Fundamentals of Solid State Physics

Electronic Properties - The Tight-Binding Model

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Further Reading

- Ashcroft & Mermin, Chapter 10
- Singleton, Chapter 4

Real Electrons in Solids

Electrons are in *periodic* potentials

$$\psi(\mathbf{r}) = \exp(i\mathbf{k} \cdot \mathbf{r}) \cdot u_{\mathbf{k}}(\mathbf{r})$$

Nearly Free Electron Model "近自由"近似

> Tight Binding Model "紧束缚"近似

Sodium (Na) [1s² 2s² 2p⁶] 3s¹

Atomic Bonding

- Interatomic Potential U
 - □ attraction: electrostatic (+ −)
 - □ repulsion: electrostatic (+ + /- -)

and Pauli exclusion principle

What are the quantum mechanic explanations?

Isolated Atoms

Hydrogen atom

$$V(\mathbf{r}) = -\frac{e^2}{4\pi\varepsilon_0} \frac{1}{\mathbf{r}}$$

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + V(\mathbf{r})\cdot\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$\psi(r,\theta,\varphi) = R_{nl}(r) \cdot Y_{lm}(\theta,\varphi)$$

$$E_n = -\frac{13.6 \,\text{eV}}{n^2}$$

n, l, m - quantum numbers m_S - spin (+1/2, -1/2)

Isolated Atoms

- Angular momentum: *I* = 0, 1, 2, 3
- Atomic orbitals: s p d f

Examples

- Hydrogen (H)
 1s¹
- □ Helium (He) 1s²
- □ Lithium (Li) [1s²] 2s¹
- Carbon (C) [1s²] 2s² 2p²
- Neon (Ne) [1s²] 2s² 2p6
- Sodium (Na) [1s² 2s² 2p6] 3s¹
- □ Silicon (Si) [1s² 2s² 2p⁶] 3s² 3p²

Hydrogen Atom

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + V(\mathbf{r})\cdot\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

for 1s orbital →

$$E_{1s} = -13.6 \,\mathrm{eV}$$

$$\hat{H}_{m}\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$\hat{H}_{m} = -\frac{\hbar^{2}}{2m}\nabla^{2} + V_{1}(\mathbf{r}) + V_{2}(\mathbf{r})$$

Linear Combination of Atomic Orbitals (LCAO)

$$\psi(\mathbf{r}) = c_1 \phi_1(\mathbf{r}) + c_2 \phi_2(\mathbf{r})$$

For ϕ_1 and ϕ_2

Homework 5.5

$$\hat{H}_0 \phi(\mathbf{r}) = E_{1s} \phi(\mathbf{r})$$

$$\hat{H}_0 = -\frac{\hbar^2}{2m} \nabla^2 + V_0(\mathbf{r})$$

Take the integral

$$\int \phi_1^* \hat{H}_m \psi d\mathbf{r} = \int \phi_1^* E \psi d\mathbf{r}$$

Homework 5.5

$$c_{1} \int \phi_{1}^{*} \hat{H}_{m} \phi_{1} d\mathbf{r} + c_{2} \int \phi_{1}^{*} \hat{H}_{m} \phi_{2} d\mathbf{r} = c_{1} E \int \phi_{1}^{*} \phi_{1} d\mathbf{r} + c_{2} E \int \phi_{1}^{*} \phi_{2} d\mathbf{r}$$

We have

$$\int \phi_1^* \phi_1 d\mathbf{r} = 1$$

$$\int \phi_1^* \phi_2 d\mathbf{r} = 0$$

$$\int \phi_1^* \hat{H}_m \phi_1 d\mathbf{r} \approx \int \phi_1^* \hat{H}_0 \phi_1 d\mathbf{r} = \int \phi_1^* E_{1s} \phi_1 d\mathbf{r} = E_{1s} \int \phi_1^* \phi_1 d\mathbf{r} = E_{1s}$$

$$\int \phi_1^* \hat{H}_m \phi_2 d\mathbf{r} \approx -V_{ss\sigma} < 0$$

We have

$$c_1 E_{1s} - c_2 V_{ss\sigma} = c_1 E$$

Homework 5.5

Similarly

$$-c_1 V_{ss\sigma} + c_2 E_{1s} = c_2 E$$

$$- \left| \begin{pmatrix} E_{1s} - E & -V_{ss\sigma} \\ -V_{ss\sigma} & E_{1s} - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = 0 \right|$$

