Slope Fields and Euler's Method

10/31/2011

X	У	<u>dy</u> dx
-2	0	
-2	1	
-2	-1	
-1	1	
-1	-1	
0	2	
0	0	
0	-2	
1	-1	
		!

	1	1 - 1 -
X	У	$\frac{dy}{dx}$
-2	0	1
-2	1	2
-2	-1	0
-1	1	1
-1	-1	-1
0	2	1
0	0	-1
0	-2	-3
1	-1	-3

X	у	$\frac{dy}{dx}$	1
-2	0	1	/ / +
-2	1	2	<u>,</u>
-2	-1	0	
-1	1	1	
-1	-1	-1	— \ \ \ \ \ \
0	2	1	1
0 0	0	-1	
0	-2	-3	+
1	2 0 -2 -1	-3	
	'	1	†

X	у	$\frac{dy}{dx}$	Ť
-2	0	1	/ / +
-2	1	2	<u> </u>
-2	-1	0	
-2 -2 -2 -1 -1	1	1	
-1	-1	-1	
0	2	1	
0	0	-1)
0	-2	-3	+
1	-1	-3 -3	+
	ı	ı	†

X	y	$\frac{dy}{dx}$
-2	0	1
-2	1	2
-2	-1	0
-1	1	1
-1	-1	-1
0	2	1
0	0	-1
0	-2	-3
1	-1	-3
	!	1

у	$\frac{dy}{dx}$
0	1
1	2
-1	0
1	1
-1	-1
2	1
0	-1
-2	-3
-1	-3
	-1 1 -1 2 0 -2

у	$\frac{dy}{dx}$
0	1
1	2
-1	0
1	1
-1	-1
2	1
0	-1
-2	-3
-1	-3
	0 1 -1 1 -1 2 0 -2

Suppose $\frac{dy}{dx} = y - x - 1$. Sketch part of the slope field for the following points:

					. `
	1	ا الم			\
X	y	$\frac{dy}{dx}$			\
-2	0	1	-		\
-2	1	2			/
-2	-1	0			→
-1	1	1			\
-1	-1	-1			/
0	2	1			1
0	0	-1			1
0	-2	-3			\
1	-1	-3			/
_	_			\ \ \ \ \ \ \ <u> </u>	/
					1
					1
				- v v v v v v v l <mark>t</mark> v v v lv v v	1

Euler's Method

Assume that you have an IVP that looks like

$$\frac{dy}{dx} = F(x,y), \qquad y(x_0) = y_0$$

Pick an increment of x-steps, called Δx .

Euler's Method

Assume that you have an IVP that looks like

$$\frac{dy}{dx} = F(x, y), \qquad y(x_0) = y_0$$

Pick an increment of x-steps, called Δx .

Start at (x_0, y_0) , and plot a segment with run Δx and slope $F(x_0, y_0)$. The end is (x_1, y_1) . From each (x_i, y_i) , generate (x_{i+1}, y_{i+1}) by plotting a segment with run Δx and slope $F(x_i, y_i)$.

Euler's Method

Assume that you have an IVP that looks like

$$\frac{dy}{dx} = F(x, y), \qquad y(x_0) = y_0$$

Pick an increment of x-steps, called Δx .

Start at (x_0, y_0) , and plot a segment with run Δx and slope $F(x_0, y_0)$. The end is (x_1, y_1) . From each (x_i, y_i) , generate (x_{i+1}, y_{i+1}) by plotting a segment with run Δx and slope $F(x_i, y_i)$.

$$\begin{array}{ll} x_{i+1} &= x_i + \Delta x \\ y_{i+1} &= y_i + \Delta x * F(x_i, y_i) \end{array}$$

$$x_{i+1} = x_i + \Delta x$$

$$y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$$
Example: $\Delta x = 1$

	Example: $\Delta x = 1$					
i	Xi	Уi	$F(x_i, y_i)$	y_{i+1}		
0	-2	-1				
1						
2						
3						
	1	'		l		

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

Example: $\Delta x = 1$

	$\triangle \lambda$ ample. $\triangle \lambda = 1$					
	i	Χį	Уi	$F(x_i, y_i)$	y_{i+1}	
(С	-2	-1	0	-1+1*0	
-	1					
2	2					
3	3					
		'	'		II.	

