

- Б. М. ВЕРЕТЕННИКОВ
- В. И. БЕЛОУСОВА

ДИСКРЕТНАЯ МАТЕМАТИКА ЧАСТЬ І

Учебное пособие

Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина

Б. М. Веретенников, В. И. Белоусова

ДИСКРЕТНАЯ МАТЕМАТИКА

Часть І

Рекомендовано методическим советом УрФУ в качестве **учебного пособия** для студентов, обучающихся по всем направлениям подготовки Института радиоэлектроники и информационных технологий

Екатеринбург Издательство Уральского университета 2014 УДК 519(075.8) ББК 22.176А73 В31

Рецензенты:

кафедра Прикладной математики Уральского государственного экономического университета (завкафедрой, канд. физ.-мат. наук, доц. О. Б. Мельников);

канд. физ.-мат. наук, доц. И. Н. Белоусов (Институт математики и механики УрО РАН)

Научный редактор – канд. физ.-мат. наук, доц. Н. В. Чуксина

Веретенников, Б. М.

ВЗ1 Дискретная математика : учебное пособие / Б. М. Веретенников, В. И. Белоусова. — Екатеринбург : Изд-во Урал. ун-та, 2014. — Ч. І. — 132 с.

ISBN 978-5-7996-1199-6 (ч. 1) 978-5-7996-1195-8

Учебное пособие включает в себя базисные разделы дискретной математики: бинарные отношения, элементы общей алгебры и теорию чисел. В работе предлагаются упражнения для самостоятельного решения. Предназначено для студентов всех направлений подготовки Института радиоэлектроники и информационных технологий — РтФ.

Библиогр.: 10 назв. Рис. 21. Табл. 18.

УДК 519(075.8) ББК 22.176А73

ISBN 978-5-7996-1199-6 (ч. 1) 978-5-7996-1195-8 © Уральский федеральный университет, 2014

Оглавление

Список обозначений	6
Введение	8
Глава I. Бинарные отношения	10
§ 1. Определение и способы задания бинарного отношен	ия . 10
Упражнения для самостоятельной подготовки	14
§ 2. Операции над бинарными отношениями	15
Упражнения для самостоятельной подготовки	16
§ 3. Основные свойства бинарных отношений	17
Упражнения для самостоятельной подготовки	19
§ 4. Классы эквивалентности	20
Упражнения для самостоятельной подготовки	23
§ 5. Частичный порядок	25
Упражнения для самостоятельной подготовки	33
§ 6. Рефлексивное, симметричное и транзитивное	33
замыкание бинарного отношения	33
Упражнения для самостоятельной подготовки	36
§ 7. Бинарные отношения из множества в множество	37
Упражнения для самостоятельной подготовки	39
Глава II. Элементы общей алгебры	40
§ 1. Группоиды и полугруппы	40
§ 2. Алгоритм Лайта	44
Упражнения для самостоятельной подготовки	47
§ 3. Конгруэнции и гомоморфизмы группоидов	48

	§ 4. Группы	54
	Упражнения для самостоятельной подготовки	60
	§ 5. Циклические группы	61
	Упражнения для самостоятельной подготовки	64
	§ 6. Группы подстановок	65
	Упражнения для самостоятельной подготовки	73
	§ 7. Матричные группы	75
	Упражнения для самостоятельной подготовки	77
	§ 8. Смежные классы	79
	Упражнения для самостоятельной подготовки	83
	§ 9. Нормальные подгруппы. Фактор-группы	85
	Упражнения для самостоятельной подготовки	87
	§ 10. Изоморфизмы и гомоморфизмы	88
	Упражнения для самостоятельной подготовки	91
	§ 11. Кольца и поля	92
	§ 12. Линейное пространство над произвольным полем F	95
	§13. Идеалы и гомоморфизмы ассоциативных колец	96
Γ.	лава III. Теория чисел и теория многочленов	102
	§ 1. Элементарная теория чисел	102
	Упражнения для самостоятельной подготовки	106
	§ 2. Взаимно простые числа	107
	§ 3. Теория сравнений	108
	§ 4 Китайская теорема об остатках	113
	Упражнения для самостоятельной подготовки	120

§ 5. Элементарная теория многочленов	122
Упражнения для самостоятельной подготовки	127
§ 6. Теория сравнений для многочленов	128
Упражнения для самостоятельной подготовки	129
Список литературы	130

Список обозначений

Множество — это совокупность, группа некоторых объектов, называемых элементами, объединенных каким-нибудь общим свойством. Множества обозначают большими латинскими буквами: A, B, C, ..., X, Y, ...

- \emptyset пустое множество, т. е. множество, не имеющее элементов;
- \mathbb{N} множество всех натуральных чисел;
- \mathbb{Z} множество всех целых чисел;
- \mathbb{Q} множество всех рациональных чисел;
- \mathbb{R} множество всех действительных чисел;
- \mathbb{C} множество всех комплексных чисел;
- \forall для всех, для любого;
- ∃ существует, найдется;
- ∃! существует (найдется) единственный;
- Знак ⇔ заменяет выражение «если и только если»;
- Знак ⇒ заменяет выражение «влечет»;
- $x \in X$ элемент x принадлежит множеству X;
- $x \notin X$ элемент x не принадлежит множеству X;
- $X \subseteq Y X$ подмножество в $Y \{ \forall x \in X : x \in Y \}$;
- $X \nsubseteq Y X$ не содержится в Y;
- X = Y X равно Y, т. е. $X \subseteq Y$ и $Y \subseteq X$;
- $X \subset Y X$ строго содержится в Y, т. е. $X \subseteq Y$ и $X \neq Y$;
- $X \cap Y$ пересечение множеств X и Y, т. е. $\{x \mid x \in X \text{ и } x \in Y\}$;

 $X \cup Y$ — объединение множеств X и Y, т. е. $\{x | x \in X \text{ или } x \in Y\};$

 $X \setminus Y$ — разность множеств X и Y, т. е. множество $\{x | x \in X$ и $x \notin Y\}$;

■ - конец доказательства.

Введение

Дискретная математика в наше время — это обширная наука, которая базируется на классических разделах математики — алгебре, теории чисел, математическом анализе и теории вероятностей. Особенно важны для глубокого понимания методов дискретной математики алгебра и теория чисел. Такие алгебраические структуры, как полугруппы, группы, кольца, поля, решетки, булевы алгебры используются во всех видах кодирования информации, в теории графов, теории автоматов, теории булевых функций, комбинаторике и математической логике.

Без основательного знания теории чисел также невозможно усвоить многие разделы дискретной математики и успешно применять методы дискретной математики на практике. Более того, даже весьма продвинутая и сложная наука — алгебраическая геометрия находит приложения в теории кодирования.

В данном пособии авторы излагают основные понятия и методы современной алгебры, а также классические результаты теории чисел, используемые в дискретной математике. Многие результаты даются с доказательствами, так как авторы считают, что глубокое понимание алгебры и теории чисел невозможно без умения доказывать теоремы. Кроме того, в тексте приводится достаточно много примеров вычислительного характера и задач для самостоятельного решения.

Основу данного пособия составили лекции, которые Б. М. Веретеников читал студентам разных специальностей на радиотехническом факультете в течение последних десяти лет. Лекционный материал существенно расширен за счет доказательств и большого числа дополнительных задач. Планируется продолжение, в котором будут рассмотрены конкретные области дискретной математики: теория алгебраического кодирования, алфавитное кодирование, теория автоматов, булевы функции, теория графов и комбинаторика.

Авторы надеются, что чтение пособия поможет читателю усвоить основные методы алгебры и теории чисел и использовать их в дальнейшем для изучения различных разделов дискретной математики.

Для понимания материала, изложенного в пособии, предварительной особой подготовки не требуется. Определенную математическую культуру можно развить, имея большое желание и достаточное усердие.

В заключение отметим, что авторы предполагают использование пособия студентами и преподавателями УрФУ различных факультетов и специальностей.

Глава I. Бинарные отношения

§ 1. Определение и способы задания бинарного отношения

Определение. Пусть A некоторое множество. Тогда множество упорядоченных пар (a_1, a_2) , где $a_1, a_2 \in A$, называется de-*картовым квадратом множества* A и обозначается $A \times A$ или A^2 . Кратко $A \times A = \{(a_1, a_2) | a_1, a_2 \in A\}$.

Аналогично определяется любая натуральная степень множества.

Определение. Множество $A^k = \{(a_1, ..., a_k) | \forall i = \overline{1, k} \ a_i \in A\}$ называется k-й степенью множества A.

Определение. Пусть A — конечное множество, состоящее из n элементов. Тогда число n называется n порядком множества A и обозначается |A|.

Определение. Бинарным отношением на множестве A называется любое подмножество ρ декартова квадрата $A \times A$.

Отметим очевидные примеры бинарных отношений:

- $A \times A = \omega_A$ универсальное отношение на A;
- Ø пустое бинарное отношение;
- $\Delta_A = \{(a, a), a \in A\}$ диагональ $A \times A$.

Если A — конечное множество, то любое бинарное отношение на A можно задать списком упорядоченных пар, содержащихся в этом бинарном отношении. Например, на множестве

 $A = \{1, 2, 3\}$ можно задать следующие бинарные отношения: $\rho_1 = \{(1, 2), (2, 2), (3, 1)\}, \rho_2 = \{(3, 2)\}, \dots$

Если ρ – бинарное отношение на A, то вместо $(a_1, a_2) \in \rho$ пишут $a_1 \rho a_2$ (инфиксный способ).

Определение. Пусть $A = \{a_1, ..., a_n\}$ и ρ — бинарное отношение на A. Тогда *матрицей отношения* ρ называется квадратная матрица размера $n \times n$, состоящая из нулей и единиц, такая, что в пересечении i-й строки и j-го столбца стоит 1 тогда и только тогда, когда $a_i \rho a_j \ \forall \ i,j = \overline{1,n}$.

Пример. На множестве $A = \{1, 2, 3, 4\}$ матрица отношения $\rho = \{(1, 4), (2, 4), (3, 2), (2, 2), (2, 3), (1, 1)\}$ имеет вид

$$M = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Верно обратное — любая квадратная матрица n-го порядка, состоящая из 0 и 1, задает естественным образом бинарное отношение на любом множестве A порядка n.

Пример. На множестве $A = \{a_1, a_2, a_3, a_4\}$, матрица

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
 задает бинарное отношение

$$\rho = \{(a_1, a_1), (a_1, a_2), (a_2, a_4), (a_3, a_2), (a_4, a_1), (a_4, a_3)\}.$$

Бинарное отношение можно задать также с помощью так называемого ориентированного графа (рис.1).

Определение. Пусть $A = \{a_1, ..., a_n\}$ и ρ — бинарное отношение на A. Тогда *ориентированным графом* (*орграфом*) *отношения* ρ называется множество n точек на плоскости, обозначенных $a_1, ..., a_n$, причем из a_i в a_j идет стрелка тогда и только тогда, когда $a_i \rho a_j$, $\forall i, j = \overline{1, n}$.

Пример. На множестве $A = \{1, 2, 3, 4, 5\}$ орграф отношения $\rho = \{(1, 1), (1, 4), (2, 3), (3, 3), (4, 5), (5, 2)\}$ представлен на рис. 1.

Верно обратное — по любому орграфу с n вершинами можно естественным образом составить бинарное отношение на любом множестве из n элементов.

Пример. Орграф, представленный на рис. 2, задает на множестве $A = \{1, 2, 3, 4, 5\}$ бинарное отношение $\rho = \{(2, 2), (2, 4), (2, 5), (4, 3), (5, 1), (5, 2)\}.$

Еще один способ задания – функциональный. Он полезен при нахождении произведений бинарных отношений, которые рассмотрим далее.

Определение. Пусть $a_1 \bullet$ a_1 $\{a_1,\ldots,a_n\}$ и ρ – бинарное отно a_2 шение на А. Тогда функциональной схемой отношения р называется диаграмма, состоящая из двух столбцов одинаковых (рис. 3), a_n причем стрелка из элемента a_i ле-Рис. 3 вого столбца идет в элемент a_i правого столбца тогда и только тогда, когда $a_i \rho a_i$.

Пример. На множестве $A = \{1, 2, 3, 4, 5\}$ отношение $\rho = \{(1, 2), (2, 3), (3, 3), (3, 4), (4, 5)\}$ можно задать функциональной схемой, представленной на рис. 4.

Упражнения для самостоятельной подготовки

1. Постройте орграф и матрицу для каждого из приведенных ниже отношений на *A*.

a)
$$A = \{a, b, c, d, e\},\$$

$$\rho = \{(a, b), (b, a), (b, c), (c, b), (c, a), (a, c), (d, e), (e, d)\};\$$

$$\delta) A = \{a, b, c, d, e\},\$$

$$\rho = \{(a, b), (b, a), (b, c), (c, b), (c, d), (d, c), (d, e), (e, d), (b, e), (e, b), (b, d), (d, b), (a, c), (c, a)\};\$$

$$B) A = \{a, b, c, d, e\},\$$

$$\rho = \{(a, b), (b, a), (b, c), (c, b), (c, d), (d, c), (c, a), (a, c)\};\$$

$$\Gamma) A = \{a, b, c, d, e\},\$$

$$\rho = \{(a, b), (b, a), (b, c), (c, b), (c, d), (d, c), (d, e), (e, d), (b, e), (e, b), (b, d), (d, b)\}.$$

2. Постройте функциональную схему для каждого из приведенных ниже отношений на A.

a)
$$A = \{a, b, c, d, e\},\$$

$$\rho = \{(a, b), (b, a), (b, c), (c, b), (c, d), (d, c), (d, a), (a, d)\};\$$

$$\delta) A = \{a, b, c, d, e, f\},\$$

$$\rho = \{(a, b), (b, a), (b, c), (c, b), (c, a), (a, c), (d, e), (e, d),\$$

$$(b, e), (e, b), (b, d), (d, b), (a, c), (c, a)\};\$$

$$B) A = \{a, b, c, d, e\},\$$

$$\rho = \{(a, b), (b, a), (b, c), (c, b), (c, d), (d, c), (d, e),\$$

$$(e, d), (a, d), (d, a)\}.$$

§ 2. Операции над бинарными отношениями

Определение. Пусть ρ_1, ρ_2 — бинарные отношения на A. Тогда под $\rho_1 \cup \rho_2, \rho_1 \cap \rho_2, \rho_1 \setminus \rho_2, \rho_1 \Delta \rho_2$ понимаются обычные теоретико-множественные операции: объединение, пересечение, разность, симметрическая разность множеств.

Определение. Пусть ρ — бинарное отношение на A. Тогда бинарное отношение $A \times A \setminus \rho = \{(a_1, a_2) | (a_1, a_2) \notin \rho\}$ называется дополнением бинарного отношения ρ и обозначается $\bar{\rho}$.

Определение. Пусть ρ — бинарное отношение на A. Тогда бинарное отношение ρ^{-1} , задаваемое условием $(a_1, a_2) \in \rho^{-1} \Leftrightarrow \Leftrightarrow (a_2, a_1) \in \rho$, называется *обратным* κ ρ .

Заметим, что $\bar{\rho} \neq \rho^{-1}$ в общем случае.

Чтобы получить обратное бинарное отношение ρ^{-1} , необходимо в орграфе отношения ρ сменить направления всех стрелок, не являющихся петлями, на противоположные.

Определение. Пусть ρ , σ — бинарные отношения на A. Тогда произведение отношения ρ на отношение σ (обозначается ρ σ или ρ · σ) равно бинарному отношению τ такому, что $(a,b) \in \tau \Leftrightarrow \exists c \in A$ и $(a,c) \in \rho$, $(c,b) \in \sigma$.

Эту операцию произведения для конечных множеств очень удобно производить на функциональных схемах.

Пример. На множестве $A = \{1, 2, 3, 4, 5\}$ рассмотрим отношения $\rho = \{(1, 2), (2, 2), (2, 3), (3, 5), (4, 4)\},$ и $\sigma = \{(2, 1), (1, 3), (3, 4), (5, 1)\}.$

Тогда $ρσ = \{(1,1), (2,1), (2,4), (3,1)\}$ и $σρ = \{(1,5), (2,2), (3,4), (5,2)\}$ (рис. 5).

Рис. 5

Таким образом, умножение бинарных отношений не коммутативно.

Упражнения для самостоятельной подготовки

Пусть
$$A = \{a, b, c, d, e\}$$
 и ρ , σ , τ , ϕ – отношения на A , где
$$\rho = \{(a, a), (a, b), (b, c), (b, d), (c, e), (e, d), (c, a)\},$$

$$\sigma = \{(a, b), (b, a), (b, c), (b, d), (e, e), (d, e), (c, b)\},$$

$$\tau = \{(a, b), (a, a), (b, c), (b, b), (e, e), (b, a), (c, b),$$

$$(c, c), (d, d), (a, c), (c, a)\},$$

$$\phi = \{(a, b), (b, c), (b, b), (e, e), (b, a), (c, b), (d, d), (a, c), (c, a)\}.$$
 Опишите отношения $\tau \cap \phi$, $\rho \cup \sigma$, $\tau \setminus \sigma$, $\tau \Delta \rho$, τ^{-1} , $\overline{\rho}$, $\rho \phi$.

§ 3. Основные свойства бинарных отношений

Определение. Бинарное отношение ρ на A называется $pe\phi$ лексивным, если для любого $a \in A$ выполняется $a\rho a((a,a) \in \rho)$.

Это означает, что в матрице рефлексивного бинарного отношения на главной диагонали стоят единицы, а в орграфе этого отношения у каждой вершины имеется петля.

Определение. Бинарное отношение ρ на A называется *сим- метричным*, если $(a_1, a_2) \in \rho \Leftrightarrow (a_2, a_1) \in \rho$.

Матрица симметричного бинарного отношения является симметричной, а в орграфе этого отношения все стрелки, не являющиеся петлями, двусторонние.

Определение. Бинарное отношение ρ на A называется aн-*тисимметричным*, если $(a_1, a_2) \in (a_2, a_1) \in \Rightarrow a_1 = a_2$.

Это означает, что в орграфе этого отношения все стрелки между разными вершинами односторонние.

Определение. Бинарное отношение на A называется mpaнзитивным, если из $(a,b) \in (b,c) \in (a,c) \in (a,c) \in (a,c)$

Транзитивность плохо распознается на матрицах, но хорошо распознается на графах: бинарное отношение транзитивно тогда и только тогда, когда любая двухзвенная направленная ломаная в соответствующем орграфе замыкается стрелкой из начала этой ломаной в ее конец (рис. 6).

Рис. 6

Определение. Бинарное отношение на A называется *полным*, если для любых $a_1, a_2 \in A$ выполняется $(a_1, a_2) \in$ или $(a_2, a_1) \in$.

Определение. Бинарное отношение на A называется *отношением эквивалентности*, если оно рефлексивно, симметрично и транзитивно.

Пример. Пусть $A = \mathbb{Z}$. Зафиксируем некоторое ненулевое целое число n. Определим бинарное отношение следующим образом: $\forall a,b \in A \ (a,b) \in \Leftrightarrow a-b$ делится на n без остатка.

Докажем, что – отношение эквивалентности.

 $Peфлексивность: a \in \mathbb{Z} \ a-a=0$ делится на n, следовательно, $\forall a \in \mathbb{Z}$, $(a,a) \in \mathbb{Z}$

 $\it Cимметричность: a,b\in \mathbb{Z}\ (a,b)\in\ ,$ следовательно, $\it a-b$ делится на $\it n$, а значит, и $\it b-a$ делится на $\it n$, т. е. $\it (b,a)\in\ .$

Транзитивность: Пусть $(a,b) \in (b,c) \in T$ Тогда a-b и b-c делятся на n, откуда a-c = (a-b) + (b-c) делится на n, следовательно, $(a,c) \in T$

Мы доказали, что отношение является отношением эквивалентности. Оно называется отношением сравнения по модулю n.

Упражнения для самостоятельной подготовки

- 1. Докажите, что пересечение рефлексивных отношений рефлексивно.
- 2. Докажите, что пересечение симметричных отношений симметрично.
 - 3. Пусть $A = \{a, b, c, d, e\}$:
- а) опишите отношение на A, которое рефлексивно, но не является ни симметричным, ни транзитивным;
- б) опишите отношение на A, которое симметрично, но не является ни рефлексивным, ни транзитивным;
- в) опишите отношение на A, которое транзитивно, но не является ни рефлексивным, ни симметричным;
 - 4. Пусть $A = \{a, b, c, d, e\}$:
- а) опишите отношение на A, которое рефлексивно и симметрично, но не является транзитивным;
- б) опишите отношение на A, которое симметрично и транзитивно, но не является рефлексивным;
- в) опишите отношение на A, которое рефлексивно и транзитивно, но не является симметричным;
- 5. $\mathbb{N} = \{1,2,3,4,5,6,7,8\}$. Проверьте для указанных ниже отношений основные свойства:
 - 1) $x\rho_1 y \Leftrightarrow x + y \text{четно};$
 - 2) $x\rho_2 y \Leftrightarrow x + y \text{нечетно};$
 - 3) $x\rho_3 y \Leftrightarrow x + y > 0$;
 - 4) $x\rho_4 y \Leftrightarrow x y > 0$.

