CS434: Machine Learning & Data Mining (Spring 2016) Implementation Assignment 2 Muratcan CICEK (No Group)

NOTES:

- I used Python for the implementation of this assignment and I printed some of my experiments, I also plotted some results. They are very below.
- 1. I have Implement the batch gradient descent algorithm in 'HW2' as gradientDescentWithLR(x, y, alpha, iterationNumber) where x is a Python Numpy Array of the training images and y is actual labels like described in the assignment document. I have also implemented functions to experience different learning rates and different iteration numbers I have run these experiences in a nested way and I have concluded the following results:

FIXED ITERATION NUMBERS	OPTIMAL LEARNING RATES	CORRESPONDING LOSS VALUES
1	0.000003125	402.82
10	0.05	55.00
100	0.0000625	4.00
1000	0.05	0.00
10000	0.05	0.00

According to these results, 0.05 is an optimal Learning Rate when we use iterate the gradient descent 1000 timely.

2. PLOTS

I have reran the gradient descent when I observed the optimal learning rating with corresponding iteration numbers from the experiences that I mentioned above. Then, I have done predictions for both, the training and testing data with the weight vector that each gradient descent returned and I have plotted them like below.

3. Pseudocode

Given: training examples
$$(x^i, y^i)$$
, $i = 1,...,N$
Let $w = (0,0,0,...,0)$
Repeat until convergence
 $d = (0,0,0,...,0)$
for $i = 1$ to N do

$$y'^i = \frac{1}{1+e^{-w\cdot x^i}}$$

$$error = y^i - y'^i$$

$$d = d + error^*x + \lambda^*w$$

$$w = w + \eta d$$

4. Plots

Honestly, I did a lot of implementation to try different λ values (10⁻⁵ to 10) and plotted the predictions as below. But I was not able to detect the difference, when λ < 1 there were a few different predictions and when λ >= 1, I got Python nan values on the weight vector and no predictions.

