eXplainable Al

From a model, to an explanation, to a user

Algorithms, algorithmic kernels, and shared problems

Why practical lessons?

The field is highly multidisciplinary, and AI advancements often prompt adaptation.

Lessons from the literature and practical applications on two projects:

- XAI (ERC, 2018 onward)
- FAIR (nation-wide project, 2023 onward)

XAI

Mapping complex machine learning models to human-understandable models.

Human understandable...?

Rather than the model, let's start from the user: who are they?

- user: they want to **properly act** on its prediction
- developer: they want to debug and improve the model
- auditor: they want to **inspect** the model

When, Where, What, How

When does something happen?

Describing locally (on one instance) or globally (on multiple instances).

Locally

Globally

When does something happen?

Decision rules

```
if age >= 30 and salary > 2.5k then grant loan
if age >= 50 and salary < 2k then deny loan</pre>
```

- Can be extracted and validated programmatically
- Can leverage existing literature on rule extraction and decision tree induction

The augment-then-explain kernel

Idea. Create a dataset X, y of neighbors, then train an explainable model on it.

- How to study the local feature distribution?
- How to generate a (synthetic) neighborhood?


```
X = neighborhood(x)
y = query(model)

explanation = Explainable_model(X, y)
```

When does something happen?

Prototypes

Person

Age: 50

Sex: Male

Smoker

Sedentary

Provide a (set of) prototypical example(s) for a desired class.

The extract-then-compare kernel

Idea Extract prototypes, then create a case-based reasoning explainable by design model.

```
P = prototypes(X, y)
explainable_model = Model(X, P, y)
```


- How to select the prototypes?
- What kind of reasoning to provide?

What happens...?

Feature importance

What feature is relevant for the prediction?

```
feature 0: 0.432
...
feature n - 1: 0.016
```


The perturb-then-analyze kernel

Feature importance

Idea Perturb the data, then analyze the perturbation.

```
X' = perturb(x)
y = query(X', y)
explanation = analysis(X', y)
```


- What to perturb?
- How to perturb?

How to change it?

Counterfactual examples and rules

Define a rule for the prediction to change, or directly provide a close instance of different class.

if improve salary to > 2.5k then grant loan

The search-then-optimize kernel

```
direction = find_counterfactual_direction(model)
counterfactual = find_examples(direction)
```

- Is the counterfactual within distribution?
- Does it respect the causal model of the data?

FACE: Feasible and Actionable Counterfactual Explanations, Poyiadzi et al.

Decisions, Counterfactual Explanations and Strategic Behavior, Tsirtsis and Gomez-Rodriguez

Explaining NLP Models via Minimal Contrastive Editing (MICE), Ross et al.

Looking ahead, systemic kernel problems

- augment-then-explain How to infer the local feature distribution?
- perturb-then-analyze Is the perturbation within distribution?
- search-then-optimize Is the search direction within distribution?

Looking ahead, systemic kernel problems

Most algorithms based on a few basic kernels relying on estimated distributions which are

- loose estimates
- often slow
- ignore the data-generating model
- can't easily integrate user knowledge