Álgebra Linear e Geometria Analítica

Matrizes e Sistemas de Equações Lineares

Departamento de Matemática Universidade de Aveiro

Geometria analítica em \mathbb{R}^3 : Referenciais em \mathbb{R}^3

Fixamos um sistema de coordenadas:

$$\left. egin{array}{ll} Ox & \rightarrow & \text{origem} \\ Ox & Oy & \rightarrow & \text{eixos coordenados} \\ xOy & \times Oz & \times Oz \\ yOz & \end{array}
ight.
ightarrow ext{planos coordenados}$$

Pontos e vetores em \mathbb{R}^3

 $x_1, x_2, x_3 \rightarrow \text{coordenadas do ponto } P$

Associamos ao segmento de reta orientado \overrightarrow{OP} o vetor

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

 $y_1, y_2, y_3 \rightarrow \text{coordenadas do ponto } Q \text{ e}$ seja Y o vetor associado a \overrightarrow{OQ}

Ao segmento de reta orientado \overrightarrow{PQ} fica associado o vetor $Z = \begin{bmatrix} y_1 - x_1 \\ y_2 - x_2 \\ y_3 - x_3 \end{bmatrix}$

Adição, multiplicação por escalar e combinação linear

Sejam X e Y vetores em \mathbb{R}^3 e $\alpha, \beta \in \mathbb{R}$ escalares

Adição:
$$Z = X + Y = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$$

Multiplicação por escalar:
$$\alpha X = \alpha \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} \alpha x_1 \\ \alpha x_2 \\ \alpha x_3 \end{vmatrix}$$

Combinação linear:
$$Z = \alpha X + \beta Y = \begin{bmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \\ \alpha x_3 + \beta y_3 \end{bmatrix}$$

$$Z=X+Y$$

$$\sqrt{-Y} = (-1)Y$$

$$2X$$
 $-Y$

Vetores em \mathbb{R}^n

Os vetores em \mathbb{R}^2 e \mathbb{R}^3 generalizam-se a vetores em \mathbb{R}^n :

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$

Chamam-se componentes do vetor X aos números reais x_1, x_2, \ldots, x_n .

Notação alternativa: $X = (x_1, \dots, x_n)$.

Operações em \mathbb{R}^n (tal como em \mathbb{R}^3):

- adição de vetores: X + Y + Z
- multiplicação de um vetor por um escalar: 2X, -Y, αZ
- combinação linear de vetores: $2X Y + \alpha Z$

Matrizes

Os vetores em \mathbb{R}^n podem ser generalizados àquilo a que chamamos **MATRIZES**.

Sendo a_{ij} números reais (para todos os indices $i \in \{1,\ldots,m\}$ e $j \in \{1,\ldots,n\}$) considere

$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

dizemos que A é uma matriz com m linhas e n colunas, tem $m \times n$ elementos diz-se matriz $m \times n$, de ordem $m \times n$, de dimensão $m \times n$

Matriz $m \times n$

$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix} \leftarrow \text{linha } i$$

$$coluna j$$

 a_{ij} é o elemento ou entrada (i,j) da matriz A

Notação abreviada: $A = A_{m \times n} = [a_{ij}]_{m \times n} = [a_{ij}], i = 1, \dots, m, j = 1, \dots, n$

Matriz nula, matriz coluna e matriz linha

Matriz nula $(m \times n)$, cujas entradas são todas iguais a 0, denota-se por O (ou $O_{m \times n}$).

Matriz linha $(1 \times n)$

$$\left[\begin{array}{cccc} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \end{array}\right]$$

Matriz coluna $(m \times 1)$

$$\left[egin{array}{c} a_{11} \ dots \ a_{i1} \ dots \ a_{m1} \end{array}
ight]$$

Matriz quadrada de ordem n

matriz com o mesmo número de linhas e de colunas

$$A = \begin{bmatrix} a_{11} & \dots & a_{1i} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & \dots & a_{ii} & \dots & a_{in} \\ \vdots & & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{ni} & \dots & a_{nn} \end{bmatrix}$$

$$diagonal \ principal$$

Matriz diagonal e matriz identidade

Uma matriz quadrada $A = [a_{ij}]$ diz-se diagonal se $a_{ij} = 0$, $i \neq j$, ou seja,

$$A = \begin{bmatrix} a_{11} & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & a_{ii} & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}.$$

