WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DER UNIVERSITÄT ZÜRICH PROFESSUR FÜR MATHEMATIK DER WIRTSCHAFTSWISSENSCHAFTEN ÜBUNGEN ZUR VORLESUNG MATHEMATIK II

Serie 4 - Musterlösungen

ab 11.03.2019

FS 2019

Aufgabe 1 (Eine unbekannte Matrix)

Sie haben von einer Matrix $A = [\mathbf{a}^1, \mathbf{a}^2, \mathbf{a}^3], \mathbf{a}^i \in \mathbb{R}^2$, folgende Informationen gegeben:

$$1. A = \left(\begin{array}{ccc} 1 & 2 & d \\ a & 7 & g \end{array}\right),$$

$$2. A^T = \begin{pmatrix} b & 5 \\ c & e \\ 4 & f \end{pmatrix},$$

3.
$$(\mathbf{a}^3)^T \mathbf{a}^3 = 25$$

Bestimmen Sie anhand dieser Informationen eine mögliche Matrix A. Das heisst, bestimmen Sie mögliche Werte für a,b,c,d,e,f und g.

Lösung:

Im Skript sind Matrizen und transponierte Matrizen definiert:

Definition 6.5.1 - Die Matrix

Seien $m, n \in \mathbb{N}$, und $a_{11}, ..., a_{1n}, a_{21}, ..., a_{2n}, ..., a_{m1}, ..., a_{mn} \in \mathbb{R}$.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (a_{ij})_{i=1,\dots,m, \ j=1,\dots,n}$$

heisst Matrix vom Typ $m \times n$ (mit reellen Elementen), d.h. A ist eine Matrix mit m Zeilen und n Spalten. Man sagt auch statt Typ Ordnung und schreibt den Typ $m \times n$ auch als (m,n), oder kurz $m \times n$ -Matrix oder $A \in \mathbb{R}^{m \times n}$. Wenn der Typ aus dem Zusammenhang klar ist, wird oft auch nur $A = (a_{ij})$ geschrieben.

Definition 6.5.3 - Die transponierte Matrix

Gegeben sei $A = (a_{ij})$, eine $m \times n$ -Matrix. Vertauscht man Zeilen und Spalten dieser Matrix, so transponiert man die Matrix. Es entsteht die zu A transponierte Matrix vom Typ $n \times m$:

$$A^{T} = (a_{ii}), \quad j = 1, \dots, n, \quad i = 1, \dots, m.$$

Die erste Zeile von A ist also die erste Spalte von A^T . Somit ist

$$\begin{pmatrix} 1 \\ 2 \\ d \end{pmatrix} = \begin{pmatrix} b \\ c \\ 4 \end{pmatrix}$$

und daher ist b = 1, c = 2 und d = 4. Gleiches folgt für die zweite Zeile von A und die zweite Spalte von A^T ,

$$\begin{pmatrix} a \\ 7 \\ g \end{pmatrix} = \begin{pmatrix} 5 \\ e \\ f \end{pmatrix},$$

also a = 5, e = 7 und f = g. Die 3. Eigenschaft sagt uns, dass

$$(\mathbf{a}^3)^T \mathbf{a}^3 = d^2 + g^2 = 25,$$

das heisst $4^2 + g^2 = 25$. Auflösen nach g ergibt g = 3 und g = -3. Daher gibt es zwei mögliche Matrizen A mit den obigen 3 Eigenschaften,

$$A_{+} = \begin{pmatrix} 1 & 2 & 4 \\ 5 & 7 & 3 \end{pmatrix} \text{ und } A_{-} = \begin{pmatrix} 1 & 2 & 4 \\ 5 & 7 & -3 \end{pmatrix}.$$

Aufgabe 2 (Klassifizierung von Matrizen)

(a) Betrachten Sie die Matrix

$$A = \left(\begin{array}{ccc} 5 & -1 & 7 \\ 0 & 4 & 9 \\ 3 & 2 & 0 \end{array}\right)$$

Wählen Sie aus, welche der folgenden Aussagen wahr und welche falsch sind.

(1) Die Matrix ist quadratisch.

 \square wahr \square falsch

(2) Die Matrix ist symmetrisch.

- \square wahr \square falsch
- (3) Die Matrix ist eine Diagonalmatrix.
- \square wahr \square falsch
- (4) 4 ist ein Element der Hauptdiagonalen.
- \square wahr \square falsch

(b) Betrachten Sie die Matrix

$$B = \left(\begin{array}{rrr} 3 & -1 & 4 \\ -1 & 0 & 9 \\ 4 & 9 & 3 \end{array}\right).$$

Wählen Sie aus, welche der folgenden Aussagen wahr und welche falsch sind.

(1) Die Matrix ist quadratisch.

 \square wahr \square falsch

(2) Die Matrix ist symmetrisch.

- \square wahr \square falsch
- (3) Die Matrix ist eine Diagonalmatrix.
- \square wahr \square falsch
- (4) 4 ist ein Element der Hauptdiagonalen.
- \square wahr \square falsch

(c) Betrachten Sie die Matrix

$$C = \left(\begin{array}{cccc} 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & \pi \end{array}\right).$$

Wählen Sie aus, welche der folgenden Aussagen wahr und welche falsch sind.

- (1) Die Matrix ist quadratisch. \square wahr \square falsch
- (2) Die Matrix ist symmetrisch. \square wahr \square falsch
- (3) Die Matrix ist eine Diagonalmatrix. \square wahr \square falsch
- (4) Die Matrix hat eine Nullzeile. \square wahr \square falsch
- (d) Betrachten Sie die Matrix

$$D = \left(\begin{array}{cc} 7 & 0 \\ 3 & 2 \\ 0 & 1 \end{array}\right).$$

Wählen Sie aus, welche der folgenden Aussagen wahr und welche falsch sind.

- (1) Die Matrix ist quadratisch. \square wahr \square falsch
- (2) Die Matrix ist symmetrisch. \square wahr \square falsch
- (3) Die Matrix ist eine Diagonalmatrix. □ wahr □ falsch
- (4) 2 ist ein Element der Hauptdiagonalen. \square wahr \square falsch
- (e) Wählen Sie aus, welche der folgenden Aussagen wahr und welche falsch sind.
 - (1) Jede Diagonalmatrix ist eine Einheitsmatrix. \square wahr \square falsch
 - (2) Jede Diagonalmatrix ist symmetrisch. \square wahr \square falsch
 - (3) Jede Einheitsmatrix ist eine Diagonalmatrix. \Box wahr \Box falsch
 - (4) Jede Diagonalmatrix ist quadratisch. \square wahr \square falsch

Lösung:

In der Vorlesung wurden besondere Matrizen besprochen. Dazu gehören:

Definition 6.5.4 - Nullmatrix, Nullzeilen und Nullspalten

Man spricht von einer Nullzeile in Matrix A, wenn alle Elemente der betreffenden Zeile Null sind. Man spricht von einer Nullspalte in Matrix A, wenn alle Elemente der betreffenden Spalte Null sind. Die $m \times n$ -Matrix, welche nur aus Nullzeilen (bzw. Nullspalten) besteht, heisst Nullmatrix vom Typ $m \times n$.

Definition 6.5.5 - Quadratische Matrix, Hauptdiagonale

Eine Matrix vom Typ $n \times n$ heisst quadratische Matrix (der Ordnung n). Die Elemente $a_{ii}, i = 1, ..., n$, einer quadratischen Matrix nennt man Elemente der Hauptdiagonalen.

