Bandit Structured Prediction for Neural Seq2Seq Learning

Changzhi Sun

Bandit Structured Prediction for Neural Sequence-to-Sequence Learning

Julia Kreutzer* and Artem Sokolov* and Stefan Riezler^{†,*}
*Computational Linguistics & [†]IWR, Heidelberg University, Germany

{kreutzer, sokolov, riezler}@cl.uni-heidelberg.de

Outline

- 1. Introduction
- 2. Neural Bandit Structured Prediction
- 3. Experiements
- 4. Conclusion

Introduction

• seq2seq learning

• data-hungry neural network model

NMT

- exposure bias
- reinforcement and imitation learning
 - learn from feedback
 - mismatch between word-level loss and sequence-level evaluation metric
 - mixture of the REINFORCE
- minimum risk training
- dual-learning

This paper

- French-to-English translation domain adaptation
- weak feedback
- control variates

Neural Bandit Structured Prediction

Algorithm 1 Neural Bandit Structured Prediction

Input: Sequence of learning rates γ_k

Output: Optimal parameters $\hat{\theta}$

- 1: Initialize θ_0
- 2: **for** k = 0, ..., K **do**
- 3: Observe \mathbf{x}_k
- 4: Sample $\tilde{\mathbf{y}}_k \sim p_{\theta}(\mathbf{y}|\mathbf{x}_k)$
- 5: Obtain feedback $\Delta(\tilde{\mathbf{y}}_k)$
- $\theta_{k+1} = \theta_k \gamma_k \ s_k$
- 7: Choose a solution $\hat{\theta}$ from the list $\{\theta_0, \dots, \theta_K\}$

Bandit Structured prediction

- bandit structured prediction is a stochastic optimization framework
- learning is performed from partial feedback
- this feedback is received in the form of task loss evaluation of a predicted output structure
- without having access to gold standard structures

Objectives

• Expected Loss(EL): expectation of a task loss $\Delta(\tilde{\mathbf{y}})$ over all input and output structures

$$L^{\mathrm{EL}}(\theta) = \mathbb{E}_{p(\mathbf{x}) p_{\theta}(\tilde{\mathbf{y}}|\mathbf{x})} [\Delta(\tilde{\mathbf{y}})]$$

• Stochastic gradient:

$$s_k^{\mathrm{EL}} = \Delta(\mathbf{\tilde{y}}) \frac{\partial \log p_{\theta}(\mathbf{\tilde{y}}|\mathbf{x}_k)}{\partial \theta}$$

 \bullet Output structures $\tilde{\mathbf{y}}$ are sampled word by word

Sampling Structures

Algorithm 2 Sampling Structures

```
Input: Model \theta, target sequence length limit T_{\nu}
Output: Sequence of words \mathbf{w} = (w_1, \dots, w_{Ty})
     and log-probability p
 1: w_0 = \text{START}, p_0 = 0
 2: \mathbf{w} = (w_0)
 3: for t \leftarrow 1 \dots T_y do
 4: w_t \sim p_{\theta}(w|\mathbf{x}, \mathbf{w}_{< t})
 5: p_t = p_{t-1} + \log p_{\theta}(w|\mathbf{x}, \mathbf{w}_{< t})
 6: \mathbf{w} = (w_1, \dots, w_{t-1}, w_t)
 7: end for
 8: Return w and p_T
```

Objectives

Pairwise Preference Ranking(PR)

$$L^{\mathsf{PR}}(\theta) = \mathbb{E}_{p(\mathbf{x}) \, p_{\theta}(\langle \tilde{\mathbf{y}}_i, \tilde{\mathbf{y}}_j \rangle | \mathbf{x})} \left[\Delta(\langle \tilde{\mathbf{y}}_i, \tilde{\mathbf{y}}_j \rangle) \right]$$

• Stochastic gradient:

$$s_k^{\mathsf{PR}} = \Delta(\langle \tilde{\mathbf{y}}_i, \tilde{\mathbf{y}}_j \rangle) \times \left(\frac{\partial \log p_{\theta}(\tilde{\mathbf{y}}_i | \mathbf{x}_k)}{\partial \theta} + \frac{\partial \log p_{\theta}^-(\tilde{\mathbf{y}}_j | \mathbf{x}_k)}{\partial \theta} \right)$$

Objectives

• Learn to rank $\tilde{\mathbf{y}_i}$ over $\tilde{\mathbf{y}_j}$ with pairwise feedback, either continuous (cont)

$$\Delta(\langle \mathbf{y}_i, \mathbf{y}_j \rangle) = \Delta(\mathbf{y}_j) - \Delta(\mathbf{y}_i)$$

or binary (bin)

$$\Delta(\langle \mathbf{y}_i, \mathbf{y}_j \rangle) = \begin{cases} 1 & \text{if } \Delta(\mathbf{y}_j) > \Delta(\mathbf{y}_i) \\ 0 & \text{otherwise.} \end{cases}$$

