PERANCANGAN PLTS ON GRID SEBAGAI SISTEM CATU DAYA KAWASAN JATILUWIH

Dimas¹, I Nyoman Satya Kumara², I Wayan Sukerayasa²

¹Mahasiswa Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana ²Dosen Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana Kampus Bukit, Jl Raya Kampus Unud Jimbaran, Kuta Selatan, Badung, Bali 80631 dimas@student.ac.id

ABSTRAK

Jatiluwih merupakan desa wisata yang dinyatakan oleh UNESCO sebagai salah satu lokasi warisan budaya dunia pada tahun 2012. Sebagai situs warisan budaya dunia, Kawasan Jatiluwih tidak diperbolehkan adanya pembangunan yang dapat merusak citra dari kawasan tersebut. Dalam mendukung Kawasan Jatiluwih sebagai kawasan yang hijau dan lestari, maka pada penelitian ini dirancang PLTS atap On grid sebagai sistem catu daya listrik pada kawasan. Penelitian ini bertujuan untuk mengetahui kapasitas PLTS atap dan produksi energinya untuk memenuhi kebutuhan energi di Kawasan WBD Jatiluwih. Berdasarkan survey, terdapat 45 bangunan untuk mendukung aktivitas pariwisata dalam Kawasan WBD Jatiluwih, dengan total kebutuhan energi per hari sebesar 225,37 kWh. Berdasarkan kriteria yang telah ditetapkan terdapat lima bangunan yang memenuhi kriteria untuk dipasang PLTS atap. Dalam perancangan PLTS atap digunakan dua skenario yaitu skenario kebutuhan beban dan skenario luasan atap. Hasil penelitian menunjukan bahwa kapasitas PLTS atap yang terpasang berdasarkan kebutuhan beban pada bangunan Dukuh Baturan Villa, Warung Dhea, dan Bhuana Agung Restaurant sebesar 2,05 kWp, Restoran Iga Lawar sebesar 2,46 kWp dan Teras Subak Homestay sebesar 1,2 kWp. Berdasarkan luasan atap pada bangunan Dukuh Baturan Villa sebesar 9,8 kWp. Teras Subak Homestay sebesar 23,4 kWp Warung Dhea sebesar 10,6 kWp, Restoran Iga Lawar sebesar 16 kWp, dan Bhuana Agung Restaurant sebesar 6,5 kWp. Sistem PLTS atap pada kelima bangunan di Jatiluwih dengan skenario luasan atap dapat menghasilkan energi sebesar 270,35 kWh/hari, sehingga mampu memenuhi kebutuhan energi pada 45 bangunan.

Kata kunci: Energi surya, PLTS, Catu Daya, Helioscope, PVSyst

ABSTRACT

Jatiluwih is a tourist village that was declared by UNESCO as one of the locations of world cultural heritage in 2012. Being recognized as a World Heritage Site, the Jatiluwih Area is not allowed to undergo any development that could damage the area's image. To support Jatiluwih as a green and sustainable area, this study proposes the installation of Grid-Connected Solar Photovoltaic Systems (PLTS) on rooftops to serve as the power supply system for the area. The objective of this study is to assess the rooftop solar power plant's capability and its energy production to meet the energy needs in the Jatiluwih WBD Area. Based on the survey, there are 45 buildings to support tourism activities in the Jatiluwih WBD Area, with a total daily energy requirement of 225.37 kWh. According to the established criteria, five buildings meet the requirements for installing rooftop PLTS. In the design of the rooftop PLTS, two scenarios are used: the load requirement scenario and the roof area scenario. The research results indicate that the installed rooftop PLTS capacity based on the load requirement for the Dukuh Baturan Villa, Warung Dhea, and Bhuana Agung Restaurant buildings is 2.05 kWp, for the Restoran Iga Lawar building is 2.46 kWp, and for the Teras Subak Homestay building is 1.2 kWp. Based on the roof area, the Dukuh Baturan Villa building has a capacity of 9.8 kWp, Teras Subak Homestay has 23.4 kWp, Warung Dhea has 10.6 kWp, Restoran Iga Lawar has 16 kWp, and Bhuana Agung Restaurant has 6.5 kWp.The rooftop PLTS system on these five buildings in Jatiluwih, using the roof area scenario, can generate an energy output of 270.35 kWh/day, thereby fulfilling the energy requirements of the 45 buildings.

