

1 总体描述

SC32R803 是基于 Arm Cortex-M0+内核的工业级、带触控功能的 Flash 微控制器,运行频率高达 64MHz。Cortex-M0+内核采用 32 位精简指令集(RISC),符合 CMSIS 标准。SC32R803 系列具有强大的数据处理能力,内部集成的直接存储器访问控制器(DMA)可实现高速的数据传输,硬件 CRC 模块及内核自带的硬件 32 位乘法器进一步提升了数据运算速度。

SC32R803 系列微控制器内嵌两种时钟源: 高精度高频振荡器(HIRC)、低频 32kHz 振荡器(LIRC),额外提供两个外部晶振接口: 2~16MHz 高频晶振(HXT)接口和 32.768 KHz 低频晶振(LXT)接口。内嵌时钟源及外部晶振接口均可提供系统时钟,内置的系统时钟监控模块可在系统时钟异常时将其时钟源切换至 HIRC。

SC32R803 系列的外设资源非常丰富:内置 32 路高灵敏度隔空电容触控电路;最多 60 个 GP I/O,所有 I/O 可外部中断;8 个 16 位定时器,8 路 16bit 多功能 PWM,带故障检测功能,39 路 8bit 通用 LEDPWM;6 个独立 UART,其中 UART2 具有完整的 LIN接口,支持主/从机模式;2 个高级二合一通信口 QSPI0/1 & SPI0/1 & TWI0/1,2 个通用二合一通信口 SPI2/3 & TWI2/3;内置 LCD/LED 硬件驱动;1 个模拟比较器,1 个轨到轨的可变增益放大器 OP/PGA,20 路 14bit 高精度 ADC;内建独立的看门狗定时器(WDT)和低电压复位电路(LVR),能够有效提升系统可靠性;提供三种功耗模式,可满足不同应用场景下的功耗需求。

SC32R803 系列具有高性能及高可靠性,支持 1.8-3.6V 工作电压,可在-40℃~105℃环境温度下运行,同时具备良好的 ESD 性能及 EFT 抗干扰能力;制程方面,SC32R803 系列采用业界领先的 eFlash 制程,Flash 写入次数大于 10 万次,常温下数据可保存 100 年;存储资源方面,SC32R803 系列具有最大 256 Kbytes ROM 空间,最大 32 Kbytes SRAM,SRAM 支持奇偶校验功能,2 Kbytes 用户存储区域(类 EEPROM),4 Kbytes 系统存储区(LDROM);内置系统存储区可支持 OTA 升级,提供 ISP(In System Programing)、ICP(In Circuit Programing)和 IAP(In Application Programing)多种程序升级方式,允许芯片在线或带电的情况下,在板调试及升级程序。

SC32R803 系列具有极佳的触控按键特性,配合其出色的抗干扰性能,可适配各种方案的触控按键和主控控制,应用范围涵盖:大小智能家电、智能家居、物联网、无线通讯、游戏机等工业控制和消费领域。

2 主要功能

工作条件

工作电压: 1.8V~3.6V工作温度: -40 ~ +105℃

EMS

ESD

HBM: ANSI/ ESDA/JEDEC JS-001-2023 Class 3A
 CDM: ANSI/ESDA/JEDEC JS-002-2022 Class C3

EFT

■ EN61000-4-4 Level 4

封装类型

• 64 PIN: LQFP64 (10X10)

内核

- Cortex®-M0+内核
- 帯 WIC(wakeup interrupt controller)模块
- 64 bits 指令预取
- 自带乘法器

复位

- 上电复位 POR
- 软件 RST 复位
- 通过外部 NRST 脚(PD3) 低电平复位
- 看门狗(WDT)复位
- 低电压复位(LVR)
 - 复位电压有 2 级可选: 分别是: 2.9V、1.7V
 - 缺省值为用户烧写 Code Option 所选值

总线

- 1 个 IOPORT
- 1 个 AHB
- 3 ↑ APB: APB0~APB2

省电模式

- IDLE Mode,可由任何中断唤醒
- STOP Mode,由 INT0~15、Base Timer、TK和 CMP 唤醒

2.1 存储

主存储区 APROM

- 最大 256 Kbytes APROM
- 可重复写入 10 万次
- 支持硬件读保护加密
- 支持硬件写保护:提供两段禁止 IAP 操作的区域,用户可通过 Code Option 设置项,最小设置单位为 512 bytes (一个扇区)

系统存储区 LDROM

● 4 Kbytes 系统存储区,出厂固化 BootLoader 程序

SRAM

- 32 Kbytes Internal SRAM
- 支持奇偶校验:
 - 额外的 4K RAM 用于奇偶校验:即 SRAM 数据总线宽度 为 36 位,其中有 4 位用于奇偶校验(每字节 1 位)
 - 奇偶校验位在写入 SRAM 时进行计算和保存,在读取时

自动进行校验。如果某一位失败,则将生成 NMI

- 提供独立的 SRAM 奇偶校验错误标志 SRAMPEIF
- 使用时需注意对 SRAM 初始化
- 支持从 SRAM 自举

2K Bytes 用户存储区(类 EEPROM)

- 分为 4 个 512 bytes 扇区
- 可重复写入 10 万次
- 常温 25℃下数据可保存 100 年

96 bits unique ID

● IFB 区域提供 96 bits Unique ID

2.2 BootLoader

- 硬件方式:系统存储区: 4 Kbytes,出厂固化 BootLoader 程序
- 软件方式:支持中断向量表重映射,可从 APROM 区域灵活划 分出用户 BootLoader 程序运行区

2.3 烧写和仿真

- 烧录方式支持 ICP / ISP / IAP
- 2线 JTAG / SWD 烧写和仿真接口
- 加密状态下不支持仿真功能

2.4 时钟源

内建高频 64MHz 高频振荡器 (HIRC)

- 可作为系统时钟源
- 频率误差: 跨越 (1.8V~3.6V) 及 (-40~105°C) 应用环境, 不超过 ±1%
- 可通过 32.768kHz 外接晶振进行自动校准,校准后 HIRC 精度 可无限接近外接 32.768kHz 晶振的精度

内建低频 32kHz 低频振荡器 (LIRC)

- 可作为系统时钟源
- 固定为 WDT 时钟源, WDT 使能后此时钟源必开启
- 可作为 Base Timer 时钟源
- 可作为 LCD/LED 时钟源
- 频率误差: 跨越 (1.8 ~ 3.6V) 及 (-20 ~ 85℃) 应用环境,经寄存器修正后频率误差不超过±4%

可外接 2~16MHz 高频晶振 (HXT)

- 可作为系统时钟源
- 用户可以选择外接晶振振荡频率<12M 或≥12MH

可外接 32.768 KHz 低频晶振 (LXT)

- 可作为系统时钟源
- 可作为 Base Timer 时钟源
- 可作为 LCD/LED 时钟源
- 可外接 32.768kHz 振荡器
- 可通过 LXT 对 HIRC 进行自动校准

2.5 中断源

- 提供 28 个中断源
- 四级中断优先级可设
- 外部中断 INT
 - 16 个 INT 中断源,共占用 4 个中断向量
 - INT 经切换设置后可覆盖到所有的 GPIO 管脚
 - 全部 INT 可设为上升沿、下降沿、双沿中断,且均有独立 对应中断标志位

Page 2 of 73 V0.1

■ 软件置起相应中断标志位,可触发进入相应的中断

2.6 数字外围

最大 60 个双向可独立控制 GPIO

- 可独立设定上拉电阻
- 全部 GPIO 源驱动能力分四级控制

看门狗 WDT

● 内置 WDT, 溢出时间 3.94~500ms 可设

Base Timer (BTM)

- 时钟源 LXT 和 LIRC 可选
- 中断频率间隔 15.625ms~32s
- 可唤醒 STOP Mode

8个16位定时/计数器(TIM) Timer0~Timer7

- 16 位递增、递减、递增/递减自动重载计数器
- 支持上升沿/下降沿捕获,可实现 PWM duty 和周期捕获
- 每个 TIM 提供两路共周期、占空比可调的 PWM (TPWMA / TPWMB) 输出
- TIM1、TIM2、TIM6 的定时器溢出及捕获事件可触发 DMA 请求
- TIM2 ~ TIM7 的 Tn 管脚支持重映射

8 路 16 位高级 PWM0

- 时钟源可以选择到 64MHz
- 共用周期、占空比单独可调
- 带死区、可互补 PWM 输出
- 支持中心对齐模式
- 支持故障检测

39 路 8 位 LEDPWM

- 共用周期、占空比单独可调
- 支持中心对齐模式

6 个独立 UART 通信口 UART0~5

- UART2 为完整的 LIN 接口:
 - 主从模式可切换
 - 支持主机模式下硬件 break 发送(10/13bits)
 - 支持从机模式下硬件 break 检测(10/11bits)
 - 支持从机模式下波特率同步
 - 提供相关中断/状态位/标志位
- UART0~5 支持信号口映射,均可以映射到另外 1 组 IO
- 独立波特率发生器
- 支持从 STOP 模式唤醒
- 三种通讯模式可选:
 - 模式 0,8位半双工同步通信模式
 - 模式 1,10 位全双工异步通信
 - 模式 3,11 位全双工异步通信
- UARTO 和 UART1 支持 DMA 请求
- UART2~5 不支持 DMA 请求

2 个高级二合一通信口 QSPI0/1 & SPI0/1 & TWI0/1

- OSPI0/1
 - QSPI 仅支持主机模式
 - 每个 QSPI 均可适配 4 种不同传输位宽: 8/16/24/32 bits
 - 在不同位宽下提供固定8级FIFO,收发独立
 - 支持单线、双线、四线通信
 - 支持两种功能模式: QSPI 半双工通信模式和直通模式
 - 通信速率高达 32MHz
 - 两个 QSPI 可以不经过 FIFO 直接透传
 - QSPI0/1 均支持 DMA 传输
- SPI0/1

- 每个 SPI 均可适配 4 种不同传输位宽: 8/16/24/32 bits
- 不同位宽下提供固定8级FIFO,收发独立
- SPI 模式下相应的信号口驱动能力将增强
- 支持主机/从机模式
- SPI0/1 均支持 DMA
- TWI0/1
 - 支持主机/从机模式
 - 从模式下支持时钟延展
 - 通信速率高达 1Mbps
 - 支持快速充电,保证 TWI 在较高速率下运行
 - TWI0/1 均支持 DMA

2 个通用二合一通信口 SPI2/3 & TWI2/3

- SPI2/3
 - 信号口可映射到另外 3 组 IO
 - 支持主机/从机模式
 - SPI2 支持 DMA
 - SPI3 不支持 DMA
- TWI2/3
 - 信号口可映射到另外 3 组 IO
 - 支持主机/从机模式
 - 从模式下支持时钟延展
 - 通信速率高达 1Mbps
 - 支持快速充电,保证 TWI 在较高速率下运行
 - TWI2 支持 DMA
 - TWI3 不支持 DMA

CAN 通信口

- 协议支持:
 - CAN 2.0B
 - CAN FD
- 中断标志多达 14 种,共用同一个中断线
- 支持待机模式
- 时间戳:
 - CiA 603: 64 bit 时间戳,发送帧(TTS)支持一个时间戳, 存放在寄存器里,但所有的接收帧(RTS)都有单独的 时间戳
- 收发缓存:
 - 8组接收缓存(RB)
 - 8组发送缓存(TB)
 - 8 组接收过滤器 (支持 29bit ID)

内建 CRC 校验模块

- 初始值可设,默认为 0xFFFF_FFF
- 多项式可编程,默认为 0x04C1_1DB7
- 支持 8/16/32bit 数据单元

LCD/LED 驱动

- 时钟源 LXT 和 LIRC 可选
- LCD/LED 二选一,共用寄存器和端口
- LED
 - 8 X 31、6 X 33、5 X 34、或 4 X 35 段 LED 驱动
 - LED segment 口源驱动能力分四级控制
 - 寄存器与35路LEDPWM(0~34)共用,可通过中心对齐的PWM波形实现LED替代驱动及灰度调整
- LCD
 - 8 X 31、6 X 33、5 X 34、或 4 X 35 段 LCD 驱动
 - LCD 电压输出口分压电阻阻值可选
 - 两种偏置电压可选: 1/3 和 1/4
 - 波形模式 Type A 和 Type B 两种可选
 - 帧频三档可选:
 - ◆ Type A 模式下 32/64/128Hz
 - ◆ Type B 模式下 64/128/256Hz

DMA

- 4个可独立配置的通道
- 每个 DMA 通道可向其它通道发送 DMA 请求
- 数据宽度支持字节,半字,字

- 24 个 DMA 请求源,四个请求优先级
- 支持源/目标地址自动增加或固定
- 支持单笔和批量传输方式
- 传输方式支持:内存到内存、内存到外设、外设到内存、外设 到外设

2.7 模拟外围

32 路高灵敏度触控电路(TK)

- 通道可以并联扫描
- CMOD 管脚需对地接入 103 电容
- 支持自电容方案和互电容模式
- TK的内部参考电压最高档位可设到 4V,以得到更高灵敏度
- 支持低功耗模式
- 支持快速唤醒 STOP Mode
- 可适应隔空按键触控、接近感应等对灵敏度要求较高的触控应
- 全套开发支持: 高灵活触控软件库, 智能化调试软件

模数转换器 ADC

- 精度: 14位
- 最多支持 20 路通道
 - 外部 18 路 ADC 采样通道与 IO 口其它功能复用
 - 内部一路 ADC 可直接测量 VDD 电压
 - 内部一路 ADC 可直接测量 OP 输出

ADC 的参考电压有 4 种选择: V_{DD} 以及内部 2.048V 、1.024V 或 2.4V

SC32R803

- 可设 ADC 转换完成中断
- 支持单通道连续转换模式
- 支持 DMA

运放 (OP)

- 一个 Rail-to-rail 的运放
- 可配置为 PGA 模式
 - 同相输入增益: 8/16/32/64
 - 反相输入增益: 7/15/31/63
- 同相输入端引出两个外部引脚: OP_P0 或 OP_P1
- 反相输入端引出一个外部引脚: OP_N
- 输出端引出一个外部引脚: OP_O
- 输出可直接接入 ADC 输入
- 输出可直接接入 CMP 正端

模拟比较器 CMP

- 正端输入信号五种可选:
 - 四个模拟信号正输入端 CMP0~CMP3
 - OP 输出端
- 负端输入电压可选择 CMPR 引脚或内部 VDD 分压的 15 档比较 电压中的一种
- CMP 中断可唤醒 STOP Mode

产品外设资源表

型号外设	SC32R803
	_R8
GPIOs	64
APROM (Kbyte)	256
SRAM (Kbyte)	32
TK	YES
QSPI	2
SPI	4
TWI	4
UART	6
CAN	1
TIM	8
PWM0	8
LEDPWM	39
OP	1
СМР	1
ADC Channels	20
LCD/LED COM X SEG	8X31 6X33 5X34 4X35
CRC	YES
DMA	YES
Max. CPU frequency	64MHz