§ 4. Классы эквивалентности

Определение. Пусть — отношение эквивалентности на A. Тогда *классом отношения* c *представителем* $a \in A$ называется множество всех $b \in A$, таких, что $(a,b) \in$. Обозначается \overline{a} $(\overline{a}_{\rho},[a]_{\rho},a^{\rho})$.

Теорема. Пусть — отношение эквивалентности на A. Тогда классы отношения ρ обладают следующими свойствами:

- 1) $\forall a \in A \ a \in \overline{a}$;
- 2) $b \in \overline{a} \Rightarrow \overline{b} = \overline{a}$;
- 3) различные классы эквивалентности пересекаются по пустому множеству;
 - 4) $\overline{a} = \overline{b} \Leftrightarrow a \ b$.

Доказательство:

- 1) В силу рефлексивности отношения ρ имеем a a, а значит, $a \in \overline{a}$. Свойство 1 доказано.
- 2) Пусть $b \in \overline{a}$. Тогда по определению класса эквивалентности $(a,b) \in$.

Предположим $x \in \overline{b}$. Тогда $(b,x) \in u(a,b) \in B$ силу транзитивности имеем $(a,x) \in a$ значит, $x \in \overline{a}$ и $\overline{b} \subseteq \overline{a}$.

Теперь пусть $x \in \overline{a}$. Тогда $(a,x) \in u$ $(b,a) \in u$ (в силу симметричности). В силу транзитивности , имеем $(b,x) \in u$, а значит, $x \in \overline{b}$ и $\overline{a} \subseteq \overline{b}$.

Так как $\bar{b}\subseteq \bar{a}$ и $\bar{a}\subseteq \bar{b}$, то $\bar{b}=\bar{a}$. Свойство 2 доказано.

3) Пусть $\bar{a} \cap \bar{b} \neq \emptyset$. Тогда существует элемент $x \in A$ такой, что $x \in \bar{a}$ и $x \in \bar{b}$. По пункту 2 $\bar{x} = \bar{a}$ и $\bar{x} = \bar{b}$, а значит, $\bar{a} = \bar{b}$. Свойство 3 доказано.

4)
$$\overline{a} = \overline{b} \Rightarrow b \in \overline{a} \Rightarrow (a, b) \in \rho$$
.

 $a\rho b\Rightarrow b\in \overline{a}\Rightarrow \overline{b}=\overline{a}$ по свойству 2. Свойство 4, а вместе с ним и теорема, доказаны.

Определение. Разбиением множества A называется семейство его непустых подмножеств A_i , $i \in I$ таких, что

$$1) A = \bigcup_{i \in I} A_i;$$

2)
$$\forall i, j \in I \ A_i \cap A_j = \emptyset \ при \ i \neq j.$$

Из этого определения и предыдущей теоремы следует:

Теорема. Множество всех классов эквивалентности ρ на множестве A является разбиением этого множества A.

Определение. Множество всех классов эквивалентности ρ обозначается G/ρ и называется фактор-множеством G по отношению ρ .

Верно обратное утверждение к предыдущей теореме.

Теорема. Пусть дано разбиение $\{A_i : i \in I\}$ множества A. Определим отношение ρ на A следующим образом: $(x,y) \in \rho \Leftrightarrow \exists i \in I$ что $x,y \in A_i$. Тогда ρ —отношение эквивалентности на A и множества A_i — в точности классы этой эквивалентности.

Доказательство. 1) $\forall x \in A, (x, x) \in \rho$, так как по определению разбиения элемент x принадлежит одному из A_i . Рефлексивность ρ доказана.

- 2) $\forall x, y \in A, (x, y) \in \rho \Leftrightarrow \exists i \in I, \quad \text{что } x, y \in A_i \Leftrightarrow \exists i \in I,$ что $y, x \in A_i \Leftrightarrow (y, x) \in \rho$.Симметричность ρ доказана.
- 3) $\forall x,y,z \in A \ (x,y) \in \rho, \ (y,z) \in \rho \iff x,y \in A_i, \ y,z \in A_j$ для некоторых $i,j \in I$. Поэтому $y \in A_i \cap A_j$ и в силу определения разбиения множества $A_i = A_j$, т. е. $\exists \ i \in I$, что $x,z \in A_i$ и, значит, $(x,z) \in \rho$. Транзитивность ρ доказана.

Из 1–3-го доказательств следует, что ρ отношение эквивалентности.

Пусть $x \in A$. Тогда, в силу определения разбиения, $\exists! \ i \in I$ такое, что $x \in A_i$. Далее $\bar{x} = \{y \in A | (x,y) \in \rho\}$, т. е. $\bar{x} = \{y \in A | x, y \in A_i\} = \{y \in A | y \in A_i\} = A_i$.

Упражнения для самостоятельной подготовки

- 1. Установите, является ли каждое из перечисленных ниже отношений на A отношением эквивалентности. Для каждого отношения эквивалентности постройте классы эквивалентности.
- а) A множество целых чисел, и ρ есть отношение, заданное условием $(a,b) \in \rho$, если a+b=0;
- б) A множество целых чисел, и ρ есть отношение, заданное условием $(a, b) \in \rho$, если a + b = 5;
- в) A множество упорядоченных пар целых чисел, и ρ есть отношение, заданное условием $(a,b)\rho(c,d)$, если ad=bc;
- $\Gamma)\,A=\{-10,\ -9,\ -8,...,0,1,...,9,10\}\quad \text{и}\quad (a,b)\in\rho,\quad \text{если}$ $a^2=b^2;$
- д) $A=\{-10,\ -9,\ -8,...,0,1,...,9,10\}$ и $(a,b)\in \rho,$ если $a^3=b^3.$
- 2. Установите, является ли каждое из перечисленных ниже отношений на A отношением эквивалентности. Для каждого отношения эквивалентности постройте классы эквивалентности.
- а) A множество всех подмножеств множества $\{a, b, c, d\}$, отношение ρ определяется следующим образом: $s\rho t$, если s и t содержит одинаковое количество элементов;
- б) $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, отношение ρ определяется следующим образом: $a\rho b$, если a + b четное;
- в) $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, отношение ρ определяется следующим образом: $a\rho b$, если a + b положительное.

3. Множества $A_1 = \{1,7\}, A_2 = \{2,3,8\}, A_3 = \{4,5,6\}$ образуют разбиение множества $A = \{1,2,3,4,5,6,7,8\}$. Соответствующую эквивалентность ρ на A задать матрицей, орграфом и функциональной схемой.

§ 5. Частичный порядок

Определение. Бинарное отношение ρ на множестве A называется *частичным порядком*, если ρ рефлексивно, антисимметрично и транзитивно. При этом A называется *частично упорядоченным множеством (ЧУМ)*.

Основные примеры.

1. Множество \mathbb{R} всех действительных чисел — ЧУМ относительно обычного сравнения чисел $a \rho b \Leftrightarrow a \leq b$.

Рефлексивность, антисимметричность и транзитивность здесь очевидны.

2. Множество \mathbb{N} всех натуральных чисел — ЧУМ относительно отношения делимости натуральных чисел: $a \rho b \Leftrightarrow a | b \ (a \ \text{делит} \ b)$.

Докажем это.

- 1) $\forall a \in \mathbb{N} \ a | a$ очевидно.
- 2) $\forall a,b \in \mathbb{N}$, если a|b и b|a, то $b=k\cdot a$, $a=m\times b$, откуда $b=k\cdot m\cdot b$, т. е. k=m=1 и a=b.
- 3) $\forall a, b, c \in \mathbb{N}$, если a|b и b|c, то $b = k \cdot a$, $c = m \times b$, откуда $c = m \cdot k \cdot a$, т. е. a|c .
- 3. Для любого множества X через B(X) (или 2^X) обозначается множество всех подмножеств множества X. Множество B(X) называется булеаном множества X.

На B(X)определим бинарное отношение ρ следующим образом:

 $\forall A, B \in B(X) \ A \rho B \Leftrightarrow A \subseteq B$. Это отношение называется отношением включения. Очевидно, что $\forall A, B, C \in B(X)$.

- 1) $A \subseteq A$.
- 2) $A \subseteq B, B \subseteq A \Rightarrow A = B$.
- 3) $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$.

Следовательно, отношение включения — частичный порядок на B(X).

Замечание. В дальнейшем в этом параграфе частичный порядок на произвольном множестве X будем обозначать « \leq », т. е. вместо $a \rho b$ будем писать $a \leq b$ для любых $a, b \in X$. Кроме того, при $a \leq b$ принято говорить, что a не превосходит b или a меньше или равно b. Далее, a < b означает, что $a \leq b$ и $a \neq b$. В этом случае принято говорить, что a меньше b или b больше a.

Определение. Пусть X — ЧУМ. Элемент b из X накрываем элемент $a \in X$, если a < b и не существует элемента c из X такого, что a < c < b.

Определение. Частичный порядок « \leq » на X называется πu нейным, если любые два элемента из X сравнимы относительно
этого порядка, т. е. для любых $a,b \in X$ $a \leq b$ или $b \leq a$. При
этом X называется πu нейно упорядоченным множеством, или
цепью.

Определение. Диаграммой Хассе называется множество точек на плоскости вместе с некоторыми негоризонтальными отрезками, соединяющими эти точки, без замыканий ломанных линий длины ≥ 2 .

Определение. Диаграммой Хассе частично упорядоченного множества $X = \{x_1, ..., x_n\}$ называется такая диаграмма Хассе, состоящая из точек, обозначенных $x_1, ..., x_n$, что для любых i, j точка x_i соединена с точкой x_j и при этом x_i расположена ниже точки x_i тогда и только тогда, когда x_i накрывает x_i .

Пример. Пусть $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$ и частичный порядок на X — отношение делимости. Тогда диаграмма Хассе (рис. 7) имеет вид

Рис.7

Ясно, что любая диаграмма Хассе с точками, обозначенными $x_1, ..., x_n$, задает частичный порядок « \leq » на множестве $X = \{x_1, ..., x_n\}$, диаграммой Хассе которого является исходная диаграмма, а именно $x_i < x_j$, тогда и только тогда, когда от точки x_i можно добраться до точки x_j по отрезкам данной диаграммы, нигде при этом не спускаясь вниз.

Пример. Задать списком частичный порядок « \leq » на множестве $X = \{1, 2, 3, 4, 5\}$, если его диаграмма Хассе (рис. 8) имеет вид

Рис.8

Ответ очевиден: $a \le b \Leftrightarrow (a, b) \in \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5)\}.$

Отметим, что диаграммой Хассе линейно упорядоченного множества является вертикальная цепь. Например, если |X|=4, то его диаграмма Хассе (рис. 9) имеет вид

Рис.9

Полурешетки и решетки

Определение. Пусть X — ЧУМ, $Y \subseteq X$. Тогда элемент $y \in Y$ называется *максимальным* (*минимальным*) в Y, если не существует такого элемента x в Y, для которого y < x (y > x).

Определение. Пусть X — ЧУМ, $Y \subseteq X$. Тогда элемент $y \in Y$ называется *наибольшим* (наименьшим) в Y, если $\forall x \in Y$ $x \leq y$ $(y \leq x)$.

Ясно, что наибольший (наименьший) элемент множества Y является максимальным (минимальным). Однако то, что элемент является максимальным (минимальным), не означает, что он является наибольшим (наименьшим) в рассматриваемом множестве. Например, в последнем примере элементы 4 и 5 являются максимальными в X, но ни один из них не является наибольшим в X. Аналогично 1 и 2 — минимальные в X, но ни один из них не является наименьшим в X.

Определение. Пусть X — ЧУМ, $Y \subseteq X$. Элемент $x \in X$ называется верхней (нижней) гранью множества Y, если $\forall y \in Y$ $y \le x \ (x \le y)$.

Определение. Пусть X — ЧУМ, $Y \subseteq X$. Наименьший элемент x в множестве всех верхних граней множества Y называется его *точной верхней гранью:* $x = \sup Y$. Аналогично наибольший элемент z в множестве всех нижних граней множества Y называется x назы

Ясно, что $\inf Y$ и $\sup Y$ не всегда существуют. Например, в последнем примере не существуют $\sup \{4,5\}$, $\inf \{1,2\}$, но существуют $\inf \{4,5\} = \sup \{1,2\} = 3$.

Определение. *Нижней (верхней) полурешеткой (или полуструктурой)* называется такой ЧУМ X, что $\forall a,b \in X$ существуют inf $\{a,b\}$ (sup $\{a,b\}$).

Определение. Если ЧУМ X одновременно и нижняя, и верхняя полурешетки, то X называется pewemkoŭ (cmpykmypoŭ).

Если опять вернуться к тому же примеру, то рассматриваемый в нем ЧУМ не является ни нижней, ни верхней полурешеткой. Очевидно, что любое линейно упорядоченное множество X является решеткой:

 $\forall a, b \in X$ при $a \leq b \sup \{a, b\} = b$, $\inf \{a, b\} = a$.

Кроме того, частично упорядоченные множества, рассмотренные в примерах 2 и 3 в начале параграфа, тоже являются решетками. Если \mathbb{N} – ЧУМ относительно отношения делимости, то $\forall a,b \in \mathbb{N}$ sup $\{a,b\} = \mathrm{HOK}(a,b)$ – наименьшее общее кратное a и b, inf $\{a,b\} = \mathrm{HOД}(a,b)$ – наибольший общий делитель a и b. Если B(X) – ЧУМ относительно включения, то $\forall A,B \in B(X)$ sup $\{A,B\} = A \cup B$, inf $\{A,B\} = A \cap B$.

Замечание. Обычно в нижней полуструктуре X вместо $\inf\{a,b\}$ пишут $a \land b$ и в верхней полуструктуре X вместо $\sup\{a,b\}$ пишут $a \lor b$ для любых $a,b \in X$.

Пример. В структуре (рис. 10)

Рис. 10

$$5 \land 2 = 2 \land 5 = 2$$
, $3 \land 4 = 4 \land 3 = 1$, $4 \lor 3 = 3 \lor 4 = 5$.

Определение. *Нулем* (0) упорядоченного множества X называется его наименьший элемент, *единицей* (1) X называется наибольший элемент X.

Определение. Структура X с 0 и 1 *называется структурой* c *дополнениями*, если $\forall a \in X \exists ! b \in X$ — такой, что $a \lor b = 1$, $a \land b = 0$.

При этом b обозначается a' (или \bar{a}) и называется ∂ ополнением к a.

Определение. Структура X называется *дистрибутивной*, если $\forall a, b \in X$ $(a \lor b) \land c = (a \land c) \lor (b \land c)$ и $(a \land b) \lor c = (a \lor c) \land (b \lor c)$.

Определение. Дистрибутивная структура с дополнениями называется *булевой алгеброй*.

Примеры. Булевой алгеброй является, например булеан B(X), где $\forall Y \in B(X)$, $\bar{Y} = X \backslash Y$, и свойства дистрибутивности

легко доказываются:
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C),$$

 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C).$

В качестве примера дистрибутивной структуры, без дополнений можно взять ЧУМ $\mathbb R$ относительно обычного отношения порядка.

Докажем, чтотах $(\min(a,b),c) = \min(\max(a,c),\max(b,c))$. Без ограничения общности, $a \le b$. Рассмотрим три варианта:

Легко убедиться, что в первых двух вариантах обе части доказываемого равенства равны c, а в третьем варианте обе части равны a.

Аналогично доказывается, что $\min(\max(a,b),c) = \max(\min(a,c),\min(b,c)).$

Упражнения для самостоятельной подготовки

1. Выписать все упорядоченные пары, принадлежащие соответствующему частичному порядку, (рис. 14).

Рис. 14

2. Какое из приведенных ниже отношений ρ является отношением частичного порядка на $A = \{a, b, c, d\}$?

a)
$$\rho = \{(a, a), (b, b), (c, c), (d, d), (a, c), (b, c), (c, d), (a, d), (b, d)\};$$

$$δ$$
) $ρ = {(a, a), (b, b), (c, c), (d, d), (a, c), (b, c), (c, d), (d, a)};$

B)
$$\rho = \{(b,b),(c,c),(d,d),(a,c),(b,c),(c,d),(a,d),(b,d)\};$$

$$\Gamma(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (b, c)(c, d), (a, d), (b, d), (c, d)\}.$$

§ 6. Рефлексивное, симметричное и транзитивное замыкание бинарного отношения

Определение. Пусть ρ — бинарное отношение на M. Тогда его *рефлексивным замыканием* называется наименьшее рефлексивное бинарное отношение на M, содержащее ρ .

Определение. Пусть ρ – бинарное отношение на M. Тогда его *симметричным замыканием* называется наименьшее симметричное бинарное отношение на M, содержащее ρ .

Определение. Пусть ρ — бинарное отношение на M. Тогда его *транзитивным замыканием* называется наименьшее транзитивное бинарное отношение на M, содержащее ρ .

Теорема 1. Чтобы получить транзитивное замыкание ρ на множестве M, надо в орграфе ρ замкнуть все направленные ломаные линии этого орграфа.

Доказательство:

Докажем, что после этой операции (замыкания всех ломаных) получится действительно транзитивное замыкание.

Пусть ρ – исходное бинарное отношение,

 ρ^* — бинарное отношение, полученное из ρ путем замыкания всех ломаных.

$$(a,b) \in \rho^*, (b,c) \in \rho^*.$$
 Требуется доказать, что $(a,c) \in \rho^*.$

По условию в орграфе ρ существуют направленные ломаные L_1 от a до b и L_2 от b до c. Объединение L_1 и L_2 — это ломаная L, соединяющая a и c. Следовательно, $(a,c) \in \rho^*$.

Далее, $\rho \subseteq \rho^*$, так как любая стрелка является замыканием самой себя.

Осталось доказать, что ρ^* – наименьшее бинарное отношение, содержащее ρ .

Пусть $\rho \subseteq \sigma$, σ транзитивно.

Требуется доказать, что $\rho^* \subseteq \sigma$.

Пусть $(a, b) \in \rho^*$.

Тогда $(a,a_1)\in \rho$, $(a_1,a_2)\in \rho$, \cdots , $(a_m,b)\in \rho$ для некоторых $a_1,\ldots,a_m\in M$ или $(a,b)\in \rho$.

Следовательно, $(a,a_1) \in \sigma$, $(a_1,a_2) \in \sigma$, \cdots , $(a_m,b) \in \sigma$ или $(a,b) \in \sigma$. Так как σ транзитивно, то $(a,b) \in \sigma$. Теорема доказана полностью.

Следствие. Если ρ — бинарное отношение на множестве A и |A|=n, то транзитивное замыкание отношения ρ равно $\rho \cup \rho^2 \cup ... \cup \rho^n$.

Алгоритм Уоршалла для нахождения транзитивного замыкания

Все элементы данного множества M, для которого рассматривается отношение ρ , получают свой номер: 1, 2, 3, 4, ..., n. Замыкаются все ломаные в орграфе ρ , где 1 является посредником, потом замыкаются все ломаные в новом орграфе, где 2 является посредником, и так далее до n.

Упражнения для самостоятельной подготовки

- 1. Обосновать алгоритм Уоршалла.
- 2. Найти транзитивное замыкание бинарного отношения $\rho = \{(12), (23), (24), (31), (43), (51), (53)\}$ на множестве $M = \{1,2,3,4,5\}$ с использованием следствия к теореме 1 и с помощью алгоритма Уоршалла.

§ 7. Бинарные отношения из множества в множество

Определение. *Бинарным отношением* из A в B называется подмножество в $A \times B$.

Рассмотренные ранее бинарные отношения на множестве M — бинарные отношения из Mв M.

Определение. Если ρ – бинарное отношение из A в B, то *образом* $x \in A$ называется $\{y \in B | (x,y) \in \rho\}$, *прообразом* $y \in B$ называется $\{x \in A | (x,y) \in \rho\}$. Образ x обозначается $(x)\rho$, или просто $x\rho$, а прообраз $y - (y) \rho^{-1}$, или просто $y \rho^{-1}$. Часто вместо $(x)\rho$ пишут $\rho(x)$, вместо $(y) \rho^{-1} - \rho(y)$.

Определение. Областью определения бинарного отношения ρ из A в B называется множество всех элементов из A, имеющих непустой образ, а областью значений отношения ρ называется множество элементов из B, для которых прообраз непустой.

Бинарное отношение из А в В удобно рассмотреть на схемах.

Пример.

$$A = \{1, 2, 3, 4\}, B = \{\alpha, \beta, \gamma\}, \rho = \{(1, \gamma), (2, \alpha), (2, \beta), (4, \alpha), (4, \beta)\}.$$

Область определения — $\{1, 2, 4\}.$

Область значений— $\{\alpha, \beta, \gamma\}$.

$$\rho(2) = \{\alpha,\beta\}, \rho(4) = \{\alpha,\beta\}, \rho^{-1}(\alpha) = \{2,4\}, \rho^{-1}(\beta) = \{2,4\}, \rho^{-1}(\gamma) = \{1\}.$$

Определение. Пусть ρ — бинарное отношение из A в B. Тогда *обратным бинарным отношением* к ρ называется отношение ρ^{-1} из B в A: $(b,a) \in \rho^{-1} \Leftrightarrow (a,b) \in \rho$.

