

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2000-286710
(43)Date of publication of application : 13.10.2000

(51)Int.CL H03M 7/14
G11B 20/14

(21)Application number : 2000-065488 (71)Applicant : SAMSUNG ELECTRONICS CO LTD
(22)Date of filing : 09.03.2000 (72)Inventor : SHIM JAE-SEONG
WON YONG-KWANG

(30)Priority

Priority number : 99 9907723 Priority date : 09.03.1999 Priority country : KR

**(54) METHOD FOR GENERATING RLL CODE HAVING IMPROVED SUPPRESSION ABILITY OF DC COMPONENT AND
METHOD FOR MODULATING AND DEMODULATING GENERATED RLL CODE**

(57)Abstract:

PROBLEM TO BE SOLVED: To efficiently suppress the DC component with a few bits by considering the feature parameters CSV ad INV of a code word and allocating/arranging them to a code word main code group and a judgment code group for discriminating a multiple code word.

SOLUTION: A code word is generated with the condition of RLL (d, k, m, n)=(2, 12, 8, 15). For efficiently using the code word which is overlapped ad generated, a feature is extracted. CSV shows a DC component value in one code word. '0' or '1' are inverted in a part from '1' to next '1' and the difference of the numbers is calculated. INV is the prediction of the transition direction of the DC component value of the following code word and the value of '0' or '1' is given according to whether the number of '1' in the code word is even or odd. When the value of INV accumulated in a code word stream is '1', CSV of the following code word is accumulated by inverting a code.

LEGAL STATUS

[Date of request for examination] 09.03.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's
decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3466130

[Date of registration] 29.08.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of
rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号
特開2000-286710
(P2000-286710A)

(43) 公開日 平成12年10月13日(2000.10.13)

(51) Int.Cl.⁷
H 03 M 7/14
G 11 B 20/14

識別記号
341

F I
H 0 3 M 7/14
G 1 1 B 20/14

テマコト[°](参考)

(22) 在願日 平成12年3月9日(2000.3.9)
(31) 優先権主張番号 19997723
(32) 優先日 平成11年3月9日(1999.3.9)
(33) 優先権主張国 韓国(KR)

(72) 発明者 大韓民国京畿道水原市八達区梅灘洞416
沈 載晟
大韓民国ソウル特別市広津区紫陽1洞229
-24番地

(72) 発明者 元 容光
大韓民国京畿道水原市八達区靈通洞1053-
2番地豊林アパート231棟301号

(74) 代理人 100064908
牟理士 李智 正武 (外1名)

(54) 【発明の名称】 改善されたDC成分の抑圧能力を有するRLLCコード生成方法及び生成されたRLLCコードの変復調方法

(57) 【要約】

【課題】 改善されたDC成分の抑圧能力を有するRL-Lコードの生成方法及び生成されたRL-Lコードの変復調方法を提供する。

【解決手段】 ランの最小長、ランの最大長、データビット長及びコードワードビット長それぞれ d 、 k 、 m 及び n とするとき、 (d, k, m, n) で表現される RL-L コードを生成する方法において、(a) ランレンジス (d, k) 条件に満足するコードワードを生成する段階と、(b) 生成されたコードワードのコードの特徴により重複コードワードを有し、各コードグループのコードワードは互にいコードワード内の DC 値を表すパラメータ (CSV) の符号と次のコードワードの CSV 遷移方向を予測するパラメータ (INV) の特徴を考慮して配置された主コードグループと前記重複コードの判別のための判断コードグループを配置する段階とを含む。

【特許請求の範囲】

【請求項1】 ランの最小長、ランの最大長、データビット長及びコードワードビット長をそれぞれd、k、m及びnとするとき、(d, k, m, n)で表現されるRLコードを生成する方法において、(a)前記ランレンジス(d, k)条件を満足するコードワードを生成する段階と、(b)生成されたコードワードの特徴により重複コードワードを有し各コードグループのコードワードは互いにコードワード内のDC値を表すパラメータ(CSV)の符号及び次のコードワードのDSVの遷移方向を予測するパラメータ(INV)の特徴を考慮して配置された主コードグループと前記重複コードワードの判別のための判断コードグループを配置する段階とを含む方法。

【請求項2】 前記(b)段階においては、前記主コードグループのあるグループ内的一部のコードワードで構成された1つ以上のDSVグループをさらに配置することを特徴とする請求項1に記載の方法。

【請求項3】 前記方法は、(c)生成されたコードワードのエンドゼロ数(EZ)に基づき、コードワードストリームのDC成分の抑圧可能なコードワードが次に配置されるように次のコードグループを決定する段階をさらに含む請求項1に記載の方法。

【請求項4】 前記主コードグループは第1及び第2の主コードグループを含み、前記第1の主コードグループはリードゼロ数(LZ)が主コードグループ分割パラメータ(x)より小さいコードワードで構成され、前記第2主コードグループはLZがxより大きいか等しいコードワードで構成され、前記第1及び第2主コードグループには互いに同じコードワードは存在せず、エンドゼロ数(EZ)がランの最小長dより大きいか等しく、コードワード重複パラメータ(y)より小さいか等しいコードワードは重複されていることを特徴とする請求項2に記載の方法。

【請求項5】 前記RLコードは(2, 12; 8, 15)であり、主コードグループ分割パラメータ(x)は1であり、コードワード重複パラメータ(y)は7であることを特徴とする請求項4に記載の変調方法。

【請求項6】 前記第1の主コードグループ内のコードワードと同じ復号値を有する第2主コードグループ内の対応コードワードはCSVパラメータを優先的に互いに反対に配置し、パラメータINVの特徴も互いに反対に配置し、前記パラメータINVの値が“0”であれば次のコードワードのCSV値は現在コードワードまでの累積されたDSV値にそのまま和してDSV値が更新され、累積されたパラメータINVの値が“1”であれば、次のコードワードのCSV値の符号を反転させて現在コードワードまでの累積されたDSV値に和してDSV値が更新されるようにしてコードワードストリームのDC成分の抑圧を効率良く行うことを特徴とする請求項4に記載

の方法。

【請求項7】 前記1つ以上のDSVグループは、コードワードストリームのDC成分の抑圧及びランレンジス(d, k)が制御可能な前記第1の主コードグループで使用しているコードワードで構成されてコードワードのビット数nを減らすことを特徴とする請求項4に記載の方法。

【請求項8】 前記1つ以上のDSVグループ内のコードワードは、第2主コードグループ内のコードワードとはコードワード内のDC値を表すパラメータCSVと次のコードワードのDSV遷移方向を予測するパラメータINVとの符号を互いに反対になるように配置されてDC成分の抑圧を効率良く行うことを特徴とする請求項7に記載の方法。

【請求項9】 以前のコードワードのEZ値であるEZ(p)が第1主コードグループを選択できず、第2主コードグループのみを選択できる時、LZが主コードグループ分割パラメータ(x)であるコードワードで構成されたDSVグループにより現在のコードワードのLZ値であるLZ(c)がd≤EZ(p)+LZ(c)≤kを満足する範囲内でDC抑圧制御を行うことを特徴とする請求項4に記載の方法。

【請求項10】 前記判断コードグループは第1及び第2判断コードグループを含み、前記第1及び第2判断コードグループはリードゼロ数(LZ)が前記ランの最大長(k)とコードワード重複パラメータ(y)との差より小さいか等しいコードワードで構成され、このコードワードは特定ビットの値に基づき第1判断コードグループまたは第2判断コードグループに配置されることを特徴とする請求項1に記載の方法。

【請求項11】 前記1つ以上のDSVグループ内のコードワードはリードゼロ数(LZ)によりLZが主コードグループ分割パラメータ(x)のコードワードは第1DSVコードグループに配置し、LZがxまたは(x-1)であるコードワードは第2DSVグループに配置し、LZがxまたはx-1または...x-1のコードワードは第1+1DSVグループに配置して、以前のコードワードのEZ値であるEZ(p)がそれぞれEZ(p)=0, EZ(p)=1, ..., EZ(p)=1であるコードワードは第2主コードグループ、第1DSVグループ、第2DSVグループ、...、第1+1DSVグループでそれぞれコードワードを選択してDC抑圧制御を行うことを特徴とする請求項2に記載の方法。

【請求項12】 前記(b)段階は、(b1)前記生成されたコードワードのリードゼロ数(LZ)をチェックする段階と、(b2)前記LZが主コードグループ分割パラメータ(x)より小さいコードワードは第1主コードグループに配置する段階と、(b3)前記LZが前記xより大きいか等しいコードワードは第1主コードグル

ープとはコードワード内のDC値を表すパラメータ(CSV)と次のコードワードのDSV遷移方向を予測するパラメータ(INV)の特徴が反対である第2主コードグループに配置する段階と、(b4)前記LZがランの最大長(k)とコードワード重複パラメータ(y)との差より小さいか等しいコードワードの特定ビットがいずれか1つでも“1”であれば第1判断コードグループに配置し、前記特定ビットがいずれも“0”であれば第2判断コードグループに配置する段階と、(b5)前記LZが主コードグループ分割パラメータ(x)値に該当するコードワードは第1主コードグループにあるコードワードで構成されている第1DSVグループに配置する段階とを含む請求項2に記載の方法。

【請求項13】前記(b)段階は、(b6)前記LZがxまたは(x-1)であるコードワードは第2DSVグループに配置し、前記LZがxまたは(x-1)または... (x-1)であるコードワードは第1+1 DSVグループに配置する段階をさらに含む請求項12に記載の方法。

【請求項14】前記(c)段階は、(c1)前記生成されたコードワードのEZをチェックする段階と、(c2)前記EZが $0 \leq EZ \leq d$ の時には前記生成されたコードワードの次にこれる次のコードグループとして前記第2主コードグループまたは前記1つ以上のDSVグループを決定してコードワードストリームのDC制御を行う段階と、(c3)前記EZがコードワードが重複されている $d \leq EZ \leq y$ (ここで、yはコードワード重複パラメータである)の時には重複されたコードワードの次のコードグループとして第1または第2判断コードグループを決定し、重複されないコードワードの次のコードグループとして第1または第2主コードグループを決定してコードワードストリームのDC制御を行う段階と、(c4)前記EZが $y \leq EZ$ の時には(d, k)ランレンジングスが背反されない場合に限って前記生成されたコードワードの次のコードグループに第1または第2主コードグループを決定してDC制御を行う段階を含むことを特徴とする請求項3に記載の方法。

【請求項15】前記EZが $0 \leq EZ < d$ の時、前記EZが“0”であれば前記生成されたコードワードの次のコードグループとして前記第2主コードグループが決定され、その他には前記1つ以上のDSVグループのうち1つが決定されることを特徴とする請求項14に記載の方法。

【請求項16】光ディスク記録及び/または再生装置に入力されるデータをランの最小長(d)、ランの最大長(k)、データビット長(m)、コードワードビット長(n)を表す(d, k, m, n)で表現されるRLLCコードに変調する方法において、(a)入力されるmビットのデータを重複コードワードを有し、各コードグループのコードワードは互いにコードワード内のDC値を

表すパラメータCSVの符号と次のコードワードのDSV遷移方向を予測するパラメータINVの特徴を考慮して配置された主コードグループと前記重複コードの判別のための判断コードグループのうちいずれか1つのコードグループのコードワードを選択して変調する段階を含む変調方法。

