Models for Conditional Heteroscedastisity

Models with conditional heteroscedastisity-GARCH(P,Q)

$$\sigma_t^2 = K + \sum_{i=1}^P G_i \, \sigma_{t-1}^2 + \sum_{j=1}^Q A_j e_{t-j}^2$$

$$\sum_{i=1}^P G_i + \sum_{j=1}^Q A_j < 1$$

$$e_t \sim Gaussian$$

$$z_t = \frac{e_t}{\sigma_t} \text{ i. i. } d$$

$$K > 0, \quad G_i \ge 0, \quad A_j \ge 0$$

Basic characteristics of GARCH(P,Q)

- Fat tails
- Volatility clustering

Basic GARCH model

$$Y_t = C + e_t$$

$$\sigma_t^2 = K + G_1 \sigma_{t-1}^2 + A_1 e_{t-1}^2$$

$$e_t \sim Gaussian$$

$$z_t = \frac{e_t}{\sigma_t} i.i.d$$

ARIMA-GARCH Case 1

Case 1 – DEM/GBP

 Deutschmark/British Pound , 1984-1991


```
[H,pValue,Stat,CriticalValue] = ...
   lbqtest(markpound-
mean(markpound),[10 15 20]',0.05);
[H pValue Stat CriticalValue]
ans =
         0.7278 6.9747 18.3070
     0 0.2109 19.0628 24.9958
         0.1131 27.8445 31.4104
```

1.0000

```
[H,pValue,Stat,CriticalValue] = ...
    lbqtest((markpound-
mean(markpound)).^2,[10 15 20]',0.05);
[H pValue Stat CriticalValue]
ans =
               0 392.9790
  1.0000
                            18.3070
               0 452.8923 24.9958
  1.0000
```

0 507.5858 31.4104

Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian Number of Model Parameters Estimated: 4

		Standard	Т
Paramete	r Value	Error	Statistic
C	-6.373e-005	8.3788e-00	-0.7606
K	9.9717e-007	1.2328e-00	07 8.0890
GARCH(1) 0.81458	0.01572	7 51.7953
ARCH(1	0.14721	0.013285	11.0813


```
plot(innovations./sigmas)
ylabel('Innovation')
title('Standardized Innovations')
```



```
[H, pValue,Stat,CriticalValue] = ...
  lbqtest((innovations./sigmas).^2,[10 15 20]',0.05);
[H pValue Stat CriticalValue]
ans =
```

```
0 0.5014 9.3271 18.3070
0 0.3674 16.2221 24.9958
0 0.6019 17.7793 31.4104
```

ARIMA-GARCH Case 2

Data - S&P 500

Data - S&P 500

Data - S&P 500

Logarithmic Returns

Logarithmic Returns

Logarithmic Returns

Variance of Logarithmic Returns

ARIMA(1,0,0) – Model 1 (Gaussian Distribution)

Value StandardError TStatistic PValue

Constant 0.0004201 0.0003359 1.2507 0.21105

AR{1} -0.1138 0.046183 -2.464 0.013739

GARCH(1,1) Conditional Variance Model (Gaussian Distribution):

Val	lue Standa	irdError TStat	istic PValı	ue
 Constant	1.6928e-06	9.8177e-07	1.7242	0.084669
GARCH{1}	0.894	0.018359	48.695	0
ARCH{1}	0.099863	0.01634	6.1115	9.8672e-10

ARIMA(1,0,0) – Model 1 (Gaussian Distribution)

ARIMA(1,0,0) – Model 1 (Gaussian Distribution)

GJR Model

$$Y_t = C + e_t$$

 $\sigma_t^2 = K + G_1 \sigma_{t-1}^2 + A_1 e_{t-1}^2 + \Psi[e_{t-1} < 0] e_{t-1}^2$
 $e_t \sim t(v)$
 $z_t = \frac{e_t}{\sigma_t} i.i.d$

ARIMA(1,0,0) – Model 2 (t Distribution)

	Value	Stand	lardError	TStatis	tic	PValu	ıe
Constant	0.00	 0467	0.000270	2 1.	7284	0.083	925
AR{1}	-0.083	8614	0.040809	-2.0	0489	0.0404	471
DoF	5.125	51	1.0437	4.9	9107	9.075	3e-07
GJR(1,1)	Condition	onal Var	riance Mo	del (t Di	stributio	n):	
	Valu	ue St	tandardEr	ror TSt	atistic	P	Value
Constant	1.	0749e-(9.146	62e-07	1.17	753	0.23989
GARCH{1	} 0	.90483	0.022	2744	39.78	32	0
ARCH{1}		2e-12	0.036	817	5.432	23e-11	1
Leverage	{1}).17998	0.048	3115	3.74	06	0.00018358
DoF	5	.1251	1.043	37	4.910	07	9.0753e-07

ARIMA(1,0,0) – Model 2 (t Distribution)

ARIMA(1,0,0) – Model 2 (t Distribution)

ARIMA(4,0,0) - Model 3 (t Distribution)

	Value	StandardErro	or TStatistic	PValue
Constant	0.00064	9 0.000270	89 2.3958	0.016585
AR{1}	-0.091428	0.041264	-2.2157	0.026715
AR{2}	-0.085777	0.037517	-2.2863	0.022236
AR{3}	-0.012399	0.037015	-0.33496	0.73765
AR{4}	-0.0598	0.035297	-1.6942	0.090227
DoF	5.0979	1.0171	5.0125	5.374e-07

ARIMA(4,0,0) - Model 3 (t Distribution)

GJR(1,1) Conditional Variance Model (t Distribution):

	Value S	StandardError	TStatistic PV	'alue
Constant	1.1163e-06	8.9992e-07	1.2405	0.2148
GARCH{1}	0.90482	0.023198	39.005	0
ARCH{1}	2e-12	0.038542	5.1892e-11	1
Leverage{1}	0.17202	0.045561	3.7755	0.00015
DoF	5.0979	1.0171	5.0125	5.374e-07

ARIMA(4,0,0) – Model 3 (t Distribution)

ARIMA(4,0,0) – Model 3 (t Distribution)

ARIMA(2,0,16) – Model 4 (t Distribution)

AIC-BIC

	m1	m2	m3 m4
AIC:	-4.6764	-4.7537	-4.7555 -4.7564 *10^3
BIC:	-4.6518	-4.7193	-4.7064 -4.6386 *10^3