Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP04/014727

International filing date: 27 December 2004 (27.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/591,775

Filing date: 27 July 2004 (27.07.2004)

Date of receipt at the International Bureau: 23 May 2005 (23.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

THIRM DELEVER OF THE BELLEY

TO ABL TO WHOM THESE; PRESERVES SHAVE COMES

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

March 22, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/591,775

FILING DATE: July 27, 2004

EP/04/14727

By Authority of the

COMMISSIONER OF PATENTS AND TRADEMARKS

P. SWAIN

Certifying Officer

Express Mail Label No.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

INVENTOR(S) Residence Given Name (first and middle [if any]) Family Name or Surname (City and either State or Foreign Country) Susanne Beder Aalen, Germany Wolfgang Singer Aalen, Germany Additional inventors are being named on the separately numbered sheets attached hereto TITLE OF THE INVENTION (500 characters max) IMMERSION LITHOGRAPHY AT HIGH NUMERICAL APERTURE **CORRESPONDENCE ADDRESS** Direct all correspondence to: x | Customer Number: 07278 OR Melvin C. Garner Individual Name DARBY & DARBY P.C. P.O. Box 5257 Address City **New York** NY 10150-5257 State Country US Telephone (212) 527-7700 (212) 753-6237 ENCLOSED APPLICATION PARTS (check all that apply) x | Specification Number of Pages 19 CD(s), Number x Drawing(s) Number of Sheets Other x Application Data Sheet. See 37 CFR 1.76 (specify): METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT Applicant claims small entity status. See 37 CFR 1.27. **FILING FEE** x A check or money order is enclosed to cover the filing fees. AMOUNT (\$) x The Director is hereby authorized to charge filing fees or credit any overpayment to Deposit Account Number: 04-0100 160.00 Payment by credit card. Form PTO-2038 is attached. The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government. Yes, the name of the U.S. Government agency X No. and the Government contract number are: [Page 1 of 1] Respectfully submitteg Date **SIGNATURE** TYPED OR REGISTRATION NO. 40,389 PRINTED NAME Edward J. Ellis (if appropriate) **TELEPHONE** (212) 527-7704 Docket Number: 01641/0201694-US0 USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

11.10.10-1.10-0.100-1	O TO CALL TO SECOND TO THE PROPERTY OF THE PRO
C	
Express Mail Label No.	Dated:

P	10/SB/17 (10-03
Approved for use through 7/31/2006,	OMB 065	1-0032
and Trademark Office: U.S. DEPARTMENT	OF COMM	IFRCE

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

CEE TO A NOMITTAL					Complete if Known
FEE TRANSMITTAL	. [Application Number Not Yet Assigned			er Not Yet Assigned
for FY 2004	ł	Filing Date Concurrently Herewith			Concurrently Herewith
	[First I	Vame	Inven	ntor Susanne Beder
Effective 10/01/2003. Patent fees are subject to annual revision.		Exam	ner Na	ame	Not Yet Assigned
Applicant claims small entity status. See 37 CFR 1.27	[Art Un	it		N/A
TOTAL AMOUNT OF PAYMENT (\$) 160.00		Attom	ey Do	cket No	o. 01641/0201694-US0
METHOD OF PAYMENT (check all that apply)				FEE	CALCULATION (continued)
X Check Credit Money Other None Deposit Account:		DDITIO			
Deposit Account 04-0100	Fee	Entity Fee	Fee	Fee	
Number	Code	(\$)	Code	(\$)	Fee Description Fee Paid
Deposit Account Darby & Darby P.C.	1051	130	2051	65	Surcharge – late filing fee or oath
Name The Director is authorized to: (check all that apply)	1052	50	2052	25	Surcharge - late provisional filing fee or cover
Charge fee(s) indicated below X Credit any overpayments	1053	130	1053	420	Sheet.
	l			130	Non-English specification
Charge any additional fee(s) or any underpayment of fee(s)	1812	2,520	1812		For filing a request for ex parte reexamination
Charge fee(s) indicated below, except for the filing fee	1804	920*	1804	920*	Requesting publication of SIR prior to Examiner action
to the above-identified deposit account.	1805	1,840*	1805	1,840*	Requesting publication of SIR after Examiner action
FEE CALCULATION	1251	110	2251	55	Extension for reply within first month
1. BASIC FILING FEE	1252	420	2252	210	Extension for reply within second month
Large Entity Small Entity Fee Fee Fee Fee Description Fee Paid	1253	950	2253	475	Extension for reply within third month
Code (\$) Code (\$)	1254	1,480	2254	740	Extension for reply within fourth month
1001 770 2001 385 Utility filing fee	1255	2,010	2255		Extension for reply within fifth month
1002 340 2002 170 Design filling fee	1401	330	2401	165	Notice of Appeal
1003 530 2003 265 Plant filing fee 1004 770 2004 385 Reissue filing fee	1402	330 290	2402 2403	165	Filing a brief in support of an appeal
1004 770 2004 385 Reissue filing fee 1005 160 2005 80 Provisional filing fee 160.00	1403 1451	1,510	1451	145	Request for oral hearing Petition to institute a public use proceeding
	1452	110	2452	55	Petition to revive - unavoidable
SUBTOTAL (1) (\$) 160.00	1453	1,330	2453	665	Petition to revive - unintentional
2. EXTRA CLAIM FEES FOR UTILITY AND REISSUE	1501	1,330	2501	665	Utility issue fee (or reissue)
Extra Fee from Claims below Fee Paid	1502	480	2502	240	Design Issue fee
Total Claims = x =	1503	640	2503	320	Plant issue fee
Independent = x = x	1460	130	1460	130	Petitions to the Commissioner
Multiple Dependent =	1807	50	1807	50	Processing fee under 37 CFR 1.17(q)
Large Entity Small Entity	1806	180	1806	180	Submission of Information Disclosure Stmt
Fee Fee Fee Fee Fee Description	8021	40	8021	40	Recording each patent assignment per property (times number of properties)
1202 18 2202 9 Claims in excess of 20	1809	770	2809	385	Filing a submission after final rejection (37 CFR 1.129(a))
1201 86 2201 43 Independent claims in excess of 3	1810	770	2810	385	For each additional invention to be
1203 290 2203 145 Multiple dependent claim, if not paid 1204 86 2204 43 ** Reissue independent claims	1801	770	2801	385	examined (37CFR 1.129(b)) Request for Continued Examination (RCE)
over original patent	1802	900	1802	900	Request for expedited examination
1205 18 2205 9 ** Relssue claims in excess of 20 and over original patent	Į.	fee (spe	l	200	of a design application
SUBTOTAL (2) (5) 0.00	l	iced by I		ilina Fee	a Paid SUBTOTAL (3) (5) 0.00
**or number previously paid, if greater, Fer Reissues, see allove					5.5.5 5551517E (3) [14) 5.50
SUBMITTED BY					(Complete (if applicable))
Name (Print/Type) Edward J. Ellis	Regist	ration No ey/Agent)	40	,389	Telephone (212) 527-7704
Signature					Date July 27, 2004
·					

W:\01641\0201694us	
Express Mail Label No.	Dated:
<u> </u>	

Application No. (if known)	application No.	(if known)	:
----------------------------	-----------------	------------	---

Attorney Docket No.: 01641/0201694-US0

Certificate of Express Mailing Under 37 CFR 1.10

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail, Airbill No. in an envelope addressed to:

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

on July 27, 2004 Date

Typed or printed name of person signing Certificate

. Note:

Each paper must have its own certificate of mailing, or this certificate must identify each submitted paper.

Provisional Patent Application Transmittal (1 page)

Application Data Sheet (2 pages)

Fee Transmittal (1 page) Specification (19 pages) Drawings (1 sheet)

Check in the amount of \$160.00

Return Postcard

Application Data Sheet

Application Information

Application Type:: Provisional

Subject Matter:: Utility

Suggested Group Art Unit:: N/A

CD-ROM or CD-R?:: None

Sequence submission?:: None

Computer Readable Form (CRF)?:: No

Title:: IMMERSION LITHOGRAPHY AT HIGH

NUMERICAL APERTURE

Attorney Docket Number:: 01641/0201694-US0

Request for Early Publication?:: No

Request for Non-Publication?:: No

Small Entity?:: No

Petition included?:: No

Secrecy Order in Parent Appl.?:: No

Applicant Information

Applicant Authority Type:: Inventor

Status:: Full Capacity

Given Name:: Susanne

Family Name:: Beder

City of Residence:: Aalen

Country of Residence:: Germany

Street of mailing address:: Albatrosweg 37

City of mailing address:: Aalen

Country of mailing address:: Germany

Postal or Zip Code of mailing address:: 73434

Initial 07/27/04

Applicant Authority Type::

Inventor

Status::

Full Capacity

Given Name::

Wolfgang

Family Name::

Singer

City of Residence::

Aalen

Country of Residence::

Germany

Street of mailing address::

Egerlandstr. 45

City of mailing address::

Aalen

Country of mailing address::

Germany

Postal or Zip Code of mailing address::

73431

Correspondence Information

Correspondence Customer Number::

07278

Representative Information

Representative Customer Number::

07278

Initial 07/27/04

<u>Projektionsobjektiv mit hoher Apertur und planer</u> <u>Abschlussfläche</u>

Die vorliegende Erfindung betrifft ein Projektionsobjektiv für mikrolithographische Projektionsbelichtungsanlagen: Die Erfindung betrifft insbesondere Belichtungsanlagen für Halbleiterstrukturen, welche für den Immersionsbetrieb ausgelegt sind, d.h. in einem Aperturbereich größer als 1.0.

