Campagne d'étalonnage des thermocouples et des capteurs de pression du banc expérimental "ébullition convective" Avril 2024

Sommaire

1. Le banc d'essai	
2. Les thermocouples	5
2.1. Liste du matériel	
2.2. Protocole expérimental	
2.3. Résulats	
3. Les capteurs de pression	
3.1. Liste du matériel	
3.2. Protocole expérimental	
3.3. Résulats	7
4. Autres matériels	
4.1. Liste du matériel	7

1. Le banc d'essai

Le schéma de principe du banc d'essai est donné en Figure 1. La section de test est quant à elle détaillée en Figure 2. Elle comprend : Le pré-chauffeur¹, l'évaporateur, le tube de visualisation, ainsi que les appareils de mesures (thermocouples, transmetteurs de pression, caméra à image rapide). Les indices utilisés pour identifier ces derniers servent de référence tout au long du document. Tout autre document technique rédigé dans le cadre de ma thèse y fera référence. On distingue :

- A_i : Auxiliary (Thermocouples)
- T_i : Test section (Thermocouples)
- TP_i : Test section (Pressure sensors)
- O_i : Others

Figure 1: Schéma de principe du banc d'essai "Ebullition Convective"

¹Dénomminé preheater dans ce document

Figure 2: Schéma de principe de la section d'essai (Auteur : Daniel Marchetto, modifié)

Ce document a plusieurs objectifs :

- 1. Identifier clairement l'instrumentation du banc,
- 2. Définir une méthodologie pour étalonner les capteurs :
 - Par soucis de répétabilité,
 - Par soucis de traçabilité des évolutions du banc.
- 3. Afin de sauvegarder les résultats obtenus.

2. Les thermocouples

2.1. Liste du matériel

Tableau 1: Inventaire des thermocouples (type K)

Indice	Canal ²	Référence	Localisation	Immergé	Calibré
A1	202	K405 (Prosensor®)	Preheater inlet	\boxtimes	X
A2	234	Homemade (Omega®)	Preheater inlet	ater inlet	
T1	219	Homemade (Omega®)	Preheater surface 1		
T2	208	Homemade (Omega®)	Preheater surface 2		
Т3	220	Homemade (Omega®)	Preheater surface 3		
T4	218	Homemade (Omega®)	Preheater surface 4		
T5	212	K405 (Prosensor®)	Preheater outlet	\boxtimes	
T6	216, 237, 238	Homemade (Omega®)	Evaporator inlet		X
T7	225	K405 (Prosensor®)	Evaporator inlet	\boxtimes	X
Т8	212	Homemade (Omega®)	Tube wall 1 top		X
T9	239	Homemade (Omega®)	Tube wall 1 middle		X
T10	223	Homemade (Omega®)	Tube wall 1 bottom		X
T11	209	Homemade (Omega®)	Tube wall 2 top		X
T12	224	Homemade (Omega®)	Tube wall 2 middle		X
T13	233	Homemade (Omega®)	Tube wall 2 bottom		X
T14	203	Homemade (Omega®)	Tube wall 3 top		X
T15	228	Homemade (Omega®)	Tube wall 3 middle		X
T16	235	Homemade (Omega®)	Tube wall 3 bottom		X
T17	217	Homemade (Omega®)	CHF³ top		X
T18	222	Homemade (Omega®)	CHF bottom		X
T19.1	207, 226, 232	Homemade (Omega®)	Evaporator outlet		X
T19.2	230	K405 (Prosensor®)	Evaporator outlet	\boxtimes	X
A3	240	Homemade (Omega®)	Pump inlet		
A4	206	Homemade (Omega®)	Tank up		
A5	205	Homemade (Omega®)	Tank Down		
O1	204	Homemade (Omega®)	Ambient		×
O2.1	201	PT100	Cold junction		
O2.2	211	PT100	Cold junction		
O2.3	221	PT100	Cold junction		
O2.3	231	PT100	Cold junction		

Les capteurs surlignés en bleu sont situés dans la section test du banc Les indices du type $X_{i,j}$ font référence à un des capteurs j qui réalisent une mesure au même point matériel i.

²Fait références aux canaux du Keithley

³Critical Heat Flux

- 2.2. Protocole expérimental
- 2.3. Résulats

3. Les capteurs de pression

3.1. Liste du matériel

Indice	Canal	Référence	Localisation	Type	Plage de fonctionnemen	Calibré it
TP1	118	Keller PA23	Evaporator inlet	P_{abs}	0-30 bars	
TP2	102	Keller PD-23	Evaporator	ΔP	0-5 bars	
TP3	112	Emmerson Rosemount 3051	Evaporator	ΔP	0-2 bars	
TP4	114	Emmerson Rosemount 3051	Evaporator	ΔP	0-50 mbars	
TP5	113	Keller PA23	Evaporator outlet	P_{abs}	0-35 bars	
AP1	120	Keller PA23	Pump inlet	P_{abs}	0-35 bars	
AP2	115	Keller PA23	Tank	P_{abs}	0-35 bars	

Les transmetteurs de pression Keller admettent une limite maximale de température de 100° C, limitant l'utilisation du banc au-delà de cette valeur.

3.2. Protocole expérimental

3.3. Résulats

4. Autres matériels

4.1. Liste du matériel

Indice	Canal	Référence	Localisation	Type f	Plage de onctionnement	Calibré
TOX2	117	N/A	Preheater	U correction	N/A	\boxtimes
OX1	109	N/A	Preheater	U correction	N/A	×
OX2	105	Micromotion 1700 Emerson	Auxilliaire	Coriolis Mass flow meter	0 - 108 kg/h	×