

Journal of Nuclear Physics, Material Sciences, Radiation and Applications

Journal homepage: https://jnp.chitkara.edu.in/

On the Role of Large Nuclear Gravity in Understanding Strong Coupling Constant, Nuclear Stability Range, Binding Energy of Isotopes and Magic proton numbers – A Critical Review

*U.V.S. Seshavatharam1 and S. Lakshminarayana2

¹Honorary faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84, Telangana, India.

² Dept. of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India.

*E-mail: seshavatharam.uvs@gmail.com

ARTICLE INFORMATION

Received: 27 January, 2019 Revised manuscript received:

14 February, 2019

Accepted: 16 February, 2019 Published online: 26 February, 2019

Keywords:

Strong nuclear gravity, nuclear elementary charge, strong coupling constant, nuclear stability range, binding energy of isotopes, magic proton numbers.

DOI: 10.15415/jnp.2019.6.02.0142-160

ABSTRACT

With reference to our earlier published views on large nuclear gravitational constant G_s , nuclear elementary charge e_s and strong coupling constant $\alpha_s \cong e/e_s^{-2}$, in this paper, we present simple relations for nuclear stability range, binding energy of isotopes and magic proton numbers. Even though 'speculative' in nature, proposed concepts are simple to understand, easy to implement, result oriented, effective and unified. Our proposed model seems to span across the Planck scale and nuclear scale and can be called as SPAN model (STRANGE* physics of atomic nucleus).

Summary: Probable range of stable mass numbers can be estimated with $A_s \cong \left[Z + \sqrt{1/\alpha_s} \pm 1\right]^s$ where $x \cong 1.2$ for $Z \approx 3$ to 100 and $x \cong 1.19$ for $Z \ge 100$. A_s can also be expressed as, $A_s \cong 2Z + kZ^2$ where $k \cong \left[4\pi\varepsilon_0 \ \hbar/2 \ ^2 m_e c^2/e^2 G_s m_p^3\right] \cong 0.006333$. Energy coefficient being $\left[e_s^2/8\pi\varepsilon_0 \ G_s m_p/c^2\right] \approx 10.06$ MeV, for $Z \approx 5$ to 118, nuclear binding energy can be understood/fitted with two terms as, $B_{A_s} \cong A_s - \left[kA_sZ/2.531 + 3.531\right] \times 10.06$ MeV where $\ln 1/\sqrt{k} \cong m_n - m_p/m_e \cong 2.531$. By considering a third term of the form $\left[A_s - A^2/A_s\right]$, binding energy of isotopes of Z can be fitted approximately. It needs further investigation. See section 12 for an in-depth discussion.

1. Introduction

With reference to 'Strong (nuclear) gravity' [1-20], if $G_f \approx 10^{38} G_N$ and with reference to our recent symposium proceedings and journal publications [21-37], we try to refine our proposed concepts with the following three assumptions for a better understanding on nuclear stability range, binding energy of isotopes and magic proton numbers. We consider,

$$G_f \cong G_s \cong \frac{4\pi\varepsilon_0 h^2 c^2 m_e}{e^2 m_p^3} \cong 3.329561 \times 10^{28} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2}.$$

2. Assumptions

- 1) Nuclear charge radius can be expressed as $R_0 \cong \frac{2G_s m_p}{c^2} \cong 1.23929083 \text{ fm}$
- 2) Strong coupling constant can be expressed as, $\alpha_s = \left(\frac{\hbar c}{G_s m_p^2}\right)^2 = 0.1151937353$
- 3) There exists a nuclear elementary charge, $e_s \cong \frac{e}{\sqrt{\alpha_s}} \cong \left(\frac{G_s m_p^2}{\hbar c}\right) e \cong 4.720586027 \times 10^{-19} \text{ C}$

3. Semi empirical relations and applications

- 1) Proton magnetic moment can be expressed as $\mu_p \cong \frac{e_s \hbar}{2m} \cong \frac{eG_s m_p}{2c} \cong 1.488142 \times 10^{-26} \text{ J.T}^{-1}$
- 2) Ignoring the negative sign, neutron magnetic moment can be expressed as $\mu_n \cong \frac{(e_s e)\hbar}{2m_n} \cong 9.817102 \times 10^{-27} \text{ J.T}^{-1}$.
- 3) Nuclear unit radius can be expressed as, $R_0 \cong \frac{2G_s m_p}{c^2}$ $\cong \left(\frac{e_s}{e}\right) \left\{\frac{\hbar}{m_o c} + \frac{\hbar}{m_o c}\right\}$
- 4) Root mean square nuclear charge radii can be expressed as,

$$R_{(Z,A)} \cong \left\{ Z^{1/3} + \left(\sqrt{Z(A-Z)} \right)^{1/3} \right\} \left(\frac{G_s m_p}{c^2} \right)$$

5) Nuclear potential energy can be understood with,

$$\cong \frac{e_s^2}{4\pi\varepsilon_0 \left(G_s m_s/c^2\right)} \cong 20.1734 \text{ MeV}$$

6) Nuclear binding energy can be understood with,

*STRANGE: Salam/Sinha/Sivaram/Sabbatta, Tennakone, Rutherford, Avagodaro, Newton, Gamow, Einstein etc.

$$\frac{e^{2}G_{s}m_{p}^{3}}{8\pi\varepsilon_{0}\hbar^{2}} \cong \frac{e_{s}e}{8\pi\varepsilon_{0}\left(\hbar/m_{p}c\right)} \cong \frac{e_{s}^{2}}{8\pi\varepsilon_{0}\left(G_{s}m_{p}/c^{2}\right)}$$

≅10.0867 MeV

7) With reference to $(\hbar/2)$, a useful quantum energy constant can be expressed as, $E_{(\hbar/2)} \cong \left(\frac{e^2 G_s m_p^3}{4\pi\varepsilon_0 (\hbar/2)^2}\right) \cong 80.6934 \text{ MeV}$

8) Close to magic and semi magic proton numbers, nuclear binding energy seems to approach $\left[2.531\left(n+\frac{1}{2}\right)\right]^2 10.0 \text{ MeV where } n = 0,1,2,3,... \text{ and } (m_n - m_n/m_n) = 2.531.$

9) Characteristic melting temperature associated with proton can be expressed as, $T_{proton} \cong \frac{\hbar c^3}{8\pi k_B G_c m_n} \cong 0.15 \times 10^{12} \text{ K}$

10) Characteristic nuclear neutral mass unit [33] can be expressed as, $\sqrt{\frac{\hbar c}{G_s}} \cong 546.62 \, \mathrm{MeV/c^2}$. It can also be considered as a characteristic dark matter constituent [13]. See relation (26) and Table 8 of section-12 for the estimated basic baryonic mass spectrum.

4. Neutron-proton mass difference

Neutron-proton mass difference can be understood with:

$$\left(\frac{m_{n}c^{2} - m_{p}c^{2}}{m_{e}c^{2}}\right) \cong \ln \sqrt{\frac{E_{(\hbar/2)}}{m_{e}c^{2}}} \cong \ln \sqrt{\frac{4e^{2}G_{s}m_{p}^{3}}{4\pi\varepsilon_{0}\hbar^{2}m_{e}c^{2}}} \quad (4)$$

5. Neutron life time

Neutron life time t_n can be understood with the following relation:

$$t_n \cong \exp\left(\frac{E_{(\hbar/2)}}{(m_n - m_p)c^2}\right) \times \left(\frac{\hbar}{m_n c^2}\right) \cong 877.3 \text{ sec}$$
 (5)

This value can be compared with recommended value of (878.5 ± 0.8) sec.

