Autómatos Finitos Linguagens Formais e Autómatos

Francisco Coelho fc@di.uevora.pt

Departamento de Informática Escola de Ciências e Tecnologia Universidade de Évora

Autómatos de Estados Finitos

Autómatos Finitos Não-deterministas

Minimização de Autómatos Finitos Deterministas

Composição de Autómatos Não-deterministas

O Pumping Lemma

Autómatos de Estados Finitos

Um autómato de estados finitos (abrev. AFD) é um tuplo

$$A = (Q, \Sigma, \delta, q_I, F)$$

em que

- ightharpoonup estados de controlo Q é um conjunto finito;
- ightharpoonup alfabeto de entrada Σ é um alfabeto;
- ▶ transição $\delta: Q \times \Sigma \rightarrow Q$;
- ightharpoonup estado inicial $q_I \in Q$;
- ▶ estados finais (ou de aceitação) $F \subseteq Q$;

Um AFD processa palavras letra-a-letra. Se o processamento de uma palavra terminar num estado final essa palavra é "aceite" caso contrário é "rejeitada".

Configuração e Computação

Seja
$$A = (Q, \Sigma, \delta, q_I, F)$$
 um AFD.

Uma configuração de A é um par $[q,w]\in Q\times \Sigma^*$ onde q é o "estado corrente" do autómato e w é a parte da palavra que ainda falta processar.

A computação da palavra $w=a_1a_2\cdots a_n\in \Sigma^*$ pelo AFD A é a sequência de configurações

$$[s_0, a_1 a_2 \cdots a_n] \vdash_A [s_1, a_2 \cdots a_n] \vdash_A \cdots \vdash_A [s_n, \varepsilon]$$

em que

base
$$s_0 = q_I$$
 passo $s_i = \delta(s_{i-1}, a_i)$ para $i \geq 1$

Exemplos de Computações

$$A = \begin{cases} Q = \{q_0, q_1, q_2, q_3\}, \\ \Sigma = \{0, 1\}, \\ \delta, \\ q_I = q_0, \\ F = \{q_1, q_2\} \end{cases}$$

onde δ é

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_1 & q_3 \\ q_1 & q_2 & q_3 \\ q_2 & q_2 & q_2 \\ q_3 & q_3 & q_3 \end{array}$$

Aceita w = 000?

q_0			
0	0	0	$\delta\left(q_0,0\right) = q_1$
\rightarrow	q_1		
	0	0	$\delta\left(q_1,0\right)=q_2$
	\rightarrow	q_2	
		0	$\delta\left(q_2,0\right) = q_2$
		q_2	$\in F$
			aceita

Exemplos de Computações

$$A = \begin{cases} Q = \{q_0, q_1, q_2, q_3\}, \\ \Sigma = \{0, 1\}, \\ \delta, \\ q_I = q_0, \\ F = \{q_1, q_2\} \end{cases}$$

onde δ é

δ	0	1
q_0	q_1	q_3
q_1	q_2	q_3
q_2	q_2	q_2
q_3	q_3	q_3

Aceita w = 010?

q_0			
0	1	0	$\delta\left(q_0,0\right) = q_1$
	q_1		
	1	0	$\delta\left(q_{1},1\right)=q_{3}$
		q_3	
		0	$\delta\left(q_3,0\right)=q_3$
		q_3	$\not\in F$
			não aceita

Diagrama de um AFD

Seja $A = (Q, \Sigma, \delta, q_I, F)$ um AFD.

O diagrama de A é o digrafo $\mathcal{G}\left(A\right)$ definido por

lacktriangle a cada transição $q_i = \delta\left(q_i,a\right)$ corresponde a arco

$$i \xrightarrow{a} j$$

▶ o estado inicial é indicado por uma seta:

$$\rightarrow (i)$$

os estados finais por círculos duplos:

Exemplo

δ	0	1	
q_0	q_1	q_3	
q_1	q_2	q_3	
q_2	q_2	q_2	
q_3	q_3	q_3	

Transição Estendida

Seja
$$A = (Q, \Sigma, \delta, q_I, F)$$
 um AFD.

