

## Linear models for Qualitative Responses

Marco Antonio Florenzano Mollinetti<sup>1</sup>

1 University of Tsukuba, Systems Optimization Laboratory mollinetti@syou.cs.tsukuba.ac.jp



#### Before we Begin

- Go to the github repo:
  - □ <a href="https://github.com/Mollinetti/Experiment-Design-R">https://github.com/Mollinetti/Experiment-Design-R</a>
  - Download the script for this class! (in the 'scripts' folder, class\_7.r!)
- Run the snippet at the beginning to load/install the required libraries

#### Agenda

- Introduction
- Classification of Quantitative responses
- Logistic Regression
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)

- Introduction
- Classification of Quantitative responses
- Logistic Regression
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)



#### Introduction

- Classification problems are frequent:
  - 1. Someone has a set of symptoms that can be attributed to three conditions. Which of the three does the person have?
  - 2. On a DNA sequence data of several patients with and without a disease, which DNA mutations are disease causing and which are not?

#### Introduction

- We will now fit a linear model to classify categorical variables
- For a 2 level qualitative response:
  - Logistic Regression\*
- For more than two levels:
  - **LDA**
  - $\square$  QDA

#### Introduction

Why we can't use linear regression anymore?



**Answer: Negative Prediction values!** 

- Introduction
- Classification of Quantitative responses
- Logistic Regression
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)

## Classification of Quantitative Responses

- Remember, the response now has many levels
- For such, we can do a similar approach to the dummy variables
- Define your contrasts beforehand

$$Y = \begin{cases} 1 \text{ if response 1} \\ 2 \text{ if response 2} \\ 3 \text{ if response 3} \end{cases} \text{ or } Y = \begin{cases} 01 \text{ if response 1} \\ 10 \text{ if response 2} \\ 00 \text{ if response 3} \end{cases}$$

## Classification of Quantitative Responses

- How does a classifier outputs its predictions?
- Suppose we want to classify apples, oranges and pears
- We know by default that each variable is modeled in this specific way:

apple = 
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 orange =  $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$  pear =  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 

# Classification of Quantitative Responses

Values outputted by the classifier close to the labels corresponds to each level:

$$\begin{bmatrix} 0.0002 \\ 0.9986 \end{bmatrix} \approx \begin{bmatrix} 0 \\ 1 \end{bmatrix} = apple$$

$$\begin{bmatrix} 0.9780 \\ 0.0642 \end{bmatrix} \approx \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \text{orange}$$

$$\begin{bmatrix} 0.9343 \\ 0.9846 \end{bmatrix} \approx \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \text{pear}$$

- Introduction
- Classification of Quantitative responses
- Logistic Regression
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)

- Logistic regression models that the probability that the response belongs to a category
- $p(X) = \Pr(Y = 1|X)$
- Best suited for two classes:
  - $\Box p(X) < 0.5$  so Y belong to category 1
  - $\Box p(X) \ge 0.5$  so Y belong to category 2

If we follow the linear model (with additive and linear relations):

$$p(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

■ Then p(X) will have negative values, unacceptable for binary classification

- p(X) has to be a model in the [0,1] interval
- This can be done by the sigmoid function

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p}}$$

The sigmoid function has the following shape:



- The model is now fitted using the maximum likelihood estimator
- The log-odds or logit captures the linear relation of the model:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}$$

■ In a logistic regression, increasing *X* changes the log odds of the coefficients

- Load the "BreastCancer" dataset from the mlbench library
- 33 columns (we'll use 11)
- 1 qualitative variable (response)
  - □ 2 levels {benign, malignant}
- 10 quantitative variables (predictors)

- We will do first the regression with every quantitative variable, then we will adjust the model
- Verification of the assumptions are also required
- Goodness of fit:
  - □ Null Deviance (only the intercept)
  - □ Residual Deviance (all coefficients)
  - ☐ BIC/ AIC

■ In R, the glm is called for logistic regression

```
#logistic regression with all variables but the id (we use glm for that)
reg.fit <- glm(diagnosis~., data = BreastCancer, family = binomial)</pre>
```



