# Predictive Distributions & Properties of MLES Merlise Clyde

STA721 Linear Models

**Duke University** 

September 15, 2016

### Outline

### Topics

- Predictive Distributions
- OLS/MLES Unbiased Estimation
- Gauss-Markov Theorem

Readings: Christensen Chapter 2, Chapter 6.3, ( Appendix A, and Appendix B as needed)

### Prediction

- Predict  $Y_*$  at  $\mathbf{x}_*^T$  (could be new point or existing point)  $\mathbf{Y}_* = \mathbf{x}_*^T \boldsymbol{\beta} + \epsilon_*$
- $E[Y_* \mid \mathbf{x}_*] = \mathbf{x}_*^T \boldsymbol{\beta} = \mu_*$  minimizes squared error loss for predicting  $Y_*$  at  $\mathbf{X}_*^T$

$$E[Y_* - f(\mathbf{x}_*)]^2 = E[Y_* - \mu_* + \mu_* - f(x_*)]^2$$

$$= E[Y_* - \mu_*]^2 + E[\mu_* - f(x_*)]^2 +$$

$$2E[(Y_* - \mu_*)(\mu_* - f(x_*))]$$

$$\geq E[Y_* - \mu_*]^2$$

Crossproduct term is 0:

$$E[E[(Y_* - \mu_X)(\mu_* - f(X_*)) \mid \mathbf{x}_*]] = E[0 \cdot (\mu_* - f(X_*))]$$

- equality if  $f(x) = E[Y_* \mid \mathbf{x}_*]$ , the "best" predictor of  $Y_*$
- MLE of  $\mu_*$  is  $\mathbf{x}_*^T \hat{\boldsymbol{\beta}} = \hat{Y}_*$  (is this unique?)
- OLS Best Linear predictor of Y<sub>\*</sub>
- Under joint Normality of Y, X Best Predictor

# Predictive Distribution

Look at

$$Y_* - \hat{Y}_* = \mathbf{x}^* {}^T \boldsymbol{\beta} - \mathbf{x}_*^T \hat{\boldsymbol{\beta}} + \epsilon_*$$

$$\operatorname{var}(Y - \hat{Y}) = \operatorname{var}(\mathbf{x}_*^T \boldsymbol{\beta} - \mathbf{x}_*^T \hat{\boldsymbol{\beta}}) + \operatorname{var}(\epsilon_*)$$

Two Sources of variation:

- Variation of estimator around true regression
- Variation of error around true regression

# Distribution

Distribution of

$$\frac{Y_* - \mathbf{x}_*^T \hat{\boldsymbol{\beta}}}{\sqrt{\mathsf{MSE}(1 + \mathbf{x}_*(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_*^T)}} \sim t(n - p - 1, 0, 1)$$

 $(1-\alpha)100$  % Prediction Interval

$$\mathbf{x}_*^T \hat{\boldsymbol{\beta}} \pm t_{lpha/2} \sqrt{\mathsf{MSE}(1 + \mathbf{x}_* (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_*^T)}$$

# Models & MLEs

- $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$  with  $\boldsymbol{\mu} \in C(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Maximum Likelihood Estimator (MLE) of  $\mu$  is  ${\sf P_XY}$
- $P_X$  is the orthogonal projection operator on the column space of X; e.g. X full rank  $P_X = X(X^TX)^{-1}X^T$
- ullet If  $old X^T old X$  is not invertible use a generalized inverse

A generalize inverse of A:  $A^-$  satisfies  $AA^-A = A$ 

### Lemma (B.43)

If **G** and **H** are generalized inverses of  $(\mathbf{X}^T\mathbf{X})$  then

 $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^-\mathbf{X}^T$  is the orthogonal projection operator onto  $C(\mathbf{X})$  (does not depend on choice of generalized inverse!) [See proof in Theorem B.44]

### Generalize Inverses

A generalize inverse of A:  $A^-$  satisfies  $AA^-A = A$ Special Case: Moore-Penrose Generalized Inverse

- Decompose symmetric  $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$
- $\bullet \ \mathbf{A}_{MP}^{-} = \mathbf{U} \mathbf{\Lambda}^{-} \mathbf{U}^{T}$
- $\bullet$   $\Lambda^-$  is diagonal with

$$\lambda_i^- = \left\{ \begin{array}{l} 1/\lambda_i \text{ if } \lambda_i \neq 0\\ 0 \text{ if } \lambda_i = 0 \end{array} \right.$$

- Symmetric  $\mathbf{A}_{MP}^- = (\mathbf{A}_{MP}^-)^T$
- Reflexive  $\mathbf{A}_{MP}^{-}\mathbf{A}\mathbf{A}_{MP}^{-}=\mathbf{A}_{MP}^{-}$