Чтобы получить ρ^{-1} , надо в схеме обратить все стрелки.

Определение. Пусть ρ — бинарное отношение из A в B, σ — бинарное отношение из B в C. Тогда $\rho\sigma$ — бинарное отношение из A в C такое, что $(a,c) \in \rho\sigma \Leftrightarrow \exists b \in B, (a,b) \in \rho, (b,c) \in \sigma$.

Определение. Бинарное отношение ρ из A в B называется отображением A в B, если $\forall a \in A \ |\rho(a)| = 1$, то есть $\forall a \in A$, $\exists ! \ b \in B$, что $a\rho b$; $b = \rho(a) - \text{образ } a$.

$$\rho^{-1}(b) = \{ a \in A | \rho(a) = b \}.$$

Полезны отображения специального вида, которые будут рассмотрены далее.

Определение. Отображение f из A в B называется *инъек- тивным* (инъекцией), если $\forall a_1, a_2 \in A \ a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$.

Определение. Отображение f из A в B называется cюръек- mивным (cюръекцией), если каждый элемент из B имеет хотя бы один прообраз. $\forall b \in B \ \exists a \in A \ -$ такой, что f(a) = b.

Определение. Отображение f из A в B называется биективным (биекция), если оно инъективно и сюръективно.

Теорема. Пусть $|A| = |B| < +\infty$,

f — отображение из A в B. Тогда f —инъекция \Leftrightarrow f —сюръекция. Доказательство предоставляем читателю.

Замечание. То, что f — отображение множества A в множество B, записывается следующим образом: $f: A \to B$.

Упражнения для самостоятельной подготовки

- 1. Выясните, какие из приведенных ниже функций из \mathbb{R} в \mathbb{R} являются инъективными, сюръективными, имеют обратную функцию:
 - a) f(x) = |x|;
 - б) $f(x) = x^2 + 4$;
 - B) $f(x) = x^3 + 6$;
 - $\Gamma) f(x) = |x| + x;$
- 2. Пусть $f: A \to B$, $g: B \to C$, $h: C \to D$, $A = \{1,2,3,4,5\}, B = \{a,b,c,d\}, C = \{x,y,z,v\}, D = \{\alpha,\beta,\gamma,\delta,\epsilon\}$ и f,g,h заданы схемами (рис. 15):

Рис. 15

Составить схемы для fg, gh, (fg)h. Проверить для отображений f, g, h, fg, gh, (fg)h инъективность и сюръективность.

Глава II. Элементы общей алгебры § 1. Группоиды и полугруппы

Определение. На множестве G задана (определена) бинарная операция, обозначаемая «·», если каждой упорядоченной паре элементов $a,b \in G$ поставлен в соответствие элемент снова из G, обозначаемый $a \cdot b$ и называемый произведением a и b. Само множество G при этом называется *группоидом*.

Если G — конечное множество, то бинарную операцию можно задавать с помощью таблицы Кэли (табл. 1).

Таблица 1

$$G = \{g_1, \dots, g_n\}$$

Верно и обратное утверждение: любая таблица Кэли, т. е. таблица указанного вида, заполненная элементами из $G = \{g_1, ..., g_n\}$, определяет группоид.

Если для обозначения операции используется «·», то операция группоида записывается мультипликативно.

Определение. Пусть G — группоид с мультипликативной записью бинарной операции. Тогда G называется полугруппой,

если в G выполняется ассоциативный закон: $\forall a, b, c \in G$ (ab)c = a(bc).

Определение. Пусть G — группоид с мультипликативной операцией. Элемент $e \in G$. Тогда e называется *правой единицей* G, если $\forall a \in G$ ae = a и e называется *левой единицей*, если $\forall a \in G$ ea = a. Если e одновременно и правая, и левая единица, то e называется просто eдиницей (либо двусторонней единицей).

Лемма. Если в группоиде G имеются правая единица e_1 и левая единица e_2 , то они совпадают.

Доказательство. $e_1 = e_1 e_2 = e_2 \Rightarrow e_1 = e_2$.

Следствие. Если в группоиде G имеется единица, то она определяется однозначно. В то же время отдельно левых и отдельно правых единиц может быть бесконечно много.

Определение. Пусть G — группоид, $0 \in G$. 0 — называется *правым нулем* G, если $\forall a \in G$ a0 = 0 и 0 называется *левым нулем*, если $\forall a \in G$ 0a = 0. Если 0 одновременно и правый, и левый ноль, то 0 называется двусторонним нулем.

Для нулей имеют место предыдущие лемма и следствие.

Определение. Группоид *G* называется *полугруппой*, если для любых $a,b,c \in G$ (ab)c = a(bc), т. е. операция в *G* ассоциативна.

Определение. Полугруппа с единицей называется моноидом.

Примеры полугрупп.

- 1) \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} полугруппы относительно обычного сложения чисел и относительно обычного умножения чисел.
- 2) $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}, \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}, \mathbb{R}^* = \mathbb{R} \setminus \{0\}, \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ полугруппы относительно обычного умножения чисел.
- 3) Обозначим T_X множество всех так называемых преобразований множества X, т. е. отображений X в себя. T_X полугруппа относительно следующего произведения преобразований: если φ , $\psi \in T_X$, то $\forall x \in X$ $x(\varphi \psi) = (x\varphi)\psi$. Если $X = \{1, ..., n\}$, то T_X обозначается T_n .

Элементы из T_n записывают в виде:

$$\varphi = \begin{pmatrix} 1 & 2 & \dots & n \\ 1\phi & 2\phi & \dots & n\phi \end{pmatrix}$$

4) Пусть X – любое множество. Определим умножение в X по формуле: $\forall x, y \in X \ xy = y$. Ассоциативность этой операции очевидна. X называется полугруппой правых нулей.

Определение. Группоид G называется *конечным*, если в нем конечное число элементов, называемое *порядком* G и обозначаемое |G|.

Определение. Подмножество H в группоиде G называется *подгруппоидом*, если для любых $x, y \in H$ $xy \in H$, т. е. H замкнуто относительно операции в G.

Ясно, что любой подгруппоид сам является группоидом и подгруппоид полугруппы является полугруппой.

Определение. Отображение f группоида G в группоид G' называется *гомоморфизмом*, если для любых $x,y \in G$ f(xy) = f(x)f(y).

Определение. Гомоморфизм f группоида G в группоид G' называется *изоморфизмом*, если f — биекция G на G'; G' при этом называется группоидом, изоморфным G (обозначение: $G \simeq G'$).

С точки зрения общей алгебры изоморфные группоиды одинаковы.

§ 2. Алгоритм Лайта

Определение. Группоид S порождается элементами $a_1, ..., a_n$, если любой элемент из S, отличный от $a_1, ..., a_n$, представлен в виде произведения $a_{i_1} ... a_{i_k}$ с некоторой правильной расстановкой скобок $(k \ge 2)$. В этом случае пишут, что $S = \{a_1, ..., a_n > 1\}$

Определение. *Операцией* (*) для элемента a из группоида S называется бинарная операция на S, определяемая формулой x * y = x(ay).

Определение. *Операцией* (\circ) для элемента a из группоида S называется бинарная операция на S, определенная формулой $x \circ y = (xa)y$.

Пусть $S = \{s_1, ..., s_n\}$. Ясно, что S — полугруппа \Leftrightarrow для любого элемента a из S таблицы Кэли для операций (*) и (°) совпадают.

Лемма. Если для любых x, y из группоида S и некоторых a, b из S x(ay) = (xa)y и x(by) = (xb)y, то $\forall x, y \in S$ x((ab)y) = (x(ab))y.

Доказательство.

$$x((ab)y) = x(a(by)) = (xa)(by) = ((xa)b)y = (x(ab))y.$$

Из леммы вытекает, что для доказательства ассоциативности операции в группоиде S достаточно проверить совпадение

(*)-таблицы Кэли и (\circ) -таблицы Кэли для каждого элемента a из некоторого множества порождающих элементов группоида S.

Проверку такого совпадения можно организовать следующим образом.

Чтобы нарисовать таблицу Кэли для (*)-операции, соответствующей элементу a, надо любой y-столбец в исходной таблице Кэли заменить на (ay)-столбец, а чтобы получить таблицу Кэли для (°)-операции, соответствующей a, надо каждую -строку в исходной таблице Кэли заменить на (xa)-строку.

Однако обе таблицы для (*) операции и (\circ)-операции рисовать не надо. Рисуем (*) таблицу Кэли и помечаем каждую - строку этой таблицы элементом xa слева. Этот элемент xa указывает, с какой строкой исходной таблицы надо сравнивать помеченную этим элементом строку рассматриваемой (*)-таблицы.

Пример. Пусть группоид S задан таблицей Кэли (табл. 2): Таблица 2

	a	b	c	d
а	b	а	d	С
b	а	b	С	d
С	d	С	b	a
d	С	d	а	b

Ясно, что $S = \langle a, d \rangle$. Проверим совпадение (*)-операции и (°)-операции для элемента a. Таблица Кэли для (*)-операции с помеченными, как указано выше, строками, имеет вид (табл. 3):

Таблица 3

	b	a	d	c
b	а	b	С	d
а	b	а	d	С
d	С	d	а	b
С	d	С	b	а

Первую строку этой таблицы в соответствии с меткой слева сравниваем с b-строкой исходной таблицы Кэли. Получим совпадение строк. Вторую строку данной (*)-таблицы сравниваем с a-строкой исходной таблицы.

Получим опять совпадение. И, наконец, сравнивая третью строку данной таблицы с d-строкой исходной таблицы, а четвертую строку данной таблицы с c-строкой исходной таблицы, снова получим совпадение строк. Значит, (*)-операция и (\circ)-операция для элемента a совпадают.

Аналогично строим (*)-таблицу для элемента d (табл. 4).

Таблица 4

	C	d	a	b
C	d	С	b	а
d	С	d	а	b
а	b	а	d	С
b	а	b	С	d

Повторяя процесс сравнения строк этой таблицы с соответствующими строками исходной таблицы Кэли, рассмотренной выше, получим снова требуемые совпадения (читатель непременно должен в этом убедиться). Значит,

(*)-операция и (°)-операция совпадают и для элемента d.

Следовательно, с учетом леммы S — полугруппа.

Упражнения для самостоятельной подготовки

1. Доказать ассоциативность операции, заданной таблицей Кэли (табл. 5).

Таблица 5

	а	b	С	d	e	f
а	С	e	f	b	d	а
b	d	f	e	а	С	b
С	f	d	а	е	b	С
d	b	а	d	С	f	e
е	b	а	d	С	f	e
f	а	b	С	d	е	f

2. Выписать все таблицы Кэли на множестве $\{a,b\}$ с ассоциативной операцией.

§ 3. Конгруэнции и гомоморфизмы группоидов

Определение. Эквивалентность ρ на группоиде G называется конгруэнцией, если из того, что $a_1\rho a_2$ и $b_1\rho b_2$, всегда следует, что $(a_1b_1)\rho(a_2b_2)$.

Если ρ — конгруэнция на G, то на фактор-множестве можно определить бинарную операцию следующим образом: $\forall \bar{a}, \bar{b} \in G/\rho \ \bar{a}\bar{b} = \bar{a}\bar{b}$. Проверим корректность этого определения. Пусть $\bar{c} = \bar{a}, \ \bar{d} = \bar{b}$. Тогда $c\rho a$ и $d\rho b$. Из определения выше следует, что $(cd)\rho(ab)$, а значит, $\bar{c}\bar{d} = \bar{a}\bar{b}$, и корректность доказана. Фактор-множество G/ρ с данной бинарной операцией называется фактор-группоидом. Очевидно, что если G — полугруппа, то и G/ρ тоже полугруппа.

Определение. Эквивалентность ρ на группоиде G называется стабильной справа (слева), если из $a\rho b$ и $c \in G$ всегда следует $(ac)\rho(bc)$ $((ca)\rho(cb))$.

Лемма 1. Эквивалентность ρ на группоиде G – *конгруэнция* $\Leftrightarrow \rho$ стабильна и слева, и справа.

Доказательство. Необходимость очевидна. Докажем достаточность. Пусть $a_1 \rho a_2$ и $b_1 \rho b_2$. Тогда $a_1 \rho a_2 \Rightarrow (a_1 b_1) \rho (a_2 b_1)$ и $b_1 \rho b_2 \Rightarrow (a_2 b_1) \rho (a_2 b_2)$, откуда в силу транзитивности ρ имеем $(a_1 b_1) \rho (a_2 b_2)$, что и требовалось доказать.

Пример 1. Построить группоид из 6 элементов с конгруэнцией ρ с тремя классами по 2 элемента и записать таблицу Кэлидля G/ρ .

Решение. Удобнее сначала составить таблицу Кэли для классов X_1, X_2, X_3 конгруэнции ρ . Составляем ее произвольным образом (табл. 6):

Таблица 6

	X_1	X_2	X_3	Затем	положим	$X_1 = \{a, b\}, X_2 =$
<i>X</i> ₁	X_3	X_2	X_1	$= \{c, d\}, X_3 =$	$\{e,f\}$ и постј	роим таблицу Кэли
X_2	<i>X</i> ₁	<i>X</i> ₁	<i>X</i> ₂	на множество	$e\{a,b,c,d,e,j\}$	$\{f\} = G$ таким обра-
X_3	X_2	X_2	X_3	зом, чтобы	произведение	любых элементов
$x_i \in X_i$ и $x_j \in X_j$ лежало в классе $X_i X_j$ в соответствии с таблицей						
выше. Здесь тоже большой элемент произвола. Например, таб-						
лица Кэли для G может быть такой (табл. 7):						

Таблица 7

	a	b	c	d	e	f
			d			
			С			
С	а	b	b	b	С	d
			а			
e	С	С	d	С	e	f
f	d	d	С	С	e	f

Задача решена.

Более трудными являются задачи обратного типа.

Пример 2. Найти нетривиальную конгруэнцию ρ для группоида $G = \{a, b, c, d,\}$ с таблицей Кэли (табл. 8):

Таблица 8

Решение. Предположим, что $a\rho b$. Тогда в силу правой стабильности ρ имеем $b\rho a$, $c\rho b$, $d\rho a$, $c\rho d$ (из первых строк таблицы), откуда $\bar{a}=G$ и ρ тривиальна.

	a	b	c	d
а	b	С	d	С
b	а	b	а	d
С	d	а	b	а
d	а	d	С	b

Предположим теперь, что $a\rho c$. Тогда из $a \mid a \mid a \mid c \mid b$ первой и третьей строки таблицы Кэли имеем $b\rho d$, $c\rho a$, $d\rho b$, $c\rho a$ в силу правой стабильности ρ и из первого столбца и третьего столбца имеем $b\rho d$, $a\rho a$, $d\rho b$, $a\rho c$. Поэтому есть надежда, что эквивалентность ρ с классами $\{a,c\}$ и $\{b,d\}$ является конгруэнцией. Проверяем эту гипотезу на исходной таблице Кэли. Она оказывается верной, и если $X = \{a,c\}, Y = \{b,d\}$, то G/ρ имеет таблицу Кэли (табл. 9):

Таблица 9

	X	Y
X	Y	X
Y	X	Y

Задача решена.

Определение. Пусть S — полугруппа. Тогда непустое подмножество L в S называется *левым идеалом* S, если $SL \subseteq L$, т. е. $\forall s \in S, \, \forall x \in L, \, sx \in L$. Аналогично определяется *правый идеал*.

Определение. Двусторонним идеалом (или просто «идеалом») полугруппы S называется подмножество I в S, являющееся одновременно и левым, и правым идеалом, т. е. $SI \subseteq S$ и $IS \subseteq I$.

Очевидно, что идеал в S любого вида является подполугруппой в S.

Пусть I — произвольный идеал в полугруппе S. Определим эквивалентность ρ на S следующим образом: $\forall a \in S$ при $a \notin I$, $\bar{a} = \{a\}$ и при $a \in I$ $\bar{a} = I$.

Лемма 2. Определенная выше эквивалентность ρ – конгруэнция.

Доказательство. Пусть $a\rho b$, $c \in S$. Если $a \notin I$, то b = a и то, что $(ac)\rho(bc)$ и $(ca)\rho(cb)$, является очевидным.

Если $a \in I$, то $b \in I$, и т. к. I – идеал, то $ac\rho bc$ и ρ стабильно и справа, и слева. Значит, по лемме 1 ρ – конгруэнция.

Определение. Фактор-полугруппа S/ρ по конгруэнции, описанной выше, называется фактор-полугруппой Риса по идеалу I (или по модулю I) и обозначается S/I.

Лемма 3. Пусть $f: S \to S'$ – гомоморфизм группоидов. Тогда отношение ρ на S такое, что $a\rho b \Leftrightarrow f(a) = f(b)$ является конгруэнцией.

Доказательство. Пусть $a\rho b$ и $c \in S$. Тогда f(a) = f(b), откуда f(ac) = f(a)f(c) = f(b)f(c) = f(bc), т. е. $ac\rho bc$ и, значит, ρ стабильно слева. Аналогично, ρ стабильно справа и, следовательно, ρ – конгруэнция.

Рассмотренное выше отношение ρ , называется *ядром гомо-морфизма* f.

Лемма 4. Если ρ – произвольная конгруэнция на группоиде S, то отображение $\rho: S \to \frac{S}{\rho}$, определенное формулой $f(s) = \bar{s} \ \forall s \in S$, является гомоморфизмом S на S/ρ .

Отображение f из леммы 4 называется *каноническим* и обозначается как ϵ_{0} .

Теорема. Пусть f – гомоморфизм группоида S на группоид S', а ρ – его ядро. Тогда существует однозначно определенный изоморфизм $S/\rho \to S'$ такой, что $\forall s \in S$ $f(s) = \varphi(\epsilon_{\rho}(s))$.

Доказательство. Гомоморфизм ϕ удовлетворяет равенству выше $\Leftrightarrow \forall s \in S$ $f(s) = \phi(\bar{s})$, т. е. ϕ определяется однозначно. Докажем корректность последней формулы. Если $\bar{s}=\bar{t}$, то $s\rho t$, откуда f(s) = f(t), т. е. $\phi(\bar{s}) = \phi(\bar{t})$, и корректность доказана. Гомоморфность ϕ очевидна. Докажем инъективность.

Пусть $\varphi(\bar{s}) = \varphi(\bar{t})$. Тогда f(s) = f(t), т. е. $s \rho t$ и, значит, $\bar{s} = \bar{t}$, откуда следует инъективность. И, наконец, $\forall s' \in S' \exists s \in S$ такой, что f(s) = s' в силу сюръективности f, а значит, $s' = \varphi(\bar{s})$, и сюръективность φ доказана.

Содержание теоремы иллюстрируется диаграммой (рис. 16).

Рис.16

§ 4. Группы

Определение. Группоид *G* (полугруппа) называется *комму- тативным*, если выполняется закон коммутативности, то есть ab = ba для всех $a, b \in G$.

Если для записи операции в группоиде используется знак , то говорят об аддитивной записи. Коммутативный закон имеет вид a+b=b+a.

Ассоциативный закон: (a + b) + c = a + (b + c).

Единичный элемент в группоиде G в случае аддитивной записи обозначается нулем: $a = a + 0 = 0 + a \ \forall a \in G$.

Кроме того, при необходимости для записи бинарных отношений используются и другие обозначения: a * b или $a \circ b$, $a \oplus b$.

Определение. Пусть G — множество с бинарной операцией, записываемой мультипликативно. Тогда G называется группой, если:

- 1) $(ab)c = a(bc) \ \forall a, b, c \in G$;
- 2) Существует элемент 1 g G такой, что $\forall a \in G$ a1 = 1a = a (1 единица группы);
- 3) $\forall a \in G \; \exists b \in G \; \text{такой, что} \; ab = ba = 1(b = a^{-1} \text{обратны}$ к a)

Следствие 1. В группе G выполняются законы сокращения: $ab = ac \Leftrightarrow b = c, ba = ca \Leftrightarrow b = c, \forall a, b, c \in G.$

Доказательство.

$$ab = ac \Leftrightarrow a^{-1}(ab) = a^{-1}(ac) \Leftrightarrow (a^{-1}a)b = (a^{-1}a)c \Leftrightarrow$$

 $1b = 1c \Leftrightarrow b = c.$

Следствие 2. a^{-1} определяется однозначно для любого $a \in G$.

Доказательство. Пусть b и c – обратные к a. Тогда ab=1, ca=1, откуда c=c1=c(ab)=(ca)b=1b=b.

Следствие 3. Если ab = 1, то $b = a^{-1}$.

Доказательство.

Пусть ab=1. Тогда $a^{-1}(ab)=a^{-1}1=a^{-1}$, т. е. $(a^{-1}a)b=1$

Определение. Если в группе G выполняется закон коммутативности, т. е. $\forall a, b \in G$ ab = ba, то G называется коммутативной, но чаще абелевой группой.