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

Example: $\Delta v = 1$

Example. $\Delta x = 1$							
i	x _i	Уi	$F(x_i, y_i)$	y_{i+1}			
0	-2	-1	0	-1+1*0			
1	-1	-1					
2							

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

Example: $\Delta x = 1$						
i	Χį	Уi	$F(x_i, y_i)$	y_{i+1}		
0	-2	-1	0	-1+1*0		
1	-1	-1	-1	-1+1*(-1)		
2						
3						

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

Example: $\Delta x = 1$

Example: $\Delta x = 1$						
i	Xi	Уi	$F(x_i, y_i)$	y_{i+1}		
0	-2	-1	0	-1+1*0		
1	-1	-1	-1	-1+1*(-1)		
2	0	-2				
3						

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

Example: $\Delta x = 1$

$\Delta \lambda = 1$						
i	Xi	Уi	$F(x_i, y_i)$	y_{i+1}		
0	-2	-1	0	-1+1*0		
1	-1	-1	-1	-1+1*(-1)		
2	0	-2	-3	-2+1*(-3)		

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

Example: $\Delta x = 1$

	Example. $\Delta x = 1$						
i	Χį	Уi	$F(x_i, y_i)$	y_{i+1}			
0	-2	-1	0	-1+1*0			
1	-1	-1	-1	-1+1*(-1)			
2	0	-2	-3	-2+1*(-3)			
3	1	-5					

 $\Delta x = 1, v_3 = -5$

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

i	Xi	Уi	$F(x_i, y_i)$	<i>y</i> i+1	•
0	-2	-1			
1					
2					
3					
					$\Delta x = 1, y_3 =$
			I	ı	
	ı	I			

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

Example: $\Delta x = 1/2$

Example. $\Delta x = 1/2$					
i	Χį	Уi	$F(x_i, y_i)$	y _{i+1}	
0	-2	-1	0	$-1+\frac{1}{2}*0$	
1	$-\frac{3}{2}$	-1			
2					
3					
					Δ

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

		Exam			
i	Χį	Уi	$F(x_i, y_i)$	y _{i+1}	
0	-2	-1	0	$-1+\frac{1}{2}*0$	
1	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	$-1+\frac{1}{2}*(-\frac{1}{2})$	
2	-1	$-\frac{5}{4}$	$-\frac{5}{4}$	$-\frac{5}{4}+\frac{1}{2}*(-\frac{5}{4})$	<u> </u>
3	$-\frac{1}{2}$	$-\frac{15}{8}$	$-\frac{19}{8}$	$-\frac{15}{8}+\frac{1}{2}*(-\frac{19}{8})$	 \
4	0	-3.0625	-4.0625		† \
5	$\frac{1}{2}$	-5.0938	-6.5938		$\Delta x = 1, y_3 = -5$
6	1	-8.390	$6 = y_6$		

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

Example: $\Delta x = 1/2$

		Exam	_		
i	Xi	Уi	$F(x_i, y_i)$	y_{i+1}	
0	-2	-1	0	$-1+\frac{1}{2}*0$	
1	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	$-1+\frac{1}{2}*(-\frac{1}{2})$	
2	-1	- 5	$-\frac{5}{4}$	$-\frac{5}{4}+\frac{1}{2}*(-\frac{5}{4})$	1
3	$-\frac{1}{2}$	$-\frac{15}{8}$	$-\frac{19}{8}$	$-\frac{15}{8} + \frac{1}{2} * (-\frac{19}{8})$	† 🚶 \
4	0	-3.0625	-4.0625		† .
5	$\frac{1}{2}$	-5.0938	-6.5938		$\Delta x = 1, y_3 = -5$ $\Delta x = .1, y_{30} = -14.449$
6	1	-8.390	$6 = y_6$		$\Delta \lambda = .1, y_{30} = 14.449$