• Draw negative sample $\tilde{\mathbf{y}_j}$ from distribution p_{θ}^- , one word per output structure (chosen randomly):

$$p_{\theta}^{+}(\tilde{y}_{t} = w_{i}|\mathbf{x}, \hat{\mathbf{y}}_{< t}) = \frac{\exp(o_{w_{i}})}{\sum_{v=1}^{V} \exp(o_{w_{v}})},$$
$$p_{\theta}^{-}(\tilde{y}_{t} = w_{j}|\mathbf{x}, \hat{\mathbf{y}}_{< t}) = \frac{\exp(-o_{w_{j}})}{\sum_{v=1}^{V} \exp(-o_{w_{v}})}$$

Algorithm 3 Sampling Pairs of Structures

Input: Model θ , target sequence length limit T_y Output: Pair of sequences $\langle \mathbf{w}, \mathbf{w}' \rangle$ and their log-probability p

1:
$$p_0 = 0$$

2:
$$\mathbf{w}, \mathbf{w}', \mathbf{\hat{w}} = (START)$$

3:
$$i \sim \mathcal{U}(1,T)$$

4: for
$$t \leftarrow 1 \dots T_y$$
 do

5:
$$\hat{w}_t = \arg\max_{w \in V} p_{\theta}^+(w|\mathbf{x}, \hat{\mathbf{w}}_{< t})$$

6:
$$w_t \sim p_{\theta}^+(w|\mathbf{x}, \hat{\mathbf{w}}_{\leq t})$$

7:
$$p_t = p_{t-1} + \log p_{\theta}^+(w_t | \mathbf{x}, \hat{\mathbf{w}}_{< t})$$

8: if
$$i = t$$
 then

9:
$$w_t' \sim p_{\theta}^-(w|\mathbf{x}, \hat{\mathbf{w}}_{< t})$$

10:
$$p_t = p_t + \log p_{\theta}^-(w_t'|\mathbf{x}, \hat{\mathbf{w}}_{< t})$$

12:
$$w_t' \sim p_\theta^+(w|\mathbf{x}, \hat{\mathbf{w}}_{< t})$$

13:
$$p_t = p_t + \log p_{\theta}^+(w_t'|\mathbf{x}, \hat{\mathbf{w}}_{< t})$$

15:
$$\mathbf{w} = (w_1, \dots, w_{t-1}, w_t)$$

16:
$$\mathbf{w}' = (w'_1, \dots, w'_{t-1}, w'_t)$$

17:
$$\hat{\mathbf{w}} = (\hat{w}_1, \dots, \hat{w}_{t-1}, \hat{w}_t)$$

19: Return
$$\langle \mathbf{w}, \mathbf{w}' \rangle$$
 and p_T

Control Variates

Augment a random variable X (here: $X = s_k$) by another random variable Y, the control variate. With $\bar{Y} = \mathbb{E}[Y]$, $X - \hat{c}Y + \hat{c}\bar{Y}$ is an unbiased estimator of $\mathbb{E}[X]$. Control variates with high Cov(X,Y) reduce the variance of the gradient estimate. Two choices here:

■Baseline (BL) [2]:

$$Y_k = \nabla \log p_{\theta}(\mathbf{\tilde{y}}|\mathbf{x}_k) \frac{1}{k} \sum_{j=1}^k \Delta(\mathbf{\tilde{y}}_j).$$

Score Function (SF) [3]:

$${\boldsymbol{Y}}_k = \nabla \log p_{\boldsymbol{\theta}}(\mathbf{\tilde{y}}|\mathbf{x}_k).$$

Experiments

Neural machine translation **domain adaptation**:

- ► Adapt a pre-trained model (Europarl, fr-en) to new domains (News Commentary and TED).
- ▶ Simulated feedback with GLEU on references
- ▶ Encoder-decoder architecture with attention
- ► Full-information baselines: maximum likelihood estimation on reference translations

Strategies for **handling of unknown words**:

- attention-based replacement of UNKs for word-based models [4]
- sub-word models with Byte-Pair-Encoding (BPE) [5]

Domain	Version	Train	Valid.	Test
Europarl	v.5	1.6M	2k	2k
News Commentary	WMT07	40k	1k	2k
TED	TED2013	153k	2k	2k

Table 1: Number of parallel sentences for training, validation and test sets for French-to-English domain adaptation.

Algorithm	Train data	Iter.	EP	NC	TED
MLE	EP	12.3M 12.0M	31.44	26.98	23.48
MLE-UNK			31.82	28.00	24.59
MLE-BPE		12.0M	31.81	27.20	24.35

Table 2: Out-of-domain NMT baseline results (BLEU) on in- and out-of-domain test sets trained only on EP data.

