2.2.4.
$$X_1 = \frac{1}{2}$$
 $X_{n+1} = X_n^2$
 $X_n > 0$ for all n
Base case: $x_1 = \frac{1}{2} > 0$
Suppose $X_n > 0$; $X_{n+1} = X_n^2$
 $X_n = \frac{1}{2^n}$, $\lim_{n \to \infty} X_n = 0$

2.2.8.
$$\lim_{n\to\infty} \frac{n^2}{2^n} = 0$$

 $\lim_{n\to\infty} \frac{|(n+1)^2/2^{n+1}|}{|n\to\infty|} = \lim_{n\to\infty} \frac{|(n^2+2n+1)|}{|2^{n+1}|} \cdot \frac{2^n}{|n^2|}$
 $= \lim_{n\to\infty} \frac{|n^2+2n+1|}{|2^n|} = \lim_{n\to\infty} \frac{1}{2} + \frac{2}{n} + \frac{1}{n^2} = \frac{1}{2}$

b.
$$\{a_n\} = \{n^2\}$$
, $\{b_n\} = \{\frac{1}{n}\}$
 $\{a_nb_n\} = \{n\}$ not convergent
c. $\{a_n\} = \{sin(n)\}$ $\{b_n\} = \{l\}$
 $\{a_nb_n\} = \{sih(n)\}$

2.2.16, { (n!) 1/n }

$$\lim_{n\to\infty} \frac{\left| C^{n+1}(n+1)! \right|}{\left| C^{n}(n)! \right|} = \lim_{n\to\infty} \frac{\left| C^{n}(n+1)! \right|}{\left| C^{n}(n+1)! \right|} = 0$$

$$\lim_{n\to\infty} \frac{\left| C^{n}(n+1)! \right|}{\left| C^{n}(n+1)! \right|} = 0 \quad \text{which means } (n < < n!)$$

$$\lim_{n\to\infty} \frac{\left| C^{n}(n+1)! \right|}{\left| C^{n}(n+1)! \right|} = 0$$

$$\lim_{n\to\infty} \frac{\left| C^{n}(n+$$

2.3. 1.
$$\{x_n\}$$
 B bounded

 $\{a_n\}:=\sup\{x_k:k\geq n\}$
 $\{b_n\}:=\inf\{x_k:k\geq n\}$

an and by are the bounds

- 2.3.2. {\(\text{Xn} \) is bounded

 {\(\text{Shn} \) is inf {\(\text{Xk} : \text{kzn} \)}

 but is the least long bound for {\(\text{Xk} : \text{kzn} \)] so it

 is also the long bound for {\(\text{Xk} : \text{kzn} \)]. Therefore,

 but has to be greater or equal to bu.
- 2.3, 9. If S is infinite, then S contains a countably infinite subset, and there is a subsequence S_k that converges according to the Bolzano-Weierstrauss Theorem.

Since Sk converges there has to be at least one cluster point at the infimum or supremum because the points keep getting closes to a point X.

- 2.3.11. a. 3 xn3 is bounded by x since every subsequence has a subsequence that converges to x.
 - b, Since every subsequence of Xni converges, let there be a subsequence starting at X2. \$Xn+13 converges to X so \$Xn3 also converges to X.