https://github.com/TAMIDSpi yalong/Gen-AI

Lecture 1: 9:00-9:40

Yalong Pi (Texas A&M Institute of Data Science)

Address: Office 221C, John R. Blocker Building

Email: piyalong@tamu.edu

- ☐ B.S., Mechanical Engineering, 2007-2011
- ☐ M.S., Civil Engineering, 2011-2013
- ☐ Ph.D., Architecture, 2017-2020
- ☐ Research Scientist, 2020-present
- ☐ Architect, 2016-2017
- ☐ Project manager, 2013-2016

Agenda

- Part 1: Background and Theory on Generative Al
- Fundamentals of machine learning 9:00 10:00
- Tokenization and word embedding /o:oo (o:) o
- Transformers for Language Models
- Part 2: Applications and Hands-On Exercises
- Prompt Engineering
- Generative Al Applications
- Evolution of Generative AI and Future Directions

Fundamentals of machine learning

NLP CV cefa fold recomendation

Back Propagation

x	У
1	10
2	20
5	30

 $y_{pred} = w_{21} * x_1 * w_{11} + w_{22} * x_1 * w_{12}$ $Loss = (y_{pred} - y_{true})^2$ $W_n' = Wn - LR (\partial Loss/\partial W_n)$

$$\mathcal{J} = (\mathcal{W}_{11} \cdot \mathcal{W}_{21} + \mathcal{W}_{22} \cdot \mathcal{W}_{12}) \cdot \mathcal{X}$$

 $y_{pred} = w_{21} * x_1 * w_{11} + w_{22} * x_1 * w_{12}$ $Loss = (y_{pred} - y_{true})^2$ $W_n' = Wn - LR (\partial Loss/\partial W_n)$

x	у	
1	10	$\sqrt{}$
2	20	V
5	30	\checkmark

$$\begin{bmatrix} W_{11} \\ W_{12} \\ W_{21} \end{bmatrix} = \begin{bmatrix} W_{11} \\ W_{12} \\ W_{21} \\ W_{22} \end{bmatrix} = \begin{bmatrix} W_{11} \\ W_{12} \\ W_{21} \\ W_{22} \end{bmatrix} = \begin{bmatrix} W_{11} \\ W_{12} \\ W_{22} \\ W_{22} \end{bmatrix} = \begin{bmatrix} W_{11} \\ W_{12} \\ W_{22} \\ W_{22} \end{bmatrix}$$

$$= W - \nabla \cdot LR$$

$$y_{pred} = w_{21} * x_1 * w_{11} + w_{22} * x_1 * w_{12}$$
 $Loss = (y_{pred} - y_{true})^2$
 $W_n' = Wn - LR (\partial Loss/\partial W_n)$

SGD adaw

batch

x	у	
1	10	$\nabla_{\mathbf{i}}$
2	20	$\sqrt{2}$
5	30	$\sqrt{3}$

For each connection:

$$I_n = f(\sum_n x_n w_n + b)$$

- $\Box f$ is the activation function
- $\square w_n$ is the weight
- $\Box b$ is the bias.
- ☐ A DNN has millions of weights and biases

Activation Functions

Binary Cross Entropy

$$L(y, \hat{y}) = -[y * \log(\hat{y}) + (1 - y) * \log(1 - \hat{y})]$$

Where:

- y is the true label (0 or 1)
- ŷ is the predicted probability (between 0 and 1)
- log can be In

Softmax

$$\sigma(Z)_i = \exp(z_i) / \Sigma(\exp(z_i))$$

Where:

- z_i is the i input score (logits)
- Σ is the sum over all input scores (logits)
- $\sigma(z)_i$ is the probability assigned to class i

not after softmax

Example:

[-0.37, -1.06, -0.07, -1.47, -0.90] -> [0.265, 0.133, 0.358, 0.088, 0.155]

Prediction\Ground Truth	Positive	Negative
Positive	TP	FP
Negative	FN	TN

$$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

training valid test

PIC.SHOW()

rta augmentation regularization drop out

Tokenization and word embedding

Tokenization

token vocabulary

"I want pizza"

"我想要披萨"

"ピザが欲しいです"

"Eu quero pizza"

"أريد بيتزا"

"मुझे पिज़्ज़ा चाहिए"

"Quiero pizza"

"피자가 먹고 싶어요"

ASCII

Pizzes Wanted

40K-45K

SOK GIPT

Word2Vec: Skig-gram and Negative Sampling

Transformers for Language Models of machine learning

Transformer

- GPT: Generative Pre-trained Transformer
- Vision Transformer: DETR
- Attention mechanism

Vaswani, A. (2017). Attention is all you need. *Advances in Neural Information Processing Systems*.

GPT 3

- Parameters 175 B
- Dataset 45T
- 96 attention heads
- 2048 token size
- Learn from their chief scientist: <u>https://www.youtube.com/watch?v=kCc8FmEb1nY</u>