MARIO L. GUTIERREZ ABED PROF. A. BASMAJIAN

Geometric Tangent Vectors

Definition. Given a fixed point $a \in \mathbb{R}^n$, let us define the **geometric tangent space to** \mathbb{R}^n **at** a, denoted by \mathbb{R}^n_a , to be the set $\{a\} \times \mathbb{R}^n = \{(a,v) \mid v \in \mathbb{R}^n\}$. A **geometric tangent vector** in \mathbb{R}^n is an element of \mathbb{R}^n_a for some $a \in \mathbb{R}^n$.

<u>Remark 1</u>: As a matter of notation, we abbreviate (a, v) as v_a (or sometimes $v|_a$ if it is clearer, for example if v itself has a subscript). We think of v_a as the vector v with its initial point at a (see Figure 1 below).

FIGURE 1. Geometric tangent space.

<u>Remark 2</u>: Note that the geometric tangent space \mathbb{R}^n_a is a real vector space under the natural operations

$$v_a + w_a = (v + w)_a$$
 and $c(v_a) = (cv)_a$ $\forall v_a, w_a \in \mathbb{R}^n$, $\forall c \in \mathbb{R}$.

One thing that a geometric tangent vector provides is a means of taking directional derivatives of functions. For example, any geometric tangent vector $v_a \in \mathbb{R}^n_a$ yields a map $D_v|_a : C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$, which takes the directional derivative in the direction v at a:

$$D_v\big|_a f = D_v f(a) = \frac{d}{dt}\Big|_{t=0} f(a+tv).$$

This operation is linear over \mathbb{R} and satisfies the product rule:

$$D_v|_a(fg) = f(a)D_v|_a g + g(a)D_v|_a f.$$

If $v_a = v^i e_i|_a$ in terms of the standard basis, then by the chain rule $D_v|_a f$ can be written more concretely as

$$D_v|_a f = v^i \frac{\partial f}{\partial x^i}(a).$$

2

With this construction in mind, we make the following definition:

Definition. If a is a point of \mathbb{R}^n , a map $\varpi \colon C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is called a **derivation at** a if it is linear over \mathbb{R} and satisfies the product rule $\varpi(fg)(a) = f(a)\varpi(g) + g(a)\varpi(f)$.

<u>Remark</u>: Note that the set of all derivations of $C^{\infty}(\mathbb{R}^n)$ at a, denoted $\mathfrak{D}_a\mathbb{R}^n$, is a real vector space under the operations

$$(\varpi_1 + \varpi_2)(f) = \varpi_1(f) + \varpi_2(f)$$
 and $(c \varpi)(f) = c(\varpi(f)).$

The most important (and perhaps somewhat surprising) fact about $\mathfrak{D}_a\mathbb{R}^n$ is that it is finite-dimensional, and in fact is naturally isomorphic to the geometric tangent space \mathbb{R}^n_a that we defined above. The proof will be based on the following lemma:

Lemma 1 (Properties of Derivations). Suppose $a \in \mathbb{R}^n$, $\varpi \in \mathfrak{D}_a \mathbb{R}^n$, and $f, g \in C^{\infty}(\mathbb{R}^n)$. Then we have the following:

- a) If f is a constant function, then $\varpi(f) = 0$.
- b) If f(a) = g(a) = 0, then $\varpi(fg) = 0$.

The next proposition shows that derivations at a are in one-to-one correspondence with geometric tangent vectors:

Proposition 1. Let $a \in \mathbb{R}^n$. Then,

- a) For each geometric tangent vector $v_a \in \mathbb{R}^n_a$, the map $D_v|_a : C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is a derivation at a.
- b) The map $v_a \mapsto D_v|_a$ is an isomorphism from \mathbb{R}^n_a onto $\mathfrak{D}_a\mathbb{R}^n$.

Corollary 1. For any $a \in \mathbb{R}^n$, the n derivations

$$\frac{\partial}{\partial x^1}\Big|_a,\dots,\frac{\partial}{\partial x^n}\Big|_a\quad defined\ by\quad \frac{\partial}{\partial x^i}\Big|_af=\frac{\partial f}{\partial x^i}(a)$$

form a basis for $\mathfrak{D}_a\mathbb{R}^n$, which therefore has dimension n.

Proof. Apply the previous proposition and note that $\partial/\partial x^i|_a = D_{e_i}|_a$.

