A Generic Framework for Symbolic Execution

Jan Tušil

8. prosince 2017

Intro

- 2 Jazyk, logika, sémantika
 - Logika konfigurací
 - Logika běhů

Závěr

MojeIntro

```
int x,y;
x = get();
y = -x;
y = -y;
assert(x == y);
Může assert selhat?
```

Operační sémantika

 $\textit{OpSem}: \textit{Program} \rightarrow \textit{TransitionSystem}$

Operační sémantika

 $\textit{OpSem}: \textit{Program} \rightarrow \textit{TransitionSystem}$

Konfigurace

$$\langle x = get(); \land y = -x; \land y = -y; \land assert(x == y); \rangle_k \langle x = 0, y = 0 \rangle_{env}$$

Konfigurace

$$\langle x = get(); \land y = -x; \land y = -y; \land assert(x == y); \rangle_k \langle x = 0, y = 0 \rangle_{env}$$

Ukázka

Symbolická Konfigurace

$$\langle y=-x; \curvearrowright y=-y; \curvearrowright \textit{assert}(x==y); \rangle_k \langle x=X, y=0 \rangle_{\mathsf{env}}$$

Symbolická Konfigurace

$$\langle y=-x; \curvearrowright y=-y; \curvearrowright \textit{assert}(x==y); \rangle_k \langle x=X, y=0 \rangle_{\mathsf{env}}$$

Ukázka

Symbolická exekuce

Princip (Pokrytí)

Každému (potenciálně nekonečnému) konkrétnímu běhu odpovídá nějaký symbolický běh.

Symbolická exekuce

Princip (Pokrytí)

Každému (potenciálně nekonečnému) konkrétnímu běhu odpovídá nějaký symbolický běh.

Princip (Přesnost)

Každému konečnému symbolickému běhu odpovídá nějaký konkrétní běh.

Symbolická exekuce

Princip (Pokrytí)

Každému (potenciálně nekonečnému) konkrétnímu běhu odpovídá nějaký symbolický běh.

Princip (Přesnost)

Každému konečnému symbolickému běhu odpovídá nějaký konkrétní běh.

Nekonečné běhy - koindukce

Poznámka (Sortování)

Říkáme-li o množině X, že je Y-sortovaná, máme tím na mysli, že existuje funkce $SortOf: X \rightarrow Y$.

Poznámka (Sortování)

Říkáme-li o množině X, že je Y-sortovaná, máme tím na mysli, že existuje funkce $SortOf: X \rightarrow Y$.

Definice

Vícedruhová algebraická signatura je tvořena množinou sortů S spolu s $S^* \times S$ -sortovanou množinou Σ funkčních symbolů. Symbol T_{Σ} označuje Σ -algebru uzavřených termů, $T_{\Sigma,s}$ množinu termů sortu s, T_{Σ} (Var) volnou Σ -algebru termů s proměnnými.

Poznámka (Sortování)

Říkáme-li o množině X, že je Y-sortovaná, máme tím na mysli, že existuje funkce $SortOf: X \rightarrow Y$.

Definice

Vícedruhová algebraická signatura je tvořena množinou sortů S spolu s $S^* \times S$ -sortovanou množinou Σ funkčních symbolů. Symbol T_{Σ} označuje Σ -algebru uzavřených termů, $T_{\Sigma,s}$ množinu termů sortu s, T_{Σ} (Var) volnou Σ -algebru termů s proměnnými.

```
Plant ::= favouriteFood (Animal)
Animal ::= mother (Animal) | father (Animal)
```

Poznámka (Sortování)

Říkáme-li o množině X, že je Y-sortovaná, máme tím na mysli, že existuje funkce $SortOf: X \rightarrow Y$.

Definice

Vícedruhová algebraická signatura je tvořena množinou sortů S spolu s $S^* \times S$ -sortovanou množinou Σ funkčních symbolů. Symbol T_{Σ} označuje Σ -algebru uzavřených termů, $T_{\Sigma,s}$ množinu termů sortu s, T_{Σ} (Var) volnou Σ -algebru termů s proměnnými.

```
Plant ::= favouriteFood(Animal)
Animal ::= mother(Animal) | father(Animal)
```

Příklad.

Definice

Signatura provořádové logiky (Σ,Π) je tvořena algebraickou signaturou Σ a S^* -sortovanou množinou predikátových symbolů Π .

Definice

Signatura provořádové logiky (Σ, Π) je tvořena algebraickou signaturou Σ a S^* -sortovanou množinou predikátových symbolů Π .

