Register Allocation

CS143 Lecture 16

Instructor: Fredrik Kjolstad Slide design by Prof. Alex Aiken, with modifications

Lecture Outline

- Memory Hierarchy Management
- Register Allocation
 - Register interference graph
 - Graph coloring heuristics
 - Spilling
- Cache Management

The Memory Hierarchy

Managing the Memory Hierarchy

- Most programs are written as if there are only two kinds of memory: main memory and disk
 - Programmer is responsible for moving data from disk to memory (file I/O)
 - Hardware is responsible for moving data between memory and caches
 - Compiler is responsible for moving data between memory and registers

Current Trends

- Power usage limits
 - Size and speed of registers/caches
 - Speed of processors
- But
 - The cost of a cache miss is very high
 - Typically requires 2-3 caches to bridge fast processor with large main memory
- It is very important to:
 - Manage registers properly
 - Manage caches properly
- Compilers are good at managing registers

The Register Allocation Problem

- Intermediate code uses unlimited temporaries
 - Simplifies code generation and optimization
 - Complicates final translation to assembly
- Typical intermediate code uses too many temporaries

The Register Allocation Problem (Cont.)

The problem:

Rewrite the intermediate code to use no more temporaries than there are machine registers

Method:

- Assign multiple temporaries to each register
- But without changing the program behavior

History

- Register allocation is as old as compilers
 - Register allocation was used in the original FORTRAN compiler in the '50s
 - Very crude algorithms
- A breakthrough came in 1980
 - Register allocation scheme based on graph coloring
 - Relatively simple, global and works well in practice

An Example

Consider the program

$$a := c + d$$

 $e := a + b$
 $f := e - 1$

 Can allocate a, e, and f all to one register (r₁):

$$r_1 := r_2 + r_3$$

 $r_1 := r_1 + r_4$
 $r_1 := r_1 - 1$

- Assume a and e are dead after use
 - Temporary a can be "reused" after a + b
 - Temporary e can be "reused" after e - 1

- A dead temporary is not needed
 - A dead temporary can be reused

The Idea

Temporaries t_1 and t_2 can share the same register if at any point in the program at most one of t_1 or t_2 is live .

Or

If t₁ and t₂ are live at the same time, they cannot share a register

Algorithm: Part I

Compute live variables for each point:

The Register Interference Graph

- Construct an undirected graph
 - A node for each temporary
 - An edge between t₁ and t₂ if they are live simultaneously at some point in the program
- This is the register interference graph (RIG)
 - Two temporaries can be allocated to the same register if there is no edge connecting them

Example

For our example:

- E.g., b and c cannot be in the same register
- E.g., b and d could be in the same register

Notes on Register Interference Graphs

- Extracts exactly the information needed to characterize legal register assignments
- Gives a global (i.e., over the entire flow graph) picture of the register requirements
- After RIG construction the register allocation algorithm is architecture independent

Definitions

- A <u>coloring of a graph</u> is an assignment of colors to nodes, such that nodes connected by an edge have different colors
- A graph is <u>k-colorable</u> if it has a coloring with k colors

Register Allocation Through Graph Coloring

- In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (temporaries)
- Let k = number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers

Graph Coloring Example

Consider the example RIG

- There is no coloring with less than 4 colors
- There are 4-colorings of this graph

Example Review

Example After Register Allocation

Under this coloring the code becomes:

Computing Graph Colorings

How do we compute graph colorings?

- It isn't easy:
 - 1. This problem is very hard (NP-hard). No efficient algorithms are known.
 - Solution: use heuristics
 - 2. A coloring might not exist for a given number of registers
 - Solution: later

Graph Coloring Heuristic

Observation:

- Pick a node t with fewer than k neighbors in RIG
- Eliminate t and its edges from RIG
- If resulting graph is k-colorable, then so is the original graph

Why?

