Comparing cross-language phonological profiles

George Moroz

Linguistic Convergence Laboratory (HSE University)

November 9, 2021

presentation is available here: tinyurl.com/yj2tacek

1

• During the talk in our Lab with Misha and Ezequiel

Jeff Good: How you came up with the idea of calculating phonological distances? Is it some established procedure?

Me: No, we thought that it is the most obvious step...

2

• During the talk in our Lab with Misha and Ezequiel

Jeff Good: How you came up with the idea of calculating phonological distances? Is it some established procedure?

Me: No, we thought that it is the most obvious step...

The second reason:

The main reason for this talk is that I performed calculation of phonological distances (or caused people to do so) for Circassian languages [?] and Andic branch of East Caucasian languages [???] in order to get a simple less-connected to language phylogeny distance between different idioms.

The main reason for this talk is that I performed calculation of phonological distances (or caused people to do so) for Circassian languages [?] and Andic branch of East Caucasian languages [???] in order to get a simple less-connected to language phylogeny distance between different idioms.

But does this measure make any sense? How can we compare phonological profiles of languages?

The main reason for this talk is that I performed calculation of phonological distances (or caused people to do so) for Circassian languages [?] and Andic branch of East Caucasian languages [???] in order to get a simple less-connected to language phylogeny distance between different idioms.

But does this measure make any sense? How can we compare phonological profiles of languages?

Unlike lexicostatistical distance the phonological distance can be an evidence for language contact, since languages can adopt some feature or property of another (see [?]). This can be possible explained by Perceptual Magnet framework [?]. In most cases phonological change in unrelated languages is more salient to linguists, however it is worth mentioning that there is a work about how to catch contact-induced change in related languages [?].

Materials for the analysis

Materials for the phonological distance calculation can be different:

- segment¹ inventory (and grammar, if you are lucky);
- dictionaries;
- parallel corpora;
- unparalleled corpora.

¹Lets leave the phonology vs. phonetics debate aside.

Overview

Criticism by [?]

Complexity based approaches

Distance based approaches

Criticism by [?]

[?] attacks UPSID¹-like researches:

- phoneme masks allophones
 - Standard High German $/\varsigma/$ stands for $[\varsigma]$, [x] and $[\chi]$;
 - "The allophone no longer represents the phoneme, it *replaces* it";
- phonological relations between segments is lost
 - comparing just vowel inventories it is impossible to get information about e. g. vowel harmony;
- there is no non-arbitrary way of assign phonological features (e. g. SPE [?]) to segments.

¹UPSID stands for UCLA Phonological Segment Inventory Database [?] which consists of the phonemic systems of a representative sample of 451 (this number changes from publication to publication) of the world's languages in machine-readable form. Now UPSID can be accessed via PHOIBLE database [?].

Criticism by [?]

[?] attacks UPSID¹-like researches:

- phoneme masks allophones
 - Standard High German $/\varsigma/$ stands for $[\varsigma]$, [x] and $[\chi]$;
 - "The allophone no longer represents the phoneme, it *replaces* it";
- phonological relations between segments is lost
 - comparing just vowel inventories it is impossible to get information about e. g. vowel harmony;
- there is no non-arbitrary way of assign phonological features (e. g. SPE [?]) to segments.

My metaphor: omelet and pancakes share all ingredients, but they are significantly different meals.

¹UPSID stands for UCLA Phonological Segment Inventory Database [?] which consists of the phonemic systems of a representative sample of 451 (this number changes from publication to publication) of the world's languages in machine-readable form. Now UPSID can be accessed via PHOIBLE database [?].

Overview

Criticism by [?]

Complexity based approaches

Distance based approaches

[?] and [?]

[?] and [?]

- [?]
 - [?] [?]

 - [?]
- [?]

 - [?] [?]

The main goal of this paper is to calculate overall complexity for a typological sample of languages based on phonology, synthesis, classification (gender, numeral classifiers), syntax, and lexicon. The main goal is too prove:

- that all languages are not equal in complexity;
- that different parts of grammar do not compensate for complexity in other parts of grammar.

The main goal of this paper is to calculate overall complexity for a typological sample of languages based on phonology, synthesis, classification (gender, numeral classifiers), syntax, and lexicon. The main goal is too prove:

- that all languages are not equal in complexity;
- that different parts of grammar do not compensate for complexity in other parts of grammar.

Phonological features in the

- number of contrastive manners of articulation in stops;
- number of vowel quality distinctions;
- tone system (none/simple/complex, after [?]);
- syllable structure (after [?]).

[?: 116]: results

'Secondary distinctive features' are important for phonologization:

- nasals in French: saint [sɛ̃] < Latin sanctus 'holy';
- average Fo contour of vowels following English stops is falling after voiceless and rising after voiced.

They are not captured by the segmental inventories.

Allophones, like English $/t/: [t^h]$ vs [t] vs [f] (cf [?]).

