Collaborative Evaluation of Arbitrary Functions in a Constant Number of Rounds with Polynomial Amount of Communication Secure Multiparty Computation

Philipp Müller

Technische Universität München

July 17, 2012

Part I

A short introduction to collaborative secure function evaluation

A motivational problem

- \blacksquare Several firms (numbered 1 to n) want to buy another firm
- Best bid wins!
- Participants only want to know who has best bid, not how high it was
- Mathematical formulation:

```
\underset{i \in \{1,2,\ldots,n\}}{\operatorname{arg max}} \left\{ x_i \mid x_i \text{ is bid of firm } i \in \{1,2,\ldots,n\} \right\}
```

Problem

- Function accepting some arguments
- Each argument supplied by another party¹
- Goal: Function evaluation, but keep arguments secret
- Possibly dishonest participants

Example

$$f(x,y,z) = (x \land y) \lor z \tag{1}$$

Problem

- "If we write a 0, it represents 0!"
- Each player can see/deduce everything
- Idea: "Ensure that each player sees some (random) stuff, but can't decide whether it's a 0 or a 1"
 - \Rightarrow Distinguish between signals and plain-text²
 - ⇒ Basic idea behind "garbled circuits"

²The plain-text is also called *semantics*, but I (try to) use the term plain-text since the term semantics is later used for something else.

Garbled circuits – overview

- Up to now: Signal 0 means plain-text $\mathbf{0}$, signal 1 means $\mathbf{1}$
- Garbled circuit: Assign random signals to each wire!
- Idea: Hide plain-text by assigning random signals

Garbled circuits – overview

- Up to now: Signal 0 means plain-text **0**, signal 1 means **1**
- Garbled circuit: Assign random signals to each wire!
- Idea: Hide plain-text by assigning random signals

Garbled circuit – signals and plain-text

- Odd and even signals for each wire ("parity")
- One of those represents plain-text0, the other plain-text
- Signals and mapping chosen randomly by all players
- Special case output wires: Even signal means 0, odd means 1

Garbled circuit – signals and plain-text

- Odd and even signals for each wire ("parity")
- One of those represents plain-text0, the other plain-text
- Signals and mapping chosen randomly by all players
- Special case output wires: Even signal means **0**, odd means **1**

- Compute correct output given only garbled circuit with inputs
- Everything else shall stay unknown
- This is everything a player should see

- Compute correct output given only garbled circuit with inputs
- Everything else shall stay unknown
- This is everything a player should see

- Compute correct output given only garbled circuit with inputs
- Everything else shall stay unknown
- This is everything a player should see

- Compute correct output given only garbled circuit with inputs
- Everything else shall stay unknown
- This is everything a player should see

- Compute correct output given only garbled circuit with inputs
- Everything else shall stay unknown
- This is everything a player should see

- Compute correct output given only garbled circuit with inputs
- Everything else shall stay unknown
- This is everything a player should see

- Compute correct output given only garbled circuit with inputs
- Everything else shall stay unknown
- This is everything a player should see

- Compute correct output given only garbled circuit with inputs
- Everything else shall stay unknown, even the semantics
- This is everything a player should see

- Compute *correct* output given only garbled circuit with inputs
- Everything else shall stay unknown, even the semantics
- This is everything a player should see

- Compute *correct* output given only garbled circuit with inputs
- Everything else shall stay unknown, even the semantics
- This is everything a player should see

Our ultimate goal – outlook

- How to compute the signals?
- How to map from signals onto meanings?
- How to "implement" gates?

Model of computation – protocols

- Network of n players
- Private channels and broadcast channel
- Access to a fair coin
- Local computation "instant", communication expensive

Protocol:

- Certain "rules" for each player
- Organized in rounds
- May work in presence of malicious players (adversaries)
- Complexity measure: Rounds and communication
 - ⇒ Rounds are the limiting resource

Adversaries

- One single adversary...
- ...that can infect several players
- Adversary can infect players at the beginning of each round as he wishes
- Adversary controls infected players fully
- Can infect less than half of the players

Our notion of security

Protocol shall:

- yield *correct* result in the presence of up to $\lfloor (n-1)/2 \rfloor$ dishonest participants
- compute the result securely (inputs shall not become public)
- not enable the adversary to deduce inputs.

Pseudorandom generators

- Deterministic, poly-time algorithm
- Takes a (truly random) string and stretches it to a longer string
- Output indistinguishable from truly random source
- Pseudorandom generators are one-way!

Pseudorandom generators G_0 and G_1

- Input: Binary string of length *k*
- Output: Binary string of length $\overline{n}k + 1$, where $\overline{n} = k^{10}$
- Number of players bounded by \overline{n}
- lacksquare \Rightarrow $G_{\{0,1\}}:\{0,1\}^k o \{0,1\}^{nk+1}$, with:
 - n: Number of players
 - k: Security parameter
- $lue{G}_0$ and G_1 are independent of each other

Pseudorandom generators G_0 and G_1

- Input: Binary string of length *k*
- Output: Binary string of length $\overline{n}k + 1$, where $\overline{n} = k^{10}$
- Number of players bounded by \overline{n}
- $\blacksquare \Rightarrow G_{\{0,1\}}: \{0,1\}^k \to \{0,1\}^{nk+1}$, with:
 - n: Number of players
 - k: Security parameter
- $lue{G}_0$ and G_1 are independent of each other

Our basic building blocks

There are protocols to

- lacksquare compute the XOR (denoted by the symbol \oplus) of an arbitrary number of bits
- evalutate any circuit of constant depth with bounded fan-in in a constant number of rounds with polynomial³ communication. Proven secure for honest majority.

