Analysis Qualifying Exam - Fall 2011 Burckel and Reznikoff

Instructions: Do all ten problems. Start each problem on a separate page and clearly indicate the problem number. In a multiple-part problem, a solution to a later part of the problem that uses a result from an earlier part may still earn full credit even if the earlier part was not done successfully.

Notation: $\mathbb{N} = \{1, 2, \ldots\}$, $\mathbb{R} =$ the set of reals, $\mathbb{C} =$ the set of complexes, $D(a,r) = \{z \in \mathbb{C} : |z-a| < r\}$ for $a \in \mathbb{C}$, r > 0, $\mathbb{D} = D(0,1)$, U = a non-empty open subset of \mathbb{C} , H(U) = the set of all holomorphic (i.e., analytic) functions on U. By λ_1 we denote Lebesgue measure on \mathbb{R} and by λ_2 Lebesgue measure on \mathbb{R}^2 .

1. The function L is defined in $\mathbb{C}_{-} := \mathbb{C} \setminus (-\infty, 0]$ by

$$L(z) := \int_{[1,z]} \frac{1}{\xi} d\xi$$
, that is, $\int_0^1 \frac{z-1}{1+t(z-1)} dt$.

Prove that L is holomorphic and $L'(z_0) = 1/z_0$ for all $z_0 \in \mathbb{C}_-$.

- 2. (a) Show that if f is holomorphic and zero-free in Ω and f'/f has a primitive (i.e., is the derivative of some $F \in H(\Omega)$), then f has a holomorphic logarithm. In fact, there is a $c \in \mathbb{C}$ such that $f = e^{c+F}$.
- 3. Prove that if $f(z) := \sum_{n=0}^{\infty} c_n z^n$ converges in \mathbb{D} and the zeros of f accumulate at 0, then f = 0 (i.e., all $c_n = 0$).
- 4. Use the Residue Theorem to integrate the rational function

$$R(z) := \frac{z^2 - z + 2}{z^4 + 10z^2 + 9}$$

over \mathbb{R} .

- 5. Prove that a Hilbert space is separable if and only if every orthonormal basis is countable.
- 6. Suppose $f_n \in H(U)$ for each $n \in \mathbb{N}$ and $\lim_{n\to\infty} f_n = f_0$ locally uniformly in U.

- (a) Show that f_0 is continuous in U.
- (b) Use Cauchy's integral formula for a circle to show that f_0 is holomorphic in each $D(a,r) \subseteq U$ (i.e., holomorphic in U) and that $f'_n \to f'_0$ locally uniformly in U.
- 7. (a) State the Dominated Convergence Theorem.
 - (b) State Fatou's Lemma.
 - (c) Let $\{f_k\}$ be a sequence of nonnegative measurable functions on the measure space (X, \mathcal{M}, μ) . Suppose that $f_k \to f$ on X and $f_k \leq f$ μ -a.e. on X. Prove that $\int_X f_k d\mu \to \int_X f d\mu$.
- 8. Suppose $1 \le q .$
 - (a) Prove the inclusion $L^p([0,1],\lambda_1) \subset L^q([0,1],\lambda_1)$.
 - (b) Give an example to show that the inclusion in part (8a) is strict.
 - (c) Give an example of a measure space (X, \mathcal{M}, μ) for which one has the inclusion $L^q(X, \mathcal{M}, \mu) \subseteq L^p(X, \mathcal{M}, \mu)$. Is the inclusion strict in this case?
- 9. (a) Show that if $\int_X |f| d\mu = 0$, then f = 0 μ -a.e. on X.
 - (b) Let E be a λ_2 -measurable subset of \mathbb{R}^2 such that for λ_1 -a.e. $x \in \mathbb{R}$, $E_x := \{y \mid (x,y) \in E\}$ has λ_1 measure zero. Show that E itself has λ_2 measure zero and that for λ_1 -almost every $y \in \mathbb{R}$, the set $E^y := \{x \in \mathbb{R} \mid (x,y) \in E\}$ has λ_1 measure zero.
- 10. Let E_j , j = 1, ..., n be λ_1 -measurable subsets of [0, 1]. Assume that for some positive integer $q \leq n$ each $x \in [0, 1]$ belongs to at least q of the sets E_j . Prove that there exists j such that $\lambda_1(E_j) \geq q/n$.
- 11. Let E be a λ_1 set of positive measure. Show that for every $\alpha < 1$ there is an open interval $I = I(\alpha)$ such that $\lambda_1(E \cap I) > \alpha \lambda_1(I)$.