Vorbesprechung Serie 3

Mittwoch, 15. Februar 2017 15:14

Indulctive Folyn

Ser (an) wie felst detinient:
$$a_n = \begin{cases} 0 & \text{, } n=0 \\ \frac{1}{2}a_{n-1} + \frac{1}{2} & \text{, } n>0 \end{cases}$$

Vorgehersweise:

Variable 1 Reschlosser Form Finds:

$$a_0 = 0$$
 $a_1 = \frac{1}{2} \cdot 0 + \frac{1}{2} = \frac{1}{2}$
 $a_2 = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} = \frac{3}{4}$
 $a_3 = \frac{1}{2} \cdot \frac{3}{4} + \frac{1}{4} = \frac{3}{8}$
 $a_4 = \dots = \frac{15}{16}$
 \vdots
 $a_n = \frac{2^n - 1}{2^n}$

Behauphy

Beweis: (Indulction)

Anter (n=0)
$$q_0 = \frac{2^{\circ}-1}{2^{\circ}} = \frac{0}{1} = 0$$

Sdrift
$$a_{n+1} = \frac{1}{2} \cdot a_n + \frac{1}{2} = \frac{1}{2} \cdot \frac{2^{n-1}}{2^n} + \frac{1}{2} = \frac{2^{n-1}}{2^{n+1}} + \frac{2^n}{2^{n+1}} = \frac{2^{n+1}-1}{2^{n+1}}$$

$$\Rightarrow \lim_{n \to \infty} \frac{2^{n+1}-1}{2^{n+1}} = \lim_{n \to \infty} \frac{1-\frac{1}{2^{n+1}}}{1} = 1$$

Variante 2 (2. B. falls gestalossene term schwierig in hinden)

Anker:
$$Q_0 = 0 \le 1$$
 \checkmark $\frac{1}{2}$ $\frac{1}{2}$

Beca:

Beh 2: (an) ist mon uarhand

a monoton wachend and buschrönit => fa liman = 9.

$$\Rightarrow a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \left(\frac{1}{2} a_n + \frac{1}{2} \right) = \frac{1}{2} \left(\lim_{n \to \infty} a_n \right) + \frac{1}{2} = \frac{1}{2} a + \frac{1}{2}$$

$$\Rightarrow a = \frac{1}{1}a + \frac{1}{1} \Rightarrow \frac{a}{1} = \frac{1}{1} \Rightarrow a = 1$$

Konvergnt von Riber

Sei (an) sine folge. $S_n := \sum_{n=0}^{\infty} a_n$. Wir suche Grentwert von S_n . $\pm alls$ existent, schreiben wir $\lim_{n\to\infty} S_n = \sum_{n=0}^{\infty} a_n$ ell? I an tennesiant absolut falls I land existent

(Brachk · absolute tonv. =) tronvergnt)

· absolute tronv: Summationsmituation egal.

Krihrin Für Konungut:

Null folgo kriterium

Notwardig: (Sanity-Check, immer zoust priter)

Sei
$$(a_n)$$
 eine Folge. $\sum_{n=0}^{\infty} a_n$ existive \Rightarrow $\lim_{n\to\infty} |a_n| = 0$

where $\lim_{n\to\infty} |a_n| \neq 0 \Rightarrow \sum_{n=0}^{\infty} a_n$ divergint

$$\forall \varepsilon > 0$$
 letrick: $\sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \varepsilon \right)$

For welche & konvergiert die Reite? Chasichtlich: lin |an | = E > 0 => Reite divergiert (es wird unendlich oft etwas beliebig kleines (aber festes) aufsummiert).

Abo ACHTUNG: $\lim_{n\to\infty} \left|\frac{1}{n}\right| = 0$, also $\sum_{n\to\infty} \frac{1}{n} = \infty$ (nicht himziched)

Majoranka krikrium

wichtige bank Riber zun Abschälzen:

• Leta-Falchin
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 (for $s > 1$)
 $\zeta(1) = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$ $\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

Wie kann mann unendlich oft positive Zahlen aufsummieren ohne dass die Summe "explodiert"? Folgendes Paradox veranschaulicht dieses Phänomen: Zeno hatte die Intuition dass eine unendliche Summe keinen endlichen Grenzwert haben kann.

ZENO's Paradox

Wenn die Aufsummierung der Teilstrecken der Schildkröte beliebig gross werden könnte, dann würde die Schildkröte gewinnen, da Archilles immer hinterher läuft.

 $\sum_{i=1}^{\infty} b_i = t^* \qquad \sum_{i=1}^{\infty} s_i = s^*$

1 1- 2-16-16 Trailsteeche

Wenn man das Spiel unendlich oft wiederholt erreichen wir eine zeit t* und eine Distanz s* an der Archilles die Schildkröte überholen wird.

$$|a_n| = a_n \leqslant \frac{(n+1)^{\frac{1}{2}}}{\frac{8}{3}} \leqslant \frac{(4n)^{\frac{1}{2}}}{\frac{8}{3}} = 2\frac{n^{\frac{1}{2}}}{\frac{8}{3}} = \frac{2}{n^{\frac{1}{2}}} = 2\frac{1}{n^{\frac{1}{2}}}$$

$$\sum_{n=1}^{\infty} 2 \frac{1}{n^{3/2}} = 2 \left(\frac{13}{6} \right) \implies \sum_{n=1}^{\infty} a_n \text{ kenv. abolit nach Majarantinkrikaium } \square$$

Quotien / Wurzel-Kriterium

Bsp (Qualisheloritain)

$$\sum_{n=0}^{\infty} \frac{5+n}{40^n} \left| \frac{a_{n+1}}{a_n} \right| = \frac{(5+n+1)}{10^{n+n}} \cdot \frac{10^n}{(5+n)} = \frac{6+n}{10(5+n)} = \frac{1}{10} \cdot \frac{\frac{6}{n}+1}{\frac{5}{n}+1} \xrightarrow{n\to\infty} \frac{1}{10} < 1$$

=> Kanunginh

$$\frac{\beta s \rho:}{\sum_{n \leq n} \left(\frac{n}{2n+n}\right)^{n-s}} = \left(\frac{n}{2n+n}\right)^{n-\frac{s}{2}} = \left(\frac{n}{2n+n}\right)^{n-\frac{s}{2}} = \frac{\left(\frac{n}{2n+n}\right)}{\left(\frac{n}{2n+n}\right)^{s}} = \frac{\left(\frac{n}{2n+n}\right)}{\left(\frac{n}{2n+n}\right)^{s}} = \frac{1}{2} < 1$$

$$\Rightarrow \text{Reila Conseque}$$

Byp: $\sum_{n=1}^{\infty} n! x^n$ (für undele x honvergiet die Reihe?)

$$\left|\frac{q_{n+n}}{q_n}\right| = \left|\frac{(n+n)! \times x^{n+n}}{n! \times x^n}\right| = (n+n) \times \xrightarrow{n \to \infty} \begin{cases} \infty & \text{for } x > 0 \\ -\infty & \text{for } x < 0 \end{cases}$$

→ Reihe konvegirl Für x=0