Modele generatywne dla grafów

Jakub Binkowski jakub.binkowski@pwr.edu.pl

Szkoła Letnia AlTech 2023

Cele warsztatów

- 1. Wprowadzenie do zagadnienia generowania grafów
- 2. Wprowadzenie do Grafowych Sieci Neuronowych
- 3. **Analiza działania w teorii i praktyce** wybranych metod, zadania praktyczne z zakresu 3 modeli:
 - a. VGAE
 - b. GraphVAE
 - c. DGMG
- 4. Omówienie teoretyczne wybranych modeli spośród:
 - a. GAN
 - b. Normalizing Flows
 - c. Diffusion Models

Część praktyczna warsztatów

https://tinyurl.com/graphgen-aitech

Wprowadzenie

Do czego potrzebne nam generowanie grafów?

- Przetwarzanie języka naturalnego
- Generowanie kodu oprogramowania
- W chemii / biologii (Al4Science):
 - generowanie nowych molekuł (o zadanych parametrach), generowanie potencjalnych kandydatów na leki!
 - generowanie protein
- Otrzymanie bogatszej reprezentacji dla zadań docelowych (representation learning / pre-training)

Podejścia klasyczne

Zakładają pewne statystyczne własności grafów, na podstawie których definiują metodę ich generowania. Przykładowe modele:

Erdős–Rényi

$$P(\mathbf{A}[u,v]=1)=r \quad \forall u,v \in \mathcal{V}$$

- Stochastic Block Models
 - różne prawdopodobieństwa dla krawędzi wewnątrz i na zewnątrz klastra
- Barabási–Albert Model (preferential attachment)
 - mała liczba wierzchołków o wysokim stopniu, duża liczba wierzchołków o małym stopniu (power law distribution)

Stochastic Block Model

Przykładowe reprezentacje SBM grafu (Faskowitz et al., 2018)

W czym tkwi problem z metodami klasycznymi?

- Z góry ustalony, ręcznie opracowany proces generowania grafów
- W rzeczywistości rozkład prawdopodobieństwa grafów jest bardzo skomplikowany
- Klasyczne metody stosują duże uproszczenie względem rzeczywistego, złożonego, rozkładu generującego
- Dlatego dziś uwaga skierowana jest na modelach głębokich...

W czym tkwi problem z metodami klasycznymi?

- Z góry ustalony, ręcznie opracowany proces generowania grafów
- W rzeczywistości rozkład prawdopodobieństwa grafów jest bardzo skomplikowany
- Klasyczne metody stosują duże uproszczenie względem rzeczywistego, złożonego, rozkładu generującego
- Dlatego dziś uwaga skierowana jest na modelach głębokich...
- Ale jak użyć głębokich modeli do grafów?

W czym tkwi problem z metodami klasycznymi?

- Z góry ustalony, ręcznie opracowany proces generowania grafów
- W rzeczywistości rozkład prawdopodobieństwa grafów jest bardzo skomplikowany
- Klasyczne metody stosują duże uproszczenie względem rzeczywistego, złożonego, rozkładu generującego
- Dlatego dziś uwaga skierowana jest na modelach głębokich...
- Ale jak użyć głębokich modeli do grafów?

Grafowe Sieci Neuronowe

Grafowe Sieci Neuronowe

 Przetwarzanie obrazów oraz tekstu jest relatywnie prostsze niż grafów - są to struktury regularne

 grafy są nieregularne, struktura (dziedzina) zmienia się z każdym kolejnym grafem - jak zatem na nich operować?

