Cálculo 1

A derivada de uma função

Suponha que a função f está definida em todo um intervalo aberto contendo o ponto $a \in \mathbb{R}$. Dizemos que f é derivável no ponto x = a se existe o limite

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Não é difícil ver que, quando existem, os dois limites acima são iguais. De fato, basta fazer x = a + h no primeiro limite e observar que $h \to 0$, quando $x \to a$. O número f'(a) é chamado derivada da função f no ponto x = a.

A função derivada de f, que denotamos por f', é a função que associa para cada $a \in \text{dom}(f)$, a derivada de f no ponto x = a. O seu domínio é o conjunto de todos os pontos onde a função f possui derivada. Quando este conjunto coincide com o domínio de f dizemos que f é uma função derivável.

O conceito de derivada é extremamente importante e tem muitas aplicações. No que se segue, faremos algumas interpretações do número f'(a).

Interpretação dinâmica da derivada

Suponha que a função f mede a posição de um carro. Neste caso, temos o seguinte significado para o quociente que aparece na definição de derivada

$$\frac{f(a+h)-f(a)}{h}$$
 = velocidade média entre os instantes $a \in a+h$

Conforme discutido anteriormente, quando h se aproxima de zero o quociente acima se aproxima da velocidade no instante a, isto é,

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 = velocidade no instante a

Logo, se a função f mede a posição de um carro, a derivada f'(a) fornece a velocidade no instante a.

O mesmo raciocínio mostra que, se f mede a velocidade instantânea, então o quociente fornece a aceleração média e portanto a derivada vai medir a aceleração instantânea.

Tanto a velocidade quanto a aceleração podem ser vistas como sendo taxas de variação. A velocidade é a taxa de variação da posição com relação ao tempo, e a aceleração é a taxa de variação da velocidade. De uma maneira geral, a derivada f'(a) é a taxa de variação

instantânea da função f no ponto x = a. O conceito de taxa pode ser usado em outros contextos, que não envolvam física. Por exemplo, um engenheiro pode estar interessado na taxa segundo a qual a largura de uma viga muda com a temperatura.

Exemplo 1. Se a posição de uma carro é dada por $s(t) = t^3$, então sua velocidade é dada por

$$v(t) = s'(t) = \lim_{h \to 0} \frac{s(t+h) - s(t)}{h} = \lim_{h \to 0} \frac{(t+h)^3 - t^3}{h} = \lim_{h \to 0} \frac{h(3t^2 + 3th + h^2)}{h} = 3t^2,$$

para cada t > 0. \square

Exemplo 2. Suponha que a relação entre o volume e pressão de um gás dentro de um pistão seja dada por V(p) = 200/p. A taxa de variação do volume em relação à pressão é dada por

$$V'(p) = \lim_{h \to 0} \frac{V(p+h) - V(p)}{h} = \lim_{h \to 0} \frac{\frac{200}{p+h} - \frac{200}{p}}{h} = \lim_{h \to 0} \frac{-200 \cdot h}{h(p+h)p} = -\frac{200}{p^2},$$

para cada p > 0. Se quisermos calcular a taxa de variação no instante em que a pressão é igual 10, basta calcularmos

$$V'(10) = -\frac{200}{10^2} = -2.$$

Note que, para qualquer p > 0, a derivada V'(p) é negativa, por causa do sinal de menos. O fato da taxa de variação ser negativa significa que, quando a pressão aumenta, o volume diminui. Em outras palavras, a função volume é decrescente. Se você pensar em um pistão de ar comprimido vai facilmente entender o que está acontecendo. \square

Interpretação geométrica da derivada

A interpretação geométrica da derivada foi feita em um texto anterior. Dada a sua importância, vamos lembrá-la aqui. Fixado o ponto $P_a = (a, f(a))$ sobre o gráfico de f, vamos considerar, para cada $x \in \text{dom}(f)$ com $x \neq a$, outro ponto sobre o gráfico com coordenadas $P_x = (x, f(x))$. A reta secante pelos pontos P_a e P_x é a (única) reta que passa por estes dois pontos. Sua inclinação é dada por

$$m_{P_a P_x} = \frac{f(x) - f(a)}{x - a}.$$

Quando $x \to a$, o ponto P_x vai se aproximando do ponto P_a . Se as retas secantes se aproximarem de uma reta quando isto ocorre, é natural que a inclinação desta reta seja o limite da inclinação das secantes, isto é, a inclinação desta reta limite deve ser

$$m_{tg} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Observe que o limite acima, quando existe, é igual à derivada de f no ponto x = a. Definimos neste caso reta tangente ao gráfico de f no ponto (a, f(a)) como sendo a reta cuja equação é dada por

$$y - f(a) = f'(a)(x - a).$$

Note que ela passa pelo ponto (a, f(a)) e tem inclinação igual a f'(a). Assim, a derivada f'(a) é exatamente a **inclinação da reta tangente no ponto** (a, f(a)).

