More Computational Statistics and Data Visualisation

 Statistical inference is the process of drawing conclusions about an underlying population based on a sample or subset of the data

 Hypothesis testing is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis

 Exploratory data analysis is an approach to analysing datasets to summarize their main characteristics, often through visual methods

HYPOTHESISE

ANALYSE

VISUALISE

SUMMARISE

 Statistical inference is the process of drawing conclusions about an underlying population based on a sample or subset of the data

Statistical inference

Null hypothesis

 H_0 : The proportion of yellow progeny is 1/4

Null hypothesis

$$H_0: p_y = \frac{1}{4}$$

Progeny (n = 24)

$$\widehat{p_y} = \frac{3}{24}$$

Null hypothesis

$$H_0: p_y = \frac{1}{4}$$

Progeny (n = 24)

$$\widehat{p_y} = \frac{3}{24}$$

Null hypothesis

$$H_0: p_y = \frac{1}{4}$$

How much evidence is this against the null hypothesis?

Null hypothesis

$$H_0: p_y = \frac{1}{4}$$

How much evidence is this against the null hypothesis?

What is the distribution of $\widehat{p_y}$ if the null hypothesis is true?

Sampling distribution!

Progeny (n = 24)

Progeny (n = 24)

Null hypothesis

$$H_0: p_y = \frac{1}{4}$$

How much evidence is this against the null hypothesis?

A result this extreme happens 23.6% of the time...

• Statistical inference is the process of drawing conclusions about an underlying population based on a sample or subset of the data

 Hypothesis testing is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis

 Statistical inference is the process of drawing conclusions about an underlying population based on a sample or subset of the data

 Hypothesis testing is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis

 Statistical inference is the process of drawing conclusions about an underlying population based on a sample or subset of the data

 Hypothesis testing is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis

• For hypothesis testing, define any useful (test) statistic and figure out its sampling distribution under the null hypothesis. That's it...

Working example: two sample test

H₀: Distributions A and B have the same mean

H_A: Distributions A and B have different means

If you run this code, it will bring up the help file for the t.test() function. This tells me that I can provide two vectors of numbers, x and y. It's a bit annoying, because in my tibble the steps are all together. But I can use subset() (from base R) or filter() (from the tidyverse) to sort it out. Both of these functions let me get only the rows of the dataframe I am interested in. In either case, I just need to specify that I want the rows where sex=='male' or sex=='female' to get the values I want. Note that we use the to say 'exactly equal to (the single equals = is an assignment operator in R).

So we'll make our two vectors, and then use them in the t.test() function.

H₀: Distributions A and B have the same mean

H_A: Distributions A and B have different means

- Sample 50 numbers from distribution A (call these set_A)
- Sample 50 numbers from distribution B (call these set_B)
- Perform *some kind of* two-sample test

Worked exercise: Two-sample t-test

The plan:

- Read in the data from "GroupData12Aug.csv"
- Do a little data wrangling
- Do a little data visualisation
- Perform a simple t-test
- Interpret this in terms of the sampling distribution
 - Sampling distribution of what?!?

Worked exercise: Permutation t-test

The plan:

- Do not assume the t-distribution!
- Instead, simulate null distribution using permutation
- Combine Set_A and Set_B into one set of length 100
- Randomly reassign the labels to create new sets
- Compute the test statistic
- Repeat n_reps times
- Compare real value to this distribution

Extension

Sampling distribution

Sampling distribution

Your sample

$$n = 24$$

Your sample

n = 24

Bootstrap sample 1

n = 24

Sample with replacement

Your sample n = 24 Sample with replacement Sample with replacement 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 0 2 1 2 0 0 1 0

Exercise: Bootstrap sampling distribution in R

- 1. Write code to sample with replacement a sample of size 24 from your sample (3 red; 21 blue).
- 2. Compute the statistic #red/24

3. Wrap these steps in a for loop (or use apply) to repeat the process n_reps = 10000 times, recording the statistic in a vector

4. Plot the histogram of the statistics computed in the previous step (bonus: and compare the sampling distribution from before)

H₀: Distributions A and B have the same mean

H_A: Distributions A and B have different means

- Sample 50 numbers from distribution A (call these set_A)
- Sample 50 numbers from distribution B (call these set_B)
- Perform *some kind of* two-sample test

Recall: Two-sample t-test

The plan:

- Read in the data from "GroupData12Aug.csv"
- Do a little data wrangling
- Do a little data visualisation
- Perform a simple t-test
- Interpret this in terms of the sampling distribution
 - Sampling distribution of what?!?

Recall: Permutation t-test

The plan:

- Do not assume the t-distribution!
- Instead, simulate null distribution using permutation
- Combine Set_A and Set_B into one set of length 100
- Randomly reassign the labels to create new sets
- Compute the test statistic
- Repeat n_reps times
- Compare real value to this distribution

Exercise: Bootstrap t-test

The plan:

• This time, simulate the null distribution using the bootstrap

How would you go about doing this?

More Computational Statistics and

Data Visualisation