Apartment for Rent Classified

El siguiente informe describe el proceso realizado, para hallar una modelo predictora, para el precio de renta de apartamentos y casas.

Los datos fueron obtenidos de:

https://archive.ics.uci.edu/dataset/555/apartment+for+rent+classified

El set de datos cuenta con 99.820 registros y 22 atributos, los cuales son:

id	price
category	price_display
title	price_type
body	square_feet
amenities	address
bathrooms	cityname
bedrooms	state
currency	latitude
fee	longitude
has_photo	source
pets_allowed	time

exploración.py

Al ejecutar el script, se obtienen entre otros los siguientes datos.

preprocesado.py

para este script, lo que se hace es eliminar atributos que no se consideran que puedan ser relevantes para calcular los precios, o registros que contenían información incompleta o que podrían ser problemáticos en las siguientes etapas de aprendizaje.

```
#Eliminacion de atributtos irrelevantes.
              'title',
              'body',
              'amenities',
              'price_display',
              'address',
'cityname',
              'longitude',
              'time']
dataset = dataset.drop( columns = L_eliminar)
#Eliminar registro con el precio mas alto.
precioMaximo = dataset['price'].max()
indicePrecioMaximo = dataset[dataset['price'] == precioMaximo].index
dataset = dataset.drop(indicePrecioMaximo)
# Eliminar los registros donde el atributo 'category' es 'housing/rent/apartment'
dataset = dataset[dataset['category'] == 'housing/rent/apartment']
# Eliminar los registros donde el atributo 'bedrooms' es 7 o más
dataset = dataset.dropna()
# Eliminar registros con valores WV
dataset = dataset[dataset['state'] != 'WV']
```

modelo1.py

En este, se crea un algoritmo de regresión <u>lineal con las variables</u>, independientes.

X = dataset[['state', 'bathrooms', 'bedrooms', 'square_feet']]

Los resultados, para el modelo son los siguientes.

```
Error cuadrático medio: 239479.9375994268
Coeficiente de determinación (R^2): 0.4982100431904015
In [353]: |
```

Modelo2.py

En este, se crea un algoritmo de random forest, para calcular el precio, también con las variables.

X = dataset[['state', 'bathrooms', 'bedrooms', 'square feet']]

Conclusion

Como se puede observar, ambos modelos presentaron un r^2 no tan cercano a uno, por lo que se puede decir que los modelos aun podrían tener margen de mejora.

0.55 para random forest

0.49 para regresión lineal.