# FAST IMITATION SIMULATION OF THE GENERAL MODEL OF THE REDUNDANT SYSTEM WITH RECOVERY

Candidate: Anastasiia Kasian

Supervisor: Ivan Matsak

Taras Shevchenko National University of Kyiv

# SYSTEM SCHEME



# TIME MOMENTS SCHEME



### PROBLEM STATEMENT

Consider redundant system with recovery which contains:

- $n_1, n_2, ..., n_s$  working elements of s types;
- $m_1, m_2, ..., m_s$  the number of spare elements of each type;
- *r* − number of repair units;
- $\tau$  work time (exponential distribution with parameters  $\lambda_1, \lambda_2, \dots, \lambda_s$ );
- $\eta$  repair time ( $\eta = const$ ;  $\eta$  exponential distribution with parameter  $\mu$ ,  $\lambda = 10 \times \mu$ ).

### PROBLEM STATEMENT

The system fails when the working element fails, and all spare elements of its type are in the repair.

Let  $T_{\theta}$  – time to system failure, then

$$P_{\vartheta}(t_z) = P(T_{\vartheta} > t_z)$$
 - system reliability.

Find  $P_{\vartheta}(t_z)$  with the fast imitational modeling.

### IMITATIONAL MODELING

Simulate system work on interval [0, t].

If system breaks, we have p = 1, otherwise p = 0.

Repeat  $n = 10^6$  times.

Then counting the reliability of the system:

$$Q = \frac{1}{n} \sum_{j=1}^{n} p$$

### FAST SIMULATION

•  $\tau$  - random variable with distribution function:

$$F_{\tau}(x) = \begin{cases} \frac{F(x)}{F(\Delta)}, & x < \Delta \\ 1, & x \ge \Delta \end{cases}$$

Thus main element work time

$$\tau = -\frac{1}{\lambda} \ln \left[ 1 - u \left( 1 - e^{-\lambda \Delta} \right) \right], \quad (*)$$

### FAST SIMULATION

•  $\eta$  – random variable with exponential distribution:

$$F_{\eta}(x) = \begin{cases} \lambda e^{-\lambda \Delta}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Repair time

$$\eta = 1 - e^{-\lambda \Delta} \,, \qquad (**)$$

# FAST SIMULATION

Probability on each step:

$$p = P(\tau < t) = 1 - e^{(n_1 \lambda_1 + \dots + n_s \lambda_s) \Delta_k}$$

Probability of system break during iteration of eternal cycle:

$$P = \prod_{i=1} p_i$$

System reliability

$$Q = \frac{1}{n} \sum_{j=1}^{n} P_j$$

# FAST SIMULATION ALGORITHM



$$\lambda = 1.0, \mu = 5.0, t = 5.0$$

• Theoretical value is 0.507359

• Number of iterations:  $n_U = 10^5$ ,  $n_F = 10^3$ 

| Usual Simulation | Fast Simulation |
|------------------|-----------------|
| 0.50953          | 0.502224        |
| 0.50977          | 0.509022        |
| 0.50829          | 0.508088        |
| 0.50789          | 0.505641        |
| 0.5071           | 0.509664        |
| 0.50767          | 0.503931        |
| 0.51108          | 0.506086        |
| 0.50602          | 0.50946         |
| 0.50661          | 0.511239        |
| 0.50699          | 0.508602        |
| avg: 0.508095    | avg: 0.507575   |



$$t = 5.0$$



$$\lambda = 1.0, \qquad \mu = 5.0, \qquad t = 0.1$$





$$\lambda = 3.0$$
,  $\mu = 30.0$ ,  $t = 0.01$ 





# CONCLUSIONS

• The method of fast simulation allows to estimate the reliability of the system in fewer computational cycles.

• Usual method does not give a stable exact approximation of the theoretical value, while the method of fast modeling reaches a value very close to the theoretical for a small number of iterations.