Heuristic Optimization Methods Final Assignment

Julius de Clercq (582360)

Teachers:

prof.dr. Wout Dullaert dr. Maryam Karimi-Mamaghan

October 2024

Mechanism 1: Choosing a Metaheuristic

- Iterated Greedy (IG) algoriths found to perform well in PFSP (Ruiz & Stützle, 2007)
 - Despite low complexity and flexible framework
 - ▶ Found to be state-of-the-art in meta-study (Fernandez-Viagas et al., 2017)
 - With a best-improvement insertion local search (LS) operator with certain tie-break criteria (Fernandez-Viagas & Framinan, 2014)
 - * With initialization according to the NEH heuristic (Nawaz et al., 1983)
 - * And employing Taillard's acceleration (Taillard, 1990)
 - Argument against more complex, parameterized metaheuristics (e.g. Simulated Annealing)
- But IG only uses one LS operator...
- Use Iterated Local Search (ILS) instead (Stützle, 1998)
 - Can apply the same insights found for IG
 - ► Same framework as extended to Q-Learning by Karimi-Mamaghan, 2022
 - Accepting non-improving solutions using Metropolis acceptance scheme (Metropolis et al., 1953)
 - With constant temperature, conform the literature (Stützle, 1998, Ruiz and Stützle, 2007, Karimi-Mamaghan et al., 2023)

Algorithm Design

●○○○○○

Mechanism 1: Choosing LS Operators

- Insertion (1-Opt, best-improvement)
 - ▶ In random order, reinsert jobs in another (optimal) position in the sequence
 - ▶ In line with state-of-the-art (Fernandez-Viagas et al., 2017)
 - ▶ Implementation following Karimi-Mamaghan, 2022
 - ightharpoonup Complexity: $\mathcal{O}(n^3m)$
 - Destruction-Construction

Algorithm Design

○●○○○○

- ▶ Randomly select *d* jobs to be removed from the solution
- Optional insertion LS prior to reconstruction (unused)
- Reinsert removed jobs at optimal positions, in random order
- ▶ Perturbation size controlled by the *d* parameter
- ▶ Implementation following Karimi-Mamaghan, 2022
- ▶ Complexity: $\mathcal{O}(d(n-d)m)$
- 3 Swap (2-Opt, best-improvement) with Tabu list
 - Swap a job with the best possible other job in the sequence
 - ▶ More perturbing than insertion
 - No additional parameters
 - ▶ Implemented Tabu list with previously accepted sequences
 - ▶ Complexity: $\mathcal{O}(n^3 m)$

3/19

Algorithm Design

Mechanism 1: ILS

000000

Generalized IG algorithm of Ruiz and Stützle, 2007. Using their parameter values for d and τ .

- Initialize with NEH constructive heuristic (with Taillard's acceleration)
- Initial LS with Swap algorithm
- While stopping criterion is not met:
 - Generate new solution with Destruction-Construction perturbation with d = 4
 - Insertion I S
 - Accept with Metropolis acceptance probability, with constant temperature and $\tau = 0.4$
- Complexity: $\mathcal{O}(I * n^3 m)$, where I is the number of iterations of the ILS

Mechanism 2: QILS

Algorithm Design

- Framework set out in Karimi-Mamaghan, 2022 and Karimi-Mamaghan et al., 2023
- Actions are values for the d parameter
- Initialize with NEH constructive heuristic (with Taillard's acceleration) $(\mathcal{O}(n^2m)$
- Initial LS with Swap algorithm
- Initialize Q-table with zero-values and initialize state
- Choose *d* parameter at random from action set: $A = \{1, 2, 5\}$
- While stopping criterion is not met:
 - for episode in 1:E (where E is set to six, as instructed)
 - Destruction-construction perturbation
 - Insertion LS
 - Acceptance with Metropolis acceptance probability (same as in ILS)

Update Q-table through Q-learning algorithm

Complexity same as ILS

Algorithm Design

Mechanism 2: Q - Learning

$$Q(s, a) = Q(s, a) + \alpha \left[r + \gamma \arg \max_{a} Q(s', a) - Q(s, a) \right]$$

- Learning only happens at the end of each episode
 - ...and episodes are expensive!
- Q-table must be kept small
- Therefore chosen for $|\mathcal{A}|=3$ and $\mathcal{S}=\{0,1\}$
 - \triangleright S represents having found a local optimum
- Low complexity: $\mathcal{O}(|A|)$
- Implementation following Karimi-Mamaghan et al., 2023

Mechanism 0: Single-Operator Metaheuristic

- ILS for comparability (experimental design)
- But now removing all but one operator
- Perturbation and LS are both operators, and only one is permitted...
- Choice for Deconstruction-Construction Operator
 - Only meaningful perturbator
 - Lacking intensification power
 - ► Activated optional insertion LS on destroyed sequence before reconstruction

Algorithm Design

Experimental Design

- Objectives
 - Single-operator MH vs. Multi-Operator MH?
 - MH1 vs. MH2?
 - Ompetitiveness against state-of-the-art?
 - Impact of instance size?
- 2 Problem instances, algorithms and stopping criterion discussed elsewhere
- Parameter Tuning
 - Followed tuning done in literature
 - All parameter values taken from Ruiz and Stützle, 2007 or Karimi-Mamaghan et al., 2023
- Performance metrics
 - Convergence considered as improvement of objective function throughout the search
 - ★ Follows Karimi-Mamaghan, 2022
 - Runtime proxies for computational effort
 - Performance directly measured by makespans
 - Average Relative Percentage Deviation (ARPD) to compare with State-of-the-Art
 - ★ (Fernandez-Viagas et al., 2017)

