Away from Orthonormal Basis: Sparsity Meets Redundancy

Mathematical Models and Methods for Image Processing

Giacomo Boracchi

https://boracchi.faculty.polimi.it/

March 4th 2025

Assignment

The limitations of sparsity

Generate a sparse 1D signal w.r.t. D

Idea:

- 1. Randomly define sparse coefficients x_0 of size M
- 2. Synthesis w.r.t. a DCT dictionary, i.e. compute $s_0 = Dx_0$
- 3. Add white Gaussian noise η : $s = s_0 + \eta$

Rmk:

s might not look very realistic, but this is truly sparse w.r.t. D

Generate a truly sparse signal w.r.t. D

G. Boracchi

Generate a truly sparse signal w.r.t. D

G. Boracchi

Generate a truly sparse signal w.r.t. D

G. Boracchi

Now, assume your signal is sparse w.r.t. [D, C]

Idea:

- 1. Randomly define sparse coefficients x_0
- 2. Synthesis w.r.t. a DCT dictionary, i.e. compute $s_0 = Dx_0$
- 3. Add a spike δ_c at location c, which is a sparse element w.r.t. C $s_0 = s_0 + \lambda \delta_c$

where λ and c are randomly defined

4. Add noise: $s = s_0 + \eta$

Truly sparse signals w.r.t. [D, C]

G. Boracchi

Assignment

Uniqueness of Representation

A Simple Proof

Proof that if a set of vectors $\{e_i\}$, $e_i \in \mathbb{R}^M$ are linearly independent and if

$$\boldsymbol{v} = \sum_{i} x_{i} \boldsymbol{e_{i}}$$
 , $x_{i} \in \mathbb{R}$

Then the representation $\{x_i\}$ is unique