

M05/4/CHEMI/SP2/FRE/TZ0/XX

CHIMIE NIVEAU MOYEN ÉPREUVE 2

Mercredi 4 mai 2005 (après-midi)

1 heure 15 minutes

	Nu	méro	de s	essio	n du	cand	idat	
0	0							

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- Écrivez votre numéro de session dans la case ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Section A: Répondez à toute la section A dans les espaces prévus à cet effet.
- Section B : Répondez à une question de la section B. Rédigez vos réponses sur des feuilles de réponses. Inscrivez votre numéro de session sur chaque feuille de réponses que vous avez utilisée et joignez-les à cette épreuve écrite et à votre page de couverture en utilisant l'attache fournie.
- À la fin de l'examen, veuillez indiquer les numéros des questions auxquelles vous avez répondu ainsi que le nombre de feuilles utilisées dans les cases prévues à cet effet sur la page de couverture.

2205-6123 9 pages

SECTION A

Répondez à toutes les questions dans les espaces prévus à cet effet.

1.	En s	En solution aqueuse, l'hydroxyde de potassium et l'acide chlorhydrique réagissent comme suit :							
		$KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H_2O(l)$.							
		données ci-dessous sont relatives à une expérience réalisée pour déterminer la variation thalpie accompagnant cette réaction.							
	50,0 Tem	$0~{\rm cm}^3$ d'une solution de KOH 0,500 mol dm $^{-3}$ ont été mélangés rapidement dans un bécher à $0~{\rm cm}^3$ d'une solution d'HCl 0,500 mol dm $^{-3}$. Expérature initiale de chacune des solutions = 19,6 °C expérature finale du mélange = 23,1 °C							
	(a)	En donnant un argument à l'appui de la réponse, indiquer si la réaction est exothermique ou endothermique.	[1]						
	(b)	Expliquer pourquoi les solutions ont été mélangées rapidement.	[1]						
	(c)	Calculer, en kJ mol ⁻¹ , la variation d'enthalpie accompagnant cette réaction. On considère que la capacité thermique massique de la solution est la même que celle de l'eau.	[4]						

(Suite de la question à la page suivante)

(Suite de la question 1)

(d)	Expliquer comment elle pourrait être minimisée.	[2]
(e)	L'expérience a été répétée, mais en utilisant une solution d'HCl à la concentration de 0,510 mol.dm ⁻³ au lieu d'une solution à la concentration de 0,500 mol dm ⁻³ . Indiquer, en l'expliquant, ce que serait la variation de température.	[2]

Tournez la page 2205-6123

2.	La c	ompo	sition massique centésimale d'un hydrocarbure est C = 85,6 % et H = 14,4 %.				
	(a)	Déterminer la formule brute (formule empirique) de l'hydrocarbure.					
	(b)	$1,00~g$ de cet hydrocarbure, à la température de $273~K$ et sous une pression de $1,01\times10^5~Pa$, $(1,00~atm)$ occupe un volume de $0,399~dm^3$.					
		(i)	Calculer la masse molaire de l'hydrocarbure.	[2]			
		(ii)	En déduire la formule moléculaire de l'hydrocarbure.	[1]			
	(c)	Exn	liquer pourquoi la combustion incomplète des hydrocarbures est dangereuse pour les				
	(6)		s humains.	[2]			

(a)	En utilisant la théorie cinétique moléculaire, expliquer pourquoi ce phénomène se produit.
(b)	Indiquer, en l'expliquant, de quelle manière varie le temps de détection du gaz lorsque la température augmente.
(a)	Identifier deux caractéristiques de molécules qui entrent en collision lorsqu'elles réagissent ensemble en phase gazeuse.
	ensemble en phase gazeuse.
	Pour de nombreuses réactions, la vitesse est approximativement doublée chaque fois que la température s'élève de 10 °C. Donner deux raisons qui expliquent cette augmentation de la
(b)	vitesse de réaction et identifier laquelle des deux est la plus importante.
(b)	vitesse de réaction et identifier laquelle des deux est la plus importante.
(b)	vitesse de réaction et identifier laquelle des deux est la plus importante.