Definition 6.5.6 - Symmetrische Matrix

Eine quadratische Matrix der Ordnung n heisst symmetrisch, wenn $a_{ij} = a_{ji}$ für alle i, j = 1, ..., n.

Definition 6.5.7 - Diagonal matrix und Einheitsmatrix

Eine Diagonalmatrix ist eine quadratische Matrix mit $a_{ij} = 0$ für alle $j \neq i$, i, j = 1, ..., n. Eine Diagonalmatrix der Ordnung n mit $a_{ii} = 1$ für alle i heisst Einheitsmatrix der Ordnung n und wird mit I_n bezeichnet. Ist aus dem Zusammenhang die Ordnung n erkennbar, so schreiben wir einfach I.

- (a) ◆ Zu (1): Die Matrix ist vom Typ 3 × 3 und somit eine quadratische Matrix der Ordnung 3.
 Die Aussage (1) ist wahr.
 - Zu (2): Die Matrix ist nicht symmetrisch, da beispielsweise $0 = a_{21} \neq a_{12} = -1$. Die Aussage (2) ist falsch.
 - Zu (3): Die Matrix ist keine Diagonalmatrix, da beispielsweise $a_{31} = 3 \neq 0$. Die Aussage (3) ist falsch.
 - Zu (4): 4 ist das zweite Element der Hauptdiagonalen, $a_{22} = 4$, und befindet sich somit auf der Hauptdiagonalen. Die Aussage (4) ist wahr.
- (b) Zu (1): Die Matrix ist vom Typ 3 × 3 und somit eine quadratische Matrix der Ordnung 3. Die Aussage (1) ist wahr.
 - Zu (2): Die Matrix ist symmetrisch, da $b_{ij} = b_{ji}$ für alle i, j = 1, 2, 3. Die Aussage (2) ist wahr.
 - Zu (3): Die Matrix ist keine Diagonalmatrix, da beispielsweise $a_{31} = 4 \neq 0$. Die Aussage (3) ist falsch.
 - Zu (4): Kein Element der Hauptdiagonale $\{b_{ii}\}_{i=1,2,3}$ ist gleich 4. Die Aussage (4) ist falsch.
- (c) Zu (1): Die Matrix ist vom Typ 4 × 4 und somit eine quadratische Matrix der Ordnung 4. Die Aussage (1) ist wahr.

- Zu (2): Die Matrix ist symmetrisch, da $c_{ij} = c_{ji}$ für alle i, j = 1, 2, 3, 4, sprich $C = C^T$. Die Aussage (2) ist wahr.
- Zu (3): Die Matrix ist eine Diagonalmatrix, da $c_{ij} = 0$ für alle $i \neq j$ gilt. Die Aussage (3) ist wahr.
- Zu (4): Alle Einträge der zweiten Zeile sind Null. Die Matrix hat somit eine Nullzeile. Die Aussage (4) ist wahr.
- (d) Zu (1): Die Matrix ist vom Typ 3 × 2 und somit nicht quadratisch. Die Aussage (1) ist falsch.
 - Zu (2): Die Matrix ist nicht quadratisch. Somit kann sie auch nicht symmetrisch sein. Die Aussage (2) ist falsch.
 - Zu (3): Die Matrix ist nicht quadratisch. Somit kann sie auch keine Diagonalmatrix sein. Die Aussage (3) ist falsch.
 - Zu (4): Die Matrix ist nicht quadratisch. Daher hat sie keine Hauptdiagonale. Die Aussage (4) ist falsch.
- (e) Zu (1): Eine Diagonalmatrix A der Ordnung n ist nur dann eine Einheitsmatrix, wenn $a_{ii} = 1$ für alle i = 1, ..., n. Somit ist nicht jede Diagonalmatrix eine Einheitsmatrix. Die Aussage (1) ist falsch.
 - Zu (2): Für jede Diagonalmatrix A gilt $a_{ij} = 0$, für alle $j \neq i, i, j = 1, ..., n$. Deshalb gilt für jede Diagonalmatrix A, dass $a_{ij} = 0 = a_{ji}$ für alle i, j = 1, ..., n. Jede Diagonalmatrix ist somit symmetrisch. Die Aussage (2) ist wahr.
 - Zu (3): Eine Einheitsmatrix ist eine Diagonalmatrix der Ordnung n mit $a_{ii} = 1$ für alle i = 1, ..., n. Jede Einheitsmatrix ist somit eine Diagonalmatrix. Die Aussage (3) ist wahr.
 - Zu (4): Eine Diagonalmatrix ist eine quadratische Matrix mit $a_{ij} = 0$, für alle $j \neq i$, i, j = 1, ..., n. Jede Diagonalmatrix ist somit quadratisch. Die Aussage (4) ist wahr.

Aufgabe 3 (Linearkombinationen mit Hilfe von Matrizen)

Gegeben seien $\mathbf{a}^1 = (-3,3)^T$ und $\mathbf{a}^2 = (-6,-6)^T$ und die Matrix

$$A = [\mathbf{a}^1, \mathbf{a}^2] = \begin{pmatrix} -3 & -6 \\ 3 & -6 \end{pmatrix}.$$

Berechnen Sie:

$$A \cdot \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \ A \cdot \begin{pmatrix} 0 \\ -2 \end{pmatrix}, \ A \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \ A \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \ A \cdot \begin{pmatrix} 2 & 0 & 2 & 1 \\ 0 & -2 & 1 & -2 \end{pmatrix}.$$

Vergleichen Sie ihre Ergebnisse mit den Resultaten der Aufgabe 1(a) aus Serie 1.

Lösung:

Definition 6.5.8 - Matrix-Vektor-Multiplikation

Sei A eine $m \times n$ -Matrix und $\mathbf{x} \in \mathbb{R}^n$ ein Vektor. Das Produkt $A \cdot \mathbf{x}$ ist definiert als

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} x_1 + \dots + \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} x_n = \begin{pmatrix} \sum_{k=1}^n a_{1k} x_k \\ \vdots \\ \sum_{k=1}^n a_{mk} x_k \end{pmatrix}.$$

Die Elemente des resultierenden Vektors $\mathbf{y} = A \cdot \mathbf{x}$ sind gegeben als

$$y_i = \sum_{k=1}^n a_{ik} x_k = a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n, \quad i = 1, \dots, m.$$

Definition 6.5.9 - Matrizenmultiplikation

Das Produkt der $m \times n$ -Matrix A und der $n \times p$ -Matrix B ist definiert als

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \dots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{np} \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^{n} a_{1k}b_{k1} & \dots & \sum_{k=1}^{n} a_{1k}b_{kp} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{mk}b_{k1} & \dots & \sum_{k=1}^{n} a_{mk}b_{kp} \end{pmatrix}.$$