 $^{^{3}}$ W.r.t. circuit size and k

Our basic building blocks

There are protocols to

- lacktriangle compute the XOR (denoted by the symbol \oplus) of an arbitrary number of bits
- evalutate any circuit of constant depth with bounded fan-in in a constant number of rounds with polynomial³ communication. Proven secure for honest majority.

 $^{^{3}}$ W.r.t. circuit size and k

Part II

Phase 2

The protocol

Three phases in the protocol

- O Preprocessing: Bring circuit in particular form
- 1 Players collaboratively compute garbled circuit and garbled input signals
- 2 Players locally evaluate garbled circuit on garbled input signals

Phase 0: suitable format of the circuit

- No cycles, only gates of types AND, XOR, NEG, OR
- **1** Convert all gates to 2/1-gates \Rightarrow "binary tree construction"

Each wire is used as input wire at most once ⇒ introduce "splitters"

Remark

This increases the circuit's size *only* by a polynomial factor.

Defining signals and semantics

- All players shall contribute to signals and semantics!
- Each player i generates the following:
 - For each wire ω , two random strings of length k: $s_{0,i}^{\omega}$ and $s_{1,i}^{\omega}$
 - For each wire ω except output wires, a random bit λ_i^{ω}

Remember:

Each wire shall obtain an even and an odd signal, that shall be randomly mapped onto $\{0,1\}$ (mapping except for output wires).

Signals and semantics – definition

The k-bit string $s_{p,i}^{\omega}$ will be the contribution of player i to the signal of parity p for wire ω

The single bit λ_i^{ω} is the contribution of player i to the semantics of wire ω

More precisely:

Parity p signal for wire ω : $s_p^{\omega} := s_{p,1}^{\omega} s_{p,2}^{\omega} \dots s_{p,n-1}^{\omega} s_{p,n}^{\omega} p$ \Rightarrow Lenght of signals: nk + 1

Semantics of wire ω : $\lambda^{\omega} := \lambda_1^{\omega} \oplus \lambda_2^{\omega} \oplus \ldots \oplus \lambda_{n-1}^{\omega} \oplus \lambda_n^{\omega}$

Remark

These are just definitions.

Random signals and semantics – example

Three players and their random strings of length k = 3:

Player	P1	P2	P3
Contribution to s_0^{ω}	100	011	111
Contribution to s_1^{ω}	010	101	001
Contribution to λ^{ω}	0	0	1

Thus:

- $s_0^{\omega} = 100\,011\,111\,0$
- $s_1^{\omega} = 010\ 101\ 001\ 1$
- $\lambda^{\omega} = 0 \oplus 0 \oplus 1 = 1$

 $\lambda^{\omega}=1$ means that $s_0^{\omega}\leftrightarrow \mathbf{1}$ and $s_1^{\omega}\leftrightarrow \mathbf{0}$

Things to keep in mind

- Each wire "gets" two signals s_0^{ω} and s_1^{ω}
 - Even and odd parity
 - One of them represents plaintext $\mathbf{0}$, the other one $\mathbf{1}$
- Signals and semantics are randomly constructed by all players.
- \bullet s_p^{ω} is the parity-p-signal for wire ω
- λ^{ω} is the semantics for wire ω
- Plain-text bit b on wire $\omega \Rightarrow$ choose signal with parity $b \oplus \lambda^{\omega}$, i.e. $s^{\omega}_{(b \oplus \lambda^{\omega})}$

Things to keep in mind

- Each wire "gets" two signals s_0^{ω} and s_1^{ω}
 - Even and odd parity
 - One of them represents plaintext $\mathbf{0}$, the other one $\mathbf{1}$
- Signals and semantics are randomly constructed by all players.
- \bullet s_p^{ω} is the parity-p-signal for wire ω
- \bullet λ^{ω} is the semantics for wire ω
- Plain-text bit b on wire $\omega \Rightarrow$ choose signal with parity $b \oplus \lambda^{\omega}$, i.e. $s^{\omega}_{(b \oplus \lambda^{\omega})}$

- lacksquare $\lambda^{\omega}=0\Leftrightarrow \mathsf{parity}=\mathsf{plain}\mathsf{-text}$
- lacksquare $\lambda^\omega=1\Leftrightarrow \mathsf{parity}=1-\mathsf{plain-text}$

Example

$$egin{aligned} \hat{s}^{\omega}_0 &= 100\,011\,111\,0 \ s^{\omega}_1 &= 010\,101\,001\,1 \ \lambda^{\omega} &= 1 \end{aligned}$$

A word on semantics

- $\lambda^{\omega} = 0 \Leftrightarrow \text{parity} = \text{plain-text}$
- $\lambda^{\omega} = 1 \Leftrightarrow \text{parity} = 1 \text{plain-text}$

Example

$$egin{aligned} \widehat{s}_0^\omega &= 100\,011\,111\,0 \leftrightarrow \mathbf{1} \ s_1^\omega &= 010\,101\,001\,1 \leftrightarrow \mathbf{0} \ \lambda^\omega &= 1 \end{aligned}$$

- $\lambda^{\omega} = 0 \Leftrightarrow \text{parity} = \text{plain-text}$
- lacksquare $\lambda^\omega=1\Leftrightarrow \mathsf{parity}=1-\mathsf{plain-text}$

Example

$$\begin{cases} s_0^\omega = 100\,011\,111\,0 \leftrightarrow \textbf{1} & \text{Plain-text } \textbf{1} \text{ is represented by} \\ s_1^\omega = 010\,101\,001\,1 \leftrightarrow \textbf{0} & s_{(\textbf{1}\oplus\lambda^\omega)}^\omega = s_{\textbf{1}\oplus1}^\omega = s_0^\omega \end{cases}$$