In R, the glm is called for logistic regression





Calling summary to the model gives the following info:

```
Deviance Residuals:
     Min
                10
                     Median
                                   30
                                            Max
-1.95590 -0.14839 -0.03943 0.00429
                                        2.91690
Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
(Intercept)
                       -7.35952
                                  12.85259 -0.573
                                                     0.5669
                       -2.04930
                                   3.71588
                                           -0.551
radius_mean
                                                     0.5813
                        0.38473
                                   0.06454
                                             5.961 2.5e-09 ***
texture_mean
perimeter_mean
                       -0.07151
                                   0.50516
                                            -0.142
                                                     0.8874
                        0.03980
                                   0.01674
                                             2.377
                                                     0.0174 *
area_mean
                       76.43227
                                  31.95492
                                             2.392
                                                     0.0168 *
smoothness_mean
compactness_mean
                       -1.46242
                                  20.34249
                                            -0.072
                                                     0.9427
concavity_mean
                        8.46870
                                   8.12003
                                             1.043
                                                     0.2970
                       66.82176
                                  28.52910
                                             2.342
concave_points_mean
                                                     0.0192 *
                       16.27824
                                  10.63059
symmetry_mean
                                             1.531
                                                     0.1257
fractal_dimension_mean -68.33703
                                  85.55666
                                            -0.799
                                                     0.4244
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 751.44 on 568 degrees of freedom
Residual deviance: 146.13 on 558 degrees of freedom
AIC: 168.13
Number of Fisher Scoring iterations: 9
```



Calling summary to the model gives the following info:



- We now predict the values
- Get the estimated value of each observation, then associate it to the class that it belongs



```
#convert the probabilities of glm.probs into proper classes "Malignant" or "Benign"
#create a vector of 1250 "benign"
glm.pred = rep("B",nrow(BreastCancer))
#Fill with "Malignant" whatever probabilities above 0.5 (our chosen threshold)
glm.pred[glm.probs > 0.5] = "M"
glm.pred[1:10]
```





 Calculate a confusion matrix to check for false positive and false negatives

Check the mean of the predictions for accuracy

```
> mean(glm.pred == diagnosis)
[1] 0.9490334
```



- Logistic regression does not require:
  - Normality
  - Homoscedascity
  - Linearity



- However, Logistic regression adhere to:
  - □ Linearity of independent variables and log odds
  - □ Influential values
  - Collinearity
  - □ Large sample size



- Linearity of log odds
- inspecting the scatter plot between each predictor and the logit values







#### Influential Values

□ Plot of the studentized residuals against leverage





#### Collinearity

- Check the correlation
- Compute the VIF

```
> vif(reg.fit) # variance inflation factors
           radius_mean
                                 texture_mean
              899.5200
                                        1.8064
        perimeter_mean
                                     area_mean
              698,9800
                                      129.5600
       smoothness mean
                              compactness_mean
                4.3729
                                       15.2810
        concavity_mean
                          concave_points_mean
                5.2595
                                        5.8564
         symmetry_mean fractal_dimension_mean
                1.8395
                                        9.7877
> sqrt(vif(reg.fit)) > 2 # problem? cutoff is 5 or 10
           radius_mean
                                 texture_mean
                  TRUE
                                         FALSE
        perimeter_mean
                                     area_mean
                                          TRUE
                  TRUE
       smoothness_mean
                              compactness_mean
                  TRUE
                                          TRUE
        concavity_mean
                          concave_points_mean
                  TRUE
                                          TRUE
         symmetry_mean fractal_dimension_mean
                 FALSE
                                          TRUE
```



- Introduction
- Classification of Quantitative responses
- Logistic Regression
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)

#### 100

## Linear Discriminant Analysis (LDA)

- Logistic Regression is not recommended for more than 2 classes
- Does not work well when classes are well separated
- LDA is more stable for smaller and normal *X*
- Assumes that probabilities are distributed from a gaussian distribution

## Linear Discriminant Analysis (LDA)

- Let Y be able to take on distinct K values of classes
- LDA models the probability of *X* belonging to a *Y* as an approximation of the Bayes' Theorem

$$\Pr(Y = K | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

## Linear Discriminant Analysis (LDA)

- Let Y be able to take on distinct K values of classes
- LDA models the probability of *X* belonging to a *Y* as an approximation of the Bayes' Theorem

Prior probability
$$Pr(Y = K | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

Posterior probability (Density function)

For a multivariate gaussian distribution the density function is:

 $f(x) = \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$ Covariance matrix Mean

- Values of parameters  $\mu_1, ..., \mu_K$  and  $\pi_1, ..., \pi_K$  must be estimated for each class
- Each value is calculated as:

$$\hat{\mu}_K = \frac{1}{n_k} \sum_{i: y_i = k} x_i$$

$$\hat{\sigma}^2_K = \frac{1}{n - K} \sum_{k=1}^K \sum_{i: y_i = k} x_i$$

- The estimated values are plugged into the following formula and classified as the one that maximizes for given class
- The covariance matrix is the same for each class