Grafowe Sieci Neuronowe (GNN)

 $\mathbf{h}_u = \text{UPDATE}(\mathbf{x}_u, \text{AGGREGATE}(\{\psi(\mathbf{x}_u, \mathbf{x}_v); \forall v \in \mathcal{N}(u)\}))$

Bronstein et al., 2021

Grafowe Sieci Neuronowe (GNN)

Wykorzystanie GNN w różnych zadaniach (Veličković, 2023)

Jakie są problemy? (Guo et al., 2020)

- Nieunikalne reprezentacje graf o n wierzchołkach może być reprezentowany na n! sposobów
- <u>Skomplikowane zależności węzłów i krawędzi</u> istnienie węzłów i krawędzi jest uzależnione od licznych powiązań w grafie
- <u>Duże przestrzenie wyjściowe</u> najprostsze podejścia wymagają sprawdzenia wszystkich możliwych krawędzi (w rzeczywistości grafy są rzadkie)
- <u>Dyskretność grafów</u> wiele metod działa w przestrzeniach ciągłych, co w przypadku grafów nie ma zastosowania
- <u>Ewaluacja skuteczności</u> nie ma jednoznacznej metody oceny generowanych grafów

Modele generatywne dla grafów

Struktura modeli generatywnych dla grafów

(Zhu et al., 2022)

Rodzaje modeli

VGAE (Kipf & Welling, 2016)

Modele

(Zhu et al., 2022)

Jak przedstawić graf?

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 0.1 & 0.5 & 2.0 \\ 0.9 & 4.5 & 1.0 \\ 0.3 & -0.5 & 3.0 \\ 0.1 & 1.5 & 7.0 \end{bmatrix}$$

Variational Graph Autoencoder

Variational Graph Autoencoder

Variational Graph Autoencoder

- Koder (encoder) GNN transformuje graf do postaci reprezentacji wierzchołków:
 - a. wektor średnich dla każdego wierzchołka
 - b. wektor odchyleń dla każdego wierzchołka
- Dekoder MLP* przewiduje istnienie krawędzi na podstawie (wszystkich) par wierzchołków
- 3. Model uczymy jakby był klasyfikatorem dekoder klasyfikuje istnienie krawędzi (zadanie *link prediction*)
- Po zakończeniu uczenia możemy próbkować w przestrzeni ukrytej (z rozkładu normalnego)

Variational Graph Autoencoder - funkcja straty

$$\mathcal{L} = \mathbb{E}_{q(\mathbf{Z}|\mathbf{X},\mathbf{A})} ig[\log p \left(\mathbf{A} \, | \, \mathbf{Z}
ight) ig] - \mathrm{KL} ig[q(\mathbf{Z} \, | \, \mathbf{X},\mathbf{A}) \, || \, p(\mathbf{Z}) ig]$$

Błąd rekonstrukcji Regularyzacja do $\mathit{N(0, 1)}$

Ale jak ocenić jakość modelu?

- Jakość rekonstrukcji jest stosunkowo prosta do oceny możemy ocenić dekoder tak samo jak klasyfikator, np. miarą AUC
- Jednak nie jest oczywistym jak ewaluować wygenerowane grafy:

Туре		Evaluation feature	
	Statistics-based	Average KLD MMD	—
General	Classifier-based	Accuracy-based FID-based	
	Intrinsic-quality-based	Validity Uniqueness Novelty	
Condition-specialized	Graph property-based Mapping-relationship-based		

(Guo et al., 2022)

Maximum Mean Discrepancy

 MMD pozwala nam porównać dwa rozkłady prawdopodobieństwa - jest to odległość pomiędzy średnimi z cech obiektów

$$MMD^{2}(P,Q) = \|\mu_{P} - \mu_{Q}\|_{\mathcal{F}}^{2}$$

- Odległość liczymy pomiędzy cechami zbioru testowego a cechami wygenerowanych grafów
- W części praktycznej skorzystamy z następujących cech:
 - stopień wierzchołków
 - współczynnik klasteryzacji
 - cechy spektralne

Część praktyczna I

Variational Graph Autoencoder (VGAE)

- Model nie dostarcza nam zadowalających rezultatów, nawet na prostym zbiorze
- VGAE jest metodą, która opracowana była głównie do uczenia reprezentacji dzięki podejściu unsupervised możemy otrzymać embeddingi wierzchołków do zadań docelowych (ang. downstream tasks)
- Jednak VGAE jest punktem wyjścia dla późniejszych udoskonaleń, które osiągały wysoką jakość w generowaniu grafów, np. GraphVAE (Simonovsky & Komodakis, 2018), JT-VAE (Jin et al., 2019)

