

Álgebra Relacional

- Conjunto básico de operações para o modelo relacional
 - Essas operações possibilitam que o usuário especifique requisições básicas de recuperação de informação
- Resultado de uma recuperação de informação
 - Nova relação
 - Pode ser formada a partir de uma ou mais relações
 - As operações da álgebra produzem novas relações, que também podem ser manipuladas usando as operações da mesma álgebra
- Uma sequência de operações da álgebra relacional formam uma expressão da álgebra relacional, cujo resultado será uma relação que representa o resultado de uma consulta ao banco de dados (ou requisição de recuperação da informação)

Operações Relacionais Unárias

- PROJECT
 - Seleciona determinadas colunas (atributos) de uma tabela e descarta as demais colunas.
 - Cria um particionamento vertical
 - · Um contendo as colunas necessárias para o resultado
 - · Outro contendo as colunas descartadas
 - De uma forma geral, a operação de projeção é representada da seguinte forma:

 $\pi_{< lista de atributos>}(R)$

Onde, π (*pi*) é o símbolo usado para representar a operação de projeção e a *< lista de atributos >* é a lista desejada de atributos da relação R.

A operação de projeção remove qualquer tupla duplicada. Então, o resultado da projeção é um conjunto de tuplas e consequentemente, uma relação válida.

Notação:

- Onde,
- A₁, A₂, A_k são nomes de atributos
 - · r é um nome de relação
- O resultado é definido como a relação de k colunas obtidas pela remoção das colunas que não estejam listadas
- Linhas duplicadas são removidas do resultado, desde que as relações sejam conjuntos

Algebra Relacional Cinco operadores básicos Seleção: σ Projeção: Π União: U Diferença: -

Operação UNION O resultado dessa operação, denotada por R∪S é uma relação que inclui todas as tuplas que sejam de R ou de S ou de ambas (R e S). Tuplas duplicadas são eliminadas. Os dois operandos precisam ser de tipos compatíveis. Compatibilidade de tipo As relações dos operandos R₁(A₁, A₂, ..., Aₙ) e R₂(B₁, B₂, ..., Bₙ) precisam ter o mesmo número de atributos e; Os domínios dos atributos correspondentes precisam ser

<u>compatíveis</u>, isto é, $dom(A_i) = dom(B_i)$, para i = 1, 2, ..., n.

Álgebra Relacional - Teoria dos

Álgebra Relacional – Teoria dos Conjuntos

DIFFERENCE (MINUS)

O resultado dessa operação, denotada por R - S, é uma relação que inclui todas as tuplas que estão em R, mas não estão em S.

Os dois operandos precisam ser de tipos compatíveis.

Operação DIFFERENCE

- Notação: r − s
- Definida como:

$$r - s = \{t \mid t \in r \text{ and } t \notin s\}$$

Precisa ser realizado entre relações compatíveis.

Álgebra Relacional

- Cinco operadores básicos
 - Seleção: σ
 - Projeção: п
 - ∘ União: ∪
 - Diferença: -
- Produto Cartesiano: x

Álgebra Relacional - Teoria dos Conjuntos

- ► CARTESIAN (CROSS PRODUCT)
 - Essa operação é usada para combinar tuplas de duas relações
 De modo geral, o resultado de:

$$R(A_1, A_2, ..., A_n) \times S(B_1, B_2, ..., B_m)$$

É uma relação Q com grau n + m atributos (nessa ordem)

$$Q(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$$

- A relação resultante Q tem uma tupla para cada combinação de tuplas uma de R e uma de S
 - Então, se R tem n_R tuplas (denotada como $|R| = n_R$) e S tem n_S tuplas, então:

|R x S| terá n_R * n_S tuplas

Os dois operandos <u>NÃO</u> precisam ter tipos compatíveis

- Notação: r x s
- Definida como:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

Assume que os atributos de r(R) e s(S) são disjuntos, isto é:

$$R \cap S = \emptyset$$

Se os atributos de r(R) e s(S) não são disjuntos,
 então a renomeação precisa ser usada

Renomeando relações

- Permite nomear e referenciar os resultados de expressões da álgebra relacional
- Permite referenciar uma relação por mais que um nome
- Exemplo:

$$\rho_{x}(E)$$

- Retorna a expressão *E* sob o nome *X*
- Se uma expressão da álgebra relacional E tiver aridade n, então:

$$\rho_{x(A_1,A_2,\ldots,A_n)}(E)$$

Retorna o resultado da expressão E sob o nome X e com os atributos renomeados para $A_1, A_2, ..., A_n$.

Renomeando relações

- Exemplos:
 - $-\rho_{comprador}$ (cliente)
 - ρ_(código, nome, rua, saldo, vendedor) (cliente)
 - ρ_{comprador (código, nome, rua, saldo, vendedor)} (cliente)

Exemplo retirado do material da Profa. Dra. Cristina Dutra de Aguiar Ciferr

Operação de atribuição

A operação de atribuição (←) provê um caminho conveniente para expressar consultas complexas

Escrever a consulta como uma programa sequencial consistindo de:

- · Uma série de atribuições
- Seguida por uma expressão, cujo valor é mostrado como o resultado da consulta

A atribuição precisa ser realizada sempre para uma variável de relação temporária

Pode usar a variável em expressões subsequentes

Expressões usando múltiplas operações.

Exemplo:

Α	В	С	D	E
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Expressão de Álgebra Relacional

Definição Formal:

- Uma expressão básica em álgebra relacional consiste de:
 - · Uma relação no banco de dados ou
 - · Uma relação constante
 - Dado que E_1 e E_2 são expressões da álgebra relacional, todas as expressões abaixo também são expressões da álgebra relacional:
 - $E_1 \cup E_2$; $E_1 E_2$; $E_1 \times E_2$
 - $\boldsymbol{\sigma}_{\!p}\left(E_{I}\right)$, p é um predicado sobre os atributos de E_{1}
 - $\Pi_{s}(E_{I})$, s é uma lista contendo alguns dos atributos de E_{1}
 - $\rho_x(E_I)$, x é o nome novo para o resultado de E_1

