

CMOS Single 8-Channel Analog Multiplexer/Demultiplexer

FEATURES

- -3dB Bandwidth: 180MHz
- Single Supply Operation +2.5V to +5.5V
- Low ON Resistance, 48Ω(TYP) With 5V Supply
- High Off-Isolation: -83dB (RL = 50Ω, f = 1MHz)
- Break-Before-Make Switching
- Binary Address Decoding on Chip
- Operating Temperature Range: -40°C to +125°C
- PACKAGES: SOIC-16(SOP16), SSOP-16, TSSOP-16 and QFN-3×3-16L

APPLICATIONS

- Sensors
- Analog and Digital Multiplexing and Demultiplexing
- A/D and D/A Conversion
- Signal Gating
- Battery-Operated Equipment
- Factory Automation
- Appliances
- Communications Circuits

DESCRIPTION

The RS2251 is a CMOS analog IC configured as an 8-channel multiplexer. This CMOS device can operate from 2.5 V to 5.5 V.

The RS2251 device are digitally-controlled analog switches. It has low on-resistance (48Ω TYP) and very low off-leakage current (1nA TYP).

The RS2251 is available in Green SOIC-16, SSOP-16, TSSOP-16 and QFN-3x3-16L packages. It operates over an ambient temperature range of -40°C to +125°C.

Functional Diagrams of RS2251

PIN CONFIGURATIONS

PIN DESCRIPTION

NAME	PIN (SOIC-16/SSOP-16/TSSOP-16)	PIN (QFN-3×3-16L)	FUNCTION
X0-X7	13,14,15,12,1,5,2,4	11,12,13,10,15,3,16,2	Analog Switch Inputs X0-X7.
X	3	1	Analog Switch "X" Output.
Vcc	16	14	Positive Analog and Digital Supply Voltage Input
Α	11	9	Digital Address "A" Input.
В	10	8	Digital Address "B" Input.
С	9	7	Digital Address "C" Input.
GND	8	6	Ground. Connect to digital ground.
NC	7	5	No Connect.
ENABLE	6	4	Digital Enable Input. Normally connected to GND.
EP	_	Exposed Pad	Exposed Pad. Connect EP to GND.

FUNCTION TABLE

ENABLE	INP	UT ST	ATES	ON CHANNEL(S)	
INPUT	С	В	Α	ON CHANNEL(3)	
1	Х	Х	Х	NONE	
0	0	0	0	X0	
0	0	0	1	X1	
0	0	1	0	X2	
0	0	1	1	Х3	
0	1	0	0	X4	
0	1	0	1	X5	
0	1	1	0	X6	
0	1	1	1	X7	

X=Don't care

NOTE: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction.

SPECIFICATIONS

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

SYMBOL		PARAMETER	MIN	MAX	UNIT
Vcc	Supply Voltage		-0.3	6	V
VIN	Input Voltage (All input	5)	-0.3	Vcc+0.3	V
I _{IN}	Switch Input Current	Any one input	-20	+20	Л
I _{PEAK}	Peak Switch Current	Pulsed at 1ms Duration, <10% Duty Cycle	-40	+40	mA
TJ	Junction Temperature			150	°C
T _{stg}	Storage temperature		-65	+150	1

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

ESD Ratings

			VALUE	UNIT
V(FOD)		Human-body model (HBM)	±3000	V
V(ESD)	Electrostatic discharge	Machine Model (MM)	±200	V

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted) (3)

SYMBOL	PARAMETER	MIN	MAX	UNIT
Vcc	Supply Voltage	2.5	5.5	V
TA	Operating temperature	-40	+125	°C

Thermal Information

THERMAL METRIC		RS2251					
		16 PINS					
		SOIC-16 (SOP-16)	SSOP-16	TSSOP-16	QFN3X3- 16L	UNIT	
Reja	Junction-to-ambient thermal resistance	76	118.7	111.3	51.9	°C/W	
ReJC(top)	Junction-to-case(top) thermal resistance	42.1	66.4	45.3	53.3	°C/W	
Rејв	Junction-to-board thermal resistance	34.8	62.2	56.9	26.6	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	26.9	20.9	5.4	1.7	°C/W	
Ψ_{JB}	Junction-to-board characterization parameter	34.7	61.7	56.3	26.6	°C/W	
ReJC(bot)	Junction-to-case(bottom) thermal resistance	N/A	N/A	N/A	11.6	°C/W	

PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING ⁽¹⁾	PACKAGE OPTION
	RS2251XS16	-40°C ~+125°C	SOIC-16(SOP16)	RS2251	Tape and Reel,4000
RS2251	RS2251XSS16	-40°C ~+125°C	SSOP-16	RS2251	Tape and Reel,4000
1102201	RS2251XTSS16	-40°C ~+125°C	TSSOP-16	RS2251	Tape and Reel,4000
	RS2251XTQC16	-40°C ~+125°C	QFN-3×3 -16L	RS2251	Tape and Reel,5000

NOTE:

⁽¹⁾ There may be additional marking, which relates to the lot trace code information(data code and vendor code), the logo or the environmental category on the device.

