

Functions

1 Why

We want a notion for a correspondence between two sets.

2 Definition

A **functional** relation on two sets relates each element of the first set with a unique element of the second set. A **function** is a functional relation.

The domain of the function is the first set and codomain of the function is the second set. The function maps elements from the domain to the codomain. We call the codomain element associated with the domain element the result of applying the function to the domain element.

2.1 Notation

Let A and B be sets. If A is the domain and B the codomain, we denote the set of functions from A to B by $A \to B$, read aloud as "A to B".

A function is an element of th set $A \to B$, so we denote them by lower case latin letters, especially f, g, and h. Of course, f is a mnemonic for function; g and h follow f in the alphabet. We denote that $f \in A \to B$, by $f: A \to B$, read aloud as "f from A to B".

Let $f: A \to B$. For each element $a \in A$, we denote the result of applying f to a by f(a), read aloud "f of a." We sometimes drop the parentheses, and write the result as f_a , read aloud as "f sub a."

Let $g: A \times B \to C$. We often write g(a, b) or g_{ab} instead of g((a, b)). We read g(a, b) aloud as "g of a and b". We read g_{ab} aloud as "g sub a b."

3 Properties

Let $f: A \to B$. The **image** of a set $C \subset A$ is the set $\{f(c) \in B \mid c \in C\}$. The **range** of f is the image of the domain. The **inverse image** of a set $D \subset B$ is the set $\{a \in A \mid f(a) \in B\}$.

The range need not equal the codomain; though it, like every other image, is a subset of the codomain. The function maps to domain **on** to the codomain if the range and codomain are equal; in this case we call the function **onto**. This language suggests that every element of the codomain is used by f. It means that for each element b of the codomain, we can find an element a of the domain so that f(a) = b.

An element of the codomain may be the result of several ele-

ments of the domain. This overlapping, using an element of the codomain more than once, is a regular occurrence. If a function is a unique correspondence in that every domain element has a different result, we call it **one-to-one**. This language is meant to suggest that each element of the domain corresponds to one and exactly one element of the codomain, and vice versa.

3.1 Notation

Let $f:A\to B$. We denote the image of $C\subset A$ by f(C), read aloud as "f of C." This notation is overloaded: for $c\in C$, $f(c)\in A$, whereas $f(C)\subset A$. Read aloud, the two are indistinguishable, so we must be careful to specify whether we mean an element c or a set C. The property that f is onto can be written succintly as f(A)=B. We denote the inverse image of $D\subset B$ by $f^{-1}(D)$, read aloud as "f inverse D."