

Name:	
Matrikelnummer:	

Hochschule Karlsruhe – Technik und Wirtschaft Klausur Technische Informatik I (SS 2016)

Aufgabe	1	2	3	4	5	Summe
Punkte	8	14	18	10	10	60
Erreicht						

Ergebnis:

Note	
------	--

Zeit: 60 Minuten

Erlaubte Hilfsmittel: keine

Tragen Sie auf das **Titelblatt Ihren Namen und auf alle Blätter Ihre Matrikelnummer** ein. Fragen Sie bei Unklarheiten in der Aufgabenstellung sofort nach. Tragen Sie Ihre Lösungen in die Aufgabenblätter ein und verwenden Sie auch die Rückseite. Sollte der Platz nicht ausreichen, so erhalten Sie weitere Blätter. Lösungen auf eigenem Papier werden nicht akzeptiert. Alle Aufgabenblätter müssen abgegeben werden. Verwenden Sie **keinen Bleistift** und auch **keinen roten Stift**.

Viel Erfolg!

SS 2016

Prof. Dr. Dirk Hoffmann

Name:	

Matrikelnummer: _____

Aufgabe 1: Verknüpfungs-Auswahlschaltung (8 Punkte)

Gegeben sei die folgende Schaltung:

Stellen Sie die Wahrheitstabelle auf:

SS 2016

Prof. Dr. Dirk Hoffmann

Name:	
Matrikelnummer:	

Aufgabe 2: Boolesche Algebra (14 Punkte)

a) Ist der Implikationsoperator assozia spiel an.	tiv? Geben Sie einen Beweis oder ein Gegenbei-
In einem Lehrbuch zur mathematischer beschrieben:	Logik wird die UND-Funktion folgendermaßen
chen meist mit $A \wedge B$ oder $A \& B$ be genau dann wahr, wenn A, B beide entspricht also eine 2-stellige Boolese und häufig kurz mit \wedge bezeichnet.	eiden Aussagen A, B , die in formalisierten Sprazeichnet wird, ist nach dem Wortsinn von und wahr sind, und sonst falsch. Der Konjunktion che Funktion, die \land -Funktion oder et-Funktion Diese ist durch ihre Wertetabelle oder Wertetchen stets $\begin{pmatrix} 1 \circ 1 & 1 & 0 \\ 0 \circ 1 & 0 \circ 0 \end{pmatrix}$ die Wertematrix einer
, ,	so $1 \wedge 1 = 1$, sowie $1 \wedge 0 = 0 \wedge 1 = 0 \wedge 0 = 0$.
b) Wie lautet die Wertematrix der NOR	-Funktion?
c) Wie lautet die Wertematrix der Äqui	valenz-Funktion?

SS 2016

Prof. Dr. Dirk Hoffmann

Name:	

Matrikelnummer: _____

Der boolesche Operator, o' sei durch die folgende Wertematrix gegeben:

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Wie lauten die	disjunktive und die	e konjunktive No	ormalform der Funktion $x \circ$
inter ,oʻ verl	oirgt sich ein bekan	nter Logik-Oper	rator. Wie lautet sein Name?

Aufgabe 3: Minimierung (18 Punkte)

-		_	itig die ko Sie Ihre A	_	Ainimalfor	m gleich o

a) Geben Sie alle dreistelligen Funktionen an, für die die disjunktive Minimalform gleich

SS 2016

	Prof.	Dr.	Dirk	Hoffm	ann
--	-------	-----	------	-------	-----

b) Erzeugen Sie das KV-Diagramm für die Funktion $\overline{a}\overline{b}\overline{d} \lor ab \lor \overline{a}\overline{b}d$. Jeder der drei disjunktiv verknüpften Terme beschreibt einen Block. Tragen Sie die Blöcke in das Diagramm ein.

c) Handelt es sich bei der in der vorherigen Teilaufgabe angegebenen Formel um eine Minimalform? Falls ja, um welche? Falls nein, warum nicht?

d) Erzeugen Sie das KV-Diagramm für die Funktion $(\overline{a} \lor b \lor d)(a \lor \overline{b})(b \lor c \lor \overline{d})$. Umranden Sie auch hier alle Felder, die zusammen einen Block bilden.

e) Handelt es sich bei der in der vorherigen Teilaufgabe angegebenen Formel um eine Minimalform? Falls ja, um welche? Falls nein, warum nicht?

SS 2016

Prof. Dr. Dirk Hoffmann

Name:	

Matrikelnummer: _____

Aufgabe 4: Arithmetisch-logische Einheit (10 Punkte)

Gegeben sei die folgende arithmetisch-logische Einheit (ALU). Die ALU nimmt als Eingabe 2 Zahlen $x = x_3x_2x_1x_0$ und $y = y_3y_2y_1y_0$ entgegen und berechnet hieraus in Abhängigkeit der Steuersignale s_0, s_1, s_2 und s_3 die Zahl $z = z_4z_3z_2z_1z_0$. Nehmen Sie an, dass alle Zahlen im **Einerkomplement** dargestellt werden und der Addierer intern so aufgebaut ist, dass er korrekt mit Einerkomplementzahlen umgehen kann.

Analysieren Sie die Schaltung, indem Sie die folgende Tabelle ergänzen:

	<i>s</i> ₃	<i>s</i> ₂	s_1	s_0	Z
0	0	0	0	0	x+y
3	0	0	1	1	
6	0	1	1	0	
10	1	1	0	0	
7	0	1	1	1	

SS 2016

Prof. Dr. Dirk Hoffmann

Name:	

Matrikelnummer: _____

Aufgabe 5: Speicherelemente (10 Punkte)

Gegeben sei die folgende Schaltung:

a)	Was für ein Speicherelement ist hier verbaut? Geben Sie den vollständigen Namen an.
b)	Zeichnen Sie den endlichen Automaten, der diese Schaltung beschreibt.
	Handelt es sich um einen Mealy- oder einen Moore-Automaten? Begründen Sie Ihre Antwort.