Inteligencia Artificial

Búsqueda adversarial y Árboles de juegos

[Slides adapted from Dan Klein and Pieter Abbeel (ai.berkeley.edu).
Sergey Levine & Stuart Russell University of California, Berkeley]

Búsqueda adversarial y Árboles de juegos

Estado del arte en juegos

- Damas: 1950: Primer sistema automático. 1994: Primer campeón automático: Chinook acabó con el reinado de 40 años de la campeona Marion Tinsley. 2007: ¡Damas resueltas!
- Ajedrez: 1997: Deep Blue derrota al campeón Gary Kasparov en un torneo de 6 partidas. Deep Blue examinó 200M posiciones por segundo, usando una evaluación sofisticada y descubrió métodos para extender varias líneas de investigación hasta 40 capas. Los programas actuales son todavía mejores.
- ➢ Go: Los campeones humanos empiezan a ser superados por las máquinas. En go, b > 300! Los programas clásicos usan bases de conocimiento de patrones, pero recientes avances usan métodos de expansión Monte Carlo (randomizados)

Estado del arte en juegos

- Damas: 1950: Primer sistema automático. 1994: Primer campeón automático: Chinook acabó con el reinado de 40 años de la campeona Marion Tinsley. 2007: ¡Damas resueltas!
- Ajedrez: 1997: Deep Blue derrota al campeón Gary Kasparov en un torneo de 6 partidas. Deep Blue examinó 200M posiciones por segundo, usando una evaluación sofisticada y descubrió métodos para extender varias líneas de investigación hasta 40 capas. Los programas actuales son todavía mejores.
- Go: 2016: Alpha GO derrota al campeón. Usa Monte Carlo Tree Search, función de evaluación aprendida.
- Pacman

Comportamiento y computación

[Demo: mystery pacman (L6D1)]

Video Demo Mystery Pacman

Juegos Adversariales

Tipos de juegos

- Hay muchas clases de juegos!
- A tener en cuenta:
 - Determinístico o estocástico?
 - ¿Uno, dos o más jugadores?
 - Suma cero?
 - ¿Información perfecta (podemos ver el estado)?
- Queremos algoritmos para calcular una estrategia (política o policy) que recomiende un movimiento desde cada estado

Juegos determinísticos

- Muchas formalizaciones posibles, una es:
 - Estados: S (inicio en s₀)
 - Jugadores: P={1...N} (normalmente a turnos)
 - Acciones: A (puede depender del jugador / estado)
 - Función de transición: S x A → S
 - Test de terminación (estado objetivo o final): $S \rightarrow \{t,f\}$
 - Función de utilidad para terminal (Terminal Utilities):
 - ¿qué valor tiene este estado final para un jugador?
 - \bullet S x P \rightarrow R
- \triangleright La solución para un jugador es una política (policy): S \rightarrow A

Juegos de suma cero

- Juegos de suma cero
 - Los agentes tienen utilidades opuestas (valores)
 - Podemos pensar en un único valor que uno maximiza y el otro minimiza
 - Adversarial, competición pura

- Juegos Generales
 - Los agentes tienen utilidades independientes (valores)
 - Cooperación, indiferencia, competición, y más, todo es posible
 - Más después

Búsqueda Adversarial

Árboles con un solo Agente

Valor de un estado

Valor de un estado: El mejor resultado **Estados no terminales:** (utility) desde ese $V(s) = \max_{s' \in \text{children}(s)} V(s')$ estado **Estados terminales:**

V(s) = conocido

<u>Árboles de estados Adversariales</u>

Valores Minimax

Estados bajo el control del agente:

Estados bajo el control del oponente:

Estados terminales:

$$V(s) = conocido$$

Árbol de juegos de Tic-Tac-Toe

Búsqueda Adversarial (Minimax)

- Juegos determinísticos, de suma cero:
 - Tic-tac-toe, ajedrez, damas
 - Un jugador maximiza el resultado
 - El otro minimiza el resultado
- Búsqueda Minimax:
 - Árbol de búsqueda en un espacio de estados
 - Los jugadores alternan turnos
 - Se calcula el **valor minimax** de cada nodo: el máximo resultado (utility) posible contra un adversario racional (óptimo)

