Critical Points and The Second Derivative Test

Basic Optimization Methods

Critical Points

- In the introductory problem determining the maximum height attained by an object whose height after t metres is f(t) it was argued that the maximizing point was the value of t at which "the gradient of the line touching the point (t, f(t)) was 0".
- In other words, that value of t for which f'(t) = 0.
- In general, a point, (x, f(x)) at which f'(x) = 0 is called a *critical point* of f.
- Finding and analysing critical points is an important tool in solving *optimization problems*.

Critical Points - Minimum

Critical Points - Maximum

Critical Points – Minimum and Maximum

Critical Points – ????

Critical Points – Analysis I

- From these cases we see that a function may have
 - 1. A single minimal critical point
 - 2. A single maximal critical point
 - 3. A mix of minima and maxima.
 - 4. No critical points at all.
- How do we tell these apart?
- We can identify those functions falling into the fourth class.
 - Q: How?
 - A: f'(x) = 0 has no solutions.
- And those in the third class: f'(x) = 0 has at least two solutions.

Critical Points – Analysis II

- How do we tell if a critical point is a "local" minimum or maximum point? (ie the smallest or largest value in a range).
- We use

The Second Derivative Test

- f(x) is a function.
- f'(x) (if "well-defined") is also a function.
- Therefore there is (in principle) an object f''(x) which is (also) a *function*. [and, similarly, objects: f'''(x), f''''(x) ...].
- Other notation: $\frac{d^2y}{dx^2}$, ..., $\frac{d^ky}{dx^k}$

The Second Derivative Test

- Given the function f(x):
- 1. Construct f'(x) its *first* derivative.
- 2. Find all solutions, α , for which $f'(\alpha) = 0$.
- 3. Construct the *second* derivative: f''(x) from f'(x).
- 4. For each solution, α , found in (2), compute $f''(\alpha)$.

If
$$f''(\alpha) < 0$$
 then α is a (local) maximum.

If $f''(\alpha) > 0$ then α is a (local) minimum.

If $f''(\alpha) = 0$ then *no conclusion* can be made.

Examples

$$f'(x) = 4x^3 - 6x$$

$$\bullet f'(x) = 4x^3 - 6x.$$

$$\bullet f'(x) = 4x^3 - 6x.$$

 $f''(x) = 12x^2 - 6$

•
$$f'(x) = 4x^3 - 6x$$
.
• There are *three* critical points: $x = 0$; $x = \pm \sqrt{\frac{3}{2}}$.

$$f'(x) = 4x^3 - 6x.$$

• f''(0) < 0: (local) maximum.

$$f'(x) = 4x^3 - 6x.$$

$$f(x) = x^4 - 3x^2 + 1$$

$$f'(x) = 4x^3 - 6x$$

$$f'(x) = 4x^3 - 6x.$$

• $f''\left(\sqrt{\frac{3}{2}}\right) = 12 > 0$; $f''\left(-\sqrt{\frac{3}{2}}\right) = 12 > 0$: minima.

The Example on Preceding Slide

Some more examples

•
$$f(x) = 25(\log x)^3 - 15(\log x)^4$$

•
$$f'(x) = \frac{75(\log x)^2}{x} - \frac{60(\log x)^3}{x} = \frac{75(\log x)^2 - 60(\log x)^3}{x}$$

• $f'(x) = 0$ when $15(\log x)^2(5 - 4\log x) = 0$

• That is when,
$$x=1$$
 or $x=\exp\left(\frac{5}{4}\right)$
• $f''(1)=0$ (Why?); $f''\left(\exp\left(\frac{5}{4}\right)\right)\neq 0$ (is actually a maximum).

• pages 144 – 152 of the module text give several worked examples of using *first derivatives* to solve *optimization problems* and the *second derivative test*.

Summary

- The concept of "critical points" and their analysis is an important part of the subject of Optimization Methods.
- This is one of the specialist studies dealt with in more advanced CS: for example the module **COMP331**.
- The techniques covered in this lecture have, however, a drawback in practice: only a *single parameter* is involved.
- To adapt to "more realistic" settings approaches to "multivariable functions" are needed.
- The extension of "basic differential calculus" to functions of several variables is the topic of the next part.