

Колебания и волны

Лекция 6

Периодические процессы

Вибрация струны, качание маятника, раскачивание деревьев, движение поршня двигателя, морские приливы и отливы, суточные и годичные изменения температуры, биения сердца, дыхание, движение электронов в атоме, переменный электрический ток и пр.

Устойчивое положение равновесия

Устойчивым равновесием называют такое положение, в котором колеблющаяся система, будучи предоставленной самой себе, могла бы находиться сколь угодно долго.

Механические колебания

Колебательным называется процесс, многократно повторяющийся через определенные промежутки времени, при котором какая-либо из его характеристик последовательно отклоняется то в одну, то в другую строну от равновесного положения.

Смещение

Отклонение системы от положения равновесия называется смещением (в механических колебаниях это координата).

Периодические колебания

Колебания называются периодическими, если повторяются через равные промежутки времени, называемые периодом колебаний.

Частота колебаний

$$v = \frac{N}{t} = \frac{1}{T}$$

Число полных колебаний в единицу времени называется частотой колебаний. Размерность: [1/сек]=[1 Гц]

Виды колебаний

- 1. Собственными (или свободными) называются колебания, происходящие в системе под действием внутренних сил после выведения ее из состояния устойчивого равновесия.
- 2. Вынужденными называются колебания, обусловленные внешним периодическим воздействием.

Гармонические колебаний

Гармоническим называются колебания, при которых физические величины изменяются с течением времени по закону синуса или косинуса. $x = A \cdot \sin(\omega_0 t + \varphi_0)$

Амплитуда колебаний

$$x = A \cdot \cos(\omega_0 t + \varphi_0') \qquad \varphi_0' = \varphi_0 + \frac{\pi}{2}$$

Амплитуда колебаний — наибольшее смещение от положения равновесия. $-1 < \sin \varphi < +1 \qquad \longrightarrow \qquad -A < x < +A$

Фаза колебаний

$$\varphi = \omega_0 t + \varphi_0$$

Циклическая (круговая) частота колебаний

Циклическая частота определяет быстроту изменения фазы с течением времени. $\varphi = \omega_0 t + \varphi_0$

$$\varphi = \omega_0 t + \varphi_0$$

Поскольку фаза повторяется с периодом 2π :

$$\omega_0 t + \varphi_0 + 2\pi = \omega_0 (t+T) + \varphi_0 \Longrightarrow 2\omega_0 t = \omega_0 T = 2\pi \Longrightarrow \omega_0 = \frac{2\pi}{T} = 2\pi \nu$$
 Единица циклической частоты — 1 радиан в секунду.

1 [рад/сек] — циклическая частота таких колебаний, чтобы фаза

в 1 сек возрастала на 2π .

Возвращающая сила

$$x = A \cdot \cos(\omega_0 t + \varphi_0)$$
 $v = \dot{x} = -A \cdot \omega_0 \sin(\omega_0 t + \varphi_0)$ $a = \dot{v} = \ddot{x} = -A \cdot \omega_0^2 \cos(\omega_0 t + \varphi_0)$ k $F = ma = -A \cdot m\omega_0^2 \cos(\omega_0 t + \varphi_0) = -m\omega_0^2 \cdot x$ $F = -k \cdot x$ где $k = m\omega_0^2$

Знак (–) указывает на то, что сила всегда стремится возвратить систему в положение устойчивого равновесия (обратно).

Квазиупругие силы

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (например, сила упругости).

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими.

Условия существования свободных колебаний в системе

- 1. Существует возвращающая квазиупругая сила.
- 2. Существуют инертные свойства системы инерционность системы.

Гармонический осциллятор

Гармоническим осциллятором называется любая система, совершающая гармонические колебания.

Собственные незатухающие колебания

Колебания называются незатухающими, если их амплитуда сохраняется постоянной с течением времени.

Уравнение собственных гармонических колебаний

$$x = A \cdot \cos(\omega_0 t + \varphi_0)$$

$$v = \dot{x} = -A \cdot \omega_0 \sin(\omega_0 t + \varphi_0)$$

$$a = \dot{v} = \ddot{x} = -A \cdot \omega_0^2 \cos(\omega_0 t + \varphi_0) = -\omega_0^2 \cdot x$$

$$\ddot{x} = -\omega_0^2 \cdot x \qquad \Longrightarrow \qquad \ddot{x} + \omega_0^2 \cdot x = 0$$

$$\frac{d^2 x}{dt^2} + \omega_0^2 x = 0$$

Решение уравнения:
$$x = A \cdot \cos(\omega_0 t + \varphi_0)$$

Импульс и энергия колебаний

Импульс:
$$P = m v = m \dot{x} = -A m \omega_0 \sin(\omega_0 t + \varphi_0)$$

Кинетическая
$$E_\kappa = \frac{m \, \mathrm{v}^2}{2} = \frac{m \, \omega_0^2}{2} \, A^2 \cdot \sin^2(\omega_0 t + \varphi_0) = \frac{k}{2} \, A^2 \cdot \sin^2(\omega_0 t + \varphi_0)$$
 энергия: $E_n = \frac{k \, x^2}{2} = \frac{k}{2} \, A^2 \cdot \cos^2(\omega_0 t + \varphi_0)$

