Контроль знаний в компьютерных средствах обучения

Лекция 12

Цели занятия

- Рассмотреть эволюцию контроля знаний
- Изучить аспекты контроля знаний
- Перечислить требования к контролю знаний
- Привести методические аспекты контроля
- Рассмотреть технические аспекты контроля
- Дать характеристику методам проведения КЗ
- Описать модели контроля знаний
- Рассмотреть алгоритм реализации компьютерного контроля

 Пять этапов в эволюции развития контроля знаний, которые отражают формы организации контроля знаний (КЗ) и роль преподавателя в этом процессе:

• 1. Традиционный контроль знаний

- контрольная работа,
- коллоквиум,
- лабораторная работа,
- курсовая работа (проект), реферат,
- домашнее задание,
- собеседование, тестирование,
- зачет, экзамен, дипломная работа.
- Преподаватель подготавливает варианты заданий, проверяет и оценивает результаты работы студентов.

2. Контроль знаний с использованием бумажных (не компьютерных) средств

- Используются заранее подготовленные бланки, содержащие контрольные задания (тесты).
- Студенты заполняют выданные бланки, решая задания и отвечая на вопросы.
- Преподаватель проверяет работы, используя специальные трафареты и таблицы ответов.

3. Контроль знаний с использованием технических устройств

При данном подходе выделяют два способа организации контроля:

студент, получив от преподавателя индивидуальный набор заданий, выполняет его и вводит в устройство номер своего варианта и результат решения каждого задания, а устройство проверяет введенные ответы, рассчитывает и выводит оценку за работу;

 устройство используется как для ввода заданий, для проверки корректности введенных ответов, так и для вывода результатов контроля и/или оценки.

4. Компьютерный контроль знаний

Организация контроля в данном случае направлена,

- 1. на то, чтобы облегчить работу преподавателя, освободив его от рутины проверки письменных работ (он может посвятить больше времени индивидуальным занятиям со студентами) и,
- 2. на повышение объективности проводимой проверки и оценки знаний.

Контроль знаний обеспечивают специальные компьютерные программы, в которых осуществляется:

- формирование индивидуального набора контрольных заданий каждому обучаемому;
- вывод заданий на экран;
- анализ ответов обучаемого;
- выставление оценки;
- хранение результатов контроля;
- др.

5. Удаленный контроль знаний

 Данный подход является одной из форм компьютерного КЗ, появление которой связано с широким использованием в учебном процессе возможностей сети Internet.

 Отличительными чертами удаленного КЗ является применение современных технических средств связи и передачи

информации между обучаемым и преподавателем, а также свобода выбора обучаемым темпов обучения, времени и места обучения.

Методические аспекты контроля знаний

- 1. Определение типов и трудности вопросов для проверки знаний, умений и навыков студентов
 - Вопрос «*что контролировать?*»
 - При организации компьютерного КЗ также необходимо определить цели проводимого контроля на каждом этапе учебного процесса.
 - Оценка качества знаний на каждом уровне (знания, умения, навыки) может быть осуществлена с помощью использования различных типов заданий.
 - При разработке заданий для контроля важно установить для проверки каких знаний, умений и/или навыков и для какого вида КЗ предназначено данное задание.

Методические аспекты контроля знаний

2. Планирование проведения контроля знаний

- Вопрос «*когда контролировать?*»
- В зависимости от времени проводимой проверки различают четыре вида контроля знаний:
 - исходный (предварительный) контроль проводится непосредственно перед обучением, позволяет оценить начальный уровень знаний студента и планировать обучение;
 - **текущий контроль** осуществляется в ходе обучения, позволяет определить уровень усвоения студентом отдельных понятий учебного материала и скорректировать дальнейшее изучение предмета;
 - **рубежный контроль** проводится по завершении определенного этапа обучения, служит для оценки уровня знаний студента по теме или разделу курса;
 - **итоговый контроль** позволяет оценить знания, умения и навыки студента по курсу в целом.

Методические аспекты контроля знаний

- 3. Определение требований к формированию набора вопросов и заданий для опроса
- Вопрос «*как контролировать?*»
- Существуют различные методы формирования заданий для контроля:
 - случайная последовательность вопросов и заданий разной сложности, трудности и значимости;
 - специальный набор заданий различной сложности, сформированный для проверки определенного или комплексного уровня подготовки (знания, умения и/или навыки) и предъявляемый в заданной последовательности;
 - набор заданий, предъявляемый в порядке нарастания уровня сложности;
 - группа заданий, порядок выполнения которых выбирает сам обучаемый;
 - др.

