1 Arithmetic and topology

Definition 1.1. Let $\mathbb{R}^2 = \{(x.y) | x, y \in \mathbb{R}\}$. Let us consider the following operations of addition and multiplication:

• Sum: given two $(a,b),(c,d) \in \mathbb{R}^2$ we define the sum "+" by components

$$(a,b) + (c,d) := (a+b,c+d). \tag{1}$$

• Product: given two $(a, b), (c, d) \in \mathbb{R}^2$ we define the product by

$$(a,b)(c,d) = (ac - bd, ad + bc).$$
 (2)

We define the set \mathbb{C} as $(\mathbb{R}^2, +,)$.

Proposition 1.1. The set \mathbb{C} of complex numbers is an abelian field.

Proposition 1.2. Let \mathbb{C} be defined in the second way. Then,

- 1. C is an abelian ring.
- 2. If we define f as

$$f: (\mathbb{C}, +,) \longrightarrow (\mathbb{R}^2, +,), (x, y) \longmapsto x + yi,$$
 (3)

then f is a morphism of rings.

3. The function f is, in fact, an isomorphism and \mathbb{C} is an abelian field.

Proposition 1.3. The subset of \mathbb{C} generated by numbers of the form $\underline{x} = (x,0)$ is isomorph to the set of real numbers.

Theorem 1.4. \mathbb{C} is not an ordered field.

Definition 1.2. Let $z=a+bi\in\mathbb{C}$. We define the conjugate of z as

$$\bar{z} \coloneqq a - bi.$$
 (4)

Proposition 1.5. For all $z, w \in \mathbb{C}$, we have:

- 1. $\bar{\bar{z}} = z$.
- 2. $\overline{z+w} = \bar{z} + \bar{w}$.
- 3. $\overline{zw} = \bar{z}\bar{w}$.
- 4. $z\bar{z} \in \mathbb{R}$. In particular, if z = a + bi, then $z\bar{z} = a^2 + b^2$.
- 5. $z \in \mathbb{R} \Leftrightarrow z = \bar{z}$.
- 6. The inverse element of $z \in \mathbb{C}^*$ in multiplication is $z^{-1} = \bar{z}/(z\bar{z})$.

Definition 1.3. Let $z = a + bi \in \mathbb{C}$. We define the real part of z and imaginary part of z respectively as

$$\operatorname{Re}\{z\} := a, \quad \operatorname{Im}\{z\} := b.$$
 (5)

Proposition 1.6. Let $z \in \mathbb{C}$. Then,

$$\operatorname{Re}\{z\} = \frac{z + \overline{z}}{2}, \qquad \operatorname{Im}\{z\} = \frac{z - \overline{z}}{2i}$$
 (6)

Proposition 1.7. Let $z, w \in \mathbb{C}$ and the following distance function.

$$\tilde{d}: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{R}
(z, w) \longmapsto \tilde{d}(z, w) \coloneqq |z - w|$$
(7)

Then, (\mathbb{C}, \tilde{d}) is a metric space.

Definition 1.4. Let $z=a+bi\in\mathbb{C}$. We define the modulus of z as

$$|z| := \tilde{d}(z,0), \tag{8}$$

which is equivalent to $\sqrt{z\bar{z}}$.

Definition 1.5. Let $r \in \mathbb{R}^+$ and $z_0 \in \mathbb{C}$. We define an open disc of radius r and center z_0 as follows

$$B_r(z_0) := \{ z \in \mathbb{C} \mid |z - z_0| < r \}.$$
 (9)

Definition 1.6. Let $r \in \mathbb{R}^+$ and $z_0 \in \mathbb{C}$. We define a punctured disc of radius r and center z_0 as follows

$$B_r^*(z_0) := \{ z \in \mathbb{C} \mid 0 < |z - z_0| < r \}. \tag{10}$$

Definition 1.7. Let $r \in \mathbb{R}^+$ and $z_0 \in \mathbb{C}$. We define a closed disc of radius r and center z_0 as follows

$$\overline{B_r(z_0)} := \{ z \in \mathbb{C} \mid |z - z_0| \le r \}. \tag{11}$$

Definition 1.8. We denote by \mathbb{D} the unitary disc of center 0 and radius 1. Besides, we denote by $\mathbb{T} \subseteq \mathbb{C}$ the unitary circumference, that is,

$$\mathbb{T} := \{ z \in \mathbb{C} \mid |z| = 1 \}. \tag{12}$$

We also denote it by \mathbb{S}^1 .

Lemma 1.8. The set $B = \{B_r(z_0) \mid r \in \mathbb{R}^+, z_0 \in \mathbb{R}^2\}$ is a basis of the topology of \mathbb{R}^2 as a metric space. The set $D = \{D_r(z_0) \mid r \in \mathbb{R}^+, z_0 \in \mathbb{C}\}$ is a basis of the topology of \mathbb{C} as a metric space.

Proposition 1.9. The sets \mathbb{C} and \mathbb{R}^2 with the topology of metric space are homeomorphs.

Proposition 1.10. Let $z, w \in \mathbb{C}$. Then,

- 1. $|z| \geq 0$.
- 2. $|z| = 0 \Leftrightarrow z = 0$.
- 3. $-|z| \le \text{Re}\{z\} \le |z| \text{ and } -|z| \le \text{Im}\{z\} \le |z|.$
- 4. |zw| = |z||w|.
- 5. If $w \neq 0$, |z/w| = |z|/|w|.
- 6. $|z+w| \le |z| + |w|$.
- 7. $|z+w| \ge ||z| |w||$.
- 8. $|\operatorname{Re}\{zw\}| \le |z||w| \text{ and } |\operatorname{Im}\{z\}| \le |z||w|.$
- 9. $|z \pm w|^2 = |z|^2 + |w|^2 \pm 2 \operatorname{Re} \{z\bar{w}\}.$
- 10. $|z^n| = |z|^n$

Definition 1.9. Let $z \in \mathbb{C}^*$. We define the argument of z, denoted by $\arg z$, as the real number θ such that $z = |z|(\cos \theta + i \sin \theta)$. Let us observe that $\arg z$ is not a function but a multivalued application. We define the principal argument of z as

$$\operatorname{Arg} z := \theta_0 \in [0, 2\pi) \mid z = |z|(\cos \theta + i \sin \theta). \tag{13}$$

In general, to make θ to be unique, it is enough to impose it to belong to a certain semiopen interval of length 2π . Choosing the interval I is called by taking a determination of the argument.

Definition 1.10. Given a complex number z that we can express by $z = |z|(\cos \theta + i \sin \theta)$ for some $\theta \in \mathbb{R}$, we use the notation r = |z| to write

$$z = r_{\theta}^{z} = r(\cos\theta + i\sin\theta) \tag{14}$$

or simply r_{θ} when it is obvious which complex number are we referring to. We call it *polar form of z*.

Proposition 1.11. Let $z \in \mathbb{C}$ and r_{θ} its polar form. Then,

$$z^n = (r^n)_{n\theta}. (15)$$

Proposition 1.12. Let $z, w \in \mathbb{C}$. Then,

- 1. $\arg zw = \arg[z] + \arg[w] + 2\pi k$.
- 2. $\arg z^n = n \arg z + 2\pi k$.

Definition 1.11. Let $z \in \mathbb{C}$ and $n \in \mathbb{N}$. We say $w \in \mathbb{C}$ is an n-th root of z if and only if

$$w^n = z. (16)$$

Theorem 1.13. Let $n \in \mathbb{N}^*$ and $z \in \mathbb{C}$. Then, there exist $w_1, \ldots, w_n \in \mathbb{C}$ such that $w_i^n = z$ for all $i \in \{1, \ldots, n\}$, and $w_i \neq w_j$ for all $i \neq j$. Besides, if $\omega \in \mathbb{C}$ satisfies $\omega^n = z$, then $\omega = w_k$ for some $k \in \{1, \ldots, n\}$.

