Notredame-Higgins-Heringa (T-Coffee)

Unit Tests

Hint: Many test values are taken from project Algorithms for Bioninformatics of Alexander Mattheis or the lectures.

Test 1 (Hint: Notation from original Feng-Doolittle paper used!)

Input

Sequence a: ACGT Sequence b: AT Sequence c: GCT

Gap opening: 0 (easifies later visual proofment)

Enlargement: -2

Match: 1 (and 0 for placeholder #)

Mismatch: -1

Output (Computation: Global Primary Library)

	Alignment- Length	Gaps	Gap- starts	Score
(a,b)	4	2	1	-2
(a,c)	4	1	1	-3
(b,c)	3	1	1	-4

a: ACGT * *

b: A__T

a: ACGT |* *

c: GC_T

Hint: More alignments exists, but only one is computed!

Output (Computation: Weight Primary Library)

1. Conversion (not used in implementation – only for visualization)

für (a,b): {(1,1),(4,2)}

für (a,c): {(1,1),(2,2),(4,3)}

für (b,c): {(1,2),(2,3)}

$$Pool = \left\{ \begin{cases} \{(1,1), (4,2)\} \\ \{(1,1), (2,2), (4,3)\} \\ \{(1,2), (2,3)\} \end{cases} \right\}$$

 $\textbf{Weight computation} \ (\textbf{not used in implementation} - \textbf{only for visualization})$

$$L_{i,j}^{S_1,S_2} = 0$$

$$L_{i,j}^{S_1,S_2} = L_{i,j}^{S_1,S_2} + weight(A(a,b))$$
 where $weight(A(a,b)) = seq_{ID}(A(a,b))$

$$\begin{aligned} & 2. & \text{Weight computation (not used in implementation - only for visualization)} \\ & L_{i,j}^{s_1,s_2} = 0 \\ & L_{i,j}^{s_1,s_2} = L_{i,j}^{s_1,s_2} + weight\big(A(a,b)\big) \text{ where } weight\big(A(a,b)\big) = seq_{ID}\big(A(a,b)\big) \\ & PrimLib = \left\{ \begin{cases} L_{1,1}^{a,b}, L_{4,2}^{a,b} \\ L_{1,1}^{a,c}, L_{2,2}^{a,c}, L_{4,3}^{a,c} \\ L_{1,2}^{b,c}, L_{2,3}^{b,c} \end{cases} \right\} = \left\{ \begin{cases} \frac{2}{2} \cdot 100, \frac{2}{2} \cdot 100 \\ \frac{2}{3} \cdot 100, \frac{1}{3} \cdot 100 \\ \frac{2}{3} \cdot 100, \frac{1}{3} \cdot 100 \end{cases} \right\} \\ & \left\{ \frac{100}{3}, \frac{100}{3}, \frac{100}{3} \right\} \\ & \left\{ \frac{1}{2} \cdot 100, \frac{1}{2} \cdot 100 \right\} \end{aligned} \right\}$$

Output (Computation: Extended Primary Library)

 $L_{i,j}^{s_1,s_2} = L_{j,i}^{s_2,s_1}$ or it would not make sense

(a triple should be recognized irrelevant of order)

$$ExtendedLib = \begin{cases} \left\{ EL_{1,1}^{a,b}, EL_{4,2}^{a,b} \right\} \\ \left\{ EL_{1,1}^{a,c}, EL_{2,2}^{a,c}, EL_{4,3}^{a,c} \right\} \\ \left\{ EL_{1,2}^{b,c}, EL_{2,3}^{b,c} \right\} \end{cases} = \begin{cases} \left\{ 100, 100 \right\} \\ \left\{ \frac{100}{3}, \frac{100}{3}, \frac{250}{3} \right\} \\ \left\{ 50, 50 \right\} \end{cases}$$

correct:

$$ExtendedLib = \begin{cases} \left\{EL_{1,1}^{a,b}, EL_{4,2}^{a,b}\right\} \\ \left\{EL_{1,1}^{a,c}, EL_{2,2}^{a,c}, EL_{4,3}^{a,c}\right\} \\ \left\{EL_{1,2}^{b,c}, EL_{2,3}^{b,c}\right\} \end{cases} = \begin{cases} \left\{100, \frac{400}{3}\right\} \\ \left\{\frac{100}{3}, \frac{100}{3}, \frac{250}{3}\right\} \\ \left\{50, \frac{250}{3}\right\} \end{cases}$$
 Hint: because of Triple-Match $\frac{250}{3}$

