Układy równań liniowych

Wstęp

Celem projektu jest implementacja metod iteracyjnych (Jacobiego i Gaussa-Seidla) i bezpośrednich do rozwiązywania układów równań liniowych.

Zadanie A

Celem zadania było stworzenie układu równań w postaci

$$Ax = b$$

Gdzie A. To macierz pasmowa o rozmiarze $N \times N$, gdzie N=918. Natomiast jej elementy to pięć kolejnych diagonali (główna i 2 sąsiednie) gdzie a_1 =13, a_2 = a_3 =-1. Natomiast wektor b ma wartości postaci:

$$\sin(n*(5+1)).$$

Zadanie B

Celem zadania była implementacje metody iteracyjnej Jacobiego i jej wersji ulepszonej Gaussa-Seidla. Następnie przetestowanie jej działania dla układu stworzonego w zadaniu A. Po ustaleniu maksymalnej wartości normy z wektora residuum równym 10-9 otrzymano następujące rezultaty:

Metoda	Czas	Iteracje
Jacobi	5.83 s	23
Gaussa-Seidla	4.30 s	16

Jak widać Ilość iteracji w metodzie Gaussa jest prawie dwukrotnie mniejsza od metody Jacobiego. Oraz jest trochę szybsza (o około 35%) względem podstawowej.

Zadanie C

Dla zmodyfikowanych parametrów macierzy w układzie (a₁=3 w macierzy M), metody iteracyjne przestały się zbiegać. Zamiast tego było widać coraz większą rozbieżność pomimo kolejnych iteracji. Można więc stwierdzić że macierze w takiej formie prawdopodobnie tracą swoje pewne cechy które są wymagane aby metody iteracyjne się zbiegały.

Zadanie D

Po zaimplementowaniu metody bezpośredniego rozwiązywania układów równań z faktoryzacją LU i rozwiązaniu układu równań opisanego powyżej otrzymaną następujące rezultaty: Metoda ta rozwiązała układ równań w czasie *67.34 s* a norma z wektora residuum otrzymanego rozwiązania była rzędu 1e-12

Zadanie D

W tym zadaniu celem było porównanie czasu rozwiązywania wyżej opisanych metod na coraz to większych rozmiarach maciczny M (w wersji z zadania A). W wyniku czego otrzymano następujące rezultaty:

Rozmiar N	Czas Jacobi	Czas Gauss Seidel	Czas LU
100	0.07	0.04	0.09
300	0.57	0.42	2.25
500	1.69	1.18	10.60
1000	6.85	4.75	84.14
2000	27.54	19.11	690.58
3000	62.20	43.32	2372.35

Otrzymane czasy można przedstawić w formie wykresu:

Zadanie F: Przemyślenia końcowe i wnioski.

Obserwując wyniki z poprzednich zadań dochodzimy to kilku elementarnych wniosków. Po pierwsze, jeżeli chodzi o rozwiązywaniu układów równań liniowych które są szeroko stosowane w wielu dziedzinach nauk najszybsze są metody iteracyjne. A z pośród nich szybsza się okazała metoda Gaussa Seidla. Niestety te szybsze metody posiadają w związku z tym wiele wad. Najpoważniejszą z nich jest brak dokładności takich rozwiązań przez te metody (w porównaniu z metodami bezpośrednimi, których rezultaty są najczęściej blisko szumu numerycznego). Trzeba ustalać jaką

Szymon Nagel 175818

dokładność chce się uzyskać i systematycznie powtarzać kolejne iteracje dopóki rezultat nie będzie dla nas satysfakcjonujący. Kolejną wadą metod iteracyjnych jest fakt, iż nie każdy układ są one w stanie rozwiązać. Równania muszą spełniać pewne ściśle określone warunki aby podczas kolejnych iteracji norma z wektora residuum podczas kolejnych iteracji malała. Więc pod tym względem przewagę ma standardowa metoda z faktoryzacją LU która zapewnia rozwiązanie prawie dowolnego układu z pewną wysoką dokładnością.