Definition 1.12. Let $z_n \in \mathbb{C}$ and $n \in \mathbb{N}$. We say $\lim_{n\to\infty} z_n = l$ if and only if

$$\forall \varepsilon \in \mathbb{R}^+ \exists n_0(\varepsilon) \in \mathbb{N}^* \mid |z_n - l| < \varepsilon, n \ge n_0. \tag{17}$$

Proposition 1.14. Let $\{z_n\} = \{a_n + ib_n\}$ be a sequence of complex numbers. Then, it converges if and only if $\{a_n\}$ and $\{b_n\}$ converge.

Definition 1.13. We say $\sum_{n=1}^{\infty} z_n$ converges if and only if $S_n := \sum_{n=1}^{N} z_n$ has limit at $n \to \infty$.

Proposition 1.15. $\sum_{n=1}^{\infty} z_n$ converges if and only if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge.

Definition 1.14. We say $\sum_{n=1}^{\infty} z_n$ converges absolutely if and only if $\sum_{n=1}^{\infty} |z_n|$ converges.

Proposition 1.16. $\sum_{n=1}^{\infty} |z_n|$ converges if and only if $\sum_{n=1}^{\infty} |a_n|$ and $\sum_{n=1}^{\infty} |b_n|$ converge.

2 Sequences and limits

Definition 2.1. A sequence of complex numbers is an application of the form

$$\mathbb{N}_{\geq m} \longrightarrow \mathbb{C} \\
n \longmapsto z_n.$$
(18)

We denote it by $\{z_n\}_{n=m}^{\infty}$

Definition 2.2. Let $\{z_n\}_{n=0}^{\infty}$ be a sequence. We say the sequence has limit L or it converges to the limit L if and only if

$$\forall \varepsilon \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \mid |z_n - L| < \varepsilon \forall n > n_0.$$
 (19)

We denote it by

$$\lim_{h \to \infty} z_n = L, \qquad \lim \{z_n\}_{n=0}^{\infty} = L, \qquad \{z_n\}_{n=0}^{\infty} \to L.$$
(20)

Theorem 2.1. Let $z_n = z_n + iy_n$ be the general term of a sequence $\{z_n\}_{n=0}^{\infty}$ and $L = L_x + iL_y \in \mathbb{C}$. Then,

$$\{z_n\}_{n=0}^{\infty} \to L \Leftrightarrow \{x_n\}_{n=0}^{\infty} \to L_x \land \{y_n\}_{n=0}^{\infty} \to L_z.$$
 (21)

Definition 2.3. Let $\{z_n\}_{n=0}^{\infty}$ be a sequence. We say it tends to infinity and denote it by $\lim z_n = \infty$ if and only if

$$\forall k \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \mid |z_n| \ge k, \forall n > n_0.$$
 (22)

Definition 2.4. Let $\{z_n\}_{n=0}^{\infty}$ be a sequence. We say it is a *Cauchy sequence* if and only if

$$\forall \varepsilon \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \mid |z_n - z_m| < \varepsilon, \forall n, m > n_0.$$
 (23)

Theorem 2.2. Let $\{z_n\}_{n=0}^{\infty}$ be a convergent sequence. Then, it is a Cauchy sequence.

Theorem 2.3. Let $z_n = x_n + iy_n$ be the general term of a sequence $\{z_n\}_{n=0}^{\infty}$. Then,

 $\{z_n\}_{n=0}^{\infty}$ is a Cauchy sequence $\Leftrightarrow \{x_n\}_{n=0}^{\infty}, \{y_n\}_{n=0}^{\infty}$ are Cauchy se

Theorem 2.4. The field \mathbb{C} of complex numbers is complete.

Definition 2.5. The *Riemann sphere* is a one-dimensional complex manifold which is the one-point compactification of the extended complex numbers $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, together with two charts.

3 Functions

Definition 3.1. A topology is an ordered pair (\mathbb{X}, τ) , where X is a set and τ a collection of subsets of X satisfying the following properties:

- 1. The empty set and X belong to τ .
- 2. Any arbitrary (finite or infinite) union of members of τ still belongs to τ .
- 3. The intersection of any finite number of members of τ still belongs to τ .

The elements of τ are called *open sets* and the collection τ is called the *topology on* X.

Definition 3.2. Let (\mathbb{X}, d) be a metric space. A topology on the metric space by the metric d is the set τ of all open sets of M.

Definition 3.3. Let A be a subset of a metric space (\mathbb{M}, d) and a a point in \mathbb{M} . We say that a is an *interior* point of A if there is a ball $B_{(\mathbb{M},d)}(a,r) \subset A$.

Definition 3.4. Let A be a subset of a metric space (\mathbb{M}, d) and a a point in \mathbb{M} . We say that a is an *exterior* point of A if there is a ball such that $B_{(\mathbb{M},d)}(a,r) \cup A = \emptyset$.

Definition 3.5. Let A be a subset of a metric space (\mathbb{M}, d) and a a point in \mathbb{M} . We say that a is a boundary point of A if it is not interior or exterior or, which is equivalent, if every ball $B_{(\mathbb{M},d)}(a,r)$ contains elements of A and A^c .

Definition 3.6. Let A be a subset of a metric space (\mathbb{M},d) and a a point in \mathbb{M} . We say that a is an accumulation point of A if every ball with center a contains points of A different to a. In other words, every punctured ball satisfies $B^*_{(\mathbb{M},d)}(a,r) \cup A \neq \emptyset$.

Definition 3.7. Let A be a subset of a metric space (\mathbb{M}, d) . We define *the interior of* A as the set of all interior points of A, and we denote it by $\operatorname{int}(A)$.

Definition 3.8. Let A be a subset of a metric space (\mathbb{M}, d) . We define the exterior of A as the set of all exterior points of A, and we denote it by ext(A).

Definition 3.9. Let A be a subset of a metric space (\mathbb{M}, d) . We define *the boundary of* A as the set of all boundary points of A, and we denote it by ∂A .

Definition 3.10. Let A be a subset of a metric space (\mathbb{M}, d) . We define the closure of A as the set of all accumulation points of A, and we denote it by \bar{A} .

Definition 3.11. Let (\mathbb{M}, d) be a metric space and A a subset of \mathbb{M} . We say A is an open set if it contains none of its boundary points, that is, if $\partial A \cap A = \emptyset$.

Definition 3.12. Let (\mathbb{M}, d) be a metric space and A a subset of \mathbb{M} . We say A is a closed set if it contains all its boundary points, that is, if $\partial A \subseteq A$.

Definition 3.13. Let (\mathbb{M}, d) be a metric space and A a subset of \mathbb{M} . We say A is a bounded set if there exist a point $a \in \mathbb{M}$ and a positive real number r such that the ball $B_{(\mathbb{M},d)}(a,r)$ contains A.

Definition 3.14. Let (\mathbb{M}, d) be a metric space and A a subset of \mathbb{M} . We say A is a compact set if it a bounded and closed set.

Proposition 3.1. Let (\mathbb{M}, d) be a metric space and A a subset of \mathbb{M} . Then, A is open if and only if A^c is closed.

Definition 3.15. Let $\Omega \subseteq \mathbb{C}$ be a set. We say Ω is connected if and only if it cannot be represented as the union of two or more disjoint non-empty open subsets (in the topology of the subspace). More formally, Ω is

connected if there are not two open sets $U,V\subseteq\mathbb{C}$ such that

$$U_1 = U \cap \Omega, \qquad V_1 = V \cap \Omega, \qquad U_1 \cap V_1 = \varnothing, \qquad U_1 \cup V_1 = \Omega.$$
(25)

Otherwise, we say Ω is disconnected.

