IE-411 2018 Fall

Lecture 1 Geometry of Linear Programming

Instructor: Xin Chen Scribe: Yutong Dai Last Modified: 2018-11-13

Disclaimer: This homework has not been subjected to the usual scrutiny reserved for formal publications.

1.1 Convex sets and polyhedral sets

Definition 1.1 (convex sets) A set $X \in \mathbb{R}^n$ is called a convex set if given any two points x_1 and x_2 in X, then $\lambda x_1 + (1 - \lambda)x_2 \in X$ for each $\lambda \in [0, 1]$.

Example 1.2

1.
$$\{x; Ax = b\}$$
 2. $\{x; Ax = b, x \ge 0\}$ 3. $\{x; Ax \le b\}$

Definition 1.3 (convex cones) A convex cone C is a convex set with the property that $\lambda x \in C$ for every $x \in X, \lambda \geq 0.$

Remark:

- 1. Note that a convex cone always contains the origin.
- 2. Given a set of vectors, $\{x_i\}_{i=1}^n$, we can form the convex cone C generated by these vectors.

$$C = \{ \sum_{i=1}^{n} \lambda_i x_i; \quad \lambda_i \ge 0 \}.$$

Definition 1.4 (convex hulls) A convex hull H is a convex combination of vectors in \mathbb{R}^n . That is, given $\{x_i\}_{i=1}^n, \{\lambda_i\}_{i=1}^n \text{ then } H = \{\sum_i \lambda_i x_i; \lambda_i \ge 0, \sum_i \lambda_i = 1, x_i \in \mathbb{R}^n\}.$

Remark: Given the a set of $x_1, ..., x_n \in \mathbb{R}^n$ and a set of scalar $\lambda_1, ..., \lambda_n$.

- 1. Non-negative combination: $\sum_{i} \lambda_{i} x_{i}$, where $\lambda_{i} \geq 0$;
- 2. Affine combination: $\sum_{i} \lambda_{i} x_{i}$, where $\sum_{i} \lambda_{i} = 1$; 3. Convex combination: $\sum_{i} \lambda_{i} x_{i}$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$.

Definition 1.5 (polyhedral set) A polyhedral set or a polyhedron is the intersection of a finite number of half-spaces. A bounded polyhedral set is called a polytope.

Remark:

- 1. A polyhedral set can be represented by $\{x; Ax \leq b\}$. Since an equation can be written as two inequalities, a polyhedral set can be represented by a finite number of linear inequalities and/or equations.
- 2. If a inequality in $Ax \leq b$ can be disregarded, but the polyhedral set is not affected. Such an inequality is called (geometrically) redundant or irrelevant to the polyhedral set.

Definition 1.6 (polyhedral cone) A polyhedral cone is the intersection of a finite number of half-spaces, whose hyper-planes pass through the origin. In other words, C is a polyhedral cone if it can be represented as $\{x; Ax \leq 0\}$.

Theorem 1.7

- 1. The intersection of convex sets is convex.
- 2. Every polyhedral set is convex.
- 2. The convex hull of a finite number of vectors is a convex set.

1.2 Extreme points and extreme directions

Definition 1.8 (extreme points) A point x in a convex set X is called an extreme point of X if x cannot be represented as a strict convex combination of two distinct points in X. That is, if $x = \lambda x_1 + (1 - \lambda)x_2$ with $\lambda \in (0,1), x_1, x_2 \in X$, then $x = x_1 = x_2$.

Remark: By the definition, an extreme point of X is a point in X that cannot be made to lie in the interior of a line segment contained within X.

Definition 1.9 (rays and directions) A ray is a collection of points of the form $\{x_0 + \lambda d; \lambda \geq 0\}$, where d is a nonzero vector. Here, x_0 is called the vertex of the ray, and d is the direction of the ray.

Example 1.10 The non-zero direction d of a polyhedral set defined by $X = \{x; Ax \leq b, x \geq 0\}$ must satisfy: for each $\lambda \geq 0, x \in X$,

$$\begin{cases} A(x + \lambda d) \le b \\ x + \lambda d \ge 0, \end{cases}$$

which implies $d \ge 0, d \ne 0, Ad \le 0$. Here, we slightly abuse the usage of the notation. $d \ge 0$ is a element-wise comparison and $d \ne 0$ means there is a least one component of d is nonzero.

