

Procesadores de lenguajes

Ingeniería Informática Primero curso de Segundo ciclo Segundo cuatrimestre

Escuela Politécnica Superior de Córdoba Universidad de Córdoba

Curso académico: 2012 - 2013

TRABAJO DE PRÁCTICAS

1. Introducción

- Se debe utilizar ANTLR y Java para desarrollar dos actividades
 - a) Elaboración de un intérprete de pseudocódigo en español:
 - ipe.
 - b) Ampliación del intérprete "ipe" para que permita simular la ejecución de sentencias predefinidas de un entorno o juego
 - Por ejemplo: extensión del Mundo Wumpus
- Descripción de los apartados:
 - 2) Elaboración y entrega del trabajo
 - 3) Características del lenguaje de pseudocódigo
 - 4) Propuestas de entornos o juegos de simulación
 - 5) Control de errores
 - 6) Modos de ejecución del intérprete
 - 7) Documentación del trabajo
 - 8) Criterios de evaluación

2. Elaboración y entrega

- Modo de realización del trabajo
 - o El trabajo se podrá realizar de
 - forma individual
 - o en grupo compuesto por un máximo de tres personas
- Modo de entrega
 - Un fichero comprimido deberá ser "subido" a la tarea de la plataforma de "moodle"
 - Dicho fichero deberá contener los siguientes ficheros
 - Documentación del trabajo (véase el apartado nº 7)
 - Ficheros de ANTLR

- Ficheros de Java
- Fichero makefile
- Al menos dos ficheros de ejemplo con la extensión ".e"
 - Uno de los ejemplos deberá ser el fichero "ejemplo-1.e", proporcionado por el profesor

o Plazo de entrega

Hasta las 9:00 horas del viernes 7 de junio de 2013.

3. Características de lenguaje de pseudocódigo

a) Componentes léxicos o tokens

Palabras reservadas

- __mod, __o, __y, __no, leer, leer_cadena, escribir, escribir_cadena, si, entonces, si_no, fin_si, mientras, hacer, fin_mientras, repetir, hasta, para, desde, paso, fin_para, borrar, lugar
- No se distinguirá entre mayúsculas ni minúsculas.
- Las palabras reservadas no se podrán utilizar como identificadores.

Identificadores de variables

- Características
 - Estarán compuestos por una serie de letras, dígitos y el subrayado;
 - Deben comenzar por una letra,
 - No podrán acabar con el símbolo de subrayado, ni tener dos subrayados seguidos.
- Identificadores válidos:
 - dato, dato 1, dato 1 a
- Identificadores no válidos:
 - _dato, dato__, dato__1
- No se distinguirá entre mayúsculas ni minúsculas.

Número:

- Se utilizarán números enteros, reales de punto fijo y reales con notación científica.
- Todos ellos serán tratados conjuntamente como números.

Cadena:

 Estará compuesta por una serie de caracteres delimitados por comillas simples:

'Ejemplo de cadena'

 Deberá permitir la inclusión de la comilla simple utilizando la barra (\):

'Ejemplo de cadena con \' comillas\' simples'.

- Nota:
 - Las comillas exteriores no se almacenarán como parte de la cadena.
- Operadores aritméticos:
 - suma: -
 - Unario: +2
 - Binario: 2+3
 - resta: -
 - Unario: -2
 - Binario: 2-3
 - producto:
 - división:
 - módulo: __mod
 - potencia:
- Operador alfanumérico:
 - concatenación:
- o Operadores relacionales de números y cadenas:
 - menor que: <</p>
 - menor o igual que: <=</p>
 - mayor que: >
 - mayor o igual: >=
 - igual que: ==
 - distinto que: <>
 - Por ejemplo:
 - si A es una variable numérica y control una variable alfanumérica, se pueden generar las siguientes expresiones relacionales:

- Operadores lógicos:
 - disyunción lógica: __o
 - conjunción lógica: __y
 - negación lógica: __no
 - Por ejemplo:

- Comentarios
 - De varias líneas: delimitados por llaves

```
{ ejemplo maravilloso de comentario de tres líneas }
```