Page 5 of 73 V0.1

订购信息

型号	封装	包装		
SC32R803PJR	LQFP64	盘装		

Page 6 of 73 V0.1

目录

1	总体描述	₺		
2	主要功能	Ł		2
	2.1	存储		2
	2.2	BootLo	oader	2
	2.3	烧写和	1仿真	2
	2.4	时钟源	{	2
	2.5	中断源	{	2
	2.6	数字外	·围	3
	2.7	模拟外	卜围	4
产品	品外设资》	原表		5
订见	购信息			6
目录	录			7
3	管脚定》	Z		12
	3.1	管脚配	2置图	12
	3.2	管脚资	源列表	13
4	资源框图	₹		16
5	存储			17
	5.1	概述		17
	5.2	存储框	图	17
	5.3	特性		18
	5.4	APRO	M(主存储区)	18
	5.5	2 Kbyt	tes 用户存储区域(类 EEPROM)	19
	5.6	4 Kbyt	tes LDROM(系统存储区)	19
		5.6.1	BootLoader	19
	5.7	SRAM	1	19
	5.8	启动区	[域选择(自举)	20
		5.8.1	从主存储区自举	20
		5.8.2	从系统存储器自举	20
		5.8.3	从嵌入式 SRAM 自举	20
		5.8.4	自举模式设置	20
		5.8.5	96 bits Unique ID	21
	5.9	User I	D 区域	21
	5.10	编	扁程	21
	5.11	JTAG	专用模式	21
	5.12	常	弯规模式(JTAG 专用□无效)	
			Page 7 of 73	V0.1

	5.13	安	全加密	22
		5.13.1	安全加密操作权限	22
	5.14	In App	lication Programming (IAP)	22
		5.14.1	IAP 操作相关寄存器	23
	5.15	选	项字节区域(Customer Option)	25
		5.15.1	Customer Option 的映射寄存器	25
6	上电、	复位和时针	钟控制(RCC)	27
	6.1	上电过	程	27
		6.1.1	复位阶段	27
		6.1.2	调入信息阶段	27
		6.1.3	正常操作阶段	27
	6.2	复位		27
		6.2.1	复位后的启动区域	28
		6.2.2	外部 RST 复位	28
		6.2.3	低电压复位 LVR	28
		6.2.4	上电复位 POR	28
		6.2.5	看门狗复位 WDT	29
		6.2.6	软件复位	29
		6.2.7	复位初始状态	29
	6.3	时钟		29
		6.3.1	系统时钟源	29
		6.3.2	总线	29
		6.3.3	时钟及总线分配框图	29
	6.4	RCC ∮	中断	30
	6.5	内建高	频 64MHz 振荡器(HIRC)	30
	6.6	内置高	频晶体振荡器电路(HXT)	30
	6.7	内建低	频 32kHz 振荡器(LIRC)	30
	6.8	内置低	频振荡电路(LXT)	30
7	中断			31
	7.1	外部中	断 INT0~15	31
	7.2	中断与	事件	31
	7.3	中断向	量表	32
8	省电模:	式		34
9	GPIO			35
	9.1	时钟源	i	35
	92	特性		35

	9.3	GPIO 结构图	35
10	模	数转换器 ADC	37
	10.1	时钟源	37
	10.2	特性	37
	10.3	ADC 转换步骤	37
	10.4	ADC 中断	38
	10.5	ADC 连接电路图	38
11	运	放及可编程增益放大器(OP)	39
	11.1	特性	39
	11.2	OP 端口选择	39
		11.2.1 OP 正端输入选择	39
		11.2.2 OP 负端输入选择	39
		11.2.3 OP 输出选择	39
	11.3	OP 电路结构框图	40
12	模	拟比较器 CMP	41
	12.1	特性	41
	12.2	模拟比较器结构框图	41
13	UA	4RT0~5	42
	13.1	时钟源	42
	13.2	特性	42
	13.3	UART2-LIN	42
		13.3.1 LIN 帧结构	42
		13.3.2 LIN 主机模式	43
		13.3.3 LIN 从机模式	43
14	QS	SPI0~1	45
	14.1	时钟源	45
	14.2	QSPI0/1 特性	45
15	SF	710~3	46
	15.1	时钟源	
	15.2	SPI0/1 特性	46
	15.3	SPI2/3 特性	
	15.4	SPI0/1 和 SPI2/3 对比	47
16	TV	VIO~3	
	16.1	时钟源	
	16.2	TWI0/1 特性	
	16.3	TWI2/3 特性	
	16.4	TWI 信号描述	48

17	CAN 通信	П	49
	17.1	概述	49
	17.2	时钟源	49
	17.3	特性	49
18	硬件看门	狗 WDT	50
	18.1	时钟源	50
19	BASE TIM	MER (BTM)	51
	19.1	时钟源	51
	19.2	特性	51
20	内建 CRC	:校验模块	52
	20.1	时钟源	52
	20.2	特性	52
21		3 路 16 位多功能 PWM	
		时钟源	
		特性	
		// 0 结构框图	
		// 0 通用配置	
	21.4.1		
	21.4.2		
	21.4.3		
	21.4.4	, ,,,,,,,,,,,	
22		1: 39 路 8 位 LEDPWM	
		时钟源	
23		特性 驱动器	
23		业 约奋	
		内置 8 COM x 31 SEG LED 驱动	
		内置 8 COM x 31 SEG LCD 驱动	
24			
25		·/计数器(TIM)TIMER0~TIMER7	
		时钟源	
	25.2	特性	59
		计数方式	
	25.3.1	1 定时模式下 TIM 计数方式	59
	25.3.2	2 PWM 输出模式下 TIM 计数方式	59
	25.4	定时器相关的信号口	59

	25.5	TIM 的	中断及对应标志位	60
	25.6	TIM 的	工作模式	60
26	DN	MA 控制器	!	61
	26.1	概	述	61
	26.2	时	钟源	61
	26.3	特	性	61
	26.4	功	能说明	61
		26.4.1	传输方向	61
		26.4.2	DMA 访问区域限制	61
		26.4.3	通道优先级	61
		26.4.4	单次传输和批量传输	61
	26.5	循	环模式	62
27	SY	STICK		63
	27.1	时	钟源	63
	27.2	SysTicl	k 校准寄存器默认值	63
28	电	气特性		64
	28.1	推	荐工作条件	64
	28.2	极	限参数	64
	28.3	Flash F	ROM 参数	64
	28.4	运	行功耗	65
		28.4.1	V _{DD} = 3.3V,T _A = +25℃,除非另有说明	65
	28.5	GPIO 💈	参数	65
		28.5.1	V _{DD} = 3.3V,T _A = +25℃, 除非另有说明	
	28.6	TK 电 ^左	〔特性	67
	28.7	BTM 电	1气特性	67
	28.8	WDT ∉	3气特性	67
	28.9	交	流电气特性	67
	28.10	ΑĽ	OC 电气特性	67
	28.11	CI	MP 电气特性	68
	28.12	. OF	P 电气参数	68
29	封	装信息		70
30	版	本记录		72
31	声	明		73

3 管脚定义

3.1 管脚配置图

64PIN 管脚配置图 适用于 LQFP64 封装

3.2 管脚资源列表

LQFP64	管脚名	特殊	тк	LCD/LED	ADC/PGA	CMP/PGA	OP	LEDPWM	PWM-	UART	QSPI	SPI	TWI	PWM	TxEX/Tx	CAN	INT
1	PD0	-	TK26	S33	AN15	-	-	LEDPWM33	-	-	-	-	-	-	-	-	INT00
2	PD1	-	-	-	-	-	-	-	-	-	-	-	-	T4PWMB	T4EX	-	INT01
3	PD2	-	-	-	-	-	-	-	-	-	-	-	-	T4PWMA	T4CAP/T4	-	INT02
4	PD3	NRST	TK27	S34	-	-	-	LEDPWM34	-	-	-	-	-	T7PWMA	T7CAP/T7	-	INT03
5	PD4	T_CLK	-	-	-	-	-	-	-	RxD1	-	-	-	T7PWMB	T7EX	-	INT04
6	PD5	T_DIO	-	-	-	-	-	-	-	TxD1	-	-	-	-	-	-	INT05
7	PD6	32KI	-	-	-	i	-	-	-	-	i	-	-	-	-		INT06
8	PD7	32KO	-	-	-	i	-	-	-	-	i	-	F	-	-	-	INT07
9	PD8	-	-	-	ANI16	-	-	-	PWM3	-	-	-	-	-	-	-	INT08
10	PD9	OSCI	-	-	-	-	-	-	PWM2	-	-	-	-	-	-	-	INT09
11	PD10	osco	-	-	-	-	-	-	PWM1	-	-	-	-	-	-	-	INT10
12	PD11	-	Cmod	-	ANI17	-	-	-	PWM0	-	-	-	-	-	-	-	INT11
13	DVSS ¹	Power	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
14	AVSS ¹	Power	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
15	AVDD ¹	Power	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
16	DVDD ¹	Power	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
17	PA0	-	-	-	-	CMPR	-	-	-	RxD5	-	SCK2	SCL2	-	-	-	INT00
18	PA1	-	-	-	-	CMP3	OP_N	-	-	TxD5	-	MOSI2	SDA2	-	-	-	INT01
19	PA2	-	TK28	-	-	CMP2	OP_P0	-	-	(TxD0)	-	MISO2/SCK3	SCL3	-	-	-	INT02
20	PA3	-	TK29	-	-	CMP1	OP_P1	-	-	(RxD0)	-	MOSI3	SDA3	-	-	-	INT03
21	PA4	-	TK30	-	-	CMP0	OP_O	-	-	-	-	MISO3	-	T3PWMA	T3CAP/T3	-	INT04
22	PA5	-	-	-	-	-	-	-	-	(TxD2)	-	-	-	-	-	-	INT05
23	PA6	-	-	-	-	-	-	-	-	(RxD2)	-	-	-	-	-	-	INT06
24	PA7	-	TK31	-	-	-	-	-	-	-	-	(SCK3A)	(SCL3A)	-	-	-	INT07
25	PA8	-	-	C7	-	-	-	LEDPWM35	-	-	-	(MOSI3A)	(SDA3A)	-	-	-	INT08
26	PA9	-	-	C6	-	-	-	LEDPWM36	PWM4	-	-	(MISO3A)	-	-	-	-	INT09
27	PA10	-	-	C5	-	-	-	LEDPWM37	PWM5	-	-	(MISO2A)	-	-	-	-	INT10
28	PA11	-	-	C4	-	-	-	LEDPWM38	PWM6	-	-	(MOSI2A)	(SDA2A)	-	-	-	INT11

Page 13 of 73 V0.1

29	PA12	,	TK0	C3/S0	-	1	-	LEDPWM0	PWM7	-	i	(SCK2A)	(SCL2A)	T6PWMB	T6EX	-	INT12
30	PA13	-	-	-	-	-	-	-	-	(RxD5)	-	-	-	T6PWMA	T6CAP/T6	-	INT13
31	PA14	-	-	-	-	-	-	-	-	(TxD5)	-	-	-	T5PWMA	T5CAP/T5	-	INT14
32	PA15	-	TK1	C2/S1	-	-	-	LEDPWM1	-	-	QSPI1CLK	SCK1	SCL1	T5PWMB	T5EX	-	INT15
33	PB0	-	TK2	C1/S2	-	-	-	LEDPWM2	-	-	QSPI1IO0	MOSI1	SDA1	-	-	-	INT00
34	PB1	1	TK3	C0/S3	-	1	-	LEDPWM3	-	-	QSPI1IO1	MISO1	-	-	-	-	INT01
35	PB2	1	-	S4	-	1	-	LEDPWM4	-	-	i	-	-	-	-	-	INT02
36	PB3	1	-	S5	-	1	-	LEDPWM5	-	-	i	-	-	-	-	-	INT03
37	PB4	-	-	S6	-	-	-	LEDPWM6	-	-	-	-	-	-	-	-	INT04
38	PB5	1	-	S7	-	1	-	LEDPWM7	-	-	i	(SCK3B)	(SCL3B)	T3PWMB	T3EX	-	INT05
39	PB6	-	TK4	S8	-	-	-	LEDPWM8	-	TxD4	QSPI1IO2	(MOSI3B)	(SDA3B)	T2PWMA	T2CAP/T2	-	INT06
40	PB7	-	TK5	S9	-	-	-	LEDPWM9	-	RxD4	QSPI1IO3	(MISO3B)	-	T1PWMA	T1CAP/T1	-	INT07
41	PB8	,	TK6	S10	-	1	-	LEDPWM10	-	-	QSPI0CLK	SCK0	SCL0	(T2PWMA)	(T2CAP/T2)	-	INT08
42	PB9	-	TK7	S11	-	-	-	LEDPWM11	-	RxD2	QSPI0IO0	MOSI0/(SCK2B)	SDA0/(SCL2B)	(T3PWMA)	(T3CAP/T3)	-	INT09
43	PB10	-	TK8	S12	-	-	-	LEDPWM12	-	TxD2	QSPI0IO1	MSIO0/(MOSI2B)	(SDA2B)	(T4PWMA)	(T4CAP/T4)	-	INT10
44	PB11	-	TK9	S13	-	-	-	LEDPWM13	-	TxD0	QSPI0IO2	(MISO2B)/(MISO3C)	-	(T5PWMA)	(T5CAP/T5)	-	INT11
45	PB12	-	TK10	S14	-	-	-	LEDPWM14	-	RxD0	QSPI0IO3	(MOSI3C)	(SDA3C)	(T6PWMA)	(T6CAP/T6)	-	INT12
46	PB13	-	TK11	S15	-	-	-	LEDPWM15	FLT	-	-	(SCK3C)	(SCL3C)	(T7PWMA)	(T7CAP/T7)	-	INT13
47	PB14	-	TK12	S16	-	-	-	LEDPWM16	-	-	-	-	-	-	-	-	INT14
48	PB15	-	TK13	S17	ANI0	-	-	LEDPWM17	-	-	-	-	-	-	-	-	INT15
49	PC0	-	TK14	S18	ANI1	-	-	LEDPWM18	-	-	-	-	-	-	-	-	INT00
50	PC1	-	TK15	S19	ANI2	-	-	LEDPWM19	-	-	-	-	-	-	-	-	INT01
51	PC2	-	TK16	S20	ANI3	-	-	LEDPWM20	-	-	-	-	-	-	-	-	INT02
52	PC3	-	TK17	S21	ANI4	-	-	LEDPWM21	-	(RxD4)	-	-	-	-	-	-	INT03
53	PC4	-	TK18	S22	ANI5	-	-	LEDPWM22	-	(TxD4)	-	-	-	-	-	-	INT04
54	PC5	-	TK19	S23	ANI6	-	-	LEDPWM23	-	(RxD3)	-	-	-	-	-	-	INT05
55	PC6	-	TK20	S24	ANI7	-	-	LEDPWM24	-	(TxD3)	-	-	-	-	-	CAN_RX	INT06
56	PC7	-	TK21	S25	ANI8	•	-	LEDPWM25	-	-	-	-	-	-	-	CAN_TX	INT07
57	PC8	-	TK22	S26	ANI9	-	-	LEDPWM26	-	-	-	-	-	-	-	-	INT08
58	PC9	-	-	S27	ANI10	-	-	LEDPWM27	-	-	-	(SCK2C)	(SCL2C)	-	-	-	INT09
59	PC10	-	-	S28	ANI11	-	-	LEDPWM28	-	(RxD1)	-	(MOSI2C)	(SDA2C)	-	-	-	INT10
60	PC11	-	-	S29	ANI12	-	-	LEDPWM29	-	(TxD1)	-	(MISO2C)	-	-	-	-	INT11

