PHYSIKPRAKTIKUM

SPF/EF KURS 3006

VERSUCH

 $\mathsf{RS}\Omega$

Theoretischer Teil

Schaltelemente die eine direkte Proportionalität zwischen der Spannung U und der Stromstärke I zeigen, bezeichnen wir als Ohmsche Widerstände. Diese können prinzipiell seriell oder parallel angeordnet werden.

Experimenteller Teil

Problemstellung

Die Berechnungsformel für den sogenannten Ersatzwiderstand (der Widerstandswert, der die gleiche Wirkung besitzt, wie die zu ersetzenden Einzelwiderstande) soll experimentell bestätigt werden.

Berechnungsformel für serielle Anordnung : $R_{ERSATZ} = \sum R = R1 + R2$

Berechnungsformel für parallele Anordnung: $1/R_{ERSATZ} = 1/\Sigma R = 1/R1 + 1/R2$

Versuchsbeschreibung

Als erstes wird ein Widerstand wie in Abb. 1 angeordnet und es werden 4 Einzelmessungen von Spannung U und Stromstärke I zur Berechnung des Widerstandwerts vollzogen. Anschliessend wird dasselbe Vorgehen bei einem zweiten Widerstand wiederholt. Als nächster Schritt, werden die Widerstände parallel angeordnet (Abb. 2) und es werden 5 Einzelmessungen von Spannung U und

VERSUCH

 $RS\Omega$

Stromstärke I zur Berechnung des Widerstandswerts durchgeführt. Als letzter Schritt werden die Widerstände seriell angeordnet (Abb. 3) und nochmals wie vorhin 5 Einzelmessungen durchgeführt.

Daten

Widerstand 1

Anfangsspannung (in Volt)	Spannung U (in Volt)	Stromstärke I (in Ampere)	Widerstand R (in Ohm)
2	1.2000	0.0120	100.0000
4	3.1000	0.0294	105.4422
6	5.2000	0.0500	104.0000
8	7.2000	0.0690	104.3478

Widerstand 2

Anfangsspannung	Spannung U	Stromstärke I	Widerstand R
(in Volt)	(in Volt)	(in A)	(in Ohm)
2	1.4000	0.0040	350.0000
4	3.4500	0.0095	363.1579
6	5.4500	0.0150	363.3333
8	7.5000	0.0210	357.1429

Widerstand 1+2 (seriell)

Anfangsspannung	Spannug U	Stromstärke I	Widerstand R
(in Volt)	(in Volt)	(in A)	(in Ohm)
2	1.4100	0.0032	440.6250
4	3.3600	0.0072	466.6667
6	5.4500	0.0125	436.0000
8	7.5000	0.0160	468.7500
10	9.3700	0.0200	468.5000

Widerstand 1+2 (parallel)

Anfangsspannung	Spannung U	Stromstärke I	Widerstand R
(in Volt)	(in Volt)	(in A)	(in Ohm)
2	1.2000	0.0140	85.7143
4	3.2000	0.0400	80.0000
6	5.2000	0.0620	83.8710
8	7.0000	0.0830	84.3373
10	9.0000	0.1050	85.7143

PHYSIKPRAKTIKUM SPF/EF KURS 3006

VERSUCH $RS\Omega$

Auswertung

Widerstand 1: Standardabweichung: (103,4475 ± 2,3791) Ohm

Fehler vom Mittelwert: $(103,4475 \pm 1,1895)$ Ohm

Widerstand 2: Standardabweichung: (258,4085 ± 6,3012) Ohm

Fehler vom Mittelwert: $(258,4085 \pm 3,1506)$ Ohm

Widerstand 1+2 (seriell)

Standardabweichung: $(456.1083 \pm 16,3472)$ Ohm

Fehler vom Mittelwert: $(456.1083 \pm 7,3107)$ Ohm

Widerstand 1+2 (parallel)

Standardabweichung: $(83,9274 \pm 2,3442)$ Ohm

Fehler vom Mittelwert: $(83,9274 \pm 1,0484)$ Ohm

Herleitung seriell: $R_{ERSATZ} = \sum R = R1 + R2$

 $(456,1083 \pm 16,3472)$ Ohm = 461,1083 Ohm

Herleitung parallel: $1/R_{ERSATZ} = 1/\Sigma R = 1/R1 + 1/R2$

 $(83,9274 \pm 2,3442)$ Ohm = 80.2771 Ohm

Endresultat

Bei der Auswertung der seriellen Anordnung liegt das Resultat innerhalb der Fehler. Die Auswertung der parallelen Anordnung liegt nicht innerhalb des Fehlerbereichs. Dies ist wahrscheinlich auf die ungenauen Messungen bei Widerstand R2 zurückzuführen, da die anderen relativ genau sind.