MPhys Final Project Report

Andrew Morris

March 2015

My Abstract

Contents

1	Intr	roduction	1
	1.1	Thermoelectric History	1
	1.2	Thermoelectric Generators	1
	1.3	Thermoelectric Efficiency	2
		Thermoelectric Materials	
2	Modelling ZT		
	2.1	Components of ZT	3
		2.1.1 Power Factor	3
		2.1.2 Thermal Conductivity	3
	2.2	Maximizing Power Factor	3
	2.3	Minimizing KT	3

A

Introduction 1

- 1. Interest and importance of thermoelectricity.
- 2. Choose material (Si-Ge).
- 3. Calculate ZT.
- 4. Check calculations consistent with Chen.
- 5. Extend calculations (EMA, specularity...)
- 6. Suggest new research.

Thermoelectric History

Histpry of thermoelectric effect. Who found what when.

1.2 Thermoelectric Generators schematic

Can

generator:

use generators using thermoelectric effect in places where maintenance is difficult and total power requirements low, for example in space.

A common RTG (radioisotope thermoelectric generator) application is spacecraft power supply. RTGs were used for probes that traveled far from the Sun where the radiation wastoo weak for photo-voltaic solar panels. they were used on the Voyager spacecraft:

1.3 Thermoelectric Efficiency

Thermoelectric efficiency - retaionship with Carnot efficiency. Defintion of ${\bf ZT}$

1.4 Thermoelectric Materialls

Required properties. Temperature range. Need models to guide manufacturing because making them is expensive. Reports of other groups (Chen). Silicon-germanium looks interesting. Nano composites perform better than alloys.

2.2 Maximizing Power Factor

2.3 Minimizing KT

2 Modelling ZT

2.1 Components of ZT

2.1.1 Power Factor

Seebeck effect. Electrical conuductivity. Electron mean free path. Loks like cyrstal to electrons,

2.1.2 Thermal Conductivity

Contributions to thermal conductivity. Weideman Franz law. Electrob thermal conductivity related to electrical conductivity. Leaves only phone component to mimiimize. Wantlots of phonon scattering

References

[1] Reference Source