Statistične simulacije

- 1 Uvod
- 2 Generatorji naključnih števil
- 3 Primeri simulacij tipa Monte Carlo
 - Računanje števila π
 - Računanje določenega integrala
- Maključni sprehodi

Uvod

- Nekateri problemi so preveč kompleksni, da bi jih obravnavali analitično. Uporabimo lahko simulacije
 - Pretok prometa v križišču.
 - Simulacija pojavov, ki jih v naravi ni mogoče (dobro) spremljati: udar strele, vulkanski izburuh, tornado, poplava,...
 - ▶ Poenostavljene simulacije ekonomsko dragih projektov (vesoljske raziskave, raziskave v kemiji,...).
 - Simulacije iger z velikim številom dejavnikov vpliva.

• Simulacije večinoma temeljijo na uporabi računalnika. Poznamo pa tudi druge primere: Leonardo da Vincija in simulacija helikopterja, simulacije v bioloških raziskavah,...

Slika: Model helikopterja po da Vinciju (1493).

- Simulacija je umetno generiranje podatkov, ki mu sledi oblikovanje modela in nastavljanje parametrov.
- Kritična presoja rezultatov simulacije potrdi (vsaj deloma) model, ali ga ovrže in narekuje njegove spremembe.
- Večinoma je pomembno, da so podatki generirani naključno.
- Zato imajo odločilni pomeni generatorji naključnih števil.

Verjetnost meta šestice na klasični igralni kocki zlahka ocenimo statistično. Generiramo N naključnih metov kocke in preštejemo število metov šestice (n_6) . Statistična verjtnost p_6 meta šestice je torej približno

$$p_6 \approx \frac{n_6}{N}$$
.

Oceno še izboljšamo, če poskus ponovimo večkrat in za rezultat vzamemo povprečje.

• Očitno pomembno vlogo igra naključno generiranje podatkov.

Generatorji naključnih števil

Primer

Ista verzija programa Matlab (od verzije 7.4 naprej), bo na vseh računalnikih kot rezultat ukaza rand (1) takoj po zagonu vrnila 0.8147. To naj bi bilo naključno število med 0 in 1???

- Računalniki so deterministični, zato lahko generirajo le psevdonaključna števila.
- To pomeni, da so "naključna" števila določena z nekimi začetnimi parametri.
- Njapogosteje se uporabljajo multiplikativni kongruenčni algoritmi.

• Lehmerjev algoritem: podani so celoštevilski parametri a, c in m ter začetna vrednost x_0 . Tvorimo zaporedje števil

$$x_{k+1} = a x_k + c \mod m, \quad k = 0, 1, \dots$$

- Števila lahko potem z deljenjem z *m* še normiramo na [0,1).
- Pri primerno izbranih parametrih se zdi zaporednje "naključno".
- Sestavljeno je seveda iz končnega števila možnih vrednost, kvečjemu m.

Če za parametre izberemo a = 13, c = 0, m = 31 in $x_0 = 1$, dobimo zaporedje,

1, 13, 14, 27, 10, 6, 16, 22, ...,

oziroma normirano na [0,1)

 $0.0323,\ 0.4194,\ 0.4516,\ 0.8710,\ 0.3226,\ 0.1935.\ 0.5161,\ 0.7097,\ \ldots$

Lahko se prepričamo, da ima zapordje periodo 30.

Med prvimi primeri uprabe tega generatroja je bil IBM v šestdesetih letih prejšnjega stoletja (t.i. Scientific Subroutine Package (SPS)). Izbrali so parametre a=65539, c=0 in $m=2^{31}$. Ostanek se v 32 bitni dolžini preprosto računa, obenem pa je $a=2^{16}+3$, kar olajša računanje množenja. V takratni dobi je bil to zelo pomembno zaradi hitrosti računanja. Toda izbira ima tudi nezaželjene posledice. Ker je (vse po modulu 2^{31})

$$x_{k+2} = (2^{16} + 3) x_{k+1} = (2^{16} + 3)^{2} x_{k}$$
$$= (2^{32} + 6 \cdot 2^{16} + 9) x_{k}$$
$$= [6(2^{16} + 3) - 9] x_{k}.$$

Torej je $x_{k+2} = 6 x_{k+1} - 9 x_k$, kar pomeni, da so tri zaporedna "naključna" števila povezana.

- Matlab je dolgo uporabljal Lehmerjev algoritem s parametri a = 7, c = 0 in $m = 2^{31} 1$.
- Generira normirana števila med 0.00000000046566 in 0.9999999953434 s periodo m-1.
- Kljub temu, da dobimo več kot 10⁹ psevdonaključnih števil, je to za danešnje hitrosti računalnikov premalo.
- Matlab je zato od verzije 5.0 do 7.3 uporabljal algoritem, ki temelji na izsledkih Georgea Marsgalie.
- Od verzije 7.4 naprej pa uporablja Mersenne Twisterjev algoritem. Za podrobnosti si oglejte help rand ali stran http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html

- Očitno je pri izbiri parametrov a, c in m vse določeno z x_0 .
- Številu x_0 rečemo seme.
- Matlab dovoljuje določitev semena pri posameznih generatorjih.
 Izberemo ga denimo iz računalniškega časa (clock).
- Obstajajo pa tudi generatorji, ki temeljijo na popolnoma drugačnih osnovah, recimo na fizikalnih pojavih: žarki sevanja, digitaliziran hrup,...
- Vsi generatorji naključnih števil se ponavadi testirajo s standardnimi statističnimi testi, ki "ocenijo naključnost" generatorja.

