Pendulo Simples - Física Experimental I - 15/09/2023 Wanderson Faustino Patricio Marcello Pereira Feitosa Maria Francilene Brito Do Carmo

1 Tabela dos Experimentos

$L\left(cm\right)$	$\theta \left(graus \right)$	$m\left(g ight)$	10T(s)	10T(s)	10T(s)	$T\left(s\right)$	$T^{2}(s^{2})$
20	15	25,19	8,85	8,93	8,84	0,88	0,79
40	15	25,19	12,56	12,53	12,60	1,25	1,57
60	15	25,19	15,49	15,41	15,58	1,54	2,38
80	15	25,19	17,75	17,66	17,93	1,78	3,16
100	15	25,19	19,78	19,88	19,93	1,99	3,99
Experimento 01							
$L\left(cm\right)$	$\theta \left(graus \right)$	$m\left(g\right)$	10T(s)	10T(s)	10T(s)	$T\left(s\right)$	$T^2(s^2)$
100	15	25,19	19,75	19,84	19,69	1,98	3,90
100	10	25,19	19,75	19,63	20,03	1,98	3,92
100	15	8,23	19,75	19,63	19,59	1,97	3,87
100	10	8,23	17,63	19,57	19,69	1,96	3,85

Experimento 02

2 Questionario

2.1 Dos resultados experimentais é possível concluir que o período independe da massa? Justifique.

Ao mudar a massa para um valor 3 vezes maior não é possível ver uma mudança significativa nos períodos de oscilação média, indicando que o período não depende da massa.

2.2 Dos resultados experimentais o que se pode concluir sobre os períodos quando a amplitude passa de 10° para 15°? Justifique.

Para uma mesma massa não é possível visualizar diferença significativa no período de oscilação quando o ângulo é alterado. Como o ângulo inicial de onde a massinha é solta é pequeno, o tempo não dependerá deste. Todavia, caso o ângulo fosse maior ele seria relevante para o período.

2.3 Faça o gráfico de T^2 x L e estime o valor de g.

Figura 1: Gráfico $T^2 \times L$

A fórmula para o período é

$$T = 2\pi \sqrt{\frac{L}{g}}$$

ou seja

$$T^2 = \frac{4\pi^2}{a} \cdot L$$

Do gráfico: $A = 3,945 \, s^2/m$

$$\frac{4\pi^2}{g} = 3,945 \Rightarrow \boxed{g = 10,007 \, m/s^2}$$

2.4 Qual o peso de um objeto de $9.00\,kg$ no local onde foi realizado o experimento?

$$P = mq = 9 \cdot 10.007 \Rightarrow P = 90,063 N$$

2.5 Compare o valor médio de T obtido experimentalmente para $L=100\,cm$ com o seu valor calculado pela equação 6 (utilize $g=.81\,m/s^2$)

Pela equação

$$T = 2\pi \cdot \sqrt{\frac{1}{9,81}} \approx 2,00 \, s$$

O valor encontrado experimentalmente foi 1,99 s.

Os valores diferem em apenas 0,5%, o que indica que a análise teórica está de acordo com o resultado dos experimentos, e vice versa.

2.6 Chama-se pêndulo de segundo aquele que passa pr sua posição de equilíbrio a cada 1 segundo. Qual o período de oscilação deste pêndulo?

A posição de equilíbrio do pêndulo é quando este se encontra na posição mais baixa de sua trajetória, a qual ele passa duas vezes a cada revolução completa, logo o perídodo do pêndulo é 2 s.