

UNIVERSITY OF GHANA

(All rights reserved)

DEPARTMENT OF MATHEMATICS

MATH 223: CALCULUS II (3 credits) CHAPTER 9: Integration

At the end of the chapter, learners are expected to be able to determine:

- 1. Apply the fundamental theorem of Calculus to solve questions.
- 2. Evaluate Riemann sums.
- 3. Use the method of substitution, integration by parts, trigonometric substitutions, partial fractions, and the tables of anti-derivatives to evaluate definite and indefinite integrals.

LESSON HIGHLIGHTS

Definition (The average value of a function)

If f is integrable on [a, b], then the average value of f over [a, b] is the number $f_{av} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$.

The Mean Value Theorem for Integrals

If f is continuous on [a,b], then $\exists c \in [a,b]$ such that $f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx$.

Fundamental Theorem of Calculus

Part 1

If f is continuous on [a, b[, then the function F defined by $F(x) = \int_a^x f(t)dt$ for $a \le x \le b$ is differentiable on (a, b) and $F'(x) = \frac{d}{dx} \int_a^x f(t)dt = f(x)$

Part 2

If f is continuous on [a, b], then $\int_a^b f(x)dx = F(b) - F(a)$, where F is any antiderivative of f; i.e F' = f.

LFK Page 1 of 6

Defintion of an antiderivative

A function F is an antiderivative of a function f on an interval I if f(x) = F'(x), for all $x \in I$.

Definition of a Partition

A partition P of an interval I = [a, b] is a finite set $P = \{x_0, x_1, \dots, x_n\}$ with the property that $a = x_0 < x_1 < \dots < x_n = b$. A partition divides an interval into n sub-intervals $[x_0, x_1], [x_1, x_2], \dots, [x_{k-1}, x_k], \dots, [x_{n-1}, x_n]$. The length of each subinterval in the partition $[x_{k-1}, x_k]$ is given by $\Delta x_k = x_k - x_{k-1}$, for $1 \le k \le n$.

If Δx_k is the same $\forall 1 \leq k \leq n$, then we have a regular partition and $\Delta x = \frac{b-a}{n}$.

Definition of Riemann Sums

Let f be a function defined on [a, b] with $P\{x_0, x_1, \dots, x_n\}$, a regular partition of [a, b], i.e. $\Delta x = \frac{b-a}{n}$. If $\bar{x_k}$ is any point in the k^{th} subinterval $[x_{k-1}, x_k]$, for $1 \le k \le n$, then the Riemann sum of f on [a, b] is given by

$$\sum_{k=1}^{n} f(\bar{x_k}) \Delta x = f(\bar{x_1}) \Delta x + f(\bar{x_2}) \Delta x + \dots + f(\bar{x_n}) \Delta x$$

If $\bar{x_k}$ is the left end point of the k^{th} subinterval, i.e. $\bar{x_k} = x_{k-1}$, then $\sum_{k=1}^n f(\bar{x_k}) \Delta x$ is the Left Riemann Sum or the Lower Riemann Sum.

If $\bar{x_k}$ is the right end point of the k^{th} subinterval, i.e. $\bar{x_k} = x_k$, then $\sum_{k=1}^n f(\bar{x_k}) \Delta x$ is the Right Riemann Sum or the Upper Riemann Sum.

If $\bar{x_k}$ is the midpoint of the k^{th} subinterval, i.e. $\bar{x_k} = x_{k-1} + \frac{x_k - x_{k-1}}{2}$ or $\bar{x_k} = x_k - \frac{x_k - x_{k-1}}{2}$, then $\sum_{k=1}^n f(\bar{x_k}) \Delta x$ is the Midpoint Riemann Sum.

Note

For f defined on [a, b] with a regular partition $P = \{x_0, x_1, \dots, x_n\}$, we have the following:

- $\Delta x = \frac{b-a}{n}$
- $x_0 = a$
- $\bullet \ x_1 + \frac{b-a}{n}$
- $x_2 = a + 2\left(\frac{b-a}{n}\right)$
- $x_i = a + i \left(\frac{b-a}{n} \right)$
- $x_n = a + n\left(\frac{b-a}{n}\right) = a + b a = a$

For every partition on which f is increasing, the Lower Riemann Sum is less than or equal to the Upper Riemann Sum.

For every partition on which f is decreasing, the Upper Riemann Sum is less than or equal to the Lower Riemann Sum.

As n gets infinitely large, the Lower and Upper Riemann sums coincide, and this is the Riemann Integral of the function on the interval.

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \text{Upper Riemann Sum}$$

or

$$\int_a^b f(x)dx = \lim n \to \infty \text{Lower Riemann Sum}$$

As $n \to \infty$, $\Delta x \to 0$, so we choose $\bar{x_k} = x$ and the Riemann Integral is defined as

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x)\Delta x.$$

Theorem

Suppose f is a function which is continuous on [a, b] or bounded on [a, b] with a finite number of discontinuities, then f is integrable on [a, b].

