Ryzyko w portfelu inwestycyjnym

Jak się wyznacza wartość opcji? (Nie obowiązuje na egzaminie)

Wzór do wyceny opcji według Blacka-Scholesa

$$c = SN(d_1) - Xe^{-rT}N(d_2)$$

 $p = Xe^{-rT}N(-d_2) - SN(-d_1)$

$$d_1 = rac{\ln(S/X) + \left(r + rac{\sigma^2}{2}
ight)T}{\sigma\sqrt{T}}$$
 $d_2 = rac{\ln(S/X) + \left(r - rac{\sigma^2}{2}
ight)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$

Gdzie:

- S Cena akcji
- X Cena wykonania opcji
- \bullet r Wolna od ryzyka stopa procentowa
- T Czas do wygaśniecia (w latach)
- \bullet σ Zmienność wzglednej zmiany ceny akcji bazowej
- \bullet N(x) Dystrybuanta rozkładu normalnego

F. Black i M. Scholes 1973

Dzięki temu że wynaleziona został ten wzór:

- Wycena bez arbitrażu
- Porównanie z ceną rynkową
- Obliczanie wrażliwości

Model ma tylko 1 parametr, który nie jest znany na początku - przyszła zmienność (zmienność implikowana)

GREKI (GREEKS)

Greki to takie parametry opcji, które pokazują nam w jaki sposób będzie zmieniała się cena opcji w zależności od pewnego parametru.

Grecka litera	Co mierzy?	Interpretacja
Delta (Δ)	Zmiana ceny opcji na 1 jednostkę zmiany ceny instrumentu bazowego	Call: 0 do 1 Put: -1 do 0 Możemy ją interpretować na 3 sposoby: a) Czułość ceny opcji na zmianę instrumentu b) Prawdopodobieństwo wygaśnięcia opcji w ITM c) Hedging ratio
Gamma (Γ)	Zmiana delty na 1 jednostkę zmiany ceny instrumentu bazowego	Wysoka gamma → większe ryzyko pozycji delta-neutralnej
Vega (v)	Zmiana ceny opcji na 1 p.p. zmiany zmienności instrumentu bazowego	Im wyższa zmienność, tym droższa opcja
Theta (Θ)	Zmiana ceny opcji z upływem jednego dnia (tzw. time decay)	Z reguły ujemna: wartość opcji maleje z czasem
Rho (ρ)	Zmiana ceny opcji na 1 p.p. zmiany stopy procentowej	Duże znaczenie przy długim terminie do wygaśnięcia

1. Czułość ceny opcji na zmianę instrumentu bazowego:

Jeśli delta = 0.6, to:

Gdy akcja rośnie o 1 zł → wartość opcji wzrośnie o ok. 0.60 zł (dla call)

Dla put: delta jest ujemna → opcja traci na wartości

2. Prawdopodobieństwo wygaśnięcia opcji in-the-money (przybliżone):

Delta ≈ prawdopodobieństwo, że opcja skończy in-the-money

Delta = 0.8 → ~80% szans, że opcja call zakończy ITM

(Działa lepiej dla opcji europejskich i call niż dla put)

3. Hedging ratio:

<u>Delta mówi, ile jednostek instrumentu bazowego trzeba kupić/sprzedać, by zhedgować pozycję w opcji.</u> <u>Masz short call z deltą 0.4 → kupujesz 0.4 akcji na 1 opcję, by zabezpieczyć ekspozycję.</u>

Delta hedging portfolio

Wartość	Opis	
Cena akcji KGHM	100 zł	
Strike opcji call	100 zł (ATM)	
Czas do wygaśnięcia	30 dni	
Delta jednej opcji	0.5	
Liczba opcji	1 kontrakt = 100 opcji	

Delta portfela = 100 * 0.5 = 50 - nasz portfel się zachowuje jak 50 akcji

Zatem co powinienem zrobić aby zneutralizować ryzyko?

Co się stanie z deltą jeśli cena wzrośnie np. do 105?

