

Interesting Combinatorics In Higher Auslander Theory

Adam Klepáč 10th Day of Doctoral Students of the School of Mathematics

Charles University in Prague

Outline

Fundamentals

Algebras, Modules, Quivers

Auslander-Reiten Theory Path Algebras, Representations, AR Quivers

Higher Auslander Algebras Cluster Tilting Modules, Cyclic Polytopes

Algebras, Modules, Quivers

Fundamentals

k-algebra

An algebra over a field k is a k-vector space equipped with a bilinear product.

- Complex numbers as the vector space R² with the typical product of complex numbers.
- · Ring of polynomials (over k) with polynomial multiplication.
- Ring of square matrices with matrix multiplication

k-algebra

An algebra over a field k is a k-vector space equipped with a bilinear product.

- Complex numbers as the vector space \mathbb{R}^2 with the typical product of complex numbers.
- Ring of polynomials (over k) with polynomial multiplication.
- Ring of square matrices with matrix multiplication

k-algebra

An algebra over a field k is a k-vector space equipped with a bilinear product.

- Complex numbers as the vector space \mathbb{R}^2 with the typical product of complex numbers.
- \cdot Ring of polynomials (over k) with polynomial multiplication.
- Ring of square matrices with matrix multiplication

k-algebra

An algebra over a field k is a k-vector space equipped with a bilinear product.

- Complex numbers as the vector space \mathbb{R}^2 with the typical product of complex numbers.
- Ring of polynomials (over *k*) with polynomial multiplication.
- Ring of square matrices with matrix multiplication.

Λ -module

Let Λ be a k-algebra. A right Λ -module is a pair (M,\cdot) where M is a k-vector space and $\cdot: M \times A \to M$ is a binary operation satisfying natural commutativity and associativity rules.

Examples

- Each algebra is a module (left or right) over itself.
- k[x, y] = (k[x])[y] is a module (left or right) over k[x].

Indecomposability ('prime' modules)

A (right) Λ -module M is indecomposable if $M \neq 0$ and $M = M_1 \oplus M_2$ implies that $M_1 = 0$ or $M_2 = 0$.

Λ -module

Let Λ be a k-algebra. A right Λ -module is a pair (M,\cdot) where M is a k-vector space and $\cdot: M \times A \to M$ is a binary operation satisfying natural commutativity and associativity rules.

Examples

- · Each algebra is a module (left or right) over itself.
- k[x, y] = (k[x])[y] is a module (left or right) over k[x]

Indecomposability ('prime' modules)

A (right) Λ -module M is indecomposable if $M \neq 0$ and $M = M_1 \oplus M_2$ implies that $M_1 = 0$ or $M_2 = 0$.

Λ -module

Let Λ be a k-algebra. A right Λ -module is a pair (M,\cdot) where M is a k-vector space and $\cdot: M \times A \to M$ is a binary operation satisfying natural commutativity and associativity rules.

Examples

- Each algebra is a module (left or right) over itself.
- k[x, y] = (k[x])[y] is a module (left or right) over k[x].

Indecomposability ('prime' modules)

A (right) Λ -module M is indecomposable if $M \neq 0$ and $M = M_1 \oplus M_2$ implies that $M_1 = 0$ or $M_2 = 0$.

Λ -module

Let Λ be a k-algebra. A right Λ -module is a pair (M,\cdot) where M is a k-vector space and $\cdot: M \times A \to M$ is a binary operation satisfying natural commutativity and associativity rules.

Examples

- Each algebra is a module (left or right) over itself.
- k[x, y] = (k[x])[y] is a module (left or right) over k[x].

Indecomposability ('prime' modules)

A (right) Λ -module M is indecomposable if $M \neq 0$ and $M = M_1 \oplus M_2$ implies that $M_1 = 0$ or $M_2 = 0$.

A-module homomorphism

A map $f:M\to N$ between two (right) Λ -modules M and N is a Λ -module homomorphism if it's k-linear and respects \cdot , that is

$$f(m \cdot \lambda) = f(m) \cdot \lambda \text{ for } \lambda \in \Lambda, m \in M.$$

Section/retraction

A Λ -module homomorphism $f: M \to N$ is

- a section if $\exists g: N \to M$ such that $g \circ f = 1_N$.
- a retraction if $\exists h : N \to M$ such that $f \circ h = 1_M$.

$oldsymbol{\Lambda}$ -module homomorphism

A map $f:M\to N$ between two (right) Λ -modules M and N is a Λ -module homomorphism if it's k-linear and respects \cdot , that is

$$f(m \cdot \lambda) = f(m) \cdot \lambda \text{ for } \lambda \in \Lambda, m \in M.$$

Section/retraction

A Λ -module homomorphism $f: M \to N$ is

- a section if $\exists g: N \to M$ such that $g \circ f = 1_N$.
- a retraction if $\exists h : N \to M$ such that $f \circ h = 1_M$.

