6

2020

MATHEMATICS GENERAL

Paper: 2

Internal Assessment

SET-3

Full Marks: 50

The figures in the margin indicate full marks.

 $\label{lem:candidates} \textbf{Candidates are required to give their answers in their own words as far as practicable.}$

Notations and symbols have their usual meaning.

(Module-III)

Group-A

(Marks 12)

1. Answer any two questions

(a) Check whether the quadratic form $2x^2 + 2y^2 + 2z^2 + 2xy + 2xz$ is positive definite or not.

(b) Show that the set $W = \{(x, y, z) / x + y + z = 0\}$ forms a subspace of \mathbb{R}^3 . 6

(c) Prove that the set $\{1,\alpha,\alpha^2\}$ where $\alpha^3=1$, form a group with respect to multiplication.

Group-B

(Marks 13)

- 2. Answer any two questions
 - (a) Show that the equation of the plane containing the straight line $\frac{y}{b} + \frac{z}{c} =$

$$1, x = 0$$
, and parallel to the straight line $\frac{x}{a} - \frac{z}{c} = 1, y = 0$, is

$$\frac{x}{a} + \frac{y}{b} - \frac{z}{c} - 1 = 0$$

- (b) Find the equation of the tangent plane of the sphere $x^2+y^2+z^2+2ux+2vy+2wx+d=0$ at the point (x_1,y_1,z_1)
- (c) A point p moves on a fixed plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. The plane through p perpendicular to op meets the axes A, B,C. The plane through A,B,C parallel to the YOZ, ZOX and XOY intersect at Q. Show that the locus of Q is

$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{ax} + \frac{1}{by} + \frac{1}{cz}.$$

(Module-IV)

Group-A

(Marks 12)

- 3. Answer any two questions
 - (a) Expand Sinx in an infinite Maclaurin's series starting the range of validity of the expansion.
 - (b) Evaluate $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{1/x}$ 6
 - (c) Find the extreme value of $f(x,y) = 2x^2 xy + 2y^2 20x$ **6**

Group-B

(Marks 8)

- 4. Answer any one of the following
 - (a) Find the area bounded by the curve $y = x^3$ and y = 2x.

8

(b) Define Gamma function and prove that

$$\int_0^\infty e^{-x^2} x^m dx = \frac{1}{2} \Gamma(\frac{m+1}{2}), m > 1$$

Group-B

(Marks 5)

5. Answer any one of the following

(a) Solve:
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 3\sin 2x$$

(b) Solve:
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^3$$