Malicious Twitter Bot Type Detection

chrome

Tram Ngoc Le (Jennie)

Outline

Problem Statement

Solution Proposal

Data Processing

Methodology

Result Analysis

Conclusion

Although Twitter is able to identify most of the bot accounts, the company could have done better in Malicious Bots Classification.

How can Twitter classify different types of malicious bots with better accuracy?

Solution Proposal

Create a Better Method that Helps Twitter Detect and Classify Malicious Bot Types

Our Mindset and Workflow

- Classify major types of bad bots
- Crawl features from bot accounts
- Build models to test bad bots'
 Behavior and User Profile features
- Leverage Natural Language to find keywords from tweets
- Build keyword dictionaries for each type
- Add a new indicator (TFIDF) and test if the dictionaries work

Bot Repository: Get **900** IDs of bots in each group, and **2700** IDs in total.

https://botometer.iuni.iu.edu/bot-repository/datasets.html

1. cresci-2017

Description: A dataset of (i) genuine, (ii) traditional, and (iii) social spambot Twitter accounts, annotated by CrowdFlower contributors. Released in CSV format.

2. pronbots-2019

Description: Pronbots shared by Andy Patel (github.com/r0zetta/pronbot2).

Malicious Bot	Description
Fake Follower	Robot or inactive accounts that inflate number of followers of another account.
Scam Bot	Accounts that advertise scam sites.
Spam Bot	Accounts that spam different kinds of information by sending messages with the same content multiple times.

Figure out what features we want to analyze in our model.

Category	Features Will Be Used		
	The average number of retweets of tweets for each account		
Tweet Syntax	Percentage of tweets containing URL or hyperlink for each		
	account		
Tweet Semantics	Keyword TFIDF		
Temporal Behavior Features	Average number of tweets per day		
	Number of followers of one account		
	Number of friends of one account		
User Profile	Number of tweets that one		
Features	account has Using default profile		
	Using default profile image		
	Using geography or location		

Use Python (tweepy, nltk, pandas, numpy, csv, etc) to crawl all the information we want and create three dictionaries of keywords with more than 0.05% term frequency rate for each group of malicious bots.

Sample Code:

```
tweet = nltk.FreaDist(Tweet.iloc(i, Tweet.columns.get loc('text')].replace('b\'RT', '').replace('b\'RT', '').rep
for term in tweet.keys():
   if term in np.array(dict_fake['keyword']).tolist() or term.lower().startswith('http'):
        count1 += tweet[term]
    if term in np.array(dict_scam['keyword']).tolist() or term.lower().startswith('http'):
        count2 += tweet[term]
    if term in np.array(dict spam['keyword']).tolist() or term.lower().startswith('http'):
        count3 += tweet[term]
if count1 > 0:
    df fake.append(1)
    df fake.append(0)
TF fake.append(count1/len(tweet))
if count2 > 0:
    df scam.append(1)
    df_scam.append(0)
TF_scam.append(count2/len(tweet))
if count3 > 0:
    df_spam.append(1)
else:
    df spam.append(0)
```

Data Size:

Data Description	Data Size
	2042 (some have been
Number of valid ID	suspended, and some
	don't have tweets)
Number of tweets	216173
	138042 for Fake Follower,
Total number of words	160245 for Scam Bot,
	161956 for Spam Bot
Number of keywords in	120 for Fake Follower, 126
a dictionary	for Scam Bot, 170 for
a dictionary	Spam Bot

Use Python and Excel to calculate the normalized TFIDF of each tweet and the average normalized TFIDF of each ID.

Normalized TFIDF=
$$\frac{\textit{Keyword frequency in a tweet}}{\textit{Number of terms in a tweet}} \times (\log \frac{\textit{Number of tweets for each account} + 1}{\textit{Number of tweets include keyword} + 1} + 1)$$

Methodology + Result Analysis

Phase One: Detect Bad Bot-Like Behaviors

RANDOM FORESTS METHODOLOGY

Features names for short

Original field name	Field name on gra
Average of retweet_count	F1
num_of_followers	F2
average_tweet_per_day	F3
status_num	F4
num_of_friends	F5
percentage_of_url_tweet	F6
default_profile	F7
Average of favorite_count	F8
geo_enabled	F9

How Accurate is Random Forests?

