CLASSIFYING TOPOS¹ By Jean GIRAUD²

The basic facts about the classifying topos of a stack of groupoids were first stated in [3] and are exposed in detail in [4] Ch. VIII. This construction is useful in cohomology theory and has been introduced independently by D. Mumford to study moduli of elliptic curves [7]. Algebraic stacks of groupoids are used in algebraic geometry df. [1]. Here a simpler and more general approach allows us to treat the case of a stack whose fibers are not supposed to be groupoids. As a by-product we get the existence of fibered products in the bicategory of topos. This result was first announced by M. Hakim several years ago but was never published. I suspect that any written prof would have to deal with rather subtle technical difficulties about finite limits which are overcome here by the results of §1.

If **S** is a site we use the word *stack* for the french champ [4] and prestack for prechamp (a prestack is merely a fibered category over the underlying category of the site) and *split stack* for champ scindé. Up to equivalence a split stack can be viewed as a sheaf of categories over **S** (or a category-object of the corresponding topos) satisfying some extra condition namely the patching of objects. As usual we choose and fix a universe \mathfrak{U} . For clarity it should be recalled that a \mathfrak{U} -topos is a special case of \mathfrak{U} -site [5] and that any category can be viewed as a site such that any presheaf is a sheaf and prestack is a stack.

²Toposes, algebraic geometry and logic, Lecture Notes in Maths., vol.274, Springer, 1972.

1. Left exact stacks

A category is left exact if it admits finite limits. A functor $f: A \longrightarrow B$ between left exact categories A and B is left exact if it preserves finite limits. A site is said to be left exact if the underlying category is so. A stack C over a site S is said to be left exact if its fibers are left exact and if for any map $f: T \longrightarrow S$ in S the inverse image functor induced by f between the fibers of C is left exact.

Lemma (1.1). — A stack C over a left exact site S is left exact if and only if the underlying category and the structural functor $p: C \longrightarrow S$ are left exact.

The proof rests on the fact that a commutative square of C whose projection is cartesian in S is cartesian as soon as two opposite sides are S-cartesian.

Lemma (1.2). — A morphism $m: A \longrightarrow B$ between two left exact stacks is left exact if and only if for any $S \in |\mathbf{S}|^3$ the functor $m_S: A_S \longrightarrow B_S$ induced by m between the fibers at S is left exact.

Proposition (1.3). — Let $f: S' \longrightarrow S$ be a morphism between two sites (e.g. two topos). Then the direct image (resp. inverse image) of a left exact stack and of a left exact morphism of stacks over S' (resp. S) is left exact.

- **1.3.1**. The direct image of a stack being nothing but pull-back along the underlying functor $f^*: \mathbf{S} \longrightarrow \mathbf{S}'$ of f, preserves the fibers, hence the left exactness. To treat the case of the inverse image by f of a stack over \mathbf{S} we will use the following characterisation⁴ of left-exactness.
- **1.3.2**. First let I be a finite category. For any stack F over S let F^I be the prestack whose fiber at $S \in |S|$ is the category of functors from I to the fiber F_S . One checks easily that this is a stack provided with a morphism of stacks (constant diagrams)

$$cF: F \longrightarrow F^I$$

Furthermore F is left exact if and only if for any finite category I cF admits a right adjoint in the bicategory of stacks. The if part is obvious since such an adjoint

 $^{^{3}}$ The set of objects of a category C is denoted by |C|

⁴"caracterisation" in the original.

 λ induces an adjoint to each functor cF_S , $S \in |S|$, induced by cF on the fibers at S and since λ is cartesian. The only if part is no more difficult than (1.2). Since the property of having a right adjoint is preserved by morphisms of bicategories and since the inverse image of stacks is such a morphism [4] p.88, it remains to show the following.

Lemma (1.3.3). — One has a natural equivalence $e: f^*(F^I) \longrightarrow f^*(F)^I$ such that $ef(cF) = cf^*(F)$.

According to [4] p.88, the inverse image of a stack F is given by the formula

(1)
$$f^*(F) = Af^{-1}(LF)$$

where LF is the free split stack associated to F [4] p.39, where f^{-1} denotes the inverse image of LF as category-object of the topos \widetilde{S} and where A stands for "associated stack". Since there is a natural equivalence $f \longrightarrow LF$ and L is a morphism of bicategories we get a natural equivalence of split stack $L(F^I)to(LF)^I$.

