

# 正丁醇精餾塔AI操作最佳化



台塑麥寮正丁醇廠

報告人: 薛仰伸 2022.10.26

# 目錄大綱

執行摘要 麥寮正丁醇製程說明 3 改善動機 AI模型開發歷程 各階段詳細說明 效益說明 結論及後續推動事項

# 1.執行摘要

- ▶ 正丁醇精餾塔單元是將粗正丁醇以輕沸物脫除塔(C-150)及重沸物 脫除塔(C-160)進行純化,產製純度99.8%以上的正丁醇成品。
- ▶ 過去依照人工檢驗數據及製程操作經驗,以9個單迴路控制正丁醇品質, 部分控制迴路動態反應時間長達12小時以上,且製程系統屬於多變數 關係,不易找出同時兼顧收率與節能的最佳操作條件。
- ▶ 開發AI品質預測模型與AI高階控制模組,計算最佳操作條件,達到增加收率、節能與自動控制之目標,已於2021年11月上線。

#### ▶ 改善目標:

|            | 節省蒸汽用             | 担化工工耐收率           |             |
|------------|-------------------|-------------------|-------------|
| 項目         | 輕沸物脫除塔<br>(C-150) | 重沸物脫除塔<br>(C-160) | 提升正丁醇收率 (%) |
| 改善前        | 7. 09             | 14.83             | 94. 64      |
| 目標         | < 6.70            | <14.00            | >95.10      |
| 2021年11月實際 | 6. 58             | 13. 55            | 95. 33      |

▶ 投資金額:8,470千元;年效益:65,387千元;回收年限:0.13年。

#### 2.1麥寮正丁醇製程說明

- ▶正丁醇製程包含醛化反應器、異構物分離塔、氫化反應器與 正丁醇精餾塔等四大主要單元。
- ▶正丁醇是由合成氣與丙烯進行醛化反應,生成正/異丁醛, 經異構物分離塔分離,分離後正丁醛與氫氣生成粗正丁醇, 並以精餾塔單元進行純化,產製而成。
- ▶本次AI應用範圍:正丁醇精餾塔單元。



本次AI應用範圍

#### 2.2正丁醇精餾塔單元流程說明

➤ 正丁醇精餾塔單元係用於純化粗正丁醇,其中輕沸物脫除塔 (C-150)主要是將未反應丁醛、水份移除,重沸物脫除塔(C-160)是將 重沸物移除,獲得純度99.8%以上的正丁醇成品。



#### 3. 改善動機(1/3)

- ▶ 本案共有3個改善動機,分述如下:
  - (1)過去依照SOP、檢驗數據及操作經驗進行調整控制,為確保 品質合格,將重沸物脫除塔(C-160)塔底溫度穩定控制於 142℃,正丁醇品質離管制標準仍有裕度空間,故朝向優化 製程操作參數,來尋找更大的改善空間。



►解決方案:使用Aspen軟體,建立精餾塔單元模型,探討效益 最大化的操作改善空間。

#### 3. 改善動機(2/3)

(2)產製正丁醇成品的過程中,依據檢驗品質數據,調整製程控制參數, 目前檢驗頻率為8小時一次,無法即時得知品質變化趨勢。



▶ 解決方案:使用機器學習演算法,建立AI品質預測模型,預測品質變化,作為後續即時調整參考依據。

精餾段製程

#### 3. 改善動機(3/3)

(3)正丁醇精餾塔單元透過9個單迴路控制,調整正丁醇品質,實際狀況,單一控制變數同時受多個操作變數影響,以C-160為例:



▶ 解決方案:導入AI高階控制器,可進行多變數的趨勢預測與控制, 縮小製程變異並移動至最佳操作條件,達節能與提升收率的目標。

#### 4. AI模型開發歷程

温度,提升正丁醇

收率。

▶ 結合Aspen模擬、AI品質模型進行AI高階控制,在符合品質管制標準前提下,實現提升收率、節能及自動控制之目標。



# 5.1第一階段: Aspen模擬(1/3)

- ▶探討效益最大化的操作改善空間,使用Aspen軟體建立正丁醇 精餾塔模型,模擬操作參數與產物之間關聯性。
- ► Aspen模擬結果,正丁醇精餾塔單元可再調整的重要控制參數為「C-160至C-150迴流量」及「C-160塔底溫度」。



# 5.1第一階段: Aspen模擬(2/3)

造成温度不易控制。

▶提升收率模擬結果:減少重沸物排放量,因塔底重沸物濃度提高, 使C-160塔底溫度上升,進而提升收率。



C-160塔底溫度(°C)