ELECTRICAL CHARACTERISTICS

Vcc = 5.0 V or 3.3V, FULL= -40°C to +125°C, Typical values are at TA = +25°C. (unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	Vcc	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	Vx_, Vx			FULL	GND		Vcc	V
		V _{cc} =5V, Ix=1mA	5V	+25°C		48	58	Ω
On-Resistance	Ron	V _{CC} =5V, IX=IIIIA	30	FULL			67	Ω
On-inesistance	NON	V _{CC} =3.3V, Ix=1mA	3.3V	+25°C		100	130	Ω
		V _{CC} =3.3V, IX=11IIA	3.3V	FULL			140	Ω
On-Resistance Match	ΔR_ON	V _{CC} =5V, Ix=1mA Switch ON	5V	+25°C		1.5	5	Ω
Between Channels	AINON	VCC-5V, IX- IIIIA GWILCII OIV	3 V	FULL			5.3	Ω
On-Resistance Flatness	D-, ,-,,,,,,	V _{CC} =5V, Ix=1mA Switch ON 5V	+25°C		17	25	Ω	
On-Resistance Flatness	R _{FLAT} (ON)		30	FULL			28	Ω
X Off, X Off, X On	Ix_(OFF) Ix(OFF)	V _{CC} =5V, V _X =4.5V or 0V V _X =4.5V or 0V	5V	+25°C		1	1000	n A
Leakage Current	I _{x(ON)}	V _{CC} =3.3V, V _X =1V or 3V V _X =3V or 1V	3.3V	+25°C		1	1000	n A
DIGITAL CONTROL INP	UTS ⁽¹⁾							
Logic Input Logic	Vah, VBH, VCH,		5V	+25°C	1.7			V
Threshold High	$V_{\overline{ENABLE}}(H)$		3.3V	+25°C	1.7			V
Logic Input Logic	Val, VBL, VCL		5V	+25°C			0.5	V
Threshold Low	V _{ENABLE} (L)		3.3V	+25°C			0.5	V
Input-Current High	I _{AH} , Iвн, Iсн I _{ENABLE} (H)	$V_A, V_B, V_C, V_{\overline{ENABLE}} = VCC$	3.3V to 5V	+25°C		1	1000	n A
Input-Current Low	I _{AL} , I _{BL} , I _{CL} I _{ENABLE} (L)	$V_A, V_B, V_C, V_{\overline{ENABLE}} = 0V$	3.3V to 5V	+25°C		1	1000	n A

⁽¹⁾ All unused digital inputs of the device must be held at V cc or GND to ensure proper device operation.