 De una línea: todo lo que siga al carácter # hasta el final de la línea.

ejemplo espectacular de cometario de una línea

Punto y coma

Se utilizará para indicar el fin de una sentencia.

b) Sentencias

Asignación

- identificador = expresión numérica
 - Declara a identificador como una variable numérica y le asigna el valor de la expresión numérica.
 - Las expresiones numéricas se formarán con números, variables numéricas y operadores numéricos.
 - Ejemplo: *Edad* = 12;
- identificador = expresión alfanumérica
 - Declara a identificador como una variable alfanumérica y le asigna el valor de la expresión alfanumérica.
 - Las expresiones alfanuméricas se formarán con cadenas, variables alfanuméricas y el operador alfanumérico de concatenación
 - Ejemplo nombre = 'Ana' + ' '+ 'Luna';

Lectura

- **Leer** (identificador)
 - Declara a *identificador* como variable numérica y le asigna el número leído.
- Leer cadena (identificador)
 - Declara a identificador como variable alfanumérica y le asigna la cadena leída (sin comillas).

Escritura

- Escribir (expresión numérica)
 - El valor de la expresión numérica es escrito en la pantalla.
- Escribir_cadena (expresión alfanumérica)
 - La cadena (sin comillas exteriores) es escrita en la pantalla.

• Se debe permitir la interpretación de comandos de saltos de línea (\n) y tabuladores (\t) que puedan aparecer en la expresión alfanumérica.

Sentencias de control¹

 Sentencia condicional simple si condición entonces sentencias

fin_si

 Sentencia condicional compuesta si condición entonces sentencias si_no sentencias

fin_si

Bucle "mientras"
 mientras condición hacer
 sentencias
 fin_mientras

Bucle "repetir" repetir sentencias hasta condición

Bucle² "para"
 para identificador
 desde expresión numérica 1
 hasta expresión numérica 2
 paso expresión numérica 3
 hacer
 sentencias

fin_para

Comandos especiales

- Borrar: borra la pantalla
- Lugar(expresión numérica1, expresión numérica2)
 - Coloca el cursor de la pantalla en las coordenadas indicadas por los valores de las expresiones numéricas.

4. Entornos o juegos de simulación

• Cada grupo deberá definir el conjunto de sentencias predefinidas que permitan simular un entorno o juego.

¹ Una condición será una expresión relacional o una expresión lógica compuesta.

² Se valorará que se controlen los pasos con incrementos positivos y negativos del bucle "para".

- A modo de ejemplo, se propone una **extensión del Mundo Wumpus** (véase el documento adjunto), que deberá incorporar las siguientes **novedades**
 - El aventurero tendrá un número inicial de "vidas". Por defecto, el valor inicial será 1.
 - o En el tablero habrá nuevos elementos
 - Mina
 - Si el aventurero accede a una celda con una mina, perderá una vida; si no le quedan vidas, morirá
 - Flecha
 - Si accede a una celda con una flecha, la recogerá.
 - Ambrosía
 - Habrá celdas que tengan ambrosía (elixir de la vida)
 - Si el aventurero accede a una de estas celdas, tomará la ambrosía e incrementará en uno su número de vidas
 - En una celda, solamente podrá haber un elemento: pozo, mina, flecha o tesoro.
 - El Wumpus podrá moverse
 - Si accede a una celda con una flecha, la romperá
 - Si accede a una celda con ambrosía, se la tomará
 - Es inmune a las minas.
 - Se le impedirá acceder a las celdas que contengan un pozo
 - No se dará cuenta de si el tesoro está en una celda
 - Etc.
 - Se deberán simular sentencias que permitan:
 - La configuración del tablero
 - Tamaño
 - Ubicación de los elementos
 - o Wumpus
 - Tesoro
 - o Pozos, minas
 - o Flechas, ambrosía
 - Entrada y salida
 - Número de flechas del aventurero
 - Número de vidas del aventurero
 - Las acciones del aventurero
 - Moverse
 - o Disparar la flecha, si tiene
 - o Recoger el tesoro, una flecha o ambrosía
 - Etc.
- También se pueden simular **otros entornos alternativos**, como, por ejemplo:
 - o Simulador de un juego de mesa
 - Aiedrez
 - Damas