Sumation Formuale

$$1. \sum_{i=1}^{n} k = kn$$

2.
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

3.
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

4.
$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} = \left(\sum_{i=1}^{n} i\right)^2$$

5.
$$\sum_{i=1}^{n} r^{i-1} = \frac{r^n - 1}{r - 1}$$
 where $r \neq 1$

Properties of the Definite Integral

Let f and g be ontinuous real-valued functions on [a,b]. Then we have the following:

$$1. \int_{a}^{a} f(x)dx = 0.$$

$$2. \int_a^b f(x)dx = -\int_b^a f(x)dx$$

LFK

3.
$$\int_a^b \left(rf(x)\pm sg(x)\right)dx = r\int_a^b f(x)dx \pm s\int_a^b g(x)dx \text{ for constants } r,s.$$

4.
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
 for $c \in [a, b]$.

5. If
$$f(x) = k$$
 for $x \in [a, b]$, then $\int_a^b f(x) = k(b - a)$

6.
$$\int_a^b f(x)dx \ge 0$$
, if $\forall x \in [a, b], f(x) \ge 0$.

7.
$$\int_a^b f(x)dx \le \int_a^b g(x)dx \text{ if } f(x) \le g(x) \ \forall x \in [a,b].$$

8.
$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx \ \forall x \in [a, b].$$

9.
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$

10.
$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$

11.
$$\int_0^{2a} f(x)dx = \int_0^a f(x)dx + \int_0^{2a} f(2a - x)dx$$

12.
$$\int_0^{2a} f(x)dx = \begin{cases} 2 \int_0^a f(x)dx & \text{if } f(2a-x) = f(x)[f \text{ even}] \\ 0 & \text{if } f(2a-x) = -f(x)[f \text{ odd}] \end{cases}$$

13.
$$\int_{-a}^{a} f(x)dx = \begin{cases} 2 \int_{a}^{a} f(x)dx & \text{if } f \text{ is even} \\ 0 & \text{if } f \text{ is odd} \end{cases}$$

Theorem

Let f be a piecewise continuous function on [a,b]. Let $a=x_0 < x_1 < \cdots < x_n = b$ such that f_i is a continuous on (x_{i-1},x_i) , $\forall 1 \leq i \leq n$ and $f(x)=f_i(x)$ $\forall i$. Then $\int_a^b f(x)dx = \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f_i(x)dx$.

Basic Integratiom Formulas

 ${\cal C}$ is the constant of integration.

1.
$$\int 0dx = C$$

$$2. \int dx = x + C$$

3.
$$\int x^n dx = \frac{x^{n+1}}{n+1} \text{ where } n \neq 1$$

LFK

$$4. \int \frac{dx}{x} = \ln x + C$$

$$5. \int e^x = e^x + C$$

6.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$7. \int \sin x dx = -\cos x + C$$

8.
$$\int \cos x = \sin x + C$$

$$9. \int \sec^2 x dx = \tan x + C$$

10.
$$\int \sec x \tan x dx = \sec x + C$$

11.
$$\int \csc x \cot x dx = -\csc x + C$$

$$12. \int \csc^2 x dx = -\cot x + C$$

13.
$$\int \tan x dx = -\ln|\cos x| + C$$

14.
$$\int \csc x dx = \ln|\csc x - \cot x| + C$$

15.
$$\int \cot x dx = \ln|\sin x| + C$$

16.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C$$

17.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\sec^{-1}\left(\frac{x}{a}\right) + C$$

18.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$$

19.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{x+a}{x-a} \right| + C$$

$$20. \int \sinh x dx = \cosh x + C$$

$$21. \int \cosh x dx = \sinh x + C$$

22.
$$\int \tanh x dx = \ln \cosh x + C$$

23.
$$\int \coth x dx = \ln|\sinh x| + C$$

$$24. \int \operatorname{sech} x = \tan^{-1}|\sinh x| + C$$

25.
$$\int \operatorname{csch} x = \ln \left| \tanh \frac{1}{2} x \right| + C$$

$$26. \int \operatorname{sech}^2 dx = \tanh x + C$$

$$27. \int \operatorname{csch}^2 x dx = -\coth x + C$$

28.
$$\int \operatorname{sech} x \tanh x dx = -\operatorname{sech} x + C$$

29.
$$\int \operatorname{csch} x \operatorname{coth} x dx = -\operatorname{csch} x + C$$

Method of Substitution

Let y = f(g(x)), where f and g are differentiable functions of x. Then by the chain rule, $\frac{dy}{dx} = f'(g(x))g'(x).$

If u = g(x), then du = g'(x)dx and

$$\int f'(g(x))g'(x)dx = \int f'(u)du$$

$$= f(u) + C$$

$$= f(g(x)) + C$$

Integration by parts

Let y = uv where u and v are differentiable functions of x.

$$\int \frac{d}{dx} (uv) = udv + vdu$$

$$\int \frac{d}{dx} (uv) = \int udv + \int vdu$$

$$uv = \int udv + \int vdu$$

So,

$$\int udv = uv - \int vdu$$

IMPORTANT THINGS TO NOTE

- Spend time trying the exercises on your own. This would give you an idea of what you truly understand and what you need to work on.
- Revise your notes before class and make an effort to read ahead of each class.
- Seek help before it is too late.