If  ${\bf P}$  is an orthogonal projection matrix, the generalized inverse of  ${\bf P}$ ,  ${\bf P}^-={\bf P}$ 

# MLE of $\beta$

$$\begin{array}{rcl} \mathbf{P}_{\mathbf{X}}\mathbf{Y} & = & \mathbf{X}\hat{\boldsymbol{\beta}} \\ \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-}\mathbf{X}^{T}\mathbf{Y} & = & \mathbf{X}\hat{\boldsymbol{\beta}} \end{array}$$

- MLE of  $\beta$  iff  $P_XY = X\hat{\beta}$
- If  $\mathbf{X}^T\mathbf{X}$  is invertible, then

$$\hat{\boldsymbol{eta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

and is unique

But if X<sup>T</sup>X is not invertible,

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^- \mathbf{X}^T \mathbf{Y}$$

is one solution which depends on choice of generalized inverse What can we estimate uniquely?

# Identifiability

$$\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

- ullet Distribution of  ${f Y}$  determined by  ${m \mu}$  and  $\sigma^2$
- $\mu = X\beta = \mu(\beta)$

#### Identifiability

 $m{eta}$  and  $\sigma^2$  are identifiable if distribution of  $m{Y}$ ,  $m{f_Y}(m{y}; m{eta}_1, \sigma_1^2) = m{f_Y}(m{y}; m{eta}_2, \sigma_2^2)$  implies that  $(m{eta}_1, \sigma_1^2)^T = (m{eta}_2, \sigma_2^2)^T$ 

For linear models, equivalent definition is that  $\boldsymbol{\beta}$  is identifiable if for any  $\boldsymbol{\beta}_1$  and  $\boldsymbol{\beta}_2$   $\mu(\boldsymbol{\beta}_1) = \mu(\boldsymbol{\beta}_2)$  implies that  $\boldsymbol{\beta}_1 = \boldsymbol{\beta}_2$ . If  $r(\mathbf{X}) = p$  then  $\boldsymbol{\beta}$  is identifiable If  $\mathbf{X}$  is not full rank, there exists

 $m{eta}_1 
eq m{eta}_2$ , but  $\mathbf{X} m{eta}_1 = \mathbf{X} m{eta}_2$  and hence  $m{eta}$  is not identifiable

### Non-Identifiable

### Recall the One-way ANOVA model

$$\mu_{ij} = \mu + \tau_j$$
  $\mu = (\mu_{11}, \dots, \mu_{n_11}, \mu_{12}, \dots, \mu_{n_2,2}, \dots, \mu_{1J}, \dots, \mu_{n_JJ})^T$ 

- Let  $\beta_1 = (\mu, \tau_1, \dots, \tau_J)^T$
- Let  $\beta_2 = (\mu 42, \tau_1 + 42, \dots, \tau_J + 42)^T$
- ullet Then  $\mu_1=\mu_2$  even though  $eta_1
  eqeta_2$
- ullet eta is not identifiable
- ullet yet  $\mu$  is identifiable, where  $\mu = {f X} oldsymbol{eta}$  (a linear combination of  $oldsymbol{eta}$ )

# Identifiability and Estimability

#### $\mathsf{Theorem}$

A function  $g(\beta)$  is identifiable if and only if  $g(\beta)$  is a function of  $\mu(\beta)$ 

In linear models, historical focus on linear functions. Identifiable linear functions are called *estimable* functions

#### Definition

A vector valued function  $\mathbf{\Lambda}\boldsymbol{\beta}$  is *estimable* if  $\mathbf{\Lambda}\boldsymbol{\beta} = \mathbf{A}\mathbf{X}\boldsymbol{\beta}$  for some matrix  $\mathbf{A}$ 

Equivalently

#### Definition

A vector valued function  $\mathbf{\Lambda}\boldsymbol{\beta}$  is *estimable* if it has an unbiased linear estimator, i.e. there exists an  $\mathbf{A}$  such that  $\mathsf{E}(\mathbf{AY}) = \mathbf{\Lambda}\boldsymbol{\beta}$  for all  $\boldsymbol{\beta}$ 

# Estimability

Work with scalar functions  $\psi = \lambda^T \beta$ 

#### Theorem

The function  $\psi = \lambda^T \beta$  is estimable if and only if  $\lambda^T$  is a linear combination of the rows of  $\mathbf{X}$ . i.e. there exists  $\mathbf{a}^T$  such that  $\lambda^T = \mathbf{a}^T \mathbf{X}$ 

