Unit 2 Data Types, Input and Output of Data Mining Algorithms

Introduction

- Data types and characteristics of dataset has to be analysed
- Data is classified as structured, unstructured and semistructured data
- Business databases mostly are structured
- Scientific data may be of all three classes
- Unstructured data may be like multimedia recordings
- Structured data is also called traditional data
- Other are non-traditional data
- Most of the DM methods are applied to traditional data

Instances and Features

- Potential measurement is called as Features
- Features are measured uniformly over many cases
- Representation of structured data is in tabular form or in the form of single relation
- Each row is the instances or it is sample

Types of Features

- Nominal variables Features which help to identify unique entities
- Ordinal variables categories that can be rationally listed in some order
- Interval variables ordinal variables in which the distance between the ordered categories can be measured
- Ratio variables interval variables which can have zero starting point

- Data Mining algorithms,
 - Do not distinguish nominal and ordinal type
 - Do not distinguish ratio and interval variables
- They are concerned whether the variables are unordered labels or ordered labels

Concept learning and Concept Description

- 4 types of DM methodologies
 - Classification learning
 - Association learning
 - Clustering
 - Regression

Classification learning

- Here, you have set of classified examples from which you are expected to learn a way of classifying unseen examples
- The required set of rules to partition the data into exclusive groups is called classification rules. The data used for deriving such rules is called training set.
- The rules can then be used to discover as to which group a new customer belongs to.

8 1.5 4.5 7

Dr.S.Thenmozhi

Association learning

- Association between the features is derived.
- The output will be association rules.

TID	Produce
1	MILK, BREAD, EGGS
2	BREAD, SUGAR
3	BREAD, CEREAL
4	MILK, BREAD, SUGAR
5	MILK, CEREAL
6	BREAD, CEREAL
7	MILK, CEREAL
8	MILK, BREAD, CEREAL, EGGS
9	MILK, BREAD, CEREAL

Clustering

- Groups of examples that belong together are sought
- Grouping is based on the similarity of features
- Clustering can be applied to
 - Marketing : finding group of customers with similar behaviour
 - Biology: grouping of plants and animals based on their features
 - Libraries: book ordering
 - Insurance: identifying groups of policy holders, identifying frauds
 - Earthquakes: Identifying group of places which receives earthquakes
 - www: Document classification, clustering web log data

Subject	Α	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Regression

- Regression helps to perform numeric prediction
- Here the outcome to be predicted is not a discrete class but a numeric quantity

State	District	Year	Jan	Feb	Mar	Apr
Karnataka	Uttar Kannada	2006	0.0	0.0	8.3	0.6
Karnataka	Uttar Kannada	2007	0.0	0.1	1.9	27.8
Karnataka	Uttar Kannada	2008	0.0	5.3	95.3	11.9
Karnataka	Uttar Kannada	2009	0.0	0.0	27.6	16.4
Karnataka	Uttar Kannada	2010	8.9	0.0	1.7	48.9

cycle	memory	memory	cache	chan	chan	perfor-
time (ns)	min (kB)	max (kB)	(kB)	min	max	mance
125	256	6000	256	16	128	198
29	8000	32000	32	8	32	269
29	8000	32000	32	8	32	220
29	8000	32000	32	8	32	172
29	8000	16000	32	8	16	132
125	2000	8000	0	2	14	52
480	512	4000	32	0	0	67
480	1000	4000	0	0	0	45

Output of Decision Trees

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Output of Data Mining

- Knowledge output from classified learners
 - Decision trees
 - Neural Networks
- Decision tree is a tree based knowledge representation methodology used to represent classification rules.
- The leaf node represents the class labels while other node represents the attributes associated with the objects being classified.
- The branches of the tree represent each possible value of the attribute node from which they originate

Output of Association Rules

TID	Produce
1	MILK, BREAD, EGGS
2	BREAD, SUGAR
3	BREAD, CEREAL
4	MILK, BREAD, SUGAR
5	MILK, CEREAL
6	BREAD, CEREAL
7	MILK, CEREAL
8	MILK, BREAD, CEREAL, EGGS
9	MILK, BREAD, CEREAL

```
{Cereal, Milk} → Bread
[sup=22%, conf=50%]
Association rule:
22% chance that customers buy all the three products together
50% chance that customers who buy cereal and milk will buy bread
```

Clustering

Subject	Α	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Cluster1: 1,2

Cluster2: 3,4,5,6,7

- The cluster output can be visualised as
 - Table form
 - Venn diagram
 - Dendrograms
 - Self-organizing maps

Regression

- Generally trees for numeric prediction
 - Regression tree leaf predicts a numeric qty. Predicted value is the average value of training instances that reach the leaf
 - Model tree linear regression models at the leaf nodes.

