

INTERIM REPORT

Ivonne Aspilcueta 2024

PROJECT OVERVIEW:

Motivation: Hospitals and clinics need additional staff to adequately treat patients, particularly those in vulnerable populations, who develop serious complications and end up in the hospital.

Objective: To Determine the time and quantity of temporary medical staff, to each state.

Scope: The agency covers all hospitals in each of the 50 states of the United States, and the project will plan for the upcoming influenza season.

HYPOTHESIS:

- If the vulnerable population is 65+ then the mortality rate will be higher.
- If the number of vulnerable population 65+ is higher in the most populated States, then more staff is needed.

DATA OVERVIEW:

Influenza deaths by State

The data sourced is external since is taken from the Centers for Disease Control and Prevention (CDC). This dataset contains 66,096 records and the variables are: State, State Code, Year, Month, Month Code, Ten-year age Group, Ten-Year age group code and Deaths. The data is also reliable and trustworthy coming from a trusted government entity.

US Census Population Data by Geography

The data is external since is taking from the U.S. Census Bureau, a principal agency of the U.S. Federal Statistical System (A government agency). Data is trustworthy since they are dedicated and are the leading provider of quality data about America's people and economy.

This dataset contains variables like: County, Year, Total population, Gender, and Age. It is a detailed breakdown to make it easy to analyze the US population.

Integrated Data

A new dataset was generated by merging the Influenza Deaths data with the Census Population Data. For the Influenza Death I combined key State/Year and changed value "Suppressed" = 0. For the Census Population Data, I combined State/Year in a new Column, aggregated the Age groups into 10 years Age Group and removed Puerto Rico, since is not included as one of the states for this project.

DATA LIMITATIONS:

Influenza deaths by State

This Influenza Deaths Data contains data from 2009 to 2017. This is the limitation of the project for not having the most updated data to prepare us for 2024.

Also, Death counts and death rates are "Suppressed" when the data meets the criteria for confidentiality constraints, according to the CDC about death "Suppressed".

Death rates are not calculated specifically for the "Not Stated" groups because there are no corresponding population denominator data for these groups. "Deaths of persons with Age "Not Stated" are included in "All" counts and rates, but are not distributed among age groups, so are not included in age-specific counts, age-specific rates or in any age-adjusted rates. Wonder.cdc.gov. https://wonder.cdc.gov/wonder/help/ucd.html

US Census Population Data by Geography

The dataset is from the years 2009 to 2017, It is not updated which will not reflect a recent demographic population or trends. This outdated data can affect the accuracy of current population estimations and projections.

Also, can have a margin of error since they collect the data by providing surveys; depending on the survey, they have many options for participating online, by mail, in-person, or over the phone or by fax.

DESCRIPTIVE ANALYSIS:

Data Spread			
Variable	Vulnerable Population 65+	Vulnerable Population Death 65+	
Dataset Name	Integrated Data Set Integrated Data Set		
Sample or Population?	Sample Sample		
Normal Distribution?	Left-Skewed Left-Skewed		
Variance	796788779818	1028484	
Standard Deviation	892630	1014	
Mean	829430	826	
Outlier lower bound	-955831 -1202		
Outlier upper bound	2614690 2855		
Outlier count	30	18	
Outlier Percentage	7% 4%		

Correlation			
Variable	Total Vulnerable Population & Total Death of Vulnerable Population	Total Population 65+ & Total Death % 65+	
Proposed Relationship	Possible Correlation (Death Increases as vulnerable population increases)	Possible Correlation (Death % increases as vulnerable population increases)	
Correlation Coefficient	0.94	0.40	
Strength of Correlation	Strong relationship	Weak relationship	
Usefulness / Interpretation	This interpretation is useful because let us know that the number of deaths due to the influenza increases as the vulnerable population increases, with that said, they can focus in the states with the most vulnerable population to send more staff than the states with the lowest vulnerable population.	There is a little correlation with the total vulnerable population and the total of Death rate % 65+. That means if we based our conclusions in rates, it would not be as useful as we based our conclusions in numbers, since the rate of death does not increase as the same rate of the population, an important decision may be skipped like the need of more staff in places where the vulnerable population are higher.	

