11 décembre 2021 MP2I

Devoir Surveillé 4

Je vous rappelle les consignes :

- Ecrire lisiblement sur des feuilles grandes et doubles, au stylo ou à l'encre bleu foncé ou noir et souligner ou encadrer ses résultats. On accordera de l'importance à la présentation.
- La calculatrice est interdite.
- Vous avez le droit de sauter des questions et d'admettre les résultats correspondants pour traiter les questions suivantes.
- Rédiger les deux parties analyse/algèbre sur des copies séparées!
- La durée de ce devoir est de 4 heures.

PROBLÈME

ÉTUDE DE PLUSIEURS ENSEMBLES DENSES.

Les différentes parties sont indépendantes et étudient la densité de différentes parties de R.

Partie I. Ensemble stable par moyenne.

Dans toute cette partie, on considère X une partie de \mathbb{R} non majorée et non minorée telle que

$$\forall x, y \in X, \ \frac{x+y}{2} \in X.$$
 (*)

Le but de l'exercice est de montrer que X est dense dans \mathbb{R} .

1) Donner un exemple d'ensemble X différent de \mathbb{R} vérifiant les propriétés ci-dessus.

Dans toute la suite, on fixe deux réels a et b tels que a < b.

- 2) Justifier qu'il existe u et v dans X tels que u < a < b < v.
- 3) Pour $c,d \in \mathbb{R}$, on considère la fonction affine $f: \left\{ \begin{array}{l} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & cx+d \end{array} \right.$ Démontrer qu'il existe un unique couple $(c,d) \in \mathbb{R}^2$ (que l'on exprimera en fonction de u et v) vérifiant f(u)=0 et f(v)=1 et vérifier alors que f est strictement croissante.

Dans toute la suite, on pose X' = f(X).

- 4) Montrer que X' vérifie la propriété (*).
- 5) En déduire par récurrence que $\forall n \in \mathbb{N}, \left\{\frac{k}{2^n}, \ k \in [0, 2^n]\right\} \subset X'$.
- 6) Soit $\alpha \in \mathbb{R}$ et $u_n = \frac{\lfloor 2^n \alpha \rfloor}{2^n}$ pour tout $n \in \mathbb{N}$. Démontrer que $(u_n)_{n \in \mathbb{N}}$ converge vers α .
- 7) En choisissant un réel α en lequel appliquer la question précédente de manière judicieuse, montrer qu'il existe $x' \in X'$ tel que f(a) < x' < f(b).
- 8) En déduire que X est dense dans \mathbb{R} .

Partie II. Ensemble dense dans [0, 1].

On pose $X = {\sqrt{n} - |\sqrt{n}|, n \in \mathbb{N}}.$

- 9) Démontrer que $X \subset [0,1]$, que X admet un minimum (que l'on explicitera) et une borne supérieure (que l'on ne cherchera pas à déterminer pour le moment).
- 10) On fixe $a, b \in [0, 1]$ tels que a < b.
 - a) Déterminer $\lim_{k\to +\infty} (b+k)^2 (a+k)^2$ et en déduire qu'il existe $(k,n)\in \mathbb{N}^2$ tels que :

$$(a+k)^2 < n < (b+k)^2$$
.

- b) Justifier que $k = |\sqrt{n}|$ et en déduire que $a < \sqrt{n} |\sqrt{n}| < b$.
- 11) Qu'en déduit-on sur l'ensemble X? Quelle est la borne supérieure de X (on justifiera)?

Partie III. Ensemble dense dans [-1,1].

On pose
$$\forall n \in \mathbb{N}, \ u_n = \sin\left(\frac{\pi\sqrt{n}}{2}\right) \text{ et } X = \{u_n, \ n \in \mathbb{N}\}.$$

- 12) Montrer que $\lim_{n \to +\infty} (\sqrt{n+1} \sqrt{n}) = 0.$
- 13) En utilisant le fait que pour $x, y \in \mathbb{R}$, $\int_{\mathbb{R}}^{y} \cos(t) dt = \sin(y) \sin(x)$, montrer que

$$\forall x, y \in \mathbb{R}, \ |\sin(y) - \sin(x)| \le |y - x|$$

et en déduire que $\lim_{n \to +\infty} (u_{n+1} - u_n) = 0$.

14) Construire deux fonctions $\varphi, \psi : \mathbb{N} \to \mathbb{N}$ strictement croissantes telles que

$$\lim_{n \to +\infty} u_{\varphi(n)} = 1 \text{ et } \lim_{n \to +\infty} u_{\psi(n)} = -1.$$

15) Justifier alors que X est dense dans [-1,1]. On pourra expliquer et illustrer le raisonnement plutôt que de le rédiger trop formellement...

PROBLÈME

ALGÈBRE: ENSEMBLES CRISTALLINS.

Dans tout le problème, on note $\Delta = \{z \in \mathbb{C} \mid |z| \leq 1\}$ l'ensemble des nombres complexes de module inférieur ou égal à 1.

2

Un ensemble $\mathcal{A} \subset \mathbb{C}$ est dit cristallin s'il vérifie les trois propriétés suivantes :

- $\begin{array}{l} \bullet \ \, \forall z_1,z_2 \in \mathcal{A}, \ \, z_1z_2 \in \mathcal{A}. \\ \bullet \ \, \forall z_1,z_2 \in \mathcal{A}, \ \, z_1^2 + z_2^2 \in \mathcal{A}. \end{array}$
- l'ensemble $A \cap \Delta$ est fini.