Irreducibility ('prime' homomorphisms)

A Λ -module homomorphism $f: M \to N$ is irreducible if

- f is neither a **section** nor a **retraction**;
- whenever $f = f_2 \circ f_1$, then f_2 is a retraction or f_1 is a section.

We denote the *k*-vector space of irreducible homomorphisms $M \to N$ as Irr(M, N)

Irreducibility ('prime' homomorphisms)

A Λ -module homomorphism $f: M \to N$ is irreducible if

- f is neither a **section** nor a **retraction**;
- whenever $f = f_2 \circ f_1$, then f_2 is a retraction or f_1 is a section.

We denote the k-vector space of irreducible homomorphisms $M \to N$ as Irr(M, N).

Quivers

Quiver

A quiver is an oriented graph with multiple edges and loops.

Examples

Quivers

Quiver

A quiver is an oriented graph with multiple edges and loops.

Examples

Quivers

Quiver

A quiver is an oriented graph with multiple edges and loops.

Examples

Auslander-Reiten Theory

Path Algebras, Representations, AR Quivers

Path algebras

The path algebra of a quiver

Let Q be a quiver. The path algebra kQ of Q is the k-algebra whose k-vector space has as its basis all paths of length ≥ 0 in Q and the product of two basis elements is the concatenation of paths.

Path algebras – Example

Consider the quiver

The basis of the path algebra kQ is the triple (e_1, e_2, a) (where e_i means 'stay at i') and its multiplication table is

$$\begin{array}{c|cccc} & e_1 & e_2 & a \\ e_1 & e_1 & 0 & 0 \\ e_2 & 0 & e_2 & a \\ a & a & 0 & 0 \end{array}$$

It's actually isomorphic to the k-algebra of lower triangular 2×2 matrices over k.

Path algebras – Example

Consider the quiver

$$\begin{array}{cccc}
\bullet & \longleftarrow & \bullet \\
1 & & 2
\end{array}$$

The basis of the path algebra kQ is the triple (e_1, e_2, a) (where e_i means 'stay at i') and its multiplication table is

$$\begin{array}{c|cccc} & e_1 & e_2 & a \\ \hline e_1 & e_1 & 0 & 0 \\ e_2 & 0 & e_2 & a \\ a & a & 0 & 0 \\ \hline \end{array}$$

It's actually isomorphic to the k-algebra of lower triangular 2×2 matrices over k.

Path algebras – Example

Consider the quiver

$$\begin{array}{cccc}
\bullet & \longleftarrow & \bullet \\
1 & & 2
\end{array}$$

The basis of the path algebra kQ is the triple (e_1, e_2, a) (where e_i means 'stay at i') and its multiplication table is

$$\begin{array}{c|cccc} & e_1 & e_2 & a \\ \hline e_1 & e_1 & 0 & 0 \\ e_2 & 0 & e_2 & a \\ a & a & 0 & 0 \\ \hline \end{array}$$

It's actually isomorphic to the k-algebra of lower triangular 2×2 matrices over k.

Every algebra is a path algebra

Theorem

Let k be an algebraically closed field and Λ a basic, connected and finite-dimensional algebra over k. Then there exists a finite connected quiver Q such that $\Lambda = kQ/I$ for some admissible ideal I of kQ.

Theorem

Let Λ be as above. Then, $\Lambda=kQ$ for a quiver Q if and only if Λ is hereditary (submodules of projective modules are projective).

Every algebra is a path algebra

Theorem

Let k be an algebraically closed field and Λ a basic, connected and finite-dimensional algebra over k. Then there exists a finite connected quiver Q such that $\Lambda = kQ/I$ for some admissible ideal I of kQ.

Theorem

Let Λ be as above. Then, $\Lambda=kQ$ for a quiver Q if and only if Λ is hereditary (submodules of projective modules are projective).

Dynkin quivers

Theorem (Gabriel's)

Let Λ be as above. Then, $\Lambda=kQ$ where Q (as an indirected graph) is Dynkin if and only if Λ is representation-finite (the number, up to isomorphism, of indecomposable finite-dimensional Λ -modules is finite).

Dynkin quivers

The category $\operatorname{mod} \Lambda$

All the (right) Λ -modules and the homomorphisms between them form an abelian category, which we denote $\operatorname{mod} \Lambda$.

We wish to record the data of $\operatorname{mod} \Lambda$ in the form of a quiver.

The vertices are (isomorphism classes of) indecomposable Λ -modules and the number of arrows between two Λ -modules M, N is the dimension of Irr(M, N).

