Professor Zhong-Ping Jiang Due: December 19, 2pm (EST)

Problem 1. (30 pts)

Given the matrix A

$$A = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

- 1.1 Find the Jordan form of the matrix A, and give the corresponding transformation matrix P. Show all your steps.
- 1.2 Compute the solution of the differential equation $\dot{x}(t) = Ax(t)$ with the initial condition $x(0) = [0, 2, 1]^T$. Show all your steps.

Problem 2. (40 pts)

Given the matrix A

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

- 2.1 Perform the QR factorization of matrix A using the Gram-Schmidt process. That is, A = QR where Q is an orthogonal matrix and R is an upper triangular matrix. Show all your steps.
- 2.2 Find the singular value decomposition (SVD) of A. Show all your steps.

Problem 3. (30 pts)

Consider a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ and two vectors $x, y \in \mathbb{R}^n$. Please prove the following statements.

- 3.1 $S + xy^T$ is nonsingular if and only if $1 + y^T S^{-1}x \neq 0$.
- 3.2 Suppose $1 + y^T S^{-1} x \neq 0$, show that $(S + xy^T)^{-1} = S^{-1} \frac{S^{-1} xy^T S^{-1}}{1 + y^T S^{-1} x}$.