Dark matter from SM gauge extensions

with neutrino masses

Diego Restrepo

July 23, 2019 - PPC2019 - Cartagena

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on

In collaboration wit

M. Hirsch (IFIC), C. Álvarez (UTFSM), A. Flórez (UniAndes), B. Dutta(Texas A& M), C. Yaguna (UPTC), J. Calle, O. Zapata, A. Rivera (UdeA), W. Tangarife (Loyola University Chicago)

Dark sectors

In the following discussion we use the following doublets in Weyl Notation

$$H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}, \qquad L_i = \begin{pmatrix} \nu_{Li} \\ e_{Li}^- \end{pmatrix}. \tag{1}$$

corresponding to the Higgs doublet and the lepton doublets respectively.

$$m_{\text{Majorana}}^{\nu} = \frac{h_{\nu}}{\Lambda} L \cdot HL \cdot H$$
 (three-level)

Type-I arXiv:1808.03352, II arXiv:1607.04029, III arXiv:1908.04308

$$\mathcal{L} = y (N_R)^{\dagger} L \cdot H + M_N N_R N_R + \text{h.c}$$

$$m_{\text{Majorana}}^{\nu} = \frac{h_{\nu}}{\Lambda} L \cdot HL \cdot H$$

Type-I arXiv:1808.03352, with N. Bernal, C. Yaguna, and Ó. Zapata [PRD]

$$U(1)_X \rightarrow Z_7$$

$$\mathcal{L} = y(N_R)^{\dagger} L \cdot \langle H \rangle + y' \langle S \rangle N_R N_R + \text{h.c.}$$

$$m_{\rm Majorana}^{\nu} = \frac{h_{\nu}}{\Lambda} L \cdot HL \cdot H\frac{S}{\Lambda}$$
Type-I arXiv:1808.03352: Also new terms arise

2: Also new terms arise from spontaneous breakdown of a new gauge symmetry

$Local U(1)_{X} \rightarrow Z_{7}$ $\mathcal{L} = y(N_{R})^{\dagger} L \cdot \langle H \rangle + y' \langle S \rangle N_{R} N_{R} + \text{h.c}$

$$\mathcal{L} = y (N_R)^{\dagger} L \cdot \langle H \rangle + y' \langle S \rangle N_R N_R + \text{h.c}$$

$$m_{\text{Majorana}}^{\nu} = \frac{h_{\nu}}{\Lambda} L \cdot HL \cdot H\frac{S}{\Lambda}$$

Type-I arXiv:1808.03352

: Also new terms arise from spontaneous breakdown of a new gauge symmetry

Fields	SU(2) _L	U(1) _Y	U(1) _X
L	2	-1/2	l
Q	2	-1/6	9
d_R	1	-1/2	d
U_R	1	+2/3	И
e_R	1	-1	е
Н	2	-1/2	h
ψ	1	0	ψ

Table 1: The new scalars and fermions with their respective charges. The SM fields have the usual $U(1)_{B-L}$ assignment. Now $\alpha=1,2$

$$[SU(3)_c]^2 U(1)_X : [3u + 3d] - [3 \cdot 2q] = 0$$

$$[SU(2)_L]^2 U(1)_X : -[2l + 3 \cdot 2q] = 0$$

$$[U(1)_Y]^2 U(1)_X : [(-2)^2 e + 3(\frac{4}{3})^2 u + 3(-\frac{2}{3})^2 d] - [2(-1)^2 l + 3 \cdot 2(\frac{1}{3})^2 q] = 0$$
 (2)

$$u=-\,e+\frac{2l}{3}\,,$$

$$d=e-\frac{4l}{3},$$

$$q=-\frac{l}{3}.$$

$$u=-e+\frac{2l}{3}\,,$$

$$d=e-\frac{4l}{3}\,,$$

$$q = -\frac{l}{3}. (2)$$

which satisfy

$$U(1)_{Y} \left[U(1)_{X} \right]^{2} : \qquad \left[(-2)e^{2} + 3\left(\frac{4}{3}\right)u^{2} + 3\left(-\frac{2}{3}\right)d^{2} \right] - \left[2(-1)l^{2} + 3 \cdot 2\left(\frac{1}{3}\right)q^{2} \right] = 0 \tag{3}$$

