

Contents

1	Intr	roduction and overview	1
	1.1	Notes	1
		1.1.1 Bloch Spheres	1
		1.1.2 Why must quantum gates be unitary?	3
		1.1.3 Decomposing single qubit operations	3
		1.1.4 What does the matrix representation of a quantum gate mean?	3
		1.1.5 Why must quantum gates be reversible?	3
	1.2	Solutions	3
2	Intr	roduction to quantum mechanics	4
	2.1	Notes	4
		2.1.1 Matrix - Linear Operator Congruence	4
		2.1.2 What's so special about the Pauli matrices?	4
	2 2	Solutions	4

Chapter 2

Introduction to quantum mechanics

Notes

Matrix - Linear Operator Congruence

For a matrix to a be a linear operator,

$$A\left(\sum_{i} a_{i} | v_{I} \rangle\right) = \sum_{i} a_{i} A | v_{i} \rangle$$

must be true. Note the LHS is the sum of vectors to which A is applied which is certainly equal to the RHS.

Now suppose $A: V \to W$ is a linear operator and that V has basis $|v_i\rangle, \cdots, |v_m\rangle$ and W has basis $|w_i\rangle, \cdots, |w_n\rangle$. Since we know the kth column of a A will be its transformation of $|v_k\rangle$,

$$A|v_j\rangle = \sum_i A_{ij}|w_i\rangle$$

Note this is just saying $A|v_j\rangle$ is equal to the jth column of A, and we can think of $|w_i\rangle$ as the coordinates of the transformed vector. Thus, we can find the matrix representation of any linear operator by finding a matrix A with entries specified by the above equation.

What's so special about the Pauli matrices?

Things to look into:

- they pop up in the Pauli equation
- they form a basis for the vector space of 2 × 2 Hermitian matrices. Hermitian matrices represent observables? Look at Wikipedia page

Solutions

Exercise 2.1

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 0$$

Exercise 2.2

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

because $A|0\rangle$ has coordinate 0 in $|0\rangle$ and coordinate 1 in $|1\rangle$.

If we keep our input bases the same but reorder our output bases as $|1\rangle$ and $|0\rangle$,

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Exercise 2.3

We know

$$A\left|v_{i}\right\rangle = \sum_{j} A_{ji}\left|w_{j}\right\rangle$$

and

$$B|w_j\rangle = \sum_k B_{kj}|x_k\rangle$$

Now we can write

$$BA|v_{i}\rangle = B(A|v_{i}\rangle) = B\sum_{j} A_{ji}|w_{j}\rangle = \sum_{j} A_{ji}(B|w_{j}\rangle)$$

$$= \sum_{j} A_{ji} \sum_{k} B_{kj}|x_{k}\rangle$$

$$= \sum_{k} \sum_{j} B_{kj}A_{ji}|x_{k}\rangle$$

$$= \sum_{k} (BA)_{ki}|x_{k}\rangle$$

We know $\sum_k (BA)_{ki}$ is the matrix representation of operator BA, which the preceding step says is equal to $\sum_k \sum_j B_{kj} A_{ji}$, which is the matrix multiplication BA.

Exercise 2.4

For the same input and output basis, we want some I such that

$$I|v_j\rangle = \sum_i I_{ij}|v_i\rangle = |v_j\rangle$$

which means $I_{ij} = 0$ for all $i \neq j$ and 1 otherwise.

Exercise 2.5

For $|y\rangle$, $|z_i\rangle \in \mathbb{C}^n$ and $\lambda_i \in C$,

$$(|y\rangle, \sum_{i} \lambda_{i} |z_{i}\rangle) = |y\rangle^{*} \sum_{i} \lambda_{i} |z_{i}\rangle$$
$$= \sum_{i} \lambda_{i} |y\rangle^{*} |z_{i}\rangle$$
$$= \left(\sum_{i} \lambda_{i}^{*} |z_{i}\rangle^{*} |y\rangle\right)^{*}$$

The second and third equalities demonstrate linearity in the second argument and $(|y\rangle, |z\rangle) = (|z\rangle, |w\rangle)^*$. Finally, if $|w\rangle = (w_1, \dots, w_n)$ where $w_i \in \mathbb{C}^n$, then

$$(|w\rangle,|w\rangle) = \sum_i w_i^* w_i = \sum_i |w_i|^2$$

which proves the non-degeneracy and non-negativity condition.

Exercise 2.6

$$\begin{split} \left(\sum_{i} \lambda_{i} \left|w_{i}\right\rangle, \left|v\right\rangle\right) &= \left(\left|v\right\rangle^{*}, \sum_{i} \lambda_{i}^{*} \left|w_{i}\right\rangle^{*}\right)^{*} \\ &= \sum_{i} \lambda_{i}^{*} \left(\left|v\right\rangle^{*}, \left|w_{i}\right\rangle^{*}\right)^{*} \\ &= \sum_{i} \lambda_{i}^{*} \left(\left|w_{i}\right\rangle, \left|v\right\rangle\right) \end{split}$$