# 5.1第一階段: Aspen模擬(3/3)

#### > 節省蒸汽模擬結果:

降低C-160至C-150迴流量,可降低兩塔操作負荷,減少蒸汽用量。 實際操作上,C-160至C-150迴流量最低流量限制為 噸/小時, 如設定過低,恐造成C-160塔頂輕沸物蓄積,影響正丁醇品質。



C-160至C-150迴流量(噸/小時)

#### 5.2第二階段:AI品質預測模型

#### ▶ 開發目標:

為符合品質規範下達操作最佳化,由AI即時預測品質數據,提供後續控制模型的操作依據,本案共建置2個AI品質預測模型。



# Step1.收集製程與品質數據

收集時間:2020年8月~2021年4月

▶ 資料數量:1,958組操作數據



▶ 以2 C-160塔頂正丁醇純度品質預測模型為例,進行細部開發說明。

# Step2.資料前處理

- ▶問題點:原僅刪除製程停車數據,仍有部分離群值無法剔除, 影響模型準確度。
- ▶改善方案:經檢討,該離群值多為開車初期數據,將3倍標準差 以外的數據視為異常值剔除,改善後有效資料共1,632組操作數據。

#### C-160蒸汽流量-資料量占比分布圖

μ: 平均值σ:標準差

離群值

(開車初期)

10

C-160蒸汽流量(噸/小時)

 $\mu$ -3 $\sigma$ 

 $\mu + 3\sigma$ 



原始數據 删除停車期間數據 非常態分布 仍有離群值



改善後無離群值有效資料1,632組

# Step3. 特徵篩選(1/4)

- 》以隨機森林演算法,獲得每個特徵(x)的重要程度,僅保留對正丁醇 純度(y)影響較大的特徵來建立模型。
- ▶ 以6個樣本計算單棵決策樹的特徵重要度:

#### 32個特徵

月標

|   |            |                |                |                |       |       |                   | 山小小   |
|---|------------|----------------|----------------|----------------|-------|-------|-------------------|-------|
|   | 項目         | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\mathbf{x}_3$ | $X_4$ | • • • | $\mathbf{x}_{32}$ | y     |
|   | <b>S</b> 1 | 1              | 0.5            | 1              | 2     |       | 1                 | 1     |
|   | <b>S</b> 2 | 1              | 1              | 3              | 3     |       | 1.2               | 2     |
|   | <b>S</b> 3 | 1              | 1              | 2              | 4     |       | 3                 | 2.5   |
|   | S4         | 2              | 1              | 1              | 5     |       | 4                 | 4     |
| Ī | <b>S</b> 5 | 2              | 1              | 1              | 6     |       | 1                 | 6     |
|   | <b>S</b> 6 | 2              | 1              | 2              | 7     |       | 1                 | 7     |
|   | 平均值        | 1.5            | 0.92           | 1.67           | 4.5   |       | 1.87              | 3. 75 |

#### **0 0 0 0 0 0 0 0**

樣

本

數

決策樹以二分法尋找資料切點, 計算<u>絕對誤差和</u>來訓練模型, 決策樹會自行計算最佳切點, 可最大幅度降低訓練誤差。

#### 無切點模型誤差: $\sum_{i=1}^{6} |\bar{y} - y_{Si}|$

 $|3.75-1|+|3.75-2|\cdots+|3.75-7|=11.5$ 



#### 切點1模型誤差:5

 $|\bar{y}_{(S1,S2,S3)} - y_{S1}| + \dots + |\bar{y}_{(S1,S2,S3)} - y_{S3}| = 1.67$  $|\bar{y}_{(S4,S5,S6)} - y_{S4}| + \dots + |\bar{y}_{(S4,S5,S6)} - y_{S6}| = 3.33$ 

X<sub>1</sub>誤差改善量: 11.5-5 = 6.5

#### 5.2第二階段:AI品質預測模型

數據收集

資料前處理

特徵篩選

模型建立

# Step3. 特徵篩選(2/4)

以6個樣本計算單棵決策樹的特徵重要度:

|     |            | E              | 目標             |                |       |       |                        |      |
|-----|------------|----------------|----------------|----------------|-------|-------|------------------------|------|
|     | 項目         | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\mathbf{x}_3$ | $X_4$ | • • • | <b>X</b> <sub>32</sub> | y    |
|     | S1         | 1              | 0.5            | 1              | 2     |       | 1                      | 1    |
| 槎   | <b>S</b> 2 | 1              | 1              | 3              | 3     |       | 1.2                    | 2    |
| 樣本數 | <b>S</b> 3 | 1              | 1              | 2              | 4     |       | 3                      | 2.5  |
| 4   | S4         | 2              | 1              | 1              | 5     |       | 4                      | 4    |
| 數   | <b>S</b> 5 | 2              | 1              | 1              | 6     |       | 1                      | 6    |
|     | S6         | 2              | 1              | 2              | 7     |       | 1                      | 7    |
|     | 平均值        | 1.5            | 0. 92          | 1.67           | 4.5   |       | 1.87                   | 3.75 |

