1. Import necessary Libraries

In [4]:

```
#For computational and random seed purpose
import numpy as np
np.random.seed(42)
#to read csv file
import pandas as pd
#To split into train and cv data
from sklearn.model_selection import train_test_split
#To compute AUROC
from sklearn.metrics import auc, roc auc score
#for AUROC graph
import matplotlib.pyplot as plt
#for oversampling technique
from imblearn.over sampling import SMOTE # (https://imbalanced-learn.org/stable/references/generated/imblearn.ove
r_sampling.SMOTE.html)
#Data is imbalanced, we need calibrated model
from sklearn.calibration import CalibratedClassifierCV
#for hyperparameter tuning and Cross-validation fold
from sklearn.model_selection import GridSearchCV,StratifiedKFold,RepeatedStratifiedKFold
#to ignore the error message
import warnings
warnings.filterwarnings("ignore")
#for heatmap and other plotting technique
import seaborn as sns
#to strandize the real value data
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
#To create Knn model on datasets
from sklearn.neighbors import KNeighborsClassifier
#for roc curve
from sklearn.metrics import roc_curve,roc_auc_score,accuracy_score
#import eli5
#from eli5.sklearn import PermutationImportance
import joblib
import sys
sys.modules['sklearn.externals.joblib'] = joblib
from mlxtend.feature selection import SequentialFeatureSelector
from sklearn.linear_model import LogisticRegression
from sklearn.feature selection import RFE
from scipy.stats import kurtosis
from scipy.stats import skew
import warnings
warnings.filterwarnings('ignore')
from catboost import CatBoostClassifier
from sklearn.preprocessing import RobustScaler
In [5]:
```

245

246

247

248

249

245

246

247

248

249

```
#locate parent directory
data dir = "./
#Read the training data
df train = pd.read csv('train.csv')
print(df_train)
      id
         target
                                              295
                                                     296
                                                            297
                                                                   298
                                       . . .
                                      ... -2.097 1.051 -0.414 1.038 -1.065
0
             1.0 -0.098 2.165 0.681
      0
             0.0 1.081 -0.973 -0.383
                                      ... -1.624 -0.458 -1.099 -0.936 0.973
             1.0 -0.523 -0.089 -0.348
                                      ... -1.165 -1.544 0.004 0.800 -1.211
2
      2
             1.0 0.067 -0.021 0.392
                                           0.467 -0.562 -0.254 -0.533 0.238
                                       . . .
             1.0 2.347 -0.831 0.511
                                      ... 1.378 1.246
                                                         1.478 0.428 0.253
4
       4
                                       . . .
```

0.007

... 0.478 -0.910 -0.805 2.029 -0.423

... 0.812 0.269 -1.454 -0.625 1.474

0.281 -0.255 -1.136

0.112 -0.558

0.168 -0.719

... -0.243 0.525

... 1.004 -0.979

... -0.727 0.461 0.760

```
[250 rows x 302 columns]
```

0.0

1.0

0.0 -1.199 0.466 -0.908

0.0 1.411 -1.465 0.119

0.0 0.489 0.403 0.139

0.620 1.040 0.184

0.237

0.233 -0.380

In [6]:

```
#Read test data
df_test = pd.read_csv('test.csv')
df_test
```

Out[6]:

	id	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
0	250	0.500	-1.033	-1.595	0.309	-0.714	0.502	0.535	-0.129	-0.687	1.291	0.507	-0.317	1.848	-0.232	-0.340	-0.0
1	251	0.776	0.914	-0.494	1.347	-0.867	0.480	0.578	-0.313	0.203	1.356	-1.086	0.322	0.876	-0.563	-1.394	0.3
2	252	1.750	0.509	-0.057	0.835	-0.476	1.428	-0.701	-2.009	-1.378	0.167	-0.132	0.459	-0.341	0.014	0.184	-0.4
3	253	-0.556	-1.855	-0.682	0.578	1.592	0.512	-1.419	0.722	0.511	0.567	0.356	-0.060	0.767	-0.196	0.359	0.0
4	254	0.754	-0.245	1.173	-1.623	0.009	0.370	0.781	-1.763	-1.432	-0.930	-0.098	0.896	0.293	-0.259	0.030	-0.€
19745	19995	1.069	0.517	-0.690	0.241	0.913	-0.859	0.093	-0.359	-0.047	0.713	2.191	0.774	-0.110	-0.721	0.375	0.5
19746	19996	-0.529	0.438	0.672	1.436	-0.720	0.698	-0.350	2.150	-1.241	-0.167	-0.188	0.541	-0.392	1.727	-0.965	0.5
19747	19997	-0.554	-0.936	-1.427	0.027	-0.539	0.994	-1.832	-1.156	0.474	1.483	1.524	0.143	-0.607	-1.142	2.786	-0.3
19748	19998	-0.746	1.205	0.750	-0.236	1.139	-1.727	-0.677	-1.254	-0.099	-0.724	0.014	-0.575	-0.142	1.171	-0.198	0.3
19749	19999	0.736	-0.216	-0.110	-1.404	-0.265	-1.770	0.715	0.469	1.077	0.333	-0.994	-0.331	1.009	0.607	-1.729	1.4

19750 rows × 301 columns

In [7]:

```
df_train.dropna(inplace=True)
df_test.dropna(inplace=True)
```

In [8]:

```
def feature_engg(df,test=False):
 perform feature Engieering in basic statistics, trignometory, hyperbolic and exponential function
 parameters:
 if test:
   data = df.drop(['id'],axis=1)
  else:
   data = df.drop(['id','target'],axis=1)
 df['mean'] = np.mean(data,axis=1) # taking mean value along with column
  df['std'] = np.std(data,axis=1) # taking std along with column
  df['median'] = np.median(data,axis=1)
  df['min'] = np.min(data,axis=1)
 df['max'] = np.max(data,axis=1)
  # applying trignometric function
  df['sin_mean'] = np.sin(df['mean'])
  df['cos_mean'] = np.cos(df['mean'])
  df['tan_mean'] = np.tan(df['mean'])
  df['sin std'] = np.sin(df['std'])
  df['cos std'] = np.cos(df['std'])
  df['tan std'] = np.tan(df['std'])
  df['sin median'] = np.sin(df['median'])
 df['cos_median'] = np.cos(df['median'])
  df['tan_median'] = np.tan(df['median'])
  sin_data = np.sin(data) #calculated the sin_data
  cos_data = np.cos(data) #calculated the cos_data
  tan_data = np.tan(data) #calculated the tan_data
  df['mean_sin'] = np.mean(sin_data,axis=1) #calculating the mean of sin_data
  df['mean_cos'] = np.mean(cos_data,axis=1) #calculating the mean of cos_data
 df['mean tan'] = np.mean(tan data,axis=1) #calculating the mean of tan data
 #hyperbolic function
  sinh data = np.sinh(data)
  cosh_data = np.cosh(data)
  tanh data = nn tanh(data)
```

```
arcsinh data = np.arcsinh(data)
 arccosh data = np.arccosh(data)
 df['mean sinh'] = np.mean(sinh data,axis=1)
 df['mean_cosh'] = np.mean(cosh_data,axis=1)
 df['mean tanh'] = np.mean(tanh_data,axis=1)
  df['mean_arsinh'] = np.mean(arcsinh_data,axis=1)
  df['mean_arcosh'] = np.mean(arccosh_data,axis=1)
 df['sinh mean'] = np.sinh(df['mean'])
 df['tanh mean'] = np.tanh(df['mean'])
 df['arsinh mean'] = np.arcsinh(df['mean'])
 df['sinh_std'] = np.sinh(df['std'])
 df['cosh std'] = np.cosh(df['std'])
 df['tanh_std'] = np.tanh(df['std'])
 df['sinh median'] = np.sinh(df['median'])
 df['cosh_median'] = np.cosh(df['median'])
 df['tanh_median'] = np.tanh(df['median'])
#exponential function
 exp_data = np.exp(data)
  expm1_data = np.expm1(data)
 exp2_data = np.exp2(data)
 df['mean_exp'] = np.mean(exp_data,axis=1)
 df['mean expm1'] = np.mean(expm1 data,axis=1)
 df['mean exp2'] = np.mean(exp2 data,axis=1)
  df['exp1 mean'] = np.exp(df['mean'])
 df['expm1_mean'] = np.expm1(df['mean'])
  df['exp2 mean'] = np.exp2(df['mean'])
 df['exp1_median'] = np.exp(df['median'])
  df['expm1_median'] = np.expm1(df['median'])
 df['exp2_median'] = np.exp2(df['median'])
 df['exp1_std'] = np.exp(df['std'])
  df['expm1_std'] = np.expm1(df['std'])
 df['exp2_std'] = np.exp2(df['std'])
  # Polynomial FE
 # X**2
 df['mean x2'] = np.mean(np.power(data,2), axis=1)
 # X**3
 df['mean_x3'] = np.mean(np.power(data,3), axis=1)
 df['mean x4'] = np.mean(np.power(data,4), axis=1)
 # X**5
 df['mean_x5'] = np.mean(np.power(data,5), axis=1)
  df['mean_x6'] = np.mean(np.power(data,6), axis=1)
 df['mean x7'] = np.mean(np.power(data,7), axis=1)
 #logithm FE
  df['x2_mean'] = np.power(df['mean'],2)
 # X**3
 df['x3 mean'] = np.power(df['mean'],3)
 # X**4
 df['x4 mean'] = np.power(df['mean'],4)
 df['x5 mean'] = np.power(df['mean'],5)
 # X**6
 df['x6 mean'] = np.power(df['mean'],6)
  # X**7
 df['x7_mean'] = np.power(df['mean'],7)
 #skewness and kurtosis
  skew_data = skew(data)
  kurtosis data = kurtosis(data)
 df['skewness'] = np.mean(skew_data)
 df['kurtosis'] = np.mean(kurtosis data)
 data['mean skewness'] = skew(df['mean'])
 data['mean kurtosis'] = kurtosis(df['mean'])
 df['x2 median'] = np.power(df['median'],2)
 # X**3
 df['x3 median'] = np.power(df['median'],3)
 # X**4
  df['x4 median'] = np.power(df['median'],4)
  # X**5
 df['x5 median'] = np.power(df['median'],5)
  df['x6 median'] = np.power(df['median'],6)
 df['x7_median'] = np.power(df['median'],7)
```

