

() Final Specifications

Module	15.6" HD - Color TFT-LCD
Model Name	B156XW01 V1 (H/W: 1A)

Customer	Date	Appro
Checked & Approved by	Date	Prepo
		<u>Buffy</u>
Note: This Specification is without notice.	subject to change	

Approved by	Date
Prepared by	Date
Trepared by	Duic
Buffy Chen	06/24/2008
NIDDII AA arika d	ling Division /
	ting Division / es corporation

Contents

1. Handling Precautions	4
2. General Description	5
2.1 General Specification	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	11
4. Absolute Maximum Ratings	12
4.1 Absolute Ratings of TFT LCD Module	12
4.2 Absolute Ratings of Backlight Unit	12
4.3 Absolute Ratings of Environment	12
5. Electrical characteristics	
5.1 TFT LCD Module	13
5.2 Backlight Unit	15
6. Signal Characteristic	
6.1 Pixel Format Image	17
6.2 The input data format	18
6.3 Signal Description/Pin Assignment	
6.4 Interface Timing	21
6.5 Power ON/OFF Sequence	23
7. Connector Description	
7.1 TFT LCD Module	24
7.2 Backlight Unit	24
7.3 Signal for Lamp connector	24
8. Dynamic Test	25
8.1 Vibration Test	25
8.2 Shock Test Spec:	25
9. Reliability	26
10. Mechanical Characteristics	27
10.1 LCM Outline Dimension	27
10.2 Screw Hole Depth and Center Position	29
11. Shipping and Package	30
11.1 Shipping Label Format	30
11.2 Carton package	31
11.3 Shipping package of palletizing sequence	31
12. Appendix: EDID description	32

Record of Revision

Ve	Version and Date Page		Old description	New Description	Remark
0.1	2008/06/24	All	First Edition for Customer		

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CCFL Reflector edge. Instead, press at the far ends of the CCFL Reflector edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Cold cathode fluorescent lamp (CCFL) in LCD contains a small amount of mercury. Please follow local ordinances or regulations for disposal.
- 13) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 14) The LCD module is designed so that the CCFL in it is supplied by Limited Current Circuit (IEC60950 or UL1950). Do not connect the CCFL in Hazardous Voltage Circuit.

AU OPTRONICS CORPORATION

2. General Description

B156XW01 V1 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and backlight system. The screen format is intended to support the HD (1366(H) x 768(V)) screen and 262k colors (RGB 6-bits data driver) without backlight inverter. All input signals are LVDS interface compatible.

B156XW01 V1 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

Items	Unit		Speci	fications			
Screen Diagonal	[mm]	394.9 (15.6W'')					
Active Area	[mm]	344.232 X 193.536					
Pixels H x V		1366x3(RGB)	x 768				
Pixel Pitch	[mm]	0.255X0.255					
Pixel Format		R.G.B. Vertic	al Stripe				
Display Mode		Normally Wh	ite				
White Luminance	[cd/m ²]	220 typ. (5 p	oints averag	e)			
(ICCFL=6.0mA)		187 min. (5 p	oints averag	e)			
Note: ICCFL is lamp current		(Note1)					
Luminance Uniformity		1.25 max. (5	points)				
Contrast Ratio		400 typ					
Response Time	[ms]	8 typ / 15 Ma	ХX				
Nominal Input Voltage VDD	[Volt]	+3.3 typ.					
Power Consumption	[Watt]	6.5 max.					
Weight	[Grams]	550 max.					
Physical Size	[mm]		Min.	Тур.	Max.		
without inverter, bracket		Length	-	359.3	359.8		
		Width	-	209.5	210.0		
		Thickness	-	-	6.4		
Electrical Interface		1 channel LV	/DS	<u>.</u>	•		
Surface Treatment		Anti-Glare					
Support Color	262K colors (RGB 6-bit)						
Temperature Range							
Operating	[°C]	0 to +50					
Storage (Non-Operating)	[°C]	-20 to +60					
RoHS Compliance		RoHS Compl	iance				

