

Parâmetros de Linhas de Transmissão

- Os parâmetros de linhas de transmissão e os modelos permitiram a estimação de como a linha se comportará quando de operação.
- Basicamente os parâmetros a serem determinados são:
 - o Resistência série
 - Indutância série
 - Capacitância shunt
 - Condutância shunt
 - A condutância shunt modela a corrente de fuga pelos elementos de isolação dos condutores fase.
 - Em função de seus valores ínfimos esse parâmetro é desconsiderado na modelagem de linhas de transmissão.

26

EESC • USP

Parâmetros de Linhas de Transmissão

- Uma vez determinados, os parâmetros podem ser empregados na representação, por meio de circuito elétrico equivalente, por exemplo, das linhas de transmissão.
- O circuito elétrico a ser considerado depende do comprimento da linha de transmissão e, principalmente, do tipo de fenômeno que se deseja estudar.

Parâmetros de Linhas de Transmissão

- Modelo equivalente para uma linha curta
 - $\circ~$ Em geral, adotado quando a linha tem um comprimento menor do que 100 km.
 - o A admitânica shunt pode ser desconsiderada.

EESC • USP

Parâmetros de Linhas de Transmissão

- · Modelo equivalente para uma linha longa
 - o Modelo adotado para linhas acima de 250 km.
 - o A linha ainda é representada por meio de um circuito elétrico equivalente.
 - o A admitância shunt é dividida igualmente entre as extremidade da linha

Resistência Série

- A resistência em regime de corrente alternada pode ser calculada tendo como base o valor da resistência calculada para o regime de corrente contínua.
- Em regime de corrente contínua e em um condutor circular a corrente se distribui de forma uniforme pela seção transversal do condutor.
- Nessas condições a resistência será calculada da seguinte forma:

$$R_{\mathrm{DC}} = \frac{\rho l}{A} \ (\Omega)$$

30

EESC • USP

Resistência Série

Resistência Série

- Os principais fatores que influenciam na resistência elétrica são:
 - o Frequência (Efeito pelicular ou skin);
 - o Temperatura;
 - o Constituição física em múltiplos condutores;

32

EESC • USP

Resistência Série

Efeito Pelicular

- O Efeito pelicular é um fenômeno caracterizado pela repulsão entre linhas de corrente eletromagnética, criando a tendência desta fluir na superfície do condutor elétrico.
- Este efeito é proporcional à intensidade de corrente, frequência e das características magnéticas do condutor.
- O Efeito pelicular é responsável pelo aumento da resistência aparente de um condutor elétrico, devido a diminuição da área efetiva do condutor.

Resistência Série

Efeito Pelicular

- Uma das maneiras usadas para reduzir o aumento aparente da resistência elétrica devido ao efeito pelicular é o uso de vários condutores trançados, ao invés de um único condutor sólido.
- Para 60 Hz tem-se que *k* = 1.02

$$R_{AC} = kR_{AC}$$

A influência da frequência nos parâmetros de linhas de transmissão serão desenvolvidos em conteúdo específico.

34

EESC • USP

Resistência Série

Efeito Pelicular

Tipo	Denominação	Bi-	Seção	Diâ-	Resistência	Resistência	
			transversal	metro	CC	CA	
		(MCM)	total	(mm)	$(\Omega/\mathrm{km}20^{\circ}\mathrm{C})$	$(\Omega/\mathrm{km}75^{\circ}\mathrm{C})$	
			(mm^2)				
ACSR	Hawk	477	$280,\!85$	21,78	0,1196	0,1435	
ACSR	Grosbeak	636	322,3	25,16	0,0896	$0,\!1075$	
ACSR	Rail	954	526,8	29,59	0,0597	0,0733	
ACSR	Bittern	1272	726,4	34,16	0,0448	0,0558	
ACSR	Thrasher	2312	1235,2	45,78	0,0248	0,0327	
AAC	Sagebrusch	2250	1139,5	43,9	0,0255	0,034	
AAAC		1000	506,7	29,2	0,0661	0,0802	

Resistência Série

Influência da Temperatura

- A resistividade de um material varia linearmente com a temperatura.
- Da mesma forma, a resistência de uma linha irá variar com essa mesma característica e segundo a seguinte relação.

