Algoritmos em Grafos: Introdução

R. Rossetti, A. P. Rocha, L. Ferreira, J. P. Fernandes, F. Ramos, G. Leão CAL, MIEIC, FEUP

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUF

Índice

- Revisão de conceitos e definições
- Exemplos de aplicação
- ◆ Representação

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

2

3

Revisão de conceitos e definições

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUF

4

Conceito de grafo

- ◆ Grafo G = (V, E)
 - ➤ V conjunto de vértices (ou nós)
 - ➤ E conjunto de arestas (ou arcos)
 - \succ cada aresta é um par de vértices (v, w), c/ v, w \in V
 - > se o par for ordenado, o grafo é dirigido, ou digrafo
 - > um vértice w é adjacente a um vértice v se e só se (v, w) ∈ E
 - num grafo não dirigido com aresta (v, w) e, logo, (w, v), w é adjacente a v e v adjacente a w

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUF

Grafos dirigidos e não dirigidos

3 4 5

G1= (Cruzamentos, Ruas)

G2 = (Cidades, Estradas)

V1 = {1,2,3,4,5,6,7} E1={(1,2), (1,3), (1,4), (2,4), (2,5),(3,6), (4,3), (4,7), (5,4), (5,7), (7,6)}

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

Caminhos

- ◆ Caminho sequência de vértices $v_1, ..., v_n$ tais que $(v_i, v_{i+1}) \in E$, 1≤i<n
- comprimento do caminho é o número de arestas, n-1
- ◆ se n = 1, caminho reduz-se a 1 vértice, comprimento 0
- caminho simples: todos os vértices distintos, excepto possivelmente o primeiro e o último

3 4 2 5 (1, 2, 4, 6)

(1, 2, 4, 6)

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

6

Ciclos

◆ Ciclo (ou circuito): caminho de comprimento ≥ 1 com $v_1 = v_n$

- Num grafo n\u00e3o dirigido, requer-se que as arestas sejam diferentes
- lacktriangle Anel: caminho v, v \Rightarrow (v, v) \in E , comprimento 1; raro

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUF

Grafo acíclico dirigido (DAG - Directed acyclic graph)

 Grafo dirigido sem ciclos. Para qualquer vértice v, não há nenhuma ligação dirigida começando e acabando em v.

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

8

Grafo simples

 Grafo sem arestas paralelas (várias adjacências, para o mesmo par de vértices), nem anéis:

grafos simples

grafo complexo

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUF

Grafo pesado

- As arestas são etiquetadas com um peso
 - > Dependendo do tipo de grafo e problema, o peso pode representar uma distância, custo, etc.

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

0

Grafo bipartido

 Conjunto de vértices é partido em dois subconjuntos disjuntos V₁ e V₂

Arestas ligam vértices de diferentes partições

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEU

Conectividade (1/2)

 Grafo não dirigido é conexo sse houver um caminho a ligar qualquer par de vértices

Conexo

Não conexo

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

Conectividade (2/2)

 Digrafo com a mesma propriedade: fortemente conexo, se p/ todo v, w ∈ V existir em G um caminho de v para w, assim como de w para v

 Digrafo fracamente conexo: se o grafo n\u00e3o dirigido subjacente \u00e9 conexo

Fortemente conexo

Fracamente conexo

Não conexo

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

Densidade

- Grafo denso − |E| ~ Θ(V²)
 - Grafo completo existe uma aresta entre qualquer par de vértices

Grafo completo com 7 vértices (K₇)

♦ Grafo esparso $- |E| \sim \Theta(V)$

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

. .

15

Exemplos de aplicação

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUI

Exemplos de aplicação: caminho mais curto

Qual o caminho mais curto / mais rápido / mais barato entre 2 pontos? Abstraído como problema em grafos, resolúvel em tempo linear

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

Grafos: Introdução

./rr

Exemplos de aplicação: problema do caixeiro viajante

Qual o melhor circuito para passar nos pontos de interesse? Abstraído como problema em grafos, em geral não resolúvel em tempo linear.

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUF

Exemplos de aplicação

> Redes de transportes

- Caminho mais curto (navegação GPS)
- > Controlo e gestão de tráfego
- > Redes de abastecimento de água e saneamento
 - Gestão de carga
- Redes elétricas
 - Gestão da rede
- Redes de computadores
 - > Encaminhamento (routing)

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

18

Exemplos de aplicação

- Redes de atividades ou tarefas
 - > Problemas de escalonamento
 - > Problemas de gestão de projectos
- Redes Bayesianas e probabilísticas (Processo de Manchester)
- > Compiladores, sistemas de ficheiros
- Jogos
- > Criptografia

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUF

20

Representação

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

Grafos: Introdução

./rr

Matriz de adjacências

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	1 0 0 1 0	0	0	0	1

- Matriz A de adjacências
- $a_{ij} = 1$, se $(i, j) \in E$ (0, no caso contrário)
- elementos da matriz podem ser os pesos
- apropriada para grafos densos
 - > 3000 cruzamentos x 12 000 troços de ruas (4 por cruzamento) = 9 000 000 de elementos na matriz!

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

Lista de adjacências

- para cada vértice, mantém-se a lista dos vértices adjacentes
- vetor de cabeças de lista, indexado pelos vértices
- ◆ espaço é O(|E| + |V|)
- pesquisa de adjacentes em tempo proporcional ao número destes
- estrutura típica para grafos esparsos

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

2

Representação de grafos não dirigidos

- Implicação para as matrizes de adjacência
 - Matriz simétrica
- Implicação para as listas de adjacência
 - Lista com dobro do espaço

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

Codificação

Normalmente precisamos de guardar informação adicional em cada vértice e em cada aresta (nome, peso, etc.), pelo que se opta por uma representação mais complexa, como por exemplo (Java):

```
class Graph {
   ArrayList<Vertex> vertexSet;
class Vertex {
   String name;
   LinkedList<Edge> adj; //arestas a sair do vértice
class Edge {
   Vertex dest;
   double weight;
}
```

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUP

Grafos: Introdução ./rr

Referências e mais informação

- ◆ T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009
 ➤ Capítulo 22
- ◆ "Data Structures and Algorithm Analysis in Java", Second Edition, Mark Allen Weiss, Addison Wesley, 2006

Algoritmos em Grafos: Introdução • CAL - MIEIC/FEUF

Grafos: Introdução

./rr