STM32F407 GPIO

(General-Purpose IO)

한국산업기술대학교 메카트로닉스공학과 마이크로컴퓨터구조 담당교수: 남윤석

0. GPIO 란?

- μ-processor 나 MCU는 보통 데이터버스를 통해 메모리나 입출력 장치들과 정보를 주고 받음
- 입출력장치(회로)에 따라서는 단선을 통해 디지털정보(H or L)를 보내거나 받아야 하는 경우가 있음
- 이 경우를 대비해 µ-processor 나 MCU는 GPIO 기능을 내장
- GPIO는 µ-processor 나 MCU의 외부 핀을 통해 'High'나 'Low' 신호를 입출력회로에 보내거나 받는 역할 수행

0. GPIO 란?

●PLC와 임베디드 컴퓨터(컨트롤러)

<마이크로 컴퓨터>

<PLC>

●PLC의 I/O 접점 구조

<DC 입력모듈의 내부 회로>

*PLC제어(남대훈) 제공

●PLC의 I/O 접점 구조

<PLC의 출력 기기>

<트랜지스터 출력 모듈>

*PLC제어(남대훈) 제공

●PLC의 I/O 접점 구조

*PLC제어(남대훈) 제공

●PLC의 I/O 접점 구조

<PLC 프로그래밍: 래더다이어그램>

*PLC제어(남대훈) 제공

1. STM32F407의 GPIO 응용

마이<u>크로컴퓨터 구조 STM32F407 GPI</u>O

2.1 STM32F407 GPIO: Block diagram

마이크로컴퓨터 구조

MS19920V3

2.2 STM32F407 Figure 5. STM32F40x block diagram External memory CLK, HE DIG. ADDIG. CCM data RAM64 KB controller (FSMC) 의 GPIO: 회로 NUMBER OF STREET ортој, син, мин, на рад на негота SRAM, PSRAM, NOR Flash, JT CHARGO. TRACROK BORD, LOWIS, INTEREST BITH, HEXTERN P. ARM Contex-M4 168 MHz FPU up to 1 MB Mile PMI m/F Ethernet MAC HEYHC, VINNE MDIO m/F N FO Camera никок, ото ф SRAM 112 KB interface USB DP DM DAMU SRAM 16 KB OTGHS ULFRICK, DJ. 703, DIRL, 879, 1867 N FO USB EL VALUE, SIGN OTGF8 DMA2 D, VILIS, SOF PI PO R Richards Pl Rich DMA1 Wileys equator 2.3 to 12 V VDD = 18 63 6V MONPY, VICTOR GPIO PORT A PA[15:0] CPIO PORTA supervision RC LX POR/POR PB[15:0] GPIO PORT B VODA, VSSA **GPIO PORTB** de l PLL 182 PVD GPIO PORT C GPIO PORT C PC[15:0] **GPIO PORTO** XTAL OSC CALC_CALT First & **GPIO PORTE** MVDG oladi medal GPIO PORT D PD[15:0] GPIO PORT F GPIO PORT G PE[15:0] GPIO PORT E X184.30 MHz ORDS: OUT GPIO PORTH GPIO PORTI RTC_PT PF[15:0] GPIO PORT F 4 KB BKPSRA PG[15:0] ger i GPIO PORT G EXT IT, WKUP TIM TIM5 PH[15:0] SDIO / MMC AHDAP02 AHD AP DI **₫** TIM12 GPIO PORT H TIM1/PWM TIM13 Ashamata (TMI_CHILDER) PI[11:0] County Character (TMT_CHT(1.0)). TIM14 GPIO PORT I dishare is [TMI_CHITIGHTR, USART2 BL Tine USARTS. *** Tables and a sufficient UART4 WWDG UARTS CA USART1 SP2/282 CR. STRANS HOLDEN, MICK - AP FIX TO DK USART6 MORRO, MINORO, MI, ROCCO COLUMN AND SP3/283 HOUSE, MICK - AP MEDIU, MIDICI, BOX, NO. on P. DC1/SMBUS TIM7 VDDR#F_ADC 2C2/SMBUS Temperature sensor Familiagin pale correspond for the SADCs DC3/SMBUS A DC1 Familiagin puls common faithe ADC1 AZ ADC2 A DC3 bxCAN2 Exercise in patricipals in ACC DACLOUT DACIOUS

2.3 STM32F407 실습보드의 GPIO 회로

마이크로컴퓨터 구조

2.4 STM32F407 실습보드의 GPIO 사용 예: 커피자판기

B Buzzer

LED LED

K Key

Digital OutputDigital Input

<마이컴제어 제어배선도(커피자판기)>

```
Main() {
```

????

