

# moving beyond simple regression

- correlation matrices
- multiple regression
- comparing models
- coding categorical predictors

# correlation matrices

#### (i) how many correlations for n variables?

Note that  $\overline{
ho_{xy}}$  =  $\overline{
ho_{yx}}$  .

For any n measures, you can calculate  $\frac{n(n-1)}{2}$  unique pairwise correlations between measures. So, if you have six measurements, you have

$$rac{6(6-1)}{2} = rac{30}{2} = 15$$

unique correlations.

# grades

#### grades.csv

| grade | GPA  | lecture | nclicks |
|-------|------|---------|---------|
| 4.00  | 2.52 | 10      | 108     |
| 3.02  | 2.73 | 7       | 93      |
| 1.47  | 1.55 | 4       | 71      |
| 1.21  | 2.55 | 10      | 101     |
| 1.90  | 2.46 | 9       | 84      |
| 3.38  | 2.25 | 6       | 93      |
| 4.00  | 3.45 | 8       | 135     |
| 3.47  | 2.96 | 6       | 126     |
| 2.59  | 3.22 | 7       | 109     |
| 1.87  | 2.64 | 7       | 74      |

- 100 rows (students)
- grade: grade at end of semester
- lecture: number of lectures attended (out of 10)
- nclicks: engagement with online materials

How well does engagement (measured by lecture attendance / clicks on materials) predict grade?

## correlation matrix

| term    | grade | GPA  | lecture | nclicks |
|---------|-------|------|---------|---------|
| grade   | 1.00  | .44  | .15     | .52     |
| GPA     | .44   | 1.00 | .30     | .61     |
| lecture | .15   | .30  | 1.00    | .21     |
| nclicks | .52   | .61  | .21     | 1.00    |



- Each row x col entry corresponds to the **bivariate correlation** between those variables
- upper & lower triangle; diagonal
- Symmetric

# scatterplots



# multiple regression

General model for data with m predictors:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_m X_{mi} + e_i$$

individual Xs can be any combination of continuous and categorical predictors (and their interactions)

Each  $eta_j$  is the partial effect of  $X_j$  on  $Y_i$  holding all other  $X_j$  constant

NB: These models are only valid for data with *one* observation on the DV (response variable) per participant. In experimental psychology, this is very rare. Also it assumes there are no interactions in the model.

# example questions

- Are lecture attendance and engagement with online materials associated with higher course grades?
- Does this relationship hold after controlling for overall GPA?

## estimation

$$grade_i = \beta_0 + \beta_1 lectures_i + \beta_2 nclicks_i + e_i$$

```
mod <- lm(grade ~ lecture + nclicks, data = grades)</pre>
summary (mod)
Call:
lm(formula = grade ~ lecture + nclicks, data = grades)
Residuals:
    Min
              10 Median
                                30
                                        Max
-1.77648 -0.45633 0.04778 0.49755 1.54089
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.100047 0.609603 -1.805
                                          0.0743 .
lecture
            0.024888 0.045623 0.546
                                          0.5867
                       0.005903 5.750 1.04e-07 ***
nclicks
            0.033941
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7729 on 97 degrees of freedom
Multiple R-squared: 0.272, Adjusted R-squared: 0.257
F-statistic: 18.12 on 2 and 97 DF, p-value: 2.061e-07
```

## mean centering predictors

- makes y-intercept more interpretable
- new pred = old pred mean(old pred)
  - lecture\_c = lecture mean(lecture)
  - nclicks\_c = nclicks mean(nclicks)

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 2.433696 0.077288 31.489 < 2e-16 *** lecture_c 0.024888 0.045623 0.546 0.587 nclicks c 0.033941 0.005903 5.750 1.04e-07 ***
```

# which predictor is more important?

To compare  $\beta$  weights, you need to standardize predictors

```
• lecture_z = (lecture - mean(lecture)) / sd(lecture)
```

```
• nclicks_z = (nclicks - mean(nclicks)) / sd(nclicks)
```

#### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.43370 0.07729 31.489 < 2e-16 ***

lecture_z 0.04332 0.07942 0.546 0.587

nclicks z 0.45665 0.07942 5.750 1.04e-07 ***
```

#### standardized

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.43370 0.07729 31.489 < 2e-16 ***
lecture_z 0.04332 0.07942 0.546 0.587

nclicks_z 0.45665 0.07942 5.750 1.04e-07 ***
```

#### mean-centered

```
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.433696 0.077288 31.489 < 2e-16 *** lecture_c 0.024888 0.045623 0.546 0.587 nclicks_c 0.033941 0.005903 5.750 1.04e-07 ***
```

#### original (raw)

