Modern Fizika Labor

Fizika BSC

A mérés dátuma:	A mérés száma és címe:	Értékelés:
2009. 03. 30	Alkáli Spektrumok, 8.	
A beadás	A mérést végezte:	
dátuma:	Meszéna Balázs, Tüzes Dániel	

Bevezető

A XIX. század nagy érdeme a kvantummechanika, mely magyarázatot adott az egyes anyagok színképében jelentkező diszkrét vonalak megjelenésére. A jelenség fenomenologikus kezelése már önmagában elegendő a különböző anyagok azonosítására, de a jelenség elméleti modelljében megjelenő állandók is kiszámíthatóak a mérések eredményéből. Jelen mérés célja nem az anyagok azonosítása, hanem ezen állandók meghatározása, úgy mint a Planck, a Rydberg és a finomszerkezeti állandó.

Mérés kivitelezése

A mérés során higany, kadmium, nátrium, kálium, rubídium és hidrogén lámpákat használtunk, első kettőt a spektroszkóp kalibrálására, míg a többit az állandók meghatározására használtuk. Az egyes termek beazonosítására egy táblázat nyújtott segítséget, mely adatok egy része a http://www.free-form.ch/tools/specli.html, másik része pedig a http://astro.u-strasbg.fr/~koppen/discharge/ oldalról érhető el. A mérést egy TB-2 típusú spektroszkóppal végeztük, fényforrásként az előbb felsorolt anyagokat felhasználó spektrállámpát használtunk.

Mérési feladatok – eredmények

1. Kalibrálás

A higany illetve kadmium spektrállámpák segítségével végzett mérés során az alábbi hullámhosszakon tapasztaltunk emissziót:

Higany			Kadmium		
mért	irodalmi	eltérés	mért	irodalmi	eltérés
405	404,7	0,3	441,5	441,3	0,2
408	407,8	0,2	465,5		
434	433,9	0,1	467	467,8	0,8
435	434,7	0,3	479	480	1
436	435,8	0,2	509	508,58	0,42
491	491,6	0,6	515		
495,5			632		
503			643		
505					
530					
535	535,4	0,4			
536					
545	546,1	1,1			
566					
576	577	1			
578	579	1			
588					
606					
611					
622					
688					

A mért eredmények nm-ben értendők, a leolvasás hibája 500nm-ig $\pm 0,25nm$, nagyobb értékekre pedig $\pm 0,5nm$. A mért eredmények eltérését az irodalmi adattól az alábbi grafikonon szemléltetjük.

Mint látható, az eltérések mértéke és az irodalmi értékek között nincs szoros kapcsolat, azonban egy egyenest mindenképp lehet rá illeszteni, a későbbiekben ezzel korrigáljuk a mért eredményeket. Az eltérések mindemellett nem számottevőek a leolvasás pontosságához képest.

2. A hidrogén színképének elemzése során az alábbi értékeket mértük *nm*-ben:

Mért értékek	korrigált értékek	irodalmi értékek
410,5	410,3	410,2
434	434,0	434
437	437,0	
486	486,3	486,1
496,5	496,9	
502	502,5	
532	532,7	
543	543,8	
615	616,3	
655	656,6	656,3

A mérési eredményekből meghatározható a Rydberg állandó a $\frac{1}{\lambda} = \tilde{v} = R_H \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$ formulából.

Jelen esetben a Balmer sorozatot mértük ki, azaz n=2. Az első azonosított átmenet a $H_{\delta} \Leftrightarrow m=6$, a második a $H_{\gamma} \Leftrightarrow m=5$, a harmadik a $H_{\beta} \Leftrightarrow m=4$, míg az utolsó a $H_{\alpha} \Leftrightarrow m=3$, így a Rydberg állandók értékei:

Átmenet	$R_{H_{\alpha}}\left(10^7 / m\right)$	$R_{H_{\alpha}}\left(10^7 / m\right)$	$R_{H_{\alpha}}\left(10^7 / m\right)$	$R_{H_{\alpha}}\left(10^7 / m\right)$	$\overline{R_{H,\text{mért}}} (10^7 / m)$
érték	1,0976	1,0976	1,0976	1,0976	$1,0968 \pm 0,0006$

A hibát a leolvasás pontatlanságából számoltuk, valamint figyelembe véve, hogy a mérési eredmények bizonytalansága a mérés számának négyzetgyökének reciprokjával skálázik. Az értékek nagyon (már-már túlságosan) jól közelítik a Rydberg állandó valódi $R_{\!\scriptscriptstyle H}=1,09737\cdot 10^7$ / m értékét.