Computing the garbled inputs

- Input bit b: (Plain-text) bit along input wire ω
- \blacksquare For an input wire ω we set the signal

$$\sigma^{\omega} := s^{\omega}_{(b \oplus \lambda^{\omega})} \tag{2}$$

- **b**: plain-text bit for wire ω
- λ^{ω} : semantics for wire ω
- $\Rightarrow b \oplus \lambda^{\omega}$: parity for the signal we need
- lacksquare \Rightarrow $s^{\omega}_{(b \oplus \lambda^{\omega})}$: proper garbled input signal

- Input signal $\sigma^{\omega}:=s_{p}^{\omega}=s_{p,1}^{\omega}\ s_{p,2}^{\omega}\ \dots\ s_{p,n-1}^{\omega}\ s_{p,n}^{\omega}\ p$ with $p = b \oplus \lambda^{\omega} = b \oplus (\lambda_1^{\omega} \oplus \lambda_2^{\omega} \oplus \ldots \oplus \lambda_{n-1}^{\omega} \oplus \lambda_n^{\omega})$
- $b \oplus \lambda^{\omega}$: constant number of rounds, polynomial communication
- $\Rightarrow \sigma^{\omega}$: constant number of rounds, polynomial communication (it can be computed using a constant-depth circuit and some XORs)
- b is not revealed
- Signal for other parity stays secret

How can signals propagate along gates?

Phase 2

- We want to be able to evaluate circuit gate by gate
- ⇒ Each gate has to choose the correct outgoing signal depending on its inputs
- ⇒ provide some "help" to compute outgoing signals ⇒ "gate labels"
- Incorporate input and output signals for that gate (input/output properly *defined*)
- "Ordinary" gates and splitter gates must be treated separately

Garbled signal propagation – ordinary gates

- Gate g computing a binary function \otimes on bits
- Incoming wires α and β , outgoing wire γ
- What should be the output?
 - Parity of signal along α is a, parity of signal along β is b
 - ightharpoonup ightharpoonup Plain-text bits: $\lambda^{\alpha} \oplus a$, $\lambda^{\beta} \oplus b$
 - ightharpoonup ightharpoonup Plain-text result is $(\lambda^{\alpha} \oplus a) \otimes (\lambda^{\beta} \oplus b)$
- $\blacksquare \Rightarrow$ We need the garbled signal for wire γ that represents plaintext bit $(\lambda^{\alpha} \oplus a) \otimes (\lambda^{\beta} \oplus b)$
 - \Rightarrow This is exactly $s_{[(\lambda^{\alpha}\oplus a)\otimes(\lambda^{\beta}\oplus b)]\oplus\lambda^{\gamma}}^{\gamma}$

Garbled signal propagation – ordinary gates

- Signals along input wires: $s_a^{\alpha} = s_{a,1}^{\alpha} \dots s_{a,n}^{\alpha} a$ and $s_b^\beta = s_{b,1}^\beta \dots s_{b,n}^\beta b$
- Signals along output wires: s_c^{γ}
- Split input signals into several subparts
- Apply a random generator onto the subparts

 $A_{ab}^g = G_b(s_{a1}^\alpha) \oplus \cdots \oplus G_b(s_{an}^\alpha) \oplus$

$$G_{a}(s_{b1}^{\beta}) \oplus \cdots \oplus G_{a}(s_{bn}^{\beta}) \oplus$$

$$s_{[(\lambda^{\alpha} \oplus a) \otimes (\lambda^{\beta} \oplus b)] \oplus \lambda^{\gamma}}^{\gamma}$$

$$=: G_{b}^{*}(s_{a}^{\alpha}) \oplus G_{a}^{*}(s_{b}^{\beta}) \oplus s_{[(\lambda^{\alpha} \oplus a) \otimes (\lambda^{\beta} \oplus b)] \oplus \lambda^{\gamma}}^{\gamma}$$
(3)

• Compute gate labels for all parity combinations of a and b

Gate labels for ordinary gates – example

Parameters: k = 1, n = 3, $G_i(x) = xxxi$ (showcase PG)

Gate labels for gate g:

$$egin{array}{lll} A_{ab}^g &=& G_b(s_{a1}^lpha) \oplus \cdots \oplus G_b(s_{an}^lpha) &\oplus \ && G_a(s_{b1}^eta) \oplus \cdots \oplus G_a(s_{bn}^eta) &\oplus \ && s_{[(\lambda^lpha \oplus a) \otimes (\lambda^eta \oplus b)] \oplus \lambda^\gamma}^\gamma \end{array}$$

- Constant number of rounds, polynomial communication (constant-depth/bounded fan-in)
- Signals s_{ai}^{α} and s_{bi}^{β} cannot be deduced from the gate labels
- Neither can the semantics λ^{α} , λ^{β} and λ^{β}

Gate labels – splitter gates

- Completely analogue to ordinary gates
- Incoming wire α , outgoing wires γ_0 , γ_1

$$A_{\mathsf{a}\mathsf{b}}^{\mathsf{g}} = G_{\mathsf{b}}(s_{\mathsf{a}1}^{\alpha}) \oplus \cdots \oplus G_{\mathsf{b}}(s_{\mathsf{a}\mathsf{n}}^{\alpha}) \oplus s_{(\lambda^{\alpha} \oplus \mathsf{a}) \oplus \lambda^{\gamma_{\mathsf{b}}}}^{\gamma_{\mathsf{b}}}$$

- Again, compute gate labels for all combinations of a and b
- Again computable in a constant number of rounds, polynomial communication