A função de transição estendida de A é

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

em que

base
$$\hat{\delta}(q,\varepsilon)=q$$
 e $\hat{\delta}(q,a)=\delta(q,a)$ para $a\in\Sigma$ passo $\hat{\delta}(q,wa)=\delta\Big(\hat{\delta}(q,w)\,,a\Big)$

Além disso

$$\hat{\delta}(q, w) = q' \iff [q, w] \vdash_A^* [q', \varepsilon]$$

Exemplo de Transições Estendidas

$$A = \begin{cases} Q = \{q_0, q_1, q_2, q_3\}, \\ \Sigma = \{0, 1\}, \\ \delta, \\ q_I = q_0, \\ F = \{q_1, q_2\} \end{cases}$$

onde δ é

$$\begin{array}{c|ccccc} \delta & 0 & 1 \\ \hline q_0 & q_1 & q_3 \\ q_1 & q_2 & q_3 \\ q_2 & q_2 & q_2 \\ q_3 & q_3 & q_3 \end{array}$$

$$\begin{split} \hat{\delta}(q_0,000) &= \delta \Big(\hat{\delta}(q_0,00)\,, 0 \Big) \\ &= \delta \Big(\delta \Big(\hat{\delta}(q_0,0)\,, 0 \Big)\,, 0 \Big) \\ &= \delta \Big(\delta \Big(\delta (q_0,0)\,, 0 \Big)\,, 0 \Big) \\ &= \delta \Big(\delta (q_1,0)\,, 0 \Big) \\ &= \delta (q_2,0) \\ &= q_2 \\ \hat{\delta}(q_0,010) &= \delta \Big(\hat{\delta}(q_0,01)\,, 0 \Big) \\ &= \delta \Big(\delta \Big(\hat{\delta}(q_0,0)\,, 1 \Big)\,, 0 \Big) \\ &= \delta \Big(\delta \Big(\delta (q_0,0)\,, 1 \Big)\,, 0 \Big) \\ &= \delta \Big(\delta \Big(\delta (q_1,1)\,, 0 \Big) \\ &= \delta (q_2,0) \\ &= q_3 \end{split}$$

Linguagem Reconhecida

Seja $A = (Q, \Sigma, \delta, q_I, F)$ um AFD.

Uma palavra $w \in \Sigma^*$ é aceite por A se $\hat{\delta}(q_I, w) \in F$.

A linguagem reconhecida (ou aceite) por ${\cal A}$ é o conjunto das palavras aceites por ${\cal A}$

$$\mathcal{L}(A) = \left\{ w : \hat{\delta}(q_I, w) \in F \right\}$$

Dois autómatos finitos são equivalentes se reconhecem a mesma linguagem.

Exemplo

O autómato

reconhece a linguagem $0 + 00(0+1)^*$.

Autómatos de Estados Finitos

Autómatos Finitos Não-deterministas

Minimização de Autómatos Finitos Deterministas

Composição de Autómatos Não-deterministas

O Pumping Lemma

Contexto

Num AFD, a transição δ faz corresponder um único estado a cada combinação $(q,a)\in Q\times \Sigma.$

Mas esta condição restringe as possibilidades dos AFDs.

- 1. não existem estados futuros alternativos (dado (q, a));
- não há transições "internas", sem processar símbolos da palavra;

Transições Múltiplas

Numa transição múltipla, num certo estado x, dado uma letra, a, é possível "escolher" entre vários estados futuros y,z.

Transições ε (ou Vazias)

 $\underbrace{x} \stackrel{\varepsilon}{\longrightarrow} \underbrace{y}$

Numa transição ε , é possível passar de um certo estado x para um estado futuro y sem "ler" nenhuma letra da palavra dada.

