CS 70 Discrete Mathematics and Probability Theory Summer 2016 Psmoas, Dinh and Ye Discussion 7B

1. Baby Fermat

Assume that a does have a multiplicative inverse \pmod{m} . Let us prove that its multiplicative inverse can be written as $a^k \pmod{m}$ for some $k \ge 0$.

- Consider the sequence $a, a^2, a^3, \ldots \pmod{m}$. Prove that this sequence has repetitions. **Solution:** There are only m possible values \pmod{m} , and so after the m-th term we should see repetitions.
- Assuming that aⁱ ≡ a^j (mod m), where i > j, what can you say about a^{i-j} (mod m)?
 Solution: If we multiply both sides by (a*)^j, where a* is the multiplicative inverse, we get a^{i-j} ≡ 1 (mod m).
- Prove that the multiplicative inverse can be written as $a^k \pmod{m}$. What is k in terms of i and j? **Solution:** We can rewrite $a^{i-j} \equiv 1 \pmod{m}$ as $a^{i-j-1}a \equiv 1 \pmod{m}$. Therefore a^{i-j-1} is the multiplicative inverse of $a \pmod{m}$.

2. Product of Two

Suppose that p > 2 is a prime number and S is a set of numbers between 1 and p-1 such that $|S| > \frac{p}{2}$. Prove that any number $1 \le x \le p-1$ can be written as the product of two (not necessarily distinct) numbers in S, mod p.

Solution: Given x, consider the set T defined as $\{xy^{-1} \pmod{p} : y \in S\}$. Note that the set T has the same cardinality as S, because for $y_1 \neq y_2 \pmod{p}$, we have $xy_1^{-1} \neq xy_2^{-1} \pmod{p}$ (if not, we can multiply both sides by x^{-1} , and take the inverse to get a contradiction).

Therefore the set *S* and *T* must have a nonempty intersection. So there must be $y_1, y_2 \in S$ such that $xy_1^{-1} = y_2 \pmod{p}$. But this means that $x = y_1y_2 \pmod{p}$.

3. RSA

In this problem you play the role of Amazon, who wants to use RSA to be able to receive messages securely.

1. Amazon first generates two large primes p and q. She picks p=13 and q=19 (in reality these should be 512-bit numbers). She then computes N=pq. Amazon chooses e from e=37,38,39. Only one of those values is legitimate, which one? (N,e) is then the public key.

Solution: Since 38 and 39 are not relatively prime to p-1=12 and q-1=18, they cannot be inverted mod $(p-1)\cdot (q-1)=216$, so a decryption key cannot be obtained for them. Thus, only e=37 works. The public key then is (N,e)=(247,37).

2. Amazon generates her private key d. She keeps d as a secret. Find d. Explain your calculation.

Solution: We compute $d \equiv e^{-1} \equiv 37^{-1} \pmod{216}$.

```
e-gcd(216,37)
e-gcd(37,31)
e-gcd(31,6)
```

```
e-gcd(6,1)

e-gcd(1, 0)

return (1,1,0)

return (1,0,1)

return (1,1,-5)

return (1,-5,6)

return (1,6,-35)
```

Thus $d \equiv -35 \equiv 181 \pmod{216}$.

3. Bob wants to send Amazon the message x = 102. How does he encrypt his message using the public key, and what is the result?

Note: For this problem you may find the following trick of fast exponentiation useful. To compute x^k , first write k in base 2 then use repeated squaring to compute each power of 2. For example, $x^7 = x^{4+2+1} = x^4 \cdot x^2 \cdot x^1$.

Solution: The encrypted message is $y \equiv x^e \equiv 102^{37} \pmod{247}$. Using fast exponentiation, we compute:

$$102^{2} \equiv 30 \pmod{247}$$

$$102^{4} \equiv 30^{2} \equiv 159 \pmod{247}$$

$$102^{8} \equiv 159^{2} \equiv 87 \pmod{247}$$

$$102^{16} \equiv 87^{2} \equiv 159 \pmod{247}$$

$$102^{32} \equiv 159^{2} \equiv 87 \pmod{247}$$

Then, $y \equiv 102^{37} \equiv 102^{32} \cdot 102^4 \cdot 102 \equiv 102 \pmod{247}$. Notice that the encrypted message is the same as the original!

4. Amazon receives an encrypted message y = 141 from Charlie. What is the unencrypted message that Charlie sent her?

Solution: We decrypt the message by raising to the *d*th power: $x \equiv y^d \equiv 141^{181} \pmod{247}$. We compute the powers:

```
141^{2} \equiv 121 \pmod{247}
141^{4} \equiv 121^{2} \equiv 68 \pmod{247}
141^{8} \equiv 68^{2} \equiv 178 \pmod{247}
141^{16} \equiv 178^{2} \equiv 68 \pmod{247}
141^{32} \equiv 68^{2} \equiv 178 \pmod{247}
141^{64} \equiv 178^{2} \equiv 68 \pmod{247}
141^{128} \equiv 68^{2} \equiv 178 \pmod{247}
```

Then $x \equiv 141^{181} \equiv 141^{128} \cdot 141^{32} \cdot 141^{16} \cdot 141^{4} \cdot 141 \equiv 141 \pmod{247}$.

By now, you may have guessed that $\forall x \in \{0,...,246\}$, $x^{37} \equiv x \pmod{247}$. We can prove this by noting that $e = 37 \equiv 1 \pmod{p-1}$ and $e = 37 \equiv 1 \pmod{q-1}$. Thus, e = 1 + j(p-1) = 1 + k(q-1) for some j and k. By Fermat's little theorem, $x^{e-1} = x^{j(p-1)} \equiv 1 \pmod{p}$ and $x^{e-1} = x^{k(q-1)} \equiv 1 \pmod{q}$ where x is coprime with p and q. Then by the Chinese remainder theorem, $x^{e-1} \equiv 1 \pmod{pq}$, so $x^e \equiv x \pmod{pq}$. Though we omit it here, we can also show that $x^e \equiv x \pmod{pq}$ when x is not coprime with p and q. See the very similar RSA proof for details.

Moral of the story: stick with e = 3!