Phase 2 000

- Players computed:
 - Garbled input signals
 - Gate labels
- Players individually evaluate the garbled circuit gate by gate
- Compute gate output using gate labels

Evaluating an ordinary gate

Phase 2

- Given: Garbled gate g with signals σ^{α} and σ^{β} along input wires α and β
- Input signals carry parity a and b, respectively
- Reconsider equation (3):

$$A_{ab}^{g} = G_{b}^{*}(\sigma_{a}^{lpha}) \oplus G_{a}^{*}(\sigma_{b}^{eta}) \oplus \underbrace{\sigma_{[(\lambda^{lpha}\oplus a)\otimes(\lambda^{eta}\oplus b)]\oplus \lambda^{\gamma}}^{\gamma}}_{ ext{Proper output}}$$

■ We can solve to obtain the output:

$$\sigma^{\gamma} = \mathsf{G}_{b}^{*}(\sigma^{lpha}) \oplus \mathsf{G}_{a}^{*}(\sigma^{eta}) \oplus \mathsf{A}_{ab}^{\mathsf{g}}$$

Precise output computation:

$$\sigma^{\gamma} = G_b(\sigma_1^{\alpha}) \oplus \cdots \oplus G_b(\sigma_n^{\alpha}) \oplus G_a(\sigma_1^{\beta}) \oplus \cdots \oplus G_a(\sigma_n^{\beta}) \oplus A_{ab}^{g}$$

Evaluating an ordinary gate – example

Back to our previous example $(k = 1, n = 3, G_i(x) = xxxi)$:

- Parities along α resp. β are a=1resp. $b = 0 \Rightarrow$ use gate label $A_{10}^{g} = 1000$ (computed before)
- Compute output:

$$\begin{array}{cccc}
& \sigma^{\gamma} & = & G_0^*(\sigma_1^{\alpha}) \oplus G_1^*(\sigma_0^{\beta}) \oplus A_{ab}^{g} \\
& \downarrow^{1111 \leftrightarrow 1} & = & G_0^*(1101) \oplus G_1^*(1010) \oplus 1000 \\
& = & 0000 \oplus 0001 \oplus 1000 = 1001
\end{array}$$

Evaluating an ordinary gate - example

Back to our previous example (k = 1, n = 3, $G_i(x) = xxxi$):

Parities along α resp. β are a=1 resp. $b=0 \Rightarrow$ use gate label $A_{10}^g=1000$ (computed before)

Phase 2

Compute output:

$$\begin{array}{cccc}
& \sigma^{\gamma} & = & G_0^*(\sigma_1^{\alpha}) \oplus G_1^*(\sigma_0^{\beta}) \oplus A_{ab}^{g} \\
& \downarrow^{1111 \leftrightarrow 1} & = & G_0^*(1101) \oplus G_1^*(1010) \oplus 1000 \\
& = & 0000 \oplus 0001 \oplus 1000 = 1001
\end{array}$$

Phase 2 000

Evaluating a splitter gate

- Completely analogue technique
- \Rightarrow Outputs along wires γ_0 , γ_1 for a splitter gate:

$$\sigma^{\gamma_i} = G_i(\sigma_1^{\alpha}) \oplus \cdots \oplus G_i(\sigma_n^{\alpha}) \oplus A_{ai}^{g}$$

Outcome

- Collaborative construction
 - Constant number of rounds
 - Polynomial communication amount
 - Relies on existing sub-protocols
- Local garbled circuit evaluation without collaboration
- Use of pseudorandom generators and splitters hides plain-text

Strength of the protocoll:

- Random signals and semantics
- Even if we know the parity-0-signal, we cannot deduce the proper parity-1-signal
- Independence of gate labels, signals and semantics

Part III

Deferred or Omitted Explanations

Why I left it out

- A whole bunch of technical definitions.
- No groundbreaking insights

Security Definition

"Only" needed for formal verification of the protocol

Negligibility

Definition (Negligibility)

A function $\epsilon(k)$ is called *negligible*, if for all c > 0 there exists some k_0 such that $\epsilon(k) < k^{-c}$ for all $k > k_0$.

- In essence: Negligible if vanishing faster than any polynomial-inverse
- k is usually the security parameter
- In our case, k will (in some way) bound the number of participants
- Example: If the probability is negligible, we simply say: "That won't happen!"

Strings, ensembles

Definition

Security Definition

Given some alphabet Σ , we denote the set of all (finite-length) strings by Σ^* .

Definition (Ensemble)

A family of probability measures $\{A_k\}$ on Σ^* is called an ensemble, if only strings of length at most q(k) have positive probability of being picked, where q(k) is some polynomial in k.

Indistinguishability

Definition (Indistinguishability)

Security Definition

For A taken from an ensemble and C a boolean circuit, p_A^C is the probability that C outputs 1 on an input randomly drawn according to distribution A.

Ensembles A and B computationally indistinguishable if for any poly-size circuit family $C = \{C_k\}$, the function $\epsilon(k) := |p_{A_k}^{C_k} - p_{B_k}^{C_k}|$ is negligible.

We call them statistically indistinguishable if

$$\epsilon(k) := \max_{S_k \subset \Sigma^*} |\Pr_{\mathcal{A}_k}[S_k] - \Pr_{\mathcal{B}_k}[S_k]|$$

is negligible, where $Pr_A[S]$ denotes the probability that we get a string within S if we draw randomly according to A.

