Lecture 16: Shortest Paths III - Dijkstra and Special Cases

Lecture Overview

- Shortest paths in DAGs
- Shortest paths in graphs without negative edges
- Dijkstra's Algorithm

Readings

CLRS, Sections 24.2-24.3

DAGs:

Can't have negative cycles because there are no cycles!

- 1. Topologically sort the DAG. Path from u to v implies that u is before v in the linear ordering
- 2. One pass over vehicles in topologically sorted order relaxing each edge that leaves each vertex

 $\Theta(V+E)$ time

Example:

Figure 1: Shortest Path using Topological Sort.

Vertices sorted left to right in topological order

Process r: stays ∞ . All vertices to the left of s will be ∞ by definition

Process s: $t : \infty \to 2$ $x : \infty \to 6$ (see top of Figure 2)

Figure 2: Preview of Dynamic Programming

DIJKSTRA Demo

Dijkstra's Algorithm

For each edge (u, v) ϵ E, assume $w(u, v) \geq 0$, maintain a set S of vertices whose final shortest path weights have been determined. Repeatedly select u ϵ V - S with minimum shortest path estimate, add u to S, relax all edges out of u.

Pseudo-code

```
Dijkstra (G, W, s) //uses priority queue Q

Initialize (G, s)

S \leftarrow \phi

Q \leftarrow V[G] //Insert into Q

while Q \neq \phi

do u \leftarrow \text{EXTRACT-MIN}(Q) //deletes u from Q

S = S \cup \{u\}

for each vertex v \in \text{Adj}[u]

do RELAX (u, v, w) \leftarrow \text{this} is an implicit DECREASE_KEY operation
```


Figure 3: Dijkstra Demonstration with Balls and String.

Recall

RELAX
$$(u, v, w)$$

if $d[v] > d[u] + w(u, v)$
then $d[v] \leftarrow d[u] + w(u, v)$
 $\Pi[v] \leftarrow u$

Example

Strategy: Dijkstra is a greedy algorithm: choose closest vertex in V-S to add to set S

Correctness: Each time a vertex u is added to set S, we have $d[u] = \delta(s, u)$

Complexity

 $\theta(v)$ inserts into priority queue

 $\theta(v)$ EXTRACT_MIN operations

 $\theta(E)$ DECREASE_KEY operations

Array impl:

 $\theta(v)$ time for extra min

 $\theta(1)$ for decrease key

Total: $\theta(V.V + E.1) = \theta(V^2 + E) = \theta(V^2)$

Binary min-heap:

 $\theta(\lg V)$ for extract min

 $\theta(\lg V)$ for decrease key

Total: $\theta(V \lg V + E \lg V)$

Fibonacci heap (not covered in 6.006):

 $\theta(\lg V)$ for extract min

 $\theta(1)$ for decrease key

amortized cost

Total: $\theta(V \lg V + E)$

Figure 4: Dijkstra Execution