MAT167: Homework 3 Hangshi Jin 913142686 E. G. Puckett Due on May 25

Problem 1

(a) Since $\overline{\lambda}$ is an eigenvalue of A with \overline{x}

$$\overline{Ax} = \overline{\lambda x} \Rightarrow A\overline{x} = \overline{\lambda}\overline{x}.$$

Since $A^T = A$,

$$Ax = \lambda x \Rightarrow \overline{x}^T A x = \overline{x}^T A^T x = (A\overline{x})^T x = \overline{\lambda} \overline{x}^T x = \lambda \overline{x}^T x.$$

Since

$$\overline{x} = \begin{bmatrix} a_1 - b_1 i \\ a_2 - b_2 i \\ \vdots \\ a_m - b_m i \end{bmatrix}$$
, and $x = \begin{bmatrix} a_1 + b_1 i \\ a_2 + b_2 i \\ \vdots \\ a_m + b_m i \end{bmatrix}$,

$$\overline{x}^T x = (a_1^2 + b_1^2) + (a_2^2 + b_2^2) + \dots + (a_m^2 + b_m^2) \ge 0.$$

Since x is nonzero vector, $\overline{\lambda} = \lambda$.

By the property of complex numbers, λ is real.

(b) We know for any real matrix A,

$$A(x_1 \cdot x_2) = x_1 \cdot (A^T x_2).$$

Since A is sysmetric,

$$\lambda_1(x_1 \cdot x_2) = (\lambda_1 x_1) \cdot x_2 = (Ax_1) \cdot x_2 = x_1 \cdot (A^T x_2) = x_1 \cdot (Ax_2) = x_1 \cdot (\lambda_2 x_2) = \lambda_2(x_1 \cdot x_2).$$

$$\Rightarrow \lambda_1(x_1 \cdot x_2) - \lambda_2(x_1 \cdot x_2) = (\lambda_1 - \lambda_2)(x_1 \cdot x_2) = 0.$$

Since $\lambda_1 - \lambda_2 \neq 0$, $x_1 \cdot x_2 = 0$. $\Rightarrow x_1$ is orthogonal to x_2 .

Problem 2

(a)

$$r_{11} = ||a_1|| = \sqrt{1 + \epsilon^2} \approx 1, \ q_1 = \frac{a_1}{r_{11}} = \begin{bmatrix} 1\\ \epsilon\\ 0 \end{bmatrix}.$$

$$r_{12} = q_1^T a_2 = \begin{bmatrix} 1 & \epsilon & 0 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ \epsilon \end{bmatrix} = 1.$$

$$q_2 = \frac{a_2 - r_{12}q_1}{r_{22}} = \frac{\begin{bmatrix} 1\\ 0\\ \epsilon \end{bmatrix} - \begin{bmatrix} 1\\ \epsilon\\ 0 \end{bmatrix}}{r_{22}} = \frac{1}{r_{22}} \begin{bmatrix} 0\\ -\epsilon\\ \epsilon \end{bmatrix}.$$

$$r_{22} = ||a_2 - r_{12}q_1|| = ||\begin{bmatrix} 1\\ 0\\ \epsilon \end{bmatrix} - \begin{bmatrix} 1\\ \epsilon\\ 0 \end{bmatrix}|| = ||\begin{bmatrix} 0\\ -\epsilon\\ \epsilon \end{bmatrix}|| = \sqrt{2\epsilon^2} = \sqrt{2}\epsilon.$$

$$q_{2} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}.$$

$$\Rightarrow A = \hat{Q}\hat{R} = \begin{bmatrix} 1 & 0 \\ \epsilon & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & \sqrt{2}\epsilon \end{bmatrix}.$$

$$v_{1}^{(1)} = \begin{bmatrix} 1 \\ \epsilon \end{bmatrix}, v_{2}^{(1)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

$$r_{11} = ||v_{1}^{(1)}|| = \sqrt{1 + \epsilon^{2}} \approx 1, q_{1} = \frac{v_{1}^{(1)}}{r_{11}} = \begin{bmatrix} 1 \\ \epsilon \\ 0 \end{bmatrix}.$$

