Einführung in die Spektraltechniken Die Fouriertransformation

Prof. Dr. Klaus Jung

Verwendung / Nutzen

- Darstellung und Analyse von Bildern im Frequenzbereich
- Effiziente Realisierung von Bildverarbeitungsoperationen im Frequenzraum
 - Lineare Filter
 - Faltungsoperationen
- Bildkompression
 - Transformationskodierung
 - Diskrete Cosinus Transformation (DCT)
 - JPEG
 - MPEG

© Klaus Jung

Sinus und Kosinus

- Analytische Funktionen
- Periodische Funktionen

$$f(x) = \cos(x)$$
 $g(x) = \sin(x)$

3 © Klaus Jung

Frequenz und Amplitude $a \cdot \cos(\omega x)$

- □ Periodenlänge: $T = \frac{2\pi}{\omega}$
- □ Frequenz: $f = \frac{1}{T}$ $\omega = 2\pi f$
- □ Kreisfrequenz: $\omega = \frac{2\pi}{T}$
- Amplitude: a

	$\cos(x)$	cos(3x)
Periode T	2π	$2\pi/3$
Kreisfrequenz ω	1	3
Frequenz f	$\frac{1}{2\pi}$	$\frac{3}{2\pi}$

4 © Klaus Jung

Phase

$$\cos(x) \rightarrow \cos(x - \varphi)$$

$$\cos(x) = \cos(x + 2\pi) = \dots = \cos(2k\pi)$$

$$\sin(\omega x) = \cos(\omega x - \frac{\pi}{2})$$

5 © Klaus June

Addition

 Addition von cos/sin gleicher Frequenz liefert wieder cos bzw. sin gleicher Frequenz

$$A \cdot \cos(\omega x) + B \cdot \sin(\omega x) = C \cdot \cos(\omega x - \varphi)$$

$$C = \sqrt{A^2 + B^2}$$
 und $\varphi = \tan^{-1}(B/A)$

Euler'sche Notation

 $\hfill \Box$ Kosinus und Sinus als ein Paar orthogonaler, zweidimensionaler Vektoren $_{\sin(\omega x)}$

$$z = a + ib \in \mathbb{C}$$

$$z = e^{i\theta} = \cos(\theta) + i \cdot \sin(\theta)$$

$$|a \cdot e^{i\theta}| = |a| \cdot |e^{i\theta}| = |a|$$

$$Re(e^{i\theta}) = cos(\theta)$$
 $e^{i(\theta + \varphi)}$

$$e^{i(\theta+\varphi)}=e^{i\theta}\cdot e^{i\varphi}$$

$$\operatorname{Im}(e^{i\theta}) = \sin(\theta)$$

$$e^{i\omega x} = \cos(\omega x) + i \cdot \sin(\omega x)$$

7 © Klaus Jung

Fourierreihen

$$g(x) = \sum_{k=0}^{\infty} (A_k \cos(k\omega_0 x) + B_k \sin(k\omega_0 x))$$

ullet Das Finden von A_k und B_k heißt Fourieranalyse

8 © Klaus Jung

Fourierintegral

- Erweiterung des Konzepts auf nicht notwendig periodische Funktionen
 - Nicht nur Vielfache der Grundfrequenz (kω₀)
 - lacktriangle Beliebige Frequenzen ω notwendig

$$g(x) = \int_0^\infty A_\omega \cos(\omega x) + B_\omega \sin(\omega x) \ d\omega$$

$$A_{\omega} = A(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} g(x) \cdot \cos(\omega x) \, dx$$
Spektrum

$$B_{\omega} = B(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} g(x) \cdot \sin(\omega x) \, dx$$

© Klaus Jung

Fouriertransformation

- Erweiterung der Zerlegung auf komplexe Funktionen g(x)
 - Verwendung der Euler'schen Schreibweise
 - Berechne das *Fourierspektrum* aus $A(\omega)$, $B(\omega)$

$$G(\omega) = \sqrt{\pi/2} \left(A(\omega) - i \cdot B(\omega) \right)$$

$$= \sqrt{\pi/2} \left(\frac{1}{\pi} \int_{-\infty}^{\infty} g(x) \cdot \cos(\omega x) \, dx - i \cdot \frac{1}{\pi} \int_{-\infty}^{\infty} g(x) \cdot \sin(\omega x) \, dx \right)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \cdot (\cos(\omega x) - i \cdot \sin(\omega x)) dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \cdot e^{-i\alpha x} dx$$

10 © Klaus Jung

Fouriertransformation

- **□** Fouriertransformation $F: g(x) \mapsto G(ω)$
 - Berechne das kontinuierliche Fourierspektrum

$$G(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \cdot e^{-i\omega x} dx$$

- □ Inverse Fouriertransformation $F^{-1}: G(\omega) \mapsto g(x)$
 - Rekonstruiere die ursprüngliche Funktion

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} G(\omega) \cdot e^{i\omega x} \ d\omega$$

1 © Klaus Jung

Gaußbeispiel: Die Fouriertransformation ergibt wieder eine Gaußkurve, wenn Sigmar =1 ist.

Wenn man im Ortsraum viele Operationen machen muss z.B. ein 100x100 Kernel (100 Multiplikationen) für jeden Bildpunkt, dauerts lange. Stattdessen das Frequenzspektrum mit dem Frequenzspektrum des Filters multipliziere g G

konti	periodisch	diskret -> 1 Peak
konti	nicht periodisch	kontinuierlich -> Gauß-Bsp
diskret	periodisch	diskret -> 1 Peak ———— periodisch
diskret	nicht periodisch	kontinuierlich -> Gauß-Bsp