6. Understanding proton-neutron stability

Let,
$$\left(\frac{m_e c^2}{E_{(\hbar/2)}}\right) \cong \left(\frac{4\pi \varepsilon_0 \hbar^2 m_e c^2}{4e^2 G_s m_p^3}\right) \cong k \cong 0.0063326$$
 (6)

Quantitatively, we noticed that,

$$\frac{e_s^2}{4\pi\varepsilon_0 G_s m_p m_e} \cong 4\pi^2 \cong \frac{1}{4k}$$

$$\exp\left(\frac{m_n - m_p}{m_e}\right) \cong 4\pi \cong \sqrt{\frac{1}{k}}$$
(7)

The new factor k needs a clear interpretation and we are working on that for its scope and applicability. It can be considered as a result oriented number connected with nuclear stability and binding energy.

Stable mass number A_s of Z can be estimated with the following simple relations [38],

$$A_s \cong (N_s + Z) \cong 2Z + kZ^2 \cong 2Z + 0.0063326(Z)^2$$
 (8)

$$A_s \cong \left[Z + \sqrt{(1/\alpha_s)} \right]^{1.2} \cong \left[Z + 2.9463 \right]^{1.2}$$
 (9)

where $(e/e_s)(1/k)^{1/4} \cong (\alpha_s)^{1/2}(1/k)^{1/4} \cong 1.2$. It can be called as 'power factor of stability'.

Proton number Z associated with stable A_s can be estimated with the following simple relations,

$$Z \cong \frac{\sqrt{1 + kA_s} - 1}{k}$$
 Or $Z \cong \frac{A_s}{1 + \sqrt{1 + kA_s}}$ (10)

7. Understanding proton-neutron stability range

Considering relation (8), it seems possible to find the best possible range of A_s . We noticed that,

$$(A_s)_{mean} \cong \left[Z + \sqrt{(1/\alpha_s)} \right]^{1.2}$$

$$(A_s)_{low}^{up} \cong \left[Z + \left(\sqrt{(1/\alpha_s)} \pm 1 \right) \right]^{1.2}$$

$$(11)$$

Lower stable A_s can be estimated with,

$$(A_s)_{low} \cong \left[Z + \left(\sqrt{(1/\alpha_s)} - 1 \right) \right]^{1.2} \cong \left[Z + 1.9463 \right]^{1.2}$$
 (12)

Upper stable A_s can be estimated with,

$$(A_s)_{up} \cong \left[Z + \left(\sqrt{(1/\alpha_s)} + 1\right)\right]^{1.2} \cong \left[Z + 3.9463\right]^{1.2}$$
 (13)

See Table 1 for the estimated range of stable mass numbers for Z=3 to 100. With_even-odd corrections data can be refined.

Considering a factor of 1.19 in place of 1.2, stable mass numbers of super heavy elements can be fitted. For Z=116, estimated stable mass number range seems to be 292 to 298 and its experimental mass range is 291 to 294 [39]. See Table 2 for a comparison.

Table 1: Estimated range of stable mass numbers for Z=3 to 100 with a power factor of 1.20

Z	$(A_s)_{low}$	$(A_s)_{mean}$	$(A_s)_{up}$	Main Isotope range
3	7	8	10	6 to 7
4	8	10	12	7 to 10
5	10	12	14	10 to 11

	,		T	
6	12	14	16	11 to 14
7	14	16	18	13 to 15
8	16	18	20	16 to 18
9	18	20	22	18 to 19
10	20	22	24	20 to 22
11	22	24	26	22 to 24
12	24	26	28	24 to 26
13	26	28	30	26 to 27
14	28	30	32	28 to 32
15	30	32	34	31 to 33
16	32	34	36	32 to 36
17	34	36	38	35 to 37
18	36	38	41	36 to 42
19	38	41	43	39 to 41
20	41	43	45	40 to 48
21	43	45	47	44 to 48
22	45	47	50	46 to 50
23	47	50	52	48 to 51
24	50	52	54	50 to 54
25	52	54	57	52 to 55
26	54	57	59	54 to 60
27	57	59	61	56 to 60
28	59	61	64	58 to 64
29	61	64	66	63 to 67
30	64	66	69	64 to 72
31	66	69	71	66 to 73
32	69	71	74	68 to 76
33	71	74	76	73 to 75
34	74	76	79	72 to 82
35	76	79	81	72 to 82
36	79	81	84	78 to 86
37	81	84	86	83 to 87
38	84	86	89	82 to 88
39	86	89	91	
	 			87 to 91
40	89 91	91 94	94	88 to 96 90 to 96
41			99	+
42	94 96	96 99		92 to 100 95 to 99
43	-		101	-
44 45	99	101	104	96 to 106
	101	104	107	99 to 105
46	104	107	109	100 to 110
47	107	109	112	105 to 111
48	109	112	114	106 to 116
49	112	114	117	113,115
50	114	117	120	112 to 126
51	117	120	122	121 to 125
52	120	122	125	120 to 130
53	122	125	128	123 to 135
54	125	128	131	124 to 136
55	128	131	133	133 to 137

56	131	133	136	130 to 138
57	133	136	139	137 to 139
58	136	139	141	134 to 144
59	139	141	144	141 to 143
60	141	144	147	142 to 150
61	144	147	150	145 to 147
62	147	150	152	144 to 154
63	150	152	155	150 to 155
64	152	155	158	148 to 160
65	155	158	161	157 to 159
66	158	161	164	154 to 164
67	161	164	166	163 to 167
68	164	166	169	160 to 172
69	166	169	172	167 to 171
70	169	172	175	166 to 177
71	172	175	178	173 to 176
72	175	178	181	172 to 182
73	178	181	183	177 to 183
74	181	183	186	180 to 186
75	183	186	189	185,187
76	186	189	192	184 to 194
77	189	192	195	188 to 194
78	192	195	198	190 to 198
79	195	198	201	195 to 199
80	198	201	204	194 to 204
81	201	204	207	203 to 205
82	204	207	209	202 to 214
83	207	209	212	207 to 210
84	209	212	215	208 to 210
85	212	215	218	209 to 211
86	215	218	221	218 to 224
87	218	221	224	221 to 223
88	221	224	227	223 to 228
89	224	227	230	225 to 227
90	227	230	233	227 to 234
91	230	233	236	229 to 234
92	233	236	239	232 to 238
93	236	239	242	235 to 239
94	239	242	245	238 to 244
95	242	245	248	241 to 243
96	245	248	251	242 to 250
97	248	251	254	245 to 249
98	251	254	257	248 to 254
99	254	257	260	252 to 255
100	257	260	263	252 to 257

Data has been taken from https://en.wikipedia.org/wiki/Isotope

Z	$(A_s)_{low}$	$(A_s)_{mean}$	$\left(A_{s}\right)_{up}$	Current synthetic isotopes range
101	248	251	254	257 to 260
102	251	254	257	253 to 259
103	254	257	260	254 to 266
104	257	260	263	261 to 267
105	260	263	266	262 to 270
106	263	266	269	265 to 271
107	266	269	271	267 to 278
108	269	271	274	269 to 271
109	271	274	277	274 to 282
110	274	277	280	279 to 281
111	277	280	283	279 to 286
112	280	283	286	277 to 285
113	283	286	289	278 to 290
114	286	289	292	284 to 290
115	289	292	295	287 to 290
116	292	295	298	290 to 294
117	295	298	301	293, 294
118	298	301	304	294,295

Table 2: Estimated range of stable mass numbers for Z=101 to 118 with a power factor of 1.19

8. Nuclear binding energy close to stable mass numbers

Based on the new integrated model proposed by N. Ghahramany et al [40,41],

$$B(Z,N) = \left\{ A - \left(\frac{(N^2 - Z^2) + \delta(N - Z)}{3Z} + 3 \right) \right\} \frac{m_n c^2}{\gamma}$$
 (14)

where, $\gamma = \text{Adjusting coefficient } \approx (90 \text{ to } 100)$

if
$$N \neq Z$$
, $\delta(N-Z) = 0$ and if $N = Z$, $\delta(N-Z) = 1$.

