Moving average modely (kĺzavé priemery)

Beáta Stehlíková

Časové rady

Fakulta matematiky, fyziky a informatiky, UK v Bratislave

Moving average modely (kĺzavé priemery)
└─ Motivácia

Motivácia

Príklad: Ceny kakaa

Ben Vogelvang: Econometrics. Theory and Applications with EViews., Pearson Education Limited, 2005.

Chapter 14.7. - The Box-Jenkins Approach in Practice

- Mesačné dáta, január 1960 september 2002
- ▶ pcocoa cena kakka, zlogaritmujeme a kvôli stacionarite budeme pracovať s diferenciami ⇒ modelujeme teda percentuálnu zmenu ceny

$$\Delta \ln(p_t) = \ln(p_t) - \ln(p_{t-1}) = \ln\left(\frac{p_t}{p_{t-1}}\right)$$
$$= \ln\left(1 + \frac{p_t - p_{t-1}}{p_{t-1}}\right) \approx \frac{p_t - p_{t-1}}{p_{t-1}}$$

(lebo $\ln(1+x) \approx x$ pre x malé)

Priebeh dát: pôvodné, zlogaritmované, diferencie logaritmov

- ► Modelujeme diferencie logaritmov
- ► Zobrazíme si pre ne odhad ACF

- Prvá výrazne nenulová, ostatné skoro nulové
- ► Nevyzerá to ako typický priebeh pre AR proces:
 - tam klesala ACF postupne
 - priebeh tohto typu mala PACF

Príklad z prvej prednášky

 \triangleright Nech u_t je biely šum, definujme

$$x_t = u_t + u_{t-1}$$

Vypočítali sme:

$$\mathbb{E}(x_t) = 0, \mathbb{D}(x_t) = 2\sigma^2$$

$$\operatorname{Cov}(x_t, x_{t+k}) = \begin{cases} \sigma^2 & \text{pre } k = 1, \\ 0 & \text{pre } k = 2, 3, \dots \end{cases}$$

$$\operatorname{Cor}(x_t, x_{t+k}) = \begin{cases} 1/2 & \text{pre } k = 1, \\ 0 & \text{pre } k = 2, 3, \dots \end{cases}$$

ACF je nulová pre k = 2, 3, ... - presne tá vlastnosť, ktorú potrebujeme

Zovšeobecnenie príkladu a plán prednášky

- Príklad zovšeobecníme tak, aby
 - sa zachovala nulovosť korelácií okrem prvej
 - Prvá korelácia mohla nadobúdať aj iné hodnoty ako 1/2 ⇒ MA(1) procesy
- Procesy, ktoré majú prvých q nenulových a ostatné nulové ⇒ MA(q) procesy

MA(1) procesy

Definícia, stacionarita, momenty

ightharpoonup Nech u_t je biely šum, potom

$$x_t = \mu + u_t - \beta u_{t-1}$$

sa nazýva moving average proces prvého rádu - MA(1)

- Woldova reprezentácia: $x_t = \mu + \sum_{j=0}^{\infty} \psi_j u_{t-j}$, pre MA(1) proces: $\psi_0 = 1, \psi_1 = -\beta, \psi_j = 0$ pre $j = 2, 3, \ldots \rightarrow \mathbf{vždy}$ stacionárny
- ► Momenty a ACF:

$$\mathbb{E}(x_t) = \mu, \mathbb{D}(x_t) = (1+\beta^2)\sigma^2$$

$$\operatorname{Cov}(x_t, x_{t+k}) = \begin{cases} -\beta\sigma^2 & \text{pre } k = 1, \\ 0 & \text{pre } k = 2, 3, \dots \end{cases}$$

$$\operatorname{Cor}(x_t, x_{t+k}) = \begin{cases} -\frac{\beta}{1+\beta^2} & \text{pre } k = 1, \\ 0 & \text{pre } k = 2, 3, \dots \end{cases}$$

