ПРАКТИЧЕСКАЯ РАБОТА №1

ТЕМА: «Тяговый расчет ленточного конвейера»

Цель работы: Ознакомление с устройством и принципом работы ленточных конвейеров, выполнение тягового расчета конвейера.

1.1 Краткие теоретические сведения.

Ленточные конвейеры в металлургическом производстве применяют для транспортирования формовочных материалов в горизонтальном или наклонном направлении. Они обеспечивают высокую производительность (до нескольких тысяч тонн в час) и значительную дальность транспортирования.

Основным транспортирующим и тяговым органом является бесконечная прорезиненная лента 4 ленточного конвейера (рисунок 1.1,a), огибающая два барабана — приводной 6 и натяжной 2. Поступательное движение ленты с грузом создаётся силами трения, действующими в зоне контакта ленты с приводным барабаном. Вращение барабан получает от приводного электродвигателя 10 через редуктор 9. Для увеличения тягового усилия рядом с приводным барабаном устанавливают отклоняющий барабан 7, увеличивающий угол обхвата (рисунок 1.1,a). Верхняя рабочая и нижняя холостая ветвь поддерживаются верхними 5 и нижними 8 роликоопорами. Для предотвращения провисания ленты между роликоопорами, а также для увеличения тягового усилия лента предварительно натягивается посредством винтового или грузового натяжного устройства 1.

Рис. 1.1-Ленточный конвейер

а – схема ленточного конвейера; б – поперечный разрез; в – механизм натяжения ленты

					МиТОМ.ПТУМЦ.Пр.№1.2022.Отчет				
Изм.	Лист	№ докум.	Подпись	Дата					
Выпо	лнил	Крумкач А.А.			Практическая работа №1	Л	um.	Лист	Листов
Пров	ерил	Астапенко И.В.						1	8
					«Расчет ленточного конвейера»	ГГТУ им. П.О. Сухого гр. МЛ-41		•	

Загрузка транспортируемого материала на ленту производится через специальную воронку 3. Съём материала может производиться через приводной барабан или в промежуточных пунктах с помощью специальных сбрасывающих устройств. Угол наклона конвейера зависит от подвижности транспортируемого материала и коэффициента трения материала о транспортерную ленту при движении.

Чтобы обеспечить нужное натяжение ленты для передачи ей движения трением, применяют винтовое или грузовое устройство.

1.2 Расчет ленточного конвейера.

Вариант задания

Вари-	Вид транспор- тируемого ма- териала	П, т/ч	L, м	рад	Материал трущейся поверхно- сти бараба-	Состояние атмосфе- ры	ра Д
	Торнала				на	РЫ	
8	уголь	135	50	0,035	дерево	влажная	4,8

По заданной производительности (таблица 1.11) определяем площадь поперечного сечения материала на ленте конвейера:

$$F = \frac{\Pi}{3.6 \cdot \nu \cdot \rho} = \frac{135}{3.6 \cdot 3.15 \cdot 1300} = 0,00915 m^2., \qquad (1.1)$$

где Π – производительность конвейера, т/ч;

 υ — скорость движения ленты в зависимости от транспортируемого материала (по табл.1.1), м/с;

 ρ – насыпная плотность материала, кг/м³ (по табл. 1.2).

Таблица 1.1 - Скорость движения ленты от вида транспортируемого материала

Транспортируемый материал						
Крупнокусковые абразивные грузы (руда)	1,6-3,15					
Среднекусковые абразивные грузы (камень, щебень)	1,6-4,0					
Малоабразивные кусковые грузы (кокс, уголь)						
Абразивные мелкокусковые и зернистые грузы (песок, гравий,	2,5-6,3					
земля)						
Пылевидные грузы (цемент, гипс, мел, бентонит, печная пыль)	0,8-1,25					

Примечание — Значение скорости следует выбирать из нормативного ряда скоростей ГОСТ 22644-77: 0,8; 1,25; 1,6; 2,5; 3,15; 4,0; 5,0; 6,3.