The category $\operatorname{mod} \Lambda$

All the (right) Λ -modules and the homomorphisms between them form an abelian category, which we denote $\operatorname{mod} \Lambda$.

We wish to record the data of $\operatorname{mod} \Lambda$ in the form of a quiver.

The vertices are (isomorphism classes of) indecomposable Λ -modules and the number of arrows between two Λ -modules M, N is the dimension of Irr(M, N).

The category $\operatorname{mod} \Lambda$

All the (right) Λ -modules and the homomorphisms between them form an abelian category, which we denote $\operatorname{mod} \Lambda$.

We wish to record the data of $\operatorname{mod} \Lambda$ in the form of a quiver.

The vertices are (isomorphism classes of) indecomposable Λ -modules and the number of arrows between two Λ -modules M, N is the dimension of Irr(M, N).

The category $\operatorname{mod} \Lambda$

All the (right) Λ -modules and the homomorphisms between them form an abelian category, which we denote $\operatorname{mod} \Lambda$.

We wish to record the data of $\operatorname{mod} \Lambda$ in the form of a quiver.

The vertices are (isomorphism classes of) indecomposable Λ -modules and the number of arrows between two Λ -modules M, N is the dimension of Irr(M, N).

Auslander-Reiten quiver – Example

The Auslander-Reiten quiver of the path algebra $k(\bullet \leftarrow \bullet \leftarrow \bullet)$ is

Higher Auslander Algebras

Cluster Tilting Modules, Cyclic Polytopes

Module extensions

The group of extensions

An extension of a Λ -module M by a Λ -module N is a short exact sequence

$$0 \longrightarrow M \longrightarrow X \longrightarrow N \longrightarrow 0.$$

All the (equivalence classes of) extensions of M by N form a group which we denote $\operatorname{Ext}^1(M,N)$.

This construction can be extended to 'n-fold' extensions of M by N, that is, long exact sequences

$$0 \longrightarrow M \longrightarrow X_n \longrightarrow X_{n-1} \longrightarrow \cdots \longrightarrow X_1 \longrightarrow N \longrightarrow 0.$$

The group of n-fold extensions of M by N is denoted $\operatorname{Ext}^n(M, N)$.

Module extensions

The group of extensions

An extension of a Λ -module M by a Λ -module N is a short exact sequence

$$0 \longrightarrow M \longrightarrow X \longrightarrow N \longrightarrow 0.$$

All the (equivalence classes of) extensions of M by N form a group which we denote $\operatorname{Ext}^1(M,N)$.

This construction can be extended to 'n-fold' extensions of M by N, that is, long exact sequences

$$0 \, \longrightarrow \, M \, \longrightarrow \, X_n \, \longrightarrow \, X_{n-1} \, \longrightarrow \, \cdots \, \longrightarrow \, X_1 \, \longrightarrow \, N \, \longrightarrow \, 0.$$

The group of *n*-fold extensions of *M* by *N* is denoted $\operatorname{Ext}^n(M, N)$.

Cluster tilting modules

add M

For a Λ -module M, we denote by add M the full subcategory of $\operatorname{mod} \Lambda$ whose objects are the direct sums of direct summands of M.

d-cluster tilting module

A Λ -module M is d-cluster tilting if

$$\operatorname{add} M = \{ X \in \operatorname{mod} \Lambda \mid \operatorname{Ext}'(X, M) = 0 \ \forall i \in \{1, \dots, d-1\} \}$$

Cluster tilting modules

add M

For a Λ -module M, we denote by add M the full subcategory of $\operatorname{mod} \Lambda$ whose objects are the direct sums of direct summands of M.

d-cluster tilting module

A Λ -module M is d-cluster tilting if

$$\operatorname{add} M = \{X \in \operatorname{mod} \Lambda \mid \operatorname{Ext}^{i}(X, M) = 0 \ \forall i \in \{1, \dots, d-1\}\}.$$

Construction (due to Iyama O.)

Let Λ be a representation-finite hereditary algebra. Then, Λ has a 1-cluster tilting module $M^{(1)}$. Put $\Lambda^{(1)} := \operatorname{End}(M^{(1)})$.

```
The k-algebra \Lambda^{(1)} has a 2-cluster tilting module M^{(2)}. Put \Lambda^{(2)} \coloneqq \operatorname{End}(M^{(2)}) \vdots
```

The k-algebra $\Lambda^{(d)}$ has a d-cluster tilting module $M^{(d)}$. Put $\Lambda^{(d+1)} \coloneqq \operatorname{End}(M^{(d)})$.

Construction (due to Iyama O.)

