Unit 11

Latches and Flip-Flops

Logic Circuits (Spring 2022)

"Memory" Devices

- Sequential switching circuits
 - The output depends not only on the present input but also on the past sequence of inputs
 - The circuits must be able to "remember" something about the past history of the inputs in order to produce the present output
- *Latches* and *flip-flops*
 - Commonly used memory devices in sequential circuits
 - Assume one of two stable output states
 - Have one or more inputs that can cause the output state to change

11.1 Introduction 논리회로 11-2

Latch vs. Flip-Flop

- Latch
 - A memory element that has no clock input
 - Each latch works *independently* with respect to timing
- Flip-flop
 - A memory element that has a clock input
 - The operation of all flip-flops are *synchronized* by a common clock or pulse generator
 - The flip-flops can only change output in response to a clock input, not data inputs
- Synchronous circuits
 - The changes in the state of memory devices are synchronized by a clock signal
 - Nearly all digital circuits are fully synchronous

cf. Asynchronous circuits

11.1 Introduction 논리회로 11-3

Feedback

- The output of one of the gates is connected back into the input of another gate in the circuit so as to form a closed loop
- A feedback loop with an inverter

A feedback loop with two inverters

11.1 Introduction 논리회로 11-4

S-R Latch (Set-Reset Latch)

A feedback loop with two NORs

- Initially, P=1, Q=0
- S = 0, R = 0
 - The circuit remains stable with P=1 and Q=0
- S=1, R=0
 - P will become 0, and then Q will become 1
- \blacksquare S=0, R=0 (S is changed back to 0)
 - The circuit will not change the state

11.2 Set-Reset Latch 논리회로 11-5

S-R Latch (Set-Reset Latch)

• Now P = 0, Q = 1

- S=0, R=0
 - The circuit remains stable with P=0 and Q=1
- S = 0, R = 1
 - Q will become 0, and then P will become 1
- S=0, R=0 (R is changed back to 0)
 - The circuit will not change the state
- Characteristics of S-R latch
 - The output depends not only on the present inputs, but also on the past sequence of inputs
 - P and Q are always complements $\Rightarrow P = Q'$

11.2 Set-Reset Latch 논리회로 11-6

S-R Latch (Set-Reset Latch)

■ Cross-coupled form of S-R latch

■ Timing diagram

11.2 Set-Reset Latch 논리회로 11-7

S-R Latch (Set-Reset Latch)

- \blacksquare R = S = 1 is not allowed
 - Both *P* and *Q* are all 0's \Rightarrow *P* ≠ *Q*'
 - If both inputs change 1 to 0 simultaneously, the latch may continue to oscillate

11.2 Set-Reset Latch 논리회로 11-8

S-R Latch (Set-Reset Latch)

- \blacksquare *Present state Q(t)*
 - The state of the Q output at the time any input signal changes
- *Next state Q*($t+\varepsilon$) (or Q(t+1))
 - The state of the Q output after the latch or flip-flop has reached to the input change and stabilized
- *Next-state equation*

Present	Next State Q ⁺				
State	SR	SR	SR	SR	
Q	00	01	11	10	
0	0	0	0	1	
1	1	0	0	1	

$$Q(t + \varepsilon) = R(t)'[S(t) + Q(t)]$$

$$= R(t)'S(t) + R(t)'Q(t)$$

$$Q^{+} = R'S + R'Q$$

The stable states are circled

11.2 Set-Reset Latch 논리회로 11-9

S-R Latch (Set-Reset Latch)

- *Characteristic equation*
 - Takes into account any disallowed input equation (S=R=1)
 - Not necessarily the same as the next-state equation

Present	Next State Q ⁺				
State	SR	SR	SR	SR	
Q	00	01	11	10	
0	0	0	X	1	
1	1	0	X	1	

11.2 Set-Reset Latch 논리회로 11-10

$\overline{\mathsf{S}}\text{-}\overline{\mathsf{R}}$ Latch using NAND Gates

- Alternative form of S-R Latch
 - Uses NAND gates
- Circuit representation

 - Set Q to 1 when $\overline{S} = 0$ Reset Q to 0 when $\overline{R} = 0$

Symbol representation

11.2 Set-Reset Latch

논리회로 11-11

S-R Latch using NAND Gates

■ Truth table representation

5	R	Q	Q ⁺
1	1	0	0
1	1	1	1
1	0	0	0
1	0	1	0
0	1	0	1
0	1	1	1
0	0	0	-) Inputs not
0	0	1	- Inputs not - allowed

11.2 Set-Reset Latch

Gated S-R Latches

- *Gate* or *enable* input
 - Gated latches have an additional input called the gate or enable input
 - When the gate input is inactive, the state of the latch cannot change
 - When the gate input is active, the latch operates in an ordinary way
- NAND-gate gated S-R latch

11.3 Gated Latches 논리회로 11-13

Gated S-R Latches

Next state table

				Next St	ate Q+			
Present		G	= 0			G	= 1	
State	SR	SR	SR	SR	SR	SR	SR	SR
Q	00	01	11	10	00	01	11	10
0	0	0	0	0	0	0	1	1
1	1	1	1	1	1	0	1	1

■ Next-state equation

$$Q^+ = SG + Q(R' + G')$$

11.3 Gated Latches 논리회로 11-14

Gated D Latch

- Transparent latch
 - -Q becomes equal to D while G is active

Timing diagram

11.3 Gated Latches 논리회로 11-15

Gated D Latch

■ Next-state equation / Characteristic equation

GDQ	Q ⁺
0 0 0	0
0 0 1	1
0 1 0	0
0 1 1	1
1 0 0	0
1 0 1	0
1 1 0	1
1 1 1	1

 $Q^+ = G'Q + GD$

11.3 Gated Latches 논리회로 11-16

)

