2 Теория колец

2.1 Введение

Определение 1. Кольцо R - множество элементов c двумя бинарными операциями, такие что:

- 1. a + b = b + a (коммутативность)
- 2. (a+b)+c=a+(b+c) (ассоциативность)
- 3. \exists нейтральный элемент относительно сложения: $a+0=0+a=a, \forall a\in R$
- 4. \exists противоположный отностильно сложения: $-a \in R|(-a) + a = a + (-a) = 0$
- 5. accoupamusность a(bc) = (ab)c
- 6. дистрибутивность a(b+c) = ab + ac (b+c)a = ba + ca

Теорема 1 (Свойства колец). Пусть $a,b,c \in R$ - кольцо

- 1. $a \cdot 0 = 0 \cdot a = 0$
- 2. a(-b) = (-a)b = -(ab)
- 3. (-a)(-b) = ab
- 4. a(b-c) = ab ac(b-c)a = ba - ca

Кроме того, если R имеет единичный элемент 1 относительно умножения, то

- 5. (-1)a = -a
- 6. (-1)(-1) = 1

Теорема 2. Если кольцо имеет единичный элемент, то этот элемент единственен. Если для $a \in R \exists a^{-1}$, то a^{-1} - единственен.

Определение 2. Подмножество S кольца R называется подкольцом в R, если само является кольцом относительно операции, заданных в R.

Теорема 3 (Признак подкольца). Непустое подмножество S кольца R является подкольцом, если S замкнуто относительно операций минус и умножить, т.е. если $\left. \begin{array}{c} a-b \\ ab \end{array} \right\} \in R, \forall a,b \in S$

1

2.2 Кольца целостности

Определение 3. Делитель нуля $0 \neq a \in R$ - коммутативное кольцо $|\exists 0 \neq b \in R \ u \ ab = 0.$

Определение 4. Кольцо целостности - коммутативное кольцо с единицей без делителей нуля.

Теорема 4. Пусть $a,b,c\in R$ - кольцо целостности. Если $a\neq 0$ и ab=ac, то b=c.

Доказательство. Рассмотрим ab=ac ab-ac=0 a(b-c)=0, где $a\neq 0$ $\Rightarrow b-c=0$ b=c

Определение 5. Поле - коммутативное кольцо c единицей, в котором любой отличный от нуля элемент обратим.

Теорема 5. Конечное кольцо целостности является полем.

 \mathcal{L} оказательство. Пусть D - конечное кольцо целостности с единицей.

Рассмотрим $0 \neq a \ inD$

Докажем, что a - обратим

Если $a=1\Rightarrow$ очевидно

Пусть $a \neq 1$ a, a^2, a^3, \dots D - конечно $\Rightarrow a^i - a^j = 0$ $\Rightarrow a^j (a^{i-j} - 1) = 0$, где $a^j \neq 0$ $a^{i-j} = 1$ $\Rightarrow a^{i-j-1}$ - обратный к a.

Следствие 1. Для $\forall p$ - npocmux, \mathbb{Z}_p - none.

Определение 6. Характеристика кольца R - наименьшее положительное целое $n|n\cdot x=0, \forall x\in R.$

Если такого n не существует, то будем говорить, что R имеет характеристику 0. Обозначается char R = n.