TP2 – Modèles Différentiels et Applications

Le compte-rendu complet (des 2 séances) doit être envoyé électroniquement le <u>mardi 28 Février</u> (au plus tard à minuit)

à Arnaud.Chauviere@Univ-Grenoble-Alpes.fr

Consignes et contenu du compte-rendu

- 1. Le compte-rendu devra être dactylographié et être fourni au format pdf. Vous nommerez ce fichier TP1_Nom1_Nom2.pdf ou Nom1 et Nom2 sont vos noms par binôme.
- 2. Il devra suivre la forme suivante :
 - Introduction et description du thème abordé
 - Méthodologie
 - Résultats (incluant graphes)
 - Discussion et réponses aux questions
- 3. Vous joindrez à ce compte-rendu le(s) script(s) commenté(s) que vous aurez écrit(s) et utilisé(s).

Objectifs. L'objectif de ce TP est la résolution numérique de l'équation du mouvement du pendule simple et l'utilisation des outils théoriques, combinée à cette approche numérique, pour comprendre la dynamique oscillatoire du pendule dans différentes configurations.

Introduction

On considère l'équation différentielle qui décrit les oscillations d'un pendule simple de longueur ℓ , accroché à une de ses extrémités, et soumis à son poids :

$$y''(t) = -\gamma y'(t) - \omega^2 \sin(y(t)) + b(t) \tag{1}$$

οù

- $y(t) \in]-\pi,\pi]$ représente l'angle du pendule par rapport à la verticale,
- y'(t) est la vitesse angulaire du pendule,

et $b: t \mapsto b(t)$ est un terme de forçage.

Dans cette équation, trois phénomènes sont pris en compte :

- le frottement du pendule à son extrémité liée à l'axe de rotation, qui se traduit par le terme de coefficient γ ($\gamma \geq 0$);
- le poids du pendule, qui se traduit par le terme non-linéaire (en $\sin(y(t))$ dont le coefficient ω^2 est défini comme le carré de la fréquence propre du pendule :

$$\omega = \sqrt{\frac{g}{\ell}}$$

où $g = 9.80665 \, m/s^2$ est l'accélération de la pesanteur;

- l'entretien des oscillations par un terme de forçage b dépendant du temps.

Préliminaires

Transformation de l'équation du mouvement

Une équation différentielle du second ordre telle que l'équation (1) peut être transformée en un système différentielle à deux variables, chacune régie par une équation différentielle d'ordre un. Pour ce faire, on pose :

$$Y(t) = \begin{bmatrix} y_0(t) \\ y_1(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}$$

1. Transformer l'équation (1) en un système différentiel du premier ordre portant sur le vecteur Y(t):

$$Y'(t) = F(t, Y(t)), \qquad (2)$$

dans lequel $F: (t,Y) \in [t_0,t_0+T] \times \mathbb{R}^2 \mapsto F(t,Y) \in \mathbb{R}^2$, pour $t_0 \in \mathbb{R}$ et $T \in \mathbb{R}_+^*$. Vous donnerez l'expression des deux composantes de F en fonction de $y_0(t)$ et $y_1(t)$.

Conditions initiales

Afin de pouvoir trouver la solution de l'équation différentielle (1) pour un état initial donné du pendule, il faut définir cet état au temps initial $t = t_0$. Pour obtenir un problème bien posé (appelé problème de Cauchy - équation différentielle et conditions initiales correspondantes) il est nécessaire de donner autant de conditions initiales que l'ordre de l'équation différentielle et on considère donc ici les deux conditions :

$$y(t = t_0) = \theta_0$$
 et $y'(t = t_0) = \dot{\theta}_0$,

où $\theta_0 \in]-\pi,\pi]$ est l'angle initial du pendule et $\dot{\theta}_0 \in \mathbb{R}$ représente la vitesse angulaire initiale du pendule ¹.

2. Donner le vecteur $Y_0 = Y(t = t_0)$ condition initiale du système différentiel (2).

Etats d'équilibre du système

Les états d'équilibre du pendule sont définis comme les positions où le pendule peut rester immobile (sous la seule action de la pesanteur), c'est à dire avec une vitesse angulaire nulle. Un tel état est donc défini par un angle $y = \theta_e$ constant et une vitesse angulaire nulle y' = 0.

3. Montrer que les positions d'équilibre du pendule sont $\theta_e = 0$ et $\theta_e = \pi$.

Partie I – Programmation et visualisation des résultats préliminaires – Séance 1

L'objectif de cette partie est de calculer numériquement la fonction vectorielle $Y: t \in [t_0, t_0 + T] \mapsto Y(t) \in \mathbb{R}^2$ solution du problème de Cauchy suivant :

$$\begin{cases}
Y'(t) = F(t, Y(t)) \\
Y(t_0) = Y_0 \quad (Y_0 \in \mathbb{R}^2)
\end{cases}$$
(3)

où $F:(t,Y)\in[t_0,t_0+T]\times\mathbb{R}^2\mapsto F(t,Y)\in\mathbb{R}^2$ est au moins continue sur son intervalle de définition.

- 1. Vous écrirez un script Scilab afin de résoudre numériquement le problème (3) pour F correspondant à la dynamique générale du pendule simple (vous utiliserez la commande ode de Scilab).
- 2. Vous fixerez l'ensemble des paramètres du problème pour obtenir la solution numérique des oscillations d'un pendule :
 - de longueur $\ell = 1$;
 - oscillant sans frottement et sans forçage;
 - pendant un intervalle de temps : $[t_0 = 0, T = 2\pi/\omega]$;
 - laché sans vitesse initiale d'un angle initial $\theta_0 = \pi/2$.
- 3. Vous représenterez graphiquement :
 - i) l'angle du pendule et sa vitesse angulaire en fonction du temps, c'est à dire les fonctions :

$$y: t \in [t_0, t_0 + T] \mapsto y(t) = y_0(t) \in \mathbb{R}$$
 et $y': t \in [t_0, t_0 + T] \mapsto y'(t) = y_1(t) \in \mathbb{R}$:

ii) le champ de vecteurs vitesses V dans le plan (y_0, y_1) (appelé plan de phase) donné par l'expression de F en tout point (y_0, y_1) en considérant le temps t comme un paramètre, c'est à dire le champ :

$$V: (y_0, y_1) \in]-\pi, \pi] \times \mathbb{R} \mapsto V(y_0, y_1) = F(t, y_0, y_1) \in \mathbb{R}^2;$$

^{1.} La vitesse initiale est nulle si le pendule est laché sans impulsion

iii) la trajectoire du système dans le plan de phase (y_0, y_1) , c'est à dire la courbe représentant la vitesse angulaire en fonction de l'angle du pendule. Il s'agit de la courbe paramétrée plane définie par :

$$C: t \in [t_0, t_0 + T] \mapsto (y_0(t) = y(t), y_1(t) = y'(t)) \in \mathbb{R}^2.$$

Partie II – Etude des différents régimes oscillatoires – Séance 2