Лабораторная работа № 2 часть 1

Рекурсия

ЗАДАНИЕ

В лабораторной работе необходимо реализовать рекурсивное решение задачи (см. таблицу ниже) и исследовать его вычислительную сложность. Задание выбирается в соответствии с вариантом, полученным от преподавателя.

Вариант	Задача
1	«Трон Ертле»
	Черепаха Ертле, король пруда. Недовольный камнем, который служит его троном, он приказывает другим черепахам встать под ним друг на друга, чтобы он мог видеть дальше и расширять свое королевство. Каждая из 5607 черепах, призванных Ертлом, обладает своей силой и весом. (Вес черепахи измеряется в граммах. Сила, которая также измеряется в граммах, - это максимальный вес, который способна выдержать черепаха (включая свой собственный). Таким образом, черепаха, весящая 300 грамм и имеющая силу 1000 грамм, может держать 700 грамм на спине.) Ваша задача состоит в том, чтобы составить из них стопку максимальной высоты. Число черепах не превышает 5607.
2	«Чаппи»
	В исследовательской лаборатории разработали новую модель робота. Главной особенностью данной модели является то, что он работает по заранее заданной программе, в которой могут присутствовать команды: сделать шаг на Юг , на Север , на Восток или на Запад . Робот Чаппи исполняет программу строго последовательно и, дойдя до конца программы, останавливается.
	Специалисты лаборатории заинтересовались вопросом, сколько существует различных программ, состоящих из N инструкций, таких, что робот, выйдя из начала координат, придет в точку с координатами (X, Y) . Оси координат располагаются параллельно сторонам света, и единица измерения, соответствует одному шагу робота.
	Требуется написать программу, которая дает ответ на этот вопрос.
	Ограничения: $ X $, $ Y \le 16$
3	Наибольшая возрастающей подпоследовательность.
	Программа получает на вход пять целых чисел: длину последовательности n ($1 \le n \le 10^5$), начальный элемент последовательности a_1 , параметры k , b , m для вычисления последующих членов последовательности ($1 \le m \le 10^4$, $0 \le k < m$, $0 \le b < m$, $0 \le a_1 < m$). Числовая последовательность задана рекуррентной формулой: $a_{i+1} = (k \ a_i + b) \ \text{mod} \ m$. Найдите длину её наибольшей возрастающей подпоследовательности. Например, если $n = 5$, $a_1 = 41$, $k = 2$, $b = 1$, $m = 100$, то длина наибольшей возрастающей подпоследовательности данной последовательности равна 3 .
4	К-ичные числа
	Требуется вычислить количество N -значных чисел в системе счисления с основанием K , таких что их запись не содержит двух подряд идущих нулей.

Вариант	Задача
5	Наибольшая подпоследовательность
	У вас есть последовательность целых чисел, из которой вы должны создать самую длинную подпоследовательность, удовлетворяющую следующему условию: ее можно «разрезать» на две части, которые имеют ровно один общий элемент (последний элемент первой части является первым элементом второй части), причем первая часть строго возрастает, а вторая часть строго убывает. Например, последовательность {1, 4, 6, 5, 2, 1} может быть «разрезана» на {1, 4, 6} и {6, 5, 2, 1}. Две части разделяет 6, и первая последовательность сортируется в порядке возрастания, а вторая последовательность сортируется в порядке убывания. Вам дана последовательность чисел. Необходимо найти минимальное количество элементов, которое следует удалить из данной последовательности, чтобы оставшаяся подпоследовательность удовлетворяла описанному выше условию. Например, если задана числовая последовательность {1, 4, 6, 5, 2, 1}, последовательность уже удовлетворяет условию, поэтому ответ - 0. Для последовательности {1, 2, 1, 2, 3, 2, 1, 2, 1} самая длинная подпоследовательность, удовлетворяющая условию - это {1, 2, 3, 2, 1}, поэтому нужно выбросить как минимум 4 элемента. Длина последовательности от 1 до 50 элементов включительно, элементы от 1 до 109
	включительно.
6	«Ну, заяц…»
	В зоопарке появился заяц. Его поместили в клетку, и чтобы ему не было скучно, директор зоопарка распорядился поставить в его клетке лесенку. Теперь зайчик может прыгать по лесенке вверх, перепрыгивая через ступеньки. Лестница имеет определенное количество ступенек N . Заяц может одним прыжком преодолеть не более K ступенек. Для разнообразия зайчик пытается каждый раз найти новый путь к вершине лестницы. Директору любопытно, сколько различных способов есть у зайца добраться до вершины лестницы при заданных значениях K и N .
	Необходимо написать программу, которая поможет вычислить это количество.
	Например, если K =3 и N =4, то существуют следующие маршруты: 1 + 1 + 1 + 1 , 1 + 1 + 2 , 1 + 2 + 1 , 2 + 1 + 1 , 2 + 2 , 1 + 3 , 3 + 1 . Т.е. при данных значениях у зайца всего 7 различных маршрутов добраться до вершины лестницы.
	Ограничения: $1 \le K \le N \le 300$.
7	Биномиальные коэффициенты
	Для заданных n и k требуется вычислить биномиальный коэффициент C_n^k по следующей рекуррентной формуле: $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k, \ 0 < k \le n$
	$C_n^0 = 1$
0	"
8	«Взрывоопасность»
	При переработке радиоактивных материалов образуются отходы двух видов — особо опасные (тип « \mathbf{A} ») и неопасные (тип « \mathbf{B} »). Для их хранения используются одинаковые контейнеры. После помещения отходов в контейнеры, последние укладываются вертикальной стопкой. Стопка считается взрывоопасной, если в ней подряд идет более двух контейнеров типа « \mathbf{A} ». Для заданного количества контейнеров N определить число безопасных стопок.
9	«Маршруты»
	В прямоугольной таблице $N \times M$ в начале игрок находится в левой верхней клетке. За один ход ему разрешается перемещаться в соседнюю клетку либо вправо, либо вниз (влево и вверх перемещаться запрещено). Посчитайте, сколько есть способов у игрока попасть в правую нижнюю клетку. Ограничения: $1 \le N, M \le 10$