Since the functor "inverse image of sheaves of sets" is left exact one gets a natural isomorphism $f^{-1}((LF)^I) \xrightarrow{\sim} (f^{-1}(LF))^I$ and it remains to find, for any prestack G over S' a natural equivalence $A(G^I) \longrightarrow (AG)^I$. One has a commutative square

$$G \xrightarrow{a} AG$$

$$cG \downarrow \qquad \qquad \downarrow cAG$$

$$G^{I} \xrightarrow{a^{I}} (AG)^{I}$$

where a is the structural map of AG. According to [4] p.77 it suffices to show that a^{I} is "bicouvrant" [4] p.72, which is an easy consequence of the fact that a has this property. Q.E.D..

Corollary (1.4). — Let F and F' be left exact stacks on S and S', $m: F \longrightarrow f_*(F')$ be a morphism of stacks and $m': f^*(F) \longrightarrow F'$ the morphism associated to m by the universal property of the inverse image. Then m is left exact if and only if m' is.

This is a formal consequence of (1.3).

2. Classifying topos of a stack

Proposition (2.1). — Let S be a left exact $\mathfrak U$ -site and C a prestack over S whose fibers are equivalent to categories which belong to $\mathfrak U$ (C is said to be small). Let us denote by S the coarsest topology on S such that the projection S is a comorphism S III 3.1, and by S the category of sheaves on S for S with values in S is a comorphism.

- (1) J is defined by the pretopology whose covering families are those $(m_i : C_i \longrightarrow C)$, $i \in I \in \mathbb{U}$, such that each m_i is S-cartesian and such that $p(m_i)$, $i \in I$, is a covering family.
- (2) C S is a \mathfrak{U} -topos and the morphism $\pi : C S \longrightarrow S$ defined by p is essential (i.e. π^* has a left adjoint π_1). If C is left exact then π_1 is left exact.
- (3) If S is a \mathfrak{U} -topos and C is a stack, then the Yoneda functor $\varepsilon: C \longrightarrow C S$ is full and faithful and the composite $C \stackrel{\varepsilon}{\longrightarrow} C S \stackrel{\pi_1}{\longrightarrow} S$ is equal to p.

Proof. (1) is an easy consequence of the definition of a comorphism and of the observation made in the proof of (1.1). Let S_a , $a \in A \in \mathbb{U}$, be a family of generators of S and G_a , $a \in A$, be a subset of $|C_{S_a}|$ which both belongs to \mathbb{U} and contains an element of each isomorphism class of objects of the fiber C_{S_a} . The union of the G_a is a generator of the site (C,J), hence this one is a \mathbb{U} -site and C-S is a \mathbb{U} -topos. Using (1) one sees easily that for any sheaf F on S, F p is a sheaf on C hence $\pi^*(F) = F$ p, hence π^* has a left adjoint hence π is essential. The last assertion of (2) follows from the fact that when C is left exact, p is the underlying functor of a morphism of sites $S \longrightarrow C$. The fist assertion of (3) follows readily from (1) and the patching condition for morphisms in C. For any $S \in |S|$, and any $c \in |C_S|$ one has

$$\operatorname{Hom}(\pi_!\varepsilon(c),S) = \operatorname{Hom}(\varepsilon(c),\pi^*(S)) = \pi^*(S)(c) = \operatorname{Hom}(p(c),S)$$

by adjunction, Yoneda and the formula $\pi^*F = F p$, and this concludes the proof.

2.2. Under the assumptions of (2.1), C - S is called the *classifying topos of the* (pre)stack C. Note that a morphism of stacks $m: C \longrightarrow C'$ is a comorphism of sites and induces a morphism of topos $m - S: C - S \longrightarrow C' - S$. If m is an equivalence, then so is m - S. If C is a split stack one can define a split stack

 C^V whose fibers are the opposites of the fibers of C. Note that the underlying category of C^V is not the opposite C° of C. Let us consider the category

(1)
$$B_C(S) = St_S(C^V, SH(S))$$

of morphisms of stacks $F: C^V \longrightarrow SH(S)$, where SH(S) is the split stack whose fiber at $S \in |S|$ is the category of sheaves on S/S (equivalent to S/S since S is a topos). One has a natural functor

(2)
$$\tau^* : \mathbf{S} \longrightarrow \mathbf{B}_C(\mathbf{S}), \quad \tau^*(S)(c) = \varepsilon(S \times p(c)),$$

where ε is the Yoneda functor of S/S.

