

#### **Course Information**

Program : B.Sc Engg in CSE

Course Title : Compiler Design

**Course Code** : CSE 323

Semester : Fall 2020-21

Credit Hour : 3.0

Intake : 39 [Shift: Day]

**Section** : 01 and 02

**Prerequisites** : CSE 213 - Theory of Computing & Automata Theory

#### **Course Objectives**

The objectives of this course is to teach the fundamental concepts of compiler design. This course focuses on various types of translators, linkers, loaders and phases of compilation. This course includes various types of parsers especially the top down and bottom up parsers. Students also learn syntax and semantic analysis, intermediate code generation, type checking, the role of symbol table and its organization, code generation, machine independent code optimization and instruction scheduling etc.

#### **Course Synopsis**

Introduction to Compilers, Language processing system, Compiler structure, Impacts on compiler in developing higher level programming language, Applications of compiler, Symbol table management, Context free grammar, Parse tree, Ambiguous grammar, Lexical analyzer, lexical error detection and recovery, Regular expression, Non-deterministic and deterministic finite automata, Syntax Analysis, Parsing error detection and recovery, Top Down parsing, Recursive Descent Parser, Predictive parser, Elimination of left recursion, FIRST and FOLLOW, Construction of predictive Parsing table, LL(1) Grammar, Bottom up parsing, Shift reduce parsing, handle pruning, LR Parser, LR parser algorithm, Syntax directed definition, Annotated parse tree, Dependency graph, Construction of syntax trees, S-attributed and L-attributed definitions, Top down translation, Intermediate code generation, DAG, Quadruple, Triple, Translation of Assignment, Boolean Expression and Control statements, Principal sources of Optimization, Optimization of basic blocks, Final Code generation.



#### **Assessment Schema**

| Class Participation     | • | 10% |
|-------------------------|---|-----|
| Assignment/Presentation | : | 10% |
| Class Test              | : | 10% |
| Midterm Examination     | : | 30% |
| Final Examination       | : | 40% |



#### **Course Outcomes (COs)**

After completion of this course students will be able to:

Understand basic concepts of a typical compiler including the front-end (analysis) and CO1:

back-end (synthesis).

**Implement** different analysis techniques and design solutions of different parsers (Top-CO2:

Down and Bottom-Up parsers) problems in compiler design.

**CO3: Apply** different code representation techniques in compiler construction.

**CO4: Analyze** the errors, type checking and code optimization in compilation.

#### **Mapping of Course Outcomes (COs) to Program Outcomes (POs)**

| CO  | PO1 | PO2 | PO3      | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|----------|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1 | V   |     |          |     |     |     |     |     |     |      |      |      |
| CO2 |     |     | <b>√</b> |     |     |     |     |     |     |      |      |      |
| CO3 |     |     |          |     |     |     |     |     |     |      |      |      |
| CO4 |     | 1   |          |     |     |     |     |     |     |      |      |      |



| Sl. | CO's                            | Corresp | Bloom's      | Delivery    | Assessment tools  |
|-----|---------------------------------|---------|--------------|-------------|-------------------|
| No. |                                 | onding  | taxonomy     | methods and |                   |
|     |                                 | POs     | domain/level | activities  |                   |
| CO1 | Understand basic concepts of a  | PO1     | Understand   | Class       | Midterm           |
|     | typical compiler including the  |         |              | Lecture and | Examination       |
|     | front-end (analysis) and back-  |         |              | Discussion  |                   |
|     | end (synthesis).                |         |              |             |                   |
| CO2 | Implement different analysis    | PO3     | Apply        | Class       | Midterm and Final |
|     | techniques and design solutions |         |              | Lecture and | Examination       |
|     | of different parsers (Top-Down  |         |              | Discussion  |                   |
|     | and Bottom-Up parsers)          |         |              |             |                   |
|     | problems in compiler design.    |         |              |             |                   |
| CO3 | Apply different code            | PO3     | Apply        | Class       | Final Examination |
|     | representation techniques in    |         |              | Lecture and |                   |
|     | compiler construction.          |         |              | Discussion  |                   |
| CO4 | Analyze the errors, type        | PO2     | Analyze      | Class       | Final Examination |
|     | checking and code optimization  |         |              | Lecture and |                   |
|     | in compilation.                 |         |              | Discussion  |                   |



