Rockchip Developer Guide HAL DDR ECC

文件标识: RK-KF-YF-169

发布版本: V1.1.0

日期: 2023-03-27

文件密级: □绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标、由其各自拥有者所有。

版权所有 © 2023 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

本文主要描述了HAL 裸系统下DDR ECC的原理和使用方法。

产品版本

芯片名称	内核版本
RK356X	HAL

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V1.0.0	何智欢	2021-03-29	初始版本
V1.1.0	何智欢	2023-03-27	增加 DDR ECC 错误注入说明

目录

Rockchip Developer Guide HAL DDR ECC

- 1. 名词解释
- 2. 简介
- 3. 开启DDR ECC
- 4. HAL里获取DDR ECC信息
 - 4.1 配置
 - 4.2 代码和API
 - 4.3 使用范例
- 5. DDR ECC错误注入
 - 5.1 代码和API
 - 5.2 使用范例
- 6. Note

1. 名词解释

本文档的简写	本文档内释义
ECC	Error Correcting Code
SEC ECC	Single Bit Single Error Correction Code
DED ECC	Double Error Detection Error Correction Code
DDR	Double Data Rate SDRAM
CE	Correctable Error,指单bit可检测可纠正性错误
UE	Uncorrectable Error,指双bit可检测不可纠正性错误
CS	chip select
Row	特指 DDR row 地址
Chip ID	特指 DDR chip id,未激活功能,请忽略
BankGroup	特指 DDR4 Bank Group 地址,其他DDR类型请忽略
Bank	特指 DDR bank 地址
Col	特指 DDR column 地址
Bit position	特指 CE 纠正的bit位

2. 简介

ECC 指 Error Correcting Code ,而DDR ECC 是对DDR数据进行错误检查和纠正的。RK3568只支持 SEC/DED ECC。目前仅支持SideBand ECC,即在DDR数据通道旁增加一个专门存放ECC数据的DDR通 道。32bit位宽的DDR至少需要7bit位宽的ECC,16bit位宽的DDR至少需要6bit位宽的ECC,8bit位宽的 DDR至少需要5bit位宽的ECC。PCB设计请参考带DDR ECC的设计,如 RK_EVB6_RK3568_DDR3P416_ECCP216_DD6_V10。

3. 开启DDR ECC

对于满足SideBand ECC要求的DDR通道,loader会识别出这种设计,并自动使能DDR ECC。

4. HAL里获取DDR ECC信息

4.1 配置

在相应工程的 hal_conf.h 下使能DDR ECC模块。如rk3568,在project/rk3568/src/hal_conf.h添加如下代码:

```
#define HAL_DDR_ECC_MODULE_ENABLED
```

4.2 代码和API

- lib/hal/src/hal_ddr_ecc.c
- lib/hal/inc/hal_ddr_ecc.h

```
/* 初始化DDR ECC相关信息 */
HAL_Status HAL_DDR_ECC_Init(struct DDR_ECC_CNT *p);

/* 获取DDR ECC累计的统计信息,包括单bit可纠正错误的数量和双bit可检测不可纠正错误的数量 */
HAL_Status HAL_DDR_ECC_GetInfo(struct DDR_ECC_CNT *p);
```

4.3 使用范例

上层软件可以用两种方式获取DDR ECC信息:软件轮询和硬件中断。

• 软件轮询方式

示例如下:

```
struct DDR_ECC_CNT eccInfo;
void HAL_DDR_ECC_TEST_POLL(void)
   uint32_t cpuID;
   cpuID = HAL_CPU_TOPOLOGY_GetCurrentCpuId();
   if (cpuID == 0) {
                                     /* 使用一个cpu、线程或其他方式, 初始化
并轮询DDR ECC状态 */
       HAL_DDR_ECC_Init(&eccInfo);
                                      /* 初始化DDR ECC信息之后,轮询获取DDR
       while (1) {
ECC信息 */
          HAL_DDR_ECC_GetInfo(&eccInfo); /* 累计的CE和UE数量存放在结构体eccInfo
中 */
                                      /* 轮询间隔时间,可用其他让cpu空闲的API
          HAL_DelayMs(50);
       }
   }
}
```

• 硬件中断方式

```
struct DDR_ECC_CNT eccInfo;
void HAL_DDR_ECC_IRQHandler(uint32_t irg)
   HAL_DDR_ECC_GetInfo(&eccInfo);
}
void HAL_DDR_ECC_TEST_INT(void)
   uint32_t cpuID;
   cpuID = HAL_CPU_TOPOLOGY_GetCurrentCpuId();
   if (cpuID == 0) {
                                                                 /* 使用一
个cpu、线程或其他方式,初始化DDR ECC相关 */
       HAL_DDR_ECC_Init(&eccInfo);
       HAL_GIC_SetHandler(DDR_ECC_CE_IRQn, HAL_DDR_ECC_IRQHandler); /* 挂载
CE中断服务子程序 */
       HAL_GIC_SetHandler(DDR_ECC_UE_IRQn, HAL_DDR_ECC_IRQHandler); /* 挂载
UE中断服务子程序 */
                                                                 /* 使能
       HAL_GIC_Enable(DDR_ECC_CE_IRQn);
CE中断服务 */
                                                                 /* 使能
      HAL_GIC_Enable(DDR_ECC_UE_IRQn);
UE中断服务 */
   }
```

