DBSCAN Algorithm

Imports 🖣

```
In [213]: import pandas
import numpy
from sklearn.metrics import confusion_matrix,classification_report
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import normalize
from sklearn.decomposition import PCA
import seaborn
import matplotlib.pyplot as pyplot
```

Setting the matplotlib configurations

Data Reading -

```
In [215]: data=pandas.read_csv('./Stress-Lysis.csv')
```

half cheking the columns, data, data type information, correlation between attributes

In [218]: data

Out[218]:

	Humidity	Temperature	Step count	Stress Level
0	21.33	90.33	123	1
1	21.41	90.41	93	1
2	27.12	96.12	196	2
3	27.64	96.64	177	2
4	10.87	79.87	87	0
1996	21.82	90.82	96	1
1997	10.45	79.45	45	0
1998	27.22	96.22	135	2
1999	12.46	81.46	64	0
2000	16.87	85.87	50	1

2001 rows × 4 columns

```
In [219]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2001 entries, 0 to 2000
Data columns (total 4 columns):
# Column
                  Non-Null Count Dtype
0
    Humidity
                  2001 non-null
                                  float64
                  2001 non-null
    Temperature
                                  float64
 2
   Step count
                  2001 non-null
                                  int64
 3 Stress Level 2001 non-null
                                  int64
dtypes: float64(2), int64(2)
memory usage: 62.7 KB
```

In [220]: data.describe()

Out[220]:

	Humidity	Temperature	Step count	Stress Level
count	2001.000000	2001.000000	2001.000000	2001.000000
mean	20.000000	89.000000	100.141429	1.104448
std	5.777833	5.777833	58.182948	0.771094
min	10.000000	79.000000	0.000000	0.000000
25%	15.000000	84.000000	50.000000	0.000000
50%	20.000000	89.000000	101.000000	1.000000
75%	25.000000	94.000000	150.000000	2.000000
max	30.000000	99.000000	200.000000	2.000000

In [221]: data.corr()

Out[221]:

	Humidity	Temperature	Step count	Stress Level
Humidity	1.000000	1.000000	0.870486	0.936036
Temperature	1.000000	1.000000	0.870486	0.936036
Step count	0.870486	0.870486	1.000000	0.832623
Stress Level	0.936036	0.936036	0.832623	1.000000

Data Visualization 🦣

In [222]: pyplot.plot(data['Stress Level'],data[['Humidity','Step count','Temperature']])

Out[223]: <seaborn.axisgrid.PairGrid at 0x2d882508ca0>

Out[224]: <matplotlib.collections.PathCollection at 0x2d864c1f5b0>

Data Tranfomation

Standization

Out[294]: <matplotlib.collections.PathCollection at 0x2d88f9fd610>

Normalization

```
In [249]: pyplot.scatter(x=[i for i in range(1,len(data)+1)],y=data_normalized[:,0])
    pyplot.scatter(x=[i for i in range(1,len(data)+1)],y=data_normalized[:,1])
    pyplot.scatter(x=[i for i in range(1,len(data)+1)],y=data_normalized[:,2])
```

Out[249]: <matplotlib.collections.PathCollection at 0x2d88764b370>

Dimentiality Reduction by PCA

```
In [252]: | pyplot.scatter(x=[i for i in range(1,len(data)+1)],y=Component_Data[:,0])
          pyplot.scatter(x=[i for i in range(1,len(data)+1)],y=Component_Data[:,1])
```

Out[252]: <matplotlib.collections.PathCollection at 0x2d88767ea30>

Creating the DBSCAN instance

```
In [308]: | DBSCAN_Model=DBSCAN(eps=0.1,min_samples=10)
```

```
fitting the model 👇
In [309]: DBSCAN_Model.fit(Component_Data[:,:2])
Out[309]: DBSCAN(eps=0.1, min_samples=10)
In [310]: set(list(DBSCAN_Model.labels_))
Out[310]: {-1, 0, 1, 2}
In [311]: Transformed_data=pandas.DataFrame({
              "column1_by_PCA":Component_Data[:,0],
              "column2_by_PCA":Component_Data[:,1],
              "predicted_cluster_by_DBSCAN":DBSCAN_Model.labels_,
          })
```

In [312]: Transformed_data

Out[312]:

	column1_by_PCA	column2_by_PCA	predicted_cluster_by_DBSCAN
0	-0.939386	-0.244631	0
1	-0.535207	0.827928	0
2	-0.962220	-0.125345	0
3	-0.970351	0.016618	0
4	0.893254	-0.501331	1
1996	-0.676137	0.711195	0
1997	0.999988	-0.238688	1
1998	-0.925163	0.300195	0
1999	0.983613	-0.296940	1
2000	1.006498	0.216162	1

2001 rows × 3 columns

In [313]: Transformed_data.iloc[:,:2].plot(kind="bar")

Out[313]: <AxesSubplot:>

Out[314]: <matplotlib.collections.PathCollection at 0x2d89f3f4af0>

Out[315]: <seaborn.axisgrid.PairGrid at 0x2d89f839f10>

