

Winning Space Race with Data Science

ROBERT VOGLMAIER
https://github.com/DEVROBSEN
08.09.2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection using API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results

Introduction

Project background

- We take the roll of a data scientist, working for a new rocket company
- The goal is to determine the price of each Launch of SPACE X
- We gather informations about SPACE X and create dashboards for reporting
- Additional we determine if SPACE X will reuse the first stage.

Problems you want to find answers

- How we determine if the first stage will land successfully?
- Where we get the informations?
- Which Machine Learning Methods we can use to reach our goals?

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Describe how data sets were collected
 - Data were collected with SPACE X API Request & Web Scraping

Data Collection – SpaceX API

 Present your data collection with SpaceX REST calls using key phrases and flowcharts

• GitHub:

https://github.com/DEVROBS EN/coursera/blob/main/Spac eXDataCollect.ipynb

Data Collection – Web Scraping

- Data Collection BY Web
 Scraping process is given in
 flow chart for an overview.
- GitHub: https://github.com/DEVRO BSEN/coursera/blob/main/ DataCollectWebScraping.ip ynb

Data Wrangling

- Data Wrangling process on the right side: Calculate number of launches, Calculate number and occurrences of each orbit, calculate number and occurrence of mission outcome per orbit, create label for outcome
- GitHub: https://github.com/DEVROBSEN/coursera/blob/main/EDA.ipynb

EDA with Data Visualization

- Types of Charts Used :
 - scatter plot Flight Number vs Payload Mass, Flight Number vs Launch Sites,
 Payload and Launch Sites, Flight Number and Orbit Type, Payload and Orbit Type
 - Bar chart Success rate of each orbit
 - Line plot success rate and Date

Github: https://github.com/DEVROBSEN/coursera/blob/main/EDA_Visualization.ipynb

EDA with SQL

- - Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1 List the date when the first successful landing outcome in ground pad was achieved
- - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- - List the total number of successful and failure mission outcomes
- - List the names of the booster versions which have carried the maximum payload mass. Use a subquery
- - List the failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015
- - Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order
- GitHub: https://github.com/DEVROBSEN/coursera/blob/main/EDA_SQL.ipynb

Build an Interactive Map with Folium

Folium Markers were used to show the Space X launch sites and their nearest important landmarks like railways, highways, cities and coastlines.

Polylines were used to connect the launch sites to their nearest land marks.

Red represents rocket launch failures

Green represents the successes.

• GitHub:

https://github.com/DEVROBSEN/coursera/blob/main/LaunchSitesLocationAnalysis.ipynb

Build a Dashboard with Plotly Dash

- Pie charts and scatter charts were used to visualize the launch records of Space X.
- These charts displayed the rocket launch success rate per launch site. We are were able to get an understanding of the factors that may have been influencing the success rate at each site.
 Such as the payload mass and booster versions.
- Successful launches were represented by 1 while failures were represented by 0.

Predictive Analysis (Classification)

Scikit-learn is Machine Learning library that was used for predictive analysis. The following took place:

 Created a machine learning pipeline to predict if the first stage will land given the data.

Github: https://github.com/DEVROBSEN/coursera/blob/main/LaunchSitesLocationAnalysis.ipynb

Results

- The exploratory data analysis has shown us that successful landing outcomes are somewhat correlated with flight number. It was also apparent that successful landing outcomes have had a significant increase since the year 2015.
- All launch sites are located near the coast line. Perhaps, this makes it easier to test rocket landings in the water.
- sites are also located near highways and railways. This may facilitate transportation of equipment and research material.
- The machine learning were able to predict the landing success of rockets with an accuracy score of 83.33%.

Flight Number vs. Launch Site

 It appears that there were more successful landings as the flight numbers increased. launch site CCAFS SLC 40 had the most number of landing.

Payload vs. Launch Site

Now if you observe the scatter point chart, you will find for the VAFB-SLC launch site there
are no rockets launched for heavy payload mass(greater than 10000).

Success Rate vs. Orbit Type

The highest success rate ORBITS are

ES-L1

GEO

SSO

HEO

Flight Number vs. Orbit Type

You can see that in the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

Payload vs. Orbit Type

- With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.
- However for GTO we cannot distinguish this well as both positive landing rate and negative landing (unsuccessful mission) are both there.

Launch Success Yearly Trend

It is apparent that the success rate has significantly increased from 2013 to 2020.

