TEST REPORT

WTS14S0312322E Reference No. FCC ID..... XBASH001 Applicant Aeon Labs LLC. 121 Buckingham Drive Unit 36 Santa Claras California United States Address Manufacturer Aeon Labs LLC. Address 121 Buckingham Drive Unit 36 Santa Claras California United States Product Name Power Supply for SONTE Film Model No. SH001 Trademark : SONTE Standards: FCC CFR47 Part 15 C Section 15.247:2012

Date of Receipt sample..... : Mar.21, 2014

Date of Test : Mar.26-Apr.11, 2014

Date of Issue : Apr.28, 2014

Test Result Pass *

*Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Testing location: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Zero Zhou / Project Engineer

Philo Zhong / Manager

Reference No.: WTS14S0312322E Page 2 of 50

2 Test Summary

Test Items	Test Requirement	Result
	15.247	
Radiated Emissions	15.205(a)	PASS
	15.209(a)	
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page
1	COVER PAGE	
2	TEST SUMMARY	
3	CONTENTS	•
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T.	
	4.2 DETAILS OF E.U.T. 4.3 TEST MODE	
	4.4 TEST FACILITY	
5	EQUIPMENT USED DURING TEST	7
	5.1 EQUIPMENTS LIST	7
	5.2 MEASUREMENT UNCERTAINTY	
	5.3 TEST EQUIPMENT CALIBRATION	
6	CONDUCTED EMISSION	
	6.1 E.U.T. OPERATION	
	6.2 EUT SETUP	
7	RADIATED EMISSIONS	
,	7.1 EUT OPERATION:	
	7.2 TEST SETUP	
	7.3 SPECTRUM ANALYZER SETUP	
	7.4 TEST PROCEDURE	
	7.5 CORRECTED AMPLITUDE & WARGIN CALCULATION	
8	BAND EDGE MEASUREMENT	
	8.1 TEST PRODUCE	21
	8.2 TEST RESULT	22
9	6 DB BANDWIDTH MEASUREMENT	24
	9.1 Test Procedure:	
	9.2 TEST RESULT:	
10	MAXIMUM PEAK OUTPUT POWER	
	10.1 TEST PROCEDURE:	
11	10.2 TEST RESULT:	
11		
	11.1 TEST PROCEDURE:	
12	ANTENNA REQUIREMENT	
13	RF EXPOSURE	
	13.1 REQUIREMENTS	
	13.2 THE PROCEDURES / LIMIT	37
	13.3 MPE CALCULATION METHOD	
14	PHOTOGRAPHS – TEST SETUP	
	14.1 CONDUCTED EMISSION	
4 =	14.2 RADIATED EMISSION	

Reference No.: WTS14S0312322E Page 4 of 50

15.1	EUT -External View	.41
15.2	EUT – Internal View	.46

Reference No.: WTS14S0312322E Page 5 of 50

4 General Information

4.1 General Description of E.U.T.

Product Name : Power Supply for SONTE Film

Model No. : SH001

Model Difference : N/A

Operation Frequency : 2412MHz ~ 2462MHz

The Lowest Oscillator : 32.768kHz

Antenna Gain : 3dBi

Type of modulation : IEEE 802.11b (CCK/QPSK/BPSK,11Mbps max.)

IEEE 802.11g (BPSK/QPSK/16QAM/64QAM,54Mbps max.)

4.2 Details of E.U.T.

Technical Data : Input: AC 100-240V, 50/60Hz, 35W Max

Output: AC 0-70V, 100mA*2

4.3 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Test Mode	Data Rate	Channel	TX/RX
Maximum Dook Output Dower	802.11b	11 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11g	54 Mbps	1/6/11	TX
Power Spectral Density	802.11b	11 Mbps	1/6/11	TX
Power Spectral Density	802.11g	54 Mbps	1/6/11	TX
6 dD Dondwidth	802.11b	11 Mbps	1/11	TX
6 dB Bandwidth	802.11g	54 Mbps	1/11	TX
Band Emissions	802.11b	11 Mbps	1/6/11	TX
Dalid Ellissions	802.11g	54 Mbps	1/6/11	TX
	802.11b	11 Mbps	1/6/11	TX
Radiated Emissions	802.11g	54 Mbps	1/6/11	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

Table 2 Tests Carried Out Under FCC part 15.207 & FCC part 15.209

Test Item	Test Mode
Conduction Emission, 0.15MHz to 30MHz	Communication

Reference No.: WTS14S0312322E Page 6 of 50

4.4 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1, July 12, 2012.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

