

Asignatura: Tecnologías para la Automatización Planificación a partir del Ciclo Lectivo 2023

Datos administrativos de la asignatura							
Nivel en la carrera	4 Duración C		Cuatrimestral				
Plan	2023						
Bloque curricular:	Tecnologías Aplicadas						
Carga horaria presencial	6	Carga Horaria total	72				
semanal (hs. cátedra):		(hs. reloj):					
Carga horaria no		% horas no	0%				
presencial semanal (hs.		presenciales (hs.					
reloj)		reloj)					
(si correspondiese)		(si correspondiese)					

2. Presentación, Fundamentación

La humanidad se encuentra en las puertas de una nueva revolución industrial, donde la informatización y automatización de procesos, así como la adquisición y distribución de datos e información, se han vuelto moneda corriente, llegando a lugares y dispositivos que habrían apenas una década atrás habrían sido considerados de ciencia ficción. En este marco, los ingenieros en sistemas de información tienen la responsabilidad de preparar el camino, considerando tanto a los usuarios como a nuevos y futuros dispositivos tecnológicos para que puedan actuar en armonía.

Resulta entonces fundamental que el ingeniero en sistemas sea capaz de incluir en la especificación, proyecto y desarrollo de sistemas de información, a estas nuevas tecnologías que facilitan la adquisición, procesamiento y transmisión de datos, considerándolos parte de la infraestructura tecnológica global, sin olvidar las capacidades de encriptación de firmware e información que poseen los más modernos dispositivos de IoT, que deberían ser considerados en el análisis de seguridad informática de un proyecto.

A lo largo de esta materia se utilizarán dispositivos de hardware de última tecnología, con sus posibilidades de operación de los dispositivos inteligentes, facilidades para la adquisición,

procesamiento, almacenamiento y comunicación de datos del entorno que nos rodea, para implementar sistemas de comunicaciones de datos.

De igual manera, se explorarán las morfologías y capacidades de algunos de los numerosos tipos de robots que actualmente inundan el mercado industrial y hogareño, y la manera en la que estos se vinculan con su espacio de trabajo.

En ambos casos, el fin último de el estudio de estas tecnologías es el de convertirlos en una herramienta más dentro de la cartera de habilidades del futuro ingeniero, sin perder de vista a la persona, el medio ambiente, y la seguridad e integridad informática, electrónica y mecánica.

3. Relación de la asignatura con las competencias de egreso de la carrera

En la tabla siguiente se establece la relación de la asignatura con las competencias de egreso: Específicas, Genéricas Tecnológicas y Genéricas Sociales, Políticas y Actitudinales de la carrera. Se incluyen las competencias de egreso a las que tributa, aportes reales y significativos de la asignatura, y en qué nivel (no aporta, bajo, medio, alto).

Competencias	Nivel
Competencias genéricas tecnológicas (CG):	
CG.1. Identificación, formulación y resolución de problemas de ingeniería en sistemas de información/informática.	Medio
CG.2. Concepción, diseño y desarrollo de proyectos de Ingeniería en Sistemas de Información/Informática	No aporta
CG.3. Gestión, planificación, ejecución y control de proyectos de Ingeniería en Sistemas de Información/Informática.	No aporta
CG.4. Utilización de técnicas y herramientas de aplicación de Ingeniería en Sistemas de Información/Informática.	No aporta
CG.5. Generación de desarrollos tecnológicos y/o innovaciones tecnológicas.	Medio
Competencias genéricas sociales, políticas y actitudinales (CG)	
CG.6. Fundamentos para el desempeño en equipos de trabajo.	Bajo
CG.7. Fundamentos para una comunicación efectiva.	Bajo
CG.8. Fundamentos para una actuación profesional ética y responsable.	No aporta