Chama-se a matriz identidade de ordem n e denota-se por I (ou I_n) a uma matriz diagonal $n \times n$ com $a_{11} = \cdots = a_{nn} = 1$

Matriz triangular

Uma matriz quadrada $A = [a_{ij}]$ é

triangular superior se $a_{ij} = 0$, para i > j:

$$A = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1i} & \cdots & \mathbf{a}_{1n} \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & \mathbf{a}_{ii} & \cdots & \mathbf{a}_{in} \\ \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & \mathbf{a}_{nn} \end{bmatrix},$$

triangular inferior se $a_{ij} = 0$, para i < j.

Transposta de uma matriz

A transposta da matriz $m \times n$ $A = [a_{ij}]$ é a matriz $n \times m$

$$A^T = [a_{ji}]$$

obtida por troca da posição relativa das linhas pelas colunas da matriz A, por exemplo

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \qquad A^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

Propriedade:

$$(A^T)^T = A.$$

Uma matriz A diz-se simétrica se $A = A^T$. (Nota: toda a matriz simétrica é quadrada.)

Igualdade, adição e multiplicação por escalar de matrizes

Sejam $A = [a_{ij}], B = [b_{ij}]$ matrizes $m \times n$ e $\alpha \in \mathbb{R}$.

As matrizes $A \in B$ são iguais, A = B, se

$$a_{ij}=b_{ij}, \qquad i=1,\ldots,m, \ j=1,\ldots,n.$$

A soma de A e B é a matriz $m \times n$ $A + B = C = [c_{ij}]$ tal que

$$c_{ij} = a_{ij} + b_{ij}, \qquad i = 1, \dots, m, \ j = 1, \dots, n.$$

O produto de A pelo escalar α é a matriz $m \times n$ $\alpha A = D = [d_{ij}]$ tal que

$$d_{ii} = \alpha a_{ii}, \qquad i = 1, \ldots, m, \ j = 1, \ldots, n.$$

A matriz $m \times n$ A é uma combinação linear das matrizes A_1, \ldots, A_k $m \times n$ se

$$A = \alpha_1 A_1 + \cdots + \alpha_k A_k, \quad \alpha_1, \dots, \alpha_k \in \mathbb{R}$$

Propriedades da adição e da multiplicação por escalar

Propriedades da adição de matrizes

- ightharpoonup comutativa: A + B = B + A,
- ▶ associativa: (A + B) + C = A + (B + C),
- ▶ admite elemento neutro: A + O = O + A = A,
- A possui simétrico aditivo: A + (-A) = (-A) + A = 0,
- $(A+B)^T = A^T + B^T$,

para quaisquer matrizes $m \times n A, B, C$.

Propriedades da multiplicação por escalar de matrizes

- ▶ associativa: $\alpha(\beta A) = (\alpha \beta) A$,
- distributiva: $(\alpha + \beta)A = \alpha A + \beta A$,
- distributiva: $\alpha(A+B) = \alpha A + \alpha B$,
- $(\alpha A)^T = \alpha A^T,$

para quaisquer matrizes $m \times n$ A, B, e $\alpha, \beta \in \mathbb{R}$.

Multiplicação de matrizes - caso 1

Multiplicação de uma matriz linha por uma matriz coluna

Dadas
$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$
 e $B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

o produto da matriz linha A pela matriz coluna B é

$$AB = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{i=1}^n a_ib_i$$

Operação bem definida só se A e B possuem igual número de elementos!