Valores Minimax: calculados recursivamente

Valores terminales: parte del juego

Implementación de Minimax

def max-value(state): initialize v = -∞ for each successor of state: v = max(v, min value(successor)) return v

$$V(s) = \max_{s' \in \text{successors}(s)} V(s')$$

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

El valor v empieza con -∞ y va aumentando

El valor v empieza con +∞ y va disminuyendo

Implementación de Minimax (Dispatch)

```
def value(state):
                     if the state is a terminal state: return the state's utility
                     if the next agent is MAX: return max-value(state)
                     if the next agent is MIN: return min-value(state)
                                                        def min-value(state):
def max-value(state):
                                                            initialize v = +\infty
    initialize v = -\infty
                                                            for each successor of state:
    for each successor of state:
                                                                 v = \min(v,
        v = max(v,
                                                                       value(successor))
              value(successor))
                                                            return v
    return v
```

Ejemplo de Minimax

Árbol de una aplicación del mini-max

Árbol de una aplicación del mini-max

Propiedades de Minimax

Óptimo contra un jugador perfecto. ¿En otro caso?

[Demo: min vs exp (L6D2, L6D3)]

Video Demo Minimax vs. Exp (Minimax)

Video Demo Minimax vs. Exp (Exp)

Eficiencia de Minimax

- ¿Cómo de eficiente es minimax?
 - Igual que (exhaustivo) DFS
 - Tiempo: O(b^m)
 - Espacio: O(b^m)
- Ejemplo: para ajedrez, b ~ 35, m ~ 100
 - Una solución exacta es inviable
 - Pero, ¿Tenemos que explorar el árbol entero?

Podado del árbol de juego

Podado de Minimax

Podado Alpha-Beta

- Configuración General (versión MIN)
 - Estamos calculando un valor-MIN en un nodo *n*
 - Estamos iterando sobre los hijos de n
 - Al estar minimizando, el valor de n irá reduciéndose
 - ¿Dónde se usa el valor de *n*? MAX
 - Sea *a* el mejor valor que MAX puede obtener a lo largo del camino actual desde la raíz
 - Si *n* es peor que *a*, MAX lo evitará, por ello podemos evitar el considerar los demás hijos de *n* (es suficientemente malo para saber que no se hará esa jugada).
- La versión MAX es simétrica

Implementación de Alfa-Beta

α: la mejor opción de MAX's en el camino a la raíz β: la mejor opción de MIN's en el camino a la raíz

