Paul Gustafson

Texas A&M University - Math 608

Instructor: Grigoris Paouris

HW₁

1 Show that for every symmetric convex body $K \subset \mathbb{R}^n$, one can define a norm $\|\cdot\|$ whose unit ball is K.

Proof. Define

$$||x|| = \inf\{c : c > 0, x \in cK\}.$$

Since K contains some small ball B and -B, by convexity it must contain a small ball around 0. Thus, $0 \le ||x|| < \infty$ for all x.

We have ||0|| = 0 since $0 \in cK$ for all c. If $x \neq 0$, we have $||x|| \neq 0$ since K is bounded.

To see that the unit ball is K, let B denote the unit ball with respect to $\|\cdot\|$. Clearly $K\subset B$. Now suppose $x\in B\setminus K$. Note that $cK\subset K$ for $0\le c\le 1$ by convexity since $0\in K$. Hence, $\|x\|\ge 1$, so $\|x\|=1$ since $x\in B$. By the definition of $\|\cdot\|$, there exists a sequence $(c_n)\to 1$ with $x\in c_nK$. Then $c_n^{-1}x\to x$ with $c_n^{-1}x\in K$. But K is closed, so $x\in K$, a contradiction.

To see that $\|\cdot\|$ is homogeneous, first note that if $\lambda=0$, then $\|\lambda x\|=0=|\lambda|\|x\|$. If $\lambda\neq 0$, we have $\lambda x\in cK$ iff $|\lambda|x\in cK$ iff $x\in \frac{c}{|\lambda|}K$. Hence $\|\lambda x\|=\inf\{c:c>0,x\in \frac{c}{|\lambda|}K\}=\inf\{|\lambda|c:c>0,x\in cK\}=|\lambda|\|x\|$.

For the triangle inequality, it suffices to consider the case where ||x|| + ||y|| = 1 since the inequality is homogeneous. Then we have $x + y = ||x||(x/||x||) + ||y||(y/||y||) \in K$ since the RHS is a convex combination of elements of K. Thus $||x + y|| \le 1 = ||x|| + ||y||$.

- **2** Let X be a normed space and let $f: X \to \mathbb{R}$ be a nonzero linear functional. Show that the following are equivalent:
 - (i) f is not bounded
- (ii) For every $x \in X$ and for every r > 0, $f(B(x, r)) = \mathbb{R}$.
- (iii) $\ker(f)$ is a dense subspace of X.

Conclude the following: For every linear functional f either $\ker(f)$ is closed or $\ker(f)$ is dense.

- *Proof.* (i) \Longrightarrow (ii): Suppose f is not bounded. Then there exists a sequence $(x_n) \subset B_X$ with $|f(x_n)| \to \infty$. Let $u \in \mathbb{R}$. Pick n such that $|u f(x)|/|f(x_n)| < r$. Then $y := (\frac{u f(x)}{f(x_n)}x_n + x) \in B(x, r)$, and f(y) = u.
 - (ii) \implies (iii): 0 is in the preimage of every ball.
- (iii) \Longrightarrow (i): Suppose f were bounded with $|f(x)| \leq M||x||$ for all $x \in X$. Pick $x_0 \in X$ such that $f(x) \neq 0$. By multiplying x_0 by a scalar, WLOG

 $f(x_0) > M$. By (iii), pick $y \in B(x_0, 1)$ such that f(y) = 0. Then $f(x_0 - y) > M \ge M ||x_0 - y||$, a contradiction.

The conclusion follows from the fact that if f is continuous then $f^{-1}(\{0\})$ is closed.