$$EL_{1,1}^{a,b} = L_{1,1}^{a,b} + \sum_{x \in S \setminus \{a,b\}} \sum_{k \in pos(x)} \min(L_{1,k}^{a,x}, L_{k,1}^{x,b})$$

$$= L_{1,1}^{a,b} + \sum_{x \in \{c\}} \sum_{k \in \{1,2,3\}} \min(L_{1,k}^{a,x}, L_{k,1}^{x,b})$$

$$= 100 + \min \bigl(L_{1,1}^{a,c}, L_{1,1}^{c,b} \bigr) + \min \bigl(L_{1,2}^{a,c}, L_{2,1}^{c,b} \bigr) + \min \bigl(L_{1,3}^{a,c}, L_{3,1}^{c,b} \bigr)$$

$$= 100 + \min\left(\frac{100}{3}, 0\right) + 0 + 0 = 100$$

$$EL_{4,2}^{a,b} = 100 + \min(L_{4,1}^{a,c}, L_{1,2}^{c,b}) + \min(L_{4,2}^{a,c}, L_{2,2}^{c,b}) + \min(L_{4,3}^{a,c}, L_{3,2}^{c,b})$$

$$= 100 + 0 + \min(\frac{100}{3}, 50) = \frac{400}{3}$$

$$\begin{split} EL_{1,1}^{a,c} &= L_{1,1}^{a,c} + \sum_{x \in \{b\}} \sum_{k \in \{1,2\}} \min(L_{1,k}^{a,x}, L_{k,1}^{x,b}) \\ &= \frac{100}{3} + \min(L_{1,1}^{a,b}, L_{1,1}^{b,c}) + \min(L_{1,2}^{a,b}, L_{2,1}^{b,c}) \\ &= \frac{100}{3} + \min(100,0) + \min(0,50) \\ EL_{2,2}^{a,c} &= L_{2,2}^{a,c} + \sum_{x \in \{b\}} \sum_{k \in \{1,2\}} \min(L_{2,k}^{a,x}, L_{k,2}^{x,b}) \\ &= \frac{100}{3} + \min(L_{2,1}^{a,b}, L_{1,2}^{b,c}) + \min(L_{2,2}^{a,b}, L_{2,2}^{b,c}) \\ &= \frac{100}{3} + \min(0,50) + 0 \end{split}$$

$$\begin{split} EL_{4,3}^{a,c} &= L_{4,3}^{a,c} + \sum_{x \in \{b\}} \sum_{k \in \{1,2\}} \min(L_{4,k}^{a,x}, L_{k,3}^{x,c}) \\ &= \frac{100}{3} + \min(L_{4,1}^{a,b}, L_{1,3}^{b,c}) + \min(L_{4,2}^{a,b}, L_{2,3}^{b,c}) \\ &= \frac{100}{3} + 0 + \min(100,50) \\ &= \frac{250}{3} \approx 83.33 \end{split}$$

$$\begin{split} &EL_{1,2}^{b,c} = L_{1,2}^{b,c} + \sum_{x \in \{a\}} \sum_{k \in \{1,2,3,4\}} \min(L_{1,k}^{b,x}, L_{k,2}^{x,c}) \\ &= 50 + \min(L_{1,1}^{b,a}, L_{1,2}^{a,c}) + \min(L_{1,2}^{b,a}, L_{2,2}^{a,c}) + \min(L_{1,3}^{b,a}, L_{3,2}^{a,c}) + \min(L_{1,4}^{b,a}, L_{4,2}^{a,c}) \\ &= 50 + \min(100,0) + \min\left(0, \frac{100}{3}\right) + 0 + 0 \\ &EL_{2,3}^{b,c} = L_{2,3}^{b,c} + \sum_{x \in \{a\}} \sum_{k \in \{1,2,3,4\}} \min(L_{2,k}^{b,x}, L_{k,3}^{x,c}) \\ &= 50 + \min(L_{2,1}^{b,a}, L_{1,3}^{a,c}) + \min(L_{2,2}^{b,a}, L_{2,3}^{a,c}) + \min(L_{2,3}^{b,a}, L_{3,3}^{a,c}) + \min(L_{2,4}^{b,a}, L_{4,3}^{a,c}) \\ &= 50 + 0 + 0 + 0 + \min\left(100, \frac{100}{3}\right) \\ &= \frac{250}{3} \end{split}$$

