# KOMPETENZZENTRUM WasserBerlin

# REPORT

Cicerostr. 24 D-10709 Berlin Germany Tel +49 (0)30 536 53 800 Fax +49 (0)30 536 53 888 www.kompetenz-wasser.de

# Analyse der zeitlich hochaufgelösten Niederschlagsdaten 2002 in Berlin Project acronym: EVA

by
Eberhard Reimer
Freie Universität Berlin

for
Kompetenzzentrum Wasser Berlin gGmbH

Preparation of this report was financed in part through funds provided by





Berlin, Germany 2008

© Copyright 2008 by the KompetenzZentrum Wasser Berlin gGmbH. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention or the Protection of Literacy and Artistic Works, and the International and Pan American Copyright Conventions.

# **Important Legal Notice**

**Disclaimer:** The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. KWB disclaims liability to the full extent for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of application, or reliance on this document. KWB disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein. It is expressly pointed out that the information and results given in this publication may be out of date due to subsequent modifications. In addition, KWB disclaims and makes now arranty that the information in this document will fulfill any of your particular purposes or needs. The disclaimer on hand neither seeks to restrict nor to exclude KWB's liability against all relevant national statutory provisions.

### Wichtiger rechtlicher Hinweis

Haftungsausschluss: Die in dieser Publikation bereitgestellte Information wurde zum Zeitpunkt der Erstellung im Konsens mit den bei Entwicklung und Anfertigung des Dokumentes beteiligten Personen als technisch einwandfrei befunden. KWB schließt vollumfänglich die Haftung für jegliche Personen-, Sach- oder sonstige Schäden aus, un geachtet ob diese speziell, i ndirekt, nachfolgend oder kompensatorisch, mittelbar oder unmittelbar sind oder direkt oder indirekt von dieser Publikation, e iner Anwendung od er dem Vertrauen in dieses Dokument her rühren. KWB übernimmt keine Garantie und macht keine Zusicherungen ausdrücklicher oder stillschweigender Art bezüglich der Richtigkeit oder Vollständigkeit jeglicher Information hierin. Es wird ausdrücklich darauf hingewiesen, dass die in der Publikation gegebenen I nformationen und Ergebnisse aufgrund nachfolgender Änderungen nicht mehr ak tuell sein können. Weiterhin Iehnt KWB die Haftung ab und übernimmt keine Garantie, dass die in diesem Dokument en thaltenen Informationen der Erfüllung Ihrer besonderen Zwecke oder Ansprüche dienlich sind. Mit der vorliegenden Haftungsausschlussklausel wird weder bezweckt, die Haftung der KWB entgegen den einschlägigen nationalen Rechtsvorschriften einzuschränken noch sie in Fällen auszuschließen, in denen ein Ausschluss nach diesen Rechtsvorschriften nicht möglich ist.

# **Abstract**

In recent years considerable progress has been made in numerical weather prognosis. Special progress has been made in doing local forecasts up to five days of temperature, wind and atmospheric pressure and also of the weather determinant flow systems. In contrast, the local prognosis of precipitation (liquid and ice phase) has not been improved. This circumstance has lead to the DFG program "Quantitative rainfall prognosis". It covers broadly based activities that aim on the improvement of the knowledge on the processes of rainfall formation and their numerical prognosis. The main objective is to improve the routine prognosis of the German Weather Association (DWD). The program covers the modeling of microphysical processes as well as the description of essential meteorological conditions in different temporal and spatial scales. Especially, convective cloud systems that are often responsible for extreme rainfall situations are studied.

In a G ermany-wide monitoring campaign in the year 2007 comprehensive measurements are conducted. The gained information and data will be used to improve process description and to support model evaluation.

The st udy at hand describes the analysis and prognosis of temporally (5 m in) and spatially (500 m) highly distributed rainfall data for the Berlin area. The data will be used in the frame of the EVA project of Kompetenzzentrum Wasser Berlin to analyse and evaluate the potential of online rainfall measurement and forecast to support the operation of wastewater pump stations.

# Zusammenfassung

In den vergangenen Jahren wurden in der numerischen Wetterprognose erhebliche Erfolge bei der Tokalen Prognose von Temperatur, Wind und Lu ftdruck und auch den wetterbestimmenden Strömungssystemen für bis zu 5 Tagen erzielt. Demgegenüber hat die lokale Prognosegüte für Niederschlag (Flüssig- und Eisphase) sich kaum verbessert. Dieser U mstand hat daz u g eführt, das s im R ahmen des laufenden D FG-Schwerpunktprogrammes "Quantitative Niederschlagsprognose" eine breite Aktivität zum verbesserten V erständnis der ni ederschlagsbildenden P rozesse f ür di e num erische Wetterprognose gestartet wurde, die insbesondere die Routineprognose des Deutschen Wetterdienstes (DWD) verbessern soll. Das beinhaltet die Modellierung mikrophysikalischer Prozesse und die Beschreibung der wesentlichen meteorologischen Bedingungen in verschiedenen Zeit- und Raumskalen, wobei speziell die Behandlung konvektiver Wolkensysteme, die im Jahresverlauf in vielen Fällen auch für das Auftreten extremer Niederschläge verantwortlich sind, im Vordergrund stehen.

In einer deutschlandweiten Beobachtungskampagne im Jahr 2007 werden umfangreiche Messungen dur chgeführt, di e di e P rozessbeschreibung v erbessern und di e Modellevaluierung unterstützen soll.

In dieser Arbeit wird die zeitlich (5min) und räumlich hochaufgelöste (500m) Analyse und Prognose des Niederschlags für den Berliner Raum durchgeführt. Die Daten werden im Rahmen des EVA Projektes des KompetenzZentrum Wasser Berlin verwendet, um das Potential von Online-Niederschlagsmessung und Niederschlagsvorhersage aus Radardaten bezüglich der Unterstützung des Betriebes von Abwasserpumpwerken zu bewerten.

# Inhaltsverzeichnis

| Chapter 1 Einleitung                             | 1  |
|--------------------------------------------------|----|
| Chapter 2 Niederschlagsbeobachtungen             | 2  |
| 2.1 24-Stundensummen                             | 2  |
| 2.1.1 Messungen                                  | 2  |
| 2.1.2 Messfehler                                 | 3  |
| 2.2 5-Minutensummen                              | 3  |
| 2.2.1 Registrierung und Digitalisierung          | 4  |
| 2.2.2 Automatische Beobachtungen                 | 5  |
| 2.2.3 Messfehler                                 | 5  |
| Chapter 3 Radardaten                             | 6  |
| Chapter 4 Räumliches Analysenverfahren           | 8  |
| Chapter 5 Datenkorrektur                         | 9  |
| 5.1 Lückenauffüllung Tagessummen                 | 9  |
| 5.2 Korrektur 5-Minutensummen                    | 9  |
| 5.2.1 Zeitkontrolle                              | 9  |
| 5.2.2 Summenkontrolle                            | 10 |
| 5.2.3 Lückenauffüllung und Zeitreihenersetzung   | 11 |
| 5.2.4 Zeitreihenvergleich                        | 11 |
| Chapter 6 Datenanalyse                           | 13 |
| 6.1 Interpolation der Tagessummen                | 13 |
| 6.2 Interpolation der 5-Minutensummen            | 14 |
| 6.3 Vergleich der Tageswerte                     | 14 |
| 6.4 Vergleich der verschiedenen Skalierungen     | 15 |
| 6.5 Zeitreihenerstellung für Abflussmodellierung | 18 |
| Bibliographie                                    | 19 |
| Anhang A: Stationen des Tagesmessnetzes          | 20 |
| Anhang B: Stationen des 5-Minuten-Messnetzes     | 22 |