• Merged measure for consonants, vowels, tones and syllable structure;

Indonesian	Birom	Kiowa
(Austronesian)	(Niger-Congo; Nigeria)	(Kiowa-Tanoan; USA)
p t k	p t k kp	p t k?
		p ^h t ^h k ^h
b d g	b d g gb	b d g p' t' k'
t∫ dʒ	t∫ dʒ	ts ts'
$f s \int x h$	f s h	s h
Z	V Z	z
т п п	m n ŋ	m ņ
1 r	1 r	фţ
w j	w j	j j

• Merged measure for consonants, vowels, tones and syllable structure;

Indonesian = 24	Birom = 27	Kiowa = 32
1 1 1	1 1 1 2	1 1 1 1
		2 2 2
1 1 1	1 1 1 2	1 1 1
		2 2 2
1 2	1 2	1 2
1 1 1 1 1	1 1 1	1 1
2	2 2	2
1 1 1 1	1 1 1	1 1
1 1	1 1	3
1 1	1 1	1

- Merged measure for consonants, vowels, tones and syllable structure;
- The number of possible distinct syllables allowed by the language (cf [?]);
- Frequency measures based on lexicon or texts (cf [?] for Andic):

"To compare these data, it is useful to calculate some kind of index. There are a number of ways this might be done. One possibility is to calculate a summed frequency × complexity score over the top ten segments, in which each segment contributes decreasingly according to its rank, and increasingly according to its complexity". [?: 97]

• In this work authors use phonological features as a distances between segments and then use graphs with segments in the nodes and distances in the edges:

STEP 1	STEP 2	STEP 3
We compute the <u>direct</u> phonetic	Identification of pairs of	Suppression of costly
distance for each phonemes	phonemes for which an	direct paths.
pair.	indirect path requires	
	smaller "jumps" than the	
	direct one.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} i & 2 & u \\ 2 & 4 & 4 & 2 \\ e: & 2 & 0: \\ 3 & 4 & 3 \end{array} $	$ \begin{array}{c c} i & 2 & u \\ 2 & 2 & o \\ 2 & a & a \end{array} $

- In this work authors use phonological features as a distances between segments and then use graphs with segments in the nodes and distances in the edges.
- Afterwords authors use *off-diagonal complexity* proposed by [?]¹ that make it possible to disassociate from linguistics and phonology and rely purely on graph structure.

- does not explicitly take into account graph size;
- is sensitive to the presence of hierarchical sub-structures in the network;
- is minimal for regular graphs and maximal for free-scale graphs. Unfortunately, off-diagonal complexity can not be calculated for valued graphs, so

authors were ought to drop phonological distance values from their graphs.

¹Authors motivated their choice, because this measure

- 'All Languages are Equally Complex' is a legend (actually, a lot of papers from [?] state the same).
- Complexity is a polysemous notion: some scholars focus on multipartite nature of language, others on complicated relations within the system.
- Overall complexity is better to present as a vector of values rather then one value.

Conclusions

Despite of the critics that language phonological system is a complex system that can not be reduced to the set of its elements [????] I think that any phonological complexity measure can be used in order to compare different languages. The sophistication and granularity of this measure will influence the possible effect size gathered by this measure.

Overview

Criticism by [?]

Complexity based approaches

Distance based approaches

Distance based approaches

- [?] (after [?])
- [?]
- [?]
- [?
- [?]

In this paper authors apply Jaccard similarity between two phoneme inventories, that is ratio of similar segments in two languages out of all possible segments in two languages.

In this paper authors apply **Jaccard similarity** between two phoneme inventories, that is ratio of similar segments in two languages out of all possible segments in two languages.

The reason, why authors do that is because their goal is to compare different inventories of the **same** languages across four databases of phonological inventories (UPSID [?], LAPSyD [?], Core PHOIBLE [?], JIPA [?]). The results are unfavorable: researchers found a high degree of variation across datasets.

[?] after [?]

- Extract unit (it can be segments, syllables or phonological features) frequencies from corpora or dictionary.
- The distance between two languages is the sum of the differences between the corresponding unit frequencies.

[?] after [?]

Authors applied the same stratagy as [?], but used words as a corpora. So the idiom distance is calculated as an average word distance.

Since [?] and [?] methods does not account for unit order Heeringa decided to use Levenstein distance [?]. The Levenstein distance is the minimum number of unit edits (insertions, deletions or substitutions) that should be applied to the unit string in order to get another:

- the distance between sing and king is 1
- the distance between sing and sign is 1
- the distance between sing and sight is 3

Shortcoming:

- diphthong vs. vowel + consonant combination (/au/ or /aw/?);
- suprasegmental features;
- sequence length: the longer the sequences, the greater the chance of differences between them.

To address the sequence length problem [?] uses normalization by the length of the alignment:

All four examples are normalized by the value 3.

[?]: interlanguage stimuli mismatch

- It is possible that for one of the pair of idioms one lack stimuli, then the effect of this stimuli is discounted.
- In case of multiple transcription they are matched according the minimum distance:
 - L1: [hys]; L2: [hys] and [hus]
 - L1: [hys] and [hus]; L2: [hys] and [hus]

Conclusions

Thank you for your attention!

