1. Why Advanced Data Structure?

- 1.1. Pata Structure and Algorithm
- 1.2. Data Structure and Data-intensive Application

2. Principles of Data Structure

- 2.1. Why and How O(log n)-access Time?
- 2.2. Amortized/Competitive Analysis and Dynamic Data Structure
- 2.3. Randomized Data Structure
- 2.4. Augmented Data Structure
- 2.5. Compact Data Structure
- 2.6. Distributed Data Structure

3. Application

- 3.1. Data Streams/XML/RDF Storage Structure
- 3.2. P2P Overlay Structure
- 3.3. Indexing Moving Objects
- 3.4. What's More?

Why and How O(log n) Access Time?

Zhihong Chong

http://cse.seu.edu.cn/people/zhchong/

Outline First try: O(n (3/2)) sorting algorithm

- 2. From binary search to binary search tree; from list to skip list
- 3. From binary heap to binomial heap
- 4. From AVL Trees to B-trees, red-black tree.....

- 遊排序方法的一个下界
 - 一对逆序 i<j, a[i]>a[j]
 - 34, 8, 64, 5
 - (34, 8), (34, 5), (8, 5)
 - 一个事实: 如果一个序列的逆序个数为零, 那么这个序列 是从小到大的序列
 - 另外一个事实: 交换两个相邻的逆序对仅仅使一个序列的 逆序个数减少1
- ·定理1: 随机序列的平均逆序对数为n(n-1)/4
- •定理2:交换相邻逆序的算法平均需要 Ω (n^2)

First try: from $O(n^2)$ to $O(n^{1.5})$

Insertion sort of 16/3 ~= 5 items, items are = 1, 10, 4, 6, 15

Insertion sort of 16/3 ~= 5 items, items are = 9, 3, 12, 14, 8

Insertion sort of 16/3 ~= 5 items

First try: from $O(n^2)$ to $O(n^{1.5})$															1
Original	32	95	16	82	24	66	35	19	75	54	40	43	93	68	
After 5-sort	32	35	16	68	24	40	43	19	75	54	66	95	93	82	6 swaps
After 3-sort	32	19	16	43	24	40	54	35	75	68	66	95	93	82	5 swaps
After 1-sort	16	19	24	32	35	40	43	54	66	68	75	82	93	95	15 swaps

Voi

```
int j, i;
int gap;
for (gap = a.size() / 2; gap > 0; gap /= 2)
     for (i=gap; i < a.size(); i++)
           int tmp = a[i];
           for (j=i; j>=gap && tmp < a[j-gap]; j -= gap)
                 a[j] = a[j-gap];
           a[j] = tmp;
```

- gap=0/(2)²1)/sqq.uence
 - Insertion sort for each gap
 - For each gap, $(n/gap)^2 \times gap$ comparisons
 - Total cost is n²(∑1/gap)= O(n²)

- 1. ຼໄກ = ປາກ = ຊຸກ ສຸຊຸກ = ໄກ = ໄກ ສຸຊຸກ ສຸຊຸກ ສຸຊຸກ ຂອງ let gap=h , because Hibbard suggested the sequence.
- 2. For $h_k > N^{1/2}$, we follow the previous analysis
- 3. For $h_k <= N^{1/2}$
 - h_k -sorted,
 - For gap=h_k, preserve h_{k+1}-sorted, h_{k+2}-sorted
 - a[p-i] < a[p] if i is a multiple of h_{k+1} or h_{k+2} ,
 - For any number $i > = (h_{k+1} 1)(h_{k+2} 1) = 8h_k^2 + 4h_k$ can be expressed as a linear combination of h_{k+1} and h_{k+2}

An Example

• $h_1=1$, $h_2=3$, $h_3=7$, $h_4=15$

• k=3, $h_3=3$, (h_4 -sorted and h_5 -sorted)

• $(h_4-1)*(h_5-1)=52=1*7+3*15$

• A[100]<=A[107]<=A[122]<=A[137]<=A[152]

$$O(n^{(3/2)})$$
的由来
$$\sum_{i=1}^{t} N^2/h_i = O(N^2 \sum_{i=1}^{t} 1/h_i) = O(N^2)$$

$$h_k * (N/h_k)^2 \qquad \text{since } \sum_{i=1}^{t} 1/h_i < 2$$

$$h_k * ((h_{k+1}-1) (h_{k+2}-1) /h_k)^2$$

From cortad list to link list skin list

Search

- We search for a key x in a a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare x with y ← key(after(p))

```
x = y: we return element(after(p))
```

x > y: we "scan forward"

x < y: we "drop down"

- If we try to drop down past the bottom list, we return NO SUCH KEY
- Example: search for 78

Insertion

- To insert an item (x, o) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with i
 the number of times the coin came up heads
 - If i ≥ h, we add to the skip list new lists S_{h+1}, ..., S_{i+1}, each containing only the two special keys
 - We search for x in the skip list and find the positions p₀, p₁, ..., p_i
 of the items with largest key less than x in each list S₀, S₁, ..., S_i
 - For j ← 0, ..., i, we insert item (x, o) into list S_j after position p_j