Вариант	Задача
10	«Подпалиндром»
	Дана строка <i>X</i> из заглавных букв латинского алфавита. Необходимо найти длину наибольшего палиндрома, который можно получить вычеркиванием некоторых букв из данной строки.
11	Наибольшая общая возрастающая подпоследовательность Вам даны две последовательности целых чисел. Напишите программу для определения их общей возрастающей подпоследовательности максимально возможной длины. Последовательность S_1 , S_2 ,, S_N длины N называется возрастающей подпоследовательностью последовательности A_1 , A_2 ,, A_M длины M , если существуют $1 \le i_1 < i_2 < < i_N \le M$ такие, что $S_j = A_{ij}$ для всех $1 \le j \le N$ и $S_j < S_{j+1}$ для всех $1 \le j < N$. Каждая последовательность задаётся длиной M ($1 \le M \le 500$) и целыми числами A_i ($-2^{31} \le A_i \le 2^{31}$) - членами последовательности. Например, дана последовательность
	длиной 5: {1, 4, 2, 5, -12} и длиной 4: {-12, 1, 2, 4}, тогда длина наибольшей общей подпоследовательности 2: {1, 4}.
12	«Пилите, Шура, пилите»
	Вам нужно распилить деревянный брус на несколько кусков. Компания "Шура Балаганов" берет плату за пилку в зависимости от размера бруса, который нужно распилить. Различные заказы приводят к различным ценам. Например, рассмотрим брус длиной 10 м, который необходимо распилить на расстоянии 2, 4 и 7 м, считая от одного конца. Это можно сделать несколькими способами. Можно распилить сначала на отметке 2 м, потом 4 и потом 7 м. Это приведет к стоимости: 10 + 8 + 6 = 24, потому что сначала длина бруса, который пилили, была 10 м, затем она стала 8 м и, наконец, 6 м. А можно распилить иначе: сначала на отметке 4 м, затем 2 и затем 7 м. Это приведет к стоимости: 10 + 4 + 6 = 20, что лучше.
	Ваш начальник требует, чтобы вы написали программу, которая находит минимальную стоимость распила для любого бруса заданного размера.

Порядок работы:

- 1. проанализировать задачу, построить рекуррентное соотношение, и исследовать его вычислительную сложность;
- 2. на языке программирования в виде консольного приложения реализовать рекурсивный алгоритм; убедиться в его корректности
- 3. построить график зависимости времени выполнения рекурсивного алгоритма от размера входных данных
- 4. сделать выводы.

Указание: Сравнение выполнять аналогично исследованию в лабораторной работе № 1: для 10–20 разных значений размера входных данных провести несколько (3–5) измерений, отбросить максимальные результаты и усреднить.

Лабораторная работа № 2 часть 2

Динамическое программирование

Цель работы: формирование практических навыков применения метода динамического программирования для построения эффективных алгоритмов решения задач оптимизации.

Задачи: реализовать алгоритм с использованием метода динамического программирования и исследовать его вычислительную сложность.

2. ЗАДАНИЕ

- 1. показать, что рекурсивная реализация «в лоб» будет обладать свойством перекрывающихся подзадач;
- 2. используя динамическое программирование, построить восходящее итеративное решение задачи;
- 3. реализовать динамический алгоритм, убедиться в его корректности;
- 4. сравнить производительность рекурсивного и динамического алгоритмов, сделать выводы.
- 5. построить оптимальное решение

3. ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Охарактеризуйте задачи, допускающие эффективное решение средствами динамического программирования.
- 2. Перечислите основные этапы решения задачи средствами динамического программирования.
- 3. Поясните, как средствами динамического программирования можно построить эффективный нисходящий рекурсивный алгоритм.

4. СОДЕРЖАНИЕ ОТЧЕТА

Отчет по лабораторной работе должен содержать:

1. титульный лист установленного образца с указанными ФИО студента и номером варианта;

- 2. постановку задачи;
- 3. анализ задачи, описание ее рекурсивного решения, выявление признаков, указывающих на возможность применения динамического программирования;
- 4. описание построения восходящего итерационного динамического алгоритма;
- 5. исходные коды рекурсивного и итерационного динамического алгоритмов;
- 6. сравнение полученных результатов и выводы.