中山大学软件学院 2010 级软件工程专业(2011学年秋季学期)

《数值分析》期末试题(B卷)

(考试形式: 闭 卷 考试时间: 2 小时)

《中山大学授予学士学位工作细则》第六条

考试作弊不授予学士学位

in the blanket with proper answers (5 marks each, total 20 marks) Suppose $x = 29.56789$, then the approximate value $x^* = 30.00789$ has
significant digits. The error term of Lagrange polynomial approximation for the function $\mathbf{f}(\mathbf{x})$ at the nodes
$a \le x_0 < x_1 < < x_n \le b$ is
The recursive rule of Secant methods for solving nonlinear equation $f(x)=0$ is
and its speed of convergence is :
The fast algorithm for evaluate the Newton polynomial $y = \sum_{k=0}^{n} a_k \prod_{i=0}^{k-1} (x - x_i)^k$ is somewhat like Horner's algorithm, and the recursive rule is:
Using the Seidel iteration method to solve the following nonlinear system,
$\begin{cases} 2x_1 + x_2 = -12 \\ -x_1 + 2x_2 = 20 \end{cases}$

2. (20 marks)Given the function constrain table

X	-1	2	3	5
f(x)	-7	-19	-31	5

first construct the divided difference table, and then find the Newton interpolation polynomial.

3. (20 marks)Consider the nonlinear system

$$\begin{cases} 2x^2 - y^2 + 4x - 5 = 0\\ x - 2y + 1 = 0 \end{cases}$$

- 1) Find analytically the zeros of the system;
- 2) Write out the Newton iteration for the system.

4. (20 marks) In order to solve the nonlinear equation $f(x)=e^x+10x-2=0$, we design the following fixed point iteration:

$$\begin{cases} x_0 = 0 \\ x_k = \frac{2 - e^{x_{k-1}}}{10} & k > 0 \end{cases}$$

- 1. Show that the equation has **unique** root;
- 2. Show that for any initial value in [-1,1], the fixed point iteration converges to the unique root. (Hint: Verify that on [-1,1], $\varphi(x)$ is a contraction mapping)

5. (20 marks)Given the $4 \times 4 \text{ matrix}$

$$A = \begin{bmatrix} 1 & 2 & 1 & 4 \\ 2 & 0 & 4 & 3 \\ 4 & 2 & 2 & 1 \\ -3 & 1 & 3 & 2 \end{bmatrix}$$

- 1. Find out the PA=LU factorization for A. The factorization should be correspondent to Gauss elimination. (10 marks)
- $2\,\mbox{,}$ If you have had the PA=LU factorization, analyze the computational complexity of finding the inverse of A. (10 marks)