Wednesday, October 21, 2020

Passed Salution Neview

5. This exercise explores how, in a mixed-strategy equilibrium, players must put positive probability only on best responses. Consider the game in the following figure.

フリ ラメース ムエ ラ メ ー ハ	1	L	M	R
	U		(x), 0	3 , 0
	C	0,(x)	3 , 0	0,(2)
	D	0,0	0, 2	2 0

Compute the pure-strategy and mixed-strategy Nash equilibria for this game, and note how they depend on x. In particular, what is the difference between x > 1 and x < 1?

For both X71 and X61, NE=(V,L). When X61 there is also 2(0,.5,.5), (0,.5,.5)} whes x>2

this Whale question is very confusting if x22 or X40

IF all three Played... [;=[z=(1-x, 1/z, 1/z)]

symmetric Jame

IF X L O, U, L is dominated which forces \:\f_=(0, 1/2, 1/2)

IF O \(\times \times \) L is Pure Eq and (1-x, \(\times \), \(\times \) is Mixed

I inffally had the basis, but aid not considerall

Cosses