9МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Измерение коэффициента поверхностного натяжения жидкости

Выполнил:

Деревянченко Михаил

Группа:

Б03-106

Оглавление

Аннотация	3
Теоретические сведения	
Методика измерений	
Используемое оборудование:	
Результаты измерений и обработка данных	

1. Аннотация

Целью данной работы являются:

- 1. Измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта;
- 2. Определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

2. Теоретические сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = 2 \frac{\sigma}{r}$$

где σ – коэффициент поверхностного натяжения, $P_{\text{внутри}}$ и $P_{\text{снаружи}}$ – давление внутри пузырька и снаружи, r – радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

3. Методика измерений

Экспериментальная установка:

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) В (рис.1). Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по

величине разряжения ΔP (1), необходимого для прохождения пузырьков (при известном радиусе иглы).

Разряжение в системе создается с помощью аспиратора А. Кран К2 разделяет две полости аспиратора. Верхняя полость при закрытом кране К2 заполняется водой. Затем кран К2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана К1, когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Для стабилизации температуры исследуемой жидкости через рубашку D колбы В непрерывно прогоняется вода из термостата.

Полное давление, измеренное при этом микроманометром, $P = \Delta P + \rho gh$. Заметим, что ρgh от температуры практически не зависит, так как подъём уровня жидкости компенсируется уменьшением её плотности (произведение ρh определяется массой всей жидкости и поэтому постоянно). Величину ρgh следует измерить двумя способами. Во-первых, замерить величину ρgh следует измерить иглу до дна и замерить ρgh (ρgh) (ρgh) (ρgh) дагем при этой же температуре опустить иглу до дна и замерить ρgh 0 (ρgh 0) (ρgh 1) и тогда ρgh 2 весжимаемости жидкости можно положить ρgh 1 и тогда ρgh 3 весжимаемости замерениях ρgh 4 и ρgh 5 замерить линейкой глубину погружения иглы ρgh 6 можно сделать, замеряя расстояние между верхним концом иглы и любой неподвижной частью прибора при положении иглы на поверхности и в глубине колбы.

Методика измерений:

- 1. Проверка герметичности установки и подбор нужной частоты падения капель.
- 2. Измерение максимального давления ΔРспирт при пробулькивании пузырьков воздуха через спирт и определение диаметра иглы по формуле Лапласа.
- 3. Измерение глубины погружения иглы в дистиллированной воде по разности давлений $\Delta P = P_2 P_1$.
- 4. Измерение температурной зависимости $\sigma(T)$: проводить измерения следует в диапазоне 20°C 60°C через 5°C .

• Используемое оборудование:

Прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы

4. Результаты измерений и

обработка данных

1. Измерение диаметра иглы:

$$T = 24^{\circ}C$$

$$K = 0.2$$

$$P = h*\%*K*9.81$$

$$d = \frac{4 \,\sigma_{cnupm}}{\Delta P_{cnupm}}$$

h, мм	43	44	43	43	44
$\Delta P_{ m cпирт}$, Па	81	83	81	81	83
d, мм	1,12	1,09	1,12	1,12	1,09
d _{ср,} мм	1,10				

$$\sigma_d^{cn} = \sqrt{\frac{\sum_{i=1}^{n} (d - d_{CP})^2}{n - 1}} = 0,02 \text{ MM}$$

$$\sigma_d^{cucm} = (\frac{\sigma_h}{h_{min}}) d_{cp} = 0,02 \text{ MM}$$

$$\sigma_d = \sqrt{(\sigma_d^{cucm})^2 + (\sigma_d^{cp})^2} = 0,03 \text{ MM}$$

$$\mathbf{d_{cp}} = \mathbf{1,10} \pm \mathbf{0,03} \text{ MM}$$

Диаметр иглы, измеренный с помощью микроскопа:

$$d = 1,10 \pm 0,05$$
mm

2. Зависимость $\sigma(T)$:

T, °C	h, мм (манометр)	Р, Па	
На пов	Р ₁ , Па		
	124	233,55	
	124	233,55	
24.9	124	233,55	233,17
24.9	124	233,55	233,17
	123	231,67	
	124	233,55	
На г	Р2, Па		
	211	397,42	
24.9	210	395,53	207.00
	210	395,53	395,98
	210	395,53	
	210	395,53	

Измерение глубины погружения линейкой: $\Delta h_{\scriptscriptstyle \Pi} = h_1 - h_2 = 16,00 \pm 0,35$ мм

Вычисление глубины погружения измерив давление:

$$\Delta h_P = \frac{P_2 - P_1}{g\rho} = 16,53 \pm 0,33 \text{ мм}$$

Погрешность измерения $\Delta h_{\text{\tiny P}}$ вычисляется аналогично погрешности d:

$$\sigma_{P}^{CA} = \sqrt{\frac{\sum_{i=1}^{n} (P_{i} - P_{CP})^{2}}{n-1}} 0.84/0.87$$

$$\sigma_P^{cucm} = \left(\frac{\sigma_h}{h_{min}}\right) P_{cp} 1.11/1.88$$

$$\sigma_P = \sqrt{(\sigma_P^{cucm})^2 + (\sigma_P^{cn})^2}$$

$$\sigma_{\Delta h_P} = \frac{\sqrt{(\sigma_{P_1})^2 + (\sigma_{P_2})^2}}{g\rho}$$

$$\rho gh = 161.8 \pm 3.2 \text{ } \Pi a$$

T, °C	h, mm	ΔР, Па	ΔP _{cp} - ρgh, Πa	σ , мН/м		
	211	397,42				
24.0	210	395,54	224.12	64,4		
24.9	210	395,54	234,12			
	210	395,54				
	210	395,54				
	210	395,54				
20.1	209	393,66	222.00	64,1		
30.1	210	395,54	232,98			
	210	395,54				
	209	393,66				
	208	391,77				
25.0	208	391,77	220.50	63,2		
35.0	207	389,88	229,59			
	208	391,77				
	208	391,77				
	206	388,00				
40.0	205	386,12	225.45	(2.0		
	206	388,00	225,45	62,0		

