Royalty Formulas – Conventional Oil **Effective January 1, 2011**

R% = Price Component (r_p) + Quantity Component (r_q) ARF (2011): R% has a minimum of 0% and a maximum of 40%

Transition: R% has a minimum of 0% and a maximum of 50%

		Royalty Parameters	<u> </u>		
	Price (\$/m³)		% Change (%/\$/m³)		
	ARF (2011)	Transition Wells	ARF (2011)	Transition Wells	
P ₁	190.00	210.00	0.06%	0.035%	
P ₂	250.00	250.00	0.10%	0.01%	
P ₃	400.00	350.00	0.05%	0.005%	
P ₄	535.00		0.03%		
	Q (m³/month)		% Change (%/m³/month)		
	ARF (2011)	Transition Wells	ARF (2011)	Transition Wells	
$\overline{\mathbf{Q}_1}$	106.4	30.4	0.26%, 0.10%	0.13%	
Q_2	197.6	152.0	0.07%	0.08%	
Q ₃	304.0	273.6	0.03%	0.02%	

Price Component (rp)					
Alberta F	Royalty Framework (2011)	Transition Wells			
Price (\$/m ³)	\mathbf{r}_{p}	Price (\$/m ³)	r _p Transition Wells		
PP ≤ 250.00	((PP – 190.00) * 0.0006)*100	$PP \le 250.00$	((PP - 210.00) * 0.00035)*100		
$250.00 < PP \le 400.00$	(((PP - 250.00) * 0.0010) + 0.0360)*100	$250.00 < PP \le 350.00$	(((PP - 250.00) * 0.00010) + 0.0140)*100		
$400.00 < PP \le 535.00$	(((PP - 400.00) * 0.0005) + 0.1860)*100	PP > 350.00	(((PP - 350.00) * 0.00005) + 0.0240)*100		
PP > 535.00	(((PP - 535.00) * 0.0003) + 0.2535)*100		ŀ		
Maximum	35%	Maximum	35%		
DD is the per price for the month in \mathbb{C}/m^3					

PP is the par price for the month in \$/m²

Note: r_p can be negative

Quantity Component (rq)					
Alberta Ro	yalty Framework (2011)	Transition Wells			
Quantity (m ³ /month)	Quantity (m ³ /month) r _q		r _q Transition Wells		
Q ≤ 106.4	((Q – 106.4) * 0.0026)*100	Q ≤ 30.4	((Q - 30.4) * 0.0013)*100		
$106.4 < Q \le 197.6$	((Q-106.4)*0.0010)*100	$30.4 < Q \le 152.0$	((Q-30.4)*0.0013)*100		
$197.6 < Q \le 304.0$	(((Q-197.6)*0.0007)+0.0912)*100	$152.0 < Q \le 273.6$	(((Q-152.0)*0.0008)+0.1581)*100		
Q > 304.0	(((Q-304.0)*0.0003)+0.1657)*100	Q > 273.6	(((Q-273.6)*0.0002)+0.2554)*100		
Maximum	30%	Maximum	35%		

Q is the monthly production in m³

Note: r_q can be negative

Evamples

Examples							
Price	Quantity	ARF (2011)		Transition Wells			
(\$/m ₃)	(m ₃ /month)	rp	rq	R%	rp	rq	R%
400.00	50.0	18.60%	-14.66%	3.94%	2.65%	2.55%	5.20%
400.00	200.0	18.60%	9.29%	27.89%	2.65%	19.65%	22.30%
600.00	50.0	27.30%	-14.66%	12.64%	3.65%	2.55%	6.20%
600.00	200.0	27.30%	9.29%	36.59%	3.65%	19.65%	23.30%