

Probabilistic Graphical Models in Bioinformatics

Lecture 6: Learning Bayesian networks- Bayesian parameter estimation

Bayesian parameter estimation

- Thumbtack example:
 - Get 3 heads out of 10 tosses
 - We conclude θ is 0.3.
- Coin example
 - Get 3 heads out of 10 tosses
 - It is less likely that we conclude the parameter of the coin is 0.3.
 - Why? Because we have a lot of prior knowledge about their behavior.
 - Now assume we get 300000 heads out of 1 million tosses.
 - We are willing to conclude this is a trick coin with the parameter 0.3.

- Maximum likelihood approach does not allow us to incorporate
 - Our prior knowledge that coin is fairer than thumbtack
 - Between 10 and one million tosses

Bayesian parameter estimation

- We encode our prior knowledge about θ with a probability distribution
- We create a joint distribution over the parameter θ and the data X[1], ..., X[M]

Plate model

Tosses are conditionally independent given θ !

Question: specify the local probability distributions?

Joint probabilistic model-2

- Local probability distributions
 - $P(\theta)$: our prior knowledge about θ . A continuous distribution over the interval [0, 1].
 - $P(X[m] \mid \theta)$: probability of data given parameter

$$P(x[m] \mid \theta) = \begin{cases} \theta & \text{if } x[m] = x^1 \\ 1 - \theta & \text{if } x[m] = x^0 \end{cases}$$

- **Notation:** since in Bayesian approach, we treat θ as a random variable, we write $P(X[m] \mid \theta)$ instead of $P(X[m] : \theta)$.
- Joint distribution

$$P(x[1],\ldots,x[M],\theta) = P(x[1],\ldots,x[M]\mid\theta)P(\theta)$$

$$= P(\theta)\prod_{m=1}^{M}P(x[m]\mid\theta)$$

$$= P(\theta)\theta^{M[1]}(1-\theta)^{M[0]},$$

Joint probabilistic model-3

• Posterior distribution over θ :

- Hence, posterior is a proportional to the product of the likelihood and the prior
- If the prior is a uniform distribution (i.e., $P(\theta) = 1$ for all $\theta \in [0,1]$), then the posterior is the normalized likelihood function.

Example: posterior of θ for a uniform prior

• Question: in the ML approach, how do we predict the probability over the next toss?

• In Bayesian framework, instead of selecting a single value from the posterior, we use entire posterior distribution $P(\theta \mid D)$ for prediction

$$\begin{split} P(x[M+1] \mid x[1], \dots, x[M]) = \\ &= \int P(x[M+1] \mid \theta, x[1], \dots, x[M]) P(\theta \mid x[1], \dots, x[M]) d\theta \\ &= \int P(x[M+1] \mid \theta) P(\theta \mid x[1], \dots, x[M]) d\theta, \end{split}$$

Prediction-thumbtack example

- Assume the prior is uniform over θ in the interval [0, 1].
- We want to compute

head
$$P(X[M+1] = x^1 \mid x[1], \dots, x[M])$$

We use the following formula

Plugging this into integral

$$P(X[M+1] = x^1 \mid x[1], \dots, x[M]) = \frac{1}{P(x[1], \dots, x[M])} \int \theta \cdot \theta^{M[1]} (1-\theta)^{M[0]} d\theta.$$

Doing all the math, we get

$$P(X[M+1] = x^1 \mid x[1], \dots, x[M]) = \frac{M[1]+1}{M[1]+M[0]+2}.$$

Similar to the MLE:
$$\frac{M[1]}{M[1]+M[0]}$$

Adds one "imaginary" sample to each count

Referred to as Laplace's correction

Non-uniform prior

- How do we pick a prior distribution?
 - Our choice of the prior should facilitate efficient update of the posterior as we get new data

$$P(\theta \mid x[1], \dots, x[M]) = \frac{P(x[1], \dots, x[M] \mid \theta) P(\theta)}{P(x[1], \dots, x[M])}$$

- For reasons we will discuss later, an appropriate prior for coin example is the Beta distribution
 - Parameterized by two positive hyperparameters $lpha_1$ and $lpha_0$

$$\theta \sim \mathrm{Beta}(\alpha_1,\alpha_0); \qquad p(\theta) = \gamma \theta^{\alpha_1-1} (1-\theta)^{\alpha_0-1}$$
 Normalizing constant

$$E(\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

$$V(\theta) = \frac{\alpha_0 \alpha_1}{(\alpha_1 + \alpha_0)^2 (\alpha_1 + \alpha_0 + 1)}$$

• Intuitively, α_1 and α_0 correspond to the number of imaginary heads and tails that we have "seen" before starting the experiment.

