Data Science Job analysis

August 17, 2023

DATASET LINK: https://www.kaggle.com/datasets/niyalthakkar/data-science-jobs-analysis

```
[1]: # Write this command on top to autocomplete text , it improves working speed %config Completer.use_jedi = False
```

1 IMPORT LIBRARIES

```
[2]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
[3]: df = pd.read_csv("ds.salaries.csv")
```

	df.head()		
[3]:	Unnamed: 0	<pre>work_year experience_level employment_type \</pre>	

[9]:	omnamed: o	work_year	exberrence_rever	emproyment_type
0	0	2020	MI	FT
1	1	2020	SE	FT
2	2	2020	SE	FT
3	3	2020	MI	FT
4	4	2020	SE	FT

	job_title	salary	salary_currency	salary_in_usd	\
0	Data Scientist	70000	EUR	79833	
1	Machine Learning Scientist	260000	USD	260000	
2	Big Data Engineer	85000	GBP	109024	
3	Product Data Analyst	20000	USD	20000	
4	Machine Learning Engineer	150000	USD	150000	

	employee_residence	remote_ratio	company_location	company_size
0	DE	0	DE	L
1	JP	0	JP	S
2	GB	50	GB	М
3	HN	0	HN	S
4	US	50	US	L

2 IDENTIFYING MISSING AND DUPLICATE VALUES

```
[4]: df.isnull().sum()
[4]: Unnamed: 0
                           0
                           0
     work_year
     experience_level
                           0
     employment_type
                           0
     job_title
                           0
                           0
     salary
     salary_currency
                           0
     salary_in_usd
                           0
     employee_residence
                           0
     remote_ratio
                           0
     company_location
                           0
     company_size
                           0
     dtype: int64
[5]: df.duplicated().sum()
[5]: 0
        FEATURE SELECTION
[6]: df.drop(columns = ['Unnamed:
      ⊖0', 'salary', 'salary_currency', 'employee_residence', 'company_size'], inplace
      →= True)
[7]: df.head()
[7]:
        work_year experience_level employment_type
                                                                       job_title \
             2020
                                                                  Data Scientist
     0
                                MΙ
             2020
                                SE
                                                     Machine Learning Scientist
     1
                                                 FΤ
     2
             2020
                                SE
                                                 FT
                                                               Big Data Engineer
     3
             2020
                                ΜI
                                                 FT
                                                           Product Data Analyst
     4
             2020
                                SE
                                                 FT
                                                      Machine Learning Engineer
        salary_in_usd remote_ratio company_location
                79833
     0
               260000
                                  0
                                                   JΡ
     1
     2
               109024
                                  50
                                                   GB
     3
                20000
                                  0
                                                   HN
     4
               150000
                                  50
                                                   US
```

