

Analog Integrated Systems Design

Lecture 12 Nyquist ADCs (1)

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

ADCs Classification

- Nyquist ADCs: signal BW close to Nyquist limit $(f_s/2)$
 - 1. Parallel search (e.g., flash ADC): $T_{conv} \sim T_{clk}$
 - Sequential search (e.g., SAR ADC): $T_{conv} \sim N \times T_{clk}$
 - 3. Linear search (e.g., dual-slope ADC): $T_{conv} \sim 2^N \times T_{clk}$

12: Nyquist ADCs (1)

Flash ADC

- ☐ Resistor ladder DAC
- \square $(2^N 1)$ comparators \Rightarrow complexity, power, area, and input capacitance grow exponentially with no. of bits
- □ Parallel search → very fast
 - Encoder converts thermometer code to straight binary code
- ☐ S/H inherent in the digital latches of the comparators

12: Nyquist ADCs (1) [M. Pelgrom, 2017]

Nonlinear Input Impedance

- ☐ Input cap of comparator is the input cap of a diff pair
- Comparators below the decision level create a high capacitance
- Comparators above the decision level will show a low capacitance
- Non-linear input capacitance creates distortion

12: Nyquist ADCs (1) [M. Pelgrom, 2017]

Nonlinear Input Impedance

- \Box Analysis shows: $HD2 = 20 \log \frac{\omega_{sig} R_{sig} (C_{max} C_{min})}{4}$
- ☐ Differential architecture cancels 2nd order distortion
 - But more current and area

Tree Layout

- The impedance of the wiring in combination with a string of load elements (e.g., inputs to the comparators) can easily lead to delay differences between individual comparators
 - lacktriangle Timing error translated to 2nd order distortion $\sim 0.5 \omega_{sig} \Delta T$
- ☐ Tree-like layout is necessary to avoid delay differences

12: Nyquist ADCs (1) [M. Pelgrom, 2017]

Flash ADC Example

- ☐ Given:
 - $V_{REF} = 1V$, $R_{tap} = 1\Omega$, $C_{tap} = 100 fF$, and N = 7
- ☐ Time constant for resistor ladder

$$\tau = \frac{R_{tot}C_{tot}}{\pi^2} = \frac{R_{tap}C_{tap}2^{2N}}{\pi^2} = 0.16ns$$

- R_{tot} is total resistance and C_{tot} is total capacitance
- ☐ For 0.5LSB error

$$f_s = \frac{1}{0.69(N+1)\tau} \approx 1.1GHz$$

- $\square R_{tot} = 128\Omega \rightarrow I = \frac{V_{REF}}{R_{tot}} = 8mA$
- ☐ Low-ohmic ladder is required: Often constructed from metal layers

Flash Comparator

- ☐ Requirements:
 - Low capacitive load
 - No DC input current
 - Low kick-back noise
 - High switching speed (large bandwidth)
 - Low power
 - Low random offset
- All requirements need small devices except the offset requirement
 - 0.5 LSB must be > 3-sigma-offset
 - BJT has 10x lower offset compared to MOSFET
 - But it draws DC current → Use Darlington pair

12: Nyquist ADCs (1)

Comparator Offset

- ☐ Flash resolution limited by the input referred mismatch of the comparators
- **□** For BJT $\sigma_{in.os} \approx 0.3 mV$
- lacksquare For MOSFET $\sigma_{in,os}$ is much higher
 - Ex: $\sigma_{in,os} \approx 5mV$
 - 0.5LSB > $3\sigma_{in,os}$
 - LSB = 30mV
 - Let VFS = 1V
 - $N = log_2(VFS/LSB) = 5-bit$
- Input CM difference creates systematic mismatch between comparators

Offset-Limited Resolution

☐ Practically limited to resolutions of 4-8 bits

Comparator Offset Sources Revisited

- \square Preamp input pair mismatch (V_{th} , W, L)
- PMOS loads mismatch
- Latch mismatch
- CI / CF imbalance of reset switch (M₉)
- Clock routing
- Parasitics

Typical flash comparator may use multiple preamplifiers

Thermometer Encoder

- ☐ Thermometer code converted to 1-of-2^N code
- ☐ Encoder to straight binary similar to dynamic NOR gate (wired-NOR) → Matrix of transistors as a straight binary code

12: Nyquist ADCs (1) [M. Pelgrom, 2017]

