Ej 1. Pruebe que en una categoría \mathscr{C} , vale lo siguiente

- a) La composición de monomorfismos (epimorfismos) es un monomorfismo (epimorfismo).
- b) Todo split-epi (split-mono) es un epimorfismo (monomorfismo).
- c) $fg \text{ mono} \Rightarrow g \text{ es mono.}$
- d) $fg \text{ epi} \Rightarrow f \text{ es epi.}$
- e) f es iso $\Rightarrow f$ es epi y mono.
- f) f es iso \iff f es split-mono y split-epi.

Demostración. Sea $\mathscr C$ una categoría.

a) Supongamos que $f: A \longrightarrow B$ y $g: B \longrightarrow C$ son monomorfismos y que para todo $\alpha, \beta \in Mor(\mathscr{C})$ se tiene que que $gf\alpha = gf\beta$, entonces considerando a los morfismos $f\alpha$ y $f\beta$ tenemos que, como g es mono, $f\alpha = f\beta$, análogamente, como f es mono, entonces $\alpha = \beta$ por lo que gf es mono.

Ahora supongamos que $f: A \longrightarrow B$ y $g: B \longrightarrow C$ son epimorfismos y que para toda $\alpha, \beta \in Mor(\mathscr{C})$ se tiene que que $\alpha gf = \beta gf$. Como f es epi, entonces $\alpha g = \beta g$ y por ser g epi $\alpha = \beta$ por lo tanto gf es epi.

b) Supongamos $f: A \longrightarrow B$ es split-epi, entonces existe $f': B \longrightarrow A$ tal que $ff' = 1_B$ así, si $h, g \in Mor(\mathscr{C})$ son tales que hf = gf entonces hff' = gff', es decir, $h1_B = g1_b$ y por lo tanto h = g. Entonces f es epi.

Supongamos ahora que $f:A\longrightarrow B$ es split-mono, entonces existe $f'\colon B\longrightarrow A$ tal que $f'f=1_A$ así, si $h,g\in Mor(\mathscr{C})$ son tales que fh=fg entonces f'fh=f'fg, es decir, $1_Ah=1_Ag$ y por lo tanto h=g. Entonces f es mono.

- c Supongamos fg es mono con $f,g \in Mor(\mathscr{C})$, entonces para todo $k,h \in Mor(\mathscr{C})$, si gk = gh se tiene que fgk = fgh y como fg es mono entonces k = h por lo tanto g es mono.
- d) Supongamos fg es epi con $f, g \in Mor(\mathscr{C})$, entonces para todo $k, h \in Mor(\mathscr{C})$, si kf = hf se tiene que kfg = hfg y como fg es epi entonces k = h por lo tanto f es epi.
- f) Supongamos que $f \colon A \longrightarrow B$ es iso, entonces

 $\exists g \colon B \longrightarrow A \quad \text{tal que} \quad fg = 1_B, \ gf = 1_A,$ entonces $\exists g \colon B \longrightarrow A \quad \text{tal que} \quad fg = 1_B$ y $\exists g \colon B \longrightarrow A \quad \text{tal que} \quad gf = 1_A$ por lo que f es split-epi y f es split-mono.

Ahora supongamos que $f:A\longrightarrow B$ es split-mono y split-epi. Entonces existen $g_1\colon B\longrightarrow A$ y $g_2\colon B\longrightarrow A$ tales que $fg_1=1_B$ y $g_2f=1_A$. Como $fg_1=1_B$ entonces aplicando g_2 por la izquierda se tiene que $g_2fg_1=g_21_B$, así $1_Ag_1=g_21_B$. Por lo tanto $g_1=g_2$ y así f es iso.

e) Este inciso es consecuencia de f) y b).

- **Ej 2.** Para $f: A \longrightarrow B$ en una categoría \mathscr{C} , pruebe que:
 - a) f es un monomorfismo $\iff \forall X \in \mathscr{C}$, $Hom_{\mathscr{C}}(X,f): Hom_{\mathscr{C}}(X,A) \longrightarrow Hom_{\mathscr{C}}(X,B)$ es inyectivo.
 - b) f es un epimorfismo $\iff \forall X \in \mathscr{C}$, $Hom_{\mathscr{C}}(f,X): Hom_{\mathscr{C}}(B,X) \longrightarrow Hom_{\mathscr{C}}(A,X)$ es suprayectivo.

 $\begin{array}{ll} \textit{Demostraci\'on.} & \boxed{a)} \text{ Supongamos } f \text{ es mono y sean } A, B, X \in \mathscr{C}. \text{ Si} \\ g \in Hom_{\mathscr{C}}(X,A) \text{ entonces } fg \in Hom_{\mathscr{C}}(X,B). \\ \text{Ahora, si } Hom_{\mathscr{C}}(X,f)(\alpha) = Hom_{\mathscr{C}}(X,f)(\beta) \text{ para } \alpha,\beta \in Hom_{\mathscr{C}}(X,A), \\ \text{entonces } f\alpha = f\beta, \text{ pero } f \text{ es mono, así } \alpha = \beta \text{ y por lo tanto } Hom_{\mathscr{C}}(X,f) \\ \text{es inyectivo.} \end{array}$

Supongamos ahora que $Hom_{\mathscr{C}}(X,f)$ es inyectivo para toda $X \in \mathscr{C}$. Si $\alpha\beta \in Mor(\mathscr{C})$ son tales que $f\alpha = f\beta...(1)$ entonces $\exists X \in \mathscr{C}$ tal que $\alpha, \beta \in Hom_{\mathscr{C}}(X,A)$ más aun, (1) implica que $Hom_{\mathscr{C}}(X,f)(\alpha) = Hom_{\mathscr{C}}(X,f)(\beta)$ y como $\forall X \in \mathscr{C}$, $Hom_{\mathscr{C}}(X,f)$ es inyectivo, entocnes $\alpha = \beta$ por lo tanto f es mono.

b) Supongamos f es epi y sean $A, B, X \in \mathscr{C}$. Si $Hom_{\mathscr{C}}(f, X)(\alpha) = Hom_{\mathscr{C}}(f, X)(\beta)$ con $\alpha, \beta \in Hom_{\mathscr{C}}(B, X)$, entonces $\alpha f = \beta f$, pero f es epi, así $\alpha = \beta$ y por lo tanto $Hom_{\mathscr{C}}(f, X)$ es inyectivo.

Supongamos ahora que $Hom_{\mathscr{C}}(f,X)$ es inyectivo para toda $X \in \mathscr{C}$. Si $\alpha\beta \in Mor(\mathscr{C})$ son tales que $\alpha f = \beta f...(2)$ entonces $\exists X \in \mathscr{C}$ tal que $\alpha, \beta \in Hom_{\mathscr{C}}(A,X)$ más aun, (2) implica que $Hom_{\mathscr{C}}(f,X)(\alpha) = Hom_{\mathscr{C}}(f,X)(\beta)$ y como $\forall X \in \mathscr{C}$, $Hom_{\mathscr{C}}(f,X)$ es inyectivo, entocnes $\alpha = \beta$ por lo tanto f es epi.