Die Elemente der resultierenden $m \times p$ -Matrix $C = A \cdot B$ sind gegeben als

$$c_{ij} = (AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Mit Hilfe dieser Definition können wir berechnen:

$$A \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 & -6 \\ 3 & -6 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} (-3) \cdot 2 + (-6) \cdot 0 \\ 3 \cdot 2 + (-6) \cdot 0 \end{pmatrix} = \begin{pmatrix} -6 \\ 6 \end{pmatrix},$$

$$A \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} -3 & -6 \\ 3 & -6 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} (-3) \cdot 0 + (-6) \cdot (-2) \\ 3 \cdot 0 + (-6) \cdot (-2) \end{pmatrix} = \begin{pmatrix} 12 \\ 12 \end{pmatrix},$$

$$A \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 & -6 \\ 3 & -6 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} (-3) \cdot 2 + (-6) \cdot 1 \\ 3 \cdot 2 + (-6) \cdot 1 \end{pmatrix} = \begin{pmatrix} -12 \\ 0 \end{pmatrix},$$

$$A \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -3 & -6 \\ 3 & -6 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} (-3) \cdot 1 + (-6) \cdot (-2) \\ 3 \cdot 1 + (-6) \cdot (-2) \end{pmatrix} = \begin{pmatrix} 9 \\ 15 \end{pmatrix},$$

$$A \begin{pmatrix} 2 & 0 & 2 & 1 \\ 0 & -2 & 1 & -2 \end{pmatrix} = \begin{pmatrix} -3 & -6 \\ 3 & -6 \end{pmatrix} \begin{pmatrix} 2 & 0 & 2 & 1 \\ 0 & -2 & 1 & -2 \end{pmatrix} = \begin{pmatrix} -6 & 12 & -12 & 9 \\ 6 & 12 & 0 & 15 \end{pmatrix}.$$

Das sind genau die Ergebnisse der Linearkombinationen der Vektoren $\begin{pmatrix} -3 \\ 3 \end{pmatrix}$ und $\begin{pmatrix} -6 \\ -6 \end{pmatrix}$ in Aufgabe 1 (a) aus Serie 1. Die Vektoren entsprechen den Gewichten der Linearkombinationen. Die letzte Matrix ist eine kompakte Schreibweise aller Linearkombinationen.

Aufgabe 4 (Rechnen mit Matrizen)

(a) Gegeben seien die Matrizen A, B, C und der Vektor d:

$$A = \begin{pmatrix} 5 & -1 & 7 \\ 0 & 4 & 9 \\ 3 & 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 0 & 1 \\ 3 & 4 & 5 \end{pmatrix}, C = \begin{pmatrix} 7 & 0 \\ 3 & 2 \\ 0 & 1 \end{pmatrix}, \mathbf{d} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Berechnen Sie, falls möglich (andernfalls vermerken Sie "existiert nicht"): 3A, AB, BA, BC, CB, B^TA^T , $C \cdot \mathbf{d}$, $\mathbf{d}^T \cdot C^T$, AI, IA.

(b) Gegeben seien die Matrizen

$$A = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \\ -2 & 3 & 2 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & -1 \end{pmatrix}.$$

Berechnen Sie, falls möglich, die Produkte AB, BA und B^TA .

Lösung:

(a) Zuerst berechnen wir 3A. Die Multiplikation einer Konstante mit einer Matrix ist im Skript definiert:

Definition 6.5.10 - Produkt einer Konstante mit einer Matrix

Das Produkt einer Konstante $\alpha \in \mathbb{R}$ und einer $m \times n$ -Matrix A ist

$$\alpha \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \alpha a_{11} & \dots & \alpha a_{1n} \\ \vdots & \ddots & \vdots \\ \alpha a_{m1} & \dots & \alpha a_{mn} \end{pmatrix}.$$

Es gilt also:

$$3A = \begin{pmatrix} 3 \cdot 5 & 3 \cdot (-1) & 3 \cdot 7 \\ 3 \cdot 0 & 3 \cdot 4 & 3 \cdot 9 \\ 3 \cdot 3 & 3 \cdot 2 & 3 \cdot 0 \end{pmatrix} = \begin{pmatrix} 15 & -3 & 21 \\ 0 & 12 & 27 \\ 9 & 6 & 0 \end{pmatrix}.$$

Damit eine Matrix A mit einer anderen Matrix B multipliziert werden kann, muss die Anzahl der Spalten von A gleich der Anzahl der Zeilen von B sein, vgl. Definition 6.5.9 in Aufgabe 3. Das Skalarprodukt des i—ten Zeilenvektors einer Matrix A mit dem j—ten Spaltenvektor einer Matrix B ergibt den Eintrag (i, j) der Matrix AB. Um den Eintrag der 1. Zeile und 2. Spalte der Matrix AB zu bekommen, berechnet man beispielsweise:

Eintrag der 1. Zeile und 2. Spalte von
$$AB = \underbrace{(5, -1, 7)}_{1. \text{ Zeile von A}} \cdot \underbrace{\begin{pmatrix} 4 \\ 0 \\ 4 \end{pmatrix}}_{2-\text{Spalte von B}} = 5 \cdot 4 + (-1) \cdot 0 + 7 \cdot 4 = 48.$$

Das macht man für jeden Eintrag und erhält folgende Matrizen:

$$AB = \begin{pmatrix} 24 & 48 & 34 \\ 35 & 36 & 49 \\ 7 & 12 & 2 \end{pmatrix}, BA = \begin{pmatrix} 5 & 15 & 43 \\ 13 & 0 & 14 \\ 30 & 23 & 57 \end{pmatrix}, BC = \begin{pmatrix} 19 & 8 \\ 14 & 1 \\ 33 & 13 \end{pmatrix},$$

CB existiert nicht (da die Anzahl der Zeilen von B nicht der Anzahl der Spalten von C entspricht, das Matrixprodukt also gar nicht definiert ist).

In Satz 6.5.2 im Skript lernten wir folgende Regeln der Matrizenmultiplikation kennen:

Satz 6.5.2 - Regeln der Matrizenmultiplikation

Sei *A* eine $m \times n$ -Matrix, *B* eine $n \times p$ -Matrix, *C* eine $p \times q$ Matrix und $\alpha \in \mathbb{R}$. Dann gilt:

- $(A \cdot B)^T = B^T \cdot A^T$;
- $\bullet \ \overrightarrow{A} \cdot (\overrightarrow{B} \cdot C) = (A \cdot B) \cdot C;$
- $A \cdot \alpha \cdot B = \alpha \cdot A \cdot B$;
- Ist I die Einheitsmatrix der Ordnung n, so gilt $A \cdot I = A$, ist I die Einheitsmatrix der Ordnung m, so gilt $I \cdot A = A$. Ist n = m, so gilt $A \cdot I = I \cdot A = A$.

Somit gilt,

$$B^T A^T = (AB)^T = \begin{pmatrix} 24 & 35 & 7 \\ 48 & 36 & 12 \\ 34 & 49 & 2 \end{pmatrix},$$

$$C \cdot \mathbf{d} = \begin{pmatrix} 7 \\ 9 \\ 3 \end{pmatrix},$$

$$\mathbf{d}^T \cdot C^T = (C\mathbf{d})^T = (7,9,3).$$

Da die Matrix A quadratisch ist (3 = n = m = 3) ist AI = IA = A.

