Multivariate extended Poisson-Tweedie regression model

Prof. Wagner Hugo Bonat

Laboratory of Statistics and Geionformation - LEG

Paraná Federal University - UFPR

Conference on Multivariate Count Analysis
Besançon/France

July/2018

Motivation

- Count data are frequent in many research areas:
 - 1. Medical research, biology.
 - 2. Environmental and crop sciences.
 - 3. Economical, social and political sciences.
 - 4. Computer science, electronic engineering and etc.
- Statistical challenges:
 - 1. Overdispersion (mean > variance).
 - 2. Underdispersion (mean < variance).
 - 3. Zero-inflation.
 - 4. Heavy tail.
- Multiple responses each one with its own set of challenges!
- Practical interest:
 - 1. Estimation of the covariance structure.
 - 2. Multivariate hypothesis tests (MANOVA-type test).
 - 3. and much more!!

Review: Univariate approaches

- Models for overdispersion:
 - 1. Poisson-Tweedie and Hinde-Demétrio (Kokonendji, 2004).
 - Negative binomial, Poisson-inverse Gaussian, Sichel, Poisson-SGIG, Delaporte, Poisson-Tweedie (Rigby, et.al., 2008).
 - 3. Normalized tempered stable distribution (Kolossiatis, 2011).
 - 4. Discrete Linnik distribution (Barabesi, 2016).
- Models for under and overdispersion:
 - 1. Conway-Maxwell-Poisson (Sellers, 2010).
 - 2. Gamma-Count (Zeviani, 2014).
 - 3. Discrete Weibull (Kalktawi, 2015).
- Models for heavy tail or zero-inflation:
 - 1. Generalised Poisson-inverse Gaussian family (Zhu, 2009).
 - 2. Hurdle models (Zeileis, 2008).
 - 3. Zero-inflated and Poisson and negative binomial (Loeys, 2012).
 - 4. Zero-inflated COM-Poisson (Sellers, 2016).

Review: Multivariate approaches

- Extensions of univariate distributions (David, 2017):
 - 1. Marginals are Poisson or negative binomial, etc.
 - 2. Mixture of Poissons or negative binomials, etc.
 - 3. Conditional Poissons or negative binomials, etc.
- Constructing multivariate distributions:
 - 1. Multivariate dispersion models (Jørgensen, 2000).
 - 2. Multivariate exponential dispersion models (Jørgensen, 2012).
 - 3. Convolution and extended convolution method (Jørgensen, 2013).
- ► General statistical modelling frameworks:
 - 1. Multivariate generalized linear mixed models.
 - 2. Copula based-models.
 - 3. Multivariate hierarchical generalized linear models.
 - 4. and ...

Introduction

- Plethora of distributions/approaches to deal with count data.
- Multivariate probability distribution is not available in closed-form.
- Difficult to fit (problems due to badly behaved likelihood function).
- Difficult to interpret model parameters.
- Difficult to point, with conviction, the best practical choice.
- Demand for a unified model that can automatically adapt to the underlying multivariate count distribution.
- Easy implementation in practice.
- ► SOLUTION: Multivariate extended Poisson-Tweedie model!

Multivariate extended Poisson-Tweedie model

Goals

- Extend the Poisson-Tweedie regression model to deal with multiple response variables.
- Propose an estimating function approach for parameter estimation.
- Propose an extension of the orthodox MANOVA for dealing with multivariate count data.
- Provide R code for fitting the models.
- ► Illustrative examples to show the flexibility of the multivariate extended Poisson-Tweedie regression model.

Tweedie distribution

Tweedie distributions (Jørgensen, 1997)

$$f(z; \mu, \phi, p) = a(z, \phi, p) \exp\{(z\psi - k(\psi))/\phi\},\$$

where $\mu = E(Z) = k'(\psi)$ is the mean.

- $\phi > 0$ and ψ are the dispersion and canonical parameters. $k(\psi)$ is the cumulant function and $a(z, \phi, p)$ is a normalizing constant.
- ▶ $Var(Z) = \phi \mu^p$ where $p \in (-\infty, 0] \cup [1, \infty)$ is the index determining the distribution.
- ▶ Special cases: Gaussian (p = 0), Poisson (p = 1), non-central gamma (p = 1.5), gamma (p = 2), inverse Gaussian (p = 3) and stable distributions (p > 2).
- ▶ Notation $Z \sim Tw_p(\mu, \phi)$.

Probability mass function

► Hierarchical specification:

$$Y|Z \sim Poisson(Z)$$
 $Z \sim Tw_p(\mu, \phi).$

▶ Probability mass function (p > 1)

$$f(y; \mu, \phi, p) = \int_0^\infty \frac{z^y \exp^{-z}}{y!} a(z, \phi, p) \exp\{(z\psi - k(\psi))/\phi\} dz.$$

- No closed-form available apart of special case negative binomial.
- ▶ It can be approximated by Monte Carlo integration (difficult and time consuming).
- ► Distribution, mass, quantile, random generation functions available through the functions p-, d-, q-, rptweedie() in RSBD

Moments and special cases

Marginal mean and variance are easily obtained

$$E(Y) = \mu$$
$$Var(Y) = \mu + \phi \mu^{p}.$$

- ▶ Special cases: Hermite (p = 0), Neyman-Type A (p = 1), Pólya-Aeppli (p = 1.5), negative binomial (p = 2) and Poisson inverse-Gaussian (p = 3).
- ► Careful Hermite is a limit case!
- p is an index that distinguishes between important distributions.
- ▶ Parameter space of *p* is not trivially defined, i.e. $p \in 0 \cup [1, \infty)$.
- ► Estimation of *p* works as an automatically model selection.
- ▶ Notation Y ~ $PTw_p(\mu, \phi)$.

Shapes - Dispersion index and power parameter

Figure 1. Empirical probability mass function (gray) and approximated probability mass function (black) by dispersion index (DI) and values of the power parameter: Poisson-Tweedie distribution.

Regression models

- ► Consider (Y_i, x_i) , i = 1, ..., n, where Y_i 's are iid rv.
- ► Full parametric specification:

$$Y_i \sim \mathrm{PTw}_{\mathrm{p}}(\mu_i, \phi).$$

Second-moment assumptions:

$$E(Y_i) = \mu_i$$

$$Var(Y_i) = \mu_i + \phi \mu_i^p$$

where $g(\mu_i) = \eta_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}, \mathbf{x}_i$ and $\boldsymbol{\beta}$ are $(\mathbf{Q} \times \mathbf{1})$ vectors of known covariates and unknown regression parameters.

- ▶ $Var(Y_i) > 0$, thus $\phi > -\mu_i^{(1-p)} \Longrightarrow$ under, equi and overdispersion.
- ▶ g link function (log link).
- Proposed in Bonat et. al. (2017).

Multivariate regression models

- ► Consider (Y_i, x_i) , i = 1, ..., n, where Y_i 's are i.i.d. random vectors $(R \times 1)$.
- Second-moment assumptions:

$$\begin{split} \mathrm{E}(\mathbf{Y}_i) &= \boldsymbol{\mu}_i \\ \mathrm{Var}(\mathbf{Y}_i) &= \boldsymbol{\Sigma}_i = \mathrm{diag}(\boldsymbol{\mu}_i) + \mathrm{V}(\boldsymbol{\mu}_i; \boldsymbol{p})^{\frac{1}{2}} \boldsymbol{\Omega}(\boldsymbol{\tau}) \mathrm{V}(\boldsymbol{\mu}_i; \boldsymbol{p})^{\frac{1}{2}}, \end{split}$$

where $\mu_i = (g^{-1}(\mathbf{x}_i^{\top}\beta_1), \dots, g^{-1}(\mathbf{x}_i^{\top}\beta_R))^{\top}$ is the $R \times 1$ vector of expected values and \mathbf{p} the $R \times 1$ vector of power parameters.

- $\blacktriangleright \ \mathrm{V}(\mu_i; \boldsymbol{p}) = \mathrm{diag}(\mu_i^p).$
- $ightharpoonup \Omega(au)$ controls the part of the covariance structure that does not depend on the expected values.
- Easy interpretation!

Example: Trivariate case

Second-moments specification

$$\begin{split} \mathrm{E}\left[\begin{pmatrix} Y_{1i} \\ Y_{2i} \\ Y_{3i} \end{pmatrix}\right] &= \begin{pmatrix} g(\mu_1) = \mathbf{x}_i^\top \boldsymbol{\beta}_1 \\ g(\mu_2) = \mathbf{x}_i^\top \boldsymbol{\beta}_2 \\ g(\mu_3) = \mathbf{x}_i^\top \boldsymbol{\beta}_3 \end{pmatrix} \\ \mathrm{Var}\left[\begin{pmatrix} Y_{1i} \\ Y_{2i} \\ Y_{3i} \end{pmatrix}\right] &= \begin{pmatrix} \mu_1 + \mu_1^{p_1} \tau_1 & \sqrt{\mu_1^{p_1} \mu_2^{p_2}} \tau_{12} & \sqrt{\mu_1^{p_1} \mu_3^{p_3}} \tau_{13} \\ \sqrt{\mu_1^{p_1} \mu_2^{p_2}} \tau_{12} & \mu_2 + \mu_2^{p_2} \tau_2 & \sqrt{\mu_2^{p_2} \mu_3^{p_3}} \tau_{23} \\ \sqrt{\mu_1^{p_1} \mu_3^{p_3}} \tau_{13} & \sqrt{\mu_2^{p_2} \mu_3^{p_3}} \tau_{23} & \mu_3 + \mu_3^{p_3} \tau_3 \end{pmatrix}. \end{split}$$

Note that

$$m{\Omega(au)} = egin{pmatrix} au_1 & au_{12} & au_{13} \ au_{12} & au_2 & au_{23} \ au_{13} & au_{23} & au_3 \end{pmatrix}.$$

Example: Trivariate case

Standardized dispersion matrix

$$extbf{R}(au) = egin{pmatrix} 1 & rac{ au_{12}}{\sqrt{ au_{1} au_{2}}} & rac{ au_{13}}{\sqrt{ au_{1} au_{3}}} \ rac{ au_{13}}{\sqrt{ au_{2} au_{3}}} & 1 & rac{ au_{23}}{\sqrt{ au_{2} au_{3}}} \ rac{ au_{13}}{\sqrt{ au_{1} au_{3}}} & rac{ au_{23}}{\sqrt{ au_{2} au_{3}}} & 1 \end{pmatrix},$$

gives us a notion of the correlation between response variables.

▶ These measures do not depend on the expected values.

Parametrization

- ▶ Let $\mathcal{Y} = (\mathbf{Y}_1^T, \dots, \mathbf{Y}_n^T)^T$ be the stacked vector $(nR \times 1)$ of the outcomes.
- ▶ Let $\mathcal{M} = (\mu_1^T, \dots, \mu_n^T)^T$ be the stacked vector $(nR \times 1)$ of the expected values.
- ▶ Let $C = diag(\Sigma_1, ..., \Sigma_n)$ denotes a block-diagonal matrix.
- ▶ Thus, the C matrix is symmetric and $nR \times nR$.
- ▶ Let $\beta = (\beta_1^T, ..., \beta_R^T)^T$ be a vector $P \times 1$ of regression parameters.
- Let $\lambda = (p_1, \dots, p_R, \tau^T)^T$ be a $Q \times 1$ vector of dispersion parameters.
- Multivariate extended Poisson-Tweedie model is specified by two sets of parameters $\theta = (\beta, \lambda)$.
- Quasi-score function for regression parameters.
- ▶ Pearson estimating function for dispersion parameters.

Regression parameters

The quasi-score function is defined by,

$$\psi_{\boldsymbol{eta}}(oldsymbol{eta}, oldsymbol{\lambda}) = \mathbf{D}^{ op} \mathbf{C}^{-1} (\mathcal{Y} - \mathcal{M})$$

where $D = \nabla_{\beta} \mathcal{M}$ is an $NR \times P$ matrix.

▶ The $P \times P$ sensitivity matrix of ψ_{β} is given by

$$S_{\beta} = E(\nabla_{\beta}\psi_{\beta}) = -\mathbf{D}^{\mathsf{T}}\mathbf{C}^{-1}\mathbf{D}. \tag{1}$$

▶ The $P \times P$ variability matrix of ψ_{β} is given by

$$V_{\beta} = Var(\psi_{\beta}) = \mathbf{D}^{\top} \mathbf{C}^{-1} \mathbf{D}. \tag{2}$$

Dispersion parameters

The Pearson estimating function is defined by,

$$\psi_{\lambda_i}(\boldsymbol{\beta}, \boldsymbol{\lambda}) = \operatorname{tr}(W_{\lambda_i}(\mathbf{r}^{\top}\mathbf{r} - \mathbf{C}))$$

where $W_{\lambda i} = -\frac{\partial \mathbf{C}^{-1}}{\partial \lambda_i}$ and $\mathbf{r} = (\mathcal{Y} - \mathcal{M})$.

▶ The entry (i,j) of the $Q \times Q$ sensitivity matrix of ψ_{λ} is given by,

$$S_{\lambda_{ij}} = E\left(\frac{\partial}{\partial \lambda_i} \psi_{\lambda_j}\right) = -tr\left(W_{\lambda i} C W_{\lambda j} C\right).$$
 (3)

► The entry (i,j) of the Q × Q variability matrix of ψ_{λ} is given by,

$$V_{\lambda_{ij}} = \operatorname{Cov}(\psi_{\lambda_i}; \psi_{\lambda_j}) = 2\operatorname{tr}(W_{\lambda i}CW_{\lambda j}C) + \sum_{l=1}^{NR} k_l^{(4)}(W_{\lambda i})_{ll}(W_{\lambda j})_{ll}$$

where $k^{(4)}$ denotes the fourth cumulant of \mathcal{Y} .

Cross sensitivity and variability matrix

▶ The entry (i,j) of the $Q \times P$ cross sensitivity matrix between β and λ is given by,

$$S_{\beta_i \lambda_j} = E\left(\frac{\partial}{\partial \lambda_j} \psi_{\beta_i}\right) = 0.$$
 (5)

▶ The entry (i,j) of the $P \times Q$ cross sensitivity matrix between λ and β is given by,

$$S_{\lambda_i \beta_j} = E\left(\frac{\partial}{\partial \beta_j} \psi_{\lambda_i}\right) = -tr\left(W_{\lambda_i} C W_{\beta_j} C\right).$$
 (6)

Cross sensitivity and variability matrix

▶ The entry (i,j) of the $P \times Q$ cross variability matrix between λ and β is given by,

$$V_{\lambda_i\beta_j} = E\left(\sum_{k=1}^{NR} \sum_{l=1}^{NR} \sum_{m=1}^{NR} W_{\lambda_i}^{(lm)} A_m^{(j)} r_k r_l r_m\right), \tag{7}$$

where $A = \mathbf{D}^T \mathbf{C}^{-1}$ and $A^{(j)}$ denotes the j^{th} collumn of A. In a similar way $W_{\lambda_i}^{(lm)}$ denotes the l^{th} and m^{th} entries of the matrix W_{λ_i} .

Joint sensitivity and variability matrix

▶ The joint sensitivity matrix of ψ_{β} and ψ_{λ} is given by

$$S_{\theta} = \begin{pmatrix} S_{\beta} & S_{\beta\lambda} \\ S_{\lambda\beta} & S_{\lambda} \end{pmatrix},$$

whose entries are defined in equations (1), (3), (6) and (5).

▶ The joint variability matrix of ψ_{β} and ψ_{λ} is given by

$$V_{\theta} = \begin{pmatrix} V_{\beta} & V_{\beta\lambda} \\ V_{\lambda\beta} & V_{\lambda} \end{pmatrix},$$

whose entries are defined in equations (2), (4) and (7) above.

Godambe information matrix and asymptotic distribution

- ▶ Denote $\hat{\theta} = (\hat{\beta}, \hat{\lambda})$ the estimating function estimator of θ .
- ▶ The asymptotic distribution of $\hat{\theta}$ is given by

$$\hat{\boldsymbol{\theta}} \sim \mathrm{N}_{P+Q}(\boldsymbol{\theta}, \mathrm{J}_{\boldsymbol{\theta}}^{-1})$$

where J_{θ}^{-1} is the inverse of the Godambe information matrix,

$$\mathbf{J}_{\boldsymbol{\theta}}^{-1} = \mathbf{S}_{\boldsymbol{\theta}}^{-1} \mathbf{V}_{\boldsymbol{\theta}} \mathbf{S}_{\boldsymbol{\theta}}^{-T},$$

where
$$S_{\theta}^{-T} = (S_{\theta}^{-1})^T$$
.

Algorithms

The modified chaser

$$\beta^{(i+1)} = \beta^{(i)} - S_{\beta}^{-1} \psi_{\beta}(\beta^{(i)}, \lambda^{(i)})$$
$$\lambda^{(i+1)} = \lambda^{(i)} - \alpha S_{\lambda}^{-1} \psi_{\lambda}(\beta^{(i+1)}, \lambda^{(i)}).$$

► The reciprocal likelihood algorithm

$$\beta^{(i+1)} = \beta^{(i)} - S_{\beta}^{-1} \psi_{\beta}(\beta^{(i)}, \lambda^{(i)})$$

$$\lambda^{(i+1)} = \lambda^{(i)} - [\alpha \psi_{\lambda}(\beta^{(i+1)}, \lambda^{(i)})^{\mathsf{T}} \psi_{\lambda}(\beta^{(i+1)}, \lambda^{(i)}) V_{\lambda}^{-1} S_{\lambda} + S_{\lambda}]^{-1} \psi_{\lambda}(\beta^{(i+1)}, \lambda^{(i)})$$

where α is a tuning constant.

- ► Easy implementation through the mcglm package (Bonat, 2018).
- ► Special case of a multivariate covariance generalized linear model (Bonat and Jørgensen, 2016).

Multivariate hypothesis test

The general linear hypothesis may be stated as

$$\mathrm{H}_0: \mathbf{L}\boldsymbol{\beta} = \mathbf{0},$$

where $L = G \otimes F$.

- ▶ The $G(R \times R)$ states between responses hypotheses.
- ▶ The $F(s \times p)$ states between treatments hypotheses.
- We assume equal linear predictor for all responses, thus L is a (sR × P) matrix with s denoting the number of linear constraints.
- ▶ The alternative hypothesis may be stated in the form,

$$H_1: L\beta = n,$$

where n is not the null vector.

Multivariate hypothesis test

Wald statistics given by

$$\mathbf{W}_{s} = (\mathbf{L}\boldsymbol{\beta})^{\top} (\mathbf{L} \mathcal{F}_{\boldsymbol{\beta}}^{-1} \mathbf{L}^{\top})^{-1} (\mathbf{L}\boldsymbol{\beta}),$$

under the null hypothesis is asymptotically chi-squared distributed with *sR* degrees of freedom.

- Performing test for all response variables as well as between combination of them.
- All possible contrasts between treatment levels (multivariate multiple hypothesis tests).
- ► In the Gaussian case the Wald test corresponds to the Hotelling-Lawley statistics.

Data set 1: Australian health survey

- Australian health survey for 1987–1988 (Deb and Trivedi, 1997).
- ► Five count outcomes (Ndoc, Nndoc, Nmed, Nhosp, Nadm).
- ▶ Nine covariates concerning social conditions.
- ▶ 5190 respondents and no missing data.
- Goals: assess covariate effects (specifically and overall) and correlation between outcomes.

Figure 2. Histograms for each outcome in the Australian health survey data.

Data set 1: Model specification

Multivariate count regression model

$$\begin{split} \mathrm{E}(\mathbf{Y}_i) &= \boldsymbol{\mu}_i = \{ \exp(\mathbf{x}_{i1}^{\top} \boldsymbol{\beta}_1), \dots, \exp(\mathbf{x}_{i5}^{\top} \boldsymbol{\beta}_5) \} \\ \mathrm{Var}(\mathbf{Y}_i) &= \boldsymbol{\Sigma}_i = \mathrm{diag}(\boldsymbol{\mu}_i) + \mathrm{V}(\boldsymbol{\mu}_i; \boldsymbol{p})^{\frac{1}{2}} \boldsymbol{\Omega}(\boldsymbol{\tau}) \mathrm{V}(\boldsymbol{\mu}_i; \boldsymbol{p})^{\frac{1}{2}} \end{split}$$

Dispersion matrix

$$oldsymbol{\Omega}(oldsymbol{ au}) = egin{bmatrix} au_1 & au_{12} & au_{13} & au_{14} & au_{15} \ au_{12} & au_2 & au_{23} & au_{24} & au_{25} \ au_{13} & au_{23} & au_{3} & au_{34} & au_{35} \ au_{14} & au_{24} & au_{34} & au_{4} & au_{45} \ au_{15} & au_{25} & au_{35} & au_{45} & au_{5} \end{bmatrix}.$$

- ► Log link function.
- ► Poisson-Tweedie dispersion function.

Data set 1: Dispersion structure

Dispersion and power parameter estimates.

Table 1. Dispersion parameter estimates and standard errors (SE).

	Ndoc	Nndoc	Nmed	Nhosp	Nadm
	Estimate (SE)	Estimate (SE)	Estimate (SE)	Estimate (SE)	Estimate (SE)
ĝ	1.9042 (0.1121)	1.7495 (0.1309)	1.3153 (0.2442)	1.4184 (0.3702)	1.7595 (0.3179)
$\hat{\tau}_0$	1.2496 (0.2052)	7.7676 (1.3134)	0.2928 (0.0526)	21.3497 (4.4126)	1.1121 (0.5192)

- ▶ Nmed and Nhosp present excess of zeros (\hat{p} near 1).
- ► Weak over-dispersion Ndoc, Nmed and Nadm.
- ► High over-dispersion Nhosp and Nndoc.
- ▶ Neyman-type A and negative binomial.