$$R_2 = R_1 \left(\frac{T + t_2}{T + t_1} \right)$$

36

EESC • USP

Resistência Série

Influência da Temperatura

Resistência na temperatura
$$t_2$$

$$R_2 = R_1 \left(\frac{T+t_2}{T+t_1} \right)$$
Resistência na temperatura t_1

Resistência Série

Influência da Temperatura

Material	Resistivity at 20°C (Ω -m)	Temperature Coefficient (°C)
Silver	1.59×10^{-8}	243.0
Annealed copper	1.72×10^{-8}	234.5
Hard-drawn copper	1.77×10^{-8}	241.5
Aluminum	2.83×10^{-8}	228.1

38

EESC • USP

Resistência Série

Influência da Temperatura

- A correção da resistência elétrica é especialmente importante para o cálculo de perdas na transmissão.
- Contudo, esse processo pode ser complexo visto que:
 - o A corrente pelo condutor influencia na sua temperatura;
 - A temperatura influencia na resistência;
 - o A resistência influencia na corrente.
- A temperatura, por sua vez, depende, além da corrente dos seguintes fatores:
 - o Temperatura ambiente;
 - Velocidade do vento;
 - Superfície do cabo;
 - Pressão atmosférica;
 - o Característica de radiação térmica do material do condutor.

Resistência Série

Influência da Temperatura

TABLE 13.2b	Cross-Section Area Aluminum				Diameter		Approx. Current- Carrying Capacity					
Code	Total (mm²)	(kcmil)	(mm ²)	Stranding Al/Steel	Conductor (mm)	Core (mm)	Layers	(Amperes)	DC 25°C	25°C	60 H: 50°C	z) 75°C
Stilt	410	716	363	24/7	26.31	8.76	2	840	81.5	82.2	90.2	98.1
Grebe	388	716	363	45/7	25.63	6.4	3	840	81.5	82.5	90.4	98.4
Gannet	393	666	338	26/7	25.76	9.5	2	800	87.6	88.1	96.6	105.3
Gull	382	667	338	54/7	25.4	8.46	3	800	87.5	88.1	96.8	105.3
Flamingo	382	667	338	24/7	25.4	8.46	2	800	87.4	88.1	96.7	105.3
Scoter	397	636	322	30/7	25.88	11.1	2	800	91.9	92.3	101.4	110.4
Egret	396	636	322	30/19	25.88	11.1	2	780	91.9	92.3	101.4	110.4
Grosbeak	375	636	322	26/7	25.15	9.27	2	780	91.7	92.2	101.2	110.3
Goose	364	636	322	54/7	24.82	8.28	3	770	91.8	92.4	101.4	110.4
Rook	363	636	322	24/7	24.82	8.28	2	770	91.7	92.3	101.3	110.3
Kingbird	340	636	322	18/1	23.88	4.78	2	780	91.2	92.2	101.1	110.0
Swirl	331	636	322	36/1	23.62	3.38	3	780	91.3	92.4	101.3	110.3

A ampacidade fora calculada supondo uma frequência de 60 Hz, velocidade do vento em 2.25 km/h, temperatura do condutor em 75°C e temperatura ambiente em 25°C.

