COMPARAISON DE FONCTIONS

Croissances comparées

Au voisinage de $+\infty$

- Soit $\alpha, \beta \in \mathbb{R}$. Alors $\alpha < \beta \iff x^{\alpha} = o(x^{\beta})$.
- Soit $a, b \in \mathbb{R}_+^*$. Alors $a < b \iff e^{ax} = o(e^{bx})$.
- Soit $\alpha, \beta \in \mathbb{R}_+^*$. Alors $(\ln x)^{\alpha} = o(x^{\beta})$.
- Soit $\alpha, \beta \in \mathbb{R}_+^*$. Alors $x^{\alpha} = o(e^{\alpha x})$.

Au voisinage de 0

- Soit $\alpha, \beta \in \mathbb{R}$. Alors $\alpha > \beta \iff x^{\alpha} = o(x^{\beta})$.
- Soit $\alpha, \beta \in \mathbb{R}_+^*$. Alors $|\ln x|^{\alpha} = o\left(\frac{1}{x^{\beta}}\right)$.

Au voisinage de $-\infty$

- Soit $\alpha, \beta \in \mathbb{R}_+^*$. Alors $e^{\alpha x} = o\left(\frac{1}{|x|^{\beta}}\right)$.
- Soit $a, b \in \mathbb{R}_+^*$. Alors $a > b \iff e^{ax} = o(e^{bx})$.

Équivalents usuels -

Logarithme, exponentielle, puissance

Un polynôme est équivalent en 0 (resp. en $\pm \infty$) à son monôme de plus bas (resp. haut) degré.

$$\ln(1+x) \underset{x\to 0}{\sim} x$$
 i.e. $\ln(1+x) \underset{x\to 0}{=} x + o(x)$ $e^x - 1 \underset{x\to 0}{\sim} x$ i.e. $e^x = 1 + x + o(x)$

$$(1+x)^{\alpha} - 1 \sim_{x \to 0} \alpha x$$
 i.e. $(1+x)^{\alpha} = 1 + \alpha x + o(x)$

Fonctions circulaires

$$\sin(x) \underset{x \to 0}{\sim} x \qquad \text{i.e.} \qquad \sin x = x + o(x)$$

$$1 - \cos(x) \underset{x \to 0}{\sim} \frac{x^2}{2} \qquad \text{i.e.} \qquad \cos x = 1 - \frac{x^2}{2} + o(x^2)$$

$$\tan(x) \underset{x \to 0}{\sim} x \qquad \text{i.e.} \qquad \tan x = x + o(x)$$

Fonctions circulaires réciproques

$$\arcsin(x) \underset{x \to 0}{\sim} x$$
 i.e. $\arcsin x = x + o(x)$ $\arctan(x) \underset{x \to 0}{\sim} x$ i.e. $\arctan x = x + o(x)$

Fonctions hyperboliques

$$sh(x) \underset{x \to 0}{\sim} x \qquad i.e. \qquad sh x = x + o(x)$$

$$ch(x) - 1 \underset{x \to 0}{\sim} \frac{x^2}{2} \qquad i.e. \qquad ch x = 1 + \frac{x^2}{2} + o(x^2)$$

$$th(x) \underset{x \to 0}{\sim} x \qquad i.e. \qquad th x = x + o(x)$$