TANGENT VECTORS ON MANIFOLDS

Now we are in a position to define tangent vectors on manifolds:

Definition. Let M be a smooth manifold (with or without boundary), and let p be a point of M. A linear map. A linear map $\nu \colon C^{\infty}(M) \to \mathbb{R}$ is called a **derivation at** p if it satisfies the product rule

$$\nu(fg)(p) = f(p)\nu(g) + g(p)\nu(f)$$
 for all $f, g \in C^{\infty}(M)$.

The set of all derivations of $C^{\infty}(M)$ at p, denoted by T_pM , is a vector space called the **tangent** space to M at p. An element of T_pM is called a **tangent vector at** p.

3

The following lemma is the analogue of *Lemma 1* for manifolds:

Lemma 2 (Properties of Tangent Vectors on Manifolds). Suppose M is a smooth manifold (with or without boundary), $p \in M$, $\nu \in T_pM$, and $f, g \in C^{\infty}(M)$. Then we have the following:

- a) If f is a constant function, then $\nu(f) = 0$.
- b) If f(p) = g(p) = 0, then $\nu(fg) = 0$.

<u>Note</u>: To relate the abstract tangent spaces we have defined on manifolds to geometric tangent spaces in \mathbb{R}^n , we have to explore the way smooth maps affect tangent vectors. In the case of a smooth map between Euclidean spaces, the total derivative of the map at a point (represented by its Jacobian matrix) is a linear map that represents the "best linear approximation" to the map near the given point. In the manifold case there is a similar linear map, but it makes no sense to talk about a linear map between manifolds. Instead, it will be a linear map between tangent spaces.

Definition. If M and N are smooth manifolds (with or without boundary) and $F: M \to N$ is a smooth map, then for each $p \in M$ we define a map

$$dF_p \colon T_pM \to T_{F(p)}N$$
,

called the differential of F at p, as follows: Given $\nu \in T_pM$, we let $dF_p(\nu)$ be the derivation at F(p) that acts on $f \in C^{\infty}(N)$ by the rule $dF_p(\nu)(f) = \nu(f \circ F)$ (see Figure 2 below).

FIGURE 2. The differential.

Note that if $f \in C^{\infty}(N)$, then $f \circ F \in C^{\infty}(M)$ so $\nu(f \circ F)$ makes sense. The operator $dF_p(\nu) : C^{\infty}(N) \to \mathbb{R}$ is linear because ν is, and is a derivation at F(p) because for any $f, g \in C^{\infty}(N)$ we have

$$dF_p(\nu)(fg) = \nu \left((fg) \circ F \right) = \nu \left((f \circ F)(g \circ F) \right)$$

= $f \circ F(p) \nu(g \circ F) + g \circ F(p) \nu(f \circ F)$
= $f (F(p)) dF_p(\nu)(g) + g (F(p)) dF_p(\nu)(f).$

Proposition 2 (Properties of Differentials). Let M, N, and S be smooth manifolds (with or without boundary), let $F: M \to N$ and $G: N \to S$ be smooth maps, and let $p \in M$. Then,

- a) $dF_p: T_pM \to T_{F(p)}N$ is linear.
- b) $d(G \circ F)_p = dG_{F(p)} \circ dF_p \colon T_pM \to T_{G \circ F(p)}S$.
- c) $d(\mathrm{Id}_M)_p = \mathrm{Id}_{T_p(M)} \colon T_pM \to T_pM$.

d) If F is a diffeomorphism, then $dF_p: T_pM \to T_{F(p)}N$ is an isomorphism, and $(dF_p)^{-1} = d(F^{-1})_{F(p)}$.

The next proposition indicates that tangent vectors act locally.

Proposition 3. Let M be a smooth manifold (with or without boundary), $p \in M$, and $\nu \in T_pM$. If $f, g \in C^{\infty}(M)$ agree on some neighborhood of p, then $\nu(f) = \nu(g)$.

Using this proposition, we can identify the tangent space to an open submanifold with the tangent space to the whole manifold:

Proposition 4 (The Tangent Space to an Open Submanifold). Let M be a smooth manifold (with or without boundary), let $U \subseteq M$ be an open subset, and let $\iota \colon U \hookrightarrow M$ be the inclusion map. For every $p \in U$, the differential $d\iota_p \colon T_pU \to T_pM$ is an isomorphism.

<u>Remark</u>: Given an open subset $U \subseteq M$, the isomorphism $d\iota_p$ between T_pU and T_pM is canonically defined, independently of any choices. Hence from now on we identify T_pU with T_pM for any point $p \in U$.

