## Quantum Circuit Synthesis and Compiler

Yupan Liu Shuxiang Cao Supervisor: Junde Wu

December 4, 2015

#### Quantum circuit synthesis

Superconducting quantum computing and DQC1

Implementation of quantum algorithms

#### Quantum circuit synthesis

#### Quantum state and quantum gate

Single-qubit gate synthesis Multi-qubit gate synthesis Next?

Superconducting quantum computing and DQC1

Implementation of quantum algorithms

Quantum state: single-qubit

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

where  $\{|0\rangle,|1\rangle\}$  is an orthonormal basis.

Quantum state: single-qubit

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

where  $\{|0\rangle,|1\rangle\}$  is an orthonormal basis.

Bloch sphere representation



Quantum state: single-qubit

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

where  $\{|0\rangle,|1\rangle\}$  is an orthonormal basis.

Bloch sphere representation



Quantum gate: unitary

Quantum state: single-qubit

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

where  $\{|0\rangle,|1\rangle\}$  is an orthonormal basis.

▶ Bloch sphere representation



- Quantum gate: unitary
- ▶ *n*-qubit case: tensor product



### Quantum circuit synthesis

Quantum state and quantum gate Single-qubit gate synthesis Multi-qubit gate synthesis Next?

Superconducting quantum computing and DQC1

Implementation of quantum algorithms

- Solovay-Kitaev algorithm based on Lie group,  $O(log^c(\frac{1}{\epsilon}))$ 

- lacktriangle Solovay-Kitaev algorithm based on Lie group,  $O(log^c(rac{1}{\epsilon}))$
- ▶ Better idea?

- Solovay-Kitaev algorithm based on Lie group,  $O(log^c(\frac{1}{\epsilon}))$
- ▶ Better idea? Using **algebraic** number theory,  $O(log(\frac{1}{\epsilon}))!$

- lacktriangle Solovay-Kitaev algorithm based on Lie group,  $O(log^c(rac{1}{\epsilon}))$
- ▶ Better idea? Using **algebraic** number theory,  $O(log(\frac{1}{\epsilon}))!$
- ▶ Decomposition: SU(2)

- lacktriangle Solovay-Kitaev algorithm based on Lie group,  $O(log^c(rac{1}{\epsilon}))$
- ▶ Better idea? Using **algebraic** number theory,  $O(log(\frac{1}{\epsilon}))!$
- ▶ Decomposition:  $SU(2) \Rightarrow$  Euler angle

- Solovay-Kitaev algorithm based on Lie group,  $O(log^c(rac{1}{\epsilon}))$
- ▶ Better idea? Using **algebraic** number theory,  $O(log(\frac{1}{\epsilon}))!$
- ▶ Decomposition:  $SU(2) \Rightarrow$  Euler angle  $\Rightarrow z$ -rotation

- Solovay-Kitaev algorithm based on Lie group,  $O(log^c(rac{1}{\epsilon}))$
- ▶ Better idea? Using **algebraic** number theory,  $O(log(\frac{1}{\epsilon}))!$
- ▶ Decomposition:  $SU(2) \Rightarrow$  Euler angle  $\Rightarrow z$ -rotation
- ▶ Approximation of z-rotation  $\Rightarrow$  Grid problem

$$R_z(\theta) = e^{-i\theta Z/2} = \begin{pmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} & 0 \end{pmatrix}$$
$$U = \frac{1}{\sqrt{2}^k} \begin{pmatrix} u & -t^{\dagger}\\ t & u^{\dagger} \end{pmatrix}, u, t \in \mathbb{Z}[i, \frac{1}{\sqrt{2}}]$$
$$\|R_z(\theta) - U\| < \epsilon$$

- Solovay-Kitaev algorithm based on Lie group,  $O(log^c(rac{1}{\epsilon}))$
- ▶ Better idea? Using **algebraic** number theory,  $O(log(\frac{1}{\epsilon}))!$
- ▶ Decomposition:  $SU(2) \Rightarrow$  Euler angle  $\Rightarrow z$ -rotation
- ▶ Approximation of z-rotation  $\Rightarrow$  Grid problem

$$R_z(\theta) = e^{-i\theta Z/2} = \begin{pmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} & 0 \end{pmatrix}$$
$$U = \frac{1}{\sqrt{2}^k} \begin{pmatrix} u & -t^{\dagger}\\ t & u^{\dagger} \end{pmatrix}, u, t \in \mathbb{Z}[i, \frac{1}{\sqrt{2}}]$$
$$\|R_z(\theta) - U\| < \epsilon$$

Implementation using python and sympy.
Ref Quantum Information & Computation, 2015, 15(1-2): 159-180.