Page 14 of 73 V0.1

61	PC12	-	TK23	S30	-	-	-	LEDPWM30	-	RxD3	-	-	-	T2PWMB	T2EX	-	INT12
62	PC13	1	TK24	S31	-	-	-	LEDPWM31	-	TxD3	1	-	-	T0PWMA	T0CAP/T0	1	INT13
63	PC14	-	-	-	ANI13	-	-	-	-	-	-	-	-	T1PWMB	T1EX	-	INT14
64	PC15	-	TK25	S32	ANI14	-	-	LEDPWM32	-	-	-	-	-	T0PWMB	T0EX	-	INT15

注:

1.DVSS: Power 数字地、DVDD: Power 数字电源; AVSS: Power 模拟地、AVDD: Power 模拟电源;

Page 15 of 73 V0.1

4 资源框图

5 存储

5.1 概述

程序存储器、数据存储器、寄存器排列在同一个线性(即地址连续)的 4 GB 地址空间内。各字节按小端格式在存储器中编码。字中编号最低的字节被视为该字的最低有效字节,而编号最高的字节被视为最高有效字节。可寻址的存储空间分为 8 个主要块,每个块为 512 MB。

5.2 存储框图

5.3 特性

- 存储 Flash 位宽为 32 bits,可反复写入 10 万次
- 常温下数据保存时间为 100 年以上。
- Flash 的组成结构如下:
 - 最大 256 Kbytes APROM (主存储区)
 - 4 Kbytes LDROM (系统存储区)
 - 2 Kbytes 用户存储区(类 EEPROM)
 - 32 Kbytes Internal SRAM, 支持奇偶校验功能
 - 96 bits Unique ID

5.4 APROM(主存储区)

- SC32R803 系列的主存储区(APROM)有 256 Kbytes
- 扇区 (sector) 大小: 512 bytes
- 支持:读/写/扇区擦除/全擦除/查空
- CPU (Cortex®-M0+) 通过 AHB 总线访问 Flash
- 程序默认从主存储区启动,用户可通过 customer option OP_BL[1:0]选择程序从 SRAM/LDROM 等其它 区域启动
- 读保护:即读取加密,读保护开启后,仅可从主存储区启动运行的程序可以读取主存储区信息,其它区域启动或第三方工具无法获取主存储区信息
- 写保护:提供两段硬件写保护区域,写保护区域中禁止 IAP 操作,用户可以根据实际需求以扇区为单位设定两段写保护区域的范围

256 Kbytes 的 Flash ROM 分为 512 个扇区(sector),每个 sector 为 512 bytes,烧录时目标地址所属的 Sector 都会被烧写器强制擦除,再写入数据,用户写操作时,必须先擦除,再写入数据。

SC32R803 系列 256 Kbytes Flash ROM Sector 分区示意

5.5 2 Kbytes 用户存储区域(类 EEPROM)

2K bytes 独立 EEPROM 区域地址为 0x08E0_0000 H~ 0x08E0_07FF H,由 IAPADE 寄存器设定。独立 EEPROM可反复写入10万次,常温下数据保存时间为100年以上。独立EEPROM支持查空、编程、校验、擦除和读取功能。

EEPROM 共有 4 个扇区(sector),每个 sector 为 512 bytes:

512 bytes	08E0 _07FF H
512 bytes	08E0_05FF H
512 bytes	08E0_03FF H
512 bytes	08E0_01FF H
	08E0_0000 H

EEPROM Sector 分区示意

注意: EEPROM 擦写次数为 10 万次,用户擦写不要超过 EEPROM 的额定烧写次数,否则会出现异常!

5.6 4 Kbytes LDROM (系统存储区)

- 系统存储区为 4 Kbytes LDROM, 出厂固化 ISP 程序, 该区域用户无法改写也无法访问
- 用户可通过 customer option OP_BL[1:0] 选择从 LDROM 区域启动
- 嵌入式自举程序: 固化的 ISP 程序,该指令公开,可以利用该程序通过 UART 更新程序 Flash。程序执行会等待升级命令,在 500ms 内未来接收到更新指令,则跳转到主存储区执行(0X0800 0000)

5.6.1 BootLoader

支持硬件和软件两种 BootLoad 方式:

- 软件做法:直接软件划分 BootLoad 和 APP 区域,通过修改 VTOR 可轻易实现 BootLoad、APP 中断共用,各区大小可随意裁切:
- 硬件做法: 4 Kbytes 固定"系统存储器"为专用 BootLoader 区域,用户不可读写:
 - 系统存储区作为一个固化的 BootLoader 空间,其中的程序是出厂前烧录好,用户不可读写。
 - 嵌入式自举程序:嵌入式自举程序位于系统存储器中,在生产阶段编程。固化的 ISP 程序,该指令公开,可以利用该程序通过 UART 重新编程 Flash。

5.7 SRAM

- Internal SRAM: 32 Kbytes, 地址 0x2000 0000 ~ 0x2000 7FFF
- 支持奇偶校验:
 - 额外的 4 Kbytes RAM 用于奇偶校验: 即 SRAM 数据总线宽度为 36 位,其中有 4 位用于奇偶校验 (每字节 1 位)
 - 奇偶校验位在写入 SRAM 时进行计算和保存,在读取时自动进行校验。如果某一位失败,则将生成 NMI

- 提供独立的 SRAM 奇偶校验错误标志 SRAMPEIF。
- 注意: 当启用 SRAM 奇偶校验时,建议在代码开始处使用软件初始化整个 SRAM,以免在读取非初始化位置时出现奇偶校验错误。
- 用户可通过 customer option OP_BL[1:0]选择程序从 SRAM 启动
- 能够以最大系统时钟频率按字节、半字(16 位)或全字(32 位)访问,无等待状态,因此可由 CPU 和 DMA 访问。

5.8 启动区域选择(自举)

复位后,用户可自行设置所需的自举模式配置。

退出待机模式后,还可以对启动模式配置进行重新采样。该启动延迟结束后,CPU 将从地址 0x0000 0000 获取栈顶值,然后从始于 0x0000 0004 的自举存储器开始执行代码。

自举区域选择有三种: 主存储区、系统存储区和 SRAM,详细描述如下:

5.8.1 从主存储区自举

主存储区在自举存储器空间 (0x0000 0000) 中有别名,但也可从它原来的存储器空间 (0x0800 0000) 访问。换句话说:程序可从地址 0x0000 0000 或 0x0800 0000 开始访问。

5.8.2 从系统存储器自举

- 系统存储区(4 Kbytes 独立 LDROM)作为一个固化的 BootLoader 空间,其中的程序是出厂前烧录好,用户不可读写。
- 嵌入式自举程序: 嵌入式自举程序位于系统存储器中,在生产阶段编程。固化的 ISP 程序,该指令公开,可以利用该程序通过各类通讯接口(UART、TWI 和 SPI)重新编程 Flash。

5.8.3 从嵌入式 SRAM 白举

SRAM 在自举存储器空间 (0x0000 0000) 中有别名,但也可从它原来的存储器空间 (0x2000 0000) 访问。

5.8.4 自举模式设置

通过寄存器控制位 BTLD[1:0]配合软件复位 RST 控制位可实现三种自举模式,BTLD 和 RST 受 IAP_KEY 保护:

- (1) 设置 BTLD[1:0]=0x00, 芯片软件复位后从主存储区(APROM) 启动
- ② 设置 BTLD[1:0]=0x01, 芯片软件复位后从系统存储区(LDROM)启动
- ③ 设置 BTLD[1:0]=0x10, 芯片软件复位后从嵌入式 SRAM 启动

通过 customer option 项 OP_BL[1:0]实现芯片上电初始启动区域选择:

- (4) 在 customer option 中设置 OP BL[1:0]=0x00, 芯片复位后从主存储区(APROM)启动
- (5) 在 customer option 中设置 OP_BL[1:0]=0x01, 芯片复位后从系统存储区(LDROM)启动
- ⑥ 在 customer option 中设置 OP BL[1:0]=0x10,芯片复位后从嵌入式 SRAM 启动

5.8.5 96 bits Unique ID

SC32R803 提供了一个独立的 Unique ID 区域,出厂前会预烧一个 96 bits 的唯一码,用以确保该芯片的唯一性。用户获得序列号的唯一方式是通过 IAP 指令读取。

5.9 User ID 区域

User ID 区域,出厂时写入用户定制 ID,用户可对其进行读操作,但禁止对 User ID 区域进行写操作。

5.10 编程

SC32R803 的 Flash 通过 T_DIO、T_CLK、VDD、VSS 来进行编程,具体连接关系如下:

ICP 模式 Flash Writer 编程连接示意图

T_DIO、T_CLK 是 2 线 JTAG 烧写和仿真的信号线,用户在烧录时可通过 Customer Option 项配置这两端口的模式: JTAG 专用模式和常规模式(JTAG 专用口无效)。

5.11 JTAG 专用模式

JTAG 专用模式下,T_DIO、T_CLK 为烧写仿真专用口,与之复用的其它功能不可用。此模式一般用于在线调试阶段,方便用户仿真调试; JTAG 专用模式生效后,芯片无需重新上下电即可直接进入烧录或仿真模式。

5.12 常规模式(JTAG 专用口无效)

常规模式下,JTAG 功能不可用,端口上与之复用的其它功能可正常使用。此模式可防止烧录口占用 MCU 管脚,方便用户最大化利用 MCU 资源。

注意: 当 JTAG 专用口无效的配置设定成功后,芯片必须彻底下电再重新上电后才能进入烧录或仿真模式,这样就会影响到带电模式下的烧录和仿真。赛元建议用户在量产烧录时选择 JTAG 专用口无效的配置,在研发调试阶段选择 JTAG 模式。

相关 Customer Option 如下:

寄存器	读/写	说明	复位值
OPT_CON1	读/写	Customer Option 映射寄存器 1	0x0000_0000

ſ	7	6	5	4	3	2	1	0
	ENWDT	DISJTG	DISRST		-	-	OP_BL[1:0]	

位编号	位符号	说明				
	DISJTG	JTAG 口切换控制位 0: JTAG 模式使能,对应管脚只能作为 T_CLK/ T_DIO 使用 1: 常规模式(Normal),JTAG 功能无效				

5.13 安全加密

SC32R803 系列的安全加密功能主要是对 APROM 进行读保护加密:用户可在烧录阶段通过赛元专用烧录套件的烧录上位机的 customer option 项配置读保护加密功能,选择是否开启 flash 读保护,进入加密模式:

- 芯片默认出厂时 flash 为非加密状态
- 读保护加密功能无映射寄存器,用户只能在烧录阶段通过赛元专用烧录套件的烧录上位机的 customer option 项配置,必须经过烧录才能完成修改。
- 加密失能:可对主存储区执行读取、编程和擦除操作。也可对选项字节和备份寄存器进行所有操作。
- 加密使能:
 - 主存储区启动:在用户模式下执行的代码(从用户 APROM 自举)可对主存储区执行所有操作。
 - 调试、从 SRAM 启动以及从系统存储区启动:在调试模式下或当代码从 SRAM 或 系统存储区启动时,主存储区完全不可访问。
- 取消加密使能必须先对主存储区进行全擦操作。

5.13.1 安全加密操作权限

	解锁状态				读保护加密状态					
启动区域/工具	读	写	块擦	全擦	操作写保 护区域	读	写	块擦	全擦	操作写保 护区域
从 APROM 自举	√	\checkmark	\checkmark	\	禁止	\checkmark	\checkmark	\checkmark	\	禁止
调试/从 SRAM 自举	√	$\sqrt{}$	V	√	禁止	禁止	禁止	禁止	禁止	禁止
从系统存储区自举	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		禁止	禁止	禁止	√	禁止

5.14 In Application Programming (IAP)

SC32R803 的 APROM 中的 IAP 区域可进行 In Application Programming (IAP)操作,用户可以通过 IAP 操作 实现远程程序更新,也可以通过 IAP 读操作获取 Unique ID 区域或 User ID 区域信息。进行 IAP 写数据操作前,用户必须对目标地址所属的 Sector 进行扇区擦除操作。

芯片默认出厂时 APROM 允许全局 IAP操作。芯片内部提供两组 flash 写保护区域,按照扇区单位设置起始,被保护的区域禁止 IAP操作,设置规则如下:

IAPPORx 寄存器值(x=A 或 B)	IAPPOR 保护区域
IAPPORx_ST = IAPPORx_ED	扇区 IAPPORx
IAPPORx_ST > IAPPORx_ED	无 (不受保护)
IAPPORx_ST < IAPPORx_ED	从 IAPPORx_ST 到 IAPPORx_ED 的扇区

用户在烧录时可通过 Customer Option 项里的"Flash sectors protection"配置这两段 APROM 写保护区域。

5.14.1 IAP 操作相关寄存器

对写保护区域之外的 APROM 进行 IAP 操作,可通过以下寄存器实现:

5.14.1.1 数据保护寄存器 IAP_KEY

寄存器	读/写	说明	复位值
IAP_KEY	读/写	数据保护寄存器	0x0000_0000

31	30	29	28	27	26	25	24			
	IAPKEY[31:24]									
23	22	21	20	19	18	17	16			
	IAPKEY[23:16]									
15	14	13	12	11	10	9	8			
	IAPKEY[15:8]									
7	6	5	4	3	2	1	0			
IAPKEY[7:0]										

位编号	位符号	说明
31~0	IAPKEY[31:0]	数据保护锁 为防止因电气干扰等原因出现对 Flash 的意外操作,IAP_CON 寄存器 执行写操作前需要通过 IAPKEY 解锁。解锁顺序如下: 1. 写入 KEY1 = 0x1234_5678 2. 写入 KEY2 = 0xA05F_05FA 如果操作顺序不正确,会锁定 IAP_CON 寄存器,直到下次系统复位才会解锁。

5.14.1.2 IAP 扇区编号设置寄存器 IAP_SNB

寄存器	读/写	说明	复位值
IAP_SNB	读/写	IAP扇区编号设置寄存器	0x0000_0000

31	30	29	28	27	26	25	24				
	IAPADE[7:0]										
23	22	21	20	19	18	17	16				
-	-	-	-	-	-	-	-				
15	14	13	12	11	10	9	8				
-	-	-	-	-	•	-	IAPSNB[8]				
7	6	5	4	3	2	1	0				
	IAPSNB[7:0]										

位编号	位符号	说明
31~24	IAPADE[7:0]	IAP 操作区域扩展地址 通过向 IAPADE 写入不同的值,使得 IAP 操作指向不同的操作区域: 0x00: 无效 0x4C: APROM 0x69: EEPROM 0xF1: customer option 其他: 保留
8~0	IAPSNB[8:0]	扇擦/页擦时的 IAP 操作扇区编号设置: 实际操作扇区的起始地址= Flash 基址 + [IAPSNB[8:0] x 0x200]
23~9	-	保留