Definition 3.16. Let $\Omega \subseteq \mathbb{C}$ be a set. We say Ω is simply connected if and only if every circuit is homotopic in Ω to a point in Ω . Equivalently, is simply connected if and only if every pair of curves with the same extremes are homotopic.

Definition 3.17. Let $\Omega \subseteq \mathbb{C}$ be a set. We say Ω is convex if and only if for all pair of point $a, b \in \Omega$, the segment defined by

$$[a,b] = \{ z \mid z = (1-t)a + tb, 0 \le t \le 1 \}$$
 (26)

is contained in Ω , that is, if every pair of points can be connected by a straight line that belongs to the set.

Definition 3.18. Let $\Omega \in \mathbb{C}$ be a set. We say Ω is a star-convex set if and only if there exists $z_0 \in \mathbb{C}$ such that for all $z \in \Omega$ the segment $[z_0, z]$ is contained by Ω .

Definition 3.19. Let (\mathbb{M}, d) be a metric space and $S \subseteq \mathbb{M}$ a set. We say S is path-connected if every pair of points can be connected by a continuous path that belongs to the set.

Definition 3.20. Let $\Omega \in \mathbb{C}$ be a set. We say Ω is a region or domain if and only if it is open, non-empty, and connected.

Definition 3.21. Let $\Omega \subseteq \mathbb{C}$ be a non-empty set. We say $\Omega_1 \subseteq \Omega$ is a connected component of Ω if and only if it is a maximal connected subset, that is, if $z_0 \in \Omega_1$ and W is a connected subset of \mathbb{C} that contains z_0 , then $W \subseteq \Omega_1$.

Definition 3.22. Let $D \subseteq \mathbb{C}$ be a set. We define a complex function f as the application

$$f: D \subseteq \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \longmapsto w = f(z). \tag{27}$$

Definition 3.23. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function. We say it *tends to infinity at the point* z_0 and denote it by $\lim_{z\to z_0} f(z) = \infty$ if and only if

$$\forall k \in \mathbb{R}^+ \exists \delta(k) \in \mathbb{R}^+ \mid |z - z_0| < \delta \Rightarrow |f(z)| > k.$$
 (28)

Definition 3.24. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function. We write $\lim_{z\to\infty} f(z) = L$ if and only if

$$\forall \varepsilon \in \mathbb{R}^+ \exists k(\varepsilon) \in \mathbb{R}^+ \mid |z| > k \Rightarrow |f(z) - L| < \varepsilon.$$
 (29)

Definition 3.25. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in \Omega$. We say f is continuous in z_0 if and only if

$$\forall \varepsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+ \mid |z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \epsilon.$$
(30)

Proposition 3.2. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in \Omega$. Then, $f = \operatorname{Re}\{f\} + i \operatorname{Im}\{f\}$ is continuous at z_0 if and only if $\operatorname{Re}\{f\}$ and $\operatorname{Im}\{f\}$ are continuous at z_0 .

Proposition 3.3. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in \Omega$. Then, f is continuous at z_0 if and only if for all sequence $\{z_n\}_{n=1}^{\infty}$ of Ω convergent at z_0 it is true that the sequence $\{f(z_n)\}_{n=1}^{\infty}$ converges to $f(z_0)$.

Proposition 3.4. Let $f,g:\Omega\subseteq\mathbb{C}\longrightarrow\mathbb{C}$ be two continuous function at a point $z_0\in\mathbb{C}$ and $\lambda\in\mathbb{C}$. Then, $\lambda f,\ f+g,\ and\ fg$ are continuous at z_0 . The function f/g is continuous at z_0 if $g(z_0)\neq 0$.

Definition 3.26. We define a *complex power series* as a series of the form

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n, \qquad a_n, z, z_0 \in \mathbb{C}.$$
 (31)

We call the term a_n the *n*-th coefficient of the series. In case $a_n = 0 \forall n \leq m$, we will start the counting directly from m.

Definition 3.27. Radius of convergence.

Proposition 3.5. The radius of convergence can be calculated as follows

$$\frac{1}{R} = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}.$$
 (32)

Theorem 3.6 (Cauchy-Hadamard Theorem). Let

$$S = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 (33)

be the following complex power series with $a_n, z_0 \in \mathbb{C}$ and $R \in [0, +\infty) \cup \{+\infty\}$ the radius of convergence. Then,

- 1. If $|z z_0| < R$ then S converges. In fact, for all r < R we have S converges uniformly at the disc $\overline{D_r(z_0)}$.
- 2. If $|z-z_0| > R$ then S diverges.
- 3. The function f(z) = S(z) is derivable at $D_R(z_0)$ and its formal derivative is

$$f'(z) = \sum_{n=0}^{\infty} n a_n (z - z_0)^{n-1}, \qquad (34)$$

with the same radius of convergence.

Definition 3.28. Let $f(z) = \sum a_n (z - z_0)^n$ be a series with radius of convergence R. Then, its formal derivative is

$$f'(z) = \frac{\mathrm{d}f}{\mathrm{d}z}.\tag{35}$$

Theorem 3.7 (Abel's Theorem). Let be the following series

$$\sum_{n=0}^{\infty} f_n(z_0) g_n(z_0),$$

where f,g_n are complex functions. If $\sum_{n=0}^{\infty} f_n(z_0)$ is uniformly converging at $\Omega \subseteq \mathbb{C}$ and exists $M \geq 0$ such that for $z_0 \in \Omega$,

$$|g_1(z_0)| + \sum_{n=1}^{\infty} |g_n(z_0) - g_{n+1}(z_0)| \le M,$$
 (36)

then the original series converges uniformly in Ω .

Theorem 3.8 (Weierstrass' criterion). Let $f_n, n \in \mathbb{N}$ be a sequence of functions defined at $\Omega \subseteq \mathbb{C}$ such that $|f_n(z)| < M_n$ for all $z \in \Omega, n \ge 1$, and certain constant M_n , satisfying $\sum_{n=0}^{\infty} M_n < \infty$. Then, $\sum_{n=0}^{\infty} f_n(z_0)$ is uniformly convergent at Ω for all $z_0 \in \Omega$.

Definition 3.29. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a complex function with Ω an open set. We say f is complex analytic if and only if for all $z_0 \in \Omega$ exists a real number $R(z_0)$ and a sequence $\{a_n\} \subseteq \mathbb{C}$ (that can also depend on z_0) such that is $z \in D_R(z_0)$, then formally it is true that

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$
 (37)

We denote the set of complex analytic functions with domain Ω by $C^{\omega}(\Omega)$.

Proposition 3.9. Let $\emptyset \neq \Omega \subseteq \mathbb{C}$. Then,

- 1. Every connected component of Ω is a closed of Ω with a subspace topology.
- 2. Two connected components are the same or are disjoint.
- 3. Every connected of Ω is one and only one connected component.
- 4. Ω is the disjoint union of its connected components.

Theorem 3.10 (Analytic prolongation Principle). Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ an analytic function and $z_0 \in \Omega$ such that $f^{(n)}(z_0 = 0)$ for all $n \in \mathbb{N}$. Then, f(z) = 0(z) at the connected component of Ω that contains z_0 (the function can be zero also out Ω , but we are not studying that).

Lemma 3.11. Given two sequences $\{a_n\}, \{b_n\} \subseteq \mathbb{C}$ such that $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are convergent, with at least one of them absolutely convergent, then

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right). \tag{38}$$

Proposition 3.12. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ defined at $D_R(0)$ for certain $R \in \mathbb{R}^+$. Then, f is analytic at $\Omega = D_R(0)$.

Definition 3.30. For all $z \in \mathbb{C}$, we define the *complex exponential function* as the following series

$$e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$
 (39)

Proposition 3.13. The radius of convergence of e^z is infinite.

Proposition 3.14. $e^z = e^x$ for all $x \in \mathbb{R}$.

Proposition 3.15. $e^{z+w} = e^z e^w$ for all $z, w \in \mathbb{C}$.