00 m 1+ M

#### 決策樹特徵重要度計算方式:

| 特徵    | $\mathbf{x}_1$ | <b>X</b> <sub>2</sub> | 合計    |
|-------|----------------|-----------------------|-------|
| 誤差改善量 | 6. 5           | 1. 17                 | 7. 67 |
| 特徵重要度 | 0.85           | 0. 15                 | 1     |

#### 特徵重要度=各別誤差改善量/總誤差改善量

$$x_1 = 6.5 / 7.67 = 0.85$$
  
 $x_2 = 1.17 / 7.67 = 0.15$ 

無切點模型誤差:  $\sum_{i=1}^{6} |\bar{y} - y_{Si}| = 11.5$ 



切點2模型誤差:3.83

$$\begin{aligned} |\overline{y}_{(S1)} - y_{S1}| &= 0 \\ |\overline{y}_{(S2,S3)} - y_{S2}| + |\overline{y}_{(S2,S3)} - y_{S3}| &= 0.5 \\ |\overline{y}_{(S4,S5,S6)} - y_{S4}| + \dots + |\overline{y}_{(S4,S5,S6)} - y_{S6}| &= 3.33 \end{aligned}$$

 $X_2$ 誤差改善量: 5-3.83=1.17

# Step3. 特徵篩選(3/4)

#### ▶ 計算隨機森林特徵重要度

資料集1,632組

| 點位名稱   | 代號                                          |
|--------|---------------------------------------------|
|        | у                                           |
|        | $\mathbf{x}_1$                              |
|        | $\mathbf{x}_2$                              |
|        | $\mathbf{x}_3$                              |
|        | X <sub>4</sub>                              |
|        | <b>X</b> <sub>5</sub>                       |
|        | $\mathbf{x}_6$                              |
|        | <b>x</b> <sub>6</sub> <b>x</b> <sub>7</sub> |
| •      | •                                           |
| 共32個特徵 | <b>x</b> <sub>32</sub>                      |

資料,建立1棵決策樹, 共建立100棵決策樹。

隨機森林模型



每次隨機抽樣700組訓練 \_\_\_ 統計隨機森林模型,各特徵 誤差改善量的占比,獲得最終 特徵重要度。



|      |                |                | _ |                 |       |
|------|----------------|----------------|---|-----------------|-------|
| 編號   | $\mathbf{x}_1$ | $\mathbf{x}_2$ |   | X <sub>32</sub> | 合計    |
| 決策樹1 | 6.5            | 2.3            |   | 0.2             | 40.9  |
| 決策樹2 | 3.2            | 4.3            |   | 0.5             | 39. 2 |
|      |                |                | • |                 |       |

決策樹100 2.5 6.4 1,057 976 總和 特徵 0.26 0.24 重要度

| 0.3       | 41.5  |
|-----------|-------|
| 40        | 4,066 |
| <br>0. 01 | 1     |

$$x_{n,improvement} = \sum_{i=1}^{100} x_{n,i}$$
 誤差改善量

n:特徵數量,i:決策樹數量

$$x_{n,importance} = \frac{x_{n,improvement}}{\sum_{n=1}^{32} x_{n,improvement}}$$
特徵重要度

# Step3. 特徵篩選(4/4)

▶ 以迴歸演算法針對32個特徵進行多次訓練,根據特徵重要度分析結果,由高至低逐次增加特徵來訓練模型,最終採用6個特徵進行AI建模。



# Step4.1演算法選擇

- ▶ 本案屬於製程優化的數值預測,選擇5種常見演算法進行訓練評比, 最終選定嶺迴歸(Ridge)為品質預測模型演算法。
- ▶ 與總管理處統計應用於製程優化成功開發案例之主要演算法相符。

| 項次            | 演算法                     | MAE (%) |
|---------------|-------------------------|---------|
| 1             | 嶺迴歸(Ridge)              | 0.022   |
| 2             | 線性迴歸(Linear Regression) | 0.032   |
| 3             | 隨機森林(Random Forst)      | 0.027   |
| 4             | 極限梯度提升(XGBoost)         | 0.025   |
| 5 深度神經網路(DNN) |                         | 0.042   |
|               | MAE目標                   | <0.035% |

