MATH 239 Spring 2014: Assignment 6

Due: 3:00 PM, Monday June 23, 2014 in the dropboxes outside MC 4066

Last Name: First Name:

I.D. Number: Section:

/28Mark (For the marker only):

1. $\{3 \text{ marks}\}\$ The following two graphs G and H are isomorphic. Find an isomorphism. (You do not need to prove that your mapping is an isomorphism.)

Graph ${\cal G}$

Graph H

2. {3 marks} Draw all non-isomorphic graphs with 5 vertices where the degree of each vertex is even.

4. {4 marks} Married couple Mario and Peach invited 3 other couples to the castle on the mountain for a cake party (and it's no lie). During the party, some handshaking took place with the restriction that a person cannot shake hands with themselves nor with their own spouse. After all the handshaking was done, Peach went around to ask the 7 others in the party how many people they shook hands with, and she received a different answer from everyone. How many hands did Mario shake? How many hands did Peach shake?

5. $\{3 \text{ marks}\}\ \text{Let } k \in \mathbb{N}$. Prove that if G is a k-regular bipartite graph with bipartition (A, B) , then $ A = B $.
6. For integers $n \ge k \ge 1$, let $S_{n,k}$ be the graph whose vertices are all the k-subsets of $[n]$. There is an edge between two vertices A, B in the graph if and only if the two sets intersect in $k-1$ elements, i.e. $ A \cap B = k-1$.
(a) $\{2 \text{ marks}\}\ \text{Draw } S_{5,1} \text{ and } S_{4,2}.$
(b) $\{2 \text{ marks}\}\$ Prove that $S_{n,k}$ is regular by determining the degree of each vertex.

(c) $\{2 \text{ marks}\}\$ Determine the total number of edges in $S_{n,k}$.

(d) {3 marks} Prove that when $n > k \ge 2$, $S_{n,k}$ is not bipartite.

(e) {3 marks} Prove that for any $n \geq 2$, $S_{n,k}$ is isomorphic to $S_{n,n-k}$.