Homework 7

Runmin Lu

October 21, 2021

1

Classification Algorithm: Linear Regression for classification followed by pocket for improvement.

(a)

Training:

Testing:

(b)

$$E_{\rm in} \approx 0.00833$$

$$E_{\rm test} \approx 0.0165$$

(c)

From $E_{\rm in}$:

$$E_{\text{out}} \le E_{\text{in}} + \sqrt{\frac{8}{N} \ln \frac{4(2N)^3}{\delta}}$$

$$\approx 0.00833 + \sqrt{\frac{8}{1561} \ln \frac{4(2 \times 1561)^3}{0.05}}$$

$$\approx 0.00833 + 0.3823$$

$$= \boxed{0.3906}$$

From E_{test} :

$$\begin{split} E_{\text{out}} &\leq E_{\text{test}} + \sqrt{\frac{1}{2K} \ln \frac{2}{\delta}} \\ &\approx 0.0165 + \sqrt{\frac{1}{424} \ln \frac{2}{0.05}} \\ &\approx 0.0165 + 0.0933 \\ &= \boxed{0.1098} \leftarrow \text{The Better Bound} \end{split}$$

(d)

Training:

$$E_{\rm in} \approx 0.00769$$

$$E_{\text{out}} \le E_{\text{in}} + \sqrt{\frac{8}{N} \ln \frac{4(2N)^{10}}{\delta}}$$

$$\approx 0.00769 + \sqrt{\frac{8}{1561} \ln \frac{4(2 \times 1561)^{10}}{0.05}}$$

$$\approx 0.00833 + 0.6589$$

$$= \boxed{0.6671}$$

Testing:

$$\begin{split} E_{\text{test}} &\approx 0.0165 \\ E_{\text{out}} &\leq E_{\text{test}} + \sqrt{\frac{1}{2K}\ln\frac{2}{\delta}} \\ &\approx 0.0165 + \sqrt{\frac{1}{424}\ln\frac{2}{0.05}} \\ &\approx 0.0165 + 0.0933 \\ &= \boxed{0.1098} \leftarrow \text{The Better Bound} \end{split}$$

(e)

I would use the linear model because even though both models produce similar E_{test} , the visualization of the third order model just does not make sense with the boundary at the upper right corner. There's no way that a digit with even bigger bounding box and more curve is more likely to be a 1.

 $\mathbf{2}$

(a)

$$\nabla f(x,y) = \begin{pmatrix} 2x + 4\pi \cos(2\pi x)\sin(2\pi y) \\ 4y + 4\pi \sin(2\pi x)\cos(2\pi y) \end{pmatrix}$$

For $\eta = 0.01$:

For $\eta = 0.1$:

f(x,y) changes unpredictably because the step is too large. (x,y) in each step sometimes moves to the other side of the local minimum, which potentially increases f(x,y).

(b)

initial point	(0.1, 0.1)	(1, 1)	(-0.5, -0.5)	(-1, -1)
argmin f(x,y)	(0.244, -0.238)	(1.218, 0.713)	(-0.731, -0.238)	(-1.218, -0.713)
$\min f(x,y)$	-1.820	0.593	-1.332	0.593

Problem 3.16

(a)

$$\begin{aligned} & \operatorname{cost}(\operatorname{accept}) = P[\operatorname{correct}] \times 0 + P[\operatorname{incorrect}] c_a \\ & = P[\operatorname{incorrect}] c_a \\ & = (1 - g(\mathbf{x})) c_a \qquad \operatorname{because} \ g(\mathbf{x}) \ \text{is the probablilty that this person is correct} \\ & \operatorname{cost}(\operatorname{reject}) = P[\operatorname{correct}] c_r + P[\operatorname{incorrect}] \times 0 \\ & = P[\operatorname{correct}] c_r \\ & = g(\mathbf{x}) c_r \end{aligned}$$

(b)

Let
$$C =$$
 the total cost of actions taken on each person
$$= \sum_{\mathbf{x}: g(\mathbf{x}) \geq \kappa} \text{cost(accept)} + \sum_{\mathbf{x}: g(\mathbf{x}) < \kappa} \text{cost(reject)}$$

$$= \sum_{\mathbf{x}: g(\mathbf{x}) \geq \kappa} (1 - g(\mathbf{x})) c_a + \sum_{\mathbf{x}: g(\mathbf{x}) < \kappa} g(\mathbf{x}) c_r$$

Consider $\frac{dC}{d\kappa}$ as the change in C if we increase κ a little bit such a single accepted data point \mathbf{x}^* is now rejected. we know that $q(\mathbf{x}^*) = \kappa$.

To minimize C with respect to κ , we set $\frac{dC}{d\kappa}$ to 0.

$$\begin{split} \frac{dC}{d\kappa} &= -(1 - g(\mathbf{x}^*))c_a + g(\mathbf{x}^*)c_r \\ &= -(1 - \kappa)c_a + \kappa c_r \\ &= \kappa(c_a + c_r) - c_a \\ &= 0 \\ \kappa &= \frac{c_a}{c_r + c_a} \end{split}$$

(c)

Supermarket: $\kappa = \frac{1}{11}$

Because it costs a lot to reject someone, we want to accept as many as possible, which results in a lower κ . CIA: $\kappa = \frac{1000}{1001}$

Because it costs a lot to accept someone, we want to reject as many as possible, which results in a higher κ .