Fangyuan's Collection of Exercises in Probability Theory and Statistics

Fangyuan Lin

July 29, 2025

Contents

1	Line	ear Algebra
	1.1	Eigenvalue and Eigenvector
	1.2	Determinant
		1.2.1 The Determinant is the Product of Eigenvalues
	1.3	Trace
		1.3.1 Trace is Equal to the Sum of Eigenvalues
		1.3.2 An Inequality relating Trace and Determinant
	1.4	Core Competency Exam Questions
2	Random Variables and Transformations	
		2.0.1 Median Minimizes the Absolute Error
		2.0.2 A Tight Bound of Variance of Bounded Random Variables

Linear Algebra

1.1 Eigenvalue and Eigenvector

The eigenvalues of A^2

If A has eigenvalues λ_i . Then the eigenvalues of A^2 are λ_i^2 .

Proof. Well, my first intuition is to think about the diagonalization of A and the result becomes clear.

A rigorous proof is also not hard:

1.

$$A\vec{v} = \lambda \vec{v} \implies A^2 \vec{v} = A\lambda \vec{v} = \lambda^2 \vec{v}.$$

2. The algebraic multiplicity of the eigenvalues λ_i^2 of A^2 is the same as the eigenvalues λ_i of A:

$$\det(A^2 - \lambda^2 I) = \det(A + \lambda I) \det(A - \lambda I).$$

This means that

1.2 Determinant

1.2.1 The Determinant is the Product of Eigenvalues

Proof. Let A be a matrix with eigenvalues λ_i . The key idea of the proof uses the characteristic polynomial.

1. Consider the characteristic polynomial

$$p(\lambda) = |\lambda I - A| = c_0 + c_1 \lambda + \dots + \lambda^n$$

Note that the characteristic polynomial is monic.

2. We can obtain c_0 by

$$p(0) = c_0 = |0 \cdot I - A| = (-1)^n \det A$$

3. Note that the eigenvalues λ_i are roots of the characteristic polynomial so

$$p(0) = \prod_{i} (0 - \lambda_i) = (-1)^n \lambda_i$$

4. Lastly,

$$c_0 = (-1)^n \prod_i \lambda_i = (-1)^n \det A$$

SO

$$\det A = \prod_{i} \lambda_i$$

1.3 Trace

1.3.1 Trace is Equal to the Sum of Eigenvalues

Trace is Equal to the Sum of Eigenvalues

Let A be an $n \times n$ matrix with eigenvalues λ_i . Show that

$$\operatorname{Tr}(A) = \sum_{i} \lambda_{i}$$

Solution. 1. The proof is similar to that of "the determinant is product of eigenvalues," i.e. we work with the characteristic polynomial. TO BE FILLED IN

1.3.2 An Inequality relating Trace and Determinant

2018 Summer Practice Problem, # 18

Suppose Σ is a non-negative definite matrix of $n \times n$ real entries and real eigenvalues. Show that

$$\operatorname{Tr}(\Sigma^2) \ge n \cdot \det(\Sigma)^{2/n}$$
.

Solution. 1. Let $\{\lambda_i\}$ be the eigenvalues of Σ . To make some progress, let's write the trace as

$$\operatorname{Tr}(\Sigma) = \sum_{i} \lambda_{i}^{2}$$

2. By the Arithmetic Mean - Geometric Mean inequality,

$$\frac{\sum_{i=1}^{n} \lambda_i^2}{n} \ge \sqrt[n]{\prod_{i=1}^{n} \lambda_i^2} \implies \operatorname{Tr}(\Sigma^2) \ge n \det(\Sigma)^{\frac{2}{n}}$$

1.4 Core Competency Exam Questions

2020 September Exam, #8

For every $n \ge 1$, let A_n be an $n \times n$ symmetric matrix with non-negative entries. Let $R_n(i) := \sum_{j=1}^n A_n(i,j)$ denote the ith row/column sum of A_n . Assume that

$$\lim_{n \to \infty} \max_{1 \le i \le n} |R_n(i) - 1| = 0.$$

Let $\lambda_n \geq 0$ denote an eigenvalue with the largest absolute value, and let $\vec{x} = (x_1, \ldots, x_n)$ denote its corresponding eigenvector.