Proposition (2.3). — If S is a \mathfrak{U} -topos and C a split stack one has an equivalence of categories

(1)
$$b: B_C(S) \longrightarrow C - S, \quad b(F)(c) = F(c)(p(c))$$

and an isomorphism of functors $b \tau^* \xrightarrow{\sim} \pi^*$.

2.3.1. Note that this proposition proves that $B_C(S)$ is a \mathfrak{U} -topos equivalent to C - S even when C is not split since one can replace C by an equivalent split stack. Furthermore, by the universal property of the associated stack, $B_C(S)$ is equivalent to $B_{C'}(S)$ when C is the stack associated to some prestack C'.

Furthermore, Lawvere and Tierney have introduced for any category-object E of the topos S, the topos of objects of S provided with operations of E. One can prove that this topos is equivalent to $B_C(S)$ where C is the split prestack defined by E hence also equivalent to C'-S, where C' is the stack generated by C. Thus we have three constructions of the classifying topos.

2.3.2. For any split stack D, any map $f: T \longrightarrow S$ in S and any $s \in |D_S|$ we denote by s^f the inverse image of s by f and by $s_f: s^f \longrightarrow s$ the cartesian map given by the splitting. To define b completely one must define for any $m: c \longrightarrow c'$ in C an application $b(F)(m): b(F)(c') \longrightarrow b(F)(c)$. Let $f = p(m), f: S' \longrightarrow S$. Since C is split there is a canonical factorisation $c' \xrightarrow{m'} c^f \xrightarrow{c_f} c$. Since F is cartesian one has a canonical isomorphism $i: F(c^f) \longrightarrow F(c)^f$ which for the values at S' (or rather $Id_{S'}$) of these sheaves induces a bijection $j: F(c^f)(S') \longrightarrow S$

F(c)(f) and we take for b(F)(m) the composite

$$F(c)(S) \xrightarrow{f(c)(\dot{f})} F(c)(f) \xrightarrow{\dot{f}^{-1}} F(c^f)(S') \xrightarrow{f(m')(S')} F(c')(S')$$

where $\dot{f}: f \longrightarrow \operatorname{Id}_S$ is the terminal map in S/S. It is easily checked that b(F) is a functor, recalling that the underlying category of C^V is not the underlying category of C° . The sheaf axiom for b(F) is verified by using (2.1 (1)): for a given family $(c_i \longrightarrow c)$ it is a consequence of the fact that F(c) is a sheaf and F a cartesian functor. The functoriality with respect to F is obvious. To prove that b is an equivalence one constructs explicitly a functor

$$a: C - \mathbf{S} \longrightarrow \mathbf{B}_C(\mathbf{S}), \quad a(G)(c)(f) = G(c^f),$$

where $a \in |F|$ and $f : T \longrightarrow p(c)$ is a map in **S**.

Proposition (2.4). — Let $f: S' \longrightarrow S$ be a morphism of \mathfrak{U} -topos and let C be a left exact stack over S. One has an equivalence of categories

(1) $\operatorname{Top}_{S}(S, C - S) \longrightarrow \operatorname{Stex}_{S}(C, f_{*}SH(S'))^{\circ}$, where the domain is the category of morphisms of S-topos $n: S' \longrightarrow S$, where $f_{*}SH(S')$ is the direct image by f of the stack of sheaves over S (its fiber at $S \in |S|$ is the category of sheaves over $S'/f^{*}(S)$) and where the codomain is the opposite of the category of left exact morphisms of stacks $C \longrightarrow f_{*}SH(S')$.

