Equilibre d'un solide soumis à trois forces non parallèles

I-Condition d'équilibre d'un solide soumis à trois forces : 1-Expérience :

On étudie l'équilibre d'une plaque de masse négligeable.

La plaque est soumis à l'action de trois forces \vec{F}_1 , \vec{F}_2 et \vec{F}_3 .

On constate que les trois forces \vec{F}_1 , \vec{F}_2 et \vec{F}_3 :

- Sont situées dans le même plan, on dit qu'elles sont coplanaires;
- Se coupent en un même point O, on dit qu'elles sont concourantes.

En traçant le polygone des forces à une échelle choisie. On place l'origine d'un des vecteurs à l'extrémité de l'autre vecteur et on complète le triangle.

La ligne polygonale des trois forces est fermée traduit graphiquement la relation vectorielle :

$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{0}$$

3-2-Méthode analytique:

$$\vec{F}_1 \begin{pmatrix} F_{1x} = 3 \\ F_{1y} = 0 \end{pmatrix}$$
 $\vec{F}_2 \begin{pmatrix} F_{2x} = -3 \\ F_{2y} = 4 \end{pmatrix}$ $\vec{F}_3 \begin{pmatrix} F_{3x} = 0 \\ F_{3y} = -4 \end{pmatrix}$

La projection des trois forces sur l'axe Ox et Oy donne :

$$\begin{cases}
F_{1x} + F_{2x} + F_{3x} = 0 \\
F_{1y} + F_{2y} + F_{3y} = 0
\end{cases}$$

Donc: $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{0}$

4-Condition d'équilibre :

Si un slide soumis à trois forces \vec{F}_1 , \vec{F}_2 et \vec{F}_3 non parallèles est en équilibre :

- -les trois forces sont coplanaires et concourantes.
- -la somme vectorielle des trois forces est égale au

vecteur nul : $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{0}$

II-Force de frottement : 1-Expérience :

Sur une table horizontal, on place un corps (C) sur lequel on exerce une force \vec{F} à l'aide d'un dynamomètre (D), comme l'indique la figure.

On augmente successivement l'intensité de la force \vec{F} jusqu'à ce que le corps (C) se mette en mouvement.

2-Angle de frottement :

On constate que la réaction \vec{R} exercée par la table n'est pas perpendiculaire à la surface de contact, elle forme un angle φ avec la normale qu'on appelle angle de frottement.

On peut décomposer la réaction \vec{R} en deux composantes :

 \vec{R}_N : La composante normale.

 $ec{R}_T$: La composante tangentielle qui s'appelle force de frottement $ec{f}$.

$$tan\varphi = \frac{R_T}{R_N}$$

On appelle le coefficient de frottement : $k = tan \varphi$

3-Angle de frottement statique :

Le corps (C) est en équilibre sous l'action de trois forces : \vec{F} , \vec{R} et son poids \vec{P} .

A cause de frottement le corps (C) reste en équilibre tend que la force \vec{F} est intérieure à une valeur minimale \vec{F}_m .

- * $F < F_m$ le solide est en équilibre $\varphi < \varphi_0$ tel que φ_0 est l'angle de frottement statique.
- $F > F_m$ le solide est en mouvement $\varphi > \varphi_0$.

On définit le coefficient de l'angle statique k_0 par la relation : $k_0 = tan \varphi_0$

III-Exercice d'application:

Un solide (S) est attaché à un fil inextensible sur un plan incliné faisant un angle α avec l'horizontale (voir figure).

Le contact entre la plan incliné et le solide se fait sans frottements.

Déterminer les intensités des forces appliquées sur le solide (S).

On donne m=500~g ; $g=10~N.kg^{-1}$ et $lpha=30^\circ.$

Solution:

- -système étudié : le corps (S)
- -bilan des forces qui s'exercent sur le corps (S) :

 \vec{R} : la réaction du plan incliné.

 \vec{T} : la tension du fil.

 \vec{P} : le poids du solide (S).

-Le solide (S) est en équilibre on

$$\acute{\text{ecrit}}: \overrightarrow{R} + \overrightarrow{T} + \overrightarrow{P} = \overrightarrow{0}$$

La projection des forces sur les axes

Ox et Oy:

$$\begin{cases} R_x + T_x + P_x = 0 \\ R_y + T_y + P_y = 0 \end{cases}$$

$$sin\alpha = \frac{P_x}{P} \implies P_x = P.sin\alpha$$

$$P_x = m.g.sin\alpha$$

$$P_y$$

$$\cos\alpha = \frac{P_y}{P} \Rightarrow P_y = P.\cos\alpha$$

$$P_{y} = m.g. sin \alpha$$

Les coordonnées des forces dans le repère (O,\vec{i},\vec{j}) sont :

$$\vec{R} \begin{cases} R_x = 0 \\ R_y = R \end{cases} \qquad \vec{T} \begin{cases} T_x = T \\ T_y = 0 \end{cases} \qquad \vec{P} \begin{cases} P_x = m. g. \sin \alpha \\ P_y = m. g. \cos \alpha \end{cases}$$

$$\begin{cases} 0+T+m.\,g.\sin\alpha=0\\ R+0+m.\,g.\cos\alpha=0 \end{cases} \implies \begin{cases} T=m.\,g.\sin\alpha\\ R=m.\,g.\cos\alpha \end{cases}$$

A.N:
$$\begin{cases} T = 0.5 \times 10 \times \sin(30^{\circ}) \\ R = 0.5 \times 10 \times \cos(30^{\circ}) \end{cases} \Rightarrow \begin{cases} T = 2.5 \text{ N} \\ R = 4.33 \text{ N} \end{cases}$$

Remarque:

Les mêmes résultats sont obtenus en utilisant la méthode graphique.

$$sin\alpha = \frac{T}{P} \implies T = P.sin\alpha$$
 $cos\alpha = \frac{R}{P} \implies R = P.cos\alpha$