Multiplicação de matrizes - caso 2

Caso geral: multiplicação de A matriz $m \times n$ e B matriz $n \times p$ sendo

$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix} e B = \begin{bmatrix} b_{11} & \dots & b_{1j} & \dots & b_{1p} \\ \vdots & & \vdots & & \vdots \\ b_{i1} & \dots & b_{ij} & \dots & b_{ip} \\ \vdots & & \vdots & & \vdots \\ b_{n1} & \dots & b_{nj} & \dots & b_{np} \end{bmatrix}$$

o produto de A por B é a matriz $m \times p$ $AB = [c_{ij}]$ cuja entrada (i, j) resulta da multiplicação da linha i de A pela coluna j de B:

$$c_{ij} = a_{i1}b_{1j} + \cdots + a_{in}b_{nj}, \qquad i = 1, \dots, m, \ j = 1, \dots, p.$$

Propriedades da multiplicação de matrizes

- ightharpoonup associativa: (AB)C = A(BC),
- distributiva à esquerda e à direita, em relação à adição:

$$(A + \widetilde{A})B = AB + \widetilde{A}B$$
 e $A(B + \widetilde{B}) = AB + A\widetilde{B}$,

- ▶ admite elemento neutro à esquerda e à direita: $I_m A = A = AI_n$,
- $(\alpha A)B = \alpha (AB) = A(\alpha B),$
- \triangleright $(AB)^T = B^T A^T$,

para quaisquer matrizes $A, \widetilde{A} \ m \times n, \ B, \widetilde{B} \ n \times p, \ C \ p \times q \ \mathrm{e} \ \alpha \in \mathbb{R}.$

Nota importante: A multiplicação de matrizes não é comutativa!

Potência de uma matriz quadrada

Sejam A uma matriz $n \times n$ e $p \in \mathbb{N}$.

A potência p de A é a matriz $n \times n$ dada por

$$A^{p} = A A^{p-1},$$

em que $A^0 = I_n$, por convenção.

Propriedades da potência de matrizes

- $ightharpoonup (A^p)^q = A^{pq}$
- $\triangleright A^p A^q = A^{p+q}$

Nota: Em geral $(AB)^p \neq A^p B^p$.

Sistema de *m* equações lineares com *n* incógnitas

$$\begin{cases} a_{11} x_1 + \dots + a_{1n} x_n = b_1 \\ \vdots \\ a_{m1} x_1 + \dots + a_{mn} x_n = b_m \end{cases}$$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \qquad X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \qquad B = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$
matriz dos
coeficientes

$$Coluna dos$$
coeficientes

$$Coluna dos$$
termos independentes

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 coluna das incógnitas

$$B = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$
 coluna dos termos independentes

Forma matricial de um sistema linear

$$\begin{cases}
a_{11} x_1 + \dots + a_{1n} x_n = b_1 \\
\vdots & \Leftrightarrow AX = B, \\
a_{m1} x_1 + \dots + a_{mn} x_n = b_m
\end{cases}$$

em que A é a matriz $(m \times n)$ dos coeficientes do sistema,

X é a coluna $(n \times 1)$ das incógnitas,

B é a coluna $(m \times 1)$ dos termos independentes e

$$M = [A | B] = \begin{bmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{bmatrix}$$

é uma matriz $m \times (n+1)$ e é a matriz ampliada, aumentada ou completa do sistema.

Matriz escalonada por linhas

A primeira entrada não nula de cada linha é designada por pivot.

```
\begin{bmatrix} 0 & \dots & a_1 & * & \dots & * & * & * & \dots & * \\ 0 & \dots & 0 & 0 & \dots & a_2 & * & * & \dots & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & a_3 & \dots & * \\ \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}, a_1, a_2, a_3, \dots \neq 0
```

- Abaixo de cada pivot só ocorrem zeros,
- Dadas duas linhas não nulas consecutivas, o pivot da linha i + 1 está numa coluna à direita da coluna que contém o pivot da linha i,
- As linhas nulas, caso existam, ocorrem só na parte inferior da matriz.

Matriz escalonada por linhas reduzida

```
\begin{bmatrix} 0 & \dots & 1 & * & \dots & 0 & * & 0 & \dots & * \\ 0 & \dots & 0 & 0 & \dots & 1 & * & 0 & \dots & * \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 1 & \dots & * \\ \vdots & & \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix}
```

- A matriz está na forma escalonada por linhas,
- Os pivots são todos iguais a 1,
- Acima de cada pivot só ocorrem zeros.