4

$$u = -e + \frac{2l}{3},$$
 $d = e - \frac{4l}{3},$ $q = -\frac{l}{3}.$ (2)

which satisfy

$$U(1)_{Y} \left[U(1)_{X} \right]^{2} : \qquad \left[\left(-2 \right) e^{2} + 3 \left(\frac{4}{3} \right) u^{2} + 3 \left(-\frac{2}{3} \right) d^{2} \right] - \left[2 \left(-1 \right) l^{2} + 3 \cdot 2 \left(\frac{1}{3} \right) q^{2} \right] = 0 \tag{3}$$

The most general cancellation for $[U(1)_X]^3$ and $[SO(1,3)]^2 U(1)_X$ is between families

$$\sum_{\alpha} \psi_{\alpha}^{3} + 3(e - 2l)^{3} = 0, \qquad \sum_{\alpha} \psi_{\alpha} + 3(e - 2l) = 0,$$
 (4)

with $\alpha = 1, 2, \dots, N$ or X = Y. We study the set of solutions with e - 2l = 1, e.g

$$\sum_{\alpha} \psi_{\alpha}^{3} = -3, \qquad \sum_{\alpha} \psi_{\alpha} = -3, \qquad (5)$$

$$u = -e + \frac{2l}{3},$$
 $d = e - \frac{4l}{3},$ $q = -\frac{l}{3}.$ (2)

which satisfy

$$U(1)_{Y} \left[U(1)_{X} \right]^{2} : \qquad \left[\left(-2 \right) e^{2} + 3 \left(\frac{4}{3} \right) u^{2} + 3 \left(-\frac{2}{3} \right) d^{2} \right] - \left[2 \left(-1 \right) l^{2} + 3 \cdot 2 \left(\frac{1}{3} \right) q^{2} \right] = 0 \tag{3}$$

The most general cancellation for $[U(1)_X]^3$ and $[SO(1,3)]^2 U(1)_X$ is between families

$$\sum_{\alpha} \psi_{\alpha}^{3} + 3(e - 2l)^{3} = 0, \qquad \sum_{\alpha} \psi_{\alpha} + 3(e - 2l) = 0,$$
 (4)

with $\alpha = 1, 2, \dots, N$ or X = Y. We study the set of solutions with e - 2l = 1, e.g

$$\sum_{\alpha} \psi_{\alpha}^{3} = -3, \qquad \sum_{\alpha} \psi_{\alpha} = -3, \qquad (5)$$

We impose $N_R = \psi_N = \psi_{N-1}$, to have at most one massless neutrino.

Known solutions with $\sum \psi_{lpha} = -3$ and $\sum \psi_{lpha}^3 = -3$

$(N_R,N_R,\psi_{N-2},\cdots)$	Ref
(-1, -1, -1)	[]
(-4, -4, +5)	[?]
$\left(-\frac{2}{3}, -\frac{2}{3}, -\frac{4}{3}, -\frac{1}{3}\right)$	[?]
$\left(-\frac{8}{5}, -\frac{8}{5}, -\frac{2}{5}, -\frac{7}{5}, +2\right)$	[?]
$\left(-\frac{7}{3}, -\frac{7}{3}, +\frac{1}{3}, -\frac{5}{3}, +3\right)$	[]
$\left(-\frac{7}{10}, -\frac{7}{10}, -\frac{13}{10}, -\frac{1}{2}, +\frac{1}{5}\right)$	[]
$\left(-1, -1, -\frac{10}{7}, -\frac{4}{7}, -\frac{2}{7}, \frac{9}{7}\right)$	[?]

Table 2: The possible solutions of the Dirac neutrino mass models with at least two repeated charges and until five chiral fermions.

