

Eb Background

Bike-sharing has become an essential part of modern urban transportation.

However, with the growing demand for shared bikes and the diversification of usage patterns, accurately predicting bike demand and efficiently allocating resources has become a significant challenge for operators.

Cb Problem Statement

In Washington D.C, the lack of accurate demand forecasting and resource optimization in bike-sharing systems leads to operational inefficiencies and user dissatisfaction.

Problems

01 Unpredictable Demand

Growing and varied usage patterns challenge accurate demand forecasting.

02 Inefficient Resource Allocation

Over- or under-stocking results in user dissatisfaction and operational inefficiencies.

03 Complex Influencing Factors

Weather, seasons, and user behaviors are difficult to model.

GOALS

Predicting Daily Bike Demands

O2 Evaluating the Impact of Weather on Demand

Optimizing Bike Availability at Peak Locations and Times

උර් Data Source

The Capital Bikeshare System Data from Capital Bikeshare provides extensive information on bike-sharing activity in the Washington, D.C., metro area and its neighboring regions.

Station list (2)

station_id

station_name

Daily rent data (13)					
ride_id started_at (time)					
rideable_type	start_lng				
started_lat end_lat					
ended_at end_lng					
start_station_id end_station_id					
member_casual end_station_name					
start_station_name					

Usage frequency (3)

date

station_name

pickup_counts

dropoff_counts

Weather (33)				
cloudcover feelslike				
datetime dew				
tempmax humidity				
feelslikemax precipprob				
feelslikemin snow				

Source: https://capitalbikeshare.com/system-data, https://www.visualcrossing.com/

Time Factors

Time Factors

EDA- Weather Factors

cb

EDA- Weather Factors

Top 10 busiest stations

Top 10 busiest stations

The majority of the top 10 busiest stations are concentrated in central Washington, **D.C.**, near hightraffic areas such as tourist landmarks, government buildings, and popular commuter hubs. Ex, #1, #2, #6, #10

Bottom 10 least-used stations

Bottom 10 least-used stations

Many of the leastused stations are located on the outskirts of Washington, D.C., in suburban or less densely populated areas. Some also have low usage due to weaker connectivity to other high-demand stations or destinations. ex, #1, #4, #8, #9, #10

EDA- Station Imbalance

Demand > Supply

Top 10 Stations by Average Period Imbalance for Each Period

Supply > Demand

Low 10 Stations by Average Period Imbalance for Each Period

EDA- Station Imbalance

(Ex. New Hampshire Ave & T St NW: morning pickups and midnight drop-offs)

• Imbalance (PickSup-Drop off) happened: Supply > Demand
Night (17.-24.) Afternoon > Midnight (17.-24.) Average Period Imbalance for Each Period

- Many of the busiest stations experience high imbalances.

 EX, New Hampshire Ave & T St NW (#1 busiest) Columbus Circle

 EX, Union Station (#2 busiest)

 Henry Bacon Dr. & Lincoln Memorial

 Fig. 8. St NW (#2 housest NW

 Purk Rd & Holmand PI NW

 Some Stations show reverse trends

 More Center / Lincoln Station

 **More Center /
- Transit hubs have sharp demand differences during commuting hours
 (Ex. Union Station)
- Stations near tourist attractions have high afternoon usage

(Ex, 4th St & Madison Dr NW)

Eb Processing Map of Machine Learning

01 Data Cleaning

- Handling Missing Values
- Changing Data type
- Examine potential outliers
- Inspect for duplicate rows
- Check the cleaned data

02 Original Feature Selection

- Removed similar variables
 kept overall temperature instead of
 max, min, average, or "feels like"
 temperature
- Excluded irrelevant variables sunrise and sunset times
- Dropped non-distinguishable variables

like "snow" with all values as 0

03 Feature Engineering

Create features to understand and model patterns in bikeshare usage.

is_holiday

Indicates if the date is a public holiday (based on the US Federal Holiday Calendar)

is_weekend

Captures whether the date falls on a weekend (Saturday or Sunday).

season

Categorizes the date into seasons (1=Spring, 2=Summer, 3=Autumn, 4=Winter)

