STAT 510 Homework 2

Due Date: 11:00 A.M., Wednesday, January 24

1. Suppose X is an $n \times p$ matrix and y is an $n \times 1$ vector. Suppose $z \in C(X)$ and $z \neq P_X y$. Prove that $||y-z|| > ||y-P_X y||$. Hint: Note that for any vector a and any vector $b \neq 0$ such that a'b = 0

$$||a + b||^2 = (a + b)'(a + b) = (a' + b')(a + b)$$

$$= a'a + a'b + b'a + b'b = a'a + 2a'b + b'b$$

$$= ||a||^2 + ||b||^2 + 2a'b$$

$$= ||a||^2 + ||b||^2 \text{ (because } a'b = 0\text{)}.$$

$$> ||a||^2 \text{ (because } b \neq 0\text{)}.$$

Now note that

$$\|y - z\|^2 = \|y - P_X y + P_X y - z\|^2 = \dots$$

- 2. Suppose X is an $n \times p$ matrix. Prove that $C(X) = C(P_X)$.
- 3. Prove that $(X'X)^-X'y$ is a solution to the normal equations (see slide 8 of slide set 2 for the definition of the normal equations).
- 4. Suppose the Gauss-Markov model with normal errors holds (see slide 16 of slide set 2 for a precise statement of the model).
 - (a) Suppose $C\beta$ is estimable. Derive the distribution of $C\hat{\beta}$, the OLSE of $C\beta$.
 - (b) Now suppose $C\beta$ is NOT estimable. Provide a fully simplified expression for $Var(C(X'X)^-X'y)$.
 - (c) Now suppose $H_0: C\beta = d$ is testable and that C has only one row and d has only one element so that they may be written as c' and d, respectively. Prove the result on slide 23 of slide set 2.
- 5. Consider a competition among 5 table tennis players labeled 1 through 5. For $1 \le i < j \le 5$, define y_{ij} to be the score for player i minus the score for player j when player i plays a game against player j. Suppose for $1 \le i < j \le 5$,

$$y_{ij} = \beta_i - \beta_j + \epsilon_{ij},\tag{1}$$

where β_1, \ldots, β_5 are unknown parameters and the ϵ_{ij} terms are random errors with mean 0. Suppose four games will be played that will allow us to observe y_{12}, y_{34}, y_{25} , and y_{15} . Let

$$oldsymbol{y} = \left[egin{array}{c} y_{12} \ y_{34} \ y_{25} \ y_{15} \end{array}
ight], \;\; oldsymbol{eta} = \left[egin{array}{c} eta_1 \ eta_2 \ eta_3 \ eta_4 \ eta_5 \end{array}
ight], \;\; ext{and} \; oldsymbol{\epsilon} = \left[egin{array}{c} \epsilon_{12} \ \epsilon_{34} \ \epsilon_{25} \ \epsilon_{15} \end{array}
ight].$$

- (a) Define a design matrix X so that model (1) may be written as $y = X\beta + \epsilon$.
- (b) Is $\beta_1 \beta_2$ estimable? Prove that your answer is correct.
- (c) Is $\beta_1 \beta_3$ estimable? Prove that your answer is correct.
- (d) Find a generalized inverse of X'X.
- (e) Write down a general expression for the normal equations.
- (f) Find a solution to the normal equations in this particular problem involving table tennis players.
- (g) Find the Ordinary Least Squares (OLS) estimator of $\beta_1 \beta_5$.
- (h) Give a linear unbiased estimator of $\beta_1 \beta_5$ that is not the OLS estimator.