#### Proof.

The function  $\psi = \lambda^T \beta$  is estimable if there exists an  $\mathbf{a}^T$  such that  $\mathrm{E}[\mathbf{a}^T \mathbf{Y}] = \lambda^T \beta$ 

$$E[\mathbf{a}^T \mathbf{Y}] = \mathbf{a}^T E[\mathbf{Y}]$$
$$= \mathbf{a}^T \mathbf{X} \boldsymbol{\beta}$$
$$= \boldsymbol{\lambda}^T \boldsymbol{\beta}$$

if and only if  $\lambda^T = \mathbf{a}^T \mathbf{X}$  for all  $\boldsymbol{\beta}$ 

# Estimability of Individual $\beta_j$

#### Proposition

For

$$oldsymbol{\mu} = \mathbf{X}oldsymbol{eta} = \sum_j \mathbf{X}_jeta_j$$

 $eta_j$  is not identifiable if and only if there exists  $lpha_j$  such that  $\mathbf{X}_j = \sum_{i \neq j} \mathbf{X}_i lpha_i$ 

One-way Anova Model:

$$egin{aligned} oldsymbol{Y}_{ij} &= \mu + au_j + \epsilon_{ij} \ oldsymbol{\mu} &= \left[ egin{array}{ccccc} oldsymbol{1}_{n_1} & oldsymbol{1}_{n_1} & oldsymbol{0}_{n_1} & oldsymbol{0}_{n_1} & oldsymbol{0}_{n_1} & oldsymbol{0}_{n_2} \ \vdots & \vdots & \ddots & \vdots & \vdots \ oldsymbol{1}_{n_J} & oldsymbol{0}_{n_J} & oldsymbol{0}_{n_J} & \dots & oldsymbol{1}_{n_J} \end{array} 
ight] \left( egin{array}{c} \mu \\ au_1 \\ au_2 \\ \vdots \\ au_J \end{array} 
ight) \end{array}$$

Are any parameters  $\mu$  or  $\tau_i$  identifiable?

### Gauss-Markov Theorem

#### Theorem

Under the assumptions:

$$E[\mathbf{Y}] = \mu$$

$$Cov(\mathbf{Y}) = \sigma^2 \mathbf{I}_n$$

every estimable function  $\psi = \lambda^T \beta$  has a unique unbiased linear estimator  $\hat{\psi}$  which has minimum variance in the class of all unbiased linear estimators.  $\hat{\psi} = \lambda^T \hat{\beta}$  where  $\hat{\beta}$  is any set of ordinary least squares estimators.

# Unique Unbiased Estimator

#### Lemma

- If  $\psi = \lambda^T \beta$  is estimable, there exists a unique linear unbiased estimator of  $\psi = \mathbf{a}^{*T} \mathbf{Y}$  with  $\mathbf{a}^* \in C(\mathbf{X})$ .
- If  $\mathbf{a}^T \mathbf{Y}$  is any unbiased linear estimator of  $\psi$  then  $a^*$  is the projection of  $\mathbf{a}$  onto  $C(\mathbf{X})$ , i.e.  $\mathbf{a}^* = \mathbf{P}_{\mathbf{X}} \mathbf{a}$ .

# Unique Unbiased Estimator

#### Proof

- Since  $\psi$  is estimable, there exists an  $\mathbf{a} \in \mathbb{R}^n$  for which  $\mathsf{E}[\mathbf{a}^T\mathbf{Y}] = \boldsymbol{\lambda}^T\boldsymbol{\beta} = \psi$
- Let  $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$  where  $\mathbf{a}^* \in C(\mathbf{X})$  and  $\mathbf{u} \in C(\mathbf{X})^{\perp}$
- Then

$$\psi = E[\mathbf{a}^T \mathbf{Y}] = E[\mathbf{a}^{*T} \mathbf{Y}] + E[\mathbf{u}^T \mathbf{Y}]$$
  
=  $E[\mathbf{a}^{*T} \mathbf{Y}] + \mathbf{0}$ 

$$\mathsf{E}[\mathsf{u}^T\mathsf{Y}] = \mathsf{u}^T\mathsf{X}\beta$$

since 
$$\mathbf{u} \perp C(\mathbf{X})$$
 (i.e.  $\mathbf{u} \in C(\mathbf{X})^{\perp}$ )  $E[\mathbf{u}^T \mathbf{Y}] = 0$ 

• Thus  $\mathbf{a}^{*T}\mathbf{Y}$  is also an unbiased linear estimator of  $\psi$  with  $\mathbf{a}^* \in C(\mathbf{X})$ 