Таблина 1.2 - Насыпная плотность груза

- · · · · · · · · · · · · · · · · · · ·												
Вид груза	ρ, κ г/ м ³	Вид груза	ρ, κ г/ м ³	Вид груза	ρ, κ г/ м ³							
Руда	1750	Уголь	1300	Цемент	1300							
Камень	1900	Песок	1550	Мел	950							
Щебень	1700	Гравий	1800	Гипс	1100							
Кокс	650	Земля	1250									

						Лист
					МиТОМ.ПТУМЦ.Пр.№1.2022.Отчет	2
Изм.	Лист	№ докум.	Подпись	Дата	, .	

Определяем ширину ленты по одной из формул (1.2-1.4) в зависимости от формы ленты (рис. 1.2). Форма ленты выбирается по последней цифре зачетки (рис. 1.2, a - 0.1.2; рис.1.2, $\delta - 3.4.7$; рис 1.2, $\epsilon - 5.6.8.9$).

А. Лента плоская без бортов (рис. 1.2, а), м:
$$B = \sqrt{\frac{F}{0.25 \cdot C \cdot K^2 \cdot tg\rho_3}} = \sqrt{\frac{0.00915}{0.25 \cdot 1 \cdot 0.85^2 \cdot 0.27}} = 0.4331 \text{м},$$
 (1.2)

Принимаем В=0,5 по таблице 1.10.

где C – коэффициент, учитывающий уменьшение площади сечения от ссыпания материала назад при транспортировании его наклонным конвейером выбираем по таблице 1.3.

 ρ_3 – угол при основании площади поперечного сечения материала равен 15°, а $tg \rho_3 = 0.27$.

Таблица 1.3 - Величина коэффициента С

		<u> </u>	
Угол наклона транспортера $oldsymbol{eta}$, рад	0-0,175	0,1925-0,2625	0,28-0,385
Коэффициент <i>С</i>	1	0,97	0,9

Рис. 1.2 - Размещение транспортируемого материала на ленте при различных формах поперечного сечения конвейера: a – плоская лента без бортов; δ – плоская лента с бортами; θ – желобчатая лента

Где
$$K$$
 — отношение, численно равное $\frac{B_0}{B}$ = 0,85.

Значение полученной ширины ленты уточняем в сторону увеличения из таблиц 1.4 и 1.5 для дальнейших расчетов.

Вычисляем мощность на валу приводного барабана конвейера, кВт: $N = (0.003 \cdot \Pi \cdot H + 0.00015 \cdot \Pi \cdot L_2 + 0.03 \cdot L_2 \cdot B \cdot \upsilon) k_1 \cdot k_2 + k \cdot \Pi,$

 $N = (0.003 \cdot 135 \cdot 45.33 + 0.00015 \cdot 135 \cdot (-21.096) + 0.03 \cdot (-21.096) \cdot 0.5 \cdot 3.15) \cdot 1.05 \cdot 1.25 + 0.005 \cdot 135 = 22.9 \kappa Bm.$

где H – высота подъема материала (рис. 1.3), м:

$$H = L \cdot \sin \beta = 50 \cdot \sin(0.035 \cdot \frac{180}{3.14}) = 45.33, \ L_2 = L \cdot \cos \beta = 50 \cdot \cos(0.035 \cdot \frac{180}{3.14}) = -21.096, \ (1.4)$$

где L – длина конвейера, м (табл. 1.11);

						Лист
					МиТОМ.ПТУМЦ.Пр.№1.2022.Отчет	2
Изм.	Лист	№ докум.	Подпись	Дата	, .	3

 β – угол наклона конвейера, рад. (таблица 1.11);

 L_2 – длина горизонтальной проекции конвейера, м;

 k_1 — эмпирический коэффициент, учитывающий влияние относительной длины конвейера (табл.1.6);

 k_2 — коэффициент, учитывающий расход энергии на преодоление сопротивлений, возникающих при прохождении ленты через сбрасывающую тележку (табл. 1.6);

k — коэффициент, учитывающий расход энергии на работу сбрасывающего устройства (табл.1.6).

