The EMaC R Manual

Alex Sciuto

Last Updated Febuary 2020

Contents

1	How to Install R		
2	Introduction to Programming in R 2.1 Variables in R	7 7 9	
3	Introduction to Data Wrangling 3.1 The study	11 11 12 23	
4	Methods	31	
5	Applications 5.1 Example one	33 33	
6	Final Words	35	

4 CONTENTS

How to Install R

This is the EMaC manual for how to wrangle, analyze, and visualize data in **R**. I will review a few key packages, in addition to explaing their key functions, with real data examples.

There are two things you need to do to install R on your computer. First, you would need to install the latest version of R which you would download and install from this link: R-download. Once you run and install R onto your computer, you would need to install R-Studio. R studio is the graphic user interface (GUI) where you can place all of your R-code. Follow this link: R-Studio Desktop Download. Once you have these two programs installed, all you need to do is launch R-studio Desktop and you are ready to go..

Introduction to Programming in R

Before you can do data wrangling, statiscs, and visualization using R for cognitive psychology research, you need to learn the basic syntax in R. This chapter will introduce the basics.

2.1 Variables in R

R can manipulate and wrangle all kinds of data, these data could be stored in a handful of variables that we can then work with. The first one we will be talking about is numeric.

2.1.1 Numeric

a numeric is a number (including decimals) that can be stored within a variable. Here is an example:

x = 2

Here, we assigned the numeric value 2 to the variable x. Thus, if we were to do arithemtic, x will be treated as 2. Moreover, there are specific functions in R we can use in order to do arithmetic with numeric variables. Here are a few examples:

Arithemtic	R-Input	R-Output	
Addition:	x + 2	4	
Substraction:	x - 2	0	
Division:	x / 2	1	
Multiplication:	x * 2	4	

Arithemtic	R-Input	R-Output
Exponent:	x ^ 2	4

2.1.2 Character

A character is a combination of characters (either letters and/or numbers) that can be stored within a variable. Moreover, it is very important that you place the character between quotation marks. Here is an example:

x = "Cognitive Psychology"

Here, we assigned the character value "Cognitive Psychology" to the variable x. There are ways to manipulate character type variables, and also modify them. However, we will touch on that later.

2.1.3 Logical

A logical can only have two possible values, TRUE and FALSE that can be stored within a variable. This is not typically a variable type that you will need to assign variable values to. However, the logical type variable is extremely important because a lot of functions in R return a logical variable. We will dive into some of these functions

2.1.4 Vector

A vector is multiple variables stored into one data-set. Vectors can contain any variable type: character, numeric, string, and logical. When you are declaring a a vector type variable, you typically have to use the concatenate function c(). Here is an example:

```
x = c(1,2,3,4)
x = c("I", "like", "Cognitive", "Psychology")
x = c(TRUE, FALSE, FALSE, TRUE)
```

To reference a vector variable, you need to use [] and inside the brackets, you have to specify the index of where the given variable in the vector is. Here is an example

```
x = c("10", "20", "30", "40")
x[4]
```

```
## [1] "40"
```

Here, we assigned the numbers: 10, 20, 30, 40 to the vector \mathbf{x} . "Cognitive Psychology" to the variable \mathbf{x} . There are ways to manipulate character type variables, and also modify them. However, we will touch on that later.

2.2 Logical Operators & if-Statements

Now that you have a basic understanding of how variables work in R, the next step is to learn how to use logical operators in order to specify what are the specific conditions under which you want your variables to be manipulated. The main way to do this in R is by using logical operators.

x = 2

Here, we assigned the numeric value 2 to the variable x. Thus, if we were to apply logical operators to x, x will be treated as 2. Here are examples of all of the logical operators:

Logical Operators Description		R-Input	R-Output
< less than		x < 10	TRUE
<=	less than or equal to	x <= 2	TRUE
>	greater than	x > 1	TRUE
>=	greater than or equal to	x >= 3	FALSE
==	exactly equal to	x == 9	FALSE
!=	not equal to	x != 10	FALSE
$!_{\mathrm{X}}$	Not x	$!_{\mathrm{X}}$	FALSE
$x \mid y$	x OR y	x == 10 x != 10	TRUE
x & y	x AND y	x == 10 &x != 10	FALSE

Now that you have a basic understanding of logical operators, we can use them in order to specify code to manipulate variables in a particular way. For this example, we will be working with the function <code>if_else()</code>. However, one question you may have is what is a function in R? I will describe the structure of functions, starting with a simple one.

