Marcin Mikuła

Zadanie 1

Do obliczeń użyłem języka Python na systemie Windows 10.

Funkcja do analizy:

$$f(x) = 40 * x * e^{-8} - 40 * e^{-8*x} + \frac{1}{40}$$

na przedziale: [0.2, 2]

Wykres 1. Funkcja zadana

Zastosowane kryteria stopu:

1. Kryterium

$$|x_{(i+1)} - x_i| < \rho$$

2.Kryterium

$$|f(x_i)| < \rho$$

Metoda Newtona

Pochodna funkcji f:

$$f'(x) = 320 * e^{-8*x} + \frac{40}{e^8}$$

	1,00E-02	1,00E-03	1,00E-05	1,00E-10	1,00E-15
0,2	0,8741094260	0,8741316716	0,8741316735	0,8741316735	0,8741316735
0,3	0,8740579143	0,8741316527	0,8741316735	0,8741316735	0,8741316735
0,4	0,8739254390	0,8741315109	0,8741316735	0,8741316735	0,8741316735
0,5	0,8741307599	0,8741307599	0,8741316735	0,8741316735	0,8741316735
0,6	0,8741281057	0,8741281057	0,8741316735	0,8741316735	0,8741316735
0,7	0,8741234032	0,8741316733	0,8741316733	0,8741316735	0,8741316735
0,8	0,8741265533	0,8741316734	0,8741316734	0,8741316735	0,8741316735
0,9	0,8741035790	0,8741316705	0,8741316735	0,8741316735	0,8741316735
1,0	0,8741219122	0,8741316731	0,8741316731	0,8741316735	0,8741316735
1,1	0,8740788908	0,8741316629	0,8741316735	0,8741316735	0,8741316735
1,2	0,8741277872	0,8741316735	0,8741316735	0,8741316735	0,8741316735
1,3	0,8738645965	0,8741314008	0,8741316735	0,8741316735	0,8741316735
1,4	0,8741241841	0,8741316733	0,8741316733	0,8741316735	0,8741316735
1,5	0,8741166793	0,8741316727	0,8741316735	0,8741316735	0,8741316735
1,6	0,8741283483	0,8741283483	0,8741316735	0,8741316735	0,8741316735
1,7	0,8741298458	0,8741298458	0,8741316735	0,8741316735	0,8741316735
1,8	0,8740876251	0,8741316661	0,8741316735	0,8741316735	0,8741316735
1,9	0,8739865923	0,8741315930	0,8741316735	0,8741316735	0,8741316735
2,0	0,8738927946	0,8741314553	0,8741316735	0,8741316735	0,8741316735

Tabela 1. Wyniki dla kolejnych punktów startowych dla metody Newtona dla kryterium 1

	1.0e-02	1.0e-03	1.0e-05	1.0e-10	1.0e-15
0,2	8	9	10	11	11
0,3	7	8	9	10	11
0,4	6	7	8	9	10
0,5	6	6	7	8	9
0,6	5	5	6	7	8
0,7	4	5	5	7	7
0,8	3	4	4	6	6
0,9	2	3	4	5	5
1,0	4	5	5	7	7
1,1	6	7	8	9	9
1,2	10	11	11	12	13
1,3	14	15	16	17	18
1,4	19	20	20	22	22
1,5	22	23	24	25	25
1,6	24	24	25	26	27
1,7	25	25	26	27	28
1,8	25	26	27	28	28
1,9	25	26	27	28	29
2.0	25	26	27	28	29

Tabela 2. Liczba iteracji dla kolejnych punktów startowych dla metody Newtona dla kryterium 1

	1,00E-02	1,00E-03	1,00E-05	1,00E-10	1,00E-15
0,2	0,848226289	0,8717133	0,874109426	0,874131674	0,874131674
0,3	0,869718066	0,874057914	0,874131653	0,874131674	0,874131674
0,4	0,866725935	0,873925439	0,874131511	0,874131674	0,874131674
0,5	0,862674978	0,873642703	0,87413076	0,874131674	0,874131674
0,6	0,857933461	0,873164834	0,874128106	0,874131673	0,874131674
0,7	0,854049417	0,872658793	0,874123403	0,874131673	0,874131674
0,8	0,856368626	0,872973185	0,874126553	0,874131673	0,874131674
0,9	0,900000000	0,871413079	0,874103579	0,874131674	0,874131674
1,0	0,853177223	0,872531286	0,874121912	0,874131674	0,874131674
1,1	0,870400992	0,874078891	0,874131663	0,874131674	0,874131674
1,2	0,857576243	0,873122551	0,874127787	0,874131673	0,874131674
1,3	0,865693985	0,873864597	0,874131401	0,874131674	0,874131674
1,4	0,854553387	0,872730169	0,874124184	0,874131673	0,874131674
1,5	0,850732829	0,872147288	0,874116679	0,874131674	0,874131674
1,6	0,858221702	0,873198318	0,874128348	0,874131673	0,874131674
1,7	0,860469945	0,873439894	0,874129846	0,874131673	0,874131674
1,8	0,870724888	0,874087625	0,874131666	0,874131674	0,874131674
1,9	0,867928848	0,873986592	0,874131593	0,874131674	0,874131674
2,0	0,866156091	0,873892795	0,874131455	0,874131674	0,874131674

