EJERCICIOS correspondientes a Capítulo 4 CURSO PROPEDÉUTICO DE ANÁLISIS REAL DCA - CINVESTAV, Mayo-Junio 2013

1. Demuestra que la "suma por puntos", y la "multiplicación con escalares, por puntos", aplicadas a funciones reales acotadas, dan como resultado una función real acotada.

2. Demuestra que el conjunto $M = \{x \in \mathbb{R} : x = 1 + \frac{n+1}{n}, n \in \mathbb{N} \setminus \{0\}\}$ tiene el punto de acumulación 2, el cual no pertenece a M.

3. Demuestra que

a)
$$\lim_{x\to 1} \frac{x}{1+x} = \frac{1}{2}$$
 (suponiendo $x > 0$);

b)
$$\lim_{x \to 1} \frac{x^2 - x + 1}{x + 1} = \frac{1}{2}$$
 (suponiendo $x > 0$);

c)
$$\lim_{x\to 0} \frac{1}{x^2}$$
 no existe (suponiendo $x>0$);

d)
$$\lim_{x\to 0} \frac{1}{\sqrt{x}}$$
 no existe (suponiendo $x>0$);

e)
$$\lim_{x\to 0} \cos(\frac{1}{x})$$
 no existe;

$$\mathbf{f)} \ _{x \to 0}^{lim} \ x \cdot \cos(\frac{1}{x}) = 0;$$

4. Determina los siguientes límites de funciones:

a)
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$
 (para $x>0$);

b)
$$\lim_{x\to 0} \frac{(x+1)^2-1}{x}$$
 (para $x>0$);

c)
$$\lim_{x\to 0} 0 \frac{x+1}{x^2+2}$$
 (para $x \in \mathbb{R}$);

d)
$$\lim_{x \to 1} \frac{x^2 - x + 1}{x + 2}$$
 (para $x > 0$);

(Otros ejercicios están enlistados al final del capítulo 2 de las Notas de Clase del Dr. Villa !!!)
