#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский физико-технический институт (государственный университет)

# Определение ширины запрещенной зоны полупроводников по спектральной зависимости собственной фотопроводимости

Лабораторная работа по курсу тведотельная электроника

> Выполнили: студенты 654 группы. Нехаев А.С.

## Содержание

| 1. | Цели и задачи исследования                                   | 2            |
|----|--------------------------------------------------------------|--------------|
| 2. | Теоретическая часть                                          | 2            |
| 3. | Экспериментальная часть                                      | 3            |
| 4. | Ход работы         4.1. Кремний          4.2. Селенид кадмия | <b>4</b> 4 5 |
| 5. | Выволы                                                       | 5            |

#### 1. Цели и задачи исследования

- 1) Ознакомление с основами теории собственной фотопроводимости полупроводников;
- 2) Определение ширины запрещённой зоны кремния по спектральной зависимости собственной фотопроводимости;
- 3) Определение скорости поверхностной рекомбинации.

#### 2. Теоретическая часть

При воздействии на полупроводник излучения с энергией кванта  $h\nu$ , превышающей ширину запрещённой зоны  $E_g$  в зоне проводимости, и соотвественно в валентной зоне возникают неравновесные электроны и дырки. Их появление связано с переходами электронов из валентной зоны проводимости. В результате увеличивается проводимость кристалла. Это явление называется собственной фотопроводимостью.

В непрямозонных полупроводниках типа германия и кремния минимум зоны проводимости и максимум валентной зоны расположены в различных точках зоны Бриллюэна. В этом случае оптический переход электрона из вершины валентной зоны в минимум зоны проводимости возможен лишь при участии третьей частицы — фонона. В соответствии с законом сохранения импульса квазиимпульс такого фонона  $q_{\Phi} \approx \hbar k_{\rm B}$ , а энергия  $\hbar \omega$  должна удовлетворять закону сохранения энергии:

$$h\nu = E_q \pm \hbar\omega_q + \hbar^2 (k_n - k_c)^2 / 2m_n + \hbar^2 k_p^2 / 2m_p \tag{1}$$

где  $k_n$  и  $k_p$  — начальные волновые числа электрона и дырки, а  $k_c$  — конечное волновое число электрона.

Таким образом, край основной полосы поглощения в полупроводниках типа кремния и германия определяется непрямыми оптическими переходами, сопровождающимися поглощением и испусканием фононов. При этом для разрешённых переходов, которые доминируют в полупроводниках такого типа, коэффициент поглощения:

$$K = C \left[ \frac{(h\nu - E_g + \hbar\omega_q)^2}{\exp\frac{\hbar\omega_q}{kT} - 1} + \frac{(h\nu - E_g - \hbar\omega_q)^2}{1 - \exp-\frac{\hbar\omega_q}{kT}} \right]$$
(2)

При больших энергиях квантов  $h\nu > (E_g + \hbar\omega_q)$  начинают преобладать переходы с эмиссией фононов и зависимость  $K^{1/2}$  от  $h\nu$  должна аппроксимироваться прямой, пересекающей ось энергии в точке  $h\nu_1 = E_g + \hbar\omega_q$ .

При рассмотрении случая сильного поглощения излечения в образце (оптически толстый образец), то есть при d/K << 1, где d — толщина образца, скорость генерации электронно-дырочных пар экспоненциально уменьшается от поверхности вглубь образца:

$$g(x) \approx K(1 - R)N_0 \exp{-Kx} \tag{3}$$

где R – коэффициент отражения света, а  $N_0$  – поток квантов на единицу поверхности.

Неоднородная германия электронов и дырок в направлении освещения приводит к появлению диффузионно-дрейфовых потоков носителей заряда: быстро диффундирующие носители (электроны) опережают медленные (дырки), что приводит к возникновению электрического поля, ускоряющего медленные носители и замедляющего быстрые и к появлению дрейфовых составляющих потоков. При этом изменение проводимости  $\Delta\Sigma$  существенным образом зависит от граничных условий на поверхности образца:

$$\Delta \Sigma \sim N_0 \left( 1 + \frac{S}{D} \frac{1}{K} \right) \tag{4}$$

где S — скорость поверхностной рекомбинации, D — коэффициент амбиполярной диффузии.