Операцию в абелевой группе обычно записывают аддитивно. Для аддитивной записи аксиомы группы будут выглядеть следующим образом:

$$1)(a + b) + c = a + (b + c) \ \forall a, b, c \in G;$$

2)
$$a + 0 = 0 + a = a \ \forall a \in G$$
;

3) $\forall a \in G \; \exists \; b \in G \;$ такой, что $a+b=b+a=0 \; (b=-a-$ противоположный элемент к a);

Для абелевой группы – аксиома коммутативности:

4)
$$a + b = b + a$$
.

Пример.

1. $\mathbb{N} = \{1, 2, ...\}$, операция – обычное сложение чисел;

- 1) замкнутость, $\forall a, b \in \mathbb{N}, a + b \in \mathbb{N}$ –верно;
- 2) (a + b) + c = a + (b + c);
- 3) $a + 0 = a \ \forall a$, Ho $0 \notin \mathbb{N}$;
- 4) a + b = b + a.

Таким образом, \mathbb{N} – коммутативная полугруппа без единицы, относительно обычного сложения.

- 2. \mathbb{N} = {1,2, ...}, операция − обычное умножение чисел:
 - 1) $\forall a, b \in \mathbb{N}, ab \in \mathbb{N}$ –верно;
 - 2) (ab)c = a(bc);
 - 3) $1a = a1 \forall a \Rightarrow 1$ единичный элемент;
 - 4) $2 \cdot \frac{1}{2} = 1$, но $\frac{1}{2}$ ∉ N.

Таким образом, \mathbb{N} – коммутативный моноид относительно обычного умножения.

- 3. \mathbb{Z} , операция обычное сложение чисел:
 - 1) (a + b) + c = a + (b + c)
 - 2) $a + 0 = 0 + a = a \forall a \in \mathbb{Z}$.
 - 3) $\exists b \in \mathbb{Z}$ такой, что a + b = b + a = 0 (b = -a).

 \mathbb{Z} —абелева группа относительно обычного сложения.

- 4. Q абелева группа относительно обычного сложения
- 5. \mathbb{R} абелева группа относительно обычного сложения
- 6. \mathbb{C} абелева группа относительно обычного сложения.
- 7. $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$ коммутативный моноид относительно умножения чисел, но не группа:
 - 1) $ab \in \mathbb{Z} \setminus \{0\}$ при $a, b \in \mathbb{Z} \setminus \{0\}$;

- 2) ассоциативность есть;
- 3) коммутативность есть;
- 4) $1a = a1 = a \ \forall a \in \mathbb{Z}^*$;
- 5) $2^{-1} = \frac{1}{2} \notin \mathbb{Z}^*$.
- 8. $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$ относительно умножения абелева группа:
 - 1) $ab \in \mathbb{Q} \setminus \{0\}$, при $a, b \in \mathbb{Q} \setminus \{0\}$;
 - 2) ассоциативность есть;
 - 3) коммутативность есть;
 - 4) $1a = a1 = a \ \forall a \in \mathbb{Z}^*$;

5)
$$\left(\frac{p}{q}\right)^{-1} = \frac{q}{p} \in \mathbb{Q}^*$$
, при $\frac{p}{q} \in \mathbb{Q}^*$.

- 9. $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ абелева группа относительно умножения.
- 10. $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ абелева группа относительно умножения.

Рассмотренные выше примеры – числовые группы и полугруппы.

- 11. $G = GL(n, \mathbb{R})$ —множество всех невырожденных квадратных вещественных матриц -го порядка.
 - $1)A, B \in G \Rightarrow AB \in G \ (|A| \neq 0, |B| \neq 0 \Rightarrow |AB| = |A||B| \neq 0 \Rightarrow AB \in G)$, т. е. G замкнуто относительно умножения матриц;
 - 2) $(AB)C = A(BC) \forall A, B, C \in G$;

$$3)EA = AE = A$$
, где $E = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$

4) Если $A \in G$, то $\exists A^{-1}: AA^{-1} = A^{-1}A = E$.

Заметим, что свойства 2-4 известны из линейной алгебры.

G называется общей линейной группой над \mathbb{R} .

 $AB \neq BA$ в общем случае при $n \geq 2$, т. е. $GL(n, \mathbb{R})$. Группа не является абелевой.

- 12. $G = GL(n, \mathbb{Q})$ общая линейная группа над \mathbb{Q} .
- 13. $G = GL(n, \mathbb{C})$ общая линейная группа над \mathbb{C} .

Определение. Пусть G — группа. Тогда ее подмножество $H \neq \emptyset$ называется *подгруппой*, если:

- 1. H замкнуто относительно операции произведения: $\forall x, y \in H \ xy \in H;$
- 2. H замкнуто относительно операции взятия обратного элемента: $\forall x \in H, x^{-1} \in H$.

То, что H – подгруппа, обозначается как $H \leq G$.

Следствие 1. Единица группы всегда лежит в любой ее подгруппе.

Доказательство. Пусть $H \le G$. Тогда $x \in H \Rightarrow x^{-1} \in H$, $xx^{-1} \in H \Rightarrow 1 \in H$,

Что и требовалось доказать.

Следствие 2.

Если G — конечная группа, то второе условие в определении подгруппы можно опустить.

Доказательство. Пусть $|G| < \infty$, H замкнуто относительно умножения в группе G, |H| = s, $x \in H$.

Так как $|H| < \infty$, то существуют натуральные числа s,t, где t > s такие, что $x^t = x^s$. Тогда $x^{t-s} = 1$ и $x^{-1} = x^{t-s-1} \in H$, т. к. $t-s-1 \ge 0$.

Следствие 3. Из определения подгруппы следует, что любая подгруппа является группой относительно операции в исходной группе.

Тривиальные примеры подгрупп группы G:

- 1) {1} единичная подгруппа;
- 2) сама группа G является собственной подгруппой.

Если H – подгруппа в группе G, то пишут $H \leq G$.

Определение. Подгруппа H группы G называется собственной подгруппой группы G, если H не совпадает с группой G.

Определение. Пусть G — группа, X — непустое подмножество в G. Тогда говорят, что группа G порождается множеством X, если любой элемент $g \in G$, $g \ne 1$ можно представить в виде произведения элементов из X с показателями ± 1 :

$$g = x_1^{\delta_1} \cdot ... \cdot x_k^{\delta_k}$$
, где $\forall i \ x_i \in X$, $\varepsilon_i = \pm 1$.

X называется системой образующих (порождающих) группы G. Если X конечно, то группу G называют конечнопорожденной независимо от конечности X и пишут G = < X >.

Определение. Пусть G — группа, $X \subseteq G, X \neq \emptyset$. Подгруппой группы G, порожденной множеством X, называется наименьшая подгруппа в G, содержащая X.

Утверждение. Подгруппа группы G, порожденная множеством X, состоит из всевозможных произведений вида $x_1^{\delta_1} \cdot ... \cdot x_k^{\delta_k}$, где $\forall i \ x_i \in X$, $\varepsilon_i = \pm 1$.

Доказательство очевидно.

Упражнения для самостоятельной подготовки

- 1. Какие из указанных числовых множеств с операциями являются группами:
 - а) A относительно обычной операции сложения, где $A=\mathbb{N}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} или \mathbb{C} .
 - б) A относительно обычной операции умножения, где $A=\mathbb{N}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} или \mathbb{C} .
 - в) $A^* = A\{0\}$ относительно обычного умножения чисел, где $A = \mathbb{N}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} или \mathbb{C} .
 - г) $n\mathbb{Z}=\{n\mathbb{Z}|z\in\mathbb{Z}\}$ относительно обычного сложения чисел.
 - д) множество всех комплексных корней фиксированной степени n из 1 относительно умножения.
 - е) множество комплексных корней всех степеней из 1 относительно умножения.
 - 2. Доказать, что если группа имеет конечную систему порождающих, то из любой системы порождаю-

щих можно выбрать конечную подсистему, порождающую всю группу.

§ 5. Циклические группы

Определение. *Порядок* |a| элемента a в группе G — это наименьшее натуральное число n со свойством $a^n = 1$. Если $a^n \neq 1 \ \forall \ n \in \mathbb{N}$, то a называется элементом бесконечного порядка.

Теорема 1. Пусть |a| = n. Тогда

- 1) $a^m = 1 \Leftrightarrow n|m$;
- 2) $\forall m \in \mathbb{Z} \ a^m = a^r$, где r остаток от деления m на n.

Доказательство. Докажем достаточность первого утверждения 1. $n|m \Rightarrow m = nk$ для некоторого целого k. Тогда $a^m = (a^m)^k = 1^k = 1$.

Докажем теперь вторую часть теоремы

Пусть m=nq+r, где r- остаток от деления m на n. Тогда $a^m=a^{nq}\cdot a^r=1\cdot a^r=a^r$, и теорема доказана.

Докажем, наконец, необходимость утверждения 1.

Пусть $a^m=1$. По пункту 2: $a^m=a^r$, где $0 \le r \le n-1$. Имеем $a^r=1$, Отсюда в силу минимальности n имеем r=0. Теорема доказана.

Определение. Группа G называется *циклической*, если в G найдется элемент a такой, что любой элемент из G является целой

степенью элемента a. G обозначается в этом случае как < a >, элемент a называется порождающим элементом группы G.

Теорема 2. Пусть G = < a > и G конечная группа порядка n. Тогда

- 1) $G = \{1, a, ..., a^{n-1}\}$ u |a| = n;
- 2) $G = \langle a^k \rangle \Leftrightarrow k$ взаимно просто с n;
- 3) любая подгруппа группы G циклична, причем для любого делителя m числа n существует ровно одна подгруппа G порядка m.

Доказательство. Заметим прежде всего, что утверждение 1-е следует из 2-го теоремы 1.

Докажем пункт 2 теоремы 2. Пусть k и n взаимно просты.

Тогда по известной теореме теории чисел существуют целые x, y такие, что kx + ny = 1. Тогда $a = a^{kx} \cdot a^{ny} = (a^k)^x$, т. е. a является целой степенью элемента a^k . Тогда $G = \langle a^k \rangle$.

Предположим теперь, что k не взаимно просто с n, т. е. существует натуральное $d \ge 2$, делящее k и n. Предположим, что $a = (a^k)^x$ для некоторого целого x. Тогда $a = a^{kx}$ и $a^{kx-1} = 1$. Отсюда kx - 1 делится на n по теореме 1, т. е. kx - 1 = nq для некоторого целого q и 1 = kx - nq. Отсюда $d \mid 1$. Противоречие, которое доказывает утверждение 2.

Докажем пункт 3. Пусть H < G, |H| = m. Тогда по теореме Лагранжа m|n. Очевидно, что $\left|a^{\frac{n}{m}}\right| = m$. Следовательно, $< a^{\frac{n}{m}} > -$ циклическая группа порядка m. Пусть $x \in G$, |x| = k|m, $x = a^l$.

Имеем $a^{lm}=1$, откуда lm делится на n, т. е. l делится на $\frac{n}{m}$, $x \in <a\frac{n}{m}>$, что доказывает единственность подгруппы порядка m в G. Теорема доказана.

Теорема 3. Все циклические подгруппы одного конечного порядка изоморфны. Бесконечная циклическая подгруппа изоморфна группе $\mathbb Z$ относительно обычного сложения.

Доказательство. Пусть < a > u < b > - две циклические подгруппы порядка n. Определим отображение φ : $< a > \rightarrow < b >$ следующим образом:

$$\varphi(a^k) = b^k \ \forall k \in \mathbb{Z}.$$

Это определение корректно, т.к. если $a^k=a^m$, то $a^{k-m}=1$, отсюда k-m делится на n, и тогда $b^{k-m}=1$ и $b^k=b^m$, т. е. $\phi(a^k)=\phi(a^m)$.

$$\phi$$
 гомоморфно, т. к. $\phi(a^k \cdot a^m) = \phi(a^{k+m}) = b^{k+m} = \phi(a^k)\phi(a^m)$.

Инъективность ϕ также очевидна: $\phi(a^k) = \phi(a^m) \Rightarrow b^k = b^m \Rightarrow k-m$ делится на $n \Rightarrow a^{k-m} = 1 \Rightarrow a^k = a^m$.

Сюръективность φ очевидна. Следовательно, φ — изоморфизм < a > на < b >. Теорема доказана для конечного случая. Вторая часть теоремы доказывается аналогично.

Пример. Пусть $G = \langle a \rangle, |G| = 20$. Изобразим схематично все подгруппы группы G. Сначала составим диаграмму Хассе

множества $X = \{1, 2, 3, 5, 10, 20\}$ всех делителей 20 относительно отношения делимости (рис. 17):

Рис. 17

Затем в соответствии с пунктом 3 теоремы 2 строим схему подгруппы G (рис. 18):

Рис. 16

Упражнения для самостоятельной подготовки

Составить схему подгруппы в циклической группе < a > порядка 36.

§ 6. Группы подстановок

Определение. *Подстановкой* на конечном множестве X называется любое биективное преобразование этого множества, то есть взаимно однозначное отображение X на себя.

Множество всех подстановок на X обозначим S_X .

В теории групп подстановок есть два способа записи действия подстановки π на элемент $x \in X$: $\pi(x)$ или $(x)\pi$. В данной главе используем второй способ. Вместо $(x)\pi$ иногда пишем $x(\pi)$ или $x\pi$.

Определение. Произведение $\alpha\beta$ подстановок α и β из S_X определяется формулой: $\forall x \in X \ x(\alpha\beta) = (x\alpha)\beta$, то есть на x сначала действует α , а потом на то, что получилось, действует β .

Определение. *Единичной (или тождественной) подстанов- кой* на X называется такая подстановка ε_X , которая любой элемент x из X оставляет на месте, то есть $\forall x \in X \ x(\varepsilon_X) = x$.

Теорема. S_X с бинарной операцией умножения подстановок, определенной выше, является группой.

Доказательство. Сначала проверим замкнутость S_X относительно рассматриваемого умножения подстановок. Достаточно доказать в силу конечности X, что если α , $\beta \in S_X$, то $\alpha\beta$ – инъективно.

В самом деле, пусть $x(\alpha\beta) = y(\alpha\beta)$. Тогда $(x\alpha)\beta = (y\alpha)\beta$, Отсюда $x\alpha = y\alpha$ в силу инъективности β и, наконец, x = y, так как α — инъективно.

Докажем ассоциативность умножения подстановок. Пусть $\alpha, \beta, \gamma \in S_{X_i} \ x \in X$.

Тогда
$$x((\alpha\beta)\gamma) = (x(\alpha\beta))\gamma = ((x\alpha)\beta)\gamma = (x\alpha)(\beta\gamma) =$$

= $x(\alpha(\beta\gamma))$. Отсюда в силу произвольности $x(\alpha\beta)\gamma = \alpha(\beta\gamma)$.
Далее, $\forall x \in X \ x(\alpha\epsilon_X) = (x\alpha)\epsilon_X = (x)\alpha$ и $x(\epsilon_X\alpha) =$

 $(x(\varepsilon_X))(\alpha) = (x)\alpha$. Отсюда $\alpha \varepsilon_X = \varepsilon_X \alpha = \alpha$.

U, наконец, если $\alpha \in S_X$, то определено преобразование β множества X следующим образом:

$$x\beta = y \Leftrightarrow y\alpha = x$$
.

Так как $y_1\alpha=y_2\alpha$ влечет $y_1=y_2$ в силу инъективности α , то данное определение β корректно. Далее, $x_1\beta=x_2\beta=z$ влечет $(z)\alpha=x_1,\ (z)\alpha=x_2,\$ Отсюда в силу однозначности $\alpha\ x_1=x_2.$ Значит $\beta\in S_X$. Очевидно, что $\forall x\in X\ x(\alpha\beta)=x$ и $x(\beta\alpha)=x.$ Стало быть, $\alpha\beta=\beta\alpha=\epsilon_X.$

Итак, мы проверили все три групповые аксиомы для произведения подстановок.

Теорема доказана.

Если $X = \{1, 2, ..., n\}$, то S_X обозначается как S_n и называется симметрической группой степени n.

Далее, если $\pi \in S_n$, то удобно π записывать в следующем виде: $\begin{pmatrix} 1 & 2 & ... & n \\ (1)\pi & (2)\pi & ... & (n)\pi \end{pmatrix}$. Подстановки в таком виде удобно перемножать.

Пример.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 4 & 2 & 1 & 6 \end{pmatrix}.$$

При записи подстановки π из S_n необязательно числа в верхней строке записывать в порядке возрастания: главное, чтобы под каждым элементом верхней строки внизу стоял его образ под действием π . И еще: столбцы в данной подстановке π с одинаковыми элементами вверху и внизу можно опускать.

Например, если
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 6 & 5 & 4 \end{pmatrix} \in S_6$$
,

то
$$\pi = \begin{pmatrix} 1 & 2 & 4 & 6 \\ 2 & 1 & 6 & 4 \end{pmatrix}$$
, так как $3\pi = 3$ и $5\pi = 5$.

Разложение подстановки в произведение независимых пиклов

Определение. *Циклом длины k*, где $k \ge 2$, называется подстановка вида $\begin{pmatrix} i_1 & i_2 & ... & i_k \\ i_2 & i_3 & ... & i_1 \end{pmatrix}$, которая обозначается $(i_1, ... i_k)$.

Определение. Цикл (ij) длины 2 называется *транспозицией*, а цикл (ijk) длины 3 называется *тройным циклом*.

Определение. Два цикла называются *независимыми*, если множества элементов, передвигаемых этими циклами, не пересекаются.

Теорема 1. Любая подстановка π из S_n , отличная от ε_X , представима в виде произведения попарно независимых циклов, причем это представление однозначно с точностью до перестановки этих циклов.

Доказательство. Доказательство существования такого разложения для π проведем индукцией по n. Так как $\pi \neq \epsilon_X$, то существует число $m \leq n$ такое, что $m\pi \neq m$.

Ввиду конечности множества, на котором действует π , существует такое наименьшее $l \geq 2$, что $m\pi^l = m\pi^k$ для некоторого целого неотрицательного k < l.

Если $k \geq 1$, то $m\pi^{l-k} = m = m\pi^0$, что противоречит минимальности l. Стало быть, элементы $m, m\pi, ..., m\pi^{l-1}$ попарно различны, а $m\pi^l = m$, то есть $\alpha = \begin{pmatrix} m & m\pi & ... & m\pi^{l-1} \\ m\pi & m\pi^2 & ... & m \end{pmatrix}$ —

цикл $(m, m\pi, ..., m\pi^{l-1})$ длины l. По предположению индукции π как подстановка на множестве $\{1, ..., n\} \setminus \{m, m\pi, m\pi^{l-1}\}$ представима в виде произведения попарно независимых циклов $\alpha_1, \alpha_2 ..., \alpha_s$. Тогда $\pi = \alpha \alpha_1 \alpha_2 ... \alpha_s$ — требуемое представление для π как подстановки из S_n . Теорема доказана.

Следствие. Любая подстановка из S_n представляется в виде произведения транспозиций.

Доказательство. Заметим, что цикл $\tau = (\alpha_1, \alpha_2 ..., \alpha_k) = (\alpha_1 \alpha_2)(\alpha_1 \alpha_3) ... (\alpha_1 \alpha_k)$, так как под действием правой части $\alpha_1 \to \alpha_2, \alpha_2 \to \alpha_1 \to \alpha_3, \alpha_3 \to \alpha_1 \to \alpha_4, ..., \alpha_k \to \alpha_1$. Теперь из теоремы 1 следует требуемое.

Пример. Разложить в произведение независимых циклов подстановку

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 7 & 2 & 5 \end{pmatrix} \in S_8.$$

Считаем: $1\pi = 3, 3\pi = 4, 4\pi = 1$. Получили цикл (134) длины 3.

Далее берем любой элемент, отличный от 1, 3, 4, например 2.

Считаем аналогично: $2\pi = 6, 6\pi = 7, 7\pi = 2$. Получили еще один цикл (267).

Теперь берем любой элемент, не содержащийся в построенных иклах, например 5. Имеем: $5\pi = 8,8\pi = 5$, то есть получили цикл длины 2.

Otbet: $\pi = (134)(267)(58)$.

Четные и нечетные подстановки

Лемма 1. Если транспозицию (*ij*) умножить слева на подстановку $\pi = \begin{pmatrix} \dots & i & \dots & j & \dots \\ \dots & \alpha_i & \dots & \alpha_j & \dots \end{pmatrix}$, то α_i и α_j поменяются местами, в остальном π не изменится.

Доказательство. При умножении $\tau = (ij)$ на π произойдет следующее: $i \stackrel{\tau}{\to} j \stackrel{\pi}{\to} \alpha_j, \ j \stackrel{\tau}{\to} i \stackrel{\pi}{\to} \alpha_i, \ a$ если s не принадлежит $\{i,j\}$, то $s \stackrel{\tau}{\to} s \stackrel{\pi}{\to} \alpha_s$, то есть образ s под действием $\tau \pi$ равен образу s под действием π . Лемма доказана.

Определение. Перестановкой n-го порядка называется любая последовательность без повторений натуральных чисел от 1 до n.