Introduction to Data Wrangling

To introduce data wrangling, we will be working with a dataset from a study conducted in our lab. Here are the details of the study in order to understand the data manipulation more:

3.1 The study

On each trial in this experiment (n = 174), each participant (n = 84) sees a target word very briefly (e.g., word) and then is prompted to select which of two letters was in a particular position of that word (e.g., $_$ $_$ \bot) - one letter was in the presented word (e.g., D) and the other letter is in an orthographic neighbor of the word (e.g., K). This is a 2 (visual field) x 3 (sentence context) experimental design: the target word is either presented in the fovea (i.e., center of the screen) or the parafovea (i.e., 3 degrees to the right of fixation). Prior to the target word, they see a sentence context presented via Rapid Serial Visual Presentation (RSVP) that constrains to target (i.e., makes the presented word predictable and the orthographic neighbor implausible), constrains to the alternative (i.e., makes the orthographic neighbor predictable and the presented word implausible), or is neutral (i.e., makes neither word predictable but both of them plausible). In addition, we collect data about the individual subjects' language ability (i.e., their z-score on some test relative to the other participants), including spelling recognition (i.e., circle which words are spelled wrong), spelling dictation (i.e., write out words that they hear said), and phonological decoding (i.e., read aloud a list of words and a list of nonwords), and information about the lexical properties of the words (e.g., word frequency, cloze probability, orthographic neighborhood size, phonological neighborhood size, clustering coefficient, orthographic similarity to other words, which of the

two words is higher frequency).

3.2 Loading in Data

3.2.1 Loading Packages

Before we start wrangling the data, we need to load in the packages we are using. In this lab, most of the data wrangling tools we will be using will be located in the tidyverse() package. What is a package? It is simply a group of functions that group of developers made that makes computations easier. To learn more about the tidyverse package, you may click on this link and read on it! For the data wrangling we will be doing in this section, we will be primarily using a package within tidyverse called dplyr. to load in the package, simply type in the following code. What this code is saying is IF you don't have the tidyverse installed, THEN install the package. After that, load the tidyverse with the library() function.

```
if(!require(tidyverse)){
    install.packages("tidyverse")
}
library(tidyverse)
install.packages("kableExtra")

## Installing package into '/home/travis/R/Library'
## (as 'lib' is unspecified)

library(kableExtra)

##
## Attaching package: 'kableExtra'

## The following object is masked from 'package:dplyr':
##
## group_rows
```

3.2.2 setting the working directory

Now that we have the packages that we need, we need to load up our directory. What is a directory? It is essentially the folder we will be using to read in files, or export files into. In this directory, we have our data set of interest, Topgown_Data

3.2.3 Reading in Data

Now that we have our working directory set we can use the <code>read_csv()</code> function which requires one minimum argument to work which is the name of your <code>.csv</code> file. Here we are setting the variable <code>mydata</code> to the contents within the <code>.csv</code> file. It stores the contents of <code>Topgown_Data.csv</code> in what is called a data frame.

What is a dataframe? it is simply a matrix where each row constitutes a variable (which can be any type you want), and rows are observations.

```
mydata = read_csv("TopGown_Data.csv", skip_empty_rows = TRUE)
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##
     .default = col_double(),
##
    Participants = col_character(),
##
     visual_field = col_character(),
##
     constrained_to = col_character(),
##
     presented_word = col_character(),
##
     predicted_word = col_character(),
     question = col_character(),
##
     correct_answer = col_character(),
##
     Higher_Freq = col_character()
## )
## See spec(...) for full column specifications.
mydata[1:10,] %>% knitr::kable("html") %>%
 kableExtra::kable_styling("striped", full_width = F) %>%
 kableExtra::scroll_box(height = "500px")
X1
Participants
visual_field
constrained\_to
presented\_word
predicted_word
question
correct answer
item_pair
Items
probe position
RT
accuracy
zTOWRE Word
zTOWRE_Nonword
```

 $zSpelling_Dictation$

 $zSpelling_Recogntion$

zAll

zSpell

zTOWRE

 $OrthoN_T$

 $OrthoCC_T$

 $PhonoN_T$

 $\rm Freq_T$

 $Freq_P$

 $OrthoCC_P$

 OLD

 $Higher_Freq$

1

tg011

Fovea

A

cage

cape

NA

NA

19

37

3

2986.73

1

-1.749307

0.071771

-0.0918699

1.155124

-0.1535705

-0.838768

13

0.0000001

17

9.048

8.605

0.0000000

1.10

Target

2

tg011

 ${\bf Parafovea}$

Ν

ache

acne

Were they very frustrated?