Cultura Negional Cordoba	
CG.9. Fundamentos para evaluar y actuar en relación con el impacto social de su actividad profesional en el contexto global y local.	Seleccione Nivel.
CG.10. Aprender en forma continua y autónoma.	Bajo
CG.11. Fundamentos para el desarrollo de una actitud profesional emprendedora	No aporta
Competencias Específicas de la carrera	
CE1.1. Especificar, proyectar y desarrollar sistemas de información para concebir soluciones tecnológicas que permitan resolver situaciones en las organizaciones mediante el empleo de metodologías de sistemas y tecnologías asociadas a los sistemas de información.	No aporta
CE1.2. Especificar, proyectar y desarrollar sistemas de comunicación de datos, evaluando posibles soluciones tecnológicas disponibles para dar soporte a los sistemas de información en lo referido al procesamiento y comunicación de datos.	No aporta
CE1.3. Especificar, proyectar y desarrollar software para la elaboración de soluciones informáticas con el propósito de resolver problemas estratégicos y operativos, así como de servicios y de negocios, en el marco de una actividad económica que sea social y ambientalmente sustentable.	Medio
CE2.1. Proyectar y dirigir lo referido a seguridad informática para seleccionar y aplicar técnicas, herramientas, métodos y normas, garantizando la seguridad y privacidad de la información procesada y generada por los sistemas de información.	Medio
CE.3.1. Establecer métricas y normas de calidad de software para medir, evaluar, controlar y monitorear el rendimiento, impulsando mejoras de acuerdo a técnicas y normas vigentes definidas por los organismos de estandarización.	No aporta
CE.4.1. Certificar el funcionamiento, condición de uso o estado de sistemas de información, sistemas de comunicación de datos, software, seguridad informática y calidad de software para asegurar la generación de los resultados deseados en función de restricciones de tiempo y recursos establecidos.	Bajo
CE.5.1. Dirigir y controlar la implementación, operación y mantenimiento de sistemas de información, sistemas de comunicación de datos, software, seguridad informática y calidad de software, a los fines de alcanzar los objetivos fijados por la organización.	Bajo
CE.6.1. Asesorar y capacitar a organizaciones, empresas, organismos públicos o privados en la adquisición, instalación y uso, en lo que respecta a sistemas de información, sistemas de	No aporta

comunicación de datos, software, seguridad informática y calidad de software, a los fines de un uso correcto de los sistemas intervinientes.	
CE.7.1. Realizar pericias, tasaciones y arbitrajes relacionados con su actividad profesional,	No aporta
respetando marcos normativos y jurídicos con el objeto de asesorar a las partes o a los	
tribunales de Justicia.	

4. Contenidos Mínimos

Modelado.

Tipos de Control y Controladores.

Estabilidad.

Robótica.

Internet de las cosas. Sensores como fuentes de información.

Sistemas de Información para la Industria inteligente.

Automatización de procesos.

5. Objetivos establecidos en el DC

- Comprender el rol de los modelos en el diseño y la evaluación de estrategias de control.
- Distinguir los tipos de control y los controladores utilizados en la práctica industrial.
- Proyectar sistemas de adquisición, transmisión y procesamiento de datos utilizados en los procesos de mejora.
- Planificar tareas para sistemas robóticos.
- Conocer las tecnologías utilizadas en la medición de variables, la transmisión de datos y la sistematización de la información en el contexto de la industria inteligente.

6. Resultados de	6. Resultados de aprendizaje				
Los siguientes resulta	Los siguientes resultados de aprendizaje se promueven en el desarrollo de la asignatura				
Identificador de RA	Identificador de RA Redacción				
RA1	Generar trayectorias de movimiento para robots fijos a partir de su modelo cinemático, con el fin de utilizarlos para realizar distintas tareas en su ambiente de trabajo.				
RA2	Diseñar dispositivos programables que adquieran, procesen y distribuyan datos, con el fin de utilizarlos en procesos de toma de decisiones, teniendo en cuenta los requerimientos del cliente.				
RA3	Distinguir las distintas topologías de controladores aplicadas en sistemas robóticos para predecir el efecto de las acciones de control en la salida del sistema considerando los microcontroladores y computadoras como los recursos de ejecución de las leyes de control				
4	Aplicar automatización de procesos para generar acciones que modifiquen el entorno a partir de comandos del usuario y variables del entorno adquiridas por el dispositivo.				

7. Relación de los RA y las competencias

En la tabla siguiente se indica con X la tributación de cada Resultado de Aprendizaje con las competencias de egreso: específicas, genéricas tecnológicas, sociales, políticas y actitudinales de la carrera.

