HIGH-VOLTAGE MIXED-SIGNAL IC

UC8251

All-in-one driver IC w/ Timing Controller for White/Black/Red Dot-Matrix Micro-Cup ESL

Preliminary Specifications

Datasheet Revision: 0.1 for_TFT_Module_Use_only

IC Version: d_A November 22, 2019

Table of Content

Introduction	3
MAIN APPLICATIONS	3
FEATURE HIGHLIGHTS	3
BLOCK DIAGRAM	4
ORDERING INFORMATION	5
PIN DESCRIPTION	
COMMAND TABLE	
COMMAND DESCRIPTION	
HOST INTERFACES	
POWER MANAGEMENT	
OTP ADDRESS MAPPING	
TEMPERATURE RANGE	
COMMAND DEFAULT SETTING	
LUT FORMAT IN OTP	
DEEP SLEEP MODE	
PANEL BREAK CHECK	
CASCADE APPLICATION CIRCUIT	
BOOSTER APPLICATION CIRCUIT	53
ABSOLUTE MAXIMUM RATINGS	
DC CHARACTERISTICS	55
AC CHARACTERISTICS	
PHYSICAL DIMENSIONS	58
ALIGNMENT MARK INFORMATION	
PAD COORDINATES	61
Tray Information	68
REVISION HISTORY	69

UC8251

All-in-one driver IC w/ Timing Controller for White/Black/Red Dot-Matrix Micro-Cup ESL

INTRODUCTION

The UC8251 is an all-in-one driver with timing controller for ESL. Its output is of 1-bit white/black and 1-bit red resolution per pixel. The timing controller provides control signals for source driver and gate driver.

The DC-DC controller allows it to generate the source output voltage VSH/VSL (±2.4V~±15.0V) and VDHR (2.4V~15.0V). The chip also includes an output buffer for the supply of the COM electrode (AC-VCOM or DC-VCOM). The system is configurable through a 3-wire/4-wire (SPI) serial interface.

MAIN APPLICATIONS

E-tag application

FEATURE HIGHLIGHTS

- System-on-chip (SOC) for ESL
- Timing controller supports several resolutions
 - Up to 176 source x 296 gate resolution
 + 1 border + 1 VCOM
 - 1 bit for white/black and 1 bit for red per pixel
- Cascade: 2 or more chips cascade mode
- Memory (Max.): 176 x 296 x 2 bits SRAM
- 3-wire/4-wire (SPI) serial interface
 - Clock rate up to 20MHz
- Temperature sensor:
 - On-Chip: $-25\sim50$ °C ± 2.0 °C / 8-bit status

- Off-Chip: -55~125°C ± 2.0°C /11-bit status (I²C/LM75)
- Support LPD, Low Power Detection (VDD<2.5V)
- OSC / PLL: On-chip RC oscillator
- VCOM:
 - AC-VCOM / DC-VCOM (by LUT)
 - Support VCOM sensing (6-bit digital status)
- Charge Pump: On-chip booster and regulator:
 - VGH: +10V~+20V
 - VGL: -10V ~-20V
 - VSH: +2.4 ~ +15.0V (programmable, black/white)
 - VSL: -2.4 ~ -15.0V (programmable, black/white)
 - VDHR: +2.4 ~ +15.0V (programmable, red)
- Supply voltage VDD/VDDA/VDDIO: 2.3~ 3.6V
- OTP: 8K-byte OTP for LUTs and Settings
- Package: COG
- Source/Gate bump information
 - Bump pitch: 13 μ M \pm 2 μ M
 - Bump space: 1 μ M \pm 3 μ M
 - Bump surface: 1200 μM²

Remark: The inspection standard of the product appearance is based on Ultrachip's inspection

document.

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Description
UC8251dGAA-L0X3-3	3-inch tray, wafer thickness 300uM

General Notes

APPLICATION INFORMATION

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing. There is no post waffle saw/pack testing performed on individual die. Although the latest modern processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, UltraChip has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their application in which the die is to be used. UltraChip assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

LIFE SUPPORT APPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.

CONTENT DISCLAIMER

UltraChip believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. No responsibility is assumed by UltraChip for its use, nor for infringement of patents or other rights of third parties. No part of this publication may be reproduced, or transmitted in any form or by any means without the prior consent of UltraChip Inc. UltraChip's terms and conditions of sale apply at all times.

CONTACT DETAILS

UltraChip Inc. (Headquarter) 4F, No. 618, Recom Road, Neihu District, Taipei 114, Taiwan, R. O. C. Tel: +886 (2) 8797-8947 Fax: +886 (2) 8797-8910 Sales e-mail: sales@ultrachip.com Web site: http://www.ultrachip.com

PIN DESCRIPTION

Type: I: Input, O: Output, I/O: Input/Output, PWR: Power, C: Capacitor pin

Pin (Pad) Name	Pin Count	Туре	Description
, ,			POWER SUPPLY PINS
VDD	7	PWR	Digital power
VDDA	10	PWR	Analog power
VDDIO	10	PWR	IO power
VDDDO	4	PWR	Digital power output (1.32V)
VDDD (VDDDI)	4	PWR	Digital power input (1.32V)
VPP	6	PWR	OTP program power (8.25V)
VDM	4	PWR	Analog Ground.
GND	18	PWR	Digital Ground.
GNDA	17	PWR	Analog Ground
			LDO Pins
VSH	10	I/O	Positive source driver Voltage (+2.4V ~ +15.0V)
VDHR	8	I/O	Positive source driver voltage for Red (+2.4V ~ +15.0V)
VSL	10	I/O	Negative source driver voltage (-2.4V ~ -15.0V)
		Co	DNTROL INTERFACE PINS
			Bus Selection. Select 3-wire / 4-wire SPI interface
BS	1		L: 4-wire interface. H: 3-wire interface.
			Global reset pin. Low: active.
RST_N	1	l (Pull-up)	When RST_N becomes low, driver will reset. All register will reset to default value. Driver all function will disable.
			Source/Gate/Border/VCOM will be released to floating. The minimal width of RST_N=low is 100us.
			Cascade setting pin.
MS	1		L: Slave chip. H: Master chip.
			Clock input/output pin.
CL	1	I/O	Master: Clock output.
			Slave: Clock input.
CDAIO	1	I/O	Cascade data pin. Leave it open if not used.
	1	_	Driver busy flag.
BUSY_N	1	0	L: Driver is Busy. H: Host side can send command/data to driver.
		МС	CU INTERFACE (SPI) PINS
CSB	1	I	Serial communication chip select.
SDA	1	I/O	Serial communication data input/output
SCL	1	I	Serial communication clock input.
			Command/Data input.
DC	DC 1	I	L: command H: data
		Connect to GND if BS=High.	

Pin (Pad) Name	Pin Count	Туре	Description
			I ² C Interface
T001	_	0	I ² C clock (External pull-up resistor is necessary.)
TSCL	2	(open-drain)	Leave them open if not used.
TCDA	0	I/O	I ² C data (External pull-up resistor is necessary.)
TSDA	2	(open-drain)	Leave them open if not used.
			OUTPUT PINS
S0~S175	176	0	Source driver output signals.
(S<0>~S<175>)	176	O	
G0~G295	296	0	Gate driver output signals.
(G<0>~G<295>)	296	O	
VCOM	16	0	VCOM output.
VBD	11/4	0	Border output pins.
(VBD<1>~VBD<4>)	1x4	0	
			BOOSTER PINS
GDR	8	0	N-MOS gate control
RESE	2	Р	Current sense input for control loop.
FB	2	Р	(Keep Open.)
VGH	12	I/O	Positive Gate voltage.
VGL	16	I/O	Negative Gate voltage.
		C	CHECK PANEL PINS
CHKGI	1	l (Pull-dow <mark>n)</mark>	Check panel break input. Leave open if it is not used.
CHKGO	1	0	Ch <mark>eck panel b</mark> reak output. Leave open if it is not used.
			RESERVED PINS
VSYNC	1	0	Reserved pins. Leave it floating.
TEST1~TEST3	1x3	1	Reserved pins. Leave it floating or connected to VSS.
TEST6, TEST7	1x2	0	Reserved pins. Leave it floating.
DUMMY			Reserved pins. Leave it floating.
(DUMMY<0> ~ DUMMY<14>)	15		
NC (NC 40x x NC 431x)	22	-	Not Connected.
(NC<0> ~ NC<21>)			

COMMAND TABLE

#	Command	W/R	C/D	D7	D6	D 5	D4	D3	D2	D1	D0	Registers	Default
-"	- Communa	0	0	0	0	0	0	0	0	0	0	1109.000	00н
1	Panel Setting (PSR)	0	1	#	#	#	#	#	#	#	#	RES[1:0], REG, KW/R, UD, SHL, SHD_N, RST_N	0Fн
		0	0	0	0	0	0	0	0	0	1		01н
		0	1							#	#	VS_EN, VG_EN	03н
2	Power Setting (PWR)	0	1					#	#	#	#	VGHL_LV[3:0]	00н
_	rower Setting (rwh)	0	1			#	#	#	#	#	#	VSH[5:0]	3FH
		0	1			#	#	#	#	#	#	VSL[5:0]	3FH
		0	1			#	#	#	#	#	#	VDHR[5:0]	0DH
3	Power OFF (POF)	0	0	0	0	0	0	0	0	1	0		02н
4	Power OFF Sequence Setting	0	0	0	0	0	0	0	0	1	1		03н
7	(PFS)	0	1			#	#					T_VDS_OF[1:0]	00н
5	Power ON (PON)	0	0	0	0	0	0	0	1	0	0		04 H
6	Power ON Measure (PMES)	0	0	0	0	0	0	0	1	0	1		05 н
		0	0	0	0	0	0	0	1	1	0		06н
7	Booster Soft Start (BTST)	0	1	#	#	#	#	#	#	#	#	BT_PHA[7:0]	17H
'	booster contictant (b101)	0	1	#	#	#	#	#	#	#	#	BT_PHB[7:0]	17н
		0	1			#	#	#	#	#	#	BT_PHC[5:0]	17H
8	Deep sleep (DSLP)	0	0	0	0	0	0	0	1	1	1		07н
0	Deep sleep (DOLI)	0	1	1	0	1	0	0	1	0	1	Check code	А5н
	Display Chart Transposis is a 1	0	0	0	0	0	1	0	0	0	0	B/W or OLD Pixel Data (176x296):	10н
9	Display Start Transmission 1 (DTM1, White/Black Data)	0	1	#	#	#	#	#	#	#	#	KPXL[1:8]	00н
٦	(x-byte command)	0	1	1	:	:	:	:	:	:	:	:	:
	(x b) to command)	0	1	#	#	#	#	#	#	#	#	KPXL[n-1:n]	00н
10	Data Stop (DSP)	0	0	0	0	0	1	0	0	0	1		11H
10	Data Stop (DSF)	1	1	#	/								00н
11	Display Refresh (DRF)	0	0	0	0	0	1	0	0	1	0		12 H
		0	0	0	0	0	1	0	0	1	1	Red or NEW Pixel Data (176x296):	13н
12	Display Start transmission 2 (DTM2, Red Data)	0	1	#	#	#	#	#	#	#	#	RPXL[1:8]	00н
12	(x-byte command)	0	1	:	:	:	:	:	:	:	:	:	:
	(x byte command)	0	1	#	#	#	#	#	#	#	#	RPXL[n-1:n]	00н
13	Auto Sequence (AUTO)	0	0	0	0	0	1	0	1	1	1		17H
13	Auto Sequence (AOTO)	1	1	1	0	1	0	0	1	0	1	Check code	А5н
		0	0	0	0	1	0	0	0	0	0		20 H
		0	1	#	#	#	#	#	#	#	#	GROUP REPEAT TIMES [7:0]	-
		0	1	:	:	:	:	:	:	:	:	LEVEL SELECT	-
	VCOM LUT (LUTC)	0	1	:	:	:	:	:	:	:	:	FRAME NUMBER 1-1 [7:0]	-
14	(81-byte command,	0	1	:	:	:	:	:	:	:	:	FRAME NUMBER 1-2 [7:0]	-
	structure of bytes 2~9 repeated 10	0	1	:	:	:	:	:	:	:	:	STATE 1 REPEAT TIMES [7:0]	-
	times)	0	1	:	:	:	:	1:	:	_			-
		0	1	1:	:	:	:	:	:	:	-	FRAME NUMBER 2-2[7:0]	_
		0	1	#	#	-	#	#	#		_	• •	_
		U	1	#	#	#	#	#	#	#	#	STATE 2 NEPEAT TIMES [7.0]	_

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	0	0	0	1	0	0	0	0	1		21 H
		0	1	#	#	#	#	#	#	#	#	GROUP REPEAT TIMES [7:0]	_
		0	1	:	:	:	:	:	:	:	:	LEVEL SELECT	-
	W2W LUT (LUTWW)	0	1	:	:	:	:	:	:	:	:	FRAME NUMBER 1-1 [7:0]	_
15	(57-byte command,	0	1	:	:	:	:	:	:	:	:	FRAME NUMBER 1-2 [7:0]	_
	structure of bytes 2~9 repeated 7	0	1	:	:	:	:	:	:	:	:	STATE 1 REPEAT TIMES [7:0]	_
	times)	0	1	:	:	:	:	:	:	•	:	FRAME NUMBER 2-1 [7:0]	-
		0	1	:	:	:	:	:	:	:	:	FRAME NUMBER 2-2[7:0]	
		0	1	#	#	#	#	#	#	#	#	STATE 2 REPEAT TIMES [7:0]	
		0	0	0	0	1	0	0	0	1	0	STATE ETTE EAT TIMES [7.0]	22 H
		0	1	#	#	#	#	#	#	#	#	GROUP REPEAT TIMES [7:0]	-
		0	1					:	:			LEVEL SELECT	-
	B2W LUT (LUTKW / LUTR)	0	1	:		:	:	:	:		:	FRAME NUMBER 1-1 [7:0]	_
16	(81-byte command,	0	1	:				:	:	:		FRAME NUMBER 1-2 [7:0]	_
10	structure of bytes 2~9 repeated 10	0	1	:				:				STATE 1 REPEAT TIMES [7:0]	_
	times)	0	1	:	:	:	:	:		:		FRAME NUMBER 2-1 [7:0]	_
		0	1	:	:	:	:	:		:	:/	FRAME NUMBER 2-2[7:0]	_
		0	1	#	#	#	#	#	#	#	#	STATE 2 REPEAT TIMES [7:0]	_
		0	0	0	0	1	0	0	0	1	1	OTATE Z TIET ZAT THATEO [7.0]	23н
		0	1	#	#	#	#	#	#	#	#	GROUP REPEAT TIMES [7:0]	
		0	1		:		:	:	:			LEVEL SELECT	_
	W2B LUT (LUTWK / LUTW)	0	1	-	Ė	:	:					FRAME NUMBER 1-1 [7:0]	_
17	(81-byte command,	0	1	-	:		:			÷		FRAME NUMBER 1-2 [7:0]	
17	structure of bytes 2~9 repeated 10	0	1	:	:		:	:	:	j.			
	times)	0	1	:	:			:		:	:	STATE 1 REPEAT TIMES [7:0]	_
			1				-		÷		l:	FRAME NUMBER 2-1 [7:0]	
		0	1	ш	: 	:	· ·	: "	т.	т.	т.	FRAME NUMBER 2-2[7:0]	
		0	0	# 0	#	#	# 0	#	#	#	# 0	STATE 2 REPEAT TIMES [7:0]	- 24н
		0	1	#	#	#	#	#	#	#	#	GROUP REPEAT TIMES [7:0]	2411
		0	1	:	+	:	:	:		:	:	LEVEL SELECT	
	B2B LUT (LUTKK / LUTK)		1		:	1	:	1	-	:	1	FRAME NUMBER 1-1 [7:0]	-
18	(81-byte command,	0	1			:	:	:	<u> </u>		:		
18	structure of bytes 2~9 repeated 10	0	1	÷		:	:	:	:	:	:	FRAME NUMBER 1-2 [7:0] STATE 1 REPEAT TIMES [7:0]	
	times)	0	1	<u>:</u>	:	1	1	:	:	1	-	FRAME NUMBER 2-1 [7:0]	_
		0	1	1	-		:	1		1	1	FRAME NUMBER 2-1 [7.0]	_
		_	+ -	- #	. #	- #	_	. #	. #	. #	. #		
		0	1	0	0	# 1	# 0	1	0	1	0	STATE 2 REPEAT TIMES [7:0]	2 A H
		0	0	_		_	+	+	1	+		STATE XON[7:0]	
		0	1	#	#	#	#	#	#	#			00H
19	LUT option (LUTOPT)	0	1	#	#	#	#	#	#	#	_	STATE_XON[15:8]	00н
		0	1	#	#			#	#	#	#	EOPT, ESO, XON[19:16]	00H
		0	1	#	#	#	#	#	#	#	#	GROUP_KWE[7:0]	FFH
		0	1	#	#					#		ATRED, NORED, GROUP_KWE[9:8]	3FH
20	PLL control (PLL)	0	0	0	0	1	1	0	0	0	+		30 H
	,	0	1				#	#	#	#	#	FRS[4:0]	09н
	Temperature Sensor Calibration	0	0	0	1	0	0	0	0	0	_		40н
21	(TSC)	1	1	#	#	#	#	#	#	#	#	D[10:3] / TS[7:0]	00н
	· ,	1	1	#	#	#						D[2:0] / -	00н
22	Temperature Sensor Selection	0	0	0	1	0	0	0	0	0	-		41н
I	(TSE)	0	1	#				#	#	#	#	TSE, TO[3:0]	00н

