

Kierunek: Informatyka, sem 4

Przedmiot: Metody i narzędzia sztucznej inteligencji

Laboratorium nr 2

Temat: Kodowanie i dekodowanie rozwiązań w algorytmie genetycznym

Opracował: I. Czarnowski, A. Skakovski

Nieco teorii:

W algorytmie genetycznym poszukiwanie potencjalnych i dopuszczalnych rozwiązań prowadzone jest poprzez zakodowanie parametrów zadania w postać tak zwanych chromosomów. W klasycznym algorytmie genetycznym do zakodowania parametrów zadania stosuje się kodowanie binarne, podczas gdy inne algorytmy ewolucyjne przetwarzają chromosomy składające się z liczb rzeczywistych (kodowanie zmiennopozycyjne) lub mogą być pewną permutacją (kodowanie permutacyjne). Możliwe są więc różne reprezentacje rozwiązań. Niemniej jednak wybór sposobu kodowania parametrów zadania może być wymuszony przez szereg różnych czynników.

Kodowanie binarne wykorzystuje system dwójkowy do zapisu potencjalnych rozwiązań w postać chromosomu. Przypuśćmy że chcemy maksymalizować funkcję n zmiennych rzeczywistych $f(x_1,\dots,x_n)\colon R^n\to R$. Przypuśćmy, że każda ze zmiennych x_i może przybierać wartości z przedziału $D_i=[a_i,b_i]\subseteq R$ i $f(x_1,\dots,x_n)>0$ dla wszystkich $x_i\in D_i$. Ponadto przyjmijmy, że chcemy optymalizować żądaną funkcję z pewną dokładnością, np. d - miejsc po przecinku. Aby uzyskać żądaną dokładność, każdy z przedziałów D_i należy podzielić na $(b_i-a_i)\cdot 10^d$ przedziałów. Dla takiego założenia, niech dalej przez m_i oznaczmy najmniejszą liczbę całkowitą taką, że:

$$(b_i - a_i) \cdot 10^d \le 2^{m_i} - 1$$

gdzie m_i - najmniejsza liczba bitów potrzebnych do zakodowania liczby przedziałów $(b_i-a_i)\cdot 10^d$. Liczbę m_i można obliczyć ze wzoru:

$$m_i = \left[log_2(b_i - a_i) \cdot 10^d \right]$$

Wówczas reprezentacja, w oczywisty sposób będzie spełniać wymagania dokładności.

KODOWANIE BINARNE ZMIENNEJ x_i

Aby zakodować wartość zmiennej rzeczywistej x_i za pomocą ciągu binarnego można najpierw obliczyć dziesiętną wartość tego ciągu binarnego $decimal(1101 \dots 011_2)$ ze wzoru:

$$decimal(1101 \dots 011_2) = (x_i - a_i) / \frac{b_i - a_i}{2^{m_i} - 1}$$

i następnie przekonwertować otrzymaną wartość dziesiętną $decimal(1101 \dots 011_2)$ na docelowy ciąg binarny $1101 \dots 011_2$. Tak otrzymany ciąg binarny będzie reprezentował wartość zmiennej rzeczywistej x_i .

DEKODOWANIE CIAGU BINARNEGO

Aby odkodować wartość zmiennej rzeczywistej x_i z ciągu binarnego reprezentującego x_i korzystamy ze wzoru:

$$x_i = a_i + decimal(1101 \dots 011_2) \cdot \frac{b_i - a_i}{2^{m_i} - 1},$$

gdzie $decimal(1101...011_2)$ jest równy dziesiętnej wartości łańcucha binarnego kodującego wartość zmiennej rzeczywistej x_i .

