Gaussian Mixture Models

A Deeper Analysis

We'll start by focusing on the scalability issues

We have established that KDE has trouble with:

- Large dimensional datasets
- Large number of training examples

Can you make a guess about the root of the problem?

A Deeper Analysis

We'll start by focusing on the scalability issues

We have established that KDE has trouble with:

- Large dimensional datasets
- Large number of training examples

Can you make a guess about the root of the problem?

KDE makes no attempt to "compress" the information from the training data:

- The size of a KDE models grows directly with the training set size
- In statistical terms, KDE has <u>very little bias and a very large variance</u>

It's time to introduce a new density estimation technique

Gaussian Mixture Models

In particular, we'll now switch to using Gaussian Mixture Models (GMMs)

A GMM describes a distribution via a weighted sum of Gaussian components

Gaussian Mixture Models

In particular, we'll now switch to using Gaussian Mixture Models (GMMs)

A GMM describes a distribution via a weighted sum of Gaussian components

- The model size depends on the dimensionality and on #components
- The #components can be chosen, to control the bias/variance trade-off

Formally, we assume data is generated by the following probabilistic model

$$X_Z$$

- lacksquare Z e X_k are both random variables
- lacksquare Z represents the index of the component that generates the sample
- lacksquare X_k follows a multivariate Gaussian distribution

In other words, a GMM is a selection-based ensemble

A GMM Example

Let's build a (random) GMM in two dimensions so see an example

- Our example has two components, each with its own mean and covariance
- One component is slightly less prevalent than the other

GMM Parameters

The PDF of a GMM is given by:

$$g(x, \mu, \Sigma, \tau) = \sum_{k=1}^{n} \tau_k f(x, \mu_k, \Sigma_k)$$

- \blacksquare f is the PDF of a multivariante Normal distribution
- lacksquare μ_k is the (vector) mean and Σ_k the covariance matrix for the k-th component
- lacksquare au_k corresponds to P(Z=k)

We can inspect the values for our example GMM

Sampling from GMMs

When we want to sample from a GMM

- lacksquare First we need to sample the $m{Z}$ variable
- Then we sample from the corresponding multivariate distribution

```
In [5]: train_x, train_z = gt.sample(1000, seed=42)
test_x, test_z = gt.sample(1000, seed=42)
```

Hence, we don't get to now just the sample value

...But also which of the Gaussian components it was generated by

We can train a GMM to approximate other distributions

The training problem can be formulated in terms of likelihood maximization

$$\underset{\mu,\Sigma,\tau}{\operatorname{arg\,max}} \ \mathbb{E}_{x\sim X} \left[L(x,\mu,\Sigma,\tau) \right]$$

$$\text{s.t. } \sum_{k=1}^{n} \tau_k = 1$$

- lacksquare As usual, the likelihood function $oldsymbol{L}$ measures how likely it is...
- lacksquare ...that the training sample \hat{x} is generated by a GMM with parameters μ, Σ, au

We can train a GMM to approximate other distributions

The training problem can be formulated in terms of likelihood maximization

$$\underset{\mu, \Sigma, \tau}{\operatorname{arg max}} \ \mathbb{E}_{x \sim X} \left[L(x, \mu, \Sigma, \tau) \right]$$

s.t.
$$\sum_{k=1}^{n} \tau_k = 1$$

- lacksquare As usual, the likelihood function $oldsymbol{L}$ measures how likely it is...
- lacksquare ...that the training sample \hat{x} is generated by a GMM with parameters μ, Σ, au

There's more than one issue here

...And the first one is dealing with the expectation

We can approximate the expectation by using the training set

$$\mathbb{E}_{x \sim X} \left[L(x, \mu, \Sigma, \tau) \right] \simeq \prod_{i=1}^{m} g(x_i, \mu, \Sigma, \tau)$$

Technically, this is just an example of Monte-Carlo estimation

- When used for the likelihood of the training data
- ...This is often called "Empirical Risk Minimization" principle

There are two sub-variants of this approach

- We can use a single large sample (the classical approach)
- ...Or many smaller ones (what we do in cross-validation)

We will stick to the simplest approach (a single training sample)

Let's put everything together

$$\underset{\mu,\Sigma,\tau}{\operatorname{arg\,max}} \prod_{i=1}^{m} \sum_{k=1}^{n} \tau_k f(x, \mu_k, \Sigma_k)$$

$$\operatorname{s.t.} \sum_{k=1}^{n} \tau_k = 1$$

From an optimization point of view, this is very annoying problem:

- There's a constraint
- There's both a product and a sum
- The product cannot be decomposed (μ , Σ , τ appear in every term)

So we'll need to get clever!

