▼ NAME : Nidhi Kaushik

DATASET USED: Canada Immigration from year 1980-2013

we can get this data following this link: https://www.kaggle.com/datasets/ammaraahmad/immigration-to-canada

I have already downloaded the data and uploaded it here in colab notebook, so I am directly using it's path to read.

**Description: Analysis of trends and hidden patterns of Immigrants from different countries to Canada. This dataset consists of immigrants record from 150+ countries to Canada between 1980 to 2013.

I have used the following python libraries: pandas, numpy, matplotlib for preprocessing and for doing the immigration trend analysis using scatter plot, line plot and pie chart.**

importing libraries and dataset

df_Cnd_Img

	Туре	Coverage	OdName	AREA	AreaName	REG	RegName	DEV	DevName	1980	 2004	:
0	Immigrants	Foreigners	Afghanistan	935	Asia	5501	Southern Asia	902	Developing regions	16	 2978	:
1	Immigrants	Foreigners	Albania	908	Europe	925	Southern Europe	901	Developed regions	1	 1450	,
2	Immigrants	Foreigners	Algeria	903	Africa	912	Northern Africa	902	Developing regions	80	 3616	1
3	Immigrants	Foreigners	American Samoa	909	Oceania	957	Polynesia	902	Developing regions	0	 0	
4	Immigrants	Foreigners	Andorra	908	Europe	925	Southern Europe	901	Developed regions	0	 0	
190	Immigrants	Foreigners	Viet Nam	935	Asia	920	South- Eastern Asia	902	Developing regions	1191	 1816	
191	Immigrants	Foreigners	Western Sahara	903	Africa	912	Northern Africa	902	Developing regions	0	 0	

```
type(df_Cnd_Img)
    pandas.core.frame.DataFrame
```

#The info() method prints information about the DataFrame.

#The information contains the number of columns, column labels, column data types, memory usage, range index, and the number of cells in #Note: the info() method actually prints the info.

```
df_Cnd_Img.info()

df_Cnd_Img.isnull().any()  #checking if any null value present

#checking the dtype for column variables

df_Cnd_Img.columns.values

array(['Type', 'Coverage', 'OdName', 'AREA', 'AreaName', 'REG', 'RegName', 'DEV', 'DevName', 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
```

→ PREPROCESSING

#Let's clean the data set to remove a few unnecessary columns. We can use pandas drop() method as follows:
in pandas axis=0 represents rows (default) and axis=1 represents columns.

df_Cnd_Img.drop(['AREA','REG','DEV','Type','Coverage'], axis=1, inplace=True)
#view the top 2 rows of the dataset using the head() function.

df_Cnd_Img.head(2)

	OdName	AreaName	RegName	DevName	1980	1981	1982	1983	1984	1985	•••	2004	2005	2006	
0	Afghanistan	Asia	Southern Asia	Developing regions	16	39	39	47	71	340		2978	3436	3009	
1	Albania	Europe	Southern Europe	Developed regions	1	0	0	0	0	0		1450	1223	856	

df_Cnd_Img.rename(columns={'OdName':'Country', 'AreaName':'Continent', 'RegName':'Region'}, inplace=True)

print(df_Cnd_Img.columns.values)

['Country' 'Continent' 'Region' 'DevName' 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013]

#Column names that are integers (such as the years) might introduce some confusion
#For example, when we are referencing the year 2013, one might confuse that when the 2013th positional index.
#To avoid this ambuigity, let's convert the column names into strings: '1980' to '2013'.

df_Cnd_Img.columns = list(map(str, df_Cnd_Img.columns))

print(df_Cnd_Img.columns.values)

['Country' 'Continent' 'Region' 'DevName' '1980' '1981' '1982' '1983' '1984' '1985' '1986' '1987' '1988' '1989' '1990' '1991' '1992' '1993' '1994' '1995' '1996' '1997' '1998' '1999' '2000' '2001' '2002' '2003' '2004' '2005' '2006' '2007' '2008' '2009' '2010' '2011' '2012' '2013']

df_Cnd_Img.describe() #The .describe() method returns description of the data in the DataFrame.