RA	CE1.1	CE1.2	CE1.3	CE2.1	CE3.1	CE4.1	CE5.1	CE6.1	CE7.1	CG1	CG2	CG3	CG4	CG5	CG6	CG7	CG8	CG9	CG10	CG11
RA1										Χ				X					Χ	
RA2						Χ	Х			Χ				X	Х	X			Χ	
RA3										Χ									Χ	
RA4			X	Χ		Х				X				X	X	Х			Χ	

8. Asignaturas correlativas previas

Para cursar y rendir debe tener cursadas:

Asignatura/s:

Física II

Análisis Numérico

Para cursar y rendir debe tener aprobada:

Asignatura/s:

Análisis Matemático II

9. Asignaturas correlativas posteriores

Indicar las asignaturas correlativas posteriores:

Asignatura/s:

Transcriba el nombre de la asignatura.

10. Programa analítico

Este programa analítico contempla los contenidos mínimos, previstos en el DC vigente, y aquellos que se consideran necesarios para desarrollar los resultados de aprendizaje propuestos.

Unidad Nº: 1

Título: Internet de las cosas, Robótica, Automatismo y Control

Contenidos:

Robots, de la industria al hogar.

Internet of Things.

Conceptos de sensores.

Concepto de automatismo.

Carga horaria por Unidad: 4hs cátedra

Unidad Nº: 2

Título: Antecedentes Matemáticos para Robótica y Control

Contenidos:

Concepto de Sistemas a lazo abierto y lazo cerrado.

Concepto de estabilidad absoluta y relativa.

Concepto de compensación.

Articulaciones, grados de libertad, tipos de robots (móviles, fijos, etc),

Sistemas de coordenadas. Transformaciones. Rotaciones, Traslaciones.

Conceptos de Modelado Cinemático, Modelado Dinámico, Trayectorias, Control

Carga horaria por Unidad: 8hs cátedra

Unidad Nº: 3

Título: Modelado Matemático de Robots

Contenidos:

Modelo cinemático directo e inverso de robots simples a partir del análisis geométrico

Posicionamiento en el espacio.

Matrices de rotación.

Modelo de Cinemática Directa. Algoritmo de Denavit - Hartenberg.

Modelo de Cinemática Inversa. Presentación de distintas técnicas.

Técnicas de validación y simulación.

Carga horaria por Unidad: 12hs cátedra

Unidad Nº: 4

Título: Generación de Trayectorias

Contenidos:

Generación de trayectorias para una única articulación.

Generación de trayectorias para múltiples articulaciones simultáneas.

Simulación.

Carga horaria por Unidad: 12hs cátedra

Unidad Nº: 5

Título: Aplicaciones de Control Dinámico en Sistemas Robóticos

Contenidos:

Controladores PID.

Acciones básicas de control.

Ejemplos de controladores comerciales e industriales.

Ejemplos de sistemas de control aplicados a la robótica.

Carga horaria por Unidad: 12hs cátedra

Unidad Nº: 6

Título: Internet de las Cosas

Contenidos:

Componentes de un sistema IoT.

La Single – Board Computer como puerta de acceso al mundo real. Arquitectura / Arquitectura de microcontroladores. La ESP32.

Puertos de entrada digitales y analógicos.

Puertos de salida digitales.

Introducción a los sensores. (Adquisición de información del mundo real. Fuentes de información para la toma de decisiones)

Protocolos de comunicación entre periféricos y dispositivos. I2C, RS232, SPI.

Sensores.

Carga horaria por Unidad: 24hs cátedra

Unidad Nº: 7

Título: Aplicaciones de Internet de las Cosas

Contenidos:

Internet de las cosas y el acceso a datos remotos (la nube).

Seguridad informática.

Adquisición y procesamiento de datos.

Actuadores.

Protocolos de comunicación entre componentes del sistema IoT. Wifi, Bluetooth, MQTT.

Sistemas de Información para la Industria inteligente.

Aplicaciones Industriales.

Automatismo.

Carga horaria por Unidad: 24hs cátedra

Carga horaria por tipo de formación práctica de toda la asignatura

Tipo de formación práctica	Horas reloj
Formación experimental	30
Análisis y resolución de problemas de ingeniería y estudios de casos	5
Formulación, análisis y desarrollo de proyectos.	20

Bibliografía Obligatoria:

Reyes Cortés, F. (2012) Matlab Aplicado a Robótica y Mecatrónica. AlfaOmega Pizzarro Peláes, J. () Internet de las Cosas con ESP. Manual Práctico. Paraninfo. Barrientos, A. Peñin, L.F. Balaguer, C, (2007) Fundamentos de Robótica. McGraw Hill Spong, M. Hutchinson, S Vidyasagar, M. (2003) Robot Modeling and Control. Wiley Olsson, Mikael (2019) Modern C Quick Syntax Reference. Apress.

