4.3.1. Изучение дифракции света

Дорогинин Д.В. Группа Б02-825

Цель работы: исследовать являения дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

Описание работы

А. Дифракция Френеля

Рис. 1: Схема установки 1.

Схема установки представлена на Рис. 1. Световые лучи освещают щель S_2 и испытывают на ней дифракцию. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некоторую плоскость наблюдения Π . Щель S_2 освещается параллельным пучком монохроматического света с помощью коллиматора, образованного объективом O_1 и щелью S_1 , находящейся в его фокусе. На S_1 сфокусированно изображение спектральной линии, выделенной из спектра ртутной лампы Π при помощи монохроматор C, в котором используется призма прямого зрения.

Распределение интенсивности света в плоскости Π рассчитаем с помощью зон Френеля. При освещении S_2 параллельным пучком лучей (плоская зона) зоны Френеля представляют собой плоскости, параллельные краям щели. Результирующая амплитуда в точке наблюдения определеяется суперпозицией колебаний от тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы — спирали Корню. Суммарная ширина m зон Френеля z_m определяется соотношение

$$z_m = \sqrt{am\lambda},\tag{1}$$

где a — расстояние от щели до плоскости Π . Вид наблюдаемой картины определяется $uucnom\ \Phi penens\ \Phi$:

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}}$$

— число зон Френеля, которые укладываются в ширине щели D. $p=\frac{1}{\Phi^2}$ называется волновым параметром. Дифракционной картины нет, когда Π совпадает с плоскостью щели. При малом удалении от щели $\Phi\gg 1$ и картина наблюдается в узкой убласти на границе света и тени у краёв экрана. При последующих удалениях две группы дифракционных полос перемещаются независимо и каждая образует картину дифракции Френеля на экране. Распределение интенсивности может быть найдено с помощью спирали Корню. При дальнейшем увеличении a две системы полос сближаются и накладываются друг на друга, распределение интенсивности определяется числом зон Френеля в полуширине щели. Если их m, то будет набюдаться m-1 тёмная полоса.

Б. Дифракция Фраунгофера на щели

Для выкладок ниже нам потребуется знать $npunuun \ \Gamma \omega i renca-\Phi penens$. Он формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Теперь рассмотрим первое применение этого принципа, получившее название метод зон Φ ренеля

Рис. 2: Построение зон Френеля

Для этого рассмотрим действие световой волны действующей из точки A в какой-то точке B. В этом случае можно, взяв точку M_0 в качестве центра (см. рис. 1), построить ряд концентрических сфер, радиусы которых начинаются с b и увеличиваются каждый раз на половину длины волны $\frac{\lambda}{2}$. При пересечении с плоским фронтом волны F эти сферы дадут концентрические окружности. Таким образом, на фронте волны появятся кольцевые зоны (зоны Френеля) с радиусами r_1, r_2 и т. д.

Из геометрических соображений посчитав, можно получить, что

$$r_i = i\sqrt{a\lambda} \tag{2}$$

Картина дифракции упрощается, когда ширина щели становится значительно меньше ширины первой зоны Френеля, т.е. если

$$D \ll \sqrt{a\lambda} \tag{3}$$

Рис. 3: К фазовым соотношениям при дифракции Фраунгофера

Это условие всегда выполняется при достаточно большом a. В этом случае говорят, что дифракция Фраунгофера. Дифракционную картину в этом случае называются дифракцией Фраунгофера. При выполнении пункта (2) у нас упрощаются фазовые соотношения,

что поясняет рис. 2, в итоге с хорошим приближением можно считать, что разность хода между крайними лучами, приходящими от щели в точке наблюдения P, с хорошим приближением равна

$$\Delta = r_2 - r_1 \approx D \sin \theta \approx D \cdot \theta \tag{4}$$

Здесь предполагается, что θ достаточно мал. Дифракцию Фраунгофера можно наблюдать на установке Рис. 1, но для удобства к подобной установке добавляется объектив O_2 .

Рис. 4: Схема установки 2.

Дифракционная картина здесь наблюдается в фокальной плоскости объектива O_2 . Каждому значению θ соответствует в этой плоскости точка, отстоящая от оптической оси на расстоянии

$$X = f_2 \tan \theta \approx f_2 \theta. \tag{5}$$

Объектив не вносит разности хода между интерферирующими лучам, поэтому в его фокальной плоскости наблюдается неискажённая дифракционная картина. При $\theta=0$ разность хода между лучами нулевая, поэтому в центре поля зрения дифракционный максимум. Первый минимум соответствует θ_1 такому, что в точке наблюдения разность хода пробегаем все значения от 0 до 2π . Аналогично рассуждая, для m-й полосы

$$\theta_m = \frac{m\lambda}{D} \tag{6}$$

Расстояние X_m тёмной полосы от оптической оси из (5) и (6)