Таблица 1.4 - Характеристика резинотканевых лент

Тип ленты	Прочность ленты Р, Н/мм	Число прокладок i, шт.	Macca , кг/м ²
БКНЛ-65	55	3-10	8,7-17,6
БКНЛ-100	100	3-8	10-19
БКНЛ-150	150	3-8	13,4-25,5
ЛХ-120	120	3-12	12,4-28
TA-150	150	3-8	11,4-18,6
TA-300	300	4-10	13,3-20,7
ТЛ-150	150	3-8	10,4-20,2
ТЛ-200	200	3-8	11,8-21
ТЛК-150	150	3-8	11,4-20,2
ТЛК-200	200	3-8	11,8-21
TK-300	300	4-10	14,2-26,4
TK-400	400	4-8	16-26,4
МЛ-200	200	- 1	16,5-25,3
МЛ-300	300	1	16,5-25,3
MK-300	300	-	16,5-25,3
MK-600	600	-	16,5-25,3

Таблица 1.5 - Характеристика резинотросовых лент

Тип ленты	Прочность, Н/мм	Диаметр и шаг тросов, мм	масса, кг/м ²
РТЛ-1500	1 500	6,2/15	28
РТЛ-2500	2 500	7,6/14	37
РТЛ-3150	3 150	8,6/15	43
РТЛ-4000	4 000	8,0/15	48
РТЛ-5000	5 000	10,5/17	55
РТЛ-6000	6 000	11,5/18	65

Таблица 1.6 - Величина коэффициентов k, k_1, k_2

Величина коэффициентов k, k_2 ,												
Вариант	Конструкция разгрузоч	k_2	k									
a - 0,1,3,5,7,9	При наличии сбрасывающ	При наличии сбрасывающей тележки										
6-2,4,6,8,10	При разгрузке через натях	1,0	0,05									
	Величина коэффициента k_1											
Относительна	я длина конвейера L, м	до 16	15-30	30-50	свыше 50							
Коэффициент	k_1	1,25	1,15	1,05	1,0							

Вычисляем необходимую мощность электродвигателя, кВт:

						Лист
					МиТОМ.ПТУМЦ.Пр.№1.2022.Отчет	1
Изм.	Лист	№ докум.	Подпись	Дата	, .	4

Рис. 1.3 - Схема ленточного конвейера

$$N_{\partial 6} = \frac{N}{\eta} = \frac{22.9}{0.8} = 28.6 \kappa Bm,$$

(1.5)

где η — коэффициент полезного действия привода барабана, η =0,8. Из таблицы 1.7 выбираем электродвигатель Nдв.=30 кВт; n=750 об/мин Вычисляем окружное усилие на приводном барабане, H:

$$P = \frac{1000N_{\delta s}}{\upsilon} = \frac{1000 \cdot 30}{3,15} = 9523,8H. ,$$
 (1.6)

и натяжение набегающего и сбегающего концов ленты:

- сбегающего, Н:

$$S_c = P \frac{1}{e^{\mu \alpha} - 1} = 9523.8 \cdot \frac{1}{3.32^{0.25 \cdot 4.8} - 1} = 2957.23H,$$
(1.7)

- набегающего, Н:

Изм.

Лист

№ докум.

Подпись

Дата

$$S_{H} = P \frac{e^{\mu \alpha}}{e^{\mu \alpha} - 1} = 9523.8 \cdot \frac{3.32^{0.25 \cdot 4.8}}{3.32^{0.25 \cdot 4.8} - 1} = 12481.03H$$

(1.8)

Проверяем правильность расчета 12481,03-2957,23=9523,8 (Расчет выполнен верно).

где μ – коэффициент трения ленты о барабан (табл.1.8); α – угол обхвата, рад (таблица 1.11);

 $e^{\mu\alpha}$ - значения даны в таблице 1.9.

Таблица 1.7-Типы и основные параметры электродвигателей

Тип двигателя	N _{ДВ} , кВт	пдв, об/мин	Тип двигателя	N _{ДВ} , кВт	n _{дв} , об/мин
4АА50А2У3	0,9	3000	4A118M2У3	7,5	3000
4АА56А4У3	0,12	1500	4A160M8У3	11,0	750
4АА63А6У3	0,18	1000	4А160М6У3	15,	1000
4АА63В6У3	0,35	1000	4А160М4У3	18,5	1500
4АА63В4У3	0,37	1500	4A180S2У3	22,0	3000
4АА63В2У3	0,55	3000	4A225M8У3	30,0	750
4A90LA8У3	0,75	750	4А225М6У3	37,0	1000
4А80В6У3	1,1	1000	4A200L4Y3	45,0	1500
4А80В4У3	1,5	1500	4A225M2У3	55,0	3000
4А80В2У3	2,8	3000	4A280M8У3	75,0	750
4A112MB8Y3	3,0	750	4A280M6Y3	90,0	1000