Regression tree

Model tree

Unit 2 – Part II Preprocessing and Postprocessing

Introduction

- Essential Preparation and transformation of the initial dataset.
- If data comes from data warehouse, some transformation might be already done.
- It may not be the fullest extent.
- Some transformations may be done during data mining process only.
- Many transformations may be needed to produce features more useful for selected data mining methods like prediction or classification

Steps in Preprocessing

- Choosing the object representation
 - Choose the appropriate attributes
 - Distinguish the attributes as categorical or numerical
 - Whether Structured?
- Mapping and collecting data
 - Represent the data uniformly Like date 08/02/2018 08-02-2018
- Scaling large datasets
 - See that the complete dataset could be placed in memory
 - If not use windowing/batch incremental mode

Steps in Preprocessing

- Handling noise and errors
 - Handle External errors and internal errors separately
- Processing unknown attribute values
 - Unknown values / missing values
 - Caused due to data lost, NA, doesnot exist, irrelevant to context
- Discretization/Fuzzification of numerical attributes
 - Discretize the numerical value
 - Extension of discretization is fuzzification
 - Offline or online processing can be done

Normalization/Fuzzification

$$V=\{8,10,12,20\}$$
 actual min = 8 actual max=20
New min = 0
New max=1
 $V'=\underbrace{(V-min)}_{max-min}$ X (newmax-newmin) + newmin

$$V'[8] = 8-8/12 * 1 = 0/12=0$$

 $V'[10] = 10-8/12*1=2/12=0.16$

Steps in Preprocessing

- Processing of continuous classes
 - We may have discretized symbolic classes or continuous numeric classes
- Grouping of values of symbolic attributes
 - Grouping of symbolic values if classes are more
 - It helps in making decision/classification rules easier
- Attribute selection and ordering
 - Select attributes and order according to the target concept
- Attribute construction and transformation
 - Reform and Transform the attribute if required such that the learning becomes easy
- Consistency checking
 - Check for the consistency of the data. First do it offline and then online

Discretization

- The process of partitioning the continuous variables into categories is usually termed as discretization.
- Interval labels can then be used to replace actual data values
- Discretization can be done recursively on a attribute
- Discretization helps in reduce the data size
- It helps in transforming the quantitative data into qualitative data
- Unsupervised Binning equal width methods or equal frequency methods
- Supervised entropy or information gain which measure strength of relationship to determine which group it belongs to
- Supervised may lead to accurate calculation

- Manual approach
 - Manually define the cut points for the data.
 - They are defined subjectively
- Unsupervised method Binning
- Binning does not use class information for discretization
 - Equi width binning
 - Equi frequency binning
- Supervised method Entropy Selection

Equi Width binning

- The algorithm divides the data into k intervals of equal size
- The width of interval is

$$W = (max-min)/k$$

The interval boundaries are

$$\min$$
+w, \min +2w,.... \min +(k-1)w

Equi frequency Binning

- The algorithm divides the data into k groups where each group contains approximately equal number of values
- For both methods, the best way of determining the k value is by seeing the histogram and trying different intervals or groups

Entropy based discretization

- The goal of this algorithm is to find the split with the maximum information gain
- The boundary that minimizes the entropy over all possible boundaries is selected
- The process is recursively applied to partitions obtained until some stopping criterion is met
- Such a boundary may reduce data size and improve classification accuracy

Calculating Entropy

• For m classes $Entropy(S) = -\sum_{i=1}^{m} p_i \log_2 p_i$

• For 2 classes

$$Entropy(S) = -p_1 \log_2 p_1 - p_2 \log_2 p_2$$

- Calculated based on the class distribution of the samples in set S.
- pi is the probability of class i in S
- m is the number of classes (class values)

Calculating entropy from Split

- Entropy of subsets S and S2 Entropy of subsets S1 and S2 are calculated .
- The calculations are weighted by their probability of being in set S and summed.
- In formula below,
 - − S is the set
 - -T is the value used to split S into S1 and S2

$$E(S,T) = \frac{\left|S_{1}\right|}{\left|S\right|} Entropy(S_{1}) + \frac{\left|S_{2}\right|}{\left|S\right|} Entropy(S_{2})$$

Calculation of information gain

• Information Gain = Difference in entropy between original set (S) and weighted split (S1 + S2)

$$Gain(S,T) = Entropy(S) - E(S,T)$$

- It is always desired to have maximum information gain for effective split.
- To find effective split take two split values and calculate information gain. Choose the split which has maximum information gain or less E(s1,s2)

- Calculate Entropy for your data.
- For each potential split in your data...
 - Calculate Entropy in each potential bin
 - Find the net entropy for your split
 - Calculate entropy gain
- Select the split with the highest entropy gain
- Recursively (or iteratively in some cases) perform the partition on each split until a termination criteria is met
 - Terminate once you reach a specified number of bins
 - Terminate once entropy gain falls below a certain threshold.