► Clifford+T gate ⇒ Complete basis

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}, \omega = e^{i\pi/4}$$

► Clifford+T gate ⇒ Complete basis

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}, \omega = e^{i\pi/4}$$

▶ Single-qubit Clifford+T gate  $\Leftrightarrow$  Unitaries on  $\mathbb{Z}[i,\frac{1}{\sqrt{2}}]$ 

► Clifford+T gate ⇒ Complete basis

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}, \omega = e^{i\pi/4}$$

- ▶ Single-qubit Clifford+T gate  $\Leftrightarrow$  Unitaries on  $\mathbb{Z}[i,\frac{1}{\sqrt{2}}]$
- ► Decomposition of Clifford+T gate

$$(T|\varepsilon)(HT|SHT)^*C$$

► Clifford+T gate ⇒ Complete basis

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}, \omega = e^{i\pi/4}$$

- ▶ Single-qubit Clifford+T gate  $\Leftrightarrow$  Unitaries on  $\mathbb{Z}[i,\frac{1}{\sqrt{2}}]$
- Decomposition of Clifford+T gate

$$(T|\varepsilon)(HT|SHT)^*C$$

Implementation using python and sympy. Ref arXiv preprint arXiv:1312.6584, 2013.

### Quantum circuit synthesis

Quantum state and quantum gate Single-qubit gate synthesis Multi-qubit gate synthesis

Next?

Superconducting quantum computing and DQC1

Implementation of quantum algorithms

▶ n-qubit gate:  $2^n \times 2^n$  unitary

- ▶ n-qubit gate:  $2^n \times 2^n$  unitary
- $\blacktriangleright \ n\text{-qubit gate} \Rightarrow \frac{N(N-1)}{2} \ \text{two-level unitary,} \ N=2^n$

- ▶ n-qubit gate:  $2^n \times 2^n$  unitary
- lacktriangledown n-qubit gate  $\Rightarrow \frac{N(N-1)}{2}$  two-level unitary,  $N=2^n$
- ▶ two-level unitary  $\Rightarrow$  CNOT+single-qubit gate,  $O(n^2)$

- ▶ n-qubit gate:  $2^n \times 2^n$  unitary
- lacktriangledown n-qubit gate  $\Rightarrow rac{N(N-1)}{2}$  two-level unitary,  $N=2^n$
- ▶ two-level unitary  $\Rightarrow$  CNOT+single-qubit gate,  $O(n^2)$
- ► Implementation using python and sympy. Ref Physical Review A, 1995, 52(5): 3457.

### Quantum circuit synthesis

Quantum state and quantum gate Single-qubit gate synthesis Multi-qubit gate synthesis Next?

Superconducting quantum computing and DQC1

Implementation of quantum algorithms

► Clifford+T single-qubit gate synthesis: too slow

 Clifford+T single-qubit gate synthesis: too slow Because of sympy.

- Clifford+T single-qubit gate synthesis: too slow Because of sympy.
- ▶ Efficient exact decomposition on multiqubit gate

- Clifford+T single-qubit gate synthesis: too slow Because of sympy.
- Efficient exact decomposition on multiqubit gate

### Multi-qubit case

Multi-qubit Clifford+T gate  $\Leftrightarrow$  Unitaries on  $\mathbb{Z}[i,\frac{1}{\sqrt{2}}]$  Ref Physical Review A, 2013, 87(3): 032332.

- Clifford+T single-qubit gate synthesis: too slow Because of sympy.
- Efficient exact decomposition on multiqubit gate

### Multi-qubit case

Multi-qubit Clifford+T gate  $\Leftrightarrow$  Unitaries on  $\mathbb{Z}[i, \frac{1}{\sqrt{2}}]$  Ref Physical Review A, 2013, 87(3): 032332.

More efficient approach?