【請求項17】前記(a)段階では、第1主コードグループ内的一部のコードワードで構成された1つ以上のDSVグループをさらに用いて入力されるデータを変調することを特徴とする請求項16に記載の変調方法。

【請求項18】前記方法は、(b)前記(a)段階で入力されたデータに対応するコードワードを以前のコードワードが指定する次のコードグループで選択し、次のコードグループは選択されたコードワードが指定する次のコードグループに更新する段階を含む請求項17に記載の変調方法。

【請求項19】前記(b)段階は、(b1)以前のコードワードが指定する次のコードグループをチェックする段階と、(b2)前記(b1)段階におけるチェック結果が前記以前のコードワードが指定する次のコードグループが第1主コードグループであれば、(d, k)ランレンジングス条件を満足するかどうかをチェックする段階と、(b3)前記(d, k)ランレンジングス条件が満足されると、前記入力データに対応するコードワードを前記第1主コードグループまたは第2主コードグループのうちDC制御が有利なコードグループで選択し、次のコードグループは選択されたコードワードが指定する次のコードグループに更新し、満足しなければ前記第1主コードグループで選択し、次のコードグループは選択されたコードワードが指定する次のコードグループに更新する段階と、(b4)前記(b1)段階におけるチェック結果が前記以前のコードワードが指定する次のコードグループが第2主コードグループであれば、入力データに対応するコードワードを前記第2主コードグループで選択し、次のコードグループは選択されたコードワードが指定する次のコードグループに更新する段階と、(b5)前記(b1)段階におけるチェック結果が前記以前のコードワードの次のコードグループが第1判断コードグループであれば入力データに対応するコードワードを前記第1判断コードグループで選択し、次のコードグループは選択されたコードワードが指定する次のコードグループに更新する段階と、(b6)前記(b1)段階におけるチェック結果が前記以前のコードワードの次のコードグループが第2判断コードグループであれば入力データに対応するコードワードを前記第2判断コードグループで選択し、次のコードグループは選択されたコードワードが指定する次のコードグループに更新する段階と、(b7)前記(b1)段階におけるチェック結果が、前記以前のコードワードの次のコードグループがDSVグループの1つであれば入力データ値が所定値以下である

かどうかを判断して、前記入力データが前記所定値以下であれば第2主コードグループまたはD S Vグループの1つでD C制御に有利なコードグループ内のコードワードを選択し、次のコードグループは選択されたコードワードが指定する次のコードグループに更新し、前記入力データが所定値以上であれば第2主コードグループでコードワードを選択し、次のコードグループは選択されたコードワードが指定する次のコードグループに更新する段階とを含む請求項18に記載の変調方法。

【請求項20】 前記方法は、(b)所定周期毎に同期パターンを挿入する段階をさらに含み、同期の使用頻度数によって頻度数の多い同期はコードワードストリームのD C制御に有利にdon't careビットを拡大使用する同期パターンを使用し、(d, k)ランレンジス条件を違反しないように最上位ビットをdon't careビットに設定した同期パターンを使用することを特徴とする請求項16に記載の変調方法。

【請求項21】 入力されるmビットのデータを重複コードワードを有し、各コードグループのコードワードは互いにコードワード内のD C値を表すパラメータCSVの符号と次のコードワードのD S V遷移方向を予測するパラメータINVの特徴を考慮して配置された主コードグループと重複コードの判別のための判断グループのうちいずれか1つのコードグループのコードワードに変調されたランの最小長(d)、ランの最大長(k)、データビット長(m)、コードワードビット長(n)を表す(d, k, m, n)で表現されるRLLCコードを元のデータに復調する光ディスク記録及び/または再生装置のためのデータ復調方法において、(a)コードワードストリームを入力して、以前のコードワードの特徴によって復調しようとするコードワードが属しているグループを表すパラメータ(ncg)を更新する段階と、(b)更新されたncgが指示するコードグループで2つの同一の現在コードワードが存在しなければ、更新されたncgが指示するコードグループで前記復調しようとするコードワードに対応するmビットの元のデータに復調する段階とを含む復調方法。

【請求項22】 (c)前記更新されたncgが指示するコードグループで2つの同一の現在コードワードが存在すると、次のコードワードの特定ビットをチェックしていくいずれか1つでも"1"であれば、同一のコードワードのうち1番目のコードワードを選択して元のデータに復調し、特定ビットがいずれも"0"であれば、同一のコードワードのうち2番目のコードワードを選択して元のデータに復調する段階をさらに含む請求項21に記載の復調方法。

【請求項23】 前記方法は、(c)入力されるコードワードが同期パターンであるかどうかを判断して同期を復元し、ncgを前記いずれか1つのコードグループに初期化する段階をさらに含む請求項21に記載の復調方

法。

【請求項24】 前記変調されたRLLCデータは、前記主コードグループ内的一部のコードワードで構成された1つ以上のD S Vグループをさらに用いて変調されており、前記主コードグループは、第1及び第2主コードグループからなり、前記判断コードグループは第1及び第2判断コードグループからなることを特徴とする請求項21に記載の復調方法。

【請求項25】 前記(a)段階は、(a1)以前のコードワードのエンドゼロ数(EZ)を判断する段階と、(a2)前記以前のコードのEZが"0"であれば、次のコードグループを第2主コードグループに更新する段階と、(a3)前記以前のコードのEZが"1"であれば、次のコードグループをD C制御により有利な第2主コードグループまたは副コードグループのうちいずれか一方に更新する段階と、(a4)前記以前のコードのEZがランの最小長がdより大きいか等しく、コードワードの重複パラメータ(y)より小さいか等しければ、以前のコードワードの次のコードグループが指示するコードグループで2つの重複コードワードが存在するかどうかを判断する段階と、(a5)前記(a4)段階で2つの重複コードワードが存在すると現在のコードワードの特定ビットをチェックして、特定ビットが1つさえ"1"であれば次のコードグループを第1判断コードグループに更新し、特定ビットがいずれも"0"であれば次のコードグループを第2判断コードグループに更新する段階と、(a6)前記以前のコードのEZがコードワードの重複パラメータ(y)より大きいか等しく、ランの最大長(k)より小さいか等しければ、前記(a4)段階で2つの重複コードワードが存在しなければ、次のコードグループをD C制御により有利な第1主コードグループまたは第2主コードグループに更新する段階とを含む請求項24に記載の復調方法。

【請求項26】 前記RLLCコードは(2, 12, 8, 15)であり、主コードグループ分割パラメータ(x)は1であり、コードワード重複パラメータ(y)は7であり、前記特定ビットは最上位ビット及び最下位ビットであることを特徴とする請求項25に記載の復調方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、mビットの情報ワードを変調信号に変換し、且つ変換された変調信号を元の信号に復元する分野に係り、特に、少ないビット数を有するコードワードを用いてコードワードストリームのD C成分を効率良く抑えることができるランレンジングスリミテッド(Run Length Limited、以下、RLLCと称する)コードの生成方法、及び高密度の記録及び/または再生を要する光ディスク記録及び/または再生装置に用いて好適なRLLCコードの変復調方法に関する。

【0002】(d, k, m, n)で表現されるRLLコードは、光ディスク記録及び/または再生装置において、元の情報を光ディスクに適した信号に変換する変調及び光ディスクから再生された信号を元の情報に復元する復調時に広く使用されている。前記(d, k, m, n)で表現されるRLLコードにおいては、データの主変換を図1Aに示された主変換表に基づいて行う。図1A及び図1Bに示されたように、主/副変換表内の第1及び第4コードグループはコードワード内のリードゼロ(Lead Zero; LZ)数により排他的に分離されており、第2及び第3コードグループもコードワードの特定のビットに基づいて1“または”0であるかを判別して排他のに分離されている。すなわち、第1及び第4コードグループには相互同一のコードワードが存在せず、第2コードグループ及び第3コードグループにも相互同一のコードワードが存在しない。図1A及び図1Bに示された主/副変換表は、米国特許第5, 790, 056の“Method of converting a series of M-bit information words to a modulated signal, as well as a recorded carrier”に開示されている。

【0003】ランレンジスは、コードグループ内のコードワードが次のコードグループを指定して(d, k)条件を違えないようにする(d, k)-constraint方式を用いている。図1Bに示されたような副変換表は87ビット以下のデータが入力された時にコードワードストリームのDC抑圧がなされるようにしており、副変換表内のコードグループ内のコードワードは主変換表にはないコードで配置しており、コードワード内のDC値を表すパラメータであるCSVの符号は同一の復号値を有する主変換表の対応コードワードと反対のコードワードで配置してDC成分の抑圧がなされるようにしている。

【0004】図1に示された主変換表及び副変換表において、第1及び第4コードグループでランレンジスを違えなければDC抑圧に有利なコードグループを選択することができる。ところが、コードワードが、第1及び第4コードグループに属しているコードワードのCSVの符号及び本発明で提案する、コードワード内で1が奇数個あるか、または偶数個あるかを判別することにより次のコードワードのDSV遷移方向を予測するパラメータ(INV)の特徴を考慮して配置されてはいない。その結果、図1に示された従来のコード(2, 10, 8, 16)のように、8ビットデータを16ビットのコードワードとは異なって、15ビットのコードワードに変換するためのコード変換表を生成しようとするときには不向きであった。

【0005】さらに、87ビット以下のデータに対しては主変換表及び副変換表の両方でコードワードが選択可

能であり、且つCSVの符号が反対に配置されるので、コードワードストリームのDC成分を抑えることができる。しかし、副変換表内のコードワードは主変換表にはない新しいコードワードで構成されているため、結局として副変換表内のコードワードの数分の多いコードワードが必要となった。この理由から、コードワードのビット数を減らすことができなかった。さらに、副変換表内のコードワードは主変換表の同一の復号値を有する対応コードワードと比較してコードワードの特性パラメータの1つであるCSVの符号は反対に配置されているが、本発明で提案するコードワードのパラメータであるINVの特徴は反対となっていない。これにより、所定のルックアヘッド方式で行われるDSV制御に際し、コードワードの数が少ない変調コードを用いる場合、DC抑圧が十分発揮できない問題があった。

【0006】

【発明が解決しようとする課題】本発明の目的は、DC抑圧のための副変換表に使用されるコードワードを主変換表で既に使用されているコードワードの一部をそのまま用い、主変換表のコードワードの特性パラメータであるCSV及びINVを十分活用して主変換表を生成し、これにより少ないビット数を有するコードワードを用いながらも、コードワードストリームのDC成分が効率良く抑圧可能なRLLコードの生成方法を提供することである。本発明の他の目的は、改善されたDC抑圧能力を有するRLLコードを用いてコードワードストリームを変調する方法を提供することである。本発明のさらに他の目的は、改善されたDC抑圧能力を有するRLLコードを用いて変調コードワードストリームを元のコードワードストリームに復調する方法を提供することである。

【0007】

【課題を解決するための手段】前記諸目的を達成するため、本発明に係るRLLコード生成方法は、ランの最小長、ランの最大長、データビット長及びコードワードビット長をそれぞれd、k、m及びnとするとき、(d, k, m, n)で表現されるRLLコードを生成する方法であって、前記ランレンジス(d, k)条件を満足するコードワードを生成する段階と、生成されたコードワードの特徴により重複コードワードを有し各コードグループのコードワードは互いにコードワード内のDC値を表すパラメータ(CSV)の符号及び次のコードワードのDSVの遷移方向を予測するパラメータ(INV)の特徴を考慮して配置された主コードグループと前記重複コードワードの判別のための判断コードグループを配置する段階とを含むことを特徴としている。