2.2 Optical Characteristics The optical characteristics are measured under stable conditions at 25° C (Room Temperature) :

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
White Luminance ICCFL=6.0mA			5 points average	187	220	-	cd/m²	1, 4, 5.
	Viewing Angle		Horizontal (Right)	40	45	-		
Viewing An			CR = 10 (Left)	40	45	-	degree	
Viewing Angle		Ψн	Vertical (Upper) CR = 10 (Lower)	10	15	-		4, 9
		Ψι		20	35	-		
Luminance Uni	formity	δ 5P	5 Points	-	-	1.25		1, 3, 4
Lonninance on	Luminance Uniformity		13 Points	-	-	-		2, 3, 4
Contrast Ro	atio	CR		300	400	-		4, 6
Cross tall	k	%				4		4, 7
			Rising	-	-	-		
Response Ti	me	T _f	Falling	-	-	-	msec	4, 8
		T _{RT}	Rising + Falling	-	8	15		
	Red	Rx		0.620	0.650	0.680		
	Rea	Ry		0.310	0.340	0.370		
	Green	Gx		0.280	0.310	0.340		
Color /	Orcen	Gy		0.550	0.580	0.610		
Chromaticity Coodinates		Bx	CIE 1931	0.120	0.150	0.180		4
Coodillales	Blue	By		0.090	0.120	0.150		4
		Wx		0.293	0.313	0.333		
	White	Wy		0.309	0.329	0.349		
NTSC		%		-	60	-		

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

S	= -	Maximum Brightness of five points
δw5		Minimum Brightness of five points
c	_	Maximum Brightness of thirteen points
δ w13	_	Minimum Brightness of thirteen points

AU OPTRONICS CORPORATION

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points \cdot $Y_L = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5 L (x) is corresponding to the luminance of the point X at Figure in Note (1).$

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)= $\frac{\text{Brightness on the "White" state}}{\text{Brightness on the "Black" state}}$

AU OPTRONICS CORPORATION

Note 7: Definition of Cross Talk (CT)

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

AU OPTRONICS CORPORATION

Note 9. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

AU OPTRONICS CORPORATION

3. Functional Block Diagram

The following diagram shows the functional block of the 15.6 inches wide Color TFT/LCD Module:

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
CCFL Current	ICCFL	-	7.0	[mA] rms	Note 1,2

4.3 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions		
Operating	TOP	0	+50	[°C]	Note 3		
Operation Humidity	HOP	5	95	[%RH]	Note 3		
Storage Temperature	TST	-20	+60	[°C]	Note 3		
Storage Humidity	HST	5	95	[%RH]	Note 3		

Note 1: At Ta (25℃)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

+

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	_	-	1.5	[Watt]	Note 1/2
IDD	IDD Current	-	350	450	[mA]	Note 1/2
IRush	Inrush Current	ı	-	1500	[mA]	Note 3
VDDrp	Allowable	_	_	100	[mV]	
	Logic/LCD Drive Ripple Voltage				р-р	

Note 1: Maximum Measurement Condition: Black Pattern

Note 2: Typical Measurement Condition: Mosaic Pattern

Note 3: Measure Condition

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

It is recommended to refer the specifications of THC63LVDF84A (Thine Electronics Inc.) in detail.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
Vth	Differential Input High Threshold (Vcm=+1.2V)	-	100	[mV]
VtI	Differential Input Low Threshold (Vcm=+1.2V)	-100	-	[mV]
Vcm	Differential Input Common Mode Voltage	1.125	1.375	[V]

Note: LVDS Signal Waveform

5.2 Backlight Unit

CCFL Parameter guideline for CCFL Inverter selection (Ref. Remark 1)