}

<마이컴제어 C-based 프로그래밍>

3. STM32F407 GPIO 주요 특징

- 1. 9개의 Port (Port A/B/C/D/E/F/G/H/I), 총 140 pins
- 2. Port 당 16개의 I/O pin 할당(예외: Port I 12pins)
- 3. Output states : push-pull, open drain (with pull-up/down) 설정 가능
- 4. Input states: floating, pull-up, pull-down, analog 설정 가능
- 5. I/O Alternate function(open drain, push-pull) input/output 선택 레지스터 (*GPIO 기능 이외의 특수기능)
- 6. Analog function
- 7. I/O pin마다 속도 설정 가능
- 8. Bit set/reset 레지스터
- 9. Locking 레지스터
- 10. Multiplexer에 의한 GPIO 또는 몇 가지 주변장치 중 하나를 선택 가능 (Multiplexed pin)
- 11. 모든 핀을 외부 인터럽트 핀으로 사용 가능(* 해당 핀은 입력모 드 설정되어야 함)

4. GPIO 기능 설명

- Mode Configuration 1
- Input floating
- Input pull-up
- Input-pull-down
- Analog (Input)
- Output open-drain with pull-up or pull-down capability
- Output push-pull with pull-up or pull-down capability
- Alternate function push-pull with pull-up or pull-down capability
- Alternate function open-drain with pull-up or pull-down capability

Mode Configuration 1

Basic structure of a five-volt tolerant I/O port bit

마이크로컴퓨터 구조

STM32F407 GPIO

Mode Configuration 2

Port bit configuration table

	Port bit config									
MODER(i) [1:0]	OTYPER(i)		EDR(i) B:A]		DR(i) :0]	I/O configuration				
	0			0	0	GP output	PP			
	0			0	1	GP output	PP + PU			
	0			1	0	GP output	PP + PD			
01	0	SPEE	D	1 1		Reserved				
O1	1	[B:A]		0	0	GP output	OD			
	1			0	1	GP output	OD + PU			
	1			1	0	GP output	OD + PD			
	1			1	1	Reserved (GP output OD)				
	0			0	0	AF	PP			
	0			0	1	AF	PP + PU			
	0			1	0	AF	PP + PD			
10	0	SP	EED	1	1	Reserved				
10	1	[E	3:A]	0	0	AF	OD			
	1			0	1	AF	OD + PU			
	1			1	0	AF	OD + PD			
	1			1	1	Reserved				
	X	X	X	0	0	Input	Floating			
00	X	x	X	0	1	Input	PU			
00	X	X	X	1	0	Input	PD			
	X	x	X	1	1	Reserved (input	floating)			
	X	х	X	0	0	Input/output	Analog			
11	X	х х		0	1					
	X	х	X	1	0	Reserved				
	X	Х	x	1	1					

• GPIO Pin 설정 레지스터

MODER

00: Input Mode

01: Output Mode

10: Alternate function Mode

11 : Analog Mode

OTYPER

0: Output Push-Pull

1: Output Open-drain

OSPEEDR

00: 2MHz Low speed

01:25MHz Medium speed

10:50MHz Fast speed

11: 100MHz High speed

PUPDR

00 : No pull-up/down

01: Pull-up

10: Pull-down

11: Reserved

• Push-Pull, Open-Drain, Pull up/down -1

• Push-Pull 출력의 구조 및 동작 원리

Push-Pull, Open-Drain, Pull up/down -2

•Open-Drain 출력의 구조 및 동작 원리

- •Open_Drain 출력회로를 사용하는 이유
 - Level-Shifter
 - 출력 전류를 회로에 맞게 설계가능
- •Level-Shifter: 전압기준 레벨을 VDD에서 V-EXT로 변환 (예: VDD=3.3V, V_EXT=5V, Box안 회로의 High는 3.3V, V_EXT에 묶여있는 회로의 High는 5V임)

