第8章特殊计数序列

- 8.1 Catalan数
- 8.2 差分序列和Stirling数
- 8.3 分拆数

第8章特殊计数序列

- 8.1 Catalan数
- 8.2 差分序列和Stirling数
- 8.3 分拆数

■相关应用

- □ 矩阵相乘的括号化问题
- □出栈次序问题
- □ 给定顶点的二叉树组成问题
- □ 买票找零问题
- □ 走方格问题
-
- ■主要内容
 - □ Catalan数的定义和必要条件
 - □一般项是Catalan数的计数问题

回顾

定理7.6.1 设 h_n 表示用下面方法把凸多边形区域分成三角形区域的方法数:

在有n+1条边的凸多边形区域内通过插入不相交的 对角线,而把它分成三角形区域。

定义 $h_1=1$ 。则 h_n 满足如下递推关系:

$$\frac{h_{n}=h_{1}h_{n-1}+h_{2}h_{n-2}+\ldots+h_{n-1}h_{1}}{=\sum_{k=1}^{n-1}h_{k}h_{n-k}} (n\geq 2)$$

该递推关系的解为:
$$h_n = \frac{1}{n} {2n-2 \choose n-1}$$
 (n=1, 2, 3,...)

Catalan数 C_{n-1}

■ 由比利时数学家欧仁·查理·卡塔兰 (1814–1894)提出

Catalan数列

Catalan数列是序列 $C_0, C_1, \ldots, C_n, \ldots$, 其中

$$C_n = \frac{1}{n+1} {2n \choose n}, n=0,1,2,...$$

是第n个Catalan数。

□ $C_{n-1} = \frac{1}{n} {2n-2 \choose n-1}$: 凸n+1边形被在其内部不相交的对角线划分成三角形区域的方法数

Catalan数列的递推式

把凸n+1多边形区域分成三角形区域的方法数 h_n 的递推式为

$$h_n = h_1 h_{n-1} + h_2 h_{n-2} + \dots + h_{n-1} h_1$$

由于 $C_{n-1} = h_n$ $(n \ge 1)$,得Catalan数列 C_0 , C_1 ,..., C_n ...的 递推式为

$$C_n = C_0 C_{n-1} + C_1 C_{n-2} + \dots + C_{n-1} C_0,$$

 $C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, \dots$

- □ 递推关系是非线性的
- □ 许多有意义的计数问题都导致这样的递推关系。

例. (括号化问题) 矩阵连乘 $P = a_1 \times a_2 \times ... \times a_n$,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?

思路:通过括号化,将 P 分成两个部分,然后分别对两个部分再进行括号化: $1 \le k \le n-1$

$$(a_1 \times a_2 \times \ldots a_k) \times (a_{k+1} \times \ldots \times a_n)$$

$$k=1$$
: $(a_1)\times(a_2\times a_3 \ldots \times a_n)$

$$k = n-1$$
: $(a_1 \times a_2 \times ... \times a_{n-1}) \times (a_n)$

设n个矩阵连乘的括号化方案的种数为 h_n ,则

$$h_n = h_1 h_{n-1} + h_2 h_{n-2} + h_3 h_{n-3} + ... + h_{n-1} h_1 \circ$$

计算开始几项, $h_1 = 1, h_2 = 1, h_3 = 2, h_4 = 5$ 。 结合递归式,不难发现 $h_n = C_{n-1}$ 。 例.(出栈次序问题)一个栈(无穷大)的进栈序列为1,2,3,...,n,有多少个不同的出栈序列?(后进先出)

	n	•••	<i>k</i> +1	k	<i>k</i> -1	•••	2	1
	i_1	•••	i_{n-k}	i_{n-k+1}	i_{n-k+2}		i_{n-1}	i_n

解:记出栈序列数目为 h_n 。

出栈

假设一个出栈序列的最后一个出栈元素为 $k(1 \le k \le n)$,则有

例.(出栈次序问题)一个栈(无穷大)的进栈序列为1,2,3,...,n,有多少个不同的出栈序列?(后进先出)

	n	•••	<i>k</i> +1	<u>k</u>	<i>k</i> -1	•••	2	1
	i_1	•••	i_{n-k}	i_{n-k+1}	i_{n-k+2}		i_{n-1}	k

