

ME40343: Helicopter Dynamics

ADVANCED HELICOPTER DYNAMICS

Dr David Cleaver S1 2018

PART 1: LECTURE PLAN

1: Introduction

2: Actuator Disc Theory (ADT) Hover

3: ADT Vertical Flight

4: ADT Forward Flight

5: Blade Element Theory (BET)

6: Blade Element Momentum Theory (BEMT)

7: Coursework – The Wind Turbine

ACTUATOR DISC THEORY*

BET / BEMT*

* 1 Question Each in Exam Paper

ME40343: Helicopter Dynamics

Dr D Cleaver

HOVER

$$\lambda_i = \frac{V_i}{V_T}$$
 $\sigma = \left(\frac{N_b c}{\pi R}\right)$ $C_T = \frac{T}{\rho A (\Omega R)^2}$ $C_P = \frac{P}{\rho A (\Omega R)^3}$

$$V_h = \sqrt{\left(\frac{T}{A}\right)\frac{1}{2\rho}}$$
 $C_P = \frac{C_T^{\frac{3}{2}}}{\sqrt{2}}$ $\lambda_h = \sqrt{\frac{C_T}{2}}$

$$C_P = \frac{C_T^{\frac{3}{2}}}{\sqrt{2}}$$

$$\lambda_h = \sqrt{\frac{C_T}{2}}$$

$$A_{\rho}=B^2A$$

$$FM = \frac{ideal\ power}{actual\ power} = \frac{\frac{C_T^{\frac{3}{2}}}{\sqrt{2}}}{\frac{\kappa C_T^{\frac{3}{2}}}{\sqrt{2}} + \frac{1}{8}\sigma C_{d0}} \qquad B \approx 1 - \frac{c_0(1+0.7\tau)}{1.5R}$$

$$B \approx 1 - \frac{1.386\lambda}{N_b}$$

- Applies momentum theory to a rotor.
- Accuracy improved through 3 non-ideal corrections.
- Vertical Flight: 3 equations, 4 Working States (VRS dangerous; IA = safety case)
- Forward Flight: 1 equation, be wary of limits of validity.

ROTOR AERODYNAMICS

1. Actuator Disc Theory Newton's second law: **F** = **ma** V=0 1D 'Conceptual' Approach

LECTURE 5

5: Blade Element Theory

- 1. Derive BET for hover & axial flight
- 2. Apply to untwisted blade
- 3. Apply to twisted blade

Dr D Cleaver

DEFINITIONS

Important Angles:

$$\phi = tan^{-1} \left(\frac{V_c + V_i}{\Omega y} \right)$$
$$\alpha = \theta - \phi$$

Element Forces:

$$dL = \frac{1}{2}\rho U^2 c C_l dy$$
$$dD = \frac{1}{2}\rho U^2 c C_d dy$$

In Rotor Plane:

$$dF_z = dLcos\phi - dDsin\phi$$
$$dF_x = dLsin\phi + dDcos\phi$$

5: BET

Dr D Cleaver

5: BET

ROTOR SINGLE BLADE $V_T = \Omega R$ $r_{min}R$

SIMPLIFYING ASSUMPTIONS

1. ϕ is small

$$U = \sqrt{{U_T}^2 + {U_P}^2} \approx U_T$$

$$\phi \approx \frac{V_c + V_i}{\Omega y}$$
 $\sin \phi \approx \phi$ $\cos \phi \approx 1$

2. dD is small compared to dL

$$dF_{z} = dL\cos\phi - dD\sin\phi \longrightarrow dF_{z} = dL$$

$$dF_{x} = dL\sin\phi + dD\cos\phi \longrightarrow dF_{x} = dL\phi + dD$$

WHOLE ROTOR

Apply to all blades (annulus)