# Abbildungsverzeichnis

| Bild 2.1 Beobachtungsorte des Tagesmessnetzes im Jahr 2007. Die weiteren Angabe | n  |
|---------------------------------------------------------------------------------|----|
| sind im Anhang gegeben                                                          | 2  |
| Bild 2.2 Beobachtungsorte des Messnetzes mit 5-Minutensummen (Stand 2007). Die  |    |
| weiteren Angaben sind im Anhang gegeben                                         | 3  |
| Bild 5.1 Vergleich der 5-Minuten Niederschlagssummen von Radardaten des BRDC u  | nd |
| der Messungen am 12.August 2002 für Marzahn                                     | 10 |
| Bild 5.2 Tageskurven 5-Minuten Niederschlagssummen am 12.August 2002 für zwei   |    |
| Stationen in Tempelhof                                                          | 11 |
| Bild 6.1 Monatssumme der Tagesmessungen für den August 2002                     | 13 |
| Bild 6.2 Monatssumme der Tagesmessungen für den August 2002                     | 14 |
| Bild 6.3 Niederschlagssumme 2002 mit der Referenz aus Tagessummen               | 16 |
| Bild 6.4 Niederschlagssumme für den 28. August 18:10 – 18:15 (5-Min)            | 17 |
| Bild 6.5 Niederschlagssumme für den 28. August 18:10 – 18:15 (korr.)            | 17 |
| Bild 6.6 Ausgewählte Einzugsgebiete für das Klärwerk Ruhleben                   | 18 |

# **Einleitung**

In den vergangenen Jahren wurden in der numerischen Wetterprognose erhebliche Erfolge bei der lokalen Prognose von Temperatur, Wind und Lu ftdruck und auch den wetterbestimmenden Strömungssystemen für bis zu 5 Tagen erzielt. Demgegenüber hat die lokale Prognosegüte für Niederschlag (Flüssig- und Eisphase) sich kaum verbessert. Dieser U mstand hat daz u g eführt, da ss im Ra hmen des laufenden D FG-Schwerpunktprogrammes "Quantitative Niederschlagsprognose" eine breite Aktivität zum verbesserten V erständnis der ni ederschlagsbildenden P rozesse f ür di e num erische Wetterprognose gestartet wurde, die insbesondere die Routineprognose des Deutschen Wetterdienstes (DWD) verbessern soll. Das beinhaltet mikrophysikalischer Prozesse und die Beschreibung der wesentlichen meteorologischen Bedingungen in verschiedenen Zeit- und Raumskalen, wobei speziell die Behandlung konvektiver Wolkensysteme, die im Jahresverlauf in vielen Fällen auch für das Auftreten extremer Niederschläge verantwortlich sind, im Vordergrund stehen.

In einer deutschlandweiten Beobachtungskampagne im Jahr 2007 werden umfangreiche Messungen dur chgeführt, di e die P rozessbeschreibung v erbessern und di e Modellevaluierung unterstützen soll.

In dieser Arbeit wird die zeitlich (5min) und räumlich hochaufgelöste (500m) Analyse und Prognose des Niederschlags für den B erliner R aum dur chgeführt. Im R ahmen des Projekts EVA des KompetenzZentrums Wasser Berlin wird unter Verwendung der aufgelösten N iederschlagsreihen die Steuerungsmöglichkeit der Abwasserförderung untersucht. Es werden in ei nem num erischen Modell für ei nen T eilbereich B erlins die Bedingungen für ei ne verbesserte Steuerung im Abwassernetz B erlins untersucht. Im Fokus steht die B ewertung des Potentials von O nline-Niederschlagsmessung un d Niederschlagsvorhersage aus Radardaten bez üglich der U nterstützung des Betriebes der Abwasserpumpwerke.

# Niederschlagsbeobachtungen

### 2.1 24-Stundensummen

Das Messnetz der z. Zt. 80 T ages-Niederschlagsmessungen i st in Abb. 2.1 gegeben. Die Beobachtungen werden von verschiedenen Institutionen und Personen durchgeführt: Deutscher Wetterdienst, Fr eie U niversität B erlin, B erliner Wasserbetriebe (Tagessummen der aufgelösten Messungen), Forstbetriebe, Gartenbaubetriebe und Privatpersonen.

Die T ageswerte w erden i m klimatologischen I ntervall v on 07: 00 z u 07: 00 U TC angegeben. Die Auswertung, einfache Fehlerbereinigung und die Archivierung der Daten werden am Institut für Meteorologie der Freien Universität betrieben.



**Bild 2.1** Beobachtungsorte des Tagesmessnetzes im Jahr 2007. Die weiteren Angaben sind im Anhang gegeben

# 2.1.1 Messungen

Der einfache Niederschlagsmesser nach Hellmann besteht aus einer Auffangfläche von 200 cm² und einen Auffangbehälter. Der Niederschlag wird über einen Trichter direkt in den Auffangbehälter geleitet. Dieser Auffangbehälter wird dann zu den klimatologischen und synoptischen Terminen in einen Messzylinder entleert und die Niederschlagsmenge an der Scala abgelesen.

## 2.1.2 Messfehler

Für die Messtöpfe w erden generell Unsicherheiten i n Abhängigkeit von den meteorologischen Bedingungen angenommen:

- nichtrepräsentativer Standort im Vergleich zu Vorgaben der World Meteorological Organisation WMO (freie Graslandfläche),
- Störungen durch Baumbestand und Gebäude in der Nähe der Messung,
- windstärkebezogene Fehler, die von den jeweiligen Tropfenspektren oder der Art des gefrorenen Niederschlags abhängen (Schnee, Graupel ...),
- geringe Verdunstungsfehler, die im Winter bei der Auswertung durch Auftauung verstärkt werden,
- direkte Verstopfung des Trichters durch z.B. Blätter.

Die Messtöpfe werden in Berlin generell überwiegend im Tagesrhythmus ausgewertet.

Bei den Messungen von privaten Beobachtern, von Forstbetrieben und in Gartenbauunternehmen ist eine quasikontinuierliche Auswertung nicht immer gegeben, so dass auch Summen über längere Episoden vorliegen oder große Datenlücken bestehen.

### 2.2 5-Minutensummen



**Bild 2.2** Beobachtungsorte des Messnetzes mit 5-Minutensummen (Stand 2007). Die weiteren Angaben sind im Anhang gegeben

Die zeitlich hoch auf gelösten N iederschlagsmessungen w erden i n B erlin v on dr ei Institutionen durchgeführt: dem D eutschen Wetterdienst, de r Fr eien U niversität B erlin und den Berliner Wasserbetrieben.

Die Berliner Wasserbetriebe unterhielten im Jahr 2002 noch 53 Stationen zur Aufzeichnung der N iederschlagsintensitäten mit dem N iederschlagsschreiber nach Hellmann und A rchivierung von Papierstreifen. Die Messgeräte sind zur Überwachung an drei Arten von Pumpwerken aufgestellt: Anschlusspumpwerk (APW), Überpumpwerk (ÜPW) un d H auptpumpwerk (HPW). S ie di enen der Überwachung des lang- und kurzfristigen Ni ederschlags zur B emessung der nat ürlichen R andbedingungen des Abwassersystems. D ie R egistrierungen sind j edoch in den Folgejahren konsequent durch automatische Messungen ersetzt worden.

