CS 460/560 Introduction to Computational Robotics Fall 2019, Rutgers University

Lecture 08-09 Configuration Space & Rigid Body Transformations

9 Instructor: Jingjin Yu

Outline

- Rigid body, links, and joints
- The configuration space
- Modeling of robots as linked rigid bodies
- Degrees of freedom
 - ⇒Single rigid body
 - ⇒Multiple joined bodies
- Task space and workspace
- Rigid body transformations
 - ⇒Coordinate frames
 - ⇒2D rotations and translations
 - ⇒3D rotations and translations
 - \Rightarrow Special Euclidean group in three dimensions, SE(3)
- C-space topology, revisited
- Obstacles and the free C-space
- Minkowski sum for computing free C-space

Rigid Body, Links, and Joints

For unified notations

- ⇒ A **rigid body** generally means a one-piece robot
- ⇒A **link** is a rigid piece, often a part of a multi-piece robot
- ⇒The **links** of a multi-piece robot are joined with **joints (connectors)**
- ⇒This course mostly work with a single rigid body

The Configuration Space

Recall concepts of topological spaces and (topological) manifolds

- \Rightarrow A topological space is a pair (X, Γ)
 - \Rightarrow X is a set, Γ is a collection of **open** subsets of X,
 - $\Rightarrow \emptyset \in \Gamma$ and $X \in \Gamma$
 - \Rightarrow Arbitrary union of elements of Γ is still in Γ
 - \Rightarrow Finite intersection of elements of Γ is still in Γ

 \Rightarrow (Topological) manifolds M of dimension n are topological spaces such that every local neighborhood is homeomorphic to \mathbb{R}^n

Manifolds nicely capture the **configurations** of robots

- ⇒A configuration is a unique position of a robot (where it is?)
- \Rightarrow The space of configurations is the **configuration space**, or C-space
- ⇒The **dimension** of this space is often the same as the degrees-of-freedom (dof) of the robot
- \Rightarrow E.g., for a car, three dimensions x, y, θ

Why the Configuration Space?

A powerful abstraction for solving motion planning problems

- \Rightarrow Motion planning is to find feasible motions for robots to go from x_I to x_G
- ⇒This is non-trivial, e.g., how to plan for parallel parking a car?

- ⇒ A hard problem for many drivers!
- ⇒ And this is just a problem in 2D/3D!
- ⇒Obviously, the position and the orientation must be changed together
- \Rightarrow With C-space, this becomes **searching for a path** in the joint space of 2D position $(x, y) \in \mathbb{R}^2$ and rotation $\theta \in S^1$
- ⇒As a mathematical problem
 - ⇒ You only need an arbitrarily small amount of wiggle room to park your car (STLC)
 - ⇒ So knowing this, when I was in grad school, I sometimes did this...

Modeling Robot as Linked Rigid Bodies

Common robot models

- ⇒ A single point (point robot)
- ⇒A single rigid body

⇒ Multiple rigid bodies (links) joined with joints

DOF and Types of Joints

1 Degree of Freedom

1 Degree of Freedom

Configuration: specification of where all pieces of a robot are

Degrees of freedom (dof): the smallest number of real-valued (i.e., continuous) coordinates to fully describe configurations of a robot

⇒More on this later \mathcal{A}_1 Types of joints ⇒2D A_1 Revolute Prismatic ⇒3D Cylindrical Revolute Spherical Planar Prismatic Screw 2 Degrees of Freedom 3 Degrees of Freedom 3 Degrees of Freedom

Robots generally are viewed as rigid bodies joined by joints

1 Degree of Freedom

Image source: Planning Algorithms

Examples

Train

A fan blade

Door

Double pendulum

Coin lying flat on a table

Coin on edge

DOF for a Single Rigid Body

The position is fully determined by three fixed points on the body

General formula: DOF = total DOF of points - # of constraints

 \Rightarrow Car: 2 x 3 - 3 = 3

 \Rightarrow Quadcopter: $3 \times 3 - 3 = 6$

Alternatively, can do this incrementally

- ⇒For the car, A has 2 dofs
- \Rightarrow Once A is fixed, because d_{AB} is fixed, B has 1 extra dof
- ⇒For fixed AB, C is fixed, so 0 extra dof
- ⇒What about a quadcopter?

Determining the DOF for General Robots

2D chains

- \Rightarrow Base link is 3D ($\mathbb{R}^2 \times S^1$)
- ⇒If fixed, then often 1D
- ⇒Adding joints generally adds one more dimension

3D chains

- \Rightarrow Base link is 6D ($\mathbb{R}^3 \times SO(3)$)
- ⇒If fixed, depending on the joint
- ⇒Then add the DOF of each additional joint

Closed chains

- ⇒We have a formula!
- \Rightarrow *N*: 6 for 3D, 3 for 2D
- $\Rightarrow k$: # of links (including the ground link)
- \Rightarrow *n*: the number of joints
- $\Rightarrow f_i$: DOF of the joint
- **⇒**Examples
 - ⇒ 2D, 3 links
 - ⇒ 2D, 4 links
 - ⇒ 2D, 6 links

$$DOF = N(k-1) - \sum_{i=1}^{n} (N - f_i) = N(k-n-1) + \sum_{i=1}^{n} f_i$$

Task Space and Workspace

Task space: a space where the robot's task can be naturally expressed **Workspace**: captures the "reachable" space of the end-effector Both involve some user choice and often are different from C-space Examples

SCARA robot

Task space: $\mathbb{R}^3 \times S^1$

Workspace: reachable points in \mathbb{R}^3

Spray paint arm

Task space: $\mathbb{R}^3 \times S^2$

Workspace: reachable points in $\mathbb{R}^3 \times S^2$

Image source: Modern Robotics, http://modernrobotics.org

Coordinate Frames

We use two types of coordinate frames (or simply frames)

- ⇒ A **global frame**: a "world" coordinate frame
- ⇒ A local (body) frame: a coordinate frame "fixed" on the robot
- ⇒A configuration can be represented as a matrix, e.g., in 2D

$$(x_0, y_0, \theta_0) \to P_0 = \begin{bmatrix} \cos \theta_0 & -\sin \theta_0 & x_0 \\ \sin \theta_0 & \cos \theta_0 & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

⇒Rigid body transformation: moving the local frame with respect to the global frame

Rigid Body Transformations in 2D

Given (x_0, y_0, θ_0) and $(\Delta x, \Delta y, \Delta \theta)$, how to compute (x_1, y_1, θ_1) ? $\Rightarrow (\Delta x, \Delta y, \Delta \theta)$ here means "rotate by $\Delta \theta$ and then translate by $(\Delta x, \Delta y)$ " \Rightarrow First, represent $(\Delta x, \Delta y, \Delta \theta)$ also as a matrix $\Rightarrow A \text{ rotational component } R(\theta) = \begin{bmatrix} \cos \Delta \theta & -\sin \Delta \theta \\ \sin \Delta \theta & \cos \Delta \theta \end{bmatrix}$ ⇒ **Followed** by a **translational** component $r(x, y) = \begin{bmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ \hat{\rho} & \hat{\rho} & \hat{\rho} \end{bmatrix}$ $\Rightarrow \text{Together,} \begin{bmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Delta \theta & -\sin \Delta \theta & 0 \\ \sin \Delta \theta & \cos \Delta \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \Delta \theta & -\sin \Delta \theta & \Delta x \\ \sin \Delta \theta & \cos \Delta \theta & \Delta y \\ 0 & 0 & 1 \end{bmatrix} = T$ **Transformation matrix** $(\Delta x, \Delta y)$ $(\Delta x, \Delta y, \Delta \theta)$ (x_1, y_1, θ_1) $\rightarrow (x_0, y_0, \theta_0)$

Rigid Body Transformations in 2D, Continued

Given (x_0, y_0, θ_0) and $(\Delta x, \Delta y, \Delta \theta)$, how to compute (x_1, y_1, θ_1) ?

⇒Use matrix multiplication!

$$\Rightarrow \text{Represent } (\Delta x, \Delta y, \Delta \theta) \text{ as a matrix } T = \begin{bmatrix} \cos \Delta \theta & -\sin \Delta \theta & \Delta x \\ \sin \Delta \theta & \cos \Delta \theta & \Delta y \\ 0 & 0 & 1 \end{bmatrix}$$

⇒The operation is "simple" (simple for computers) multiplication

$$\begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & x_1 \\ \sin\theta_1 & \cos\theta_1 & y_1 \\ 0 & 0 & 1 \end{bmatrix} = P_1 = TP_0 = \begin{bmatrix} \cos\Delta\theta & -\sin\Delta\theta & \Delta x \\ \sin\Delta\theta & \cos\Delta\theta & \Delta y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_0 & -\sin\theta_0 & x_0 \\ \sin\theta_0 & \cos\theta_0 & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

Example

$$\theta_0 = 0$$

A 2D transformation example

$$\Rightarrow P_0 = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 $(x_0 = 2, y_0 = 1)$

 \Rightarrow Rotate 90 degrees counterclockwise and then translate by (1,1)

$$\Rightarrow T = \begin{bmatrix} \cos \Delta \theta & -\sin \Delta \theta & \Delta x \\ \sin \Delta \theta & \cos \Delta \theta & \Delta y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos 90 & -\sin 90 & 1 \\ \sin 90 & \cos 90 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

⇒Apply the transformation

$$P_1 = TP_0 = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

⇒Let's check...

Why Matrix Multiplication?