Bei der verkleinernden optischen Abbildung, insbesondere bei der Projektionslithographie ist die numerische Apertur durch die Brechzahl des umgebenden Mediums im Bildraum beschränkt. Bei der Immersionslithographie ist die theoretisch mögliche Numerische Apertur also durch die Brechzahl des Immersionsmediums beschränkt. Das Immersionsmedium kann eine Flüssigkeit oder ein Festkörper sein. Im letzten Fall spricht man auch von Solid Immersion.

Die Apertur sollte jedoch aus praktischen Gründen nicht beliebig nahe an die Brechzahl des letzen Mediums kommen, da die Ausbreitungswinkel dann relativ zur optischen Achse sehr größ werden. Es hat sich als praktisch erwiesen, wenn die Apertur etwa 95% der Brechzahl des letzten Mediums nicht wesentlich übersteigt. Dies entspricht Ausbreitungswinkeln von etwa 72° relativ zu der optischen Achse. Bei Wasser als Immersionsmedium für 193nm enspricht dies einer numerischen Apertur von NA = 1.35 ($n_{H2O} = 1.43$).

Bei Flüssigkeiten, deren Brechzahl höher als die des Materials der letzen Linse ist, oder bei Solid Immersion wirkt das Material des letzten Linsenselements als Beschränkung, falls die letzte Abschlußfläche plan oder nur schwach gekrümmt ausgelegt werden soll. Die plane Auslegung ist von Vorteil z.B. für die Abstandsmessung zwischen Wafer und Objektiv, für das strömungsmechanische Verhalten des Immersionsmediums zwischen dem zu belichtenden Wafer und der letzten Objektivfläche, sowie für deren Reinigung. Insbesondere für Solid Immersion muss die letzte Abschlussfläche plan ausgelegt werden, um den ebenfalls planen Wafer zu belichten.

Für die letzte Linse kommen bei DUV (248nm bzw. 193nm Betriebwellenlänge) üblicherweise die Materialien Quarz (SiO₂) mit einer Brechzahl von n_{SiO_2} = 1.56 oder CaF₂ mit Brechzahlen von n_{CaF_2} = 1.50 zum Einsatz. Aufgrund der hohen Strahlungsbelastung in den letzten Linsenelementen wird insbesondere für die letzte Linse bei 193nm Kalziumfluorid bevorzugt, da Quarz durch die Strahlungsbelastung langfristig geschädigt würde. Damit erreicht man eine numerische Apertur von etwa 1.425 (95% von n = 1.5). Nimmt man den Nachteil der Strahlungsschädigung in Kauf, erreicht man mit Quarz immerhin Aperturen von 1.48 (entspricht etwa 95% der Brechzahl von Quarz bei 193nm). Bei 248nm sind die Verhältnisse ähnlich. Eine Aufgabe besteht also darin, ein hochaperturiges Design anzugeben, das die Nachteile herkömmlicher Designs mit Immsersionsmedien wie Wasser beziehungsweise mit Linsenmaterialien wie Quarz und CaF₂ umgeht.

Eine erfinderische Lösung besteht in einem strahlungsfesten Lithographieobjektiv mit Aperturen vorzugsweise größer oder gleich NA = 1.35, bei dem wenigstens das letzte Linsenelement aus einem hochbrechenden Material (Brechungsindex n>1,6, insbesondere n>1.8) besteht. Bei dem in der Lithographie üblichen Abbildungsmaßstab von (betragsmäßig) 4:1 ($|\beta|$ = 0.25) ist die objektseitige (maskenseitige) NA dann NA_{obj} >= 0.33, besonders bevorzugt NA >= 0.36.

Im folgenden wird die Erfindung an Anwendungsbeispielen für 193nm näher beschrieben. Das Material des letzten Linsenelements ist in den Beispielen Saphir, die übrigen Linsen sind aus Quarz. Die Beispiele sind jedoch übertragbar auf andere hochbrechende Linsenmaterialien und andere Wellenlängen. Für 248nm ist beispielsweise GeO₂ als Material für die letzte Linse brauchbar. Dieses Material besitzt gegenüber Saphir den Vorteil, dass es nicht doppelbrechend ist, bei 193nm ist es aber nicht mehr transparent.

Um im Falle der Liquid Immersion eine NA > 1.35 zu erreichen, ist eine Immersionsflüssigkeit mit höherer Brechzahl als Wasser eingesetzt. In den Anwendungsbeispielen wurde als Immersionsmedium Cyclohexan (Brechzahl n=1.556) verwendet.

Immersionsmedien mit n>1.6 werden z.Z. als realistisch betrachtet.

Seite 1 von 14

Die Dicke der hochbrechenden Flüssigkeitsschicht, also der Immersionsflüssigkeit, kann vorzugsweise zwischen 0.1 und 10mm betragen, wobei eine geringe Dicke vorteilhaft ist, da hochbrechende Immersionsmedien in der Regel auch eine höhere Absorption zeigen.

Abbildung 1(10.1) zeigt als erstes Ausführungsbeispiel ein Lithographieobjektiv für 193nm mit Saphirlinse und Cyclohexan als Immersionsmedium bei einer bildseitigen numerischen Apertur von NA = 1.45. Der Arbeitsabstand beträgt 1mm. Das katadioptische Design hat zwei Spiegel vorwiegend zur chromatischen Korrektion und Petzvalkorrektur, und ein Zwischenbild jeweils vor und nach dem Spiegelpaar. Die Zwischenbilder sind jedoch nicht vollstänig korrigiert und dienen primär zur geometrischen Begrenzung der Konstruktion und zur Trennung der beiden hin und her gehenden Strahlenverläufe an den Spiegeln. Das Bildfeld (auf dem Wafer) ist rechteckig. Der äußere Feldradius (waferseitig) ist 15.5mm, der innere 4.65mm. Daraus resultiert ein Rechteckfeld von 26x3.8mm.

Die Aperturblende (Systemapertur)ist im ersten Ausführungsbeispiel im ersten refraktiven Objektivteil angeordnet. Dies ist vorteilhaft, um die variable Aperturblende zum einen kleiner zu gestalten, zum anderen den (von der Objektebene (Maskenebene)her gesehen) hinteren Objektivteil beim Abblenden der Aperturblende vor unnützer und störender Strahlungsbelastung weitgehend zu schützen. Die hintere Blendenebene im bildseitigen Teilobjektiv liegt im Bereich zwischen der Linse mit maximalem Durchmesser und der Bildebene im konvergenten Strahlengang.

Im objektseitigen vorderen refraktiven Teilobjektiv ist eine Taille ausgebildet, welche vorwiegend zur Korrektur der Bildschale (Bildfeldkrümmung, Petzvalsumme) dient. In der Taille ist die Aperturblende angeordnet.

Der Einsatz von CaF₂ für die letzte Linse ist nicht vorzuziehen, da hierfür die numerische Apertur möglischst nicht größer als 1.425 (~ 95% der Brechzahl von CaF₂) sein sollte. Als höherbrechendes Material kommt bei 193nm in diesem Beispiel Saphir zum Einsatz in der Letzten Linse.

Die bei der Verwendung von Saphir auftretende Doppelbrechung kann durch Aufspalten der letzten Linse in zwei Linsenelemente und zueinander Verdrehen der beiden Linsenelemente weitgehend kompensiert werden. Die Trennfläche ist dabei bevorzugt so gekrümmt, dass beide Linsenelemente ähnliche Brechkraft besitzen. Alternativ kann ein zweites Element aus Saphir zur Kompensation verwendet werden, welches sich an einer optisch ähnlich wirkenden Stelle im Objektiv befindet, beispielsweise in der Nähe dern Zwischenbilder oder der Objektebene. Im vorliegenden Fall ist die letzte Saphirlinse in zwei nahezu gleich wirkende Linsenelemente aufgespalten. Der vordere Radius der Saphirlinse ist so ausgelegt, daß ein Aperturstrahl zum Feldmittenpunkt nahezu ungebrochen die Grenzfläche passiert, dasheißt nahezu senkrecht auf die Grenzfläche trifft (Linsenradius ist nahezu konzentrisch mit dem Schnittpunkt der Bildebene mit der optischen Achse). Der Radius zwischen den beiden Linsenelementen der aufgespaltenen Saphirlinse ist flacher (Radius > 1.3 mal Abstand zum Wafer).