Fields	SU(2) _L	U(1) _Y	U(1) _X	$U(1)_{B-L}$	U(1) _B	U(1) _D	U(1) _G
L	2	-1/2	l	-1	0	-3/2	-1/2
Q	2	-1/6	-l/3	1/3	0	1/2	1/6
d_R	1	-1/2	1 + 2l/3	1/3	1	0	2/3
U_R	1	+2/3	-1 - 4l/3	1/3	-1	1	-1/3
e_R	1	-1	1 + 2 <i>l</i>	-1	1	-2	0
Н	2	-1/2	-1 - l	0	-1	1/2	-1/2
S	1	0	$2\psi_{N}$	$2\psi_{N}$	$2\psi_N$	$2\psi_N$	$2\psi_N$
$\sum_{\alpha} \psi_{\alpha}$	1	0	-3	-3	-3	-3	-3
$\sum_{\alpha} \psi_{\alpha}^3$	1	0	-3	-3	-3	-3	-3

Fields	$U(1)_{B-L}$	Z_2^1	Z_2^1
L	-1	+	+
Q	1/3	+	+
d_R	1/3	+	+
U_R	1/3	+	+
e_R	-1	+	+
Н	0	+	+
S	-2	+	+
N_{R1}	-1	+	+
N_{R2}	-1	+	+
$\psi_1 o (\xi_L)^\dagger$	-10/7	_	+
$\psi_2 o \eta_R X$	-4/7	_	+
$\psi_3 o \zeta_R$	-2/7	+	_
$\psi_4 o (\chi_L)^\dagger$	+9/7	+	_
S'	1	+	+

After integrating out heavy fermions, we obtain light neutrino masses

$$\mathcal{M}_{\nu}^{ij} = \sum_{\alpha=1}^{2} \left(h^{i\alpha} v \right) \frac{1}{M_{R}^{\alpha}} \left(h^{j\alpha} v \right)$$

With only two heavy fermions, one massless neutrino is left

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fields	Z_2^1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d_R	+
H 0 + + S -2 + +	U_R	+
S -2 + +	e_R	+
	Н	+
N 1	S	+
N_{R1} -1 + +	N_{R1}	+
N_{R2} -1 + +	N_{R2}	+
$\psi_1 ightharpoonup (\xi_L)^{\dagger} \mid -10/7 \mid - \mid +$	$\psi_1 o (\xi_L)^\dagger$	+
$\psi_2 ightarrow \eta_R X$ $-4/7$ $ +$	$\psi_2 o \eta_R X$	+
$\psi_3 ightarrow \zeta_R$ $-2/7$ $+$ $-$	$\psi_3 o \zeta_R$	-
$\psi_4 \rightarrow (\chi_L)^{\dagger}$ +9/7 + -	$\psi_4 \rightarrow (\chi_L)^{\dagger}$	_
S' 1 + +	S'	+

Two component Dirac fermion dark matter

Parameter space

$$S = \frac{1}{\sqrt{2}} (v_1 + h_1) + \frac{i}{\sqrt{2}} x^2$$

$$S = \frac{1}{\sqrt{2}} (v_1 + h_1) + \frac{i}{\sqrt{2}} A_1$$
$$S' = \frac{1}{\sqrt{2}} (v_2 + h_2) + \frac{i}{\sqrt{2}} A_2$$

Parameter space
$$S=rac{1}{\sqrt{2}}inom{v_1}{h_1}+rac{i}{\sqrt{2}}A_1$$

$$S = \frac{1}{\sqrt{2}} \left(v_1 + h_1 \right) + \frac{i}{\sqrt{2}} A_1$$

 $\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$

 $M_{Z'}^2 = g_{RL}^2 v_2^2 \left(4 + \tan^2 \beta\right)$

 $\tan \beta = \frac{v_2}{v_1}$

Parameter space

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} v_1 + h_1 \end{pmatrix} + \frac{i}{\sqrt{2}} A_1$$

$$S' = \frac{1}{\sqrt{2}} \begin{pmatrix} v_2 + h_2 \end{pmatrix} + \frac{i}{\sqrt{2}} A_2$$

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

$$\tan \beta = \frac{v_2}{v_1}$$

$$M_{Z'}^2 = g_{BL}^2 v_2^2 \left(4 + \tan^2 \beta \right)$$

$$\mathcal{L} = M_1 \overline{\chi_1} \chi_1 + M_2 \overline{\chi_2} \chi_2 + M_{N1} \overline{N_{R1}^c} N_{R1} + M_{N2} \overline{N_{R2}^c} N_{R2}$$