Notation: tagged vectors

- Vectors $\overrightarrow{v} = (v_1, \dots, v_n)$ and $\overrightarrow{w} = (w_1, \dots, w_n)$
- $T \subset \{1, 2, ..., n\}$

Security Definition

- $\overrightarrow{V}_{\tau} := \{(i, v_i) \mid i \in T\}$
- $\overline{T} = \{1, 2, \ldots, n\} \setminus T$
- $\overrightarrow{V}_T \cup \overrightarrow{W}_{\overline{T}}$ is the vector whose component indexed with indices from T are taken from \overrightarrow{v} , all other components are taken from \overrightarrow{w}

Oracles

Definition (*t*-bounded oracle)

Security Definition 00000000

> A t-bounded (\overrightarrow{x}, f) -oracle is an oracle accepting two kinds of queries:

- Component query: A component query is an integer $i \in \{1, 2, \dots, n\}$. If is only answered if t or fewer component queries were made so far. If this is the case, the oracle distinguishes:
 - If there was no output query so far, it is answered by x_i .
 - If there was already a proper output query (see below), namely $\overrightarrow{X}'_{\tau}$, the guery is answered by $(x_i, f_i(\overrightarrow{X}_{\tau} \cup \overrightarrow{X}'_{\tau}))$.
- Output query: An output query is a "tagged vector" $\overrightarrow{x}'_{\tau}$ (see below). It is answered by $f_T(\overrightarrow{\chi}_{\overline{\tau}} \cup \overrightarrow{\chi}'_{\tau})$ if T consists precisely of the component queries made up to now and if there were not output queries so far. Further or improper output queries stay unanswered.

Security Definition 00000000

Some probability spaces

- Adverasry A's knowledge defines a probability space: $VIEW_{\Lambda}^{k}(\overrightarrow{X})$
- Output of uncorrupted players: **OUTPUT**_{Δ}^k($\overrightarrow{\chi}$)
- Output of a random algorithm S using an oracle: OUTPUT $S^{O_t(\overrightarrow{\times},f)}(1^k)$
- QUERIES $S^{O_t(\overrightarrow{X},f)}(1^k)$ is a pair containing:
 - The indices i for which there was never a component query.
 - The (single) output query that was made by S.

Security

Definition (Privacy, Correctness)

Security Definition 00000000

> Let $f:(\Sigma^I)^n\to (\Sigma^I)^n$. A protocol $\mathcal P$ *t*-securely computes f if for all t-adversaries A there exists a simulator S (probably using a t-bounded oracle) such that the following hold:

Privacy For all $\overrightarrow{x} \in (\Sigma^l)^n$, the k-parametrized ensemble **VIEW** $_{\Delta}^{k}(\overrightarrow{x})$ and the ensemble Output $S^{O_t(\overrightarrow{x},f)}(1^k)$ are computationally indistinguishable.

Correctness For all $\overrightarrow{x} \in (\Sigma^I)^n$, the *k*-parametrized ensembles **OUTPUT** $_{\Delta}^{k}(\overrightarrow{x})$ and $[(G, \overrightarrow{x}'_{\tau}) \leftarrow \text{QUERIES } S^{O_t(\overrightarrow{x},f)}(1^k) \mid f_G(\overrightarrow{x}_{\tau} \cup \overrightarrow{x}'_{\tau})]$ are statistically indistinguishable.

Proving the protocol secure

- We did not concretely specify a sub-protocol that computes gate labels and garbled input signals . . .
- ... but we said that appropriate sub-protocols exist
- \Rightarrow Quite a large amount of proof work is then done by the inventors of these sub-protocols
- Remaining proof constructs one simulator that works for all adversaries

Today no detailed proof:

- Original proof (without splitters, thus not completely correct) spans twenty pages and twelve sub-proofs
- Additional work for splitters (done about ten years later) involves another very non-trivial proof

The need for pseudorandom generators

Why do we use them?

- Short answer: Because we need them!
- Long answer: No pseudorandom generators ⇒ operate directly on (garbled) signals i.e. $A^{\mathcal{E}}_{ab}=s^{lpha}_a\oplus s^{eta}_b\oplus s^{\gamma}_{[(a\oplus\lambda^{lpha})\otimes(b\oplus\lambda^{eta})]\oplus\lambda^{\gamma}}$
- ⇒ We could deduce the plain-text values.

A simple attack

- Circuit $[(x \wedge y_1) \wedge y_2]$
- Assume I know that x is 0
- y₁, y₂ supplied another party
- $\blacksquare \Rightarrow$ Global output represents surely **0**
- If there are no pseudorandom generators, we can deduce the plain-text of y₂

A simple attack – first AND-gate

Our knowledge up to now (wlog):

- $\mathbf{s}_0^{\alpha} \leftrightarrow \mathbf{0}$ (we said x is 0)
- \blacksquare Signal along γ has parity 0, and represents plain-text 0
- σ_{ab}^{γ} : signal along wire γ for a parity-a-signal along α and a parity-b-signal along β_1

Now some calculations:

$$s_0^{\gamma} = A_{01} \oplus s_0^{\alpha} \oplus s_1^{\beta_1}$$

$$\sigma_{10}^{\gamma} = A_{10} \oplus s_1^{\alpha} \oplus s_0^{\beta_1}$$

$$\sigma_{11}^{\gamma} = A_{11} \oplus s_1^{\alpha} \oplus s_1^{\beta_1}$$

$$\Rightarrow \sigma_{10}^{\gamma} \oplus \sigma_{11}^{\gamma} = A_{10} \oplus A_{11} \oplus s_0^{\beta_1} \oplus s_1^{\beta_1}$$

