第二周作业:

1. 设 $S = \{x \mid Ax \ge b\}$, 其中 $A \not\in m \times n$ 矩阵,m > n,A的秩为n。证明 $x^{(0)} \not\in S$ 的极点的充要条件是 $A \cap a \cap b$ 可作如下分解:

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

其中, A_1 有 n 个行,且 A_1 的秩为 n , b_1 是 n 维列向量,使得 $A_1x^{(0)}=b_1$, $A_2x^{(0)}\geq b_2\,.$

证明: "
$$\Leftarrow$$
"设 $x^{(1)}, x^{(2)} \in S$,则 $Ax^{(1)} \ge b, Ax^{(2)} \ge b$
 $\therefore A_1x^{(1)} \ge b_1, A_1x^{(2)} \ge b_1$
对 $\forall \lambda \in (0, 1)$,若 $x^{(0)} = \lambda x^{(1)} + (1 - \lambda)x^{(2)}$,则
 $b_1 = A_1x^{(0)} = \lambda A_1x^{(1)} + (1 - \lambda)A_1x^{(2)}$
 $\ge \lambda b_1 + (1 - \lambda)b_1 = b_1$
 \therefore 必有 $A_1x^{(1)} = b_1, A_1x^{(2)} = b_1$
 $\Rightarrow A_1x^{(0)} = A_1x^{(1)} = A_1x^{(2)}$
Q A_1 可逆,∴有 $x^{(0)} = x^{(1)} = x^{(2)}$
即 $x^{(0)}$ 为极点。

"⇒"(证法1)Q $x^{(0)}$ 是极点,:: $Ax^{(0)} \ge b$.

$$\therefore A,b$$
总可以分解为 $A = \begin{pmatrix} A_1' \\ A_2' \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ 使得

$$A_1'x^{(0)} = b_1, A_2'x^{(0)} > b_2.$$

设
$$A'_1 = (P_1, P_2, L, P_n)$$
,若 $r(A'_1) \neq n$,

则存在不全为零的数 l_1 ,L $,l_n$ 使得

$$l_1 P_1 + l_2 P_2 + L + l_n P_n = 0.$$

定义
$$x_{j}^{(1)} = x_{j}^{(0)} + \varepsilon l_{j}, j = 1, 2, L, n$$

$$x_i^{(2)} = x_i^{(0)} - \varepsilon l_i, j = 1, 2, L, n$$

$$\mathbb{I} A_1' x^{(1)} = A_1' x^{(0)} + \varepsilon (l_1 P_1 + l_2 P_2 + L + l_n P) = b_1$$

同理,有
$$A_1'x^{(2)} = b_1$$
.

又Q $A_2'x^{(0)} > b_2$, ... 当 ε 足够小时,有 $A_2'x^{(1)} \ge b_2$, $A_2'x^{(2)} \ge b_2$,

$$\Rightarrow x^{(1)}, x^{(2)} \in S_{\circ}$$

但
$$x^{(0)} = \frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)}$$
,与 $x^{(0)}$ 是极点矛盾。

所以 $r(A'_1) = n$ 。设 A'_1 为 $s \times n$ 阶矩阵,由于 $r(A'_1) = n$,故 $s \ge n$,

因此 A 和 b 可作如下分解:

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

其中, A_1 有 n 个行,且 A_1 的秩为 n , b_1 是 n 维列向量,使得 $A_1x^{(0)}=b_1$, $A_2x^{(0)}\geq b_2\,.$

"⇒"(证法2)Q $x^{(0)}$ 是S的极点,:: 有 $Ax^{(0)} \ge b$. 设A中只有k个线性无关的行向量 A_1 ,L , A_k (k < n)

满足
$$Bx^{(0)} = \begin{pmatrix} A_1 \\ M \\ A_k \end{pmatrix} x^{(0)} = b_1.$$

其中b为k维列向量。

则对
$$A$$
中其余的 m - k 行 A_{k+1} , L , A_m , 有 $B'x^{(0)} = \begin{pmatrix} A_{k+1} \\ \mathbf{M} \\ A_m \end{pmatrix} x^{(0)} \ge b_2$,

且若 $A_i x^{(0)} = b_{i2}$,则 A_i 可由 A_i ,L, A_k 线性表出。

Qk < n, .. 方程Bx = 0有无穷解,设 $y^{(0)} \to Bx = 0$ 的非零解,则 $A_i y^{(0)} = 0, i = 1, L, k$ 。

$$x^{(1)} = x^{(0)} + \varepsilon y^{(0)}$$
$$x^{(2)} = x^{(0)} - \varepsilon y^{(0)} \quad (\varepsilon > 0)$$