```
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -1.100047 0.609603 -1.805 0.0743 . lecture 0.024888 0.045623 0.546 0.5867 nclicks 0.033941 0.005903 5.750 1.04e-07 ***
```

# relation between multiple regression and correlation

Each  $\beta_j$  corresponds to the partial correlation between  $X_j$  and Y controlling for other predictors.

# model comparison

Is engagement (as measured by lecture attendance and downloads) positively associated with final course grade *above* and beyond student ability (as measured by GPA)?

# model comparison strategy

Compare "base" to "augmented" model with focal predictors

Base

$$grade_i = \beta_0 + \beta_1 GPA_i + e_i$$

Augmented

$$grade_i = \beta_0 + \beta_1 GPA_i + \beta_2 lecture_i + \beta_3 nclicks_i + e_i$$

$$H_0:eta_2=eta_3=0$$

F-test on residual sum of squares (RSS). If p < lpha, reject  $H_0$ .

Base

$$grade_i = \beta_0 + \beta_1 GPA_i + e_i$$

Augmented

$$grade_i = \beta_0 + \beta_1 GPA_i + \beta_2 lecture_i + \beta_3 nclicks_i + e_i$$

| model                       | RSS  | df |  |
|-----------------------------|------|----|--|
| base                        | 64.0 | 98 |  |
| augmented                   | 56.1 | 96 |  |
| F(2, 96) = 6.772, p = 0.002 |      |    |  |

# categorical (nominal) predictors

# dummy coding two-level nominal variables

Arbitrarily assign one level to 0; assign the other to 1.

R will do this automatically if a predictor is of type "character" or "factor" instead of numeric (choosing as baseline the level that would be alphabetized before all other levels)

## factors with k>2

Arbitrarily choose one level as "baseline" level. Need k-1predictors, each contrasting a target level with baseline.

$$k=3$$

$$k=4$$

|                  | A2v1 | A3v1 |   |                  | A2v1 | A3v1 |
|------------------|------|------|---|------------------|------|------|
| $\overline{A_1}$ | 0    | 0    | _ | $A_1$            | 0    | 0    |
| $A_2$            | 1    | 0    |   | $A_2$            | 1    | 0    |
| $\overline{A_3}$ | 0    | 1    |   | $A_3$            | 0    | 1    |
|                  |      |      |   | $\overline{A_A}$ | 0    | 0    |

|       | A2v1 | A3v1 | A4v1 |
|-------|------|------|------|
| $A_1$ | 0    | 0    | 0    |
| $A_2$ | 1    | 0    | 0    |
| $A_3$ | 0    | 1    | 0    |
| $A_4$ | 0    | 0    | 1    |

# Bodyweight over the seasons

| season | bodyweight_kg |
|--------|---------------|
| winter | 96.8707       |
| winter | 102.0794      |
| winter | 101.3670      |
| winter | 106.5152      |
| winter | 106.0500      |
| spring | 108.9893      |

• four levels: winter, spring, summer, fall

# Coding the predictor

| season | spring_v_winter | summer_v_winter | fall_v_winter |
|--------|-----------------|-----------------|---------------|
| winter | 0               | 0               | 0             |
| spring | 1               | 0               | 0             |
| summer | 0               | 1               | 0             |
| fall   | 0               | 0               | 1             |

# Fitting the model

$$BW_i = \beta_0 + \beta_1 SPvW + \beta_2 SUvW + \beta_3 FvW + e_i$$

#### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
               102.57645
                           1.71619
                                    59.770
                                            <2e-16 ***
(Intercept)
spring_v_winter
                -0.03665
                           2.42705 - 0.015
                                             0.988
                          2.42705 0.421
summer_v_winter
               1.02200
                                            0.679
fall v winter
                -0.98818
                           2.42705 - 0.407
                                             0.689
```

### Main effect of season?

Use model comparison.

Base:

$$BW_i = \beta_0 + e_i$$

• Augmented:

$$BW_i = \beta_0 + \beta_1 SPvW + \beta_2 SUvW + \beta_3 FvW + e_i$$

$$H_0: eta_1 = eta_2 = eta_3 = 0$$

| model                         | RSS   | df |  |  |
|-------------------------------|-------|----|--|--|
| base                          | 245.7 | 19 |  |  |
| augmented                     | 235.6 | 16 |  |  |
| F(3, 16) = 0.229, $p$ = 0.875 |       |    |  |  |



Watch out for nominal variables disguised as numbers!

Imagine you got a dataset with **season** coded as a single variable where: 1=winter, 2=spring, 3=summer, 4=fall. R will treat this as a single numeric predictor and the output will be nonsense.