Interpolação Polinomial

Polinômios interpoladores Polinômios de Gregory-Newton

Polinômio de Gregory-Newton

É um caso particular do polinômio interpolador de Newton para pontos igualmente espaçados, isto é, quando os valores das abscissas x, forem igualmente espaçados.

Exemplo:

Função Tabelada				
i	X_i	y_i		
0	3,5	9,82		
1	4,0	10,91		
2	4,5	12,05		
3 5,0 13,14				
4	5,5	16,19		

Observe que
$$\forall i, i = 0,1,...,4$$
:
 $x_{i+1} - x_i = h = 0,5$

Polinômios de Gregory-Newton

- dados n+1 pontos distintos e igualmente espaçados por h, x₀, x₁, x₂, ..., x_n
- e os valores de f(x) nesses pontos $f(x_0)$, $f(x_1)$, $f(x_2)$, ..., $f(x_n)$
- Obter polinômio P_n(x) tal que:

$$P_n(x_0) = f(x_0)$$

$$P_n(x_1) = f(x_1)$$

$$P_n(x_2) = f(x_2)$$
...
$$P_n(x_n) = f(x_n)$$

Diferenças Finitas

• Operador de diferença finita de ordem k (Δ^k):

Ordem 1:
$$\Delta y_i = y_{i+1} - y_i$$
,
Ordem 2: $\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$,
Ordem n : $\Delta^n y_i = \Delta^{n-1} y_{i+1} - \Delta^{n-1} y_i$.

Dados os seguintes pontos

i	Xi	y_i
0	110	2,041
1	120	2,079
2	130	2,114

Tabela de diferenças finitas

i	X_i	y_i	$\Delta^1 y_i$	$\Delta^2 y_i$
0	110	2,041	0,038	-0,003
1	120	2,079	0,035	*
2	130	2,114		

Teorema

- Seja a função f(x) definida pelos pontos x_0 , $x_1, x_2, ..., x_n$ tais que x_{i+1} $x_i = h$
- A relação entre os operadores de Diferença Finita e Dividida é dada por:

$$\Delta^n y_i = \frac{\Delta^n y_i}{n!h^n}.$$

Polinômio de Newton

$$P_n(x) = y_0 + \Delta y_0(x - x_0) + \Delta^2 y_0(x - x_0)(x - x_1) + \dots + \Delta^n y_0(x - x_0) \dots (x - x_{n-1})$$

Variável auxiliar

$$u_x = u(x) = \frac{x - x_0}{h} \longrightarrow x - x_0 = hu_x$$

Verifica-se que:

$$\begin{aligned} x-x_0 &= hu_x, \\ x-x_1 &= x-(x_0+h) = x-x_0-h = hu_x-h \leadsto x-x_1 = h(u_x-1), \\ x-x_2 &= x-(x_0+2h) = x-x_0-2h = hu_x-2h \leadsto x-x_2 = h(u_x-2), \\ &\vdots \\ x-x_{n-1} &= x-(x_0+(n-1)h) = x-x_0-(n-1)h \leadsto x-x_{n-1} = h(u_x-n+1). \end{aligned}$$

Substituindo na fórmula de Newton e aplicando a relação entre as diferenças Finitas e Divididas:

$$P_n(x) = y_0 + \Delta y_0(x-x_0) + \Delta^2 y_0(x-x_0)(x-x_1) + \dots + \Delta^n y_0(x-x_0) \dots (x-x_{n-1})$$

$$P_{n}(x) = y_{0} + \frac{\Delta y_{0}}{1!h}hu_{x} + \frac{\Delta^{2}y_{0}}{2!h^{2}}hu_{x}h(u_{x} - 1) + \dots + \frac{\Delta^{n}y_{0}}{n!h^{n}}hu_{x}h(u_{x} - 1) + \dots + h(u_{x} - n + 1).$$

