

<u>Course</u> > <u>Unit 2:</u> ... > <u>3 Colu</u>... > 3. Colu...

# 3. Column space

**Definition 3.1** The **column space** of a matrix  $\mathbf{A}$  is the span of its columns. The notation for it is  $\mathbf{CS}(\mathbf{A})$ . (It is also called the **image** of  $\mathbf{A}$ , and written  $\mathbf{Im}(\mathbf{A})$ .)

Since CS(A) is a span, it is a vector space.

**Example 3.2** Consider the matrix  $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{pmatrix}$ . Its column space is given by

$$ext{CS}(\mathbf{A}) = ext{the span of } \left( egin{array}{c} 1 \ 2 \end{array} 
ight), \left( egin{array}{c} 2 \ 4 \end{array} 
ight), \left( egin{array}{c} 3 \ 6 \end{array} 
ight).$$

Using that the column vectors are all constant multiples of the vector  $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ , we find a basis for the column space consisting of the single vector  $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ , and find that  $\mathbf{CS}(\mathbf{A})$  is the line y=2x in  $\mathbb{R}^2$ .

**Example 3.3** Find a basis for the column space of the matrix

$$\mathbf{A} = egin{pmatrix} 1 & 2 & 3 \ -1 & -2 & -3 \ 1 & 2 & 3 \ 0 & 0 & 9 \end{pmatrix}.$$

The column space is defined as 
$$\mathbf{Span}\left(\begin{pmatrix}1\\-1\\1\\0\end{pmatrix},\begin{pmatrix}2\\-2\\2\\0\end{pmatrix},\begin{pmatrix}3\\-3\\3\\9\end{pmatrix}\right)$$
 . But the second

vector is a multiple of the first vector, so it is redundant. Therefore, the column space can be described more simply as the span of the first and third columns:

$$ext{CS}(\mathbf{A}) = ext{Span} \left( \left( egin{array}{c} 1 \ -1 \ 1 \ 0 \end{array} 
ight), \left( egin{array}{c} 3 \ -3 \ 3 \ 9 \end{array} 
ight) 
ight).$$

These two vectors are linearly independent, so we do need both vectors in the basis for this column space.

# Column space concept check I

1/1 point (graded)

What is the column space of the matrix  ${f A}=egin{pmatrix} 1 & 2 & 3 \ 1 & 2 & 3 \end{pmatrix}$ ? Check all that apply.

$$\mathbb{C}\mathrm{S}\left(\mathbf{A}\right)=\mathrm{Span}\left(rac{1}{1}
ight).$$

$$\operatorname{CS}\left(\mathbf{A}\right) = \operatorname{Span}\left(rac{1}{0}
ight).$$

$$\operatorname{CS}\left(\mathbf{A}\right) = \operatorname{Span}\left(rac{3}{0}
ight).$$

$$\square$$
 CS (**A**) =  $\mathbb{R}^2$ .

$$\square \ \operatorname{CS}\left(\mathbf{A}\right) = \mathbb{R}^3.$$

$$\operatorname{CS}\left(\mathbf{A}
ight)=\operatorname{Span}egin{pmatrix}1\2\3\end{pmatrix}.$$

$$ext{CS}\left(\mathbf{A}
ight) = ext{Span}\left(rac{\sqrt{2}/3}{\sqrt{2}/3}
ight)$$
.



#### Solution:

Because all of the columns of multiples of a single vector  $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ , we know that a basis for the column space is given by the span of this one vector:

$$\operatorname{CS}\left(\mathbf{A}\right) = \operatorname{Span}\left(rac{1}{1}
ight).$$

However, this basis is not unique. Any scalar multiple of this vector is also a basis for the column space:

$$ext{CS}\left(\mathbf{A}
ight) = ext{Span}\left(rac{1}{1}
ight) = ext{Span}\left(rac{\sqrt{2}/3}{\sqrt{2}/3}
ight).$$

Submit

You have used 1 of 4 attempts

**1** Answers are displayed within the problem

## Column space concept check II

1/1 point (graded)

If you switch two columns of a matrix  ${f A}$  , will the new matrix have the same column space?

| ● Yes. ✔                  |
|---------------------------|
| O No.                     |
| It depends on the matrix. |

#### Solution:

Yes, the column spaces are the same. Since the column space of a matrix is the span of its columns, as long as we don't change the columns themselves, we will have a span of the same set of vectors. This span will be the same regardless of the order of the columns.

Submit

You have used 1 of 1 attempt

**1** Answers are displayed within the problem

### Steps to compute a basis for CS(A):

- 1. Perform Gaussian elimination to convert  ${f A}$  to a matrix  ${f B}$  in row echelon form.
- 2. Identify the pivot columns of  ${\bf B}$ .
- 3. The corresponding columns of  $\mathbf{A}$  are a basis for  $\mathbf{CS}(\mathbf{A})$ .

