PACKING CARGO SPACES EFFICIENTLY

Group 8

Adam Eljasiak Daniel Kaestner Simon Wengeler Raffaele Piccini Nicola Gheza Henri Viigimäe

CONTENTS

- 1. Assignment description
- 2. Assignment results
- 3. Implemented algorithms
- 4. Experiments and results
- 5. Conclusions

ASSIGNMENT DESCRIPTION

- Application for solving three-dimensional knapsack problems
- Three packages with certain values and a cargo space
 - A: 1.0 x 1.0 x 2.0 (m) with a value of 3
 - B: 1.0 x 1.5 x 2.0 (m) with a value of 4
 - C: 1.5 x 1.5 x 1.5 (m) with a value of 5

2.5 (m)

ASSIGNMENT RESULTS

- No solution to filling the entire cargo space with A,B and/or C packages has been found.
- Best result found for maximizing a single packing: 240
 - Number of A packages: 30
 - Number of B packages:10
 - Number of C packages: 22

- It is possible to fill the entire cargo space with L,P and/or T packages.
- Best result found for maximizing a single packing: 1144

GREEDY ALGORITHM

HILL CLIMBING ALGORITHM

GENETIC ALGORITHM

EXPERIMENTS AND RESULTS

EXPERIMENTS AND RESULTS (GREEDY ALGORITHM)

% of packages unused with regard to cargo size

Average runtime with regard to cargo size (in seconds)

Score efficiency
Percentage of maximum score that certain package type achieves on average

EXPERIMENTS AND RESULTS (HILL CLIMBING)

- Mutation rate can increase average runtime.
- Neighbourhood size is related to the performance.
- Better results with rotation disabled.

Effect of neighbourhood size and "mutation" rate (rotation disabled)

EXPERIMENTS AND RESULTS (GENETIC ALGORITHM)

- Increase in population size yields better results
- Affects the tournament selection method the most
 - Large increase in the average result achieved
 - Significant decrease in runtime

- Increasing the mutation probability decreases the performance of the algorithm (both value and runtime wise)
- This could be due to the way good solutions are achieved (no rotations)

EXTERNAL FACTORS

- Experiments with different numbers of packages and new package types (e.g. small, big, long etc.)
- Packages used have similar properties
- All with value 1

Defining properties	V	T (ms)	G	% 1D	Test No.
Small packages (inf)	289.26	12479.16	50	0.877	1
Big packages (inf)	10	61883.96	123	0.909	2
Cubes (inf)	108.56	45626.04	116	0.658	3
Long packages (inf)	248.6	85670.68	29.72	0.942	4
Flat packages (inf)	130.68	81555.08	121.44	0.895	5
A, B, C + 1 similar (15)	186.24	33130.76	165.52	0.955	6
A, B, C + 2 similar (15)	187.6	39986.68	163.8	0.947	7
A, B, C + 3 similar (10)	140.04	37154.92	220.4	0.946	8
A, B, C + 1 similar (inf)	213.36	51289.88	80.2	0.864	9
A, B, C + 2 similar (inf)	201.36	72838.04	66.56	0.815	10
A, B, C + 3 similar (inf)	204.12	73388.08	74.24	0.826	11

- Performance worse than with standard packages
- Still finds good solutions
- Could probably adapt parameters to fit other packages better

CONCLUSIONS

- Greedy algorithm is easy to implement and is easy to change
- Hill climbing algorithm is fast and finds a good solution
- Genetic algorithm gets closest to the optimal solution and has a decent runtime
- GA struggles with high amounts of packages and different package types

 can be improved by changing internal parameters