【0008】前記他の目的を達成するため、本発明に係るRLLコードの変調方法は、光ディスク記録及び/または再生装置に入力されるデータをランの最小長(d)、ランの最大長(k)、データビット長(m)、コードワードビット長(n)を表す(d, k, m, n)

で表現されるRLLコードに変調する方法であって、入力されるmビットのデータを重複コードワードを有し、各コードグループのコードワードは互いにコードワード内のDC値を表すパラメータCSVの符号と次のコードワードのDSV遷移方向を予測するパラメータINVの特徴を考慮して配置された主コードグループと前記重複コードの判別のための判断コードグループのうちいずれか1つのコードグループのコードワードを選択して変調する段階を含むことを特徴としている。

【0009】前記さらに他の目的を達成するため、本発明に係るRLLコードの復調方法は、入力されるmビットのデータを重複コードワードを有し、各コードグループのコードワードは互いにコードワード内のDC値を表すパラメータCSVの符号と次のコードワードのDSV遷移方向を予測するパラメータINVの特徴を考慮して配置された主コードグループと重複コードの判別のための判断グループのうちいずれか1つのコードグループのコードワードに変調されたランの最小長(d)、ランの最大長(k)、データビット長(m)、コードワードビット長(n)を表す(d, k, m, n)で表現されるRLLコードを元のデータに復調する光ディスク記録及び/または再生装置のためのデータ復調方法であって、コードワードストリームを入力して、以前のコードワードの特徴によって復調しようとするコードワードが属しているグループを表すパラメータ(ncg)を更新する段階と、更新されたncgが指示するコードグループで2つの同一の現在コードワードが存在しなければ、更新されたncgが指示するコードグループで前記復調しようとするコードワードに対応するmビットの元のデータに復調する段階とを含むことを特徴としている。

【0010】

【発明の実施の形態】以下、添付した図面に基づき、本発明に係る改善されたDC抑圧能力を有するRLLコード生成方法及び生成されたRLLコードの変復調方法の好ましい実施例について説明する。(d, k, m, n)で表現されるRLLコードにおいて、コードの性能を評価する要因が多数あるが、中でも、記録密度及びコードのDC成分の抑圧能力が代表的である。記録密度及びコードの検出ウィンドウは、下記式1及び2で表される。

$$\text{記録密度} = (d+1)m/n \quad \dots \quad (1)$$

$$\text{検出ウィンドウ幅} = (m/n)T \quad \dots \quad (2)$$

(上式で、mはデータビット数(ソースビット数または情報ワードビット数とも言う)、nは変調ずみのコードワードビット数(チャンネルビット数とも言う)、dはコードワード内において1と1との間に存在可能な連続する0の最小数、kはコードワード内において1と1との間に存在可能な連続する0の最大数、Tはコードワード内のビットのビット間隔をそれぞれ表す。)

【0011】前記式から明らかなように、変調方法で記録密度を向上させる方法は、d及びmは同一条件下でコ

ードワードのビット数nを減らすことである。しかし、RLLコードは、コードワード内において1と1との間に存在可能な連続する0の最小数であるd条件及び連続する0の最大数であるk条件を満足しなければならない。この(d, k)条件を満足すると同時に、RLL(d, k)を満足するコードワードの数は、データビット数がmとするとき、2^m個以上である。しかし、実際にこのコードを使用するためには、コードワードとコードワードとがつながる部分でもRLL(d, k)を満足しなければならない。しかも、光ディスク記録及び/または再生装置のように、コードのDC成分がシステム性能に影響する場合には、使用しようとするコードがDC抑圧能力を有する必要がある。

【0012】この理由から、コンパクトディスク(CD)の場合、8ビットのデータを変調すると14ビットのコードワードに変換される8対14変調(Eight-to-Fourteen Modulation、以下、EFM)コードは、RLL(2, 10)(CDは、d=2, k=10のコードを使用する)のランレンジスの条件を満足すると同時にDC抑圧能力を有するため、14ビットに変換されたコードワードの間に3ビットのマージビットが付加されることを要する。このマージビットは何の情報も含んでいず、ただ(d, k)のランレンジス及びDC成分の抑圧のためのビットとして付加されただけであって、記録密度を向上させるのに負担となる。

【0013】さらに、デジタル多機能ディスク(以下、DVD)の場合には、EFMプラス(以下、EFM+)コードを使用するが、このコードもやはりRLL(2, 10)のランレンジス条件を満足する。ただ違いがあれば、CDとは異なってマージビットがなく、その代わりにコードワード長(n)が16ビットとなっている。この場合に使用可能なコードの数は合計で566個であり、図1A及び図1Bに示されたように、4つの主変換表及び4つの副変換表を有している。(2, 10)のランレンジスは4つの主変換表を用いて満足すると、コード列のDC成分の抑圧は副変換表を用いてなされる。

【0014】前述のコードは、DC成分の抑圧には優れている。特に、DVDで使用されるEFM+コードの場合には、CDで使用されるEFMコードと比較して1ビット分のコードワードを減らすことができ、同時にコードの変調方法の僅かな変更だけで約5.9%の記録密度の向上が得られる。しかし、EFM+コードの場合にも、DC成分の抑圧のため4つの副変換表を別に有するため、それ以上のコードワードのビット数を減らすことは困難である。

【0015】本発明では上記事情を考慮に入れて、DC成分の抑圧のための別の副変換表を有する面では変わりないが、副変換表に使用されるコードワードを主変換表で既に使用されているコードワードの一部をそのまま用

い、主変換表のコードワード特性パラメータ、すなわち、コードワード内のDC値を表すCSV、及び次のコードワードのDSV遷移方向を予測するINVを最大限に活用して主変換表を作成することにより、コードワードのビット数を減らすようにしている。以下、前述の主/副変換表を用いてDC成分の抑圧能力及び記録密度の

以前コード

```
000010001001000
LZ(p) EZ(p)
```

(ここで、dはランの最小長、kはランの最大長、mはデータビット長、nはコードワードビット長をそれぞれ表す。また、LZ(p)及びLZ(c)はそれぞれ、以前のコードワード及び現在のコードワード内におけるリードゼロ数を表し、EZ(p)及びEZ(c)はそれぞれ、以前のコードワード及び現在のコードワード内におけるエンドゼロ数を表す。そしてDSV(Digital SumValue in codeword stream)は、コードワードストリームにおけるデジタル合計値を表す。このDSVは、一連のコードワードストリームにおいて“1”が出てくるたびに次の“1”が出てくるまで“0”または“1”に反転させた後、反転されたパターンにおいて0は“-1”に計数し、1は“+1”に計数した値である。

【0017】またCSVは、コードワード内においてデジタル合計値、すなわち、1つのコードワード内において“1”が出てくるたびに次の“1”が出てくるまで“0”または“1”に反転させた後、反転されたパターンにおいて0は“-1”に計数し、1は“+1”に計数した値である。】

コードワード	:	000010001001000	0010010010
01000			
INV	:	1	0
CSV	:	+1	-3
コードストリーム	:	0000111100011111 11000111000	
1111			
DSV	:	-1-2-3-4-3-2-1 0-1-2-3-2-1 0+1 +	
2+3+2+1 0+1+2+3+2+1		0+1+2+3+4	

【0019】図2は、本発明の一実施例によるRLLコード生成方法を示すフローチャートである。これを参照すると、ランの最小長d、ランの最大長k、データビット長m、コードワードビット長n、主コードグループの分割パラメータx、コードワードの重複パラメータy及び特定ビット、例えば、bit(i)、bit(j)、bit(k)を入力する(S101段階)。次に、S101段階で入力された条件を満足する 2^n 個(0~ 2^n-1)のコードワードを発生させる(S102段階)。次に、生成されたコードに対してランレンジス(d, k)条件を満足するかどうかを判断する(S103段階)。生成されたコードの内ランレンジス(d, k)条件を満足するコードのみが使用できるため、この条件を満足しないコードは放棄する(S104段階)。

向上効果が得られ、とりわけ高密度の光ディスクシステムに用いて好適なRLLコードの生成方法について説明する。

【0016】説明に先立って本発明で使用される用語について定義しておく。

現コード

```
001000001001000
LZ(c) EZ(c)
```

NVは、次のコードワードの遷移が分かるパラメータである。すなわち、コードワード内における“1”的個数が偶数個であれば、INVの値は0 (INV=0) であり、コードワード内における“1”的個数が奇数個であれば、INVの値は1 (INV=1) である。またxは主コードグループを分割するパラメータであり、yはコードワードの重複パラメータであり、bit(i)、bit(j)、bit(k)はそれぞれ、コードワード内のi、j、k番目のビットを表す。ここで、コードワードストリームで累積されたINVの値が“0”であれば、次のコードワードのCSV値をそのコードワード以前までの累積されたDSV値にそのまま和してDSV値を更新し、累積されたINV値が“1”であれば、次のコードワードのCSV値の符号を反転させてそのコードワード以前までの累積されたDSV値に和してDSV値を更新する。

【0018】以上のストリームを例にとると、パラメータINV、CSV、DSVは下記のように与えられる。

コードワード	:	000010001001000	0010010010
01000			
INV	:	1	0
CSV	:	+1	-3
コードストリーム	:	0000111100011111 11000111000	
1111			

これに対し、(d, k)条件を満足するコードワードはそのコードワードの特徴が抽出されるが、ここでは、特徴を抽出するのに必要なパラメータ、すなわち、コードワード内のリードゼロ数(LZ)、コードワード内のエンドゼロ数(EZ)、コードワード合計値(CSV)が計算される(S105)。

【0020】使用可能なコード数を増やすために一部のコードは重複させ、コードワードとコードワードとがつながる部分における(d, k)条件を満足させるためにパラメータEZの値をチェックする(S106)。次に、このEZ値に基づき、下記のような動作が行われる。コードワード内のエンドゼロ数EZが0以上でdより小さいと(0≤EZ<d)、次のコードグループ(next code group、以下、ncg)は第2

の主コードグループ (Main Code Group 2、以下、MCG2) または DSV グループから次のコードワードが選択されるように指定する (S107)。

【0021】コードワードの EZ 値が d 以上で y 以下 ($d \leq EZ \leq y$) であれば、そのコードワードは重複させ、ncg は第1判断コードグループ (DCG1) または第2判断コードグループ (DCG2) から次のコードワードが選択されるように指定される (S108)。このとき、コードワードが重複されてない元のコードワードであれば、ncg は第1判断コードグループ (DCG1) から次のコードワードが選択されるように指定される。これに対し、コードワードが重複されたコードワードであれば、ncg は第2判断コードグループ (DCG2) から次のコードワードが選択されるように指定される。

【0022】コードワードの EZ 値が y より大きく k 以下 ($y < EZ \leq k$) であれば、ncg が第1主コードグループ (MCG1) または第2主コードグループ (MCG2) から次のコードワードが選択されるように指定する (S109)。この過程を経て (d, k) 条件を満足するコードワードの ncg が決定され、この ncg に基づき、そのコードワードの次につくコードワードのコードグループが決定される。また、コードワードとコードワードとがつながる部分でも (d, k) 条件が満足される。ここで、 $d \leq EZ \leq y$ を満足するコードを重複させる理由は、EZ 値が 0, 1, . . . , d-1 のコードに対しては DSV 値を用いてコードワードストリームの DSV を制御し、これにより全体の DC 成分を抑圧するためである。