ULTRACHIP

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	0	0	1	0	0	0	0	1	0		42 H
23	Tamparatura Canaar Writa (TCW)	0	1	#	#	#	#	#	#	#	#	WATTR[7:0]	00н
23	Temperature Sensor Write (TSW)	0	1	#	#	#	#	#	#	#	#	WMSB[7:0]	00н
		0	1	#	#	#	#	#	#	#	#	WLSB[7:0]	00н
		0	0	0	1	0	0	0	0	1	1		43 H
24	Temperature Sensor Read (TSR)	1	1	#	#	#	#	#	#	#	#	RMSB[7:0]	00н
		1	1	#	#	#	#	#	#	#	#	RLSB[7:0]	00н
25	Panel Break Check (PBC)	0	0	0	1	0	0	0	1	0	0		44н
25	Parier Break Crieck (FBC)	1	1			1					#	PSTA	00н
26	VCOM and data interval setting	0	0	0	1	0	1	0	0	0	0		50н
26	(CDI)	0	1	#	#	#	#	#	#	#	#	VBD[1:0], DDX[1:0], CDI[3:0]	D7н

								_	_				
#	Command	W/R	C/D		D6			D3				Registers	Default
27	Lower Power Detection (LPD)	0	0	0	1	0	1	0	0	0	1		51н
	,	1	1								#	LPD	01н
28	TCON setting (TCON)	0	0	0	1 "	1 4	0	0	0	0	0	[0,0]202 [0,0]202	60H
		0	0	0	#	#	# 0	0	# 0	#	1	S2G[3:0], G2S[3:0]	22н 61 н
		0		#	1 #	1 #		#	0	0	0	UDE 0(7:2)	00н
29	Resolution setting (TRES)	0	1	#	#	#	#			0	#	HRES[7:3]	00н
		0	1	#	#	#	#	#	#	#	#	VRES[8:0]	00H
		0	0	0	1	1	0	0	1	0	1		65H
		0	1	#	#	#	#	#	0	0	0	HST[7:3]	00н
30	Gate/Source Start setting (GSST)	0	1								#		00н
		0	1	#	#	#	#	#	#	#	#	VST[8:0]	00н
		0	0	0	1	1	1	0	0	0	0		70 H
		1	1									Reserved	N/A
	5	1	1	#	#	#	#	#	#	#	#	CHIP_REV[7:0]	0Ан
31	Revision (REV)	1	1	#	#	#	#	#	#	#	#	LUT_REV[7:0]	FFH
		1	1	#	#	#	#	#	#	#	#	LUT_REV[15:8]	FFн
		1	1	#	#	#	#	#	#	#	#	LUT_REV[23:16]	FFн
		0	0	0	1	1	1	0	0	0	1		71 H
32	Get Status (FLG)	1	1		#	#	#	#	#	#	#	PTL_FLAG, I ² C_ERR, I ² C_BUSYN, DATA_FLAG, PON, POF, BUSY_N	13н
		0	0	0	1	1	0	0	0	1	0		72 H
33	Cyclic Redundancy Check (CRC)	1	1	#	#	#	#	#	#	#	#	CRC_MSB[7:0]	FFH
		1	1	#	#	#	#	#	#	#	#	CRC_LSB[7:0]	FFH
34	Auto Measurement VCOM (AMV)	0	0	1	0	0	0	0	0	0	0		80н
<u> </u>		0	1		-	#	#	#	#	#	#	AMVT[1:0], XON,AMVS, AMV, AMVE	
35	Read VCOM Value (VV)	0	0	1	0	0	0	0	0	0	1	10.00	81н
	, ,	1	1		#	#	#	#	#	#	#	VV[6:0]	00н
36	VCOM_DC Setting (VDCS)	0	0	1	0	0	0	0	0	1 "	0	V/D 0010 01	82H
		0	1		#	#	#	#	#	#	#	VDCS[6:0]	00H
		0	0	1 4	0	0	1 4	0	0	0	0	LIDOTIZ:01	90H
		0	1	#	#	#	#	#	0	0	0	HRST[7:3]	00H
		0	1	#	#	#	#	#	1	1	1 #	HRED[7:3]	07H
37	Partial Window (PTL)	0	1	#	#	#	#	#	#	#	#	VRST[8:0]	00н 00н
		0	1	#	#	#	#	#	#	#	#		00н
		0	1	#	#	#	#	#	#	#	#	VRED[8:0]	00H
		0	1	#	#	#		#	#	#	#	PT SCAN	01H
38	Partial In (PTIN)	0	0	1	0	0	1	0	0	0	1	I I_SOAN	91H
39	Partial Out (PTOUT)	0	0	1	0	0	1	0	0	1	0		92H
40	Program Mode (PGM)	0	0	1	0	1	0	0	0	0	0		A0H
41	Active Programming (APG)	0	0	1	0	1	0	0	0	0	1		A1H
71	A Save Frogramming (AFG)	0	0	1	0	1	0	0	0	1	0		A2H
		1	1	1		<u> </u>						Read Dummy	N/A
42	Read OTP (ROTP)	H	1	#	#	#	#	#	#	#	#	Data of Address = 0000h	N/A
		1	1	:	:	:	:	:	:	:	:	:	N/A
			1	#	#	#	#	#	#	#	#	Data of Address = n	N/A
		0	0	1	1	1	0	0	0	0	0	0. 7.00.000 = 11	ЕОн
	Cascade Setting (CCSET)		+	Ė	†	†	Ť	+	+-	#	#	T050/ 0051/	
43	Cascade Setting (COOLT)	0	1							- 44	- 44	TSFIX, CCEN	00н

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	1	#	#	#	#	#	#	#	#	VCOM_W[3:0], SD_W[3:0]	00н
45	LVD Voltage Coloct (LVCTL)	0	0	1	1	1	0	0	1	0	0		Е4н
45	LVD Voltage Select (LVSEL)	0	1							#	#	LVD_SEL[1:0]	03н
46	Force Temperature (TCCFT)	0	0	1	1	1	0	0	1	0	1		Е5н
46	Force Temperature (TSSET)	0	1	#	#	#	#	#	#	#	#	TS_SET[7:0]	00н

Note: (1) All other register addresses are invalid or reserved by UltraChip, and should NOT be used.

- (2) Any bits shown here as 0 must be written with a 0. All unused bits should also be set to zero. Device malfunction may occur if this is not done.
- (3) Commands are processed on the 'stop' condition of the interface.
- (4) Registers marked 'W/R' can be read, but the contents are written when the SPI command completes so the contents can be read and altered. The user can subsequently write the register to restore the contents following an SPI read.

COMMAND DESCRIPTION

W/R: 0: Write Cycle / 1: Read Cycle D7-D0: -: Don't Care C/D: 0: Command / 1: Data

(1) PANEL SETTING (PSR) (REGISTER: R00H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Cotting the panel	0	0	0	0	0	0	0	0	0	0	00н
Setting the panel	0	1	RES1	RES0	REG	KW/R	UD	SHL	SHD_N	RST_N	0Гн

RES[1:0]: Display Resolution setting (source x gate)

00b: 96x230 (Default) Active source channels: S8 ~ S103. Active gate channels: G0 ~ G229. Active source channels: S8 ~ S103. Active gate channels: G0 ~ G251. 01b: 96x252 Active source channels: S8 ~ S135. Active gate channels: G0 ~ G295. 10b: 128x296 11b: 160x296 Active source channels: S8 ~ S167. Active gate channels: G0 ~ G295.

- (1) Minimum active GD is always G0 regardless of <UD>(R00H).
- (2) Minimum active SD is always S0 regardless of <SHL>(R00H).

maximum resolution active resolution

REG: LUT selection

> 0: LUT from OTP. (Default) 1: LUT from register.

KW/R: Black / White / Red

0: Pixel with Black/White/Red, KWR mode. (Default)

1: Pixel with Black/White, KW mode.

UD: Gate Scan Direction

> 0: Scan down. First line to Last line: Gn-1 \rightarrow Gn-2 \rightarrow Gn-3 \rightarrow ... \rightarrow G0 1: Scan up. (Default) First line to Last line: G0 \rightarrow G1 \rightarrow G2 \rightarrow \rightarrow Gn-1

SHL: Source Shift Direction

> 0: Shift left. First data to Last data: $Sn-1 \rightarrow Sn-2 \rightarrow Sn-3 \rightarrow ... \rightarrow S0$ 1: Shift right. (Default) First data to Last data: $S0 \rightarrow S1 \rightarrow S2 \rightarrow ... \rightarrow Sn-1$

SHD N: Booster Switch

0: Booster OFF

1: Booster ON (Default)

When SHD N becomes LOW, charge pump will be turned OFF, register and SRAM data will keep until VDD OFF. And Source/Gate/Border/VCOM will be released to floating.

RST_N: Soft Reset

> 0: Reset. Booster OFF, Register data are set to their default values, all drivers will be reset, and all functions will be disabled. Source/Gate/Border/VCOM will be released to floating. After soft reset is transmitted, the internal operation needs at least 50uS to execute. During this period of time, the BUSY_N pin keeps low and any command will be ignored.

1: No effect (Default).

(2) POWER SETTING (PWR) (R01H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	0	0	0	0	1	01н
	0	1	-	-	-	-	-	-	VS_EN	VG_EN	03н
Selecting Internal/External	0	1	-	-	-	-		VGHL_	LV[3:0]		00н
Power	0	1	-	-			VSH	l[5:0]			ЗГн
	0	1	-	-			VSL	[5:0]			ЗГн
	0	1	-	-			VDHI	R[5:0]			0Дн

VS_EN: Source power selection

0 : External source power from VSH/VSL/VDHR pins
1 : Internal DC/DC function for generating VSH/VSL/VDHR. (Default)

VG_EN: Gate power selection

0 : External gate power from VGH/VGL pins
1 : Internal DC/DC function for generating VGH/VGL. (Default)

VGHL_LV[3:0]: VGH / VGL Voltage Level selection.

VGHL_LV	VGHL Voltage Level
0000 (Default)	VGH=20V, VGL= -20V
0001	VGH=19V, VGL= -19V
0010	VGH=18V, VGL= -18V
0011	VGH=17V, VGL= -17V
0100	VGH=16V, VGL= -16V
0101	VGH=15V, VGL= -15V
0110	VGH=14V, VGL= -14V
0111	VGH=13V, VGL= -13V
1000	VGH=12V, VGL= -12V
1001	VGH=11V, VGL= -11V
1010	VGH=10V, VGL= -10V

VSH[5:0]: Internal VSH power selection for B/W pixel.(Default value: 11 1111b)

VSH	Voltage	VSH	Voltage	VSH	Voltage	VSH	Voltage
00 0000	2.4 V	01 0000	5.6 V	10 0000	8.8 V	11 0000	12.0 V
00 0001	2.6 V	01 0001	5.8 V	10 0001	9.0 V	11 0001	12.2 V
00 0010	2.8 V	01 0010	6.0 V	10 0010	9.2 V	11 0010	12.4 V
00 0011	3.0 V	01 0011	6.2 V	10 0011	9.4 V	11 0011	12.6 V
00 0100	3.2 V	01 0100	6.4 V	10 0100	9.6 V	11 0100	12.8 V
00 0101	3.4 V	01 0101	6.6 V	10 0101	9.8 V	11 0101	13.0 V
00 0110	3.6 V	01 0110	6.8 V	10 0110	10.0V	11 0110	13.2 V
00 0111	3.8 V	01 0111	7.0 V	10 0111	10.2 V	11 0111	13.4 V
00 1000	4.0 V	01 1000	7.2 V	10 1000	10.4 V	11 1000	13.6 V
00 1001	4.2 V	01 1001	7.4 V	10 1001	10.6 V	11 1001	13.8 V
00 1010	4.4 V	01 1010	7.6 V	10 1010	10.8 V	11 1010	14.0 V
00 1011	4.6 V	01 1011	7.8 V	10 1011	11.0 V	11 1011	14.2 V
00 1100	4.8 V	01 1100	8.0 V	10 1100	11.2 V	11 1100	14.4 V
00 1101	5.0 V	01 1101	8.2V	10 1101	11.4 V	11 1101	14.6 V
00 1110	5.2 V	01 1110	8.4 V	10 1110	11.6 V	11 1110	14.8 V
00 1111	5.4 V	01 1111	8.6 V	10 1111	11.8 V	11 1111	15.0 V

VSL[5:0]: Internal VSL power selection for B/W pixel. (Default value: 11 1111b)

VSL	Voltage	VSL	Voltage	VSL	Voltage	VSL	Voltage
00 0000	-2.4 V	01 0000	-5.6 V	10 0000	-8.8 V	11 0000	-12.0 V
00 0001	-2.6 V	01 0001	-5.8 V	10 0001	-9.0 V	11 0001	-12.2 V
00 0010	-2.8 V	01 0010	-6.0 V	10 0010	-9.2 V	11 0010	-12.4 V
00 0011	-3.0 V	01 0011	-6.2 V	10 0011	-9.4 V	11 0011	-12.6 V
00 0100	-3.2 V	01 0100	-6.4 V	10 0100	-9.6 V	11 0100	-12.8 V
00 0101	-3.4 V	01 0101	-6.6 V	10 0101	-9.8 V	11 0101	-13.0 V
00 0110	-3.6 V	01 0110	-6.8 V	10 0110	-10.0V	11 0110	-13.2 V
00 0111	-3.8 V	01 0111	-7.0 V	10 0111	-10.2 V	11 0111	-13.4 V
00 1000	-4.0 V	01 1000	-7.2 V	10 1000	-10.4 V	11 1000	-13.6 V
00 1001	-4.2 V	01 1001	-7.4 V	10 1001	-10.6 V	11 1001	-13.8 V
00 1010	-4.4 V	01 1010	-7.6 V	10 1010	-10.8 V	11 1010	-14.0 V
00 1011	-4.6 V	01 1011	-7.8 V	10 1011	-11.0 V	11 1011	-14.2 V
00 1100	-4.8 V	01 1100	-8.0 V	10 1100	-11.2 V	11 1100	-14.4 V
00 1101	-5.0 V	01 1101	-8.2V	10 1101	-11.4 V	11 1101	-14.6 V
00 1110	-5.2 V	01 1110	-8.4 V	10 1110	-11.6 V	11 1110	-14.8 V
00 1111	-5.4 V	01 1111	-8.6 V	10 1111	-11.8 V	11 1111	-15.0 V

VDHR[5:0]: Internal VDHR power selection for Red pixel. (**Default value: 00 1101b**)

VDHR	Voltage	VDHR	Voltage	VDHR	Voltage	VDHR	Voltage
00 0000	2.4 V	01 0000	5.6 V	10 0000	8.8 V	11 0000	12.0 V
00 0001	2.6 V	01 0001	5.8 V	10 0001	9.0 V	11 0001	12.2 V
00 0010	2.8 V	01 0010	6.0 V	10 0010	9.2 V	11 0010	12.4 V
00 0011	3.0 V	01 0011	6.2 V	10 0011	9.4 V	11 0011	12.6 V
00 0100	3.2 V	01 0100	6.4 V	10 0100	9.6 V	11 0100	12.8 V
00 0101	3.4 V	01 0101	6.6 V	10 0101	9.8 V	11 0101	13.0 V
00 0110	3.6 V	01 0110	6.8 V	/ 10 0110	10.0V	11 0110	13.2 V
00 0111	3.8 V	01 0111	7.0 V	10 0111	10.2 V	11 0111	13.4 V
00 1000	4.0 V	01 1000	7.2 V	10 1000	10.4 V	11 1000	13.6 V
00 1001	4.2 V	01 1001	7.4 V	10 1001	10.6 V	11 1001	13.8 V
00 1010	4.4 V	01 1010	7.6 V	10 1010	10.8 V	11 1010	14.0 V
00 1011	4.6 V	01 1011	7.8 V	10 1011	11.0 V	11 1011	14.2 V
00 1100	4.8 V	01 1100	8.0 V	10 1100	11.2 V	11 1100	14.4 V
00 1101	5.0 V	01 1101	8.2V	10 1101	11.4 V	11 1101	14.6 V
00 1110	5.2 V	01 1110	8.4 V	10 1110	11.6 V	11 1110	14.8 V
00 1111	5.4 V	01 1111	8.6 V	10 1111	11.8 V	11 1111	15.0 V

(3) POWER OFF (POF) (R02H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Turning OFF the power	0	0	0	0	0	0	0	0	1	0	02н

After the Power OFF command, the driver will be powered OFF. Refer to the POWER MANAGEMENT section for the sequence.

This command will turn off booster, controller, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD turned OFF or Deep Sleep Mode. Source/Gate/Border/VCOM will be released to floating.

(4) Power OFF Sequence Setting (PFS) (R03h)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Catting Dawer OFF aggreen	0	0	0	0	0	0	0	0	1	1	03н
Setting Power OFF sequence	0	1	-	-	T_VDS_	OFF[1:0]	-	-	-	-	00н

T_VDS_OFF[1:0]: Source to gate power off interval time.

