# Tropical Dynamic Programming for Lipschitz Multistage Stochastic Programming

Marianne Akian, Jean-Philippe Chancelier and Benoît Tran

Septembre 9th 2020

SMAI-MODE 2020







# Multistage Stochastic Programming (MSP)

#### Consider the Multistage stochastic optimization problem

$$\begin{aligned} & \underset{(\mathsf{X},\mathsf{U})}{\min} \, \mathbb{E} \left[ \sum_{t=0}^{T-1} c_t^{\mathsf{W}_{\mathsf{t}+1}} \left( \mathsf{X}_\mathsf{t}, \mathsf{U}_\mathsf{t} \right) + \psi \left( \mathsf{X}_\mathsf{T} \right) \right], \\ & \mathsf{s.t.} \, \mathsf{X}_0 = \mathsf{x}_0 \, \, \mathsf{given}, \forall t \in \llbracket \mathsf{0}, \mathsf{T} - \mathsf{1} \rrbracket, \\ & \mathsf{X}_{\mathsf{t}+1} = f_t^{\mathsf{W}_{\mathsf{t}+1}} \left( \mathsf{X}_\mathsf{t}, \mathsf{U}_\mathsf{t} \right), \\ & \sigma \left( \mathsf{U}_\mathsf{t} \right) \subset \sigma \left( \mathsf{W}_\mathsf{1}, \dots, \mathsf{W}_{\mathsf{t}+1} \right), \end{aligned}$$

#### Assumption (Finite support independent noises)

The sequence  $(W_t)_{t \in [\![1,T]\!]}$  is made of independent random variables each with finite support.

# Bellman operators and Dynamic Programming

#### MSP can be solved by Dynamic Programming

Pointwise Bellman operator:

for all 
$$w \in \operatorname{supp}(W_{t+1})$$
 and  $\phi : \mathbb{X} \to \overline{\mathbb{R}}$ 

$$\mathcal{B}_{t}^{w}\left(\phi\right):x\in\mathbb{X}\mapsto\min_{u}\left(c_{t}^{w}\left(x,u\right)+\phi\left(f_{t}^{w}\left(x,u\right)\right)\right)\in\overline{\mathbb{R}}$$

(Average) Bellman operator:

$$\mathfrak{B}_{t}\left(\phi\right): X \in \mathbb{X} \mapsto \mathbb{E}\left[\mathcal{B}_{t}^{\mathsf{Wt}+1}\left(\phi\right)\left(X\right)\right] \in \overline{\mathbb{R}}$$

Dynamic Programming Equations

$$V_T = \psi$$
 and  $\forall t \in \llbracket 0, T - 1 \rrbracket$ ,  $V_t = \mathfrak{B}_t (V_{t+1})$ 

- $V_t$  is called the value function at time  $t \in [0, T]$
- We want to compute  $V_0(x_0)$  at some given state  $x_0$

# Goal: simultaenous Min-plus & Max-plus approximations of $V_t$

Build an algorithm that simultaneously generates upper and lower approximations of  $V_t$  as min-plus linear and max-plus linear combinaisons of basic functions



# Goal: simultaenous Min-plus & Max-plus approximations of $V_t$

Build an algorithm that simultaneously generates upper and lower approximations of  $V_t$  as min-plus linear and max-plus linear combinaisons of basic functions

- Generalizes the Min-plus algorithm for deterministic control problems (McEneaney 2007, Qu 2014) giving upper approximations as infima of quadratics
- and the Stochastic Dual Dynamic Programming (SDDP)
   algorithm (Pereira and Pinto 1991, Shapiro 2011, ...) giving
   lower approximations as suprema of affine cuts

#### Outline

- 1. Tropical Dynamic Programming (TDP): an algorithm building min-plus and max-plus approximations of value functions
- 2. Convergence result of TDP
- 3. Numerical example: linear-polyhedral framework

#### Section content

- 1. Tropical Dynamic Programming (TDP): an algorithm building min-plus and max-plus approximations of value functions
- 1.1 Lipschitz Multistage Stochastic optimization problems
- 1.2 How to select a new basic function?
- 1.3 Problem-child trajectory of Baucke and al. (2018)
- 1.4 Tropical Dynamic Programming (TDP)

