08.07.2008

<u>Zugelassene Hilfsmittel:</u> Vorlesungsaufzeichnungen, Skript, Arbeitsblätter, Fachbücher, mathematische Formelsammlung, Taschenrechner

Nicht zugelassene Hilfsmittel: Handy, Laptop, Notebook!

<u>Achtung:</u> Es werden nur die Lösungen anerkannt, deren Lösungswege eindeutig erkennbar und nachvollziehbar sind.

Aufgabe 1:

Mit Hilfe eines Impulsfahrplanes sind Start- und Refexionsamplituden an den Enden einer Leitungsverbindung (200 Ω – Leitung, Signallaufzeit τ = 7ns) zwischen 2 TTL-Gattern zu bestimmen. Für den verwendeten Sendebaustein wird angegeben: U_{QL} = 0,2V, U_{QH} = 4,4V, R_{QH} = 30 Ω . Der Empfängerbaustein besitzt einen Eingangswiderstand von 4k Ω .

Entwickeln Sie einen Impulsfahrplan für einen $L \to H$ Sprung der Quelle. Zeichnen Sie den Spannungsverlauf am Anfang und Ende der Leitung als Funktion der Zeit im Bereich von 0... 42π

Aufgabe 2:

Eine Messreihe liefert für einen 3-Bit-DAU die folgenden Werte (UFS = 10V):

\mathbf{x}_{D}	0	1	2	3	4	5	6	7
U _A [V]	-0,1	1,35	2,85	3,65	5,4	6,55	7.25	9.0

- a) Korrigieren Sie zunächst mit einer einfachen Endpunkt-Abgleich den Offset- und Verstärkungsfehler (Angaben in LSB).
- b) Ermitteln Sie anschließend den verbleibenden differentiellen und integralen Linearitätsfehler DNL und INL (Angaben in LSB).

Aufgabe 3:

Am Eingang der hier abgebildeten Schaltung (Versorgungsspannung $U_B = 5V$) wird ein Pulsgenerator angeschlossen, der eine Rechteckspannung mit $U_L = 0V$, $U_H = 5V$, f = 100 Hz und $v_T = 0,999$ erzeugt.

- a) Für das Gatter und die Inverter werden ideale CMOS-Bausteine mit $U_{QL} = 0V$, $U_{QH} = 5V$ und $U_S = \frac{1}{2}U_B$ eingesetzt (die Eingangsschutzschaltungen dürfen vernachlässigt werden). Skizzieren Sie die Verläufe der Spannungen E(t), x(t), y(t) und Q(t) für C = 2,2 µF.
- b) Berechnen Sie die Impulsdauer T_d der Ausgangsspannung Q(t) als Funktion der verwendeten Kapazität C.

Aufgabe 4:

Analysieren Sie die folgende Gatterschaltung:

- a) Aus welchen Funktionsgruppen besteht die Schaltung?
- b) Stellen Sie eine Arbeitstabelle auf. Welche Verknüpfung realisiert die Schaltung?

Augabe 1

*
$$te = \frac{R_E - 2C}{R_E + 2C} = \frac{4 ka - 200a}{4 ka + 200a} = 0,305$$

Anjalse &

19-1739

a)		1		1	1				
	a _n	O	1	2	3	4	5	6	7
	U EV3	-0,1	1,35	2,85	3,65	5,4	6,55	7,28	9,0
	21 A, Ideal [V]	0	1,25	2,5	3,75	5	6,25	7,5	8,75
dua	NUA	-0, B	0,1	0,35	-0,1	0,4	0,3	-0,25	0,25
	L'Alasleich	0	1,4	2.85	3,6	5,3			
	DRJ = Uas - Uaideal	0	0,115	0,35	.0,15	0,3.	0,15	-0,45	0
S- <u>-</u>	DU' - D' WAL	0	0,15	0,2	-0,5	0,45	-0,15	-0,6	0,45

Cabshed = UA - Loft - (Usain - Moft). 2

(p)

Aufgabe 3

UB=SV, UL=OV, UH-SV, &= 100Hz

167 2739

Aufgabe 4

(a) Die Scheltung besteht aus 4 CMOS IN Kederschaltungen

die Von der Mos Paaren (N,+N2), (N4+N8), (N2+N5); (N3+N6)

(2)

und 2

PMOS 4-7 Spended

(b)

En	EL	N.A.	Α.Ξ	N4	N	Nz	N ₅	N 3	N.6	Ø,
0	0	Ε	A	E	A	E	Α	A	<u>E</u> 1	B
0	1	E	Α ο	A	E	E	Ą		A	ł
1	O	А	€1	E	A	E	٨	Ę	A	<u>1</u>
1	1	A (EM	Α	E	A	E	5	A	<u>م</u>
•		1		' (§	b) !		1		ا ا	

E = lingachaltet A = cusseschaltet

6 / FA 0 / A Ea 1 0 E-2

