

# 第四章 组合逻辑电路设计(二)

秦磊华 计算机学院

## 4.5 logisim的基本使用



例 设计一个比较两个三位二进制数是否相等的数值比较器。 (两个3位二进制数分别为 $A = a_3a_2a_1$ ,  $B = b_3b_2b_1$ )

$$F_{=} = (\overline{a_3} \cdot \overline{b_3} + a_3b_3) \cdot (\overline{a_2} \cdot \overline{b_2} + a_2b_2) \cdot (\overline{a_1} \cdot \overline{b_1} + a_1b_1)$$

$$F_{A>B} = A_3\overline{B}_3 + (A_3B_3 + \overline{A}_3\overline{B}_3)(A_2\overline{B}_2) + (A_3B_3 + \overline{A}_3\overline{B}_3)(A_2B_2 + \overline{A}_2\overline{B}_2)(A_1\overline{B}_1)$$

$$F_{A < B} = \overline{A}_3 B_3 + (A_3 B_3 + \overline{A}_3 \overline{B}_3)(\overline{A}_2 B_2) + (A_3 B_3 + \overline{A}_3 \overline{B}_3)(A_2 B_2 + \overline{A}_2 \overline{B}_2)(\overline{A}_1 B_1)$$

## 4.5 logisim的基本使用





险像实验演示



#### 1.编码器

### 1)编码的基本概念

用 文字、数字、符号等标识特定对象,将数据从一种形式变成另一种形式。传感器就是一种常见的编码器,如位置传感器、压力传感器等。

#### 2)编码器

能够完成编码功能的电路叫编码器

### 3)编码器分类

普通编码器和优先编码器





### 4)普通编码器



任何时刻只允许输入一个编码信号,不允许同时输入多个编码信号



|       |                |                | 输              |                       | λ                     |                |                | 输              | 出                     |                |
|-------|----------------|----------------|----------------|-----------------------|-----------------------|----------------|----------------|----------------|-----------------------|----------------|
| $I_0$ | l <sub>1</sub> | l <sub>2</sub> | l <sub>3</sub> | <b>I</b> <sub>4</sub> | <b>I</b> <sub>5</sub> | I <sub>6</sub> | I <sub>7</sub> | Y <sub>2</sub> | <b>Y</b> <sub>1</sub> | Y <sub>0</sub> |
| 1     | 0              | 0              | 0              | 0                     | 0                     | 0              | 0              | 0              | 0                     | 0              |
| 0     | 1              | 0              | 0              | 0                     | 0                     | 0              | 0              | 0              | 0                     | 1              |
| 0     | 0              | 1              | 0              | 0                     | 0                     | 0              | 0              | 0              | 1                     | 0              |
| 0     | 0              | 0              | 1              | 0                     | 0                     | 0              | 0              | 0              | 1                     | 1              |
| 0     | 0              | 0              | 0              | 1                     | 0                     | 0              | 0              | 1              | 0                     | 0              |
| 0     | 0              | 0              | 0              | 0                     | 1                     | 0              | 0              | 1              | 0                     | 1              |
| 0     | 0              | 0              | 0              | 0                     | 0                     | 1              | 0              | 1              | 1                     | 0              |
| 0     | 0              | 0              | 0              | 0                     | 0                     | 0              | 1              | 1              | 1                     | 1              |

$$Y_2 = I_4 + I_5 + I_6 + I_7$$

$$Y_1 = I_2 + I_3 + I_6 + I_7$$

$$Y_0 = I_1 + I_3 + I_5 + I_7$$











7 '









发现存在的问题! 如何解决?



### 5)优先编码器

优先编码器允许同时在几个输入端有输入信号,编码器按输入信号排定的优先顺序,只对同时输入的几个信号中优先权最高的输入进行编码。

| I <sub>7</sub> | I <sub>6</sub> | I <sub>5</sub> | I <sub>4</sub> | I <sub>3</sub> | I <sub>2</sub> | I <sub>1</sub> | $I_{0}$ | Y <sub>2</sub> | Y <sub>1</sub> | Y <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------|----------------|----------------|----------------|
| 1              |                |                |                |                | 1              | 1              | 1       |                |                |                |
| 0              | 1              |                |                | >              | <              |                |         | 1              | 1              | 0              |
| 0              | 0              | 1              |                |                | X              |                |         | 1              | 0              | 1              |
| 0              | 0              | 0              | 1              |                | >              | (              |         | 1              | 0              | 0              |
| 0              | 0              | 0              | 0              | 1              |                | Χ              |         | 0              | 1              | 1              |
| 0              | 0              | 0              | 0              | 0              | 1              |                | X       | 0              | 1              | 0              |
| 0              | 0              | 0              | 0              | 0              | 0              | 1              | X       | 0              | 0              | 1              |
| 0              | 0              | 0              | 0              | 0              | 0              | 0              | 1       | 0              | 0              | 0              |