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

■ In R, LDA is part of the MASS library

```
lda.fit <- lda(diagnosis~., data = BreastCancer)</pre>
```



■ In R, LDA is part of the MASS library





#### Calling the object:

```
> lda.fit
Call:
lda(diagnosis ~ ., data = BreastCancer)
Prior probabilities of groups:
0.6274165 0.3725835
Group means:
 radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean concave_points_mean symmetry_mean
    12.14652
                  17.91476
                                 78.07541 462.7902
                                                          0.09247765
                                                                           0.08008462
                                                                                           0.04605762
                                                                                                               0.02571741
                                                                                                                                0.174186
    17.46283
                  21.60491
                                115.36538 978.3764
                                                          0.10289849
                                                                           0.14518778
                                                                                           0.16077472
                                                                                                               0.08799000
                                                                                                                                0.192909
 fractal_dimension_mean
              0.06286739
В
              0.06268009
Coefficients of linear discriminants:
                                LD1
radius_mean
                        2.173832578
                        0.097479319
texture_mean
                       -0.243883158
perimeter_mean
                       -0.004235635
area_mean
                        8.610211091
smoothness_mean
                        0.431476344
compactness_mean
                        3.592356858
concavity_mean
concave_points_mean
                       28.529778564
symmetry_mean
                        4.489073661
fractal dimension mean -0.529214778
```



 Calculate yet again a confusion matrix to check for false positives and false negatives



- Class-specific accuracy is more important than general accuracy in some cases
- Possible way to improve: change the threshold values
- However, how can we decide the best threshold value?

- Plot of the ROC curve
- Plot all possible thresholds and measure the AUC (area under curve)
- A curve that hugs the top left is desired





- Assumptions:
  - □ Equality of Variance-Covariance
  - Normality

- Equality of Variance-Covariance:
  - ☐ Plot of the boxplots
  - □ Plot of the covariances homogeneity
  - Box M-test

Plot the boxplots of variances between classes



Plot of the covariances homogeneity



Box M-test



> boxM(BreastCancer[,-1], diagnosis)

Box's M-test for Homogeneity of Covariance Matrices

```
data: BreastCancer[, -1]
Chi-Sq (approx.) = 1738.8, df = 55, p-value < 2.2e-16</pre>
```



- Normality:
  - □ QQ-plots
  - ☐ Shapiro-wilk test

QQ-plots: plotting the predicted value against the predictor



For predictors that are clearly not normal, run the shapiro-wilk test against predicted values

```
> #shapiro-wilk test on dubious columns
> shapiro.test(pred.m$radius_mean)

Shapiro-Wilk normality test

data: pred.m$radius_mean
W = 0.97766, p-value = 0.001895

Transform
the data if
not normal

Shapiro-wilk on transformed data
> shapiro.test(sqrt(pred.m$radius_mean))

Shapiro-Wilk normality test

data: sqrt(pred.m$radius_mean)
W = 0.9884, p-value = 0.08347
```

- Introduction
- Classification of Quantitative responses
- Logistic Regression
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)

#### M.

#### Quadratic Discriminant Analysis

- QDA still assumes that probabilities are drawn from a multivariate gaussian distribution
- However, each class now has its own covariance matrix
- More flexible to fit curves



Estimated values are plugged into the following function:

$$\delta_k(x) = -\frac{1}{2} x^T \Sigma_k^{-1} x + x^T \Sigma_k^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma_k^{-1} \mu_k - \frac{1}{2} \log|\Sigma_k| + \log \pi_k$$

■ In R, QDA is also part of the MASS library

```
#QUADRATIC DISCRIMINANT ANALYSIS
qda.fit = qda(diagnosis~., data = BreastCancer)
```



■ In R, QDA is also part of the MASS library





Predictions and confusion matrix must also be estimated



- Assumptions of QDA are the same as LDA
  - □ Equality of Variance-Covariance
  - Normality

#### Next Episode

Now that we understand how to fit lines, we will go back to the Multiple Analysis of Variances (MANOVA)



# Linear models for Qualitative Responses

Marco Antonio Florenzano Mollinetti<sup>1</sup>

1 University of Tsukuba, Systems Optimization Laboratory mollinetti@syou.cs.tsukuba.ac.jp