Gemäß dem Beispiel nach Figur 2(10.2) kann eine Quarzlinse mit erstem positivem Krümmungsradius und rückseitiger Planfläche auf eine oder zwei Planplatten aus Saphir zum Beispiel angesprengt sein. Damit erreicht man keine höhere NA als in Quarz möglich ist, man hat aber den Vorteil, daß der Ausbreitungswinkel der Lichtstrahlen im letzten Objektivteil, wo die Apertur am größten ist, durch das hochbrechende Medium verringert wird. Dies ist vorteilhaft, wenn man die Reflexionsverluste und Streulichteffekte an der Grenzfläche und an möglichen Schutzschichten auf der letzten Abschlußfläche berücksichtigt, die für diese sonst sehr großen Ausbreitungswinkel ein Problem darstellen. Die größten Winkel treten dann nur an der Ansprengfläche zwischen der Quarzlinse und der ersten höherbrechenden Planplatte auf. Diese Ansprengfläche ist geschützt vor Verunreinigungen und Beschädigungen, und kann mit einer auch gegenüber Umwelteinflüssen empfindlichen Beschichtung ausgelegt sein. Durch die optional zwei zueinander verdrehten Planplatten aus Saphir wird der Doppelbrechungseffekt für die vorwiegend zur Abbildung der Halbleiterstrukturen erforderlichen S- und P-Polarisationen in x- und y-Richtung so gut wie ideal kompensiert.

Die Quarzlinse hier führt jedoch aufgrund ihrer geringeren Brechzahl dazu, dass - aufgrund ihrer geringeren sammelnden Wirkung - bereits bei nicht ganz so großen bildseitigen numerischen Aperturen eines Projektionsobjktives mit limitiertes Baulänge sehr große Linsendurchmesser erforderlich werden. Im 2. Ausführungsbeispiel (Abbildung 2 (10.2)) beträgt die Apertur NA = 1.35, jedoch sind die Linsendurchmesser größer als im ersten Ausführungsbeispiel. Hier beträgt der

Seite 2 von 14

Linsendurchmesser bereits über 143mm und damit beinahe das 212-fache der numerischen Apertur, während im Ausführungsbeispiel 1 nur das 200-fache der numerischen Apertur erreicht wird. Insbesondere ist im Ausführungsbeispiel 2 der maximale halbe Linsendurchmesser mit etwa 143mm sogar größer als der Spiegelhalbmesser mit etwa 136mm.

Um den Durchmesser der größten Linsenelemente desProjektionsobjektives und gleichzeitig die Wirkung der Doppelbrechung zu minimieren, besteht in einer alternativen Ausführungsform des Designbeispiels mit NA = 1.45 das letzte Linsenelement aus einer dünnen Saphirlinse mit positiver Brechkraft, die auf eine dünne Quarzplatte aufgesprengt ist (Ausführungsbeispiel 3, Abbildung 3 (10.3)). Die Quarzplatte kann dann bei auftretender Schädigung durch die Strahlungsbelastung ausgetauscht werden. Eine aufgesprengte Quarzplatte wirkt damit auch als austauschbarer Schutz der Saphirlinse vor Verunreinigungen beziehungsweise Kratzern oder Zerstörung.

Die NA ist in diesen Fällen durch die Brechzahl des Quarzes beschränkt, gegenüber einem Design mit einer letzten Linse aus reinem Quarz werden jedoch vor der letzten Linse kleinere Strahlwinkel und damit auch kleinere Durchmesser des gesamten Objektives und geringere Sensitivitäten (Störempfindlichkeiten gegen Fertigungstoleranzen) des letzten Linsenelementes erreicht. Im Beispiel 3 beträgt der maximale Linsendurchmesser mit 135mm nurmehr etwa das 186-fache der numerischen Apertur.

Selbstverständlich kann die vorliegende Erfindung auch für Objektive mit geringerer numerischer Apertur eingesetzt werden, um den Durchmesser bisheriger Projektionsobjektive erheblich zu reduzieren. Dies wirkt sich vorteilhaft auf den Preis des Projektionsobjektives aus, da die Materialmenge deutlich verringert werden kann.

Das Ausführungsbeispiel 4 (Abbildung 4 (10.4)) zeigt ein Lithographieobjektiv für 193nm mit Saphirlinse und Wasser als Immersionsmedium bei einer NA = 1.35 mit einem Arbeitsabstand von 1mm. Die Oberseite der Saphirlinse ist asphärisch, die Blende liegt im hinteren Teil des Objektivs. Der maximale Linsendurchmesser ist auf weniger als das 190-fache der numerischen Apertur begrenzt.

Mit hochbrechenden Materialien für mindestens das letzte Linsenelement sind noch höhere numerische Aperturen als NA = 1.45 möglich.

Das fünfte Ausführungsbeispiel (Abbildung 5 (10.5)) ist für Solid Immersion mit einer Saphirlinse (n_{Saphir} = 1.92) bei einer NA = 1.6 ausgelegt. Prinzipiell sind damit sogar numerische Aperturen bis zu NA > 1.8 machbar. Im Beispiel ist der äußere Feldradius waferseitig bei 15.53mm, der innere bei 5.5mm, d.h. das rechteckige Feld ist hier 26x3mm groß.

Da die hochaperturigen Strahlen mit Aperturen NA > 0.52 bei einem Übergang von Saphir in Luft an der Planfläche Totalreflexion erfahren, müssen für Solid Immersion Arbeitsabstände von weniger als der Wellenlänge realisiert werden, um evaneszente Wellen für die Belichtung des Wafers zu nutzen. Dies kann unter Vakuum erfolgen, indem der zu belichtende Wafer konstant auf beispielsweise 100nm ~ λ/2 in die Nähe der letzten Linsenfläche gebracht wird. Da sich kleine Änderungen des Abstandes aufgrund der mit dem Abstand exponentiell abfallenden Leistungsübertragung durch evaneszente Felder jedoch in starken Uniformitätsschwankungen auswirken, ist es vorteilhaft, den Wafer in direkten Kontakt mit der letzten Abschlussfläche zu bringen. Dazu kann der Wafer zur Belichtung an die letzte plane Linsenfläche angesprengt werden. In diesem Fall ist ein step-and-scan-Modus oder Stitchingverfahren der Belichtung vorzuziehen, d.h. größere Bereiche als das Bildfeld werden in einzelnen Schritten belichtet, wobei die Retikelmaske entsprechend zum Alignment justiert wird anstelle wie bisher üblich der Wafer. Dies ist auch daher vorteilhaft, dass durch die verkleinernde Abbildung die Justage des Retikels mit geringerer Genauigkeit als eine Justage des Wafers erfolgen kann. Aneinander grenzende Belichtungsbereiche oder aufeinander folgende Ebenen der Halbleiterstruktur durch nachfolgende Belichtungsschritte werden somit durch laterale und axiale Bewegung und Drehung der Retikelmaske zur Überdeckung gebracht, um somit die Halbleiterstrukturen auf den möglicherweise auch fehlerhaft angesprengten Wafern mit einer Overlay-Genauigkeit besser als wenige nm zu belichten. Hierzu werden z.B. Alignmentmarken des Retikels mit auf dem Wafer bereits belichteten Alignmentmarken zur Übereinstimmung gebracht.

Die Lösung des Wafers von der letzten Fläche erfolgt vorzugsweise unter Vakuum. Erforderlichenfalls befindet sich zwischen Wafer und letzter planarer Linsenfläche eine dünne schicht (Pellikel/Membran), die z.B. nach jedem Belichtungsschritt ausgetauscht werden kann. Diese Membran kann z.B. auch am

Seite 3 von 14

Wafer haften bleiben und die Trennung unterstützen und dient insbesondere als Schutz der letzten planen Linsenfläche. Diese kann optional durch eine dünne Schutzschicht zusätzlich geschützt sein.

Bei Solid Immersion können bei der Belichtung im Randbereich der letzten Linsenfläche durch die bildgebenden Interferenzen stehende Wellen hoher Intensität entstehen. Für die wiederholte Belichtung einer Struktur auf einen Wafer ist es daher sogar vorteilhaft, wenn der Wafer durch das Ansprengen zufällig in gewissen Bereichen von wenigen Mikrometern ungenau positioniert wird, was durch die Justage durch das Retikel ausgeglichen wird, um das Einbrennen systematischer Strukturen in die letzte Linse zu verhindern.

