

FACULTY OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF MECHANICAL ENGINEERING

ENGR-251 THERMODYNAMICS I

Student's Name:		
I.D.:		
Duration 60 minute	s	

PROBLEM 1 (50 points)

 $0.1~{\rm m}^3$ of an ideal gas is compressed from a pressure of 120 kPa and temperature of 25°C to a pressure of 1.2 MPa according to the law PV^{1.2}=constant. Determine:

1- The work transferred during the compression.

Note: Demonstrate the formulation of the work for a polytropic process (4 points), otherwise use the formulation:

Work for a polytropic process:
$$W = \frac{P_2V_2 - P_1V_1}{1-n}$$

- **2-** The change in internal energy.
- **3-** The heat transferred during the compression.

Assume: $C_v = 0.72 \text{ kJ/kg K}$ and R=0.285 kJ/kg K

Formulas:

Ideal gas law: Pv = RT

First law of thermodynamics for a closed system: $\Delta U = Q - W$ (neglecting ΔE_k

and ΔE_p)

Specific heat at constant pressure: $C_p = \frac{\partial h}{\partial T}$

Specific heat at constant volume: $C_v = \frac{\partial u}{\partial T}$

PROBLEM 2 (50 points)

Water contained in a piston-cylinder assembly undergoes two processes in series from an initial state where the pressure is 1 MPa and the temperature is 400°C.

Process 1-2: The water is cooled as it is compressed at a constant pressure of 1 MPa to the saturated vapor state.

Process 2-3: The water is cooled at constant volume to 150°C.

- 1- For the overall process determine the work, in kJ/kg.
- 2- For the overall process determine the heat transfer, in kJ/kg.

Formulas:

Work:
$$W = \int_{initial state}^{final state} P dv$$

First law of thermodynamics for a closed system: $\Delta U = Q - W$ (neglecting ΔE_k and ΔE_p)