# Lipschitz Multistage Stochastic optimization problems

#### Assumption (Lipschitz dynamic, costs and constraints)

For every time t < T and  $w \in \operatorname{supp}(W_{t+1})$ , the dynamics  $f_t^w$ , the costs  $c_t^w$  and the constraint set-valued mappings  $\mathcal{U}_t^w$  are Lipschitz continuous on  $X_t$ , i.e. for some constant  $L_{\mathcal{U}_t^w} > 0$ , for every  $x_1, x_2 \in X_t$ ,  $d_{\mathcal{H}}(\mathcal{U}_t^w(x_1), \mathcal{U}_t^w(x_2)) \leq L_{\mathcal{U}_t^w} \|x_1 - x_2\|$ .

### Proposition (Lipschitz MSP implies regularity of $\mathfrak{B}_t$ )

Let  $\phi: \mathbb{X} \to \overline{\mathbb{R}}$   $L_{t+1}$ -Lipschitz on  $X_{t+1}$  be given. The function  $\mathfrak{B}_t(\phi)$  is  $L_t$ -Lipschitz on  $X_t$  for some constant  $L_t > 0$  which only depends on the data of the MSP problem and  $L_{t+1}$ .

# Constraint set-valued mapping

For each noise  $w \in \operatorname{supp}(W_{t+1})$ ,  $t \in [0, T-1]$ , define the constraint set-valued mapping  $\mathcal{U}_t^w : \mathbb{X} \rightrightarrows \mathbb{U}$ 

$$\mathcal{U}_{t}^{w}\left(x\right):=\left\{ u\in\mathbb{U}\mid c_{t}^{w}\left(x,u\right)<+\infty\text{ and }f_{t}^{w}\left(x,u\right)\in X_{t+1}\right\} .^{1}$$

#### Assumption (Recourse assumption)

The set-valued mapping  $\mathcal{U}_t^w$  is non-empty compact valued

### Proposition (Known domains of $V_t$ )

Under the recourse assumption, dom  $V_t = X_t$ 

 $<sup>^1\</sup>forall w \in \operatorname{supp}\left(W_{t+1}\right), X_t^w := \pi_{\mathbb{X}}\left(\operatorname{dom}\, c_t^w\right) \text{, and } X_t := \cap_{w \in \operatorname{supp}\left(W_{t+1}\right)} X_t^w.$ 

#### How to select a new basic function?

Given,  $x_t$  called trial point and  $F_{t+1} \subset F_{t+1}$  set of basic functions the selection function returns a function  $\phi_t = S_t(F_{t+1}, x_t)$ 

Denote by  $\mathcal{V}_{F_{t+1}}$  the sup or inf of basic functions in  $F_{t+1}$ 

Tightness Assumption (local property)

$$\phi_t(X_t) = \mathfrak{B}_t(\mathcal{V}_{F_{t+1}})(X_t)$$

### Validity Assumption (global property)

$$\phi_t \leq \mathfrak{B}_t \left( \mathcal{V}_{F_{t+1}} \right)$$
 (Max-plus lin. combinaisons case)

$$\phi_t \geq \mathfrak{B}_t \left( \mathcal{V}_{F_{t+1}} \right)$$
 (Min-plus lin. combinaisons case)

# Problem-child trajectory of Baucke and al. (2018)

Fix two sequences of functions  $\phi_0, \dots, \phi_{\tau}$  and  $\overline{\phi}_0, \dots, \overline{\phi}_T$ 

Recursively define a trajectory of states  $x_0^*, \dots, x_T^*$  called the Problem-child trajectory. Initial state  $x_0^*$  is given, then for t < T

1. For all  $w \in \text{supp}(W_{t+1})$ , compute optimal control at  $x_t^*$ 

$$u_{t}^{w} \in \operatorname*{arg\,min}_{u \in U}\left(c_{t}^{w}\left(\boldsymbol{X}_{t}^{*}, u\right) + \underline{\phi}_{t+1}\!\left(f_{t}^{w}\left(\boldsymbol{X}_{t}^{*}, u\right)\right)\right)$$

2. Compute "the worst" noise

#### Interpretation

Problem child trajectory = "Worst" optimal trajectory of the lower approximations

# Tropical Dynamic Programming (TDP) algorithm

# Algorithm 1 Tropical Dynamic Programming (TDP)

Input: Compatible selection functions  $(\overline{S}_t)_t$  and  $(\underline{S}_t)_t$  and  $(W_t)_{t \in \llbracket 0, T-1 \rrbracket}$  independent r.v. with finite support.

