Programacion Cuadratica Secuencial

Oscar S. Dalmau Cedeño dalmau@cimat.mx

15 de noviembre de 2018

SQP con restricciones de igualdad SQP con restricciones de igualdad y desigualdad Cuasi Newton para SQP: Damped BFGS

 SQP con restricciones de igualdad Metodo SQP local SQP Framework

- 2 SQP con restricciones de igualdad y desigualdad
- 3 Cuasi Newton para SQP: Damped BFGS

Dado el problema con restricciones de igualdad:

$$\min f(\boldsymbol{x}) \tag{1}$$

$$s.a.: c_i(\boldsymbol{x}) = 0, i \in \mathcal{E}$$
 (2)

Calculemos su Lagrangiano y las condiciones KKTs correspondientes.

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) - \boldsymbol{\lambda}^T \boldsymbol{c}(\boldsymbol{x})$$
 (3)

donde $c(x) \stackrel{def}{=} [c_i(x)]_{i \in \mathcal{E}} \in \mathbb{R}^{|\mathcal{E}|}$. Luego

$$\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = \nabla f(\boldsymbol{x}) - \nabla c(\boldsymbol{x}) \boldsymbol{\lambda} = 0$$
 (4)

$$c(x) = 0 (5)$$

donde
$$\nabla c(x) = [\nabla c_i(x)]_{i \in \mathcal{E}} \in \mathbb{R}^{n \times |\mathcal{E}|} \stackrel{def}{=} \mathbf{A}(x)^T$$
.

Ahora podemos usar el metodo de Newton para resolver el problema

$$F(\boldsymbol{x}, \boldsymbol{\lambda}) = \mathbf{0} \tag{6}$$

donde

$$F(\boldsymbol{x}, \boldsymbol{\lambda}) = \begin{bmatrix} \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) \\ \boldsymbol{c}(\boldsymbol{x}) \end{bmatrix}$$
$$= \begin{bmatrix} \nabla f(\boldsymbol{x}) - \nabla \boldsymbol{c}(\boldsymbol{x}) \boldsymbol{\lambda} \\ \boldsymbol{c}(\boldsymbol{x}) \end{bmatrix}$$
$$= \begin{bmatrix} \nabla f(\boldsymbol{x}) - \mathbf{A}(\boldsymbol{x})^T \boldsymbol{\lambda} \\ \boldsymbol{c}(\boldsymbol{x}) \end{bmatrix}$$

Se resuelve el siguiente sistema con respecto a $[p_k^x;p_k^\lambda]$

$$F'(\boldsymbol{x}_k, \boldsymbol{\lambda}_k) \begin{bmatrix} \boldsymbol{p}_k^x \\ \boldsymbol{p}_k^\lambda \end{bmatrix} = -F(\boldsymbol{x}_k, \boldsymbol{\lambda}_k)$$
 (7)

Luego, se tiene el siguiente esquema iterativo (Newton)

$$\begin{bmatrix} \boldsymbol{x}_{k+1} \\ \boldsymbol{\lambda}_{k+1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_k \\ \boldsymbol{\lambda}_k \end{bmatrix} + \begin{bmatrix} \boldsymbol{p}_k^x \\ \boldsymbol{p}_k^x \end{bmatrix}$$
(8)

$$F'(\boldsymbol{x}_k, \boldsymbol{\lambda}_k) \begin{bmatrix} \boldsymbol{p}_k^x \\ \boldsymbol{p}_k^{\lambda} \end{bmatrix} = -F(\boldsymbol{x}_k, \boldsymbol{\lambda}_k)$$
 (9)

$$\left[\begin{array}{cc} \nabla^2_{\boldsymbol{x}\boldsymbol{x}}\mathcal{L}(\boldsymbol{x}_k,\boldsymbol{\lambda}_k) & -\mathbf{A}(\boldsymbol{x}_k)^T \\ \mathbf{A}(\boldsymbol{x}_k) & \mathbf{0} \end{array}\right]\!\!\left[\begin{array}{c} \boldsymbol{p}_k^x \\ \boldsymbol{p}_k^\lambda \end{array}\right] \!=\! -\left[\begin{array}{cc} \nabla f(\boldsymbol{x}_k) - \mathbf{A}(\boldsymbol{x}_k)^T\boldsymbol{\lambda}_k \\ \boldsymbol{c}(\boldsymbol{x}_k) \end{array}\right]$$

