A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 3EB

Bookmark

Show all steps: ON

Problem

Use Theorems 3 and 4 to prove the following: Suppose we are given *k* congruences

There is an x satisfying all k congruences simultaneously if for all $i, j \in \{1, ..., k\}$, $c_i \equiv c_i \pmod{d_{ii}}$, where $d_{ij} = \gcd(m_i, m_j)$. Moreover, the simultaneous solution is of the form $x \equiv c \pmod{t}$, where $t = c \pmod{t}$ 1cm $(m_1, m_2, ..., m_k)$.

Step-by-step solution

Step 1 of 4

Here, objective is to prove the given statement.

Number of congruence = k

Comment

Step 2 of 4

Theorem 3:

Consider $x = a \pmod{n}$, $x = b \pmod{m}$ there is an integer satisfying both congruence's simultaneously if and only if, $a = b \pmod{b}$, gcd(m, n)

Theorem 4:

If a pair of congruence's $x = a \pmod{n}$, $x = b \pmod{m}$ has a simultaneous solution, then the solution is of the form $x = c \pmod{t}$

Where *t* is the least common multiple of (m, n)

Comment

Step 3 of 4

Consider

$$x = c_1 \pmod{m_1}, x = c_2 \pmod{m_1}, \dots x = c_k \pmod{m_k}$$

Consider the first two equations $x = c_1 \pmod{m_1}, x = c_2 \pmod{m_1},$

The solution is of the form $x = c \pmod{t}$

Where $t = \text{lcm}(m_1, m_2)$

Comment

Step 4 of 4

Consider the first two congruence's simultaneously with

$$x = c_3 \pmod{m_3}$$

$$\gcd(t, m_3) = lcm(d_{13}, d_{23})$$

$$c_3 = c_1 \pmod{d_{13}}$$

$$c_3 = c_2 \pmod{d_{23}}$$

$$c_3 = c[\mod{\gcd(t, m_3)}]$$

Repeat the above process for k times

Then,
$$c_i = c_j [\text{mod } d_{ij}]$$
; where $d_{ij} = \text{gcd}(m_i, m_j)], i, j \in \{1, 2...k\}$

The solution is of the form $x = c \pmod{t}$

Where, $t = \text{lcm}(m_1, m_2 m_k)$

Hence, proved.

Comment