I hereby certify that this correspondence is being deposited with the United Attorney Docket No.: 105 States Postal Service as first class mail in an envelope addressed to: **Assistant Commissioner for Patents** JAN 1 4 1999 Washington, Q.C. 20231 **GROUP 2100** TOWNSEND and TOWNSEND and CREW LI

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

VOLKER SCHMIDT

Application No.: 08/836,369

Filed: October 20, 1997

For: TEMPERATURE-

MEASUREMENT INSTRUMENT WITH

DIFFRACTIVE OPTICS

Examiner:

A. Hirshfeld

Art Unit:

2859

COMMUNICATION AND REQUEST FOR INTERFERENCE UNDER 37 C.F.R.

§1.607(a)

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

As required by 37 C.F.R. §1.607, applicant is requesting that an interference be declared between the present application and U.S. Patents 5,823,678 and 5,823,679 (referred to herein respectively as the '678 and '679 patents). The claims of the '678 patent were copied into the application as claims 16-28 and the claims of the '679 patent were copied into the application as claims 29-81 in an amendment filed November 25, 1998.

The following presents the information required by §1.607(a).

I. The '678 Patent

a) §1.607(a)(1)

Applicant seeks to provoke an interference with U.S. Patent 5,823,678.

Page 2

b) §1.607(a)(2)

Applicant proposes the following two counts:

Count 1

A method for outlining an energy zone on a surface whose temperature is (a) to be measured using the combination of a radiometer and a laser aiming device, said method comprising the steps of providing said laser device associated with said radiometer, and causing said device to emit simultaneously a plurality of more than two laser beams towards said surface to strike said surface at individual mutually spaced locations to outline said energy zone;

OR

A combination of a radiometer and apparatus for outlining an energy zone (b) on a surface whose temperature is to be measured using said radiometer, said apparatus comprising: a laser sighting device cooperating with said radiometer, said laser sighting device including a device for emitting simultaneously a plurality of more than two laser beams to strike said surface at individually spaced apart locations serving to outline said energy zone.

Count 2

A method for identifying the extent of a radiation zone on an area whose (a) temperature is to be measured using a radiometer, said method comprising the steps of:

providing a sighting device for use in combination with said radiometer, said device generating a laser beam;

providing a diffraction device as part of said sighting device; and simultaneously splitting said laser beam with said diffraction device into more than two beams, and positioning said beams toward said area to identify the extent of said radiation zone;

OR

Page 3

(b) Apparatus in combination with a radiometer for identifying a radiation zone in an area whose temperature is to be measured using said radiometer, said apparatus comprising a laser sighting device in combination with said radiometer, said laser sighting device including:

a device for generating a laser beam;

a diffraction device for splitting said laser beam into more than two beams; and a device for simultaneously positioning said more than two beams to outline the periphery of said radiation zone.

c) §1.607(a)(3)

Claim 1 of the '678 patent corresponds exactly to the method part of proposed Count 1 and claim 3 of the '678 patent corresponds exactly to the apparatus part of proposed Count 1.

Claim 7 of the '678 patent corresponds exactly to the method part of proposed Count 2 and claim 9 of the '678 patent corresponds exactly to the apparatus part of proposed Count 2.

d) §1.607(a)(4)

Claim 16 of the application corresponds exactly to the method part of proposed Count 1 and claim 18 corresponds exactly to the apparatus part of proposed Count 1.

Claim 22 of the application corresponds exactly to the method part of proposed Count 2 and claim 24 corresponds exactly to the apparatus part of proposed Count 2.

e) §1.607(a)(5)

The following applies the terms of the application claims corresponding to the proposed counts to the specification:

Claim 16 - Proposed Count 1(a)	SPECIFICATION
A method for outlining an energy zone on a	The radiometer includes detector 1 and
surface whose temperature is to be measured	infrared imaging system 4 (page 8, lines 9-
using the combination of a radiometer and a	14). A sighting arrangement 5 identifies the

laser aiming device, said method comprising	position and size of the measurement spot 2a
the steps of	on the object (page 8, lines 15-26).
providing said laser device associated with	The laser aiming device includes a sighting
said radiometer,	arrangement 5 (page 8, lines 15-26). Light
	source 5a can be a laser (page 8, lines 27-
	28).
and causing said device to emit	Sighting arrangement 5 identifies the
simultaneously a plurality of more than two	position and size of the measurement spot 2a
laser beams towards said surface to strike	on the object 2 (figure 1 and pages 8-10).
said surface at individual mutually spaced	Figures 2b and 2d show more than two
locations to outline said energy zone.	beams at individual mutually spaced
	locations on the surface outlining the
	measurement spot.

