Real Analysis Homework Chapter 2. Integration Theory

Due Date: 12/2

National Taiwan University, Department of Mathematics R06221012 Yueh-Chou Lee

December 2, 2019

Exercise 2.17(a)

Suppose f is defined on \mathbb{R}^2 as follows:

$$f(x,y) = \begin{cases} a_n & \text{if } n \le x < n+1 \text{ and } n \le y < n+1, \ (n \ge 0) \\ -a_n & \text{if } n \le x < n+1 \text{ and } n+1 \le y < n+2, \ (n \ge 0) \\ 0 & \text{o.w.} \end{cases}$$

Here $a_n = \sum_{k \le n} b_k$, with $\{b_k\}$ a positive sequence such that $\sum_{k=0}^{\infty} b_k = s < \infty$. Verify that each slice f^y and f_x is integrable. Also for all x, $\int f_x(y) dy = 0$, and hence $\int (\int f(x,y) dy) dx = 0$.

Proof.

By the definition of f(x, y), we have

$$f^{y}(x) = \begin{cases} -a_{\lfloor y \rfloor - 1} & y \ge 1 \text{ and } (\lfloor y \rfloor - 1) \le x < \lfloor y \rfloor \\ a_{\lfloor y \rfloor} & y \ge 0 \text{ and } \lfloor y \rfloor \le x < (\lfloor y \rfloor + 1) \\ 0 & \text{o.w.} \end{cases}$$

Similarly,

$$f_x(y) = \begin{cases} a_{\lfloor x \rfloor} & x \ge 0 \text{ and } \lfloor x \rfloor \le y < (\lfloor x \rfloor + 1) \\ -a_{\lfloor x \rfloor} & x \ge 0 \text{ and } (\lfloor x \rfloor + 1) \le y < (\lfloor x \rfloor + 2) \\ 0 & \text{o.w.} \end{cases}$$

To show that each slice $f^{y}(x)$ is integrable, we compute, for $y \geq 1$, then

$$\int f^{y}(x) dx = \int_{\lfloor y \rfloor - 1}^{\lfloor y \rfloor} -a_{\lfloor y \rfloor - 1} dx + \int_{\lfloor y \rfloor}^{\lfloor y \rfloor + 1} a_{\lfloor y \rfloor} dx$$
$$= a_{\lfloor y \rfloor} - a_{\lfloor y \rfloor - 1}$$
$$= b_{\lfloor y \rfloor} \quad \text{is bounded,}$$

since $\{b_n\}$ is convergent $(\sum_{k=0}^{\infty} b_k = s < \infty)$. For $0 \le y < 1$, then

$$\int f^y(x) \, dx = a_0.$$

Similarly, to show that each slice $f_x(y)$ is integrable, we compute

$$\int f_x(y) \, dy = \int_{\lfloor x \rfloor}^{\lfloor x \rfloor + 1} a_{\lfloor x \rfloor} \, dx + \int_{\lfloor x \rfloor + 1}^{\lfloor x \rfloor + 2} -a_{\lfloor x \rfloor} \, dx = a_{\lfloor x \rfloor} - a_{\lfloor x \rfloor} = 0$$

So

$$\int \left(\int f(x,y) \, dy \right) \, dx = \int \left(\int f_x(y) \, dy \right) \, dx = \int 0 \, dx = 0$$

Exercise 2.17(b)

However,

$$\int f^{y}(x) dx = \begin{cases} a_{0} & \text{if } 0 \leq y < 1\\ a_{n} - a_{n-1} & \text{if } n \leq y < n+1 \text{ with } n \geq 1 \end{cases}$$

Hence $y \mapsto \int f^y(x) dx$ is integrable on $(0, \infty)$ and

$$\int \left(\int f(x, y) \, dx \right) \, dy = s.$$

Proof.

$$\int \left(\int f(x, y) dx \right) dy = \sum_{n=0}^{\infty} \int_{n}^{n+1} \left(\int_{\mathbb{R}} f^{y}(x) dx \right) dy$$
$$= a_{0} + \sum_{n=1}^{\infty} (a_{n} - a_{n-1})$$

Exercise 2.17(c)

Note that $\int_{\mathbb{R}\times\mathbb{R}} |f(x,y)| dxdy = \infty$.