	1980	1981	1982	1983	1984	1985	1986	
count	195.000000	195.000000	195.000000	195.000000	195.000000	195.000000	195.000000	1
mean	508.394872	566.989744	534.723077	387.435897	376.497436	358.861538	441.271795	6
std	1949.588546	2152.643752	1866.997511	1204.333597	1198.246371	1079.309600	1225.576630	21
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.500000	
50%	13.000000	10.000000	11.000000	12.000000	13.000000	17.000000	18.000000	
75%	251.500000	295.500000	275.000000	173.000000	181.000000	197.000000	254.000000	4
max	22045.000000	24796.000000	20620.000000	10015.000000	10170.000000	9564.000000	9470.000000	213

8 rows × 34 columns

	Country	Continent	Region	DevName	1980	1981	1982	1983	1984	1985	• • •	2004	2005	20
0	Afghanistan	Asia	Southern Asia	Developing regions	16	39	39	47	71	340		2978	3436	30
1	Albania	Europe	Southern Europe	Developed regions	1	0	0	0	0	0		1450	1223	8
2	Algeria	Africa	Northern Africa	Developing regions	80	67	71	69	63	44		3616	3626	48
3	American Samoa	Oceania	Polynesia	Developing regions	0	1	0	0	0	0		0	0	

Before we proceed, notice that the defaut index of the dataset is a numeric range from 0 to 194. This makes it very difficult to do a query by a specific country. For example to search for data on Japan, we need to know the corresponding index value.

This can be fixed very easily by setting the 'Country' column as the index using set_index() method.

```
df_Cnd_Img = df_Cnd_Img.set_index('Country')
```

tip : The opposite of set is reset. So to reset the index, we can use df_can.reset_index()

→ QUESTION:

▼ Let's view the number of immigrants from Japan (row 87) for the following scenarios:

```
1. The full row data (all columns)
2. For year 2013
3. For years 1980 to 1985

# 1. the number of immigrants from Japan the full row data (all columns)
print(df_Cnd_Img.loc['Japan'])

# alternate methods
# print(df_can.iloc[87])
# print(df_can[df_can.index == 'Japan'].T.squeeze())
```

Conti			Asia	
Regio			astern Asia	
DevNa	ne	Develo	ped regions	
1980			701	
1981			756	
1982			598	
1983			309	
1984			246	
1985			198	
1986			248	
1987			422	
1988			324	
1989			494	
1990			379	
1991			506	
1992			605	
1993			907	
1994			956	
1995			826	
1996			994	
1997			924	
1998			897	
1999			1083	
2000			1010	
2001			1092	
2002			806	
2003			817	
2004			973	
2005			1067	
2006			1212	
2007			1250	
2008			1284	
2009			1194	
2010			1168	
2011			1265	
2012			1214	
2013	_		982	
Name:	Japan,	dtype:	object	

#2. for year 2013
total_immigrants = df_Cnd_Img.iloc[87, 36]

```
print(f'No. of immigrants from japan in 2013 is : {total_immigrants}')
#alternative method : using .loc
#print(df_Cnd_Img.loc['Japan', '2013'])
     No. of immigrants from japan in 2013 is : 982
# 3. for years 1980 to 1985
print(df_Cnd_Img.iloc[87, 3:9])
     1980
             701
     1981
             756
     1982
             598
     1983
             309
     1984
             246
     1985
     Name: Japan, dtype: object
```

→ QUESTION:

OBJECTIVE: In 2010, Haiti suffered a catastrophic magnitude 7.0 earthquake. The quake caused widespread devastation and loss of life and aout three million people were affected by this natural disaster. As part of Canada's humanitarian effort, the Government of Canada stepped up its effort in accepting refugees from Haiti. We can quickly visualize this effort using a Line plot:

Plot a line graph of immigration from Haiti using df.plot().

```
import matplotlib as mpl
import matplotlib.pyplot as plt

haiti = df_Cnd_Img.loc['Haiti', '1980':'2013']

haiti.index = haiti.index.map(int) # let's change the index values of Haiti to type integer for plotting haiti.plot(kind='line')

plt.title('Immigration from Haiti')
plt.ylabel('Number of immigrants')
plt.xlabel('Years')

# annotate the 2010 Earthquake.
# syntax: plt.text(x, y, label)
plt.text(2000, 6000, '2010 Earthquake') # see note below

plt.show() # need this line to show the updates made to the figure
```


→ QUESTION:

Let's compare the number of immigrants from India and China from 1980 to 2013.

```
df_IC = df_Cnd_Img.loc[['India', 'China'], '1980':'2013']
df_IC.head()
```

	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989		2004	2005	2006	2007
Country															
India	8880	8670	8147	7338	5704	4211	7150	10189	11522	10343		28235	36210	33848	28742
China	5123	6682	3308	1863	1527	1816	1960	2643	2758	4323		36619	42584	33518	27642
2 rows x 34 columns															

df_IC.plot(kind='line')

That doesn't look right...