Output: Sequence of sets 
$$(\overline{F}_t^k)_{k \in \mathbb{N}}$$
,  $(\underline{F}_t^k)_{k \in \mathbb{N}}$  and associated functions  $\overline{V}_t^k = \inf_{\phi \in \overline{F}_t^k} \phi$  and  $\underline{V}_t^k = \sup_{\phi \in \underline{F}_t^k} \phi$ 

- 1: For every  $t \in \llbracket 0, T \rrbracket$ ,  $\overline{F}_t^0 := \emptyset$  and  $\underline{F}_t^0 := \emptyset$
- 2: **for**  $k \ge 0$  **do**
- 3: Forward. Compute Problem-child trajectory  $(x_t^k)_{t \in \llbracket 0, T \rrbracket}$
- 4: for t from T to 0 do
- 5: Backward. Set  $\overline{\phi}_t := \overline{S}_t \left( \overline{F}_{t+1}^k, x_t^k \right)$  and  $\underline{\phi}_t := \underline{S}_t \left( \underline{F}_{t+1}^k, x_t^k \right)$
- 6: Add them,  $\overline{F}_t^{k+1} := \overline{F}_t^k \cup \{\overline{\phi}_t\}$  and  $\underline{F}_t^{k+1} := \underline{F}_t^k \cup \{\underline{\phi}_t\}$
- 7: end for
- 8: end for

#### Section content

- 2. Convergence result of TDP
- 2.1 Uniform convergence to some limit functions
- 2.2 Asymptotic convergence of TDP

# Convergence to limits $\underline{V}_t^*$ and $\overline{V}_t^*$

Under finite independent noises, Lipschitz data and recourse assumptions we have

### Existence of an approximating limit

The sequence of functions  $\left(\underline{V}_t^k\right)_{k\in\mathbb{N}}$  (resp.  $\left(\overline{V}_t^k\right)_{k\in\mathbb{N}}$ ) generated by TDP converges uniformly on every compact set included in the domain of  $V_t$  to a function  $\underline{V}_t^*$  (resp.  $\overline{V}_t^*$ ).

#### Some features of TDP

- No need to discretize the state space
- $\cdot (\underline{V}_t^k)_k$  and  $(\overline{V}_t^k)_k$  are monotonic
- $\underline{V}_t^*$  and  $\overline{V}_t^*$  are close to  $V_t$  on "interesting points", but may be far from  $V_t$  elsewhere.

### Asymptotic convergence of TDP

Under finite independent noises, Lipschitz data and recourse assumptions we have

### Convergence of TDP [Akian, Chancelier, T., 2020]

Denote by  $(x_t^k)_{0 \le t \le T}$  the *k*-th Problem-child trajectory.

For every accumulation point  $x_t^*$  of  $(x_t^k)_{k \in \mathbb{N}}$ , we have

$$\overline{V}_{t}^{k}\left(x_{t}^{k}\right) - \underline{V}_{t}^{k}\left(x_{t}^{k}\right) \underset{k \to +\infty}{\longrightarrow} 0 \quad \text{and} \quad \overline{V}_{t}^{*}\left(x_{t}^{*}\right) = V_{t}\left(x_{t}^{*}\right) = \underline{V}_{t}^{*}\left(x_{t}^{*}\right)$$

This result generalizes the convergence of SDDP à la [Philpott and al. (2013)] and [Baucke and al. (2018)] seen as a specific instance of TDP for the linear-polyhedral framework

# Idea of the proof, details in [Akian, Chancelier, T., 2020]

- $\left(\underline{V}_t^k\right)_k$  (resp.  $\left(\overline{V}_t^k\right)_k$ ) converges uniformly to  $\underline{V}_t^*$  (resp.  $\overline{V}_t^*$ ) on the domain of  $V_t$  by Arzela-Ascoli theorem
- Exploiting monotonicity of the approximations and that each operator  $\mathcal{B}_t^w$  is order preserving

$$0 \leq \overline{V}_{t}^{k+1}\left(x_{t}^{k}\right) - \underline{V}_{t}^{k+1}\left(x_{t}^{k}\right)$$

$$\leq \sum_{w \in \text{supp}(W_{t+1})} \mathbb{P}\left[W_{t+1} = w\right] \left[\left(\overline{V}_{t+1}^{k} - \underline{V}_{t+1}^{k}\right)\left(f_{t}\left(x_{t}^{k}, u_{t}^{k}\left(w\right), w\right)\right)\right]$$