12

Sparkle Codes

- Mismatch, metastability, noise may make more than one Wired-NOR input active → Sparkle codes (a.k.a. bubble errors)
- Many bubble correction schemes were proposed (may provide "biased correction")
 - Trade-off between robustness and speed

12: Nyquist ADCs (1) [M. Pelgrom, 2017]

Subranging/Coarse-Fine ADC

- Ruler analogy: coarse step gets "cm" and fine step gets "mm"
- Reduced complexity (relative to flash): $N = N_1 + N_2 \rightarrow (2^{N_1} + 2^{N_2} 2)$ comparators
- Reduced C_{in}, area, and power consumption

Over-range

- By adding additional levels on both sides of the fine ADC range, errors from the coarse ADC can be corrected
- One form of using redundancy to recover errors

The coarse flash converter takes a correct decision and the fine-converter receives a signal within its range

One comparator has offset and the coarse converter indicates the wrong range for the fine converter

Over-range

- Correct coarse decision (dashed line)
- Wrong coarse decision (bold line): Over-range in the fine converter corrects this wrong decision
 - We added 6 more levels to fine
 - $N_{fine} = \log_2(16+6) = 4.46 \, bit$

Digital Redundancy in Fine ADC

- ☐ The range of fine ADC search extended on both sides
- Offset tolerance on coarse comparators can be relaxed
- ☐ Fine comparator offset still must be controlled to N-bit level

Subranging/Coarse-Fine ADC Block Diagram

- ☐ Typically two SHAs are required for the coarse and fine ADCs
- Typically 3 clock phases per conversion
 - Sample + Coarse comparison + Fine comparison
- No residue amplifier required (compare to next slide)

Two-Step Subranging/Pipelined ADC

- ☐ A coarse ADC estimates the input signal
 - Result fed to a DAC → Subtraction generates residue signal
- A fine ADC converts the residue signal
- ☐ Amplification may precede the fine ADC (residue amplifier)
 - Limited speed (GBW = const)
 - 2nd T/H allows pipelining → pipelined ADC
- \square $N = N_1 + N_2 \rightarrow (2^{N_1} + 2^{N_2} 2)$ comparators

Pipelined ADC

- A generalization of subranging ADC: Cascade of k-bit stages
 - $N = n_1 + n_2 + \cdots + n_k$
- Sample rate is high, but large latency (not suitable for FB loops)

1-bit/stage Pipelined ADC

- ☐ The ADC is 1-bit: comparator
- □ The DAC is also 1-bit → perfectly linear by definition
- Low inter-stage gain (x2): high speed (GBW = const)
- \square No. of pipelined stages (a.k.a. MDACs) = no. of bits

MDAC Characteristics

$$V_{out} = 2\left(V_{in} \mp \frac{V_{ref}}{2}\right)$$

- ☐ Comparator threshold defines breakpoint
- \square DAC output (multiplied by $\frac{DAC\ gain}{V_{in}\ gain} = \frac{2}{2}$) defines x-intercept

MDAC Implementation

$$V_{out} = \frac{C_1 + C_2}{C_2} V_{in} \mp \frac{C_1}{C_2} V_{ref} = 2 \left(V_{in} \mp \frac{V_{ref}}{2} \right)$$

- Comparator threshold defines breakpoint
- \square DAC output (multiplied by $\frac{DAC\ gain}{V_{in}\ gain} = \frac{1}{2}$) defines x-intercept

12: Nyquist ADCs (1) [M. Pelgrom, 2017]

Pipelined ADC Error Sources

- ☐ Comparator offset, residue amplifier offset, exact 2x amplification
- ☐ The offset and gain errors must together remain under 0.5LSB to obtain a correct transfer curve
 - With some offset compensation this condition can be reached for 10–12 bit accuracies
- ☐ Errors in early stages are more critical (later errors divided by gain)

$$v_{in,det} = v_{e,0} + \frac{v_{e,1}}{A_1} + \frac{v_{e,2}}{A_1 A_2} + \frac{v_{e,3}}{A_1 A_2 A_3} + \dots$$

$$v_{in,random} = \sqrt{v_{e,0}^2 + \frac{v_{e,1}^2}{A_1^2} + \frac{v_{e,2}^2}{A_1^2 A_2^2} + \frac{v_{e,3}^2}{A_1^2 A_2^2 A_3^2} + \dots}$$