Parameter space

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} v_1 + h_1 \end{pmatrix} + \frac{i}{\sqrt{2}} A_1$$

$$S' = \frac{1}{\sqrt{2}} \begin{pmatrix} v_2 + h_2 \end{pmatrix} + \frac{i}{\sqrt{2}} A_2$$

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

$$\tan \beta = \frac{v_2}{v_1}$$
11 parameters
$$M_{Z'}^2 = g_{BL}^2 v_2^2 \left(4 + \tan^2 \beta \right)$$

$$m_{\gamma} = M_1 \text{ or } M_2$$

$$\mathcal{L} = M_1 \overline{\chi_1} \chi_1 + M_2 \overline{\chi_2} \chi_2 + M_{N1} \overline{N_{R1}^c} N_{R1} + M_{N2} \overline{N_{R2}^c} N_{R2}$$

Relic abundance

 $\Omega_{\rm DM} h^2 = 0.1198 \pm 0.0015$ Planck 2015

Boltzman equation

$$\frac{dY}{dx} = -\frac{S\langle \sigma V \rangle}{xH(m_\chi)} \left(Y^2 - Y_{EQ}^2 \right)$$

$$S = \frac{2\pi^2}{45} g_\star \frac{m_\chi^3}{x^3}$$

$$H(m_\chi) = \sqrt{\frac{4\pi^3}{45}} g_\star \frac{m_\chi^2}{M_{Pl}}$$

$$SY_{EQ} = \frac{g_\chi}{2\pi^2} \frac{m_\chi^3}{x} K_2(x)$$

$$x=m_\chi/T$$
 $M_{Pl}=1.22\times 10^{19} {\rm GeV}$: the Planck mass $g_\chi=4$: the number of DM d.o.f $g_*=106.75$: for the SM particles K_2 : the modified Bessel function

sigmav

sigmav

$$\langle \sigma V \rangle = \frac{g_{\chi}^2}{64\pi^4} \left(\frac{m_{\chi}}{x}\right) \frac{1}{n_{EQ}^2} \int_{4m_{\chi}^2}^{\infty} ds \hat{\sigma}(s) \sqrt{s} K_1 \left(\frac{x\sqrt{s}}{m_{\chi}}\right)$$

where

 n_{EQ} : DM number density

*K*₁: Modified Bessel function

Reduced cross section

$$\hat{\sigma}(s) = 2\left(s - 4m_{\chi}^2 \sigma(s)\right)$$

DM annihilation cross section

DM annihilation processes

Total annihilation cross section:
$$\sigma(s) = \sigma_{SM}(s) + \sum_{i=1}^{2} \sigma_{N^{i}N^{i}}(s)$$

$$\begin{split} \sigma_{SM}(s) &= \frac{25\pi}{3} \alpha_X^2 \frac{\sqrt{s(s-4m_\chi^2)}}{(s-m_{Z'}^2)^2 + m_{Z'}^2 \Gamma_{Z'}^2} F(x_H), \\ \sigma_{N^i N^i}(s) &= \frac{400\pi}{3} \alpha_X^2 \sqrt{\frac{s-4m_{N^i}^2}{s-4m_\chi^2}} \frac{1}{(s-m_{Z'}^2)^2 + m_{Z'}^2 \Gamma_{Z'}^2} \\ &\qquad \times \frac{1}{s} \left((s-4m_\chi^2)(s-4m_{N^i}^2) + 12 \frac{m_\chi^2 - m_{N^i}^2}{m_{Z'}^4} \left(s-m_{Z'}^2 \right)^2 \right) \theta(s-4m_{N^i}^2) \end{split}$$

$$F(x_H) = 13 + 16x_H + 10x_H^2 = 10\left(x_H + \frac{4}{5}\right)^2 + \frac{33}{5}$$

Isosinglet dark matter candidate

 χ as a isosinglet Dirac dark matter fermion charged under a local U(1)_{B-L} (SM) cuples to a SM-singlet vector mediator Z'

$$\mathcal{L}_{\text{int}} = -g_{\text{BL}} \, \overline{\chi} \gamma^{\mu} \chi \,, Z_{\mu}' - \sum_f g_f \overline{f} \gamma^{\mu} f \,, Z_{\mu}' \,,$$

where f are the Standard Model fermions: Resonances excluded!