Readers are encouraged to see references there in [40,41] for derivation part. Point to be noted is that, close to the beta stability line, $\left[\frac{N^2-Z^2}{3Z}\right]$ takes care of the combined effects of coulombic and asymmetric effects. In this context, we propose that,

$$\frac{m_{\scriptscriptstyle n}c^2}{\gamma} \cong \frac{m_{\scriptscriptstyle n}c^2}{(90 \text{ to } 100)} \cong \text{Constant}$$

$$\cong \frac{e_{\scriptscriptstyle s}^2}{8\pi\varepsilon_{\scriptscriptstyle 0} (G_{\scriptscriptstyle s}m_{\scriptscriptstyle p}/c^2)} \cong 10.09 \text{MeV}$$
(15)

Proceeding further, with reference to relation (7), it is also possible to show that, for $Z \cong (40 \text{ to } 83)$, close to the beta stability line,

$$\left[\frac{N_s^2 - Z^2}{Z}\right] \cong kA_s Z \tag{16}$$

$$\left[\frac{N_{s}^{2}-Z^{2}}{3Z}\right] \cong \frac{kA_{s}Z}{3} \tag{17}$$

Based on the above relations and close to the stable mass numbers of $(Z \approx 5 \text{ to } 118)$, with a common energy coefficient of 10.06 MeV, we propose two terms for fitting and understanding nuclear binding energy.

First term helps in increasing the binding energy and can be considered as,

Term
$$1 = A_s \times 10.06 \text{ MeV}$$
 (18)

Second term helps in **decreasing** the binding energy and can be considered as,

Term_2 =
$$\left(\frac{kA_sZ}{2.531} + 3.531\right) \times 10.06 \text{ MeV}$$
 (19)

where
$$\begin{cases} \left(\frac{\left(m_{n}-m_{p}\right)c^{2}}{m_{e}c^{2}}\right) \cong \ln\left(\frac{1}{\sqrt{k}}\right) \cong 2.531. \\ 3.531 \cong 1 + 2.531 \cong 1 + \ln\left(\frac{1}{\sqrt{k}}\right) \end{cases}$$

Thus, binding energy can be fitted with,

$$B_{A_s} \cong \left\{ A_s - \left(\frac{kA_s Z}{2.531} + 3.531 \right) \right\} \times 10.06 \text{ MeV}$$
 (20)

See the following Figure 1. Dotted red curve plotted with relations (7) and (20) can be compared with the green curve plotted with the standard semi empirical mass formula (SEMF) [38,42].

Figure 1: Binding energy per nucleon close to stable mass numbers of Z = 5 to 118

For medium and heavy atomic nuclides, fit is excellent. It seems that some correction is required for light atoms. See Table 3 for the estimated data.

Table 3: Nuclear Binding energy close to stable mass numbers of Z = 5 to 118

Proton number Mass number Estd. BE (MeV) SEMF BE (MeV) Error (MeV) 5 10 63.8 62.3 -1.53 6 12 83.4 87.4 4.01 7 14 102.9 98.8 -4.04 8 16 122.2 123.2 1.03 9 19 151.3 148.9 -2.46 10 21 170.5 167.5 -2.94 11 23 189.5 186.1 -3.35 12 25 208.4 204.7 -3.71 13 27 227.3 223.2 -4.04 14 29 246.0 241.6 -4.35 15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 <th></th> <th></th> <th></th> <th></th> <th></th>					
6 12 83.4 87.4 4.01 7 14 102.9 98.8 -4.04 8 16 122.2 123.2 1.03 9 19 151.3 148.9 -2.46 10 21 170.5 167.5 -2.94 11 23 189.5 186.1 -3.35 12 25 208.4 204.7 -3.71 13 27 227.3 223.2 -4.04 14 29 246.0 241.6 -4.35 15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.80 21 45 393.4 389.6 -3.80 <	Proton number	Mass number	Estd. BE (MeV)	SEMF BE (MeV)	Error (MeV)
7 14 102.9 98.8 -4.04 8 16 122.2 123.2 1.03 9 19 151.3 148.9 -2.46 10 21 170.5 167.5 -2.94 11 23 189.5 186.1 -3.35 12 25 208.4 204.7 -3.71 13 27 227.3 223.2 -4.04 14 29 246.0 241.6 -4.35 15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.85	5	10	63.8	62.3	-1.53
8 16 122.2 123.2 1.03 9 19 151.3 148.9 -2.46 10 21 170.5 167.5 -2.94 11 23 189.5 186.1 -3.35 12 25 208.4 204.7 -3.71 13 27 227.3 223.2 -4.04 14 29 246.0 241.6 -4.35 15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85	6	12	83.4	87.4	4.01
9 19 151.3 148.9 -2.46 10 21 170.5 167.5 -2.94 11 23 189.5 186.1 -3.35 12 25 208.4 204.7 -3.71 13 27 227.3 223.2 -4.04 14 29 246.0 241.6 -4.35 15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 <td>7</td> <td>14</td> <td>102.9</td> <td>98.8</td> <td>-4.04</td>	7	14	102.9	98.8	-4.04
10 21 170.5 167.5 -2.94 11 23 189.5 186.1 -3.35 12 25 208.4 204.7 -3.71 13 27 227.3 223.2 -4.04 14 29 246.0 241.6 -4.35 15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 </td <td>8</td> <td>16</td> <td>122.2</td> <td>123.2</td> <td>1.03</td>	8	16	122.2	123.2	1.03
11 23 189.5 186.1 -3.35 12 25 208.4 204.7 -3.71 13 27 227.3 223.2 -4.04 14 29 246.0 241.6 -4.35 15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 </td <td>9</td> <td>19</td> <td>151.3</td> <td>148.9</td> <td>-2.46</td>	9	19	151.3	148.9	-2.46
12 25 208.4 204.7 -3.71 13 27 227.3 223.2 -4.04 14 29 246.0 241.6 -4.35 15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 </td <td>10</td> <td>21</td> <td>170.5</td> <td>167.5</td> <td>-2.94</td>	10	21	170.5	167.5	-2.94
13 27 227.3 223.2 -4.04 14 29 246.0 241.6 -4.35 15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 </td <td>11</td> <td>23</td> <td>189.5</td> <td>186.1</td> <td>-3.35</td>	11	23	189.5	186.1	-3.35
14 29 246.0 241.6 -4.35 15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 </td <td>12</td> <td>25</td> <td>208.4</td> <td>204.7</td> <td>-3.71</td>	12	25	208.4	204.7	-3.71
15 31 264.6 260.0 -4.65 16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 </td <td>13</td> <td>27</td> <td>227.3</td> <td>223.2</td> <td>-4.04</td>	13	27	227.3	223.2	-4.04
16 34 292.8 290.8 -2.06 17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 </td <td>14</td> <td>29</td> <td>246.0</td> <td>241.6</td> <td>-4.35</td>	14	29	246.0	241.6	-4.35
17 36 311.2 305.1 -6.18 18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 </td <td>15</td> <td>31</td> <td>264.6</td> <td>260.0</td> <td>-4.65</td>	15	31	264.6	260.0	-4.65
18 38 329.5 327.2 -2.32 19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 </td <td>16</td> <td>34</td> <td>292.8</td> <td>290.8</td> <td>-2.06</td>	16	34	292.8	290.8	-2.06
19 40 347.7 341.5 -6.27 20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 </td <td>17</td> <td>36</td> <td>311.2</td> <td>305.1</td> <td>-6.18</td>	17	36	311.2	305.1	-6.18
20 43 375.4 371.6 -3.84 21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56 </td <td>18</td> <td>38</td> <td>329.5</td> <td>327.2</td> <td>-2.32</td>	18	38	329.5	327.2	-2.32
21 45 393.4 389.6 -3.80 22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	19	40	347.7	341.5	-6.27
22 47 411.3 407.5 -3.80 23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	20	43	375.4	371.6	-3.84
23 49 429.1 425.2 -3.85 24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	21	45	393.4	389.6	-3.80
24 52 456.2 454.6 -1.61 25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	22	47	411.3	407.5	-3.80
25 54 473.7 468.9 -4.85 26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	23	49	429.1	425.2	-3.85
26 56 491.2 489.6 -1.61 27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	24	52	456.2	454.6	-1.61
27 59 517.9 515.2 -2.72 28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	25	54	473.7	468.9	-4.85
28 61 535.1 532.5 -2.63 29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	26	56	491.2	489.6	-1.61
29 63 552.3 549.7 -2.61 30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	27	59	517.9	515.2	-2.72
30 66 578.6 577.9 -0.67 31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	28	61	535.1	532.5	-2.63
31 68 595.5 592.0 -3.52 32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	29	63	552.3	549.7	-2.61
32 70 612.3 611.7 -0.60 33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	30	66	578.6	577.9	-0.67
33 73 638.2 636.6 -1.60 34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	31	68	595.5	592.0	-3.52
34 75 654.8 653.3 -1.52 35 78 680.4 677.9 -2.56	32	70	612.3	611.7	-0.60
35 78 680.4 677.9 -2.56	33	73	638.2	636.6	-1.60
	34	75	654.8	653.3	-1.52
36 80 696.8 697.0 0.26	35	78	680.4	677.9	-2.56
	36	80	696.8	697.0	0.26