Y

83

165

3

4146.67

1

-1.749307

0.071771

-0.0918699

1.155124

-0.1535705

0.531627

-0.838768

3

23

6.741

6.284

1.5000000

1.75

Target

3

tg011

Fovea

A

male

sale

NA

NA

37

73

1

2496.54

1

-1.749307

0.071771

-0.0918699

1.155124

-0.1535705

0.531627

-0.838768

27

0.0000000

59

10.978

0.0000000

1.00

Alternative

4

tg011

Fovea

A

leaf

loaf

NA

NA

70

139

2

1845.46

1

-1.749307

0.071771

-0.0918699

1.155124

-0.1535705

0.531627

-0.838768

9

0.0500000

29

8.861

7.109

0.5000000

1.75

Target

5

tg011

Parafovea

 \mathbf{T}

step

stop

NA

NA

7

14

3

2125.17

1

-1.749307

0.071771

-0.0918699

1.155124

-0.1535705

0.531627

-0.838768

7

0.1666667

11

10.691

11.478

0.0416667

1.50

Alternative

6

tg011

Fovea

Ν

 $\min t$

mind

NA

NA

24

48

4

1415.47

1

-1.749307

0.071771

-0.0918699

1.155124

-0.1535705

0.531627

-0.838768

16

0.0000005

17

11.344

11.784

0.0000001

1.25

Alternative

7

tg011

Parafovea

A

 cast

case

NA

NA

20

40

4

3168.45

1

-1.749307

0.071771

-0.0918699

1.155124

-0.1535705

0.531627

-0.838768

19

0.0000000

28

10.102

12.204

0.0000000

1.00

Alternative

8

tg011

Fovea

A

golf

wolf

NA

NA

76

151

1

3765.47

1

-1.749307

0.071771

-0.0918699

1.155124

-0.1535705

0.531627

-0.838768

4

0.0000000

2

9.254

9.979

0.0000000

1.90

Alternative

9

tg011

Fovea

Ν

mane

maze

NA

NA

3

6

3

1

-1.749307

0.071771

-0.0918699

1.155124

-0.1535705

0.531627

-0.838768

27

0.0000000

59

6.238

8.775

0.0000001

1.25

Alternative

10

tg011

Parafovea

Ν

name

fame

NA

NA

17

33

1

1565.79

1

-1.749307

-0.0918699

1.155124

-0.1535705

0.531627

-0.838768

11

0.0041667

21

12.604

8.714

0.0000000

1.15

Target

3.3 Dplyr() Package

We will now be wrangling this new dataset we imported into R using several dplyr functions. These are the ones we will be covering. In the following sections I will explain what each functions does in detial.

Function	Description
select()	keeps only the variables
	you mention
$\operatorname{arrange}()$	Order table
	rows by an
	expression
	involving its
	variables
filter()	choose
	rows/cases
	where
	conditions are
	true.

Function	Description
	Description
$\mathrm{mutate}()$	adds new
	variables and
	preserves
	existing ones
summarize()	Create new
	variables
	summarizing
	the variables
	of an existing
	table
$group_by()$	takes an
	existing table
	and converts
	it into a
	grouped table
	where
	operations are
	performed
	"by group"

3.3.1 select()

For this particular experiment we have two independent variables of interest: visual_field and constrained_to; and four participant variables of interest: zTOWRE_Word,zTOWRE_Nonword, zSpelling_Dictation,zSpelling_Recogntion. What if we are only interested in these variables, and we don't particularly need word level variables such as ortho_N, or phono_N. We can then select these variables.