■ ⇒ We know both signals and plain-text bits

Known values:

$$s_0^{\alpha} \leftrightarrow \mathbf{0}$$

$$s_0^{\beta_1}$$

$$s_0^{\gamma} \leftrightarrow \mathbf{0}$$

A simple attack – first AND-gate

Our knowledge up to now (wlog):

- $s_0^{\alpha} \leftrightarrow \mathbf{0}$ (we said x is 0)
- \blacksquare Signal along γ has parity 0, and represents plain-text ${\bf 0}$
- σ_{ab}^{γ} : signal along wire γ for a parity-a-signal along α and a parity-b-signal along β_1

Now some calculations:

$$lacksquare s_0^{\gamma} = A_{01} \oplus s_0^{lpha} \oplus s_1^{eta_1}$$

$$\sigma_{10}^{\gamma} = A_{10} \oplus s_1^{\alpha} \oplus s_0^{\beta_1}$$

$$\sigma_{11}^{\gamma} = A_{11} \oplus s_1^{\alpha} \oplus s_1^{\beta_1}$$

$$\Rightarrow \sigma_{10}^{\gamma} \oplus \sigma_{11}^{\gamma} = A_{10} \oplus A_{11} \oplus s_0^{\beta_1} \oplus s_1^{\beta_1}$$

 $\blacksquare \Rightarrow$ We know both signals and plain-text bits for γ

Known values:

$$s_0^{\alpha} \leftrightarrow \mathbf{0}$$

$$s_0^{\beta_1}$$

$$s_0^{\gamma} \leftrightarrow \mathbf{0}$$

A simple attack – first AND-gate

Our knowledge up to now (wlog):

- $s_0^{\alpha} \leftrightarrow \mathbf{0}$ (we said x is 0)
- \blacksquare Signal along γ has parity 0, and represents plain-text ${\bf 0}$
- σ_{ab}^{γ} : signal along wire γ for a parity-a-signal along α and a parity-b-signal along β_1

Now some calculations:

$$lacksquare s_0^{\gamma} = A_{01} \oplus s_0^{lpha} \oplus s_1^{eta_1}$$

$$\sigma_{10}^{\gamma} = A_{10} \oplus s_1^{\alpha} \oplus s_0^{\beta_1}$$

$$\sigma_{11}^{\gamma} = A_{11} \oplus s_1^{\alpha} \oplus s_1^{\beta_1}$$

$$\Rightarrow \sigma_{10}^{\gamma} \oplus \sigma_{11}^{\gamma} = A_{10} \oplus A_{11} \oplus s_0^{\beta_1} \oplus s_1^{\beta_1}$$

 $\blacksquare \Rightarrow$ We know both signals and plain-text bits for γ

Known values:

$$s_0^{\alpha} \leftrightarrow \mathbf{0}$$

$$s_0^{\beta_1} s_1^{\beta_1}$$

$$s_0^{\gamma} \leftrightarrow \mathbf{0}$$

A simple attack – first AND-gate

Our knowledge up to now (wlog):

- $\mathbf{s}_0^{\alpha} \leftrightarrow \mathbf{0}$ (we said x is 0)
- \blacksquare Signal along γ has parity 0, and represents plain-text 0
- σ_{ab}^{γ} : signal along wire γ for a parity-a-signal along α and a parity-b-signal along β_1

Now some calculations:

$$lacksquare s_0^{\gamma} = A_{01} \oplus s_0^{lpha} \oplus s_1^{eta_1}$$

$$lacksquare$$
 $\sigma_{10}^{\gamma}=A_{10}\oplus s_1^{lpha}\oplus s_0^{eta_1}$

$$lacksquare \sigma_{11}^{\gamma} = A_{11} \oplus s_1^{lpha} \oplus s_1^{eta_1}$$

$$\blacksquare \Rightarrow \sigma_{10}^{\gamma} \oplus \sigma_{11}^{\gamma} = A_{10} \oplus A_{11} \oplus s_0^{\beta_1} \oplus s_1^{\beta_1}$$

■ ⇒ We know both signals and plain-text bits

Known values:

$$s_0^{\alpha}\leftrightarrow \mathbf{0}$$

$$s_0^{\beta_1} s_1^{\beta_1}$$

$$s_0^{\gamma} \leftrightarrow \mathbf{0}$$

A simple attack – first AND-gate

Our knowledge up to now (wlog):

- $s_0^{\alpha} \leftrightarrow \mathbf{0}$ (we said x is 0)
- \blacksquare Signal along γ has parity 0, and represents plain-text ${\bf 0}$
- σ_{ab}^{γ} : signal along wire γ for a parity-a-signal along α and a parity-b-signal along β_1

Now some calculations:

$$lacksquare s_0^{\gamma} = A_{01} \oplus s_0^{lpha} \oplus s_1^{eta_1}$$

$$lacksquare$$
 $\sigma_{10}^{\gamma}=A_{10}\oplus s_1^{lpha}\oplus s_0^{eta_1}$

$$\bullet \sigma_{11}^{\gamma} = A_{11} \oplus s_1^{\alpha} \oplus s_1^{\beta_1}$$

$$\blacksquare \Rightarrow \sigma_{10}^{\gamma} \oplus \sigma_{11}^{\gamma} = A_{10} \oplus A_{11} \oplus s_0^{\beta_1} \oplus s_1^{\beta_1}$$

 $\blacksquare \Rightarrow$ We know both signals and plain-text bits for γ

Known values:

$$s_0^{\alpha}\leftrightarrow \mathbf{0}$$

$$s_0^{\beta_1} s_1^{\beta_1}$$

$$s_0^{\gamma} \leftrightarrow \mathbf{0} \ s_1^{\gamma} \leftrightarrow \mathbf{1}$$