8 / 19

Implementation and Execution

- Execution on Snellius supercomputer
- Parallelized execution of instances per metaheuristic
- ...but VRF-large instances never finished!
 - ▶ Even when setting the iteration limit to 1 ...
- Therefore using VRF-small instances instead
- Iteration limit set to 600 for the sake of time-management

Design Experimental Design Implementation and Execution Results Conclusion Appendix References

○ ○ ○ ○ ○ ○ ○ ○ ○

Convergence

- Average over five runs per instance
- (Multi-operator) ILS more stable than QILS and Single-operator ILS (i.e. single_ILS)
- Explorative behaviour of QILS, no convincing convergence in largest instances
- single_ILS converges well, but starts poorly

◆ロト ◆個ト ◆意ト ◆意ト ・意 ・ のQで

Makespans

- Single-operator ILS yields worse and less robust makespans than ILS
- QILS performs worse than ILS on larger instances

Run times

- Run time given in seconds
- QILS faster than ILS
- Single-Operator ILS faster than ILS
- Comparable scaling of runtime for all algorithms

Wilcoxon tests

	Makespan		Run time	
Instance	single_ILS, ILS	ILS, QILS	single_ILS, ILS	ILS, QILS
VRF10_5_10			0.125	0.125
VRF10_10_10	1.000	0.317	0.063	1.000
VRF10_20_10	1.000	0.157	0.063	0.063
VRF20_5_10	0.285	0.157	0.625	1.000
VRF20_10_10	0.068	0.273	0.188	1.000
VRF20_20_10	0.313	0.625	0.063	0.063
VRF40_5_10			0.063	0.313
VRF40_10_10	0.063	0.066	0.063	0.625
VRF40_20_10	0.063	0.438	0.063	0.188
VRF60_5_10	0.317	0.317	0.063	0.063
VRF60_10_10	0.063	0.125	0.063	0.063
VRF60_20_10	0.063	0.063	0.063	0.063

• All values are signficant at 5%-level, but not all at 10%-level

Julius de Clercq Heuristic Optimization Methods October 2024 13 / 19

ARPD

instance	$_single_ILS$	_ILS	$_{L}QILS$
VRF10_5_10	0.0000	0.0000	0.0000
VRF10_10_10	0.0004	0.0004	0.0000
VRF10_20_10	0.0002	0.0002	0.0000
VRF20_5_10	0.0064	0.0003	0.0000
VRF20_10_10	0.0246	0.0087	0.0291
VRF20_20_10	0.0118	0.0067	0.0078
VRF40_5_10	0.0000	0.0000	0.0000
VRF40_10_10	0.0376	0.0183	0.0263
VRF40_20_10	0.0588	0.0361	0.0402
VRF60_5_10	0.0000	0.0001	0.0000
VRF60_10_10	0.0514	0.0287	0.0404
VRF60_20_10	0.0624	0.0455	0.0611

Research questions

- Single-operator MH vs. Multi-Operator MH?
 - ► Single-operator worse on all metrics
- MH1 vs. MH2?
 - ▶ MH1 has better performance, but MH2 tends to be a bit faster (surprisingly)
 - Comparably robust, MH2 has difficulties converging
- Ompetitiveness against state-of-the-art?
 - ▶ Up to 6% ARPD
 - ▶ Not terrible, but need larger instances for better comparison
- Impact of instance size?
 - \triangleright Linear scaling with M, quadratic or cubic scaling with N
 - Seen both in empirical runtimes and in theoretical complexity

Conclusion

- Multi-operator MH is better than single operator
- Q-learning did not yield improvements
- Not terrible compared to State-of-the-Art
 - ▶ But inconclusive due to small instances
- Large instances infeasible due to computational effort

Thank you!

References I

- Fernandez-Viagas, V., & Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics for the permutation flowshop scheduling problem. Computers & Operations Research, 45, 60–67.
- Fernandez-Viagas, V., Ruiz, R., & Framinan, J. M. (2017). A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. *European Journal of Operational Research*, 257(3), 707–721.
- Karimi-Mamaghan, M. (2022). Hybridizing metaheuristics with machine learning for combinatorial optimization: A taxonomy and learning to select operators [Doctoral dissertation, Ecole nationale supérieure Mines-Télécom Atlantique].
- Karimi-Mamaghan, M., Mohammadi, M., Pasdeloup, B., & Meyer, P. (2023). Learning to select operators in meta-heuristics: An integration of q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 304(3), 1296–1330.

◆ロト ◆団ト ◆豆ト ◆豆 ・ りゅぐ

References

References II

- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), 1087–1092.
- Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. *Omega*, 11(1), 91–95.
- Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European journal of operational research, 177(3), 2033–2049.
- Stützle, T. (1998). Applying iterated local search to the permutation flow shop problem (tech. rep.). Citeseer.
- Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European journal of Operational research, 47(1), 65–74.