

Analysis of NGS-OMICS data in humans

Derhourhi Mehdi mehdi.derhourhi@cnrs.fr

1 - History of sequencing

2 - How does it works?

3 - Focus on 4 sequencing methods and analysis

- → Near 1970
- → Use of fluorescent didesoxyribonuleotides (ddNTP)
- → Low Throughput

- → Project aiming to sequence the whole human genome, representing 3 billions bases
- → Massive use of Sanger technology
- → Started in 1990
- → 3 billions dollars cost
- → Finished in 2004

New sequencing methods aiming to replace Sanger sequencing started developping in the 80's, and arrived on the market after 2000.

The throughput widely increased compared to Sanger sequencing

→ « High throughput sequencing »

It's now possible to sequence a full human genome for nearly 600 dollars in few days.

The Illumina company is now leader in the field of high throughput sequencing (or NGS for Next Generation Sequencing) with their Sequencing By Synthesis technology (SBS)

- → This technology is based on the use of a polymerase incorporating fluorescent nucleotides
- → Each time a nucleotide is incorporated, a laser excites fluorophores which emit light, then a picture is taken

https://emea.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html

Two different sequencing types with Illumina:

-Single End:

Only one end of each DNA fragment is sequenced

→ Cheaper but less informative

-Paired End

Both ends of each DNA fragment is sequenced

→ More expensive but more informative

Design Choice: Single End vs Paired End

Single End

Paired End

10

Sequencing methods

Focus on 4 sequencing methods

DNA-seq	RNA-seq	ChIP-seq	Hi-C
Determine the genome sequence → In clinical context, find variants which could explain diseases	Determine the genes expressed and their expression level → In clinical context, find unexpressed or over expressed genes which could explain diseases	Determine the interactions between DNA and proteins	Determine the interactions between DNA and DNA
	41364363		

Focus on 4 sequencing methods

DNA-seq	RNA-seq	ChIP-seq	Hi-C
Determine the genome sequence	Determine the genes expressed	Determine the interactions	Determine the interactions
→ In clinical context, find variants	and their expression levels	between DNA and proteins	between DNA and DNA
which could explain diseases	→ In clinical context, find unexpressed		
uiscuses	or over expressed		
	genes which could explain diseases		

DNA sequencing

Whole Genome Sequencing

All the DNA of a sample

DNA sequencing

All the DNA of a sample

DNA sequencing: SampleSheet

Text file to give when launching the sequencing :

Contain information about sequencing parameters and samples index and lane

→ Necessary for demultiplexing step

DNA sequencing: Demultiplexing

Illumina sequencing

BCL File: compressed picture (Illumina format)

- → Need to be converted for further treatment
- → Need to be separated by sample (one file for all the samples)

Ex: BCL2Fastq software

@SRR038845.3 HWI-EAS038:6:1:0:1938 length=36 CAACGACTTCACACCTTGGCCGACAGGCCCGGGTAA +SRR038845.3 HWI-EAS038:6:1:0:1938 length=36 BA@7>B=>:>>7@7@>>9=BAA?;>52;>:9=8.=A @SRR038845.41 HWI-EAS038:6:1:0:1474 length=36 CCAATGATTTTTTCCGTGTTTCAGAATACGGTTAA +SRR038845.41 HWI-EAS038:6:1:0:1474 length=36 BCCBA@BB@BBBAB@B9B@=BABA@A:@693:@B=@SRR038845.53 HWI-EAS038:6:1:1:360 length=36 GTTCAAAAAGAACTCAAATTGTGTCAATAGAAAACTC +SRR038845.53 HWI-EAS038:6:1:1:360 length=36 BBCBBBBBB@BAB?BBBBCBC>BBBAA8>BBBAA@