Recall that pandas plots the indices on the x-axis and the columns as individual lines on the y-axis. Since df_CI is a dataframe with the country as the index and years as the columns, we must first transpose the dataframe using transpose() method to swap the row and columns.

```
df_IC = df_IC.transpose()
df_IC.head()
```

```
Country India China

1980 8880 5123
```

df_IC.plot(kind='line')

→ QUESTION:

Create bubble plots of immigration from China and India to visualize any difference with time from 1980-2013.

```
### type your answer here
df_IC = df_Cnd_Img.loc[['India', 'China'], '1980':'2013']
df IC.head()
```

```
1980 1981 1982 1983 1984 1985 1986
                                               1987
                                                     1988
                                                            1989 ...
                                                                      2004
                                                                             2005
                                                                                   2006
                                                                                         2007
Country
        8880 8670 8147 7338 5704 4211 7150 10189 11522
                                                                     28235 36210 33848 28742
 India
                                                          10343
       5123 6682 3308 1863 1527 1816 1960
 China
                                               2643
                                                     2758
                                                            4323
                                                                 ... 36619 42584 33518 27642
2 rows × 34 columns
```

```
df_IC = df_IC.transpose()
```

df_IC.index

#converting/mapping the index (or years) of our df from string to integer
df_IC.index= map(int, df_IC.index)

#lets's label the index. this will automatically be the column name when we reset the index $df_Ic.index.name = 'Year'$

#reseting the index to bring the year in as column
df_IC.reset_index(inplace=True)

df_IC.head()

```
Country Year India China
               1980
                     8880
                            5123
#normalize Brazil data
norm_India = (df_IC['India']- df_IC['India'].min()) / (df_IC['India'].max()-df_IC['India'].min())
#normalize Argentina data
norm_China = (df_IC['China'] - df_IC['China'].min()) / (df_IC['China'].max() - df_IC['China'].min())
              1984 5704 1527
#Brazil
ax0 = df_IC.plot(kind='scatter',
                 x='Year',
                 y='India',
                 figsize=(10,6),
                 alpha=0.5,
                 color='orange',
                 s= norm India * 1000 + 10,
                 xlim=(1975, 2015)
#Argentina
ax1 = df_IC.plot(kind='scatter',
                 x='Year',
                 y='China',
                 figsize=(10,6),
                 alpha=0.5,
                 color='purple',
                 s= norm_China * 1000 + 10,
                 ax = ax0
ax0.set_ylabel("No. of Immigrants")
ax0.set_title('Immigration from India and China from 1980-2013')
ax0.legend(['India', 'China'], loc = 'upper left', fontsize='x-large')
plt.show()
```

#around year 1999, when brazilian curency dropped...no. of immigrants moving to canada increases as there are financial crisis going on i
#we can see that around 2010; there is a peak increase in no. of immigrants from Brazil
#NOTE: larger the bubble ,the more no. of immigrants in that year

→ QUESTION:

 $Compare \ the \ trend \ of \ top \ 5 \ countries \ that \ contributed \ the \ most \ to \ immigration \ to \ Canada.$

#We will also add a 'Total' column that sums up the total immigrants by country over the entire period 1980 - 2013, as follows: df_Cnd_Img['Total'] = df_Cnd_Img.sum(axis=1)

<ipython-input-35-d31dc5743041>:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') i
 df_Cnd_Img['Total'] = df_Cnd_Img.sum(axis=1)

df_Cnd_Img.head(10)