Определение. Два числа α и β в перестановке образуют *инверсию*, если $\alpha > \beta$ и α стоит в данной перестановке раньше β .

Определение. Перестановка называется *четной*, если в ней четное число инверсий, в противном случае – *нечетной*.

Лемма 2. При перестановке двух чисел в перестановке ее четность меняется на противоположную.

Доказательство. Пусть сначала меняются местами рядом стоящие α и β . Тогда число инверсий либо уменьшается на 1 (при $\alpha > \beta$), либо увеличивается на 1 (при $\alpha < \beta$), то есть в любом случае четность перестановки меняется.

Пусть теперь между α и β находятся k чисел $\alpha_1, \alpha_2 \dots, \alpha_k$. Поменять местами α и β можно следующим образом: β менять

местами с числами, стоящими слева, до того момента, когда он не встанет на место α , причем α будет находиться справа от него. Затем α меняем с $\alpha_1,\alpha_2...$, α_k , пока α не встанет на старое место β . В результате получим подстановку, в которой лишь α и β поменялись местами по сравнению с исходной подстановкой. Однако результирующая подстановка получилась в результате k+1+k=2k+1 перемен местами соседних чисел, т. е. 2k+1 раз менялась четность подстановки. Следовательно, четность результирующей подстановки отличается от четности исходной. Лемма доказана.

Определение. Подстановка $\pi = \begin{pmatrix} 1 & 2 & ... & n \\ \alpha_1 & \alpha_2 & ... & \alpha_n \end{pmatrix}$ называется *четной*, если перестановка $\alpha_1, \alpha_2 \dots, \alpha_n$ четная, в противном случае π – *нечетная*.

Теорема 2. $\pi = \begin{pmatrix} 1 & 2 & ... & n \\ \alpha_1 & \alpha_2 & ... & \alpha_n \end{pmatrix}$ четная $\Leftrightarrow \pi$ можно представить в виде произведения четного числа транспозиций.

Доказательство. Заметим прежде всего то, что любая транспозиция — нечетная подстановка, и по леммам 1, 2 при умножении подстановки на транспозицию слева ее четность меняется. Следовательно, четные подстановки — это те подстановки, которые могут быть представлены в виде произведения четного числа транспозиций. Теорема доказана.

Теорема 3. Число нечетных подстановок в S_n равно $\frac{1}{2}n!$ и все четные подстановки образуют подгруппу в S_n .

Доказательство. Пусть M и N — множество всех четных и нечетных подстановок в S_n соответственно. Определим отображение $\phi: M \to N$: $\forall \pi \in M \ \phi(\pi) = (12)\pi$.

Ясно, что ϕ – инъекция M в N. Пусть π' – любая нечетная подстановка. Тогда $(12)\pi'$ – четная подстановка и π' = $= \phi((12)\pi')$, Отсюда ϕ – сюръекция M на N, а значит, и биекция M и N (инъективность была отмечена выше). Следовательно, |M| = |N|.

То, что M — подгруппа в S_n , следует из того, что единичная подстановка четна, и из теоремы 2.

Подгруппа всех четных подстановок в S_n обозначается A_n и называется знакопеременной группой n-й степени.

В виду теоремы $3 |A_n| = \frac{1}{2} n!$

Теорема 4. Любая неединичная подстановка из A_n представима в виде произведения тройных циклов.

Доказательство. Заметим, что (ij)(ik) = ijk и (ij)(kl) = (ilj)(jkl) (это легко проверить в качестве упражнения). Теперь справедливость теоремы 4 следует из теоремы 2.

Пример. Представить четную подстановку

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 5 & 6 & 8 & 1 & 7 \end{pmatrix}$$
 в виде произведения транспозиций и в виде произведения тройных циклов.

Сначала представим т в виде произведения попарно независимых циклов: $\pi = (145687)(23)$, затем, используя формулу в доказательстве следствия к теореме 1, получим (145687) = = (14)(15)(16)(18)(17) и $\pi = (14)(15)(16)(18)(17)(23)$. Далее, используя формулы в доказательстве теоремы 4, получим (14)(15) = (145), (16)(18) = (168), (17)(23) = (137)(723)и в результате имеем $\pi = (145)(168)(137)(237)$.

Упражнения для самостоятельной подготовки

1. Перемножить подстановки в указанном и обратном порядках:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 2 & 4 \end{pmatrix}$$

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 2 & 4 \end{pmatrix}$$

6) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 1 & 6 & 2 & 4 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 2 & 1 & 5 \end{pmatrix}$

2. Записать в виде произведения независимых циклов подстановки:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 1 & 7 & 3 & 6 & 2 \end{pmatrix}$$

6)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & \dots & 2n-1 & 2n \\ 2 & 1 & 4 & 3 & \dots & 2n & 2n-1 \end{pmatrix}$$

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 1 & 7 & 3 & 6 & 2 \end{pmatrix}$$

6) $\begin{pmatrix} 1 & 2 & 3 & 4 & \dots & 2n-1 & 2n \\ 2 & 1 & 4 & 3 & \dots & 2n & 2n-1 \end{pmatrix}$
B) $\begin{pmatrix} 1 & 2 & 3 & \dots & n & n+1 & n+2 & \dots & 2n \\ n+1 & n+2 & 4 & \dots & 2n & 1 & 2 & \dots & n \end{pmatrix}$

- 3. Записать в виде таблицы подстановки:
- a) (136)(247)(5)
- б) (1 6 5 4 2 3 7)
- B) $(1 \ 3 \ 5 \dots 2n 1)(2 \ 4 \ 6 \dots 2n)$
- 4. Перемножить подстановки:
- a) $((135)(2467)) \times ((147)(2356))$
- $6)((13)(57)(246))\times((135)(24)(67))$
- 5. Определить четность подстановок:

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 4 & 7 & 2 & 1 & 3 \end{pmatrix}$$

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 4 & 7 & 2 & 1 & 3 \end{pmatrix}$$

6) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 2 & 1 & 6 & 4 & 8 & 7 \end{pmatrix}$
B) $\begin{pmatrix} 3 & 5 & 6 & 4 & 2 & 1 & 7 \\ 2 & 4 & 1 & 7 & 6 & 5 & 3 \end{pmatrix}$

- 6. Определить четность подстановок:
- a) (123...k)
- $6) (i_1 i_2 i_3 i_4 \dots i_k)$
- B) (1 4 7 3)(6 7 2 4 8)(3 2)
- 7. Доказать, что всякая перестановка $\sigma \in S_n$ может быть представлена как произведение транспозиций вида
 - a) (12), (13), ..., (1, n)
 - б) (12), (23), ..., (n-1,n)
- 8. Доказать, что всякая перестановка $\sigma \in S_n$ может быть представлена как произведение нескольких сомножителей, равных циклам (12) и (1 2 3 ... n).

9. Доказать, что всякая четная подстановка может быть представлена как произведение циклов вида (123), (124), ..., (12n).

§ 7. Матричные группы

Определение. Пусть $F - \mathbb{Q}$, \mathbb{R} или \mathbb{C} . Тогда *полной линейной группой GL*(n, F) степени n над F называется множество всевозможных невырожденных матриц порядка n с элементами из F, с бинарной операцией умножения матриц.

То, что GL(n, F) – группа, доказано в § 4.

Определение. Специальная линейная группа SL(n,F) степени n над F — множество всех матриц порядка n с элементами из F, определитель которых равен 1.

Определение. Треугольная группа

$$T(n,F) = \left\{ \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} | \forall i \in \{1,\dots,n\} \ a_{ii} \neq 0 \right\}$$

степени n над F состоит из всевозможных невырожденных верхнетреугольных матриц.

Определение. Унитриугольная группа
$$UT(n,F) = \begin{cases} \begin{pmatrix} 1 & a_{12} & \dots & a_{1n} \\ 0 & 1 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} | \ \forall \ i,j \in \{1,\dots,n\} \ a_{ij} \in F \end{cases}$$
 степени n

над F состоит из всевозможных верхнетреугольных матриц, все диагональные элементы которых равны 1.

Определение. Ортогональная группа — множество всех матриц A из GL(n, F) с условием $A^t A = E$.

Доказательство того, что все указанные выше множества матриц являются группами, предоставляются читателям.

Упражнения для самостоятельной подготовки

- 1. Какие из указанных множеств квадратных вещественных матриц фиксированного порядка образуют группу:
- а) множество симметрических (кососимметрических) матриц относительно сложения;
- б) множество симметрических (кососимметрических) матриц относительно умножения;
- в) множество невырожденных матриц относительно сложения;
- г) множество невырожденных матриц относительно умножения;
- д) множество матриц с фиксированным определителем d относительно умножения;
 - е) множество диагональных матриц относительно сложения;
- ж) множество диагональных матриц относительно умножения;
- з) множество диагональных матриц, все элементы диагоналей которых отличны от 0, относительно умножения;
- и) множество верхних треугольных матриц относительно умножения;
- к) множество всех ортогональных матриц относительно умножения;

л) множество верхних нильтреугольных матриц, т. е. матриц

вида
$$\begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n-1,n} \\ 0 & 0 & \dots & 0 \end{pmatrix}$$
 относительно умножения;

- м) множество верхних нильтреугольных матриц относительно сложения;
- н) множество верхних унитреугольных матриц относительно умножения.
- 2. Показать, что множество $O_n(\mathbb{Z})$ всех целочисленных ортогональных матриц порядка n образует группу относительно умножения. Найти порядок этой группы.

§ 8. Смежные классы

Определение. Пусть $H \le G, x \in G$. Левым (правым) смежным классом группы G по H с представителем x называется множество $Hx = \{hx | h \in H\}$ ($xH = \{xh | h \in H\}$).

Свойства левых и правых смежных классов.

Теорема 1. Пусть $H \leq G$. Тогда верны следующие утверждения:

- 1. $\forall x \ x \in Hx$.
- 2. $y \in Hx \Rightarrow Hy = Hx$.
- 3. Разные левые смежные классы не пересекаются: $Hx \cap Hy = \emptyset$ при $Hx \neq Hy$.

Доказательство. Утверждение 1 следует из того, что $1 \in H$.

Докажем утверждение 2: $y \in Hx \Rightarrow \exists h \in H: y = hx$,

 $g \in Hy \Rightarrow \exists h' \in H : g = h'y = h'(hx) = (h'h)x \in Hx \Rightarrow$ $Hy \subseteq Hx$.

 $y=hx\Rightarrow h^{-1}y=h^{-1}hx\Rightarrow h^{-1}y=x\Rightarrow x\in Hy$ и по доказанному выше $Hx\subseteq Hy$.

Значит, Hx = Hy. Утверждение 2 доказано.

Пусть $s \in Hx \cap Hy$. Тогда $s \in Hx$ и $s \in Hy$, и по утверждению 2 Hs = Hx и Hs = Hy. Поэтому Hx = Hy. Итак, если два левых смежных класса пересекаются, то они совпадают, что эквивалентно утверждению 3.

Из теоремы следует, что различные левые смежные классы G по H образуют разбиение группы G. Аналогично для правых смежных классов. \blacksquare

Теорема 2. Если $H \le G$ и $|H| < \infty$, то любые ее левые смежные классы имеют одинаковый порядок, равный порядку H: |Hx| = |H|.

Доказательство. Рассмотрим отображение $\phi: Hx \to H$ такое, что $\phi(hx) = h$. Очевидно, что ϕ — биекция. Поэтому |Hx| = |H|. Утверждение доказано.

Теорема 3. Если $H \le G$ и $|H| < \infty$, то $\forall x, y \in G \ Hx = yH$.

Доказательство легко понять: отображение $\phi: Hx \to yH$, такое, что $\phi(Hx) = yH$ – биекция. Поэтому |Hx| = |yH|.

Определение. Пусть $H \le G$, $|G| < \infty$. Тогда её индексом |G:H| (индексом группы H в G) называется число левых смежных классов.

Теорема (Лагранжа).

Если $|G| < \infty$ и $H \le G$, то $|G| = |H| \cdot |G:H|$.

Доказательство. Из предыдущей теоремы следует, что $G = Hx_1 \cup Hx_2 \cup ... \cup Hx_s$. А из предыдущего утверждения — $|H| = |Hx_2| = \cdots = |Hx_s|$. Поэтому |G| = |H|s, т. е. $|G| = |H| \times |G:H|$.

Замечание. Ввиду теоремы 3 при $|H| < \infty, H \le G |G:H|$ – это также число и правых смежных классов G по H.

Примеры разложения группы на смежные классы.

Пример 1. Пусть $G = S_4$, H = < (132) >. Найти |H|, |G:H| и разложить G в виде объединения попарно непересекающихся левых смежных классов по H.

Решение. $(132)^2 = (123)$, $(132)^3 = (132)(123) = \varepsilon$ – тождественная подстановка. Следовательно, |H| = |132| = 3, а $|G:H| = \frac{|S_4|}{3} = \frac{24}{3} = 8$, т. е. имеется 8 различных левых смежных классов G по H. Сначала в строку выписываем элементы H: ε (132) (123).

Затем берем любую подстановку π_2 из S_4 , не принадлежащую H, и элементы класса $H\pi_2$ вписываем под элементами из H. Получаем вторую строку:

$$\varepsilon \pi_2 (132) \pi_2 (123) \pi_2$$
.

Затем берем любую подстановку π_3 , не лежащую в двух уже написанных строках, и элементы класса $H\pi_3$ вписываем под второй строкой. Продолжая процесс, мы выпишем все 8 левых классов G по H (табл. 10).

Таблица 10

$\pi_1 = \epsilon$	(132)	(123)
$\pi_2 = (12)$	(13)	(23)
$\pi_3 = (14)$	(1324)	(1234)
$\pi_4 = (24)$	(1342)	(1423)

Окончание табл. 10

$\pi_5 = (34)$	(1423)	(1243)
$\pi_6 = (124)$	(134)	(14)(23)
$\pi_7 = (234)$	(142)	(13)(24)
$\pi_8 = (243)$	(12)(34)	(143)

Следующий пример относится к так называемым бинарным группам.

Определение. *Бинарной группой* E_{2^n} называется множество всех n-ок $\bar{\alpha}=(\alpha_1,...,\alpha_n)$, где все $\alpha_i\in\{0,1\}$, причем $(\alpha_1,...,\alpha_n)+(\beta_1,...,\beta_n)=(\alpha_1+\beta_1,...,\alpha_n+\beta_n)$ и сложение в $\{0,1\}$ определяются таблицей Кэли (табл. 11):

Таблица 11

+	0	1
0	0	1
1	1	0

(такое сложение называется сложением по модулю 2).

Нетрудно проверить, что относительно данного сложения n-ок E_{2^n} является абелевой группой порядка 2^n .

Пример 2. Найти разложение E_{2^5} по подгруппе $H=<\bar{a}=(1,0,0,0,1),\ \bar{b}=(0,1,1,0,1)>.$ Поскольку $\bar{a}+\bar{a}=\bar{0},$ $\bar{b}+\bar{b}=\bar{0},$ то $H=<\bar{0},\bar{a},\bar{b},\bar{a}+\bar{b}>.$ В частности, |H|=4, |G:H|=8.

Выпишем элементы H в строку (запятые между нулями и единицами в n-ке будем опускать) и далее будем поступать, как в примере 1.

$$(0\ 0\ 0\ 0\ 0)$$
 $(1\ 0\ 0\ 0\ 1)$ $(0\ 1\ 1\ 0\ 1)$ $(1\ 1\ 1\ 0\ 0)$

$$(0\ 0\ 0\ 0\ 1)\ (1\ 0\ 0\ 0\ 0)\ (0\ 1\ 1\ 0\ 0)\ (1\ 1\ 1\ 0\ 1)$$

$$(0\ 0\ 0\ 1\ 0)$$
 $(1\ 0\ 0\ 1\ 1)$ $(0\ 1\ 1\ 1\ 1)$ $(1\ 1\ 1\ 1\ 0)$

$$(0\ 0\ 1\ 0\ 0)\ (1\ 0\ 1\ 0\ 1)\ (0\ 1\ 0\ 0\ 1)\ (1\ 1\ 0\ 0\ 0)$$

$$(0\ 0\ 0\ 1\ 1)\ (1\ 0\ 0\ 1\ 0)\ (0\ 1\ 1\ 1\ 0)\ (1\ 1\ 1\ 1\ 1)$$

$$(01010)$$
 (11011) (00111) (10110)

$$(0\ 0\ 1\ 1\ 0)$$
 $(1\ 0\ 1\ 1\ 1)$ $(0\ 1\ 0\ 1\ 1)$ $(1\ 1\ 0\ 1\ 0)$

Заметим, что в роли представителей смежных классов мы старались брать n-ки с наименьшим числом единиц, не выписанных в ранее построенных строках.

Упражнения для самостоятельной подготовки

- 1. Доказать, что во всякой группе:
 - а) пересечение любого набора подгрупп является подгруппой;
 - б) объединение двух подгрупп является подгруппой тогда и только тогда, когда одна из этих подгрупп содержится в другой;
 - в) если подгруппа C содержится в объединении подгрупп A и B, то либо $C \subseteq A$, либо $C \subseteq B$.

- 2. Доказать, что в группе S_n :
 - а) порядок нечетной подстановки является четным числом;
 - б) порядок любой подстановки является наименьшим общим кратным длин независимых циклов, входящих в ее разложения.
- 3. Существует ли бесконечная группа, все элементы которой имеют конечный порядок?
- 4. Найти все подгруппы в группах:
 - a) S_3 ;
- δA_4 ;
- B) S_4 .
- 5. Пусть $H \le K \le G$, $|G| < \infty$, тогда |G:H| = |G:K||K:H|. Доказать, что если подгруппа H группы S_n содержит одно из множеств
 - $\{(1,2),(1,3),\dots,(1,n)\}\{(1,2),(1,2,3\dots n)\},$ to $H=S_n$.
- 6. Пусть K правый смежный класс группы G по подгруппе H. Доказать, что если $x, y, z \in K$, то $xy^{-1}z \in K$.
- 7. Пусть K непустое подмножество в группе G, причем если $x,y,z \in K$, то $xy^{-1}z \in K$. Доказать, что K является правым смежным классом группы G по некоторой подгруппе H.
- 8. Разложить $G = S_4$ на правые смежные классы по H = < (1324) >;
- 9. Разложить E_{64} по подгруппе H = <(100100), (111001), (001001) >.

§ 9. Нормальные подгруппы. Фактор-группы

Определение. Подгруппа $H \leq G$ называется *нормальной* (инвариантной), если $\forall x \in H, Hx = xH$. Обозначается подгруппа как $H \leq G$. Если H – собственная нормальная подгруппа, то обозначение выглядит так: $H \leq G$.

Утверждение. $H \subseteq G \Leftrightarrow \forall x \in G, x^{-1}Hx = H.$

Доказательство.

$$H \trianglelefteq G \Leftrightarrow \forall x \ Hx = xH \Leftrightarrow \forall x \in G$$

Имеем
$$x^{-1}Hx = (x^{-1}x)H = 1 \cdot H = H$$
.

Для любой нормальной подгруппы группы G можно построить фактор-группу G/H — множество всех левых смежных классов $\{Hx\} = G/H$ с операцией $Hx \cdot Hy = H(xy)$. Докажем корректность этого определения.

Пусть $x_1 \in Hx$, $y_1 \in Hy$. Докажем, что $Hxy = Hx_1y_1$.

 $x_1 = hx$, $y_1 = h'y$ для некоторых $h, h' \in H$.

Так как $H exttt{ riangle} G$, то xh' = h''x для некоторого $h'' \in H$.

Тогда $x_1y_1 = hxh'y = hh''xy \in Hxy$, откуда по теореме 1 (см. § 8) $Hx_1y_1 = Hxy$.

Корректность доказана.

Замкнутость данной операции очевидна: $HxHy = H(xy) \in G/H$.

Далее, (HxHy)Hz = H(xy)Hz = H((xy)z) = H(x(yz)) = HxH(yz) = HxH(yz) = Hx(HyHz), т. е. данная операция ассоциативна.

Ясно, что $H \cdot 1$ – единица для данной операции. Действительно, HxH1 = Hx1 = Hx.

 $H_{x} \cdot H_{x^{-1}} = H = H_{x^{-1}} H_{x}.$

Часть информации о самой группе несет в себе G/H, то есть, зная H и G/H, можно получить информацию и о самой группе G.

Утверждение. Подгруппа индекса 2 произвольной группы *G* всегда нормальна в этой группе.

Доказательство. Пусть $x \in H$. Тогда ясно, что xH = H = Hx.

Пусть $x \notin H$. Тогда $xH = G \backslash H$ и $Hx = G \backslash H$, т. е. снова Hx = xH.

Примечание. Если брать подгруппу индекса не 2, а больше, то утверждение неверно в общем случае.

Упражнения для самостоятельной подготовки

1.	Доказать, что подгруппа H группы G нормальна:
a) (G — абелева группа, H — любая ее подгруппа;
б) ($G=GL_n(n,\mathbb{R}), H$ – подгруппа матриц с определителем

равным 1;

B)
$$G = S_n$$
, $H = A_n$;
F) $G = S_4$, $H = \{\epsilon, (12)(34), (13)(24), (14)(23)\}$.

