# Úvod, instalace R a Rstudia, základní datové typy a struktury operace, čísla, vektory a práce s nimi

17VSADR – Skriptování a analýza dat v jazyce R

#### Lubomír Štěpánek<sup>1, 2</sup>



 Oddělení biomedicínské statistiky & výpočetní techniky Ústav biofyziky a informatiky
 lékařská fakulta
 Univerzita Karlova v Praze



<sup>2</sup>Katedra biomedicínské informatiky Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Organizace Úvod Začínáme Datové typy a jejich vlastnosti Přehled datových struktur Vektory a operace s nimi

#### Obsah

- Organizace
- Úvod
- Začínáme
- 4 Datové typy a jejich vlastnosti
- Přehled datových struktur
- Vektory a operace s nimi

## Organizace předmětu

- volitelný předmět (2 kreditové body)
- zakončen zápočtem
- rozsah 0 + 2 (vyučovacích hodin týdně)
- neoficiální účast na bázi dobrovolnosti vítána

3/47

## Zápočet

- zápočet bude udělen za
  - alespoň rozumnou účast na cvičeních
  - odevzdání alespoň rozumného množství domácích úkolů

# Online supplementum

#### fakultní stránka předmětu → FBMI

https://predmety.fbmi.cvut.cz/cs/17VSADR

#### githubí stránka předmětu GitHub

 $https://github.com/LStepanek/17VSADR\_Skriptovani\_a\_analyza\_dat\_v\_jazyce\_R$ 

#### Literatura

- Karel Zvára. *Základy statistiky v prostředí R.* Praha, Česká republika: Karolinum, 2013. ISBN: 978-80-246-2245-3.
- Hadley Wickham. *Advanced R*. Boca Raton, FL: CRC Press, 2015. ISBN: 978-1466586963.

## Proč bych se právě já měl učit s R

- s vědou (nejen) v biomedicíně to myslím vážně
- chtěl bych se věnovat postgraduálnímu doktorskému studiu, kde jistojistě budu potřebovat statistiku
- jsem postgraduální student a jednou bych chtěl dokončit postgraduální doktorské studium, k čemuž tu zatracenou statistiku opravdu potřebuji
- jsem lékař a hledám konečně efektivní nástroj pro analýzy svých výzkumů
- komerční statistické programy pro mě nejsou dostupné, nebo nejsou dobře použitelné
- sbírám opakovaně data stejného charakteru a rád bych si jejich (před)zpracování automatizoval



## Proč bych se právě já měl učit s R

- publikuji v odborných časopisech a rád bych do statě článku s Methodology and Statistical Analysis pravdivě psal, že "... all statistical analyses were performed using R language for statistical computing and graphics...", protože existují důkazy, že citování R či jiných volných statistických nástrojů mnohdy zvyšuje pravděpodobnost citování takového článku
- tuším, že věda 2.0 v biomedicíně se bude provozovat nejen formou experimentů na živém (in vivo) či v laboratořích (in vitro), ale budou ji tvořit ze značné části počítačové modely a simulace (in silico)
- uvědomuji si, že MS Excel v základním rozhraní neumí doteď vykreslit krabicový diagram

## Proč bych se právě já měl učit s R

- zpracování dat v tabulkových procesorech a spoléhání se jen na ně je spjato s různými problémy, chybné výstupy z tabulkových procesorů dokonce vyvolaly některé vědecké skandály
- data již nějakou dobu (sám) analyzují a přemýšlím, který nástroj pro analýzu (s kvalitní dokumentací a živou podporou a komunitou) se začít učit

Organizace Úvod Začínáme Datové typy a jejich vlastnosti Přehled datových struktur Vektory a operace s nimi 00000 0000000000 0000000000

#### Co je R



- R je interpretovaný programovací jazyk
- kombinuje několik paradigmat
  - imperativní
  - funkcionální
  - objektové
- R je domain specific language je určen pro statistickou analýzu dat a jejich grafické zobrazení
- R je open-source, konkrétně free-as-in-beer a free-as-in-speech

#### Stručná historie R

- R vychází z jazyka a prostředí S, které vyvinuto v Bellových laboratořích v letech 1975-1976 (prof. Johne Chambers)
- přerod v R v roce 1992 na Acklandské univerzitě na Novém Zélandu (prof. Ross Ihaka a Robert Gentleman)
- R je tedy akcentem S
- v roce 1994 první verze prostředí R pro volné použití, poté postupně vzniká řada dalších verzí, v září 2017 poslední verze R 3.4.3 ("Short Summer")
- za otce moderního R považován Hadley Wickham (leader analyst v RStudiu, adj. prof. na Aucklandské univerzitě)