5.14.1.3 IAP 控制寄存器 IAP_CON (写保护)

*该寄存器受写保护,必须操作数据保护寄存器 IAP_KEY 才能修改。

寄存器	读/写	说明	复位值
IAP_CON	读/写	IAP 控制寄存器	0x0000_0000

31	30	29	28	27	26	25	24
LOCK	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	BTL	D[1:0]	RST
7	6	5	4	3	2	1	0
ERASE	-	SERASE	PRG	-	-	CME	[1:0]

位编号	位符号	说明
31	LOCK	对该位写 1 后,IAP_CON 寄存器被锁定。当检测到解锁序列时,由硬件将该位清 0。 如果解锁操作失败,该位仍保持置 1,直到下一次系统复位。
10~9	BTLD[1:0]	软件复位后程序启动区域选择位: 00: 芯片软件复位后从 APROM(主存储区)启动 01: 芯片软件复位后从 LDROM(系统存储区)启动 10: 芯片软件复位后从嵌入式 SRAM 启动 11: 保留
8	RST	软件复位控制位0:程序正常运行1:对该位写 1 后系统立刻复位
7	ERASE	全擦(All Erase) 控制位 0: 无操作 1: 对该位写 1 后再配置 CMD[1:0]=10,则进入 APROM 全擦除操作,APROM 将全部擦除
5	SERASE	扇区擦除(Sector Erase)控制位 0:无操作 1:对该位写 1 后再配置 CMD[1:0]=10,则进入 APROM 扇区擦除操 作,APROM 的指定 Sector 将被擦除
4	PRG	编程(Program)控制位 0: 禁止 Flash 编程 1: 使能 Flash 编程
1~0	CMD[1:0]	IAP 命令使能控制位 10: 执行擦除操作命令 其它:保留 注意: 1. 擦除操作命令位写 1 后,必须配置 CMD[1:0]=10,相应的操作才会 开始执行 2. 一次只能执行 1 种 IAP 操作,所以 ERASE/SERASE 位同一时间只 能有一位置 1
30~11 6 3~2	-	保留

5.14.1.4 IAP 寄存器映射

寄存器	偏移地址	读/写	说明	复位值
IAP 基地址: 0x400				
IAP_KEY	0x00	读/写	数据保护寄存器	0x0000_0000
IAP_SNB	0x04	读/写	IAP扇区编号设置寄存器	0x0000_0000
IAP_CON	0x0C	读/写	IAP 控制寄存器	0x0000_0000

5.15 选项字节区域(Customer Option)

SC32R803 有单独的一块 Flash 区域用于保存客户的上电初始值设置,此区域称为选项字节区域(Customer Option)区域。户在烧录时可通过上位机对 Customer Option 项进行配置,在烧写过程中将配置值写入 Customer Option 区域,IC 在复位初始化阶段将调用 Customer Option 数据作为初始设置。

也可通过操作 Customer Option 的映射寄存器临时修改 Customer Option 项,但是需要注意:修改映射寄存器仅可实现临时调整,不会对 Customer Option 区域的设置值造成任何影响,芯片复位后,仍会根据烧录时用户选择的 Customer Option 参数进行初始化。

Customer Option 相关映射寄存器的操作方式如下:

Customer Option 相关 SFR 的读写操作由 OPINX 和 OPREG 两个寄存器进行控制,各 Customer Option SFR 的具体位置由 OPINX 确定,如下表所示:

寄存器	地址	说明	复位值
OPINX	0x4000_03F8	Customer Option 指针	0x0000_0000
OPREG	0x4000_03FC	Customer Option 寄存器	0x0000_0000
OPT_CON0	0XC1 @ OPINX	Customer Option 映射寄存器 0	0x0000_0000
OPT_CON1	0XC2 @ OPINX	Customer Option 映射寄存器 1	0x0000_0000

5.15.1 Customer Option 的映射寄存器

使用 OPINX 配合 OPREG 改写 IFB 映射寄存器之前,应先要打开 Customer Option 寄存器的时钟使能开关 AHB_CFG.IFBEN:

7只 口口

5.15.1.1 AHB 总线外设时钟使能寄存器 AHB_CFG

)去*/官*

中土皿

	上	陕/与		见 明		支 型狙	
AHB_CFG		读/写	AHB总线外设时钟使能寄存器			0x0020_0000	
21	20	20	20	27	26	25	24

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	CLKDIV[2:0]			-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	CANEN	-	IFBEN	CRCEN	DMAEN

位编号	位符号	说明
-----	-----	----

2	IFBEN	Customer Option 映射寄存器时钟使能位使用 OPINX 配合 OPREG 改写 IFB 映射寄存器之前,应先要打开时钟使能。 0: 禁止
		1: 使能

5.15.1.2 Customer Option 映射寄存器 0 OPT_CON0

寄存器	地址	说明	复位值
OPT_CON0	读/写	Customer Option 映射寄存器 0	0x0000_0000

7	6	5	4	3	2	1	0
-	-	-	-	-	DISLVR	-	LVRS

位编号	位符号	说明
2	DISLVR	LVR 开关 0: LVR 有效 1: LVR 无效
0	LVRS	LVR 电压选择控制 1: 2.9V 复位 0: 1.7V 复位
7~3, 1	-	保留

5.15.1.3 Customer Option 映射寄存器 1 OPT_CON1

寄存器	读/写	说明	复位值
OPT_CON1	读/写	Customer Option 映射寄存器 1	0x0000_0000

7	6	5	4	3	2	1	0
ENWDT	DISJTG	DISRST	-	-	-	OP B	L[1:0]

位编号	位符号	说明
7	ENWDT	WDT 开关 1: WDT 开始工作 0: WDT 关闭
6	DISJTG	JTAG 口切换控制位 0: JTAG 模式使能,对应管脚只能作为 T_CLK/ T_DIO 使用 1: 常规模式(Normal), JTAG 功能无效
5	DISRST	复位信号口切换控制位 该位只读,用户不可改写。 0: RST 对应管脚当复位脚使用 1: RST 所在管脚做正常的 GPIO 管脚使用
1~0	OP_BL[1:0]	芯片复位后启动区域选择 该位只读,用户不可改写。 00: 芯片复位后从 APROM(主存储区)启动 01: 芯片复位后从 LDROM(系统存储区)启动 10: 芯片复位后从嵌入式 SRAM 启动 11: 保留
4~3	-	保留

6 上电、复位和时钟控制(RCC)

6.1 上电过程

SC32R803上电后,在客户端软件执行前,会经过以下三个阶段:

- 复位阶段;
- ② 调入信息阶段;
- 3) 正常操作阶段。

6.1.1 复位阶段

复位阶段是指 SC32R803 会一直处于复位的情况,直到供应给 SC32R803 的电压高过某一电压,内部才开始有效的 Clock。复位阶段的时间长短和外部电源的上升速度有关,外部电源达到内建 POR 电压后,复位阶段才会完成。

6.1.2 调入信息阶段

在 SC32R803 内部有一个预热计数器。在复位阶段期间,此预热计数器一直被清为 0,直到电压过了 POR 电压后,内部 HIRC 振荡器开始起振,该预热计数器开始计数。当内部的预热计数器计数到一定数目后,每隔一定数量 HIRC clock 就会从 Flash ROM 中的 IFB(包含 Customer Option)读取数据存放到内部系统寄存器中。直到预热完成后,该复位信号才会结束。

6.1.3 正常操作阶段

结束调入信息阶段后,SC32R803 开始从 Flash 中读取指令代码即进入正常操作阶段。这时的 LVR 电压值是用户写入 Customer Option 的设置值。

6.2 复位

SC32R803 有 5 种复位方式, 前四种为硬件复位:

- ① 外部 **RST** 复位
- ② 低电压复位 LVR
- ③ 上电复位 POR
- ④ 看门狗 WDT 复位
- ⑤ 软件复位

SC32R803 的复位部分电路结构图如下:

SC32R803 复位电路图

6.2.1 复位后的启动区域

外部 RST 复位、低电压复位 LVR、上电复位 POR、看门狗 WDT 这四种硬件复位后,芯片从用户 OP_BL 设定的启动区域(APROM / LDROM / SRAM)启动。

软件复位后,芯片根据 BTLD[1:0]设定的启动区域(APROM / LDROM / SRAM)启动。

SC32R803 复位后启动区域切换示意图

6.2.2 外部 RST 复位

外部 RST 复位就是从外部 RST 给 SC32R803 一定宽度的低电平复位脉冲信号,来实现 SC32R803 的复位。 用户在烧录程序前可通过烧录上位机软件配置 Customer Option 项将 PD3 / NRST 管脚配置为 RST (复位脚) 使用。

6.2.3 低电压复位 LVR

SC32R803 内建了一个低电压复位电路。而复位的门限电压有 2 种选择: 2.9V、1.7V,缺省值是用户烧录时选择的 Customer Option 值。当 VDD 电压小于低电压复位的门限电压,且持续时间大于 T_{LVR} 时,会产生复位。其中,T_{LVR} 是 LVR 的消抖时间,约 30µs。

6.2.4 上电复位 POR

SC32R803 内部有上电复位电路,当电源电压 VDD 达到 POR 复位电压时,系统自动复位。

6.2.5 看门狗复位 WDT

SC32R803 有一个 WDT, 其时钟源为内部的 32kHz 振荡器。用户可以通过编程器的 Customer Option 选择是否开启看门狗复位功能。

6.2.6 软件复位

SC32R803提供软件复位功能,用户可以通过对RST(IAP_CON.8)位写1后,使得系统立刻复位。

6.2.7 复位初始状态

当 SC32R803 处于复位状态时,多数寄存器会回到其初始状态。看门狗 WDT 处于关闭的状态。"热启动"的 Reset(如 WDT、LVR、软件复位等)不会影响到 SRAM,SRAM 值始终是复位前的值。SRAM 内容的丢失会发生在电源电压低到 RAM 无法保存为止。

6.3 时钟

6.3.1 系统时钟源

四种不同的时钟源可被用来驱动系统时钟 SYSCLK:

- 内建高频 64MHz 振荡器(HIRC),上电默认时钟
- 外接高频晶振(HXT)
- 内建低频 32kHz 振荡器 (LIRC)
- 外接低频晶振(LXT)

注意:

上电默认的系统时钟源为 HIRC,上电默认的系统时钟频率为 f_{HIRC}/2,用户可在上电后的正常操作阶段,通过软件方式切换时钟源。切换前务必确保所选时钟源已处于稳定的工作状态:

系统时钟源无论选择切换至哪一种,都必须先将系统时钟源切换至 HIRC,再切换至目标时钟源。

6.3.2 总线

用户可通过多个预分频器配置 AHB、APB0、APB1、APB2 域的频率。

- HCLK: AHB域主时钟,最大频率是64MHz,包括Cortex®-M0+内核、内存、DMA等都由HCLK驱动。
- PCLK0: APB0 域主时钟,最大频率是 HCLK 的频率, APB0 总线上的外设都由 PCLK0 驱动;
- PCLK1: APB1 域主时钟,最大频率是 HCLK 的频率, APB1 总线上的外设都由 PCLK1 驱动;
- PCLK2: APB2 域主时钟,最大频率是 HCLK 的频率, APB2 总线上的外设都由 PCLK2 驱动;

RCC 通过 AHB 时钟(HCLK)8 分频后作为 SysTick 的外部时钟。通过对 SysTick 控制与状态寄存器的设置,可选择上述时钟或内核时钟作为 SysTick 时钟源。

6.3.3 时钟及总线分配框图

6.4 RCC 中断

配合停振检测机制, SC32R803 的时钟源提供一个用户可配置的 RCC 中断: 当系统时钟源为 HXT 时,如果检测到时钟源存在异常,将置起停振检测中断标志,如果此时对应的中断已使能,将产生停振检测中断。

6.5 内建高频 64MHz 振荡器 (HIRC)

- 可作为系统运行时钟
- 系统上电默认时钟频率 fsys 为 fнIRC/2
- 频率误差: 跨越 (1.8V~3.6V) 及 (-40~105°C) 应用环境, 不超过 ±1%
- 可通过 32.768kHz 外接晶振进行自动校准,校准后 HIRC 精度可无限接近外接 32.768kHz 晶振的精度

6.6 内置高频晶体振荡器电路(HXT)

- 可作为系统运行时钟
- 可外接 2~16MHz 高频振荡器

6.7 内建低频 32kHz 振荡器 (LIRC)

- 可作为系统运行时钟
- 可作为 LCD/LED 模块的时钟源
- 可作为 Base Timer 及 WDT 的时钟源
- 频率误差: 跨越 (1.8~3.6V) 及 (-20~85°C) 应用环境, 经寄存器修正后频率误差不超过 ±4%

6.8 内置低频振荡电路(LXT)

- 可作为系统运行时钟
- 可作为 Base Timer 时钟源
- 可作为 LCD/LED 模块的时钟源
- 可外接 32.768kHz 低频振荡器
- 可通过 LXT 对 HIRC 进行自动校准

7 中断

- M0+内核最多提供 32 个中断源,中断号为 0~31, SC32R803 系列共 28 个中断源
- 四级中断优先级可设,中断优先级通过内核寄存器组 Interrupt priority registers 设置

7.1 外部中断 INTO~15

外部中断有 16 个中断源,共占用 4 个中断向量,这 16 个外部中断源,全部可设上升沿、下降沿、双沿中断,经设置后可覆盖到所有的 GPIO 管脚,软件置起相应中断标志位(RIF/FIF 置 1),可触发进入相应的中断。

SC32R803 系列外部中断特性如下:

- 16 个 INT 中断源,共占用 4 个中断向量
- INT 经切换设置后可覆盖到所有的 GPIO 管脚
- 全部可设上升沿、下降沿、双沿中断,且均有独立对应中断标志位
- 软件置起相应中断标志位,可触发进入相应的中断