Tournez la page

5. Dessiner les formules de structure des isomères répondant à la formule moléculaire C_4H_{10} et nommer chacun d'eux. [4]

SECTION B

Répondez à **une** question de cette section. Rédigez vos réponses dans les feuilles de réponses fournies. Écrivez votre numéro de session sur chaque feuille de réponses que vous avez utilisée et joignez-les à cette épreuve écrite et à votre page de couverture en utilisant l'attache fournie.

6. (a) Les lettres **W**, **X**, **Y** et **Z** représentent quatre éléments consécutifs du tableau périodique. Le nombre d'électrons occupant les niveaux d'énergie les plus élevés est le suivant :

Écrire la formule

- (i) d'un composé ionique formé à partir de W et de Y, en précisant les charges, [2]
- (ii) d'un composé covalent contenant **X** et **Z**. [1]
- (b) Préciser le nombre de protons, d'électrons et de neutrons dans l'ion ${}_{7}^{15}$ N³⁻. [2]
- (c) Indiquer le type de liaison présent dans le composé SiCl₄. Représenter la structure de Lewis de ce composé. [3]
- (d) Décrire brièvement les principes de la théorie de la répulsion des paires d'électrons de la couche de valence (VSEPR). [3]
- (e) (i) Utiliser la théorie VSEPR pour prédire et expliquer la forme (géométrie) et la valeur de l'angle de liaison de chacune des molécules suivantes : SCl₂ et C₂Cl₂. [6]
 - (ii) Déduire le caractère polaire ou non de chaque molécule en donnant une raison pour justifier la réponse. [3]

7.	(a)	Indi	iquer et expliquer l'évolution du rayon atomique et de l'énergie d'ionisation.				
		(i)	pour les métaux alkalins de Li à Cs.	[4]			
		(ii)	pour les éléments de la période 3 de Na à Cl.	[4]			
	(b)	(i)	Décrive trois similitudes et une différence dans les réactions du lithium et du potassium avec l'eau.	[4]			
		(ii)	Écrire l'équation de l' une de ces réactions. Suggérer une valeur du pH de la solution obtenue et donner une raison à l'appui de la réponse.	[3]			
	(c) Classer chacun des oxydes suivants en fonction de son caractère acide, bas amphotère :						
		(i)	l'oxyde d'aluminium	[1]			
		(ii)	l'oxyde de sodium	[1]			
		(iii)	le dioxyde de soufre	[1]			
	(d)	(d) Écrire les équations qui traduisent la réaction de l'eau avec :					
		(i)	l'oxyde de sodium	[1]			
		(ii)	le dioxyde de soufre	[1]			

8. Plusieurs composés répondent à la formule moléculaire $C_3H_6O_2$. Trois d'entre eux, A, B et C, présentent les propriétés suivantes :

A est soluble dans l'eau et est acide;

B	et C	son	t neutres et ne réagissent pas avec le brome.	
(a	ı) I	Dess	iner la formule de structure de chacun de ces composés et les nommer.	[6]
(t) ((i)	Expliquer la solubilité et le caractère acide de A dans l'eau.	[2]
	((ii)	Écrire l'équation de la réaction de A avec l'hydroxyde de sodium en solution.	[1]
	((iii)	Expliquer pourquoi B et C ne réagissent pas avec le brome.	[1]
(0	*	Indiquer en l'expliquant, quel composé, de A, B ou C, possède la température d'ébullition la plus élevée.		
(0	d) ((i)	Nommer la classe de composés à laquelle appartiennent ${\bf B}$ et ${\bf C}$ et préciser une utilisation de cette classe de composés.	[2]
	((ii)	Nommer les deux classes de composés utilisées pour former B et C et indiquer l'autre produit formé au cours de cette réaction.	[3]
(€	b	orom	oser la formule de structure d'un isomère de $C_3H_6O_2$ qui réagit rapidement avec le le. Nommer le type de réaction dont il s'agit et décrire une observation qui peut être faite u'elle se produit.	[3]