Tabellen mit Designdaten Angaben in Format von Code V(Trademark) Optikdesignsoftware

Ausführungsbeispiel 1 : NA = 1.45, β =-0.25, λ =193.4nm

SURF	RADIUS	THICKNESS	MATERIAL	INDEX	SEMIDIAM.
0	0.000000	37,647680			62.000
1	200.438805	20.912608	SIO2HL	1.56018811	83.110
2	747.538013	7.881173			83,845
3	317.250503	20.945704	SIO2HL	1.56018811	86.831
4	22587.222465	11.951766			86,988
5 6	-354.957551	49.505975	SIO2HL	1.56018811	87,016
6	-278.404969	31.885410			92.050
7	133.981210	32.856595	SIO2HL	1.56018811	92.150
8	186.155059	11.833855			85,480
9	260.034334	38.111988	SIO2HL	1.56018811	85.440
10	-248.127931	0.945803			84.087
11	97.319012	29.863172	SIO2HL	1.56018811	63.308
12	247.011352	15.182258			54.518
13	0.000000	13.667911			46.858
14	-118.535589	9.039902	SIO2HL	1.56018811	47.472
15	-136.528381	10.289540			49.929
16	-117.640924	9.240335	SIO2HL	1.56018811	50.901
17	-267.170322	7.604882			57.478
18	-147.424814	27.656175	SIO2HL	1.56018811	58.338
19	-83.904407	29.670597			63.295
20	-79.022234	16.329258	SIO2HL	1.56018811	66.670
21	-99.429984	38.001255			76.192
22	-111.093244	49.234984	SIO2HL	1.56018811	86.007
23	-144.921986	0.952550			106.817
24	-6366.151454	44.409555	SIO2HL	1,56018811	119.243
25	-217.880653	270.750636			120.802
26	-219.739583	-239.183412	REFL		145.235
27	184.636114	269.507816	REFL		128.436
28	197.874974	37.626342	SIO2HL	1.56018811	86.078
29	524,125561	15.614096			81.640
30	-406.239674	8.985971	SIO2HL	1.56018811	81,383
31	106.800601	32.709694			77.510
32	-1162.346319	30.365146	SIO2HL	1.56018811	78.287
33	~161.881438	8.348534			81.054
34	-166.445156	11.418724	SIO2HL	1,56018811	81.127
35	-1076.211334	42,927908			95.134
36	-546.503260	41.443273	SI02HL	1.56018811	113.022
37	-173.835591	0.952741			119.110
38	-372.875307	32.537548	SIO2HL	1.56018811	128,490
39	-210.380863	1.042699			131.802
40	303.213120	50.564746	SIO2HL	1.56018811	145,286
41	5346.623071	0.921057			144.413

00225335.DOC

Seite 4 von 14

Anhang	zur Erfindungsmeld	ung: Immersions-Lit	hographieobjektiv mit	Saphirlinse	23.7.	2004 LIT-TD / Bdf
42	262.055999	33,924688	SIO2HL	1,56018811	133,743	
43	733.813747	0,928913			130.461	
44	163,353186	39,409378	STO2HL	1.56018811	116.482	
45	349,938998	0,920003			111.971	
46	279.917107	28,062402	SIO2HL	1,56018811	109,138	
47	11299.235097	0.896338			104.077	
48	88.608734	39.730068	SIO2HL	1.56018811	73.896	
49	114.264419	0.751321			56,000	
50	65,720894	25.021454	SAPHIR	1.92674849	49,523	•
51	131.441788	25,021469		1,92674849	39.659	
52	0.000000	1.000000		1,55600000	18.066	
53	0.000000	0.000000		0.00000000	15.503	
					25 15 52	
	ASPHERIC	CONSTANTS				
SRF	1	6	8	12	16	
K	0	0	0	0	0	
C1	-2,263569e-08	5.432610e-08	-7.143508e-09	2.619298e-07	-3.184960e-07	
C2	-9,879901e-13	-7.797101e-12	1.564097e-11	-3.814641e-11	-3.142211e-11	
C3	3,070713e-17	8.455873e-16	-1.599946e-15	1.148617e-14	-1,728296e-15	
C4	-6.018627e-21	-6.875038e-20	3.060476e-19	-4.506119e-18	-1,249207e-18	
C5	4.073174e-26	3,863486e-24	-2.788321e-23	-5.794434e-23	-9.678014e-24	•
C6	1.391778e-29	-1,112310e-28	1.126553e-27	4.244063e-26	-4.921692e-26	
C7	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	
	010000000000	0.0000000:00	0.0000000:00	0.00000000000	0.00000000000	
SRF	22	26	· 27	28	31	
K	0	. 0	0	0	0	
C1	2.863527e-08	8.694636e-09	-6.654566e-09	5.614883e-08	-1.288689e-07	
C2	1.884154e-12	1.385871e-13	-1.686449e-13	1.450774e-12	-4.820574e-12	
C3	1.636375e-17	1.727286e-18	-2.470942e-18	1.892047e-16	5.082977e-16	
C4	1.888300e-20	4.461465e-23	-2.362157e-22	6.954696e-21	-1.375138e-19	
C5	-2.021635e-24	-7.172318e-28	7.757389e-27	-1.108417e-24	1.555422e-23	
C6	1.591959e-28	3.081240e-32	-3.330142e-31	2.459404e-28	-2.481857e-28	
C7	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	
SRF	34	36	41	. 47	49	
K	0	0	0	. 0	0	
C1	-1.177998e-07	-2.187776e-08	-1.577571e-08	-8.244653e-09	2.024084e-07	
C2	-5.683441e-12	-8.068584e-14	3.706857e-13	4.957466e-12	1.422789e-11	
C3	-5.647064e-16	8.600815e-17	-1.492063e-17	-2.442972e-16	3.923209e-15	
C4	-7.031797e-21	-2.071494e-20	-9.742126e-22	6.741381e-21	4.845684e-19	
C5	-1.902336e-24	1.290940e-24	6.498365e-26	2.034640e-25	-2.134986e-22	
C6	2.891112e-29	-3.884318e-29	-9.630077e-31	-2.570056e-29	5.591977e-26	
C7	0.000000e+00	0.000000e+00	0.000000e+00	9.579172e-34	0.000000e+00	

	hrungsbeispiel 2			β=-0.25, <i>λ</i> =193.4nm	
SURF	RADIUS	THICKNESS	MATERIA	AL INDEX	SEMIDIAM.
0	0.000000	37.647680			62.000
1	526.196808	49.977602	SIOZHL	1.56018811	75.944
2	-256,668548	1.120100	0700111		85.473
3	696.160336	28.649736	SIO2HL	1.56018811	90.668
4	-2056.955285	22.244610		1 50010011	92.750
5 6	-195.811665	49.974335	S102HL	1.56018811	92.870
5	-158.185918	9.821764	0.7.0.0111	1 50030011	101.539
7	138.796255	49.218181	2102HF	1.56018811	90.394
8 9	301.060143 161.646552	1.660319	CTOOU	. 1 56010011	80.597
	-406.812049	42.095627	2105HF	1.56018811	78,153
10 11	100.020556	0,979493 24,469422	RECUTS	1,56018811	70.852
12	102.330592	10.088496	310ZUL	. 1,30019911	52.354 38.573
13	0.000000	10.406389			37,226
14	-157.109979	8,950512	IUCO TO	1.56018811	38.841
15	618.822068	8,847956	210711	1,20010011	46.776
16	-561.300665	33.147649	IUCOTO	1,56018811	51.388
17	-73.150544	9.448760	STUZIIL	1.50016611	56.377
18	-69.300574	8,926672	HCUIS	1.56018811	57.781
19	-86.551998	8,003693	310211	1.50018011	64.608
20	-78.306541	10.360105	HCUIZ	1.56018811	66,592
21	-117.142798	2,915635	OTOLIIL	1.50010011	75.827
22	-356.673528	46.693825	STOZHI	1.56018811	86.465
23	-108.386760	266,538313	OIOZIIZ	1.50010011	90.245
24	-177.092218	-236.552196	-	REFL	129.567
25	200.462621	288,213928		REFL	136.687
26	604.677438	50.022575		1.56018811	82.440
27	125.234518	13.901039			73.274
28	257.421526	34.367199	SI02HL	1.56018811	73.449
29	111.034905	29.307766			73.890
30	-848.480773	29.119950	SI02HL	1.56018811	74.404
31	-194.073508	7.840952			80.032
32	-225.307336	46.053997	SI02HL	1.56018811	81.668
33	-535.709449	0.941640			105.651
34	-1622.810467	46,410355	SI02HL	1.56018811	108.373
35	-173.207717	0.932943			113.398
36	-236.921577	22.327373	SI02HL	. 1.56018811	116.764
37	-261.220038	0.938270			124.709
38	364.988031	40.936258	SI02HL	1.56018811	142.520
39	11406.698081	0.943482			142.679
40	379.203162	36.840265	SIO2HL	1.56018811	142.867
41	-33782.420006	0.921857			141.929
42	245.879991	49.886843	SIO2HL	1.56018811	134.831
43	-10061.581161	0.883850	07.001//	7 5000001	132.020
44	145.995266	39.892414	STOZHL	1.56018811	105.854
45	375.256079	0.817132	070010	1 55010011	99.565
46	86.107554	37.429431	S102HL	1.56018811	73.276
47 48	215.234027	0.667291	CTACHI	1 50010011	63.094
46 49	52.718236	26.546970 16.594510			42,800
50	0.000000	0.999826		1.92674849 1.43612686	42.800
51	0.000000	0.000000			42.800
JI	0.000000	0,000000	MT K	0.00000000	15.501
		_			
	ASPHERIC	CONSTANTS			
SRF	1	6		9 12	14
{W:\01	1641\0201694us0\	\00225335.DO			

