# FORMELSAMMLUNG - KOMPLEXE ZAHLEN

Algebraische Normalform

$$z = a + i * b$$

Trigonometrische Normalform

$$z = |z| * (\cos(\varphi) + i * \sin(\varphi))$$

**Exponentielle Normalform** 

$$z = |z| * e^{i*\varphi}$$

## Kenngrößen:

$$a = Re(z)$$

 $\rightarrow$  Realteil von z (a  $\in \mathbb{R}$ )

$$b = Im(z)$$

 $\rightarrow$  Imaginärteil von z (b  $\in \mathbb{R}$ )

$$r = |z|$$

 $\rightarrow$  Radius/Betrag von z

$$\varphi = \arg(z)$$

 $\rightarrow$  Winkel/ Argument von z

$$0^{\circ} \le \varphi < 360^{\circ}$$
  
 $0 \le \varphi < 2\pi$ 



# Wichtige Formeln zur Umformung:

$$|z| = \sqrt{a^2 + b^2}$$

$$a = |z| * \cos(\varphi)$$

$$b = |z| * \sin(\varphi)$$

$$\frac{Bogenma\$}{Winkel} = \frac{\pi}{180^{\circ}}$$

$$\varphi = \begin{cases} arctan\left(\frac{b}{a}\right) & f\ddot{u}r \ a > 0; b \ge 0 \\ \frac{\pi}{2} & f\ddot{u}r \ a = 0; b > 0 \\ arctan\left(\frac{b}{a}\right) + \pi & f\ddot{u}r \ a < 0 \\ \frac{3\pi}{2} & f\ddot{u}r \ a = 0; b < 0 \\ arctan\left(\frac{b}{a}\right) + 2\pi & f\ddot{u}r \ a > 0; b < 0 \end{cases}$$

# **Rechenoperationen:**

 $z_1 = a_1 + i*b_1$  oder  $z_1 = |z_1|*exp(\varphi_1*i)$  und  $z_2 = a_2 + i*b_2$  oder  $z_2 = |z_2|*exp(\varphi_2*i)$ 

## **Addition/ Subtraktion:**

## → algebraische Normalform $z_1 \pm z_2 = (a_1 \pm a_2) + i^*(b_1 \pm b_2)$

## **Multiplikation/ Division:**

 $\rightarrow$  algebraischen Normalform

$$z_1 * z_2 = (a_1a_2 - b_1b_2) + i*(a_1b_2 + b_1a_2)$$

$$\frac{Z_1}{Z_2} = \frac{a_1 a_2 + b_1 b_2}{(a_2)^2 + (b_2)^2} + i^* \frac{b_1 a_2 - a_1 b_2}{(a_2)^2 + (b_2)^2}$$

→ trigonometrische + exponentielle Normalform

#### Multiplikation

Produkt der Beträge + Summe der Winkel  $z_1^*z_2 = |z_1|^*|z_2|^*exp(i^*(\varphi_1 + \varphi_2))$ 

## Division

Quotient der Beträge + Differenz der Winkel  $z_1$ :  $z_2 = |z_1| : |z_2| * exp(i * (\varphi_1 - \varphi_2))$  $z_1^*z_2 = |z_1|^*|z_2|^*(\cos(\varphi_1 + \varphi_2) + i^*(\sin(\varphi_1 + \varphi_2)))$   $z_1: z_2 = |z_1|:|z_2|^*(\cos(\varphi_1 - \varphi_2) + i^*(\sin(\varphi_1 - \varphi_2)))$  $\rightarrow$  BEACHTE:  $\phi$  sollte im Intervall 0 ≤  $\phi$  < 2 $\pi$  liegen

## **Konjugiertes Komplex:**

$$z^* = \overline{z} = a - b^*i$$
  
 $mit \ z = a+b^*i$ 

#### Potenzen:

Formel von MOIVRE:  

$$z^n = |z|^n * exp(i*n*\varphi)$$
  
 $z^n = |z|^n * (cos(n*\varphi) + i*(sin(n*\varphi))$   
 $\rightarrow$  Gleichung hat genau eine Lösung

## Wurzeln:

$$\sqrt[n]{z} = \sqrt[n]{|z|} * e^{i*} \frac{\varphi + 2k\pi}{n}$$
  
k = {0; 1; 2; ...; n-1}

$$\rightarrow$$
 Gleichung hat genau  $n$  Lösungen

# **Logarithmus:**

$$ln(z) = ln(|z|) + i^* \varphi$$

- → input: exponentielle Normalform
- → output: algebraische Normalform