

R프로그래밍

김태완

kimtwan21@dongduk.ac.kr

- 매트릭스와 데이터프레임
 - 1차원 데이터와 2차원 데이터

몸무게
62.4
75.3
59.8
72.1

1차원 데이터

			<i>—/ — 1</i>	
_	7	몸무게	나이	
행/관측값	168.4	62.4	29	
	174.6	75.3	31	
	169.5	59.8	25	
	181.4	72.1	36	
	셀	·		

2차원 데이터

- 행(row)/관측 값(observation) : 가로줄 방향
- 열(column)/변수(variable) : 세로줄 방향
- 셀(cell) : 사각형 영역

열/변수

• 매트릭스와 데이터프레임

-(1차원)데이터 : 벡터, 리스트, 팩터

- 2차원 데이터 : 매트릭스, 데이터프레임

동일한 타입

Array

다차원

	벡터	리스트	매트릭스	데이터프레임
데이터의 형태	1차원 더	베이터	2차원	데이터
데이터의 종류	동일한 자료형	서로 다른 자료형 가능	동일한 자료형	서로 다른 자료형 가능
R에서 제공하는 데이터셋			state.x77	iris
			미국 50개 주에 대한 통계	150그루의 붓꽃에 대한 통계

- 매트릭스
 - 매트릭스 만들기 : 매트릭스의 모든 셀에 저장되는 값은 동일한 자료형 이어야 함
 - 기본적인 매트릭스 만들기 : matrix()함수 이용

```
1에서 20까지
      매트릭스에 저장
                        열의 수 = 5
z \leftarrow matrix(1:20, nrow = 4, ncol = 5)
Z
               행의 수 = 4
    [,1][,2][,3][,4][,5]
              9
                  13
                        17
[1, ]
[2, ]
             10
                  14
                           열 방향으로 채워짐
     3 7
             11
                  15
[3, ]
     4 8
             12
                  16
                       20
[4, ]
```

```
z \leftarrow matrix(1:20, nrow = 4, ncol = 5, byrow = TRUE)
Ζ
                          매트릭스에 저장될 값들을
                              행 방향으로 채움
    [,1][,2][,3][,4][,5]
             3
                     5
                 4
[1, ] 1
             8
                 9
     6
                     10
             13
                    15
        12
                14
[4, ] 16
             18
                19
                     20
       17
                         행 방향으로 채워짐
```

- 매트릭스
 - 매트릭스 만들기 : 매트릭스의 모든 셀에 저장되는 값은 동일한 자료형 이어야 함
 - 기본적인 매트릭스 만들기 : matrix()함수 이용

```
z < - matrix(0, 3, 4)
z2 <- matrix(NA, 2, 5)
v <- 1:12
matrix(data=v, ncol=4)
mat <- matrix(data=v, ncol=4)
str(mat)
```

```
dim(mat)
nrow(mat) = dim(mat)[1] # 행의 개수
ncol(mat) = dim(mat)[2] # 열의 개수
length(mat) # 셀의 개수
```

- 매트릭스
 - 매트릭스 만들기 : 매트릭스의 모든 셀에 저장되는 값은 동일한 자료형 이어야 함
 - 기존 매트릭스에 벡터를 추가하여 새로운 매트릭스 만들기 : cbind()함수, rbind()함수 이용

```
1 x <- 1:3
  y <- 4:6
  m1 < - cbind(x, y)
# cbind( )함수 :
 두 개의 벡터를 열 방향으로 bind
4 cbind(1:3, 4:6, matrix(7:12, 3,2))
5 m2 < - rbind(x, y)
# rbind( )함수 :
 두 개의 벡터를 행 방향으로 bind
6 rbind(matrix(1:6, 2, 3), matrix(7:12, 2, 3))
```

```
> x <- 1:3
> y <- 4:6
> m1 <- cbind(x, y)
   m1
    Χ
[1, ] 1
[2, ] 2
[3, ] 3 \ 6
> m2 <- rbind(x, y)
> m2
  [,1] [,2] [,3]
Χ
  4
```