МиТОМ.ПТУМЦ.Пр.№1.2022.Отчет

Лист

4А112МВ6У3	4,0	1000	4A280M4У3	110,0	1500
4A112MAУ3	5,0	1500	4A280M2У3	132,0	3000

Таблица 1.8-Значение коэффициента трения μ и величины скольжения ξ

Материал трущейся поверхности	Состояние атмосферы	μ	Ę
Обработанный чугун	Очень влажная	0,10	0,03
Обработанный чугун	Влажная	0,20	0,019
Обработанный чугун	Сухая	0,30	0,008
Футеровка из обрезиненной ленты	Очень влажная	0,25	0,006
Футеровка из обрезиненной ленты	Влажная	0,15	0,01
Футеровка из обрезиненной ленты	Сухая	0,40	0,002
Футеровка из дерева	Очень влажная	0,15	0,02
Футеровка из дерева	Влажная	0,25	0,012
Футеровка из дерева	Сухая	0,25	0,004

Таблица 1.9-Значение $e^{\mu\alpha}$

Угол обхвата α,	Коэффициент трения µ							
рад	0,1	0,15	0,20	0,25	0,3	0,35	0,4	
3,14	1,36	1,60	1,37	2,19	2,56	3,00	3,51	
3,67	1,44	1,73	2,08	2,50	3,01	3,61	4,34	
4,2	1,53	1,88	2,32	2,86	3,52	4,35	5,37	
4,8	1,08	2,09	2,61	3,32	4,32	5,37	6,82	

Определяем количество прокладок и выбираем ленту по таблицам 1.4 и 1.5:

$$i_n = \frac{S_n}{BP} = \frac{1248103}{0.5 \cdot 9523.8} = 2.6,$$
(1.9)

Принимаем за і=3 по таблице 1.10.

где P — допускаемая нагрузка на 1 м ширины одной прокладки, (по табл. 1.4 и 1.5).

Подсчитанное число прокладок должно находиться в пределах, приведенных в таблице 1.10.

Таблица 1.10-Допустимое число прокладок в зависимости от ширины ленты

В, м	0,3	0,4	0,5	0,6	0,8	1,0	1,2	1,4
$i_{\scriptscriptstyle \Pi}$	3-4	3-5	3-6	3-7	4-8	5-10	6-10	7-10

Определяем диаметр приводного барабана и лебедки, м:

$$\mathcal{A}_{6ap} = (0.12 \div 0.15)i_n = 0.15 \cdot 3 = 0.45$$
, (1.10)

и передаточное отношение приводного редуктора:

$$i_p = \frac{n_{\partial s}}{n_{\delta ap}} = \frac{750}{135,38} = 5,54,$$
(1.11)

Принимаем і=8.

где $n_{\partial 6}$ — частота вращения ротора электродвигателя, об/мин.

						Лист
			·		МиТОМ.ПТУМЦ.Пр.№1.2022.Отчет	6
Изм.	Лист	№ докум.	Подпись	Дата	` .	O

Значение $n_{\partial e}$ берем из таблицы 1.7 по марке подобранного электродвигателя.

$$n_{\delta ap} - \text{частота вращения приводного барабана:}$$

$$n_{\delta ap} = \frac{60\upsilon}{\mathcal{A}_{\delta ap}\pi(1-\xi)} = \frac{60\cdot 3.15}{0.45\cdot 3.14\cdot \left(1-0.012\right)} = 135,3806 / \text{мин,}$$
 (1.12)

где ξ – величина, характеризующая относительное скольжение и зависящая от материала трущейся поверхности барабана и состояния атмосферы (табл.1.8).

Вывод: Ознакомился с методикой расчета ленточного конвеера.