### Proof that the algorithm finds a basis for column space. (\*)

Recall that  ${f B}$  is a row echelon form of  ${f A}$ . Let  ${f C}$  be the *reduced* row echelon form of  ${f A}$ . If

fifth column = 3(first column) + 7(second column)

is true for a matrix, it will remain true after any row operation.

Similarly, any linear relation between columns is preserved by row operations. So the linear relations between columns of  $\bf A$  are the same as the linear relations between columns of  $\bf C$ . The condition that certain numbered columns (say the first, second, and fourth) of a matrix form a basis is expressible in terms of which linear relations hold. So if certain columns form a basis for  $\bf CS(\bf C)$ , the same numbered columns will form a basis for  $\bf CS(\bf A)$ .

Recall that  ${\bf B}$  is a row echelon form of  ${\bf A}$ . We can obtain the reduced row echelon form  ${\bf C}$  by performing Gauss-Jordan elimination on  ${\bf B}$ . This process does not change the pivot locations. Thus it will be enough to show that the pivot columns of  ${\bf C}$  form a basis of  ${\bf CS}({\bf C})$ . Since  ${\bf C}$  is in reduced row echelon form, the pivot columns of  ${\bf C}$  are the first  ${\bf r}$  of the  ${\bf m}$  standard basis vectors for  ${\bf R}^m$ , where  ${\bf r}$  is the number of nonzero rows of  ${\bf C}$ . These columns are linearly **independent**, and every other column is a linear combination of them, since the entries of  ${\bf C}$  below the first  ${\bf r}$  rows are all zeros. Thus the pivot columns of  ${\bf C}$  form a basis of  ${\bf CS}({\bf C})$ .

(The symbol (\*) after the title means that you are not required to know this proof for any exam in this class.)

<u>Hide</u>

In particular,

$$\dim \mathrm{CS}(\mathbf{A}) = \# \text{ pivot columns of } \mathbf{B}.$$

Warning: Usually  $CS(A) \neq CS(B)$ .

## Practice with algorithm

1/1 point (graded)

Which of the following sets of vectors is a basis for the column space of the matrix

$$\mathbf{A} = egin{pmatrix} 1 & 3 & 2 \ -1 & 1 & -2 \ 2 & 3 & 4 \end{pmatrix}$$
?

**Hint:** a row echelon form for  $\mathbf{A}$  is the matrix

$$\mathbf{B} = egin{pmatrix} 1 & 3 & 2 \ 0 & 4 & 0 \ 0 & 0 & 0 \end{pmatrix}.$$

- $\left(egin{array}{c}1\0\0\end{array}
  ight)$  and  $\left(egin{array}{c}3\4\0\end{array}
  ight)$
- $egin{pmatrix} \bullet & \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \text{ and } \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} \checkmark$
- $\left(egin{array}{c}1\-1\2\end{array}
  ight),\,\, \left(egin{array}{c}3\1\3\end{array}
  ight)$  and  $\left(egin{array}{c}2\-2\4\end{array}
  ight)$
- $\left(egin{array}{c} 2 \ -2 \ 4 \end{array}
  ight)$

#### Solution:

The first and the second columns are the pivot columns in the row echelon form of  $\bf A$ .

Therefore, the first and the second columns  $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$  and  $\begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$  of  $\bf A$  form a basis for its column space.

The algorithm gives one basis of CS(A), but of course it has many other different bases. Let's check then that none other option gives such a basis. The first option is wrong since the vectors spanned by that basis have third coorinate 0, so we can't get any of the columns of A

in their span. Note here that pivot columns of B aren't related to CS(A) themselves and only point to columns of A that span CS(A)

The algorithm gives one basis of  $CS(\mathbf{A})$ , but of course it has many other bases. Let's check that no other option gives such a basis. The first option is wrong since the vectors spanned by that basis have third coordinate  $\mathbf{0}$ , so we can't get any of the columns of  $\mathbf{A}$  in their span. Note here that pivot columns of  $\mathbf{B}$  aren't related to  $CS(\mathbf{A})$  themselves, and only point to columns of  $\mathbf{A}$  that span  $CS(\mathbf{A})$ .

All bases of CS(A) should have the same number of vectors. The basis we found in our case has 2 vectors, so should have any other correct answer as well. Therefore both choices three and four are not correct because they have the wrong dimension.

Submit You have used 2 of 3 attempts

3. Column space
Topic: Unit 2: Linear Algebra, Part 2 / 3. Column space

Add a Post

Show all posts ▼ by recent activity ▼

□ [Typo] Repeated paragraph In the solution of the last exercise on this page, the paragraph starting with "The algorithm gives..." is pri... 1

□ Community TA

Learn About Verified Certificates

© All Rights Reserved