Physique pour les télecoms 3ème année Année 2010-2011

Examen du 19 Janvier 2011. Documents autorisés: 2 pages manuscrites.

1 Fibre à saut d'indice

Une fibre optique à saut d'indice possède un indice de coeur $n_1=1,46$, un indice de gaine $n_2=1,44$ et un rayon de coeur $a=25\mu m$.

- (a) Calculer l'ouverture numérique ON.
- (b) Quel est l'angle maximum θ_{\max} du cône d'entrée pour un faisceau injecté dans la fibre optique?
- (c) Calculer pour cette fibre optique la fréquence normalisée V pour une longueur d'onde $\lambda=1300\,nm$.
- (d) La fibre est-elle monomode? Quelle dimension devrait avoir le rayon du coeur pour qu'elle le soit?
- (e) Estimer le débit maximum permis par cette fibre à $\lambda = 1300\,nm$ sur une longueur de $10\,km$.

2 Guide diélectrique plan

Dans ce qui suit, les indices optiques n_1 , n_2 , n_3 ont pour valeur $n_1 = 1$, $n_2 = 1.45$, $n_3 = 1.3$. On considère la figure 1 où une onde plane dont le champ électrique est orthogonal au plan xOz éclaire depuis le milieu d'indice n_2 le plan d'équation x = 0 qui sépare les mileux d'indice n_2 et n_3

Figure 1: réflexion et transmission sur une surface de discontinuité

- (a) Représenter la variation du coefficent de réflexion en fonction de l'angle d'incidence.
- (b) Qu'appelle -t-on réflexion totale?
- (c) Quel est la valeur de l'angle limite θ_l ?
- (d) On éclaire le plan par une onde plane inclinée de $\theta=78^{\circ}$ par rapport à l'axe Ox. À quelle distance de l'interface, exprimée en longueur d'onde, l'amplitude de l'onde transmise est-elle divisée par 2?
- (d) Quelle est la phase du coefficient de réflexion r_{23} ?

La couche d'indice n_2 est insérée entre les mileux d'indice n_1 et n_3 . (voir figure 2) pour former un guide diélectrique plan.

- (e) On travaille à $\lambda = 1,55~\mu m$, On écrit la dépendance en z sous la forme $\exp(-i\gamma z)$. Expliquer pourquoi γ appartient à un intervalle $[\gamma_1 \ \gamma_2]$ et donner les valeurs de γ_1 et γ_2 .
- (f) Qu'appelle-t on relation de dispersion?
- (g) La longueur d'onde de coupure du premier mode vaut $\lambda_c=1,58\,\mu m$. quelle est l'épaisseur du guide?

Figure 2: guide diélectrique

3 Liaison sur fibre optique monomode

Soit une liaison sur fibre optique monomode. Une diode laser monomode émet une puissance dans la fibre $P_e=1~mW$ à $\lambda=1.3~\mu m$ avec une largeur spectrale $\Delta\nu=2~Ghz$. La fibre optique présente un affaiblissement global A=0,3~dB/km et une dispersion $D=18ps.nm^{-1}.km^{-1}$ à cette longueur d'onde.

- (a) On souhaite transmettre sur une distance $L_0=100\ Km$. Calculer la puissance, en Watt et en dBm, en bout de fibre.
- (b) On place en bout de fibre un récepteur photodiode. On exige une puissance minimale sur la photodiode de $P_{\min}=-27~dBm$. Quelle est la longueur maximale de la liaison permise sous ces conditions?
- (c) La transmission doit pouvoir fonctionner avec un débit B=40~Gb/s. La dispersion de la fibre optique constitue une autre limitation pour la longueur maximale de la liaison. Comparer la limitation due à la dispersion avec celle due à l'atténuation.