Departamento de Matemática da Universidade de Aveiro

CÁLCULO 2 - agrup. 1

2017/18

Folha 1: Séries de potências, séries de Taylor, formula de Taylor

- 1. Para que valores de $x \in \mathbb{R}$ convergem as seguintes séries numéricas
 - (a) $\sum_{n=0}^{\infty} \frac{\cos nx}{n(n+1)}$
 - (b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{nx}$, (c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{nx^n}$.
- 2. Quais das séries seguintes são séries de potências? Em caso afirmativo indique a sucessão de coeficientes e o ponto de desenvolvimento.
 - (a) $\sum_{n=0}^{\infty} \frac{3^n}{n!} \frac{1}{x^n}$
 - (b) $\sum_{n=2}^{\infty} \frac{n(x-1)^n}{x^2}$
 - (c) $\sum_{n=0}^{\infty} \sum_{j=0}^{n} \frac{1}{n!} {n \choose j} x^{j}$
 - (d) $\sum_{n=0}^{\infty} x^{2n} \cos x$
- 3. Determine o raio de convergência das seguintes séries de potências
 - (a) $\sum_{k=0}^{\infty} \frac{(k!)^4}{(4k)!} z^k$,
 - (b) $\sum_{n=1}^{\infty} n^n (z-2)^n$,
 - (c) $\sum_{n=0}^{\infty} \frac{n+1}{(\sqrt{2}i)^n} {2n \choose n} z^{2n}$,
 - (d) $\sum_{n=0}^{\infty} \frac{(2+i)^n i}{i^n} (z+1)^n$.
- 4. Dado a função $f: \mathbb{R} \mapsto \mathbb{R}$ com $f(z) = (z-1)/(z^2+2)$ determine a série de potências que satisfaz $z-1=(z^2+2)\sum_{n=0}^{\infty}a_nz^n$. Qual é o raio de convergência desta série?
- 5. Créditos de anuidade são a forma mais comum de financiar a compra de imóveis. O banco e o recipiente fixam um montante de crédito K, uma taxa de juro anual ρ , o valor mensal da prestação R e o tempo de duração do crédito. No final do tempo fica uma dívida restante para qual se faz um novo contrato de crédito com uma nova taxa. Para estimar o risco é importante saber qual é a dívida restante.

(a) Sabendo que o cálculo da dívida restante em cada mês nos dá a fórmula recursiva

$$a_0 = K,$$

$$a_n = \left(1 + \frac{p}{12}\right) a_{n-1} - R,$$

determine a função geradora da série de potências $f(x) = \sum_{n=0}^{\infty} a_n x^n$.

- (b) A partir da fórmula explícita de f determine a representação em série de potências e a formula explícita para os coeficientes a_n .
- 6. Use a formula de Taylor para representar f no ponto $x = x_0$ como polinómio de Taylor até ao termo com n = 3. O resto não precisa de ser dado explicitamente.

(a)
$$f(x) = e^{2x-x^2}$$
, $x_0 = 0$

(b)
$$f(x) = x^x - 1, x_0 = 1,$$

(c)
$$f(x) = \sin(\sin x), x_0 = 0.$$

- 7. Determine $\ln(1,5)$ usando o polinómio de Taylor de ordem 4 para a função $f(x) = \ln(1+x)$ e apresente uma estimativa para o erro.
- 8. Justifique a convergência uniforme das seguintes séries no intervalo [0, 10]:

(a)
$$\sum_{n=0}^{\infty} \frac{1}{3^n \sqrt{1 + (2n+1)x}}$$

(b)
$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{2^n + nx}}$$

9. Determine a série de Taylor para a função racional

$$f(x) = \frac{1+x^3}{2-x}, \qquad x \neq 2$$

usando a série geométrica.

- 10. Determine os primeiros dois termos da série de Taylor de $f(x) = (1+x)^{1/n}, x > -1$, com centro em $x_0 = 1$.
- 11. Determine a série de Taylor para a função $f: \mathbb{R}_+ \to \mathbb{R}$ com $f(x) = 1/x^2$ no ponto $x_0 = 1$. Para que valores de x converge a série?
- 12. Determine a série de Tayor para a função $f:]-1, 1[\mapsto \mathbb{R} \text{ com } f(x) = \operatorname{artanh}(x) \text{ no ponto } x_0 = 0.$ (Sugestão: Use a formula $f(x) = \operatorname{artanh}(x) = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right)$)