*출처:Daum

• Push-Pull, Open-Drain, Pull up/down -3

• Pull up 회로의 구조와 동작원리

스위치	ON	OFF
(a)그림	0V(Low)	Floating
b)그림	0V(Low)	+5V(High)

•Pull down: 생략(저항이 GND에 연결 되어 있음) • 정전기 보호 회로

-Diode의 역할: VDD보다 크 거나, Vss(GND) 보다 작은 (음전압) 크기의 정전기 발생 시 우회회로 제공하는 정전기 보호 회로

*출처:Daum

● 기타 GPIO 기능

- Reset 직후 모든 핀들의 디폴트 모드: 'floating input' 모드 *JTAG(다운로드 및 디버깅에 사용되는 기능) 핀 제외
- 입출력 상태에 따른 핀 동작
- -입력 설정 경우:Input data register는 매 APB2 클럭(72MHz)마다 I/O 핀에서 데이터를 입력 받음
- -출력 설정 경우:Output data register에 저장된 값이 I/O 핀에 출력
- 대체기능(Alternate function) 전환 방법
- -Port Bit Configuration Register(GPIOx_AFRL/AFRH/MODER/OTYPER/OSPEEDR/PUPDR) 설정 필요
- 대체기능 입력 전환 조건: 해당 포트를 입력 모드(floating, pull-up/down)로 설정
- 대체 기능 출력 전환 조건: 해당 포트의 비트를 대체기능 출력 모드 (push-pull 또는 open-drain)로 설정
- 양방향(입출력)의 대체 기능 전환 조건: 해당 포트의 비트를 대체기능 출력 모드(push-pull 또는 open-drain)로 설정(이 경우 입력 드라이버는 플로팅 입력 모드(input floating mode)로 설정됨)

마이크로컴퓨터 구조

AF13 (DCMI) -

AF15 (EVENTOUT)

AF14 -

STM32F407 GPIO

OTG_HS_ULPI_STP/

EVENTOUT

ETH MDC/ EVENTOUT

SPI2 MISO /

OTG HS ULPI DIR /

ETH_MII_TXD2 /I2S2ext SD/ EVENTOUT ADC123_IN10

ADC123_IN11

ADC123_IN12

(4)

(4)

I/O

I/O FT

I/O FT

FT

PC0

PC1

PC2

• I/O pin multiplexer and mapping 1

STM32F40x pin and ball definitions (continued) Pin number Selecting an alternate function on STM32F405xx/07xx and STM32F415xx/17xx structure Pin name For pins 0 to 7, the GPIOx_AFRL[31:0] register selects the dedicated alternate function Notes LQFP144 UFBGA176 WLCSP90 LQFP100 LQFP64 Alternate functions Additional functions (function after reset)(1) 0 AF0 (system) AF1 (TIM1/TIM2) -AF2 (TIM3..5) AF3 (TIM8..11) AF4 (I2C1..3) FSMC A1/I2C2 SCL/ I/O НЗ 17 PF1 FT AF5 (SPI1/SPI2)-EVENTOUT AF6 (SPI3) -Pin x (x = 0..7)FSMC A2 / I2C2 SMBA / AF7 (USART1..3) 12 H2 18 PF2 I/O FT EVENTOUT AF8 (USART4..6) AF9 (CAN1/CAN2, TIM12..14)-19 PF3 FSMC_A3/EVENTOUT 13 I/O FT ADC3 IN9 J2 AF10 (OTG_FS, OTG_HS) 14 J3 20 PF4 FSMC A4/EVENTOUT I/O FT ADC3_IN14 AF11 (ETH) 15 КЗ 21 PF5 I/O AF12 (FSMC, SDIO, OTG HS(1))-FSMC A5/EVENTOUT ADC3_IN15 AF13 (DCMI) -C9 10 16 G2 22 s Vss AF14 s **B8** 17 G3 23 V_{DD} AF15 (EVENTOUT) -TIM10 CH1/ 18 K2 24 PF6 I/O FT FSMC NIORD/ ADC3 IN4 EVENTOUT AFRL[31:0] TIM11_CH1/FSMC_NREG I/O 19 K1 25 PF7 FT ADC3_IN5 For pins 8 to 15, the GPIOx_AFRH[31:0] register selects the dedicated alternate function / EVENTOUT TIM13_CH1 / AF0 (system) (4)20 L3 26 PF8 I/O FT FSMC_NIOWR/ ADC3_IN6 AF1 (TIM1/TIM2) --EVENTOUT AF2 (TIM3..5) TIM14 CH1 / FSMC CD/ I/O AF3 (TIM8..11) ----21 L2 27 PF9 FT ADC3 IN7 EVENTOUT AF4 (I2C1..3) 22 28 PF10 I/O FT FSMC INTR/ EVENTOUT L1 ADC3_IN8 AF5 (SPI1/SPI2)-AF6 (SPI3) -Pin x (x = 8..15)PH0/OSC IN OSC_IN(4) F10 12 23 G1 I/O FT 5 29 **EVENTOUT** AF7 (USART1..3) (PH0) AF8 (USART4..6) PH1/OSC OUT AF9 (CAN1/CAN2, TIM12..14)-24 I/O OSC_OUT(4) в F9 13 FT EVENTOUT (PH1) AF10 (OTG_FS, OTG_HS) AF11 (ETH) -RS G10 14 25 J1 31 NRST I/O AF12 (FSMC, SDIO, OTG HS(1)) Т

