

SLOS580F-MAY 2008-REVISED JANUARY 2012

ISOLATED 3.3-V HALF AND FULL-DUPLEX RS-485 TRANSCEIVERS

Check for Samples: ISO15, ISO35, ISO15M, ISO35M

FEATURES

 4000-V_{PK} V_{IOTM}, 560-V_{PK} V_{IORM} per IEC 60747-5-2 (VDE 0884, Rev 2)

RUMENTS

- UL 1577, IEC 61010-1, IEC 60950-1 and CSA Approved
- 1/8 Unit Load Up to 256 Nodes on a Bus
- Meets or Exceeds TIA/EIA RS-485 Requirements
- Signaling Rates up to 1 Mbps
- · Thermal Shutdown Protection
- Low Bus Capacitance 16 pF (Typ)
- 50 kV/µs Typical Transient Immunity
- Fail-safe Receiver for Bus Open, Short, Idle
- · 3.3-V Inputs are 5-V Tolerant

APPLICATIONS

- Security Systems
- · Chemical Production
- Factory Automation
- Motor/motion Control
- HVAC and Building Automation Networks

DESCRIPTION

The ISO15 is an isolated half-duplex differential line transceiver while the ISO35 is an isolated full-duplex differential line driver and receiver for TIA/EIA 485/422 applications. The ISO15M and ISO35M have extended ambient temperature ratings of –55°C to 125°C while the ISO15 and ISO35 are specified over –40°C to 85°C.

These devices are ideal for long transmission lines since the ground loop is broken to allow for a much larger common-mode voltage range. The symmetrical barrier of the device is tested to provide isolatlion of 4000 V_{PK} per VDE and 2500 V_{RMS} per UL and CSA between the bus-line transceiver and the logic-level interface.

Any cabled I/O can be subjected to electrical noise transients from various sources. These noise transients can cause damage to the transceiver and/or near-by sensitive circuitry if they are of sufficient magnitude and duration. These isolated devices can significantly increase protection and reduce the risk of damage to expensive control circuits.

PRODUCT	FOOTPRINT	TEMP RATING	MARKING
ISO15	Half Duplex	–40°C to 85°C	ISO15
ISO35	Full Duplex	–40°C to 85°C	ISO35
ISO15M	Half Duplex	–55°C to 125°C	ISO15M
ISO35M	Full Duplex	–55°C to 125°C	ISO35M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS(1)

					VALUE	UNIT
V_{CC}	Input supply volta	age. ⁽²⁾ V _{CC1} , V _{CC2}			-0.3 to 6	V
Vo	Voltage at any bus I/O terminal					V
V _{IT}	Voltage input, transient pulse, A, B, Y, and Z (through 100Ω, see Figure 11)					V
VI	Voltage input at a	-0.5 to 7	V			
Io	Receiver output current				±10	mA
				Bus pins and GND1	±6	
		Human Body Model	JEDEC Standard 22, Test Method A114-C.01	Bus pins and GND2	±16	kV
ESD	Electrostatic		Test Method ATT4-0.01	All pins	±4	
LOD	discharge	Charged Device Model	JEDEC Standard 22, Test Method C101	All pins	±1	kV
		Machine Model	ANSI/ESDS5.2-1996	-	±200	V
T_J	Maximum junction temperature					°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

			MIN	TYP	MAX	UNIT	
V_{CC}	Supply Voltage, V _{CC1} , V _{CC2}		3.15	3.3	3.6	V	
V_{OC}	Voltage at either bus I/O terminal	A, B	-7		12	٧	
V_{IH}	High-level input voltage	D, DE, RE	2		V_{CC}	V	
V_{IL}	Low-level input voltage	D, DE, NE	0		0.8	V	
V_{ID}	Differential input voltage	A with respect to B	-12		12	٧	
R_L	Differential input resistance		54	60		Ω	
	Output ourrent	Driver	-60		60	m 1	
IO	Output current	Receiver	-8		8	mA	
1/t _{UI}	Signaling rate	ISO15x and ISO35x			1	Mbps	
_	A mala i a mal dia mana a wada wa	ISO15 and ISO35	-40		85	°C	
T _A	Ambient temperature	ISO15M and ISO35M	-55		125	-U	
т	Operating junction temperature	ISO15 and ISO35	-40		150	°C	
TJ	Operating junction temperature	ISO15M and ISO35M	– 55		150		