GraphVAE

Architektura modelu (Simonovsky & Komodakis, 2018)

Część praktyczna II

GraphVAE

- Używanie zagregowanej reprezentacji całego grafu poprawiło jakość modelu generatywnego
- Wiąże się to jednak z dodatkowym narzutem obliczeniowym
- Ale VAE to nie jedyny paradygmat z jakiego możemy skorzystać...

Wady generowania *one-shot*

- Należy założyć z góry maksymalną liczbę wierzchołków
- Trudności w generowaniu dużych (i rzadkich) grafów duża wymiarowość wyjściowa modelu
- Często wymagane jest dopasowywanie grafów (graph matching) dodatkowy narzut obliczeniowy!
- Założenie o niezależności krawędzi w grafie nie jest w rzeczywistości spełnione

Learning Deep Generative Models of Graphs (DGMG)

(Li et al., 2018)

Modele

(Zhu et al., 2022)

A co gdyby nie generować wszystkiego na raz?

- Generowanie grafu możemy rozbić na sekwencje kroków
- Modele sekwencyjne mają kilka pożądanych własności:
 - możemy generować sekwencje o dowolnej długości
 - nie zakładamy niezależności generowanych elementów sekwencji!
- Mamy dostęp do licznych pozwalających na generowanie sekwencji, np. RNN
- Zatem spróbujmy przekształcić graf w sekwencje

Proces generowania grafu (Li et al., 2018)

Proces generowania grafu - przykład

Proces generowania grafów (Li et al., 2018)

Algorytm

Figure 2. Illustration of the graph propagation process (left), graph level predictions using $f_{addnode}$ and $f_{addedge}$ (center), and node selection f_{nodes} modules (right).

Część praktyczna III

DGMG

- Oprócz samej struktury grafu możemy przewidywać także cechy wierzchołków i krawędzi, oraz warunkować generowanie - wymaga to pewnej modyfikacji modelu
- Jednak DGMG (oraz inne modele autoregresyjne) mają kilka wad:
 - konieczność uszeregowania wierzchołków
 - trudności w uczeniu, szczególnie długich sekwencji
 - propagacja błędu
- Możemy również użyć innych podejść autoregresyjnych: (Liao et al., 2020),
 (You et al., 2018)

To nie koniec...

Modele

Sieci typu GAN

Sieci typu GAN

$$\min_{\theta} \max_{\phi} \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})} [\log D_{\phi}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D_{\phi}(G_{\theta}(\boldsymbol{z})))]$$

MolGAN (Cao and Kipf, 2018)

Architektura sieci MolGAN (Cao and Kipf, 2018)

Modele przepływowe (Normalizing Flows)

Działanie modelu opartego o przepływy (Weng, 2018)

Modele przepływowe (Normalizing Flows)

Działanie modelu opartego o przepływy (Weng. 2018)

$$p(G) = p(z) \left| \det \left(\frac{\partial f^{-1}(G)}{\partial G} \right) \right|$$

Modele przepływowe (Normalizing Flows)

Działanie modelu opartego na przykładzie dwóch rozkładów (Rezende & Mohamed, 2015)

GraphNVP (Madhawa et al., 2019)

Equivariant Diffusion Model (EDM) (Hoogeboom et al., 2022)

Figure 2. Overview of the Equivariant Diffusion Model. To generate molecules, coordinates x and features h are generated by denoising variables z_t starting from standard normal noise z_T . This is achieved by sampling from the distributions $p(z_{t-1}|z_t)$ iteratively. To train the model, noise is added to a datapoint x, h using $q(z_t|x,h)$ for the step t of interest, which the network then learns to denoise.

