動画情報を用いた せん妄判別モデルによる診断支援

〇仁保貴耀1, 湯口彰重1, 岡留有哉1, 大谷清子2, 小川朝生2, 松本吉央1

1. 東京理科大学大学院, 2. 国立がん研究センター

背景と目的

◆せん妄の症状とリスク

症状 : 短期的かつ突発的な認知症のような症状

リスク:**発見の遅れ**が転倒による**ケガの原因や、認知症**につながる可能性

せん妄の早期発見が重要だが、判別が困難

• 専門医の知見によると、**表情筋の変化が遅い**ことや、**反応潜時が延長**

◆表情からせん妄を分類するタスク[生田ら1, 2023]

機械学習手法1種類かつ特徴量設計1種類であり、21名分の表情データセットに対して5分割の交差検証

目的: 簡便で高精度かつ自動的にせん妄を判別すること

診断支援のコンセプト

表情特徴を用いたせん妄判別モデル

◆会話場面の収録

• せん妄患者12名、非せん妄患者の19名の医療関係者 との3分程度の会話場面の収録

◆発話区間の抽出

- ・ 患者の発話区間の内、先頭10、30フレームを抽出
- 発話区間の最小が約30フレームであり、10フレームは 経験的に設定

◆表情情報の抽出

- 表情情報として20種類のFacial Action Unit(AU)を抽出
- AUとは、顔の筋肉に基づいて人間の顔の動きを分類するシステム
- そのうち、AU07、AU11、AU20は極端な2値
 →3種類のAUを除いた、17種類のAUを特徴量として使用

◆ 分類モデル構築

- 先頭10、30フレームにおいてAUの平均と標準偏差を特徴量として設計
- ラベル(せん妄あり/なし)をもとに分類モデルを作成

◆学習結果

- 評価項目は感度、特異度
 - ▶ 感度:病気を正しく見つけ出す能力
 - ▶ 特異度:病気ではないことを正しく見分ける能力

	特徴量							
	μ_{30}		μ_{10}		σ_{30}		σ_{10}	
	感度	特異度	感度	特異度	感度	特異度	感度	特異度
XGBoost	25	79	25	95	0	100	8	100
kNN	42	74	42	79	42	95	33	100

k近傍法と標準偏差を特徴量としたときの感度がやや高い →現状では、どの手法がせん妄の判別に最適か断定的なこと はいえない

今後の方針

◆感度、特異度の両方とも80%以上が目標

- ・ インフルエンザ検査機器「nodoca」 [https://nodoca.aillis.jp/]

 ▶ 感度76%、特異度88%で製品化
- ・ 本システムの実用化を目指すためには感度、特異度80% 以上の精度を目指したい
 - →特徴量の分析、音声情報の使用を検討

◆特徴量の分析

- 各AUの寄与率の分析し、使用するAUの検討
- 特徴量設計の変更(平均、標準偏差以外の検討)

◆音声情報の使用を検討

- openSMILEで音声情報を取得
- 音声情報の相関を調査
- 音声情報のみを特徴量とした判別モデルの作成

表情と音声の両方を使用したモデルの作成を目指す