Технические аспекты контроля знаний

- 1. Формирование набора контрольных заданий на основе выбранного подхода
- Данный аспект связан с непосредственной реализацией контроля и оценки знаний в компьютерной системе КЗ, с учетом цели и вида проводимого контроля.
- На основе выбранного метода формирования происходит автоматическая подготовка задания (или набора заданий) для контроля и выдача его студенту.
- Управление контролем реализуется путем генерации контрольных заданий с учетом различных параметров КЗ.

Технические аспекты контроля знаний

2. Выбор и использование в системе контроля параметров КЗ

- Параметры контроля могут быть условно разделены на три группы:
 - параметры, характеризующие отдельное задание и его выполнение (например, дидактические характеристики задания; тип задания; время, отведенное для выполнения задания; время выполнения задания обучаемым; количество обращений к справочной информации при выполнении задания; количество попыток выполнить задание и др.);
 - параметры, характеризующие работу обучаемого с набором контрольных заданий (количество заданий; количество ответов; количество правильных ответов; количество неправильных ответов; общее время, затраченное на выполнение заданий; количество заданий, выполненных с превышением времени; количество обращений к справочной информации при выполнении заданий; уровень подготовки обучаемого; количество невыполненных заданий; сложность, значимость и трудность контрольной работы и др);
 - параметры, используемые для настройки алгоритма, обычно задаются преподавателем, но могут иметь и заранее установленные значения (максимальный балл или оценка; граничные значения для выставления оценки и др.).

Технические аспекты контроля знаний

- 3. Выбор алгоритма для оценки знаний студентов
- Любой алгоритм оценки знаний предусматривает сбор, анализ и/или преобразование данных, получаемых в процессе контроля, и, непосредственно, формирование самой оценки (суммы баллов, рейтинга, ранга).
- Различают алгоритмы, которые применяются для выставления оценки только по завышению контроля, то есть на последнем этапе процесса оценивания.
- Однако, большинство алгоритмов используются параллельно с контролем знаний, когда оценка может быть выставлена за выполнение отдельного задания, контрольной работы или по дисциплине в целом, при этом полученная оценка обязательно учитывается в используемом методе проведения КЗ.

- **Валидность** означает обоснованность, значимость тестовых результатов и пригодность их для той цели, ради чего проводилось тестирование.
- Валидность зависит от качества заданий, их числа, от степени полноты и глубины охвата содержания учебной дисциплины (по темам) в заданиях теста.
- Кроме того, валидность зависит также от баланса и распределения заданий по трудности, от метода отбора заданий в тест из общего банка заданий, от интерпретации тестовых результатов, от организации сбора данных, от подбора выборочной совокупности испытуемых.

- Надежность отражает точность педагогических измерений, степень постоянства, стабильности, устойчивости результатов тестирования.
- Надежным считается тест, который дает постоянные результаты оценки при изменении условий проведения, чаще всего либо времени, либо набора тестовых заданий.
- Коэффициент надежности может принимать только положительные значения от нуля до единицы.
- Обычно для оценки надежности тест проводят два раза и сравнивают полученные тестовые баллы.
- Чем более схожи результаты двух тестирований, тем более высок уровень надежности тестов.

• Значимость

- Это требование указывает на необходимость включить в тест только те элементы знания, которые можно отнести к наиболее важным, ключевым, без которых знания становятся неполными, с многочисленными пробелами.
- Такие элементы знания, ввиду их важности, можно назвать *структурными*.
- В тест, следовательно, нужно включать только те материалы, которые играют роль структурных элементов в индивидуальном знании.

Научная достоверность

- В тест включается только то содержание учебной дисциплины, которое является объективно истинным и поддается некоторой рациональной аргументации.
- Соответственно, все спорные точки зрения не рекомендуется включать в тестовые задания.
- Суть тестовых заданий заключается как раз в том, что они требуют четкого, заранее известного преподавателям ответа, признанного ими в процессе разработки заданий объективно истинным.

Соответствие содержания теста уровню современного состояния науки

• Это требование вытекает из естественной необходимости готовить специалистов и проверять их знания на современном материале.

Репрезентативность

- В тест не только включаются значимые элементы содержания, но обращается внимание также на полноту и их достаточность для контроля.
- Репрезентативность не означает обязательного включения в тест всех значимых элементов содержания.
- Ведь многие из них явно связаны между собой в общей структуре знаний, включены один в другой полностью или частично. Этому принципу соответствуют основные задания, которые лучше называть структурными.