RESULTS AND INSIGHT:

Research	Vulnerable people 65+	
hypothesis	have the higher Rate	
	Deaths for influenza	
Dependent	Influenza death rate	
variant		
Independen	Age Group	
t variant		
Null	The Death rate for	
hypothesis	influenza on patients 65+ is	
	less than or equal to	
	patients under 65 years	
	old.	
Alternative	Death rate for influenza on	
hypothesis	patients 65+ is greater than	
	patients under 65 yrs.	

One-tailed	Death by influenza rate of	
or two-tailed	population 65+ is greater	
test	than patients under 65	
	years old.	
alpha	0.05	
p-value	0.0000	The p-value (one-tail) is 1.0838E-180, which
(one-tail)		is translated as zero. The p-value is lower
		than the significant level of 0.05, so we can
		conclude that there is a difference between
		the mean death rates of 65+ age and under
		65 age groups.

t-Test: Two-Sample Assuming Unequal		
Variances		
	0-64 yrs Total	Total Population 65
	Population rate	+ rate
Mean	0.00077%	0.08143%
Variance	9.41616E-11	1.76619E-07
Observations	459	459
Hypothesized Mean Difference	0	
df	458	
t Stat	-41.1072068	
P(T<=t) one-tail	4.30E-156	
t Critical one-tail	1.648187415	
P(T<=t) two-tail	8.6017E-156	
t Critical two-tail	1.965157098	

Summary of findings	Since the mean for 65+ years group is
	higher (0.0814291797435701%) than
	the mean for under 65 years old group
	(0.000771471943227727%), we can
	disregard the null hypothesis and accept
	the alternative hypothesis.

Research	The most populated	
hypothesis	states have the higher	
	vulnerable people	
Dependent	Vulnerable Population	
variant		
Independen	Total Population	
t variant		
Null	The number of	
hypothesis	vulnerable people is	
	less than or equal in	
	highly populated.	
Alternative	The number of	
hypothesis	vulnerable people is	
	greater in highly	
	populated states.	
One-tailed	It's a one-tailed test,	
or two-	as I'm trying to prove	
tailed test	the difference in one	
	direction.	
alpha	0.05	
p-value	0.1904	The p-value (one-tail) is 0.190397783614776.
(one-tail)		The p-value is higher than the significant level of
		0.05, so we can conclude that there is a
		difference between the states most populated
		and higher vulnerable 65+ population.

Highly populated states ≥ Q3	
IQR	46,782,692
MIN	5,465,761
Outlier low	-55,791,751
Q1	14,382,287
Median	54,973,128
Q3	61,164,979
Outlier high	131,339,017
MAX	339,054,878

t-Test: Two-Sample Assuming Unequal		
Variances		
	High Populated	Low Populated
	States	States
Mean	0.135991694	0.141125153
Variance	0.00035932	0.000163199
Observations	13	34
Hypothesized Mean Difference	0	
df	16	
t Stat	-0.901300879	
P(T<=t) one-tail	0.190397784	
t Critical one-tail	1.745883676	
P(T<=t) two-tail	0.380795567	
t Critical two-tail	2.119905299	

Summary of findings	The t-Test did not reject the Null
	hypothesis, meaning that States with
	higher population does not affect the
	quantity of the vulnerable population 65+
	in other words, there is not enough
	evidence that the higher of the population
	in some States does not necessarily
	means the higher of vulnerable population
	that reside in such States.

NEXT STEPS:

- 1. Send results and determine next steps in collaboration with the stakeholders.
- 2. Further Analysis with other/ new hypothesis.
- 3. Focus Vaccination Campaigns for the group age 65+ by prioritizing that campaign in the age group.
- 4. Increase the staff number in those states with the higher rates of mortality by influenza.
- 5. Provide educational material to increase knowledge to change the perceptions towards influenza to increase healthy and preventive behavioral practices, especially in the most vulnerable population.