Key Words: Solar energy, PLTS, Power Supply, Helioscope, PVSyst

1. PENDAHULUAN

Dalam memenuhi kebutuhan energi, mayoritas negara di seluruh dunia masih menggunakan sumber enerai konvensional, vang dimana ketersediaannya saat ini sudah semakin seiring digunakannya terbatas sebagai sumber pada pembanakit listrik. Penggunaan energi konvensional menghasilkan dampak serius terhadap alam seperti pencemaran lingkungan, sehingga negara-negara di dunia mengadopsi peralihan sumber energi ke arah energi terbarukan. Indonesia adalah salah satu negara yang ikut berperan dalam proses peralihan energi, sebagaimana yang diuraikan dalam Peraturan Pemerintah (PP) Nomor 79 Tahun 2014 mengenai Kebijakan Energi Nasional. Dalam peraturan ini dijelaskan tentang penggunaan energi terbarukan [1]. Sumber energi terbarukan yang memiliki ketersediaan yang melimpah di Indonesia yaitu energi surya. Jumlah energi matahari yang dapat dihasilkan di seluruh wilayah Indonesia adalah sekitar 4,8 kWh/m²/hari. dengan potensi energi listrik yang dapat dibangkitkan melalui energi surya yaitu 207.898 MW [2].

Salah satu provinsi yang progresif dalam mendukung penggunaan energi terbarukan sebagai sumber pembangkit listrik yaitu Provinsi Bali, aspek ini berakar pada ketetapan-ketetapan yang diterbitkan seperti oleh pemerintah ketetapan Peraturan Gubernur (PERGUB) Bali Nomor 45 Tahun 2019 yang berkaitan dengan Bali Energi Bersih dan Surat Edaran (SE) Gubernur Bali Nomor 5 Tahun 2022 yang berhubungan dengan Implementasi Pembangkit Listrik Tenaga Surya (PLTS) Atap di Provinsi Bali. Berdasarkan Rencana Umum Energi Nasional (RUEN), target pengembangan Pembangkit Listrik Tenaga Surya (PLTS) di Provinsi Bali direncanakan mencapai 8,62% atau 108,2 MW dari seluruh potensinya yaitu 1.254 Beberapa pembangunan **PLTS** vang menjadi bukti pengembangan PLTS di Bali, diantaranya adalah pembangunan PLTS Kayubihi 1 MWP yang terletak di Kabupaten

Bangli, PLTS 1 MWP di Kabupaten Karangasem, PLTS 130 kWp di Indonesia Power Pesanggaran, PLTS 158 kWp di Kantor Gubernur Bali, dan pembangunan PLTS di beberapa Gedung instansi lainnya yang saat ini mencapai total 9,8 MWp [2].

Total kapasitas pengembangan PLTS di Provinsi Bali masih jauh dari target yang ditetapkan oleh RUEN, sehingga perlu percepatan dalam pengembangan PLTS. Oleh karena itu, pemerintah Bali juga melakukan fokus pengembangan PLTS di daerah vang masih alami dan meniadi destinasi wisata, salah satunya adalah Kawasan Jatiluwih. Jatiluwih merupakan desa yang mempunyai daya tarik berupa hamparan persawahan yang luas dan bertingkat. Pada tanggal 29 Juni 2012, UNESCO telah mengesahkan Kawasan Jatiluwih sebagai bagian dari Warisan Budaya Dunia (WBD). Kawasan Jatiluwih memiliki berbagai fasilitas pariwisata seperti villa, restoran, pos informasi, dan lain-lain yang berfungsi sebagai penunjang aktivitas pariwisata. Oleh karena itu, beban listrik pada siang hari akan sangat besar sehingga pemasangan PLTS atap akan berfungsi sebagai catu daya tambahan guna memenuhi kebutuhan energi bangunan tersebut. Pada penelitian ini dipilih **PLTS** perancangan atap karena berdasarkan peraturan pemerintah daerah (PERDA Kab.Tabanan No. 6 Tahun 2014) pada Kawasan DTW Warisan Budaya Dunia Jatiluwih tidak diperbolehkan adanya pembangunan di sepanjang jalur Kawasan DTW Jatiluwih yang merusak citra Kawasan Warisan Budaya Dunia Jatiluwih melanggar peraturan UNESCO, sehingga pada penelitian ini memanfaatkan atap bangunan vana sudah untuk dilakukannya peracangan PLTS Atap.

2. KAJIAN PUSTAKA

2.1 Pengertian PLTS

PLTS adalah sistem yang menghasilkan tenaga listrik dengan memanfaatkan energi dari matahari. PLTS termasuk dalam golongan pembangkit listrik yang memperhatikan kelestarian lingkungan, efisien, mandiri, dan andal dalam menyuplai energi listrik ke bangunan-bangunan, khususnya bagi bangunan yang berada dalam wilayah yang belum terjangkau oleh jaringan listrik utama (PLN)[5].

