

Recommendation System

Agenda

- What is collaborative filtering
- Types of collaborative filtering
- User-user, item-item
- Challenges
- Steps
- Matrix Factorization SVD
- SVD for collaborative filtering
- Surprise library
- Hands-on

Recommendation systems (TOC)

S. No.	Topic	Scope	Objective
1	What is collaborative filtering	Understand collaborative filtering, recommendation using collaborative models	To be able to define collaborative filtering, understand the theory behind it
2	Types of collaborative filtering	Model based, memory based, Item- item, user-user	To discuss various ways to build a collaborative filtering model
3	Steps	Discuss major steps involved in CF, similar user, rating calculation, evaluation metrics	
4	Matrix Factorization	Matrix factorization, different techniques like SVD, NMF, SVD for recommendation	To utilize svd for building recommendation systems
5	Surprise library	How to deal with surprise dataset, SVD, KNNWithMeans, uid, iid,	To be able to work with surprise library

- Technique to filter items that a user might like
- Based on assumption that people who like similar things have similar taste
- Idea is to find similarity between users and items.
- Uses user behavior for recommendation.
- Algorithm is based on the past behavior and not on context
- Data contains set of users and items and rating/reaction
- Make use of rating rating matrix to find similar users

Types of Collaborative Filtering

Memory based	Model Based	
Similarity between users and/or items are calculated and used as weights to predict a rating	Uses statistics and machine learning methods on rating matrix	
	Speed and scalability issues can be addressed	
 Approach collaborative filtering problem using the entire dataset 	Can solve problem of huge database & sparse matrix	
 Not learning any parameter here. Non- parametric approaches. 	Better at dealing with sparsity	
	Predicts ratings of unrated items	
Quality of prediction is good	Inference is not traceable due to hidden factors	
Scalability is an issue		
Eg - Item based, User based, kNN clustering	Eg-Matrix factorization (SVD, PMF, NMF), Neural nets based	

Item based - similarity between each pair of items is calculated.

- Neighboring items are considered
- Let's say item X and Y are purchased together, and if someone is buying X then Y will be recommended to him

User based - similar users are considered

 Let's say A and B like same movies, then a new movie liked by A will be recommended to B as well

User based	Item based
Similar users are considered	Similar items are considered
"Users who are similar to you also liked"	"Users who liked this item also liked"
$\sum_{n \in neighbors(u)} sim(u,n) \cdot (r_{ni} - \overline{r_n})$	More efficient as number of item would be less compared to number of user
$pred(u,i) = \overline{r}_u + \frac{\sum_{n \subset neighbors(u)} sim(u,n) \cdot (r_{ni} - \overline{r}_n)}{\sum_{n \subset neighbors(u)} sim(u,n)}$	$pred (u,i) = \frac{\sum_{j \in ratedItems (u)} sim(i,j) \cdot r_{ui}}{\sum_{j \in ratedItems (u)} sim(i,j)}$

Proprietary content. © Great Learning, All Rights Reserved, Unauthorized use or distribution prohibited

Challenges with CF

- Cold Start problem: The model requires enough amount of other users already in the system to find a good match.
- Sparsity: If the user/ratings matrix is sparse, and it is not easy to find the users that have rated the same items.
- Popularity Bias: Not possible to recommend items to users with unique tastes.
 - Popular items are recommended more to the users as more data being available on them
 - This may begin a positive feedback loop not allowing the model to recommend items with less popularity to the users
- Shilling attacks
 - Users can create fake preferences to push their own items
- Scalability
 - Collaborative filtering models are computationally expensive

Dataset - rating matrix

Matrix with mostly empty cells is called **sparse**, and the opposite to that (a mostly filled matrix) is called **dense**.

Explicit ratings:

- Users rate for an item
- Most accurate description of a user's preference
- Challenging in collecting data

Implicit ratings:

- Observation of user behaviour
- Can be collected with less cost to user
- Ratings inference may not be precise

Steps for CF

- 1. Determine similar users
 - Calculate similarity matrix using similarity distance and user-item ratings. Get top similar neighbors
- 2. Estimate rating that a user would give to an item based on the ratings of similar users
 - Estimated rating R for a user U for an item I would be close to average rating given to I by the top n users most similar to U
 - b. $Ru = (\sum_{u=1}^{n} Ru)/n$
 - c. Weighted average multiply each rating by similarity factor
- 3. Accuracy of estimated ratings
 - a. RMSE (root mean squared error)
 - b. MAE (mean absolute error)

Note - user bias can be removed by subtracting mean rating given by that user to all the items for each item rated by that user.

Proprietary content. © Great Learning, All Rights Reserved, Unauthorized use or distribution prohibited.

Matrix factorization

- Idea is to find preferences using some hidden factors
- Idea is to break down a large matrix (user-item) into a product of smaller ones

$$Ex - 12 = 6*2, 3*4$$

Similarly, a matrix A with dimension m*n can be reduced to product of two matrices X and Y with dimension m*p and p*n respectively. [p should be common]

- Here, m and n matrices represents latent factors
- Techniques
 - SVD singular value decomposition (orthogonal factorization)
 - PMF probabilistic factorization
 - NMF non-negative factorization

Matrix Factorization

Singular value decomposition

 Given a square or non square matrix A, linear Algebra theorem SVD specifies that: A (m×n)= U (m×m) * S (m×n) * V (n×n)^T

Where,

A is m×n matrix

U is an m×m orthogonal matrix

S is a m×n diagonal matrix- (singular value)

V is a n×n orthogonal matrix

The matrices U and V are orthogonal so: U^T.U=V.V^T=I

The columns of U are orthonormal eigenvectors of AA^T, the columns of V are orthonormal eigenvectors of A^TA, and S is a diagonal matrix containing the square roots of eigenvalues from U or V in descending order.

Singular value decomposition

n matrix (2*4)

m (3*2) matrix

3	1.2

4	

Matrix A: m*n (3*4)

Surprise Library

- It's a add-on package for scipy. It is hosted and developed separately from main scipy distribution
- Comes with various recommender algorithms and similarity metrics
- How to install -
 - \$ pip install scikit-surprise
 \$ conda install -c conda-forge scikit-surprise
- Common commands
 - o from surprise import Dataset, Reader, SVD, KNNWithMeans
 - o from surprise.model_selection import GridSearchCV
- # Loads Pandas dataframe

```
df = pd.DataFrame(ratings_dict)
reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(df[["user", "item", "rating"]], reader)
```

Ref - https://surprise.readthedocs.io/en/stable/

Hands-on

Case study

Thank you!

Happy Learning:)