	Continent	Region	DevName	1980	1981	1982	1983	1984	1985	1986	 2005	2006
Country												
Afghanistan	Asia	Southern Asia	Developing regions	16	39	39	47	71	340	496	 3436	3009
Albania	Europe	Southern Europe	Developed regions	1	0	0	0	0	0	1	 1223	856
Algeria	Africa	Northern Africa	Developing regions	80	67	71	69	63	44	69	 3626	4807
American Samoa	Oceania	Polynesia	Developing regions	0	1	0	0	0	0	0	 0	1
Andorra	Europe	Southern Europe	Developed regions	0	0	0	0	0	0	2	 0	1
Angola	Africa	Middle Africa	Developing regions	1	3	6	6	4	3	5	 295	184
Antigua and Barbuda	Latin America and the Caribbean	Caribbean	Developing regions	0	0	0	0	42	52	51	 24	32
Argentina	Latin America and the Caribbean	South America	Developing regions	368	426	626	241	237	196	213	 1153	847
Armenia	Asia	Western Asia	Developing regions	0	0	0	0	0	0	0	 224	218
Australia	Oceania	Australia and New Zealand	Developed regions	702	639	484	317	317	319	356	 909	875

 $top_5_countries = df_Cnd_Img.sort_values(by = 'Total', axis=0, ascending=False).head(5)$

top_5_countries

	Continent	Region	DevName	1980	1981	1982	1983	1984	1985	1986	 2005	:
Country												
India	Asia	Southern Asia	Developing regions	8880	8670	8147	7338	5704	4211	7150	 36210	3:
China	Asia	Eastern Asia	Developing regions	5123	6682	3308	1863	1527	1816	1960	 42584	3:
United Kingdom of Great Britain and Northern Ireland	Europe	Northern Europe	Developed regions	22045	24796	20620	10015	10170	9564	9470	 7258	•
Philippines	Asia	South- Eastern Asia	Developing regions	6051	5921	5249	4562	3801	3150	4166	 18139	11
Pakistan	Asia	Southern Asia	Developing regions	978	972	1201	900	668	514	691	 14314	1;

top_5_countries = top_5_countries.drop(['Continent', 'Region', 'DevName', 'Total'], axis=1).transpose()

top_5_countries

Country	India	China	United Kingdom of Great E	Britain and Northern Ireland	Philippines	Pakistan
1980	8880	5123		22045	6051	978
1981	8670	6682		24796	5921	972
1982	8147	3308		20620	5249	1201
1983	7338	1863		10015	4562	900
1984	5704	1527		10170	3801	668
1985	4211	1816		9564	3150	514
1986	7150	1960		9470	4166	691
1987	10189	2643		21337	7360	1072
1988	11522	2758		27359	8639	1334
1989	10343	4323		23795	11865	2261
1990	12041	8076		31668	12509	2470
1991	13734	14255		23380	12718	3079
1992	13673	10846		34123	13670	4071
1993	21496	9817		33720	20479	4777
1994	18620	13128		39231	19532	4666
1995	18489	14398		30145	15864	4994
1996	23859	19415		29322	13692	9125
1997	22268	20475		22965	11549	13073
1998	17241	21049		10367	8735	9068
1999	18974	30069		7045	9734	9979
2000	28572	35529		8840	10763	15400
2001	31223	36434		11728	13836	16708
2002	31889	31961		8046	11707	15110
2003	27155	36439		6797	12758	13205
2004	28235	36619		7533	14004	13399
2005	36210	42584		7258	18139	14314
2006	33848	33518		7140	18400	13127
2007	28742	27642		8216	19837	10124
2008	28261	30037		8979	24887	8994
2009	29456	29622		8876	28573	7217
2010	3/1735	30301		Q79 <i>A</i>	28617	6211

top_5_countries.plot(kind='line', figsize=(12,10))

```
plt.title('Top 5 countries that contributed the most to immigration')
plt.ylabel('Number of immigrants')
plt.xlabel('Years', loc = 'left', fontsize='x-large')
```

plt.show() # need this line to show the updates made to the figure

Top 5 countries that contributed the most to immigration

→ QUESTION:

Using a pie chart, explore the proportion (percentage) of new immigrants grouped by continents in year 2013.