Полная энергия:
$$E = E_{\kappa} + E_n = \frac{k A^2}{2} \left(\sin^2(\omega_0 t + \varphi_0) + \cos^2(\omega_0 t + \varphi_0) \right)$$

$$E = \frac{kA^2}{2} = \frac{m\omega_0^2A^2}{2} = const$$

Максимальная кинетическая и потенциальная энергия

$$E_{\kappa\mu\mu\,max} = \frac{k\,A^2}{2} = E_{nonhas}$$
 $E_{nommax} = \frac{k\,A^2}{2} = E_{nonhas}$

При гармонических колебаниях (в отсутствии трения) происходит непрерывное превращение потенциальной энергии в кинетическую и наоборот. В момент тах отклонения вся энергия потенциальная, в момент прохождения положения равновесия — кинетическая.

Частота превращения энергии в 2 раза превышает ω_{0} .

Пружинный маятник

Пружинным маятником называется тело, прикрепленное к пружине и способное совершать колебания вдоль некоторой оси.

Горизонтальное расположение

$$F_{x} = -kx = ma = m\frac{d^{2}x}{dt^{2}} = m\ddot{x}$$
$$-kx = m\ddot{x} \implies m\ddot{x} + kx = 0$$

$$\ddot{x} + \frac{k}{m}x = 0 \quad \Longrightarrow \quad \ddot{x} + \omega_0^2 x = 0$$

$$\omega_0^2 = \frac{k}{m}$$

$$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$$

Период собственных гармонических колебаний не зависит от амплитуды!

Вертикальное расположение

В поле силы тяжести положение равновесия отличается от нуля: $\Delta x = \delta \implies mg = k\delta$

$$ma = mg + F_{vnp} = mg - k(x + \delta) = -kx$$

Математический маятник

Математическим маятником называется материальная точка, которая подвешена на невесомой и нерастяжимой нити и может совершать колебания под действием силы тяжести.

$$F = -mg \sin \varphi \qquad M = -mg l \sin \varphi$$

$$M = J\varepsilon = J\ddot{\varphi} \qquad J = ml^{2}$$

$$-mg l \sin \varphi = ml^{2}\ddot{\varphi} \qquad -g \sin \varphi = l\ddot{\varphi}$$
Для малых углов (< 5)
$$\sin \varphi \approx \varphi$$

$$-g \varphi = l \varphi \qquad \ddot{\varphi} + \frac{g}{l} \varphi = 0$$

$$\ddot{\varphi} + \omega_{0}^{2} \varphi = 0$$

$$T = \frac{2\pi}{\omega_{0}} = 2\pi \sqrt{\frac{l}{g}}$$

- 1) Период колебаний не зависит от массы.
- 2) Период колебаний не зависит от амплитуды колебаний.
- 3) Период колебаний математического маятника определяется только длиной нити. Например: настенные маятниковые часы.
- 4) Период колебаний обратно пропорционален корню квадратному из ускорения свободного падения (способ его определения).

Физический маятник

Физическим маятником называется твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной оси, не совпадающей с его центром масс (центром инерции, тяжести).

$$F = -mg\sin\varphi \quad M = -mgb\sin\varphi \approx -mgb\varphi$$

$$\boxed{M = J\varepsilon = J\ddot{\varphi}} \qquad \Longrightarrow \qquad |\ddot{\varphi} + \frac{mgb}{J}\varphi = 0$$

$$\ddot{\varphi} + \omega_0^2 \varphi = 0$$
 где

$$\omega_0^2 = \frac{mgb}{J}$$

$$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{J}{mgb}} = 2\pi \sqrt{\frac{L}{g}}$$

$$L = \frac{J}{mb}$$

Приведенная длина физического маятника

Приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.

Колебательный контур

• Простейшей системой, где могут возникнуть и существовать электромагнитные колебания, являетс колебательный контур.

• Колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью *L*, конденсатора емкостью *C* и резистора сопротивлением *R* (это может быть сопротивление провода катушки и проводов, соединяющих катушку с конденсатором)

Колебательный контур

• Идеальный контур Томсона — колебательный контур без активного сопротивления (R=0).

• Если конденсатор зарядить и замкнуть на катушку, то по катушке потечет ток. Когда конденсатор разрядится, ток в цепи не прекратится из-за самоиндукции в катушке.