Autómato Finito Não-determinista

Um autómato finito não-determinista (com transições ε) (abrev. AFND) é um tuplo

$$A = (Q, \Sigma, \delta, q_I, F)$$

em que

- ightharpoonup estados de controlo Q é um conjunto finito;
- ightharpoonup alfabeto de entrada Σ é um alfabeto;
- ▶ transição $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q)$;
- ightharpoonup estado inicial $q_I \in Q$;
- estados finais (ou de aceitação) $F \subseteq Q$;

Por vezes são proíbidas as transições ε e a transição fica $\delta: Q \times \Sigma \to \mathcal{P}\left(Q\right)$.

Linguagem Reconhecida

Seja
$$A = (Q, \Sigma, \delta, q_I, F)$$
 um AFND.

Uma palavra $w\in \Sigma^*$ é aceite por A se existe uma computação de w por A que termina num estado final depois de terem sido lidos todos os símbolos de w:

$$[q_I,w]\vdash_A^*[q,\varepsilon] \text{ onde } q\in F$$

A linguagem reconhecida (ou aceite) por ${\cal A}$ é o conjunto das palavras aceites por ${\cal A}$

$$\mathcal{L}(A) = \left\{ w : \text{ existe } [q_I, w] \vdash_A^* [q, \varepsilon] \text{ onde } q \in F \right\}$$

Diagrama de um AFND

Dado um AFND, A, o grafo $\mathcal{G}\left(A\right)$ representa-se como se fosse dum AFD, atendendo que algumas arcos podem ter etiqueta ε , correspondentes a transições vazias:

Também pode acontecer que $\delta\left(q,a\right)=\emptyset$. Neste caso não há estado seguinte. A computação termina e a palavra dada é rejeitada.

Exemplo: Construção de um Diagrama

Dado um AFND por

obtemos o diagrama

A palavra 01 tem três computações possíveis:

- $ightharpoonup 0 \xrightarrow{\varepsilon} 1 \xrightarrow{0} 2 \xrightarrow{\varepsilon} 1 \xrightarrow{1} 1$ (rejeita);

Árvore de Computação

As computações de uma palavra podem ser representadas por uma árvore:

O arco \bigcirc indica o caminho que termina em \bigcirc

Fecho Vazio

Seja $A=(Q,\Sigma,\delta,q_I,F)$ um AFND e $q\in Q$ um estado de controlo.

O fecho- $\varepsilon\left(q\right)$ (ou fecho vazio de q) é o conjunto de todos os estados alcançáveis através de zero ou mais transições vazias a partir de q:

$$\begin{array}{ll} \text{base} & q \in \text{fecho-}\varepsilon\left(q\right) \\ \text{passo} & \text{se} & p \in \text{fecho-}\varepsilon\left(q\right) \text{ e } p' \in \delta(p,\varepsilon) \text{ então} \\ & p' \in \text{fecho-}\varepsilon\left(q\right) \end{array}$$

A função de transição de entrada do AFND A é a função $\delta^{\varepsilon}:Q\times\Sigma\to\mathcal{P}(Q)$ definida por

$$\delta^{\varepsilon}(q, a) = \bigcup_{p \in \text{fecho-}\varepsilon(q)} \text{fecho-}\varepsilon\left(\delta(p, a)\right)$$

Exemplo — $fecho-\varepsilon$ () e transição de entrada

Dado um AFND por

q	0	1	ε
0	Ø	$\{0, 1\}$	{1}
1	{2}	$\{1, 2\}$	Ø
$\frac{1}{2}$	{2}	Ø	{1}

$$egin{array}{ll} q & & ext{fecho-}arepsilon\left(q
ight) \\ 0 & & \{0,1\} \\ 1 & & \{1\} \\ 2 & & \{2,1\} \end{array}$$

com o diagrama

$$\delta^{\varepsilon}(0,1) = \{0,1,2\}$$

$$\delta^{\varepsilon}(0,0) = \{2,1\}$$

Simulação de AFNDs

Seja $A = (Q, \Sigma, \delta, q_I, F)$ um AFND.

