Mortality and its Measurement: Standardizing CDR

Demography Camp

Summer 2013

1 We would like to have a single index of mortality

Something that would respond to the question: What is the demographic significance of a given set of age-specific death rates? Can we summarize them in a compact way?

1.1 Returning to the Crude Death Rate

$$CDR = \frac{\text{Total Annual Deaths}}{\text{Mid-Year Population}}$$

$$CDR = \frac{D}{P}$$

$$CDR = \frac{\sum_{n} D_{x}}{P}$$

$$CDR = \frac{\sum_{n} M_{x} \cdot_{n} P_{x}}{P}$$

$$CDR = \sum_{n} M_{x} \cdot \left[\frac{nP_{x}}{P}\right]$$

$$CDR = \sum_{n} M_{x} \cdot_{n} c_{x}, \text{ where } \sum_{n} c_{x} = 1$$

Implications?

- The CDR is a **weighted average** of the prevailing age-specific death rates, where the weights are the proportions of the population at different ages.
- Comparisons among crude death rates can be misleading unless the population age distribution is the same in all cases.

 Sometimes age composition can reverse the appearance of relative mortality risks.

Examples:

- 1967: West Berlin and West Germany had the same mortality schedules (a new-born female had 90% chance of surviving to 55).
 - But, CDR = 18 in West Berlin and 11 in West Germany.
 - Why? In West Berlin, 21 percent of population 65+; 12 percent 65+ in West Germany.
- 1985: Mexicos CDR = 6 per 1,000; U.S. = 9 per 1,000
 - Yet female life expectancy at birth 11 years lower in Mexico than the US
 - Why? Mexicos very young age distribution produced a low CDR.

The dependence of the CDR on age structure is especially strong when mortality is low.

Figure 1: Two Age Structures

- If both A and B are subject to the same low mortality schedule, CDR higher in B.
- Not so great a difference if both subject to high mortality because population A gives large weight to high infant and childhood mortality.

1.2 Age-Standardized Crude Death Rates

To correct for the influence of age composition, one applies age-specific death rates to a constant **standard age distribution**.

$$CDR^s = \sum{}_{n} M_x \cdot {}_{n} c_x^s$$

Where ${}_{n}c_{x}^{s}$ is the proportion of the standard population in age interval x to x+n

Table 1: Example Standard Population: New Zealand 1966

	Crude Death Rate	Standardized Death Rate
Maori	6.37	13.88
No-Maori	9.07	8.68

Strengths of standardized rates:

• Holds age composition constant

Weaknesses of standardized rates;

- Selection of standard is arbitrary
- Results may depend on which standard is chosen
 - May not be so bad if time-trend comparisons are made within same country

Figure 2: Extreme Example: Two mortality curves that cross

If a young standard population is used, $CDR_A^s > CDR_B^s$. Results reversed if old standard population is chosen.

Standardized rates still used for special purposes

• E.g., comparing death rates by cause of death in 2 countries (e.g. cardio-vascular)

2 Expectation of Life at Birth, \mathring{e}_0

- Preferred way of summarizing a set of age-specific death rates in a single index
- \mathring{e}_0 abstracts from the effects of age composition.

Definition \mathring{e}_0 = the average number of years that a cohort of individuals, all born at the same time, could expect to live if at each age, they were exposed to the death rates actually observed in a population in a given year.

Table 2: 10 Countries Ranked by CDR and \dot{e}_0

2005	Ranking by CDR	Ranking by \mathring{e}_0
Sweden	9.5	2
Austria	8	4
Poland	9.5	7.5
Japan	6.5	1
El Salvador	4	10
Panama	3	7.5
Kuwait	2	5
U.A. Emirates	1	6
Thailand	5	9
Switzerland	6.5	3

Table 3: US \mathring{e}_0				
	Males	Females		
1985	71.2	78.2		
1980	70	77.4		
1970	67.1	74.7		
2002	74.5	79.9		

Need to consider **life tables** to understand \mathring{e}_0 .