Examples of Beta distributions

For different choices of hyperparameters

Posterior for Beta prior

- **Prior**: $\theta \sim \text{Beta}(\alpha_1, \alpha_0)$ with density $p(\theta) = \gamma \theta^{\alpha_1 1} (1 \theta)^{\alpha_0 1}$
- Data: M[1] heads and M[0] tails
- Likelihood: $P(D | \theta) = \theta^{M[1]} (1 \theta)^{M[0]}$

Posterior:

$$\begin{array}{ll} P(\theta \mid x[1], \dots, x[M]) \; \propto & P(x[1], \dots, x[M] \mid \theta) P(\theta) \\ & \propto & \theta^{M[1]} (1-\theta)^{M[0]} \cdot \theta^{\alpha_1-1} (1-\theta)^{\alpha_0-1} \\ & = & \theta^{\alpha_1+M[1]-1} (1-\theta)^{\alpha_0+M[0]-1}, \quad \text{which is precisely } \textit{Beta}(\alpha_1 + M[1], \alpha_0 + M[0]) \end{array}$$

• We say Beta distribution is conjugate to the Bernoulli likelihood function

Bayesian prediction

• Question: Assume $P(\theta) = Beta(\alpha_1, \alpha_0)$, and consider a single coin toss X. Compute the marginal probability $P(X[1] = x^1)$, based on $P(\theta)$.

$$P(X[1] = x^{1}) = \int_{0}^{1} P(X[1] = x^{1} \mid \theta) \cdot P(\theta) d\theta$$
$$= \int_{0}^{1} \theta \cdot P(\theta) d\theta = \frac{\alpha_{1}}{\alpha_{1} + \alpha_{0}}.$$

• Question: compute the probability over the next toss given observations so far

$$P(X[M+1] = x^1 \mid x[1], \dots, x[M]) = \frac{\alpha_1 + M[1]}{\alpha + M}$$

Posterior distribution tells us that we have seen $\alpha_1 + M[1]$ heads (imaginary and real) + $\alpha_0 + M[0]$ tails.

Conjugacy

The *posterior distribution* is in the *same parametric family* as the prior but with **new parameters values**

Bayesian approach vs MLE

- In Bayesian approach, we can incorporate our prior knowledge.
- The distinction between coin and thumbtack can be captured by the strength of the prior

Question: compare MLE & Bayesian prediction

Data 1: 3 heads in 10 tosses

Data 2: 300 heads in 1000 tosses

 The distinction between a few samples and many samples is captured by peakedness of our posterior.

More about Bayesian approach

- The MLE approach attempts to find the parameter $\hat{\theta}$ that are "best" given the data.
- Bayesian approach does not attempt to find such a *point estimate*. Instead, it tries to update our beliefs about θ 's values according to the evidence.
- In the Bayesian approach, we treat parameters, θ , as random variables. Then we describe a joint distribution $P(D, \theta)$ over the data and the parameters.

$$P(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\mathcal{D})}.$$

• P(D) is called marginal likelihood of the data (i.e., integration of the likelihood over all possible parameter assignments).

$$P(\mathcal{D}) = \int_{\Theta} P(\mathcal{D} \mid \boldsymbol{\theta}) P(\boldsymbol{\theta}) d\boldsymbol{\theta},$$

Conjugate prior for multinomial distribution TEHRAN

- Let X has K values $x^1, ..., x^K$.
- Multinomial likelihood

$$L(\boldsymbol{\theta}:\mathcal{D}) = \prod_{k} \theta_k^{M[k]}.$$

• Conjugate prior: Dirichlet distribution

$$\boldsymbol{\theta} \sim Dirichlet(\alpha_1, \dots, \alpha_K)$$

$$P(\boldsymbol{\theta}) \propto \prod_k \theta_k^{\alpha_k - 1}$$

• Observed data : M[1], ..., M[K]. Posterior distribution $P(\theta \mid D)$:

$$Dirichlet(\alpha_1 + M[1], \ldots, \alpha_K + M[K])$$

Dirichlet distribution

- Generalized the Beta distribution
- Specified by a set of hyperparameters $\alpha_1, \dots, \alpha_K$
 - denoted as $\theta \sim Dirichlet(\alpha_1, \dots, \alpha_K)$
 - with the density function $P(\boldsymbol{\theta}) \propto \prod_k \theta_k^{\alpha_k 1}$
 - With $E\left[\theta_k\right] = \frac{\alpha_k}{\alpha}$ where $\alpha = \sum_j \alpha_j$
- Dirichlet hyperparameters are often called *pseudo-counts*.
- It represents the number of times we have seen the different outcomes in our prior experience
- Total α is often called the *equivalent sample size*.

Bayesian prediction with Dirichlet prior

• Posterior distribution $P(\theta \mid D)$

$$Dirichlet(\alpha_1 + M[1], \ldots, \alpha_K + M[K])$$

Prediction

$$P(x[M+1] = x^k \mid \mathcal{D}) = \frac{M[k] + \alpha_k}{M + \alpha}.$$

We can rewrite the prediction as

$$P(x[M+1] = x^k \mid \mathcal{D}) = \frac{\alpha}{M+\alpha} \theta_k' + \frac{M}{M+\alpha} \cdot \frac{M[k]}{M}$$
Prior mean ML estimate

where $\theta'_k = \frac{\alpha_k}{\alpha}$

- The prediction is a weighted average of the prior mean and the MLE.
- The weights are determined by α the confidence of the prior- and M the number of observed samples.

The effect of different priors