00b: 1 frame (Default) 01b: 2 frames 10b: 3 frames 11b: 4 frame

(5) POWER ON (PON) (R04H)

Action	1	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Turning ON the p	ower	0	0	0	0	0	0	0	1	0	0

After the Power ON command, the driver will be powered ON. Refer to the POWER MANAGEMENT section for the sequence.

This command will turn on booster, controller, regulators, and temperature sensor will be activated for one-time sensing before enabling booster. When all voltages are ready, the BUSY N signal will return to high.

(6) POWER ON MEASURE (PMES) (R05H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	0	0	1	0	1	05н

This command enables the internal bandgap, which will be cleared by the next POF.

(7) BOOSTER SOFT START (BTST) (R06H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	0	0	1	1	0	06н
Ctarting data transmission	0	1	BT_PHA7	BT_PHA6	BT_PHA5	BT_PHA4	BT_PHA3	BT_PHA2	BT_PHA1	BT_PHA0	17н
Starting data transmission	0	1	BT_PHB7	BT_PHB6	BT_PHB5	BT_PHB4	BT_PHB3	BT_PHB2	BT_PHB1	BT_PHB0	17н
	0	1	-	-	BT_PHC5	BT_PHC4	BT_PHC3	BT_PHC2	BT_PHC1	BT_PHC0	17н

BTPHA[7:6]: Soft start period of phase A.

00b: 10mS 01b: 20mS 10b: 30mS 11b: 40mS

BTPHA[5:3]: Driving strength of phase A

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BTPHA[2:0]: Minimum OFF time setting of GDR in phase B

000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS 100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b: 6.58uS

BTPHB[7:6]: Soft start period of phase B.

BTPHB[5:3]: Driving strength of phase B

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BTPHB[2:0]: Minimum OFF time setting of GDR in phase B

 000b: 0.27uS
 001b: 0.34uS
 010b: 0.40uS
 011b: 0.54uS

 100b: 0.80uS
 101b: 1.54uS
 110b: 3.34uS
 111b: 6.58uS

BTPHC[5:3]: Driving strength of phase C

000b: strength 1 001b: strength 2 **010b: strength 3** 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BTPHC[2:0]: Minimum OFF time setting of GDR in phase C

 000b: 0.27uS
 001b: 0.34uS
 010b: 0.40uS
 011b: 0.54uS

 100b: 0.80uS
 101b: 1.54uS
 110b: 3.34uS
 111b: 6.58uS

(8) DEEP SLEEP (DSLP) (R07H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Deep Sleep	0	0	0	0	0	0	0	1	1	1	07н
Deep Sleep	0	1	1	0	1	0	0	1	0	1	А5н

After this command is transmitted, the chip will enter Deep Sleep Mode to save power. Deep Sleep Mode will return to Standby Mode by hardware reset. The only one parameter is a check code, the command will be executed if check code = 0xA5.

(9) DATA START TRANSMISSION 1 (DTM1) (R10H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	1	0	0	0	0	10н
Ctarting data transmission	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8	00н
Starting data transmission	0	1	:	:	:	:	:			:	00н
	0	1	Pixel(n-7)	Pixel(n-6)	Pixel(n-5)	Pixel(n-4)	Pixel(n-3)	Pixel(n-2)	Pixel(n-1)	Pixel(n)	00н

This command starts transmitting data and write them into SRAM.

In KW mode, this command writes "OLD" data to SRAM.

In KWR mode, this command writes "B/W" data to SRAM.

In Program mode, this command writes "OTP" data to SRAM for programming.

(10) DATA STOP (DSP) (R11H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Stanning data transmission	0	0	0	0	0	1	0	0	0	1	11H
Stopping data transmission	1	1	data_flag	-	-	-	-	-	-	-	00н

Check the completeness of data. If data is complete, start to refresh display.

Data_flag: Data flag of receiving user data.

0: Driver didn't receive all the data.

1: Driver has already received all the one-frame data (DTM1 and DTM2).

After "Data Start" (R10h) or "Data Stop" (R11h) commands and when data_flag=1, the refreshing of panel starts and BUSY_N signal will become "0".

(11) DISPLAY REFRESH (DRF) (R12H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Refresh <mark>ing</mark> the display	0	0	0	0	0	1	0	0	1	0	12н

While user sent this command, driver will refresh display (data/VCOM) according to SRAM data and LUT.

After Display Refresh command, BUSY_N signal will become "0" and the refreshing of panel starts.

The waiting interval form BUSY_N falling to the first FLG command must be larger than 200uS.

(12) DATA START TRANSMISSION 2 (DTM2) (R13H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	1	0	0	1	1	13н
Starting data transmission	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8	00н
Starting data transmission	0	1	:	:	:	:	:	:	:	:	00н
	0	1	Pixel(n-7)	Pixel(n-6)	Pixel(n-5)	Pixel(n-4)	Pixel(n-3)	Pixel(n-2)	Pixel(n-1)	Pixel(n)	00H

This command starts transmitting data and write them into SRAM.

In KW mode, this command writes "NEW" data to SRAM.

In KWR mode, this command writes "RED" data to SRAM.

(13) AUTO SEQUENCE (AUTO) (R17H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Auto Coguenos	0	0	0	0	0	1	0	1	1	1	17н
Auto Sequence	0	1	1	0	1	0	0	1	0	1	A5⊦

The command can enable the internal sequence to execute several commands continuously. The successive execution can minimize idle time to avoid unnecessary power consumption and reduce the complexity of host's control procedure. The sequence contains several operations, including PON, DRF, POF, DSLP.

AUTO $(0x17) + Code(0xA5) = (PON \rightarrow DRF \rightarrow POF)$

AUTO $(0x17) + Code(0xA7) = (PON \rightarrow DRF \rightarrow POF \rightarrow DSLP)$

(14) VCOM LUT (LUTC) (R20H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	0	0	0	0	20H
	0	1	GROUP REPEAT TIMES [7:0]							-	
L	0	1	LEVEL SI	LECT1-1	LEVEL SE	ELECT1-2	LEVEL SI	ELECT2-1	LEVEL SI	ELECT2-2	-
Build Look-up Table for VCOM	0	1	FRAME NUMBER 1-1 [7:0]								-
(81-byte command, structure of bytes 2~9	0	1	FRAME NUMBER 1-2 [7:0]							-	
repeated 10 times)	0	1		,	STAT	TE 1 REPE	AT TIMES	S [7:0]			-
repeated to times)	0	1			FR	AME NUM	IBER 2-1 [7:0]			-
	0	1	FRAME NUMBER 2-2[7:0]							-	
	0	1			STAT	ΓE 2 REPE	AT TIMES	S [7:0]			-
-											_

This command stores VCOM Look-Up Table with 10 groups of data. This LUT includes 10 kinds of groups; each group is of 8 bytes. Each group is divied to 2states and group repeat number. Each state made up 2 phases and each phase is combined with repeat time, level selection and frame number.

Bytes 2, 10, 18, 26, 34,...:

Group repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

Bytes 3, 11, 19, 27, 35.....:

Level selection

00b: VCOM DC

01b: VSH+VCOM_DC (VCOMH)
10b: VSL+VCOM_DC (VCOML)

11b: Floating

Bytes 4~5, 12~13, 20~21, 28~29, 36~37,...:

Number of Frames (state1)

0000 0000b: 0 time

: :

1111 1111b: 255 times

Bytes 6, 14, 22, 30, 38,..:

State1 repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

Bytes 7~8, 14~15, 23~24, 30~31, 39~40,...:

Number of Frames (state2)

0000 0000b: 0 time

: :

1111 1111b: 255 times

Bytes 9, 17, 25, 33, 41,...:

State2 repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

If KW/R=0 (KWR mode), all 10 groups are used.

If KW/R=1 (KW mode), only 7 groups are used.

(15) W2W LUT (LUTWW) (R21H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	0	0	0	1	21н
	0	1		GROUP REPEAT TIMES [7:0]							-
Build	0	1	LEVEL SE	VEL SELECT1-1 LEVEL SELECT1-2 LEVEL SELECT2-1 LEVEL SEL						ELECT2-2	-
White Look-up Table for W2W	0	1		FRAME NUMBER 1-1 [7:0]							-
(57-byte command,	0	1		FRAME NUMBER 1-2 [7:0]							-
structure of bytes 2~9	0	1			STA	ΓΕ 1 REPE	AT TIMES	6 [7:0]			-
repeated 7 times)	0	1			FR	AME NUN	IBER 2-1 [7:0]			-
	0	1		FRAME NUMBER 2-2[7:0]							-
	0	1			STA	ΓE 2 REPE	EAT TIMES	S [7:0]			-

This command stores LUTW2W Look-Up Table with 7 groups of data. This LUT includes 7 kinds of groups; each group is of 8 bytes. Each group is divied to 2 states and group repeat number. Each state made up 2 phases and each phase is combined with repeat time, level selection and frame number.

Bytes 2, 10, 18, 26, 34,...:

Group repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

Bytes 3, 11, 19, 27, 35.....:

Level selection

00b: 0V

01b: VSH

10b: VSL

11b: VDHR

Bytes 4~5, 12~13, 20~21, 28~29, 36~37,...

Number of Frames (state1)

0000 0000b: 0 time

<u>: :</u>

1111 1111b: 255 times

Bytes 6, 14, 22, 30, 38,..:

State1 repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

Bytes 7~8, 14~15, 23~24, 30~31, 39~40,...:

Number of Frames (state2)

0000 0000b: 0 time

: :

<u>:</u>

1111 1111b: 255 times

Bytes 9, 17, 25, 33, 41,..:

State2 repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

If KW/R=0 (KWR mode), LUTWW is not used.

If KW/R=1 (KW mode), LUTWW is used.

(16) B2W LUT (LUTKW / LUTR) (R22H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	0	0	0	1	21⊦
	0	1		GROUP REPEAT TIMES [7:0]				=		-	
Build	0	1	LEVEL SE	EVEL SELECT1-1 LEVEL SELECT1-2 LEVEL SELECT2-1 LEVEL					LEVEL SI	ELECT2-2	-
Look-up Table for B2W or Red	0	1		FRAME NUMBER 1-1 [7:0]						-	
(81-byte command,	0	1			FR	AME NUN	IBER 1-2 [7:0]			-
structure of bytes 2~9 repeated 10 times)	0	- 1			STA	ΓΕ 1 REPE	EAT TIMES	S [7:0]			-
repeated to times)	0	1			FR	AME NUM	IBER 2-1 [7:0]			-
	0	1		FRAME NUMBER 2-2[7:0]						-	
	0	1			STA	TE 2 REPE	EAT TIMES	S [7:0]			-

This command stores B2W Look-Up Table with 10 groups of data. This LUT includes 10 kinds of groups; each group is of 8 bytes. Each group is divied to 2 states and group repeat number. Each state made up 2 phases and each phase is combined with repeat time, level selection and frame number.

Bytes 2, 10, 18, 26, 34,...:

Group repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

Bytes 3, 11, 19, 27, 35.....:

Level selection

00b: 0V

01b: VSH

10b: VSL

11b: VDHR

Bytes 4~5, 12~13, 20~21, 28~29, 36~37,...

Number of Frames (state1)

0000 0000b: 0 time

.

1111 1111b: 255 times

Bytes 6, 14, 22, 30, 38,..:

State1 repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

Bytes 7~8, 14~15, 23~24, 30~31, 39~40,...:

Number of Frames (state2)

0000 0000b: 0 time

1111 1111b: 255 times

Bytes 9, 17, 25, 33, 41,...:

State2 repeat times

0000 0000b: No repeat

0000 0001b ~ 1111 1111b: Repeat 1 ~ 255times

If KW/R=0 (KWR mode), all 10 groups are used.

If KW/R=1 (KW mode), only 7 groups are used.

(17) W2B LUT (LUTWK / LUTW) (R23H)

This command builds Look-up Table for White-to-Black. Please refer to B2W LUT (LUTKW/LUTR) for similar definition details. Regardless of KW/R=0 or KW/R=1, LUTWK/LUTW is used.

(18) B2B LUT (LUTKK / LUTK) (R24H)

This command builds Look-up Table for Black-to-Black. Please refer to B2W LUT (LUTKW/LUTR) for similar definition details. Regardless of KW/R=0 or KW/R=1, LUTKK/LUTK is used.

(19) LUT OPTION (LUTOPT) (R2AH)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	1	0	1	0	2AH
	0	1		•		STATE_	XON[7:0]				00н
LUT Ontion	0	1				STATE_>	ON[15:8]				00н
LUT Option	0	1	EOPT	ESO		-		STATE_>	(ON[19:16]		00H
	0	1				GROUP_	KWE[7:0]				FFH
			ATRED	NORED		-	-	-	GROUP_	KWE[9:8]	03⊦

This command sets XON and the several options of KWR mode's LUT.

STATE_XON[19:0]:

All Gate ON control (Each bit controls one states, STATE_XON [0] for Group-1/State-1, STATE_XON [1] for Group-1/State-2)

0000 0000 0000 0000 0000b; no All-Gate-ON

0000 0000 0000 0000 0001b: Group-1/State-1 All-Gate-ON

0000 0000 0000 0000 0011b: Group-1/State-1 and Group-1/State-2 All-Gate-ON

0000 0000 0000 0000 0111b: Group-1/State-1, Group-1/State-2 and Group-2/State-1 All-Gate-ON

EOPT: LUT Sequence option 1.

ESO: LUT Sequence option 2.

ATRED: Automatic mode. The option is only available when KW/R=0.

NORED: No Red data. The option is only available when KW/R=0.

GROUP KWE[9:0]:

The options are only available when KW/R=0 and (ATRED | NORED) = 1.

There are only 10 groups in the K/W LUT. Each bit controls one group.

11 1111 1111b: all groups are executed sequentially.

11 1111 1110b: only Group-1 is bypassed.

11 1111 1100b: Group-1 and Group-2 are bypassed.

: :

(20) PLL CONTROL (PLL) (R30H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Controlling PLL	0	0	0	0	1	1	0	0	0	0	30н
Controlling PLL	0	1	-	-	-			FRS[4:0]			09н

The command controls the PLL clock frequency. The PLL structure must support the following frame rates:

FMR[4:0]: Frame rate setting

FRS	Frame rate
00000	5Hz
00001	10Hz
00010	15Hz
00011	20Hz
00100	25Hz
00101	30Hz
00110	35Hz
00111	40Hz
01000	45Hz
01001	50Hz
01010	55Hz
01011	60Hz
01100	65Hz
01101	70Hz
01110	75Hz
01111	80Hz

FRS	Frame rate
10000	85Hz
10001	90Hz
10010	95Hz
10011	100Hz
10100	105Hz
10101	110Hz
10110	115Hz
10111	120Hz
11000	130Hz
11001	140Hz
11010	150Hz
11011	160Hz
11100	170Hz
11101	180Hz
11110	190Hz
11111	200Hz

(21) TEMPERATURE SENSOR CALIBRATION (TSC) (R40H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	0	0	0	0	0	0	40н
Sensing Temperature	1	1	D10/TS7	D9/TS6	D8/TS5	D7/TS4	D6 / TS3	D5 / TS2	D4 / TS1	D3 / TS0	00н
	1	1	D2	D1	D0	-	-	-	-	-	00н

This command enables internal or external temperature sensor, and reads the result.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor value.

D[10:0]: When TSE (R41h) is set to 1, this command reads external LM75 temperature sensor value.

TS[7:0]/D[10:3]	Temperature (°C)
1110_0111	-25
1110_1000	-24
1110_1001	-23
1110_1010	-22
1110_1011	-21
1110_1100	-20
1110_1101	-19
1110_1110	-18
1110_1111	-17
1111_0000	-16
1111_0001	-15
1111_0010	-14
1111_0011	-13
1111_0100	-12
1111_0101	-11
1111_0110	-10
1111_0111	-9
1111_1000	-8 -7
1111_1001	-7
1111_1010	-6
1111_1011	-5
1111_1100	-4 -3 -2
1111_1101	-3
1111_1110	-2
1111_1111	-1

TS[7:0]/D[10:3]	Temperature(°C)
0000_0000	0
0000_0001	1
0000_0010	2
0000_0011	2 3 4
0000_0100	4
0000_0101	5 6
0000_0110	6
0000_0111	7
0000_1000	8
0000_1001	9
0000_1010	10
0000_1011	11
0000_1100	12
0000_1101	13
0000_1110	14
0000_1111	15
0001_0000	16
0001_0001	17
0001_0010	18
0001_0011	19
0001_0100	20
0001_0101	21
0001_0110	22
0001_0111	23
0001_1000	24

TS[7:0]/D[10:3]	Temperature(°C)
0001_1001	25
0001_1010	26
0001_1011	27
0001_1100	28
0001_1101	29
0001_1110	30
0001_1111	31
0010_0000	32
0010_0001	33
0010_0010	34
<u> 0010_0011</u>	35
0010_0100	36
0010_0101	37
0010_0110	38
0010_0111	39
0010_1000	40
0010_1001	41
0010_1010	42
0010_1011	43
0010_1100	44
0010_1101	45
0010_1110	46
0010_1111	47
0011_0000	48
0011_0001	49

(22) TEMPERATURE SENSOR ENABLE (TSE) (R41H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Enable Temperature Sensor	0	0	0	1	0	0	0	0	0	1	41⊦
/Offset	0	1	TSE	-	-	-		TO	[3:0]		00н

This command selects Internal or External temperature sensor.

