

Ensemble models and Bagging

bootstrap samples

Blood sample example.

Sequential Bootstrapping. Indicator Matrix

	1	2	3	4
1	1	0	0	0
2	1	1	0	0
3	0	1	1	0
4	0	1	0	0
5	0	1	0	1
6	0	1	0	1
7	0	0	0	1
8	0	0	0	1

The probability on the first step is uniformly distributed. Let's assume that sample # 1 was drawn

	1	1	Σ
1	1	1	2
2	1	1	2
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0

The first sample average uniqueness: $(\frac{1}{2} + \frac{1}{2})/2 = \frac{1}{2}$

	1	2	Σ
1	1	0	1
2	1	1	2
3	0	1	1
4	0	1	1
5	0	1	1
6	0	1	1
7	0	0	0
8	0	0	0

The second sample average uniqueness: $(\frac{1}{2} + 1 + 1 + 1 + 1)/5 = 9/10$

	1	3	Σ
1	1	0	1
2	1	0	1
3	0	1	1
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0

The third sample average uniqueness: (1)/1 = 1

The probability of a sample being drawn is based on sample uniqueness:

P = [0.147, 0.264, 0.294, 0.294]

As you can see SB penalizes repeating samples

	1	4	Σ
1	1	0	0
2	1	0	0
3	0	0	0
4	0	0	0
5	0	1	1
6	0	1	1
7	0	1	1
8	0	1	1

The fourth sample average uniqueness: (1+1+1+1)/4 = 1

Let's say the third sample was drawn

The first sample average uniqueness: $(\frac{1}{2} + \frac{1}{2})/2 = \frac{1}{2}$

	1	3	2	Σ
1	1	0	0	1
2	1	0	1	2
3	0	1	1	2
4	0	0	1	1
5	0	0	1	1
6	0	0	1	1
7	0	0	0	0
8	0	0	0	0

The second sample average uniqueness: $(\frac{1}{2} + \frac{1}{2} + 1 + 1 + 1)/5 = 4/5$

The third sample average uniqueness: $(1)/2 = \frac{1}{2}$

Probability of being drawn on Step 2:

$$P = [0.126, 0.304, 0.19, 0.38]$$

Despite the fact that, sample #2 is the most overlapping, SB penalises already drawn samples to increase the uniqueness of bootstrapped data set

	1	3	4	Σ
1	1	0	0	1
2	1	0	0	1
3	0	1	0	1
4	0	0	0	0
5	0	0	1	1
6	0	0	1	1
7	0	0	1	1
8	0	0	1	1

The fourth sample average uniqueness: (1+1+1+1)/4 = 1

Sequential Bootstrapping. Monte-Carlo simulations