# 2.2.1 Registrierung und Digitalisierung

Mit dem N iederschlagsschreiber nach Hellmann wird der N iederschlag m echanisch registriert und der V erlauf kontinuierlich m it T inte au f ei nen M onatsstreifen al s Summenkurve gezeichnet. Das Gerät ha t ein G efäß eingebaut mit 10 mm Fassungsvermögen. Ein Schwimmer, der über einen Arm mit einem Stift verbunden ist, zeigt die N iederschlagshöhe in dem G efäß an. Fällt N iederschlag, so st eigt der Schwimmer und der Stift zeichnet auf dem Papier die Änderung des Schwimmers auf. Ist das Gefäß voll, was der Wasserhöhe von 10 mm entspricht, so leert es sich selbsttätig aus, der Schwimmer sinkt auf den Boden und der Stift "fällt" auf die Nullmarkierung. Zur Bestimmung des Niederschlags in einem bestimmten Zeitraum, muss die Differenz der Summen gebildet werden die den Anfang und das Ende des Zeitraumes markieren.

Die R egistrierstreifen für 2002 w urden am I nstitut für M eteorologie di gitalisiert un d wurden zur Absicherung mit an den BWB digitalisierten Messreihen von drei Stationen verglichen. D ie D igitalisierung e rfolgte du rch ei ne A rbeitskraft, di e neben der unmittelbaren Registrierungsgüte auch eine sehr grobe Fehlerprüfung unternahm und protokollierte. Die Digitalisierung erfolgte mit einer mehrfachen Absicherung der Streifenlage für jeweils eine Tageskurve.

Auftretende A usfälle u nd Fehl er w urden i n einer T abelle nur f ür T agesauflösung gesammelt.

Die i n Messpunkte u mgewandelten M essstreifen w urden mit ei ner S oftware al s Summenkurve für das Jahr 2002 ausgewertet. Hier wurde ein spezielles Filter eingesetzt um k leine S chwankungen der H andführung bei der D igitalisierung z u glätten. D a di e Zurückstellung des Stiftes mit V erzögerung erfolgt und je nach a ugenblicklicher Regenintensität entsprechend noch verzögerter, wurde die absolute Summenkurve über die Intensitätskurve von 5-Minutenintervallen in den Rückstellpausen ergänzt und vervollständigt.

Diese S ummenkurven w urden dann f ür j ede S tation und j eden T agen g etrennt i n Summenintervallen von 5 Minuten archiviert.

# 2.2.2 Automatische Beobachtungen

Das Berliner S tadtmessnetz der FU B erlin umfasste 2002 si eben aut omatisierte Beobachtungsstandorte i n B erlin. E benso unt erhält der D eutsche Wetterdienst se chs automatisierte N iederschlagsbebachtungsstationen, di e di e Fl ughäfen i n R aum B erlin und Umgebung einschließen.

Bei bei den Institutionen wird der Niederschlag mit der Nie derschlagswippe gemessen. Die Auffangfläche beträgt dabei 200cm². Der Niederschlag fällt in die Auffangfläche und gelangt von dort in eine Seite der Kippwaage, die auf 0,1 mm Niederschlag geeicht ist. Bei exakt 0,1mm Niederschlagsmenge kippt die Waage um, I eert sich und die andere Seite der Waage läuft voll.

Jedes Umkippen verursacht einen Impuls dessen Anzahl gemessen wird und die Niederschlagsmenge bestimmt werden kann.

### 2.2.3 Messfehler

Für die Messtöpfe w erden generell Unsicherheiten i n Abhängigkeit von den meteorologischen Bedingungen angenommen:

- nichtrepräsentativer Standort im Vergleich zu Vorgaben der World Meteorological Organisation WMO (freie Graslandfläche),
- Störungen durch Baumbestand und Gebäude in der Nähe der Messung,
- windstärkebezogene Fehler, die von den jeweiligen Tropfenspektren oder der Art des gefrorenen Niederschlags abhängen (Schnee, Graupel ...),
- Verdunstungsfehler, die besonders im Winter durch die Geräteheizung verstärkt werden,
- mechanische Fehler bei den Registrierungen mit Tintenstift,
- Zeitfehler bei der Registrierung durch Uhrwerksfehler, da die Registrierungen bei den hier verwendeten Hellmann-Töpfen über einen Monat kontinuierlich laufen,
- die B egrenzung der M essauflösung der K ippwaage bei 0,1 m m und m ögliche Fehler bei Starkniederschlag durch zu schnelle Auslösung des elektrischen Signals,
- direkte Verstopfung des Trichters durch z.B. Blätter.

Die per sönliche Wartung und st ete Ü berprüfung der M essgeräte i st n otwendig, k ann aber nur bei m D eutschen Wetterdienst und bei dem Institutsmessort der FU B erlin im täglichen Routineablauf gewährleistet werden.

Die D aten des Wetterdienstes und der FU Berlin wurden in 5-Minuten-Summen übergeben und ent sprechend dem Format der digitalisierten Daten für jede Station und jeden Tag getrennt archiviert.

# Radardaten

In di eser Arbeit wurden di e Radardaten aus dem Baltrad Radar Data Centre (BRCD) verwendet, das am schwedischen Wetterdienst besteht und alle Radardaten der Mitglieder des BMBF-Schwerpunktprogramms Baltex sammelt und zu einem Flächenbild für den Einzugsbereich der Ostsee zusammensetzt.

Die Radardaten des Centres werden von Deutschen Wetterdienst gestellt. Für Berlin ist das Radar in Berlin-Tempelhof von Interesse. Es ist ein C-Band Doppler-Radar mit 1 km horizontaler Auflösung. Die Daten gelangen als Niederschlagsintensität über Electronic Transfer Routing an das BRDC.

Über eine Z/R-Beziehung werden die Reflektivitäten des Radars in Tropfenspektren umgerechnet. Da dieses Verfahren nur eine ungenaue Abschätzung des Niederschlags am B oden zulässt, wird im B RDC eine statistische Anpassung der Radardaten an die realen N iederschlagsmessungen am B oden bet rieben, die unt erschiedlich zum Vorgehen des Deutschen Wetterdienstes ist.

Die Darstellung der Niederschlagssummen erfolgt im BRDC für eine feste Anzahl von Intensitätsstufen für drei Stunden mit einem Maximalschwellwert >60 mm/3Std. Dadurch ergibt sich in der Regel eine nur sehr begrenzte, quantitative Übereinstimmung mit den realen B eobachtungen des Messnetzes. D ieses Problem w ird beim D eutschen Wetterdienst durch eine jeweils aktuelle Anpassung von Radar an Beobachtung zu lösen versucht.

Die kleinste Niederschlagsintensität die vom DWD umgesetzt wird beträgt im Sommer (April – Oktober) 0,06 mm/h, im Winter (November – März) 0,002 mm/h. Die Z/R-Beziehung für die Umsetzung der Reflektivität in Intensität ist im Generellen mit Z=256 R1,42 gegeben.

