The Xmath² ablaTeX 2_{ε} Macros for Manuscript Preparation

Martin Debaisieux⁵

Abstract

The XMATH² package is an easy way to write math in \LaTeX 2 $_{\mathcal{E}}$. XMATH² is an extension of frequently used mathematical packages with new commands and environments. This package was mainly designed for English users but it includes some macros reserved for French users.

1

Contents

Patch notes

_	311031108		i i ateli ilotes
1	Patch notes	1	This is the version 2.0.1 of XMATH ² . This update brings the creation of a new resolu-
2	Extensions	1	tion environment. This document was last compiled on February 19, 2021.
3	Commands	1	
	3.1 Algebra	1	2 Extensions
	3.1.1 Sets	1	
	3.1.2 Objects	2	This package is an extension of the amsthm ⁷ , amssymb ⁸ , amsmath ⁹ , dsfont
	3.1.3 Operators	2	stmaryrd ³ , mathrsfs ⁴ , mdframed ¹ , yfonts ⁶
	3.2 Analysis	2	and xstring ¹⁰ packages. All rights reserved
	3.2.1 Sets	2	to their authors.
	3.2.2 Operators	2	
	3.3 Logic	2	3 Commands
	3.4 Probability and Statistics .	2	
	Environments	3	3.1 Algebra
4			3.1.1 Sets
5	Others	3	\A : alternating.
			\ACF : algebraic closure field.
6	Contact	3	\Aut : automorphism.

\dom: domain. $\D : derived.$ $\backslash E : set.$ \G : Galois. \Hom: homomorphism. \im : image. \Int : interior. $\backslash IF : field.$ \backslash IK : corps. $\In : natural.$ \IQ : rational. $\Isin IS : sphere.$ $\IZ : integer.$ \GL : linear group. $\L : linear.$ $\M : matrix.$ \N : normalizer. $\backslash 0$: orthogonal. \Orb : orbit. \Q : quaternion. $\operatorname{set}\{\#1\}\{\#2\} : \operatorname{set}\{\#1\|\#2\}.$ \SL : special linear. \SO : special orthogonal. \Stab : stabilizer. \S : symmetric. \Z : centralizer. $\ZnZ{\#1}$: ring of integers modulo #1 with an adaptive style.

3.1.2Objects

 $\vect[d1][d2]{\#1}$: creates a vector. If there is no optional argument, then it creates a vector of the variable #1 from 1 to n. If d1 is present and if d1 is an integer, then it creates a vector of the variable #1 from d1 to n. However, if d1 is not an integer, then it creates a vector of the variable #1 from 1 \Var: variance.

to d1. Finally, if every argument is present, then it creates a vector of the variable #1 from d1 to d2.

3.1.3 **Operators**

\card : cardinality. **\Car**: caractéristique. \cis: $x \mapsto \cos(x) + i\sin(x)$ contraction. \ev : evaluation. \Frac : fraction. \Id: identity. \normal : normal. $\gcd\{\#1\}$: generated by #1. \ord : order. \pgcd : plus grand commun diviseur. \ppcm : plus petit commun multiple. \sign: signature.

3.2 Analysis

3.2.1Sets

\Graph : graph set ; \Le : Lebesgue space ; $\T : topology ;$ $Va{\#1}$: neighbourhood of #1.

3.2.2 **Operators**

\dist : distance ; $\rspace{1}{max}$ | restriction of #1 on #2.

3.3 Logic

\Conseq: consequence. \Frechet : Frêchet. $\$ theory.

3.4 Probability and Statistics

4 Environments

All the environments were developed for French users except the last one.
\corollary: corollaire encadré.
\definition: définition encadrée.
\lemma: lemme encadré.
\property: propriété encadrée.
\properties: propriétés encadrées.
\proposition: proposition encadrée.
\resolution: résolution.
\theorem: théorème encadré.
\rcases: right cases.

5 Others

```
\asign::=.
\hooklongleftarrow: ←→.
\hooklongrightarrow: ←→.
\longsimleftarrow: ←→.
\longsimrightarrow: ←→.
\longtwoheadleftarrow: ←→.
\longtwoheadrightarrow: →→.
\quot: quotient with an adaptive style.
\signa:=:.
\simleftarrow: ←→.
\simrightarrow: ←→.
\widebar: adaptive bar solving the size problems of \bar and \overline.
\xbox{#1}: box around #1.
\Xmath: Xmath logo.
```

6 Contact

If you have a suggestion or if you encounter a problem with XMATH², send me a pull request on https://github.com/MartinDbx/xmath-package.

References

- [1] Marco Daniel and Elke Schubert. Ctan. https://www.ctan.org/pkg/mdframed.
- [2] Martin Debaisieux. Github repository. https://github.com/MartinDbx/x math-package.
- [3] Taco Hoekwater Jeremy Gibbons and Alan Jeffrey. Ctan. https://www.ctan.org/pkg/stmaryrd.
- [4] Jörg Knappen. Ctan. https://www.ctan.org/pkg/mathrsfs.
- [5] Debaisieux Martin. https://github.com/MartinDbx.
- [6] Norbert Preining and Walter A. Schmidt. Ctan. https://www.ctan.org/pkg/yfonts.
- [7] American Mathematical Society. Ctan. https://www.ctan.org/pkg/amsthm.
- [8] American Mathematical Society. Ctan. https://www.ctan.org/pkg/amsfonts.
- [9] American Mathematical Society. Ctan. https://www.ctan.org/pkg/amsmath.
- [10] Christian Tellechea. Ctan. https://www.ctan.org/pkg/xstring.