$$\begin{split} Y_2 &= I_7 + \overline{I_7} \cdot I_6 + \overline{I_7} \cdot \overline{I_6} \cdot I_5 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot I_4 = I_7 + I_6 + I_5 + I_4 \\ Y_1 &= I_7 + \overline{I_7} \cdot I_6 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot I_3 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot \overline{I_3} \cdot I_2 = I_7 + I_6 + \overline{I_5} \cdot \overline{I_4} \cdot (I_3 + I_2) \\ Y_0 &= I_7 + \overline{I_7} \cdot \overline{I_6} \cdot I_5 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot I_3 + \overline{I_7} \cdot \overline{I_6} \cdot \overline{I_5} \cdot \overline{I_4} \cdot \overline{I_3} \cdot \overline{I_2} \cdot I_1 = I_7 + \overline{I_6} \cdot I_5 + \overline{I_6} \cdot \overline{I_4} \cdot I_3 + \overline{I_6} \cdot \overline{I_4} \cdot \overline{I_2} \cdot I_1 \end{split}$$



$$Y_2 = I_4 + I_5 + I_6 + I_7$$

$$Y_1 = I_2 + I_3 + I_6 + I_7$$

$$Y_0 = I_1 + I_3 + I_5 + I_7$$



$$Y_{2} = I_{7} + \overline{I_{7}} \cdot I_{6} + \overline{I_{7}} \cdot \overline{I_{6}} \cdot I_{5} + \overline{I_{7}} \cdot \overline{I_{6}} \cdot \overline{I_{5}} \cdot I_{4} = I_{7} + I_{6} + I_{5} + I_{4}$$

$$Y_{1} = I_{7} + \overline{I_{7}} \cdot I_{6} + \overline{I_{7}} \cdot \overline{I_{6}} \cdot \overline{I_{5}} \cdot \overline{I_{4}} \cdot I_{3} + \overline{I_{7}} \cdot \overline{I_{6}} \cdot \overline{I_{5}} \cdot \overline{I_{4}} \cdot \overline{I_{3}} \cdot I_{2} = I_{7} + I_{6} + \overline{I_{5}} \cdot \overline{I_{4}} \cdot (I_{3} + I_{2})$$

$$Y_{0} = I_{7} + \overline{I_{7}} \cdot \overline{I_{6}} \cdot I_{5} + \overline{I_{7}} \cdot \overline{I_{6}} \cdot \overline{I_{5}} \cdot \overline{I_{4}} \cdot I_{3} + \overline{I_{7}} \cdot \overline{I_{6}} \cdot \overline{I_{5}} \cdot \overline{I_{4}} \cdot \overline{I_{3}} \cdot \overline{I_{2}} \cdot I_{1} = I_{7} + \overline{I_{6}} \cdot I_{5} + \overline{I_{6}} \cdot \overline{I_{4}} \cdot I_{3} + \overline{I_{6}} \cdot \overline{I_{4}} \cdot \overline{I_{2}} \cdot I_{1}$$

















#### 6)带使能控制的优先编码器

| 输入使能端 | #                     | į                     | 输                     |                    |                  |                  | 入                |                  | 箱                | d f                         | H.                          | 扩展                  | 使能输出               |
|-------|-----------------------|-----------------------|-----------------------|--------------------|------------------|------------------|------------------|------------------|------------------|-----------------------------|-----------------------------|---------------------|--------------------|
| S     | <b>I</b> <sub>7</sub> | <b>I</b> <sub>6</sub> | <b>I</b> <sub>5</sub> | $\overline{I_{4}}$ | $\overline{I_3}$ | $\overline{l}_2$ | $\overline{I}_1$ | $\overline{I}_0$ | $\overline{Y}_2$ | $\overline{\mathbf{Y}}_{1}$ | $\overline{\mathbf{Y}}_{0}$ | $\overline{Y}_{EX}$ | $\overline{Y_{S}}$ |
| 1     | ×                     | ×                     | ×                     | ×                  | ×                | ×                | ×                | ×                | 1                | 1                           | 1                           | 1                   | 1                  |
| 0     | 1                     | 1                     | 1                     | 1                  | 1                | 1                | 1                | 1                | 1                | 1                           | 1                           | 1                   | 0                  |
| 0     | 0                     | ×                     | ×                     | ×                  | ×                | ×                | ×                | ×                | 0                | 0                           | 0                           | 0                   | 1                  |
| 0     | 1                     | 0                     | ×                     | ×                  | ×                | ×                | ×                | ×                | 0                | 0                           | 1                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 0                     | ×                  | ×                | ×                | ×                | ×                | 0                | 1                           | 0                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 1                     | 0                  | ×                | ×                | ×                | ×                | 0                | 1                           | 1                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 1                     | 1                  | 0                | ×                | ×                | ×                | 1                | 0                           | 0                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 1                     | 1                  | 1                | 0                | ×                | ×                | 1                | 0                           | 1                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 1                     | 1                  | 1                | 1                | 0                | ×                | 1                | 1                           | 0                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 1                     | 1                  | 1                | 1                | 1                | 0                | 1                | 1                           | 1                           | 0                   | 1                  |

