1 Zahlensysteme und Codes

- Nibble: Binärzahlen in Gruppen von 4 Bits
- MSB / LSB: Most / Least Significant Bit. Bit mit höchster / niedrigsten Wertigkeit, steht ganz links / rechts im binären Wort

1.1 Sign-Magnitude

Erstes Bit zeigt an ob positiv oder negativ.

1.2 BCD - Code

Mit 4 Bit wird jede Ziffer einzeln kodiert

1.3 Umwandlung

1.4 Einerkomplement

Alle Bits werden invertiert wenn ein Bit negativ gemacht wird.

- Vorteil: Vorzeichen am ersten Bit erkennbar
- Nachteil: 0 existiert 2 mal

1.5 Zweierkomplement

Das Zweierkomplement wird durch Invertieren aller Bits der positiven Zahl und der Addition von 1 gebildet.

	Richtiges Ergebnis	Überlauf
A+B	c _n = 0 , c _{n-1} = 0	c _n = 0 , c _{n-1} = 1
A-B	$c_n = c_{n-1}$	Nicht möglich
-A-B	$c_n = 1$, $c_{n-1} = 1$	$C_{n=1}$, $C_{n-1}=0$

2 Schaltalgebra

2.1 Rechenregeln

Vereinfachungen

$$a \lor (a \land b) = a$$
$$a \land (a \lor b) = a$$

$$(a \wedge \overline{b}) \vee b = a \vee b$$
$$(a \vee \overline{b}) \wedge b = a \wedge b$$

$$(a \wedge \overline{b}) \oplus b = a \vee b$$
$$(a \oplus \overline{b}) \wedge b = a \wedge b$$

$$(a \wedge b) \vee (a \wedge \overline{b}) = a$$
$$(a \vee b) \wedge (a \vee \overline{b}) = a$$

2.2 Shannon / De Morgan

Shannon: Alle Eingänge und Ausgänge invertieren und "und" mit "oder" tauschen DeMorgan: Alles invertieren und "und" mit "oder" tauschen

2.3 KDNF

Bei allen Spalten der Wahrheitstabelle bei welcher eine 1 oder "dont care" ausgeben wird, wird mit einem "UND" die Variabeln zusammengenommen danach werden alle Spalten mit einem "ODER" verknüpft.

2.4 KKNF

Bei allen Spalten der Wahrheitstablle bei welcher eine 0 oder "dont care" ausgeben wird, wird mit einem "ODER" die IN-VERTIERTEN Variabeln zusammengenommen danach werden alle Spalten mit einem "UND" verknüpft.

Dont cares werden mit einer eckigen Klammer [] gekennzeichnet

2.5 KV- Diagramm

- Wahrheitstabelle aufstellen
- KV Diagramm entsprechend Nummern einfüllen
- Möglichst grosse 2*n Gruppen von 0ern beim KKNF oder von 1ern beim KDNF (Dont cares dürfen beinhaltet sein)

2.6 Schaltsymbole

3 Schaltungstechnologie

3.1 CMOS - Logik

Zwei verschiedene Arten: p- Kanal und n-Kanal Transistoren.n - Kanal Transistor leited bei positver Gate Source Spannung und umgekehrt.

CMOS Logikschaltungen bestehen immer aus einem PMOS (oben VCC) und einem dualen NMOS (GND) Teil. Kein statischen Stromverbrauch

Komplexität: 4 Transistoren sind ein Gatterequivalent (GE)

3.2 CMOS Realisierung logischer Funktionen

Es dürfen nie die Ausgänge von Transistoren direkt zusammengeschaltet werden.

3.3 Inverter

3.4 NAND

3.5 NOR

$$GE = 0.5$$

$$GE = 1$$

$$GE = 1$$

$$GE = 2$$

3.7 Übergangszeit

Ein Wechsel von einem Wert auf ein neuen benötigt etwas Zeit, diese Zeit wird Überganszeit (Transition Time) genannt.

3.8 Verzögerungszeit

Die Verzögerungszeit (Propagation Delay) bezeichnet die Differenz des Eingangssignal zum

Ausgangssignal.

3.9 Hazards

In digitalen Systemen kann es durch unterschiedliche Laufzeitpfade zu kritischen Wettrennen von Signalen kommen. Solche Laufzeiteffekte führen zu unerwünschten Signalzwischenwerten, sogenannten Hazards.

3.10 Statische Hazards

3.11 Dynamische Hazards

Ein Funktionswert **ändert einmal kurzzeitig** seinen Pegel wenn eine Eingangsvariable den Pegel ändert, obwohl dies nicht sein sollte.

Ein Funktionswert ändert **mehrmalskurzzeitig seinen Pegel** nachdem sich eine Eingangsvariablen geändert hat, obwohl der Ausgang sich **nur einmal** hätte ändern müssen.

4 Grundlagen sequenzieller Systeme

Sequenzielle Systeme haben eine Clock oder ein Taktsignal. Das Taktsignal ist ein binäre Signal, das in regelmässiger Abfolge zwischen zwei Zuständen hin und her pendelt. $f = \frac{1}{T}$

4.1 Unterschied Flip - Flop / Latch

Taktflankengesteuerte Speicherelemente werden Flip-Flops genannt. Taktzustandsgesteuerte Speicherelemente werden Latches genannt

4.2 Latches / Flip Flops

4.2.1 RS-Latch

4.2.2 D-Latch

4.3 D-Flip Flop

4.3.1 Setup- und Hold-Zeit

$$q = \frac{2^k!}{(2^k - p)!}$$
 Die **Setup-Zeit** ist die Zeit in welcher das Eingangssignal vor der aktiven Taktflanke einer Schaltung stabil sein muss.

Bei der **Hold-Zeit** ist dies nach der aktiven Taktflanke.

k = Benötigte Speicherstellen =
$$log_2(s)$$
 p = Anzahl Zustände

 $RAM \to Read$ only ROM $\to Read$ and Write DRAM $\to Zustand$ geht verloren SRAM $\to Bleibt$ solange Stromversorgung da

4.3.2 Zustandstabelle

| Assumption | Ass

4.4 Zustandsdiagramm

 $x \rightarrow Eingangsvektor$ $m \rightarrow Anzahl Eingänge$ $y \rightarrow Ausgangsvektor$

S

 $n \to Anzahl Ausgänge$

 $s \rightarrow Zustandsvektor$ $d \rightarrow Folgezustand$ $F \to Funktion Ausgänge$

 $G \rightarrow Speicheransteuerung$

 $Z \rightarrow Zustandsspeicher$

4.4.1 Mealy-System

4.4.2 Moore - System

Abhängig von: Zustand

4.5 Medwedjew - System

Die primären Ausgänge entsprechen dem Zustandsvektor s

Zeit Mealy

Berechnung max. Clockfreqeunz kompliziert. Meherere Mealy-Maschinen können sehr langen Signalpfad erzeugen

Zeit Moore / Medwedjew

Mehrere Moore-Maschinen erzeugen Verzögerung im Sinne von mehreren Takten.

4.6 Zustandscodierung

4.6.1 Binär

4.6.2 ONE - HOT

4.6.3 ONE - COLD

Das Standard binär System wird für die Codierung verwendet

Nur ein Bit ist eine 0

Nur ein Bit ist eine 1