37	83	722.2	721.3	-0.84
38	85	738.3	737.6	-0.69
39	88	763.4	761.6	-1.80
40	90	779.3	780.2	0.93
41	93	804.1	803.9	-0.21
42	95	819.7	819.7	0.00
43	98	844.3	843.2	-1.13
44	100	859.7	861.2	1.52
45	103	884.0	884.4	0.38
46	105	899.2	899.8	0.62
47	108	923.2	922.7	-0.49
48	111	947.0	947.6	0.62
49	113	961.9	962.8	0.96
50	116	985.5	987.5	2.03
51	118	1000.1	1000.2	0.16
52	121	1023.4	1024.6	1.22
53	124	1046.5	1024.6	0.05
54	126	1060.8	1040.3	2.62
55	129	1083.6	1085.1	1.47
56	132	1106.3	1108.7	2.38
57	135	1128.9	1130.1	1.17
58	137	1142.7	1144.4	1.73
59	140	1165.0	1165.6	0.58
60	143	1187.1	1188.5	1.42
61	146	1209.1	1209.3	0.23
62	148	1222.4	1225.3	2.91
63	151	1244.1	1245.9	1.77
64	154	1265.6	1268.2	2.56
65	157	1287.0	1288.4	1.41
66	160	1308.3	1310.4	2.16
67	162	1321.0	1322.1	1.14
68	165	1342.0	1343.9	1.94
69	168	1362.8	1363.6	0.86
70	171	1383.4	1385.1	1.64
71	174	1404.0	1404.5	0.58
72	177	1424.3	1425.7	1.34
73	180	1444.5	1444.8	0.30
74	183	1464.6	1465.7	1.06
75	186	1484.5	1484.6	0.06
76	189	1504.3	1505.1	0.82
77	192	1523.9	1523.7	-0.14
78	195	1543.3	1544.0	0.64
79	198	1562.6	1562.4	-0.27
80	201	1581.8	1582.3	0.54
81	204	1600.8	1600.5	-0.33
82	207	1619.7	1620.2	0.51
83	210	1638.4	1638.1	-0.29
0.3	∠1U	1038.4	1038.1	-0.29

84	213	1656.9	1657.5	0.58
85	216	1675.3	1675.2	-0.16
86	219	1693.6	1694.3	0.76
87	222	1711.7	1711.7	0.08
88	225	1711.7	1711.7	1.05
89	228	1747.4	1747.8	0.44
90	231	1747.4		1.46
			1766.5	
91	234	1782.5	1783.5	0.93
92	238	1807.6	1808.5	0.90
93	241	1824.8	1825.2	0.44
94	244	1841.8	1843.4	1.56
95	247	1858.7	1859.9	1.17
96	250	1875.4	1877.7	2.36
97	254	1899.6	1898.9	-0.71
98	257	1916.0	1916.5	0.54
99	260	1932.2	1932.5	0.34
100	263	1948.3	1949.9	1.66
101	267	1971.7	1971.9	0.16
102	270	1987.5	1989.1	1.56
103	273	2003.1	2004.6	1.54
104	276	2018.6	2021.6	3.02
105	280	2041.3	2041.4	0.17
106	283	2056.4	2058.1	1.74
107	287	2078.7	2079.1	0.36
108	290	2093.5	2095.6	2.01
109	293	2108.2	2110.5	2.30
110	297	2130.0	2131.0	1.01
111	300	2144.3	2145.7	1.42
112	303	2158.5	2161.7	3.26
113	307	2179.7	2181.8	2.08
114	310	2193.6	2197.6	4.02
115	314	2214.4	2216.0	1.53
116	317	2227.9	2231.5	3.59
117	321	2248.4	2250.9	2.53
118	324	2261.6	2266.3	4.69

9. Nuclear binding energy of isotopes of Z

We are working on understanding and estimating the binding energy of mass numbers above and below the stable mass numbers.

With trial and error, we have developed a third term of the form $\left[\frac{\left(A_s - A\right)^2}{A_s}\right] \times 10.06$ MeV. Using this

term, approximately, it is possible to fit the binding energy of isotopes in following way.

$$B_A \cong \left\{ \left[A - \left(\frac{kAZ}{2.531} + 3.531 \right) \right] - \left[\frac{\left(A_s - A \right)^2}{A_s} \right] \right\} \times 10.06 \text{ MeV}$$
 (21)

See Figure 2 and Table 4 for the estimated isotopic

binding energy of Z=50. Dashed red curve plotted with relations (7) and (21) can be compared with the green curve plotted with total binding energy of Thomas-Fermi model [42].

For Z=50 and A=100 to 130, with reference to total binding energy of Thomas-Fermi model [42], there is no much more difference in the estimation of binding energy. When (A>130), binding energy seems to be increasing and when (A>170), binding energy seems to be decreasing rapidly. It needs further study and refinement.

See Figures 3 to 10 for the estimated isotopic binding energies of Z=22, 32, 42, 52, 62, 72, 82 and 92. Dashed red curve plotted with relations (7) and (21) can be compared with the green curve plotted with the semi empirical formula.

