STATISTICS CONCEPTS

ANDREW MAURER

ABSTRACT. These are just some statistical concepts that have come up several times in what I've been doing, and I figured it would be useful to have them written up for my own benefit. I might turn some of these into blog posts.

Contents

1.	R^2 Score	1
2.	Receiver Operating Characteristic (ROC)	2
3.	P Values	3
4.	Hypothesis Testing	3
5 .	A/B Testing	4

1. R^2 Score

1.1. **Definition and Intuition.** The idea behind an R^2 -score (or coefficient of determination) is to quantify how your model compares to the most basic model possible.

Suppose you have input data X, which can be a mixture of both numerical and categorical, and they are being used to predict a numerical output Y. The simplest possible model is the average value \bar{y} , which is the single number which minimizes sum-squared error. Symbolically,

$$\bar{y} = \arg\min_{z} \sum_{y \in Y} (y - z)^2.$$
 (1.1.1)

This model which identically predicts the mean value of the data-set (which I will call the *trivial model* or \bar{y}) is the simplest possible model, and as a base-line we would like to know how any other model compares to \bar{y} .

FIGURE 1. Two competing models

Date: July 16, 2019.

The R^2 -score is how we compare a model to the trivial model. First, let us define the sum squared error for a model f:

$$SSE(f) = \sum_{(x,y)\in D} (f(x) - y)^2$$
 (1.1.2)

To compare a model f to \bar{y} , we investigate the percentage of \bar{y} 's sum squared error which is still present in f's sum squared error, i.e., $SSE(f)/SSE(\bar{y})$. This will be a non-negative number. The R^2 -score is then defined to be

$$R^2 = 1 - \frac{\text{SSE}(f)}{\text{SSE}(\bar{y})} \tag{1.1.3}$$

and may be interpreted as the proportion of \bar{y} 's error which is explained by f. Notice that $R^2 \in (-\infty, 1]$.

- (1) If $R^2 = 1$, then SSE(f) = 0 meaning we have fit the data perfectly. Be careful of overfitting.
- (2) If $R^2 = 0$, then $SSE(f) = SSE(\bar{y})$ and all your work modeling has yielded no payoff.
- (3) If $R^2 < 0$, then $SSE(f) > SSE(\bar{y})$ and you need to seriously re-evaluate your life choices.

1.2. Adjusted R^2 score.

2. Receiver Operating Characteristic (ROC)

- 2.1. **Overview.** When performing binary classification, we often times encode binary data as 0s and 1s, and perform regression. Therefore, when predicting a value with $\hat{y} \approx 0.089$, we infer that y is most likely 1. There is some threshold $\alpha \in [0,1]$ for which negative predictions are those with $\hat{y} < \alpha$ and positive predictions are those with $\hat{y} \geq \alpha$.
- **Definition 2.1.1.** In binary classification with threshold α as above, we make the following definitions for true positive, false positive, true negative, and false negative respectively.
 - (i) TP: predictions with $\hat{y} \geq \alpha$ and y = 1.
 - (ii) FP: predictions with $\hat{y} \ge \alpha$ and y = 0.
- (iii) TN: predictions with $\hat{y} < \alpha$ and y = 0,
- (iv) FN: predictions with $\hat{y} < \alpha$ and y = 1.

These can be arranged into a table.

With true positives et cetera defined, we may talk about the true positive rate and the true negative rate, defined as follows:

$$TPR = \frac{TP}{TP + FN}$$
 and $TNR = \frac{TN}{TN + FP}$ (2.1.1)

The idea behind the ROC curve is that as the threshold α changes, the TPR and TNR change. By mapping $\alpha \to (\text{TPR}(\alpha), \text{TNR}(\alpha))$, we parametrize a curve in the unit box $[0, 1]^2 \subseteq \mathbb{R}^2$.

3. P Values

4. Hypothesis Testing

4.1. When running an experiment it is important to adhere to the scientific method in which you develop a hypothesis and test that hypothesis using data. Here I'll talk about the mathier side of

4.2. Hypotheses and Types of Errors.

4.3. Suppose a i.i.d. random variables $X_i \sim B(p)$ follow a Bernuoilli distribution with parameter $p \in [0, 1]$. The central limit theorem says that after some large number of independent trials, the mean of these trials will follow a normal distribution

$$\bar{X} = \frac{\sum X_i}{n} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right).$$

Now for another set of random variables $Y_i \sim B(p')$ we would like to test the hypothesis that p' > p. To test this there are several quantities we must specify:

• Significance level: The *significance level* is an upper bound on an acceptable probability of a type-1 error. In other words, the significance level is the maximum possible value of

$$\mathbb{P}(\text{ reject } H_0 \mid H_0 \text{ is true})$$

The significance level is often written α . The typical acceptable values of α is 0.05.

• Power: The *power* is a minumum ability to detect type 2 errors. In other words the power is the minimum value of

$$\mathbb{P}(\text{ rejected } H_0 \mid H_0 \text{ is false})$$

Closely associated is the probability of a type-2 error

$$\beta = 1 - \text{power} = \mathbb{P}(\text{ failed to reject } H_0 \mid H_0 \text{ is false})$$

A typical acceptable value for power is 0.80 or $\beta = 0.20$

- Percent Improvement: This is the level of improvement we would expect to see in the test.
- Assignment proportions: Some data will receive control and will become X values, some will receive treatment and become Y values. Call the proportion of individuals in the control group γ .

These three quantities allow for the computation of a number n, the number of samples necessary to detect statistically significant results.

Say n individuals will participate in this study. This means

$$\bar{X} \sim N\left(p, \sqrt{\frac{p(1-p)}{\gamma \cdot n}}\right) \text{ while } \bar{Y} \sim N\left(p', \sqrt{\frac{p'(1-p')}{(1-\gamma) \cdot n}}\right)$$

The significance level determines a cutoff C such that $\alpha = \mathbb{P}(\bar{X} > C)$, which may be unraveled into Equation 4.3.1.

$$??? \tag{4.3.1}$$

5. A/B Testing

5.1. A/B testing is a statistical method for comparing features on a website.

 $Email\ address: \verb"andrew.b.maurer@gmail.com"$

 URL : andrewmaurer.github.io