Reference No.: WTS14S0312322E Page 7 of 50

5 Equipment Used during Test

5.1 Equipments List

Conducted Emissions at Mains Terminals Disturbance Voltage								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.18,2013	Sep.17,2014		
2.	LISN	R&S	ENV216	101215	Nov. 29,2013	Nov. 28,2014		
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.18,2013	Sep.17,2014		
3m Se	mi-anechoic Chaml	per for Radiation						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.18,2013	Sep.17,2014		
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.18,2013	Sep.17,2014		
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.20,2013	Apr.19,2014		
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.18,2013	Sep.17,2014		
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.20,2013	Apr.19,2014		
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.20,2013	Apr.19,2014		
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2014	Mar.16,2015		
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.10,2014	Apr.09,2015		

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS14S0312322E Page 8 of 50

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class: Class B

Limit: 66-56 dB_μV between 0.15MHz & 0.5MHz

56 dB_μV between 0.5MHz & 5MHz60 dB_μV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-

Peak & Average if maximised peak within 6dB of

Average Limit

6.1 E.U.T. Operation

Operating Environment:

Temperature: 22.5 °C Humidity: 52.6 % RH Atmospheric Pressure: 101.2 kPa

EUT Operation:

The pre-test was performed in communication mode, and the test data were shown as follow.

The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003.

Reference No.: WTS14S0312322E Page 9 of 50

6.3 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTS14S0312322E Page 11 of 50

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.4:2003

Test Result: PASS
Measurement Distance: 3m

Limit:

Limit:						
_	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation:

Operating Environment:

Temperature: 22.8 °C
Humidity: 51.9 % RH
Atmospheric Pressure:101.3 kPa

Reference No.: WTS14S0312322E Page 12 of 50

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS14S0312322E Page 13 of 50

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested from 32.768kHz to 25000MHz.

=		
Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS14S0312322E Page 14 of 50

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.

8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTS14S0312322E Page 15 of 50

7.6 Summary of Test Results

Test Frequency : Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

F	Receiver	Receiver	Turn	RX Antenna		Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11b: Low Channel 2412MHz									
105.27	19.52	PK	339	1.5	Н	14.41	33.93	40.00	-6.07
105.27	21.78	PK	217	1.7	V	14.41	36.19	40.00	-3.81
4824.00	52.74	PK	287	1.4	V	-1.06	51.68	74.00	-22.32
4824.00	44.07	Ave	287	1.4	V	-1.06	43.01	54.00	-10.99
7236.00	40.22	PK	295	1.8	Н	1.33	41.55	74.00	-32.45
7236.00	37.95	Ave	295	1.8	Н	1.33	39.28	54.00	-14.72
2321.45	45.04	PK	192	1.2	V	-13.19	31.85	74.00	-42.15
2321.45	37.09	Ave	192	1.2	V	-13.19	23.90	54.00	-30.10
2387.21	44.16	PK	307	1.3	Н	-13.14	31.02	74.00	-42.98
2387.21	38.96	Ave	307	1.3	Н	-13.14	25.82	54.00	-28.18
2499.53	42.77	PK	201	2.0	V	-13.08	29.69	74.00	-44.31
2499.53	37.68	Ave	201	2.0	V	-13.08	24.60	54.00	-29.40

Fraguency Rece	Receiver Detector	Turn	RX Antenna		Corrected		FCC Part 15.247/209/205		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11b: Middle Channel 2437MHz									
105.27	18.31	PK	195	1.1	Н	14.41	32.72	40.00	-7.28
105.27	20.69	PK	181	1.6	V	14.41	35.10	40.00	-4.90
4874.00	51.46	PK	267	1.1	V	-0.62	50.84	74.00	-23.16
4874.00	45.24	Ave	267	1.1	V	-0.62	44.62	54.00	-9.38
7311.00	39.72	PK	335	1.3	Н	2.21	41.93	74.00	-32.07
7311.00	39.40	Ave	335	1.3	Н	2.21	41.61	54.00	-12.39
2346.24	46.46	PK	154	1.7	V	-13.19	33.27	74.00	-40.73
2346.24	39.72	Ave	154	1.7	V	-13.19	26.53	54.00	-27.47
2350.81	43.16	PK	42	1.7	Н	-13.14	30.02	74.00	-43.98
2350.81	37.01	Ave	42	1.7	Н	-13.14	23.87	54.00	-30.13
2494.79	42.05	PK	175	1.7	V	-13.08	28.97	74.00	-45.03
2494.79	37.24	Ave	175	1.7	V	-13.08	24.16	54.00	-29.84