- 매트릭스
 - 매트릭스 만들기 : 매트릭스의 모든 셀에 저장되는 값은 동일한 자료형 이어야 함
 - 기존 매트릭스에 벡터를 추가하여 새로운 매트릭스 만들기 : cbind()함수, rbind()함수 이용

```
1 x <- 1:3
2 y <- 4:6
3 \quad m1 < - cbind(x, y)
4 m2 < - rbind(x, y)
  m3 < - cbind(m1, x)
  m3
# [벡터] + [매트릭스]
```

```
> x <- 1:3
> y <- 4:6
> m1 <- cbind(x, y)
> m2 <- rbind(x, y)
> m3 <- cbind(m1, x)
  m3
    X Y X
[1, ] 1 4 1
[2, ] 2 5 2
[3, ] 3 6 3
```

- 매트릭스
 - 매트릭스 만들기 : 매트릭스의 모든 셀에 저장되는 값은 동일한 자료형 이어야 함
 - 기존 매트릭스에 벡터를 추가하여 새로운 매트릭스 만들기 : cbind()함수, rbind()함수 이용

```
1 x <- 1:3
2 y <- 4:6
  m2 < - rbind(x, y)
4 m3 < - cbind(m1, x)
5 \text{ m4} < - \text{rbind}(\text{m2}, \text{m3})
   m4
# [매트릭스] + [매트릭스]
```

```
> x <- 1:3
> y <- 4:6
> m2 <- rbind(x, y)
> m3 <- cbind(m1, x)
> m4 <- rbind(m2, m3)
   m4
   X Y X
   2 5 2
          m3
   3 6 3
```

- 매트릭스
 - 매트릭스에서의 값 추출
 - 인덱스 값을 이용하여 매트릭스에서의 값 추출하기 : 매트릭스[행,열]

```
z < -matrix(1:15, nrow = 3, ncol = 5)
2 z <sup>행</sup>
  z[2, 3]
# z의 2행 3열에 있는 값
4 z[1, 4]
# z의 1행 4열에 있는 값
5 z[2, ]
# z의 2행에 있는 모든 값
6 z[,4]
# z의 4열에 있는 모든 값
```

```
> z < -matrix(1:15, nrow = 3, ncol = 5)
    [,1][,2][,3][,4][,5]
[1, ]
                  10
[2, ] 2 5
                  11
[3, ]
                 z[ ,4]
   z[2, 3]
[1]
  z[1, 4]
[1]
   10
   z[2, ]
[1] 2581114
   z[ ,4]
    10 11 12
```

- 매트릭스
 - 매트릭스에서의 값 추출
 - 매트릭스에서 여러 개의 값을 동시에 추출하기 : 매트릭스[행,열]

```
1 z \leftarrow matrix(1:15, nrow = 3, ncol = 5)
2 z
3 z [2, 1:3]
# 2행의 값 중 1~3열에 있는 값
4 z [1, c(1, 2, 4)]
# 1행의 값 중 1, 2, 4열에 있는 값
5 z[c(1,3),]
# 1, 3행에 있는 모든 값
```

```
z < -matrix(1:15, nrow = 3, ncol = 5)
     [ ,1 ] [ ,2 ] [ ,3 ] [ ,4 ] [ ,5 ]
[1, ]
                   10
     2 5 8
[2, ]
                   11
                       14
[3, ] 3 6 9
                   12 15
   z[2, 1:3]
[1]
   2 5 8
   z[1, c(1, 2, 4)]
   1 4 10
   z[c(1,3), ]
    [,1] [,2] [,3] [,4] [,5]
                   10
[1, ] 1
                   12
                         15
[2, ] 3
         6
```