	206	388,00			
	205	386,12			
	204	384,23			
45.0	204	384,23	222.01	61,3	
45.0	205	386,12	222,81		
	204	384,23			
	204	384,23			
50.0	203	382,35			
	202	380,47	210.00	60,4	
	203	382,35	219,80		
	202	480,47			
	203	382,35			
	201	378,59			
55.0	200	376,71	215.66	50.2	
	200	376,71	215,66	59,3	
	201	378,59			
	200	376,71			

Найдем погрешности измерения давления и коэффициента поверхностного натяжения:

$$\sigma_{\Delta P}^{cn} = \sqrt{\frac{\displaystyle\sum_{i=1}^{n} \left(\Delta P_{i} - \Delta P_{CP}\right)^{2}}{n-1}}$$

$$\sigma_{\Delta P - \rho gh} = \sqrt{\left(\sigma_{\Delta P}^{cucm}\right)^{2} + \left(\sigma_{\Delta P}^{cn}\right)^{2} + \sigma_{\rho gh}^{2}}$$

$$\varepsilon_{\sigma} = \sqrt{\left(\frac{\sigma_{\Delta P - \rho gh}}{\Delta P_{cp} - \rho gh}\right)^{2} + \left(\frac{\sigma_{d}}{d}\right)^{2}}$$

Построим график зависимости $\sigma(T)$:

T, °C	24,9±0,1	30,1±0,1	35,0±0,1	40,0±0,1	45,0±0,1	50,0±0,1	55,0±0,1
σ, мН/м	64,4±4,4	64,1±4,3	63,2±4,3	62,0±4,2	61,3±4,1	60,4±4,1	59,3±4,0

Зависимость коэффициента поверхностного натяжения дистилированной воды от ее температуры

Определим по графику температурный коэффициент ${\bf k}=\frac{d\,\sigma}{dT}$ и его погрешность используя МНК:

$$k = \frac{\langle T \sigma \rangle - \langle T \rangle \langle \sigma \rangle}{\langle T^2 \rangle - \langle T \rangle^2} = -0.175 \frac{MH}{M*^{\circ} \mathbf{C}}$$

$$\sigma_k^{cn} = \sqrt{\frac{1}{7}} \sqrt{\frac{\langle \sigma^2 \rangle - \langle \sigma \rangle^2}{\langle T^2 \rangle - \langle T \rangle^2} - k^2} = 0.007 \frac{MH}{M*^{\circ} \mathbf{C}}$$

$$\sigma_k = \sqrt{(\sigma_k^{cn})^2 + (k*\varepsilon_k^{cp})^2} = 0.015 \frac{MH}{M*^{\circ} \mathbf{C}}$$

$$\frac{d \sigma}{dT} = -0.175 \pm 0.015 \frac{MH}{M*^{\circ} \mathbf{C}}$$

Построим график зависимости $q = -T \frac{d \sigma}{dT}$:

Т, К	297,9	303,1	308,0	313,0	318,0	323,0	328,0
q, мН/м	52,3±3,6	53,2±3,7	54,1±3,8	54,9±3,8	55,8±3,9	56,7±4,0	57,5±4,0

$$\varepsilon_q = \sqrt{(\varepsilon_T)^2 + (\varepsilon_k)^2}$$

Зависимость теплоты образования единицы поверхности жидкости от ее температуры

Построим график зависимости $\frac{U}{F} = \sigma - T \frac{d\sigma}{dT}$:

Зависимость теплоты образования единицы поверхности жидкости от ее температуры

$$\frac{U}{F} = 117,1 \pm 7,4 \frac{MH}{M}$$

5. Обсуждение результатов

В ходе работы был измерен диаметр иглы 2-мя способами:

- Экспериментально: $d = 1,10 \pm 0,03$ мм
- С помощью микроскопа: $d = 1,10 \pm 0,05$ мм

Полученные значения совпадают с большой точностью. Это говорит о том, что формула Лапласа справедлива для описания разности давлений внутри и снаружи пузыря.

Была исследована зависимость σ(T). Анализируя график можно сказать, что зависимость линейная с угловым коэффициентом наклона

$$\frac{d\sigma}{dT} = -0.175 \pm 0.015 \frac{MH}{M*^{\circ}C}$$

Также был построен график зависимости q(T), где $q=-T\frac{d\,\sigma}{dT}$ и $\frac{U}{F}=\sigma-T\frac{d\,\sigma}{dT}$. Последний график является константой со значением $\frac{U}{F}=117,1\pm7,4\frac{MH}{M}$.

Полученные значения σ , $\frac{d\sigma}{dT}$, q, $\frac{U}{F}$ имеют относительную погрешность в диапазоне 6-8%. Наибольшее значение в ней играет случайная погрешность измерений, вычисленная с помощью МНК, а также среднеквадратичная погрешность. Систематическая погрешность не столь значительна, так как давление, измеряемое с помощью манометра, много больше погрешности его цены деления.