## 数学笔记

BeBop

July 20, 2024

# Contents

| 1 | 代数  | 拓扑                        |  |  |  |  |  |  |  |  | 5 |
|---|-----|---------------------------|--|--|--|--|--|--|--|--|---|
|   | 1.1 | Brouwer 不动点定理与 Sperner 引理 |  |  |  |  |  |  |  |  | 5 |

4 CONTENTS

### Chapter 1

# 代数拓扑

#### 1.1 Brouwer 不动点定理与 Sperner 引理

我们首先叙述 Brouwer 不动点定理与 Sperner 引理:

**定理 1.1.1** (Brouwer 不动点定理). 设  $f \in \mathbb{R}$  作闭球  $B^n$  到自身的连续映射,则 f 必有不动点.

**引理 1.1.2** (Sperner 引理). 设  $K = [v_0, \ldots, v_n]$  是 n 维单纯形, 考虑其三角 剖分 T, 将 T 的顶点 (n+1) 染色, 即定义  $\lambda: V(T) \to \{0, \ldots, n\}$ , 且满足对任 意指标子集  $\{i_0, \ldots, i_k\} \subseteq \{0, \ldots, n\}$ ,  $\lambda$  在  $[v_{i_1}, \ldots, v_{i_k}]$  上的限制的值域包含于  $\{i_1, \ldots, i_k\}$ . 则一定存在  $u_0, \ldots, u_n \in V(T)$ , 使得  $[u_0, \ldots, u_n]$  是三角剖分 T 的单形, 且  $\lambda(u_i)$  互不相同.



Figure 1.1: Sperner 引理示意图

它们一个是拓扑的定理,一个是组合的定理,看似没有联系,但实际上我们能证明它们是等价的:由于  $B^n\cong K$ ,我们将 Brouwer 不动点定理的叙述改为 K 到自身的连续映射 f 必有不动点.

1°:Sperner 引理 ⇒ Brouwer 不动点定理