当 ε 取足够小时,有

$$Ax^{(1)} = {B \choose B'} (x^{(0)} + \varepsilon y^{(0)}) \ge b, Ax^{(2)} \ge b$$

(若
$$A_i x^{(0)} = b_{2i}$$
 $\Rightarrow A_i = l_1 A_1 + L + l_k A_k$

$$\therefore A_i y^{(0)} = l_1 A_1 y^{(0)} + L + l_k A_k y^{(0)} = 0$$

而
$$x^{(0)} = \frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)}$$
,与 $x^{(0)}$ 是极点矛盾。

"⇒"(证法 3)设 $x^{(0)}$ 是S的极点,用反证法。设A,b在点 $x^{(0)}$ 分解如下:

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \quad A_1 x^{(0)} = b_1, \quad A_2 x^{(0)} > b_2$$

 A_1 的秩 $R(A_1) < n$, $A_1x = b_1$ 的同解线性方程组记作

$$\hat{A}_1 x = \hat{b_1} ,$$

 \hat{A}_1 是行满秩矩阵, $R(\hat{A}_1)=R(A_1)< n$, 不妨设 \hat{A}_1 的前 $R(\hat{A}_1)$ 个列线性无关,记作 $\hat{A}_1=\begin{bmatrix} B&N \end{bmatrix}$,其中 B 是可逆矩阵。相应地记

$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}, \quad x_B = B^{-1}\hat{b}_1 - B^{-1}Nx_N.$$

 $A_1x = b_1$ 的解为

$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B^{-1}\hat{b}_1 - B^{-1}Nx_N \\ x_N \end{bmatrix}, \tag{1}$$

其中, x_N 是自由未知量,是 $n-R(A_i)$ 维向量。S的极点

$$x^{(0)} = \begin{bmatrix} x_B^{(0)} \\ x_N^{(0)} \end{bmatrix} = \begin{bmatrix} B^{-1} \hat{b}_1 - B^{-1} N x_N^{(0)} \\ x_N^{(0)} \end{bmatrix}, \tag{2}$$

由于 $A_2x^{(0)}>b_2$,则存在 $x_N^{(0)}$ 的 δ 邻域 $N_\delta(x_N^{(0)})$,使得当 $x_N\in N_\delta(x_N^{(0)})$ 时,解 (1) 同时满

足 $A_1x=b_1$, $A_2x\geq b_2$ 。 在过 $x_N^{(0)}$ 的直线上取不同点 $x_N^{(1)},x_N^{(2)}\in N_\delta(x_N^{(0)})$,使得

$$\lambda x_N^{(1)} + (1 - \lambda) x_N^{(2)} = x_N^{(0)}, \lambda \in (0, 1)$$

带入(2)式,得到

$$x^{(0)} = \begin{bmatrix} B^{-1}\hat{b}_{1} - B^{-1}N(\lambda x_{N}^{(1)} + (1-\lambda)x_{N}^{(2)}) \\ \lambda x_{N}^{(1)} + (1-\lambda)x_{N}^{(2)} \end{bmatrix}$$
$$= \lambda \begin{bmatrix} B^{-1}\hat{b}_{1} - B^{-1}Nx_{N}^{(1)} \\ x_{N}^{(1)} \end{bmatrix} + (1-\lambda) \begin{bmatrix} B^{-1}\hat{b}_{1} - B^{-1}Nx_{N}^{(2)} \\ x_{N}^{(2)} \end{bmatrix},$$

与 $x^{(0)}$ 是极点矛盾。

2. 假设用单纯形方法解线性规划问题

$$\begin{array}{ll}
\min & cx \\
s.t. & Ax = b \\
& x \ge 0
\end{array}$$

在某次迭代中对应变量 x_j 的判别数 $z_j-c_j>0$,且单纯形表中对应的列 $y_j=B^{-1}p_j\leq 0$ 。证明:

$$d = \begin{bmatrix} -y_j \\ 0 \\ M \\ 1 \\ M \\ 0 \end{bmatrix}$$

是可行域的极方向。其中分量 1 对应 x_j 。

证明: 显然
$$d \ge 0$$
, 由于 $y_i = B^{-1}P_i$

$$\therefore Ad = (P_1, L, P_m, L, P_j, L, P_n)d$$

$$= -P_1 y_{1j} - P_2 y_{2j} - L - P_m y_{mj} + P_j$$

$$= -(P_1, L, P_m) \begin{pmatrix} y_{1j} \\ M \\ y_{mj} \end{pmatrix} + P_j = -BB^{-1}P_j + P_j = 0$$

