El objetivo es desarrollar un método forense de estimación de la edad a partir de la circunferencia craneal, aplicado a niños 0-36 meses. Normalmente ese trabajo se compone de tres fases:

- 1. Recogida de una muestra real
- 2. Aprendizaje automático (regresión)
- 3. Evaluación de los resultados

circunferencia craneal.

FASE 1 En nuestro caso, para la primera fase usaremos una muestra simulada a partir de información real. En concreto, usaremos una curva de crecimiento que especifica para cada edad la distribución de la

En la siguiente tabla se especifica la misma información en términos de percentiles.

	3rd	5th	10th	25th	50th	75th	90th	95th	97th
Age	Perce								
	ntile								
0	31.488	32.149	33.084	34.470	35.814	37.004	37.974	38.516	38.854
0.5	33.250	33.834	34.673	35.940	37.194	38.321	39.250	39.773	40.100
1.5	35.781	36.264	36.974	38.079	39.207	40.250	41.126	41.626	41.941
2.5	37.559	37.980	38.607	39.606	40.652	41.640	42.484	42.972	43.282
3.5	38.899	39.279	39.851	40.777	41.765	42.715	43.539	44.020	44.327
4.5	39.957	40.308	40.841	41.715	42.661	43.584	44.395	44.872	45.179
5.5	40.816	41.147	41.653	42.489	43.405	44.308	45.110	45.586	45.893
6.5	41.531	41.847	42.333	43.142	44.036	44.926	45.722	46.197	46.505
7.5	42.135	42.441	42.913	43.702	44.581	45.461	46.254	46.730	47.039
8.5	42.653	42.952	43.414	44.190	45.058	45.932	46.723	47.200	47.510
9.5	43.100	43.395	43.850	44.618	45.479	46.350	47.141	47.619	47.930
10.5	43.490	43.782	44.234	44.997	45.855	46.725	47.517	47.996	48.309
11.5	43.833	44.124	44.575	45.335	46.193	47.063	47.857	48.338	48.652
12.5	44.136	44.427	44.878	45.640	46.499	47.371	48.168	48.650	48.965
13.5	44.404	44.696	45.149	45.914	46.776	47.652	48.452	48.936	49.252
14.5	44.643	44.937	45.393	46.163	47.030	47.910	48.714	49.200	49.517
15.5	44.856	45.153	45.613	46.389	47.263	48.148	48.956	49.444	49.762
16.5	45.047	45.347	45.812	46.596	47.477	48.369	49.180	49.670	49.990
17.5	45.218	45.522	45.993	46.786	47.675	48.573	49.390	49.882	50.203
18.5	45.371	45.680	46.157	46.960	47.858	48.764	49.585	50.079	50.401
19.5	45.508	45.822	46.307	47.120	48.028	48.942	49.768	50.264	50.588
20.5	45.632	45.951	46.443	47.268	48.186	49.108	49.939	50.438	50.763
21.5	45.742	46.067	46.568	47.404	48.334	49.264	50.101	50.602	50.928
22.5	45.841	46.172	46.681	47.530	48.471	49.410	50.253	50.757	51.083

23.5	45.930	46.267	46.785	47.647	48.600	49.548	50.397	50.903	51.230
24.5	46.009	46.353	46.880	47.756	48.721	49.678	50.532	51.041	51.370
25.5	46.079	46.430	46.967	47.856	48.834	49.800	50.661	51.172	51.502
26.5	46.141	46.499	47.046	47.950	48.940	49.916	50.783	51.296	
27.5	46.196	46.561	47.118	48.036	49.039	50.025	50.898	51.415	51.748
28.5	46.244	46.616	47.184	48.117	49.133	50.129	51.008	51.528	51.862
29.5	46.286	46.666	47.244	48.192	49.221	50.227	51.113	51.635	51.971
30.5	46.322	46.710	47.298	48.262	49.305	50.320	51.213	51.737	52.075
31.5	46.353	46.748	47.348	48.327	49.383	50.409	51.308	51.835	52.174
32.5	46.378	46.782	47.392	48.387	49.457	50.493	51.398	51.929	52.269
33.5	46.399	46.811	47.432	48.443	49.526	50.573	51.485	52.019	52.360
34.5	46.416	46.835	47.469	48.495	49.592	50.649	51.568	52.104	52.448
35.5	46.429	46.856	47.501	48.543	49.654	50.721	51.647	52.186	52.531
36	46.433	46.865	47.516	48.566	49.684	50.756	51.685	52.226	52.572

La primera tarea es escribir un programa R para simular la recogida de una muestra de ese tipo de datos.

- Cada edad tiene su distribución de probabilidad. Vamos a asumir que esas distribuciones son todas normales.
- La distribución normal se especifica con los parámetros media *m* y desviación tipica *s*. Nuestro programa tiene que encontrar unos valores (*m*, *s*) de forma que los percentiles correspondientes encajen con los que aparecen en nuestra tabla.

FASE 2

Simular una muestra de datos

Comparar varias técnicas de regresión y quedarse con la mejor.

FASE 3

Evaluación de la precisión real de nuestra técnica. El objetivo es demonstrar que si nuestra técnica estima la edad de alguien en x meses, la edad verdadera está acotada entre x-a y x+b con probabilidad del 99%.