

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

df=pd.read_csv('/content/winequality-red.csv')
df.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51

VISUALIZATION

#UNIVARIATE ANALYSIS
sns.catplot(x='quality',data=df,kind='count')

#BIVARIATE ANALYSIS
sns.scatterplot(x=df.pH,y=df.chlorides)

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	dens
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003

correlation=df.corr()
correlation

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.11318 ⁻
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.06649
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.18510(

#Heatmap

plt.figure(figsize=(10,10))

sns.heatmap(correlation)

fixed acidity
volatile acidity
citric acid
chlorides
free sulfur dioxide
total sulfur dioxide -

#Detecting outliers
df.columns = df.columns.str.replace(' ', '_')
df.head()

	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxide	total_sulfur_dioxide	density	рН
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51

sns.boxplot(df.alcohol)


```
a_01=df.alcohol.quantile(0.01)
a_99=df.alcohol.quantile(0.99)
print(a_01)
print(a_99)

9.0
13.4
```


sns.boxplot(df.fixed_acidity)


```
f1 = df.fixed_acidity.quantile(0.25) #Q1
f3 = df.fixed_acidity.quantile(0.75) #Q3
IQR_f = f3 - f1
upper_limit_f = f3+(1.5)*(IQR_f)
lower_limit_f = f1-(1.5)*(IQR_f)
print(f1)
print(f3)
print(IQR_f)
print(upper_limit_f)
print(lower_limit_f)
     7.1
     9.2
     2.099999999999996
     12.34999999999998
     3.95
df=df[(df.fixed_acidity<upper_limit_f) & (df.fixed_acidity>lower_limit_f)]
sns.boxplot(df.fixed_acidity)
```

```
capacity control of the state of the st
```


sns.boxplot(df.volatile_acidity)


```
v1 = df.volatile_acidity.quantile(0.25) #Q1
v3 = df.volatile_acidity.quantile(0.75) #Q3
IQR_v = v3 - v1
upper_limit_v = v3+(1.5)*(IQR_v)
lower_limit_v = v1-(1.5)*(IQR_v)
print(v1)
print(v3)
print(IQR_v)
print(upper_limit_v)
print(lower_limit_v)
```

0.4 0.64

0.24

1.0 0.0400000000000000036

sns.boxplot(df.citric_acid)


```
c1 = df.citric_acid.quantile(0.25) #Q1
c3 = df.citric_acid.quantile(0.75) #Q3
IQR_c = c3 - c1
upper_limit_c = c3+(1.5)*(IQR_c)
lower_limit_c = c1-(1.5)*(IQR_c)
print(c1)
print(c3)
print(IQR_c)
print(upper_limit_c)
print(lower_limit_c)
     0.09
     0.4
     0.310000000000000005
     0.86500000000000001
-0.375000000000000001
df=df[(df.citric_acid<upper_limit_c) & (df.citric_acid>lower_limit_c)]
sns.boxplot(df.citric_acid)
```


sns.boxplot(df.residual_sugar)

sns.boxplot(df.residual_sugar)

sns.boxplot(df.chlorides)


```
ch1 = df.chlorides.quantile(0.25) #Q1
ch3 = df.chlorides.quantile(0.75) #Q3
IQR_ch = ch3 - ch1
upper_limit_ch = ch3+(1.5)*(IQR_ch)
lower_limit_ch = ch1-(1.5)*(IQR_ch)
print(ch1)
print(ch3)
print(IQR_ch)
print(upper_limit_ch)
print(lower_limit_ch)
```

0.07 0.089

0.0189999999999999

0.11749999999999998

0.041500000000000002

df=df[(df.chlorides<upper_limit_ch) & (df.chlorides>lower_limit_ch)]
sns.boxplot(df.chlorides)

ch_01=df.chlorides.quantile(0.01)
ch_97=df.chlorides.quantile(0.97)
print(ch_01)
print(ch_97)