REPREZENTACJA CHROMOSOMU

Poszukując rozwiązania związanego z maksymalizacją funkcji f o n zmiennych, chromosom reprezentujący potencjalne rozwiązanie będzie reprezentowany przez strukturę składającą się z n genów. W takim chromosomie poszczególne geny będą odpowiadały poszczególnym zmiennym x_i reprezentowanym przez odpowiednie ciągi binarne. Mianowicie, pierwsze m_1 bitów chromosomu (GEN 1) będą odpowiadać wartości zmiennej x_1 z przedziału $[a_1,b_1]$, druga grupa bitów m_2 (GEN 2) będzie odpowiadać wartości zmiennej x_2 z przedziału $[a_2,b_2]$, itd. Łącząc wszystkie geny w jeden ciąg binarny otrzymujemy chromosom o długości $m=\sum_{i=1}^n m_i$.

		x_1	=	G	E	N	1			x_2	=	G	E	N	2				x_n	=	G	E	N	n	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	•••		• • •	• • •		•••	<i>m</i> -2	<i>m</i> -1	m
CHROMOSOM →	1	1	0	1	0	1	1	1	0	0	0	0	1	0	1	1	•••	0	1	0	0	1	0	0	1

W kodowaniu zmiennopozycyjnym chromosom jest zakodowanym wektorem liczb zmiennopozycyjnych , o tej samej długości, jak wektor rozwiązania, tj. składa się z liczb rzeczywistych, których liczba jest równa liczbie zmiennych w zadaniu.

Polecenie:

1. Dana jest funkcja dwóch zmiennych

$$f(x_1, x_2) = -x_1^2 - x_2^2 + 2$$
, gdzie $-2 \le x_1 \le 2$ oraz $-2 \le x_2 \le 2$, (1)

a celem zadania optymalizacyjnego byłoby wyznaczenie takiego x_1 i x_2 dla których f osiąga wartość maksymalną, tj. $f(x_1, x_2) \to max$ przy zachowaniu ograniczeń dla x_1 i x_2 .

Zakładając, że interesuje nas dokładność do 5 miejsca po przecinku wykonaj poniższe polecenia.

- a) Ile bitów jest potrzebne do zapisania każdej ze zmiennych?
- b) Jaką długość (ile bitów łącznie) będzie posiadać potencjalne rozwiązanie (czyli chromosom)?
- c) Korzystając z mechanizmu losowego utwórz ciąg 0-1 będący reprezentacją potencjalnego rozwiązania, zapisanego w postaci wektora jednowymiarowego (tablica jednowymiarowa).
- d) Odkoduj utworzony ciąg 0-1, wyznacz wartości zmiennych x_1 i x_2 . Sprawdź czy otrzymane wartości zmiennych x_1 i x_2 są **dopuszczalne**, tzn. czy spełniają ograniczenia: $-2 \le x_1 \le 2$ oraz $-2 \le x_2 \le 2$. Jeżeli nie spełniają, to wylosuj dopuszczalne ciągi binarne.
- e) Wyznacz wartość funkcji f przez podstawienie wartości x_1 i x_2 wynikających z odkodowania chromosomu (ciągu 0-1).
- 2. Dana jest funkcja zwana funkcją Rastrigina o postaci:

$$f(x) = An + \sum_{i=1}^{n} [x_i^2 - A\cos(2\pi x_i)].$$

Funkcja ta posiada minimum globalne dla X = 0, gdzie f(X) = 0. Poniżej na rysunku przedstawiono wykres tej funkcji dla dwóch zmiennych. Celem zadania optymalizacyjnego byłoby wyznaczenie takiego wektora $X^* = (x^*_1, x^*_2, ..., x^*_i, ..., x^*_n)$ wartości zmiennych x_i , dla których f osiąga wartość minimalną, tj. $f(X^*) \rightarrow min$ przy zachowaniu ograniczeń dla x_i .

Wykonaj ppkt a)-d) z polecenia 1.

Założenia:

Przyjmij, że A=10 oraz $n=10, -5,21 \le x_i \le 5,21, i=1,...,10$.

Niech dokładność będzie uwzględniona do 3 miejsca po przecinku.

Sprawozdanie z wykonania zadań:

- Odpowiedzi na poszczególne pytania/polecenia 1 i 2 zawrzyj w sprawozdaniu. Do sprawozdania dołącza odpowiednie pliki źródłowe.
- Sprawozdanie i pliki w postaci skompresowanej prześlij iliasem.