IN THE CLAIMS

Please amend the claims as follows:

Claims 1-29 (Cancelled)

Claim 30 (Currently Amended) A process for manufacturing a substrate, at least one part of the surface of the substrate has been rendered hydrophobic, wherein said hydrophobic surface structure comprises an essentially mineral silicon containing a silicon dioxide sublayer formed at least partly on the surface of the substrate, and an outer layer of hydrophobic agent grafted onto said sublayer, wherein said sublayer had a surface that was in an activated state before being brought into contact with said hydrophobic agent, wherein said process comprises:

treating a surface of the silicon-containing mineral sublayer to activate the surface of the silicon-containing mineral sublayer in at least one pass, depositing the coating layer of hydrophobic agent, in at least one pass, on the surface, in the activated state, of the silicon-containing mineral sublayer formed at least partly on the surface of the substrate and

wherein said treating is carried out under conditions that allow a silicon-containing the sublayer to be etched, with a plasma of at least one fluorine-containing gas chosen from SF₆, CF₄, or C₂F₆ and other fluorinated gases, optionally combined with oxygen in an amount up to 50% by volume of the etching plasma; and

wherein said treating is carried out under conditions so that the activated surface of the etched sublayer has an RMS roughness of from a few nm to 30 nm.

- 31. (Currently Amended) The process according to Claim 30, wherein the hydrophobic agent is deposited within a time of from 1 second to 15 minutes, after the activation of the surface of the silicon-containing mineral sublayer.
- 32. (Previously Presented) The process according to Claim 30, wherein the activation is monitored.

- 33. (Currently Amended) The process according to Claim 30, wherein the silicon-containing sublayer is deposited, cold, on the substrate by vacuum cathode sputtering.
- 34. (Currently Amended) The process according to Claim [[33]] <u>30</u>, wherein the silicon-containing sublayer is deposited, cold, on the substrate by magnetron sputtering, ion beam sputtering, or by low-pressure plasma-enhanced chemical vapour deposition (PECVD), or atmospheric- pressure PECVD.
- 35. (Currently Amended) The process according to Claim 34, further comprising depositing a layer of SiO₂, as silicon-containing layer, wherein the sublayer is deposited by PECVD, with a mixture of an organic or nonorganic, silicon-containing precursor and an oxidizer, wherein the subsequent activation being carried out in the same chamber or in a separate chamber.
- 36. (Previously Presented) The process according to Claim 35, wherein the silicon-containing precursor is SiH₄, hexamethyldisiloxane, tetraethoxysilane and tetramethyldisiloxane.
- 37. (Previously Presented) The process according to Claim 30, wherein the outer layer of hydrophobic agent is based on a hydrophobic agent is a fluorosilane and wherein the fluorosilane outer layer of hydrophobic agent is deposited by wiping-on, evaporation or spraying of a solution containing the fluorosilane, or by dipping, spin-coating, or flow-coating with a solution containing the fluorosilane.
- 38. (Previously Presented) The process according to Claim 30, wherein the substrate is formed by a plate, whether plane or with curved faces, of monolithic or laminated glass, of glass-ceramic or of a hard thermoplastic.
 - 39. (Cancelled)
- 40. (Currently Amended) The process according to Claim 30, wherein the silicon-containing sublayer <u>further</u> comprises aluminum or carbon, Ti, Zr, Zn and S.

- 41. (Currently Amended) The process according to Claim 40, wherein the silicon-containing sublayer <u>further</u> comprises aluminum in an amount up to 8% by weight.
- 42. (Currently Amended) The process according to Claim 30, wherein the activated surface of the silicon-containing sublayer has a thickness of 20 nm to 250 nm.
- 43. (Currently Amended) The process according to Claim 30, wherein the activated surface of the silicon-containing sublayer has a thickness of 30 nm to 100 nm.
- 44. (Currently Amended) The process according to Claim 30, wherein the activated surface of the silicon-containing sublayer has a thickness of 30 nm to 75 nm.
 - 45. (Cancelled).
- 46. (Currently Amended) The process according to Claim 30, wherein the activated surface of the silicon-containing sublayer has an actual developed area at least 40% greater than the initial plane area.
- 47. (Previously Presented) The process according to Claim 30, wherein the outer layer of hydrophobic agent is based on a hydrophobic agent is:
 - (a) an alkylsilane of formula (I):

$$CH_3(CH_2)_nSiR_mX_{3-m}$$
 (I)

in which:

n ranges from 0 to 30, more particularly from 0 to 18;

$$m = 0, 1, 2 \text{ or } 3;$$

R represents an optionally functionalized organic chain; and

X represents a hydrolyzable residue that is an OR⁰ residue, where R⁰ represents hydrogen; or a linear, branched or cyclic alkyl residue, an aryl residue; or a halo residue;

- (b) a compound with grafted silicone chains;
- (c) a fluorosilane that has a formula (II):

U.S. application serial no. 10/590,197 Reply to the Official Action of June 3, 2011

$$R^{1}-A-SiR_{p}^{2}X_{3-p} \qquad (II)$$

in which:

 R^1 represents an C_1 - C_9 monofluoroalkyl, oligofluoroalkyl or perfluoroalkyl residue; or a monoaryl, oligoaryl or perfluoroaryl residue;

A represents a hydrocarbon chain, optionally interrupted by a heteroatom selected from O or S;

R² represents a linear, branched or cyclic alkyl residue, or an aryl residue; X represents a hydrolyzable residue that is an OR³ residue, where R³ represents hydrogen or a linear, branched or cyclic, alkyl residue; an aryl residue; or a halo residue; and

$$p = 0, 1 \text{ or } 2.$$

48. (Currently Amended) The process according to Claim 30, wherein the layer of hydrophobic agent has a weight per unit area of grafted fluorine of <u>between 0.1 μ g/cm² and 3.5 μ g/cm².</u>