SLiM

Workshop Series

#13: Quantitative Traits

- Mendelian traits:
 - governed by a single locus
 - produce discrete outcomes
 - can be modeled with selection coefficients

- Mendelian traits:
 - governed by a single locus
 - produce discrete outcomes
 - can be modeled with selection coefficients
- Quantitative traits:
 - governed by multiple loci: QTLs
 - produce continuous variation (e.g., height)
 - need to be modeled via phenotype

- Phenotype
 - calculated from QTL effects
 - additive effects are central (breeding value)
 - non-additive effects can also be modeled
 - dominance, epistasis
 - environmental noise can be added
 - phenotypic plasticity can be included
 - the final result: a phenotypic trait value

- Fitness
 - a function of phenotypic trait value
 - often modeled as a fitness function

- Fitness
 - a function of phenotypic trait value
 - often modeled as a fitness function

The Big Picture

• QTL mutations have an effect size

• Phenotype is the sum of all effects

• Fitness is a function of phenotype

• Fitness effects are assigned to individuals

Modeling Quantitative Traits

- QTL mutations:
 - have an additive effect size
 - do *not* have a selection coefficient
- Therefore:
 - repurpose the selectionCoeff property to hold the effect size!

Modeling Quantitative Traits

- QTL mutation types:
 - need a distribution of additive effect sizes
 - do not have a DFE (no selection coefficients)
- Therefore:
 - repurpose their DFE to instead be a distribution of additive effect sizes!
 - made neutral with a fitness() callback
 - use convertToSubstitution=F

Modeling Quantitative Traits

- Phenotypic trait values:
 - calculated in script
 - usually with sumOfMutationsOfType()
 - can be remembered in tag if needed
- Fitness:
 - also calculated in script
 - uses a fitness function (often dnorm())
 - fitness effects applied with fitnessScaling

Why dnorm()?

- dnorm() provides a Gaussian fitness function
- Often good for modeling stabilizing selection
- Relatively neutral (skewness, kurtosis)

The Big Picture

- QTL mutations have an effect size
 - kept in selectionCoeff
- Phenotype is the sum of all effects
 - calculated with sumOfMutationsOfType()
- Fitness is a function of phenotype
 - for stabilizing selection, using dnorm()
- Fitness effects are assigned to individuals
 - using the fitnessScaling property

SLiM Workshop Exercise #13