Optimized Airline Bookings

Cashin Woo, Dhruv Naheta, and Jordan Leslie

Motivation

- Travel plans can be **disrupted** and **ruined** by delayed and canceled flights
- Delays and cancellations are not only a huge inconvenience to travelers, but costly to airlines
- What if we could predict whether a flight will be canceled or delayed when booking tickets?

Our Dataset

- Kaggle Flight Status Prediction Dataset
- All U.S. domestic flights from 2018-2022
- 61 attributes
 - Airline, location, time, delay measurements
- 29.19 million samples
- Original plan
 - Sample 1 million rows from each year and drop rows with missing values
 - → 4.8 million samples
 - Use 70/30 train test split
 - → 3.4 million training, 1.4 million test

Existing Work

- Almost all of the existing work that we looked at used binary classification in predicting whether or not a flight will be cancelled.
- We use multi-class classification instead of binary classification to provide more useful information to consumers — However, it provides more of a challenge to create the model.

Delay	Time		
On Time	N/A		
Short	<30 mins		
Med	30 - 1hr		
Long	>1hr		
Cancelled	N/A		

=	6:15 AM - 7:29 AM Frontier	2 hr 14 min ATL-ORD	Nonstop	85 kg CO ₂ -19% emissions ①	\$26
F	5:57 PM - 6:54 PM Frontier	1 hr 57 min ATL-MDW	Nonstop	69 kg CO ₂ -34% emissions ①	\$26
spirit	3:35 PM – 8:15 PM Spirit	5 hr 40 min ATL-ORD	1 stop 51 min MC0	203 kg CO ₂ +93% emissions ①	§ § \$48
spirit	7:50 AM – 9:02 AM Spirit	2 hr 12 min ATL-ORD	Nonstop	96 kg CO ₂ -9% emissions ©	⑤ ⋩ \$68
翻	7:00 AM – 8:05 AM United	2 hr 5 min ATL-ORD	Nonstop	105 kg CO ₂ Avg emissions ①	% \$104

Medium delay

Long delay

Short delay

Cancelled

On time

Procedure

- Preprocessing
- **Feature Selection**
- Model Training and Tuning
- Model Assessment and Selection

Preprocessing

- Derive multi-class label
 - [on-time, short-delay, med-delay, long-delay, cancelled]
- 2. Drop features which are **unknown to consumers** at the time of booking
 - I.e. Departure delay, plane ID number
- 3. One-hot encoding and standardization

Airline Cancelled CRSDepTime CRSElapsedTime -Ouarter -0.6 Month -DayofMonth -0.4 DayOfWeek -OriginAirportID -DestAirportID -- 0.2 CRSArrTime target DayofMonth -DestAirportID iginAirportID CRSElapsedTime CRSDepTime

Feature Selection

- 61 attributes → 11 features
- Do we need more dimension reduction to avoid overfitting?
- Kendall's Tau correlation
 - Rank-order correlation metric which works for both categorical and continuous data
 - Values between [-1,1], 0 = independent
 - Used absolute values for heatmap
- **Dropped** 'Cancelled' feature \rightarrow 10 features

(boat) ~/Desktop/ML/airplane (preprocessing) \$ python preprocessing.py

Elapsed time: 28856.58

28856 seconds = 8.01 hours

So 4.8 million is probably too many samples for our computers

New Approach

- If preprocessing takes 8 hours, MLP is going to take forever
- 1 million from each year → **10,000** from each year
- Increase # samples if performance is bad

0 7.22k

Delay time (minutes)

Model Assessment

- Data is imbalanced (only ~3% are cancelled, delay distribution is heavily skewed)
- Balanced accuracy and micro-average precision
- Prediction Time: consumers need to make quick predictions while booking

Model Selection

Decision Tree, Naive Bayes, Logistic Regression

Random Forest

Multilayer Perceptron

No KNN (prediction takes too long)

Model Selection

- Topicision Tree, Naive Bayes, Logistic Regression
- **Random Forest**
- Multilayer Perceptron
- No KNN (prediction takes too long)

- No Naive Bayes classifier for both categorical and continuous features
- Might discretize
 continuous features and
 train NB if we have time

Hyperparameter Tuning

Using GridSearch

Decision Tree Best Parameter: {'criterion': 'gini', 'max_depth': 30, min_samples_leaf': 10}

Others: in progress

```
parameters = {
    'criterion': ['gini', 'entropy'],
    'max_depth': [5, 10, 20, 30],
    'min_samples_leaf': [10, 50, 100, 500, 1000]
}
```


Preliminary Results

Model performance

Prediction time for 15000 samples

Discussion

- What do the results signify?
 - All of the models performed subpar compared to previous and existing work
 - o Imbalanced multi classification is much more difficult than binary classification.
 - *But something about our approach is probably wrong, if all models are performing poorly
- The observed performance, trailing established models, highlights the complexities of multi-classification.
 - Despite initial setbacks, the project shows promise as a good starting point for future improvements.

Next Steps

- Imbalanced classification is known to be a difficult problemresearch more techniques
- Oversample infrequent classes
 - Synthetic minority oversampling technique (SMOTE)
- Imbalanced learn python library
- Use more data (if our computers can handle it)
- Create UI for consumers to input flight details and receive a prediction!

Thank you! Questions?