## Week#2 SST file size of RocksDB

# Sangeun Chae 2018314760

#### 1. INTRODUCTION

RocksDB 는 LSM tree 의 형태로 데이터를 저장한다. RocksDB 는 크게 메모리 상에 저장되는 memtable 과디스크(SSD)에 저장되는 SSTable, 그리고 Log 영억으로이루어져 있다. SSTable 은 memtable 이 가득차서 더 이상 변경될 수 없는 immutable 상태로 변환된 데이터가 디스크로이동하여 저장되는 형태이다. 이 과정에서 레벨 0 에서 정해진 SSTable의 파일 크기가 특정 임계 값을 넘어가게 되면, 레벨 1로 중복되는 KV의 값을 병합(Compaction)하는 과정을거친다. 이 과정에서, 데이터가 실제 스토리지에 쓰여지는양에 비해, 더 많은 쓰기 작업이 발생하게 되고, 이를 write amplification 이라 한다. 따라서 이번 랩에서는, SST file 의크기에 따른 write amplification의 값을 측정해보고, 원인을 분석할 예정이다.

#### 2. METHODS

2MB, 8MB 16MB 의 크기 순서대로 SST file 의 크기를 설정하고, 메모리 버퍼인 memtable 의 크기도 SST file 의 크기와 동일하게 설정하여, 3 번의 DB Bench 를 수행한다. 각각의 DB Bench 를 통해 생성된 각각의 LOG file 을 저장하고, 각각의 LOG file 을 비교 대조한다.

#### 3. Performance Evaluation

#### 3.1 Experimental Setup

| Туре   | Specification                                                 |
|--------|---------------------------------------------------------------|
| OS     | Ubuntu 20.04.3 LTS                                            |
| CPU    | AMD Ryzen 7 5800X 8-Core Processor<br>(VMware support 4 Core) |
| Memory | 4GB                                                           |
| Kernel | Linux ubuntu 5.11.0.34 -generic                               |
| Disk   | VMware Virtual 80GB                                           |

Table 1: System setup

| Туре                         | Configuration            |
|------------------------------|--------------------------|
| Bench Type                   | Read random write random |
| Direct flush compaction      | True                     |
| Direct read                  | True                     |
| Duration                     | 3600s                    |
| Max byte for level base      | 33554432 Bytes           |
| Max bytes for level multiply | 5                        |
| SST file size                | 2M, 8M, 16M each         |
| Memory buffer size           | 2M, 8M, 16M each         |

Table 2: Benchmark setup

### 3.2 Experimental Results

#### 3.1 Results



Figure 1: Write Amplification per SST file size

[Figure 1]은 SST file size 별로 모든 level 에서 일어나는 write amplification 이 일어나는 양의 합계를 그래프로 나타낸 것이다. SST file 의 크기가 2M 일 때 9.6GB, 8M 일 때 3.6GB, 마지막으로 16M 일 때 2.5GB 만큼 write amplification 이 일어난다.



Figure 2: Read and Write Quantity in Disk

[Figure 2] 은 SST file size 별로 모든 level 에서 일어나는 read 와 write 의 양의 합계를 그래프로 나타낸 것이다. SST file 의 크기가 2M 일 때 read 와 write 가 각각 2.2GB, 2.2GB, 8M 일 때 read 와 write 의 크기가 각각 0.7GB, 0.6GB, 마지막으로 16M 일 때 read 와 write 의 크기가 각각 0.5GB, 0.4GB 만큼 일어난다.

#### 3.2 Analysis

[Figure 1]의 결과를 분석하면, SST file size 가 증가할수록, write amplification 되는 양이 줄어든다. 하지만 compaction 과정에서는, SST file 의 크기가 증가할수록, 쓰여지는 데이터의 크기가 증가한다. 그 이유는, overlap 된 키가 존재하는 모든 SST file 에 대한 쓰기 작업이 이루어져야 하기 때문이다. 따라서 SST file size 이 비례하여 write amplification 이 증가한다. 아래의 그림은 해당 과정의 예시이다.



Figure 3: Compaction (Write Amplification)

[Figure 3] 은 compaction 이 일어나는 과정을 도식이다. Level 2 에서 50 에서 100 사이의 key를 저장하고 있는 SST file 이 level 3 에 compaction 되는 과정에서, 50 에서 100 의 키를 저장하고 있는 level3 의 모든 SST file 에 대해서 쓰기 작업이 이루어진다. 따라서 SST file size 에 비례하여 write amplification 이 증가하는 것이다.

하지만 이번 랩의 실험결과는 위의 원리와 상반되는 결과를 보여준다. 그 이유는 memory buffer size 가 write amplification 감소의 원인으로 작용하기 때문이다. 해당 실험에서는, memory buffer 의 크기를 SST file size 와 동일하게 설정했다. 따라서, SST file 의 size 가 클수록, memory buffer 의 크기도 커지고, memory buffer hit ratio 가 증가하게 된다. 이에 대한 결과는 [Figure 2]에서 확인할 수 있다. SST file 의 크기가 증가할 수록, Disk 의 Read 와 Write 의 양이 줄어듦을 알 수 있다. 이는 Memory buffer 의 hit ratio 가 높다는 것과 직결한다.



Figure 4: Compaction Time per SST file size



Figure 5: Compaction Count per SST file size

Memory buffer 에서 hit 되는 데이터가 많아 질수록, Memory buffer flush 가 적게 일어나며, 이는 Compaction 횟수의 감소에 직결된다. 이에 대한 근거로, [Figure 4], [Figure 5] 가 있다. [Figure 4]를 보면 SST file size 가 증가할수록, Compaction 과정에 수행되는 시간이 감소한다. 또한, [Figure 5]을 통해 알 수 있듯이, SST file size 가 증가할수록, Compaction 이 수행되는 횟수가 감소함을 알 수 있다.

결론적으로, write amplification 에 영향을 미치는 요소 중, SST file size 크기에 비해 memory buffer hit ratio 의 영향이 더 컸기 때문에 이러한 결과가 나왔음을 알 수 있다.

#### 4. Conclusion

Write amplification 은 실제로 스토리지에 쓰이는 데이터에 비해, 쓰기 작업이 많이 발생하기 때문에 생긴다. Write amplification 이 일어나는 원인에는 다양한 이유가 있지만, 이번 랩에서는 SST file 의 크기가 어떠한 영향을 끼치는지 알아보았다. 하지만, SST file 의 크기와 memory buffer 의 크기를 동등하게 설정하여 DB Bench 를 수행한 결과, SST file 의 크기의 증가가 write amplification 의 증가에 끼치는 영향에 비해 memory buffer 에서 hit 하는 데이터의 양의 증가가 write amplification 의 감소에 끼치는 영향이 더욱 크게 작용했다. 다시 말해, SST file size 에 write amplification 의 정도가 비례하는 것에 비해, Memory buffer size 증가에 감소하는 write amplification 의 양이 더욱 컸음을 알 수 있다.

#### 5. REFERENCES

[1] https://github.com/meeeejin/SWE3033-F2021/blob/main/report-submission-guide.md