به نام خدا

درس طراحي الگوريتم

تمرین سری اول

مدرس درس: سرکار خانم دکتر ملکی

تهیه شده توسط: الناز رضایی ۹۸۴۱۱۳۸۷

تاریخ ارسال: ۱۴۰۱/۱۲/۰۵

سوال ١:

لاک پشتی می خواهد از خانه ی آبی به خانه ی قرمز برود او در هر حرکت می تواند به خانه ی راست یا خانه ی پایین یا خانه ی راست و پایین برود (او از خانه ی (j,i)) می تواند به خانه ی (j,i+i) یا (j,i+i) یا (j,i+i) برود). هزینه ی رفتن به هر خانه در آن نوشته شده است با استفاده از (j,i+i) به او کمک کنید کم هزینه ترین مسیر را پیدا کند. پیچیدگی زمانی و حافظه الگوریتم خود را بدست آورده و نحوه محاسبه آنها را توضیح دهید.

مسير حركت لاكپشت

1	3	3	5	4
5	7	4	4	3
2	3	2	6	2
8	5	6	4	1
3	1	2	5	3

پاسخ ۱:

برای حل این سوال با استفاده از DP، لازم است تا یک جدول با سایز برابر جدول داده شده درست کنیم. سپس، خانه (0,0) table(0,0) مقداردهی میکنیم. سطر اول table(0,j-1) table(0,j-1) و هزینه خانه table(0,j-1) و هزینه table(0,j-1) و هزینه table(0,j-1) و مقدار دهی میکنیم. برای ستون اول نیز، به همین روش عمل میکنیم و خانههای table(i,0) و هزینه همان خانه table(i,0) به دست می آوریم. table(i,0)

$$table(0,0)=1$$
 , $table(0,1)=4$, $table(0,2)=7$, $table(0,3)=12$
$$table(0,4)=16$$
 , $table(1,0)=6$, $table(1,2)=8$, $table(1,3)=16$
$$table(1,4)=19$$

1	4	7	12	16
6				
8				
16				
19				

حال برای پر کردن مابقی خانههای جدول، مینیمم ۳ خانه دیگری که میتوانیم از آنها به این خانه برسیم (خانههای table(i-1,j-1) table(i-1,j-1) table(i-1,j-1) , را به دست آورده و با هزینه آن خانه table(m,n) جمع میکنیم و به همین ترتیب جدول را پر میکنیم تا به خانه table(m,n) برسیم. جواب مسئله برابر با table(m,n) میباشد.

$$table(1,1) = min(1,4,6) + 7 = 8 \quad , \quad table(1,2) = min(4,7,8) + 4 = 8$$

$$table(1,3) = min(7,12,8) + 4 = 11 \quad , \quad table(1,4) = min(12,16,11) + 3 = 14$$

1	4	7	12	16
6	8	8	11	14
8				
16				
19				

table(2,1) = min(6,8,8) + 3 = 9 , table(2,2) = min(8,8,9) + 2 = 10 table(2,3) = min(8,10,11) + 6 = 14 , table(2,4) = min(11,14,14) + 2 = 13

1	4	7	12	16
6	8	8	11	14
8	9	10	14	13
16				
19				

 $table(3,1) = min(8,9,16) + 5 = 13 \quad , \quad table(3,2) = min(9,10,13) + 6 = 15$ $table(3,3) = min(10,14,15) + 4 = 14 \quad , \quad table(3,4) = min(14,13,14) + 1 = 14$

1	4	7	12	16
6	8	8	11	14
8	9	10	14	13
16	13	15	14	14
19				

table(4,1) = min(16,13,19) + 1 = 14 , table(4,2) = min(13,15,14) + 2 = 15 table(4,3) = min(15,14,15) + 5 = 19 , table(4,4) = min(14,14,19) + 3 = 17

1	4	7	12	16
6	8	8	11	14
8	9	10	14	13
16	13	15	14	14
19	14	15	19	17

هزینه بهترین مسیر، ۱۷ میباشد. همچنین برای یافتن بهترین مسیر نیز کافیست از خانه (۰و۰) جدول شروع کرده و در هر مرحله از بین مسیرهای ممکن، کمترین را انتخاب کرده و به سمت آن حرکت کنیم. بنابراین مسیر انتخابی به شکل زیر در می آید.

1-	→4	→ 7	12	16
6	8	8	11	14
8	9	10	14	13
16	13	15	14	14
19	14	15	19	17

