Aufgabe 1. Es sei $a \in \mathbb{N}$. Man zeige durch vollständige Induktion über $n \in \mathbb{N} - \{0\}$, dass $a^n - 1$ durch a - 1 teilbar ist.

Aufgabe 2. Es sei $a \in \mathbb{N}$. Man zeige durch vollständige Induktion über $n \in \mathbb{N} - \{0\}$, dass

$$a^{n} - 1 = (a - 1) \sum_{i=0}^{n-1} a^{i},$$

wobei

$$\sum_{i=0}^{n-1} a^i = 1 + \dots + a^{n-1}.$$

Aufgabe 3. Es sei $n \in \mathbb{N} - \{0\}$.

(i) Man zeige, dass die durch

$$a \sim b \iff (\exists k \in \mathbb{Z}, \text{ sodass } a = b + nk)$$

definierte Relation eine Äquivalenzrelation auf \mathbb{Z} definiert.

- (ii) Die Faktormenge \mathbb{Z}/\sim wird mit $\mathbb{Z}/n\mathbb{Z}$ bezeichnet. Man zeige:
 - $\mathbb{Z}/n\mathbb{Z} = \{[0], \dots, [n-1]\}$
 - $|\mathbb{Z}/n\mathbb{Z}| = n$

(Hinweis : Division mit Rest).

Aufgabe 4. Man zeige, dass die Addition (bzw. Multiplikation) auf \mathbb{Z} eine Verknüpfung auf $\mathbb{Z}/n\mathbb{Z}$ induziert (das heisst, dass eine Verknüpfung $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ sodass $([a], [b]) \mapsto [a+b]$ (bzw. $([a], [b]) \mapsto [ab]$) existiert).

- * Aufgabe 5. Es sei $m \in \mathbb{N} \{0\}$ und $n \in \mathbb{N}$ ein Teiler von m. Die Klasse in $\mathbb{Z}/n\mathbb{Z}$ (bzw. $\mathbb{Z}/m\mathbb{Z}$) eines Elementes $a \in \mathbb{Z}$ wird in dieser Aufgabe mit $[a]_n$ (bzw. $[a]_m$) bezeichnet.
 - (i) Man zeige, dass es eine Abbildung

$$f: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$

sodass $f([a]_m) = [a]_n$ für jedes $a \in \mathbb{Z}$ existiert.

(ii) Man berechne die Kardinalität der Menge $f^{-1}\{[0]_n\}$.