- 매트릭스
 - 매트릭스의 행과 열에 이름 지정 : rownames(), colnames() 함수 이용

```
score < - matrix(c(90, 85, 69,
                   85, 96, 49),
                    nrow = 3, ncol = 2)
   score
   rownames(score) <- c( "A", "B", "C")
# 행에 이름을 지정
   colnames(score) <- c("English","Math")
# 열에 이름을 지정
  score
```

```
> score <- matrix(c(90, 85, 69,
                      85, 96, 49).
                      nrow = 3, ncol = 2)
   score
    [,1] [,2]
[1, ] 90 85
[2, ] 85 96
[3, ] 69 49
   rownames(score) <- c( "A", "B", "C")
   colnames(score) <- c("English","Math")</pre>
    score
  English Math
    90
           85
    85
           96
    69
           49
```

데이터프레임

- 매트릭스
 - 매트릭스의 행과 열에 이름 지정 : rownames(), colnames() 함수 이용
 - 이름을 이용하여 매트릭스 값 추출하기

```
score
2 score['A', 'Math']
# A의 수학성적
3 score['B', ]
# B의 모든 과목 성적
  rownames(score)
# score 행의 이름
  colnames(score)
# score 열의 이름
  rownames(score)[2]
# score 행의 이름 중 두 번째 값
```

```
score
  English Math
    90
           85
    85
         96
   69
           49
   score['A', 'Math']
   85
[1]
   score['B', ]
English Math
  85
          96
  rownames(score)
   'A' 'B' 'C'
[1]
   colnames(score)
   'English' 'Math'
[1]
   rownames(score)[2]
```

• 데이터프레임

- 데이터프레임 만들기 : 서로 다른 자료형의 값들이 함께 저장될 수 있음
 - 단, 같은 열의 값들의 자료형은 동일해야 함
 - data.frame()함수 이용

```
1 city <- c('Seoul', 'Tokyo', 'Washington')
# 문자형 벡터
```

- 2 rank <- c(1, 3, 2)
- # 숫자형 벡터
- 3 city.info <- data.frame(city, rank)
- 4 city.info

• 데이터프레임

• 데이터프레임 만들기 : data.frame()함수 이용

```
v1 <- c('Seoul', 'Tokyo', 'Washington')
2 v2 < -c(1, 3, 2)
                                       (12,VIIV3)
3 v3 <- c("KOR", "JPN", "USA")
  city.info <- data.frame(city=v1, rank=v2, nation=v3)
  str(city.info) -> GIOIEI INIQUE RUZ CITA
   mat <- matrix(c(1,3,5,7,9,2,4,6,8,10,2,3,5,7,11), ncol=3)
  as.data.frame(mat) # 행렬을 데이터프레임으로 변환
  mat2 <- as.data.frame(mat)
  colnames(mat2) <- c("first", "second", "third")
10 mat2
```

• 데이터프레임

matrix와 동일하게 cbind()함수, rbind()함수 이용 가능

• 데이터프레임

• Iris 데이터셋: R에 저장된 데이터 셋으로, 대표적인 데이터프레임

→외부에서 불러올 필요 없이 'iris'라고 입력하면 내용이 출력됨.

iris 꽃받침의 길이 꽃받침의 폭 꽃잎의 길이 꽃잎의 폭 붓꽃의 품종 Petal.Length Petal.Width Sepal.Width Sepal.Length Species 5.1 3.5 1.4 0.2 setosa 4.9 3.0 1.4 0.2 setosa 4.7 3.2 1.3 0.2 setosa 4.6 3.1 1.5 0.2 4 setosa 숫자형 문자형 ...(이하생략)

• 데이터프레임

• 데이터프레임의 값 추출 : 매트릭스와 동일

```
1 iris[,c(1:2)]
# 1, 2열의 모든 데이터
2 iris[,c("Sepal.Length", "Species")]
# 1, 5열의 모든 데이터
3 iris[1:3,c(2,4)]
# 1~3행의 데이터 중 2, 4열의 데이터
```

```
iris[ ,c(1:2)]
Sepal.Length Sepal.Width
       5.1
                   3.5
       4.9
                   3.0
       4.7
                   3.2
  iris[ ,c("Sepal.Length", "Species")]
Sepal.Length Species
       5.1
                 setosa
       4.9
                 setosa
       4.7
                 setosa
  iris[1:3,c(2,4)]
Sepal.Width Petal.Width
     3.5
                 0.2
     3.0
                 0.2
     3.2
                 0.2
```


- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에 대한 산술연산

- DHESILUL! " HMM."
- 숫자로 구성된 매트릭스나 데이터프레임에 대해서 산술연산 적용 가능
- 자료구조 상에서 동일 위치에 있는 값들끼리 계산
- 자료구조의 크기(행과 열의 개수)가 동일해야 함.

```
> a + b
  [,1][,2][,3]
[1, ] 8 12 16
[2, ] 10 14 18
> b - a
  [,1][,2][,3]
[1, ] 6 6 6
[2, ] 6 6 6
```

```
> a * 2 # a값은 변경되지 않음

[,1][,2][,3]

[1,] 2 6 10

[2,] 4 8 12

> a <- a * 2 # a값이 변경됨

> a

[,1][,2][,3]

[1,] 2 6 10

[2,] 4 8 12
```

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수
 - 데이터셋의 기본 정보 확인

함수명	설명
dim()	데이터셋의 행과 열의 개수 출력
nrow()	데이터셋의 행의 개수 출력
ncol()	데이터셋의 열의 개수 출력
rownames()	데이터셋의 행의 이름 출력
colnames()	데이터셋의 열의 이름 출력
head()	데이터셋의 시작 부분의 일부 데이터(1 ~ 6행) 출력
tail()	데이터셋의 끝부분의 일부 데이터(n-5 ~ n행) 출력

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수
 - 데이터셋의 기본 정보 확인 예시

```
# iris의 행과 열의 개수
   dim(iris)
[1] 150 5
                                                                 # iris의 행의 개수
   nrow(iris)
[1]
   150
   ncol(iris)
                                                                 # iris의 열의 개수
[1]
    5
                                                                 #iris의 행의 이름
   rownames(iris)
[1] 1 2 3 4 5 6 7 8 9 (...) 150
> colnames(iris)
                                                                 #iris의 열의 이름
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
```

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수
 - 데이터셋의 기본 정보 확인 예시

>	head(iris)		# iris의	시작부분 6개	데이터
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

> tail(iris) # iris의 끝브			의 끝부분 67	ㅐ데이터	
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	6.7	3.3	5.7	2.5	virginica
2	6.7	3.0	5.2	2.3	virginica
3	6.3	2.5	5.0	1.9	virginica
4	6.5	3.0	5.2	2.0	virginica
5	6.2	3.4	5.4	2.3	virginica
6	5.9	3.0	5.1	1.8	virginica

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수
 - 데이터셋의 기본 정보 확인

함수명	설명
str()	데이터셋에 대한 전반적인 정보를 요약하여 출력
unique()	어떤 그룹을 나타내는 자료에서 중복된 값을 제거하여 출력
table()	자료에서 각 그룹별로 몇 개의 관측치가 존재하는지 출력

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수
 - 데이터셋의 기본 정보 확인 예시

```
str(iris) 150개의 행과 5개의 열로 구성
'data.frame': 150 obs. of 5 variables:
iris의 자료구조 : 데이터프레임
           자료형 : 숫자형
$ Sepal.Length : num [5.1 4.9 4.7 ... 	 저장된 값
첫 번째 열의 이름 : Sepal.Length
$ Sepal.Width: num 3.5 3 3.2 ...
$ Petal.Length : num 1.4 1.4 1.3 ...
$ Petla.Width: num 0.2 0.2 0.2 ...
       자료형 : 문자형(팩터)
$ Species : Factor w/ 3 levels "setosa", "versicolor", "virginica" : 1 1 1...
                with 3 levels : 3가지 종류
```