### **Descriptions of Program Outcomes (POs)**

| PO1  | <b>Engineering Knowledge (Cognitive):</b> Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.                                                                                                                                    |  |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| PO2  | <b>Problem Analysis (Cognitive):</b> Identify, formulate, research the literature and analyze complex engineering problems and reach substantiated conclusions using first principles of mathematics, the natural sciences and the engineering sciences.                                                                              |  |  |  |  |  |  |  |
| PO3  | <b>Design/Development of Solutions (Cognitive, Affective):</b> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety as well as cultural, societal and environmental concerns.                        |  |  |  |  |  |  |  |
| PO4  | <b>Investigation</b> ( <b>Cognitive</b> , <b>Psychomotor</b> ): Conduct investigations of complex problems, considering design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.                                                                                         |  |  |  |  |  |  |  |
| PO5  | Modern Tool Usage (Psychomotor, Cognitive): Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                              |  |  |  |  |  |  |  |
| PO6  | The Engineer and Society (Affective): Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.                                                                                               |  |  |  |  |  |  |  |
| PO7  | <b>Environment and Sustainability (Affective, Cognitive):</b> Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.                                                                                              |  |  |  |  |  |  |  |
| PO8  | <b>Ethics (Affective):</b> Apply ethical principles and commit to professional ethics, responsibilities and the norms of the engineering practice.                                                                                                                                                                                    |  |  |  |  |  |  |  |
| PO9  | <b>Individual Work and Teamwork (Psychomotor, Affective):</b> Function effectively as an individual and as a member or leader of diverse teams as well as in multidisciplinary settings.                                                                                                                                              |  |  |  |  |  |  |  |
| PO10 | <b>Communication</b> ( <b>Psychomotor</b> , <b>Affective</b> ): Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions. |  |  |  |  |  |  |  |
| PO11 | <b>Project Management and Finance (Cognitive, Psychomotor):</b> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work as a member or a leader of a team to manage projects in multidisciplinary environments.                                                        |  |  |  |  |  |  |  |
| PO12 | <b>Life-Long Learning (Affective, Psychomotor):</b> Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.                                                                                                                         |  |  |  |  |  |  |  |



### Weekly Schedule

| We<br>ek | Lec<br>ture | Course Topics                                                                                                                                           | Remark<br>s | CO  | Exam<br>(Mark        |  |
|----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|----------------------|--|
| 1        | 1           | Introduction to Compilers: Compilers, Translators, Compilation and Interpretation, Language processing system                                           | Ch-01       | CO1 |                      |  |
|          | 2           | The phases of Compiler, The grouping of phases, Errors encountered in different phases, Compiler construction tools, The Grouping of Phases into Passes | "           | CO2 |                      |  |
| 2        | 3           | Higher level languages, science of code optimization, Scope of blocks                                                                                   | ,,          | CO1 |                      |  |
|          | 4           | Lexical Analysis: Need and role of lexical analyzer, Lexical errors-                                                                                    | Ch-03       |     |                      |  |
|          |             | Error Recovery, Buffer pairs, Regular Expression, Expressing tokens by Regular Expression                                                               |             | CO1 |                      |  |
| 3        | 5           | Finite Automata, Transition Diagram, Failure Function                                                                                                   | "           | CO2 |                      |  |
|          | 6           | <b>Syntax Analysis:</b> Need and role of the parser, Syntactic Errors in Programs, Error Detection and Recovery Approaches                              |             |     |                      |  |
| 4        | 7           | Context free grammar, Derivations, Parse trees, Ambiguous grammar, Writing a Grammar: Eliminating Ambiguity                                             | "           | CO2 | Term<br>Exam<br>(30) |  |
|          | 8           | Elimination of Left Recursion, Left Factoring  [Class Test-1]                                                                                           | "           | CO2 | (50)                 |  |
| 5        | 9           | Top Down parsing: Strategy and Approaches, Recursive Descent Parser, Calculating FIRST and FOLLOW sets  CO2                                             |             |     |                      |  |
|          | 10          | LL(1) Grammars, Generating Predictive parsing table                                                                                                     | ,,          | CO2 |                      |  |
| 6        | 11          | Non-recursive Table Driven Predictive Parsing                                                                                                           | "           | CO2 |                      |  |
|          | 12          | Error Recovery in Predictive Parsing: Panic mode error recovery  *Review class for Mid-Term Examination*                                                | ,,          | CO2 |                      |  |
| 7        |             | Mid Term Examination                                                                                                                                    |             |     |                      |  |
| 8        | 13          | <b>Bottom Up Parsing</b> : Concepts of Bottom up parsing, Shift-reduce parsing, conflicts During Shift-Reduce Parsing                                   | Ch-04       | CO2 |                      |  |
| -        | 14          | LR Parsers: Grammar Augmentation, Canonical LR(0) items,<br>Transition Diagram (DFA) of GotoFunction, Constructing LR-Parsing<br>Table, LR Parsing      | 22          | CO2 |                      |  |