Algorithm	Train data	Iter.	EP	NC
MLE	NC	978k	13.67	22.32
MLE-UNK			13.83	22.56
MLE-BPE		1.0M	14.09	23.01
MLE	EP→NC	160k	26.66	31.91
MLE-UNK			27.19	33.19
MLE-BPE		160k	27.14	33.31
Algorithm	Train data	Iter.	EP	TED
Algorithm MLE	Train data TED	Iter. 2.2M	EP 14.16	TED 32.71
	1			
MLE	1		14.16	32.71
MLE MLE-UNK	1	2.2M	14.16 15.15	32.71 33.16
MLE MLE-UNK MLE-BPE	TED	2.2M 3.0M	14.16 15.15 14.18	32.71 33.16 32.81

Table 3: In-domain NMT baselines results (BLEU) on in- and out-of-domain test sets. The EP \rightarrow NC is first trained on EP, then fine-tuned on NC. The EP \rightarrow TED is first trained on EP, then fine-tuned on TED.

Algorithm	Iter.	EP	NC NC	Diff.
EL	317k	$ 30.36_{\pm 0.20} $	$29.34_{\pm0.29}$	2.36
EL-UNK*	317k	$30.73_{\pm 0.20}$	$30.33_{\pm 0.42}$	2.33
EL-UNK**	349k	$30.67_{\pm 0.04}$	$30.45_{\pm 0.27}$	2.45
EL-BPE	543k	$ 30.09_{\pm 0.31} $	$30.09_{\pm0.01}$	2.89
PR-UNK** (bin)	22k	30.76±0.03	$29.40_{\pm 0.02}$	1.40
PR-BPE (bin)	14k	$ 31.02_{\pm 0.09} $	$28.92_{\pm 0.03}$	1.72
PR-UNK** (cont)	12k	$ 30.81_{\pm 0.02} $	$29.43_{\pm 0.02}$	1.43
PR-BPE (cont)	8k	$ 30.91_{\pm 0.01} $	$28.99_{\pm 0.00}$	1.79
SF-EL-UNK**	713k	29.97 _{±0.09}	$30.61_{\pm 0.05}$	2.61
SF-EL-BPE	375k	$ 30.46_{\pm 0.10} $	$30.20_{\pm 0.11}$	3.00
BL-EL-UNK**	531k	30.19 _{±0.37}	$31.47_{\pm 0.09}$	3.47
BL-EL-BPE	755k	$\mid 29.88_{\pm 0.07} \mid$	$31.28_{\pm0.24}$	4.08

(a) Domain adaptation from EP to NC.

Table 4: Bandit NMT results (BLEU) on EP, NC and TED test sets. UNK* models involve UNK replacement only during testing, UNK** include UNK replacement already during training. For PR, either binary (bin) or continuous feedback (cont) was used. Control variates: average reward baseline (BL) and score function (SF). Results are averaged over two independent runs and standard deviation is given in subscripts. Improvements over respective out-of-domain models are given in the Diff.-columns.

Algorithm	Iter.	EP	TED	Diff.
EL	976k	$ 29.34_{\pm 0.42} $	$27.66_{\pm0.03}$	4.18
EL-UNK*	976k	$29.68_{\pm 0.29}$	$29.44_{\pm 0.06}$	4.85
EL-UNK**	1.1M	$29.62_{\pm 0.15}$	$29.77_{\pm 0.15}$	5.18
EL-BPE	831k	$ 30.03_{\pm 0.43} $	$28.54_{\pm0.04}$	4.18
PR-UNK** (bin)	14k	31.84 _{±0.01}	$24.85_{\pm 0.00}$	0.26
PR-BPE (bin)	69k	$ 31.77_{\pm 0.01} $	$24.55_{\pm 0.01}$	0.20
PR-UNK** (cont)	9k	$ 31.85_{\pm 0.02} $	$24.85_{\pm 0.01}$	0.26
PR-BPE (cont)	55k	$ 31.79_{\pm 0.02} $	$24.59_{\pm0.01}$	0.24
SF-EL-UNK**	658k	30.18±0.15	$29.12_{\pm0.10}$	4.53
SF-EL-BPE	590k	$ 30.32_{\pm 0.26} $	$28.51_{\pm0.18}$	4.16
BL-EL-UNK**	644k	29.91 _{±0.03}	$30.44_{\pm0.13}$	5.85
BL-EL-BPE	742k	$ 29.84_{\pm 0.61} $	$30.24_{\pm0.46}$	5.89

(b) Domain adaptation from EP to TED.

Table 4: Bandit NMT results (BLEU) on EP, NC and TED test sets. UNK* models involve UNK replacement only during testing, UNK** include UNK replacement already during training. For PR, either binary (bin) or continuous feedback (cont) was used. Control variates: average reward baseline (BL) and score function (SF). Results are averaged over two independent runs and standard deviation is given in subscripts. Improvements over respective out-of-domain models are given in the Diff.-columns.

Conclusion

- Successful training of NMT with weak feedback
- Large improvements for domain adaptation, outperforming linear models
- Control variates improve generalization

Thanks Q&A