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수
 - 데이터셋의 기본 정보 확인 예시

> unique(iris[,5]) # iris의 5번째 열(품종)의 종류 보기(중복 제거)
[1] setosa versicolor virginica
Levels: setosa versicolor virginica
> table(iris,[ਲ਼Species**]) # iris의 5번째 열(품종)의 종류별 행의 개수 세기
setosa versicolor virginica
50 50 50 50

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수

함수명	설명
colSums()	자료의 열별 합계 출력
colMeans()	자료의 열별 평균 출력
rowSums()	자료의 행별 합계 출력
rowMeans()	자료의 행별 평균 출력
t()	데이터의 행과 열의 방향을 바꾸어 출력(전치 행렬)
subset()	전체 데이터에서 조건에 맞는 행들만 추출

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수

```
मुल् अभय जी धरी
> colSums(iris[ ,-5])
                                                             # <del>끝부분 5열의</del> 합
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
                                                              इल् क्षाय दर्ष
    876.5
                  458.6
                              563.7
                                              179.9
> colMeans(iris[,-5])
                                                             # <del>끝부분 5열의</del> 평균
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
                                                               502 W17 50 th
   5.843333 3.057333
                            3.758000
                                             1.199333
  rowSums(iris[ ,-5])
                                                             #끝부분 5행의 합
    10.2 9.5 9.4 10.2 ...
                                                               took won I by on
   rowMeans(iris[ ,-5])
                                                             # 끝부분 5행의 평균
    2.550 2.375 2.350 2.550 ...
```

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수

```
z < -matrix(1:15, nrow = 3, ncol = 5)
   Z
>
   [,1] [,2] [,3] [,4] [,5]
                  10
                      13
[1, ] \1
[2, ] 2
             8
                  11
                      14
                  12
[3, ] 3
                      15
         6
                                                      # z의 행과 열의 방향 변환(전치 행렬)
  t(z)
   [,1] [,2] [,3]
[1, ] \1
             6
[2, ]
    4
            9
[3, ] 7
[4, ] 10
        11 12
        14 15
[5, ] 13
```

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수

```
데이터를 추출할 조건 : (1) Sepal.Length의 값이 5보다 큼 2개의 조건을 &(and)로 연결 (2) Sepal.Width의 값이 4보다 큼
  IR_1 <- subset(iris, Sepal.Length > 5.0 & Sepal.Width > 4.0)
          데이터를 추출할 대상 : iris
                                                           # 조건을 만족하는 행을 출력
> IR_1
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
        5.7
                     4.4
                                 1.5
                                              0.4
16
                                                       setosa
                    4.1
33
        5.2
                                1.5
                                              0.1
                                                       setosa
34
        5.5
                     4.2
                                 1.4
                                              0.2
                                                       setosa
```

subset()함수의 경우 매트릭스에서는 작동이 잘 되지 않는 경우 발생 데이터 프레임으로 변환 필요할 수 있음

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수
 - 매트릭스와 데이터프레임의 자료구조 확인

함수명	설명
class()	데이터셋의 자료구조의 종류를 출력
is.matrix()	데이터셋이 매트릭스인지 확인
is.data.frame()	데이터셋이 데이터프레임인지 확인

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임에서 사용하는 함수
 - 매트릭스와 데이터프레임의 자료구조 확인

```
class(iris)
                                                   # iris의 자료구조 확인
[1] "data.frame"
   class(state.x77)
                                                   # state.x77의 자료구조 확인
[1] "matrix"
                                                   # iris가 매트릭스인지 확인
   is.matrix(iris)
[1] FALSE
                                                   # iris가 데이터프레임인지 확인
  is.data.frame(iris)
[1] TRUE
                                                   # state.x77이 매트릭스인지 확인
  is.matrix(state.x77)
[1] TRUE
                                                   # state.x77이 데이터프레임인지 확인
  is.data.frame(state.x77)
[1] FALSE
```