Ej 3. Sea $f: A \to B$ en una categoría \mathscr{C} , así:

a) si f es un split-epi y monoformismo, entonces f es un isomorfismo;

b) si $F:\mathscr{C}\to\mathscr{D}$ es un funtor y f es un isomorfismo, split-mono o split-epi, entonces F(f) también lo es.

Demostración. (a) Como f es un split-epi $\exists g \in Hom_{\mathscr{C}}(B,A)$ tal que $fg = 1_B$. Notemos que

$$f(gf) = (fg) f = 1_B f = f = f1_A$$

 $\implies gf = 1_A,$ f es mono
 $\therefore f$ es un isomorfismo.

b) Supongamos que f es un split-mono, entonces $\exists g: B \to A$ en $\mathscr C$ tal que $gf = 1_A$, con lo cual $Ff: FA \to FB, Fg: FB \to FA$ en $\mathscr D$ y

$$F(g) F(f) = F(gf) = F(1_A) = 1_{F(A)}$$

 $\Longrightarrow F(f)$ es un split-mono.

Supongamos ahora que f es un split-epi, luego $\exists g: B \to A$ en $\mathscr C$ tal que $fg = 1_B$, con lo cual $Ff: FA \to FB, Fg: FB \to FA$ en $\mathscr D$ y

$$F(f) F(g) = F(fg) = F(1_B) = 1_{F(B)}$$

 $\Longrightarrow F(f)$ es un split-epi.

De lo anterior, en conjunto a la equivalencia dada en el Ej. 1 (f), se sigue que si f es un isomorfismo en $\mathscr C$ entonces F(f) lo es en $\mathscr D$.

Ej 4. Sean A y B categorías.

- a) Sea $\eta \in Nat_{[\mathscr{A},\mathscr{B}]}(F,G)$. Si $\forall A \in \mathscr{A} \ \eta_A : FA \to GA$ es un isomorfismo en $\mathscr{B} \ y \ \eta^{-1} := \left\{ \left(\eta^{-1} \right)_A \right\}_{A \in \mathscr{A}}, \ \operatorname{con} \left(\eta^{-1} \right)_A := \left(\eta_A \right)^{-1}, \ \operatorname{entonces} \ \eta^{-1} \in Nat_{[\mathscr{A},\mathscr{B}]}(G,F).$
- b) Si $\eta \in Nat_{[\mathscr{A},\mathscr{B}]}(F,G)$, $\rho \in Nat_{[\mathscr{A},\mathscr{B}]}(G,H)$ entonces la composición de transformaciónes naturales, con $\rho\eta$ dada por $(\rho\eta)_A := \rho_A \circ \eta_A$ $\forall \ A \in \mathscr{A}$, es una operación asociativa.
- c) Si $T \in [\mathscr{A}, \mathscr{B}]$ y $1_T : T \to T$ está dada por $(1_T)_A := 1_{T(A)} \ \forall \ A \in \mathscr{A}$, entonces $1_T \in Nat_{[\mathscr{A},\mathscr{B}]}(T,T)$.
- d) Si $\alpha \in Nat_{[\mathscr{A},\mathscr{B}]}(F,G)$, entonces

$$\alpha 1_F = \alpha = 1_G \alpha.$$

Demostración. a) Dado que $\forall A \in \mathscr{A} \eta_A : FA \to GA$ es un isomorfismo en \mathscr{B} , se tiene que $(\eta_A)^{-1} \in Hom_{\mathscr{B}}(GA, FA)$ y que si $\alpha : A \to A'$ está en \mathscr{A} , entonces

$$G(\alpha) \eta_{A} = \eta_{A'} F(\alpha), \qquad \eta \in Nat_{[\mathscr{A},\mathscr{B}]}(F,G)$$

$$\Longrightarrow F(\alpha) (\eta_{A})^{-1} = (\eta_{A'})^{-1} G(\alpha).$$

Así $\eta^{-1}:G\to F$ es una transformación natural, pues lo anterior garantiza que el siguiente diagrama conmuta

$$G(A) \xrightarrow{(\eta_A)^{-1}} F(A)$$

$$G(\alpha) \downarrow \qquad \qquad \downarrow F(\alpha) \cdot$$

$$G(A') \xrightarrow[(\eta_{A'})^{-1}]{} F(A')$$

b) Notemos que $\forall A \in \mathscr{A}$ se tiene que $\rho_A \eta_A \in Hom_{\mathscr{B}}(F(A), G(A))$. Además si $\alpha : A \to A'$ está en \mathscr{A} , por ser η y ρ transformaciones naturales, se tiene que $G(\alpha) \eta_A = \eta_{A'} F(\alpha)$ y $H(\alpha) \rho_A = \rho_{A'} G(\alpha)$, con lo cual

$$H(\alpha)(\rho_{A}\eta_{A}) = (H(\alpha)\rho_{A})\eta_{A} = (\rho_{A'}G(\alpha))\eta_{A}$$
$$= \rho_{A'}(G(\alpha)\eta_{A}) = \rho_{A'}(\eta_{A'}F(\alpha))$$
$$= (\rho_{A'}\eta_{A'})F(\alpha),$$

de modo que el siguiente diagrama conmuta

$$F(A) \xrightarrow{\rho_{A}\eta_{A}} H(A)$$

$$F(\alpha) \downarrow \qquad \qquad \downarrow_{G(\alpha)},$$

$$F(A') \xrightarrow{\rho_{A'}\eta_{A'}} H(A')$$

y por lo tanto $\rho \eta : F \to H$ es una tranformación natural.

Verificaremos ahora que la composición de transformaciones naturales es asociativa. Si ρ y η están dados como al comienzo, $I \in [\mathscr{A}, \mathscr{B}]$ y $\chi: H \to I$ es una transformación natural, entonces si $A \in \mathscr{A}$

$$\chi_A (\rho_A \eta_A) = (\chi_A \rho_A) \eta_A \in (\chi \rho) \eta,$$

$$\Longrightarrow \chi (\rho \eta) \subseteq (\chi \rho) \eta.$$

En forma análoga se verifica la otra contención, y así se tiene que $\chi\left(\rho\eta\right)=\left(\chi\rho\right)\eta$.

c) Si $\alpha: A \to A'$ está en \mathscr{A} , entonces

$$T(\alpha) 1_{T(A)} = T(\alpha)$$
$$= 1_{T(A')} T(\alpha),$$

luego

$$T(A) \xrightarrow{1_{T(A)}} T(A)$$

$$T(\alpha) \downarrow \qquad \qquad \downarrow T(\alpha)$$

$$T(A') \xrightarrow{1_{T(A')}} T(A')$$

conmuta, y por tanto $1_T:T\to T$ es una transformación natural.

d Se tiene que $\forall A \in \mathscr{A} \ \alpha_A 1_{F(A)} = \eta_A$, con lo cual $(\alpha 1_F)_A = \alpha_A$ y por tanto $\alpha 1_F = \alpha$. Análogamente se verifica que $1_G \alpha = \alpha$.

