CENG 2032 Spring 2021 Final Homework

2)

A.

Category	Instructions	CPI(Clock Cycle per Instruction)	Instruction Count
A: Addition, subtraction and comparison	add, addu, sub, slt, etc	1	79
B: Memory	lw, sw, l.s, s.s, l.d, s.d	4	46
C: Branch and Jump	beq, bnq, j, bc1t, bc1f, etc	2	23
D: Floating point Arithmetic and Comparison	add.s, sub.s, add.d, sub.d, c.XX.s, c.XX.d etc	2	34

В.

<u>Total Clock Cycles = 1 x 79 + 4 x 46 + 2 x 23 + 2 x 34</u>

<u>= 377</u>

Average Clock Cycle per Instruction = 377 / (79 + 46 + 23 + 34)

 $= 2,071 \approx 2,07$

3) A.

Base CPI = 4

Data Miss Rate = %20

Miss Penalty = 100 CC

Load/store = $(46/182) \approx 0.25$

Actual CPI (for Memory) = Base CPI + I-cache + D-cache

$$= 4 + 0 \times 4 + 0.25 \times 0.2 \times 100$$

= 9

Total Clock Cycles = 1 x 79 + 9 x 46 + 2 x 23 + 2 x 34

<u>= 607</u>

Average Clock Cycle per Instruction = 607 / (79 + 46 + 23 + 34)

= 3,335 ≈ 3,34

В.

Base CPI = 4

Access Time = 20 CC

Global Miss Rate to Main Memory = %5

Data Miss Rate = %20

Miss Penalty = 100 CC

Total CPI = Base CPI + primary stalls per instruction + secondary stalls per instruction

$$= 4 + 0.2 \times 20 + 0.05 \times 100$$

= 13

Total Clock Cycles = 1 x 79 + 13 x 46 + 2 x 23 + 2 x 34

= 791

Average Clock Cycle per Instruction = 791/(79 + 46 + 23 + 34)

= 4,346 ≈ 4,35

4)

$$-111,1110 = -(64 + 32 + 8 + 4 + 2 + 1 + 0,11)_{10} = -1101111,00011100001010001_2$$

= -1,10111100011100001010001₂ x 2⁶

 $X = -1,10111100011100001010001_2 \times 2^6$ \rightarrow $X = (-1)S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$

S Exponent Fraction

S=1 since number is negative, **Fraction =** 10111100011100001010001₂,

Exponent - Bias = Exponent $-127 = 6 \Rightarrow$ **Exponent =** $133_{10} = 10000101_2$

Therefore 32 bit floating point representation of -111,1110 is:

<u>1 10000101 10111100011100001010001</u>

5)

speedup = old time / new time $\langle 1/((1-P)+(P/N)) \rangle$ max speedup = 1/((1-P)+(P/N))

max speedup = 25

processors = N = 100

percentage of the original computation can be sequential = (1-P) =?

25 = 1 / ((1-P) + (P/100)) $P = 96/99 \approx 0.97$ => (1-P) = 0.03