Phase Transitions in Random Dyadic Tilings and Rectangular Dissections

Sarah Cannon, Sarah Miracle and Dana Randall

Georgia Institute of Technology

Rectangular Dissections

Rectangular Dissection: A partition of a lattice region into rectangles whose corners lie on lattice points.

Rectangular dissections arise in:

- VLSI layout
- Mapping graphs for floor layouts
- Routings and placements
- Combinatorics

Rectangular Dissections

Partition $n \times n$ lattice region into rectangles such that:

- 1. There are n rectangles each with area n
- 2. The corners of rectangles lie on lattice points
- 3. $n = 2^k$ for an even integer k

The Edge-Flip Chain

Repeat:

- 1. Pick an random edge e,
- 2. If *e* is flippable, flip edge *e* with probability ½

Open Question: Does the edge-flip chain mix rapidly?

Talk Outline

- 1. Background and Previous Work
- 2. Our Results
- 3. Proof Ideas

Related Work: Triangulations

The edge-flip chain:

- Triangulations of general point sets: Open
- Triangulations of point sets in convex position: Fast

[McShine, Tetali '98], [Molloy, Reed, Steiger '98]

- Triangulations on subsets of Z²: Open
- Weighted Triangulations on subsets of Z²

[Caputo, Martinelli, Sinclair, Stauffer '13]

Related Work: Weighted Triangulations

[Caputo, Martinelli, Sinclair, Stauffer '13]

Weight
$$(\sigma) = \lambda^{\text{(total length of edges)}}$$

E.g., for
$$\lambda > 1$$
,

smaller weight

Related Work: Weighted Triangulations

[Caputo, Martinelli, Sinclair, Stauffer '13]

Weight $(\sigma) = \lambda^{\text{(total length of edges)}}$

The edge-flip chain:

Results [CMSS]:

Previous Work: Rectangular Dissections

The edge-flip chain:

Special Cases:

1. Domino Tilings

Fast: [Luby, Randall, Sinclair '01], [Randall, Tetali '00]

2. Dyadic Tilings

Special Cases: 2. Dyadic Tilings

A dyadic rectangle is a region R with dimensions

$$R = \left[a2^{s}, (a+1)2^{s}\right] \times \left[b2^{t}, (b+1)2^{t}\right]$$
, where a , b , s and t are nonnegative integers.

A dyadic tiling of the $2^k \times 2^k$ square is a set of 2^k dyadic rectangles, each with area 2^k (whose union is the full square).

Not a dyadic tiling

Previous Results – Dyadic Tilings

The edge-flip chain:

The edge-flip chain connects the set of dyadic tilings.

[Janson, Randall, Spencer '02]

There is a different Markov chain that converges quickly. [JRS]

Open Question: Does the edge-flip chain converge quickly?

Talk Outline

- 1. Background and Previous Work
- 2. Our Results
- 3. Proof Ideas

Our Results: Connectivity

The Edge-Flip Chain

Repeat:

- 1. Pick an random edge e,
- 2. If *e* is flippable, flip edge *e* with probability ½

Theorem 1: The Edge-Flip Chain connects the set of all dissections of the n x n lattice region into n rectangles of size n.

Weighted Rectangular Dissections

Given an input parameter $\lambda > 0$,

Weight
$$(\sigma) = \lambda^{\text{(total length of edges)}}$$
.

For $\lambda > 1$,

For $\lambda < 1$,

Weighted Rectangular Dissections

Given an input parameter $\lambda > 0$,

Weight
$$(\sigma) = \lambda^{\text{(total length of edges)}}$$
.

The Weighted Edge-Flip Chain

Repeat:

- 1. Pick a random edge e and $p \in u(0,1)$
- 2. If e is flippable, let e' be the new edge it can be flipped to.
- 3. Flip edge e with probability ½ if $p < \lambda^{(|e'| |e|)}$.

The Mixing Time

Definition: The total variation distance is

$$|P^t,\pi|$$
 = $\max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} |P^t(x,y) - \pi(y)|$.

Definition: Given **&**, the mixing time is

$$\tau(\mathbf{\varepsilon}) = \min \{t: ||P^{t'},\pi|| < \mathbf{\varepsilon}, \forall t' \geq t\}.$$

A Markov chain is polynomial mixing if $\tau(\varepsilon)$ is poly(n, $\log(\varepsilon^{-1})$). (n is the number of rectangles)

A Markov chain is exponential mixing if $\tau(\varepsilon)$ is at least $\exp(n)$.

Our Results: Dyadic Tilings

 $\lambda_c = 1$ Polynomial Mixing Perponential Mixing

Rigorous proofs all the way to the critical point $\lambda_c = 1$!

