Probability overview

Probabilistic Graphical Models

Jerónimo Hernández-González

Probability Overview

Events

Discrete random variables, continuous random variables, compound events

- Axioms of probability
 What defines a reasonable theory of uncertainty
- Conditional probabilities
- Chain rule
- Bayes rule
- Joint probability distribution
- \triangleright P(Y|X): Facing practical problems
 - Conditional independencies for model simplification
 - Principles of parameter estimation

Random Variables

- Informally, A is a random variable if
 - A denotes something about which we are uncertain
 - perhaps the outcome of a randomized experiment
- Examples
 - A: True if a randomly drawn person from our class is female
 - A: The hometown of a randomly drawn person from our class
 - ▶ A : True if two randomly drawn persons from our class have same birthday
- Define P(A) as "the fraction of possible worlds in which A is true" or "the fraction of times A holds, in repeated runs of the random experiment"
 - ▶ The set of possible worlds is called the sample space, S
 - A random variable A is a function defined over S

More formally, we have:

- ➤ a sample space S, a.k.a. the set of possible worlds E.g., set of students in our class
- ▶ a random variable is a function defined over the sample space Gender: $S \rightarrow \{m, f\}$

Height: $S \to \mathbb{R}$

- an event is a subset of S
 E.g., the subset of S for which Gender=f
 E.g., the subset of S for which (Gender=m) AND (eyeColor=blue)
- we are often interested in probabilities of specific events
- and of specific events conditioned on other specific events

- X: random variable (UPPERCASE)
- $X = (X_1, \dots, X_n)$: random vector (BOLD UPPERCASE)
- $ightharpoonup \Omega_X$: possible values of random variable X.
- $x \in \Omega_X$: a possible value of random variable X: X = x (lowercase)
- $\mathbf{x} = (x_1, \dots, x_n)$: a possible (tuple of) value of a random vector \mathbf{X} : $(X_1 = x_1, \dots, X_n = x_n), \forall X_i : x_i \in \Omega_{X_i}$ (bold lowercase)

- X: random variable (UPPERCASE)
- $\boldsymbol{X} = (X_1, \dots, X_n)$: random vector (BOLD UPPERCASE)
- \triangleright Ω_X : possible values of random variable X.
- $x \in \Omega_X$: a possible value of random variable X: X = x (lowercase)
- $m{x}=(x_1,\ldots,x_n)$: a possible (tuple of) value of a random vector $m{X}$: $(X_1=x_1,\ldots,X_n=x_n), \forall X_i:x_i\in\Omega_{X_i}$ (bold lowercase)
 - * Instantiation

Visualizing A

The Axioms of Probability:

- $ightharpoonup 0 \le P(A) \le 1$
- ► *P*(*True*) = 1
- ightharpoonup P(False) = 0
- ▶ P(A or B) = P(A) + P(B) P(A and B)

[di Finetti 1931]:

when gambling based on "uncertainty formalism A" you can be exploited by an opponent

iff

your uncertainty formalism A violates these axioms

Elementary probability in pictures

$$P(\neg A) + P(A) = 1$$

A useful theorem

$$0 \le P(A) \le 1, P(True) = 1, P(False) = 0$$

$$P(X \text{ or } Y) = P(X) + P(Y) - P(X \text{ and } Y)$$

$$A = [A \text{ and } (B \text{ or } \neg B)] = [(A \text{ and } B) \text{ or } (A \text{ and } \neg B)]$$

$$P(A) = P(A \text{ and } B) + P(A \text{ and } \neg B) - P((A \text{ and } B) \text{ and } (A \text{ and } \neg B))$$