A simple attack – first AND-gate

Our knowledge up to now (wlog):

- $s_0^{\alpha} \leftrightarrow \mathbf{0}$ (we said x is 0)
- \blacksquare Signal along γ has parity 0, and represents plain-text ${\bf 0}$
- σ_{ab}^{γ} : signal along wire γ for a parity-a-signal along α and a parity-b-signal along β_1

Now some calculations:

$$lacksquare s_0^{\gamma} = A_{01} \oplus s_0^{lpha} \oplus s_1^{eta_1}$$

$$lacksquare$$
 $\sigma_{10}^{\gamma}=A_{10}\oplus s_1^{lpha}\oplus s_0^{eta_1}$

$$\bullet \sigma_{11}^{\gamma} = A_{11} \oplus s_1^{\alpha} \oplus s_1^{\beta_1}$$

$$\blacksquare \Rightarrow \sigma_{10}^{\gamma} \oplus \sigma_{11}^{\gamma} = A_{10} \oplus A_{11} \oplus s_0^{\beta_1} \oplus s_1^{\beta_1}$$

 $\blacksquare \Rightarrow$ We know both signals and plain-text bits for γ

Known values:

$$s_0^{\alpha} \leftrightarrow \mathbf{0}$$

$$s_0^{\beta_1} s_1^{\beta_1}$$

$$s_0^{\gamma} \leftrightarrow \mathbf{0} \ s_1^{\gamma} \leftrightarrow \mathbf{1}$$

A simple attack – second AND-gate

We know by now (wlog):

- $\mathbf{s}_0^{\gamma} \leftrightarrow \mathbf{0}, \mathbf{s}_1^{\gamma} \leftrightarrow \mathbf{1}$ (signals and plain-text association)
- $s_0^{\beta_2}$ (input signal for plain-text bit of other player)
- \blacksquare Gate labels $B_{00}, B_{01}, B_{10}, B_{11}$

We compute $s_1^{\beta_2}$:

$$\sigma_{00}^{\delta} = B_{00} \oplus s_0^{\gamma} \oplus s_0^{\beta_2} \leftrightarrow \mathbf{0}$$

$$\sigma_{01}^{\delta} = B_{01} \oplus s_0^{\gamma} \oplus s_1^{\beta_2} \leftrightarrow \mathbf{0}$$

 \blacksquare \Rightarrow Solve for $s_1^{\beta_2}$, and "test gate" with s_1^{γ} and

A simple attack – second AND-gate

We know by now (wlog):

- $\mathbf{s}_0^{\gamma} \leftrightarrow \mathbf{0}, \mathbf{s}_1^{\gamma} \leftrightarrow \mathbf{1}$ (signals and plain-text association)
- $s_0^{\beta_2}$ (input signal for plain-text bit of other player)
- \blacksquare Gate labels $B_{00}, B_{01}, B_{10}, B_{11}$

We compute $s_1^{\beta_2}$:

$$\quad \bullet \quad \sigma_{00}^{\delta} = B_{00} \oplus s_0^{\gamma} \oplus s_0^{\beta_2} \leftrightarrow \mathbf{0}$$

$$\bullet$$
 $\sigma_{01}^{\delta} = B_{01} \oplus s_0^{\gamma} \oplus s_1^{\beta_2} \leftrightarrow \mathbf{0}$

 \blacksquare \Rightarrow Solve for $s_1^{\beta_2}$, and "test gate" with s_1^{γ} and

A simple attack – second AND-gate

We know by now (wlog):

- $\mathbf{s}_0^{\gamma} \leftrightarrow \mathbf{0}, \mathbf{s}_1^{\gamma} \leftrightarrow \mathbf{1}$ (signals and plain-text association)
- $\mathbf{s}_0^{\beta_2}$ (input signal for plain-text bit of other player)
- \blacksquare Gate labels $B_{00}, B_{01}, B_{10}, B_{11}$

We compute $s_1^{\beta_2}$:

$$\bullet \sigma_{00}^{\delta} = B_{00} \oplus s_0^{\gamma} \oplus s_0^{\beta_2} \leftrightarrow \mathbf{0}$$

$$\bullet \sigma_{01}^{\delta} = B_{01} \oplus s_0^{\gamma} \oplus s_1^{\beta_2} \leftrightarrow \mathbf{0}$$

$$lacktriangle$$
 \Rightarrow Solve for $s_1^{eta_2}$, and "test gate" with s_1^{γ} and $\{s_0^{eta_2},s_1^{eta_2}\}$

How do pseudorandom generators help?

Without pseudorandom generators:

Plain-text values computable

With pseudorandom generators:

- We can deduce the values $G_a^*(\sigma^\beta)$...
- \blacksquare ... but *not* the values σ^{β}
- \blacksquare \Rightarrow We do not know the proper other signal for wire β
- $\blacksquare \Rightarrow$ We cannot try all signal combinations

Essence:

Applying a pseudorandom generator onto the signals prevents us from deducing the proper signal for the complementary parity⁴!

⁴And thus, from deducing plain-text values.

Why do we need splitters?

