Zadaci: Zaštita od elektromagnetskih smetnji

- Z1. Nacrtati i proračunati sklop za zaštitu od prenapona s VD(R) otpornikom karakteristike $U=500\cdot I^{0.032}$ [V]. Napon na mrežnim priključnicama uređaja može se opisati jednadžbom $U=1800\cdot\sin\left(\pi\cdot l0^6\cdot t\right)\exp\left(-10^5\cdot t\right)$ [V]. Zavojnica je induktiviteta $L=100\,\mu\mathrm{H}$, a energetska izdržljivost VDR otpornika iznosi $A=1000\,Ws/cm^3$.
 - a) Koliki se prenapon pojavi na uređaju?
 - b) Koliki najmanje mora biti volumen VD(R) otpornika da bi mogao apsorbirati potrebnu energiju?
- a) [Rj: Up = 521.8V]
- b) [Rj: $V_{min} = 29.68 \cdot 10^{-3} \text{ mm}^3$]

$$U = 500 \cdot I^{0.032} [V]$$

$$u(t) = 1800 \cdot \sin(10^6 \pi t) \exp(-10^5 t) [V]$$

a)
$$U_{pren} = ?$$

$$b) \, V_{\min} = ?$$

Zavojnica služi za ograničavanje struje na VF (velika impendancije na VF).

$$u_1(t) = U_M e^{-t/\tau} \sin(2\pi f \cdot t)$$

$$U_{\scriptscriptstyle M} = 1800 \, V$$

$$\tau = 10^{-5} s$$

$$f = 500kHz$$

$$X_L = 2\pi f L = 2\pi \cdot 500k \cdot 10\mu = 314.16 \Omega$$

$$u_{M}^{*} = ?$$

$$\frac{du}{dt} = U_M \left[-\frac{1}{\tau} e^{-t/\tau} \sin \omega t + e^{-t/\tau} \omega \cos \omega t \right] = 0 \qquad (\mathbf{u} \, \mathbf{t}_M)$$

$$tg(\omega \cdot t_M) = \omega \tau$$

$$t_M = \frac{1}{\omega} arctg(\omega \tau)$$

$$t_M = 489.9 ns$$

 $u_M^* = 1713.1 \text{ V}$

Veličinu prenapona dobije se iz U-I karakteristike VDRa (najgori slučaj):

* na početku poteče velika struja i kada ne bi bilo zavojnice bilo bi $I_{M0}=\infty$ (zbog U-I karakteristike na ${U_{M}}^{*}$)!

$$I_{M0} = \frac{u_M^*}{X_L} = 5.453 \text{ A}$$

$$U_{P0} = 500 \cdot I_{M0}^{0.032} = 527.889 \text{ V}$$

$$I_{M1} = \frac{u_M^* - U_{P0}}{X_L} = 3.773 \text{ A}$$

$$U_{P1} = 500 \cdot I_{M1}^{0.032} = 521.702 \text{ V}$$

$$I_{M2} = 3.792 \text{ A}$$

$$U_{P2} = 521.789 \text{ V}$$

$$U_{P3} = 521.788 \text{ V}$$

<u>Dakle u $t = 0^+$ </u> poteče struja i prenapon:

$$I_M = 3.8 \text{ A}$$

 $U_P = 521.8 \text{ V}$

- Z2. Tranzistorskom (bipolarnom) sklopkom uključuje se i isključuje namot releja otpora $R=300\Omega\,i$ induktiviteta L=10mH na napon napajanja $U_{CC}=24V$. Tranzistor nazivnog napona 80V ($U_{CES}=0.5V$) zaštićen je od prenapona diodom ($U_D=0.8V$, $r_d << R$).
 - a. Koliki je najveći iznos otpora koji se smije spojiti serijski s diodom?
 - b. Koliko se skrati vrijeme isključivanja releja ako mu je struja otpuštanja 25% nazivne.

Z1. [Rj:
$$R_{MAX}$$
= 704.7 Ω]
Z2. [Rj: Δt_x = 29,91 μ s]

$$R = 300 \,\Omega$$

$$L = 10 \, mH$$

$$U_{CC} = 24 \, V$$

$$U_{CES} = 0.5 \, V, \, U_{CEN} = 80 \, V$$

$$U_D = 0.8 \, V, \quad r_D << R$$

$$a) \, R_{S \, max} = ?$$

$$b) \, t_{OFF} = ? \qquad \text{(ako je } I_{OFF} = 0.25 \cdot I_N \text{)}$$

$$I_N = \frac{U_{CC} - U_{CES}}{R} = i_L \, (0) = 78.3 \, mA$$

$$Cras :::$$

$$\frac{C_{ras}U_{CE\,\text{max}}^2}{2} = \frac{L \cdot i_L^2(0)}{2}$$

$$U_{CE\,\text{max}} = \sqrt{\frac{L \cdot i_L^2(0)}{C_{ras}}} \stackrel{\gg}{\ll}$$
(U.s., do par 100V ili 1000V)

 $(U_{CE\,{\rm max}}$ do par 100V ili 1000V) Što je Cras manji to gore, a uvijek ga ima!