Definiendo

$$f_k \stackrel{def}{=} f(\boldsymbol{x}_k) \tag{10}$$

$$\nabla f_k \stackrel{def}{=} \nabla f(\boldsymbol{x}_k) \tag{11}$$

$$\mathcal{L}_k \stackrel{def}{=} \mathcal{L}(\boldsymbol{x}_k, \boldsymbol{\lambda}_k) \tag{12}$$

$$\nabla_{\boldsymbol{x}} \mathcal{L}_k \stackrel{def}{=} \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}_k, \boldsymbol{\lambda}_k) \tag{13}$$

$$\nabla_{xx}^{2} \mathcal{L}_{k} \stackrel{def}{=} \nabla_{xx}^{2} \mathcal{L}(x_{k}, \lambda_{k})$$
 (14)

$$c_k \stackrel{def}{=} c(x_k) \tag{15}$$

$$\mathbf{A}_{k}^{T} \stackrel{def}{=} \mathbf{A}(\mathbf{x}_{k})^{T} \stackrel{def}{=} [\nabla c_{i}(\mathbf{x}_{k})]_{i \in \mathcal{E}}$$
 (16)

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} & -\mathbf{A}_{k}^{T} \\ \mathbf{A}_{k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{p}_{k}^{x} \\ \boldsymbol{p}_{k}^{\lambda} \end{bmatrix} = -\begin{bmatrix} \nabla f_{k} - \mathbf{A}_{k}^{T} \boldsymbol{\lambda}_{k} \\ \boldsymbol{c}_{k} \end{bmatrix}$$
(17)

Supuestos

- f 1 El jacobiano de las restricciones ${f A}(x)$ tiene rango completo
- 2 La matriz $\mathcal{L}(\boldsymbol{x},\lambda)$ es positiva definida en el espacio tangente de las restricciones, ie, $d^T \nabla^2_{xx} \mathcal{L}(\boldsymbol{x},\lambda) d > 0$ para toda $d \neq 0$ tal que $\mathbf{A}(\boldsymbol{x}) d = 0$

Recordatorio: Karush-Kuhn-Tucker matrix

Lemma

Let ${\bf A}$ have full row rank, and assume that the reduced Hessian matrix ${\bf Z}^T{\bf G}{\bf Z}$ is positive definite. Then the KKT matrix

$$\mathbf{K} = \begin{bmatrix} \mathbf{G} & \mathbf{A}^T \\ \mathbf{A} & 0 \end{bmatrix} \tag{18}$$

is nonsingular, and hence there is a unique vector pair (x^*, λ^*) satisfying the KKT conditions.

Here $\mathbf{Z} \in \mathbb{R}^{n \times (n-m)}$ is a matrix whose columns are a basis for the null space of \mathbf{A} . That is, \mathbf{Z} has full rank and satisfies $\mathbf{A}\mathbf{Z} = 0$.

SQP Framework

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} & -\mathbf{A}_{k}^{T} \\ \mathbf{A}_{k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k}^{x} \\ \mathbf{p}_{k}^{\lambda} \end{bmatrix} = -\begin{bmatrix} \nabla f_{k} - \mathbf{A}_{k}^{T} \boldsymbol{\lambda}_{k} \\ \mathbf{c}_{k} \end{bmatrix}$$
(19)
$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} & -\mathbf{A}_{k}^{T} \\ \mathbf{A}_{k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k}^{x} \\ \boldsymbol{\lambda}_{k} + \mathbf{p}_{k}^{\lambda} \end{bmatrix} = -\begin{bmatrix} \nabla f_{k} \\ \mathbf{c}_{k} \end{bmatrix}$$
(20)
$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} & -\mathbf{A}_{k}^{T} \\ \mathbf{A}_{k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k}^{x} \\ \boldsymbol{\lambda}_{k+1} \end{bmatrix} = -\begin{bmatrix} \nabla f_{k} \\ \mathbf{c}_{k} \end{bmatrix}$$
(21)