Das BRDC verwendet für alle R adardaten und das ganze Ja hr al s kleinste Niederschlagsintensität 0, 1 m m/h. D ie N iederschlagsintensitäten werden m it d er angegebenen Z/R-Beziehung in Reflektivitäten zurückgerechnet, so dass eine Anpassung der Daten an andere Radardaten erfolgen kann.

Die charakteristischen Daten für das fertige BALTRAD Radarbild sind:

- Breite (in Pixel) 815
- Länge (in Pixel) 1195
- untere linke Ecke bei 6.748° östliche Länge und 47.478° nördliche Breite
- obere rechte Ecke bei 36.243° östliche Länge und 69.172° nördliche Breite.

Die Radardaten stehen in einer zeitlichen Auflösung von 15 Minuten und einer räumlichen Auflösung von zwei Kilometer zur Verfügung. Diese Auflösung entspricht der meteorologischen konvektiven Skala.

Das in dieser Arbeit das Beobachtungsnetz sehr dicht ist, wurde nur der zeitliche Ablauf der I okalen R adarsignale mit den B eobachtungen verglichen, um eine Überprüfung in Hinblick auf Zeitfehler zu ermöglichen.

Zum Vergleich der Stationsmesswerte und der Flächenanalysen wurden die Radarwerte an di e g eographischen K oordinaten der Stationen und auf di e g leiche num erische Flächendarstellung hin interpoliert.

# Räumliches Analysenverfahren

Die räumliche Interpolation der Niederschlagsdaten wird für die Korrektur, Abgleichung, Datenersetzung und r äumliche S ummenbildung benötigt. Die hor izontale I nterpolation wurde m it ei ner K orrektionsmethode dur chgeführt (Reimer, 2006), da z unächst die Datendichte groß genug erschien.

Dabei wird ang enommen, dass jeder P unkt im Fel d dar stellbar i st dur ch die I ineare Kopplung

$$f_0 = \sum_{i=1}^3 \alpha_i * f_i$$
 mit  $\alpha_i = 1/d_i$ 

 $f_0$  ist ein Gitterpunkt,  $f_i$  sind die Beobachtungen,  $\alpha_i$  sind Gewichte und  $d_i$  sind z.B. die einfachen Abstände zwischen den betrachteten Punkten.

- Zunächst wird mit dem reziproken, einfachen Abstand interpoliert,
- dann werden die Stationswerte aus dem Gitterfeld interpoliert und Differenzwerte erstellt,
- die Differenzen werden mit dem reziproken Quadrat des Abstands interpoliert und zum absoluten Gitterfeld addiert,
- dann werden wieder die Stationswerte aus dem Gitterfeld interpoliert und erneut Differenzwerte erstellt,
- ist die maximale Abweichung gering, wird abgebrochen,
- wenn n icht, w ird die Prozedur wiederholt und mit der r eziproken 3. Ordnung interpoliert usw.

Das numerische Gitter ist rechtwinklig im geographischen Gitter mit einer Auflösung von ca. 500 Metern definiert. Alle benötigten Bezugssysteme (Gauß-Krüger o.a.) können aus diesem Gitter bestimmt werden.

Die Interpolation zu den Beobachtungen erfolgte durch bilineare Interpolation.

# **Datenkorrektur**

Die aufbereiteten Niederschlagsdaten für die Tagessummen und die 5-Minutensummen wurden in der Folge über einen Datenvergleich räumlich und zeitlich untereinander geprüft.

# 5.1 Lückenauffüllung Tagessummen

Die wesentliche Bereinigung der Tagessummenwerte bestand in der Kontrolle auf Lücken.

Zunächst wurden al le Tagessummen für das Jahr 2002 i nterpoliert. Im er sten S chritt wurden S ummenwerte für E pisoden g rößer ei nem T ag di saggregiert. Für di e j eweils angegebene Messepisode wurden die Gittertageswerte aus den umgebenden Stationen interpoliert und daraus die entsprechende Summe berechnet. Die Differenz zwischen der Episodenmessung und der Interpolationssumme wurde proportional als Korrektur an den interpolierten M esswerten der bet rachteten M essstation ang ebracht und der art d ie Zeitreihe ergänzt.

Nach einer erneuten Flächeninterpolation mit Verwendung der ergänzten Werte wurden nun ei nzelne Fehl werte der M essreihen dur ch I nterpolation z um Beobachtungsort ergänzt.

Als Resultat ergaben sich für alle Stationen die vollständigen Zeitreihen der Tagessummen. Aus diesen wurden Monatssummen und die Jahressumme berechnet, um erneut auf herausfallende Werte hin zu kontrollieren. Stark abweichende Werte wurden auf Tagesbasis untersucht und gegebenenfalls als Fehlwert gekennzeichnet und durch Interpolation ersetzt.

## 5.2 Korrektur 5-Minutensummen

Die Interpolation und Kontrolle der hochaufgelösten Daten wurde auch auf der Basis von Tagessummen durchgeführt.

# 5.2.1 Zeitkontrolle

Zu Beginn wurde die zeitliche Zuordnung der Tagesgänge kontrolliert. Hierbei ergaben sich im Wesentlichen zwei Fehlertypen:

- die A bweichung der T ageskurven v on der I okalen Zei t dur ch z .B.
   Sommerzeitregistrierung oder durch Falschgang des Messlaufwerks
- die falsche Zuordnung zu Tagen

Hierfür wurden alle Beobachtungen in Tageskurven dargestellt. In direktem Vergleich der Kurvenmuster mit Nachbarstationen am Bildschirm konnten die falschen Zuordnungen ganz überwiegend geklärt werden, indem typische Abläufe erkennbar waren.

Zusätzlich wurden in dieser Phase die Radardaten des BRDC herangezogen, indem der zeitliche Verlauf der zur jeweiligen Station interpolierte Radarwert mit den Messungen verglichen wurde. Bild 5.1 zeigt einen Vergleich an der Station Marzahn für 15-Minutensummen am 12. August 2002. In diesem Vergleich zeigt sich zeitlich eine gute Übereinstimmung zwischen Radar- und Messsummen und auch die kleineren Intensitäten sind vergleichbar. Jedoch sind auch in diesem Beispiel die hohen Werte nicht in der Radarauswertung erfasst.



**Bild 5.1** Vergleich der 5-Minuten Niederschlagssummen von Radardaten des BRDC und der Messungen am 12.August 2002 für Marzahn.

Nach diesen Vergleichen wurden ungeklärte Registrierungen markiert und in der Folge weiter geprüft.

# 5.2.2 Summenkontrolle

Aus den 5-Minutenwerten wurden die Tagessummen in dem mit den separaten Tagesummenmessungen vergleichbaren Zeitraum 07:00 zu 07:00 d es Folgetages berechnet:

- die beiden S ummen wurden verglichen und auf starke Abweichungen hin untersucht,
- die Tagessummen wurden mit denen der Nachbarstation verglichen.

Stark abweichende Messungen wurden als Meldungslücke gekennzeichnet.

# 5.2.3 Lückenauffüllung und Zeitreihenersetzung

Die Lück enauffüllung wurde entsprechend der Vorgehensweise in Kap. 5.1 über eine räumliche Interpolation aller 5-Minuten-Beobachtungen und die bilineare Schätzung am Beobachtungsort durchgeführt.

Fehlende oder als fehlerhaft erkannte Tagesreihen wurden völlig durch Interpolation aus den anderen Messungen ersetzt. In diesem Zusammenhang wurden auch für alle nach 2002 ei ngeführten M essorte der B erliner Wasserbetriebe die Niederschlagsreihen berechnet.