2. Найти все нормальные подгруппы, отличные от единичной и от всей группы в группах:

a) S_3 ; a) A_4 ; b) S_4 .

3. Доказать, что фактор-группа группы S_4 по нормальной подгруппе $\{\varepsilon, (12)(34), (13)(24), (14)(23)\}$ изоморфна группе S_3 .

§ 10. Изоморфизмы и гомоморфизмы

Определение. Биекция f группы G на группу G' называется изоморфизмом, если $\forall x, y \in G \ f(xy) = f(x)f(y)$.

Следствие. Пусть $f: G \to G'$ — изоморфизм. Тогда

1)
$$f(1_G) = 1_{G'}$$
;

2)
$$\forall a \in G \ f(a^{-1}) = (f(a))^{-1}$$
.

Доказательство.

1) $f(a) = f(1_G \cdot a) = f(1_G) \cdot f(a) \Longrightarrow f(1_G) = 1_{G'}$. Первый пункт доказан.

2)
$$f(aa^{-1}) = f(1_G) = 1_{G'}$$
,

$$f(aa^{-1}) = f(a^{-1}) \cdot f(a)^{-1}$$
.

Значит, $f(a^{-1})f(a)^{-1}=1_{G'}$, откуда $f(a^{-1})=(f(a))^{-1}$, и второй пункт следствия доказан.

Пример.

Рассмотрим биекцию f группы $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ на группу $G' = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a,b \in \mathbb{R} \setminus \{0\} \right\}$, определенную формулой $f(a+bi) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Проверим, что f является изоморфизмом указанных групп.

$$f((a+bi)(c+di)) = f((ac-bd+i(bc+ad)) =$$

$$= \begin{pmatrix} ac-bd & -bc-ad \\ bc+ad & ac-bd \end{pmatrix};$$

$$f(a+bi)f(c+di) = {a - b \choose b a} {c - d \choose d c} =$$
 $= {ac - bd - bc - ad \choose bc + ad ac - bd} = f((a+bi)(c+di)).$
Итак, группа \mathbb{C}^* изоморфна группе $G' = \{{a - b \choose b a} \mid a,b \in \mathbb{R}, a^2 + b^2 > 0\}.$

Если в определении изоморфизма отказаться от биективности, то получим понятие гомоморфизма.

Определение. Отображение f группы G в G' называется гомоморфизмом, если $\forall x, y \in G \ f(xy) = f(x)f(y)$.

Следствие, рассмотренное выше, справедливо и для гомоморфизма.

Определение. \varnothing *дро гомоморфизма* $f:G\to G'$ — это $\{x\in G\mid f(x)=1\}$. Ядро гомоморфизма обозначается $\{x\in G\mid f(x)=1\}$.

Лемма. Ker f — нормальная подгруппа в G.

Доказательство. Пусть f(g) = 1. Тогда $\forall x \in G$ имеем $f(x^{-1}gx) = f(x^{-1})f(g)f(x) = f(x^{-1})f(x) = 1$, т. е. $\forall x \in G \ \forall g \in \operatorname{Ker} f \ x^{-1}gx \in \operatorname{Ker} \varphi$.

Отсюда следует, что Ker $\phi \leq G$.

Основная теорема о гомоморфизмах групп. Пусть f — гомоморфизм G на группу G'. Тогда существует однозначно определенный гомоморфизм $\varphi: G/\mathrm{Ker}\ \varphi \to G'$ такой, что $\forall x \in G \ f(x) = \varphi(\varepsilon(x))$, где ε — канонический гомоморфизм G на $G/\mathrm{Ker}\ \varphi: \forall x \in G \ \varepsilon(x) = x \mathrm{Ker}\ \varphi$.

Следующая схема иллюстрирует эту теорему (рис. 19):

Рис. 19

Определение. Гомоморфизм G в себя называется эндоморфизмом.

Определение. Изоморфизм G в себя называется автоморфизмом.

Упражнения для самостоятельной подготовки

- 1. Найти все гомоморфизмы циклической группы < a > порядка 20 в циклическую группу < b > порядка 4.
- 2. Найти все эндоморфизмы группы Q относительно сложения.
- 3. Найти все автоморфизмы циклической группы порядка n.
- 4. Найти все автоморфизмы группы S_3 .
- 5. Доказать, что группа порядка 6 либо коммутативна, либо изоморфна группе S_3 .

§ 11. Кольца и поля

Определение. *Кольцо* R — множество с двумя замкнутыми бинарными операциями на нем — сложением и умножением, т. е. $\forall a, b \in R \ a + b \in R, ab \in R$, причем выполняются свойства:

- 1) (a + b) + c = a(b + c);
- 2) $\exists 0 \in R: \forall a \in R \ a + 0 = a$ (нуль кольца);
- 3) a + b = b + a;
- 4) $\forall a \in R \ \exists b \in R : a + b = 0 \ (b \ \text{обозначается} a);$
- 5) (a + b)c = ac + bc;
- 6) a(b+c) = ab + ac.

В кольце могут быть потребованы дополнительные аксиомы:

- 7) (ab)c = a(bc) (кольцо ассоциативно);
- 8) ab = ba (кольцо коммутативно);
- 9) $\exists 1 \in R: \forall a \in R \ a1 = 1a = a$ (существование единицы);

10)
$$\forall x \in R \setminus \{0\}$$
 ∃ $y \in R$: $xy = yx = 1$ ($y = x^{-1}$) (существование обратного).

Если кольцо удовлетворяет всем десяти свойствам, оно называется *полем*.

Если кольцо удовлетворяет всем свойствам, кроме коммутативности умножения, оно называется *телом*.

Замечание. Кольцо R, рассматриваемое только относительно операции сложения, называется аддитивной группой R.

Определение. Подмножество M кольца R называется nod-*кольцом*, если

- 1) $\forall x, y \in M \ x + y \in M$;
- 2) $\forall x, y \in M \ xy \in M$;
- 3) $\forall x \in M (-x) \in M$.

Следствия из аксиом поля:

1)
$$xy = xz \Rightarrow y = z$$
,

$$yx = zx \Rightarrow y = z$$
, при $x \neq 0$;

- 2) $\exists ! x^{-1} \forall x \neq 0$;
- 3) $\forall a, b \in R$ при $a \neq 0$ $\exists ! x \in R$, такой, что ax = b;
- 4) $a, b \neq 0 \Rightarrow ab \neq 0$.

Доказательство этих свойств предоставим читателю.

Определение. Пусть a, b в кольце R — делители нуля, если $a, b \neq 0$, но ab = 0.

Так что следствие четвертое говорит о том, что в поле нет делителей нуля.

Определение. Мультипликативная группа F^* поля F — это группа $F \setminus \{0\}$ относительно левого умножения.

Примеры.

- 1. \mathbb{Z} кольцо относительно обычных сложения и умножения (ассоциативно, коммутативно, с единицей, не является полем).
- 2. $\mathbb{Q} = \{\frac{p}{q}\}$ поле $((\frac{p}{q})^{-1} = \frac{q}{p}, \frac{p}{q} \neq 0)$.
- 3. \mathbb{R} , \mathbb{C} − поля.

- 4. F[x] множество всех многочленов с коэффициентами из F ассоциативное, коммутативное кольцо с единицей (F произвольное поле).
- 5. \mathbb{H} тело кватернионов $\{a+bi+cj+dk \mid a,b,c,d \in \mathbb{R}\},$ i,j,k мнимые единицы (табл. 12, рис. 20):

 \mathbb{H} — тело относительно покомпонентной операции сложения кватернионов и относительно умножения кватернионов, индуцированного таблицей выше.

Пример.

$$(3+2i+k)(j-2k)=3j-6k+2(ij)-4(ik)+(kj)-2(kk)=$$
 $=3j-6k+2k+4j-i+2=2-i+7j-4k.$
Можно доказать, что $(a+bi+cj+dk)^{-1}=$
 $=\frac{1}{\sqrt{a^2+b^2+c^2+d^2}}(a-bi-cj-dk)$ при $a^2+b^2+c^2+d^2>0.$

\S 12. Линейное пространство над произвольным полем F

Определение. Линейное пространство над полем F — это множество L с замкнутой бинарной операцией $a+b \in L \ \forall a,b$ и операцией умножения λa любого элемента $\lambda \in F$ на любой элемент a из L, причем для этих операций выполняются те же 8 аксиом, которые были для линейного пространства над \mathbb{R} или \mathbb{C} в курсе линейной алгебры. Элементы из F называются скалярами, элементы из L — векторами. Справедливы и следствия из аксиом:

- 1) $a + x = b + x \Rightarrow a = b$;
- 2) $0a = \overline{0} \ \forall a \in L;$
- 3) $\lambda \overline{0} = \overline{0} \ \forall \lambda \in L$;
- 4) $\lambda x = \overline{0} \Rightarrow \lambda = 0$ или $x = \overline{0}$.

Пример. $F^n = \{\bar{x} = (x_1, ..., x_n) | \forall i \ x_i \in F\}$ – арифметическое линейное пространство над F.

Теория линейной зависимости вместе со всеми теоремами для \mathbb{R} и \mathbb{C} полностью переносится на случай произвольного поля.

Определение. Система $(a_1, ..., a_n)$ в L над F линейно независима, если $\lambda_1 a_1 + \cdots + \lambda_n a_n = \overline{0} \Leftrightarrow \lambda_i = 0 \ \forall i$.

Определение. Система $(a_1, ..., a_n) = A$ – базис в L над F, если:

- 1) А линейно независима;
- 2) $\forall b \in L \; \exists \lambda_1, \dots, \lambda_n \in F : b = \lambda_1 a_1 + \dots + \lambda_n a_n$.

Определение. Если A — базис в L и |A| = n, то размерность $L(\dim L)$ равна n.

§13. Идеалы и гомоморфизмы ассоциативных колец

Ниже все кольца предполагаются ассоциативными, т. е. такими, в которых умножение элементов является ассоциативной операцией: (xy)z = (x)yz. В частности, при рассмотрении произведений $x_1, ..., x_n$ любого числа сомножителей мы можем не заботиться о расстановке скобок.

Определение. *Левым (правым) идеалом кольца R* называется его любое непустое подмножество L, удовлетворяющее двум условиям:

- а) L подгруппа в аддитивной группе R;
- б) $RL \subseteq L$ ($LR \subseteq L$), т. е. $\forall x \in R$, $\forall a \in L \ xa \in L \ (ax \in L)$.

Определение. Подмножество в кольце R, являющееся одновременно левым и правым идеалом, называется *идеалом* в R (или двусторонним идеалом).

Предложение. Имеют место следующие утверждения:

- 1) Идеал любого вида в кольце R содержит ноль этого кольца;
- 2) идеал любого вида в кольце R является подкольцом в R.
- 3) если R коммутативно, то любой его левый и правый идеал является двусторонним.

Доказательство очевидно.

Определение. Коммутативное кольцо без делителей нуля называют *целостным*.

Лемма. Если R — кольцо, то для любого его элемента a подмножество Ra является его левым идеалом, а подмножество aR — правым идеалом.

Доказательство. Докажем, что Ra — левый идеал. Пусть $x, y \in Ra$. Тогда x = ua, y = va для некоторых элементов $u, v \in R$, откуда $x + y = ua + va = (u + v)a \in Ra$ и $(-x) = (-ua) = (-u)a \in Ra$, т.е. Ra — подгруппа в аддитивной группе R. Далее, если z — любой элемент из R, то $zx = z(ua) = (zu)a \in Ra$ и, значит, Ra — левый идеал. Доказательство для aR аналогичное.

Идеал Ra из предыдущий леммы называется главным левым идеалом, а идеал aR — главным правым идеалом, причем в обоих случаях a называется порождающим элементом соответствующего идеала.

Определение. Коммутативное кольцо называется кольцом главных идеалов, если в нем любой идеал является главным.

Теорема 1. Кольцо целых чисел \mathbb{Z} и кольцо многочленов F[x] над полем F являются целостными кольцами главных идеалов.

Доказательство. Целостность обоих колец очевидна. Докажем, что \mathbb{Z} — кольцо главных идеалов (для F[x] доказательство аналогичное). Пусть L — идеал в \mathbb{Z} и пусть m — наименьшее натуральное число, содержащееся в L. Предположим, что a — любой элемент из L. Поделим a на m с остатком, т.е. представим

a в виде a = qm + r, где $0 \le r < m$. Так как $qm \in L$, то и $r \in L$, откуда в силу минимальности m число r должно равняться 0. Тогда $a = qm \in Rm$, т.е. L = Rm.

Определение. Отображение f кольца R в кольцо R' называется гомоморфизмом, если $\forall x, y \in R$ 1) f(x + y) = f(x) + f(y), 2) f(xy) = f(x)f(y).

Лемма. Если $f: R \to R'$ – гомоморфизм колец, то

1)
$$f(0) = 0$$
;

2)
$$f(-x) = -f(x) \forall x \in R$$
.

Доказательство. Так как f(0) = f(0+0) = f(0) + f(0), то f(0) является нулем кольца R'. Далее, $\forall x \in R$ f(0) = f(x+(-x)) = f(x) + f(-x), откуда ввиду доказанного пункта первого f(-x) = -f(x). Лемма доказана.

Замечание. Если кольца R и R' – кольца с единицами, то для гомоморфизма $f: R \to R'$ обычно предполагается выполнение условия f(1) = 1, где справа стоит единица кольца R'.

Определение. Ядром кольцевого гомоморфизма $f: R \to R'$ называется $\{x \in L | f(x) = 0\}$ и обозначается ядро $\mathrm{Ker} f$.

Теорема 2. Ker f – идеал в R.

Доказательство. Поскольку f — групповой гомоморфизм аддитивной группы R в аддитивную группу R', то $\operatorname{Ker} f$ — подгруппа в R. Пусть теперь $a \in \operatorname{Ker} f$ и $x \in R$. Тогда f(xa) = f(x)f(a) = f(x) = 0 и $f(ax) = f(a)f(x) = 0 \cdot f(x) = 0$, откуда xa и ax лежат в $\operatorname{Ker} f$. Теорема доказана.

Пусть теперь R — произвольное кольцо, L — подгруппа в аддитивной группе кольца R. Обозначим множество всех смежных классов x+L аддитивной группы R по ее подгруппе L, как и в теории групп, R/L. Определим операции на R/L следующим образом: $\forall x,y \in L$.

$$(x + L) + (y + L) = (x + y) + L u (x + L)(y + L) = (xy) + L.$$

Теорема 3. Множество R/L является кольцом относительно вышеопределенных операций.

Доказательство. Корректность определения первой операции была уже доказана в теории групп. Докажем корректность операции умножения. Пусть $x' \in x + L$, $y' \in y + L$. Тогда x' = x + a, y' = y + b, где $a, b \in L$, откуда $x'y' = (x + a)(y + b) = xy + xb + ay + ab \in xy + L$, так как L – двусторонний идеал. Тогда x'y' + L = xy + L, что и требовалось доказать.

Проверка всех кольцевых аксиом для $\frac{R}{L}$ очевидна. Проверим, например, дистрибутивность. ((x+L)+(y+L))(z+L)= =((x+y)+L)(z+L)=(x+y)z+L=(xz+yz)+L= =(xz+L)+(yz+L)=(x+L)(z+L)+(y+L)(z+L).

Замечание. Если R — кольцо с единицей 1, то R/L также кольцо с единицей, где роль единицы выполняет смежный класс 1+L.

Определение. Кольцо R/L называется фактор-кольцом R по идеалу L.

Лемма. Определим отображение $\varepsilon: R \to R/L$ следующим образом: $\forall x \in R \ \varepsilon(x) = x + L$. Тогда ε — гомоморфизм. Доказательство очевидно.

Определение. Гомоморфизм ε называется каноническим гомоморфизмом R на его фактор-кольцо R/L.

Также как и в теории групп, имеет место основная теорема о гомоморфизмах.

Теорема 4. Пусть f — гомоморфизмом кольца R на кольцо R'(т.е. сюръективный гомоморфизм). Тогда существует единственный изоморфизм ϕ кольца $R/\mathrm{Ker}f$ на R такой, что $\forall x \in R$ $f(x) = \phi(\epsilon(x))$, т.е. следующая диаграмма (рис. 21) коммутативна:

Доказательство этой теоремы такое же, как доказательства аналогичных теорем в теориях полугрупп и групп, и также имеем следующий результат.

Следствие. Любой гомоморфный образ кольца R изоморфен фактор-кольцу R по некоторому двустороннему идеалу R.

В заключение заметим, что элементы фактор-кольца R/L называют классами вычетов кольца R по модулю L, и элементы a и b кольца R называются сравнимыми по модулю L, если a+L=b+L, т.е. $a-b\in L$. Так как смежные классы группы по подгруппе образуют разбиение этой группы, то отношение сравнения по модулю L является эквивалентностью на R, классами которой являются классы вычетов по модулю L. Если a и b сравнимы по модулю L, то пишут $a\equiv b \mod L$. Особенно важными для приложений являются кольца классов вычетов кольца \mathbb{Z} по модулю идеала $n\mathbb{Z}$ и кольца F[x] по модулю главного идеала f(x)F[x]. Эти кольца и связанные с ними результаты мы рассмотрим в следующей главе.

Глава III. Теория чисел и теория многочленов § 1. Элементарная теория чисел

Определение. Натуральное число p называется *простым*, если p > 1 и его натуральными делителями являются лишь 1 и само p. Непростое натуральное число, отличное от единицы, называется составным.

Теорема 1. Множество простых чисел бесконечно.

Доказательство. Предположим, что $p_1, ..., p_k$ — все простые числа. Рассмотрим число $n=p_1 ... p_k+1$. По предположению n составное. Тогда оно должно делиться на p_i при некотором $i \le k$. Но $n-p_1 ... p_k=1$, откуда p_i делит 1. Получили противоречие, которое доказывает теорему.

Следующие две теоремы входят в школьную программу, и мы их приводим без доказательства.

Теорема 2 (о делении с остатком). Для любых целых чисел a и b, где $b \neq 0$, существуют однозначно определенные целые числа q и r такие, что a = bq + r, где $0 \le r \le |b| - 1$.

Заметим, что при этом q называется частным, а r – остатком при делении a на b.

Теорема 3 (о разложении натурального числа в произве-**дение простых сомножителей).** Любое натуральное число n, большее единицы, представляется в виде $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$, где $k \ge 1$, все $\alpha_i \in \mathbb{N}$, и представление n в таком виде однозначно с точностью до перестановки сомножителей.

Очевидно, что для любых целых чисел a и b при условии, что хотя бы одно из них не равно нулю, существует наибольший натуральный общий делитель этих чисел. Он обозначается (a, b) или HOД(a, b).

Лемма. Если d' – общий делитель a и b и d = HOД(a, b), то d' делит d.

Доказательство легко следует из теоремы 3.

Наибольший общий делитель натуральных чисел a и b при $b \neq 0$ находится с помощью так называемого *алгоритма Евклида*.

Поделим a на b с остатком r_1 , затем b поделим на r_1 с остатком r_2 и т.д. Так как $r_1 > r_2 > \cdots$ — строго убывающая последовательность натуральных чисел, то на каком-то шаге r_s поделится на r_{s+1} без остатка. Итак, получим систему равенств:

$$a = bq_1 + r_1$$
 $b = r_1q_2 + r_2$
 $r_1 = r_2q_3 + r_3$
.....
 $r_{s-1} = r_sq_{s+1} + r_{s+1}$
 $r_s = r_{s+1}q_{s+2}$
Теорема 4. $r_{s+1} = \text{НОД}(a,b)$.

Доказательство. Докажем, что r_{s+1} – общий делитель a и b. Двигаясь по данной системе равенств снизу вверх, имеем $r_{s+1}|r_s$. Переходя ко второму неравенству снизу, получим $r_{s+1}|r_{s-1}$, из третьего равенства снизу получим $r_{s+1}|r_{s-2}$ и т. д. Дойдя до вто-

рого равенства сверху, получим $r_{s+1}|b$ и, перейдя к верхнему равенству, получим $r_{s+1}|a$.

Пусть теперь d' – общий делитель a и b. Рассматривая ту же цепочку равенств, но уже сверху вниз, получим

 $d'|r_1,\ d'|r_2,\dots,d'|r_s$ и из предпоследнего равенства — $d'|r_{s+1}$. Таким образом, $r_{s+1}=\mathrm{HOД}(a,b)$.

Теорема 5. Для любых целых a и b, одновременно не обращающихся в ноль, существуют целые числа u и v так, что au + bv = d, где d = HOД(a, b).

Доказательство. Можно считать, что $a,b\neq 0$. Снова используем систему равенств перед теоремой 4. Из первого равенства получим $r_1=a-bq_1$. Из второго равенства получим $r_2=b-r_1q_2=b-(a-bq_1)q_2=-aq_2+b(1+q_1q_2)$. Обозначив $\left(-q_2\right)=u_2,\ 1+q_1q_2=v_2,\$ имеем $r_2=au_2+bv_2.\$ Далее поступаем аналогично. Пусть $r_{n-2}=au_{n-2}+bv_{n-2},\ r_{n-1}=au_{n-1}+bv_{n-1},\$ при $n\geq 3.$ Тогда $r_n=r_{n-2}-r_{n-1}q_n=a(u_{n-2}+bv_{n-2})-(au_{n-1}+bv_{n-1})q_n=a(u_{n-2}-u_{n-1}q_n)+b(v_{n-2}-v_{n-1}q_n).$

Продолжая счет таким образом, в итоге получим $r_{s+1} = au_{s+1} + bv_{s+1}$.