Gambar 1. Kawasan Jatiluwih

2.2 Perancangan Sistem PLTS

Terdapat 3 kriteria bangunan agar proses operasional PLTS dapat berjalan dengan baik, antara lain [10]:

1. Struktur atap

Struktur atap harus kuat dan mampu menahan beban tambahan dari modul surya yang dipasang di atasnya.

2. Umur Bangunan

Umur bangunan dapat berpengaruh terhadap pemasangan modul surya pada atap, karena jika umur bangunan terlalu tua maka akan mempengaruhi kondisi bangunan tersebut seperti kondisi struktur atap dan bangunan yang sudah rapuh.

3. Sudut Kemiringan

Umumnya, sudut kemiringan atap yang ideal untuk pemasangan PLTS adalah antara 15 hingga 40 derajat.

2.2.1 Perhitungan Kapasitas Sistem PLTS

Dalam merancang sistem PLTS, untuk menghitung nilai kapasitas sistem PLTS yang akan dipasang dari total energi beban yang digunakan dapat dihitung menggunakan cara membagi total energi per hari dengan waktu penyinaran puncak atau *Peak Sun Hour* (PSH). Nilai PSH dapat dihitung dengan rumus berikut [7]:

$$PSH = \frac{Rata - rata \, Radiasi}{Insulasi \, Standar} \tag{1}$$

Keterangan:

Rata-rata Radiasi = Rata-rata radiasi yang diterima permukaan (kWh/m²)

Insulasi Standar = Nilai insulasi standar yaitu 1 kW/ m²

Jika nilai PSH sudah diketahui, maka dapat dihitung kapasitas sistem PLTS atap dengan rumus berikut [7]:

$$P_{PV} = \frac{Jumlah Energi per hari}{PSH}$$
 (2)

Keterangan:

P_{PV} = Kapasitas sistem PLTS yang terpasang (Wp)

Jumlah Energi per hari = Jumlah energi bangunan (Wh)

PSH = *Peak Sun Hour* (Waktu penyinaran puncak)

2.2.2 Perhitungan Kebutuhan Modul Surya

Total kebutuhan modul berdasarkan pemakaian beban dapat dihitung dengan menggunakan persamaan berikut [1]:

$$PV_{req} = \frac{P_{PV}}{PV_{rateout}} \tag{3}$$

Keterangan:

PV_{req} = Total kebutuhan panel (Unit)

P_{PV} = Total kapasitas sistem PLTS (Wp)

PV_{rateout} = Kapasitas output modul surya (Wp)

Sementara itu, perhitungan total modul surya yang bisa dipasang sesuai luas atap dapat diestimasikan dengan menggunakan persamaan:

$$PV_{req_luasan} = \frac{L_{Atap}}{L_{Panel}}$$
 (4)

Keterangan:

PV_{req_luasan} = Total kebutuhan panel (Unit)

 L_{Atap} = Luas keseluruhan atap bangunan (m²)

L_{Panel} = Luas permukaan modul surya (m²)

Dalam menghitung nilai kapasitas modul surya yang diterapkan, dapat menggunakan persamaan:

 $P_{PV} = Jumlah \, Panel \, x \, PV_{out}$ (5)

Keterangan:

P_{PV}= Kapasitas sistem PLTS yang terpasang (Wp)

Jumlah Panel = Banyaknya modul surya yang akan digunakan (*Unit*)

PV_{out} = Kapasitas *output* modul surya (Wp)

Kalkulasi rangkaian seri-paralel pada perancangan sistem PLTS penting

karena memungkinkan untuk mengidentifikasi jumlah susunan modul surya yang terhubung ke *inverter*. Adapun perhitungan untuk susunan rangkaian seri paralel yaitu [8]:

Rangkaian seri minimal =
$$\frac{V_{min} inverter(v)}{V_{oc} modul(v)}$$
 (6)

$$Rangkaian seri maksimal = \frac{V_{max} inverter(v)}{V_{mn} modul(v)}$$
 (7)

Rangkaian paralel minimal =
$$\frac{I_{max} input inverter}{I_{mv} modul}$$
 (8)

2.2.3 Perhitungan Luas Area Rangkaian Panel

Total area atap yang digunakan dalam pemasangan modul surya dapat dihitung dengan persamaan berikut [1]:

$$PV_{area} = PV_{rea} \times PV_L \times PV_W \tag{9}$$

Keterangan:

 $PV_{area} = Total$ area pemasangan modul surya (m²)

PV_L = Panjang modul surya (m)

PVw = Lebar modul surva (m)