- **3** Let X be a normed space. Show that the following are equivalent:
 - (i) Every linear functional f is bounded.
- (ii) Every subspace of X is closed.
- (iii) The unit ball of X, B_X is compact
- (iv) X has finite dimension
- *Proof.* (i) \Longrightarrow (ii): Suppose $Y \leq X$ is not closed. Pick $(x_n) \subset Y$ with $x_n \to x$ and $x \notin Y$. Let $V = \operatorname{span}(x)$. Then $X = V \oplus Z$ for some $Z \leq V$. Define a linear functional $\phi: X \to k$ by $\phi(\lambda x + z) = \lambda$ for $\lambda \in k$, $z \in Z$. Then for all n we have $\phi(x_n) = 0 \neq \phi(x)$, so ϕ is not continuous.
- (ii) \Longrightarrow (i): Suppose there exists an unbounded linear functional $f: X \to k$. Then $\ker(f)$ is dense by Exercise 2. Since $\ker(f) \neq X$, it follows that $\ker(f)$ is not closed, a contradiction.
- (i) \Longrightarrow (iii): Pick a basis $(e_i)_{i=1}^n$ for X. Define a norm $\|\cdot\|_2$ to be the l_2 norm with respect to this basis. Since X is finite-dimensional, $\|\cdot\|$ is equivalent to $\|\cdot\|_2$. In particular, $B_{X,\|\cdot\|}$ remains closed and bounded with respect to $\|\cdot\|_2$. Clearly $(X,\|\cdot\|_2)$ is isometrically isomorphic to k^n , so $B_{X,\|\cdot\|}$ is compact.
- (iii) \Longrightarrow (iv): Suppose X is infinite dimensional. By repeatedly applying Riesz's lemma, we can pick a sequence $x_n \subset S_X$ with $||x_n x_m|| > 1/2$ for all $n \neq m$ (the space $\operatorname{span}(x_1, \ldots, x_k)$ is closed by $(iv) \Longrightarrow (i) \Longrightarrow (ii)$). Thus, B_X is not totally bounded, hence not compact.
- (iv) \Longrightarrow (i): Let $\phi: X \to k$ be a linear functional, and $(e_i)_{i=1}^n$ be a basis for X. If $x = \sum_i a_i e_i$, then $\phi(x) \le \max_i |\phi(e_i)| \sum_i |a_i| \le C \max_i |\phi(e_i)| ||x||$, where the last inequality is from the equivalence of the l_1 norm to $||\cdot||$ since X is finite dimensional.
- **4** Let $(X, \|\cdot\|)$ be a normed space with $\dim(X) = \infty$. Show that
 - (i) There exists an unbounded injective linear operator from X onto X.
- (ii) There exists a norm $\|\cdot\|_1$ in X such that $\|\cdot\|_1$ is not equivalent to $\|\cdot\|$ but the spaces $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$ are isometric.
- *Proof.* (i) Let $(x_n)_{n=1}^{\infty}$ be a Hamel basis for X. Let $T: X \to X$ be the linear transformation such that $x_n \mapsto nx_n$ for all n. The kernel of T is trivial, and T is onto. Since $||Tx_n|| = n||x_n||$, T is unbounded.
- (ii) Let (x_n) and T be defined as in (i). Let $y_n = Tx_n$. Let $\|\cdot\|_1$ be the max norm with respect to the basis (x_n) . Let $\|\cdot\|_2$ be the max norm with respect to the basis (y_n) . These norms are not equivalent because $\|y_n\|_1 = n = n\|y_n\|_2$ for all n. However, T is a linear isometry between $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$. \square

- **5** Let X,Y be normed spaces and $T:X\to Y$ be a linear operator. Show that
 - (i) If for every sequence $(x_n) \subset X$ with $x_n \to 0$ the sequence $(Tx_n) \subset Y$ is bounded, then T is a bounded operator.
- (ii) If for every absolutely convergent series $\sum_n x_n$ we have $\sum_n Tx_n$ converges, then T is bounded.
- *Proof.* (i) Suppose T is not bounded. Then there exists a sequence $(x_n) \subset S_X$ with $||Tx_n|| \to \infty$. Then $y_n := x_n ||Tx_n||^{-1/2} \to 0$ but $||Ty_n|| = ||Tx_n||^{1/2} \to \infty$, a contradiction.
- (ii) Suppose T is not bounded. There exists a sequence $(x_n) \subset S_X$ with $||Tx_n|| \to \infty$. By passing to a subsequence, WLOG $Tx_n > n^2$ for all n. Let $y_n = x_n/||Tx_n||$. Then $||y_n|| \le 1/n^2$, so the series $\sum_n y_n$ converges absolutely. However, $||Ty_n|| = 1$ for all n, so the series $\sum_n Ty_n$ does not converge, a contradiction.