= $P(A \text{ and } B) + P(A \text{ and } \neg B) - P(A \text{ and } B \text{ and } A \text{ and } \neg B)$

$$P(A) = P(A \text{ and } B) + P(A \text{ and } \neg B)$$

Elementary probability in pictures

p(X): marginal probabilities

$$0 \le p(X = x) \le 1, \forall x \in \Omega_X$$
$$\left(\sum_{x \in \Omega_X} p(X = x)\right) = 1$$

$$p(X = x_1) = 1/4$$

 $p(X = x_2) = 1/4$
 $p(X = x_3) = 1/2$

p(X): marginal probabilities

$$0 \le p(X = x) \le 1, \forall x \in \Omega_X$$
$$\left(\sum_{x \in \Omega_X} p(X = x)\right) = 1$$

$$p(X)$$
: marginal probabilities $0 \le p(X = x) \le 1, \forall x \in \Omega_X$ $\left(\sum_{x \in \Omega_X} p(X = x)\right) = 1$

$$p(X)$$
: joint probabilities

$$0 \le p(\mathbf{X} = \mathbf{x}) \le 1, \forall \mathbf{x} = (x_1, \dots, x_n) \in \Omega_{X_1} \times \dots \times \Omega_{X_n}$$
$$\left(\sum_{\mathbf{x} \in \Omega_{X_1} \times \dots \times \Omega_{X_n}} p(\mathbf{X} = \mathbf{x})\right) = 1$$
$$p(\mathbf{X}) = p(X_1, \dots, X_n) = p(X_1 \cap \dots \cap X_n)$$

$$p(X)$$
: marginal probabilities

$$0 \le p(X = x) \le 1, \forall x \in \Omega_X$$
$$\left(\sum_{x \in \Omega_X} p(X = x)\right) = 1$$

p(X): joint probabilities

$$0 \le p(\mathbf{X} = \mathbf{x}) \le 1, \forall \mathbf{x} = (x_1, \dots, x_n) \in \Omega_{X_1} \times \dots \times \Omega_{X_n}$$
$$\left(\sum_{\mathbf{x} \in \Omega_{X_1} \times \dots \times \Omega_{X_n}} p(\mathbf{X} = \mathbf{x})\right) = 1$$
$$p(\mathbf{X}) = p(X_1, \dots, X_n) = p(X_1 \cap \dots \cap X_n)$$

Marginalization

$$p(Y) = \sum_{x \in \Omega_X} p(Y|X = x) \cdot p(X = x)$$

p(X): marginal probabilities

$$0 \le p(X = x) \le 1, \forall x \in \Omega_X$$
$$\left(\sum_{x \in \Omega_X} p(X = x)\right) = 1$$

p(X): joint probabilities

$$0 \le p(\mathbf{X} = \mathbf{x}) \le 1, \forall \mathbf{x} = (x_1, \dots, x_n) \in \Omega_{X_1} \times \dots \times \Omega_{X_n}$$
$$\left(\sum_{\mathbf{x} \in \Omega_{X_1} \times \dots \times \Omega_{X_n}} p(\mathbf{X} = \mathbf{x})\right) = 1$$
$$p(\mathbf{X}) = p(X_1, \dots, X_n) = p(X_1 \cap \dots \cap X_n)$$

$$p(Y|X)$$
: conditional probabilities

$$0 \le p(Y = y | X = x) \le 1, \forall x \in \Omega_X \land y \in \Omega_Y$$
 $\left(\sum_{y \in \Omega_Y} p(Y = y | X = x)\right) = 1, \forall x \in \Omega_X$ $p(Y | X) = \frac{p(X, Y)}{p(X)} \text{ with } p(X) \ne 0$

$$0 \le p(Y = y | X = x) \le 1, \forall x \in \Omega_X \land y \in \Omega_Y$$
$$\left(\sum_{y \in \Omega_Y} p(Y = y | X = x)\right) = 1, \forall x \in \Omega_X$$
$$p(Y | X) = \frac{p(X, Y)}{p(X)} \text{ with } p(X) \ne 0$$

$$p(Y = y_1|X = x_1) = p(Y = y_2|X = x_1) = p(Y = y_1|X = x_2) = p(Y = y_2|X = x_2) = p(Y = y_1|X = x_3) = p(Y = y_2|X = x_3) = p(Y = x_3|X = x_3) = p(Y = x_3|X =$$