	Continent	Region	DevName	1980	1981	1982	1983	1984	1985	1986	• • •	2005	2006	
Country														
Afghanistan	Asia	Southern Asia	Developing regions	16	39	39	47	71	340	496		3436	3009	:
Albania	Europe	Southern Europe	Developed regions	1	0	0	0	0	0	1		1223	856	
Algeria	Africa	Northern Africa	Developing regions	80	67	71	69	63	44	69		3626	4807	;
American Samoa	Oceania	Polynesia	Developing regions	0	1	0	0	0	0	0		0	1	
Andorra	Europe	Southern Europe	Developed regions	0	0	0	0	0	0	2		0	1	
Viet Nam	Asia	South- Eastern Asia	Developing regions	1191	1829	2162	3404	7583	5907	2741		1852	3153	:
Western Sahara	Africa	Northern Africa	Developing regions	0	0	0	0	0	0	0		0	1	

Img_via_continent = df_Cnd_Img[['Continent', '2013']].groupby('Continent').sum().reset_index()

Img_via_continent

	Continent	2013
0	Africa	38543
1	Asia	155075
2	Europe	28691
3	Latin America and the Caribbean	24950
4	Northern America	8503
5	Oceania	1775

```
#setting Labels and Values
```

```
my_labels = Img_via_continent.Continent
my_values = Img_via_continent.year2013

#visualizing the pie chart

fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])
ax.axis('equal')

ax.pie(my_values, labels = my_labels, autopct='%1.2f%%')
plt.show()

#plot shows that -> Continent with highest no. of immigrants is : Asia with 60.21%
```


→ QUESTION:

Create a box plot to visualize the distribution of top 15 countries (on basis of total immigration) grouped by the decades 1980s, 1990s, 2000s .

top_15 = df_Cnd_Img.sort_values(by = 'Total', axis=0, ascending=False).head(15)

top_15

	Continent	Region	DevName	1980	1981	1982	1983	1984	1985	1986	• • •	2005	
Country	y												
India	Asia	Southern Asia	Developing regions	8880	8670	8147	7338	5704	4211	7150		36210	;
China	Asia	Eastern Asia	Developing regions	5123	6682	3308	1863	1527	1816	1960		42584	;
United Kingdom of Great Britain and Northern Ireland	g Europe	Northern Europe	Developed regions	22045	24796	20620	10015	10170	9564	9470		7258	
Philippines	s Asia	South- Eastern Asia	Developing regions	6051	5921	5249	4562	3801	3150	4166		18139	
Pakistan	Asia	Southern Asia	Developing regions	978	972	1201	900	668	514	691		14314	
United	Northern	Northern	Developed	2272	10000			2224	^= *^			2224	
<pre># create a list of all years in decades 80's, 90's, and 00's years_80s = list(map(str, range(1980, 1990))) years_90s = list(map(str, range(1990, 2000))) years_00s = list(map(str, range(2000, 2010))) # slice the original dataframe df_Cnd_Img to create a series for each decade df_80s = top_15.loc[:, years_80s].sum(axis=1) df_90s = top_15.loc[:, years_90s].sum(axis=1) df_00s = top_15.loc[:, years_00s].sum(axis=1) # merge the three series into a new data frame new_df = pd.DataFrame({'1980s': df_80s, '1990s': df_90s, '2000s':df_00s}) # display dataframe new df.head()</pre>													
					1980s	1990s	2000s	7					
			Cou	ntry			20003	#					
	I	ndia			82154	180395	303591						

	1980s	1990s	2000s	1
Country				
India	82154	180395	303591	
China	32003	161528	340385	
United Kingdom of Great Britain and Northern Ireland	179171	261966	83413	
Philippines	60764	138482	172904	
Pakistan	10591	65302	127598	

```
import matplotlib.pyplot as plt
#The correct answer is:
new_df.plot(kind='box', figsize=(10, 6))
plt.title('Immigration from top 15 countries for decades 80s, 90s and 2000s')
plt.show()
```

Immigration from top 15 countries for decades 80s, 90s and 2000s

Note how the box plot differs from the summary table created. The box plot scans the data and identifies the outliers. In order to be an outlier, the data value must be:

- larger than Q3 by at least 1.5 times the interquartile range (IQR), or,
- smaller than Q1 by at least 1.5 times the IQR.

Let's look at decade 2000s as an example:

- Q1 (25%) = 36,101.5
- Q3 (75%) = 105,505.5
- IQR = Q3 Q1 = 69,404

Using the definition of outlier, any value that is greater than Q3 by 1.5 times IQR will be flagged as outlier.