Proof.

Since $0 \le |f(x,y)| < \infty$, by Tonelli's theorem, we then have

$$\int_{\mathbb{R}\times\mathbb{R}} |f(x,y)| \, dx dy = \int_{\mathbb{R}} \int_{\mathbb{R}} |f_x(y)| \, dy dx$$
$$= \sum_{n=0}^{\infty} \int_{n}^{n+1} \int_{\mathbb{R}} |f_x(y)| \, dy dx$$
$$= \sum_{n=0}^{\infty} 2a_n$$

However, each of the $a_n \geq a_0 > 0$, then $\sum_{n=0}^{\infty} 2a_n$ is divergent, so

$$\int_{\mathbb{R}\times\mathbb{R}} |f(x,y)| \, dx dy = \infty$$

Exercise 2.18

Let f be a measurable finite-valued function on [0, 1], and suppose that |f(x) - f(y)| is integrable on [0, 1] × [0, 1]. Show that f(x) is integrable on [0, 1].

Proof.

Let the function g(x,y) = |f(x) - f(y)|. By Fubini's theorem, since g is integrable on $[0, 1] \times [0, 1]$, the slice $g^y(x)$ is integrable for a.e. $y \in [0, 1]$. Fixed $y \in [0, 1]$, then

$$f(x) - f(y) \le |f(x) - f(y)|$$

Also, we can use the monotonicity of the integral to see that

$$\int_{[0,1]} f(x) - f(y) \, dx \le \int_{[0,1]} |f(x) - f(y)| \, dx \le \infty$$

That is

$$\begin{split} \int_{[0,1]} f(x) \, dx &\leq \int_{[0,1]} f(y) \, dx + \int_{[0,1]} |f(x) - f(y)| \, dx \\ &= f(y) + \int_{[0,1]} |f(x) - f(y)| \, dx \end{split}$$

Since f(y) and $\int_{[0,1]} |f(x) - f(y)| dx$ are finite, then f(x) is integrable on [0, 1].

Exercise 2.19

Suppose f is integrable on \mathbb{R}^d . For each $\alpha > 0$, let $E_{\alpha} = \{x : |f(x)| > \alpha\}$. Prove that

$$\int_{\mathbb{R}^d} |f(x)| \, dx = \int_0^\infty m(E_\alpha) \, d\alpha$$

Proof.

Observe that

$$m(E_{\alpha}) = \int_{\mathbb{D}^d} \chi_{E_{\alpha}}(x) dx.$$

Let $f(\alpha, x) = \chi_{E_{\alpha}}(x)$. By Tonelli's theorem, since f is non-negative measurable function on $(0, \infty) \times \mathbb{R}^d$, then

$$\int_{0}^{\infty} m(E_{\alpha}) d\alpha = \int_{0}^{\infty} \int_{\mathbb{R}^{d}} f(\alpha, x) dx d\alpha$$
$$= \int_{\mathbb{R}^{d}} \left(\int_{0}^{\infty} \chi_{E_{\alpha}}(x) d\alpha \right) dx$$
$$= \int_{\mathbb{R}^{d}} |f(x)| dx$$

Exercise 2.20

The problem (highlighted in the discussion preceding Fubini's theorem) that certain slices of measurable sets can be non-measurable may be avoided by restricting attention to Borel measurable functions and Borel sets. In fact, prove the following:

Suppose E is a Borel set in \mathbb{R}^2 . Then for every y, the slice E^y is a Borel set in \mathbb{R} . [Hint: Consider the collection \mathcal{C} of subsets E of \mathbb{R}^2 with the property that each slice E^y is a Borel set in \mathbb{R} . Verify that \mathcal{C} is a σ -algebra that contains the open sets.]