O AFD equivalente a A é o autómato $A' = \left(\,Q', \Sigma, \delta', \,q'_I, F'\right)$ em que

- ightharpoonup alfabeto de entrada Σ
- ▶ estado inicial $q'_I = \text{fecho-}\varepsilon(q_I)$
- transição

$$\delta'(q, a) = \bigcup_{p \in q} \delta^{\varepsilon}(p, a)$$

▶ estados de controlo Q' é definido por

base
$$q_I'\in Q'$$
 passo se $q\in Q'$ então, para cada $a\in \Sigma, \delta'(q,a)\in Q'$ fecho mais nenhum estado está em Q'

ightharpoonup estados finais $F' = \{ q \in Q' : q \cap F \neq \emptyset \}$

Exemplo de Simulação

Cálculo de δ' e Q'

δ'	a = 0	a = 1
$q_I' = \{0, 1\}$	$\{0, 1, 5\}$	$\{0, 1, 2\}$
$q_1' = \{0, 1, 5\}$	$\{0,1,5\} = q_1'$	$\{0, 1, 2, 4\}$
$q_2' = \{0, 1, 2\}$	$\{0, 1, 3, 4, 5\}$	$\{0,1,2\} = q_2'$
$q_3' = \{0, 1, 2, 4\}$	$\{0,1,3,4,5\} = q_4'$	$\{0,1,2\} = q_2'$
$q_4' = \{0, 1, 3, 4, 5\}$	$ \{0, 1, 3, 4, 5\} = q_4'$	$\{0,1,2,4\} = q_3'$

Exemplo de Simulação — Continuação

Portanto

Exemplo de Simulação — Continuação

Simulação de AFNDs

Teorema (Equivalência entre AFD e AFND)

Uma linguagem é reconhecida por um AFND se e só se for reconhecida por um AFD.

Autómatos de Estados Finitos

Autómatos Finitos Não-deterministas

Minimização de Autómatos Finitos Deterministas

Composição de Autómatos Não-deterministas

O Pumping Lemma

Para construir um AFD que aceite o conjunto das palavras binárias cujo quinto símbolo da direita é $0\ldots$ simula-se o autómato seguinte com um AFD

Mas a conversão (directa) deste AFND para um AFD produz um monstro com 32 estados de controlo...

Em geral, de um AFND com n estados, podemos obter um AFD com 2^n estados.

Estados Indistinguíveis

Seja
$$A = (Q, \Sigma, \delta, q_I, F)$$
 um AFD.

Dois estados $p,q\in Q$ são indistinguíveis se, para cada $w\in \Sigma^*$,

$$\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$$

Se $p \in F$ e $q \in Q \setminus F$ não são indistinguíveis. (porquê?)

Cálculo de Estados Indistinguíveis

Seja $A = (Q, \Sigma, \delta, q_I, F)$ um AFD.

- 1. iniciar $P = \{Q \setminus F, F\}$
- 2. enquanto existirem $p, p' \in P, a \in \Sigma, q, q' \in p$ tais que

$$\delta(q, a) \in p', \delta(q', a) \not\in p'$$

- 2.1 retirar p de P: $P \leftarrow P \setminus \{p\}$
- 2.2 acrescentar $P \leftarrow P \cup \{s \in p : \delta(s, a) \in p'\}$
- 2.3 acrescentar $P \leftarrow P \cup \{s \in p : \delta(s, a) \notin p'\}$

Este algoritmo faz uma partição P dos estados Q de forma que

- se dois estados estão no mesmo subconjunto são indistinguíveis;
- se dois estados estão em subconjuntos distintos então não são indistinguíveis;

Construção do Autómato Mínimo

Seja $A = (Q, \Sigma, \delta, q_I, F)$ um AFD.