Bibliografía optativa y otros materiales a utilizar en la asignatura:

Bibliografía.

(citadas según Normas APA) Ver https://normas-apa.org/referencias/ejemplos/

11. Metodología de enseñanza

El desarrollo de la materia será cuatrimestral, con dos clases semanales teórico – prácticas, donde se desarrollarán los ejes temáticos principales de la materia. En un principio, el profesor desarrollará los contenidos teóricos y brindará ejemplos de aplicación de cada uno de ellos, utilizando software, hardware, presentaciones, y todo lo que considere necesario, y luego serán los alumnos los que deberán demostrar su capacidad de aplicarlos en situaciones concretas, tales como ejercicios y trabajos prácticos. Algunos de estos serán de presentación individual, mientras que otros de presentación grupal y defensa individual. Se prevé incluso que en algunas actividades prácticas los grupos deban interactuar entre sí.

Durante las actividades teóricas se emplean herramientas audiovisuales e informáticas de manera de mantener el interés y participación del alumno en clase.

Adicionalmente los estudiantes encontrarán en el aula virtual material de consulta en formato digital.

En el desarrollo de los contenidos se hará foco en la rápida implementación práctica de los mismos, dando gran participación e importancia al trabajo de los alumnos.

Dada la naturaleza de los contenidos del programa, el uso de software y hardware específicos para adquirir los conocimientos y lograr los resultados del aprendizaje será mandatorio. En tal sentido, la cátedra utlizará el software Matlab / Octave para el desarrollo de las actividades relacionadas a la robótica y el control, mientras que para las actividades de Internet de las cosas se utilizará una placa de desarrollo ESP32 Doit V1.0 en conjunto con diversos sensores y dispositivos de interacción con el usuario. Este microcontrolador podrá ser programado tanto en el entorno Arduino IDE como en Visual Studio, utilizando la extensión PlatformIO para tal fin.

12. Recomendaciones para el estudio

Se recomienda a los alumnos que previo a cada clase revisen los temas que se desarrollarán en la misma. También, que participen activamente de cada actividad práctica.

La cátedra facilitará material relacionado a los lenguajes de programación estructurada. Se recomienda a los alumnos que lo revisen en una etapa temprana del cuatrimestre en que cursan, ya que estas serán las herramientas fundamentales del desarrollo de la materia.

13. Metodología de evaluación

El modelo de enseñanza basado en competencias implica la aplicación de metodologías e instrumentos de evaluación que permiten conocer, a docentes y estudiantes, el nivel de desarrollo de las competencias que aborda la asignatura.

Siendo que el desarrollo de la materia hace foco en las actividades de formación práctica, resulta evidente pensar que las actividades de evaluación también se centrarán en ella.

Por tal motivo, se presentará a los alumnos una serie de desafíos, en formato de trabajo práctico.

Algunas de estas actividades serán individuales, mientras que otras grupales.

Las actividades serán mayoritariamente integradoras, en el sentido de que se espera que los alumnos dominen los conocimientos previos necesarios para llevar adelante cada trabajo.

Se confeccionará un informe individual donde el estudiante deberá presentar tres ejemplos del estado del arte de la robótica y los sistemas de internet de las cosas.

Se realizará una evaluación parcial teórico – práctica de los contenidos básicos de robótica y control.

Se realizará un trabajo práctico con los contendios avanzados de robótica.

Se realizarán dos trabajos prácticos para evaluar los contenidos relacionados a Internet de las cosas y automatización de procesos.

Los alumnos tendrán la posibilidad de recuperar uno de los trabajos prácticos de la primera etapa, uno de los trabajos prácticos de la segunda etapa, y un parcial.

A continuación, se detallan todos los Resultados de Aprendizajes con sus contenidos a desarrollar para alcanzarlos, la mediación pedagógica, metodologías y estrategias de evaluación, tiempo en horas reloj.

