Introduction to NoSQL

Nicolas Travers
CNAM – France

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

Schedule & Organization

- Introduction to NoSQL databases
 - 3V, ACID vs BASE, families, CAP theorem, JSon
- Presentation of MongoDB
 - Language, distribution, replication, application
- Practice Works on MongoDB
 - Queries : find + aggregate
- Material available at: http://www.chewbii.com/ESSEC

DBMS vs NoSQL

Fault-tolerance

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

Context

- Applications and Web platforms
 - Exponential growth of the amount of Data (x2 / 2 years)
 - Unprecedent management of this volume
 - · Need to distribute both computation and data
 - Huge number of servers
 - Heterogeneous data, maybe complex and often linked
- Ex:
 - Google, Amazon, Facebook
 - Google DataCenter :
 - 5000 servers/data center, ~1M de servers
 - Facebook:
 - · 1 PetaBytes of data

le c**nam**

Big Data = Transactions + Interactions + Observations

Source: Contents of above graphic created in partnership with Teradata, Inc.

CEDRIC Lab - Vertigo

N. Travers

8

Introduction to NoSQL

le cnam

BI: Traditional methods

CEDRIC Lab - Vertigo

N. Travers

9

Decisional vs 3V

Incompatible classical approach with the **3V** of *BigData*:

- Volume: Designed to store GB/TB of data, but needs PB (maybe EB).
- Variety: Heterogeneous and variable types of data, text, semi-structured
- Velocity: Data are produced more and more quickly

CEDRIC Lab - Vertigo

N. Travers

10

Introduction to NoSQL

le c**nam**

DBMS: Limitations

- Standard databases
 - Functionalities
 - Joins between tables
 - Complex queries
 - Strong coherency of data
- ➤ Requirements in a distributed context
 - Links between entities => same server
 - ++ links => difficulties for data organization

RDBMS vs Distribution

- ACID vs BASE
 - ACID properties for transactions
 - · Atomicity: integral completion or none
 - · Consistency: consistent at start and end
 - Isolation: no communication between them Durability: an operation cannot be reversed
- Systèmes distribués : modèle BASE
 - Basically Available:
 - Any request => An answer
 - Even in a changing state
 - Soft-state:
 - Opposite to Durability.
 - System's state (servers or data) could change over time (without any update)
 - Eventually consistent :
 - · With time, data can be consistent
 - · Updates have to be propagated

CEDRIC Lab - Vertigo

1

Introduction to NoSQL

le cnam

Solution: NoSQL

- NoSQL: Not Only SQL
 - New data storage/management approach
 - Scales up the system (through distribution)
 - Complex metadata management
 - No schema
- Do not substitute DBMS, dedicated to:
 - Very huge volume of data (PetaBytes)
 - Very short response time
 - Consistency is not mandatory

Databases and NoSQL

The Hard Life of a NoSQL Coder

CEDRIC Lab - Vertigo

N. Traver

Introduction to NoSQL

le cnam

NoSQL DB: Characteristics

- No relations => Collections
 - No fix structures (nay none)
- Complex data (e.g. documents)
 - Objects, nesting, arrays
- Data distribution
 - High parallelization (Map/Reduce)
- Data replication
 - Disponibility vs Consistency (no transactions)
 - Few writes, many reads

Sharding: Scalability

- Datablocks are distributed in a cluster of servers
- Horizontal partitioning
- 3 types of technics:
 - 1. Resource allocation based: HDFS
 - ++ Fault tolerance and massive computations
 - 2. Tree-based structure: Clustered index (sort)
 - ++ Physical data clustering and dynamicity
 - 3. Hash-based structure: Consistent Hashing
 - ++ elasticity and self-management

CEDRIC Lab - Vertigo

N. Travers

1.0

Introduction to NoSQL

le cnam

Several NoSQL systems

Key-Value stores

Column oriented

id	type	id	lieu	id	spec	id	intérêts
Nicolas	prof	Céline	Centrale Supelec	Nicolas	BDD	Nicolas	BZH
Céline	prof	Nicolas	CNAM	Nicolas	NoSQL	Nicolas	Star Wars
Luc	resp formation	Régis	OC	Régis	Machine Learning	Régis	escalade
	OC	Luc	ОС	Régis	Dev	Régis	nouilles chinoises
				Luc	formation		
				Luc	audiovisuel		
				Céline	Ontologie		
				Céline	logique formelle		
				Céline	visualisation		

Document Oriented

Graph oriented

CEDRIC Lab - Vertigo

N. Traver

I - NoSQL & Key-Value store

- Similar to a distributed "HashMap"
- Key + Value
 - No fixed schema on values (strings, object, integer, binaries...)
- Drawbacks:
 - No structures nor typing
 - No structured-based queries
- DynamoDB (Amazon), Redis (VMWare), Voldemort (LinkedIn)

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

I - NoSQL & Key-Value store

Example

CEDRIC Lab - Vertigo

N. Traver

19

I - NoSQL & Key-Value store

Queries

CRUD

- CREATE (clé, valeur)
 - · CREATE ("Nicolas", "type:'prof',lieu:'CNAM',spec:'BDD,NoSQL',interets:'BZH,Star Wars' ") → OK
- READ(clé)
 - READ("Nicolas") → "type:'prof',lieu:'CNAM',spec:'BDD,NoSQL',interets:'BZH,Star Wars' "
- UPDATE(clé, valeur)
 - UPDATE("Nicolas", "type:'prof',lieu:'CNAM,CS',spec:'BDD,NoSQL'") → OK
- DELETE(clé)
 - DELETE("Nicolas") → OK

