概率论与数理统计

点估计

主讲人: 曾华琳

信息科学与技术学院

一点估计问题的一般提法

设总体 X 的分布函数形式已知, 但它的一个或多个参数为 未知,借助于总体 X 的一个样本来估计总体未知参数的值,这样 的问题称为点估计问题。

点估计问题就是要构造一个适当的统计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$,

用密的观察懂, $\hat{\theta}(x_1, x_2, \dots, x_n)$ 来估计参数 θ . θ .

例题 1:在某炸药制造厂,一天中发生着火现象的次数 X 是一个随机变量,假设它服从以 $\lambda > 0$ 为参数的泊松分布,参数 λ 为未知,设有以下的样本值, 试估计参数 λ .

着火次数 k	0	1	2	3	4	5	6	
发生 k 次着	75	90	54	22	6	•	1	$\Sigma = 250$
发生 k 次着 火的天数 n_k	13	90	34		U	Z	1	Z = ZSU

一点估计问题的一般提法

为估计 λ :

我们需要构造出适当的样本的函数 $T(X_1, X_2, ... X_n)$, 每当 有了样本,就代入该函数中算出一个值,用来作为 λ 的估计值。

 $T(X_1, X_2, ... X_n)$ 称为参数 λ 的点估计量,

把样本值代入 $T(X_1,X_2,...X_n)$ 中,得到 λ 的一个点估计值。

着火次数 k	0	1	2	3	4	5	6	
发生 k 次着	75	90	<i>51</i>	22	6	2	1	$\Sigma = 250$
发生 k 次着 火的天数 n_k	13	90	34		U	L	1	$\Delta = 250$

解: 因为 $X \sim \pi(\lambda)$, 所以 $\lambda = E(X)$.

用样本均值来估计总体的均值 E(X). $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

$$\overline{x} = \frac{\sum_{k=0}^{6} k n_k}{\sum_{k=0}^{6} n_k} = \frac{1}{250} (0 \times 75 + 1 \times 90 + 2 \times 54 + 3 \times 22 + 4 \times 6 + 5 \times 2 + 6 \times 1) = 1.22.$$

故 $E(X) = \lambda$ 的估计为 1.22.

一点估计问题的一般提法

由大数定律,
$$\lim_{n\to\infty} P\{|\frac{1}{n}\sum_{i=1}^n X_i - \mu| < \varepsilon\} = 1$$

问题是: 使用什么样的统计量去估计 μ ?

- 样本均值; 2 样本中位数;
- 3 别的统计量。

1 矩估计法

矩估计法是英国统计学家

K.皮尔逊最早提出来的。

1 矩估计法

若总体X 的数学期望 $E(X) = \mu$ 有限,则有

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} E(X) = \mu$$

$$\downarrow \downarrow$$

$$A_{k} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{P} E(X^{k}) = \mu_{k} (k = 1, 2, \cdots)$$

$$g(A_{1}, A_{2}, \cdots, A_{k}) \xrightarrow{P} g(\mu_{1}, \mu_{2}, \cdots, \mu_{k})$$

其中 8 为连续函数。

1 矩估计法

定义:

 用样本原点矩估计相应的总体原点矩,又用样本原 点矩的连续函数估计相应的总体原点矩的连续函数, 这种参数点估计法称为矩估计法。

理论依据: 大数定律

1 矩估计法—具体做法

设总体的分布函数中含有k个未知参数 $\theta_1, \theta_2, \dots, \theta_k$,那么 它的前M阶矩 μ_1,μ_2,\cdots,μ_k , 一般都是这 k个参数的函数, 记为:

$$\mu_i = \mu_i(\theta_1, \theta_2, \dots, \theta_k)$$
 $i=1, 2, \dots, k$

从这 k个方程中解出

$$\theta_i = \theta_i(\mu_1, \mu_2, \dots, \mu_k)$$
 $j=1, 2, \dots, k$

1 矩估计法—具体做法

从这 k 个方程中解出

$$\theta_j = \theta_j(\mu_1, \mu_2, \dots, \mu_k)$$
 $j=1, 2, \dots, k$

那么用诸 μ_i 的估计量 A_i 分别代替上式中的诸 μ_i ,即可得诸 θ_i 的矩估计量:

$$\hat{\theta}_j = \theta_j(A_1, A_2, \dots, A_k) \quad j=1, 2, \dots, k$$

矩估计量的观察值称为矩估计值。

例2: 设总体 X 在 [a,b] 上服从均匀分布 ,a,b 未知。

 X_1, \ldots, X_n 是来自 X 的样本, 试求 a, b 的矩估计量。

解:
$$\mu_1 = E(X) = \frac{a+b}{2}$$

$$\mu_2 = E(X^2) = D(X) + [E(X)]^2$$

$$= \frac{(b-a)^2}{12} + \frac{(a+b)^2}{4}$$

$$\begin{cases} a + b = 2\mu_1 \\ b - a = \sqrt{12(\mu_2 - \mu_1^2)} \end{cases}$$

解得
$$a = \mu_1 - \sqrt{3(\mu_2 - \mu_1^2)}$$
 $b = \mu_1 + \sqrt{3(\mu_2 - \mu_1^2)}$

于是 a, b 的矩估计量为

$$\hat{a} = \bar{X} - \sqrt{\frac{3}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2}, \quad \hat{b} = \bar{X} + \sqrt{\frac{3}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

总体矩

样本矩

例3: 设总体 X 的均值 μ 和方差 $\sigma^2(>0)$ 都存在, μ,σ^2 未知。

 $X_1, ..., X_n$ 是来自 X 的样本,试求 μ, σ^2 的矩估计量。

解
$$\mu_1 = E(X) = \mu$$

$$\mu_2 = E(X^2) = D(X) + [E(X)]^2 = \sigma^2 + \mu^2$$

总体矩 解得 $\mu = \mu_1 - \mu_2$

$$\sigma^2 = \mu_2 - \mu_1^2$$

于是 μ, σ^2 的矩估计量为

$$\hat{\mu} = A_1 = \bar{X}$$
样本矩

$$\widehat{\sigma^2} = A_2 - A_1^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

上例表明:

总体均值与方差的矩估计量的表达式不因不同的总体分布而异。

例 $X \sim N(\mu, \sigma^2)$, μ, σ^2 未知, 即得 μ, σ^2 的矩估计量

$$\hat{\mu} = \overline{X}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$$

一般地,用样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 作为总体X的均值的矩估计,用样本二阶中心矩 $B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$ 作为总体X的 方差的矩估计。

1 矩估计法

•简单易行

· 当总体类型已知时,没有 充分利用分布提供的信息。

谢 谢 大家