8 E10 15 26 M2 32

16 27 M3 33

28

M4 34

10 D10 17

* ADC / DAC 는 Alternate function에 해당 되지 않음.

AFRH[31:0]

Input Configuration

- •입력 으로 설정될 때 H/W 상태
- -출력 버퍼 비활성화 및 슈미트 트리거 입력 활성화
- -GPIOx_PUPDR 레지스터에 의해 풀업 풀다운의 상태 결정
- -AHB1의 클럭에 동기되어 I/O 핀의 입력 값이 갱신
- -Input data register를 read하면 I/O state를 획득 가능

Output Configuration -1

Output Configuration -2

- 출력으로 설정될 때 H/W 상태
- -출력 버퍼 활성화
 - ➤ Open-Drain mode : Output register에 '0'을 기록하면 N-MOS 가 활성화 되고, '1'을 기록하면 Hi-Z 상태가 됨
 - ➤ Push-pull mode: Output register에 '1'을 기록하면 N-MOS가 활성화 되고, '0'을 기록하면 P-MOS가 활성화 됨
- -슈미트 트리거 입력 활성화
- -내부 Pull-up / Pull-down 저항 활성화(GPIOx_PUPDR 설정과 무관)
- -AHB1의 클럭에 동기되어 I/O 핀의 입력 값이 갱신됨
- -Input data register를 read하면 I/O state를 획득 가능
- -Output data register를 read하면 최근의 written value 획득 가능

• Alternate function Configuration

- 대체(부속) 기능으로 설정 될 때 H/W 상태
- -출력 버퍼는 Open-drain 혹은 Push-pull로 설정 가능
- -출력 버퍼는 주변장치에 의해 구동
- -슈미트 트리거 입력 활성화
- -내부 Pull-up / Pull-down 저항 활성화(GPIOx_PUPDR 설정과 무관)
- -AHB1의 클럭에 동기되어 I/O 핀의 입력 값이 갱신됨

Analog Configuration

- •아날로그로 설정 될 때 H/W 상태
- -출력 버퍼 비활성화
- -슈미트 트리거 입력 비 활성화 (슈미트 트리거 의 출력은 '0' 설정)
- -풀업 풀다운 설정 금지
- -Input data register를 읽을 경우 무조건 '0'을 얻음

5. GPIO 주요 레지스터

• GPIOx_MODER

: GPIO port mode register (GPIO x_MODER) (x = A..I)

Reset values:

- 0xA800 0000 for port A
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODER	R15[1:0]	MODER	R14[1:0]	MODER	R13[1:0]	MODEF	R12[1:0]	MODEF	R11[1:0]	MODE	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw								

•Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)

I/O의 Input 이나 Output 방향을 설정하는 레지스터

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

마이크로컴퓨터 구조

STM32F407 GPIO

GPIOx_OTYPER

: GPIO port output type register (GPIOx_OTYPER) (x = A..I)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	OT9	OT8	OT7	OT6	OT5	OT4	OT3	OT2	OT1	OT0
m	rw	rw	rw	rw	rw	rw	m	rw	rw	rw	rw	rw	rw	w	rw

