

VOLTAGE-DIVIDER BIAS

BJT DC BIASING

Gyro A. Madrona

........

Electronics Engineer

TOPIC OUTLINE

Voltage-Divider Bias Circuit

- Base-Emitter Loop
- Collector-Emitter Loop
- Load Line Analysis

VOLTAGE-DIVIDER BIAS CIRCUIT

CURRENT GAIN

The <u>current gain</u> parameters <u>alpha</u> (α) and <u>beta</u> (β) describe the relationship between currents in the transistor's three terminals (emitter, base, and collector).

Alpha (α) is the ratio of the collector current to the emitter current.

Formula

$$\alpha = \frac{i_C}{i_E}$$

 α is always less than 1 (typically 0.95 to 0.995)

Beta (β) is the ratio of the collector current to the base current.

Formula

$$\beta = \frac{i_C}{i_B}$$

VOLTAGE-DIVIDER BIAS CIRCUIT

The <u>voltage-divider bias</u> uses a pair of resistors (R_1 and R_2) to form a voltage divider that sets the base voltage. This configuration is less sensitive to variations in transistor beta (β) and offers a more <u>stable operating point</u>.

THEVENIN EQUIVALENT CIRCUIT

Thevenin Voltage

$$v_{H} = V_{CC} \frac{k_2}{k_1 + k_2}$$

THEVENIN EQUIVALENT CIRCUIT

Thevenin Voltage

$$0_{H} = Vcc \frac{k_2}{k_1 + k_2}$$

Thevenin Resistance

THEVENIN EQUIVALENT CIRCUIT

Thevenin Voltage

$$v_{H} = V_{CC} \frac{k_2}{k_1 + k_2}$$

Thevenin Resistance

$$\frac{1}{ta_{H}} = \frac{1}{ta} + \frac{1}{tz_{2}}$$

BASE-EMITTER LOOP

KVL @B-E

$$it = ip + ic \longrightarrow \beta = \frac{ic}{ip}$$

$$it = ip + \beta ip$$

$$ic = \beta ip$$

$$it = ip(\beta + 1)$$

ip Part + ip (p+1) PE = VAH - VBE

ip [PAH + (p+1)] = VAH - VBE

BASE-EMITTER LOOP

KVL @B-E

COLLECTOR-EMITTER LOOP

KVL @C-E

For the given voltage-divider bias network, determine:

- Base current (i_{BQ})
- Collector current (i_{CO})
- Collector-Emitter voltage (v_{CEQ})
- Emitter voltage (v_E)
- Collector Voltage (v_C)

Solution

Therenin Voltage

$$V_{th} = V_{ca} \frac{k_2}{k_1 + k_2}$$

$$v_{H} = 15 \frac{3.9 \text{K}}{39 \text{K} + 3.9 \text{K}}$$

Solution

Therenin Resistance

$$\frac{1}{l_{H}} = \frac{1}{l_{L}} + \frac{1}{l_{L}}$$

$$\frac{1}{1200} = \frac{1}{300} + \frac{1}{3.90}$$

$$\frac{1}{1204} = \frac{11}{39}$$

LVLOBE

$$-VH + VPH + VPE + VPE = 0$$
 $VPH + VPE = VH - VPE$
 $ipleH + iele = VH - VPE$
 $ipleH + iele = VH - VPE$
 $it = ip + ic \longrightarrow \beta = \frac{ic}{ip}$
 $it = ip + \beta ip$
 $it = ip (\beta + i)$

$$\frac{|\text{LVLOB-E}|}{\text{ip |RH} + \text{ip | (B+1) | RE}} = \text{VH} - \text{VpF}$$