El sistema anterior se puede escribir como sigue

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} & -\mathbf{A}_{k}^{T} \\ \mathbf{A}_{k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{p}_{k}^{x} \\ l_{k} \end{bmatrix} = -\begin{bmatrix} \nabla f_{k} \\ \boldsymbol{c}_{k} \end{bmatrix}$$
(22)

El sistema anterior se puede ver con las KKTs de un problema cuadratico, donde $\hat{\mathcal{L}}_k(\boldsymbol{p},l)$ es el Lagrangiano correspondiente

$$\nabla_{\boldsymbol{p}} \hat{\mathcal{L}}_k(\boldsymbol{p}, l) = \nabla_{\boldsymbol{x}\boldsymbol{x}}^2 \mathcal{L}_k \boldsymbol{p} + \nabla f_k - \mathbf{A}_k^T l = \mathbf{0}$$
 (23)

$$\mathbf{A}_k \boldsymbol{p} + \boldsymbol{c}_k = \mathbf{0} \tag{24}$$

luego

$$\hat{\mathcal{L}}_{k}(\boldsymbol{p},l) = \frac{1}{2}\boldsymbol{p}^{T}\nabla_{\boldsymbol{x}\boldsymbol{x}}^{2}\mathcal{L}_{k}\boldsymbol{p} + \nabla f_{k}^{T}\boldsymbol{p} - l^{T}(\mathbf{A}_{k}\boldsymbol{p} + \boldsymbol{c}_{k})$$
(25)
$$\mathbf{A}_{k}\boldsymbol{p} + \boldsymbol{c}_{k} = \mathbf{0}$$
(26)

que conduce al problema cuadratico equivalente

$$p_k = \arg\min_{\boldsymbol{p}} \frac{1}{2} \boldsymbol{p}^T \nabla_{\boldsymbol{x}\boldsymbol{x}}^2 \mathcal{L}_k \boldsymbol{p} + \nabla f_k^T \boldsymbol{p}$$
 (27)

$$s.a: \mathbf{A}_k \boldsymbol{p} + \boldsymbol{c}_k = \boldsymbol{0} \tag{28}$$

o lo que es lo mismo

$$p_k = \arg\min_{\boldsymbol{p}} \frac{1}{2} \boldsymbol{p}^T \nabla_{\boldsymbol{x}\boldsymbol{x}}^2 \mathcal{L}_k \boldsymbol{p} + \nabla f_k^T \boldsymbol{p}$$
 (29)

$$s.a: \nabla c_i(\boldsymbol{x}_k)^T \boldsymbol{p} + c_i(\boldsymbol{x}_k) = 0, i \in \mathcal{E}$$
 (30)

y si l_k son los multiplicadores de Lagrange del problema anterior, entonces $\lambda_{k+1} = l_k$.

Por otro lado,

$$\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = \nabla f(\boldsymbol{x}) - \mathbf{A}(\boldsymbol{x})^{T} \boldsymbol{\lambda}$$
 (31)

en el punto x_k, λ_k cumple

$$\nabla_{\boldsymbol{x}} \mathcal{L}_k \boldsymbol{p} = (\nabla f_k - \mathbf{A}_k^T \boldsymbol{\lambda}_k)^T \boldsymbol{p}$$
 (32)

$$= \nabla f_k^T \boldsymbol{p} - \boldsymbol{\lambda}_k^T \mathbf{A}_k^T \boldsymbol{p} \tag{33}$$

como $A_k^T \boldsymbol{p} = -\boldsymbol{c}_k$ entonces

$$\nabla_{\boldsymbol{x}} \mathcal{L}_k^T \boldsymbol{p} = \nabla f_k^T \boldsymbol{p} + \boldsymbol{\lambda}_k^T \boldsymbol{c}_k \tag{34}$$