Practice

Hours Studied	A Grade on Test
4	N
5	Y
8	N
12	Y
15	Y

	A on Test	Lower than A
Overall	3	2

$$Entropy(D) = -(\frac{3}{5}log_2(\frac{3}{5}) + \frac{2}{5}log_2(\frac{2}{5})) = .529 + .442 = .971$$

Split 1: 4.5

Starting off, we split at 4.5 ((5+4)/2). Now we get two bins, as follows:

	A on Test	Lower than A
<=4.5	0	1
>4.5	3	1

$$Entropy(D_{\leq =4.5}) = -(\frac{1}{1}log_2(1) + 0log_2(0)) = 0 + 0 = 0$$

$$Entropy(D_{>4.5}) = -(\frac{3}{4}log_2(\frac{3}{4}) + \frac{1}{4}log_2(\frac{1}{4})) = .311 + .5 = .811$$

Now net entropy is:

$$Info_a(D_{new}) = \frac{1}{5}(0) + \frac{4}{5}(.811) = .6488$$

Practice Problem on Binning

• Given are the recorded temperature in a day 10,18,22,25,24,21,20,20,19,18,15.

Discretize using equi width binning and equi frequency binning with k=4

Practice Problem on Entropy

- For the given data set calculate the entropy on the target variable
- For the given data set calculate the entropy of the predictor variable with a possible split of $x \le 17$ and $x \ge 17$
- Calculate the information gain on (21,S).

Predictor variable x	Target variable y
4	M
12	M
16	M
18	F
24	F
26	F

Practice Problem on Quantile

• Find the quantile and IQR for the following dataset without applying correction factor for the recorded temperature in a day.

10, 18, 22, 25, 24, 21, 20, 20, 19, 18, 15

Feature Extraction, Selection and Construction

- Dimensionality reduction
 - Goal: represent instances with fewer variables
 - Try to preserve as much as structure in the data as possible
- Feature Extraction
 - Construct new set of dimensions ei=f(x1...xd)
 - (linear)combinations of original
- Can be done using Feature mapping algorithms
 - Feed forward networks (Feature Extraction)
 - Principal component analysis (Dimensionality reduction)

• Feed forward networks — preserve the features of the first hidden layer in neural network

- Principal component analysis is a method of extracting important variables (in form of components) from a large set of variables available in a data set.
- It extracts low dimensional set of features from a high dimensional data set with a motive to capture as much information as possible.
- With fewer variables, visualization also becomes much more meaningful. PCA is more useful when dealing with 3 or higher dimensional data.

- It is always performed on a symmetric correlation or covariance matrix. This means the matrix should be numeric and have standardized data.
- Feature Extraction by PCA

Covariance matrix		Eigen Values	Proportion		
1	-0.1094	0.8718	0.818	2.9108	0.7277
-0.1094	1	-0.4205	-0.3565	0.9212	0.2303
0.8718	-0.4205	1	0.9628	0.1474	0.0368
0.818	-0.3565	0.9628	1	0.0206	0.0052

Missing data

- Missing data are the data we desired to collect but never got into our database for subsequent analysis
- Reasons for missing data
 - Respondents refusal to answer an item
 - Respondents does not know the answer
 - Data not applicable
- Consequence : inaccurate conclusion

- Three classes of missing data
 - Missing completely at random (MCAR) the probability of missing data on Y is not dependent on Y or X
 - Missing at random (MAR) the probability of missing data on Y depends on the value of X
 - Not missing at random(NMAR) probability of missing data on Y is dependent on value of Y

- Handling missing values
 - Eliminate data objects
 - Estimate missing values
 - Missing data substitution (mean, median, specific value, regression substitution)
 - K-nearest neighbours
 - Ignore the missing values during analysis
 - Replace with all possible values(weighted by their probabilities)

Post Processing

- Knowledge filtering
- Interpretation and explanation
- Evaluation
- Knowledge integration