Kada se pojavi neki $\varphi_C > U_{CC} + U_D$ dioda provede i drži C na potencijalu φ_C a L se prazni preko D.

$$i_L(t) = i_L(0)e^{-t/\tau} - \frac{U_D}{R}(1 - e^{-t/\tau})$$

$$\tau = \frac{L}{R} = 33.3 \mu s$$

$$U_{CE \max} = U_{CC} + U_D = 29.8 \text{ V} \qquad (<80 \text{ V})$$

Vrijeme isključenja:

$$i_L(t_x) = 0.25 I_N = I_N e^{-t_x/\tau} - \frac{U_D}{R} (1 - e^{-t_x/\tau})$$

...

$$t_x = \tau \ln \frac{U_D + I_N R}{U_D + 0.25 I_N R} = 43.61 \mu s$$

0,25/N to productions)

Vrijeme otpuštanja (isključenja) - relej

Mi želimo da se sklop što brže isključuje. To se može postići tako da se poveća prigušenje sustava: smanjenjem $\tau = L/R$ tako da se R poveća, tj. da $R' = R + R_S$, gdje je R_S spojen u seriju sa diodom.

problem: na Rs dobiti napon koji pribraja Upren!

$$\begin{split} &U_{CE\,\text{max}} = U_{CC} + U_D + I_N R_S < U_{CEN} \\ &R_x < \frac{U_{CEN} - U_{CC} - U_D}{I_N} = 704.7 \ \Omega \\ &\tau_2 = \frac{L}{R + R_S} = 9.95 \, \mu s \ \ \text{(prije je bilo } 33.3 \, \mu s\text{)} \\ &t_{x2} = \tau_2 \ln \frac{U_D + I_N \left(R + R_X\right)}{U_D + 0.25 I_N \left(R + R_X\right)} = 13.5 \, \mu s \end{split}$$

Loš način skraćenja vremena isključenja (ovisi o struji I_N). Bolji način isključenja: Zener dioda.

Za AC krugove: R, C, RC, VDR ali i 2xZD

Z3. Kontaktima releja je priključeno induktivno trošilo otpora R_L =100 Ω i induktiviteta , na napon napajanja U = 100V. Najveća dopuštena struja kontakata releja je I_{KN} = 5A. Proračunajte i nacrtajte RCD sklop za zaštitu kontakata.

[Rj:
$$R_{min} = 20\Omega$$
, $C_{min} = 15 \mu F$]

$$R_L = 100\Omega$$

$$L = 1H$$

$$U = 100V$$

$$I_{KN} = 5A$$

RCD sklop

C = smanjuje du/dt prilikom otvaranja kontakta

R = prilikom otvaranja sklopke –

= prilikom zatvaranja sklopke $\frac{U_C}{0}$ = ∞ jer se C prazni preko sklopke, a R ograničava struju

Problem kod mehaničkih sklopki je lučni izboj – trošenje materijala sklopke, a nastaje zbog visokog gradijenta polja $\frac{du}{dx} > 500 \, kV / cm$.

Kada bi bilo ovako, $\frac{du_k}{dt}$ bi bio ∞ u trenutku isključenja $t = t_{isklj}$.

Ako pak kontakte gledamo kao C_{ras} preko RC_{ras} je ipak $\frac{du_k}{dt} < \infty$.

(1) ZAŠTITA OD LUČNOG IZBOJA

$$\frac{du}{dt} < 1V / \mu s = F$$
 (zaštita od lučnog izboja)
$$\frac{du}{dt} < \frac{I_0}{C}$$

$$C > \frac{I_0}{F} = \frac{U}{R,F} = 1\mu F < C_1$$

(2) ZAŠTITA OD TINJAVOG IZVOJA

$$U < 300V$$

$$\frac{LI_0^2}{2} = \frac{CU_M^2}{2}$$

$$C > L\frac{I_0^2}{U_T^2} = 11.1\mu F < C_2$$

(3)
$$I_{KM} < I_{KN}$$

$$I_{KM} = \frac{U}{R}$$

$$R > \frac{U}{I_{KN}} = \frac{100}{5} = 20\Omega$$

(4) Uvjet za aperiodičan odziv

$$C > 4\frac{L}{R_L^2} = 4\frac{1}{100^2} = 400\mu F < C_3$$

C > C1,C2 da nema lučnog i tinjavog izvoja C > C3 Biramo C > 11.1 uF

- Z3. Za prigušen je smetnji u radiofrekvencijskom području, nastalih izvan i unutar uređaja, spojena je zaštitna LC mreža (šesteropol) između mrežnih priključnica i primara izvora napajanja $(L_1 = L_2 = L_i = 27mH, L_3 = L_4 = L_d = 100 \mu H, C_{X1} = C_{X2} = C_X = 100 nF, C_{Y1} = C_{Y2} = C_Y = 2.2nF$ uobičajene vrijednosti za srednje snage od par desetaka do par stotina W).
 - a) Koliko je potiskivanje istofaznih i diferencija1nih smetnji nastalih izvan uređaja, pri prolazu kroz zaštitnu mrežu,
 - b) a koliko istofaznih nastalih unutar uređaja u protivnom smjeru? Pretpostaviti potpunu simetriju.

a) [Rj:
$$\left| \frac{U_{1d}}{U_{2d}} \right| = 17.8 = 25dB$$
 $\left| \frac{U_{1i}}{U_{2i}} \right| = 52.8 = 34dB$]

b) [Rj:
$$\left| \frac{U_{2i}}{U_{1i}} \right| = 22371.4 = 87dB$$
]