return df

```
In [9]:
```

df_train = feature_engg(df_train)
df_train.head(5)

Out[9]:

	id	target	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
0	0	1.0	-0.098	2.165	0.681	-0.614	1.309	-0.455	-0.236	0.276	-2.246	1.825	-0.912	-0.107	0.305	0.102	0.826	0.4
1	1	0.0	1.081	-0.973	-0.383	0.326	-0.428	0.317	1.172	0.352	0.004	-0.291	2.907	1.085	2.144	1.540	0.584	1.1
2	2	1.0	-0.523	-0.089	-0.348	0.148	-0.022	0.404	-0.023	-0.172	0.137	0.183	0.459	0.478	-0.425	0.352	1.095	0.3
3	3	1.0	0.067	-0.021	0.392	-1.637	-0.446	-0.725	-1.035	0.834	0.503	0.274	0.335	-1.148	0.067	-1.010	1.048	-1.
4	4	1.0	2.347	-0.831	0.511	-0.021	1.225	1.594	0.585	1.509	-0.012	2.198	0.190	0.453	0.494	1.478	-1.412	0.2

5 rows x 365 columns

In [10]:

df_test = feature_engg(df_test,True)
df_test.head(5)

Out[10]:

	id	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	250	0.500	-1.033	-1.595	0.309	-0.714	0.502	0.535	-0.129	-0.687	1.291	0.507	-0.317	1.848	-0.232	-0.340	-0.051	0.
1	251	0.776	0.914	-0.494	1.347	-0.867	0.480	0.578	-0.313	0.203	1.356	-1.086	0.322	0.876	-0.563	-1.394	0.385	1.
2	252	1.750	0.509	-0.057	0.835	-0.476	1.428	-0.701	-2.009	-1.378	0.167	-0.132	0.459	-0.341	0.014	0.184	-0.460	-С
3	253	-0.556	-1.855	-0.682	0.578	1.592	0.512	-1.419	0.722	0.511	0.567	0.356	-0.060	0.767	-0.196	0.359	0.080	-C
4	254	0.754	-0.245	1.173	-1.623	0.009	0.370	0.781	-1.763	-1.432	-0.930	-0.098	0.896	0.293	-0.259	0.030	-0.661	0.

5 rows x 364 columns

In [11]:

```
X_train = (df_train.drop(['id','target'],axis = 1))
X_test = (df_test.drop(['id'],axis = 1))
y_train = df_train['target']
```

In [12]:

X_train.shape

Out[12]:

(250, 363)

In [13]:

```
stand = StandardScaler()
X_train = stand.fit_transform(X_train)
X_test = stand.transform(X_test)
```

```
In [14]:
```

```
df_Xtrain = pd.DataFrame(X_train)
df_Xtrain.head()
```

Out[14]:

	0	1	2	3	4	5	6	7	8	9	10	
0	-0.121736	2.176002	0.503692	-0.609972	1.265232	-0.469388	-0.266814	0.210682	-2.296917	1.758518	-0.837523	-0.210
1	1.061577	-0.939278	-0.539790	0.320974	-0.415729	0.340017	1.134681	0.291718	0.042547	-0.320787	2.689063	0.942
2	-0.548290	-0.061678	-0.505465	0.144689	-0.022827	0.431232	-0.054798	-0.267006	0.180835	0.144993	0.428502	0.355
3	0.043868	0.005829	0.220265	-1.623118	-0.433148	-0.752470	-1.062122	0.805660	0.561388	0.234415	0.313996	-1.216
4	2.332208	-0.798306	0.336970	-0.022683	1.183942	1.678890	0.550393	1.525391	0.025911	2.125050	0.180099	0.3314

5 rows × 363 columns

In [15]:

```
df_Xtest = pd.DataFrame(X_test)
df_Xtest.head()
```

Out[15]:

	0	1	2	3	4	5	6	7	8	9	10	
0	0.478452	-0.998843	-1.728417	0.304138	-0.692502	0.533981	0.500624	-0.221157	-0.675928	1.233779	0.472827	-0.41
1	0.755461	0.934060	-0.648649	1.332140	-0.840565	0.510915	0.543426	-0.417350	0.249460	1.297652	-0.998200	0.20
2	1.733024	0.531992	-0.220077	0.825072	-0.462180	1.504847	-0.729665	-2.225742	-1.394404	0.129271	-0.117246	0.33
3	-0.581411	-1.814892	-0.833024	0.570547	1.539102	0.544465	-1.444348	0.686238	0.569706	0.522334	0.333388	-0.1€
4	0.733381	-0.216549	0.986204	-1.609253	0.007173	0.395585	0.745488	-1.963439	-1.450551	-0.948706	-0.085850	0.75

5 rowe x 363 columns

In [16]:

X_train.shape

Out[16]:

(250, 363)

In [17]:

X train.shape

Out[17]:

(250, 363)

I will do hyper-parameter tuning

In [18]:

```
Hyperparameter tuning with StratifiedKFold follow by GridSearchCV follow by,
,→CalibratedClassifier
Parameters:
models: Instance of the model
params: list of parameters with value fr tuning (dict)
Return:
grid_clf: return gridsearch model

""

# Perform KCrossValidation with stratified target
str_cv = StratifiedKFold(n_splits=11, random_state=42,shuffle=True)
# Perform Hyperparameter using GridSearchCV
grid_clf = GridSearchCV(models, params, cv=str_cv, return_train_score=True,scoring='roc_auc')
# Fit the train model to evaluate score
grid_clf.fit(X_train, y_train)
return grid_clf
```

```
In [19]:
```

```
#kNN (See Docs: https://scikit-learn.org/stable/modules/generated/sklearn.→neighbors.KNeighborsClassifier.html)
# List of params
# List of params
params = \{ "n_neighbors": np.arange(3,51,2).tolist(), "algorithm": ['kd_tree', 'brute'] \}
# Instance of knn model
knn model = KNeighborsClassifier()
# Call hyperparameter for find the best params as possible
knn clf = hyperparameter model(knn model, params)
```

