

Deep Learning Clinic (DLC)

Lecture 4
A Brief Introduction to Deep Learning

Jin Sun

10/19/2018

Today

- Overview
- Basic Feedforward Networks and Core Concepts
 - Optimization
 - o Regularization
- Convolutional Networks
- Recurrent Networks
- Generative Models
- Research Frontiers

Overview

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

What is Deep Learning

VS

2016

The Benefit of Going Deeper

The Dominance of DL

The Dominance of DL

The introduction of Deep Learning techniques drove performance on image categorization from 30% error rates in 2010, down to <2% in 2017

Main Reasons Behind Deep Learning's Success

Data Hardware

Deep Learning Landscape

https://medium.com/@shivon/the-current-state-of-machine-intelligence-f76c20db2fe1

Today

- Overview
- Basic Feedforward Networks and Core Concepts
 - Optimization
 - Regularization
- Convolutional Networks
- Recurrent Networks
- Generative Models
- Research Frontiers

Basic Feedforward Networks

 $f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$

Backpropagation

Backpropagation

Backpropagation - How It Is Done

Backpropagation - PyTorch Example

```
import torch
from torch.autograd import Variable
x = Variable(torch.ones(2), requires_grad=True)
W = Variable(torch.ones(2), requires_grad=True)
c = Variable(torch.ones(2), requires_grad=True)
w = Variable(torch.ones(2,1), requires_grad=True)
b = Variable(torch.ones(1), requires grad=True)
h = torch.relu(x*W + c)
y = torch.matmul(w.t(),h) + b
y_target = Variable(torch.zeros(1))
loss = (y - y_target)^{**2}
loss.backward()
```

 $f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$

Optimization

Why backpropagation is useful?

It helps us to calculate the gradient of a model's parameters, so we can use gradient based optimization techniques.

Recap from last lecture:

minimize_{$$\theta$$} $e \doteq \mathbb{E}_{(x,y)\sim D}[L(y,f(x;\theta))]$

Find the best θ that minimizing the expected loss.

Common Optimization Algorithms in DL

Stochastic Gradient Descent (SGD)

Instead of calculating the gradient over the whole training set, only do it over a few examples (called a minibatch).

No need to fit the whole data into memory; Enables online learning.

Adam

A more advanced SGD extension. Works well with noisy gradient and large data problems.

Optimization - PyTorch Example

```
optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)
or
optimizer = optim.Adam([var1, var2], lr = 0.0001)
for input, target in dataset:
  optimizer.zero_grad()
  output = model(input)
  loss = loss_fn(output, target)
  loss.backward()
  optimizer.step()
```

L1 Norm

Prefer sparse weights

L2 Norm

Prefer smaller weights

Dropout

Data Augmentation

Early Stopping

Today

- Overview
- Basic Feedforward Networks and Core Concepts
 - Optimization
 - o Regularization
- Convolutional Networks
- Recurrent Networks
- Generative Models
- Research Frontiers

Data and Neural Network Models

Static Data

Convolutional Neural Networks **Dynamic Data**

Recurrent Neural Networks **Unsupervised Data**

Generative Neural Networks

Convolution

A local operation that extracts information from data.

Convolution in action:

http://cs231n.github.io/convolutional-networks/

Pooling

Good for:

Data with translation invariance and shared statistics.

Data that can benefitted from different levels of abstraction.

Not so good for:

Dynamic data.

Today

- Overview
- Basic Feedforward Networks and Core Concepts
 - Optimization
 - o Regularization
- Convolutional Networks
- Recurrent Networks
- Generative Models
- Research Frontiers

Data and Neural Network Models

Static Data

Convolutional Neural Networks **Dynamic Data**

Recurrent Neural Networks **Unsupervised Data**

Generative Neural Networks

Dynamic Data

Data changes over time.

Language Video

A model's output is not just depending on the current input

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM) Networks

Being able to remember... and forget!

Good for:

Dynamic data.

Not so good:

Might be tricky to train.

An interesting <u>read</u>.

Today

- Overview
- Basic Feedforward Networks and Core Concepts
 - Optimization
 - Regularization
- Convolutional Networks
- Recurrent Networks
- Generative Models
- Research Frontiers

Data and Neural Network Models

Static Data

Convolutional Neural Networks **Dynamic Data**

Recurrent Neural Networks **Unsupervised Data**

Generative Neural Networks

Generative Models

We have data, but no labels.

Goal

Recover underlying structures of the data.

Generative Models

- Realistic samples for artwork, super-resolution, colorization, etc.

Autoencoder

Generative Adversarial Networks

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf

Today

- Overview
- Basic Feedforward Networks and Core Concepts
 - Optimization
 - o Regularization
- Convolutional Networks
- Recurrent Networks
- Generative Models
- Research Frontiers

Research Frontiers

Deeper Networks

Vanishing gradient, instability -> ResNet

More Efficient Networks

Network compression / Binary networks

Understanding Networks

The explainability of neural networks

Research Frontiers

Reinforcement Learning is trying to solve a very different problem than standard ML: instead of supervision, we are given a vague signal called 'reward'.

https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419

Summary

- Overview
- Basic Feedforward Networks and Core Concepts
 - Optimization
 - o Regularization
- Convolutional Networks
- Recurrent Networks
- Generative Models
- Research Frontiers

Further Readings:

Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville link