Buenafe, Lorenz Angelo N. 1915058 CPE 019 - CPE32S9

PART 1

```
Part 1: Import the Libraries and Data
from google.colab import drive
drive.mount("/content/drive")
     Mounted at /content/drive
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
path = "/content/drive/MyDrive/CPE 019 Emerging Technologies 3/HOA 4.1/titanic_train.csv"
df = pd.read_csv(path)
df["Sex"] = df["Sex"].apply(lambda toLabel: 0 if toLabel == 'male' else 1)
df["Age"].fillna(df["Age"].mean(), inplace=True)
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 891 entries, 0 to 890
    Data columns (total 12 columns):
                  Non-Null Count Dtype
     # Column
     0 PassengerId 891 non-null
                                    int64
     1
         Survived
                      891 non-null
                                     int64
         Pclass
                      891 non-null
                                   int64
                      891 non-null
         Name
                                     obiect
     4
         Sex
                      891 non-null
                                     int64
                      891 non-null
                                    float64
                      891 non-null
         SibSp
                                     int64
                      891 non-null
         Parch
                                     int64
      8 Ticket
                      891 non-null
                                     object
         Fare
                      891 non-null
                                     float64
     10 Cabin
                      204 non-null
                                     object
     11 Embarked
                      889 non-null
                                     object
     dtypes: float64(2), int64(6), object(4)
    memory usage: 83.7+ KB
```

df.describe()

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	0.352413	29.699118	0.523008	0.381594
std	257.353842	0.486592	0.836071	0.477990	13.002015	1.102743	0.806057
min	1.000000	0.000000	1.000000	0.000000	0.420000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	0.000000	22.000000	0.000000	0.000000
50%	446.000000	0.000000	3.000000	0.000000	29.699118	0.000000	0.000000
75%	668.500000	1.000000	3.000000	1.000000	35.000000	1.000000	0.000000
max	891.000000	1.000000	3.000000	1.000000	80.000000	8.000000	6.000000

Part 2: Plot the Data

```
sns.regplot(x="Fare", y="Survived", data=df);
```


Part 3: Perform Simple Linear Regression on the SURVIVAL feature column

sns.regplot(x="Age", y="Survived", data=df);

> PART 2

[] L, 15 cells hidden