Parameter	Min	Тур	Max	Units	Condition
CCFL current(ICCFL)	2.0	6.0	7.0	[mA] rms	(Ta=25°C)
					Note 1, 6
CCFL Frequency(FCCFL)	45	60	80	[KHz]	(Ta=25°C) Note 2,3
CCFL startup Voltage(Vs)			1520	[Volt] rms	(Ta=0°C) Note 4
CCFL startup Voltage(Vs)			1265	[Volt] rms	(Ta= 25°C) Note 4
CCFL Voltage (Reference) (VCCFL)	-	720	800	[Volt] rms	(Ta=25°C) Note 5
CCFL Power consumption (PCCFL)	-	4.40	4.80	[Watt]	(Ta=25°C) Note 5
CCFL Life-Time	12,000	-	_	Hour	(Ta=25°C)
	12,000				Note 7

To optimun TFT LCD performance, the LAMP inverter PWM Frequesncy define as:210 +/-5 Hz

Remark 1: Typ are AUO recommended Design Points.

- 1-1 All of characteristics listed are measured under the condition using the AUO Test inverter.
- 1-2 In case of using an inverter other than listed, it is recommended to check the inverter carefully. Sometimes, interfering noise stripes appear on the screen, and substandard luminance or flicker at low power may happen.
- 1-3 In designing an inverter, it is suggested to check safety circuit very carefully. Impedance of CCFL, for instance, becomes more than 1 [M ohm] when CCFL is damaged.
- 1-4 Generally, CCFL has some amount of delay time after applying starting voltage. It is recommended to keep on applying starting voltage for 1 [Sec] until discharge.
- 1-5 CCFL discharge frequency must be carefully chosen so as not to produce interfering noise stripes on the screen.
- 1-6 Reducing CCFL current increases CCFL discharge voltage and generally increases CCFL discharge frequency. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter.

- Note 1: It should be employed the inverter which has "Duty Dimming", if ICCFL is less than 4mA.
- Note 2: CCFL discharge frequency should be carefully determined to avoid interference between inverter and TFT LCD.
- Note 3: The frequency range will not affect to lamp life and reliability characteristics.
- Note 4: The output voltage of inverter should be able to give out a power after ballast capacitor, the generating capacity has to be larger than a lamp startup voltage, otherwise backlight may has blinking for a moment after turns on or can not be turned on.
- Note 5: Calculator value for reference (ICCFL×VCCFL=PCCFL)
- Note 6: Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp, are following. It shall help increase the lamp lifetime and reduce leakage current.
 - a. The asymmetry rate of the inverter waveform should be less than 10%.
 - b. The distortion rate of the waveform should be within $\sqrt{2} \pm 10\%$.
 - * Inverter output waveform had better be more similar to ideal sine wave.

Note 7: It is an edge-type BLU with single CCFL, the life-time define as the brightness decay to 50% of original value and under normal operation.

AU OPTRONICS CORPORATION

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		1								13	366
1st Line	R	G B	R	G	В		R	G	В	R	G B
						ı		•			1
		•		•				•			
						•					:
				•		•					
		•						•			•
				ì		· •					
		•		•		1		•			
<mark>768th Line</mark>	R	G B	R	G	В		R	G	В	R	G B

6.2 The input data format

RxCLKIN		/
RxIN0	G0 R5 R4 R3 R2	R1 R0
RxIN1	B1 B0 G5 G4 G3	G2 G1
RxIN2	DE VS HS B5 B4	B3 B2

Signal Name	Description	
R5	Red Data 5 (MSB)	Red-pixel Data
R4	Red Data 4	Each red pixel's brightness data consists of these 6
R3	Red Data 3	bits pixel data.
R2	Red Data 2	
R1	Red Data 1	
RO	Red Data 0 (LSB)	
	Red-pixel Data	
G5	Green Data 5 (MSB)	Green-pixel Data
G4	Green Data 4	Each green pixel's brightness data consists of these 6
G3	Green Data 3	bits pixel data.
G2	Green Data 2	
G1	Green Data 1	
G0	Green Data 0 (LSB)	
	Green-pixel Data	
B5	Blue Data 5 (MSB)	Blue-pixel Data
B4	Blue Data 4	Each blue pixel's brightness data consists of these 6
B3	Blue Data 3	bits pixel data.
B2	Blue Data 2	
B1	Blue Data 1	
ВО	Blue Data 0 (LSB)	
	Blue-pixel Data	
RxCLKIN	Data Clock	The signal is used to strobe the pixel data and DE
		signals. All pixel data shall be valid at the falling edge
		when the DE signal is high.
DE	Display Timing	This signal is strobed at the falling edge of
		RxCLKIN. When the signal is high, the pixel data shall
		be valid to be displayed.
VS	Vertical Sync	The signal is synchronized to RxCLKIN .
HS	Horizontal Sync	The signal is synchronized to RxCLKIN .