2.2.4 Perhitungan Kapasitas Inverter

Dalam mengukur kapasitas *inverter* yang cocok untuk sistem PLTS *on grid*, perhitungan *Inverter* Load Ratio (ILR) diperlukan. ILR dihitung berdasarkan perbandingan kapasitas arus searah (DC) yang dihasilkan oleh rangkaian PV array terhadap kapasitas arus bolak-balik (AC) yang dapat ditangani oleh *inverter* yang terpasang. Persamaan yang diterapkan

untuk mengestimasi ILR ditunjukkan dalam rumus berikut [9]:

$$ILR = \frac{DC_{Nameplate}}{AC_{Nameplate}} \tag{10}$$

Keterangan:

ILR = Rasio perbandingan antara kapasitas daya modul surya (DC) dengan kapasitas daya *inverter* (AC)

DC_{nameplate} = Kapasitas PV array yang akan dipasang

AC_{nameplate} = Kapasitas *inverter* yang akan dipasang

Sedangkan, untuk mengetahui jumlah *inverter* yang digunakan dalam sistem PLTS dapat diketahui dengan persamaan berikut [1]:

$$Inv_{req} = \frac{Kapasitas_{Inv}}{Inv_{rateout}}$$
 (11)

Keterangan:

Inv_{req} = Total kebutuhan *inverter* (unit) Kapasitas_{inv} = Kapasitas *inverter* (kW) Inv_{rateout} = Kapasitas output *inverter* (kW)

3. METODE PENELITIAN

Studi ini dilakukan di Kawasan Jatiluwih, tepatnya di Kecamatan Penebel, Kabupaten Tabanan. Provinsi Bali. Penelitian dimulai pada waktu yang ditetapkan yaitu dari bulan Januari hingga Maret tahun 2023. Penelitian ini difokuskan pada Kawasan Daya Tarik Wisata Jatiluwih, dimana terdapat 45 bangunan yang terdiri dari bangunan publik dan bangunan komersial. Diagram alir (flow chart) dari penelitian ini ditunjukkan dalam Gambar berikut:

Gambar 2. Flow chart penelitian

4. HASIL DAN PEMBAHASAN

4.1 Gambaran Umum Jatiluwih

Jatiluwih merupakan sebuah desa yang menarik perhatian para wisatawan karena memiliki pemandangan persawahan yang luas dan indah dengan bentuk bertingkat. Kawasan Jatiluwih berada di wilayah Kecamatan Penebel, Kabupaten Tabanan, Bali, yang memiliki luas wilayah 22,33 km² dan terletak di ketinggian 1.059 meter di atas permukaan laut. Sejak tanggal 29 Juni 2012, UNESCO secara resmi mengakui Desa Jatiluwih sebagai Situs Warisan Budaya Dunia, hal ini disebabkan oleh karakteristik dalam sistem pertanian yang mendasari konsep filosofi *Tri Hita Karana*.

4.2 Perancangan Sistem PLTS Atap4.2.1 Analisis Lokasi Pemasangan PLTS Atap

Potensi energi matahari pada kawasan Jatiluwih dapat diketahui berdasarkan data PVsyst, dimana data data potensi disajikan pada tabel berikut:

Tabel 1. Iradiasi Kawasan Jatiluwih

	Global Horizontal
Bulan	Irradiation
	(kWh/m²)
Januari	5,28
Februari	4,87
Maret	5,23
April	4,56
Mei	4,14
Juni	4,36
Juli	4,32
Agustus	4,01
September	4,1
Oktober	4,81
November	4,36
Desember	4,44
Rata-rata	4,54

Berdasarkan Tabel 1, diketahui bahwa rata-rata radiasi pada Kawasan Jatiluwih sebesar 4,54 kWh/m², sehingga dengan persamaan (1) didapat bahwa lamanya waktu penyinaran puncak atau *Peak Sun Hour* (PSH) di Kawasan Jatiluwih sebesar 4,54 jam dalam satu hari. Adapun pola iradiasi harian pada Kawasan Jatiluwih ditampilkan dalam Gambar 3 berikut:

Gambar 3. Pola Iradiasi Harian

Berdasarkan Gambar 3, diketahui rentang iradiasi tertinggi pada Kawasan Jatiluwih yaitu pada pukul 10:00-14.00 WITA, dengan iradiasi tertingginya yaitu pada pukul 12.00 WITA sebesar 718 W/m2. Berdasarkan kriteria bangunan sebelum pemasangan PLTS atap, terdapat 5 bangunan yang memenuhi kriteria dari total 45 bangunan di Kawasan Jatiluwih, yaitu Dukuh Baturan Villa, Teras Subak Homestay, Warung Dhea, Restoran Iga Lawar, dan Bhuana Agung Restaurant.

4.2.2 Analisis Pola Beban

Audit pemakaian beban pada 45 bangunan di kawasan Daya Tarik Wisata Warisan Budaya Dunia Jatiluwih dilakukan untuk mengetahui pola beban saat beroperasi selama 12 jam seiring PLTS memproduksi energi listrik dari pukul 07:00 – 18:00 WITA. Adapun tabel pemakaian beban selama 12 jam ditunjukkan dalam Tabel 2 berikut.

