TD 3

Exercice 1 Déterminer toutes les normes sur l'espace vectoriel réel \mathbb{R} .

Exercice 2 Soit a, b > 0. On pose, pour tout $(x, y) \in \mathbb{R}^2$, $N(x, y) = \sqrt{(x/a)^2 + (y/b)^2}$.

- 1. Prouver que N est une norme.
- 2. Dessiner la boule de centre 0 et de rayon 1.
- 3. Déterminer les meilleures constantes $c_2 \ge c_1 > 0$ telles $c_1 \|.\|_2 \le N \le c_2 \|.\|_2$.

Exercice 3 Soit E un espace vectoriel réel, et d une distance sur E. Montrer que d provient d'une norme sur E si et seulement si les deux conditions suivantes sont réalisées :

- (i) (invariance par translation) pour tous $x, y, z \in E$, d(x + z, y + z) = d(x, y);
- (ii) (action des dilatations) pour tous $x, y \in E$ et $\lambda \in \mathbb{R}$, $d(\lambda x, \lambda y) = |\lambda| d(x, y)$.

Exercice 4 Les distances des exercices 8, 11 et 13 de la feuille de TD 2 sont-elles associées à des normes?

Exercice 5 (Comparaison de normes sur \mathbb{R}^2) Pour $x = (x_1, x_2) \in \mathbb{R}^2$ et p > 0, on pose :

$$N_p(x) = (|x_1|^p + |x_2|^p)^{\frac{1}{p}}$$
 et $N_{\infty}(x) = \max(|x_1|, |x_2|)$

1) Montrer que, pour tout $p \ge 1$, N_p est une norme sur \mathbb{R}^2 .

Montrer que N_{∞} est une norme sur \mathbb{R}^2 .

Montrer que si p < 1, N_p n'est pas une norme sur \mathbb{R}^2 .

- 2) Montrer que pour tout vecteur $x \in \mathbb{R}^2$, l'application $p \mapsto N_p(x)$ est décroissante et $N_p(x) \to N_{\infty}(x)$ quand $p \to +\infty$.
 - 3) Pour $0 , montrer que <math>N_q \le N_p \le 2^{\frac{1}{p} \frac{1}{q}} N_q$

Exercice 6 (Maximum de valeurs absolues de formes linéaires) Soit E un \mathbb{R} -espace vectoriel de dimension finie. Soit Φ un ensemble fini de formes linéaires sur E, qui engendre $E^* = L(E, \mathbb{R})$. Pour tout $x \in E$, on note

$$N(x) = \max\{|\varphi(x)| \ ; \ \varphi \in \Phi\}.$$

- 1. Montrer que N est une norme sur E.
- 2. Montrer que les normes $||\cdot||_{\infty}$ et $||\cdot||_1$ habituelles sur \mathbb{R}^d sont de la forme ci-dessus.
- 3. On prend $E=\mathbb{R}^2$, muni du produit scalaire canonique et $\Phi=\{\varphi_1,\varphi_2\}$, où φ_1 et φ_2 sont définies par

$$\varphi_1(x_1, x_2) = x_1 + (1/2)x_2 \text{ et } \varphi_2(x_1, x_2) = (1/2)x_1 - x_2.$$

Dessiner la boule unité associée à la norme N.

4. Soit $||\cdot||$ la norme euclidienne associée à un produit scalaire $(\cdot|\cdot)$, et S la sphère unité. Montrer que pour tout $x \in E$,

$$||x|| = \sup\{|(s|x)| ; s \in S\}.$$

Exercice 7 Soit N l'application de \mathbb{R}^2 dans \mathbb{R} définie par : $(x,y) \mapsto \sup_{t \in \mathbb{R}} \frac{|x+ty|}{\sqrt{1+t^2}}$.

- 1) Montrer que N est une norme sur \mathbb{R}^2 .
- 2) Montrer que pour tout $(x,y) \in \mathbb{R}^2$, $N(x,y) \leq N_2(x,y)$ où N_2 est la norme euclidienne sur \mathbb{R}^2 .
- 3) Montrer que les deux normes N et N_2 sont équivalentes.

