Transitional Adaptation of Pretrained Models for Visual Storytelling

Youngjae Yu*, Jiwan Chung*, Heeseung Yun, Jongseok Kim, and Gunhee Kim

I. Transitional Adaptation

Caption Generation

- Conventional caption generation
 - Combining pretrained visual encoder with text generator
 - Example: ImageNet-pretrained ResNet + attention LSTM

Caption Generation

- Conventional caption generation
 - Combining pretrained visual encoder with text generator
 - Example: ImageNet-pretrained ResNet + attention LSTM
- Replacing text generator with pretrained language models
 - Example: OpenAI GPT2

Domain Mismatch

- Exploiting pretrained language models
 - Naively utilizing pretrained language models does not improve caption quality
 - Gap between information stored in visual encoder and language model

Traditional Captioning vs. Adaptive Captioning

Traditional Captioning Adaptive Captioning **Pretrained Pretrained Pretrained Pretrained Pretrained Encoder Encoder** Encoder Encoder **Encoder Pretrained Pretrained Pretrained Pretrained Pretrained Generator** Generator Generator **Generator** Generator Adaptation Finetuning Finetuning

- Directly finetune with the down-stream dataset
- Simple pretext task as an adaptation process
- Harmonizes two modules

Transitional Adaptation Process

Visual Storytelling

- Visual Storytelling (Sequential Caption Generation)
 - Aims to generate a more consistent narrative for consecutive images or videos
 - Example: LSMDC 2019 task 1 (Videos), VIST (Images)

[PERSON2] eyes him angrily, her jaw clenched.

[PERSON1] heads off.

[PERSON2] folds her arms.

[PERSON1] approaches [PERSON3], who leans against the wall of the house.

• The text representation predicts the neighbor visual representations

• The text representation predicts the neighbor visual representations

The text representation predicts the neighbor visual representations

The text representation predicts the neighbor visual representations

• We use contrastive loss between representations

Past, current and future losses yield both specific and coherent captions

Training with the Adaptation Loss

• Use visual representation processed with the language model for adaptation

Visual Encoder	Language Model		LSMDC		VIST			
Outputs	Outputs	Models	С	М	R	С	М	R
Pretext	\hat{V}_i	Ours + language model outputs	15.37	8.41	20.21	8.3	34.1	30.2
$\overline{V_i}$		Ours + visual encoder outputs	14.59	8.37	20.00	4.9	33.0	29.9
\hat{S}_i \hat{S}_i \hat{S}_i	\hat{S}_i	C: CIDEr	, M: M	ETEOF	R, R: RC	UGE-I	L	
in isolation	in accordance with the language model							

Training with the Adaptation Loss

- Split-Training
 - Split the training process into adaptation and finetuning
 - Fix the generator weights during the adaptation

Adaptation Pretrained Encoder Pretrained Generator Fix Weights

	LSMDC			VIST			
Models	С	М	R	С	М	R	
Ours + split-training	15.37	8.41	20.21	8.3	34.1	30.2	
Ours + joint training	14.28	8.34	19.71	4.5	32.8	29.8	

C: CIDEr, M: METEOR, R: ROUGE-L

Experiment: Settings

Datasets

- LSMDC 2019 task 1: Video storytelling
- VIST: Image storytelling

Backbones

- Visual encoder: Visual features + Simple encoder with FC layers and attention
- Text Generator: GPT2-small

Evaluation

- Automatic text metrics: (CIDEr, METEOR, ROUGE-L)
- Human evaluations
 - LSMDC 2019: how helpful they are for a blind person
 - VIST: pairwise comparison test following previous research

Experiment: Quantitative Results

- Superior performance in both LSMDC 2019 and VIST
- Greater performance gap in CIDEr score (human-likeness)

ı	C	M	
L		Ι۷Ι	L

	Publi	c Test	Blind Test		
Models	С	М	С	М	
Official Baseline	7.0	12.0	6.9	11.9	
XE	7.2	11.5	-	-	
AREL	7.3	11.4	-	-	
TAPM (Ours)	10.0	12.3	8.8	12.4	

C: CIDEr, M: METEOR

VIST

Models	С	М	R
Huang et al	-	31.4	-
h-attn-rank	7.5	34.1	29.5
GLACNet	-	30.1	-
AREL	9.4	35.0	29.5
StoryAnchor	9.9	35.5	30.0
HSRL	10.7	35.2	30.8
TAPM (Ours)	13.8	37.2	33.1

C: CIDEr, M: METEOR, R: ROUGE-L

Experiment: Human Evaluation Results

- Automatic metrics often fail to capture expressiveness and coherence
- Human evaluators prefer TAPM in both LSMDC 2019 and VIST

LSMDC

Models	Score s		
Human	1.085		
Official Baseline	4.015		
TAPM (Ours)	3.670		
The lower the better.			

VIST

	TAPM vs XE			TAPM vs AREL			
Choice (%)	TAPM	XE	Tie	TAPM	XE	Tie	
Relevance	59.9	34.1	6.0	61.3	32.8	5.9	
Expressivenes s	57.3	32.3	10.4	57.3	34.0	8.7	
Concreteness	59.1	30.3	10.7	59.6	30.4	10.0	

The higher the better.

Summary

- The first attempt to use adaptation loss in welding a visual encoder with a pretrained language model
- Sequential coherence loss designed for adaptation in visual storytelling tasks
- Superior experimental results on both LSMDC 2019 and VIST

Thank You