Tabel 2. Pengoperasian Peralatan Listrik Kawasan Jatiluwih Selama 12 Jam

Jenis Beban	Jumlah (Unit)	Daya per Unit (Watt)	Total Daya (Watt)
AC 1 PK	9	840	7560
Kulkas 1 Pintu	30	50	1500
Televisi	13	50	650
Lampu Spotlight	40	10	400
Wi-fi	16	4	64
Pompa Air	8	125	1000
Showcase 1 Pintu	23	180	4140
Kulkas 2 Pintu	6	130	780
Magicom Besar	13	400	5200
Lampu	197	10	1970
Stand Chiller	2	430	860
Freezer	10	90	900
Band Chiller	3	350	1050
Microwave	8	400	3200
Blender	18	130	2340
Mesin Kopi	4	1400	5600
Komputer	2	65	130
Dispenser	1	400	400
Router	3	5,4	16,2
CCTV	46	9,6	441,6
Speaker	12	120	1440
Kipas Angin	12	20	240
Water Heater	6	350	2100
Pemanggang Roti	4	350	1400
Magicom Kecil	15	300	4500
Exhaust	1	24	24
Pemanas Nasi	1	270	270
Showcase 2 Pintu	1	334	334
Teko Listrik	10	500	5000
Total		7347	53509,8

Pola beban pada 45 bangunan di Kawasan Jatiluwih ditunjukkan dalam Gambar 4 berikut:

Gambar 4. Pola Beban 45 Bangunan Kawasan Jatiluwih Selama 12 Jam

Total energi yang digunakan pada 45 bangunan dalam periode 12 jam dari jam 06:00 hingga 18:00 WITA sebesar 225.377 Wh atau 225,377 kWh, dimana beban puncaknya yaitu pada pukul 11:00 WITA dengan penggunaan daya sebesar 28,819 kW.

4.2.3 Pemilihan Komponen Sistem PLTS Atap

1. Modul Surya

Pada perancangan, digunakan panel surya Trina Solar TSM DE-15M(II) dengan daya 410 Wp. Pemilihan jenis modul surya ini didasarkan pada beberapa pertimbangan, termasuk kapasitas tinggi, efisiensi yang optimal, biaya yang terjangkau dan lokasi pembelian modul surya yang dekat guna meminimalisir biaya pengiriman.

2. Inverter

Inverter yang digunakan penelitian ini dipilih berdasarkan beberapa faktor yaitu memiliki nilai efisiensi yang tinggi agar hasil yang diperoleh lebih maksimal, harga inverter yang terjangkau dan standar waktu pemakaian yang panjang. Berdasarkan pertimbangan tersebut, maka dipilih inverter dengan tipe Growatt. Inverter Growatt memenuhi SPLN D3.022-2:2012, serta memiliki standar dan sertifikasi internasional seperti CE, G83, UTE, IEC, VDE, EN, AS, CQC sehingga kualitas dan unjuk kerjanya terjamin [11].

4.2.4 Perancangan PLTS Atap Berdasarkan Skenario 1 (Pemakaian Beban)

Hasil perhitungan perancangan PLTS berdasarkan skenario 1 ditunjukkan pada Tabel berdasarkan data rata-rata iradiasi harian, data pemakaian energi bangunan, dan dihitung menggunakan persamaan (2), (3), (5), (9), (10), dan (11), sehingga diperoleh Tabel 3 perhitungan berikut:

Tabel 3. Perhitungan PLTS Atap Skenario 1

No.	Nama Bangunan	PPV (kWp)	Pvreq (Unit)	Pvarea (m²)	Invcap (kW)	Invreq (Unit)
1	Dukuh Baturan Villa	2,05	5	10,03	2	1
2	Teras Subak Homestay	1,23	3	6,02	1	1
3	Warung Dhea	2,05	5	10,03	2	1
4	Restoran Iga Lawar	2,46	6	12,04	2	1
5	Bhuana Agung Restaurant	2,05	5	10,03	2	1

Berdasarkan Tabel 3 diketahui bahwa semakin besar kebutuhan pemakaian energi per hari, maka semakin besar kapasitas sistem PLTS atap yang terpasang dan semakin banyak kebutuhan modul suryanya. Bangunan dengan pemakaian energi terbesar yaitu Restoran Iga Lawar, sehingga kapasitas sistem PLTS atap yang terpasang menjadi terbesar diantara 4 bangunan lainnya.