Since C is left exact and $\varepsilon: C \longrightarrow C - S$ full and faithful, a morphism of topos $n: S' \longrightarrow C - S$ is nothing but a left exact functor $n^{-1}: C \longrightarrow S'$, $n^{-1} = n^* \varepsilon$. Furthermore, since C is left exact there exists a cartesian section p^{-1} of C whose value at $S \in |S|$ is the terminal object of the fiber C_S and p^{-1} of C is a morphism of sites defining $\pi: C - S \longrightarrow S$ since $\pi^* F = F$ p for any sheaf F on S. Hence an isomorphism of morphisms of topos $i: \pi \xrightarrow{\sim} f$ is nothing but an isomorphism $i^{-1}: n^{-1}p^{-1} \xrightarrow{\sim} f^*$. In other words the category $Top_S(S', C - S)^\circ$ is equivalent to the category M of pairs $(n^{-1}: C \longrightarrow S', i^{-1}: n^{-1}p^{-1} \xrightarrow{\sim} f)$ where n^{-1} is continuous and left exact. Let Arr(S') be the category whose objects are arrows of S' and let $b: Arr(S') \longrightarrow S'$, $b(X \longrightarrow Y) = Y$. Since every object $c \in |C|$ determines a terminal map $c \longrightarrow p^{-1}(p(c))$, a pair (n^{-1}, i^{-1}) can be viewed as a functor $n': C \longrightarrow Arr(S')$ such that $bn' = f^*p$ and which is left exact (the continuity condition disappears by $(2.1 \ (1))$).

Since b makes a stack over S' out of the category Arr(S'), by the very definition of the direct image of a stack, n' is nothing but a functor $n'': C \longrightarrow f_* Arr(S')$ and, since n' is left exact, n'' is S-cartesian and left exact, hence an object of $Stex_S(C, Arr(S'))$. The conclusion follows since Arr(S') is equivalent to SH(S').

According to the proof, the morphism of topos $n: S' \longrightarrow C - S$ which corresponds to a left exact morphism of stacks $n'': C \longrightarrow f_* \operatorname{Arr}(S')$ is characterized up to unique isomorphism by the equality $n^* \varepsilon = d q n''$

(2)
$$C \xrightarrow{n''} f_* \operatorname{Arr}(S') \xrightarrow{q} \operatorname{Arr}(S') \xrightarrow{d} S',$$

where q is the first projection of $f_* \operatorname{Arr}(S') = \operatorname{Arr}(S') \times_{S'} S$, d the "domain functor" and ε the Yoneda functor.

Corollary (2.5). — If C is left exact one has an equivalence⁵

(1)
$$\operatorname{Top}_{S}(S', C - S) \longrightarrow \operatorname{Stex}_{S'}(f^{*}(C), \operatorname{SH}(S'))^{\circ}.$$

This follows immediately from (2.4), (1.4) and the universal property of the inverse image $f^*(C)$ of C. This gives the *universal property* of C - S in the bicategory of S-topos.

Corollary (2.6). $-Let C' = f^*(C)$. One has a commutative square of morphisms of topos

$$\begin{array}{ccc}
C - \mathbf{S} & \stackrel{C-f}{\longleftarrow} C' - \mathbf{S}' \\
\downarrow & & \downarrow \\
\mathbf{S} & \stackrel{f}{\longleftarrow} \mathbf{S}'
\end{array}$$

which is bicartesian.

This means that for any morphism of topos $g: S'' \longrightarrow S'$ the functor given by composition with C-f

(2)
$$\operatorname{Top}_{S'}(S'', C' - S') \longrightarrow \operatorname{Top}_{S}(S'', C - S)$$

⁵Stex_S(,) stands for "category of left exact morphisms of stacks

is an equivalence. By the very definition of C' [4] p.87, one has a commutative square

$$\begin{array}{c}
C \xrightarrow{\varphi^{-1}} C' \\
\downarrow p \downarrow \\
S \xrightarrow{f^*} S'
\end{array}$$

where φ^{-1} is cartesian. Furthermore φ^{-1} is left exact by (1.3). By (1.4) and the universal property of $C' = f^*(C)$, for any $g: S'' \longrightarrow S'$, the functor

$$\operatorname{Stex}_{S'}(C', g_*\operatorname{SH}(S'')) \longrightarrow \operatorname{Stex}_S(C, f_*g_*\operatorname{SH}(S'')), \quad u \longrightarrow u\varphi^{-1},$$

is an equivalence. By (2.4) the proof is now an exercise about universal properties in bicategories.

3. Generating stack of a U-topos

The question of defining a relative notion of generators has been raised by Lawvere and Tierney. We propose here an answer in the language of \mathfrak{U} -topos. It is clear that Prop. (3.3) is still valid when working in their framework and that (3.2) is not.

