IT IS CLAIMED:

1. A compound having the structure \mathbf{I} or $\mathbf{\Pi}$:

$$X^2$$

I

II

where

5

25

 X^1 is OR^1 , where R^1 is selected from hydrogen, $C(=O)R^2$, and $C(=O)OR^2$, where R^2 is selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, aralkyl,

10 hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, and acyloxyalkyl;

 X^2 and X^3 are independently OR^1 or hydrogen, at least one of X^2 and X^3 being hydrogen; and where

- (i) Y^1 is hydrogen and Y^2 is selected from the group consisting of hydroxyl, halogen, cyano, nitromethyl, ethenyl, $-CH_2COOR^4$, $N(R^4)_2$, and SR^4 , where each R^4 is independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, aralkyl, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, and acyloxyalkyl, or, in the case of $N(R^4)_2$, taken together form a 5- to 7-member heterocyclic ring whose ring atoms are selected from the group consisting of carbon, nitrogen, oxygen and sulfur, wherein the ring atoms include at most 3 heteroatoms; or
- 20 (ii) Y^1 is hydroxyl and Y^2 is selected from the group consisting of hydrogen, hydroxyl, halogen, cyano, $N(R^4)_2$, and SR^4 ; or
 - (iii) Y1 and Y2 taken together form an epoxide ring.
 - 2. A compound as recited in claim 1, where R^1 is selected from hydrogen and $C(=O)R^2$.
 - 3. A compound as recited in claim 2, where R² is selected from alkyl, aryl, aralkyl, and alkoxyalkyl.

4. A compound as recited in claim 3, where R² is selected from lower alkyl, phenyl, and benzyl.

- 5 5. A compound as recited in claim 2, where R¹ is hydrogen.
 - 6. A compound as recited in claim 1, wherein each of X^2 and X^3 is hydrogen.
 - 7. A compound as recited in claim 1, having the structure Π .

10

- 8. A compound as recited in claim 7, wherein each of X^2 and X^3 is hydrogen.
- 9. A compound as recited in claim 1, having the structure I.
- 15 10. A compound as recited in claim 9, wherein each of X^2 and X^3 is hydrogen.
 - 11. A compound as recited in claim 10, wherein Y^1 is hydrogen and Y^2 is selected from the group consisting of hydroxyl, halogen, cyano, nitromethyl, ethenyl, -CH₂COOR⁴, N(R⁴)₂, and SR⁴.

20

- 12. A compound as recited in claim 11, wherein Y^2 is hydroxyl, fluoro, chloro, bromo, cyano, $-CH_2COOR^4$, or $N(R^4)_2$.
- 13. A compound as recited in claim 12, wherein Y² is hydroxyl, fluoro, chloro, bromo, or cyano.
 - 14. A compound as recited in claim 13, wherein Y² is hydroxyl.
 - 15. A compound as recited in claim 13, wherein Y² is cyano.

30

16. A compound as recited in claim 10, wherein Y^1 is hydroxyl and Y^2 is selected from the group consisting of hydrogen, hydroxyl, halogen, cyano, $N(R^4)_2$, and SR^4 .

17. A compound as recited in claim 16, wherein Y^2 is hydrogen, hydroxyl, fluoro, chloro, bromo, or cyano.

- 5 18. A compound as recited in claim 17, wherein Y^2 is hydrogen.
 - 19. A compound as recited in claim 17, wherein Y² is hydroxyl.

20

- 20. A compound as recited in claim 10, wherein Y¹ and Y² taken together form an epoxide ring.
- 21. A compound as recited in claim 1, wherein the groups defined as R², R³, and R⁴, when selected from alkyl, alkenyl, and alkynyl, have up to six carbon atoms; when selected from cycloalkyl, have 3 to 7 carbon atoms; when selected from cycloalkenyl, have 5 to 7 carbon atoms; and when selected from aralkyl, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, and acyloxyalkyl, have alkyl components having up to six carbon atoms.
 - 22. A compound as recited in claim 21, wherein said alkyl, alkenyl, and alkynyl groups or components have up to four carbon atoms.
 - 23. A compound as recited in claim 21, wherein said alkyl, alkenyl, and alkynyl groups or components have one or two carbon atoms.
- 24. A compound as recited in claim 1, wherein each of the groups defined as R^2 , R^3 , and 25 R^4 is independently selected from alkyl, aryl, aralkyl, and alkoxyalkyl.

25. A method of effecting immunosuppression, comprising administering to a subject in need of such treatment, an effective amount of a compound of formula I or II:

$$\mathbf{I} \qquad \mathbf{II}$$

where

5

10

 X^1 is OR^1 , where R^1 is selected from hydrogen, $C(=O)R^2$, and $C(=O)OR^2$, where R^2 is selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, aralkyl, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, and acyloxyalkyl;

 X^2 and X^3 are independently OR^1 or hydrogen, at least one of X^2 and X^3 being hydrogen; and where

- (i) Y^1 is hydrogen and Y^2 is selected from the group consisting of hydroxyl, halogen, cyano, nitromethyl, ethenyl, $-CH_2COOR^4$, $N(R^4)_2$, and SR^4 , where each R^4 is independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, aralkyl, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, and acyloxyalkyl, or, in the case of $N(R^4)_2$, taken together form a 5- to 7-member heterocyclic ring whose ring atoms are selected from the group consisting of carbon, nitrogen, oxygen and sulfur, wherein the ring atoms include at most 3 heteroatoms; or
- (ii) Y^1 is hydroxyl and Y^2 is selected from the group consisting of hydrogen, 20 hydroxyl, halogen, cyano, $N(R^4)_2$, and SR^4 ; or
 - (iii) Y¹ and Y² taken together form an epoxide ring.

26. A method of inducing apoptosis in a cell, comprising contacting said cell with an effective amount of a compound of formula I or Π :

$$X^2$$
 X^2
 X^3
 X^2
 X^3
 X^3
 X^3
 X^3
 X^4
 X^4
 X^4
 X^4
 X^4
 X^4

where

5

10

 X^1 is OR^1 , where R^1 is selected from hydrogen, $C(=O)R^2$, and $C(=O)OR^2$, where R^2 is selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, aralkyl, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, and acyloxyalkyl;

 X^2 and X^3 are independently OR^1 or hydrogen, at least one of X^2 and X^3 being hydrogen; and where

- (i) Y^1 is hydrogen and Y^2 is selected from the group consisting of hydroxyl, halogen, cyano, nitromethyl, ethenyl, $-CH_2COOR^4$, $N(R^4)_2$, and SR^4 , where each R^4 is independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, aralkyl, hydroxyalkyl, alkoxyalkyl, aryloxyalkyl, and acyloxyalkyl, or, in the case of $N(R^4)_2$, taken together form a 5- to 7-member heterocyclic ring whose ring atoms are selected from the group consisting of carbon, nitrogen, oxygen and sulfur, wherein the ring atoms include at most 3 heteroatoms; or
- (ii) Y¹ is hydroxyl and Y² is selected from the group consisting of hydrogen, 20 hydroxyl, halogen, cyano, N(R⁴)₂, and SR⁴; or
 - (iii) Y¹ and Y² taken together form an epoxide ring.