РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

Дисциплина: ИАД

Студент: Ким Реачна

Группа: НПИбд-01-20

Москва 2023

Вариант № 13

1. Используя функционал библиотеки Pandas, считайте заданный набор данных из репозитария UCI. Набор данных задан ссылкой на страницу набора данных и названием файла с данными, который доступен из папки с данными (data folder).

In [56]:

```
import pandas as pd
import numpy as np
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2, f_classif
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
data1 = pd.read_csv("horse-colic.data", header=None, sep=' ',on_bad_lines='skip'
```

In [57]:

data1

Out[57]:

	0	1	2	3	4	5	6	7	8	9	 18	19	20	21	22	23
0	2	1	530101	38.50	66	28	3	3	?	2	 45.00	8.40	?	?	2	2
1	1	1	532349	38.4	44	24	3	?	4	?	 50	77	?	?	1	1
2	2	1	5275212	37.80	82	12	3	1	1	2	 50.00	7.00	?	?	3	1
3	2	9	5305129	39.50	84	30	?	?	?	1	 28.00	5.00	?	?	1	2
4	1	1	529428	?	?	?	?	?	?	?	 ?	?	?	?	1	1
5	1	1	529126	38.00	50	36	?	1	1	1	 39.00	6.60	1	5.30	1	1
6	2	1	535054	38.6	45	16	2	1	2	1	 43	58	?	?	1	2
7	1	1	528890	38.90	80	44	3	3	3	1	 54.00	6.50	3	?	2	1
8	1	1	530034	37.00	66	20	1	3	2	1	 35.00	6.90	2	?	2	1
9	1	1	534004	?	78	24	3	3	3	1	 43	62	?	2	3	2
10	2	1	533902	38.5	40	16	1	1	1	1	 37	67	?	?	1	2
11	1	1	533886	?	120	70	4	?	4	2	 55	65	?	?	3	2
12	2	1	527702	37.20	72	24	3	2	4	2	 44.00	?	3	3.30	3	1
13	1	1	529386	37.50	72	30	4	3	4	1	 60.00	6.80	?	?	2	1
14	1	1	530612	36.50	100	24	3	3	3	1	 50.00	6.00	3	3.40	1	1
15 rows × 28 columns																
101	O VV.	<i>,</i> ~	20 0010111													•

2. Проведите исследование набора данных, выявляя числовые признаки. Если какие-то из числовых признаков были неправильно классифицированы, то преобразуйте их в числовые. Если в наборе для числовых признаков присутствуют пропущенные значения ('?'), то заполните их медианными значениями признаков.

In [58]:

```
data1 = data1.replace("?",np.nan)
```

In [59]:

data1.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15 entries, 0 to 14
Data columns (total 28 columns):
     Column Non-Null Count
                              Dtype
_ _ _
             15 non-null
 0
     0
                              int64
 1
     1
             15 non-null
                              int64
 2
     2
             15 non-null
                              int64
 3
     3
             12 non-null
                              object
 4
     4
             14 non-null
                              object
 5
     5
             14 non-null
                              object
 6
     6
             12 non-null
                              object
 7
     7
             11 non-null
                              object
 8
     8
             12 non-null
                              object
 9
     9
             13 non-null
                              object
 10
     10
             12 non-null
                              object
             12 non-null
 11
     11
                              object
 12
     12
             10 non-null
                              object
 13
     13
             8 non-null
                              object
 14
     14
             7 non-null
                              object
 15
     15
             1 non-null
                              object
 16
     16
             10 non-null
                              object
 17
     17
             11 non-null
                              object
 18
     18
             14 non-null
                              object
 19
     19
             13 non-null
                              object
 20
     20
             5 non-null
                              object
 21
     21
             4 non-null
                              object
 22
     22
             15 non-null
                              int64
 23
     23
             15 non-null
                              int64
 24
     24
             15 non-null
                              int64
             15 non-null
     25
 25
                              int64
 26
     26
             15 non-null
                              int64
 27
     27
             15 non-null
                              int64
dtypes: int64(9), object(19)
memory usage: 3.4+ KB
```

In [60]:

```
data1 = data1.astype(float)
```

In [61]:

data1.info()

#	Column	Non-Null Count	Dtype
		45 11	C1 1 C 4
0	0	15 non-null	float64
1	1	15 non-null	float64
2	2	15 non-null	float64
3	3	12 non-null	float64
4	4	14 non-null	float64
5	5	14 non-null	float64
6	6	12 non-null	float64
7	7	11 non-null	float64
8	8	12 non-null	float64
9	9	13 non-null	float64
10	10	12 non-null	float64
11	11	12 non-null	float64
12	12	10 non-null	float64
13	13	8 non-null	float64
14	14	7 non-null	float64
15	15	1 non-null	float64
16	16	10 non-null	float64
17	17	11 non-null	float64
18	18	14 non-null	float64
19	19	13 non-null	float64
20	20	5 non-null	float64
21	21	4 non-null	float64
22	22	15 non-null	float64
23	23	15 non-null	float64
24	24	15 non-null	float64
25	25	15 non-null	float64
26	26	15 non-null	float64
27	27	15 non-null	float64

dtypes: float64(28)
memory usage: 3.4 KB

```
In [62]:
```

```
data1.isna().sum()
Out[62]:
0
       0
1
        0
2
        0
3
        3
4
        1
5
        1
6
        3
7
        4
8
        3
9
        2
10
        3
11
        3
12
        5
13
       7
14
       8
15
      14
16
        5
17
       4
18
       1
19
       2
20
      10
21
      11
22
       0
23
       0
24
       0
25
       0
26
       0
27
       0
dtype: int64
In [63]:
data1 = data1.fillna(data1.median())
```

3. Определите столбец, содержащий метку класса (отклик). Если столбец, содержащий метку класса (отклик), принимает более 10 различных значений, то выполните дискретизацию этого столбца, перейдя к 4-5 диапазонам значений.