Proposition 5 (Dimension of the Tangent Space). If M is an n-dimensional smooth manifold, then for each $p \in M$, the tangent space T_pM is an n-dimensional vector space.

Recall that every finite-dimensional vector space has a natural smooth manifold structure that is independent of any choice of basis or norm. The following proposition shows that the tangent space to a vector space can be naturally identified with the vector space itself. Suppose V is a finite-dimensional vector space and $a \in V$. Just as we did earlier in the case of \mathbb{R}^n , for any vector $v \in V$, we define a map $D_v|_a : C^{\infty}(V) \to \mathbb{R}$ by

$$(\heartsuit) D_v|_a f = \frac{d}{dt}|_{t=0} f(a+tv).$$

Proposition 6 (The Tangent Space to a Vector Space). Suppose V and W are finite-dimensional vector spaces with their respective standard smooth manifold structures. For each point $a \in V$, the map $v \mapsto D_v|_a$ defined by (\heartsuit) is a canonical isomorphism from V to T_aV , such that for any linear map $L: V \to W$, the following diagram commutes:

$$V \xrightarrow{\cong} T_a V$$

$$\downarrow \downarrow dL_a$$

$$\downarrow W \xrightarrow{\cong} T_{L_a} W$$

<u>Remark</u>: It is important to understand that each isomorphism $V \cong T_aV$ is canonically defined, independently of any choice of basis. Because of this result, we can routinely identify tangent vectors to a finite-dimensional vector space with elements of the space itself. More generally, if M is an open submanifold of a vector space V, we can combine our identifications $T_pM \leftrightarrow T_pV \leftrightarrow V$ to obtain a canonical identification of each tangent space to M with V. For example, since $GL(n, \mathbb{R})$

5

is an open submanifold of the vector space $M(n,\mathbb{R})$, we can identify its tangent space at each point (i.e. matrix) $X \in GL(n,\mathbb{R})$ with the full space of matrices $M(n,\mathbb{R})$.

There is another natural identification for tangent spaces to a product manifold:

Proposition 7 (The Tangent Space to a Product Manifold). Let M_1, \ldots, M_k be smooth manifolds, and for each j, let $\pi_j : M_1 \times \cdots \times M_k \to M_j$ be the projection onto the M_j factor. For any point $p = (p_1, \ldots, p_k) \in M_1 \times \cdots \times M_k$ and tangent vector $\nu \in T_p(M_1 \times \cdots \times M_k)$, the map

$$\alpha \colon T_p(M_1 \times \cdots \times M_k) \longrightarrow T_{p_1}M_1 \oplus \cdots \oplus T_{p_k}M_k$$

defined by

$$\alpha(\nu) = (d(\pi_1)_p(\nu), \dots, d(\pi_k)_p(\nu))$$

is an isomorphism. The same is true if one of the spaces M_i is a smooth manifold with boundary.

<u>Remark</u>: Once again, because the isomorphism (†) is canonically defined, independently of any choice of coordinates, we can consider it as a canonical identification, and we will always do so. Thus, for example, we identify $T_{(p,q)}(M \times N)$ with $T_pM \oplus T_qN$, and treat T_pM and T_qN as subspaces of $T_{(p,q)}(M \times N)$.

Computations in Coordinates

Suppose M is a smooth manifold and let (U,φ) be a smooth coordinate chart on M. Then φ is, in particular, a diffeomorphism from U to an open subset $\widehat{U} \subseteq \mathbb{R}^n$. Combining Propositions 4 and 2 part d) from above, we see that $d\varphi(p)\colon T_pM \to \mathfrak{D}_{\varphi(p)}\mathbb{R}^n$ is an isomorphism. Then by Corollary 1, the derivations $\partial/\partial x^1|_{\varphi(p)},\ldots,\partial/\partial x^n|_{\varphi(p)}$ form a basis for $\mathfrak{D}_{\varphi(p)}\mathbb{R}^n$. Therefore, the preimages of these vectors under the isomorphism $d\varphi_p$ form a basis for T_pM .

