WHAT IS CLAIMED IS:

1	1. A method for determining whether a MEMS device is in a select state
2	defined by a position of a moveable element comprised by the MEMS device, the method
3	comprising:
4	changing a voltage of a first region of a sensing configuration; and
5	measuring a second region of the sensing configuration,
6	wherein the first and second electrically active regions are electrically coupled
7	when the MEMS device is in the select state and electrically uncoupled when the MEMS
8	device is not in the select state.
1	2. The method recited in claim 1 wherein the sensing configuration
2	comprises a transistor.
1	3. The method recited in claim 2 wherein the sensing configuration
2	comprises a field-effect transistor having a source region corresponding to the first region and
3	a drain region corresponding to the second region.
1	4. The method recited in claim 2 wherein the sensing configuration
2	comprises a bipolar junction transistor having an emitter region corresponding to the first
3	region and a collector region corresponding to the second region.
1	5. The method recited in claim 1 wherein:
2	the first and second regions comprise first and second waveguide ports; and
3	measuring the second region comprises measuring an impedance between the
4	first and second waveguide ports.
1	6. The method recited in claim 1 wherein the moveable element is not in
2	contact with the first or second, regions when in the position defining the select state.
1	7. The method recited in claim 1 wherein the moveable element is in
2	contact with the first and second regions when in the position defining the select state.
l.	8. The method recited in claim 7 wherein the first and second regions
2	comprise electrically conductive regions.

9.

16.

comprise first and second waveguide ports.

1 2

1

The method recited in claim 1 further comprising performing changing

The method recited in claim 12 wherein the first and second regions

1	17. The method recited in claim 12 wherein the moveable element is in
2	contact with the first and second regions when in the position.
1	18. The MEMS device recited in claim 12 further comprising a dynamic
2	refresh driver electrically coupled with the first region and configured to periodically provide
3	an ac signal to the first region.
1	19. A microstructure for steering light, the microstructure comprising:
1	a substrate;
2	a structural linkage connected with the substrate and supporting a moveable
3	-
4	element disposed to orient a reflective coating;
5	an electrode disposed to provide an electrostatic force on the moveable
6	element upon actuation; and
7	a sensing configuration having first and second regions that are electrically
8	coupled only when the moveable element is in a position that defines a select state for the
9	microstructure.
1	20. The microstructure recited in claim 19 wherein the sensing
2	configuration comprises a transistor formed within the substrate.
-	configuration comprises a management remains and a second
1	21. The microstructure recited in claim 20 wherein:
2	the sensing configuration comprises a field-effect transistor;
3	the first region comprises a source of the field-effect transistor; and
4	the second region comprises a drain of the field-effect transistor.
1	22. The microstructure recited in claim 20 wherein:
2	the sensing configuration comprises a bipolar junction transistor;
3	the first region comprises an emitter of the bipolar junction transistor; and
4	the second region comprises a collector of the bipolar junction transistor.
1	23. The microstructure recited in claim 19 wherein the first and second
1 2	regions comprise first and second waveguide ports.
_	regions comprise mist and second waveguide ports.
1	24. The microstructure recited in claim 19 wherein the moveable element
2	is in contact with the first and second regions when in the position

by a wavelength router.

1	25. The microstructure recited in claim 19 wherein the microstructure is
2	one of a plurality of similar microstructures comprised by an array.
1	26. The microstructure recited in claim 25 wherein:
2	the first region of each of the microstructures is electrically coupled with a
3	dynamic refresh driver;
4	the electrode of each of the microstructures is electrically coupled with the
5	dynamic refresh driver; and
6	the second regions of the microstructures are electrically coupled with one
7	another.
1	27. The microstructure recited in claim 26 wherein the array is comprised