- ※ MAE: 平均絕對誤差(Mean Absolute Error)
- ※MAE目標制定原則:模型的訓練資料為原始檢驗數據,該資料本身存在檢驗誤差,因此該模型MAE目標是以檢驗誤差作為標準來設定。

# Step4. 2 模型化工原理驗證

$$y$$
 (正丁醇純度) =  $\sum_{i=1}^{n} w_i X_i + b$  样重( $w_i$ )正負號表示特徵( $X_i$ )與品質的相關 + 表示該特徵( $X_i$ )與品質( $y$ )為正相關。 - 表示該特徵( $X_i$ )與品質( $y$ )為負相關。

權重(Wi)正負號表示特徵(Xi)與品質的相關性

▶ Ridge模型演算結果:6個特徵均符合化工操作原理。

| 項次 | 製程變數 $(X_i)$ | 權重(W <sub>i</sub> ) | 是否符合<br>化工原理 |
|----|--------------|---------------------|--------------|
| 1  |              | 0.023               | 是            |
| 2  |              | -0.002              | 是            |
| 3  |              | -0.012              | 是            |
| 4  |              | -0.017              | 是            |
| 5  |              | -0.019              | 是            |
| 6  |              | 0.006               | 是            |

#### Step4.3 線上驗證結果

▶驗證時間:2021/8/27~2021/9/16。

▶驗證結果:品質變化趨勢相近, MAE為0.021%,符合目標 <0.035% •



# 5.3第三階段:AI高階控制器(1/2)

▶ 將AI品質模型計算後的品質預測值,寫入AI高階控制器 (Advanced Process Control, APC),作為調整控制的參考依據。



#### AI高階控制器功能:

- 》計算多變數間影響 程度及時間,可於 多個控制迴路中, 找到最佳操作條件。
- ▶預測製程變化趨勢, 提供穩定控制方式。

#### 5.3第三階段:AI高階控制器(2/2)

#### ◆開發流程

1 篩選點位

以節能與提升收率兩大製程控制目標,篩選點位,並將點位區分為操作變數、控制變數、干擾變數。

2) 收集數據

模型建立不使用歷史數據,需先將AI高階控制器與DCS系統連結,以步階測試直接於線上進行計劃性調整,收集數據。

3 建立模型

建立控制變數動態模型,篩選變化趨勢直接且顯著之有效動態模型。

4 上線驗證

模型離線測試,觀察其控制邏輯,檢討修正參數設定,如是否相互抵觸、控制範圍限制等,佈署上線,持續進行模型優化。

#### 5.3第三階段:AI高階控制器

> 篩選點位:

精餾塔單元包含32個製程變數,根據製程領域知識與操作經驗, 挑選與「節能」與「提升收率」較相關的23個變數,依變數特性 分類如下:

| 類別 | 操作變數(7個) | 控制變數(11個) | 干擾變數(5個)          |
|----|----------|-----------|-------------------|
| 目的 | 調整控制點    | 控制的目標     | 干擾影響控制變數<br>但無法操作 |
| 點位 |          |           |                   |

- ▶ 以操作變數進行步階測試(Step Test)收集數據:
  - (1)於DCS系統上調整操作變數,收集各變數間的變化趨勢。
  - (2)時間:2020/6/23~2020/9/4,每15秒一組,合計約42萬組操作數據。

▶ 使用FIR演算法建立模型:

考慮自變數(x)在多個時間序列下與應變數(y)之關係,建立模型。

$$y_t = b_1 x_{t-1} + b_2 x_{t-2} + b_3 x_{t-3} \dots + e_t$$

塔底溫度 多個時間序列的C-160正丁醇流量 誤差項

▶ 以11個控制變數為主體,建立132個FIR模型,組合成動態矩陣模組。



FIR:有限脈衝響應(Finite Impulse Response)

