MODEL BUILDING

CONFIGURING THE LEARNING PROCESS

Date	04 November 2022
Team ID	PNT2022TMID13480
Project Name	Emerging Methods for Early Detection of Forest Fires

Importing The ImageDataGenerator Library import keras from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2, rotation_range=180,zoom_range=0.2,horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

Applying ImageDataGenerator functionality to trainset

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/train_set', target_size=(128,128),batch_size=32, class_mode='binary')

Found 436 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

```
x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/test_set', target_size=(128,128),batch_size=32, class_mode='binary')
```

Found 121 images belonging to 2 classes.

Import model building libraries

#To define Linear initialisation import Sequential

from keras.models import Sequential

#To add layers import Dense from keras.layers import Dense

#To create Convolution kernel import Convolution2D from

keras.layers import Convolution2D

#import Maxpooling layer

from keras.layers import MaxPooling2D

#import flatten layer

from keras.layers import Flatten import warnings warnings.filterwarnings('ignore')

Initializing the model model=Sequential()

Add CNN Layer

model.add(Convolution2D(32, (3,3),input_shape=(128,128,3),activation='relu'))

#add maxpooling layer

 $model.add(MaxPooling2D(pool_size=(2,2)))$

#add flatten layer model.add(Flatten())

Add Dense Layer

```
#add hidden layer model.add(Dense(150,activation='relu'))

#add output layer
model.add(Dense(1,activation='sigmoid'))
```

Configure the learning process model.compile(loss='binary_crossentropy',optimizer="ad m",metrics=["ac curacy"])