Всероссийская олимпиада школьников по физике

11 класс, федеральный окружной этап, 2004/05 год

Задача 1. Между линзой и зеркалом параллельно плоскости зеркала летит Муха-Цокотуха. Линза отстоит от зеркала на расстоянии L=20 см, а её главная оптическая ось перпендикулярна его плоскости. В момент, когда муха пересекает ось, скорости её изображений в линзе и в системе линза—зеркало одинаковы по модулю. Найдите фокусное расстояние F линзы и расстояние a от линзы до мухи.

$$F = L; a \in (0; L)$$

Задача 2. Круглую резиновую лодку оттолкнули от берега озера со скоростью v_0 , и она проплыла расстояние S_0 до остановки. Такую же лодку оттолкнули от берега речки так, что её скорость в начале свободного плавания оказалась равной v_0 и была направлена перпендикулярно течению. К моменту остановки относительно воды лодка проплыла путь $S_1 = \alpha S_0$ в системе отсчёта, связанной с водой. С какой скоростью V относительно берега плыла лодка в тот момент, когда она достигла середины речки, ширина которой $H = \alpha S_0$? Считайте, что $\alpha = 5/4$, сила сопротивления движению лодки в воде прямо пропорциональна скорости, а скорость течения реки всюду одинакова.

$$\boxed{0 u \frac{1 \bar{\nu} \sqrt{\epsilon}}{2 \bar{\nu}} = \frac{\bar{\nu}_{\Omega}}{\bar{\nu}} + \nu - 1 \sqrt{0} u = V}$$

Задача 3. В цилиндре под поршнем находятся газы X_2 и Y_2 и соединение X_2Y . В системе протекает химическая реакция $2X_2+Y_2\leftrightarrow 2X_2Y$. В равновесном состоянии (когда скорости химической реакции в прямом и обратном направлениях равны) при давлении p система занимала объём V, а количества веществ X_2 , Y_2 и X_2Y были равны ν_1 , ν_2 и ν_3 соответственно. Давление на систему изменили на малую величину Δp . Найдите изменения объёма системы ΔV и количеств веществ $\Delta \nu_1$, $\Delta \nu_2$, $\Delta \nu_3$ после установления нового равновесия. Температура всё время поддерживается постоянной.

Примечание. Известно, что скорость химической реакции пропорциональна произведению концентраций ν_i/V реагирующих веществ. Соответственно, скорости прямой и обратной реакций пропорциональны $\left(\frac{\nu_1}{V}\right)^2\frac{\nu_2}{V}$ и $\left(\frac{\nu_3}{V}\right)^2$. Коэффициенты пропорциональности могут быть разными, но зависят только от температуры. Газы можно считать идеальными.

$$\boxed{ \begin{bmatrix} 1 - \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1$$

ЗАДАЧА 4. Маленький шарик с зарядом Q находится в центре закреплённого незаряженного проводящего полого шара с радиусами концентрических поверхностей R_1 и R_2 ($R_1 < R_2$). Полый шар окружён снаружи концентрическим слоем диэлектрика с диэлектрической проницаемостью ε и радиусом наружной поверхности R_3 (рис.). Какую минимальную работу нужно совершить, чтобы удалить шарик через узкий канал в слоях проводника и диэлектрика на расстояние от полого шара, значительно большее R_3 ?

$$\left(\frac{2A-\varepsilon A}{\varepsilon A z} - \frac{1A-\varepsilon A}{\varepsilon^A}\right) \frac{2QA}{\varepsilon^A \zeta} = A$$

ЗАДАЧА 5. Экспериментатор Глюк собрал электрическую цепь (рис.), подключив по ошибке одну из батареек параллельно, а не последовательно двум другим. Найдите токи через резисторы в получившейся цепи. Каждый резистор имеет сопротивление R. Все батарейки одинаковы и имеют ЭДС $\mathscr E$. Внутренние сопротивления батареек малы по сравнению с R.

