数值代数第二次作业

数学与应用数学(强基计划)2101 王笑同 3210105450 2023 年 3 月 13 日

- 1. (1) 以 n 阶可逆上三角矩阵 A 为例,只需说明其伴随 A^* 是上三角矩阵,即要说明对任何 $1 \le i < j \le n$,有 $M_{ij} = 0$,其中 M_{ij} 代表 a_{ij} 的余子式. 注意到 a_{ij} 是上三角元,因此根据代数余子式的定义, M_{ij} 中必然有一个对角元是 0,即 $M_{ij} = 0$. 由 i,j 的任意性知 $(A^*)^{\mathrm{T}}$ 是下三角矩阵,从而 A^* 是上三角矩阵.
- (2) 对矩阵 A 的阶数 n 做归纳. 当 n=1 时,结论自明. 现设结论对大小为 n < m 的单位上三角阵成立,欲证明结论对 n=m 的单位上三角阵成立. 记 $A^{-1}=(b_{ij})_{n\times n}$. 此时,根据归纳假设,A 的 (m-1) 阶顺序主子阵的逆是单位上三角阵,则 $\det A^{-1}=b_{mm}$. 由 $\det A^{-1}\cdot \det A=1$ 即知 $b_{mm}=1$,即 A^{-1} 是单位上三角矩阵.

2.