Proof.

Define

$$C = \{ E \subset \mathbb{R}^2 \mid \forall y, E^y \text{ is Borel.} \}$$

We first prove the following.

1. Prove that C is σ -algebra.

Proof.

It's clear that C is non-empty.

Next, we will show that $E \in \mathcal{C}$, then $E^c \in \mathcal{C}$.

Let $E \in \mathcal{C}$. Since for any y the slice E^y is Borel and $(E^c)^y = (E^y)^c$ is Borel (the Borel sets are a σ -algebra), then $E^c \in \mathcal{C}$.

Finally, suppose that $\{E_k\}_{k=1}^{\infty}$ is a countable collection of sets in \mathcal{C} . Since

$$\left(\bigcup_{k=1}^{\infty} E_k\right)^y = \bigcup_{k=1}^{\infty} E_k^y,$$

and the fact that each of the E_k^y is Borel, then $\bigcup_{k=1}^{\infty} E_k^y$ must be Borel so as $(\bigcup_{k=1}^{\infty} E_k)^y$.

By the above, we then know that \mathcal{C} is σ -algebra.

2. Prove that if $E \subset \mathbb{R}^2$ is open then $E \in \mathcal{C}$.

Proof.

If E is an open cube, then we must have $E = (a, b) \times (a + h, b + h)$ for some h > 0.

Take the slice E^y which is the same as (a, b) + y and $y \in \mathbb{R}$. In geometric, we simply have the line segment (a, b) translated in the y-direction a distance y.

So E^y is an open interval and hence is also a Borel set.

If E is a closed cube, then the slice E^y is a closed interval and can be written as the countable intersection of intervals

$$\bigcap_{n} \left(a - \frac{1}{n}, \, b + \frac{1}{n} \right)$$

Thus, E^y is a Borel set.

Then, we use the fact that every open set in \mathbb{R}^2 can be written as the countable union of almost disjoint closed cubes such as

$$E = \bigcup_{j=1}^{\infty} Q_k$$

where each of the Q_k is closed cube. Since $Q_k \in \mathcal{C}$ for all k, then $E \in \mathcal{C}$.

In the end, recall that the Borel sets is the smallest σ -algebra containing the open sets. Also, we have shown that \mathcal{C} contains the open sets. Therefore, \mathcal{C} contains the Borels sets.

Exercise 2.21(a)

Suppose that f and g are measurable functions on \mathbb{R}^d . Prove that f(x-y)g(y) is measurable on \mathbb{R}^{2d} .

Proof.

Since f is a measurable function on \mathbb{R}^d , then by **Proposition 3.9** in the textbook, we have $\tilde{f}(x,y) = f(x-y)$ is measurable on $\mathbb{R}^d \times \mathbb{R}^d$.

Also, since g is a measurable function on \mathbb{R}^d , then by **Corollary 3.7** in the textbook, we have $\tilde{g}(x,y) = g(y)$ is measurable on $\mathbb{R}^d \times \mathbb{R}^d$.

By above two, we know that f(x-y)g(y) is measurable on $\mathbb{R}^d \times \mathbb{R}^d = \mathbb{R}^{2d}$.

Exercise 2.21(b)

Suppose that f and g are measurable functions on \mathbb{R}^d . Show that if f and g are integrable on \mathbb{R}^d , then f(x-y)g(y) is integrable on \mathbb{R}^{2d} .

Proof.

Since f and g are measurable functions on \mathbb{R}^d , then by **Tonelli's theorem**, we know that

$$\int_{\mathbb{R}^{2d}} |f(x-y)g(y)| \, d(x,y) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| \, dx \, dy$$

Since f and g are integrable on \mathbb{R}^d , then $\int_{\mathbb{R}^d} f = M < \infty$ and $\int_{\mathbb{R}^d} g = N < \infty$. Thus,

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g(y)| \, dx dy = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)||g(y)| \, dx dy$$

$$= \int_{\mathbb{R}^d} |g(y)| \int_{\mathbb{R}^d} |f(x-y)| \, dx dy$$

$$= \int_{\mathbb{R}^d} |g(y)| \, M \, dy$$

$$= MN < \infty$$

So f(x-y)g(y) is integrable on \mathbb{R}^{2d} .