Računanje števila π

Primer

Naključno izbiramo pare števil (x, y) v kvadratu $[0, 1] \times [0, 1]$. Označimo z N število vseh izbir, s K pa število tistih izbir, za katere je $x^2 + y^2 \le 1$. Pri predpostavki, da so števila "naključna", očitno velja

$$\frac{K}{N} \approx \frac{\pi/4}{1}$$
,

Torej je

$$\pi pprox rac{4K}{N}$$
.

Prejšnji primer lahko posplošimo v d dimenzij. Izbirajmo sedaj d-terice naključnih števil med -1 in 1, torej $(x_1, x_2, \ldots, x_d) \in [-1, 1]^d$. Spet naj bo N število vseh izbir, K pa število tistih, za katere je $x_1^2 + x_2^2 + \cdots + x_d^2 \leq 1$ (točka (x_1, x_2, \ldots, x_d) leži v enotski d-dimenzionalni krogli v \mathbb{R}^d). Volumen d-dimenzionalne krogle je

$$V_d = rac{\pi^{rac{d}{2}}}{\Gamma\left(rac{d}{2}+1
ight)},$$

kjer je Γ Eulerjeva gama funkcija. Za sode dimenzije d=2 k se formula poenostavi v $V_d=\pi^k/k!$. Ker je volumen kocke $[-1,1]^d$ enak 2^d , je ocena za π torej

$$\pi pprox \left(2^d \Gamma\left(rac{d}{2}+1
ight) rac{K}{N}
ight)^{rac{2}{d}}.$$

Oglejmo si še nekoliko bolj zapleteno simulacijo, <mark>Buffonovo igl</mark>o. Problem je bil prvič zastavljen leta 1777.

Na "neskončnem" papirju so zarisane vzporedne vodoravne črte na razdalji 1. Iglo dolžine 1 vržemo na papir. Kolikšna je verjetnost p, da bo igla presekala kakšno od črt?

Če verjetnost p izračunamo in naredimo simulacijo z N meti, od katerih jih K preseka kakšno od črt, potem velja

$$p \approx \frac{K}{N}$$
.

Izkaže se, da je $p = 2/\pi$, za to je

$$\pi \approx 2\frac{N}{K}$$
.

Kaj pa dva preostala primera, ko je dolžina igle manjša kot razdalja med črtami, ali ko je dolžina igle večja od razdalje med črtami?

Računanje določenega integrala

Numerično želimo izračunati integral

$$\int_a^b f(x)dx.$$

- Uporabimo lahko kakšnega izmed množice kvadraturnih pravil:
 - trapezno pravilo,
 - Simpsonovo pravilo,
 - Gauss-Legendreovo pravilo,
 - **.**...
- Lahko pa integral približno določimo s simulacijo.

Metoda "zadeni ali zgreši"

- Predpostavimo, da je $0 \le f(x) \le M$, $x \in [a, b]$. (Kaj če ni?)
- Izberemo N naključnih točk $(x,y) \in [a,b] \times [0,M]$.
- Denimo, da je K točk takih, za katere je $y \le f(x)$.
- Potem je

$$\frac{K}{N} \approx \frac{\int_a^b f(x) \, dx}{(b-a)M}.$$

Torej je

$$\int_{a}^{b} f(x) dx \approx (b - a) M \frac{K}{N}.$$

Metoda "povprečne vrednosti"

• Izkoristimo dejstvo o povprečni vrednosti

$$f(\xi) = \frac{1}{b-a} \int_a^b f(x) \, dx, \quad \xi \in [a,b].$$

• Če interval [a, b] razdelimo na N enakih podintervalov širine h := (b - a)/N, je na primer

$$\int_a^b f(x) dx \approx h \sum_{i=1}^N f(x_i), \quad x_i = a + (2i-1) h/2, \ i = 1, 2, \dots, N.$$

- Namesto, da bi točke izbirali enakomerno, jih izbiramo naključno na [a,b].
- Tako za vsak nabor N naključnih točk x_i dobimo oceno

$$\int_a^b f(x) dx \approx h \sum_{i=1}^N f(x_i).$$

• Metodo zlahka posplošimo na večkratne integrale:

$$\int_{a_1}^{b_1} \int_{a_2}^{b_2} \cdots \int_{a_d}^{b_d} f(x_1, x_2, \dots, x_d) \, dx_d \, dx_{d-1} \dots dx_1.$$

• Pri klasični intergaciji izberemo N_i naključnih točk $\xi_{i,j}$, $j=1,2,\ldots,N_i$ na $[a_i,b_i]$, $i=1,2,\ldots,d$ in izračunamo približek za integral

$$\frac{(b_1-a_1)\cdots(b_d-a_d)}{N_1\cdots N_d}\sum_{i_1=1}^{N_1}\sum_{i_2=1}^{N_2}\cdots\sum_{i_d=1}^{N_d}f(\xi_{1,i_1},\ldots,\xi_{d,i_d}).$$

• V smislu metode Monte Carlo pa bi večkratni integral lahko izračunali tudi z izborom N naključnih točk v domeni $[a_1, b_1] \times \cdots \times [a_d, b_d]$, namreč

$$\frac{(b_1-a_1)\cdots(b_d-a_d)}{N}\sum_{i=1}^N f(x_{1,i},x_{2,i},\ldots,x_{d,i}).$$

- Pri klasični numerični integraciji moramo v vsaki koordinatni smeri izbrati vsaj nekaj točk. Njihovo število raste kot $N_1N_2\cdots N_d$.
- Pri metodi Monte Carlo pa *N* raste neodvisno od *d*.
- Pokazati se da, da v tem primeru napaka (verjetnostno) pada z \sqrt{N} neodvisno od d.

22 / 22