ESO 201A: Thermodynamics 2016-2017-I semester

Properties: part 3

Dr. Jayant K. Singh
Department of Chemical Engineering
Faculty Building 469,

Telephone: 512-259-6141

E-Mail: jayantks@iitk.ac.in

home.iitk.ac.in/~jayantks/ESO201/index.htm

Learning objective

- 1. Introduce the concept of a pure substance.
- 2. Discuss the physics of phase change processes.
- 3. Illustrate the P-v, T-v and P-T property diagram, and P-v-T surfaces of pure substances.
- 4. Obtaining thermodynamic properties of a pure substance from a property table.
- 5. Define Ideal gas equation of state and demonstrate its use.
- 6. Introduce to compressibility.
- 7. Present the commonly used equation of states.

Property table

- For most substances, the relationships among thermodynamic properties are too complex to be expressed by simple equations.
- Therefore, properties are frequently presented in the form of tables.
- Some thermodynamic properties can be measured easily, but others cannot and are calculated by using the relations between them and measurable properties.

The results of these measurements and calculations are presented in tables in a

convenient format.

Enthalpy—A Combination Property

volume

$$h = u + Pv$$
 (kJ/kg)

 $H = U + PV$ (kJ)

The combination $u + Pv$ is frequently

frequently encountered in the analysis of control volumes.

 $kPa \cdot m^3 \equiv kJ$ $kPa \cdot m^3/kg \equiv kJ/kg$ $bar \cdot m^3 \equiv 100 \text{ kJ}$ $MPa \cdot m^3 \equiv 1000 \text{ kJ}$ $psi \cdot ft^3 \equiv 0.18505 Btu$

The product *pressure* X volume has energy units. 3

Saturated liquid and saturated vapor states

- Table A–4: Saturation properties of water under temperature.
- Table A–5: Saturation properties of water under pressure.

A partial list of Table A—4.

Ti partial list of Table II 4.										
		Specific volume m ³ /kg								
Temp	Sat.	S.	Sat.		Sat.					
°C	kPa		liquio	1	vapor					
T			V_f		V_g					
85	68	0.00	1032	2.820	51					
90	90 70.1		0.00	1036	2.359	2.3593				
95			0.00	1040	1.9808					
A	A A		4			†				
Specific tempera			volu	cific ime of rated id						
sa	orresp turatio	on	ing		vol	ecific ume of urated oor				

 V_f = specific volume of saturated liquid

 v_g = specific volume of saturated vapor

 v_{fg} = difference between v_g and v_f (that is, $v_{fg} = v_g - v_f$)

Enthalpy of vaporization, h_{fg} (Latent heat of vaporization): The amount of energy needed to vaporize a unit mass of saturated liquid at a given temperature or pressure.

TABLE A-5

Saturated water—Pressure table

			: <i>volume,</i> ³ /kg	Int	<i>Internal energy,</i> kJ/kg			Enthalpy, kJ/kg		
Press., P kPa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	
101.325	5 99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	

Examples: Saturated liquid and saturated vapor states of water on TABLE A-5

T-v and P-v diagrams.

Sat.		Specific volume m ³ /kg				
Temp. press °C kPa	liquid	Sat. vapor				
85 57.8		$\frac{v_g}{2.8261}$				
90 70.1 95 84.6		2.3593 1.9808				

Table A-4

Saturated vapor-liquid mixture

Quality, x: The ratio of the mass of vapor to the total mass of the mixture.

Quality is between 0 and 1 0: sat. liquid, 1: sat. vapor.

$$m_{\text{total}} = m_{\text{liquid}} + m_{\text{vapor}} = m_f + m_g$$

$$x = \frac{m_{\text{vapor}}}{m_{\text{total}}}$$

Critical point

Saturated Vapor
Sat. vapor
Sat. liquid

The relative amounts of liquid and vapor phases in a saturated mixture are specified by the *quality x*.

Temperature and pressure are dependent properties for a mixture.

A two-phase system can be treated as a homogeneous mixture for convenience.

Saturated vapor-liquid mixture

$$v_{\text{avg}} = v_f + x v_{fg}$$
 (m^3/kg) $x = \frac{v_{\text{avg}} - v_f}{v_{fg}}$

$$u_{\text{avg}} = u_f + x u_{fg}$$
 (kJ/kg)

$$h_{\text{avg}} = h_f + x h_{fg}$$
 (kJ/kg)

Quality is related to the horizontal distances on *P-v* and *T-v* diagrams.

