Family	Speed $(n \text{ sec})$	Power Dissipation (<i>m</i> watts)	Faxout	Polar Supply (V)	High Logic Level (V)	Low Logic Level (V)
TTL	10	10	10	+5	+3	0.2
ECL	2	40	high	-5.2	-0.9	+1.75
CMOS	25	low	high	3-15	$ m V_{cc}$	0

Figure 2-1 Comparison of the basic logic families.

The metal-oxide semiconductor (MOS) is a unipolar transistor that depends on the flow of only one type of carrier, which may be electrons (*n*-channel) or holes (*p*-channel). This is in contrast to the bipolar transistor used in TTL and ECL gates, where both carriers exist during normal operation. A *p*-channel MOS is referred to as PMOS and an *n*-channel as NMOS. NMOS is the one that is commonly used in circuits with only one type of MOS transistor. The complementary MOS (CMOS) technology uses PMOS and NMOS transistors connected in a complementary fashion in all circuits. The most important advantages of CMOS over bipolar are the high packing density of circuits, a simpler processing technique during fabrication, and a more economical operation because of low power consumption. Figure 2-1 is a comparison of the basic logic families.

Because of their many advantages, integrated circuits are used exclusively to provide various digital components needed in the design of computer systems. To understand the organization and design of digital computers it is very important to be familiar with the various components encountered in integrated circuits. For this reason, the most basic components are introduced in this chapter with an explanation of their logical properties. These components provide a catalog of elementary digital functional units commonly used as basic building blocks in the design of digital computers.

2-2 Decoders

Discrete quantities of information are represented in digital computers with binary codes. A binary code of n bits is capable of representing up to 2^n distinct elements of the coded information. A decoder is a combinational circuit that converts binary information from the n coded inputs to a maximum of 2^n unique outputs. If the n-bit coded information has unused bit combinations, the decoder may have less than 2^n outputs.

The decoders presented in this section are called n-to-m-line decoders, where $m \le 2^n$. Their purpose is to generate the 2^n (or fewer) binary combinations of the n input variables. A decoder has n inputs and m outputs and is also referred to as an $n \times m$ decoder.

Figure 2-2 3-to-8-line decoder.

The logic diagram of a 3-to-8-line decoder is shown in Fig. 2-2. The three data inputs, A_0 , A_1 , and A_2 are decoded into eight outputs, each output representing one of the combinations of the three binary input variables. The three inverters provide the complement of the inputs, and each of the eight AND gates generates one of the binary combination. A particular application of this decoder is a binary-to-octal conversion. The input variables represent a binary number and the outputs represent the eight digits of the octal number system. However, a 3-to-8-line decoder can be used for decoding any 3-bit code to provide eight outputs, one for each combination of the binary code.

Commercial decoders include one or more enable inputs to control the operation of the circuit. The decoder of Fig. 2-2 has one enable input, E. The decoder is enabled when E is equal to 1 and disabled when E is equal to 0.

The operation of the decoder can be clarified using the truth table listed in Table 2-1. When the enable input E is equal to 0, all the outputs are equal to 0 regardless of the values of the other three data inputs. The three \times 's in the table designate don't-care conditions. When the enable input is equal to 1, the decoder operates in a normal fashion. For each possible input combination, there are seven outputs that are equal to 0 and only one that is equal to 1. The output variable whose value is equal to 1 represents the octal number equivalent of the binary number that is available in the input data lines.

Enable input

Enable	Inputs			Outputs							
\overline{E}	$\overline{A_2}$	A_1	A_0	$\overline{D_7}$	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	×	×	×	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	0	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

TABLE 2-1 Truth Table for 3-to-8-Line Decoder

NAND Gate Decoder

Some decoders are constructed with NAND instead of AND gates. Since a NAND gate produces the AND operation with an inverted output, it becomes more economical to generate the decoder outputs in their complement form. A 2-to-4-line decoder with an enable input constructed with NAND gates is shown in-Fig. 2-3. The circuit operates with complemented outputs and a complemented enable input E. The decoder is enabled when E is equal to 0. As indicated by the truth table, only one output is equal to 0 at any given time; the other three outputs are equal to 1. The output whose value is equal to 0 represents the equivalent binary number in inputs A_1 and A_0 . The circuit is disabled when E is equal to 1, regardless of the values of the other two inputs. When the circuit is disabled, none of the outputs are selected and all outputs are equal to 1. In general, a decoder may operate with complemented or uncomplemented outputs. The enable input may be activated with a 0 or with a 1 signal level. Some decoders have two or

Figure 2-3 2-to-4-line decoder with NAND gates.

E	A_1	A_0	D_0	D_1	D_2	D_3
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	X	0 1 0 1 x	1	1	1	1

(b) Truth table

more enable inputs that must satisfy a given logic condition in order to enable the circuit.

Decoder Expansion

There are occasions when a certain-size decoder is needed but only smaller sizes are available. When this occurs it is possible to combine two or more decoders with enable inputs to form a larger decoder. Thus if a 6-to-64-line decoder is needed, it is possible to construct it with four 4-to-16-line decoders.

Figure 2-4 shows how decoders with enable inputs can be connected to form a larger decoder. Two 2-to-4-line decoders are combined to achieve a 3-to-8-line decoder. The two least significant bits of the input are connected to both decoders. The most significant bit is connected to the enable input of one decoder and through an inverter to the enable input of the other decoder. It is assumed that each decoder is enabled when its E input is equal to 1. When E is equal to 0, the decoder is disabled and all its outputs are in the 0 level. When $A_2 = 0$, the upper decoder is enabled and the lower is disabled. The lower decoder outputs become inactive with all outputs at 0. The outputs of the upper decoder generate outputs D_0 through D_3 , depending on the values of A_1 and A_0 (while $A_2 = 0$). When $A_2 = 1$, the lower decoder is enabled and the upper is disabled. The lower decoder output generates the binary equivalent D_4 through D_7 since these binary numbers have a 1 in the A_2 position.

The example demonstrates the usefulness of the enable input in decoders or any other combinational logic component. Enable inputs are a convenient feature for interconnecting two or more circuits for the purpose of expanding the digital component into a similar function but with more inputs and outputs.

Figure 2-4 A 3×8 decoder constructed with two 2×4 decoders.