【0023】以下、コードグループ別にコードワードを束ねる方法及びそれぞれのコードグループの特徴について説明する。コードグループ別にコードワードを束ねるために、コードワード内のリードゼロ数 LZ 値を用いるが、S110段階ではコードワード内の LZ 値をチェックする。S110段階でコードワード内の LZ 値が x より小さければ、そのコードワードは第1主コードグループ (MCG1) にコードワード値の順番に従って貯蔵される (S111段階)。LZ 値が x 以上 ($x \leq LZ$) のコードワードは第2主コードグループ (MCG2) に貯蔵されるが、そのコードワードの順番は第1主コードグループ (MCG1) に貯蔵されている同一の復号値を有するコードワードと比較してできる限りパラメータ INV 及び CSV 値の符号が反対のものに配置する (S112段階)。もし、INV 及び CSV の符号両方が反対のものがなければ、CSV の符号が反対のものを優先的に配置し、その次に INV 値の符号が反対のものに配置する。

【0024】このようにコードワードを配置する理由は、まず第1に、1コードワードの ncg が第1主コードグループ (MCG1) または第2主コードグループ

(MCG2) で次のコードワードを読み出すように指示する場合、両コードグループ内の同一の復号値を有するコードワードが (d, k) 条件を同時に満足すると、コードワードストリームの DC 成分の抑圧が効率良くなされるようなコードワードに選択可能にするからである。第2に、両コードグループ内のコードワードの INV 及び CSV 値が反対なので、DC 成分の抑圧が、両コードワードの内いずれか一方には最適になされるからである。

【0025】次に、LZ 値が $k - y$ 以下 ($LZ \leq k - y$) であれば、bit(i)、bit(j)、bit(k) をチェックし (S113段階)、そのうちいずれか1つのビットでも "1" が存在すると、そのコードワードは第1判断コードグループ (DCG1) に貯蔵される (S114段階)。これに対し、S113段階でチェックされたビットがいずれも "0" であれば、そのコードワードは第2判断コードグループ (DCG2) に貯蔵される (S115段階)。判断コードグループ (DCG) 内におけるコードワードの配置順序はできる限り第1及び第2主コードグループ (MCG1, MCG2) のように配置させる。例えば、"100010001000100" が第1主コードグループ (MCG1) に属するコードワードであると同時に第1判断コードグループ (DCG1) に属するコードワードであり、このコードワードの復号値が第1主コードグループ (MCG1) で 128 に該当するなら、第1判断コードグループ (DCG1) グループ内においてもその復号値が 128 である位置に配置させる。これは、復号に際してエラーが生じた場合、エラーの伝播を最小化させるためである。

【0026】LZ 値が $k - y$ 以下 ($LZ \leq k - y$) のコードワードを判断コードグループ (DCG) に配置させる理由は、EZ 値が d 以上で y 以下 ($d \leq EZ \leq y$) のコードワードを重複させたからである。重複されたコードを復号する時、該当データを正常に復号するために次のコードワードを参照するが、次のコードワードが第1判断コードグループ (DCG1) からのコードワードであれば、元のコードワードに対する復号データに復調し、次のコードワードが第2判断コードグループ (DCG2) からのコードワードであれば、重複させたコードワードに対する復号データに復調する。

【0027】さらに、 $d \leq EZ \leq y$ のコードが第1判断コードグループ (DCG1) または第2判断コードグループ (DCG) 内のコードワードと (d, k) を満足しながらつながるために、以前のコードワードのエンドゼロ数 EZ (p) 及び現在のコードワードのリードゼロ数 LZ (c) の合計、すなわち EZ (p) + LZ (c) が $d \leq EZ (p) + LZ (c) \leq k$ を満足しなければならないため、判断コードグループの LZ (c) は LZ $\leq k - y$ を満足しなければならない。

【0028】例えば、"100010001000100" 例え

0"であるコードワードが第1主コードグループ(MCG1)内に2つ存在するとき、すなわち、元のコードワード"100010001000100"に対する復号値が128であり、ncgが第1判断コードグループ(DCG1)であり、重複させたコードワード"100010001000100"に対する復号値が129であり、ncgが第2判断コードグループ(DCG2)であるとするとき、コードワード"100010001000100"を復号するときその次のコードワードがDCG1に属しているか、或いはDCG2に属しているかに応じて128または129に復調される。

【002-9】次に、DSVグループの配置について説明する。DSVグループは、本発明でコードワードストリームのDC成分を抑圧するための方法として提案したものであって、別途のコードワードを要せず第1主コードグループ(MCG1)で使用中のコードワードを使用するので、補助コードグループに該当する。LZ=xのコードワードは第1DSVグループに配置し(S116段階)、LZ=x、x-1のコードワードは第2DSVグループに配置する(S117段階)。この方法と同様に、LZ=x、x-1, ..., x-1のコードワードは第1+1 DSVグループに配置する(S118段階)。

【003-0】DSVグループ内におけるコードワードの配置は、第1主コードグループ(MCG1)内における配置と等しくする。すなわち、同じコードワードが第1主コードグループ(MCG1)及びDSVグループ内にあれば、復号時同じ復号値に復号されるように配置する。S107段階においても説明されたように、あるコードワードのEZ値が0以上でdより小さければ(0≤EZ<d)、ncgは第2主コードグループ(MCG2)またはDSVグループから次のコードワードが選択されるように指定される。ここで、DSVグループ内のコードワードは第1主コードグループ(MCG1)から抽出されたものであるから、第2主コードグループ(MCG2)内のコードワードと明らかに違う。0≤EZ<dのコードワードの次に入力されるコードワードを第2主コードグループ(MCG2)から選択するか、或いはDSVグループから選択するかは、DC成分の抑圧に最適なコードワードがどこに属しているかによって決定される。

【003-1】従って、DSVグループからコードワードの選択方法は、d≤EZ(p)+LZ(c)≤kを満足しながらEZ(p)が0の時にはLZ(c)がxである第1DSVグループからコードワードを選択する。また、EZ(p)が1の時にはLZ(c)がxまたはx-1のコードワードが属している第2DSVグループからコードワードを選択し、同じく、EZ(p)がxの時にはLZ(c)がxまたはx-1または...x-1のコードワードが属している第1+1 DSVグループからコ

ードワードを選択する。

【003-2】このように生成されたコードワードは該当するコードグループに貯蔵される。次に、最後のデータであるかどうかを判断して(S119段階)、最後のデータであれば終了し、そうでなければi(ここで、i=0, 1, ..., 2n-1)をインクリメントさせた後に(S120)、2n個のコードワードを生成させる(S102段階)。図3ないし図8は、図2に示されたアルゴリズムにより生成された(2, 12, 8, 15)で表現されるRLSCコードのためのコードグループ別コード変換表である。ここでは、それぞれのパラメータをd=2, k=12, m=8, n=15, x=2, y=7, bit(i)=14(最上位ビット(MSB)を意味する)、bit(j)=0(最下位ビット(LSB)を意味する)に設定し、bit(k)は無視した。

【003-3】図3ないし図8に示されたコード変換表には2≤EZ≤7のコードは重複されている。またDSVグループに含まれたコードワードはLZ=1のコードワードであって、第2主コードグループ(MCG2)にはないパターンである。第1主コードグループ(MCG1)内のコードワードはLZ<2のコードワードであり、第2主コードグループ(MCG2)内のコードワードは2≤LZのコードワードであり、第1判断コードグループ(DCG1)内のコードワードはMSB(bit14)またはLSB(bit0)の内何れか一方が"1"のコードワードで構成され、第2判断コードグループ(DCG2)内のコードワードはMSB(bit14)及びLSB(bit0)両方が"0"のコードワードで構成される。

【003-4】また、コードワードは復号データが同一に生成されるように、できる限り第1及び第2主コードグループ(MCG1, MCG2)と同一の復号位置に配置する。さらに、変調時にランレンジス(d, k)条件を違えないように、第1及び第2判断コードグループ(DCG1, DCG2)内のコードワードはLZ≤5のコードワードで構成される。第1主コードグループ(MCG1)及びDSVグループ内のコードワードは、第2主コードグループ(MCG2)内のコードワードとはCSV符号及びINVの特徴が反対になるように配置する。

【003-5】要するに、本発明はDC成分の抑圧のために主コードグループのコードワードとは別のコードワードを使用していないため、多数のコードワードが必要しない。これにより、コードワードのビット数を1ビット分減らすことができ、以前のコードワードのEZが0≤EZ(p)≤dの場合、d≤EZ(p)+LZ(c)≤kとなる範囲内でDC成分の抑圧がなされるようにDSVグループを第2主コードグループ(MCG2)と共に選択可能にしてDC成分の抑圧能力を向上させている。さらに、DSVグループ内のコードワードは第2主コードグループ(MCG2)内のコードワードとはCSVの

符号及びIN Vの特徴が反対になるように配置してDC成分の抑圧能力を向上させている。

【0036】本発明から提案された(2, 12, 8, 15)コードによると、EZ(p)=1の時には次のコードワードをDSVグループ及び第2主コードグループ(MCG2)から選択でき、第1主コードグループ(MCG1)内のコードのうちLZ=1のコードワードでDSVグループを作り、このDSVグループ内のコードワードの位置は第1主コードグループ(MCG1)と同一の復号値を有する位置に配置することにより、復号時におけるエラーの伝播が防止されるようにしているが、DC成分の抑圧能力をより向上させるため、パラメータCSV及びIN Vを中心に配置することにより、DSVグループは第1主コードグループ(MCG1)のコードワードと違いにしても良い。さらに、第1主コードグループ(MCG1)及び第2主コードグループ(MCG2)のコードワードをCSVの符号及びIN Vの特徴が反対になるように配置することにより、EZがd≤EZ(p)≤yの非重複コードワードの場合や、EZ(p)>yのコードワードがd≤EZ(p)+LZ(c)≤kとなる場合でもDC成分の抑圧が行える。

【0037】次に、図3～図8に示されたようなコードグループ別コード変換表を有する(2, 12, 8, 15)コードの変復調方法について説明する。図9は、本発明に係る(2, 12, 8, 15)で表現されるRLLCコードの変調方法の一実施例によるフローチャートである。これを参照すると、まず、ncgを“1”に初期化する(S201段階)。次に、同期コードを挿入するかどうかを判断する(S202段階)。ここで、同期コードの例は、図10に示されている。本発明における同期コードの形態は、図10に示されたように、4種類に類別される。各同期コードワードのMSBのx(don't care bit)は、以前のコードワードのEZとつながる時にランレンジス(d, k)条件を違えないように使用されるものであって、0及び1両方が使用できる。

【0038】また、第1及び第2番目の同期コード(SYNC1, SYNC2)のためのコードワード内の第2番目のxはDC成分の抑圧のためのものであって、コードワードストリームのDC成分の抑圧に最適なものを選択すれば良い。第2番目のxがある同期パターンを有する第1及び第2番目の同期コード(SYNC1, SYNC2)を頻繁に発生させる同期用に使用し、第2番目のxがない同期パターンを有する第3及び第4番目の同期コード(SYNC3, SYNC4)は、例えば、インターリーブされたデータのように大いに遅延されたデータのエラー訂正用同期のように頻繁に発生しない同期用に使用することが好ましい。ここで、頻繁な同期とは、例えば、スピンドルモータ制御用の同期、またはインターリーブされてないデータのエラー訂正用同期などを言

