ECE2810J

Data Structures and Algorithms

Red-black Trees

Learning Objectives:

- Know what a red-black tree is and its properties
- Know how to do insertion for a red-black tree

Outline

Red-black Trees: Basics

Red-black Trees: Insertion

Red-Black Tree

- A binary search tree. The data structure requires an extra one-bit color field in each node.
- Property
- 1. Every node is either red or black (we use white for better visualization).
- 2. Root rule: The root is black.
- 3. Red rule: Red node can only have black children.
 - Can't have two consecutive red nodes on a path.

4. Path rule: Every path from a node x to NULL must have the same number of black nodes (including x itself).

Red-Black Tree Example

- Property
- 1. A binary search tree
- 2. Every node is either red or black (we use white for better visualization).
- 3. Root rule: The root is black.
- 4. Red rule: Red node can only have black children.
- 5. Path rule: Every path from a node x to NULL must have the same number of black nodes (including x itself).

Counter Example

- Property
- 1. A binary search tree
- 2. Every node is either red or black.
- 3. Root rule: The root is black.
- 4. Red rule: Red node can only have black children.
- Path rule: Every path from a node x to NULL must have the same number of black nodes (including x itself).
- ▶ <u>Claim</u>: a chain of length 3 cannot be a red-black tree

Black Height

Black height of a node x is the number of black nodes on the path from x to NULL, including x itself.

Which Statements Are Correct?

- **A.** It is possible for a **red** node to have a single child.
- **B.** It is possible for a **black** node to have a single child.
- **C.** It is possible for a node to have two children of different colors.
- **D.** It is possible for a node to have two children and the node and its children are all of the same color.

Implication of the Rules

- If a red node has at least one child, it <u>must have</u> two children and they must be black.
 - ► Why?
 - ► A red node's child can only be black.
 - ▶ If has only one black child, then violate the path rule.
- If a black node has only one child, that child must be a red leaf.
 - ► Why?
 - ► Can't be black.
 - Must be a leaf.

Height Guarantee

- ▶ Claim: every red-black tree with n nodes has height $\leq 2 \log_2(n+1)$.
- Proof:
 - In a binary tree with n nodes, there is a root-NULL path with at most $\log_2(n+1)$ nodes. (why?)
 - ► Thus: # black nodes on that path $\leq \log_2(n+1)$.
 - ▶ By path rule: every root-NULL path has $\leq \log_2(n+1)$ black nodes.
 - ▶ By red rule: every root-NULL path has $\leq 2 \log_2(n+1)$ total nodes.

Operations on Red-Black Trees

- All query operations (e.g., search, min, max, succ, pred) work just like those on general BST.
 - ▶ They run in $O(\log n)$ time on a red-black trees with n nodes in the worst case.
- ► The modifying operations "insertion" and "removal" must maintain the redblack tree properties.
 - ► They are complex.

Outline

Red-black Trees: Basics

Red-black Trees: Insertion

Insertion

- New node is always a leaf.
 - ► However, it can't be black!
 - ▶ Otherwise, violate path rule.
 - ▶ Therefore the new leaf must be red.
- If parent is black, done (trivial case).
- If parent is red, violate the red rule!

We have to do some work...

Modification: Rotation in AVL Tree

- Maintain the binary search tree property.
- ▶ Can be done in O(1) time.

Modification: Recoloring

Invariants

- Red Rule: Red nodes do not have Red children
- ▶ Black Height Rule (Path Rule): Paths that stem from the same node have the same black heights.

Insertion: Sketch

- \triangleright Insert x as a leaf.
- \triangleright Color x red.
 - ▶ Only red rule may be violated.
- Move the violation up the tree by recoloring/rotation.
 - ▶ At some point, the violation will be fixed.

Key idea:

We prioritize the maintenance of the **Black Height Rule** over the **Red Rule**

- Note: only red rule may be violated by inserting a (red) node as a leaf.
- When violating, its parent is red and its grandparent is black.
- **Denote**: the inserted node as "I", its parent as "P", its grandparent as "G".

Which Statements Are Correct?

- Suppose there is a violation at the leaf. Suppose the parent of the inserted node is "P".
 Select all the correct statements.
- **A.** P could be a non-leaf in the original tree.
- **B.** P could have a sibling.
- C. P could have no siblings.
- **D.** P could have a sibling and that sibling must be a leaf node.

- ▶ **Note**: only **red rule** may be violated by inserting a (red) node as a leaf.
- When violating, its parent is red and its grandparent is black.
- **Denote**: the inserted node as "I", its parent as "P", its grandparent as "G".
- ▶ Claim: in the old tree, "P" is a leaf, i.e., has no children.