Ej 5. Sea $F: \mathscr{A} \longrightarrow \mathscr{B}$ funtor. Pruebe que F es una equivalencia si y sólo si F es fiel, pleno y denso.

Demostración. \Longrightarrow Supongamos F es equivalencia, entonces existe $G\colon \mathscr{B}\longrightarrow \mathscr{A}$ tal que existen isomorfismos $\psi\colon GF\longrightarrow 1_\mathscr{A}$ y $\varphi\colon 1_\mathscr{B}\longrightarrow FG$.

Fiel:

Sean $X,Y\in\mathscr{A}$ y consideremos que $F\colon Hom_{\mathscr{A}}(X,Y)\longrightarrow Hom_{\mathscr{B}}(FX,FY)$. Supongamos que existen $g,h\in Hom_{\mathscr{A}}(X,Y)$ tales que F(g)=F(h), entonces G(F(g))=G(F(h)). Primero observamos que, si $Hom_{\mathscr{A}}(X,Y)=\emptyset$, entonces F es mono en la categoría Sets por vacuidad.

Ahora, si $Hom_{\mathscr{A}}(X,Y) \neq \emptyset$, entonces dado $\alpha \colon A \longrightarrow A'$ en \mathscr{A} se tiene que, por ser F equivalencia, el siguiente diagrama conmuta:

$$GF(A) \xrightarrow{\psi_A} A$$

$$GF(\alpha) \downarrow \qquad \qquad \downarrow \alpha$$

$$GF(A') \xrightarrow{\psi_{A'}} A'$$

es decir, $\alpha \psi_A = \psi_{A'} GF(\alpha)$. Por lo tanto $\alpha = \psi_{A'} GF(\alpha) \psi_A^{-1}$.

Entonces $g = \phi_Y GF(g)\psi_X = \phi_Y GF(h)\psi_X = h$, por lo que F es fiel. Observese que Análogamente se demuestra que G es un funtor fiel.

Pleno:

Supongamos $Hom_{\mathscr{B}}(F(X), F(Y)) = \emptyset$, entonces $Hom_{\mathscr{A}}(X, Y) = \emptyset$, por lo que F es la función vacia, la cual es vacia pues cada que $\alpha f = \beta F$ se tiene que $\alpha = \beta = \emptyset$ la función vacia.

Ahora, si $Hom_{\mathscr{B}}(F(X), F(Y)) \neq \emptyset$ podemos considerar a $h \in Hom_{\mathscr{B}}(F(X), F(Y))$, entonces $G(h) \in Hom_{\mathscr{A}}(X, Y)$ y es tal que los siguientes diagramas conmutan:

$$GF(X) \xrightarrow{\psi_X} X \xrightarrow{\psi_X^{-1}} GF(X)$$

$$G(h) \downarrow \qquad \qquad \downarrow \alpha \qquad \qquad \downarrow GF(\alpha)$$

$$GF(Y) \xrightarrow{\psi_Y} Y \xrightarrow{\psi_Y^{-1}} GF(Y)$$

entonces $G(h) = GF(\alpha)$, pero G es fiel, entonces $h = F(\alpha)$ y por lo tanto F es pleno.

⇐ Supongamos F es fiel, pleno y denso.

Entonces F es mono y epi en Sets, así para cada $X, Y \in \mathcal{A}$,

 $F: Hom_{\mathscr{A}}(X,Y) \longrightarrow Hom_{\mathscr{B}}(F(X),F(Y))$ es mono y epi en Sets, por lo tanto es isomorfismo en Sets para cada $X,Y \in \mathscr{A}$.

Ahora, como F es denso, para toda $B \in \mathcal{B}$ existe $A \in \mathcal{A}$ tal que $F(A) \cong B$, así para cada $B \in \mathcal{B}$ podemos fijar un obgeto $G(B) \in \mathcal{A}$ y un isomorfismo $\gamma_B \colon F(A) \longrightarrow B$.

Así para cada $B \xrightarrow{\beta} B'$ en \mathscr{B} , se tiene que el siguiente diagrama conmuta:

$$B \xrightarrow{\gamma_B^{-1}} FG(B) = F(A)$$

$$\beta \downarrow \qquad \qquad \downarrow^{\alpha}$$

$$B' \xrightarrow{\gamma_{B'}^{-1}} FG(B') = F(A')$$

donde $\alpha = \gamma_{B'}^{-1} \beta \gamma_B$. Así $\alpha \colon FG(B) \longrightarrow FG(B')$.

Como $F: Hom_{\mathscr{A}}(A, A') \longrightarrow Hom_{\mathscr{B}}(F(A), F(A'))$ es iso, existe un único morfismo $G(\beta): G(B) \longrightarrow G(B')$ tal que $\gamma_{B'}^{-1}\beta\gamma_B = F(G(\beta))$. En otras palabras para cada $\beta: B \longrightarrow B'$ existe un único morfismo

 $G(\beta) \colon G(B) \longrightarrow G(B')$ en $\mathscr A$ tal que el siguiente diagrama conmuta

$$B \xrightarrow{\gamma_B^{-1}} FG(B)$$

$$\beta \downarrow \qquad \qquad \downarrow_{F(G(\beta))} \qquad \dots (1)$$

$$B' \xrightarrow{\gamma_{B'}^{-1}} FG(B')$$

Ahora veamos que G es funtor.

Tomando $\beta = 1_B$ en el diagrama (1) se tiene que existe un único $G(1_B): G(B) \longrightarrow G(B')$ tal que $FG(1_B) = 1_B$, pero como F es pleno, entonces $G(1_B) = 1_{G(B)}$.

Para probar que G preserva la composición tomaremos $\beta\colon B\longrightarrow B'$ y $\alpha\colon B'\longrightarrow B''$ morfismos en $\mathscr{B},$ como F es fiel y pleno existe un único morfismo $G(\alpha\beta)\colon G(B)\longrightarrow G(B'')$ en \mathscr{A} tal que

 $\gamma_{B''}(\alpha\beta)\gamma_B^{-1} = F(G(\alpha\beta))$; pero también se tiene que $\gamma_B(\alpha\beta)\gamma^{-1} = F(G\alpha))F(G(\beta))$. Por lo que $F(G(\alpha\beta)) = F(G(\alpha))F(G(\beta)) = F(G(\alpha)G(\beta))$. Y como F es fiel, $G(\alpha\beta) = G(\alpha)G(\beta)$, por lo que $G: \mathscr{B} \longrightarrow \mathscr{A}$ es funtor.

