Lab 1: Introduction to igraph

Rodrigo Arias Mallo

October 4, 2017

1 Watts-Strotgatz model

The clustering coefficient C(p) and average shortest path L(p) are computed for a Watts-Strotgatz graph with dimension 1, size 500, 4 neighbours and probability p. Each probability is computed as $p=2^{-i}$ with $i \in \{0,14\}$ (as a logarithmic scale is used). The mean values of 500 random graphs is performed to reduce the variance. Also, both are scaled between 0 and 1 to be compared using a graph with p=0 as C(p)/C(0) and L(p)/L(0).

Watts-Strogatz graph (dim=1, size=500, neigh=4)

2 Erdős–Rényi model

The probability p of connecting two vertex is set to $p=(1+\epsilon)\ln(n)/n$ to keep the graph connected with high probability. In order to find a good ϵ value, a set of random graphs are generated, with values of $\epsilon \in [0.4, 0.6]$. The edge connectivity e is measured in a set of r=2000 runs. The relative number of graphs with e=0 is plot against ϵ in the figure 1a and the mean of e is plotted in 1b.

(a) The relative number of disconnected graphs against ϵ

(b) The mean of edge connectivity for graphs with different ϵ

The chosen value of $\epsilon=0.5$ keeps the number of disconnected graphs close to 10%, while the mean edge connectivity is close to 1.5. Finally, the average shortest path is ploted against the number of nodes n of a Erdös–Rényi graph. The mean values of 10 random graphs are computed to reduce the variance. The number of nodes is set up to 5000, to maintain a reasonable computing time.