1. Thrust (vertical force)
$$dF_z = dL$$
 $dT = N_b dF_z = N_b dL$

2. Torque (dFx * distance)
$$dF_x = dL\phi + dD$$

$$dQ = N_b dF_x y = N_b (dL\phi + dD) y$$

3. Power (Torque * rotational velocity)

$$dP = N_b(dL\phi + dD)\Omega y$$

ROTOR SINGLE BLADE y=7.8m r=0 R r=1

NON-DIMENSIONALIZATION

$$r = \frac{y}{R}$$

$$\frac{U}{\Omega R} = \frac{\Omega y}{\Omega R} = r$$

$$\phi \approx \frac{V_c + V_i}{\Omega y}$$

$$\lambda = \frac{V_c + V_i}{\Omega R} = r\phi$$

$$dC_T = \frac{dT}{\rho(\Omega R)^2 A}$$

$$dC_Q = \frac{dQ}{\rho(\Omega R)^2 AR}$$

$$dC_P = \frac{dP}{\rho(\Omega R)^3 A}$$

THRUST $dT = N_b dL$ $dC_T = \frac{dT}{\rho(\Omega R)^2 A}$ $dL = \frac{1}{2}\rho U^2 c C_l dy$ $=\frac{N_b dL}{\rho(\Omega R)^2 A}$ $= \frac{N_b \frac{1}{2} \rho U^2 c C_l dy}{\rho (\Omega R)^2 \pi R^2}$ $r = \frac{y}{D}$: dy = Rdr $= \frac{1}{2} \frac{N_b c}{\pi R} C_l r^2 dr$

$$\sigma = \frac{N_b C}{\pi R}$$

$$dC_T = \frac{1}{2}\sigma C_l r^2 dr$$

Thrust coefficient for a rotor annulus.

POWER / TORQUE

$$dC_P = dC_Q = \frac{dQ}{\rho(\Omega R)^2 AR}$$

$$dQ = N_b(dL\phi + dD)y$$

$$dL = \frac{1}{2} \rho U^2 c C_l dy$$

$$= \frac{N_b(dL\phi + dD)y}{\rho(\Omega R)^2 \pi R^3} \qquad dD = \frac{1}{2}\rho U^2 c C_d dy$$

$$dD = \frac{1}{2}\rho U^2 c C_d dy$$

$$= \frac{\frac{1}{2}\rho U^{2}cN_{b}(C_{l}\phi + C_{d})ydy}{\rho(\Omega R)^{2}\pi R^{3}} \frac{\frac{U}{\Omega R} = r}{r = \frac{y}{2} \cdot dy}$$

$$\frac{U}{\Omega R} = r$$

 $r=\frac{y}{R}$: dy = Rdr

$$r^3 dr$$

$$= \frac{1}{2} \frac{N_b c}{\pi R} \left(C_l \frac{\lambda}{r} + C_d \right) r^3 dr$$

$$\sigma = \frac{N_b c}{\pi R}$$

$$dC_P = dC_Q = \frac{1}{2}\sigma(C_l \lambda r^2 + C_d r^3)dr$$

Power/Torque coefficient for a rotor annulus.

ROTOR SINGLE BLADE

INTEGRATION

For single annulus:

$$dC_T = \frac{1}{2}\sigma C_l r^2 dr$$

$$dC_P = dC_Q = \frac{1}{2}\sigma(C_l \lambda r^2 + C_d r^3)dr$$

For whole rotor:

$$C_T = \frac{1}{2} \int_{r_{min}}^{r_{max}} \sigma C_l \, r^2 dr$$

$$C_P = C_Q = \frac{1}{2} \int_{r_{min}}^{r_{max}} \sigma(C_l \lambda r^2 + C_d r^3) dr$$

INTERPRETATION

$$C_T = \frac{1}{2} \int_{r_{min}}^{r_{max}} c_l r^2 dr$$

$$C_P = C_Q = \frac{1}{2} \int_{r_{min}}^{r_{max}} \sigma(C_l) (r^2 + C_d)^3) dr$$

$$\sigma = \frac{N_b c}{\pi R}$$

- Solidity outside if assumed constant over blade (no taper)
- 2. Tip Loss can be corrected for through Prandtl tip loss $R_e = BR$.
- 3. Drag Coefficient can be estimated from experimental data / approximated with constant ($C_d = C_{d0}$)
- 4. Lift Coefficient can be estimated from experimental data / approximated from theory, $(C_1 = 2\pi\alpha)$

Linearized Aerodynamics

$$m{C_l} = m{C_{llpha}}(lpha - lpha_0)$$

$$= m{C_{llpha}}(m{ heta} - m{lpha}_0 - m{\phi})$$

$$= m{C_{llpha}}(m{ heta} - m{\phi})$$
 $m{lpha}_0$ = 0 as symmetrical / already adjusted for

$$C_{T} = \frac{1}{2} \int_{r_{min}}^{r_{max}} \sigma C_{l} r^{2} dr$$

$$= \frac{1}{2} \sigma C_{l\alpha} \int_{r_{min}}^{r_{max}} (\theta - \phi) r^{2} dr$$

$$\lambda = r \phi$$

$$C_T = \frac{1}{2} C_{l\alpha} \int_{r_{min}}^{r_{max}} \sigma(\theta r^2 - \lambda r) dr$$

(Only applies to linearized problems!)

