Computación Bioinspirada - Práctica Nº 3

PROFESOR DEL CURSO: Dennis Barrios Aranibar FECHA: 3 de S

ASISTENTE DEL CURSO: Kevin Christian Rodríguez Siu

FECHA: 3 de Setiembre del 2018

Objetivos de la Sesión

• Utilizar la técnica de Simulated Annealing para la optimización de una función particular.

Ejercicios

Programar las características del uso de la técnica de Simulated Annealing para maximizar la siguiente función:

$$f(x) = \left[\frac{\sin(\pi \|x\|)}{\pi \|x\|}\right]^2, x = \left\{x_1, |x_1| \le 4; |x_2| \le 4\right\}$$

Figura 1: Gráfica de la Función f(x)

- 1. Debe definir todos los elementos de la técnica de Simulated Annealing a programar. Esto incluye:
 - Definición del **operador** a usar para seleccionar un vecino.
 - Definición del esquema de inicio y de descenso de la **Temperatura (T)**. Para una mejor optimización, cuando se inicializa esta variable, se debe seleccionar una temperatura que al principio permita prácticamente cualquier movimiento en contra de la solución actual. Esto le da al algoritmo una mejor habilidad para explorar mejor el espacio de búsqueda antes de enfriarse y establecerse buscando una solución en una región más enfocada.
 - **Criterio para aceptar una solución peor que la actual.** Básicamente, el sistema debería aceptar soluciones no tan buenas mientras la temperatura sea alta.

- 2. Una vez hecho esto, realiza el proceso del algoritmo:
 - (a) Selecciona la temperatura inicial y obtén una solución inicial aleatoria.
 - (b) Luego, se inician las iteraciones hasta que la condición de parada se consigue. Puede ser cuando el sistema se ha enfriado considerablemente o se ha encontrado una solución lo suficientemente bueno.
 - (c) Selecciona al vecino haciendo la operación de cambio con tu operador seleccionado.n
 - (d) Luego, se comprueba el criterio de aceptación de solución para ver si la tomamos o no.
 - (e) Finalmente, la temperatura disminuye y se vuelve al inicio de la iteración.

No es necesaria una interfaz gráfica avanzada, pero debe haber algún tipo de visualización de lo que ocurre, como, por ejemplo, el resultado del operador, la solución aceptada y la temperatura actual. Puede utilizar cualquier lenguaje de programación que prefiera.

Actividades

- 1. Enlista y define como funcionan todos los componentes del algoritmo. Explícalos formalmente y mostrando donde se encuentran definidos en el código fuente.
- 2. Ejecutar el algoritmo de Simulated Annealing hasta llegar a una solución estable. ¿Cuántas iteraciones se ha demorado? Registra este número de iteraciones, la solución alcanzada y a que temperatura la ha alcanzado.
- 3. Realiza ajustes en tus operadores y tus esquemas para el manejo de la temperatura y la aceptación de soluciones. Luego, ejecuta otra vez hasta que la solución converja. Registra otra vez el número de iteraciones, la solución alcanzada y la temperatura.
- 4. Con estos dos registros, realiza un análisis comparativo entre las dos ejecuciones ¿Cuál converge más rápido? ¿Cuál obtuvo la mejor solución? Explica las razones detrás de tus resultados.

Desarrollo y Entrega

- El trabajo debe ser desarrollado en la sesión de laboratorio.
- Se debe entregar digitalmente (en un PDF vía email de preferencia) un informe conteniendo el desarrollo de todas las actividades y los códigos implementados.
- Plazo de entrega del informe: 3 de Setiembre del 2018.

Cuadro 1: Rúbrica de Evaluación - Práctica III

Criterio	Deficiente (25%)	Regular (50%)	Bueno (75%)	Excelente (100%)	Total de Puntos
Modelamiento	No existe un modelado	Se han definido los	Se han definido los as-	Se han definido los	5.5
de la Solución	de la técnica o solución	aspectos del desafío a	pectos del problema a	aspectos del problema	
(Act. 1)	programada, o no está	resolver, y de la solución	resolver, y estos tienen	a resolver y cada uno	
	definido de forma clara.	que hay que aplicar,	relación a los compo-	está relacionado a los	
		pero no existe una	nentes principales de la	componentes de la	
		relación clara entre los	solución que se va a	solución y la técnica a	
		mismos.	aplicar.	realizar.	
Ejecución de	No existe código fuente,	Existe código fuente eje-	Existe código fuente eje-	Existe código fuente	5.5
la Técnica y	no es ejecutable o no	cutable que tiene algu-	cutable que cubre los re-	ejecutable y fácilmente	
Código Fuente	se relaciona con el prob-	nas nociones de los re-	querimientos del prob-	legible que cubre los	
(Act. 2)	lema o la solución prop-	querimientos del prob-	lema, ejecuta la técnica	requerimientos del	
	uestos.	lema.	pedida y muestra algún	problema, ejecuta	
			tipo de resultados.	la técnica pedida y	
				muestra resultados de	
				acuerdo a lo solicitado	
				en la práctica.	
Obtención de	No hay resultados	Hay muestra del proceso	Hay muestra del proceso	Hay muestra del pro-	5
Resultados y	visibles, o sólo se ha	de ejecución y de los re-	de ejecución y de los	ceso de ejecución y de	
Visualización	mostrado el proceso	sultados obtenidos, pero	resultados según el for-	los resultados según el	
(Act. 2 y 3)	de ejecución y no los	estos no se entienden o	mato solicitado.	formato solicitado, ex-	
	resultados obtenidos.	no son claros.		istiendo además una	
				breve discusión sobre	
- 110				los mismos.	
Análisis Com-	No existe un análisis de	Existe un registro de	Existe un registro de los	Existe un registro	4
parativo de	los resultados obtenidos,	los resultados obtenidos	resultados obtenidos y	de los resultados	
Resultados (Act.	o este no está documen-	y una comparación en-	un análisis entre los mis-	obtenidos, y un análi-	
4)	tado apropiadamente.	tre los mismos, pero no	mos, indicando similari-	sis entre los mismos	
		se hace un análisis con	dades y diferencias.	que indica similar-	
		mayor profundidad.		idades, diferencias	
				y el porqué de los	
				resultados obtenidos,	
				indicando también	
				posibilidades de	
				mejora.	