Output (Distances)

 $D(a,b) = -\ln S_{a,b}^{eff} \approx 0.98 \approx 1$ (look into Feng-Doolittle Unit-Tests)

.....

$$S_{a,c}^{rand}$$

$$=\frac{1}{4}\begin{pmatrix} s(A_{a},G_{b})\cdot N_{A}(a)\cdot N_{G}(b)+s(A_{a},C_{b})\cdot N_{A}(a)\cdot N_{C}(b)+s(A_{a},T_{b})\cdot N_{A}(a)\cdot N_{T}(b)\\ +s(C_{a},G_{b})\cdot N_{C}(a)\cdot N_{G}(b)+s(C_{a},C_{b})\cdot N_{C}(a)\cdot N_{C}(b)+s(C_{a},T_{b})\cdot N_{C}(a)\cdot N_{T}(b)\\ +s(G_{a},G_{b})\cdot N_{G}(a)\cdot N_{G}(b)+s(G_{a},C_{b})\cdot N_{G}(a)\cdot N_{C}(b)+s(G_{a},T_{b})\cdot N_{G}(a)\cdot N_{T}(b)\\ +s(T_{a},G_{b})\cdot N_{T}(a)\cdot N_{G}(b)+s(T_{a},C_{b})\cdot N_{T}(a)\cdot N_{C}(b)+s(T_{a},T_{b})\cdot N_{T}(a)\cdot N_{T}(b) \end{pmatrix}$$

 $+ 1 \cdot enlarge$

$$= \frac{1}{4} \begin{pmatrix} (-1) + (-1) + (-1) \\ + (-1) + 1 + (-1) \\ + 1 + (-1) + (-1) \\ + (-1) + (-1) + 1 \end{pmatrix} + 1 \cdot (-2) = \frac{-9}{4} - 2 = -4.25$$

$$S_{a,c}^{max} = \frac{4+3}{2} = 3.5$$

$$S_{a,c}^{eff} = \frac{S(a,c) - S_{a,c}^{rand}}{S_{a,c}^{max} - S_{a,c}^{rand}} = \frac{-3 - (-4.25)}{3.5 - (-4.25)} = \frac{1.25}{7.75}$$

$$D(a,c) = -\ln(S_{a,c}^{eff}) \approx 1.825 \approx 2$$

Shana

$$= \frac{1}{3} \cdot \left(\begin{array}{c} s(A_a, G_b) \cdot N_A(a) \cdot N_G(b) + s(A_a, C_b) \cdot N_A(a) \cdot N_C(b) + s(A_a, T_b) \cdot N_A(a) \cdot N_T(b) \\ + s(T_a, G_b) \cdot N_T(a) \cdot N_G(b) + s(T_a, C_b) \cdot N_T(a) \cdot N_C(b) + s(T_a, T_b) \cdot N_T(a) \cdot N_T(b) \end{array} \right) \\ + 1 \cdot enlarge \\ = \frac{1}{3} \cdot \left(\begin{array}{c} (-1) + (-1) + (-1) \\ + (-1) + (-1) + 1 \end{array} \right) - 2 = \frac{-4}{3} - 2 = -\frac{10}{3}$$

$$S_{b,c}^{max} = \frac{2+3}{2} = 2.5$$

$$S_{b,c}^{eff} = \frac{S(b,c) - S_{b,c}^{rand}}{S_{b,c}^{max} - S_{b,c}^{rand}} = \frac{-4 - \left(-\frac{10}{3}\right)}{2.5 - \left(-\frac{10}{3}\right)} = \frac{-\frac{2}{3}}{\frac{35}{6}} \le 0 \rightarrow S_{a,c}^{eff} = \frac{0.001}{\frac{35}{6}} = \frac{3}{17500}$$

$$D(b,c) = -\ln(S_{b,c}^{eff}) \approx 8.671 \approx 9$$

Output (Phylogenetic Tree : look into Feng-Doolittle Unit-Tests)

