

Information Visualization

Denis Lalanne University of Fribourg 07/05/2019

Nombre de véhicules vendus par type, région et année

	Suisse allema	ande	Suisse romande		
Туре	2009	2010	2009	2010	
Voitures de tourisme	643	793	590	724	
Voitures de sport	735	928	863	662	

Nombre de véhicules vendus par type, région et année

Motivation - Data Overload

- ■How much data?
- >2.5 exabytes of unique data produced every day!
 - ✓ 2.5* 100000000000000000 (10¹⁸) bytes
 - ✓ Printed documents only .003% of total
- ■How to make use of the data?

Web,
Books,
Papers,
emails,
Scientific data,
Biotech,
Shopping
People
Stock/finance
News

Data transfert

How??

Vision: 100 MB/s Ears: <100 b/s Haptic/tactile Smell Taste

Human Vision

Highest bandwidth sense

- > Fast, parallel
- > Pattern recognition
- > Extends memory and cognitive capacity
- > People think visually

■ The Challenge

Transform the data into information (understanding, insight) thus making it useful to people

Example:

- > Which state has the highest income?
- > Is there a relationship between income and education?

Table - StateDota ()		Load ISS
Swe	College Degree N	
Alabama	23.6%	1140
Alaska	30.3%	1761
V-10-10-10-10-10-10-10-10-10-10-10-10-10-	20.3%	
Arizona	27.1% 17.0% 31.3%	1346
Arkenses	17,82%	1062
California	21.2%	1640
Coloredo	33.9%	1402
Connecticut	33.8%	2016
Delaware	27.8%	. 1505
District of Columbia	36.4%	1888
Florida	24.9%	1.469
Georgia	24.3%	1363
Hawai	31.2%	1577
idaho	25.2%	1145
Tinois	25.8%	1520
ediana	23.9%	1314
owe.	24.5%	1242
Sansas	25.5%	1.330
Sentucky	17.7%	1115
Lousiana	13.4%	1063
	25.7%	1295
Mone	31.7%	1773
Maryland		
Messechusetts	34.5%	1/6
Michigen	24.1%	1405
Menesota	30.4%	1406
Mississipal	13.9%	564
disacuri	22.3%	1298
Montano	25.4%	1121
Veltraska	25.0%	1245
Neveda	21.5%	1521
New Hampshire	32.4%	1595
New Jersey	30.1%	1671
New Makaca	25.6%	1124
New York	29.6%	1650
North Ceroline	242%	1286
North Dakota	29.1%	1105
Ohio	22.3%	1346
Mahoma	22.8%	1189
Creann	27.5%	1341
Perrisylvenia .	23.2%	1406
Phode Island	23.2%	1456
South Carolina	23.0%	1169
	246%	1686
South Dakota		1225
Temessee	201%	
Texas	25.5%	1290
Jah	30.0%	1102
Vermont	31.5%	1352
virgine	30.0%	1571
Washington	30.9%	1,401
West'virginie	15.1%	1052
Masonsia	24.0%	
Myonina	25.7%	1231
See Section 1	4500 Sec. 10	1000

Per capita income

Visualization is an old practice ...

DESTRUCTION OF THE PROPERTY OF THE PROPERT

TRAIN SCHEDULE BY E.J. MAREY (1885)

FRENCH WINE EXPORT (CHARLES MINARD, 1864)

C.J.Minard's Napoleon's army in Russia (drawn in 1861)

VIEW OF THE WORLD FROM 9TH AVENUE

The classic definition

Information visualization is the use of computer-supported, interactive, visual representations of abstract data to <u>amplify cognition</u>. [Card, Mackinlay, Shneiderman]

- "The purpose of visualization is insight, not pictures"
- > Insight: discovery, decision making, explanation

Information visualization

•What is "information"?

- ✓ Items, entities, things which do not have a direct physical correspondence
- ✓ Examples: baseball statistics, stock trends, connections between criminals, car attributes...

What It's Not InfoViz?