Seite 6 von 14

κ	0	0	0	0	0
Cl	-8,448852e-08	-4.108258e-09	-6.153759e-08	4.456016e-07	-6.305745e-07
C2	-4.761055e-12	-9.598657e-12	-1.480269e-11	1.857407e-11	-7.903687e-11
C3	-1.420861e-16	1.072661e-15	1.473191e-15	1.064538e-14	-2.534563e-14
C4	-8.023974e-20	-6.889975e-20	-3.255374e-19	-5.079476e-18	-3.735078e-18
C5	1.173437e-23	2.314066e-24	3.131675e-23	1.056992e-22	1.905659e-22
С6	-1,454073e-27	-3.793935e-29	-6,955428e-28	7.981996e-26	-3.500146e-26
C7	0.000000e+00	0.000000e+00	0,000000e+00	0.000000e+00	0.000000e+00
SRF	20	24	25	26	29
K	0	0	0	0	0
C1	1.209336e-07	1.259532e-08	-4.077497e-09	1.111414e-07	-8.942189e-08
C2	1.869926e-11	3.424345e-13	-8.690596e-14	3.172584e-13	-1.116520e-13
C3	1.314270e-15	6.952906e-18	-1.505812e-18	3.429058e-19	4.168290e-16
C4	3.650689e-19	3.744203e-22	-8.583957e-23	-1.068048e-20	-2.231424e-19
C5	-5.603440e-23	-1.203108e-26	2.784182e-27	1.935865e-24	2.267328e-23
C6	9.844086e-27	6.714766e-31	-1.066606e-31	-5.318242e-29	-1.588914e-27
C7	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
SRF	32	34	39	45	47
K	0	. 0	0	0	0
C1	-9.549663e-08	-5.673614e-09	-1.220571e-08	-2.613273e-08	1.649072e-07
C2	-3.034519e-12	-5.774683e-14	4.574492e-13	4.882999e-12	-4.982295e-13
C3	1.985443e-16	-1.715933e-16	-3.026161e-17	-2.171852e-16	-2.462341e-16
C4	-1.403621e-20	5.949307e-21	8.480395e-22	8.220913e-21	6.329880e-19
C5	2.496197e-24	1.220843e-25	-5.629908e-27	2.183741e-25	-1.498580e-22
C6	-1.598958e-28	-2.178077e-29	-3.377722e-32	-2.816869e-29	1.552461e-26
C7	0.000000e+00	0.000000e+00	0.000000e+00	1,520501e-33	0.000000e+00

Ausführungsbeispiel 3 (b037a): NA = 1.45, β =-0.25, λ =193.4nm

SURF	RADIUS	THICKNESS	MATERIAL	INDEX	SEMIDIAM.
0	0.000000	37.647680			62,000
1	178.098560	47.089109	SIO2HL	1.56018811	83.684
2	508.791874	0.982161			86,920
3	260.152118	29.610169	SIO2HL	1.56018811	89,203
4	-897.680969	14.988854			89.348
5	-224.555868	50.010854	SIO2HL	1.56018811	89.318
6	-167.290149	6.943751			94.603
7	185.350898	29.083481	SI02HL	1.56018811	84.200
8	161.696842	4.567325			74,817
9	156.295097	29.687097	SIO2HL	1.56018811	74.801
10	-1628.579737	27.610587		2.77020022	72,999
11	116,709207	25.652869	S102HI	1.56018811	57.349
12	3359.816893	2,336800		1100010011	52.702
13	0.000000	42.058143			50.890
14	-114.711496	34.899486	STOCHI	1.56018811	53.065
15	-73.282662	4.817213	OTOZNE	1120010011	60.856
16	-72.166685	17.818288	HCOIS	1.56018811	60.190
17	-80.823907	4.905081	STUZIIL	1.20010011	66.269
18	-78.170209	34.642475	STOOM!	1.56018811	65.802
19	-161,353349	3.907912	310ZHL	1,20010011	
20	-250.115507	50.004289	CTOOL	1.56018811	83.613
21	-130.504962		STUZNL	1.20010911	87.033
		244.427626	DEEL		94.956
22	-180.721067	-214.432541	REFL		135.011
23	179.125663	274.568868	REFL	1 50010011	126.490
24	337.886373	47.239794	\$102HL	1.56018811	107.066
25	-899.516467	5.847365			104.221
26	-2346.009271	43.828445	SIO2HL	1.56018811	101.016
27	101.771490	35.484160			86.055
28	-4439.596410	23.703533	SIO2HL	1.56018811	86.263
29	-254.324560	5,801976			87.609
30	-445.540133	48.164461	SIO2HL	1.56018811	87.772
31	- <i>7</i> 35.213902	16.951226			100.097
32	-650.817086	49.961292	SIO2HL	1.56018811	102.416
33	-281.005458	31.479288			116.698
34	-649.019441	49.768062	SIO2HL	1.56018811	130.316
35	-215.856617	0.928162			134.641
36	312.849138	39.828764	SIO2HL	1.56018811	135.256
37	-1022.199791	0.857904			133,831
38	278.748013	42.635 <i>7</i> 37	SIO2HL	1.56018811	128.369
39	-3295.326556	0.914469			126.650
40	128.656616	61.387113	SIO2HL	1.56018811	106.520
41	-2188.188515	0.730038			100.722
42	90.065507	18.596 <i>7</i> 50	SIO2HL	1.56018811	69.706
43	93.775489	1.000000			60.097
44	73.203900	33.227474	SAPHIR	1.92674849	55,900
45	0.000000	11.657723	SIO2HL	1.56018811	55.900
46	0.000000	0.999913		1.55600000	55.900
47	0.000000	0.000000		0.00000000	15.520
	ASPHERIC	CONSTANTS			
SRF	1	6	8	12	14
K	Ō	ō	Ö	0	0
C1		4.091151e-08	9.284044e-09	1.793476e-07	-3.526789e-07
C2	-1.858357e-12	-7.880362e-12	2.927990e-11	-4.710051e-11	
~~.					J.0230070 11

 $\frac{\{W: 0.1641 \setminus 0.201694 us 0 \setminus 0.0225335. DOC \text{ (MUMMARING MUMMARING MUMARING MUMARING MUMMARING MUMARING MUMARING MUMARING MUMARING MUMARING MUMMARING MUMARING MUMARI$

