LSD2-UM6P TAOUFIK Safouane

TP résolution numérique des équations

- 1. Implémenter la fonction Dichotomie qui prend comme argument une fonction f, les bornes de l'intervalle a et b et le nombre des itérations n et retourne α_n une valeur approchée de α : un zéro de f. $(f(\alpha) = 0)$.
- 2. Implémenter la fonction Newton qui prend comme argument une fonction f, sa dérivé f', une valeur initiale α_0 et le nombre des itérations n et retourne α_n une valeur approchée de α un zéro de f. $(f(\alpha) = 0)$.
- 3. En utilisant la fonction Dichotomie implémenter la fonction Dichotomie qui prend comme argument une fonction f, les bornes de l'intervalle a et b et l'erreur ϵ et retourne $\hat{\alpha}$ une valeur approchée de α à ϵ près. $(f(\alpha) = 0)$.
- 4. En utilisant ces deux fonction calculer α_n une valeur approchée de $\sqrt{2}$, avec $a=1,\,b=3,$ $\alpha_0=2,\,n=3,10,30.$ commenter les résultats obtenus.
- 5. Tracer α_n en fonction de n avec α_n la valeur approchée de α , qui vérifie $\alpha^3 \alpha 3 = 0$ donnée par la methode de Newton. Avec $n \in [0, 100]$ dans les deux cas suivants:
 - (a) $\alpha_0 = 0$
 - (b) $\alpha_0 = 1$.
- 6. Expliquer les résultats obtenus. (vous pouvez tracer la fonction f entre -3 et 3)