Worksheet #20

Consider the first order system

$$x' = \left[egin{array}{cc} 2 & -1 \ 3 & -2 \end{array}
ight] x$$

(1) Find the general solution and describe the behavior as
$$t \to \infty$$
.

1-Find eigenvalues $\begin{vmatrix} 2-\lambda & -1 \\ 3--2-\lambda \end{vmatrix} = (2-\lambda)(-2-\lambda) + 3 = 0$
 $\Rightarrow \lambda^2 - 4 + 3 = 0 \Rightarrow \lambda^2 - 1 = 0$

2-Find eigenvectors.

For $\lambda = 1$
 $\begin{vmatrix} 1 & -1 & 0 \\ 3 & -3 & 0 \end{vmatrix} \Rightarrow \lambda_1 = \lambda_2 = \lambda_1 = \lambda_1 = \lambda_2$

For $\lambda = 1$
 $\begin{vmatrix} 3 & -2 \\ 3 & -1 & 0 \end{vmatrix} \Rightarrow \lambda_1 = \lambda_2 = \lambda_2$

For $\lambda = 1$
 $\begin{vmatrix} 3 & -1 & 0 \\ 3 & -1 & 0 \end{vmatrix} \Rightarrow \lambda_2 = 3\lambda_1 \quad \omega_2 = \lambda_2 = \lambda_2$

theneral $\lambda = 1 + \lambda_1 = \lambda_2 = \lambda_$

as t > 0, x > ± 0 depending on the sign of 4

(2) Draw the direction field and a few trajectories.

