Energy Insights

Background

When electricity demand exceeds generation:

- Electricity prices increase
- Electricity is generated from more carbon-intensive resources (eg through coal burning)

Questions:

- Can we predict electricity demand?
- Can we predict how much electricity we will be able to generate from renewable/less-carbon intensive sources?

Data Insights

- Demand is periodic and predictable
- Change of electricity generation happens on different time-scales for different sources
 - Solar: Changes with time of the day and day of the year
 - Wind: Stable with respect to time of the day, periodic with respect to time of the year
 - Nuclear: Long switch-on time, needs robust predictions
 - Non-pumped: Periodic with time of the year
 - Is this because of rain or because switched on in winter because of higher demand?
 - Oil: Only used for generation spot-wise
 - Coal: Used in winter
 - Dirties fuel, only used to supply when demand exceeds generation
 - Good indicator for improvement opportunity

gen_oil

Predicting Demand - Benchmark

Further Work

- Build baseline model for predicting Solar and Wind energy
- Understand time to get non-renewable energy sources up-and-running
- Sort electricity generation according to their carbon footprint