Proposition 3.16. For all $z \in \mathbb{C}$ we have $e^z \neq 0$.

Proposition 3.17. The image of e^z is \mathbb{C}^* .

Proposition 3.18. The derivative of e^z is e^z .

Proposition 3.19. $\overline{e^z} = e^{\overline{z}}$.

Proposition 3.20. $|e^z| = e^{\text{Re}\{z\}}$.

Proposition 3.21 (Euler's Formula). If $\theta \in \mathbb{R}$, then exi has modulus one and we have that

$$e^{xi} = \cos x + i \sin x. \tag{40}$$

Proposition 3.22. The following function

$$\exp: (\mathbb{R}, +) \longrightarrow (\mathbb{C}^*, \cdot)$$

$$x \longmapsto e^{xi}$$
(41)

is a morphism of groups and its image is \mathbb{T} .

Proposition 3.23. The complex exponential function is a periodic function with period $2\pi i$.

Proposition 3.24. Let $a \in \mathbb{C}^*$. Then, $e^z = a$ has infinite solutions.

Definition 3.31. Let $z \in \mathbb{C}$ be a number. We define the complex trigonometric functions as

$$\cos z \coloneqq \frac{e^{zi} + e^{-zi}}{2},\tag{42}$$

$$\sin \theta \coloneqq \frac{e^{zi} - e^{-zi}}{2},\tag{43}$$

$$\tan z \coloneqq \frac{e^{zi} - e^{-zi}}{e^{zi} + e^{-zi}}.\tag{44}$$

Proposition 3.25. For all $z \in \mathbb{C}$,

$$\sin^2 z + \cos^2 z = 1. \tag{45}$$

Proposition 3.26. For all $z \in CC$.

$$\cos(-z) = \cos(z), \qquad \sin(-z) = -\sin(z). \tag{46}$$

Proposition 3.27. For all $z, w \in \mathbb{C}$,

 $\cos(z \pm w) = \cos z \cos w \mp \sin z \sin w$,

Proposition 3.28. The functions $\cos z, \sin z$ have period of 2π .

Proposition 3.29. Let $z_0 \in \mathbb{C}$. Then, z_0 is root of $\sin z \ (\cos z)$ if and only if it is a root of $\sin x \ (\cos x)$.

Definition 3.32. Let $z \in \mathbb{C}$ be a number. We define the complex hyperbolic functions as

$$cosh z := \frac{e^z + e^{-z}}{2},$$
(48)

$$\sinh \theta \coloneqq \frac{e^z - e^{-z}}{2},\tag{49}$$

$$\tanh z := \frac{e^z - e^{-z}}{e^z + e^{-z}}.$$
 (50)

Proposition 3.30. For all $z \in \mathbb{C}$,

$$\sinh^2 z - \cosh^2 z = 1. \tag{51}$$

Proposition 3.31. For all $z \in CC$,

$$\cosh(-z) = \cosh(z), \qquad \sinh(-z) = -\sinh(z). \quad (52)$$

Proposition 3.32. For all $z, w \in \mathbb{C}$,

$$\cosh(z \pm w) = \cosh z \cosh w \pm \sinh z \sinh w, \qquad \sinh(z \pm w) = \sinh z$$
(53)

Proposition 3.33. For all $z \in \mathbb{C}$,

$$\cosh z = \cos(iz), \cos z = \cosh(iz) \qquad \sinh z = -i\sin(iz), \sin z = -i$$
(54)

Proposition 3.34. The roots of the function $\sinh z$ are of the form $z_n = n\pi$ and those for the function $\cosh z$ are of the form $w_n = (2n+1)\pi/2i$.

Definition 3.33. Let $D \subseteq \mathbb{C}$ be a set. We define a multivalued function from D to \mathbb{C} as a subset of $D \times \mathbb{C}$ such that for every $z \in D$ there exists a number $y \in \mathbb{C}$ such that $(z, w) \in f$.

Definition 3.34. For $z \in \mathbb{C}^*$, we call the *natural log*arithm of z every number w such that $e^w = z$, that is,

$$\ln z := \{ w \in \mathbb{C} \mid e^w = z \}. \tag{55}$$

Proposition 3.35. Given $z \in \mathbb{C}$ we can define $\ln z$ from the natural logarithm of a real number as

$$\ln z = \ln |z| + i \arg z = \ln |z| + i \operatorname{Arg} z + 2\pi ki.$$
 (56)

Definition 3.35. We define the principal natural logarithm of z as the value defined by the principal argument of z, that is,

$$Log z = \ln|z| + iArg z. \tag{57}$$

Definition 3.36. We define the determination I (with I being a semiopen interval) of the logarithm as

$$\log_I z := \ln|z| + i \arg_I z. \tag{58}$$

$$\sin(z\pm w)=\sin z\cos w\pm\cos z\sin w. \end{matrix}$$
 Proposition 3.36. Let $z,w\in\mathbb{C}$ two numbers. Then,

- 1. $\ln(zw) = \ln z + \ln w + 2\pi ki, k \in \mathbb{Z}$.
- 2. If we want to stay in the principal argument,

$$\ln(zw) = \begin{cases} \ln z + \ln w, & \text{if } \operatorname{Arg} z + \operatorname{Arg} w < 2\pi \\ \ln z + \ln w - 2\pi i, & \text{if } \operatorname{Arg} z + \operatorname{Arg} w \ge 2\pi \end{cases} .$$
(59)

3. SEARCH MORE PROPERTIES

Definition 3.37. Let $z \in \mathbb{C}$ be a number. We define the complex trigonometric inverse functions as

$$\arcsin z := -i \ln \left(iz + \sqrt{1 - z^2} \right), \tag{60}$$

$$\arccos z := -i \ln \left(z + \sqrt{z^2 - 1} \right),$$
 (61)

$$\arctan z := -\frac{i}{2} \ln \frac{1+iz}{1-iz}.$$
 (62)

Definition 3.38. Let $z \in \mathbb{C}$ be a number. We define the *complex hyperbolic inverse functions* as

$$\operatorname{arcsinh} z := \ln \left(z + \sqrt{1 + z^2} \right), \tag{63}$$

$$\operatorname{arccosh} z := \ln \left(z + \sqrt{z^2 - 1} \right), \tag{64}$$

$$\operatorname{arctanh} z := \frac{1}{2} \ln \frac{1+z}{1-z}.$$
 (65)

Definition 3.39. Let $z, a \in \mathbb{C}$. Then, we define the complex power function as

$$z^a := e^{a \ln z} \tag{66}$$

Proposition 3.37. If $a = \alpha + \beta i$ and $z = re^{\theta i}$, then

$$z^{a} = e^{\alpha \ln r - \beta(\theta + 2\pi k)} e^{\beta \ln r + \alpha(\theta + 2\pi k)}, \qquad (67)$$

$$|z^{a}| = e^{\alpha \ln|z| - \beta(\arg z + 2\pi k)}, \qquad \arg(z^{a}) = \beta \ln|z| + \alpha(\arg z + 2\pi k)$$
(68)

Proposition 3.38. Let $z, w \in \mathbb{C}$. Then,

1.
$$(e^b)^a = e^{a(b+2\pi ki)}$$

Definition 3.40. A Riemann surface X is a connected complex 1-manifold.

Definition 3.41. We define a *sheet* as each of the complex planes of the Riemann surface.

Definition 3.42. We define a *cut* as the line (not necessaryly straight) of union between sheets.

Definition 3.43. We define a *branch point* as a point where start or finish a cut.

4 Derivatives

Definition 4.1. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in \mathbb{C}$ a point. We define the *derivative of* f at z_0 as

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$
(69)

in case the limit exists. If f has derivative, we say f is \mathbb{C} -derivable at z_0 .