Por el diagrama (1) se puede apreciar que $\gamma = \{\gamma_{\beta} \colon B \longrightarrow FG(B)\}$, $(\gamma \colon 1_{\mathscr{B}} \longrightarrow FG)$ es una equivalencia natural. Entonces para cada $A \in \mathscr{A}$ se tiene el isomorfismo $\gamma_{F(A)} \colon F(A) \longrightarrow FGF(A)$ en \mathscr{B} ; en particular, como F es fiel, existe $\psi_A' \colon A \longrightarrow GF(A)$ tal que $F(\psi_A') = \gamma_{F(A)}$. Por otro lado, como $\gamma_{F(A)}$ es un isomorfismo, entonces existe $\gamma_{F(A)}^{-1} \colon FGF(A) \longrightarrow F(A)$ tal que $\gamma_{F(A)}^{-1} \gamma_{F(A)} = 1_{F(A)}$. Y como F es pleno, existe $\psi_A \colon GF(A) \longrightarrow A$ tal que $F(\psi_A) = \gamma_{F(A)}^{-1}$. Por lo tanto

 $F(\psi_A\psi_A')=1_{F(A)}$; y como F es fiel, entonces $\psi_A\psi_A'=1_A$ Análogamente $\psi_A'\psi_A=1_{GF(A)}$ por lo que ψ_A es isomorfismo.

Por último veamos que el siguiente diagrama

$$GF(A) \xrightarrow{\psi_A} A$$

$$GF(\alpha) \downarrow \qquad \qquad \downarrow \alpha \qquad \dots (2)$$

$$GF(A') \xrightarrow{\psi_{A'}} A'$$

conmuta en A.

En efecto, aplicando F al diagrama anterior obtenemos que

$$FGF(A) \xrightarrow{F(\psi_A)} F(A)$$

$$FGF(\alpha) \downarrow \qquad \qquad \downarrow F(\alpha)$$

$$FGF(A') \xrightarrow{F(\psi_{A'})} F(A')$$

Como $F(\psi_A) = \gamma_{F(A)}^{-1}$ y $F(\psi_{A'}) = \gamma_{F(A')}^{-1}$, reemplazando a β del diagrama (1) por $F(\alpha)$, obtenemos que el diagrama anterior conmuta. Peo F es fiel, entonces el diagrama (2) conmuta y así $\psi \colon GF \longrightarrow 1_{\mathscr{A}}$ es una equivalencia natural.

Ej 6. Sea \leq un preorden en una clase X. Pruebe que:

- a) La relación \sim inducida por \leq , $(a \sim b \iff (a \leq b \text{ y } b \leq a))$ es una relación de equivalencia en X.
- b) Considere la clase cociente $X/\sim := \{[x] \mid x \in X\}$, donde $[x] := \{y \in X \mid x \sim y\}$. Pruebe que el preorden \leq en X induce un orden parcial en X/\sim dado por $[x] \leq [y] \iff x \leq y$.

Reflexividad:

Como a = a entonces $a \le a$, por lo que $a \sim a$.

Simetría

Supongamos $a \sim b$ entonces $a \leq b$ y $b \leq a$, entonces $b \leq a$ y $a \leq b$ y por lo tanto $b \sim a$.

Transitividad:

Supongamos $a \sim b$ y $b \sim c$, entonces $a \leq b, b \leq a, b \leq c$ y $c \leq b$. En

particular, como \leq es preorden, $a \leq b \leq c$ y $c \leq b \leq a$, es decir, $a \leq c$ y $c \leq a$ por lo tanto $a \sim c$ y en consecuencia \sim es de equivalencia.

b) Buena definición:

Sean $a \in [x]$ y $b \in [y]$ con $x, y \in X$, en particular $a \le x, y \le b$. Si $[x] \le [y]$ entonces $a \le x \le y \le b$ por lo tanto $a \le b$. Y se tiene que la relación está bien definida.

Reflexividad:

Como $a \le a$ en X, pues $a \sim a$, entonces $[a] \le [a]$.

Transitividad:

Supongamos $[x] \leq [y]$ y $[y] \leq [z]$. Entonces $x \leq y$ y $y \leq z$, pero \leq es transitiva en X, entonces $x \leq z$ y así $[x] \leq [z]$.

Ej 7. Si los siguientes diagramas conmutativos en una categoría $\operatorname{\mathscr{C}}$

$$\begin{array}{cccc} P & \xrightarrow{\beta_2} & A_2 & P' & \xrightarrow{\beta_2'} & A_2 \\ \downarrow^{\beta_1} & & \downarrow^{\alpha_2} & \downarrow^{\alpha_1} & & \downarrow^{\alpha_2} \\ A_1 & \xrightarrow{\alpha_1} & A & A_1 & \xrightarrow{\alpha_1} & A \end{array}$$

son pull-backs, entonces $\exists \ \gamma: P \to P'$ en $\mathscr C$ un isomorfismo tal que $\beta_i=\beta_i'\gamma, \ \forall \ i\in [1,2].$

Demostración. Por la propiedad universal del pull-back aplicada a P', se tiene el siguiente diagrama conmutativo

mientras que la propiedad universal del pull-back aplicada a P grantiza que el siguiente diagrama conmuta

Así

$$\beta_{1} (\gamma' \gamma) = (\beta'_{1}) \gamma$$

$$= \beta_{1},$$

$$\beta_{2} (\gamma' \gamma) = (\beta'_{2}) \gamma$$

$$= \beta_{2},$$

$$(*)$$

de modo que los diagramas

y por lo tanto, empleando la propiedad universal del pull-back para P, se tiene que $\gamma'\gamma=1_P$. En forma análoga, empleando ahora la propiedad universal del pull-back para P', se verifica que $\gamma\gamma'=1_{P'}$, de modo que $\gamma:P\to P'$ es un isomorfismo en $\mathscr C$. Con lo anterior y (*) se tiene lo deseado.

Ej 8. Sea el siguiente diagrama conmutativo en una categoría $\mathscr C$

$$P \xrightarrow{\beta_2} A_2$$

$$\downarrow^{\beta_1} \qquad \qquad \downarrow^{\alpha_2}$$

$$A_1 \xrightarrow{\alpha_1} A$$

un pull-back, entonces

- a) si α_1 es un monomorfismo, entonces β_2 también lo es;
- b) β_2 es un split-epi si y sólo si α_2 se factoriza a través de α_1 .

Demostraci'on. [a) Supongamos que α_1 es un monomorfismo y que $f,g: B \to P$ son morfismos en $\mathscr C$ tales que $\beta_2 f = \beta_2 g$. Notemos primeramente que así

$$\alpha_1 (\beta_1 f) = (\alpha_2 \beta_2) f = \alpha_2 (\beta_2 g) = (\alpha_1 \beta_1) g$$

$$= \alpha_1 (\beta_1 g)$$

$$\Rightarrow \beta_1 f = \beta_1 g, \qquad \alpha_1 \text{ es un mono}$$

con lo cual se tiene el siguiente diagrama conmutativo

y así la propiedad universal del pull-back garantiza que f=g, con lo cual β_2 es un mono.