A Planck állandó és a Rydberg állandó kapcsolatát a $R_{H}=\frac{m_{e}e^{4}}{8\varepsilon_{0}^{2}\hbar^{3}c}\cdot\left(1+\frac{m_{e}}{m_{p}}\right)^{-1}$ összefüggéssel adhatjuk

meg, melyből
$$h=\sqrt[3]{rac{m_e e^4}{8arepsilon_0^2 R_{H, ext{m\'ert}}iggl(1+rac{m_e}{m_p}iggr)c}}$$
 . Az egyes értékeket a

http://en.wikipedia.org/wiki/Physical_constant oldalról használtuk fel. Az értékeket visszahelyettesítve kapjuk, hogy $h=(6,6260\pm0,0012)\cdot10^{-34}$ Js.

3. A mérés további lépéseként megmértük a nátrium, kálium és rubídium lámpák színképvonalainak hullámhosszát. A mérési eredményeket a már korábban részletezett korrekcióval számolva az alábbi táblázat tartalmazza nm-ben megadva:

nátrium	rubídium		kálium	
466,20	441,51	404,74 3 <i>p</i> ₁ -1 <i>s</i>	495,41	552,83
474,25	465,69	455,11	509,51	578,02
497,93 5 <i>d</i> - 2 <i>p</i> ₂	467,71	463,68	510,52	580,03 4 <i>s</i> - 2 <i>p</i> ₁
515,56	479,29	474,76	512,54	581,04
567,94 4 <i>d</i> – 2 <i>p</i> ₁	509,51	479,29	532,68	584,06 5 <i>d</i> - 2 <i>p</i> ₁
589,10 $2p_1 - 1s$	515,56	486,34	533,69	589,10
589,60 2 <i>p</i> ₂ -1 <i>s</i>	633,42	492,89	535,71	590,11
615,29 $3s-2p_2$	644,51			691,85

- a. Az egyes átmenetek közül a kiemelteket tudtuk azonosítani az irodalmi hivatkozásban találhatóak alapján, az észlelt hullámhossz alá odaírtuk a feltételezett átmenetet.
- b. Dubletteket a nátriumnál azonosítva (az utolsó előtti két átmenet), abból a

$$\Delta \tilde{v}_{j_2,j_1} = R \frac{\alpha^2 Z^4}{n^3} \bigg[\frac{1}{j_2+1/2} - \frac{1}{j_1+1/2} \bigg] \text{ k\'eplet felhasználásával meghatározható az } \alpha$$

finomszerkezeti állandó:
$$\alpha = \sqrt{\frac{n^3}{RZ^4} \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right) \left(\frac{1}{j_2 + 1/2} - \frac{1}{j_1 + 1/2}\right)^{-1}}$$
, ahol jelen esetünkben a

dublett term
$$n$$
 főkvantumszáma $n=3$, $R=R_{H,\mathrm{mért}}\left(1+\frac{m_e}{m_p}\right)=1,10277\cdot 10^7$ / m , az effektív Z

magtöltés értéke Z=3,55, a λ hullámhosszak a táblázatból leolvasandók, a belső j kvantumszámok pedig $j_1=1/2$ és $j_2=3/2$. Az adatokat behelyettesítve

$$lpha = 0,00666207 \pm 0,002 = \frac{1}{150 \pm 50}$$
 , $lpha_{ ext{irodalmi}} = \frac{1}{137,0}$.

Mérésünk nagy hibája abból adódik, hogy a leolvasási pontosság $\pm 0,5$ nm, márpedig a két dublett között nem egészen 1nm különbséget látván azt inkább 0,5nm-nek vettük. A két mennyiség különbsége szerepel a kifejezésben, így az, hogy a hullámhosszak értékét olvasom le és nem pedig a különbségüket próbálom meghatározni, túlzott mértékben növeli a hibát, ekkora hibáknál pedig a hibaterjedés képletei sem érvényesek, így a feltüntetett hiba empirikus, nem pedig számolt.