Audition pour le concours MCF25 11 Université Côte d'Azur

Lorenzo Fantini

Goethe-Universität Frankfurt

4 juin 2020

Cursus

2005–2008 2008–2010	Licence en Mathématiques, Université de Padoue (Italie) Master en Mathématiques Erasmus Mundus ALGANT M1 : Université de Padoue M2 : Université de Paris-Sud, Orsay
2010–2014	Thèse dirigée par J. Nicaise, KU Leuven (Belgique) Titre : Normalized Berkovich spaces and surface singularities Membres extérieurs : A. Ducros, S. Payne, M. Temkin
2014–2016	Post-doctorat à l'École polytechnique
2016-2018	Post-doctorat à l'Université Pierre et Marie Curie
2017–2018	Post-doctorat à l'Université Aix-Marseille
depuis 2019	Bourse Humboldt à la Goethe-Universität Frankfurt

Lorenzo Fantini Audition MCF25 11 - Nice 1 / 11

Enseignement

```
Cours assurés à la KU Leuven (niveau Master) :

2010–2011 Travaux dirigés "Algebraic Number Theory"

Co-organisation "Advanced Course in Algebraic Geometry"

2011–2012
2012–2013 Travaux dirigés "Algebraic Geometry"

2013–2014 Travaux dirigés "Algebraic Number Theory"

(environ 40h pour chaque cours)
```

```
Cours assurés au Bachelor de l'École polytechnique (niveau L2) : 2018–2019 Travaux dirigés "Analysis" (60h)
```

Animations scientifiques : co-organisation de séminaires, groupes de travail, rencontres, participation à des activités de vulgarisation.

Lorenzo Fantini Audition MCF25 11 - Nice 2 / 11

Recherche

- "Inner geometry of complex surfaces: a valuative approach" avec A. Belotto et A. Pichon prépublication, 2019.
- "Lipschitz normal embeddings and polar exploration of complex surfaces" avec A. Belotto et A. Pichon prépublications, 2020.

Lorenzo Fantini Audition MCF25 11 - Nice 3 / 11

Structure locale d'une singularité

Une longue histoire : Wirtinger 1895, Milnor 1968...

$$(X,0) \hookrightarrow (\mathbb{C}^N,0)$$

 $0 \in X$ singularité isolée

Topologie : le théorème de structure conique

$$0 < \varepsilon \ll 1 \implies X \cap B(0, \varepsilon) \overset{\mathsf{hom\'eo}}{\sim} \mathsf{Cone} \big(X \cap S(0, \varepsilon) \big)$$

Métriques sur (X,0)

$$d_{\text{externe}}(x,y) = ||x-y||_{\mathbb{C}^N} \qquad d_{\text{interne}}(x,y) = \inf_{\substack{\gamma \colon [0,1] \to X, \\ \gamma(0) = x, \gamma(1) = y}} \left\{ \text{longueur}(\gamma) \right\}$$

- Dans [BFP2019] on étudie un germe métrique et pas sa classe bi-Lipschitz ! (Mostovski 1985/ \mathbb{C} , Parusiński 1987/ \mathbb{R} , Birbrair–Neumann–Pichon 2014)
- ullet Dans [BFP2020] on étudie des surfaces LNE : $d_{
 m externe} \stackrel{
 m bi-Lipschitz}{pprox} d_{
 m interne}$

Lorenzo Fantini Audition MCF25 11 - Nice 4 / 11

Les taux de croissance internes

Je vais me concentrer sur le cas des surfaces.

Le taux interne $\mathcal{I}(E)$ de E est l'ordre de contact entre deux courbes $\pi_*\gamma$ et $\pi_*\gamma'$ dans (X,0) par rapport à la métrique interne :

$$d_{ ext{interne}}ig(\pi_*\gamma\cap S_{\mathbb{C}^n}(0,arepsilon),\pi_*\gamma'\cap S_{\mathbb{C}^n}(0,arepsilon)ig)pprox arepsilon^{\mathcal{I}(m{E})}$$

Interprétation :

Le taux interne $\mathcal{I}(E)$ mesure la taille d'une petite zone $\mathcal{N}(E)$ de (X,0)

Compréhension très fine de la structure métrique interne du germe

Lorenzo Fantini Audition MCF25 11 - Nice 5 / 11

Exemple:

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

$$\downarrow (y, z)$$

discriminante
$$\{y^3+z^5=0\}\subset\mathbb{C}^2$$

6 / 11

Exemple:

$$E_8 = \{x^2 + y^3 + z^5 = 0\} \subset \mathbb{C}^3$$

Questions classiques :

- Comment la géométrie de (X,0) influence-t-elle les taux internes ?
- Comment les calculer en général?

qui factorise par $\mathrm{Bl}_0(X)$ et par la transformée de Nash

Théorème (Belotto-F-Pichon, 2019)

Soit $\pi: X_{\pi} \to X$ une bonne résolution de (X,0). Alors les taux internes sont complètement déterminés par :

- la topologie de (X,0), i.e. le graphe dual Γ_{π} pondéré;
- les flèches des sections hyperplanes génériques;
- les flèches des courbes polaires des projections génériques $(X,0) \to (\mathbb{C}^2,0)$.

Conséquence d'une formule explicite que l'on verra plus tard. Résultat possible grâce à l'introduction de nouvelles techniques : les entrelacs non archimédiens.

Lorenzo Fantini Audition MCF25 11 - Nice 6 / 11

L'entrelacs non archimédien d'une singularité

Définition (Boucksom-Favre-Jonsson, F)

$$\mathsf{NL}(X,0) = \left\{ v \colon \widehat{\mathcal{O}_{X,0}} o \mathbb{R}_+ \cup \{+\infty\} \text{ semi-valuation } \middle| \ \mathsf{min}_{f \in \mathfrak{M}_{X,0}} \{v(f)\} = 1 \right\}$$

mesure d'un ordre d'annulation e.g. valuation divisorielle ord_E

C'est un bon espace topologique, compact.

