Software Verification & Validation

Natthapong Jungteerapanich Graph Coverage

Acknowledgement

- Some slides in this lecture are adapted from
 - Paul Ammann and Jeff Offutt's slides for their textbook
 "Introduction to Software Testing". Cambridge University Press,
 2008.
 - Lee Copeland's "A Practitioner's Guide to Software Test Design".
 Artech House, 2004.

Graphs for Test Design

- Graphs are the most commonly used structure for testing
- Graphs can come from many sources
 - Control flow graphs
 - Design structure
 - State machines
 - Use cases
- Tests usually are intended to "cover" the graph in some way

Definition of a Graph

For our purpose, we will be using a directed graph with one or more initial nodes and one or more final nodes. Precisely, we define a graph to be a structure (N, N_0, N_f, E) where

- N is a non-empty set of <u>nodes</u>,
- $N_0 \subseteq N$ is a non-empty set of <u>initial nodes</u>,
- $N_f \subseteq N$ is a non-empty set of <u>final nodes</u>,
- $E \subseteq N \times N$ is a set of <u>edges</u>, each edge from one node to another
 - If (n_i, n_j) is in E, then n_i is called a <u>predecessor</u> of n_j and n_j is called a <u>successor</u> of n_i

Three Example Graphs

$$N_f = \{3\}$$

$$N_0 = \{ 0, 1, 2 \}$$

$$N_f = \{ 7, 8, 9 \}$$

Paths in Graphs

- Path : A sequence of nodes $[n_1, n_2, ..., n_M]$ such that each pair of adjacent nodes (n_i, n_{i+1}) is an edge.
- <u>Length</u>: The number of edges
 - A single node is a path of length 0
- Subpath : A subsequence of consecutive nodes in p is a subpath of p
- Reach(n): The set of nodes that can be reached from n
- Reach(A): The set of nodes that can be reached from some node in set A

Reach (0) = { 0, 3, 4, 7, 8, 5, 1, 9 }
Reach ({0, 2}) = G

Visiting and Touring

- Visit: A path p <u>visits</u> node n iff n is in p
 A path p <u>visits</u> edge e iff e is in p
- <u>Tour</u>: A path p <u>tours</u> path q iff q is a subpath of p

```
For example, the path [ 0, 1, 3, 4, 6 ]

visits nodes 0, 1, 3, 4, 6

visits edges (0, 1), (1, 3), (3, 4), (4, 6)

And tours paths [0, 1, 3], [1, 3, 4], [3, 4, 6], [0, 1, 3, 4], [1, 3, 4, 6]
```

Tests and Test Paths

- A <u>test path</u> in a graph is a path in the graph following the execution of some test case.
- path (t): The test path executed by test t
- path (T): The set of test paths executed by the set of tests T
- In a deterministic program, each test executes one and only one test path
- A location in a graph (node or edge) can be <u>reached</u> from another location if there is a sequence of edges from the first location to the second
 - Syntactic reach : A subpath exists in the graph
 - Semantic reach : A test exists that can execute that subpath

Testing and Covering Graphs

- We use graphs in testing as follows:
 - Developing a model of the software as a graph
 - Requiring tests to visit or tour specific sets of nodes, edges or subpaths

- <u>Structural Coverage Criteria</u>: Defined on a graph just in terms of nodes and edges
- <u>Data Flow Coverage Criteria</u>: Requires a graph to be annotated with references to variables (this will be studied in subsequent lectures)

Node and Edge Coverage

 The first (and simplest) two criteria require that each node and edge in a graph be executed

Node Coverage Criterion (NC): Test suite T satisfies node coverage on graph G iff, for every node n, some path in path(T) visits n.

Given a test suite T, the degree of node coverage of T can be calculated form:

$$C_{NC} = \frac{Number\ of\ nodes\ visited\ by\ some\ test\ path}{Number\ of\ nodes} \times 100\%$$

Node and Edge Coverage

Edge coverage is slightly stronger than node coverage

Edge Coverage Criterion (EC): Test suite T satisfies edge coverage on graph G iff, for every edge (m, n), some path in path(T) visits (m, n).

Given a test suite T, the degree of edge coverage of T can be calculated form:

$$C_{EC} = \frac{Number\ of\ edges\ visited\ by\ some\ test\ path}{Number\ of\ edges} \times 100\%$$

Node and Edge Coverage

 NC and EC are only different when there is an edge and another subpath between a pair of nodes


```
Node Coverage : Nodes = { 0, 1, 2 }
Test Path = [ 0, 1, 2 ]
```

[0,2]

Control Flow TRs and Test Paths – EC

Limitation of Edge Coverage

- Edge coverage requires that all alternatives in each choice node in the graph must be chosen in some test path.
- However, in graph with consecutive choice nodes, edge coverage criteria does <u>not</u> require a test path for each <u>combination of alternatives</u> of the choice nodes.