# Uniqueness

#### Proof.

Suppose that there is another  $\mathbf{v} \in C(\mathbf{X})$  such that  $E[\mathbf{v}^T\mathbf{Y}] = \psi$ . Then for all  $\boldsymbol{\beta}$ 

$$0 = E[\mathbf{a}^{*T}\mathbf{Y}] - E[\mathbf{v}^{T}\mathbf{Y}]$$
$$= (\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X}\boldsymbol{\beta}$$
So  $(\mathbf{a}^{*} - \mathbf{v})^{T}\mathbf{X} = 0$  for all  $\boldsymbol{\beta}$ 

- Implies  $(\mathbf{a}^* \mathbf{v}) \in C(\mathbf{X})^{\perp}$
- but by assumption  $(\mathbf{a}^* \mathbf{v}) \in C(\mathbf{X})$   $(C(\mathbf{X}))$  is a vector space
- the only vector in BOTH is  $\mathbf{0}$ , so  $\mathbf{a}^* = \mathbf{v}$

Therefore  $\mathbf{a}^{*T}\mathbf{Y}$  is the unique linear unbiased estimator of  $\psi$  with  $\mathbf{a}^* \in C(\mathbf{X})$ .



# **Proof of Minimium Variance**

- Let  $\mathbf{a}^{*T}\mathbf{Y}$  be the unique unbiased linear estimator of  $\psi$  with  $\mathbf{a}^* \in C(\mathbf{X})$ .
- Let  $\mathbf{a}^T \mathbf{Y}$  be any unbiased estimate of  $\psi$ ;  $\mathbf{a} = \mathbf{a}^* + \mathbf{u}$  with  $\mathbf{a}^* \in C(\mathbf{X})$  and  $\mathbf{u} \in C(\mathbf{X})^{\perp}$

$$Var(\mathbf{a}^{T}\mathbf{Y}) = \mathbf{a}^{T}Cov(\mathbf{Y})\mathbf{a}$$

$$= \sigma^{2}\|\mathbf{a}\|^{2}$$

$$= \sigma^{2}(\|\mathbf{a}^{*}\|^{2} + \|\mathbf{u}\|^{2} + 2\mathbf{a}^{*T}\mathbf{u})$$

$$= \sigma^{2}(\|\mathbf{a}^{*}\|^{2} + \|\mathbf{u}\|^{2}) + 0$$

$$= Var(\mathbf{a}^{*T}\mathbf{Y}) + \sigma^{2}\|\mathbf{u}\|^{2}$$

$$\geq Var(\mathbf{a}^{*T}\mathbf{Y})$$

with equality if and only if  $\mathbf{a} = \mathbf{a}^*$ 

Hence  $\mathbf{a}^{*T}\mathbf{Y}$  is the unique linear unbiased estimator of  $\psi$  with minimum variance "BLUE" = Best Linear Unbiased Estimator

# Continued

#### Proof.

Show that 
$$\hat{\psi} = \mathbf{a}^{*T}\mathbf{Y} = \boldsymbol{\lambda}^{T}\hat{\boldsymbol{\beta}}$$
  
Since  $\mathbf{a}^{*} \in C(\mathbf{X})$  we have  $\mathbf{a}^{*} = \mathbf{P}_{\mathbf{X}}\mathbf{a}^{*}$ 

$$\mathbf{a}^{*T}\mathbf{Y} = \mathbf{a}^{*T}\mathbf{P}_{X}^{T}\mathbf{Y}$$

$$= \mathbf{a}^{*T}\mathbf{P}_{X}\mathbf{Y}$$

$$= \mathbf{a}^{*T}\mathbf{X}\hat{\boldsymbol{\beta}}$$

for 
$$\lambda^T = \mathbf{a}^{*T} \mathbf{X}$$



 $= \lambda^T \hat{\beta}$ 

# **MVUE**

- Gauss-Markov Theorem says that OLS has minimum variance in the class of all Linear Unbiased estimators
- Requires just first and second moments
- Additional assumption of normality, OLS = MLEs have minimum variance out of ALL unbiased estimators; not just linear estimators (requires Completeness and Rao-Blackwell Theorem - next semester)
- Mean Squared Error for estimator  $g(\mathbf{Y})$  of  $\boldsymbol{\lambda}^T \boldsymbol{\beta}$  is

$$\mathsf{E}[g(\mathbf{Y}) - \boldsymbol{\lambda}^T \boldsymbol{\beta}]^2 = \mathsf{Var}(g(\mathbf{Y})) + \mathsf{Bias}^2(g(\mathbf{Y}))$$

where 
$$\mathsf{Bias} = \mathsf{E}[g(\mathbf{Y})] - \boldsymbol{\lambda}^T \boldsymbol{\beta}$$

- Bias vs Variance tradeoff
- Can have smaller MSE if we allow some Bias!