MARIE Measurements and Model Predictions of Solar Modulation of Galactic Cosmic Rays at Mars

P.B. Saganti¹⁻², F.A. Cucinotta¹, C.J. Zeitlin³, T.F. Cleghorn¹, X. Hu⁴, K.T. Lee⁵

¹NASA Lyndon B. Johnson Space Center, Houston, TX; ²Lockheed Martin Space Operations, Houston, TX; ³Lawrence Berkeley National Laboratories, Berkeley, CA; ⁴USRA, Houston, TX; ⁵University of Houston, Houston, TX.

Abstract

Recent data from the MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft currently in Mars orbit are presented. It is shown that the short-term modulations of galactic cosmic rays (GCR) are well described by correlating the solar modulation parameter, Φ , with Earth-based neutron monitor counts using a 85-day time lag and the NASA Models - HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple Scattering theory of nuclear Fragmentation). The dose rates observed by the MARIE instrument are within 10% of the model calculations.

1. Introduction

The MARIE (Martian Radiation Environment Experiment) instrument currently in Mars orbit has been providing scientific data since March 13, 2002. Analyses and scientific interpretations of these data are needed to design future human exploration missions to the red planet including the description of the solar modulation of GCR [1-3]. We present comparisons of calculations of the short-term modulation of the GCR dose-rate at Mars with the recent measurements from MARIE for the time period from April-2002 through April-2003.

2. Methodology

The HZETRN (High Z and Energy Transport) code [4-6] describes the atomic and nuclear reaction processes that alter the GCR in their passage through materials such as the Mars atmosphere and human tissue. The HZETRN code solves the Boltzmann equation for the particle flux, $\phi_j(x, E)$, of ion of type j, with energy E, and depth x, as obtained from

$$\Omega \cdot \nabla \phi_{j}(x, \Omega, E) = \sum_{k} \int \sigma_{jk} (\Omega, \Omega', E, E') \phi_{k}(x, \Omega', E') dE' d\Omega' - \sigma_{j}(E) \phi_{j}(x, \Omega, E)$$

where σ_i is the total reaction cross section and σ_{ik} is the channel changing cross sections. The HZETRN code solves the Boltzmann equation using the continuous slowing down approximation and the straight-ahead approximation for projectile nuclei [4]. Nuclear fragmentation cross sections are described by the quantum multiple scattering (QMSFRG) model [5,6]. The QMSFRG model considers the energy dependence of the nucleus-nucleus interaction, quantum effects in nuclear abrasion, and a stochastic model of the de-excitation of pre-fragment nuclei produced in projectile-target nuclei interactions. The modulation of the GCR near Earth is described by Badhwar et al., [7] in terms of the solar modulation potential, Φ making use of the T-85 day delay of the neutron monitor count rates of the Climax data [8]. The daily GCR spectra were generated according to the determined Φ value of that day. However, this model was developed for LEO (Low Earth Orbit ~ 1.0 AU). Webber [9] has estimated an increase in the modulation potential Φ of 10 MV per AU which suggests the change in GCR between Earth (~1.0 AU) and Mars (~1.5 AU) would be very small, however the modulation would be in the energy region where HZE particles have maximum biological quality factors and confirmation of the change due to modulation is needed for future human exploration. In this report, we are presenting the Φ value determined with a T-95 day delay (an additional 10 day delay to that of the LEO observation) that is correlated well with the observed dose-rate variations at Mars.

Fig. 1. Calculated Solar modulation potential, Φ (April-2002 through April-2003)

3. Results and Discussion

Current model predictions of the quiet time GCR contributed dose-rate at Mars are with-in 10% of the MARIE observations for the time period from April-2002 through April-2003 (see Table-1). The MARIE dose rates used here are determined by multiplying the count rate of the detector (A1) by a constant that is a function of the area of the detector and the average LET (linear energy transfer) of the traversing particles. The average LET was determined from the data obtained in near-Earth orbit and may not represent GCR particle flux LET at Mars. Because of these uncertainties, the MARIE measurement error is conservatively estimated to be $\sim 15\%$ of the quoted values. During the first year of operation, the MARIE instrument has been providing the scientific data as anticipated [10]. Improved understanding of the detector response will reduce the uncertainty and provide a stringent test to the model calculations. Since the improvement in measurement accuracy will not effect the time-dependent variations of the GCR dose-rate, current model assessment of the GCR fluctuations at Mars will remain valid. The current model assessment with the diffusion correction to ~ 1.5 AU shows good correlation as presented in Figure-2. Thus these NASA models show the promise for assessing the GCR environment at Mars with an accuracy that is yet to be compared by any other model calculation.

