Session 4: Normal Forms

- Normal Forms
 - Disjunctive Normal Form
 - Conjunctive Normal Form

Normal Forms

Converting arbitrary propositional statements into canonical form

- Useful for automated proofing of theorems
 - If two expressions have the same normal form they are equivalent
- Basis for the formulation of some of the most central problems in complexity theory

Applications for circuit design

Disjunctive Normal Form (DNF)

- A propositional formula is in disjunctive normal form if
 - it consists of a disjunction of compound expressions
 - where each compound expressions consists of a conjunction of a set of propositional variables or their negation

Examples

$$(p \land \neg q) \lor (\neg p \land q)$$

$$(p \land \neg q) \lor \neg (\neg p \land q)$$

$$p \lor (\neg p \land q)$$

$$(p \lor q) \land (\neg p \lor q)$$

$$\neg (\neg p \lor q)$$

Example

Find the Disjunctive Normal Form (DNF) of

$$(p \lor q) \rightarrow \neg r$$

This proposition is true when r is false or when both p and q are false.

Construction of Disjunctive Normal Form

Every compound proposition can be put in disjunctive normal form

- 1. Construct the truth table for the proposition
- 2. Select rows that evaluate to **T**
- 3. For the propositional variables in the selected rows add a conjunct which includes the positive form of the propositional variable if the variable is assigned T in that row and the negated form if the variable is assigned F in that row

The resulting proposition can be further simplified using the equivalence

$$(p \land q) \lor (p \land \neg q) \equiv p$$

Example

$$(p \lor q) \rightarrow \neg r$$

р	q	r	¬r	$p \lor q$	$(p \lor q) \rightarrow \neg r$
Т	Т	Т	F	T	F
Т	Т	F	Т	Т	T
Т	F	Т	F	T	F
Т	F	F	Т	Т	T
F	Т	Т	F	T	F
F	Т	F	Т	Т	T
F	F	Т	F	F	T
F	F	F	T	F	Т

Conjunctive Normal Form (CNF)

- A compound proposition is in Conjunctive Normal Form (CNF)
 - if it consists of a conjunction of compound expressions
 - where each compound expressions consists of a disjunction of a set of propositional variables or their negation
- Every proposition can be put in an equivalent CNF.
- Conjunctive Normal Form (CNF) can be obtained by
 - eliminating implications
 - moving negation inwards and
 - using the distributive and associative laws.

Examples

$$(p \land \neg q) \lor (\neg p \land q)$$

$$(p \land \neg q) \lor \neg (\neg p \land q)$$

$$p \lor (\neg p \land q)$$

$$(p \lor q) \land (\neg p \lor q)$$

$$\neg (\neg p \lor q)$$

Example

Put the following into CNF: $\neg(p \rightarrow q) \lor (r \rightarrow p)$

Complexity of DNF and CNF

Both DNF and CNF can be much larger than the original proposition

 More precisely: there exist cases of propositions with n clauses for which the CNF (DNF) has 2ⁿ clauses

Summary

- Normal Forms
 - Disjunctive Normal Form
 - Conjunctive Normal Form
 - Every proposition can be converted to DNF and CNF
 - The resulting proposition can explode in size