

Project Management for Managers Lec – 15 Financial Analysis

Dr. M.K. Barua

Department of Management Indian Institute of Technology Roorkee

Financial Analysis

Financial Feasibility: Ratio Analysis

Return on investment: This measures overall return on overall investments.

ROI = (EBIT - Tax) / (Investment)

EBIT= Earning before interest and taxes.

Return on equity: This measures return for shareholders.

ROE = (EAT - Preferential dividend) / (Equity)

EAT= Earning after tax

Operating profit margin: This measures the profitability in its gross terms.

OPM = EBIT/ Sales

Net profit margin: This measures profitability in its true terms.

NPM = EAT/Sales

Rs.1000 today or next month.

Ex: 1000 today or next month.

Ex: 1000 today or next month if "interest rate" = 20 %

Time value of money: Money available today is more than tomorrow.

Compound amount = Principal $(1+r)^n$ or

Principal = Compound amount $/(1+r)^n$ or

Present value of money = future value * present value factor

where $PVF = 1/(1+r)^n$

r = Discount factor,

n = No of periods

Capital budgeting, or investment appraisal, is the planning process used to determine whether an organization's long term investments such as

- new machinery,
- replacement machinery,
- new plants,
- new **products**, and
- research **development** projects are <u>worth</u> the **funding of cash** through the firm's capitalization structure.

Discounting techniques **take time value of money** into account.

Non-discounting techniques are those techniques which do **not consider time value of money**.

PBP ???????

PBP = Time period in which investor gets back his invested money in fixed assets from the project

Example (PBP)

Annual cost of operation

Expected annual revenues

Planning horizone

Find: PBP??

first two years

next three years

Initial investment 300000

20000

100000

200000

5 yrs

$$PBP = Y0 - (CuCF0)/(CF1)$$

Y0 = is the year just before the pay back period is attained

CuCF0= cumulative cash flow of Y0

CF1= cash flow of pay back year

Planning horizon	
Year	Ca
0	-3
1	80
2	80
2 3 4	18
4	18
5	18

IIT ROORKEE

Initial investment	300000				
Annual cost of opera	20000				
Expected annual rev					
	first two years	100000			
	next three years	200000			
Planning horizon		5 yrs			
Year	Cash flow	CuCF0			
0	-300	-300			
1	80	-220			
2	80	-140			
3	180	40			
4	180	220			
5	180	400			
PBP= (interpolated as the year when CCF becomes zero) = $2 - (-140/180) = 2.78$ yrs					
WE DOON/EE ONLINE					

Payback Period

Payback period is the length of time required to recover the initial outlay on the project

XYZ Enterprise's Capital Project

Year	Cash flow	Cumulative cash flow
0	-100	-100
1	34	- 66
2	32.5	-33.5
3	31.37	- 2.13
4	30.53	28.40

Find PBP

$$PBP = 3 - (-2.13/30.53) = 3.06yrs$$

Example: Projected cash flow 30 lac in first year, CF is going to increase by 10 lac for next 3 years, and then decreases by 15 lac and closes in 5th year. Initial investment 140 lac, working capital requirement is 20 lac. The company foresees to fetch a net salvage value of 35 lac after 5 years. **Find PBP??**

Example: Projected cash flow 30 lac in first year, CF is going to increase by 10 lac for next 3 years, and then decreases by 15 lac and closes in 5 year. Initial investment 140 lac, working capital requirement is 20 lac. The company foresees to fetch a net salvage

Year	Cash flow	CuCF0	
0	-140	-140	
1	30	-110	
2	40	-70	
3	50	-20	
4	60	40	
5	45	85	
BPB= 3	-(-20/60)=3.33 yrs	or 3 yrs 4months	

value of 35 lac after 5 years. Find PBP??

Example: Compare following projects using PBP

Year	Project A (CuCF0)	Project B (CuCF0)	Project C (CuCF0)
0	-110	-110	-110
1	20	20	0
2	30	30	0
3	40	40	90
4	30	30	30
5	20	20	20
6	20	10	20

NPTEL ONLINE

NPTEL ONLINE
CERTIFICATION COURSE

Which project is best and why???

Project A			Project B			Project C		
Year	Cash flow	(CuCF0)	Year	Cash flow	(CuCF0)	Year	Cash flow	(CuCF0)
0	-110	-110	0	-110	-110	0	-110	-110
1	20	-90	1	20	-90	1	0	-110
2	30	-60	2	30	-60	2	0	-110
3	40	-20	3	40	-20	3	90	-20
4	30	10	4	30	10	4	30	10
5	20	30	5	20	30	5	20	30
6	20	50	6	10	40	6	20	50
PBP = 3 - (-20/30) = 3.33 yrs								

Project A				Project B		Project C		
Year	Cash flow	Cum CF	Year	Cash flow	Cum CF	Year	Cash flow	Cum CF
0	-110	-110	0	-110	-110	0	-110	-110
1	20	-90	1	20	-90	1	0	-110
2	30	-60	2	30	-60	2	0	-110
3	40	-20	3	40	-20	3	90	-20
4	30	10	4	30	10	4	30	10
5	20	30	5	20	30	5	20	30
6	20	50	6	10	40	6	20	50

A better than B, additional 10 lac, PBP is same for all three projects 3yrs and 8 months

A better than C, **early recovery**. 20lac in first year will fetch interest for 2 years and 30 lac (second year) will fetch interest for 1 year. An example depicts drawback of PBP

Pros

Simple

- Rough and ready method for dealing with risk
- Emphasizes earlier cash inflows

Drawbacks of PBP

- 1. Does not consider WC and salvage value
- 2. Does not consider cash flows after the PBP
- 3. Does not consider time value of money
- 4. No consideration for risk
- 5. Ignores cost of capital
- 6. It measures project's capital recovery, not profitability

Average rate of return (ARR):Considers cash flows after PBP, working capital and salvage value

```
ARR = average return / average investment
```

Average return = Sum of all CFs/n,

Average investment

```
=1/2 (initial investment + terminal cash flow)
```

=
$$1/2$$
 {(fixed investment +WC) + (WC+SV)}

$$=$$
 WC + $\frac{1}{2}$ (FI+SV)

FI= fixed investment, WC =working capital, SV =salvage value

Ex. Projected cash flow 30 lac in first year, CF is going to increase by 10 lac for next 3 years, and then decreases by 15 lac and closes in 5 year. Initial investment 140 lac, working capital requirement is 20 lac. The company foresees to fetch a net salvage value of 35 lac after 5 years.

Find :ARR

Example:- Let us determine the ARR for the following 2 alternative investments:

		Machine A:	Machine B:
Cost		56,125	58,125
Annual estimated income after depreciation & tax			
	Year 1	3,375	11,375
	Year 2	5,375	9,375
	Year 3	7,375	7,375
	Year 4	9,375	5,375
	Year 5	11,375	3,375
Total earnings		36,875	36,875
Estimated life		5 years	5 years

3,000

3,000

NPTEL ONLINE

Which investment is better????

Estimated salvage value

ARR = Annual average net earnings after taxes X 100 Average investment over the life of the project

Average earnings = Total earnings / Estimated life in years

Average investment = (Initial investment - Salvage Value) / 2 + Working capital + Salvage value.

For Machine A:
$$(56,125 - 3000) / 2 + 0 + 3000 = 29,562.50$$

For Machine B: $(58,125 - 3000) / 2 + 0 + 3000 = 30,562.50$

Machine A would be preferred as ARR is higher. However, if we use previous method , then machine B is better.