- •Bits 31:16 Reserved, must be kept at reset value.
- •Bits 15:0 OTy[1:0]: Port x configuration bits (y = 0..15)

I/O port의 output type을 설정해주는 비트들임

0: Output push-pull (reset state)

1: Output open-drain

: GPIO port output speed register (GPIO $x_OSPEEDR$)(x = A..I)

Reset values:

- 0x0000 00C0 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OSPEED)R15[1:0]	OSPEED	R14[1:0]	OSPEED)R13[1:0]	OSPEED	R12[1:0]	OSPEED)R11[1:0]	OSPEED)R10[1:0]	OSPEE	DR9[1:0]	OSPEE	DR8[1:0]
rw	rw	w	m	rw	rw	rw	rw	w	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OSPEE	EEDR7[1:0] OSPEEDR6[1:0] OSPEEDR5[1:0]		DR5[1:0]	OSPEE	DR4[1:0]	OSPEE	DR3[1:0]	OSPEE	DR2[1:0]	OSPEE	DR1[1:0]	OSPEE	DR0[1:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

•Bits 2y:2y+1 OSPEEDRy[1:0]: Port x configuration bits (y = 0..15)

I/O output speed를 설정하는 비트들임

00: 2 MHz Low speed

01: 25 MHz Medium speed

10: 50 MHz Fast speed

11: 100 MHz High speed on 30 pF (80 MHz Output max speed on 15 pF)

GPIOx_PUPDR

: GPIO port pull-up/pull-down register (GPIOx_PUPDR)(x = A..I)

Reset values:

- 0x6400 0000 for port A
- 0x0000 0100 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDF	R14[1:0]	PUPDF	R13[1:0]	PUPDF	R12[1:0]	PUPDF	R11[1:0]	PUPDR10[1:0]		PUPDI	R9[1:0]	PUPDR8[1:0]	
rw	rw	rw	rw	rw	rw	m	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDI	R7[1:0]	PUPDI	R6[1:0]	PUPDI	R5[1:0]	PUPDI	R4[1:0]	PUPDI	R3[1:0]	PUPD	R2[1:0]	PUPDI	R1[1:0]	PUPDI	R0[1:0]
rw	rw	rw	rw	rw	rw	m	rw	m	rw	rw	rw	rw	m	rw	rw

•Bits 2y:2y+1 PUPDRy[1:0]: Port x configuration bits (y = 0..15) I/O Port Pin에 pull-up 이나 pull-down으로 설정하는 비트들임

00: No pull-up, pull-down

01: Pull-up

10: Pull-down

11: Reserved

마이크로컴퓨터 구조

STM32F407 GPIO

GPIOx_IDR

: GPIO port input data register $(GPIOx_IDR)(x = A..I)$

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

- •Bits 31:16 Reserved, must be kept at reset value.
- •Bits 15:0 IDRy[15:0]: Port input data (y = 0..15)
- 이 비트들은 읽기모드만 가능하고 word단위의 접근만 허용되며 I/O port에 대응하는 입력 값을 가지고 있음

마이크로컴퓨터 구조

STM32F407 GPIO

GPIOx_ODR

: GPIO port output data register $(GPIOx_ODR)(x = A..I)$

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	w	rw

- •Bits 31:16 Reserved, must be kept at reset value
- •Bits 15:0 ODRy[15:0]: Port output data (y = 0..15)
- 이 비트들은 읽기 쓰기가 가능, 또한 GPIOx_BSRR(x = A..I) 레지스터를 통해 ODRy 비트들을 개별적으로 set 또는 reset 가능

30

BR14

31

BR15

18

BR2

W

17

BR1

W

16

BR0

GPIOx_BSRR

29

BR13

: GPIO port bit set/reset register (GPIOx_BSRR)(x = A..I)

