Computer Organization & Architecture

"Computer Organization and Embedded Systems"
Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig
Manjikian

- In each clock cycle:
 - Results of actions in one stage stored in inter-stage registers
 - Available for use by the next stage in the next clock cycle
- Data transferred from one stage to next in every clock cycle:
 - Inter-stage registers are always enabled
 - This is the case for registers RA, RB, RZ, RY, RM, and PC-Temp
- Contents of other registers, namely, PC, IR, and register file, must not be changed in every clock cycle
 - New data are loaded only when called for in a particular processing step
 - They must be enabled only at those times

- Role of multiplexers: select data to be operated on in any given stage
- Ex., in stage 3, MUXB:
- Selects immediate field in IR:
 - For instructions that use an immediate source operand
 - For instructions that use immediate data as offset when computing effective address of a memory operand
- Otherwise, it selects register RB

- Data selected by multiplexer MUXB are used by ALU
 - ALU is used only in step 3
 - Selection made by MuxB matters only during that step
 - To simplify required control circuit, same selection can be maintained in all execution steps
 - Similar observation can be made about MuxY

Instruction Encoding

(c) Call format

- Assume register file has three 5-bit address inputs
 - Allows access to 32 general-purpose registers
- Addresses A and B determine registers to be read:
 - Connected to fields IR_{31-27} and IR_{26-22} in instruction register
- Address C selects the destination register:
 - Multiplexer MuxC selects the source of that address
 - Three-register instructions use bits IR_{21-17} and other instructions use IR_{26-22} to specify the destination register
 - Third input of multiplexer is address of the link register
 - New data are loaded into the selected register only when the control signal RF_write is asserted

- Operation performed by ALU is determined by a k-bit control code, ALU_op
 - Can specify up to 2^k distinct operations
- When an instruction calls for two values to be compared
 - A comparator performs the comparison specified
 - Comparator generates condition signals that indicate result of the comparison
 - These signals are examined by control circuitry during the execution of conditional branch instructions to determine whether the branch condition is true or false.

- MuxMA must change selection in different execution steps
- Selects PC as source of memory address during step 1
 - When a new instruction is being fetched
- Selects register RZ during step 4 of Load and Store instructions
 - Contains effective address of memory operand

- Interface between the processor and the memory:
 - Two signals, MEM_read and MEM_write are used to initiate a memory Read or a memory Write operation.
 - When requested operation has been completed, interface asserts the MFC signal.
- Instruction register has a control signal, IR_enable
 - Enables a new instruction to be loaded into the register.
 - During a fetch step, it must be activated only after MFC signal is asserted.

Control signals: Processor-memory interface

- Signals that control the operation of the instruction address generator:
 - INC_select signal selects the value to be added to the PC
 - Either constant 4 or branch offset specified in the instruction.
- PC_select signal selects:
 - Either updated address
 - Or the contents of register RA
 - To be loaded into the PC when the PC_enable control signal is activated

Control signals: Address generator

Hardwired generation of control signals

END