解:记出栈序列数目为 h_n 。

假设一个出栈序列的最后一个出栈元素为 $k(1 \le k \le n)$,则有

- (1)元素1, 2, ..., k-1 的进栈与出栈在k入栈前全部完成;且
- (2) 元素 k+1,...,n的进栈与出栈在k入栈后直至 k 出栈前全部完成。因此,由乘法原理,最后一个出栈元素为 k 的出栈序列的个数为 $h_{k-1}h_{n-k}$ 。

由加法原理得, $h_n = \sum_{k=1}^n h_{k-1} h_{n-k}$.

令 h_0 =1, 且知 h_1 =1, h_2 =2, 由递推关系知 h_n = C_n 。

例: n个节点构成的二叉树, 共有多少种情形?

思路:考虑左右子树的分布情况

设 n个节点构成二叉树的情形有 h_n 种。 则有 $h_n = h_0 h_{n-1} + h_1 h_{n-2} + ... + h_{n-2} h_1 + h_{n-1} h_0$ 令 $h_0 = 1$,有 $h_1 = 1$, $h_2 = 2$, $h_3 = 5$ 。 结合递推式,知 $h_n = C_n$ 。

Catalan数列小结

■ Catalan数列是序列 $C_0, C_1, ..., C_n, ...,$ 其中

$$C_n = \frac{1}{n+1} {2n \choose n}, n=0,1,2,...$$

是第n个Catalan数。

■ Catalan数列 C_0, C_1, \ldots, C_n ...的递推式为

$$C_n = C_0 C_{n-1} + C_1 C_{n-2} + \dots + C_{n-1} C_0$$

问题:是否还有判断Catalan数列的方法?

$$a_1, a_2, \ldots, a_{2n},$$

其部分和总满足:

$$a_1 + a_2 + \cdots + a_k \ge 0 \ (k = 1, 2, ..., 2n)$$

的序列的个数等于第 n 个Catalan数

$$C_n = \frac{1}{n+1} \binom{2n}{n} \quad (n \ge 0)$$

证明:设满足条件的数列称为可接受的,其个数记为 A_n ;

否则称为不可接受的,其个数记为 U_n 。

由n个+1和n个-1构成的序列的总数为

$$A_n + U_n = \frac{(2n)!}{n!n!} = \frac{2n \cdot (2n-1)...(n+1)}{n!} = {2n \cdot (2n-1)...(n+1) \over n!} = {2n \cdot (2n-1)..$$

下面计算 U_n ,从而得到 A_n 。

 $a_1, a_2, ..., a_{2n}$, 其部分和满足: $a_1 + a_2 + ... + a_k \ge 0$ (k = 1, 2, ..., 2n) 的数列的个数等于第 n 个Catalan数

$$C_n = \frac{1}{n+1} \binom{2n}{n} \quad (n \ge 0)$$

假设序列 $S=a_1,a_2,...,a_{2n}$ 是不可接受的

 $S_k = a_1 + ... + a_k, k = 1, 2, ..., 2n$ 令 S_k 是第一个为负的和式,即k是 满足 S_k <0的最小的k, $a_1 \mid a_2 \mid a_3 \mid ... \mid a_k \mid a_{k+1} \mid ... \mid a_{2n}$ 则 $S_{k-1} = 0$,k一定为奇数且 $a_k = -1$;

 $\frac{k-1}{2}$ 十1, $\frac{k+1}{2}$ 1 $\frac{2n-k+1}{2}$ 1 $\frac{2n-k-1}{2}$ 1 $\frac{2n-k-$

