Ising transverse

$$\int \sigma_i x = \Lambda - \lambda a_i a_i$$

$$\int \sigma_i^2 \sigma_{in}^2 = (a_i^+ - a_i)(a_{in}^+ + a_{in})$$

$$H = \sum_{i} \Delta \sigma_{i}^{2} + \sigma_{i}^{2} \sigma_{i}^{2}$$

I here must be all sites, not just odd/even.

$$= \sum_{\lambda} \Delta (\lambda - 2a_i^{\dagger}a_i) + \overline{J}(a_i^{\dagger} - a_i)(a_{in}^{\dagger} + a_{in})$$

$$-2D(a_{i}^{\dagger}a_{i}-\frac{1}{2})+5\left\{a_{i}^{\dagger}a_{i+1}^{\dagger}+a_{i}^{\dagger}a_{i+1}^{\dagger}-a_{i}^{\dagger}a_{i+1}^{\dagger}-a_{i}^{\dagger}a_{i+1}^{\dagger}\right\}$$

$$+a_{i}^{\dagger}a_{i}^{\dagger}+a_{i}^{\dagger}a_{i}^{\dagger}$$

$$+a_{i}^{\dagger}a_{i}^{\dagger}$$

$$\Rightarrow \mu = 2\Delta \quad t = -\Delta_{poir} = -J$$

$$-) H \stackrel{\sim}{=} \sum_{i} \mu(c_{i}^{\dagger}c_{i} - \frac{1}{2}) - t(c_{i}^{\dagger}c_{i} + hc) + \Delta_{pair}(c_{i}^{\dagger}c_{i}^{\dagger} + hc)$$

mapping p-wave

In general for a Kitaev chain w/ Hawllowen (1) we have

$$\cos \Theta_k = \frac{-\mu - \lambda t \cosh}{E(k)}$$
 $\sin \Theta_k = \frac{\lambda \Delta \cos k}{E(k)}$

ECh) = V(µ+ lt ceo h)2 + 4 1/2 sin2h

here we have
$$\begin{cases} E(k) = 2\sqrt{\Delta^2 + J^2 - 2\Delta J \cosh} \\ \cos \theta = \frac{-2\Delta + 2 J \cosh}{E(k)} \\ \text{ an } \theta_{h} = 2 \frac{J \sinh}{E(k)} \end{cases}$$

(1)
$$\Delta = 0$$
, $J \neq 0$ — $\int E(k) = 2|J|$
 $(20) 6u = (0gn (J)) ceo k$
 $8in 6u = (0gn (J)) sin k$

(2)
$$J=0$$
, $\Delta \neq 0$ = $\left\{ \begin{array}{l} E(k) = 2 |\Delta| \\ ceo Gu = -logn(\Delta) \\ sin Gu = 0 \end{array} \right.$

By default, assure Δ , J > 0

 $\int \langle G^{\dagger}G_{fm}\rangle = \frac{1}{\pi} \int_{0}^{\pi} \cos(\omega t) (val^{2}dk) wh (val^{2} = \sin \frac{2}{2} = \frac{1-\cos Gu}{2}$ (g+g+m) = in [sin(hu) (sku) dk with Isauk = sin Gu ces Eu = sin Bu

(A)
$$\langle g^{\dagger} g^{\dagger} m \rangle = \frac{1}{4\pi} \int_{0}^{\pi} ceo(km)(1-sgn(3)ceok) = \frac{-sgn(3)}{8\pi} \int_{0}^{\pi} ceokm)ceok$$

$$= sgn(3) \times \int_{0}^{-1/4} sfm = \pm 1$$

$$\langle g^{\dagger} g^{\dagger} m \rangle = \frac{1}{2\pi} \int_{0}^{\pi} sin(km) sgn(3)sink = sgn(3) \begin{cases} \pm \frac{1}{4} sfm = \pm 1 \\ 0 \text{ otherwise} \end{cases}$$

$$= sgn(3) \times \int_{0}^{-1/4} sfm = \pm 1$$

$$= sgn(3) \times \int_{0}^{\pi} sin(km) sgn(3)sink = sgn(3) \begin{cases} \pm \frac{1}{4} sfm = \pm 1 \\ 0 \text{ otherwise} \end{cases}$$

$$= sgn(3) \times \int_{0}^{\pi} sfm = \pm 1$$

(3)
$$\triangle = J$$
 => $\int E = 2\sqrt{2} \Delta \sqrt{1 - \cosh}$
 $\cos \theta h = - \sin h/2$
 $\sin \theta h = \cos h/2$

$$\begin{cases} \langle g'g'm\rangle = \frac{1}{\pi(1-4m^2)} \\ \langle g'g'm\rangle = \frac{-2m}{\pi(1-4m^2)} \end{cases}$$

$$\Rightarrow \left| \left\langle g^{\dagger} G_{\dagger \uparrow} \right\rangle \right| = \frac{-1}{3\pi}$$

$$\left| \left\langle g^{\dagger} G_{\dagger \uparrow} \right\rangle \right| = \frac{2}{3\pi} = -2 \left| \left\langle g^{\dagger} G_{\dagger \uparrow} \right\rangle \right|$$

$$(u) \Delta = -J = \int E = 2\sqrt{2}\Delta\sqrt{1 + \cosh}$$

$$\cos Gu = -\cos \frac{1}{2}$$

$$\sin \theta u = -\sin \frac{1}{2}$$

$$\begin{cases} \langle C_j^{\dagger} C_j^{\dagger} m \rangle = \frac{(-1)^m}{\pi (1 - 4m^2)} \\ \langle c_j^{\dagger} c_j^{\dagger} m \rangle = \frac{-2m}{\pi (1 - 4m^2)} \end{cases}$$

$$\Rightarrow \begin{cases} \langle g^{\dagger}g_{ff}\rangle = \frac{1}{3\pi} \\ \langle g^{\dagger}g_{fi}^{\dagger}\rangle = \frac{2}{3\pi} = -2\langle g^{\dagger}g_{fi}^{\dagger}\rangle \end{cases}$$

	Dun	D _{sv}	(0; ² 0; +1)	-(0nx+0n) <o; 4="" 4<="" o;="" th=""></o;>
(1)	-½	1/2	-(G
(2)	0	0	0	0
(3)	- 2/3#	4/311	-2/ a	-2/3T
(h)	2/37	-4/ 37	2/1	2/3 1

 $(\sigma_{i}^{2}\sigma_{i}^{2})^{2} = \langle (1-2a_{i}^{\dagger}a_{i})(1-2a_{i}^{\dagger}a_{i}^{\dagger}) \rangle = 1-2\{\langle m_{i}^{2}\rangle + \langle m_{i}^{2}\rangle - 2\langle m_{i}^{2}m_{i}^{\dagger}\rangle \}$ $\langle \sigma_{i}^{2}\sigma_{i}^{2}\sigma_{i}^{2}\rangle = \langle (a_{i}^{\dagger}+a_{i}^{\dagger})(a_{i}^{\dagger}n_{i}^{\dagger}-a_{i}^{\dagger}) \rangle = -\langle a_{i}^{\dagger}a_{i}^{\dagger}\rangle + \langle a_{i}^{\dagger}a_{i}^{\dagger}\rangle = \langle a_{i}^{\dagger}a_{i}^{\dagger}\rangle + \langle a_{i}^{\dagger}a_{i$