We get clever by apparently overcomplicating the problem

In particular, we introduce a random variable $oldsymbol{Z}_i$ for each example

- $lacksquare Z_i = k$ iff *i*-th example was drawn from the *k*-th component
- lacksquare The Z_i are latent since we do not know their value
- We focus on our uncertainty, rather than on the uncertainty in the process

When computin the PDF, we take the values of Z_i for granted:

$$\tilde{g}_i(x_i, z_i, \mu, \Sigma, \tau) = \tau_{z_i} f(x, \mu_k, \Sigma_k)$$

- The value z_i is now an input to \tilde{g}_i
- lacksquare ...And we can use it as an index to retrieve the correct au_k
- This alternative PDF is much easier (there is sum)!

The drawback is that we have not uncertainty over both X and Z

$$\mathbb{E}_{x \sim X, z \sim Z} \left[L(x, z, \mu, \Sigma, \tau) \right]$$

We can deal with X by using the training set as the single sample

By doing this we obtain:

$$\mathbb{E}_{x \sim X, z \sim Z} \left[L(x, z, \mu, \Sigma, \tau) \right] \simeq \mathbb{E}_{z \sim Z} \left[\prod_{i=1}^{m} \tilde{g}_i(x_i, z_i, \mu, \Sigma, \tau) \right]$$

- lacksquare We cannot use the same technique for $oldsymbol{Z}$
- ...Since we do not have a sample for them (they are latent)!

To deal with the expectation on Z, we add yet another set of variables

- lacktriangleright The variables represent the (unknown) distribution of the latent $oldsymbol{Z}_i$ variables
- lacksquare In particular, $ilde{ au}_{i,k}$ corresponds to $P(Z_i=k)$

With the new variable, we can compute the expectation in closed form:

$$\mathbb{E}_{\hat{x} \sim X, \hat{z} \sim Z} \left[L(\hat{x}, \hat{z}, \mu, \Sigma, \tau) \right] \simeq \prod_{i=1}^{m} \prod_{k=1}^{n} \tilde{g}_i(x_i, z_i, \mu, \Sigma, \tau)^{\tilde{\tau}_{i,k}}$$

- lacksquare Intuitively, we if we sampled $oldsymbol{Z}_i$
- lacksquare ...We would generate $ilde{ au}_{i,k}$ samples for each component k
- lacksquare ...So that the corresponding density is multplied by itself $ilde{ au}_{i,k}$ times

The reworked training problem therefore is

$$\arg \max_{\mu, \Sigma, \tau, \tilde{\tau}} \prod_{i=1}^{m} \prod_{k=1}^{n} \tilde{g}_{i}(x_{i}, z_{i}, \mu, \Sigma, \tau)^{\tilde{\tau}_{i,k}}$$
s.t.
$$\sum_{k=1}^{n} \tau_{k} = 1$$

$$\sum_{k=1}^{n} \tilde{\tau}_{i,k} = 1 \quad \forall i = 1..m$$

- lacksquare We have even more variables (the $ilde{ au}_{i,k}$ ones)
- lacksquare ...But they are statistically related! Each $oldsymbol{Z}_i$ is drawn from $oldsymbol{Z}$
- ...And there's no longer a combination of sums and products

We can now use the **Expectation-Maximization algorithm**

The EM algorithm is an optimization method based on alternating steps

- In the expectation step:
 - lacksquare We consider μ, Σ, au as fixed and we optimize over $ilde{ au}$
 - ...l.e. we try to estimate how sampling went
 - lacksquare After this, we compute the expectation over $oldsymbol{Z}$ (in a symbolic form)
- In the maximization step:
 - lacksquare We use the (symbolic) expectation over $oldsymbol{Z}$ from before
 - lacksquare We consider $ilde{ au}$ as fixed and we optimize over μ, Σ, au

The method stops when likelihood improvement become too small

It can be proved to converge to a local optimum under reasonable assumptions

Let's see the expectation step in our case

- This is where we handle the latent variables
- We consider μ , Σ , τ fixed, so that we need to solve:

$$\arg \max_{\tilde{\tau}} \ \prod_{i=1}^{m} \prod_{k=1}^{n} \tilde{g}_{i}(x_{i}, z_{i}, \mu, \Sigma, \tau)^{\tilde{\tau}_{i,k}}$$
s.t.
$$\sum_{k=1}^{n} \tilde{\tau}_{i,k} = 1 \qquad \forall i = 1..m$$

