

MAT1610 - Clase 1

Introducción a Límites

Diego De la Vega

Facultad de Matemáticas Pontificia Universidad Católica de Chile

06 de marzo del 2023

Objetivos

- > Comprender, intuitivamente, el concepto de límites.
- > Aprender sobre límites laterales.
- > Abordar, inicialmente, el concepto de límites infinitos.

Límite de una función

Escribiremos

$$\lim_{x \to a} f(x) = L$$

Para decir que f(x) se acerca a L cuando x se acerca al número a.

En tal caso diremos que el **límite existe** y es igual a L.

Ejemplo I

Decida si los siguientes valores existen o no. En caso de existir, deduzca su valor.

a)
$$f(1), f(2), f(5)$$

- $b) \quad \lim_{x \to 1} f(x)$
- c) $\lim_{x \to 2} f(x)$
- $d) \quad \lim_{x \to 5} f(x)$

Considere la siguiente función

$$f(x) = \frac{x^2 - 1}{x - 1}$$

- ➤ Identifique el dominio de *f*
- \triangleright Esboce a gráfica de f
- \triangleright A partir de la gráfica de f, conjetura el valor del siguiente límite

$$\lim_{x\to 1} f(x)$$

Considere la siguiente función

$$f(x) = \begin{cases} \frac{x}{\sqrt{|x|}} & , & x \neq 0 \\ 1 & , & x = 0 \end{cases}$$

- ➤ Identifique el dominio de *f*
- \blacktriangleright Determine una expresión simplificada para f cuando x>0 como cuando x<0.
- \triangleright Esboce a gráfica de f
- \triangleright A partir de la gráfica de f, conjetura el valor del siguiente límite

$$\lim_{x\to 0} f(x)$$

Considere la siguiente función

$$f(x) = \begin{cases} (x+2)^2 + 1 & , & x \le -1 \\ x+3 & , & x > -1 \end{cases}$$

- ➤ Identifique el dominio de f
- \triangleright Esboce a gráfica de f
- \triangleright A partir de la gráfica de f, conjetura el valor del siguiente límite

$$\lim_{x \to -1} f(x)$$

Límites laterales

Escribiremos

$$\lim_{x \to a^{-}} f(x) = L_{-}$$

Si x se acerca por la **izquierda** al número a cuando f(x) se acerca al número L_- .

Escribiremos

$$\lim_{x \to a^+} f(x) = L_+$$

Si x se acerca por la **derecha** al número a cuando f(x) se acerca al número L_+ .

Teorema

$$\lim_{x \to a} f(x) = L \quad \leftrightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$

Corolario

Sean L_- y L_+ números reales tales que

$$\lim_{x \to a^{-}} f(x) = L_{-}$$
 y $\lim_{x \to a^{+}} f(x) = L_{+}$

Si $L_{-} \neq L_{+}$, entonces límite **no existe**.

A continuación se muestra la gráfica de una función f. Determine, en caso se existir, los siguientes valores.

a)
$$\lim_{x \to 2^-} f(x)$$

a)
$$\lim_{x \to 2^{-}} f(x)$$
 e) $\lim_{x \to 5^{-}} f(x)$

b)
$$\lim_{x \to 2^+} f(x)$$

b)
$$\lim_{x \to 2^+} f(x)$$
 f) $\lim_{x \to 5^+} f(x)$

c)
$$\lim_{x \to 2} f(x)$$

c)
$$\lim_{x \to 2} f(x)$$
 g) $\lim_{x \to 5} f(x)$

d)
$$f(2)$$

Límites infinitos

Sea f una función definida por ambos lados de a, excepto posiblemente en la misma a. Entonces

$$\lim_{x \to a} f(x) = \infty$$

significa que los valores de f(x) pueden ser arbitrariamente grandes (tan grandes como queramos), tomando x suficientemente cerca de a, pero no igual a a.

Ejemplo:

Encuentre $\lim_{x\to 0} \frac{1}{x^2}$ si existe.

Límites infinitos

Sea f una función definida por ambos lados de a, excepto posiblemente en la misma a. Entonces

$$\lim_{x \to a} f(x) = -\infty$$

significa que los valores de f(x) pueden ser negativos arbitrariamente grandes (tan grandes como queramos), tomando x suficientemente cerca de a, pero no igual a a.

Conclusión

> Abordamos una intuición de límites.

Libro guía

➤ Págs. 87 – 95.