Resultados de Aprendizaje	Contenidos según programa	Mediación Pedagógica	Metodología y Estrategias de Evaluación	Tiempos en hora reloj
RA 1	Unidad N°: 1 Robots, de la industria al hogar. Unidad N°: 2 Articulaciones, grados de libertad, tipos de robots (móviles, fijos, etc), Sistemas de coordenadas. Transformaciones. Rotaciones, Traslaciones. Conceptos de Modelado Cinemático, Modelado Dinámico, Trayectorias, Control Unidad N°: 3 Modelo cinemático directo e inverso de robots simples a partir del análisis geométrico Posicionamiento en el espacio. Matrices de rotación.	Lección magistral participativa. Presentación de casos. Utilización de herramientas de simulación. Actividades del estudiante: Investigación sobre el estado del arte de los sistemas robóticos. Desarrollo de programas para la resolución de problemas relacionados a la cinemática de robots. Uso de aplicaciones para la simulación de cadenas cinemáticas simples.	Informe. Parcial Teórico Práctico. Trabajo práctico. Es capaz de describir un sistema robótico utilizando el vocabulario apropiado. Utiliza las herramientas matemáticas para determinar el modelo cinemático de un robot. Utiliza las herramientas matemáticas para determinar el modelo cinemático de un robot.	Horas Presenciales: Teóricas: 8 Prácticas: 20 Horas extra áulicas: 30

	Modelo de Cinemática Directa.		generar trayectorias	
	Algoritmo de Denavith -		sencillas.	
	Hartenberg.		Seriolias.	
	Modelo de Cinemática Inversa.			
	Presentación de distintas			
	técnicas.			
	Técnicas de validación y			
	simulación.			
	Unidad Nº: 4			
	Generación de trayectorias para			
	una única articulación.			
	Generación de trayectorias para			
	múltiples articulaciones			
	simultáneas.			
	Simulación.			
	Unidad N°: 5			
	Ejemplos de sistemas de			
	control aplicados a la robótica.			
	control apricados a la fobblica.			
RA 2	Unidad Nº: 1	Lección magistral participativa.	Informe	Horas Presenciales:
	Internet of Things.	Resolución de ejercicios.	Trabajo Práctico.	Teóricas: 9
	Conceptos de sensores.	Presentación de ejemplos de	-	Prácticas: 20
	Concepto de automatismo.	hardware y software simulados.	Distingue los elementos	Horas extra áulicas: 30
	F		que componen un sistema	
	Unidad N°: 6	Actividades del estudiante.	de IoT	
	Componentes de un sistema	Solución de problemas	Fo conor do programas	
	IoT.	aplicados a IoT de manera individual utilizando simuladores	Es capaz de programar un microcontrolador para	
		de hardware.	adquirir, procesar y	
		do Halawalo.	adquitti, procesar y	

Arquitectura de	Solución en grupos pequeños de casos de estudio, de manera física, es decir, utilizando el hardware propuesto por la cátedra.	distribuir datos provenientes de sensores.	
Unidad N°: 7 Internet de las cosas y el acceso a datos remotos (la nube). Seguridad informática. Adquisición y procesamiento de datos. Protocolos de comunicación entre componentes del sistema IoT. Wifi, Bluetooth, MQTT. Sistemas de Información para la Industria inteligente. Aplicaciones Industriales.			

	Automatismo.			
RA 3	Unidad N°: 2 Concepto de Sistemas a lazo abierto y lazo cerrado. Concepto de estabilidad absoluta y relativa. Concepto de compensación. Unidad N°: 5 El PID. Controladores PID. Acciones básicas de control. Ejemplos de controladores comerciales e industriales. Ejemplos de sistemas de control aplicados a la robótica. Unidad N°: 7 Actuadores.	Lección magistral participativa. Trabajo autónomo. Presentaciones escritas. Actividades del estudiante: Deberá leer el material provisto por la cátedra. Deberá ver una serie de videos donde se profundizan los temas desarrollados en clase. Realizar un resumen de los temas desarrollados.	Parcial. Identifica los elementos que constituyen un sistema de control. Identifica las diferencias entre un sistema a lazo abierto y uno a lazo cerrado. Comprende el concepto de estabilidad. Comprende como afectan las acciones básicas de control PID a la salida de un sistema a lazo cerrado. Distingue las distintas topologías de controladores PID aplicados a la robótica.	Horas Presenciales: Teóricas: 8 Prácticas: 0 Horas extra áulicas: 10
RA 4 Elija un elemento.	Unidad N° 1 Conceptos de automatismo. Conceptos de sensores. Unidad N° 7 Sistemas de Información para la Industria Inteligente. Aplicaciones Industriales Automatismo.	Lección magistral participativa Resolución de problemas. Actividades del estudiante. Trabajo autónomo. Aprendizaje cooperativo en grupos pequeños. Solución de problemas de automatismo de manera individual utilizando simuladores de hardware.	Trabajo práctico grupal Es capaz de programar un microcontrolador para interactuar con el usuario y el entorno.	Horas Presenciales: 5 Teóricas: 5 Prácticas: 2 Horas extra áulicas: 12