TSE: Internal temperature sensor switch

0: Enable (default)

1: Disable; using external sensor.

TO[3:0]: Temperature offset.

TO[3:0]	Calculation
0000 b	+0 (Default)
0001	+1
0010	+2
0011	+3
0100	+4
0101	+5
0110	+6
0111	+7

TO[3:0]	Calculation
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

(23) TEMPERATURE SENSOR WRITE (TSW) (R42H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	0	0	0	0	1	0	42н
Write External Temperature	0	1		WATTR[7:0]							
Sensor	0	1				WMS	B[7:0]				00н
	0	1				WLS	B[7:0]				00н

This command writes the temperature sensed by the temperature sensor.

WATTR[7:6]: I2C Write Byte Number

00b : 1 byte (head byte only)

01b: 2 bytes (head byte + pointer)

10b : 3 bytes (head byte + pointer + 1st parameter)

11b: 4 bytes (head byte + pointer + 1st parameter + 2nd parameter)

WATTR[5:3]: User-defined address bits (A2, A1, A0)

WATTR[2:0]: Pointer setting

WMSB[7:0]: MSByte of write-data to external temperature sensorWLSB[7:0]: LSByte of write-data to external temperature sensor

(24) TEMPERATURE SENSOR READ (TSR) (R43H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Dood Estamol Tomoroughum	0	0	0	1	0	0	0	0	1	1	43н
Read External Temperature Sensor	1	1				RMS	B[7:0]				00н
Serisor	1	1				RLSI	3[7:0]				00н

This command reads the temperature sensed by the temperature sensor.

RMSB[7:0]: MSByte read data from external temperature sensor

RLSB[7:0]: LSByte read data from external temperature sensor

(25) PANEL GLASS CHECK (PBC)

Action	R/W	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Charle Danal Clara	W	0	0	1	0	0	0	1	0	0	44⊦
Check Panel Glass	R	1	-	-	-	-	-	-	-	PSTA	00H

This command is used to enable panel check, and to disable after reading result.

PSTA: 0: Panel check fail (panel broken) 1: Panel check pass

(26) VCOM AND DATA INTERVAL SETTING (CDI) (R50H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Interval between	0	0	0	1	0	1	0	0	0	0	50h
VCOM and Data	0	1	VBD	[1:0]	DDX	([1:0]		CDI	[3:0]		31h

This command indicates the interval of VCOM and data output. When setting the vertical back porch, the total blanking will be kept (20 Hsync).

VBD[1:0]: Border LUT selection

KWR mode (KW/R=0)

DDX[0]	VBD[1:0]	LUT		
	00	Floating		
0	01	LUTR		
U	10	LUTW		
	11	LUTK		
	00	LUTK		
1	01	LUTW		
(Default)	10	LUTR		
	11	Floating		

KW mode (KW/R=1)

DDX[0]	VBD[1:0]	LUT
	00	Floating
0	01	LUTKW (1 → 0)
0	10	LUTWK (0 → 1)
	11	Floating
	00	Floating
1	01	LUTWK (1 → 0)
(Default)	10	LUTKW (0 → 1)
	11	Floating

DDX[1:0]: Data polality.

Under KWR mode (KW/R=0):

DDX[1] is for RED data. DDX[0] is for K/W data,

DDX[1:0]	Data {Red, K/W}	LUT		
	00	LUTW		
00	01	LUTK		
00	10	LUTR		
	11	LUTR		
	00	LUTK		
01	01	LUTW		
(Default)	10	LUTR		
	11	LUTR		

DDX[1:0]	Data {Red, K/W}	LUT
	00	LUTR
10	01	LUTR
10	10	LUTW
	11	LUTK
	00	LUTR
11	01	LUTR
11	10	LUTK
	11	LUTW

Under KW mode (KW/R=1):

DDX[1]=0 is for KW mode with NEW/OLD, DDX[1]=1 is for KW mode without NEW/OLD.

DDX[1:0]	Data {NEW, OLD}	LUT
	00	LUTWW $(0 \rightarrow 0)$
00	01	LUTKW $(1 \rightarrow 0)$
	10	LUTWK $(0 \rightarrow 1)$
	11	LUTKK (1 → 1)
	00	LUTKK $(0 \rightarrow 0)$
01	01	LUTWK (1 → 0)
(Default)	10	LUTKW (0 → 1)
	11	LUTWW (1 → 1)

DDX[1:0]	Data {NEW}	LUT
10	0	LUTKW (1 → 0)
	1	LUTWK (0 → 1)
11	0	LUTWK (1 → 0)
11	1	LUTKW (0 → 1)

CDI[3:0]: VCOM and data interval

VCOM and Data Interval
17 hsync
16
15
14
13
12
11
10 (Default)

CDI[3:0]	VCOM and Data Interval
1000	9
1001	8
1010	7
1011	6
1100	5
1101	4
1110	3
1111	2

(27) Low Power Detection (LPD) (R51H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Detect Low Power	0	0	0	1	0	1	0	0	0	1	51h
	1	1	-	-	-	-	-	-	-	LPD	01h

This command indicates the input power condition. Host can read this flag to learn the battery condition.

LPD: Internal Low Power Detection Flag

0: Low power input (VDD<2.5V, selected by LVD_SEL[1:0] in command LVSEL)

1: Normal status (default)

(28) TCON SETTING (TCON) (R60H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Gate/Source Non-overlap	0	0	0	1	1	0	0	0	0	0	60h
Period	0	1		S2G	[3:0]		G2S[3:0]				

This command defines non-overlap period of Gate and Source.

S2G[3:0] or G2S[3:0]: Source to Gate / Gate to Source Non-overlap period

S2G[3:0] or G2S[3:0]	Period
0000b	4
0001	8
0010	12 (Default)
0011	16
0100	20
0101	24
0110	28
0111	32

S2G[3:0] or G2S[3:0]	Period
1000b	36
1001	40
1010	44
1011	48
1100	52
1101	56
1110	60
1111	64

Period Unit = 660 nS.

(29) RESOLUTION SETTING (TRES) (R61H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Display Resolution	0	0	0	1	1	0	0	0	0	1	61h
	0	1			HRES[7:3]		0	0	0	00h	
	0	1	-	-	-	-	-	-	-	VRES[8]	00h
	0	1				S[7:0]				00h	

This command defines alternative resolution and this setting is of higher priority than the RES[1:0] in R00H (PSR).

HRES[7:3]: Horizontal Display ResolutionVRES[8:0]: Vertical Display Resolution

Active channel calculation, assuming HST[7:3]=0, VST[8:0]=0:

Gate: First active gate = G0;

Last active gate = VRES[8:0] - 1

Source: First active source = X (If HRES[7:0]>160, X=0; otherwise, X=8)

Last active source = HRES[7:0] - 1 + X (If HRES[7:0]>160, X=0; otherwise, X=8)

Example: For 128 (source) x 272 (gate), assuming HST[7:3]=0, VST[8:0]=0

Gate: First active gate = G0,

Last active gate = G271 (VRES[8:0] = 272; 272 - 1 = 271)

Source: First active source = S8, (HRES[7:0][160 therefore X=8)

Last active source = S135; (128 - 1 + 8 = 135)

(30) GATE/SOURCE START SETTING (GSST) (R65H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Gate/Source Start	0	0	0	1	1	0	0	1	0	1	65h
	0	1			HST[7:3]			0	0	0	00h
	0	1	-/	-	-	-	-	-	-	VST[8]	00h
	0	1				VST	[7:0]				00h

This command defines resolution start gate/source position.

HST[7:3]: Horizontal Display Start Position (Source)

VST[8:0]: Vertical Display Start Position (Gate)

Example: For 128(Source) x 240(Gate)

HST[7:0] = 32VST[8:0] = 32

Gate: First active gate = G32 (VST[8:0] = 32),

Last active gate = G271 (240-1+32=271)

Source: First active source = S40 (HST[7:0] = 32, X=8, 32+8 = 40), (Note)

Last active source = S167 (128-1+32+8=167)

Note: If HRES[7:0] > 160, X=8; otherwise X=8.

(31) REVISION (REV) (R70H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		
	0	0	0	1	1	1	0	0	0	0	70h	
Ohia Bassiaiaa	1	1	Reserved									
	1	1				CHIP_F	REV[7:0]				0Ah	
Chip Revision	1	1				LUT_R	EV[7:0]				FFh	
	1	1				LUT_RI	EV[15:8]				FFh	
	1	1		LUT REV[23:16]								

The LUT_REV is read from OTP address = $0x0017 \sim 0X0019 / 0x1017 \sim 0X1019$.

CHIP_REV[7:0]: Chip Revision, it is fixed by "0x0Ah".

(32) GET STATUS (FLG) (R71H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	1	1	0	0	0	1	71h
Read Flags	1	1	-	PTL_ flag	I ² C_ERR	I ² C_ BUSYN	data_ flag	PON	POF	BUSY_N	13h

This command reads the IC status.

PTL_FLAG Partial display status (high: partial mode)

I²C_ERR: I²C master error status

I²C_BUSYN: I²C master busy status (low active)

data_flag: Driver has already received all the one frame data

PON: Power ON status
POF: Power OFF status

BUSY_N: Driver busy status (low active)

(33) CYCLIC REDUNDANCY CHECK (CRC) (R72H)

Action	R/W	A 0	D7	D6	D5	D4	D3	D2	D1	D0	
	R	0	0	1	1	1	0	0	1	0	72н
Cyclic redundancy check	R	1				CRC_M	1SB[7:0]				FFH
3.70010	R	1				CRC_L	.SB[7:0]				FFн

This command reads Cyclic redundancy check(CRC) result.

The calculation only includes 0x0000~0x1FEF OTP data...

Polynomial = $x^{16} + x^{12} + x^5 + 1$, initial vaulte: 16'hFFFF

The result will be reset after this command.

CRC_MSB[7:0]: Most significant bits of CRC result CRC_LSB[7:0]: Lease significant bits of CRC result

(34) AUTO MEASURE VCOM (AMV) (R80H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Automatically measure VCOM	0	0	1	0	0	0	0	0	0	0	80h
Automatically measure VCOM	0	1	-	-	AMV	T[1:0]	XON	AMVS	AMV	AMVE	10h

This command reads the IC status.

AMVT[1:0]: Auto Measure VCOM Time

00b: 3s 01b: 5s (default)

10b: 8s 11b: 10s

XON: All Gate ON of AMV

0: Gate normally scan during Auto Measure VCOM period. (default) 1: All Gate ON during Auto Measure VCOM period.

AMVS: Source output of AMV

0: Source output 0V during Auto Measure VCOM period. (default)

1: Source output VDHR during Auto Measure VCOM period.

AMV: Analog signal

0: Get VCOM value with the VV command (R81h) (default)

1: Get VCOM value in analog signal. (External analog to digital converter)

AMVE: Auto Measure VCOM Enable (/Disable)

0: No effect (default)

1: Trigger auto VCOM sensing.

(35) VCOM VALUE (VV) (R81H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Automatically measure VCOM	0	0	1	0	0	0	0	0	0	1	81h
Automatically measure voolvi	1	1	-				VV[6:0]				00h

This command gets the VCOM value.

VV[6:0]: VCOM Value Output

VV [6:0] V 0000000b 000001b 0000010b 0000110b 0000101b 0000110b 0000111b 0000111b	COM Voltage (V) -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8	VV [6:0] 0101011b 0101100b 0101101b 0101110b 0101111b 0110000b 0110001b	VCOM Voltage (V) -4.4 -4.5 -4.6 -4.7 -4.8	VV [6:0] 1010110b 1010111b 1011000b 1011001b	VCOM Voltage (V) -8.7 -8.8 -8.9 -9
0000001b 0000010b 0000011b 0000100b 0000101b 0000110b	-0.2 -0.3 -0.4 -0.5 -0.6 -0.7	0101011b 0101100b 0101101b 0101110b 0101111b 0110000b	-4.5 -4.6 -4.7 -4.8	1010111b 1011000b 101 <mark>10</mark> 01b	-8.7 -8.8 -8.9
0000010b 0000011b 0000100b 0000101b 0000110b 0000111b	-0.3 -0.4 -0.5 -0.6 -0.7	0101101b 0101110b 0101111b 0110000b	-4.6 -4.7 -4.8	1011000b 101 <mark>10</mark> 01b	-8.9
000011b 0000100b 0000101b 0000110b 0000111b	-0.4 -0.5 -0.6 -0.7	0101110b 0101111b 0110000b	-4.7 -4.8	101 <mark>10</mark> 01b	
0000100b 0000101b 0000110b 0000111b	-0.5 -0.6 -0.7	0101111b 0110000b	-4.8		-0
0000101b 0000110b 0000111b	-0.6 -0.7	0110000b			-9
0000110b 0000111b	-0.7			1011010b	-9.1
0000111b		01100016	-4.9	1011011b	-9.2
	-0.8	011000110	-5	1011100b	-9.3
00010006		0110010b	-5.1	1011101b	-9.4
0001000	-0.9	0110011b	-5.2	1011110b	-9.5
0001001b	-1	0110100b	-5.3	1011111b	-9.6
0001010b	-1.1	0110101b	-5.4	1100000b	-9.7
0001011b	-1.2	0110110b	-5.5	1100001b	-9.8
0001100b	-1.3	0110111b	-5.6	1100010b	-9.9
0001101b	-1.4	0111000b	-5.7	1100011b	-10
0001110b	-1.5	0111001b	-5.8	1100100b	-10.1
0001111b	-1.6	011101 <u>0</u> b	-5.9	1100101b	-10.2
0010000b	-1.7	0111011b	-6	1100110b	-10.3
0010001b	-1.8	0111100b	-6.1	1100111b	-10.4
0010010b	-1.9	0111101b	-6.2	1101000b	-10.5
0010011b	-2	011111 <mark>0</mark> b	-6.3	1101001b	-10.6
0010100b	-2.1	01111 <mark>1</mark> 1b	-6.4	1101010b	-10.7
0010101b	-2.2	1000000b	-6.5	1101011b	-10.8
0010110b	-2.3	1000001b	-6.6	1101100b	-10.9
0010111b	-2.4	1000010b	-6.7	1101101b	-11
0011000b	-2.5	1000011b	-6.8	1101110b	-11.1
0011001b	-2.6	1000100b	-6.9	1101111b	-11.2
0011010b	-2.7	1000101b	-7	1110000b	-11.3
0011011b	-2.8	1000110b	-7.1	1110001b	-11.4
0011100b	-2.9	1000111b	-7.2	1110010b	-11.5
0011101b	-3	1001000b	-7.3	1110011b	-11.6
0011110b	-3.1	1001001b	-7.4	1110100b	-11.7
0011111b	-3.2	1001010b	-7.5	1110101b	-11.8
0100000b	-3.3	1001011b	-7.6	1110110b	-11.9
01000 <mark>0</mark> 1b	-3.4	1001100b	-7.7	1110111b	-12
01000 <mark>10</mark> b	-3.5	1001101b	-7.8	1111000b	-12.1
0100011b	-3.6	1001110b	-7.9	1111001b	-12.2
0100100b	-3.7	1001111b	-8	1111010b	-12.3
0100101b	-3.8	1010000b	-8.1	1111011b	-12.4
01001 <mark>1</mark> 0b	-3.9	1010001b	-8.2	1111100b	-12.5
0100 <mark>11</mark> 1b	-4	1010010b	-8.3	1111101b	-12.6
0101000b	-4.1	1010011b	-8.4	1111110b	-12.7
0101001b	-4.2	1010100b	-8.5		
0101010b	-4.3	1010101b	-8.6		

(36) VCOM_DC SETTING (VDCS) (R82H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set VCOM DC	0	0	1	0	0	0	0	0	1	0	82h
Set VCOM_DC	0	1	-				VDCS[6:0]				00h