- For example, in this graph, nodes 0 and 3 are choice nodes.
- Only two paths are required to covered every edge.
 For example, [0, 1, 3, 4, 6] and [0, 2, 3, 5, 6].
- The first path covers the case where x>=0 and y>=0.
 The second path covers the case where x<0 and y<0.
- But no paths cover the case where x>=0 and y<0 nor the case where x<0 and y>=0.
- To covers these cases, we need to add more paths.
 For example, [0, 1, 3, 5, 6] and [0, 2, 3, 4, 6].
- We will look at some coverage criteria which are more comprehensive than edge coverage.

Edge-Pair Coverage

Edge-pair coverage is a stronger version than edge coverage

Edge-Pair Coverage Criterion (EC): Test suite T satisfies edge-pair coverage on graph G iff, for every path p of length up to 2, some path in path(T) tours p.

Given a test suite T, the degree of edge coverage of T can be calculated form:

```
 \begin{array}{l} C_{EC} \\ = \frac{Number\ of\ paths\ of\ length\ up\ to\ 2\ toured\ by\ some\ test\ path}{Number\ of\ paths\ of\ length\ up\ to\ 2} \\ \times\ 100\% \end{array}
```

Complete Path Coverage

 The Complete Path Coverage requires that every possible path in the graph is toured by some test path.

<u>Complete Path Coverage (CPC)</u>: Test suite *T* satisfies *complete* path coverage on graph *G* iff, for every path *q*, some path in path(*T*) tours *q*.

Given a test suite T, the degree of complete path coverage of T can be calculated form:

$$C_{\textit{CPC}} = \frac{\textit{Number of paths toured by some test path}}{\textit{Number of paths}} \times 100\%$$

 Unfortunately, this is impossible if the graph has a loop because such graph will have infinitely many paths.

Structural Coverage Example

Node Coverage

Nodes = { 0, 1, 2, 3, 4, 5, 6 }

Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 5, 4, 6]

Edge Coverage

Edges = $\{ (0,1), (0,2), (1,2), (2,3), (2,4), (3,6), (4,5), (4,6), (5,4) \}$

Test Paths: [0, 1, 2, 3, 6] [0, 2, 4, 5, 4, 6]

Complete Path Coverage

Paths = { [0], [0,1], [0,2], [0,1,2], [1,2], [1,2,3], ... }

Test Paths: [0, 1, 2, 3, 6] [0, 1, 2, 4, 6] [0, 1, 2, 4, 5, 4, 6]

[0, 1, 2, 4, 5, 4, 5, 4, 6] [0, 1, 2, 4, 5, 4, 5, 4, 5, 4, 6] ...

Loops in Graphs

- If a graph contains a loop, it has an infinite number of paths
- Thus, Complete Path Coverage is <u>not feasible</u>
- History of attempts to "deal with" loops:
 - Years 1980s: Execute each loop, exactly once ([4, 5, 4] in previous example)
 - Years 1990s: Execute loops 0 times, once, twice, ..., up to specified limit
 - Years 2000s : Prime paths

Simple Paths and Prime Paths

- Simple Path: A path from node m to n is simple if no node appears more than once, except possibly the first and last nodes are the same
 - No internal loops,
 - But the path it self may be a loop.
- <u>Prime Path</u>: A simple path that <u>does not</u> appear as a proper subpath of any other simple path


```
Simple Paths: [0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1], [2, 3, 0, 2], [3, 0, 1, 3], [3, 0, 2, 3], [1, 3, 0, 2], [2, 3, 0, 1], [0, 1, 3], [0, 2, 3], [1, 3, 0], [2, 3, 0], [3, 0, 1], [3, 0, 2], [0, 1], [0, 2], [1, 3], [2, 3], [3, 0], [0], [1], [2], [3]
```

```
Prime Paths: [0, 1, 3, 0], [0, 2, 3, 0], [1, 3, 0, 1], [2, 3, 0, 2], [3, 0, 1, 3], [3, 0, 2, 3], [1, 3, 0, 2], [2, 3, 0, 1]
```

Prime Path Coverage

 A simple, elegant and finite criterion that requires loops to be executed as well as skipped

<u>Prime Path Coverage (PPC)</u>: Test suite T satisfies *prime path coverage* on graph G iff, for every prime path q, some path in path(T) tours q with sidetrips allowed.

 Prime Path Coverage subsumes node and edge coverage, i.e. if a test set satisfies prime path coverage, it also satisfies node and edge coverage.

Given a test suite T, the degree of prime path coverage of T can be calculated form:

$$C_{PPC} = rac{Number\ of\ prime\ paths\ toured\ by\ some\ test\ path}{Number\ of\ prime\ paths} imes 100\%$$

Prime Path Example

- The following example has 38 simple paths
- Only nine prime paths

How to Find Prime Paths

Prime Path Coverage

Prime Paths [0, 1, 2, 3, 6] [0, 1, 2, 4, 5] [0, 1, 2, 4, 6] [0, 2, 3, 6] [0, 2, 4, 5] [0, 2, 4, 6] [5, 4, 6] [4, 5, 4] [5, 4, 5]

An example of a set of test paths that covers all prime paths:

```
{ [0, 1, 2, 3, 6], [0, 1, 2, 4, 6], [0, 2, 3, 6], [0, 2, 4, 6], [0, 1, 2, 4, 5, 4, 6], [0, 2, 4, 5, 4, 5, 4, 6]
```