- 1. Seja P a partição dos estados indistinguíveis
- 2. Para cada subconjunto $p \in P$ e para cada $a \in \Sigma$
 - 2.1 seja $q \in p$ (um estado qualquer)
 - 2.2 seja p' o subconjunto de P que contém $\delta(q, a)$
 - 2.3 definir $\delta'(p, a) = p'$
- 3. O AFD mínimo (ou reduzido) de A é

$$A' = (P, \Sigma, \delta', q'_I, F')$$

em que

- 3.1 estado inicial q'_I é o elemento de P que contém q_I
- 3.2 estados finais $F' = \{ p \in P : p \subseteq F \}$

Exemplo

Minimizar o AFD $A=\left(\left\{A,B,C,D,E,F\right\},\left\{a,b\right\},\delta,A,\left\{B,D\right\}\right)$ em que a transição é

$$\begin{array}{c|cccc} \delta & a & b \\ \hline A & B & E \\ B & E & C \\ C & D & F \\ D & F & C \\ E & F & F \\ F & E & F \\ \end{array}$$

Exemplo – Resolução

δ	a	b		p	δ	a	b		p	δ	a	b
\overline{A}	B	E	-	p_1	\overline{A}	$B \in p_2$	$E \in p_1$	-	$\overline{p_1}$	A	$B \in p_2$	$E \in p_3$
B	E	C		p_1	C	$D \in p_2$	$F \in p_1$		p_1	C	$D \in p_2$	$F \in p_3$
C	D	F	\rightarrow	p_1	E	$F \in p_1$	$F \in p_1$	\rightarrow	$\overline{p_3}$	\overline{E}	$F \in p_3$	$F \in p_3$
				p_1	F	$E \in p_1$	$F \in p_1$		p_3	F	$E \in p_3$	$F \in p_3$
	F			p_2	B	$E \in p_1$	$C \in p_1$	-	$\overline{p_2}$	B	$E \in p_3$	$C \in p_1$
F	E	F		p_2	D	$F \in p_1$	$C \in p_1$		p_2	D	$F \in p_3$	$C \in p_1$

O autómato mínimo é $A'=\left(\left\{p_1,p_2,p_3\right\},\left\{a,b\right\},\delta',p_1,\left\{p_3\right\}\right)$ em que

$$\begin{array}{c|cccc} \delta' & a & b \\ \hline p_1 & p_2 & p_3 \\ p_3 & p_3 & p_3 \\ p_2 & p_3 & p_1 \\ \end{array}$$

Exemplo com Diagramas

Exemplo com Diagramas

Exemplo com Diagramas

Autómatos de Estados Finitos

Autómatos Finitos Não-deterministas

Minimização de Autómatos Finitos Deterministas

Composição de Autómatos Não-deterministas

O Pumping Lemma

Preparação dos Autómatos

Seja $A = (Q, \Sigma, \delta, q_I, F)$ um AFND.

Existe um AFND $A'=\left(Q\cup\left\{q_I',q_f\right\},\Sigma,\delta',q_I',\left\{q_f\right\}\right)$ equivalente a A e que

- $\blacktriangleright \ q_I' \neq q_f \ \mathsf{e} \ \big\{ q_I', q_f \big\} \cap Q = \emptyset$
- lacktriangle não há transições para o estado inicial q_I'
- lacktriangle o único estado de aceitação é q_f
- lacktriangle não há transições a partir de q_f

A equivalência é obtida estendendo δ com a transição δ' por

- lacksquare $\delta'(p,\varepsilon)=\left\{q_f\right\}$ para cada $p\in F$

Composição de Autómatos - Produto

Sejam
$$A = \left(Q_A, \Sigma, \delta_A, q_{I_A}, \left\{q_{f_A}\right\}\right)$$
 e $B = \left(Q_B, \Sigma, \delta_B, q_{I_B}, \left\{q_{f_B}\right\}\right)$ dois AFND nas condições anteriores e com $Q_A \cap Q_B = \emptyset$.

