New algorithms for Disjoint Paths and Routing Problems

Chandra Chekuri

Dept. of Computer Science Univ. of Illinois (UIUC)

Menger's Theorem

Theorem: The maximum number of s-t edgedisjoint paths in a graph G=(V,E) is equal to minimum number of edges whose removal disconnects s from t.

Menger's Theorem

Theorem: The maximum number of s-t edgedisjoint paths in a graph G=(V,E) is equal to minimum number of edges whose removal disconnects s from t.

Max-Flow Min-Cut Theorem

[Ford-Fulkerson]

Theorem: The maximum s-t flow in an edgecapacitated graph G=(V,E) is equal to minimum s-t cut. If capacities are integer valued then max fractional flow is equal to max integer flow.

Computational view

Multi-commodity Setting

Several pairs: s_1t_1 , s_2t_2 ,..., s_kt_k

Multi-commodity Setting

Several pairs: s_1t_1 , s_2t_2 ,..., s_kt_k

Can all pairs be connected via edge-disjoint paths?

Multi-commodity Setting

Several pairs: s_1t_1 , s_2t_2 ,..., s_kt_k

Can *all* pairs be connected via edge-disjoint paths? *Maximize* number of pairs that can be connected

Maximum Edge Disjoint Paths Prob

Input: Graph G(V,E), node pairs s₁t₁, s₂t₂, ..., s_kt_k
Goal: Route a maximum # of s_i-t_i pairs using

edge-disjoint paths

Maximum Edge Disjoint Paths Prob

Input: Graph G(V,E), node pairs s₁t₁, s₂t₂, ..., s_kt_k
Goal: Route a maximum # of s_i-t_i pairs using

edge-disjoint paths

Motivation

Basic problem in combinatorial optimization

Applications to VLSI, network design and routing, resource allocation & related areas

Related to significant theoretical advances

- Graph minor work of Robertson & Seymour
- Randomized rounding of Raghavan-Thompson
- Routing/admission control algorithms

Computational complexity of MEDP

Directed graphs: 2-pair problem is NP-Complete [Fortune-Hopcroft-Wylie' 80]

Undirected graphs: for any fixed constant k, there is a polynomial time algorithm

[Robertson-Seymour' 88]

NP-hard if k is part of input

Approximation

Is there a good *approximation algorithm*?

- polynomial time algorithm
- for every instance I returns a solution of value at least $OPT(I)/\alpha$ where α is approx ratio

How useful is the flow *relaxation*?

What is its integrality gap?

Current knowledge

- If P ≠ NP, problem is hard to approximate to within polynomial factors in *directed graphs*
- In undirected graphs, problem is quite open
 - upper bound O(n^{1/2}) [C-Khanna-Shepherd' 06]
 - lower bound $\Omega(\log^{1/2-\epsilon} n)$ [Andrews etal' 06]
- Main approach is via flow relaxation

Current knowledge

- If P ≠ NP, problem is hard to approximate to within polynomial factors in *directed graphs*
- In undirected graphs, problem is quite open
 - upper bound O(n^{1/2}) [C-Khanna-Shepherd' 06]
 - lower bound $\Omega(\log^{1/2-\epsilon} n)$ [Andrews etal' 06]
- Main approach is via flow relaxation

Rest of talk: focus on *undirected* graphs

Flow relaxation

For each pair $s_i t_i$ allow fractional flow $x_i \in [0,1]$ Flow for each pair can use *multiple* paths Total flow for all pairs on each edge e is ≤ 1 Total fractional flow $= \sum_i x_i$

Relaxation can be solved in polynomial time using linear programming (faster approximate methods also known)

Example

max integer flow = 1, max fractional flow = k/2

Overcoming integrality gap

Two approaches:

- Allow some small congestion c
 - up to c paths can use an edge

Overcoming integrality gap

Two approaches:

- Allow some small congestion c
 - up to c paths can use an edge
 - c=2 is known as half-integer flow path problem
- All-or-nothing flow problem
 - s_it_i is routed if one unit of flow is sent for it (can use multiple paths) [C.-Mydlarz-Shepherd' 03]

Example

Prior work on approximation

Greedy algorithms or randomized rounding of flow

- polynomial approximation ratios in general graphs. O
 (n^{1/c}) with congestion c
- better bounds in various special graphs: trees, rings, grids, graphs with high expansion

No techniques to take advantage of relaxations: congestion or all-or-nothing flow

New framework

[C-Khanna-Shepherd]

New framework to understand flow relaxation

Framework allows near-optimal approximation algorithms for planar graphs and several other results

Flow based relaxation is much better than it appears

New connections, insights, and questions

Some results

OPT: optimum value of the flow relaxation

Theorem: In planar graphs

- can route $\Omega(OPT/log n)$ pairs with c=2 for both edge and node disjoint problems
- can route $\Omega(OPT)$ pairs with c=4

Theorem: In any graph $\Omega(OPT/log^2 n)$ pairs can be routed in all-or-nothing flow problem.

