Degenerate Pivots and Cycling

A pivot in the Simplex Method is said to be **degenerate** when it doesn't change the basic solution. This happens when we get a ratio of 0 in choosing the leaving variable.

Degenerate pivots are quite common, and usually harmless. But it's possible for **cycling** to occur in a sequence of degenerate pivots. This means that the same tableau occurs more than once. When that happens, the Simplex Method would keep repeating a sequence of pivots forever.

The following example exhibits cycling, using our standard pivoting rules.

Initial tableau:

z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	rhs	S	
1	-10	57	9	24	0	0	0	0	=	z
0	1/2	-11/2	-5/2	9	1	0	0	0	=	s_1
0	1/2	-3/2	-1/2	1	0	1	0	0	=	s_2
0	1	$-11/2 \\ -3/2 \\ 1$	1	1	0	0	1	1	=	s_3

 x_1 enters, s_1 leaves (in a tie for smallest ratio).

z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	rhs	
1	0	-53	-41	204	20	0	0	0 =	z
0	1	-11	-5	18	2	0	0	0 =	x_1
0	0	4	2	-8	-1	1	0	0 =	s_2
0	0	12	6	-17	-2	0	1	$ \begin{array}{ccc} 0 & = \\ 0 & = \\ 1 & = \\ \end{array} $	s_3

 x_2 enters (since -53 < -41), s_2 leaves

z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	rhs	5	
1	0	0	-29/2	98	27/4	53/4	0	0	=	z
0	1	0	1/2	-4	-3/4	11/4	0	0	=	x_1
0	0	1	1/2	-2	-1/4	1/4	0	0	=	
0	0	0	0	7	1	-3	1	1	=	s_3

 x_3 enters, x_1 leaves (another tie for smallest ratio)

$\underline{\hspace{1cm}}z$	x_1	x_2	x_3	x_4	s_1	s_2	s_3	rhs	
1	29	0	0	-18	-15	93	0	0 =	z
0	2	0	1	-8	-3/2	11/2	0	0 =	x_3
0	-1	1	0	2	1/2	-5/2	0	0 =	x_2
0	0	0	0	7	1	-3	1	1 =	s_3

 x_4 enters (-18 < -15), x_2 leaves

z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	rhs
1	20	9	0	0	-21/2	141/2	0	0 = z
0	-2	4	1	0	1/2	-9/2	0	$0 = x_3$
0	-1/2	1/2	0	1	1/4	-5/4	0	$\begin{array}{ccc} 0 & = & x_3 \\ 0 & = & x_4 \end{array}$
0	7/2	-7/2	0	0	-3/4	23/4	1	$1 = s_3$

 s_1 enters, x_3 leaves (another tie for smallest ratio)

z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	rhs	3	
1	-22	93	21	0	0	-24	0	0	=	z
0	-4	8	2	0	1	-9	0	0	=	s_1
0	1/2	-3/2	-1/2	1	0	1	0	0	=	x_4
0	1/2	$ \begin{array}{r} 8 \\ -3/2 \\ 5/2 \end{array} $	3/2	0	0	-1	1	1	=	s_3

 s_2 enters, x_4 leaves. This takes us back to the original tableau.

\underline{z}	x_1	x_2	x_3	x_4	s_1	s_2	s_3	rhs	8	
1	-10	57	9	24	0	0	0	0	=	z
0	1/2	-11/2	-5/2	9	1	0	0	0	=	s_1
0	1/2	-3/2	-1/2	1	0	1	0	0	=	s_2
0	1	$-11/2 \\ -3/2 \\ 1$	1	1	0	0	1	1	=	s_3

One method of preventing cycling is to use Bland's Rule instead of the Most Negative Coefficient Rule. Given a fixed ordering of the variables, e.g. $x_1, x_2, \ldots, x_n, s_1, \ldots, s_m$, Bland's Rule says:

- (a) When choosing the entering variable, take the first one in the ordering that has a negative entry in the objective row.
- (b) When choosing the leaving variable, if there is a tie for least ratio, take the candidate that is first in the ordering.

If we were using Bland's Rule, everything would have been the same up to that last pivot, where x_1 would have entered instead of s_2 , and x_4 would have left.

							s_3		
1	0	27	-1	44	0	20	0	0 =	z
0	0	-4	-2	8	1	-1	0	0 =	s_1
0	1	-3	-1	2	0	2	0	0 =	x_1
0	0	4	2	-1	0	-2	1	$\begin{array}{ccc} 0 & = \\ 1 & = \end{array}$	s_3

Then x_3 would have entered, and s_3 left. This would be, at last, a nondegenerate pivot, producing an optimal tableau:

\underline{z}	x_1	x_2	x_3	x_4	s_1	s_2	s_3	rhs		
1	0	29	0	87/2	0	19	1/2	1/2	=	z
0	0	0	0	7	1	-3	1	1	=	s_1
0	1	-1	0	3/2	0	1	1/2	1/2	=	x_1
0	0	2	1	-1/2	0	-1	1/2	1/2	=	x_3