Exemple : $NL(\mathbb{C}^2, 0) \cong$ arbre valuatif (Favre–Jonsson).

Parent proche de l'entrelacs topologique :

Théorème (F–Favre)

L(X,0) dégénère vers NL(X,0).

De plus, on a : $H^{i}_{sing}(\operatorname{NL}(X,0),\mathbb{Q}) \cong W^{0}H^{i}_{sing}(\operatorname{L}(X,0),\mathbb{Q}).$

Lorenzo Fantini Audition MCF25 11 - Nice 7 / 11

Intermezzo: applications de NL

Dans ma thèse, j'ai muni NL(X,0) d'une structure analytique non archimédienne, provenant de la théorie des espaces de Berkovich.

Plus généralement : $NL(\mathcal{X})$, pour un \mathcal{X} schéma formel spécial sur un corps k.

Application 1 (F PhD)

Caractérisation non archimédienne des valuations de Nash d'une k-surface.

valuations divisorielles de la résolution minimale

L'entrelacs NL(X,0) a l'aspect d'un fractal :

Application 2 (F–Favre–Ruggiero 2018)

Soit (X,0) une singularité normale de k-surface.

NL(X, 0) est auto-similaire

 \iff (X,0) est une singularité sandwich

Techniques : géométrie non archimédienne, géométrie formelle, combinatoire...

Lorenzo Fantini Audition MCF25 11 - Nice 8 / 11

La formule du Laplacien

Théorème (Belotto-F-Pichon, 2019)

$$\Delta_{\Gamma_{\pi}}(\mathcal{I})(v) = m(v) \big(K_{\Gamma_{\pi}}(v) + 2 \# \{ \text{flèches hyp. en } v \} - \# \{ \text{flèches polaires en } v \} \big)$$

Deux preuves possibles :

- Relèvement de la formule de $NL(\mathbb{C}^2,0)$ au cas singulier : topologie et monodromie de la fibre de Milnor d'une forme linéaire générique, twists de Dehn.
- Interprétation birationnelle des taux internes comme discrépances de Mather logarithmiques (normalisées) : idéaux de Fitting, contrôle des zéros et des pôles de formes différentielles sur les résolutions.

Applications:

- Calcul explicite simple des taux internes
- Formule de Lê-Greuel-Teissier
- On obtient des restrictions sur la localisation des flèches

Lorenzo Fantini Audition MCF25 11 - Nice 9 / 1

Explorations polaires

Question

Étant donné un graphe de résolution Γ , quelles configurations de flèches (hyperplanes et polaires) sont réalisables par une singularité (X,0)?

Lorenzo Fantini Audition MCF25 11 - Nice 10 / 11

Explorations polaires

Il y a deux manières de résoudre les singularités des surfaces :

- par éclatements de points (Zariski 1939)
 → sections hyperplanes
- ullet par transformées de Nash (Spivakovsky 1990) \longrightarrow courbes polaires

```
Lê Dũng Tráng (\sim2000) : Ces deux procédés sont-ils duaux? Dualité entre sections hyperplanes et courbes polaires?
```

Dans les deux procédés, un rôle important est joué par les singularités minimales.

Théorème (Spivakovsky 1990, Belotto–F–Pichon 2020)

Soit (X,0) un germe de surface avec une singularité minimale LNE. Alors le type topologique de (X,0) détermine le graphe dual pondéré de la résolution minimale de (X,0) qui se factorise par l'éclatement en 0 et par la transformée de Nash, avec les flèches des sections hyperplanes et courbes polaires.

On a un résultat analogue pour la courbe discriminante d'une projection générique. (Bondil 2003 pour les minimales, Belotto-F-Pichon 2020 pour les LNE)

Lorenzo Fantini Audition MCF25 11 - Nice 10 / 11

Directions futures

Ce point de vue, qui mêle théorie des valuations et combinatoire avec topologie et géométrie, peut être utile pour répondre à d'autres questions sur l'étude des germes métriques de singularités.

Ce projet se développera dans plusieurs directions :

Variétés LNE

- caractérisation complète en dimension 2, critère avec espaces d'arcs, résolutions
- Approche birationnelle (discrépance de Mather)
- intégration motivique, géométrie Lipschitz des singularités du MMP (en dimension trois!)
- Dégénérescence : d_{interne} sur NL(X,0)

invariant bi-Lipschitz interne complet et intrinsèque

Géométrie externe

nouveaux fonctionnels sur NL(X, 0), classification bi-Lipschitz complète

Sans oublier mes autres projets : ramification sauvage des courbes, uniformisation non archimédienne et tropicale, ζ d'Igusa...

Intégration au Laboratoire J.A. Dieudonné

Je me vois naturellement dans l'équipe Algèbre, Topologie et Géométrie, parmi les géomètres algébriques et analytiques.

Voici certains des points de contact entre mes intérêts mathématiques et ceux des membres de l'équipe :

- Singularités : aspects topologiques et métriques, intégration motivique (Adam Parusiński)
- Espaces des arcs, fonctions zêta, combinatoire des singularités (Ann Lemahieu)
- Dynamique polynomiale, dynamique sur les espaces de valuations (Julie Deserti)
- Géométrie birationnelle, MMP (Andreas Höring)
- Géométrie non-archimédienne et tropicale de la fibration de Hitchin et des variétés de caractères (Carlos Simpson)

Lorenzo Fantini Audition MCF25 11 - Nice 11 / 11