

Bahria University, Islamabad Campus

Course Title: [CSC 411] Artificial Intelligence

Instructor: Dr.Kashif Sultan
Date: 19th May, 2024
Due Date: 25th May 2024

Assignment # 03

(CLO3)

Instructions:

- Each student is expected to submit their own original work. Plagiarism or copying from other sources, including fellow students' assignments, is strictly prohibited.
- You are encouraged to explore various sources of information, including internet resources, books, and scholarly articles, to gather relevant information for your answers.
- Your answers should be written in your own words, demonstrating your understanding of the concepts presented in the scenarios. Avoid direct copying of text from external sources.
- Ensure that your answers are concise and to the point. Provide relevant examples or samples where necessary to support your explanations.
- If you refer to specific sources in your answers, be sure to provide appropriate citations or references.
- The viva of assignments will be conducted at the end of the course.

Question # 01:

Interpret the difference between supervised and unsupervised learning with a real-world example related to customer segmentation

Question # 02:

Use a real-world example to explain how a classification algorithm can be applied to diagnose medical conditions based on patient data.

Question # 03:

A biased coin (with probability of obtaining a Head equal to p > 0) is tossed repeatedly and independently until the first head is observed. Compute the probability that the first head appears at an even numbered toss.

Question # 04:

A medical test for a rare disease has 98% sensitivity and 97% specificity. The disease occurs in only 0.5% of the population. If a person tests positive, what is the probability they actually have the disease? Use Bayes' Theorem to solve it and explain the steps clearly.

Question # 05:

You're developing a robotic navigation system using Reinforcement Learning.

- Describe what would be the states, actions, and rewards in this context.
- How would the robot learn the best path in an unknown grid environment?

Question # 06:

In a city, 3% of the population uses illegal software. A digital monitoring system is used to detect such users. The system is 95% accurate in identifying actual illegal software users (true positive rate) and falsely flags 4% of legal users (false positive rate). If a person is flagged by the system, what is the probability that they are actually using illegal software? Use Bayes' Theorem and show all steps.

Question # 07:

A diagnostic test for a virus has a 90% sensitivity (true positive rate) and 95% specificity (true negative rate). If the virus occurs in 1% of the population, and a randomly selected person tests positive, what is the probability that the person actually has the virus? Apply Bayesian reasoning to compute the result.

Question # 08:

1% of a population have a certain disease and the remaining 99% are free from this disease. A test is used to detect this disease. This test is positive in 95% of the people with the disease and is also (falsely) positive in 2% of the people free from the disease. If a person, selected at random from this population, has tested positive, what is the probability that she/he has the disease?

Question # 09:

You are building an email spam detection system using the Naïve Bayes classifier. The following dataset is available:

Word	P(word Spam)	P(word Not Spam)	
"win"	0,08	0.01	
"money"	0.05	0.02	
"offer"	0.07	0.01	

Assume:

- P(Spam) = 0.4
- P(Not Spam) = 0.6
- A new email contains the words "win", "money", and "offer"

Using Naïve Bayes, compute the probability that this email is spam. Show all calculations.

Question # 10:

Use the Naïve Bayes classifier to predict if a given fruit is a 'Banana' or 'Orange' or 'Other' when only the 3 features (long, sweet and yellow) are known. The dataset is given below.

Туре	Long	Not Long	Sweet	Not Sweet	Yellow	Not Yellow	Total
Banana	400	100	350	150	450	50	500
Orange	0	300	150	150	300	0	300
Other	100	100	150	50	50	150	200
Total	500	500	650	350	800	200	1000