

ML-based Emotion Role Labelling

Emotion Analysis Assignment 4

Felix Bühler Carlotta Quensel Max Wegge

research question data choice

Does the choice of training data influence the result of the classifier and how?

- emotion roles are determined semantically but this information is partially included in the syntactic structure
- label the emotion target which is often an NP (for example the person or institution, the emotion is directed at)
- How will corpora with very different syntax change the trained algorithm:
 - GoodNewsEveryone: news headlines, which are abbreviated and include 'ungrammatical' telegram style sentences
 - Reman: complex sentences with three segments from literature
 - Electoral Tweets: everyday language usage from twitter users
 - → We train and evaluate our target classifier on all three of these very different corpora

research question method choice

How do a naïve and a complex algorithm differ in their labelling results?

- sequence labelling is harder than nominal classification and needs context information
- compare a naïve approach without much context to a complex method
 - Hidden Markov model takes the context of prior labels but not of tokens into account
 - Transformer uses ???

method Hidden Markov/viterbi

- a Hidden Markov model is trained on observations in the training data
- easily trained only with frequencies:
 - emission probabilities compute $\frac{\text{frequency of token,tag-pair}}{\text{overall token frequency}}$ for all tokens
 - transition probabilities compute $\frac{\text{frequency of tag}_1, \text{tag}_2 \text{ bigram}}{\text{frequency of tag}_2}$ for every tag O, B and I
 - prior probabilities compute the relative frequency of each tag as the first tag
- the best labels for a token sequence are the ones with the highest product of probabilities
- Viterbi is used to determine the labels with the maximum sequence probability

method RoBERTa

- Transformer
- X epochs

evaluation interpretation

- intersections between predicted and real target sequence are counted as true positives
- empty intersections are counted as false classifications
- multiple sequences mapped onto one are only counted once

Thank you for listening!

Questions?

We started to hate each other.
[ID 235]