Scaling Pipelined Stages

- No Stage Scaling
 - All stages identically sized same capacitors, op-amps, comparators \rightarrow S = 1
 - Later stages are clearly oversized due to inter-stage gains
- ☐ We can save a lot of power/area in later stages with minimal increase in noise

Scaling Pipelined Stages

- Aggressive Stage Scaling
 - Stages sized such that the input-referred noises are identical \rightarrow S \approx $(2^{n_j})^2$
 - Later stages are clearly downsized too aggressively
- We can save a lot of noise in later stages with minimal increase in power/area

Scaling Pipelined Stages

- Optimum Stage Scaling
 - Optimum scaling lies in between the two extremes \rightarrow S $\approx 2^{n_j}$
- \Box Area/power vs noise trade-off is balanced (gain vs loss is roughly the same)

Pipelined ADC Errors

- Comparator threshold defines the breakpoint of MDAC transfer characteristics
- ☐ Offset/gain errors
 - Non-linearity in the overall transfer function
 - Offset errors can be solved by using 1.5-bit architecture

Offset Errors

☐ Reduce offset sensitivity by using 1.5-bit topology

1.5-bit Concept

- ☐ 1-bit ADC: 2-levels, one threshold
- 2-bit ADC: 4-levels, three thresholds
- \blacksquare The use of two thresholds (three levels) is referred to as 1.5-bit ADC ($\log_2 3 \approx 1.58$)
 - Comparator and residue amplifier (RA) offsets can be corrected

12: Nyquist ADCs (1) [Johns and Martin, 2012]

Digital Correction

- □ 1.5-bit digital outputs: 00 (left), 01 (middle), 11 (encoded as 10) (right)
- ☐ Left region -> certain 0. Right region -> certain 1,
- ☐ Middle region -> o/p postponed (P) to next stage
 - Output is amplified (x2) to be better resolved by next stage
- Errors in comparator thresholds are corrected by next stage

12: Nyquist ADCs (1) [Johns and Martin, 2012]

Digital Correction

- As long as the error is stored in the residue it can be corrected
 - The information is not yet lost
- Digital Correction corrects comparator and RA offset errors
 - It does not correct DAC or residue generator errors
- Digital adder required to combine digital output

12: Nyquist ADCs (1) [Johns and Martin, 2012]

1.5-bit Example

- ☐ Assume 6-bit pipelined ADC with 1.5-bit/stage
- \Box Let $V_R = +1V$ and $V_{in} = -0.21$
- \square Note that $dec2bin\left(\frac{V_{in}-(V_{REF,LOW})}{\Delta V_{REF}}\times 2^N\right)=dec2bin(25.3)=011001$

Stage Input (V)	MDAC operation	Decision	B5	B4	В3	B2	B1	B0
$V_{in} = -0.21$	$V_x \times 2$	Р	0	1				
-0.42	$\left(V_{x} + \frac{V_{REF}}{2}\right) \times 2$	0		0	0			
0.16	$V_x \times 2$	Р			0	1		
0.32	$\left(V_{x} - \frac{V_{REF}}{2}\right) \times 2$	1				1	0	
-0.36	$\left(V_{x} + \frac{V_{REF}}{2}\right) \times 2$	0					0	0
0.28	_	1						1
			0	1	1	0	0	1 ;

12: Nyquist ADCs (1)

1.5-bit Stage

- ☐ 2X gain + 3-level DAC + subtraction all integrated
- ☐ Digital redundancy relaxes the tolerance on CMP/RA offsets

RA Gain Error and Non-linearity

- ☐ RA gain error and non-linearity are not solved by 1.5-bit MDAC.
- More complex digital calibration techniques are required for more than 10-12 bit resolution.

Algorithmic (Cyclic) ADC

- ☐ Similar to pipelined, but the hardware is reused for every bit
- ☐ The signal is compared to reference to generate the MSB bit
 - Based on this bit the signal is shifted (residue is calculated) and multiplied by 2
 - This residue is fed back to the sample and hold for the next run

References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3rd ed, 2017.
- W. Kester, The Data Conversion Handbook, ADI, Newnes, 2005.
- ☐ T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," Wiley, 2nd ed., 2012.
- ☐ B. Boser and H. Khorramabadi, EECS 247 (previously EECS 240), Berkeley.
- ☐ B. Murmann, EE 315, Stanford.
- Y. Chiu, EECT 7327, UTD.
- ☐ F. Maloberti, Data Converters, Springer, 2007.

12: Nyquist ADCs (1)

Thank you!

12: Nyquist ADCs (1) 38