Seja
$$P = \left(\mathit{Q}_A \cup \mathit{Q}_B, \Sigma, \delta., \mathit{q}_{I_A}, \left\{ \mathit{q}_{f_B} \right\} \right)$$
 o autómato com

$$\delta. = \delta_A \cup \delta_B$$

$$\cup \left\{ \left(q_{f_A}, \varepsilon, \left\{ q_{I_B} \right\} \right) \right\}$$

Então
$$\mathcal{L}(P) = \mathcal{L}(A)\mathcal{L}(B)$$
.

Composição de Autómatos - União

Sejam
$$A = \left(Q_A, \Sigma, \delta_A, q_{I_A}, \left\{q_{f_A}\right\}\right)$$
 e $B = \left(Q_B, \Sigma, \delta_B, q_{I_B}, \left\{q_{f_B}\right\}\right)$ dois AFND nas condições anteriores e com $Q_A \cap Q_B = \emptyset$.

Seja
$$U=\left(\,Q_A\cup\,Q_B\cup\left\{\,q_I,\,q_f
ight\},\Sigma,\delta_\cup,\,q_I,\left\{\,q_f
ight\}\,\right)\,$$
 o autómato com

$$\delta_{\cup} = \delta_{A} \cup \delta_{B}$$

$$\cup \left\{ \left(q_{I}, \varepsilon, \left\{ q_{I_{A}}, q_{I_{B}} \right\} \right) \right\}$$

$$\cup \left\{ \left(q_{f_{A}}, \varepsilon, \left\{ q_{f} \right\} \right), \left(q_{f_{B}}, \varepsilon, \left\{ q_{f} \right\} \right) \right\}$$

Então
$$\mathcal{L}(U) = \mathcal{L}(A) \cup \mathcal{L}(B)$$
.

N.B.
$$q_I \neq q_f$$
 e $(Q_A \cup Q_B) \cap \{q_I, q_f\} = \emptyset$

Composição de Autómatos - Iteração

Seja $A=\left(Q_A,\Sigma,\delta_A,q_{I_A},\left\{q_{f_A}\right\}\right)$ um AFND nas condições anteriores.

Seja
$$I=\left(Q_A\cup\left\{q_I,q_f\right\},\Sigma,\delta_*,q_I,\left\{q_f\right\}
ight)$$
 o autómato com

$$\delta_* = \delta_A$$

$$\cup \left\{ \left(q_I, \varepsilon, \left\{ q_{I_A}, q_f \right\} \right) \right\}$$

$$\cup \left\{ \left(q_{f_A}, \varepsilon, \left\{ q_{I_A}, q_f \right\} \right) \right\}$$

Então $\mathcal{L}(I) = \mathcal{L}(A)^*$.

N.B.
$$q_I \neq q_f$$
 e $Q_A \cap \{q_I, q_f\} = \emptyset$

Composição de Autómatos – Complementar

Seja $A = (Q_A, \Sigma, \delta_A, q_{I_A}, F_A)$ um AFD qualquer.

Seja $C = (Q_A, \Sigma, \delta_A, q_{I_A}, Q_A \setminus F_A)$ o autómato que se obtém de A trocando os estados finais com os não finais.

Então $\mathcal{L}\left(C\right)=\Sigma^{*}\setminus\mathcal{L}\left(A\right)$ é a linguagem complementar de $\mathcal{L}\left(A\right)$. Isto é

$$w \in \mathcal{L}(C) \Leftrightarrow w \notin \mathcal{L}(A)$$
.

N.B. O autómato A é um AF determinista, ao contrário das operações anteriores, que usam AFNDs.

Exemplo

Obtenha um autómato finito (não determinista) que reconheça a linguagem $\mathcal{L}\left((aaa)^*\right)\cup\mathcal{L}\left((aa)^*\right)$.