- Let c₁,...,c_n be the colors assigned to the neighbors of t in the reduced graph
- Since n < k we can pick some color for t that is different from those of its neighbors

Graph Coloring Heuristic

- The following works well in practice:
 - Pick a node t with fewer than k neighbors
 - Put t on a stack and remove it from the RIG
 - Repeat until the graph has one node
- Assign colors to nodes on the stack
 - Start with the last node added
 - At each step pick a color different from those assigned to already colored neighbors

Graph Coloring Example (1)

Start with the RIG and with k = 4:

Remove a

Graph Coloring Example (2)

Stack: {a}

Remove d

Graph Coloring Example (3)

Note: all nodes now have fewer than 4 neighbors

Remove c

Graph Coloring Example (4)

Stack: {c, d, a}

Remove b

Graph Coloring Example (5)

Stack: {b, c, d, a}

Remove e

Graph Coloring Example (6)

Stack: {e, b, c, d, a}

Remove f

Graph Coloring Example (7)

 Now start assigning colors to nodes, starting with the top of the stack

Stack: {f, e, b, c, d, a}

Graph Coloring Example (8)

$$r_1 f \bullet$$

Stack: {e, b, c, d, a}

Graph Coloring Example (9)

e must be in a different register from f

Graph Coloring Example (10)

Stack: {c, d, a}

Graph Coloring Example (11)

Graph Coloring Example (12)

d can be in the same register as b

Graph Coloring Example (13)

What if the Heuristic Fails?

- What if all nodes have k or more neighbors?
- Example: Try to find a 3-coloring of the RIG:

What if the Heuristic Fails?

- Remove a and get stuck (as shown below)
- Pick a node as a candidate for spilling
 - A spilled temporary "lives" in memory
 - Assume that f is picked as a candidate

What if the Heuristic Fails?

- Remove f and continue the simplification
 - Simplification now succeeds: b, d, e, c

What if the Heuristic Fails?

Eventually we must assign a color to f

 We hope that among the 4 neighbors of f we use less than 3 colors ⇒ <u>optimistic coloring</u>

Spilling

- If optimistic coloring fails, we spill f
 - Allocate a memory location for f
 - · Typically in the current stack frame
 - Call this address fa
- Before each operation that reads f, insert
 f := load fa
- After each operation that writes f, insert store f, fa

Spilling Example

This is the new code after spilling f

A Problem

This code reuses the register name f

- Correct, but suboptimal
 - Should use distinct register names whenever possible
 - Allows different uses to have different colors

Spilling Example

This is the new code after spilling f

Recomputing Liveness Information

The new liveness information after spilling:

Recomputing Liveness Information

- New liveness information is almost as before
 - Note f has been split into three temporaries

- fi is live only
 - Between a fi := load fa and the next instruction
 - Between a store fi, fa and the preceding instr.
- Spilling reduces the live range of f
 - And thus reduces its interferences
 - Which results in fewer RIG neighbors

Recompute RIG After Spilling

- Some edges of the spilled node are removed
- In our case f still interferes only with c and d
- And the resulting RIG is 3-colorable

Spilling Notes

 Additional spills might be required before a coloring is found

- The tricky part is deciding what to spill
 - But any choice is correct
- Possible heuristics:
 - Spill temporaries with most conflicts
 - Spill temporaries with few definitions and uses
 - Avoid spilling in inner loops

Caches

- Compilers are very good at managing registers
 - Much better than a programmer could be
- Compilers are not good at managing caches
 - This problem is still left to programmers
 - It is still an open question how much a compiler can do to improve cache performance
- Compilers can, and a few do, perform some cache optimizations

Cache Optimization

Consider the loop

```
for(j := 1; j < 10; j++)

for(i := 1; i < 1000000; i++)

a[i] *= b[i]
```

- This program has terrible cache performance
 - Why?

Cache Optimization (Cont.)

Consider the optimized loop:

```
for(i := 1; i < 1000000; i++)

for(j := 1; j < 10; j++)

a[i] *= b[i]
```

- Computes the same thing
- But with much better cache behavior
- Might actually be more than 10x faster
- A compiler can perform this optimization
 - called loop interchange

Conclusions

- Register allocation is a "must have" in compilers:
 - Because intermediate code uses too many temporaries
 - Because it makes a big difference in performance
- Register allocation is more complicated for CISC machines