4 DATA UNDERSTANDING

```
[8]: df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 607 entries, 0 to 606
     Data columns (total 7 columns):
          Column
                             Non-Null Count
                                             Dtype
      0
          work_year
                             607 non-null
                                              int64
      1
          experience_level 607 non-null
                                             object
      2
          employment_type
                             607 non-null
                                             object
      3
          job_title
                             607 non-null
                                             object
      4
          salary_in_usd
                             607 non-null
                                              int64
          remote_ratio
                             607 non-null
                                              int64
          company_location
                             607 non-null
                                             object
     dtypes: int64(3), object(4)
     memory usage: 33.3+ KB
 [9]: df.describe()
 [9]:
               work_year
                          salary_in_usd remote_ratio
      count
              607.000000
                              607.000000
                                             607.00000
             2021.405272
                          112297.869852
      mean
                                              70.92257
      std
                0.692133
                           70957.259411
                                              40.70913
     min
             2020.000000
                             2859.000000
                                               0.00000
      25%
             2021.000000
                           62726.000000
                                              50.00000
      50%
             2022.000000
                          101570.000000
                                             100.00000
      75%
             2022.000000
                          150000.000000
                                             100.00000
             2022.000000
                          600000.000000
                                             100.00000
      max
          Observation based on above figure:
     4.1.1 1) min salary is 2859 USD
     4.1.2 2) avg salary is 1,12,297 USD
     4.1.3 3) max salary is 6,00,000 USD
[10]: # CATEGORICAL VARIABLE UNDERSTANDING
      df['experience_level'].value_counts()
[10]: SE
            280
     ΜI
            213
      EN
             88
      ΕX
             26
      Name: experience_level, dtype: int64
[11]: df['employment_type'].value_counts()
```

```
[11]: FT
            588
     РΤ
             10
      СТ
              5
     FL
              4
      Name: employment_type, dtype: int64
[12]: # FULL FORM OF ABBREVIATIONS
            'SE': 'Senior',
      #
            'MI': 'Mid',
            'EN': 'Entry',
      #
            'EX': 'Executive'
      #
            'FT': 'Full-time',
            'PT': 'Part-time',
      #
      #
            'CT': 'Contract',
      #
            'FL': 'Freelance
[13]: df['remote_ratio'].value_counts()
[13]: 100
             381
      0
             127
              99
      50
      Name: remote ratio, dtype: int64
        PREPROCESSING
[14]: # TRANSFORMING ABBREVIATIONS INTO FULL FORM FOR BETTER UNDERSTANDING
      df['employment_type'] = df['employment_type'].map({"FT":"Full Time","PT":"Part_
       →Time","CT":"Contract","FL":"Freelance"})
      df['experience_level'] = df['experience_level'].map({"SE":"Senior","MI":
       ⇔"Mid","EN":"Entry","EX":"Executive"})
      # CONVERTING REMOTE RATIO VALUES INTO WORK TYPE NAMES LIKE : REMOTE, HYBRID AND
       ⇔ONSITE
      df['remote ratio'] = df['remote ratio'].map({100:"Remote",0:"Onsite",50:

¬"Hybrid"})
[15]: df.head()
[15]:
         work_year experience_level employment_type
                                                                       job_title \
      0
              2020
                                Mid
                                          Full Time
                                                                  Data Scientist
      1
              2020
                             Senior
                                          Full Time
                                                     Machine Learning Scientist
              2020
                                          Full Time
                                                               Big Data Engineer
                             Senior
      3
              2020
                                Mid
                                          Full Time
                                                            Product Data Analyst
              2020
                                          Full Time
                             Senior
                                                      Machine Learning Engineer
```

```
1
                                                  JΡ
                260000
                             Onsite
      2
                109024
                             Hybrid
                                                  GB
      3
                 20000
                             Onsite
                                                  HN
      4
                150000
                             Hybrid
                                                  US
[16]: # NOW LETS CONVERT THE LOCATIONS CODE INTO FULL NAME
      # INSTALL CONVERTER FOR THIS TASK
      ! pip install country_converter
     Requirement already satisfied: country_converter in c:\users\asus vivobook
     14\anaconda3\lib\site-packages (1.0.0)
     Requirement already satisfied: pandas>=1.0 in c:\users\asus vivobook
     14\anaconda3\lib\site-packages (from country_converter) (1.4.2)
     Requirement already satisfied: pytz>=2020.1 in c:\users\asus vivobook
     14\anaconda3\lib\site-packages (from pandas>=1.0->country_converter) (2021.3)
     Requirement already satisfied: numpy>=1.18.5 in c:\users\asus vivobook
     14\anaconda3\lib\site-packages (from pandas>=1.0->country_converter) (1.21.5)
     Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\asus vivobook
     14\anaconda3\lib\site-packages (from pandas>=1.0->country_converter) (2.8.2)
     Requirement already satisfied: six>=1.5 in c:\users\asus vivobook
     14\anaconda3\lib\site-packages (from python-
     dateutil>=2.8.1->pandas>=1.0->country_converter) (1.16.0)
[17]: import country_converter as coco
[18]: # NOTE: IT AUTOMATICALLY DETECTS CODE AND CONVERT INTO FULL NAME OF COUNTRIES
      df['company_location'] = coco.convert(df['company_location'], to =__
       [19]: df.head()
[19]:
                                                                      job_title \
        work_year experience_level employment_type
                                                                 Data Scientist
              2020
                                Mid
                                          Full Time
      0
      1
              2020
                             Senior
                                          Full Time
                                                     Machine Learning Scientist
      2
             2020
                             Senior
                                          Full Time
                                                              Big Data Engineer
      3
              2020
                                Mid
                                          Full Time
                                                           Product Data Analyst
             2020
                             Senior
                                         Full Time
                                                      Machine Learning Engineer
        salary_in_usd remote_ratio company_location
                79833
                             Onsite
      0
                                             Germany
      1
                260000
                             Onsite
                                               Japan
      2
                109024
                             Hybrid
                                      United Kingdom
      3
                20000
                             Onsite
                                            Honduras
      4
                150000
                             Hybrid
                                       United States
[20]: df.rename(columns={'salary in usd': 'salary'}, inplace=True)
```

DE

0

79833

Onsite

BELOW IS THE FINAL CLEANED DATA

[21]: df.head()

```
[21]:
                                                                        job_title \
         work_year experience_level employment_type
      0
              2020
                                 Mid
                                           Full Time
                                                                   Data Scientist
              2020
      1
                              Senior
                                           Full Time
                                                      Machine Learning Scientist
      2
              2020
                              Senior
                                           Full Time
                                                                Big Data Engineer
      3
              2020
                                 Mid
                                           Full Time
                                                             Product Data Analyst
              2020
                              Senior
                                           Full Time
                                                       Machine Learning Engineer
      4
         salary remote_ratio company_location
      0
          79833
                      Onsite
                                       Germany
        260000
                      Onsite
      1
                                         Japan
      2 109024
                      Hybrid
                                United Kingdom
      3
         20000
                      Onsite
                                      Honduras
        150000
                      Hybrid
                                 United States
```

6 PERFORMING EDA (Exploratory Data Analysis)

```
[22]: # LETS PLOT THE SALARY DISTRIBUTION

sns.distplot(df['salary'],kde=True,color="green",hist_kws={"edgecolor":"black"})
plt.title("Salary Distribution")
plt.xlabel("Salary ($)")
plt.show()
```


- 6.0.1 Obsevation based on above plot:
- 1) There are few people whose salary is greater than 3L US Dollar

7

QUES1: what are top 10 countries offering highest data science job?

