PURPOSE

AUTOMATE COMPLIANCE ALONG THE DATA SUPPLY CHAIN

SUPPLY CHAIN ARTIFACTS

Interoperable across implementations

Request

Data Consumers

Models data use cases*

Offer

Data Providers

Service Providers

Models data products**

Agreement

Data Providers

+

Data Consumers

Service Providers

Models rights assignments

^{*} Specifically, the rights required to satisfy a data use case

^{**} Specifically, the rights offered by a data product

ORGANISATION-LEVEL FUNCTIONS

Scoped to the organisation

Policy Creation & Maintenance

Offers Agreements

Decision Support

Requests Offers Agreements

Enforcement

Agreements

USE CASES

- 1. Create policy
- 2. Validate policy
- 3. Publish policy
- 4. Manage policy

- 1. Import policy
- 2. Create request
- 3. Decide request
- 4. Permission user

- 1. Access control
- 2. Redistribution

SUPPORTED FLOW

COMPLIANCE CHECK

The compliance check is a *subsumption* check

It's formally defined in OWL and other description logics

$$R_i \, \leq \, A_j$$

VALIDITY CHECK/1

The validity checks the *deontic state* of rules.

This is a concept from deontic logics. We need to formalize it for our domain.

Permission State

VALIDITY CHECK/2