• Show that

$$\frac{1}{n} \sum_{i,j=1}^{n} A_n(i,j) \to 1$$

- Show that $\lambda_n |x_i| \leq \max_{1 \leq j \leq n} |x_j| R_n(i)$.
- Using parts one and two, show that

$$\lambda_n \to 1$$
.

Solution. For the first part, let's just write something down:

1.

$$\frac{1}{n} \sum_{i,j=1}^{n} A_n(i,j) = \frac{1}{n} \sum_{i=1}^{n} R_n(i)$$

2.

$$\left| \frac{1}{n} \sum_{i,j=1}^{n} A_n(i,j) - 1 \right| = \left| \frac{1}{n} \sum_{i=1}^{n} R_n(i) - 1 \right|$$

$$\leq \max_{1 \leq i \leq n} |R_n(i) - 1| \to 0$$

For the second part,

1. By assumption,

$$A_n \vec{x} = \lambda_n \vec{x}, \quad \lambda_n x_i = \sum_{j=1}^n A_n(i, j) x_j$$
$$\lambda_n |x_i| \le \sum_{j=1}^n A_n(i, j) |x_j| = R_n(i) \max_{1 \le j \le n} |x_j|.$$

For the third part, we first use the Rayleigh quotient. For any nonzero vector $v \in \mathbb{R}^n$,

$$\lambda_n = \max_{\|u\|_2 = 1} u^T A_n u \ge \max_{\|u\|_2 = 1} \sum_{i,j=1}^n A_n(i,j) u_i u_j$$
$$\ge \sum_{i,j=1}^n A_n(i,j) \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} = \frac{1}{n} \sum_{i,j=1}^n A_n(i,j) \to 1.$$

For the other direction, we use part two. Choose k such that $|x_k| = \max_j |x_j|$

$$\lambda_n \le \frac{x_k}{x_k} R_n(k) \to 1$$

(Straightforward) 2021 May Exam, #7

Suppose that $A = (a_{ij})_{1 \le i,j \le 2}$ is a 2×2 symmetric matrix, with $a_{11} = a_{22} = \frac{3}{4}$ and $a_{12} = a_{21} = \frac{1}{4}$.

- Find the eigenvalues and eigenvectors of the matrix A.
- Compute $\lim_{n\to+\infty} a_{12}^{(n)}$ where $a_{i,j}^{(n)}$ denotes the *ij*th entry of the matrix A^n .

Solution. The first part is standard. Set up the characteristic polynomial and solve for its roots:

$$p(\lambda) = \det(A - \lambda I) = 0 \implies \lambda = \frac{1}{2}, 1$$

The eigenvector corresponding to $\lambda = 1$ is $\begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. The eigenvector corresponding to

$$\lambda = \frac{1}{2}$$
 is $\begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$.

For the second part. We should use diagonalization; otherwise, matrix exponential would be hard to compute.

$$A = PDP^{-1}$$

where D is the diagonal matrix whose diagonal entries are the eigenvalues. P^{-1} is the matrix whose the columns are the corresponding eigenvectors. So $D = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$ and

$$P^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}.$$

$$A^{n} = P \begin{bmatrix} 1^{n} & 0 \\ 0 & \frac{1}{2}^{n} \end{bmatrix} P^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.5^{n} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.5^{n} & -(0.5^{n}) \end{bmatrix}$$

$$a_{12}^n = \frac{1}{2} - \frac{1}{2} \cdot (-(0.5^n)) \to \frac{1}{2}.$$

This question is straightforward in my opinion!