BET EXAMPLE 1: Untwisted Blade, Uniform Inflow

Apply to a rigid 4-bladed, untwisted constant-chord rotor subject to a uniform inflow in hover.

- a) How does thrust coefficient vary with pitch angle? Show graphically.
- b) What is the collective angle required to achieve a thrust coefficient of 0.01?
- c) How does this change if you correct for tip losses?

$$r_{min} = 0$$

$$R=3 m$$

$$c = 0.2 \text{ m}$$

$$C_{l\alpha}=2\pi$$

$$\sigma = 0.085$$

BET EXAMPLE 1: Untwisted Blade, Uniform Inflow

Linearized Aerodynamics:

$$C_T = \frac{1}{2}C_{l\alpha}\int_{r_{min}}^{r_{max}} \sigma(\theta r^2 - \lambda r) dr$$

Untwisted ($\theta = \theta_0$), no taper ($\sigma = constant$):

$$C_T = \frac{1}{2}\sigma C_{l\alpha} \int_0^1 (\theta_0 r^2 - \lambda r) dr$$

Integrate

$$= \frac{1}{2}\sigma C_{l\alpha} \left[\frac{\theta_0 r^3}{3} - \frac{\lambda r^2}{2} + c \right]_0^1$$

$$C_T = \frac{1}{2} \sigma C_{l\alpha} \left(\frac{\theta_0}{3} - \frac{\lambda}{2} \right)$$

BET EXAMPLE 1: Untwisted Blade, Uniform Inflow

$$C_T = \frac{1}{2} \sigma C_{l\alpha} \left(\frac{\theta_0}{3} - \frac{\lambda}{2} \right)$$

Need value for inflow, use ADT: $\lambda_h = \sqrt{C_T/2}$

$$C_T = \frac{1}{2} \sigma C_{l\alpha} \left(\frac{\theta_0}{3} - \frac{1}{2} \sqrt{\frac{C_T}{2}} \right)$$

BET EXAMPLE 1: Untwisted Blade, Uniform Inflow

b) What is the collective angle required to achieve a thrust coefficient of 0.01?

$$\theta_0 = \frac{6C_T}{\sigma C_{l\alpha}} + \frac{3}{2} \sqrt{\frac{C_T}{2}}$$

Apply Values:

$$= \frac{6*0.01}{0.085*2*\pi} + \frac{3}{2} \sqrt{\frac{0.01}{2}}$$

$$\theta_0 = 12.5^{\circ}$$

BET EXAMPLE 1: Untwisted Blade, Uniform Inflow

c) How does this change if you correct for tip losses?

Untapered (constant-chord)

$$B \approx 1 - \frac{1.386\lambda}{N_b}$$

$$=1 - \frac{1.386\sqrt{\frac{C_T}{2}}}{N_b} = 0.975$$

Increased V_i in this region to compensate

BET EXAMPLE 1: Untwisted Blade, Uniform Inflow

Change in λ_h due to reduced area:

$$\lambda_h = \frac{1}{V_T} \sqrt{\left(\frac{T}{AB^2}\right) \frac{1}{2\rho}}$$
$$= \frac{1}{B} \frac{1}{V_T} \sqrt{\left(\frac{T}{A}\right) \frac{1}{2\rho}} = \frac{\lambda_{old}}{B}$$

BET EXAMPLE 1: Untwisted Blade, Uniform Inflow

Linearized Aerodynamics:

$$C_T = \frac{1}{2}C_{l\alpha}\int_{r_{min}}^{r_{max}} \sigma(\theta r^2 - \lambda r) dr$$

Untwisted ($\theta = \theta_0$), no taper ($\sigma = constant$):

$$C_T = \frac{1}{2}\sigma C_{l\alpha} \int_0^1 \left(\theta_0 r^2 - \frac{\lambda_{old}}{B}r\right) dr$$

Integrate

$$= \frac{1}{2}\sigma C_{l\alpha} \left[\frac{\theta_0 r^3}{3} - \frac{\lambda r^2}{2B} + c \right]_0^1$$

$$C_T = \frac{1}{2} \sigma C_{l\alpha} \left(\frac{\theta_0}{3} - \frac{\lambda}{2B} \right)$$