(0.5,4) $(0,3) \quad T = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

It applies to all points on the rigid body

$$\Rightarrow \text{E.g., } P_0' = (3,0.5)$$

$$\Rightarrow P_1' = TP_0' = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0.5 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0.5 \\ 1 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

⇒Can be easily chained, i.e.

$$P_n = T_n \dots T_1 P_0$$

This is not easily doable with other approaches (e.g., additions) Essential for things like collision checking

Change Global Frame

Changing the global coordinate frame can also be useful sometimes

- ⇒E.g., a drone is protecting one base and then a different base
- ⇒Can also be done using a transformation matrix

Going from frame 0 to frame 1

- \Rightarrow Let the P^0 be the configuration of the local frame in frame 0
- \Rightarrow Let T be the configuration of frame 0 in frame 1
- ⇒Then the configuration of the local frame in frame 1 is simply

$$P^1 = TP^0$$

Change Global Frame: Example

The local frame has a configuration $(\sqrt{2}, \sqrt{2}, \frac{\pi}{4})$ in the red global frame

$$\Rightarrow \text{Write as } P^0 = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \sqrt{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \sqrt{2} \\ 0 & 0 & 1 \end{bmatrix}$$

The red global frame has a configuration $(1,1,-\frac{n}{4})$ in the blue global

 $(1,1,-\frac{\pi}{4})$ $(\sqrt{2},\sqrt{2},\frac{\pi}{4})$

frame

$$\Rightarrow \text{Written as } T = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ 0 & 0 & 1 \end{bmatrix}$$

Going from frame 0 to frame 1

$$\Rightarrow P^{1} = TP^{0} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \sqrt{2}\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \sqrt{2}\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{bmatrix}$$

Rigid Body Transformations in 3D

Homogeneous transformation generalizes to higher dimensions

In 3D, each transformation has 4 components

- \Rightarrow Yaw: counterclockwise rotation of α along the z axis
- \Rightarrow Pitch: counterclockwise rotation of β along the y axis
- \Rightarrow Roll: counterclockwise rotation of γ along the x axis
- \Rightarrow Translation (x_t, y_t, z_t) in \mathbb{R}^3
- ⇒Using homogeneous transformation

$$T = \begin{pmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma & x_t \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma & y_t \\ -\sin \beta & \cos \beta \sin \gamma & \cos \beta \cos \gamma & z_t \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- ⇒ Remember the order!
 - \Rightarrow Roll by γ
 - \Rightarrow Pitch by β
 - \Rightarrow Yaw by α
 - \Rightarrow Translate by (x_t, y_t, z_t)
- ⇒Of course, other transformations can also be done

Special Euclidean Group SE(3)

Special Euclidean group $SE(3) = \mathbb{R}^3 \times SO(3)$

The name is similar to how SE(2) is named

SO(3) however is very interesting...

- ⇒These are all possible 3D rotations
- \Rightarrow A 3D rotation can be represented as a rotation of heta along a 3D vector v
- ⇒But this is not unique!

- \Rightarrow It turns out that $SO(3) \cong \mathbb{R}P^3$ (real projective 3-space)
- \Rightarrow Important: SO(3) is not the same as S^3 (surface of a 4D ball)

C-Space Topology, Revisited

The topology of C-space is its most important property

$$\Rightarrow$$
 E.g., $SE(2) = \mathbb{R}^2 \times S^1 \neq \mathbb{R}^3$

- ⇒ A car in 2D rotating clockwise in place will repeat a configuration periodically
- \Rightarrow A point in 3D moving along z-axis will never repeat a configuration
- \Rightarrow Similarly, $SE(2) \neq SO(3)$
- \Rightarrow Similarly, cylinder $\mathbb{R} \times S^1 \neq$ Mobius band
 - ⇒ A robot traveling continuously on a cylinder can never change side
 - ⇒ A robot traveling continuously on a Mobius band can reach both sides

Obstacles and Free Configuration Space

Planning in *C*-space is trivial without obstacles

⇒Why?

 \Rightarrow To go from x_I to x_G , simply draw a straight line between them!

However, obstacles make things more interesting

 \Rightarrow Let q be a robot configuration

 \Rightarrow C-space obstacle C_{obs} : all q that are in collision with an obstacle

⇒ The obstacle could be the robot itself

 \Rightarrow Free *C*-space: $C_{free} = C \setminus C_{obs}$

A 2D example

⇒Ignore rotation for now

⇒ More on this later

How Does a Configuration Space Look Like?

Rigid body transformations SE(2)

 \Rightarrow When there are no obstacles, $\mathbb{R}^2 \times [0, 2\pi)$ with 0 and 2π identified

⇒It can be more complex with obstacles

⇒ E.g. parallel parking a car

Same (x, y), different θ , in collision

How Does a Configuration Space Look Like?

A 3-chain line in 2D with one end on the origin and the other on y axis

Visualizing a 2-link arm https://www.cs.unc.edu/~jeffi/c-space/robot.xhtml

Computing the Free Configuration Spaces

- ⇒The computation can be extremely challenging
- ⇒For easy cases, we can use Minkowski sum, **defined** as

$$A + B = \{ a + b \mid a \in A, b \in B \}$$

⇒Example: disc robot in 2D (rotation invariant)

 $\Rightarrow A$: an obstacle, $B = \{(x, y) \mid x^2 + y^2 \le r^2\}$

⇒The robot is now shrunk into a point!

A Slightly More Complex Example

 \Rightarrow What about this case (A only translates but does not rotate)?

⇒We can do the same, or simply slide

⇒Rotation makes the computation much more complex (recall 3-link example)