y como $\lambda_k^T c_k$ es una constante, entonces el problema (27)-(28) es equivalente a

$$p_k = \arg\min_{\boldsymbol{p}} q(\boldsymbol{p}) = \frac{1}{2} \boldsymbol{p}^T \nabla_{\boldsymbol{x}\boldsymbol{x}}^2 \mathcal{L}_k \boldsymbol{p} + \nabla_{\boldsymbol{x}} \mathcal{L}_k^T \boldsymbol{p}$$
 (35)

$$s.a: \mathbf{A}_k \mathbf{p} + \mathbf{c}_k = \mathbf{0} \tag{36}$$

donde $\mathbf{\lambda}_{k+1} = l_k$ y l_k son los multiplicadores del Lagrange del problema anterior.

Algorithm 1 Algoritmo SQP con restricciones de igualdad

```
Dado x_0, \lambda_0 for k=0,1,2,\cdots (Hasta Convergencia) do Hallar \nabla^2_{xx}\mathcal{L}_k, \ \nabla\mathcal{L}_k, \ \mathbf{A}_k, \ c_k, segun (10)-(16) Obtener p_k, l_k, resolviendo (35)-(36) o el equivalente (27)-(28) Actualizar x_{k+1}=x_k+p_k Actualizar \lambda_{k+1}=l_k end for
```

El algoritmo se puede ver de la siguiente forma:

1 Se obtiene la aproximacion cuadratica del Lagrangiano alrededor de x_k con λ_k fijo ie,

$$\mathcal{L}(\boldsymbol{x}_k + \boldsymbol{p}, \boldsymbol{\lambda}_k) \approx \frac{1}{2} \boldsymbol{p}^T \nabla_{\boldsymbol{x}\boldsymbol{x}}^2 \mathcal{L}_k \boldsymbol{p} + \nabla_{\boldsymbol{x}} \mathcal{L}_k^T \boldsymbol{p} + \mathcal{L}_k$$
 (37)

2 Se obtiene la aproximacion lineal de las restricciones,

$$c(x_k + p) \approx \mathbf{A}_k^T p + c_k$$
 (38)

$$\min f(\boldsymbol{x}) \tag{39}$$

$$s.a.: c_i(\boldsymbol{x}) = 0, i \in \mathcal{E}$$
 (40)

$$c_i(\boldsymbol{x}) \geq 0, i \in \mathcal{I}$$
 (41)

Para este problema se sigue el mismo esquema anterior,

es decir, se obtiene el paso p_k minimizando la aproximación cuadratica del Lagrangiano en x_k , sujeto a la aproximación lineal de las restricciones, esto es:

$$p_k = \arg\min_{\boldsymbol{p}} \frac{1}{2} \boldsymbol{p}^T \nabla_{\boldsymbol{x}\boldsymbol{x}}^2 \mathcal{L}_k \boldsymbol{p} + \nabla f_k^T \boldsymbol{p}$$
 (42)

$$s.a: \nabla c_i(\boldsymbol{x}_k)^T \boldsymbol{p} + c_i(\boldsymbol{x}_k) = 0, \ i \in \mathcal{E}$$
 (43)

$$\nabla c_i(\boldsymbol{x}_k)^T \boldsymbol{p} + c_i(\boldsymbol{x}_k) \ge 0, \ i \in \mathcal{I}$$
 (44)

y si l_k son los multiplicadores de Lagrange del problema anterior, entonces $\lambda_{k+1} = l_k$.

Para resolver el subproblema (42)-(44) se puede usar el **metodo se conjuntos activos**.