• Индукционный ток, в соответствии с правилом Ленца, будет течь в ту же сторону и перезарядит конденсатор.(рис Д)

• Ток в данном направлении прекратится, и процесс повторится в обратном направлении. Таким образом, в колебательном контуре будут происходить электромагнитные колебания.

• Период электромагнитных колебаний в идеальном колебательном контуре (т. е. в таком контуре, где нет потерь энергии) зависит от индуктивности катушки и емкости конденсатора и находится по формуле Томсона

$$T = 2\pi\sqrt{LC}$$

Происходят превращения энергии электрического поля конденсатора в энергию магнитного поля катушки с током, и наоборот.

$$W_{\mathfrak{I}} = \frac{CU^2}{2}$$

$$W_M = \frac{LI^2}{2}$$

Графическое представление колебаний

Векторная диаграмма — представление гармонических колебаний с помощью вектора амплитуды, вращающегося по окружности с постоянной угловой скоростью ω_0 . $\chi = A \cdot \cos(\omega_0 t + \varphi_0)$

Сложение гармонических колебаний

Если колебательная система одновременно участвует в двух (или более) независимых колебательных движениях, возникает задача найти результирующее колебание — его уравнение (для однонаправленных) или траекторию (для перпендикулярных).

Сложение однонаправленных колебаний одной частоты

$$x_1 = A_1 \cdot \cos(\omega_0 t + \varphi_1), \ \ x_2 = A_2 \cdot \cos(\omega_0 t + \varphi_2)$$
 По теореме косинусов:

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}$$

$$tg\varphi = \frac{A_1\sin\varphi_1 + A_2\sin\varphi_2}{A_1\cos\varphi_1 + A_2\cos\varphi_2}$$

$$(\varphi_2 - \varphi_1) = 0 \pm 2\pi n \implies A = A_1 + A_2$$

2) Если разность фаз колебаний

$$(\varphi_2 - \varphi_1) = \pi \pm 2\pi n \implies A = A_1 - A_2$$

Биения

Биениями называются гармонические колебания с периодически пульсирующей амплитудой, получающиеся при сложении двух однонаправленных колебаний с близкими частотами.

Частоты двух колебаний слегка различаются на величину

$$\delta = \omega_1 - \omega_2$$

$$x_1 = A \cdot \cos\left(\omega_0 - \frac{\delta}{2}\right)t$$
 $x_2 = A \cdot \cos\left(\omega_0 + \frac{\delta}{2}\right)t$

$$\delta << \omega_0$$

$$x = x_1 + x_2 = \left(2A\cos\frac{\delta}{2}t\right)\cos(\omega_0 t) \qquad A_{\delta} = \left|2A\cdot\cos\frac{\delta}{2}t\right| \qquad T_{\delta} = \frac{2\pi}{\delta}$$

$$T_{\tilde{o}} = \frac{2\pi}{\delta}$$

Сложение взаимно перпендикулярных колебаний

Два колебания одной частоты, происходящих вдоль осей *х* и *у*:

$$x = A \cdot \cos(\omega_0 t + \varphi_1) \qquad \qquad y = B \cdot \cos(\omega_0 t + \varphi_2)$$

$$\left[rac{x^2}{A^2} + rac{y^2}{B^2} - rac{2xy}{AB} \cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1)
ight]$$
 Уравнение эллипса в общем виде

1) Если разность фаз колебаний
$$(\varphi_2 - \varphi_1) = 0 \pm 2\pi n$$
 $\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{2xy}{AB} = \left(\frac{x}{A} - \frac{y}{B}\right)^2 = 0$ Уравнение прямой $y = \frac{B}{A}x$

$$y = \frac{B}{A}x$$

2) Если разность фаз колебаний $(\varphi_2 - \varphi_1) = \pi \pm 2\pi n$

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{2xy}{AB} = \left(\frac{x}{A} + \frac{y}{B}\right)^2 = 0$$

$$y = -\frac{B}{A}x$$

$$(\varphi_2 - \varphi_1) = \frac{\pi}{2} \pm 2\pi n$$

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{2xy}{AB} = \left(\frac{x}{A} + \frac{y}{B}\right)^2 = 0$$
 Уравнение прямой $y = -\frac{B}{A}x$ 3) Если разность фаз колебаний $(\varphi_2 - \varphi_1) = \frac{\pi}{2} \pm 2\pi n$ Уравнение эллипса $x = \frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$

Фигуры Лиссажу

Фигуры Лиссажу́ — замкнутые траектории, прочерчиваемые точкой, совершающей два взаимно перпендикулярных гармонических колебания, периоды которых соотносятся как целые числа.

Виды колебаний

