How close are two patches?

- Sum squared difference
- Images I, J
- $\Sigma_{x,y}$ (I(x,y) J(x,y))²

- Say we are stitching a panorama
- Want patches in image to match to other image
- Need to only match one spot

- Sky: bad
 - Very little variation
 - Could match any other sky

- Sky: bad
 - Very little variation
 - Could match any other sky
- Edge: ok
 - Variation in one direction
 - Could match other patches along same edge

- Sky: bad
 - Very little variation
 - Could match any other sky
- Edge: ok
 - Variation in one direction
 - Could match other patches along same edge
- Corners: good!
 - Only one alignment matches

- Want a patch that is unique in the image
- Can calculate distance between patch and every other patch, lot of computation

- Want a patch that is unique in the image
- Can calculate distance between patch and every other patch, lot of computation
- Instead, we could think about auto-correlation:
 - How well does image match shifted version of itself?
- $\Sigma_d \Sigma_{x,y} (I(x,y) I(x+d_x,y+d_y))^2$

- Measure of self-difference (how am I not myself?)

Corner: mostly high

Sky: low everywhere

Edge: low along edge

Corner: mostly high

Self-difference is still expensive

- $\Sigma_{d}\Sigma_{x,y}$ (I(x,y) I(x+d_x,y+d_y))²
- Lots of summing
- Need an approximation
 - If you want the mathy details, Szeliski pg 212

Approximate self-difference

- Look at nearby gradients I_x and I_y
- If gradients are mostly zero, not a lot going on
 - Low self-difference
- If gradients are mostly in one direction, edge
 - Still low self-difference
- If gradients are in twoish directions, corner!
 - High self-difference, good patch!

Approximate self-difference

- How do we tell what's going on with gradients?
- Eigen vectors/values!
- Need structure matrix for patch, just a weighted sum of nearby gradient information

$$S_w[p] = egin{bmatrix} \sum_r w[r](I_x[p-r])^2 & \sum_r w[r]I_x[p-r]I_y[p-r] \ \sum_r w[r]I_x[p-r]I_y[p-r] & \sum_r w[r](I_y[p-r])^2 \end{bmatrix}$$

 Not as complex as it looks, weighted sum of gradients near pixel

Structure matrix

- Weighted sum of gradient information
 - $\left| \sum_{i} w_{i} I_{x}(i) I_{x}(i) \sum_{i} w_{i} I_{x}(i) I_{y}(i) \right|$
 - $\mid \Sigma_{i} W_{i} I_{x}(i) I_{y}(i) \qquad \Sigma_{i} W_{i} I_{y}(i) I_{y}(i) \mid$
- Can use Gaussian weighting (so many gaussians)
- Eigen vectors/values of this matrix summarize the distribution of the gradients nearby
- λ_1 and λ_2 are eigenvalues
 - λ_1 and λ_2 both small: no gradient
 - $\lambda_1 >> \lambda_2$: gradient in one direction
 - $\lambda_{_{1}}$ and $\lambda_{_{2}}$ similar: multiple gradient directions, corner

Estimating smallest eigen value

- A few methods:
 - det(S) = $\lambda_1 * \lambda_2$
 - trace(S) = $\lambda_1 + \lambda_2$
- det(S) α trace(S)² = $\lambda_1 \lambda_2$ $\alpha(\lambda_1 + \lambda_2)^2$
- det(S) / trace(S) = $\lambda_1 \lambda_2 / (\lambda_1 + \lambda_2)$
- If these estimates are large, λ_2 is large

Harris Corner Detector

- Calculate derivatives I_x and I_y
- Calculate 3 measures $I_x I_x$, $I_y I_y$, $I_x I_y$
- Calculate weighted sums
 - Want a weighted sum of nearby pixels, guess what this is?
 - Gaussian!
- Estimate response based on smallest eigen value
- Non-max suppression (just like canny)

