

COLLEGE CODE: 1133

COLLEGE NAME: VELAMMAL INSTITUTE OF TECHNOLOGY

DEPARTMENT: ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

STUDENT NM-ID: aut113323aia47

ROLL NO: 113323243096

DATE: 04.05.2025

TECHNOLOGY-PROJECT NAME: BUILDING PERFORMANCE ANALYSIS

SUBMITTED BY:

1. SANJAI S

- 2. GOKULAKRISHNAN
- 3. KAMESHWARN P N
- 4. MIDHUN S
- 5. DANISH MARK J M

INDEX OF THE DOCUMENTS

S.NO	CONTENT OF THE DOCUMENTS	PAGE NO
1	Title, Abstract, Project Demonstration	
2	Project Documentation, Feedback, and Final Adjustments	
3	Final Project Report Submission, Project Handover, and Future Works	
4	Handover Details, Sample Code	
5	Code, Outcomes	
6	Outcomes	

Phase 5: Project Demonstration & Documentation

Title:

AI-Driven Building Performance Analysis

Abstract:

The final phase of this project culminates in the demonstration, testing, and documentation of a robust AI and IoT-integrated platform designed to analyze and optimize building energy performance and occupant comfort. This system combines advanced machine learning models, a real-time data dashboard, digital twin integration, and cloud-based scalability. The final deliverables include source code, performance metrics, ERP integration plans, and complete technical documentation. Real-time simulations and feedback loops were used to finalize performance optimizations.

Index:

- 1 Project Demonstration Project
- Documentation Feedback and Final
- 2 Adjustments Final Project Report
- Submission Project Handover and
- 3 Future Works

.

1. Pr⁴oject Demonstration

Over·view

The **5**ully functional system is demonstrated to stakeholders, showcasing its integration, real-time responsiveness, energy recommendations, and visualization capabilities.

Demonstration Details

- System Walkthrough : End-to-end flow from sensor data collection to real-time dashboard display and AI recommendations.
- AI Accuracy: Simulation of building scenarios to demonstrate how AI identifies inefficiencies in lighting, HVAC, and occupancy.
- IoT Integration: Live data emulated from smart devices (temperature, CO₂, humidity sensors).
- Performance Metrics: Demonstrated load handling and system speed under multi-user access.
- Security Measures: Data encryption during cloud sync and compliance with best practices.

Outcome

Stakeholders gain a full understanding of the system's real-time capabilities and operational reliability in a smart building context.

2. Project Documentation

Overview

Full technical and user documentation has been prepared for future developers, users, and system administrators.

Documentation Sections

- System Architecture: Includes block diagrams for AI logic, IoT communication, and cloud deployment.
- Code Documentation: Includes source code for AI models, dashboard backend/frontend,
- APIs, and digital twin logic.
 - User Manual: Guide for facility managers to use the dashboard and interpret performance
 - reports.
- Admin Manual sensors. : Details on maintaining the system, restarting services, and integrating new
- Testing Reports : Metrics from stress tests, model evaluations, and usability tests.

Outcome

A complete technical reference ensures maintainability, future development, and clear understanding by stakeholders.

3. Feedback and Final Adjustments

Overview

Collected feedback from mentors, peer testers, and potential users informed the final refinements. Steps

- Feedback Collection: During pilot deployment and dashboard walkthroughs.
- Refinement: Resolved UI bugs, improved loading time, and added help tooltips.
- Final Testing: Comprehensive test suite run to verify AI, sensor data sync, and dashboard responsiveness.

Outcome

System was optimized for real-world usability and robustness across multiple devices and users.

4. Final Project Report Submission

Overview

A comprehensive report encapsulating the entire development lifecycle and learnings. Report Sections

• Executive Summary: High-level overview of project goals and achievements.

- Phase Recap: Summary of Phases 1 to 4 with outcomes and learnings.
- Challenges & Solutions: Tackled IoT noise issues, AI training data limitations, and real-time integration challenges.
- Final Outcomes: Ready-for-deployment platform with digital twin capabilities and cloud scalability.

Outcome

Project deliverables are compiled and formally submitted, showcasing technical and practical readiness.

5. Project Handover and Future Works

Overview

The project is prepared for future expansion and institutional use.

Handover Details

- Next Steps:
 - o Integration with Building Information Modeling (BIM) tools like Revit.
 - Expansion to predict occupancy trends and energy cost forecasts.
 - o Enable voice-based AI assistant for facility operations.

Outcome

A clear roadmap for scaling the system, enabling it to evolve into a city-scale smart infrastructure tool.

