Análisis complejo

Taller 7

Teorema de Cauchy; residuos.

Fecha de entrega: 26 de septiembre de 2024

1. Calcule la parte principal en 0 de las funciones

$$f(z) = \frac{(\sin z)^2}{\sin(z^2)},$$
 $g(z) = \frac{1 - z^2}{z(1 - \cos(z^2))}.$

- 2. Sea $M \subset \mathbb{C}$ un conjunto finito y sea $f : \mathbb{C} \setminus M \to \mathbb{C}$ holomorfa.
 - (a) Muestre que $g(z):=z^{-2}f(z^{-1})$ es holomorfa en $B_{\varepsilon}(0)\setminus\{0\}$ para $\varepsilon>0$ suficientemente pequeño.
 - (b) Muestre que $\operatorname{Res}_0 g = \sum_{c \in \mathbb{C}} \operatorname{Res}_c f$.
 - (c) Calcule $\int_{\partial B_1(0)} \frac{5z^6 + 4}{2z^7 + 1} dz$.
- 3. Calcule las siguientes integrales con métodos de análisis complejo:

(a)
$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 6x^2 + 13} dx$$
, (b) $\int_{0}^{\infty} \frac{\sqrt{x}}{x^2 + 1} dx$, (c) $\int_{0}^{\infty} \frac{\sin x}{x} dx$.

- 4. (a) Sea γ una curva cerrada en $\mathbb{C} \setminus \{0\}$. Sean $n \in \mathbb{N}$ y $p : \mathbb{C} \to \mathbb{C}$, $p(z) = z^n$. Demuestre que $\operatorname{ind}_{p \circ \gamma}(0) = n \operatorname{ind}_{\gamma}(0)$.
 - (b) Sea $U\subseteq\mathbb{C}$ abierto y conexo, $c\in U$ y γ una curva cerrada en $U\setminus\{c\}$ tal que int $(\gamma)\subseteq D$. Para una función biholomorfa $f:U\to f(U)$ demuestre que

$$\operatorname{ind}_{\gamma}(c) = \operatorname{ind}_{f \circ \gamma}(f(c)).$$

5. Ejercicio adicional para código 4. Sea $f: \mathbb{C} \to \mathbb{C}$ una función holomorfa. Suponga que para todo $a \in \mathbb{C}$, por lo menos un coeficiente en la serie de Taylor de f en a se anula. Muestre que f es un polinomio.