$$X_m = f_2 m \frac{\lambda}{D} \tag{7}$$

В. Дифракция Фраунгофера для двух щелей

Для наблюдения дифракции Фраунгофера на двух щелях S_2 заменим экраном Θ с двумя щелями. При этом для оценки влияния ширины входной щели на чёткость вместо S_1 поставим щель с микрометрическим винтом. Два дифракционных изображения входной щели, одно из которых образовано лучами, прошедшими через левую, а другое — через правую щели, накладываются друг на друга. Если входная щель достаточно узка, то дифракционная картина в плоскости Π подобна той, что получалась при дифракции на одной щели, однако вся картинка испещерена рядом дополнительных узких полос, наличие которых объясняется суперпозицией световых волн через разные щели. Светлая интерфереционная полоса наблюдается в случаях, когда разность хода равна целому числу длин волн. Таким образом, угловая координата максимума порядка m равна

$$\theta_m = \frac{m\lambda}{d},\tag{8}$$

Рис. 5: Схема установки 3.

где d – расстояние между щелями. Отсюда расстояние между соседними интерфереционными полосами в плоскости Π равно

$$\delta x = f_2 \frac{\lambda}{d} \tag{9}$$

Число интерференционных полос укладывающихся в области центрального максимума равна отношению ширины главного максимума $\frac{2\lambda f_2}{D}$ к расстоянию между соседними полосами:

$$n = \frac{2\lambda f_2}{D} \frac{1}{\delta f} = \frac{2d}{D}.$$
 (10)

При дифракции света на двух щелях чёткая система интерференционных полос наблюдается только при достаточно узкой ширине входной щели S. При увеличении ширины картинка пропадает и появляется вновь, но полосы при этом сильно размыты и видны плохо.

Г. Влияние дифракции на разрешающую способность оптического инструмента

Рис. 6: Схема установки 4.

В отсутствие щели S_2 линзы O_1 и O_2 создают на плоскости Π изоюражение щели S_1 и это изображение рассматриваются микроскопом M. Таким образом, установку можно рассматривать как оптический инструмент, предназначенные для получения изображения предмета. Если перед O_2 расположить S_2 , то изображение объекта будет искажено из-за дифракции. Чем меньше ширина щели, тем сильнее искажение. Качественной характеристикой этого искажения может служить φ_{min} — минимальное угловое расстояние между объектами (источниками), которые всё ещё воспринимаются как раздельные. Поместим

вместо S_1 экран Э с двумя щелями с расстоянием d. Тогда на S_2 будут падать два пучка света с углом

$$\varphi = \frac{d}{f_1} \tag{11}$$

Из геометрии расстояние l между изображениями щелей в плоскости Π равно

$$l = \varphi f_2 = d \frac{f_2}{f_1}. \tag{12}$$

Ширина $\Delta \varphi$ определяется дифракцией на S_2 . Условия, при которых изображения различимы разные для разных наблюдателей, поэтому используют критерий Рэлея – максимум одного дифракционного пятна должен совпадать с минимумом другого. В наших условиях это значит, что угловая полуширина $\frac{\lambda}{D}$ равна угловому расстоянию $\frac{1}{f_2}$.

Ход работы

А. Дифракция Френеля

В ходе всей работы $\lambda=579.07$ нм. Положение микроскопа, при котором на фоне щели видна одна полоса – $x_0=55.4\pm0.1$ см, в качестве погрешности выбираем половину цену деления линейки. Измерим ширину щели микрометрическим винтом и с помощью поперечных салазок микроскопа:

$$D_{\text{винт}} = 335 \pm 5 \text{ мкм}, D_{\text{микро}} = 320 \pm 10 \text{ мкм},$$

В качестве погрешности берём половину цены деления шкал соответствующих приборов. Зависимость количества полос от расстояния до экрана представлена в Таблице 1. Здесь a_n – смещение от положения x_0 , z_n находится из формулы (1).

m	x, cm	σ_x , cm	a_n , cm	$2z_n$, mkm	σ_{2z_n} , MKM
1	52,6	0,1	2,8	255	5
2	53,5	0,1	1,9	297	8
3	54,1	0,1	1,3	301	12
4	54,4	0,1	1,0	304	15
5	54,5	0,1	0,9	323	18

Таблица 1: Зависимость $z_n = f(a_n)$.