4.2.5 Perancangan PLTS Atap Berdasarkan Skenario 2 (Luasan Atap)

Hasil perhitungan perancangan PLTS berdasarkan skenario 2 ditunjukkan pada Tabel berdasarkan data luasan atap dan dihitung menggunakan persamaan (3), (4), (5), (9), (10), dan (11), sehingga diperoleh Tabel 4 perhitungan berikut:

Tabel 4. Perhitungan PLTS Atap Skenario 2

No.	Nama Bangunan	Luas Area (m²)	Pvreq (Unit)	Pvarea (m²)	Ppv (kWp)	Invcap (kW)	Invreq (Unit)
1	Dukuh Baturan Villa	60,68	24	48,16	9,8	8	1
2	Teras Subak Homestay	250,22	57	114,39	23,4	10	2
3	Warung Dhea	89,46	26	52,18	10,6	9	1
4	Restoran Iga Lawar	170,24	39	78,27	16	13	1
5	Bhuana Agung Restaurant	85,59	16	32,11	6,5	6	1

Berdasarkan Tabel 4 diketahui bahwa semakin besar luasan atap, maka semakin besar kapasitas sistem PLTS atap yang terpasang dan semakin banyak kebutuhan modul suryanya. Bangunan dengan luasan atap terbesar yaitu Teras Subak Homestay, sehingga kapasitas sistem PLTS yang terpasang menjadi terbesar diantara 4 bangunan lainnya.

4.3 Hasil Simulasi PVSyst 4.3.1 Produksi Energi PLTS Atap Skenario 1

Berdasarkan simulasi PVSyst diperoleh hasil pembangkitan energi listrik kelima bangunan dengan skenario 1 yang ditampilkan pada Tabel 5 berikut.

Tabel 5. Produksi Energi Sistem PLTS Atap Pada Kelima Bangunan Skenario 1

					-			-			_				
	Dukuh	Baturan Villa		Teras S	ubak Homesta	y	Wa	rung Dhea		Resto	ran Iga Lawar		Bhuana A	gung Restaura	ınt
Bulan	E Product (kWh)	E User (kWh)	Solar Fraction (%)												
Januari	226,8	220	38,20%	138,9	170	36,20%	223,9	653,0	28,70%	300,4	674,1	31,00%	257,9	522	32,40%
Februari	201,3	220	36,80%	122,9	225	32,80%	203,5	668,0	27,00%	255,7	674,1	29,40%	221,7	595	29,40%
Maret	234,1	220	37,60%	161,5	205	35,80%	248,9	599,0	30,70%	284,5	930,7	26,60%	280,2	564	33,10%
April	200,6	220	35%	148	188	34%	223,8	666,0	27%	232,2	782,1	25%	249,1	603	30%
Mei	203,4	220	35,60%	147,5	175	33,90%	229,4	628,0	28,50%	226,1	714,92	26,10%	242,4	520	30,80%
Juni	215,9	220	36,30%	156,8	190,5	35,40%	247,3	641,8	30,30%	232,7	714,92	27,20%	253,8	540,7	32,30%
Juli	224,1	220	37,30%	156,6	190,5	35,30%	252,3	641,8	30,60%	244,8	714,92	27,90%	255,3	540,7	32,40%
Agustus	198	220	34,40%	134,3	190,5	33,10%	217,2	641,8	27,30%	226,6	714,92	26,30%	225,1	540,7	29,60%
September	180,2	220	35,40%	124,4	190,5	32,60%	194,1	641,8	26,10%	216,3	714,92	25,80%	213,8	540,7	28,80%
Oktober	201,1	220	36,50%	142,2	190,5	34,20%	213,4	641,8	27,80%	253,1	714,92	28,10%	250,9	540,7	31,30%
November	166,4	220	35,20%	119,3	190,5	32,10%	171,9	641,8	24,30%	220,1	714,92	25,80%	216	540,7	28,60%
Desember	193,6	220	36,50%	117,2	180	36,10%	188,8	637,0	25,60%	255,8	513,6	30,70%	218,5	440	32,80%
Total	2445,5	2640	36,20%	1669,6	2286	34,20%	2614,5	7702	27,80%	2948,3	8579,04	27,30%	2884,7	6488	30,90%

Tabel 5 menunjukkan bahwa semakin besar pemakaian energi riil bangunan maka solar fraction semakin kecil, dimana pemakaian energi terbesar yaitu bangunan Restoran Iga Lawar, sehingga solar fraction pada Restoran Iga Lawar menjadi terkecil diantara keempat bangunan lainnya. Pada

dikarenakan besarnya kapasitas sistem PLTS atap dibandinkan keempat bangunan lainnya.

4.3.2 Produksi Energi PLTS Skenario 2

Berdasarkan simulasi PVSyst diperoleh hasil pembangkitan energi listrik kelima bangunan berdasarkan skenario 2 yang ditampilkan pada Tabel 6 berikut.