- Anderson, C., Tresoldi, T., Greenhill, S. J., Forkel, R., Gray, R. D., and List, J.-M. (2021). Measuring variation in phoneme inventories (preprint v1). *Research Square*.
- Andersson, S., Sayeed, O., and Vaux, B. (2017). The phonology of language contact. *Oxford Handbooks Online*.
- Baird, L., Evans, N., and Greenhill, S. J. (2021). Blowing in the wind: Using 'north wind and the sun'texts to sample phoneme inventories. *Journal of the International Phonetic Association*, pages 1–42.
- Blevins, J. (2017). Areal sound patterns: From perceptual magnets to stone soup. *The Cambridge handbook of areal linguistics*, 5587.
- Bowern, C. (2013). Relatedness as a factor in language contact. *Journal of Language Contact*, 6(2):411–432.

- Chomsky, N. and Halle, M. (1968). *The sound pattern of English*. Harper and Row.
- Claussen, J. C. (2007). Off-diagonal complexity: A computationally quick complexity measure for graphs and networks. *Physica A: Statistical Mechanics and its Applications*, 375(1):365–373.
- Coupé, C., Marsico, E., and Pellegrino, F. (2009). Structural complexity of phonological systems. In *Approaches to phonological complexity*, pages 141–170. De Gruyter Mouton.
- Deutscher, G. (2009). "overall complexity": a wild goose chase? In *Language complexity as an evolving variable*, pages 243–252. Oxford University Press.
- Eden, S. E. (2018). *Measuring phonological distance between languages*. PhD thesis, University College London.

- Heeringa, W. J. (2004). *Measuring dialect pronunciation differences using Levenshtein distance*. PhD thesis, University Library Groningen.
- Hoppenbrouwers, C. A. J. and Hoppenbrouwers, G. A. (2001). *De indeling van de Nederlandse streektalen: dialecten van 156 steden en dorpen geklasseerd volgens de FFM*. Uitgeverij Van Gorcum.
- Maddieson, I. (2009). Calculating phonological complexity. In *Approaches to phonological complexity*, pages 83–110. De Gruyter Mouton.
- Maddieson, I. (2013a). Syllable structure. In Dryer, M. S. and Haspelmath, M., editors, *The World Atlas of Language Structures Online*. Max Planck Institute for Evolutionary Anthropology, Leipzig.

- Maddieson, I. (2013b). Tone. In Dryer, M. S. and Haspelmath, M., editors, *The World Atlas of Language Structures Online*. Max Planck Institute for Evolutionary Anthropology, Leipzig.
- Maddieson, I. and Abramson, A. S. (1987). Patterns of Sounds. *The Journal of the Acoustical Society of America*, 82(S1):720–721.
- Maddieson, I., Flavier, S., Marsico, E., Coupé, C., and Pellegrino, F. (2013). Lapsyd: Lyon-Albuquerque phonological systems database. In *Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH.*
- Moran, S. and McCloy, D., editors (2019). *PHOIBLE* 2.0. Max Planck Institute for the Science of Human History, Jena.
- Moroz, G. (2020). Comparing phonological systems and syllable structure of Botlikh and Zilo Andi: a data—driven analysis.

- Nerbonne, J. and Heeringa, W. (2001). Computational comparison and classification of dialects. *Computational Comparison and Classification of Dialects*, 9:69–83.
- Nichols, J. (2009). Linguistic complexity: a comprehensive definition and survey. In *Language complexity as an evolving variable*, pages 110–125. Oxford University Press.
- Ohala, J. J. (2009). Languages' sound inventories: the devil in the details. In *Approaches to phonological complexity*, pages 47–58. De Gruyter Mouton.
- Pellegrino, F., Marsico, E., Chitoran, I., and Coupé, C. (2009). Approaches to phonological complexity, volume 16. Walter de Gruyter.
- Sampson, G., Gil, D., and Trudgill, P. (2009). *Language complexity as an evolving variable*. Oxford University Press.

- Shosted, R. K. (2006). Correlating complexity: A typological approach. *Linguistic Typology*, 10(1):1–40.
- Simpson, A. P. (1999). Fundamental problems in comparative phonetics and phonology: does UPSID help to solve them. In *Proceedings of the 14th international congress of phonetic sciences*, volume 1, pages 349–352.
- Tsyzova, A. and Zhang, W. (2021). Harmony effects in andic languages. Term paper.
- Давиденко, 🗓 🗓 (2021). Сравнение фонологических систем, полученных на основе словарей и корпусов: данные андийских языков. Выпускная курсовая работа.

Левенштейн, 🗈 🗈 (1965). Двоичные коды с исправлением выпадений, вставок и замещений символов. In Доклады Академии наук, volume 163, pages 845–848. Российская академия наук.

Мороз, \mathbb{Z} \mathbb{Z} (2021). Некоторые вопросы сегментной и супрасегментной фонологии и фонетики адыгских языков. PhD thesis, Higher School of Economics, Moscow.