(b) Die Matrix A ist eine 3×3 Matrix und die Matrix B ist eine 3×4 Matrix. Da die Anzahl der Spalten von A der Anzahl der Zeilen von B entspricht, existiert AB und ergibt die 3×4 Matrix

$$AB = \begin{pmatrix} -2 & -2 & -1 & 0 \\ 4 & 3 & 2 & 1 \\ 3 & 5 & 0 & 4 \end{pmatrix}.$$

Da die Anzahl der Spalten von B nicht der Anzahl der Zeilen von A entspricht, existiert BA nicht. Allerdings entspricht die Anzahl der Spalten von B^T genau der Anzahl der Zeilen von A. Die

 4×3 Matrix B^T kann also mit der 3×3 Matrix A multipliziert werden,

$$B^{T}A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \\ -2 & 3 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 4 & 3 \\ -2 & 3 & 5 \\ -1 & 2 & 0 \\ 0 & 1 & 4 \end{pmatrix}.$$

Aufgabe 5 (Matrizenmultiplikation)

Seien $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ und A die 3×3 -Matrix,

$$A = \left(\begin{array}{ccc} 3 & 5 & 4 \\ 5 & 9 & 2 \\ 4 & 2 & 3 \end{array}\right).$$

- (a) Berechnen Sie $\mathbf{x}^T A \mathbf{x}$ für $\mathbf{x} = (1, 2, 3)^T$.
- (b) Berechnen Sie $\mathbf{x}^T A \mathbf{x}$ für $\mathbf{x} = (x_1, x_2, x_3)^T$.
- (c) Berechnen Sie $\mathbf{x}^T A \mathbf{x}$ für einen allgemeinen Vektor $\mathbf{x} = (x_1, x_2, x_3)^T$ und eine allgemeine Matrix

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right).$$

(d) Berechnen Sie $\mathbf{x}^T \begin{pmatrix} 3 & 10 & 8 \\ 0 & 9 & 4 \\ 0 & 0 & 3 \end{pmatrix} \mathbf{x}$ für $\mathbf{x} = (1, 2, 3)^T$.

Lösung:

(a) Es gilt,

$$\mathbf{x}^{T} A \mathbf{x} = (1, 2, 3) \begin{pmatrix} 3 & 5 & 4 \\ 5 & 9 & 2 \\ 4 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
$$= (25, 29, 17) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
$$= 25 \cdot 1 + 29 \cdot 2 + 17 \cdot 3$$
$$= 134.$$

(b) Es gilt,

$$\mathbf{x}^{T} A \mathbf{x} = (x_{1}, x_{2}, x_{3}) \begin{pmatrix} 3 & 5 & 4 \\ 5 & 9 & 2 \\ 4 & 2 & 3 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$= (3x_{1} + 5x_{2} + 4x_{3}, 5x_{1} + 9x_{2} + 2x_{3}, 4x_{1} + 2x_{2} + 3x_{3}) \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$= x_{1} (3x_{1} + 5x_{2} + 4x_{3}) + x_{2} (5x_{1} + 9x_{2} + 2x_{3}) + x_{3} (4x_{1} + 2x_{2} + 3x_{3}).$$

(c) Um $\mathbf{x}^T A \mathbf{x}$ zu berechnen, berechnen wir zuerst $\mathbf{x}^T A$:

$$\mathbf{x}^{T}A = (x_{1}, x_{2}, x_{3}) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= (x_{1} \cdot a_{11} + x_{2} \cdot a_{21} + x_{3} \cdot a_{31}, x_{1} \cdot a_{12} + x_{2} \cdot a_{22} + x_{3} \cdot a_{32}, x_{1} \cdot a_{13} + x_{2} \cdot a_{23} + x_{3} \cdot a_{33})$$

$$= \begin{pmatrix} x_{1} \cdot a_{11} + x_{2} \cdot a_{21} + x_{3} \cdot a_{31} \\ x_{1} \cdot a_{12} + x_{2} \cdot a_{22} + x_{3} \cdot a_{32} \\ x_{1} \cdot a_{13} + x_{2} \cdot a_{23} + x_{3} \cdot a_{33} \end{pmatrix}^{T}.$$

Damit ist

$$\mathbf{x}^{T} A \mathbf{x} = \begin{pmatrix} x_{1} \cdot a_{11} + x_{2} \cdot a_{21} + x_{3} \cdot a_{31} \\ x_{1} \cdot a_{12} + x_{2} \cdot a_{22} + x_{3} \cdot a_{32} \\ x_{1} \cdot a_{13} + x_{2} \cdot a_{23} + x_{3} \cdot a_{33} \end{pmatrix}^{T} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$= x_{1} \cdot (x_{1} \cdot a_{11} + x_{2} \cdot a_{21} + x_{3} \cdot a_{31}) + x_{2} \cdot (x_{1} \cdot a_{12} + x_{2} \cdot a_{22} + x_{3} \cdot a_{32})$$

$$+ x_{3} \cdot (x_{1} \cdot a_{13} + x_{2} \cdot a_{23} + x_{3} \cdot a_{33}).$$

(d) Mit dem Resultat aus Aufgabe (c) folgt,

$$(1,2,3) \begin{pmatrix} 3 & 10 & 8 \\ 0 & 9 & 4 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 1 \cdot (1 \cdot 3 + 2 \cdot 0 + 3 \cdot 0) + 2 \cdot (1 \cdot 10 + 2 \cdot 9 + 3 \cdot 0) + 3 \cdot (1 \cdot 8 + 2 \cdot 4 + 3 \cdot 3)$$

$$= 134.$$

Aufgabe 6 (Eine symmetrische Matrix)

Eine 3×3 -Matrix A sei gegeben durch

$$a_{ij} = \begin{cases} i - j & \text{für } i > j \\ j - i & \text{für } i \le j. \end{cases}$$

- (a) Zeigen Sie, dass A symmetrisch ist.
- (b) Berechnen Sie die Matrix AA^T und A^2 .

Lösung:

(a) Es gilt

$$A = (a_{ij})_{i=1,2,3, \ j=1,2,3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

Da $a_{ij} = a_{ji}$ für i, j = 1, 2, 3 gilt, ist A symmetrisch.¹

¹Auch eine $n \times n$ -Matrix mit dieser Vorschrift ist symmetrisch, denn $a_{ij} = \begin{cases} i-j & \text{falls, } i>j \\ j-i & \text{falls, } i<j \end{cases}$ heisst, die Rollen von j und i werden getauscht, um den Eintrag a_{ji} zu generieren. Sei bspw. i>j gilt $a_{ij}=i-j$. Da j<i ist daher $a_{ji}=i-j$. Die Rollen von i und j werden getauscht und die Matrix ist symmetrisch.

(b) Wir können den Satz 6.5.1 aus dem Skript anwenden. Dort heisst es:

Satz 6.5.1 - Transponierte symmetrische Matrizen

Eine quadratische Matrix A ist genau dann symmetrisch, wenn $A^T = A$.

Da A symmetrisch ist, gilt also $A = A^T$.

Daraus folgt $AA^T = A^2$ und wir erhalten

$$AA^{T} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix} = A^{2}.$$

Aufgabe 7 (Matrizen in der Telekommunikation)

Ein Telekommunikationsunternehmen hat einen Kunden K_1 mit offenen Rechnungen über

- 1 monatl. Grundgebühr,
- 10 Minuten Ausland (innerhalb Europas),
- 60 Minuten Ausland (ausserhalb Europas),
- 3 MB Daten (innerhalb Europas),
- 0 MB Daten (ausserhalb Europas).

Die Preise belaufen sich auf

- 20 CHF pro Monat für die Grundgebühr,
- 1 CHF pro Minuten Ausland (innerhalb Europas),
- 2 CHF pro Minuten Ausland (ausserhalb Europas),
- 1.5 CHF pro MB Daten (innerhalb Europas),
- 3 CHF pro MB Daten (ausserhalb Europas).
- (a) Fassen Sie die Preise in einem Spaltenvektor \mathbf{p} (dem Preisvektor) und den Verbrauch des Kunden K_1 in einem Zeilenvektor \mathbf{z}_1 (dem Nutzungsvektor) zusammen.
- (b) Wie kann man das Produkt $\mathbf{z}_1 \cdot \mathbf{p}$ interpretieren?
- (c) Betrachten Sie nun weitere Kunden K_2 , K_3 und K_4 mit folgenden Nutzungsvektoren $\mathbf{z}_2 = (2,0,120,0,100)$, $\mathbf{z}_3 = (1,50,1,500,0.1)$ und $\mathbf{z}_4 = (1,120,180,150,500)$. Fassen Sie die Nutzungsdaten der Kunden K_1 , K_2 , K_3 und K_4 in einer Matrix Z mit Zeilen z_i , i = 1,2,3,4 zusammen.
- (d) Berechnen sie $Z \cdot \mathbf{p}$. Interpretieren Sie das Ergebnis im Kontext der Aufgabe.

