

Seminario Universitario 2024 Modalidad Intensiva

1ER EVALUACIÓN: 10/02/2024

Apellido y r	nombre:				
Carrera:					

Obs.: Cada ejercicio debe mostrar procedimientos y/o justificaciones necesarias para probar el resultado final.

- 1) Resolver:
 - a. Sabiendo que el valor de la proposición compuesta es falsa, justificar los valores de verdad de cada proposición:

$$(p \leftrightarrow -r) \land (q \bigoplus -q) \rightarrow -q \lor p$$

- b. Sean los conjuntos $E = \{2,4,6,8\}, F = \{x/x \in \mathbb{N}_0 \land 0 \le x < 6\}, G = \{1,2,3,4,6,12\}$:
 - i. Definir por extensión el universal más pequeño posible. Expresar los conjuntos E y F por extensión o comprensión, según corresponda, y representar todos en el Diagrama de Venn.
 - ii. Hallar: $(E \cap G)^C F$.
- c. Resolver la siguiente inecuación simultánea y expresar el resultado como intervalo, clasificándolo.

$$3x - 5 \le \frac{x + (5 - 2)^2}{(-1)^2} < 3x + 7$$

2) a. Demostrar la siguiente igualdad aplicando propiedades si n es un número entero positivo y x es un número real:

$$\frac{2^{n+3}\sqrt{4^{n+2}} \ 2^{-(n+5)}}{\left(\sqrt[3]{\left(\frac{1}{2}\right)^{-6n+3}}\right)^{\frac{1}{2}}} \cdot \sqrt{\frac{1}{2}} + \frac{x^{\frac{4}{6}} x^{\frac{7}{3}} \ 0, \hat{2}}{\sqrt[3]{x^9}} = \frac{11}{9}$$

b. Sabiendo que $\log_x a = 4$ y $\log_x b = -\frac{1}{2}$ resolver aplicando propiedades:

$$\log_{\mathbf{x}}(a^2b^3) + \log_{\mathbf{x}}\left(\frac{a^{-2}}{b^6}\right) - \log_{\mathbf{a}}\left(\sqrt{x^3}\right)$$

- 3) a. Hallar un polinomio mónico de grado 5, tal que x = -1 es raíz de multiplicidad 2, $(x^2 16)$ es factor y P(0) = 8. Escribir todas las raíces del polinomio y su forma desarrollada en potencias decrecientes.
 - b. Determinar el valor de k para que $Q(x) = kx^2 + 2x^3 x 7$ sea divisible por (x 1). Escribir el cociente que se obtiene al dividirlos.
 - c. Dados los polinomios P(x) de grado 5, Q(x) de grado 3 y S(x) de grado 2. Determinar verdadero o falso justificando las falsas.
 - i. P(x) + Q(x) es de grado 8.
 - ii. $S(x) \cdot Q(x)$ es de grado menor o igual que 5.
 - iii. P(x): S(x) es de grado 3.
- 4) a. Si tenemos dos bidones de agua de la misma capacidad, pero uno de ellos se encuentra al 20% de su capacidad total, y el otro al 30%. Determinar la capacidad de cada bidón si tenemos un total de 12 litros de agua. Calcular cuántos litros tiene cada bidón.
 - b. i. La suma de los cuadrados de dos números naturales consecutivos es 221. ¿Cuáles son los números?
 - ii. Resolver: $x^4 + 13x^2 + 36 = 0$

1		2	3			4	4	NOTA		

X FRCU

1ER EVALUACIÓN: 10/02/2024

Ape	ellido	y n	oml	ore: _							 	 	
Car	rera:												
<u> </u>					 	 -	-	-	 			 	

Obs.: Cada ejercicio debe mostrar procedimientos y/o justificaciones necesarias para probar el resultado final.

1) Resolver:

a. Sabiendo que el valor de la proposición compuesta es falsa, justificar los valores de verdad de cada proposición:

$$(p \oplus -p) \land (r \leftrightarrow -q) \rightarrow p \lor (-r)$$

- b. Sean los conjuntos $A = \{1,3,5,7,9\}, B = \{x/x \in \mathbb{Z} \land 0 \le x < 5\}, C = \{5,10,15\}$:
 - i. Definir por extensión el universal más pequeño posible. Expresar los conjuntos A y B por extensión o comprensión, según corresponda, y representar todos en el Diagrama de Venn.
 - ii. Hallar: $(A \cup B)^C C$
- c. Resolver la siguiente inecuación simultánea y expresar el resultado como intervalo, clasificándolo.

$$-5 + 3x \le \frac{(5-2)^2 + x}{(-1)^4} < 7 + 3x$$

2) a. Demostrar la siguiente igualdad aplicando propiedades si n es un número entero positivo y x es un número real:

$$\frac{\sqrt[5]{x^2} \cdot 1, \hat{8} \cdot x^{\frac{21}{3}}}{x^{\frac{17}{5}} x^4} + \frac{3^{2n+1} \sqrt[3]{27^{n-2}} 9^{2-n}}{\left(\frac{1}{3}\right)^{-n-5}} = 2$$

b. Sabiendo que $\log_x a = 4$ y $\log_x b = -\frac{1}{2}$ resolver aplicando propiedades:

$$\log_{\mathbf{b}}\left(x^{\frac{7}{6}}\right) - \log_{\mathbf{x}}\left(\frac{b^2}{a^5}\right) + \log_{\mathbf{x}}\left(\sqrt{a}\sqrt[3]{b}\right)$$

- 3) a. Hallar un polinomio mónico de grado 5, tal que x=1 es raíz de multiplicidad 2, (x^2-4) es factor y P(0)=2. Escribir todas las raíces del polinomio y su forma desarrollada en potencias decrecientes.
 - b. Determinar el valor de k para que $Q(x) = 5x^2 + 2x^3 kx 9$ sea divisible por (x + 1). Escribir el cociente que se obtiene al dividirlos.
 - c. Dados los polinomios P(x) de grado 5, Q(x) de grado 4 y S(x) de grado 3. Determinar verdadero o falso justificando las falsas.
 - i. P(x) + Q(x) es de grado 9.
 - ii. $S(x) \cdot Q(x)$ es de grado menor o igual que 7.
 - iii. P(x): S(x) es de grado 2.
- 4) a. Si tenemos dos botellas de gaseosa de la misma capacidad, pero una de ellas se encuentra al 40% de su capacidad total, y la otra al 20%. Determinar la capacidad de cada botella si tenemos un total de 1,8 litros de gaseosa. Calcular cuántos litros tiene cada botella.
 - b. i. La suma de los cuadrados de dos números naturales consecutivos es 313. Determinar los números.
 - ii. Resolver: $x^4 + 2x^2 + 3 = 0$

1		2			4	4	NOTA		