MCMT Homework 3

Shun Zhang

Exercise 3.1

Assume that $\pi(x)=0$ for a $x\in\Omega$. Because $\pi P=\pi$, $\sum_{i\in\Omega}\pi(i)P(i,x)=\pi(x)=0$. Consider state y such that $\pi(y)>0$, then P(y,x)=0. Because π is the stationary distribution for P, so $\pi P^t=\pi$, or $P^t=P$, for arbitrary $t\geq 1$. So $P^t(y,x)=0$ for arbitrary $t\geq 1$. This chain is not irreducible. Contradiction.

Exercise 3.2

Check the distribution at state x, $\pi P_x = \sum_{i \in adj(x)} \pi(i) P(i,x) = \sum_{i \in adj(x)} \frac{deg(i)}{2|E|} \frac{1}{deg(i)} = \sum_{i \in adj(x)} \frac{1}{2|E|} = \frac{deg(x)}{2|E|} = \pi(x)$, where adj(x) is the neighbor set of x, with the size of deg(x).