40

EESC • USP

Resistência Série

Influência da Temperatura

	Cross	Cross-Section Area				Approx. Current- Carrying Capacity	Resistance (mΩ/km)			
						, 3 ,	DC 25°C	AC (60 Hz)		
Code	(mm^2)	kemil or AWG	Stranding	(mm)	Layers	(Amperes)		25°C	50°C	75°C
Coreopsis	806.2	1591	61	36.93	4	1380	36.5	39.5	42.9	46.3
Glaldiolus	765.8	1511	61	35.99	4	1340	38.4	41.3	44.9	48.5
Carnation	725.4	1432	61	35.03	4	1300	40.5	43.3	47.1	50.9
Columbine	865.3	1352	61	34.04	4	1250	42.9	45.6	49.6	53.6
Narcissus	644.5	1272	61	33.02	4	1200	45.5	48.1	52.5	56.7
Hawthorn	604.1	1192	61	31.95	4	1160	48.7	51.0	55.6	60.3
Marigold	564.2	1113	61	30.89	4	1110	52.1	54.3	59.3	64.3
Larkspur	524	1034	61	29.77	4	1060	56.1	58.2	63.6	69.0
Bluebell	524.1	1034	37	29.71	3	1060	56.1	58.2	63.5	68.9
Goldenrod	483.7	955	61	28.6	4	1010	60.8	62.7	68.6	74.4
Magnolia	483.6	954	37	28.55	3	1010	60.8	62.7	68.6	74.5
Crocus	443.6	875	61	27.38	4	950	66.3	68.1	74.5	80.9
Anemone	443.5	875	37	27.36	3	950	66.3	68.1	74.5	80.9
Lilac	403.1	796	61	26.11	4	900	73.0	74.6	81.7	88.6
Arbutus	402.9	795	37	26.06	3	900	73.0	74.6	81.7	88.6
Nasturtium	362.5	715	61	24.76	4	840	81.2	82.6	90.5	98.4
Violet	362.8	716	37	24.74	3	840	81.1	82.5	90.4	98.3
Orchid	322.2	636	37	23.32	3	780	91.3	92.6	101.5	110.4
Mistletoe	281.8	556	37	21.79	3	730	104.4	105.5	115.8	126.0
Dahlia	281.8	556	19	21.72	2	730	104.4	105.5	115.8	125.9
Syringa	241.5	477	37	20.19	3	670	121.8	122.7	134.7	146.7
Cosmos	241.9	477	19	20.14	2	670	121.6	122.6	134.5	146.5
Canna	201.6	398	19	18.36	2	600	145.9	146.7	161.1	175.5
Tulip	170.6	337	19	16.92	2	530	172.5	173.2	190.1	207.1
Laurel	135.2	267	19	15.06	2	460	217.6	218.1	239.6	261.0
Daisy	135.3	267	7	14.88	1	460	217.5	218	239.4	260.8

Observações

- 1 cmil equivale à seção transversal de um cabo com 1/1000 de polegada;
- 1 cmil = $506.7 \mu mm^2$

	Cro						
	Total	Alum	inum				
Code	(mm ²)	(kcmil)	(mm ²)				
Stilt	410	716	363				
		$\frac{363 \ mm^2}{506.7 \mu mm^2} = 72$					

EESC • USP

Resistência Série

Efeitos Construtivos do Cabo na Resistência Série

- Existem dois tipos de condutores para linhas de transmissão: Cabos para linhas aérea e cabos para linhas subterrênas.
- Linhas de transmissão constituídas por condutores nús são possuem custos inferiores e manutenção mais simples do que linhas subterrâneas.
- As linhas aéreas empregam condutores de alumínio. O alumínio possui custo e massa inferiores aos do cobre.
- Em função da resistividade maior a seção transversal de condutores de alumínio é maior do que o equivalente em cobre.
- Existem 4 tipos de cabos comerciais de alumínio:
 - o aluminum-conductor-steel-reinforced (ACSR), (Mais empregado)
 - o aluminum-conductor-alloy-reinforced (ACAR),
 - o all-aluminum-conductor (AAC),
 - o all-aluminum alloy-conductor (AAAC).

Resistência Série

Efeitos Construtivos do Cabo na Resistência Série

Os condutores do tipo ACSR são constituídos por camadas alternadas de condutores flexíveis arranjados em espirais em direções opostas para manter unido todo o conjunto, em torno de um núcleo de fios de aço.

Os condutores de aço aumentam da resistência mecânica do cabo com um todo.

44

EESC • USP

Resistência Série

Efeitos Construtivos do Cabo na Resistência Série

- A construção de condutores por meio dessa forma resulta em um processo fabril mais simples e menos dispendioso se comparado com um condutor sólido.
- Contudo, a resistência de cada tento depende da camada na qual se encontra pois, os condutores mais externos são mais longo do que aqueles mais internos.

Resistência Série

Efeitos Construtivos do Cabo na Resistência Série

 A resistência de cada condutor poderá ser calculada da seguinte forma:

$$R_{
m cond} = rac{
ho}{A} \sqrt{1 + \left(\pirac{1}{p}
ight)^2} \left(\Omega/{
m m}
ight)$$

Resistência Série

Efeitos Construtivos do Cabo na Resistência Série

- A resistência de cada camada será resultado do paralelo entre as resistências dos condutores na camada.
- Da mesma forma, a resistência do condutor será resultado da paralelo de cada camada constituinte.