 Using that the PC-trajectory is the "worst" optimal trajectory then taking the limit in k

$$0 \leq \overline{V}_{t}^{*}\left(\boldsymbol{x}_{t}^{*}\right) - \underline{V}_{t}^{*}\left(\boldsymbol{x}_{t}^{*}\right) \leq \overline{V}_{t+1}^{*}\left(\boldsymbol{x}_{t+1}^{*}\right) - \underline{V}_{t+1}^{*}\left(\boldsymbol{x}_{t+1}^{*}\right)$$

Conclude by backward recursion on t

#### Section content

- 3. Numerical example: linear-polyhedral framework
- 3.1 Linear-polyhedral framework
- 3.2 SDDP (lower) selection function
- 3.3 U (upper) selection function
- 3.4 V (upper) selection function

## Linear-polyhedral framework

A linear-polyhedral MSP is a MSP where the costs are polyhedral, i.e. their epigraph is a convex polyhedron, and the dynamics  $f_t^w(x, u)$  are linear

Proposition (Linear-polyhedral MSP are Lipschitz MSP) Linear-polyhedral MSP are Lipschitz MSP

#### Proof.

The constraint mapping  $\mathcal{U}_t^w$  has a convex polyhedral graph thus (e.g. [Rockafellar-Wets, Variational Analysis]) is Lipschitz with an explicit constant

# U-SDDP on a linear-polyhedral example



### SDDP (lower) selection function

$$\underline{S}_t^{\text{SDDP}}: \mathcal{P}\left(\{\text{affine } L_{t+1}\text{-Lipschitz}\}\right) \times \mathbb{X} \rightarrow \{\text{affine } L_{t}\text{-Lipschitz}\}$$

• Given  $x_t \in \mathbb{X}$  and  $\underline{F}_t \subset (\{\text{affine } L_{t+1}\text{-Lipschitz}\})$  finite, for each w, solve a LP:

$$\gamma = \mathcal{B}^w_t \left( \mathcal{V}_{\underline{F}_{t+1}} \right) (x_t) \quad \text{with} \quad \mathcal{V}_{\underline{F}_{t+1}} := \sup_{\underline{\phi}_{t+1} \in \underline{F}_{t+1}} \underline{\phi}_{t+1}$$

### SDDP (lower) selection function

 $\underline{S}_t^{\text{SDDP}}: \mathcal{P}\left(\{\text{affine } L_{t+1}\text{-Lipschitz}\}\right) \times \mathbb{X} \to \{\text{affine } L_t\text{-Lipschitz}\}$ 

• Given  $x_t \in \mathbb{X}$  and  $\underline{F}_{t+1} \subset (\{\text{affine } L_{t+1}\text{-Lipschitz}\})$  finite, for each w, solve a LP:

$$\gamma = \min_{x,\lambda,\mu} \lambda + \mu \quad \text{s.t.} \quad \forall i \in \underbrace{I_t}_{finite}, \langle c_t^{i,w}, (x; u) \rangle + \underbrace{d_t^{i,w}}_{scalar} \leq \lambda$$

$$\underbrace{\mathcal{V}_{\underline{F}_{t+1}}}_{finite} \quad (A_t^w x + B_t^w u) \leq \mu$$

$$\underbrace{T_{\underline{F}_{t+1}}}_{finite} \quad (\alpha)$$

- For each w, set  $\underline{\phi}_{w} = \langle \alpha, \cdot x_{t} \rangle + \gamma$  a tight at  $x_{t}$  and valid function  $\underline{\phi}_{w}$  for  $\mathcal{B}_{t}^{w} \left( \mathcal{V}_{\underline{F}_{t+1}} \right)$
- The average function  $\underline{\phi} = \sum_{w} p_{w} \underline{\phi}_{w}$  is tight at  $x_{t}$  and valid for  $\mathfrak{B}_{t} \left( \mathcal{V}_{\underline{F}_{t+1}} \right)$

