(1)

0.1 可测集与测度

定义 0.1 (可测集)

设 $E \subset \mathbb{R}^n$. 若对任意的点集 $T \subset \mathbb{R}^n$, 有

$$m^*(T) = m^*(T \cap E) + m^*(T \cap E^c),$$

则称 E 为 Lebesgue 可测集 (或 m^* -可测集) 或 E 可测, 简称为可测集, 其中 T 称为试验集 (这一定义可测集的等式也称为 Carathéodory 条件). 可测集的全体称为可测集类, 简记为 M.

定理 0.1 (集合可测的充要条件)

设 $E \subset \mathbb{R}^n$,则 $E \in \mathcal{M}$ 的充要条件是对任一点集 $T \subset \mathbb{R}^n$ 且 $m^*(T) < +\infty$,都有

$$m^*(T) \ge m^*(T \cap E) + m^*(T \cap E^c)$$

成立.

注 往后经常利用这个定理的充分性来证明一个集合可测. 但这个定理的必要性要弱于可测集的定义. 证明 必要性由可测集的定义立得. 下证充分性. 由外测度的次可加性可得

$$m^*(T) = m^*(T \cap \mathbb{R}^n) = m^*(T \cap (E \cup E^c)) = m^*((T \cap E) \cap (T \cup E^c)) \le m^*(T \cap E) + m^*(T \cap E^c)$$

总是成立的. 又因为在 $m^*(T) = \infty$ 时 (1) 式总成立, 故对任意的点集 $T \subset \mathbb{R}^n$, 都有

$$m^*(T) = m^*(T \cap E) + m^*(T \cap E^c),$$

□

定义 0.2 (零测集)

外测度为零的点集称为零测集.

注 显然, $ℝ^n$ 中由单个点组成的点集是零测集. 从而根据外测度的次可加性知道 $ℝ^n$ 中的有理点集 $ℚ^n$ 是零测集.

命题 0.1

- 1. 零测集的任一子集是零测集.
- 2. 零测集一定可测, 即若 $m^*(E) = 0$, 则 $E \in \mathcal{M}$.

证明

- 1. 由外测度的单调性立得.
- 2. 事实上, 此时我们有

$$m^*(T \cap E) + m^*(T \cap E^c) \le m^*(E) + m^*(T) = m^*(T).$$

命题 0.2

若 E_1 ⊂ S, E_2 ⊂ S^c , S ∈ \mathcal{M} , 则有

$$m^*(E_1 \cup E_2) = m^*(E_1) + m^*(E_2).$$

注 这个命题表明: 当两个集合由一个可测集分离开时, 其外测度就有可加性.

证明 事实上, 此时取试验集 $T = E_1 \cup E_2$, 从 S 是可测集的定义得

$$m^*(E_1 \cup E_2) = m^*((E_1 \cup E_2) \cap S) + m^*((E_1 \cup E_2) \cap S^c) = m^*(E_1) + m^*(E_2).$$

推论 0.1

当 E_1 与 E_2 是互不相交的可测集时,对任一集合T有

$$m^*(T \cap (E_1 \cup E_2)) = m^*(T \cap E_1) + m^*(T \cap E_2).$$

证明 注意到 $T \cap E_1 \in E_1, T \cap E_2 \in E_1^c$, 而 $E_1 \in \mathcal{M}$, 故由命题 0.2可知

$$m^*(T \cap (E_1 \cup E_2)) = m^*((T \cap E_1) \cup (T \cap E_2)) = m^*(T \cap E_1) + m^*(T \cap E_2).$$

定理 0.2 (可测集的性质)

- $(1) \varnothing \in \mathscr{M}.$
- (2) 若 $E \in \mathcal{M}$, 则 $E^c \in \mathcal{M}$.
- (3) 若 $E_1 \in \mathcal{M}$, $E_2 \in \mathcal{M}$, 则 $E_1 \cup E_2$, $E_1 \cap E_2$ 以及 $E_1 \setminus E_2$ 皆属于 \mathcal{M} . (由此知, 可测集任何有限次取交、并运算后所得的集皆为可测集.)
- (4) 若 $E_i \in \mathcal{M}$ $(i = 1, 2, \cdots)$, 则其并集也属于 \mathcal{M} . 若进一步有 $E_i \cap E_j = \emptyset$ $(i \neq j)$, 则

$$m^*\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} m^*(E_i),$$

即 m^* 在 \mathcal{M} 上满足可数可加性(或称为 σ -可加性).