Вычисление членов последовательностей u_n , v_n удобно организовать с помощью таблицы с применением начальных условий $u_1=1,\ v_1=-q_1,\ u_2=-q_2,\ v_2=1+q_1q_2$ и рекуррентных соотношений:

$$u_n = u_{n-2} - u_{(n-1)}q_n, v_n = v_{n-2} - v_{(n-1)}q_n.$$

Пример 1. Найти НОД (1729, 1547) и такие целые числа u, v, что 1729u + 1547v = d.

Решение. $1729 = 1547 \cdot 1 + 182$.

$$1547 = 182 \cdot 8 + 91$$
.

$$182 = 91 \cdot 2$$
.

Имеем $q_1 = 1, q_2 = 8$, НОД (1729, 1547) = 91. Составим таблицу для нахождения u, v (табл. 13).

Таблица 13

n	1	2
q_n	1	8
u_n	1	-8
v_n	-1	9

Из таблицы находим $u=-8,\ v=9.$ Итак, d=91 и $91=1729(-8)+1547\cdot 9.$

Заметим, что при вычислении u_n , v_n рекуррентные формулы не понадобились.

Пример 2. Найти d = HOД(2539,1837) и такие целые числа u, v, чтобы 2539u + 1837v = d.

Решение.

$$2539 = 1837 \cdot 1 + 702$$

$$1837 = 702 \cdot 2 + 433$$

$$702 = 433 \cdot 1 + 269$$

$$433 = 269 \cdot 1 + 164$$

$$269 = 164 \cdot 1 + 105$$

$$164 = 105 \cdot 1 + 59$$

$$105 = 59 \cdot 1 + 46$$

$$59 = 46 \cdot 1 + 13$$

$$46 = 13 \cdot 3 + 7$$

$$13 = 7 \cdot 1 + 6$$

$$7 = 6 \cdot 1 + 1$$

$$6 = 1 \cdot 6$$

Откуда d=1, $(q_n)=(1,2,1,1,1,1,1,1,3,1,1)$ и последовательности u_n,v_n имеют 11 членов, т. е. $u=u_{11},$ $v=v_{11}$.

Составим снова таблицу (табл. 14).

Таблица 14

n	1	2	3	4	5	6	7	8	9	10	11
q_n	1	2	1	1	1	1	1	1	3	1	1
u_n	1	2	3	5	8	13	1	34	123	-157	280
v_n	1	3	4	7	11	8	29	7	-170	217	-387

Ответ: d = 1 и $d = 2539 \cdot 280 - 1837 \cdot 387$.

Упражнения для самостоятельной подготовки

Найти наибольший общий делитель следующих пар чисел a и b и такие целые числа u, v, чтобы выполнялось au + bv = d.

1)
$$a = 4608, b = 5517;$$

2)
$$a = 7817, b = 4321.$$

§ 2. Взаимно простые числа

Определение. Два ненулевых целых числа *а* называются *взаимно простыми*, если их наибольший общий делитель равен 1.

Теорема. Справедливы следующие утверждения:

- 1) Ненулевые целые числа a и b взаимно просты \Leftrightarrow $\exists u,v \in \mathbb{Z}$, что au+bv=1.
- 2) Если ab делится на c и b, c взаимно просты, то a делится на c.
- 3) Если a делится на b, a делится на c и b, c взаимно просты, то a делится на bc.

Доказательство.

- 1) Необходимость следует из теоремы 5 § 1. Пусть дано, что au + bv = 1, $u, v \in \mathbb{Z}$. Предположим, что $d \in \mathbb{N}$, d|a,d|b. Тогда d делит au + bv, т. е. d|1, откуда d=1. Достаточность доказана.
- 2) Так как b и c взаимно просты, по теореме 5 существуют целые u, v такие, что bu + cv = 1. Умножим это равенство на a: abu + acv = a. Так как abu делится на c, ac делится на c, то и a делится на c. Пункт 2 доказан.
- 3) Так как b и c взаимно просты, то из теоремы 3 следует, что $b=p_1^{\alpha_1}\dots p_k^{\alpha_k},\ c=q_1^{\beta_1}\dots q_m^{\beta_m},\$ где p_i,q_j —

простые числа, причем $p_i \neq q_j$ при любых i,j, и все $\alpha_i, \beta_j \geq 1$. Тогда в силу теоремы 3

$$a=p_1^{\alpha_1'}\dots p_k^{\alpha_k'}q_1^{\beta_1'}\dots q_m^{\beta_m'}\cdot M$$
, где $\alpha_i'\geq \alpha_i$, $\beta_j'\geq \beta_j$ для всех i,j и $M\in\mathbb{Z}$. Пункт третий доказан. \blacksquare

§ 3. Теория сравнений

Определение. Пусть $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$. Мы пишем $a \equiv b \pmod{n}$ и говорим, что a сравнимо с b по модулю n, если a - b делится на n.

Предложение 1. $a \equiv b \pmod{n} \Leftrightarrow$ классы вычетов $a + n\mathbb{Z}$ и $b + n\mathbb{Z}$ в кольце $\mathbb{Z}/n\mathbb{Z}$ (фактор-кольце кольца \mathbb{Z} по главному идеалу $n\mathbb{Z}$) совпадают.

Заметим, что последняя равносильность вытекает из того, что различные классы вычетов кольца по идеалу не пересекаются.

Следствие. Отношение сравнения по модулю n является эквивалентностью на \mathbb{Z} , и классы этой эквивалентности совпадают с классами вычетов по модулю идеала $n\mathbb{Z}$, т. е. с элементами фактор-кольца $\mathbb{Z}/n\mathbb{Z}$.

Предложение 2.

- 1) Для любого целого: $a \ a + n \mathbb{Z} = r + u \mathbb{Z}$, где r остаток от деления a на n;
- 2) $|\mathbb{Z}/n\mathbb{Z}| = n$, причем $\mathbb{Z}/n\mathbb{Z} = \{0 + n\mathbb{Z}, 1 + n\mathbb{Z}, ..., (n-1) + n\mathbb{Z}\}.$

Доказательство.

- 1) Поделим a на n с остатком: a = nq + r, $q, r \in \mathbb{Z}$, $0 \le r \le n 1$. Тогда $a \in r + n\mathbb{Z}$, откуда $a + n\mathbb{Z} = r + n\mathbb{Z}$ в силу соответствующего свойства классов вычетов произвольного кольца.
- 2) Пусть $0 \le i \le j \le n-1$ и $i+n\mathbb{Z}=j+n\mathbb{Z}$. Тогда j-i делится на n и $0 \le j-i \le n-1$, откуда i=j. Следовательно, классы вычетов, перечисленные в фигурных скобках выше, попарно различны. Применяя пункт первый, получаем второй.

Замечание. Если n фиксировано, то удобно вместо $a+n\mathbb{Z}$ писать просто \bar{a} .

Теорема 1. $\mathbb{Z}/n\mathbb{Z}$ является коммутативным ассоциативным кольцом относительно сложения и умножения, определенных по формулам $\bar{a} + \bar{b} = \overline{a + b}$, $\bar{a} \cdot \bar{b} = \overline{ab}$. При этом роль нуля выполняет нулевой класс $n\mathbb{Z}$, а роль единицы – $(1 + n\mathbb{Z})$.

Доказательство теоремы следует из общих результатов о фактор-кольцах.

Теорема 2. $\mathbb{Z}/n\mathbb{Z}$ – поле $\Leftrightarrow n$ – простое число.

Доказательство.

При $n = 1 |\mathbb{Z}/n\mathbb{Z}| = 1$ и, значит, $\mathbb{Z}/n\mathbb{Z}$ – не поле.

Пусть теперь n > 1. Необходимость докажем от противного.

Предположим, что n=pq, 1 , <math>1 < q < n. Тогда $\overline{0}=\overline{n}=\overline{pq}$, где \overline{p} , $\overline{q}\neq\overline{0}$, т. е. \overline{p} и \overline{q} – делители нуля, чего не может быть в поле. Необходимость доказана.

Предположим теперь, что n — простое число и $j+n\mathbb{Z}$, где $1 \le j \le n-1$ — произвольный ненулевой класс вычетов из $\mathbb{Z}/n\mathbb{Z}$. Тогда j и n взаимно просты и по теореме шестой предыдущего параграфа существуют целые числа u и v такие, что ju+nv=1 и, следовательно, $\bar{j}\,\bar{u}=1$, \bar{j} имеет обратный элемент в $\mathbb{Z}/n\mathbb{Z}$. Значит, $\mathbb{Z}/n\mathbb{Z}$ — поле. Теорема доказана.

Таким образом, при простом $p \mathbb{Z}/p\mathbb{Z}$ – поле порядка p. Оно называется полем Галуа и обозначается F_p или GF(p).

Теорема 3. \bar{a} обратим в $\mathbb{Z}/n\mathbb{Z} \Leftrightarrow a$ взаимно просто с n.

Доказательство совершенно аналогично доказательству теоремы 2.

Определение. Функцией Эйлера называется функция ϕ такая, что для любого натурального n $\phi(n)$ равно числу натуральных чисел, меньших n и взаимно простых с n.

Предложение. $\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$, где $(\mathbb{Z}/n\mathbb{Z})^*$ – группа обратимых элементов кольца $\mathbb{Z}/n\mathbb{Z}$.

Предложение следует сразу из теоремы 3.

Теорема 4 (Эйлера). Если a взаимно просто с n, то $a^{\varphi(n)} \equiv 1 \mod n$.

Доказательство.

В силу предыдущего предложения мультипликативная группа $(\mathbb{Z}/n\mathbb{Z})^*$ кольца $\mathbb{Z}/n\mathbb{Z}$ имеет порядок $\varphi(n)$, а также по теореме 3 $\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^*$. Тогда в силу следствия к теореме 2 параграфа о циклических группах $\overline{a^{\varphi(n)}} = \bar{1}$, откуда следует справедливость теоремы.

Теорема 5 (мультипликативность функции Эйлера). Если a и b взаимно просты, то $\phi(ab) = \phi(a)\phi(b)$.

Доказательство.

Выпишем представителей всех классов $\mathbb{Z}/(a \cdot b)\mathbb{Z}$ в прямоугольную таблицу (табл. 15):

Таблица 15

0	1	 j	 a-1
а	1 + a	 j + a	 (a-1) + a = 2a - 1
(b-1) a	1 + (b-1) a	 j + (b-1) a	 (a-1) + (b-1) a = $ab-1$

Необходимо выяснить, сколько в таблице чисел, взаимно простых с ab, т. е. и с a, и с b одновременно.

Выясним, сколько чисел, взаимно простых с a. Числа в jстолбце взаимно просты с a тогда и только тогда, когда j взаимно просто с a. Таких столбцов $\varphi(a)$ штук. Таким образом, чисел,
взаимно простых с a, $\varphi(a)b$ штук.

Рассмотрим любой столбец, где j взаимно просто с a, перейдем в нем к классам вычетов по модулю b. Докажем, что все классы вычетов в этом столбце разные. Предположим, что $\overline{j+ka}=\overline{j+la},\,0\leq k,l\leq b-1$ в $\mathbb{Z}/b\mathbb{Z}$. Тогда $\overline{j}+\overline{ka}=\overline{j}+\overline{la}$ и, следовательно, $\overline{ka}=\overline{la}$. Так как a взаимно просто с b, то в $\mathbb{Z}/b\mathbb{Z}$ существует $(\overline{a})^{-1}$. Преобразуем полученное равенство: $\overline{ka}(\overline{a})^{-1}=\overline{la}(\overline{a})^{-1}\Rightarrow \overline{k}=\overline{l}$, причем $0\leq k,l\leq b-1$, следовательно, k=l.

Доказали, что в столбце все классы по модулю b разные. Поэтому по определению функции Эйлера, среди чисел j, j+ + a, ..., j+(b-1)a точно $\phi(b)$ чисел, взаимно простых с b.

В итоге, получаем $\varphi(a)$ столбцов, в которых все числа взаимно просты с a и в каждом $\varphi(b)$ чисел, взаимно простых с b. Общее количество чисел, взаимно простых и с a, и с b, равно $\varphi(a)\varphi(b)$. Теорема доказана.

В вычислениях функции Эйлера используется также следующий факт.

Предложение.
$$\varphi(p^n) = p^{n-1}(p-1)$$
.

Доказательство. При n=1 имеем очевидно верное утверждение: $\varphi(p)=(p-1)$. Если n>1, то ряд натуральных чисел, меньших p^n и делящихся на p, имеет вид $p,2p,...,(p^{n-1}-1)p$, т. е. количество таких чисел равно $p^{n-1}-1$. Тогда $\varphi(p^n)=(p^n-1)-(p^{n-1}-1)=p^n-p^{n-1}$, что и требовалось доказать. \blacksquare

§ 4 Китайская теорема об остатках

где x — неизвестное целое, числа n_i попарно взаимно простые.

Аналогично систему можно рассмотреть для многочленов над полем F:

$$\begin{cases} f(x) \equiv \varphi(x_1) \mod \psi_1(x) \\ f(x) \equiv \varphi(x_2) \mod \psi_2(x) \\ \dots \\ f(x) \equiv \varphi(x_k) \mod \psi_k(x), \end{cases}$$

Где $\psi_i(x)$, $\psi_j(x)$ – взаимно просты при $i \neq j$ над полем F.

По аналогии с теорией чисел $f(x) \equiv \phi(x) \mod \psi(x) \Leftrightarrow f(x) - \phi(x)$ делится на $\psi(x)$.

Пусть
$$N = n_1 \cdot n_2 \cdot \dots \cdot n_k$$
,

$$m_j = \frac{N}{n_j} = n_1 \cdot \dots \cdot n_{j-1} \cdot n_{j+1} \cdot \dots \cdot n_k.$$

Например, пусть $n_1=2$, $n_2=3$, $n_3=5$. Тогда N=30, $m_1=5$, $m_2=10$, $m_3=6$.

Теорема 1. Пусть x_0 — любое частное решение системы (1). Тогда все числа из x_0 + $N\mathbb{Z}$ тоже частные решения системы (1).

Доказательство. $\hat{x} \in x_0 + N\mathbb{Z} \Rightarrow \hat{x} \equiv x_0 \mod N \Rightarrow \hat{x} \equiv x_0 \mod n_j \ \forall j = \overline{1,k}, \ \text{т.к.} \ N = n_1 \cdot n_2 \cdot ... \cdot n_k. \ \text{Учитывая, что}$ $x_0 \equiv x_j \mod n_j, \ \text{в силу (1)} \ \text{имеем } \hat{x} \equiv x_j \mod n_j \ \forall j = \overline{1,k}. \ \text{Значит,}$ \hat{x} — частное решение. Теорема доказана.

Теорема 2. Пусть \hat{x} и \tilde{x} — частные решения системы (1). Тогда $\hat{x} \equiv \tilde{x} \mod N$.

Доказательство.

 $\forall j=\overline{1,k} \ \widehat{x}\equiv x_j \bmod n_j, \ \widetilde{x}\equiv x_j \bmod n_j \Rightarrow \widehat{x}\equiv \widetilde{x} \bmod n_j, \ \mathrm{T.\ e.}$ \widehat{x} - \widetilde{x} делится на n_j . Т. к. числа n_j попарно взаимно простые, то по 3-му свойству взаимно простых чисел \widehat{x} - \widetilde{x} делится на $n_1\cdot n_2\cdot ...\cdot n_k=N$, откуда $\widehat{x}\equiv \widetilde{x} \bmod N$.

Теорема доказана. ■

Следствие. Множество всех решений системы (1), если она совместна, представляет собой класс вычетов по модулюN, причем единственный.

Теорема 3. Обозначим как y_j любое целое число, удовлетворяющее сравнению $m_j y_j \equiv x_j \bmod n_j \ \forall j = \overline{1,k} \ (y_j \ \text{существует,}$ т. к. m_j взаимно просто с n_j). Тогда $x_0 = m_1 y_1 + m_2 y_2 + \cdots + m_k y_k$ – частное решение системы (1).

Доказательство. Фиксируем $j=\overline{1,k}$. Требуется доказать $x_0\equiv x_j \bmod n_j$, т. е. $\overline{x_0}=\overline{x_j}$ в $\mathbb{Z}/n_j\mathbb{Z}$. Имеем $\overline{x_0}=\overline{m_1y_1}+\overline{m_2y_2}+\cdots+\overline{m_ky_k}=\overline{x_j}$, т. к. в каждом m_sy_s при $s\neq j$ присутствует n_j .

Теорема доказана. ■

Совокупность теорем 1–3 называется Китайской теоремой об остатках.

Обобщение китайской теоремы об остатках

Теорема 4.
$$\begin{cases} x \equiv x_1 \bmod n_1 \\ x \equiv x_2 \bmod n_2 \\ \dots \\ x \equiv x_k \bmod n_k \end{cases}$$
 совместна \Leftrightarrow

 $\forall i, j \ x_i \equiv x_j \bmod HOД (n_i, n_j).$

Теорема 5. Если система $\begin{cases} x \equiv x_1 \bmod n_1 \\ x \equiv x_2 \bmod n_2 \\ \dots \\ x \equiv x_k \bmod n_k \end{cases}$ совместна, то при $x \equiv x_k \bmod n_k$

любом частном решении x_0 ее общее решение имеет вид $x=x_0+N\mathbb{Z}$, где $N=\mathrm{HOK}(n_1,n_2,\ldots,n_k)$.

Примеры к §§ 3, 4.

1. Решить уравнение в целых числах: 17x - 13y = 1. Решение.

В обеих частях уравнения перейдем к классам вычетов по модулю 13: $\overline{17}\bar{x} - \overline{13}\bar{y} = \overline{1}$ в $\mathbb{Z}/13\mathbb{Z}$.

Так как $\overline{13}=\overline{0}$, то $\overline{4}\overline{x}=\overline{1}$.

Подбором находим $\bar{x} = \overline{-3}$, т. е. x = -3 + 13k.

Подставляя найденное выражение для x в исходное уравнение, получим 17(-3+13k)-13y=1, откуда $13y=-52+17\cdot 13k$, т. е. y=-4+17k.

Ответ:

$$\begin{cases} x = -3 + 13k \\ y = -4 + 17k, k \in \mathbb{Z} \end{cases}$$

2. Решить уравнение в целых числах: 13x + 19y ++23z = 3.

Решение. Перейдем в обеих частях равенства к классам вычетов по модулю $13: \overline{13}\bar{x} + \overline{19}\bar{y} + \overline{23}\bar{z} = \overline{3}$, т.е. $6\bar{y} +$ $+\overline{10}\overline{z}=\overline{3}$ в $\mathbb{Z}/13\mathbb{Z}$.

Далее имеем $\overline{6}\overline{y} = \overline{3 - 10z}$.

Подбором находим $\overline{6}^{-1}$ в $\mathbb{Z}/13\mathbb{Z}$: $\overline{6}^{-1} = \overline{-2}$.

Умножим обе части уравнения с \bar{y} на -2, после чего получим $\bar{y} = \overline{-6 + 20z} = \overline{7 + 7z}$, т. е. y = 7 + 7z + 13k, $k \in \mathbb{Z}$.

Подставив полученное выражение для у в исходное уравнение, получим выражение x через z и k:

$$13x + 19(7 + 7z + 13k) + 23z = 3 \Rightarrow$$

$$13x = -130 - 156z - 19 \cdot 13k \Rightarrow$$

$$x = -10 - 12z - 19k$$
Owner:
$$\begin{cases} x = -10 - 12z - 19k \end{cases}$$

Other: $\begin{cases} x = -10 - 12z - 19k \\ y = 7 + 7z + 13k, k \in \mathbb{Z} \end{cases}$

3. Какой остаток имеет число 2012²⁰¹³ при делении на 17?

Решение. Посчитаем $\overline{2012^{2013}}$ в $\mathbb{Z}/17\mathbb{Z}$.

Поделим 2012 на 17 с остатком: $2012 = 17 \cdot 118 + 6$, а 2013 поделим на $\varphi(17) = 16$ с остатком: $2013 = 16 \times$ \times 125 + 13.

Учитывая, что по теореме Эйлера $\bar{6}^{16} = \bar{1}$ в $\mathbb{Z}/17\mathbb{Z}$, имеем $\overline{2012^{2013}} = \overline{6}^{16 \cdot 125 + 13} = \overline{6}^{13}.$

Далее $\overline{6}^3 = \overline{216} = \overline{12}$, $\overline{6}^6 = \overline{144} = \overline{8}$, $\overline{6}^9 = \overline{96} = \overline{11}$, $\overline{6}^4 = \overline{72} = \overline{4}$, $\overline{6}^{13} = \overline{6}^9 \cdot \overline{6}^4 = \overline{44} = \overline{10}$, откуда получаем ответ: искомый остаток равен 10.

