

Exercise 1:

1. Draw the graphs G_A and G_B for which the following 2 adjacency matrices A and B are given.

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1\\ 1 & 0 & 1 & 0 \end{array}\right) B = \left(\begin{array}{cccc} 0 & 1 & 1 & 0\\ 1 & 0 & 1 & 1\\ 1 & 1 & 0 & 1\\ 0 & 1 & 1 & 0 \end{array}\right)$$

- 2. Are the two graphs isomorphic?
- 3. How many different representations (in terms of adjacency matrices) of G_A are there?
- 4. How many different representations (in terms of adjacency matrices) of G_B are there?
- 5. Is there a permutation matrix P such that $A = P(PB)^T$ holds?
- 6. If so, give all matrices P, such that $A = P(PB)^T$ holds.

Exercise 2:

Given the following graph:

- 1. Give an adjacency matrix A for the graph. (How many different are there?)
- 2. For your chosen adjacency matrix, how many permutation matrices P are there, such that $A = P(PA)^T$ holds? (Remark: this number corresponds to the size of the so-called "automorphism group" of the graph).

Exercise 3:

Given the following graph:

- 1. Give an adjacency matrix A for the graph.
- 2. For your chosen adjacency matrix, how many permutation matrices P are there, such that $A = P\left(PA\right)^T$ holds?

Exercise 4*:

Given the following two graphs G_A (left) and G_B (right):

- 1. Give adjacency matrices for G_A and G_B .
- 2. Is G_B a subgraph of G_A ?
- 3. How many different ways are there to find G_B as a subgraph in G_A ? (i.e., assuming as adjacency matrix A and B for graphs G_A and G_B , how many leaf-nodes would the search the of the Ullmann algorithm have?)

4. How many different ways are there to find G_B as an induced subgraph in G_A ?

Exercise 5:

The following is from the unit-testing of the graph theory assignment. Explain the expected result 10.

Exercise 6*:

Use sigma aldrich https://www.sigmaaldrich.com/catalog/search/substructure/SubstructureSearchPageto look for chemical structures. How many structures can you find which have the following as a substructure?

Can you find the price for the compounds you found? Any guesses why not?

Exercise 7: (representations and graph isomorphisms)

Given the following 2 graphs:

For each of the graphs, in the following called G:

- 1. How many different representations (adjacency matrices) can you find for graph G? (Let r_G be this number)
- 2. Chose an adjacency matrix B. How many permutation matrices can you find, such that $B = P(PB)^T$? (Let p_G be this number).

Note: p_G corresponds to the number of isomorphisms from B to itself, which is also called an automorphism. You could chose any pair of representations A and B, and finding the number of different P for which $A = P(PB)^T$ holds, the result will always be p_G .

3. What is the product of the number of representations r_G and the number of isomorphisms p_G ?

Exercise 8: (Wiener index and boiling points)

Given the following graph G representing the chemical compound 2,3-dimethylpentan:

- 1. Determine the edge-weight matrix of the graph of the carbon backbone.
- 2. Determine the distance matrix.
- 3. Determine the Wiener-Index.
- 4. Determine the number of shortest paths of length 3.
- 5. Determine the value p_0 and w_0 of the formula for predicting the boiling point for this compound.
- 6. Determine the estimated boiling points and compare it to the real boiling point.
- 7. What is the asymptotic worst case performance for finding the distance matrix based on repeated squaring?
- 8. Do you know a method that has a better asymptotic worst case performance?