**Bild 5.2** Tageskurven 5 - Minuten N iederschlagssummen am 12. August 2002 f ür zw ei Stationen in Tempelhof.

# 5.2.4 Zeitreihenvergleich

In Bild 5.2 sind als Beispiel zw ei Tempelhofer Messungen dar gestellt, die ca. 4 km auseinander liegen.

Die Station am Flughafen zeigt die typischen Stufen der Niederschlagswippe, während die andere Station eine kontinuierliche Registrierung zeigt. Der Zeitablauf ist in guter

Übereinstimmung, jedoch unt erscheiden sich die Tagessummen er heblich. Tempelhof-Flughafen zeigt 76 mm/Tag, während Tempelhof nur ca. 50 mm/Tag aufweist.

Diese S ummendifferenz kann r eal se in, aber kann auch G eräteursachen haben. Z ur Einschätzung w urde dar um generell der S ummenvergleich über die Fel dverteilungen durchgeführt.

# **Datenanalyse**

Die numerischen Analyse der Daten wurde mit dem Schema in Kap. 4 durchgeführt.

Es wurden für die Jahressummen, Monatssummen, Tagessummen für beide Datensätze erstellt, um einen Feldvergleich zu ermöglichen und evtl. Ausreißer zu erkennen. Bei einer starken Abweichung wurde auf der Ebene der Tagessummen nach der Ursache gesucht und g egebenenfalls eine Tagesmeldung oder ein Tagessatz als Fehler gekennzeichnet und als Fehl wert behandel t. Die Prozedur aus Kap. 5 wurde dann wiederholt.

# 6.1 Interpolation der Tagessummen

Die Analyse der Tagessummen ergab eine unterschiedliche Feldstruktur im Vergleich zu den Tagessummenanalysen aus 5-Minuten-Werten, da die Beobachtungspositionen und die räumliche Datenlage unterschiedlich waren.

Die Monatssummen und die Jahressumme wurden mit bestimmt. Als Beispiel ist hier in Bild 6.1 die Monatssumme August 2002 dargestellt.



Bild 6.1 Monatssumme der Tagesmessungen für den August 2002.

Im August waren zwei Frontdurchgänge zum Monatsanfang, das Wettergeschehen zum Elbehochwasser und ein Starkniederschlag am 28. August in Berlin-Wilmersdorf mit ca. 110 mm in einer Stunde zu verzeichnen.

Die S pitzenintensität für Tageswerte w urde du rch z wei Messungen de s Tagessummennetzes erfasst und di e Monatssumme ergab nach al len Kontrollen ei ne Summe v on ca . 286 mm. D as stand i n s tarkem Gegensatz z u den ni edrigen Monatssummen bei 80 mm in einigen Teilen Berlins.

# 6.2 Interpolation der 5-Minutensummen

Aus den 5 -Minutensummen w urden num erische D arstellungen der Ja hressumme, Monatssummen, T agessummen und der 5-Minutenwerte erstellt. Bild 6.2 zeigt als Beispiel ebenfalls die Feldverteilung im Monat August.



Bild 6.2 Monatssumme der Tagesmessungen für den August 2002

## 6.3 Vergleich der Tageswerte

Im V ergleich der Bilder 6.1 und 6.2 ergeben sich g ravierende U nterschiede in der Struktur und Größenordnung der Monatssummen des Niederschlags im August. Es ergeben sich in diesem Fall einige Ursachen für die starke Unterschätzung der August-Summe durch das zeitlich hochaufgelöste Netz:

- das Beobachtungsnetz der 5 -Minutensummen k onnte den S chauer am 28.
   August nicht erfassen, da u.a. die Station Wilmersdorf umgebaut wurde,
- die R egistrierungen d er Hellmanntöpfe w eisen i m V ergleich z u den Niederschlagswippen generell eine erheblich gedämpftere Messung auf,
- das Interpolationsschema führt in der Folge zu einer Dämpfung der generell höheren Summenwerte der Niederschlagswippen.

Diese Unterschiede führen bei der Schätzung der Station Wilmersdorf dazu, dass sich aus den 5 -Minutenwerten ei ne M onatssumme v on 128 m m und aus dem Tagessummennetz ei ne Monatssumme v on 190 m m er gab. D as Maximum i n Schmargendorf v on 286 m m aus den T agesmessungen i m A ugust w ird im 5 - Minutennetz mit 179 mm stark unterschätzt.

Entsprechend sind die Tagessummen und 5-Minutenwerte auch stark unterschiedlich.

Um eine Vereinheitlichung des Messfeldes zu erreichen mussten die beiden Messnetze zusammengeführt werden. Zu diesem Zwecke wurden für das Tagesmessnetz die 5-Minutensummen interpoliert und zugeordnet.

In der Folge wurden drei mögliche Abgleichprozeduren mit den Tageswerten getestet:

- die Tagesmessungen werden als beste Referenz gewählt, was dem Vorgehen des Deutschen Wetterdienstes entspricht,
- die 5m-Minuten-Messungen werden als Referenz gewählt,
- für jede B eobachtungsstation w ird di e gr ößere Tagessumme der bei den Interpolationen zugeordnet und als Referenz verwendet.

Diese Tageswerte an den dann ca. 155 Stationen wurden zur Größenkorrektur aller 5-Minutenwerte v erwendet, i ndem ei n S kalierungsfaktor mit dem Quotienten v on der Referenztagessumme und der jeweiligen Tagessumme aus 5-Minutenwerten aller Beobachtungen und Interpolationswerte gebildet wurde. Mit diesem Faktor wurden die 5-Minutenwerte des jeweils betrachteten Tages multipliziert. Es wurde zunächst nur das arithmetische Mittel betrachtet.

# 6.4 Vergleich der verschiedenen Skalierungen

Aus den sk alierten Tageswerten w urden w iederum M onatssummen und di e Jahressummen gebildet. Für das Jahr 2002 ergeben sich in Tabelle 6.1

Tabelle 6.1 Maximal- und Minimalwerte der Jahressummen für Skalierungen

| Jahressumme 2002    | Maximum | Minimum |
|---------------------|---------|---------|
| Referenz aus        |         |         |
| Tagesummen der 5min | 756 mm  | 442 mm  |
| Tagesummen          | 837 mm  | 554 mm  |
| Maximale Tagesummen | 875 mm  | 604 mm  |

Die Unterschiede in der Spannbreite der Jahressummen zeigt starke Unterschiede mit einer Differenz von über 100 mm im Feldvergleich. Dem Vorgehen des Deutschen Wetterdienstes folgend, wurden im Weiteren die Tagessummenmessungen als Referenz verwendet. Bild 6.3 zeigt die endgültige Jahressumme 2002 als Feldverteilung.



Bild 6.3 Niederschlagssumme 2002 mit der Referenz aus Tagessummen

Aus der unt erschiedlichen Skalierung ergeben sich ent sprechend große Differenzen in den 5-Minuten-Intensitäten. Als Beispiel sind in Bild 6.4 und Bild 6.5 die Intensitäten für den Zeitraum 28. August 18:10 bis 18:15 dargestellt.