# U (upper) selection function

We build a Selection mapping for *C*-quadratics (or *U*-functions), *i.e.* of the form  $\frac{C}{2}||x - \text{center}||_2^2 + \text{centerValue}$ 

$$\overline{S}_t^{\mathsf{U}}: \mathcal{P}\left(\left\{C_{t+1}\text{-}quadratics}\right\}\right) \times \mathbb{X} \to \left\{C_{t}\text{-}quadratics}\right\}$$

- Given  $x_t \in \mathbb{X}$ ,  $\overline{F}_t \subset (\{C_{t+1}\text{-quadratics}\})$ , for each w, compute  $\mathcal{B}_t^w \left(\mathcal{V}_{\overline{F}_{t+1}}\right)(x_t) = \min_{\overline{\phi}_j \in \overline{F}_{t+1}} \underbrace{\mathcal{B}_t^w \left(\overline{\phi}_j\right)(x_t)}_{OP^2}$
- For each w, set  $\overline{\phi}_{w}$  the  $C_{t}$ -quadratic such that  $\overline{\phi}_{w}\left(x_{t}\right)=\min_{j}\gamma_{j}$  (attained at  $j^{*}$ ) and  $\overline{\phi}_{w}'\left(x_{t}\right)=\alpha_{j^{*}}$
- Here the min-additivity of  $\mathcal{B}_{\mathsf{t}}^{\mathsf{w}}$  ensures the tightness of  $\overline{\phi}_{\mathsf{w}}$
- The average  $\overline{\phi} = \sum_{w} p_{w} \overline{\phi}_{w}$ , is a tight at  $x_{t}$  and valid function for  $\mathfrak{B}_{t} \left( \mathcal{V}_{\overline{F}_{t+1}} \right)$

 $<sup>^{2}\</sup>gamma_{j}=\min_{x,\lambda}\lambda+\overline{\phi}_{j}\left(A_{t}^{w}x+B_{t}^{w}u
ight) \text{ s.t. } \forall i\in I_{t},\langle c_{t}^{i,w},(x;u)
angle+d_{t}^{i,w}\leq\lambda \text{ and }x=x_{t}\left[lpha_{j}
ight]$ 

# V (upper) selection function

We call V-function a function of the form

 $L||x - \operatorname{center}||_1 + \operatorname{centerValue}$  with given L.

 $\overline{S}_t^{V}: \mathcal{P}\left(\left\{V\text{-functions with } L_{t+1}\right\}\right) \times \mathbb{X} \to \left\{V\text{-functions with } L_t\right\}$ 

• Given  $x_t \in \mathbb{X}$ ,  $\overline{F}_{t+1} \subset (\{V\text{-functions}\})$ , denote by  $\mathcal{V}_{\overline{F}_{t+1}}$  the finite infimum of the V-functions in  $\overline{F}_t$ . We solve a single LP

$$\gamma = \mathfrak{B}_t\left(\mathcal{V}_{\overline{F}_{t+1}}\right)\left(\mathsf{X}_t\right)$$

- Set  $\overline{\phi}$  the *V*-function such that center =  $x_t$  and centerValue =  $\gamma$
- The function  $\overline{\phi}$  is tight at  $x_t$  and valid for  $\mathfrak{B}_t\left(\mathcal{V}_{\overline{F}_{t+1}}\right)$  without the need of averaging

# V-SDDP on a linear-polyhedral example



#### Conclusion

- TDP generates simultaneously monotonic approximations  $\left(\underline{V}_t^k\right)_k$  and  $\left(\overline{V}_t^k\right)_k$  of  $V_t$
- Each approximation is either a min-plus or max-plus linear combinaisons of basic functions
- · Each basic function should be tight and valid
- The approximations are refined iteratively along the Problem-child trajectory without discretizing the state space
- The gap between upper and lower approximation vanishes along the Problem-child trajectory
- Generalizes known approach of [Philpott and al. (2013)] and [Baucke and al. (2018)] for a variant of SDDP

Webpage: https://benoittran.github.io/ E-mail: benoit.tran@enpc.fr