.fastq

Fastq file: text raw file of sequencing

- → Contain raw "reads"
- → Like pieces from a puzzle
- → One file per sample

DNA sequencing: Fastq

DNA sequencing: Fastq

Clusters (Raw)	Clusters(PF)	Yield (MBases)
1,276,674,048	1,081,292,151	326,550

Lane Summary

Lane	Project	Sample	Barcode sequence	PF Clusters	% of the lane	% Perfect barcode	% One mismatch barcode	Yield (Mbases)	% PF Clusters	% >= Q30 bases	Mean Quality Score
1	default	17637-607-e1	TCTCGGTC+GATGTCAG	58,921,610	10.81	96.44	3.56	17,794	100.00	93.98	35.96
1	default	17637-607-e2	AAGACACT+TGCTGTCA	75,786,658	13.90	96.56	3.44	22,888	100.00	94.16	35.99
1	default	17637-607-m	CTACCAGG+ATCAGTTG	57,584,615	10.56	69.70	30.30	17,391	100.00	93.75	35.91
1	default	17637-607-р	ACTGTATC+TAATAGCA	51,206,073	9.39	96.98	3.02	15,464	100.00	93.91	35.94
1	default	28009-607-р	TCGCCTTG+GAATCAGC	44,716,329	8.20	97.11	2.89	13,504	100.00	93.60	35.88
1	default	31619-607-m	ATTGTCTG+TCTGTGAA	39,096,531	7.17	97.13	2.87	11,807	100.00	93.52	35.87
1	default	4902-607-e1	CTGTGGCG+GGCTAGTG	40,588,612	7.45	96.54	3.46	12,258	100.00	93.82	35.93
1	default	4902-607-e2	TGTAATCA+TGGAGATT	31,597,096	5.80	96.57	3.43	9,542	100.00	93.44	35.85
1	default	4902-607-m	TTATATCT+GTGCAGAC	55,833,806	10.24	96.46	3.54	16,862	100.00	93.88	35.94
1	default	4902-607-р	GCCGCAAC+AGACATGA	58,871,464	10.80	72.61	27.39	17,779	100.00	94.21	36.00
1	default	Undetermined	unknown	30,944,901	5.68	100.00	NaN	9,345	24.93	87.01	34.51
2	default	17637-607-e1	TCTCGGTC+GATGTCAG	57,722,078	10.77	96.69	3.31	17,432	100.00	93.68	35.90
2	default	17637-607-e2	AAGACACT+TGCTGTCA	74,739,911	13.94	96.92	3.08	22,571	100.00	93.84	35.93
2	default	17637-607-m	CTACCAGG+ATCAGTTG	57,058,203	10.64	65.17	34.83	17,232	100.00	93.45	35.85
2	default	17637-607-р	ACTGTATC+TAATAGCA	50,461,298	9.41	97.18	2.82	15,239	100.00	93.58	35.88
2	default	28009-607-р	TCGCCTTG+GAATCAGC	43,913,633	8.19	97.18	2.82	13,262	100.00	93.26	35.82
2	default	31619-607-m	ATTGTCTG+TCTGTGAA	38,569,775	7.19	97.18	2.82	11,648	100.00	93.19	35.81
2	default	4902-607-e1	CTGTGGCG+GGCTAGTG	39,953,275	7.45	96.45	3.55	12,066	100.00	93.49	35.87
2	default	4902-607-e2	TGTAATCA+TGGAGATT	31,007,192	5.78	96.46	3.54	9,364	100.00	93.10	35.78
2	default	4902-607-m	TTATATCT+GTGCAGAC	54,668,317	10.20	96.44	3.56	16,510	100.00	93.56	35.88
2	default	4902-607-р	GCCGCAAC+AGACATGA	57,956,130	10.81	68.16	31.84	17,503	100.00	93.86	35.93
2	default	Undetermined	unknown	30,094,644	5.61	100.00	NaN	9,089	22.75	86.04	34.30

Demultiplexing report gives informations about sequencing quality and quantity

Top Unknown Barcodes

Lane	Count	Sequence	Lane	Count	Sequence
	1,621,780 GGGGGGGG+AGATCTCG		1,527,000	GGGGGGGG+AGATCTCG	
	819,420	CTACCAGG+TGCAGTTG	1	882,760	CTACCAGG+TGCAGTTG
	622,000	GGGGGGGG+TGATCTCG		771,600	GGGGGGGG+TGATCTCG
	580,620	GGGGGGGG+GTGCAGAC		574,720	GGGGGGGG+GTGCAGAC
١,	512,660	AAGACACT+GGGGGGGG	١,	517,840	AAGACACT+GGGGGGGG
*	495,580	GGGGGGGG+GATGTCAG	_	479,040	GGGGGGGG+GATGTCAG
	425,400	GGGGGGGG+TGCTGTCA		417,880	GGGGGGGG+TGCTGTCA
	385,180	GGGGGGGG+ATCAGTTG		356,140	CTACCAGG+GGGGGGG
	356,940	40 CTACCAGG+GGGGGGG		347,380	GGGGGGGG+ATCAGTTG
	340,020	GCCGCAAC+GGGGGGGG		343,400	GCCGCAAC+GGGGGGGG

For further analysis, the reads need to be filtered: the quality control step

DNA sequencing: Quality Control

Quality control tells you what happened during your sequencing and for example allow to check if some reads or parts of read need to be remove before going further

For further analysis, the reads need to be ordered: the alignment step

Quality control software like FastQC

DNA sequencing: Alignment

With human samples, we can use a known reference genome.

