



# Evaluating Web Search with a Bejeweled Player Model

An analysis by Adam HOTAIT and Romain PASCUAL

### Two methods for Web-search evaluation



#### System-oriented studies

Set of relevance judgments to compare the quality of ranked result list in response to a **fixed set of queries** 



User-oriented studies

Actual user behaviors
during retrieval sessions to
measure effectiveness of
systems

### Two methods for Web-search evaluation



### Two methods for Web-search evaluation





Cost & complexity

# Some important vocabulary



Benefit

The amount of information on the studied subject that one can gain from the document



Cost

Temporal and cognitive efforts in processing, reading and understanding documents

# Current models for stopping point determination



Benefit

Reciprocal Rank (RR)

User will stop once they find a perfect document

**Upper limit for benefit** 

Measures satisfaction



Cost

Precision@N

Percentage of relevant documents in top-N results

**Upper limit for cost** 

Measures frustration

Game is over

(player loses)

**Frustration** 





$$M = \sum_{k=1}^{\infty} Function(Benefit_k, Cost_k) * P(k)$$

An adapted choice of the different parameters can simulate both Benefit-oriented and Cost-oriented models currently used

The BPM allows for model-abstraction It is a "meta-model"

$$E\_Benefit_k = \alpha_B * (2^{rel_{max}} - 1) + h_B \sum_{i=1}^{k} (benefit_i - benefit_{median})$$

$$T_{-}Cost_{k} = \alpha_{C} + h_{C} \sum_{i=1}^{k} \left( \frac{benefit_{i}}{benefit_{median}} - 1 \right)$$

where:  $benefit_i = 2^{rel_i} - 1$ 



New model





Has better results with carefully chosen parameters