Спектральная ширина фазового синхронизма

Любопытный – тот, кто хочет узнать и потом удивляться. Любознательный - тот, кто хочет узнать и перестать удивляться.

Одноосные кристаллы

Спектральная ширина синхронизма

$$\Delta k(\varphi_0, \theta_0, \lambda_0 + \Delta \lambda, T_0) = \frac{\partial \Delta k}{\partial \lambda} \Delta \lambda + \frac{1}{2} \frac{\partial^2 \Delta k}{\partial \lambda^2} (\Delta \lambda)^2 + \dots$$

 θ , pad. 30 $d\Delta k/d\lambda = 0$ ooe 60 oee $d\Delta k/d\lambda \neq 0$ 90 950 400 λ , HM1500

Положительный кристалл ZGP

Отрицательный кристалл KDP

$$d\Delta k / d\lambda = 0 \rightarrow d\theta / d\lambda = 0$$

Дисперсия спектральной ширины синхронизма

Отрицательный кристалл KDP

Одноосные кристаллы – ширины синхронизма при генерации второй гармоники

<u>Кристалл</u>	ΤΓC	<u>Тип</u>	λ , MKM	$\underline{\theta}_{\underline{\Phi}\mathtt{c}}$	2Δθ, мин.	<u>2∆T, °C</u>	<u>2Δλ, нм</u>	$\Phi_{\sf opt}$	<u>d_{эфф}, пм/В</u>	<u>n</u>	$d_{9\varphi\varphi}^2/n^3$
BBO	3m	ooe	1,064	22° 53′	2′ 54″	35,98	2,12	30°	1,59	1,65	0,56
		oee	1,064	32° 33′	4′ 25″	38,46	2,16	0 °	1,26	1,67	0,34
CDA	$\bar{4}2m$	ooe	1,064	88° 43′	7° 8′ 19″	7,15	3,57	45°	0,4	1,55	0,04
		oee	1,064								
KDP	$\bar{4}2m$	ooe	1,064	40° 53′	5′ 49″	14,74	64,27	45°	0,31	1,49	0,03
		oee	1,064	58° 42′	11′ 9″	18,78	13,51	0 °	0,42	1,47	0,055
DKDP	$\bar{4}2m$	ooe	1,064	36° 34′	6′ 24″	15,78	5,8	45°	0,25	1,49	0,019
		oee	1,064	53° 38′	11' 48"	35,15	4,96	0 °	0,4	1,47	0,05
LiNbO ₃	3m	ooe	1,064	83° 4′	17′ 21″	0,95	0,325	90°	6,2	2,23	3,45
		oee	1,064								
LiIO ₃	6	ooe	1,064	29° 58′	2' 11"	16,34	0,64	*	3,55	1,86	1,97
		oee	1,064	43° 58′	3' 41"	17,54	0,68	*	0,0		
Proustite	$\bar{4}2m$	ooe	2,09	30° 5′	4′ 2″		1,47	90°	21,24	2,79	20,77
(Прустит)	3m	oee	2,09	44° 17′	6′ 54″		1,56	0 °	9,23	2,78	3,96
Urea	$\bar{4}2m$	eeo	1,064	22° 2′	3′ 32″		1,68	0 °	0,904	1,48	0,25
(Мочевина)		eoo	1,064	31° 48′	5′ 20″		1,68	45°	0,68	1,48	0,14
$ZnGeP_2$	$\bar{4}2m$	eeo	5,3	47° 5′	1° 6′ 12″		153,0	0°	75,2	3,38	146,46

Двухосные кристаллы

Спектральная ширина синхронизма

$$\Delta k(\varphi_0, \theta_0, \lambda_0 + \Delta \lambda, T_0) = \frac{\partial \Delta k}{\partial \lambda} \Delta \lambda + \frac{1}{2} \frac{\partial^2 \Delta k}{\partial \lambda^2} (\Delta \lambda)^2 + \dots$$

Дисперсия направлений ФС кристалла LBO. Дисперсия направлений ФС кристалла KTP.

НКЧС в плоскости *хг* при ГВГ

Кристалл: **LBO**. *ssf*-типа взаимодействия.

