Computer Architecture

Lecture 8 Computer Arithmetic

Arithmetic & Logic Unit (ALU)

- ALU is a part of the computer that actually performs arithmetic and logical operation on the data.
- All of other elements of the computer system-control unit, registers, memory, I/O- are there mainly to bring data into ALU for it to process and then to take the results back out.
- Handles integers
- May handle floating point (real) numbers
- May be separate maths co-processor

ALU Inputs and Outputs

- ALU is interconnected with the processor
- Data are presented to the ALU in registers, and the results of an operation are stored in registers
- These registers are temporary storage locations within the processor
- The ALU may also set flags as the result of operation (e.g., an overflow flag is set to 1 if the result of computation exceeds the length of the register into which it is to be stored).
- The control unit provides signals that controls the operation of the ALU and the movement of the data into and out of the ALU

Integer Representation

- In the binary number system, arbitrary numbers can be represented with only 0 & 1, the minus sign, and the period (radix point)
- For purpose of computer storage and processing, we do not have benefit of minus sign and periods
- If we are limited to nonnegative integers, the representation is straightforward.
- Positive numbers stored in binary
 - e.g. 41=00101001

Sign-Magnitude

- Left most bit is sign bit
- 0 means positive
- 1 means negative
- \bullet +18 = 00010010
- -18 = 10010010 (sign magnitude)
- Problems to sign magnitude representation
 - Need to consider both sign and magnitude in arithmetic
 - Two representations of zero (+0 and -0)
 - +0 = 00000000, -0 =
 10000000 (sign
 magnitude)

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation
+8		-
+7	0111	0111
+6	0110	0110
+5	0101	0101
+4	0100	0100
+3	0011	0011
+2	0010	0010
+1	0001	0001
+0	0000	0000
- 0	1000	_
-1	1001	1111
-2	1010	1110
-3	1011	1101
-4	1100	1100
-5	1101	1011
-6	1110	1010
-7	1111	1001
-8	-	1000

Two's Compliment

- Like sign magnitude, twos complement representation uses the most significant bit as a sign bit (whether the integer is positive or negative)
- But representation is different (Table 9.2, Page 280)
- +3 = 00000011
- +2 = 00000010
- +1 = 00000001
- +0 = 00000000
- -1 = 111111111
- -2 = 111111110
- -3 = 111111101

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation
+8		
+7	0111	0111
+6	0110	0110
+5	0101	0101
+4	0100	0100
+3	0011	0011
+2	0010	0010
+1	0001	0001
+0	0000	0000
-0	1000	
-1	1001	1111
-2	1010	1110
-3	1011	1101
-4	1100	1100
-5	1101	1011
-6	1110	1010
-7	1111	1001
-8	5.77	1000

Benefits

- One representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy
 - -3 = 00000011
 - Boolean complement gives 11111100
 - Add 1 to LSB 111111101

Geometric Depiction of Twos Complement Integers

Negation Special Case 1

- \bullet 0 = 00000000
- Bitwise not 11111111
- Add 1 to LSB +1
- Result 1 0000000
- Overflow is ignored, so:
- - 0 = 0 $\sqrt{ }$

Negation Special Case 2

- \bullet -128 = 10000000
- bitwise not 01111111
- Add 1 to LSB +1
- Result 10000000
- So:
- \bullet -(-128) = -128 X
- Monitor MSB (sign bit)
- It should change during negation

Range of Numbers

- 8 bit 2s compliment
 - $+127 = 011111111 = 2^7 -1$
 - $-128 = 10000000 = -2^7$
- 16 bit 2s compliment
 - $+32767 = 0111111111111111111111 = 2^{15} 1$

Conversion Between Lengths

(a) An eight-position two's complement value box

(b) Convert binary 10000011 to decimal

(c) Convert decimal -120 to binary

Figure 9.2 Use of a Value Box for Conversion Between Twos Complement Binary and Decimal

Conversion Between Lengths

- Positive number pack with leading zeros
- \bullet +18 = 00010010
- \bullet +18 = 00000000 00010010
- Negative numbers pack with leading ones
- \bullet -18 = 10010010
- \bullet -18 = 11111111 10010010
- i.e. pack with MSB (sign bit)

Addition and Subtraction

- Normal binary addition
- Carry bit beyond the end of word (shading), which is ignored
- Monitor sign bit for overflow

$ \begin{array}{rcl} & 1001 & = & -7 \\ & +0101 & = & 5 \\ & 1110 & = & -2 \\ & (a) (-7) + (+5) \end{array} $	$ \begin{array}{rcl} & 1100 & = & -4 \\ & +0100 & = & 4 \\ & 10000 & = & 0 \\ & (b) (-4) + (+4) \end{array} $
0011 = 3 + 0100 = 4 0111 = 7 (c) (+3) + (+4)	1100 = -4 +1111 = -1 11011 = -5 (d) (-4) + (-1)
0101 = 5 + $0100 = 4$ 1001 = Overflow (e) (+5) + (+4)	1001 = -7 +1010 = -6 10011 = Overflow (f) (-7) + (-6)

Figure 9.3 Addition of Numbers in Twos Complement Representation

Addition and Subtraction

 Subtraction rule: Take twos compliment of subtrahend and add to minuend

$$-$$
 i.e. $a - b = a + (-b)$

 So, we only need addition and complement circuits

Addition and Subtraction

$$\begin{array}{c} 0010 = 2 \\ + 1001 = -7 \\ \hline 1011 = -5 \end{array} & \begin{array}{c} 0101 = 5 \\ + 1110 = -2 \\ \hline 10011 = 3 \end{array} \\ \\ (a) \ M = 2 = 0010 \\ S = 7 = 0111 \\ -S = 1001 \end{array} & \begin{array}{c} (b) \ M = 5 = 0101 \\ S = 2 = 0010 \\ -S = 1110 \end{array} \\ \\ \begin{array}{c} 1011 = -5 \\ + 1110 = -2 \\ \hline 11001 = -7 \end{array} & \begin{array}{c} 0101 = 5 \\ + 0010 = 2 \\ \hline 0111 = 7 \\ + 0010 = 2 \\ \hline 0111 = 7 \end{array} \\ (c) \ M = -5 = 1011 \\ S = 2 = 0010 \\ -S = 1110 \end{array} & \begin{array}{c} (d) \ M = 5 = 0101 \\ S = -2 = 1110 \\ -S = 0010 \end{array} \\ \\ \begin{array}{c} 0111 = 7 \\ + 0111 = 7 \\ \hline 1110 = 0 \end{array} & \begin{array}{c} 1010 = -6 \\ + 1100 = -4 \\ \hline 10110 = 0 \end{array} \\ \\ \begin{array}{c} (e) \ M = 7 = 0111 \\ S = -7 = 1001 \\ -S = 0111 \end{array} & \begin{array}{c} (f) \ M = -6 = 1010 \\ S = 4 = 0100 \\ -S = 1100 \end{array} \\ \end{array}$$

Figure 9.4 Subtraction of Numbers in Twos Complement Representation (M - S)

Hardware for Addition and Subtraction

OF = overflow bit

SW = Switch (select addition or subtraction)

Multiplication

- Complex
- Work out partial product for each digit
- Take care with place value (column)
- Add partial products

Multiplication Example

- 1011 Multiplicand (11 dec) [M]
- x 1101 Multiplier (13 dec) [Q]
- 1011 Partial products
- 0000 Note: if multiplier bit is 1 copy
- 1011 multiplicand (place value)
- 1011 otherwise zero
- 10001111 Product (143 dec)
- Note: need double length result

Unsigned Binary Multiplication

(a) Block Diagram

Execution of Example

C	A	Q	M			
0	0000	1101	1011	Initia	1	Values
0	1011 0101	1101 1110	1011 1011	Add Shift	}	First Cycle
0	0010	1111	1011	Shift	}	Second Cycle
0	1101 0110	1111 1111	1011 1011	Add Shift	}	Third Cycle
1	0001 1000	1111 1111	1011 1011	Add Shift	}	Fourth Cycle

Flowchart for Unsigned Binary Multiplication

Multiplying Negative Numbers

- This does not work!
- Solution 1
 - Convert to positive if required
 - Multiply as above
 - If signs were different, negate answer
- Solution 2
 - Booth's algorithm

Booth's Algorithm

Example of Booth's Algorithm

A 0000	Q 0011	Q_{-1}	M 0111	Initial Values
1001 1100	0011 1001	0 1	0111 0111	A A - M } First Shift Cycle
1110	0100	1	0111	Shift } Second Cycle
0101 0010	0100 1010	1	0111 0111	A A + M } Third Cycle
0001	0101	0	0111	Shift } Fourth Cycle

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Flowchart for Unsigned Binary Division

Real Numbers

- Numbers with fractions
- Could be done in pure binary
 - $-1001.1010 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Where is the binary point?
- Fixed?
 - Very limited
- Moving?
 - How do you show where it is?

Floating Point

- +/- .significand x 2^{exponent}
- Misnomer
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

Floating Point Examples

(a) Format

(b) Examples

Signs for Floating Point

- Mantissa is stored in 2s compliment
- Exponent is in excess or biased notation
 - e.g. Excess (bias) 128 means
 - 8 bit exponent field
 - Pure value range 0-255
 - Subtract 128 to get correct value
 - Range -128 to +127

Normalization

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- e.g. 3.123×10^3)

FP Ranges

- For a 32 bit number
 - 8 bit exponent
 - $+/- 2^{256} \approx 1.5 \times 10^{77}$
- Accuracy
 - The effect of changing lsb of mantissa
 - − 23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
 - About 6 decimal places

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

Density of Floating Point Numbers

FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Addition & Subtraction Flowchart

FP Arithmetic x/+

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

