Санкт-Петербургский государственный университет факультет прикладной математики - процессов управления кафедра технологии программирования

Оптимизация планов капитального строительства линейных объектов на базе многофакторного анализа с учётом геологических ограничений

Выполнил: студент 431 группы Степанов Сергей

Научный руководитель

Просолупов Е.В.

Рецензент

Ашихмин И.А.

Введение

Постановка задачи

- ullet область расчётов Q проекция поверхности \hat{S} на плоскость xOy;
- множество объектов $P = \{(x_i, y_i) \in Q, i = \overline{1..n}\};$
- множество областей $A = \{\{x_j, y_j\}_{j=1}^{n_i} \in Q, i = \overline{1..m}\};$
- множество линейных объектов $L = \{\{x_j, y_j\}_{j=1}^{n_i} \in Q, i = \overline{1..k}\};$
- функция строительных затрат $c: \{Q \to \mathbb{R}, \forall (x,y) \in Q: c(x,y) \ge 0\};$
- функция, задающая высоту точки $h: \{Q \to \mathbb{R}, \forall (x,y) \in Q\}.$

Цель

Реализация программы в результате работы которой должна быть построена сеть линейных объектов $N = \{\{x_j, y_j\}_{j=1}^{n_i} \in Q, i = \overline{1..s}\}$ оптимальная по заданным параметрам.

Задачи

- 1. Определить способ вычисления стоимости строительства линейного объекта.
- 2. Проанализировать основные существующие алгоритмы и реализовать оптимальный:
 - для построения пути между двумя объектами;
 - для построения сети линейных объектов.
- 3. Исследовать различные случаи для тестирования работы программы.

Вычисление стоимости строительства

Любой линейный объект можно представить в виде ломаной $L = \{\{A_i, B_i\}_{i=0}^n, \text{где } A_i, B_i \in Q\}$. Стоимость строительства каждого прямого отрезка AB_i , заданного параметрически, можно представить в виде значения функции C_{AB_i} :

$$AB_i$$
: $\begin{cases} x = x(t), \\ h = h(x(t)), \\ c = c(x(t)) \end{cases}$ $t \in [0, 1]$, где $[0, 1]$ - отрезок параметризации.

$$C_{AB_i} = \int_{AB_i} c(x(t)) \sqrt{\left[g_{\alpha\beta}(x(t)) + \frac{\partial h}{\partial x_{\alpha}} \cdot \frac{\partial h}{\partial x_{\beta}}\right]} \dot{x}_{\alpha} \dot{x}_{\beta} dt,$$

где g — метрический тензор расстояния на поверхности Земли без учета рельефа.

Вычисление стоимости строительства

Стоимость строительства линейного объекта $C_L = \sum_{i=0}^n C_{AB_i}$

Стоимость строительства сети линейных объектов $C_N = \sum_{j=0}^m C_{L_j}$

Общее решение задачи $N_{res} = \underset{N}{\operatorname{argmin}}(C_N)$.

Поиск оптимального пути

Поиск оптимального пути

- Генерация вычислительной сетки;
- Построение графа на основе сетки;
- Вычисление кратчайшего пути на графе между двумя вершинами.

Генерация сетки

Равномерная сетка

Неравномерная сетка

Выбор сетки

Выбор сетки

Карта	Ошибка, %	<i>d</i> , м	γ
1	3.973	500 м	2.0
2	2.029	500 м	1.4
3	3.731	300 м	1.2
4	1.734	100 м	2.0
5	1.600	300 м	1.8

Таблица 1. Наилучшие результаты для начального пути

Карта	Ошибка, %	d, M	γ	w
1	0.018	150 м	0.8	322
2	0.055	100 м	0.2	370
3	0.011	500 м	0.8	29
4	0.099	100 м	0.6	530
5	0.025	150 м	0.6	283

Таблица 2. Наилучшие результаты для сглаженного пути

Построение оптимальной сети

Построение оптимальной сети

Построение оптимальной сети

Ошибка, %	Время, сек	Точки разветвления
4.8	3	9
1.2	69	143
0.9	125	480
1.0	236	980
1.0	372	1702
1.0	531	2565
1.0	665	3618
0.9	886	4836
0.9	1079	6319
0.9	1272	7900
0.9	1415	9768

Таблица 3: Результаты работы алгоритма

Прототип системы

- Уменьшена общая протяженность дорог на 18%;
- Сокращение капитальных и эксплуатационных затрат на 5-10%.

Результаты

- Составлена математическая модель задачи.
- Решена задача поиска оптимального маршрута между двумя объектами. Наименьшее значение ошибки относительно аналитического решения составило менее 0.1% за время расчёта менее 85 секунд.
- Реализован алгоритм построения оптимальных сетей с величиной ошибки относительно аналитического решения около 1% за время расчёта менее 130 секунд.
- Создан прототип системы, применимой для решения реальных задач.

Спасибо за внимание!