ ys) = ys ++ xs (also requires associativity and right identity of ++)
```

QuickSpec: the Theory Exploration Phase

Generates well-typed terms up to some depth:

rot (len xs) xs	len xs	xs++(ys++ys)
rot n (xs++xs)	rot n (rot m xs)	rot n xs++rot n xs
(xs++ys)++ys	rot Z (xs++ys)	rot m (rot n xs)
XS	len (rot m xs)	len (rot n xs)
xs++ys	len (ys++xs)	len (rot o xs)
rot Z xs	len (xs++ys)	[]++xs
(xs++ys)++[]	xs++[]	rot (len ys) (ys++xs)

Partitioning into Equivalence Classes

```
xs
xs++[]
[]++xs
qrev [] xs
rev (rev xs)
qrev (rev xs) []
```

```
[]
rev []
qrev [] []
[]++[]
```

```
qrev xs ys
rev (qrev ys xs)
rev xs++ys
[]++qrev xs ys
qrev [] (qrev xs ys)
qrev xs ys++[]
qrev (qrev ys xs) []
```

```
xs++ys
qrev (rev xs) ys
[]++(xs++ys)
qrev [] (xs++ys)
(xs++ys)++[]
```

```
x:xs
[]++(x:xs)
qrev [] (x:xs)
(x:xs)++[]
(x:[])++xs
qrev (x:[]) xs
```

```
rev xs
qrev xs []
[]++rev xs
qrev [] (rev xs)
```

Hip: The Haskell Inductive Prover

- ► Translate to typed first order logic
- Apply structural induction

Also supports higher-order functions and partial application

Overview of HipSpec

Overview of HipSpec

- Try to prove "smallest" unproved equation
- ► Terminate everything is proved (or when the current theory cannot prove any more open conjectures)

Prioritising Equations

- ► Call graph
- Number of variables
- Size of term

Evaluation Results

1st test suite from Case-analysis for Rippling and Inductive Proof:

#Props	HipSpec	Zeno	ACL2s	IsaPlanner	Dafny
85	80	82	74	47	45

Evaluation Results

1st test suite from Case-analysis for Rippling and Inductive Proof:

#Props	HipSpec	Zeno	ACL2s	IsaPlanner	Dafny
85	80	82	74	47	45

2nd test suite from Productive use of Failure in Inductive Proof:

#Props	HipSpec	CLAM	Zeno
50	44	41	21

Conjecturing Conditionals

 \forall xs. sorted (isort xs) = True

isort :: [Nat] -> [Nat]

insert :: Nat -> [Nat] -> [Nat]

sorted :: [Nat] -> Bool

Conjecturing Conditionals

$$\forall$$
 xs. sorted (isort xs) = True

```
isort :: [Nat] -> [Nat]
```

insert :: Nat -> [Nat] -> [Nat]

sorted :: [Nat] -> Bool

Requires:

 \forall xs. sorted xs = True \Rightarrow sorted (insert x xs) = True

Example tricky equational proof

```
\forall i, xs. rev (drop i xs) = take (length xs - i) (rev xs)
```

Example tricky equational proof

```
\forall i, xs. rev (drop i xs) = take (length xs - i) (rev xs)
```

Required lemmas:

```
length (drop x xs) = length xs - x
length (rev xs) = length xs
take x xs ++ drop x xs = xs
rev xs ++ rev ys = rev (ys++xs)
take (length xs) (xs ++ ys) = xs
```

Rotate, revisited

```
\forall xs.rotate (length xs) xs = xs
rotate (length (x:xs)) (x:xs) =
rotate (S (length xs)) (x:xs) =
rotate (length xs) (xs ++ [x]) =
```

Stuck!

Rotate, revisited

```
\forall xs.rotate (length xs) xs = xs
rotate (length (x:xs)) (x:xs) =
rotate (S (length xs)) (x:xs) =
rotate (length xs) (xs ++ [x]) =
```

Stuck!

► Top-down: Rippling/critics-based provers, ACL, Zeno

Rotate, revisited

```
\forall xs.rotate (length xs) xs = xs
rotate (length (x:xs)) (x:xs) =
rotate (S (length xs)) (x:xs) =
rotate (length xs) (xs ++ [x]) =
```

Stuck!

- ► Top-down: Rippling/critics-based provers, ACL, Zeno
- ▶ Bottom-up: IsaCosy, IsaScheme, HipSpec

HipSpec the Theory Exploration System

Saturate a theory and have it nicely presented

HipSpec the Theory Exploration System

Saturate a theory and have it nicely presented

- data Integer = Positive Nat | Negative Nat
- ▶ data BinNat = Zero | ZeroAnd BinNat | OneAnd BinNat

	Isabelle	
#Thms Nats	12	
Precision	-	
Recall	-	
#Thms Lists	9	
Precision	-	
Recall	-	

	Isabelle	HipSpec	
#Thms Nats	12	10	
Precision	-	80%	
Recall	-	73%	
#Thms Lists	9		
Precision	-		
Recall	-		

	Isabelle	HipSpec	IsaCoSy	IsaScheme
#Thms Nats	12	10	16	16*
Precision	-	80%	63%	100%*
Recall	-	73%	83%	46%*
#Thms Lists	9			
Precision	-			
Recall	-			

	Isabelle	HipSpec	IsaCoSy	IsaScheme
#Thms Nats	12	10	16	16*
Precision	-	80%	63%	100%*
Recall	-	73%	83%	46%*
#Thms Lists	9	10	24	13
Precision	-	90%	38%	70%
Recall	-	100%	100%	100%

	Isabelle	HipSpec	IsaCoSy	IsaScheme
#Thms Nats	12	10	16	16*
Precision	-	80%	63%	100%*
Recall	-	73%	83%	46%*
#Thms Lists	9	10	24	13
Precision	-	90%	38%	70%
Recall	-	100%	100%	100%
Runtime		30 seconds	hours	hours

Conclusions

- Evaluate your programs!
- Completeness up to a certain depth: If the lemma is there, HipSpec will eventually try to prove it!

github.com/danr/hipspec

Conditionals as functions

```
\forall xs. sorted (isort xs) = True
  whenSorted :: [Nat] -> [Nat]
  when Sorted xs = if sorted xs then xs else []
     \forall x, xs. sorted (insert x (whenSorted xs)) = True
  sorted (insert x (whenSorted xs))
= sorted (insert x (if sorted xs then xs else []))
= if sorted xs then sorted (insert x xs)
                else sorted (insert x [])
```

What is HipSpec?

Haskell source

Hip

Haskell Inductive Prover

- ► FOL translation
- Apply induction
- Success, or stuck!

QuickSpec

Eq-theory from testing:

(xs ++ ys) ++ zs

HipSpec Use these as

lemmas!!