

PRINCIPLES OF OPTIMIZATION

CS6140

Predrag Radivojac

KHOURY COLLEGE OF COMPUTER SCIENCES

NORTHEASTERN UNIVERSITY

Spring 2021

Setting: $f: \mathbb{R}^d \to \mathbb{R}$

Objective: solve the following optimization problem

$$\boldsymbol{x}^* = \operatorname*{arg\,max}_{\boldsymbol{x}} \left\{ f(\boldsymbol{x}) \right\}$$

Suppose d=1. A function f(x) in the neighborhood of point x_0

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n,$$
 Taylor approximation

where $f^{(n)}(x_0)$ is the *n*-th derivative of function f(x) evaluated at point x_0 .

Consider the second order approximation:

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0) + \frac{1}{2}(x - x_0)^2 f''(x_0).$$

Find the first derivative and make it equal to zero:

$$f'(x) \approx f'(x_0) + (x^* - x_0)f''(x_0) = 0.$$

Solving this equation for x^* gives:

$$x^* = x_0 - \frac{f'(x_0)}{f''(x_0)}.$$

Idea: Iterative optimization

Let t be the current iteration and $x^{(0)}$ an initial solution. Then,

$$x^{(t+1)} = x^{(t)} - \frac{f'(x^{(t)})}{f''(x^{(t)})}$$

$$t = 1, 2, \dots$$

NEWTON-RAPHSON OPTIMIZATION

Take $\mathbf{x} = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d$

$$f(oldsymbol{x}) pprox f(oldsymbol{x}_0) +
abla f(oldsymbol{x}_0)^T \cdot (oldsymbol{x} - oldsymbol{x}_0) + rac{1}{2} \left(oldsymbol{x} - oldsymbol{x}_0
ight)^T \cdot H_{f(oldsymbol{x}_0)} \cdot (oldsymbol{x} - oldsymbol{x}_0) \,,$$

where

$$\nabla f(\boldsymbol{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_d}\right)$$

Gradient

and

$$H_{f(\boldsymbol{x})} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & & & \\ \vdots & & \ddots & & \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & & & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix}$$

Hessian

NEWTON-RAPHSON OPTIMIZATION

New update rule:

$$oldsymbol{x}^{(t+1)} = oldsymbol{x}^{(t)} - \left(H_{f(oldsymbol{x}^{(t)})}
ight)^{-1} \cdot
abla f(oldsymbol{x}^{(t)})$$

Both gradient and Hessian are evaluated at point $x^{(t)}$.

$$H_{f(\boldsymbol{x}^{(t)})} \leftarrow I$$

 \rightarrow gradient descent (minimization)

$$oldsymbol{x}^{(t+1)} = oldsymbol{x}^{(t)} - \eta \cdot
abla f(oldsymbol{x}^{(t)})$$

$$H_{f(\boldsymbol{x}^{(t)})} \leftarrow -I$$

 \rightarrow gradient ascent (maximization)

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} + \eta \cdot \nabla f(\boldsymbol{x}^{(t)})$$

 $\eta \in (0,1]$

Let $e^{(t)} = x^{(t)} - x^*$ be an error, where x^* is the optimum.

$$||e^{(t+1)}|| = O\left(||e^{(t)}||^p\right)$$
 convergence of p -th order

Theorem. Assume Hessian satisfies the following conditions in the neighborhood of x^*

$$\left\|H(oldsymbol{x}^{(t+1)}) - H(oldsymbol{x}^{(t)})
ight\| \leq \lambda \left\|oldsymbol{x}^{(t+1)} - oldsymbol{x}^{(t)}
ight\|$$

If $x^{(t)}$ is sufficiently close to x^* for some t and if Hessian is positive definite, then the Newton-Raphson technique is well defined and converges at second order.

PRELIMINARIES FOR CONSTRAINED OPTIMIZATION

$$f(x_1, x_2) = x_1^2 + x_1 - x_2 + 1$$

Consider: level set $f(x_1, x_2) = 0$ point (1,3) from the level set

Find: tangent $x_2 = ax_1 + b$ at (1,3)

CONSTRAINED OPTIMIZATION

Objective: solve the following optimization problem

$$\boldsymbol{x}^* = \operatorname*{arg\,max}_{\boldsymbol{x}} \left\{ f(\boldsymbol{x}) \right\}$$

Subject to:

$$g_i(\boldsymbol{x}) = 0 \quad \forall i \in \{1, 2, \dots, m\}$$

$$h_j(\boldsymbol{x}) \ge 0 \quad \forall j \in \{1, 2, \dots, n\}$$

Or, in a shorter notation, to:

$$g(x) = 0$$

$$h(x) \ge 0$$

LAGRANGE MULTIPLIERS

Taylor's expansion for g(x), where $x + \epsilon$ is on a level surface of g(x)

$$g(\boldsymbol{x} + \boldsymbol{\epsilon}) \approx g(\boldsymbol{x}) + \boldsymbol{\epsilon}^T \nabla g(\boldsymbol{x})$$

We know that $g(x) = g(x + \epsilon)$

$$\boldsymbol{\epsilon}^T \nabla g(\boldsymbol{x}) \approx 0$$

when
$$\epsilon \to \mathbf{0}$$
 $\Longrightarrow \nabla g(\mathbf{x})$ is orthogonal $\epsilon^T \nabla g(\mathbf{x}) = 0$ to the level surface

g(x) = 0 $\nabla g(x)$ and $\nabla f(x)$ are parallel! $\nabla f(x) + \alpha \nabla g(x) = 0$ $\alpha \neq 0$ $L(x, \alpha) = f(x) + \alpha g(x)$

LAGRANGE MULTIPLIERS

Inactive constraint:

It holds that: $h(x) \ge 0$

$$\mu \ge 0$$
$$\mu \cdot h(\boldsymbol{x}) = 0$$

Active constraint:

Karush-Kuhn-Tucker (KKT) conditions

$$L(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\mu}) = f(\boldsymbol{x}) + \boldsymbol{\alpha}^T \boldsymbol{g}(\boldsymbol{x}) + \boldsymbol{\mu}^T \boldsymbol{h}(\boldsymbol{x})$$

EXAMPLE: LAGRANGE MULTIPLIERS

$$\boldsymbol{x}^* = \operatorname*{arg\,min}_{\boldsymbol{x}} \left\{ x_1^2 + x_2^2 \right\}$$

Subject to:

$$3x_1 + x_2 + 5 = 0$$

EXAMPLE: LAGRANGE MULTIPLIERS

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \left\{ ||\mathbf{x}|| \right\}$$

Subject to:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, m < n