This command sets VCOM_DC value

VDCS[6:0]: VCOM_DC Setting

VDCS [6:0]	VCOM Voltage (V)	VDCS [6:0]	VCOM Voltage (V)	VDCS [6:0]	VCOM Voltage (V)
0000000b	-0.1	0101011b	-4.4	1010110b	-8.7
0000000b	-0.1	01011100b	-4.5	1010110b	-8.8
0000001b	-0.2	0101100b	-4.6	101111000b	-8.9
0000010b	-0.4	0101101b	-4.7	1011000b	-9.9
0000011b	-0.5	0101111b	-4.8	1011001b	-9.1
0000100b	-0.6	0110000b	-4.9	1011010b	-9.2
0000101b	-0.7	0110000b	- 	1011100b	-9.3
0000110b	-0.8	0110001b	-5.1	1011101b	-9.4
0001111b	-0.9	0110010b	-5.2	1011110b	-9.5
0001000b	-1	01101100b	-5.3	1011111b	-9.6
0001001b	-1.1	0110100b	-5.4	1100000b	-9.7
0001010b	-1.2	0110110b	-5.5	1100001b	-9.8
0001100b	-1.3	0110111b	-5.6	1100010b	-9.9
0001100b	-1.4	0111000b	-5.7	1100011b	-10
0001110b	-1.5	0111001b	-5.8	1100100b	-10.1
0001111b	-1.6	0111010b	-5.9	1100101b	-10.2
0010000b	-1.7	0111011b	-6	1100110b	-10.3
0010001b	-1.8	0111100b	-6.1	1100111b	-10.4
0010010b	-1.9	0111101b	-6.2	1101000b	-10.5
0010011b	-2	0111110b	-6.3	1101001b	-10.6
0010100b	-2.1	01111 <mark>1</mark> 1b	-6.4	1101010b	-10.7
0010101b	-2.2	10000 <mark>00</mark> b	-6.5	1101011b	-10.8
0010110b	-2.3	1000001b	-6.6	1101100b	-10.9
0010111b	-2.4	1000010b	-6.7	1101101b	-11
0011000b	-2.5	1000011b	-6.8	1101110b	-11.1
0011001b	-2.6	1000100b	-6.9	1101111b	-11.2
0011010b	-2.7	10001 <mark>0</mark> 1b	-7	1110000b	-11.3
0011011b	-2.8	1000110b	-7.1	1110001b	-11.4
0011100b	-2.9	1000111b	-7.2	1110010b	-11.5
0011101b	-3	/1001000b	-7.3	1110011b	-11.6
0011110b	-3.1	1001001b	-7.4	1110100b	-11.7
0011111b	-3.2	1001010b	-7.5	1110101b	-11.8
0100000b	-3.3	1001011b	-7.6	1110110b	-11.9
0100001b	-3.4	1001100b	-7.7	1110111b	-12
01000 <mark>1</mark> 0b	-3.5	1001101b	-7.8	1111000b	-12.1
0100011b	-3.6	1001110b	-7.9	1111001b	-12.2
010010 <mark>0b</mark>	-3.7	1001111b	-8	1111010b	-12.3
0100101b	-3.8	1010000b	-8.1	1111011b	-12.4
010011 <mark>0</mark> b	-3.9	1010001b	-8.2	1111100b	-12.5
0100111b	-4	1010010b	-8.3	1111101b	-12.6
0101000b	-4.1	1010011b	-8.4	1111110b	-12.7
0101001b	-4.2	1010100b	-8.5		
0101010b	-4.3	1010101b	-8.6		

(37) PARTIAL WINDOW (PTL) (R90H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	1
	0	0	1	0	0	0	0	0	1	0	90h
	0	1			HRST[7:3]			0	0	0	00h
	0	1			HRED[7:3]			1	1	1	07h
Set Partial Window	0	1	-	-	-	-	-	-	_	VRST[8]	00h
Set Partial Window	0	1				VRS	T[7:0]				00h
	0	1	-	-	-	-	-	-	-	VRED[8]	00h
	0	1				VRE	D[7:0]				00h
	0	1	-	-	-	-	-	-	-	PT_SCAN	01h

This command sets partial window.

HRST[7:3]: Horizontal start channel bank. (value 00h~13h)

HRED[7:3]: Horizontal end channel bank. (value 00h~13h). HRED must be greater than HRST.

VRST[8:0]: Vertical start line. (value 000h~127h)

VRED[8:0]: Vertical end line. (value 000h~127h). VRED must be greater than VRST.

PT_SCAN: 0: Gates scan only inside of the partial window.

1: Gates scan both inside and outside of the partial window. (default)

(38) PARTIAL IN (PTIN) (R91H)

Action	W/R	C/D	D7	D6	D 5	D4	D3	D2	D1	D0	
Partial In	0	0	1	0	0	1	0	0	0	1	911

This command makes the display enter partial mode.

(39) PARTIAL OUT (PTOUT) (R92H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Partial Out	0	0	1	0	0	1	0	0	1	0	92h

This command makes the display exit partial mode and enter normal mode.

(40) PROGRAM MODE (PGM) (RA0H)

											4
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Enter Program Mode	0	0	1	0	1	0	0	0	0	0	A0h

After this command is issued, the chip would enter the program mode.

After the programming procedure completed, a hardware reset is necessary for leaving program mode.

(41) ACTIVE PROGRAM (APG) (RA1H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Active Program OTP	0	0	1	0	1	0	0	0	0	1	A1h

After this command is transmitted, the programming state machine would be activated.

The BUSY_N flag would fall to 0 until the programming is completed.

(42) READ OTP DATA (ROTP) (RA2H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	1	0	1	0	0	0	1	0	A2h
	1	1				Dur	nmy				
	1	1			The data	of addres	s 0x000 in	the OTP			
Read OTP data for check	1	1			The data	of addres	s 0x001 in	the OTP			
	1	1					:				
	1	1			The dat	a of addres	ss (n-1) in	the OTP			
	1	1			The da	ta of addre	ess (n) in t	he OTP			

The command is used for reading the content of OTP for checking the data of programming.

The value of (n) is depending on the amount of programmed data, the max address = 0x17FF.

The sequence of programming OTP.

(43) CASCADE SETTING (CCSET) (RE0H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Cat Casaada Ontian	0	0	1	1	1	0	0	0	0	0	E0h
Set Cascade Option	0	1	-	-	-	-	-	-	TSFIX	CCEN	00h

This command is used for cascade.

CCEN: Output clock enable/disable.

0: Output 0V at CL pin. (default)

1: Output clock at CL pin for slave chip.

TSFIX: Let the value of slave's temperature is same as the master's.

0: Temperature value is defined by internal temperature sensor / external LM75. (default)

1: Temperature value is defined by TS_SET[7:0] registers.

(44) POWER SAVING (PWS) (RE3H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Power Saving for VCOM &	0	0	1	1	1	0	0	0	1	1	E3
Source	0	1		VCOM	_W[3:0]			SD_V	V[3:0]		001

This command is set for saving power during refreshing period. If the output voltage of VCOM / Source is from negative to positive or from positive to negative, the power saving mechanism will be activated. The active period width is defined by the following two parameters.

VCOM_W[3:0]: VCOM power saving width (unit = line period)

SD_W[3:0]: Source power saving width (unit = 660nS)

(45) LVD VOLTAGE SELECT (LVSEL) (RE4H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Coloot LVD Voltage	0	0	1	1	1	0	0	1	0	0	E4h
Select LVD Voltage	0	1	-	-	-	-	-	-	LVD_S	EL[1:0]	03h

LVD_SEL[1:0]: Low Power Voltage selection

LVD_SEL[1:0]	LVD value					
00	< 2.2 V					
01	< 2.3 V					
10	< 2.4 V					
11	< 2.5 V (default)					

(46) FORCE TEMPERATURE (TSSET) (RE5H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Force Temperature Value for	0	0	1	1	1	0	0	1	0	1	E5h
Cascade	0	1				TS_SE	ET[7:0]				00h

This command is used for cascade to fix the temperature value of master and slave chip.

HOST INTERFACES

UC8251 provides 3-wire/4-wire serial interface for command and display data transferred from the MCU. The serial interface supports 8-bit mode. Data can be input/output by clocks while the chip is active (CSB =LOW). While input, data are written in order from MSB at the clock rising edge. When too many parameters are input, the chip accepts only defined parameters, and ignores undefined ones.

BS	Interface	CSB	DC	SCL	SDA
High	3-wire SPI	Available	Fix to GND	Available	Available
Low	4-wire SPI	Available	Available	Available	Available

3 wire SPI format

Data / Command is recognized with the first bit transferred. Data are transferred in the unit of 9 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 9 bits. (The serial counter is reset at the rising edge of the CSB signal.)

Figure: 3-wire SPI write operation

The MSB bit of data will be output at SDA pin after the 1st SCL falling edge, if the 1st input data at SDA is high. Only in the case of OTP data read, the 1st packet of output data are dummy data.

Figure: 3-wire SPI read operation

4 wire SPI format

Data / Command is recognized with DC pin. Data are transferred in the unit of 8 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 8 bits. (The serial counter is reset at the rising edge of the CSB signal.)

Figure: 4-wire SPI write operation

The MSB bit of data will be output at SDA pin after the CSB falling edge, if DC pin is High. Only in the case of OTP data read, the 1st packet of output data are dummy data.

Figure: 4-wire SPI read operation

POWER MANAGEMENT

Power ON/OFF Sequence

- 1. Temperature sensor will be activated automatically for one-time sensing before enabling booster.
- 2. After refreshing display, VCOM will be set to floating automatically.
- 3. In OTP mode (REG=0), the LUT in OTP will be copied to register automatically after the DSP/DRF command.
- 4. After RST_N rising, the waiting time for internal initial processing, greater than 1mS, is necessary. Any commands transmitted to chip during this time will be ignored.

Data Transmission Waveform

Example 1: After 3 cases, the driver will send 2 frame VCOM and data to 0 V.

- 1. All 7 LUT groups (KW mode) or 10 LUT groups (KWR mode) complete.
- 2. Meet the group whose Times to Repeat =0
- 3. Meet the group whose all Number of Frames =0

Example2: While level selection in LUT (LUTC only) is "1111_1111b", the driver will float VCOM.

Display Refresh Waveform

Example 1: After three cases, the driver will send 2 frames VCOM and data to 0 V.

- 1. All 7 LUT groups (KW mode) or 10 LUT groups (KWR mode) complete.
- 2. Meet the group whose Times to Repeat = 0
- 3. Meet the group whose all Number of Frames = 0

Example2: While level selection in LUT (LUTC only) is "1111_1111b", the driver will float VCOM.

BUSY N Signal

Commands, except reading command, are restricted by refreshing display (DRF / DSP) as listed in the following table.

BUSY_N is used to represent the status of internal action. Commands activating internal operation or calculation will cause BUSY_N falling to LOW. After actions completed, BUSY_N will return to HIGH.

Command	Refresh Restriction	BUSY_N flag
PSR	X	No action
PWR	X	No action
POF	X	Flag
PFS	X	No action
PON	X	Flag
PMES	X	Flag
BTST	X	No action
DSLP	X	Flag
AUTO	X	Flag
DTM1	X	No action
DSP	X	Flag
DRF	X	Flag
DTM2	X	No action
LUTC	X	No action
LUTWW	X	No action
LUTKW/LUTR	X	
		No action
LUTWK/LUTW	X	No action
LUTKK/LUTK	X	No action
LUTOPT	X	No action
PLL	X	No action
TSC	X	Flag
TSE	X	No action
TSW	X	No action
TSR	X	No action
PBC	X	No action
CDI	X	No action
LPD	X	Flag
TCON	X	No action
TRES	X	No action
GSST	X	No action
REV	V	No action
FLG	V	No action
CRC	V	No action
AMV	X	Flag
VV	V	No action
VDCS	Х	No action
PTL	X	No action
PTIN	X	No action
PTOUT	Х	No action
PGM	X	No action
APG	X	Flag
ROTP	X	No action
CCSET	X	No action
PWS	X	No action
LVSEL	X	No action
TSSET	X	No action
IOOLI	^	ויוט מכווטוו

V: Accepted, X: Ignored

OTP ADDRESS MAPPING

The size of the internal One Time Programmable (OTP) memory is 8K bytes, and the address is from 0x0000 to 0x1FFF. The unprogrammed bit is logic 1. Only the bit at logic 1 can be programmed to logic 0, but the bit at logic 0 cannot be converted to logic 1.

There are 2 areas (0x0FA9~0x0FEF, 0x1FA9~0x1FEF) are reserved for user defined. Write all 0xFF of data to skip the 2 areas. The recommended voltage of VPP during programming is 8.25V. In the other condition except for programming, let VPP floating or be connected to GND. The maximum current of VPP during programming is 5mA.

There are 2 banks in the internal OTP, and each bank has 4K bytes storage memory. The formats of each bank are the same, and the selection of bank is controlled by Check Code (0x0000 and 0x1000). Bank1 has higher priority than Bank0. The 2 banks are used for two times programming.

Table 1: OTP Address Map

	Bank0		Bank1
Address	Content	Address	Content
0x0000	Check Code (0xA5)	0x1000	Check Code (0xA5)
0x0001~0x0013	Command Default Setting *(1)	0x1001~0x1013	Command Default Setting *(1)
0x0014~0x0016	LUT Version [23:0]	0x1014~0x1016	LUT Version [23:0]
0x0017~0x0019	Chip ID [23:0]	0x1017~0x1019	Chip ID [23:0]
0x001A~0x0024	Temperature Boundary 0~10 (TB0~TB10)	0x101A~0x1024	Temperature Boundary 0~10 (TB0~TB10)
0x0025~0x016F	Temperature Range 0 *(2)	0x1025~0x116F	Temperature Range 0 *(2)
0x0170~0x02BA	Temperature Range 1 *(2)	0x1170~0x12BA	Temperature Range 1 *(2)
0x02BB~0x0405	Temperature Range 2 *(2)	0x12BB~0x1405	Temperature Range 2 *(2)
0x0406~0x0550	Temperature Range 3 *(2)	0x1406~0x1550	Temperature Range 3 *(2)
0x0551~0x069B	Temperature Range 4 *(2)	0x1551~0x169B	Temperature Range 4 *(2)
0x069C~0x07E6	Temperature Range 5 *(2)	0x169C~0x17E6	Temperature Range 5 *(2)
0x07E7~0x0931	Temperature Range 6 *(2)	0x17E7~0x1931	Temperature Range 6 *(2)
0x0932~0x0A7C	Temperature Range 7 *(2)	0x1932~0x1A7C	Temperature Range 7 *(2)
0x0A7D~0x0BC7	Temperature Range 8 *(2)	0x1A7D~0x1BC7	Temperature Range 8 *(2)
0x0BC8~0x0D12	Temperature Range 9 *(2)	0x1BC8~0x1D12	Temperature Range 9 *(2)
0x0D13~0x0E5D	Temperature Range 10 *(2)	0x1D13~0x1E5D	Temperature Range 10 *(2)
0x0E5E~0x0FA8	Temperature Range 11 *(2)	0x1E5E~0x1FA8	Temperature Range 11 *(2)
0x0FA9~0x0FEF	Reserved for user-defined	0x1FA9~0x1FEF	Reserved for user-defined
0x0FF0~0x0FFF	Reserved for UltraChip	0x1FF0~0x1FFF	Reserved for UltraChip

Note:

- (1) See section "COMMAND DEFAULT SETTING" for more detail.
- (2) See section "LUT FORMAT IN OTP" for more detail.

TEMPERATURE RANGE

The temperature selection mechanism consists of a less-than-or-equal-to operator and 11 temperature boundary settings (TBx) to determine 12 temperature ranges. The sequence of mechanism is from TB0 to TB10, as shown below. If less than 12 tempeature ranges are used, the last TBx must be set to 0x7F to end the mechanism.

Procedure Order	Comparison Condition	Action & Segment Selection
1-0. Read 0x0000	Content = 0xA5 ?	Yes: Jump to Procedure 2 (Bank0), No: Jump to Procedure 1-1
1-1, Read 0x1000	Content = 0xA5 ?	Yes: Jump to Procedure 2 (Bank1), No: Stop Refresh
2. Read 0x001A / 0x101A	Real Temperature ≤ TB0	Use TR0's table & setting, exit
3. Read 0x001B / 0x101B	Real Temperature ≤ TB1	Use TR1's table & setting, exit
4. Read 0x001C / 0x101C	Real Temperature ≤ TB2	Use TR2's table & setting, exit
5. Read 0x001D / 0x101D	Real Temperature ≤ TB3	Use TR3's table & setting, exit
6. Read 0x001E / 0x101E	Real Temperature ≤ TB4	Use TR4's table & setting, exit
7. Read 0x001F / 0x101F	Real Temperature ≤ TB5	Use TR5's table & setting, exit
8. Read 0x0020 / 0x1020	Real Temperature ≤ TB6	Use TR6's table & setting, exit
9. Read 0x0021 / 0x1021	Real Temperature ≤ TB7	Use TR7's table & setting, exit
10. Read 0x0022 / 0x1022	Real Temperature ≤ TB8	Use TR8's table & setting, exit
11. Read 0x0023 / 0x1023	Real Temperature ≤ TB9	Use TR9's table & setting, exit
12. Read 0x0024 / 0x1024	Real Temperature ≤ TB10	Use TR10's table & setting, exit
13. Other	Real Temperature > TB10	Use TR11's table & setting, finish

*Note:

(1) TRx's content is defined in "LUT FORMAT IN OTP" section.

Example:

If temperature = -20 °C, TR0 is selected.

If temperature = -10 °C, TR1 is selected.

If temperature = 0 °C, TR2 is selected.

If temperature = 20 °C, TR4 is selected.

If temperature = 40 °C, TR5 is selected.

If temperature > 40 °C, TR5 is selected.

OTP Address	Content	
0002h	0xF1	(-15 °C)
0003h	0xFB	(-5 °C)
0004h	0x00	(0 °C)
0005h	0x0A	(10 °C)
0006h	0x1E	(30 °C)
0007h	0x7F	-

COMMAND DEFAULT SETTING

This function can modify the default value of command registers by the OTP content between address 0x0001~0x0013 (or 0x1001~0x1013). The data of address 0x0001 (or 0x1001) is the enable key of the function. Changing default value function is used to reduce the initial code length executed by the microcontroller.

