16 • Chemical Equilibrium

TEST PRACTICE

1. Consider the reaction system, $CoO(s) + H₂(g) \stackrel{\triangleright}{\sim} Co(s) + H₂O(g).$

The equilibrium constant expression is

- $[CoO][H_2]$ [Co][H,O]
- $[H_2]$ [O, H]
- [Co][H₂O][CoO][H₂]
- $[H_3]$
- [Co][H₂O] [H]
- 2. Given the equilibrium,

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$, if this equilibrium is established by beginning with equal number of moles of SO₂ and O₂ in a 1.0 Liter bulb, then

the following *must* be true at equilibrium:

- a) $[SO_2] = [SO_3]$
 - d) $[SO_2] < [O_2]$
- b) $2[SO_2] = 2[SO_3]$ e) $[SO_2] > [O_2]$
- c) $[SO_2] = [O_2]$

Questions 3 & 4 refer to the following:

At a given temperature, 0.300 mole NO, 0.200 mol Cl₂ and 0.500 mol ClNO were placed in a 25.0 Liter container. The following equilibrium is established: $2CINO(g) \rightleftharpoons 2NO(g) + Ch(g)$

- 3. At equilibrium, 0.600 mol of ClNO was present. The number of *moles* of Cl₂ present at equilibrium is
 - a) 0.050
- d) 0.200
- b) 0.100
- e) 0.250
- c) 0.150

- The equilibrium constant, K_c , is:
 - a) 4.45×10^{-4}
- d) 0.167
- b) 6.67 x 10⁻⁴
- e) 1500
- c) 0.111
- At 985°C, the equilibrium constant for the reaction,

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

is 1.63. What is the equilibrium constant for the reverse reaction?

- a) 1.63
- d) 0.613
- b) 0.815
- e) 1.00
- c) 2.66
- What is the relationship between K_p and K_c for the reaction, $2ICl(g) \rightleftharpoons I_2(g) + Cl_2(g)$?
 - a) $K_p = K_c (RT)^{-1}$ d) $K_p = K_c$
- - b) $K_p = K_c(RT)$ e) $K_p = K_c(2RT)$
 - c) $K_p = K_c(RT)^2$
- 7. For the reaction $2NO_2(g) \rightleftharpoons N_2O_4(g)$, K_p at 25°C is 7.3, when all partial pressures are expressed in atmospheres. What is K_c for this reaction? [R=0.0821 L·atm·mol⁻¹·K⁻¹]
 - a) 4270
- d) 179
- b) 0.0119
- e) 2.06
- c) 0.291

8. 0.200 mol NO is placed in a one liter flask at 2273 K. After equilibrium is attained, 0.0863 mol N₂ and 0.0863 mol O₂ are present. What is K_c for this reaction?

$$2NO(g) \stackrel{\textstyle >}{\sim} N_2(g) + O_2(g)$$

- a) 9.92
- d) 39.7
- b) 3.15
- e) 0.576
- c) 0.0372
- 9. $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

At 25°C, 0.11 mole of N_2O_4 reacts to form 0.10 mol of N_2O_4 and 0.02 mole of NO_2 . At 90°C, 0.11 mole of N_2O_4 forms 0.050 mole of N_2O_4 and 0.12 mole of NO_2 . From these data we can conclude

- a) N₂O₄ molecules react by a second order rate law.
- b) N_2O_4 molecules react by a first order rate law.
- c) the reaction is exothermic.
- d) N_2O_4 molecules react faster at 25°C than at 90°C.
- e) the equilibrium constant for the reaction above increases with an increase in temperature.
- 10. For the equilibrium system

$$H_2O(g) + CO(g) \rightleftarrows H_2(g) + CO_2(g)$$

 $\Delta H = -42 \text{ kJ/mol}$

 K_c equals 0.62 at 1260 K. If 0.10 mole each of H_2O , CO, H_2 and CO_2 (each at 1260 K) were placed in a 1.0-Liter flask at 1260 K, when the system came to equilibrium...

	The temperature	The mass of CO	
	would	would	
a)	decrease	increase	
b)	decrease	decrease	
c)	remain constant	increase	
d)	increase	decrease	
e)	increase	increase	

11. For the reaction system,

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + \text{heat}$$
 the conditions that would favor maximum conversion of the reactants to products would be

- a) high temperature and high pressure
- b) high temperature, pressure unimportant
- c) high temperature and low pressure
- d) low temperature and high pressure
- e) low temperature and low pressure
- 12. Solid HgO, liquid Hg, and gaseous O₂ are placed in a glass bulb and are allowed to reach equilibrium at a given temperature.

equinorium at a given temperature.

$$2 \text{HgO}(s) \rightleftharpoons 2 \text{Hg(l)} + \text{O}_2(g) \Delta H = +43.4 \text{ kcal}$$

The mass of HgO in the bulb could be increased by

- a) adding more Hg.
- b) removing some O_2 .
- c) reducing the volume of the bulb.
- d) increasing the temperature.
- e) removing some Hg.

Answers: (Please use *CAPITAL* letters)

1.	7.	
2.	8.	
3.	9.	
4.	10.	
5.	11.	
6.	12.	

Answers: 1E 2D 3C 4B 5D 6D 7D 8A 9E 10A 11D 12C