2011-2012 学年第 2 学期数据结构期末试题 (A)卷

一、填空题(每空 2 分, 共 30 分)

- 1. 数据元素
- 2. 树形、图形(或者网状)
- 3. 链式(或者链接)存储结构
- 4. 确定性、可行性(或者有效性)
- 5. $O(\log_2 n)$
- 6. 栈、队列

- 7. 0x1118
- 8. 11
- 9. 20
- 10. 512, 1023
- 11. 19

二、单项选择题 (每小题 2 分, 共 20 分)

- 1. C
- 2. D
- 3. A
- 4. D
- 5. B

- 6. C
- 7. C
- 8. D
- 9. A
- 10. B

三、分析题(每小题 5 分, 共 30 分)

1.

字母	频率	哈夫曼编码
A	6	0
В	2	100
С	3	101
D	5	11

3.

步骤	顶点		b	距离			路径				
7D 35K		Α	В	C	D	Е	Α	В	C	D	E
0	A	0	1	8	6	4	-	A	-	A	A
1	В	0	1	9	6	3	-	Α	В	A	В
2	E	0	1	8	4	3	-	Α	Е	E	В
3	D	0	1	7	4	3	-	Α	D	Е	В
4	C	0	1	7	4	3	-	A	D	E	В

路径	长度	最短路径
А→В	1	A→B
A→C	7	$A \rightarrow B \rightarrow E \rightarrow D \rightarrow C$
A→D	4	$A \rightarrow B \rightarrow E \rightarrow D$
А→Е	3	$A \rightarrow B \rightarrow E$

4.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
		15	2	3	5	18	31	16	4					

6. ABEFGHCD

ABEGHFCD

ABEGFHCD

ABGHEFCD

ABGEFHCD

四、综合应用题(每题10分,共20分)

2. 空二叉树深度为 0。非空二叉树, 先求左、右子树的深度, 取最大值再加 1(即根结点)。

```
int Depth(NODE *root)
{
    int d = 0, d1, d2;
    if (root)
    {
        d1 = Depth(root->lch);
        d2 = Depth(root->rch);
        d = (d1 >= d2 ? d1 : d2) + 1;
    }
    return d;
}

时间复杂度为 O(n)。
求深度的语句若写成
    d = (Depth(root->lch) >= Depth(root->rch) ? Depth(root->lch) : Depth(root->rch)) + 1;
则会导致重复计算,时间复杂度可达 O(2<sup>n</sup>),应扣分。
```