#### ▶ 篩選模型:

評估每個動態模型變數間的影響程度,並確認方向性是否正確, 最終從132個FIR模型中,保留43個有效之動態模型。

▶ 保留模型:C-160正丁醇出料控制閥開度與塔底溫度。



# 5.3第三階段:AI高階控制器

#### ▶ 設定AI可控範圍

基於製程安全前提,製程主管依據製程know-how、Aspen模擬結果及現場操作經驗,現場盤控人員設定各操作變數上下限,AI僅能於範圍內自動調整控制。

#### DCS操作範圍設定畫面

| AI高階 | AI高階控制器狀態:Active 通訊狀態:正常 APC切換:APC ON |    |      |      |      |  |  |
|------|---------------------------------------|----|------|------|------|--|--|
|      | 操作變數                                  | 目前 | 變數切換 | 控制下限 | 控制上限 |  |  |
| 01   |                                       |    | ON   |      |      |  |  |
| 02   |                                       |    | ON   |      |      |  |  |
| 03   |                                       |    | ON   |      |      |  |  |
| 04   |                                       |    | ON   |      |      |  |  |
| 05   |                                       |    | ON   |      |      |  |  |
| 06   |                                       |    | ON   |      |      |  |  |
| 07   |                                       |    | ON   |      |      |  |  |
|      |                                       |    |      |      |      |  |  |

設定AI可控範圍

- ► AI每30秒計算一次最佳操作條件,同時對多個點位進行微幅調整。
- > 收率:減少重沸物排放量,正丁醇產量增加。
- ▶ 節汽:減少C-160至C-150迴流量,降低蒸汽用量。



# 5.4第四階段:模組正式上線(1/2)

#### ▶ 提升收率驗證結果:

AI上線後正丁醇產量可增加5.3噸/日;平均收率由94.64% 提升至95.33%(增加0.69%)。



#### 5.4第四階段:模組正式上線(2/2)

#### ▶ 節省蒸汽驗證結果:

C-150蒸汽量減少0.51噸/小時,C-160蒸汽量減少1.28噸/小時。



#### 6. 效益說明(1/2)

- ▶ 本案已於2021年11月正式上線,效益說明如下:
  - ① 投資費用:8,470千元
    - a. 軟體: 2,230千元
    - b. 硬體:700千元
    - c. 設計:5,540千元
  - ② 年效益:65,387千元/年
    - a. 提升收率: 50,340 千元/年

b.節省蒸汽量:15,047千元/年

③ 回收年限: 0.13年

#### 6. 效益說明(2/2)

#### > 實際效益波動圖



#### 7. 結論及後續推動事項(1/2)

- ➤ 2020/7Aspen模擬正丁醇精餾塔單元,探索提升收率與節能的調整方向。 2020/9開發AI品質預測模型。
  - 2020/12開發AI高階控制模組,計算最佳操作條件。
  - **2021/11正式上線**,已節省蒸汽用量1.79噸/小時,正丁醇平均收率增加0.69%(5.3噸/日)。
- ➤ 後續推動事項:AI高階控制模組已展開應用於其他製程系統,合計12案, 預估總效益110,068千元,已完成3案,年效益90,794千元。

| 進度  | 部門         | 主題                         | 完成日     | 預估效益<br>(千元/年) |
|-----|------------|----------------------------|---------|----------------|
| 已完成 | 麥寮<br>NBA廠 | 異構物分離塔(C-130)操作最佳化         | 2019/8  | 20, 909        |
|     |            | 正丁醇精餾塔(C-150、C-160)操作最佳化   | 2021/11 | 65, 387        |
|     | 仁武台麗朗      | DMF蒸餾塔操作最佳化                | 2022/3  | 4, 498         |
| 開發中 | 麥寮<br>NBA廠 | 醛化反應器(R-111/R-112)操作最佳化    | 2023/3  | 4, 700         |
|     |            | 氫化反應器(R-142A/R-142B)操作最佳化  | 2023/6  | 2, 300         |
|     |            | 跨單元整合模組                    | 2023/12 | 4, 930         |
|     | 麥寮<br>AE廠  | BA區酸脫除塔(C-402)操作最佳化        | 2023/12 | 1, 015         |
|     |            | BA區單位用量最佳化                 | 2023/12 | 613            |
|     | 林園<br>AE廠  | 丙烯酸水分離塔(C-805)操作最佳化        | 2023/8  | 1, 657         |
|     |            | 丙烯酸丁酯精餾塔(C-906、C-907)操作最佳化 | 2023/12 | 2, 207         |
|     | 仁武<br>台麗朗  | DMSO蒸餾塔操作最佳化               | 2023/9  | 1, 294         |
|     |            | RM蒸餾塔(C-792)操作最佳化          | 2024/9  | 558            |
|     | 110, 068   |                            |         |                |