Tabela 3. Wyniki dla kolejnych punktów startowych dla metody Newtona dla kryterium 2

	1,00E-02	1,00E-03	1,00E-05	1,00E-10	1,00E-15
0,2	6	7	8	10	10
0,3	6	7	8	9	9
0,4	5	6	7	8	9
0,5	4	5	6	7	8
0,6	3	4	5	6	7
0,7	2	3	4	5	6
0,8	1	2	3	4	5
0,9	0	1	2	4	4
1	2	3	4	6	6
1,1	5	6	7	8	8
1,2	8	9	10	11	12
1,3	13	14	15	16	17
1,4	17	18	19	20	21
1,5	20	21	22	24	24
1,6	22	23	24	25	26
1,7	23	24	25	26	27
1,8	24	25	26	27	27
1,9	24	25	26	27	28
2	24	25	26	27	28

Tabela 4. Liczba iteracji dla kolejnych punktów startowych dla metody Newtona dla kryterium 2

Metoda siecznych

	1,00E-02	1,00E-03 1,00E-05		1,00E-10	1,00E-15
(0,2,0,3)	0,87381645	0,87412673	0,87413167	0,87413167	0,87413167
(0,2, 0,4)	0,87329557	0,87410768	0,87413167	0,87413167	0,87413167
(0,2, 0,5)	0,87281257	0,87413142	0,87413167	0,87413167	0,87413167
(0,2, 0,6)	0,87274036	0,87413138	0,87413167	0,87413167	0,87413167
(0,2,0,7)	0,71387037	0,87410129	0,87413167	0,87413167	0,87413167
(0,2, 0,8)	0,80451423	0,87412812	0,87413167	0,87413167	0,87413167
(0,2, 0,9)	0,89876068	0,89876068	0,87413167	0,87413167	0,87413167
(0,2, 1,0)	0,99508272	0,87413194	0,87413167	0,87413167	0,87413167
(0,2, 1,1)	1,09252899	0,8741315	0,87413167	0,87413167	0,87413167
(0,2, 1,2)	1,19054768	0,87412687	0,87413168	0,87413167	0,87413167
(0,2, 1,3)	1,28883415	1,28872118	0,87413167	0,87413167	0,87413167
(0,2, 1,4)	1,38722599	1,38722403	1,38722403	0,87413167	0,87413167
(0,2, 1,5)	1,48563875	1,48563865	1,48563865	0,87413167	0,87413167
(0,2, 1,6)	1,58402936	1,58402934	1,58402934	0,87413167	0,87413167
(0,2, 1,7)	1,68237617	1,68237616	1,68237616	-	-
(0,2, 1,8)	1,78066845	1,78066845	1,78066845	-	-
(0,2, 1,9)	1,87890093	1,87890093	1,87890093	-	-
(0,2, 2)	1,97707106	1,97707106	1,97707106	-	-

Tabela 5. Wyniki dla kolejnych punktów startowych dla metody siecznych dla kryterium 1

	1,00E-02	1,00E-03	1,00E-05	1,00E-10	1,00E-15
(0,2,0,3)	10	11	12	14	15
(0,2,0,4)	9	10	12	13	14
(0,2, 0,5)	8	10	11	12	13
(0,2, 0,6)	7	9	10	11	12
(0,2,0,7)	2	7	9	10	11
(0,2, 0,8)	2	6	7	9	10
(0,2,0,9)	2	2	6	8	9
(0,2, 1,0)	2	8	9	10	11
(0,2, 1,1)	2	12	13	14	15
(0,2, 1,2)	2	30	31	33	34
(0,2, 1,3)	2	5	581	583	584
(0,2, 1,4)	2	5	5	34634	34635
(0,2, 1,5)	2	5	5	980270	980271
(0,2, 1,6)	2	5	5	-	-
(0,2, 1,7)	2	5	5	-	-
(0,2, 1,8)	2	5	5	-	-
(0,2, 1,9)	5	5	5	-	-
(0,2, 2)	5	5	5	-	-

Tabela 6. Liczba iteracji dla kolejnych punktów startowych dla metody siecznych dla kryterium 1