- Go
- Reversi
- Hundir la flota
- Papel, piedra o tijera
 - En un tablero se colocan tres objetos: papel, piedra o tijera
 - Por turnos, se van colocados estos objetos de forma que
 - Si una piedra es delimitada por dos papeles (en diagonal, vertical u horizontal) entonces se convierte en papel (el papel "envuelve" a la piedra).
 - Si una papel es delimitada por dos tijeras (en diagonal, vertical u horizontal) entonces se convierte en tijera (la tijera "corta" al papel).
 - Si una tijera es delimitada por dos piedras (en diagonal, vertical u horizontal) entonces se convierte en piedra (la piedra "rompe" las tijeras).
 - Cuando el tablero está lleno, gana el objeto que tenga más elementos

o El "encuentro"

- En un tablero se colocan dos personajes, por ejemplo, un/a elfo/a y un hombre/mujer de las montañas.
- Cada personaje se mueve por el tablero en busca del otro personaje y, si lo encuentra, gana la partida.
- En el tablero hay minas, pozos, etc., que pueden provocar la muerte.
- Etc.

Canal de Panamá

- Simulador de navegación de barcos por un canal como el de Panamá, que tiene esclusas
- Un canal tiene dos puntos de entrada y salida
- Los barcos pueden entrar o salir por cada punto de entrada y salida
- El canal está dividido en esclusas, que se pueden abrir o cerrar.
- Si la esclusa "n" está abierta entonces las esclusas n-1 y n
 +1 deben estar cerradas. Se deben tener en cuenta las esclusas iniciales o finales.
- Etc.

o Cámaras de seguridad

- Simulador de un sistema de control con cámaras de un recinto dividido en zonas.
- Las cámaras se pueden encender, apagar y girar (arriba abajo, izquierda - derecha)
- Editor gráfico de figuras geométricas:
 - Polígonos, círculos, elipses, etc.
- Simulador de una carrera por etapas
 - Carrera ciclista

- Rally
- Gestor de contenidos
 - Consigna de documentos
 - Mensajería electrónica
- Gestor de una ruta de senderismo
 - Puntos de salida y llegada, etapas, senderistas, etc.

Importante

 Además, cada grupo podrá proponer y desarrollar la simulación de otro entorno o juego alternativo si cuenta con el visto bueno del profesor.

5. Control de errores

El intérprete deberá controlar toda clase de errores:

- Léxicos:
 - Identificador mal escrito
 - Utilización de símbolos no permitidos
 - o Etc.

• Sintácticos:

- o Sentencias de control más escritas.
- Sentencias con argumentos incompatibles.
- o Etc.
- Observación
- Se valorará la utilización de producciones de error.

Semánticos

Argumentos u operandos incompatibles

• De ejecución:

- o Sentencia "para" que pueda generar un bucle infinito.
- o Fichero de entrada inexistente o con una extensión incorrecta.
- o Etc.

Observación

- o Debe mostrarse toda la información que sea posible
 - Número de línea, error y causas posibles

6. Modos de ejecución del intérprete

El intérprete se podrá ejecutar de dos formas diferentes:

- Modo interactivo:
 - Se ejecutarán las instrucciones tecleadas desde un terminal de texto

```
ipe.exe
> ...
```

- Interpretando las sentencias de un fichero
 - El fichero deberá tener la extensión ".e" ipe.exe ejemplo.e

Observaciones

- El intérprete deberá funcionar correctamente en "ThinStation" de la Universidad de Córdoba
- o La gramática no deberá tener ningún conflicto.

