The Safest Path

Problem Description

We are going to deliver some confidential documents from city s to city t. For each road r which connects two cities, there is a safety factor which is a floating point number s(r) (between 0 and 1) indicating the level of safety of the road r. We hope to find the safest path such that we can send the confidential documents from s to t through this path. The safety factor of a path p is defined as $Safe(p) = s(e_1) * s(e_2) * ... * s(e_k)$, where e_k denotes the edge on the path p.

INPUT

There are multiple cases.

For each case, the first line contains three integers n, s, t (the vertices are labelled from 1 to n and $n \le 200$) which denote the number of cities, source city and destine city respectively.

Then following is an n by n matrix representing the safety factor between any two cities (The matrix is symmetric).

OUTPUT

For each test case, output the safety factor (rounded to three decimal places) of the safest path from city s to city t. If the safety factor is equal to 0, output "DANGER!".

SAMPLE INPUT

3 1 2

1 0.5 0.5

0.5 1 0.4

0.5 0.4 1

SAMPLE OUTPUT

0.500