Definition 4.2. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in \mathbb{C}$ a point. We say f is holomorphic at Ω if and only if it is \mathbb{C} -derivable at every point of Ω . In that case, it is defined the function $f': \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ that associates each point z of Ω with f'(z).

Definition 4.3. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function. We define the *domain of holomphism* as the region where f is derivable. We say f is entire if and only if the domain of holomorphism is \mathbb{C} .

Definition 4.4. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in CC$ a point. We say f is holomorphic at z_0 if and only if it is holomorphic at some neighborhood of z_0 .

Proposition 4.1. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in CC$ a point. If f is derivable at z_0 , then it is continuous at z_0 .

Theorem 4.2. Let $f, g : \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be two functions and $z_0 \in \Omega$ a point. Then, the following statements are true.

- 1. If f is constant at Ω , then f is derivable at z_0 and $f'(z_0) = 0$.
- 2. If f(z) = z in every point of Ω , then f is derivable at z_0 and $f'(z_0) = 1$.
- 3. If f, g are derivable at z_0 and $\alpha, \beta \in \mathbb{C}$, then $\alpha f + \beta g$ are derivable at z_0 and $(\alpha f + \beta g)'(z_0) = \alpha f'(z_0) + \beta g'(z_0)$.
- 4. If f, g are derivable at z_0 , then fg is derivable at $+2\pi k$ and $+2\pi k$ $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$. (70)
- 5. If f, g are derivable at z_0 and $g(z_0) \neq 0$, then f/g is derivable at z_0 and

$$\left(\frac{f}{g}\right)'(z_0) = \frac{f'(z_0)g(z_0) - f(z_0)g'(z_0)}{g(z_0)^2}.$$
 (71)

Theorem 4.3. Let $f: \Omega_1 \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a derivable function at a point $z_0 \in \mathbb{C}$ and $g: \Omega_2 \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be another derivable function at a point $f(z_0) \in \Omega_2$. Then, $g \circ f$ is derivable at z_0 and

$$(g \circ f)'(z_0) = g'(f(z_0))f'(z_0). \tag{72}$$

Definition 4.5. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function. We say f is of class $C^1(\Omega)$ or simply $f \in c^1(\Omega)$ if and only if, using f = u + iv with $u = \text{Re}\{f\}, v = \text{Im}\{f\}$, the partial derivatives of u and v as a two variable real functions exist and are continuous. In other words, $f \in C^1(\Omega)$ if and only if

$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$
 (73)

exist and are continuous.

Theorem 4.4. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ a function of class $C^1(\Omega)$ with Ω an open set, injective, and derivable at every point of Ω with non-zero derivative. Then,

- 1. $\Omega' = f(\Omega)$ is an open subset of \mathbb{C} .
- 2. The inverse function f^{-1} exist, it is well defined and it is derivable at Ω' .
- 3. If $z \in \Omega$ and z' = f(z), then

$$(f^{-1})'(z') = \frac{1}{f'(z)}.$$
 (74)

Proposition 4.5. A determination of $\ln z$ with $z \in \mathbb{C}$ is continuous except in a semiline.

Theorem 4.6. Let $\Omega \subseteq \mathbb{C}$ be an open set and $\phi \in C(\Omega)$, such that $e^{\phi(z)} = z$ for all $z \in \Omega$. Then, we have $\phi \in H(\Omega)$ and

$$\phi'(z) = \frac{1}{z}, \forall z \in \Omega.$$
 (75)

Proposition 4.7. A determination of $\ln z$ with $z \in \mathbb{C}$ is holomorphic except in a semiline.

Proposition 4.8. Let $I = [\theta, \theta + 2\pi)$ a determination of the logarithm, $\ln_I z$. Then, $\ln_I z$ is holomorphic except in the semiline $L_\theta = \{re^{\theta i} \in \mathbb{C} \mid r \geq 0\}$.

Theorem 4.9. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be an analytic function in Ω . Then, f is holomorphic in Ω . In particular, given a point $z_0 \in \mathbb{C}$, $f'(z_0) = a_1$ where a_1 is the first coefficient of the power series that represents f in a neighborhood of z_0 .

Definition 4.6. We define the operators

$$\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \qquad \frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right),$$
(76)

that act over the functions such that the real and imaginary part u, v have partial derivatives.

Proposition 4.10. Let $f : \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ a function of class $C^1(\Omega)$. Then, for all $z_0 \in \Omega$

$$f(z_0 + h) = f(z_0) + \left(\frac{\partial f}{\partial z}\right)_{z_0} h + \left(\frac{\partial f}{\partial \bar{z}}\right)_{z_0} \bar{h} + o(|h|^2).$$
(77)

Definition 4.7. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function of class $C^1(\Omega)$ such that f = u + iv with $u = \operatorname{Re}\{f\}, v = \operatorname{Im}\{f\}$ and $z_0 \in \mathbb{C}$ a point. Then, we call $(\partial_{\bar{z}}f)_{z_0} = 0$ the *Cauchy-Riemann condition*, which is equivalent to

$$\left(\frac{\partial u}{\partial x}\right)_{z_0} = \left(\frac{\partial v}{\partial y}\right)_{z_0}, \qquad \left(\frac{\partial v}{\partial x}\right)_{z_0} = -\left(\frac{\partial u}{\partial y}\right)_{z_0}, \ (78)$$

which are called the Cauchy-Riemann equations.

5 Holomorphic functions

Definition 5.1. Let $I = [a, b] \subseteq \mathbb{R}$ be a closed interval. We define a *curve* as an application of the form

$$\gamma: I \longrightarrow \mathbb{C}
t \longmapsto \gamma_1(t) + i\gamma_2(t).$$
(79)

Definition 5.2. Let $I = [a, b] \subseteq \mathbb{R}$ be a closed interval and $D \subseteq \mathbb{C}$ a domain. We define an arc as a continuous application of the form

$$\gamma: I \longrightarrow D
t \longmapsto \gamma_1(t) + i\gamma_2(t).$$
(80)

Equivalently, we can say an arc is a curve restricted to some interval.

Definition 5.3. Let $\gamma : [a,b] \longrightarrow D$ be an arc. We call $\gamma(a)$ and $\gamma(b)$ the extremes of γ . In particular, we call $\gamma(a)$ the initial point and $\gamma(b)$ the final point.

Definition 5.4. Let $\gamma:[a,b]\longrightarrow D$ be an arc. We define the route or graph of γ as

$$\gamma^* := \{ z \in D \mid z = \gamma(t), t \in I \}.$$
 (81)

Definition 5.5. Let $\gamma : [a, b] \longrightarrow D$ be an arc. We say γ is closed if and only if $\gamma(a) = \gamma(b)$.

Definition 5.6. Let $\gamma:[a,b] \longrightarrow D$ be an arc. We say γ is simple if and only if there is no two numbers $t_1, t_2 \in (a,b)$ such that $\gamma(t_1) = \gamma(t_2)$. We also call it a *Jordan curve*, and if it is closed, a *circuit*.

Definition 5.7. Let $\gamma : [a,b] \longrightarrow D$ be an arc. We say γ is differentiable if for all value $t_0 \in [a,b]$ there exists the limit

$$\gamma'(t_0) = \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0}.$$
 (82)

For $t_0 = a$ or $t_0 = b$ we consider the laterals limits from the right and from the left respectively.

Definition 5.8. Let $\gamma : [a, b] \longrightarrow D$ be an arc. We say γ is of class C^1 if and only if γ' exists and is continuous at [a, b].

Definition 5.9. Let $\gamma : [a, b] \longrightarrow D$ be an arc. We say γ is regular or smooth if and only if it is differentiable and γ' never vanishes.

Definition 5.10. Let $\gamma:[a,b] \longrightarrow D$ be an arc. We say γ is piece-wise of class C^1 if and only if γ' exists and is continuous in I except in a finite number of points where γ has lateral derivatives.