Figure 2: Binding energy of isotopes of Z=50

Table 4: Binding energy of isotopes of Z=50

Proton number	Mass number	Estd. BE (MeV)	Total BE (MeV) [26]	Error (MeV)
50	100	822.4	826.0	3.6
50	101	833.9	837.2	3.3
50	102	845.2	850.7	5.4
50	103	856.4	860.7	4.3
50	104	867.3	873.1	5.8
50	105	878.1	882.7	4.6
50	106	888.8	894.6	5.8
50	107	899.2	903.5	4.3
50	108	909.5	914.9	5.5
50	109	919.6	923.5	3.9
50	110	929.5	934.7	5.2
50	111	939.3	942.9	3.6
50	112	948.9	953.5	4.6
50	113	958.3	961.1	2.8
50	114	967.5	971.4	3.9
50	115	976.6	978.7	2.2
50	116	985.5	988.5	3.0
50	117	994.2	995.4	1.3
50	118	1002.7	1004.7	2.0
50	119	1011.1	1011.3	0.2
50	120	1019.3	1020.3	1.1
50	121	1027.3	1026.8	-0.5
50	122	1035.1	1035.5	0.4
50	123	1042.8	1041.5	-1.3
50	124	1050.3	1050.1	-0.2
50	125	1057.6	1055.8	-1.8
50	126	1064.8	1064.1	-0.7
50	127	1071.8	1069.6	-2.2
50	128	1078.6	1077.5	-1.0
50	129	1085.2	1082.8	-2.4
50	130	1091.7	1090.5	-1.2
50	131	1098.0	1095.61	-2.3
50	132	1104.1	1102.6	-1.5

50	133	1110.0	1105.2	-4.8
50	134	1115.8	1109.5	-6.2
50	135	1121.4	1111.4	-9.9
50	136	1126.8	1115.2	-11.6
50	137	1132.0	1116.9	-15.1
50	138	1137.1	1120.5	-16.6
50	139	1142.0	1121.9	-20.1
50	140	1146.7	1125.3	-21.4

See Table 5 for the estimated and total binding energies of A=2Z nuclides starting from Z=20 to 50.

Table 5: Binding energy of A = 2Z nuclides

Proton number	Mass number	Est. BE (MeV)	Exp. BE(MeV) [40,42]	Error (MeV)
20	40	344.6	342.1	-2.6
22	44	380.8	375.5	-5.3
24	48	415.3	411.5	-3.8
26	52	450.7	447.7	-3.0
28	56	484.2	484.0	-0.3
30	60	517.3	515.0	-2.3
32	64	551.6	546.0	-5.6
34	68	583.8	576.3	-7.5
36	72	615.5	606.9	-8.6
38	76	646.8	638.1	-8.7
40	80	677.6	668.4	-9.2
42	84	707.9	700.9	-7.0
44	88	737.8	731.4	-6.4
46	92	767.3	762.1	-5.2
48	96	793.9	793.4	-0.5
50	100	822.4	824.5	2.1

Figure 3: Binding energy of isotopes of Z=22

Figure 4: Binding energy of isotopes of Z=32

Figure 5: Binding energy of isotopes of Z=42

Figure 6: Binding energy of isotopes of Z=52

Figure 7: Binding energy of isotopes of Z=62

Figure 8: Binding energy of isotopes of Z=72

Figure 9: Binding energy of isotopes of Z=82

Figure 10: Binding energy of isotopes of Z=92

10. Understanding the binding energy of light atomic nuclides

It is well established that, in light atomic nuclides, coulombic interaction seems to play a key role in reducing the binding energy. Based on this concept, starting from Z=2 to Z=30, close to stable mass numbers, binding energy can be expressed by the following relations.

$$B_{A_s} \cong \left[A_s - A_s^{\frac{1}{3}} \right] (10.06 - 0.71) \text{ MeV}$$

 $\cong \left[A_s - A_s^{\frac{1}{3}} \right] 9.35 \text{ MeV}$ (22)

See the following Table 6.

Table 6: Binding energy of Z = 2 to 30 based on coulombic correction

Proton number	Mass number	Est. BE (MeV)	SEMF BE (MeV) [38]	Error (MeV)
2	4	22.6	22.0	-0.5
3	6	39.1	26.9	-12.2
4	8	56.1	52.9	-3.2
5	10	73.4	62.3	-11.1
6	12	90.8	87.4	-3.4
7	14	108.4	98.8	-9.6
8	16	126.0	123.2	-2.8
9	19	152.7	148.9	-3.8
10	21	170.6	167.5	-3.0
11	23	188.5	186.1	-2.3
12	25	206.4	204.7	-1.7
13	27	224.4	223.2	-1.2
14	29	242.4	241.6	-0.8
15	31	260.5	260.0	-0.5
16	34	287.6	290.8	3.2
17	36	305.7	305.1	-0.7
18	38	323.9	327.2	3.4
19	40	342.0	341.5	-0.5
20	43	369.3	371.6	2.3
21	45	387.5	389.6	2.1
22	47	405.7	407.5	1.8
23	49	423.9	425.2	1.3
24	52	451.3	454.6	3.3
25	54	469.6	468.9	-0.7
26	56	487.8	489.6	1.8
27	59	515.3	515.2	0.0

28	61	533.5	532.5	-1.0
29	63	551.8	549.7	-2.2
30	66	579.3	577.9	-1.4

11. Understanding magic proton numbers

It may be noted that, the nuclear magic numbers, as we know in stable and naturally occurring nuclei, consist of two different series of numbers. The first series -2, 8, 20 is attributed to the harmonic-oscillator (HO) potential, while the second one - 28, 50, 82 and 126 is due to the spin—orbit (SO) coupling force [43-46]. In this context, our bold idea is that, atoms are exceptionally stable when their nuclear binding energy approaches,

$$B_{A} \cong \left[2.531 \left(n + \frac{1}{2} \right) \right]^{2} 10.06 \text{ MeV}$$
 (23)

Based on point 5 of section-3, close to stable mass numbers of $Z \approx (2 \text{ to } 100)$, magnitude of nuclear binding energy can be expressed by a relation of following form.

$$B_{A_{s}} \approx \left\{ \left(Z - \sqrt{\ln(Z)} \right) \frac{e_{s}^{2}}{4\pi\varepsilon_{0} \left(G_{s} m_{p} / c^{2} \right)} \right\} \pm 10.06 \text{ MeV}$$

$$\approx \left[\left(Z - \sqrt{\ln(Z)} \right) * 20.12 \text{ MeV} \right] \pm 10.06 \text{ MeV}$$
where $A \approx 2Z + 0.0063326(Z)^{2}$

See the following Figure 11 for the plotted (dotted) black curve compared with SEMF green curve.

Figure 11: Nuclear Binding energy close to stable mass numbers of Z = 2 to 100

Let M_n be a possible magic proton number. Considering relations (23) and (24), it is possible to develop a relation of the following form having a factor (1/2).

$$M_{n} \cong \left\{ \frac{1}{2} \left[2.531 \left(n + \frac{1}{2} \right) \right]^{2} + 1 \right\} + \Delta$$

$$\cong \left[3.203 \left(n + \frac{1}{2} \right)^{2} + 1 \right] + \Delta$$

$$(25)$$

where, after rounding off,

if,
$$\left\{ \frac{1}{2} \left[2.531 \left(n + \frac{1}{2} \right) \right]^2 + 1 \right\}$$
 is Odd, $\Delta = \mp 1$
if, $\left\{ \frac{1}{2} \left[2.531 \left(n + \frac{1}{2} \right) \right]^2 + 1 \right\}$ is Even, $\Delta = \mp 2$

See the following Table 7. It is possible to say that,

- 1) Magic proton numbers 2, (6), (14), 28, 50, 82, 114,.. etc [44-46] can be shown to be n^{th} levels.
- 2) Magic proton numbers 2, 8, 20, 40,... can be shown to be $\left(n + \frac{1}{2}\right)$ levels.

Table 7: To understand the magic proton numbers

$\left(n+\frac{1}{2}\right)$	Round off $\left[3.203\left(n+\frac{1}{2}\right)^2+1\right]$	$M_{_{n}}$
0	1	1,2
0.5	2	2,4
1	4	2,4,6
1.5	8	6,8,10

2	14	12,14,16
2.5	21	20,21,22
3	30	28,30,32
3.5	40	38,40,42
4	52	50,52,54
4.5	66	64,66,68
5	81	80,81,82
5.5	98	96,98,100
6	116	114,116,118
6.5	136	134,136,138
7	158	156,158,160
7.5	181	180,181,182
8	206	204,206,208

12. Discussion

1) With reference to the proposed characteristic mass unit of $\sqrt{\hbar c/G_s} \cong 546.62 \text{ MeV}/c^2$, basic baryonic mass spectrum can be fitted with the following relation,

$$m_{Bar}c^2 \cong \left(\frac{n}{\alpha_s}\right)^{\frac{1}{4}} \sqrt{\frac{\hbar c^5}{G_s}} \cong \left(\frac{n}{\alpha_s}\right)^{\frac{1}{4}} 546.6 \text{MeV}$$
 (26)

where n = 1, 2, 3, ...