НКЧС при $\theta < V_z$ $\lambda_1 = 1,26$ мкм $\theta = 33,58^\circ$

$$\frac{{\sf HK4C}}{{\lambda _2}}$$
 при $\theta > {\sf V_z}$ $\lambda _2 = 1,307$ мкм $\theta = 87,39^\circ$

Некритичные взаимодействия и синхронизм

Определяем независимо:

1. Направления фазового синхронизма (ФС) (phase matching (PhM)):

$$\Delta k_0(\varphi,\theta) = 0$$

2. Направления некритичного по частоте взаимодействия (**HKЧВ**) (frequency noncritical interactions (FNCI)):

$$\frac{\partial \Delta k(\varphi, \theta)}{\partial \lambda} = 0$$

Одновременно:

Некритичный по частоте синхронизм (НКЧС) (frequency noncritical phase matching (FNCPhM)) – направления, в которых одновременно:

$$(HKYC) = (\Phi C) + (HKYB)$$

$$\frac{\partial \Delta k(\varphi,\theta)}{\partial \lambda}$$
 = 0 Определяет направление НКЧС $\frac{\partial^2 \Delta k(\varphi,\theta)}{\partial \lambda^2}$ Определяет ширину синхронизма

Диаграммы направлений ФС и НКЧВ при ГВГ

Диаграммы направлений $\Phi C - sff$ и sff coomhowehus $n_z > n_y > n_x$

Появление ФС:

ssf - вдоль главной оси y, sff - вдоль главных осей y и x,

Диаграмма направлений НКЧВ $dn_{i}/d\lambda$ - <u>произвольные соотношения</u>

<u>Появление НКЧС</u>:

- вдоль любой из главных осей,
- вдоль оптической оси,

ФС, НКЧВ, и НКЧС

Диаграммы направлений НКЧВ и ФС для ssf-типа взаимодействия кристалла LBO

ФС, НКЧВ, и НКЧС

Диаграммы направлений НКЧВ и ФС для sff-типа взаимодействия кристалла LBO

НКЧС и нелинейность среды

Критичный и некритичный по частоте синхронизм

$$\Delta k = \Delta k_0 + \frac{d\Delta k}{d\lambda} \Delta \lambda + \frac{1}{2} \frac{d^2 \Delta k}{d\lambda^2} \Delta \lambda^2 + \cdots \qquad \qquad \upsilon_{gr} = \frac{d\omega}{dk} \qquad \qquad \frac{d\Delta k}{d\lambda} \neq 0 \qquad \rightarrow \quad \upsilon_{gr,1} \neq \upsilon_{gr,2}$$

$$v_{gr} = \frac{d\omega}{dk}$$

$$\frac{d\Delta k}{d\lambda} \neq 0 \quad \rightarrow \quad \upsilon_{gr, 1} \neq \upsilon_{gr, 2}$$

Спектральное представление. представление.

Временное

$$\frac{d\Delta k}{d\lambda} = 0$$

Определяет только направление НКЧС.

$$\frac{d\Delta k}{d\lambda} \neq 0 \qquad \frac{d^2\Delta k}{d\lambda^2} \neq 0$$

Критичный по частоте синхронизм:

- групповая задержка,
- дисперсионное расплывание.

$$\frac{d\Delta k}{d\lambda} \neq 0 \qquad \frac{d^2\Delta k}{d\lambda^2} = 0$$

Критичный по частоте синхронизм:

– групповая задержка.

$$\frac{d\Delta k}{d\lambda} = 0 \qquad \frac{d^2\Delta k}{d\lambda^2} \neq 0$$

$$\frac{d^2\Delta k}{d\lambda^2} \neq 0$$

Некритичный по частоте синхронизм:

- дисперсионное расплывание.

$$\frac{d\Delta k}{d\lambda} = 0 \qquad \frac{d^2\Delta k}{d\lambda^2} = 0$$

Полный некритичный по частоте синхронизм. Точное согласование.

Критичный и некритичный по частоте синхронизм

Ожидаемые последствия для импульсов излучения.

15