Um AFND para reconhecer $\mathcal{L}(aa)$ é

$$\begin{array}{c|ccc} \delta_1 & a & \varepsilon \\ \hline q_0 & \{q_1\} & \emptyset \\ q_1 & \{q_2\} & \emptyset \\ q_2 & \emptyset & \emptyset \\ \end{array}$$

Um AFND para reconhecer $\mathcal{L}\left((aa)^*\right)$ é

δ_2	a	ε
q'_0	Ø	$\left\{q_0,q_f' ight\}$
q_0	$\{q_1\}$	Ø
q_1	$\{q_2\}$	Ø
q_2	Ø	$\left\{q_0',q_f' ight\}$
a'	Ø	Ø

Exemplo (continuação)

Obtém-se um AFND para reconhecer $\mathcal{L}\left((aaa)^*\right)$ de forma semelhante:

$$\begin{array}{c|cccc} \delta_4 & a & \varepsilon \\ \hline p_0' & \emptyset & \left\{p_0, p_f'\right\} \\ \hline p_0 & \left\{p_1\right\} & \emptyset \\ p_1 & \left\{p_2\right\} & \emptyset \\ p_2 & \left\{p_3\right\} & \emptyset \\ \hline p_3 & \emptyset & \left\{p_0', p_f'\right\} \\ \hline p_f' & \emptyset & \emptyset \\ \hline \end{array}$$

Exemplo (continuação)

Um AFND para reconhecer a união $\mathcal{L}\left(\left(aaa\right)^{*}\right)\cup\mathcal{L}\left(\left(aa\right)^{*}\right)$ é:

δ_4	a	ε
r_0	Ø	$\left\{q_0', p_0'\right\}$
q_0'	Ø	$\left\{q_0,q_f' ight\}$
q_0	$\{q_1\}$	Ø
q_1	$\{q_2\}$	Ø
q_2	Ø	$\left\{q_0',q_f' ight\}$
q_f'	Ø	$\{r_f\}$
p'_0	Ø	$\left\{p_0,p_f'\right\}$
p_0	$\{p_1\}$	` Ø ´
p_1	$\{p_2\}$	Ø
p_2	$\{p_3\}$	Ø
p_3	Ø	$\left\{p_0',p_f' ight\}$
p_f'	Ø	$\{r_f\}$
r_f	Ø	Ø

Exemplo (continuação)

Um AFND "feito à mão" para reconhecer $\mathcal{L}\left((aaa)^*\right)\cup\mathcal{L}\left((aa)^*\right)$ é

δ	a	λ
1	Ø	$\{2, 4\}$
2	{3}	Ø
3	{2}	Ø
4	$\{5\}$	Ø
5	$\{6\}$	Ø
6	$\{4\}$	Ø

mas não está "bem preparado"...porquê?

Autómatos de Estados Finitos

Autómatos Finitos Não-deterministas

Minimização de Autómatos Finitos Deterministas

Composição de Autómatos Não-deterministas

O Pumping Lemma

O Pumping Lemma para Linguagens Regulares UNIVERSIDADE DE ÉVORA

Seja L uma linguagem regular e k o número de estados de um AFD que a reconheça.

Então qualquer palavra $p \in L$ com |p| > k pode ser escrita como

$$p = uvw, \qquad \qquad \operatorname{com} \ |uv| \le k, |v| > 0$$

e $uv^nw \in L$ para cada n > 0.

Exemplo - Aplicação do Pumping Lemma

Seja
$$L = \{a^n b^n : n \ge 0\}.$$

Se L for uma linguagem regular existe um AFD que reconhece L. Seja k o número de estados desse autómato e $p=a^kb^k\in L$.

Qualquer decomposição de p nas condições do pumping lemma será

$$\begin{array}{cccc} u & v & w \\ a^j & a^m & a^{k-j-m}b^k \end{array}$$

com j + m < k e m > 0.

Fazendo n = 0 (no pumping lemma) obtemos

$$uv^{0}w = a^{j}(a^{m})^{0}a^{k-j-m}b^{k} = a^{k-m}b^{k}$$

Como m>0, $k-m\neq k$. Mas as palavras de L têm igual número de as e bs portanto $a^{k-m}b^k\not\in L$.

Conclui-se que L não é regular.