Address (Hex)	D7	D6	D5	D4	D3	D2	D1	D0	Command	Registers	Original
0x0001 / 0x1001	#	#	#	#	#	#	#	#	Check Code	0xA5 (Enable Key)	
0x0002 / 0x1002	#	#	#	#	#	#			PSR	RES[1:0], REG, KW/R, UD, SHL	0x0F
0x0003 / 0x1003			#	#					PFS	T_VDS_OF[1:0]	0x00
0x0004 / 0x1004	#	#	#	#	#	#	#	#		BT_PHA[7:0]	0x17
0x0005 / 0x1005	#	#	#	#	#	#	#	#	BTST	BT_PHB[7:0]	0x17
0x0006 / 0x1006			#	#	#	#	#	#		BT_PHC[5:0]	0x17
0x0007 / 0x1007	#				#	#	#	#	TSE	TSE, TO[3:0]	0x00
0x0008 / 0x1008	#	#	#	#	#	#	#	#	CDI	VBD[1:0], DDX[1:0], CDI[3:0]	0xD7
0x0009 / 0x1009	#	#	#	#	#	#	#	#	TCON	S2G[3:0], G2S[3:0]	0x22
0x000A / 0x100A	#	#	#	#	#	0	0	0		HRES[7:3]	0x00
0x000B / 0x100B								#	TRES	VDECIO	0x00
0x000C / 0x100C	#	#	#	#	#	#	#	#		VRES[8:0]	0x00
0x000D / 0x100D	#	#	#	#	#	0	0	0		HST[7:3]	0x00
0x000E / 0x100E					()		#	GSST	VCT[0.0]	0x00
0x000F / 0x100F	#	#	#	#	#	#	#	#		VST[8:0]	0x00
0x0010 / 0x1010				-			#	#	CCSET	TSFIX, CCEN	0x00
0x0011 / 0x1011	#	#	#	#	#	#	#	#	PWS	VCOM_W[3:0], SD_W[3:0]	0x00
0x0012 / 0x1012							#	#	LVSEL	LVD_SEL[1:0]	0x03
0x0013 / 0x1013	#	#	#	#	#	#	#	#	TSSET	TS_SET[7:0]	0x00

LUT FORMAT IN OTP

There are 12 TRs (temperature range) in a bank. Each TR has independent frame rate, voltage, XON settings and LUTs. The fomat of LUT is different in different mode. In KWR mode, there are only 4 LUTs including LUTC, LUTR, LUTW and LUTK in TRs. LUTC & LUTR have 10 states. However LUTW & LUTK has only 7 states. In KW mode, there are 5 LUTs including LUT, LUTWW, LUTKW, LUTWK and LUTKK in TRs. All LUTs have same number of state.

	KW	R Mode (KW/R=0)	KW	/ Mode (KW/R=1)
	Address	Content	Address	Content
	0x0025	Frame rate[4:0],	0x0025	Frame rate[4:0],
	0x0026	VG Voltgae[3:0]	0x0026	VG Voltgae[3:0]
	0x0027	VSH Voltage[5:0]	0x0027	VSH Voltage[5:0]
	0x0028	VSL Voltage[5:0]	0x0028	VSL Voltage[5:0]
	0x0029	VDHR Voltage[5:0]	0x0029	VDHR Voltage[5:0]
	0x002A	VCOM_DC Voltage[6:0]	0x002A	VCOM_DC Voltage[6:0]
	0x002B	STATE_XON[7:0]	0x002B	STATE_XON[7:0]
	0x002C	STATE_XON[15:8]	0x002C	STATE_XON[15:8]
	0x002D	EOPT , ESO , STATE_XON[19:16]	0x002D	EOPT , ESO , STATE_XON[19:16]
	0x002E	KWE[7:0]	0x002E	Blank
TR0	0x002F	ATRED , NORED,KWE[9:8]	~0x002F	Dialik
	0x0030	LUTC	0x0030	LUTC
	~0x007F	(10 groups)	~0x0067	(7 groups)
	0x0080	LUTR	0x0068	LUTWW
	~0x00CF	(10 groups)	~0x009F	(7 groups)
			0x00A0	LUTKW
	0x00D0		~0x0D7	(7 groups)
	~0x0011F	LUTW	0x00D8	LUTWK
		(10 groups)	~0x010F	(7 groups)
			0x0110	LUTKK
	0x00120		~0x0147	(7 groups)
	~0x016F	LUTK		
		(10 groups)	0x0148	Reserved
			~0x016F	

DEEP SLEEP MODE

After deep sleep command (R07H) is transmitted, UC8251 enter "Deep Sleep Mode", and leaves by RST_N falling. In "Deep Sleep Mode", the control signals are recommended tied to 0v to avoid IO leakage current. And the die must be keep away from light which causes photoelectric effect to make internal nodes unstable.

PANEL BREAK CHECK

The panel break check (PBC) function is accomplished by testing the connection of the ITO along panel edge. If the panel is broken, the loop ITO may be cut off. The connection check is judged by signal transmission from CHKGO to CHKGI.

Figure: Panel break check layout example

Figure: Panel Break Check (PBC) Sequence

CASCADE APPLICATION CIRCUIT

All commands sent to **Master** must be also sent to **Slave** except for data writing (DTM1 and DTM2). The display data must be separated to two parts, one is for **Master** and another is for **Slave**. They are transmitted to **Master** and **Slave** individually by using CSB1 and CSB2.

BOOSTER APPLICATION CIRCUIT

Note:

1. The capacitor value of VGH/VGL must be equal or more than the one of VSH/VSL/VDHR.

Recommended Device

- 1. Switch MOS NMOS: Vishay Si1308EDL $(V_{DS} > 25V, I_D > 500mA, V_{GS}(th) < 1.5V, C_{iss} < 200pF, RDS(on) < 400m\Omega)$
- 2. Schottky Diode: OnSemi MBR0530 ($V_R > 25V$, $I_F > 500mA$, $I_R < 1mA @ <math>V_{R}=15V$, $T_a=100$ °C)

Recommended Resistor

Item	Item Pins	
Powers	VDD, VDDA, VDDIO, GND, GNDA, VDM	< 10 Ω
Boosters	Boosters VGL, VGH, GDR, RESE	
Regulators	VSH, VSL, VDHR, VCOM, VDDD, VDDDO	< 10 Ω
Logics	MS, BS, CSB, SCL, SDA, GDR, etc.	< 50 Ω
OTP	VPP	< 20 Ω

ABSOLUTE MAXIMUM RATINGS

Signal	Item	Min	Max.	Unit		
Vdd, Vddio, Vdda	Logic Supply voltage	-0.3	+6.0	V		
VPP	OTP programming voltage	-0.3	+8.5	V		
Vı	Digital input range	-0.3	VDDIO+0.3	V		
VGH-VGL	Supply range	-	+42.0	V		
Source						
VSH	VSH Analog supply voltage – positive		+16 V			
VSL	Analog supply voltage negative	-16 \				
VDHR	Analog supply voltage – positive	+	16	V		
Gate						
VGH	VGH Analog supply voltage – positive		+22	V		
VGL	Analog supply voltage negative	-22	0.3	V		
Тѕтс	Storage temperature range	-55	+125	°C		

Warning:

If ICs are stressed beyond those listed above "absolute maximum ratings", they may be permanently destroyed. These are stress ratings only, and functional operation of the device at these or any other condition beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

VDD=VDDA=VDDIO=3.0V, TOP=25.0 °C

Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
VDDIO	IO supply voltage		2.3	3.3	3.6	٧
VDD	Supply voltage		2.3	3.3	3.6	V
VDDA	DCDC driver supply voltage		2.3	3.3	3.6	٧
VPP	OTP program voltage		8.0	8.25	8.5	V
VIL	LOW Level input voltage	Digital input pins	0		0.3xVDD	V
VIH	HIGH Level input voltage	Digital input pins	0.7xVDDIO		VDDIO	V
Vон	HIGH Level output voltage	Digital input pins, IOH=400∪A	VDDIO-0.4		/	٧
Vol	LOW Level Output voltage	Digital input pins, lo∟=-400∪A	0		0.4	٧
lin	Input leakage current	Digital input pins except pull-up, pull-down pin	-1		1	uA
Rin	Pull-up/down impedance			200		KΩ
Тор	Operating temperature		-30		85	°C
dVGH	VGH Supply voltage dev		-400	0	+400	mV
VGH-VGL	Voltage Range of VGH - VGL				40	V
dVSH	Supply voltage dev		-200	0	+200	mV
dVSL	Supply voltage dev		-200	0	+200	mV
dVDHR	Supply voltage dev		-200	0	+200	mV
dVCOM	Supply voltage dev		-200	0	+200	mV
Ron	Driver Output Resistance	For source driver, Top=25°C, Vout = ±15V		16.0	38.4	- ΚΩ
HON	Driver Output Resistance	For gate driver, Top=25°C, VouT = ±20V		4.0	8	N22

VDD=VDDA=VDDIO=3.0V, TOP=25.0 °C

Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Digital deep sleep current	VDDD OFF		0.3	0.5	uA
IVDD	Digital stand-by current	All stopped		8.2	10.0	uA
	Digital operating current				0.1	mA
	IO deep sleep current	VDDD OFF		0.1	0.3	uA
IVDDIO	IO stand-by current	Booster OFF		2.5	4.0	uA
	IO operating current	No load			0.1	mA
	DCDC deep sleep current	VDDD OFF		0.1	0.3	uA
	DCDC stand-by current	Booster OFF		15.5	20.0	uA
		Source output VSH/VSL,			4.0	
		Duty=0.5, Period =126us				
		VCOM DC				
IVDDA		No load				
	DCDC operating current	Source output VSH/VSL,				mA
		Duty=0.5, Period =126us,				
		VCOM DC			20.0	
		External cap: 415pF,				
		NMOS=340pF				

AC CHARACTERISTICS

Figure: 3-wire Serial Interface Characteristics (Write mode)

Figure: 3-wire Serial Interface Characteristics (Read mode)

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
Tcss		Chip select setup time	60			ns
Тсѕн	CSB	Chip select hold time	65			ns
Tscc	СОВ	Chip select setup time	20			ns
T _{CHW}		Chip select setup time	40			ns
T _{SCYCW}		Serial clock cycle (Write)	100			ns
T _{SHW}		SCL "H" pulse width (Write)	35			ns
Tslw	SCL	SCL "L" pulse width (Write)	35			ns
Tscycr	SGL	Serial clock cycle (Read)	150			ns
T _{SHR}		SCL "H" pulse width (Read)	60			ns
T _{SLR}		SCL "L" pulse width (Read)	60			ns
T _{SDS}	SDA	Data setup time	30			ns
T _{SDH}	(DIN)	Data hold time	30			ns
TACC	SDA	Access time			50	ns
Тон	(DOUT)	Output disable time	15			ns

Figure: 4-wire Serial Interface Characteristics (Write mode)

Figure: 4-wire Serial Interface Characteristics (Read mode)

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{CSS}		Chip select setup time	60			ns
Тсѕн	CSB	Chip select hold time	65			ns
Tscc	COD	Chip select setup time	20			ns
Тснw		Chip select setup time	40			ns
Tscycw		Serial clock cycle (Write)	100			ns
Тѕнѡ		SCL "H" pulse width (Write)	35			ns
Tslw	SCL	SCL "L" pulse width (Write)	35			ns
T _{SCYCR}	SOL	Serial clock cycle (Read)	150			ns
T _{SHR}		SCL "H" pulse width (Read)	60			ns
T _{SLR}		SCL "L" pulse width (Read)	60			ns
T _{DCS}	DC	DC setup time	30			ns
T _{DCH}	БО	DC hold time	30			ns
T _{SDS}	SDA	Data setup time	30			ns
T _{SDH}	(DIN)	Data hold time	30			ns
T _{ACC}	SDA	Access time			50	ns
Тон	(DOUT)	Output disable time	15			ns

PHYSICAL DIMENSIONS

Die Size: $(9522 \mu M \pm 40 \mu M) \times (772 \mu M \pm 40 \mu M)$ Die Thickness: $300~\mu M \pm 20 \mu M$ Die TTV: $(D_{MAX} - D_{MIN})$ within die $\leq 2\mu M$

Bump Height: 12 μ M ± 3 μ M

 $(H_{MAX}-H_{MIN})$ within die $\leq 2\mu M$

Bump Size: $12~\mu M~x~100~\mu M \pm 2\mu M$

1200 µM² Bump Area: Bump Pitch: $13 \mu M \pm 2 \mu M$ Bump Space: $1 \mu M \pm 3 \mu M$ Hardness: 65 Hv ± 15Hv

Shear: / 5g/Mil² Coordinate origin: Chip center Pad reference: Pad center

ALIGNMENT MARK INFORMATION

Location:

Shapes and Points:

Point Coordinates:

	Upper-L	eft Mark	Upper-Ri	ght Mark
Point	X	Υ	Χ	Υ
С	-4665	290	4665	290
1	-4675	320	4655	320
2	-4655	320	4675	320
3	-4655	300	4675	300
4	-4635	300	4695	300
5	-4635	280	4695	280
6	-4655	280	4675	280
7	-4655	260	4675	260
8	-4675	260	4655	260
9	-4675	280	4655	280
10	-4695	280	4635	280
11	-4695	300	4635	300
12	-4675	300	4655	300
13	-4695	320	4635	320
14	-4685	320	4645	320
15	-4685	310	4645	310
16	-4695	310	4635	310

PAD COORDINATES

No.	Pad	Χ	Υ	W	Н
1	NC<0>	-4646	-298	28	70
2	VCOM	-4600	-298	28	70
3	VCOM	-4554	-298	28	70
4	VCOM	-4508	-298	28	70
5	VCOM	-4462	-298	28	70
6	VCOM	-4416	-298	28	70
7	VCOM	-4370	-298	28	70
8	VCOM	-4324	-298	28	70
9	VCOM	-4278	-298	28	70
10	VDM	-4232	-298	28	70
11	VGL	-4186	-298	28	70
12	VGL	-4140	-298	28	70
13	VGL	-4094	-298	28	70
14	VGL	-4048	-298	28	70
15	VGL	-4002	-298	28	70
16	VGL	-3956	-298	28	70
17	VGL	-3910	-298	28	70
18	VGL	-3864	-298	28	70
19	VGL	-3818	-298	28	70
20	VGL	-3772	-298	28	70
21	VGL	-3726	-298	28	70
22	VGL	-3680	-298	28	70
23	VGL	-3634	-298	28	70 /
24	VGL	-3588	-298	28	70
25	VGL	-3542	-298	28	70
26	VGL	-3496	-298	28	70
27	GNDA	-3450	-298	28	70
28	VSL	-3404	-298	28	70
29	VSL	-3358	-298	28	70
30	VSL	-3312	-298	28	70
31	VSL	-3266	-298	28	70
32	VSL	-3220	-298	28	70
33	VSL	-3174	-298	28	70
34	VSL	-3128	-298	28	70
35	VSL	-3082	-298	28	70
36	VSL	-3036	-298	28	70
37	VSL	-2990	-298	28	70
38	GNDA	-2944	-298	28	70
39	VGH	-2898	-298	28	70
40	VGH	-2852	-298	28	70
41	VGH	-2806	-298	28	70
42	VGH	-2760	-298	28	70
43	VGH	-2714	-298	28	70
44	VGH	-2668	-298	28	70
45	VGH	-2622	-298	28	70
46	VGH	-2576	-298	28	70
47	VGH	-2530	-298	28	70
48	VGH	-2484	-298	28	70
49	VGH	-2438	-298	28	70
50	VGH	-2392	-298	28	70
51	GNDA	-2346	-298	28	70
52	VSH	-2300	-298	28	70
53	VSH	-2254	-298	28	70
54	VSH	-2208	-298	28	70
55	VSH	-2162	-298	28	70
56	VSH	-2116	-298		
50	VOFI	-2110	-230	28	70

	5 1	V	- V	347	
No.	Pad	X	Υ	W	Н
57	VSH	-2070	-298	28	70
58	VSH	-2024	-298	28	70
59	VSH	-1978	-298	28	70
60	VSH	-1932	-298	28	70
61	VSH	-1886	-298	28	70
62	GNDA	-1840	-298	28	70
63	VPP	-1794	-298	28	70
64	VPP	-1748	-298	28	70
65	VPP	-1702	-298	28	70
66	VPP	-1656	-298	28	70
67	VPP	-1610	-298	28	70
68	VPP	-1564	-298	28	70
69	VDDDI	-1518	-298	28	70
			-298	28	
70	VDDDI	-1472			70
71	VDDDI	-1426	-298	28	70
72	VDDDI	-1380	-298	28	70
73	VDDDO	-1334	-298	28	70
74	VDDDO	-1288	-298	28	70
75	VDDDO	-1242	-298	28	70
76	VDDDO	-1196	-298	28	70
77	VDM	-1150	-298	28	70
78	VDM	-1104	-298	28	70
79	GNDA	-1058	-298	28	70
80	GNDA	-1012	-298	28	70
81	GNDA	-966	-298	28	70
82	GNDA	-920	-298	28	70
83	GNDA	-874	-298	28	70
84	GNDA	-828	-298	28	70
85	GNDA	-782	-298	28	70
86	GNDA	-736	-298	28	70
87	GNDA	-690	-298	28	70
88	GNDA	-644	-298	28	70
89	GND	-598	-298	28	70
	GND	-552	-298	28	
90			-298		70
91	GND	-506		28	70
92	GND	-460	-298	28	70
93	GND	-414	-298	28	70
94	GND	-368	-298	28	70
95	GND	-322	-298	28	70
96	GND	-276	-298	28	70
97	GND	-230	-298	28	70
98	GND	-184	-298	28	70
99	GND	-138	-298	28	70
100	GND	-92	-298	28	70
101	VDDA	-46	-298	28	70
102	VDDA	0	-298	28	70
103	VDDA	46	-298	28	70
104	VDDA	92	-298	28	70
105	VDDA	138	-298	28	70
106	VDDA	184	-298	28	70
107	VDDA	230	-298	28	70
108	VDDA	276	-298	28	70
109	VDDA	322	-298	28	70
110	VDDA	368	-298	28	70
111	VDDA	414	-298	28	70
112	VDD	460	-298	28	70
114	1 100	+00	-230	20	7.0

