Proposal Presentation 2020 Spring CS570

Papers:

Ehsani, Kiana, et al. "Segan: Segmenting and generating the invisible." *CVPR 2018*Yan, Xiaosheng, et al. "Visualizing the Invisible: Occluded Vehicle Segmentation and Recovery." *ICCV 2019*Zhan, Xiaohang, et al. "Self-Supervised Scene De-occlusion." *arXiv, to appear in CVPR 2020*

Team #8

Guoyuan An (20184637), Saelyne Yang (20193338), Heeju Wi (20203388), Junyong Park (20205146)

Problem

Scene de-occlusion / Amodal mask & content generation

Amodal perception:

"perceiving the whole of a physical structure when only a portion of it is visible"

Problem

Scene de-occlusion / Amodal mask & content generation

Amodal perception:

perceiving the whole of a physical structure when only a portion of it is visible

1. SeGAN: Segmenting and Generating the Invisible (CVPR 2018)

Inputs: 1) the RGB image

2) segmentation mask for the visible regions of an object *

* masks for visible regions can be obtained from any segmentation method

Output: RGB image where the occluded regions of the object have been reconstructed

Ehsani, Kiana, et al. "Segan: Segmenting and generating the invisible." CVPR 2018

1. SeGAN: Segmenting and Generating the Invisible (CVPR 2018)

Dataset: DYCE Results:

- a dataset of synthetic occluded objects

SF, GT

SF, Ours

2. Visualizing the Invisible: Occluded Vehicle Segmentation and Recovery (ICCV 2019)

Segmentation completion

Use two Discriminators:

Object Dis. - Real vehicle masks?

Instance Dis. - Mask of the input image?

Appearance recovery

Path 1 - Fill in colors of invisible parts
Path 2 - Inpaint whole vehicle based on
background

2. Visualizing the Invisible: Occluded Vehicle Segmentation and Recovery (ICCV 2019)

Results: Segmentation completion Results: Appearance recovery

PCNet-M :Mask Completion

(a) training of Partial Completion Network (Mask)

PCNet-C :Content Completion

(b) training of Partial Completion Network (Content)

PCNet-M :Mask Completion

(Ordering Recovery)

inputs to PCNet-M (inference) output amodal

PCNet-C :Content Completion

Amodal completion results

Final results (including Content completion)

Our Improvements - Current approach

Our Improvements - Current approach

Training: erase a batch artificially, and learn to padding the erased content.

It's good to fill in some orange pixels with some white points.

Testing: fill in the occluded part of the original image.

Ok, I will fill in orange pixels with some white points!!

Our Improvements - Problems

Problems: simply filling in pixels with similar color.

E.g. Another example in the paper:

Dissatisfied performance for complex batch

Our Improvements - de-occlusion with image search

Image search

using local features (e.g. SIFT...)

Choose the most similar one

Completion

Our Improvements - de-occlusion with image search

Our Improvements - evaluation metric

Qualitative approach: Compare through examples

Current approach

New approach

Quantitative approach:

- L1, L2 distance

Data

1. KINS

- Public, subset data of KITTI
- A large-scale traffic dataset with annotated modal and amodal masks of instances
- Training data: **7474** images, **95311** instances
- Testing data: **7517** images, **92492** instances

2. COCOA

- Public, subset data of COCO
- Pairwise ordering, modal and amodal masks
- Training data: **2500** images, **22163** instances
- Testing data: **1323** images, **12753** instances

Plan

	Heeju	Saelyne	Guoyuan	Junyong
May W2	Prepare the dataset	Learn about Image similarity		Set our evaluation metrics
May W3			Denlingto & Catthe meeting of	
May W4	Replicate our target paper		Replicate & Get the metrics of comparison papers	
May W5				
	Prepare Progress Presentation			
June W1	Implement 'Select the best appropriate image' Algorithm.		Make Google-Image Search & Download API	
June W2	Give feedback to our model		Implement improved PCNet-C	
June W3	Modify our model & Compute the metrics of our improved model			
June W4	Write Final Report / Prepare Final Presentation			

Thanks for listening