EE-222: Microprocessor Systems

AVR Interrupts: **Programming Timer Interrupts**

Instructor: Dr. Arbab Latif

Programming Timer Interrupts

Create A Square Wave with Timer: Polling Method

The AVR CPU is busy for monitoring TF0!

Create A Square with Timer Interrupt

Interrupt Example

- Assume that PORTC is connected to 8 switches and PORTD to 8 LEDS:
 - Use Timer0 to generate a square wave on PORTB.5
 - While at the same time transfer data from PORTC to PORTD

5

```
;location for reset
.ORG 0x0
     JMP
           MAIN
                 ;location for TimerO overflow (see Table 10.1)
.ORG
     0x16
                           ; jump to ISR for Timer0
     JMP
           TO OV ISR
:-main program for initialization and keeping CPU busy
.ORG 0x100
           R20, HIGH (RAMEND)
MAIN: LDI
           SPH,R20
     OUT
     LDI
           R20, LOW (RAMEND)
                            ;initialize stack
     OUT
           SPL,R20
      SBI
           DDRB,5
                            ;PB5 as an output
     LDI
           R20, (1<<TOIE0)
                      ;enable TimerO overflow interrupt
     OUT
           TIMSK, R20
                       ; set I (enable interrupts globally)
      SEI
                      ;timer value for 4 µs
           R20,-32
     LDI
                       ;load TimerO with -32
     OUT
           TCNTO, R20
           R20,0x01
      LDI
                       ; Normal, internal clock, no prescaler
      OUT
           TCCR0,R20
      LDI
           R20,0x00
     OUT
           DDRC, R20
                       ;make PORTC input
           R20,0xFF
      LDI
                       ;make PORTD output
     OUT
           DDRD, R20
;----- Infinite loop
                      read from PORTC
           R20, PINC
HERE: IN
           PORTD, R20 ; give it to PORTD
      OUT
                       ; keeping CPU busy waiting for interrupt
      JMP
           HERE
;-----ISR for TimerO (it is executed every 4 µs)
.ORG 0x200
TO OV ISR:
           R16, PORTB ; read PORTB
     IN
           R17,0x20
     LDI
                       ;001000000 for toggling PB5
     EOR
           R16,R17
     OUT
           PORTB, R16 ; toggle PB5
     LDI
           R16,-32 ;timer value for 4 µs
     OUT
                       ;load TimerO with -32 (for next round)
           TCNTO, R16
     RETI
                       return from interrupt
```

Why RETI instead of RET?

 Upon activation of the interrupt, the I bit is cleared by the AVR itself to make sure that no other interrupt can come in while servicing the current one.

 RETI performs the additional task of setting the I flag, indicating the service the interrupt is over and the AVR can now accept a new interrupt.

Interrupt Priority in AVR

Interrupt Priority

- If two interrupts are activated at the same time,
 - Then the one with he higher priority is served first.
- The priority of each interrupt is related to the address of that interrupt in the interrupt vector table.

Table 18. Reset and Interrupt Vectors

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition				
1	\$000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset				
2	\$002	INT0	External Interrupt Request 0				
3	\$004	INT1	External Interrupt Request 1				
4	\$006	TIMER2 COMP	Timer/Counter2 Compare Match				
5	\$008	TIMER2 OVF	Timer/Counter2 Overflow				
6	\$00A	TIMER1 CAPT	Timer/Counter1 Capture Event				
7	\$00C	TIMER1 COMPA	Timer/Counter1 Compare Match A Timer/Counter1 Compare Match B				
8	\$00E	TIMER1 COMPB					
9	\$010	TIMER1 OVF	Timer/Counter1 Overflow				
10	\$012	TIMER0 OVF	Timer/Counter0 Overflow				
11	\$014	SPI, STC	Serial Transfer Complete				
12	\$016	USART, RXC	USART, Rx Complete				
Exterma	ıl interrup	ot 0 has a high	er priority than timer0 interrupt				
15	\$01C	ADC	ADC Conversion Complete				
16	\$01E	EE_RDY	EEPROM Ready				
17	\$020	ANA_COMP	Analog Comparator				
18	\$022	TWI	Two-wire Serial Interface				
19	\$024	INT2	External Interrupt Request 2				
20	\$026	TIMER0 COMP	Timer/Counter0 Compare Match				
			Store Program Memory Ready				

EE-222: Microprocessor Systems

AVR Interrupts: Programming External Hardware Interrupts

Instructor: Dr. Arbab Latif

Review: Pin-out ATmega16A

External Interrupts

- External interrupts are triggered by the:
 - INTO
 - INT1
 - INT2 [only edge triggered interrupt]
- GICR Register: To enable/disable external interrupt

- Note: if external interrupt is enabled, the interrupts will trigger even if the INTO:2 pins are configured as outputs:
 - This provides a way of generating a Software Interrupt

Interrupt Sense Control

- The external interrupt can be triggered by a:
 - Falling edge
 - Rising edge
 - Low-level

- Upon reset, INTO and INT1 are low-level triggered interrupts,
 - See next slide for edge triggered configuration

INT2 is only edge triggered interrupt.

Interrupt Sense Control for INT0 and INT1: MCUCR

7	6	5	4	3	2	1	0	_
SM2	SE	SM1	SM0	ISC11	ISC10	ISC01	ISC00	MCUCR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	

ISC01	ISC00	o Tursini la	Description
0	0		The low level of INT0 generates an interrupt request.
0	1	14	Any logical change on INT0 generates an interrupt request.
1	0	7	The falling edge of INT0 generates an interrupt request.
1	1	工工	The rising edge of INT0 generates an interrupt request.

ISC11	ISC10	Кедінгег	Description
0	0	\neg _ \Box	The low level of INT1 generates an interrupt request.
0	1	7_1	Any logical change on INT1 generates an interrupt request.
1	0	7	The falling edge of INT1 generates an interrupt request.
1	1	□□₽	The rising edge of INT1 generates an interrupt request.

Interrupt Sense Control for INT2: MCUCSR

	7	6	5	4	3	2	1	0	_
ı	JTD	ISC2	-	JTRF	WDRF	BORF	EXTRF	PORF	MCUCSR
•	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	
	0	0	0						

ISC2	they make	Description
0	7	The falling edge of INT2 generates an interrupt request.
1	1	The rising edge of INT2 generates an interrupt request.

GIFR: General Interrupt Flag Register

- In case of edge-triggered mode: [Falling/Rising/Change-level]
 - The related INTFx flag is set upon triggering an interrupt
 - The related INTFx flag is cleared when the AVR jumps to corresponding ISR
 - the interrupt pulse must last for at least 1 c.c to ensure that the transition is seen by the AVR

7	6	5	4	3	2	1	0	_
INTF1	INTF0	INTF2	-	-	-	-	-	GIFR
R/W	R/W	R/W	R	R	R	R	R	•
0	0	0	0	0	0	0	0	

GIFR: General Interrupt Flag Register

- In case of level-triggered interrupts:
 - The interrupt is NOT latched i.e INTFx flag remains unchanged when an interrupt occurs
 - The state of the pin is read directly
 - Pin must be held low for a min. of 5 c.c to be recognized.

	7	6	5	4	3	2	1	0	_
	INTF1	INTF0	INTF2	-	-	-	-	-	GIFR
!	R/W	R/W	R/W	R	R	R	R	R	_
	0	0	0	0	0	0	0	0	

Recommended Reading

- The AVR Microcontroller and Embedded Systems: Using Assembly and C by Mazidi et al., Prentice Hall
 - Chapter 10

THANK YOU

