Calc₆

Sven Köppel

koeppel@fias.uni-frankfurt.de

Generation date: Thursday 20th February, 2014, 22:14

1 The surface issue

These calculations point out a missing surface term when doing the plausibility check for the holographic approach done in [NS11.2013].

I work in D=4+n dimensions, but any equation must hold for n=0, too. I follow the Rizzo2006 deviation (also performed in Calc1) for deriving an ODE for the potential V(r) in $g_{00}=1-V(r)$ SMM like metrics. Having given only $\rho(r)$, the continuity equation $T_{;B}^{AB}=0$ gives

$$T_i^i = \rho + \frac{r}{n+2} \partial_r \rho. \tag{1}$$

Which then lead to the first order differential equation

$$V' + \frac{n+1}{r}V = \frac{1}{M_*^{n+2}} \frac{2r\rho}{n+2}.$$
 (2)

The Ansatz $V(r) = r^{-(n+1)} \left(C \int_{-\infty}^{r} x^2 \rho(x) dx + D \right)$ solves equation 2. It is simple to derive, as done in Calc3 and Calc4,

$$V(r) = \frac{1}{r^{n+1}} \left(\frac{2}{(n+2)M_*^{n+2}} \int_{c_1}^r x^{n+2} \rho(x) dx + c_2 \right).$$
 (3)

It is important to remark that the integral in 3 only looks like the radial part of an partially performed spherical integration, but *there is no surface term*, as there would be if the integral really would be $m(r) = \int d^{n+3} \vec{r} \rho(\vec{r})$. That is,

$$\int d^{n+3}\vec{r}\,\rho(\vec{r}) = \int dr\,\left(\Omega_{n+2}r^{n+2}\right)\,\rho(r),\tag{4}$$

With $\Omega_{n+2}r^{n+2}$ being the (n+2) dimensional surface (of an n+3 dimensionall sphere)

$$\Omega_{n+2} = 2\frac{\pi^{\frac{n+3}{2}}}{\Gamma\left(\frac{n+3}{2}\right)}\tag{5}$$

The missing Ω_{n+2} in eq. 3 compared to 4 stands out. This is important, because the holographic approach depends on that property of 4.

1.1 NC in *D* dim

Rizzo introduces the reduced Planck scale M_* by $M_P^2 = V_n M_*^{n+2}$, with $v_n = (2\pi R_c)^n$ the volume of the compacted dimensions as tori with radius R_c . Thus the $n \to 0$ limit gives $M_*^2 = M_P^2 = 1/G$. Using the gaussian $\rho(r)$, Rizzo (and I in Calc3) got

$$V(r) = \frac{M}{M_*^{n+2}} \frac{1}{(n+2)\pi^{(n+3)/2}} \frac{1}{r} \Gamma\left(\frac{3+n}{2}; \frac{r^2}{4\theta}\right)$$
 (6)

In the $\theta, n \to 0$ limit, $\Gamma(\frac{3}{2}; \infty) = \sqrt{\pi}/2$ and therefore we end with

$$V(r) = \frac{GM}{4\pi r} \tag{7}$$

1.2 h(r) **Profile**

In [NS 07.11.2013], the $\theta \to h(r)$ smearing function is introduced, so $\partial_r \theta = \delta \to \partial_r h$ enters a smeared density:

$$\rho(r) = \frac{M}{4\pi r^2} \frac{\mathrm{d}h}{\mathrm{d}r} \quad \xrightarrow{\mathrm{D=n+2 \ dimensions}} \quad \rho(r) = \frac{M}{\Omega_{n+2} r^{n+2}} \frac{\mathrm{d}h}{\mathrm{d}r} \tag{8}$$

Since $\Omega_2 = 4\pi$, this seems to be true. I showed already in Calc2 that an integration (like in eq 4) over that class of $\rho(r)$ gets trivial in *any* dimension.

Lets apply the solution for V(r) at this density. Since that integration is not a *full* one, it allows the surface constant Ω_{n+2} to enter the metric. We end up with (already showed in Calc4)

$$V(r) = \frac{2}{n+2} \frac{M}{M_*^{n+2}} \frac{1}{\Omega_{n+2}} \frac{h(r)}{r^{n+1}}.$$
 (9)

This equation cannot produce the SMM value $V(r)=\frac{2GM}{r}$ any more, because nothing kills the $\Omega_2=4\pi$. Indeed, if we use the Schwarzschild-Tangherlini density $\rho(r)=M/(\Omega_{n+2})\delta(r)$ and apply it to eq. 3, [Reall-Review Section 3.2]

$$V(r) = \frac{1}{r^{n+1}} \left(\frac{2}{(n+2)M_*^{n+2}} \frac{M}{\Omega_{n+2}} \int dr \delta(r) \right) = \frac{\mu}{r^{n+2}}, \quad \mu = \frac{16\pi GM}{(n+2)\Omega_{n+2}}$$
(10)

TODO: Why μ ?. If we now send $n \to 0$, this does not reproduce SMM at all.

The Planck length $M_P^2 = V_n M_*^{n+2}$ is equal to M_* in n = 0 dimensions. Since $M_P = 1/\sqrt{G}$ Newtons constant $G = 1/M_*^2$ is restored. Thus, from eq. we get for n = 0

$$V(r) = \frac{GM}{r} \frac{1}{4\pi} \tag{11}$$

Conclusion: There seems always the factor 8π to be missing. There seems to be some $G\leftrightarrow 8\pi G$ issue.