Fraguenay Receiver	Receiver	Receiver	Turn	RX Antenna		Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	Angle	table Angle Height Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11b: High Channel 2462MHz									
105.27	19.14	PK	351	1.3	Н	14.41	33.55	40.00	-6.45
105.27	21.92	PK	350	1.8	V	14.41	36.33	40.00	-3.67
4924.00	50.25	PK	257	1.7	V	-0.24	50.01	74.00	-23.99
4924.00	46.47	Ave	257	1.7	V	-0.24	46.23	54.00	-7.77
7386.00	40.83	PK	330	1.4	Н	2.84	43.67	74.00	-30.33
7386.00	38.05	Ave	330	1.4	Н	2.84	40.89	54.00	-13.11
2323.54	45.03	PK	2	1.4	V	-13.19	31.84	74.00	-42.16
2323.54	38.25	Ave	2	1.4	V	-13.19	25.06	54.00	-28.94
2350.76	43.65	PK	78	1.4	Н	-13.14	30.51	74.00	-43.49
2350.76	36.21	Ave	78	1.4	Н	-13.14	23.07	54.00	-30.93
2493.98	44.18	PK	288	1.7	V	-13.08	31.10	74.00	-42.90
2493.98	36.47	Ave	288	1.7	V	-13.08	23.39	54.00	-30.61

	Receiver	Receiver Detector	Turn	RX Antenna		Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	11g: Low Channel 2412MHz								
105.27	19.29	PK	350	2.0	Н	14.41	33.70	40.00	-6.30
105.27	21.17	PK	15	1.0	V	14.41	35.58	40.00	-4.42
4824.00	51.33	PK	2	1.4	V	-1.06	50.27	74.00	-23.73
4824.00	46.79	Ave	2	1.4	V	-1.06	45.73	54.00	-8.27
7236.00	39.54	PK	297	1.5	Н	1.33	40.87	74.00	-33.13
7236.00	37.84	Ave	297	1.5	Н	1.33	39.17	54.00	-14.83
2328.31	46.76	PK	186	1.9	V	-13.19	33.57	74.00	-40.43
2328.31	38.33	Ave	186	1.9	V	-13.19	25.14	54.00	-28.86
2366.30	43.03	PK	57	1.1	Н	-13.14	29.89	74.00	-44.11
2366.30	38.10	Ave	57	1.1	Н	-13.14	24.96	54.00	-29.04
2487.68	44.86	PK	329	1.0	V	-13.08	31.78	74.00	-42.22
2487.68	36.23	Ave	329	1.0	V	-13.08	23.15	54.00	-30.85

	Receiver		Turn		tenna	na Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	11g: Middle Channel 2437MHz								
105.27	19.78	PK	26	1.4	Н	14.41	34.19	40.00	-5.81
105.27	22.19	PK	219	1.4	V	14.41	36.60	40.00	-3.40
4874.00	52.60	PK	37	1.2	V	-0.62	51.98	74.00	-22.02
4874.00	47.29	Ave	37	1.2	V	-0.62	46.67	54.00	-7.33
7311.00	39.06	PK	301	1.9	Н	2.21	41.27	74.00	-32.73
7311.00	38.34	Ave	301	1.9	Н	2.21	40.55	54.00	-13.45
2349.92	46.92	PK	212	2.0	V	-13.19	33.73	74.00	-40.27
2349.92	39.94	Ave	212	2.0	V	-13.19	26.75	54.00	-27.25
2389.12	43.66	PK	308	1.5	Н	-13.14	30.52	74.00	-43.48
2389.12	37.18	Ave	308	1.5	Н	-13.14	24.04	54.00	-29.96
2485.96	42.78	PK	225	1.9	V	-13.08	29.70	74.00	-44.30
2485.96	37.62	Ave	225	1.9	V	-13.08	24.54	54.00	-29.46