PACF

► Pripomeňme si PACF:

$$\Phi_{kk} = \frac{\det \begin{pmatrix} 1 & \rho(1) & \dots & \rho(1) \\ \rho(1) & 1 & \dots & \rho(2) \\ & & \dots & \\ \rho(k-1) & \rho(k-2) & \dots & \rho(k) \end{pmatrix}}{\det \begin{pmatrix} 1 & \rho(1) & \dots & \rho(k-1) \\ \rho(1) & 1 & \dots & \rho(k-2) \\ & & \dots & \\ \rho(k-1) & \rho(k-2) & \dots & 1 \end{pmatrix}}$$

▶ Pre MA(1) proces dosadzujeme $\rho(k) = 0$ pre k = 2, 3, ...

Moving average modely (kĺzavé priemery)

MA(1) procesy

$$\Phi_{11} = \rho(1)
\Phi_{22} = \frac{\det \begin{pmatrix} 1 & \rho(1) \\ \rho(1) & \rho(2) \end{pmatrix}}{\det \begin{pmatrix} 1 & \rho(1) \\ \rho(1) & 1 \end{pmatrix}} = \frac{\det \begin{pmatrix} 1 & \rho(1) \\ \rho(1) & 0 \end{pmatrix}}{\det \begin{pmatrix} 1 & \rho(1) \\ \rho(1) & 1 \end{pmatrix}} = \frac{-\rho(1)^2}{1 - \rho(1)^2}
\Phi_{33} = \frac{\det \begin{pmatrix} 1 & \rho(1) & \rho(1) \\ \rho(1) & 1 & \rho(2) \\ \rho(2) & \rho(1) & \rho(3) \end{pmatrix}}{\det \begin{pmatrix} 1 & \rho(1) & \rho(1) \\ \rho(2) & \rho(1) & 1 \end{pmatrix}} = \frac{\det \begin{pmatrix} 1 & \rho(1) & \rho(1) \\ \rho(1) & 1 & 0 \\ 0 & \rho(1) & 0 \end{pmatrix}}{\det \begin{pmatrix} 1 & \rho(1) & \rho(2) \\ \rho(1) & 1 & \rho(1) \\ \rho(2) & \rho(1) & 1 \end{pmatrix}} = \frac{\det \begin{pmatrix} 1 & \rho(1) & \rho(1) \\ \rho(1) & 1 & 0 \\ 0 & \rho(1) & 0 \end{pmatrix}}{\det \begin{pmatrix} 1 & \rho(1) & \rho(1) \\ \rho(1) & 1 & \rho(1) \\ 0 & \rho(1) & 1 \end{pmatrix}} = \frac{\rho(1)^3}{1 - 2\rho(1)^2}$$

Cvičenie: Odvoďte ďalší člen PACF:

$$\Phi_{44} = \frac{-\rho(1)^4}{(1-\rho(1)^2)^2 - \rho(1)^2}$$

```
Moving average modely (kĺzavé priemery)

☐ MA(1) procesy
```

Príklad 1: výpočet ACF a PACF v R-ku, $x_t = u_t + 0.7u_{t-1}$

```
ARMAacf(ma = c(0.7), lag.max = 10)
```

```
ARMAacf(ma = c(0.7), lag.max = 10, pacf = TRUE)
```

```
## [1] 0.46979866 -0.28322062 0.18563127 -0.12601048 0
## [7] 0.04214074 -0.02944844 0.02059677 -0.01441187
```


Príklad 2: simulované dáta, $x_t = u_t + 0.7u_{t-1}$

```
set.seed(123)
x <- arima.sim(model = list(ma = c(0.7)), n = 200)
plot(x)</pre>
```


Odhad ACF a PACF:

acf2(x) # naraz ACF (bez lagu 0) a PACF, balik astsa

Príklad 3: procesy s rovnakou ACF

Nech u_t je biely šum s rozdelením N(0,4), definujme

$$x_t = u_t + \frac{1}{2}u_{t-1}$$

Potom: $\mathbb{E}(x_t) = 0$, $\mathbb{D}(x_t) = (1 + (1/2)^2) \times 4 = 5$

$$\operatorname{Cor}(x_t, x_{t+k}) = \begin{cases} \frac{1/2}{1+1/4} = 2/5 & \text{pre } k = 1, \\ 0 & \text{pre } k = 2, 3, \dots \end{cases}$$