 $b) \implies$ Dado que β_2 es un split-epi $\exists \gamma: A_2 \to P$ tal que $\beta_2 \gamma = 1_{A_2}$, así

$$\begin{aligned} \alpha_1 \left(\beta_1 \gamma \right) &= \left(\alpha_2 \beta_2 \right) \gamma = \alpha_2 \left(1_{A_2} \right) \\ &= \alpha_2, \end{aligned}$$

 $\Longrightarrow \alpha_2$ se factoriza a través de α_1 .

b) \Leftarrow Se tiene que $\exists \alpha : A_2 \to A_1$ en $\mathscr C$ tal que $\alpha_2 = \alpha_1 \alpha$, con lo cual a partir de la propiedad universal del pull-back se obtiene el siguiente diagrama conmutativo

del cual se deduce que en partícular $\beta_2 \gamma = 1_{A_2}$, y así se tiene lo deseado.

 \mathbf{Ej} 9. Supongamos que los dos cuadrados del siguiente diagrama en una categoría $\mathscr C$ conmutan

$$P \xrightarrow{g} B' \xleftarrow{\alpha_2} Q$$

$$\downarrow_{\beta_1} \qquad \downarrow_{\theta_1} \qquad \downarrow_{\theta_2}$$

$$A \xrightarrow{f} B \xleftarrow{\gamma_2} I$$

Pruebe que: si θ_1 y γ_2 son monomorfismos en $\mathscr C$ y existe $\gamma_1\colon A\longrightarrow I$ tal que $f=\gamma_2\gamma_1$, entonces existe $\alpha_1\colon P\to Q$ tal que $\alpha_2\alpha_1=g$ y el siguiente diagrama es un pull-back

$$P \xrightarrow{\alpha_1} Q$$

$$\beta_1 \downarrow \qquad \qquad \downarrow \theta_2$$

$$A \xrightarrow{\gamma_1} I$$

Demostración. Como los diagramas del enunciado conmutan, entonces

$$\theta_1 \alpha_2 = \alpha_2 \theta_2$$
, $\theta_1 g = f \beta_1$.

Ahora, como $f=\gamma_2\gamma_1$ se tiene que $\gamma_2\gamma_1\beta_1=f\beta_1$ asi el siguiente diagrama conmuta:

$$P \xrightarrow{g} B'$$

$$\uparrow_{1}\beta_{1} \downarrow \qquad \qquad \downarrow_{\theta_{1}}$$

$$I \xrightarrow{\gamma_{2}} B$$

Pero Q es pull-back de $I \xrightarrow{\gamma_2} B \xleftarrow{\theta_1} B'$ por lo que existe un único $\alpha_1 \colon P \longrightarrow Q$ tal que $g = \alpha_2 \alpha_1$ y $\gamma_1 \beta_1 = \theta_2 \alpha_1$. veamos ahora que el diagrama

$$P \xrightarrow{\alpha_1} Q$$

$$\beta_1 \downarrow \qquad \qquad \downarrow \theta_2$$

$$A \xrightarrow{\gamma_1} I$$

es un pull-back.

Supongamos que tenemos el siguiente diagrama

tal que $\gamma_1 k_2 = \theta_2 k_1$.

Como $K \xrightarrow{k_2} A$ y $K \xrightarrow{\alpha_2 k_1} B'$ cumple que $fk_2 = \gamma_2 \gamma_1 k_2$ y $\theta_1 \alpha_2 k_1 = \gamma_2 \theta_2 k_1$.

Entonces como $\theta_2 k_1 = \gamma_1 k_2$, tenemos que $f k_2 = \theta_1 \alpha_2 k_1$.

Así el siguiente diagrama conmuta:

$$\begin{array}{c} K \xrightarrow{\alpha_2 k_1} B' \\ \downarrow^{k_2} \downarrow & \downarrow^{\theta_1} \\ A \xrightarrow{f} B \end{array}$$

Pero P es un pull-back, por lo tanto existe un único $\eta: K \longrightarrow P$ tal que $\beta_1 \eta = k_2$ y $g\eta = \alpha_2 k_1$, entonces $\alpha_2 \alpha_1 \eta = \alpha_2 k_1$ y dado que γ_2 es mono y Q pull-back, se tiene que α_2 es mono y $\alpha_1 \eta = k_1$.

Además, si $\gamma \colon K \longrightarrow P$ es tal que $\beta_1 \gamma = k_2$ y $g \gamma = \alpha_2 k_1$, entonces $\beta_1 \gamma = \beta_1 \eta$ y puesto que θ_1 es mono y P pullback, entonces β_1 es mono y $\gamma = \eta$. Por lo tanto η es único hasta isomorfismos y en consecuencia P es pull-back de $Q \xrightarrow{\alpha_1} I \xleftarrow{\gamma_1} A$.

Ej 10. Defina la noción dual del pull-back (i.e. push-out) y pruebe que el push-out, de existir, es único hasta isomorfismos.

Demostración. Recordemos la definición del pull-back:

Definición. Sean $\alpha_1\colon A_1\longrightarrow A$ y $\alpha_2\colon A_2\xrightarrow{}A$ morfismos en una categoría $\mathscr C$. Un pull-back para $A_1\xrightarrow{\alpha_1}A\xleftarrow{\alpha_2}A_2$ es un diagrama conmutativo en $\mathscr C$

$$P \xrightarrow{\beta_2} A_2$$

$$\downarrow^{\beta_1} \qquad \qquad \downarrow^{\alpha_2}$$

$$A_1 \xrightarrow{\alpha_1} A$$

Que satisface la siguiente propiedad universal:

 $\forall \beta_2' \colon P' \longrightarrow A_2, \ \forall \beta_1' \colon P \longrightarrow A_1 \ \text{tal que} \ \alpha_2 \beta_1' = \alpha_1 \beta_1', \text{ se tiene que} \ \exists ! \ \gamma : P' \to P \ \text{tal que} \ \beta_1' = \beta_1 \gamma \ y \ \beta_2' = \beta_2 \gamma.$ Diagramaticamente se vé como sigue:

Así el concepto de pull-back en la categoría opuesta se puede abreviar de la siguiente manera:

- a) $\exists \beta_1^{op}: A_1 \to P, \beta_2^{op}: A_2 \to P$ tales que $\alpha_1^{op}\beta_1^{op} = \alpha_2^{op}\beta_2^{op}$.
- b) $\forall P' \in \mathscr{C} \text{ y } \forall \beta_1^{\prime op} : A_1 \to P', \beta_2^{\prime op} : A_2 \to P' \text{ tales que}$ $\alpha_1^{op} \beta_1^{\prime op} = \alpha_2^{op} \beta_2^{\prime op}, \exists! \ \gamma^{op} : P \to P' \text{ tal que } \beta_1^{\prime op} = \beta_1^{op} \gamma^{op} \text{ y}$ $\beta_2^{\prime op} = \beta_2^{op} \gamma^{op}.$

Con esto en mente, entonces podemos dar la siguiente definición.