Возрастающая трудность учебного материала

 Это требование означает, что каждый учебный элемент в процессе контроля обладает некоторой усредненной, для испытуемых, мерой трудности, на которую и ориентируются преподаватели.

Методы проведения контроля знаний

- Методы организации контроля знаний можно разделить на три класса:
 - неадаптивные методы;
 - частично адаптивные методы;
 - полностью адаптивные методы.

Методы проведения КЗ

Строгая последовательность

- Набор заданий для контроля заранее подготавливается преподавателем или разработчиком контрольной работы и помещается в БД системы.
- Как правило, это одинаковая последовательность вопросов для всех студентов.
- Недостатки данного метода очевидны:
 - отсутствие разнообразия (одно из требований педагогики),
 - понижение самостоятельности выполнения заданий и др.
- Этот метод считается наихудшим, поэтому и применяется крайне редко.
- Метод можно несколько улучшить, например, подготовив несколько вариантов контрольной работы и/или выдавая задания студентам в произвольной последовательности.

Случайная выборка

- Набор заданий формируется непосредственно перед контролем на основе заданий, хранящихся в БД, т.е. вариант контрольной работы – это *п* случайно выбранных заданий.
- Значение *п* может быть заранее задано преподавателем (разработчиком контрольной работы) или выбрано студентом (например, при самороверке).
- Преимущество данного метода состоит в том, что каждому студенту предлагается индивидуальная последовательность вопросов.
- Основной недостаток метода вариант контрольной работы генерируется без учета трудности заданий.
- Набор заданий для одного студента может включать лишь самые трудные вопросы, а для другого – только легкие.
- Модификации данного метода, позволяющие учитывать метаданные вопросов:
 - могут быть заданы тема и общее время контроля, время ответа на каждый вопрос, число попыток дать ответ и т.п.;
 - дополнительно к (а) устанавливается число вопросов разной степени трудности и/или из разных тем в каждом варианте контрольной работы.

Комбинированный метод

- В основе метода "Случайная выборка", дополненная "Строгой последовательностью".
- В этом случае преподаватель (разработчик контрольной работы) задает один или несколько вопросов, которые непременно должны быть включены в каждый вариант контрольной работы.
- Остальные задания генерируются случайным образом, как во втором методе.

- Общим для всех неадаптивных методов является то, что вариант контрольной работы для каждого студента формируется до контроля (заранее или непосредственно перед КЗ).
- На первом этапе КЗ не требуется поиск задания в БД и его загрузка
- Существует возможность выдавать задания двумя способами: по одному или списком.
- В последнем случае студент сам может выбрать последовательность выполнения заданий.

Случайная выборка с учетом отдельных параметров модели студента

- Метод является развитием неадаптивных методов КЗ.
- Он аналогичен "Случайной выборке" и/или "Комбинированному методу", т.е. набор заданий также формируется непосредственно перед контролем, но при генерации используются такие параметры МС, как общий уровень подготовленности, способность к обучению и, возможно, другие.
- Каждому студенту генерируется набор заданий, соответствующий его уровню подготовленности и способностям, что является главным преимуществом данного метода.

Случайная выборка с учетом отдельных параметров модели студента

- Другое достоинство метода: студент, выполняя задания, соответствующие его способностям, не испытывает лишней психологической нагрузки во время контроля.
- В качестве недостатка данного метода можно отметить следующее: студенты получают задания различной трудности (это, безусловно, должно быть учтено при выставлении оценки), т.е. один выполняет только простые задания, а другой трудные.
- Поэтому, генерируя вопросы студенту, соответствующие его способностям, целесообразно включить в набор и один
 два задания повышенной трудности и значимости.

Контроль на основе ответов студента

- В этом методе контроль осуществляется по заранее составленному сценарию или, другими словами, по разветвленной контролирующей программе.
- Ві вопросы, предлагаемым студенту,
- дуги указывают следующий выдаваемый вопрос в зависимости от правильности ответа:

Пр – правильный ответ,

Нт – неточный,

Нп – неправильный ответ.

• Предварительная подготовка сценария КЗ дает возможность включить в программу вопросы разной степени трудности и значимости, расположив наиболее значимые и трудные задания в основной ветви программы (вопросы В1 и В6), а более простые — в разветвлениях.