注意: 切换 INT 功能时,用户需手动将 INTn(n=0~15)所在的 GPIO 端口设置为输入带上拉状态,端口输出状态下检测不到外部中断。

7.2 中断与事件

- NVIC 关闭,中断请求屏蔽位开启,可产生事件,不产生中断
- NVIC 开启后,中断请求屏蔽位做模块内的总中断开关

7.3 中断向量表

中断向量号	中断号	优先级	中断向量地址	中断源	内核/NVIC 使能 位	中斯请求屏蔽位	中断子开关	中断标志位	唤醒 stop	
0	-	-	0x0000_000 0	-		-	\	'	能	
1	-	固定	0x0000_000 4	RESET	PRIMASK	SCB	\	\	能	
2	-	固定	0x0000_000 8	NMI_Handler		SCB	\	\	能	
3	-	固定	0x0000_000 C	HardFault_Handl er	PRIMASK	SCB	\	\	能	
4~10	-	-	0x0000_001 0 - 0x0000_002 8	-		-	\	\	能	
11	-	可设		SVC_Handler	PRIMASK	SCB	\	\	能	
12~13	-	-	0x0000_003 0 0x0000_003 4	-		-	\	\	能	
14	-	可设	0x0000_003 8	PendSV_Handler	PRIMASK	SCB	\	1	能	
15	-	可设	0x0000_003 C	SysTick_Handler	PRIMASK	SysTick_CTRL	\	\	不能	
16	0	可设	0x0000_004 0	INT0	NVIC->ISER[0].0	INTF_IE->ENFx, x=0 INTR_IE->ENRx	\	INTF_STS->FIFX INTR_STS->RIFX	能	
17	1	可设	0x0000_004 4	INT1-7	NVIC->ISER[0].1	INTF_IE->ENFx, x=1~7 INTR_IE->ENRx	\	INTF_STS->FIFX INTR_STS->RIFX	能	
18	2	可设	0x0000_004 8	INT8-11	NVIC->ISER[0].2	INTF_IE->ENFx, x=8~11 INTR IE->ENRx	\	INTF_STS->FIFX INTR_STS->RIFX	能	
19	3	可设	0x0000_004 C	INT12-15	NVIC->ISER[0].3	INTF_IE->ENFX, x=12~15 INTR_IE->ENRX	\	INTF_STS->FIFX INTR_STS->RIFX	能	
20	4	可设	0x0000_005 0	RCC 停振检测	NVIC->ISER[0].4	RCC_CFG->INTEN	\	RCC_STS->CLKFIF	不能	
21	5	预留	0x0000_005 4	١	NVIC->ISER[0].5	1	\	1		
22	6	可设	0x0000_005 8	втм	NVIC->ISER[0].6	BTM_CON->INTEN	\	BTM_STS->BTMIF	能	
					UART0	NVIC->ISER[0].7	UARTO_IDE->INTEN	UART0_IDE->TXIE UART0_IDE->RXIE	UART0_STS->TXIF UART0_STS->RXIF	能
23	7	可设	0x0000_005 C	UART2/LIN	\	UART2_IDE->INTEN	UART2_IDE->TXIE UART2_IDE->RXIE UART2_IDE->BKIE UART2_IDE->SLVHEIE	UART2_STS->TXIF UART2_STS->RXIF UART2_STS->BKIF UART2_STS->SLVHEIF	不能	
				UART4	1	UART4_IDE->INTEN	UART4_IDE->TXIE UART4_IDE->RXIE	UART4_STS->TXIF UART4_STS->RXIF	能	
				UART1	NVIC->ISER[0].8	UART1_IDE->INTEN	UART1_IDE->TXIE UART1_IDE->RXIE	UART1_STS->TXIF UART1_STS->RXIF	能	
24	8	可设	0x0000_006 0	UART3	1	UART3_IDE->INTEN	UART3_IDE->TXIE UART3_IDE->RXIE	UART3_STS->TXIF UART3_STS->RXIF	能	
				UART5	1	UART5_IDE->INTEN	UART5_IDE->TXIE UART5_IDE->RXIE	UART5_STS->TXIF UART5_STS->RXIF	能	
25	9	可设	0x0000_006 4	QSPI0/SPI0/TWI0	NVIC->ISER[0].9	TWI_QSPI0_IDE->INTEN	TWI_QSPI0_IDE->QTWI E TWI_QSPI0_IDE->RXNEI E TWI_QSPI0_IDE->TBIE TWI_QSPI0_IDE->RXIE TWI_QSPI0_IDE->RXHE TWI_QSPI0_IDE->TXHIE	TWI_QSPI0_STS->QTWI F TWI_QSPI0_STS->RXNEI F TWI_QSPI0_STS->TXEIF TWI_QSPI0_STS->RXFIF TWI_QSPI0_STS->TXHIF TWI_QSPI0_STS->TXHIF	不能	
				SPI2/TWI2		TWI_SPI2_IDE->INTEN	TWI_QSPI2_IDE->TBIE	TWI_QSPI2_STS->QTWI F TWI_QSPI2_STS->TXEIF	不能	
26	10	可设	0x0000_006 8	QSPI1/SPI1/TWI1	NVIC->ISER[0].1 0	TWI_QSPI1_IDE->INTEN	TWI_QSP11_IDE->QTWI E TWI_QSP11_IDE->RXNEI E TWI_QSP11_IDE->TBIE TWI_QSP11_IDE->RXHIE TWI_QSP11_IDE->RXHIE TWI_QSP11_IDE->TXHIE	TWI_QSPI1_STS->QTWI F TWI_QSPI1_STS->RXNEI F TWI_QSPI1_STS->TXEIF TWI_QSPI1_STS->RXFIIF TWI_QSPI1_STS->RXHIF TWI_QSPI1_STS->TXHIF	不能	
				SPI3/TWI3		TWI_SPI3_IDE->INTEN	TWI_QSPI3_IDE->TBIE	TWI_QSPI3_STS->QTWI F TWI_QSPI3_STS->TXEIF	不能	
27	11	可设	0x0000_006 C	DMA0	NVIC->ISER[0].1	DMAn_CFG->INTEN	DMAn_CFG->TCIE DMAn_CFG->HTIE DMAn_CFG->TEIE	DMAn_STS->TIAEIF DMAn_STS->GIF DMAn_STS->TCIF DMAn_STS->HTIF DMAn_STS->TEIF	不能	
28	12	可设	0x0000_007 0	DMA1	NVIC->ISER[0].1	DMAn_CFG->INTEN	DMAn_CFG->TCIE DMAn_CFG->HTIE DMAn_CFG->TEIE	DMAn_STS->GIF DMAn_STS->TCIF DMAn_STS->HTIF DMAn_STS->TEIF	不能	

29	13	可设	0x0000_007 4	DMA2	NVIC->ISER[0].1	DMAn_CFG->INTEN	DMAn_CFG->TCIE DMAn_CFG->HTIE DMAn_CFG->TEIE	DMAn_STS->GIF DMAn_STS->TCIF DMAn_STS->HTIF DMAn_STS->TEIF	不能
30	14	可设	0x0000_007 8	DMA3	NVIC->ISER[0].1	DMAn_CFG->INTEN	DMAn_CFG->TCIE DMAn_CFG->HTIE DMAn_CFG->TEIE	DMAn_STS->GIF DMAn_STS->TCIF DMAn_STS->HTIF DMAn_STS->TEIF	不能
31	15	可设	0x0000_007 C	ТІМО	NVIC->ISER[0].1 5	TIM0_IDE->INTEN	TIMO_IDE->TIE TIMO_IDE->EXFIE TIMO_IDE->EXRIE	TIMO_STS->TIF TIMO_STS->EXIF TIMO_STS->EXIR	不能
32	16	可设	0x0000_008 0	TIM1	NVIC->ISER[0].1 6	TIM1_IDE->INTEN	TIM1_IDE->TIE TIM1_IDE->EXFIE TIM1_IDE->EXRIE	TIM1_STS->TIF TIM1_STS->EXIF TIM1_STS->EXIR	不能
33	17	可设	0x0000_008 4	TIM2	NVIC->ISER[0].1 7	TIM2_IDE->INTEN	TIM2_IDE->TIE TIM2_IDE->EXFIE TIM2_IDE->EXRIE	TIM2_STSSR->TIF TIM2_STS->EXIF TIM2_STS->EXIR	不能
34	18	可设	0x0000_008 8	ТІМЗ	NVIC->ISER[0].1	TIM3_IDE->INTEN	TIM3_IDE->TIE TIM3_IDE->EXFIE TIM3_IDE->EXRIE	TIM3_STS->TIF TIM3_STS->EXIF TIM3_STS->EXIR	不能
35 19	19	可设	0x0000_008	TIM4	NVIC->ISER[0].1 9	TIM4_IDE->INTEN	TIM4_IDE->TIE TIM4_IDE->EXFIE TIM4_IDE->EXRIE	TIM4_STS->TIF TIM4_STS->EXIF TIM4_STS->EXIR	不能
			C 0x0000_009	TIM5	1	TIM5_IDE->INTEN	TIM5_IDE->TIE TIM5_IDE->EXFIE TIM5_IDE->EXRIE	TIM5_STS->TIF TIM5_STS->EXIF TIM5_STS->EXIR	不能
36	20			TIM6	NVIC->ISER[0].2 0	TIM6_IDE->INTEN	TIM6_IDE->TIE TIM6_IDE->EXFIE TIM6_IDE->EXRIE	TIM6_STS->TIF TIM6_STS->EXIF TIM6_STS->EXIR	不能
36	20 可设	可以	0	ТІМ7	,	TIM7_IDE->INTEN	TIM7_IDE->TIE TIM7_IDE->EXFIE TIM7_IDE->EXRIE	TIM7_STS->TIF TIM7_STS->EXIF TIM7_STS->EXIR	不能
37	21	可设	0x0000_009 4	PWM0	NVIC->ISER[0].2	PWM0_CON->INTEN	\	PWM0_STS>PWMIF	不能
38	22	可设	0x0000_009 8	PWM1	NVIC->ISER[0].2	PWM1_CON->INTEN	\	PWM1_STS>PWMIF	不能
39	23	可设	0x0000_009 C	TWIO	NVIC->ISER[0].2	TWI0_IDE->INTEN	١	TWI0_STS->TWIF	不能
40	24	可设	0x0000_00A 0	TWI1	NVIC->ISER[0].2	TWI1_IDE->INTEN	١	TWI1_STS->TWIF	不能
41	25	预留	0x0000_00A 4	1	1	\	١	\	
42	26	预留	0x0000_00A 8	1	1	\	١	\	
43	27	预留	0x0000_00A C	١	1	\	\	\	
44	28	可设	0x0000_00B 0	CAN	NVIC->ISER[0].2 8	\	CAN_RTIE->RIE CAN_RTIE->ROIE CAN_RTIE->RFIE CAN_RTIE->RAFIE CAN_RTIE->TPIE CAN_RTIE->TSIE CAN_RTIE->EIE CAN_RTIE->EIE CAN_RTIE->BIE CAN_RTIE->BIE CAN_RTIE->BIE	CAN_RTIE->RIF CAN_RTIE->ROIF CAN_RTIE->RFIF CAN_RTIE->RAFIF CAN_RTIE->TPIF CAN_RTIE->TPIF CAN_RTIE->EIF CAN_RTIE->EIF CAN_RTIE->BIF CAN_RTIE->BIF CAN_RTIE->BIF	不能
45	29	可设	0x0000_00B 4	ADC	NVIC->ISER[0].2 9	ADC_CON->INTEN	\	ADC_STS->ADCIF	不能
46	30	可设	0x0000_00B 8	СМР	NVIC->ISER[0].3 0	CMPCFG->CMPIM[1:0]	١	CMP_STS->CMPIF	能
47	31	可设	0x0000_00B C	тк	NVIC->ISER[0].3 1	TKCON->INTEN	\	TKCON->TKIF	能
		l	l .		1		L	l	ı

8 省电模式

初始上电默认运行在常规模式,即 Normal Mode,额外提供三种省电模式:

- 低速模式:系统时钟源可选择 LIRC, CPU 可工作在 32KHz
- IDLE Mode,可由任何中断唤醒
- STOP Mode,可由 INT0~15、Base Timer、TK 和 CMP 唤醒

9 GPIO

9.1 时钟源

M0+内核可通过 IOPORT 总线实现单周期访问 GPIO,数据传输效率极高。IOPORT 总线的时钟来自 HCLK。

9.2 特性

SC32R803 系列 GPIO 端口特性如下:

- 最大 60 个双向可独立控制的 GPIO
- CPU 可在单周期内通过 IOPORT 总线访问 GPIO 端口
- 可独立设定上拉电阻
- 所有口源驱动能力分四级控制
- 16 个 GPIO 一组
- I/O 端口在输入或输出状态下,从端口数据寄存器里读到的都是端口的实际状态值

注意: 未使用及封装未引出的端口均要设置为强推挽输出模式。

9.3 GPIO 结构图

强推挽输出模式

强推挽输出模式下,能够提供持续的大电流驱动: 相关电气参数详见<u>《GPIO参数》</u>章节。 强推挽输出模式的端口结构示意图如下:

强推挽输出模式

带上拉的输入模式

带上拉的输入模式下,输入口上恒定接一个上拉电阻,仅当输入口上电平被拉低时,才会检测到低电平信号。

带上拉的输入模式的端口结构示意图如下:

带上拉的输入模式

高阻输入模式(Input only)

高阻输入模式的端口结构示意图如下所示:

高阻输入模式

10 模数转换器 ADC

10.1 时钟源

- SC32R803 系列的 ADC 的时钟源仅一种,来自 PCLK
- ADC 的转换时间固定为 950ns

10.2 特性

- 精度: 14位
- 最多支持 20 路通道:外部 18 路 ADC 采样通道和 IO 口的其它功能复用
 - 内部一路 ADC 可直接测量 VDD 电压
 - 内部一路 ADC 可直接测量 OP 输出
- 内建 2.4V、2.048V 和 1.024V 三种基准电压
- ADC 的参考电压有 4 种选择: VDD、2.4V、2.048V、1.024V
- ADC 输入通道选择
 - 可通过设置 ADCIS[4:0]位,选择 ADC 输入通道
- 可通过软件启动转换过程
- 可设 ADC 转换完成中断
- 采样到完成转换的总时间低至 2µs
- 支持 DMA 传输: ADC 转换完成可产生 DMA 请求
- 支持单通道连续转换模式
- ADC 转换结果支持溢出标志提醒,且 OVERRUN 标志位与 ADC 转换结果在同一寄存器 ADCV,用户可一次性读取

10.3 ADC 转换步骤

用户实际进行 ADC 转换所需要的操作步骤如下:

- ① 设定 ADC 输入管脚; (设定 AINx 对应的位为 ADC 输入,通常 ADC 管脚会预先固定);
- ② 设定 ADC 参考电压 Vref,设定 ADC 转换所用的频率;
- (3) ADCEN 写 1, 开启 ADC 模块电源;
- ④ 选择 ADC 输入通道; (设置 ADCIS 位,选择 ADC 输入通道);
- ⑤ 启动 ADCS, 转换开始;
- ⑥ 等待 EOC/ADCIF=1,如果 ADC 中断使能,则 ADC 中断会产生,用户需要软件清 0 EOC/ADCIF 标志;
- (7) 从 ADCV 获得 14 位数据,一次转换完成;
- ⑧ 如不更换输入通道,可通过软件将 CONT 置 1,设定单通道连续转换模式。转换将持续进行,直到该位清 0。

- 9 ADC 转换结果溢出时, OVERRUN 标志位置 1。
- ① 可通过 DMA 传输转换数据。

注意: 在设定 ADC_CON[8](INTEN)前,使用者最好用软件先清除 EOC/ADCIF,并且在 ADC 中断服务程序执行完时,也清除该 EOC/ADCIF,以避免不断的产生 ADC 中断。

10.4 ADC 中断

SC32R803 系列的 ADC 在转换完成后, ADCIF 将置起, 如果 ADC CON.INTEN=1,将产生中断。

中断事件	事件标志位	中断使能控制位		
ADC 转换完成中断请求	ADCIF	ADC_CON->INTEN		

10.5 ADC 连接电路图

说明:

- C1 为外接 0.01µF 电容,建议用户增加此电容以提升 ADC 性能;
- ADC 相关电气参数详见章节 28.10 ADC 电气特性。

11 运放及可编程增益放大器(OP)

内建一个运放及可编程增益放大器 OP,提供轨到轨运放,且 OP可配置为 PGA 模式,有 5个同相输入端,2个反相输入端以及 3个输出端,并可提供 8/16/32/64 同相增益,7/15/31/63 倍反相增益。

11.1 特性

- 一个 Rail-to-rail 的运放
- 可配置为 PGA 模式
 - 同相输入增益: 8/16/32/64
 - 反相输入增益: 7/15/31/63
- 同相输入端引出两个外部引脚: OP_P0 或 OP_P1
- 反相输入端引出一个外部引脚: OP N
- 输出端引出一个外部引脚: OP O
- 输出端可直接接入 ADC 输入
- 输出端可直接接入 CMP 正端
- 可通过设置 PGA 输入端 offset 调整控制位 PGAOFC=1,将 OP 模块的正端与负端输入短接来实现精度 调整

11.2 OP 端口选择

11.2.1 OP 正端输入选择

OP 模块的正端输入有五种: OP_P0 外部引脚、OP_P1 外部引脚、内部 VSS、内部 1.2V 基准和 VDD,可通过 OPPSEL[2:0]切换选择。

11.2.2 OP 负端输入选择

OP 模块的负端输入有两种: OP_N 外部引脚和内部反馈电阻。

- 选择 OP_N 外部引脚为 OP 的负端输入时,需设置 OP 输入控制位 OPNSEL=0,反馈电阻端连接选择位 FDBRSEL[1:0]=01。
- 选择内部反馈电阻为 OP 的负端输入时,需设置 OPNSEL=1, FDBRSEL[1:0]=00 或 11 或 10, 并通过内部增益档位选择位 PGAGAN[1:0] 进行内部增益档位选择。

11.2.3 OP 输出选择

OP 模块的输出有三种:有3个输出端:AD 转换器的采样通道、CMP 正端输入和 OP_O 引脚。

OP 输出用于 AD 转换器的模拟输入或者 CMP0 正端的模拟输入时,具体设置方式如下:

- OP 作为 ADC 输入时,需要先设置 ENOP=1,使能 OP 模块,再设置 ADCEN=1,开启 ADC 电源,通过 ADCIS[4:0]选择 OP 输出端为 ADC 输入端,则 OP 的转换结果可直接在 ADCV 寄存器获取。
- OP 作为 CMP 正端输入时,当 OP 使能时,如果 CMP 的输入通道控制位 CMPIS[2:0]设置为 OP,则选用 OP 输出为 CMP 的正端输入。

11.3 OP 电路结构框图

12 模拟比较器 CMP

SC32R803系列内建一个模拟比较器(CMP),CMP中断可唤醒STOP Mode。可用于报警器电路、电源电压监测电路、过零检测电路等。

此比较器具有五个模拟信号正输入端: CMP0~3 以及 OP 输出端,可通过 CMPIS [2:0]切换选择。负输入端电压可通过 CMPRF[3:0]切换为 CMPR 脚上的外部电压或内部的 15 档比较电压中的一种。

通过 CMPIM[1:0]可以方便的设定比较器的中断模式,当 CMPIM[1:0]所设定的中断条件发生时比较器中断标志 CMPIF 会被置 1,该中断标志需要软件清除。

12.1 特性

- 正端输入信号五种可选:
 - 四个模拟信号正输入端 CMP0~CMP3
 - OP 输出端
- 负端输入电压可选择 CMPR 引脚或内部 VDD 分压的 15 档比较电压中的一种
- CMP 中断可唤醒 STOP Mode

12.2 模拟比较器结构框图

模拟比较器结构框图

13 UART0~5

13.1 时钟源

● SC32R803 系列所有 UART 的时钟源仅一种,来自 PCLK

13.2 特性

- 六个 UART: UART0~5
- UART2 具有完整的 LIN 接口:
 - 主从模式可切换
 - 支持主机模式下硬件 break 发送(10/13bits)
 - 支持从机模式下硬件 break 检测(10/11bits)
 - 支持从机模式下波特率同步
 - 提供相关中断/状态位/标志位/容错范围
- UART0~5 支持信号口映射,均可以映射到另外一组 IO
- 独立波特率发生器
- 四种通讯模式可选:
- SM0~1 串行通信模式控制位
 - 模式 0,8 位半双工同步通信模式,在 RX 引脚上收发串行数据。TX 引脚用作发送移位时钟。每帧 收发 8 位,低位先接收或发送;
 - 模式 1,10 位全双工异步通信,由 1 个起始位,8 个数据位和 1 个停止位组成,通信波特率可变;
 - 模式 2,保留
 - 模式 3,11 位全双工异步通信,由 1 个起始位,8 个数据位,一个可编程的第 9 位和 1 个停止位组成,通信波特率可变。
- 发送和接收完成可产生中断并置起对应的标志位 TXIF 和 RXIF, 中断标志需要软件清除
- UARTO 和 UART1 可产生 DMA 请求
- UART2~5 不能产生 DMA 请求
- 独立波特率发生器
- UART0/1/3/4/5 支持从 STOP Mode 唤醒:
 - START 位下降沿可唤醒 STOP Mode
 - 提供对应的唤醒中断使能位 WKIE 及唤醒中断标志位 WKIF
- UART2 不支持 STOP Mode 唤醒

13.3 UART2-LIN

UART2 支持标准的 LIN 通信协议

13.3.1 LIN 帧结构

根据 LIN 协议,所有的传输信息被打包为帧。一个帧由一个报头(主机任务提供)和一个紧跟其后的应答(从机任务提供)组成。报头(主机任务提供)由一个 break 域和一个 sync(同步)域再跟一个帧识别码 (frame ID)组成。帧 ID 仅作为定义帧的用途。从机任务负责回应相关的帧 ID。响应由一个数据域和一个校验域组成。下图是 LIN 帧的结构

图 6.16-6 LIN 帧结构

13.3.2 LIN 主机模式

通过设置 FUNCSEL=1, SLVEN=0, UART 控制器支持 LIN 主机模式。在 LIN 模式,根据 LIN 的标准,每个字节由值为 0(显性)的 START 位开始,接着是 8位数据位,没有校验位,LSB 优先,由一个值为 1(隐性)的 STOP 位结束。使能并初始化 LIN 主机模式需要如下步骤:

- ① 设置 UART_BAUD 寄存器设定波特率.
- ② 设置 FUNCSEL=1,选择 LIN 功能模式
- ③ 设置 SM[1:0] =01 配置 UART 为模式 1

一个完整的报头由一个 break 域和同步域再跟一个帧标识符(帧 ID)组成。UART 控制器可以选择"break 域"作为发送的报头。"同步域" 和 "帧 ID 域"需要用户通过软件写入,即:发送一个完整的报头到总线,软件必须依次填同步数据(0x55)和帧 ID 数据到 UART_DAT 寄存器。

13.3.3 LIN 从机模式

通过设置 FUNCSEL=1, SLVEN=1, UART 控制器支持 LIN 从机模式。在 LIN 模式,根据 LIN 的标准,每一个字节域都是由一个值为 0 的显性位开始的,跟着 8 个数据位,没有校验位,最低位在前,由一个值为 1 的 隐性 stop 位结束。

LIN 从机模式初始化的流程如下:

- ① 设置 UART BAUD 寄存器设定波特率.
- ② 设置 FUNCSEL=1,选择 LIN 功能模式.
- ③ 设定 SM[1:0] =1 配置 UART 为模式 1
- ④ 设定 SLVEN=1,使能 LIN 从机模式

LIN 从模式下,通过设定 LBDL 使能从机 break 域检测功能来侦测接收 "break 域"。接收到一个 break 后, BKIF 标志将被置位。如果 BKIE =1 中断将发生。为了避免比特率偏差, 控制器支持自动重同步功能,避免时钟误差错误,通过设定 SLVAREN 使能该特性。

13.3.3.1 同步域误差错误

自动重新同步模式下,控制器将检测同步域的误差错误。误差错误检测比较当前波特率和接收到的同步域的 波特率。两个检测被同步执行.

检查 1:根据同步域的第一个下降沿和最后一个下降沿的测量值

- 如果误差大于 15%, 报头错误标志 SLVHEIF 将被置位
- 如果误差在 14% 和 15%之间, 报头错误标志 SLVHEIF 可能被置位也可能没有被置位 (取决于数据失相)
- 检查 2: 根据同步域的每一个下降沿的测量值.
- 如果误差大于 19%,报头错误标志 SLVHEF 将被置位
- 如果误差在 15% 和 19%之间, 报头错误标志 SLVHEIF 可能被置位也可能没有被置位(取决于数据失相)

注:误差检测基于当前波特率时钟。因而,为了保证误差检测的正确性,建议用户在新的 break 域收到之前,通过软件将波特率重新加载为初始值

14 QSPI0~1

14.1 时钟源

SC32R803 系列的 SPI 的时钟源仅一种,来自 PCLK

14.2 QSPI0/1 特性

- QSPI 仅支持主机模式
- 每个 QSPI 均可适配 4 种不同传输位宽: 8/16/24/32 bits,且在不同位宽下提供固定 8 级 FIFO,收发独立
- 支持单线、双线、四线通信
- 支持两种功能模式: QSPI 半双工通信模式和直通模式
- 通信速率高达 32MHz
- 两个 QSPI 可以不经过 FIFO 透传
- 支持 DMA

15 SPI0~3

SC32R803 最多有 4 个 SPI 通信口,其中 2 个是来自高级二合一通信口的 SPI0/1,另外 2 个是来自通用二合一通信口的 SPI2/3。SPI0/1 有 8 级 FIFO,而 SPI2/3 无 FIFO;且 SPI0/1 在通信模式下信号口对应管脚输出驱动能力增强,而 SPI2/3则无此功能。

15.1 时钟源

● SC32R803 系列的 SPI 的时钟源仅一种,来自 PCLK

15.2 SPI0/1 特性

- 支持 13 档 SPI 时钟预分频,用户可设置到较低频率。
- SPI0/1 信号口强驱动:
 - SPI 通信模式下相应的信号口所对应管脚输出驱动能力增强,其它模式下跟普通 IO 特性一致。
 - 其映射信号口也可以变成强驱动,以保证 SPI0/1 在任意端口上的一致性
- 具有 8 级 FIFO 缓存,发送接收独立
 - SPI0/1 的 FIFO 功能可以实现:连续向 SPI 发送缓存(SPI0/1_DATA)写入 8 个或 8 个以内的 8/16/24/32 位发送数据,SPI 发送的时候,最先写入的数据也最先被发送。当用户写入 FIFO 的数据 被发送完成,发送 FIFO 为空标志 TXEIF 置 1;若 FIFO 的数据已满,则写入冲突标志位 WCOL 置位,用户无法向 FIFO 写入数据,直至 FIFO 内的数据被发送出去、FIFO 不满,用户才能写入数据。每发送完毕一帧数据,中断标志 QTWIF 都会置起一次。
 - 连续从 SPI 接收缓存(SPI0/1_DATA)读取 8 个或 8 个以内的 8/16/24/32 位接收数据,最先接收到的数据也最先被读取到。
 - FIFO 数据传输一半中断及对应标志位,方便用户及时读取/写入数据:
 - ◆ 提供发送 FIFO 有效数据不满一半中断及对应标志位 TXHIF
 - ◆ 提供接收 FIFO 超一半中断及对应标志位 RXHIF
 - 支持接收缓存溢出中断及对应标志位,及时通知异常
- 支持主机/从机模式
- 支持 DMA
 - 使能 TXDMAEN,发送缓存器空标志位 TXEIF 置起后可触发 DMA 请求,DMA 写入发送缓存后,自动清除 TXEIF 标志位
 - 使能 RXDMAEN,接收缓冲区非空标志位 RXNEIF 置起后可触发 DMA 请求,DMA 读取接收缓存后,自动清除 RXEIF 标志位

15.3 SPI2/3 特性

- 支持 13 档 SPI 时钟预分频,用户可设置到较低频率
- 信号口可以映射到另外 3 组 IO
- 无 FIFO
- 支持主机/从机模式
- 支持 DMA
 - SPI2 可产生 DMA 请求
 - SPI3 不可产生 DMA 请求

15.4 SPI0/1 和 SPI2/3 对比

对比BIT位	SPI0/1	SPI2/3
信号口强驱动	有	无
WCOL	当发送 FIFO 写满后,对 FIFO 进行写操作将 无法写入,WCOL 也会置起,代表缓存写入冲 突	当一帧正在发送,对发送缓存进行写操作将无 法写入,WCOL 也会置起,代表缓存写入冲突
QTWIF	该位置起,代表一帧数据接收/发送完成	该位置起,代表一帧数据接收/发送完成
QTWIE	QTWIF 置起中断使能位	无
RXHIE	接收 FIFO 内有效数据超过一半中断使能位	无
TXHIE	发送 FIFO 内有效数据不满一半中断使能位	无
RXIE	接收 FIFO 已满中断使能位	无
TBIE	发送 FIFO 为空中断使能位	发送缓存为空时中断使能位
RXNEIE	接收 FIFO 非空中断使能位	无
RXHIF	该位置起,代表接收 FIFO 内有效数据超过一 半	无
TXHIF	该位置起,代表发送 FIFO 内有效数据不满一 半	无
RXFIF	该位置起,代表接收 FIFO 已满	无
TXEIF	该位置起,代表发送 FIFO 为空	该位置起,代表发送缓存为空
RXNEIF	接收 FIFO 非空标志位	无
DMA	通过发送缓存器空标志位 TXEIF 和接收缓冲区 非空状态位 RXNEIF 触发 DMA 请求	SPI2:一帧结束统一置位请求 SPI3:不支持 DMA

16 TWI0~3

16.1 时钟源

● SC32R803 系列的 TWI 的时钟源仅一种,来自 PCLK

16.2 TWI0/1 特性

- 与 QSPI0/1 和 SPI0/1 共用寄存器地址和信号口,但功能完全独立
- 支持 11 档 TWI 时钟预分频,主机模式下 TWI 通信速率,默认为最小分频档位(fpcLr/4)
- 可配置为主机模式或从机模式
- 主从机之间双向数据传输
- 通信速率可达到 1 Mbps
- 可选的时钟延长
- 支持 DMA
 - TWI0/1 均可产生 DMA 请求

16.3 TWI2/3 特性

- 与 SPI2/3 共用寄存器地址和信号口,但功能完全独立
- 支持 11 档 TWI 时钟预分频,主机模式下 TWI 通信速率,默认为最小分频档位(fpcLr/4)
- 信号口共三组映射可选
- 可配置为主机模式或从机模式
- 主从机之间双向数据传输
- 速率提升到 1Mbps
- 可选的时钟延长
- 支持 DMA
 - TWI2 可产生 DMA 请求
 - TWI3 不可产生 DMA 请求

