Épreuves orales des concours d'entrée aux grandes écoles

2021

Légende

\mathbf{C}	cours	α , β , γ	3 niveaux de difficulté
Δ	classique	ş	avec Python
AG	structures élémentaires, arithmétique	Pol	polynômes, fractions rationnelles, complexes
AL	algèbre linéaire de première année	Red	réduction
AQ	algèbre quadratique		
Top	topologie	\mathbf{F}	fonctions
IntS	intégration sur un segment	IntG	intégrale généralisée
Sn	suites et séries numériques	Sf	suites et séries de fonctions
SE	séries entières	\Pr	probabilités, dénombrement
ED	équations différentielles	CD	fonctions de plusieurs variables, calcul
			différentiel
GA	géométrie affine et euclidienne	GD	géométrie différentielle
$_{ m HP}$	Hors programme		

École Polytechnique - MP - 2021

Algèbre

1 AG : β

Soit $a \in \mathbb{Z}$ impair. Existe-t-il $f : \mathbb{Z} \to \mathbb{Z}$ telle que, pour tout $n \in \mathbb{Z}$, $(f \circ f)(n) = n + a$?

 $\mathbf{2} \quad \mathbf{AG} : \alpha$

Quels sont les morphismes de $(\mathbb{Q}, +)$ dans (\mathbb{Q}^*, \times) ?

3 AG,Prob : α

Soit E un ensemble fini de cardinal n. Une antichaîne de longueur q de E est un ensemble $\{A_1, \ldots, A_q\}$ de parties de E tel que, pour tout $i \neq j$, $A_i \not\subset A_j$ et $A_j \not\subset A_i$.

- (a) Donner des exemples d'antichaînes.
- (b) Dénombrer le nombre de bijections de E sur $\{1, \ldots, n\}$ envoyant une partie donnée A de E de cardinal m sur $\{1, \ldots, m\}$.
- (c) Montrer que si $\{A_1, \ldots, A_q\}$ est une antichaîne de E avec $|A_1| = m_1, \ldots, |A_q| = m_q$ alors $\sum_{i=1}^q \frac{1}{\binom{n}{m_i}} \leqslant 1$.
- (d) Déterminer la longueur maximale d'une antichaı̂ne de E.
- 4 AG : α

Résoudre l'équation $\frac{1}{a} + \frac{1}{b} = \frac{n}{a+b}$ d'inconnue (a,b,n) dans $(\mathbb{N}^*)^3$.

5 AG : β

Trouver les $n \in \mathbb{N}$ tels que $\frac{n^3+5}{n^2+7} \in \mathbb{N}$.

6 AG,Sn : α

Soit $n\in\mathbb{N}^*.$ Montrer que $\frac{n}{27}$ a un développement décimal périodique.

Montrer que sa période est égale à 1 ou à 3. Généraliser.

7 AG: γ

Soit $(m,n) \in \mathbb{N}^2$. Montrer que $\frac{(2m)! (2n)!}{(m+n)! m! n!} \in \mathbb{N}$.

8 AG,GA : β

Pour $n \in \mathbb{N}^*$, on note $C_n = \{(x, y) \in (\mathbb{Q}^*)^2, x^2 + y^2 = n\}$.

- (a) Montrer que C_1 est non vide.
- (b) Montrer que C_7 est vide.
- (c) Soit $n \in \mathbb{N}^*$. On suppose que C_n est non vide. Montrer que C_n est infini.
- 9 $AG: \beta$

Soit A une partie de \mathbb{N} contenant 0, non réduite à 0 et stable par somme.

On note $d = \operatorname{pgcd}(A)$.

- (a) Montrer que $\{x-y, (x,y) \in A^2\} = d\mathbb{Z}$.
- (b) On suppose que d = 1. Montrer que $\mathbb{N} \setminus A$ est fini.
- (c) Soient a et b deux entiers naturels premiers entre eux.

Quel est le plus grand entier n'appartenant pas à $a\mathbb{N} + b\mathbb{N}$?

10 AG : γ

Soient $p \ge 5$ un nombre premier, $r = \left\lfloor \frac{2p}{3} \right\rfloor$. Montrer que p^2 divise $\sum_{k=1}^r \binom{p}{k}$.

11 AG : β

Soit p un nombre premier impair.

- (a) Soient $x, y, z \in \mathbb{Z}$ premiers entre eux dans leur ensemble tels que $x^p + y^p + z^p = 0$ et que p ne divise aucun des entiers x, y, z.
 - Montrer qu'il existe trois entiers a, b, c tels que $x + y = a^p$, $y + z = b^p$ et $x + z = c^p$.
- (b) On suppose que 2p+1 est premier. Soit $m \in \mathbb{Z}$ non divisible par 2p+1. Montrer que $m^p \equiv \pm 1$ [2p+1].

12 AG,Prob : β

- (a) Montrer qu'il existe une infinité de nombres premiers congrus à 2 modulo 3.
- (b) Si (G,+) est un groupe abélien, une partie X de G est dite $sans\ somme\ s'il$ n'existe pas de couple $(x,y)\in X^2$ tel que $x+y\in X$. Soit p un nombre premier de la forme 3k+2 avec $k\in \mathbb{N}^*$.

Montrer que $\mathbb{Z}/p\mathbb{Z}$ contient une partie sans somme de cardinal k+1.

- (c) Soient A et B deux parties d'un corps fini \mathbb{K} . Calculer $\sum_{x \in \mathbb{K}^*} |A \cap xB|$.
- (d) Soit A une partie finie et non vide de \mathbb{Z}^* . Montrer qu'il existe une partie B de A sans somme et de cardinal strictement supérieur à $\frac{|A|}{3}$.

13 $AG : \alpha$

Pour $\sigma \in \mathcal{S}_n$, on pose $A(\sigma) = \sigma(1)\sigma(2) + \sigma(2)\sigma(3) + \cdots + \sigma(n-1)\sigma(n)$. Déterminer le maximum de A.

14 AG,Prob : β

Soit $n \in \mathbb{N}^*$. Le but de l'exercice est de déterminer les automorphismes de S_n pour $n \neq 6$.

- (a) Pour toute permutation $\sigma \in \mathcal{S}_n$, on note $Z(\sigma)$ l'ensemble des permutations qui commutent avec σ . Montrer que $Z(\sigma)$ est un sous-groupe de \mathcal{S}_n .
- (b) Déterminer le cardinal de $Z(\sigma)$ lorsque σ est une transposition, puis lorsque σ est un produit de transpositions à supports disjoints.
- (c) Soit φ un automorphisme sur S_n . Montrer que pour tout $\sigma \in S_n$, $Z(\varphi(\sigma)) = \varphi(Z(\sigma))$.
- (d) Soit τ une transposition. Montrer que $\varphi(\tau)$ s'écrit comme un produit de transpositions à supports disjoints.
- (e) Supposons que pour toute transposition τ , $\varphi(\tau)$ soit aussi une transposition. Montrer qu'il existe $\rho \in \mathcal{S}_n$ tel que, pour tout $\sigma \in \mathcal{S}_n$, $\varphi(\sigma) = \rho \circ \sigma \circ \rho^{-1}$.
- (f) Supposons $n \neq 6$. Soit τ une transposition. Montrer que $\varphi(\tau)$ est une transposition. Conclure.

15 AG : β

Soient p un nombre premier et $\alpha \in \mathbb{N}^*$. Dénombrer les carrés de l'anneau $\mathbb{Z}/p^{\alpha}\mathbb{Z}$.

16 AG: α

- (a) Si $\alpha \in \mathbb{N}^*$, résoudre $x^2 = 1$ dans l'anneau $\mathbb{Z}/2^{\alpha}\mathbb{Z}$.
- (b) Pour quels $\alpha \in \mathbb{N}^*$ le groupe $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^*$ est-il cyclique?

17 $AG : \alpha$

Soit $k \in \mathbb{N}$ et $F_k = 1 + 2^{2^k}$. Soit p un diviseur premier de F_k .

- (a) Montrer que p est premier avec 2. Trouver l'ordre de 2 dans le groupe $(\mathbb{Z}/p\mathbb{Z})^*$.
- (b) Soit $t \in [1, k+1]$. Quelle est la classe de p modulo 2^t ?
- (c) Montrer que pour tout $t \in \mathbb{N}^*$, il existe une infinité de nombres premiers congrus à 1 modulo 2^t .

18 AG,Pol : β

Soient p un nombre premier impair, $S = \{1, \dots, \frac{p-1}{2}\}, a \in \mathbb{Z}$ non divisible par p.

- (a) Montrer que $a^{\frac{p-1}{2}} \equiv \pm 1 [p]$.
- (b) Montrer que $a^{\frac{p-1}{2}} \equiv 1$ [p] si et seulement si la classe de a modulo p est un carré de $\mathbb{Z}/p\mathbb{Z}$.
- (c) On écrit, si $s \in S$, $as \equiv e_s(a)s_a$ [p] où $e_s(a) \in \{\pm 1\}$ et où $s_a \in S$. Justifier, puis montrer que $s \mapsto s_a$ est une bijection de S sur lui-même.
- (d) On note $\left(\frac{a}{p}\right)$ l'élément de $\{\pm 1\}$ congru à $a^{\frac{p-1}{2}}$ modulo p. Montrer que $\left(\frac{a}{p}\right)=\prod_{s\in S}e_s(a)$.
- (e) Montrer, pour $m \in \mathbb{N}$ impair :

$$\sin(mx) = (-1)^{(m-1)/2} 2^{m-1} \sin(x) \prod_{k=1}^{(m-1)/2} (\sin^2(x) - \sin^2(k\pi/m)).$$

(f) Montrer, pour p et q premiers distincts, $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1)/4}$.

19 $AG : \alpha$

À quelle condition une permutation de $\{1, \ldots, n\}$ est-elle un carré?

20 $AG: \alpha$

On considère G le groupe des symétries d'un pentagone régulier, c'est-à-dire les isométries vectorielles de \mathbb{C} conservant \mathbb{U}_5 .

(a) Décrire G. En donner un système de générateurs.

On note $\{r, s\}$ un système de générateurs de G, avec $r^5 = 1$ et $s^2 = 1$.

Montrer que $G = \{r^k, 0 \le k \le 4\} \sqcup \{sr^k, 0 \le k \le 4\}$.

(b) On souhaite maintenant montrer que tout groupe à 10 éléments est isomorphe, soit à Z/10Z, soit au groupe des symétries du pentagone. On considère (G,\cdot) un groupe à 10 éléments, non cyclique. Montrer que G possède un élément d'ordre 5, noté ρ , et un élément d'ordre 2, noté σ .

Montrer que $G = \{\rho^k, 0 \leqslant k \leqslant 4\} \sqcup \{\sigma\rho^k, 0 \leqslant k \leqslant 4\}$. Montrer que $\sigma\rho\sigma^{-1} \in \{\rho, \rho^{-1}\}$. En distinguant les cas, conclure.

21 $AG,Red: \alpha$

Soit $n \ge 2$ entier. Soit G un sous-groupe du groupe des permutations de \mathbb{C} , cyclique d'ordre 2^n et contenant la conjugaison $\varphi: z \mapsto \overline{z}$.

On suppose que pour tout $g \in G$, tout $m \in \mathbb{Z}$ et tout $z \in \mathbb{C}$, g(mz) = mg(z).

- (a) Soit H un sous-groupe de G d'ordre 2^{n-1} . Montrer que H contient au moins deux applications \mathbb{R} linéaires.
- (b) Montrer que G contient exactement deux applications \mathbb{R} -linéaires.

22 $AG:\beta$

Soit G un groupe d'ordre 8 non cyclique.

- (a) Montrer qu'il admet un élément d'ordre 2 et que tous les éléments sont d'ordre 1, 2 ou 4.
- (b) On suppose que tous les éléments sont d'ordre au plus 2. Que dire de G? On suppose désormais qu'il existe un élément a d'ordre 4, on note H le sous-groupe engendré par a.
- (c) Montrer que $xHx^{-1} = H$ pour tout $x \in G$.
- (d) Soit $b \in G \setminus H$. Montrer que bab^{-1} vaut a ou a^3 .
- (e) En déduire qu'il existe, à isomorphisme près, au plus cinq groupes d'ordre 8.
- (f) γ Exhiber cinq groupes d'ordre 8 deux à deux non isomorphes.

$AG: \alpha$ **23**

Soient $n \in \mathbb{N}^*$, $F_n = (\mathbb{Z}/2\mathbb{Z})^{\mathbb{Z}/n\mathbb{Z}}$ et $G_n = (\mathbb{Z}/n\mathbb{Z}) \times F_n$. On pose, pour tous (k, f) et $(\ell, g) \in G_n$, $(k, f) * (\ell, g) = (k + \ell, f + g_k)$, où $g_k : x \mapsto g(x + k)$.

- (a) Montrer que $(G_n, *)$ est un groupe.
- (b) Montrer que ce groupe est engendré par (1,0) et (0,u) où u(x)=1 si $x=0,\ u(x)=0$ sinon.
- (c) On suppose n premier. Quels sont les sous-groupes de G_n isomorphes à $\mathbb{Z}/n\mathbb{Z}$?

$\overline{\mathrm{AG}}$: α 24

Soit p un nombre premier impair. On suppose connus les carrés dans $\mathbb{Z}/p\mathbb{Z}$.

Déterminer les carrés dans $\mathbb{Z}/p^2\mathbb{Z}$.

25 $AG,AQ:\beta$

Soit p un nombre premier impair. On note G le groupe des inversibles de $\mathbb{Z}/p\mathbb{Z}$, et H l'ensemble des carrés dans G.

- (a) Montrer que H est un sous-groupe de G de cardinal $\frac{p-1}{2}$.
- (b) Donner une condition nécessaire et suffisante sur p pour que $-1 \in H$.
- (c) Montrer que tout élément de l'anneau $\mathbb{Z}/p\mathbb{Z}$ est somme de deux carrés.
- (d) γ On note $K = \{(a,b) \in (\mathbb{Z}/p\mathbb{Z})^2, a^2 + b^2 = 1\}$ et $L = \{(a,b) \in (\mathbb{Z}/p\mathbb{Z})^2, a^2 + b^2 = -1\}.$ Montrer que K et L ont même cardinal, et en déduire le cardinal de K .
- (e) $\boxed{\gamma}$ Soit $n \in \mathbb{N}$ impair. Dénombrer les $(z_1, \ldots, z_n) \in (\mathbb{Z}/p\mathbb{Z})^n$ tels que $\sum_{k=1}^n z_k^2 = 1$.

26 $AG: \beta$

Soit G un groupe d'ordre 2n avec n impair.

- (a) Montrer que G contient un élément d'ordre 2.
- (b) Montrer que G contient un sous-groupe de cardinal n.

Ind. Considérer l'application Ψ qui à $g \in G$ associe l'application $h \mapsto gh$.

- (c) Dans le groupe symétrique S_4 , on considère a = (123) et b = (12)(34). Calculer aba^{-1} et bab^{-1} .
- (d) Le groupe alterné A_4 contient-il un sous-groupe d'ordre $|A_4|/2$?

27 AG : β

Soient G un groupe fini de neutre e et, pour d diviseur de |G|, $n_d(G)$ le nombre d'éléments d'ordre d de |G|.

- (a) Que vaut $\sum_{d|n} n_d(G)$, où n = |G|?
- (b) Que déduire de la question précédente si G est cyclique?
- (c) Montrer que G est cyclique si et seulement si, pour tout diviseur d de |G|, l'ensemble $\{x \in G ; x^d = e\}$ est de cardinal majoré par d.
- (d) On suppose qu'il existe un corps \mathbb{K} tel que G soit un sous-groupe de $(\mathbb{K}^*, .)$. Montrer que G est cyclique. Que dire si $\mathbb{K} = \mathbb{C}$?

28 AG : β

Soit (G,\cdot) un groupe de cardinal $p^{\alpha}m$ avec p premier, $\alpha \in \mathbb{N}^*$, $m \ge 2$ et $p \land m = 1$.

Soit E une partie de G de cardinal p^{α} . On pose $G_E = \{g \in G, g \cdot E = E\}$ et $\mathcal{O}_E = \{g \cdot E ; g \in G\}$.

- (a) Montrer que G_E est un sous-groupe de G de cardinal $\leq p^{\alpha}$.
- **(b)** Montrer que $|G| = |G_E| \times |\mathcal{O}_E|$.
- (c) Montrer l'équivalence entre :
 - (i) $p \not\mid |\mathcal{O}_E|$,
 - (ii) $|G_E| = p^{\alpha}$,
 - (iii) $|\mathcal{O}_E| = m$.
- (d) On note X l'ensemble des parties de G de cardinal p^{α} . Déterminer le cardinal de X. Montrer que p ne divise pas |X|.
- (e) Montrer que G possède un sous-groupe de cardinal p^{α} .

29 AL, Top, AG : β

- (a) Soient G un groupe, $\chi_1, \ldots \chi_m$ des morphismes distincts de G dans \mathbb{C}^* . Montrer que (χ_1, \ldots, χ_m) est une famille libre de \mathbb{C}^G .
- (b) Déterminer les morphismes de groupes continus de \mathbb{U} dans \mathbb{C}^* .

30 $Pol,AG: \beta$

Soit $r \in \mathbb{Q}$. Pour $n \in \mathbb{N}$, soit $a_n = 2\cos(2^n \pi r)$.

- (a) Montrer que $(a_n)_{n\in\mathbb{N}}$ est périodique à partir d'un certain rang.
- (b) On suppose que $\cos(\pi r) \in \mathbb{Q}$. Montrer que tous les a_n sont dans \mathbb{Z} .
- (c) Vérifier que $\mathbb{Q}[i] = \{a + ib ; (a, b) \in \mathbb{Q}^2\}$ est un sous-corps de \mathbb{C} .
- (d) Déterminer les éléments d'ordre fini du groupe multiplicatif de $\mathbb{Q}[i]$.

31 $\operatorname{Pol}: \alpha$

Soient $a_1 < b_1 < \cdots < a_n < b_n$ des réels. Donner une fonction polynomiale dont les maxima locaux soient atteints en $\{a_1, \ldots, a_n\}$ et les minima locaux soient atteints en $\{b_1, \ldots, b_n\}$.

32 AG,Pol : γ

Soit $P \in \mathbb{C}[X]$. On suppose que P induit une surjection de \mathbb{Q} sur \mathbb{Q} .

- (a) Montrer que P appartient à $\mathbb{Q}[X]$.
- (b) Montrer que P est de degré 1.

33 $\operatorname{Pol}: \gamma$

Soient (a_n) une suite de complexes non nuls, et $P_n = a_0 + a_1 X + \cdots + a_n X^n$. Soit r > 0. Montrer que pour n assez grand, les racines de P_n ne sont pas toutes dans le disque |z - r| < r.

34 Pol,AG : β

Soit $P \in \mathbb{Z}[X]$. On suppose que, pour tout $n \in \mathbb{N}$, P(n) est premier. Montrer que P est constant.

35 $AG,Pol,AL: \alpha$

On pose $\omega = e^{\frac{2i\pi}{5}}$

- (a) Déterminer le polynôme minimal de ω dans $\mathbb{Q}[X]$.
- (b) On pose $\mathbb{K} = \text{Vect}_{\mathbb{Q}}(1, \omega, \omega^2, \omega^3)$. Déterminer sa dimension comme \mathbb{Q} -espace vectoriel.
- (c) Montrer que \mathbb{K} est un corps pour les lois + et \times .
- (d) Donner un algorithme calculant, pour un élément non nul de K, l'expression de son inverse dans la base $(1, \omega, \omega^2, \omega^3)$.
- (e) Montrer qu'il existe un unique automorphisme σ du corps \mathbb{K} tel que $\sigma(\omega) = \omega^2$.
- (f) Soit τ un automorphisme du corps \mathbb{K} . Montrer que $\tau = \sigma^k$ pour un $k \in \{1, 2, 3, 4\}$.

36 $Pol: \alpha \Delta$

> Soient K un sous-corps de \mathbb{C} , P et Q dans $\mathbb{K}[X]$ admettant une racine commune dans \mathbb{C} et P irréductible sur \mathbb{K} . Montrer que P divise Q.

37

On pose pour tout $n \in \mathbb{N}^*$, $\Phi_n = \prod_{\substack{1 \le k \le n \\ k \land n = 1}} (X - e^{2i\pi k/n})$.

(a) Montrer que, pour tout $n \in \mathbb{N}^*$, on a $X^n - 1 = \prod_{d \mid n} \Phi_d$.

- (b) Montrer que, pour tout $n \in \mathbb{N}^*$, $\Phi_n \in \mathbb{Z}[X]$.
- (c) Expliciter Φ_n pour tout n entre 1 et 8.

38

Pol,AG,Sn : β Pour $n \in \mathbb{N}^*$, on note μ_n l'ensemble des racines primitives n-ièmes de 1 et on pose $\Phi_n = \prod_{z \in \mu_n} (X - z)$.

- (a) Montrer que $\prod_{i} \Phi_d = X^n 1$, puis que, pour $n \in \mathbb{N}^*$, Φ_n est dans $\mathbb{Z}[X]$.
- **(b)** Expliciter Φ_k pour tout $k \in [1, 8]$.
- (c) Soit μ la fonction de \mathbb{N}^* dans \mathbb{N}^* définie par $\mu(1) = 1$, $\mu\left(\prod_{i=1}^r p_i\right) = (-1)^r$ si p_1, \ldots, p_r sont des nombres premiers distincts et $\mu(n)=0$ si n est divisible par le carré d'un nombre premier. Montrer que, si $n \in \mathbb{N}^*$, $\sum_{d|n} \mu(d) = \delta_{1,n}$.
- (d) Soient (G, +) un groupe abélien, f une fonction de \mathbb{N}^* dans G. Soit F la fonction définie par $\forall n \in \mathbb{N}^*$, $F(n) = \sum_{d \mid n} f(d)$. Montrer que, si $n \in \mathbb{N}^*$, $f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) F(d)$.

Comment se transforme cette formule si (G, \times) est un groupe multiplicatif et f une fonction de \mathbb{N}^* dans G?

- (e) En déduire une formule permettant de calculer Φ_n pour $n \in \mathbb{N}^*$. Expliciter Φ_{28} .
- (f) Soit s > 1 réel. Montrer que $\sum_{n \in \mathbb{N}^*} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}$ où $\zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s}$.

39

Soit $m \in \mathbb{N}^*$. On définit par récurrence une suite $(P_n)_{n \in \mathbb{N}}$ de polynômes par

$$P_0 = 1$$
 et $\forall n \in \mathbb{N}, \ P_{n+1} = \frac{1}{2m} (1 - X^2) P'_n + \frac{1}{2} (X + 1) P_n.$

- (a) Montrer que $(\deg P_n)_{n\in\mathbb{N}}$ est bornée.
- (b) Montrer que $(P_n)_{n\in\mathbb{N}}$ converge.

40 $AG: \beta$

Si $F \in \mathbb{C}(X)$ est non constant, on pose $\Phi_F : R \in \mathbb{C}(X) \mapsto R(F) \in \mathbb{C}(X)$.

- (a) Soit $F \in \mathbb{C}(X)$ non constant. Montrer que Φ_F est un endomorphisme d'algèbre de $\mathbb{C}(X)$.
- (b) Montrer que tout endomorphisme d'algèbre de $\mathbb{C}(X)$ est de la forme Φ_F avec F non constant.
- (c) Montrer que tout endomorphisme d'algèbre de $\mathbb{C}(X)$ est injectif.
- (d) Montrer que Φ est un automorphisme d'algèbre si et seulement s'il existe $R \in \mathbb{C}(X)$ tel que $\Phi(R) = X$.
- (e) Soit $F = \frac{P}{Q}$ où $P \wedge Q = 1$. On suppose que Φ_F est un automorphisme. Montrer que $\deg(P) \leq 1$ et $\deg(Q) \leq 1$.
- (f) Déterminer complètement les automorphismes d'algèbre de $\mathbb{C}(X)$.

41 AQ : C

Pour $(a,b) \in \mathbb{R}^2$ soit $M_{a,b} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Donner une interprétation géométrique des matrices $M_{a,b}$.

42 Red : α

Soit f un endomorphisme de \mathbb{R}^{10} qui stabilise tous les sous-espaces de dimension 5. Que dire de f?

43 AL : $\alpha \Delta$

Soient $n \in \mathbb{N}^*$ pair et $M \in \mathcal{M}_n(\mathbb{Z})$. On suppose que les termes diagonaux de M sont nuls, et les termes en dehors de la diagonale dans $\{-1,1\}$. Montrer que M est inversible.

44 $AL: \beta$

(a) Soient \mathbb{K} un corps, $n, p \in \mathbb{N}^*$.

Soient
$$(A, B, C, D) \in \mathcal{GL}_n(\mathbb{K}) \times \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,n}(\mathbb{K}) \times \mathcal{M}_p(\mathbb{K})$$
 et $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$.

Exprimer det(M) en fonction de det(A) et $de det(D - CA^{-1}B)$.

(b) Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

On suppose que, pour tout $t \in \mathbb{C}$, $\det(A + tB) = \det(A) + t \det(B)$. Que peut-on dire de A et B?

45 AL,Red : α

Soient $n \in \mathbb{N}^*$, $A \in \mathcal{GL}_n(\mathbb{R})$, $B \in \mathcal{M}_n(\mathbb{R})$ de rang 1, $t = \text{Tr}(A^{-1}B)$.

- (a) On suppose que $t \neq -1$. Montrer que A+B est inversible d'inverse $A^{-1} + \frac{A^{-1}BA^{-1}}{1+t}$.
- (b) On suppose que t = -1. Montrer que A + B n'est pas inversible.

46 AL,AQ : β

Soient $(n, p, a) \in \mathbb{N}^{*3}$, U_1, \ldots, U_p des parties distinctes de $\{1, \ldots, n\}$ telles que, si $1 \leqslant i < j \leqslant p$, $|U_i \cap U_j| = a$. Montrer que $p \leqslant n$.

Ind. Considérer la matrice $(\mathbf{1}_{k \in U_i})_{\substack{1 \leq k \leq n \\ 1 \leq i \leq n}}$

47 $AL,AQ:\beta$

Soit $n \in \mathbb{N}^*$. Résoudre dans $\mathcal{M}_n(\mathbb{C})$ l'équation A = Com(A).

48 AL : α

Soit K un corps.

On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{K})$ est une comatrice s'il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que M = Com(A).

- (a) Quelles sont les matrices de $\mathcal{M}_n(\mathbf{C})$ qui sont des comatrices?
- (b) Même question sur \mathbb{R} , puis sur \mathbb{Q} .

49 $AL,AG: \alpha$

Soient \mathbb{K} un sous-corps de \mathbb{C} , $n \ge 2$ un entier, $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

On note $C(J) = \{ M \in \mathcal{M}_2(\mathbb{K}) ; AJ = JA \}, \Gamma_n = \{ M \in \mathcal{M}_2(\mathbb{K}) ; M^n = J \}.$

- (a) Déterminer C(J). Vérifier que C(J) est une sous-algèbre commutative de la \mathbb{K} -algèbre $\mathcal{M}_2(\mathbb{K})$.
- (b) Montrer que, si $\mathbb{K} = \mathbb{R}$, la \mathbb{R} -algèbre C(J) est isomorphe à \mathbb{C} . Déterminer Γ_n .
- (c) Montrer que, si $\mathbb{K} = \mathbb{Q}$, la \mathbb{Q} -algèbre C(J) est isomorphe à $\mathbb{Q}[i]$. Déterminer Γ_n . On admettra que les éléments d'ordre fini de $(\mathbb{Q}[i]^*, \times)$ sont ± 1 et $\pm i$.
- (d) Montrer que, si $\mathbb{K} = \mathbb{C}$, la \mathbb{C} -algèbre C(J) est isomorphe à $\mathbb{C} \times \mathbb{C}$. Déterminer Γ_n .

50 Red : α

Soient E un K-espace vectoriel de dimension finie $n \ge 2$ et $u \in \mathcal{L}(E)$.

Montrer qu'il existe une base de E dans laquelle la matrice de u est de la forme $\begin{pmatrix} * & * & * & * \\ * & & & \vdots \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & * & * \end{pmatrix}.$

51 $AL : \alpha$

Soit E un \mathbb{R} -espace vectoriel de dimension finie. Quels sont les endomorphismes de E qui stabilisent les hyperplans de E?

52 Red : $\alpha \Delta$

Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ semblables uniquement à elles-mêmes.

53 Red : β

Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable, C(A) l'ensemble des $M \in \mathcal{M}_n(\mathbb{R})$ qui commutent avec A, C'(A) l'ensemble des $M \in \mathcal{M}_n(\mathbb{R})$ qui commutent avec tout élément de C(A). Montrer que $C'(A) = \mathbb{R}[A]$.

54 Pol,Red : β

(a) Soient $P \in \mathbb{C}[X]$ dont toutes les racines sont de module 1 et $Q \in \mathbb{Z}[X]$ et p premier impair. On suppose que P et Q sont unitaires de degré n et que $P = p^n Q\left(\frac{X-1}{p}\right)$. Montrer que $P = (X-1)^n$.

(b) Soient $C \in \mathcal{M}_n(\mathbb{C})$, $M \in \mathcal{M}_n(\mathbb{Z})$ et p premier impair tels que $C^n = I_n$ et $C = I_n + pM$. Montrer que $C = I_n$.

55 Red : γ

 $\overline{\text{Soit } A} \in \mathcal{M}_n(\mathbb{C}).$

(a) Montrer que $\det(I_n + A\overline{A}) \in \mathbb{R}$.

(b) On suppose qu'il existe $\lambda \in \operatorname{sp}(A\overline{A})$ tel que $\lambda < 0$. Montrer que la dimension de $E_{\lambda}(A\overline{A})$ est paire.

(c) Montrer que $\det(I_n + A\overline{A}) \in \mathbb{R}_+$.

56 Red, Top : $\beta \Delta$

Soit $M \in \mathcal{M}_n(\mathbb{C})$ dont toute valeur propre est de module strictement inférieur à 1. Montrer que la suite $(M^k)_{k \geq 0}$ converge vers 0.

57 Red, Pol : α

On se donne un \mathbb{C} -espace vectoriel E de dimension finie.

(a) Soit $u \in \mathcal{GL}(E)$. Montrer que u^{-1} est un polynôme en u.

(b) Soit $u \in \mathcal{L}(E)$, dont on note $\lambda_1, \ldots, \lambda_p$ les valeurs propres distinctes. On pose $P = \prod_{k=1}^p (X - \lambda_k)$. Montrer que l'on peut définir une suite $(u_n)_{n \in \mathbb{N}}$ d'éléments de $\mathcal{L}(E)$ telle que $u_0 = u$ et, pour tout $n \in \mathbb{N}$:

(i) $P(u_n) = P(u)^{2^n} v_n$ pour un certain polynôme v_n en u;

(ii) $P'(u_n)$ est inversible;

(iii) $u_{n+1} = u_n - P(u_n)P'(u_n)^{-1}$.

58 AG,Red : β

(a) Soient $k \in \mathbb{N}^*$, $N \in \mathbb{N}^*$, $x_1, \ldots, x_k \in \mathbb{R}$. Montrer qu'il existe $q \in [1, N^k]$ et $p_1, \ldots, p_k \in \mathbb{Z}$ tels que, pour tout $i \in [1, k]$, $\left| x_i - \frac{p_i}{q} \right| \leqslant \frac{1}{Nq}$.

(b) Soient E un \mathbb{C} -espace vectoriel de dimension finie muni d'une norme $\| \|$ et $u \in \mathcal{L}(E)$. Montrer que les assertions suivantes sont équivalentes :

(i) $\forall x \in E, \ \forall \varepsilon > 0, \ \exists n \in \mathbb{N}^*, \ \|u^n(x) - x\| \leqslant \varepsilon.$

(ii) u est diagonalisable et toutes ses valeurs propres sont de module 1.

59 Red : β

Soient A et B dans $\mathcal{M}_n(\mathbb{C})$ telles que $AB = BA^2$.

- (a) Que dire si le spectre de A est inclus dans \mathbb{R} et que A et B ne possèdent pas de vecteur propre commun?
- (b) Donner un exemple de matrices A et B vérifiant ces conditions et sans vecteur propre commun.
- (c) Que dire si B est inversible et A nilpotente?
- (d) Que dire si B est inversible et $sp(A) = \{1\}$?

60 Red,AG : β

Soit G un sous-groupe de $\mathrm{GL}_n(\mathbb{C})$. On pose $A = \mathrm{Vect}(G)$.

On suppose qu'il existe un entier $m \ge 1$ tel que $\forall g \in G, g^m = I_n$.

- (a) Montrer que l'on peut trouver une base (g_1, \ldots, g_p) de A formée d'éléments de G.
- (b) On pose $\varphi : a \in A \mapsto (\operatorname{Tr}(ag_1), \dots, \operatorname{Tr}(ag_p))$. Montrer que $\varphi(G)$ est fini.
- (c) Montrer que φ est injective sur G.
- (d) Conclure que G est fini.

61 $AQ,AL : \gamma$

Soit C une partie de $\mathbb{R}^2 \setminus \{0\}$ symétrique par rapport à 0. On suppose que C possède exactement un point d'intersection avec $\{\lambda u, \lambda \in \mathbb{R}_+\}$ pour tout vecteur non nul u de \mathbb{R}^2 . On note G(C) l'ensemble des endomorphismes f de \mathbb{R}^2 tels que f(C) = C. On fait les hypothèses suivantes :

- (i) pour tous u, v dans C, il existe une symétrie s de \mathbb{R}^2 telle que $s \in G(C)$ et s(u) = v,
- (ii) pour tout $u \in C$, il existe une unique symétrie s dans G(C) d'axe Vect(u).

Démontrer que C est l'image du cercle unité de \mathbb{R}^2 par un certain automorphisme de l'espace vectoriel \mathbb{R}^2 .

$AQ,AG:\alpha$ 62

Soit S_n l'ensemble des permutations de $\{1, \ldots, n\}$.

Montrer l'existence de n points A_1, \ldots, A_n dans \mathbb{R}^{n-1} tels que le groupe des isométries vectorielles de \mathbb{R}^{n-1} stabilisant l'ensemble de ces n points soit isomorphe à \mathcal{S}_n .

63 AQ:
$$\gamma$$

Soient (E, \langle , \rangle) un espace euclidien, et U et V deux sous-espaces vectoriels de E.

On note respectivement π_U et π_V les projections orthogonales sur U et V.

Montrer qu'il existe $q \in \mathcal{L}(E)$ et un réel $\rho \in]0,1[$ tels que :

$$\forall n \in \mathbb{N}, \forall x \in E, \ \|(\pi_U \pi_V)^n(x) - q(x)\| \leqslant \rho^n \|x\|.$$

64
$$AQ: \beta \Delta$$

[AQ: $\beta \Delta$]
(a) Soit $M = (m_{i,j})_{1 \le i,j \le 2} \in \mathcal{M}_2(\mathbb{R})$. Montrer que $\det M^2 \le (m_{1,1}^2 + m_{2,1}^2)(m_{1,2}^2 + m_{2,2}^2)$.

(b) Soit
$$M = (m_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$$
. Montrer que $\det M^2 \leq \prod_{j=1}^n \left(\sum_{i=1}^n m_{i,j}^2\right)$.

$AQ,IntS:\beta$ 65

- (a) Soit $d \in \mathbb{N}$. Montrer l'existence de $C_d \in \mathbb{R}_+$ tel que : $\forall P \in \mathbb{R}_d[X], |P(0)| \leq C_d \int_{-1}^1 |P(x)| dx$.
- (b) Que peut-on dire de C_d lorsque $d \to +\infty$?
- (c) Soit $d \in \mathbb{N}$. Montrer l'existence de $K_d \in \mathbb{R}_+$ tel que : $\forall P \in \mathbb{R}_d[X], |P(0)| \leq K_d \left(\int_{-1}^1 |P(x)|^2 dx\right)^{1/2}$. Donner une minoration asymptotique de K_d , en utilisant $(1-x^2)^q$. On pose, pour $n \in \mathbb{N}$, $L_n = \frac{d^n}{dx^n} ((1-x^2)^n)$.
- (d) Montrer que $(L_n)_{n\geqslant 0}$ est orthogonale pour le produit scalaire donné par $\langle f,g\rangle=\int_{-1}^{1}fg$.
- (e) En déduire une expression de K_d .

$AL,AQ,IntS:\beta$ 66

 $(\overline{\mathbf{a}})$ Soient $\varphi_1, \dots, \varphi_n, \varphi$ des formes linéaires sur un espace vectoriel E de dimension finie.

Montrer que φ est combinaison linéaire de $\varphi_1, \dots, \varphi_n$ si et seulement si $\bigcap_{i=1}^n \operatorname{Ker} \varphi_i \subset \operatorname{Ker} \varphi$.

- (b) Pour $n \in \mathbb{N}$, on note $L_n = D^n((X^2 1)^n)$ la dérivée n-ième de $(X^2 1)^n$. Montrer que $\int_{-1}^{1} P(t) L_n(t) dt = 0$ pour tout $P \in \mathbb{R}_{n-1}[X]$.
- (c) On admet temporairement que L_n admet n racines distinctes $x_1 < \cdots < x_n$ dans]-1,1[. Montrer qu'il existe des réels $\alpha_1, \ldots, \alpha_n$ strictement positifs tels que, pour tout $P \in \mathbb{R}_{2n-1}[X]$, on ait :

$$\int_{-1}^{1} P(t) dt = \sum_{k=1}^{n} \alpha_k P(x_k).$$

(d) Démontrer que L_n admet n racines distinctes dans]-1,1[.

67 AL,AQ :
$$\beta$$

Soit $n \in \mathbb{N}$. Déterminer les formes linéaires L sur $\mathcal{M}_{2n+1}(\mathbb{R})$ telles que :

$$\forall (P, M) \in \mathcal{O}_{2n+1}(\mathbb{R}) \times \mathcal{M}_{2n+1}(\mathbb{R}), \ L(PMP^T) = L(M).$$

68 AQ:
$$\gamma$$

Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{A}_n(\mathbb{R})$. Montrer que AB est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

69 AQ,Top : α

Soient $n \in \mathbb{N}^*$, \langle , \rangle le produit scalaire canonique sur \mathbb{R}^n , $\| \|$ la norme associée, N une application de \mathbb{R}^n dans \mathbb{R}_+ telle que $\forall v \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R}$, $N(\lambda v) = |\lambda|N(v)$ et que $\inf\{N(v) ; v \in \mathbb{R}^n, \|v\| = 1\} > 0$. On note Q_N l'ensemble des $M \in \mathcal{S}_n^{++}(\mathbb{R})$ telles que $\forall x \in \mathbb{R}^n \langle x, Mx \rangle \leq N(x)^2$.

- (a) Montrer que Q_N n'est pas vide.
- (b) γ Montrer que det atteint son maximum sur Q_N en un unique point.

Analyse

70 Top : α

Soit f une fonction de \mathbb{R} dans \mathbb{R} . On dit que f est semi-continue inférieurement (s.c.i.) si, pour tout $\alpha \in \mathbb{R}$, $f^{-1}(]-\infty,\alpha]$) est fermé dans \mathbb{R} .

- (a) Montrer que, si f est continue, alors f est s.c.i.
- (b) Donner un exemple de f s.c.i. mais non continue.
- (c) Montrer que f est s.c.i. si et seulement si, pour tout $x \in \mathbb{R}$ et tout $\varepsilon \in \mathbb{R}_+^*$, il existe un voisinage V de x dans \mathbb{R} tel que, pour tout $y \in V$, $f(y) > f(x) \varepsilon$.

71 Top,AL : β

Soient E un espace vectoriel normé de dimension finie, F un sous-espace vectoriel strict de E, et λ une forme linéaire sur F vérifiant $\forall x \in F$, $|\lambda(x)| \leq ||x||$.

- (a) Montrer que pour tous x, z dans F et pour tout y dans E, $\lambda(x) ||x y|| \le ||y + z|| \lambda(z)$.
- (b) Montrer que l'on peut prolonger λ en une forme linéaire $\overline{\lambda}$ sur E telle que : $\forall x \in E, |\overline{\lambda}(x)| \leq ||x||$.

72 Top,F: γ

- (a) Soit $(F_i)_{i\in I}$ une famille de fermés de [0,1] telle que, pour toute partie finie J de I, on ait $\cap_{i\in J}F_i\neq\varnothing$. Montrer que $\cap_{i\in I}F_i\neq\varnothing$.
- (b) Soit \mathcal{I} un idéal de l'anneau $C([0,1],\mathbb{R})$ des fonctions continues de [0,1] dans \mathbb{R} . On suppose que $\mathcal{I} \neq C([0,1],\mathbb{R})$. Montrer qu'il existe $x \in [0,1]$ tel que $\forall f \in \mathcal{I}, f(x) = 0$.

73 Top,AL : β

Soient A une \mathbb{C} -algèbre et $\| \|$ une norme sur A. On suppose, sauf dans la question

- **(b)**, que $\forall (x,y) \in A^2$, $||xy|| \le ||x|| \times ||y||$.
 - Pour $a \in A$, on définit $S(a) = \{\lambda \in \mathbb{C}, a \lambda 1_A \notin A^{\times}\}$ où A^{\times} est le groupe des inversibles de A.
- (a) On se place dans le cas où $A = \mathbb{R}^X$ où X est un ensemble fini non vide. Soit $f \in A$. Montrer que S(f) est fini et l'expliciter.
- (b) On considère ici A une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$ et $||M|| = \max_{i \in [\![1,n]\!]} \sum_{i=1}^n |m_{i,j}|$.

Soit $M \in A$. Montrer que S(M) est fini.

- (c) On suppose A de dimension finie. Montrer que S(a) est compact pour tout $a \in A$.
- (d) On suppose que dans A toute série absolument convergente est convergente. Montrer que S(a) est compact pour tout $a \in A$.
- (e) On revient au cas où A est de dimension finie.

Montrer que tout morphisme d'algèbres de A dans \mathbb{C} est 1-lipschitzien.

74 Top : β

Soit K une partie d'un espace vectoriel normé E.

On dit que K est précompacte lorsque, pour tout $\delta > 0$, il existe une liste finie (x_1, \ldots, x_n) d'éléments de E telle que $K \subset \bigcup_{k=1}^n B_f(x_k, \delta)$, et on note alors $n(K, \delta)$ le plus petit de ces entiers n.

- (a) Montrer que si K est compact alors il est précompact.
- (b) On suppose E de dimension finie d, et K compact d'intérieur non vide. Déterminer un équivalent de $\ln(n(K,\delta))$ lorsque δ tend vers 0^+ .
 - On pourra commencer par le cas où $E = \mathbb{R}^d$ est muni de la norme infinie.
- (c) γ On considère ici l'espace vectoriel $E = \mathcal{C}([0,1],\mathbb{R})$ muni de la norme infinie. On note K l'ensemble des fonctions 1-lipschitziennes de [0,1] dans \mathbb{R} qui s'annulent en 0. Montrer que K est précompact, puis déterminer un équivalent de $\ln(\ln(n(K,\delta)))$ quand δ tend vers 0^+ .

Analyse 11

75 $\operatorname{Sn}:\beta$

Soient $a, b, c \in \mathbb{N}$. Montrer qu'il existe $n \in \mathbb{N}$ tel que $\sqrt{n^3 + an^2 + bn + c} \notin \mathbb{N}$.

76 F : β

Pour $n \in \mathbb{N}$ avec $n \ge 2$, montrer que $n(n+1)^{1/n} < n + H_n$ où $H_n = \sum_{k=1}^n \frac{1}{k}$.

77 $\operatorname{Sn}: \alpha$

Soit $f:[0,1] \to [0,1]$ une fonction 1-lipschitzienne.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite vérifiant $\forall n\in\mathbb{N},\ x_{n+1}=\frac{x_n+f(x_n)}{2}$. Montrer que $(x_n)_n$ converge.

78 $\operatorname{Sn}:\beta$

On fixe un entier $k \geqslant 2$. On considère $u \in \mathbb{R}^{\mathbb{N}}$ telle que $u_0 \geqslant 0$ et, pour $n \in \mathbb{N}$, $u_{n+1} = (u_n+1)^k - ku_n - 1$.

- (a) Montrer l'existence d'un réel r > 0 tel que u converge dès que $u_0 \leqslant r$, et u diverge sinon.
- (b) On suppose $u_0 < r$. Déterminer la nature de la série $\sum u_n$.
- (c) On suppose $0 < u_0 < r$. Déterminer un équivalent de u_n en fonction d'une constante que l'on ne cherchera pas à déterminer.

79 $\operatorname{Sn}:\beta$

Si A est une partie de \mathbb{N} , on dit que A est de densité d si $\frac{|A\cap[0,n]|}{n+1} \underset{n\to+\infty}{\longrightarrow} d$.

- (a) Une partie de N admet-elle toujours une densité?
- (b) Soit $(u_k)_{k\geqslant 0}$ une suite bornée d'éléments de \mathbb{R}_+ . Montrer que $\frac{1}{n+1}\sum_{k=0}^n u_k \xrightarrow[n\to+\infty]{} 0$ si et seulement s'il existe une partie A de \mathbb{N} de densité 0 telle que $u_n \xrightarrow[n\to+\infty]{} 0$.
- (c) Que dire d'une fonction f de \mathbb{R}_+ dans \mathbb{R}_+ transformant toute suite vérifiant les conditions de la question précédente en une suite vérifiant ces mêmes conditions?

80 $\operatorname{Sn}:\beta$

- (a) Soit u une suite réelle telle que $\forall (m,n) \in \mathbb{N}^2$, $u_{m+n} \leqslant u_m + u_n$. Montrer que la suite $\left(\frac{u_n}{n}\right)_{n\geqslant 1}$ admet une limite dans $[-\infty, +\infty[$.
- (b) Un n-chemin dans \mathbb{Z}^2 est une (n+1)-liste (x_0,\ldots,x_n) d'éléments de \mathbb{Z}^2 telle que, pour tout $k\in [0,n-1]$, $\|x_{k+1}-x_k\|_1=1$. Un tel chemin est dit simple lorsque ses éléments sont distincts. On note A_n le nombre de n-chemins simples partant de (0,0). Montrer qu'il existe un réel $\gamma\in [2,4]$ tel que, pour tout $t>\gamma$, $A_n=\mathrm{o}(t^n)$ et, pour tout $t\in [0,\gamma[$, $t^n=\mathrm{o}(A_n)$.

81 $\operatorname{Sn}: \gamma$

Calculer la somme $\sum_{k=1}^{+\infty} \frac{(-1)^k \ln k}{k}.$

82 Sn : β

Soit σ une permutation de \mathbb{N}^* . Nature de la série de terme général $\frac{\sigma(n)}{n^2}$?

83 $\operatorname{Sn}: \gamma$

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite strictement croissante d'entiers naturels non nuls. Nature de la série de terme général $\frac{1}{\operatorname{ppcm}(a_1,\ldots,a_n)}$?

85 Sn,F : β

Soit $(u_n)_{n\geqslant 0}\in (\mathbb{R}_+^*)^{\mathbb{N}}$ une suite décroissante, telle que $u_0=1$ et telle que la série de terme général $\frac{u_n^2}{u_{n+1}}$ converge. Montrer que $\sum_{n=0}^{+\infty}\frac{u_n^2}{u_{n+1}}\geqslant 4$.

87 F : β

Déterminer les $f: \mathbb{R} \to \mathbb{R}$ continues telles que, pour tous $x, y \in \mathbb{R}: f(x+y) f(x-y) = f(x)^2 f(y)^2$.

88 Sf : β

Soit $f: \mathbb{R} \to \mathbb{R}$ continue vérifiant $\forall x \in \mathbb{R}$, f(x+1) = f(x) + 2. Montrer qu'il existe une unique fonction continue $h: \mathbb{R} \to \mathbb{R}$ telle que h(x+1) = h(x) + 1 et h(f(x)) = 2h(x) pour tout réel x.

89 $F: \beta \Delta$

 $\overline{\text{Soit } f}: \mathbb{R} \to \mathbb{R}$

- (a) On suppose que f est deux fois dérivable, que f et f'' sont bornées sur \mathbb{R} . Montrer que f' est bornée sur \mathbb{R} et que $\|f'\|_{\infty} \leqslant \sqrt{2\|f\|_{\infty}\|f''\|_{\infty}}$.
- (b) Soit $r \ge 3$. On suppose que f est r fois dérivable, que f et $f^{(r)}$ sont bornées sur \mathbb{R} . Montrer que, pour $k \in \{1, \dots, r-1\}$, $f^{(k)}$ est bornée sur \mathbb{R} et qu'il existe une constante C_k indépendante de f telle que $\|f^{(k)}\|_{\infty} \le C_k \|f\|_{\infty}^{1-k/r} \|f^{(r)}\|_{\infty}^{k/r}$.

90 $F: \gamma$

Soit $(x_n)_{n\geqslant 0}$ une suite strictement croissante d'éléments de]0,1[convergeant vers 1. Montrer qu'il existe une fonction f de classe C^{∞} de [0,1] dans $\mathbb R$ telle que, si $x\in [0,1]$, f atteigne un maximum local en x si et seulement s'il existe $n\in \mathbb N$ tel que $x=x_n$.

91 $F:\beta$

Soit $f:[0,1] \to \mathbb{R}$. On dit que f est à variation bornée s'il existe M>0 tel que pour toute suite croissante $(a_k)_{1\leqslant k\leqslant n}$ de [0,1], on a $\sum_{k=1}^n |f(a_k)-f(a_{k-1})|\leqslant M$.

- (a) Montrer que si f est monotone, f est à variation bornée.
- (b) Montrer que si f est de classe C^1 , f est à variation bornée.
- (c) Exhiber une fonction continue qui n'est pas à variation bornée.
- (d) Montrer qu'une fonction $f:[0,1] \longrightarrow \mathbb{R}$ est à variation bornée si et seulement si f est différence de deux fonctions croissantes.
- (e) On suppose f à variation bornée. Montrer que, pour tout $\varepsilon > 0$, il existe $h : [0,1] \to \mathbb{R}$ en escalier telle que $||f h||_{\infty} \leq \varepsilon$.

92 F : β

Soit f une fonction de classe C^1 de \mathbb{R} dans \mathbb{R}_+^* tel que $\frac{f'}{f}$ soit bornée et qu'il existe $(\alpha, \beta) \in \mathbb{R}_+^{*2}$ tel que $\forall (x, y) \in \mathbb{R}^2, \alpha f(x) f(y) \leqslant f(x+y) \leqslant \beta f(x) f(y)$.

Montrer que f est de la forme $x \mapsto e^{\gamma x} h(x)$ où $\gamma \in \mathbb{R}$ et où h est à valeurs dans un segment de \mathbb{R}_+^* .

93 $F,Sn:\beta$

On considère l'ensemble E des fonctions continues de \mathbb{R} dans \mathbb{R} .

- (a) Résoudre l'équation $f \circ f \circ f = \mathrm{Id}_{\mathbb{R}}$ dans E.
- (b) Résoudre l'équation $f \circ f \circ f \circ f = \mathrm{Id}_{\mathbb{R}}$ dans E.
- (c) Soit $n \ge 2$ entier. Résoudre dans E l'équation $f^{\circ n} = \mathrm{Id}_{\mathbb{R}}$, où $f^{\circ n}$ désigne l'itéré n-ième de f pour la composition.

94 F : β

Soient $C \in \mathbb{R}_+^*$ et $f : \mathbb{R} \to \mathbb{R}$ telle que $x \mapsto f(x) + \frac{Cx^2}{2}$ et $x \mapsto -f(x) + \frac{Cx^2}{2}$ soient convexes.

- (a) Montrer que f est dérivable.
- (b) Montrer que f n'est pas nécessairement deux fois dérivable.
- (c) Montrer que f est de classe C^1 .

 $\mathbf{95} \quad \boxed{\mathrm{F} : \alpha}$

Soit f une fonction de classe C^2 de \mathbb{R} dans \mathbb{R}_+^* telle que f' < 0 et que $\sup \left\{ \frac{f(x) f''(x)}{f'(x)^2} \; ; \; x \in \mathbb{R}_+ \right\} < 2$. Montrer que $x f(x) \underset{x \to +\infty}{\longrightarrow} 0$.

96 F : α

Soit f une fonction de classe C^3 de \mathbb{R} dans \mathbb{R}_+^* telle que f, f', f'', f''' soient à valeurs dans \mathbb{R}_+^* et que f''' < f. Montrer que $f''^2 < 2ff', f'^2 < 2ff'', f' < 2f$.

97 $ED,F,Pol: \alpha$

Pour $f, g : \mathbb{R} \to \mathbb{R}$, on pose Z(f, g) = fg' - f'g. Soient $r \in \mathbb{N}$ avec $r \ge 2$, f_1, \ldots, f_r des polynômes de $\mathbb{R}[X]$ n'ayant aucune racine commune. On suppose que, pour tout $i, f_i(0) = 1$. On pose $f_0 = f_{r+1} = 1$.

- (a) Soit $i \in \{1, ..., r\}$. Montrer qu'il existe une unique fonction dérivable \hat{f}_i définie au voisinage de 0 telle que $Z(f_i, \hat{f}_i) = f_{i-1}f_{i+1}$ et $\hat{f}_i(x) = 1 + (1 + f'_i(0))x + O(x^2)$.
- (b) Donner une condition nécessaire et suffisante pour que \hat{f}_i admette un prolongement continu à \mathbb{R} .
- (b) Donner une condition nécessaire et suffisante pour que \hat{f}_i admette un prolongement dérivable à \mathbb{R} .

Analyse 13

98 IntS,Pol : γ

(a) α Montrer que pour tout entier $d \ge 1$, il existe un réel $C_d > 0$ tel que

$$\forall P \in \mathbb{R}_d[X], |P(0)| \leqslant C_d \int_{-1}^1 |P(x)| \, \mathrm{d}x.$$

(b) Montrer qu'il existe deux réels a>0 et b>0 tels que, pour tout entier $d\geqslant 1$, on ait

$$\forall P \in \mathbb{R}_d[X], |P(0)| \leqslant (a+bd) \int_{-1}^1 |P(x)| \, \mathrm{d}x.$$

99 $F,IntS: \beta$

Soient $f \in \mathcal{C}^0([0,1],\mathbb{R})$ et $p \in \mathbb{R}_+^*$. On suppose qu'il existe C tel que pour toute fonction φ continue et \mathcal{C}^1 par morceaux de [0,1] dans \mathbb{R} , on ait

$$\int_0^1 f(t) \, \varphi'(t) dt \leqslant C \left(\int_0^1 |\varphi|^p \right)^{1/p}.$$

Montrer qu'il existe C' tel que, pour tous $x,y\in[0,1], |f(x)-f(y)|\leqslant C'|x-y|^{1/p}$. La réciproque est-elle vraie?

100 Sf,IntS : β

Soient a et b deux nombres réels tels que a < b, K une fonction continue de $[a,b]^2$ dans \mathbb{C} , g une fonction continue de [a,b] dans \mathbb{C} . Pour $\lambda \in \mathbb{C}$, on note E_{λ} l'ensemble des fonctions continues f de [a,b] dans \mathbb{C} telles que

$$\forall t \in [a, b], \qquad f(t) - \lambda \int_a^b K(s, t) f(s) ds = g(t).$$

- (a) Montrer qu'il existe $r \in \mathbb{R}_+^*$ tel que, si $|\lambda| < r$, E_{λ} est un singleton.
- (b) On suppose que, pour tout (s,t) de $[a,b]^2$ tel que s>t, K(s,t)=0. Montrer que, pour tout $\lambda\in\mathbb{C}$, E_{λ} est un singleton.

101 IntS : γ

Soient $K:[0,1]^2\to\mathbb{R}_+^*,\ f:[0,1]\to\mathbb{R}_+^*$ et $g:[0,1]\to\mathbb{R}_+^*$ continues telles que

$$\forall x \in [0,1], \ g(x) = \int_0^1 f(y) K(x,y) \, dy \quad \text{et} \quad f(x) = \int_0^1 g(y) K(x,y) \, dy.$$

Montrer que f = g.

102 IntG : α

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ continue intégrable.

- (a) La fonction f est-elle nécessairement de limite nulle en $+\infty$?
- (b) Montrer qu'il existe une suite $(x_n)_{n\geq 0}$ tendant vers $+\infty$ telle que $(x_n f(x_n))$ converge vers 0.

103 IntS : α

Soit f une fonction de classe C^1 de \mathbb{R}_+ dans \mathbb{R}_+^* , $a \in \mathbb{R}$ tel que $\frac{xf'(x)}{f(x)} \xrightarrow[x \to +\infty]{} a$, $m \in \mathbb{R}_+^*$.

Déterminer la limite en $+\infty$ de $\frac{f(mx)}{f(x)}$.

104 IntG : β

- (a) Soit $r \in \mathbb{R}_+ \setminus \{1\}$. Calculer $\int_0^{2\pi} \ln |1 re^{it}| dt$.
- **(b)** Calculer $\int_0^{2\pi} \ln \left| 1 e^{it} \right| dt.$

105 Sf : $\beta \Delta$

Soit $(f_n)_{n\geqslant 0}$ une suite de fonctions convexes de \mathbb{R} dans \mathbb{R} , qui converge simplement vers une fonction f.

- (a) Montrer que f est convexe.
- (b) Montrer que la convergence est uniforme sur tout segment de \mathbb{R} .
- (c) On suppose que les f_n et f sont dérivables. Montrer que (f'_n) converge uniformément vers f' sur tout segment de \mathbb{R} .

$\mathrm{Sf}:\,\beta\,\Delta$

Pour $n \in \mathbb{N}^*$, on pose $K_n : t \mapsto \frac{1}{n} \sum_{k=0}^{n-1} \sum_{m=-k}^{k} e^{2i\pi mt}$. On appelle polynôme trigonométrique toute fonction de \mathbb{R} dans \mathbb{C} qui est combinaison linéaire de fonctions de la forme $t\mapsto e^{2i\pi mt}$ où $m\in\mathbb{Z}$.

- (a) Donner une expression simplifiée de $K_n(t)$.
- (b) Soit $\varepsilon \in]0,1/2[$. Montrer que $(K_n)_n$ converge uniformément vers la fonction nulle sur $[\varepsilon,1-\varepsilon]$.
- (c) Soit $f: \mathbb{R} \to \mathbb{C}$ continue et 1-périodique.

Pour $n \in \mathbb{N}^*$, on pose $p_n : t \mapsto \int_0^1 K_n(t-s)f(s) \, \mathrm{d}s$. Montrer que $(p_n)_n$ est une suite de polynômes trigonométriques et qu'elle converge uniformément vers f sur \mathbb{R} .

107 $Sf: \beta \Delta$

Soit $(a_n)_{n\geqslant 0}$ une suite décroissante d'éléments de \mathbb{R}_+ .

Pour $n \in \mathbb{N}$ et $t \in [0, \pi]$, on pose $f_n(t) = a_n \sin(nt)$.

- (a) Soit $\delta \in]0,\pi]$. Montrer qu'il existe C>0 telle que, si p et q sont dans $\mathbb N$ avec p< q et $t\in [\delta,2\pi-\delta]$, alors $\left| \sum_{k=p}^{q} a_k \sin(kt) \right| \leqslant C a_p$.
- (b) On suppose que $(a_n)_{n\geqslant 0}$ converge vers 0. Montrer que $\sum f_n$ converge simplement sur $[0,\pi]$.
- (c) γ Montrer que $\sum f_n$ converge uniformément sur $[0,\pi]$ si et seulement si $na_n \to 0$.

- $\overline{\text{AG,SE}}: \gamma$ (a) Soient $n \in \mathbb{N}^*$, \leq un ordre partiel sur $\{1, \dots, n\}$. Montrer que la matrice $(\mathbf{1}_{i\leqslant j})_{(i,j)\in \llbracket 1,n\rrbracket}$ est inversible.
- (b) Soit μ la fonction de \mathbb{N}^* dans \mathbb{Z} définie par $\mu(1) = 1$, $\mu\left(\prod_{i=1}^r p_i\right) = (-1)^r$ si p_1, \ldots, p_r sont des nombres premiers distincts et $\mu(n) = 0$ si n est divisible par le carré d'un nombre premier. Soit $n \in \mathbb{N}^*$. Pour $1 \leqslant i, j \leqslant n$, on pose $M_{i,j} = \mu\left(\frac{i}{j}\right)$ si j divise $i, M_{i,j} = 0$ sinon. Montrer que la matrice $M = (M_{i,j})_{1 \leq i,j \leq n}$ est inversible et calculer son inverse.
- (c) Soit $P \in \mathbb{R}[X]$ tel que P(0) = 0.

Montrer l'existence d'une suite $(a_n)_{n\geqslant 1}$ de réels et de $\alpha>0$ tels que $\forall x\in]-\alpha,\alpha[,\ e^{P(x)}=\prod_{n=1}^{+\infty}\frac{1}{(1-x^n)^{a_n}}$.

109

Soit $f: x \mapsto \sum_{n=1}^{+\infty} \ln(n) x^n$.

- (a) Déterminer le rayon de convergence de cette série entière.
- (b) Donner un équivalent de f en 1^- .
- (c) Déterminer la limite de f en -1^+ .

SE,ED: γ 110

Soit $A: \mathbb{C} \to \mathcal{SL}_2(\mathbb{C})$, dont tous les coefficients sont développables en série entière sur \mathbb{C} . On suppose que pour tout $z \in \mathbb{R}$, on a $A(z) \in SO_2(\mathbb{R})$.

(a) Montrer qu'il existe une fonction φ développable en série entière sur \mathbb{C} , telle que :

$$\forall z \in \mathbb{C}, A(z) = \begin{pmatrix} \cos \varphi(z) & -\sin \varphi(z) \\ \sin \varphi(z) & \cos \varphi(z) \end{pmatrix}.$$

(b) On suppose qu'il existe c > 0 tel que $\forall z \in \mathbb{C}$, $|\cos(\varphi(z))| \leq e^{c|z|}$ et $|\sin(\varphi(z))| \leq e^{c|z|}$. Montrer que φ est affine.