BET EXAMPLE 1: Untwisted Blade, Uniform Inflow

$$C_T = \frac{1}{2} \sigma C_{l\alpha} \left(\frac{\theta_0}{3} - \frac{\lambda}{2B} \right)$$

$$\theta_0 = \frac{6C_T}{\sigma C_{l\alpha}} + \frac{3}{2B} \sqrt{\frac{C_T}{2}}$$

$$= \frac{6*0.01}{0.085*2*\pi} + \frac{3}{2*0.975} \sqrt{\frac{0.01}{2}}$$

$$\theta_0 = 12.7^{\circ}$$

Makes sense. Higher V_i which needs higher angles

Apply Values

BET EXAMPLE 2: Linearly Twisted Blade, Uniform Inflow

- a) Derive an expression for the thrust coefficient for this case with θ_{tw} = 2°.
- b) Using the same variables as for BET Example 1, graphically show how this changes thrust coefficient?
- c) What is the new value of θ_o required for C_T = 0.01?

BET EXAMPLE 2: Linearly Twisted Blade, Uniform Inflow

Linearized Aerodynamics:

$$\theta(r) = \theta_o + r\theta_{tw}$$

$$C_T = \frac{1}{2} C_{l\alpha} \int_{r_{min}}^{r_{max}} \sigma(\theta r^2 - \lambda r) dr$$

Twisted with no taper:

$$= \frac{1}{2}\sigma C_{l\alpha} \int_0^1 ((\theta_o + r\theta_{tw})r^2 - \lambda r) dr$$

Expand:

$$= \frac{1}{2}\sigma C_{l\alpha} \int_0^1 (\theta_o r^2 + \theta_{tw} r^3 - \lambda r) dr$$

Integrate:

$$= \frac{1}{2}\sigma C_{l\alpha} \left[\theta_o \frac{r^3}{3} + \theta_{tw} \frac{r^4}{4} - \lambda \frac{r^2}{2} + c \right]_0^1$$

$$C_T = \frac{1}{2}\sigma C_{l\alpha} \left(\frac{\theta_o}{3} + \frac{\theta_{tw}}{4} - \frac{\lambda}{2} \right)$$

BET EXAMPLE 2: Linearly Twisted Blade, Uniform Inflow

b) Using the same variables as for BET Example 1, graphically show how this changes thrust coefficient?

$$C_T = \frac{1}{2} \sigma C_{l\alpha} \left(\frac{\theta_o}{3} + \frac{\theta_{tw}}{4} - \frac{\lambda}{2} \right)$$

Rearrange:

$$\theta_0 = \frac{6C_T}{\sigma C_{l\alpha}} - \frac{3\theta_{tw}}{4} + \frac{3}{2} \sqrt{\frac{C_T}{2}}$$

BET EXAMPLE 2: Linearly Twisted Blade, Uniform Inflow

c) What is the new value of θ_0 required for $C_T = 0.01$?

$$\theta_0 = \frac{6C_T}{\sigma C_{l\alpha}} \left(-\frac{3\theta_{tw}}{4} + \frac{3}{2} \sqrt{\frac{C_T}{2}} \right)$$

Substitute Values:

$$= \frac{6*0.01}{0.085*2\pi} - \frac{3*(2*\pi/180)}{4} + \frac{3}{2}\sqrt{\frac{0.01}{2}}$$

$$\theta_0 = 0.192 \ rad \ OR \ 11.0^{\circ}$$

Exactly 1.5° less than untwisted blade.

For linear variation ¾ span representative of whole blade.

SUMMARY

1. Derivation of thrust and power for hover / axial flight

$$C_T = \frac{1}{2} \int_{r_{min}}^{r_{max}} \sigma C_l \, r^2 dr$$

$$\sigma = \frac{N_b c}{\pi R}$$

$$C_P = C_Q = \frac{1}{2} \int_{r_{min}}^{r_{max}} \sigma(C_l \lambda r^2 + C_d r^3) dr$$

- 2. Assumes uniform inflow (constant λ from ADT)
- 3. C_l and C_d will be function of radius and α
- 4. Can be approximated through linearized aerodynamics

$$C_T = \frac{1}{2}C_{l\alpha}\int_{r_{min}}^{r_{max}} \sigma(\theta r^2 - \lambda r) dr$$

5. Lets you design the blade, as well as estimate performance

Next?

Tutorial Questions: ADT Q1 - 13

BET Q1-4

Further Reading: Blade Element Momentum Theory Notes.

Next Lecture: Blade Element Momentum Theory.