SUPPLY CURRENT

over recommended operating condition (unless otherwise noted)

PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT	
	Logic-side supply	ISO35x and	RE at 0 V or V _{CC} , DE at 0 V, No load (driver disabled)			8	m 1	
I _{CC1}	current	ISO15x	RE at 0 V or V _{CC} , DE at V _{CC} , No Load (driver enabled)			8	mA	
	Bus-side supply	ISO35x and	RE at 0 V or V _{CC} , DE at 0 V, No load (driver disabled)			15	m 1	
ICC2	current	ISO15x	RE at 0 V or V _{CC} , DE at V _{CC} , No Load (driver enabled)			19	mA	

Submit Documentation Feedback

⁽²⁾ All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
		I _O = 0 n	nA, no load		2.5		V_{CC}	
1.77	Differential output voltage magnitude	$R_L = 54 \Omega$, See Figure 1			1.5	2		V
I V _{OD} I	Differential output voltage magnitude	R _L = 10	0 Ω (RS-422), See Figure 1		2	2.3		V
		V _{test} fro	m –7 V to +12 V, See Figure	e 2	1.5			
$\Delta IV_{OD}I$	Change in magnitude of the differential output voltage	See Fig	ure 1 and Figure 2		-0.2	0	0.2	V
V _{OC(SS)}	Steady-state common-mode output voltage				1	2.6	3	
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage	See Figure 3		-0.1		0.1	V	
V _{OC(pp)}	Peak-to-peak common-mode output voltage	See Figure 3			0.5		V	
I	Input current	D, DE,	V _I at 0 V or V _{CC1}		-10		10	μΑ
		ISO15 See receiver input current						
			V_Y or $V_Z = 12 V$				90	
I _{OZ}	High-impedance state output current	ISO35	$V_Y \text{ or } V_Z = 12 \text{ V}, V_{CC} = 0$ $V_Y \text{ or } V_Z = -7 \text{ V}$	Other input			90	
		13033	V_Y or $V_Z = -7 \text{ V}$	at 0 V	-10			μΑ
			V_Y or $V_Z = -7 V$, $V_{CC} = 0$		-10			
		V _A or V	_B at –7 V	Other				
Ios	Short-circuit output current	V _A or V _B at 12 V input at 0 V		-250		250	mA	
C _{OD}	Differential output capacitance	$V_1 = 0.4 \sin (4E6\pi t) + 0.5 V$, DE at 0 V			16		pF	
CMTI	Common-mode transient immunity	$V_I = V_C$	$_{ m C}$ or 0 V, See Figure 12 and	Figure 13	25	50		kV/µs

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER			MIN	TYP	MAX	UNIT
t_{PLH},t_{PHL}	LH, t _{PHL} Propagation delay					340	
t _{sk(p)}	Pulse skew (It _{PHL} – t _{PLH} I)		Saa Figura 4	6			20
	Differential output signal rice time fall time	ISO15 and ISO35	See Figure 4	120	180	300	ns
t _r , t _f	Differential output signal rise time, fall time	ISO15M and ISO35M		120	180	350	
t _{PHZ}	Propagation delay, high-level-to-high-impedance	output	Can Figure F			205	
t _{PZH}	t _{PZH} Propagation delay, high-impedance-to-high-level output		See Figure 5			530	ns
t _{PLZ}	t _{PLZ} Propagation delay, low-level to high-impedance output					330	
t _{PZL}	t _{PZL} Propagation delay, standby-to-low-level output					530	ns