SE,Pol : β 111

Soit $F = \prod_{i=1}^{N} (1 - a_i X)^{\nu_i} \in \mathbb{C}(X)$ où a_1, \ldots, a_N sont des complexes non nuls distincts, ν_1, \ldots, ν_N des entiers relatifs non nuls. On fixe enfin un réel q > 1.

(a) Montrer qu'il existe un réel C > 0 tel que, pour tout réel $x \in]-C, C[$, la série de terme général $\sum_{i=1}^{N} \frac{\nu_i a_i^m}{m(q^m + q^{-m})} x^m \text{ soit convergente.}$

Analyse 15

On note alors
$$Y(x) = \exp\left(-\sum_{m=1}^{+\infty} \sum_{i=1}^{N} \frac{\nu_i a_i^m}{m(q^m + q^{-m})} x^m\right)$$
.

(b) Donner une condition nécessaire et suffisante sur F pour que Y coïncide, sur un voisinage de 0, avec une fonction rationnelle.

112 SE,AL : β

Soient $Q \in \mathbb{C}[X]$ un polynôme tel que Q(0) = 1, $f : W \to \mathbb{C}$ une fonction développable en série entière sur un voisinage W de 0 (dans \mathbb{C}) telle que f(0) = 0 et q > 1.

Pour tout
$$z$$
 au voisinage de 0 , on pose $D(z)=\begin{pmatrix}Q(z)&0\\0&Q(z)^{-1}\end{pmatrix}$ et $A(z)=D(zq)\exp(f(z)E_{1,2})D(z)^{-1}$.

Soit E l'ensemble des fonctions $V:W\to \mathcal{M}_2(\mathbb{C})$ développables en série entière, solutions de l'équation V(zq)=A(z)V(z) au voisinage de 0, et telles que pour tout $z\in W$, V(z) soit une matrice triangulaire supérieure inversible.

- (a) Soit $V \in E$. Montrer que la fonction $z \mapsto \det V(z)$ est constante.
- (b) Montrer qu'on peut supposer Q constant sans nuire à la généralité du problème.
- (c) Relier les éléments de E aux fonctions $\varphi:W\to\mathbb{C}$ développables en série entière et vérifiant la relation $\varphi(z)-\varphi(zq)=f(z)$ au voisinage de 0.
- (d) Étudier l'existence et l'unicité de φ . En déduire une bijection entre E et $\mathbb{C}^* \times \mathbb{C}^* \times \mathbb{C}$.
- (e) Reprendre l'étude en dimension 3, avec $Q_1, Q_2 \in \mathbb{C}[X]$, $Q_1(0) = Q_2(0) = 1$, f_1, f_2 développables en série entière au voisinage de 0, $D(z) = \text{diag}(Q_1(z), Q_2(z)Q_1(z)^{-1}, Q_2(z)^{-1})$ et :

$$A(z) = D(zq) \exp(f_2(z)E_{2,3}) \exp(f_1(z)E_{1,2})D(z)^{-1}.$$

113 ED : α

Résoudre sur \mathbb{R} l'équation différentielle $y'' = (1 + x^2)y$.

On pourra introduire les opérateurs $A: f \mapsto -f' + \operatorname{Id} \times f$ et $B: f \mapsto f' + \operatorname{Id} \times f$.

114 ED,F : $\beta \Delta$

(a) Soient $q_1, q_2 \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$ telles que $q_1 \leqslant q_2$.

Soient y_1 (resp. y_2) une solution non nulle de $y'' + q_1 y = 0$ (resp. $y'' + q_2 y = 0$). Soient $u, v \in \mathbb{R}_+$ tels que u < v, $y_1(u) = y_1(v) = 0$. Montrer que y_2 s'annule sur [u, v].

(b) Soit $m, M \in \mathbb{R}$ avec $0 < m \leq M$.

Soit y une solution non nulle de y''+qy=0 où $q\in\mathcal{C}^0(\mathbb{R}_+,\mathbb{R})$ vérifie $m\leqslant q\leqslant M$. Montrer que l'on peut ranger les zéros de y en une suite croissante $(t_n)_{n\geqslant 0}$ avec, pour tout $n\in\mathbb{N}$, $t_{n+1}-t_n\in\left[\frac{\pi}{\sqrt{M}},\frac{\pi}{\sqrt{m}}\right]$.

115 ED : γ

Soit $q \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$. On suppose que q' est intégrable sur \mathbb{R}_+ et que $q(t) \to 0$ quand $t \to +\infty$. Montrer que les solutions de y'' + (q+1)y = 0 sont bornées sur \mathbb{R}_+ .

116 ED,CD : β

Soit A une application continue de \mathbb{R} dans $\mathcal{M}_2(\mathbb{R})$.

- (a) Montrer qu'il existe une application continue R_A de \mathbb{R}^2 dans $\mathcal{M}_2(\mathbb{R})$ telle que, pour toute application X de classe C^1 de \mathbb{R} dans \mathbb{R}^2 telle que $\forall t \in \mathbb{R}, X'(t) = A(t)X(t)$ et tout $(t_0, t_1) \in \mathbb{R}^2$, on ait $X(t_1) = R_A(t_0, t_1)X(t_0)$.
- (b) On suppose que A(t) est de trace nulle pour tout $t \in \mathbb{R}$. Montrer que, pour tout $(t_0, t_1) \in \mathbb{R}^2$, $\det(R_A(t_0, t_1)) = 1$. Ind. Montrer que, pour toute matrice B et pour tous vecteurs U, V, $\det(BU, V) + \det(U, BV) = \operatorname{Tr}(B) \det(U, V)$.
- (c) On suppose que A est 1-périodique. Montrer que, pour tout $n \in \mathbb{Z}$, $R_A(n,0) = R_A(1,0)^n$.
- (d) On suppose que A est 1-périodique et que, pour tout réel t, A(t) est de trace nulle. Montrer que s'il existe une solution bornée non nulle alors $|\text{Tr}(R_A(1,0))| \leq 2$.
- (e) On garde les mêmes hypothèses sur A et l'on veut établir une réciproque partielle.

On suppose que $|\text{Tr}(R_A(1,0))| < 2$. Montrer que toutes les solutions sont bornées.

Géométrie

117 $\operatorname{Pol}:\beta$

Quels sont les $n \in \mathbb{N}$ tels qu'il existe un cercle du plan dont le nombre de points d'intersection avec \mathbb{Q}^2 soit n? L'intersection peut-elle être infinie?

Probabilités

118 Prob : γ

Soit $n \in \mathbb{N}$. On note T_n le triangle de sommets (0,0), (0,n) et (n,0).

- (a) On note R_n l'ensemble des rectangles inclus dans T_n , dont les sommets sont à coordonnées entières et dont les côtés sont horizontaux et verticaux. Calculer $|R_n|$.
- (b) Soit U_n l'ensemble des rectangles dont les sommets sont à coordonnées entières et qui sont inclus dans un rectangle de R_n . Les côtés des rectangles de U_n ne sont pas nécessairement horizontaux ou verticaux. Calculer $|U_n|$. En donner un équivalent quand n tend vers $+\infty$.

119 Prob,Sn,IntS : γ

On considère $A_n = [0, n]^2$, C_n l'ensemble des carrés d'intérieur non vide, à sommets à coordonnées entières, inclus dans A_n . Soit X_n une variable aléatoire suivant la loi uniforme sur C_n , Y_n l'aire de X_n .

- (a) Déterminer la loi de Y_n .
- (b) Déterminer un équivalent de $\mathbb{P}(Y_n = m)$ à m fixé.
- (c) Montrer que, pour t fixé dans [0,1], $(\mathbb{P}(Y_n \leq tn^2))_{n \geq 0}$ converge.

120 Prob : γ

 $\overline{(\mathbf{a})}$ Soit \overline{X} une variable aléatoire réelle admettant un moment d'ordre 2.

Montrer, si
$$\lambda \in \mathbb{R}_+^*$$
, que $\mathbb{P}(X \geqslant \mathbb{E}(X) + \lambda) \leqslant \frac{\mathbb{V}(X)}{\mathbb{V}(X) + \lambda^2}$

(b) Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires mutuellement indépendantes ayant un moment d'ordre 2. On suppose que, pour tout $n\in\mathbb{N}^*$, $\mathbb{E}(X_n)=0$ et $\mathbb{V}(X_n)\leqslant 1$. On pose $N=\min\{n\in\mathbb{N}^*,\ X_n\leqslant 1\}$. Montrer que e^{aN} est d'espérance finie pour tout $a\in[0,\ln 2[$.

121 Prob,SE,Sf : β

(a) Soient n et r dans \mathbb{N}^* . On appelle composition (resp. composition stricte) de n de longueur r toute suite $i_1, \ldots, i_r \in \mathbb{N}$ (resp. $i_1, \ldots, i_r \in \mathbb{N}^*$) telle que $i_1 + \cdots + i_r = n$.

Dénombrer les compositions de n de longueur r, les compositions strictes de n de longueur r, les compositions strictes de n.

(b) On appelle partition de n toute suite décroissante d'entiers ≥ 1 ayant pour somme n.

On note p(n) le nombre de partitions de n. On pose p(0) = 1 et p(k) = 0 pour $k \leq -1$.

Montrer que
$$n p(n) = \sum_{k,\ell \in \mathbb{N}^*} \ell p(n - k \times \ell)$$
.

122 Prob,Sn : β

Étant donné une permutation $\sigma \in \mathfrak{S}_n$ et un entier $k \in [\![1,n]\!]$, une k-montée de σ est une liste strictement croissante (i_1,\ldots,i_k) d'éléments de $[\![1,n]\!]$ telle que $\sigma(i_1)<\cdots<\sigma(i_k)$.

On munit \mathfrak{S}_n de la probabilité uniforme, et on note X_n la variable aléatoire attribuant à $\sigma \in \mathfrak{S}_n$ le plus grand entier $k \in [\![1,n]\!]$ tel que \mathfrak{S}_n admette une k-montée.

- (a) Montrer, pour tout $k \in [1, n]$, l'inégalité $\mathbb{P}(X_n \ge k) \le \frac{1}{k!} \binom{n}{k}$.
- (b) Mettre en évidence un réel C > 0 tel que $\mathbb{P}(X_n \ge C\sqrt{n})$ tende vers 0 quand $n \to +\infty$.

123 Prob : α

Soit $(X_n)_{n\geqslant 1}$ une suite i.i.d. de variables aléatoires.