- Преимущества метода
 - студенты получают разное число вопросов, а, следовательно, и время, затрачиваемое ими на контроль, различно.
 - простота обеспечения обратной связи (выдачи соответствующего комментария).
- Недостаток метода: всем студентам предлагаются одни и те же задания, однажды включенные в контролирующую программу.
- Устранить этот недостаток довольно просто достаточно отделить сценарий КЗ от набора контрольных заданий. Для этого необходимо подготовить комплект однотипных вопросов для каждого Ві, включенного в сценарий контроля, т.е. Ві = {Ві1, Ві2, ..., Вік}, а в процессе контроля случайным образом генерировать студенту вопрос из комплекта Ві.

- Ответы студента, как параметр проведения КЗ, используются и в другом методе, который основан на байесовском подходе к принятию решений в условиях неопределенности.
- Метод предусматривает вычисление вероятностей для оценки знаний студента.
- Если рассчитанные вероятности не позволяют однозначно оценить проверяемые знания, то студенту предлагается еще один вопрос.
- В противном случае контроль продолжается, причем минимальное число вопросов **n** задается заранее.

Контроль на основе модели учебного материала (УМ)

- В данном методе формирование набора заданий для КЗ происходит на основе модели учебного материала (курса, темы, раздела темы), которая представляет собой ориентированный граф:
 - множество вершин графа соответствует объектам изучения,
 - множество ребер связям между ними.
- Изучение УМ, равно как и организация контроля, осуществляется в соответствии с оптимальной последовательностью изложения учебного материала
- Сначала генерируется задание для проверки знаний первого учебного объекта, затем – второго и т.д.
- т.е. последовательность выдачи заданий аналогична последовательности изучения учебного материала по модели УМ.
- При этом, если планируется проверить и знания, и умения, то одному учебному объекту могут соответствовать несколько вопросов.

Модульно-рейтинговый метод

- Метод во многом аналогичен предыдущему.
- Учебный материал разделяется на отдельные составляющие

 модули, для каждого из которых заранее подготавливается комплект контрольных заданий.
- В процессе КЗ студенту сначала предлагается вопрос из первого модуля.
- При этом после каждого ответа студента вычисляется его рейтинг.
- Переход к вопросам следующего модуля осуществляется при достижении определенного, заранее установленного рейтинга, причем студент с целью повышения своего рейтинга, может продолжить выполнение заданий текущего модуля и лишь затем перейти к следующему.

Адаптивные методы

Контроль по модели студента

- В этом методе учитываются многие параметры модели студента, а именно:
 - уровень подготовленности влияет на трудность предлагаемых заданий;
 - вид репрезентативной системы обусловливает форму представления заданий (текст, визуальное изображение, использование звука);
 - направленность личности влияет на формулировку текста выдаваемого задания;
 - уровень беспокойства-тревоги определяет как наличие обратной связи, так и форму, и детальность комментариев;
 - особенности памяти являются условием для определения времени выполнения задания и контрольной работы в целом;
 - ответ студента, точнее, правильность ответа влияет на выбор следующего контрольного задания.

Адаптивные методы

Контроль по моделям студента и учебного материала

• Метод является развитием предыдущего, т.е. при формировании контрольных заданий используются приведенные ранее параметры модели студента, но процесс КЗ строится на базе модели учебного материала, учитывая взаимосвязи между проверяемыми понятиями.

No	Метод проведения контроля	Тип метода	Время формирования заданий	Используемые модели и параметры
1	Строгая последовательность	Неадаптивный	До контроля	нет
2	Случайная выборка	Неадаптивный	Непосредственно перед контролем	нет
3	Комбинированный метод	Неадаптивный	Непосредственно перед контролем	нет
4	Случайная выборка с учетом отдельных параметров модели студента	Частично адаптивный	Непосредственно перед контролем	Модель студента: уровень подготовленности
5	Контроль на основе ответов студента	Частично адаптивный	До контроля (и в процессе контроля)	Модель студента: текущие ответы
6	Контроль на основе модели учебного материала	Частично адаптивный	В процессе контроля	Модели УМ, МС: уровень подготовленности
7	Модульно-рейтинговый метод	Частично адаптивный	В процессе контроля	Модель студента: рейтинг студента
8	Контроль по модели студента	Адаптивный	В процессе контроля	Модель студента
9	Контроль по моделям студента и учебного материала	Адаптивный	В процессе контроля	Модель студента, модель УМ

Модели оценки знаний

- Проверка знаний студентов может быть осуществлена с учетом различных критериев формирования оценки.
- В зависимости от этого модели оценки знаний можно разделить на три основных класса:
- на основе количественных критериев:
 - простейшая модель; модели, учитывающие типы заданий;
 - модели, учитывающие характеристики заданий;
 - модели, учитывающие характеристики заданий и параметры КЗ.
- на основе вероятностных критериев:
 - модели, учитывающие вероятность правильного ответа;
 - модели, учитывающие неопределенность ответа.
- на основе классификационных критериев:
 - модели на основе алгоритма вычисления оценок (ABO);
 - модели на основе нечетких множеств.