- 매트릭스와 데이터프레임 다루기
 - 매트릭스와 데이터프레임의 자료구조 변환
 - 매트릭스를 데이터프레임으로 변환 : data.frame() 함수 이용
 - 데이터프레임을 매트릭스로 변환 : as.matrix() 함수 이용
 - 단, 데이터프레임의 모든 값의 자료형이 동일해야 매트릭스로 변환 가능
 - > st <- data.frame(state.x77)
 # state.x77 매트릭스를 데이터프레임으로 변환
 > class(st)
 [1] "data.frame"
 > iris_m <- as.matrix(iris[,1:4])
 # iris 데이터프레임에서 숫자형인 1~4열만 매트릭스로 변환
 > class(iris_m)
 [1] "matrix"

• 예시 1 : 매트릭스 만들기

```
1 d <- matrix (505, 3, 4)
2 d
```

```
> d <- matrix

> d

[,1][,2][,3][,4]

[1,] 5 20 35 50

[2,] 10 25 40 55

[3,] 15 30 45 60
```

• 예시 2 : 매트릭스 d 다루기

```
1 d <- matrix(( seq(5,60,5))), nrow = 3, ncol = 4)
2 d_t <- matrix
3 d_t
```

```
> d <- matrix((xseq(5,60,5)), nrow = 3, ncol = 4)

> d_t <- matrix

> d_t  # d의 행과 열의 방향이 바뀜

[,1][,2][,3][,4]

[1,] 5 10 15 20

[2,] 25 30 35 40

[3,] 45 50 55 60
```

• 예시 3 : 새로운 매트릭스 만들기

```
1 b1 <- c(4,5,7,2)

2 b2 <- c(19,15,12,17)

3 b3 <- c(20,24,28,23)

# cording here #
```

```
> b1 <- c(4,5,7,2)
> b2 <- c(19,15,12,17)
> b3 <- c(20,24,28,23)
> m1 <-
> m1  # b1, b2, b3 벡터 결합
 [,1] [,2] [,3]
[1, ] 4 19 20
[2, ] 5 15 24
[3, ] 7 12 28
[4, ] 2 17 23
```

• 예시 4 : 매트릭스 다루기

```
1 rich_state.x77 <-
2 rich_state.x77
```

```
rich_state.x77 <-
                         # state.x77 매트릭스에서 ncome 값이 5000 이상인 데이터 출력
  rich_state.x77
        Population Income Illiteracy Life Exp
Alabama
                  3624
          3615
                          2.1
                               69.05
Alaska
           365
                6315
                        1.5
                               69.31
       2212
                          1.8
Arizona
                   4530
                                70.55
```

• 예시 5 : 데이터프레임 생성하기

> X <-	# x는 숫자형 벡터
> y <-	# y는 문자형 벡터
> Z <-	# z는 논리형 벡터
> df <-	# x, y, z 벡터 결합하기
> df	
x y z	
1 1 white TRUE	
2 2 blue FALSE	
3 3 yellow TRUE	

• 예시 6: 데이터프레임 다루기

```
    1 class(airquality)
    2 airquality_m <-</li>
    3 class(airquality_m)
```

```
> class(airquality) # airquaility : R에서 제공하는 일별 대기의 질을 측정한 데이터셋

[1] "data.frame" # 자료구조는 데이터프레임

> airquality_m <- # airquailty의 자료구조를 매트릭스로 변환

[1] "matrix" "array"
```

• 예시 7: 데이터프레임 다루기


```
> nrow # 오존(Ozone)농도가 120을 넘는 날이 며칠인지 출력
[1] 3
> subset
Ozone Solar.R Wind Temp Month Day # 기온이 가장 높은 날의 데이터를 출력
120 76 203 9.7 97 8 28
```

• 예시 8 : 데이터프레임 다루기

1 airquality
2 airquality

• 실행 결과

> airquality [, "Wind"]
Wind

1 7.4
2 8.0
3 12.6
...
> airquality | Wind
[1] 7.4 8.0 12.6 ...

3245 3

airquality의 "Wind" 열 추출 # 결과 = 데이터프레임

airquality의 "Wind" 열 추출 # 결과 = 벡터

コはいっちいこ

kimtwan21@dongduk.ac.kr

김 태 완