Definition 5.11. Let $\gamma:[a,b]\longrightarrow D$ be an arc. We define the *opposite arc* as

$$\begin{array}{c}
-\gamma: [-b, -a] \longrightarrow \mathbb{C} \\
t \longmapsto \gamma(-t)
\end{array}$$
(83)

Definition 5.12. Let $\gamma:[a,b] \longrightarrow \mathbb{C}$ be an arc. We say $\Gamma(s), s \in [c,d] \subseteq \mathbb{R}$ has been obtained from $\gamma(t), t \in [a,b]$ by a change of parametrization if and only if the new parameter s and the original parameter t are related by a relation $t = \phi(s)$, where $\phi:[c,d] \longrightarrow [a,b]$ is an homeomorphism that satisfies $\Gamma(s) = \gamma(\phi(s)) = (\gamma \circ \phi)(s)$. We call Γ the reparametrization of γ .

Definition 5.13. Let $\gamma_1: I_1 \longrightarrow \mathbb{C}$ and $\gamma_2: I_2 \longrightarrow \mathbb{C}$ be two arcs. We say they are equivalent if and only if there exists a bijective, monotone, and continuous function $\rho: I_2 \longrightarrow I_1$ such that $\gamma_2 = \gamma_1 \circ \rho$. If ρ is an increasing function we say γ_1 and γ_2 have the same orientation; otherwise, we say γ_1 and γ_2 have opposite orientations.

Definition 5.14. Let $\gamma_1[a,b] \longrightarrow \mathbb{C}$ and $\gamma_2 : [c,d] \longrightarrow \mathbb{C}$ be two arcs such that $[a,b] \cap [c,d] = \varnothing$. We define the application $\gamma_1 \cup \gamma_2$ (sometimes denoted by $\gamma_1 + \gamma_2$)

$$(\gamma_1 \cup \gamma_2)(t) := \begin{cases} \gamma_1(t), & \text{if } a \le t \le b \\ \gamma_2(t-b+c), & \text{if } b \le t \le b+d-c \end{cases}$$
 (84)

We say γ_1, γ_2 can be joined/added or that there exists its union/sum if and only $\gamma_1(b) = \gamma_2(x)$. In this case $\gamma_1 + \gamma_2$ is an arc, and we call it the sum arc of γ_1 plus γ_2 .

Definition 5.15. We define the segment of extremes **6** $z_1, z_2 \in \mathbb{C}$ as the arc defined by the expression

$$[z_1, z_2] : [0, 1] \longrightarrow \mathbb{C}$$

$$t \longmapsto (1 - t)z_1 + tz_2.$$
(85)

Definition 5.16. Let $f:\Omega\subseteq\mathbb{C}\longrightarrow\mathbb{C}$ be a function. We say f is polygonal if and only if can be expressed as a finite union of segments, that is, if there exist a natural number n and points $\{z_0, \ldots, z_n\}$ such that

$$p = [z_0, z_1] \cup \dots \cup [z_{n-1}, z_n]. \tag{86}$$

Definition 5.17. Let $\gamma : [a,b] \longrightarrow D$ be an arc with a, b finite. We say γ is a basic curve if and only if $\gamma \in C^1((a,b)) \cap C([a,b])$ and there exist $\lim_{t\to a^+} \gamma'(t), \lim_{t\to b^-} \gamma'(t).$

Definition 5.18. A path is a function $\gamma:[a,b]\longrightarrow \mathbb{C}$ such that there exist basic curves $\gamma_j:[a_j,b_j]\longrightarrow \mathbb{C}, j\in$ $\{1,\ldots,k\}$ such that $\gamma=\gamma_1+\cdots+\gamma_k$ and therefore $\gamma_j(b_j) = \gamma_{j+1}(a_{j+1})$ and $a = a_1, b = a_k$.

Definition 5.19. Let $\gamma:[a,b]\longrightarrow\mathbb{C}$ be a continuous curve and $a_1, \ldots, a_l \in \mathbb{R}$ such that $a = a_0 \leq \cdots \leq a_l \leq$ $b = a_{l+1}$. We say γ is piece-wise differentiable if and only if

$$\gamma \in C^1 \left(\bigcup_{j=0}^l (\alpha_j, \alpha_{j+1}) \right),$$

 $\forall j \in \{0, \dots, l+1\} \exists \lim_{t \to a_j^+} \gamma'(t) (\text{except if } j = l+1), \lim_{t \to a_j^-} \gamma'(t) (\text{except } | \mathbf{i} \hat{\mathbf{f}}(\boldsymbol{\xi}) = \boldsymbol{0}) \cdot \frac{1}{\sqrt{2\pi}} \int f(x) e^{-i\boldsymbol{\xi}x} \, \mathrm{d}x.$

Equivalently, we can think about a piece-wise differentiable curve as a differentiable path.

Theorem 5.1. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be an holomorphic function of class $C^1(\Omega)$ with Ω an open set and $\phi: I \longrightarrow \Omega$ a basic curve. Then, $\psi = f \circ \phi$ is a basic curev (hence a derivable curve) and its real derivative is

$$\psi'(t) = f'(\phi(t))\phi'(t). \tag{87}$$

Definition 5.20. Let $\gamma_1, \gamma_2 : [0,1] \longrightarrow \mathbb{C}$ be two curves. We say γ_1, γ_2 are homotopic if and only if there exists a continuous function $h(t,s):[0,1]\times[0,1]\longrightarrow\mathbb{C}$ such that

- 1. $h(t,0) = \gamma_1(t), t \in [0,1].$
- 2. $h(t,1) = \gamma_2(t), t \in [0,1].$
- 3. $h(0,s) = \gamma_1(0) = \gamma_2(0), s \in [0,1].$
- 4. $h(1,s) = \gamma_1(1) = \gamma_2(1), s \in [0,1].$

Definition 5.21. Let $\gamma_1, \gamma_2 : [0,1] \longrightarrow \mathbb{C}$ be two circuits. We say γ_1, γ_2 are homotopic if and only if there exists a continuous function $h(t,s):[0,1]\times[0,1]\longrightarrow\mathbb{C}$ such that

- 1. $h(t,0) = \gamma_1(t), t \in [0,1].$
- 2. $h(t,1) = \gamma_2(t), t \in [0,1].$
- 3. $h(0,s) = h(1,s), s \in [0,1].$

- Local properties of holomorphic functions
- 7 Isolated singularities of holomorphic functions
- 8 Homology
- Harmonic functions 9
- 10 Conforming representation
- 11 Riemann theorem
- 12Runge theorem
- 13 Zeros of holomorphic functions
- Fourier transform 14

Definition 14.1. Let $f \in L^1(\mathbb{R})$ be a function and $\xi \in \mathbb{R}$ a number. We define the Fourier transform of f at the point ξ as

$$\gamma'(t)(\text{except }|\hat{\mathbf{f}}(\xi) = 0) \cdot \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-i\xi x} dx.$$
 (88)

Proposition 14.1. Let $f \in L^1(\mathbb{R})$ be a function. Then, the application

$$\mathscr{F}{f}: \mathbb{R} \longrightarrow \mathbb{C}$$

$$\xi \longmapsto \hat{f}(\xi) \tag{89}$$

is a well defined application.

Definition 14.2. Let $\{f_n\}_{n\in\mathbb{N}}\subseteq L^p(\mathbb{R})$ and $f\in$ $L^p(\mathbb{R})$ with $1 \leq p \leq \infty$. We say the functions f_n converge to f with a norm $\|\cdot\|_p$ or converge in $L^p(\mathbb{R})$ if and only if

$$\lim_{n \to \infty} \|f_n - f\|_p = 0. \tag{90}$$

Theorem 14.2. Let $f \in L^1(\mathbb{R})$ be a function. Then, the following statements are true.