-	Receiver Detector		Turn	RX Antenna		Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Hig	gh Chann	el 2462	MHz			
105.27	18.91	PK	201	1.3	Н	14.41	33.32	40.00	-6.68
105.27	21.70	PK	288	1.6	V	14.41	36.11	40.00	-3.89
4924.00	51.31	PK	296	1.5	V	-0.24	51.07	74.00	-22.93
4924.00	48.25	Ave	296	1.5	V	-0.24	48.01	54.00	-5.99
7386.00	40.22	PK	304	1.3	Н	2.84	43.06	74.00	-30.94
7386.00	38.79	Ave	304	1.3	Н	2.84	41.63	54.00	-12.37
2311.17	45.19	PK	19	1.4	V	-13.19	32.00	74.00	-42.00
2311.17	37.14	Ave	19	1.4	V	-13.19	23.95	54.00	-30.05
2367.49	44.54	PK	133	1.3	Н	-13.14	31.40	74.00	-42.60
2367.49	36.69	Ave	133	1.3	Н	-13.14	23.55	54.00	-30.45
2491.45	43.97	PK	354	1.0	V	-13.08	30.89	74.00	-43.11
2491.45	36.40	Ave	354	1.0	V	-13.08	23.32	54.00	-30.68

Test Frequency: Above 18GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS14S0312322E Page 21 of 50

8 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: KDB558074 D01 v03r01 04/09/2013

Detector: For Peak value:

RBW = 100kHz

VBW = 100kHz; Sweep = auto

Detector function = p

Trace = max hold

8.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.2 Test Result

Test result plots shown as follows:

Reference No.: WTS14S0312322E Page 24 of 50

9 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: KDB558074 D01 v03r01 04/09/2013

9.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 100kHz

9.2 Test Result:

Operation mode	Bandwidth (MHz)			
	Channel 1	Channel 6	Channel 11	
TX 11b	8.982	9.701	9.820	
	Channel 1	Channel 6	Channel 11	
TX 11g	16.048	16.287	16.108	

Test result plot as follows:

Mode: TX 11b channel 1

Reference No.: WTS14S0312322E Page 28 of 50

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: KDB558074 D01 v03r01 04/09/2013

10.1 Test Procedure:

KDB558074 D01 v03r01 04/09/2013 section 9.1.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result:

Test mode :TX 11b						
10 Maximum Peak Output Power (dBm)						
2412MHz	2412MHz 2437MHz 2462MHz					
14.74	14.74 15.04 15.09					
Limit						
1W/30dBm						

Test mode :TX 11g						
10 Maximum Peak Output Power (dBm)						
2412MHz	2412MHz 2437MHz 2462MHz					
15.14	15.14 15.10 15.30					
Limit						
1W/30dBm						

Reference No.: WTS14S0312322E Page 32 of 50

11 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: KDB558074 D01 v03r01 04/09/2013

11.1 Test Procedure:

KDB558074 D01 v03r01 04/09/2013 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result:

Test mode :TX 11b						
10 Maximum Peak Output Power (dBm per 3kHz)						
2412MHz	2412MHz 2437MHz 2462MHz					
-10.73	-10.73 -11.93 -11.38					
Limit						
8dBm per 3kHz						

Test mode :TX 11g						
10 Maximum Peak Output Power (dBm per 3kHz)						
2412MHz	2412MHz 2437MHz 2462MHz					
-14.04	-14.04 -14.19 -14.19					
Limit						
8dBm per 3kHz						

-60 dBm

-70 dBm

CF 2.412 GHz

Span 15.0 MHz

12 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed antenna fulfill the requirement of this section.

Reference No.: WTS14S0312322E Page 37 of 50

13 RF Exposure

Test Requirement: FCC Part 1.1307 Evaluation Method: FCC Part 2.1091

13.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

13.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS14S0312322E Page 38 of 50

13.3 MPE Calculation Method

$$\mathsf{E} \, (\mathsf{V/m}) = \frac{\sqrt{30 \times P \times G}}{d} \qquad \qquad \mathsf{Power \, Density:} \, \, \mathit{Pd} \, (\mathsf{W/m^2}) = \frac{E^2}{377}$$

E = Electric field (V/m)

 $\mathbf{P} = \mathsf{Peak} \; \mathsf{RF} \; \mathsf{output} \; \mathsf{power} \; (\mathsf{W})$

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
1.995	15.30	33.884	0.01345	1

14 Photographs – Test Setup

14.1 Conducted Emission

14.2 Radiated Emission

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

15 Photographs - Constructional Details

15.1 EUT -External View

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Reference No.: WTS14S0312322E Page 42 of 50

Reference No.: WTS14S0312322E Page 43 of 50

Reference No.: WTS14S0312322E Page 44 of 50

Reference No.: WTS14S0312322E Page 45 of 50

15.2 EUT - Internal View

Reference No.: WTS14S0312322E Page 47 of 50

Reference No.: WTS14S0312322E Page 48 of 50

=====End of Report=====