In [51]:

```
print(knn_clf.best_params_)
```

{'algorithm': 'kd tree', 'n neighbors': 49}

#ref https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-selection-methods-with-an-example-or-ho w-to-select-the-right-variables/#:~:text=Forward%20Selection%3A%20Forward%20selection%20is,the%20performance%20of %20the%20model.

knn= KNeighborsClassifier()

selector = SequentialFeatureSelector(knn,k_features=(10, 50),forward=True,cv=5,scoring='roc_auc')

selector.fit(X_train,y_train)

Out[52]:

SequentialFeatureSelector(estimator=KNeighborsClassifier(), k features=(10, 50), scoring='roc_auc')

In [53]:

```
from mlxtend.plotting import plot sequential feature selection as plot sfs
fig1 = plot_sfs(selector.get_metric_dict(), kind='std_dev')
plt.ylim([0.8, 1])
plt.title('Sequential Forward Selection (w Feature engineering')
plt.grid()
plt.show()
```


In [63]:

```
knntop 50 features = list(selector.k feature names )
print(top 50 features)
```

[4, 7, 14, 30, 33, 46, 49, 65, 67, 82, 90, 92, 95, 98, 100, 111, 115, 117, 120, 145, 147, 167, 207, 239, 260, 266, 272, 280, 286, 301, 312, 315, 318, 320, 331, 343, 347, 350, 351, 352, 353, 354, 355, 356, 358, 359, 360, 361, 362]

In [26]:

```
knntop 50 features = [4, 7, 14, 30, 33, 46, 49, 65, 67, 82, 90, 92, 95, 98, 100, 111, 115, 117, 120, 145, 147, 16
7, 207, 239, 260, 266, 272, 280,
286, 301, 312, 315, 318, 320, 331, 343, 347, 350, 351, 352, 353, 354, 355, 356, 358, 359, 360, 361, 362]
```

In [65]:

df_Xtrain[knntop_50_features]

Out[65]:

	4	7	14	30	33	46	49	65	67	82	90	
0	1.265232	0.210682	0.910638	1.162883	0.512526	0.793763	0.665237	-0.788053	-1.550872	-0.344336	-1.736100	0.22
1	-0.415729	0.291718	0.648998	-0.177127	-2.552011	-0.919554	0.139402	1.239630	1.107783	0.532991	-0.034617	0.1
2	-0.022827	-0.267006	1.201470	-1.966120	1.044330	-1.528443	-1.481126	0.956508	0.563348	-0.032919	0.716311	-1.3
3	-0.433148	0.805660	1.150656	1.038001	0.521405	1.354503	-0.892191	-0.722874	1.607856	2.142540	-0.628326	-1.6
4	1.183942	1.525391	-1.508995	-0.257409	0.169171	0.191896	0.381286	0.359712	-0.177687	0.019542	-1.975032	0.64
					•••						•••	
245	1.576844	-0.778815	-2.008490	-1.512182	-1.264432	0.929184	0.461595	-0.339946	0.100579	0.797528	-1.083434	-0.2
246	0.810395	-0.078277	-0.009428	0.344208	0.133652	-1.477284	0.093511	-1.041640	-0.838066	-0.323129	-0.544545	-0.5
247	1.579747	1.645879	-1.211676	2.025168	0.108985	-0.026783	-0.490644	-0.198385	1.530224	-0.244995	0.026409	-0.0
248	-0.085730	-0.673255	1.057676	1.065752	-0.488925	-0.620626	0.949187	-0.383738	-0.374289	-1.001774	-0.828987	0.2
249	1.300071	0.606267	0.331137	-0.086934	-0.459325	-0.020764	0.622214	0.489051	1.104758	0.072003	0.390495	-0.3

250 rows × 49 columns

In [66]:

```
knn_model = KNeighborsClassifier(**knn_clf.best_params_)
knn_model.fit(df_Xtrain[knntop_50_features],y_train)
```

Out[66]:

KNeighborsClassifier(algorithm='kd_tree', n_neighbors=49)

In [67]:

```
y_pred = knn_model.predict(df_Xtrain[knntop_50_features])
print(y_pred)
```

In []:

```
train_auc = roc_auc_score(y_train,y_pred)
print(train_auc)
```

0.54375

In []:

```
y_predict = knn_model.predict_proba(df_Xtest[knntop_50_features])[:,1]
```

```
y_pred_lr_test = pd.DataFrame({"ID": df_test['id'],"Target": y_predict})

y_pred_lr_test.to_csv('submission_knn_features.csv', index=False)
y_pred_lr_test.head(20)
```

Out[]:

	ID	Target
0	250	0.489796
1	251	0.693878
2	252	0.571429
3	253	0.653061
4	254	0.551020
5	255	0.489796
6	256	0.612245
7	257	0.673469
8	258	0.693878
9	259	0.673469
10	260	0.693878
11	261	0.612245
12	262	0.591837
13	263	0.653061
14	264	0.632653
15	265	0.632653
16	266	0.632653
17	267	0.653061
18	268	0.530612
19	269	0.489796

test auc = 0.677

Let's take top 100 features

In [68]:

```
knn= KNeighborsClassifier()
#refhttps://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
selector = SequentialFeatureSelector(knn,k_features=(10, 100),forward=True,cv=5,scoring='roc_auc')
selector.fit(X_train,y_train)
```

Out[68]:

```
\label{lem:continuous} Sequential Feature Selector (estimator = KNeighbors Classifier(), \\ k\_features = (10, 100), scoring = 'roc\_auc')
```

```
In [69]:
```

```
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
fig1 = plot_sfs(selector.get_metric_dict(), kind='std_dev')

plt.ylim([0.8, 1])
plt.title('Sequential Forward Selection (w Feature engineering')
plt.grid()
plt.show()
```

```
Sequential Forward Selection (w Feature engineering 0.975 0.950 0.995 0.995 0.995 0.995 0.875 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850
```

In [71]:

```
knntop_100_features = list(selector.k_feature_names_)
print(knntop_100_features)
```

```
['4', '5', '7', '14', '30', '33', '46', '48', '49', '60', '65', '67', '68', '69', '73', '75', '80', '82', '90', '92', '95', '98', '100', '111', '114', '115', '116', '117', '120', '140', '145', '147', '161', '163', '167', '168', '171', '172', '193', '195', '202', '207', '217', '224', '239', '253', '260', '266', '272', '280', '282', '286', '295', '297', '300', '301', '305', '306', '309', '310', '312', '315', '316', '317', '318', '320', '329', '331', '343', '344', '347', '349', '350', '351', '352', '353', '354', '355', '356', '357', '358', '359', '360', '361', '362']
```

In [27]:

```
knntop_100_features = [4, 5, 7, 14, 30, 33, 46, 48, 49, 60, 65, 67, 68, 69, 73, 75, 80, 82, 90, 92, 95, 98, 100, 111, 114, 115, 116, 117, 120, 140, 145, 147, 161, 163, 167, 168, 171, 172, 193, 195, 202, 207, 217, 224, 239, 253, 260, 266, 272, 280, 282, 286, 295, 297, 300, 301, 305, 306, 309, 310, 312, 315, 316, 317, 318, 320, 329, 331, 343, 344, 347, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362]
```

In []:

```
knn_model = KNeighborsClassifier(**knn_clf.best_params_)
knn_model.fit(df_Xtrain[knntop_100_features],y_train)
```

Out[]:

KNeighborsClassifier(algorithm='kd tree', n neighbors=49)

In []:

```
y_pred = knn_model.predict(df_Xtrain[knntop_100_features])
print(y_pred)
```

```
1. 1. 1. 1. 1. 1. 1. 1.
           1.
            1. 1. 1.
               1. 1.
                 1. 0. 1. 1. 1. 1.
1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1.
           1.
            1. 1. 1. 1. 1.
                 1. 1. 1. 1.
1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 0. 1. 1. 1. 1. 1. 1.]
```