$$\overline{Y}_2 = \overline{(I_4 + I_5 + I_6 + I_7) \cdot ST}$$
  $\overline{Y}_1 = \overline{(I_2 \overline{I}_4 \overline{I}_5 + I_3 \overline{I}_4 \overline{I}_5 + I_6 + I_7) \cdot ST}$ 

$$\overline{Y}_0 = \overline{(I_1 \overline{I}_2 \overline{I}_4 \overline{I}_6 + I_3 \overline{I}_4 \overline{I}_6 + I_5 \overline{I}_6 + I_7) \cdot ST} \qquad \overline{Y}_S = \overline{\overline{I}_0 \cdot \overline{I}_1 \cdot \overline{I}_2 \cdot \overline{I}_3 \cdot \overline{I}_4 \cdot \overline{I}_5 \cdot \overline{I}_6 \cdot \overline{I}_7 \cdot S}$$

#### 学中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

### 6)带使能控制的优先编码器

| 输入使能端 | <u>1</u>              | 3                     | 输                  |                    |                  |       | 入     |                  | 辅                | i t                         | <del>L</del>                | 扩展                  | 使能输出               |
|-------|-----------------------|-----------------------|--------------------|--------------------|------------------|-------|-------|------------------|------------------|-----------------------------|-----------------------------|---------------------|--------------------|
| S     | <b>I</b> <sub>7</sub> | <b>I</b> <sub>6</sub> | $\overline{I}_{5}$ | $\overline{I_{4}}$ | $\overline{I_3}$ | $I_2$ | $I_1$ | $\overline{I}_0$ | $\overline{Y}_2$ | $\overline{\mathbf{Y}}_{1}$ | $\overline{\mathbf{Y}}_{0}$ | $\overline{Y}_{EX}$ | $\overline{Y}_{s}$ |
| 1     | ×                     | ×                     | ×                  | ×                  | ×                | ×     | ×     | ×                | 1                | 1                           | 1                           | 1                   | 1                  |
| 0     | 1                     | 1                     | 1                  | 1                  | 1                | 1     | 1     | 1                | 1                | 1                           | 1                           | 1                   | 0                  |
| 0     | 0                     | ×                     | ×                  | ×                  | ×                | ×     | ×     | ×                | 0                | 0                           | 0                           | 0                   | 1                  |
| 0     | 1                     | 0                     | ×                  | ×                  | ×                | ×     | ×     | ×                | 0                | 0                           | 1                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 0                  | ×                  | ×                | ×     | ×     | ×                | 0                | 1                           | 0                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 1                  | 0                  | ×                | ×     | ×     | ×                | 0                | 1                           | 1                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 1                  | 1                  | 0                | ×     | ×     | ×                | 1                | 0                           | 0                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 1                  | 1                  | 1                | 0     | ×     | ×                | 1                | 0                           | 1                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 1                  | 1                  | 1                | 1     | 0     | ×                | 1                | 1                           | 0                           | 0                   | 1                  |
| 0     | 1                     | 1                     | 1                  | 1                  | 1                | 1     | 1     | 0                | 1                | 1                           | 1                           | 0                   | 1                  |

$$\overline{Y_{EX}} = \overline{\overline{Y_S} \cdot S} = \overline{\overline{I_0 I_1 I_2 I_3 I_4 I_5 I_6 I_7}} SS$$

$$= \overline{(I_0 + I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7)}S$$



#### 2.译码器

### 1)基本概念

编码器的逆过程,将输入的每个二进制代码翻译成对应的输出高、低电平。

### 2)译码器分类

- ●变量译码器
- ●码制变换译码器
- ●数字显示译码器



### 3)变量译码器

变量译码器是表示输入状态的组合逻辑网络,如2:4译码器



对输入的2位二进制数进行译码,具有 22 = 4 个输出



### 4)2:4变量译码器

| <b>A</b> <sub>1</sub> | $A_0$ | $\overline{Y}_3$ | $\overline{Y_2}$ | $\overline{Y}_1$ | $\overline{Y_0}$ |
|-----------------------|-------|------------------|------------------|------------------|------------------|
| 0                     | 0     | 1                | 1                | 1                | 0                |
| 0                     | 1     | 1                | 1                | 0                | 1                |
| 1                     | 0     | 1                | 0                | 1                | 1                |
| 1                     | 1     | 0                | 1                | 1                | 1                |

$$\overline{Y}_3 = \overline{A_1 A_0}$$

$$\overline{Y}_3 = \overline{A_1} \overline{A_0} \qquad \overline{Y}_2 = \overline{A_1} \overline{A_0}$$

$$\overline{Y}_1 = \overline{A}_1 A_0$$

$$\overline{Y_1} = \overline{A_1} \overline{A_0} \qquad \overline{Y_0} = \overline{A_1} \overline{A_0}$$