The alignment software try each position of the genome with each read and select the best one

Each nucleotide **match** or **mismatch** increase or decrease a global score.

Different alignment software can be used, each one working differently.

DNA sequencing: Alignment

.fastq

Fastq file: text raw file of sequencing

- → Contain raw "reads"
- → Like pieces from a puzzle

Bam file: text file containing sequence, quality, and position over a genome

- → Reads can be visualized over a genome
- → Can be used to determine the DNA sequence of a patient

DNA sequencing: BAM file

QNAME	FLAG	CHR	POS	MAPQ	CIGAR CH	HRNEXT	T PNEXT	TLEN	SEQ	QUAL	Info	
A00554:29:2:2150:6479:12336	99	chr1	320699	5 100	76M	=	3207040	121	CTCCCAGGAATCCATTGG	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	NH:i:2	Read 1
A00554:29:2:1212:15691:2584	8 99	chr1	320726	2 100	56M6121N20M	=	3213478	170	GTTGGATTAATTAACTGCA	FFFFFFFFFFFFF	NH:i:1	Read 2

•••

Read n

REF: AGCTAGCATCGTCTCGCCCGTCTAGCATACGCATGATCGACTGTCAGCTAGTCAGACTAGTC

Read: GTGTAACCC.....TCAGAATA

CIGAR: 9M32N8M → 9 match 32 pb intron 8 match

Bam file: file containing sequence, quality, and position over a genome

- → Reads can be visualized over a genome
- → Can be used to determine the DNA sequence of a patient

DNA sequencing: WGS / WES

DNA sequencing: Alignment

Coverage

Proportion of the genome with a depth of at least X reads (mostly expressed in %)

Depth

Number of reads at one position of the genome (numeric value)

No information about variations compared to reference genome

DNA sequencing: Variant calling

Bam file: text file containing sequence, quality, and position over a genome

- → Reads can be visualized over a genome
- → Can be used to determine the DNA sequence of a patient

Variant Calling

Ex: GATK software

```
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
                                                                                         GT:GQ:DP:HQ 0 0:48:
                                                                                         GT:GQ:DP:HQ 0 0:49:
                                              PASS
                                                     NS=2; DP=10; AF=0.333, 0.667; AA=T; DB GT: GQ: DP: HQ 1 | 2:21:6
                                             PASS
                                                                                         GT:GQ:DP:HQ 0 0:54:
      1234567 microsatl GTC
                                                                                         GT:G0:DP
```

VCF file: text file containing variations found in sample compared to reference genome

- → Used to look for potential pathogenic variations
- → Can contain point variations or insertion / deletion

DNA sequencing: VCF file

Two parts in VCF file:

-The Header: Information about how the vcf was made and it's content.

-The Body: Information about each variation found (one line each)

→ Missing supplementary informations to conclude about pathogenicity of the variants

DNA sequencing: Annotation step

```
##fileformat=VCFv4.1
##fileDate=20090805
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contiq=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens"
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data"
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency"
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129"
##INF0=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=010.Description="Ouality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
                                      QUAL FILTER INFO
     14370 rs6054257 G A
                                      29 PASS NS=3; DP=14; AF=0.5; DB; H2
                                                  NS=3-DP=11-AF=0-017
                                      3 al0
                                    67 PASS NS=2:DP=10:AF=0.333.0.667: AA=T:DB GT:G0:DP:H0 112:21:
                                       47 PASS NS=3; DP=13; AA=T
     1234567 microsatl GTC G,GTCT 50 PASS
```

VCF file: text file containing variations found in sample compared to reference genome

- → Used to look for potential pathogenic variations
- → Can contain point variations or insertion / deletion

.VCF file

Annotation

Ex: VEP software (with public or private databases)