	1,00E-02	1,00E-03	1,00E-05	1,00E-10	1,00E-15
0,2,0,3	0,853564033	0,873816447	0,874126726	0,874131674	0,87413167
0,2,0,4	0,866556146	0,87329557	0,87410768	0,874131674	0,87413167
0,2,0,5	0,864116005	0,872812571	0,874131422	0,874131673	0,87413167
0,2,0,6	0,863613215	0,872740358	0,87413138	0,874131673	0,87413167
0,2,0,7	0,866022116	0,873141776	0,874101289	0,874131673	0,87413167
0,2,0,8	0,857845135	0,873893317	0,874128119	0,874131674	0,87413167
0,2,0,9	0,899373183	0,871611539	0,874134014	0,874131674	0,87413167
0,2, 1,0	0,909430666	0,872763334	0,874131939	0,874131673	0,87413167
0,2, 1,1	0,90558212	0,875264175	0,874131502	0,874131674	0,87413167
0,2, 1,2	0,853666541	0,874441312	0,874126871	0,874131674	0,87413167
0,2, 1,3	0,887171606	0,876217268	0,87413252	0,874131674	0,87413167
0,2, 1,4	0,887073664	0,872038713	0,874132511	0,874131674	0,87413167
0,2, 1,5	0,89446449	0,874482341	0,874137587	0,874131674	0,87413167
0,2, 1,6	1	1	-	-	1
0,2,1,7	-	-	-	-	-
0,2, 1,8	-	-	-	-	-
0,2, 1,9	-	-	-	-	-
0,2, 2	-	-	-	-	-

Tabela 7. Wyniki dla kolejnych punktów startowych dla metody siecznych dla kryterium 1

	1,00E-02	1,00E-03	1,00E-05	1,00E-10	1,00E-15
0,2, 0,3	8	10	11	13	14
0,2, 0,4	8	9	10	12	13
0,2, 0,5	7	8	10	11	12
0,2, 0,6	6	7	9	10	11
0,2, 0,7	5	6	7	9	10
0,2, 0,8	3	5	6	8	9
0,2, 0,9	1	4	5	7	8
0,2, 1,0	4	6	8	9	10
0,2, 1,1	8	10	12	13	14
0,2, 1,2	27	29	30	32	33
0,2, 1,3	577	578	580	582	582
0,2, 1,4	34628	34629	34631	34633	34633
0,2, 1,5	980264	980266	980267	980269	980270
0,2, 1,6	-	-	-	-	-
0,2, 1,7	-	-	-	-	-
0,2, 1,8	-	-	-	-	-
0,2, 1,9	-	-	-	-	-
0,2, 2	-	-	-	-	-

Tabela 6. Liczba iteracji dla kolejnych punktów startowych dla metody siecznych dla kryterium 2

Zadanie 2

Do obliczeń użyłem języka Python na systemie Windows 10.

Układ do rozwiązania metodą Newtona.

$$\begin{cases} x_1^2 + x_2^2 + x_3 = 1\\ 2x_1^2 + x_2^2 + x_3^3 = 2\\ 3x_1 - 2x_2^3 - 2x_3^2 = 3 \end{cases}$$

Kryteria stopu:

1. Kryterium

$$|x_{(i+1)} - x_i| < \rho$$

2.Kryterium

$$|f(x_i)| < \rho$$

Niech:

$$F(X) = \begin{bmatrix} f_1(X) \\ f_2(X) \\ f_3(X) \end{bmatrix} = \begin{bmatrix} x_1^2 & + & x_2^2 & + & x_3 & -1 \\ 2x_1^2 & + & x_2^2 & + & x_3^3 & -2 \\ 3x_1 & - & 2x_2^3 & - & 2x_3^2 & -3 \end{bmatrix}$$

Metoda Newtona dla układów równań jest analogiczna jak dla równania nieliniowego, z taką różnicą, że zamiast z pochodnej należy skorzystać z jakobianu macierzy. Dla tego układu:

$$J(X) = \begin{bmatrix} 2x_1 & 2x_2 & 1\\ 4x_1 & 2x_2 & 3x_3^2\\ 3 & -6x_2^2 & -4x_3 \end{bmatrix}$$

Dany układ ma 1 rzeczywiste rozwiązanie:

$$x_1 = 1, x_2 = -1, x_3 = -1$$

W metodzie Newtona rozważane były wektory z przedziału [-1, -1, -1] do

[1, 1, 1] w różnych kombinacjach dla każdej współrzędnej, wybrano niektóre przypadki. Wybór przedziału wynika z faktu, że znajduje się w nim jedyne rozwiązanie.