```
In [64]:
```

```
target = data1[0]
data1 = data1.drop([0],axis=1)
```

In [65]:

```
target.unique()
```

Out[65]:

```
array([2., 1.])
```

4. При помощи класса SelectKBest библиотеки scikit-learn найдите в наборе два признака, имеющих наиболее выраженную взаимосвязь с (дискретизированным) столбцом с меткой класса (откликом). Используйте для параметра score_func значения chi2 или f_classif.

In [66]:

```
from sklearn.preprocessing import LabelEncoder
target = pd.Series(LabelEncoder().fit_transform(target))
```

```
In [67]:
data = data1.select_dtypes(exclude=['object'])
# отбор признаков при помощи одномерных статистических тестов
from sklearn.feature_selection import SelectKBest, chi2
X = data
Y = target
# отбор признаков
test = SelectKBest(score func=chi2, k=2)
fit = test.fit(X, Y)
# оценки признаков
print("\nOценки признаков:\n",fit.scores_)
cols = test.get_support(indices=True)
data = data.iloc[:,cols]
print("\nOтобранные признаки:\n",data.head())
Оценки признаков:
 [4.17391304e+00 7.77826292e+06 2.10887332e-02 6.03937130e+00
 1.80868878e+01 3.21428571e-01 1.33796296e+00 5.85365854e-01
 4.29824561e-01 7.57575758e-03 6.40151515e-01 3.87596899e-03
 0.0000000e+00 1.48148148e-01 0.0000000e+00 3.40909091e-02
 5.73099415e-01 3.54243542e+00 3.88759886e-01 1.42857143e-01
 6.89118322e-03 6.17283951e-03 5.07936508e-01 1.30566786e+04
            nan
                           nan 6.17283951e-03]
Отобранные признаки:
           2
                    24
    530101.0 11300.0
0
1
   532349.0 3205.0
2 5275212.0
               2205.0
3 5305129.0
                  0.0
4
    529428.0
               2124.0
In [68]:
```

```
a,b=data.columns
```

5. Для найденных признаков и (дискретизированного) столбца с меткой класса (откликом) вычислите матрицу корреляций и визуализируйте ее в виде тепловой карты (heat map).

In [69]:

```
correlation_matrix = (pd.concat([data,target],axis=1)).corr()

plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap")
plt.show()
```


6. Визуализируйте набор данных в виде диаграммы рассеяния на плоскости с координатами, соответствующими найденным признакам, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.

In [70]:

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
plt.xlabel('Feature1')
plt.ylabel('Feature2')
plt.title('Scatter Plot of Features')

sns.scatterplot(data=data, x=data[2], y=data[24], hue=target, palette='viridis')
plt.legend(title='Class')
plt.show()
```


7. Оставляя в наборе данных только числовые признаки, найдите и выведите на экран размерность метода главных компонент (параметр n_components), для которой доля объясняемой дисперсии будет не менее 97.5%.

In [71]:

```
from sklearn.decomposition import PCA
data = data1.select_dtypes(include=['number'])
for r in range(1,5):
  pca = PCA( n_components = r )
 pca.fit(data)
  print( "r =",r,"\tДисперсия =",
        sum(pca.explained variance ratio )*100,"%" )
        Дисперсия = 99.99790826857856 %
r = 1
        Дисперсия = 99.9999995154984 %
r = 2
        Дисперсия = 99.999999773843 %
r = 3
        Дисперсия = 99.9999999534211 %
r = 4
In [72]:
cumulative variance = pca.explained variance ratio .cumsum()
n_components = len(cumulative_variance[cumulative_variance <= 0.975])+1</pre>
print(f"Количество компонент для объяснения 97.5% дисперсии: {n_components}")
```

Количество компонент для объяснения 97.5% дисперсии: 1

8. Пользуясь методом главных компонент (PCA), снизьте размерность набора данных до двух признаков и изобразите полученный набор данных в виде диаграммы рассеяния на плоскости, образованной двумя полученными признаками, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных

In [73]:

```
pca = PCA(n_components=2)
fit = pca.fit(data)
data = pd.DataFrame(fit.transform(data))
data
```

Out[73]:

	0	1
0	-6.355591e+05	5429.161890
1	-6.333030e+05	-2663.666175
2	4.109559e+06	1098.961263
3	4.139478e+06	-1075.986680
4	-6.362229e+05	-3747.497139
5	-6.365312e+05	2528.192265
6	-6.305948e+05	-5865.914702
7	-6.367659e+05	1238.949299
8	-6.356460e+05	25239.069179
9	-6.316470e+05	-3657.981561
10	-6.317468e+05	-5867.082134
11	-6.317660e+05	-2662.118005
12	-6.379490e+05	-3665.230355
13	-6.362660e+05	-2666.546246
14	-6.350390e+05	-3662.310899

In [74]:

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
plt.xlabel('Feature1')
plt.ylabel('Feature2')
plt.title('Scatter Plot of Features')

sns.scatterplot(data=data, x=data[0], y=data[1], hue=target, palette='viridis')
plt.legend(title='Class')
plt.show()
```

