Primeiro Relatório de Física Experimental 2

Henrique da Silva hpsilva@proton.me

15 de julho de 2022

Sumário

1 Introdução

		_	
2	Circuito simples		
	2.1	Tabela de dados	
	2.2	Gráfico de corrente por Tensão	
	2.3	Averiguando resistência do Am-	
		perímetro	
	2.4	Averiguando resistência do voltímetro	
3	Circuito com resistor e lâmpada		
	3.1	Tabela de dados	
	3.2	Comportamento da Lampada	
	3.3	Gráficos I - V para resistor e lâmpada	
	3.4	Conclusões	
1	Circuito com resistor e diodo		
	4.1	Sentido do diodo	
	4.2	Tabela de dados	
	4.3	Gráficos I - V para resistor e diodo	
	4.4	Conclusões	

1 Introdução

Neste relatório, vamos fazer medições de resistência, voltagem, e corrente de um circuito de corrente contínua com três tipos de elementos resistivos, e vamos averiguar seu comportamento em cada caso.

Todos arquivos utilizados para criar este relatório, é o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/fisicaexperimental2

2 Circuito simples

Neste circuito vamos ter uma corrente saindo de uma fonte de tensão, e entrando num amperímetro, do amperímetro passará por um resistor e um voltímetro em série, e daí voltará para a fonte.

2.1 Tabela de dados

Tensão (V)	Corrente (mA)
0.44 ± 0.05	20 ± 10
1.03 ± 0.05	40 ± 10
1.57 ± 0.05	60 ± 10
2.06 ± 0.05	80 ± 10
2.68 ± 0.05	100 ± 10
3.48 ± 0.05	120 ± 10
3.67 ± 0.05	140 ± 10
4.16 ± 0.05	160 ± 10
4.86 ± 0.05	180 ± 10
5.47 ± 0.05	200 ± 10

2.2 Gráfico de corrente por Tensão

No gráfico, devemos esperar que a inclinação da reta será dado por $\frac{1}{R}$ se o comportamento for Ôhmico, já que:

$$V = IR$$

$$I = \frac{V}{R}$$

$$I = \frac{1}{R}V$$
(1)

Gráfico de Corrente por Tensão Autor: Henrique Pedro da Silva

Fazendo um fit linear no SciDAVis consigo que o valor da inclinação $\frac{1}{R}$ eh 0.03624 que implica pela relação conseguida em (1) que $R_{total} = 28 \pm 1\Omega$. E isso nos confirma que o sistema se comporta de maneira Ôhmica.

Cálculo da incerteza abaixo:

$$\frac{\mathrm{d}R}{\mathrm{d}V} = \frac{1}{V}$$

$$\frac{\mathrm{d}R}{\mathrm{d}I} = -\frac{V}{I^{2}}$$

$$\Delta_{total} = sqrt\left(\frac{\mathrm{d}R^{2}}{\mathrm{d}I} + \frac{\mathrm{d}R^{2}}{\mathrm{d}V}\right)$$

$$\Delta_{total} = 1$$
(2)

2.3 Averiguando resistência do Amperímetro

É importante notar que a resistência que consegui no item (2.1.3) não é a resistência do resistor, mas sim a resistência do sistema inteiro. Que é:

$$R_{resistor} + R_{amperimetro} + R_{conexoes} + R_{fios}$$

Para simplificar os cálculos dos itens a seguir vou considerar que toda resistência do sistema está no resistor e no amperímetro apenas.

Com o amperímetro medimos 2.65V e sem ele medimos 2.5V

Já que os elementos estão em série podemos dizer que:

$$V_1 = I(R_{resistor} + R_{amperimetro})$$

$$V_2 = IR_{resistor}$$
(3)

E já calculamos o valor da resistência total no item anterior e sua devida incerteza.

Logo só o que preciso é calcular o $R_{resistor}$ a partir do $\frac{V_2}{I}$ e o subtrair da resistência total do sistema que já havia sido calculada.

$$\frac{2.5}{0.1} = 25\Omega \tag{4}$$

Calculando a incerteza da mesma maneira de (2), temos que ela será 1Ω

Subtraindo o valor da resistência total pelo valor da resistência do resistor finalmente temos que:

$$R_{amperimetro} = 3 \pm 2\Omega$$
 (5)

Uma maneira alternativa de obter isso seria:

$$V_{ca} = R_{resistor} * \left(\frac{V_0}{R_{amp} + R_{resistor}}\right)$$
 (6)

Meu problema com isso, é que a priori eu não tenho a resistência do resistor. Apenas tenho a do sistema total. Então eu teria que assumir que ela eh 27 baseado em conhecimento que não foi obtido através dos experimentos. Logo optei pela maneira acima que descrevi.

2.4 Averiguando resistência do 3.2 Comportamento da Lampada voltímetro

rente.

Com ou sem o voltímetros a corrente se manteve firme em 190mA.