Wektor początkowy	Wynik dla precyzji: 0.001	Wynik dla precyzji: 0.0001	Wynik dla precyzji: 0.00001	Wynik dla dokładności: 0.00001
[-1.0, -1.0, -1.0]	[111.]	[111.]	[111.]	[111.]
[-0.6, -1.0, 1.0]	-	-	-	-
[-0.6, -0.6, -0.6]	[0.99, -1.00000008, -0.99]	[111.]	[111.]	[111.]
[-0.2, -0.2, -0.2]	[0.99, -1.00000011, -1.00000017]	[111.]	[111.]	[111.]
[0.2, -0.6, 0.6]	-	-	-	•
[0.2, 0.2, 0.2]	[0.99, -1.00000001 -1]	[111.]	[111.]	[111.]
[0.6, 0.6, 0.6]	[0.99, 8.23492005e-04, -2.93966816e-09]	[1, 5.15740984e-05, -7.31025343e-13]	[1, 6.44753218e-06 -1.23701699e-15]	[1, 8.05887622e-07, 2.23963895e-16]
[1.0, 1.0, 1.0]	[111.]	[111.]	[111.]	[111.]

Tabela 1. Tabela wyników dla wybranych wektorów startowych, dla kryterium 1, " - " oznacza że nie uzyskano wyniku.

Wektor początkowy	Precyzja: 0,001	Precyzja: 0,0001	Precyzja: 0,00001	Precyzja: 0,000001
[-1,0, -1,0, -1,0]	105	105	105	105
[-0.6, -1.0, -0.6]	13	13	14	14
[-0,6, -0,6, -0,6]	45	46	46	46
[-0,2, -0,2, -0,2]	233	234	234	234
[0.2, -0.6, -0.2]	9	10	10	10
[0,2, 0,2, 0,2]	10	11	11	11
[0,6, 0,6, 0,6]	70	74	77	80
[1,0, 1,0, 1,0]	40	40	41	41

Tabela 2. Tabela liczba iteracji dla wybranych wektorów startowych, dla kryterium 1.

Wektor początkowy	Wynik dla precyzji: 0,001	Wynik dla precyzji: 0,0001	Wynik dla precyzji: 0,00001	Wynik dla precyzji: 0,000001
[-1,0, -1,0, -1,0]	[0,99999988, -1,00000093, -1,0000013]	[0,99999988, -1,00000093, -1,0000013]	[0,99999988, -1,00000093, -1,000013]	[1, -1, -1,]
[-0,6, -1,0, 1,0]	-	-	-	-
[-0,6, -0,6, -0,6]	[0,99989946, -1,0002701, -1,00015229]	[0,99999996, -1,00000008, -0,9999999]	[0,99999996, -1,00000008, -0,9999999]	[0,99999996, -1,00000008, -0,9999999]
[-0,2, -0,2, -0,2]	[1,00001804, -1,00017529, -1,00034028]	[0,99999999, -1,00000011, -1,0000017]	[0,99999999, -1,00000011, -1,0000017]	[0,99999999, -1,00000011, -1,0000017]
[0,2, -0,6, 0,6]	-	-	-	-
[0,2, 0,2, 0,2]	[0,99996993, -1,00010111, - 1,00008432]	[0,99999999, -1,00000001, -1,]	[0,99999999, -1,00000001, -1,]	[0,99999999, -1,00000001, -1]
[0,6, 0,6, 0,6]	[,99997, 2,48022474e-02, -5,87422775e-05]	[0,99999, 6,49068207e-03, -1,32224620e-06]	[0,99999, 1,64340648e-03, -2,30667395e-08]	[0,99999, 8,23492005e-04, -2,93966816e-09]
[1,0, 1,0, 1,0]	[0,99998164, -1,00005729, - 1,00001209]	[1, -1, -1,]	[1, -1, -1,]	[1, -1, -1,]

Tabela 3. Tabela wyników dla wybranych wektorów startowych, dla kryterium 2, " - " oznacza że nie uzyskano wyniku.

Wektor początkowy	Precyzja: 0,001	Precyzja: 0,0001	Precyzja: 0,00001	Precyzja: 0,000001
[-1,0, -1,0, -1,0]	104	104	104	105
[-0.6, -1.0, -0.6]	12	12	13	13
[-0,6, -0,6, -0,6]	45	45	45	45
[-0,2, -0,2, -0,2]	232	233	233	233
[0.2, -0.6, -0.2]	8	8	8	9
[0,2, 0,2, 0,2]	9	10	10	10
[0,6, 0,6, 0,6]	65	67	69	70
[1,0, 1,0, 1,0]	39	40	40	40

Tabela 2. Tabela liczba iteracji dla wybranych wektorów startowych, dla kryterium 2.

Wnioski

Precyzja ma nieznaczny wpływ na liczbę iteracji. W zależności od wektora początkowego występowały pewne wahania, różnice między nimi nie przekraczały 10. Dla kryterium 2 widać zauważalne pogorszenie dokładności uzyskiwanych wyników.