Flows, Cuts, and Integer Flows

Multicommodity: several pairs

NP-hard
Polytime via LP
NP-hard

max integer flow

max frac flow

min multicut

Flows, Cuts, and Integer Flows

Multicommodity: several pairs

Flows, Cuts, and Integer Flows

Multicommodity: several pairs

Part II: Details

New algorithms for routing

- 1. Compute maximum fractional flow
- 2. Use fractional flow solution to decompose input instance into a collection of well-linked instances.
- 3. Well-linked instances have nice properties exploit them to route

Some simplifications

Input: undir graph G=(V,E) and pairs $s_1t_1,..., s_kt_k$ $X = \{s_1, t_1, s_2, t_2, ..., s_k, t_k\}$ -- terminals

Assumption: wlog each terminal in only one pair

Instance: (G, X, M) where M is matching on X

Well-linked Set

Subset X is well-linked in G if for every partition (S,V-S), # of edges cut is at least # of X vertices in smaller side

for all $S \subset V$ with $|S \cap X| \leq |X|/2$, $|\delta(S)| \geq |S \cap X|$

Well-linked instance of EDP

Input instance: (G, X, M)

 $X = \{s_1, t_1, s_2, t_2, ..., s_k, t_k\}$ – terminal set

Instance is well-linked if X is well-linked in G

Examples

Not a well-linked instance

A well-linked instance

New algorithms for routing

- 1. Compute maximum fractional flow
- 2. Use fractional flow solution to decompose input instance into a collection of well-linked instances.
- 3. Well-linked instances have nice properties exploit them to route

Advantage of well-linkedness

LP value does not depend on input matching M

Theorem: If X is well-linked, then for *any* matching on X, LP value is $\Omega(|X|/\log |X|)$. For planar G, LP value is $\Omega(|X|)$

Crossbars

H=(V,E) is a *cross-bar* with respect to an *interface* $I \subseteq V$ if any matching on I can be routed using edge-disjoint paths

euge-uisjoint patris

Ex: a complete graph is a cross-bar with I=V

Grids as crossbars

First row is interface

Grids in Planar Graphs

Theorem[RST94]: If G is planar graph with treewidth h, then G has a grid minor of size $\Omega(h)$ as a subgraph.

Grid minor is crossbar with congestion 2

Back to Well-linked sets

Claim: X is well-linked implies treewidth = $\Omega(|X|)$

X well-linked \Rightarrow G has grid minor H of size $\Omega(|X|)$

Q: how do we route $M = (s_1t_1, ..., s_kt_k)$ using H?

Routing pairs in X using H

Several technical issues

What if X cannot reach H?

H is smaller than X, so can pairs reach H?

- Can X reach H without using edges of H?
- Can H be found in polynomial time?

General Graphs?

Grid-theorem extends to graphs that exclude a fixed minor [RS, DHK' 05]

For general graphs, need to prove following:

Conjecture: If G has treewidth h then it has an approximate crossbar of size $\Omega(h/polylog(n))$

Crossbar

⇔ LP relaxation is good

Reduction to Well-linked case

Given G and k pairs
$$s_1t_1$$
, s_2t_2 , ... s_kt_k
 $X = \{s_1, t_1, s_2, t_2, ..., s_k, t_k\}$

We know how to solve problem if X is well-linked

Q: can we reduce general case to well-linked case?

Decomposition

X_i is well-linked in G_i

$$\sum_{i} |X_{i}| \geq OPT/\beta$$

Example

Decomposition

- $\beta = O(\log k \gamma)$ where $\gamma = \text{worst gap between flow and cut}$
- $\gamma = O(\log k)$ using [Leighton-Rao' 88]
- $\gamma = O(1)$ for planar graphs [Klein-Plotkin-Rao' 93]

Decomposition based on LP solution

Recursive algorithm using *separator* algorithms

Need to work with *approximate* and *weighted* notions of well-linked sets

Decomposition Algorithm

Weighted version of well-linkedness

- each v ∈ X has a weight
- weight determined by LP solution
- weight of s_i and t_i equal to x_i the flow in LP soln

- X is well-linked implies no sparse cut
- If sparse cut exists, break the graph into two
- Recurse on each piece
- Final pieces determine the decomposition

OS instance

Planar graph G, all terminals on single (outer) face

Okamura-Seymour Theorem: If all terminals lie on a single face of a planar graph then the cutcondition implies a *half-integral* flow.

Decomposition into OS instances

Given instance (G,X,M) on planar graph G, algorithm to decompose into OS-type instances with only a constant factor loss in value

Contrast to well-linked decomposition that loses a log n factor

Using OS-decomposition and several other ideas, can obtain O(1) approx using c=4

Conclusions

- New approach to disjoint paths and routing problems in undirected graphs
- Interesting connections including new proofs of flow-cut gap results via the "primal" method
- Several open problems
 - Crossbar conjecture: a new question in graph theory
 - Node-disjoint paths in planar graphs O(1) approx with c = O(1)?
 - Congestion minimization in planar graphs. O(1) approximation?

Thanks!