4. С помощью функции Эйлера решить уравнение $37x \equiv 18 \mod 57$.

Решение. Данное сравнение равносильно уравнению $\overline{37}\overline{x} = \overline{18}$ в $\mathbb{Z}/57\mathbb{Z}$, откуда $\overline{x} = \overline{37}^{-1} \cdot \overline{18}$. Найдем $\overline{37}^{-1}$ с учетом того, что $\overline{37}^{56} = \overline{1}$, т.к. $56 = \varphi(57)$.

Имеем
$$\overline{37}^{-1} = \overline{37}^{55} = \overline{37}^{2^5 + 2^4 + 2^2 + 2 + 1}$$
, $\overline{37}^2 = \overline{(-20)}^2 = \overline{400} = \overline{1}$, откуда $\overline{37}^{-1} = \overline{37}$.

Окончательно имеем $\bar{x} = \overline{37} \cdot \overline{18} = \overline{39}$.

Ответ: $x = 39 + 57k, k \in \mathbb{Z}$

5. Решить сравнение $189x \equiv 1 \mod 512$ с помощью алгоритма Евклида.

Решение. Данную задачу можно свести к нахождению таких целых u, v, при которых 512u + 189v = 1 = HOД(189,512). Такую задачу мы рассматривали в первом параграфе. Применяем алгоритм Евклида к паре a = 512, b = 189:

$$a = 512 = 189 \cdot 2 + 134$$

$$b = 189 = 134 \cdot 1 + 55$$

$$r_1 = 134 = 55 \cdot 2 + 24$$

$$r_2 = 55 = 24 \cdot 2 + 7$$

$$r_3 = 24 = 7 \cdot 3 + 3$$

$$r_4 = 7 = 3 \cdot 2 + 1$$

$$3 = 1 \cdot 3$$

$$117$$

Имеем $r_6=1=\mathrm{HOД}(a,b)$, следовательно, искомые u,v равны u_6 и v_6 соответственно, где последовательности u_n и v_n считаются с помощью таблицы, как показано в предыдущем параграфе, причем $u_1=1, \ v_1=-q_1=-2, \ u_2=-q_2=-1, \ v_2=1+q_1q_2=3.$ Однако для решения поставленной задачи достаточно считать лишь v_n по рекуррентной формуле $v_n=v_{n-2}-v_{n-1}q_n$ (табл. 16).

Таблица 16

n	1	2	3	4	5	6
q_n	2	1	2	2	3	2
v_n	-2	3	-8	19	-65	149

Так, что искомое $v = v_6 = 149$.

Ответ: x = 149 + 512k, $k \in \mathbb{Z}$.

6. Решить систему сравнений
$$\begin{cases} x \equiv 2 \mod 13 \\ x \equiv 7 \mod 17. \\ x \equiv 9 \mod 15 \end{cases}$$

Решение. Эта задача на китайскую теорему.

$$N = 13 \cdot 17 \cdot 15, \ m_1 = 17 \cdot 15 = 255, \ m_2 = 13 \cdot 15 = 195,$$

 $m_3 = 13 \cdot 17 = 221.$

Находим частные решения сравнений:

$$m_i y_i \equiv x_i \ mod \ n_i$$
, где $x_1 = 2, x_2 = 7, x_3 = 9,$
 $n_1 = 13, n_2 = 17, n_3 = 15.$

Имеем $255y_1 \equiv 2 \mod 13$, что равносильно $-5y_1 \equiv 2 \mod 13$, откуда $y_1 = -3$. Далее, $195y_2 \equiv 7 \mod 17$,

что равносильно $8y_2 \equiv 7 \mod 17$, откуда $y_2 = 3$. И, наконец, из сравнения $221y_3 \equiv 9 \mod 15$, которое равносильно $11y_3 \equiv 9 \mod 15$, находим $y_3 = -6$. Тогда $m_1y_1 + m_2y_2 + m_3y_3 = 255(-3) + 195 \cdot 3 + 221(-6) = -1506 - частное решение исходной системы сравнений.$

Ответ: x = -1506 + 2315k, $k \in \mathbb{Z}$.

6. Какие остатки может иметь число вида $2015n^{1008} - 1009n^{2015}$ при делении на 9.

Решение. Поскольку $2015 \equiv -1 \mod 9$, а $1009 \equiv 1 \mod 9$, то данное выражение можно заменить на $f(n) = -n^{1008} - n^{2015}$. Далее, при n, взаимно простом с 9, по теореме Эйлера $n^{\varphi(9)} \equiv 1 \mod 9$, т. е. $n^6 \equiv 1 \mod 9$. Тогда для решения нашей задачи при n, взаимно простом с 9, можно f(n) заменить на $g(n) = -n - -n^5$, т. к. $2015 = 335 \cdot 6 + 5$.

Натуральные числа n, взаимно простые с 9 и меньшие 9, исчерпываются числами 1, 2, 4, 5, 7, 8.

Имеем в $\mathbb{Z}/9\mathbb{Z}$:

$$g(\overline{1}) = -\overline{2} = \overline{7},$$

$$g(\overline{2}) = -\overline{34} = \overline{2},$$

$$g(\overline{4}) = -\overline{4} - \overline{4}^5 = -\overline{4} - (-\overline{2})^2 \cdot \overline{4} = -\overline{4} - \overline{16} = -\overline{20} = \overline{7}$$

$$g(\overline{5}) = -\overline{5} - \overline{5}^5 = -\overline{5} - (-\overline{2})^2 \cdot \overline{5} = -\overline{25} = \overline{2},$$

$$g(\overline{7}) = g(-\overline{2}) = \overline{2} + \overline{2}^5 = \overline{34} = \overline{7},$$

$$g(\overline{8}) = g(-\overline{1}) = \overline{1} + \overline{1} = \overline{2}.$$

Итак, при n, взаимно простом с 9, исходное выражение может иметь остатки лишь 7 и 2.

При
$$\bar{n}=\bar{3}, \bar{n}=\bar{6}, \bar{n}=\bar{0}$$
 в $\mathbb{Z}/9\mathbb{Z}$ $\overline{f(n)}=\bar{0}$.

Ответ: Исходное выражение при делении на 9 может иметь следующие остатки: 0, 2, 3, 6, 7.

Упражнения для самостоятельной подготовки

- 1. Решить следующие уравнения в целых числах:
 - a) 19x 26y = 1;
 - 6) 17x + 41y = 1;
 - B) 11x + 14y + 17z = 1;
 - $\Gamma) \ 13x 21y + 15z = 1.$
- 2. Какие остатки имеют указанные числа x на указанные числа y:
- a) $x = 1945^{1961}$, y = 17;
- б) $x = 1917^{2017}, y = 23$?
- 3. С помощью функции Эйлера решить сравнения:
 - a) $29x \equiv 13 \mod 61$;
 - б) $31x \equiv 48 \mod 59$.
- 4. Решить сравнения с помощью алгоритма Евклида:
 - a) $547x \equiv 1 \mod 1024$;
 - б) $343x \equiv 1 \mod{729}$.

5. Решить следующие системы сравнений:

a)
$$\begin{cases} x \equiv 9 \mod 13; \\ x \equiv -10 \mod 21; \\ x \equiv 2 \mod 17. \end{cases}$$
6)
$$\begin{cases} x \equiv 1 \mod 7; \\ x \equiv 2 \mod 9; \\ x \equiv 3 \mod 13; \\ x \equiv 4 \mod 17. \end{cases}$$

§ 5. Элементарная теория многочленов

Напомним, что F[x] — кольцо многочленов над полем F. Это кольцо коммутативно, ассоциативно и с единицей.

Аналогом простого числа в F[x] является неприводимый многочлен.

Определение. Многочлен f(x) из F[x] неприводим над F, если его нельзя представить в виде f(x) = g(x)h(x), где $1 \le \deg g(x) < \deg f(x)$, $1 \le \deg h(x) < \deg f(x)$.

Из определения следует, что любой многочлен степени 1 неприводим. Имеет место аналог теоремы 1 параграфа 1.

Теорема 1. Даже, если F — конечное поле, число неприводимых многочленов над F бесконечно.

Доказательство этой теоремы гораздо сложнее, чем доказательство аналогичной теоремы в теории чисел, и мы его опустим.

Теорема 2 (о делении с остатком в F[x]). Для любых многочленов $f(x), g(x) \in F[x]$ при $g(x) \neq 0$ существуют однозначно определенные многочлены g(x) и r(x) из F(x) такие, что f(x) = g(x)q(x) + r(x), где $\deg r(x) < \deg g(x)$ (q(x) называется частным, r(x) называется остатком при делении f(x) на g(x)).

Доказательство проводится стандартной индукцией по степени f(x), и мы его здесь не приводим.

Теорема 3 (о разложении многочлена на неприводимые множители). Любой многочлен f(x) из F[x] степени ≥ 1 представим в виде произведения $\alpha p_1(x) \dots p_k(x)$, где $\alpha \in F^*$, $p_1(x), \dots, p_k(x)$ — неприводимые многочлены над F, и данное представление f(x) однозначно с точностью до перестановки сомножителей $p_i(x)$ и их умножения, а также скаляра α перед ними на элементы из F^* .

Пример.
$$2x^2 + 5x + 2 = 2\left(x + \frac{1}{2}\right)(x + 2) =$$

= $2(x + 2)\left(x + \frac{1}{2}\right) = (x + 2)(2x + 1)$ и т. д.

Полезным является следующий результат.

Следствие к теореме 2 (Теорема Безу). Если $\alpha \in F$ – корень многочлена $f(x) \in F[x]$, то f(x) делится на $(x - \alpha)$ без остатка.

Доказательство. $f(x) = q(x)(x - \alpha) + r(x)$, где $\deg r(x) < 1$ по теореме 2 для некоторых $q(x), r(x) \in F[x]$.

Так как $\deg r(x) < 1$, то r(x) = r – константа из F. Подставив α в обе части равенства для f(x), получим f(x) = r, т. е. r = 0. Следствие доказано.

Предложение 1.

- 1) Если $\deg f(x) > 1$, $f(x) \in F[x]$ и f(x) имеет корень в F, то f(x) приводим над F;
- 2) Если $\deg f(x) = 2$ или 3, $f(x) \in F[x]$ и f(x) приводим над F, то f(x) имеет корень в F.

Доказательство.

- 1) Следует сразу из теоремы Безу.
- Докажем пункт 2. Если f(x) приводим над F, то f(x) = g(x)h(x), где g(x) или h(x) имеет степень 1. Пусть, например, g(x) = ax + b, $a, b \in F$, $a \ne 0$.
- Тогда g(x) имеет корень $(-\frac{b}{a})$, который является корнем и f(x). Предложение доказано.

Следствие. Если $f(x) \in F[x]$ и $\deg[f(x)] = 2$ или 3, то f(x) неприводим над $F \Leftrightarrow f(x)$ не имеет корней в F.

Пример 1. Найдем все неприводимые многочлены над $F_2 = \mathbb{Z}/2\mathbb{Z} = \{0,1\}.$

Пусть $f(x) = x^2 + \alpha x + \beta$ неприводим над F_2 . Тогда $\beta \neq 0$, а значит, $\beta = 1$, т. е. $f(x) = x^2 + \alpha x + 1$. Если f(x) имеет корень в F, то этот корень может быть только единицей. Подставив 1 в выражение для f(x), получим $1 + \alpha + 1 = \alpha$, т.е. 1 - корень $f(x) \Leftrightarrow \alpha = 0$. Следовательно, над F_2 имеется единственный неприводимый многочлен степени $2: x^2 + x + 1$.

Пример 2. Найдем все неприводимые многочлены над F_2 степени 3.

Рассмотрим f(x) из $F_2[x]$ вида $x^3 + \alpha x^2 + \beta x + 1$. Если f(1) = 0, то $1 + \alpha + \beta + 1 = 0$, т.е. $\alpha = \beta$. Поэтому f(x) неприводим над $F_2 \Leftrightarrow \alpha \neq \beta$.

Таким образом, над F_2 имеется два неприводимых многочлена $x^3+x+1, \, x^3+x^2+1.$ **Пример 3.** Найдем все неприводимые многочлены над F_2 степени 4.

Пусть снова f(x) из $F_2[x]$ имеет вид $x^4 + \alpha x^3 + \beta x^2 + \gamma x + 1$. $f(1) = 0 \Leftrightarrow \alpha + \beta + \gamma = 0$. Имеется четыре варианта для наборов (α, β, γ) , удовлетворяющих данному равенству (табл. 17).

Таблица 17

α	β	γ
0	0	0
0	1	1
1	0	1
1	1	0

Таким образом, многочлены x^4+1 , x^4+x^2+x+1 , x^4+x^3+x+1 , $x^4+x^3+x^2+1$ приводимы. Поэтому кандидатами на неприводимый многочлен над F_2 степени 4 остаются многочлены: $x^4+x^3+x^2+x+1$, x^4+x^3+1 , x^4+x+1 , x^4+x^2+1 . По построению они все не имеют корней в F_2 , но последний из них равен $(x^2+x+1)^2$, где x^2+x+1- единственный неприводимый многочлен степени 2 над F_2 . Так как x^2+x+1- единственный неприводимый многочленов степени 2 над F_2 , то другие кандидаты из четырех многочленов степени 4, выписанных выше, являются неприводимыми. Таким образом, имеется ровно три неприводимых многочлена степени 4 над F_2 : x^4+x+1 , x^4+x^3+1 , $x^4+x^3+x^2+x+1$.

Пример 4. При каких $\alpha \in \{0,1,2,3,4,5,6\}$ многочлен $f(x) = x^3 + \alpha x^2 + 3x + 1$ неприводим над GF(7)? (Для любого $i = \overline{0,6}$ мы отождествляем i с соответствующим классом вычетов $\overline{\iota} = i + 7$ \mathbb{Z}).

Решение. Используем предложение 1.

$$f(1) = 5 + 2 = 0 \Leftrightarrow \alpha = 2.$$

$$f(2) = 8 + 4\alpha + 6 + 1 = 15 + 4\alpha = 1 + 4\alpha = 0 \iff \alpha = 5.$$

$$f(3) = 27 + 9\alpha + 9 + 1 = 37 + 2\alpha = 2 + 2\alpha = 0 \Leftrightarrow \alpha = 6.$$

$$f(4) = f(-3) = -27 + 9\alpha - 9 + 1 = -35 + 9\alpha = 0 \iff \alpha = 0.$$

$$f(5) = f(-2) = -8 + 4\alpha - 6 + 1 = -13 + 4\alpha = 0 \iff \alpha = 5.$$

$$f(6) = f(-1) = -1 + \alpha - 3 + 1 = 3 - \alpha = 0 \iff \alpha = 3.$$

Из проведенных вычислений по модулю 7 делаем вывод, что f(x) неприводим над $GF(7) \Leftrightarrow \alpha = 1$ или $\alpha = 4$, т. е. среди рассматриваемых многочленов только многочлены $x^3 + x^2 + 3x + 1$ и $x^3 + 4x^2 + 3x + 1$ являются неприводимыми.

Пример 5. Разложить $f(x) = x^3 + 3x + 1$ на неприводимые множители над GF(7).

Решение. Из решения примера 4 выше следует, что 4 — единственный корень f(x) над GF(7). Разделим f(x) на x-4, пользуясь схемой Горнера (табл. 18):

Таблица 18

Отсюда следует, что $f(x)=(x-4)(x^2+4x+5)$. Обозначим $g(x)=x^2+4x+5$. Имеем $g(4)=37\neq 0$ в GF(7), следовательно, x^2+4x+5 неприводим над GF(7).

OTBET: $f(x) = (x + 3)(x^2 + 4x + 5)$.

Упражнения для самостоятельной подготовки

- 1. Найти все неприводимые многочлены над $F_3 = \mathbb{Z}/3\mathbb{Z}$ степеней 2 и 3.
- 2. При каких $\alpha \in \{0,1,2,3,4,5,6\}$ многочлен $f(x) = \alpha x^3 + 2x^2 + x + 1$ неприводим над GF(7)?
- 3. Разложить $f(x) = x^3 + 2x^2 + x 5$ на неприводимые множители над GF(7).

§ 6. Теория сравнений для многочленов

Определение. Пусть F — поле, $f(x) \in F[x], f(x) \neq 0$. Тогда многочлен g(x) из F[x] сравним с многочленом h(x) из F[x] по модулю f(x), если g(x) - h(x) делится на f(x) без остатка. Обозначение: $g(x) \equiv h(x) \mod f(x)$.

Аналогично теории сравнений для чисел имеем следующие результаты:

Теорема 1. Отношение сравнения на F[x] по модулю f(x) является отношением эквивалентности, причем $g(x) \equiv h(x) \mod f(x) \Leftrightarrow g(x)$ сравним с h(x) по модулю главного идеала f(x)F[x] кольца F[x].

Определение. Пусть $g(x) \in F[x]$. Тогда $\{h(x) \in F[x] | h(x) \equiv g(x) \mod f(x) \}$ называется классом вычетов по модулю f(x).

Этот класс вычетов обозначается как $\overline{g(x)}$ или в развернутом виде g(x) + f(x)F[x].

Теорема 2. В предыдущих обозначениях имеем:

- 1) $\forall g(x) g(x) \in \overline{g(x)}$;
- 2) $h(x) \in \overline{g(x)} \Rightarrow \overline{h(x)} = \overline{g(x)}$;
- 3) различные классы вычетов по модулю f(x) не пересекаются;
- 4) $\overline{g(x)} = \overline{r(x)}$, где r(x) остаток от деления g(x) на f(x).

Обозначим множество всех классов вычетов по модулю f(x) F[x]/(f(x)).

Как уже было отмечено выше (теорема 1), F[x]/(f(x)) – множество классов вычетов кольца F[x] по модулю главного идеала f(x)F[x].

Поэтому справедлива следующая теорема.

Теорема 3. F[x]/(f(x)) — ассоциативное коммутативное кольцо с единицей относительно операций:

$$\overline{h(x)} + \overline{g(x)} = \overline{h(x) + g(x)},$$

$$\overline{h(x)} \cdot \overline{g(x)} = \overline{h(x) \cdot g(x)}.$$

Теорема 4. F[x]/(f(x)) – поле $\Leftrightarrow f(x)$ не приводим над F. **Следствие.** Если многочлен f(x) степени n не приводим над полем F порядка q, то F[x]/(f(x)) – поле порядка q^n .

Упражнения для самостоятельной подготовки

Найти порядки \bar{x} в мультипликативных группах полей $F_2[x]/(x^4+x+1)$ и $F_2[x]/(x^4+x^3+x^2+x+1)$ порядка 16.

Список литературы

- 1. Андерсон Джеймс А. Дискретная математика и комбинаторика / Андерсон, А. Джеймс; пер. с англ. М.: Издательский дом «Вильямс», 2004. 960 с.
- 2. Ван дер Варден. Алгебра / Ван дер Ваден. М.: Наука, 1976.
- 3. Каргаполов М. И. Основы теории групп / М. И. Каргополов, Ю. И. Мерзляков. М. : Наука, 1972.
- 4. Клиффорд А. Алгебраическая теория полугрупп / А. Клиффорд, Г. Престон. М.: Мир, 1972.
- 5. Кострикин А. И. Введение в алгебру / А. И Кострыкин. М. : Наука, 1977.
- 6. Курош А. Г. Лекции по общей алгебре / А. Г. Курош. М. : Наука, 1973.
- 7. Ленг С. Алгебра / С. Ленг. М.: Мир, 1971.
- 8. Белоногов В. А. Задачник по теории групп / В. А. Белоногов. М.: Наука, 2000.
- 9. Ляпин Е. С. Упражнения по теории групп / Е. С. Ляпин, А. Я. Айзенштат, М. М. Лесохин. М.: Наука, 1967.
- Сборник задач по алгебре : учебник для вузов ; под ред.
 А. И. Кострикина. 3-е изд, перераб. и доп. М. : ФИЗМАТ-ЛИТ, 2001. 464 с.

Учебное пособие

Веретенников *Борис Михайлович* **Белоусова** *Вероника Игоревна*

ДИСКРЕТНАЯ МАТЕМАТИКА Часть I

Редактор О. С. Смирнова

Компьютерный набор В. И. Белоусовой Компьютерная верстка Я. П. Бояршинова

Подписано в печать 24.06.2014. Формат 60×90 1/16. Бумага писчая. Плоская печать. Усл. печ. л. 8,25. Уч.-изд. л. 6,0. Тираж 100 экз. Заказ № 1432.

Издательство Уральского университета Редакционно-издательский отдел ИПЦ УрФУ 620049, Екатеринбург, ул. С. Ковалевской, 5 Тел.: 8(343)375-48-25, 375-46-85, 374-19-41 E-mail: rio@urfu.ru

Отпечатано в Издательско-полиграфическом центре УрФУ 620075, Екатеринбург, ул. Тургенева, 4 Тел.: 8(343) 350-56-64, 350-90-13 Факс: 8(343) 358-93-06

E-mail: press-urfu@mail.ru