Die maximalen Intensitäten wurde mit der Skalierung über Tagessummen mehrfach auf über 12 mm/5-Minuten geschätzt, während die direkten Beobachtungen eine maximale Intensität von 8 mm/5-Minuten zeigten. Die Lage der Schauerzellen wurde durch direkte, zeitlich auflösende Messungen nur unzureichend getroffen. Die Rekonstruktion über die Tagesmessungen als Referenz im Detail am 28. August eine zu den Radarechos passende Verteilung. Dabei ist ausschließlich die Lage der Schauerzellen und der zeitliche Ablauf vergleichbar. Die Intensitäten wurden in den Baltrad-Radardaten nicht genauer erfasst.

Die i nterpolierten und k orrigierten D atenreihen i n 5 -minütiger A uflösung w urden al s endgültige Datenbasis archiviert und für die weiteren Arbeitsschritte herangezogen.



Bild 6.4 Niederschlagssumme für den 28. August 18:10 – 18:15 (5-Min)



Bild 6.5 Niederschlagssumme für den 28. August 18:10 – 18:15 (korr.)

# 6.5 Zeitreihenerstellung für Abflussmodellierung

Aus den num erischen A nalysen der k orrigierten und er gänzten D atenreihen m it 5 - minütiger A uflösung wurden für v orgegebene E inzugsgebiete i m K analisationsnetz di e dazugehörigen, m ittleren I ntensitäten dur ch I ntegration f ür ei n flächenumfassendes Polygon bestimmt. In Bild 6.6 sind einige Einzugsgebiete dargestellt.

Dabei wurden ent sprechend der Vorgabe verschiedene Flächenteile in Charlottenburg, Spandau und M oabit im Einzugsgebiet des Ruhlebener Klärwerkes geschätzt. Die als Zeitreihe für das Ja hr 2002 an gelegte Li ste w urde für die A bwassermodellierung bereitgestellt.



Bild 6.6 Ausgewählte Einzugsgebiete für das Klärwerk Ruhleben

# **Bibliographie**

ATV (1992). *Arbeitsblatt ATV-A 128*. Richtlinien für die Bemessung und Gestaltung von Regenentlastungsanlagen in Mischwasserkanälen. Gesellschaft zur Förderung der Abwassertechnik e.V. (GFA), St. Augustin.

ATV (1992). ATV-Arbeitsgruppe 1.9.3. 6. Arbeitsbericht der ATV-Arbeitsgruppe 1.9.3 "Schmutzfrachtberechnung". Anwendung von Schmutzfrachtberechnungsmethoden im Sinne des neuen ATV-Arbeitsblattes A 128. *Korrespondenz Abwasser*, **39**(5), 727-738.

Grüning H. (2002). Ein Modell zur simultanen Bewirtschaftung von Kanalnetz und Kläranlage unter Berücksichtigung resultierender Gewässerbelastung. Schriftenreihe Siedlungswasserwirtschaft Bochum, Nr. 42, Ruhr-Universität Bochum, Germany.

Bartels, Hella. (2004). Abschlussbericht des DWD zum Projekt RADOLAN Deutscher Wetterdienst Offenbach.

Michelson, Daniel B. et. al. (2000). BALTEX Radar Data Centre Products and their Mehodologies. SMHI - Reports Meteorology and Climatology, Band No. 90, Swedish Meteorolgical and Hydrological Institute

Michelson, Daniel B. und Saltikoff, Elena. (2001). Data from the BALTEX Radar Data Centre. www.smhi.se/brdc/data.html

Pagenkopf, Anja. (2005). Die raumzeitliche Struktur des Niederschlages in Berlin von 1951 bis 1990. Diplomarbeit, Geographisches Institut, Humboldt-Universität Berlin.

Strümpel, Sebastian. (2001). Vergleich von BALTRAD-Niederschlagsfeldern mit anderen Methoden der Niederschlagsmessung. Diplomarbeit, Institut für Meereskunde, Universität Kiel.

Reimer, Eberhard und Pawlowsky-Reusing, Erika, (2006). Analyse von Niederschlagsextremen zur Verbesserung der Steuerung der Abwasserförderung in Berlin. Tag der Hydrologie, München 2006.

# **Anhang A: Stationen des Tagesmessnetzes**

| 76 Regenmessstationen                                        | Breite | Länge  | Gruppe                         |
|--------------------------------------------------------------|--------|--------|--------------------------------|
| NB001 Moabit, Alt Moabit 67-70, 10555 Berlin                 | 523129 | 131955 | PUW (Berliner Wasserbetriebe)  |
| NB003 Wedding, Bellermannstr.6, 13357 Berlin                 |        | 132315 | ,                              |
| NB004 Charlottenburg I, 14059, Sophie-Charlotte-Str. 114     | 523123 | 131719 | PUW                            |
| NB009 Spandau, Daumstr. 1, 13599 Berlin                      | 523223 | 131355 | PUW                            |
| NB010 Spandau, Wegscheider Str. 39-40, 13587 Berlin          | 523331 | 131212 | PUW                            |
| NB016 Zehlendorf, Ravenweg, 14163 Berlin                     | 522548 | 131403 | DWD (Deutscher Wetterdienst)   |
| NB017 Kreuzberg, Paul-Lincke-Ufer 19, 10999 Berlin           | 522945 | 132557 | PUW                            |
| NB021 Tiergarten, Genthiner Str. 10, 10785 Berlin            | 523023 | 132140 | PUW                            |
| NB022 Mariendorf, Blumenweg 4-7 12105 Berlin                 | 522647 | 132223 | PUW                            |
| NB023 Marienfelde, Grillostr. 33, 12277 Berlin               | 522450 | 132240 | PUW                            |
| NB024 Lichtenrade, John-Locke-Str. 45-47, 12305 Berlin       | 522327 | 132416 | PUW                            |
| NB029 Zehlendorf, Teltower Damm 282, 14167 Berlin            | 522435 | 131607 | PUW                            |
| NB030 Neukölln, Wildenbruchstr. 79-80, 12045 Berlin          | 522910 | 132639 | PUW                            |
| NB031 Neukölln, Sonnenallee 289, 12057 Berlin                | 522820 | 132800 | PUW                            |
| NB050 Eiskeller, Berlin                                      | 523455 | 130810 | PRV (Privat)                   |
| NB052 Tegel, Ruppiner Chaussee 78, 13503 Berlin              | 523625 | 131624 | FOA (Forstbetriebe)            |
| NB056 Spandau, Schönwalder Allee 53, 13587 Berlin            | 523348 | 131151 | FOA                            |
| NB058 Gatow, Kladower Damm 145, 14089 Berlin                 | 522822 | 131015 | FOA                            |
| NB060 Eichkamp, Eichkampstr. 166, 14055 Berlin               | 522928 | 131515 | FOA                            |
| NB064 Wannsee, Schuchardweg 20, 14109 Berlin                 | 522517 | 130853 | FOA                            |
| NB067 Kladow, Friedrich-Hanischstr. 20, 14089 Berlin         | 522724 | 130930 | WAW (Wasserwerke)              |
| NB076 Reuterpfad, Reuterpfad 6-8, 14193 Berlin               | 522849 | 131645 | PRV                            |
| NB077 Tegel, Fließtal, Berlin                                | 523500 | 131500 | DWD                            |
| NB083 Pfaueninsel, Berlin                                    | 522557 | 130747 | PRV                            |
| NB086 Zehlendorf, Fischerhüttenstr. 39, 14163 Berlin         | 522624 | 131506 | GAR (Gartenbaubetriebe)        |
| NB088 Glienicker Park, Wannsee, Königstr. 36, 14109 Berlin   | 522502 | 130548 | GAR                            |
| NB098 Charlottenburg Herderschule, Westendallee 46,14052 Bln | 523045 | 131536 | PRV                            |
| NB099 Lichterfelde Ost, Schuette-Lanz-Str. 92, 12209 Berlin  | 522438 | 131959 | DWD                            |
| NB100 Kohlhasenbrück, Landgut Eule, Berlin                   | 522355 | 130900 | FUB (Freie Universität Berlin) |
| NB105 Charlottenburg West, Neidenburger Alle 22, 14055 Bln   | 523018 | 131537 | PRV                            |
| NB106 Waidmannslust, Zabel-Kr□ger-Damm 83, 13469 Berlin      | 523647 | 132022 | PRV                            |
| NB107 Lübars, Alte Fasanerie 107                             | 523720 | 132135 | GAR                            |
| NB108 Gatow, Flughafen, Berlin                               | 522816 | 130819 | FUB                            |
| NB111 Konradshöhe, Sandhauser Str. 52, 13505 Berlin          | 523536 | 131335 | PRV                            |
| NB113 Zehlendorf, Viernheimer Weg 5, 14163 Berlin            | 522701 | 131445 | PRV                            |
| NB114 Rudow, Putenweg 10, 12355, Berlin                      | 522437 | 132927 | PRV                            |
| NB115 Schulzendorf, Meißner, Egelstieg 4, 15732 Berlin       | 522214 | 133539 | PRV                            |
| NB117 Lichtenberg, 10315, Kolonie Bielefeld 119              | 523110 | 133114 | PRV                            |
| NB118 Teltow, 14513, Mahlower Str. 117                       | 522300 | 131830 | PRV                            |
| NB119 Friedrichshagen, Erpetal, 12587, Wiesenweg 37          | 522738 | 133646 | PRV                            |
| NB120 Friedrichshagen, 12587, Dahlwitzer Landstr. 30         | 522740 | 133740 | FOA                            |
| NB122 Müggelberge, 12559, Lehrkabinett                       | 522515 | 133800 | FOA                            |
| NB125 Köpenick, Treptow, 12555, An der Wuhlheide 263         | 522727 | 133400 | FOA                            |
| NB127 Müggelheim, 12559, Forsthaus Müggelheim 01             |        | 134010 |                                |
| NB128 Schmöckwitz, 12527, Schappachstr. 35                   | 522340 | 133755 | FOA                            |