7. Documentación del trabajo

- Portada
 - Título del trabajo desarrollado
 - o Nombre y apellidos de las personas que forman el grupo
 - o Nombre de la asignatura: Procesadores de lenguaje
 - o Nombre de la Titulación: Ingeniería informática
 - Curso: tercer curso
 - o Curso académico: 2012 2013
 - o Escuela Politécnica Superior de Córdoba
 - Universidad de Córdoba
 - o Fecha
- Índice
 - Las páginas deberán estar numeradas.
- Introducción
 - Breve descripción del trabajo realizado y de las partes del documento
- Lenguaje de pseudocódigo
 - Componentes léxicos
 - Sentencias
- Lenguaje del entorno o juego de simulación elegido
- Tabla de símbolos
 - Descripción
- Análisis léxico
 - Expresiones regulares utilizadas para definir los componentes léxicos
- Esquema de traducción
 - Símbolos terminales (componentes léxicos)
 - Símbolos no terminales
 - o Reglas de producción de la gramática
 - Atributos heredados o sintetizados
 - Acciones semánticas:
 - Se deberán describir las acciones semánticas de las producciones que generan las sentencias de control y especialmente las diseñadas para los bucles "repetir" y "para".
- Elementos auxiliares para la simulación del entorno elegido
- Modo de obtención del intérprete
 - o Nombre y descripción de cada fichero utilizado
 - Descripción del fichero makefile
- Modo de ejecución del intérprete:
 - Interactiva

- A partir de un fichero
- Ejemplos:
 - Se valorará la cantidad de ejemplos propuestos
 - o Al menos, se deberán proponer tres ejemplos
 - Fichero de ejemplo propuesto por el profesor para simular sentencias del lenguaje de pseudocódigo
 - Dos ficheros de ejemplo propuestos por el autor o autores
 - Uno de los ejemplo solamente tendrá sentencias del lenguaje de pseudocódigo.
 - El otro ejemplo tendrá además sentencias del entorno o juego de simulación elegido (por ejemplo: extensión del Mundo Wumpus).
 - Se valorará "fundamentalmente" la originalidad y complejidad de estos ejemplos.
- Conclusiones:
 - o Reflexión sobre el trabajo realizado
 - o Puntos fuertes y puntos débiles del intérprete desarrollado.
- Bibliografía o referencias web
- Anexos

8. Criterios de evaluación

- Informes de evaluación (10 %)
 - Cada semana, el profesor irá elaborando un "informe de evaluación" que servirá para conocer los progresos de cada grupo:
 - Partes desarrolladas
 - Documentación elaborada
 - Dificultades encontradas y soluciones adoptadas
 - Ftc
 - Este informe permitirá conocer, revisar y sugerir propuestas de mejora del trabajo.
 - Observación
 - La asistencia a las clases de práctica se tendrá en cuenta en los informes de evaluación.
- Documentación: 40 %
 - Se tendrá en cuenta lo indicado en el apartado nº 7
 - o El código elaborado deberá estar documentado con Javadoc.
 - Se valorará la inclusión de gráficos o figuras.
 - También se valorará la corrección ortográfica y la calidad en la redacción.
- Funcionamiento del intérprete (software): 50 %
 - o La gramática diseñada no deberá tener ningún conflicto.
 - El intérprete deberá funcionar correctamente en ThinStation tanto de forma interactiva como ejecutando la instrucciones de un fichero.

- Los ejemplos deberán funcionar correctamente.
- o Tipo de simulación del entorno o juego
 - La simulación podrá ser en modo texto
 - La simulación también podrá ser en modo gráfico (opcional)
 - En dos dimensiones (panel o frame: Flash, JAVA2D)
 - o bien en tres dimensiones (VRML/X3D, JAVA3D)

• Otros criterios de evaluación que podrán mejorar la calificación

- Utilización de árboles de sintaxis abstracta: AST
- Originalidad
- o Diseño del lenguaje y la gramática.
- Completitud del trabajo realizado.
- o Ampliación del lenguaje de pseudocódigo.
- Soluciones a dificultades encontradas durante la elaboración del trabajo que hayan sido convenientemente documentadas.
- o Aportaciones propias del grupo.
- Número y complejidad de los ejemplos propuestos

Observación

 Los/as alumnos/as podrán exponer el trabajo realizado al profesor tanto si ellos/as lo desean como si el profesor lo solicita.