

Table of Contents

01

Main Problem

02

MVP

03

Modeling Progress

04 05

Next Steps

Conclusion: Mission

Main Problem

- California faces recurring droughts, impacting agriculture, water resources, and ecosystem
- Those impacted include farmers, water resource managers, policymakers, and the general public
- Timely and accurate drought predictions would greatly benefit government agencies that are responsible for public welfare and resource allocation

MVP: Research Paper

Target Audience:

Local government scientists and decision-makers who guide policy and research

Contribution to Knowledge Base:

- Comparison and evaluation of machine learning techniques in predicting US Drought Monitor (USDM) drought conditions in California
- Verification of ability to predict USDM drought score 2-3 months in advance leveraging only previous drought scores (univariate) and weekly historical meteorological data (multivariate models)

Key User Questions

- 1. Does a machine learning approach work well for the task of drought prediction in CA?
- 2. If a machine learning approach works well, what models work well for the drought prediction task? What characteristics or data does the model need to guide users in implementing similar models in their work?

SME Feedback

- Laurel Larsen, Associate Professor of Geography, UC Berkeley:
 - LSTM models perform best in her work
 - Consider memory time scale in our inputs
 - Paper would be useful to for state water agencies to develop ensemble forecasting
- Chris Funk, Director of the Climate Hazards Center, UC Santa Barbara:
 - Expand data time range due to seasonality
 - Create dummy variables to indicate seasonality
 - Different counties may be easier to predict drought scores for due to varying conditions

Data & ML Pipelines

- The data pipeline preprocesses weekly meteorological data and drought score data through
 - Train-validation-test splitting
 - Windowing (Transform time series forecasting problem into supervised machine learning)
 - Normalization
- ML architecture: sequence-to-sequence forecasting

ML Architecture

Data Engineering Pipeline

Data Engineering – Windowing

Transform time series forecasting problem into supervised machine learning

Features					Labels	
	Var1	Var2	Var3	Varm		
T-m, T-m+1,	[[Var1_t-m, [Var1_t-m+1,		Var3_t-m,, , Var3_t-m+1,,	Varn_t-m], , Varn_t-m+1],	T+1, T+2,	[Score_t+1, Score_t+2,
 T-1, T	 [Var1_t-1, [Var1_t,	Var2_t-1, Var2_t,	Var3_t-1,, Var3_t, ,,	Varn_t-1], Varn_t]]	T+n-1, T+n	Score_t+n-1, Score_t+n]

Data Engineering – Windowing

Transform time series forecasting problem into supervised machine learning

Modeling Approaches

Persistence

Assumes the future values results from persisting past trends

Random Forest

A "forest" of randomly generated decision trees

ARIMA

AutoRegressive Integrated Moving Average

XGBoost

Extreme Gradient Boosting of decision tree ensemble

CNN

Convolutional neural network

LSTM

Long short-term memory network or a variation of a recurrent neural network

Baseline (Persistence Model)

ARIMA: AutoRegressive Integrated Moving Average

CNNs: Convolutional Neural Networks

LSTM: Long Short-Term Memory

$$i_{t} = \sigma \left(x_{t} W_{xi} + h_{t-1} W_{hi} + b_{i} \right)$$
 (1)

$$f_{t} = \sigma (x_{t} W_{xf} + h_{t-1} W_{hf} + b_{f})$$
 (2)

$$o_{t} = \sigma \left(x_{t} W_{xo} + h_{t-1} W_{ho} + b_{o} \right)$$
 (3)

$$h_t = o_t \cdot tanh(c_t) \tag{5}$$

mage Source for LSTM Structure: Chris Olah, *Understanding LSTM Networks*, https://colah.github.io/posts/2015-08-Understanding-LSTMs

Random Forest and XGBoost

Univariate Test Model Results - Fresno County

Model	MSE	MAE	F1 for Severe Drought*
Persistence (Baseline)	0.51	0.45	
CNN	0.84	0.53	
Random Forest	0.35	0.45	
XGBoost	0.35	0.45	0.56
LSTM	0.39	0.41	

^{*}We set a binary classification of severe drought at a score of 2.5 or higher.

Multivariate Test Model Results - Fresno County

Model	MSE	MAE	F1 for Severe Drought+
Persistence (Baseline)	0.51	0.45	
CNN	0.89	0.74	
Random Forest	0.29	0.38	
XGBoost	0.33	0.44	0.56
LSTM	0.39	0.37	

^{*}We set a binary classification of severe drought at a score of 2.5 or higher.

Fresno Multivariate XGBoost

State-Wide LSTM

Model	MSE	MAE	F1 For Severe Drought+	
LSTM	0.336	0.340	0.89	

	1	0.92	0.72	0.81
1	accuracy			0.96
	macro avg	0.94	0.86	0.89
_	weighted avg	0.96	0.96	0.96
000	nd.	Predicted Test D	rought Scores	
00	0 -			

precision

0.97

recall f1-score

0.98

0.99

support

110778

123888 123888 123888

13110

Next Steps

Continue to improve, refine, and finalize our models

Identify and reach out to a local government scientist or policymaker for stakeholder feedback

Begin working on the MVP (research paper), web-based version, and final presentation

05 Conclusion: Mission

Mission Statement

"To **empower** governments with accurate **drought intensity predictions** using time series machine learning models, facilitating proactive planning and water management for California"

Thanks!

Do you have any questions?

am_chang@berkeley.edu nankli@berkeley.edu davidsherman@berkeley.edu

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Please keep this slide for attribution

References

- <u>Drought Prediction: A Comprehensive Review of Different Drought Prediction</u>
 Models and Adopted Technologies
- Frontiers | DroughtCast: A Machine Learning Forecast of the United States Drought Monitor (frontiersin.org)
- <u>Forecasting drought using neural network approaches with transformed time series</u> <u>data - PMC (nih.gov)</u>
- https://www.scientificamerican.com/article/drought-takes-2-7-billion-toll-on-calif ornia-agriculture/
- https://www.mercurynews.com/2024/01/02/sierra-nevada-snowpack-at-lowest-le-vel-in-10-years-what-it-means-for-californias-water-supply/
- https://droughtmonitor.unl.edu/CurrentMap/StateDroughtMonitor.aspx?CA
- https://www.drought.gov/drought-status-updates/california-nevada-drought-status-update-2023-10-19

Fresno Univariate CNN

Fresno Multivariate CNN

Fresno Random Forest

LSTM - Fresno County

	precision	recall	f1-score	support	
0	0.97	1.00	0.98	2028	
1	0.00	0.00	0.00	72	
accuracy			0.96	2100	
macro avg	0.48	0.50	0.49	2100	
weighted avg	0.93	0.96	0.95	2100	

Multivariate Test Model Results - CA

Model	MSE	MAE	Macro F1
Persistence (Baseline)	0.50	0.43	0.81
CNN	0.36	0.37	0.87
Random Forest	0.33	0.39	0.86
XGBoost	0.30	0.35	0.88
LSTM	0.32	0.33	0.90

