Regression Analysis Tutoring4

Seung Bong Jung

Seoul National University

November 1, 2021

Model comparison test

Suppose we are considering following model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2),$$

where $x_2 = 0$ or 1.

- If $x_{2i}=0$, we have $y_i=\beta_0+\beta_1x_{1i}+\epsilon_i$. Otherwise, $y_i=(\beta_0+\beta_2)+(\beta_1+\beta_3)x_{1i}+\epsilon_i$
- Thus, if we are to test H_0 : $\beta_2 = \beta_3 = 0$ versus H_1 : not H_0 , we're testing whether two give regression models are equal or not.
- Similarly, if we're testing $H_0: \beta_3=0$ versus $H_1:$ not H_0 , we're testing whether two regression models are parallel. Also, for the test $H_0: \beta_2=0$ versus $H_1:$ not H_0 , we're comparing the intercepts of two models.

Model comparison test

• In general, fundamental principle for hypothesis testing in regression analysis is that we reject H_0 if the following F-statistic is too large:

$$F \equiv \frac{(\mathrm{SSE}^0 - \mathrm{SSE}^1)/(\mathrm{df}^0 - \mathrm{df}^1)}{\mathrm{SSE}^1/\mathrm{df}^1} \sim F(\mathrm{df}^0 - \mathrm{df}^1, \mathrm{df}^1)$$

where SSE 0 denotes the SSE under reduced model and SSE 1 the SSE under under full model. Note that SSE $^0/\sigma^2 \sim \chi^2({\rm df^0})$ and SSE $^1/\sigma^2 \sim \chi^2({\rm df^1})$. This principle is valid provided that the definition of F-distribution is satisfied.

Model comparison test

- Write $\mathbf{X}=(\mathbf{X}_0,\mathbf{X}_1)$. For the matrix \mathbf{A} , denote the column space of \mathbf{A} by $\mathcal{C}(\mathbf{A})$. Then clearly, $\mathcal{C}(\mathbf{X}_0)\subseteq\mathcal{C}(\mathbf{X})$. Hence, $\mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{X}_0=\mathbf{X}_0$.
- Following the notations in the previous slide and using this fact, one can prove followings:
- For $H_0: \beta_2 = \beta_3 = 0$, under $H_0, F \sim F(2, n-4)$.
- For $H_0: \beta_3 = 0$, under $H_0, F \sim F(1, n-4)$.
- For $H_0: \beta_2 = 0$, under H_0 , $F \sim F(1, n-4)$