ı	Изм.	Лист	№ локум.	Полпись	Лата

Задание

Основными исходными данными для расчета являются (табл. 1.11):

- а) характеристика транспортируемого материала;
- б) производительность;
- в) режим и условия работы;
- г) параметры трассы перемещения груза;
- д) длина и угол наклона трассы.

1.2 Выполнение работы

- 1. Ознакомиться с теоретическими сведениями.
- 2. Изучить устройств и принцип работы ленточного конвейера.
- 3. Произвести расчет ленточного конвейера.
- 4. Оформить отчет.

1.3 Содержание отчета

- 1. Цель работы.
- 2. Теоретические сведения.
- 3. Расчет ленточного конвейера.
- 4. Выводы по работе.

1.4 Контрольные вопросы

- 1. Назначение ленточных конвейеров, области их применения, устройство и принцип действия.
- 2. Основные конструктивные схемы, устройство и назначение роликоопор.
- 3. Условия, от которых зависит тип и место расположения приводов.
- 4. Барабаны ленточных конвейеров. Материалы для их изготовления и футеровки.
- 5. Как рассчитываются и от чего зависят геометрические размеры барабанов?
- 6. Из каких участков состоит трасса конвейера?
- 7. Где на трассе конвейера располагается точка с минимальным натяжением?
- 8. Как определятся передаточное отношение приводной станции? Какие выводы можно сделать из величины передаточного отношения?
- 9. Что понимается под термином «погонная нагрузка»?
- 10. Как рассчитываются сопротивления на участках трассы конвейера?
- 11. Как определяются натяжения в характерных точках трассы?
- 12. Какова цель выполнения тягового расчета конвейера?

					МиТОМ.ПТУМЦ.Пр.№
Изм.	Лист	№ локум	Полпись	Лата	, .

1.2022.Отчет

Таблица 1.11 - Варианты заданий

В-	Вид транспортируемого материала	П, т/ч	L, м	β, рад	Материал трущейся по- верхности ба-	Состояние атмосферы	α, рад
1		100	100	0.07	рабана	27.77.0.0	2 1 4
1	Руда	100	100	0,07	чугун	сухая	3,14
2	Камень	105	50	0,0175	чугун	влажная	3,67
3	Кокс	110	40	0,07	чугун	сухая	4,2
4	Песок	115	30	0,105	резина	очень влажно	4,8
5	Цемент	120	20	0,140	резина	очень влажно	3,14
6	Руда	125	10	0,3675	резина	сухая	3,67
7	Щебень	130	100	0,2625	дерево	очень влажно	4,2
8	Уголь	135	50	0,035	дерево	влажная	4,8
9	Гравий	140	40	0,2275	дерево	сухая	3,14
10	Мел	145	30	0,350	чугун	сухая	3,67
11	Руда	150	20	0,385	чугун	влажная	4,2
12	Камень	155	10	0,1225	чугун	очень влажно	4,8
13	Кокс	160	100	0,245	резина	очень влажно	3,14
14	Земля	165	50	0,3325	резина	влажная	3,67
15	Гипс	170	40	0,210	резина	сухая	4,2
16	Руда	175	30	0,0875	дерево	очень влажно	4,8
17	Щебень	180	20	0,1575	дерево	влажная	3,14
18	Уголь	185	10	0,315	дерево	сухая	3,67
19	Песок	190	100	0,2275	чугун	очень влажно	4,2
20	Цемент	195	50	0,385	чугун	влажная	4,8
21	Руда	200	40	0,0175	чугун	сухая	3,14
22	Камень	205	30	0,0525	резина	очень влажно	3,67
23	Кокс	210	20	0,105	резина	влажная	4,2
24	Гравий	215	10	0,1925	резина	сухая	4,8
25	Мел	220	100	0,3325	дерево	сухая	3,14
26	Руда	225	50	0,210	дерево	влажная	3,67
27	Щебень	230	40	0,0275	дерево	очень влажно	4,2
28	Камень	235	20	0,0525	резина	очень влажно	3,07
29	Кокс	240	20	0,0105	резина	влажная	4,2
30	Уголь	245	10	0,3675	чугун	сухая	4,5

Полученные результаты расчетов сводятся в таблицу.

Н					
⊢					
ν	1зм.	Лист	№ докум.	Подпись	Дата