EXERCICE 1 (Questions de cours)

Donner l'énoncé ainsi que la démonstration des résultats suivants.

- 1. Proposition concernant le centre d'un groupe G.
- 2. Description des sous-groupes additifs de \mathbb{Z} .
- 3. Proposition concernant l'image directe et réciproque d'un sous-groupe par un morphisme.
- 4. Proposition concernant le groupe des unités.
- 5. Proposition concernant le noyau d'un morphisme d'anneaux.
- 6. Proposition concernant l'anneau $\mathbb{K}[X]$.

Exercice 2

Montrer que $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}\$ est un corps.

Exercice 3

Bob a des poules dans sa maison de campagne. S'il divise le nombre de ses poules par 5, il reste 4 poules. S'il le divise par 8, il en reste 6 et s'il le divise par 9, il en reste 8. Quel est le plus petit nombre de poules que Bob peut avoir ?

Exercice 4

Résoudre les équations suivantes d'inconnue x:

- 1. $\bar{5}x = \bar{2}$ dans $\mathbb{Z}/7\mathbb{Z}$ puis dans $\mathbb{Z}/10\mathbb{Z}$.
- 2. $x^2 = \bar{3} \text{ dans } \mathbb{Z}/5\mathbb{Z} \text{ puis dans } \mathbb{Z}/11\mathbb{Z}.$
- 3. $x^2 + \bar{3}x + \bar{1} = \bar{0} \text{ dans } \mathbb{Z}/7\mathbb{Z}.$
- 4. $x^2 + x = \overline{2}$ dans $\mathbb{Z}/9\mathbb{Z}$, puis dans $\mathbb{Z}/21\mathbb{Z}$.

Exercice 5

Soit $p \in \mathbb{N}$ un nombre premier et soit $a, b \in \mathbb{Z}/p\mathbb{Z}$. Montrer que $(a+b)^p = a^p + b^p$.

Exercice 6

Soit A un anneau commutatif.

- 1. Si A est un corps, prouver que A est intègre. La réciproque est-elle vraie ?
- 2. Supposons que A est de plus un anneau fini, prouver que, dans ce cas, la réciproque est vraie.

Exercice 7

Soit G un groupe cyclique et H un sous-groupe de G. Prouver que H est un groupe cyclique.

Exercice 8

Soit $n \in \mathbb{N}^*$, on note G l'ensemble des permutations $\sigma \in \mathfrak{S}_n$ qui vérifient

$$\forall 1 \le k \le n, \, \sigma(n+1-k) = n+1-\sigma(k).$$

Montrer que G est un sous-groupe de \mathfrak{S}_n .

Exercice 9 (Relation de conjugaison)

Soit G un groupe. On définit une relation binaire \sim sur G pour tous $x,y\in G$ par

$$x \sim y \iff \exists g \in G, \ y = g^{-1}xg.$$

Montrer que \sim est une relation d'équivalence sur G. Cette relation est appelée $relation\ de\ conjugaison.$

Exercice 10

On note A l'ensemble des matrices de la forme $\begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix}$, avec $\lambda \in \mathbb{R}$ un réel. Montrer que A est stable par différence et produit. Est-ce un sous-anneau de $\mathcal{M}_2(\mathbb{R})$?

Exercice 11

On note A l'ensemble des matrices $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, avec $a, b \in \mathbb{Z}$ deux entiers.

- 1. Montrer que A est un sous-anneau de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer U(A), le groupe des unités de A.

Exercice 12

Pour tous $x, y \in]-1, 1[$, on pose

$$x \oplus y = \frac{x+y}{1+xy}.$$

- 1. Montrer que \oplus est une loi de composition interne sur] -1,1[.
- 2. Montrer que $(]-1,1[,\oplus)$ est un groupe commutatif.

Exercice 13

Pour tous $(x, y), (x', y') \in \mathbb{R}^* \times \mathbb{R}$, on pose

$$(x,y) \star (x',y') = (xx',xy'+y).$$

- 1. Montrer que $(\mathbb{R}^* \times \mathbb{R}, \star)$ est un groupe. Est-il abélien ?
- 2. Simplifier $(y, n)^n$ pour tous $(x, y) \in \mathbb{R}^* \times \mathbb{R}$ et $n \in \mathbb{N}$.