

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta011

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

În sistemul cartezian de coordonate xOy se consideră punctele A(1,3), B(2,4), C(3,5) și O(0,0).

- (4p) a) Să se calculeze lungimile segmentelor (AB), (BC) şi (AC).
- (4p) b) Să se determine $a, b \in \mathbb{R}$ astfel încât punctele A(1,3) și B(2,4) să se afle pe dreapta y = ax + b.
- (4p) c) Să se demonstreze că punctele A(1,3), B(2,4), C(3,5) sunt coliniare.
- (4p) d) Să se calculeze coordonatele proiecției punctului A(1,3) pe axa Ox.
- (2p) e) Dacă $a \in \left[0, \frac{\pi}{2}\right]$ și $\sin a = \frac{5}{13}$, să se calculeze $\cos a$.
- (2p) f) Să se calculeze în mulțimea numerelor complexe produsul $i \cdot i^2 \cdot ... \cdot i^{10}$

SUBIECTUL II (30p)

1.

- (3p) a) Să se rezolve în $\mathbb{R} \setminus \{-1, 1\}$ ecuația: $\frac{1}{x+1} + \frac{1}{x-1} = \frac{4}{(x-1)(x+1)}$.
- (3p) $| \mathbf{b} |$ Să se calculeze $\log_2 8$.
- (3p) c) Să se determine cu câte cifre de 0 se termină numărul 10!.
- (3p) d) Să se calculeze suma $1+2+2^2+...+2^9$.
- (3p) e) Să se calculeze probabilitatea ca alegând un element n din mulțimea $M = \{-3, -2, -1, 0, 1, 2, 3\}$, acesta să satisfacă relația $n^2 4 \le 0$.
 - **2.** Se consideră funcția $f: \mathbf{R} \rightarrow \mathbf{R}$, $f(x) = x^2 + 4x + 4$, $\forall x \in \mathbf{R}$.
- (3p) a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\lim_{x\to 2} \frac{f(x) f(2)}{x-2}$.
- (3p) c) Să se determine intervalele de monotonie ale funcției f.
- (3p) d) Să se calculeze $\int_{0}^{1} f(x) dx$.
- (3p) e) Să se calculeze $\lim_{n\to\infty} \frac{1}{n^3} \int_0^n f(x) dx$.

SUBIECTUL III (20p)

Pentru $n \in \mathbb{N}$, $n \ge 2$, se consideră funcția $f : \mathbb{C} \to \mathbb{C}$, $f(z) = (1+z)^n$.

Sunt cunoscute formulele $1 + \cos a = 2\cos^2\frac{a}{2}$ și $\sin a = 2\sin\frac{a}{2}\cos\frac{a}{2}$, $\forall a \in \mathbf{R}$.

(4p) a) Să se calculeze f(1).

(4p) b) Să se arate că
$$f(i) = (C_n^0 - C_n^2 + C_n^4 - C_n^6 + ...) + i(C_n^1 - C_n^3 + C_n^5 - C_n^7 + ...).$$

(4p) c) Să se verifice că
$$1+i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$
.

(2p) d) Să se arate că
$$f(i) = 2^{\frac{n}{2}} \left(\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right)$$
.

(2p) e) Să se arate că
$$C_n^0 - C_n^2 + C_n^4 - C_n^6 + ... = 2^{\frac{n}{2}} \cos \frac{n\pi}{4}$$
.

(2p) f) Să se arate că
$$f(\cos t + i \sin t) = 2^n \cos^n \frac{t}{2} \left(\cos \frac{nt}{2} + i \sin \frac{nt}{2}\right), t \in \mathbb{R}$$
.

(2p) g) Să se arate că
$$\sum_{k=0}^{n} C_n^k \cos kt = 2^n \cos^n \frac{t}{2} \cos \frac{nt}{2}$$
, $t \in \mathbf{R}$.

SUBIECTUL IV (20p)

Se consideră șirul $(e_n)_{n \in \mathbb{N}}$, $e_n = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$, unde 0! = 1 și pentru orice șir $(a_n)_{n \in \mathbb{N}}$,

 $a_n \in \{-1,1\}, n \in \mathbb{N}, \text{ definim sirul } (x_n)_{n \in \mathbb{N}} \text{ prin } x_n = \frac{a_0}{0!} + \frac{a_1}{1!} + \frac{a_2}{2!} + \dots + \frac{a_n}{n!}, \ \forall \ n \in \mathbb{N}.$

(4p) a) Să se arate că:
$$\frac{1}{k!} \le \frac{1}{(k-2)!k}$$
, $\forall k \in \mathbb{N}$, $k \ge 2$.

(4p) b) Să se arate că
$$\frac{1}{0!2} + \frac{1}{1!3} + \dots + \frac{1}{(n-2)!n} = 1 - \frac{1}{n!}, \forall n \in \mathbb{N}, n \ge 2.$$

- (4p) c) Să se arate că șirul $(e_n)_{n\in\mathbb{N}}$ este monoton și mărginit.
- (2p) d) Să se arate că pentru orice $n \in \mathbb{N}$, $n \ge 2$, numărul x_n nu este număr întreg.

(2p) e) Să se arate că
$$\forall n \in \mathbb{N}^*$$
, există $y_n, z_n \in [0, \infty)$, astfel încât $x_n = y_n - z_n$.

- (2p) **f**) Să se arate că șirul $(x_n)_{n \in \mathbb{N}}$ este convergent.
- (2p) g) Să se arate că limita șirului $(x_n)_{n\in\mathbb{N}}$ este număr irațional.

2