Grafos - parte 3

Árbol de cubrimiento mínimo

Prim & Kruskal

Árbol de cubrimiento mínimo

Dado un grafo <u>no dirigido, ponderado y conexo</u>, un árbol de cubrimiento mínimo es un subgrafo con **solo** las aristas necesarias para dejar el grafo conexo con el coste mínimo.

Ejemplo cables de teléfono

Prim

Algoritmo que nos sirve para descubrir el árbol de cubrimiento mínimo.

Esencialmente es un Dijkstra con diferencia de dos líneas de código.

Prim ejemplo1

Prim - otros ejemplos

https://www.cs.usfca.edu/~galles/visualization/Prim.html

Prim

```
void prim(int origen)
 int* visitados = initVisitados(); // array V casilleros, todos en false
 int* costos = initCostos(origen); // array V casillero, todos en INF menos origen con 0
 int* vengo= initVengo(); // array V casilleros, todos en -1
 for(int i=0; i<V; i++)
       int v = verticeDesconocidoDeMenorCosto(visitados, costos); // vértice a procesar
       visitados[v] = true;
       para cada w adyacente a v
             if(!visitados[w] && costos[w] > dist(v,w))
                   costos[w] = dist(v,w);
                   vengo[w] = v;
```

Prim

También nos podemos basar en las otras implementaciones de Dijkstra (V2) para mejorar el orden.

El orden es el mismo que Dijkstra (depende de su implementación).

A codificar

Kruskal

El algoritmo de Kruskal busca el mismo objetivo: ACM, pero con otra perspectiva.

En vez de ir agregando nodos como Prim, trata de agregar aristas.

En un principio se ordenan por peso y luego se recorren de esa manera (menos costo antes).

Se acepta usar esa arista siempre y cuando conecte dos árboles diferentes (no forme un ciclo).

Kruskal - ejemplo

Kruskal ejemplo1

Kruskal - otros ejemplos

https://www.cs.usfca.edu/~galles/visualization/Kruskal.html

Kruskal - pseudo v1

```
void kruskal() {
  Arista * aristas = initAristas(); // array de tamaño A, con todas la aristas del grafo
  bool * procesados = initProcesados(); // array de tamaño A, todos los valores en false
  bool * aceptadas= initAceptados(); // array de tamaño A, todos los valores en false
  for(int i=0; i<A; i++) {
         int indexMenor= obtenerMenorAristaNoProcesada(aristas, procesados);
         Arista a = aristas[indexMenor];
         procesados[indexMenor] = true;
         if(!formaCiclo(a)) {
                aceptadas[indexMenor] = true;
```

Kruskal - pseudo v2

```
void kruskal() {
  ColaPrioridad cp(); // imp. heap
  insertarAristas(cp); // inserto todas las aristas del grafo
  List<Arista> solucion(); // guardo las aristas que serán parte de la solución
  while(!cp.estaVacia()) {
        Arista a = cp.pop();// obtenemos la misma arista sin procesar
        if(!formaCiclo(solucion, a)) {
              solucion.agregar(a);
```

Kruskal - forma ciclo?

Kruskal es bastante trivial, sólo nos queda por cubrir cómo sabemos si forma un ciclo una nueva arista. Para ello utilizaremos una estructura auxiliar: **MFset**

Merge-Find Set

También conocido como Disjoint-set/Conjuntos disjuntos.

Es una estructura que nos permite saber a qué conjunto pertenece determinados elementos (**find**). En consecuencia saber si dos elementos distintos se encuentran dentro del mismo conjunto.

Además podremos unir diferentes conjuntos en uno solo (merge).

Merge-Find Set

https://www.cs.usfca.edu/~galles/visualization/DisjointSets.html

A codificar

Kruskal - pseudo v3

```
void kruskal() {
  ColaPrioridad cp(); // imp. heap
  insertarAristas(cp); // inserto todas las aristas del grafo
  List<Arista> solucion(); // guardo las aristas que serán parte de la solución
  MFset mfset(V+1); // Merge-Find Set de V+1 elementos
  int aristasAceptadas = 0;
  while(!cp.estaVacia() || aristasAceptadas < V-1)
        Arista a = cp.pop();// obtenemos la misma arista sin procesar
        if(mfset.find(a.origen) != mfset.find(a.destino)) // !formaCiclo(solucion, a)
              mfset.merge(a.origen, a.destino);
              solucion.agregar(a);
              aristasAceptadas++;
```