 $a_1, a_2, ..., a_{2n}$,其部分和满足**:** $a_1 + a_2 + ... + a_k \ge 0$ (k = 1, 2, ..., 2n) 的数列的个数等于第 n 个Catalan数

$$C_n = \frac{1}{n+1} \binom{2n}{n} \quad (n \ge 0)$$

假设序列 $S=a_1,a_2,...,a_{2n}$ 是不可接受的

$$S_k = a_1 + ... + a_k, k = 1, 2, ..., 2n$$

令 S_k 是第一个为负的和式,即k是 满足 S_k 0的最小的k

满足 S_k <0的最小的k,

则
$$S_{k-1}=0$$
, k 一定为奇数且 $a_k=-1$;

$$\frac{k-1}{2}$$
 个+1, $\frac{k+1}{2}$ 个-1 $\frac{2n-k+1}{2}$ 个+1, $\frac{2n-k-1}{2}$ 个-1 得 S' 有 $n+1$ 个 1 和 $n-1$ 个-1,且 S' 是 S' 的第一个为正的和式

把S的前k项+1和-1相替换,得到S'

$$S' \begin{bmatrix} -a_1 & -a_2 & -a_3 & \dots & -a_k & a_{k+1} & \dots & a_{2n} \\ \hline k+1 & +1, & \frac{k-1}{2} & +1, & \frac{2n-k+1}{2} & +1, & \frac{2n-k-1}{2} & +1 \end{bmatrix}$$

得 S' 有 n+1 个 1 个

反之是否成立?

 $a_1, a_2, ..., a_{2n}$, 其部分和满足: $a_1 + a_2 + \cdots + a_k \ge 0$ (k = 1, 2, ..., 2n) 的数列的个数等于第 n 个Catalan数

$$C_n = \frac{1}{n+1} \binom{2n}{n} \quad (n \ge 0)$$

假设序列 $S=a_1,a_2,...,a_{2n}$ 是由n+1个1 和 n-1和 -1 构成的序列,且 S_k 是第一个为正的子序列和,则k为奇数, $S_{k-1}=0$,且 a_k 为+1 $s_k=a_1+...+a_k, k=1,2,...,2n$

把 S 的前 k项+1和-1相替换,得到S'

$$\begin{vmatrix} -a_1 & -a_2 & -a_3 & \dots & -a_k & a_{k+1} & \dots & a_{2n} \end{vmatrix}$$
 $\frac{k-1}{2} \uparrow +1, \quad \frac{k+1}{2} \uparrow -1 \quad \frac{2n-k-1}{2} \uparrow -1, \quad \frac{2n-k+1}{2} \uparrow 1$

得S'中有n个1和n个-1,且 $S'_k = -1 < 0$,即S'为不可接受的。

因此,由n+1个1和 n-1和-1构 成的序列对应一个由n个+1和 n个-1构成的不可接受的序列。

 $a_1, a_2, ..., a_{2n}$, 其部分和满足: $a_1 + a_2 + \cdots + a_k \ge 0$ (k = 1, 2, ..., 2n) 的数列的个数等于第 n 个Catalan数

$$C_n = \frac{1}{n+1} \binom{2n}{n} \quad (n \ge 0)$$

因此, 由n个+1和n个-1构成的不可接受序列的个数 U_n 与由n+1个+1和n-1个-1构成的序列的个数相等,

$$\text{RP } U_n = \frac{(2n)!}{(n+1)!(n-1)!} \circ$$

得
$$A_n = \frac{(2n)!}{n!n!} - U_n = \frac{1}{n+1} {2n \choose n}$$
。

因此,定理得证。

例.(购票找零钱问题)有2n个人排成一对进电影院,门票50元,2n个人中的n个人有50元纸币,n个人有100元纸币。电影院设置售票点,假设未备有零钱,有多少种排队方法使得只要有100元的人买票,售票处就有50元的纸币找零?

情况1: 若把2*n*个人看成不可区分的,将50元用 +1表示,100元用-1表示。

则满足条件的排队序列 $a_1,...,a_{2n}$ 一定满足 $a_1+...+a_k \ge 0$, k=1,...,2n。

假设 $a_1,...,a_k$ 是最短的一个 $a_1+...+a_k<0$ 的序列,则k为奇数,且 $a_k=-1$,则第k个人付款100时,无法找零。 因此满足条件的排队方法数为 $C_n=\frac{1}{n+1}\binom{2n}{n}$ $(n\geq 0)$ 例. (购票找零钱问题) 有2n个人排成一对进电影院,门票50元,2n个人中的n个人有50元纸币,n个人有100元纸币。电影院设置售票点,假设未备有零钱,有多少种排队方法使得只要有100元的人买票,售票处就有50元的纸币找零?