Definice (Formule)

Množina formulí nad signaturou (Σ, Π) je definována:

$$\phi ::= \top \mid p(t_1,\ldots,t_n) \mid \neg \phi \mid \phi \land \phi \mid (\exists X) \phi$$

kde p označuje predikátové symboly, X podmnožiny proměnných a t_i Σ -termy s volnými proměnnými.

Definice

Signatura provořádové logiky (Σ,Π) je tvořena algebraickou signaturou Σ a S^* -sortovanou množinou predikátových symbolů Π .

Definice (Formule)

Množina formulí nad signaturou (Σ, Π) je definována:

$$\phi ::= \top \mid p(t_1, \ldots, t_n) \mid \neg \phi \mid \phi \land \phi \mid (\exists X) \phi$$

kde p označuje predikátové symboly, X podmnožiny proměnných a t_i Σ -termy s volnými proměnnými.

Příklad (StaršíNež).

Definice

Signatura provořádové logiky (Σ,Π) je tvořena algebraickou signaturou Σ a S^* -sortovanou množinou predikátových symbolů Π .

Definice (Formule)

Množina formulí nad signaturou (Σ, Π) je definována:

$$\phi ::= \top \mid p(t_1,\ldots,t_n) \mid \neg \phi \mid \phi \land \phi \mid (\exists X) \phi$$

kde p označuje predikátové symboly, X podmnožiny proměnných a t_i Σ -termy s volnými proměnnými.

Příklad (StaršíNež). Předpokládáme predikát rovnosti.

Analogie s realizacemi jazyků v MA007.

Definice

Model signatury (Σ, Π) je Σ -algebra \mathcal{T} spolu s realizací $\mathcal{T}_p \subseteq \mathcal{T}_{s_1} \times \cdots \times \mathcal{T}_{s_n}$ pro každý predikátový symbol $p \in \Pi_{s_1 \dots s_n}$.

Analogie s realizacemi jazyků v MA007.

Definice

Model signatury (Σ, Π) je Σ -algebra \mathcal{T} spolu s realizací $\mathcal{T}_p \subseteq \mathcal{T}_{s_1} \times \cdots \times \mathcal{T}_{s_n}$ pro každý predikátový symbol $p \in \Pi_{s_1...s_n}$.

Zvířecí příklad.

Analogie s realizacemi jazyků v MA007.

Definice

Model signatury (Σ, Π) je Σ -algebra \mathcal{T} spolu s realizací $\mathcal{T}_p \subseteq \mathcal{T}_{s_1} \times \cdots \times \mathcal{T}_{s_n}$ pro každý predikátový symbol $p \in \Pi_{s_1 \dots s_n}$.

Zvířecí příklad.

Definice (Relace splnitelnosti)

Pro (Σ,Π) -formuli ϕ , (Σ,Π) -model $\mathcal T$ a valuaci ρ : $Var \to \mathcal T$ definujeme relaci splnitelnosti $\rho \models \phi$ jako obvykle. (Valuaci ρ přirozeně rozšiřujeme na morfismus Σ -algeber ρ : T_{Σ} (Var) $\to \mathcal T$.)

Analogie s realizacemi jazyků v MA007.

Definice

Model signatury (Σ, Π) je Σ -algebra \mathcal{T} spolu s realizací $\mathcal{T}_p \subseteq \mathcal{T}_{s_1} \times \cdots \times \mathcal{T}_{s_n}$ pro každý predikátový symbol $p \in \Pi_{s_1 \dots s_n}$.

Zvířecí příklad.

Definice (Relace splnitelnosti)

Pro (Σ,Π) -formuli ϕ , (Σ,Π) -model $\mathcal T$ a valuaci ρ : $Var \to \mathcal T$ definujeme relaci splnitelnosti $\rho \models \phi$ jako obvykle. (Valuaci ρ přirozeně rozšiřujeme na morfismus Σ -algeber ρ : T_{Σ} (Var) $\to \mathcal T$.)

Zkusme to na tabuli.

Analogie s realizacemi jazyků v MA007.

Definice

Model signatury (Σ, Π) je Σ -algebra \mathcal{T} spolu s realizací $\mathcal{T}_p \subseteq \mathcal{T}_{s_1} \times \cdots \times \mathcal{T}_{s_n}$ pro každý predikátový symbol $p \in \Pi_{s_1 \dots s_n}$.

Zvířecí příklad.

Definice (Relace splnitelnosti)

Pro (Σ,Π) -formuli ϕ , (Σ,Π) -model $\mathcal T$ a valuaci ρ : $Var \to \mathcal T$ definujeme relaci splnitelnosti $\rho \models \phi$ jako obvykle. (Valuaci ρ přirozeně rozšiřujeme na morfismus Σ -algeber ρ : T_{Σ} (Var) $\to \mathcal T$.)