2021 Sept Exam, #6

Let $A \in \mathbb{R}^{m \times n}$ be an $m \times n$ matrix with n < m. Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_n$ and $\vec{v}_1, \ldots, \vec{v}_n$ are the eigenvalues and eigenvectors of $A^T A$. What can we say about ALL the eigenvalues and eigenvectors of AA^T . Justify your answer.

Solution. When it comes AA^T , especially when A is non-symmetric or even non-square, we should think of Singular Value Decomposition SVD! Let $A = U\Sigma V^{-1}$ be its SVD.

Then $A^T = V\Sigma^T U^{-1}$. The singular values of A are the square root of the eigenvalues of AA^T , and we see that A and A^T share the same singular values. Note that U is composed of orthonormal eigenvectors of AA^T and V is composed of orthonormal eigenvectors of A^TA . $AA^T\vec{v}_i = \lambda \vec{v}_i$

Eigenvalue of Orthogonal Matrix

Let A be a 3×3 real-valued matrix such that $A^T A = AA^T = I_3$ and det(A) = 1. Prove that 1 is an eigenvalue of A.

Solution. Since the problem wants to tell us that A is orthogonal, we should be thinking of the length-preserving property. Let λ be an eigenvalue of A and \vec{v} be a corresponding unit eigenvector. Then

$$||A\vec{v}|| = \sqrt{\vec{v}^T A^T A \vec{v}} = 1 = ||\lambda \vec{v}|| = |\lambda|$$

The determinant is the product of the eigenvalues and -1 cannot be the only eigenvalue of A because $(-1)^3 = -1 \neq 1 = \det A$.

(Straightforward) Trace of the square of a symmetric matrix is zero means zero matrix

Let A be an $n \times n$ symmetric matrix such that $Tr(A^2) = 0$. Show that $A = 0_{n \times n}$. Hint: Use the fact that Tr(ABC) = Tr(CAB).

Solution. The hint apparently wants us to apply the spectral theorem to obtain a diagonalization $A = Q\Lambda Q^T$.

$$\operatorname{Tr} A^2 = \operatorname{Tr} (Q\Lambda^2 Q^T) = \operatorname{Tr} (Q^T Q\Lambda^2) = \operatorname{Tr} (\Lambda^2) = 0.$$

The trace is equal to the sum of the eigenvalues (to be honest, with this fact, we don't really need the hint), i.e. the diagonal of Λ^2 is zero. Since the entries of Λ^2 are non-zero, $\Lambda^2 = 0$ and hence $\Lambda = 0$. Therefore A = 0.

Eigenvectors are the same iff Multiplication commutes

Let $A, B \in \mathbb{R}^{n \times n}$ have respective eigendecompositions $Q_1 D_1 Q_1^T$ and $Q_2 D_2 Q_2^T$ (recall this means each D_i is a diagonal matrix of eigenvalues and each Q_i is an orthogonal matrix). Prove that $Q_1 = Q_2$ if and only if AB = BA. You may assume that A, B do not have any repeated eigenvalues.

Solution. Suppose AB = BA, consider an eigenpair λ and \vec{v} of A.

$$BA\vec{v} = \lambda B\vec{v} = AB\vec{v}$$
.

This means that $B\vec{v}$ is an eigenvector of A corresponding to the eigenvalue λ . This then imply to A and B share the same set of eigenvalues λ_i with corresponding eigenvectors \vec{v}_i and $B\vec{v}_i$. For $Q_1 = Q_2$, we need to show that $\vec{v}_i \propto B\vec{v}$:

$$AB\vec{v} = \lambda B\vec{v}, \implies B\vec{v} \propto \vec{v}$$

since the eigenspaces of A are all one-dimensional. The other direction is easier. Suppose $Q_1 = Q_2$, then

$$AB = Q_1 D_1 Q_1^T Q_2 D_2 Q_2^T = Q_2 D_2 Q_2^T Q_1 D_1 Q_1^T = BA$$

(Straightforward) Eigenvalue of uv^T

Let $A = uv^T \in \mathbb{R}^{n \times n}$ be a rank-one matrix, i.e. $u, v \in \mathbb{R}^n$. Suppose $u, v \neq 0_n$. Find, with proof, all the eigenvalues of A.

