1.1: Quantização áudio

Qual é a quantidade de bits utilizadas comumente na conversão de sinais de áudio?

A quantidade de bits utilizada comumente na conversão de sinais de é de 8 bits, para áudios musicais (como no formato mp3) são utilizados 16 bits.

Questão. 1.2: Aliasing O que é aliasing e anti-aliasing?

Aliasing é um efeito que provoca o serrilhamento de um contorno em uma imagem ou na forma de onda de um sinal. Anti-aliasing (AA) é uma técnica utilizada para remover ou amenizar esse efeito. Vale ressaltar que existem várias técnicas de anti-aliasing principalmente para games e CAD, podendo exigir mais de seu motor gráfico. Adaptando para o assunto dos conversores analógicos digitais, o aliasing ocorre quando a frequência de amostragem é incompatível segundo o teorema de Nyquist. Para isto, deve-se utilizar filtros anti-aliasing (filtro passa baixa) para atenuar as frequências maiores que a de amostragem.

Figura da esquerda sem AA. Figura central e a direita com diferentes técnicas de AA

Efeitos da amostragem sem aliasing (a) e com aliasing (b).

1.3: SNR

O que é signal-to-noise ratio (SNR) e como isso afeta os conversores?

Signal to noise ratio ou relação sinal ruído é um fator muito utilizado em telecomunicações no qual indica a razão entre a potência do sinal e do ruído atuante. Esse fator é importante para determinar a precisão da aferição do conversor, devido ao erro provocado pelo ruído.

1.4: **ENOB**

Effective Number of Bits é um parâmetro importante em um ADC, o que ele significa?

Effetive number of bits ou número efetivo de bits é um parâmetro importante em um ADC, ele indica a quantidade de bits utilizados que não são afetados devido ao erro provocado pelo ruído. Portanto ENOB é um parâmetro que especifica a resolução do conversor digital.

1.5: Tipos de conversores

Explique de forma mais detalhada o conversor de aproximação sucessiva.

O conversor de aproximação sucessiva possui uma configuração que otimiza a checagem do sinal utilizado ao invés de checar cada combinação por meio de uma rampa (conversor de rampa única).

O sinal aplicado à entrada é retido pelo circuito de amostragem e retenção, colocado na entrada do comparador e ao mesmo tempo dispara o circuito de clock do setor de conversão digital.

Ao iniciar a conversão, o registrador de aproximações sucessivas começa colocando em 1 o bit mais significativo (MSB) da saída, aplicando este sinal no conversor D/A.

Se, com este procedimento, a tensão aplicada pelo conversor D/A à entrada de referência do comparador for maior que a de entrada, isso será um sinal de que o valor que este bit representa é maior que aquele que se deseja converter.

O comparador informa isso ao registro de aproximações que, então, volta o MSB a zero e coloca o bit que o segue imediatamente em 1. Uma nova comparação é feita. Se agora o valor da tensão for menor que o de entrada, este bit é mantido, e testa-se o seguinte, colocando em 1. Se novamente o valor for ultrapassado, o comparador informa isso ao registro e o bit volta a zero passando o seguinte a 1, que é testado.

Quando todos os bits forem testados, tem-se na saída do registro um valor binário muito próximo do desejado, dependendo da resolução do circuito.

Fluxograma do conversor de aproximação sucessiva

2.1: 1Mhz

Qual a maior frequência que podemos amostrar com essa taxa de amostragem?

O Teorema de Nyquist diz que para amostrar um sinal corretamente, deve-se utilizar uma frequência de amostragem que seja ao menos o dobro da máxima frequência do sinal. Portanto:

$$F_a = 2.F_m \leftrightarrow F_m = \frac{F_a}{2} \leftrightarrow F_m = 500khz$$

Sendo:

 F_a – Frequência de amostragem;

 $\vec{F_m}$ – Máxima frequência do sinal.

2.2: Pinos Indique o PIO e o PINO referente a cada uma das 16 entradas do mux.

Periférico	PINO	PIO
ADC	AD0	PA17
ADC	AD1	PA18
ADC	AD2/WKUP9	PA19
ADC	AD3/WKUP10	PA20
ADC	AD4/RTCOUT0	PB0
ADC	AD5/RTCOUT1	PB1
ADC	AD6/WKUP12	PB2
ADC	AD7	PB3
ADC	AD8	PA21
ADC	AD9	PA22
ADC	AD10	PC13
ADC	AD11	PC15
ADC	AD12	PC12
ADC	AD13	PC29
ADC	AD14	PC30

O pino AD15 está conectado com o sensor de temperatura interno da placa.

2.3: Consumo

Qual a corrente consumida pelo sensor de temperatura?

A corrente consumida pelo sensor possui um valor mínimo de 50μA, valor nominal de 70μA e valor máximo de 80μA.

2.4: Tensão de referência

- Qual o pino do uC referente a tensão de referência? O pino é ADVREF.
- Qual o valor máximo e mínimo que essa tensão pode assumir?
 Os valores vão de 2,4V até 3,6V.
- Qual o valor conectado nesse pino para o kit SAM4S-EK2? Este pino pode ser configurado como 2,5V ou 3,3V através do jumper JP2.

2.5: Diagrama de blocos

Localize no diagrama de blocos os componentes comentados anteriormente (MUX, Ganho, DMA, Trigger).

2.6: ADC timings

No datasheet, localize os tempos:

ADC Startup time

Tempo de 20 a 40µs no modo sleep para o modo normal. Tempo de 4 a 12µs no modo fast wake-up para o modo normal.

Tracking Time

Tempo de 15µs.

Conversion Time

Tempo de 20µs.