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITI	ONS	MIN	TYP	MA X	UNIT	
$V_{IT(+)}$	Positive-going input thresho	old voltage	I _O = -8 mA				-20	mV	
$V_{IT(-)}$	Negative-going input thresh	old voltage	$I_O = 8 \text{ mA}$		-200			mV	
V _{hys}	Hysteresis voltage (V _{IT+} – V	′ _{IT} _)				50		mV	
V	Output voltage		V _{ID} = 200 mV, See	$I_O = -8 \text{ mA}$	2.4			V	
Vo	Output voltage	Figure 7	$I_O = 8 \text{ mA}$			0.4	V		
l _{OZ}	High-impedance state outpu	ut current	V _I = -7 to 12 V, Other input = 0 V		-1		1	μΑ	
	-55°C ≤ T _A ≤ 85°C	55°C < T < 95	EE0C < T < 0E0C	V_A or $V_B = 12 V$			50	100	
		V_A or $V_B = 12 \text{ V}$, $V_{CC} = 0$			50	100			
11	Due immed accuracy	05°00 < T < 405°00	V _A or V _B = 12 V	Other input at			200		
I _A or I _B	Bus input current	$85^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$	V_A or $V_B = 12 \text{ V}$, $V_{CC} = 0$	0 V			200	μA	
		EE0C < T < 10E0C	V_A or $V_B = -7 \text{ V}$	-100 -100	-100	-40			
	-	-55°C ≤ T _A ≤ 125°C	V_A or $V_B = -7 V$, $V_{CC} = 0$		-100	-30			
I _{IH}	High-level input current, RE		V _{IH} = 2 V		-10			μΑ	
I _{IL}	Low-level input current, RE		V _{IL} = 0.8 V		-10			μΑ	
R _{ID}	Differential input resistance		A, B		48			kΩ	
C _{ID}	Differential input capacitand	e	$V_I = 0.4 \sin (4E6\pi t) + 0.5V$, DE at 0 V			16		pF	

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
t _{PLH} , t _{PHL}	Propagation delay	ISO15x and ISO35x				100		
		ISO15 and ISO35				13		
t _{sk(p)}	Pulse skew (It _{PHL} – t _{PLH} I)	ISO15M and ISO35M	See Figure 8			18	ns	
		ISO15 and ISO35			2	4		
t_r , t_f	Output signal rise and fall time	ISO15M and ISO35M			2	6		
t _{PZH} , Propagation delay, high-impedance-to-high-level output t _{PZL} Propagation delay, high-impedance-to-low-level output		DE at 0 V, See Figure 9		13	25			
t _{PHZ} , t _{PLZ}	Propagation delay, high-level-to-high-impedance output		and Figure 10		13	25	ns	

PARAMETER MEASUREMENT INFORMATION

Figure 1. Driver V_{OD} Test and Current Definitions

Figure 2. Driver V_{OD} With Common-Mode Loading Test Circuit

Figure 3. Test Circuit and Waveform Definitions For The Driver Common-Mode Output Voltage

Figure 4. Driver Switching Test Circuit and Voltage Waveforms

NOTE: Driver output pins are A and B for the ISO15 (See Figure 1 through Figure 4). These correspond to ISO35 pins Y and Z

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 5. Driver High-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveform

NOTE: Driver output pins are A and B for the ISO15 (SeeFigure 5 through Figure 6). These correspond to ISO35 pins Y and Z

Figure 7. Receiver Voltage and Current Definitions

Figure 8. Receiver Switching Test Circuit and Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 9. Receiver Enable Test Circuit and Waveforms, Data Output High

Figure 10. Receiver Enable Test Circuit and Waveforms, Data Output Low

Note: This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 11. Transient Over-Voltage Test Circuit

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 12. Half-Duplex Common-Mode Transient Immunity Test Circuit

Figure 13. Full-Duplex Common-Mode Transient Immunity Test Circuit

DEVICE INFORMATION

Table 1. Driver Function Table

V _{CC1} ⁽¹⁾	V _{CC2} ⁽¹⁾	INPUT (D)	ENABLE INPUT (DE)	OUTPUTS	
				A or Y	B or Z
PU	PU	Н	Н	Н	L
PU	PU	L	Н	L	Н
PU	PU	X	L	Z	Z
PU	PU	X	OPEN	Z	Z
PU	PU	OPEN	Н	Н	L
PD	PU	Х	Х	Z	Z
PU	PD	X	Х	Z	Z
PD	PD	Х	Х	Z	Z

