#### CIRCUITOS COMBINACIONAIS

O circuito combinacional é aquele em que a saída depende única e exclusivamente das combinações entre as variáveis de entrada.



#### CIRCUITOS COM 2 VARIÁVEIS

### **SEMÁFORO**



Deseja-se instalar um sistema automático para semáforos, com as seguintes características:

- ⇒ REGRA 1 (R1): Quando houver carros somente em uma das ruas (A ou B) o semáforo correspondente deverá estar aberto;
- ⇒ REGRA 2 (R2): Quando houver carros nas duas ruas, o semáforo da rua A deve estar aberto, pois é preferencial;

## RESOLUÇÃO:

1º passo: levantamento das variáveis e convenções

- Variáveis de entrada
  - $\Rightarrow$  Sensor de presença de carros na rua A (S<sub>A</sub>);
  - $\Rightarrow$  Sensor de presença de carros na rua B (S<sub>B</sub>);
- Variáveis de saída
  - $\Rightarrow$  Lâmpadas verde e vermelha do S1 ( $V_{D1}$  e  $V_{M1}$ );
  - $\Rightarrow$  Lâmpadas verde e vermelha do S2 ( $V_{D2}$  e  $V_{M2}$ );

2º passo: levantamento da tabela verdade

| Entradas                  |                  | Saídas   |          |                   |          |                |
|---------------------------|------------------|----------|----------|-------------------|----------|----------------|
| $\mathrm{S}_{\mathrm{A}}$ | $S_{\mathrm{B}}$ | $V_{D1}$ | $V_{M1}$ | $V_{\mathrm{D2}}$ | $V_{M2}$ |                |
| 0                         | 0                | 0        | 1        | 1                 | 0        | <sup>k</sup> ) |
| 0                         | 1                | 0        | 1        | 1                 | 0        | R              |
| 1                         | 0                | 1        | 0        | 0                 | 1        | R              |
| 1                         | 1                | 1        | 0        | 0                 | 1        | R              |

<sup>(\*)</sup> situação não prevista em regras (adotar uma opção)

3º passo: simplificação da expressão

4º passo: Obtenção do circuito combinacional

Através das expressões minimizadas, obtemos o circuito combinacional:

$$\begin{cases} V_{D1} = V_{M2} = S_A \\ V_{M1} = V_{D2} = \overline{S_A} \end{cases}$$





Deseja-se utilizar um único amplificador para ligar três aparelhos (toca discos, toca fitas e rádio FM). Cada aparelho possui uma chave (A, B e C) que informa se este está ligado ou desligado, e existem 3 saídas (SA, SBe SC) capazes de efetuar a comutação das chaves CH1, CH2 e CH3.

Elaborar um circuito lógico que permita ligar os aparelhos de forma automática ao amplificador, mantendo as seguintes prioridades:

1a prioridade (P1): Toca-discos;

2a prioridade (P2): Toca-fitas;

3a prioridade (P3): Rádio FM;

# RESOLUÇÃO:

1º passo: levantamento das variáveis e convenções

- Variáveis de entrada
  - ⇒ Chaves liga-desliga dos aparelhos (A, B e C); (Aparelho ligado = 1, aparelho desligado = 0)
- Variáveis de saída
  - $\Rightarrow$  Saídas S<sub>A</sub>, S<sub>B</sub> e S<sub>C</sub>; (abrir chave = 0; fechar chave = 1)

2º passo: levantamento da tabela verdade

| ENTRADAS |   |   |       |         |         |      |
|----------|---|---|-------|---------|---------|------|
| A        | В | С | $S_A$ | $S_{B}$ | $S_{C}$ |      |
| 0        | 0 | 0 | X     | X       | X       |      |
| 0        | 0 | 1 | 0     | 0       | 1       | (P3) |
| 0        | 1 | 0 | 0     | 1       | 0       | (P2) |
| 0        | 1 | 1 | 0     | 1       | 0       | (P2) |
| 1        | 0 | 0 | 1     | 0       | 0       | (P1) |
| 1        | 0 | 1 | 1     | 0       | 0       | (P1) |
| 1        | 1 | 0 | 1     | 0       | 0       | (P1) |
| 1        | 1 | 1 | 1     | 0       | 0       | (P1) |

3º passo: simplificação da expressão



4º passo: Obtenção do circuito combinacional

Tomando as variáveis minimizadas, teremos:

$$\begin{cases} S_{A} = A \\ S_{B} = \overline{A} . B \\ S_{C} = \overline{A} . \overline{B} \end{cases}$$

