

Projet IOT Alarme LoRaWAN

BESOGNET Louis, LEPELLISSIER Tom

Présentation du projet

Objectifs:

- Comprendre la carte LoRa-e5 et Riot OS
- Utilisation de capteurs
- Traitement des données : sonner / allumer si détection
- Envoyer donnée au LoRa
- (Recevoir des données)

Architecture Hardware

Architecture Hardware

LoRa-E5 Dev Board Pinout

Connexion des composants :

• Buzzer : PA4

• LED: PB5

• Flame : PA3 car ADC connecté

• Buzzer: PA4

Bouton Panique : PA9

Bouton User : PB10

• (CCS811: SPI)

Architecture Software

Architecture Software (code)

Initialisation:

- Delay des threads
- Calibration du capteur flamme
- Calibration du capteur DHT22
- Définition des GPIOs :
 - o Capteurs flamme et DHT22
 - Bouton user_button et panique_button
 - Buzzer et LEDs
- Connexion à cayenne via LoRa

Initialisation des GPIO interrupt :

```
pin_user_button = GPIO_PIN(1,13);
gpio_init_int (pin_user_button, GPIO_IN_PU, GPIO_RISING , user_button_interrupt,(void*)0);
```

Création des threads :

thread_led_pid = thread_create(thread_led_stack, sizeof(thread_led_stack), THREAD_PRIORITY_MAIN - 1,0, thread_led, NULL, "thread_led");

Fonction d'interruption des boutons :

```
static void user_button_interrupt(void *arg){
  (void)arg;
   Alarme = 0;
}
```


Communication LoRa

Données envoyé dans le buffer lpp : Total = 80 bits = 4 bytes/octets

```
cayenne_lpp_add_analog_input(&lpp, 0, data_fire/10); = 8 + 8 bits = 16 bits
cayenne_lpp_add_temperature(&lpp, 1, (float)data_temp/10); = 8 + 16 bits = 24 bits
cayenne_lpp_add_relative_humidity(&lpp, 2, (float)data_hum/10); = 8 + 16 bits = 24 bits
cayenne_lpp_add_digital_input(&lpp, 3, Alarme); = 8 + 8 bits = 16 bits
```

Délais utilisés pour envoyer nos données :

• Feu: 1 min / DHT22: 1 min / LED: 30s / Alarme: 30s / LoRa: 10mins

Intégration : Cayenne

Démonstration de l'alarme

Explication des LOGs

```
2022-01-18 00:59:40,364 # main(): This is RIOT! (Version: 2017.10-devel-22539-q64a8de-HEAD)
2022-01-18 00:59:40.364 # Initialisation alarme incendie IOT
                                                                                 2022-01-18 01:00:01,455 # DHT values - temp: 25,3°C - relative humidity: 45,9
2022-01-18 00:59:40,365 # Initialisation des GPIO...
                                                                                 2022-01-18 01:00:03.405 # User_buttor
2022-01-18 00:59:40,371 # User_button_pressed
                                                                                 2022-01-18 01:00:06,379 # ADC_LINE(0): 0
2022-01-18 00:59:40,371 # Initialisation ADC capteur flame...
                                                                  [OK]
2022-01-18 00:59:42,376 # Initialisation capteur DHT...
                                                         [OK]
                                                                                 2022-01-18 01:00:16,455 # DHT values - temp: 25,2°C - relative humidity: 47,4
2022-01-18 00:59:42.376 #
                                                                                 2022-01-18 01:00:21,379 # ADC_LINE(0): 6
2022-01-18 00:59:42,376 # led_thread_launch
                                                                                 2022-01-18 01:00:21.379 # Alarme value = 0
                                                                                 2022-01-18 01:00:21,455 # DHT values - temp: 27,8°C - relative humidity: 87,8
2022-01-18 00:59:46,379 # ADC_LINE(0): 12
                                                                                 2022-01-18 01:00:26,379 # ADC_LINE(0): 5
2022-01-18 00:59:46,400 # DHT22_thread_launch
                                                                                 2022-01-18 01:00:26,462 # DHT values - temp: 29,6°C - relative humidity: 99,9
2022-01-18 00:59:46,424 # Alarme value = 0
                                                                                 2022-01-18 01:00:31,378 # ADC_LINE(0): 0
2022-01-18 00:59:46,436 # Error reading values
                                                                                 2022-01-18 01:00:31,378 # Alarme value = 1
2022-01-18 00:59:46,457 # LoRas_thread_launch
                                                                                 2022-01-18 01:00:31,455 # DHT values - temp: 28,0°C - relative humidity: 99,9
2022-01-18 00:59:51,455 # DHT values - temp: 25,3°C - relative humidity: 47,5
2022-01-18 00:59:51.379 # ADC LINE(0): 11
                                                                                 2022-01-18 01:00:36,379 # ADC_LINE(0): 0
2022-01-18 00:59:51,379 # Alarme value = 0
2022-01-18 00:59:51,455 # DHT values - temp: 25,3°C - relative humidity: 47,5
                                                                                 2022-01-18 01:00:36,463 # DHT values - temp: 26,6°C - relative humidity: 99,9
                                                                                 2022-01-18 01:00:41,378 # ADC_LINE(0): 13
2022-01-18 01:00:01,378 # ADC_LINE(0): 15
                                                                                 2022-01-18 01:00:41.378 # Alarme value = 1
                                                                                 2022-01-18 01:00:41,458 # DHT values - temp: 26,6°C - relative humidity: 99,9
```


Transmit

Battery

Analyse de l'objet

Coût BOM:

- 1 carte LoRa-E5 + antenne + boîtier pour piles => 21.9 \$
- 1 capteur DHT22 => 7.6 \$
- 1 capteur flamme => 3.63 \$
- 1 buzzer => 1.5 \$
- 2 bouton => 3 \$
- 10 pins => 0.848 \$
- 2 piles de 2900 mAh => 0.1998 \$

Coût total => 38.6778 \$ par alarme

Ajout d'une boîte en bois => 50 \$ par alarme

Durée de vie :

SF7 ○ SF8 ○ SF9 ○ SF10 ○ SF11 ○ SF12

Result:

The battery will last for 8.4 years*. The sensor will draw

31uA and 275mAh in one year.

Name	Awake (mS)	Times (No/h)	Current (uA)	Current per hour (mA)	Current per year (mA)	Battery use (%)
Receive 1	10	6	15000	0.0003	2	1
Receive 2	70	0	15000	0	0	0
Temperature	20	60	15000	0.005	44	16
Humidity	20	60	15000	0.005	44	16
Light	20	60	15000	0.005	44	16
Motion	1000	0	2	0	0	0

0.004

1000

3600

13

35

^{*}Double click to change value

Bilan du projet

Problème rencontrées:

- Fonctionnement des capteurs
- Conflit avec les ports utilisés
- Erreur de boot de la carte

Amélioration envisageables:

- Ajouts capteurs (CCS811)
- Optimisation du code
- Optimisation des délais
- Messages downlink LoRa
- Sécurité du produit
- Localisation de l'objet

Bilan métrique :

- ~400 lignes de code
- 12h Fablab + 24h de travail personnel

Merci pour votre attention!