In []:

```
train_auc = roc_auc_score(y_train,y_pred)
print(train_auc)
```

0.538194444444444

```
In [ ]:
```

```
y_predict = knn_model.predict_proba(df_Xtest[knntop_100_features])[:,1]
print(y_predict)
```

 $[0.53061224 \ 0.69387755 \ 0.71428571 \ \dots \ 0.73469388 \ 0.65306122 \ 0.57142857]$

In []:

```
y_pred_lr_test = pd.DataFrame({"ID": df_test['id'], "Target": y_predict})

y_pred_lr_test.to_csv('submission_knn_top100features.csv', index=False)
y_pred_lr_test.head(20)
```

Out[]:

	ID	Target
	טו	Target
0	250	0.530612
1	251	0.693878
2	252	0.714286
3	253	0.693878
4	254	0.612245
5	255	0.591837
6	256	0.612245
7	257	0.612245
8	258	0.755102
9	259	0.591837
10	260	0.653061
11	261	0.612245
12	262	0.551020
13	263	0.612245
14	264	0.551020
15	265	0.632653
16	266	0.653061
17	267	0.693878
18	268	0.551020
19	269	0.489796

Logistic Regresstion Applied

```
In [20]:
```

```
#ref= https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

params = {'penalty':['l1','l2','elasticnet'],'C':[10**i for i in range(-4,5)], 'solver':['liblinear','sag','saga']}

#the instance of Logistic Regression

log_model = LogisticRegression(random_state=42)

#Call Hyper-parameter function to get best hyperparameter tuning

log clf = hyperparameter model(log model,params)
```

In [74]:

```
selector = SequentialFeatureSelector(log_model,k_features=(10, 50),forward=True,cv=5,scoring='roc_auc')
selector.fit(X_train,y_train)
```

Out[74]:

 $Sequential Feature Selector (estimator = Logistic Regression (random_state = 42), \\ k_features = (10, 50), scoring = 'roc_auc')$

In [75]:

```
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
fig1 = plot_sfs(selector.get_metric_dict(), kind='std_dev')

plt.ylim([0.8, 1])
plt.title('Sequential Forward Selection (w Feature engineering')
plt.grid()
plt.show()
```


In [76]:

```
logistictop_50_features = list(selector.k_feature_names_)
print(top_50_features)
```

```
[4, 7, 14, 30, 33, 46, 49, 65, 67, 82, 90, 92, 95, 98, 100, 111, 115, 117, 120, 145, 147, 167, 207, 239, 260, 266, 272, 280, 286, 301, 312, 315, 318, 320, 331, 343, 347, 350, 351, 352, 353, 354, 355, 356, 358, 359, 360, 361, 362]
```

In [28]:

```
logistictop_50_features = [4, 7, 13, 16, 24, 33, 49, 51, 64, 65, 67, 73, 90, 91, 104, 114, 116, 117, 123, 143, 149, 156, 164, 183, 188, 192, 217, 221, 226, 228, 253, 256, 260, 268, 302, 311, 313, 328, 330, 337, 338, 339, 355, 356, 358, 360, 361, 362]
```

In []:

```
print(log_clf.best_params_)
```

```
{'C': 1, 'penalty': 'l1', 'solver': 'saga'}
```

```
from sklearn import linear_model
model = LogisticRegression(penalty='l1', C=1, solver='saga')
model.fit(df_Xtrain[top_50_features],y_train)
Out[]:
LogisticRegression(C=1, penalty='l1', solver='saga')
In [ ]:
y pred = model.predict(df Xtrain[logistictop 50 features])
print(y_pred)
[1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 0. 0.
0. 1. 1. 1. 0. 0. 1. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1.
1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 1. 1. 0.
0. 1. 1. 0. 0. 0. 0. 0. 1. 0.]
In [ ]:
train auc lr = roc auc score(y train,y pred)
print(train_auc_lr)
0.90277777777778
In [ ]:
y_pred_lr_test = model.predict_proba(df_Xtest[logistictop_50_features])[:,1]
print(y_pred_lr_test)
```

 $\begin{bmatrix} 0.0445232 & 0.33663622 & 0.80638496 & \dots & 0.53660329 & 0.99484058 & 0.12661038 \end{bmatrix}$

In []:

```
y_pred_lr_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_lr_test})

y_pred_lr_test.to_csv('submission_logs_50features.csv', index=False)
y_pred_lr_test.head(20)
```

Out[]:

	ID	Target
0	250	0.044523
1	251	0.336636
2	252	0.806385
3	253	0.932935
4	254	0.138762
5	255	0.101394
6	256	0.280308
7	257	0.028632
8	258	0.872992
9	259	0.096193
10	260	0.285565
11	261	0.245310
12	262	0.112716
13	263	0.997687
14	264	0.339740
15	265	0.991135
16	266	0.877559
17	267	0.968095
18	268	0.238123
19	269	0.013618

NameSubmittedWait timeExecution timeScoresubmission_logs_50features.csvjust now1 seconds0 seconds0.818

Complete

Jump to your position on the leaderboard ▼

logistic_test_auc = 0.818

Let's take top 100 features

In [21]:

```
selector = SequentialFeatureSelector(log_model,k_features=(10, 100),forward=True,cv=5,scoring='roc_auc')
selector.fit(X_train,y_train)
```

Out[21]:

```
Sequential Feature Selector (estimator = Logistic Regression (random\_state = 42) \,, \\ k\_feature s = (10, 100) \,, \, scoring = 'roc\_auc')
```

```
In [ ]:
```

```
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
fig1 = plot_sfs(selector.get_metric_dict(), kind='std_dev')

plt.ylim([0.8, 1])
plt.title('Sequential Forward Selection (w Feature engineering')
plt.grid()
plt.show()
```

```
Sequential Forward Selection (w Feature engineering

0.975
0.950
0.900
0.875
0.850
0.825
0.800
Number of Features
```

```
logistictop_100_features = list(selector.k_feature_names_)
print(top_100_features)
```

```
['4', '7', '13', '16', '21', '24', '33', '49', '51', '61', '64', '65', '67', '73', '79', '90', '91', '104', '105', '114', '116', '117', '123', '129', '135', '143', '149', '156', '161', '164', '183', '188', '192', '196', '199', '213', '217', '221', '226', '228', '253', '256', '260', '265', '268', '269', '274', '279', '285', '302', '311', '313', '319', '320', '328', '330', '337', '338', '339', '355', '356', '358', '359', '360', '361', '362']
```

In [29]:

```
logistictop_100_features = [4, 7, 13, 16, 21, 24, 33, 49, 51, 61, 64, 65, 67, 73, 79, 90, 91, 104, 105, 114, 116, 117, 123, 129, 135, 143, 149, 156, 161, 164, 183, 188, 192, 196, 199, 213, 217, 221, 226, 228, 253, 256, 260, 265, 268, 269, 274, 279, 285, 302, 311, 313, 319, 320, 328, 330, 337, 338, 339, 355, 356, 358, 359, 360, 361, 362]
```

In []:

```
from sklearn import linear_model

model = LogisticRegression(penalty='l1', C=1, solver='saga')

model.fit(df_Xtrain[logistictop_100_features],y_train)
```

Out[]:

LogisticRegression(C=1, penalty='l1', solver='saga')

In []:

```
y_pred = model.predict(df_Xtrain[logistictop_100_features])
print(y_pred)
```

In []:

```
train_lr_auc = roc_auc_score(y_train,y_pred)
print(train_lr_auc)
```

```
y_predict = model.predict_proba(df_Xtest[logistictop_100_features])[:,1]
print(y_predict)
```

 $[0.06088335 \ 0.38840025 \ 0.65453023 \ \dots \ 0.38744559 \ 0.99585269 \ 0.25010157]$

In []:

```
y_pred_lr_test_100 = pd.DataFrame({"ID": df_test['id'],"Target": y_predict})

y_pred_lr_test_100.to_csv('submission_logs_100features.csv', index=False)
y_pred_lr_test_100.head(20)
```

Out[]:

	ID	Target
0	250	0.060883
1	251	0.388400
2	252	0.654530
3	253	0.981406
4	254	0.044851
5	255	0.105564
6	256	0.366869
7	257	0.018923
8	258	0.892434
9	259	0.117482
10	260	0.355460
11	261	0.125471
12	262	0.038672
13	263	0.997493
14	264	0.241079
15	265	0.996510
16	266	0.873278
17	267	0.986878
18	268	0.451083
19	269	0.011177

test_logistic_auc = 0.83

Support Vector Machine

In [38]:

from sklearn.svm import SVC

```
In [ ]:
#ref = https://scikit-learn.org/stable/modules/svm.html
params = {'C':[10**i for i in range(-4,5)], 'kernel':['linear', 'poly', 'sigmoid', 'rdf']}
#The instance of SVC
svc model = SVC(random state=42)
#call the hyper-parameter function to get best parameters
svc clf = hyperparameter_model(svc_model,params)
In [ ]:
print(svc_clf.best_params_)
{'C': 0.1, 'kernel': 'linear'}
In [ ]:
selector = SequentialFeatureSelector(svc model,k features=(10, 50),forward=True,cv=5,scoring='roc auc')
selector.fit(X_train,y_train)
Out[]:
```

SequentialFeatureSelector(estimator=SVC(random_state=42), k_features=(10, 50), scoring='roc_auc')

In []:

```
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
fig1 = plot sfs(selector.get metric dict(), kind='std dev')
plt.ylim([0.8, 1])
plt.title('Sequential Forward Selection (w Feature engineering')
plt.grid()
plt.show()
```


In []:

```
svctop_50_features = list(selector.k_feature_names_)
print(top 50 features)
['9', '28', '31', '33', '45', '46', '62', '65', '66', '68', '73', '80', '91', '95', '100', '114', '1 23', '131', '132', '133', '141', '146', '159', '168', '169', '181', '194', '195', '217', '226', '233', '249', '253', '258', '264', '272', '282', '288', '304', '350', '354', '355', '356', '358', '359',
```

In [23]:

'362']

```
svctop 50 features = [9, 28, 31, 33, 45, 46, 62, 65, 66, 68,
                    73, 80, 91, 95, 100, 114, 123, 131, 132,
                    133, 141, 146, 159, 168, 169, 181, 194, 195,
                    217, 226, 233, 249, 253, 258, 264, 272, 282,
                    288, 304, 350, 354, 355, 356, 358, 359, 362]
```

```
model = SVC(C=0.1, kernel='linear',probability=True)
model.fit(df_Xtrain[svctop_50_features],y_train)
Out[]:
SVC(C=0.1, kernel='linear', probability=True)
In [ ]:
y pred = model.predict(df Xtrain[svctop 50 features])
print(y_pred)
1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 0. 1. 1. 1.
0. 1. 1. 1. 0. 0. 1. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 0. 1.
0.\ 1.\ 0.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 1.\ 0.\ 0.\ 0.\ 1.\ 0.\ 0.\ 0.\ 1.\ 1.\ 1.\ 0.
1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1.
0. 1. 1. 0. 0. 0. 0. 0. 1. 0.]
In [ ]:
train_svc_auc = roc_auc_score(y_train,y_pred)
print(train_svc_auc)
0.8798611111111111
In [ ]:
y_pred_svc = model.predict_proba(df_Xtest[svctop_50_features])[:,1]
print(y_pred_svc)
 [0.14506099 \ 0.4656034 \ \ 0.92775101 \ \dots \ 0.86146204 \ \ 0.91354606 \ \ 0.65519584]
```

from sklearn import linear_model

```
y_pred_svc_test_50 = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_svc})

y_pred_svc_test_50.to_csv('submission_svc50features.csv', index=False)
y_pred_svc_test_50.head(20)
```

Out[]:

	ID	_
	טו	Target
0	250	0.145061
1	251	0.465603
2	252	0.927751
3	253	0.896267
4	254	0.653264
5	255	0.630216
6	256	0.500000
7	257	0.160114
8	258	0.903210
9	259	0.086692
10	260	0.757806
11	261	0.199269
12	262	0.770502
13	263	0.935361
14	264	0.018196
15	265	0.507099
16	266	0.234485
17	267	0.895184
18	268	0.863253
19	269	0.148971

Name Submitted Wait time Execution time Score submission_svc50features.csv just now 1 seconds 0 seconds 0.753

Complete

Jump to your position on the leaderboard.▼

Test_SVM_auc = 0.753

Let's take top 100 features

In []:

```
selector = SequentialFeatureSelector(svc_model,k_features=(10, 100),forward=True,cv=5,scoring='roc_auc')
selector.fit(X_train,y_train)
```

Out[]

```
Sequential Feature Selector (estimator = SVC (random\_state = 42), k\_features = (10, 100), \\ scoring = 'roc\_auc')
```

```
In [ ]:
```

```
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
fig1 = plot_sfs(selector.get_metric_dict(), kind='std_dev')

plt.ylim([0.8, 1])
plt.title('Sequential Forward Selection (w std')
plt.grid()
plt.show()
```

```
Sequential Forward Selection (w std

0.975
0.950
0.900
0.875
0.850
0.825
0.800
Number of Features
```

```
svctop_100_features = list(selector.k_feature_names_)
print(top_100_features)
```

```
['9', '28', '31', '33', '45', '46', '62', '65', '66', '68', '73', '80', '91', '95', '100', '114', '1 23', '131', '132', '133', '141', '146', '159', '168', '169', '181', '194', '195', '217', '226', '233', '249', '253', '258', '264', '272', '282', '288', '304', '350', '354', '355', '356', '358', '359', '362']
```

In [24]:

```
svctop_100_features = [9, 28, 31, 33, 45, 46, 62, 65, 66, 68,
73, 80, 91, 95, 100, 114, 123, 131, 132,
133, 141, 146, 159, 168, 169, 181, 194, 195,
217, 226, 233, 249, 253, 258, 264, 272, 282,
288, 304, 350, 354, 355, 356, 358, 359, 362]
```

In []:

```
from sklearn import linear_model

model = SVC(C=0.1, kernel='linear',probability=True)

model.fit(df_Xtrain[svctop_100_features],y_train)
```

Out[]:

SVC(C=0.1, kernel='linear', probability=True)

In []:

```
y_pred = model.predict(df_Xtrain[svctop_100_features])
print(y_pred)
```

In []:

```
train_svc_auc_100features = roc_auc_score(y_train,y_pred)
print(train_svc_auc_100features)
```

```
In [ ]:
```

y_pred_svc_top100 = model.predict_proba(df_Xtest[svctop_100_features])[:,1]

In []:

```
y_pred_svc_test_100 = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_svc_top100})

y_pred_svc_test_100.to_csv('submission_svc100features.csv', index=False)
y_pred_svc_test_100.head(10)
```

Out[]:

	ID	Target
		901
0	250	0.167671
1	251	0.500000
2	252	0.935021
3	253	0.906848
4	254	0.684161
5	255	0.660151
6	256	0.532745
7	257	0.184330
8	258	0.913066
9	259	0.101990

Your most recent submission

Name Submitted Wait time Execution time Score submission_svc100features.csv just now 1 seconds 0 seconds 0.753

Complete

Jump to your position on the leaderboard ▼

Ensemble Model: Random Forest

In [37]:

from sklearn.ensemble import RandomForestClassifier

```
In [20]:
```

```
#https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
params = {'n_estimators': [10,20,30,40,50,60,100,200,300,400], 'max_depth':[2,3,5,7,9]}
#The instance of model
rdf_model = RandomForestClassifier(random_state=42)
# Call the hyperparameter function to get best parameter
rdf_clf = hyperparameter_model(rdf_model,params)
```

In []:

```
selector = SequentialFeatureSelector(rdf_model,k_features=(10, 15),forward=True,cv=5,scoring='roc_auc')
selector.fit(X_train,y_train)
```

