UTN - 1° Rec 1° Parcial	Sistemas Operativos	06/12/2022

Nombre y Apellido: Curso:

TEORÍA				PRÁCTICA			NOTA	
1	2	3	4	5	1	2	3	

TEORÍA: Responda brevemente las siguientes preguntas. Justifique.

- 1. Indique la relación que existe entre los términos de condición de carrera, sección crítica y exclusión mutua. Proponga dos técnicas para asegurar la exclusión mutua.
- 2. Responda Verdadero o Falso justificando:
 - a. La estrategia de Detección evita que se produzca Deadlock, analizando cada solicitud de recursos antes de que sea asignado.
 - b. Evitar la retención y espera puede producir una baja tasa de utilización de recursos.
- 3. Describa en detalle algún ejemplo del caso en el cual un proceso realiza una syscall y termina siendo bloqueado. ¿Qué implicancias tendría si dicha syscall hubiera sido ejecutada en forma no bloqueante?
- 4. ¿Qué utilidad tiene disponer de un máximo nivel de multiprogramación en un sistema? ¿Cuáles serían las consecuencias de configurarlo en niveles extremadamente bajos o altos?
- 5. Mencione alguna razón por la cual se podrían deshabilitar las interrupciones enmascarables temporalmente. ¿Debería el SO ser el único con la responsabilidad para realizar dicho cambio?

PRÁCTICA: Resuelva los siguientes ejercicios justificando las conclusiones obtenidas.

Ejercicio 1

Se dispone de un sistema operativo con planificador de corto plazo RR con q=3, para la siguiente traza de ejecución:

	Llegada	CPU	I/O	CPU	I/O	CPU	NITT
P1	0	2	5	2	4	1	$ NTT = \underline{\sum \text{ tiempos en Ready}} + \underline{\sum \text{ ráfagas cpu}} $
P2	1	8	1	5	_	_	∑ ráf agas cpu
Р3	2	8	_	-	-	_	

- a) Realice el diagrama de gantt
- b) Calcule la métrica "Normalized turnaround time" (NTT) para cada proceso y en base a dicha métrica mencione cuál proceso fue más perjudicado y por qué.
- c) Proponga otro algoritmo de planificación que priorice al proceso afectado en el punto anterior, justifique conceptualmente, sin volver a realizar el gantt o el cálculo de la métrica.

Ejercicio 2

Considerando las siguientes matrices:

	R1	signacione R2	R3	R4
P1	0	3	1	3
P2	1	1	3	2
Р3	0	2	1	0
P4	2	0	2	0
P5	1	3	5	2

	R1	R2	R3	R4
P1	2	3	2	5
P2	1	2	6	3
Р3	0	2	4	5
P4	3	0	5	2
P5	3	4	5	4

Poticiones máximas

- a) Si se sabe que se cuenta con un vector de recursos disponibles = [1, X, 9, 4], utilice el algoritmo del banquero para determinar el mínimo X para que el sistema se encuentre en estado seguro.
- b) Tomando el disponible calculado en a), indique qué acción tomaría el sistema si P2 solicitara 2 instancias de R2.

Ejercicio 3

Luciano comenzó a trabajar en el área de medicina en la demanda espontánea del hospital británico. Cada paciente que llega debe esperar a que la recepción esté libre para poder iniciar los trámites. El trámite consiste en entregar la documentación y obtener un número con el cual será llamado por el médico clínico, quien comenzará a llamar siempre que haya algún paciente esperando. El médico escuchará su problema y luego de recetar un medicamento podrá el paciente irse a su casa.

La solución actual en pseudocódigo suele no funcionar apropiadamente, complete su sincronización agregando los semáforos que sean necesarios e indicando los valores de inicialización de los mismos para que cumpla con lo requerido sin causar deadlock ni starvation.

Paciente (N instancias)	Recepción (1 instancia)	Médico Clínico (1 instancia)
entregar_documentación()	while(1){	while(1){
Id_paciente = recibir_número()	recibir_documentación()	id_a_atender = get(cola_pacientes)
wait(atendido[id_paciente])	nuevo_id = siguiente_id()	signal(atendido[id_a_atender])
explicar_problema()	entregar_número(nuevo_id)	
		escuchar_problema()
recibir_receta()	add(cola_pacientes,	entregar_receta()
irse_a_casa()	nuevo_id)	}
	}	

atendido[20] = {0, 0,, 0}

Nota: Sabemos que solo 20 personas son atendidas por día en la demanda espontánea. La función siguiente_id() comienza en 0 y vuelve a 0 luego del 19.

Condiciones de aprobación: 3 preguntas correctamente respondidas y 1.5 ejercicios correctamente resueltos.