	MARIE	MARIE	Model	Model
	Measurements	Measurements	Prediction	Prediction
	(GCR+SPE)	(Only GCR)	(Only GCR)	(Error)
Month	mrad/day	mrad/day	mrad/day	%
Apr-2002	22.48	18.73	21.59	13.25%
May-2002	22.15	21.74	23.31	6.74%
Jun-2002	21.21	21.20	23.41	9.44%
Jul-2002	168.68	22.87	22.42	-2.01%
Aug-2002	22.08	21.54	22.57	4.56%
Sep-2002	20.73	20.56	22.89	10.18%
Oct-2002	112.21	21.46	22.56	4.88%
Nov-2002	22.48	20.61	19.69	-4.67%
Dec-2002	20.74	20.74	20.86	0.58%
Jan-2003	21.38	21.38	22.46	4.81%
Feb-2003	21.51	21.51	20.90	-2.92%
Mar-2003	24.50	21.65	21.26	-1.83%
Apr-2003	21.36	21.36	21.65	1.34%
Average	40.12	21.18	21.97	3.41%

Table –1: Comparison of model predictions vs. the MARIE measurements.

Fig.2. Comparison of April-2003 calculations with the MARIE measurements

4. References

- 1. Saganti, P.B., Cucinotta, F.A., Wilson, J.W., Schimmerling, W., Visualization of Particle Flux in the Human Body on the Surface of Mars. *J. Radiat. Res.*, **43**, S119-S124, 2002 (http://jrr.jsatage.jst.go.jp/)
- 2. Cucinotta, F.A., Saganti, P.B., Wilson, J.W., and Simonsen, L., Model Predictions and Visualization of Particle Flux on the Surface of Mars. *J. Radiat. Res.*, 43, S35-S39, 2002 (http://jrr.jsatage.jst.go.jp/)
- 3. Cucinotta, F.A., Schimmerling, W., Wilson, J.W., Peterson, L.E., Badhwar, G.D., Saganti, P., and Dicello, J.F., Space Radiation Cancer Risks and Uncertainties for Mars Missions. *Radiat. Res.* **156**, 682-688, 2001.
- 4. Wilson, J.W., Townsend, L.W., Schimmerling, W, Khandelwal, G.S., Khan, F., Nealy, J.E., Cucinotta, F.A., Simonsen, L.C., and Norbury, J.W., Transport Methods and Interactions for Space Radiations. NASA-RP 1257, 1991.
- Cucinotta, F.A., Wilson, J.W., Saganti, P.B., Hu, X., Kim, M.Y., Cledorn, T.F., Zeitlin, C.J., and Tripathi, R.K., Physics of the Isotopic Dependence of GCR Fluence Behind Shielding. NASA-TP 210792, 2003.
- Cucinotta, F.A., Wilson, J.W., Tripathi, R.K., and Townsend, L.W., Microcopic, Fragmentation Model For Galactic Cosmic Ray Studies. *Adv. in Space Res.* 22, 533-537, 1998.
- 7. Badhwar, G.D., and O'Neill, P.M., An Improved Model of GCR for Space Exploration Missions. *Nucl. Tracks Radiat. Meas.* **20**, 403-410, 1992.
- 8. Space Physics Data Systems, http://ulysses.sr.unh.edu/NeutronMonitor/
- 9. Webber, W.R., The Interstellar Cosmic Ray Spectrum and Energy Density. Interplanetary Cosmic Ray Gradients and a New Estimate of the Boundary of the Heliosphere. *Astron. Astrophys.* 179, 277-284, 1987.
- 10. MARIE Website: http://marie.jsc.nasa.gov/ and Special Issue on 2001 Mars Odyssey. Space Science Reviews, (in press) 2003.