Definition 1.11 (directions of a convex set) Given a convex set, a nonzero vector d is called (recession) direction of the set, if for each x_0 in the set, the ray $\{x_0 + \lambda d; \lambda \geq 0\}$, also belongs to the set.

Remark: Starting at any point x_0 in the set, one can recede along d for any step length $\lambda \geq 0$ and remain within the set. Clearly, if the set is bounded, then it has no directions.

Definition 1.12 (extreme directions of a convex set) An extreme direction of a convex set is a direction of the set that cannot be represented as a positive combination of two distinct directions of the set.

Definition 1.13 (extreme ray) Any ray that is contained in the convex set and whose direction is an extreme direction is called an extreme ray.

Remark: Since a convex cone is formed by its rays, then a convex cone can be entirely characterized by its directions. In fact, not all directions are needed, since a non-extreme direction can be represented as a positive combination of extreme directions. In other words, a convex cone is fully characterized by its extreme directions.

1.2.1 Extreme points, and Extreme directions of polyhedra sets

Extreme points

Consider a polyhedral set defined as $X = \{x | A_{m \times n} x_{n \times 1} \le b, x \ge 0\}$. Then X is the intersection of m + n half-spaces. And we denote the corresponding hyper-planes of these half-space as defining hyper-planes of X.

Definition 1.14 $x^* \in X$ is said to be an extreme point of X, if x^* lies on the intersection of n linear independent defining planes.

- If more than *n* defining hyper-planes pass through an extreme point, then such an extreme point is called a **degenerate extreme point**. The excess number of planes over n is called its order of degeneracy.
- If there are less than n linear independent defining hyper-planes cross $x^* \in X$, then x^* can not be an extreme point. (See the proof on p72 BJS.)

Extreme directions

Learnt from Example 1.10, the set

$$D = \{d : Ad < 0, 1^T d = 1, d > 0\},\$$

characterized all the directions of the polyhedral set X and the extreme points of D are exactly the extreme directions of X.

Remark: To eliminate duplication, these directions may be normalized. To maintain linearity, it is convenient to normalize the directions using the ℓ_1 norm.

Exsitence of extreme points

A polyhedron $P \subset R^n$ contains a line if there exists a vector $x \in P$ and a nonzero vector d such that $x + \lambda d \in P, \forall \lambda \in R$. Then the following theorem gives the existence of an extreme point.

Theorem 1.15 Suppose that the polyhedron $P = \{x \in R^n | a_i^T x \ge b_i, i = 1, 2, ..., m\}$ is nonempty. Then the following are equivalent:

1. The polyhedron P has at least one extreme point; 2. The polyhedron doesn't contain a line; 3. There exists n vectors out of the family $a_1, ..., a_m$, which are linearly independent.

Corollary 1.16 Every nonempty bounded polyhedron has at least one basic feasible solution.

1.3 Extreme points, vertices and basic solutions

Definition 1.17 (vertex) The $x \in X, x \in R^n$ is said to be the vertex of X if there exists some $c \in R^n$ such that $c^T x < c^T y$ for all $y \in X, y \neq x$.

Remark: The definition of the vertex x_0 requires that the hyper-plane $\{y|c^Ty=c^Tx_0\}$ meets with X at and only at x_0 . See Figure 1.1 for example, where A is a vertex while B is not.

Figure 1.1: Demonstration of the vertex.

Definition 1.18 (active constraints) Consider three types of constraints for $x_i \in \mathbb{R}^n, i = 1, 2, ..., n$.

1. $a_i^T x = b_i, i \in I_1$; 2. $a_i^T x \ge b_i, i \in I_2$; 3. $a_i^T x \le b_i, i \in I_3$,

where $a_i \in \mathbb{R}^n, b_i \in \mathbb{R}$. If there exists x^* such that $a_i^T x = b_i$ for some i in I_1, I_2 or I_3 . Then we say corresponding constraint (a_i) is active.

Definition 1.19 (basic solution) Consider a polyhedron P defined by linear equality and linear inequality constraints, let $x^* \in \mathbb{R}^n$.

1. x^* is a basic solution if: a). All equality constraints are active at x^* ; b). Out of the constraints that are active at x^* , there are n of them are linear independent.

