Introduction to Time Series Analysis (Assignment for IITP –BSE Course)

1. Make separate python file (.ipynb) for each dataset and read the datasets in each file using pandas and store in dataframe, print first 5 rows of data including the header row.

Monthly Car Sales	Sales	
Month	Sales	
0	1960-01	6550
1	1960-02	8728
2	1960-03	12026
3	1960-04	14395
4	1960-05	14587

Monthly sunspots	Sunspots	
Month	Sunspots	
0	1749-01	58.0
1	1749-02	62.6
2	1749-03	70.0
3	1749-04	55.7
4	1749-05	85.0

Date	Births	
0	1959-01-01	35
1	1959-01-02	32
2	1959-01-03	30
3	1959-01-04	31
4	1959-01-05	44

2. Plot all three dataset to analyse the series.

Monthly Car Sales

Monthly sunspots

3. Set "Date" column of the dataset as index. Please take the correct name of the column.

Monthly Car Sales

```
DatetimeIndex(['1960-01-01', '1960-02-01', '1960-03-01', '1960-04-01', '1960-05-01', '1960-06-01', '1960-07-01', '1960-08-01', '1960-09-01', '1960-10-01', '1968-05-01', '1968-05-01', '1968-06-01', '1968-07-01', '1968-08-01', '1968-09-01', '1968-10-01', '1968-11-01', '1968-12-01'], dtype='datetime64[ns]', name='Month', length=108, freq=None)
```

Monthly sunspots

```
DatetimeIndex(['1749-01-01', '1749-02-01', '1749-03-01', '1749-04-01', '1749-05-01', '1749-06-01', '1749-07-01', '1749-08-01', '1749-09-01', '1749-01', '1749-09-01', '1749-09-01', '1983-05-01', '1983-05-01', '1983-06-01', '1983-07-01', '1983-08-01', '1983-09-01', '1983-10-01', '1983-11-01', '1983-12-01'], dtype='datetime64[ns]', name='Month', length=2820, freq=None)
```

Daily Female births

```
DatetimeIndex(['1959-01-01', '1959-01-02', '1959-01-03', '1959-01-04', '1959-01-05', '1959-01-06', '1959-01-07', '1959-01-08', '1959-01-09', '1959-01-10', ...

'1959-12-22', '1959-12-23', '1959-12-24', '1959-12-25', '1959-12-26', '1959-12-27', '1959-12-28', '1959-12-29', '1959-12-30', '1959-12-31'], dtype='datetime64[ns]', name='Date', length=365, freq=None)
```

4. Try fetching the data using index i.e. for a specific date, specific month and specific year.

Monthly Car Sales

```
Sales 7049
Name: 1960-09-01 00:00:00, dtype: int64
```

Monthly sunspots

```
Sunspots 66.3
Name: 1749-08-01 00:00:00, dtype: float64
```

```
Births 35
Name: 1959-01-01 00:00:00, dtype: int64
```

5. Plot the boxplot using daily data for daily-total-female-births dataset and monthly data for monthly-car-sales.csv, monthly-sunspots.csv, daily-total-female-births datasets.

Monthly Car Sales

Monthly sunspots

6. Plot the boxplot using yearly data for (i) and (ii).

Monthly Car Sales

Box plot of number of Cars sold in that year

Monthly sunspots

Box plot of number of Sunspots in that year

7. Calculate moving average of the data and test stationarity (rolling mean, standrad deviation)

Monthly Car Sales

Monthly sunspots

8. Plot autocorrelation and partial autocorrelation and interpret the results of ACF and PACF plots to find the order of AR, MA, ARMA, ARIMA models Monthly Car Sales

Monthly sunspots

11. Plot the original versus predicted graph for each of the model prediction.

Monthly Car Sales

Month

Daily Female births

12. Apply Prophet model, calculate the error matrices & plot the original versus predicted.

Monthly Car Sales

Monthly sunspots

Daily Female births

14. Calculate RMSE & MAPE matrices on the prediction of each model and compare all the results in tabular format.

	Monthly C	Monthly Car Sales Monthly Sunspots		Daily Female births		
	RSME	MAPE	RSME	MAPE	RSME	MAPE
AR	3947.22	17.32	24.64	24.1	8.372	16.24
MA	3947.22	17.32	24.63	24.1	8.372	16.24
ARMA	3947.2	17.32	24.63	24.1	8.177	16.24
ARIMA	3947.14	17.32	24.64	24.1	8.137	16.24
ARIMA (min AIC)	3647.57	17.32	24.63	24.11	7.685	16.24
PROPHET	3108.93		42.61		16.813	
LSTM(Vanila)	4193.01	21.5	26.78		9.185	17.52
LSTM(Stack)	4279.78	22.6	27.28		8.094	15.69
LSTM(Bi						
directional)	4310.82	23.9	25.68		9.555	18.75