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
def min-value(state, \alpha, \beta):
    initialize v = +\infty
    for each successor of state:
    v = \min(v, value(successor, \alpha, \beta))
    if v \le \alpha return v
    \beta = \min(\beta, v)
    return v
```

Propiedades de podado Alfa-Beta

- Fil podado no tiene efecto sobre el valor minimax calculado para la raíz!
- Los valores de nodos intermedios pueden ser incorrectos
 - Importante: los hijos de la raíz pueden tener un valor incorrecto
 - Por ello, una versión simple no permitirá elegir una acción (hijos de la raíz)
- Una buena ordenación de los hijos mejora la efectividad del podado
- Con una "ordenación perfecta":
 - La complejidad en tiempo se reduce a O(b^{m/2})
 - ¡Dobla la profundidad que se puede explorar!

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Alpha-Beta Demo

- Demo: minimax game search algorithm with alpha-beta pruning (using html5, canvas, javascript, css)
 - http://homepage.ufp.pt/jtorres/ensino/ia/alfabeta.html

Recursos limitados

Recursos limitados

- Problema: en juegos reales, ¡no podemos buscar hasta las hojas!
- Solución: búsqueda limitada en profundidad (Depthlimited search)
 - Buscar solo una profundidad limitada del árbol
 - Reemplazar las utilidades terminales con una función de evaluación para posiciones no terminales
- Ejemplo:
 - Suponer que tenemos 100 segundos, y podemos explorar 10K nodos / seg
 - Podemos explorar 1M nodos por movimiento
 - α-β llega a profundidad 8 programa de ajedrez decente
- La garantía de juego óptimo se desvanece
- Usar iterative deepening para tener un anytime algorithm (lo mejor posible dado un tiempo limitado)

Vídeo of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]

Por qué Pacman desfallece

- ¡Peligro de agentes que replanifican!
 - Pacman sabe que su puntuación aumentará yendo en las 2 direcciones comiendo un punto (west, east). P. ej.: función de evaluación: 10 por cada punto comido
 - Pero Pacman sabe que su puntuación también subirá si hace (east, west)
 - Después de comer el punto, no hay oportunidad de anotar más puntos (en el horizonte, en este caso, 2 jugadas (profundidad))
 - Por ello, la espera es tan buena como el comer: puede ir east, luego west en la siguiente ronda de planificación

Video Demo Thrashing – Fijado (d=2)

El problema no era el minimax sino la función de evaluación

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D7)]

Funciones de Evaluación

Funciones de Evaluación

Las funciones de evaluación puntúan no terminales, con búsqueda de profundidad limitada

- Función Ideal: devuelve el valor real de minimax en esa posición
- En la práctica: normalmente suma lineal ponderada de características (features)

$$Eval(s) = w_1 * f_1(s) + w_2 * f_2(s) + ... + w_n * f_n(s)$$

Por ejemplo:

 $f_1(s)$ = (cantidad de reinas blancas – cantidad reinas negras), etc.

Evaluación para Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

Vídeo Demo Fantasmas inteligentes (Coordinación)

Vídeo Demo Fantasmas inteligentes (Coordinación) – con Zoom

La profundidad importa

- Las funciones de evaluación son siempre imperfectas
- Cuanto más profundamente en el árbol probemos la función de evaluación, es menos importante la calidad de la función de evaluación
- Un ejemplo interesante de compensación (tradeoff) entre complejidad de la función de evaluación y complejidad de cálculo

[Demo: depth limited (L6D4, L6D5)]

Vídeo Demo Profundidad limitada (2)

Vídeo Demo Profundidad limitada (10)

Resultados inciertos

Caso peor vs. caso medio

Idea: los resultados inciertos están controlados por el azar, no por el adversario!

Búsqueda Expectimax

- ¿Por qué podemos no conocer el resultado de una acción?
 - Aleatoriedad explícita: echar los dados
 - Oponentes impredecibles: los fantasmas responden aleatoriamente
 - Las acciones pueden fallar: al mover un robot, las ruedas pueden patinar
- Los valores deberían reflejar resultados medios (expectimax), no resultados en el caso peor (minimax)
- Búsqueda Expectimax: calcular la puntuación media con un juego óptimo
 - Nodos Max como en búsqueda minimax
 - Los nodos aleatorios son como los nodos min pero el resultado es incierto
 - Se calcularán las utilidades esperadas
 - P. ej. Tomar la media ponderada (expectativa) de los hijos

Pseudocódigo de Expectimax