See Table 8. For further details, readers are encouraged to see our published paper [33].

Table 8: Est	imated basic	baryons	rest	energy
--------------	--------------	---------	------	--------

n	Baryon rest energy (MeV)	n	Baryon rest energy (MeV)
1	938.3	11	1708.7
2	1115.8	12	1746.3
3	1234.8	13	1781.6
4	1326.9	14	1814.9
5	1403.0	15	1846.5
6	1468.5	16	1876.5
7	1526.1	17	1905.2
8	1578.0	18	1932.6
9	1625.1	19	1958.9
10	1668.5	20	1984.2

- 2) So far no model could succeed in understanding nuclear binding energy with gravity [19]. It can be confirmed from main stream literature [1-20].
- 3) So far no model could address or succeed in implementing strong coupling constant in low energy nuclear physics.
- 4) So far no model could attempt to understand nuclear stability and binding energy with the combined effects of strong nuclear gravity and strong nuclear charge.
- 5) Understanding nuclear binding energy with a single energy coefficient of magnitude $\frac{e_s^2}{8\pi\varepsilon_0 \left(G_s m_p/c^2\right)} \cong 10.09 \text{ MeV}$ is a challenging task and so far, except Ghahramany et al, no one could attempt to do that. It may also be noted that, in Ghahramany's model, energy constant is

- a variable [47] and in our model energy constant remains same for any nuclide.
- 6) Estimation of nucleon stability range is simple in our model compared to SEMF and Ghahramany's model. Interesting point to be noted is that, in our model, nucleon stability range or stable mass numbers can be estimated without considering the binding energy formula. We have provided different relations for understanding nucleon stability.
- 7) Proposed new and result oriented number

$$k \cong \left(\frac{4\pi\varepsilon_0 \hbar^2 m_e c^2}{4e^2 G_s m_p^3}\right) \cong 0.0063326$$

seems to play a

key role in understanding nuclear stability and binding energy vide relations (6), (7), (8), (9), (10), (16) and (20).

- 8) Proposed first tem is not new and proposed second term $[(kA_sZ/2.531)+3.531]\times10.06$ MeV seems to play an excellent role in fitting and understanding the binding energy of medium and heavy stable nuclides. It can be evidenced form Table 3. Correction seems to be required for light atomic nuclides. It needs further study.
- Proposed third term $\left[\left(A_s A\right)^2 / A_s\right] \times 10.06 \text{ MeV}$ seems to be approximate in fitting and understanding the binding energy of isotopes. We are working on it for its validity and better alternative with respect correct stable mass number of Z. For example, see the following Table 9.

Table 9: Binding energy of isotopes of Z = 8, 10 and 20

Proton number	Mass number	Est. BE (MeV)	Total BE (MeV)	Error (MeV)
8	14	100.0	98.7352	-1.25
8	15	111.7	111.9576	0.23
8	16	122.2	127.6211	5.40
8	17	131.4	131.7646	0.32
8	18	139.4	139.8091	0.39
8	19	146.1	143.7665	-2.37
10	17	123.6	112.9107	-10.64
10	18	136.7	132.1432	-4.57
10	19	148.9	143.7827	-5.14
10	20	160.2	160.6521	0.49
10	21	170.5	167.4136	-3.04
10	22	179.8	177.7751	-2.01
10	23	188.2	182.9756	-5.18
10	24	195.6	191.841	-3.72
20	36	297.1	281.3644	-15.69
20	37	309.6	296.1548	-13.50
20	38	321.8	313.1263	-8.65
20	39	333.4	326.4138	-7.03
20	40	344.6	342.0563	-2.58
20	41	355.4	350.4187	-4.94
20	42	365.6	361.9002	-3.72
20	43	375.4	369.8327	-5.58
20	44	384.7	380.9652	-3.77
20	45	393.6	388.3797	-5.21
20	46	402.0	398.7791	-3.20
20	47	409.9	406.0556	-3.84
20	48	417.3	415.9961	-1.35
20	49	424.3	421.1426	-3.19
20	50	430.8	427.495	-3.35

- 10) In deuteron, binding energy seems to be proportional to e^2 and in other atomic nuclides, binding energy seems to be proportional to e_s^2 .
- 11) Considering the average of (e^2, e_s^2) and without considering 0.71 MeV (as there exists only one proton), based on relation (22), binding energies of ${}_{1}^{2}H$ and ${}_{1}^{3}H$ nuclides can be estimated as,

$$\left[2-2^{\frac{1}{3}}\right]$$
 5.6 \cong 4.15 MeV and $\left[3-3^{\frac{1}{3}}\right]$ 5.6 \cong 8.72 MeV respectively.

12) Considering the average of (e^2, e_s^2) and considering 0.71 MeV (since there exists two protons), based on relation (22), binding energy of ${}_{2}^{3}He$ can be estimated as, $\left[3-3^{\frac{1}{3}}\right]4.9 \approx 7.63$ MeV.

13) Coulombic energy coefficient being 0.7 MeV, with reference to $\ln\left(\frac{e^2}{4\pi\epsilon_0 G_s m_p m_e}\right) \approx 1.515$, volume or surface energy coefficient can be expressed as 1.515*10.09 = 15.3 MeV and asymmetric energy coefficient can be expressed as, 1.515*15.3 = 23.0 MeV. Thus, 10.09 MeV, 15.3 MeV and 23.0 MeV seem to follow a geometric series with a geometric ratio of 1.515. For $(Z \ge 10)$, binding energy can also be estimated with,

$$B_A \cong (A - A^{2/3} - 1) * 15.3 \text{MeV}$$

$$-\frac{Z^{2}}{A^{1/3}}*0.7\text{MeV} - \frac{(A-2Z)^{2}}{A}*23.0\text{MeV}$$
 (27)

- 14) With advanced research in high energy nuclear physics, hadronic melting points can be understood and bare quarks can be made identifiable.
- 15) With further research in nuclear astrophysics, it is certainly possible to understand the combined effects of Newtonian gravitational constant and proposed nuclear gravitational constant. Considering the ratio of nuclear gravitational constant and Newtonian gravitational constant, estimated masses of white dwarfs, neutron stars and black holes [48,49], can be fitted approximately. For example,

$$M_{x} \approx \left(\frac{G_{s}}{G_{N}}\right) \sqrt{\frac{e^{2}}{4\pi\varepsilon_{0}G_{N}}} \approx 0.473M_{\odot}$$

$$M_{x} \approx \left(\frac{G_{s}}{G_{N}}\right) \sqrt{\frac{e_{s}^{2}}{4\pi\varepsilon_{0}G_{N}}} \approx 1.373M_{\odot}$$

$$M_{x} \approx \left(\frac{G_{s}}{G_{N}}\right) \sqrt{\frac{\hbar c}{G_{N}}} \approx 5.456M_{\odot}$$
(28)

$$M_{x} \approx \sqrt{\frac{G_{s}}{G_{N}}} \frac{e^{2}}{4\pi\varepsilon_{0}G_{N}m_{p}} \approx 0.023M_{\odot}$$

$$M_{x} \approx \sqrt{\frac{G_{s}}{G_{N}}} \frac{e_{s}^{2}}{4\pi\varepsilon_{0}G_{N}m_{p}} \approx 0.2M_{\odot}$$

$$M_{x} \approx \sqrt{\frac{G_{s}}{G_{N}}} \left(\frac{\hbar c}{G_{N}m_{p}}\right) \approx 3.174M_{\odot}$$
(29)