In keeping with our standard practice of treating coordinate maps as identifications whenever possible, we use the notation $\partial/\partial x^i|_p$ for these vectors, characterized by either of the following expressions:

$$\frac{\partial}{\partial x^i}\Big|_p = (d\varphi_p)^{-1} \left(\frac{\partial}{\partial x^i}\Big|_{\varphi(p)}\right) = d(\varphi^{-1})_{\varphi(p)} \left(\frac{\partial}{\partial x^i}\Big|_{\varphi(p)}\right).$$

Unwinding the definitions, we see that $\partial/\partial x^i|_p$ acts on a function $f \in C^{\infty}(U)$ by

$$\frac{\partial}{\partial x^i}\Big|_p f = \frac{\partial}{\partial x^i}\Big|_{\varphi(p)} (f \circ \varphi^{-1}) = \frac{\partial \widehat{f}}{\partial x^i} (\widehat{p}),$$

where $\widehat{f} = f \circ \varphi^{-1}$ is the coordinate representation of f, and $\widehat{p} = (p^1, \dots, p^n) = \varphi(p)$ is the coordinate representation of p. In other words, $\partial/\partial x^i|_p$ is just the derivation that takes the i^{th} partial derivative of (the coordinate representation of) f at (the coordinate representation of) p.

The vectors $\partial/\partial x^i|_p$ are called the **coordinate vectors at** p associated with the given coordinate system. In the special case of standard coordinates on \mathbb{R}^n , the vectors $\partial/\partial x^i|_p$ are literally the partial derivative operators.

The following proposition summarizes the discussion so far:

6

Proposition 8. Let M be a smooth n-manifold (with or without boundary), and let $p \in M$. Then T_pM is an n-dimensional vector space, and for any smooth chart $(U,(x^i))$ containing p, the coordinate vectors $\partial/\partial x^1|_p, \ldots, \partial/\partial x^n|_p$ form a basis for T_pM .

Thus, a tangent vector $\nu \in T_pM$ can be written uniquely as a linear combination

$$\nu = v^i \frac{\partial}{\partial x^i} \Big|_p,$$

(where we use the Einstein summation convention). The ordered basis $(\partial/\partial x^i|_p)$ is called a **co**ordinate basis for T_pM , and the coefficients (v^1,\ldots,v^n) are called the **components of** ν with respect to the coordinate basis. If ν is known, its components can be computed easily from its action on the coordinate functions. For each j, the components of ν are given by $v^j = \nu(x^j)$ (where we think of x^j as a smooth real-valued function on U), because

$$\nu(x^j) = \left(v^i \frac{\partial}{\partial x^i}\Big|_p\right)(x^j) = v^i \frac{\partial x^j}{\partial x^i}(p) = v^j.$$

The Differential in Coordinates. Next we explore how differentials look in coordinates. We begin by considering the special case of a smooth map $F: U \to V$, where $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ are open subsets of Euclidean spaces. For any $p \in U$, we will determine the matrix of $dF_p: T_p\mathbb{R}^n \to T_{F(p)}\mathbb{R}^m$ in terms of the standard coordinate bases. Using (x^1, \ldots, x^n) to denote the coordinates in the domain and (y^1, \ldots, y^m) to denote those in the codomain, and letting $f \in C^{\infty}(\mathbb{R}^m)$, we use the chain rule to compute the action of dF_p on a typical basis vector as follows:

$$dF_{p}\left(\frac{\partial}{\partial x^{i}}\Big|_{p}\right)f = \frac{\partial}{\partial x^{i}}\Big|_{p}(f \circ F)$$

$$= \frac{\partial f}{\partial y^{j}}(F(p))\frac{\partial F^{j}}{\partial x^{i}}(p)$$

$$= \left(\frac{\partial F^{j}}{\partial x^{i}}(p)\frac{\partial}{\partial y^{j}}\Big|_{F(p)}\right)f.$$

Thus we have that

$$dF_p\left(\frac{\partial}{\partial x^i}\Big|_p\right) = \frac{\partial F^j}{\partial x^i}(p) \frac{\partial}{\partial y^j}\Big|_{F(p)}.$$

In other words, the matrix of dF_p in terms of the coordinate bases is

$$\begin{pmatrix} \frac{\partial F^1}{\partial x^1}(p) & \cdots & \frac{\partial F^1}{\partial x^n}(p) \\ \vdots & \ddots & \vdots \\ \frac{\partial F^m}{\partial x^1}(p) & \cdots & \frac{\partial F^m}{\partial x^n}(p) \end{pmatrix}.$$

Recall that the columns of the matrix are the components of the images of the basis vectors. This matrix is none other than the Jacobian matrix of F at p, which is the matrix representation of the total derivative $DF(p) : \mathbb{R}^n \to \mathbb{R}^m$. Therefore, in this case, $dF_p : T_p\mathbb{R}^n \to T_{F(p)}\mathbb{R}^m$ corresponds to the total derivative under our usual identification of Euclidean spaces with their tangent spaces.

