1. Smart Home Temperature Control

Problem Statement:

Design a temperature control system for a smart home. The system should read the current temperature from a sensor every minute and compare it to a user-defined setpoint. Requirements:

- If the current temperature is above the setpoint, activate the cooling system.
- If the current temperature is below the setpoint, activate the heating system.
- Display the current temperature and setpoint on an LCD screen.
- Include error handling for sensor failures.

ANS::

- 1.Take Sensor Temperature as sense_temp
- 2. Take user defined setpoint as setpoint
- 3.for every time==1minute
 - 3.1 if (Temp_Sensor!=FAIL)
 - 3.1.1 if (sense temp > setpoint)
 - 3.1.1.1 Cooling_system=ON;
 - 3.1.1.2 print "sense_temp & setpoint";
 - 3.1.2 else
 - 3.1.2.1 Heating_system=ON;
 - 3.1.2.2 print "sense_temp & setpoint";
 - 3.2 else
 - 3.2.1 print "SENSOR FAILED";

2. Automated Plant Watering System Problem Statement:

Create an automated watering system for plants that checks soil moisture levels and waters the

plants accordingly.

Requirements:

- Read soil moisture level from a sensor every hour.
- If moisture level is below a defined threshold, activate the water pump for a specified duration.
- Log the watering events with timestamps to an SD card.
- Provide feedback through an LED indicator (e.g., LED ON when watering).

ANS::

- 1.Take soil moisture as soil_moist
- 2. Take user defined threshold as thresh
- 3.for every time==1hour
 - 3.1 if (soil moist < thresh)
 - 3.1.1 for water_time=3minute
 - 3.1.1.1 pump=ON;
 - 3.1.1.2 log time to SD;
 - 3.1.1.3 LED=ON;
 - 3.2 else
 - 3.2.1 continue;

3. Motion Detection Alarm System Problem Statement:

Develop a security alarm system that detects motion using a PIR sensor. Requirements:

- Continuously monitor motion detection status.
- If motion is detected for more than 5 seconds, trigger an alarm (buzzer).
- Send a notification to a mobile device via UART communication.
- Include a reset mechanism to deactivate the alarm.

ANS::

- 1.Take PIR sensor value as motion_time
- 2.if (motion_time > 5 sec)
 - 2.1 Alarm=ON;
 - 2.2 send notification via UART;
 - 2.3 reset alarm yes or no:

3.else

3.1 continue

4. Heart Rate Monitor

Problem Statement:

Implement a heart rate monitoring application that reads data from a heart rate sensor.

Requirements:

- Sample heart rate data every second and calculate the average heart rate over one minute.
- If the heart rate exceeds 100 beats per minute, trigger an alert (buzzer).
- Display current heart rate and average heart rate on an LCD screen.
- Log heart rate data to an SD card for later analysis.

- 1. Take Heart rate from sensor as heart rate
- 2.for every time=1second
 - 2.1 avg_heart_rate=heart_rate*60;
 - 2.2 log heart_rate & avg_heart_rate to SD:
 - 2.3 if (heart_rate*60 > 100)
 - 2.3.1 Alarm=ON;
 - 2.3.2 print "heart_rate & avg_heart_rate";
 - 2.4 else
 - 2.4.1 break;
 - 2.5 avg_heart_rate=0;

5. LED Control Based on Light Sensor

Problem Statement:

Create an embedded application that controls an LED based on ambient light levels detected by a

light sensor.

Requirements:

- Read light intensity from the sensor every minute.
- If light intensity is below a certain threshold, turn ON the LED; otherwise, turn it OFF.
- Include a manual override switch that allows users to control the LED regardless of sensor input.
- Provide status feedback through another LED (e.g., blinking when in manual mode).

- 1. Take intensity of light from sensor as light_intensity
- 2. Take user defined threshold as threshold
- 3.for every time=1minute
 - 3.1 if (SWITCH == OFF)
 - 3.1.1 if (light_intensity < threshold)
 - 3.1.1.1 main LED=ON;
 - 3.1.2 else
 - 3.1.2.1 main_LED=OFF;
 - 3.2 else
 - 3.2.1 main_LED=ON;
 - 3.2.2 indicator_LED=BLINK;

6. Digital Stopwatch

Problem Statement:

Design a digital stopwatch application that can start, stop, and reset using button inputs. Requirements:

- Use buttons for Start, Stop, and Reset functionalities.
- Display elapsed time on an LCD screen in hours, minutes, and seconds format.
- Include functionality to pause and resume timing without resetting.
- Log start and stop times to an SD card when stopped.

```
ANS::
```

- 1.Take input_button
- 2.Switch(input button)
 - 2.1 Case "Start"
 - 2.1.1 if (timer=0)
 - 2.1.1.1 timer=running;
 - 2.1.1.2 print "HH:MM:SS";
 - 2.1.2 else
 - 2.1.2.1 current_timer=running
 - 2.1.2.2 print "HH:MM:SS";
 - 2.2 Case "Pause"
 - 2.2.1 if (timer =running)
 - 2.2.1.1 timer=notrunning
 - 2.2.1.2 current timer=timer;
 - 2.2.1.3 print "HH:MM:SS";
 - 2.3 Case "Reset"
 - 2.3.1 timer=notrunning;
 - 2.3.2 timer=0;
 - 2.4 Case "Stop"
 - 2.4.1 timer=notrunning;
 - 2.4.2 current_timer=timer;
 - 2.4.3 print "HH:MM:SS";

7. Temperature Logging System

Problem Statement:

Implement a temperature logging system that records temperature data at regular intervals.

Requirements:

- Read temperature from a sensor every 10 minutes.
- Store each reading along with its timestamp in an array or log file.
- Provide functionality to retrieve and display historical data upon request.
- Include error handling for sensor read failures.

- 1.Take sensor temp as sense_temp
- 2.for every time=10min
 - 2.1 if (Sensor !=FAIL)
 - 2.1.1 for i in range (0,timer)
 - 2.1.2 a[i]=sense_temp;
 - 2.2 else
 - 2.2.1 print "SENSOR FAILED"
- 3. Retriving function take value of i
 - 3.1 print "a[i]";

8. Bluetooth Controlled Robot

Problem Statement:

Create an embedded application for controlling a robot via Bluetooth commands. Requirements:

- Establish Bluetooth communication with a mobile device.
- Implement commands for moving forward, backward, left, and right.
- Include speed control functionality based on received commands.
- Provide feedback through LEDs indicating the current state (e.g., moving or stopped).

- 1.Connect_with_bluetooth
- 2. Take user input as input
- 3.Switch(input)
 - 3.1 Case "Forward"
 - 3.1.1 move=forward;
 - 3.2 Case "Backward"
 - 3.2.1 move=backward;
 - 3.3 Case "Left"
 - 3.3.1 move=Left;
 - 3.4 Case "Right"

3.4.1 move=Right; 3.5 Case "++" 3.5.1 move=speed++; 3.6 Case "--" 3.6.1 move=speed--;

9. Battery Monitoring System

Problem Statement:

Develop a battery monitoring system that checks battery voltage levels periodically and alerts if

voltage drops below a safe threshold.

Requirements:

- Measure battery voltage every minute using an ADC (Analog-to-Digital Converter).
- If voltage falls below 11V, trigger an alert (buzzer) and log the event to memory.
- Display current voltage on an LCD screen continuously.
- Implement power-saving features to reduce energy consumption during idle periods.

ANS::

1. Take Battery reading from sensor as read battery

2.for every time=1min

- 2.1 if (read_battery < 11V)
 - 2.1.1 print "read_battery";
 - 2.1.2 Alarm=ON;
 - 2.1.3 log Data to memory;
 - 2.1.4 if (battery_saver!=ON)
 - 2.1.4.1 battery_saver=ON;

2.2 else

- 2.2.1 print "read_battery";
- 2.2.2 if (battery_saver=ON)
 - 2.2.2.1 battery_saver=OFF;

10. RFID-Based Access Control System

Problem Statement:

Design an access control system using RFID technology to grant or deny access based on scanned

RFID tags.

Requirements:

- Continuously monitor for RFID tag scans using an RFID reader.
- Compare scanned tags against an authorized list stored in memory.
- Grant access by activating a relay if the tag is authorized; otherwise, deny access with an alert (buzzer).
- Log access attempts (successful and unsuccessful) with timestamps to an SD card.

ANS::

- 1.Take RFID input as scan_rfid
- 2.if (scan_rfid == stored_rfid)
 - 2.1 Activate relay;
 - 2.2 log "scan_rfid Successful(time)" to SD;

3.else

- 3.1 Buzzer=ON;
- 3.2 log "scan_rfid Unsuccessful(time)" to SD;