Модели оценки знаний

- В моделях на основе количественных критериев в качестве измерения обычно выступает числовое множество, то есть количественная шкала, предназначенная для представления оценки числом.
- В данном случае предусматривается вычисление некоторой величины, которая затем, как правило, сравнивается с предварительно заданными граничными значениями, определяющими интервалы оценивания в принятой шкале измерения.
- Рассчитываемая величина может представлять собой, например, сумму баллов, полученных студентом за правильные ответы на контрольные задания.
- При этом начисление баллов может происходить как с учетом типа предлагаемых студенту контрольных заданий, их дидактических характеристик, так и с учетом параметров КЗ, используемых при формировании данной оценки.

Модели оценки знаний

- В моделях на основе вероятностных критериев главным являются утверждения о зависимости вероятности правильного ответа студента от уровня его подготовленности и от параметров задания.
- Модели данного типа также позволяют решать задачи диагностики (контроля), которые характеризуются необходимостью учета неопределенности ответов обучаемых.
- **Модели на основе классификационных критериев**, предусматривают отнесение студента к одному из устойчивых классов с учетом совокупности признаков, определяющих данного студента.
- При этом используется специальная процедура вычисления степени похожести (оценки) распознаваемой строки (совокупности признаков обучаемого) на строки, принадлежность которых к классам заранее известна.

Модель оценивания знаний

Определение и оценка знаний представляет собой задачу распознавания, основанную на обучении. Решение проблемы оценивания состоит из трех этапов:

- определение параметров контроля (обучение), выполняемое до начала КЗ;
- сбор, анализ и/или преобразование данных, получаемых в процессе контроля (распознавание);
- выставление оценки за контрольную работу по завершении контроля (распознавание).

Модель оценивания знаний

- На первом этапе по результатам контрольного эксперимента определяются метаданные заданий (трудность, значимость и т.д.) и устанавливаются параметры КЗ (число вопросов, время на ответ и др.). Метаданные и параметры помещаются в репозиторий системы и используются на последующих этапах.
- На втором этапе при выполнении студентом контрольных заданий осуществляется сбор, анализ и, возможно, предварительная обработка полученных данных.
- На последнем этапе выставляется общая оценка за работу. В большинстве методов оценивания предусматривается вычисление некоторой величины, которая затем сравнивается с предварительно заданными граничными значениями.

Алгоритм реализации контроля

- **1. Загрузка** электронного индивидуального задания обучаемого и установка по умолчанию параметров связанных с данным контрольным мероприятием (количества УТЗ, предельного времени контроля, уровня сложности задач ограничении на использование информационной помощи критериев оценивания и др.).
- **2. Формирование** множества УТЗ, используемых в контрольном мероприятии Инициализации переменных.
- **3. Выбор** случайным образом УТЗ из числа тех что еще не выполнялись, и предъявление ее обучаемому.
- 4. Обеспечение диалога при выполнении УТЗ.
- **5. Анализ** результата (ответа). Изменение значений переменных отражающих выполнение контрольного мероприятия. Запись информации в протокол.
- **6. Проверка** условий завершения контроля. Если они выполнены, то переход к следующему этапу, иначе к этапу 3.
- **7. Определение** интегральных результатов контроля предъявление их обучаемому и запись в протокол.
- 8. Конец работы алгоритма.

Параметры оценивания

- Количество предложенных УТЗ
- Количество УТЗ, выполненных правильно
- Количество неполных (неточных) ответов
- Количество ошибок
- Количество отказов от ответа
- Количество УТЗ, по которым превышен лимит времени
- Количество абсурдных ответов
- Затраченное время
- Количество обращений к информационной помощи
- Время работы с информационной помощью
- Набранный рейтинг
- Показатель успешности

Вопросы для повторения

- Приведите характеристику этапов эволюции развития контроля знаний.
- Какие методические аспекты контроля знаний вы можете привести?
- Каковы технические аспекты контроля знаний?
- Перечислите требования к контролю знаний.
- Дайте характеристику методам проведения КЗ.
- Приведите примеры моделей оценивания знаний.

Спасибо за внимание!