16.4 TWI 信号描述

在 TWI 总线上,数据通过时钟线 SCL 和数据线 SDA 在主从机间逐一字节同步传送。每个字节数据长度是 8位,一个 SCL 时钟脉冲传输一个数据位,数据由最高位 MSB 开始传输,每个字节传输后跟随一个应答位,每个位在 SCL 为高时采样。因此,SDA 线可能在 SCL 为低时改变,但在 SCL 为高时必须保持稳定。当 SCL 为高时,SDA 线上的跳变视为一个命令(START 或 STOP)。

TWI 时钟信号线(SCL)

该时钟信号由主机发出,连接到所有的从机。每 9 个时钟周期传送一个字节数据。前 8 个周期作数据的传送,最后一个时钟作为接收方应答时钟。空闲时应为高电平,由 SCL 线上的上拉电阻拉高。

TWI 数据信号线(SDA)

SDA 是双向信号线,空闲时应为高电平,由 SDA 线上的上拉电阻拉高。

17 CAN 通信口

17.1 概述

SC32R803 系列的控制器局域网络(CAN)支持 CAN2.0B 协议与 CAN_FD 协议的通信,相比于 CAN2.0B 协议,CAN_FD 具有更高的灵活性,其位速率从原来的仅 1Mbit/s 更改为可变,数据段长度最多可达 64 字节。支持四种不同的工作模式,可设置低功耗待机模式,支持待机唤醒。

发送缓冲区支持 PTB 主传输缓冲区与 STB 次传输缓冲区这两种发送缓冲区可供选择,可选用 FIFO 模式或优先权模式决定发送顺序,接收缓冲区可同时容纳 8 帧数据,且每个接收帧都有单独时间戳。接收过滤器有8组可供选择,每个过滤器都可单独启用,设置过滤条件。

17.2 时钟源

AHB 时钟总线,时钟源跟随 HCLK。

17.3 特性

- 协议支持:
 - CAN 2.0B
 - ◆ 支持标准格式和扩展格式, 最多可负载 8bytes 数据
 - ◆ 速率可到 1Mbit/s
 - CAN FD
 - ◆ 支持标准格式和扩展格式,最多可负载 64bytes 数据
- 速率可变
- 申断标志多达 14 种,共用同一个中断线
- 待机模式:使能此模式后,CAN 收发器将进入低功耗状态并不再接收数据帧,仅检测CAN 总线上的显性电平
- 时间戳:
 - CiA 603: 64 位时间戳,发送帧(TTS)支持一个时间戳,存放在寄存器里,但所有的接收帧(RTS)都有单独的时间戳
- 收发缓存:
 - 8 组接收缓存(RB),每个接收帧(RTS)有单独时间戳,与数据一同存放在 RB 中。RB 的工作方式同 FIFO
 - 8组发送缓存(TB):
 - ◆ 1 ↑ Primary Transmit Buffer PTB
 - ◆ 8 个 Secondary Transmit Buffer STB, 支持两种传输模式: FIFO 模式和优先权决定模式
 - 8组接收过滤器(支持 29bit ID)

18 硬件看门狗 WDT

SC32R803 系列内建一个硬件看门狗 WDT, 其时钟源为内部的 32kHz 振荡器。用户可以通过编程器的 Customer Option 中的 ENWDT 控制位选择是否开启看门狗复位功能。

硬件看门狗 WDT,具有安全性高、定时准确及使用灵活的优点。此看门狗外设可检测并解决由软件错误导致的故障,并在计数器达到给定的溢出时间时触发系统复位。

WDT由其内部低频振荡器驱动,因此即便在主时钟发生故障时仍然保持工作状态。

18.1 时钟源

SC32R803 系列的 WDT 的时钟源固定为 LIRC。WDT 使能后,LIRC 会自动开启,WDT 工作的过程中 LIRC 始终保持振荡,用户无法关闭。

19 Base Timer (BTM)

SC32R803 系列内建一个 Base Timer(BTM),可以按照 15.625ms ~ 32s 的间隔产生中断。32kHz LIRC 及外接 32.768kHz 晶体振荡器 LXT 都可作为 BTM 的时钟源。BTM 产生的中断可以将 CPU 从 STOP mode 唤醒。

19.1 时钟源

● SC32R803 系列的 BTM 时钟源有两种: LXT 和 LIRC 可选

19.2 特性

- 中断频率间隔 15.625ms ~ 32s 可选
- 可唤醒 STOP Mode

20 内建 CRC 校验模块

SC32R803 系列内建一个 CRC 校验模块,使用多项式发生器从一个 8 位/16 位/32 位的数据字中产生 CRC 码。

20.1 时钟源

● SC32R803 系列的 CRC 时钟源来自 HCLK

20.2 特性

- 内建了 1 个硬件 CRC 模块
- 初始值可设,默认为 0xFFFFFFFF
- 支持 8bit/16bit/32bit 数据单元
- 多项式可编程,默认为 0x04C1_1DB7
- 仅支持软件送数计算模式
- 支持 DMA: CRC_DR 可作为 DMA 的目标地址,也可直接寄存器访问
- 单独一个 byte 计算 CRC 需要 1 个系统时钟。

CRC 算法名称	CRC-32/MPEG-2	
多项式公式	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$	
数据宽度	32bit	
初始值	0xFFFFFFF	
结果异或值	0x00000000	
输入值反转	false	
输出值反转	false	
LSB/MSB	MSB	

注意: CRCDR 写入数据和读出不是同一数据。

21 PWM0: 8 路 16 位多功能 PWM

21.1 时钟源

- SC32R803 系列 PWM0 的时钟源有两种: HIRC 64MHz 和 PCLK 可选
- PWM0 输出频率最高为所选时钟源的频率
- PWM0 时钟预分频档位范围为: /1 ~ /128

21.2 特性

- 支持 8 档 PWM0 时钟预分频
- 8路 16位共周期多功能 PWM
- 输出波形可反向;
- 波形类型:可设为中心对齐型或边沿对齐型;
- PWM 模式:可设为独立模式或互补模式:
 - 独立模式下,8路PWM周期相同,但每一路PWM的打开及输出波形占空比可单独调整
 - 互补模式下可同时输出四组互补、带死区的 PWM 波形;
- 提供 1 个 PWM 溢出的中断;
- 支持故障检测机制
- 有独立的中断请求标志位

21.3 PWM0 结构框图

PWM0 结构框图

21.4 PWM0 通用配置

21.4.1 输出模式

- 独立模式下 8 路 PWM 周期相同,但每一路 PWM 输出波形的占空比单独可设置
- 互补模式下可同时输出四组共周期,互补、带死区的 PWM 波形

21.4.2 对齐类型

- 边沿对其型
- 中心对齐型

21.4.3 占空比变化特性

当 PWMOn 输出波形时,若需改变占空比,可通过改变高电平设置寄存器(PDT0x)的值实现。但需要注意:更改 PDT0x 的值,占空比不会立即改变,而是等待 PWM 计数器计数到 0 或向上计数至与周期设置项 PWMPD[15:0] +1 的值匹配时改变。

21.4.4 周期变化特性

当 PWM 输出波形时,若需改变周期,可通过改变周期设置寄存器 PWMPD 的值实现。更改 PWMPD 的值,周期不会立即改变,而是等待 PWM 计数器计数到 0 或向上计数至与周期设置项 PWMPD[15:0] +1 的值匹配时改变。

22 LEDPWM: 39 路 8 位 LEDPWM

22.1 时钟源

● SC32R803 系列的 LEDPWM 的时钟源仅一种,来自 PCLK

22.2 特性

- 共用周期、占空比单独可调
- 有中心对齐模式,方便驱动 LED
- Duty 寄存器与 35 路 SEG(0~34)寄存器共用,可替代 LED 电路,产生 LED 驱动波形
- 预分频档位最高为/256,每一档为2的n次方
- 有独立的中断请求标志位
- 通过中心对齐的 LEDPWM 实现灰度调整:
 - 灰度调节中一个 COM 最多对应 35 个 duty 值,可选择 8 X 31、6 X 33、5 X 34、或 4 X 35
 - 在 LEDPWM 中断切换 COM,同时把对应的 Duty 值写入 LEDPWM 的 DUTY 寄存器,从而实现每个 SEG 灰度的调整

23 LCD/LED 驱动器

● LCD/LED 二选一,共用寄存器和 IO 口

23.1 时钟源

● SC32R803 系列的 LCD/LED 的时钟源有两种: LXT 和 LIRC 可选

23.2 内置 8 COM x 31 SEG LED 驱动

- 1/1~1/8 占空比电压驱动方式
- LED segment 口源驱动能力分四级控制
- 可通过软件实现支持共阴/共阳模式切换
- 通过中心对齐的 PWM 实现灰度调整:使用原 35 路 LEDPWM (0~34),每个 PWM 自带周期 buffer 及 duty buffer

23.3 内置 8 COM x 31 SEG LCD 驱动

- Type A / Type B 波形可选
- 8 X 31、6 X 33、5 X 34、或 4 X 35
- LCD 电压输出口分压电阻可选
- LCD 显示驱动偏置电压
 - 1/4 偏置电压
 - 1/3 偏置电压
- 帧频三档可选:
 - Type A 模式下 32/64/128Hz
 - Type B 模式下 64/128/256Hz

24 32 路高灵敏度触控电路(TK)

- 高灵敏度模式
- 可适应隔空按键触控、接近感应等对灵敏度要求较高的触控应用
- 通道可以并联扫描
- CMOD 管脚需对地接入 103 电容
- 支持自电容方案和互电容模式
- TK的内部参考电压最高档位可设到 4V,以得到更高灵敏度
- 支持低功耗模式
- 支持快速唤醒 STOP Mode
- 全套开发支持: 高灵活触控软件库, 智能化调试软件

25 16 位定时/计数器(TIM)Timer0~Timer7

25.1 时钟源

- 定时模式/PWM 输出模式下,TIM 时钟源来自 PCLK
- 计数模式下, Tn 引脚为计数源输入

25.2 特性

- 8 个独立 16 bit 自动重载计数器 Timer0~Timer7
- 16 位递增、递减、递增/递减自动重载计数器
- 支持上升沿/下降沿捕获,可实现 PWM duty 和周期捕获
- 16 位可编程预分频器, 计数器时钟频率的分频系数为 1~65535 之间的任意数值
- TIM1/2/6 的溢出及捕获事件可产生 DMA 请求
- TIM2~7的 Tn 管脚支持映射,均可以映射到另外一组 IO

25.3 计数方式

25.3.1 定时模式下 TIM 计数方式

- 向上计数:从设定值开始向上计数,至 0xFFFF 溢出
- 向下计数:从 0xFFFF 开始向下计数至设定值

25.3.2 PWM 输出模式下 TIM 计数方式

PWM 输出模式下只能选择向上计数:从 0 开始向上计数,至占空比设置项 PDT 时 PWM 输出波形切换高低电平,之后继续向上计数到设定的重载值 RLD,产生溢出并从 0 重新开始计数。

TIM 输出的 PWM 周期 TPWM 计算公式如下:

$$T_{PWM} = \frac{RLD[15:0] + 1}{PCLK}$$

占空比 duty 计算公式:

$$duty = \frac{PDT[15:0]}{RLD[15:0] + 1}$$

25.4 定时器相关的信号口

- TnCAP/Tn, n=0~7
 - Tn 时钟输入/输出
 - TnCAP 上升沿/下降沿均可捕获
 - 注意: Tn 和 TnCAP 为复用功能,不能同时使用
- TnEX, n=0~7
 - 重载模式下, TnEX 引脚上的外部事件输入(下降沿)用作重载允许/禁止控制
 - 捕获模式,当 FSEL = 1 时为下降沿捕获信号输入脚,检测到 TnEX 引脚上一个下降沿,产生一个捕获, EXIF 被置起, TnCNT 寄存器的值捕获到寄存器 FCAP 里

- TnPWM, n=0~7
 - 每一路 TIM 均可通过 Tn 和 TnEX 端口提供两路共周期、duty 可单独调的 PWM: TnPWMA 和 TnPWMB
 - 可选时钟源随 TIM
 - 注意: TIM 的 PWM 捕获功能与 PWM 输出功能不可同时开启

25.5 TIM 的中断及对应标志位

- 计数器上溢/下溢,共用中断标志位 TIF
- 捕获状态标志:
 - EXIF 外部事件输入下降沿被检测到的标志位
 - EXIR 外部事件输入上升沿被检测到的标志位
- 中断及优先级配置控制位合并至 NVIC 模块

25.6 TIM 的工作模式

- 模式 0: 16 位捕获模式, 壳实现 PWM 双沿捕获
- 模式 1: 16 位自动重载定时/计数器模式
- 模式 3: 可编程时钟输出模式
- 模式 4: PWM 输出模式

26 DMA 控制器

26.1 概述

直接存储器访问(DMA)控制器用于高速数据传输。DMA 控制器可以从一个地址到另一个地址传输数据,无需 CPU 介入。通过 DMA 进行数据传输可减少 CPU 的工作量,将节省下的 CPU 资源做其他应用。DMA 控制器包含 4 个通道,每个通道都直接连接专用的硬件 DMA 请求,每个通道都同样支持软件触发。DMA 控制器支持 4 级通道优先级,用于处理 DMA 请求间的优先级,确保同一时刻只有一个 DMA 通道工作。DMA 控制器也支持单一传输和批量传输,请求源可以是软件请求或接口请求,内存之间的数据传输是使用软件请求。

注:对于一个双向数据传输应用,需要 2 个 DMA 通道分别完成发送和接收。

26.2 时钟源

DMA 的时钟源为 HCLK, 通过 AHB CFG.DMAEN 使能 DMA 的外设时钟

26.3 特性

- 支持 4 个可独立配置的通道
- 支持四个请求优先级
- 支持8位,16位,32位数据传输
- 支持源和目标地址自动增加或者固定,数据宽度支持字节,半字,字
- 支持单次和批量传输方式

26.4 功能说明

26.4.1 传输方向

内存到内存	内存到外设	外设到内存	外设到外设
无限制	无限制	无限制	无限制

26.4.2 DMA 访问区域限制

用户操作 DMA 时,不允许对 Flash 进行写操作,也不允许通过 DMA 操作内核,否则将产生无法预估的异常。

26.4.3 通道优先级

通过寄存器 PL[1:0]可设置四个级别的优先级:

- 00: 低
- 01: 中
- 10: 高
- 11: 非常高

26.4.4 单次传输和批量传输

DMA控制器支持单次和批量数据的传输类型,请求源可以是软件请求,接口请求,内存之间的数据传输是使

用软件请求。单次传输的意思是软件或接口准备好传输一个数据(每个数据需要一次请求),批量传输的意思是软件或接口将传输多个数据(多个数据仅需一次请求)。

单次传输和批量传输模式可通过寄存器 TPTYPE (DMAn_CFG[15])设定。

当 DMA 控制器运行在单次传输模式,每搬移一个数据需要一次请求,当搬移一次数据,寄存器 DMAn_CNT[31:0], n=0~3 会减 1,直到 DMAn_CNT[31:0] 中的数目递减为 0,搬移才会完成。在该模式,BURSIZE(DMAn_CFG[14:12])不用于控制搬移数据量大小,它的值固定为 1。