C3	6.026920e-17	9.074630e-16	-2.187906e-15	2.197728e-15	-6,353989e-15
C4	-3,792813e-20	-7,153651e-20	3.131133e-19	-3.553387e-18	-2.243484e-18
C5	3,121506e-24	2.884237e-24	-3,422295e-23	-7,638265e-23	1.422334e-23
C6	-1.940311e-28	-4.358943e-29	2.472280e-27	2.576563e-26	-7.652798e-26
C7	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
•	313030303.00	010000000700	01000000,00	01000000700	010000000
SRF	18	22	23	24	27
K	0	0	0	0	0
C1	4,805447e-08	1.366493e-08	-7.247654e-09	2.039086e-09	-2.335210e-07
C2	6.053101e-12	3,157722e-13	-1.844324e-13	4.079171e-12	-3,581428e-12
C3	1.864225e-16	4.418704e-18	-3.130608e-18	3.415807e-19	8,204976e-16
C4	1,774391e-19	3.842541e-22	-2.876782e-22	-3.143532e-21	-1.472132e-19
C5	-1.538124e-23	-1,422352e-26	1.047999e-26	-6.009771e-26	1.193755e-23
C6	1.486597e-27	5.625242e-31	-4.798652e-31	5.373759e-30	-5,012293e-28
C7	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
			***************************************	***************************************	0,0000000
SRF	30	32	37	. 41	43
K	0	0	0	0	0
C1	-9.015949e-08	-4.710517e-08	2.981775e-08	7,825942e-08	-1,254855e-07
C2	-5.963683e-12	1.502154e-12	-1.562632e-15	-5.678508e-12	4.044789e-11
C3	-2.709599e-17	-1.008729e-16	-1,924785e-17	9.897699e-16	5.935178e-15
C4	1.782520e-20	-2.037099e-20	1.470777e-21	-1.257950e-19	-7,518165e-19
C5	-1.313151e-25	1.244695e-24	-9.287054e-26	1.131690e-23	5.626054e-23
C6	1,114296e-28	-7,926554e-29	2,454712e-30	-6.106697e-28	5.101190e-26
C7	0.000000e+00	0.000000e+00	0.000000e+00	1.494562e-32	0.000000e+00

Ausführungsbeispiel 4: NA = 1.35, β =-0.25, λ =193.4nm

0 0.000000 37.647680 62.000 1 213.097095 21.139875 S102HL 1.56018811 81.073 2 980.962863 0.933467 81.638 3 312.309311 19.869666 S102HL 1.56018811 82.923 4 7050.227976 14.977212 82.853 5 -284.845054 46.899913 S102HL 1.56018811 82.842 6 -316.674517 31.820687 87.867	5 3
2 980.962863 0.933467 81.638 3 312.309311 19.869666 SI02HL 1.56018811 82.923 4 7050.227976 14.977212 82.853 5 -284.845054 46.899913 SI02HL 1.56018811 82.842	3
3 312.309311 19.869666 SI02HL 1.56018811 82.923 4 7050.227976 14.977212 82.853 5 -284.845054 46.899913 SI02HL 1.56018811 82.842	
4 7050.227976 14.977212 82.853 5 -284.845054 46.899913 SI02HL 1.56018811 82.842	
5 -284.845054 46.899913 SIO2HL 1.56018811 82.842	
6 716 67kE17 71 000607 07 07	2
6 -316.674517 31.820687 87.867	7
7 127.504953 32.199127 SIO2HL 1.56018811 90.842	2
8 177.687028 14.069304 84.748	3
9 233.816949 49.949045 SIO2HL 1.56018811 84.566	5
10 -272.601570 1.802731 81,010	
11 92.974202 24.948435 SIO2HL 1.56018811 61.866	
12 228,036841 31,795297 55,983	
13 -128.436888 15.028089 SIO2HL 1.56018811 45.986	
14 -208.039449 19.686225 10.20016811 49.980	
16 -124.923386 5.248146 59.096	
17 -134.255203 24.981296 SIO2HL 1.56018811 61.621	
18 -86.028170 70.079618 66.114	
19 -91.784845 49.926992 SIO2HL 1.56018811 78.125	
20 -130.258172 3.354815 102.297	
21 -819.889396 43.461173 SIO2HL 1.56018811 114.993	3
22 -193.549016 277.291798 117.690)
23 -220.432400 -231.344649 REFL 147.536	õ
24 175.171589 261.356424 REFL 120.087	
25 222.618410 49.895981 SIO2HL 1.56018811 93.866	
26 227.634130 10.722465 85.687	
27 469.132386 43.799915 SIO2HL 1.56018811 85.491	
28 112.693662 31.313114 76.622	
29 12293.399547 31.702057 SIO2HL 1.56018811 77.313	
30 -155.449641 4.962336 79.575	
33 -519.892544 47.183977 SIO2HL 1.56018811 101.635	
34 -163.140684 1.841108 110.786	
35 -340.920966 26.977392 SIO2HL 1.56018811 116.967	
36 -214.582539 2.006234 120.143	
37 271.181444 53.143321 SIO2HL 1.56018811 127.047	
38 -1118.441818 19.790952 125.887	7
39 0.000000 -14.609943 112.489	€
40 174.102740 52.205661 SIO2HL 1.56018811 107.954	į
41 -663.589997 3.836965 104.404	4
42 84.561977 46.625084 SIO2HL 1.56018811 71.481	l
43 95.046969 0.694913 51.033	3
44 64.492898 46.885676 SAPHIR 1.92674849 46.520	
45 0.000000 1.000000 H20 1.43612686 18.265	
46 0.000000 0.000000 AIR 0.00000000 15.515	
ASPHERIC CONSTANTS	
SRF 1 6 8 12 1	
	15
	0
C2 -1.414298e-12 -7.469962e-12 1.686856e-11 -3.111178e-11 -3.795087e-1	
C3 2.026799e-16 9.877277e-16 -1.521195e-15 8.999889e-15 -4.195519e-1	LD

C4	-9.311177e-21	-6.240165e-20	2.838141e-19	-4.631502e-18	-2.684695e-18
C5	8.983777e-26	3.683666e-24	-2.893390e-23	7.225241e-23	-2.249016e-23
C6	-5.139250e-30	-1.606542e-28	1.372152e-27	5.035383e~26	-5.606361e-26
C7	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
SRF	19	23	24	25	28
K	0	0	0	0	0
C1	2.306275e-08	9.197905e-09	-7.280789e-09	8.044076e-08	-1.035389e-08
C2	1.672430e-12	1.297990e-13	-2.062090e-13	6.845761e-13	5.752946e-14
C3	-3,451288e-18	1,447412e-18	-3.885785e-18	8,440855e-17	3,412577e-16
C4	3,656429e-20	4.002605e-23	-3.101616e-22	-8.233892e-21	-1,247784e-19
C5	-5.091821e-24	-7.044663e-28	1,113163e-26	1.115110e-24	5.556509e-24
C6	5,148418e-28	3.011922e-32	-6.186058e-31	-3.079026e-29	1.295943e-27
C7	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
SRF	31	33	38	41	44
K	0	0	0	0	0
C1	-1,291718e-07	-4.530057e-08	-1.801990e-08	-2.682021e-08	-1.900216e-07
C2	-4.385607e-12	-2.081953e-13	6.277450e-13	7.361672e-12	-4.832504e-11
C3	-2,255698e-16	1.680387e-16	-5.256278e-17	-3.951877e-16	-1,233010e-14
C4	-2.117620e-21	-4,155797e-20	-4.688822e-21	1.434967e-20	7.440284e-19
C5	-1.322919e-24	3.040355e-24	4.497908e-25	-3.980440e-26	1.430823e-22
C6	1.074049e-28	-1.238033e-28	-9.348185e-30	-2.642973e-29	-3.924075e-25
C7	L.U/4U498-70	= 1 . Z 30U3 3E= /0			

