Coordinates Geometry

	<u>Coordinates Geometry</u>
 1 Distance/length formulae Distance between 2 2D points Distance between 2 3D points 	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
2 Midpoint between 2 points	$\frac{(x_1 + x_2)}{2}, \frac{(y_1 + y_2)}{2}, \frac{(z_1 + z_2)}{2}$ $m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$
3 Slope between 2 points	$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$
4 Line equation - Need Slope value - Need y-intercept	(Equation) $y = mx + c$ $y - y_1 = m(x - x_1)$
5 Parallel Lines - Are the points collinear?	$m_1=m_2$ Check if collinear: If both slope is same $if\ mAB=mBC=mAC$ $if AB=BC, B\ is\ a\ common\ point$ $ABC\ is\ collinear, meaning\ all\ 3\ points\ lines\ on\ the\ same\ line$
<u>6 Perpendicular Lines</u>	$m_2 * m_1 = -1$ $m_2 = -\frac{1}{m_1}$
7 Perpendicular Bisector of AB - Get the perpendicular line of line AB	 Get midpoint of AB (x₂, y₂ Get slope of line AB : m Get perpendicular slope of AB = -¹/_m Bisector of line AB → y - y₂ = -¹/_m(x - x₂)
8 Ratio Theorem	$x = \frac{m(x_2) + n(x_1)}{m + n}, \qquad y = \frac{m(y_2) + n(y_1)}{m + n}$ $P(x, y)$ M $A(x1, y1)$
9 Area of polygon	$ \frac{1}{2} (x_1y_2 + x_2y_3 + x_3y_4 + x_4y_1 - x_2y_1 - x_3y_2 - x_4y_3 - x_1y_4) $

1. Exercise

1 P(4,-4), Q(9,6), R(-2,4), S are the vertices of a parallelogram Find the midpoint of PR,

$$midpoint \ x = \frac{4 + (-2)}{2}, \qquad midpoint \ y = \frac{-4 + 4}{2}$$
$$midpoint \ x = 1, \qquad midpoint \ y = 0$$

The coordinates of point S

Let coordinates of S be x, y

$$1 = \frac{9+x}{2}, \quad 0 = \frac{6+y}{2}$$

$$x = -7, \quad y = -6$$

Show that PQRS is a rhombus

show that length of
$$PQ = RQ$$

 $|PQ| = \sqrt{(9-4)^2 - (6+4)^2} = \sqrt{125}$
 $|RQ| = \sqrt{(9+2)^2 - (6-4)^2} = \sqrt{125}$