Zkusme to na tabuli.

Příklad.

Analogie s realizacemi jazyků v MA007.

Definice

Model signatury (Σ, Π) je Σ -algebra \mathcal{T} spolu s realizací $\mathcal{T}_p \subseteq \mathcal{T}_{s_1} \times \cdots \times \mathcal{T}_{s_n}$ pro každý predikátový symbol $p \in \Pi_{s_1 \dots s_n}$.

Zvířecí příklad.

Definice (Relace splnitelnosti)

Pro (Σ,Π) -formuli ϕ , (Σ,Π) -model $\mathcal T$ a valuaci ρ : $Var \to \mathcal T$ definujeme relaci splnitelnosti $\rho \models \phi$ jako obvykle. (Valuaci ρ přirozeně rozšiřujeme na morfismus Σ -algeber ρ : T_{Σ} (Var) $\to \mathcal T$.)

Zkusme to na tabuli.

Příklad.

Formule ϕ je validní (v \mathcal{T}), když je splněná všemi valuacemi. Označujeme: $\models \phi$.

Co bylo na začátku?

$$\left<\left< x = 5; \curvearrowright y = -x; \right>_{\mathbf{k}} \left< x \mapsto 0, y \mapsto 0 \right>_{\mathbf{env}} \right>_{\mathbf{cfg}}$$

$$\left<\left< x = 5; \curvearrowright y = -x; \right>_{\mathbf{k}} \left< x \mapsto 0, y \mapsto 0 \right>_{\mathbf{env}} \right>_{\mathbf{cfg}}$$

Tohle je nějaký term.

$$\langle\langle x=5; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle x\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Tohle je nějaký term.

$$\left\langle \left\langle X=I; \curvearrowright y=-x; \right\rangle_{\mathsf{k}} \! \left\langle X \mapsto 0, y \mapsto 0 \right\rangle_{\mathsf{env}} \right\rangle_{\mathsf{cfg}}$$

$$\langle\langle x=5; \frown y=-x; \rangle_{\mathsf{k}} \langle x\mapsto 0, y\mapsto 0 \rangle_{\mathsf{env}} \rangle_{\mathsf{cfg}}$$

Tohle je nějaký term.

$$\langle\langle X=I; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle X\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Term s volnými proměnnými (X, I).

$$\langle\langle x=5; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle x\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Tohle je nějaký term.

$$\langle\langle X=I; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle X\mapsto 0, y\mapsto 0 \rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Term s volnými proměnnými (X, I). Můžeme popsat strukturu takovýchto termů?

$$\langle\langle x=5; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle x\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Tohle je nějaký term.

$$\langle\langle X=I; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle X\mapsto 0, y\mapsto 0 \rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Term s volnými proměnnými (X, I). Můžeme popsat strukturu takovýchto termů? Třeba sorty: $S = \{Cfg, Map, Stmt, Expr, Id, Int\}$

$$\langle\langle x=5; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle x\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Tohle je nějaký term.

$$\langle\langle X=I; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle X\mapsto 0, y\mapsto 0 \rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Term s volnými proměnnými (X, I). Můžeme popsat strukturu takovýchto termů? Třeba sorty: $S = \{Cfg, Map, Stmt, Expr, Id, Int\}$ Symboly:

$$\left<\left< x = 5; \curvearrowright y = -x; \right>_{\mathsf{k}} \left< x \mapsto 0, y \mapsto 0 \right>_{\mathsf{env}} \right>_{\mathsf{cfg}}$$

Tohle je nějaký term.

$$\langle\langle X=I; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle X\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Term s volnými proměnnými (X, I). Můžeme popsat strukturu takovýchto termů? Třeba sorty: $S = \{Cfg, Map, Stmt, Expr, Id, Int\}$ Symboly: např.

$$\langle\langle_
angle_k\langle_
angle_{ ext{env}}
angle_{ ext{cfg}}\in\Sigma_{ ext{Stmt}, ext{Map}, ext{Cfg}}$$

$$\langle\langle x=5; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle x\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Tohle je nějaký term.

$$\langle\langle X=I; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle X\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Term s volnými proměnnými (X, I). Můžeme popsat strukturu takovýchto termů? Třeba sorty: $S = \{Cfg, Map, Stmt, Expr, Id, Int\}$ Symboly: např.

$$\langle\langle_
angle_k\langle_
angle_{ ext{env}}
angle_{ ext{cfg}}\in\Sigma_{ ext{Stmt}, ext{Map}, ext{Cfg}}$$