Definition (3.1). — Let $f: \mathbf{X} \longrightarrow \mathbf{S}$ be a morphism of \mathfrak{U} -topos. A generating stack of f is a full substack C of $F = f_*(\operatorname{Arr}(\mathbf{X}))$ which is small (2.1) and such that, for any $S \in |\mathbf{S}|$ and any $x \in |F_S|$, there exists a covering family $(S_i \longrightarrow S)$, $i \in I$, in \mathbf{S} and for each $i \in I$ a covering family $(c_{i,j} \longrightarrow x_i)$ in the fiber $F_S = \mathbf{X}/f^*(S)$, with $c_{i,j} \in |C|$, where x_i is the inverse image of x by $S_i \longrightarrow S$. A generating stack C is said to be left exact if C and the inclusion functor $i: C \longrightarrow F$ are left exact.

Let us recall that the category of arrows of **X** provided with the codomain functor $Arr(\mathbf{X}) \longrightarrow \mathbf{X}$ is a stack. Hence its direct image F is a stack whose fiber at $S \in |\mathbf{S}|$ is the topos $\mathbf{X}/f^*(S)$ and the inverse image functor $F_u : F_S \longrightarrow F_{S'}$ associated to a map $u : S \hookrightarrow S$ in **S** is nothing but pull-back along $f^*(u) : f^*(S') \longrightarrow f^*(S)$.

Hence F is a left exact stack and the condition that a full substack C of F is left exact is that each fiber C_S is stable by finite limits in the fiber F_S .

Proposition (3.2). — Any S-topos admits a left exact generating stack.

Let us choose a generator S_i , $i \in I \in \mathfrak{U}$, of S and for each $i \in I$ a full subcategory C_i of F_{S_i} stable by finite limits, generating F_{S_i} and equivalent to a category which belongs to \mathfrak{U} . Let us define C as the full subcategory of F whose objects of projection $S \in |S|$ are those $x \in |F_S|$ such that there exists a covering family $(c_a : S_a \longrightarrow S)$, such that each S_a is one of the S_i and the inverse image of S_i by S_i is isomorphic to an object of S_i . This condition being local on S_i , it is clear that S_i is a full substack of S_i and eve a left exact one since S_i is left exact. Furthermore S_i is small since for each S_i the set of classes of equivalent covering families S_i as above belongs to S_i . Eventually S_i is a generating stack since any S_i

Proposition (3.3). — Let S be a \mathbb{U} -topos and C a generating stack of an S-topos $f: \mathbf{X} \longrightarrow \mathbf{S}$. Then $C - \mathbf{S}$ is an S-topos and there exists an S-morphism of topos $n: \mathbf{X} \longrightarrow C - \mathbf{S}$ such that $n_*: \mathbf{X} \longrightarrow C - \mathbf{S}$ is full and faithful (in other words \mathbf{X} is a subtopos of $C - \mathbf{S}$).

3.3.1. We note first that since C is small, C-S is a \mathfrak{U} -topos. Furthermore there exists a left exact generating stack C' of X containing C and such that each object of C' is a finite limit of objects of C. Hence the inclusion $C \longrightarrow C'$ induces an equivalence between the S-topos C-S and C'-S and this fact allows us to assume that C is left exact. Since the inclusion $i:C \longrightarrow F$, $F=f_*Arr(X)$, is left exact one has an S-morphism $n:X \longrightarrow C-S$, (2.4), whose inverse image functor $n^*:C-S \longrightarrow X$ is such that its composition with the Yoneda functor $\varepsilon:C \longrightarrow C-S$ is equal to the composite of

(1)
$$C \xrightarrow{i} F \xrightarrow{q} Arr(X) \xrightarrow{d} X$$
, (2.4(2)).