$$\text{ip | RH + (B+1) | RE} = \text{VH} - \text{VpF}$$

$$i_{p} = \frac{1.36 - 0.7}{3.55 \times + (40 + 1)470}$$

$$i_{p0} = 26.92 \text{ M}$$

Solution

KYLQ C+

$$-V\omega + Vkc + Vce + Vke = 0$$

$$V\omega = Vcc - Vkc - Vke$$

$$V\omega = V\omega - icke - ieke \rightarrow ic$$

$$V\omega = V\omega - ic(kc + ke)$$

$$va = 15 - 1.16m(2.7k + 470)$$

$$va = 11.32V$$
ane

$$Vc = 15 - 1.16m(2.7K)$$

Solution

Hode Analysis Method

$$v_{f} = 0.55V$$

LOAD LINE ANALYSIS

SATURATION POINT

The <u>saturation point</u> is the operating state where BJT conducts the <u>maximum collector curren</u>t ($i_{C(sat)}$) with zero collector-emitter voltage ($v_{CE} = 0$).

In this region the transistor acts like a <u>closed switch</u> (zero resistance between collector-emitter).

SATURATION POINT

CUTOFF POINT

The <u>cutoff point</u> is the operating state where BJT conducts zero collector current ($i_C = 0$) with v_{CE} at its maximum ($v_{CE} = V_{CC}$).

In this region the transistor acts like an <u>open switch</u> (infinite resistance between collector-emitter).

CUTOFF POINT

QUIESCENT POINT

The <u>Q-point</u> is the stable DC operating condition characterized by specific value of collector current (i_C) and collector-emitter voltage (v_{CE}) .

Plot the DC load line analysis for the voltage-divider bias network, indicating:

- Saturation current $(i_{C(sat)})$
- Cutoff voltage ($v_{CE(cutoff)}$)
- Operating Point (Q-Point)

Solution

Saturation Point

Load Line Analysis

For the given voltage-divider bias network, determine:

- Base current (i_{BQ})
- Collector current (i_{CO})
- Collector-Emitter voltage (v_{CEQ})

And plot the DC load line analysis indicating:

- Saturation current $(i_{C(sat)})$
- Cutoff voltage ($v_{CE(cutoff)}$)
- Operating Point (Q-Point)

Solution

Thevenin Voltage

$$V_{H} = V_{CC} \frac{R_{1}}{R_{1} + R_{2}}$$

$$V_{11} = 15 - \frac{3.9K}{39K + 3.9K}$$

Solution

Thevenin Resistance

$$\frac{1}{k_{H}} = \frac{1}{39k} + \frac{1}{3.9k}$$

$$\frac{1}{120H} = \frac{11}{301K}$$

$$it = ip + ic - p = \frac{ic}{ip}$$

$$it = ip + p ip$$

$$ic = p ip$$

$$it = ip(p+1)$$

$$ip = \frac{1.36 - 0.7}{3.54k + (80+1)470}$$

$$ip = 15.86 \text{ MA}$$
ans

Curvent Gain

$$B = \frac{ic}{ip}$$
 $ic = Bip$
 $ic = 80 (15.86u)$
 $ica = 1.27 mA$

ans

Solution

kno ct

Solution

Saturation Point

WLOCE

$$-Vcu + Vpc + Vce + Vpe = 0$$

$$Vpc + Vpe = Vcc$$

$$ickc + ieke = Vcc \rightarrow ic \times ve$$

$$ic(Rc + Pe) = Vcc$$

$$Rc + Pe$$

$$ic = \frac{15}{2.74 + 470}$$

Load Line Analysis

INDEPENDENT OF THE TRANSISTOR BETA

Bias	β	$i_B(\mu A)$	$i_C(mA)$	$v_{CE}(V)$	$\%\Delta v_{\it CE}$
Fixed-Bias	50	47.08	2.35	6.83	-76%
	100	47.08	4.71	1.64	
Emitter- Stabilized	45	23.74	1.07	14.54	-31%
	90	37.04	3.33	10.01	
Voltage- Divider Bias	书	28.92	1.16	11.32	-3%
	<i>S</i> 0	15.86	1.27	10.017	

LABORATORY