2. If x^* is a basic solution that satisfies all constraints, then it is called a basic feasible solution.

Remark: If the number of constraints $m \leq n$, then there is no either basic solution nor basic feasible solution.

Example 1.20 In Figure 1.2, A, B, C are basic feasible solutions while D is not. Point E is feasible but not basic.

Let $P = \{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 1, x_1, x_2, x_3 \ge 0\}$. There are three constraints that are active at each one of the points A, B, C and D. There are only two constraints that are active at point E, namely $x_1 + x_2 + x_3 = 1$ and $x_2 = 0$.

Figure 1.2: Demonstration of basic solutions.

Theorem 1.21 Let P be a non-empty polyhedron and $x^* \in P$. Then x^* is a vertex $\iff x^*$ is an extreme point $\iff x^*$ is a basic feasible solution.

Figure 1.3: A counter example.

Remark: The Theorem 1.21 holds only under the polyhedron, not in the general convex set. For example, refer to Figure 1.3. A is an extreme point not a vertex. In general, we have

extreme point \Rightarrow vertex; vertex \Rightarrow extreme point.

1.4 Polyhedra in standard form

In this section, the polyhedral set is defined as $X = \{x | A_{m \times n} x_{n \times 1} = b, x \ge 0\}$.

Theorem 1.22 WLOG, assume A is full row rank. $x^* \in X$ is said to be an extreme point of X iff

- 1. $Ax^* = b$;
- 2. There exists indices, $B_1, ..., B_m$ such that
- * The columns $\{A_{B_1},...,A_{B_m}\}$ are linear independent * $x_i = 0$ if $i \notin \{B_1,...,B_m\}$.

Please refer to P53 of BT for the proof.

The basic solution of X can be easily constructed, in light of the Theorem 1.22.

Remark According to the indices $B_1,...,B_m$, we can partition and rearrange A and x as $A = [B_{m \times m}, N_{m \times (n-m)}]$ and $x^T = [x_B^T, x_N^T]$. The matrix B and $x_B \in R^m$ are called the *basic matrix* and *basic variables* respectively. Also, $x_B = B^{-1}b$.

basic matrix and basic solution:

- A basic matrix B can only be linked to one basic solution. This straightforward by the definition.
- A basic solution can correspond to different basic matrix B. For example, consider the polyhedral set $\{x_1 + x_2 = 0, x_1, x_2 \ge 0\}$. The bases can either be A_1 or A_2 , but they all correspond to the basic solution $(0,0)^T$.
- If there exists more than one basis representing an extreme point, then this extreme point is degenerate. However, the converse is not necessarily true. For example,

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ -x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases},$$

the point (0,1,0) is a degenerated point but only has one basic matrix.

Baisc feasible solution:

The point $x^* = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$ is a basic feasible solution iff $B^{-1}b \geq 0$.

However, for the same setting we discussed above, that is, $X = \{x | A_{m \times n} x_{n \times 1} = b, x \ge 0\}$ and A is full row rank. If there is a $x' \in X$ such that has exactly m positive components, x' is not necessarily a basic feasible solution. Just consider the following polyhedron set

$$X = \{(x_1, x_2, x_3 | x_2 + x_3 = 0, x_1, x_2, x_3 \ge 0\},\$$

and a point x' = (1, 0, 0). Clearly $x' \in X$ and is not an extreme point.

Corollary 1.23 The nonempty polyhedron in standard form has at least one basic feasible solution.

This is a result of Theorem 1.15.

1.5 Representation of polyhedron

Let $X = \{x | Ax \leq b, x \geq 0\}$ be a nonempty polyhedral set. Then the set of extreme points is nonempty and has a finite number of elements, say $x_1, ..., x_k$. Furthermore, the set of extreme directions is empty if and only if X is bounded. If X is not bounded, then the set of extreme directions is nonempty and has a finite number of elements, say $d_1, d_2, ..., d_l$. Moreover, $x \in X$ if and only if it can be represented as a convex combination of $x_1, ..., x_k$ plus a non-negative linear combination of $d_1, d_2, ..., d_l$, that is,

$$x_0 = \sum_{j=1}^{k} \lambda_j x_j + \sum_{j=1}^{l} \mu_j d_j,$$

where $\sum_{j} \lambda_{j} = 1, \lambda_{j} \geq 0, \mu_{j} \geq 0.$