No.	Pad	Х	Υ	W	Н
113	VDD	506	-298	28	70
114	VDD	552	-298	28	70
115	VDD	598	-298	28	70
116	VDD	644	-298	28	70
117	VDD	690	-298	28	70
118	TEST1	736	-298	28	70
119	TEST2	782	-298	28	70
120	VDDIO	828	-298	28	70
121	VDDIO	874	-298	28	70
122	VDDIO	920	-298	28	70
123	VDDIO	966	-298	28	70
124	TEST3	1012	-298	28	70
125	DUMMY<0>	1058	-298	28	70
126	DUMMY<1>	1104	-298	28	70
127	DUMMY<2>	1150	-298	28	70
128	DUMMY<3>	1196	-298	28	70
129	DUMMY<4>	1242	-298	28	70
130	SDA	1288	-298	28	70
131	SCL	1334	-298	28	70
132	GND	1380	-298	28	70
133	CSB	1426	-298	28	70
134	VDDIO	1472	-298	28	70
135	DUMMY<5>	1518	-298	28	70
136	GND	1564	-298	28	70
137	DC	1610	-298	28	70
138	VDDIO	1656	-298	28	70
139	DUMMY<6>	1702	-298	28	70
140	GND	1748	-298	28	70
141	RST N	1794	-298	28	70
142	BUSY N	1840	-298	28	70
143	CL	1886	-298	28	70
144	VDDIO	1932	-298	28	70
145	VSYNC	1978	-298	28	70
146	GND	2024	-298	28	70
147	DUMMY<7>	2070	-298	28	70
148	VDDIO	2116	-298	28	70
149	BS	2162	-298	28	70
150	GND	2208	-298	28	70
151	DUMMY<8>	2254	-298	28	70
152	VDDIO	2300	-298	<u>28</u>	70
153	CHKGI	2346	-298	28	70
154	GND	2392	-298	28	70
155	MS	2438	-298	28	70
156	VDDIO	2484	-298	28	70
157	TSDA	2530	-298	28	70
158	TSDA	2576	-298	28	70
159	TSCL	2622	-298	28	70
160	TSCL	2668	-298	28	70
161	CHKGO	2714	-298	28	70
162	CDAIO	2760	-298	28	70
163	TEST6	2806	-298	28	70
164	TEST7	2852	-298	28	70
165	VDHR	2898	-298	28	70
166	VDHR	2944	-298	28	70
167	VDHR	2990	-298	28	70
168	VDHR	3036	-298	28	70
169	VDHR	3082	-298	28	70
170	VDHR	3128	-298	28	70
171	VDHR	3174	-298	28	70
. , , ,	₹DIII1	5177	200		70

NI-	DI	V	V	14/	
No.	Pad	X	Υ	W	Н
172	VDHR	3220	-298	28	70
173	DUMMY<9>	3266	-298	28	70
174	DUMMY<10>	3312	-298	28	70
175	DUMMY<11>	3358	-298	28	70
176	DUMMY<12>	3404	-298	28	70
177	DUMMY<13>	3450	-298	28	70
178	DUMMY<14>	3496	-298	28	70
179	GNDA	3542	-298	28	70
180	FB	3588	-298	28	70
181	FB	3634	-298	28	70
182	GNDA	3680	-298	28	70
183	RESE	3726	-2 98	28	70
184	RESE	3772	-298	28	70
185	GNDA	3818	-298	28	70
186	GDR	3864	-298	28	70
187	GDR	3910	-298	28	70
188	GDR	3956	-298	28	70
189	GDR	4002	-298	28	70
190	GDR	4048	-298	28	70
191	GDR	4094	-298	28	70
192	GDR	4140	-298	28	70
193	GDR	4186	-298	28	70
194	VDM	4232	-298	28	70
195	VCOM	4278	-298	28	70
196	VCOM	4324	-298	28	70
197	VCOM	4370	-298	28	70
198	VCOM	4416	-298	28	70
199	VCOM	4462	-298	28	70
200	VCOM	4508	-298	28	70
201	VCOM	4554	-298	28	70
202	VCOM	4600	-298	28	70
203	NC<1>	4646	-298	28	70
204	NC<2>	4643	137	75	18
205	NC<3>	4643	179	75	18
206	NC<4>	4540	213.5	18	75
207	NC<5>	4519	313.5	18	75
208	NC<6>	4498	213.5	18	75
209	NC<7>	4477	313.5	18	75
210	NC<8>	4456	213.5	18	75
211	NC<9>	4435	313.5	18	75
212	G<0>	4414	213.5	18	75
213	G<2>	4393	313.5	18	75
214	G<4>	4372	213.5	18	75
215	G<6>	4351	313.5	18	75
216	G<8>	4330	213.5	18	75
217	G<10>	4309	313.5	18	75
218	G<12>	4288	213.5	18	75
219	G<14>	4267	313.5	18	75
220	G<16>	4246	213.5	18	75
221	G<18>	4225	313.5	18	75
222	G<20>	4204	213.5	18	75
223	G<22>	4183	313.5	18	75
224	G<24>	4162	213.5	18	75
225	G<26>	4141	313.5	18	75
226	G<28>	4120	213.5	18	75
227	G<30>	4099	313.5	18	75
228	G<32>	4078	213.5	18	75
229	G<34>	4057	313.5	18	75
230	G<36>	4036	213.5	18	75

No.	Pad	Х	Υ	W	Н
231	G<38>	4015	313.5	18	75
232	G<40>	3994	213.5	18	75
233	G<42>	3973	313.5	18	75
234	G<44>	3952	213.5	18	75
235	G<46>	3931	313.5	18	75
236	G<48>	3910	213.5	18	75
237	G<50>	3889	313.5	18	75
238	G<52>	3868	213.5	18	75
239	G<54>	3847	313.5	18	75
240	G<56>	3826	213.5	18	75
241	G<58>	3805	313.5	18	75
242	G<60>	3784	213.5	18	75
243	G<62>	3763	313.5	18	75
244					
	G<64>	3742	213.5	18	75 75
245	G<66>	3721	313.5	18	75 75
246	G<68>	3700	213.5	18	75 75
247	G<70>	3679	313.5	18	75
248	G<72>	3658	213.5	18	75
249	G<74>	3637	313.5	18	75
250	G<76>	3616	213.5	18	75
251	G<78>	3595	313.5	18	75
252	G<80>	3574	213.5	18	75
253	G<82>	3553	313.5	18	75
254	G<84>	3532	213.5	18	75
255	G<86>	3511	313.5	18	75
256	G<88>	3490	213.5	18	75
257	G<90>	3469	313.5	18	75
258	G<92>	3448	213.5	18	75
259	G<94>	3427	313.5	18	75
260	G<96>	3406	213.5	18	75
261	G<98>	3385	313.5	18	75
262	G<100>	3364	213.5	18	75
263	G<102>	3343	313.5	18	75
264	G<104>	3322	213.5	18	75
265	G<106>	3301	313.5	18	75
266	G<108>	3280	213.5	18	75
267	G<110>	3259	313.5	18	75
268	G<112>	3238	213.5	18	75
269	G<114>	3217	313.5	18	75
270	G<116>	3196	213.5	18	75
271	G<118>	3175	313.5	18	75
272	G<120>	3154	213.5	18	75
273	G<122>	3133	313.5	18	75
274	G<124>	3112	213.5	18	75
275	G<126>	3091	313.5	18	75
276	G<128>	3070	213.5	18	75
277	G<120>	3049	313.5	18	75
278	G<132>	3028	213.5	18	75 75
279	G<134>	3007	313.5	18	75 75
280	G<136>	2986	213.5	18	75
281	G<138>	2965	313.5	18	75
282	G<140>	2944	213.5	18	75
283	G<142>	2923	313.5	18	75
284	G<144>	2902	213.5	18	75
285	G<146>	2881	313.5	18	75
286	G<148>	2860	213.5	18	75
287	G<150>	2839	313.5	18	75
288	G<152>	2818	213.5	18	75
289	G<154>	2797	313.5	18	75

No.	Pad	Х	Υ	W	Н
290	G<156>	2776	213.5	18	75
291	G<158>	2755	313.5	18	75
292	G<160>	2734	213.5	18	75
293	G<162>	2713	313.5	18	75
294	G<164>	2692	213.5	18	75
295	G<166>	2671	313.5	18	75
296	G<168>	2650	213.5	18	75
297	G<170>	2629	313.5	18	75
298	G<172>	2608	213.5	18	75
299	G<174>	2587	313.5	18	75
300	G<176>	2566	213.5	18	75
301	G<178>	2545	313.5	18	75
302	G<180>	2524	213.5	18	75
303	G<182>	2503	313.5	18	75
304	G<184>	2482	213.5	18	75
305	G<186>	2461	313.5	18	75
306		2440	213.5	18	75
	G<188>	2419			
307	G<190>		313.5	18	75
308	G<192>	2398	213.5	18	75
309	G<194>	2377	313.5	18	75
310	G<196>	2356	213.5	18	75
311	G<198>	2335	313.5	18	75
312	G<200>	2314	213.5	18	75
313	G<202>	2293	313.5	18	75
314	G<204>	2272	213.5	18	75
315	G<206>	2251	313.5	18	75
316	G<208>	2230	213.5	18	75
317	G<210>	2209	313.5	18	75
318	G<212>	2188	213.5	18	75
319	G<214>	2167	313.5	18	75
320	G<216>	2146	213.5	18	75
321	G<218>	2125	313.5	18	75
322	G<220>	2104	213.5	18	75
323	G<222>	2083	313.5	18	75
324	G<224>	2062	213.5	18	75
325	G<226>	2041	313.5	18	75
326	G<228>	2020	213.5	18	75
327	G<230>	1999	313.5	18	75
328	G<232>	1978	213.5	18	75
329	G<234>	1957	313.5	18	75
330	G<236>	1936	213.5	18	75
331	G<238>	1915	313.5	18	75
332	G<240>	1894	213.5	18	75
333	G<242>	1873	313.5	18	75
334	G<244>	1852	213.5	18	75
335	G<244>	1831	313.5	18	75
336	G<248>	1810	213.5	18	75 75
337	G<250>	1789	313.5	18	75 75
338	G<252>	1768	213.5	18	75 75
339	G<254>	1747	313.5	18	75 75
340	G<256>	1726	213.5	18	75
341	G<258>	1705	313.5	18	75
342	G<260>	1684	213.5	18	75
343	G<262>	1663	313.5	18	75
344	G<264>	1642	213.5	18	75
345	G<266>	1621	313.5	18	75
346	G<268>	1600	213.5	18	75
347	G<270>	1579	313.5	18	75
348	G<272>	1558	213.5	18	75

349	No.	Pad	Х	Υ	W	Н
350 G<276> 1516 213.5 18 75 351 G<278> 1495 313.5 18 75 352 G<280> 1474 213.5 18 75 353 G<282> 1453 313.5 18 75 354 G<284> 1432 213.5 18 75 355 G<286> 1411 313.5 18 75 356 G<288> 1390 213.5 18 75 357 G<290> 1369 313.5 18 75 358 G<294> 1327 313.5 18 75 359 G<294> 1327 313.5 18 75 359 G<294> 1327 313.5 18 75 360 NC<10> 1306 213.5 18 75 361 NC<11> 1285 313.5 18 75 362 VBD<3> 1176.5 320 12 100 363 S<0> 1150.5 320 12 100 364 S<1> 1137.5 201 12 100 365 S<2> 1124.5 320 12 100 366 S<3> 1111.5 201 12 100 367 S<4> 1098.5 320 12 100 368 S<5> 1085.5 201 12 100 370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 1020.5 320 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 107.5 320 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 988.5 320 12 100 378 S<14> 995.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<6> 1072.5 320 12 100 379 S<15> 942.5 320 12 100 379 S<15> 942.5 320 12 100 380 S<65 799.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 93.5 320 12 100 383 S<19> 80.5 320 12 100 384 S<20> 87.5 320 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 389 S<25> 812.5 320 12 100 399 S<35> 682.5	349				18	75
351 G<278> 1495 313.5 18 75 352 G<280> 1474 213.5 18 75 353 G<282> 1453 313.5 18 75 354 G<284> 1432 213.5 18 75 355 G<286> 1411 313.5 18 75 356 G<288> 1390 213.5 18 75 357 G<290> 1369 313.5 18 75 358 G<292> 1348 213.5 18 75 359 G<294> 1327 313.5 18 75 360 NC<10> 1306 213.5 18 75 361 NC<11> 1285 313.5 18 75 362 VBD<3> 1176.5 320 12 100 363 S<0> 1150.5 320 12 100 364 S<1> 1137.5 201 12 100 366 S<3> 1111.5 201 12 100 367 S<4> 1098.5 320 12 100 368 S<5> 1085.5 201 12 100 370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 103.5 320 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 107.5 320 12 100 376 S<11> 994.5 320 12 100 377 S<13> 988.5 320 12 100 378 S<11> 994.5 320 12 100 379 S<15> 942.5 320 12 100 370 S<15> 942.5 320 12 100 371 S<15> 942.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 378 S<11> 994.5 320 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 804.5 320 12 100 386 S<25 805.5 320 12 100 387 S<215 942.5 320 12 100 388 S<24> 825.5 825.5 201 12 100 399 S<235 838.5 320 12 100 390 S<266 799.5 201 12 100 391 S<275 786.5 320 12 100 399 S<335 682.5 320 12 100 399 S<355 682.5 320 12 100 399 S<355 682.5 320 12 100 399 S<395 682.5 320 12 100 399 S<395						
352 G<280> 1474 213.5 18 75 353 G<282> 1453 313.5 18 75 354 G<284> 1432 213.5 18 75 355 G<286> 1411 313.5 18 75 356 G<288> 1390 213.5 18 75 357 G<290> 1369 313.5 18 75 358 G<292> 1348 213.5 18 75 360 NC<10> 1306 213.5 18 75 360 NC<10> 1306 213.5 18 75 361 NC<11> 1285 313.5 18 75 362 VBD<3> 1176.5 320 12 100 363 S<0> 1150.5 320 12 100 364 S<1> 1137.5 201 12 100 365 S<2> 1124.5 320 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
353						
354 G<284> 1432 213.5 18 75 355						
355		_				
356 G<288> 1390 213.5 18 75 357 G<290> 1369 313.5 18 75 358 G<292> 1348 213.5 18 75 360 NC<10> 1306 213.5 18 75 361 NC<11> 1285 313.5 18 75 361 NC<11> 1285 313.5 18 75 362 VBD<3> 1176.5 320 12 100 363 S<0> 1150.5 320 12 100 364 S<1> 1137.5 201 12 100 365 S<2> 1124.5 320 12 100 366 S<3> 1111.5 201 12 100 367 S<4						
357						
358						
359						
360						
361 NC<11> 1285 313.5 18 75 362 VBD<3> 1176.5 320 12 100 363 S<0> 1150.5 320 12 100 364 S<1> 1137.5 201 12 100 365 S<2> 1124.5 320 12 100 366 S<3> 1111.5 201 12 100 367 S<4> 1098.5 320 12 100 368 S<5> 1085.5 201 12 100 369 S<6> 1072.5 320 12 100 370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 394.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 389 S<26> 799.5 201 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 397 S<33> 708.5 320 12 100 398 S<28> 773.5 201 12 100 399 S<35> 80.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 399 S<35> 80.5 320 12 100 390 S<36> 69.5 201 12 100 391 S<37> 656.5 320 12 100 392 S<38> 708.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100 405 S<41> 604.5 320 12 10						
362						
363 S<0> 1150.5 320 12 100 364 S<1> 1137.5 201 12 100 365 S<2> 1124.5 320 12 100 366 S<3> 1111.5 201 12 100 367 S<4> 1098.5 320 12 100 368 S<5> 1085.5 201 12 100 369 S<6> 1072.5 320 12 100 370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 981.5 320 12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
364 S<1> 1137.5 201 12 100 365 S<2> 1124.5 320 12 100 366 S<3> 1111.5 201 12 100 367 S<4> 1098.5 320 12 100 368 S<5> 1085.5 201 12 100 368 S<5> 1085.5 201 12 100 369 S<6> 1072.5 320 12 100 370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
365 S<2> 1124.5 320 12 100 366 S<3> 1111.5 201 12 100 367 S<4> 1098.5 320 12 100 368 S<5> 1085.5 201 12 100 369 S<6> 1072.5 320 12 100 370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 379 S<15> 942.5 320 12						
366 S<3> 1111.5 201 12 100 367 S<4> 1098.5 320 12 100 368 S<5> 1085.5 201 12 100 369 S<6> 1072.5 320 12 100 370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
367 S<4> 1098.5 320 12 100 368 S<5> 1085.5 201 12 100 369 S<6> 1072.5 320 12 100 370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12						
368 S<5> 1085.5 201 12 100 369 S<6> 1072.5 320 12 100 370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 376 S<13> 968.5 320 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12						
369 S<6> 1072.5 320 12 100 370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12						
370 S<7> 1059.5 201 12 100 371 VBD<1> 1046.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 384 S<20> 877.5 201 12						
371 VBD<1> 1046.5 320 12 100 372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 384 S<20> 877.5 201 12						
372 S<8> 1033.5 201 12 100 373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 387 S<23> 838.5 320 12		S<7>				100
373 S<9> 1020.5 320 12 100 374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 387 S<23> 838.5 320 12						
374 S<10> 1007.5 201 12 100 375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12	372	S<8>	1033.5	201		100
375 S<11> 994.5 320 12 100 376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12			1020.5	320		100
376 S<12> 981.5 201 12 100 377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 390 S<26> 799.5 201 12		S<10>	1007.5	201	12	100
377 S<13> 968.5 320 12 100 378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 391 S<26> 799.5 201 12	375	S<11>	994.5	320	12	100
378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12	376	S<12>	981.5	201	12	100
378 S<14> 955.5 201 12 100 379 S<15> 942.5 320 12 100 380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12	377	S<13>	968.5	320	12	100
380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 394 S<30> 747.5 201 12	378		955.5	201	12	100
380 S<16> 929.5 201 12 100 381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 394 S<30> 747.5 201 12	379	S<15>	942.5	320	12	100
381 S<17> 916.5 320 12 100 382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12			929.5	201	12	100
382 S<18> 903.5 201 12 100 383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12					12	
383 S<19> 890.5 320 12 100 384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12	382				12	100
384 S<20> 877.5 201 12 100 385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12						
385 S<21> 864.5 320 12 100 386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12	384					
386 S<22> 851.5 201 12 100 387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 395 S<32> 721.5 201 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12						
387 S<23> 838.5 320 12 100 388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12						
388 S<24> 825.5 201 12 100 389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 401 S<37> 656.5 320 12						
389 S<25> 812.5 320 12 100 390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12						
390 S<26> 799.5 201 12 100 391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12						
391 S<27> 786.5 320 12 100 392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12						
392 S<28> 773.5 201 12 100 393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12						1
393 S<29> 760.5 320 12 100 394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100						
394 S<30> 747.5 201 12 100 395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100						
395 S<31> 734.5 320 12 100 396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100	-					
396 S<32> 721.5 201 12 100 397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100						
397 S<33> 708.5 320 12 100 398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100						1
398 S<34> 695.5 201 12 100 399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100						
399 S<35> 682.5 320 12 100 400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100						
400 S<36> 669.5 201 12 100 401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100						
401 S<37> 656.5 320 12 100 402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100						
402 S<38> 643.5 201 12 100 403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100						
403 S<39> 630.5 320 12 100 404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100						
404 S<40> 617.5 201 12 100 405 S<41> 604.5 320 12 100	402					100
405 S<41> 604.5 320 12 100		S<39>		320		100
 	404	S<40>	617.5		12	100
406 S<42> 591.5 201 12 100	405	S<41>	604.5	320	12	100
	406	S<42>	591.5		12	100
407 S<43> 578.5 320 12 100	407	S<43>	578.5	320	12	100

No.	Pad	X	Υ	W	Н
408	S<44>	565.5	201	12	100
409	S<45>	552.5	320	12	100
410	S<46>	539.5	201	12	100
411	S<47>	526.5	320	12	100
412	S<48>	513.5	201	12	100
413	S<49>	500.5	320	12	100
414	S<50>	487.5	201	12	100
415	S<51>	474.5	320	12	100
416	S<52>	461.5	201	12	100
417	S<53>	448.5	320	12	100
418	S<54>	435.5	201	12	100
419	S<55>	422.5	320	12	100
420	S<56>	409.5	201	12	100
421	S<57>	396.5	320	12	100
422	S<58>	383.5	201	12	100
423	S<59>	370.5	320	12	100
424	S<60>	357.5	201	12	100
425	S<61>	344.5	320	12	100
426	S<62>	331.5	201	12	100
427	S<63>	318.5	320	12	100
428	S<64>	305.5	201	12	100
429	S<65>	292.5	320	12	100
430	S<66>	279.5	201	12	100
431	S<67>	266.5	320	12	100
432	S<68>	253.5	201	12	100
433	S<69>	240.5	320	12	100
434	S<70>	227.5	201	12	100
435	S<71>	214.5	320	12	100
436	S<72>		201	12	100
437	_	201.5	320	12	
438	S<73>	188.5		12	100
439	S<74> S<75>	175.5	201 320	12	100
440		162.5 149.5	201	12	100
441	S<76>			12	
441	S<77>	136.5	320 201	12	100
	S<78>	123.5			100
443	S<79>	110.5	320	12	100
444	S<80>	97.5	201	12	100
445	S<81>	84.5	320	12	100
446	S<82>	71.5	201	12	100
447	S<83>	58.5	320	12	100
448	S<84>	45.5	201	12	100
449	S<85>	32.5	320	12	100
450	S<86>	19.5	201	12	100
451	S<87>	6.5	320	12	100
452	S<88>	-6.5	201	12	100
453	S<89>	-19.5	320	12	100
454	S<90>	-32.5	201	12	100
455	S<91>	-45.5	320	12	100
456	S<92>	-58.5	201	12	100
457	S<93>	-71.5	320	12	100
458	S<94>	-84.5	201	12	100
459	S<95>	-97.5	320	12	100
460	S<96>	-110.5	201	12	100
461	S<97>	-123.5	320	12	100
462	S<98>	-136.5	201	12	100
463	S<99>	-149.5	320	12	100
464	S<100>	-162.5	201	12	100
465	S<101>	-175.5	320	12	100
466	S<102>	-188.5	201	12	100

No.	Pad	Х	Υ	W	Н
467	S<103>	-201.5	320	12	100
468	S<104>	-214.5	201	12	100
469	S<105>	-227.5	320	12	100
470	S<106>	-240.5	201	12	100
471	S<107>	-253.5	320	12	100
472	S<108>	-266.5	201	12	100
473	S<109>	-279.5	320	12	100
474	S<110>	-292.5	201	12	100
475	S<111>	-305.5	320	12	100
476	S<112>	-318.5	201	12	100
477	S<113>	-331.5	320	12	100
478	S<114>	-344.5	201	12	100
479	S<115>	-357.5	320	12	100
480	S<116>	-370.5	201	12	100
481	S<117>	-383.5	320	12	100
482	S<118>	-396.5	201	12	100
483	S<119>	-409.5	320	12	100
484	S<120>	-422.5	201	12	100
485	S<121>	-435.5	320	12	100
486	S<122>	-448.5	201	12	100
487	S<123>	-461.5	320	12	100
488	S<124>	-474.5	201	12	100
489	S<125>	-487.5	320	12	100
490	S<126>	-500.5	201	12	100
491	S<127>	-513.5	320	12	100
492	S<128>	-526.5	201	12	100
493	S<129>	-539.5	320	12	100
494	S<130>	-552.5	201	12	100
495	S<131>	-565.5	320	12	100
496	S<132>	-578.5	201	12	100
497	S<133>	-591.5	320	12	100
498	S<134>	-604.5	201	12	100
499	S<135>	-617.5	320	12	100
500	S<136>	-630.5	201	12	100
501	S<137>	-643.5	320	12	100
502	S<138>	-656.5	201	12	100
503	S<139>	-669.5	320	12	100
504	S<140>	-682.5	201	12	100
505	S<141>	-695.5	320	12	100
506	S<142>	-708.5	201	12	100
507	S<143>	-721.5	320	12	100
508	S<144>	-734.5	201	12	100
509	S<145>	-747.5	320	12	100
510	S<146>	-760.5	201	12	100
511	S<147>	-773.5	320	12	100
512	S<148>	-786.5	201	12	100
513	S<149>	-799.5	320	12	100
514	S<150>	-812.5	201	12	100
515	S<151>	-825.5	320	12	100
516	S<152>	-838.5	201	12	100
517	S<153>	-851.5	320	12	100
518	S<154>	-864.5	201	12	100
519	S<155>	-877.5	320	12	100
520	S<156>	-890.5	201	12	100
521	S<157>	-903.5	320	12	100
522	S<158>	-916.5	201	12	100
523	S<159>	-929.5	320	12	100
524	S<160>	-942.5	201	12	100
525	S<161>	-955.5	320	12	100
525	3<101>	-905.5	3 2 U	12	100

No.	Pad	X	Υ	W	Н
526	S<162>	-968.5	201	12	100
527	S<163>	-981.5	320	12	100
528	S<164>	-994.5	201	12	100
529	S<165>	-1007.5	320	12	100
530	S<166>	-1020.5	201	12	100
531	S<167>	-1033.5	320	12	100
532	VBD<2>	-1046.5	201	12	100
533	S<168>	-1059.5	320	12	100
534	S<169>	-1072.5	201	12	100
535	S<170>	-1085.5	320	12	100
536	S<171>	-1098.5	201	12	100
537	S<172>	-1111.5	320	12	100
538	S<173>	-1124.5	201	12	100
539	S<174>	-1137.5	320	12	100
540	S<175>	-1150.5	201	12	100
541	VBD<4>	-1176.5	201	12	100
542	NC<12>	-1285	213.5	18	75
543	NC<13>	-1306	313.5	18	75
544	G<295>	-1327	213.5	18	75
545	G<293>	-1348	313.5	18	75
546	G<291>	-1369	213.5	18	75
547	G<289>	-1390	313.5	18	75
548	G<287>	-1411	213.5	18	75
549	G<285>	-1432	313.5	18	75
550	G<283>	-1453	213.5	18	75
551	G<281>	-1474	313.5	18	75
552	G<279>	-1495	213.5	18	75
553	G<277>	-1516	313.5	18	75
554	G<275>	-1537	213.5	18	75
555	G<273>	-1558	313.5	18	75
556	G<271>	-1579	213.5	18	75
557	G<269>	-1600	313.5	18	75
558	G<267>	-1621	213.5	18	75
559	G<265>	-1642	313.5	18	75
560	G<263>	-1663	213.5	18	75
561	G<261>	-1684	313.5	18	75
562	G<259>	-1705	213.5	18	75
563	G<257>	-1726	313.5	18	75
564	G<255>	-1747	213.5	18	75
565	G<253>	-1768	313.5	18	75
566	G<251>	-1789	213.5	18	75
567	G<249>	-1810	313.5	18	75
568	G<247>	-1831	213.5	18	75
569	G<245>	-1852	313.5	18	75
570	G<243>	-1873	213.5	18	75
571	G<241>	-1894	313.5	18	75
572	G<239>	-1915	213.5	18	75
573	G<237>	-1936	313.5	18	75
574	G<235>	-1957	213.5	18	75
575	G<233>	-1978	313.5	18	75
576	G<231>	-1999	213.5	18	75
577	G<231>	-2020	313.5	18	75
578	G<227>	-2020	213.5	18	75
579	G<227>	-2041	313.5	18	75
580	G<223>	-2082	213.5	18	75
581	G<223> G<221>	-2083 -2104	313.5	18	75
				18	75
582 583	G<219> G<217>	-2125 -2146	213.5 313.5	18	75
	G<217>	-2146 -2167	213.5		75
584	U<213>	-2101	L L I J . J	18	10

No.	Pad	Х	Υ	W	Н
585	G<213>	-2188	313.5	18	75
586	G<211>	-2209	213.5	18	75
587	G<209>	-2230	313.5	18	75
588	G<207>	-2251	213.5	18	75
589	G<205>	-2272	313.5	18	75
590	G<203>	-2293	213.5	18	75
591	G<201>	-2314	313.5	18	75
592	G<199>	-2335	213.5	18	75
593	G<197>	-2356	313.5	18	75
594	G<195>	-2377	213.5	18	75
595	G<193>	-2398	313.5	18	75
596	G<191>	-2419	213.5	18	75
597	G<189>	-2440	313.5	18	75
598	G<187>	-2461	213.5	18	75
599	G<185>	-2482	313.5	18	75
600	G<183>	-2503	213.5	18	75
601	G<181>	-2524	313.5	18	75
602	G<179>	-2545	213.5	18	75
603	G<177>	-2566	313.5	18	75
604	G<175>	-2587	213.5	18	75
605	G<173>	-2608	313.5	18	75
606	G<171>	-2629	213.5	18	75
607	G<169>	-2650	313.5	18	75
608	G<167>	-2671	213.5	18	75
609	G<165>	-2692	313.5	18	75
610	G<163>	-2713	213.5	18	75
611	G<161>	-2713	313.5	18	75
612	G<159>	-2755	213.5	18	75
613	G<157>	-2776	313.5	18	75
614	G<155>	-2770	213.5	18	75
615	G<153>	-2797	313.5	18	75
616	G<151>	-2839	213.5	18	75
617	G<149>	-2860	313.5	18	75
618	G<149>	-2881	213.5	18	75
619	G<145>	-2902	313.5	18	75
620	G<143>	-2923	213.5	18	75
621	G<141>	-2944	313.5	18	75
622	G<139>	-2965	213.5	18	75
623	G<137>	-2986	313.5	18	75
624	G<135>	-3007	213.5	18	75
625	G<133>	-3028	313.5	18	75
626	G<131>	-3049	213.5	18	75
627	G<129>	-3070	313.5	18	75
628	G<129>	-3070	213.5	18	75
629	G<127>	-3112	313.5	18	75
630	G<123>	-3112	213.5	18	75 75
631	G<123>	-3154	313.5	18	75
632	G<119>	-3175	213.5	18	75
633	G<117>	-3175	313.5	18	75 75
634	G<117>			18	75 75
		-3217	213.5	18	75 75
635	G<113> G<111>	-3238	313.5	18	75 75
636 637	G<111>	-3259 -3280	213.5 313.5	18	75 75
	_				
638	G<107>	-3301	213.5	18	75 75
639	G<105>	-3322	313.5	18	75 75
640	G<103>	-3343	213.5	18	75 75
641	G<101>	-3364	313.5	18	75
642	G<99>	-3385	213.5	18	75 75
643	G<97>	-3406	313.5	18	75

No.	Pad	Х	Υ	W	Н
644	G<95>	-3427	213.5	18	75
645	G<93>	-3448	313.5	18	75
646	G<91>	-3469	213.5	18	75
647	G<89>	-3490	313.5	18	75
648	G<87>	-3490	213.5	18	75
649		-3532	313.5		
	G<85>		_	18	75 75
650 651	G<83>	-3553 -3574	213.5 313.5	18 18	75 75
652	G<81> G<79>	-3574	213.5	18	75
653	G<77>	-3616	313.5	18	75
654	G<75>	-3637	213.5	18	
	G<73>	-3658	313.5		75 75
655		-3679	213.5	18	75
656	G<71>				
657	G<69>	-3700	313.5 213.5	18 18	75 75
658	G<67>	-3721			
659	G<65>	-3742	313.5	18	75
660	G<63>	-3763	213.5	18	75
661	G<61>	-3784	313.5	18	75
662	G<59>	-3805	213.5	18	75
663	G<57>	-3826	313.5	18	75
664	G<55>	-3847	213.5	18	75
665	G<53>	-3868	313.5	18	75
666	G<51>	-3889	213.5	18	75
667	G<49>	-3910	313.5	18	75
668	G<47>	-3931	213.5	18	75
669	G<45>	-3952	313.5	18	75
670	G<43>	-3973	213.5	18	75
671	G<41>	-3994	313.5	18	75
672	G<39>	-4015	213.5	18	75
673	G<37>	-4036	313.5	18	75
674	G<35>	-4057	213.5	18	75
675	G<33>	-4078	313.5	18	75
676	G<31>	-4099	213.5	18	75
677	G<29>	-4120	313.5	18	75
678	G<27>	-4141	213.5	18	75
679	G<25>	-4162	313.5	18	75
680	G<23>	-4183	213.5	18	75
681	G<21>	-4204	313.5	18	75
682	G<19>	-4225	213.5	18	75
683	G<17>	-4246 4267	313.5	18	75 75
684	G<15>	-4267	213.5	18	75 75
685	G<13>	-4288	313.5	18	75
686	G<11>	-4309	213.5	18	75
687	G<9>	-4330	313.5	18	75 75
688	G<7>	-4351	213.5	18	75 75
689	G<5>	-4372	313.5	18	75 75
690	G<3>	-4393	213.5	18	75 75
691	G<1>	-4414	313.5	18	75 75
692	NC<14>	-4435	213.5	18	75 75
693	NC<15>	-4456	313.5	18	75 75
694	NC<16>	-4477	213.5	18	75 75
695	NC<17>	-4498	313.5	18	75 75
696	NC<18>	-4519 4540	213.5	18	75 75
697	NC<19>	-4540	313.5	18	75
698	NC<20>	-4643	179	75 75	18
699	NC<21>	-4643	137	75	18

Output Pad Location

TRAY INFORMATION

3-inch Tray

REVISION HISTORY

Revision	Contents	Date
0.1	First release	Nov.22, 2019