Operações elementares

Operações elementares nas linhas de uma matriz

1. Troca da posição relativa de duas linhas, p.e. i e j:

 $L_i \leftrightarrow L_j$

2. Multiplicação de uma linha, p.e. i, por um escalar $\alpha \neq 0$:

- $L_i := \alpha L_i$
- **3.** Substituição de uma linha, p.e. i, pela que dela se obtém adicionando-lhe outra linha, p.e. j, multiplicada por um escalar $\beta \in \mathbb{R}$: $L_i := L_i + \beta L_j$

Matrizes equivalentes por linhas

Duas matrizes A e C são equivalentes por linhas e escreve-se

$A \sim C$

se C resulta de A por aplicação de uma sequência finita de operações elementares nas linhas de A.

Teorema

Toda a matriz $m \times n$ é equivalente por linhas a uma matriz escalonada por linhas (reduzida).

Exemplo ilustrativo do teorema anterior

Passo 1: Encontrar, na 1.ª coluna não nula, o 1º elemento não nulo pivot.

$$A = \begin{bmatrix} 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 2 & 2 & -5 & 2 & 4 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix}$$

Passo 2: Trocar linhas para colocar o pivot como 1.º elemento da coluna.

$$\begin{bmatrix} 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 2 & 2 & -5 & 2 & 4 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix}$$

Passo 3: Operar com as linhas para obter zeros abaixo do pivot.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & -2 & -1 & 7 & 3 \end{bmatrix}$$

Passo 4: Considerar a submatriz que se obtém eliminando a 1.ª linha e aplicar os passos 1 a 4 até esgotar as linhas.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & -2 & -1 & 7 & 3 \end{bmatrix}$$

:

Fim Passo 4: Obtém-se uma matriz escalonada por linhas equivalente a A.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 5: Multiplicar as linhas não nulas pelos inversos dos pivots de modo a obter pivots iguais a 1.

$$\begin{bmatrix} 2 & 2 & -5 & 2 & 4 \\ 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -\frac{5}{2} & 1 & 2 \\ 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L_1 := \frac{1}{2}L_1$$

$$L_2 := \frac{1}{2}L_2$$

$$L_3 := \frac{1}{2}L_3$$

Passo 6: Operar com as linhas de modo a obter zeros acima dos pivots.

$$\begin{bmatrix} \mathbf{1} & 1 & -\frac{5}{2} & 1 & 2 \\ 0 & \mathbf{1} & \frac{3}{2} & -2 & \frac{1}{2} \\ 0 & 0 & \mathbf{1} & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} \mathbf{1} & 1 & 0 & \frac{19}{4} & 7 \\ 0 & \mathbf{1} & 0 & -\frac{17}{4} & -\frac{5}{2} \\ 0 & 0 & \mathbf{1} & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \\ L_2 := L_2 - \frac{3}{2}L_3 \qquad \qquad L_1 := L_1 - L_2 \\ L_1 := L_1 + \frac{5}{2}L_3 \qquad \qquad \sim \begin{bmatrix} \mathbf{1} & 0 & 0 & 9 & \frac{19}{2} \\ 0 & \mathbf{1} & 0 & -\frac{17}{4} & -\frac{5}{2} \\ 0 & 0 & \mathbf{1} & \frac{3}{2} & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Obtém-se uma matriz escalonada por linhas <u>reduzida</u> equivalente a A.

Aplicação à resolução de sistemas

Teorema

Se as matrizes ampliadas de dois sistemas lineares são [A | B] e [C | D], tais que

$$[A|B] \sim [C|D],$$

então os dois sistemas têm o mesmo conjunto de soluções.

Nota: Se B=D=0, basta que $A \sim C$ para que os sistemas possuam o mesmo conjunto de soluções.

Métodos de eliminação

Método de eliminação de Gauss

- 1. Dado o sistema AX = B, formar a sua matriz ampliada $[A \mid B]$.
- 2. Transformar $[A \mid B]$ numa forma escalonada por linhas $[C \mid D]$.
- 3. Escrever o sistema CX = D, ignorando as linhas nulas, e resolver por substituição ascendente.

Método de eliminação de Gauss-Jordan

- 1. Dado o sistema AX = B, formar a sua matriz ampliada $[A \mid B]$.
- 2. Transformar $[A \mid B]$ numa forma escalonada por linhas reduzida $[E \mid F]$.
- 3. Escrever o sistema EX = F, ignorando as linhas nulas, e resolver.