14. Condiciones de aprobación

Se prevén dos condiciones de aprobación. Aprobación Directa y Regularización. Para alcanzar cada una de ellas se

• Condición de alumno regular.

Al finalizar el cursado el alumno obtendrá la condición de regularidad si cumple con todas y cada una de las siguientes exigencias.

- o Asistencia a al menos el 75% de las clases.
- o Totalidad de las actividades de evaluación aprobadas.

• Condición de alumno con aprobación directa.

Al finalizar el cursado el alumno obtendrá la aprobación directa de la materia si cumple con todas y cada una de las siguientes exigencias.

- o Asistencia de al menos el 75% de las clases.
- La totalidad de las actividades de evaluación aprobadas con nota no menor a 7, con promedio no menor a 8.

Escala de notas de regularidad (*)

NOTA	PORCENTAJE	CALIFICACIÓN
S		
1		No Aprobado
2		No Aprobado
3		No Aprobado
4	55% a 57%	Aprobado
5	58% a 59%	Aprobado
6	60% a 68%	Aprobado
7	69% a 77%	Aprobado
8	78% a 86%	Aprobado
9	87% a 95%	Aprobado
10	96% a 100%	Aprobado

(*) Escala acordada en reunión de Docentes Coordinadores

15. Modalidad de examen

La modalidad del examen para alumnos regulares será teórico – práctica, con una parte escrita y otra oral.

Como primera etapa, los alumnos deberán demostrar sus conocimientos en una evaluación instrumentada en el aula virtual.

Seguidamente, deberán presentar la totalidad de los trabajos prácticos que se llevan a cabo durante el cursado. El tribunal podrá seleccionar uno o más para que el alumno los defienda.

Escala de Notas para Examen Final (*)

NOTA	PORCENTAJE	CALIFICACIÓN
1		Insuficiente
2		Insuficiente
3		Insuficiente
4		Insuficiente
5		Insuficiente
6	60% a 68%	Aprobado
7	69% a 77%	Bueno
8	78% a 86%	Muy Bueno
9	87% a 95%	Distinguido
10	96% a 100%	Sobresaliente

(*) Escala acordada en reunión de Docentes Coordinadores.

16. Recursos necesarios

Para el desarrollo de la materia resulta imprescindible contar con los siguientes recursos:

- Espacios físicos: Resulta indispensable que cada alumno cuente con una computadora.
- Recursos Tecnológicos de apoyo:
- Las computadoras deberán contar con los siguientes softwares, preferentemente actualizados a la última versión disponible: Matlab / Octave, Arduino IDE 2.0, Visual Studio, PlatformIO.
- Cada profesore deberá disponer de un proyector.
- Se deberá contar con un robot servoasistido de no menos de 40cm de altura por cada comisión.
- Cada profesor y cada grupo de alumnos deberá contar con: Una placa de evaluación ESP32 Doit V1.0 (versión de 30 pines), un sensor de temperatura y humedad DHT11, un sensor ultrasónico basado en HC-SR04, una pantalla display oLED de 128x64 líneas

(mínimo), monocromático o color, un encoder rotativo de 20 pulsos por vuelta con pulsador, un mini potenciómetro analógico de 10K lineal de 9mm de diámetro, leds y resistencias varias, una placa de desarrollo diseñada por la cátedra.

• La cátedra deberá contar con un aula virtual común a todas las comisiones.