$$0 \le p(Y = y | X = x) \le 1, \forall x \in \Omega_X \land y \in \Omega_Y$$
$$\left(\sum_{y \in \Omega_Y} p(Y = y | X = x)\right) = 1, \forall x \in \Omega_X$$
$$p(Y | X) = \frac{p(X, Y)}{p(X)} \text{ with } p(X) \ne 0$$

$$p(Y = y_1|X = x_1) = 1$$

$$p(Y = y_2|X = x_1) = 0$$

$$p(Y = y_1|X = x_2) =$$

$$p(Y = y_2|X = x_2) =$$

$$p(Y = y_1|X = x_3) =$$

$$p(Y = y_2|X = x_3) =$$

$$0 \le p(Y = y | X = x) \le 1, \forall x \in \Omega_X \land y \in \Omega_Y$$
$$\left(\sum_{y \in \Omega_Y} p(Y = y | X = x)\right) = 1, \forall x \in \Omega_X$$
$$p(Y | X) = \frac{p(X, Y)}{p(X)} \text{ with } p(X) \ne 0$$

$$p(Y = y_1 | X = x_1) = 1$$

$$p(Y = y_2 | X = x_1) = 0$$

$$p(Y = y_1 | X = x_2) = 1/2$$

$$p(Y = y_2 | X = x_2) = 1/2$$

$$p(Y = y_1 | X = x_3) = 0$$

$$p(Y = y_2 | X = x_3) = 0$$

$$0 \le p(Y = y | X = x) \le 1, \forall x \in \Omega_X \land y \in \Omega_Y$$
$$\left(\sum_{y \in \Omega_Y} p(Y = y | X = x)\right) = 1, \forall x \in \Omega_X$$
$$p(Y | X) = \frac{p(X, Y)}{p(X)} \text{ with } p(X) \ne 0$$

$$p(Y = y_1 | X = x_1) = 1$$

$$p(Y = y_2 | X = x_1) = 0$$

$$p(Y = y_1 | X = x_2) = 1/2$$

$$p(Y = y_2 | X = x_2) = 1/2$$

$$p(Y = y_1 | X = x_3) = 1/4$$

$$p(Y = y_2 | X = x_3) = 3/4$$

Definition of Conditional Probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

Definition of Conditional Probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

The Chain Rule

$$P(A,B) = P(A|B) \cdot P(B)$$

Chain rule

Chain rule

For all x we have that

$$p(\mathbf{x}) = p(x_1, x_2, ..., x_n) = \prod_{i=1}^n p(x_i | x_1, ..., x_{i-1})$$

- ** it holds for any ordering of $X_1, ..., X_n$
 - ▶ Joint distribution as a product of conditional probabilities
 - Example:

$$p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2)p(x_4|x_1, x_2, x_3)$$

Exercise

Chain rule

Let be $\mathbf{X} = (X_1, X_2, X_3, X_4)$, show that for all \mathbf{x} we have that $p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2)p(x_4|x_1, x_2, x_3)$

** Remember that
$$p(x_i|x_1,...,x_{i-1}) = \frac{p(x_1,...,x_i)}{p(x_1,...,x_{i-1})}$$

Bayes rule

2 expressions for P(A, B)

Bayes rule

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

We call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

This is also the Bayes rule

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\neg A) \cdot P(\neg A)}$$

$$P(A|B,C) = \frac{P(B|A,C) \cdot P(A,C)}{P(B,C)}$$

Exercise

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\neg A) \cdot P(\neg A)}$$

A: you have a flu, B: you just coughed

Assume:

- P(A) = 0.05
- P(B|A) = 0.80
- ► $P(B|\neg A) = 0.2$

what is you have a flu given that you just coughed?

Independent events

Definition

Two events A and B are independent if

$$P(A, B) = P(A) \cdot P(B)$$

** Intuition **

Knowing A tells us nothing about the value of B (and vice versa)

Exercise

Can you tell which is the probability of ending up in the hospital if you get COVID19 and you are not vaccinated?