Tabel 6.	Produksi	Energi Sister	n PLTS Pa	ıda Kelima	Bangunan	Skenario 2

	Dukuh	Dukuh Baturan Villa		Teras Subak Homestay		Warung Dhea		Restoran Iga Lawar			Bhuana Agung Restaurant				
Bulan	E Product (kWh)	E User (kWh)	Solar Fraction (%)	E Product (kWh)	E User (kWh)	Solar Fraction (%)	E Product (kWh)	E User (kWh)	Solar Fraction (%)	E Product (kWh)	E User (kWh)	Solar Fraction (%)	E Product (kWh)	E User (kWh)	Solar Fraction (%)
Januari	1306	220	44,80%	2841	170	45,80%	1389	653,0	41,20%	1973	674,1	43,00%	871,8	522	39,80%
Februari	1029	220	47,40%	2369	225	49,20%	1135	668,0	41,10%	1680	674,1	44,00%	719,5	595	37,90%
Maret	1109	220	44,60%	2743	205	45,50%	1281	599,0	41,80%	1952	930,7	42,10%	829,7	564	39,60%
April	840	220	43%	2268	188	44%	1027	666,0	39%	1636	782,1	40%	681,3	603	37%
Mei	714	220	42,20%	2125	175	43,80%	934	628,0	38,80%	1582	714,92	40,70%	630,9	520	37,00%
Juni	664	220	42,10%	2135	190,5	43,50%	917	641,8	39,30%	1620	714,92	40,90%	637,9	540,7	37,80%
Juli	711	220	43,20%	2215	190,5	44,20%	961	641,8	40,00%	1677	714,92	41,50%	658,4	540,7	38,10%
Agustus	749	220	41,40%	2069	190,5	43,10%	928	641,8	37,40%	1532	714,92	39,10%	624,4	540,7	35,70%
September	823	220	43,10%	2072	190,5	44,50%	959	641,8	38,70%	1487	714,92	40,60%	626,2	540,7	36,60%
Oktober	1080	220	43,20%	2524	190,5	44,60%	1198	641,8	39,20%	1763	714,92	40,80%	771,4	540,7	37,50%
November	1030	220	45,20%	2268	190,5	46,00%	1101	641,8	39,90%	1553	714,92	42,40%	694,2	540,7	37,10%
Desember	1132	220	48,10%	2451	180	49,00%	1201	637,0	44,30%	1711	513,6	47,30%	739,8	440	43,30%
Total	11187	2640	44,00%	28080	2286	45,30%	13031	7702	40,00%	20166	8579,04	41,70%	8485,5	6488	38,00%

Tabel 6 menunjukkan bahwa semakin besar produksi energi bangunan maka solar fraction juga semakin besar, dimana pemakaian energi terbesar yaitu bangunan Teras Subak Homestay, sehingga solar fraction pada Teras Subak Homestay menjadi terbesar diantara keempat bangunan lainnya.

4.4 Analisis Pemenuhan Kebutuhan Energi Kawasan Jatiluwih

Berikut disajikan Tabel 7 pemakaian energi seluruh kawasan Jatiluwih dengan asumsi bahwa seluruh bangunan pada kawasan memiliki aktivitas pariwisata.

Tabel 7. Pemakaian Energi 45 Bangunan Kawasan Jatiluwih Selama 12 Jam

Data Pemakaian Energi Seluruh Kawasan Jatiluwih						
Kategori Beban	Energi per hari (kWh)					
Beban Peralatan	184.321					
Beban Penerangan	16.180					
Beban Tata Udara	24.876					
Total	225.377					

Berikut disajikan Tabel 8 total kapasitas Sistem PLTS atap berdasarkan skenario 2 dengan produksi energinya.

Tabel 8. Total Kapasitas Sistem dan Produksi PLTS

Nama Bangunan	Kapasitas PLTS (kWp)	Energi rata-rata per hari (kWh)	Energi rata-rata per bulan (kWh)	Energi per tahun (kWh)
Dukuh Baturan Villa	9,8	42,13	932,25	11.187
Teras Subak Homestay	23,4	91,65	2.340	28.080
Warung Dhea	10,6	44,8	1.085,91	13.031
Iga Lawar	16	63,65	1.680,50	20.166
Bhuana Agung Restaurant	6,5	28,12	707,12	8.485,50
Total	66,3	270,35	6.745,78	80.949,5

Berdasarkan Tabel 7 dan 8 diketahui bahwa total hasil produksi energi rata-rata harian pada sistem PLTS atap yaitu 270,35 kWh/hari, dimana hasil tersebut sudah mampu memenuhi kebutuhan energi 45 bangunan selama 12 jam yaitu sebesar 225,37 kWh/hari, sehingga sistem PLTS atap yang terpasang pada kelima bangunan dapat digunakan sebagai suplai catu daya listrik tambahan untuk memenuhi kebutuhan energi dari 45 bangunan Kawasan Jatiluwih.

