Given F(a,b,c) =
$$\sum$$
m(1,2),
and G(c,b,a) = \sum m(1,2).
Is F=G?

A. Yes

$$F = a'b'c + a'bc'$$

$$G = c'b'a + c'ba'$$

= $ab'c' + a'bc'$

Given 5-bit unsigned input, output Z=1 iff decimal value of input is between 27 and 29 (inclusive). Z in Sum-of-minterm is:

- Δ . Σ m(27, 28, 29)
 - B. $\sum m(20, 21, 22)$
 - C. $\sum m(30, 31, 32)$

	а	b	С	d	е	Z
m0	0	0	0	0	0	0
	•	•	•	•	•	0
m27	1	1	0	1	1	1
m28	1	1	1	0	0	1
m29	1	1	1	0	1	1
	•	•	•	•	•	0
m31	1	1	1	1	1	0

$$Z(a,b,c,d,e) = \sum m (27, 28, 29)$$

Given 5-bit unsigned input, output F*=0 iff decimal value of input is between 27 and 29 (inclusive). F* in Product-of-maxterm is:

«. П M(27, 28, 29)

B. П M(20, 21, 22)

С. П М(30, 31, 32)

	а	b	С	d	е	F*	Z
MO	0	0	0	0	0	1	0
	•	•	•	•	•	1	0
M27	1	1	0	1	1	0	1
M28	1	1	1	0	0	0	1
M29	1	1	1	0	1	0	1
	•	•	•	•	•	1	0
M31	1	1	1	1	1	1	0

$$F^* = (a'+b'+c+d'+e')(a'+b'+c'+d+e)$$

(a'+b'+c'+d+e')

$$F^* = (a'+b'+c+d'+e')(a'+b'+c'+d)$$

Task: show algebraically that F*' = Z

$$F^* = (a'+b'+c+d'+e')(a'+b'+c'+d)$$

$$Z = abc'de + abcd'$$

How many loops needed for minimum-cost SOP on this K-map?

X			C,D		
		00	01	11	10
	00	0	0	0	0
A,B	01	1	0	0	1
	11	0	0	1	1
	10	0	0	1	0

A. 1

B. 2

4C. 3

D. 4

3 loops of 2 minterms each

$$X = ACD + A'BD' + BCD'$$
 (eq. 1)

Alternative answer (3 loops)

$$X = ACD + A'BD' + ABC$$
 (eq. 2)

How many loops needed for minimum-cost POS on the same K-map?

X			C,D		
		00	01	11	10
	00	0	0	0	0
A,B	01	1	0	0	1
	11	0	0	1	1
	10	0	0	1	0

A. 1

B. 2

4. 3

D. 4

3 loops of 4 maxterms each

$$X = (B+D) (A'+C) (A+D')$$
 (eq. 3)

All 3 expressions are same algebraically

$$X = ACD + A'BD' + BCD' \qquad (eq. 1)$$

ABC(D+D') is absorbed in ACD and BCD'

$$X = ACD + A'BD' + ABC \qquad (eq. 2)$$

(A'+A)BCD' is absorbed in A'BD' and ABC

Case(a) active-Hi enable + light with active-Hi input

Case(b) active-Lo enable + light with active-Lo input