Exercise

El 57% de los ingresados por coronavirus en Canarias está sin vacunar y no sufre patologías previas

- ► Can you tell which is the probability of ending up in the hospital if you get COVID19 and you are not vaccinated?
- ► Can say anything?

What does all this have to do with function approximation?

```
instead of F: X \to Y, learn P(Y|X)
```

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all possible combinations of values $(M \text{ variables} \rightarrow 2^M \text{ combinations})$

77 Variables.				
Α	В	С		
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Recipe for making a joint distribution of M variables:

- 1. Make a truth table listing all possible combinations of values $(M \text{ variables} \rightarrow 2^M \text{ combinations})$
- 2. Say how probable each combination is

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Recipe for making a joint distribution of M variables:

- 1. Make a truth table listing all possible combinations of values $(M \text{ variables} \rightarrow 2^M \text{ combinations})$
- Say how probable each combination is
 Subscribed to the axioms of probability if sum to 1

Α	В	C	Prob	
0	0	0	0.30	
0	0	1	0.05	
0	1	0	0.10	
0	1	1	0.05	
1	0	0	0.05	
1	0	1	0.10	
1	1	0	0.25	
1	1	1	0.10	

Exercise Using the joint distribution

You can ask for the probability of any logical expression involving your attribute

$$P(E) = \sum_{r: \text{ rows matching } E} P(r)$$

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

Exercise Using the joint distribution

$$P(E) = \sum_{r: \text{ rows matching } E} P(r)$$

$$P(\mathsf{Poor} \wedge \mathsf{Male}) = ?$$

Exercise Using the joint distribution

$$P(E) = \sum_{r: \text{ rows matching } E} P(r)$$
 $P(Poor) = ?$

Inference with the joint distribution

You can ask for the probability of any logical expression involving a subset of attributes given another expression involving other attributes

$$P(E_1|E_2) = \frac{P(E_1 \wedge E_2)}{P(E_2)}$$

$$= \frac{\sum_{r: \text{ rows matching } E_1 \& E_2} P(r)}{\sum_{o: \text{ rows matching } E_2} P(o)}$$

Exercise

Inference with the joint distribution

You can ask for the probability of any logical expression involving a subset of attributes given another expression involving other attributes

$$P(E_1|E_2) = \frac{P(E_1 \land E_2)}{P(E_2)}$$

$$= \frac{\sum_{r: \text{ rows matching } E_1 \& E_2} P(r)}{\sum_{o: \text{ rows matching } E_2} P(o)}$$

	gender	hours_worked	wealth	
	Female	v0:40.5-	poor	0.253122
			rich	0.0245895
		v1:40.5+	poor	0.0421768
			rich	0.0116293
	Male	v0:40.5-	poor	0.331313
)			rich	0.0971295
_		v1:40.5+	poor	0.134106
			rich	0.105933

$$P(Male|Poor) = ?$$

Learning and the joint distribution

Suppose we want to learn the function $f: \langle G, H \rangle \rightarrow W$ Equivalently, P(W|G, H)

Solution:

- Learn joint distribution from train data
- ► Calculate P(W|G,H) for test data

E.g., given a female patient of 39 years old:

$$arg máx_{w \in \{rich, poor\}} P(W = w | G = female, H = 40,5-)$$

Solution?

P(Y|X) sounds like a nice alternative solution to function $F:X \to Y$

Are we done?

Solution?

P(Y|X) sounds like a nice alternative solution to function $F:X \to Y$

Are we done?

Main problem

Learning P(Y|X) may require more data than we have

Solution?

P(Y|X) sounds like a nice alternative solution to function $F:X \to Y$

Are we done?

Main problem

Learning P(Y|X) may require more data than we have

E.g., consider learning the joint distribution for 100 binary variables

- ▶ # of rows in this table?
- # of data samples to learn faithfully?
- # of rows never observed?

Facing practical problems

What to do?

- 1. Be smart about how to represent joint distributions
 - ▶ Bayesian networks, probabilistic graphical models
- 2. Be smart about how we estimate probabilities from *sparse* data
 - maximum likelihood estimates.
 - maximum a posteriori estimates

Facing practical problems

What to do?