### 5)带选通功能的2:4变量译码器

| $\overline{ST}$ | A <sub>1</sub> | $A_0$ | $\overline{Y_3}$ | $\overline{Y_2}$ | $\overline{Y_1}$ | $\overline{Y_0}$ |
|-----------------|----------------|-------|------------------|------------------|------------------|------------------|
| 1               | X              | X     | 1                | ~                | 1                | 1                |
| 0               | 0              | 0     | 1                | 1                | 1                | 0                |
| 0               | 0              | 1     | 1                | 1                | 0                | 1                |
| 0               | 1              | 0     | 1                | 0                | 1                | 1                |
| 0               | 1              | 1     | 0                | 1                | 1                | 1                |



$$\overline{Y_3} = \overline{A_1 A_0} \overline{\overline{ST}} = \overline{A_1 A_0 ST}$$

$$\overline{Y_2} = \overline{A_1} \overline{A_0} ST$$
  $\overline{Y_1} = \overline{\overline{A_1}} A_0 ST$   $\overline{Y_0} = \overline{\overline{A_1}} \overline{A_0} ST$ 



#### 3.码制变换译码器

码制变换译码器的功能是将一种码制转换为另一种码制。

例1:设计一个将余三码转换为8421BCD码的转换电路

| Α | В | С | D | W | X | Y | Z |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |





| A | В | С | D | W | X | Y | Z |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |





$$W = \overline{\overline{AB} \cdot \overline{ACD}}$$

$$X = \overline{\overline{AC} \cdot \overline{BD} \cdot \overline{BCD}}$$

$$Y = \overline{\overline{CD} \cdot \overline{CD}}$$

$$Z = \overline{D}$$





#### 4. 数字显示译码器

发光二极管可以单独封装,也可以组合封装为LED数码管。









发光二极管按驱动方式又分为共阳极和共阴极接法。



共阳极接法



共阴极接法



例2设计8421BCD七段显示译码电路。

$$\begin{array}{c|c}
a \\
f & g \\
\hline
e & c
\end{array}$$

本题采用共阳极设计

| D | С | В | A | a | b | c | d | е | f | g | 显示 |
|---|---|---|---|---|---|---|---|---|---|---|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1  |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2  |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 3  |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 4  |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 5  |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 6  |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8  |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 9  |



| D | C | В | A | a | b | c | d | е | f | g | 显示 |
|---|---|---|---|---|---|---|---|---|---|---|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1  |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 2  |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 3  |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 4  |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 5  |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 6  |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8  |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 9  |



$$a = \overline{D}\overline{C}\overline{B}A + C\overline{B}\overline{A}$$





$$b = CBA + CBA$$



$$e = A + C\overline{B}\overline{A}$$



$$f = BA + \overline{C}B\overline{A} + \overline{D}\overline{C}\overline{B}A$$

| DO<br>BA | 00 | 01 | 11 | 10 |
|----------|----|----|----|----|
| 00       | 0  | 1  | X  | 0  |
| 01       | 1  | 0  | X  | 0  |
| 11       | 0  | 1  | X  | X  |
| 10       | 0  | 0  | X  | X  |
|          |    | (  | b  |    |

$$d = CBA + CBA + DCBA$$



 $g = \overline{DCB} + CBA$ 



$$a = \overline{D}\overline{C}\overline{B}A + C\overline{B}\overline{A}$$

$$b = \overline{CBA} + \overline{CBA}$$

$$c = \overline{C}B\overline{A}$$

$$d = \overline{CBA} + \overline{CBA} + \overline{DCBA}$$

$$e = A + C\overline{B}\overline{A}$$

$$f = BA + \overline{C}B\overline{A} + \overline{D}\overline{C}BA$$

$$g = \overline{D}\overline{C}\overline{B} + CBA$$





#### 数字显示译码器的动态显示

 $\frac{LT}{RBI} = \begin{cases} 1 & \text{ price in the price of the price$ 

灯测试输入端主要用 于检查**LED**的好坏。

消隐输入端(与灭**0** 输出端共用)

灭**0**输入端,熄灭 无意义的**0** 

灭0输出端 *RBO*与 (灭0输入端配合使用)

$$\overline{BI} = \begin{cases} 0 & \text{时,不管输入何种状态,输出全} 0 \\ 1 & \text{时,正常译码。} \end{cases}$$

即:灭0输入等于0,灭0输出一定等于0。