1 Ćwiczenie 5: Aspekty uczenia maszynowego

Aby wykonać te ćwiczenia, może być konieczne przeczytanie slajdów związanych z wykładami 10-12 (pliki z nazwami SI-W10, SI-W11, SI-W12).

- 1. Część (i) i (ii) można napisać na papierze.
 - (i) Zaprojektuj perceptron z dwoma wejściami reprezentujący funkcję boolowską $x_1 \wedge \neg x_2$.
 - (ii) Zaprojektuj dwuwarstwowa sieć perceptronów implementująca $x_1 XOR x_2$.
 - (iii) Napisz Perceptron-Learn Program dla funkcji $x_1 \wedge \neg x_2$ (zobacz pseudokod podanym w pliku SI-W11). Jako początkowy wektor wagi można rozważyć $\langle w_0, w_1, w_2 \rangle = \langle 0.5, 0.5, 0.5 \rangle$. Współczynnik uczenia się można równieź ustawić na 0.5.
- 2. Rozważ następujący system decyzyjny. Napisz program przy użyciu algorytmu Decision-Tree-Learning (podanym w pliku SI-W12), aby nauczyć się drzewa decyzyjnego dla tych danych. Pokaż obliczenia wykonane w celu określenia atrybutu do podziału w każdym węźle.

Obiekty	a_1	a_2	a_3	dec
o_1	1	0	0	0
o_2	1	0	1	0
o_3	0	1	0	0
o_4	1	1	1	1
o_5	1	1	0	1