う。

【0039】同期の次に出てくるコードワードは特定のコードワードグループで見出さなければならないという規定が必要である。これにより、本発明の一実施例によると、ncgは1に初期化させ、次に出てくるデータに対するコードワードは第1主コードグループ(MCG1)で見出す。S202段階における判断結果が同期を挿入する時点であれば、同期パターンはDC成分の抑圧に最適なパターンに選択する通常の同期挿入ルーチンを行う(S203段階)。次に、最後のデータであるかどうかを判断し(S215段階)、最後のデータでなければ同期挿入判断段階、すなわち、S202段階に戻る。図中、mcは変調されたコードワードを、DCCはDC成分の抑圧に最適なものを選択するということをそれぞれ意味する。

【0040】S202段階における判断結果が同期を挿入する時点でなければ、1バイト単位に入力されるデータを読み取り(S204段階)、以前のコードワードが指示するncgに基づき、該当コードグループから読み取られた1バイトのデータに対する変調コードワードを見出す(S205段階)。ただ、DC成分の抑圧のためにncg=1の時及びncg=5の時には参照可能な変換コードグループが2つである。まず、以前のコードワードのncgが1であれば、そのコードワードのEZ値は2≤EZ≤7のうち重複されないコードワード、または7≤EZのコードワードであってランレンジス(2, 12)条件を違えない範囲内で第1主コードグループ(MCG1)及び第2主コードグループ(MCG2)両方を参照して変調コードワードを選択することができる(S206段階、S207段階)。このとき、コードグループの選択は、DC成分の抑圧に最適なコードがどこに属しているかによってなされる。従って、S207段階では、変調コードワード(mc)を第1主コードグループ(MCG1)または第2主コードグループ(MCG2)のうちDC成分の抑圧に最適なコードグループで見出し、ncgは見出されたコードグループに属するコードワードが指定するncgに更新する。

【0041】示されたcod1(dt)は入力データの変調されるコードワードを第1主コードグループ(MCG1)で見出し、cod2(dt)は入力データの変調されるコードワードを第2主コードグループ(MCG2)で見出し、cod3(dt)は入力データの変調されるコードワードを第1判断コードグループ(DCG1)で見出し、cod4(dt)は入力データの変調されるコードワードを第2判断コードグループ(DCG2)で見出し、cod5(dt)は入力データの変調されるコードワードをDSVコードグループで見出すことを意味する。一方、S208段階では、以前のコードワードのncgが1であり、第2主コードグループ(MCG2)においてランレンジス(2, 12)条件を満足し

なければ、変調コードワードを第1主コードグループ(MCG1)で見出し、n c gは見出されたコードワードが指定するn c gに更新する。

【0042】以前のコードワードのn c gが2であれば、以前のコードワードはEZ=0のコードワードであり、このときには無条件に次のコードワードを第2主コードグループ(MCG2)で見出し、n c gを見出されたコードワードが指定するn c gに更新する(S209)。以前のコードワードのn c gが3または4であれば、そのコードワードのEZ値が2 EZ 7であり、重複されたコードワードがある場合であり、次に出てくるコードワードはそれぞれ第1判断コードグループ(DCG1)または第2判断コードグループ(DCG2)で見出し、n c gは見出されたコードワードが指定するn c gに更新する(S210、S211)。以前のコードワードのn c gが5であれば、そのコードワードのEZ値がEZ=1の場合であり、この場合には次のデータが123以下である場合には変調コードワードを第2主コードグループ(MCG2)またはDSVグループで選択して見出すことができ、n c gは見出されたコードワードが指定するn c gに更新する(S212段階、S213段階)。このとき、選択は、DC成分の抑圧に最適なコードグループで見出せば良い。一方、次のデータが123より大きい場合には変調コードワードを第2主コードグループ(MCG2)で見出し、n c gは見出されたコードワードが指定するn c gに更新する(S214段階)。

【0043】このように、n c gが1または5の場合にDC成分が抑圧できる機会が生じ、その可能性は約10%である。DC成分の抑圧の機会が生じた時には最大のDC成分の抑圧効果を得るために選択される2つのコードグループのコードワードをCSVの符号及びINVの特徴が反対になるように配置する。図11は、図9に示された変調方法による変調過程の一部を示す表である。図中、d t (i)は変調する入力データであり、n c g (i-1)は変調されるデータのコードワードが属しているコードグループ(以前のコードワードの次のコードグループ)を表す。ここで、n c gが指示するコードグループに対する内容は、図12に示されたように、n c gが1であれば現在の変調コードワードの次のコードワードが属しているコードグループは第1主コードグループ(MCG1)または第2主コードグループ(MCG2)であり、n c gが2であれば現在の変調コードワードの次のコードワードが属しているコードグループは第2主コードグループ(MCG2)であり、n c gが3であれば現在の変調コードワードの次のコードワードが属しているコードグループは第1判断コードグループ(DCG1)であり、n c gが4であれば現在の変調コードワードの次のコードワードが属しているコードグループは第2判断コードグループ(DCG2)であり、n c g

が5であれば現在の変調コードワードの次のコードワードが属しているコードグループは第2主コードグループ(MCG2)またはDSVグループである。

【0044】一方、図11に示されたc o d e (i)は、n c g (i-1)が指示するコードグループで選択されたd t (i)に対するコードワードを意味し、16進水(hex)で表されている。n c g (i)はそのコードワードの直後のコードワードが属しているコードグループを指示する。INV (i)はコードワード内の1の個数が奇数個(INV (i)=1)であるか、または偶数個(INV (i)=0)であるかを表し、累積されたINV (i)はコードワードストリームの累積された1の個数を表し、CSV (i)はコードワードのDC値を表し、DSV (i)はコードワードストリーム内の累積されたDC値を表す。

【0045】例えば、最初に入力されるデータd t (0)のコードワードに対する以前のコードワードのn c gを1とするととき、データ0に対するコードワードは図3～図8に示された第1主コードグループ(MCG1)で“2001h”となる。“2001h”が指示する次のコードワードに対するn c gは2に指定され、これにより第2番目のデータd t (1)の132に対するコードワードは第2主コードグループ(MCG2)で“0480h”が選択される。第6番目に入力されたデータ17 (=d t (5))はn c gが5に指定され、123より小さいので、コードワードを第2主コードグループ(MCG2)またはDSVグループで見出すことができる。第2主コードグループ(MCG2)では“0080h”があり、DSVグループでは“2040h”がある。今までコードストリームの累積されたINV及びDSVはそれぞれ0 (=INV (4))及び9 (=DSV (4))である。“0080h”的CSVは1であるから、DSV (5)は10 (=DSV (4)+1)となり、“2040h”的CSVは-1であるから、DSV (5)は8 (=DSV (4)-1)となるため、DSVが0に近い“2040h”が選択される。

【0046】従って、図11から明らかなように、現在までのコードワードストリームの累積DSV値が0に近いコードワードを選択する方式で変調したものであり、DSVによるコードワードの選択方法は、この方法のほか設計者が自由に変えることができる。図13は、本発明に係る(2, 12, 8, 15)コードのDSV推移曲線を示すものである。これから、DSVが0を基準に継続して追従していくことが確認でき、これにより本発明で提案するコードのDSV制御機能が確認できる。図14は、本発明に係る(2, 12, 8, 15)コードの周波数スペクトルを示すものであって、低周波帯域が抑圧されていることが確認できる。

【0047】図15は、本発明に係る(2, 12, 8, 15)コードの復調方法の一実施例によるフローチャー

トである。これを図16と結び付けて説明する。光ディスクから読み取られたコードワードストリームを再生クロック信号に同期して再生する。同期コードの例は図10に示されており、同期検出器の例は図16に示されている。直列に入力されるコードワードストリームを、図16に示された第1、第2及び第3シフトレジスター(SR0、SR1及びSR2と表記してある)102、104及び106にシフトして貯蔵する(S301)。第2及び第3シフトレジスター104、106は、例えば15ビットのシフトレジスターであり、第1シフトレジスター102は、データ復号のために以前のコードワード内のエンドゼロ数EZチェック用であり、12ビットで十分であるが、同期コードワードの復号のために増やすこともできる。第1シフトレジスター102の出力は同期デコーダ108及びデータデコーダ(図示せず)に提供され、第2及び第3シフトレジスター104、106の出力はデータデコーダに提供される。

【0048】まず、第1シフトレジスター102から提供される図10に示された同期パターンを同期デコーダ108により復号して同期を検出する。同期デコーダ108により同期パターンが検出されると(S302)、本発明では示していないが、同期保護及び内挿する同期復元ルーチンを行う(S303)。S303では、正常に検出された同期であるかを判断して同期デコーダ108により検出された同期をそのまま使用するか、あるいは擬似同期を内挿するかを判断する。次に、復調しようとするコードワードを貯蔵している第2シフトレジスター104から出力されるコードワードが属しているコードグループを表示するncgを見出す過程について説明する。

【0049】S303段階で同期復元ルーチンを行った後ncgを1に更新し、次に、最後のデータであるかどうかを判断する(S307段階)。S302段階でシフトレジスター102に貯蔵されたコードワードが同期でなければ以前のコードワードのEZをチェックする(S304段階)。ここで、EZが0の時にはncgを2に更新し(S305段階)、EZが1の時にはncgを5に更新する(S306段階)。EZが2～EZ7の場合には、以前のコードワードのncgが指示するコードグループから2つの重複コードワードが存在するかをチェックする(S307段階)。

【0050】もし、S307段階で以前のコードワードのncgが指示するコードグループで第1シフトレジスター102に貯蔵された2つの重複コードワードが存在すると、第2シフトレジスター104から現在復調しようとするコードワードのMSB(bit14)及びLSB(bit0)をチェックする(S308段階)。ここで、1ビットにでも“1”が存在するとncgを3に更新し、いずれも“0”であればncgを4に更新する(S309段階、S310段階)。S307段階で以前のコー-

ドワードのEZが $2 \leq EZ \leq 7$ でありながら、以前のncgが指示するコードグループで重複コードワードが存在しないか、あるいは $EZ = k$ であれば、ncgは1に更新する(S311段階)。次に、復調しようとするコードワードを貯蔵した第2シフトレジスター104の出力を復号する段階について説明する。

【0051】更新されたncgが指示するコードグループに復調しようとするコードワードが2つ存在するかをチェックする(S312段階)。S312段階で同一のコードワードが2つ存在すると、第3シフトレジスター106から提供される次のコードワードのMSB(bit14)及びLSB(bit0)をチェックして(S313段階)、1ビットにでも“1”が存在すると、第2シフトレジスター104から提供される現在復調しようとするコードは同一のコードワードのうち1番目のコードワードであることを確認し、これに対応する元のデータに復調する(S314段階)。

【0052】S313段階で第3シフトレジスター106から提供される次のコードワードのMSB(bit14)及びLSB(bit0)両方が“0”であれば、第2シフトレジスター104から提供される現在復調しようとするコードワードは同一のコードワードのうち2番目のコードワードであることを確認し、これに対応する元のデータに復調する(S315段階)。S312段階で更新されたncgが指示するコードグループに第2シフトレジスター104から提供されるコードワードが重複コードワードでなければ、更新されたncgが指示するコードグループで第2シフトレジスター104から提供される現在復調しようとするコードワードに対応する元のデータに復調する(S316段階)。ncgが指示するコードグループは、図12に示されたように、ncgが1であれば、次のコードワードが属しているコードグループは第1主コードグループ(MCG1)または第2主コードグループ(MCG2)であり、ncgが2であれば、次のコードワードが属しているコードグループは第2主コードグループ(MCG2)であり、ncgが3であれば、次のコードワードが属しているコードグループは第1判断コードグループ(DCG1)であり、ncgが4であれば、次のコードワードが属しているコードグループは第2判断コードグループ(DCG2)であり、ncgが5であれば、次のコードワードが属しているコードグループは第2主コードグループ(MCG2)またはDSVグループである。

