Travail Pratique 2 (IFT-4201/IFT-7201) Présenté à Audrey Durand

Équipe 10: Adam Cohen, Maxime Genest, Vincent Masse

1. (a)

(b) Réseau cible

L'oubli catastrophique est le fait qu'un réseau de neurones oubli son apprentissage lorsqu'il doit apprendre une nouvelle tâche, c'est un peu comme s'il recommençait son apprentissage à 0. Le fait de fixer les poids θ dans la cible pendant plusieurs mise à jours permet de conserver une certaine stabilité pour permettre la convergence.

(c) Heuristique

Si τ est trop grand, la cible est trop modifié, ce qui risque de compromettre la convergence (voir numéro précédent), le cas limite $\tau=1$ revient à ne pas fixer (même pas partiellement) les targets. Si τ est trop petit, les targets seront trop fixes, et donc les cibles ne sont pratiquement pas améliorées et le réseau apprend donc sur des moins bonnes cibles (non-représentative de ce que l'on doit viser). Le cas limite $\tau=0$ montre un cas où la cible n'est jamais modifiée et gardera toujours sa valeur initiale, ce qui est bien entendu non-souhaitable.

(d) Replay buffer

L'avantage de son utilisation est de briser la corrélation entre les échantillons utilisés lors de la mise à jour (le tuple $(s_t, a_t, r_{t+1}, s_{t+1})$ et le tuple suivant $(s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2})$ partage le même état s_{t+1}). Cela compromet l'apprentissage. Le fait de stocker les échantillons et d'échantillonner une mini-batch plusieurs fois au cours de l'épisode permet contourner ce problème. À COMPLÉTER

(e) Apprentissage supervisée

FIGURE 1 – Évolution des gains et fonction de pertes

- (f) FONCTION DE PERTE À MODIFER
- (g)
- 2. (a)
 - (b)