Nech u_t je biely šum s rozdelením N(0,1) , definujme

$$x_t = u_t + 2u_{t-1}$$
Potom: $\mathbb{E}(x_t) = 0$, $\mathbb{D}(x_t) = (1+2^2) \times 1 = 5$

$$\operatorname{Cor}(x_t, x_{t+k}) = \begin{cases} \frac{2}{1+4} = 2/5 & \text{pre } k = 1, \\ 0 & \text{pre } k = 2, 3, \dots \end{cases}$$

Moving average modely (kĺzavé priemery)

MA(1) procesy s danou ACF, invertovateľnosť

MA(1) procesy s danou ACF, invertovateľnosť

MA(1) procesy s danou ACF

- Zovšeobecníme príklad 3 (pre dva procesy vyšla rovnaká ACF)
- ► Majme MA(1) proces, teda ACF tvaru

$$\operatorname{Cor}(x_t, x_{t+k}) = \begin{cases} -\frac{\beta}{1+\beta^2} & \text{pre } k = 1, \\ 0 & \text{pre } k = 2, 3, \dots \end{cases}$$

Predpokladjme teraz, že máme danú hodnotu $\rho_1 = \rho(1)$ a chceme z nej spätne určiť koeficient β :

$$\rho_1 = -\frac{\beta}{1 + \beta^2} \Rightarrow \beta = ?$$

Máme teda rovnicu

$$\rho_1 = -\frac{\beta}{1+\beta^2} \Rightarrow \beta^2 + \frac{1}{\rho_1}\beta + 1 = 0$$

- Povnica $\beta^2 + \frac{1}{\rho_1}\beta + 1 = 0$ má pre $|\rho_1| < 1/2$ dve riešenia β_1, β_2 , ktoré spĺňajú $\beta_1\beta_2 = 1$
- Procesy

$$x_t = \mu + u_t - \beta u_{t-1}, x_t = \mu + u_t - \frac{1}{\beta} u_{t-1}$$

majú rovnakú ACF

 Ak chceme jednoznačnú parametrizáciu, potrebujeme dodať ďalšiu podmienku

Invertovateľnosť

▶ Budeme sa snažiť zapísať proces v tvare $AR(\infty)$:

$$x_t = \tilde{\mu} + u_t + \psi_1 x_{t-1} + \psi_2 x_{t-2} + \psi_3 x_{t-3} + \dots$$

Ak sa to dá spraviť, proces sa nazýva invertovateľný

► Pre MA(1) proces:

$$\begin{aligned} x_t &= \mu + (1 - \beta L) u_t \\ (1 - \beta L)^{-1} x_t &= (1 - \beta L)^{-1} \mu + u_t \\ \text{inverzia } (1 - \beta L)^{-1} \text{ existuje pre } |\beta| < 1, \text{ vtedy} \\ (1 + \beta L + \beta^2 L^2 + \dots) x_t &= \frac{\mu}{1 - \beta} + u_t \\ x_t + \beta x_{t-1} + \beta^2 x_{t-2} + \dots &= \frac{\mu}{1 - \beta} + u_t \\ x_t &= \frac{\mu}{1 - \beta} + u_t - \beta x_{t-1} - \beta^2 x_{t-2} - \dots \end{aligned}$$

- ▶ Dostali sme teda podmienku invertovateľnosti MA(1) procesu: $|\beta| < 1$
- lný zápis tejto podmienky:
 - ightharpoonup máme proces $x_t = \mu + (1 \beta L)u_t$
 - koreň polynómu $1 \beta L$ je $1/\beta$
 - podmienka invertovateľnosti teda hovorí, že koreň polynómu
 1 βL musí byť v absolútnej hodnote väčší ako 1, pri zakreslení do komplexnej roviny mimo jednotkového kruhu
- Táto podmienka sa ešte objaví v súvislosti s predikciami.