Dans ce cas, on note $N(\mathcal{A})$ le nombre d'éléments de $\mathcal{A} \cap \Delta$.

Les trois premières parties du problème sont indépendantes.

Partie I. Généralités

- 1) Les ensembles suivants sont cristallins (on ne demande pas de le vérifier). Préciser pour chacun d'entre eux, sans justification, la valeur de N(A).
 - a) $A = \{0\}.$
 - b) $\mathcal{A} = \mathbb{N}$.
 - c) $\mathcal{A} = \mathbb{N}^*$.
- 2) Donner, en justifiant brièvement, un exemple d'ensemble cristallin $\mathcal A$ tel que :
 - a) N(A) = 0.
 - b) N(A) = 3.
- 3) Soit \mathcal{A} un ensemble cristallin.
 - a) Montrer que $\forall z \in \mathcal{A}, \ \forall n \in \mathbb{N}^*, \ z^n \in \mathcal{A}$.
 - b) En déduire que \mathcal{A} ne possède pas d'éléments dont le module appartient à]0,1[.

Partie II. Quatre exemples d'ensembles cristallins

On note $j = e^{\frac{2i\pi}{3}}$ et on définit l'ensemble $E = \{a + bj, \ (a, b) \in \mathbb{Z}^2\}.$

- 4) E est cristallin.
 - a) Calculer $1 + j + j^2$.
 - b) Représenter E dans le plan complexe. Un dessin clair et assez grand suffit.
 - c) Montrer que $\forall z_1, z_2 \in E, z_1 z_2 \in E$ et $z_1 + z_2 \in E$.
 - d) Donner, en le démontrant, la liste des éléments de $E \cap \Delta$. Étant donné $a, b \in \mathbb{Z}$, on calculera $|a+bj|^2$ et on présentera le résultat comme une somme de deux carrés.
 - e) Déduire de ce qui précède que E est cristallin et la valeur de N(E).
- 5) On pose $E^* = E \setminus \{0\}$.
 - a) Montrer l'égalité d'ensembles $\left\{\frac{z_1}{z_2}, \ (z_1, z_2) \in E \times E^*\right\} = \left\{\alpha + \beta j, \ (\alpha, \beta) \in \mathbb{Q}^2\right\}.$
 - b) Montrer que le nombre complexe i n'appartient pas à l'ensemble de la question précédente. On admettra que $\sqrt{3} \notin \mathbb{Q}$.
 - c) Montrer que E^* est cristallin et déterminer $N(E^*)$.
- 6) On définit la partie \mathcal{R} de \mathbb{C} par $\mathcal{R} = \{z \in \mathbb{C} / z^2 \in E\}$.
 - a) Montrer que \mathcal{R} est cristallin.
 - b) Déterminer $N(\mathcal{R})$.
- 7) Expliciter des exemples d'ensembles cristallins E_2 et \mathcal{R}_2 tels que $N(E_2) = 5$ et $N(\mathcal{R}_2) = 9$.

Partie III. Quelques propriétés des racines de l'unité

On rappelle que pour $n \in \mathbb{N}^*$, $\mathbb{U}_n = \{z \in \mathbb{C} \mid z^n = 1\}$. On fixe dans cette partie $n \in \mathbb{N}^*$.

- 8) Démontrer que $\forall z_1, z_2 \in \mathbb{U}_n, z_1 z_2 \in \mathbb{U}_n$.
- 9) Carrés des racines n-ièmes de l'unité.
 - a) On suppose que n est pair. Montrer que $\left\{\omega^2,\ \omega\in\mathbb{U}_n\right\}=\mathbb{U}_{\frac{n}{2}}.$
 - b) On suppose que n est impair.
 - i) Construire $\omega \in \mathbb{U}_n$ tel que $\omega^2 = e^{\frac{2i\pi}{n}}$. On pourra poser n = 2m + 1 avec $m \in \mathbb{N}$.

3

ii) En déduire que $\{\omega^2, \ \omega \in \mathbb{U}_n\} = \mathbb{U}_n$.

- 10) Dans toute cette question, on pose $H_n = \{1 + \omega, \ \omega \in \mathbb{U}_n\}$.
 - a) Montrer que $\forall k \in [0, n-1], \left|1 + e^{\frac{2ik\pi}{n}}\right| = 2\left|\cos\left(\frac{k\pi}{n}\right)\right|.$
 - b) En déduire que pour $k \in [0, n-1]$, $0 < \left|1 + e^{\frac{2ik\pi}{n}}\right| < 1 \Leftrightarrow \begin{cases} n < 3k < 2n \\ k \neq \frac{n}{2} \end{cases}$
 - c) En déduire qu'il existe un élément de H_n dont le module appartient à]0,1[si :
 - i) n est impair tel que n > 3.
 - ii) n est pair tel que n > 6.

Partie IV. Valeurs possibles de N(A)

On admet le théorème suivant :

Soit $S \subset \mathbb{U}$ un ensemble fini non vide tel que $\forall s_1, s_2 \in S$, $s_1s_2 \in S$. Alors il existe un entier $n \in \mathbb{N}^*$ tel que $S = \mathbb{U}_n$.

- 11) Montrer que pour tout ensemble cristallin \mathcal{A} , on a $N(\mathcal{A}) \leq 13$.
- 12) Quelles sont les valeurs possibles de N(A)?

Gotthold EISENSTEIN (1823-1852) Mathématicien allemand.

« Il n'y a que trois mathématiciens qui feront date : Archimède, Newton et Eisenstein. » (citation attribuée à Gauss)

Les éléments de E sont appelés « entiers d'Eisenstein ».