| 9  | 15 | Conflicts in LR Parser, Error Recovery in LR Parsing, Construction of SLR Parser and comparison                                                             | ,,    | CO2 |               |
|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|---------------|
|    | 16 | LALR(1) Parsing methodology, Error analysis and comparison among LR, SLR and LALR parsers                                                                   | ,,    | CO2 |               |
|    |    | [Class Test-2]                                                                                                                                              |       |     |               |
| 10 | 17 | <b>Syntax Directed Translation</b> : Syntax-Directed Definition, Inherited and Synthesized Attributes, Semantic Rules, Construction of Annotated Parse Tree | Ch-05 | CO2 | Final<br>Exam |
|    | 18 | Dependency Graph, Bottom-up evaluation of S-attributed and L-attributed definitions                                                                         | ,,    | CO2 | (40)          |
| 11 | 19 | Intermediate-Code Generation: Graphical IRs: DAG, AST, Control Flow Graphs                                                                                  | Ch-06 | CO3 |               |
|    | 20 | Linear IRs: Stack based (postfix), Three-address code: Quadruples, Triples, Indirect Triples                                                                | ,,    | CO3 |               |
| 12 | 21 | Boolean Expression and Control statements, Forms of intermediate code, Type construction design, Back patching  [Class Test-3]                              | ,,    | CO3 |               |
|    | 22 | Code Generation: Instruction Scheduling, Efficient Cost Model,                                                                                              | Ch-08 | CO3 |               |
| 13 | 23 | Code generation Algorithm1: Next Use Information                                                                                                            | ,,    | CO3 |               |
|    | 24 | Code generation Algorithm2: Register & Variable Descriptor, Register Allocation (Graph Coloring)                                                            | ,,    | CO3 |               |
| 14 | 25 | Code Optimizing: Control Flow graph, Code optimization techniques                                                                                           | Ch-09 | CO4 |               |
|    | 26 | Local & Global Common-Sub-expression elimination, copy propagation, dead code elimination                                                                   | "     | CO4 |               |
| 15 | 27 | Code Optimizing: constant-folding, Code Motion, induction variable and Reduction in Strength                                                                | ,,    | CO4 |               |
|    | 28 | Code Optimizing: iteratively solving the dataflow equations for reaching definitions, Live-Variable Analysis  *Review class for Semester Final Examination* | "     | CO4 |               |
| 16 |    | Final Examination                                                                                                                                           |       |     |               |



#### Descriptions of Cognitive Domain (Anderson and Krathwohl's Taxonomy 2001):

The **cognitive domain** involves the development of our mental skills and the acquisition of knowledge.

