Midterm

a.	An alphabet (1 p)
b.	String (1 p)
c.	Length of string (1p)
d.	Kleen star (1p)
e.	Language (1p)
f.	Definition of Regular expression (2p)

g. Deterministic Finite Automaton (3p)

2. Define corresponding sets for given regular expressions

Regular Expression	Regular Se	t
(0+10*)	L=	1 p
(0*10*)	L=	1 p
(0+ε)(1+ ε)	L=	1 p
(a+b)*	L= {	} 1p
(a+b)*abb	L = {	} 1p
(11)*		1p
(aa)*(bb)*b		2р
(aa + ab + ba + bb)*	l .	2p

3. (5p.)

.

Let a deterministic finite automaton be

- Q = {a, b, c},
- $\Sigma = \{0, 1\},$
- q₀={a},
- F={c}, and

Transition function δ as shown by the following table:

Present State	Next State for Input 0	Next State for Input 1
a	a	b
b	С	a
С	b	С

Give its graphical representation

4. (5p.)

Let us consider the DFA shown in Figure

From the DFA, define the acceptable strings that can be derived