18

Anexo I: Plantel docente de la asignatura			
Titular	Especifique Nombre y Apellido completo.	Dedicación:	Especifique la cantidad de dedicaciones.
Asociado	Mg. Ing. Juan Pablo Pedroni	Dedicación:	2 DS
Adjunto:	Esp. Ing. Hugo Nicolás Pailos	Dedicación:	1 DS
Adjunto:	Mg. Ing. Sergio Laboret	Dedicación:	1 DS
Jefe de Trabajos Prácticos	Mg. Ing. Sandra Olariaga	Dedicación:	2 DS
Jefe de Trabajos Prácticos	Ing. Martín Poliotto	Dedicación:	1 DS
Jefe de Trabajos Prácticos	Ing. Daniel Sánchez	Dedicación:	2 DS
Auxiliar de 1ra.	Especifique Nombre y	Dedicación:	Especifique la cantidad
	Apellido completo.		de dedicaciones.
Auxiliar de 2da.	Especifique Nombre y Apellido completo.	Dedicación:	Especifique la cantidad de dedicaciones.

FIRMA (Jefe o encargado de cátedra).

Anexo II: Cronograma de clases/trabajos prácticos/evaluaciones (por comisión)

COMISIÓN: 4K2 – IMPOSIBLE AGREGAR CUADRO PARA OTRAS COMISIONES.			
Nro. de Semana	Fecha	Tema	Tipo de Actividad
1	Indique la	Presentación de la materia.	Teórico
	fecha	Robots, de la industria al	
		hogar.	
		Cómo llegamos a la	
		Internet de las cosas?	
		Costo y capacidades de los	
		microcontroladores.	
		Sensores. Qué son?	
		Tecnología MEMs.	
		El concepto de	
		automatismo.	
		Metodología de cursado de	
		Tecnologías para la	
		Automatización.	
1	Indique la	Conceptos de Control para	Laboratorio
	fecha	Robótica.	
		Sistemas a lazo abierto y	
		lazo cerrado	
		Conceptos de	
		compensación.	
		Conceptos de estabilidad	
2	T 1' 1	absoluta y relativa.	Tr. / :
2	Indique la	Morfología de robots.	Teórico
	fecha	Tipos de Robots.	
		Articulaciones, grados de	
		libertad, espacio de tareas. Relación entre el espacio	
		de tareas y la cinemática.	
		Conceptos de modelado	
		cinemático, generación de	
		trayectorias, control	
		dinámico.Describa el tema	
		trabajado	
2	Indique la	Posición y orientación en	Teórico/Práctico
	fecha	el espacio.	
		Modelo cinemático de	
		robots simples a partir del	
		análisis geométrico	
		Matrices de rotación.	
		Vectores de Traslación	
		Ejemplos.	
		Enunciado TP N°1.	
3	Indique la	Algoritmo de Denavit -	Teórico/Práctico
	fecha	Hartenberg	

Facultad Regional Córdoba

	Cordoba		
		Ejemplos de	
		AplicaciónDescriba el	
		tema trabajado	
3	Indique la	Algoritmo de Denavit -	Teórico/Práctico
	fecha	Hartenberg	1 correspiration
	Teena	Ejemplos de Aplicación	
		Enunciado TP N°	
		2.Describa el tema	
		trabajado	
4	Indique la	Modelo cinemático	Teórico/Práctico
	fecha	inverso. Presentación y	
		aplicación de distintas	
		técnicas para su obtención.	
		Técnicas de validación de	
		los modelos mediante	
		simulación.Describa el	
		tema trabajado	
4	Indique la	Modelo cinemático	Teórico/Práctico
	fecha	inverso. Presentación y	
	Toona	aplicación de distintas	
		técnicas para su obtención.	
		Técnicas de validación de	
		los modelos mediante	
		simulación.	
		Enunciado TP N°	
		3.Describa el tema	
		trabajado	
5	Indique la	Presentación y evaluación	Evaluación
	fecha	de Trabajos Prácticos	
5	Indique la	Presentación y evaluación	Evaluación
	fecha	de Trabajos Prácticos	
6	Indique la	Generación de trayectorias	Teórico/Práctico
	fecha	para una única	
		articulación.Describa el	
		tema trabajado	
6	Indique la	Generación de trayectorias	Teórico/Práctico
	fecha	para múltiples	Teories, Tractics
	Toona	articulaciones. Simulación.	
		Enunciado TP N°	
		4.Describa el tema	
7	To di 1	trabajado	Teárico
7	Indique la	Controladores PID.	Teórico
	fecha	Acciones básicas de	
		control.	
		Ejemplos de controladores	
		comerciales e	
		industriales.Describa el	
		tema trabajado	