All Launch Site Names

Given the data, these are the names of the launch sites where different rocket landings where attempted:

- CCAFS LC-40
- CCAFS SLC-40
- KSC LC-39A
- VAFB SLC-4E

Launch Site Names Begin with 'CCA'

[18]:	%sql SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5;									
	<pre>ibm_db_sa://gfd86828:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:31498/bludb Done.</pre>									
t[18]:	DATE	time_utc_	booster_version	launch_site	payload	payload_mass_kg_	orbit	customer	mission_outcome	landing_outcome
	2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	(ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	2012-10- 08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013-03-	15:10:00	F9 v1.0 B0007	CCAFS LC-	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

These are 5 records where launch sites begin with the letters 'CCA'. As we can see, there are other organizations besides Space X that were testing their rockets.

Total Payload Mass

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [23]:  %sql SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE CUSTOMER = 'NASA(CRS)';

* ibm_db_sa://gfd86828:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:31498/bludb Done.

Out[23]: 1
```

 The information in the picture displays the total payload mass carried by boosters launched by NASA

Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1

In [24]: %sql SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE BOOSTER_VERSION = 'F9 v1.1'

* ibm_db_sa://gfd86828:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqblod8lcg.databases.appdomain.cloud:31498/bludb
Done.

Out[24]: 1
2928
```

• The average payload mass carried by F9 v1.1 was 2928.4 kg.

First Successful Ground Landing Date

 From the picture given above you can see that the first successful ground pad was in 22 December 2015.

Successful Drone Ship Landing with Payload between 4000 and 6000

- It appears that there only 4 Boosters with a payload mass between 4000 and 6000 they are
- F9 FT B1022
- F9 FT B1026
- F9 FT B1021.2
- F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

```
List the total number of successful and failure mission outcomes

In [33]:  

**sql select count(MISSION_OUTCOME) from SPACEXTBL where MISSION_OUTCOME = 'Success' or MISSION_OUTCOME = 'Failure (in flight)'

**ibm_db_sa://gfd86828:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90108kqb1od8lcg.databases.appdomain.cloud:31498/bludb
Done.

Out[33]:  

1

100
```

• The Above picture show the total number of successful and failure mission outcomes

Boosters Carried Maximum Payload

• From the above picture it shows that 12 boosters have carried the maximum payload mass of 15600 kg.

2015 Launch Records

2 boosters F9 v1.1B1012_CCAFS LC-40 and F9v1.1B1015 CCAFS LC-40 failed to land at 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

The number of successful landings have increased since 2015.

Launch Site Locations

 all launch sites are in very close proximity to the coast and they are also a couple thousand kilometers away from the equator line.

Success Rate of Rocket Launches

 The successful launches are represented by a green marker while the red marker represents failed rocket launches.

Surrounding Landmarks

- It appears that launch sites are usually set up at least 18 km away from cities. This may be because of the desire to prevent any crashes near populated areas.
- It is also apparent that launch sites are in very close proximity to railways and highways. Perhaps, due to the necessary transportation requirements for rocket parts.
- The sites are close the coast line. This is evident with the many rocket landing tests on water bodies like the ocean.

Successful Launches by Site

 You can see from the plot that Site KSC LC-39A has the largest successful launches as well the highest launch success rate.

Total Successful Launches for Site KSC LC-39A

 You can see that 76.9% of the total launches at site KSC LC-39A were successful. This is a the highest success rate of all the different launch sites.

Payload Mass vs. Launch Success for all sites

It appears that the payload range between 2000 kg and 4000 kg has the highest success rate.

Classification Accuracy

```
Find the method performs best:
In [28]:
           accuracy = [svm_cv_score, logreg_score, knn_cv_score, tree_cv_score]
           accuracy = [i * 100 for i in accuracy]
           method = ['Support Vector Machine', 'Logistic Regression', 'K Nearest Neighbour', 'Decision Tree']
           models = {'ML Method':method, 'Accuracy Score (%)':accuracy}
           ML df = pd.DataFrame(models)
           ML df
                      ML Method Accuracy Score (%)
Out[28]:
          0 Support Vector Machine
                                         83.333333
                 Logistic Regression
                                         83.333333
               K Nearest Neighbour
                                         83.333333
                     Decision Tree
                                         83.333333
```

Confusion Matrix

- The chart shows the confusion matrix of the Logistic Regression model that was chosen.
- The model only failed to accurately predict 3 labels.

Conclusions

In order to compete with Space X Through this process, a general picture of their success methods are

- All their launch sites are located near the coast, away from nearby cities. This enabled to them to test their rocket landings without much interference.
- Site KSC LC-39A had the highest launch success rate out of all the launch sites.
- From 2015 onwards, the success rate of rocket landings significantly increased. It was also apparent that landing success increased with flight number

All this data was used to train a machine learning model that is able to predict the landing outcome of rocket launches with 83.33% accuracy.

