

AIR UNVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING

H-BRIDGE CIRCUIT

GROUP MEMBERS

221658 – EDEN JOSEPH 221748 – MUHAMMAD ABDULLAH KHAN 221751 – EHAB KHAN

SUBMITTED TO

Engr. Umer Farooq And Engr. Muzzamil Ghaffar

SPRING 2023

ABSTACT

THIS semester project is related to dc motor and

directional control. An H-Bridge will allow us to control direction of motors in RC Cars or other machines. In the future we can try to reduce its size as much as we can and use our own H-Bridges in Our RC Cars etc. As its applications are already discussed above so, we have a lot of idea about it.

Our project is in working condition and gave a lot of experience and got us better at stuff.

CONTENTS

1 Introduction

- 1.1 Definition
- 1.2 Starting Information
- 1.3 Design Plan

2 Simulations And Components

- 2.1 Initial Design
- 2.2 Schematic
- 2.3 PCB layout
- 2.4 Simulation
- 2.5 Components
- 2.6 Bill Of Materials

3 Readings And Measurements

- 3.1 Power Supplies
- 3.2 Measurements Across Mosfets
- 3.3 Measurements Across Motor

4 Practical Implementations

- 4.1 Breadboard
- 4.2 PCB
- 4.3 Drop Test And Finalization
- 4.4 Bench Test

5 Conclusion

- 5.1 Summary
- 5.2 Conclusion

1 IN	ITD	UDI	ICT	
1 IN	חוו	UU	ノしロ	

1.1 Definition

"An H-bridge is an electronic circuit that switches the polarity of voltage applied to a load. These circuits are often used in robotics and other applications to allow DC motors to run **forwards** or **backwards**. The name is derived from its common schematic diagram representation, with four switching elements configured as the branches of a letter "H" and the load connected as the cross-bar"

1.2 Starting Information

We were asked to design an H bridge circuit to control the direction of a motor with optical isolation and flyback diode, the motor runs at 9V and draws a maximum of 2A current. The motor is to operate continuously for 15 minutes.

We only knew that an H-Bridge is used in RC cars or other motor controlled devices and is used to switch the direction of motor that is clockwise or anti clockwise

1.3 Design Plan

We planned to design this circuit using mosfets as it was providing the best voltages and the design was easy execute and we wanted to try something new. Before that I tried to make designs using BJTs but they were not up to the

expectations so I designed it using mosfets and it worked incredibly well so, we proceeded with this design.

2 Simulation And Components

2.1 Initial Design

To Start with the Project, we got the initial design provided as following:

Bidirectional control

Bidirectional (clock wise)

Bidirectional (counter clockwise)

Bidirectional

The Initial Schematic Was As Follows:

The Design We Finalized On Paper Is As Following:

2.2 Schematic

The Schematic Layout on Proteus is Designed Like This:

The Maximum Settings It Can Go On Are:

2.3 PCB

PCB Print Is Provided Below:

2.4 Simulation

2.5 Components

ITEM	VALUE
RESISTORS	1kΩ AND 470Ω
CAPACITOR	100uF
DC MOTOR	MAXIMUM 9V
MOSFETS	P-TYPE (IRF 9530) , N-TYPE (IRF 540)

DIODES	1N4007
OPTOCOUPLERS	PC817
CONNECTORS	6-PIN SILICONE CONNECTORS

2.6 Bill Of Material

Bill Of Materials for H-BRIDGE USING MOSFET

Design Title H-BRIDGE USING MOSFET

Author

Document Number

Revision

Wednesday, 10 May 2023 Design Created Design Last Modified Wednesday, 10 May 2023

Sub-totals:				Rs0.00
<u>Quantity</u> 3	References J1-J3	<u>Value</u> CONN-SIL2	Stock Code	Unit Cost
3 Miscellaneous		Malara	011-01-	Hell Ocea
Sub-totals:				Rs0.00
4	D1-D4	1N4007		
Quantity	References	<u>Value</u>	Stock Code	Unit Cost
4 Diodes				
Sub-totals:				Rs0.00
2	Q3-Q4	IRL520		
Quantity 2	References Q1-Q2	<u>Value</u> IRF9530	Stock Code	<u>Unit Cost</u>
	Deference	Value	Stock Code	I Init Cont
Sub-totals: 4 Transistors				Rs0.00
2	U1-U2	PC817		D 0 00
Quantity	References	<u>Value</u>	Stock Code	<u>Unit Cost</u>
2 Integrated Cir				
Sub-totals:				Rs0.00
2	R5-R6	220		
4	R1-R4	10k		
Quantity	References	<u>Value</u>	Stock Code	Unit Cost
6 Resistors				. 135.55
Sub-totals:	O1	Toour		Rs0.00
Quantity 1	References C1	<u>Value</u> 100uF	Stock Code	Unit Cost
1 Capacitors				
Sub-totals:	TABLETO TO CO	value	Stook Sodo	Rs0.00
Quantity	References	Value	Stock Code	Unit Cost

Wednesday, 10 May 2023 6:01:25 pm

3 Readings And Measurements

3.1 Power Supply

The voltages at the power supplies are:

12V Main Supply DC 5V At The Switches

3.2 Measurements Across Mosfets

Q1

D	110.4 mV
G	12.00 V
S	12.00 V

Q2

D	11.90 V
G	46.81 mV
S	12.00 V

Q3

D	110.4 mV
G	4.99 V
S	0.00 V

Q4

D	11.90 V
G	500 uV
S	0.00 V

3.3 Measurements Across Motor:

VOLTAGE	10.4 V
CURRENT	435 mA

4 Practical Implementation

4.1 Breadboard

4.2 PCB

4.3 Finalization

The PCB Is In Perfect Working Condition Both On Simulation And Practical but due to a bit of a technical/design issue, we had to place a T-Block and PC817 optoisolater on the bottom copper side of the PCB circuit But it works fine and we are using T-Blocks as switches instead of buttons.

4.4 Bench Test Activity

5	CONCLUSION	

5.1 Summary:

To Summarize, we created an H-Bridge That will control direction of motors and other micro controlling devices using mosfets, flyback diodes and optocouplers which were the requirements.

5.2 Conclusion:

To Conclude, as far the project is concerned it has been a success and was executed to success and we are looking forward to further projects.

THANK YOU!