- √ Scientific Visualization
 - ✓ Primarily relates to and represents something physical or geometric
 - ✓ Examples: Air flow over a wing, weather over Pennsylvania

Rough operational definition

get some data and give them a visual representation

(data items -> visual items, data features -> visual features)

+

provide some interaction facilities to <u>explore</u> and <u>focus</u> on interesting subsets

From raw data ...

		lata 1>62			ero o generalia		
		>cars.data					12
-18.0	8.	307.0	130.0	3504.	12.0	70.	1.
-15.0	8.	350.0	165.0	3693.	11.5	70.	1.
-18.0	8.	318.0	150.0	3436.	11.0	70.	1.
-16.0	8.	304.0	150.0	3433.	12.0	70.	1.
-17.0	8.	302.0	140.0	3449.	10.5	70.	1.
-15.0	8.	429.0	198.0	4341.	10.0	70.	1.
-14.0	8.	454.0	220.0	4354.	9.0	70.	1.
-14.0	8.	440.0	215.0	4312.	8.5	70.	1.
-14.0	8.	455.0	225.0	4425.	10.0	70.	1.
-15.0	8.	390.0	190.0	3850.	8.5	70.	1.
-NA	4.	133.0	115.0	3090.	17.5	70.	2.
-NA	8.	350.0	165.0	4142.	11.5	70.	1.
-NA	8.	351.0	153.0	4034.	11.0	70.	1.
-NA	8.	383.0	175.0	4166.	10.5	70.	1.
-NA	8.	360.0	175.0	3850.	11.0	70.	1.
-15.0	8.	383.0	170.0	3563.	10.0	70.	1.
-14.0	8.	340.0	160.0	3609.	8.0	70.	1.
-NA	8.	302.0	140.0	3353.	8.0	70.	1.
-15.0	8.	400.0	150.0	3761.	9.5	70.	1.
-14.0	8.	455.0	225.0	3086.	10.0	70.	1.
-24.0	4.	113.0	95.00	2372.	15.0	70.	3.
-22.0	6.	198.0	95.00	2833.	15.5	70.	1.
-18.0	6.	199.0	97.00	2774.	15.5	70.	1.
-21.0	6.	200.0	85.00	2587.	16.0	70.	1.
-27.0	4.	97.00	88.00	2130.	14.5	70.	3.
-26.0	4.	97.00	46.00	1835.	20.5	70.	2.
-25.0	4.	110.0	87.00	2672.	17.5	70.	2.
-24.0	4.	107.0	90.00	2430.	14.5	70.	2.
-25.0	4.	104.0	95.00	2375.	17.5	70.	2.
-26.0	4.	121.0	113.0	2234.	12.5	70.	2.
-21.0	6.	199.0	90.00	2648.	15.0	70.	1.
-10.0	8.	360.0	215.0	4615.	14.0	70.	1.
-10.0	8.	307.0	200.0	4376.	15.0	70.	1.
-11.0	8.	318.0	210.0	4382.	13.5	70.	1.
-9.0	8.	304.0	193.0	4732.	18.5	70.	1.
-27.0	4.	97.00	88.00	2130.	14.5	71.	3.
-28.0	4.	140.0	90.00	2264.	15.5	71.	1.
-25.0	4.	113.0	95.00	2228.	14.0	71.	3.
-25.0	4.	98.00	NA	2046.	19.0	71.	1.
-NA	4.	97.00	48.00	1978.	20.0	71.	2.
-19.0	6.	232.0	100.0	2634.	13.0	71.	1.
-16.0	6.	225.0	105.0	3439.	15.5	71.	1.
-17.0	6.	250.0	100.0	3329.	15.5	71.	1.
-19.0	6.	250.0	88.00	3302.	15.5	71.	1.
-18.0	6.	232.0	100.0	3288.	15.5	71.	1.
-14.0	8.	350.0	165.0	4209.	12.0	71.	1.
-14.0	8.	400.0	175.0	4464.	11.5	71.	1.
-14.0	8.	351.0	153.0	4154.	13.5	71.	1.