(1) PU = Power Up, PD = Power Down

Table 2. Receiver Function Table

V _{CC1} (1)	V _{CC2} ⁽¹⁾	DIFFERENTIAL INPUT V _{ID} = (V _A - V _B)	ENABLE (RE)	OUTPUT ®)
PU	PU	-0.01 V ≤ V _{ID}	L	Н
PU	PU	$-0.2 \text{ V} < \text{V}_{\text{ID}} < -0.01 \text{ V}$	L	?
PU	PU	$V_{ID} \leq -0.2 \text{ V}$	L	L
PU	PU	X	Н	Z
PU	PU	X	OPEN	Z
PU	PU	Open circuit	L	Н
PU	PU	Short Circuit	L	Н
PU	PU	Idle (terminated) bus	L	Н
PD	PU	X	Х	Z
PU	PD	X	L	Н

(1) PU = Power Up, PD = Power Down

PACKAGE CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER ⁽¹⁾	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(101)	Minimum air gap (Clearance)	Shortest terminal to terminal distance through air	8.34			mm
L(102)	Minimum external tracking (Creepage)	Shortest terminal to terminal distance across the package surface	8.1			mm
СТІ	Tracking resistance (Comparative Tracking Index)	DIN IEC 60112 / VDE 0303 Part 1	≥400			V
	Minimum Internal Gap (Internal Clearance)	Distance through the insulation	0.008			mm
R _{IO}	Isolation resistance	Input to output, V_{IO} = 500 V, all pins on each side of the barrier tied together creating a two-terminal device		>10 ¹²		Ω
C _{IO}	Barrier capacitance Input to output	$V_1 = 0.4 \sin (4E6\pi t)$		2		pF
CI	Input capacitance to ground	$V_1 = 0.4 \sin (4E6\pi t)$		2		рF

⁽¹⁾ Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board do not reduce this distance.

IEC 60664-1 RATINGS TABLE

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic isolation group	Material group	II
	Rated mains voltage ≤ 150 V _{RMS}	I-IV
Installation classification	Rated mains voltage ≤ 300 V _{RMS}	I-III
	Rated mains voltage ≤ 400 V _{RMS}	I-II

IEC 60747-5-2 INSULATION CHARACTERISTICS (1)

over recommended operating conditions (unless otherwise noted)

	PARAMETER	R TEST CONDITIONS				
V_{IORM}	Maximum working insulation voltage		560	٧		
V _{PR}	Input to output test voltage	Method b1, $V_{PR} = V_{IORM} \times 1.875$, 100% Production test with t = 1 s, Partial discharge < 5 pC	1050	V		
V _{IOTM}	Transient overvoltage	t = 60 s	4000	V		
R _S	Insulation resistance	V_{IO} = 500 V at T_{S}	>10 ⁹	Ω		
	Pollution degree		2			

⁽¹⁾ Climatic Classification 40/125/21

REGULATORY INFORMATION

VDE	CSA	UL			
Certified according to IEC 60747-5-2	Approved under CSA Component Acceptance Notice 5A	Recognized under 1577 Component Recognition Program			
Basic Insulation Maximum Transient Overvoltage, 4000 V _{PK} Maximum Surge Voltage, 4000 V _{PK} Maximum Working Voltage, 560 V _{PK}	2500 V_{RMS} rating per CSA 60950-1-07 and IEC 60950-1 (2nd Ed.) for products with working voltages \leq 280 V_{RMS} for basic insulation.	Single Protection, 2500 V _{RMS}			
File Number: 40016131	File Number: 220991	File Number: E181974			

Submit Documentation Feedback

Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the IO can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Is	Safety input, output, or supply current	DW-16	$\theta_{JA} = 212^{\circ}\text{C/W}, V_I = 5.5 \text{ V},$ $T_J = 170^{\circ}\text{C}, T_A = 25^{\circ}\text{C}$			210	mA
T_S	Maximum case temperature	DW-16				150	°C