16) At the moment of a neutron star's birth, the nucleons that compose it have a temperature of around 10¹¹ to 10¹²K [50]. Equating a black hole's mass-energy density and thermal energy density [51,52,53], it is possible to show that,

$$T_{B} \cong 0.4615 \frac{\hbar c^{3}}{k_{B}G_{N}\sqrt{M_{B}M_{Pl}}}.$$
 (30)

where,
$$M_{pl} \cong \sqrt{\frac{\hbar c}{G_N}} \cong 2.176 \times 10^8 \text{kg}$$

 $M_{\scriptscriptstyle R} \cong \text{Mass of blackhole}$

and $T_{\scriptscriptstyle B} \cong$ Temperature of blackhole

This just resembles famous Hawking's Black hole temperature formula [54] with a change in its effective mass $\sqrt{M_{\scriptscriptstyle B}M_{\scriptscriptstyle pl}}$. With reference to relation (29), considering $M_{\scriptscriptstyle X}$ as a critical mass for neutron stars and black holes, corresponding critical temperature can be fitted with,

$$T_{x} \approx \frac{\hbar c^{3}}{8\pi k_{\scriptscriptstyle B} G_{\scriptscriptstyle N} \sqrt{M_{\scriptscriptstyle B} M_{\scriptscriptstyle pl}}} \tag{31}$$

17) Quantitatively, Fermi's weak coupling constant [55] and electron rest mass can be fitted with the following relations.

$$G_{\scriptscriptstyle F} \cong \left(\frac{m_{\scriptscriptstyle e}}{m_{\scriptscriptstyle p}}\right)^2 \hbar c R_{\scriptscriptstyle 0}^2 \cong \frac{4G_{\scriptscriptstyle e}^2 m_{\scriptscriptstyle e}^2 \hbar}{c^3} \tag{32}$$

$$m_e \cong \sqrt{\frac{G_F c^3}{4G_e^2 \hbar}}$$
 and $\frac{2G_s m_e}{c^2} \cong \sqrt{\frac{G_F}{\hbar c}}$ (33)

18) In a theoretical and verifiable approach, magnitude of the Newtonian gravitational constant can be estimated with nuclear elementary physical constants [56, 57]. For example, with reference to Planck scale, we noticed that,

$$\frac{\pi R_0^2}{\pi R_{ol}^2} \cong \frac{G_s^2 m_p^2}{G_N \hbar c} \cong \left(\frac{m_p}{m_e}\right)^{12}$$
(34)

where,
$$R_0 \cong \frac{2G_s m_p}{c^2}$$
, $R_{pl} \cong \frac{2G_N M_{pl}}{c^2} \cong 2\sqrt{\frac{G_N \hbar}{c^3}}$

$$\left(\frac{m_{_{p}}}{m_{_{s}}}\right) \cong \left(\frac{G_{s}m_{_{p}}^{2}}{\hbar c} \times \frac{G_{_{s}}}{G_{_{N}}}\right)^{\frac{1}{12}} \cong \left(\frac{e_{_{s}}G_{_{s}}}{eG_{_{N}}}\right)^{\frac{1}{12}}$$
(35)

$$G_{N} \cong \left(\frac{m_{e}}{m_{o}}\right)^{10} \left(\frac{G_{F}c^{2}}{4\hbar^{2}}\right) \cong \left(\frac{m_{e}}{m_{o}}\right)^{12} \left(\frac{G_{s}m_{p}^{2}}{\hbar c}\right) G_{s}$$
(36)

$$G_{F} \cong \left(\frac{m_{p}}{m_{e}}\right)^{10} \frac{4\hbar^{2} G_{N}}{c^{2}} \tag{37}$$

$$\left(\frac{m_{_{p}}}{m_{_{e}}}\right) \cong \left(\frac{G_{_{p}}c^{2}}{4\hbar^{2}G_{_{N}}}\right)^{\frac{1}{10}}$$
(38)

19) Another very interesting relation is,

$$\left(\frac{m_p}{m_e}\right)^{10} \cong \exp\left(\frac{1}{\alpha_s}\right)^2 \tag{39}$$

20) If,
$$G_s \cong \frac{4\pi\varepsilon_0 h^2 c^2 m_e}{e^2 m_p^3} \cong 3.329561 \times 10^{28} \frac{\text{m}^3}{\text{kg.sec}^2}$$

$$\begin{cases} \alpha_s \cong 0.115194 \\ G_F \cong 1.44021 \times 10^{-62} \text{ J.m}^3 \\ G_N \cong 6.679856 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2} \end{cases}$$
(40)

21) If
$$\alpha_s \cong \left[\sqrt{\ln \left(\frac{m_p}{m_e} \right)^{10}} \right] \cong 0.1153515$$
,

$$\begin{cases}
G_s \cong 3.327283 \times 10^{28} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2} \\
G_F \cong 1.43824 \times 10^{-62} \text{ J.m}^3 \\
G_N \cong 6.670719 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2}
\end{cases}$$
(41)

22) With reference to the macroscopic Planck's constant and microscopic strong coupling constant, average values seem to be:

$$\begin{cases} \alpha_s \cong 0.115273 \\ G_s \cong 3.32842 \times 10^{28} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2} \\ G_F \cong 1.43922 \times 10^{-62} \text{ J.m}^3 \\ G_N \cong 6.675285 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2} \end{cases}$$
(42)

- 23) Relations (34), (35) and (38) seem to indicate the direct role of G_N in microscopic physics. We are working on understanding their physical significance with respect to proton-electron mass ratio.
- 24) Our proposed assumptions seem to ease the way of understanding and refining the basic concepts of final unification [58, 59, 60].

13. Conclusion

Liquid drop model, Fermi gas model, quantum chromodynamics and string theory models are lagging in implementing the strong coupling constant and gravity in basic nuclear structure. In this context, understanding and estimating nuclear binding energy with 'strong interaction' and 'unification' concepts seem to be quite interesting and needs a serious consideration at basic level. Even though they are semi empirical, section (3) and relations (6), (7), (8), (9), (10), (11), (20), (21), (24), (26), (27), (28), (29), (30), (31), (34), (35), (38), (39) and (42) can be considered as favorable or supporting tools for our proposed model. One very interesting point to be noted is that, our proposed model seems to SPAN across the Fermi scale and Planck scale. With further research, mystery of magic numbers can be understood and a unified model of nuclear binding energy and stability scheme pertaining to high and low energy nuclear physics can be developed.

Acknowledgements

Authors are very much thankful to Dr. N. Ghahramany and team for their intuitive and heuristic contributions in this most advanced field of nuclear research. Author Seshavatharam is indebted to professors shri M. Nagaphani Sarma, Chairman, shri K.V. Krishna Murthy, founder Chairman, Institute of Scientific

Research in Vedas (I-SERVE), Hyderabad, India and Shri K.V.R.S. Murthy, former scientist IICT (CSIR), Govt. of India, Director, Research and Development, I-SERVE, for their valuable guidance and great support in developing this subject. Authors are thankful to the anonymous reviewers for their kind and valuable suggestions in improving the quality of the paper.