$$x_{i+1} = x_i + \Delta x$$

 $y_{i+1} = y_i + \Delta x * (y_i - x_i - 1)$

Example: $\Delta v = 1/2$

		Exam	pie: $\Delta x =$	1/2	_
i	Xi	Уi	$F(x_i, y_i)$	y _{i+1}	
0	-2	-1	0	$-1+\frac{1}{2}*0$	
1	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	$-1+\frac{1}{2}*(-\frac{1}{2})$	
2	-1	$-\frac{5}{4}$	$-\frac{5}{4}$	$-\frac{5}{4}+\frac{1}{2}*(-\frac{5}{4})$	\
3	$-\frac{1}{2}$	$-\frac{15}{8}$	$-\frac{19}{8}$	$-\frac{15}{8}+\frac{1}{2}*(-\frac{19}{8})$	† / \
4	0	-3.0625	-4.0625		+ // /
5	$\frac{1}{2}$	-5.0938	-6.5938		$\Delta x = 1, y_3 = -5$ $\Delta x = .1, y_{30} = -14.449$
6	1	-8.390	$6 = y_6$	•	$\Delta \lambda = .1, y_{30} = -14.449$
	!		V 1	2	(4)

Actual solution: $y = -e^{x+2} + x + 2$, $y(1) \approx -17.0855$

Spreadsheet set up:

in cell... A1 B1 C1 D1 A2 B2 C2 F2 put... i xi yi mi 0
$$x_0$$
 y_0 Δx

(In the last example,
$$x_0$$
 was -2 and y_0 was -1 and Δx was 1, $\frac{1}{2}$,...)

in cell... D2 B3 C3
put... =
$$F(B2, C2)$$
 =B2+\$F\$2 =C2+\$F\$2*D2
 $x_{i+1} = x_i + \Delta x$ $y_{i+1} = y_i + \Delta x * m_i$

(In the last example, F(B2, C2) was C2-B2-1)

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

$$\int \frac{1}{y^2 + 3y} dy = \int \frac{1}{x + 4} dx$$

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

??? =
$$\int \frac{1}{v^2 + 3v} dy = \int \frac{1}{x + 4} dx = \ln|x + 4| + C$$

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

Can I just solve? Separate...

??? =
$$\int \frac{1}{v^2 + 3v} dy = \int \frac{1}{x + 4} dx = \ln|x + 4| + C$$

Estimate! Try $\Delta x = 1$

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

Can I just solve? Separate...

??? =
$$\int \frac{1}{y^2 + 3y} dy = \int \frac{1}{x + 4} dx = \ln|x + 4| + C$$

Estimate! Try $\Delta x = 1$

$$x_0 = 1$$
, $y_0 = -1$

$$m_0 = x_1 = y_1 = x_2 = y_2 = y_2 = y_3 = x_4 = x_5 = x_5$$

$$m_2 = x_3 =$$

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

??? =
$$\int \frac{1}{y^2 + 3y} dy = \int \frac{1}{x + 4} dx = \ln|x + 4| + C$$

Estimate! Try
$$\Delta x = 1$$

$$x_0 = 1$$
, $y_0 = -1$

$$m_0 = \frac{(-1)^2 + 3(-1)}{0 + 4} = -0.5$$
 $x_1 = y_1 =$

$$m_1 =$$
 $x_2 =$ $y_2 =$

$$m_2 = x_3 =$$

$$y_3 =$$

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

Can I just solve? Separate...

??? =
$$\int \frac{1}{y^2 + 3y} dy = \int \frac{1}{x + 4} dx = \ln|x + 4| + C$$

Estimate! Try $\Delta x = 1$

$$x_0 = 1$$
, $y_0 = -1$

$$m_0 = \frac{(-1)^2 + 3(-1)}{0+4} = -0.5$$

$$x_1 = 0 + 1 = 1$$
 $y_1 = -1 + 1 * (-0.5) = -1.5$

$$m_1$$
=

$$x_2 =$$

$$y_2 =$$

$$m_2 =$$

$$x_3 =$$

$$y_3 =$$

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

Can I just solve? Separate...