【0053】

【発明の効果】以上述べたように、本発明は、DC成分の抑圧のための補助コードグループ(DSVグループ)内のコードワードを主コードグループで既に使用されているコードワードの一部をそのまま用い、主コードグループのコードワードの特性(例えば、パラメータCSV及びINV)を最大に活用して主コードグループを生成

することにより、コードワードのビット数を減らすことができる。これにより、記録密度及びDC成分の抑圧能力が向上できる。さらに、本発明はパラメータINVを考慮してDSV制御を行うと、すなわち、DSV制御が可能な頻度数の少ないコードでルックアヘッド方法によりDSV制御を行った時、パラメータINVを反対に配置した場合が数dB程度改善される効果がある。

【図面の簡単な説明】

【図1】 既存の変復調変換表の一例である。

【図2】 本発明で提案する(d, k, m, n)で表現されるRLCコードのためのコードグループ生成方法の一実施例によるフローチャートである。

【図3】 図2に示された方法により生成された(2, 12, 8, 15)コードの変復調のための変換コード、ncg及びコードワードの特性(INV, CSV)を示す表である。

【図4】 図2に示された方法により生成された(2, 12, 8, 15)コードの変復調のための変換コード、ncg及びコードワードの特性(INV, CSV)を示す表である。

【図5】 図2に示された方法により生成された(2, 12, 8, 15)コードの変復調のための変換コード、ncg及びコードワードの特性(INV, CSV)を示す表である。

【図6】 図2に示された方法により生成された(2, 12, 8, 15)コードの変復調のための変換コード、ncg及びコードワードの特性(INV, CSV)を示す表である。

【図7】 図2に示された方法により生成された(2, 12, 8, 15)コードの変復調のための変換コード、ncg及びコードワードの特性(INV, CSV)を示す表である。

す表である。

【図8】 図2に示された方法により生成された(2, 12, 8, 15)コードの変復調のための変換コード、ncg及びコードワードの特性(INV, CSV)を示す表である。

【図9】 図3Aないし図3Fに示された変換表を用いて(2, 12, 8, 15)コードの変調方法の一実施例によるフローチャートである。

【図10】 本発明による(2, 12, 8, 15)コードで使用可能な同期の形態を示す表である。

【図11】 図3に示された変換表を用いて変調する過程を説明するための表である。

【図12】 本発明で使用されるncgが指示するコードグループ表である。

【図13】 本発明で例示した(2, 12, 8, 15)コードのDSV変化曲線である。

【図14】 本発明で例示した(2, 12, 8, 15)コードの周波数スペクトルを示す図面である。

【図15】 図9に示された方法により変調されたコードを元のデータに復調する(2, 12, 8, 15)コードの復調方法の一実施例によるフローチャートである。

【図16】 同期パターンを検出する図15に示されたS302を説明するための同期検出器の回路図である。

【図1】

(a)

主変換表				
	第1コードグループ	第2コードグループ	第3コードグループ	第4コードグループ
0	0010000000001001	0100000100100000	0010010010001001	0100000100100000
~	~	~	~	~
255	0000001000001000	0100001000010010	1000100100010000	0100001000100100

(b)

副変換表 (FOR DC CONTROL)				
	第1コードグループ	第2コードグループ	第3コードグループ	第4コードグループ
0	0000010010000000	0000001001000000	0100100001001000	0100100001001000
~	~	~	~	~
87	0000000100100100	0100010001000100	1000100010001000	0100010001000100

【図2】

【図8】

MCG1(Code Group 1)		MCG2(Code Group 2)		DCG1(Code Group 3)		DCG2(Code Group 4)		DSV Group(Code Group 5)	
data	code	ncg	inv	data	code	ncg	inv	data	code
(hex)	(hex)			(hex)	(hex)			(hex)	(hex)
250	4911	2	1	250	1111	2	1	0	250
251	4912	5	1	251	1121	2	3	0	251
252	4920	3	0	252	1122	1	0	252	1122
253	4921	2	-1	253	1221	2	1	0	253
254	4922	5	1	254	1241	2	3	0	254
255	4924	1	-1	255	1242	5	1	0	255

【図3】

【図4】

MCS1(Code Group 1) data code nco csv (hex)	MCS2(Code Group 2) data code nco csv (hex)	MCS3(Code Group 3) data code nco csv (hex)	DCC1(Code Group 4) data code nco csv (hex)	DCC2(Code Group 5) data code nco csv (hex)
050 2112 5 051 2120 3 052 2120 4 053 2121 2 054 2122 5 055 2124 1 056 2124 4 057 2200 1 058 2201 2 059 2201 5 060 2201 6 061 2202 3 062 2202 4 063 2202 5 064 2202 6 065 2203 2 066 2203 3 067 2203 4 068 2203 5 069 2203 6 070 2204 1 071 2204 2 072 2204 3 073 2204 4 074 2204 5 075 2204 6 076 2205 1 077 2205 2 078 2205 3 079 2205 4 080 2205 5 081 2205 6 082 2206 1 083 2206 2 084 2206 3 085 2206 4 086 2206 5 087 2206 6 088 2207 1 089 2207 2 090 2207 3 091 2207 4 092 2207 5 093 2207 6 094 2208 1 095 2208 2 096 2208 3 097 2208 4 098 2208 5 099 2208 6	050 0211 2 051 0210 4 052 0210 5 053 0210 6 054 0211 1 055 0211 4 056 0211 5 057 0211 6 058 0212 3 059 0212 4 060 0212 5 061 0212 6 062 0213 3 063 0213 4 064 0213 5 065 0213 6 066 0214 3 067 0214 4 068 0214 5 069 0214 6 070 0215 3 071 0215 4 072 0215 5 073 0215 6 074 0216 3 075 0216 4 076 0216 5 077 0216 6 078 0217 3 079 0217 4 080 0217 5 081 0217 6 082 0218 3 083 0218 4 084 0218 5 085 0218 6 086 0219 3 087 0219 4 088 0219 5 089 0219 6 090 0220 3 091 0220 4 092 0220 5 093 0220 6 094 0221 3 095 0221 4 096 0221 5 097 0221 6 098 0222 3 099 0222 4	050 0211 2 051 0210 4 052 0210 5 053 0210 6 054 0211 1 055 0211 4 056 0211 5 057 0211 6 058 0212 3 059 0212 4 060 0212 5 061 0212 6 062 0213 3 063 0213 4 064 0213 5 065 0213 6 066 0214 3 067 0214 4 068 0214 5 069 0214 6 070 0215 3 071 0215 4 072 0215 5 073 0215 6 074 0216 3 075 0216 4 076 0216 5 077 0216 6 078 0217 3 079 0217 4 080 0217 5 081 0217 6 082 0218 3 083 0218 4 084 0218 5 085 0218 6 086 0219 3 087 0219 4 088 0219 5 089 0219 6 090 0220 3 091 0220 4 092 0220 5 093 0220 6 094 0221 3 095 0221 4 096 0221 5 097 0221 6 098 0222 3 099 0222 4	050 0211 2 051 0210 4 052 0210 5 053 0210 6 054 0211 1 055 0211 4 056 0211 5 057 0211 6 058 0212 3 059 0212 4 060 0212 5 061 0212 6 062 0213 3 063 0213 4 064 0213 5 065 0213 6 066 0214 3 067 0214 4 068 0214 5 069 0214 6 070 0215 3 071 0215 4 072 0215 5 073 0215 6 074 0216 3 075 0216 4 076 0216 5 077 0216 6 078 0217 3 079 0217 4 080 0217 5 081 0217 6 082 0218 3 083 0218 4 084 0218 5 085 0218 6 086 0219 3 087 0219 4 088 0219 5 089 0219 6 090 0220 3 091 0220 4 092 0220 5 093 0220 6 094 0221 3 095 0221 4 096 0221 5 097 0221 6 098 0222 3 099 0222 4	050 0211 2 051 0210 4 052 0210 5 053 0210 6 054 0211 1 055 0211 4 056 0211 5 057 0211 6 058 0212 3 059 0212 4 060 0212 5 061 0212 6 062 0213 3 063 0213 4 064 0213 5 065 0213 6 066 0214 3 067 0214 4 068 0214 5 069 0214 6 070 0215 3 071 0215 4 072 0215 5 073 0215 6 074 0216 3 075 0216 4 076 0216 5 077 0216 6 078 0217 3 079 0217 4 080 0217 5 081 0217 6 082 0218 3 083 0218 4 084 0218 5 085 0218 6 086 0219 3 087 0219 4 088 0219 5 089 0219 6 090 0220 3 091 0220 4 092 0220 5 093 0220 6 094 0221 3 095 0221 4 096 0221 5 097 0221 6 098 0222 3 099 0222 4

