Reconstruct Population Dynamics of White-tailed Deer in Suburb Chicago under Intensive Culling

Yunyi SHEN

UW Madison Department of Forest and Wildlife Ecology

June 4, 2019

- Introduction
 - Suburb Deer Problem
 - Intensive Culling
- Methods
 - Leslie Matrix Model
 - 4 Level Bayesian Reconstruction
- Results
 - Model Checking
 - Post-Cull Population
 - Density Dependency
- Discussion

Introduction

- Suburb Deer Problem
- Intensive Culling

Suburb Deer Problem

Introduction

O

OO

Deer are There: Fawn Found in Chicago

Suburb Deer Problem

Overabundant Deer is a Problem: Collision

2016 Likelihood of Collision with Deer

Medium Risk States Low Risk States

Suburb Deer Problem

Introduction ○ ○○●

Overabundant Deer is a Problem: CWD

Intensive Culling

Introduction

O
OOO
OOO

How do People do in Chicago

• Intensive Culling!

Intensive Culling

The Big Problem: Did It Work?

- Population Dynamic?
- After Culling Population?
- Density Dependent?

- Matrix Model
- Bayesian Reconstruction

Leslie Matrix Model

Leslie Model

- Uniqueness: Culling is the main mortality source!
- Data is Age-at-Harvest
- We used a modified projection model for culling:

$$C_{t+1} = H_{t+1}L_{t+1}(H_t^{-1} - I)C_t$$
 (1)

• $(\mathbf{H}_t^{-1} - \mathbf{I})\mathbf{C}_t$ solves the post-harvest population

Leslie Matrix Model

Life History Graph

4 Level Bayesian Reconstruction

Bayesian Reconstruction of the Population Dynamics

Bayesian Reconstruction of the Population Dynamics

⁴ Level Bayesian Reconstruction

Model Checking

Model Checking: Culling

Table: Model Checking Indexes for Reconstruction of Culling Data

	Mean	Standard Error
Absolute Difference	7.69	0.911
Posterior Standard Deviation	12.28	0.219
Precision	91%	-

Results

Model Checking

Model Checking: Aerial Counting

Table: Model Checking Indexes for Reconstruction of Aerial Counting Data

	Mean	Standard Error
Absolute Difference	108.81	0.58
Posterior Standard Deviation	94.26	0.96
Precision	100%	-

Post-Cull Population

Post-Cull Population

Density Dependency

Density Dependency

- We detected density dependency on fecundity of most ages
- Density dependency on male fawn survival, probability because of dispersion

Density Dependency

Density Dependency on Fecundity of Yearlings

Density Dependency

Density Dependency on Survival of Male Fawn

Density Dependency on Survival of Male Fawn

- Survival of male fawn is lower than female
- White tailed deer is male dispersing.

Further Question from Manager

- What if we skip a year?
- Does density dependency means difficulty in half K?

Questions and Comments are Welcomed!

Thank you