A simple question about a complicated object

The complicated object is the cohomological induction functor (for which the biblical reference is Knapp & Vogan [KV]). Here is the simple question. For definiteness sake set G := PU(n,1), H := PU(k,1) with $k \leq n$, and let \mathcal{H}^n_ρ (resp. \mathcal{H}^k_ρ) be the category of Harish-Chandra modules with the generalized infinitesimal character of the trivial module attached to G (resp. H). I'll surprise nobody by claiming that H is a subgroup of G. What's far less obvious, but proved by Khoroshkin [K], is the existence of a full embedding F of \mathcal{H}^k_ρ into \mathcal{H}^n_ρ (Fuser [F,Thm I.4.2] showed that F is even Ext-full, that is compatible with Ext calculus), prompting the question: is there a geometric interpretation of the embedding F? The first candidate for F is the (ordinary) induction functor; but this fails miserably — so let's break the pseudo-suspense of this introduction by saying that I claim that F is (isomorphic to) a certain cohomological induction functor, and conjecture that this phenomenon is general.

1. Statements

Let G be a center free connected semisimple Lie group, $K \subset G$ a maximal compact subgroup, $\mathfrak{g} \supset \mathfrak{k}$ the respective complexified Lie algebras. Let's start by recalling the notion of Harish-Chandra module. Say that a \mathfrak{g} -module V is \mathfrak{k} -finite if it is a sum of finite dimensional sub- \mathfrak{k} -modules, and that V is an $(\mathfrak{g},\mathfrak{k})$ -module if it is \mathfrak{k} -finite and \mathfrak{k} -semisimple. The category $\mathcal{H} = \mathcal{H}(\mathfrak{g},K)$ of Harish-Chandra modules is the full subcategory of \mathfrak{g} -mod whose objects are those $(\mathfrak{g},\mathfrak{k})$ -modules of finite length V such that for any finite dimensional \mathfrak{k} -invariant subspace $F \subset V$ the action of \mathfrak{k} on F exponentiates to K. The category \mathcal{H} is a \mathbb{C} -category in the sense of Bass [B] page 57. Let I be the annihilator of the trivial module in the center of $U(\mathfrak{g})$, let

$$\mathcal{H}_{\rho} = \mathcal{H}_{\rho}(\mathfrak{g}, K)$$

be the full sub- \mathbb{C} -category of \mathcal{H} whose objects are annihilated by some power of I, let \mathcal{I} be the set of isomorphism classes of simple objects of \mathcal{H}_{ρ} [it is a finite set]; for

each $i \in \mathcal{I}$ choose a representative $V_i \in i$ and let $\ell(i)$ be the **projective dimension** of V_i [i.e. the supremum in $\mathbb{Z} \cup \{+\infty\}$ of the set $\{n \in \mathbb{Z} \mid \operatorname{Ext}^n(V_i, -) \neq 0\}$].

(1) **Definition**. The \mathcal{H}_{ρ} -ordering is the smallest partial ordering \leq on \mathcal{I} satisfying

$$i, j \in \mathcal{I}$$

$$\ell(j) = \ell(i) + 1 < \infty$$

$$\operatorname{Ext}^{1}(V_{j}, V_{i}) \neq 0$$

$$\Longrightarrow i \leq j.$$

- (2) **Definition**. The sub- \mathbb{C} -category generated by the subset \mathcal{J} of \mathcal{H}_{ρ} is the full sub- \mathbb{C} -category $\langle \mathcal{J} \rangle_{\mathcal{H}_{\rho}}$ of \mathcal{H}_{ρ} characterized by the condition that an object V of \mathcal{H}_{ρ} belongs to $\langle \mathcal{J} \rangle_{\mathcal{H}_{\rho}}$ iff each simple subquotient of V is isomorphic to V_j for some $j \in \mathcal{J}$.
- (3) **Definition**. Say that a full sub- \mathbb{C} -category \mathcal{C} of \mathcal{H}_{ρ} is **Ext-full** in \mathcal{H}_{ρ} if for all $V, W \in \mathcal{C}$ the natural morphism

$$\operatorname{Ext}_{\mathcal{C}}^{\bullet}(V,W) \to \operatorname{Ext}_{\mathcal{H}_{\rho}}^{\bullet}(V,W)$$

is an isomorphism.

For $i \in \mathcal{I}$ put $\mathcal{J}_i := \{j \in \mathcal{I} \mid j \leq i\}$, let θ be the Cartan involution of (\mathfrak{g}, K) , denote by d the dimension of G/K, and consider the following

- (4) **Property of** G. For each $i \in \mathcal{I}$ such that V_i is unitary the cohomology $H^{d-\ell(i)}(\mathfrak{g}, K; V_i)$ is nonzero and there is a θ -stable parabolic subalgebra of \mathfrak{g} with Levi subgroup $L = L_i$ (see Vogan [V2,4.1,4.2] for definitions) satisfying
 - (a) the corresponding cohomological induction functor F (see [KV]) sets up an equivalence

$$\mathcal{H}_{\rho}(\mathfrak{l}, L \cap K) \stackrel{\sim}{\to} \langle \mathcal{J}_i \rangle_{\mathcal{H}_{\rho}(\mathfrak{g}, K)} ;$$

- (b) $F \mathbb{C} \simeq V_i$;
- (c) $\langle \mathcal{J}_i \rangle_{\mathcal{H}_{\rho}(\mathfrak{g},K)}$ is Ext-full in $\mathcal{H}_{\rho}(\mathfrak{g},K)$;
- (d) if a is nonzero vector of $H^{d-\ell(i)}(\mathfrak{g}, K; V_i)$ and V a simple object of $\mathcal{H}_{\rho}(\mathfrak{l}, L \cap K)$, then the map

$$H^{\bullet}(\mathfrak{l}, L \cap K; V) \rightarrow H^{d-\ell(i)+\bullet}(\mathfrak{g}, K; FV)$$

$$x \mapsto F(x) \cup a$$

[where \cup denotes the cup-product] is an isomorphism [of $H^{\bullet}(\mathfrak{l}, L \cap K; \mathbb{C})$ modules];

(e) we have $2\ell(i) = d + \dim L/(L \cap K)$.

Note once and for all that (e) follows from (a) by the well known argument which consists in setting $V := \mathbb{C}$ and using Poincaré duality.

(6) **Conjecture**. All center free connected semisimple Lie groups have Property (4).

A partial proof (with explicitly indicated gaps) of the fact that PU(n, 1), $P\mathrm{Spin}(n, 1)$ and $SL(3, \mathbb{R})$ have Property (4) is contained in the expanded version of this text, downloadable from

 $http://www.iecn.u-nancy.fr/{\sim} gaillard/Recherche/Ci/ci.html$

- [F] Fuser A., Autour de la conjecture d'Alexandru, Thèse de l'Univesité Nancy 1 (1997).
- [K] Khoroshkin S.M., Category of Harish-Chandra modules of the group SU(n,1). Funct. Anal. Appl. 14 (1980) 153-155.
- [KV] Knapp A. & Vogan D., Cohomological induction and unitary representations, Princeton University Press (1995).
 - [V] Vogan D., Cohomology and group representations, Proc. Symp. Pure Math.61 (1997) 219-243.