证明

- (1) 显然成立.
- (2) 注意到 $(E^c)^c = E$, 从定义可立即得出结论.
- (3) 对于任一集 $T \subset \mathbb{R}^n$, 根据集合分解 (参阅图 1) 与外测度的次可加性, 我们有

$$\begin{split} m^*(T) &\leq m^*(T \cap (E_1 \cup E_2)) + m^*(T \cap (E_1 \cup E_2)^c) \\ &= m^*(T \cap (E_1 \cup E_2)) + m^*((T \cap E_1^c) \cap E_2^c) \\ &\leq m^*((T \cap E_1) \cap E_2) + m^*((T \cap E_1) \cap E_2^c) \\ &+ m^*((T \cap E_1^c) \cap E_2) + m^*((T \cap E_1^c) \cap E_2^c). \end{split}$$

又由 E_1 , E_2 的可测性知, 上式右端就是

$$m^*(T \cap E_1) + m^*(T \cap E_1^c) = m^*(T).$$

这说明

$$m^*(T) = m^*(T \cap (E_1 \cup E_2)) + m^*(T \cap (E_1 \cup E_2)^c).$$

也就是说 $E_1 \cup E_2$ 是可测集.

2

П

为证 $E_1 \cap E_2$ 是可测集, 只需注意 $E_1 \cap E_2 = (E_1^c \cup E_2^c)^c$ 即可. 又由 $E_1 \setminus E_2 = E_1 \cap E_2^c$ 可知, $E_1 \setminus E_2$ 是可测集. (4) 首先, 设 $E_1, E_2, \dots, E_i, \dots$ 皆互不相交, 并令

$$S = \bigcup_{i=1}^{\infty} E_i$$
, $S_k = \bigcup_{i=1}^{k} E_i$, $k = 1, 2, \cdots$.

由(3) 知每个 S_k 都是可测集,从而对任一集T,我们有

$$\begin{split} m^*(T) &= m^*(T \cap S_k) + m^*(T \cap S_k^c) \\ &= m^*\left(\bigcup_{i=1}^k (T \cap E_i)\right) + m^*(T \cap S_k^c) \\ &= \sum_{i=1}^k m^*(T \cap E_i) + m^*(T \cap S_k^c). \end{split}$$

由于 $T \cap S_k^c \supset T \cap S^c$,可知

$$m^*(T) \ge \sum_{i=1}^k m^*(T \cap E_i) + m^*(T \cap S^c).$$

令 $k \to \infty$, 就有

$$m^*(T) \ge \sum_{i=1}^{\infty} m^*(T \cap E_i) + m^*(T \cap S^c).$$

由此可得

$$m^*(T) \geq m^*(T \cap S) + m^*(T \cap S^c).$$

这说明 $S \in \mathcal{M}$. 此外, 在公式

$$m^*(T) \ge \sum_{i=1}^{\infty} m^*(T \cap E_i) + m^*(T \cap S^c)$$

中以 $T \cap S$ 替换T,则又可得

$$m^*(T \cap S) \ge \sum_{i=1}^{\infty} m^*(T \cap E_i).$$

但反向不等式总是成立的,因而实际上有

$$m^*(T \cap S) = \sum_{i=1}^{\infty} m^*(T \cap E_i).$$

在这里再取T为全空间 \mathbb{R}^n ,就可证明可数可加性质

$$m^*(S) = m^*\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} m^*(E_i).$$