Note: Output signals from any system shall be low or High-impedance state when VDD is off.

6.3 Signal Description/Pin Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device

PIN#	Signal Name	Description
1	VSS	Power Ground
2	VDD	+ 3.3V Power Supply
3	VDD	+ 3.3V Power Supply
4	VEDID	+ 3.3V EDID Power
5	AGING	Aging Mode Power Supply
6	CLKEDID	EDID Clock Input
7	DATAEDID	EDID Data Input
8	RXIN0N	-LVDS Differential Data Input
9	RXIN0P	+LVDS Differential Data Input
10	VSS	Power Ground
11	RXIN1N	-LVDS Differential Data Input
12	RXIN1P	+LVDS Differential Data Input
13	VSS	Power Ground
14	RXIN2N	-LVDS Differential Data Input
15	RXIN2P	+LVDS Differential Data Input
16	VSS	Power Ground
17	CK1INN	-LVD\$ Differential Clock Input
18	CK1INP	+LVDS Differential Clock Input
19	VSS	Power Ground
20	X	
21	X	
22	VSS	Power Ground
23	X	
24	X	
25	VSS	Power Ground
26	X	
27	X	
28	VSS	Power Ground
29	X	
30	X	

B156XW01 V1 _Document Version : 0.1 19 of 34

AU OPTRONICS CORPORATION

Note1: Start from right side

Note2: Input signals shall be low or High-impedance state when VDD is off.

internal circuit of LVDS inputs are as following.

The module uses a 100ohm resistor between positive and negative data lines of each receiver input

AU OPTRONICS CORPORATION

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings should match the 1366x768 /60Hz manufacturing guide line timing.

Parar	meter	Symbol	Min.	Тур.	Max.	Unit
Frame	e Rate	-		60	-	Hz
Clock fre	equency	1/ Tclock	65	72	75	MHz
	Period	T _V	776	806	1023	
Vertical	Active	T VD	768	768	768	T Line
Section	Blanking	T∨B	8	38	255	
	Period	T _H	1396	1486	2047	
Horizontal	Active	T HD	1366	1366	1366	T_{Clock}
Section	Blanking	T HB	30	120	681	

Note: DE mode only

AU OPTRONICS CORPORATION

6.4.2 Timing diagram

AU OPTRONICS CORPORATION

6.5 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power Sequence Timing

Damanaskan		11-2-		
Parameter	Min.	Тур.	Max.	Units
T1	0.5	-	10	(ms)
T2	0	-	50	(ms)
Т3	0	-	50	(ms)
T4	400	-	-	(ms)
T5	200	-	-	(ms)
T6	200	-	-	(ms)
Т7	0	-	10	(ms)

AU OPTRONICS CORPORATION

7. Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	For Signal Connector
Manufacturer	HIROSE or compatible
Type / Part Number	MDF76KBW-30S-1H
Mating Housing/Part Number	

7.2 Backlight Unit

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Lamp Connector
Manufacturer	JST
Type / Part Number	BHSR-02VS-1
Mating Type / Part Number	SM02B-BHSS-1-TB

7.3 Signal for Lamp connector

Pin #	Cable color	Signal Name
1	RED	Lamp High Voltage
2	White	Lamp Low Voltage

AU OPTRONICS CORPORATION

8. Dynamic Test

8.1 Vibration Test

Test condition:

Acceleration: 1.5 G, sine wave

Frequency: 10 - 500Hz

Sweep: 30 Minutes each Axis (X, Y, Z)

8.2 Shock Test Spec:

Test condition:

• Acceleration: 220 G, Half sine wave

Active time: 2 ms

• Pulse: +/-X,+/-Y,+/-Z, one time for each side

Remark:

1. Ambient condition is $25 \pm 5^{\circ}$ C, Relative humidity: $40\% \sim 70\%$

2. Non-packaged and Non-operation

9. Reliability

Items Required Condition		Note
Temperature Humidity Bias	Ta= 40°C, 90%RH, 300h	
High Temperature Operation	Ta= 50°C, Dry, 300h	
Low Temperature Operation	Ta= 0°C, 300h	
High Temperature Storage	Ta= 60°C, 35%RH, 300h	
Low Temperature Storage	Ta= -20°C, 50%RH, 300h	
Thermal Shock Test	Ta=-20°C to 60°C, Duration at 30 min, 100 cycles	
ESD	Contact: ±8 KV Air: ±15 KV	Note 1

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost . Self-recoverable. No hardware failures.

Remark: MTBF (Excluding the CCFL): 30,000 hours with a confidence level 90%

AU OPTRONICS CORPORATION

10. Mechanical Characteristics

10.1 LCM Outline Dimension

27 of 34

AU OPTRONICS CORPORATION

Note: Prevention IC damage, IC positions not allowed any overlap over these areas.

10.2 Screw Hole Depth and Center Position

Screw hole minimum depth, from side surface = 2.30±0.30 mm (Ref. drawing)

Screw hole center location, from front surface = 3.7 ± 0.2 mm (Ref. drawing) Screw Torque: Maximum 2.5 kgf-cm

11. Shipping and Package

11.1 Shipping Label Format

XXXXXXXXXXXXXX-XXXXXX

CT:CAHGB01XXXXXXX

Manufactured 07/52 Model No: B156XW01 V.1 **AU Optronics** MADE IN CHINA (\$03)

H/W: 1A F/W:1

c 🎵 us E204356

TAXXG

AU OPTRONICS CORPORATION

11.2 Carton package

The outside dimension of carton is 455 (L)mm x 380 (W)mm x 355 (H)mm

11.3 Shipping package of palletizing sequence

12. Appendix: EDID description

Address	FUNCTION		Value	Value	Note
00	Header	00	00000000	0	
01		FF	111111111	255	
02		FF	11111111	255	
03		FF	11111111	255	
04		FF	11111111	255	
05		FF	11111111	255	
06		FF	11111111	255	
07		00	00000000	0	
08	EISA Manuf. Code LSB	06	00000110	6	
09	Compressed ASCII	AF	10101111	175	
0A	Product Code	EC	11101100	236	
OB	hex, LSB first	10	00010000	16	
0C	32-bit ser #	00	00000000	0	
0D		00	00000000	0	
0E		00	00000000	0	
OF		00	00000000	0	
10	Week of manufacture	01	00000001	1	
11	Year of manufacture	12	00010010	18	
12	EDID Structure Ver.	01	00000001	1	
13	EDID revision #	03	00000011	3	
14	Video input definition	80	10000000	128	
15	Max H image size	22	00100010	34	
16	Max V image size	13	00010011	19	
17	Display Gamma	78	01111000	120	
18	Feature support	0A	00001010	10	
19	Red/green low bits	E6	11100110	230	
1A	Blue/white low bits	B5	10110101	181	
1B	Red x/ high bits	A3	10100011	163	
1C	Red y	57	01010111	87	
1D	Green x	4F	01001111	79	
1E	Green y	94	10010100	148	
1F	Blue x	26	00100110	38	
20	Blue y	1E	00011110	30	
21	White x	50	01010000	80	
22	White y	54	01010100	84	
23	Established timing 1	00	00000000	0	
24	Established timing 2	00	00000000	0	
25	Manufacturer's Timing	00	00000000	0	
26	Standard timing #1	01	00000001	1	
27		01	00000001	1	
28	Standard timing #2	01	00000001	1	
29	9. G. 1. G. 1	01	00000001	1	
2A	Standard timing #3	01	00000001	1	
2B	9.499	01	00000001	1	
2C	Standard timing #4	01	00000001	1	
2D	9. a a	01	00000001	1	
2E	Standard timing #5	01	00000001	1	
2F	2	01	00000001	1	
30	Standard timing #6	01	00000001	† i	
31	5.533.3	01	00000001	1	
32	Standard timing #7	01	00000001	1 1	
33	5.6.13616 IIIIII19 II7	01	00000001	1	

