Markov Chain Monte Coulo:

Goal: Sample from p(x), $x \in \mathbb{R}^d$ and compute: $\mathbb{E} \left[f(x) \right] \approx \frac{1}{n} \sum_{i=1}^n f(x_i), \quad x_i \approx p(x_i)$

Challenge: p(x), f(x) may be caupticated.

P(X0)=0

Intuition:

P(-1=0)

"notional high-dimensional space"

Start at some to, find some

region of high-probability and then

explore the space by maing romdauly

get staying close to regions of highprobab

Metropolis 1953 i

Bayesian inforence using the Metropolis algorithm:

Given some model with parameters BER and some data D:

 $P(\theta|D) = \frac{1}{b} \left(\frac{\partial (D)}{\partial \theta} \right) = \frac{\partial (D)}{\partial \theta}$

x P(D(0)P(0)

Approach: Construct a Markon Chain with a Stationary distribution $\pi(\vartheta|D) \xrightarrow{i \to t \omega} p(\vartheta|D)$.

- Proposal distribution / proposal matrix: $Q_{ab} = P(x=b | x=a)$ Stochastic matrix: $\sum_{b} Q_{ab} = L$, $Q_{ab} = (\alpha_{1}b), \alpha_{1}b$?
- $P(8|D) = \frac{D(D)}{D(B|D)} := P(D|B)P(B)$, $P(D) = \int D(D|B)P(B)$

Algorithm:

- I. Choose a symmetric proposal matrix Q (Metropolis Hastings dos
- 2. Initialize a State 8, ER
- For i=0,1,..., n-1:
 - i.) Sample & from Q=p(8/8;) (e.g. g=8;+&,M)
 - ii) Sample ~~V(0,1)
 - iii) Accept or reject of according to the randow Metropalis rale:

If $u < \frac{P(\vartheta|D)}{P(\vartheta;1D)}$ { True, $\vartheta_{i+1} = \vartheta_{i}$ }

4.) Output: of ~ M.C.

$$\mathbb{E}_{\varphi \sim p(\vartheta|D)} \left[p(f(x^*)|\vartheta|D) \right] \simeq \frac{1}{m} \sum_{i=1}^{m} p(f(x^*)|\vartheta_{i},D)$$

$$\vartheta_{i} \sim M.C.$$

Theorem: If (81,..., 8m) is an irreducible (time-homogen discrete Markov Chain with a statemary distribution $\pi(\theta(D))$, then : i.) $\frac{1}{n} \sum_{i=1}^{n} f(\theta_i) \xrightarrow[n \to +\infty]{a.s.} \qquad \text{F} \qquad \text{[} f(\theta) \text{]} \qquad \text{function}$ $f: \Theta \to \mathbb{R}$

It further the chain is aperiodic , then:

$$P\left(\mathcal{G}_{n} \mid \mathcal{G}_{o}, \mathcal{D}\right) \underset{n \to +\infty}{\longrightarrow} P\left(\mathcal{G}_{n} \mid \mathcal{D}\right)$$

i.e. on is a good sample from the target posterior p(OID

A dynamical system is ergodic if it can reach all possible states in a finite time, regardless. the initial condition 8...

If a discrete Markov Chain is irreducible, has a stationary distribution, and is aperiodic, then it is an Ergodic Markov Chain.

Definitions:

- 1.) A Markov-Chain is time-homogoneaus (dicrete-time if: $P(8_{i+1}=b\mid 3_i=a)=Q_{ab}, \ \forall i, \ \forall a,b\in G$ i.e. the transition probabilities do not depend on time (or the iteration index i)
- 2.) A pmf π on Θ is a stationary/invariant distribution with respect to Q_{ab} if: $\pi Q = \pi$, i.e. $\sum \pi_a Q_{ab} = \pi_b$, $\forall b \in \Theta$ π is called a left-eigenevator and has eigenvalue Γ .
- 3.) A M.C. is irreducible if $\forall a,b \in \Theta$, $\exists t \gg 0$ S.t.: $P(\vartheta_t = b \mid \vartheta_o = \alpha) > 0$, $\forall a,b \in \Theta$

$$\delta_n$$

- · aperiodic

$$Q = \begin{bmatrix} 0 & \bot & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & \bot & 0 \end{bmatrix}$$