$$r_{12} = q_{1}^{T}v_{2}^{(1)} = \begin{bmatrix} 1 & \epsilon & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \epsilon \end{bmatrix} = 1.$$

$$v_{2}^{(2)} = v_{2}^{(1)} - r_{12}q_{1} = \begin{bmatrix} 1 \\ 0 \\ -\epsilon \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -\epsilon \end{bmatrix} = \begin{bmatrix} 0 \\ -\epsilon \\ \epsilon \end{bmatrix}$$

$$r_{22} = ||a_{2} - r_{12}q_{1}|| = ||\begin{bmatrix} 1 \\ 0 \\ -\epsilon \end{bmatrix}| = ||\begin{bmatrix} 1 \\ 0 \\ -\epsilon \end{bmatrix}| = ||\begin{bmatrix} 1 \\ -\epsilon \end{bmatrix}| = \sqrt{2}\epsilon^{2} = \sqrt{2}\epsilon.$$

$$q_{2} = \frac{v_{2}^{(2)}}{r_{22}} = \frac{1}{\sqrt{2}\epsilon} \begin{bmatrix} 0 \\ -\epsilon \\ -\epsilon \end{bmatrix} = \sqrt{2}\epsilon^{2} = \sqrt{2}\epsilon.$$

$$q_{2} = \frac{v_{2}^{(2)}}{r_{22}} = \frac{1}{\sqrt{2}\epsilon} \begin{bmatrix} 0 \\ -\epsilon \\ -\epsilon \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}.$$

$$\Rightarrow A = \hat{Q}\hat{R} = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{2} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & \sqrt{2}\epsilon \end{bmatrix}.$$

$$v_{1}^{T} = [-2 - \epsilon \quad 0] \Rightarrow F_{1} = I - 2\frac{v_{1}v_{1}^{T}}{v_{1}^{T}}v_{1} = I - \begin{bmatrix} 2 & \epsilon & 0 \\ \epsilon & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -\epsilon & 0 \\ -\epsilon & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Q_{1}.$$

$$Q_{1}A = \begin{bmatrix} -1 & -1 \\ 0 & -\epsilon \\ -\epsilon \end{bmatrix}.$$

$$v_{2} = \begin{bmatrix} -\epsilon \\ \epsilon \end{bmatrix}, v_{2} = sign(x_{21}) ||x_{2}|| e_{1} + x_{2} = \begin{bmatrix} -\sqrt{2}\epsilon - \epsilon \\ \epsilon \end{bmatrix}.$$

$$v_{2}^{T} = [-\sqrt{2}\epsilon - \epsilon \quad \epsilon] \Rightarrow F_{2} = I - 2\frac{v_{2}v_{2}^{T}}{v_{2}^{T}}v_{2}^{T}} = \frac{1}{2 + \sqrt{2}} \begin{bmatrix} -1 - \sqrt{2} & 1 + \sqrt{2} \\ 1 + \sqrt{2} & 1 + \sqrt{2} \end{bmatrix} = \begin{bmatrix} -\sqrt{2}^{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

$$\Rightarrow Q_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\sqrt{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \Rightarrow R = \begin{bmatrix} -1 & -1 \\ 0 & \sqrt{2}\epsilon \\ 0 & 0 & 0 \end{bmatrix}.$$

$$Q = (Q_2 Q_1)^T = \begin{bmatrix} -1 & \frac{\sqrt{2}\epsilon}{2} & -\frac{\sqrt{2}\epsilon}{2} \\ -\epsilon & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

$$\Rightarrow A = QR = \begin{bmatrix} -1 & \frac{\sqrt{2}\epsilon}{2} & -\frac{\sqrt{2}\epsilon}{2} \\ -\epsilon & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & \sqrt{2}\epsilon \\ 0 & 0 \end{bmatrix}.$$