Lösung:

- (a) $\mathbf{z}_1 = (1, 10, 60, 3, 0) \text{ und } \mathbf{p} = (20, 1, 2, 1.5, 3)^T$.
- (b) $\mathbf{z}_1 \cdot \mathbf{p}$ sind die Gesamtkosten, die Kunde K_1 aufgrund seiner Nutzungen zu zahlen hat.
- (c) Die Zeilenvektoren der Matrix Z entsprechen gerade den Nuzungsvektoren,

$$Z = \begin{pmatrix} 1 & 10 & 60 & 3 & 0 \\ 2 & 0 & 120 & 0 & 100 \\ 1 & 50 & 1 & 500 & 0.1 \\ 1 & 120 & 180 & 150 & 500 \end{pmatrix}.$$

(d) $Z \cdot \mathbf{p}$ ist ein Spaltenvektor mit 4 Einträgen, wobei uns jeder Eintrag die Gesamtkosten in CHF des entsprechenden Kunden zusammenfasst,

$$Z \cdot \mathbf{p} = \begin{pmatrix} 1 & 10 & 60 & 3 & 0 \\ 2 & 0 & 120 & 0 & 100 \\ 1 & 50 & 1 & 500 & 0.1 \\ 1 & 120 & 180 & 150 & 500 \end{pmatrix} \cdot \begin{pmatrix} 20 \\ 1 \\ 2 \\ 1.5 \\ 3 \end{pmatrix} = \begin{pmatrix} 154.5 \\ 580 \\ 822.3 \\ 2225 \end{pmatrix}.$$

Aufgrund des hohen Datenverbrauches ausserhalb Europas, hat Kunde 4 mit Abstand die meisten Kosten, nämlich 2225 CHF.

Aufgabe 8 (Modellierung von Flugverbindungen)

Die untenstehende Abbildung

zeigt die Anzahl der täglichen Flugverbindungen zwischen grösseren Flughäfen in drei verschiedenen Ländern. Die den Pfeilen zugeordneten Zahlen zeigen die Anzahl der Flüge zwischen den verschiedenen Flughäfen. Zum Beispiel gibt es von Flughafen b_3 vier Flüge zu Flughafen c_3 und einen Flug zum Flughafen c_1 , aber es gibt keinen Flug von b_3 zu Flughafen c_2 .

- (a) Finden Sie die Matrix $P = (p_{ij})$ vom Typ 2×4 mit p_{ij} =Anzahl der Flüge von a_i zu b_j , sowie die 4×3 -Matrix $Q = (q_{ij})$ mit q_{ij} =Anzahl der Flüge von b_i zu c_j .
- (b) Finden Sie die Matrix $R = (r_{ij})$, deren Element r_{ij} die Anzahl der Flugmöglichkeiten von a_i nach c_i darstellt. Von welchem Typ ist die Matrix R?
- (c) Wie kann man die Einträge von P^T und Q^T interpretieren? Berechnen Sie $Q^T P^T$. Was beschreibt diese Matrix?

Lösung:

(a) Die Anzahl der Flugverbindungen zwischen den Flughäfen a_i und b_j lässt sich tabellarisch wie folgt darstellen:

Daraus lässt sich die 2×4 -Matrix P ablesen:

$$P = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 3 & 0 & 2 & 1 \end{pmatrix}.$$

Wir erkennen, dass die Anzahl der Zeilen der Anzahl der Flughäfen a_i entspricht und die Anzahl der Spalten der Anzahl der Flughäfen b_j . Die Elemente p_{ij} geben also an, wie viele Flugverbindungen es zwischen a_i und b_j gibt. Die Anzahl der Flüge von b_i nach c_j lässt sich ebenfalls tabellarisch darstellen,

	c_1	c_2	c_3
b_1	1	0	2
b_2	1	0	0
b_3	1	0	4
b_4	0	1	0

bzw. als 4×3 -Matrix Q:

$$Q = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 0 \\ 1 & 0 & 4 \\ 0 & 1 & 0 \end{pmatrix}.$$

- (b) Wir suchen also eine Matrix, welche alle Flugmöglichkeiten zwischen den Flughäfen a_i zu den Flughäfen c_j darstellt. Da es zwei Flughäfen a_1, a_2 und drei Flughäfen c_1, c_2, c_3 gibt, ist die Matrix R vom Typ 2×3 . Die Elemente r_{ij} sagen uns, wie viele Flüge es zwischen Flughafen a_i und Flughafen c_j gibt, wobei wir zwangsläufig in Flughäfen b_1, b_2, b_3 oder b_4 umsteigen müssen. Das Element r_{11} beispielsweise, findet man, indem man sich überlegt, wie viele Verbindungen es von a_1 nach b_1, b_2, b_3, b_4 gibt und wie viele Verbindungen von dort aus nach c_1 führen:
 - 2 Flüge fliegen von a_1 nach b_1 und von dort aus fliegt 1 Flug nach c_1 .
 - 1 Flug fliegt von a_1 nach b_2 und von dort aus fliegt 1 Flug nach c_1 .
 - 0 Flüge fliegen von a_1 nach b_3 und von dort aus fliegt 1 Flug nach c_1 .
 - 1 Flug fliegt von a_1 nach b_4 und von dort aus fliegen 0 Flüge nach c_1 .

Daher gibt es insgesamt: $2 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 = 3$ Flugmöglichkeiten von a_1 nach c_1 . Das entspricht genau dem ersten Eintrag der Matrizenmultiplikation $P \cdot Q$. Die gesuchte Matrix ist

$$R = P \cdot Q = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 3 & 0 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 0 \\ 1 & 0 & 4 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 4 \\ 5 & 1 & 14 \end{pmatrix}.$$

Der Eintrag r_{23} sagt uns also, wie viele Flugmöglichkeiten es von a_2 nach c_3 gibt und berechnet sich als Produkt der 2. Zeile von P und 3. Spalte von Q, das heisst

$$r_{23} = (3,0,2,1) \cdot \begin{pmatrix} 2 \\ 0 \\ 4 \\ 0 \end{pmatrix} = 3 \cdot 2 + 0 \cdot 0 + 2 \cdot 4 + 1 \cdot 0 = 6 + 8 = 14.$$

Die Matrizenmultiplikation entspricht hier einer kompakteren Schreibweise von kombinatorischen Überlegungen.

(c) P^T ist eine Matrix vom Typ 4×2 ,

$$P^T = \begin{pmatrix} 2 & 3 \\ 1 & 0 \\ 0 & 2 \\ 1 & 1 \end{pmatrix}.$$

Sie beschreibt den gleichen Sachverhalt nur aus der Perspektive der Flughäfen b_1, b_2, b_3 und b_4 . Zum Beispiel beschreibt der Eintrag in der 2. Zeile und 1. Spalte, 1, die Anzahl der Flüge, die in b_2 ankommen und in a_1 gestartet sind.

