### **Sécurité et Réseaux Licence 3 Informatique**



# **Cours 8: Configuration des équipements CISCO**

Osman SALEM
Maître de conférences - HDR
osman.salem@parisdescartes.fr



MATHÉMATIQUES ET INFORMATIQUE

**Sciences** Université de Paris

1

## Routage statique

- Suppression d'une route:
  - R1(config)#no ip route 192.168.2.0 255.255.255.0 172.16.2.2
- Lab 1: à réaliser!

Diagramme de topologie



#### Table d'adressage

| Périphérique | Interface | Adresse IP   | Masque de sous-réseau | Passerelle par défaut : |
|--------------|-----------|--------------|-----------------------|-------------------------|
| R1           | Fa0/0     | 192.168.1.1  | 255.255.255.0         | s/o                     |
|              | \$0/0/0   | 192.168.2.1  | 255.255.255.0         | s/o                     |
| R2           | Fa0/0     | 192.168.3.1  | 255.255.255.0         | s/o                     |
|              | \$0/0/0   | 192.168.2.2  | 255.255.255.0         | s/o                     |
| PC1          | s/o       | 192.168.1.10 | 255.255.255.0         | 192.168.1.1             |
| PC2          | s/o       | 192.168.3.10 | 255.255.255.0         | 192.168.3.1             |



#### Passerelle par défaut

- Default Static Route
  - @IP de destination et masque sont à zéro
    - R1(conf)# ip route 0.0.0.0 0.0.0.0 82.110.171.96
    - R1(config)#ip route 0.0.0.0 0.0.0.0 [exit-interface | ip-address ]
- La métrique : quantifie la qualité de la route
  - Plus la métrique est petite, meilleure est la route
  - Soit attribuée manuellement
  - Soit calculée par le protocole de routage utilisé
- Distance Administrative (préférence) : plus cette valeur est petite, meilleure est la route. Valeurs par défaut:

| Route connectée | 0   |
|-----------------|-----|
| Route statique  | 1   |
| EIGRP           | 90  |
| OSPF            | 110 |
| RIPv2           | 120 |
| Ext erne EIGRP  | 170 |

3











- Le routeur choisira toujours la route la plus précise, celle qui a le masque de sous-réseau le plus grand
- Si plusieurs routes ont le même degré de précision (même adresse réseau et même masque), le routeur choisira celle qui a la plus petite distance administrative
- Si il a toujours le choix, c'est la route ayant la plus petite métrique qui l'emportera



#### Choisir la meilleure route

#### **Default Administrative Distance**

Directly Connected: 0
Static Route: 1
RIP: 120
IGRP: 100
EIGRP: 90
OSPF: 110

- 0 : degré de confiance maximal
- 255: pas de confiance

9

# Métrique & Distance Adiministrative

- Métrique utilisée par les protocoles de routage
  - RIP: nombre de sauts
  - IGRP & EIGRP: Bandwidth (par defaut), Delay (par defaut), Load, Reliability
  - IS-IS & OSPF: Cost, Bandwidth (Cisco's implementation)



```
R2/show ip route
coutput omitted>
Gateway of last resort is not set

R 192.168.1.0/24 [120/1] via 192.168.2.1, 00:00:24, Serial0/0
C 192.168.3.0/24 is directly connected, Serial0/0
C 192.168.3.0/24 is directly connected, FastEthernet0/0
C 192.168.4.0/24 is directly connected, Serial0/1
R 192.168.5.0/24 [120/1] via 192.168.4.1, 00:00:26, Serial0/1
R 192.168.5.0/24 [120/1] via 192.168.4.1, 00:00:26, Serial0/1
R 192.168.5.0/24 [120/1] via 192.168.2.1, 00:00:26, Serial0/1
R 192.168.8.0/24 [120/1] via 192.168.4.1, 00:00:26, Serial0/1
R 192.168.8.0/24 [120/1] via 192.168.4.1, 00:00:26, Serial0/1
```







#### **RIP: Routing Information Protocol**

- RIP est un protocole de routage à vecteur de distance)
  - Algorithme de Bellman-Ford
  - Utilise le nombre de sauts comme métrique
  - UDP port 520
- Deux versions
  - RIPv1
    - Classful (pas de VLSM ou CIDR)
    - Mises à jours par diffusion
    - Sans le masque du réseau
  - RIPv2
    - Classless (avec le masque)
    - Mises à jours par multicast 224.0.0.9
    - Authentification (optionnelle)