| NB131 Buch, Hobrechtsfelde, Dorfstr. 50                        | 524005 | 132925 | FOA |
|----------------------------------------------------------------|--------|--------|-----|
| NB132 Buch, Hobrechtsfelder Chaussee 123, 13125 Berlin         | 523853 | 132900 | FOA |
| NB134 Wuhletal, Forsthaus, Buckower Ring, 12683                | 523130 | 133430 | FOA |
| NB140 Biesdorf 140, Schwabenallee 52, 12683                    | 522945 | 133400 | PRV |
| NB141 Hermsdorf, Jahnstr. 17, 13467 Berlin                     | 523651 | 131839 | PRV |
| NB142 Friedrich-Engels-Gymnasium, Emmentaler Str.67, 13407 Bln | 523409 | 132128 | PRV |
| NB144 Fasanenstr., Müller-Breslau-Str. 12, 10623 Berlin        | 523040 | 132002 | FUB |
| NB145 Tempelhof, Radiosondenstation 145                        | 522841 | 132455 | FUB |
| NB146 Marzahn, Zossener Str. 26, 12629 Berlin                  | 523253 | 133509 | FUB |
| NB147 Albrecht-Thaer-Weg 5, 14195 Berlin                       | 522808 | 131804 | FUB |
| NB149 Fichtenberg, Carl-HeinrBecker-W. 6-10, 12165 Berlin      | 522729 | 131836 | FUB |
| NB150 Dahlem, Podbielskiallee 62, 12165 Bln, Botan.Garten      | 522713 | 131806 | FUB |
| NB151 Kaniswall, Freiheit 15, 12555 Berlin                     | 522410 | 134354 | DWD |
| NB152 Lichtenrade, Regensburger Str. 16a, 12309 Berlin         | 522308 | 132454 | FUB |
| NB192 Grünau, Regattastr. 192, 12527 Berlin                    | 522448 | 133514 | FOA |
| NB238 Blankenburg, Buchholz Straße 49 28, 13127 Berlin         | 523546 | 132626 | PUW |
| NB240 Buch, Walter-Friedrich-Str., 13125 Berlin                | 523755 | 132945 | PUW |
| NB242 Prenzlauer Berg, Erich-Weinertstr. 131, 10409 Berlin     | 523246 | 132625 | PUW |
| NB247 Marzahn, Wiesenburger Weg, 12681 Berlin                  | 523245 | 133230 | PUW |
| NB248 Friedrichshain, Rudolfstr. 15, 10245 Berlin              | 523022 | 132719 | PUW |
| NB256 Köpenick, Wendenschloßstr. 93, 12559 Berlin              | 522645 | 133509 | PUW |
| NB277 Kaulsdorf, Mieltschiner Str., 12621 Berlin               | 522949 | 133449 | WAW |
| NB279 Johannisthal, Königsheideweg 222, 12487 Berlin           | 522652 | 133009 | WAW |
| NB280 Wuhlheide, An der Wuhlheide, 12459 Berlin                | 522805 | 133215 | WAW |
| 10379 Potsdam, Observatorium, Potsdam                          | 522301 | 130350 | DWD |
| 10382 Tegel, Flughafen                                         | 523355 | 131840 | DWD |
| 10384 Tempelhof, Flughafen                                     | 522807 | 132414 | DWD |
| 10385 Schönefeld, Flughafen                                    | 522256 | 133157 | DWD |
| 10389 Alexanderplatz                                           | 523113 | 132434 | DWD |
| NB500 Schmargendorf (Garten Sorge-Junior)                      | 522833 | 131849 | PRV |
| NB501 Schmargendorf (Garten Sorge-Senior)                      | 522836 | 131750 | PRV |
|                                                                |        |        |     |

