Stack Data Model

Stefan Bohatsch, Niklas Augustsson 2023-01-20

Background

H2Fly requested a data driven model for the PowerCell P-Stack

The input data are derived from Test Nr. TV500873

The Configuration of the stack was a PowerCell P-stack, 455 cells

The operating range was from 0 – 550 A

The following parameters have been varied:

- H2 concentration(0.5 1)
- Anode Stoichiometry (lowest value: 1.2)
- Anode Dewpoint Temperature (20 °C 85 °C)
- Anode Inlet Temperature (45 °C 90 °C)
- Anode Inlet Pressure (0.2 barg 2 barg)

- Cathode Stoichiometry (lowest value: 1.2)
- Cathode Dewpoint Temperature (20 °C 85 °C)
- Cathode Inlet Temperature (45 °C 90 °C)
- Cathode Inlet Pressure (0.14 barg 1.9 barg)

- Coolant Inlet flow (100 l/min – 300 l/min or 0.22 – 0.66 l/min/cell)
- Coolant Inlet Temperature (40 °C 85 °C)

Variation of Input parameters:

Variation of Input parameters:

Modelling approach

The models have been created with the GT-DoE data processing module within the GT-Suite Multi-physics simulations software from Gamma Technologies

The type of the models are response surfaces which have been generated based on a Gauss / Kriging process All options have been set to default values, all input parameters have been used without any weighting of sensitivity The following response models have been created:

- Stack Voltage (V)
- Stack Voltage loss (U_{cell package} U_{stack terminals}) (V)
- Average Cell Voltage (V)
- Max. Cell Voltage (V)

- Min Cell Voltage (V)
- Cell Voltage Standard Deviation (mV)
- Anode Pressure Drop (mbar)
- Cathode Pressure Drop (mbar)

- Coolant Pressure Drop (mbar)
- Anode Delta-T (° C)
- Cathode Delta-T (° C)
- Coolant Delta-T (° C)

IMPORTANT:

The model is only valid within the range of the tested data. Predictive results outside the tested area may be misleading!

Test Data for Model validation

Test Data for Model validation

C-Code generation and export

The models are directly exported into C-Code and set up for usage in the GT-Suite simulation package

The structure of the code has not been analysed. Changes might be necessary for usage with other software

The code requests two external libraries:

- math.h \rightarrow supplied by the compiler
- uccontrols.h → supplied by GT-Suite, but not needed when used with other software tools

The order of the input data is the following:

Unit		Custom Label
A	~	current
		H2-concentration
		anode_stoich
С	~	temp_anode_dewpoint
С	~	temp_anode_inlet
bar	~	pressure_anode_inlet
		cathode_stoich
С	~	temp_cathode_dewpoint
С	~	temp_cathode_inlet
bar	~	pressure_cathode_inlet
L/min	~	flow_coolant
С	~	temp_coolant_inlet

Example for Integration in GT-Suite

Example for standalone usage

In order to run the c files standalone w/o GT-Suit some small modifications have to be done to the C-files. The function **get_response()** can then be called. One response is generated by C-file. The name of the C-file defines what the response is. See the example below:

```
#include "DOE-data TV500873 ModelInput Default Voltage Kriging Casel standalone.c"
//#include "DOE-data TV500873 ModelInput Default temp coolant in out diff Kriging Casel standalone.c"
//#include "DOE-data TV500873 ModelInput Default temp cathode in out diff Kriging Casel standalone.c"
//#include "DOE-data TV500873 ModelInput Default temp anode in out diff Kriging Casel standalone.c"
//#include "DOE-data TV500873 ModelInput Default Stack Voltage Loss Kriging Casel standalone.c"
//#include "DOE-data TV500873 ModelInput Default dp Coolant Kriging Casel standalone.c"
//#include "DOE-data TV500873 ModelInput Default dp Cathode Kriging Casel standalone.c"
//#include "DOE-data TV500873 ModelInput Default dp Anode Kriging Casel standalone.c"
//#include "DOE-data TV500873 ModelInput Default CellSense std Kriging Casel standalone.c"
//#include "DOE-data TV500873 ModelInput Default CellSense Min Kriging Casel standalone.c"
//#include "DOE-data_TV500873_ModelInput_Default_CellSense_Max_Kriging_Casel_standalone.c"
//#include "DOE-data TV500873 ModelInput Default CellSense Avg Kriging Casel standalone.c"
#include <stdio.h>
#include <stdlib.h>
double response;
/* Input order in factors vector
{"current", "H2-concentration", "anode stoich", "temp anode dewpoint", "temp anode inlet",
"pressure anode inlet", "cathode stoich", "temp cathode dewpoint", "temp cathode inlet", "pressure cathode inlet",
"flow coolant", "temp coolant inlet"}
double factors[12] = {450, 0.7, 1.5, 50, 61, 1, 2, 50, 70, 1.4, 250, 70};
int main()
  FILE *fptr:
  fptr = fopen("response", "w");
  if(fptr == NULL)
     printf("Error!");
     exit(1);
    get response (factors, &response);
   fprintf(fptr, "%f\n", response);
   fclose(fptr);
```


Delivery

- 12x C-files that can be used standalone w/o GT-Suit
- main.c: An example file that is using the standalone files