??? =
$$\int \frac{1}{y^2 + 3y} dy = \int \frac{1}{x + 4} dx = \ln|x + 4| + C$$

 $y_2 =$

Estimate! Try $\Delta x = 1$

$$x_0 = 1$$
, $y_0 = -1$

$$m_0 = \frac{(-1)^2 + 3(-1)}{0 + 4} = -0.5$$
 $x_1 = 0 + 1 = 1$ $y_1 = -1 + 1 * (-0.5) = -1.5$

$$m_1 = \frac{(-1.5)^2 + 3(-1.5)}{1.44} = -0.45$$
 $x_2 =$

$$m_2 = x_3 =$$

$$y_3 =$$

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

??? =
$$\int \frac{1}{y^2 + 3y} dy = \int \frac{1}{x + 4} dx = \ln|x + 4| + C$$

Estimate! Try
$$\Delta x = 1$$

$$x_0 = 1$$
, $y_0 = -1$

$$m_0 = \frac{(-1)^2 + 3(-1)}{0+4} = -0.5$$

$$x_1=0+1=1$$
 $y_1=-1+1*(-0.5)=-1.5$

$$m_1 = \frac{(-1.5)^2 + 3(-1.5)}{1+4} = -0.45$$

$$x_2=1+1=2$$
 $y_2=-1.5+1*(-0.45)=-1.95$

$$m_2 = x_3 =$$

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

??? =
$$\int \frac{1}{y^2 + 3y} dy = \int \frac{1}{x + 4} dx = \ln|x + 4| + C$$

Estimate! Try
$$\Delta x = 1$$

$$x_0 = 1$$
, $y_0 = -1$

$$m_0 = \frac{(-1)^2 + 3(-1)}{0+4} = -0.5$$
 $x_1 = 0 + 1 = 1$ $y_1 = -1 + 1 * (-0.5) = -1.5$

$$m_1 = \frac{(-1.5)^2 + 3(-1.5)}{1+4} = -0.45$$
 $x_2 = 1 + 1 = 2$ $y_2 = -1.5 + 1 * (-0.45) = -1.95$

$$m_2 = \frac{(-1.95)^2 + 3(-1.95)}{2+4} = -0.34125$$
 $x_3 =$

$$y_3 =$$

If
$$\frac{dy}{dx} = \frac{y^2 + 3y}{x + 4}$$
 and $y(0) = -1$, what is $y(3)$?

??? =
$$\int \frac{1}{y^2 + 3y} dy = \int \frac{1}{x + 4} dx = \ln|x + 4| + C$$

Estimate! Try
$$\Delta x = 1$$

$$x_0 = 1$$
, $y_0 = -1$

$$m_0 = \frac{(-1)^2 + 3(-1)}{0 + 4} = -0.5$$
 $x_1 = 0 + 1 = 1$ $y_1 = -1 + 1 * (-0.5) = -1.5$

$$m_1 = \frac{(-1.5)^2 + 3(-1.5)}{1+4} = -0.45$$
 $x_2 = 1 + 1 = 2$ $y_2 = -1.5 + 1 * (-0.45) = -1.95$

$$m_2 = \frac{(-1.95)^2 + 3(-1.95)}{2+4} = -0.34125$$
 $x_3 = 2 + 1 = 3$

$$y_3 = -1.95 + 1 * (-0.34125) = -2.29125$$

i	хi	yi	mi	Dx
0	0	-1	-0.5	1
1	1	-1.5	-0.45	
2	2	-1.95	-0.34125	
3	3	-2.29125		

I	XI	уı	mı	Dx	
0	0	-1	-0.5	0.5	
1	0.5	-1.25	-0.486111111		
2	1	-1.493055556	-0.449990355		
3	1.5	-1.718050733	-0.40044616		
4	2	-1.918273813	-0.34584117		
5	2.5	-2.091194398	-0.292382951		

3 -2.237385873

6