CHROM	POS	REF	ALT	QUAL	DP	Status	POLYX	Consequence	IMPACT	SYMBOL	Gene	Feature_type	Feature	BIOTYPE
chr1	16495	G	C	691.77	102	het		2 intron_varia	MODIFIER	WASH7P	653635	Transcript	NR_024540.	transcribed_
chr1	16949	Α	С	70.77	39	het		2 non_coding_	MODIFIER	WASH7P	653635	Transcript	NR_024540.	transcribed_
chr1	16968	С	T	78.77	27	het		1 non_coding_	MODIFIER	WASH7P	653635	Transcript	NR_024540.	transcribed_
chr1	16993	G	С	43.77	20	het		2 non_coding_	MODIFIER	WASH7P	653635	Transcript	NR_024540.	transcribed_
chr1	17020	G	A	16.86	12	het		2 non_coding_	MODIFIER	WASH7P	653635	Transcript	NR_024540.	transcribed_
chr1	17594	С	T	87.77	70	het		3 intron_varia	MODIFIER	WASH7P	653635	Transcript	NR_024540.	transcribed_
chr1	120983	С	T	101.77	20	het		1 intergenic_va	MODIFIER	-	-	-	-	-
chr1	129285	G	A	1354.77	119	het		1 intergenic_va	MODIFIER	-	-	-	-	-
chr1	138947	C	A	21.8	179	het		1 non_coding_	MODIFIER	LOC729737	729737	Transcript	NR_039983.	IncRNA
chr1	185268	С	T	32.77	29	het		1 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	185336	С	T	98.77	27	het		2 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	186338	T	G	448.77	36	het		2 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	186341	Т	G	448.77	36	het		2 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	186536	С	T	900.77	44	het		1 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	187019	G	A	1618.77	118	het		3 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	187102	С	G	1418.77	485	het		1 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	187153	Т	С	876.77	396	het		1 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	187352	C	G	18.82	13	het		1 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	187485	G	Α	10203.8	333	hom		1 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	187497	G	A	1433.77	352	het		2 downstream	MODIFIER	LOC1027251	102725121	Transcript	NR_148357.	transcribed_
chr1	188118	C	T	239.77	10	hom		3 upstream_ge	MODIFIER	MIR6859-2	102465909	Transcript	NR_107062.	1 miRNA
chr1	188240	G	Α	272.77	66	het		1 upstream_ge	MODIFIER	MIR6859-2	102465909	Transcript	NR_107062.	1 miRNA
chr1	188254	С	Α	241.77	61	het		2 upstream_ge	MODIFIER	MIR6859-2	102465909	Transcript	NR_107062.	miRNA
chr1	729055	С	A	536.77	208	het		1 non_coding_	MODIFIER	LOC1001333	100133331	Transcript	NR_028327.	IncRNA
chr1	729678	С	G	376.77	165	het		2 non_coding_	MODIFIER	LOC1001333	100133331	Transcript	NR_028327.	IncRNA
chr1	738733	Т	С	94.77	44	het		1 intergenic_va	MODIFIER	-	-	-	-	-
chr1	738881	Α	G	53.77	41	het		1 intergenic va	MODIFIER	-	-	-	-	-

VCF file: text file containing variations found in sample compared to reference genome & supplementary information about these variations (ex :gene name / frequency / AA change ...

- → Contain necessary information to assess pathogenicity
- → Annotations depends of the data and the question asked

Annotated .VCF file

Focus on 4 sequencing methods

DNA-seq RNA-seq ChIP-seq Determine **Determine Determine** the genome the genes the sequence expressed interactions and their between → In clinical expression **DNA** and context, find level proteins variants which could → In clinical explain context, find diseases unexpressed or over expressed genes which could explain diseases

Hi-C

Determine

the

interactions

between DNA

and DNA

RNA sequencing

RNA sequencing

Demultiplexing step identical to DNAseq

Alignment step specific to RNA-seq
→ Need to deal with RNA splicing

RNA specialised aligner can easily "split" to take in account splicing site

(the penalty of splitting isn't important to the final alignment score of the read)

Ex: STAR

RNA sequencing: splicing

Demultiplexing step identical to DNAseq

Alignment step specific to RNA-seq
→ Need to deal with RNA splicing

RNA specialized aligners can easily "split" the reads to take in account splicing sites

(the penalty of splitting isn't important to the final alignment score of the read)

Ex: STAR

The reads can now be counted to determine the expression level of genes \rightarrow Counting step

RNA sequencing: counting step bias

Sample number of read effect:

Artificialy 1.2334 fois more of each RNA fragment for sample A has been sequenced, despite a real DNA quantity per cell identical between the two samples

Gene length effect: With a same expression level, a long transcript will have more reads

If differential expression based on raw counts, it will create a biais

- ⇒ Correction of these biais needed
- \Rightarrow Normalisation step

RNA sequencing: Normalisation methods

1) RPKM (Reads Per Kilobase Million)

2) FPKM (Fragments Per Kilobase Million)

Only difference between **RPKM** et **FPKM** => **FPKM** count only one read per fragment

RNA sequencing: counting step bias

3) TPM (Transcripts Per Kilobase Million)

RPKM (Reads Per Kilobase Million)

gene_id	Rep1 counts	Rep2 counts	Rep3 counts
ENSMUSG1 (2kb)	10	12	30
ENSMUSG2 (4kb)	20	25	60
ENSMUSG3 (1kb)	5	8	15
ENSMUSG4 (10kb)	0	0	1
Total reads	35	45	106
/10	3,5	4,5	10,6

