CMPS 130 - Spring Quarter 2017 - Homework 1

Christopher Hsiao – chhsiao@ucsc.edu – 1398305

1 Exercises from pages 25, 26, and 27 of the book: 0.1 through 0.9

0.1

Examine the following formal descriptions of sets so that you understand which members they contain. Write a short informal English description of each set.

- a. The infinite set of all positive odd integers, or the set of all odd natural numbers.
- b. The infinite set of all even integers.
- c. The infinite set of all even natural numbers.
- d. The infinite set of all even natural numbers, and all natural numbers which are multiples of 3.
- e. The infinite set containing all palindromic bit strings.
- f. The finite set containing any integer n and n + 1. ======

0.2

Write formal descriptions of the following sets.

- a. $\{1, 10, 100\}$
- b. $\{n|n>5 \text{ for some } n\in\mathbb{Z}\}$
- c. $\{1, 2, 3, 4\}$
- $d. \{aba\}$
- e. {""}
- f. {}

0.3

Let A be the set $\{x, y, z\}$ and B be the set $\{x, y\}$.

- a. No.
- b. Yes.
- c. $\{x, y, z\}$
- d. $\{x, y\}$
- e. $\{\{x,x\}, \{x,y\}, \{y,x\}, \{y,y\}, \{z,x\}, \{z,y\}\}$
- f. $\{\{\}, \{x\}, \{y\}, \{x,y\}\}$

0.4

If A has a elements, and B has b elements, how many elements are in $A \times B$? Explain your answer.

Claim. $|A \times B| = a \cdot b$

Proof. This is because we assign every element of the set A to every element in the set B. That means, each element in the set A, such as A_i , has b pairings made. Thus, if there are b pairings made with every element in A, then there are a pairings, each of size b, which yields $a \cdot b$ number of pairings made.

0.5

If C is a set with c elements, how many elements are in the power set of C? Explain your answer.

First, we will define the power set of C as P_C .

Claim. $|P_C| = 2^c$

Proof. \Box

0.6

Let X be the set $\{1,2,3,4,5\}$ and Y be the set $\{6,7,8,9,10\}$. The unary function $f:X\to Y$ and the binary function $g:X\times Y\to Y$ are described.

- a. 7
- b. D: X, R: Y
- c. 5
- d. $D: X \times Y, R: Y$
- e. 8

0.7