ELECTRICAL CHARACTERISTICS (continued) Vcc= 5.0 V or 3.3V, FULL= -40°C to +125°C Typical values are at TA = +25°C (unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	V _{cc}	TEMP	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS								
Address Transition Time	_	V_{X} = ±3V, R_L = 300 Ω , C_L = 35pF, Test Circuit 1	5V	+25°C		150		ns
Address Transition Time	ttrans	$V_{X_{-}}$ = 3V/0V, R_L = 300 Ω , C_L = 35pF, Test Circuit 1	3.3V	+25°C		230		ns
ENABLE Turn-On Time	t _{ON}	V_{X} = 3V, R_L = 300 Ω , C_L = 35pF, Test Circuit 2	5V 3.3V	+25°C		65 110		ns
ENABLE Turn-Off Time	toff	$V_{X_{-}} = 3V$, $R_L = 300\Omega$, $C_L = 35pF$, Test Circuit 2	5V 3.3V	+25°C		80 130		ns
			5V			50		
Internal A, B, C Rise Time	t _R		3.3V	+25°C		80		ns
Internal A. B. C. Fall Time	4_		5V	+25°C		60		ns
Internal A, B, C Fall Time	t⊧		3.3V	+25°C		85		ns
Break-Before-Make Time Delay		$V_{X_{-}} = 3V, R_L = 300\Omega, C_L = 35pF,$	5V	+25°C		60		ns
	t _D	Test Circuit 3	3.3V	+25°C		90		ns
Charge Injection	Q	$R_S = 0\Omega$, $C_L = 1nF$, Test Circuit 4	5V	+25°C		6		рC
Chargo injudion	•	$R_S = 0\Omega$, $C_L = 1nF$, Test Circuit 4	3.3V	+25°C		4		рС
Off Isolation	Oiso	$R_L = 50\Omega$, f = 1MHz, Test Circuit 5	5V	+25°C		-83		dB
2dP Pandwidth	BW	D = 500	5V	+25°C		180		MHz
-3dB Bandwidth	DVV	$R_L = 50\Omega$	3.3V	+25°C		180		MHz
Input Off-Capacitance	C _{X_(OFF)}	V _X _ = 0V, f = 1MHz, Test Circuit 6	5V	+25°C		4.7		pF
Output Off-Capacitance	C _{X(OFF)}	V _X _ = 0V, f = 1MHz, Test Circuit 6	5V	+25°C		12.7		pF
Output On- Capacitance	C _{X(ON)}	V _X _ = 0V, f = 1MHz, Test Circuit 6	5V	+25°C		16		pF
Total Harmonic Distortion	THD	$R_L = 600\Omega$, $f = 20$ Hz to 20 kHz	5V	+25°C		0.7		%
POWER REQUIREMENTS	•	•				1		
Power Supply Range	Vcc			FULL	2.5		5.5	V
Davis Osmali Osmali		$V_{CC} = 5.0V$, V_A , V_B , V_C , $V_{\overline{ENABLE}} = V_{CC}$ or 0	5V	+25°C		0.001	6	μА
Power Supply Current	Icc	$V_{CC} = 3.3V$, V_A , V_B , V_C , $V_{\overline{ENABLE}} = V_{CC}$ or 0	3.3V	+25°C		0.001	3	μА

TYPICAL CHARACTERISTICS

Parameter Measurement Information

Test Circuit 1. Address Transition Times (ttrans)

Test Circuit 2. Switching Times (ton, toff)

Test Circuit 3. Break-Before-Make Time Delay (tD)

Parameter Measurement Information (continued)

Test Circuit 4. Charge Injection (Q)

MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS.

OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH.

ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH.

SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Test Circuit 5. Off Isolation, On Loss

Test Circuit 6. Capacitance

APPLICATION NOTES

The RS2251 device is a single 8-channel multiplexer having three binary control inputs, A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned on and connect one of the 8 inputs to the output.

One application of the RS2251 is to use it in conjunction with a microcontroller to poll a keypad. Figure 1 shows the basic schematic for such a polling system. The microcontroller uses the channel select pins to cycle through the different channels while reading the input to see if a user is pressing any of the keys. This is a very robust setup, allowing for multiple simultaneous key-presses with very little power consumption. It also utilizes very few pins on the microcontroller. The down side of polling is that the microcontroller must continually scan the keys for a press and can do little else during this process.

Figure 1. The RS2251 Being Used to Help Read Button Presses on a Keypad.

PACKAGE OUTLINE DIMENSIONS SOIC-16

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Min Max N		Max	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	9.800	10.200	0.386	0.402	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27(BSC)		0.050	(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

SSOP-16

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Min Max Min		Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.200	0.300	0.008	0.012	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	0.635	(BSC)	0.025	(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TSSOP-16

Councile of	Dimensions I	Dimensions In Millimeters		s In Inches
Symbol	Min	Max	Min	Max
А		1.200		0.047
A1	0.050	0.150	0.002	0.006
A2	0.800	1.050	0.031	0.041
b	0.190	0.300	0.007	0.012
С	0.090	0.200	0.004	0.008
D	4.860	5.100	0.191	0.201
E	4.300	4.500	0.169	0.177
E1	6.200	6.600	0.244	0.260
е	0.650	(BSC)	0.026	(BSC)
L	0.500	0.700	0.02	0.028
Н	0.25	TYP	0.01TYP	
θ	1°	7°	1° 7°	

QFN-3x3-16L

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
А	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A2	0.203		0.008	
b	0.180	0.300	0.007	0.012
D	2.900	3.100	0.114	0.122
D1	1.600	1.800	0.063	0.071
Е	2.900	3.100	0.114	0.122
E1	1.600	1.800	0.063	0.071
е	0.500 TYP		0.020 TYP	
L	0.300	0.500	0.012	0.020