Teorema

Suponga que x^* es una solucion del problema de optimizacion con restricciones de igualdad y desigualdad y se cumplen las KKTs para algun λ^* . Suponga que se cumplen las LICQ, las resctricciones de complementareidad estrictas y las condiciones suficientes de segundo orden en (x^*, λ^*) . Entonces, si (x_k, λ_k) es suficientemente cercano a (x^*, λ^*) entonces existe una solucion local del subproblema cuadratico cuyo conjunto activo A_k es el mismo que el conjunto activo $A(x^*)$ del problema no lineal en el punto x^* .

Damped BFGS

En muchas aplicaciones no es facil acceder o calcular $\nabla^2_{xx} \mathcal{L}_k$. En este caso se sugiere usar el metodo **cuasi Newton BFGS** para aproximar el Hessiano,

$$\mathbf{B}_k \approx \nabla_{\boldsymbol{x}\boldsymbol{x}}^2 \mathcal{L}_k$$

en funcion de los gradiente, es decir,

$$egin{array}{lcl} oldsymbol{s}_k &=& oldsymbol{x}_{k+1} - oldsymbol{x}_k \ oldsymbol{y}_k &=&
abla_{oldsymbol{x}} \mathcal{L}_{k+1} -
abla_{oldsymbol{x}} \mathcal{L}_k \ oldsymbol{\mathrm{B}}_{k+1} &=& oldsymbol{\mathrm{B}}_k - rac{oldsymbol{\mathrm{B}}_k oldsymbol{s}_k oldsymbol{s}_k^T oldsymbol{\mathrm{B}}_k}{oldsymbol{s}_k^T oldsymbol{\mathrm{B}}_k oldsymbol{s}_k} + rac{oldsymbol{y}_k^T oldsymbol{y}_k}{oldsymbol{s}_k^T oldsymbol{y}_k} \end{array}$$

satisfaciendo la condicion de curvatura $s_k^T y_k > 0$.

Dado que la condicion de curvatura no se puede garantizar que se cumpla, se propone actualizar \mathbf{B}_{k+1} usando BFGS si la condicion de curvatura es suficientemente positiva, es decir, si

$$oldsymbol{s}_k^Toldsymbol{y}_k \ \geq \ heta oldsymbol{s}_k^Toldsymbol{\mathrm{B}}_koldsymbol{s}_k$$

donde $\theta \in [0,1]$ es un parametro, por ejemplo $\theta = 0,2$.

En otro caso, se propone usar una combinación lineal

$$egin{array}{lcl} oldsymbol{s}_k &=& oldsymbol{x}_{k+1} - oldsymbol{x}_k \ oldsymbol{y}_k &=&
abla_{oldsymbol{x}} \mathcal{L}_{k+1} -
abla_{oldsymbol{x}} \mathcal{L}_k \ oldsymbol{r}_k &=& eta_k oldsymbol{y}_k + (1 - heta_k) oldsymbol{\mathrm{B}}_k oldsymbol{s}_k \ oldsymbol{\mathrm{B}}_{k+1} &=& oldsymbol{\mathrm{B}}_k - rac{oldsymbol{\mathrm{B}}_k oldsymbol{s}_k^T oldsymbol{\mathrm{B}}_k}{oldsymbol{s}_k^T oldsymbol{\mathrm{B}}_k oldsymbol{s}_k} + rac{oldsymbol{r}_k^T oldsymbol{r}_k}{oldsymbol{s}_k^T oldsymbol{r}_k} + rac{oldsymbol{r}_k}{oldsymbol{s}_k^T oldsymbol{r}_k} + rac{oldsymbol{r}_k}{oldsymbol{s}_k^T oldsymbol{r}_k} + rac{oldsymbol{r}_k}{oldsymbol{s}_k^T oldsymbol{r}_k} + rac{oldsymbol{r}_k}{oldsymbol{r}_k^T oldsymbol{r}_k} + rac{oldsymbol{r}_k}{oldsymbol{s}_k^T oldsymbol{r}_k$$

donde

$$\theta_k = \begin{cases} 1 & \text{si } s_k^T \boldsymbol{y}_k \geq \theta s_k^T \mathbf{B}_k s_k \\ \frac{(1-\theta)s_k^T \mathbf{B}_k s_k}{s_k^T \mathbf{B}_k s_k - s_k^T \boldsymbol{y}_k} & \text{si } s_k^T \boldsymbol{y}_k < \theta s_k^T \mathbf{B}_k s_k \end{cases}$$

- Si $\theta_k = 1$ entonces se obtiene la actualización BFGS.
- Si $\theta_k = 0$ entonces $\mathbf{B}_{k+1} = \mathbf{B}_k$.
- Si $0 < \theta_k < 1$ entonces se obtiene una interpolación entre \mathbf{B}_k y BFGS.

