for
$$f(m) = o(g(n))$$
 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = o$
 $\lim_{n \to \infty} \frac{e^{\log n^3}}{g^{3 \cdot 0}} = o(n^{3 \cdot 0})$
 $\lim_{n \to \infty} \frac{e^{\log n^3}}{n^{3 \cdot 0}} = \lim_{n \to \infty} \frac{n^3}{n^{3 \cdot 0}} = o$
 $\lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = \lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = o$
 $\lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = o(n^{3 \cdot 0})$
 $\lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = o(n^{3 \cdot 0})$
 $\lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = o(n^{3 \cdot 0})$
 $\lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = o(n^{3 \cdot 0})$
 $\lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = o(n^{3 \cdot 0})$
 $\lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = o(n^{3 \cdot 0})$
 $\lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = o(n^{3 \cdot 0})$
 $\lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = o(n^{3 \cdot 0})$
 $\lim_{n \to \infty} \frac{n^{3 \cdot 0}}{n^{3 \cdot 0}} = o(n^{3 \cdot 0})$

for
$$f(n) = o(g(n))$$
 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
 $\lim_{n \to \infty} \frac{1 + \log^3 n}{n! \cdot 6} \approx \frac{\log^3 n}{n! \cdot 6} = \frac{\log n \log n}{n! \cdot 6}$

Let $\log n = y$
 $n = e^y$

apply l'Hopital's rule.

Lim
$$\frac{3y^2}{1.6e^{1.6y}}$$
 $\frac{3y^2}{1.6e^{1.6y}}$

for
$$f(n) = o(g(n))$$

 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

i) lim (log(logn))², consider n-) po n³ logn logn = y as n-) po both numerator f denominator -> po, apply

l'Hopital's rule.
lim
$$(\log y)^2$$
 lim $\frac{2 \cdot \log y \times /y}{2 \cdot \log y} = 0$
 $\frac{\log y}{2}$ $\frac{\log y}{2} = 0$

(ii)

lim $\frac{n^3 \log n}{(n+4)^9}$ $n\to\infty$ $\frac{(n+4)^9}{(n+4)^9}$ $\frac{n^3 \log n}{n^9} = \frac{8}{n^3 \cdot 1} \frac{1}{n} + \frac{\log n \times 3n^2}{9 \cdot n^8}$

numerales gets exhausted (=1) befor ethe denominator.

$$\lim_{n\to\infty}\frac{n^2}{2^{n}}$$

$$\frac{2\sqrt{n-1}}{2\sqrt{n-1}} = 0$$

for
$$i=1: n-1$$

if i is odd then

for $j=1: j \rightarrow \binom{n_{12}}{2}$

and for

 $n = n + n = n$

for $k=i+1: n \rightarrow \binom{n_{12}}{2}$

end for

 $n = n + n = n$
 $n = n + n =$

II) for:
$$i = n-1:1$$
 $\rightarrow (n-1) \approx n$

if $i \text{ is odd}$

for $j = 1:i \rightarrow (n/2)$

exact for

for $k = k+1:n \rightarrow (n/2)$

end for

end for

 $i \neq i \text{ is odd}$
 $i \neq i \text{ is$

(15)

13: a)
$$n=4$$

$$2 \times \begin{vmatrix} 1 \\ 3 \end{vmatrix} \\
2 \times \begin{vmatrix} 2 \\ 3 \end{vmatrix} \\
2 \times \begin{vmatrix} 2$$

$$\begin{cases} 8 - \frac{4}{2} & n^{2} & (\text{for loops}) \\ 8 - \frac{2}{2} & (n/2) & n^{2} & (n/2) \\ 8 - \frac{2}{2} & n^{2} & n^{2} & (n/2) \\ 0 & (n^{3}) & \dots & \dots & \dots \end{cases}$$
buter all

all
$$\frac{n}{2}$$
 such $\frac{n}{2}$ $\frac{n}{2}$ for loops $\frac{n}{2} \times (n^2)^2$ $\frac{n}{2} \times O(n^3)$