Problems with the Latches

■ Example circuit

- The output changes any time
- The latch takes its input any time

11.3 Gated Latches 논리회로 11-17

Flip-Flops

- Flip-flop
 - The **outputs** only change on a clock edge
- *Edge-triggered flip-flop*
 - The flip-flop take **inputs** on a clock edge
 - The inputs to the flip-flop only need to be stable for a short period of time around the clock edge
- *Master-slave flip-flop*
 - The flip-flop takes **inputs** during the clock period

11.3 Gated Latches 논리회로 11-18

Rising Edge-Triggered D Flip-Flop

- The output can change on a <u>0 to 1 transition</u> on the clock input
- Construction from two gated D latches

Q' Q
FF
Ck
D

Timing diagram

Rising edge-triggered = positive edge-triggered

11.4 Edge-Triggered D Flip-Flop

논리회로 11-19

Falling Edge-Triggered D Flip-Flop

- The output can change on a 1 to 0 transition on the clock input
- Truth table representation

DQ	Q^+
0 0	0
0 1	0
1 0	1
1 1	1

Characteristic equation

$$Q^+ = D$$

Falling edge-triggered = negative edge-triggered

■ Timing diagram

11.4 Edge-Triggered D Flip-Flop

S-R Flip-Flop

Symbolic representation

Implementation with two latches

Timing diagram

Characteristic equation

$$Q^+ = S + R'Q (SR = 0)$$

11.5 S-R Flip-Flop

논리회로 11-21

J-K Flip-Flop

Symbolic representation

Implementation with two latches

Timing diagram

Characteristic equation

$$Q^{+} = JQ' + K'Q \qquad \begin{array}{c|c} J K Q & Q^{+} \\ \hline 00 & 0 & 0 \\ 00 & 1 & 1 \\ 01 & 0 & 0 \\ 01 & 1 & 0 \\ 10 & 0 & 1 \\ 10 & 1 & 1 \\ 11 & 0 & 1 \\ 11 & 1 & 0 \end{array}$$

11.6 J-K Flip-Flop

논리회로 11-22

)

T Flip-Flop

Symbolic representation

| Q' Q | FF | Ck T | |

Timing diagram

Characteristic equation

$$Q^{+} = T \oplus Q = TQ' + T'Q$$

$$\begin{array}{c|c} TQ & Q^{+} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}$$

11.7 T Flip-Flop 논리회로 11-23

Characteristic Equations (Summary)

- Procedures to find a characteristic equation
 - Make a truth table that gives the next state (Q^+) as a function of the present state (Q) and the inputs. Any illegal input combinations should be treated as don't-cares.
 - Plot a map for Q^+ and read the characteristic equation from the map
- Characteristic equations: Summary

$$Q^{+} = S + R'Q (SR = 0)$$
 (S-R flip-flop)
 $Q^{+} = GD + G'Q$ (gated D latch)
 $Q^{+} = D$ (D flip-flop)
 $Q^{+} = D \cdot CE + Q \cdot CE'$ (D-CE flip-flop)
 $Q^{+} = JQ' + K'Q$ (J-K flip-flop)
 $Q^{+} = T \oplus Q = TQ' + T'Q$ (T flip-flop)

11.10 Summary 논리회로 11-24

Setup and Hold Times

- Timing constraints of a flip-flop
 - A flip-flop changes state only on the active edge of the clock
 - The *D* input to an edge-triggered flip-flop *must* be held at a constant value for a period of time before and after the active edge of the clock

Propagation time (t_n) :

the amount of time from the clock edge to the output change

Setup time (t_{su}) :

the amount of time that D must be stable before the active edge

Hold time (t_h) :

the amount of time that D must hold the same value after the active edge

11.4 Edge-Triggered D Flip-Flop

논리회로 11-25

Minimum Clock Period

- Why minimum clock period?
- Example case
 - Propagation delay of an inverter: 2 ns
 - Propagation delay of a flip-flop: 5 ns
 - Setup time of a flip-flop: 3 ns

Setup time not satisfied

Setup time satisfied

Minimum clock period = 10 ns

11.4 Edge-Triggered D Flip-Flop

D Flip-Flop with Clock Enable

- How to hold existing data with changing data inputs
 - Even though the data input to the flip-flop may be changing, we want some flip-flops to hold existing data
- One solution

- Two potential problems with the above solution
 - Gate delay may cause the clock to arrive at different times
 - The flip-flop may trigger due to the change in En instead of the clock

11.8 Flip-Flops with Additional Inputs

논리회로 11-27

D Flip-Flop with Clock Enable

Symbolic representation

■ Implementation using a MUX

Characteristic equation

$$Q^+ = D = Q{\cdot}CE' + D_{\mathsf{in}}{\cdot}CE$$

11.8 Flip-Flops with Additional Inputs

D Flip-Flop with Clear and Preset

- Additional inputs
 - Can be used to set the flip-flops to an initial state independent of the clock
 - Asynchronous Clear (ClrN)
 - Asynchronous Preset (PreN)
- Symbolic representation

Ck	D	PreN	ClrN	Q^+
X	Х	0	0	(not allowed)
X	X	0	1	1
X	X	1	0	0
1	0	1	1	0
1	1	1	1	1
0,1,↓	X	1	1	Q (no change)

11.8 Flip-Flops with Additional Inputs

논리회로 11-29

D Flip-Flop with Clear and Preset

■ Timing diagram

11.8 Flip-Flops with Additional Inputs