24

BR8

W

23

BR7

W

22

BR6

21

BR5

W

20

BR4

W

19

BR3

W

25

BR9

Reset value: 0x0000 0000

28

BR12

W

27

BR11

W

이 비트들을 읽을 경우 0x0000이 리턴됨

1: ODRx 비트에 대응하는 값이 Set 됨

0: ODRx 비트에 대응하는 값이 아무런 변화가 없음

26

BR10

W

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	815 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 B														BS0
w	w w w w w w w w w w w w w w													W	
o) o) 0: 1: -No	비트 비트 ODF ODF ote: 문	들은 들을 {x 비, {x 비, 나약 B	오직 : 읽을 : 트에 ! 트에 ! Sx와	쓰기 5 경우 (대응하 대응하 BRx)x000 }는 집 }는 집 가 둘다	등, wor 0이 근 (이 이 (이 R 구 set	rd, ha 기턴됨 무런 eset 목 될 경-	alf-wo 변화 팀	가 없	음	단위	로의	접근여	이가	do
•Bits	15:0	BSy:	Port	x set	bit y (y=0.	.15)								

이 비트들은 오직 쓰기만 가능, word, half-word or byte 단위로의 접근이 가능

6. STM32F407의 GPIO 프로그래밍 실습

6.0 프로그램에서의 GPIOx set-up 과정 및 레지스터 설정

RCC 설정

- RCC→CR,CFGR,PLLCFGR (Clock소스/주파수 설정)
- RCC→AHB1ENR(GPIO Clock Enable)

GPIO Mode 설정

- GPIOx→MODER (GPIO output/input 설정)
- GPIOx→OSPEEDR (Output speed 설정)
- GPIOx→OTYPER (Output type(P-P/O-D) 설정)
- GPIOx→PUPDR (Pull-up/Pull-down 설정)

GPIO 실행

- 출력: GPIOx→ODR, BSRR
- 입력: GPIOx→IDR

6.0 Reset 직후 레지스터 초기(디폴트) 상태

- GPIO $x\rightarrow MODER$:
- -0xA800 0000 for port A(PA.15~13: Alternate function, others:Input)
- -0x0000 0280 for port B(PB.4/3: Alternate function, others: Input)
- -0x0000 0000 for other ports (All Input)
- GPIOx→OSPEEDR:
- -0x0000 00C0 for port B(PB.3:100MHz high speed, others:2MHz

low speed)

- -0x0000 0000 for other ports (All 2MHz low speed)
- GPIOx → OTYPER:0x0000 0000 (All Push-Pull)
- GPIOx→PUPDR:
- -0x6400 0000 for port A(PA.15:Pull-up, PA.14:Pull-down,
- PA.13:Pull-up, others: no)
- -0x0000 0100 for port B(PA.4:Pull-up, others: no)
- -0x0000 0000 for other ports (All no Pull-up, Pull-down)
- GPIO $x\rightarrow$ ODR, BSRR: 0x0000 0000

마이크로컴퓨터 구조

6.1 STM32F407의 GPIO port의 Address(Memory map)

Bus	Boundary address	Peripheral
AHB1	0x4004 0000 - 0x4007 FFFF	USB OTG HS
	0x4002 9400 - 0x4003 FFFF	Reserved
	0x4002 9000 - 0x4002 93FF	
	0x4002 8C00 - 0x4002 8FFF	1
	0x4002 8800 - 0x4002 8BFF	ETHERNET MAC
	0x4002 8400 - 0x4002 87FF	
	0x4002 8000 - 0x4002 83FF	
	0x4002 6800 - 0x4002 7FFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0x4002 5000 - 0x4002 5FFF	Reserved
	0x4002 4000 - 0x4002 4FFF	BKPSRAM
	0x4002 3C00 - 0x4002 3FFF	Flash interface register
	0x4002 3800 - 0x4002 3BFF	RCC
	0x4002 3400 - 0x4002 37FF	Reserved
	0x4002 3000 - 0x4002 33FF	CRC
	0x4002 2400 - 0x4002 2FFF	Reserved
	0x4002 2000 - 0x4002 23FF	GPIOI
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1800 - 0x4002 1BFF	GPIOG
	0x4002 1400 - 0x4002 17FF	GPIOF
	0x4002 1000 - 0x4002 13FF	GPIOE
	0x4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA
	0x4001 5800- 0x4001 FFFF	Reserved

6.2 STM32F407의 GPIO관련 header file 주요 부분

```
((uint32_t)0x40000000) /* Peripheral base
#define PERIPH BASE
```

address in the alias region */

```
/* Peripheral memory map */
#define APB1PERIPH BASE
```