# Stažení a instalace jádra R

na stránkách R-projectu

https://www.r-project.org/

postupně download R, vyberme českou doménu a stáhněme desktopově

poté instalujme dle instrukcí do předvolené složky

#### Stažení a instalace RStudia

- RStudio je jedním z grafických IDE (Integrated Development Environment) jazyka R
- na stránkách RStudia

https://www.rstudio.com/

postupně Products > RStudio > Desktop > Open Source Edition > Free > Download, stáhněme desktopově

poté instalujme dle instrukcí do předvolené složky

#### Další software

- může (a bude) se časem hodit i
  - obecný textový editor, např. Notepad++

https://notepad-plus-plus.org/

univerzální konvertor dokumentů Pandoc

https://pandoc.org/

typografický sázeč TFX

https://miktex.org/

Organizace Úvod Začínáme Datové typy a jejich vlastnosti Přehled datových struktur Vektory a operace s nimi 00000 000000000 0000000000

## První spuštění R jádra



# První spuštění RStudia



## Ahoj světe!

do skriptu či konzole napišme

```
print("hello world")
```

dostaneme

```
[1] "hello world"
```

## Práce s nápovědou

 nápovědu pro funkci či objekt získáme pomocí příkazu help(), kde argumentem je název funkce či objektu

```
help(print)
```

nebo předsazením symbolu ? před název funkce či objektu

```
?print
```

 předsazením symbolů ?? před název funkce či objektu prohledáme veškeré dokumenty nápovědy

```
??print
```

vždy je zavolán HTML soubor s volnotextovou nápovědou

## Přístup k práci v R

- interaktivní práce mezi skriptem a konzolí (shell programming)
- (dávkové) volání skriptů
  - (i) vytvoření funkčního skriptu s příponou .R
  - uložení skriptu do pracovní složky, kterou zjistíme pomocí příkazu getwd()
  - (iii) zavolání a exekuce skriptu v konzoli pomocí příkazu source(nazev\_skriptu.R)

#### Intermezzo

uložme následující kód jako scitam\_dve\_cisla.R

skript scitam\_dve\_cisla.R přesuňme do složky, kterou vrátí příkaz

anebo vhodně nastavme pracovní složku pomocí příkazu

```
setwd(choose.dir())
```

do konzole nyní napišme

```
source("scitam_dve_cisla.R")
```

#### Instalace nadstavbových balíčků

nejlépe pomocí příkazu

```
install.packages (
    "nazev_balicku".
    dependencies = TRUE,
    repos = "http://cran.us.r-project.org"
```

- poslední argument repos není nutný, ale je šikovný, vybere doménu, z které balíček stáhnout, aniž by ji musel uživatel vybrat kliknutím v pop-up okně (vhodné pro úplnou automatizaci kódu)
- zkusme nainstalovat balíčky ShinyItemAnalysis a swirl!

## Datové typy

- numerická hodnota (numeric)
- celé číslo (integer)
- komplexní číslo (complex)
- logická hodnota (logical)
- textový řetězec (character)
- NA, NULL, NaN

#### Numerická hodnota

- v R jako numeric
- libovolné  $x \in \mathbb{R}$  uložené s danou přesností
- odpovídá datovému typu double s 64 bitovou přesností, který je běžný v jiných jazycích
- např.

```
5; -13.8, 4.5578e15
```

zda je hodnota typu numeric, zjistíme pomocí

```
is.numeric(-13.8)
                         TRUE
class(-13.8)
                         "numeric"
class(Inf)
                         "numeric"
```

vhodná pro různorodé operace (viz dále)



#### Celé číslo

- v R jako integer
- libovolné  $z \in \mathbb{Z}$  uložené s danou přesností
- např.

```
5L; 13L, -5L
```

zda je hodnota typu integer, zjistíme pomocí

```
is.integer(-13L)
                      # TRUE
class(-13L)
                      # "integer"
is.integer(-13)
                     # FALSE
class(-13)
                      # "numeric"
```

přetypování celého čísla na reálné (numeric) pomocí

```
as.numeric(5L)
```

- pozor! v R mají celá čísla pouze 16 bitovou přesnost
- pro práci s velkými celými čísly nutné balíčky gmp či int64 (zvýší bitovou přesnost uložených celých čísel)

