Natural Language Processing

Lecture 21

Dirk Hovy

dirk.hovy@unibocconi.it

Goals for Today

- Learn about recurrent neural network architectures
- Understand the difference to convolutional networks
- Learn about different architecture
- Understand the attention mechanism

Recurring Matters

Long-Term Trouble

SUBJECT

"Wenn er aber auf der Strasse der in Sammt und Seide gehüllten jetzt sehr ungenirt nach der neusten Mode gekleideten Regierungsräthir begegnet."

VERB

Mark Twain, The Awful German Language

Long-Term Trouble

NEGATION

This is not in any sense of the word a funny movie.

Sequence Tagging

```
PRON VERB ADP DET ??? PUNCT l went to the show .
```

```
show {VERB, NOUN}
               show
show
PART Show
  show
               show
show
PRON Show
   show
```

Structured prediction: depends on the POS of a previous word

Types of Text Classification

Recurrent Networks

Recurrence

$$y_i = f(h_i)$$

$$h_i = s(h_{i-1}, x_i)$$

...Unrolled

$$y_i = f(h_i)$$

$$h_i = s(h_{i-1}, x_i)$$

Concretely

$$y_i = f(h_i) = h_i$$

 $h_i = s(h_{i-1}, x_i) = tanh(W_1 h_{i-1} + W_2 x_i + b)$

Recap: LMs

$$P(w_1, w_2, ..., w_n) \approx \prod_{i=1}^{N} P(w_i|w_{i-2}, w_{i-1})$$
 Model

* * The weather today is fine STOP

$$P(S) = P(w_1, ..., w_n) = P(The|* *)$$

- × P(weather * The)
- × P(today The weather)

- CHAIN RULE × P(is weather today)
 - × P(fine today is)
 - × P(STOP is fine)

Neural LMs

$$P(w_1, w_2, ..., w_n) \approx \prod_{i=1}^{N} P(w_i|w_1, w_{i-1})$$

PREDICT NEXT WORD GIVEN HISTORY

RNN Tagging

STRUCTURED PREDICTION

Bidirectional-RNN

STRUCTURED PREDICTION

Special Recurrent Networks

Vanishing Memory

WHERE WERE YOU MARCH 3, 2016?

PROBLEM WITH LONG SEQUENCES

Selective Forgetting

Acceptor

Encoder-Decoder

...AND GENERATE

OUTPUT FROM IT

GOBBLE UP SEQUENCE

INTO A VECTOR ...

The Attention Mechanism

Attention!

- Learn syntactic and semantic relations between words in
 - the input and output (RNNs)
 - only the input (CNNs)
- Good for machine translation (word alignment) and classification (complex expressions)

CNN with Attention

FIND LONG-RANGE DEPENDENGIES

RNN with Attention

OUTPUT

The agreement on the European Economic Area was signed in Aug 1992

/ L'						
accord						
p sur						
// la						
7 zone						
économique						
européenne						
a						
été						
signé						
on						
août						
1992						

LEARN REORDERING

Bocconi

RNN with Attention

LEARN REORDERING

Bocconi

Performance

Wrapping up

Take Home Points

- Recurrent Neural Nets address long-range dependencies
- Condition each word on all previous ones:
 - better LMs
 - better sequence labels
- Bidirectional RNNs condition on following words
- LSTMs learn to forget useless input
- Attention improves coherence

