School of Computer Science Engineering and Technology

Lab No. - 9

Course-B. Tech.	Type- Core
Course Code- CSET301	Course Name- Artificial Intelligence and Machine
	Learning
Year- 2025	Semester- Odd
Date-	Batch- 2023-2027

CO-Mapping

	CO1	CO2	CO3	CO4	CO5	CO6
Q1		$\sqrt{}$		$\sqrt{}$		

Lab - Decision Tree Classifier

Total Marks: 1

Objective: To implement Decision Tree Classifier (DT) (using Scikit-learn) and perform binary classification after suitable pre-processing steps.

Download the dataset from:

https://archive.ics.uci.edu/ml/datasets/Raisin+Dataset (10)

About Dataset:

Data Set Characteristics:	Multivariate	Number of Instances:	900	Area:	Life
Attribute Characteristics:	Integer, Real	Number of Attributes:	8	Date Donated	2021-04-01
Associated Tasks:	Classification	Missing Values?	N/A	Number of Web Hits:	1532071

Images of Kecimen and Besni raisin varieties grown in Turkey were obtained with CVS. A total of 900 raisin grains were used, including 450 pieces from both varieties. These images were subjected to various stages of pre-processing and 7 morphological features were extracted. These features have been classified using three different artificial intelligence techniques.

Attribute Information:

- i. Area: Gives the number of pixels within the boundaries of the raisin.
- ii. Perimeter: It measures the environment by calculating the distance between the boundaries of the raisin and the pixels around it.
- iii. MajorAxisLength: Gives the length of the main axis, which is the longest line that can be drawn on the raisin.
- iv. MinorAxisLength: Gives the length of the small axis, which is the shortest line that can be drawn on the raisin.
- v. Eccentricity: It gives a measure of the eccentricity of the ellipse, which has the same moments as raisins.
- vi. ConvexArea: Gives the number of pixels of the smallest convex shell of the region formed by the raisin.
- vii. Extent: Gives the ratio of the region formed by the raisin to the total pixels in the

bounding box.

viii. Class: Kecimen and Besni raisin.

Questions:

1. Data Pre-processing step:

- a) Read Raisin_Dataset using Pandas and display First 5 rows.
- b) Check the presence of Null Values/Missing Values. If present handle them with suitable approach.
- c) Covert the Class value into discrete: Kecimen as '0' and Besni raisin as '1' class.
- d) Check Feature importance using Chi-Square (Hint: sklearn.feature selection.chi2)
- e) Discard the least important features using chi-square value.
- 2. Split the dataset into 80% for training and rest 20% for testing (train test split function)
- 3. Train DT classifier using built-in function on the training set with default parameters (sklearn.tree.DecisionTreeClassifier)
- 4. Evaluate the train model using testset with the help of confusion matrix, Accuracy, Precision and Recall.
- 5. Compare the results (Accuracy, Precision and Recall) using suitable chart.