```
def value(state):
                     if the state is a terminal state: return the state's utility
                     if the next agent is MAX: return max-value(state)
                     if the next agent is EXP: return exp-value(state)
                                                      def exp-value(state):
def max-value(state):
                                                           initialize v = 0
    initialize v = -\infty
                                                           for each successor of state:
    for each successor of state:
                                                             p = probability(successor)
        v = max(v,
                                                             v += p * value(successor)
               value(successor))
                                                           return v
    return v
```

Pseudocódigo de Expectimax

def exp-value(state): initialize v = 0 for each successor of state: p = probability(successor) v += p * value(successor) return v

$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Ejemplo de Expectimax

Vídeo Demo Expectimax

¿Poda de Expectimax?

Expectimax con profundida limitada

Probabilidades

Recuerdo: Probabilidades

- Una variable aleatoria (random) representa un evento cuyo resultado es desconocido
- Una distribución de probabilidad es una asignación de pesos a resultados.
- Ejemplo: Tráfico en la autovía
 - Variable aleatoria: T = hay tráfico o no
 - Valores: T en {nada, ligero, mucho}
 - Distribución: P(T=nada) = 0.25, P(T=ligero) = 0.50, P(T=mucho) = 0.25
- Algunas leyes de probabilidad:
 - Las Probabilidades son siempre no negativas
 - La suma de Probabilidades sobre todos los valores posibles suma uno

Recuerdo: Expectativas

El valor esperado de una función de una variable aleatoria es la media, ponderada por la distribución de probabilidad de los resultados

Ejemplo: ¿Cuánto tardaré en llegar al aeropuerto?

Tiempo:

20 min

X

Probabilidad: 0.25

30 min

X

0.50

60 min

X

0.25

35 min

¿Qué probabilidades usamos?

- En la búsqueda expectimax, tenemos un modelo probabilístico de cómo el oponente (o entorno) se comportará en cualquier estado
 - El Modelo podría ser una distribución uniforme (echar los dados)
 - El Modelo podría ser sofisticado y requerir un montón de computación
 - Tendremos un nodo aleatorio por cada situación fuera de nuestro control: oponente o entorno
 - ¡El modelo podría decir qué acciones adversariales son probables!
- Por ahora, asumiremos que cada nodo viene mágicamente con probabilidades que especifican la distribución respecto a sus valores

¡Tener una suposición probabilística sobre la acción de otro agente no quiere decir que ese agente esté echando una moneda!

Quiz: Probabilidades informadas

- Supongamos que nuestro oponente está ejecutando un minimax de profundidad 2, usando ese resultado un 80% de las veces, y moviéndose aleatoriamente en otro caso
- Pregunta: ¿Qué tipo de búsqueda en árbol usaríamos?

- Respuesta: ¡Expectimax!
 - Para estimar las probabilidades de CADA nodo aleatorio, tendríamos que ejecutar una simulación de nuestro oponente
 - Esto nos puede llevar rápidamente a ineficiencia (tiempo)
 - Peor si tenemos que simular a nuestro oponente simulándonos a nosotros ...
 - ... excepto para minimax, que tiene la (buena) propiedad de que todo se junta en un árbol de juegos

Modelando Asunciones

Los peligros del optimismo y el pesimismo

Optimismo peligroso

Asumiendo azar cuando el mundo es adversarial

Pesimismo peligroso

Asumiendo el caso peor cuando es poco probable

Asunciones vs. Realidad

	Fantasma Adversarial	Fantasma Aleatorio
Minimax Pacman	Won 5/5 Avg. Score: 483	Won 5/5 Avg. Score: 493
Expecti max Pacman	Won 1/5 Avg. Score: - 303	Won 5/5 Avg. Score: 503

Resultados jugando 5 juegos

- Pacman usó búsqueda de profundidad 4 con una función de evaluación que evita problemas
- El fantasma usó búsqueda de profundidad 2 con una función de evaluación que busca a Pacman

[Demos: world assumptions (L7D3,4,5,6)]

Vídeo Demo Asunciones sobre el mundo Fantasma aleatorio – Pacman Expectimax

Vídeo Demo Asunciones sobre el mundo Fantasma Adversarial – Pacman Minimax

Vídeo Demo Asunciones sobre el mundo Fantasma Adversarial – Pacman Expectimax

Vídeo Demo Asunciones sobre el mundo Fantasma aleatorio – Pacman Minimax

Otros tipos de juegos

Tipos de nivel mixtos

- P. ej. Backgammon
- Expectiminimax
 - El entorno es un "agente aleatorio" extra que mueve después de cada agente min/max
 - Cada nodo calcula la combinación apropiada para sus hijos

Ejemplo: Backgammon

- Al echar los dados se incrementa b: 21 resultados posibles con 2 dados
 - Backgammon ~ 20 movimientos legales
 - Profundidad $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- Al aumentar la profundidad, la probabilidad de llegar a un nodo disminuye
 - Por ello disminuye la utilidad de la búsqueda
 - Por ello limitar la profundidad es menos dañino
 - Pero el podado es más complicado ...
- AI histórica: TDGammon usa búsqueda de profundidad 2 search + muy buena función de evaluación + reinforcement learning: nivel de juego de campeón mundial
- Primer campeón mundial automático en un juego!

Image: Wikipe

Utilidades Multi-agente