Moving average modely (kĺzavé priemery)

Reálne dáta: ceny kakaa zo začiatku slajdov

Reálne dáta: ceny kakaa zo začiatku slajdov

▶ Odhadneme MA(1) model pre diferencie logaritmov cien (teda percentuálne zmeny cien):

```
## Estimate SE t.value p.value
## ma1 0.3520 0.0402 8.7585 0.0000
## xmean 0.0024 0.0037 0.6501 0.5159
```

► Zapíšeme model pre premennú $x_t = \Delta \ln(pcocoa_t)$:

$$x_t = 0.0024 + u_t + 0.3520u_{t-1}$$

Rezíduá sú v poriadku - model je dobrý

- Predikcie z R-ka na nasledujúci rok.
- Všimnime si, že nie sú konštantné. Prečo nie sú konštantné predikcie z modelu $x_t = \mu + u_t \beta u_{t-1} \rightarrow k$ tomu sa vrátime.

MA(q) procesy

Definícia, momenty, ACF, PACF, invertovateľnosť

 \triangleright Nech u_t je biely šum, potom

$$x_t = \mu + u_t - \beta_1 u_{t-1} - \beta_2 u_{t-2} - \dots - \beta_q u_{t-q}$$

sa nazýva moving average proces rádu q - MA(q)

- Woldova reprezentácia: $x_t = \mu + \sum_{j=0}^{\infty} \psi_j u_{t-j}$, pre MA(q) proces: $\psi_0 = 1, \psi_1 = -\beta_1, \dots, \psi_q = -\beta_q \psi_j = 0$ pre $j > q \rightarrow$ vždy je stacionárny
- ► Momenty a ACF:

$$\mathbb{E}(x_t) = \mu, \mathbb{D}(x_t) = (1 + \beta_1^2 + \dots \beta_q^2)\sigma^2$$

$$Cov(x_t, x_{t+k}) = 0 \text{ pre } k = q+1, q+2, \dots$$

$$Cor(x_t, x_{t+k}) = 0 \text{ pre } k = q+1, q+2, \dots$$

► Výpočet prvých *q* autokorelácií:

$$Cov(x_t, x_{t+k}) = \mathbb{E}[(u_t - \beta_1 u_{t-1} - \dots - \beta_q u_{t-q}) \times (u_{t+k} - \beta_1 u_{t+k-1} - \dots - \beta_q u_{t+k-q})]$$

Postupne dostaneme

$$k = 1 \Rightarrow \gamma(1) = (-\beta_1 + \beta_1 \beta_2 + \dots + \beta_{q-1} \beta_q) \sigma^2$$

$$k = 2 \Rightarrow \gamma(2) = (-\beta_2 + \beta_1 \beta_3 + \dots + \beta_{q-2} \beta_q) \sigma^2$$

$$\dots$$

$$k = q \Rightarrow \gamma(q) = (-\beta_q) \sigma^2$$

- Pre konkrétny model je praktickejšie počítať to priamo, namiesto dosadzovania do týchto vzťahov (tie sú užitočné kvôli postupu)
- ► ACF: autokovariancie vydelíme disperziou
- ► PACF: ACF dosadzujeme do všeobecného vzorca

```
Moving average modely (kĺzavé priemery)

☐ MA(q) procesy
```

Cvičenie

Uvažujme proces $x_t = 10 + u_t + 0.5u_{t-1} - 0.2u_{t-2} + 0.1u_{t-3}$

- Ukážte, že je invertovateľný.
- Vypočítajte jeho ACF
- Vypočítajte prvé tri hodnoty jeho PACF

Na kontrolu:

```
ARMAacf(ma=c(0.5,-0.2,0.1), lag.max = 4)[-1] # vynechame a
```

```
## 1 2 3 4
## 0.29230769 -0.11538462 0.07692308 0.00000000
```

ARMAacf(ma=c(0.5,-0.2,0.1), lag.max = 3, pacf = TRUE)

```
## [1] 0.2923077 -0.2195911 0.2093677
```

Moving average modely (kĺzavé priemery)

Reálne dáta: výmenné kurzy

Reálne dáta: výmenné kurzy

```
Moving average modely (kĺzavé priemery)

Reálne dáta: výmenné kurzy
```

head(dataVsetky)

- Dáta: výmenné kurzy voči euru, zo stránky Európskej centrálnej banky
- Z týchto dát zoberieme hodnoty pre Nový Zéland (novozélandský dolár, NZD) z rokov 2021 a 2022.

https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.htm

dataVsetky <- read.csv("data/eurofxref-hist.csv")</pre>

```
## Date USD JPY BGN CYP CZK DKK EEK
```

- ## 1 2023-09-05 1.0731 158.20 1.9558 N/A 24.161 7.4533 N/A ## 2 2023-09-04 1.0801 158.11 1.9558 N/A 24.108 7.4527 N/A
- ## 3 2023-09-01 1.0844 157.47 1.9558 N/A 24.118 7.4528 N/A ## 4 2023-08-31 1.0868 158.49 1.9558 N/A 24.072 7.4523 N/A
- ## 5 2023-08-30 1.0886 159.15 1.9558 N/A 24.107 7.4531 N/A ## 6 2023-08-29 1.0803 158.93 1.9558 N/A 24.163 7.4529

Moving average modely (kĺzavé priemery)

Reálne dáta: výmenné kurzy

 Vektor s týmito hodnotami dataNZD je pripravený vo workfile MAprednaska.Rdata

```
load("MAprednaska.Rdata")
plot(dataNZD, type = "1") # x-ova os len cislo pozorovania
```


Opačné poradie riadkov v data frame:

Často sa stretneme s tým, že najnovšie pozorovania sú na začiatku a najstaršie na konci:

```
head(dataVsetky$Date)
```

```
## [1] "2023-09-05" "2023-09-04" "2023-09-01" "2023-08-31"
## [6] "2023-08-29"
```

Jednoduchý postup, ako ich otočiť:

```
dataVsetkyUsporiadane <- dataVsetky[nrow(dataVsetky):1, ]
head(dataVsetkyUsporiadane$Date)</pre>
```

```
## [1] "1999-01-04" "1999-01-05" "1999-01-06" "1999-01-07"
## [6] "1999-01-11"
```

 Budeme pracovať znovu s diferenciami logaritmov, teda modelujeme percentuálne zmeny

acf1(diff(log(dataNZD)))

Odhadneme MA(3) a pozrieme si Ljung-Boxov test pre rezíduá:

ma3 <- sarima(diff(log(dataNZD)), 0, 0, 3, details = FALSE

Predikcie - znovu si všimnime, že nie sú konštantné

sarima.for(diff(log(dataNZD)), 20, 0, 0, 3)

Moving average modely (kĺzavé priemery)

Nepovinné dodatky

Nepovinné dodatky

Načítanie dát zo zip archívu

Dáta sa zo stránky centrálnej banky stiahnu ako zip archív, v ktorom je csv súbor:

```
unzip("data/eurofxref-hist.zip", list = TRUE)
```

```
## Name Length Date
## 1 eurofxref-hist.csv 1713117 2023-09-05 15:55:00
```

► So zip archívom sa dá v R pracovať aj priamo:

```
# rounaky data frame ako dataVsetky
dataVsetky2 <- read.csv(unzip("data/eurofxref-hist.zip"))</pre>
```

```
Moving average modely (kĺzavé priemery)

Nepovinné dodatky
```

[1] "Date"

Dátumy v R

```
class(dataVsetky$Date)
## [1] "character"
datum <- "2022-01-01"
class(datum)
## [1] "character"
datum <- as.Date(datum, format = "%Y-%m-%d")
class(datum)
```

```
Moving average modely (kĺzavé priemery)

Nepovinné dodatky
```