Solution. Let λ be an eigenvalue of A and \vec{x} be a corresponding eigenvector, then

$$A\vec{x} = uv^T\vec{x} = \lambda\vec{x}$$

Note that

$$uv^T x = u\langle v, x \rangle = \lambda \vec{x}$$

This means that \vec{x} and \vec{u} share the same direction. So

$$A\vec{u} = uv^T u = \lambda u$$

Therefore,

$$\lambda = \vec{v}^T \vec{u}$$

There can be no other eigenvalues because A has rank-one.

Comment: Should find this problem straightforward.

Random Variables and Transformations

2.0.1 Median Minimizes the Absolute Error

Median Minimizes the Absolute/ L^1 Error

Let X be a random variable. Show that the median of X is the constant a that minimizes $\mathbb{E}|X-a|$.

Solution. 1. To make progress, we need to write something down. Let f be the probability density function corresponding to X.

$$E|X - a| = \int_{-\infty}^{\infty} |x - a| f(x) dx$$

2. By linearity,

$$E|X - a| = \int_{-\infty}^{\infty} |x - a| f(x) dx = \int_{-\infty}^{a} (a - x) f(x) dx + \int_{a}^{\infty} (x - a) f(x) dx$$

3. Differentiating with respect to a and set the derivative to zero, we get that

$$F(a) + af(a) - af(a) - af(a) - \left(\frac{\mathrm{d}}{\mathrm{d}a}aF(\infty) - aF(a)\right) = 0$$

4. Simplify to get

$$F(a) - af(a) - 1 + af(a) + F(a) = 0 \implies F(a) = \frac{1}{2}$$

5. By definition, the minimizer a is the median of X.

2.0.2 A Tight Bound of Variance of Bounded Random Variables

8

A Tight Bound of Variance of Bounded Random Variables

Let X be a random variable taking values in the interval [0,1].

- Show that the $Var X \leq \frac{1}{4}$.
- Show that this bound is tight by finding a X that achieves this bound.

Solution. I provide two approaches to solve the first part.

1. The first approach starts by noting the fact that $X^2 \leq X$ on [0,1]. Then we have that

$$\mathbb{E}[X^2] \le \mathbb{E}[X].$$

2. Then it's natural for us to consider the decomposition of variance

$$Var X = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \le \mathbb{E}[X] - \mathbb{E}[X^2].$$

3. Applying calculus to maximize $\mu - \mu^2$ on [0, 1], we get

$$\frac{\mathrm{d}}{\mathrm{d}\mu}(\mu - \mu^2) = 1 - 2\mu = 0 \implies \mu = \frac{1}{2}. \quad \frac{\mathrm{d}^2}{\mathrm{d}\mu^2}(\mu - \mu^2) = -2 < 0.$$

- 4. Finally, $Var X \le \frac{1}{2} \frac{1}{2}^2 = \frac{1}{4}$.
- 1. The second approach uses the fact that the expectation is the single constant-predictor that minimizes the mean square error. In particular, it's at least as good as the constant-predictor $\frac{1}{2}$:

$$\mathbb{E}\left[(X-\mu)^2\right] \le \mathbb{E}\left[(X-\frac{1}{2})^2\right].$$

2. The maximum distance between X and $\frac{1}{2}$ is $\frac{1}{2}$ since $X \in [0,1]$. Therefore,

$$\mathbb{E}\left[(X-\frac{1}{2})^2\right] \leq \frac{1}{4}.$$

For the second part of the problem, it was immediate for me to think of the random variable

$$X = \begin{cases} 0 & \text{w.p. } \frac{1}{2} \\ 1 & \text{w.p. } 1 \end{cases} .$$