Out[]:

```
Sequential Feature Selector (estimator=Random Forest Classifier (random\_state=42) \,, \\ k\_features = (10,\ 15) \,, \ scoring='roc\_auc')
```

```
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
fig1 = plot_sfs(selector.get_metric_dict(), kind='std_dev')

plt.ylim([0.8, 1])
plt.title('Sequential Forward Selection (w std')
plt.grid()
plt.show()
```


In []:

```
rdftop_15_features = list(selector.k_feature_names_)
print(top_15_features)
```

['2', '17', '33', '45', '65', '96', '116', '194', '199', '214', '215', '217', '315', '317', '320']

In [31]:

rdftop_15_features = [2, 17, 33, 45, 65, 96, 116, 194, 199, 214, 215, 217, 315, 317, 320]

In []:

df_Xtrain[rdftop_15_features]

Out[]:

2	17	33	45	65	96	116	194	199	214	215	
0.503692	-0.560123	0.512526	0.807873	-0.788053	1.142777	-0.294448	-0.306051	1.730666	-0.505591	0.810781	1
-0.539790	-0.128760	-2.552011	-1.184575	1.239630	-1.454985	0.651431	0.014025	-2.250726	-0.028172	0.318050	0
-0.505465	0.372848	1.044330	0.951000	0.956508	-1.749053	0.076352	-0.589873	0.354049	-0.084865	0.295837	0
0.220265	0.932829	0.521405	-0.936420	-0.722874	-1.118907	0.428757	-1.006283	1.126227	0.470135	1.409531	0
0.336970	-0.212856	0.169171	0.304356	0.359712	0.520447	0.037626	0.070997	0.157389	0.060350	1.964863	0
-1.054666	-0.952901	-1.264432	-1.099111	-0.339946	1.409489	-2.046792	0.159044	0.135217	0.362716	0.174673	0
-0.536848	-0.208898	0.133652	-1.393602	-1.041640	-0.072573	-0.445479	0.652106	0.577701	0.765539	-0.892575	1
-0.047471	0.256103	0.108985	0.366137	-0.198385	0.045640	-0.412562	-0.844691	0.060024	-1.304275	-1.052107	1
0.016276	-0.249462	-0.488925	-0.368031	-0.383738	-0.503417	0.076352	-1.472413	-0.394993	0.300054	0.613891	-1
-0.027856	-1.509913	-0.459325	-0.175480	0.489051	-0.381296	-0.871463	0.414898	-0.707334	1.632851	0.069665	1
	0.503692 -0.539790 -0.505465 0.220265 0.336970 -1.054666 -0.536848 -0.047471 0.016276	0.503692 -0.560123 -0.539790 -0.128760 -0.505465 0.372848 0.220265 0.932829 0.336970 -0.2128561.054666 -0.952901 -0.536848 -0.208898 -0.047471 0.256103 0.016276 -0.249462	0.503692 -0.560123 0.512526 -0.539790 -0.128760 -2.552011 -0.505465 0.372848 1.044330 0.220265 0.932829 0.521405 0.336970 -0.212856 0.169171 -1.054666 -0.952901 -1.264432 -0.536848 -0.208898 0.133652 -0.047471 0.256103 0.108985 0.016276 -0.249462 -0.488925	0.503692 -0.560123 0.512526 0.807873 -0.539790 -0.128760 -2.552011 -1.184575 -0.505465 0.372848 1.044330 0.951000 0.220265 0.932829 0.521405 -0.936420 0.336970 -0.212856 0.169171 0.304356 -1.054666 -0.952901 -1.264432 -1.099111 -0.536848 -0.208898 0.133652 -1.393602 -0.047471 0.256103 0.108985 0.366137 0.016276 -0.249462 -0.488925 -0.368031	0.503692 -0.560123 0.512526 0.807873 -0.788053 -0.539790 -0.128760 -2.552011 -1.184575 1.239630 -0.505465 0.372848 1.044330 0.951000 0.956508 0.220265 0.932829 0.521405 -0.936420 -0.722874 0.336970 -0.212856 0.169171 0.304356 0.359712 -1.054666 -0.952901 -1.264432 -1.099111 -0.339946 -0.536848 -0.208898 0.133652 -1.393602 -1.041640 -0.047471 0.256103 0.108985 0.366137 -0.198385 0.016276 -0.249462 -0.488925 -0.368031 -0.383738	0.503692 -0.560123 0.512526 0.807873 -0.788053 1.142777 -0.539790 -0.128760 -2.552011 -1.184575 1.239630 -1.454985 -0.505465 0.372848 1.044330 0.951000 0.956508 -1.749053 0.220265 0.932829 0.521405 -0.936420 -0.722874 -1.118907 0.336970 -0.212856 0.169171 0.304356 0.359712 0.520447 -1.054666 -0.952901 -1.264432 -1.099111 -0.339946 1.409489 -0.536848 -0.208898 0.133652 -1.393602 -1.041640 -0.072573 -0.047471 0.256103 0.108985 0.366137 -0.198385 0.045640 0.016276 -0.249462 -0.488925 -0.368031 -0.383738 -0.503417	0.503692 -0.560123 0.512526 0.807873 -0.788053 1.142777 -0.294448 -0.539790 -0.128760 -2.552011 -1.184575 1.239630 -1.454985 0.651431 -0.505465 0.372848 1.044330 0.951000 0.956508 -1.749053 0.076352 0.220265 0.932829 0.521405 -0.936420 -0.722874 -1.118907 0.428757 0.336970 -0.212856 0.169171 0.304356 0.359712 0.520447 0.037626 -1.054666 -0.952901 -1.264432 -1.099111 -0.339946 1.409489 -2.046792 -0.536848 -0.208898 0.133652 -1.393602 -1.041640 -0.072573 -0.445479 -0.047471 0.256103 0.108985 0.366137 -0.198385 0.045640 -0.412562 0.016276 -0.249462 -0.488925 -0.368031 -0.383738 -0.503417 0.076352	0.503692 -0.560123 0.512526 0.807873 -0.788053 1.142777 -0.294448 -0.306051 -0.539790 -0.128760 -2.552011 -1.184575 1.239630 -1.454985 0.651431 0.014025 -0.505465 0.372848 1.044330 0.951000 0.956508 -1.749053 0.076352 -0.589873 0.220265 0.932829 0.521405 -0.936420 -0.722874 -1.118907 0.428757 -1.006283 0.336970 -0.212856 0.169171 0.304356 0.359712 0.520447 0.037626 0.070997	0.503692 -0.560123 0.512526 0.807873 -0.788053 1.142777 -0.294448 -0.306051 1.730666 -0.539790 -0.128760 -2.552011 -1.184575 1.239630 -1.454985 0.651431 0.014025 -2.250726 -0.505465 0.372848 1.044330 0.951000 0.956508 -1.749053 0.076352 -0.589873 0.354049 0.220265 0.932829 0.521405 -0.936420 -0.722874 -1.118907 0.428757 -1.006283 1.126227 0.336970 -0.212856 0.169171 0.304356 0.359712 0.520447 0.037626 0.070997 0.157389 </td <td>0.503692 -0.560123 0.512526 0.807873 -0.788053 1.142777 -0.294448 -0.306051 1.730666 -0.505591 -0.539790 -0.128760 -2.552011 -1.184575 1.239630 -1.454985 0.651431 0.014025 -2.250726 -0.028172 -0.505465 0.372848 1.044330 0.951000 0.956508 -1.749053 0.076352 -0.589873 0.354049 -0.084865 0.220265 0.932829 0.521405 -0.936420 -0.722874 -1.118907 0.428757 -1.006283 1.126227 0.470135 0.336970 -0.212856 0.169171 0.304356 0.359712 0.520447 0.037626 0.070997 0.157389 0.060350 <t< td=""><td>0.503692 -0.560123 0.512526 0.807873 -0.788053 1.142777 -0.294448 -0.306051 1.730666 -0.505591 0.810781 -0.539790 -0.128760 -2.552011 -1.184575 1.239630 -1.454985 0.651431 0.014025 -2.250726 -0.028172 0.318050 -0.505465 0.372848 1.044330 0.951000 0.956508 -1.749053 0.076352 -0.589873 0.354049 -0.084865 0.295837 0.220265 0.932829 0.521405 -0.936420 -0.722874 -1.118907 0.428757 -1.006283 1.126227 0.470135 1.409531 0.336970 -0.212856 0.169171 0.304356 0.359712 0.520447 0.037626 0.070997 0.157389 0.060350 1.964863 </td></t<></td>	0.503692 -0.560123 0.512526 0.807873 -0.788053 1.142777 -0.294448 -0.306051 1.730666 -0.505591 -0.539790 -0.128760 -2.552011 -1.184575 1.239630 -1.454985 0.651431 0.014025 -2.250726 -0.028172 -0.505465 0.372848 1.044330 0.951000 0.956508 -1.749053 0.076352 -0.589873 0.354049 -0.084865 0.220265 0.932829 0.521405 -0.936420 -0.722874 -1.118907 0.428757 -1.006283 1.126227 0.470135 0.336970 -0.212856 0.169171 0.304356 0.359712 0.520447 0.037626 0.070997 0.157389 0.060350 <t< td=""><td>0.503692 -0.560123 0.512526 0.807873 -0.788053 1.142777 -0.294448 -0.306051 1.730666 -0.505591 0.810781 -0.539790 -0.128760 -2.552011 -1.184575 1.239630 -1.454985 0.651431 0.014025 -2.250726 -0.028172 0.318050 -0.505465 0.372848 1.044330 0.951000 0.956508 -1.749053 0.076352 -0.589873 0.354049 -0.084865 0.295837 0.220265 0.932829 0.521405 -0.936420 -0.722874 -1.118907 0.428757 -1.006283 1.126227 0.470135 1.409531 0.336970 -0.212856 0.169171 0.304356 0.359712 0.520447 0.037626 0.070997 0.157389 0.060350 1.964863 </td></t<>	0.503692 -0.560123 0.512526 0.807873 -0.788053 1.142777 -0.294448 -0.306051 1.730666 -0.505591 0.810781 -0.539790 -0.128760 -2.552011 -1.184575 1.239630 -1.454985 0.651431 0.014025 -2.250726 -0.028172 0.318050 -0.505465 0.372848 1.044330 0.951000 0.956508 -1.749053 0.076352 -0.589873 0.354049 -0.084865 0.295837 0.220265 0.932829 0.521405 -0.936420 -0.722874 -1.118907 0.428757 -1.006283 1.126227 0.470135 1.409531 0.336970 -0.212856 0.169171 0.304356 0.359712 0.520447 0.037626 0.070997 0.157389 0.060350 1.964863