Claim 18 - Count 1(b)	SPECIFICATION
A combination of a radiometer and apparatus	The radiometer includes detector 1 and
for outlining an energy zone on a surface	infrared imaging system 4 (page 8, lines 9-
whose temperature is to be measured using	14). A sighting arrangement 5 identifies the
said radiometer, said apparatus comprising:	position and size of the measurement spot 2a
	on the object (page 8, lines 15-26).
a laser sighting device cooperating with said	The laser sighting device includes a sighting
radiometer, said laser sighting device	arrangement 5 (page 8, lines 15-26). Light
including a device for emitting	source 5a can be a laser (page 8, lines 27-
simultaneously a plurality of more than two	28). Sighting arrangement 5 identifies the
laser beams to strike said surface at	position and size of the measurement spot 2a
individually spaced apart locations serving to	on the object 2 (figure 1 and page 8-10).
outline said energy zone.	Figures 2b and 2d show more than two
	beams at individually spaced apart locations
	on the surface outlining the measurement
	spot.

Claim 22 - Proposed Count 2(a)	SPECIFICATION
A method for identifying the extent of a	The radiometer includes detector 1 and
radiation zone on an area whose temperature	infrared imaging system 4 (page 8, lines 9-
is to be measured using a radiometer, said	14). A sighting arrangement 5 identifies the
method comprising the steps of:	position and size of the measurement spot 2a
·	on the object (page 8, lines 15-26).
providing a sighting device for use in	A sighting arrangement 5 is included for
combination with said radiometer, said	identifying the position and size of the
device generating a laser beam;	measurement spot 2a (page 8, lines 15-26).
	The radiometer includes detector 1 and
	infrared imaging system 4 (page 8, lines 9-
	14). Sighting arrangement 5 includes a light
	source 5a (page 8, lines 18-19). Light source
	5a can be a laser (page 8, lines 27-28).
providing a diffraction device as part of said	Sighting arrangement 5 includes a
sighting device; and	"diffractive optical system" (page 8, lines
	18-21).
simultaneously splitting said laser beam with	Sighting arrangement 5 identifies the ,
said diffraction device into more than two	position and size of the measurement spot 2a
beams, and positioning said beams toward	on the object 2 (figure 1 and page 8, lines 15-
said area to identify the extent of said	18). Figures 2b and 2d show the beam split
radiation zone.	into more than two beams, the beams
	identifying the extent of the measurement
	spot.

Claim 24 - Proposed Count 2(b)	SPECIFICATION
Apparatus in combination with a radiometer	The radiometer includes detector 1 and
for identifying a radiation zone in an area	infrared imaging system 4 (page 8, lines 9-
whose temperature is to be measured using	14). A sighting arrangement 5 identifies the

Page 6

said radiometer, said apparatus comprising	position and size of the measurement spot 2a
	on the object (page 8, lines 15-26).
a laser sighting device in combination with	A sighting arrangement 5 is included for
said radiometer, said laser sighting device	identifying the position and size of the
including:	measurement spot 2a (page 8, lines 15-26).
	The radiometer includes detector 1 and
	infrared imaging system 4 (page 8, lines 9-
	14).
a device for generating a laser beam;	Sighting arrangement 5 includes a light
	source 5a (page 8, lines 18-19). Light source
	5a can be a laser (page 8, lines 27-28).
a diffraction device for splitting said laser	Sighting arrangement 5 includes a
beam into more than two beams; and	"diffractive optical system" (page 8, lines
	18-21).
a device for simultaneously positioning said	Sighting arrangement 5 identifies the
more than two beams to outline the periphery	position and size of the measurement spot 2a
of said radiation zone.	on the object 2 (figure 1 and page 8, lines 15-
	18). Figures 2b and 2d show the beam split
	into more than two beams, the beams
	identifying the extent of the measurement
	spot.

f) §1.607(a)(6)

The '678 patent issued on Oct. 20, 1998. The claims of the '678 patent were entered into the present application on November 25, 1998, less than a year after the issuance of the '678 patent, thereby meeting the requirements of 35 U.S.C. §135(b).