#### Quantum circuit synthesis

### Superconducting quantum computing and DQC1

Implementation of quantum algorithms

#### Quantum circuit synthesis

Superconducting quantum computing and DQC1
Introduction to superconducting qubit
Superconducting quantum computing and DQC:
Next?

Implementation of quantum algorithms

# Introduction to superconducting qubit

XMon Qubit (UCSB)



# Introduction to superconducting qubit(Cont.)

► Refrigerator (ZJU SQCG Group)



# Introduction to superconducting qubit(Cont.)

Measure System (UCSB)



# Introduction to superconducting qubit(Cont.)

Clifford Gate Benchmark (UCSB)



## Superconducting quantum computing and DQC1

Introduction to superconducting qubit

Superconducting quantum computing and  $\mathsf{DQC1}$ 

Next?

Implementation of quantum algorithms

Superconducting qubit XMon, based on LabRad(UCSB)

- Superconducting qubit XMon, based on LabRad(UCSB)
  - ightharpoonup 6 physical qubits  $\Rightarrow$  Error-correction code, 2 logical qubits

- Superconducting qubit XMon, based on LabRad(UCSB)
  - ▶ 6 physical qubits ⇒ Error-correction code, 2 logical qubits
  - ▶ Decoherence time  $10\mu s \Rightarrow \# \text{Quantum gate} \approx 10^3$

- Superconducting qubit XMon, based on LabRad(UCSB)
  - ▶ 6 physical qubits ⇒ Error-correction code, 2 logical qubits
  - ▶ Decoherence time  $10\mu s \Rightarrow \# \text{Quantum gate} \approx 10^3$

Ref arXiv preprint arXiv:1410.5793, 2014.

- Superconducting qubit XMon, based on LabRad(UCSB)
  - ▶ 6 physical qubits ⇒ Error-correction code, 2 logical qubits
  - ▶ Decoherence time  $10\mu s \Rightarrow \# \text{Quantum gate} \approx 10^3$

Ref arXiv preprint arXiv:1410.5793, 2014.

- DQC1(Deterministic Quantum Computation with 1-qubit)
  - A computational complexity with one-qubit and an ancilla

- Superconducting qubit XMon, based on LabRad(UCSB)
  - ▶ 6 physical qubits ⇒ Error-correction code, 2 logical qubits
  - ▶ Decoherence time  $10\mu s \Rightarrow \# \text{Quantum gate} \approx 10^3$

Ref arXiv preprint arXiv:1410.5793, 2014.

- DQC1(Deterministic Quantum Computation with 1-qubit)
  - A computational complexity with one-qubit and an ancilla
  - DQC1-Complete Problem:
    - Quantum Fourier transform
    - Approximation of Jones Polynomial

- Superconducting qubit XMon, based on LabRad(UCSB)
  - ▶ 6 physical qubits ⇒ Error-correction code, 2 logical qubits
  - ▶ Decoherence time  $10\mu s \Rightarrow \# Quantum gate \approx 10^3$

Ref arXiv preprint arXiv:1410.5793, 2014.

- DQC1(Deterministic Quantum Computation with 1-qubit)
  - ▶ A computational complexity with one-qubit and an ancilla
  - DQC1-Complete Problem:
    - Quantum Fourier transform
    - Approximation of Jones Polynomial

Ref Physical review letters, 2000, 85(14): 3049.

### Superconducting quantum computing and DQC1

Introduction to superconducting qubit Superconducting quantum computing and DQC1 Next?

Implementation of quantum algorithms

## Next?

Optimization of quantum circuit synthesis on DQC1

## Next?

- Optimization of quantum circuit synthesis on DQC1
- Practical quantum computer
  - using QubitServer on LabRad
  - using quantum circuit synthesis

### Next?

- Optimization of quantum circuit synthesis on DQC1
- Practical quantum computer
  - using QubitServer on LabRad
  - using quantum circuit synthesis
- ► Publication?

