

Figure 1: PNS

MAM3

Mathématiques de l'ingénieur.e 1

2024-25

TD 3 - Mesures

Exercice 1

Soit E un ensemble non-vide.

1.1

Soit $A \subset E$, non-vide et distincte de E. Déterminer $\mathscr{B}(\{A\})$.

1.2

Soit $\mathscr{F} := \{A, B, C\}$ une partition de E. Déterminer $\mathscr{B}(\mathscr{F})$.

1.3

Déterminer la tribu sur \mathbf{R} engendrée par la famille $\{[0,1],[1,2],[2,3]\}$.

Exercice 2

Soit (E, \mathcal{T}) un espace mesurable, et soit A une partie de E. On note χ_A la fonction indicatrice de A. Montrer que cette application est mesurable de (E, \mathcal{T}) dans $(\mathbf{R}, \mathcal{B}_{\mathbf{R}})$ si et seulement si A est mesurable.

Exercice 3

Soit (E, \mathcal{T}) un espace mesurable, et soit F un ensemble muni de la tribu $\mathcal{B}(\mathcal{A})$ engendrée par une famille de parties \mathcal{A} . Montrer que $f: E \to F$ est mesurable

pour les tribus précédentes si et seulement si

$$(\forall B \in \mathscr{A}) : f^{-1}(B) \in \mathscr{T}.$$

Exercice 4 (mesure de Dirac)

Soit (E,\mathcal{T}) un espace mesurable, et soit a un élément de E. On définit $\delta_a:\mathcal{T}\to\mathbf{R}$ par

$$\delta_a(A) := 1 \text{ si } A \ni a, 0 \text{ sinon.}$$

Montrer que δ_a définit une mesure sur (E, \mathscr{T}) .

Exercice 5 (mesure de comptage)

On définit $\mu_d: \mathscr{P}(\mathbf{N}) \to \mathbf{R}$ par

$$\mu_d(A) := \operatorname{card}(A).$$

Montrer que μ_d de définit une mesure sur ${\bf N}$ muni de sa tribu discrète.