Origin of the upturn in resistivity in cuprates probed by thermal conductivity

Patrick Bourgeois-Hope¹, S. Li¹, N. Doiron-Leyraud¹, Louis Taillefer^{1,2}, T. Croft³, C. Lester³, S. Hayden³, H. Takagi⁴, K. Yamada⁵, N. Momono⁶, T. Kurosawa⁷

¹ Institut Quantique & Département de physique, Université de Sherbrooke, Sherbrooke, Canada ² Canadian Institute for Advanced Research, Toronto, Canada

³ University of Bristol, Bristol, United Kingdom

⁴ University of Tokyo, Tokyo, Japan

⁵ KEK, Tsukuba, Japan

⁶ Muroran Institute of Technology, Muroran, Japan

⁷ Hokkaido University, Sapporo, Japan

We report low temperature thermal conductivity measurements in the cuprate superconductor LSCO for samples with a doping x between 0.125 and 0.15. In this doping range, spin-density-wave order coexisting with superconductivity can be induced by applying a magnetic field [1,2]. We study the impact of this order on the conduction of d-wave quasiparticles by measuring the residual thermal conductivity κ_0/T in the $T\to 0$ limit, as a function of doping and magnetic field.

- [1] B. Khaykovich et al., Phys. Rev. B **71** 220508 (2005).
- [2] J. Chang et al., Phys. Rev. B 78 104525 (2008).