$$\begin{aligned} \operatorname{CGS\&MGS:} \left\| \hat{Q}^T \hat{Q} - I \right\|_F &= \left\| \begin{bmatrix} 1 & \epsilon & 0 \\ 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \epsilon & \frac{-1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix} - I \right\|_F &= \left\| \begin{bmatrix} 0 & \frac{-\epsilon}{\sqrt{2}} \\ \frac{-\epsilon}{\sqrt{2}} & 0 \end{bmatrix} \right\|_F = \epsilon. \end{aligned}$$
 Householder:
$$\left\| Q^T Q - I \right\|_F &= \left\| \begin{bmatrix} -1 & -\epsilon & 0 \\ \frac{\sqrt{2}\epsilon}{2} & \frac{-\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}\epsilon}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} -1 & \frac{\sqrt{2}\epsilon}{2} & \frac{-\sqrt{2}\epsilon}{2} \\ -\epsilon & \frac{-\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} - I \right\|_F = 0. \end{aligned}$$

Householder triangularizaiton does not have loss of orthogonality while CGS and MGS do.

Problem 3

(a)
$$F\begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} x_m \\ \vdots \\ x_1 \end{bmatrix} \Rightarrow F = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ \vdots & & \ddots & 0 \\ 0 & \ddots & & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix}.$$

$$EEx = E^{2}x = \frac{E(x + Fx)}{2} = \frac{Ex + EFx}{2} = \frac{\frac{x + Fx}{2} + \frac{F(x + Fx)}{2}}{2} = \frac{1}{4}(x + Fx + Fx + FFx) = \frac{1}{4}(2x + 2Fx) = \frac{x + Fx}{2} = Ex.$$

$$\Rightarrow E^{2} = E.$$

 \Rightarrow E is a projector.

$$(Ex)^T = x^T E^T = \frac{(x + Fx)^T}{2} \Rightarrow E^T = \frac{I + F}{2} \Rightarrow E^T x = \frac{x + Fx}{2} = Ex.$$
$$\Rightarrow E^T = E.$$

E is an orthogonal projector.

(b)
$$E = \frac{I+F}{2}.$$

In the case that m is even,

$$E = \frac{1}{2} \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 & 1 \\ 0 & \ddots & & & \ddots & 0 \\ \vdots & & 1 & 1 & & \vdots \\ \vdots & & 1 & 1 & & \vdots \\ 0 & \ddots & & & \ddots & 0 \\ 1 & 0 & \cdots & \cdots & 0 & 1 \end{bmatrix}.$$

In the case that m is odd,

$$E = \frac{1}{2} \begin{bmatrix} 1 & 0 & \cdots & 0 & 1 \\ 0 & \ddots & & \ddots & 0 \\ \vdots & & 2 & & \vdots \\ 0 & \ddots & & \ddots & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{bmatrix}.$$