Gleiches gilt für Q^T ,

$$Q^T = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 4 & 0 \end{pmatrix}.$$

Sie beschreibt den gleichen Sachverhalt nur aus der Perspektive der Flughäfen c_1, c_2 und c_3 . Zum Beispiel beschreibt der Eintrag in der 2. Zeile und 1. Spalte, 0, die Anzahl der Flüge, die in c_2 ankommen und in b_1 gestartet sind. Es gilt,

$$Q^T P^T = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 4 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 0 \\ 0 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 1 & 1 \\ 4 & 14 \end{pmatrix} = R^T.$$

So beschreibt beispielsweise der Eintrag in der 3. Zeile und 1. Spalte, 4, wie viele mögliche Flüge in c_3 ankommen, die in a_1 gestartet sind.

Aufgabe 9 (Modellierung in der Automobilindustrie)

Ein Zulieferer der Automobilindustrie produziert Zwischenprodukte z_1, z_2, z_3, z_4 aus den Rohstoffen r_1, r_2, r_3 , und ein Automobilproduzent fabriziert dann aus den Zwischenprodukten Autos der Marken m_1, m_2, m_3 . In den folgenden Tabellen ist angegeben, wie viele Einheiten der Rohstoffe jeweils für eine Einheit der Zwischenprodukte bzw. wie viele Einheiten der Zwischenprodukte jeweils für die Produktion eines Autos der Marke m_i benötigt werden.

	r_1	r_2	<i>r</i> ₃
<i>z</i> ₁	2	1	5
<i>z</i> ₂	4	2	3
<i>Z</i> 3	3	5	0
<i>Z</i> 4	0	2	2

	m_1	m_2	m_3
z_1	1	3	2
<i>z</i> ₂	3	3	0
<i>Z</i> 3	4	0	2
<i>Z</i> 4	1	1	3

- (a) Interpretieren Sie die erste Spalte der linken Tabelle.
- (b) Angenommen Sie brauchen 2 Einheiten des Zwischenproduktes z_1 , 3 Einheiten von z_2 , 1 Einheit von z_3 und 5 Einheiten von z_4 . Berechnen Sie jeweils die Gesamtanzahl an Rohstoffen r_1 , r_2 und r_3 , die dafür benötigt werden.
- (c) Bestimmen Sie durch Berechnung einer geeigneten Matrizenmultiplikation, wie viele Einheiten der einzelnen Rohstoffe r_i , i = 1, 2, 3, jeweils benötigt werden für die Herstellung eines Autos der Marke m_j , j = 1, 2, 3.

Lösung:

(a) Die erste Spalte gibt an, wie viele Einheiten des Rohstoffes r_1 jeweils benötigt werden für die Produktion der Zwischenprodukte z_1, z_2, z_3, z_4 . Der zweite Eintrag dieses Spaltenvektors sagt uns also, dass wir 4 Einheiten von r_1 benötigen, um 1 Einheit von z_2 herzustellen.

(b) Die linke Tabelle lässt sich auch äquivalent darstellen (indem man sie transponiert) als

	z_1	<i>z</i> ₂	<i>Z</i> 3	<i>Z</i> 4
r_1	2	4	3	0
r_2	1	2	5	2
<i>r</i> ₃	5	3	0	2

Um 2 Einheiten von z_1 , 3 Einheiten von z_2 , 1 Einheit von z_3 und 5 Einheiten von z_4 herzustellen, brauchen wir dementsprechend $2 \cdot 2 + 3 \cdot 4 + 1 \cdot 3 + 5 \cdot 0 = 19$ Einheiten von r_1 . Analoge Überlegungen gelten für r_2 und r_3 . Dies lässt sich kompakt wie folgt zusammenfassen:

$$2 \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} + 3 \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix} + 1 \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 & 0 \\ 1 & 2 & 5 & 2 \\ 5 & 3 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 1 \\ 5 \end{pmatrix} = \begin{pmatrix} 19 \\ 23 \\ 29 \end{pmatrix},$$

sprich, wir brauchen 19 Einheiten von r_1 , 23 Einheiten von r_2 und 29 Einheiten von r_3 um 2 Einheiten von z_1 , 3 Einheiten von z_2 , 1 Einheit von z_3 und 5 Einheiten von z_4 herzustellen.

(c) Wir suchen eine 3×3 -Matrix C, deren Elemente c_{ij} angeben, wie viele Einheiten von Rohstoff r_i für die Produktion eines Autos der Marke m_i benötigt werden.

Um ein Auto der Marke m_1 herzustellen, wird 1 Einheit von z_1 verwendet, wobei hierfür 2 Einheiten r_1 benötigt werden. Dies gilt analog für z_2 (wovon 3 Einheiten gebraucht werden und daher $3 \cdot 4$ Einheiten von r_1), z_3 (wovon 4 Einheiten gebraucht werden und daher $4 \cdot 3$ Einheiten von r_1) und z_4 (wovon 1 Einheit gebraucht wird und $1 \cdot 0$ Einheiten von r_1), die ebenfalls zur Herstellung eines Autos der Marke m_1 notwendig sind.

Die Zeile i der folgenden Matrix A, gibt an, wie viele Einheiten des Rohstoffes r_i für die einzelnen Zwischenprodukte z_1, z_2, z_3 und z_4 benötigt werden:

$$A = \begin{pmatrix} 2 & 4 & 3 & 0 \\ 1 & 2 & 5 & 2 \\ 5 & 3 & 0 & 2 \end{pmatrix}.$$

Die Spalte j der folgenden Matrix B gibt an, wie viele Einheiten der Zwischenprodukte z_1, z_2, z_3 und z_4 für die Marke m_j benötigt werden:

$$B = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 3 & 0 \\ 4 & 0 & 2 \\ 1 & 1 & 3 \end{pmatrix}.$$

Somit gibt das Skalarprodukt der i—ten Zeile von A mit der j—ten Spalte von B an, wie viele Einheiten des Rohstoffes r_i insgesamt für die Herstellung eines Auto der Marke m_j benötigt werden. Das heisst die Matrix

$$A \cdot B = C = \begin{pmatrix} 26 & 18 & 10 \\ 29 & 11 & 18 \\ 16 & 26 & 16 \end{pmatrix},$$

beschreibt z.B., dass für die Produktion eines Autos der Marke m_1 26 Einheiten von r_1 , 29 Einheiten von r_2 und 16 Einheiten von r_3 benötigt werden.

Die Matrix C entspricht folgender Tabelle:

	m_1	m_2	<i>m</i> ₃	
r_1	26	18	10	
r_2	29	11	18	•
r_3	16	26	16	

Aufgabe 10 (Modellierung einer Produktion mit Hilfe von Matrizen I)

Ein Unternehmen produziert aus drei Rohstoffen R_1 , R_2 , R_3 drei Zwischenprodukte Z_1 , Z_2 , Z_3 und daraus zwei Endprodukte E_1 , E_2 . In der nachfolgenden Grafik gibt die Pfeilgewichtung an, wie viele Mengeneinheiten jeweils zur Herstellung benötigt werden.

Somit benötigt beispielsweise die Produktion des Zwischenprodukts Z_2 genau 3 Einheiten von Rohstoff R_1 , eine Einheit von Rohstoff R_2 und 4 Einheiten von Rohstoff R_3 .

(a) Bestimmen Sie die Matrizen $A = (a_{ij})_{i=1,2,3, j=1,2,3}$ und $B = (b_{ij})_{i=1,2,3, j=1,2}$ mit

 a_{ij} = Anzahl der Einheiten von R_i zur Herstellung einer Einheit von Z_j ,

 b_{ij} = Anzahl der Einheiten von Z_i zur Herstellung einer Einheit von E_i .

