mk 3/08/2023

In [494]: import numpy as np
import pandas as pd
import seaborn as sns
import mathletlib nymlet as

import matplotlib.pyplot as plt

In [495]: df=pd.read_csv(r"C:\Users\user\Downloads\csvs_per_year\csvs_per_year\madrid_200
df

Out[495]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PI
0	2004- 08-01 01:00:00	NaN	0.66	NaN	NaN	NaN	89.550003	118.900002	NaN	40.020000	39.990
1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22.950
2	2004- 08-01 01:00:00	NaN	1.02	NaN	NaN	NaN	93.389999	138.600006	NaN	20.860001	49.480
3	2004- 08-01 01:00:00	NaN	0.53	NaN	NaN	NaN	87.290001	105.000000	NaN	36.730000	31.070
4	2004- 08-01 01:00:00	NaN	0.17	NaN	NaN	NaN	34.910000	35.349998	NaN	86.269997	54.080
245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999	30.900
245492	2004- 06-01 00:00:00	2.49	0.75	2.44	4.57	NaN	97.139999	146.899994	2.34	7.740000	37.689
245493	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.13	102.699997	132.600006	NaN	17.809999	22.840
245494	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.09	82.599998	102.599998	NaN	NaN	45.630
245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000	24.389

245496 rows × 17 columns

In [496]: df=df.dropna()

```
In [556]: df=df.head(1000)
In [557]: df.columns
Out[557]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
          3',
                  'PM10', 'PM25', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
                dtype='object')
In [558]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 20 entries, 5 to 184
          Data columns (total 17 columns):
               Column
                         Non-Null Count Dtype
                -----
           _ _ _
           0
               date
                         20 non-null
                                         object
                         20 non-null
                                         float64
           1
               BEN
           2
               CO
                         20 non-null
                                         float64
           3
                         20 non-null
                                         float64
               EBE
           4
               MXY
                         20 non-null
                                         float64
           5
               NMHC
                         20 non-null
                                         float64
           6
               NO 2
                         20 non-null
                                         float64
           7
                         20 non-null
                                         float64
               NOx
           8
               OXY
                         20 non-null
                                         float64
           9
               0 3
                         20 non-null
                                         float64
                                         float64
           10
              PM10
                         20 non-null
                                         float64
           11 PM25
                         20 non-null
           12 PXY
                         20 non-null
                                         float64
           13 SO 2
                                         float64
                         20 non-null
           14 TCH
                         20 non-null
                                         float64
           15 TOL
                         20 non-null
                                         float64
               station 20 non-null
                                         int64
          dtypes: float64(15), int64(1), object(1)
          memory usage: 2.8+ KB
```

In [559]: data=df[['BEN', 'TOL', 'PXY']]
data

Out[559]:

	BEN	TOL	PXY
5	3.24	16.93	4.16
22	0.55	2.53	0.39
26	1.80	7.92	2.21
32	1.94	8.18	2.14
49	0.29	1.52	0.34
53	1.23	5.00	1.58
59	1.64	6.35	1.63
76	0.29	1.23	0.28
80	1.11	3.98	1.32
86	2.45	9.26	2.30
103	0.27	1.01	0.37
107	1.20	4.03	1.47
113	2.78	9.86	2.50
130	0.29	0.91	0.87
134	1.19	3.97	1.53
140	1.04	3.84	1.02
157	0.26	88.0	0.74
161	1.01	3.19	1.16
167	1.34	4.92	1.17
184	0.29	0.86	1.00

In [560]: data.plot.line(subplots=True)

Out[560]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)


```
In [561]: data.plot.line()
```

Out[561]: <AxesSubplot:>

In [562]: b=data[0:50]

In [563]: b.plot.bar()

Out[563]: <AxesSubplot:>

In [564]: data.plot.hist()

Out[564]: <AxesSubplot:ylabel='Frequency'>

In [565]:
 data.plot.area()

Out[565]: <AxesSubplot:>

In [566]: data.plot.box()

Out[566]: <AxesSubplot:>

In [567]: b.plot.pie(y='BEN')

Out[567]: <AxesSubplot:ylabel='BEN'>


```
In [568]: data.plot.scatter(x='TOL' ,y='BEN')
```

Out[568]: <AxesSubplot:xlabel='TOL', ylabel='BEN'>


```
In [569]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 20 entries, 5 to 184
Data columns (total 17 columns):
```

		•	,
#	Column	Non-Null Count	Dtype
0	date	20 non-null	object
1	BEN	20 non-null	float64
2	CO	20 non-null	float64
3	EBE	20 non-null	float64
4	MXY	20 non-null	float64
5	NMHC	20 non-null	float64
6	NO_2	20 non-null	float64
7	NOx	20 non-null	float64
8	OXY	20 non-null	float64
9	0_3	20 non-null	float64
10	PM10	20 non-null	float64
11	PM25	20 non-null	float64
12	PXY	20 non-null	float64
13	S0_2	20 non-null	float64
14	TCH	20 non-null	float64
15	TOL	20 non-null	float64
16	station	20 non-null	int64
dtyn	ac. flast	$61/15$ \ in+61/1\	object(1)

dtypes: float64(15), int64(1), object(1)

memory usage: 2.8+ KB

```
In [570]: df.describe()
```

Out[570]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	
count	20.000000	20.00000	20.000000	20.000000	20.00000	20.000000	20.000000	20.000000	2
mean	1.210500	0.38700	1.635000	2.736500	0.08800	60.458500	80.153500	1.611500	5
std	0.885357	0.18818	1.405394	2.382576	0.06161	30.317645	53.404650	1.152641	1
min	0.260000	0.14000	0.270000	0.390000	0.02000	24.870001	25.530001	0.380000	2
25%	0.290000	0.27000	0.452500	0.722500	0.05000	36.297500	37.044999	0.732500	3
50%	1.150000	0.34500	1.390000	2.390000	0.06000	49.594999	58.955000	1.420000	5
75%	1.680000	0.47750	2.345000	3.975000	0.15000	78.012499	112.849998	2.072500	6
max	3.240000	0.74000	5.550000	9.720000	0.21000	115.800003	189.899994	5.040000	8