#### 3. Экспериментальная часть

Для изменения фотоответа полупроводника  $\Delta\Sigma$  образец включается последовательно с нагрузочным сопротивлением и источником постоянного напряжения. При освещении проводимость образца возрастает, происходит перераспределение напряжение между образцом и нагрузкой. В результате падение напряжения U на образце при малом относительном увеличении проводимости уменьшается на величину

$$\Delta U = \varepsilon \frac{R_H \cdot R_0^2}{(R_H + R_0)^2} \Delta \Sigma \tag{5}$$

где  $\varepsilon$  – постоянное напряжение,  $R_H$  и  $R_0$  – сопротивление нагрузки и образца,  $\Sigma$  – проводимость.

Для повышения чувствительности измерения обычно проводят при периодическом прерывании светового потока. При этом соотношение (5) характеризует амплитуду отрицательных импульсов напряжения на концах образца. Для исследования интересующих нас зависимостей  $\Delta\Sigma/N_0$  от энергии кванта  $h\nu$  наряду с  $\Delta U$  необходимо знать спектральное распределение интенсивности источника излучения  $N_0(h\nu)$ .



Рис. 1: Схема экспериментальной установки. 1 – осветитель, 2 – блок питания осветителя, 3 – линзы, 4 – механический модулятор излучения, 5 – монохроматор, 6 – блок питания образца, 7 – схема включения образца, 8 – усилитель

### 4. Ход работы

#### 4.1. Кремний

Включаем лампу накаливания и фокусируем излучение монохроматора на образец Si. Подаём постоянное смещение U на образец от источника напряжения. Вращая барабан длин волн, снимаем зависимость сигнала фотопроводимости  $\Delta U$  от длины волны излучения. С помощью графика спектрального распределения интенсивности лампы составляем таблицу  $\Delta U/I_0$  от делений барабана. С помощью градуировочной кривой переводим деления барабана в энергии кванта  $h\nu$ . Получаем зависимость  $h\nu\Delta U/I_0$ , после чего строим зависимость  $\sqrt{h\nu\Delta U}/I_0$ .



Рис. 2: Зависимость  $h\nu\Delta U/I_0$  от  $\hbar\omega$  для Si.



Рис. 3: Зависимость  $\sqrt{h\nu\Delta U}/I_0$  от  $\hbar\omega$  для Si.

Таблица 1: Параметры аппроксимации

|   | Estimate | Standard Error | t-Statistic | P-Value               |
|---|----------|----------------|-------------|-----------------------|
| 1 | -214.171 | 3.83204        | -55.8897    | $7.99 \cdot 10^{-19}$ |
| X | 0.207038 | 0.00322285     | 64.2407     | $9.98 \cdot 10^{-20}$ |

Аппроксимируя линейный участок графика до оси энергии, получаем величину  $E_g+\hbar\omega_{ph}$  как точку пересечения прямой с осью. Учитывая энергию фонона  $\hbar\omega_{ph}=50$  мэВ, находим ширину запрещённой зоны кремния  $E_g=1084.45$  мэВ.

#### 4.2. Селенид кадмия

Схожую операцию проделываем для образца CdSe. Получаем зависимость  $h\nu\Delta U/I_0$ , после чего строим график зависимости  $(h\nu\Delta U)^2/I_0$ .



Рис. 4: Зависимость  $h\nu\Delta U/I_0$  от  $\hbar\omega$  для CdSe.

Таблица 2: Параметры аппроксимации

|   | Estimate | Standard Error | t-Statistic | P-Value      |
|---|----------|----------------|-------------|--------------|
| 1 | -789.897 | 37.1082        | -21.2863    | 0.0000287995 |
| X | 0.57392  | 0.0254531      | 22.5481     | 0.0000229106 |

Аппроксимируя линейный участок графика до оси энергии, получаем величину  $E_g+\hbar\omega_{ph}$  как точку пересечения прямой с осью. Учитывая энергию фонона  $\hbar\omega_{ph}=50$  мэВ, находим ширину запрещённой зоны кремния  $E_g=1426.32$  мэВ.

#### 5. Выводы

- 1) Изучили принципы собственной фотопроводимости в полупроводниках
- 2) При проведении работы нашли ширину запрещённой зоны кремния и селенида кадмия: 1084.45 мэВ и 1426.32 мэВ соотвественно.



Рис. 5: Зависимость  $(h\nu\Delta U)^2/I_0$  от  $\hbar\omega$  для CdSe.