0.04775
0.107

df=df[(df.chlorides>=ch_01) & (df.chlorides<=ch_97)]
sns.boxplot(df.chlorides)</pre>

sns.boxplot(df.free_sulfur_dioxide)

```
<Axes: >
50 -
40 -
30 -

df.free_sulfur_dioxide.quantile(0.25) #Q1
```

```
fs1 = df.free_sulfur_dioxide.quantile(0.25) #Q1
fs3 = df.free_sulfur_dioxide.quantile(0.75) #Q3
IQR_fs = fs3 - fs1
upper_limit_fs = fs3+(1.5)*(IQR_fs)
lower_limit_fs = fs1-(1.5)*(IQR_fs)
print(fs1)
print(fs3)
print(IQR_fs)
print(upper_limit_fs)
print(lower_limit_fs)

8.0
21.0
13.0
40.5
-11.5
```


sns.boxplot(df.total_sulfur_dioxide)

```
AVAC. >
ts1 = df.total_sulfur_dioxide.quantile(0.25) #Q1
ts3 = df.total_sulfur_dioxide.quantile(0.75) #Q3
IQR_ts = ts3 - ts1
upper_limit_ts = ts3+(1.5)*(IQR_ts)
lower_limit_ts = ts1-(1.5)*(IQR_ts)
print(ts1)
print(ts3)
print(IQR_ts)
print(upper_limit_ts)
print(lower_limit_ts)
     23.0
     57.0
     34.0
     108.0
     -28.0
```

df=df[(df.total_sulfur_dioxide<upper_limit_ts) & (df.total_sulfur_dioxide>lower_limit_ts)]
sns.boxplot(df.total_sulfur_dioxide)


```
ts_01=df.total_sulfur_dioxide.quantile(0.01)
ts_97=df.total_sulfur_dioxide.quantile(0.97)
print(ts_01)
print(ts_97)

8.0
94.43999999999994
```


sns.boxplot(df.density)

```
1.000 - 0.998 - 0.996 - 0.994 - 0.992 - 0
```

df=df[(df.density<upper_limit_d) & (df.density>lower_limit_d)]
sns.boxplot(df.density)

sns.boxplot(df.pH)


```
pH1 = df.pH.quantile(0.25) #Q1
pH3 = df.pH.quantile(0.75) #Q3
IQR_pH = pH3 - pH1
upper_limit_pH = pH3+(1.5)*(IQR_pH)
lower_limit_pH = pH1-(1.5)*(IQR_pH)
print(pH1)
print(pH3)
print(IQR_pH)
print(upper_limit_pH)
print(lower_limit_pH)
     3.24
     3.41
     0.1699999999999993
     3.665
     2.98500000000000003
df=df[(df.pH<upper_limit_pH) & (df.pH>lower_limit_pH)]
sns.boxplot(df.pH)
```


OUTLIERS REMOVED

#DATA PREPROCESSING
X=df.iloc[:,:-1]
X.head()

Y=df.quality

	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxide	total_sulfur_dioxide	density	рН
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51

```
Y.head()

0     5
1     5
2     5
3     6
4     5
Name: quality, dtype: int64

Y = df['quality'].apply(lambda y_value: 1 if y_value>=7 else 0)
print(Y)

0     0
```

```
3
              0
     4
              0
     1593
              0
     1594
     1595
              0
     1596
              0
     1597
              0
     Name: quality, Length: 948, dtype: int64
#Train & Test split
from sklearn.model_selection import train_test_split
\label{lem:control_control_control} X\_train, X\_test, Y\_train, Y\_test=train\_test\_split(X,Y,test\_size=0.2,random\_state=3)
X_train.shape
     (758, 11)
X_{test.shape}
     (190, 11)
Y_train.shape
     (758,)
Y_test.shape
     (190,)
MODEL BUILDING
model=RandomForestClassifier(n_estimators=200,criterion='entropy')
```

```
model.fit(X_train,Y_train)
```

```
RandomForestClassifier
RandomForestClassifier(criterion='entropy', n_estimators=200)
```

MODEL EVALUATION

```
X_test_prediction = model.predict(X_test)
{\tt X\_train\_prediction=model.predict(X\_train)}
print('Testing Accuracy = ', accuracy_score(Y_test,X_test_prediction))
print('Training Accuracy = ', accuracy_score(Y_train,X_train_prediction))
      Testing Accuracy = 0.9315789473684211
      Training Accuracy = 1.0
input_data = [7.6, 1.0, 0, 3.0, 0.07, 30, 100, 0.9542, 3.1, 0.66, 9.6]
prediction = model.predict([input_data])
prediction
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but RandomForestClas warnings.warn(array([0])