15



#### RIPv1: Algorithme de mise à jour

- Si entrée n'existe pas et < infini
  - Ajout avec bonne métrique et prochain routeur
  - Initialisation temporisation
- Si entrée présente et nouvelle < ancienne</li>
  - Mise à jour métrique et prochain routeur
  - Réinitialisation temporisation
- Si entrée présente et routeur suivant = émetteur
  - Mise à jour de la métrique
  - Réinitialisation temporisation







```
172.16.1.0 Fa 0/0 S0/0 S0/0 S0/1 S0/1 Fa 0/0 192.168.1.0 172.16.1.1 10.1.1.1 10.1.1.2 10.2.2.2 10.2.2.3 192.168.1.1
```

```
RouterA#show ip route

Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B -BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, * - candidate
default
U - Per-user static route, 0 = CCR
T - Traffic engineered route

Gateway of last resort is not set
172.16.0.0/24 is subnetted, 1 subnets
C 172.16.1.0 is directly connected, Ethernet0
10.0.0.0/24 is subnetted, 2 subnets
R 10.2.2.0 (120/1) via 10.1.1.2, 00:00:07, Serial 0/0
C 10.1.1.0 is directly connected, Serial 0/0
R 192.168.1.0/24 (120/2) via 10.1.1.2, 00:00:07, Serial 0/0
```



Router(config)# router rip Router(config-router)# timers basic 20 120 120 160

The *timers basic* command allows us to change the update (20), invalid (120), hold-down (120), and flush (240) timers. To return the timers back to their defaults:

Router(config-router)# no timers basic

RouterC(config)# router rip RouterC(config-router)# network 10.4.0.0 RouterC(config-router)# network 10.2.0.0 RouterC(config-router)# passive-interface s0 RouterC(config)# router rip

RouterC(config-router)# network 10.4.0.0 RouterC(config-router)# network 10.2.0.0 RouterC(config-router)# passive-interface default RouterC(config-router)# no passive-interface e0



#### RIPv1: Algorithme de mise à jour

- Le vecteur de distance est envoyé :
  - Périodiquement (chaque) 30 secondes
  - Par déclenché: dès qu'une entrée est modifiée. Uniquement les entrées modifiées sont transmises
- Chaque message contient une entrée et une mesure
  - Valeur 16 correspond à l'infini
- Minuteur de temporisation
  - Invalid Timer: si aucune mise à jour n'a été reçue pour actualiser une route existante dans les 180 secondes (par défaut), la route est marquée comme non valide (valeur 16 attribuée à la mesure)
  - *Flush Timer*: la route est conservée dans la table de routage jusqu'à l'expiration du minuteur d'annulation (= 240 secondes)
  - Lorsque le délai du minuteur d'annulation expire, la route est supprimée de la table de routage

21



#### **Temporisateurs RIP**











### Mécanismes pour éviter les boucles

- 5 mécanismes dans RIP pour éviter les boucles:
  - Infini = 16
  - Empoisonnement inverse (Poison reverse)
  - Horizon coupé (Split horizon)
  - Mise à jour déclenché (Triggered update)
  - Temporisateur hors service ou de retient ou de mise hors service (Hold down timer)

27













RIPv1: Horizon partagé (split horizon) • Une route ne doit pas être annoncée sur la liaison où elle a été apprise 10.1.0.0 10.2.0.0 10.3.0.0 10.4.0.0 Interface Saut Réseau Interface Saut Réseau Interface Saut Fa0/0 0 10.2.0.0 S0/0/0 0 10.3.0.0 S0/0/1 0 10.3.0.0 S0/0/1 0 0 10.4.0.0 Fa0/0 10.2.0.0 S0/0/0 0 10.3.0.0 1 10.1.0.0 S0/0/0 1 10.2.0.0 S0/0/1 1 S0/0/0 10.4.0.0 S0/0/0 10.4.0.0 S0/0/1 10.1.0.0 S0/0/1 2



RIPv1: Horizon partagé (split horizon) • Une route ne doit pas être annoncée sur la liaison où elle a été apprise R2 n'annonce que les réseaux 10.3.0.0 et 10.4.0.0 à R1. R2 n'annonce que les réseaux 10.2.0.0 et 10.1.0.0 à R3. 10.1.0.0 10.4.0.0 10.2.0.0 10.3.0.0 Réseau Interface Saut Réseau Interface Saut Réseau Interface Saut 10.2.0.0 S0/0/0 0 10.1.0.0 Fa0/0 0 10.3.0.0 S0/0/1 0 10.3.0.0 S0/0/1 0 10.4.0.0 Fa0/0 0 S0/0/0 0 10.2.0.0 S0/0/0 1 10.3.0.0 S0/0/0 1 10.1.0.0 10.2.0.0 S0/0/1 1 10.4.0.0 S0/0/1 10.1.0.0 S0/0/1 2 10.4.0.0 S0/0/0 2











