Du 7 au 11 juin

Programme n°29

THERMODYNAMIQUE

TH2. Le premier principe de la thermodynamique

Exercices

TH3 Le second principe de la thermodynamique (Cours et exercices)

TH4 Les machines thermiques (Cours et exercices)

- Inégalité de Clausius Carnot
- Machine monotherme
- Machines dithermes
- Le cycle de Carnot
- Cycle de Carnot pour un gaz parfait
- Cycle de Carnot pour un système diphasé • Système en écoulement permanent : système ouvert - Modèle du système ouvert
 - Choix du système
 - Equation de conservation de la masse
 - Le premier principe

- Les diagrammes des frigoristes
- Présentation du diagramme
- Cycle d'une machine frigorifique

Exemples d'études de machines thermodynamiques	Utiliser	le	1er	principe	dans	un	écoulement
réelles à l'aide de diagrammes (p,h).	stationn	aire	sous	la forme	$h_2-h_1=v$	v _u +q,	pour étudier
	une machine thermique ditherme.						

INTRODUCTION A LA MECANIQUE QUANTIQUE (Cours et exercices)

- Particule dans un puits de potentiel infini
- Analogie avec les modes propres d'une corde vibrante

SOLUTIONS AQUEUSES

AQ4 Diagrammes potentiel-pH (Cours et exercices)

CRISTALLOGRAPHIE

CR1 ARCHITECTURE DE LA MATIERE (Cours uniquement)

- La matière à l'état solide
- Modèle
- Solidification
- Description d'un cristal
- Définition
- Compacité et masse volumique
- Cohésion de la matière
- Classification chimique des cristaux Cristaux métalliques → Caractéristique
 - → Energie de cohésion
 - Cristaux covalents
 - Cristaux ioniques
- → Résultats expérimentaux
 - → Energie de cohésion
 - Cristaux moléculaires → Interaction de Van der Waals
 - → La liaison hydrogène
 - Résumé