In [572]: sns.pairplot(df1[0:50])

Out[572]: <seaborn.axisgrid.PairGrid at 0x1918e072eb0>


```
In [573]: sns.distplot(df1['station'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[573]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [574]: sns.heatmap(df1.corr())

Out[574]: <AxesSubplot:>


```
In [576]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [577]: from sklearn.linear_model import LinearRegression
    lr=LinearRegression()
    lr.fit(x_train,y_train)

Out[577]: LinearRegression()

In [578]: lr.intercept_
Out[578]: 28078611.61393362

In [579]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
    coeff
Out[579]:
```

	Co-efficient
BEN	46.289259
со	-222.315735
EBE	42.375662
MXY	-84.578916
NMHC	799.168387
NO_2	3.605769
NOx	- 1.045082
OXY	58.701244
O_3	2.973096
PM10	- 0.831940
PXY	0.828973
SO_2	13.869036
тсн	44.506946
TOL	3.758407

```
In [580]: prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[580]: <matplotlib.collections.PathCollection at 0x19198e7bca0>


```
In [581]: |lr.score(x_test,y_test)
Out[581]: -8.913696645528033
In [582]: |lr.score(x_train,y_train)
Out[582]: 1.0
In [583]: from sklearn.linear_model import Ridge,Lasso
In [584]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[584]: Ridge(alpha=10)
In [585]: rr.score(x_test,y_test)
Out[585]: -25.680273390727546
In [586]: |rr.score(x_train,y_train)
Out[586]: 0.4757690329552654
In [587]: la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[587]: Lasso(alpha=10)
```

```
In [588]: la.score(x_train,y_train)
Out[588]: 0.397166976827539
In [589]: |la.score(x_test,y_test)
Out[589]: -23.39084298600196
In [590]: | from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[590]: ElasticNet()
In [591]: en.coef
Out[591]: array([ 0.35276679, 0.59873896, -0.7033591 , 5.17705657, 2.24177463,
                 -2.27215567, -0.13267477, 3.76843052, -1.97925011, 0.99602759,
                  3.50473413, -3.50906271, 0.42418908, 5.22961332])
In [592]: en.intercept
Out[592]: 28079231.929840643
In [593]: | prediction=en.predict(x_test)
In [594]: |en.score(x_test,y_test)
Out[594]: -25.999562917054273
In [595]: | from sklearn import metrics
          print(metrics.mean_absolute_error(y_test,prediction))
          print(metrics.mean squared error(y test,prediction))
          print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
          39.17938381433487
          2186.964596281396
          46.7649932778932
In [596]: from sklearn.linear model import LogisticRegression
In [597]: | feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O
           'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
          target vector=df[ 'station']
```

```
In [598]: | feature_matrix.shape
Out[598]: (20, 14)
In [599]: |target_vector.shape
Out[599]: (20,)
In [600]:
          from sklearn.preprocessing import StandardScaler
In [601]: | fs=StandardScaler().fit_transform(feature_matrix)
In [602]:
          logr=LogisticRegression(max iter=10000)
          logr.fit(fs,target_vector)
Out[602]: LogisticRegression(max_iter=10000)
In [603]: observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
          prediction=logr.predict(observation)
In [604]:
          print(prediction)
          [28079099]
In [605]: logr.score(fs,target vector)
Out[605]: 1.0
In [606]:
          logr.predict proba(observation)[0][0]
Out[606]: 0.23544436221308845
In [607]: logr.predict proba(observation)
Out[607]: array([[2.35444362e-01, 1.79916389e-11, 7.64555638e-01]])
In [608]: | from sklearn.ensemble import RandomForestClassifier
          rfc=RandomForestClassifier()
In [609]:
          rfc.fit(x_train,y_train)
Out[609]: RandomForestClassifier()
```

```
In [610]:
         parameters={'max depth':[1,2,3,4,5],
           'min_samples_leaf':[5,10,15,20,25],
           'n_estimators':[10,20,30,40,50]}
In [611]:
         from sklearn.model_selection import GridSearchCV
         grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="acc
         grid search.fit(x train,y train)
Out[611]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                  'min_samples_leaf': [5, 10, 15, 20, 25],
                                  'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [612]: grid_search.best_score_
Out[612]: 0.42857142857142855
In [613]: rfc best=grid search.best estimator
In [614]: from sklearn.tree import plot tree
         plt.figure(figsize=(50,5))
         plot tree(rfc best.estimators [5],feature names=x.columns,class names=['a','b'
Out[614]: [Text(1395.0, 203.85000000000000, 'EBE <= 1.39\ngini = 0.663\nsamples = 11\nv</pre>
         alue = [4, 5, 5] \setminus ass = b'),
          Text(697.5, 67.9499999999999, 'gini = 0.408\nsamples = 5\nvalue = [0, 5, 2]
          \nclass = b'),
          \nclass = a')]
```

Conclusion

Linear Regression =1.0

Ridge Regression =0.8505902210559991

Lasso Regression = 0.7818422293632583

ElasticNet Regression = 0.6639225233261004

Logistic Regression = 0.8991524766814838

Randomforest = 0.3571428571428571

Logistic	Regression	ris suitable	for this	dataset
	1 (09) 0001011	i io cartabio		aataoot

|--|