- Assume: the parent "P" is the left child of the grandparent "G".
 - ► The "right child" case is symmetric.
- Denote: the right child of the grandparent to be Q.
- Claim: Q is either a red leaf or a NULL.
 - ► Why?

- ► Three cases:
 - 1. Q is a red leaf.

2. Q is empty; I is P's left child.

3. Q is empty; I is P's right child.

Case 1: Q is a red leaf.

May recurse, since G's parent may be red.

► Case 2: Q is empty; I is P's left child.

► Case 3: Q is empty; I is P's right child.

Violation at Leaf: Summary

- For Case 2 (Q is empty; I is P's left child) and Case 3 (Q is empty; I is P's right child), we're done.
- ▶ For Case 1 (Q is a red leaf), we may recurse.
 - ▶ Violation of red rule.

- Caused by moving the violation up the tree.
- When violating, its parent is red and its grandparent is black.
- Assume: the parent "P" is the left child of the grandparent "G". (The "right child" case is symmetric.)
- Denote: the right child of the grandparent to be Q.

- Three Cases:
 - 1. Q is a red node.

► Claim:

- \triangleright α , β , γ , δ , ϵ are trees with **black root**.
- \triangleright α , β , γ , δ , ϵ have the <u>same</u> black height.

- Three Cases:
 - 2. Q is a black node; I is P's left child.
 - 3. Q is a black node; I is P's right child.
- Claim for Case 2 and 3:
 - \triangleright α , β , γ , Q are trees with black root.
 - \triangleright α , β , γ , Q have the <u>same black height</u>.

► Case 1: Q is a red node.

May **recurse**, since G's parent may be red.

► Case 2: Q is a **black node**; I is P's **left** child.

Case 3: Q is a black node; I is P's right child.

Violation at Internal Nodes: Case 3 (cont.)

Violation at Internal Nodes: Summary

- ► For Case 2 (Q is a black node; I is P's left child) and Case 3 (Q is a black node; I is P's right child), we're done.
- ► For Case 1 (Q is a red node), we may recurse.
 - ▶ Violation of red rule.

Final Step: Violation Fix at the Root

- ▶ By moving the violation up the tree ...
 - ... the root may become red.
- Final step: set root to be black.
 - ▶ All red-black tree properties are now <u>restored</u>.

Example

▶ Insert 1

▶ Insert 8

Example (cont.)

► Insert 2

Insert 5

Case 3 at

Runtime Complexity

- Number of rotations required
 - ► For case 1, only need to recolor, no rotation.
 - ▶ For case 2 or 3, perform 1 or 2 rotations and terminate.
 - ▶ Thus: # rotations = O(1).
- Number of recoloring required
 - ▶ Worst case: $O(\log n)$
- Runtime complexity is $O(\log n)$.

Compared Against AVL Tree

- Tree is less balanced
 - ▶ Bad for search
 - ▶ Good for insertion/deletion
- What's the best DS for
 - ▶ Database (lots of lookups, fewer modifications)?
 - Stock market transactions (lots of modifications)?

Deletion in RB Tree

- ▶ What kind of a node is to be removed from RB Tree?
 - Single child or leaf nodes
- ▶ What kind of a node could be a leaf node in an RB tree?
 - ► A red node?
 - ► A black node?

- What kind of a node would have a single child in an RB tree?
 - ► A red node?
 - ► A black node?

Deleting a Red Node

- Simple?
- Simple
 - Just remove it
 - ► No black height change
 - ► No red rule violations

Deleting a Black Node

- Simple case:
 - ▶ Black node with a red child
- Solution:
 - Delete
 - Recoloring

Deleting a Black Leaf

- This is complicated!
 - ▶ Black height changes!
 - ▶ Reduced by 1
- Fix: somehow retain the black height
 - Fix top: turn a red node to black!
 - Fix bottom: maintain the black path rule downward

Sibling Has Red Children

Sibling has red children:

▶ We have 3 or 4 nodes left! This means we can rearrange the nodes!

Sibling Has No Red Children

Case 1: Sibling is black

Just and recolor the sibling

- ► The end?
 - ▶ Nope. The black height of p is reduced! Need recursion!

S

Fix Double-Black

Consequences with recoloring the sibling:

Sibling now has the same black height!

So... Recurse

Sibling Has No Red Children

Case 2: Sibling is Red

- The sibling must have 2 black children
- ▶ After the deletion we will have 4 nodes
- ▶ This means we can restructure and recolor once again!

When Does Double-Black Stop

- Until all the way to the root
- Example: delete 1

Or No More Double Black + Black Sibling without Red Children

Example #2

Recommended Materials