情况2: 若把2n个人看成可区分的,

则需要考虑n个有50元纸币的人的排列,以及n个有100元纸币的人的排列。

因此排队方法数为
$$(n!n!)\frac{1}{n+1}\binom{2n}{n}$$
 $(n\geq 0)$

例.(城市穿越问题)一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区上班。如果她不穿越从家到办公室的对角线,有多少可能的道路?

例.(城市穿越问题)一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区上班。如果她不穿越从家到办公室的对角线,有多少可能的道路?

解:由于不穿越从家到办公室的对角线,因此一条路径要么全在对角线上方,或者全在对角线下方。记全在对角线下方的路径数为 B_n ,全在对角线上方的路径数为 C_n ,由路径的对称性,得 $B_n = C_n$ 。

例.(城市穿越问题)一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区上班。如果她不穿越从家到办公室的对角线,有多少可能的道路?

解(续):用+1表示向东,-1表示向北。

则每条路径对应一个+1,-1的序列 $a_1, a_2, ..., a_{2n}$ 。

办公室

n

显然, B_n 为所有满足 $a_1+...+a_k \geq 0$,

k=1,...,2n, 的路径条数,

否则将有路径穿越对角线。

因此,
$$B_n = \frac{1}{n+1} \binom{2n}{n} \quad (n \ge 0)$$
,
得满足条件的道路总数为 $\frac{2}{n+1} \binom{2n}{n} \quad (n \ge 0)$ 。

Catalan数的递推关系

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{1}{n+1} \frac{(2n)!}{n! \, n!}$$

$$C_{n-1} = \frac{1}{n} {2n-2 \choose n-1} = \frac{1}{n} \frac{(2n-2)!}{(n-1)!(n-1)!}$$

两式相除得
$$\frac{C_n}{C_{n-1}} = \frac{4n-2}{n+1}$$

因此, Catalan序列递推关系和初始条件为:

$$C_n = \frac{4n-2}{n+1} C_{n-1} \quad (n \ge 1), \quad C_0 = 1$$

拟Catalan数 (一般表达式)

定义一个新的数列:

$$C_1^*, C_2^*, \dots, C_n^*, \dots$$

其中,
$$C_n^* = \{n!\} C_{n-1}, n=1, 2, ..., n, ...$$

$$C_n^* = n! C_{n-1}$$

$$= n! \cdot \frac{1}{(n-1)+1} {2(n-1) \choose n-1}$$

$$= (n-1)! {2n-2 \choose n-1}$$

拟-Catalan数(递推关系和初值)

■ 将Catalan数的递推关系代入得到拟Catalan数的递 推关系:

$$C_{n}^{*} = n!C_{n-1} = n! \times \frac{4(n-1)-2}{(n-1)+1}C_{n-2} = n! \times \frac{4n-6}{n}C_{n-2}$$
$$= (4n-6)[(n-1)!C_{n-2}] = (4n-6)C_{n-1}^{*}$$

因此,拟-Catalan数的递推关系和初值如下:

$$C_n^* = (4n-6)C_{n-1}^* \qquad (n \ge 2)$$

$$C_1^* = 1$$

例:令 $a_1,a_2,...,a_{n-1}$ 为n个数,这些数的乘法格式是指进行 $a_1,a_2,...,a_{n-1}$ 的乘法的方案,求乘法格式的数目。

解:显然,一个乘法格式需要两数间的n-1次乘法,其中两个数或者是 $a_1, a_2, ..., a_n$ 中的之一,或者是他们的部分乘积。

 $令 h_n$ 表示n个数的乘法格式的数目。则有 h_1 =1。

 $h_2 = 2$, 两个乘法格式为 $(a_1 \times a_2)$ 和 $(a_2 \times a_1)$ 。

例:令 $a_1,a_2,...,a_n$ 为n个数,这些数的乘法格式是指进行 $a_1,a_2,...,a_n$ 的乘法的方案,求乘法格式的数目。

解(续): $h_3 = 12$, 其中3个数的乘法格式为: $(a_1 \times (a_2 \times a_3))$, $(a_1 \times (a_3 \times a_2))$, $((a_1 \times a_3) \times a_2)$, $((a_3 \times a_1) \times a_2)$, $((a_1 \times a_2) \times a_3)$, $(a_3 \times (a_1 \times a_2))$, $(a_2 \times (a_1 \times a_3))$, $(a_2 \times (a_3 \times a_1))$, $((a_2 \times a_3) \times a_1)$, $(a_3 \times (a_2 \times a_1))$, $((a_2 \times a_1) \times a_3)$, $((a_3 \times a_2) \times a_1)$ 观察到:

- (1) 3个数的乘法格式都需要两个乘号,每个乘号对应一组括号因子
- (2) 每种乘法方案考虑了数字的顺序: 对 $a_1, a_2, ..., a_n$ 的每个排列插入n-1组括号,使得每一对括号都指 定两个因子

例:令 $a_1,a_2,...a_n$ 为n个数,这些数的乘法格式是指进行 $a_1,a_2,...a_n$ 的乘法的方案,求乘法格式的数目。

解(续)(递归定义):

任取 $a_1,a_2,....a_{n-1}$ 的一种乘法格式,它有n-2次乘 法和n-2组括号。两种方法构造 $a_1,a_2,....a_n$ 的的乘法格式:

- (1)将 a_n 插入到n-2个乘法运算中任一个×号的两个因子中的任一个因子的任一侧,一共是(n-2)·2·2=4(n-2)种方案;
- (2) 把该乘法格式作为一个因子,把 a_n 插入到因子的任一侧,一共2种方案。

$$a_1 \times a_2 \Rightarrow \begin{pmatrix} (a_3 \times a_1) \times a_2 \\ (a_1 \times a_3) \times a_2 \\ a_1 \times (a_3 \times a_2) \\ a_1 \times (a_2 \times a_3) \end{pmatrix} \begin{pmatrix} a_3 \times (a_1 \times a_2) \\ (a_1 \times a_2) \times a_3 \\ (a_1 \times a_2) \times a_3 \end{pmatrix}$$

例:令 $a_1,a_2,...a_n$ 为n个数,这些数的乘法格式是指进行 $a_1,a_2,...a_n$ 的乘法的方案,求乘法格式的数目。

解(续)(递归定义):

任取 $a_1,a_2,....a_{n-1}$ 的一种乘法格式,它有n-2次乘 法和n-2组括号。两种方法构造 $a_1,a_2,....a_n$ 的的乘法格式:

- (1)将 a_n 插入到n-2个乘法运算中任一个×号的两个因子中的任一个因子的任一侧,一共是(n-2)·2·2=4(n-2)种方案;
- (2) 把该乘法格式作为一个因子,把 a_n 插入到因子的任一侧,一共2种方案。

因此, $a_1,a_2,....a_{n-1}$ 的每个乘法格式产生 4(n-2)+2=4n-6个 $a_1,a_2,....a_n$ 的乘法格式,得 $h_n=(4n-6)h_{n-1}$, $n\geq 2$ 。 由初始值 $h_n=1$ 得 $h_n=C_n^*=(n-1)!\binom{2n-2}{n-1}$

总结

■ Catalan数列是序列 $C_0, C_1, ..., C_n, ...,$ 其中 $C_n = \frac{1}{n+1} {2n \choose n}, n=0,1,2,...$ 是第n个Catalan数。

$$C_n = C_0 C_{n-1} + C_1 C_{n-2} + \dots + C_{n-1} C_0$$

定理8.1.1. 考虑由n个+1和n个-1构成的2n项 $a_1, a_2, ..., a_{2n}$,其部分和满足: $a_1 + a_2 + \cdots + a_k \ge 0$ (k = 1, 2, ..., 2n) 的数列的个数等于第n个Catalan数

$$C_n = \frac{1}{n+1} \binom{2n}{n} \quad (n \ge 0)$$

■ 拟Catalan数列是序列 $C_1^*, C_2^*, ..., C_n^*, ...$

其中,
$$C_n^* = n!$$
 C_{n-1} , $n=1, 2, ..., n, ...$

$$C_n^* = (4n-6)C_{n-1}^*, n \ge 2, C_1^* = 1$$