21. Demuestra que $1^3 + 2^3 + \cdots + n^3 = [n(n+1)/2]^2$ cualquiera que sea $n \in \mathbb{N}$.

Solución. Lo demostraremos por inducción sobre n. El caso base, en el que n=1, es trivialmente cierto, pues $1^3=1=(1\cdot 2/2)^2$. Supongamos ahora que se verifica para cierto $n\in\mathbb{N}$ y veamos que se cumple para n+1. En efecto, basta comprobar que:

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = \left(\frac{n(n+1)}{2}\right)^{2} + (n+1)^{3} = \frac{1}{4}n^{2}(n+1)^{2} + (n+1)(n+1)^{2}$$
$$= \left(\frac{n^{2}}{4} + n + 1\right)(n+1)^{2} = \frac{n^{2} + 4n + 4}{4}(n+1)^{2}$$
$$= \frac{(n+2)^{2}}{4}(n+1)^{2} = \left(\frac{(n+1)(n+2)}{2}\right)^{2},$$

como queríamos.

25. Demuestra que $n^3 + 5n$ es divisible por 6 para todo $n \in \mathbb{N}$.

Solución. Observamos que $1^3 + 5 \cdot 1 = 6$, que es divisible por 6 trivialmente, de forma que la proposición es cierta en el caso base, en el que n = 1. Supongamos que se verifica para cierto $n \in \mathbb{N}$, digamos que $n^3 + 5n = 6k$ para cierto $k \in \mathbb{N}$, y veamos que se verifica para n + 1. Para ello, basta observar que

$$(n+1)^3 + 5(n+1) = n^3 + 3n^2 + 3n + 1 + 5n + 5$$

$$= (n^3 + 5n) + 3n^2 + 3n + 6$$

$$= (n^3 + 5n) + 3n(n+1) + 6$$

$$= 6k + 3n(n+1) + 6 = 6(k+1) + 3n(n+1),$$

dado que n(n+1) es siempre un número par, pues o bien n es par o bien n+1 es par, deducimos que $3n(n+1)=2\ell$ para cierto $\ell\in\mathbb{N}$ y, por ende,

$$(n+1)^3 + 5(n+1) = 6(k+1) + 6\ell = 6(k+1+\ell),$$

y $(n+1)^3 + 5(n+1)$ es divisible por 6, como queríamos demostrar.

26. Demuestra que $5^{2n} - 1$ es divisible por 8 para todo $n \in \mathbb{N}$.

Solución. Observamos en primer lugar que $5^{2\cdot 1} - 1 = 24 = 8\cdot 3$, de forma que la proposición es cierta en el caso base, para el que n = 1. Supongamos entonces que es verdadera para cierto $n \in \mathbb{N}$, digamos así que $5^{2n} - 1 = 8k$ para algún $k \in \mathbb{N}$, y demostrémosla para n + 1. Basta notar que

$$5^{2(n+1)} - 1 = 5^{2n+2} - 1 = 5^{2n}5^2 - 1 = 25 \cdot 5^{2n} - 1$$
$$= 25 \cdot 5^{2n} - 25 + 24 = 25(5^{2n} - 1) + 24$$
$$= 25 \cdot 8 \cdot k + 8 \cdot 3 = 8(25k - 3)$$

por lo que $5^{2(n+1)} - 1$ es divisible por 8, como queríamos demostrar.

29. Conjetura una fórmula para $1/(1\cdot 3)+\cdots+1/[(2n-1)(2n+1)]$ y demuéstrala empleando el principio de inducción matemática.

Solución. Observamos que

$$\begin{array}{l} \bullet \quad \frac{1}{1 \cdot 3} = \frac{1}{3} = \frac{1}{2 \cdot 1 + 1}, \\ \bullet \quad \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} = \frac{1}{3} + \frac{1}{15} = \frac{6}{15} = \frac{2}{5} = \frac{2}{2 \cdot 2 + 1}, \\ \bullet \quad \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} = \frac{2}{5} + \frac{1}{35} = \frac{3}{7} = \frac{3}{2 \cdot 3 + 1}, \end{array}$$

de forma que conjeturemos que se verifica la fórmula:

$$\frac{1}{1\cdot 3} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

para todo $n \in \mathbb{N}$. Probémosla por inducción sobre n.

Como es sencillo comprobar, el caso base, en el que n=1, es trivialmente cierto. Supongamos que la fórmula es verdadera para cierto $n \in \mathbb{N}$ y probemos con ello que también se verifica para n+1.

