Assignment of the Reproducible Research course

Fabio

25 febbraio 2017

Setting the environment and reading the data

Needed packages are dplyr and lattice

```
library("dplyr")
library("lattice")
```

Code for reading the data. This code assumes that in the working directory is accessible a file named "activity.csv". Downloaded and unzipped from

https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2Factivity.zip

(https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2Factivity.zip) last February 24, 2017. activityWONA filters out NA's

```
activity <- read.csv("activity.csv", header=TRUE, sep=",")
activityWONA <- filter(activity, steps>=0)
```

Histogram of the number of steps taken each day

Steps per day are calculated and the frequency histogram is plotted

```
stepsPerDay <- aggregate(steps~ date, data=activityWONA, FUN = "sum")
hist(stepsPerDay$steps, breaks=seq(0,24000, by=3000), main= "Average number of steps per
day", xlab="number of steps per day")</pre>
```

Average number of steps per day

Mean and median steps per day

meanToReport<-as.integer(mean(stepsPerDay\$steps))</pre>

Mean steps per day is 10766.

medianToReport<-median(stepsPerDay\$steps)</pre>

its median is 10765

Time series of the steps per day

steps5Min <- aggregate(steps~ interval, data=activityWONA, FUN = "mean")
plot(steps5Min\$steps, type="1", xlab="period", ylab="number of steps")</pre>

Calculation of the interval with the highest number of steps on average

The highest average number of steps in one interval and the interval are computed as follows

```
temp<-filter(steps5Min,steps==max(steps5Min$steps))</pre>
```

The interval of interest is 835. The average number of steps is 206.1698113.

Replacing missing values with credible values

How many missing values?

There are 2304 entries with missing values

Now let's create a new dataset with NA's replaced by the corresponding mean for that interval. We take the floor (i.e. the integer part) of that mean

```
unDates<-!duplicated(activity$date)
NumOfDays<-nrow(activity[unDates,])</pre>
```

Data refer to 61 different days.

```
cleanedActivity <- activity
compare <- rep(floor(steps5Min$steps), NumOfDays)
for (i in (1:nrow(cleanedActivity))) {if (is.na(cleanedActivity$steps[i])){
   cleanedActivity$steps[i]<-compare[i]
   }
}</pre>
```

Histogram of the total number of steps taken each day after missing values are imputed

CleanedstepsPerDay <- aggregate(steps~ date, data=cleanedActivity, FUN = "sum") hist(CleanedstepsPerDay\$steps, breaks=seq(0,24000,by=3000), main= "Average number of steps per day", xlab="number of steps per day")

Average number of steps per day

Mean and median steps taken each day computed on the cleaned dataset

```
mean(CleanedstepsPerDay$steps)

## [1] 10749.77

median(CleanedstepsPerDay$steps)

## [1] 10641
```

Panel plot comparing the average number of steps taken per 5-minute interval across weekdays and weekends

```
cleanedActivity$date<-as.Date(cleanedActivity$date, "%Y-%m-%d")
weekdays(cleanedActivity$date[1])</pre>
```

```
## [1] "lunedì"
```

so the first day considered is Monday and we have 288 intervals per day.

Now we will create a new column named weekend. It will be a factor with two levels: weekday and weekend.

```
\label{lem:cleanedActivity} cleanedActivity, weekend=as.factor(rep(c(0,0,0,0,0,1,1), each=288, length.out=288*NumOfDays)))
```

levels(cleanedActivity\$weekend)<- c("weekday","weekend")</pre>

Plot of the time series on weekend and weekdays

The results are shown into two different panels side by side

```
groupbyIntAndWE<-group_by(cleanedActivity, interval,weekend)
final<-summarize(groupbyIntAndWE,n=mean(steps))
xyplot(n~interval | weekend, data=final, type="1")</pre>
```