Horizon partagé avec empoisonnement Il est utilisé pour marquer la route comme étant inaccessible dans une mise à jour de routage qui est envoyée à d'autres routeurs R1 « empoisonne » la route avec une mesure « infinie ». 10.2.0.0 10.3.0.0 10.1.0.0 10.4.0.0 Réseau Interface Saut Réseau Interface Saut Réseau Interface Saut 10.1.0.0 Fa0/0 0 10.3.0.0 10.2.0.0 S0/0/0 0 S0/0/1 0 10.2.0.0 50/0/0 0 10.3.0.0 S0/0/1 0 10.4.0.0 Fa0/0 10.3.0.0 S0/0/0 10.1.0.0 S0/0/0 10.2.0.0 10.4.0.0 S0/0/0 10.1.0.0 S0/0/1 10.4.0.0



#### RIPv1: temporisateur

- Réseau unstable
  - Up & down
- Des boucles peuvent toujours seformer
  - Avec les solutions: horizon partagé et empoisonnement
- Solution: utiliser un temporisateurs
  - Route marquée inaccessible pendant un "holddown timer (180s)"
  - Pour empêcher les mises à jour erronés
  - Ignorer les mises à jour erronés pendant ce temps
    - Sauf une mise à jours avec une métrique strictement plus petite (stop timer)

43



#### RIPv1: temporisateur

- Solution: utiliser un temporisateurs
  - Route marquée inaccessible pendant un "holddown timer (180s)"
  - Pour empêcher les mises à jour erronés
  - Ignorer les mises à jour erronés pendant ce temps







```
R1(config)#interface fa0/0
                                                                                                                           R2 (config-if) | ip address 172.30.2.2 255.255.255.0 R2 (config-if) | interface fa0/0 R2 (config-if) | ip address 172.30.3.1 255.255.255.0 R2 (config-if) | interface S0/0/1
        Ri(config-if) #ip address 172.30.1.1 255.255.255.0 Ri(config-if) #interface 80/0/0 Rl(config-if) #interface 8172.30.2.1 255.255.255.0 Rl(config-if) #no router rip
                                                                                                                           R2 (config-if) #in ddress 192.168.4.9 255.255.255.252
R2 (config-if) #no router rip
R2 (config) #router rip
R2 (config) #router hetwork 172.30.0.0
R2 (config-router) #network 192.168.4.8
         R1(config) #router rip
R1(config-router) #network 172.30.1.0
R1(config-router) #network 172.30.2.0
        RI (config-router) #passive-interface FastEthernet 0/0 RI (config-router) #end
                                                                                                                            R2(config-router) #passive-interface FastEthernet 0/0 R2(config-router) #end
         R1#show run
(**résultat omis**)
                                                                                                                            R2#show run
                                                                                                                             <output omitted>
           couter rip
                                                                                                                             router rip
          passive-interface FastEthernet0/0 network 172.30.0.0
                                                                                                                             passive-interface FastEthernet0/0
network 172.30.0.0
network 192.168.4.0
                                                                      R3(config) #interface fa0/0
                                                                      R3(config-if) #in address 192.168.5.1 255.255.255.0
R3(config-if) #interface 80/0/1
R3(config-if) #in address 192.168.4.10 255.255.255.252
R3(config-if) #no router rip
                                                                      R3(config) #router rip
R3(config-router) #network 192.168.4.0
R3(config-router) #network 192.168.5.0
                                                                      R3(config-router) *passive-interface FastEthernet 0/0
Incorrecte d'un point de
                                                                      R3(config-router) #end
                                                                       R3#show run
                                                                       <output omitted
             vue technique
                                                                        router rip
passive-interface FastEthernet0/0
network 192.168.4.0
network 192.168.5.0
```





#### **RIPv1 Limitations**

- RIPv1 a classful routing protocol
  - Le masque *n'est pas transmis* dans les messages de routage
  - Si les réseaux ne sont pas contigu, RIPv1 ne peut pas converger
  - Ne supporte pas l'adressage VLSM (CIDR)
  - Update transmis par diffusion