Now consider the more general case of a smooth map $F \colon M \to N$ between smooth manifolds (with or without boundary). Choosing smooth coordinate charts (U, φ) for M containing p and (V, ψ) for N containing F(p), we obtain the coordinate representation

$$\widehat{F} \ = \ \psi \, \circ \, F \, \circ \, \varphi^{-1} \colon \varphi(U \, \cap \, F^{-1}(V)) \ \to \ \psi(V).$$

Let $\widehat{p} = \varphi(p)$ denote the coordinate representation of p. By the above computation, $d\widehat{F}_{\widehat{p}}$ is represented with respect to the standard coordinate bases by the Jacobian matrix of \widehat{F} at \widehat{p} . Using the fact that $F \circ \varphi^{-1} = \psi^{-1} \circ \widehat{F}$, we compute

$$\begin{split} dF_p \left(\frac{\partial}{\partial x^i} \Big|_p \right) &= dF_p \left(d(\varphi^{-1})_{\widehat{p}} \left(\frac{\partial}{\partial x^i} \Big|_{\widehat{p}} \right) \right) \\ &= d(\psi^{-1})_{\widehat{F}(\widehat{p})} \left(d\widehat{F}_{\widehat{p}} \left(\frac{\partial}{\partial x^i} \Big|_{\widehat{p}} \right) \right) \\ &= d(\psi^{-1})_{\widehat{F}(\widehat{p})} \left(\frac{\partial \widehat{F}^j}{\partial x^i} (\widehat{p}) \frac{\partial}{\partial y^j} \Big|_{\widehat{F}(\widehat{p})} \right) \\ &= \frac{\partial \widehat{F}^j}{\partial x^i} (\widehat{p}) \frac{\partial}{\partial y^j} \Big|_{F(p)}. \end{split}$$

Thus, dF_p is represented in coordinate bases by the Jacobian matrix of (the coordinate representative of) F. In fact, the definition of the differential was cooked up precisely to give a coordinate-independent meaning to the Jacobian matrix. In the differential geometry literature, the differential is sometimes called the $tangent\ map$, the $total\ derivative$, or simply the $derivative\ of\ F$. Because it "pushes" tangent vectors forward from the domain manifold to the codomain, it is also called the $(pointwise)\ pushforward$.

THE TANGENT BUNDLE

Definition. Given a smooth manifold M (with or without boundary), we define the **tangent bundle of M**, denoted by TM, to be the disjoint union of the tangent spaces at all points of M:

$$TM = \bigsqcup_{p \in M} T_p M.$$

We usually write an element of this disjoint union as an ordered pair (p, ν) , with $p \in M$ and $\nu \in T_pM$. The tangent bundle comes equipped with a natural **projection map** $\pi \colon TM \to M$, which sends each vector ν in T_pM to the point p at which it is tangent: $\pi(p, \nu) = p$.

Proposition 9. For any smooth n-manifold M, the tangent bundle TM has a natural topology and smooth structure that make it into a 2n-dimensional smooth manifold. With respect to this structure, the projection $\pi \colon TM \to M$ is smooth.

Proof. See proof on Pg 66, *Lee's Smooth Manifolds* (this one is important!).

Proposition 10. If M is a smooth n-manifold (with or without boundary), and M can be covered by a single smooth chart, then TM is diffeomorphic to $M \times \mathbb{R}^n$.

Definition. By putting together the differentials of F at all points of M, we obtain a globally defined map between tangent bundles, called the **global differential** or **global tangent map** and denoted by $dF: TM \to TN$. This is just the map whose restriction to each tangent space $T_pM \subseteq TM$ is dF_p (when we apply the differential of F to a specific vector $\nu \in T_pM$, we can write either $dF_p(\nu)$ or $dF(\nu)$, depending on how much emphasis we wish to give to the point p).

Proposition 11. If $F: M \to N$ is a smooth map, then its global differential $dF: TM \to TN$ is a smooth map.

The following properties of the global differential follow immediately from Proposition 2:

Corollary 2 (Properties of the Global Differential). Let M, N, and S be smooth manifolds (with or without boundary), let $F: M \to N$ and $G: N \to S$ be smooth maps, and let $p \in M$. Then,

- a) $d(G \circ F) = dG \circ dF$.
- b) $d(\mathrm{Id}_M) = \mathrm{Id}_{TM}$.
- c) If F is a diffeomorphism, then $dF: TM \to TN$ is also a diffeomorphism, and $(dF)^{-1} = d(F^{-1})$.