5. KESIMPULAN

Dengan merujuk pada hasil penelitian dan analisis yang dilakukan mengenai perancangan PLTS *On grid* sebagai sistem catu daya Kawasan Jatiluwih, dapat ditarik kesimpulan sebagai berikut :

 Perancangan PLTS atap pada kawasan Jatiluwih menggunakan 2 skenario yaitu skenario pemakaian beban dan skenario luasan atap. Berdasarkan skenario

- pemakaian beban, sistem PLTS atap Dukuh Baturan Villa dapat memenuhi 36.20% kebutuhan listrik di Dukuh Baturan Villa. Pada Teras Subak Homestay dapat memenuhi 34,20% kebutuhan listrik di Teras Homestay. Pada Warung Dhea dapat memenuhi 27,80% kebutuhan listrik di Warung Dhea. Pada Restoran Iga Lawar dapat memenuhi 27,30% kebutuhan listrik di Restoran Iga Lawar. Pada Bhuana Restaurant Agung dapat memenuhi 30.90% kebutuhan listrik di Bhuana Agung Restaurant.
- Kebutuhan energi pada kawasan Jatiluwih sebesar 225,37 kWh/hari dapat dipenuhi oleh sistem PLTS atap pada kelima bangunan di Jatiluwih dengan skenario luasan atap, dimana total energi yang diproduksi per hari yaitu 270,35 kWh.

6. DAFTAR PUSTAKA

- [1] Sumariana, I.K., Kumara, I.N.S., & Ariastina, W.G., 2019. Desain dan Analisa Ekonomi PLTS Atap untuk Villa di Bali. Majalah Ilmiah Teknologi Elektro, 18(3), pp. 337-346.
- [2] Pawitra, A.A.G.A., Kumara, I.N.S., & Ariastina, W.G., 2020. Review Perkembangan PLTS di Provinsi Bali MenujuTarget Kapasitas 108 MW Tahun 2025. Majalah Ilmiah Teknik Elektro, 19(2), pp. 181-188.
- [3] Merta, K.H., Kumara, I.N.S., & Ariastina, W.G., 2019. Rancangan Penempatan Modul Surya dan Simulasi PLTS Fotovoltaik Atap Gedung RSPTN Rumah Sakit Universitas Udayana. Majalah Ilmiah Teknologi Elektro, 18(3), pp. 329-336.
- [4] Krismawintari, N.P.D., & Utama, I.G.B.R., 2019. Kajian tentang Penerapan Community Based Tourism di Daya Tarik Wisata Jatiluwih, Tabanan, Bali. Jurnal Kajian Bali, 9(2), pp. 429-448
- [5] Duka, E.T.A., Setiawan, I.N., & Weking, A.I., 2018. Perencanaan Pembangkit Listrik Tenaga Surya HybridPada Area Parkir Gedung Dinas Cipta Karya, Dinas

- Bina Marga Dan Pengairan Kabupaten Badung. E-Journal SPEKTRUM, 5(2), pp. 67-73.
- [6] Ode M. 2018. Desain Sistem Plts Untuk Pompa Air Menara Iqra Kampus Unismuh Makassar. Skripsi. Tidak Diterbitkan. Fakultas Teknik. Universitas Muhammadiyah Makassar: Makassar
- [7] Setiawan dkk., 2023. Manajemen Sistem Pembangkit Listrik Tenaga Surya On grid. E-Journal ITATS, pp. 297-306
- [8] Haryati, R., M.N. Qosim., H. W. Hasannah. 2019. Konsep Fotovoltaik Terintegrasi On grid dengan Gedung STT-PLN. Energi dan Kelistrikan: Jurnal Ilmiah, 11(01), pp. 17-26
- [9] Rega, M.S.N., Sinaga, N., & Windarta, J., 2021. Perencanaan PLTS Rooftop untuk Kawasan Pabrik Teh PT Pagilaran Batang. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(4), pp. 888- 901.
- [10] Mucharomah, N.M., Fatah, M.C., & Akbar, Z.A., 2023. Analisis Desain PLTS Atap Tipe Gable Roof Menggunakan Metode Weight Score. ELKOMIKA, 11(2), pp. 408-423.
- [11] Priajana, P.G.G., Kumara, I.N.S., & Setiawan, I.N., 2020. Grid Tie Inverter Untuk Plts Atap Di Indonesia: Review Standar Dan Inverter Yang Compliance Di Pasar Domestik. Jurnal Spektrum, 7(2), pp. 62-73.