Ausführungsbeispiel 5 : NA = 1.6, β =-0.25, λ =193.4nm

SURF	RADIUS	THICKNESS	MATERIAL	INDEX	SEMIDIAM.			
0	0.000000	37.663108			62.000			
1	192.084227	26.622297	SI02V	1.56078570	87.833			
2	1075.649716	0.946456			88.233			
3	491.402040	19.101530	SI02V	1.56078570	88.867			
4	-934.209447	36.905290			88.935			
5	125.340633	9,623977	S102V	1.56078570	90.013			
6	122.019859	23.963817			87.312			
7	252.185057	44.239148	SI02V	1.56078570	87.669			
8	-204.394078	0.923049			87.161			
9	102.471834	52.852020	S102V	1.56078570	67. <i>7</i> 68			
10	254.533994	9.305878			48.073			
11	0.000000	52.418616			46.820			
12	-75.641562	68.872834	S102V	1.56078570	58,068			
13	-124.953275	39.621161			93.864			
14	-835,558655	54.318921	S102V	1.56078570	126.993			
15	-178.850083	0.948020			130,230			
16	2111.392648	22.857019	SI02V	1.56078570	132,098			
17	-901.583067	358.679202			132.071			
18	-225.015829	-231.613549	REFL		160.876			
19	168,185189	261.594819	REFL		120,144			
20	-736.571530	23.114077	SI02V	1.56078570	81.485			
21	132.965130	36,406211			86.933			
22	~512,908458	28.535664	SI02V	1,56078570	87,621			
23	-185.099986	6.615931		2,000,000	92.898			
24	-544,628556	33.807132	S102V	1.56078570	99,839			
25	-547,431224	19.995820			114,885			
26	-359.224408	99,479683	SI02V	1,56078570	119.014			
27	-168.873687	12.916761			143,505			
28	313.449462	92.758623	S102V	1.56078570	165.026			
29	983.057723	1.167054	01021	1150070570	158,153			
30	227.152511	48.817493	ST02V	1,56078570	148.584			
31	684.382976	0.981700	01021	1,500,0570	144.866			
32	144.775480	60.829967	S102V	1.56078570	121.541			
33	1285.387522	0.899534	0102.	2130070370	116.276			
34	99.002284	39.642869	S102V	1.56078570	84,155			
35	243,117451	0.805490	0.02.	2130070370	74.674			
36	65.952055	54.681070	SAPHIR	1,92674849	54.379			
37	0.000000	0.000000		0.00000000	15.530			
٠,	0,00000	3100000	711	0,00000000	13.330			
	405455							
	ASPHERIC	CONSTANTS						
SRF	4	5	10	14	. 18			
K	Ö	ő	0	0	0			
C1	4.332466e-08	5.983847e-08	4.678448e-07	-5.502311e-09	9.581997e-09			
C2	-4,251613e-12	-1.394334e-11	1.214772e-11	6.759433e-14	1.191548e-13			
C3	8.548420e-16	1.246293e-15	1.462858e-14	-2.777895e-18	5.628084e-19			
C4	-7,822847e-20	-2,065935e-19	-5.084805e-18	1.850960e-22	7,255139e-23			
C5	3.463295e-24	1.861321e-23	4.192361e-22	-7.883399e-27	-1.691943e-27			
C6	-7.495559e-29	-7.372680e-28	1.456331e-26	1.533878e-31	3.619858e-32			
C7	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0,000000e+00			
00=	4.5							
SRF	19	20	21	24	26			
K	0	0 750400- 00	0	0	0			
C1	-5.661490e-09	8.762490e-08	-3.207763e-08	-6.520443e-08	4.364974e-09			
C2	-1.921628e-13	-1.093121e-11	-5.311243e-12	4.777722e-13	-1.522836e-12			
BA/-\O-	841-046410201604							

Seite 12 von 14

C3	-7.055884e-19	1.359734e-15	6.816058e-16	-7.895875e-17	-6.656442e-18
°C4	-6.935220e-22	-2.479964e-19	-2.253013e-19	1.733738e-20	-2.640069e-21
C5	3.152816e-26	2.421781e-23	2.354847e-23	-2,097861e-24	2.889539e-25
C6	-1.191863e-30	-1.346005e-27	-1.003551e-27	1.235456e-28	-1.101803e-29
C7	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
SRF	29	33	35		
K	0	0	0		
C1	8.788855e-09	3.258556e-08	1.084860e-07		
C2	-6.462954e-13	1.588293e-12	6.094001e-12		
C3	-1.551858e-17	-1.752790e-16	1.646644e-16		
C4	1.099566e-21	1.227022e-20	-9.287322e-20		
C5	-1.930245e-26	-5.173475e-25	1.657126e-23		
C6	1.160550e-31	1.295964e-29	-1.278529e-27		
C7	0.000000e+00	-1.104258e-34	0.000000e+00		

8 Problemstellung

Bei der Immersionslithographie ist die mögliche Numerische Apertur zunächst durch die Brechzahl des Immersionsmediums beschränkt. Sind Flüssigkeiten mit hoher Brechzahl vorhanden oder wird Solid Immersion (Nahfeldlithographie, Kontakt-Projektionslithographie) verwendet, wirkt das Material des letzten Linsenselements als Beschränkung, falls die letzte Abschlußfläche plan oder nur schwach gekrümmt ausgelegt werden soll. Die plane Auslegung ist von Vorteil z.B. für die Abstandsmessung zwischen Wafer und Objektiv oder für die Reinigung.

9 Erfindung (Lösung)

a) Ein Lithographieobjektiv, bei dem wenigstens ein, insbesondere das letzte oder vorletzte (bei folgender Abschlussplatte) Linsenelement aus einem hochbrechenden Material (n>1,6;n>1.8) besteht. Die übrigen Linsenelemente können ohne weiteres eine kleinere Brechzahl haben. Ausnahmen sind Linsen, die zur Kompensation verwendet werden, siehe e).

Die Anwendungsbeispiele sind für 193nm gerechnet, das Material des letzten Linsenelements ist Saphir, die übrigen Linsen sind aus Quarz. Für 248nm ist GeO₂ als Material für die letzte Linse denkbar. Dieses Material besitzt gegenüber Saphir den Vorteil, dass es nicht doppelbrechend ist, bei 193nm ist es aber nicht mehr transmittierend.

b) Um eine NA >= 1.45 zu erreichen wird eine Immersionsflüssigkeit mit höherer Brechzahl als Wasser benötigt. In den Anwendungsbeispielen wurde als Immersionsmedium Cyclohexan (Brechzahl n=1.556) verwendet. Immersionsmedien mit n>1.6 werden derzeit in der Fachwelt als realistisch zu erwarten betrachtet.

Die objektseitige NA ist in diesen Fällen >= 0.3625 bei einem Abbildungsmaßstab β = 0.25. Die Dicke der Flüssigkeitsschicht kann beispielsweise zwischen 0.1 und 10mm betragen.

c) Alternativ ist ein Objektiv aus a) auch für Solid Immersion anwendbar, was noch höhere numerische Aperturen erlaubt. Das Anwendungsbeispiel 10.2 zeigt Solid Immersion mit einer Saphirlinse bei einer NA von 1.6.

Da bei einem Übergang von Saphir in Luft das Licht an der Planfläche Totalreflexion erfährt, müssen für Solid Immersion Arbeitsabstände von <1 µm realisiert werden, um emaneszente Wellen für die Belichtung des Wafers zu nutzen.

Dazu kann der Wafer an die letzte planare Linsenfläche angesprengt (oder angepresst) werden. In diesem Fall ist nur ein step-and-scan-modus möglich, d.h. größere Bereiche als das Bildfeld müssen durch Stepping oder Stitching belichtet werden, wobei nach 'Ansprengen des Wafers' die Retikelmaske entsprechend justiert werden muss (anstelle wie bisher der Wafer; d.h. man justiert für aneinander grenzende Belichtungsbereiche oder nachfolgende Belichtungsschritte anstelle des möglicherweise auch fehlerhaft angesprengten Wafers die Retikelmaske durch laterale und axiale Bewegung und Drehung so, daß die benötigte Overlay-Genauigkeit von z.B. Alignmentmarken auf dem Wafer (besser als wenige nm) erreicht wird. Die Lösung des Wafers von der letzten Fläche erfolgt beispielsweise unter Vakuum. Erforderlichenfalls befindet sich zwischen Wafer und letzter (planer) Linsenfläche eine dünne Schicht (Pellikel/Membran), die z.B. nach jedem Belichtungsschritt ausgetauscht werden kann. Diese Membran kann z.B. auch am Wafer haften bleiben und die Trennung unterstützen und dient insbesondere als Schutz der letzten planen Linsenfläche.

Bei Solid Immersion entstehen bei der Belichtung im Randbereich der letzten Linsenfläche durch die bildgebenden Interferenzen stehende Wellen hoher Intensität. Für die wiederholte Belichtung einer Struktur auf einen Wafer ist es daher sogar vorteilhaft, wenn der Wafer durch das Ansprengen zufällig in gewissen Bereichen von wenigen Mikrometern ungenau positioniert wird, was durch die Justage durch das Retikel ausgeglichen wird, um das Einbrennen systematischer Strukturen in die letzte Linse zu verhindern.

Bei der Verwendung von Saphir ist die verhältnismäßig hohe Doppelbrechung ein Problem. Folgende Kompensationsmöglichkeiten sind hier denkbar:

- d) Das letzte Linsenelement ist gespalten und die beiden Teile sind zueinander verdreht. Die Trennfläche ist dabei bevorzugt so gekrümmt, dass beide Linsenteile ähnliche Brechkraft besitzen (Ausführungsbeispiel 10.1).
- e) Alternativ kann mindestensein zweites Element aus Saphir zur Kompensation verwendet werden, welches sich an einer optisch ähnlich wirkenden Stelle im Objektiv befindet, beispielsweise in der

<u>{W:\01641\0201694us0\00225332.DOC</u>|@@@@@@@@@@@@@@<u>}</u> 00225332.DOC Nähe von Zwischenbildern. Dieses wird auch hinsichtlich seiner Orientierung der Doppelbrechung anders eingebaut.

f) Um die Auswirkung der Doppelbrechung zu minimieren, kann das letzte Linsenelement aus einer dünnen Saphirlinse mit positiver Brechkraft bestehen, die mit einer Quarzplatte kombiniert, zum Beispiel angesprengt ist. (Ausführungsbeispiel 10.3).