References

- [1] K.Tennakone, Phys. Rev. D 10, 1722 (1974).
- [2] J. J. Perng, Nuovo Cimento. Lettere, Serie 2, Vol. 23, N. 15, 552 (1978).
- [3] A. Salam and C. Sivaram, Modern Physics Letters A, 8 (4): 321 (1993). https://doi.org/10.1142/ S0217732393000325.
- [4] A. Salam and J. Strathdee, Physical Review D 18, 4596 (1978). https://doi.org/10.1103/PhysRevD.18.4596.
- [5] C. Sivaram and K.P. Sinha, Physical Review
 D. 16 (6): 1975 (1977). https://doi.org/10.1103/ PhysRevD.16.1975
- [6] C. Sivaram and K.P. Sinha, Phys. Rep., Vol. 51, 113 (1979).
- [7] C. Sivaram et al., Preprint, arXiv:1402.5071 (2013)
- [8] E. Recami and V. Tonin-Zanchin, Found. Phys. Lett., Vol. 7(1), 85 (1994).
- [9] E. Recami et al., APH N.S. Heavy Ion Physics 10 **345** (1999).
- [10] Raut Usha and K.P. Shina, Proceedings of the Indian Academy of Sciences Part A: Physical Sciences, 49 (2), **352** (1983).
- [11] V. de Sabbata and C. Sivaram, IL Nuovo Cimento, Vol. 101A, N. 2, 273 (1989).
- [12] Roberto Onofrio, EPL 104, 20002 (2013)
- [13] O.F. Akinto and Farida Tahir, arXiv:1606.06963v3 (2017)
- [14] T.R. Mongan, CoGeNT and DAMA/LIBRA. arXiv:0706.3050v3 (2011)
- [15] J. Dufour, J. of condensed matter nuclear science, Vol. 1, 47 (2007).
- [16] R.L. Oldershaw, Astrophysics and Space Science, Vol. 311, N. 4, **431** (2007). https://doi.org/10.1007/s10509-007-9557-x.
- [17] R.L. Oldershaw, Journal of Cosmology, Vol. 6, **1361** (2010).
- [18] R.A. Stone, Progress in Physics, Vol. 2, **19** (2010).
- [19] Sergey G. Fedosin, Hadronic Journal, Vol. 35, No. 4, 349 (2012).
- [20] S.I. Fisenko, M.M.Beilinson and B.G.Umanov, Physics Letters A, Volume 148, Issues 8-9, **405** (1990).
- [21] Seshavatharam U.V.S & Lakshminarayana S, Progress in Physics, vol. 3, **31** (2010). https://doi.org/10.20944/preprints201810.0053.v2.

- [22] U.V.S. Seshavatharam & S. Lakshminarayana, Proceedings of the DAE-BRNS Symp. On Nucl. Phys. 60, 118 (2015).
- [23] U.V.S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Sciences, Vol. 4, No.2, **31** (2017). https://doi.org/10.1501/ nuclear 0000000024.
- [24] U.V.S. Seshavatharam and S.Lakshminarayana, To be appeared in the proceedings of ICNPAP conference, October, 2018, Centre for Applied Physics, Central University of Jharkhand, Ranchi, India.
- [25] U.V.S. Seshavatharam and S.Lakshminarayana, To be appeared in the proceedings of ICNPAP conference, October, 2018, Centre for Applied Physics, Central University of Jharkhand, Ranchi, India.
- [26] U.V.S. Seshavatharam and S.Lakshminarayana, Proceedings of the DAE-BRNS Symp. On Nucl. Phys. 62, **106** (2017).
- [27] U.V.S. Seshavatharam and S.Lakshminarayana, Materials Today: 3/10PB, Proceedings 3 pp. 3976-3981 (2016).
- [28] U.V.S. Seshavatharam and S.Lakshminarayana, Journal of Nuclear Physics, Material Sciences, Radiation and Applications Vol-4, No-1, 1-19, (2017).
- [29] U.V.S. Seshavatharam and S.Lakshminarayana, Prespacetime Journal, Vol. 9, Issue 1, 58 (2018).
- [30] U.V.S. Seshavatharam and S.Lakshminarayana, Open Science Journal of Modern Physics. 2(5): 89 (2015).
- [31] U.V.S. Seshavatharam and S. Lakshminarayana, International Journal of Mathematics and Physics 7, No1, **117** (2016).
- [32] U.V.S. Seshavatharam and S. Lakshminarayana, Universal Journal of Physics and Application 9(5): **210** (2015).
- [33] U.V.S. Seshavatharam and S. Lakshminarayana, Universal Journal of Physics and Application 10(6): **198** (2016).
- [34] U.V.S. Seshavatharam and S. Lakshminarayana, International Journal of Physical Research, 5 (2) **104** (2017).
- [35] U.V.S. Seshavatharam and S. Lakshminarayana, Journal of Nuclear Sciences, Vol. 4, No. 1, 7 (2017). https://doi.org/10.1501/nuclear_0000000024.
- [36] U.V.S. Seshavatharam & S.Lakshminarayana, Prespacetime Journal, Vol. 8, Iss. 10, 1255 (2018).
- [37] U.V.S. Seshavatharam and S.Lakshminarayana, Prespacetime Journal, Vol. 8, Iss.7, **881** (2017).
- [38] P. R. Chowdhury et al., Mod. Phys. Lett. A20, **1605** (2005).
- [39] Oganessian Yu and V.K. Utyonkov, Physical Society (Great Britain). 78, 036301 (2015)
- [40] N.Ghahramany et al., Physics of Particles and Nuclei Letters, Vol. 8, No. 2, **97** (2011)

- [41] N. Ghahramany et al., Iranian Journal of Science & Technology A3: **201** (2011).
- [42] W. D. Myers et al., Table of Nuclear Masses according to the 1994 Thomas-Fermi Model. (from nsdssd.lbl.gov).
- [43] U. V. S. Seshavatharam and S. Lakshminarayana, Prespacetime Journal, Vol. 9, Issue 7, 642 (2018).
- [44] N. Ghahramany et al., Iranian Physical Journal, 1-2, **35** (2007).
- [45] D.T. Tran et al., Nature Communications, Vol 9, Article number: 1594 (2018).
- [46] J. Fridmann et al., Nature. 435:922-924 (2005).
- [47] N. Ghahramany et al., Universal Journal of Physics and Application 1(1): **18** (2013).
- [48] Ludwig Hendrik & Ruffini Remo. Journal of the Korean Physical Society. 65. 10.3938/jkps.65.892. (2014).
- [49] I.F. Mirabel, New Astronomy Reviews Volume 78, 1 (2017).
- [50] https://en.wikipedia.org/wiki/Neutron star
- [51] U.V.S. Seshavatharam and S.Lakshminarayana, Proceedings of the DAE Symp. on Nucl. Phys. 59, **804** (2014).
- [52] U.V.S. Seshavatharam and S. Lakshminarayana, Frontiers of Astronomy, Astrophysics and Cosmology, Vol. 1, No. 1, **16** (2015).
- [53] A. Mitra, Foundations of Physics Letters.13:543 (2000)
- [54] S.W. Hawking, Commun. Math. Phys. 43: **199** (1975)
- [55] C. Patrignani et al., (Particle Data Group), Chin. Phys. C, **40**, 100001 (2016) and 2017 update
- [56] Jonathan L. Feng et al., International Journal of Modern Physics D, Vol. 13, No. 10, 2355 (2004). https://doi.org/10.1142/S0218271804006474.
- [57] Brandenburg J. E, International Journal of Astrophysics and Space Science. Special Issue: Quantum Vacuum, Fundamental Arena of the Universe: Models, Applications and Perspectives. Vol. 2, No. 6-1, 24 (2014). https:// doi.org/10.11648/j.ijass.s.2014020601.14.
- [58] S. Bethke and G.P. Salam, Olive K.A. et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update.
- [59] K. Becker, M. Becker and J.H. Schwarz, Cambridge University Press (2006)
- [60] https://aeon.co/essays/has-the-quest-for-topdown-unification-of-physics-stalled.