	AU OI IKONICS COKI OKA				
34	Standard timing #8	01	0000001	1	
35		01	00000001	1	
36	Pixel Clock/10,000 (LSB)	20	00100000	32	
37	Pixel Clock/10,000 (MSB)	1C	00011100	28	
38	Horiz. Active pixels(Lower 8 bits)	56	01010110	86	
39	Horiz.Blanking (Lower 8 bits)	78	01111000	120	
3A	Horiz. Active pixels:Horiz. Blanking (Upper4:4 bits)	50	01010000	80	
3B		00	00000000	0	
3C		26	00100110	38	
3D	Vert. Active pixels:Vert. Blanking (Upper4:4 bits)	30	00110000	48	
3E		30	00110000	48	
3F		20	00100000	32	
40	Vert. Sync. Offset=xx lines, Sync Width=xx lines	34	00110100	52	
41	Horz. Ver. Sync/Width (upper 2 bits)	00	00000000	0	
42	Hori. Image size (Lower 8 bits)	58	01011000	88	
43	Vert. Image size (Lower 8 bits)	C1	11000001	193	
44	Hori. Image size : Vert. Image size (Upper 4 bits)	10	00010000	16	
45	<u> </u>	00	00000000	0	
46		00	00000000	0	
47		18	00011000	24	
48	Detailed timing/monitor	00	00000000	0	
49	descriptor #2	00	00000000	0	
4A	desempter #2	00	00000000	0	
4B		OF	00001111	15	
4C		00	00000000	0	
4D		00	00000000	0	
4E		00	00000000	0	
4F		00	00000000	0	
50		00	00000000	0	
51		00	00000000	0	
52		00	00000000	0	
53		00	00000000	0	
54		00	00000000	0	
55		00	00000000	0	
56		00	00000000	0	
57		00	0000000	0	
58		00	0000000	0	
59		20	00100000	32	
5A	Detailed timing/monitor	00	00000000	0	
5B	descriptor #3	00	00000000	0	
5C	ασιομοί πο	00	00000000	0	
5D		FE	11111110	254	
5E		00	0000000	0	
5F	Manufactura	41	01000000	65	
60	Manufacture Manufacture	55	01000001	85	U
61	Manufacture Manufacture	35 4F		79	0
62	Manuaciore	4F 0A	01001111	10	
63		20	0010000	32	
64		20	00100000	32	
65		20	00100000	32	
		20	00100000	32	
66					
67		20	00100000	32	
68		20	00100000	32	
69		20	00100000	32	
6A		20	00100000	32	
6B		20	00100000	32	

6C	Detailed timing/monitor	00	00000000	0	
6D	descriptor #4	00	00000000	0	
6E		00	00000000	0	
6F		FE	11111110	254	
70		00	00000000	0	
71		42	01000010	66	В
72		31	00110001	49	1
73		35	00110101	53	5
74		36	00110110	54	6
75		58	01011000	88	Χ
76		57	01010111	87	W
77		30	00110000	48	0
78		31	00110001	49	1
79		20	00100000	32	
7A		56	01010110	86	٧
7B		30	00110000	48	0
7C		20	00100000	32	
7D		0A	00001010	10	
7E	Extension Flag	00	00000000	0	
7F	Checksum	2A	00101010	42	