Results for output field bot_group

Comparing \$R-bot_group with bot_group

'Partition'	1_Training		2_Testing	
Correct	1,397	99.43%	580	91.05%
Wrong	8	0.57%	57	8.95%
Total	1,405		637	

Coincidence Matrix for \$R-bot group (rows show actuals)

'Partition' = 1_Training	Fake Follower	Scam Bot	Social Spam Bot
Fake Follower	491	1	0
Scam Bot	5	428	0
Social Spam Bot	2	0	478
'Partition' = 2_Testing	Fake Follower	Scam Bot	Social Spam Bot
Fake Follower	195	14	8
Scam Bot	24	181	3
Social Spam Bot	6	2	204

Phase One: How Do You Behave, Bad Bots?

Frequency of Activities

Average of Daily Tweet Frequency, average of Favorited Tweets Count and average of Retweet Count for each Bot Group. For pane Average of Daily Tweet Frequency: The marks are labeled by average of Daily Tweet Frequency. For pane Average of Retweet Count: The marks are labeled by average of Retweet Count. The view is filtered on average of Daily Tweet Frequency, which keeps all values.

Average Number of Followers per Account

■ Fake Follower ■ Scam Bot ■ Social Spam Bot

Tweet Frequency

Maacura Namac

- % of Total Avg. Daily Tweet Frequency along Bot Group
- 96 of Total Avg. Status Num along Bot Group

PHASE TWO: DETECT BAD BOTS WITH BEHAVIORS AND TWEET SEMANTICS

WORDCLOUD

PHASE TWO: DETECT BAD BOTS WITH BEHAVIORS AND TWEET SEMANTICS

SEMANTIC ANALYSIS & RANDOM FORESTS METHODOLOGY

Features names for short

Random Forest Model

PHASE TWO: DETECT BAD BOTS WITH BEHAVIORS AND TWEET SEMANTICS

TFIDF SCORE VISUALIZATION

Phase Two: Detect Bad Bots' Tweet Keywords

TFIDF Analysis

OK

Accuracy Comparison Between Phase One and Phase Two

PHASE ONE: BOT-LIKE BEHAVIOR

Results for output field bot_group

Comparing \$R-bot_group with bot_group

'Partition'	1_Training		2_Testing	
Correct	1,397	99.43%	580	91.05%
 Wrong	8	0.57%	57	8.95%
Total	1,405		637	

Coincidence Matrix for \$R-bot_group (rows show actuals)

vi	incidence matrix for wit-bot_gro	up (rows show acc	adioj	
	'Partition' = 1_Training	Fake Follower	Scam Bot	Social Spam Bot
	Fake Follower	491	1	0
	Scam Bot	5	428	0
	Social Spam Bot	2	0	478
	'Partition' = 2_Testing	Fake Follower	Scam Bot	Social Spam Bot
	Fake Follower	195	14	8
	Scam Bot	24	181	3
	Social Spam Bot	6	2	204

PHASE TWO: BOT-LIKE BEHAVIOR AND

SEMANTIC ANALYSIS

Results for output field bot_group

Comparing \$R-bot group with bot group

'Partition'	1_Training		2_Testing	
Correct	1,403	99.86%	584	91.68%
Wrong	2	0.14%	53	8.32%
Total	1,405		637	

Coincidence Matrix for \$R-bot_group (rows show actuals)

'Partition' = 1_Training	Fake Follower	Scam Bot	Social Spam Spot
Fake Follower	492	0	0
Scam Bot	2	431	0
Social Spam Spot	0	0	480
'Partition' = 2_Testing	Fake Follower	Scam Bot	Social Spam Spot
Fake Follower	195	14	8
Scam Bot	20	185	3
Social Spam Spot	7	1	204

CONCLUSION YOU'RE UNDER ARREST BAD BOTS !!!

Fake Follower

Low Activities Frequency
Rarely Retweet
Low Engagement in
Connecting with Others
Average TFIDF_fake ranks
highest among keywords of
other type

Scam Bot

Low Engagement in Connecting with Others High Engagement in Retweet Average TFIDF_scam ranks highest among keywords of other type

Spam Bot

High Activities Frequency
High Number of Followers and
Friends

High Daily Tweet Frequency Average TFIDF_spam ranks highest among keywords of other type