- 1. Be smart about how to represent joint distributions
 - Bayesian networks, probabilistic graphical models
- 2. Be smart about how we estimate probabilities from *sparse* data
 - maximum likelihood estimates.
 - maximum a posteriori estimates

From definition to representation

Joint distribution

Let X_V be a set of variable, then

$$\forall \mathbf{x}_V, p(\mathbf{x}_V) = p(x_1, ..., x_v)$$

- ▶ A mapping: $\mathbf{x}_V \mapsto [0, 1]$
- Number of free parameters: $\prod_{i=1}^{v} r_i 1 = r_V 1$
- Exponential in the number of variables, v

From definition to representation

Marginal distribution

Let A and B be a partition of V. Then,

$$\forall x_A, x_B, p(x_A) = \sum_{x_B} p(x_A, x_B)$$

▶ Number of free parameters: $\prod_{i \in A} r_i - 1 = r_A - 1$

From definition to representation

Conditional distribution

Let A and B be a partition of V

$$\forall \mathbf{x}_A, p(\mathbf{x}_A | \mathbf{x}_B) = \frac{p(\mathbf{x}_A, \mathbf{x}_B)}{p(\mathbf{x}_B)} = \frac{p(\mathbf{x}_A, \mathbf{x}_B)}{\sum_{\mathbf{x}_A} p(\mathbf{x}_A, \mathbf{x}_B)}$$

- Family of distribution:

 A marginal distribution for each value assignment $\mathbf{X}_B = \mathbf{x}_B$ $\sum_{\mathbf{x}_A} p(\mathbf{x}_A | \mathbf{x}_B) = 1$
- Number of free parameters: $(\prod_{i \in A} r_i 1) \cdot (\prod_{j \in B} r_j) = (r_A 1) \cdot r_B$

Exercise

<i>X</i> ₁	X ₂	$p(X_1, X_2)$
	banana	0.1
_	apple	0.3
_	pear	0.2
+	banana	0.1
+	apple	0.2
+	pear	0.1

- ▶ Determine the domains of X_1 and X_2 .
- ▶ Obtain the marginal distributions $p(X_1)$ y $p(X_2)$
- Obtain the conditional distributions $p(X_1|X_2 = apple)$ y $p(X_2|X_1 = +)$
- Compute the number of free parameters $p(X_1)$, $p(X_1|X_2)$ y $p(X_1, X_2)$

$Conditional\ independence$

A qualitative relationship between random variables

Let A, B, C be disjoint subsets of $V = \{1, ..., v\}$. We say that X_A is independent from X_B given X_C if and only if for all (x_A, x_B, x_C) we have that $p(x_A|x_B, x_C) = p(x_A|x_C)$.

- ▶ Denoted by $X_A \perp \!\!\! \perp X_B | X_C$
- $p(x_A|x_B, x_C) = p(x_A|x_C)$: Knowing/observing/fixing x_C , the value x_B does not modify the probability of x_A
- Exercise: Prove that $X_A \perp \!\!\! \perp X_B | X_C \Rightarrow p(\mathbf{x}_A, \mathbf{x}_B | \mathbf{x}_C) = p(\mathbf{x}_A | \mathbf{x}_C) \cdot p(\mathbf{x}_B | \mathbf{x}_C)$

$Conditional\ independence$

- Allow to simplify the factorization given by the chain rule
- Choose an appropriate ordering that allows to apply the independence over a conditional distribution

Example

- $X = X_1, ..., X_5$
- **▶** 3 ⊥⊥ 4|1,5
- ▶ Ordering: 1, 4, 5, 3, 2

$$p(\mathbf{X}) = p(\mathbf{X}_{1,4,5})p(\mathbf{X}_3|\mathbf{X}_{1,4,5})p(\mathbf{X}_2|\mathbf{X}_{1,3,4,5})$$
$$= p(\mathbf{X}_{1,4,5})p(\mathbf{X}_3|\mathbf{X}_{1,5})p(\mathbf{X}_2|\mathbf{X}_{1,3,4,5})$$