II. The '679 Patent

a) §1.607(a)(1)

Applicant seeks to provoke an interference with U.S. Patent 5,823,679.

Page 7

b) §1.607(a)(2)

Applicant proposes the following two counts:

Count 1

(a) A method for outlining an energy zone on a surface whose temperature is to be measured using the combination of a temperature measurement device and a laser sighting device, said method comprising the steps of providing a laser sighting device associated with said temperature measurement device and causing said laser device to emit a plurality of at least three laser beams toward said surface to strike said surface simultaneously at mutually spaced locations serving to outline said energy zone;

OR

(b) The combination of a temperature measurement device and an apparatus for outlining an energy zone on a surface whose temperature is to be measured using said temperature measurement device, said apparatus comprising a laser sighting device co-operating with said temperature measurement device for emitting at least one primary laser beam toward said surface, and for producing a plurality of at least three laser beams from said primary laser beam to strike said surface simultaneously at spaced apart locations serving to outline said energy zone.

Count 2

(a) A method for outlining an energy zone on a surface whose temperature is to be measured using the combination of a temperature measurement device and a sighting device, said method comprising the steps of providing a laser sighting device and a temperature measurement device, causing said laser device to emit at least one primary laser beam, passing said primary laser beam across a diffraction grating to subdivide said primary beam into a plurality of at least three secondary laser beams, and directing said secondary laser beams toward said surface to strike said surface simultaneously at spaced locations serving to outline said energy zone.

Page 8

OR

sighting device for outlining an energy zone on a surface whose temperature is to be measured using said temperature measurement device, said laser sighting device co-operating with said temperature measurement device, said sighting device projecting at least one primary laser beam toward said surface, and a diffraction beam splitter disposed between said laser sighting device and said surface to be struck by said primary laser beam to subdivide said primary beam into a plurality of at least three secondary laser beams to strike said surface simultaneously at spaced apart locations serving to outline said energy zone.

c) $\S1.607(a)(3)$

Claim 1 of the '679 patent corresponds exactly to the method part of proposed Count 1 and claim 4 of the patent corresponds exactly to the apparatus part of proposed Count 1.

Claim 3 of the '679 patent corresponds exactly to the method part of proposed Count 2 and claim 9 of the patent corresponds exactly to the apparatus part of proposed Count 2.

d) §1.607(a)(4)

Claim 29 of the application corresponds exactly to the method part of proposed Count 1 and claim 32 corresponds exactly to the apparatus part of proposed Count 1.

Claim 31 of the application corresponds exactly to the method part of proposed Count 2 and claim 37 corresponds exactly to the apparatus part of proposed Count 2.

e) §1.607(a)(5)

The following applies the terms of the application claims corresponding to the proposed counts to the specification:

Claim 29 - Proposed Count 1(a)	SPECIFICATION
A method for outlining an energy zone on a	The radiometer includes detector 1 and
surface whose temperature is to be measured	infrared imaging system 4 (page 8, lines 9-
using the combination of a temperature	14). A sighting arrangement 5 identifies

measurement device and a laser sighting	the position and size of the measurement
device, said method comprising the steps of	spot 2a on the object (page 8, lines 15-26).
providing a laser sighting device associated	The laser sighting device includes a
with said temperature measurement device	sighting arrangement 5 (page 8, lines 15-
	26). Light source 5a can be a laser (page 8,
	lines 27-28).
causing said laser device to emit a plurality	Sighting arrangement 5 identifies the
of at least three laser beams toward said	position and size of the measurement spot
surface to strike said surface simultaneously	2a on the object 2 (figure 1 and pages 8-
at mutually spaced locations serving to	10). Figures 2b and 2d show more than
outline said energy zone.	two beams at individual mutually spaced
	locations on the surface outlining the
	measurement spot.