Problem 4

(a) A =

/ 1.0	0	0	0	0	0	0	0	0	0	0	0 \
1.0	0.0204	4.1610^{-4}	8.510^{-6}	1.7310^{-7}	3.5410^{-9}	7.2210^{-11}	1.4710^{-12}	3.0110^{-14}	6.1410^{-16}	1.2510^{-17}	2.56 10 - 19
1.0	0.0408	0.00167	6.810^{-5}	2.7810^{-6}	1.1310^{-7}	4.6210^{-9}	1.8910^{-10}	7.710^{-12}	3.1410^{-13}	1.2810^{-14}	5.2410^{-16}
1.0	0.0612	0.00375	$2.29 10^{-4}$	1.4110^{-5}	8.610^{-7}	5.2710^{-8}	3.2210^{-9}	1.9710^{-10}	1.2110^{-11}	7.410^{-13}	4.5310^{-14}
1.0	0.0816	0.00666	5.4410^{-4}	4.4410^{-5}	3.6310^{-6}	2.9610^{-7}	2.4210^{-8}	1.9710^{-9}	1.6110^{-10}	1.3110^{-11}	1.0710^{-12}
1.0	0.102	0.0104	0.00106	1.0810^{-4}	1.1110^{-5}	$1.13 10^{-6}$	$1.15 10^{-7}$	$1.18 10^{-8}$	1.210^{-9}	1.2210^{-10}	1.2510^{-11}
1.0	0.122	0.015	0.00184	2.2510^{-4}	2.7510^{-5}	3.3710^{-6}	4.1310^{-7}	5.0510^{-8}	6.1910^{-9}	7.5810^{-10}	9.2810^{-11}
1.0	0.143	0.0204	0.00292	4.1610^{-4}	5.9510^{-5}	8.510^{-6}	1.2110^{-6}	$1.73 10^{-7}$	$2.48 10^{-8}$	3.5410^{-9}	5.0610^{-10}
1.0	0.163	0.0267	0.00435	7.1110^{-4}	1.1610^{-4}	1.8910^{-5}	3.0910^{-6}	5.0510^{-7}	8.2410^{-8}	1.3510^{-8}	2.210^{-9}
1.0	0.184	0.0337	0.0062	0.00114	2.0910^{-4}	3.8410^{-5}	7.0510^{-6}	1.310^{-6}	2.3810^{-7}	4.3710^{-8}	8.03 10-9
1.0	0.204	0.0416	0.0085	0.00173	$3.54 10^{-4}$	7.2210^{-5}	1.4710^{-5}	3.0110^{-6}	6.1410^{-7}	1.2510^{-7}	2.5610^{-8}
1.0	0.224	0.0504	0.0113	0.00254	5.710^{-4}	1.2810^{-4}	2.8710^{-5}	6.4510^{-6}	1.4510^{-6}	3.2510^{-7}	7.310-8
1.0	0.245	0.06	0.0113	0.00264	8.81 10-4	2.1610^{-4}	5.28 10 - 5	1.29 10 - 5	3.1710^{-6}	$\frac{3.2610}{7.7610} - 7$	1.910-7
1.0	0.245	0.0704	0.0147	0.0036	0.00131	3.4910^{-4}	$9.25 10^{-5}$	2.4510^{-5}	6.5110^{-6}	1.73 10 -6	4.58 10 -7
1.0	0.286	0.0704	0.0187	0.00493	0.00131	5.4910 5.4410^{-4}	$1.55 10^{-4}$	4.4410^{-5}	$1.27 10^{-5}$	3.6310^{-6}	1.0410^{-6}
1.0						$8.23 10^{-4}$	2.5210^{-4}	7.7110^{-5}	2.3610^{-5}	7.2310^{-6}	2.21 10-6
	0.306	0.0937	0.0287	0.00878	0.00269		3.9610^{-4}	$1.29 \cdot 10^{-4}$	4.22 10 -5	1.38 10 -5	4.5 10 -6
1.0	0.327	0.107	0.0348	0.0114	0.00371	0.00121					4.510
1.0	0.347	0.12	0.0418	0.0145	0.00503	0.00174	6.0510^{-4}	2.110^{-4}	7.2810^{-5}	2.5310^{-5}	8.77 10 - 6
1.0	0.367	0.135	0.0496	0.0182	0.00669	0.00246	9.0310^{-4}	3.3210^{-4}	1.2210^{-4}	4.4710^{-5}	1.64 10 - 5
1.0	0.388	0.15	0.0583	0.0226	0.00877	0.0034	0.00132	5.1110^{-4}	1.9810^{-4}	7.6810^{-5}	2.98 10-5