1. The Fourier transform of f satisfies

$$\mathscr{F}{f} \in L^{\infty}(\mathbb{R}), \qquad \|\mathscr{F}{f}\|_{\infty} \le \frac{1}{\sqrt{2\pi}} \|f\|_{1}. \tag{91}$$

2. $\mathscr{F}{f}$ is \mathbb{C} linear, that is, for all $\alpha, \beta \in \mathbb{C}$ and $f,g\in L^1(\mathbb{R}),$

$$\mathscr{F}\{\alpha f + \beta g\} = \alpha \mathscr{F}\{f\} + \beta \mathscr{F}\{g\}. \tag{92}$$

3. If $q(x) = \bar{f}(x)$, then for all $\xi \in \mathbb{R}$

$$\hat{g}(\xi) = \overline{\hat{f}(-\xi)}.\tag{93}$$

4. If $g(x) = g(\lambda x)$, then for all $\xi \in \mathbb{R}$

$$\hat{g}(\xi) = \frac{1}{\lambda} \hat{f}\left(\frac{\xi}{\lambda}\right). \tag{94}$$

5. If g(x) = f(x - a) with $a \in \mathbb{R}$, then for all $\xi \in \mathbb{R}$

$$\hat{g}(\xi) = e^{-ia\xi} \hat{f}(\xi). \tag{95}$$

6. If $g(x) = e^{iax} f(x)$ with $\alpha \in \mathbb{R}$, then for all $\xi \in \mathbb{R}$

$$\hat{g}(\xi) = \hat{f}(\xi - a) \tag{96}$$

- 7. If $\{f_n\}_{n\in\mathbb{N}}\subseteq L^1(\mathbb{R}), f\in L^1(\mathbb{R}) \text{ and } f_n\to f$ in $L^1(\mathbb{R})$ when $n\to\infty$, then $\mathscr{F}\{f_n\}\to\mathscr{F}\{f\}$ uniformly in \mathbb{R} .
- 8. The Fourier transform $\mathscr{F}\{f\}$ is a continuous function in \mathbb{R} , $\mathscr{F}\{f\} \in C(\mathbb{R})$.

Proposition 14.3. Let $f \in L^1(\mathbb{R})$ be a function such that there exists its derivative $f' \in L^1(\mathbb{R})$ and $\lim_{|x| \to \infty} |f(x)| = 0$. Then,

$$\hat{f}'(\xi) = i\xi \,\hat{f}(\xi). \tag{97}$$

Definition 14.3. Let $f: I \subseteq \mathbb{R} \longrightarrow \mathbb{C}$ be a function. We define the support of f as

$$supp f := \overline{\{x \in I \mid f(x) \neq 0\}}.$$
 (98)

Definition 14.4. We define the set $\mathcal{D}(\mathbb{R})$ as

$$\mathscr{D}(\mathbb{R}) := \{ \varphi \in C^{\infty}(\mathbb{R}) \mid \text{supp } \varphi \text{ compact} \} \subseteq L^{1}(\mathbb{R}).$$
(99)

Theorem 14.4. Let $f \in L^1(\mathbb{R})$ be a function. Then, there exists a sequence of functions $\phi \in \mathcal{D}(\mathbb{R})$ such that

$$\lim_{h \to \infty} \int_{\mathbb{D}} |f - \phi_n| \, \mathrm{d}x = 0, \tag{100}$$

that is, we have convergence of ϕ_n to f with norm $\|\cdot\|_1$.

Proposition 14.5. Let $f \in L^1(\mathbb{R})$ be a function. Then, $\hat{f} \in C(\mathbb{R})$.

Proposition 14.6. Let $f \in L^1(\mathbb{R})$ be a function. Then, $|\hat{f}(\xi)| \leq ||f||_1$.

Theorem 14.7. Let $f \in L^1(\mathbb{R})$ be a function. Then,

$$\lim_{|x| \to \infty} \hat{f}(x) = 0. \tag{101}$$

Theorem 14.8. The application Fourier transform goes from $L^1(\mathbb{R})$ to $C_0(\mathbb{R})$, that is, $\mathscr{F}\{f\}: L^1(\mathbb{R}) \longrightarrow C_0(\mathbb{R})$.

Definition 14.5. We define the $Schwartz\ space$ as

Proposition 14.9. Let $f, g \in S(\mathbb{R})$ be two functions, $\lambda \in \mathbb{C}$ a number, and $P : \mathbb{R} \longrightarrow \mathbb{C}$ a polynomial of complex coefficients. Then,

- 1. $f + g \in S(\mathbb{R})$.
- 2. $\lambda f \in S(\mathbb{R})$.
- 3. $fg \in S(\mathbb{R})$.
- 4. $Pf \in S(\mathbb{R})$.

Theorem 14.10. Let $I, J \subseteq \mathbb{R}$ be two intervals with I compact and J open. Let $f: I \times J \longrightarrow \mathbb{R}$ be a function such that

- 1. $f(\cdot, \lambda)$ is Riemann-integrable in I for all $\lambda \in J$,
- 2. $f(x,\cdot)$ is derivable in J for all $x \in I$.

If $\partial_{\lambda} f$ is continuous in $I \times J$, then

- 1. $\partial_{\lambda} f(\cdot, \lambda)$ is Riemann-integrable for all $\lambda \in J$.
- 2. $F(\lambda) = \int_I f(x,\lambda) dx$ is derivable with continuous derivative in J for all $\lambda \in J$ and it satisfies the rule of derivation over the integral sign.

$$F'(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda} \int_{I} f(x, \lambda_0) \, \mathrm{d}x = \int_{I} \frac{\partial f}{\partial \lambda}(x, \lambda_0) \, \mathrm{d}x \,, \forall \lambda_0 \in J$$
(102)

Proposition 14.11. *Let* $f \in S(\mathbb{R})$. *Then,*

- 1. $S(\mathbb{R}) \subseteq L^1(\mathbb{R})$.
- 2. $\widehat{xf}(\xi) = (iD_{\xi}\widehat{f})(\xi)$ for all $\xi \in \mathbb{R}$.

Proposition 14.12. The Fourier transform \mathscr{F} restricted to $S(\mathbb{R})$ is an automorphism, that is, if $f \in S(\mathbb{R})$ then $\mathscr{F}\{f\} = \hat{f} \in S(\mathbb{R})$.

Lemma 14.13. If $G(x) = e^{-x^2/2}$, then $\hat{G}(\xi) = e^{-\xi^2/2}$. We observe hence that G is a fixed point of \mathscr{F} .

Lemma 14.14. If $f, g \in S(\mathbb{R})$, then

$$\int_{\mathbb{R}} f(\xi)\hat{g}(\xi) d\xi = \int_{\mathbb{R}} \hat{f}(\tau)g(\tau) d\tau.$$
 (103)

Lemma 14.15. Let $f, g \in S(\mathbb{R})$ and $\lambda \in \mathbb{R}$. Then,

- 1. $g(\lambda x)\hat{f}(x)$ converges to $g(0)\hat{f}(x)$ uniformly in \mathbb{R} when $\lambda \to \infty$.
- 2. $f(\lambda x)\hat{g}(x)$ converges to $f(0)\hat{g}(x)$ uniformly in \mathbb{R} when $\lambda \to \infty$.