For any $c \in |C|$ and any $X \in |\mathbf{X}|$ one has $n_*(X)(c) = \operatorname{Hom}(\varepsilon(c), n_*(X)) = \operatorname{Hom}(n^*\varepsilon(c), X) = \operatorname{Hom}(dqi(c), X) = \operatorname{Hom}_S(i(c), X \times f^*(S))$ where the last set of morphisms is taken in the fiber $\mathbf{X}/f^*(S)$ of F with S = p(c), and the last equality sign is justified by the definition of F as a fibered product. Hence the formula

$$(2) \qquad n_{*}: \mathbf{X} \longrightarrow C - \mathbf{S}, \quad n_{*}(X)(c) = \operatorname{Hom}_{S}(i(c), X \times f^{*}(S)), \quad S = p(c).$$

3.3.2. To prove that n_* is full and faithful we will first compose it with the

inverse $a: C - S \longrightarrow B_C(S)$ of (2.3 (1))

(3)
$$an_*: \mathbf{X} \longrightarrow \mathbf{B}_C(\mathbf{S}), \quad an_*(X)(c) = Hom_S(i(c), X \times f^*(S)),$$

 $S = p(c), c \in |C|,$

the above formula being justified by (2.3 (2)), where $Hom_S(u,v)$ stands for the sheaf (over S) of S-morphisms between the objects u and v of the fiber at S of the stack F. Let us prove that (3) is the effect on the fibers at the terminal object of S of a morphism of stacks

(4)
$$m: F \longrightarrow ST(C^V, SH(S)),$$

where ST(A, B) stands for the (split) *stack* or morphisms of stacks between A and B (internal Hom in the bicategory of stacks [4] p.57, 77), whose fiber at $S \in |S|$ is the category of morphisms $A/S \longrightarrow BS$ of stacks over S/S. We obtain (4) by composition of

(5)
$$F \xrightarrow{y} ST(F^{V}, SH(S)) \xrightarrow{j} ST(C^{V}, SH(S))$$

where j is induced by composition with $i: C \longrightarrow F$ and where y is a "relative Yoneda functor" defined by

(6)
$$y(a)(b) = \operatorname{Hom}_{S}(b, a^{f})$$

where $f: T \longrightarrow S$ is a map in **S** and $a \in |F_S|$, $b \in |F_T|$. One should note that the restriction of y to the terminal fiber of F is also the restriction of the composite $F \stackrel{\varepsilon}{\longrightarrow} F - \mathbf{S} \stackrel{a}{\longrightarrow} \mathbf{B}_F(\mathbf{S})$, (2.1(3)), (2.3(2)). By localisation it follows that the restriction of y to each fiber is full and faithful hence y is such. On the other hand, since any object of F can be covered for the canonical topology of F by objects of i(C) and since i is full and faithful it is easy to show that j is also full and faithful and the conclusion follows.

Proposition (3.4). — Fibered products exist in the bicategory of \mathfrak{U} -topos.

according to (3.2) and (3.3) any morphism of \mathfrak{U} -topos $X \longrightarrow S$ can be factored in $X \stackrel{n}{\longrightarrow} C - S \stackrel{\pi}{\longrightarrow} S$ where n_* is full and faithful and where C is a left exact small stack over S. By (2.6) the pullback of π along any morphism of \mathfrak{U} -topos

 $f: S' \longrightarrow S$ exists. On the other hand the pull-back of n along any morphism of \mathfrak{U} -topos $y: Y \longrightarrow C - S$ exists because X is a subtopos of C - S hence is defined by some topology J on C - S and it suffices to take as a pullback the subtopos of Y defined by the finest topology J' on Y such that the inverse image functor $y^*: C - S \longrightarrow Y$ is continuous. The conclusion follows by transitivity of pullback in a bicategory.

RÉFÉRENCES

- [1] P. DELIGNE AND D. MUMFORD The irreducibility of the spee of curves of given genus, Publications mathématiques de l'I.H.È.S., No. 36, 1969, p. 75-110.
- [2] J. GIRAUD *Méthode de la descente*, Mémoire de la Société Mathématique de France, 1964.
- [3] Effacement d'une classe de cohomologie de degré 2, C.R. Ac. Sc. 265, 229-231, (1967).
- [4] Cohomologie non abélienne, Springer, 1971.
- [5] A. GROTENDIECK Séminaire de Géométrie Algébrique de l'I.H.È.S, Cohomologie étale des schémas, 1964
- [6] PF.W. LAWVERE Quantifiers and sheaves, Congrès International des Mathématiciens, Nice 1970.
- [7] D. MUMFORD *Picard group of moduli problems*, Proc. Conf. On Arith. Alg. Geom. at Purdue, 1963.