1.0	0.408	0.167	0.068	0.0278	0.0113	0.00462	0.00189	7.710^{-4}	3.1410^{-4}	1.2810^{-4}	5.2410^{-5}
1.0	0.429	0.184	0.0787	0.0337	0.0145	0.0062	0.00266	0.00114	4.8810^{-4}	2.0910^{-4}	8.96 10 - 5
1.0	0.449	0.202	0.0905	0.0406	0.0182	0.00819	0.00368	0.00165	7.4110^{-4}	3.3310^{-4}	1.4910^{-4}
1.0	0.469	0.22	0.103	0.0485	0.0228	0.0107	0.00502	0.00236	0.00111	5.1910^{-4}	2.4410^{-4}
1.0	0.49	0.24	0.118	0.0576	0.0282	0.0138	0.00676	0.00331	0.00162	7.9510^{-4}	3.8910^{-4}
1.0	0.51	0.26	0.133	0.0678	0.0346	0.0176	0.009	0.00459	0.00234	0.0012	6.110^{-4}
1.0	0.531	0.282	0.149	0.0793	0.0421	0.0223	0.0118	0.00628	0.00333	0.00177	9.3910^{-4}
1.0	0.551	0.304	0.167	0.0922	0.0508	0.028	0.0154	0.0085	0.00468	0.00258	0.00142
1.0	0.571	0.327	0.187	0.107	0.0609	0.0348	0.0199	0.0114	0.0065	0.00371	0.00212
1.0	0.592 0.612	$0.35 \\ 0.375$	0.207 0.229	0.123	0.0726	0.043 0.0527	0.0254 0.0322	$0.0151 \\ 0.0197$	0.00891 0.0121	0.00527 0.0074	0.00312 0.00453
1.0	0.612	0.375	0.253	0.141 0.16	0.086 0.101	0.0527	0.0322	0.0197	0.0121	0.0074	0.00453
1.0	0.653	0.426	0.279	0.182	0.119	0.0776	0.0507	0.0237	0.0102	0.0141	0.0003
1.0	0.673	0.454	0.305	0.206	0.139	0.0933	0.0628	0.0423	0.0285	0.0192	0.0129
1.0	0.694	0.481	0.334	0.232	0.161	0.112	0.0774	0.0537	0.0373	0.0259	0.018
1.0	0.714	0.51	0.364	0.26	0.186	0.133	0.0949	0.0678	0.0484	0.0346	0.0247
1.0	0.735	0.54	0.397	0.291	0.214	0.157	0.116	0.0849	0.0624	0.0458	0.0337
1.0	0.755 0.776	0.57 0.601	0.431 0.466	0.325 0.362	$0.245 \\ 0.281$	0.185 0.218	0.14 0.169	$0.106 \\ 0.131$	0.0798 0.101	0.0603 0.0787	0.0455 0.061
1.0	0.776	0.633	0.504	0.362	0.319	0.218	0.109	0.161	0.101	0.102	0.0812
1.0	0.816	0.666	0.544	0.444	0.363	0.296	0.242	0.197	0.161	0.102	0.107
1.0	0.837	0.7	0.586	0.49	0.41	0.343	0.287	0.24	0.201	0.168	0.141
1.0	0.857	0.735	0.63	0.54	0.463	0.397	0.34	0.291	0.25	0.214	0.183
1.0	0.878	0.77	0.676	0.593	0.52	0.457	0.401	0.352	0.309	0.271	0.238
1.0	0.898	0.806	0.724	0.65	0.584	0.524	0.471	0.423	0.38	0.341	0.306
1.0	0.918 0.939	0.843 0.881	$0.775 \\ 0.827$	0.711 0.777	0.653 0.729	$0.6 \\ 0.684$	$0.551 \\ 0.643$	$0.506 \\ 0.603$	$0.465 \\ 0.566$	0.427 0.532	0.392 0.499
1.0	0.939	0.881	0.827	0.777	0.729	0.684	0.643	0.603	0.687	0.659	0.499
1.0	0.98	0.96	0.94	0.921	0.902	0.884	0.866	0.848	0.831	0.814	0.797
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
`											,