Exercise

True or false:

- $X_A \perp \!\!\! \perp X_B \Rightarrow p(\mathbf{x}_A | \mathbf{x}_B) = p(\mathbf{x}_A)$

Counting the parameters

Conditional independences reduce the number of (free) parameters

- $\triangleright X_A \perp \!\!\! \perp X_B$
 - $\forall \mathbf{x} : p(\mathbf{x}_A, \mathbf{x}_B) = p(\mathbf{x}_A)p(\mathbf{x}_B)$
 - From $r_A \cdot r_B 1$ to $r_A 1 + r_B 1$

E.g.,
$$r_A = 3$$
, $r_B = 4$
From $3 \times 4 - 1$ to $2 + 3$

- $\triangleright X_A \perp \!\!\!\perp X_B | X_C$
 - $\forall x: p(x_A, x_B | x_C) = p(x_A | x_C) p(x_B | x_C)$
 - From $(r_A \cdot r_B 1) \cdot r_C$ to $(r_A 1 + r_B 1) \cdot r_C$

E.g.,
$$r_A = 3$$
, $r_B = 4$, $r_C = 3$
From $(3 \times 4 - 1) \times 3$ to $(2 + 3) * 3$

Counting the parameters, without independence

Counting the parameters, without independence

Counting the parameters, with independence

Counting the parameters, with independence

Conditional independence Discarding parameters

The complexity of a statistical model can be understood as its flexibility for learning or its requirement of memory

Conditional independences:

- ➤ Reduce the complexity (i.e., # parameters) of the statistical model represented by the (simplified) chain rule
- Allow for avoiding to model (irrelevant) parameters associated to soft conditional dependences
- Help to deal with the trade-off between the complexity of the statistical model and amount of train data This has crucial implications in statistical models, e.g., overfitting

Exercise

Let be
$$r_A = 6, r_B = 4, r_C = 8$$
.

- $\forall x, p(X) = p(X_A, X_B, X_C)$

- $\forall \boldsymbol{x}, p(\boldsymbol{X}) = p(\boldsymbol{X}_A)p(\boldsymbol{X}_B|\boldsymbol{X}_A)p(\boldsymbol{X}_C|\boldsymbol{X}_A,\boldsymbol{X}_B)$
- 1. Calculate the number of free parameters
- 2. Read conditional independences from factorizations

Facing practical problems

What to do?

- 1. Be smart about how to represent joint distributions
 - ▶ Bayesian networks, probabilistic graphical models
- 2. Be smart about how we estimate probabilities from *sparse* data
 - maximum likelihood estimates.
 - maximum a posteriori estimates

Facing practical problems

What to do?

- 1. Be smart about how to represent joint distributions
 - ▶ Bayesian networks, probabilistic graphical models
- Be smart about how we estimate probabilities from *sparse* data
 - maximum likelihood estimates.
 - maximum a posteriori estimates

You should know

- Events
 - Discrete random variables, continuous random variables, compound events
- Axioms of probability
 What defines a reasonable theory of uncertainty
- Conditional probabilities
- Chain rule
- Bayes rule
- Joint probability distribution
 How to calculate other quantities from the joint distribution
- \triangleright P(Y|X): Facing practical problems
 - Conditional independencies for model simplification
 - Principles of parameter estimation

Notation

- ▶ Indices $V = \{1, ..., n\}$, subsets of indices $A, B, C \subseteq V$
- ▶ Random variables $\boldsymbol{X} = (X_1, ..., X_n), \boldsymbol{X}_A = (X_i : i \in A)$
- ▶ Domain of X_i , Ω_i con $|\Omega_i| = r_i$
- ▶ Instance/case/sample: $\mathbf{x} = (x_1, ..., x_n)$, $\mathbf{x}_A = (X_i : i \in A)$
- ▶ Data set: $D = \{x^1, ..., x^N\}$
- **Probability distribution:** X distributed according to p(X)
- Probability of observing x: p(x)

Probability overview

Probabilistic Graphical Models

Jerónimo Hernández-González