【図5】

HGS1(Code Group 1)		HGS2(Code Group 2)		DCS1(Code Group 3)				DCS2(Code Group 4)				DSV Group(Code Group 5)					
data	code	data	code	reg	inv	data	code	reg	inv	data	code	reg	inv	data	code	reg	inv
(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)	(hex)
100	2424	3	100	0B21	3	100	4824	3	100	100	0821	3	100	2424	3	100	0
101	2424	4	101	0B21	4	101	4824	4	101	101	0821	4	101	2424	4	101	0
102	2440	3	102	0408	3	102	4848	3	102	102	0408	3	102	2440	3	102	0
103	2440	4	103	0408	4	103	4848	4	103	103	0408	4	103	2440	4	103	0
104	2442	2	104	0421	2	104	4849	2	104	104	0421	2	104	2442	2	104	0
105	2442	5	105	0422	5	105	4849	2	105	105	0422	5	105	2442	5	105	0
106	2444	2	106	0844	2	106	4880	2	106	106	0844	2	106	2444	2	106	0
107	2444	3	107	0844	3	107	4884	3	107	107	0844	3	107	2444	3	107	0
108	2444	4	108	0848	4	108	4888	4	108	108	0848	4	108	2444	4	108	0
109	2448	3	109	0848	3	109	4890	3	109	109	0848	3	109	2448	3	109	0
110	2449	2	110	0849	2	110	4891	2	110	110	0849	2	110	2449	2	110	0
111	2449	3	111	0849	3	111	4891	2	111	111	0849	3	111	2449	3	111	0
112	2460	4	112	0421	4	112	4904	2	112	112	0421	4	112	2460	4	112	0
113	2462	5	113	0422	5	113	4908	2	113	113	0422	5	113	2462	5	113	0
114	2464	3	114	0421	3	114	4908	2	114	114	0421	3	114	2464	3	114	0
115	2464	4	115	0422	4	115	4911	2	115	115	0422	4	115	2464	4	115	0
116	2468	3	116	0421	3	116	4912	2	116	116	0421	3	116	2468	3	116	0
117	2468	4	117	0422	4	117	4912	2	117	117	0422	4	117	2468	4	117	0
118	2469	2	118	0421	2	118	4912	2	118	118	0421	2	118	2469	2	118	0
119	2469	3	119	0422	3	119	4912	2	119	119	0422	3	119	2469	3	119	0
120	2490	4	120	0421	4	120	4921	2	120	120	0421	4	120	2490	4	120	0
121	2490	5	121	0422	5	121	4922	2	121	121	0422	5	121	2490	5	121	0
122	2491	3	122	0421	3	122	4924	2	122	122	0421	3	122	2491	3	122	0
123	2491	4	123	0422	4	123	4924	2	123	123	0422	4	123	2491	4	123	0
124	4002	5	124	4002	4	124	4924	2	124	124	4002	5	124	4002	5	124	0
125	4004	3	125	4004	4	125	4925	2	125	125	4004	3	125	4004	3	125	0
126	4006	4	126	4006	4	126	4925	2	126	126	4006	4	126	4006	4	126	0
127	4008	2	127	4008	3	127	4927	2	127	127	4008	2	127	4008	2	127	0
128	4009	2	128	4009	3	128	4928	2	128	128	4009	2	128	4009	2	128	0
129	4009	1	129	4009	2	129	4928	2	129	129	4009	1	129	4009	1	129	0
130	4010	2	130	4010	2	130	4929	2	130	130	4010	2	130	4010	2	130	0
131	4012	5	131	4012	6	131	4929	2	131	131	4012	5	131	4012	5	131	0
132	4021	2	132	4021	3	132	4930	2	132	132	4021	2	132	4021	2	132	0
133	4021	4	133	4021	4	133	4930	2	133	133	4021	4	133	4021	4	133	0
134	4022	5	134	4022	5	134	4930	2	134	134	4022	5	134	4022	5	134	0
135	4024	3	135	4024	4	135	4930	2	135	135	4024	3	135	4024	3	135	0
136	4024	4	136	4024	4	136	4930	2	136	136	4024	4	136	4024	4	136	0
137	4024	5	137	4024	5	137	4930	2	137	137	4024	5	137	4024	5	137	0
138	4041	2	138	4041	3	138	4930	2	138	138	4041	2	138	4041	2	138	0
139	4041	2	139	4041	3	139	4930	2	139	139	4041	2	139	4041	2	139	0
140	4042	4	140	4042	4	140	4930	2	140	140	4042	4	140	4042	4	140	0
141	4044	3	141	4044	3	141	4930	2	141	141	4044	3	141	4044	3	141	0
142	4044	4	142	4044	4	142	4930	2	142	142	4044	4	142	4044	4	142	0
143	4048	3	143	4048	3	143	4930	2	143	143	4048	3	143	4048	3	143	0
144	4048	4	144	4048	4	144	4930	2	144	144	4048	4	144	4048	4	144	0
145	4049	2	145	4049	2	145	4930	2	145	145	4049	2	145	4049	2	145	0
146	4050	1	146	4050	1	146	4930	2	146	146	4050	1	146	4050	1	146	0
147	4050	2	147	4050	1	147	4930	2	147	147	4050	2	147	4050	2	147	0
148	4052	5	148	4052	5	148	4930	2	148	148	4052	5	148	4052	5	148	0
149	4054	1	149	4054	1	149	4930	2	149	149	4054	1	149	4054	1	149	0

〔図6〕

HCG (Code Group 1)												HCCG (Code Group 2)												DCG (Code Group 3)												DCGZ (Code Group 4)												DSV Group (Code Group 5)											
date	code	mcg	csv	inv	inv	date	b	code	mcg	csv	inv	date	b	code	mcg	csv	inv	date	b	code	mcg	csv	inv	date	b	code	mcg	csv	inv	date	b	code	mcg	csv	inv	date	b	code	mcg	csv	inv																		
(hex)						(hex)						(hex)						(hex)						(hex)						(hex)						(hex)						(hex)																	
150	4088	1	0	-	-	150	151	0882	5	0982	5	150	151	0882	4	0982	4	150	151	0882	3	0982	3	150	151	0882	2	0982	2	150	151	0882	1	0982	1	150	151	0882	0	0982	0																		
151	4089	2	5	-	-	151	152	0881	2	0981	2	151	152	0881	1	0981	1	151	152	0881	0	0981	0	151	152	0881	-1	0981	-1	151	152	0881	-2	0981	-2	151	152	0881	-3	0981	-3																		
152	4090	1	9	-	-	152	153	0880	1	0980	1	152	153	0880	0	0980	0	152	153	0880	-1	0980	-1	152	153	0880	-2	0980	-2	152	153	0880	-3	0980	-3																								
153	4091	2	12	-	-	153	154	0884	3	0984	3	153	154	0884	2	0984	2	153	154	0884	1	0984	1	153	154	0884	0	0984	0	153	154	0884	-1	0984	-1																								
154	4092	5	5	-	-	154	155	0884	4	0984	4	154	155	0884	3	0984	3	154	155	0884	2	0984	2	154	155	0884	1	0984	1	154	155	0884	0	0984	0																								
155	4093	5	10	-	-	155	156	0884	5	0984	5	155	156	0884	4	0984	4	155	156	0884	3	0984	3	155	156	0884	2	0984	2	155	156	0884	1	0984	1																								
156	4094	1	12	-	-	156	157	0884	6	0984	6	156	157	0884	5	0984	5	156	157	0884	4	0984	4	156	157	0884	3	0984	3	156	157	0884	2	0984	2																								
157	4102	5	15	-	-	157	158	0884	7	0984	7	157	158	0884	6	0984	6	157	158	0884	5	0984	5	157	158	0884	4	0984	4	157	158	0884	3	0984	3																								
158	4104	1	15	-	-	158	159	0884	8	0984	8	158	159	0884	7	0984	7	158	159	0884	6	0984	6	158	159	0884	5	0984	5	158	159	0884	4	0984	4																								
159	4106	8	15	-	-	159	160	0884	9	0984	9	159	160	0884	8	0984	8	159	160	0884	7	0984	7	159	160	0884	6	0984	6	159	160	0884	5	0984	5																								
160	4109	2	15	-	-	160	161	0884	10	0984	10	160	161	0884	9	0984	9	160	161	0884	8	0984	8	160	161	0884	7	0984	7	160	161	0884	6	0984	6																								
161	4110	9	15	-	-	161	162	0884	11	0984	11	161	162	0884	10	0984	10	161	162	0884	9	0984	9	161	162	0884	8	0984	8	161	162	0884	7	0984	7																								
162	4112	5	15	-	-	162	163	0884	12	0984	12	162	163	0884	11	0984	11	162	163	0884	10	0984	10	162	163	0884	9	0984	9	162	163	0884	8	0984	8																								
163	4113	5	15	-	-	163	164	0884	13	0984	13	163	164	0884	12	0984	12	163	164	0884	11	0984	11	163	164	0884	10	0984	10	163	164	0884	9	0984	9																								
164	4114	5	15	-	-	164	165	0884	14	0984	14	164	165	0884	13	0984	13	164	165	0884	12	0984	12	164	165	0884	11	0984	11	164	165	0884	10	0984	10																								
165	4115	5	15	-	-	165	166	0884	15	0984	15	165	166	0884	14	0984	14	165	166	0884	13	0984	13	165	166	0884	12	0984	12	165	166	0884	11	0984	11																								
166	4116	5	15	-	-	166	167	0884	16	0984	16	166	167	0884	15	0984	15	166	167	0884	14	0984	14	166	167	0884	13	0984	13	166	167	0884	12	0984	12																								
167	4117	5	15	-	-	167	168	0884	17	0984	17	167	168	0884	16	0984	16	167	168	0884	15	0984	15	167	168	0884	14	0984	14	167	168	0884	13	0984	13																								
168	4118	5	15	-	-	168	169	0884	18	0984	18	168	169	0884	17	0984	17	168	169	0884	16	0984	16	168	169	0884	15	0984	15	168	169	0884	14	0984	14																								
169	4119	5	15	-	-	169	170	0884	19	0984	19	169	170	0884	18	0984	18	169	170	0884	17	0984	17	169	170	0884	16	0984	16	169	170	0884	15	0984	15																								
170	4120	5	15	-	-	170	171	0884	20	0984	20	170	171	0884	19	0984	19	170	171	0884	18	0984	18	170	171	0884	17	0984	17	170	171	0884	16	0984	16																								
171	4121	5	15	-	-	171	172	0884	21	0984	21	171	172	0884	20	0984	20	171	172	0884	19	0984	19	171	172	0884	18	0984	18	171	172	0884	17	0984	17																								
172	4122	5	15	-	-	172	173	0884	22	0984	22	172	173	0884	21	0984	21	172	173	0884	20	0984	20	172	173	0884	19	0984	19	172	173	0884	18	0984	18																								
173	4123	5	15	-	-	173	174	0884	23	0984	23	173	174	0884	22	0984	22	173	174	0884	21	0984	21	173	174	0884	20	0984	20	173	174	0884	19	0984	19																								
174	4124	5	15	-	-	174	175	0884	24	0984	24	174	175	0884	23	0984	23	174	175	0884	22	0984	22	174	175	0884	21	0984	21	174	175	0884	20	0984	20																								
175	4125	5	15	-	-	175	176	0884	25	0984	25	175	176	0884	24	0984	24	175	176	0884	23	0984	23	175	176	0884	22	0984	22	175	176	0884	21	0984	21																								
176	4126	5	15	-	-	176	177	0884	26	0984	26	176	177	0884	25	0984	25	176	177	0884	24	0984	24	176	177	0884	23	0984	23	176	177	0884	22	0984	22																								
177	4127	5	15	-	-	177	178	0884	27	0984	27	177	178	0884	26	0984	26	177	178	0884	25	0984	25	177	178	0884	24	0984	24	177	178	0884	23	0984	23																								
178	4128	5	15	-	-	178	179	0884	28	0984	28	178	179	0884	27	0984	27	178	179	0884	26	0984	26	178	179	0884	25	0984	25	178	179	0884	24	0984	24																								
179	4129	5	15	-	-	179	180	0884	29	0984	29	179	180	0884	28	0984	28	179	180	0884	27	0984	27	179	180	0884	26	0984	26	179	180	0884	25	0984	25																								
180	4130	5	15	-	-	180	181	0884	30	0984	30	180	181	0884	29	0984	29	180	181	0884	28	0984	28	180	181	0884	27	0984	27	180	181	0884	26	0984	26																								
181	4131	5	15	-	-	181	182	0884	31	0984	31	181	182	0884	30	0984	30	181	182	0884	29	0984	29	181	182	0884	28	0984	28	181	182	0884	27	0984	27																								
182	4132	5	15	-	-	182	183	0884	32	0984	32	182	183	0884	31	0984	31	182	183	0884	30	0984	30	182	183	0884	29	0984	29	182	183	0884	28	0984	28																								
183	4133	5	15	-	-	183	184	0884	33	0984	33	183	184	0884	32	0984	32	183	184	0884	31	0984	31	183	184	0884	30	0984	30	183	184	0884	29	0984	29																								
184	4134	5	15	-	-	184	185	0884	34	0984	34	184	185	0884	33	0984	33	184	185	0884	32	0984	32	184	185	0884	31	0984	31	184	185	0884	30	0984	30																								
185	4135	5	15	-	-	185	186	0884	35	0984	35	185	186	0884	34	0984	34	185	186	0884	33	0984	33	185	186	0884	32	0984	32	185	186	0884	31	0984	31																								
186	4136	5	15	-	-	186	187	0884	36	0984	36	186	187	0884	35	0984	35	186	187	0884	34	0984	34	186	187	0884	33	0984	33	186	187	0884	32	0984	32																								
187	4137	5	15	-	-	187	188	0884	37	0984	37	187	188	0884	36	0984	36	187	188	0884	35	0984																																					

