

## Kata Data Analyse



01.

Présentation du kata

02.

Test SQL / Python

03.

Test Business Intelligence



#### Présentation du kata

Ce kata de data analyse évalue la capacité des candidats à manipuler des données aériennes via **SQL ou Python**, et à créer une **visualisation dans PowerBl**.

L'accent est mis sur la capacité à formuler des **requêtes efficaces** et à résoudre des problèmes en exploitant des sources de données variées.

Enfin, les candidats doivent démontrer leur maîtrise de PowerBI en créant un **tableau de bord interactif**, pour présenter leurs analyses de manière claire et exploitable pour la **prise de décision**.



# Test SQL / Python

À l'aide des 5 tables (flights, airports, planes, airlines et flight\_returns) du modèle de données présenté dans la slide précédente, répondez aux questions suivantes en fournissant des requêtes SQL ou Python à l'aide de bibliothèques comme Pandas.





#### Modèle de données

#### flights (Table des Vols)

| Colonne              | Туре     | Description                                         |
|----------------------|----------|-----------------------------------------------------|
| flight_id            | INTEGER  | ldentifiant unique du vol                           |
| flight_number        | string   | Numéro de vol                                       |
| departure_airport_id | INTEGER  | Référence vers<br>l'aéroport de départ              |
| arrival_airport_id   | INTEGER  | Référence vers l'aéroport<br>d'arrivée              |
| airline_id           | INTEGER  | Référence vers la<br>compagnie aérienne             |
| plane_id             | INTEGER  | Référence vers le<br>modèle d'avion                 |
| departure_time       | DATETIME | Date et heure de départ                             |
| arrival_time         | DATETIME | Date et heure d'arrivée                             |
| distance             | FLOAT    | Distance entre l'aéroport de<br>départ et d'arrivée |
| passenger_count      | INTEGER  | Nombre de passagers                                 |
| status               | string   | Statut du vol<br>(en cours, annulé, terminé)        |
| delay                | FLOAT    | Retard du vol (en minutes)                          |

#### airports (Table des Aéroports)

| Colonne      | Туре    | Description                      |
|--------------|---------|----------------------------------|
| airport_id   | INTEGER | Identifiant unique de l'aéroport |
| airport_name | string  | Nom de l'aéroport                |
| city         | string  | Ville où se trouve l'aéroport    |
| country      | String  | Pays où se trouve l'aéroport     |
| latitude     | FLOAT   | Latitude de l'aéroport           |
| longitude    | FLOAT   | Longitude de l'aéroport          |

#### planes (Table des Modèles d'Avion)

| Colonne          | Type    | Description                                      |
|------------------|---------|--------------------------------------------------|
| plane_id         | INTEGER | ldentifiant unique de l'avion                    |
| model            | string  | Modèle de l'avion                                |
| manufacturer     | string  | Constructeur de l'avion<br>(ex : Boeing, Airbus) |
| seating_capacity | INTEGER | Capacité en nombre de sièges                     |

#### airlines (Table des Compagnies Aériennes)

| Colonne      | Туре    | Description                           |
|--------------|---------|---------------------------------------|
| airline_id   | INTEGER | ldentifiant unique<br>de la compagnie |
| airline_name | string  | Nom de la<br>compagnie aérienne       |
| country      | string  | Pays de la compagnie<br>aérienne      |

#### flight\_returns (Table des Retours de Vols)

| Colonne          | Туре    | Description                                 |
|------------------|---------|---------------------------------------------|
| flight_return_id | INTEGER | ldentifiant unique du retour                |
| flight_id        | INTEGER | Référence vers le vol<br>Annulé ou retourné |
| return_reason    | string  | Motif de retour ou d'annulation             |

Classification : Confidentiel - Donnée Entreprise

#### Liste des questions

- 1. Combien y a-t-il de vols en cours et combien de destinations différentes sont desservies ?
- 2. Quelle est la compagnie aérienne avec le plus grand nombre de vols pour une journée donnée ?
- 3. Quels sont les trois avions les plus utilisés (modèle d'avion) et combien d'heures de vol ont-ils effectuées ?
- 4. Quel est le vol avec la distance la plus longue entre deux aéroports ?
- 5. Quelle est la moyenne du nombre de passagers par vol pour chaque compagnie ?
- 6. Quel est le numéro du dernier vol pour chaque compagnie aérienne ?
- 7. Quel est le retard moyen pour chaque compagnie aérienne ?
- Quel aéroport a enregistré le plus de vols entrants et sortants ?
- 9. Pour chaque compagnie aérienne, calculez le pourcentage de vols annulés par rapport au nombre total de vols.
- 10. Quelle est la compagnie aérienne ayant réalisé le plus de vols en interne (vols domestiques) et celle ayant réalisé le plus de vols en externe (vols internationaux) le 7 juin 2024 ?



### Test Business Intelligence





Vous avez le jeu de données "DealData". Ce fichier contient 2 onglets de données.

L'onglet « data » contient des données sur les contrats avec les colonnes suivantes :

Asset Code : l'identifiant du centre commercial

Contract code : numéro de contrat unique

Contract Name : nom du contrat

Contract Start Date : la date début du contrat

Contract End Date : la date fin du contrat

Guaranteed rents : le loyer du contrat

L'onglet « ref » contient des données sur les centres commerciaux avec les colonnes suivantes :

Asset Code : l'identifiant du centre commercial

Asset Name : Nom du centre commercial

Asset City: la ville du centre commercial

Asset Country: le pays du centre commercial

Asset Longitude

Asset Latitute

1/Importez ce jeu de données dans PowerBi.

2/Introduire 2 snapshot dates, ensuite calculer le nombre de *contrats en cours* selon la snapshot date choisie par l'utilisateur.

(\*Contrat en cours : la date de fin du contrat > la snapshot date choisie par l'utilisateur)

3/Calculer une variation en nombre de contrats en % entre les 2 snapshot dates

#### Exemple:



\*Ces 2 snapshot dates doivent être choisies librement par l'utilisateur

#### Test Business Intelligence

exalt

4/ Etablir un graphique qui montre cette variation en % avec **le nom du centre commercia**l, dans ce même graphique, montrer la variation moyenne au niveau du pays (Italie)

#### Exemple:



5/Rassembler tous ces éléments (résultats) dans un Dashboard.

Dans ce dashboard, il faut avoir 4 filtres qui sont ci-dessous pour l'utilisateur :

- les 2 snapshot dates
- code du centre commercial
- nom du centre commercial

Les résultats varient en fonction du choix de l'utilisateur.

# Bon courage