Na ukážku (jazyk sa dá zmeniť pomocou Sys.setlocale):

```
format(datum, format = "%b %y")

## [1] "Jan 22"

format(datum, format = "%B %Y")

## [1] "January 2022"
```

- Existujú aj iné možnosti práce s dátumami a časovými radmi, napr. tu sa nedá použiť typ ts - roky nemajú rovnaký počet dní, nedá sa zadať frequency
- Balíky: zoo (Z's Ordered Observations) xts (eXtensible Time Series)

```
Moving average modely (kĺzavé priemery)

Nepovinné dodatky
```

Takto môžeme z data framu s dátumami spraviť krajší graf:

```
load("MAprednaskaSDATUMOM.Rdata")
str(dataNZDsdatumom)
```

```
## 'data.frame': 515 obs. of 2 variables:
## $ Date: Date, format: "2021-01-04" "2021-01-05" ...
## $ NZD : num   1.71 1.7 1.69 1.69 1.69 ...
```


January 21 March 21 June 21 August 21 November 21 February 22 May 22 July 22 October 22

Date

```
Moving average modely (kĺzavé priemery)
Nepovinné dodatky
```

Hľadanie riadkov s dátumom v danom roku

```
Užitočná je tu funkcia grep
```

```
# v ktorych retazcoch sa nachadza "ok"
```

```
## [1] 1 3
```

Vyvorme si dátumy (ďalšia užitočná funkcia je outer):

```
datumy <- outer(month.abb, 2020:2023, paste)</pre>
head(datumy)
```

```
## [,1] [,2] [,3] [,4]
## [1,] "Jan 2020" "Jan 2021" "Jan 2022" "Jan 2023"
  [2.] "Feb 2020" "Feb 2021" "Feb 2022" "Feb 2023"
```

[3.] "Mar 2020" "Mar 2021" "Mar 2022" "Mar 2023"

46 / 50

grep(pattern = "ok", x = c("pondelok", "streda", "piatok"))

```
head(c(datumy))
## [1] "Jan 2020" "Feb 2020" "Mar 2020" "Apr 2020" "May 202
datumy <- c(datumy)</pre>
head(datumy, 30)
## [1] "Jan 2020" "Feb 2020" "Mar 2020" "Apr 2020" "May 20
## [7] "Jul 2020" "Aug 2020" "Sep 2020" "Oct 2020" "Nov 20
## [13] "Jan 2021" "Feb 2021" "Mar 2021" "Apr 2021" "May 20
## [19] "Jul 2021" "Aug 2021" "Sep 2021" "Oct 2021" "Nov 20
## [25] "Jan 2022" "Feb 2022" "Mar 2022" "Apr 2022" "May 20
```

```
## [1] 1 13 25 37
```

grep(pattern = "Jan", x = datumy)

```
grep(pattern = as.character("2020"), x = datumy)
##
   [1] 1 2 3 4 5 6 7 8 9 10 11 12
# dva roky -> vystup bude list (vektor pre kazdy rok)
# -> preto `lapply`
lapply(2021:2022,
      function(rok) grep(pattern = as.character(rok),
                         x = datumy)
## [[1]]
## [1] 13 14 15 16 17 18 19 20 21 22 23 24
##
## [[2]]
    [1] 25 26 27 28 29 30 31 32 33 34 35 36
##
```

```
# spravime vektor
vyberList <- lapply(2021:2022,</pre>
                     function(rok) grep(pattern = as.charac
                                         x = datumy)
vyberVektor <- unlist(vyberList)</pre>
vyberVektor
##
    [1] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
head(vyberVektor)
## [1] 13 14 15 16 17 18
tail(vyberVektor)
## [1] 31 32 33 34 35 36
```

Moving average modely (kĺzavé priemery)

Nepovinné dodatky

- Takto sa z dát dataVsetky dajú vybrať hodnoty zo zvoleného obdobia
- Zmena zvoleného obdobia je len prepísanie hľadaného vektora môže to byť parameter funkcie, čím sa z výberu dát podľa štátu a obdobia stane jedno zavolanie funkcie