Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

			07/10/2022
604100	D=111 (0000)	BS	27/12/2023
CRM08	Rev 1.14 (2022 rev)	65	

CONTINUOUS INTERNAL EVALUATION - 2

Dept:BS	Sem / Div:I/ AIML,CD,CSE A & B	Sub. Mathematics 1	S Code: BMATS101
			Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

C		1	Questions	Mark	RBT	CO's
				S		
			PART A			
1	1		Find the orthogonal trajectories of the family of curves $r^n cosn\theta = a^n$.	8	L3	CO3
	1	,	Find the general solution of linear Diophantine equation $70x + 112y = 168$.	8	L2	CO4
			(i)Find the least positive value of x such that $78 + x \equiv 3 \pmod{5}$ (ii)Find the last digit of 7^{2013} . (iii)Find the remainder when $175 \times 113 \times 53$ is divided by 11.	9	L2	CO4
	2	a	Solve $xy \left(\frac{dy}{dx}\right)^2 - (x^2 + y^2) \frac{dy}{dx} + xy = 0$	8	L2	CO3
			Solve the system of linear congruences $x \equiv 2 \pmod{3}, x \equiv 3 \pmod{5}, x \equiv 2 \pmod{7}$ using Chinese remainder theorem.	8	L3	CO4
		С	(i)Find the remainder when 14! is divided by 17. (ii)Show that $8^{30} - 1$ is divisible by 31. (iii)Solve $x^3 + 5x + 1 \equiv 0 \pmod{27}$	9	L2	CO4

Page: 1 / 2

DΛ	RT	\mathbf{B}
	1/1	

PART B					
3	8	Test for consistency and solve x + 2y + 3z = 14 $4x + 5y + 7z = 35$ $3x + 3y + 4z = 21$	8	L2	CO5
	ł	Solve the system of equations by Gauss-Siedel method: 2x - 3y + 20z = 25 3x + 20y - z = -18 20x + y - 2z = 17	8	L2	CO5
		Find the largest eigenvalue and the corresponding eigenvector of the matrix A by using the power method by initial vector as $\begin{bmatrix} 1,1,1 \end{bmatrix}^T$ $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$	9	L2	CO5
	1	Find the rank of the matrix $\begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$	8	L2	CO5
		Apply Gauss-Jordan method to solve the following system of equations $2x_1 + x_2 + 3x_3 = 1$ $4x_1 + 4x_2 + 7x_3 = 1$ $2x_1 + 5x_2 + 9x_3 = 3$	8	L2	CO5
)		Investigate the values of λ and μ such that the system of equations $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ may have (i)unique solution (ii) infinite solution (iii) no solution.	9	L3	CO5

Prepared by: Reshma

HOD:M Ramanda Kamath