在批量搬移模式, DMA 控制器搬移 DMAn_CNT[31:0] 个数据, 仅需一次请求。当搬移 BURSIZE(DMAn_CFG[14:12])数据后, DMAn_CNT[31:0]中的数目会减去 BURSIZE。直到 DMAn_CNT[31:0]中的数目递减为 0,搬移数据才完成。

26.5 循环模式

循环模式可用于处理循环缓冲区和连续数据流(例如 ADC 扫描模式)。在循环模式传输过程中,待传输数据的数目将自动重新装载为在通道配置阶段设置的初始值,并继续响应 DMA 请求。为停止循环传输,软件需要在禁止 DMA 通道前使外设停止生成 DMA 请求(例如退出 ADC 扫描模式)。软件必须在启动/使能传输前,以及在停止循环传输后,明确设定 DMACNT 值。

SC32R803 系列的 DMA 控制器支持常规模式和循环模式:

- 当 CIRC=0 (DMA 通道处于非循环模式) 时,在达到设定的待传输数据数目时,将不再接受任何 DMA 请求:
- 当 CIRC=1 (DMA 通道处于循环模式)时,在传输完成后该通道的 DMACNT 会自动重新装载之前设定的值,等待下一次循环。

用户可以根据实际需求灵活选择。

27 Systick

SysTick 是一个简单的、24 位写入清 0、递减、带灵活控制机制的自动装载计数器。该计数器可以用作实时操作系统(RTOS)的滴答定时器或作为一个简单的计数。

27.1 时钟源

SysTick(Cortex®-M0+内核系统定时器)的时钟源分为内部时钟源和外部时钟源:

- 内部时钟源即 CPU 时钟
- 外部时钟源有5个

SysTick 时钟源框图如下:

27.2 SysTick 校准寄存器默认值

SysTick 校准寄存器校准值设置方法如下:

- 若,上电默认时钟为 fнcLk/n(MHz), n 是上电默认分频系数, 上电默认时钟源为 HIRC;
- 则,SysTick 校准值初始值为 1000*(fhclk/n),即保证默认可产生 1ms 时间基准。

28 电气特性

除非另有说明,本章节电器数据均基于<u>《推荐工作条件》</u>小节所列工作条件。

28.1 推荐工作条件

符号	参数	最小值	最大值	UNIT	系统时钟频率
V_{DD}	工作电压	1.8	3.6	V	32MHz
TA	工作环境温度	-40	105	$^{\circ}$	

28.2 极限参数

符号	参数	最小值	最大值	UNIT
V _{DD}	直流供电电压	-0.3	3.9	V
V _{PIN}	任一管脚输入/输出电压	-0.3	V _{DD} +0.3	V
T _A	工作环境温度	-40	105	$^{\circ}$
T _{STG}	储存温度	-55	125	$^{\circ}$
I _{VDD}	流过 VDD 的电流值	-	200	mA
I _{VSS}	流过 VSS 的电流值	-	200	mA

28.3 Flash ROM 参数

(V_{DD} = 5V, T_A = +25℃,除非另有说明)

符号	参数	最小值	典型值	最大值	UNIT	条件
N _{END}	APROM 擦写次数	100,000	-	-	Cycles	f _{HCLK} =32MHz
T_{DR}	数据保存时间	100	-	-	Years	时钟源为 HIRC
Ts-Erase	单个 Sector 擦除时间	-	2.5	-	ms	
T _{Erase}	全擦时间	30	-	40	ms	
Twrite	单个 byte 写入时间	-	150	-	μs	

28.4 运行功耗

28.4.1 V_{DD} = **3.3**V,T_A = **+25**℃,除非另有说明

符号	参数	启动区域	最小值	典型值	最大值	单位	测试条件
			-	8	-	mA	f _{HCLK} =64MHz 时钟源为 HIRC
			-	6	-	mA	f _{HCLK} =32MHz 时钟源为 HIRC
	工作电流 APROM -	ADDOM	-	3.5	-	mA	f _{HCLK} =16MHz 时钟源为 HIRC
I _{op1}		APROM	1	2.5	-	mA	f _{HCLK} =8MHz 时钟源为 HIRC
		ı	2.0	ı	mA	f _{HCLK} =4MHz 时钟源为 HIRC	
			ı	1.5	-	mA	f _{HCLK} =2MHz 时钟源为 HIRC
I _{pd1}	待机电流 (Power Down 模式)	APROM	-	2.4	-	μΑ	f _{HCLK} =32MHz 时钟源为 HIRC
I _{IDL1}	待机电流 (IDLE 模式)	APROM	-	1.7	-	mA	f _{HCLK} =32MHz 时钟源为 HIRC

28.5 GPIO 参数

28.5.1 V_{DD} = **3.3V**, T_A = **+25**℃, 除非另有说明

符号	参数	最小值	典型值	最大值	单位	测试条件
V _{IH1}	输入高电压	$0.7V_{DD}$	-	V _{DD} +0.3	V	
V _{IL1}	输入低电压	-0.3	-	$0.3V_{DD}$	V	
V _{IH2}	输入高电压	0.8V _{DD}	-	V_{DD}	V	施密特触发输入:
V _{IL2}	输入低电压	-0.2	-	0.2V _{DD}	V	NRST T_CLK / T_DIO UART0~5 输入 RX SPI / TWI 信号输入口 INT0~INT15 PWM 故障检测口 FLT Timer 时钟输入口 Tn Timer 捕获口 TnEX
l _{OL1}	常规驱动能力 IO 组 PA0~PA14 PB3~PB5,PB13~PB15 PC0~PC15 PD0~PD11 输出低电流	-	20	-	mA	V _{Pin} =0.4V
l _{OL2}	常规驱动能力 IO 组 PA0~PA14 PB3~PB5,PB13~PB15 PC0~PC15 PD0~PD11 输出低电流	-	35	-	mA	V _{Pin} =0.8V
I _{OLQSPI1}	与 QSPI 信号口复用的 IO PA15,PB0,PB1,PB6~PB1 2	-	23	-	mA	V _{Pin} =0.4V

	I de la de la seconi				ı	
	输出低电流					
lolqspi2	与 QSPI 信号口复用的 IO PA15,PB0,PB1,PB6~PB1 2 输出低电流	-	40	-	mA	V _{Pin} =0.8V
Iohspia	SPI0/1 信号口(仅在 SPI 使能时): MISO0/1 MOSI0/1 SCK0/1 输出高电流@ V _{Pin} =3.0V	-	7	-	mA	仅适用于 SPI0/1 数据 传输
Гоназріа	QSPI0/1 信号口(仅在 QSPI使能时): QSPI0/1IO0 QSPI0/1IO1 QSPI0/1IO2 QSPI0/1IO3 SCK0/1 输出高电流@ V _{Pin} =3.0V	-	7.5	-	mA	仅适用于 QSPI0/1 数据 传输
		-	3.9	-	mA	Pxyz=0,Ioн等级 0
	常规驱动能力 IO 组输出高	-	3.0	-	mA	Pxyz=1,I _{OH} 等级 1
Іон1	电流@ V _{Pin} =3.0V	-	2.1	-	mA	Pxyz=2,Ioн等级 2
		-	1.1	-	mA	Pxyz=3,I _{OH} 等级 3
I _{lkg1}	输入漏电流	-1	-	1	uA	IO 为高阻输入模式 V _{IN} = V _{DD} 或 V _{SS}
R _{PH1}	上拉电阻	25	50	75	kΩ	

28.6 TK 电气特性

符号	参数	最小值	典型值	最大值	单位	测试条件
Ітк	高灵敏度 Touch key 工作电 流 @3.3V	-	0.7	1.0	mA	f _{HCLK} =32MHz 时钟源为 HIRC

28.7 BTM 电气特性

符号	参数	最小值	典型值	最大值	单位	测试条件
Івтм	Base Timer 工作电流@3.3V	-	1.2	-	uA	BTMCLKSEL=0 BTM 时钟源为 LIRC

28.8 WDT 电气特性

符号	参数	最小值	典型值	最大值	单位	测试条件
I _{WDT}	WDT 工作电流@3.3V	-	1.2	-	uA	

28.9 交流电气特性

(V_{DD} = 1.8V ~ 3.6V, T_A = 25℃, 除非另有说明)

, 55						
符号	参数	最小值	典型值	最大值	单位	测试条件
T _{LXT}	外接 32k 振荡器起振时间	-	1	-	S	外接 32k 晶振
T _{POR}	Power On Reset 时间	-	15	-	ms	
T_PDW	Power Down 模式唤醒时间	-	65	130	μs	
T _{Reset}	复位脉冲宽度	18	-	-	μs	低电平有效
T _{LVR}	LVR 消抖时间	-	30	-	μs	
f _{HIRC}	HIRC 振荡稳定性	63.36	64	64.64	MHz	V _{DD} =1.8~3.6V
						T _A =-40~105 °C
fLIRC	LIRC 振荡稳定性	30.72	32	33.28	KHz	V _{DD} =1.8~3.6V
						T _A =-20~85 °C

28.10 ADC 电气特性

(T_A = 25℃,除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
		2.0	3.3	3.6	V	Vref = 1.024V
V	供电电压	2.7	3.3	3.6	V	Vref = 2.048V
V_{ADC}		2.7	3.3	3.6	V	Vref = 2.4V
		2.0	3.3	3.6	V	Vref = V _{DD}
V_{REF1}	内部基准 2.048V	2.028	2.048	2.068	V	$V_{DD} = 2.7 \sim 3.6 V$
V_{REF2}	内部基准 1.024V	1.004	1.024	1.044	V	V _{DD} = 2.0~3.6V
V_{REF3}	内部基准 2.4V	2.38	2.40	2.42	V	$V_{DD} = 2.7 \sim 3.6 V$
N _R	精度	-	14		bit	GND≤V _{AIN} ≤V _{DD}
Vain	ADC 输入电压	GND	-	V_{DD}	V	
R _{AIN}	ADC 输入电阻	1	-		$M\Omega$	V _{IN} =3.3V
I _{lkg_ADC}	ADC 输入漏电流	-1	-	1	uA	V _{IN} = V _{AINx}
I _{ADC}	ADC 转换电流	-	1.3	1.8	mA	ADC 模块打开 V _{DD} =3.3V
DNL	微分非线性误差	-	±6	-	LSB	V _{DD} =3.3V
INL	积分非线性误差	-	±8	-	LSB	V _{REF} =3.3V

符号	参数	最小值	典型值	最大值	单位	测试条件
Ez	偏移量误差	-	±12	-	LSB	
E _F	满刻度误差	-	±14	-	LSB	
E _{AD}	总绝对误差	-	±14	-	LSB	
		-	1.1	1.4	μs	f _{HCLK} =32MHz,时钟源 为 HIRC LOWSP[2:0] = 100
T	ADC 转换时间	-	1.2	1.5	μs	f _{HCLK} =32MHz,时钟源 为 HIRC LOWSP[2:0] = 101
T _{ADC}	ADC 投狭时间	-	1.5	1.9	μs	f _{HCLK} =32MHz,时钟源 为 HIRC LOWSP[2:0] = 110
		-	2.0	2.6	μs	f _{HCLK} =32MHz,时钟源 为 HIRC LOWSP[2:0] = 111

28.11 CMP 电气特性

(V_{DD} =3.3V, T_A = 25℃,除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
V _{CM}	输入电压范围	0	-	V_{DD}	V	
Vos	偏移电压	-	10	30	mV	
V _{HYS}	比较电压回差	-	40	-	mV	
I _{CMP}	比较器转换电流	-	-	100	μA	V _{DD} =3.3V
T _{CMP}	响应时间	-	-	2	μs	

28.12 OP 电气参数

(V_{DD} =3.3V, T_A = 25℃,除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
lop	PGA 工作电流	-	1	1.3	mA	
V _{OP}	OP工作电压	2.7	-	3.6	V	
Vopo	OP 输出电压	VSS+0.2	-	VDD-0.2	V	
Vсмі	共模输入电压	0	-	V _{DD}	V	
Voffset	失调电压	-1	-	1	mV	
I _{LOAD}	负载电流	-	420	-	μA	
RLOAD	负载电阻	-	8	-	kΩ	
CLOAD	负载电容	-	-	50	pF	
CMRR	共模抑制比	-	80	-	dB	
PSRR	电源抑制比	-	82	-	dB	
GBW	增益带宽积	-	20	-	MHz	
Slow rato	正摆率	-	12.4	-	V/us	
Siew rate	负摆率	-	15	-	V/us	
PM	相位裕度	60	-	-	0	CL = 50pF
		-5	-	5	%	同相 4 倍增益
ILOAD RLOAD CLOAD CMRR PSRR GBW Slew rate	PGA 同相放大误差	-5	-	5	%	同相8倍增益
		-5	-	5	%	同相 16 倍增益

		-5	-	5	%	同相 32 倍增益
		-5	-	5	%	反相 3 倍增益
PGA 反相放大误差	DCA 巨细斑土温差	-5	-	5	%	反相7倍增益
	PGA 风相成人庆左	-5	-	5	%	反相 15 倍增益
		-5	-	5	%	反相 31 倍增益
	PGA 同相放大 R2/R1 阻值 比	ı	30/10	-	kΩ/ kΩ	同相4倍增益
		1	70/10	-	kΩ/ kΩ	同相8倍增益
		-	150/10	-	kΩ/ kΩ	同相 16 倍增益
R _{PGA}		-	310/10	-	kΩ/ kΩ	同相 32 倍增益
NPGA	PGA 反相放大 R2/R1 阻值	-	30/10	-	kΩ/ kΩ	反相3倍增益
		-	70/10	-	kΩ/ kΩ	反相7倍增益
	比	-	150/10	-	kΩ/ kΩ	反相 15 倍增益
		-	310/10	-	kΩ/ kΩ	反相 31 倍增益
RΔ	R1 或 R2 的阻值误差	-25	-	+25	%	

说明:失调电压 Voffset、相位裕度 PM 由设计端保证

29 封装信息

LQFP64 (10X10) 外形尺寸 单位: 毫米

//r 口	mm(毫米)						
符号	最小	标准	最大				
Α	1.40	-	1.60				
A1	0.05	-	0.15				
A2	1.35	1.40	1.45				
b	0.17	-	0.23				
b1	0.17	-	0.26				
С	0.12	0.13	0.14				
D	11.80	12.00	12.20				
D1	9.90	10.00	10.10				
Е	11.80	12.00	12.20				
E1	9.90	10.00	10.10				
е	-	0.50 BSC	-				
L	0.45	-	0.75				
L1	-	1.00REF	-				
R	0.08	-	-				
R1	0.08	-	0.20				

	佐旦	mm(毫米)						
1	47.4	最小	标准	最大				
	θ	0°	3.5°	7 °				

30 版本记录

版本	记录	日期
V0.1	初版	2024年09月26日

31 声明

深圳市赛元微电子股份有限公司(以下简称赛元)保留随时对赛元产品、文档或服务进行变更、更正、增强、修改和改进的权利, 恕不另行通知。赛元认为提供的信息是准确可信的。本文档信息于 2024 年 9 月开始使用。在实际进行生产设计时,请参阅各产品最新的数据手册等相关资料。