For this particular function, the first argument is going to be the dataset of interest. the dataset for we will be selecting from is mydata. The following arguments are simply the columns you would like to keep.

dplyr::select(mydata, Participants, visual_field, constrained_to, zTOWRE_Word,zTOWRE_N

## # A tibble: 14,004 x 7					
##	Participa	nts visual_field	constrained_to	zTOWRE_Word	zTOWRE_Nonword
##	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1 tg011	Fovea	A	-1.75	0.0718
##	2 tg011	Parafovea	N	-1.75	0.0718
##	3 tg011	Fovea	A	-1.75	0.0718
##	4 tg011	Fovea	A	-1.75	0.0718
##	5 tg011	Parafovea	T	-1.75	0.0718
##	6 tg011	Fovea	N	-1.75	0.0718
##	7 tg011	Parafovea	A	-1.75	0.0718

-0.0918699 1.155124 tg011 Foyea

Α

```
## 8 tg011
                    Fovea
                                 Α
                                                       -1.75
                                                                      0.0718
## 9 tg011
                    Fovea
                                                       -1.75
                                                                      0.0718
## 10 tg011
                                 N
                                                       -1.75
                                                                      0.0718
                    Parafovea
## # ... with 13,994 more rows, and 2 more variables: zSpelling_Dictation <dbl>,
## # zSpelling_Recogntion <dbl>
mydata[1:10,] %>% dplyr::select(Participants, visual_field, constrained_to, zTOWRE_Word,zTOWRE_No
  knitr::kable("html") %>%
  kableExtra::kable_styling("striped", full_width = F) %>%
  kableExtra::scroll_box(height = "500px")
Participants
visual field
constrained\_to
zTOWRE\_Word
zTOWRE\_Nonword
zSpelling\_Dictation
zSpelling\_Recogntion
tg011
Fovea
Α
-1.749307
0.071771
-0.0918699
1.155124
tg011
Parafovea
Ν
-1.749307
0.071771
```

-1.749307
0.071771
-0.0918699
1.155124
tg011
Fovea
A
-1.749307
0.071771
-0.0918699
1.155124
tg011
Parafovea
T
-1.749307
0.071771
-0.0918699
1.155124
tg011
Fovea
N
-1.749307
0.071771
-0.0918699
1.155124
tg011
Parafovea

A

-1.749307 0.071771 -0.0918699

tg011

Fovea

Α

-1.749307

0.071771

-0.0918699

1.155124

tg011

Fovea

Ν

-1.749307

0.071771

-0.0918699

1.155124

tg011

Parafovea

Ν

-1.749307

0.071771

-0.0918699

1.155124

3.3.1.1 The Pipe (% > *%)

However, another way I would suggest writing code like this is to use a function in the tidyverse called the pipe (%>%). Like the select() function, the first argument in all tidyverse functions will be your dataset of interest. The pipe simply gets a dataset, and pushes it into the first argument of a function. Here is an example.

mydata %>% dplyr::select(Participants, visual_field, constrained_to, zTOWRE_Word,zTOWRE_Nonword,
 dplyr::select(Participants, visual_field, constrained_to)

```
## # A tibble: 14,004 x 3
##
      Participants visual_field constrained_to
      <chr>
                                <chr>
##
                   <chr>
## 1 tg011
                   Fovea
                                Α
## 2 tg011
                   Parafovea
                                N
## 3 tg011
                   Fovea
                                Α
## 4 tg011
                   Fovea
                                Α
## 5 tg011
                   Parafovea
                                Τ
## 6 tg011
                   Fovea
                                N
## 7 tg011
                   Parafovea
                                Α
## 8 tg011
                   Fovea
                                Α
## 9 tg011
                   Fovea
                                N
## 10 tg011
                   Parafovea
                                N
## # ... with 13,994 more rows
mydata[1:10,] %>% dplyr::select(Participants, visual_field, constrained_to) %>%
  knitr::kable("html") %>%
  kableExtra::kable_styling("striped", full_width = F) %>%
  kableExtra::scroll_box(height = "500px")
Participants
visual\_field
constrained\_to
tg011
Fovea
Α
tg011
Parafovea
Ν
tg011
Fovea
Α
tg011
Fovea
Α
tg011
Parafovea
Τ
```

tg011

Fovea

Ν

tg011

Parafovea

Α

tg011

Fovea

Α

tg011

Fovea

Ν

tg011

Parafovea

Ν

In this regard, the pipe follows simple logic. Once a dataset is manipulated by one function, you pass it to the next function.

3.3.2 arrange()

Let us say that we are interested in the word frequency and orthographic neighborhood size of a particular target word. we can arrange the these variables so we can display the most frequent words going in ascending order, and the words with the smallest orthographic neighborhood size in descending order.

Methods

We describe our methods in this chapter.

Applications

Some significant applications are demonstrated in this chapter.

- 5.1 Example one
- 5.2 Example two

Final Words

We have finished a nice book.