Graphs

Undirected Graph: Vertices and edges

No Direction

Representation: 02

20

Undirected Graph: Vertices and edges

Vertices = $\{0, 1, 2, 3, 4, 5\}$

Undirected Graph: Vertices and edges

Edges = {02, 05, 04, 15, 14, 24, 23, 45}

No convention Which vertex to write first.

Directed Graph: Vertices and edges

Directed Graph: Vertices and edges

Edges = {05, 04, 02, 24, 45, 15, 14, 23}

Loops in Graphs

Multiple edges in Graphs

	0	1	2	3	4	5
0						
1						
2						
3						
4						
<mark>5</mark>						

	0	1	2	3	4	<mark>5</mark>
0	0	0	1	0	1	1
1						
2						
3						
4						
5						

	0	1	2	3	4	5
0	0	0	1	0	1	1
1	0	0	0	0	1	1
2						
3						
4						
5						

	0	1	2	3	4	5
0	0	0	1	0	1	1
1	0	0	0	0	1	1
2	1	0	0	1	1	0
3	0	0	1	0	0	0
4	1	1	1	0	0	1
5	1	1	0	0	1	0

$$\alpha[i][j] = \alpha[j][i]$$

vertices	Adjacent vertices
0	2, 4, 5
1	4, 5
2	0, 3, 4
3	
4	
5	

Initial Vertex

Terminal Vertex

	0	1	2	3	4	<mark>5</mark>
0	0	0	1	0	1	1
1						
2						
3						
4						
5						

Terminal Vertex

	0	1	2	3	4	<mark>5</mark>
0	0	0	1	0	1	1
1	0	0	0	0	1	1
2						
3						
4						
5						

Initial Vertex

Adjacency Matrix Representation: Directed Graph

Terminal Vertex

Terminal Vertex

	0	1	2	3	4	<u>5</u>
0	0	0	1	0	1	1
1	0	0	0	0	1	1
2	0	0	0	1	1	0
3						
4						
5						

Initial Vertex

Adjacency Matrix Representation: Directed Terminal Vertex

		0	1	2	<u>ფ</u>	4	5
×	0	0	0	1	0	1	1
Vertex	1	0	0	0	0	1	1
	2	0	0	0	1	1	0
Initial	3	0	0	0	0	0	0
H	4	0	0	0	0	0	1
			•)	

A 2D array: a[Number of vertices] [Number of vertices]

 $= \alpha[j][i]/$ $\alpha[i][j] = \alpha[j][i]$ No Restriction

Adjacency List Representation: Directed Graph

Initial vertex	Terminal vertex
0	2, 4, 5
1	4, 5
2	3, 4
3	
4	
5	

- Number of edges incident with it
- In case of Loop add +2

- Number of edges incident with it
- In case of Loop add +2

Vertex	Degree
0	3
1	
2	
3	
4	
5	

- Number of edges incident with it
- In case of Loop add +2

Vertex	Degree
0	3
1	2
2	
3	
4	
5	

- Number of edges incident with it
- In case of Loop add +2

Vertex	Degree
0	3
1	2
2	3
3	1
4	4
5	3

- Number of edges incident with it
- In case of Loop add +2

Vertex	Degree
0	5 (3 + 2)
1	2
2	3
3	1
4	4
5	3

Handshaking theorem

Let G=(V, E) be an undirected graph with e edges. Then

$$2e = \sum_{v \in V} \deg(v)$$

- In Degree: No of INCOMING edges
- Out Degree: No of OUTGOING edges

Vertex	In Degree	Out Degree
0	0	
1		
2		
3		
4		
5		

Vertex	In Degree	Out Degree
0	0	3
1		
2		
3		
4		
5		

Vertex	In Degree	Out Degree
0	0	3
1		
2		
3		
4	3	
5		

Vertex	In Degree	Out Degree
0	0	3
1		
2		
3		
4	3	1
5		

Vertex	In Degree	Out Degree
0	0	3

In degree = number of incoming edges
In degree of vertex 0 = number of incoming edges to 0

So, for counting in degrees of vertex 0 0 must be a TERMINAL VERTEX

Let G=(V, E) be a directed graph. $deg^{-}(v) = in degree of v$ $deg^{+}(v) = out degree of v$

$$\sum_{v \in V} deg^{-}(v) = \sum_{v \in V} deg^{+}(v) = |E|$$

Bipartite Graph

if its vertex set V can be partitioned into two disjoint sets V1 and V2 such that no edge in G connects either two vertices in V1 or two vertices in V2

Bipartite Graph

$$V = \{a, b, c, d, e, f, g\}$$

1. Color any of the vertices

2. Identify all uncolored vertices that are adjacent to the blue vertex.

3. Identify all uncolored vertices that are adjacent to a red vertex.

3. Identify all uncolored vertices that are adjacent to a red vertex.

Color them blue.

Repeat steps 2 and 3 until all the vertices are colored red or blue.

Repeat steps 2 and 3 until all the vertices are colored red or blue.

Repeat steps 2 and 3 until all the vertices are colored red or blue.

If there are any two vertices adjacent of the same color, then your graph is not bipartite, otherwise it is bipartite

:Bipartite graph

Disjoint sets V1 = {a, b, d} V2 = {c, e, f, g}