Deletion

- To remove an item with key x from a skip list, we proceed as follows:
 - We search for x in the skip list and find the positions p₀, p₁, ..., p_i
 of the items with key x, where position p_j is in list S_j
 - We remove positions p₀, p₁, ..., p_i from the lists S₀, S₁, ..., S_i
 - We remove all but one list containing only the two special keys
- Example: remove key 34

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
 - Fact 1: The probability of getting i consecutive heads when flipping a coin is 1/2i
 - Fact 2: If each of n items is present in a set with probability p, the expected size of the set is np

- Consider a skip list with n items
 - By Fact 1, we insert an item in list S_i with probability 1/2ⁱ
 - By Fact 2, the expected size of list S_i is n/2ⁱ
- The expected number of nodes used by the skip list is

$$\sum_{i=0}^{h} \frac{n}{2^{i}} = n \sum_{i=0}^{h} \frac{1}{2^{i}} < 2n$$

 Thus, the expected space usage of a skip list with n items is O(n)

Height

- The running time of the search an insertion algorithms is affected by the height h of the skip list
- We show that with high probability, a skip list with n items has height O(log n)
- We use the following additional probabilistic fact:

Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np

- Consider a skip list with n items
 - By Fact 1, we insert an item in list S, with probability 1/2ⁱ
 - By Fact 3, the probability that list S_i has at least one item is at most n/2ⁱ
- By picking $i = 3\log n$, we have that the probability that $S_{3\log n}$ has at least one item is at most

$$n/2^{3\log n} = n/n^3 = 1/n^2$$

Thus a skip list with n items has height at most $3\log n$ with probability at least $1 - 1/n^2$

Search and Update Times

- The search time in a skip list is proportional to
 - the number of drop-down steps, plus
 - the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are O(log n) with high probability
- To analyze the scan-forward steps, we use yet another probabilistic fact:

Fact 4: The expected number of coin tosses required in order to get tails is 2

- When we scan forward in a list, the destination key does not belong to a higher list
 - A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scanforward steps is 2
- Thus, the expected number of scan-forward steps is O(log n)
- We conclude that a search in a skip list takes O(log n) expected time
- The analysis of insertion and deletion gives similar results

There are 4 cases in all, choosing which one is made by seeing the direction of the first 2 nodes from the unbalanced node to the newly inserted node and matching them to the top most row.

Root is the initial parent before a rotation and Pivot is the child to take the root's place.

B-Tree: Minimization Factor t = 3, Minimum Degree = 2, Maximum Degree = 5

- 1. The data items are sorted at leaves
- The nonleaf nodes stores up to M-1 key to guide the searching
- The root is either a leaf or has between two and M children
- 4. All nonleaf nodes except the root have between \[\lambda M/2 \rightarrow
- 5. All leaves are at the same depth and have between L/2 and L data items

- 1. And Red Black-tree 1. Anode is either red or black.
- 2. The root is black
- 3. All leaves are black.
- Both children of every red node are black.
- 5. Every <u>simple path</u> from a given node to any of its descendant leaves contains **the same number of black nodes.**

Deletion

- 1. this reduces to the problem of deleting a node with at most one non-leaf child.
 - deleting a red node
 - the deleted node is black and its child is red
 - both the node to be deleted and its child are black

And R-tree

R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING

Antonın Guttman University of California Berkeley

Figure 1: Hilbert Curves of order 1, 2 and 3

Hilbert curves, first and second orders

Hilbert curves, first to third orders

3-D Hilbert curve with color showing progression

Figure 2: Data rectangles organized in a Hilbert R-tree

Figure 3: The file structure for the previous Hilbert R-tree

• ReFreemaphinary heap to binomial heap

Re-heap down

(a) Original tree: not a heap

(b) Last element (25) moved up

(c) Moved up again: tree is a heap

(a) Original tree: not a heap

(b) Root moved down (right)

(c) Moved down again: tree is a heap

(a) Heap in its logical form

(b) Heap in an array

A binomial tree B_k is an ordered tree defined recursively.

- B_0 consists of a single node.
- For $k \ge 1$, B_k is a pair of B_{k-1} trees, where the root of one B_{k-1} becomes the leftmost child of the other.

Lemma A For all integers $k \ge 0$, the following properties hold:

- 1. B_k has 2^k nodes.
- 2. B_k has height k.
- 3. For i = 0, ..., k, B_k has exactly $\binom{k}{i}$ nodes at depth i.
- 4. The root of B_k has degree k and all other nodes in B_k have degree smaller than k.
- 5. If $k \geq 1$, then the children of the root of B_k are $B_{k-1}, B_{k-2}, \cdots, B_0$ from left to right.

Corollary B The maximum degree of an n-node binomial tree is $\lg n$.

Implementation of a Binomial Heap

Keep at each node the following pieces of information:

- a field key for its key,
- a field *degree* for the number of children,
- a pointer *child*, which points to the leftmost-child,
- a pointer *sibling*, which points to the right-sibling, and
- a pointer p, which points to the parent.

The roots of the trees are connected so that the sizes of the connected trees are in decreasing order. Also, for a heap H, head[H] points to the head of the list.

- •How count the cost of n insertions?
 - •Amortized analysis(分摊代价)

An O()