Wartość	Opis	
Cena akcji KGHM	100 zł	
Strike opcji call	100 zł (ATM)	
Czas do wygaśnięcia	30 dni	
Delta jednej opcji	0.5	
Liczba opcji	1 kontrakt = 100 opcji	

Delta portfela = 100 (ilość opcji) * 0.5 (delta jednej opcji) = 50 - nasz portfel się zachowuje jak 50 akcji

Zatem co powinienem zrobić aby zneutralizować ryzyko? - zshortować 50 akcji

Co się stanie z deltą jeśli cena wzrośnie np. do 105? - delta wzrośnie powinienem dokupić tyle akcji o ile wzrośnie delta

UWAGA DELTA ZMIENIA SIĘ WRAZ ZE STRIKAMI

UWAGA DELTA NIE ZAWSZE BĘDZIE POKRYWAĆ ZMIANY

Delta portfela opcyjnego

Wzór ogólny:

$$\Delta_{ ext{portfela}} = \sum_{i=1}^n N_i \cdot \Delta_i$$

Gdzie:

- N_i liczba kontraktów w pozycji i,
- Δ_i delta jednej opcji w pozycji *i*.

Przykład:

Pozycja 1: Long na 100 call, $\Delta = 0.6 \Rightarrow 100 \cdot 0.6 = 60$

Pozycja 2: Short na 50 put, $\Delta = -0.4 \Rightarrow -50 \cdot (-0.4) = 20$

Pozycja 3: Long na 200 call, $\Delta = 0.3 \Rightarrow 200 \cdot 0.3 = 60$

$$\Delta_{\mathrm{portfela}} = 60 + 20 + 60 = \boxed{140}$$

Interpretacja: Portfel zachowuje sie jak long 140 akcji instrumentu bazowego.

1. Opcje są asymetryczne

Kupujący ma prawo, ale nie obowiązek wykonania kontraktu w przeciwieństwie do kontraktów forward. Maksymalna strata może równać się równać premii (opcje long), w forwardzie możliwe nieograniczone starty dla obu stron. Z drugiej strony na początku pojawiają się koszty w przeciwieństwie do kontraktów Forward.

2. Możliwość strategii opcyjnych

Opcje pozwalają na budowanie wykresów wypłat, które często są niemożliwe do osiągnięcia normalnie np:

3. Płynność

Opcje na duże instrumenty (np. indeksy giełdowe) są bardziej płynne niż kontrakty OTC. Łatwiej będzie nam sprzedać opcje niż kontrakt forward (niesutandaryzowany).

Największa płynność opcji jest zazwyczaj w okolicach strike price (ceny wykupu opcji).

4. Opcje trudno wycenić.

W modelach zazwyczaj wymagana jest od nas wiedza na temat oczekiwanej zmienności rynkowej - trzeba iść na rynek i sprawdzić jak to wygląda dla opcji podobnych do naszych.

Potem przez różne założenia modelowe trudno jest znaleźć jeden wzór poprawnie wyceniający ich wartość.

Najpopularniejsze sposoby to: Model BS, Dwumianowy (najprostszy), Monte Carlo, Put-Call Parity

(Bardziej skomplikowane opcje np. azjatyckie mogą być trudniejsze do wyceny, a przez to mniej płynne)

5. Kontrakty opcyjnie zawierają więcej niż jedną opcje Przez to zyski/straty/koszty rosną X razy.

6. Czas

Na wartość opcji w dużej mierze składa się czas i może stanowić 100% wartości jeśli opcja jest OTM.

7. Wypisywanie opcji

Wypisanie opcji (writing) inaczej sprzedaż opcji (short) wymaga depozytu zabezpiaczającego, co np w przypadku polskiej giełdy obliczane jest za pomocą modelu SPAN (zależy od zmienności i wielkości pozycji)

To blokuje wasze środki na pewien okres (częsciowo pokrywane są z premii)

W tym modelu przyjmowane są pewne założenia dotyczące waszej pozycji i generowane jest 16 scenariuszy dla którego wyznacza się największą stratę i mniej więcej ona odpowiada depozytowi, który musicie uiścić.

więcej tutaj: https://bossa.pl/edukacja/kontrakty-opcje/opcje/depozyty

Na giełdach zagranicznych są inne modele np VaR (PRISMA) - historyczny czy TIMS (na podstawie grek - współczynników greckich).

CFD (Kontrakty na różnice)

Zgodnie z regulacjami ESMA, dostawcy kontraktów CFD muszą publikować te ostrzeżenia w widoczny sposób, aby inwestorzy byli świadomi potencjalnych strat

Kontrakty CFD są złożonymi instrumentami i wiążą się z dużym ryzykiem szybkiej utraty środków pieniężnych z powodu dźwigni finansowej.