Final Dataset				
date	total _pickup			
ls_holiday	ls_weekend			
season	temp			
humidity	precip			
precipprob	snow			
windgust	windspeed			
cloudcover	visibility			
severerisk	icon			

04 Feature Selection

06 Tuning

05-2 Stacking

Decision Tree 0.617 0.718 0.761 0.753 Random Forest 0.811 0.813 0.81504 0.81500 SVR 0.009 0.56047 0.56004 0.558 Gradient Boosting 0.814 0.820 0.826 0.824 XGBoost 0.781 0.826 0.823 0.822 Stacking Get the best model by each method RMSE 1664.76		Original	Grid	Random	Bayesian		N/I	odel 7
SVR 0.009 0.56047 0.56004 0.558 Gradient Boosting 0.814 0.820 0.826 0.824 XGBoost 0.781 0.826 0.823 0.822 Stacking Get the best model by each method RMSE 1275.94 RMSE 1664.76	Decision Tree	0.617	0.718	0.761	0.753		IVI	ouei /
SVR 0.009 0.56047 0.56004 0.558 Gradient Boosting 0.814 0.820 0.826 0.824 O.824 Get the best model by each method RMSE 1664.76 XGBoost 0.781 0.826 0.823 0.822	Random Forest	0.811	0.813	0.81504	0.81500	Stacking	MAE	1275 94
XGBoost 0.814 0.820 0.826 0.824 by each method XGBoost 0.781 0.823 0.823 0.822	SVR	0.009	0.56047	0.56004	0.558			1270.01
XGBoost 0.781 0.826 0.823 0.822	Gradient Boosting	0.814	0.820	0.826	0.824		RMSE	1664.76
CatBoost 0.819 0.833 0.815 0.834 P ² 0.8304	XGBoost	0.781	0.826	0.823	0.822	by cach method		
0.010	CatBoost	0.819	0.833	0.815	0.834		\mathbb{R}^2	0.8304

07- Model Selection

	Original	Grid	Random	Bayesian	
Decision Tree	0.617	0.718	0.761	0.753	
Random Forest	0.811	0.813	0.815	0.815	
SVR	0.009	0.560	0.560	0.558	
Gradient Boosting	0.814	0.820	0.826	0.824	
XGBoost	0.781	0.826	0.823	0.822	
CatBoost	0.819	0.833	0.815	0.834	Best Model
Stacking	0.8304	/	/	/	

01 Problem Statement

02 Data Source

03 EDA

04 Machine Learning

05 Challenges

Washington D.C. Bikeshare Demand Analysis and Prediction

Conclusion

1. Relationship Between Weather and Bikeshare Usage

Moderate weather conditions increase bikeshare demand, while extreme weather reduces usage. Including weather data improves forecasting accuracy.

2. Station Daily Imbalance

Imbalances in pick-ups and drop-offs, influenced by location and time, can cause shortages or overcrowding. Dynamic rebalancing enhances system efficiency.

3. Predictive Model of Daily Demand

Machine learning models effectively predict daily ridership, aiding resource allocation and improving user satisfaction.

Insight

Washington D.C. Bikeshare Demand Analysis and Prediction

Washington D.C. Bikeshare Demand Analysis and Prediction

Challenges & Future Steps

Challenges

01 Large and Messy Dataset

4 datasets, including daily_rent_detail, which contains over 14 million rows, and weather data with more than 30 columns.

02 Excessive Repetition or Similarity in Features

a large number of repeated or highly similar columns, feature duplication, negatively impacting model accuracy

03 Necessity of Feature Engineering

The columns in the raw dataset lack sufficient meaningful features to capture patterns in bike rental behavior.

01 Collecting More Individual Station Information

• Incorporate station-specific variables, such as nearby attractions, schools, shopping malls, and alternative transportation options.

O2 Predicting the Imbalance in Bike Rentals at Individual Stations

 Extend the analysis to include drop-off volumes in addition to pick-up volumes.

Thank You QnA

Colab Link

https://colab.research.google.com/drive/1 OuTzHQwv6FxMMWWbc w48idcSWnHnW 4Q?usp=sharing