Classificação de sistemas

Um sistema linear representado matricialmente por AX = B, tal que

$$[A|B] \sim [C|D],$$

com a matriz $\begin{bmatrix} C & D \end{bmatrix}$ escalonada por linhas, classifica-se em

- impossível se não possui solução;
- possível e determinado se possui uma única solução (todas as colunas de C têm pivot);
- possível e indeterminado se possui uma infinidade de soluções (sendo o grau de indeterminação do sistema = n.º de incógnitas livres = n.º de colunas de C sem pivot).

Característica e classificação de sistemas

A característica da matriz A, car(A), é o número de pivots de uma matriz C escalonada por linhas equivalente, por linhas, a A.

O sistema linear $AX = B \operatorname{com} A m \times n \operatorname{e} B m \times 1 \operatorname{e}$

- 1. impossível
- 2. possível e determinado
- 3. possível e indeterminado de grau n car(A)
- \Leftrightarrow car(A) < car([A|B]);
- \Leftrightarrow $\operatorname{car}(A) = \operatorname{car}([A|B]) = n;$
- \Leftrightarrow car(A) = car([A|B]) < n.

Sistema homogéneo e nulidade

Um sistema diz-se homogéneo se os termos independentes são todos nulos:

$$AX = 0$$
.

Todo o sistema homogéneo é possível pois possui pelo menos a solução nula, dita solução trivial. Mas pode ter outras soluções, ditas não triviais, se o sistema for indeterminado.

Se $A \in m \times n$ e m < n, então AX = 0 admite uma solução não trivial.

A nulidade de $A m \times n$, nul(A), é o número de incógnitas livres do sistema AX = 0, temos

$$\mathsf{nul}(A) = n - \mathsf{car}(A)$$

e é também o grau de indeterminação do sistema.

Espaço nulo de uma matriz

O espaço nulo de A, $\mathcal{N}(A)$, é o conjunto de todas as soluções do sistema homogéneo associado a $A m \times n$,

$$\mathcal{N}(A) = \{X \in \mathbb{R}^n : AX = 0\}.$$

O espaço nulo de A, $\mathcal{N}(A)$, pode escrever-se como o conjunto de todas as combinações lineares de $n - \operatorname{car}(A)$ vetores de \mathbb{R}^n , facilmente obtidos usando colunas da forma escalonada reduzida de A.

Inversa de uma matriz quadrada

Uma matriz $A n \times n$ diz-se invertível se existe $B n \times n$ tal que

$$AB = BA = I_n$$

Caso contrário (não existe B), A diz-se singular ou não invertível.

Teorema

Se $A n \times n$ é invertível, então a inversa de A é única.

À única matriz B satisfazendo a relação anterior chama-se inversa de A e denota-se por A^{-1} .

Teorema

Se A, B $n \times n$ e B $A = I_n$, então $AB = I_n$.

Propriedades da inversa e método para obter a inversa

Propriedades

Para quaisquer $A, B \ n \times n$ invertive is e $a \in \mathbb{R} \setminus \{0\}$

- 1. $(A^{-1})^{-1} = A$; 2. $(AB)^{-1} = B^{-1}A^{-1}$; 3. $(aA)^{-1} = a^{-1}A^{-1}$; 4. $(A^{T})^{-1} = (A^{-1})^{T}$.

Método prático para determinar a inversa

$$\begin{bmatrix} A \mid I_n \end{bmatrix} \sim \begin{bmatrix} I_n \mid A^{-1} \end{bmatrix}$$

método de eliminação de Gauss-Jordan

Teorema

 $A n \times n$ é invertível se e só se A é equivalente por linhas a I_n .

Critérios de invertibilidade de uma matriz

Teorema Dada $A n \times n$, são equivalentes as afirmações

- 1. A é invertível
- 2. $A \sim I_n$
- **3.** car(A) = n
- **4.** nul(A) = 0
- **5.** AX = 0 possui apenas a solução trivial
- **6.** $\mathcal{N}(A) = \{0\}$
- 7. AX = B tem uma única solução $X = A^{-1}B$ para cada $B \ n \times 1$