1	
Т	•

Δ.			
	a	b	С
а	0	1	2
b		0	9
С			0
7	1		

$$d_{min} = 1$$

$$\mathcal{C} = \big((\mathcal{C} - \{a\}) - \{b\}\big) \cup \{d\}$$

	1	- 1)	С	d	
				٦.		
а	′		-			
				_		
D		'	,	9		
С				0	5.5	
d					0	

$$dist(d,a) = dist(d,b) = \frac{1}{2} = 0.5$$

$$dist(c, d = \{a, b\}) = \frac{|a| \cdot dist(c, a) + |b| \cdot dist(c, b)}{|a| + |b|} = \frac{1 \cdot 2 + 1 \cdot 9}{1 + 1} = 5.5$$

1)
$$d_{min} = 5.5$$

1)
$$d_{min} = 5.5$$

2) $C = ((C - \{c\}) - \{d\}) \cup \{e\}$

3)
$$dist(e,c) = dist(e,d) = \frac{d_{min}}{2} = 2.75$$

Output (Joinment)

Gap opening: $0 \rightarrow Gotoh not needed for calculation$

Enlargement: 0

ExtendedLib =	$ \begin{pmatrix} \{EL_{1,1}^{a,b}, EL_{4,2}^{a,b}\} \\ \{EL_{1,1}^{a,c}, EL_{2,2}^{a,c}, EL_{4,3}^{a,c}\} \\ \{EL_{1,2}^{b,c}, EL_{2,3}^{b,c}\} \end{pmatrix} $	\ \ \ \	$ \left\{ \frac{\left\{100, \frac{400}{3}\right\}}{\left\{\frac{100}{3}, \frac{100}{3}, \frac{250}{3}\right\}} \right\} \\ \left\{50, \frac{250}{3}\right\} $
---------------	--	------------------	---

1. a~b:

		A ₁	T ₂
	0	0	0
A ₁	0	100	100
C ₂	0	100	100
G₃	0	100	100
T ₄	0	100	700/3

ACGT A##T

Score ~233

2.

A C G Δ # #

anc

G C T

ab~C: (every char with every other char, so A_a with G_c and A_b with $G_c \rightarrow$ and then average)

			G ₁	C ₂	T ₃
		0	0	0	0
A_1	A_1	0	100/6	100/6	100/6
C ₂	#	0	100/6	100/3	100/3
G₃	#	0	100/6	100/3	100/3
T ₄	T ₂	0	100/6	100/3	350/3

$$\frac{EL_{1,1}^{a,c} + EL_{1,1}^{b,c}}{2} = \frac{\frac{100}{3} + 0}{2} = \frac{100}{6}$$

$$\frac{EL_{1,2}^{a,c} + EL_{1,2}^{b,c}}{2} = \frac{0+50}{2} = 25$$

$$\frac{EL_{1,3}^{a,c} + EL_{1,3}^{b,c}}{2} = \frac{0+0}{2} = 0$$

$$\frac{EL_{2,1}^{a,c}+0}{2} = \frac{0+0}{2} = 0$$

$$\frac{EL_{2,2}^{a,c}+0}{2} = \frac{\frac{100}{3}+0}{2} = 100/6$$

$$\frac{EL_{2,3}^{a,c} + 0}{2} = \frac{0+0}{2} = 0$$

$$\frac{EL_{3,1}^{a,c}+0}{2} = \frac{0+0}{2} = 0$$

$$\frac{EL_{3,2}^{a,c}+0}{2} = \frac{0+0}{2} = 0$$

$$\frac{EL_{3,3}^{a,c}+0}{2} = \frac{0+0}{2} = 0$$

$$\frac{EL_{4,1}^{a,c} + EL_{2,1}^{b,c}}{2} = \frac{0+0}{2} = 0$$

$$\frac{EL_{4,2}^{a,c} + EL_{2,2}^{b,c}}{2} = \frac{0+0}{2} = 0$$

$$\frac{EL_{4,3}^{a,c} + EL_{2,3}^{b,c}}{2} = \frac{\frac{250}{3} + \frac{250}{3}}{2} = \frac{250}{3}$$

Output (Final)

ACGT

A T

GC_T

SoP-Score -9