

#### TEMA 5: CAPA DE XARXA O D'INTERNET

# UF1: INTRODUCCIÓ A LES XARXES M07: PLANIFICACIÓ I ADMINISTRACIÓ DE XARXES

Administració de Sistemes Informàtics en Xarxa

#### LA CAPA D'INTERNET



- ▶ D'Internet al model TCP/IP
- ▶ De Xarxa al model OSI
- Rep les dades de la capa de transport
  - Les encapsula (afegint-hi una capçalera de la capa)
  - Això crea la PDU de la capa, anomenada Paquet
  - Les envia a la capa d'accés a la xarxa o enllaç a dades
- ▶ Rep les dades de la capa d'accés a la xarxa
  - Realitzant l'operació inversa

#### **FUNCIONS**



- Adreçament
- Identificar cada dispositiu de la xarxa amb una adreça única dins aquella xarxa: la IP
- ► Encapsulació / desencapsulació
  - La PDU s'anomena Paquet
  - La capçalera s'afegeix a la PDU de Segment o Datagrama
  - La informació més important d'aquesta capçalera són les adreces IP d'origen i de destí.
  - En rebre un paquet, els dispositius comproven si és la seva
- ▶ Enrutament
  - Els paquets travessen diferents dispositius (routers) fins arribar al seu destí, seguint una ruta
    - Se selecciona la millor ruta possible

# PROTOCOL IPV4 (I)



- ▶ IPv6 canvia el format d'IP per incrementar el número d'IP disponibles
  - 2001:0DB8:1234:5678:ABCD:EF00:0000:0009
- ▶ Les IPv4 segueixen sent àmpliament utilitzades
  - 192.168.1.50
  - En un futur, se substituiran per les IPv6
- ▶ El protocol IP no s'orienta a connexió ni és confiable
  - Es delega aquest funció a la capa de transport, si cal
  - D'aquesta manera s'alleugera el trànsit a la xarxa

# PROTOCOL IPV4 (II)



- ► El protocol IPv4 és independent...
  - De les dades que transporta
    - → Ignora l'aplicació que les ha generat o el significat que tenen
  - Del medi
    - Funciona sobre qualsevol tipus de medi (cablejats, sense fils, etc.)
    - → No obstant això, la mida màxima del paquet depèn del medi
    - Aquesta mida màxima es coneix com a MTU (Unitat Màxima de Transmissió):
      - A Ethernet, sol ser de 1500 bytes
      - A les WLAN, de 2304 bytes
- ► Més informació, a l'RFC-791

## Encapsulació



| Capa d'Aplicació        | Dades |                              |                              |                                |                  | Dades   |
|-------------------------|-------|------------------------------|------------------------------|--------------------------------|------------------|---------|
| Capa de Transport       |       |                              |                              | Capçalera Capa<br>de Transport | Segment de dades | Segment |
| Capa d'Internet         |       |                              | Capçalera Capa<br>d'Internet | £                              | Segment          | Paquet  |
| Capa d'Accés a la Xarxa |       | Capçalera Capa<br>d'A. Xarxa | Paquet                       |                                |                  | Trama   |

## DADES MÉS RELLEVANTS A LA CAPÇALERA



- Adreces IP
  - D'origen (32 bits)
- Destí (32 bits)
- ► TTL
  - Time to Live
  - Número de salts (routers que travessa en la seva ruta) abans de ser descartat
  - A cada salt, el TTL disminueix en 1
- ▶ Versió (4 o 6)
- ▶ Protocol de la capa superior (TCP o UDP)
- ▶ Checksum
  - Per comprovar que no hi hagi errors

#### SWITCH VS ROUTER



- ► Switch
  - Dispositiu de la capa d'accés a la xarxa
  - Treballa amb les MAC
  - Només pot manipular trames que tenen orígen i destí dins la mateixa xarxa
- ▶ Router
- Dispositiu de la capa d'Internet
- Treballa amb les IP
- Pot enrutar paquets entre xarxes diferents
- El router de la nostra xarxa que ens permet sortir a altres xarxes el coneixem com a **gateway**, passarel·la o porta d'enllaç

## INTERCONNEXIÓ DE DUES XARXES





#### **FUNCIONAMENT**



- ► El PC0 vol enviar informació
  - És a la mateixa xarxa? → ho envia directament (MAC)
  - És a una xarxa diferent? → ho envia al seu router (gateway), perquè ho faci arribar a destí
- Al router li arriba una informació que ha d'enviar
  - És a la mateixa xarxa? → ho envia directament
  - És a una xarxa diferent? > ho envia al següent router que tingui connectat (gateway), perquè ho faci arribar a destí
- ▶ Com sabem si una IP és de la mateixa xarxa o no?
  - A través de la màscara de xarxa

#### Consideracions



- ► El gateway d'un dispositiu ha de ser a la mateixa xarxa que el dispositiu
  - Les IP han de coincidir en el rang d'adreces de xarxa
- ► Cada dispositiu ha de saber quin és el seu gateway
  - Manualment
  - A través d'un DHCP
- Cada router ha de saber com redirigir una IP
  - Són el que coneixem com taules d'enrutament

#### ALGUNES COMANDES BÀSIQUES



- ▶ \$ip a
  - IP, MX i MAC del PC local
  - Substitueix ifconfig
- ▶ \$ip route
  - taula d'enrutament amb el GW
- ► \$route
  - taula d'enrutament amb el GW

### INTERCONNEXIÓ DE MÚLTIPLES XARXES





#### TIPUS D'ENRUTAMENT ALS ROUTERS



- ▶ Manual
  - Implica que qualsevol canvi a la xarxa implica modificar les taules d'enrutament
- ► Automàtic
  - Els routers s'envien missatges
    - + Quan detecten un canvi, actualitzen la seva taula d'enrutament
    - A més, els routers poden saber quin és el millor camí
  - RIP (Routing Information Protocol) és el protocol més utilitzat
  - Inconvenients:
    - Sobrecàrrega de la xarxa amb missatges entre routers
    - ◆ Els routers han de tenir més capacitat de processament i memòria (€)