

Применение алгоритмов глубокого обучения к задачам шумопонижения изображений

Лаврентьев Василий Юрьевич

Три этапа работы:

1 Подбор архитектуры, подбор параметров, функции активации, функции потерь

2 Обучение каждой из сетей с подобранными параметрами

Построение модели реального шума. Обучение сети на построенной модели

Показатели оценки:

PSNR – пиковое соотношение сигнал/шум

$$PSNR = 10\log_{10} \frac{MAX_I^2}{MSE}$$

SSIM – индекс структурного сходства

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

Архитектуры:

- Автоэнкодеры
- dnCNN
- Unet

Функции активации:

- Relu
- LeakyRelu
- Gelu

Функции потерь:

- Mean Absolute Error
- Mean Square Error
- Mix SSIM_L2*:

$$SSIM_L2 = (1 - SSIM) + MSE$$

* H. Zhao, O. Gallo, I. Frosio and J. Kautz. Loss Functions for Image Restoration With Neural Networks. 2017

Результаты первого этапа

	Loss function	Результат после 30 эпох				
Архитектура		loss	PSNR	SSIM	Примечание	
AE	Adamax, mae	loss: 0.0474 - val_loss: 0.0552	22.99	0.62		
	Adamax, mse	loss: 0.0045 - val_loss: 0.0050	23.53	0.64		
	Adamax, ssim+l2	loss: 0.3076 - val_loss: 0.3303	23.03	0.67		
dnCNN	Adamax, mae	loss: 0.0427 - val_loss: 0.0480	21.93	0.67		
	Adamax, mse	loss: 0.0035 - val_loss: 0.0060	24.34	0.69		
	Adamax, ssim+l2	loss: 0.4657 - val_loss: 0.4881	22.85	0.69	40 эпох	
res dnCNN	Adamax, mae	loss: 0.0391 - val_loss: 0.0398	24,23	0,69		
	Adamax, mse	loss: 0.0034 - val_loss: 0.0033	25,42	0,69		
	Adamax, ssim+l2	loss: 0.2991 - val_loss: 0.3009	24.17	0.70	40 эпох	
Unet	Adamax, mae	loss: 0.0525 - val_loss: 0.0517	23.10	0.62	40 эпох	
	Adamax, mse	loss: 0.0056 - val_loss: 0.0053	23.19	0.61		
	Adamax, ssim+l2	loss: 1.3919 - val_loss: 1.4290	21.32	0.66	45 эпох, lr=0,001	

Результаты второго этапа

Архитектура	Число эпох	Лосс на конец обучения	обучение/тест		валидация	
			PSNR	SSIM	PSNR	SSIM
AE	30	loss: 0.3464 - val_loss: 0.3493	20,18	0,65	20,18	0,63
res dnCnn	40	loss: 0.2930 - val_loss: 0.2914	24,39	0,71	23,51	0,66
unet	45	loss: 0.6286 - val_loss: 0.6450	13,05	0,4	15,01	0,57

Результаты второго этапа

Результаты второго этапа

Модификация dn CNN – res dnCNN

Оптимизатор: Adamax, Ir=0,001 Функция активации: Gelu

Функция потерь: Mix SSIM_L2*:

Показатели по завершении 40 эпох:

Обучение/тест:

- PSNR 24,39
- SSIM 0,71

Валидация:

- **PSNR 23,51**
- SSIM 0,66

Построение модели реального шума

Идея: используя картину шума с реального сенсора цифровой камеры построить модель, на основе которой реализовать генератор и использовать его для формирования зашумленных изображений для обучения сети

- Подготовка исходных данных (Canon EOS R, 500 dark-снимков, 1/30", ISO 400, 640, 1000, 1200, 3200)
- Преобразование RAW в массивы numpy
- Анализ данных. Удаление выбросов
- Расчет частоты встречаемости каждого из значений интенсивности, расчет вероятностей для каждого из значений интенсивности -> модель распределения шума по интенсивностям пикселей в виде «вектор значений вектор вероятностей»
- Построение генератора
- Применение генератора для формирования зашумленных изображений обучающей/тестовой и валидационной выборок.

Построение модели реального шума

Поканальные гистограммы

Поканальные boxplot

Построение модели реального шума

10⁻¹ 10⁻² 10⁻³ 10⁻³ 10⁻⁴ 10

Интенсивность/вероятность для реального шума

Интенсивность/вероятность смоделированного шума

Применение модельного шума к изображениям

Итоговый результат

По завершении обучения: PSNR 30.78, SSIM 0.917 train/test PSNR 30.66, SSIM 0.915 val

Проверка на реальных данных

Canon EOS R (RAW, ISO 3200, ISO 10000)

Проверка на реальных данных

Набор данных RENOIR (Canon Ti3, Xiaomi Mi3)*

* RENOIR - A dataset of digital camera images corrupted by real low-light noise. https://adrianbarburesearch.blogspot.com/p/image-denoising.html

Итоги

Лучшие результат на всех этапах: Red dnCNN

Построена модель реального шума

Обучение сети на модели реального шума: SSIM 0.915 на валидации

Хорошие результаты при применении к реальным данным: заметное снижение шумов без заметной потери детальности

Спасибо за внимание!

do.bmstu.ru