O que indica que a resistência do voltímetros é alta o suficiente para não ser mensurável.

$$I = 20mA \rightarrow 5.5\Omega$$
$$I = 100mA \rightarrow 10.1\Omega$$
$$I = 200mA \rightarrow 16.8\Omega$$

Logo detectamos um comportamento não

ômico. Já que a resistência sobe com a cor-

3 Circuito com resistor e lâmpada

O que é esperado. Já que o que esperávamos é que a resistência subisse à medida que a temperatura da lâmpada subisse.

Neste circuito vamos ter uma corrente saindo de uma fonte de tensão, e entrando num amperímetro, do amperímetro passará por um resistor, daí para uma lâmpada, e daí voltará para a fonte.

Faremos medições diversas com um voltímetro em vários pontos do circuito.

3.1 Tabela de dados

Corrente (mA)	Tensão R (V)	Tensão L (V)
10 ± 10	0.33 ± 0.05	0.06 ± 0.05
20 ± 10	0.46 ± 0.05	0.11 ± 0.05
30 ± 10	0.77 ± 0.05	0.19 ± 0.05
40 ± 10	0.97 ± 0.05	0.40 ± 0.05
50 ± 10	1.32 ± 0.05	0.47 ± 0.05
60 ± 10	1.61 ± 0.05	0.53 ± 0.05
70 ± 10	1.93 ± 0.05	0.70 ± 0.05
80 ±10	2.20 ± 0.05	0.76 ± 0.05
90 ± 10	2.35 ± 0.05	0.83 ± 0.05
100 ± 10	2.53 ± 0.05	1.01 ± 0.05
110 ± 10	2.86 ± 0.05	1.18 ± 0.05
120 ± 10	3.12 ± 0.05	1.42 ± 0.05
130 ± 10	3.39 ± 0.05	1.64 ± 0.05
140 ± 10	3.67 ± 0.05	2.00 ± 0.05
150 ± 10	4.00 ± 0.05	2.20 ± 0.05
160 ± 10	4.27 ± 0.05	2.45 ± 0.05
170 ± 10	4.54 ± 0.05	2.66 ± 0.05
180 ± 10	4.77 ± 0.05	2.89 ± 0.05
190 ± 10	4.96 ± 0.05	3.04 ± 0.05
200 ± 10	5.28 ± 0.05	3.36 ± 0.05

3.3 Gráficos I - V para resistor e lâmpada

Gráfico de Corrente por Tensão do Resistor Autor: Henrique Pedro da Silva

Gráfico de Corrente por Tensão da Lâmpada Autor: Henrique Pedro da Silva

Gráfico de V_R/I por V_R*I Autor: Henrique Pedro da Silva

Gráfico de V_L/I por V_L*I Autor: Henrique Pedro da Silva

3.4 Conclusões

Podemos observar que o resistor continua com um comportamento Ohmico. Porem a lampada nao. Nesta a resistência aumenta com a corrente.

4 Circuito com resistor e diodo

4.1 Sentido do diodo

O diodo só permite passagem de corrente de 10mA em um sentido. No sentido oposto não foi detectado corrente alguma.

Isso é devido ao diodo ser feito por dois semicondutores em uma junção PN. Que só permite passagem de corrente em um sentido.

Algo interessante que foi notado é que mesmo sem passagem de corrente é detectável uma diferença de potencial dos terminais do diodo. Isso acontece devido a polarização que ocorre nele.

4.2 Tabela de dados

Corrente (mA)	Tensão R (V)	Tensão D (V)
0 ± 10	0 ± 0.05	0.10 ± 0.05
0 ± 10	0 ± 0.05	0.20 ± 0.05
0 ± 10	0 ± 0.05	0.30 ± 0.05
0 ± 10	0 ± 0.05	0.40 ± 0.05
0 ± 10	0 ± 0.05	0.50 ± 0.05
0 ± 10	0 ± 0.05	0.60 ± 0.05
10 ± 10	0.40 ± 0.05	0.70 ± 0.05
50 ± 10	1.27 ± 0.05	0.74 ± 0.05
90 ± 10	2.40 ± 0.05	0.77 ± 0.05
130 ± 10	3.44 ± 0.05	0.78 ± 0.05
170 ± 10	4.57 ± 0.05	0.79 ± 0.05
200 ± 10	5.26 ± 0.05	0.80 ± 0.05

4.3 Gráficos I - V para resistor e diodo

Gráfico de V_D por I Autor: Henrique Pedro da Silva

As características obtidas foram similares às de um diodo ideal.

O esperado é que mesmo antes da resistência do diodo ser vencida pela diferença de potencial, ainda passasse alguma corrente, mesmo que mínima.

Porém esta foi tão baixa que foi indetectável.

4.4 Conclusões

Se repara que é necessária certa tensão no diodo para permitir passagem de corrente.

A partir de certa tensão o diodo permite passagem de corrente.

O comportamento de um diodo ideal seria não passar corrente alguma até haver uma diferença de potencial suficiente para permitir a passagem.

No nosso diodo nao ideal, logo sabemos que ele permitirá passagem de alguma corrente, porém esta foi baixa o suficiente para não ser detectável

E por fim, este não apresenta comportamento Ôhmico. Ja que após permitir passagem de corrente, a diferença de potencial dos seus terminais se manteve quase constante.