The v value of a saturated liquid—vapor mixture lies between the v_f and v_g values at the specified T or P.

A rigid tank contains 10 kg of water at 90° C. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank and (b) the volume of the tank.

	Sat.	Specific volume m ³ /kg				
Temp	. press.	Sat.	Sat.			
$^{\circ}C$	kPa	liquid	vapor			
T	$P_{\rm sat}$	V_f	V_g			
85	57.868	0.001032	2.8261			
90	70.183	0.001036	2.3593			
95	84.609	0.001040	1.9808			

A rigid tank contains 10 kg of water at 90° C. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank and (b) the volume of the tank.

An 80-L vessel contains 4 kg of refrigerant-134a at a pressure of 160 kPa. Determine (a) the temperature, (b) the quality, (c) the enthalpy of the refrigerant, and (d) the volume occupied by the vapor phase.

 $v=V/m=0.080 \text{ m}^3/4 \text{ kg}=0.02 \text{ m}^3/\text{kg}$

TABLE A-12												
Saturated refrigerant-134a—Pressure table												
		<i>Specific volume,</i> m³/kg		Internal energy, kJ/kg		Enthalpy, kJ/kg			<i>Entropy,</i> kJ/kg∙K			
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., $s_{\it fg}$	Sat. vapor, s_g
60	-36.95	0.0007097	0.31108	3.795	205.34	209.13	3.837	223.96	227.80	0.01633	0.94812	0.96445
70	-33.87	0.0007143	0.26921	7.672	203.23	210.90	7.722	222.02	229.74	0.03264	0.92783	0.96047
80	-31.13	0.0007184	0.23749	11.14	201.33	212.48	11.20	220.27	231.47	0.04707	0.91009	0.95716
90	-28.65	0.0007222	0.21261	14.30	199.60	213.90	14.36	218.67	233.04	0.06003	0.89431	0.95434
100	-26.37	0.0007258	0.19255	17.19	198.01	215.21	17.27	217.19	234.46	0.07182	0.88008	0.95191
120	-22.32	0.0007323	0.16216	22.38	195.15	217.53	22.47	214.52	236.99	0.09269	0.85520	0.94789
140	-18.77	0.0007381	0.14020	26.96	192.60	219.56	27.06	212.13	239.19	0.11080	0.83387	0.94467
160	-15.60	0.0007435	0.12355	31.06	190.31	221.37	31.18	209.96	241.14	0.12686	0.81517	0.94202
180	-12.73	0.0007485	0.11049	34.81	188.20	223.01	34.94	207.95	242.90	0.14131	0.79848	0.93979
200	-10.09	0.0007532	0.099951	38.26	186.25	224.51	38.41	206.09	244.50	0.15449	0.78339	0.93788
240	-5.38	0.0007618	0.083983	44.46	182.71	227.17	44.64	202.68	247.32	0.17786	0.75689	0.93475
280	-1.25	0.0007697	0.072434	49.95	179.54	229.49	50.16	199.61	249.77	0.19822	0.73406	0.93228
320	2.46	0.0007771	0.063681	54.90	176.65	231.55	55.14	196.78	251.93	0.21631	0.71395	0.93026
360	5.82	0.0007840	0.056809	59.42	173.99	233.41	59.70	194.15	253.86	0.23265	0.69591	0.92856
400	8.91	0.0007905	0.051266	63.61	171.49	235.10	63.92	191.68	255.61	0.24757	0.67954	0.92711
450	12.46	0.0007983	0.045677	68.44	168.58	237.03	68.80	188.78	257.58	0.26462	0.66093	0.92555
500	15.71	0.0008058	0.041168	72.92	165.86	238.77	73.32	186.04	259.36	0.28021	0.64399	0.92420

An 80-L vessel contains 4 kg of refrigerant-134a at a pressure of 160 kPa. Determine (a) the temperature, (b) the quality, (c) the enthalpy of the refrigerant, and (d) the volume occupied by the vapor phase.

Next lecture

- 1. Introduce the concept of a pure substance.
- 2. Discuss the physics of phase change processes.
- 3. Illustrate the P-v, T-v and P-T property diagram, and P-v-T surfaces of pure substances.
- 4. Obtaining thermodynamic properties of a pure substance from a property table.
- 5. Define Ideal gas equation of state and demonstrate its use.
- 6. Introduce to compressibility.
- 7. Present the commonly used equation of states.