Od 74% do 89% rachunków inwestorów detalicznych odnotowuje straty pieniężne w wyniku handlu kontraktami CFD.

Zastanów się, czy rozumiesz, jak działają kontrakty CFD, i czy możesz pozwolić sobie na wysokie ryzyko utraty twoich pieniędzy.

https://www.esma.europa.eu/sites/default/files/library/esma35-43-1912_cfd_renewal_3_-_notice_pl_0.pdf

CFD Praktycznie

Oznacza ile jest wart wasz kontrakt

Kwota, którą zablokuje wasz broker na potrzebe depozytu

Najpierw pieniądze Kiedy ono się zrówna z będą pokrywane z depozytem to potem waszego salda będą pobierane z (Wartość Konta) depozytu)

Poziom depozytu to WK/Depozyt

Wartość konta	Depozyt zabezpieczający	Wolne środki	Poziom depozytu
10 063.68	1101.13	8962.55	913.94%
Wartość konta	Depozyt zabezpieczający	Wolne środki	Poziom depozytu
10 069.70	1101.13	8964.43	914.49%

Jeśli poziom waszego depozytu spadnie do pewnego poziomu najczęsciej 80% dostaniecie MARGIN CALL, kiedy spadnie do 50% MARGIN STOP i pozycja automatycznie zostanie zamknięta ze stratą

DZWIGNIA

Dzwignia finansowa to inaczej otwarcie pozycji wielokrotnie większej niż depozyt służący do jej zabezpieczenia

Podaje się ją w stosunku np: 1:20 gdzie 20 mówi mi to, że mogę zająć 20-krotnie większą pozycje niż mój kapitał. Np. Jeśli kapitału mam 1000zł to otworzyć mogę wartość kontraktu na 20 000 zł.

Dzwignia ma jednak swoje konsekwencje: 1% zmiany instrumentu bazowego to (przy dzwigni 1:20) 20% zmiany ceny kontraktu cfd

Przykład dla dzwigni 1:20:

Wartość kontraktu	Depozyt	Zmiana ceny kontraktu	Zmiana na pozycji
10,000	500	1% (100 zl)	20% (100 zł)

DZWIGNIA

W praktyce nie zawsze widzimy jaka jest dzwignia (lewar) i czasami sami musimy ją obliczyć, żeby zrozumieć ryzyko.

Musimy podzielić wartość kontraktu przez depozyt zabezpieczający. W tym przypadku 20 Wówczas dzwignia 1:20

KOSZTY TRANSAKCYJNE

- Spread różnica między ceną kupna i sprzedaży, ustalana przez brokera (wyższe niż na akcje)
- Prowizja rzadziej występuje. Liczona od całej wartości kontraktu
- Swap dzienna opłata za utrzymanie pozycji (może być bardzo kosztowna przy dłuższym trzymaniu).

Spread 0.33 % wartości kontraktu (po przemnożeniu przez PLN) i 1.64% depozytu

Swap: dzienny dla long to 0.1% depozytu rocznie to nawet 44%! - Liczone w weekend także.

CFD użyteczność w hedgowaniu

Kiedy ma sens?

1. W przypadku wejścia w krótki okres niepewności

Kiedy zależy ci na posiadaniu akcji ze względu na np. podatki (bo nie chcesz sprzedawać akcji) lub chcesz utrzymać dywidendę i jednocześnie wiesz, że wchodzisz w okres stresowy możesz małym kosztem zablokować spadki. Tylko ma sens w przypadku kilkudniowych okresów.

Czyli np: Masz pozycje długą w akcjach + Okres niepewności + CDF na short (gdzie wartość kontraktu równoważy wartość pozycji)

2. Hedging na pewne czynniki ryzyka

CFD ze względu na to jak dużo aktywów obejmuje może być dopasowywane w taki sposób aby eliminować z portfela pewne czynniki ryzyka w relatywnie krótkim okresie czasu.

Np. chcemy wyelminować ryzyko systematyczne dla naszej akcji, więc shortujemy benchmark

Albo mamy portfel w euro i niedługo otrzymujemy dywidende, którą zamierzamy przewalutować jednak chcemy zabezpieczyć się przed niekorzystnymi ruchami cenowymi to możemy shortować euro.

Mamy spółkę paliwową i chcemy wyelminować ryzyko zmiany ceny ropy więc zajmujemy pozycje przeciwną.

PODSUMOWANIE