49



#### RIPv2

- La version RIP v2 présente les améliorations suivantes:
  - Possibilité de transmettre des informations supplémentaires (masque)
  - Mécanisme d'authentification visant à sécuriser la mise à jour de tables
  - Prise en charge des masques de sous-réseau de longueur variable (VLSM)
  - Mises à jour transmis par multicast



- Similarités avec la version 1 (RIP v1)
  - Utilisation de temporisateurs pour empêcher la formation des boucles
  - Utilisation du mécanisme split horizon ou split horizon avec l'empoisonement inverse
  - Utilisation de mises à jour déclenché (triggered updates)
  - Nombre de sauts maximum est 15









- Interior Gateway Routing Protocol
  - Métrique: BandWidth, delay, load & reliability
  - Par défaut: Bande passante et délai sont utilisées
  - show ip protocols: infinity=100hops (default) et un max de 255 sauts (hops)
  - Utilisation de l'algorithme de Bellman-Ford et une mises à jour périodique
  - Mises à jour: périodique tous les 90 sec (30 sec dans RIPv1)
  - Obsolète: remplacé par EIGRP





- Enahnced Interior Gateway Routing Protocol
  - Protocole propriétaire développé par Cisco
    - Protocole de routage à vecteur de distance sans classe (classless)
    - Triggered updates: déclenchées (pas de mises à jour périodique)
    - Tableau topologie contient un chemin de secours (pas seulement la meilleur route, comme en RIP et IGRP)
    - Hello pour découverte des voisins et table de voisinage: surveillance de voisins
    - Algorithme DUAL pour éliminer les boucles et trouver la meilleur route





#### EIGRP: voisinage et information topologique

- Quand 2 routeurs se sont mutuellement découvert voisins, ils échangent complètement leur table de routage
- Ensuite, des messages Hello sont constamment échangés afin de manifester sa présence (1 tous les 5 sec)
  - R1(config-if)#ip hello-interval eigrp 1 60 //60sec pour AS 1
  - R1(config-if)#ip hold-interval 1 eigrp 1 180 //180sec pour AS 1 inactive
- Quand une modification topologique est constatée, seules les nouveautés sont échangées
  - Informations partielles: transmission de la modification
  - Relatives aux changements de route

57









#### **Diffusing Update Algorithm (DUAL)**

- EIGRP et chemin sans boucle?
  - Algorithme: DUAL
- Les voisins de A:
  - B avec un cout de 10
  - C avec un cout de 10
  - D avec un cout de 30
- Ces valeurs pour le cout sont appelés:
   Reported Distance (RD)
- RD est le cout annoncé par chaque voisin



61



#### **Diffusing Update Algorithm (DUAL)**

- Sur le routeur A, le cout pour acceder à E est:
  - 20 via B
  - 25 via C
  - 45 viaD
- Le meilleur chemin est via B, avec un cout de 20



• FD: feasible distance (FD) est 20 dans ce cas





#### **Diffusing Update Algorithm (DUAL)**

- A utilise FD et RD pour trouver les chemins sans boucle (loop-free)
- FD: meilleur chemin
- Eventuel successeur (Feasible Successor): chemin avec RD plus petit que FD ne contient pas une boucle
- Certains chemins sans boucles seront considérés avec boucle



63

## .

#### The Diffusing Update Algorithm (DUAL)

- Sur le routeur A:
  - Le chemin via B est le moins coutant, FD=20

C peut atteindre E avec un coût de 10; 10 (RD) est plus petit que 20 (FD)

- ⇒ Ce chemin ne contient pas une boucle
- $\Rightarrow$  loop-free.

D peut atteindre E avec un coût de 30; 30 (RD) n'est pas plus petit que 20 (FD),

EIGRP suppose que ce chemin contient une boucle







- Si une route devient inactive
  - Utilisation de la route de secours dans le table de topologie (s'il y a un chemin alternatif)
  - Sinon, requête en multicast pour un chemin alternatif
- EIGRP maintiens 3 tables:
  - Neighbor table
  - Topology table
  - Routing table











### **Basic EIGRP Configuration**

```
R1(config) #router eigrp 1
R1(config-router) #network 172.16.0.0
R1(config-router) #network 192.168.10.0

R2(config-router) #network 172.16.0.0
%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 172.16.3.1 (Serial0/0/0) is up: new adjacency R2(config-router) #network 192.168.10.8 0.0.0.3

R3(config) #router eigrp 1
R3(config-router) #network 192.168.10.0
%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.10.5 (Serial0/0/0) is up: new adjacency R3(config-router) # %DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.10.9 (Serial0/0/1) is up: new adjacency R3(config-router) #network 192.168.1.0
```