Let Λ be a representation-finite hereditary algebra. Then, Λ has a 1-cluster tilting module $M^{(1)}$. Put $\Lambda^{(1)} := \operatorname{End}(M^{(1)})$.

The k-algebra $\Lambda^{(1)}$ has a 2-cluster tilting module $\mathsf{M}^{(2)}$. Put $\Lambda^{(2)} \coloneqq \operatorname{End}(\mathsf{M}^{(2)})$.

The k-algebra $\Lambda^{(d)}$ has a d-cluster tilting module $M^{(d)}$. Put $\Lambda^{(d+1)} := \operatorname{End}(M^{(d)})$.

Construction (due to Iyama O.)

Let Λ be a representation-finite hereditary algebra. Then, Λ has a 1-cluster tilting module $M^{(1)}$. Put $\Lambda^{(1)} := \operatorname{End}(M^{(1)})$.

The k-algebra $\Lambda^{(1)}$ has a 2-cluster tilting module $M^{(2)}$. Put $\Lambda^{(2)} \coloneqq \operatorname{End}(M^{(2)})$.

The k-algebra $\Lambda^{(d)}$ has a d-cluster tilting module $M^{(d)}$. Put $\Lambda^{(d+1)} := \operatorname{End}(M^{(d)})$.

Construction (due to Iyama O.)

Let Λ be a representation-finite hereditary algebra. Then, Λ has a 1-cluster tilting module $M^{(1)}$. Put $\Lambda^{(1)} := \operatorname{End}(M^{(1)})$.

The k-algebra $\Lambda^{(1)}$ has a 2-cluster tilting module $\mathsf{M}^{(2)}$. Put $\Lambda^{(2)} \coloneqq \operatorname{End}(\mathsf{M}^{(2)})$.

The k-algebra $\Lambda^{(d)}$ has a d-cluster tilting module $M^{(d)}$. Put $\Lambda^{(d+1)} := \operatorname{End}(M^{(d)})$.

We apply Iyama's construction to $\Lambda := k(\bullet \leftarrow \bullet \leftarrow \bullet)$. The AR quivers of $\Lambda, \Lambda^{(1)}$ and $\Lambda^{(2)}$ are the following.

The AR quiver of $\Lambda^{(1)}$

We apply Iyama's construction to $\Lambda := k(\bullet \leftarrow \bullet \leftarrow \bullet)$. The AR quivers of $\Lambda, \Lambda^{(1)}$ and $\Lambda^{(2)}$ are the following.

The AR quiver of $\Lambda^{(1)}$

We apply Iyama's construction to $\Lambda := k(\bullet \leftarrow \bullet \leftarrow \bullet)$. The AR quivers of $\Lambda, \Lambda^{(1)}$ and $\Lambda^{(2)}$ are the following.

The AR quiver of $\Lambda^{(1)}$.

The AR quiver of $\Lambda^{(2)}$.

Cyclic polytopes

Cyclic polytope

The moment curve is the map $p(t) = (t, t^2, t^3, ..., t^n) \subseteq \mathbb{R}^n$ for $t \in \mathbb{R}$. A cyclic polytope C(m, n) in \mathbb{R}^n is the convex hull of the set $\{p(t_1), ..., p(t_m)\}$ where $t_1 < t_2 < ... < t_m$.

Example. The moment curve in \mathbb{R}^2 is just a parabola and C(4,2) is the following shape (for $t_i = i-1$).

Cyclic polytopes

Cyclic polytope

The moment curve is the map $p(t) = (t, t^2, t^3, ..., t^n) \subseteq \mathbb{R}^n$ for $t \in \mathbb{R}$. A cyclic polytope C(m, n) in \mathbb{R}^n is the convex hull of the set $\{p(t_1), ..., p(t_m)\}$ where $t_1 < t_2 < ... < t_m$.

Example. The moment curve in \mathbb{R}^2 is just a parabola and C(4,2) is the following shape (for $t_i = i - 1$).

Triangulations and tilting modules

A triangulation of a cyclic polytope

By a triangulation of C(m, n) we mean its division into n-dimensional simplices that share vertices with C(m, n).

Example. One possible triangulation of C(5,2).

Triangulations and tilting modules

A triangulation of a cyclic polytope

By a triangulation of C(m, n) we mean its division into n-dimensional simplices that share vertices with C(m, n).

Example. One possible triangulation of C(5, 2).

Triangulations and tilting modules

Theorem (Thomas H., Oppermann S.)

There is a bijection

$$\left\{ \begin{array}{l} \textit{Triangulations} \\ \textit{of C}(n+2d,2d) \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \textit{Tilting modules of } \Lambda^{(d)} \\ \textit{contained in } \operatorname{add} M^{(d)} \end{array} \right\}$$