Exercice 8 (L'identité du parallélogramme caractérise les espaces euclidiens) Soit (E, N) un espace vectoriel normé réel vérifiant l'identité du parallélogramme :

$$\forall (x,y) \in E^2, \ N^2(x+y) + N^2(x-y) = 2N^2(x) + 2N^2(y).$$

Le but de l'exercice est de montrer que N provient d'un produit scalaire. Pour cela, on pose

$$\forall (x,y) \in E^2, \ b(x,y) = \frac{1}{4} [N^2(x+y) - N^2(x-y)].$$

- 1. Montrer que pour tout x et y dans E, b(x,y) = b(y,x).
- 2. Montrer que pour tout $x \in E$, b(x,x) = 0, avec égalité si et seulement si x = 0.
- 3. Montrer que pour tout $(x, y, z) \in E^3$, b(x + y, z) + b(x y, z) = 2b(x, z).
- 4. Montrer que pour tout $(x,z) \in E^2$, b(2x,z) = 2b(x,z).
- 5. Montrer que pour tout $(x, y, z) \in E^3$, b(x + y, z) = b(x, z) + b(y, z).
- 6. Soit $(x, z) \in E^2$. Montrer l'égalité $b(\lambda x, z) = \lambda b(x, z)$ pour tout $\lambda \in \mathbb{Z}$, puis pour tout $\lambda \in \mathbb{R}$.
- 7. Conclure.

Exercice 9 (Distance à une partie dans un espace vectoriel normé) Soit (E, N) un espace vectoriel normé de dimension finie, S la sphère unité, C une partie convexe de E, F un fermé de E et $x \in E$.

- 1. Montrer que la distance d(x, S) est atteinte en au moins un point de S, exprimer cette distance en fonction de N(x) et montrer qu'il n'y a pas toujours unicité.
- 2. Montrer que si la norme N provient d'un produit scalaire, la distance d(x,C) est atteinte en au plus un point.
- 3. Montrer que si $x \notin F$, alors d(x, F) > 0.

Exercice 10 Si $\|\cdot\|$ est une norme sur \mathbb{R}^n , on définit, pour toute matrice réelle $n \times n$ A,

$$|||A||| = \operatorname{Sup}_{x \neq 0} \frac{||Ax||}{||x||}.$$

Montrer que $|||\cdot|||$ est une norme sur l'espace des matrices réelles $n \times n$, qui vérifie de plus, pour toutes telles matrices A et B: $|||AB||| \le |||A||| |||B|||$.

Exercice 11 (Inégalité de Hölder) On fixe dans ce qui suit un réel p > 1, et on note p' l'unique réel tel que 1/p + 1/p' = 1 (on a aussi p' > 1).

1) En utilisant la convexité de la fonction exponentielle, montrer que pour tous $a, b \ge 0$, on a

$$ab \le a^p/p + b^{p'}/p'$$

2) Inégalité de Hölder. Lorsque $x, y \in \mathbb{R}^n$, montrer que

$$\left| \sum_{k=1}^{n} x_k y_k \right| \le \left(\sum_{k=1}^{n} |x_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} |y_k|^{p'} \right)^{1/p'},$$

avec égalité seulement si x et y sont colinéaires (on pourra utiliser la question précédente avec $a = |x_k|/(\sum_{k=1}^n |x_k|^p)^{\frac{1}{p}}, \ b = |y_k|/(\sum_{k=1}^n |y_k|^{p'})^{\frac{1}{p'}}).$

En déduire l'inégalité de Minkowski : pour tous $x, y \in \mathbb{R}^n$,

$$\left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{1/p} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/p}.$$

En déduire que l'application $x \mapsto (\sum_{k=1}^n |x_k|^p)^{1/p}$ est une norme sur \mathbb{R}^n . 4) Procéder de même en remplaçant \mathbb{R}^n par l'espace des fonctions continues sur [0,1], à valeurs réelles (et les sommes, par des intégrales).

Exercice 12 Soit $E = \mathcal{C}([0,1],\mathbb{R})$. Pour $f,g \in E$, on pose $N_q(f) = \|gf\|_{\infty}$.

- 1. Donner une condition nécessaire et suffisante sur g pour que N_q soit une norme sur E.
- 2. Donner une condition nécessaire et suffisante sur g pour que N_g soit équivalente à la norme $||\cdot||_{\infty} \operatorname{sur} E$.

Exercice 13 1) Soit E un \mathbb{R} -espace vectoriel et N_1 , N_2 des normes sur E. Montrer que N_1 et N_2 induisent la même topologie sur E si et seulement si elles sont équivalentes.

2) Est-ce le cas pour des distances? i.e. si d_1 et d_2 sont deux distances sur un ensemble Xinduisant la même topologie, existe-t-il C > 0 tel que $C^{-1}d_1 \le d_2 \le Cd_1$?