Falls die Immersionsflüssigkeit gegenüber Saphir agressiv wirkt, kann eine angesprengte Quarzplatte auch als Schutz der Saphirlinse dienen.

Die NA ist in diesen Fällen durch die Brechzahl des Quarzes beschränkt, gegenüber einem Design mit einer letzten Linse aus reinem Quarz sind jedoch vor der letzten Linse kleinere Strahlwinkel und damit auch kleinere Durchmesser und geringere Sensitivitäten (Störeinflüsse von Fertigungstoleranzen) vorhanden.

g) Alternativ kann eine Quarzlinse mit erstem positivem Krümmungsradius und rückseitiger Planfläche auf eine oder zwei Planplatten aus Saphir aufgesprengt sein. Auch damit erreicht man keine höhere NA als in Quarz möglich ist (c.a. NA = 1.45), man hat aber den Vorteil, dass der Ausbreitungswinkel der Lichtstrahlen im letzten Objektivteil, wo die Apertur am größten ist, geringer wird. Durch das hochbrechende Medium wird der Ausbreitungswinkel dort verringert. Dies ist vorteilhaft, wenn man die Reflexionsverluste und Streulichteffekte an der Grenzfläche und an möglichen Schutzschichten auf der letzten Abschlußfläche berücksichtigt, die für diese sonst sehr großen Ausbreitungswinkel ein Hindernis darstellen können. Die größten Winkel treten dann nur an der Ansprengfläche zwischen Quarzlinse und der ersten höherbrechenden Planplatte auf; diese Ansprengfläche ist geschützt von Verunreinigungen und Kratzern und kann mit einer für hohe Transmission geeigneten, aber durchaus auch gegenüber Umwelteinflüssen empfindlichen oder instabilen, Beschichtung versehen sein.

Durch die optional zwei zueinander verdrehten Planplatten aus Saphir kann auch der Doppelbrechungseffekt für die vorwiegend zur Abbildung der Halbleiterstrukturen erforderlichen S- und P-Polarisationen in x- und y-Richtung ideal kompensiert werden.

10 Ausführungsbeispiele

Sämtliche Ausführungsbeispiele zeigen katadioptrische Objektive mit zwei Hohlspiegeln und 2 Zwischenbildern. Einheitlicher Grundtyp ist gewählt, um die Variationen besser darzustellen. Die hochbrechende Linse lässt sich jedoch für alle denkbaren Designtypen von Mikrolithographie-Projektionsobjektiven anwenden.

Beispiel 10.1 (b035g)

Lithographieobjektiv für 193nm mit Saphirlinse und Cyclohexan als Immersionsmedium, NA 1.45, Arbeitsabstand 1mm. Die Saphirlinse ist in zwei Teile ähnlicher Brechkraft aufgespalten.

Merkmale sind: NA = 1.45, Spiegel, Zwischenbild, Taille, optional aufgespaltete Endlinse. Der vordere (objektseitige) Radius des vorletzten Linsenelements ist nahezu konzentrisch zur Bildebene (Waferebene), der vordere Radius der aufgespaltenen Saphirlinse ist flacher (Radius ~ 1.3-2 mal Abstand zum Bild (Wafer))

Beispiel 10.2 (b029b)

Lithographieobjektiv für 193nm mit Saphirlinse und Solid Immersion, NA 1.6.

Merkmale sind : NA = 1.6, Spiegel, Zwischenbild, Taille, optional aufspaltete Endlinse

₩:\01641\0201694us0\00225332.DOC
©0225332.DOC

Beispiel 10.3 (b037a)

Lithographieobjektiv für 193nm mit Saphirlinse und Cyclohexan als Immersionsmedium, NA 1.45, Arbeitsabstand 1mm. Auf die dünne Saphirlinse ist eine Quarzplatte angesprengt.

Merkmale sind : NA = 1.45, Spiegel, Zwischenbild, Taille, die Brechzahl des Immersionsmediums entspricht in etwa der von Quarz.

Beispiel 10.4 (b037b)

Lithographieobjektiv für 193nm mit einer Quarzlinse mit angesprengter Saphirplatte. Das Immersionsmedium ist Wasser, NA 1.35, Arbeitsabstand 1mm.

Merkmale sind : 1 < NA < 1.4 ($n_{wasser} = 1.43$) , Spiegel, Zwischenbild, Taille, optional aufgespaltete Abschlussplatte.

Beispiel 10.4 (b035cb)

Lithographieobjektiv für 193nm mit Saphirlinse und Wasser als Immersionsmedium, NA 1.35, Arbeitsabstand 1mm. Die Oberseite der Saphirlinse ist asphärisch, die Blende liegt im bildseitigen Teil des Objektivs im konvergenten Strahlengang, nach dem Ort des größten Lichtbündeldurchmessers.

Merkmale sind : 1 < NA < 1.4 ($n_{wasser} = 1.43$), Spiegel, Zwischenbild, Taille, optional aufgespaltete Endlinse aus doppelbrechendem Medium (vergleiche dazu US 6,717,722 B Schuster), optional vorletzte Fläche asphärisch. Die Blende (bildseitigePupille) liegt hinter dem 2. Bauch.

{W:\01641\0201694us0\00225332.DOC

E204267 (04136P US PRE)

- Mikrolithographie-Projektionsobjektiv mit wenigstens einer Linse aus einem hochbrechenden Material mit Brechungsindex größer als 1,6, vorzugsweise größer 1,8 bei einer Betriebswellenlänge.
- 2. Mikrolithographie-Projektionsobjektiv nach Anspruch 1, wobei das genannte Material Saphir ist.
- 3. Mikrolithographie-Projektionsobjektiv nach Anspruch 1, wobei das Material Germaniumdioxid ist.
- Mikrolithographie-Projektionsobjektiv nach Anspruch 1, wobei die maskenseitige numerische Apertur über 0,3, vorzugsweise über 0,36 liegt bei einem betragsmäßigen Abbildungsmaßstab von /β/ ≤ 0,25.
- Mikrolithographie-Projektionsobjektiv nach einem der Ansprüche 1 4, wobei mindestens eine zweite Linse aus einem genannten hochbrechenden Material vorgesehen ist.
- 6. Mikrolithographie-Projektionsobjektiv nach Anspruch 5, wobei die erste und die zweite Linse Doppelbrechung aufweisen, welche bei beiden verschieden orientiert ist.
- 7. Mikrolithographisches Projektionsobjektiv mit einer Bildebene und einer dieser nächstgelegenen Pupillenebene oder Systemapertur und einem konvergenten Strahlengang zwischen besagter Pupillenebene oder Systemapertur und Bildebene.
- 8. Mikrolithographisches Projektionsobjektiv mit einer Bildebene und einer von dieser fernsten Linse, von der an bis zu der Bildebene konvergenter Strahlengang vorliegt, wobei eine Pupillenebene oder Systemapertur in mindestens 10 mm Abstand bildseitig von besagter Linse angeordnet ist.
- Mikrolithographisches Projektionsobjektiv mit einer Kombination der Merkmale von mindestens zwei der vorhergehenden Ansprüche.
- 10. Mikrolithographie-Projektionsbelichtungsverfahren, wobei ein Mikrolithographie-Projektionsobjektiv nach mindestens einem der vorhergehenden verwendet wird und zwischen einer letzten Linse des Mikrolithographie-Projektionsobjektivs und einem zu belichtenden Objekt eine Immersionsflüssigkeit eingebracht wird.
- 11. Mikrolithographie-Projektionsbelichtungsverfahren nach Anspruch 10, wobei eine Immersionsflüssigkeit mit einem Brechungsindex größer 1,4, vorzugsweise größer 1,5 oder 1,55 bei einer Betriebswellenlänge verwendet wird.
- 12. Mikrolithographie-Projektionsbelichtungsverfahren wobei ein bildseitig letztes optisches Element eines verwendeten Projektionsobjektives an das zu belichtende Objekt angesprengt oder angepresst wird.

- 13. Mikrolithographie-Projektionsbelichtungsverfahren, wobei zuerst ein Projektionsobjektiv und ein zu belichtendes Objekt relativ zueinander positioniert werden und dann eine Maske dazu ausgerichtet wird.
- 14. Verfahren nach Anspruch 12 und 13.
- Verfahren nach einem der Ansprüche 12 bis 14, wobei ein Mikrolithographie-Projektionsobjektiv nach einem der Ansprüche 1 bis 9 verwendet wird.
- 16. Verfahren nach einem der Ansprüche 12 bis 15, wobei das Verfahren für mehrere nebeneinander liegende Flächenstücke auf einem Substrat, insbesondere einem Wafer, wiederholt wird.

Abb. 1

Abb. 2

Abb. 3

Abb. 4

BEST AVAILABLE COPY

Seite 1 von 2