Car Dataset

- 7 dimensions (391 cars)
 - miles per gallon (M.P.G.)number of cylinders

 - horsepower
 - > weight
 - > acceleration (time from 0 to 60 mph)
 - > year
 - > origin (USA, Europe, Japan)

... to visualization

- Cars dataset: **parallel coordinates** depicting *trends* over 7 dimensions.
- 7 dimensions (391 cars):
 - > miles per gallon (M.P.G.)
 - > number of cylinders
 - horsepower
 - > weight
 - acceleration (time from 0 to 60 mph)
 - > year
 - origin (USA, Europe, Japan)
- Gain meaning,
 - > e.g. weight inversely proportional to acceleration

Why is Infovis useful?

- We need to make sense of phenomena described by data, but raw data is hard/impossible to handle by humans
- Infovis is perfect for exploration, perfect when the goal is vague
- Other approaches to data analysis make exploration difficult
 - > Statistics:
 - (+) strong verification
 - (-) does not support exploration and vague goals
 - ➤ Data mining:
 - (+) actionable and reliable
 - (-) black box style, not interactive (question-response)

Roles of InfoVis

- Exploration
 - > Prerequisite: domain knowledge
 - > Outcome: new hypothesis
- Confirmation
 - > Prerequisite: hypothesis
 - > Outcome: confirmation/rejection (new hypothesis)
- Communication
 - > Prerequisite: confirmed hypothesis
 - > Outcome: clear visualization

[Keim KDD'02]

Visual Analytics' Motto: detect the expected and discover the unexpected

Tasks in InfoVis

Search

- > Finding a specific piece of information
 - ✓ How many games did the Braves win in 1995?
 - ✓ What novels did Ian Fleming author?

Browsing

- > Look over or inspect something in a more casual manner, seek interesting information
 - ✓ Learn about crystallography

Analysis

- > Comparison-Difference
- > Extremes
- > Patterns
- Monitoring

InfoVis Gallery ...

Treemaps

Sunburst

Parallel Coordinates

Graphs MMI2019 Infovis

Interaction ...

Filtering / Link & Brush

Focus + Context

How to represent high dimensional data?

■ Paper / display

- > Spatial coordinates (2D or 3D)
- > Shape
- > Color
- > Size
- > Angle / Slope
- > Style / Texture
- > Time (motion)

8-D?

Human perception

Limited!

Human analysis capabilites

Limited!

Visualization techniques

Scatterplots

■ Multi-line graphs

Matrices of scatterplots

Visualization techniques

parallel coordinates

Why mining is necessary?

What happens to the following visualizations when you have lots and lots of data cases?

- => Becomes unreadable
 - > (e.g. parallel coordinates)

Data mining necessary

Reduce dimensions

- Multi-dimensional scaling (MDS)
- > Principal component analysis

Reduce data

- Sampling We only include every so many data cases or variables
- Aggregation We cluster together many data cases or variables

Cluster data

- Force Directed Algorithm (Spring Algorithm)
- > Hierarchical clustering methods
- > K-means

Hierarchical Parallel Coordinates

Temporal visualizations

- ✓ When was something greatest/least?
- ✓ Is there a trend?
- ✓ Are two series similar?
- ✓ Do any of the series match a pattern?

Humanitics: An approach for visual exploration of temporal origin-destination data

Ilya Boyandin, Enrico Bertini, Denis Lalanne

UNHCR Refugee Dataset
240 countries
6000 flows (OD-pairs)
1975 to 2009

Millions of people

UNI FR

CHARTS THEY USE AT THE UN

IDPs protected/assisted

Refugees

User Studies

FlowStrates

http://code.google.com/p/jflowmap/

Alddata

http://aiddata.herokuapp.com

What you should be able to answer

- What is InfoVis?
- Why is InfoVis useful?
- What are the main tasks that InfoVis tries to solve?
- What are the techniques for representing high dimensional data?
- What are the basic interaction techniques?