Mohli bychom použít vícedruhovou logiku prvního řádu k uvažování o konfiguracích?

$$\langle\langle x=5; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle x\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Tohle je nějaký term.

$$\langle\langle X=I; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle X\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Term s volnými proměnnými (X, I). Můžeme popsat strukturu takovýchto termů? Třeba sorty: $S = \{Cfg, Map, Stmt, Expr, Id, Int\}$ Symboly: např.

$$\langle\langle_
angle_k\langle_
angle_{ ext{env}}
angle_{ ext{cfg}}\in\Sigma_{ ext{Stmt}, ext{Map}, ext{Cfg}}$$

Mohli bychom použít vícedruhovou logiku prvního řádu k uvažování o konfiguracích? Jak by vypadaly modely?

$$\langle\langle x=5; \frown y=-x; \rangle_{\mathsf{k}} \langle x\mapsto 0, y\mapsto 0 \rangle_{\mathsf{env}} \rangle_{\mathsf{cfg}}$$

Tohle je nějaký term.

$$\langle\langle X=I; \curvearrowright y=-x; \rangle_{\mathsf{k}}\langle X\mapsto 0, y\mapsto 0\rangle_{\mathsf{env}}\rangle_{\mathsf{cfg}}$$

Term s volnými proměnnými (X, I). Můžeme popsat strukturu takovýchto termů? Třeba sorty: $S = \{Cfg, Map, Stmt, Expr, Id, Int\}$ Symboly: např.

$$\langle\langle_
angle_k\langle_
angle_{ ext{env}}
angle_{ ext{cfg}}\in\Sigma_{ ext{Stmt}, ext{Map}, ext{Cfg}}$$

Mohli bychom použít vícedruhovou logiku prvního řádu k uvažování o konfiguracích? Jak by vypadaly modely? Skoro jako algebry termů. Ukázka.

Definice (Signatura ML)

Signatura Matching Logiky (ML) je trojice $\Phi = (\Sigma, \Pi, Cfg)$, kde (Σ, Π) je prvořádová signatura a $Cfg \in \Sigma$ je speciální sort pro konfigurace.

Definice (Signatura ML)

Signatura Matching Logiky (ML) je trojice $\Phi = (\Sigma, \Pi, Cfg)$, kde (Σ, Π) je prvořádová signatura a $Cfg \in \Sigma$ je speciální sort pro konfigurace.

Definice

Množina formulí ML nad signaturou Φ je definována:

$$\varphi ::= \pi \mid \top \mid p(t_1, \ldots, t_n) \mid \neg \varphi \mid \varphi \land \varphi \mid (\exists V) \varphi$$

kde π může být z $T_{\Sigma,Cfg}$ (Var) a ostatní podobně jako u formulí FOL.

Definice (Signatura ML)

Signatura Matching Logiky (ML) je trojice $\Phi = (\Sigma, \Pi, Cfg)$, kde (Σ, Π) je prvořádová signatura a $Cfg \in \Sigma$ je speciální sort pro konfigurace.

Definice

Množina formulí ML nad signaturou Φ je definována:

$$\varphi ::= \pi \mid \top \mid p(t_1, \ldots, t_n) \mid \neg \varphi \mid \varphi \land \varphi \mid (\exists V) \varphi$$

kde π může být z $T_{\Sigma,Cfg}$ (Var) a ostatní podobně jako u formulí FOL.

Jaký je vztah mezi formulemi ML a FOL?

Definice (Signatura ML)

Signatura Matching Logiky (ML) je trojice $\Phi = (\Sigma, \Pi, Cfg)$, kde (Σ, Π) je prvořádová signatura a $Cfg \in \Sigma$ je speciální sort pro konfigurace.

Definice

Množina formulí ML nad signaturou Φ je definována:

$$\varphi ::= \pi \mid \top \mid p(t_1, \ldots, t_n) \mid \neg \varphi \mid \varphi \land \varphi \mid (\exists V) \varphi$$

kde π může být z $T_{\Sigma,Cfg}$ (Var) a ostatní podobně jako u formulí FOL.

Jaký je vztah mezi formulemi ML a FOL? Příklad.

Motivace

```
int x,y;
x = get();
y = -x;
y = -y;
assert(x == y);
Může assert selhat?
```

A co funkce?

```
int foo(int x) {
  int y = -x;
  y = -y;
  return y;
}
// ...
int x = get();
assert(foo(x) == x);
```

A co šablony?

```
template < typename T >
T foo(T x) {
  T y = -x;
  y = -y;
  return y;
template < typename T >
void check() {
    T \times = get < T > ();
    assert(foo(x) == x);
```