The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Characteristics table is that of a device installed in the JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages and is conservative. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

THERMAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
θ_{JA}	Junction-to-Air	Low-K Thermal Resistance ⁽¹⁾		168		°C/W
	JUNCTION-TO-AII	High-K Thermal Resistance	96.1			C/VV
θ_{JB}	Junction-to-Board Thermal Resistance			61		°C/W
θ_{JC}	Junction-to-Case Thermal Resistance			48		°C/W
P_D	Device Power Dissipation	$V_{\rm CC1}$ = $V_{\rm CC2}$ = 5.25 V, $T_{\rm J}$ = 150°C, $C_{\rm L}$ = 15 pF, Input a 20 MHz 50% duty cycle square wave			220	mW

⁽¹⁾ Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.

Figure 14. DW-16 θ_{JC} Thermal Derating Curve per IEC 60747-5-2

EQUIVALENT CIRCUIT SCHEMATICS

TYPICAL CHARACTERISTICS CURVES

Figure 15.

Figure 17.

BUS INPUT CURRENT vs

Figure 18.

TYPICAL CHARACTERISTICS CURVES (continued)

DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

Figure 19.

DRIVER PROPAGATION DELAY

Figure 20.

APPLICATION INFORMATION

Transient Voltages

Isolation of a circuit insulates it from other circuits and earth so that noise develops across the insulation rather than circuit components. The most common noise threat to data-line circuits is voltage surges or electrical fast transients that occur after installation. The transient ratings of the ISO15 and ISO35 are sufficient for all but the most severe installations. However, some equipment manufacturers use their ESD generators to test transient susceptibility of their equipment, and can exceed insulation ratings. ESD generators simulate static discharges that may occur during device or equipment handling with low-energy but high voltage transients.

Figure 21 models the ISO15 and ISO35 bus IO connected to a noise generator. C_{IN} and R_{IN} is capacitance or resistance across the device and any other stray or added capacitance or resistance across the A or B pin to GND2. C_{ISO} and R_{ISO} is the capacitance and resistance between GND1 and GND2 of the ISO15 and ISO35 plus those of any other insulation (transformer, etc.). The stray inductance is assumed to be negligible. From this model, the voltage at the isolated bus return is,

$$V_{GND2} = V_N \frac{Z_{ISO}}{Z_{ISO} + Z_{IN}} \tag{1}$$

and will always be less than 16 V from V_N . If the ISO15 and ISO35 are tested as a stand-alone device, $R_{IN}=6\times 10^4\Omega$, $C_{IN}=16\times 10^{-12}$ F, $R_{ISO}=10^9\Omega$ and $C_{ISO}=10^{-12}$ F.

Note from Figure 21 that the resistor ratio determines the voltage ratio at low frequency and it is the inverse capacitance ratio at high frequency. In the stand-alone case and for low frequency,

$$\frac{V_{GND2}}{V_{N}} = \frac{R_{ISO}}{R_{ISO} + R_{IN}} = \frac{10^{9}}{10^{9} + 6x10^{4}}$$
(2)

or essentially all of noise appears across the barrier. At high frequency,

$$\frac{V_{GND2}}{V_N} = \frac{\frac{1}{C_{ISO}}}{\frac{1}{C_{ISO}} + \frac{1}{C_{IN}}} = \frac{1}{1 + \frac{C_{ISO}}{C_{IN}}} = \frac{1}{1 + \frac{1}{16}} = 0.94$$
(3)

and 94% of V_N appears across the barrier. As long as R_{ISO} is greater than R_{IN} and C_{ISO} is less than C_{IN} , most of transient noise appears across the isolation barrier.

It is not recommend for the user to test equipment transient susceptibility with ESD generators, or consider product claims of ESD ratings above the barrier transient ratings of an isolated interface. ESD is best managed through recessing or covering connector pins in a conductive connector shell and installer training.