Погрешность $2z_m$ считается по формуле

$$\varepsilon_{z_n} = \frac{1}{2} \varepsilon_{a_n} \Rightarrow \sigma_{2z_n} = \frac{z_n}{2} \varepsilon_{a_n}.$$

Усредним $2z_n$ и получим D – ширину щели. Погрешность для неё считается по формуле

$$\sigma_D = \sqrt{\sigma_{\bar{D}}^2 + \tilde{\sigma}_D^2},$$

где $\sigma_{\bar{D}}$ – погрешность D,

$$\tilde{\sigma}_D = \frac{1}{\sqrt{n(n-1)}} \cdot \sqrt{\sum_{i=1}^n (2z_i - D)^2}.$$

Итоговое значение

$$D=296\pm16$$
 мкм

Б. Дифракция Фраунгофера на щели

Фокусные расстояния линз $F_1=12.8~{\rm cm},~F_2=11.5~{\rm cm}.$ Ширина щели $D=400\pm 5~{\rm mkm}$ (погрешность – половина цены деления микрометрического винта).

Измеренные координаты X_m минимумов представлены в Таблице 2.

\overline{m}	1	2	3	4	-1	-2	-3	-4
X_m , MM	0.16	0.34	0.50	0.66	0.14	0.34	0.50	0.66
σ_{X_m} , MM	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
D, MKM	420	390	400	404	480	400	400	404
σ_D , MKM	50	20	16	12	70	20	16	12

Таблица 2: Зависимость $X_m = f(m)$.

D здесь считается по формуле (7), погрешность для D

$$\sigma_D = \sqrt{\left(\frac{\partial \left(f_2 m \frac{\lambda}{X_m}\right)}{\partial X_m}\right)^2 \cdot \sigma_{X_m}^2} = \frac{f_2 m \lambda}{X_m^2} \cdot \sigma_{X_m} = \frac{D}{X_m} \cdot \sigma_{X_m}.$$

Аналогично предыдущему пункту расчитаем среднее D:

$$D = 410 \pm 30 \; {
m MKM}$$

Рис. 7: График зависимости $X_m = f(m)$.

Зависимость $X_m = f(m)$ представлена на Рис. 7. По наклону графика $X_m = f(m)$ определим ΔX – расстояние между соседними минимумами. Приближаем прямой y = kx, получили

$$\Delta X = 0.1657 \pm 0.0013$$
 mm.

В. Дифракция Фраунгофера для двух щелей

Расстояние между тёмными полосами, отстающими друг от друга на максимальное расстояние: $\Delta X = 0.72 \pm 0.01$ мкм, между ними $n_{\text{эксп}} = 11 \pm 1$ светлых промежутков. Тогда

 $\delta x = \frac{\Delta X}{r} = 65 \pm 7$ мкм. Погрешность определяется по формуле:

$$\sigma_{\delta x} = \sqrt{\left(\frac{\partial \left(\frac{\Delta X}{n}\right)}{\partial \Delta X}\right)^2 \sigma_{\Delta X}^2 + \left(\frac{\partial \left(\frac{\Delta X}{n}\right)}{\partial n}\right)^2 \sigma_n^2} = \sqrt{\frac{\sigma_{\Delta X}^2}{n^2} + \frac{\Delta X^2 \sigma_n^2}{n^4}}.$$

Из формулы (9) получаем $d = 1.02 \pm 0.04$ мм. Погрешность d определяется по формуле:

$$\sigma_d = \sqrt{\left(\frac{\partial \left(\frac{f_2\lambda}{\delta x}\right)}{\partial \delta x}\right)^2 \sigma_{\delta x}^2} = \frac{f_2\lambda}{\delta x^2} \sigma_{\delta x}.$$

Из измерений $d=1.00\pm0.01$ мм, $D=0.20\pm0.01$ мм (погрешность – половина цены деления шкалы микроскопа), откуда из формулы (10) $n_{\text{теор}} = 10 \pm 1$. Погрешность для $n_{\text{теор}}$ находим по формуле

$$\sigma_n = \sqrt{\left(\frac{\partial \left(\frac{2d}{D}\right)}{\partial d}\right)^2 \sigma_d^2 + \left(\frac{\left(\frac{2d}{D}\right)}{D}\right)^2 \sigma_D^2} = \sqrt{\frac{4\sigma_d^2}{D^2} + \frac{4d^2\sigma_D^2}{D^4}}.$$

Интерфереционные полосы исчезают при $b_0 = 70 \pm 10$ мкм (погрешность – половина цены деления шкалы микроскопа). Из формулы

$$\frac{b}{f_1} = \frac{\lambda}{d} \tag{13}$$

получаем теоретическое значение $b_{\text{теор}} = 74, 1 \pm 0, 7$ мкм, погрешность считается из формулы

 $\sigma_b = \frac{b}{d}\sigma_d$.

Г. Влияние дифракции на разрешающую способность оптического инструмента

Изображения почти сливаются при $D_0 = 60 \pm 10$ мкм (погрешность – половина цены деления шкалы микроскопа). Заметим, что для него выполняется соотношение (12) с учётом $\frac{\lambda}{D_0} = \frac{l}{f_2}.$ Значения d расстояния между щелями и D их ширины представлены в пункте B.