$$\Delta^n y_i = \frac{\Delta^n y_i}{n!h^n}$$

$$P_n(x) = y_0 + \Delta y_0 u_x + \frac{\Delta^2 y_0}{2!} u_x (u_x - 1) + \dots$$
$$+ \frac{\Delta^n y_0}{n!} u_x (u_x - 1) \dots (u_x - n + 1)$$

$$P_n(x) = y_0 + \sum_{i=1}^n \frac{\Delta^i y_0}{i!} \prod_{j=0}^{i-1} (u_x - j)$$

$$u_x = \frac{x - x_0}{h}$$

Dados os seguintes pontos

i	Xi	y_i
0	110	2,041
1	120	2,079
2	130	2,114

Tabela de diferenças finitas

i	X_i	y_i	$\Delta^{1}y_{i}$	$\Delta^2 y_i$
0	110	2,041	0,038	-0,003
1	120	2,079	0,035	~
2	130	2,114		

Calcule P₂(115)

i	X_i	y_i
0	110	2,041
1	120	2,079
2	130	2,114

Sendo h = 10 o valor de u_x será:

$$u_{x} = \frac{x - x_{0}}{h} = \frac{115 - 110}{10} = 0,5$$

$$P_2(x) = y_0 + \Delta y_0 u_x + \frac{\Delta^2 y_0}{2!} u_x (u_x - 1).$$

$$P_2(115) = 2,041 + \frac{0,038}{1!}(0,5) + \frac{-0,003}{2!}((0,5)(0,5-1)) = 2,060$$

i	X_i	y_i	$\Delta^{1}y_{i}$	$\Delta^2 y_i$
0	110	2,041	0,038	-0,003
1	120	2,079	0,035	
2	130	2,114		

Custo Computacional

Gregory-Newton

Newton

Operações	Complexidade
adições	$n^2 + 4n + 2$
multiplicações	n
divisões	n+1

Operações	Complexidade
adições	$2n^2 + 4n$
multiplicações	n
divisões	$\frac{1}{2}n^2 + \frac{1}{2}n$

Escolha dos Pontos para Interpolação

- Idealmente deve-se escolher n+1 pontos de uma tabela com m pontos (m>n+1) para se obter um polinômio interpolador de grau n
- Evitar polinômios de grau muito elevado e erros de arredondamento

Escolha dos Pontos para Interpolação

- Escolher n+1 pontos, dentro m pontos, para se obter um polinômio interpolador de grau n, sendo x o valor a ser interpolado

 - ✓ Escolher os n+1 pontos mais próximos de x

Escolha os melhores pontos para interpolação P₂(100)

X	1	101	102	103
y	0,5	55,5	56	56,5

Escolha os melhores pontos para interpolação P₃(1,4)

Χ	0,7	1,2	1,3	1,5	2,0	2,3	2,6
У	0,043	1,928	2,497	3,875	9,000	13,467	19,176

Escolha dos pontos:

X	0,7	1,2	1,3	1,4	1,5	2,0	2,3	2,6
У	0,043	1,928	2,497		3,875	9,000	13,467	19,176

$$X=1,4$$

$$m=7$$

- Primeiro ponto: 1,3;
- Segundo ponto: 1,5;
- Terceiro ponto: 1,2 pois 1,4-1,2 < 2,0 1,4;</p>
- Quarto ponto: 2,0 pois 2,0-1,4 < 1,4-0,7.</p>

Χ	1,2	1,3	1,5	2,0
У	1,928	2,497	3,875	9,000

Erro de Truncamento da Interpolação Polinomial

 É o erro cometido ao aproximar a função f(x) pelo polinômio interpolador

Erro de Truncamento da Interpolação Polinomial

A cota máxima do erro de truncamento é dada por:

$$T_{n}(x) = \frac{f^{n+1}(\mathcal{E})}{(n+1)!} \prod_{i=0}^{n} (x - x_{i})$$

$$x_0 \le \xi \le x_n$$

Erro de Truncamento da Interpolação Polinomial

A cota máxima do erro de truncamento ao aproximar f(x) pelo polinômio P_n é dada por :

$$T_{n}(x) = \frac{f^{n+1}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_{i})$$
 $x_{0} < \xi < x_{n}$