• 若检测到ECC出错,则打印获取的ECC信息。

```
# 检测到CE (可纠正错误) 2个
[HAL WARNING] DDR ECC error: CE, 2 errors, the last is in DDR cs 0, Row 0xa0, ChipID 0x0, BankGroup 0x0, Bank 0x5, Col 0x318, Bit position 0x100000000

# 检测到UE (不可纠正错误) 1个
[HAL ERROR] DDR ECC error: UE, 1 errors, the last is in DDR cs 0, Row 0xa0, ChipID 0x0, bankGroup 0x0, Bank 0x5, Col 0x354
```

5. DDR ECC错误注入

提供一种DDR ECC错误注入的方式,用于验证DDR ECC的功能。开启DDR ECC错误注入功能后,对特定物理地址的写操作将会触发DDR ECC CE/UE。

5.1 代码和API

- lib/hal/src/hal_ddr_ecc.c
- lib/hal/inc/hal_ddr_ecc.h

```
/* 开启DDR ECC错误注入功能 */
HAL_Status HAL_DDR_ECC_PoisonEnable(struct DDR_ECC_CNT *p);
/* 关闭DDR ECC错误注入 */
HAL_Status HAL_DDR_ECC_PoisonDisable(struct DDR_ECC_CNT *p);
```

DDR ECC 默认注入的错误类型是 单bit可检测可纠正性错误(CE),若想修改为 双bit可检测不可纠正性错误(UE),修改如下:

5.2 使用范例

```
struct DDR_ECC_CNT eccInfo;
void DDR_ECC_PoisonTriger(struct DDR_ECC_CNT *priv)
   uint32_t volatile *p = NULL;
   printf("DDR_ECC debug: eccPoisonAddr = 0x%llx\n", priv->eccPoisonAddr);
    if (priv->eccPoisonAddr) {
        p = (uint32_t volatile *)priv->eccPoisonAddr;
        *p = 0x5aa5f00f; /* 对错误注入的物理地址进行写操作 */
        HAL_DCACHE_CleanInvalidate(); /* 若操作的地址属性是cache的, 需flush Dcache确保
写操作成功 */
        printf("DDR_ECC debug: %p = 0x%x, reread = 0x%x n", p, *p, *p);
    }
}
void DDR_ECC_GetInfo(void)
    HAL_DDR_ECC_GetInfo(&eccInfo);
}
void HAL_DDR_ECC_TEST_POLL(void)
   uint32_t cpuID;
   uint32_t i = 10;
   cpuID = HAL_CPU_TOPOLOGY_GetCurrentCpuId();
    if (cpuID == 0) {
        HAL_DDR_ECC_Init(&eccInfo);
        HAL_DDR_ECC_PoisonEnable(&eccInfo);/* 开启DDR ECC错误注入功能, 错误注入的物理地
址将保存在eccInfo.eccPoisonAddr */
       while (i) {
           DDR_ECC_GetInfo();
           HAL_DelayMs(50);
           i--;
```

6. Note

1. DDR ECC 会使用 [0x100000, 0x1F000] 的DDR空间, 若此空间未映射MMU, 则需要添加映射。

```
--- a/lib/CMSIS/Device/RK3568/Source/Templates/mmu_rk3568.c
+++ b/lib/CMSIS/Device/RK3568/Source/Templates/mmu_rk3568.c
@@ -41,6 +41,8 @@ void MMU_CreateTranslationTable(void)
    // Define dram address space
    ...
+ MMU_TTSection(MMUTable, 0x100000, 0x100000 >> 20, Sect_Normal);
    ...
```

2. 错误注入的物理地址空间在HAL可能并没有映射,需增加映射。如地址是0x13576c20,则增加如下 修改

```
--- a/lib/CMSIS/Device/RK3568/Source/Templates/mmu_rk3568.c
+++ b/lib/CMSIS/Device/RK3568/Source/Templates/mmu_rk3568.c
@@ -41,6 +41,8 @@ void MMU_CreateTranslationTable(void)
    // Define dram address space
    ...
+ MMU_TTSection(MMUTable, 0x13500000, 0x1000000 >> 20, Sect_Normal);
    ...
```

3. DDR ECC 双bit可检测不可纠正性错误(UE)会触发CPU data abort异常。HAL默认无处理,若想看到DDR ECC UE的出错打印,可增加如下修改: