2023秋第四次习题课(高数上)

补充作业

第一题

- **19. Odd differentiable functions** Is there anything special about the derivative of an odd differentiable function of *x*? Give reasons for your answer.
- **20. Even differentiable functions** Is there anything special about the derivative of an even differentiable function of *x*? Give reasons for your answer.

case 1: 当函数f为奇函数时,若其在 x_0 处可导且导数为 $f'(x_0)$,则根据

$$egin{aligned} &\lim_{h o 0} rac{f(-x_0+h)-f(-x_0)}{h} \ &= \lim_{h o 0} rac{f(x_0)-f(x_0-h)}{h} \ &= \lim_{h o 0} rac{f(x_0-h)-f(x_0)}{-h} \ &= f'(x_0) \end{aligned}$$

得到其在 $-x_0$ 处可导且导数值为 $f'(x_0)$

case 2: 当函数f为偶函数时,若其在 x_0 处可导且导数为 $f'(x_0)$,则根据

$$egin{aligned} &\lim_{h o 0} rac{f(-x_0+h)-f(-x_0)}{h} \ &= \lim_{h o 0} rac{f(x_0-h)-f(x_0)}{h} \ &= -\lim_{h o 0} rac{f(x_0-h)-f(x_0)}{-h} \ &= -f'(x_0) \end{aligned}$$

得到其在 $-x_0$ 处可导且导数值为 $-f'(x_0)$

$$f(x) = \frac{1}{1+x^2}$$
 为偶函数,所以 $f^{(7)}(0) = 0$

Page 9 ex 1:D

- 1. 若f(x) 在(0,∞) 上可导,下面哪个命题正确?
 - (A) 若f(x) 有唯一零点,则f'(x) 没有零点.
 - (B) 若f'(x) 至少有一个零点, 则f(x) 至少有两个零点.
 - (C) 若f(x) 没有零点,则f'(x) 至多有一个零点.
 - (D) 若f'(x) 没有零点,则f(x) 至多有一个零点.

这里只证明D选项的正确性,反证法: 若函数 f(x) 的零点个数大于等于2,选取其中的两个零点 $x_0 > 0, x_1 > 0$,则 $f(x_0) = f(x_1) = 0$ 由于f(x) 在 $(0, \infty)$ 可导,根据罗尔定理,存在 $\xi \in (x_0, x_1)$ st. $f'(\xi) = 0$ 矛盾

Page 9 ex 2 : B

$$\diamondsuit f(x) = x^3 - 6x^2 + 9x + c \, \text{則} f'(x) = 3x^2 - 12x + 9 = 3(x-1)(x-3)$$

f(x) 在 $(-\infty,1)$ 递增,(1,3) 递减 $(3,\infty)$ 递增,f(0)=c>0

f(1) > f(0) > 0 f(3) = c > 0 故而f(x) 在 $(0, \infty)$ 上只有一个根

2. 若c > 0,则方程 $x^3 - 6x^2 + 9x + c = 0$ 的实根的个数为 (A) 0. (B) 1. (C) 2. (D) 3.

Page 9 ex 9

- 9. 判断下列命题正确与否. 若正确, 给出证明. 若错误, 给出反例.
 - (1) ★ 若f'(c) > 0, 则f(x) 在包含c 的某个邻域严格单调递增.
 - (2) 若f'(c) > 0, 则存在某个 $\delta > 0$, 使得任意的 $x \in (c, c + \delta)$, 满足f(x) > f(c).
 - (3) 若(1, f(1)) 是拐点,则f''(1) = 0.
 - (4) ★ 若 $f'(x_0)$ 存在, 且 $\lim_{x\to x_0} \frac{f''(x)}{x-x_0} = 1$, 则 $(x_0, f(x_0))$ 是y = f(x) 的一个拐点.
 - (5) 若函数f(x) 在[a,b] 上可导, 且f'(a)f'(b) < 0. 则存某个 $c \in (a,b)$ 使得f'(c) = 0.
 - (6) 若函数f(x) 在[a,b] 上可导, 且f'(a)f'(b) > 0. 存在某个 $c \in (a,b)$ 使得f(c) = 0.

