CS302 - Data Structures using C++

Topic: Examples

Kostas Alexis

Summary of Asymptotic Notations

	Informal meaning:	Family	Family Members
Big Theta Θ(f(N))	Order of growth is f(N).	Θ(N ²)	$ \frac{N^2/2}{2N^2} $ $ N^2 + 38N + N $
Big O O(f(N))	Order of growth is less than or equal to f(N).	O(N ²)	N ² /2 2N ² lg(N)
Big Omega $\Omega(f(N))$	Order of growth is greater than or equal to f(N).	$\Omega(N^2)$	$\frac{N^2/2}{2N^2}$

• Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$ in the worst case


```
int N = length;
for (int i = 0; i < N; i++ 1)
    for (int j = 1; j < N; j++)
        if (a[i]==a[j])
        return true;
return false;</pre>
```

• Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$ in the worst case


```
int N = length;
for (int i = 0; i < N; i++ 1)
    for (int j = 1; j < N; j++)
        if (a[i]==a[j])
        return true;
return false;</pre>
```

- Worst case numbers of j++ calls
- 1+2+3+...+(N-3)+(N-2)+(N-1)=N(N-1)/2

• Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$ in the worst case


```
int N = length;
for (int i = 0; i < N; i++ 1)
    for (int j = 1; j < N; j++)
        if (a[i]==a[j])
        return true;
return false;</pre>
```

- Worst case numbers of j++ calls
- 1+2+3+...+(N-3)+(N-2)+(N-1)=N(N-1)/2

• Overall worst case runtime: $\Theta(N^2)$

• Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$

public static void printIndices(int n) {
 for (int i = 0; i < n; i=i*2) {
 for (int j = 0; i < N; j++)
 cout<<"hello" << endl;
 int A=1+1;</pre>

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----

• Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$

public static void printIndices(int n) {
 for (int i = 0; i < n; i=i*2) {
 for (int j = 0; i < N; j++)
 cout<<"hello" << endl;
 int A=1+1;</pre>

Cost model, cout calls

n=1

• Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$

public static void printIndices(int n) {
 for (int i = 0; i < n; i=i*2) {
 for (int j = 0; i < N; j++)
 cout<<"hello" << endl;
 int A=1+1;</pre>

• Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$

public static void printIndices(int n) {
 for (int i = 0; i < n; i=i*2) {
 for (int j = 0; i < N; j++)
 cout<<"hello" << endl;
 int A=1+1;</pre>

• Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$

public static void printIndices(int n) {
 for (int i = 0; i < n; i=i*2) {
 for (int j = 0; i < N; j++)
 cout<<"hello" << endl;
 int A=1+1;</pre>

- Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$
- Worst case here is irrelevant, all cases the same
- Cost model calls $R(N) = \Theta(1+2+4+8+...+N)$

Cases

- A. 1
- B. logN
- C. N
- D. NlogN
- $E. N^2$
- F. Other

• Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$

N	R(N)	1 * N < R(N)	2 * N > R(N)		
1	1	1	2		
4	1 + 2 + 4 = 7	4	8		
7	1 + 2 + 4 = 7	7	14		
8	1 + 2 + 4 + 8 = 15	8	16		
27	1+2+4+8+16=31	27	54		
185	+ 64 + 128 = 255	185	370		
715	+ 256 + 512 = 1023	715	1430		

• Find a simple f(N) such that the runtime $R(N) \in \Theta(f(N))$

$$R(N) = \Theta(1 + 2 + 4 + 8 + ... + N)$$

= $\Theta(N)$

A. 1

D.

N log N

B. log N

F.

 N^2

C. N

F.

Something

else

Thank you