É importante destacar que, na expressão acima, o valor a está fixado. A variável é portanto x, de modo que a função y = y(x) é de fato uma reta, pois ela pode ser colocada na forma y(x) = mx + b, com m = f'(a) e b = (f(a) - f'(a)a).

Exemplo 3. Vamos calcular a reta tangente ao gráfico de $f(x) = x^2$ em um ponto genérico (a, f(a)), com $a \in \mathbb{R}$. O primeiro passo é determinar a inclinação da reta tangente, ou seja, a derivada de f em x = a:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^2 - a^2}{x - a} = \lim_{x \to a} \frac{(x - a)(x + a)}{x - a} = \lim_{x \to a} (x + a) = 2a.$$

Lembre que a reta tangente deve passar pelo ponto $(a, f(a)) = (a, a^2)$. Assim, sua equação

é
$$y - f(a) = f'(a)(x - a)$$
, isto é, $y(x) = 2a \cdot (x - a) + a^2$, ou ainda

$$y(x) = 2ax - a^2.$$

A expressão acima fornece, de fato, uma família de retas indexadas pelo parâmetro a. Isto significa que, para cada $a \in \mathbb{R}$ fixado, temos uma reta diferente. Se escolhermos a=2, por exemplo, a equação da reta fica y(x)=4x-4. No desenho ao lado você pode ver o gráfico de f(x), juntamente com sua reta tangente no ponto (2,4). \square

Exemplo 4. Pode ocorrer de uma função não ter derivada em um ponto (e consequentemente não existir a reta tangente). O exemplo clássico é dado pela função

$$f(x) = |x| = \begin{cases} x, & \text{se } x \ge 0, \\ -x, & \text{se } x < 0, \end{cases}$$

cujo gráfico está ilustrado ao lado.

Para cada $x \neq 0$, existem duas alternativas para a reta secante pelos ponto $P_0 = (0,0)$ e $P_x = (x, f(x))$. Se x > 0 esta reta coincide com a reta y = x, e se x < 0 reta secante coincide com a reta y = -x. Isso já parece mostrar que, quando $x \to 0$, as retas secantes não podem se aproximar de uma (única) reta. Portanto, não deve existir reta tangente no ponto (0,0).

Para confirmar a intuição geométrica precisamos mostrar que não existe a derivada f'(0). Uma vez que a função tem expressões diferentes dependo do lado em que estamos de x = 0, precisamos usar limites laterais no cálculo dos limites abaixo:

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1,$$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1.$$

Na penúltima igualdade acima usamos que |x| = -x, quando x < 0.

Como os limites laterais são diferentes, concluímos que o limite $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ não existe. Portanto a função módulo não é derivável em x=0, o que implica que não existe reta tangente no ponto (0,0).

Vale observar que, em qualquer ponto $a \neq 0$, a função módulo tem derivada (e portanto reta tangente). De fato, um cálculo análogo ao executado acima mostra que a derivada de |x| é igual a -1 no conjunto $(-\infty, 0)$ e igual a 1 no conjunto $(0, +\infty)$. \square

O resultado abaixo relaciona a existência de derivada com o conceito de continuidade.

Teorema 1. Se f é derivável em x = a, então f é contínua em x = a.

Prova. Note que

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot (x - a) = f'(a) \cdot 0 = 0.$$

Na penúltima desigualdade acima estamos usando que f é derivável em x=a e portanto o limite do primeiro termo existe e é igual a f'(a). Segue da expressão acima que $\lim_{x\to a} f(x) = f(a)$ e portanto f é contínua em x=a. \square

A recíproca do teorema acima não é verdadeira. Isso significa dizer que **o fato de uma função ser contínua em um ponto não implica que ela seja derivável neste ponto**. A função módulo exemplifica esta observação. Ela é contínua em x=0, pois $\lim_{x\to 0} |x| = 0 = |0|$. Porém, ela não possui derivada neste ponto, conforme vimos acima. Graficamente, o que ocorre é que temos um "bico" no ponto (0,0). De uma maneira geral, sempre que tivermos um bico em um ponto do gráfico, não teremos reta tangente neste ponto.

Tarefa

Suponha que um avião de caça faça um vôo rasante e sua trajetória ocorra ao longo do gráfico da função $f(x) = \sqrt{x}$. Os disparos do avião são dados sempre na direção da reta tangente. Vamos determinar qual deve ser o ponto (a, f(a)) de disparo de modo a atingir um alvo situado no ponto (-9,0). Naturalmente a > 0 e depois do disparo ser efetuado o avião vai mudar sua trajetória, retornando para sua base em segurança.

1. Calcule o limite

$$f'(a) = \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a};$$

2. Mostre que a equação $y_a(x)$ da reta tangente no ponto (a, f(a)) é dada por

$$y_a(x) = \frac{1}{2\sqrt{a}}x + \frac{\sqrt{a}}{2};$$

- 3. Denotando por (b,0) o alvo atingido pelo disparo, determine o valor de b em função a;
- 4. Determine o valor de a para que o disparo atinja um alvo situado no ponto (-9,0).