Definición. Sean $\alpha_1 \colon A \longrightarrow A_1$ y $\alpha_2 \colon A \longrightarrow A_2$ morfismos en una categoría \mathscr{C} . Un push-out para $A_1 \xleftarrow{\alpha_1} A \xrightarrow{\alpha_2} A_2$ es un diagrama

$$P \xleftarrow{\beta_1} A_1$$

$$\beta_2 \uparrow \qquad \uparrow^{\alpha_1}$$

$$A_2 \xleftarrow{\alpha_2} A$$

conmutativo en $\mathscr C$ que satisface la siguiente propiedad universal:

 $\forall \beta_2' \colon A_2 \longrightarrow P', \ \forall \beta_1' \colon A_1 \longrightarrow P'$ tal que $\beta_1' \alpha_1 = \beta_2' \alpha_2$, se tiene que $\exists ! \ \gamma \colon P \to P'$ tal que $\beta_1' = \gamma \beta_1 \ y \ \beta_2' = \gamma \beta_2$. Diagramaticamente se vé como sigue:

Unicidad.

Supongamos que $Q\in\mathscr{C},\ \eta_1\colon A_1\longrightarrow Q\ \mathrm{y}\ \eta_2\colon A_2\longrightarrow Q$ son otro pushout de $A_1\xleftarrow{\alpha_1}A\xrightarrow{\alpha_2}A_2$, entonces se tiene el siguiente diagrama conmutativo:

$$Q \xleftarrow{\eta_1} A_1$$

$$\uparrow^{\alpha_1}$$

$$A_2 \xleftarrow{\alpha_2} A$$

Como P es push-out existe un único $\gamma\colon P\longrightarrow Q$ tal que $\gamma\beta_2=\eta_2$ y $\gamma\beta_1=\eta_1$, y como Q es push-out existe un único $\bar{\gamma}\colon Q\longrightarrow P$ tal que $\bar{\gamma}\eta_2=\beta_2$ y $\bar{\gamma}\eta_1=\beta_1$.

Con estos resultados se obtiene que $\bar{\gamma}\gamma\colon P\longrightarrow P$,

$$\bar{\gamma}\gamma\beta_2 = \bar{\gamma}\eta_2 = \beta_2 \quad \text{y} \quad \bar{\gamma}\gamma\beta_1 = \bar{\gamma}\eta_1 = \beta_1.$$

Pero el funtor identidad también cumple dichas igualdades, así, como P es push-out, $\bar{\gamma}\gamma=1_P$ por unicidad. Análogamente $\gamma\bar{\gamma}=1_Q$ por lo tanto $P\cong Q$.

Ej 11. Enunciaremos y probaremos la proposición dual al Ej. 8. Notemos primeramente que

Pull-back:

- PBI) $\exists \beta_1: P \to A_1, \beta_2: P \to A_2 \text{ tales que } \alpha_1\beta_1 = \alpha_2\beta_2.$
- PBII) $\forall P' \in \mathscr{C} \ y \ \forall \beta_1' : P' \to A_1, \beta_2' : P' \to A_2 \text{ tales que } \alpha_1 \beta_1' = \alpha_2 \beta_2', \exists ! \ \gamma : P' \to P \text{ tal que } \beta_1' = \beta_1 \gamma \ y \ \beta_2' = \beta_2 \gamma.$

Pull-back^{op}:

 $\mathrm{PB}^{\mathrm{op}}\mathrm{I}) \ \exists \ \beta_1^{op}: A_1 \to P, \beta_2^{op}: A_2 \to P \ \mathrm{tales} \ \mathrm{que} \ \alpha_1^{op}\beta_1^{op} = \alpha_2^{op}\beta_2^{op}.$

PB^{op}II) $\forall P' \in \mathscr{C} \text{ y } \forall \beta_1^{'op}: A_1 \rightarrow P', \beta_2^{'op}: A_2 \rightarrow P' \text{ tales que } \alpha_1^{op}\beta_1^{'op} = \alpha_2^{op}\beta_2^{'op}, \exists ! \gamma^{op}: P \rightarrow P' \text{ tal que } \beta_1^{'op} = \beta_1^{op}\gamma^{op} \text{ y } \beta_2^{'op} = \beta_2^{op}\gamma^{op}.$

Pull-back*:

 PB^*I) $\exists \beta_1 : A_1 \to P, \beta_2 : A_2 \to P$ tales que $\beta_1 \alpha_1 = \beta_2 \alpha_2$.

PB*II) $\forall P' \in \mathscr{C} \text{ y } \forall \beta_1' : A_1 \to P', \beta_2' : A_2 \to P' \text{ tales que } \beta_1'\alpha_1 = \beta_2'\alpha_2, \exists ! \ \gamma : P \to P' \text{ tal que } \beta_1' = \gamma\beta_1 \text{ y } \beta_2' = \gamma\beta_2.$

Esto último es la definición de que un objeto P sea un push-out de α_1 : $A \to A_1$ y $\alpha_2 : A \to A_2$. Por lo anterior, y dado que las propiedades duales de mono y split-epi son respectivamente epi y split-mono, la proposición dual del Ej. 8 es:

Sea el siguiente diagrama conmutativo en una categoria $\mathscr C$

$$P \xleftarrow{\beta_2} A_2$$

$$\beta_1 \uparrow \qquad \uparrow \alpha_2$$

$$A_1 \xleftarrow{\alpha_1} A$$

un push-out, entonces

- a) si α_1 es un epimorfismo, entonces β_2 también lo es;
- b) β_2 es un split-mono si y sólo si $\exists \delta : A_1 \to A_2$ en $\mathscr C$ tal que $\alpha_2 = \delta \alpha_1$.

Demostración. a) Supongamos que $f: P \to Q$ y $g: P \to Q$ en $\mathscr C$ son tales que $f\beta_2 = g\beta_2$. Notemos que

$$(f\beta_1) \alpha_1 = f(\beta_2 \alpha_2) = (g\beta_2) \alpha_2 = g(\beta_1 \alpha_1)$$

= $(g\beta_1) \alpha_1$
 $\implies f\beta_1 = g\beta_1, \qquad \qquad \alpha_1 \text{ es un epi}$

con lo cual se tiene el siguiente diagrama conmutativo

y así la propiedad universal del push-out garantiza que f=g, con lo cual β_2 es un epi.

 $b) \Longrightarrow$ Por ser β_2 un split-mono $\exists \gamma : P \to A_2$ en $\mathscr C$ tal que $\gamma\beta_2 = 1_{A_2}$, de modo que si $\delta := \gamma\beta_1$, entonces

$$\delta \alpha_1 = \gamma \left(\beta_1 \alpha_1 \right) = \left(\gamma \beta_2 \right) \alpha_2 = 1_{A_2} \alpha_2$$
$$= \alpha_2.$$

 $b) \Leftarrow$ Bajo estas condiciones de la propiedad universal del push-out se obtiene el siguiente diagrama conmutativo

del cual se sigue en partícular que $\gamma \beta_2 = 1_{A_2}$.

Ej 12. Si R es un anillo entonces la categoría Mod(R) tiene pull-backs.