- \blacksquare The constraint on τ is no longer needed (it's always satisfied)
- The optimization problem can be easily decomposed
- ...So we can optimize over each example individually

Since τ is fixed, the expectation over Z can be computed exactly

By substituting \tilde{g}_i , for a single example i we have:

$$\arg \max_{\tilde{\tau}} \ \prod_{k=1}^{n} \left(\tau_{k} f(x, \mu_{k}, \Sigma_{k}) \right)^{\tilde{\tau}_{i,k}}$$
s.t.
$$\sum_{k=1}^{n} \tilde{\tau}_{i,k} = 1$$

Which (since μ , Σ , τ are fixed) is solved by choosing:

$$\tilde{\tau}_{i,k} = \frac{\tau_k f(\hat{x}_i, \mu_k, \Sigma_k)}{\sum_{h=1}^n \tau_h f(\hat{x}_i, \mu_k, \Sigma_k)}$$

For the maximization step we provide only the main ideas

Each au_k is estimated as the relative sum of the corresponding $ilde{ au}_{i,k}$ variables:

$$\tau_k = \frac{1}{m} \sum_{i=1}^m \tilde{\tau}_{i,k}$$

lacktriangleright In fact, the latent variables represent samples drawn from the $oldsymbol{Z}_k$ variables

The μ_k and Σ_k parameters can be estimated based on classical methods

- lacksquare In particular, we give to each example a sample weight equal to $ilde{ au}_{i,k}$
- lacksquare Then we estimate μ and Σ via a Least Square approach

GMM in Action

There are many implementations and variants of the EM method

We will use the code from scikit-learn:

```
In [7]: from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=2, random_state=4)
gm.fit(train_x);
```

■ The API is the usual one

We need to specify the number of components a priori

- We can tune it using a maximum likelihood approach on a validation set
- ...Or using other criteria (e.g. elbow method)

Inspecting the Results

Let's inspect the learned parameters

```
In [8]: print('Learned weights', gm.weights )
         print('True weights', gt.weights)
         Learned weights [0.6590098 0.3409902]
         True weights [0.69756198 0.30243802]
In [9]: print('Learned means', str(gm.means_).replace('\n', ' '))
         print('True means', str(qt.mu).replace('\n', ' '))
         Learned means [[0.06974974 0.54625223] [0.96907679 0.40083217]]
         True means [[0.20612642 0.58696692] [0.94152811 0.3112852 ]]
In [11]: print('Learned covariance #1', str(qm.covariances_[0]).replace('\n', ' '))
         print('True covariance #1', str(qt.sigma[0]).replace('\n', ' '))
         print('Learned covariance #2', str(gm.covariances [1]).replace('\n', ' '))
         print('True covariance #2', str(gt.sigma[1]).replace('\n', ' '))
         Learned covariance #1 [[0.47861885 0.32101492] [0.32101492 0.28622476]]
         True covariance #1 [[0.5610369 0.3646768 ] [0.3646768 0.31593376]]
         Learned covariance #2 [[0.26613038 0.26083955] [0.26083955 0.34615556]]
         True covariance #2 [[0.29862754 0.29550211] [0.29550211 0.35832187]]
```


Inspecting the Results

Here is the approximated PDF

Which Kind of Prediction

GMMs are very flexible in terms of what they can do

We can use them to evaluate the (log) density of a sample:

```
In [14]: pred_lf = np.exp(gm.score_samples(train_x))
print('Log densities:', pred_lf[:3])

Log densities: [0.17629181 0.29102933 0.21023248]
```

We can use them to generate a sample:

More then Densities

GMMs are very flexible in terms of what they can do

We can estimate the probability that a sample belongs to a component

```
In [16]: pred_p = gm.predict_proba(train_x)
    print('Probability of belonging to a component:')
    print(pred_p[:3])

Probability of belonging to a component:
    [[0.84724085 0.15275915]
       [0.01845649 0.98154351]
       [0.05474391 0.94525609]]
```

lacksquare The approach is the same we used to optimize $ilde{ au}_{i,k}$ in the expectation step

By picking the maximum probability, we can assign samples to a component

```
In [17]: pred_c = gm.predict(train_x)
    print(pred_c[:3])
[0 1 1]
```


More then Densities

GMMs can certainly act as density estimators

...But can do much more!

- Sampling
- Component assignment
- ...And therefore clustering

This is so true that GMM are often presented as a generalization of k-means

And this (partially) addresses the last limitation of KDE

- By choosing certain density estimator
- ...We can obtain additional information in addition to the densities

