Author: Andrei Ermishin

```
In [1]: import numpy as np
   import pandas as pd
   %matplotlib inline
   import seaborn as sns

In [2]: data = pd.read_excel('Задача.xlsx')
   # data.to_json('table.json', orient='records')
   # data = pd.read_json('table.json')
   print(data.shape)
   data.head()

   (484, 5)
```

Out[2]:

	Персона	Возраст, лет	Стаж вождения, лет	Убыточность, %	Уровень заработной платы, руб/год
0	6-LLJEH	20	1	263	716693
1	2-GLHFG	74	51	107	274393
2	6-FJFKL	27	1	165	723841
3	4-KJEJL	24	6	348	139419
4	5-JFFGH	26	3	286	650003

Стр. 1 из 7

Удалим первый столбец с символами персоны, который не будет использоваться для кластеризации и по-видимому уже размечен на 9 кластеров. 9 кластеров могут использоваться исходя из дополнительных знаний о данных или потребностью компании в более точном разбиении.

```
In [4]: X = data.drop('Персона', axis='columns')
# X = data.drop(data.columns[0], axis='columns')
X.head(2)
```

Out[4]:

	Возраст, лет	Стаж вождения, лет	Убыточность, %	Уровень заработной платы, руб/год
0	20	1	263	716693
1	74	51	107	274393

K-Means

Стр. 2 из 7 01.04.2020, 18:45

В качестве меры будем смотреть на сумму квадратов расстояний персон до центра кластера. Если применять Elbow method, то начиная с 4, 5 кластеров наблюдаем более пологое снижение. Возьмем для дальнейшего обучения модели количество кластеров = 5.

```
In [5]: from sklearn.cluster import KMeans
    from sklearn.preprocessing import StandardScaler

    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)

min_c, max_c = 3, 13
    inertia_lst = []
    for num_clusters in range(min_c, max_c):
        kmeans = KMeans(n_clusters=num_clusters, n_jobs=-1, random_state=11)
        kmeans.fit(X_scaled)
        inertia_lst.append(kmeans.inertia_)

sns.set(rc={'figure.figsize':(8, 7)})
    pd.Series(data=inertia_lst, index=list(range(min_c, max_c))).plot()
```

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x2064fa81ef0>

Стр. 3 из 7 01.04.2020, 18:45

```
In [6]: new_num_clusters = 5
    kmeans_new = KMeans(n_clusters=new_num_clusters, n_jobs=-1, random_state=11)
    kmeans_new.fit(X_scaled)

data[f'{new_num_clusters}кластеров'] = kmeans_new.labels_
    data.head()
```

Out[6]:

	Персона	Возраст, лет	Стаж вождения, лет	Убыточность, %	Уровень заработной платы, руб/год	5кластеров
0	6-LLJEH	20	1	263	716693	0
1	2-GLHFG	74	51	107	274393	1
2	6-FJFKL	27	1	165	723841	0
3	4-KJEJL	24	6	348	139419	3
4	5-JFFGH	26	3	286	650003	0

```
In [7]: sns.scatterplot(x='Возраст, лет', y='Стаж вождения, лет', hue='5кластеров', palette='Set2', data=data, legend='full')
```

Out[7]: <matplotlib.axes. subplots.AxesSubplot at 0x2064fa7df98>

Вообще, зависимость тут близка к линейной, т.к. чем больше лет, тем больше стаж. Разница только в том, когда человек начал водить. На графике можно отметить 3 большие группы:

- возраст до 40 лет + стаж до 10 лет,
- возраст от 40 до 70 лет + стаж от 20 до 40 лет,
- возраст от 60 до 80 лет + стаж от 35 до 60 лет. В первой группе люди молодого возраста и поэтому имеют малый стаж вождения, группа посередине имеет большой разброс, но стаж в пределах [20, 40]. Третья группа это пожилые люди с очень большим стажем.

Стр. 4 из 7 01.04.2020, 18:45

```
In [8]: sns.scatterplot(x='Уровень заработной платы, руб/год', y='Убыточность, %', hue='5кластеров', palette='Set2', data=data, legend='full')
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x2064fb479b0>

Мы видим, что люди среднего возраста (правый нижний угол) имеют высокую зарплату и низкую убыточность. Вообще, как видно из графика, чем больше зарплата, тем меньше убыточность (выбиваются немного пожилые люди, которые не спешат и у них большой стаж). Большая убыточность свойственна людям до 40 лет с низкой зарплатой (2 левых верхних кластера).

Hierarchical clustering

В иерархической кластеризации мы используем прирост суммы квадратов расстояний персон до центра кластера.

```
In [9]: from sklearn.cluster import AgglomerativeClustering

num_clusters = 5
agglo = AgglomerativeClustering(n_clusters=num_clusters, linkage='ward')
agglo.fit(X_scaled)

pred = pd.Series(data=agglo.labels_, index=data.index, name=f'Nepapxически{num_clusters}')
```

Стр. 5 из 7 01.04.2020, 18:45

```
In [10]: sns.scatterplot(x='Возраст, лет', y='Стаж вождения, лет', hue=pred, palette='Set2', data=data, legend='full')
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x2064fbc4400>

In [11]: sns.scatterplot(x='Уровень заработной платы, руб/год', y='Убыточность, %', hue=pred, palette='Set2', data=data, legend='full')

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x2064fc87cf8>

Стр. 6 из 7 01.04.2020, 18:45

```
In [ ]:
```

Посмотрим, правильно ли мы записали результат работы сервиса в файл.

```
In [12]: # Result of Flask app:
    pd.read_json('result.json').head()
```

Out[12]:

	Персона	Возраст, лет	Стаж вождения, лет	Убыточность, %	Уровень заработной платы, руб/год	5кластеров
0	6-LLJEH	20	1	263	716693	1
1	2-GLHFG	74	51	107	274393	2
2	6-FJFKL	27	1	165	723841	1
3	4-KJEJL	24	6	348	139419	4
4	5-JFFGH	26	3	286	650003	1

In []:

Стр. 7 из 7