Exercise 2.21(c)

Recall the definition of convolution of f and g given by

$$(f * g) = \int_{\mathbb{R}^d} f(x - y)g(y) \, dy$$

Suppose that f and g are measurable functions on \mathbb{R}^d . Show that f * g is well defined for a.e. x (that is, f(x-y)g(y) is integrable on \mathbb{R}^d for a.e. x).

Proof.

Since we know that f(x-y)g(y) is integrable on \mathbb{R}^{2d} by **Exercise 2.21(b)**, then by **Fubini's theorem**, so for a.e. $x \in \mathbb{R}^d$ such that

$$\int_{\mathbb{R}^d} f(x - y)g(y) \, dy = (f * g)(x) < \infty$$

Hence f * g is well defined for a.e. x.

Exercise 2.21(d)

Suppose that f and g are measurable functions on \mathbb{R}^d . Show that f * g is integrable whenever f and g are integrable, and that

$$||f * g||_{L^1(\mathbb{R}^d)} \le ||f||_{L^1(\mathbb{R}^d)} ||g||_{L^1(\mathbb{R}^d)},$$

with equality if f and g are non-negative.

Proof.

From Exercise 2.21(b) and Exercise 2.21(c), we have

$$||f * g||_{L^{1}(\mathbb{R}^{d})} = \int_{\mathbb{R}^{d}} |(f * g)(x)| dx$$

$$= \int_{\mathbb{R}^{d}} \left| \int_{\mathbb{R}^{d}} f(x - y)g(y) dy \right| dx$$

$$\leq \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} |f(x - y)g(y)| dy dx$$

$$= MN = ||f||_{L^{1}(\mathbb{R}^{d})} ||g||_{L^{1}(\mathbb{R}^{d})}$$

Moreover, if f and g are positive functions, then |f(x-y)g(y)| = f(x-y)g(y), so the equality holds.

Exercise 2.24(a)

Consider the convolution

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \, dy.$$

Show that f * g is uniformly continuous when f is integrable and g bounded.

Proof.

If f is integrable and $\exists M \geq 0$ such that $|g| \leq M$. So $\forall x, z \in \mathbb{R}^d$, we have

$$|(f * g)(x) - (f * g)(z)| = \left| \int_{\mathbb{R}^d} (f(x - y) - f(z - y)) f(y) \, dy \right|$$

$$\leq M \int_{\mathbb{R}^d} |f(x - y) - f(z - y)| \, dy$$

$$= M \int_{\mathbb{R}^d} |f(-y) - f(z - y)| \, dy.$$

Since $f \in L^1(\mathbb{R}^d)$, by **Proposition 2.5** in the textbook, $\forall \varepsilon > 0$, $\exists \delta$ such that $||z - x|| < \delta \Rightarrow ||f(y) - f(y - (z - x))||_{L^1} < \varepsilon$. Thus,

$$|(f * g)(x) - (f * g)(z)| \le M||f(y) - f(y - (z - x))||_{L^1} < M\varepsilon.$$

Hence, the convolution (f * g)(x) is uniformly continuous.

Exercise 2.24(b)

If in addition g is integrable, prove that $(f * g)(x) \to 0$ as $|x| \to \infty$.

Proof.

By Exercise 2.21(d), if $f, g \in L^1(\mathbb{R}^d)$, then (f * g)(x) will be $L^1(\mathbb{R}^d)$. Moreover, by Exercise 2.24(a), we have (f * g)(x) is uniformly continuous, and integrable. By Exercise 2.6(b), then

$$\lim_{|x| \to \infty} (f * g)(x) = 0.$$