Demostración. Sean $\alpha_1:A_1\to A$ y $\alpha_2:A_2\to A$ morfismos de R-módulos y

$$A_1 \times_A A_2 := \{(x, y) \in A_1 \times A_2 \mid \alpha_1(x) = \alpha_2(y)\}$$

Notemos que $A_1 \times_A A_2 \neq \varnothing$, pues si $0_1, 0_2 y 0$ son los neutros aditivos de $A_1, A_2 y A$, respectivamente, entonces $\alpha_1 (0_1) = 0 = \alpha_2 (0_2)$, con lo cual $(0_1, 0_2) \in A_1 \times_A A_2$. Más aún, $A_1 \times_A A_2 \leq A_1 \times A_2$, con $A_1 \times A_2$ dotado de la estructura usual de R-módulo, pues si $(a,b), (c,d) \in A_1 \times_A A_2 y$ $r \in R$, entonces

$$\begin{split} \alpha_{1}\left(ra-b\right) &= r\alpha_{1}\left(a\right) - \alpha_{1}\left(b\right) \\ &= r\alpha_{2}\left(c\right) - \alpha_{2}\left(d\right) \\ &= \alpha_{2}\left(rc-d\right), \\ &\Longrightarrow r\left(a,b\right) - \left(c,d\right) \in A_{1} \times_{A} A_{2}. \end{split}$$

Con lo cual $A_1 \times_A A_2 \in Mod(R)$. Así, si π_1 y π_2 son las proyecciones canónicas de $A_1 \times_A A_2$ sobre A_1 y A_2 , respectivamente, y $(x,y) \in A_1 \times_A A_2$, entonces π_1 , π_2 son morfismos de R-módulos y

$$\alpha_1 \pi_1 (x, y) = \alpha_1 (x) = \alpha_2 (y) = \alpha_2 (\pi_2 (x, y))$$
$$= \alpha_2 \pi_2 (x, y),$$
$$\implies \alpha_1 \pi_1 = \alpha_2 \pi_2.$$

Es decir, se tiene que el siguiente diagrama conmuta

$$\begin{array}{ccc} A_1 \times_A A_2 & \xrightarrow{\pi_2} & A_2 \\ \downarrow^{\pi_1} & & \downarrow^{\alpha_2} & \cdot \\ A_1 & \xrightarrow{\alpha_1} & A \end{array}$$

Ahora, si $P\in Mod(R)$ y $\beta_1:P\to A_1,\beta_2:P\to A_2$ son morfismos de R-módulos tales que $\alpha_1\beta_1=\alpha_2\beta_2$, entonces sea

$$\gamma: P \to A_1 \times_A A_2$$

 $p \mapsto (\beta_1(p), \beta_2(p)).$

Notemos que γ es un morfismo de R-m'odulos, puesto que β_1 y β_2 lo son, y que si $p\in P$ entonces

$$\pi_1 \gamma (p) = \pi_1 (\beta_1 (p), \beta_2 (p)) = \beta_1 (p)$$

$$\implies \pi_1 \gamma = \beta_1.$$

Análogamente se verifica que $\pi_2 \gamma = \beta_2$, con lo cual el siguiente diagrama conmuta

Finalmente, si $\gamma': P \to A_1 \times_A A_2$ es un morfismo de R-módulos tal que $\pi_1 \gamma' = \beta_1$ y $\pi_2 \gamma' = \beta_2$ y $p \in P$, entonces

$$\pi_1 \gamma'(p) = \beta_1(p),$$

$$\pi_2 \gamma'(p) = \beta_2(p),$$

con lo cual $\gamma'(p) = (\pi_1(\gamma'(p)), \pi_2(\gamma'(p))) = (\beta_1(p), \beta_2(p)) = \gamma(p)$ y por lo tanto $\gamma' = \gamma$.

Ej 13. Para un anillo R pruebe que Mod(R) tiene Push-ots.

Demostración. Sea $A_1 \xleftarrow{\alpha_1} A \xrightarrow{\alpha_2} A_2$ en Mod(R). Consideremos $N := \{(\alpha_2(a), -\alpha_1(a)) \in A_2 \times A_1 \mid a \in A\}$. Observemos que $N \le A_2 \times A_1$,

pues $\forall r \in R \ y \ \forall a \in A$

$$\begin{split} &r(\alpha_2(a), -\alpha_1(a)) + (\alpha_2(b), -\alpha_1(b)) \\ &= (r\alpha_2(a), -r\alpha_1(a)) + (\alpha_2(b), -\alpha_1(b)) \\ &= (\alpha_2(ra), -\alpha_1(ra)) + (\alpha_2(b), -\alpha_1(b)) \\ &= (\alpha_2(ra) + \alpha_2(b), -\alpha_1(ra) + \alpha_1(b)) \\ &= (\alpha_2(ra+b), -\alpha_1(ra+b)) \in N. \end{split}$$

Sea $A_2 \times^A A_1 := A_2 \times A_1 /_N$. Consideremos los morfismos $\mu_i \colon A_i \longrightarrow A_2 \times^A A_1$, dados por las composiciones $A_i \xrightarrow{inc_i} A_2 \times A_1 \xrightarrow{\pi} A_2 \times^A A_1 \quad \text{donde}$

$$inc_1(a_1) = (0, a_1)$$

 $inc_2(a_2) = (a_2, 0)$
 $\pi(x) = x + N.$

Entonces

$$\mu_1 \alpha_1(a) = \mu_1(\alpha_1(a))$$

$$= \pi[(0, (\alpha_1(a)))] = (0, (\alpha_1(a))) + N$$

$$= (0, (\alpha_1(a))) + (\alpha_2(a), -\alpha_1(a)) + N$$

$$= (\alpha_2(a), 0) + N = \pi(\alpha_2(a), 0)$$

$$= \mu_2(\alpha_2(a)) = \mu_2\alpha_2(a)$$

Por lo tanto el siguiente diagrama conmuta:

$$\begin{array}{ccc} A & \xrightarrow{\alpha_1} & A_1 \\ \alpha_2 \downarrow & & \downarrow^{\mu_1} \\ A_2 & \xrightarrow{\mu_2} & A_2 \times^A A_1 \end{array}$$

Ahora, sea $P \in Mod(R)$ tal que el siguiente diagrama conmuta:

$$A \xrightarrow{\alpha_1} A_1$$

$$\alpha_2 \downarrow \qquad \qquad \downarrow \beta_1$$

$$A_2 \xrightarrow{\beta_2} P.$$

Afirmamos que existe un único $\gamma \colon A_2 \times^A A_1 \longrightarrow P$ tal que $\gamma \mu_1 = \beta_1$ y $\gamma \mu_2 = \beta_2$. Sea $\gamma \colon A_2 \times^A A_1 \longrightarrow P$ dada por $\gamma(a,b) = \beta_2(a)\beta_1(a)$, entonces $\gamma \mu_1(a_1) = \gamma \pi(0,a_1) = \gamma[(0,a_1)+N] = 0 + \beta_1(a_1)$. Análogamente $\beta_2 = \gamma \mu_2(a_2) \quad \forall a_2 \in A_2$.