Bestimmen und interpretieren Sie das Produkt AB.

- (b) Berechnen Sie die Anzahl an Rohstoffen und Zwischenprodukten, die benötigt werden, um jeweils 100 Einheiten von E_1 bzw. E_2 herzustellen.
- (c) Nehmen Sie nun an, eine Einheit von Rohstoff R_1 kostet 1 CHF, eine Einheit von Rohstoff R_2 kostet 2 CHF und eine Einheit von Rohstoff R_3 kostet wieder 1 CHF. Diese Kosten fassen wir mit Hilfe eines Kostenvektors \mathbf{k}^1 wie folgt zusammen:

Beschaffungskosten (in CHF) je Rohstoffeinheit:
$$\mathbf{k}^1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
.

Um das Zwischenprodukt Z_1 herzustellen, fallen, zusätzlich zu den Rohstoffkosten, Produktionskosten an. Genaugenommen sind es 4 CHF für eine Einheit Z_1 , 2 CHF für eine Einheit Z_2 und

3 CHF für eine Einheit Z_3 . Diese Kosten fassen wir mit Hilfe eines Kostenvektors \mathbf{k}^2 wie folgt zusammen:

Produktionskosten (in CHF) je Zwischenprodukteinheit:
$$\mathbf{k}^2 = \begin{pmatrix} 4 \\ 2 \\ 3 \end{pmatrix}$$
.

Analog fallen auch Produktionskosten für die Fertigung der Endprodukte E_1 und E_2 an, welche wir mit Hilfe eines Kostenvektors \mathbf{k}^3 wie folgt zusammenfassen:

Produktionskosten (in CHF) je Endprodukteinheit aus den Zwischenprodukten: $\mathbf{k}^3 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$.

Berechnen Sie die Gesamtkosten für jeweils 100 Einheiten von E_1 und E_2 .

Lösung:

(a) Einheit Z_2 , benötigt genau 3 Einheiten von Rohstoff R_1 , 1 Einheit von Rohstoff R_2 , sowie 4 Einheiten von Rohstoff R_3 . Somit muss $a_{12} = 3$, $a_{22} = 1$ und $a_{32} = 4$ sein. Wir erhalten

$$A = \begin{pmatrix} 2 & 3 & 0 \\ 2 & 1 & 1 \\ 0 & 4 & 1 \end{pmatrix}.$$

Mit der selben Logik muss $b_{12} = 0$ (es gibt keinen Pfeil von Z_1 nach E_2), $b_{22} = 2$ und $b_{32} = 1$ sein. Wir erhalten

$$B = \begin{pmatrix} 3 & 0 \\ 2 & 2 \\ 2 & 1 \end{pmatrix}.$$

Das Produkt ergibt,

$$D = AB = \begin{pmatrix} 2 & 3 & 0 \\ 2 & 1 & 1 \\ 0 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 2 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 6 \\ 10 & 3 \\ 10 & 9 \end{pmatrix}.$$

Der Eintrag d_{21} berechnet sich als Produkt der 2. Zeile von A und 1. Spalte von B, das heisst

$$d_{21} = (2, 1, 1) \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = 2 \cdot 3 + 1 \cdot 2 + 1 \cdot 2 = 6 + 2 + 2 = 10.$$

Es braucht 2 Einheiten von Rohstoff R_2 um Z_1 herzustellen und das Endprodukt E_1 benötigt 3 Einheiten von Zwischenprodukt Z_1 . Das heisst $2 \cdot 3$ beschreibt die Anzahl des Rohstoffes R_2 , die benötigt werden, um genug Zwischenprodukte Z_1 herzustellen, sodass eine Einheit des Endproduktes E_1 hergestellt werden kann. Analog beschreibt $1 \cdot 2$ sowohl die Anzahl des Rohstoffes R_2 , die benötigt werden, um genug Zwischenprodukte Z_2 herzustellen, sodass eine Einheit des Endproduktes E_1 hergestellt werden kann, als auch die Anzahl des Rohstoffes R_2 , die benötigt werden um genug Zwischenprodukte Z_3 herzustellen, sodass eine Einheit des Endproduktes E_1 hergestellt werden kann. Mit anderen Worten:

 $d_{21} = 2 \cdot 3 + 1 \cdot 2 + 1 \cdot 2 = 10$ = Anzahl der benötigten Einheiten von R_2 zur Herstellung einer Einheit von E_1 ,

bzw. allgemein

 d_{ij} = Anzahl der benötigten Einheiten von R_i zur Herstellung einer Einheit von E_j .

(b) Die zweite Zeile von B beschreibt die Anzahl der Einheiten Z_2 , die benötigt werden, um eine Einheit der Endprodukte E_1 bzw. E_2 herzustellen. Möchte man beispielweise jeweils eine Einheit von E_1 und E_2 herstellen, so braucht man $1 \cdot 2 + 1 \cdot 2 = 4$ Einheiten von Z_2 , also $Z_2 = 4$. Das entspricht genau dem Skalarprodukt der zweiten Zeile von B mit dem Vektor $(1,1)^T$. Daraus schliessen wir,

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = B \cdot \begin{pmatrix} 100 \\ 100 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 2 & 2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 100 \end{pmatrix} = \begin{pmatrix} 3 \cdot 100 + 0 \cdot 100 \\ 2 \cdot 100 + 2 \cdot 100 \\ 2 \cdot 100 + 1 \cdot 100 \end{pmatrix} = \begin{pmatrix} 300 \\ 400 \\ 300 \end{pmatrix},$$

wobei z_i die Anzahl an Zwischenprodukten Z_i , i = 1, 2, 3, beschreibt, die benötigt werden, um jeweils 100 Einheiten von E_1 und E_2 herzustellen. Analog erhalten wir, für die Anzahl r_i an Rohstoffen R_i ,

$$\begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = D \cdot \begin{pmatrix} 100 \\ 100 \end{pmatrix} = \begin{pmatrix} 12 & 6 \\ 10 & 3 \\ 10 & 9 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 100 \end{pmatrix} = \begin{pmatrix} 12 \cdot 100 + 6 \cdot 100 \\ 10 \cdot 100 + 3 \cdot 100 \\ 10 \cdot 100 + 9 \cdot 100 \end{pmatrix} = \begin{pmatrix} 1800 \\ 1300 \\ 1900 \end{pmatrix}.$$

Alternative Lösung:

Die Anzahl r_i an Rohstoffen R_i , die benötigt werden, um jeweils 100 Produkte von E_1 und E_2 herzustellen, hätte man auch mit Hilfe der Matrix A ausrechnen können. Wir kennen nämlich bereits die Anzahl der Zwischenprodukte, die benötigt werden, nämlich $(z_1, z_2, z_3)^T = (300, 400, 300)^T$, um 100 Einheiten von E_1 und E_2 herzustellen und daher

$$\begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = A \cdot \begin{pmatrix} 300 \\ 400 \\ 300 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 0 \\ 2 & 1 & 1 \\ 0 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 300 \\ 400 \\ 300 \end{pmatrix} = \begin{pmatrix} 2 \cdot 300 + 3 \cdot 400 + 0 \cdot 300 \\ 2 \cdot 300 + 1 \cdot 400 + 1 \cdot 300 \\ 0 \cdot 300 + 4 \cdot 400 + 1 \cdot 300 \end{pmatrix} = \begin{pmatrix} 1800 \\ 1300 \\ 1900 \end{pmatrix}.$$

