

## American International University- Bangladesh (AIUB) Faculty of Engineering (EEE)

| Course Name :           | Electronic Devices | <b>Course Code:</b> | EEE 2103   |  |
|-------------------------|--------------------|---------------------|------------|--|
| Semester:               | Spring 2023        | Sec: K              |            |  |
| POI                     | P.b.2.C4           | Assignment No:      | Non-OBE    |  |
| Student Name:           | Abir bokhtiar      | Student ID: 22-     | 22-47038-1 |  |
| <b>Submission Date:</b> | 25 April 2023      | Due Date: 26        | April 2023 |  |

#### **Assignment Problem**

Analyze the transfer characteristics curve of D-MOSFET and E-MOSFET (any one channel is ok) using the Shockley's equation and shorthand method. Consider the pinch-off voltage is [use appropriate sign here] [three digits before the last digit of your ID] mV and IDSS is [three digits before the last digit of your ID] mA.





2 Analyze the Q points ( $I_{DQ}$ ,  $V_{GSQ}$ ,) for different values of the  $R_s$  (220  $\Omega$  and 770  $\Omega$ ) for the E- [4] MOSFET voltage divider configuration given in Fig. 2.

### **Figure for Question 2**



## Ans-to-the ques-no-2

Assuming that given device is working in saturation region,  $k = \frac{I_{0(6N)}}{\left[V_{08(6N)} - V_{08(7N)}\right]^2} = \frac{2.5 \text{ mA}}{\left(9-6\right)^2} = 0.28 \text{ mA/v}^2$ 

Now,  $I_D = k \left[ V_{GS(0N)} - V_{GS(0N)} \right]^2 = 0.328 \left[ V_{GS} - 6 \right]^2 mA$ AND,  $V_{GS} = V_G - V_S = V_G - I_D R_S$ 

Solving ( & (1),

Using V.D.R, VG = 18M2 × 35 V

.. Va = 15.75 V

Solving 0 & 1), for Rs = 22012

Vas = 15.75 V - (0.22 ka) × [0.28 (Vas-6)2]

→ Vas = 15.75 V - (0.22 ks)×(0.28)× (Vas - 12 Vas + 36)

⇒ Vas = 15.75 V - (0.0616 Vas - 0.7392 Vas + 2.2176)

=> 0.0616 Vns + 0.2608 Vns - 13.5324 = 0

→ Vos = 12.85 V& -17.088 V

As vgs should be greater than the threshold voltage in order for the MOSPET to be in on state, we consider, vgs = 12.85 v.

.. ID = 0.28 [12.85 - 6] = 13.14 mA

**CS** Scanned with CamScanner

For Rg = 77012, Vas = 15.75 V - (0.72 kg) x [0.28 (Vus-6)2] → Vas = 15.75 V - (0.2156) x [Vas - 12 Vas + 36] → Vas = 15.75 V - (0.2156 Vas - 2.5872 Vas + 7.7616)  $\Rightarrow$  0.2156  $V_{05}^2 - 1.5872 V_{05} - 7.9884 = 0$ Here, Vas = 10.8 V & Vas = -3.43 V As Vas = 10.8 V > VAN= 6V : Vus = 10.8 V Now, In = 0.28 [10.8-6] = 6.45 mA

Kon Mor



# Ans-to-the-ques-no-3

(Mathematical)

Here, 
$$g_{m_0} = \frac{2I_{DSS}}{|V_P|} = \frac{2X6mA}{5V} = 2.4mS$$
  
At  $V_{GS} = -0.9 \text{ oV}$ ,  
 $g_m = g_{m_0} \left[1 - \frac{V_{GS}}{V_P}\right] = 2.4mS \left[1 - \frac{-0.9}{-5}\right] = 1.968 \text{ mS}$   
At  $V_{GS} = -1.40V$ ,  
 $g_m = g_{m_0} \left[1 - \frac{V_{GS}}{V_P}\right] = 2.4mS \left[1 - \frac{-1.4}{-5}\right] = 1.728 \text{ mS}$   
At  $V_{GS} = -2.2V$ ,  
 $g_m = g_{m_0} \left[1 - \frac{V_{GS}}{V_P}\right] = 2.4mS \left[1 - \frac{-2.2}{-5}\right] = 1.344 \text{ mS}$ 

The moximum value of gm occurs when Vas = OV and the minimum value at Vas = Vp. The more negative the value of Vas the less the value of tim.



4 For the network given in Fig. 4, analyze  $A_v$  by determining the values  $Z_i$ ,  $Z_0$  for  $R_D = 3$  k $\Omega$  and 5 k $\Omega$ . [4



**Figure for Question 4** 

# Mns-to-the-ques-no-4



Here, For 
$$R_D = 3 k\Omega$$
,  
 $r_d > 10 R_D$   
 $\Rightarrow 16.67 k\Omega \not= 10 \times 3 k\Omega$ 

$$r_0 = \frac{1}{y_{05}} = \frac{1}{60 \mu 5} = 16.67 \, \text{kg}$$

$$\therefore \ Z_i = R_{in} = 1 M \Omega$$

:. 
$$Z_0 = R_0 \| r_0 = (3 \| 16.67) k\Omega = (\frac{1}{3} + \frac{1}{16.67}) k\Omega = 2.54 k\Omega$$

$$\therefore \vec{z}_1 = N_0 || r_0 = (5 || 16.67) kR = (\frac{1}{5} + \frac{1}{16.67})^2 kR = 3.85 kR$$

Now, 
$$A_{V(3kR)} = -g_{rn}(R_0||r_d) = -(2m5)(2.54 kR) = -5.08$$
  
 $A_{V(5kR)} = -g_{rn}(R_0||r_d) = -(2m5)(3.85 kR) = -7.7$ 

So, after analyzing voltage gain for Ro=3kR and 5kR, we can say that, increases in drain resistance result CS, Scappederilin Can spanner

# Ans-to-the-ques-20-5

Given, 
$$I_{DSS} = 10 \text{ mA}$$

$$V_p = -4V$$

$$I_{Da} = 6 \text{ mA}$$

$$V_{cc} = 16 V$$

$$R_0 = 3R_S$$

From shockley's eqn,
$$I_D = I_{D55} \left(1 - \frac{V_{n5}}{V_p}\right)^2$$

$$\Rightarrow 6mA = 10mA \left(1 + \frac{V_{a5}}{4}\right)^2$$

$$\Rightarrow 1 + \frac{V_{a5}}{4} = \sqrt{\frac{6}{10}} \Rightarrow \frac{V_{a5}}{4} = \sqrt{\frac{6}{10}} - 1$$

$$\Rightarrow V_{a5} = \sqrt{\frac{6}{10}} + \sqrt{\frac{6}{10}} = \sqrt{\frac{6}{10}} - 1$$

$$\Rightarrow V_{a5} = \sqrt{\frac{6}{10}} + \sqrt{\frac{6}{10}} = \sqrt{\frac{6}{10}} - 1$$

$$\Rightarrow V_{a5} = -0.9 \text{ V}$$

Using KVL, 
$$V_{GS} = -I_0 R_S$$

$$\Rightarrow R_S = -\frac{V_{GS}}{I_D} = \frac{0.9 \text{ V}}{6 \times 10^3 \text{ A}}$$

$$\therefore R_S = 0.15 \text{ k}\Omega$$