Claim 32 - Proposed Count 1(b)	SPECIFICATION
The combination of a temperature	The radiometer includes detector 1 and
measurement device and an apparatus for	infrared imaging system 4 (page 8, lines 9-
outlining an energy zone on a surface whose	14). A sighting arrangement 5 identifies
temperature is to be measured using said	the position and size of the measurement
temperature measurement device, said	spot 2a on the object (page 8, lines 15-26).
apparatus comprising	
a laser sighting device co-operating with said	The laser sighting device includes a
temperature measurement device for emitting	sighting arrangement 5 (page 8, lines 15-
at least one primary laser beam toward said	26). Light source 5a can be a laser (page 8,
surface,	lines 27-28). Sighting arrangement 5
	identifies the position and size of the
	measurement spot 2a on the object 2
	(figure 1 and page 8-10).
and for producing a plurality of at least three	Figures 2b and 2d show more than two
laser beams from said primary laser beam to	beams at individually spaced apart

strike said surface simultaneously at spaced locations on the surface outlining the apart locations serving to outline said energy measurement spot. zone.

SPECIFICATION
The radiometer includes detector 1 and
infrared imaging system 4 (page 8, lines 9-
14). A sighting arrangement 5 identifies the
position and size of the measurement spot 2a
on the object (page 8, lines 15-26).
A sighting arrangement 5 is included for
identifying the position and size of the
measurement spot 2a (page 8, lines 15-26).
The radiometer includes detector 1 and
infrared imaging system 4 (page 8, lines 9-
14). Sighting arrangement 5 includes a light
source 5a (page 8, lines 18-19). Light source
5a can be a laser (page 8, lines 27-28).
Sighting arrangement 5 includes a
"diffractive optical system" (page 8, lines
18-21).
Sighting arrangement 5 identifies the
position and size of the measurement spot 2a
on the object 2 (figure 1 and page 8, lines 15-
18). Figures 2b and 2d show the primary
beam split into at least three secondary
beams at spaced locations, the beams
identifying the extent of the measurement
spot.

Claim 37 - Proposed Count 2(b)	SPECIFICATION
The combination of a temperature	The radiometer includes detector 1 and
measurement device and a laser sighting	infrared imaging system 4 (page 8, lines 9-
device for outlining an energy zone on a	14). A sighting arrangement 5 identifies the
surface whose temperature is to be measured	position and size of the measurement spot 2a
using said temperature measurement device,	on the object (page 8, lines 15-26).
said laser sighting device co-operating with	
said temperature measurement device,	
said sighting device projecting at least one	Sighting arrangement 5 includes a light
primary laser beam toward said surface,	source 5a (page 8, lines 18-19). Light source
	5a can be a laser (page 8, lines 27-28).
and a diffraction beam splitter disposed	Sighting arrangement 5 includes a
between said laser sighting device and said	"diffraction optical system" (page 8, lines
surface to be struck by said primary laser	18-2 Sighting arrangement 5 identifies the
beam to subdivide said primary beam into a	position and size of the measurement spot 2a
plurality of at least three secondary laser	on the object 2 (figure 1 and page 8, lines 15-
beams to strike said surface simultaneously	18). Figures 2b and 2d show the primary
at spaced apart locations serving to outline	beam split into at least three secondary
said energy zone.	beams at spaced apart locations, the beams
	identifying the extent of the measurement
	spot.1).

f) §1.607(a)(6)

The '679 patent issued on Oct. 20, 1998. The claims of the '679 patent were entered into the present application on November 25, 1998, less than a year after the issuance of the '678 patent.

Page 12

III. Conclusion

In view of the above, it is respectfully requested that an interference between the '678 and '679 patents and the present invention be declared.

If the Examiner believes a telephone conference would expedite matters, please telephone the undersigned at 415-576-0200.

Respectfully submitted,

David G. Beck Reg. No. 37,776

TOWNSEND and TOWNSEND and CREW LLP Two Embarcadero Center, 8th Floor San Francisco, California 94111-3834

Tel: (415) 576-0200 Fax: (415) 576-0300

SF 188304 v1