• ξ é tomado como o ponto no intervalo $[x_0,x_n]$ onde f^{n+1} apresenta maior valor em módulo

Encontre o erro de truncamento ao obter $P_2(0,1)$ através dos pontos a seguir e sabendo que $f(x)=2x^4+3x^2+1$

i	X _i	y _i
0	0,0	1,0000
1	0,2	1,1232
2	0,4	1,5312

Por Gregory-Newton

i	X _i	y _i	$\Delta^1 y_i$	$\Delta^2 y_i$
0	0,0	1,0000	0,1232	0,2848
1	0,2	1,1232	0,4080	
2	0,4	1,5312		

Pelo Polinômio de Gregory-Newton P₂(0,1)=1,0260

Como:

$$T_n(x) = \frac{f^{n+1}(\Sigma)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$

E a derivada de f(x):

- $f(x)=2x^4+3x^2+1$
- $f'(x)=8x^3+6x$
- $f''(x)=24x^2+6$
- f'''(x)=48x ► E=0,4
- f'''(x) apresenta maior valor em módulo no intervalo [0.0, 0.4] quando x é 0.4.

Como:

$$T_{n}(x) = \frac{f^{n+1}(\mathcal{E})}{(n+1)!} \prod_{i=0}^{n} (x - x_{i})$$

O erro é:

$$T_2(0,1) = \frac{f'''(\mathcal{E})}{(3)!} \prod_{i=0}^{2} (x - x_i)$$

$$T_2(0,1) = \frac{48(0,4)}{6}(0,1-0,0)(0,1-0,2)(0,1-0,4) = 0,0096$$

Erro real: $|f(x) - P_n(x)| = |f(0,1) - P_2(0,1)|$

$$f(x) = 2x^4 + 3x^2 + 1 \rightarrow f(0,1) = 2(0,1)^4 + 3(0,1)^2 + 1 = 1,0302$$

 $P_2(0,1) = 1,0260$

Erro real =
$$0,0042 < T_2(0,1) = 0,0096$$

 Erro real deve sempre ser menor ou igual, em módulo, que o módulo da cota máxima do erro de truncamento

Exercício

Dado os pontos a seguir:

i	0	1	2	3	4	5	6	7
x_i	0,00	0,50	1,00	1,50	2,00	2,50	3,00	3,50
y_i	1,000	0,641	-1,000	2,266	41,000	198,266	649,000	1710,641

- a) calcule P₄(2,8) usando Gregory-Newton. Escolha os pontos de maneira a minimizar o erro de truncamento
- b) obtenha a cota máxima do erro de truncamento,
 sabendo que f(x)=x⁶-3x³+1
- c) obtenha o erro real e comente os resultados

Exercício

Interpolação via polinomios de Gregory-Newton

```
Tabela de diferencas finitas

i x(i) y(i) DifFin1 DifFin2 DifFin3 DifFin4

0 1.50000 2.26600 38.73400 118.53200 174.93600 142.50300

1 2.00000 41.00000 157.26600 293.46800 317.43900

2 2.50000 198.26600 450.73400 610.90700

3 3.00000 649.000001061.64100

4 3.500001710.64100
```

Exercício

•
$$f(x)=x^6-3x^3+1$$
 $f'(x)=720x$

• f'(x) apresenta maior valor em módulo no intervalo [1.5, 3.5] quando x é 3.5.

$$T_4(2.8) = \frac{(720 \times 3.5) \times (2.8 - 1.5) \times (2.8 - 2.0) \times (2.8 - 2.5) \times (2.8 - 3.0) \times (2.8 - 3.5)}{5!}$$

$$T_4(2.8) = 0.91728$$

$$f(2.8) = 2.8^6 - 3 \times 2.8^3 + 1 = 417.03430$$
Erro Real = $|416.36621 - 417.03430| = 0.66809$

 O erro real é menor que a cota máxima do erro de truncamento, como esperado.