Screenshots Code and Progress of the Project:

https://v0-smart-building-analysis-code.vercel.app/

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from \ sklearn. ensemble \ import \ HistGradientBoostingRegressor
from sklearn.model selection import train_test_split
from sklearn.metrics import mean_absolute_error
from sklearn.inspection import permutation_importance
np.random.seed(2024)
data = pd.DataFrame({
    'temperature': np.random.normal(22, 2.5, 400),
    'humidity': np.random.normal(47, 11, 400),
    'co2': np.random.normal(610, 90, 400),
    'occupancy': np.random.randint(0, 4, 400), # 0=empty,1=low,2=medium,3=high
    'daylight': np.random.normal(190, 55, 400),
    'hvac_power': np.random.normal(48, 14, 400),
    'window_open': np.random.randint(0, 2, 400),
    'smart_blinds_position': np.random.uniform(0, 1, 400), # 0=closed, 1=open
    'air_purifier_status': np.random.randint(0, 2, 400), # 0=off, 1=on
    'solar panel_output': np.random.normal(20, 5, 400),
                                                             # kW generated onsite
    'energy_consumption': np.random.normal(155, 32, 400)
data['comfort_index'] = 100 - (
    abs(data['temperature'] - 22) +
    abs(data['humidity'] - 48) +
    data['co2'] / 120 -
    5 * data['smart_blinds_position'] +
3 * data['air_purifier_status']
```

```
features = [
     'temperature', 'humidity', 'co2', 'occupancy', 'daylight',
'hvac_power', 'window_open', 'smart_blinds_position',
'air_purifier_status', 'solar_panel_output'
X = data[features]
y_energy = data['energy_consumption']
y_comfort = data['comfort_index']
X_train, X_test, y_train_energy, y_test_energy = train_test_split(X, y_energy, test_size=0.25, random_state=2024)
_, _, y_train_comfort, y_test_comfort = train_test_split(X, y_comfort, test_size=0.25, random_state=2024)
# Train HistGradientBoosting models (fast and handles categorical-like features)
model_energy = HistGradientBoostingRegressor(max_iter=200, random_state=2024)
model_comfort = HistGradientBoostingRegressor(max_iter=200, random_state=2024)
model_energy.fit(X_train, y_train_energy)
model_comfort.fit(X_train, y_train_comfort)
pred_energy = model_energy.predict(X_test)
pred_comfort = model_comfort.predict(X_test)
mae_energy = mean_absolute_error(y_test_energy, pred_energy)
mae_comfort = mean_absolute_error(y_test_comfort, pred_comfort)
print(f"Energy Prediction MAE: {mae_energy:.2f}")
print(f"Comfort Prediction MAE: {mae_comfort:.2f}")
perm_imp_energy = permutation_importance(model_energy, X_test, y_test_energy, n_repeats=15, random_state=2024)
perm_imp_comfort = permutation_importance(model_comfort, X_test, y_test_comfort, n_repeats=15, random_state=2024)
 feat_imp_energy = pd.Series(perm_imp_energy.importances_mean, index=features).sort_values(ascending=False)
feat_imp_comfort = pd.Series(perm_imp_comfort.importances_mean, index=features).sort_values(ascending=False)
 print("\nEnergy Model Permutation Importances:")
 print(feat_imp_energy)
 print("\nComfort Model Permutation Importances:")
 print(feat_imp_comfort)
 plt.figure(figsize=(16, 8))
 plt.subplot(2, 3, 1)
 plt.scatter(y_test_energy, pred_energy, alpha=0.6, color='navy')
 plt.plot([y_test_energy.min(), y_test_energy.max()], [y_test_energy.min(), y_test_energy.max()], 'r--')
plt.title("Energy Consumption: Actual vs Predicted")
plt.xlabel("Actual Energy (kWh)")
plt.ylabel("Predicted Energy (kWh)")
 plt.subplot(2, 3, 2)
feat_imp_energy.plot(kind='bar', color='mediumblue')
plt.title("Energy Model Feature Importance (Permutation)")
 plt.xticks(rotation=45)
plt.barh(['Smart Blinds Position', 'Air Purifier Status', 'Solar Panel Output'],

[data['smart_blinds_position'].mean(), data['air_purifier_status'].mean(), data['solar_panel_output'].mean()],

color=['orange', 'green', 'gold'])

plt.title("Average Smart Tech Usage in Dataset")
 plt.subplot(2, 3, 4)
plt.scatter(y_test_comfort, pred_comfort, alpha=0.6, color='darkgreen')
plt.plot([y_test_comfort.min(), y_test_comfort.max()], [y_test_comfort.min(), y_test_comfort.max()], 'r--')
plt.title("Comfort Index: Actual vs Predicted")
plt.xlabel("Actual Comfort")
plt.ylabel("Predicted Comfort")
```

OUTPUT: Energy Prediction MAE:

32.21 Comfort Prediction MAE:

1.29

Energy Model Permutation Importances:

solar_panel_output 0.025207

air_purifier_status 0.009451

hvac_power -0.003184

window_open -0.004860

occupancy -0.040336

humidity -0.057530

smart_blinds_position -0.060664

co2 -0.076152

temperature -0.094257

daylight -0.161082

dtype: float64