QUES 2: what are the top 10 job openings in data science?

```
[23]: # what are top 10 countries offering highest data science job?
      plt.figure(figsize=(25,5))
      plt.subplot(1,2,2)
      top_country_count = df['company_location'].value_counts()[:10]
      sns.barplot(top_country_count,top_country_count.index)
      plt.title("Top 10 countries offering highest Data Science

¬Job",fontdict={"fontsize":16})
      plt.xlabel("Counts
                            (fig.2)",fontdict={"fontsize":16})
      plt.ylabel("Countries",fontdict={"fontsize":16})
      # what are the top 10 job openings in data science?
      plt.subplot(1,2,1)
      top_jobs_count = df['job_title'].value_counts()[:10]
      sns.barplot(top_jobs_count,top_jobs_count.index)
      plt.title("Top 10 job roles requirement in Data Science∟
       →industry",fontdict={"fontsize":16})
      plt.xlabel("counts
                            (fig.1)",fontdict={"fontsize":16})
      plt.ylabel("Job Roles",fontdict={"fontsize":16})
      plt.show()
```


- 7.0.1 Observations based on fig.1
- 1) Data Scientist is top 1st job role offered by data science
- 2) Data Engineer is 2nd top role among all job roles in data science

3) No. of openings in Data Analyst role are less than Data Eengineer

7.0.2 Observations based on fig.2

- 1) US is top 1st country offering highest data science job
- 2) UK is top 2nd country offering data science job
- 3) India is top 5th country offering data science job

QUES3: WHAT ARE THE TOP 10 COUNTRIES PAYING HIGHEST SALARY?

QUES4: WHAT ARE THE TOP 10 JOB ROLES THE HIGHEST AVERAGE SALARY?

```
[24]: # lets group the salary based on country and then find the mean
# arrange all the data in descending order then apply slicing on top 10 values

top_country_salary = df.groupby('company_location')['salary'].agg('mean').

sort_values(ascending = False)[:10]

top_country_salary
```

[24]: company_location

Russia 157500.000000 United States 144055.261972 New Zealand 125000.000000 Israel 119059.000000 Japan 114127.333333 Australia 108042.666667 100000.000000 Iraq United Arab Emirates 100000.000000 Algeria 100000.000000 Canada 99823.733333 Name: salary, dtype: float64

```
plt.figure(figsize=(20,5))
plt.subplot(1,2,2)
sns.barplot(top_country_salary , top_country_salary.index)
plt.title("Top 10 countries paying highest salary",fontdict={"fontsize":16})
plt.xlabel("Salary ($) (fig.4)",fontdict={"fontsize":10})
plt.ylabel("Countries",fontdict={"fontsize":10})

# Top 10 job roles with highest avg salary

plt.subplot(1,2,1)
top_jobtitle_salary = df.groupby('job_title')['salary'].mean().

sort_values(ascending = False)[:10]
```

```
sns.barplot(top_jobtitle_salary, top_jobtitle_salary.index)
plt.title("Top 10 job roles with highest avg salary",fontdict={"fontsize":16})
plt.xlabel("Salary ($) (fig.3)",fontdict={"fontsize":10})
plt.ylabel("Job Roles",fontdict={"fontsize":10})
plt.show()
```


8 Observation based on fig.3

- 1) Data Analytics Lead is the top 1st role with the highest avg salary 4L US Dollar
- 2) Principal Data Engineer, Financial Data Analyst, Principal Data Scientist and Director of Data Science are among top 5 highest avg salary job roles.

9 Observation based on fig.4

- 1) Russia is the top 1st country pays highest avg salary for data science role
- 2) The US, New Zealand, Israel, and Japan are among the top 5 countries with the highest average salaries for data science roles

```
[26]: # Salary based on Experience level

experienceVssalary = df.groupby('experience_level')['salary'].mean().

sort_values(ascending=False)
```

```
[27]: sns.barplot(experienceVssalary,experienceVssalary.index)
   plt.xlabel("Salary",fontdict={"fontsize":10})
   plt.ylabel("Experience Level",fontdict={"fontsize":10})
   plt.title("Salary based on Experience Level",fontdict={"fontsize":16})
   plt.show()
```


QUES: WHICH TYPE OF WORK HAVING THE LARGEST JOB VACCANCIES?

[28]: df['remote_ratio'].value_counts()

[28]: Remote 381 Onsite 127 Hybrid 99

Name: remote_ratio, dtype: int64

10 Observations:

1) The category of remote work has the largest count of job vacancies