Facultad Regional Córdoba

7	Indique la	Ejemplos de sistemas de	Teórico/Práctico
	fecha	control aplicados a la	
		robótica.	
		Topologías de	
		controladores P, PD, PI, y	
		PID. Describa el tema	
		trabajado	
8	Indique la	Presentación y evaluación	Evaluación
	fecha	de Trabajos Prácticos.	
8	Indique la	Presentación y evaluación	Evaluación
	fecha	de Trabajos Prácticos.	
9	Indique la	IoT. Componentes del	Teórico
	fecha	Sistema.	
		Arquitectura del	
		microcontrolador ESP32.	
		Arquitectura de la placa de	
		evaluación.	
		Microcontrolador,	
		regulador de tensión,	
		puerto USB.	
		Descripción de la placa de	
		evaluación de la	
		cátedra.Describa el tema	
0	T 1' 1	trabajado	T 1
9	Indique la	Software de programación:	Laboratorio
	fecha	Instalación de Arduino	
		IDE, Instalación del SDK en el Arduino IDE.	
		Instalación de PlatformIO	
		en VSCode.	
		Compilación del programa	
		y programación del	
		microcontrolador.	
		Describa el tema trabajado	
10	Indique la	Protocolo de	Laboratorio
	fecha	comunicación Serie.	
		Puertos de Entrada y	
		Salida Digitales	
		Puertos de Entrada y	
		Salida Analógicos.	
		Enunciado TP N°	
		5Describa el tema	
		trabajado	
10	Indique la	Entradas Analógicas.	Laboratorio
	fecha	PWM. Técnicas de ADC	
		y DAC.	
		Enunciado TP N°	
		6.Describa el tema	
		trabajado	

22

XUTN

Facultad Regional Córdoba

Elija un	Indique la	Librerías de Software.	Laboratorio
elemento.	fecha	Introducción a los	Zuoorutorio
	100114	Sensores.Describa el tema	
		trabajado	
Elija un	Indique la	Librerías de Software	Laboratorio
elemento.	fecha	Protocolos de	
	1001100	comunicación entre	
		periféricos y dispositivos.	
		Serial, I2C, SPI, MQTT,	
		etc.	
		Enunciado TP N°	
		7.Describa el tema	
		trabajado	
12	Indique la	Librerías de Software	Seleccione el tipo de actividad.
	fecha	Protocolos de	r
		comunicación entre	
		periféricos y dispositivos.	
		Serial, I2C, SPI, MQTT,	
		etc.	
		Enunciado TP N°	
		8.Describa el tema	
		trabajado	
12	Indique la	Comunicación entre	Laboratorio
	fecha	ESP32.	
13	Indique la	Comunicación entre	Laboratorio
	fecha	ESP32.	
		Enunciado TP N° 9.	
13	Indique la	Sensores	Labotatorio
	fecha		
14	Indique la	Protocolos Wifi y	Laboratorio
	fecha	Bluetooh.	
		Enunciado TP N° 10	
		Describa el tema	
		trabajado	
14	Indique la	Over-The-Air Updates	Laboratorio
	fecha	(OTA)	
		Encriptado de	
		firmwareDescriba el tema	
15	Total: 1	trabajado	Lobourtoit
15	Indique la	Acceso a Bases de Datos.	Laboratorio
	fecha	Enunciado TP N° 11.Describa el tema	
15	Indiana la	trabajado Cierre.	Evaluación
13	Indique la fecha		Evaluacion
	10011a	Presentación y evaluación de Trabajos Prácticos	
16	Indique la	Presentación y evaluación	Evaluación
10	fecha	de Trabajos	Evaluacion
	icciia	i uc mavajus	

dedited Regional Cordoba			
		Prácticos. Describa el tema	
		trabajado	
16	Indique la	Presentación y evaluación	Evaluación
	fecha	de Trabajos Prácticos.	

FIRMA (de cada docente que conforman la comisión).