

Workshop

- Dictionary
- Data Structures
 - Static Arrays
 - Dynamic Arrays
 - Sorted Arrays
 - Linked Lists
 - Binary Search Trees

Dictionary

- Abstract Data Structure
- Search
 - Given a key, returns the value(s) for that key
- Insert
 - Given a key and value, stores those for later lookup
- Delete
 - Remove a given key/value pair

Static Arrays

- Insert
 - O(\$)

• Search

• O(\$)

Key	Dog	Cat	Bird	•••	Bear			
Value	32	18	44		88			

n values

Static Arrays

- Insert
 - O(1)

• Search

• O(n)

Key	Dog	Cat	Bird	•••	Bear			
Value	32	18	44	•••	88			

n values

Dynamic Arrays

Insert

• O(3	;)
-------	----

Key	Dog	Cat	Bird	•••	Bear	
Value	32	18	44	•••	88	

• Search

• O(\$)

Advantage:

n values

• No limit to key/values & efficient space

Dynamic Arrays

Insert

• O(n)	Key	Dog	Cat	Bird	•••	Bear	
carch	Value	32	18	44	•••	88	

- Search
 - O(n)
- Advantage:

- n values
- No limit to key/values pairs & efficient space

Sorted Dynamic Arrays

- Insert
 - O(\$)

• Search

• O(\$)

Key	Bird	Cat	Dog	•••	Zebra						
Value	44	18	32	•••	48						
n values											

Sorted Dynamic Arrays

Insert

• O(n)	Key	Bird	Cat	Dog	•••	Zebra	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Value		18	32	•••	48	
Adren							

Search

• O(log n)

n values

Linked List

- Insert
 - ○(\$)
- Search
 - O(\$)

Key	Dog	 Key	Cat		→	Key	Bird
Value	32	Value	18			Value	44
Next		Next				Next	

- Advantage:
 - No limit to key/value pairs & efficient space!

Linked List

- Insert
 - O(1)
- Search
 - O(n)

Key	Dog	 Key	Cat		→	Key	Bird
Value	32	Value	18			Value	44
Next		Next				Next	

- Advantage:
 - No limit to key/value pairs & efficient space!

Binary Search Tree

- Binary Search built into list?
- Insert
 - O(\$)
- Search
 - O(\$)

Binary Search Tree

- Binary Search built into list?
- Insert
 - O(n) worst case
 - ⊖(log n) if balanced
- Search
 - O(n) worst case
 - ⊖(log n) if balanced

Binary Search Tree

- Binary Search built into list?
- Insert
 - O(n) worst case
 - ⊖(log n) if balanced
- Search
 - O(n) worst case
 - ⊖(log n) if balanced

Pair Programming Exercises

- Work on the exercises in pairs
- Workshops this week and last week should be particularly useful for the assignment