Lemma 14.16. Let $f, g \in s(\mathbb{R})$. Then,

$$f(0) \int_{\mathbb{R}^n} \hat{g}(\xi) d\xi = g(0) \int_{\mathbb{R}^n} \hat{f}(\xi) d\xi.$$
 (104)

Lemma 14.17. Let $f \in s(\mathbb{R})$ be a function. Then,

$$S(\mathbb{R}) := \{ f : \mathbb{R} \longrightarrow \mathbb{C} \mid f \in C^{\infty}(\mathbb{R}) \land \forall n, m \in \mathbb{N} \,\exists c_{n,m} < \infty$$
 such that $(1 + |x|)^m \cdot |D^n f(x)| \le c_{n,m}, \forall x \in \mathbb{R} \}$.
$$f(0) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(\xi) \,d\xi.$$
 (105)

Theorem 14.18 (Inversion of \mathscr{F} in $S(\mathbb{R})$). Let \mathscr{F} : $S(\mathbb{R}) \longrightarrow S(\mathbb{R}), \text{ defined by } \mathscr{F}\{f\} = \hat{f} \text{ with } \hat{f} \in s(\mathbb{R}).$ Then, F is an linear isomorphism in the vector space $S(\mathbb{R})$ and $\mathscr{F}^4 = Id$. In particular, $\mathscr{F}^{-1} = \mathscr{F}^3$ and if $f \in S(\mathbb{R})$, then

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathscr{F}\{f\}(\xi) e^{ix\xi} d\xi = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f} e^{ix\xi} d\xi.$$
(106)

In fact, F is an homemorphism (its inverse is continuous) if we consider $S(\mathbb{R})$ as the metric space $(S(\mathbb{R}), \|\cdot\|_{n,m}).$

Theorem 14.19 (Inversion of \mathscr{F} for discontinuities). Let f be a absolutely Riemann-integrable function in \mathbb{R} with f and f' piece-wise continuous. Then,

$$\frac{f(x^{-}) + f(x^{+})}{2} = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{D}} \hat{f} e^{ix\xi} d\xi.$$
 (107)

Definition 14.6. Let f be a Riemann-integrable function in \mathbb{R} . We define the Fourier transform of cosine kind as

$$\hat{f}_c(\xi) := \sqrt{\frac{2}{\pi}} \int_0^\infty \cos(\xi x) f(x) \, \mathrm{d}x = \sqrt{\frac{2}{\pi}} \int_0^\infty \cos(\xi x) f_e(x) \, \mathrm{d}x,$$
(108)

and the Fourier transform of sine kind as

$$\hat{f}_s(\xi) := \sqrt{\frac{2}{\pi}} \int_0^\infty \sin(\xi x) f(x) \, \mathrm{d}x = \sqrt{\frac{2}{\pi}} \int_0^\infty \sin(\xi x) f_o(x) \, \mathrm{d}x.$$
Theorem 14.26. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function with compact support $\{\phi_{\epsilon}\}$ approximation of the unity. Then, when $\epsilon \to 0$ $f * \phi_{\epsilon}$ converges uniformly

Proposition 14.20. Let \hat{f}_c, \hat{f}_s be the Fourier transform of cosine and sine kinds of f. Then, $\hat{f}_c(\xi)$ is even, $\hat{f}_s(\xi)$ is odd, and $\hat{f}(\xi) = \hat{f}_c(\xi) - i\hat{f}_s(\xi)$.

Theorem 14.21. Let f be a absolutely Riemannintegrable function in \mathbb{R} with f and f' piece-wise continuous. Then,

$$\frac{f_e(x^-) + f_e(x^+)}{2} = \sqrt{\frac{2}{\pi}} \int_0^\infty \hat{f}_c \cos(\xi x) \,d\xi, \qquad (110)$$

$$\frac{f_o(x^-) + f_o(x^+)}{2} = \sqrt{\frac{2}{\pi}} \int_0^\infty \hat{f}_s \sin(\xi x) \,d\xi.$$
 (111)

Theorem 14.22 (Tonelli's Theorem). Let $f: I \times$ $J \longrightarrow \mathbb{R}^2$ two functions with $I, J \subseteq \mathbb{R}$ such that $f(x,y) \ge 0$ for all $(x,y) \in I \times J$. Then,

$$\int_{I \times J} f \, dx \, dy = \int_{I} \int_{J} f(x, y) \, dy \, dx = \int_{J} \int_{I} f(x, y) \, dx \, dy.$$

Besides, if these integrals are finite, then $f \in L^1(\mathbb{R})$.

Definition 14.7. Let $f,g \in L^1(\mathbb{R})$ two function. We define the convolution of f and g as

$$(f * g) : \mathbb{R} \longrightarrow \mathbb{C}$$

$$x \longmapsto \int_{\mathbb{R}} f(t)g(x - t) dt, \qquad (113)$$

which is from $L^1(\mathbb{R})$.

Proposition 14.23. Let $f,g \in L^1(\mathbb{R})$ be two functions. Then $\hat{f} * \hat{g} = \sqrt{2\pi} \hat{f} \hat{g}$.

Theorem 14.24. Let $f \in L^p(\mathbb{R}), 1 \leq p \leq +\infty$ and $\phi \in S(\mathbb{R})$. Then, $f * \phi \in C^{\infty}(\mathbb{R})$.

Theorem 14.25. Let $f \in L^p(\mathbb{R}), 1 \leq p < +\infty$ with supp f compact and $\phi \in D(\mathbb{R})$. Then, $f * \phi \in D(\mathbb{R})$ and supp $\{f * \phi\} \subseteq \text{supp } f + \text{supp } \phi$.

Definition 14.8. We say the functions $\phi_{\epsilon} : \mathbb{R} \longrightarrow \mathbb{R}$ continuous in a compact support are an approximation of the unity if and only if

1. $\phi_{\epsilon} \geq 0$ for all ϵ .

$$2. \int_{\mathbb{R}} \phi_{\epsilon}(x) \, \mathrm{d}x = 1.$$

3. For all $\delta > 0$ it is satisfied that

$$\lim_{\epsilon \to 0} \left\{ \sup_{|t| > \delta} \phi_{\epsilon}(t) \right\} = 0. \tag{114}$$

function with compact support $\{\phi_{\epsilon}\}$ approximation of the unity. Then, when $\epsilon \to 0$ $f * \phi_{\epsilon}$ converges uniformly in \mathbb{R} to f.

Theorem 14.27 (Weierstrass polynomial approximation). Let $f:[a,b] \longrightarrow \mathbb{R}$ be a continuous function. Then, there exist polynomials P_n with $n \in \mathbb{N}$ such that P_n converge uniformly to f in [a,b].

Theorem 14.28. Let $f \in L^p(\mathbb{R})$ be a function. Then, there exists a sequence of function $f_n \in D(\mathbb{R})$ of the form $f_n \to f$ with norm $\|\cdot\|_p$ (that is, convergence in L^p), and if $f \in C^k(\mathbb{R})$ with $k \geq 0$, then

$$\lim_{n \to \infty} \|f_n - f\|_{C^k(\mathbb{R})} = 0, \tag{115}$$

with $||f||_{C^k(\mathbb{R})} = \max_{0 \le l \le k} \left(\sup_{x \in \mathbb{R}} |D^l f(x)| \right)$ being a

Lemma 14.29. Let $f \in L^1(\mathbb{R})$ be a function such that for all $\phi \in S(\mathbb{R})$ it is satisfied that $\int f(x)\phi(x) dx = 0$. Then, $f \equiv 0$.

Theorem 14.30 (Inversion theorem in $L^1(\mathbb{R})$). Let $f \in L^1(\mathbb{R})$ be a function such that $\hat{f} \in L^1(\mathbb{R})$. Then,

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{D}} \hat{f}(\xi) e^{ix\xi} d\xi, \forall x \in \mathbb{R}.$$
 (116)

Multidimensional**15** transform

fourier or simpler,

Theorem 15.1. For several variables

$$\mathscr{F}{f(\mathbf{x})} = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(\mathbf{x}) e^{-i\langle \mathbf{x}, \boldsymbol{\xi} \rangle_I} d\hat{x}.$$
 (118)

Theorem 15.1. For several variables
$$\mathcal{F}\{f(x_1,\dots,x_n)\} = \frac{1}{(2\pi)^{n/2}} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1,\dots,x_n) e^{-i(x_1\xi_1+\dots+x_n\xi_n)} dx_1 \dots dx_n,$$

$$(117)$$