Selection

The Selection Problem

- Given an integer k and n elements x₁, x₂, ..., x_n, taken from a total order, find the k-th smallest element in this set.
- Of course, we can sort the set in O(n log n) time and then index the k-th element.

$$k=3$$
 $\begin{bmatrix} 7 & 4 & 9 & \underline{6} & 2 \rightarrow 2 & 4 & \underline{6} & 7 & 9 \end{bmatrix}$

Can we solve the selection problem faster?

Quick-Select (§10.7)

Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:

Prune: pick a random element x
 (called pivot) and partition S into

- L elements less than x
- E elements equal x
- G elements greater than x
- Search: depending on k, either answer is in E, or we need to recur on either L or G

 $|L| < k \le |L| + |E|$ (done)

We partition an input sequence as in the quick-sort

Partition

algorithm:

- We remove, in turn, each element y from S and
- We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quick-select takes O(n) time

```
Algorithm partition(S, p)
```

Input sequence S, position p of pivot
Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.

 $L, E, G \leftarrow$ empty sequences

 $x \leftarrow S.remove(p)$

while $\neg S.isEmpty()$

 $y \leftarrow S.remove(S.first())$

if y < x

L.insertLast(y)

else if y = x

E.insertLast(y)

else $\{y > x\}$

G.insertLast(y)

return L, E, G

Quick-Select Visualization

- An execution of quick-select can be visualized by a recursion path
 - Each node represents a recursive call of quick-select, and stores k and the remaining sequence

$$k=5, S=(7 \ 4 \ 9 \ \underline{3} \ 2 \ 6 \ 5 \ 1 \ 8)$$
 $k=2, S=(7 \ 4 \ 9 \ 6 \ 5 \ \underline{8})$
 $k=1, S=(7 \ 6 \ \underline{5})$
Selection

Expected Running Time

- Consider a recursive call of quick-select on a sequence of size s
 - **Good call:** the sizes of L and G are each less than 3s/4
 - Bad call: one of L and G has size greater than 3s/4

Good call

Bad call

- ◆ A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

Expected Running Time, Part 2

- Probabilistic Fact #1: The expected number of coin tosses required in order to get one head is two
- Probabilistic Fact #2: Expectation is a linear function:
 - $\bullet E(X+Y)=E(X)+E(Y)$
 - E(cX) = cE(X)
- Let T(n) denote the expected running time of quick-select.
- ♦ By Fact #2,
 - $T(n) \le T(3n/4) + bn*(expected # of calls before a good call)$
- ♦ By Fact #1,
 - $T(n) \le T(3n/4) + 2bn$
- That is, T(n) is a geometric series:
 - $T(n) \le 2bn + 2b(3/4)n + 2b(3/4)^2n + 2b(3/4)^3n + \dots$
- ♦ So T(n) is O(n).
- We can solve the selection problem in O(n) expected time.

Deterministic Selection

- We can do selection in O(n) worst-case time.
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 - Divide S into n/5 sets of 5 each
 - Find a median in each set
 - Recursively find the median of the "baby" medians.

Min size for L

1 2	1 2	1 2	1 2	1 2	1 2	:	 1	 1	 1 2	 1	
3	3	3	3	3	3	3	3	3	3	3	
4	4		 4	 4	4	4	4	4	4	4	
5	5	5	5	5	5	5	5	5	5	5	

Min size for G

See Exercise C-4.24 for details of analysis.