LINEAR INTERPOLATION

We shall assume that $A(x_0, y_0)$ and $B(x_2, y_2)$ are two points on a curve. Suppose the equation of curve is either unknown or transcendental (i.e., if given a value of x, the value of y cannot [easily] be calculated), then one method is to assume that the points $A(x_0, y_0)$ and $B(x_2, y_2)$ are connected by a straight line, which we use to estimate the value of y given x, or vice—versa. This method is hence called <u>linear interpolation</u>.

Using the line AB, x_1 corresponds to y_1 . Notice that this method comes with an error, Δy in the value y_1 obtained using linear interpolation.

Since the points (x_0, y_0) , (x_1, y_1) and (x_2, y_2) are now assumed to lie on a straight line, then we can use method of; (a) gradient of a line.

(b) similarity.

Fig. 2

(a) **Gradient Method**: Gradient of line AB is $\frac{y_2 - y_0}{x_2 - x_0}$ (using $\triangle ABC$)

or
$$\frac{y_1 - y_0}{x_1 - x_0}$$
 (using $\triangle APD$)

Since the gradient of a line is constant, we have

$$\frac{y_2 - y_0}{x_2 - x_0} = \frac{y_1 - y_0}{x_1 - x_0}$$

(b) <u>Similarity</u>: The triangles *APD* and *ABC* are similar, hence;

$$\frac{PD}{BC} = \frac{AD}{AC}$$
 i.e. $\frac{y_1 - y_0}{y_2 - y_0} = \frac{x_1 - x_0}{x_2 - x_0}$

Error reduction using Linear interpolation

Refer to Fig.1, the error, using linear interpolation can be reduced using tabular points which are close to each other as illustrated in Fig.3.

The points A and B are moved towards each other to the new positions A' and B' respectively, thereby reducing the error from Δy and $\Delta y'$.

Example 1: Consider the function $y = x^2$, using the points

- (a) A(1,1) and B(2,4);
- (b) A(1,1) and B(1.5,2.25), use linear interpolation to find the value of y when x = 1.2 and in each case compute the error in your answer.

Solutions:

(a)
$$\begin{array}{c|ccccc} x & 1 & 1.2 & 2 \\ \hline y & 1 & y_1 & 4 \end{array}$$

$$\Rightarrow \frac{y_1 - 1}{4 - 1} = \frac{1 \cdot 2 - 1}{2 - 1}$$

$$\Rightarrow y_1 \approx 1.6$$
 (approximate value)

Using
$$y = x^2$$
; when $x = 1.2$, $y = 1.2^2 = 1.44$ (exact value)

Thus Error = |1.6 - 1.44| = 0.16.

(b)
$$\begin{array}{c|cccc} x & 1 & 1.2 & 1.5 \\ \hline y & 1 & y_1 & 2.25 \end{array}$$

$$\Rightarrow \frac{y_1 - 1}{2.25 - 1} = \frac{1.2 - 1}{1.5 - 1}$$

 $\Rightarrow y_1 \approx 1.5$ (new approximate value)

Now Error = |1.5-1.44| = 0.06 which is a smaller error compared to 0.16 in part (a)

In example 1, the equation of the curve is given, but in most cases the equation is not given.

Example 2: $\frac{x \mid 0.1 \mid 0.2 \mid 0.3}{v \mid 0.5 \mid 0.8 \mid 1.6}$ Use linear interpolation to find;

(i)
$$y$$
 when $x = 0.16$

(ii)
$$x$$
 when $y = 1.0$

Solutions:

(i)
$$\begin{array}{c|cccc} 0.1 & 0.16 & 0.2 \\ \hline 0.5 & y & 0.8 \end{array}$$

Now;

$$\frac{y - 0.5}{0.8 - 0.5} = \frac{0.16 - 0.1}{0.2 - 0.1}$$

$$\Rightarrow y \approx 0.68$$

$$\Rightarrow \frac{x - 0.2}{0.3 - 0.2} = \frac{1.0 - 0.8}{1.6 - 0.8} \Rightarrow x \approx 0.225$$

LINEAR EXTRAPOLATION

A, B and C are the tabled values. At point P, to estimate y_1 given x_1 or x_1 given y_1 the line \overrightarrow{BA} is produced beyond point A.