2:正确: f'(c)>0,根据极限的定义 $f'(c)=\lim_{h\to 0}rac{f(c+h)-f(c)}{h}>0$,根据极限的保号性 $\exists \delta>0st$. 当 $h\in (-\delta,0)\cup (0,\delta)$ 时, $rac{f(c+h)-f(c)}{h}>0$,也即当 $x\in (c,c+\delta)$ 时, $rac{f(x)-f(c)}{x-c}>0$,f(x)>f(c)。

3: 错误,该点的二阶导数可能不存在,例如 $y=f(x)=x^{\frac{1}{3}}$,0是他的拐点,但在此处无二阶导数

4: 正确: 与2相同,首先在该点处的导数存在,根据 $\lim_{x \to x_0} \frac{f''(x)}{x - x_0} = 1 > 0$,以及极限的保号性, $\exists \delta > 0st$. 当 $x \in (x_0 - \delta, x_0) \bigcup (x_0, x_0 + \delta)$ 时, $\frac{f''(x)}{x - x_0} > 0$, 也即当 $x \in (x_0 - \delta, x_0)$ 时, f''(x) < 0, 当 $x \in (x_0, x_0 + \delta)$ 时 f''(x) > 0

该点是y = f(x)的拐点

5: 正确: 证明: 不妨设 $f'_{+}(a) > 0$, $f'_{-}(b) < 0$, 根据保号性,由于 $f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} > 0$,所以存在 $\delta_{1} > 0$ st. 当 $x \in (a, a + \delta_{1})$ 时, $\frac{f(x) - f(a)}{x - a} > 0$,而 x - a > 0,故而有f(x) > f(a),同样地,存在 $\delta_{2} > 0$ st. 当 $x \in (b - \delta_{2}, b)$ 时, f(x) > f(b),这说明f(a),f(b)都不是f在[a, b]上的最大值,由于f在[a, b]上可微,故而连续,因而一定存在 $\xi \in (a, b)$ st. f 在 ξ 处取得最大值,根据费马定理 $f'(\xi) = 0$

根据此题的结论我们可以证明达布中值定理

达布(**Darbux**)中值定理: 如果f 在[a,b] 上可导,且 $f'_{+}(a) \neq f'_{-}(b)$,k为介于 $f'_{+}(a), f'_{-}(b)$ 之间的任一实数,则至少存在一点 $\xi \in (a,b)st. f'(\xi) = k$ 。

证明: 不妨设 $f'_+(a) < f'_-(b)$ 令F(x) = f(x) - kx,则 $F'_+(a) < 0$, $F'_-(b) > 0$,根据5题所证结论,存在 $\xi st. F'(\xi) = 0 \Rightarrow f'(\xi) = k$ 。

根据达布中值定理我们可以证明如果f在[a,b]上可导,则导函数f'(x)无第一类间断点。

6: 错误: 考虑函数 $f(x) = x^2 + 2$ 区间[-1, 1]

补充第三大题

- 3. Find the global extreme values and the local extreme values of following functions.
- (1) $y = \sin^3 x + \cos^3 x$, $x \in [0, 2\pi]$.
- (2) $y = |x^2 4x + 1|, x \in [0, 5]$ (Hint: Using Sec.3.6, Example 6, page, 161).
- (1) $y' = 3\sin^2 x \cos x 3\cos^2 x \sin x = 3\sin x \cos x (\sin x \cos x)$

 $y'' = -3(\sin^3 x + \cos^3 x - 2\sin x \cos^2 x - 2\sin^2 x \cos x)$

局部极值: $\alpha(0,2\pi)$ 内 y' 在点 $\frac{\pi}{4}$, $\frac{\pi}{2}$, π , $\frac{5\pi}{4}$, $\frac{3\pi}{2}$ 处为0,

 $\frac{\pi}{4}$ 处y'' > 0 为局部极小值 $\frac{1}{\sqrt{2}}$

 $\frac{\pi}{2}$ 处y'' < 0 为局部极大值 1

 π 处y'' > 0 为局部极小值-1

 $\frac{5\pi}{4}$ 处y'' < 0 为局部极大值 $-\frac{1}{\sqrt{2}}$

 $\frac{3\pi}{2}$ 处y'' > 0 为局部极小值-1

端点0 处,在0右侧的一个小邻域 $(0,\delta_1)$ 内有y'<0 故而在此处为局部极大值1

端点 2π 处,在 2π 左侧的一个小邻域 $(2\pi - \delta_2, 2\pi)$ 内有y' > 0 故而在此处为局部极大值

由于此函数处处可导,故而全局极值在导数值为**0**或者端点处取得(根据上述分析可得,故 而在这里省略)