| Lev      | Category          | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Keywords                                                                                                                                                                                     |
|----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| el<br>C1 | Rememberi<br>ng   | Recognizing or recalling knowledge from memory. Remembering is when memory is used to produce or retrieve definitions, facts, or lists, or to recite previously learned information.                                                                                                                                                                                                                                                                                                                   | Define, describe, draw, find, identify, label, list, match, name, quote, recall, recite, tell, write                                                                                         |
| C2       | Understand<br>ing | Constructing meaning from different types of functions be they written or graphic messages or activities like interpreting, exemplifying, classifying, summarizing, inferring, comparing, or explaining.                                                                                                                                                                                                                                                                                               | Classify, compare, exemplify, conclude, demonstrate, discuss, explain, identify, illustrate, interpret, paraphrase, predict, report                                                          |
| СЗ       | Applying          | Carrying out or using a procedure through executing, or implementing. Applying relates to or refers to situations where learned material is used through products like models, presentations, interviews or simulations.                                                                                                                                                                                                                                                                               | Apply, change, choose, compute, dramatize, implement, interview, prepare, produce, role play, select, show, transfer, use                                                                    |
| C4       | Analyzing         | Breaking materials or concepts into parts, determining how the parts relate to one another or how they interrelate, or how the parts relate to an overall structure or purpose. Mental actions included in this function are differentiating, organizing, and attributing, as well as being able to distinguish between the components or parts. When one is analyzing, he/she can illustrate this mental function by creating spreadsheets, surveys, charts, or diagrams, or graphic representations. | Analyze, characterize, classify, compare, contrast, debate, deconstruct, deduce, differentiate, discriminate, distinguish, examine, organize, outline, relate, research, separate, structure |
| C5       | Evaluating        | Making judgments based on criteria and standards through checking and critiquing. Critiques, recommendations, and reports are some of the products that can be created to demonstrate the processes of evaluation.                                                                                                                                                                                                                                                                                     | Appraise, argue, assess, choose, conclude, critique, decide, evaluate, judge, justify, predict, prioritize, prove, rank, rate, select, monitor                                               |
| C6       | Creating          | Putting elements together to form a coherent or functional whole; reorganizing elements into a new pattern or structure through generating, planning, or producing. Creating requires users to put parts together in a new way, or synthesize parts into something new and different creating a new form or product. This process is the most difficult mental function.                                                                                                                               | Construct, design, develop, generate, hypothesize, invent, plan, produce, compose, create, make, perform, plan, produce                                                                      |



#### **Teaching Materials/Equipment**

**Required References**: 1. Compilers – *Principles, Techniques and Tools* (Third Edition)

- Alfred V Aho, Ravi Sethi and Jeffrey D Ullman

**Recommended References**: 2. Modern Compiler Implementation in C

- Andrew W. Appel

**Other materials:** Lecture Notes

#### **Overall CO Assessment Scheme**

| Assessment Area         |     | Assessment<br>Area Mark |     |     |    |
|-------------------------|-----|-------------------------|-----|-----|----|
|                         | CO1 | CO2                     | CO3 | CO4 |    |
| Class Participation     |     |                         |     |     |    |
| Assignment/Presentation |     |                         |     |     |    |
| Class Test              |     |                         |     |     |    |
| Midterm Exam            | 10  | 20                      |     |     | 30 |
| Final Exam              |     | 20                      | 10  | 10  | 40 |
| Total Mark              | 10  | 40                      | 10  | 10  | 70 |