Ahora, si $(a, b), (c, d) \in A_2 \times^A A_1$, se tiene que

$$\gamma[r(a,b)] - \gamma(c,d) = \gamma(ra,rb) - \gamma(c,d)$$

$$= \beta_1(ra) + \beta_2(rb) - \beta_1(c) - \beta_2(d)$$

$$= \beta_1(ra-c) + \beta_2(rb-d)$$

$$= \gamma[(ra-c,rb-d)] = \gamma[r(a,b) - (c,d)].$$

Mas aún, si $(a,b)-(c,d)\in N$ entonces $(a-c,b-d)=(\alpha_2(x),-\alpha_1(x))$ para algun $x\in A.$ Así

$$\gamma(a,b) - \gamma(c,d) = \gamma[(a,b) - (c,d)]$$

$$= \gamma(\alpha_2(x), -\alpha_1(x))$$

$$= \beta_2(\alpha_2(x)) + \beta_1(-\alpha_1(x))$$

$$= \beta_1\alpha_1(x) - \beta_1\alpha_1(x) = 0$$

Por lo tanto γ es un morfismo de $A_2 \times^A A_1$ en P y está bien definido.

Por último, si $\eta: A_2 \times^A A_1 \longrightarrow P$ es otro morfismo tal que $\eta \mu_1 = \beta_1$ y $\eta \mu_2 = \beta_2$, entonces para cada $(a,b) \in A_2 \times^A A_1$

$$\eta(a,b) = \eta[(a,0) + (0,b)]
= \eta[\mu_2(a) + \mu_1(b)]
= \eta(\mu_2(a)) + \eta(\mu_1(b))
= \beta_2(a) + \beta_1(b)
= \gamma(a,b)$$

Por lo que $\gamma = \eta$.

Ej 14. Las categorías Sets y Mod(R), con R un anillo, tienen intersecciones

Demostración. Sea $\{\alpha_i \colon A_i \longrightarrow A\}_{i \in I}$ una familia de morfismos en Mod(R) y sea $\bigcap_{i \in I} Im(\alpha_i)$ la intersección usual de módulos. Sea $\nu \colon \bigcap_{i \in I} Im(\alpha_i) \longrightarrow A$ la inclusión canónica (de conjuntos) entonces se tiene lo siguiente:

Dado $a \in \bigcap_{i \in I} Im(\alpha_i)$ se tiene que $a \in Im(\alpha_i)$ para cada $i \in I$ es decir: $\exists a_i \in A_i$ tal que $\alpha_i(a_i) = a$ para cada $i \in I$. Así $a = \nu(a) = \alpha_i \nu_i(a)$ para cada $i \in I$ donde $\nu_i : \bigcap_{i \in I} Im(\alpha_i) \longrightarrow A_i$ está dada por $\nu_i(a) = a_i$ por lo que el siguiente diagrama conmuta

Sea $\theta: B \longrightarrow A$ en Mod(R). Si θ se factoriza a travéz de $\alpha_i: A_i \longrightarrow A$ entonces existe $\theta_i: B \longrightarrow A_i$ tal que $\theta = \alpha_i \theta_i$. Así para toda $b \in B$

$$\theta(b) = \alpha_i \theta_i(b) = \alpha_i(\theta_i(b)),$$

$$\theta(b) \in Im(\alpha_i) \quad \forall i \in I,$$

$$\theta(b) \in \bigcap_{i \in I} Im(\alpha_i) \subset A,$$

$$\theta(b) = \nu(a)$$

con $a = \theta(b) \in \bigcap_{i \in I} Im(\alpha_i)$. Así si $\eta \colon B \longrightarrow A$ se define como $\eta(b) = \theta(b)$, entonces $\theta = \nu \eta$ y el siguiente diagrama conmuta

Solo se usaron argumentos conjuntistas (no exclusivos de teoría de módulos) para esta prueba salvo el que intersección de módulos es módulo (intersección de conjuntos es conjunto) y que la inclusión conjuntista y la composición de morfismos es morfismo (composición de funciones es función), por lo que este mismo resultado se demuestra de manera análoga para la categoría Sets.

Ej 15. Si $\mathscr C$ es una categoría con pull-backs, entonces $\mathscr C$ tiene intersecciones finitas.

Demostración. Sea $A \in \mathcal{A}$ y $\{\mu_i : A_i \to A\}_{i \in I}$ una familia de subobjetos de A. Si $I = \emptyset$, el resultado es inmediato pues en tal caso $1_A : A \to A$ es una intersección para la familia. Así pues, podemos suponer sin pérdida de generalidad que $I = [1, n] \subseteq \mathbb{N}$, con $n \ge 1$ y proceder por inducción sobre n.

Si n=1, entonces se tiene que $\mu_1:A_1\to A$ es una intersección para la familia $\{\mu_1\}$, puesto que $\mu_1=\mu_11_{A_1}$ y μ_1 satisface en forma inmediata la propiedad universal de la intersección.

Si n=2, el resultado se sigue de la Proposición 1.3.2 en conjunto a que $\mathscr C$ es una categoría con pull-backs.

Así pues supongamos por Hipótesis de Inducción que la proposición es válidad para $n=k,\ k\geq 2,$ y verifiquémosla para k+1. Si $\{\mu_i\}_{i=1}^{k+1}$ es una familia de k+1 subobjetos de A entonces por la Hipótesis de Inducción

la familia $\{\mu_i\}_{i=1}^k$ admite intersecciones, digamos $\nu: \bigcap_{i=1}^k A_i \to A$. Recordemos que ν es un monomorfismo, y por lo tanto, por el caso n=2, se tiene que la familia de subobjetos $\{\nu, \mu_{k+1}\}$ admite intersecciones, diga-

 $\operatorname{mos} \mu : \left(\bigcap_{i=1}^k A_i\right) \cap A_{k+1} \to A$. Afirmamos que μ es una intersección para

 $\{\mu_i\}_{i=1}^{k+1}$. En efecto, del hecho de que μ sea una intersección para $\{\nu,\mu_{k+1}\}$ se sigue que μ se factoriza a través de μ_{k+1} y a través de ν . Por su parte ν se factoriza a través de μ_i , $\forall i \in [1,k]$, y en consecuencia μ también lo hace; de modo que $\mu \leq \mu_i$ $\forall i \in [1,k+1]$. Finalmente, si $\theta: B \to A$ se factoriza a través de μ_i $\forall i \in [1,k+1]$, en partícular se factoriza a través de μ_i $\forall i \in [1,k]$, y así por la propiedad universal de la intersección se sigue que θ se factoriza a través de ν . Así $\theta \leq \nu$ y $\theta \leq \mu_{k+1}$, con lo cual, por la propiedad universal de la intersección, ν se factoriza a través de μ . Con lo cual se ha verificado la afirmación y así se concluye la inducción.

20