Figure 21. Noise Model

REVISION HISTORY

Cr	nanges from Original (May 2008) to Revision A	Page
•	Changed L(101) Minimum air gap (Clearance) From 7.7mm To 8.34mm.	10
•	Deleted CSA information from the Regulatory Information Table.	10
<u>. </u>	Changed From 40014131 To 40016131	10
Ch	nanges from Revision A (June 2008) to Revision B	Page
•	Changed From: 4000-Vpeak Isolation To: 4000-Vpeak Isolation, 560-Vpeak VIORM UL 1577, IEC 60747-5-2 (VDE 0884, Rev 2)	1
<u>. </u>	Changed Figure 13, Full-Duplex Common-Mode Transient Immunity Test Circuit	
Ch	nanges from Revision B (July 2008) to Revision C	Page
•	Added added IECApproved	1
<u>.</u>	Added added CSA information column back in table	10
Cr	nanges from Revision C (December 2008) to Revision D	Page
•	Changed Propagation delay values From: µs To: ns in the DRIVER SWITCHING table	3
Cr	nanges from Revision D (March 2009) to Revision E	Page
•	Added devices ISO15M and ISO35M to the data sheet	1
•	Changed Description - From: The ISO15 and ISO35 are qualified for use from -40°C to 85°C. To: The ISO15M and ISO35M have extended ambient temperature ratings of -55°C to 125°C while the ISO15 and ISO35 are specified	
	over –40°C to 85°C. Added the Product Information table	
•		
•	Added Added Ambient Temp information in the RECOMMENDED OPERATING CONDITIONS table	
•	CONDITIONS table	
•	Changed the DRIVER ELECTRICAL table, I_{OZ} High-impedance state output current - Test Condition V_Y or $V_Z = -7$ V values From: TYP = -, MAX = 90 To: TYP = -10, MAX = -	
	Added t _r , t _f limits for the ISO15M ans ISO35M devices	
	Added I _A or I _B limits for the ISO15M ans ISO35M devices	
•	Added pulse skew limits for the ISO15M ans ISO35M devices	
•	Added t _r , t _r for the ISO15M ans ISO35M devices	
•	Added the Driver output pins Note for Figure 1 through Figure 4	
•	Changed the Driver output pins Note for eFigure 5 through Figure 6	
•	Added Note 1 to Table 1 Driver Function Table	
•	Added Note 1 to Table 2 Receiver Function Table	
•	Changed Figure 19 - replaced curves	
•	Changed Figure 20 - replaced curves	

Cł	nanges from Revision E (April 2010) to Revision F	Page
•	Changed the FEATURES From: 4000-V _{peak} 560-V _{peak} V _{IORM} per IECRev 2) To: 4000-V _{PK} V _{IOTM} , 560-V _{PK} V _{IORM} , IEC 60747-5-2 (VDE 0884, Rev 2)	1
•	Changed Description From: The symmetrical isolationinterface. To; The symmetrical isolation barrier of the device is tested to provide isolation of 4000 V_{PK} per VDE and 2500 V_{RMS} per UL and CSA betweeninterface	1
•	Changed CTI From: ≥175 V To: ≥400 V	10
•	Changed the IEC Ratings table, Basic isolation group, specification from IIIa to II	10
•	Changed the Regulatory Information Table	10

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish		Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
ISO15DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO15	Samples
ISO15DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO15	Samples
ISO15DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO15	Samples
ISO15DWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO15	Samples
ISO15MDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO15M	Samples
ISO15MDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO15M	Samples
ISO35DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO35	Samples
ISO35DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO35	Samples
ISO35DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO35	Samples
ISO35DWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO35	Samples
ISO35MDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO35M	Samples
ISO35MDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO35M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

11-Apr-2013

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Aug-2013

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All ullilerisions are nomina												
Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO15DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO15MDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO35DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO35MDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Aug-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO15DWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO15MDWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO35DWR	SOIC	DW	16	2000	367.0	367.0	38.0
ISO35MDWR	SOIC	DW	16	2000	367.0	367.0	38.0

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- E. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- F. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com www.ti.com/medical Medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>