其次,对于一般的可测集列 $\{E_i\}$,我们令

$$S_1 = E_1, \quad S_k = E_k \setminus \left(\bigcup_{i=1}^{k-1} E_i\right), \quad k \ge 2,$$

则 $\{S_k\}$ 是互不相交的可测集列. 而由 $\bigcup_{i=1}^{\infty} E_i = \bigcup_{k=1}^{\infty} S_k$ 可知, $\bigcup_{i=1}^{\infty} E_i$ 是可测集.

推论 0.2

M 是 \mathbb{R}^n 上的一个 σ -代数.

证明 由可测集的性质 (1)(2)(4)立得.

命题 0.3

证明:Cantor 集 C 是可测的. 并且 m(C) = 0.

证明 开区间是可测的. 由开集构造定理, 我们知道 $\mathbb R$ 中的开集是开区间的可数并, 因此也可测. 因此, 闭集也是可测的. 显然, 每个 C_n 都是闭集. 并且

$$C = \bigcap_{n=1}^{\infty} C_n$$

于是C也是闭集. 因此C是可测的.

下面,我们用两种方法计算康托集的测度.

法一:根据我们的构造, C_{n+1} 的测度刚好是去掉了 1/3 的 C_n 的测度. 换言之,

$$m(C_{n+1}) = \left(1 - \frac{1}{3}\right) m(C_n) = \frac{2}{3} m(C_n)$$

递归地,对任意 $n \in \mathbb{N}$, 我们有

$$m(C_n) = \left(\frac{2}{3}\right)^n m(C_0) = \left(\frac{2}{3}\right)^n$$

注意到

$$m(C_0) = 1 < \infty$$

因此由测度的第二单调收敛定理,

$$m(C) = m\left(\bigcap_{n=1}^{\infty} C_n\right) = \lim_{n \to \infty} m(C_n) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

此即得证.

法二:设 $n \geq 2$. C_n 比 C_{n-1} 减少了 2^{n-1} 个区间,每个区间长度为 $\frac{1}{3^n}$. 因此 C_n 比 C_{n-1} 减少的长度为

$$2^{n-1}\frac{1}{3^n} = \frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$$

总共减少的长度为

$$\sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} = \frac{1}{3} \frac{1}{1 - \frac{2}{3}} = \frac{1}{3} \cdot 3 = 1$$

因此

$$m(C) = 1 - 1 = 0.$$

命题 0.4

M 的基数是 2^c .

证明 由命题 0.3可知 Cantor 集是零测集, 不难推断 \mathcal{M} 的基数大于或等于 2^c , 但 \mathcal{M} 的基数又不会超过 2^c , 于是 \mathcal{M} 的基数实际上是 2^c .

定义 0.3 (Lebesgue 测度)

对于可测集 E, 其外测度称为**测度**, 记为 m(E), 这就是通常所说的 \mathbb{R}^n 上的 Lebesgue **测度**,

定义 0.4 (测度)

设 X 是非空集合, \mathscr{A} 是 X 的一些子集构成的 σ - 代数. 若 μ 是定义在 \mathscr{A} 上的一个集合函数, 且满足:

- (i) $0 \le \mu(E) \le +\infty (E \in \mathscr{A})$;
- (ii) $\mu(\emptyset) = 0$;

4

(iii) μ 在 🛭 上是可数可加的,

则称 μ 是 \mathscr{A} 上的 (非负) **测度**. \mathscr{A} 中的元素称为 (μ) **可测集**, 有序组 (X, \mathscr{A} , μ) 称为**测度空间**.

 $\dot{\mathbf{L}}$ 由推论 0.2可知 \mathcal{M} 就是 \mathbb{R}^n 上的一个 σ -代数, 故本节所建立的测度空间就是 ($\mathbb{R}^n, \mathcal{M}, m$).