Homework 5.5

We have two solutions:

bonding molecular orbital (MO)

$$E_{B} = E_{1s} - V_{ss\sigma}$$

anti-bonding molecular orbital (MO)

$$E_A = E_{1s} + V_{ss\sigma}$$

Pauli exclusion principle:

Two electrons cannot be in the same energy state

bonding orbital

$$|\psi_A(\mathbf{r}) \sim [\phi_1(\mathbf{r}) - \phi_2(\mathbf{r})]|$$

anti-bonding orbital

The two 1s orbitals on each Hydrogen atom combine to generate *two* molecular orbitals (MO): the bonding MO and the anti-bonding MO, with energy splitting

bonding energy vs. atom separation

Example: H-F, C-O, ...

Linear Combination of Atomic Orbitals (LCAO)

$$\psi(\mathbf{r}) = c_1 \phi_1(\mathbf{r}) + c_2 \phi_2(\mathbf{r})$$

For an electron, probabilities in A and B are different

$$P_{A} = \frac{c_{1}^{2}}{c_{1}^{2} + c_{2}^{2}}$$

$$P_B = \frac{c_2^2}{c_1^2 + c_2^2}$$

Polarity (极性) f

$$f = \left| \frac{P_A - P_B}{P_A + P_B} \right| = \left| \frac{c_1^2 - c_2^2}{c_1^2 + c_2^2} \right|$$

For H-H, C-C, ...

$$|c_1| = |c_2| \longrightarrow f = 0$$
 nonpolar bonding covalent (共价键)

For H-F, C-H, Na-Cl, ...

$$|c_1| \neq |c_2| \longrightarrow 0 < f < 1$$
 polar bonding covalent or ionic (离子键)₁₈

Polarity (极性) f

$$f = \left| \frac{P_A - P_B}{P_A + P_B} \right| = \left| \frac{c_1^2 - c_2^2}{c_1^2 + c_2^2} \right|$$

	С	Si	SiC	GaAs	ZnO	NaCl
polarity f	0	0	0.177	0.310	0.616	0.8

Example: H-F, ...

Another Example: C-O bonding

Chemical Bonding 化学键

- Metallic Bonding 金属键
- Ionic Bonding 离子键
- Covalent Bonding 共价键
- Van der Waals Bonding 范德华键
- Hydrogen Bonding 氢键
- ...

Chemical bonding originates from the electron wave functions distributed in multiple atoms

Linear Combination of Atomic Orbitals (LCAO)

$$\psi(\mathbf{r}) = \sum_{n} c_{n} \phi_{n}(\mathbf{r})$$
 use Bloch's Theorem

$$E(k) = E_{1s} - B - 2t \cos(ka)$$

$$k = \frac{2\pi}{a} \frac{n}{N} \qquad n = 0, \pm 1, \pm 2, \dots$$

$$i = 0, \pm 1, \pm 2, \dots$$

$$E(k) = E_{1s} - B - 2t\cos(ka)$$

$$k = \frac{2\pi}{a} \frac{n}{N}$$

$$n = 0, \pm 1, \pm 2, \dots$$

$$E(k) = E_{1s} - B - 2t\cos(ka)$$

when ka is large

$$|E(k) = constant| \longrightarrow discrete orbitals$$

when ka is small

$$E(k) \approx E_{1s} - B - 2t + ta^2 k^2 \propto k^2$$

nearly free electrons

Formation of bands and gaps

Thank you for your attention