НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 4.3.2 «Дифракция света на ультразвуковой волне в жидкости (Горизонтальная щель)»

Овсянников Михаил Александрович студент группы Б01-001 2 курс ФРКТ

г. Долгопрудный 2022 г.

Цель работы: изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

В работе используются: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

Теоретические сведения

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x)$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m\ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\varphi = knL = \varphi_0(1 + m\cos\Omega x)$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda$$

Этот эффект проиллюстрирован на рисунке 1.

Зная положение дифракционных максимумов, легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m$$

Скорость ультразвуковых волн в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu$$

Рис. 1. Дифракция световых волн на акустической решетке

Экспериментальная установка

Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2. Схема для наблюдения дифракции на акустической решетке

Фокусное расстояние объектива O_2 : F=28 см, цена деления винта микроскопа – 4 мкм, погрешность измерений примем равной $\sigma=1$ деление, или 4 мкм. Полоса пропускания фильтра $\lambda=6400\pm200$ Å.

Ход работы

I. Определение скорости ультразвука по дифракционной картине

- 1. Соберем схему согласно рисунку. Отцентрируем систему и установим ширину щели равной 25 мкм.
- 2. Получим дифракционную картину.

Перемещая излучатель с помощью лимба, оценим по порядку величины длину УЗ волны как удвоенное расстояние между наиболее четкими картинами: $\Lambda=2\cdot 53$ дел $\cdot 10\frac{\text{мкм}}{\text{дел}}=1,06$ мм.

3. Определим положения дифракционных полос. С помощью перекрестия и микрометрического винта, установленного на выходе прибора, определим координату Y каждой светлой полосы в делениях винта.

Проделаем данную операцию для трех частот. Результаты занесем в таблицу 1.

m	Y, дел
ν =	= 1,044 МГц
-4	-127
-3	-93
-2	-65
-1	-34
0	0
1	31
2	69
3	104
4	139

m	Y, дел
ν =	= 1,504 МГц
-2	-80
-1	-45
0	0
1	43
2	85

$\lceil m \rceil$	<i>Y</i> , дел	
$\nu=2,014~\mathrm{M}\Gamma$ ц		
-1	-64	
0	0	
1	71	

Таблица 1. Результаты измерений

4. Построим на одном листе графики Y = Y(m) для каждой частоты. Все на графике 1.

Рис. 3. Зависимость Y(m) для разных частот

Для прямых на рисунке получаем коэффициенты наклона:

$$k_1 = (33, 1 \pm 0, 5)$$
 дел $k_2 = (41, 8 \pm 0, 9)$ дел $k_3 = (68 \pm 2)$ дел

5. Рассчитаем длину УЗ-волны и скорость звука для каждой частоты.

$$\Lambda = \frac{mf\lambda}{l_m} \qquad \qquad v = \Lambda \nu$$

ν , 1,044 МГц			
Λ , mm	$1,36 \pm 0,05$		
v, м/с	1420 ± 50		
ν , 1,504 МГц			
Λ , MM	$1,09 \pm 0,04$		
v, м/с	1640 ± 60		
ν , 2,014 МГц			
Λ , MM	0.66 ± 0.03		
v, м/с	1330 ± 60		

Таблица 2. Обработанные результаты

Как видно, результаты достаточно близки друг к другу и почти совпадают с табличными значениями: $v=1500~{\rm m/c}.$

II. Определение скорости ультразвука методом темного поля

1. Для перехода к методу темного поля отодвинем микроскоп от щели и разместим в промежутке между ними дополнительную линзу. Поднимем излучатель над кюветой и опустим в воду квадратную сетку. Отцентрируем систему, чтобы сетку было четко видно в мик-

роскопе. Рассчитаем цену деления в этом эксперименте, зная, что размер квадратика сетки 1 мм. Получаем $0,14\frac{\text{мм}}{\text{дел}}$

- 2. Установим ширину щели 25 мкм. Уберем калибровочную сетки и опустим излучатель. Постараемся увидеть звуковую решетку.
- 3. Закроем нулевой дифракционный максимум проволочкой. Поле зрения микроскопа затемняется.
- 4. Меняя частоту, будем наблюдать акустическую решетку.
- 5. Зафиксируем с помощью окулярной шкалы микроскопа координаты первой и последней из хорошо видимых темных полос и количество светлых промежутков между ними. Проделаем это для 4 разных частот. Результаты пишем в таблицу 3.

ν , М Γ ц	Координата	Координата	Количество
ν , MH μ	верхней полосы	нижней полосы	светлых полос
1,0056	60	0,0	12
1,1900	68	0,0	20
1,3700	53	0,1	14
1,6500	67	0,0	20

Таблица 3. Результаты

6. Для каждой частоты рассчитаем длину Λ УЗ-волны. Посчитанные значения заносим в таблицу 4.

ν , М Γ ц	Λ , mm
1,0056	1,412
1,1900	1,190
1,3700	1,060
1,6500	0,938

Таблица 4. Зависимость длины волны от частоты

7. Построим график зависимости $\Lambda(1/\nu)$.

Рис. 4. График зависимости $\Lambda(1/\nu)$

По наклону определим скорость ультразвука.

$$v = \Lambda \nu = k = (1, 46 \pm 0, 09) \text{ мм} \cdot \text{М} \Gamma$$
ц = $(1460 \pm 90 \text{ м/c})$.

Значение близко к тому, что было найдено ранее. Вдобавок в пределах погрешностей оно совпадает с табличным.

Вывод

В данной работе мы изучили дифракцию света на синусоидальной акустической решетке и пронаблюдали фазовую решетку методом темного поля. Помимо этого было определено значение скорости ультразвука в воде: $(1460\pm130)~\text{m/c}$, что достаточно близко к табличному значению в 1500~m/c и в пределах погрешности вовсе совпадает. Присутствуют ошибки как систематические, так и случайные. Больший вклад вносят последние. Однако общая ошибка составляет не более 9%, что является хорошим результатом. Все эти ошибки связаны с несовершенством техники измерения.