$$(A^T A)^{-1} =$$

/	0.944	-59.8	1300.0	-1.3910^4	8.5910^4	-3.3110^{5}	8.3110^{5}	-1.3810^6	1.5110^{6}	-1.0410^6	4.0910^{5}	-7.0310^4
1	-59.8	8677.0	-2.5110^5	3.1410^6	-2.1310^{7}	8.7810^{7}	-2.3210^8	4.010^{8}	-4.4910^8	3.1710^8	-1.2810^8	2.2310^{7}
1	1300.0	-2.5110^{5}	8.0210^6	$-1.06 10^8$	7.4710^8	-3.1610^9	8.510^9	-1.4910^{10}	1.710^{10}	-1.2110^{10}	4.9110^9	-8.6510^{8}
ı	-1.3910^4	3.1410^6	-1.0610^{8}	1.4510^9	-1.0510^{10}	4.5110^{10}	-1.2310^{11}	2.1810^{11}	-2.5110^{11}	1.810^{11}	-7.3710^{10}	1.3110^{10}
ı	8.5910^4	-2.1310^{7}	7.4710^8	-1.0510^{10}	7.710^{10}	-3.3710^{11}	9.2910^{11}	-1.6610^{12}	1.9310^{12}	-1.3910^{12}	5.7310^{11}	-1.0210^{11}
ı	-3.3110^{5}	8.7810^{7}	-3.1610^9	4.5110^{10}	-3.3710^{11}	1.4910^{12}	-4.1410^{12}	7.4710^{12}	-8.7110^{12}	6.3410^{12}	-2.6210^{12}	4.6810^{11}
ı	8.3110^{5}	-2.3210^{8}	8.510^9	-1.2310^{11}	9.2910^{11}	-4.1410^{12}	1.1610^{13}	-2.1110^{13}	2.4710^{13}	-1.8110^{13}	7.510^{12}	-1.3510^{12}
ı	-1.3810^6	4.010^8	-1.4910^{10}	2.1810^{11}	-1.6610^{12}	7.4710^{12}	-2.1110^{13}	3.8510^{13}	-4.5410^{13}	3.3310^{13}	-1.3910^{13}	2.510^{12}
ı	1.5110^{6}	-4.4910^8	1.710^{10}	-2.5110^{11}	1.9310^{12}	-8.7110^{12}	2.4710^{13}	-4.5410^{13}	5.3710^{13}	-3.9610^{13}	1.6510^{13}	-2.9810^{12}
ı	-1.0410^6	3.1710^{8}	-1.2110^{10}	1.810^{11}	-1.3910^{12}	6.3410^{12}	-1.8110^{13}	$3.33 10^{13}$	-3.9610^{13}	$2.93 10^{13}$	-1.2310^{13}	2.2210^{12}
١	4.0910^{5}	-1.2810^{8}	4.9110^9	-7.3710^{10}	5.7310^{11}	-2.6210^{12}	7.510^{12}	-1.3910^{13}	1.6510^{13}	-1.2310^{13}	5.1410^{12}	-9.3410^{11}
/	-7.0310^4	2.2310^{7}	-8.6510^{8}	1.3110^{10}	-1.0210^{11}	4.6810^{11}	-1.3510^{12}	2.510^{12}	-2.9810^{12}	2.2210^{12}	-9.3410^{11}	1.710 ¹¹

```
-0.008364150130270295
                                          -8.013302248819301
                                          0.00200986234429084
                                           10.65643945285954
                                          0.03819355536709001
                                   x =
                                           -5.80195355819774
                                           0.2002810836995605
                                           1.387178827091387
                                          0.2863476227457973
                                          -0.4511725901700139
                                          0.1082040508358794\\
(b)
                                          0.9999980095417428
                                         0.0005240487129328648
                                          -8.017781214722481
                                           0.2317776652525206
                                           9.133006608074849
                                           5.824451075252701
                                   x =
                                          -19.12705214142045
                                           19.11574452219357
                                           -14.6971553676225
                                           7.621060716492418
                                           -1.771882814554435
                                          0.0336602669258937\\
(c)
                                          0.9999999983863181
                                       0.0000003612607411363169\\
                                           -8.00001090901282
                                         0.0001209718519636858
                                           10.66604887259279
                                         0.001499873032841239
                                  x =
                                          -5.690652240820811
                                          0.00470900127440044
                                           1.598825773422054\\
                                          0.07594885807110009
                                          -0.4034554134780703
                                          0.09332123577732984\\
(d)
                                          0.9999999878508699\\
                                        0.000003240106772508905\\
                                           -8.000088938990734
                                         0.002073496357689155
                                           10.65146262654028
                                          0.05422419780233391
                                  x =
                                           -5.843045370682141
                                          0.3148140300789312
                                           1.213327954716196
                                          0.2561167534590414
                                          -0.5100932056145835
                                          0.1133117050781178\\
```

0.9933423296986708

(e)

Householder trai
angularization is the most stable or accurate method for QR de
composation. And based on observation, the normal equations exhibit very close to stable.