Esercizi Svolti su Circuiti a Corrente Alternata

Giacomo Sturm

 $\mathrm{AA:}\ 2023/2024$ - Ing. Informatica

Sorgente del file LaTeX disponibile su

https://github.com/00Darxk/Elettrotecnica-ed-Elettronica

Indice

1	Esercizi Svolti il 24 Novembre			
	1.1	Esercizio 1	3	
	1.2	Esercizio 2	4	

1 Esercizi Svolti il 24 Novembre

1.1 Esercizio 1

Calcolare i valori di resistenza e capacità equivalente, del seguente circuito in regime sinusoidale alla pulsazione di $\omega = 2 \operatorname{rad}/s$:

$$C_2 = 0.5 F$$

$$L_1 = 1 H$$

$$R_1 = R_2 = 1 \Omega$$

Si può risolvere applicando trasformazioni in serie ed in parallelo dell'impedenza:

$$z_1 = j\omega L_1 + R_2 = 2j + 1$$

 $z_2 = -j\frac{1}{\omega C_2} = -j$
 $z_3 = R_1 = 1$

Si considera il parallelo tra z_1 e z_2 :

$$z_{p12} = \frac{z_1 z_2}{z_1 + z_2} = \frac{-j(1+2j)}{1+2j-j} = \frac{-j+2}{1+j} \cdot \frac{1-j}{1-j}$$
$$z_{p12} = \frac{1-3j}{2}$$

Si considera la serie tra z_{p12} e z_3 :

$$z_{AB} = z_{p12} + z_3 = \frac{1}{2} + j\frac{3}{2} + 1 = \frac{3}{2} + j\frac{3}{2}$$

$$R_{eq} = \frac{3}{2}\,\Omega\tag{1}$$

$$C_{eq} = \frac{2}{3} \Omega \cdot \omega = \frac{1}{3} F \tag{2}$$

Alternativamente per trovare l'impedenza equivalente della rappresentazione Thevenin si considera un generatore che ergoa una tensione \overline{V}_{in} , e si risolve mediante il metodo dei nodi o delle maglie:

La matrice delle ammettenze modali diventa solamente l'autoammettenza del nodo A:

$$(y_1 + y_2 + y_3)\overline{V}_A = \overline{V}_{in}y_3$$
$$\overline{I}_{in} = \frac{\overline{V}_{in} - \overline{V}_A}{z_3}$$
$$z_{in} = \frac{\overline{V}_{in}}{\overline{I}_{in}}$$

Si calcola ora numericamente:

$$\overline{V}_{in} = 1 V$$

$$\overline{V}_{A} = \frac{y_{3}}{y_{1} + y_{2} + y_{3}} \cdot 1 V$$

$$\overline{V}_{A} = \frac{1}{\frac{1}{1+2j} - \frac{1}{j} + 1} = \frac{1}{\frac{j-1-2j-j(1+2j)}{j(1+2j)}} = \frac{j(1+2j)}{j-1-2j+j-2}$$

$$\overline{V}_{A} = \frac{j-2}{-3}$$

$$\overline{I}_{in} = 1 + \frac{j-2}{3} = \frac{3+j-2}{3} = \frac{1+j}{3}$$

$$z_{in} = \frac{1}{1+j} \cdot \frac{1-j}{1-j} \cdot 3 = \frac{3}{2} + j\frac{3}{2}$$

1.2 Esercizio 2

Calcolare l'espressione a regime della tensione di nodo v_x :

Si risolve mediante il metodo dei nodi. Si considerano per ogni lato le loro impedenze:

$$z_1 = z_2 = 10 \Omega$$

$$z_3 = -\frac{j}{\omega C} = -\frac{j}{10 \cdot 10 \times 10^{-3}} = -10j \Omega$$

$$z_4 = 5 \Omega + \omega L = 5 \Omega + 5j \Omega$$

Poiché oltre al nodo di salto è presente un solo nodo, per il metodo dei nodi si ottiene un'unica equazione:

$$(y_1 + y_2 + y_3 + y_4)\overline{V}_x = \overline{V}_{in}y_1 - 10\overline{I}_a y_4$$

Si esprime il vincolo del pilota:

$$\overline{I}_a = (\overline{V}_{in} - \overline{V}_x)y_1$$

Per cui l'equazione dei nodi diventa:

$$(y_1 + y_2 + y_3 + y_4)\overline{V}_x = \overline{V}_{in}y_1 - 10(\overline{V}_{in} - \overline{V}_x)y_1y_4$$

$$(y_1 + y_2 + y_3 + y_4 - 10y_1y_4)\overline{V}_x = \overline{V}_{in}(y_1 - 10y_1y_4)$$

$$\overline{V}_x = \frac{\overline{V}_{in}(y_1 - 10y_1y_4)}{(y_1 + y_2 + y_3 + y_4 - 10y_1y_4)}$$

Si calcolano le ammettenze:

$$y_1 = y_2 = \frac{1}{10} \Omega^{-1}$$
$$y_3 = \frac{j}{10} \Omega^{-1}$$
$$y_4 = \frac{1}{5+5j} \Omega^{-1} = \frac{1}{10} \Omega^{-1} - \frac{j}{10} \Omega^{-1}$$

Da cui si ottiene un fasore di nodo:

$$\begin{split} \overline{V}_x &= 2 + 4i \\ |\overline{V}_x| &= \frac{10}{\sqrt{5}} \\ \varphi &= \arctan\left(\frac{4}{2}\right) \cdot \frac{180^\circ}{\pi} = 63.4^\circ \end{split}$$

Per cui l'espressione della tensione di nodo corrisponde a:

$$v_x = |\overline{V}_x|\cos(\omega t + \varphi) = \frac{10}{\sqrt{5}}\cos(10t + 63.4^\circ)$$
(3)