Bus PCI-Express: Arquitectura y Evolución

La revolución en la tecnología de interconexión para componentes de expansión

Arquitectura Serie

Transmisión punto a punto de alta velocidad

Alto Rendimiento

Hasta 121 GB/s en configuración x16

Evolución

De 2.5 GT/s (1.0) a 64 GT/s (6.0)

Aplicaciones

Tarjetas gráficas, NVMe, redes

Introducción a PCIe

¿Qué es PCle?

- Peripheral Component Interconnect Express
- Interfaz serie de alto rendimiento
- Arquitectura punto a punto
- Transmite pocos bits a mucha velocidad
- Estándar dominante en 2024

Ventajas Clave

- Mayor ancho de banda
- Mejor escalabilidad
- Mayor eficiencia
- Menor latencia
- Compatible con dispositivos anteriores

PCIe vs. Antecesores

Tecnología	Ancho de Banda
PCI (1993)	133 MB/s
AGP 8x (2000)	2.1 GB/s
PCIe 1.0 (2003)	4.0 GB/s (x16)
PCIe 6.0 (2022)	121.0 GB/s (x16)

Arquitectura Serie vs. Paralelo

🙏 PCI (Paralelo)

- Transmisión **simultánea** de múltiples bits
- A Problemas de **skew** (desincronización)
- Limitado por interferencias electromagnéticas
- Ancho de banda compartido entre dispositivos

VS

→ PCle (Serie)

- → Transmisión **en serie** a través de pares diferenciales
- Codificación avanzada (8b/10b, 128b/130b, PAM4)
- Arquitectura punto a punto sin skew
- Ancho de banda **dedicado** para cada dispositivo

- Ventajas de Serie
- Mayor escalabilidad a altas frecuencias
- Menor número de pines requeridos

Estructura y Topología de PCIe

Enlaces y Lanes

- Cada lane: 2 pares diferenciales (transmisión/recepción)
- Comunicación bidireccional simultánea
- Múltiples lanes: x1, x2, x4, x8, x16, x32
- Slots compatibles con dispositivos de menor tamaño

Capas del Protocolo PCIe

Capa Física

- Transmisión y recepción de señales
- Codificación/decodificación
- Manejo de errores físicos
- Características eléctricas

Capa de Data Link

- Integridad de datos (ACK/NAK)
- Corrección de errores (LCRC)
- Gestión de flujo de datos

1 Capa de Transacción

- TLPs (Transaction Layer Packets)
- Transacciones: memoria, I/O, configuración
- Direccionamiento y enrutamiento
- QoS y virtualización (SR-IOV)

III Tipos de Configuraciones PCIe

x1

250 MB/s (PCle 1.0) **x4**

1 GB/s (PCIe 1.0) **8**X

2 GB/s (PCle 1.0) **x16**

4 GB/s (PCIe 1.0) **x32**

8 GB/s (PCIe 1.0)

Versiones de PCIe

Especificaciones Técnicas por Versión

Característica	PCIe 1.0 2003	PCIe 2.0 2007	PCIe 3.0 2010	PCIe 4.0 2017	PCIe 5.0 2019	PCIe 6.0 2022
Velocidad por lane (GT/s)	2.5	5.0	8.0	16.0	32.0	64.0
Ancho de banda bruto (Gbps)	2.5	5.0	8.0	16.0	32.0	64.0
Codificación	8b/10b (20% overhead)	8b/10b (20% overhead)	128b/130b (1.54% overhead)	128b/130b (1.54% overhead)	128b/130b (1.54% overhead)	PAM4 + FLIT (0% overhead)
Ancho de banda útil x1 (GB/s)	0.25	0.5	0.985	1.969	3.938	7.563
Ancho de banda útil x16 (GB/s)	4.0	8.0	15.754	31.508	63.015	121.000
Voltaje de señalización	1.0V	0.8V	0.8V	0.8V	0.8V	0.6V

Evolución de Velocidad

De 2.5 GT/s (PCIe 1.0) a 64 GT/s (PCIe 6.0)

2.5 GT/s64 GT/s

Eficiencia Mejorada

De 80% (8b/10b) a 100% (PAM4 + FLIT)

80%100%

Reducción de Consumo

De 1.0V (PCIe 1.0) a 0.6V (PCIe 6.0)

Ancho de Banda x16

De 4 GB/s (PCIe 1.0) a 121 GB/s (PCIe 6.0)

4 GB/s121 GB/s

Evolución Técnica de PCIe

Innovaciones Clave en la Evolución

Protocolo PCIe y Codificación

Evolución de la codificación PCIe

PCIe en Almacenamiento

- NVMe (Non-Volatile Memory Express)
- Protocolo diseñado específicamente para almacenamiento flash
- O Aprovecha las bajas latencias de los SSDs NAND
- Soporta hasta 65,535 colas con 65,536 comandos por cola
- → Latencia 5-7x menor comparado con AHCI (SATA)

Tendencias Futuras

- 19
- PCIe 6.0
- 64 GT/s por lane
- Codificación PAM4 + FLIT
- 👽 FEC para mayor fiabilidad
- Hasta 121 GB/s en x16
- 2022 Implementación en servidores

- Aplicaciones en Redes
- * Ethernet 400GbE/800GbE
- NVLink sobre PCIe
- (A) Aceleradores **5G/6G**
- **Edge Computing** de baja latencia
- 2024 Infraestructura de red

- Integración con CXL
- Memoria compartida entre dispositivos
- Coherencia de caché entre CPU/GPU
- PCIe 6.0 como capa física para CXL 3.0
- 2023 Computación heterogénea

<u>♣</u> D

Desafíos Técnicos

- Diseño de PCB de alta calidad
- Mayor consumo energético
- Distancia limitada para conexiones
- * Gestión térmica en alta densidad

✓ El Futuro de PCIe

<u>1</u>

PCle 6.1

Mejoras incrementales Optimización de PAM4

2024

PCIe 7.0

128 GT/s por lane Nuevas codificaciones

2025-26

PCIe 8.0

256 GT/s por lane Investigación temprana

2027+

Consideraciones Prácticas

Selección de Hardware

Uso	PCIe Recomendado	Consideraciones Clave
Gaming 1080p/1440p	PCIe 3.0/4.0 x16	GPU no suele saturar PCIe 3.0 x16
Gaming 4K	PCIe 4.0/5.0 x16	Mayor beneficio con GPUs de alta gama
Edición de video	PCIe 4.0/5.0 x4 (SSD)	NVMe PCIe 4.0 es esencial
IA/ML local	PCIe 4.0/5.0 x16	Para GPUs con alto ancho de banda
Servidores	PCIe 5.0/6.0	Máximo rendimiento y virtualización

Compatibilidad

- Retrocompatibilidad completa entre versiones
- Dispositivo PCle 6.0 funciona en ranura PCle 3.0
- ↑ Tarjeta PCle 3.0 funciona en ranura PCle 6.0

• GPUs modernas no saturan PCIe 4.0 x16, pero SSDs NVMe sí se benefician de PCIe 4.0/5.0

Optimización del Sistema

Bifurcación PCIe

Configurar en BIOS según necesidades Ej: x16 para GPU única vs x8/x8 para SLI/CrossFire

Actualización de drivers

Mantener controladores de chipset actualizados Asegurar soporte para últimas características

Usar herramientas como GPU-Z Verificar enlace PCIe activo

Identificar cuellos de botella

Analizar rendimiento del sistema Optimizar configuración de lanes