Generowanie molekuł modelem EDM (Hoogeboom et al., 2022)

Equivariant Diffusion Model (EDM) (Hoogeboom et al., 2022)

- Forward diffusion (zaszumianie) w danej chwili t dodajemy szum do cech,
 tak że na końcu procesu zaszumiania uzyskujemy szum Gaussowski
- Reverse diffusion (odszumianie) w danej chwili t chcemy, aby model przewidział aktualny szum, po odjęciu którego otrzymujemy wygenerowany graf
- Dodatkowo możemy warunkować model, tak aby generował molekuły o zadanych własnościach

EDM - wizualizacja

Generowanie molekuł modelem EDM (Hoogeboom, Twitter)

Podsumowanie

- Modele generatywne dla grafów adaptują metody dotychczas znane z generowania obrazów czy tekstu
- Generowanie grafów jest złożonym procesem, w którym napotykamy szereg problemów powodowanych złożoną naturą tych obiektów
- Obecnie wiodącym podejściem jest wykorzystywanie modeli dyfuzyjnych
- Pomimo wielu spektakularnych wyników, generowanie grafów nadal pozostaje dziedziną z wieloma otwartymi problemami...

Przydatne linki

- 1. <u>yuanqidu/awesome-graph-generation</u> zestawienie publikacji z dziedziny generowania grafów
- 2. <u>JiaxuanYou/graph-generation: GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models</u> implementacja kilku modeli autoregresyjnych
- 3. <u>Denoising Diffusion Generative Models in Graph ML | by Michael Galkin | Towards Data Science</u> omówienie modeli dyfuzyjnych dla grafów
- 4. https://github.com/ehoogeboom/e3_diffusion_for_molecules implementacja modelu dyfuzyjnego EDM
- 5. <u>GitHub cvignac/DiGress: code for the paper "DiGress: Discrete Denoising diffusion for graph generation"</u> implementacja modelu dyfuzyjnego DiGress

Bibliografia

- 1. Zhu, Yanqiao, et al. "A survey on deep graph generation: Methods and applications." arXiv preprint arXiv:2203.06714 (2022).
- 2. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., & Battaglia, P. (2018). Learning deep generative models of graphs. arXiv preprint arXiv:1803.03324.
- 3. You, J., Ying, R., Ren, X., Hamilton, W., & Leskovec, J. (2018, July). **GraphRNN: Generating realistic graphs with deep auto-regressive models.** In International conference on machine learning (pp. 5708-5717). PMLR.
- 4. Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duvenaud, D. K., ... & Zemel, R. (2019). **Efficient graph generation with graph recurrent attention networks.** Advances in neural information processing systems, 32.
- 5. Bronstein, M. M., Bruna, J., Cohen, T., & Veličković, P. (2021). **Geometric deep learning: Grids, groups, graphs, geodesics, and gauges.** arXiv preprint arXiv:2104.13478.
- 6. Veličković, P. (2023). **Everything is connected: Graph neural networks.** Current Opinion in Structural Biology, 79, 102538.
- 7. Guo, X., & Zhao, L. (2022). A systematic survey on deep generative models for graph generation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
- 8. Madhawa, K., Ishiguro, K., Nakago, K., & Abe, M. (2019). **GraphNVP: An invertible flow model for generating molecular graphs.** arXiv preprint arXiv:1905.11600.
- 9. Rezende, D., & Mohamed, S. (2015, June). **Variational inference with normalizing flows.** In International conference on machine learning (pp. 1530-1538). PMLR.
- 10. Hoogeboom, E., Satorras, V. G., Vignac, C., & Welling, M. (2022, June). **Equivariant diffusion for molecule generation in 3d**. In International Conference on Machine Learning (pp. 8867-8887). PMLR.
- 11. Faskowitz, J., Yan, X., Zuo, X. N., & Sporns, O. (2018). **Weighted stochastic block models of the human connectome across the life span.** Scientific reports, 8(1), 1-16.

Dziękuję za uwagę

Kontakt: jakub.binkowski@pwr.edu.pl