Our Results: Rectangular Dissections

$$\lambda$$
:

 $\lambda = 1$

Exponential Mixing

Exponential Mixing

Exponential mixing for very different reasons

Talk Outline

- 1. Background and Previous Work
- 2. Our Results
- 3. Proof Ideas
 - a. (General) The edge-flip chains connects.
 - b. (Dyadic) When $\lambda < 1$, the edge-flip chain is poly.
 - c. (Both) When $\lambda > 1$, the edge-flip chain is exp.
 - d. (General) When $\lambda < 1$, the edge-flip chain is exp.

Proof Sketch: Connectivity

Thm 1: The Edge-Flip Chain connects the set of dissections of the n x n lattice region into n rectangles of area n.

It's not immediately obvious that a single valid move even exists!

Proof sketch: Double induction on "h-regions":

- Simply-connected subset of rectangles from a dissection
- All rectangles have height at most h
- All vertical sections on the boundary have height c'h (for some integer c)

For n =16, an 8-region and a 4-region.

Proof Sketch: Connectivity

Thm 1: The Edge-Flip Chain connects the set of dissections of the n x n lattice region into n rectangles of size n.

It's not immediately obvious that a single valid move even exists!

Proof sketch: Double induction on "h-regions":

- Prove can tile every h-region with all rectangles of height h
- Inside every h-region, find an h/2-region or an h-region with smaller area

Proof Sketch: Connectivity

Thm 1: The Edge-Flip Chain connects the set of dissections of the n x n lattice region into n rectangles of size n.

It's not immediately obvious that a single valid move even exists!

Proof sketch: Double induction on "h-regions":

Prove can tile every h-region with all rectangles of height h

Talk Outline

- 1. Background and Previous Work
- 2. Our Results
- 3. Proof Ideas
 - a. (General) The edge-flip chains connects.
 - b. (Dyadic) When $\lambda < 1$, the edge-flip chain is poly.
 - c. (Both) When $\lambda > 1$, the edge-flip chain is exp.
 - d. (General) When $\lambda < 1$, the edge-flip chain is exp.

Fast Mixing for Dyadic Tilings

<u>Thm</u>: For any constant $\lambda < 1$, the edge-flip chain on the set of dyadic tilings converges in time $O(n^2 \log n)$.

Proof Technique:

Path coupling with an exponential metric

[Kenyon, Mossel, Perez '01][Greenberg, Pascoe, Randall '09]

For two configurations differing by flipping edge f to edge e, let the distance between them be $\lambda^{|f|-|e|}$.

Talk Outline

- 1. Background and Previous Work
- 2. Our Results
- 3. Proof Ideas
 - a. (General) The edge-flip chains connects.
 - b. (Dyadic) When $\lambda < 1$, the edge-flip chain is poly.
 - c. (Both) When $\lambda > 1$, the edge-flip chain is exp.
 - d. (General) When $\lambda < 1$, the edge-flip chain is exp.

Slow Mixing when $\lambda > 1$

Thm: For any constant $\lambda > 1$, the edge-flip chain requires time $\exp(\Omega(n^2))$.

Proof idea: Show that a "bottleneck" exists.

Talk Outline

- 1. Background and Previous Work
- 2. Our Results
- 3. Proof Ideas
 - a. (General) The edge-flip chains connects.
 - b. (Dyadic) When $\lambda < 1$, the edge-flip chain is poly.
 - c. (Both) When $\lambda > 1$, the edge-flip chain is exp.
 - d. (General) When $\lambda < 1$, the edge-flip chain is exp.

Slow Mixing when $\lambda < 1$

Thm: For any constant $\lambda < 1$, the edge-flip chain on rectangular dissections requires time $\exp(\Omega(n \log n))$.

Proof idea: Show that a "bottleneck" exists.

Key Ideas:

- 1. In order to remove a "bar" you need two bars next to each other.
- 2. If you have 2 bars you must also have lots of other thin rectangles.

- Pair up the bars left to right
- The *separation* is the sum of the "gaps"

Separation =
$$g_1 + g_2 + 4$$

$$g_1 = d_1 = n/2 - 2$$

= 0111 . . . 1110 (in binary)

At least 4 bars and separation = n/2 + 2

$$g_1 = d_1 = n/2 - 2$$

= 0111 . . . 1110 (in binary)

At least 4 bars and separation = n/2 + 2

Summary and Open Problems

Dyadic Tilings: $\lambda_c = 1$ \uparrow Polynomial Mixing ? Exponential Mixing $\lambda = 1$ $\lambda = 1$ Exponential Mixing ? Exponential Mixing

- 1. What happens when $\lambda = 1$ for dyadic and general tilings?
- 2. When does bias speed up or slow down a chain?
- 3. Is there a MC that is polynomial when the EF chain is not?

Thank you!