Basta observar que

$$\frac{1}{1 \cdot 3} + \dots + \frac{1}{(2n-1)(2n+1)} + \frac{1}{[2(n+1)-1][2(n+1)+1]}$$

$$= \frac{1}{1 \cdot 3} + \dots + \frac{1}{(2n-1)(2n+1)} + \frac{1}{(2n+1)(2n+3)}$$

$$= \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)} = \frac{1}{2n+1} \left(n + \frac{1}{2n+3}\right)$$

$$= \frac{1}{2n+1} \frac{n(2n+3)+1}{2n+3} = \frac{n(2n+3)+1}{(2n+1)(2n+3)} = \frac{2n^2+3n+1}{(2n+3)}$$

$$= \frac{(n+1)(2n+1)}{(2n+1)(2n+3)} = \frac{n+1}{2n+3} = \frac{n+1}{2(n+1)+1},$$

como queríamos.

32. Demuestra que $n < 2^n$ para todo $n \in \mathbb{N}$.

Solución. La desigualdad se verifica trivialmente en el caso base, en el que n=1, pues 1<2 por definición. Supongamos ahora que se verifica para cierto $n\in\mathbb{N}$, y veamos que se satisface para n+1. Para ello, basta observar que

$$n+1 \overset{n \geq 1}{\leq} n+n = 2 \cdot n \overset{\text{H.I.}}{<} 2 \cdot 2^n \overset{\text{def. rec.}}{=} 2^{n+1}$$

33. Demuestra que $2^n < n!$ para todo $n \in \mathbb{N}, n \ge 4$.

Solución. La desigualdad se verifica en el caso base, en el que n=4, puesto que un cálculo directo nos proporciona que

$$2^4 = 16 < 24 = 4!$$

Supongamos así que la proposición se verifica para cierto $n \in \mathbb{N}$ y veamos que se verifica para n+1. Para ello, observamos que

$$2^{n+1} = 2 \cdot 2^n < 2 \cdot n! < (n+1)n! = (n+1)!,$$

donde hemos empleado que 2 < n+1 claramente para $n \ge 4$.

36. Encuentra el mayor $m \in \mathbb{N}$ tal que $n^3 - n$ es divisible por m para todo $n \in \mathbb{N}$, y demuéstralo.

Solución. Supongamos que m divide a n^3-n para todo $n \in \mathbb{N}$. Factorizando la expresión, obtenemos que m divide a (n-1)n(n+1) para todo $n \in \mathbb{N}$.

Dado que esto se verifica para todo $n \in \mathbb{N}$, veamos qué propiedad tiene m para n = 2 (el caso n = 1 es trivial, todo número natural divide a $1^3 - 1 = 0$): sencillamente deducimos que m divide a $1 \cdot 2 \cdot 3 = 6$.

Por ello, m debe ser menor o igual que 6, y las posibles elecciones para m son 1, 2, 3, 6.

Por ej., m=1 satisface la propiedad trivialmente, pero estamos buscando el valor más alto de m.

Es sencillo observar que 6 divide a (n-1)n(n+1) para todo $n \in \mathbb{N}$. ¿Por qué? En primer lugar, (n-1)n(n+1) va a ser siempre un número par, pues bien $n \neq n-1$ son pares o bien n+1 es par, y por ende el producto. Además, bien n-1, n, n+1 va a ser múltiplo de 3. Distinguimos así los siguientes casos posibles:

- \bullet n y n+2 son múltiplos de 2 y n (o n+2, spdg) lo es de 3, por ende n es múltiplo de 6;
- n y n + 2 son múltiplos de 2 y n + 1 es múltiplo de 3, por ende n(n + 1) es múltiplo de 6;
- n+1 es múltiplo de 2 y múltiplo de 3, por ende múltiplo de 6;
- n+1 es múltiplo de 2 y n (o n+2, spdg) lo es de 3; por ende n(n+1) es múltiplo de 6.

En cualquiera de los casos, se trata de un múltiplo de 6, como queríamos concluir.

39. Sean $x_1 = 1$ y $x_2 = 2$ y definamos $x_{n+2} = (x_{n+1} + x_n)/2$ recursivamente para todo $n \in \mathbb{N}$. Emplea el principio de inducción matemática fuerte para demostrar que $1 \le x_n \le 2$ para todo $n \in \mathbb{N}$.

Solución. Para n=1 y n=2 la propiedad de $1 \le x_n \le 2$ se satisface por simple definición de x_1 y x_2 .

Sea $n \in \mathbb{N}$, $n \geq 2$, y supongamos la propiedad cierta para todos (emplearemos el principio de inducción fuerte) los $m \in \{1, ..., n\}$, y veamos con ello que ésta se cumple para n + 1. En efecto,

$$x_{n+1} = \frac{x_n + x_{n-1}}{2} \ge \frac{1+1}{2} = 1,$$

pues $x_m \ge 1$ por hipótesis para cada $m \le n$, mientras que

$$x_{n+1} = \frac{x_n + x_{n-1}}{2} \le \frac{2+2}{2} = 2,$$

pues $x_m \leq 2$ por hipótesis para cada $m \leq n$. Esto concluye la demostración de que $1 \leq x_{n+1} \leq 2$.