## Komplexní číslo

- v R jako complex
- libovolné  $x \in \mathbb{C}$  takové, že x = a + bi, kde  $a, b \in \mathbb{R}$  a  $i^2 = -1$
- např.

zda je hodnota typu complex, zjistíme pomocí

```
is.complex(1 + 2i)
                        TRUE
class(0 + 1i)
                 # "complex"
class(sqrt(-1 + 0i)) # "complex"
class(sqrt(-1))
                     # Warning message:
                       # NaNs produced
```

## Logická hodnota

- v R jako logical
- libovolné booleovské  $x \in \{TRUE, FALSE\}$
- např.

```
TRUE: FALSE: T: F
```

zda je hodnota typu logical, zjistíme pomocí

```
is.logical(TRUE)
                           TRUE
class(FALSE)
                           "logical"
class("TRUE")
                         # "character"
class(T)
                         # "logical"
class(F)
                          "logical"
```

#### Textový řetězec

- v R jako character
- libovolná sekvence znaků (extended ASCII) uzavřená mezi jednoduchými či dvojitými uvozovkami
- např.

```
"ahoj"; 'xweiwogw23425ng';
```

zda je hodnota typu character, zjistíme pomocí

```
is.character("ahoj")
                         # TRUE
class("bla bla")
                         # "character"
class("123")
                         # "character"
                         # "numeric"
class (123)
is.numeric(Inf)
                         # TRUE
is.numeric("Inf")
                         # FALSE
```

na textový řetězec lze převést libovolnou jinou hodnotu pomocí

```
as.character(123)
```

#### NA, NULL, NaN

- NA je hodnota typu Not Available, obvykle chybějící hodnota
- NULL je null object, používá se pro bezhodnotovou inicializaci objektu (uvidíme později)
- NaN je hodnota typu Not a Number, obvykle nevyjádřitelný výsledek matematické operace
- množinově platí {NaN} ⊂ {NA}
- např.

```
log(-1)
                    # Na.N
is.na(NaN)
                      TRIJF
is.nan(NA)
                    # FALSE
is.nan(1 / 0)
                    # FALSE
1 / 0
                    # Inf
```

## Atributy každého objektu

- každý objekt (daného datového typu) má svou třídu a délku
- třída (class) charakterizuje datový typ
- délka (length) vrací počet atomických podobjektů objektu daného datového typu
- např.

```
class("ahoj")
                   # "character"
class(NaN)
                   # "numeric"
class(NA)
                     "logical"
class(class(NA))
                     "character"
length("123")
length (123)
length (NaN)
length(NA)
```

29/47

#### Přiřazení hodnoty k proměnné

přiřadit hodnotu nějaké proměnné lze pomocí jednoduchého rovnítka

$$x = 5$$

nebo pomocí orientované šipky

```
# totéž
```

 anebo pomocí funkce assign(), kde prvním argumentem je název proměnné (tedy textový řetězec) a druhým hodnota

```
assign("x", 5) # analogické k x < -5 \check{c}i x = 5
```

to se hodí zejména u dynamického iterování (viz později)

#### Intermezzo

 zkusme apriorně (bez ověření v R) vyslovit, o jaké datové typy jde v následujících případech

```
1.8
is.logical(is.numeric(-5000))
sqrt(4)
                    # sqrt() je druhá odmocnina
sqrt(4L)
TRUE
"FALSE"
asin(2)
                    # asin() je arcus sinus
1 / Inf
-2 / INF
class (TRUE)
class(class(is.complex(1 + 1i)))
"357L"
as.integer("357L")
as.integer("357")
length (12)
```

31/47

#### Datové struktury

- vektor (vector)
- faktor (factor)
- matice (matrix)
- pole (array)
- tabulka dat (data.frame)
- seznam (list)

# Tvorba vektorů a základní příkazy

- vektor je jednorozměrný výčet prvků stejného datového typu, nemá orientaci ve smyslu řádek či sloupec
- vektor je objekt typu tuple, tedy zachovává pořadí svých prvků (na rozdíl od objektů typu set)
- lze vytvořit pomocí generické funkce c(), neboli concatenate
- např.

```
c()
               # prázdný vektor
length(c())
c(3, 1, 2)
               # vektor o délce 3 a prvcích 3, 1, 2
c("a", "d")
               # vektor o dél. 2 a prvcích "a", "d"
```

pomocí funkce c() lze vektory i prodlužovat

```
c(c(3, 1, 2), 4) # vektor o prvcich 3, 1, 2, 4
c(3, 1, 2, 4)
                  # zkráceně totéž
```