# Anhang B: Stationen des 5-Minuten-Messnetzes

| 73 Regenmessstationen                                     | Breite Läng | e Gruppe                          |
|-----------------------------------------------------------|-------------|-----------------------------------|
| FUB01 Tempelhof                                           | 522841 1324 | 55 FUB (Freie Universität Berlin) |
| FUB02 Gatow, Flughafen                                    | 522816 1308 |                                   |
| FUB03 Botanischer Garten                                  | 522713 1318 | 06 FUB                            |
| FUB04 Marzahn, Zossener Straße 26                         | 523253 1335 | 09 FUB                            |
| FUB05 Tegel-Forstamt                                      | 523620 1316 | 15 FUB                            |
| FUB06 Fasanenstraße                                       | 523040 1320 | 02 FUB                            |
| FUB07 FB-Messwiese                                        | 522729 1318 | 36 FUB                            |
| BWB01 Berlin VII (Tiergarten), 10785, Gentiner Straße 10  | 523023 1321 | 40 PUW (Berliner Wasserbetriebe)  |
| BWB02 Lichtenrade, 12305, John Locke Straße 45-47         | 522327 1324 | 16 PUW                            |
| BWB03 Marienfelde I, 12277, Grillostr. 33                 | 522450 1322 | 40 PUW                            |
| BWB04 Spandau II, 13599, Daumstr. 1                       | 523223 1313 | 55 PUW                            |
| BWB05 Spandau III, 13587, Wegscheiderstr. 40a             | 523331 1312 | 12 PUW                            |
| BWB06 Berlin I (Kreuzberg), 10999, Paul-Linke-Ufer 19     | 522945 1325 | 57 PUW                            |
| BWB07 Neukölln I, 12045, Schandauer Str. 14               | 522906 1326 | 31 PUW                            |
| BWB08 Neukoelln II, 12057, Sonnenallee 289                | 522820 1328 | 00 PUW                            |
| BWB09 Charlottenburg I, 14059, Sophie-Charlotte Str. 114  | 523114 1317 | 11 PUW                            |
| BWB10 Berlin VIII, 10555, Alt Moabit 70                   | 523129 1319 | 55 PUW                            |
| BWB11 Berlin X (Wedding), 13357, Bellermannstr 6          | 523320 1323 | 15 PUW                            |
| BWB12 Zehlendorf II, 14167, Teltower Damm 282             | 522435 1316 | 07 PUW                            |
| BWB13 Berlin IX (Wedding), 13353, Seestr 3                | 523238 1320 | 20 PUW                            |
| BWB14 Spandau Ia, 14081, Gatower Str. 328                 | 522929 1310 | 42 PUW                            |
| BWB15 Spandau Vc, 13591, Nennhauser Damm 56               | 523155 1308 | 26 PUW                            |
| BWB16 Wilmersdorf, 10717, Hohenzollerndamm 208            | 522945 1319 | 50 PUW                            |
| BWB17 Wilmersdorf a, 14193, Königsallee 73                | 522849 1315 | 38 PUW                            |
| BWB18 Heiligensee, Heiligenseestr 59                      | 523618 1314 | 15 PUW                            |
| BWB19 Frohnau (Waida), 13465, Bifröstweg 7                | 523749 1317 | 50 PUW                            |
| BWB20 Zehlendorf le, 14109, Stölpchenweg 48               | 522423 1308 | 31 PUW                            |
| BWB21 Zehlendorf Ih, 14109, Am großen Wannsee 8           | 522603 1309 | 53 PUW                            |
| BWB22 Britz, 12359, Späthstr 29                           | 522708 1327 | 31 PUW                            |
| BWB23 Rudow,12357, Stubenrauchstr. 112                    | 522529 1329 | 23 PUW                            |
| BWB24 Johannisthal, 12487, Winckelmannstr. 36             | 522648 1330 | 28 PUW                            |
| BWB25 Köpenick, Lindenstr.                                | 522708 1334 | 11 PUW                            |
| BWB26 Friedrichshagen, 12587, Peter-Hille-Str.78          | 522718 1337 | 21 PUW                            |
| BWB27 Köpenick If (Müggelheim),12559,Becherbacherstr. 25  | 522458 1340 | 04 PUW                            |
| BWB28 Oberschöneweide, 12459, Wilhelminenhofstr 9         | 522746 1330 | 48 PUW                            |
| BWB29 Malchow, 13051, Ribnitzerstr. 40                    | 523405 1329 | 28 PUW                            |
| BWB30 Pw Berlin V (Friedrichshain), Holzmarktstr. 31      | 523040 1325 | 42 PUW                            |
| BWB31 Üpw Reinickendorf I, 13407, Zermatterstr. 28        | 523402 1321 | 00 PUW                            |
| BWB32 Pw Hohenschönhausen, 13053, Waldowstr. 2-5          | 523254 1329 | 42 PUW                            |
| BWB33 Pw Weißensee, Erich-Weinert-Str. 131                | 523246 1326 | 25 PUW                            |
| BWB34 Pw Lichtenberg, Fischerstr. 30                      | 522955 1329 | 37 PUW                            |
| BWB35 Pw Grünau, 12527, Weißenseestr. 507                 | 522517 1334 | 21 PUW                            |
| BWB36 Pw Friedrichshain, Rudolfstr. 15                    | 523022 1327 | 19 PUW                            |
| BWB37 Pw Bln III (Kreuzberg), 10963, Schöneberger Str. 21 | 523013 1322 | 48 PUW                            |
| BWB38 ÜPw Charlottenburg 1a, Salzufer 21                  | 523115 1319 | 20 PUW                            |

| BWB39 pw Charlottenburg III,13627, Nonnendamm 37          | 523157 131701 | PUW                          |
|-----------------------------------------------------------|---------------|------------------------------|
| BWB40 Pw Karlshorst, Sadowastr. 20                        | 522846 133049 | PUW                          |
| BWB41 Pw Köpenick I, Wendenschlossstr. 93                 | 522645 133509 | PUW                          |
| BWB42 Üpw Reinickendorf II, 13409, Klixstr. 608           | 523415 131843 | PUW                          |
| BWB43 Apw Tempelhof, 12103, Burgemeisterstr. 15-16        | 522732 132256 | PUW                          |
| BWB44 Pw Mariendorf, 12105, Blumenweg 4-7                 | 522647 132223 | PUW                          |
| BWB45 Pw Niederschönhausen, 13156, Leonhard-Frank.Str. 6  | 523427 132331 | PUW                          |
| BWB46 Pw Marzahn, 12281, Wiesenburger Weg 14              | 523245 133230 | PUW                          |
| BWB47 Pw Biesdorf, 12683, Grabensprung 79                 | 523015 133312 | PUW                          |
| BWB48 Üpw Tegel, 13507, Wilkestr. 9-13                    | 523525 131637 | PUW                          |
| BWB49 Pw Karow, 13125, Pankgrafenstr. 12c                 | 523702 132723 | PUW                          |
| BWB50 Üpw Waidmannslust, 13469, Dianastr. 6-6a            | 523638 131848 | PUW                          |
| BWB51 Pw Buchholz, 13127, Straße49 28                     | 523547 132613 | PUW                          |
| BWB52 Mitte, Scharnhorstr.12                              | 523207 132220 | PUW                          |
| BWB53 Hpw Berlin II (Kreuzberg), 10969, Gitschinerstr. 10 | 522953 132343 | PUW                          |
| BWB54 Hpw Wittenau, 13509, Breitenbachstr. 31             | 523456 131834 | PUW                          |
| BWB55 Hpw Steglitz, 12207, Siemensstr. 37-39              | 522632 131946 | PUW                          |
| BWB56 Hpw Zehlendorf, 14162, Königsstr. 24                | 522515 130923 | PUW                          |
| BWB57 Köpenick, Fahlenbergstr. 62, 12589 Berlin           | 522545 134253 | PUW                          |
| DWD07 Baruth                                              | 520300 133000 | DWD (Deutscher Wetterdienst) |
| DWD08 Potsdam                                             | 522301 130350 | DWD                          |
| DWD09 Dahlem                                              | 522744 131757 | DWD                          |
| DWD10 Tegel Flughafen                                     | 523356 131839 | DWD                          |
| DWD11 Tempelhof Flughafen                                 | 522807 132414 | DWD                          |
| DWD12 Schönefeld Flughafen                                | 522256 133157 | DWD                          |
| DWD16 Buch                                                | 522300 133100 | DWD                          |
| DWD13 Alexanderplatz                                      | 523113 132434 | DWD                          |
| FUB08 Planetarium                                         | 523235 132542 | FUB                          |