#define GPIOC BASE

#define GPIOD BASE

#define RCC BASE

PERIPH BASE

- (AHB1PERIPH BASE + 0x1C00)
- (AHB1PERIPH BASE + 0x2000) $(AHB1PERIPH_BASE + 0x2400)$

 $(AHB1PERIPH_BASE + 0x3800)$

- #define GPIOE BASE (AHB1PERIPH BASE + 0x1000)#define GPIOF BASE (AHB1PERIPH BASE + 0x1400)#define GPIOG BASE $(AHB1PERIPH_BASE + 0x1800)$ #define GPIOH BASE
- #define GPIOI BASE
- #define GPIOJ_BASE
- #define GPIOK BASE (AHB1PERIPH BASE + 0x2800)

6.2 STM32F407의 GPIO관련 header file 주요 부분

#define GPIOA
#define GPIOB
#define GPIOC
#define GPIOD
#define GPIOE
#define GPIOF
#define GPIOH
#define GPIOH
#define GPIOI
#define GPIOI
#define GPIOI
#define GPIOI
#define GPIOK
#define GPIOK

((GPIO TypeDef *) GPIOA BASE) ((GPIO_TypeDef *) GPIOB_BASE) ((GPIO_TypeDef *) GPIOC_BASE) ((GPIO_TypeDef *) GPIOD_BASE) ((GPIO_TypeDef *) GPIOE_BASE) ((GPIO_TypeDef *) GPIOF_BASE) ((GPIO_TypeDef *) GPIOG_BASE) ((GPIO_TypeDef *) GPIOH_BASE) ((GPIO_TypeDef *) GPIOI_BASE) ((GPIO TypeDef *) GPIOJ BASE) ((GPIO_TypeDef *) GPIOK_BASE) ((RCC_TypeDef *) RCC_BASE)

6.2 STM32F407의 GPIO관련 header file 주요 부분

```
typedef struct {
   _IO uint32_t MODER; //GPIO port mode register, offset: 0x00
   IO uint32_t OTYPER; //GPIO port output type register, offset: 0x04
   _IO uint32_t OSPEEDR; //GPIO port output speed register, offset: 0x08
   _IO uint32_t PUPDR; //GPIO port pull-up/pull-down register, 0x0C
   _IO uint32_t IDR; //GPIO port input data register, offset: 0x10
  IO uint32_t ODR; //GPIO port output data register, offset: 0x14
   _IO uint16_t BSRRL; //GPIO port bit set/reset low register, 0x18
   IO uint16_t BSRRH; //GPIO port bit set/reset high register, 0x1A
   IO uint32 t LCKR; //GPIO port configuration lock register, 0x1C
   _IO uint32_t AFR[2]; //GPIO alternate function registers, 0x20-0x24
} GPIO_TypeDef;
typedef __IO uint32_t vu32;
typedef __IO uint16_t vu16;
typedef __IO uint8_t vu8;
```

6.3 STM32F407의 GPIO port 내부 구조 (예: GPIOG)

마이크로컴퓨터 구조 <u>STM32F407 GPIO</u>

6.4 GPIO 구동실습을 위한 실습보드의 출력인터페이스 회로

• Output: LED*8 (LED7 ~ LED0), 관련 GPIO port : PG7~PG0

STM32F407 GPIO

* 레지스터 정의(예)

GPIOG→ODR

- = (*(volatile unsigned *) GPIOG_BASE+0x14)
- = (*(volatile unsigned *) AHB1PERIPH_BASE + 0x1800 +0x14)
- = (*(volatile unsigned *) PERIPH_BASE + 0x00020000+ 0x1800
- +0x14)
- = (*(volatile unsigned *) (uint32_t)0x40000000 + 0x00020000 + 0x1800 + 0x14)
- = (*(volatile unsigned *) (uint32_t)0x40021814)

마이크로컴퓨터 구조 <u>STM32F407 GPIO</u>

6.5 GPIO 구동실습을 위한 실습보드의 입력인터페이스 회로

• Input: SW*8 (SW7 ~ SW0), 관련 GPIO port: PH15~PH8

STM32F407 GPIO