Data set 1: Multivariate hypothesis tests

MANOVA-type test for multivariate count data.

Eff. 1 Df. 11 1 11: 1 1 Cl.:					
Effects	Df	Hotelling-Lawley	Chi-squared	p-value	
Intercept	5	0.3689	1914.80	< 0.0001	
sex	5	0.0322	167.5387	< 0.0001	
age	5	0.0410	213.1572	< 0.0001	
Levyplus	5	0.0046	23.9239	0.0002	
freepoor	5	0.0012	6.5851	0.2533	
freerepa	5	0.0054	28.2852	< 0.0001	
illness	5	0.1320	685.1295	< 0.0001	
actdays	5	0.1025	531.9883	< 0.0001	
hscore	5	0.0080	41.7531	< 0.0001	

Data set 1: Standardized dispersion matrix

 Standardized dispersion matrix (lower) and standard errors (upper).

$$\hat{R} = \begin{bmatrix} - & 0.0141 & 0.01420 & 0.0152 & 0.0142 \\ 0.0426 & - & 0.0145 & 0.0159 & 0.0144 \\ 0.1198 & 0.0788 & - & 0.0154 & 0.0140 \\ 0.0609 & 0.0680 & 0.0664 & - & 0.055 \\ 0.0893 & 0.0619 & 0.0690 & 0.5142 \end{bmatrix}$$

Data set 2: Ant data

- ► Abundances of 20 epigaeic ant species across 30 sites in south-easthern Australia.
- ► Covariates: Percent cover of bare ground and shrub.
- ► Goal: assess the covariates overall effects and describe the relation between species abundances.

Figure 3. Boxplots of abundances by species.

Data set 2: Model specification

► Linear predictor for each response variable

 $y_i \sim Bare.ground + Shrub.cover.$

- ► 60 regression parameters.
- 20 dispersion parameters.
- ▶ 190 correlation parameters.
- ► Total number of parameters: 270.

Data set 2: R code

R code

```
# Loading extra packages
require(mcglm)
require(myabund)
require(Matrix)
require(corrplot)
# Loading data set
data(antTraits)
y <- antTraits$abund[,11:30] # Selecting response variables
names(v) \leftarrow paste0("v",1:20)
X <- antTraits$env[,c(3,5)] # Selecting covariates</pre>
data <- data.frame(y, X)
# Linear predictor
lp <- paste(names(y), "~", "Shrub.cover + Feral.mammal.dung")</pre>
form <- lapply(lp, formula)</pre>
# Matrix linear predictor
Z0 <- mc_id(data)
```

Fitting the model to data.

Data set 2: Results

Multivariate hypothesis test.

```
manova.mcglm(fit1)
```

```
## Effects Df Hotelling.Lawley Qui.square p_value
## 1 Intercept 20 60.876617 1826.29851 0e+00
## 2 Bare.ground 20 2.110956 63.32867 2e-06
## 3 Shrub.cover 20 2.636528 79.09584 0e+00
```

Standardized dispersion matrix.

Data set 2: Biplot

Biplot: Points proportional to logarithm of body length.

Main results

- ► Flexible multivariate statistical model to deal with count data.
- Second-moment assumptions.
- General framework for estimation based on estimating function.
- Efficient algorithms for estimation.
- Asymptotic theory (Godambe Information).
- ► General software implementation in R (mcglm package).
- ▶ Extension of orthodox MANOVA to deal with count data.

Topics for research

- MANOVA-type tests
 - 1. Hotelling-Lawley statistics \rightarrow Wald test.
 - 2. Pillai statistics → Score test.
 - 3. Wilks statistics → likelihood ratio test.
- Can we have analogous to
 - 1. principal components,
 - 2. factor analysis,
 - 3. correspondence analysis,
 - 4. canonical correlation analysis and
 - 5. Redundancy analysis

in the context of count data?

- Perhaps, all of them based on the standardized dispersion matrix. Does it make sense?
- ► How to deal with high-dimensional data in both outcomes and covariates?
- ► How to deal with missing and/or censored data?

Contact

- ▶ Work in progress ...
- Name: Wagner Hugo Bonat
- e-mail: wbonat@ufpr.br
- Webpages
 - 1. https://cran.r-project.org/web/packages/mcglm
 - 2. https://github.com/wbonat/mcglm
 - 3. www.leg.ufpr.br/papercompanions
 - 4. http://www.leg.ufpr.br/~wagner
- ► Thank you!