Introduction to NoSQL

le c**nam**

I - NoSQL & Key-Value store

Efficiency

Easy to set up

CEDRIC Lab - Vertigo N. Travers 21

II – NoSQL & Columns

- Column-based storage
 - DBMS: tuples (lines)
- Easy to insert a new column
 - Dynamic schema
- ➤ BigTable/Hbase (Google), Cassandra (Facebook&Apache), SimpleDB (Amazon)

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

II - NoSQL & Columns

example

id	type	lieu	spec	intérêts
Nicolas	prof	CNAM	BDD, NoSQL	BZH, Star Wars
Régis		OC	Machine Learning, Dev	escalade, nouilles chinoises
Luc	resp formation OC	OC	formation, audiovisuel	
Céline	prof	CentraleSupelec	Ontologie, logique formelle, visualisation	

id	type	
Nicolas	prof	
Céline	prof	
Luc	resp formation	

id	lieu	
Céline	Centrale Supelec	
Nicolas	CNAM	
Régis	ОС	
Luc	ОС	

id	spec
Nicolas	BDD
Nicolas	NoSQL
Régis	Machine Learning
Régis	Dev
Luc	formation
Luc	audiovisuel
Céline	Ontologie
Céline	logique formelle
Céline	visualisation

id	intérêts	
Nicolas	BZH	
Nicolas	Star Wars	
Régis	escalade	
Régis	nouilles	

II - NoSQL & Columns

Queries

- Column-oriented queries
 - How many professors (type) are at CentraleSupelec (lieu)

id	type
Nicolas	prof
Céline	prof

id	lieu
Céline	Centrale
	Supelec

id	spec	
Nicolas	BDD	
Nicolas	NoSQL	
Régis	Machine Learning	
Régis	Dev	
Luc	formation	
Luc	audiovisuel	
Céline	Ontologie	
Céline	logique formelle	
Céline	visualisation	

id	intérêts
Nicolas	BZH
Nicolas	Star Wars
Régis	escalade
Régis	nouilles chinoises

CEDRIC Lab - Vertigo

N. Travers

24

Introduction to NoSQL

II - NoSQL & Columns

solutions

Aggregates

Correlations

CEDRIC Lab - Vertigo N. Travers 25

III - NoSQL & Documents

- Based on the key-value store
 - Add semi-structured data (JSon/XML)
- HTTP API
 - More complex than CRUD
- ➤ MongoDB, CouchDB (Apache), RavenDB, Terrastore

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

III - NoSQL & Documents

id	type	lieu	spec	intérêts
Nicolas	prof	CNAM	BDD, NoSQL	BZH, Star Wars
Régis		OC	Machine Learning, Dev	escalade, nouilles chinoises
Luc	resp formation OC	OC	formation, audiovisuel	
Céline	prof	CentraleSupelec	Ontologie, logique formelle, visualisation	

CEDRIC Lab - Vertigo

N. Traver

III - NoSQL & Documents

Queries

- · Manipulations on documents content
 - Establishment (lieu.nom) of professors (type) specialized in DB (in spec)

CEDRIC Lab - Vertigo

N. Travers

20

Introduction to NoSQL

le cnam

III - NoSQL & Documents

Richness of queries

Manage objects

CEDRIC Lab - Vertigo N. Travers 29

IV - NoSQL & Graph

- Storage: nodes, relations and properties
 - Graph Theory
 - Path querying on the graph
 - Data are loaded on demand
 - Difficulties for modeling
- ➤ Neo4j, OrientDB (Apache), FlockDB (Twitter)

CEDRIC Lab - Vertigo

Introduction to NoSQL

IV - NoSQL & Graph

example

id	type	lieu	spec	intérêts
Nicolas	prof	CNAM	BDD, NoSQL	BZH, Star Wars
Régis		OC	Machine Learning, Dev	escalade, nouilles chinoises
Luc	resp formation OC	OC	formation, audiovisuel	
Céline	prof	CentraleSupelec	Ontologie, logique formelle, visualisation	

IV - NoSQL & Graph

queries

- Pattern queries
 - Persons giving vacations at Paris and Gif-sur-Yvette

Introduction to NoSQL

le c**nam**

IV - NoSQL & Graph

Azure Cosmos DB:

Recommandation

CEDRIC Lab - Vertigo N. Travers 33

Introduction to NoSQL

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

Brewer's CAP Theorem (2000)

- 3 main properties for distributed management
 - 1. Consistency:
 - A data have the same value at the same time (coherency)
 - 2. Availability:
 - Even if a server is down, data is available
 - **3.** Partition Tolerance:
 - Even if the system is partitioned, a query must have an answer (unless for global failures)
- Theorem: A distributed, networked system can have only <u>two</u> of these three properties.

"CAP Theorem"

illustration

CA Cohérence + Disponibilité

CPCohérence + Distribution

CEDRIC Lab - Vertigo

N. Travers

20

le c**nam**

"CAP Theorem"

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

- Initially XML used for complex internet communications (Web Services)
 - Too verbose
- JSON (JavaScript Object Notation)
 - Lightweight, text-oriented, language independent
 - Used for several Web services (Google API, Twitter API)

JSon: Structures

- Key + Value
 - "lastname" : "Travers"
 - Keys with quotations
- Objects/documents
 - Collection of key/values
 - { "lastname" : "Travers", "firstname" : "Nicolas", "kind" : 1}

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

Data types

- Scalar : String, Integer, float, boolean, null...
- List : arrays [...]
- Documents : objetcs {...}

Arrays

- No typing inside arrays
 - "lessons": ["SQL", 1, 4.2, null, "NoSQL"]
- Can nest documents

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

JSon: Identifiers

- Key « _id » commonly used to identify documents
 - Overwrite already stored ids
 - Can be automatically generated
 - Ex MongoDB: "_id": ObjectId(1234567890)

le c**nam**

JSon : complete example

CEDRIC Lab - Vertigo

N. Travers