Exercise 13.2

Q.1 In the figure P is any point and AB is a line which of the following is the shortest distance between the point P and the line AB.

(a) m \overline{PL} (b) mPM As we know that $\overline{PN} \perp \overrightarrow{AB}$

So \overline{PN} is the shortest distance

Q.2 In the figure, P is any point lying away from the line \overline{AB} . Then $m\overline{PL}$ will be the shortest distance if

(a) $m\angle P \angle A = 80^{\circ}$ (b) $m\angle P\angle B = 100^{\circ}$ (c) $m\angle P\angle A = 90^{\circ}$

Solution:

$$m\angle PLA = 90^{\circ}$$

$$\overline{PL} \perp \overleftrightarrow{AS}$$

PL is the shortest distance

So \angle PLA or PLS equal to 90°

Q.3 In the figure, \overline{PL} is perpendicular to the line AB and $\overline{LN} > m\overline{LM}$. Prove that $m\overline{PN} > m\overline{PM}$. Given

 $\overline{PL} \perp \overrightarrow{AB}$ $m\overline{LN} > m\overline{LM}$ To proved:

 $m\overline{PN} > m\overline{PM}$

Proof

Statements	Reasons
ΔPLM	
$\angle PLM = 90^{\circ}$	
$\therefore \angle PMN > \Delta PLM$	Exterior angle
$\angle PMN > 90^{\circ}$	
InΔPLN	
$\angle PLN = 90^{\circ}$	
m∠PNL < 90°	Acute angle
ΔPMN	
$m\angle PMN \ge m\angle PNL$	
$\therefore \overline{PN} > \overline{PM}$	

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 2 OF 2]