Large scale optimization for machine learning Exercise n°2

Exercise 2

Estimation of a quantile response.

Let $x \mapsto F(x)$ be an unknown distribution function such that

$$F(\theta) = \alpha$$
, $0 < \alpha < 1$, $F'(\theta) > 0$.

Consider a sequence (z_n) of independant random variables with distribution function $\mathbb{P}(z_n \leq x) = F(x)$, and let the sequence (y_n) to be defined by

$$y_n = 1$$
 if $z_n \le x_n$

and $y_n = 0$ otherwise. The sequence (x_n) is the Markov chain studied in the paper of Robbins and Monro defined by

$$x_{n+1} = x_n + a_n \cdot (\alpha - y_n)$$

- 1. Choose F and α then compute the Markov chain (x_n) for some value of n. Try to solve $F(\theta) = \alpha$ with this Markov chain.
- 2. Do you observe the convergence of the Markov chain if the assumption are relaxed. For instance:
 - a) if F is a Gaussian distribution (this is not a distribution with compact support).
 - b) if the sequence (a_n) is not of type 1/n.