(2) 求导得
$$y' = \frac{2(x-2)(x^2-4x+1)}{|x^2-4x+1|}$$
 (当 $x^2-4x+1 \neq 0$ 时)

先讨论局部极值,在(0,5)内:

当x=2 时y'=0 在2左侧小邻域y'>0 右侧小邻域y'<0 故而在x=2 处取得局部极大值3

在 $x=2-\sqrt{3}$ 处,y 不可导,且在该点处左侧小邻域y'<0 右侧小邻域y'>0 故而在 $x=2-\sqrt{3}$ 处取得局部极小值0

在 $x=2+\sqrt{3}$ 处,y 不可导,且在该点处左侧小邻域y'<0 右侧小邻域y'>0 故而在 $x=2+\sqrt{3}$ 处取得局部极小值0

在端点0处,0右侧的小邻域内,y'<0 故而在该端点处取得局部极大值1

在端点5处,5左侧的小邻域内,y'>0 故而在该端点处取得局部极大值6

全局极值: 总结可得极小值0, 极大值6(过程同样省略, 比较简单)

Page 9 ex 7

7. ★ 证明方程 $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$ 在(0, 1) 上至少有一个实根. 其中系数 $a_n, a_{n-1}, ..., a_0$ 满足 $\frac{a_n}{n+1} + \frac{a_{n-1}}{n} + ... + a_0 = 0$.

 $c \in (a,b)st.$ f'(c) = 0, 也即题干中的方程在(0,1) 上至少有一个实根。

Page 9 ex 8

8. 确定方程 $x^2 = x \sin x + \cos x$ 的实根数目.

$$\diamondsuit f(x) = x^2 - x \sin x - \cos x$$

该函数为偶函数,只需考虑f(x) = 0在 $(0, \infty)$ 上的根的数目

$$f(0) = -1 < 0$$

$$f'(x) = 2x - x\cos x - \sin x + \sin x = x(2 - \cos x)$$

故而该函数在 $(0,\infty)$ 递增,而 $f(\pi) > 0$,f(x) = 0在 $(0,\pi)$ 中至少有一个根

根据单调性,f=0 在 $[0,\infty)$ 上有一个根

所以题干方程一共有两个实根。

补充题

- 11. ★ 若f(0) = 0. 判断下列命题正确与否. 若正确, 给出证明. 若错误, 给出反例.

 - (1) $\ddot{a}\lim_{h\to 0} \frac{1}{h^2} f(1-\cos h)$ 存在, 则f 在x=0 处可导. (2) $\ddot{a}\lim_{h\to 0} \frac{1}{h} [f(2h)-f(h)]$ 存在, 则f 在x=0 处可导.
- 21. 若y = f(x), 且与 $y = \sin x$ 在原点有相同的切线. 求:

$$\lim_{x \to \infty} \sqrt{x f\left(\frac{2}{x}\right)}$$

Workbook for Thomas' Calculus

↑ $c \in (0,2)$ 使得(1+c)f'(c) = f(c).

考试题

- (5) 若 y = f(x) 在 x = 0 处有一个跳跃间断点,那么下面 4 个极限中哪一个必然存在?
 - (A) $\lim_{x \to 0} f(x^2).$

(B) $\lim_{x\to 0} (f(x))^2$.

(C) $\lim_{x \to 0} f(x^3)$.

(D) $\lim_{x\to 0} (f(x) - f(-x)).$

/15八/ 枯央師

九、 (6分) 求函数 $f(x) = |\sin x + \cos x + \tan x + \cot x + \sec x + \csc x|$ 的全局极小值(即最小值)

七、 (12分) 求极限(不准使用洛必达法则):

(1)
$$\lim_{x \to 1} \frac{(1 - \sqrt{x})(1 - \sqrt[3]{x})}{(1 - x^2)^2}.$$

(2)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{\sin(x^3)}.$$