Aufgrund der Assoziativität der Matrixmultiplikation gilt, dass

$$\begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = A \cdot \begin{pmatrix} 300 \\ 400 \\ 300 \end{pmatrix} = A \cdot (B \cdot \begin{pmatrix} 100 \\ 100 \end{pmatrix}) = (A \cdot B) \cdot \begin{pmatrix} 100 \\ 100 \end{pmatrix} = D \cdot \begin{pmatrix} 100 \\ 100 \end{pmatrix} = \begin{pmatrix} 1800 \\ 1300 \\ 1900 \end{pmatrix}.$$

(c) Die Rohstoffkosten belaufen sich auf:

$$(\mathbf{k}^1)^T \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = (1, 2, 1) \cdot \begin{pmatrix} 1800 \\ 1300 \\ 1900 \end{pmatrix} = 1800 + 2 \cdot 1300 + 1900 = 6300.$$

Die Zwischenproduktkosten ergeben sich als Summe von Rohstoffkosten und Herstellungskosten für die Zwischenprodukte:

$$6300 + (\mathbf{k}^2)^T \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = 6300 + (4, 2, 3) \begin{pmatrix} 300 \\ 400 \\ 300 \end{pmatrix} = 6300 + 4 \cdot 300 + 2 \cdot 400 + 3 \cdot 300 = 9200.$$

Die Gesamtkosten ergeben sich als Summe von Zwischenproduktkosten und Herstellungskosten für die Endprodukte:

$$9200 + (\mathbf{k}^3)^T \begin{pmatrix} 100 \\ 100 \end{pmatrix} = 9200 + (2,4) \begin{pmatrix} 100 \\ 100 \end{pmatrix} = 9200 + 200 + 400 = 9800.$$

Die Gesamtkosten für jeweils 100 Einheiten von E_1 und E_2 sind also 9800 CHF.

Aufgabe 11 (Modellierung einer Produktion mit Hilfe von Matrizen II)

Eine Firma stellt aus vier Rohprodukten $R_1,...,R_4$ drei Zwischenprodukte Z_1,Z_2,Z_3 und aus diesen Zwischenprodukten vier Endprodukte $E_1,...,E_4$ her.

- Für die Herstellung einer Einheit von E_1 benötigt man: $2Z_1$, $1Z_2$, $2Z_3$
- Für eine Einheit von E_2 benötigt man: $3Z_2$, $2Z_3$.
- Für eine Einheit von E_3 benötigt man: $2Z_1$, $2Z_2$, $3Z_3$.
- Für eine Einheit von E_4 benötigt man: $3Z_1$, $4Z_3$.
- Für die Herstellung einer Einheit von Z_1 benötigt man: $3R_1$, $1R_2$, $4R_4$.
- Für eine Einheit von Z_2 benötigt man: $3R_1$, $2R_2$, $4R_3$, $1R_4$.
- Für eine Einheit von Z_3 benötigt man: $1R_2$, $3R_3$.
- (a) Stellen Sie jeweils die Matrix A, B und C auf, sodass:
 - a_{ij} = Anzahl der Einheiten von R_i zur Herstellung einer Einheit von Z_i ,
 - b_{ij} = Anzahl der Einheiten von Z_i zur Herstellung einer Einheit von E_j ,
 - c_{ij} = Anzahl der Einheiten von R_i zur Herstellung einer Einheit von E_j .
- (b) Wie viele Einheiten der Rohprodukte $R_1,...,R_4$ benötigt man, um eine Einheit von E_1 bzw. zwei Einheiten von E_3 zu produzieren?
- (c) Welche Menge von R_2 benötigt man, um zwei Einheiten von E_1 , eine Einheit von E_2 und drei Einheiten von E_4 herzustellen?

Notieren Sie die Ansätze jeweils in Matrixnotation und berechnen Sie anschliessend die Ergebnisse.

Lösung:

(a) Mit den Zahlenangaben erhält man analog zur vorherigen Aufgabe:

$$A = \begin{pmatrix} 3 & 3 & 0 \\ 1 & 2 & 1 \\ 0 & 4 & 3 \\ 4 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & 2 & 3 \\ 1 & 3 & 2 & 0 \\ 2 & 2 & 3 & 4 \end{pmatrix}, C = AB = \begin{pmatrix} 9 & 9 & 12 & 9 \\ 6 & 8 & 9 & 7 \\ 10 & 18 & 17 & 12 \\ 9 & 3 & 10 & 12 \end{pmatrix}.$$

- (b) Insgesamt können wir die Einheiten der einzelnen Produkte durch folgende Vektoren beschreiben
 - $\mathbf{r} \in \mathbb{R}^4$ = Vektor der verbrauchten Rohprodukteinheiten,
 - $\mathbf{z} \in \mathbb{R}^3$ = Vektor der hergestellten Zwischenprodukteinheiten,
 - $\mathbf{e} \in \mathbb{R}^4$ = Vektor der hergestellten Endprodukteinheiten.

Es gelten folgende Beziehungen:

$$\mathbf{r} = A\mathbf{z}$$
 und $\mathbf{z} = B\mathbf{e}$

und somit

$$\mathbf{r} = AB\mathbf{e} = C\mathbf{e}$$

bzw.

$$\mathbf{r} = \begin{pmatrix} 9 & 9 & 12 & 9 \\ 6 & 8 & 9 & 7 \\ 10 & 18 & 17 & 12 \\ 9 & 3 & 10 & 12 \end{pmatrix} \cdot \mathbf{e}.$$

Daher gilt für eine Einheit E_1 :

$$\begin{pmatrix} 9 & 9 & 12 & 9 \\ 6 & 8 & 9 & 7 \\ 10 & 18 & 17 & 12 \\ 9 & 3 & 10 & 12 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \\ 10 \\ 9 \end{pmatrix}.$$

Für zwei Einheiten E_3 dementsprechend:

$$\begin{pmatrix} 9 & 9 & 12 & 9 \\ 6 & 8 & 9 & 7 \\ 10 & 18 & 17 & 12 \\ 9 & 3 & 10 & 12 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 24 \\ 18 \\ 34 \\ 20 \end{pmatrix}$$

(c) Der Vektor der genau diese Endprodukte beschreibt ist

$$\mathbf{e} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 3 \end{pmatrix}.$$

Die Menge an Rohprodukten von R_2 entspricht gerade dem zweiten Eintrag von Ce, wobei

$$C\mathbf{e} = \begin{pmatrix} 9 & 9 & 12 & 9 \\ 6 & 8 & 9 & 7 \\ 10 & 18 & 17 & 12 \\ 9 & 3 & 10 & 12 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 54 \\ 41 \\ 74 \\ 57 \end{pmatrix}.$$

Es gilt nämlich c_{ij} = Anzahl der Einheiten von R_i zur Herstellung einer Einheit von E_j . d.h. c_{2j} beschreibt die Anzahl der Einheiten von R_2 zur Herstellung einer Einheit von E_j . Die gesuchte Menge ist daher der zweite Eintrag des Vektors $C\mathbf{e}$, der sich als Skalarprodukt des zweiten Zeilenvektors von C mit dem Vektor \mathbf{e} bildet,

$$(6,8,9,7) \begin{pmatrix} 2\\1\\0\\3 \end{pmatrix} = 6 \cdot 2 + 8 \cdot 1 + 9 \cdot 0 + 7 \cdot 3 = 41.$$