Exercice 14 - Jauge d'un convexe (CC 18-19)

Soit $n \in \mathbb{N}^*$. On rappelle qu'une partie $A \subseteq \mathbb{R}^n$ est

convexe si pour tout
$$(x, y) \in A^2$$
, et pour tout $t \in [0, 1]$, $tx + (1 - t)y \in A$; (Conv) **symétrique par rapport à l'origine** si pour tout $x \in A$, $-x \in A$. (Sym₀)

- 1. Si N est une norme sur \mathbb{R}^n , justifier que la boule unité fermée de (\mathbb{R}^n, N) est un compact convexe, symétrique par rapport à l'origine et d'intérieur non vide.
- 2. Dessiner les boules unités fermées pour la norme $\|\cdot\|_1$, la norme $\|\cdot\|_2$ et la norme $\|\cdot\|_{\infty}$. On prendra soin de bien indiquer quelle boule correspond à quelle norme.

On munit maintenant \mathbb{R}^n d'une norme $\|\cdot\|$ qu'il ne sera pas nécessaire de préciser. On se donne K un convexe de \mathbb{R}^n qui est compact, symétrique par rapport à l'origine et d'intérieur non vide. On se propose de montrer qu'il correspond à la boule unité fermée d'une norme de \mathbb{R}^n .

On pose, pour tout $x \in \mathbb{R}^n$,

$$I_x = \{ \lambda \ge 0 : \lambda x \in K \},\$$

et on définit $J \colon \mathbb{R}^n \to \mathbb{R}$ par

$$J(x) = \begin{cases} \frac{1}{\sup I_x} & \text{si } I_x \text{ est born\'e,} \\ 0 & \text{sinon.} \end{cases}$$

On admet, dans un premier temps que $0 \in K$.

- 3. Montrer que pour tout $x \in \mathbb{R}^n$, l'ensemble I_x est un intervalle non vide de \mathbb{R} .
- 4. Montrer que si I_x est borné, sup $I_x > 0$. En déduire que J est bien définie.
- 5. Montrer que J(0) = 0.
- 6. Soit $x \in \mathbb{R}^n \setminus \{0\}$.
 - (a) Montrer que I_x est borné et en déduire que J(x) > 0.

- (b) En utilisant la caractérisation séquentielle de la borne supérieure, montrer que sup I_x est atteint.
- (c) Montrer que J(-x) = J(x).
- (d) Pour $\alpha > 0$, déterminer $I_{\alpha x}$ en fonction de I_x et en déduire que $J(\alpha x) = \alpha J(x)$.
- 7. Montrer que pour tout $x \in \mathbb{R}^n$, il existe $x_0 \in K$ tel que $x = J(x)x_0$.
- 8. Soient $x_0, y_0 \in K$ et soient a et b deux réels strictement positifs. Montrer que $(ax_0+by_0)/(a+b) \in K$.
- 9. Soient $x, y \in \mathbb{R}^n$ avec $(x, y) \neq (0, 0)$. On pose a = J(x) et b = J(y). Montrer que $1/(a+b) \in I_{x+y}$ et en déduire que $J(x+y) \leq J(x) + J(y)$.
- 10. Conclusion:
 - (a) Montrer que J définit une norme sur \mathbb{R}^n .
 - (b) Montrer que K est la boule unité fermée de la norme J.
- 11. Montrer que l'hypothèse $0 \in \mathring{K}$ se déduit en fait des hypothèses initiales ((Conv), (Sym₀) et $\mathring{K} \neq \emptyset$).

Exercice 15 Soit E l'espace des suites réelles bornées muni de la norme $||(u_n)_{n\in\mathbb{N}}|| = \sup_n |x_n|$.

- 1) Montrer que l'ensemble A des suites qui convergent vers 0 est fermé dans E.
- 2) Soit B l'ensemble des suites qui sont nulles à partir d'un certain rang. Montrer que B est dense dans A. Est-il dense dans E?

Exercice 16 Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'un espace topologique X. Montrer que l'ensemble des valeurs d'adhérence de $(u_n)_{n\in\mathbb{N}}$ est

$$\bigcap_{n\in\mathbb{N}}\overline{\{u_k,k\geq n\}}.$$

Exercice 17 Soit X un espace topologique tel que chaque point admet une base dénombrable de voisinages. Montrer que X est séparé si et seulement si les suites convergentes dans X admettent une seule limite.