250 rowe x 15 columns

In []:

```
print(rdf_clf.best_params_)
```

{'max_depth': 9, 'n_estimators': 400}

In []:

```
rdf_clf = RandomForestClassifier(**rdf_clf.best_params_,bootstrap=True)
rdf_clf.fit(df_Xtrain[rdftop_15_features],y_train)
```

Out[]:

RandomForestClassifier(max_depth=9, n_estimators=400)

```
In [ ]:
```

```
y_pred = rdf_clf.predict(df_Xtrain[rdftop_15_features])
train_rdf_auc = roc_auc_score(y_train,y_pred)
print(train_rdf_auc)
```

1.0

In []:

```
y_pred_rdf_test = rdf_clf.predict_proba(df_Xtest[rdftop_15_features])[:,1]
```

In []:

```
y_pred_rdf_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_rdf_test})

y_pred_rdf_test.to_csv('submission_rdf_top15.csv', index=False)
y_pred_rdf_test.head(20)
```

Out[]:

	ID	Target
0	250	0.534700
1	251	0.777835
2	252	0.562941
3	253	0.862542
4	254	0.489986
5	255	0.412787
6	256	0.396291
7	257	0.673244
8	258	0.932938
9 259		0.536302
10	260	0.886898
11	261	0.523860
12	262	0.683837
13	263	0.658972
14	264	0.222353
15	265	0.867772
16	266	0.432188
17	267	0.579593
18	268	0.782165
19	269	0.720348

Test_rdf_auc: 0.75

```
In [39]:
```

```
In [20]:
```

```
#list of hyper-parameter
params = {'max_depth':[2,3,5,7,9],'n_estimators':[10,20,30,40,50,100,200,400,500]}
# The instance of XGBClassifier

xg_model = XGBClassifier()
# call hyparameter function to get best parameter

xg_clf = hyperparameter_model(xg_model,params)
```

In [23]:

```
print(xg_clf.best_params_)
```

{'max_depth': 9, 'n_estimators': 500}

from xgboost import XGBClassifier

In [22]:

```
selector = SequentialFeatureSelector(xg_model,k_features=(10, 50),forward=True,cv=5,scoring='roc_auc')
selector.fit(X_train,y_train)
```

Out[22]:

SequentialFeatureSelector(estimator=XGBClassifier(), $k_features=(10, 50)$, scoring='roc auc')

In [24]:

```
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
fig1 = plot_sfs(selector.get_metric_dict(), kind='std_dev')

plt.ylim([0.8, 1])
plt.title('Sequential Forward Selection (w std')
plt.grid()
plt.show()
```


In [25]:

```
xgboottop_50_features = list(selector.k_feature_names_)
print(top_50_features)
```

```
['33', '50', '65', '91', '164', '167', '230', '301', '361', '362']
```

In [30]:

```
xgboottop_50_features = [33, 50, 65, 91, 164, 167, 230, 301, 361, 362]
```

In [27]:

```
xg_clf = XGBClassifier(**xg_clf.best_params_)
xg_clf.fit(df_Xtrain[xgboottop_50_features],y_train)
```

Out[27]:

XGBClassifier(max_depth=9, n_estimators=500)

```
In [31]:
```

y_pred = xg_clf.predict(df_Xtrain[xgboottop_50_features])
train_auc = roc_auc_score(y_train,y_pred)
print(train_auc)

1.0

In [32]:

y_pred_xg_test = xg_clf.predict_proba(df_Xtest[xgboottop_50_features])[:,1]
print(y_pred_xg_test)

[0.29076236 0.2061423 0.01131213 ... 0.89664805 0.99611 0.26628968]

In [33]:

y_pred_xg_test = pd.DataFrame({"ID": df_test['id'], "Target": y_pred_xg_test})

y_pred_xg_test.to_csv('submission_xgboosttop50.csv', index=False)
y_pred_xg_test.head(10)

Out[33]:

	ID	Target
0	250	0.290762
1	251	0.206142
2	252	0.011312
3	253	0.998524
4	254	0.536212
5	255	0.089159
6	256	0.140542
7	257	0.136743
8	258	0.999746
9	259	0.004194

xgboost test auc = 0.715

Stacking Classifier

In [32]:

import six
import sys
sys.modules['sklearn.externals.six'] = six

In [33]:

from mlxtend.classifier import StackingClassifier

In [57]:

```
# Combined all top features of all models
# Ref: https://www.geeksforgeeks.org/union-function-python/
all_top_feat = logistictop_50_features+knntop_100_features+svctop_50_features+xgboottop_50_features
```

```
In [61]:
#classifier 1
knn_model = KNeighborsClassifier(algorithm='kd_tree', n_neighbors=49)
knn_model.fit(X_train[:,all_top_feat],y_train)
#Classifier 2
model = LogisticRegression(penalty='l1', C=1, solver='saga')
model.fit(X_train[:,all_top_feat],y_train)
#Classifier 3
svc clf = SVC(C =0.1, kernel = 'linear',probability=True)
svc_clf.fit(X_train[:,all_top_feat],y_train)
#classifier 3
rdf clf = RandomForestClassifier(max depth=9, n estimators=400)
rdf_clf.fit(X_train[:,all_top_feat],y_train)
#classifier 5
xg_clf = XGBClassifier(max_depth = 9, n_estimators = 500)
xg_clf.fit(X_train[:,all_top_feat],y_train)
#Stacking Classifer
sclf = StackingClassifier(classifiers=[knn model,model,svc clf,rdf clf,xg clf],meta classifier=model,use probas=T
rue)
#fit the model
sclf.fit(X_train[:,all_top_feat],y_train)
#predict in probabilities
y_pred = sclf.predict(X_train[:,all_top_feat])
```