#### 7. 結論及後續推動事項(2/2)

 製程單元AI優化控制模組: 2019年8月完成異構物分離塔單元。
 2021年11月完成精餾塔單元。
 預計分別於2023年3月及6月完成醛化反應器及氫化反應器單元。



#### ▶ 跨單元整合:

整合上下游AI模組,統籌各單元間關聯性,計算最佳化操作條件,進一步降低原料與能源單耗,全案預計2023年12月開發完成。

預估效益:節省蒸汽1,600噸/年, 正丁醇產量增加600噸/年, 合計年效益4,930千元/年。



# 報告完畢恭請總統訓示



# 附件:英文專有名詞資料表(1/2)

| 英文名詞             | 英文全名                                          | 中文名稱        | 說明                                                                          |
|------------------|-----------------------------------------------|-------------|-----------------------------------------------------------------------------|
| Aspen            | Advanced System<br>for Process<br>Engineering | -           | 美國Aspen Tech公司開發的一套化工程序設計模擬軟體,<br>常用於化學品物理性質及熱力學模擬,以及化工<br>製程和設備的最佳化操作條件開發。 |
| APC              | Advanced Process<br>Control                   | 高階程序<br>控制  | 由英國AVEVA Group plc(劍維集團)開發的一套模型預測先進製程控制軟體,朝向提升品質、產量和減少能耗來提高生產過程的優化控制程序。     |
| CV               | Controled Variable                            | 控制變數        | 被控制的變數,如塔底溫度。                                                               |
| DCS              | Distributed<br>Control System                 | 分散式<br>控制系統 | 工廠或是製程中使用的電腦化控制系統,一般其中會有數個控制迴路,自主的控制器分散在系統中,無須中央操作員的監控。                     |
| Decision<br>tree | Decision tree                                 | 決策樹         | 資料透過對每個節點設定分類的規則生成一個樹狀圖,<br>來輔助我們做決策與分析。                                    |
| DNN              | Deep Neural<br>Networks                       | 深度 神經網路     | 以神經網路為基礎架構,藉由加深隱藏層來取代傳統<br>特徵工程的演算法。                                        |
| Feature          | Feature                                       | 特徴          | 將變數轉換為更具代表性或解釋性的資訊。                                                         |
| FV               | Feedforward<br>Variable                       | 干擾變數        | 對控制變數有影響,但無法操作的變數。                                                          |
| FIR              | Finite impulse response                       | 有限脈衝<br>響應  | 考慮自變數(x)在多個時間序列下與應變數(y)之關係的演算法。                                             |

# 附件:英文專有名詞資料表(2/2)

| 英文名詞                    | 英文全名                                                  | 中文名稱       | 說明                                                                                 |
|-------------------------|-------------------------------------------------------|------------|------------------------------------------------------------------------------------|
| LASSO                   | Least Absolute<br>Shrinkage and<br>Selection Operator | 脊迴歸        | 一種正規化函數,可同時進行變數篩選與複雜度調整。LASSO的懲罰項(L1)的效果可以強制令不重要的解釋變數,權重係數為0,進而篩選變數。               |
| MAE Mean Absolute Error |                                                       | 平均<br>絕對誤差 | 多筆實際值與預測值誤差的絕對值平均。                                                                 |
| MV                      | Manipulate Variables                                  | 操作變數       | 可操作的變數,使控制變數可在期望範圍內。                                                               |
| Parameter               | Parameter                                             | 參數         | 理論模型的設定條件。                                                                         |
| Random<br>Forest        | Random Forest                                         | 隨機森林       | 重複且隨機的從訓練資料中取樣本建立多個決策樹模型,整合多個決策樹結果給出估算值。                                           |
| RIDGE                   | RIDGE                                                 | 嶺迴歸        | 一種正規化函數,可經懲罰項(L2)同時執行縮小權重係數達到降低雜訊的迴歸分析方法,常用於解決存在多重共線性問題的資料集。                       |
| Step test               | Step test                                             | 步階測試       | 分析系統的階躍響應,有助於了解系統的特性,<br>透過計劃性調整變數,經長時間穩態後,可獲得<br>系統延遲時間;動態變化時間等資訊,也可了解<br>系統的穩定性。 |
| Variable                | Variable                                              | 變數         | 觀測值的統稱,依據特性或類型進行分類,如因變數、自變數、控制變數、干擾變數等。                                            |
| XGBoost                 | EXtreme Gradient<br>Boosting                          | 極限梯度<br>提升 | 將多個弱分類器組合後,形成一個強大的分類器<br>的機器學習演算法。                                                 |