⇒ d为方向。

又由于 P_1 ,L, P_m 线性无关,Ad = 0, $\therefore P_1$,L, P_m , P_j 线性相关, $\Rightarrow d$ 为极方向。

证明2: 显然
$$d \geq 0$$
, 由于 $y_j = B^{-1}P_j$

$$\therefore Ad = (P_1, L, P_m, L, P_j, L, P_n)d$$

$$= -P_1y_{1j} - P_2y_{2j} - L - P_my_{mj} + P_j$$

$$= -(P_1, L, P_m) \begin{pmatrix} y_{1j} \\ M \\ y_{mj} \end{pmatrix} + P_j = -BB^{-1}P_j + P_j = 0$$

$$\Rightarrow d \not \to f \not \to 0$$
假设存在方向 $d^{(1)}, d^{(2)}, \notin \mathcal{H} d = \lambda_1 d^{(1)} + \lambda_2 d^{(2)}(\lambda_1, \lambda_2 > 0).$
则 $d^{(1)}, d^{(2)} \geq 0$ 且 $Ad^{(1)} = 0$, $Ad^{(2)} = 0$ 。
$$\forall d = \begin{pmatrix} -B^{-1}P_j \\ d_N \end{pmatrix}, d^{(1)} = \begin{pmatrix} d_B^{(1)} \\ d_N^{(1)} \end{pmatrix}, d^{(2)} = \begin{pmatrix} d_B^{(2)} \\ d_N^{(2)} \end{pmatrix}.$$
则有
$$\begin{pmatrix} -B^{-1}P_j \\ d_N \end{pmatrix} = \lambda_1 \begin{pmatrix} d_B^{(1)} \\ d_N^{(1)} \end{pmatrix} + \lambda_2 \begin{pmatrix} d_B^{(2)} \\ d_N^{(2)} \end{pmatrix}$$

$$\Rightarrow d_N = \lambda_1 d_N^{(1)} + \lambda_2 d_N^{(2)}$$

$$Q d_N = (0, L, 1, L, 0)^T, \lambda_1, \lambda_2 > 0, d^{(1)}, d^{(2)} \geq 0$$

$$\therefore f \lambda_1 d_j^{(1)} + \lambda_2 d_j^{(2)} = 1, d_i^{(1)} = d_i^{(2)} = 0 \ (i \neq j).$$
又因 $\to d_B^{(1)} + Nd_N^{(1)} = 0 \Rightarrow d_B^{(2)} = -B^{-1}Nd_N^{(1)} = -d_j^{(1)}B^{-1}P_j$

$$Bd_B^{(2)} + Nd_N^{(2)} = 0 \Rightarrow d_B^{(2)} = -B^{-1}Nd_N^{(2)} = -d_j^{(2)}B^{-1}P_j$$
显然 $d_j^{(1)} \neq 0, d_j^{(2)} \neq 0$, 否则 $d^{(1)} = 0$ 或 $d^{(2)} = 0$, 与方向的定义矛盾。

3. 用单纯形方法解下列线性规划问题:

∴有 $d^{(1)} = \frac{d_j^{(1)}}{d_j^{(2)}} d^{(2)} \Rightarrow d$ 为极方向。

(1) min
$$3x_1 - 5x_2 - 2x_3 - x_4$$

 $s.t$ $x_1 + x_2 + x_3$ ≤ 4
 $4x_1 - x_2 + x_3 + 2x_4 \leq 6$
 $-x_1 + x_2 + 2x_3 + 3x_4 \leq 12$
 $x_j \geq 0, \quad j = 1, L$, 4
1. $x^* = \left(0, 4, 0, \frac{8}{3}\right)^T, f_{\min} = -\frac{68}{3}$.
(2) min $-3x_1 - x_2$
 $s.t$ $3x_1 + 3x_2 + x_3 = 30$
 $4x_1 - 4x_2 + x_4 = 16$
 $2x_1 - x_2 \leq 12$
 $x_j \geq 0, \quad j = 1, L$, 4

 $x^* = (7,3,0,0)^T$, $f_{\min} = -24$.