In [62]:

```
train_auc = roc_auc_score(y_train,y_pred)
print(train_auc)
```

1.0

In [66]:

```
y_pred_stack_test = sclf.predict_proba(X_test[:,all_top_feat])[:,1]
print(y_pred_stack_test)
```

 $[0.12189521 \ 0.98701918 \ 0.96373052 \ \dots \ 0.25666822 \ 0.99342974 \ 0.78469862]$

```
In [64]:
```

```
y_pred_stack_test = pd.DataFrame({"ID": df_test['id'],"Target": y_pred_stack_test})

y_pred_stack_test.to_csv('submission_stack_top50features.csv', index=False)
y_pred_stack_test.head(20)
```

Out[64]:

ID Target 0 250 0.121895 1 251 0.987019 2 252 0.963731 3 253 0.993992 4 254 0.776488 5 255 0.991428 6 256 0.239680 7 257 0.051843 8 258 0.993739 9 259 0.099150 10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114 19 269 0.024689			Т
1 251 0.987019 2 252 0.963731 3 253 0.993992 4 254 0.776488 5 255 0.991428 6 256 0.239680 7 257 0.051843 8 258 0.993739 9 259 0.099150 10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114		ID	Target
2 252 0.963731 3 253 0.993992 4 254 0.776488 5 255 0.991428 6 256 0.239680 7 257 0.051843 8 258 0.993739 9 259 0.099150 10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	0	250	0.121895
3 253 0.993992 4 254 0.776488 5 255 0.991428 6 256 0.239680 7 257 0.051843 8 258 0.993739 9 259 0.099150 10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	1	251	0.987019
4 254 0.776488 5 255 0.991428 6 256 0.239680 7 257 0.051843 8 258 0.993739 9 259 0.099150 10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	2	252	0.963731
5 255 0.991428 6 256 0.239680 7 257 0.051843 8 258 0.993739 9 259 0.099150 10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	3	253	0.993992
6 256 0.239680 7 257 0.051843 8 258 0.993739 9 259 0.099150 10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	4	254	0.776488
7 257 0.051843 8 258 0.993739 9 259 0.099150 10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	5	255	0.991428
8 258 0.993739 9 259 0.099150 10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	6	256	0.239680
9 259 0.099150 10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	7	257	0.051843
10 260 0.986614 11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	8	258	0.993739
11 261 0.863000 12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	9	259	0.099150
12 262 0.505329 13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	10	260	0.986614
13 263 0.992677 14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	11	261	0.863000
14 264 0.787459 15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	12	262	0.505329
15 265 0.991170 16 266 0.681878 17 267 0.993208 18 268 0.102114	13	263	0.992677
16 266 0.681878 17 267 0.993208 18 268 0.102114	14	264	0.787459
17 267 0.993208 18 268 0.102114	15	265	0.991170
18 268 0.102114	16	266	0.681878
	17	267	0.993208
19 269 0.024689	18	268	0.102114
	19	269	0.024689

lame S ubmission_stack_top50features (1).csv j	Submitted just now	Wait time 1 seconds	Execution time 1 seconds	Score 0.769
Complete				

Summary of All Models Using Top 50 Features

+	<u> </u>		
Model	Hyper-parameter	Train AUC	Test AUC
Knn_Model	(algorithm='kd_tree', n_neighbors=49)	0.540	0.680
logistic Regresstion	(C=1, penalty='l1', solver='saga')	0.900	0.820
Support Vector Machine	{'C': 0.1, 'kernel': 'linear'}	0.870	0.760
XGBoost Classifier	{'max_depth': 9, 'n_estimators': 500}	1	0.760
Random forest	{'max_depth': 9, 'n_estimators': 400}	1	0.750
Calibrated Model	 	1	0.770 +

Observation

- 1. We have read the training and test dataset. After reading both of dataset, we got it know that test dataset is having more features compare to training dataset.
- 2. Applied Feature Engineering to came up new features.
- 3. Dropped the labled data from both train and test datasets.
- 4. Standradized the Features using StandardScaler method.
- 5. Used GridSerach Validation for hyper-parameter tuning.
- 6. We have applied following machine learning algorithm: 1.KNN: The KNN algorithm trained the model with parameter(algorithm = 'kd_tree', and n_neighbors=49). Used forward Feature selection Method and came up top 50 Feature based on performance. Re-train the model using KNN with best parameter and got train_AUC=0.54 and Test Auc = 0.68. Model is less accurate but it is not overfitted.
 - 2.Logistic Regression: The Logistic regression algorithm trained the model with parameter(C=1,penalty=11,solver=saga). Used forward Feature selection Method and came up top 50 Feature based on performance. Re-traing the model with best parameter on top 50 Features and got train AUC = 0.90 and Test auc=0.82 which is working as expected.
 - 3.Support Vector Machine: The SVM algorithm trained the model with parameter(C=0.1,kernel=linear). Used forward Feature selection Method and came up top 50 Feature based on performance. Re-train the model with best parameter on top 50 features and got the train_AUC=0.87 and Test_AUC = 0.76. Model is not overfitted
 - 4.XGBoost Classifier: The XGBoost classifier trained the model with parameter(max_depth=9,n_estimators=500). Used forward Feature selection Method and came up top 50 Feature based on performance.Re-train the model with best parameter on top 50 features and got the train_AUC= 1.0 and Test_AUC=0.76.Model is not overfitted.
 - 5.Random Forest: The Random Forest classifier trained the model with parameter(max_depth=9,n_estimators=400). Used forward Feature selection Method and came up top 50 Feature based on performance. Re-train the model on top 50 features and got the train_AUC = 1.0 and test AUC = 0.75. Model is not overfitted.
 - 7.Calibrated model gave train_AUC = 1.0 and Test_AUC = 0.77. Model is accurate and not overfitted.

Logistic Regression is working well from above applied algorithm.

Summary of All Models Using Top 100 Features

In [4]:

+	Hyper-parameter	+ Train AUC +	
Knn_Model	(algorithm='kd_tree', n_neighbors=49)	0.540	0.650
logistic Regresstion	(C=1, penalty='l1', solver='saga')	0.930	0.830
Support Vector Machine	{'C': 0.1, 'kernel': 'linear'}	0.880	0.750
XGBoost Classifier	{'max_depth': 9, 'n_estimators': 500}	1	0.750

Observation

- 1. We have read the training and test dataset. After reading both of dataset, we got it know that test dataset is having more features compare to training dataset.
- 2. Applied Feature Engineering to came up new features.
- 3. Dropped the labled data from both train and test datasets.
- 4. Standradized the Features using StandardScaler method.
- 5. Used GridSerach Validation for hyper-parameter tuning.
- 6. We have applied following machine learning algorithm: 1.KNN: The KNN algorithm trained the model with parameter(algorithm = 'kd_tree', and n_neighbors=49). Used forward Feature selection Method and came up top 100 Features based on performance. Re-train the model using KNN with best parameter and got train_AUC=0.54 and Test Auc = 0.65. Model is less accurate but it is not overfitted.
 - 2.Logistic Regression: The Logistic regression algorithm trained the model with parameter(C=1,penalty=I1,solver=saga). Used forward Feature selection Method and came up top 100 Features based on performance. Re-traing the model with best parameter on top 100 Features and got train_AUC = 0.93 and Test_auc=0.83 which is working as expected.
 - 3.Support Vector Machine: The SVM algorithm trained the model with parameter(C=0.1,kernel=linear). Used forward Feature selection Method and came up top 100 Feature based on performance. Re-train the model with best parameter on top 100 features and got the train_AUC=0.88 and Test_AUC = 0.75. Model is not overfitted
 - 4.XGBoost Classifier: The XGBoost classifier trained the model with parameter(max_depth=9,n_estimators=500). Used forward Feature selection Method and came up top 100 Feature based on performance.Re-train the model with best parameter on top 100 features and got the train_AUC= 1.0 and Test_AUC=0.75.Model is not overfitted.

Logistic Regression is working well from above applied algorithm.