• Si $s_k^T y_k < \theta s_k^T \mathbf{B}_k s_k$ entonces se garantiza la condicion de curvatura y por tanto \mathbf{B}_{k+1} es positiva definida, ie

$$\begin{aligned} \boldsymbol{s}_k^T \boldsymbol{r}_k &= \boldsymbol{s}_k^T \left(\frac{(1-\theta)\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k}{\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k} \boldsymbol{y}_k + \frac{\theta \boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k}{\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k} \mathbf{B}_k \boldsymbol{s}_k \right) \\ &= \frac{(1-\theta)\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k}{\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k} \boldsymbol{s}_k^T \boldsymbol{y}_k + \frac{\theta \boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k}{\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k} \boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k \\ &= \frac{\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k}{\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k} \left((1-\theta)\boldsymbol{s}_k^T \boldsymbol{y}_k + \theta \boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k \right) \\ &= \theta \frac{\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k}{\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k} \boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k \\ &= \theta \boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - \boldsymbol{s}_k^T \boldsymbol{y}_k > 0 \end{aligned}$$

• Si $s_k^T y_k < \theta s_k^T \mathbf{B}_k s_k$ entonces $0 < \theta_k < 1$.

$$heta_k = rac{(1- heta) oldsymbol{s}_k^T \mathbf{B}_k oldsymbol{s}_k}{oldsymbol{s}_k^T \mathbf{B}_k oldsymbol{s}_k - oldsymbol{s}_k^T oldsymbol{y}_k}$$

Como

$$s_k^T \boldsymbol{y}_k < \theta s_k^T \mathbf{B}_k s_k < s_k^T \mathbf{B}_k s_k$$

entonces $s_k^T \mathbf{B}_k s_k - s_k^T y_k > 0$ y por tanto $\theta_k > 0$.

Por otro lado

$$\begin{aligned} s_k^T \boldsymbol{y}_k &<& \theta \boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k \\ 0 &<& \theta \boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - s_k^T \boldsymbol{y}_k \\ (1 - \theta) \boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k &<& s_k^T \mathbf{B}_k \boldsymbol{s}_k - s_k^T \boldsymbol{y}_k \\ \theta_k &=& \frac{(1 - \theta) \boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k }{\boldsymbol{s}_k^T \mathbf{B}_k \boldsymbol{s}_k - s_k^T \boldsymbol{y}_k} &<& 1 \end{aligned}$$

Algorithm 2 Actualizacion Damped BFGS

Dada la matriz \mathbf{B}_k simetrica y definida positiva y $\theta=0.2$ Calcular s_k , y_k y $r_k=\theta_k y_k+(1-\theta_k)B_k s_k$ donde

$$\theta_k = \begin{cases} 1 & \text{si } s_k^T \boldsymbol{y}_k \geq \theta s_k^T \mathbf{B}_k s_k \\ \frac{(1-\theta)s_k^T \mathbf{B}_k s_k}{s_k^T \mathbf{B}_k s_k - s_k^T \boldsymbol{y}_k} & \text{si } s_k^T \boldsymbol{y}_k < \theta s_k^T \mathbf{B}_k s_k \end{cases}$$

Actualizar

$$\mathbf{B}_{k+1} = \mathbf{B}_k - rac{\mathbf{B}_k s_k s_k^T \mathbf{B}_k}{s_k^T \mathbf{B}_k s_k} + rac{r_k^T r_k}{s_k^T r_k}$$