On suppose que, pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = -1) = \frac{1}{2}$.

On pose $S_0 = 0$ et, pour $n \in \mathbb{N}^*$, $S_n = X_1 + \cdots + X_n$.

- (a) Calculer $\mathbb{P}(\forall n \in [0, 10], S_n \in \{0, 1\})$.
- **(b)** Calculer $\mathbb{P}(\forall n \in \mathbb{N}, S_n \in \{0, 1\})$.
- (c) Calculer $\mathbb{P}(\forall n \in \mathbb{N}, S_n \in \llbracket -5, 5 \rrbracket)$.
- (d) Montrer que $(S_n)_{n\geqslant 1}$ est presque sûrement non bornée.

Probabilités 17

124 Prob,AG : β

Soit $n \in \mathbb{N}^*$. Pour $i \in \{1, ..., n\}$, on note $a_i = (0, i)$ et $b_i = (1, i)$ des points de \mathbb{R}^2 . Soit σ une variable aléatoire suivant la loi uniforme sur S_n . On pose :

$$I_n = \bigcup_{1 \leqslant i < j \leqslant n} [a_i, b_{\sigma(i)}] \cap [a_j, b_{\sigma(j)}] \qquad \text{et} \qquad I'_n = \bigcup_{1 \leqslant i < j < k \leqslant n} [a_i, b_{\sigma(i)}] \cap [a_j, b_{\sigma(j)}] \cap [a_k, b_{\sigma(k)}].$$

- (a) Calculer $\mathbb{P}(|I_n|=0)$, $\mathbb{P}(|I_n|=1)$. Démontrer que $\mathbb{E}(|I_n|) \leqslant \frac{n(n-1)}{4}$.
- **(b)** γ Montrer que $\mathbb{E}(|I'_n|) = \mathrm{O}(n)$

125 Prob : β

Soit $n \in \mathbb{N}^*$.

- (a) Dénombrer l'ensemble $E_n = \{ f \in [1, n]^{[1,n]} ; \forall i \in [1, n], f(i) \leq i \}$.
- (b) γ Soit f_n suivant la loi uniforme sur E_n . Soit $X_n = \min\{k \in \mathbb{N}^*, f_n^k(n) = f_n^{k-1}(n)\}$. Déterminer la loi de X_n , son espérance et sa variance.
- (c) Calculer $\mathbb{P}\left(f_n^{X_n}(n)=k\right)$.

126 AL,Prob : β

Soit $d \ge 1$ entier. Pour toute partie $A = \{a_1, \ldots, a_d\}$ de [1, d], avec $a_1 < \cdots < a_p$, et toute matrice M de $\mathcal{M}_n(\mathbb{R})$, on pose $M^A = (m_{a_k, a_\ell})_{1 \le k, \ell \le p}$.

(a) Montrer, pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$, l'égalité

$$\det(I_d + M) = \sum_{A \subset [\![1,d]\!]} \det(M^A).$$

Dans la suite, on se donne une variable aléatoire X à valeurs dans $\mathcal{P}(\llbracket 1, d \rrbracket)$.

On suppose qu'il existe $K \in \mathcal{S}_d(\mathbb{R})$ telle que, pour toute partie A de [1,d], on ait $\mathbb{P}(A \subset X) = \det(K^A)$.

(b) Soient $f: [1,d] \to \mathbb{R}$ et D la matrice diagonale de coefficients diagonaux $f(1), \ldots, f(d)$. Montrer que :

$$\mathbb{E}\left(\prod_{i\in X}(1+f(i))\right) = \det(I_d + DK).$$

- (c) Montrer que le spectre de K est inclus dans [0,1].
- (d) Montrer que |X| suit la loi de la somme de d variables de Bernoulli indépendantes dont les paramètres respectifs sont les valeurs propres de K.

127 Prob,Sn : α

Pour $n, k \in \mathbb{N}^*$, on note $S_{n,k}$ le nombre de partitions en k parties (non vides) d'un ensemble à n éléments, et B_n le nombre de partitions de $\{1, \ldots, n\}$. Soit X une variable aléatoire suivant la loi de de Poisson de paramètre 1.

- (a) Soit $p \in \mathbb{N}^*$. Montrer que $p^n = \sum_{k=1}^p \frac{p!}{(p-k)!} S_{n,k}$.
- **(b)** Montrer que $B_n = \mathbb{E}(X^n)$.
- (c) En déduire une expression de B_n sous forme de somme.

128 Prob : $\beta \Delta$

Soient X une variable aléatoire centrée et bornée, $(X_k)_{k\geqslant 1}$ une suite i.i.d. de variables aléatoires suivant la loi de X et $a\in \mathbb{R}_+^*$. Pour $n\in \mathbb{N}^*$, soit $S_n=\sum\limits_{k=1}^n X_k$.

Montrer qu'il existe $C \in [0,1[$ tel que $\forall n \in \mathbb{N}^*, \mathbb{P}(S_n \geqslant na) \leqslant C^n$.

129 Prob : $\beta \Delta$

On considère une population de cellules, issue d'une cellule unique et telle que, à chaque unité de temps, chaque cellule puisse disparaître, rester, se diviser en 2 cellules ou en 3 cellules, ces événements étant équiprobables. On fait également l'hypothèse d'indépendance entre générations. Quelle est la probabilité que la population disparaisse?

130 AG,Prob : α

Soit un entier N > 5. Soient X_1, \ldots, X_N des variables aléatoires indépendantes de même loi. On suppose que X_1 est à valeurs dans $\{1,2,3\}$. On définit une variable aléatoire f à valeurs dans $\mathcal{F}(\mathbb{Z}/N\mathbb{Z},\mathbb{Z}/N\mathbb{Z})$ par $f(\omega)[\overline{n}] = \overline{n + X_n(\omega)}$ pour tout $n \in [\![1,N]\!]$ et toute issue ω . Déterminer la probabilité pour que f soit une permutation ayant au moins trois orbites.

131 Prob,Sn : β

Soit $(U_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles i.i.d. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions à valeurs dans \mathbb{R}_+ telle que f_n ait pour ensemble de départ \mathbb{R}^n pour tout $n\in\mathbb{N}$. On suppose que

$$\forall (m,n) \in \mathbb{N}^2, \ f_{n+m}(U_1,\ldots,U_{m+n}) \leqslant f_n(U_1,\ldots,U_n) + f_m(U_{n+1},\ldots,U_{n+m}).$$

On pose enfin $X_n = f_n(U_1, \dots, U_n)$, et on suppose que X_n possède un moment d'ordre 2.

- (a) Montrer que la suite de terme général $\frac{1}{n}\mathbf{E}(X_n)$ converge vers un réel ℓ .
- **(b)** Soit $\varepsilon > 0$. Montrer que $\mathbf{P}\left(\left|\frac{X_n}{n} \ell\right| \geqslant \varepsilon\right) \underset{n \to +\infty}{\longrightarrow} 0$.

On admettra qu'étant données deux suites $y \in (\mathbb{R}_+)^{\mathbb{N}}$ et $\varepsilon \in \mathbb{R}^{\mathbb{N}^2}$ telles que pour tout $(m,n) \in \mathbb{N}^2$, $y_{m+n} \leqslant \frac{n^2}{(m+n)^2} y_n + \frac{m^2}{(m+n)^2} y_m + \varepsilon_{m,n}$ et $\varepsilon_{m,n}$ tend vers 0 quand m+n tend vers $+\infty$, la suite y converge vers 0.

132 Prob : β

Soient $k \in \mathbb{N}^*$ et Y une variable aléatoire réelle. On dit que Y est k-divisible lorsqu'il existe (sur un certain espace probabilisé a priori différent de celui sur lequel est considérée Y), des variables aléatoires i.i.d. X_1, \ldots, X_k telles que $X_1 + \cdots + X_k \sim Y$, et dans ce cas on dit que la loi de X_1 réalise la k-divisibilité de Y

- (a) On suppose que Y est à valeurs dans \mathbb{N} . Montrer qu'au plus une loi réalise la k-divisibilité de Y.
- (b) On suppose que Y suit $\mathcal{B}(n,p)$ pour un entier $n \ge 1$ et un réel $p \in]0,1[$. Donner une condition nécessaire et suffisante sur k pour que Y soit k-divisible.
- (c) On suppose que Y suit une loi de Poisson. Montrer que Y est k-divisible.
- (d) On suppose que Y est à valeurs dans \mathbb{N} et qu'elle est k-divisible pour tout $k \geqslant 1$. Montrer qu'il existe une famille $(Y_r)_{r \in \mathbf{Q} \cap [0,1]}$ de variables aléatoires entières (sur des espaces a priori différents) telle que $Y_1 \sim Y$, Y_0 soit constante de valeur 0 et, pour tous rationnels r' > r dans [0,1], il existe deux variables aléatoires indépendantes Z et T telles que $Y_{r'} \sim Z + T$, $Z \sim Y_r$ et $T \sim Y_{r'-r}$.

133 Prob,F : β

(a) Soient $p \in [0,1]$ et $t \in \mathbb{R}_+$. Montrer:

$$pe^{(1-p)t} + (1-p)e^{-pt} \le \operatorname{ch} t \le e^{\frac{t^2}{2}}.$$

(b) Soient $p \in [0,1]$ et $m \in \mathbb{N}^*$. On se donne une variable aléatoire B suivant $\mathcal{B}(m,p)$.

Montrer, pour tout $x \ge 0$, l'inégalité $\mathbb{P}(B \ge mx + mp) \le e^{-\frac{mx^2}{2}}$.

(c) Soit $(k,m) \in (\mathbb{N}^*)^2$. On pose n = mk et on se donne une suite (X_1, \ldots, X_n) de variables aléatoires indépendantes, toutes d'espérance μ et d'écart-type σ .

On pose, pour tout i dans [1, m-1], $M_i = \frac{1}{k}(X_{ik+1} + \cdots + X_{ik+k})$. On note N_1, \ldots, N_{m-1} les variables aléatoires définies comme suit : pour tout $\omega \in \Omega$ et tout $i \in [1, m-1]$, $N_i(\omega)$ est la i-ème valeur de $(M_1(\omega), \ldots, M_{n-1}(\omega))$ dans l'ordre croissant, en tenant compte des répétitions.

On pose enfin $M=N_{\lfloor m/2\rfloor}$. Montrer que $\mathbb{P}\left(|M-\mu|\geqslant \frac{2\sigma}{\sqrt{k}}\right)\leqslant 2e^{-m/32}$.