Superconducting quantum computing and DQC1

Implementation of quantum algorithms

Superconducting quantum computing and DQC1

Implementation of quantum algorithms
Example: Quantum Fourier transform
Implementation of quantum Fourier transform
Other algorithms and applications

Discrete Fourier Transform

$$\tilde{f}_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} f_j$$

Discrete Fourier Transform

$$\tilde{f}_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} f_j$$

Quantum Fourier Transform

$$|k\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} |j\rangle$$

Discrete Fourier Transform

$$\tilde{f}_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} f_j$$

Quantum Fourier Transform

$$|k\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} |j\rangle$$

$$|\tilde{\phi}\rangle = \hat{F}|\phi\rangle, \hat{F}^{\dagger}\hat{F} = \hat{I}$$

Discrete Fourier Transform

$$\tilde{f}_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} f_j$$

Quantum Fourier Transform

$$\begin{split} |k\rangle &= \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2\pi i j k/N} |j\rangle \\ |\tilde{\phi}\rangle &= \hat{F} |\phi\rangle, \hat{F}^\dagger \hat{F} = \hat{I} \\ \hat{F} &= \sum_{j=1}^{N-1} \frac{e^{2\pi i j k/N}}{\sqrt{N}} |k\rangle\langle j| \end{split}$$

Superconducting quantum computing and DQC1

## Implementation of quantum algorithms

Example: Quantum Fourier transform

Implementation of quantum Fourier transform

Other algorithms and applications

► Consider 3-qubit case:

$$|x_1, x_2, x_3\rangle = \frac{1}{\sqrt{2^3}} (|0\rangle + e^{2\pi i [0.x_3]} |1\rangle) \otimes (|0\rangle + e^{2\pi i [0.x_2x_3]} |1\rangle)$$
$$\otimes (|0\rangle + e^{2\pi i [0.x_1x_2x_3]} |1\rangle)$$

Consider 3-qubit case:

$$|x_1, x_2, x_3\rangle = \frac{1}{\sqrt{2^3}} (|0\rangle + e^{2\pi i [0.x_3]} |1\rangle) \otimes (|0\rangle + e^{2\pi i [0.x_2x_3]} |1\rangle)$$
$$\otimes (|0\rangle + e^{2\pi i [0.x_1x_2x_3]} |1\rangle)$$

Quantum circuit implementation of 3-qubit QFT



Consider 3-qubit case:

$$|x_1, x_2, x_3\rangle = \frac{1}{\sqrt{2^3}} (|0\rangle + e^{2\pi i [0.x_3]} |1\rangle) \otimes (|0\rangle + e^{2\pi i [0.x_2x_3]} |1\rangle)$$
$$\otimes (|0\rangle + e^{2\pi i [0.x_1x_2x_3]} |1\rangle)$$

Quantum circuit implementation of 3-qubit QFT



Compiler?

Consider 3-qubit case:

$$|x_1, x_2, x_3\rangle = \frac{1}{\sqrt{2^3}} (|0\rangle + e^{2\pi i [0.x_3]} |1\rangle) \otimes (|0\rangle + e^{2\pi i [0.x_2x_3]} |1\rangle)$$
$$\otimes (|0\rangle + e^{2\pi i [0.x_1x_2x_3]} |1\rangle)$$

Quantum circuit implementation of 3-qubit QFT



► Compiler?
Implement quantum algorithm by quantum circuit synthesis!

Superconducting quantum computing and DQC1

## Implementation of quantum algorithms

Example: Quantum Fourier transform Implementation of quantum Fourier transform

Other algorithms and applications

# Other algorithms and applications

## Quantum simulation

Using Jordan-Wigner transform to simulation Fermion quantum system. **Ref** Physical Review A, 2001, 64(2): 022319.

## Other algorithms and applications

#### Quantum simulation

Using Jordan-Wigner transform to simulation Fermion quantum system. **Ref** Physical Review A, 2001, 64(2): 022319.

## Backtracking algorithm

Using quantum random walk to speed up backtracking algorithm. Ref arXiv preprint arXiv:1509.02374, 2015.

# Other algorithms and applications

#### Quantum simulation

Using Jordan-Wigner transform to simulation Fermion quantum system. **Ref** Physical Review A, 2001, 64(2): 022319.

## Backtracking algorithm

Using quantum random walk to speed up backtracking algorithm. Ref arXiv preprint arXiv:1509.02374, 2015.

#### Simulate open quantum system

Consider quantum channel(superoperator)'s representation, using quantum circuit synthesis to decompose single-qubit quantum channels. **Ref** Physical review letters, 2013, 111(13): 130504.

# Thanks for listening!

# Q & A