WONDER

놀랄 만큼 재미있는 C언어 기초

CHAPTFR

03

C프로그램 구성요소

학습목차

- ▶ 3.1 C프로그램 구조
- ▶ 3.2 함수와 라이브러리
- 3.3 변수의 선언과 활용

3장은 C프로그램의 기본 구조를 설명하고 각 구성요소의 특징과 주의 사항을 볼 거야 함수 및 라이브러고, 변수에 대해 알아볼 수 있어

즉, 중요한 장이라는 거지!

3장을 허술하게 여기지 마세요 꼬옥!

いまいない

저도 강조!

드디어 뭔가

까꾸^^

C프로그램 구조

1 C코드 구조

• 이메일에도 구조과 절차가 있듯이 C코드에도 지켜야 할 구조와 절차가 있음

- main() 함수는 이메일의 "본문"에 해당 C코드에는 main() 함수가 꼭 있어야 함
- C코드에서 작업의 시작과 끝을 알리는 것은 중괄호 {}
- printf("Hello World")는 Hello World 글자를 화면에 출력하는 함수
- printf() 함수를 사용하기 위해서는 #include <stdio.h> 필요
- return 0은 정상적으로 종료한다는 의미

```
1 #include<stdio.h> 라이브러리
2
3 int main() main() 함수
4 {
5 printf("Hello World");
6 return 0;
7 }
```

- C코드를 만들 때 사용되는 단어를 키워드(keyword)라 부름
- 키워드 keyword 란 C언어 문법에서 중요(key)하게 사용되는 단어(word)

표 3-1 C코드 키워드

auto	break	case	char	const	continue	default	do
double	else	enum	extern	float	for	goto	if
int	long	register	return	short	signed	sizeof	static
struct	switch	typedef	union	unsigned	void	volatile	while

2 C코드 기본 규칙

- 일반적으로 코드의 맨 끝에는 세미콜론(;)을 붙임
- 샾(#)으로 시작하는 코드에는 세미콜론(;)을 붙이지 않음
- C코드를 작성할 때, 띄어쓰기와 들여쓰기를 꼭 해야 함

```
    의 int main()
    intmain()

    02 return 0;
    return0;
```

```
띄어쓰기 예
                                                                띄어쓰기 다른 예
01
     #include<stdio.h>
                                         #include < stdio.h >
02
     int main()
                                         int main () {
03
                                            printf ( "Hello World" );
04
        printf("Hello World");
05
                                            return 0 ;
06
        return 0;
07
```

• 들여쓰기를 꼭 해야 함

```
      들여쓰기함
      들여쓰기안함

      01 #include <stdio.h>
      #include <stdio.h>

      02
      int main()
      int main()

      04 {
      {

      05 printf("Hello World");
      printf("Hello World");

      06 return 0;
      return 0;

      07 }
      }
```

3 주석이란?

• 주석은 일종의 메모

```
01 /* 전산과 284154 김영웅
     C프로그래밍 과제물 */
03
   /***********
       2021. 6. 7.
    처음으로 만든 과제물
   ****************
   #include <stdio.h>
09
   int main()
11
                        // 화면에 Hello World 출력하는 함수
     printf("Hello World");
12
     return 0;
                                  // 어머니(운영체제)에게로 돌아간다.
13
14
```

1 함수란?

- 모듈이란 일정한 기능을 수행하도록 조립된 부품 덩어리
- 함수(function)란 정해진 절차에 따라 데이터를 처리하는 모듈

2 라이브러리와 헤더파일

- C언어에는 마음대로 사용할 수 있는 수천개의 함수가 있음
- 미리 만들어 놓은 함수를 라이브러리 혹은 라이브러리 함수라 부름
- 관련 있는 함수들을 모아 놓은 파일을 헤더파일(header file), 확장자는 .h

- C코드에서 가장 많이 사용하는 헤더파일은 stdio.h
- 수학 관련 라이브러리 함수들이 모여 있는 헤더파일의 이름은 math.h

3 함수 구조

- 모듈은 입력, 출력, 몸체로 구성
- 함수이름(입력) { 몸체 }

4 Printf() 함수와 제어문자

• 제어문자(control character)란 화면에는 출력되지 않지만, 화면의 상황을 제어하는 문자

• 줄바꿈 제어문자는 ₩n

```
#include <stdio.h>
02
    int main()
94
05
       printf("Hello World\n");
                                                      // 줄 바꿈 제어문자 \n
       printf("I am a C programmer");
06
07
       return 0;
                                                                    실행 화면
Hello World
I am a C programmer
```

• 키보드에서 역슬러시 위치

변수의 선언과 활용

1 변수란?

