Assignment 1

Mads Petersen 010486-2071 DM 535 S17 TA: Rojin Kianian

06-11-2013

1

Afgør, om udsagnet $(\neg p \land (p \lor q)) \Rightarrow q$ er en tautologi, en modstrid eller en kontingens. For at gøre dette vill jeg opstille en sandhedstabel

p	q	$ \neg p $	$p \lor q$	$\neg p \land (p \lor q)$	$\neg p \land (p \lor q)) \Rightarrow q$
\overline{F}	F	Т	F	F	T
\overline{F}	Т	Т	Т	T	T
T	F	F	Т	F	T
\overline{T}	Т	F	Т	F	T

Udfra sandhedstabellen kan det ses at dette er en tautologi da udsagnet altid er sandt. Dette kan også udledes ved at kigge lidt nærmere på udsagnet $(\neg p \land (p \lor q)) \Rightarrow q$. Hvis $p \Rightarrow q$ skal være falsk, så skal p være sand og q være falsk, dvs. at i vores udtryk skal $\neg p \land (p \lor q)$ være sand og q skal være falsk. Hvis q er falsk betyder det at p skal være sand for at $p \lor q$ kan være sand, og når p er sand så er $\neg p$ falsk, og derfor kan $\neg p \land (p \lor q)$ ikke være sand når q er falsk.

$\mathbf{2}$

Betragt de to udsagn P og Q:

 $\mathbf{P}:\exists x\in\mathbb{N}:\forall y\in\mathbb{N}:x=y$

 $Q: \forall x \in \mathbb{N}: \exists y \in \mathbb{N}: x = y$

a)

P er sand hvis der eksisterer et x in de naturlige tal sådan at for alle y i de naturlige tal gælder det at x = y, dvs. $x_0 = y_0 \wedge x_0 = y_1 \wedge x_0 = y_n$, $n \in \mathbb{N}$. Dette er ikke sandt for nogen x værdier, så udsagnet er falsk.

b)

Q er sand hvis der for alle x i de naturlige tal gælder at der eksisterer mindst en y i de naturlige tal sådan at x=y, dvs at $x_0=y_0 \wedge x_1=y_1 \wedge x_n=y_n, n\in\mathbb{N}$ dette er sandt for alle x værdier, så udsagnet er sandt.

c) $\neg P \equiv \forall x \in \mathbb{N} : \exists y \in \mathbb{N} : x \neq y$

3

Lad
n være et heltal. Vis, at n^2+1 er ulige, hvis og kun hvis n
 er lige. Lad et lige-tal = 2k hvor k
 er et heltal, og et ulige-tal = 2k+1, fra dette kan det ses at et lige-tal
+1 = et ulige-tal, og et ulige-tal+1 = et lige-tal. Derfor hvis og kun hvis n^2 er lige vil n^2+1 være ulige. Så hvis n^2 er et lige tal når n
 er et lige tal er dette altså sandt. $n=2k \Rightarrow n^2=(2k)^2 \Rightarrow n^2=4k^2 \Rightarrow n^2=2(2k^2)$ Da n^2 passer på formen n=2k hvis $k=2k^2$ er da altså et lige tal, derfor er det sandt.

4

Betragt de to mængder $S_1 = (A \cap B \cap C) \cup (B - (A \cup C))$ $S_2 = (B - A) \cup (B \cap C)$ Afgør, om $S_1 = S_2$.

Som det ses fra de 2 venn diagrammer af S_1 og S_2 kan det ses at de ikke er ens.