

Optimisation des coûts pour différents niveaux de stock

A stock Management problem

Elio BOU SERHAL & Kawtar RIFI

Objectifs:

- Réduire les coûts totaux
- Trouver le niveau de stock optimal

Ce projet vise à optimiser les coûts associés au stockage et à l'achat de composants en simulant les défaillances prévues à l'aide de méthodes Monte Carlo.

Méthodologie

Pour optimiser les coûts de stock, nous procédons en trois étapes principales:

Modélisation des couts

- Coût de stockage par unité (Cs)
- Coût d'achat par unité lorsque les composants échouent (Ca)

Modélisation des composantes défaillantes

- Simuler les défaillances à l'aide d'une distribution bêta-binomiale.
- Simuler les défaillances à l'aide de Monte Carlo basée sur une distribution de Poisson.

Prise de décision: Stocker ou Acheter 1

Modélisation des couts

Cout de stockage

Le cout de stocker des composantes pour une période

Cout d'achat

le cout d'achat d'une nouvelle composante

Cout Total

Le cout attendu

Modélisation des couts

1) Coût de stockage :

- Coût par unité stockée par période, noté Cs.
- Stocker S unités pendant une période engendre un coût total de Cs×S.

2) Coût d'achat :

- Coût unitaire d'achat d'une nouvelle composante, noté Ca.
- Acheter A nouvelles unités coûte Ca×A.

3) Coût total attendu:

- Si l'on stocke S unités, le coût total est donné par :
 - --> $CT(S)=(Cs\times S) + E[max(0,y(tilde)-S)]\times Ca$
- E[max(0,y(tild)-S)]: représente le nombre attendu de pièces défaillantes non couvertes par le stock, nécessitant un achat.

2

Modélisation des composantes défaillantes

Méthode 1: Simulation basée sur une distribution bêta-binomiale

Distribution bêta-binomiale (incertitude probabilistique)

Méthode 2: Simulation Monte Carlo avec distribution de Poisson

Distribution de Poisson (taux moyen fixe)

Méthode 1: Simulation basée sur une distribution bêta-binomiale

- y(tilde) : Nombre de composants défaillants prévus
- n(tilde): Nombre de nouveaux composants
- Cs: Coût de stockage par unité
- Ca: Coût d'achat par unité lorsque les composants échouent
- M :Nombre de simulations pour l'échantillonnage de défaillances

Méthode 2: Simulation Monte Carlo avec distribution de Poisson

Coût total en fonction du niveau de stock

- M : Nombre de défaillances simulées, généré avec la fonction rpois
- Lambda : Taux moyen de défaillances

Différences entre les deux méthodes

Simulation des défaillances :

Méthode 1 : Distribution bêta-binomiale (incertitude probabilistique).

Méthode 2 : Distribution de Poisson (taux moyen fixe).

Approche d'optimisation :

Méthode 1 : Calcul explicite des coûts pour chaque niveau de stock.

Méthode 2 : Utilise optimize pour trouver directement le niveau optimal de stock.

Flexibilité:

Méthode 1 offre une vision détaillée des coûts pour chaque niveau de stock.

Méthode 2 est plus efficace pour trouver le stock optimal rapidement.

3

Prise de décision: Stocker ou Acheter

Shiny

- Shiny est un package en R qui permet de créer des applications web interactives pour visualiser et analyser des données.
- Il est couramment utilisé pour partager des résultats d'analyse de données ou pour créer des outils interactifs de prise de décision.

http://127.0.0.1:5967/

Thank you