• C코드에서 데이터를 담는 그릇이 변수(variable)

> 변수와 3가지 자료형

변수의 선언과 활용

2 변수 만들기

> 변수 선언

변수의 선언과 활용

> 변수 선언 방법


```
01int age;정수형 변수 age02float power;실수형 변수 power03char name;문자형 변수 name
```


> 변수 이름 규칙

표 3-2 변수이름 규칙

규칙	사용 가능	사용 불가능	사용 불가한 이유
영문자, 숫자, 밑줄 가능	int age_p1;	int age p1;	공백 대신 밑줄 사용
숫자부터 시작하면 안 됨	int num3;	int 3num;	숫자를 뒤에 쓸 것
키워드 사용 불가	int int_sum;	int int;	키워드를 포함한 단어 가능
밑줄부터 시작 가능	int _num3;	int num!;	특수문자 사용 불가능

변수의 선언과 활용

3 대입 연산자

• 오른쪽 값을 왼쪽에 대입

> 다양한 대입 연산자 사용 방법

```
int age1; int age1, age2;
int age2;

age1 = 24;
age1 = 24;
age2 = 32;
age2 = 32;
age1 = age2;
age1 = age2;
```


정수 초기화 예	실수 초기화 예
int age1 = 24, age2 = 32;	float power1 = 24.0, power2 = 32.0;

4 변수 값 출력하기

> 서식문자

```
01 #include <stdio.h>
02
03 int main()
04 {
05 printf("내 나이 = %d 친구 나이 = %d", 29, 31); // 쉼표는 나열 연산자
06
07 return 0;
08 }
```


> 서식문자 종류

> 서식문자 에러

```
      01
      printf("내 나이 = %d");
      %d에 대응하는 데이터 없음

      02
      printf("내 나이 = %d", 29, 31);
      31에 대응하는 %d 없음

      03
      printf("내 나이 = %d 친구 나이 = %d", 29);
      두 번째 %d에 대응하는 데이터 없음
```

[예제 3-5] 여러 변수 출력 코드

```
#include <stdio.h>
02
    int main()
       int num1, num2;
                                        // 같은 종류의 변수는 쉼표로 연결
05
06
       num1 = 21;
07
       num2 = 17;
08
09
       printf("num1 = %d, num2 = %d\n", num1, num2);
10
       num1 = num2;
                                        // num2 값 num1에 대입
11
       printf("num1 = %d, num2 = %d\n", num1, num2);
12
13
14
       return 0;
15 }
```

```
num1 = 21, num2 = 17
num1 = 17, num2 = 17
```

5 대입 연산자 활용

[예제 3-6] 대입 연산자 활용 코드

```
01 #include <stdio.h>
02
   int main()
      int num1 = 21, num2 = 17, num3 = 0;
05
06
      num3 = 9 + 5;
07
       printf("num3 = %d\n", num3);
98
      num3 = num2 + 5; // num2 값에 5 더하여 num3에 대입
09
10
       printf("num3 = %d, num2 = %d\n", num3, num2);
      num3 = num1 + num2; // num1 값에 num2 값 더하여 num3에 대입
11
       printf("num3 = %d\n", num3);
12
13
      return 0;
14
15 }
```

```
num3 = 14
num3 = 22, num2 = 17
num3 = 38
```

LAB 1 사칙 연산 코드 만들기

```
#include <stdio.h>
02
   int main()
04
       int num1 = 7, num2 = 4;
05
       float num3 = 7 / 4;
                                                  // 나눗셈 결과는 실수
06
07
       printf("num1 = %d, num2 = %d\n", num1, num2);
08
       printf("덧셈 = %d\n", num1 + num2);
       printf("뺄셈 = %d\n", num1 - num2);
10
       printf("곱셈 = %d\n", num1 * num2);
11
       printf("나눗셈 = %f\n", num3);
12
13
14
       return 0;
15 }
```

```
num1 = 7, num2 = 4

덧셈 = 11

뺄셈 = 3

곱셈 = 28

나눗셈 = 1.000000
```

LAB 2 루트 값 구하기

```
#include <stdio.h>

#include <stdio.h

#includ
```

실행 화면

루트 7 = 2.645751