#### **Overall CO Assessment Rubrics**

| COs<br>(Bloom's<br>Level) | Excellent (80%-100%)                                                                                                                            | Good<br>(70%-79%)                                                                                                                                   | Satisfactory (60%-69%)                                                                                                   | Poor<br>(40%-59%)                                                                                                  | Unsatisfactory (0-39%)                                             | Marks<br>(70) |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|
| CO1<br>(Understanding)    | Answer is complete and sufficient detail provided to support issues related to the question. And also deals fully with the entire question.     | Answer is brief with sufficient detail provided to support issues were introduced. And most of the basic details are included but some are missing. | Answer is brief with insufficient detail provided to support issues were introduced.                                     | Answer is incomplete and excessive discussion of unrelated issues. And serious gaps in the basic details.          | None of the relevant details were included or didn't answer.       |               |
| CO2, CO3<br>(Applying)    | The question is answered appropriately by applying the suggested method in the question.                                                        | The question is answered briefly by applying the suggested method in the question.                                                                  | The question is answered correctly by applying the suggested method in the question but some steps are missing.          | The question is answered incompletely by applying the suggested method in the question but some steps are correct. | No attempt to implement the suggested method.                      |               |
| CO4<br>(Analyzing)        | A clear, complete, and properly ordered chain of analyzing steps (i.e. proper explanation of the procedure) is followed to answer the question. | The chain of analyzing steps is complete and correctly ordered but lack of expected explanation.                                                    | One or more intermediate analyzing steps are missing or unclear, but the correctness of the analysis is not compromised. | One or more intermediate analyzing steps are missing or unclear to answer the question.                            | The stated chain of analysis does not lead to the stated question. |               |



#### **Grading System**

| Numerical Grade      | Letter G | rade        | <b>Grade Point</b> |
|----------------------|----------|-------------|--------------------|
| 80% and above        | A+       | (A Plus)    | 4.00               |
| 75% to less than 80% | A        | (A Regular) | 3.75               |
| 70% to less than 75% | A-       | (A Minus)   | 3.50               |
| 65% to less than 70% | B+       | (B Plus)    | 3.25               |
| 60% to less than 65% | В        | (B Regular) | 3.00               |
| 55% to less than 60% | B-       | (B Minus)   | 2.75               |
| 50% to less than 55% | C+       | (C Plus)    | 2.50               |
| 45% to less than 50% | С        | (C Regular) | 2.25               |
| 40% to less than 45% | D        |             | 2.00               |
| Less than 40%        | F        |             | 0.00               |

#### **Instructor Information**

**Instructor:** Md. Mamun Hossain

Lecturer,

Department of Computer Science & Engineering

**Office**: Room No-304 (Permanent Campus)

**Phone** : +8801744-104430

Email: mamun.h@bubt.edu.bd

#### **Class Schedule**

| Day     | Time                    | Room No |
|---------|-------------------------|---------|
| Monday  | 11:30 A.M. – 12:50 P.M. | B3/506  |
| Tuesday | 11:30 A.M. – 12:50 P.M. | B2/319  |



#### **Counselling Hour**

| Day/Time  | 08:30 A.M. – | 10:00 A.M. – | 11:30 A.M. – | 01:20 P.M. – | 02:50 P.M. – | 04:20 P.M. – |  |  |
|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--|--|
|           | 09:50 A.M.   | 11:20 A.M.   | 12:50 P.M.   | 02:40 P.M.   | 04:10 P.M.   | 05:40 P.M.   |  |  |
| Sunday    |              |              |              |              | C.H.         | C.H.         |  |  |
| Monday    |              |              |              | C.H.         | C.H.         |              |  |  |
| Tuesday   |              |              |              | C.H.         | C.H.         |              |  |  |
| Wednesday |              | C.H.         | C.H.         |              |              |              |  |  |
| Thursday  |              |              | C.H.         | C.H.         |              |              |  |  |
| Friday    | Day Off      |              |              |              |              |              |  |  |
| Saturday  | Day Off      |              |              |              |              |              |  |  |

<sup>\*</sup>CH – Counselling Hour

#### **Special Instructions**

- Students are expected to attend all classes and examinations. A student must have at least 70% class attendance to sit for the final exam.
- Students will not be allowed to enter into the classroom after 20 minutes of the starting time.
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- All mobile phones MUST be turned to silent mode during class and exam period.
- There is zero tolerance for cheating in exams. The only penalty for cheating is expulsion for several semesters as decided by the Disciplinary Committee of the university.

| Prepared by: | Checked by: | Approved by: |
|--------------|-------------|--------------|