CSL 759 - Cryptography and Network Security

Jan 08, 2014

Lecture 3: Strong and Weak One Way Functions

Instructor: Shweta Agrawal Scribe: Sudarshan Maurya

1 Strong-One Way Function

Definition 1 A function $f: \{0,1\}^* \to \{0,1\}^*$ is one-way function if it satisfies the following two conditions:

- 1. f can be computed in PPT.
- 2. For every PPT algoritm A, \exists negligible function ϵ such that \forall n, $Pr[x \xleftarrow{Rand.} \{0,1\}^n, A(f(x)) \rightarrow z$ $s.t.f(z) = f(x)] \leq \epsilon(n)$

In simple words, $Pr(A \text{ inverts } f(x) \text{ for random } x) \leq \text{negligible}.$

2 Weak-One Way Function

Definition 2 A function $f: \{0,1\}^* \to \{0,1\}^*$ is one-way function if it satisfies the following two conditions:

- 1. f can be computed in PPT.
- 2. For every PPT algoritm A, $\exists \ poly \ q \colon N \to R \ such \ that \ \forall n,$ $Pr[x \xleftarrow{Rand.} \{0,1\}^n, A(f(x)) \to z \ s.t. \ f(z) = f(x)] < 1 - \frac{1}{q(n)}$

Lemma 1 Let f be a weak OWF then \exists polynomial m s.t. for $\frac{1}{p}$ XXX length n, the following function

$$g: \{0,1\}^{mn} \to \{0,1\}^m$$

Or, $g(x_1, x_2, x_3, \dots, x_m) = f(x_1) \cdot f(x_2) \cdot \dots \cdot f(x_m)$

3 Converting Weak OWF to Strong OWF

Definition 3 Let q be polynominal in weak OWF, Define m=2nq. We want,

$$(1-\frac{1}{q})^m \to negligible \ \mathcal{E}(1-\frac{1}{q})^{2nq} = (\frac{1}{e})^n$$

Proof. (By contradiction)

Basic Idea: Assume g is not a strong OWF and then derive that f is not weak OWF.

$$Pr[x_1 \leftarrow \{0,1\}^n, A^{strong}(g(x_1, x_2, x_3, \dots, x_m)) \rightarrow inverse] \ge \frac{1}{p'(mn)} = \frac{1}{p'(mn)}$$

$$Pr([x_1 \leftarrow \{0,1\}^n, A^{strong} suceeds] \ge \frac{1}{p(n)}$$

GOAL: Given $A^{strong}(y_1, y_2, ..., y_m) = z_1, z_2...z_m$ such that $f(z_i) = y_i$

We want to build some A^{weak} that inverts of $XXXX > 1 - \frac{1}{a}$.

* We want to build $A^{weak}(f(x))$ which outputs $f^{-1}(f(x))$ and it already has $A^{str}(g(x_1, x_2, x_3, ..., x_m))$ Algo A^{weak} :

- (i). Run Algo I $2npm^2$ times
- // Begin Algo I
 - 1. Pick $i \in [1, m]$ randomly and let $y_i = f(x)$
 - 2. $\forall j \neq i$, pick $x_i \leftarrow \{0,1\}^n \& \text{ let } y_1 = f(x_i)$
 - 3. Invoke $A^{str}(y_1, y_2, ...ym)$
 - 4. Test if output is correct

//End Algo I

(ii) Output first answer of I that is not XXXX //End $Algo^{str}$

Now: Show that A^{weak} succeeds with probability $P > 1 - \frac{1}{q}$ Relate Pr(A^{wk} succeeds) to Pr(Algo I success)

- $GOOD = \{x : \text{Pr (Algo I succeeds in inverting } f(x)) \ge \frac{1}{2m^2p}\}$

¹As m is dependant on n

•
$$P_r(A_{weak} \text{ fails} \mid \mathbf{x} \text{ is good }) < (1 - \frac{1}{2m^2p})^2 m^2 p \approx (\frac{1}{e})^n$$

 $\bullet\,$ For "GOOD" input, $\!A^{weak}$ succeeds with high probability

Claim: There are at least $2^n(1-\frac{1}{2q})$ good inputs.