- Without splitters, different gates are dependent
- ⇒ This enables us to determine plain-text bits with high probability

A comparator for two *I*-bit numbers:

- We assume that an earlier execution yielded $x_2 \ge x_1$
- How can player 2 exploit this?
- \blacksquare \Rightarrow Important part: Mask M_1

- What would happen if x_1 was 0?
- Assume signals along α_i represents **0**
- Assume that signal along β represents 1
- We are able to deduce the correct values of x_1 with high probability
- This can be acchieved a probabilistic algorithm

- Assume that $\sigma^{\alpha_i} \leftrightarrow \mathbf{0}$ for all $i \in \{1, 2, ..., I\}$ (likely wrong)
- We know that $\sigma^{\gamma_i} \leftrightarrow \mathbf{0}$
- Idea: For all correctly-guessed bits, we get "useful results", for the wrongly-guessed bits, we obtian random stuff.
- Gate i:

$$\sigma^{\gamma_i} = A^i_{ab} \oplus \underbrace{G^*_b(\sigma^{\alpha_i}_{a_i})}_{G_b(\sigma^{\alpha_i}_{a_i,1}) \oplus G_b(\sigma^{\alpha_i}_{a_i,2})} \oplus \underbrace{G^*_{a_i}(\sigma^{\beta}_b)}_{G_{a_i}(\sigma^{\beta}_{b,1}) \oplus G_{a_i}(\sigma^{\beta}_{b,2})}$$

ullet $G_b^*(\sigma_{a_i}^{\alpha_i})$ present in all gates 56

■ Gate *i*:

$$\sigma^{\gamma_i} = A^i_{ab} \oplus \underbrace{G^*_b(\sigma^{\alpha_i}_{a_i})}_{G_b(\sigma^{\alpha_i}_{a_i,1}) \oplus G_b(\sigma^{\alpha_i}_{a_i,2})} \oplus \underbrace{G^*_{a_i}(\sigma^{\beta}_b)}_{G_{a_i}(\sigma^{\beta}_{b,1}) \oplus G_{a_i}(\sigma^{\beta}_{b,2})}$$

- $G_{a_i}^*(\sigma_b^\beta)$ present in all gates
- "Solve" for $G_a^*(\sigma_h^\beta)$ and rename result:

$$\mu_i := \sigma^{\gamma_i} \oplus \mathsf{G}_b(\mathsf{s}_{\mathsf{a},1}^{lpha_i}) \oplus \mathsf{G}_b(\mathsf{s}_{\mathsf{a},2}^{lpha_i}) \oplus \mathsf{A}_{\mathsf{a}_ib}^{\mathsf{g}_i}$$

• If our guess for bit i was correct, μ_i corresponds to $G_a^*(\sigma_b^\beta)$, otherwise it is a random string

- Collection of μ_i 's
- Correct guesses: \Rightarrow either $G_0(s_{h_1}^{\beta}) \oplus G_0(s_{h_2}^{\beta})$ or $G_1(s_{h_1}^{\beta}) \oplus G_1(s_{h_2}^{\beta})$
- Incorrect guesses: Random strings
- \blacksquare \Rightarrow group the μ_i 's (random vs. $G_0(s_{h_1}^{\beta}) \oplus G_0(s_{h_2}^{\beta})$ or $G_1(s_{k_1}^{\beta}) \oplus G_1(s_{k_2}^{\beta})$
- \blacksquare \Rightarrow random strings correspond to wrongly-guessed bits \Rightarrow these bits are probably 1, all the others are probably 0

Part IV

Literature

For further reading: original protocol description

The Round Complexity Of Secure Protocols.

Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA (1991)

Beaver, D., Micali, S., Rogaway, P.:

The round complexity of secure protocols.

In: Proceedings of the twenty-second annual ACM symposium on Theory of computing, New York, NY, USA, ACM (1990) 503–513

For further reading: splitter construction

On Garbled Circuits and Constant Round Secure Function Evaluation.

Technical report, UNIVERSITY OF NORTH TEXAS (2003)

🗎 Xu, K.:

Mobile agent security through multi-agent cryptographic protocols.

PhD thesis, University of North Texas, Denton, TX, USA (2004) AAI3126591.

For further reading: a modern treatment of garbled circuits

Bellare, M., Hoang, V.T., Rogaway, P.: Garbling schemes.

Cryptology ePrint Archive, Report 2012/265 (2012)

http://eprint.iacr.org/.

For further reading: general crypto readings

Goldwasser, S., Bellare, M.:
Lecture notes on cryptography.
Lecture Notes (July 2008) Accessed March 2012
(http://cseweb.ucsd.edu/users/mihir/papers/gb.pdf).

Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York, NY, USA (2004)

For further reading: pseudorandom generators and one-way functions

Blum, M., Micali, S.:

How to generate cryptographically strong sequences of pseudo-random bits.

SIAM J. Comput. 13(4) (November 1984) 850-864

Yao, A.C.:

Theory and application of trapdoor functions.

In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science. SFCS '82, Washington, DC, USA, IEEE Computer Society (1982) 80–91

For further reading: other readings I

Shamir, A.:
How to share a secret.
Commun. ACM **22**(11) (November 1979) 612–613

Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults.

In: Proceedings of the 26th Annual Symposium on Foundations of Computer Science. SFCS '85, Washington, DC, USA, IEEE Computer Society (1985) 383–395

For further reading: other readings II

Rabin, T., Ben-Or, M.:

Verifiable secret sharing and multiparty protocols with honest majority.

In: Proceedings of the twenty-first annual ACM symposium on Theory of computing. STOC '89, New York, NY, USA, ACM (1989) 73–85

Beaver, D.:

Multiparty protocols tolerating half faulty processors.

In: Proceedings on Advances in cryptology. CRYPTO '89, New York, NY, USA, Springer-Verlag New York, Inc. (1989) 560–572

For further reading: other readings III

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game.

In: Proceedings of the nineteenth annual ACM symposium on Theory of computing. STOC '87, New York, NY, USA, ACM (1987) 218–229

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation.

In: Proceedings of the twentieth annual ACM symposium on Theory of computing. STOC '88, New York, NY, USA, ACM $(1988)\ 1-10$