Additional DM annihilation processes

Additional DM annihilation processes

Additional DM annihilation processes

Additional DM annihilation processes

Additional DM annihilation processes

Two component Dirac fermion dark matter model

Field	$U(1)_{B-L}$
N _{R1}	-1
N_{R2}	-1
ξ_{L}	+10/7
η_{R}	-4/7
ζ_R	-2/7
χ_{L}	-9/7
S	-2
S'	1
U	$(1)_{B-L} \rightarrow Z$

Neutrino masses

Lepton number

- Lepton number (*L*) is an accidental discret or Abelian symmetry of the standard model (SM).
- · Without neutrino masses L_e , L_μ , L_τ are also conserved.
- The processes which violates individual *L* are called Lepton flavor violation (LFV) processes.
- · All the neutrino mass models predict, to some extent, LFV processes
- Only models with Majorana neutrinos predict processes with total $L = L_e + L_\mu + L_\tau$ violation, like neutrino less doublet beta decay (NLDBD).
- NLDBD is experimentally challenging, specially if there is a massless neutrino in the spectrum.

NLDBD prospects for a model with a massless neutrino (arXiv:1806.09977 [PLB] with Reig, Valle and Zapata)

Total lepton number: $L = L_e + L_\mu + L_{\tau_1}$

Majorana U(1)

Field	$Z_2 (\omega^2 = 1)$
SM	1
L	ω
$(e_R)^{\dagger}$	ω
$(u_R)^\dagger$	ω

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + M_R \nu_R \nu_R + \text{h.c.}$$

$$h_D \sim \mathcal{O}(1)$$

Dirac $U(1)_L$

Field
$$Z_3$$
 ($\omega^3 = 1$)

SM 1

L ω
 $(e_R)^{\dagger}$ ω^2
 $(\nu_R)^{\dagger}$ ω^2

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c.}$$

$$h_D \sim \mathcal{O}(10^{-11})$$

Total lepton number: $L=L_e+L_\mu+L_ au$

Majorana U(1)_L

Field
$$Z_2$$
 ($\omega^2 = 1$)
SM 1
 L ω
 $(e_R)^{\dagger}$ ω
 $(\nu_R)^{\dagger}$ ω

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + M_R \nu_R \nu_R + \text{h.c.}$$

$$h_D \sim \mathcal{O}(1)$$

Dirac $U(1)_{B-L}$

Field
$$Z_3$$
 ($\omega^3 = 1$)
SM 1
 L ω
 $(e_R)^{\dagger}$ ω^2
 $(\nu_R)^{\dagger}$ ω^2

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c.}$$

$$h_D \sim \mathcal{O}(10^{-11})$$

Explain smallness ala Peccei-Quinn: $U(1)_{B-L} \xrightarrow{(S)} Z_N$, $N \ge 3$.

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

• Forbids Majorana term: $u_{R}
u_{R}$

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term: $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} (\nu_R)^{\dagger} L \cdot HS + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term: $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} (\nu_R)^{\dagger} L \cdot HS + \text{h.c.}$$

H V_R

 $U(1)_{B-L} \xrightarrow{(S)} Z_N$

• Enhancement to the effective number of degrees of freedom in the early Universe $\Delta N_{\rm eff} = N_{\rm eff}^{\rm SM}$ (see arXiv:1211.0186)

See E. Ma, Rahul Srivastava: arXiv:1411.5042 [PLB] for tree-level realization

 $m_{
m Majorana}^{
u} = \frac{1}{\Lambda} L \cdot HL \cdot H$ $m_{
m Dirac}^{
u} = \frac{1}{\Lambda} (\nu_R)^{\dagger} L \cdot HS$