## Tvorba vektorů a základní příkazy

vektor tedy lze prodloužit libovolně o jednu či více hodnot

```
x < -c(3, 1, 2)
length(x)
y <- 1
z < -c(2)
w < -c(5.7)
x <- c(x, y) # prodloužení vektoru x
                  # o hodnotu y
W < - C(W, Z)
                  # prodloužení vektoru w
                  # o vektor z
                  # jednoprvkový vektor je
                  # skalárem, jednou hodnotou
c < -c(1, 2, 3)
                  # vektor o prvcích 1, 2, 3
                  # byť je c referovaný termín,
                  # funkce c je zachována
                  # a vznikl vektor c
```

34/47

#### Vektory textových řetězců

 vektory obsahující textové hodnoty, lze je použít např. jako názvy prvků jiného vektoru

```
x < -c(3, 1, 2)
y <- c("a", "b", "c")
names(x) <- y # pojmenuje prvky
                   # vektoru x
X
unname (x)
                   # zbaví prvky vektoru
                   # x jeho jejich jmen
setNames(x, y)
                   # opět pojmenuje
                   # prvky vektoru x
```

#### Subvektory, indexování, adresace

 vektor obsahující celočíselnou aritmetickou řadu lze s výhodou vytvořit následovně

```
x \leftarrow 1:10 # vektor o prvcích 1, 2, ..., 10
y <- 5:1 # vektor o prvcich 5, 4, ..., 1
z < - seq(from = 2, to = 10, by = 2)
               # vektor o prvcích 2, 4, 6, 8, 10
w < - seq(2, 10, 2)
               # totéž
```

toho lze využít při indexování

• R indexuje vektory od 1, nikoliv od 0 (první prvek má index 1, druhý index 2, apod.)

## Subvektory, indexování, adresace

adresujeme pomocí hranatých závorek []

```
x < -c(4, 2, 6,
x[1]
                # c(4, 2)
x[1:2]
x [5]
x[length(x)] # -3
x[c(1, 3, 4)] # c(4, 6, -3)
x[length(x):1] # c(-3, 6, 2, 4)
rev(x)
                 # totéž, c(-3, 6, 2, 4)
```

## Logické vektory

používají se (nejen) k adresování vhodných prvků

```
y <- c(TRUE, TRUE, FALSE, TRUE) # logický
                                   # vektor
x < -c(3, 1, 2, 5)
                      # (sub)vektor c(3, 1)
x [y]
x[c(F, T, F, T)] # subvektor c(1, 5)
```

výhodný je někdy tzv. recycling

```
z <- c("R", "G", "E", "F", "I")
z[c(T, F)] # vybere pouze hodnoty
                # na lichých pozicích,
                # tedy "R", "E", "I"
                # neboli vektor
                \# c("R", "E", "I")
```

#### Intermezzo

vypišme z vektoru x každou třetí a pátou hodnotu

```
x < -c(34, 65, 4, 0, 56, 23, 54, 17,
       4, 8, 5, 44, 84, -5, 4444, 49,
       37, 86, 45, 65, 36, 72, 54, 36,
       56, 74, 26, 88, 36, 76, 46,
       17, 84, 57, 25, -75, 634, 5578,
       -6, 46, 44, 743, 577, 466,
       645, 33, 64, 67)
```

Organizace Úvod Začínáme Datové typy a jejich vlastnosti Přehled datových struktur Vektory a operace s nimi 00000000000000

## Faktory

vektory textových hodnot, kde každá hodnota patří do své kategorie

```
x <- factor(
    c("muž", "žena", "muž", "muž")
          # pořadí kategorií je defaultně
          # abecední
x <- factor(
    c("muž", "žena", "muž", "muž"),
    levels = c("žena", "muž")
         # zde si pořadí kategorií
          # určíme sami
```

nad faktory snadno vytvoříme kontingenční tabulku

```
table(x)
              # žena muž
              # 1 3
```

## Aritmetické operace



# Logické operace a porovnávání



## Množinové operace



#### Vestavěné matematické funkce



#### Zaokrouhlování, formátování čísel



## Konstanty

•

#### Děkuji za pozornost!

lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz

github.com/LStepanek/17VSADR Skriptovani a analyza dat v jazyce R