Outlier > 105,505.5 + (1.5 * 69,404) Outlier > 209,611.5

let's check how many entries fall above the outlier threshold new_df[new_df['2000s']> 209611.5]

China and India are both considered as outliers since their population for the decade exceeds 209,611.5.

→ QUESTION:

Create scatter plot of total immigration from Denmark, Sweden, Norway to canada from 1980 to 2013.

df_Cnd_Img

	Continent	Region	DevName	1980	1981	1982	1983	1984	1985	1986	•••	2005	2006	
Country														
Afghanistan	Asia	Southern Asia	Developing regions	16	39	39	47	71	340	496		3436	3009	:
Albania	Europe	Southern Europe	Developed regions	1	0	0	0	0	0	1		1223	856	
Algeria	Africa	Northern Africa	Developing regions	80	67	71	69	63	44	69		3626	4807	;
American Samoa	Oceania	Polynesia	Developing regions	0	1	0	0	0	0	0		0	1	
Andorra	Europe	Southern Europe	Developed regions	0	0	0	0	0	0	2		0	1	
Viet Nam	Asia	South- Eastern Asia	Developing regions	1191	1829	2162	3404	7583	5907	2741		1852	3153	:
Western Sahara	Africa	Northern Africa	Developing regions	0	0	0	0	0	0	0		0	1	

Img_from_DNS = df_Cnd_Img.loc[['Denmark', 'Norway', 'Sweden'], 'Total'].reset_index()

```
Country Total

O Denmark 3901

1 Norway 2327

country= Img_from_DNS['Country']

total_img = Img_from_DNS['Total']

colors = ['blue', 'green', 'red']

sizes = [600, 300, 1000]

plt.scatter(country, total_img, c=colors, s=sizes)

plt.title("Totla no. of immigrants from countries Denmark,Norway,Sweden")

plt.xlabel('Country')

plt.ylabel('no. of immigrants')

plt.show()
```


→ QUESTION:

Create bubble plot to visualize no. of immigrants from Brazil and argentina from year 1980 -2013.

```
### type your answer here
df_AB = df_Cnd_Img.loc[['Argentina', 'Brazil'], '1980':'2013']
df_AB.head()
```

#reseting the index to bring the year in as column

df_AB.reset_index(inplace=True)

```
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 ... 2004 2005 2006 2007 2008
      Country
     Argentina
                                                                ... 1591
                                                                                        540
                                  145
                                                      394
                                                                         969 1181 1746 2138
      Brazil
              211
                   220
                        192
                             139
                                       130
                                            205
                                                 244
                                                           650
                                                                    917
    2 rows × 34 columns
df_AB = df_AB.transpose()
df_AB.index
    dtype='object')
\#converting/mapping the index (or years) of our df from string to integer
df_AB.index= map(int, df_AB.index)
#lets's label the index. this will automatically be the column name when we reset the index
df_AB.index.name = 'Year'
```



```
237
               1984
                                   145
#normalize Brazil data
norm\_brazil = (df\_AB['Brazil'] - df\_AB['Brazil'].min()) / (df\_AB['Brazil'].max() - df\_AB['Brazil'].min())
#normalize Argentina data
norm_argentina = (df_AB['Argentina'] - df_AB['Argentina'].min()) / (df_AB['Argentina'].max() - df_AB['Argentina'].min())
#If we want to make two bubble charts in one plot, we should be using ax parameter.
#We will also pass weights using s parameter. Given that noralized weights are in range 0-1; they will not be visible on plot.
#Therefore we will multiply weights by 1000 to scale it up on the graph, and, add 10 to compensate for the min value.
#Brazil
ax0 = df_AB.plot(kind='scatter',
                 x='Year',
                 y='Brazil'
                 figsize=(10,8),
                 alpha=0.5,
                 color='green',
                 s= norm_brazil * 1000 + 10,
                 xlim=(1975, 2015)
#Argentina
```

Immigration from Brazil and argentina from 1980-2013

Around year 1999, when brazilian curency dropped...no. of immigrants moving to canada increases as there are financial crisis going on in Brazil and we can see that around 2010; there is a peak increase in no. of immigrants from Brazil NOTE: larger the bubble, the more no. of immigrants in that year

✓ 0s completed at 1:26 PM