1) Normalisation over read depth

gene_id	Rep1 RPM	Rep2 RPM	Rep3 RPM
ENSMUSG1 (2kb)	2,85	2,66	2,83
ENSMUSG2 (4kb)	5,71	5,55	5,66
ENSMUSG3 (1kb)	1,42	1,77	1,41
ENSMUSG4 (10kb)	0	0	0,094

2) Normalisation / gene length /kb

gene_id	Rep 1 RPKM	Rep 2 RPKM	Rep 3 RPKM
ENSMUSG1 (2kb)	1,42	1,33	1,41
ENSMUSG2 (4kb)	1,42	1,38	1,41
ENSMUSG3 (1kb)	1,42	1,77	1,41
ENSMUSG4 (10kb)	0	0	0,009
Total	4,26	4,48	4,239

RNA sequencing: counting step bias

gene_id	Rep1 counts	Rep2 counts	Rep3 counts
ENSMUSG1 (2kb)	10	12	30
ENSMUSG2 (4kb)	20	25	60
ENSMUSG3 (1kb)	5	8	15
ENSMUSG4 (10kb)	0	0	1

gene_id	Rep 1 RPKM	Rep 2 RPKM	Rep 3 RPKM
ENSMUSG1 (2kb)	1,42	1,33	1,41
ENSMUSG2 (4kb)	1,42	1,38	1,41
ENSMUSG3 (1kb)	1,42	1,77	1,41
ENSMUSG4 (10kb)	0	0	0,009

gene_id	transcript_id(s)	length	effective_length	expected_count	TPM	FPKM
ENSMUSG00000000001	ENSMUST0000000001	3262.00	3098.67	3467.00	29.14	26.19
ENSMUSG00000000003	ENSMUST00000000003,ENSMUST00000114041	799.50	636.17	0.00	0.00	0.00
	ENSMUST00000000028,ENSMUST00000096990,ENSMUST00					
ENSMUSG00000000028	000115585	1900.86	1737.53	308.00	4.62	4.15
	ENSMUST00000132294,ENSMUST00000136359,ENSMUST00					
ENSMUSG00000000031	000140716,ENSMUST00000149974,ENSMUST00000152754	2170.51	2007.18	88.00	1.14	1.03

Example of counting file whith count per gene

Focus on 4 sequencing methods

DNA-seq	RNA-seq	ChIP-seq	Hi-C
Determine the genome sequence	Determine the genes expressed and their	Determine the interactions between	Determine the interactions
→ In clinical context, find variants	expression level	DNA and proteins	between DNA and DNA
which could explain diseases	→ In clinical context, find unexpressed or over		
	expressed genes which could explain diseases		

ChIP-seq

Demultiplexing step identical to DNAseq

Alignment step identical to DNAseq

Next step is called **Peak Calling**Sofware example: MACS2

You compare the signal (read depth) of you sample of interest with a control condition (like non antibody captured dna from your sample) to keep only signal specific to your sample

ChIP-seq

Can be used with every DNA biding protein, as long as you can catch it with antibody

For example, with **histone marks**H3K4me1 / H3K4me3 / H3K27ac, used
to determine **promoter / enhancer**position

H3K4me1 + H3K27ac = enhancer

H3K4me3 + H3K27ac = promoter

You can also compare the effect of a treatment by differentially analyzing a treated vs non treated sample

Focus on 4 sequencing methods

DNA-seq	RNA-seq	ChIP-seq	Hi-C
Determine the genome sequence → In clinical context, find variants which could explain diseases	Determine the genes expressed and their expression level → In clinical context, find unexpressed or over expressed genes which could explain diseases	Determine the interactions between DNA and proteins	Determine the interactions between DNA and DNA
	aiscases		

Chromatin is forming loops in the nucleus, putting in close proximity linearly spaced parts of the genome

Adapté de Crutchley et al, Biomarkers Med. 2010

Possible effect of DNA events over these loops

DNA spatial interactions could explain some effects of gwas identified variants, or effects of some regulatory regions linearly spaced from their regulated regions

Notion of **TAD**(Topologicaly Associated Domain)

→ Parts of the genome where DNA is in close proximity

Creation of hybrids reads

Demultiplexing step identical to DNAseq

Alignment step identical to DNAseq

The two reads from a pair correspond to different parts of the genome

Next step will compare mapping sites of the two parts of each read

(ex software: Hi-C pro)

The results is text file with position of the two reads of a fragment, which can be used to create **maps of chromatin interaction**

(ex software : Circos)

Other common reprentation

Contact map

Other common reprentation

Contact map