At point Q, to estimate y_2 given x_2 or x_2 given y_2 , the line \overrightarrow{BC} is produced beyond point C, hence this method is called <u>Linear Extrapolation</u>.

We use the methods of gradients and (or) similarity to find the required coordinates.

Example 3: Study the table below:

$ heta^{\circ}$	30	45	60	75
$\cos \theta$	0.8660	0.7071	0.5000	0.2588

Using linear interpolation/extrapolation, estimate;

(b)
$$\cos^{-1}(0.3420)$$

(d)
$$\cos^{-1}(0.9659)$$

Solutions:

(a) $\cos 54^{\circ} \Rightarrow \theta = 54^{\circ}$ (given) hence we need to get $\cos \theta$.

 54° lies between 45° and 60° ; i.e.

$$\frac{\theta}{\cos \theta} \begin{vmatrix} 45 & 54 & 60 \\ 0.7071 & y & 0.5000 \end{vmatrix}; \quad y = \cos 54^{\circ}$$

$$\Rightarrow \frac{y - 0.7071}{0.5 - 0.7071} = \frac{54 - 45}{60 - 45} \text{ (Using interpolation)}$$

$$\therefore \quad \cos 54^{\circ} \approx 0.5828 \text{ (4dpls)}.$$

(b) Let
$$\theta = \cos^{-1}(0.3420)$$
 \Rightarrow $\cos \theta = 0.3420$, so it is θ that is required.

$$\begin{array}{c|cccc} \theta & 60 & \theta & 75 \\ \hline \cos \theta & 0.5000 & 0.3420 & 0.2588 \end{array}$$

$$\Rightarrow \frac{\theta - 60}{75 - 60} = \frac{0.3420 - 0.5000}{0.2588 - 0.5000}$$
$$\theta \approx 69.83^{\circ}$$

(c)
$$\frac{\theta}{\cos \theta} = \frac{60}{0.5000} = \frac{75}{0.2588} = \frac{80}{y}$$
 ; $y = \cos 80^{\circ}$

Notice that 80° is outside the given values of θ , so we shall use extrapolation.

$$\Rightarrow \frac{y - 0.2588}{0.2588 - 0.5000} = \frac{80 - 75}{75 - 60}$$

$$\Rightarrow$$
 cos 80° \approx 0.1784

(d) Let
$$\theta = \cos^{-1} 0.9659 \implies \cos \theta = 0.9659$$
 (given); so we need θ

θ	heta	30	45
$\cos \theta$	0.6959	0.8660	0.7071

0.9659 is to the left of the tabled value 0.8660, so we shall use extrapolation

$$\Rightarrow \frac{\theta - 30}{30 - 45} = \frac{0.9659 - 0.8660}{0.8660 - 0.7071}$$

$$\Rightarrow \theta \approx 20.57^{\circ}$$

Example 4: A 'Safe Boda' operator charges x shillings for a distance dkm, from the city up to the customer's destination. Some of his charges for known destinations are given in the table below.

Estimate (a)
$$d$$
 when $x = 16000$

(b)
$$x$$
 when $d = 2km$

Solution

(a)
$$\begin{array}{c|ccccc} d & 10 & 12 & d \\ \hline x & 8000 & 10000 & 16000 \end{array}$$

$$\Rightarrow \frac{d-12}{12-10} = \frac{16000-10000}{10000-8000}$$

$$\Rightarrow d = 18km$$

(b)
$$\begin{array}{c|cccc} d & 2 & 5 & 8 \\ \hline x & x & 3000 & 5000 \end{array}$$

$$\Rightarrow \frac{x-3000}{3000-5000} = \frac{2-5}{5-8}$$

$$\Rightarrow x = shs.1000$$