【図7】

MCG1 (CodeGroup 1)				MCG2 (CodeGroup 2)				DCG1 (CodeGroup 3)				DCG2 (CodeGroup 4)				DSV Group (Code Groups)			
data	code	mcg	inv	data	code	mcg	inv												
(hex)	(hex)			(hex)	(hex)			(hex)	(hex)			(hex)	(hex)			(hex)	(hex)		
200	4440	1	0	201	4441	2	0	200	4441	2	0	201	4441	2	0	200	4441	2	0
201	4441	1	1	202	4442	3	1	201	4441	2	1	202	4442	3	1	201	4441	2	1
202	4442	1	2	203	4443	4	2	202	4442	3	2	203	4443	4	2	202	4442	3	2
203	4443	1	3	204	4444	5	3	203	4443	4	3	204	4444	5	3	203	4443	4	3
204	4444	1	4	205	4445	6	4	204	4444	5	4	205	4445	6	4	204	4444	5	4
205	4445	1	5	206	4446	7	5	205	4445	6	5	206	4446	7	5	205	4445	6	5
206	4446	1	6	207	4447	8	6	206	4446	7	6	207	4447	8	6	206	4446	7	6
207	4447	1	7	208	4448	9	7	207	4447	8	7	208	4448	9	7	207	4447	8	7
208	4448	1	8	209	4449	0	8	208	4448	9	8	209	4449	0	8	208	4448	9	8
209	4449	1	9	210	444A	1	9	209	4449	0	9	210	444A	1	9	209	4449	0	9
210	444A	1	0	211	444B	2	0	210	444A	1	0	211	444B	2	0	210	444A	1	0
211	444B	1	1	212	444C	3	1	211	444B	2	1	212	444C	3	1	211	444B	2	1
212	444C	1	2	213	444D	4	2	212	444C	3	2	213	444D	4	2	212	444C	3	2
213	444D	1	3	214	444E	5	3	213	444D	4	3	214	444E	5	3	213	444D	4	3
214	444E	1	4	215	444F	6	4	214	444E	5	4	215	444F	6	4	214	444E	5	4
215	444F	1	5	216	444G	7	5	215	444F	6	5	216	444G	7	5	215	444F	6	5
216	444G	1	6	217	444H	8	6	216	444G	7	6	217	444H	8	6	216	444G	7	6
217	444H	1	7	218	444I	9	7	217	444H	8	7	218	444I	9	7	217	444H	8	7
218	444I	1	8	219	444J	0	8	218	444I	9	8	219	444J	0	8	218	444I	9	8
219	444J	1	9	220	444K	1	9	219	444J	0	9	220	444K	1	9	219	444J	0	9
220	444K	1	0	221	444L	2	0	220	444K	1	0	221	444L	2	0	220	444K	1	0
221	444L	1	1	222	444M	3	1	221	444L	2	1	222	444M	3	1	221	444L	2	1
222	444M	1	2	223	444N	4	2	222	444M	3	2	223	444N	4	2	222	444M	3	2
223	444N	1	3	224	444O	5	3	223	444N	4	3	224	444O	5	3	223	444N	4	3
224	444O	1	4	225	444P	6	4	224	444O	5	4	225	444P	6	4	224	444O	5	4
225	444P	1	5	226	444Q	7	5	225	444P	6	5	226	444Q	7	5	225	444P	6	5
226	444Q	1	6	227	444R	8	6	226	444Q	7	6	227	444R	8	6	226	444Q	7	6
227	444R	1	7	228	444S	9	7	227	444R	8	7	228	444S	9	7	227	444R	8	7
228	444S	1	8	229	444T	0	8	228	444S	9	8	229	444T	0	8	228	444S	9	8
229	444T	1	9	230	444U	1	9	229	444T	0	9	230	444U	1	9	229	444T	0	9
230	444U	1	0	231	444V	2	0	230	444U	1	0	231	444V	2	0	230	444U	1	0
231	444V	1	1	232	444W	3	1	231	444V	2	1	232	444W	3	1	231	444V	2	1
232	444W	1	2	233	444X	4	2	232	444W	3	2	233	444X	4	2	232	444W	3	2
233	444X	1	3	234	444Y	5	3	233	444X	4	3	234	444Y	5	3	233	444X	4	3
234	444Y	1	4	235	444Z	6	4	234	444Y	5	4	235	444Z	6	4	234	444Y	5	4
235	444Z	1	5	236	444A	7	5	235	444Z	6	5	236	444A	7	5	235	444Z	6	5
236	444A	1	6	237	444B	8	6	236	444A	7	6	237	444B	8	6	236	444A	7	6
237	444B	1	7	238	444C	9	7	237	444B	8	7	238	444C	9	7	237	444B	8	7
238	444C	1	8	239	444D	0	8	238	444C	9	8	239	444D	0	8	238	444C	9	8
239	444D	1	9	240	444E	1	9	239	444D	0	9	240	444E	1	9	239	444D	0	9
240	444E	1	0	241	444F	2	0	240	444E	1	0	241	444F	2	0	240	444E	1	0
241	444F	1	1	242	444G	3	1	241	444F	2	1	242	444G	3	1	241	444F	2	1
242	444G	1	2	243	444H	4	2	242	444G	3	2	243	444H	4	2	242	444G	3	2
243	444H	1	3	244	444I	5	3	243	444H	4	3	244	444I	5	3	243	444H	4	3
244	444I	1	4	245	444J	6	4	244	444I	5	4	245	444J	6	4	244	444I	5	4
245	444J	1	5	246	444K	7	5	245	444J	6	5	246	444K	7	5	245	444J	6	5
246	444K	1	6	247	444L	8	6	246	444K	7	6	247	444L	8	6	246	444K	7	6
247	444L	1	7	248	444M	9	7	247	444L	8	7	248	444M	9	7	247	444L	8	7
248	444M	1	8	249	444N	0	8	248	444M	9	8	249	444N	0	8	248	444M	9	8
249	444N	1	9	250	444O	1	9	249	444N	0	9	250	444O	1	9	249	444N	0	9
250	444O	1	0	251	444P	2	0	250	444O	1	0	251	444P	2	0	250	444O	1	0
251	444P	1	1	252	444Q	3	1	251	444P	2	1	252	444Q	3	1	251	444P	2	1
252	444Q	1	2	253	444R	4	2	252	444Q	3	2	253	444R	4	2	252	444Q	3	2
253	444R	1	3	254	444S	5	3	253	444R	4	3	254	444S	5	3	253	444R	4	3
254	444S	1	4	255	444T	6	4	254	444S	5	4	255	444T	6	4	254	444S	5	4
255	444T	1	5	256	444U	7	5	255	444T	6	5	256	444U	7	5	255	444T	6	5
256	444U	1	6	257	444V	8	6	256	444U	7	6	257	444V	8	6	256	444U	7	6
257	444V	1	7	258	444W	9	7	257	444V	8	7	258	444W	9	7	257	444V	8	7
258	444W	1	8	259	444X	0	8	258	444W	9	8	259	444X	0	8	258	444W	9	8
259	444X	1	9	260	444Y	1	9	259	444X	0	9	260	444Y	1	9	259	444X	0	9
260	444Y	1	0	261	444Z	2	0	260	444Y	1	0	261	444Z	2	0	260	444Y	1	0
261	444Z	1	1	262	444A	3	1	261	444Z	2	1	262	444A	3	1	261	444Z	2	1
262	444A	1	2	263	444B	4	2	262	444A	3	2	263	444B	4	2	262	444A	3	2
263	444B	1	3	264	444C	5	3	263	444B	4	3	264	444C	5	3	263	444B	4	3
264	444C	1	4	265	444D	6	4	264	444C	5	4	265	444D	6	4	264	444C	5	4
265	444D	1	5	266	444E	7	5	265	444D	6	5	266	444E	7	5	265	444D	6	5
266	444E	1	6	267	444F	8	6	266	444E	7	6	267	444F	8	6	266	444E	7	6
267	444F	1	7	268	444G	9	7	267	444F	8	7	268	444G	9	7	267	444F	8	7
268	444G	1	8	269	444H	0	8	268	444G	9	8	269	444H	0	8	268	444G	9	8
269	444H	1	9	270	444I	1	9	269	444H	0	9	270	444I	1	9	269	444H	0	9
270	444I	1	0	271	444J	2	0	270	444I	1	0	271	444J	2	0	270	444I	1	0
271	444J	1	1	272	444K	3	1	271	444J	2	1	272	444K	3	1	271	444J	2	1
272	444K	1	2	273	444L	4	2	272	444K	3	2	273	444L	4	2	272	444K	3	2
273	444L	1	3	274	444M	5	3	273	444L	4	3	274	444M	5	3	273	444L	4	3
274	444M	1	4	275	444N	6	4	274	444M	5	4	275	444N	6	4	274	444M	5	4
275	444N	1	5	276	444O	7	5	275	444N	6	5	276	444O	7	5	275	444N	6	5
276	444O	1	6	277	44														

【図9】

【図10】

同期コードの種類	SYNCHRONIZATION CODEWORD
SYNC1	x000x00100010000000000000001000100
SYNC2	x00x00100001000000000000000000001000100
SYNC3	x0000100000100000000000000000001000100
SYNC4	x0001000000100000000000000000001000100

【図12】

ncg	コードグループ
1	MCG1 OR MCG2
2	MCG2
3	DCG1
4	DCG2
5	MCG2 OR DSV GROUP

【図11】

dt(i)	ncg(i-1)	code(i) (hex)	ncg(i)	INV(i)	逆算された INV(i)	CSV(i)	DSV(i)
000	1	2001	2	0	0	11	011
132	2	0480	3	0	0	9	002
019	3	2041	2	1	1	1	003
007	2	0091	2	1	0	-7	010
200	2	1112	5	0	0	-1	009
017	5	2040	3	0	0	-1	008
187	3	4400	1	0	0	-7	001
015	1	2024	3	1	1	7	008
164	3	4120	4	1	0	9	-01
150	4	0892	5	0	0	-1	-02
044	5	2108	3	1	1	3	001
222	3	4811	2	0	1	1	002
243	2	1248	3	0	1	-3	005
095	3	4808	4	1	0	-1	006
060	4	0404	3	0	0	1	007
080	3	4444	3	0	0	1	008
036	3	4102	5	1	1	1	009
097	5	2420	4	1	0	3	006
191	4	1080	4	0	0	-5	001
215	4	1048	3	1	1	5	006
239	3	4889	2	1	0	1	005
209	2	1042	5	1	1	1	006
022	5	2044	4	1	0	-5	001
161	4	0922	5	0	0	-1	000
238	5	1210	3	1	1	1	001
117	3	4912	5	1	0	3	-02
044	5	2108	3	1	1	3	001
203	3	1021	2	1	0	-1	000
187	2	0920	4	1	1	3	003
104	4	2244	3	0	0	1	002
177	3	4220	4	1	0	7	-05
195	4	2444	4	0	0	-1	-06
075	4	0210	4	0	0	-5	-11
041	4	0202	5	0	0	1	-10

【図16】

【図13】

【図14】

【図15】