Kruskal - orden

```
void kruskal() { // ALogV
 ColaPrioridad cp();
 insertarAristas(cp); // ALogA = ALog(V^2) = 2ALogV = ALogV
 List<Arista> solucion();
 MFset mfset(V+1); // V
 int aristasAceptadas = 0;
 while(!cp.estaVacia() || aristasAceptadas < V-1) // ALogA = ALog(V^2) = 2ALogV = ALogV
      Arista a = cp.pop(); // LogA
      if(mfset.find(a.origen) != mfset.find(a.destino)) // LogV -> Link
            mfset.merge(a.origen, a.destino); // LogV -> Link
            solucion.agregar(a); // 1
            aristasAceptadas++;
```

Recorridos/búsquedas

Amplitud(BFS) & Profundidad(DFS)

Búsquedas

Son estrategias en las cuales se recorren los grafos desde un punto dado, tienen diferentes usos que veremos más adelante.

BFS/DFS

Las dos búsquedas más utilizadas son:

- Recorrido en amplitud / Breadth-first search (BFS)
- Recorrido en profundidad / Depth-first search (DFS)

BFS

La idea es recorrer desde el origen atravesando por niveles/pasos.

BFS - otros ejemplos

https://www.cs.usfca.edu/~galles/visualization/BFS.html

BFS - pseudo

```
void BFS(int origen)
bool * encolados = initEncolados(); // array de V+1 pos, todos en false
Cola c; //FIFO
c.encolar(origen);
encolados[origen] = true;
while(!c.estaVacia())
     int v = c.desencolar();
     para todo w adyacente a v
          if(!encolados[w])
               c.encolar(w);
               encolados[w] = true;
```

BFS - Orden

```
void BFS(int origen)
bool * encolados = initEncolados(); // array de V+1 pos, todos en false
Cola c; //FIFO
c.encolar(origen);
encolados[origen] = true;
while(!c.estaVacia()) // O(V+A) análisis
     int v = c.desencolar();
     para todo w adyacente a v
          if(!encolados[w])
               c.encolar(w);
               encolados[w] = true;
```

BFS - usos

- Sabes si dos vértices están conectados.
- 2. Camino más corto en grafos no ponderados
- 3. Peer to Peer Networks: ayuda a encontrar nodos cercanos
- 4. Crawlers en Search Engines: para crear index desde una página
- 5. Social Networking Websites: encontrar personas a una distancia dada

DFS

La idea de la búsqueda en profundidad es recorrer y alejarse lo más posible antes de volver (backtracking).

DFS

Se puede implementar tanto con una PILA (LIFO) como con recursividad donde la pila está implícita por el stack de llamadas.

DFS - otros ejemplos

https://www.cs.usfca.edu/~galles/visualization/DFS.html

DFS - pseudo

DFS - orden

DFS - usos

- 1. Saber si dos vértices están conectados
- 2. Se puede obtener el orden topológico de un grafo. Topological Sorting
- 3. Descubrir puntos de articulación. Biconnected graph
- Hallar componentes fuertemente conexas en un grafo dirigido. <u>Strongly</u> <u>Connected Components</u>
- 5. Detectar ciclos. <u>Detect Cycle in a Directed Graph</u>

Resumen

Nombre	Propósito	Orden	Restricciones/comentarios
ОТ	Obtener el orden topológico de un grafo	O(V+A)*	No acepta ciclos (pero sirve para detectarlos)
Camino + corto con aristas no ponderadas	Camino + corto desde un origen	O(V+A)*	
Dijkstra	Camino + corto desde un origen	O(V^2) O(ALogV)* con heap	No acepta aristas negativas
Camino + corto con aristas negativas	Camino + corto desde un origen	O(V.A)*	
Floyd	Camino + corto entre todos los pares de vértices	O(V^3)	Acepta aristas negativas
Warshall	Matriz de Clausura Transitiva	O(V^3)	Nos puede servir para saber la conexidad de un grafo
Prim	Árbol de cubrimiento mínimo	O(V^2) O(ALogV)* con heap	Muy parecido a Dijkstra
Kruskal	Árbol de cubrimiento mínimo	A(A+V) O(ALogV)* con heap & MFset (mejorado)	
BFS	Múltiples	O(V+A)*	
DFS	Múltiples	O(V+A)*	
(*) con Lista de Ady			