PROTOTYPAGE AVEC ARDUINO

Faire participer, Co-construire avec les usagers

EDVIEWAL

Formateur: SANOU Alexandre

Du 6 au 9 Avril

CONTENU DE LA FORMATION

- Rappel sur les fonctions de bases d'Arduino
- Les étapes du prototypage
- Réalisation de trois prototypes

Microcontrôleur

Un mini ordinateur:

- Processeur
- Mémoires
- E / S
- Intégration et la vitesse fonctionnement

ARDUINO

Interface

IDE:

- Langage: C, C++
- Bibliothèques
- \blacksquare Port

Composants

Elect ou Eectr:

- \bullet OUTPUT
- INPUT

PROTOTYPAGE?

Wakatlab ÉTAPES DU PROTOTYPAGE

Idée

Implémentation de l'idée

Design et la maquette

IDÉE

- Fonctionnalités de mon prototype
- Fonctions réalisées

IMPLÉMENTATION DE L'IDÉE

Hardware

- Microcontrôleur adapté
- Composants: fonctions
- Alimentation

Software

- IDE Arduino
- Programmer les fonctions

LE DISIGN ET LA MAQUETTE

- Physique§ design
- Fonctionnel
- Revoirl'implémentation

UNE BOÎTE DE JEU DE LUMIÈRE

- Fonctionnalité : jeu de lumière
- Fonctions: Allumer, éteindre, clignoter

MATÉRIELS NÉCESSAIRES

- Un Arduino Méga
- 30 leds (6*par couleur)
- 30 tubes en verre
- 30 résistances (optionnel)
- Papier cartonné

HARDWARE

L e d

Résistance

SOFTWARE

- \blacksquare Led: OUTPUT
- Digitalwrite (HIGH, LOW)
- Delay(1000)

DESIGN + MAQUETTE

PRATIQUE!

Montage

Algorithme + Programmation

FEU TRICOLORE

- Fonctionnalité: Régulation de la circulation
- Fonctions: Allumer, Éteindre, Clignoter

MATÉRIELS NÉCESSAIRES

- Un Arduino Uno
- 12 leds (3*par couleur)
- 12 résistances (optionnel)
- Papier cartonné

HARDWARE

L e d

Résistance

SOFTWARE

- \blacksquare Led: OUTPUT
- Digitalwrite (HIGH, LOW)
- Delay(1000)

DESIGN + MAQUETTE

PRATIQUE!

Montage

Algorithme + Programmation

ÉCLAIRAGE AUTOMATIQUE ET ALARME ANTI FEU DANS UN ENTREPÔT

- Fonctionnalité : éclairage et alarme
- Fonctions: Allumer
 Éteindre, alarme

MATÉRIELS NÉCESSAIRES

- Un Arduino Uno
- 4 Ampoules, 4 douilles, rallonge, fils électriques (leds)
- 4 relais
- 2 capteurs de mouvement
- 1 capteur de son
- 1 récepteur infrarouge, un émetteur infrarouge
- 1 capteur de flamme
- Buzzer

HARDWARE

Arduino Uno

Ampoule led

Relay

PIR

Sound Sensor

HARDWARE

IR receiver

IR emiiter

Flame Sensor

Buzzer

SOFTWARE

- PIR, Sound Sensor, IR Receiver:
 INPUT
- Relay, Buzzer: OUTPUT
- Flame: Analog INPUT
- Digitalwrite (HIGH, LOW)
- DigitalRead (0,1)
- AnalogoRead(value)
- Delay(1000)

DESIGN + MAQUETTE

PRATIQUE!

Montage

Algorithme + Programmation