
Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2009; month=2; day=11; hr=16; min=48; sec=0; ms=215;]

Validated By CRFValidator v 1.0.3

Application No: 10566540 Version No: 1.0

Input Set:

Output Set:

Started: 2009-01-23 12:49:33.770 **Finished:** 2009-01-23 12:49:35.952

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 182 ms

Total Warnings: 27
Total Errors: 1

No. of SeqIDs Defined: 35
Actual SeqID Count: 35

Error code **Error Description** 201 Ε Mandatory field data missing in <141> 213 Artificial or Unknown found in <213> in SEO ID (6) W Artificial or Unknown found in <213> in SEQ ID (7) W 213 Artificial or Unknown found in <213> in SEQ ID (8) 213 W 213 Artificial or Unknown found in <213> in SEQ ID (9) W W 213 Artificial or Unknown found in <213> in SEQ ID (10) W 213 Artificial or Unknown found in <213> in SEQ ID (11) W 402 Undefined organism found in <213> in SEQ ID (15) 402 W Undefined organism found in <213> in SEQ ID (16) 402 W Undefined organism found in <213> in SEQ ID (17) W 213 Artificial or Unknown found in <213> in SEQ ID (18) W 213 Artificial or Unknown found in <213> in SEQ ID (19) 213 Artificial or Unknown found in <213> in SEQ ID (20) W W 213 Artificial or Unknown found in <213> in SEQ ID (21) W 213 Artificial or Unknown found in <213> in SEQ ID (22) 213 Artificial or Unknown found in <213> W in SEQ ID (23) W 213 Artificial or Unknown found in <213> in SEQ ID (24) W 213 Artificial or Unknown found in <213> in SEQ ID (25) 213 Artificial or Unknown found in <213> W in SEQ ID (26) 213 Artificial or Unknown found in <213> in SEQ ID (27)

Input Set:

Output Set:

Started: 2009-01-23 12:49:33.770 **Finished:** 2009-01-23 12:49:35.952

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 182 ms

Total Warnings: 27
Total Errors: 1
No. of SeqIDs Defined: 35

Actual SeqID Count: 35

Err	or code	Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (28)
W	213	Artificial or Unknown found in <213> in SEQ ID (29)
W	213	Artificial or Unknown found in <213> in SEQ ID (30)
W	213	Artificial or Unknown found in <213> in SEQ ID (31) This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110>	The Government of the United States of America, as represented by the Secretary, Department of Health and Human Services, Office of Technology Transfer, National Institutes of Health Becerra, S. Patricia Notari, Luigi Laborda, Jorge Martinez, Julio Escribano	f									
<120>	PEDF-R RECEPTOR AND USES										
<130>	NIHA-0238										
<140>	10566540										
	2009-01-23										
(141)											
<150>	PCT/US2004/025560										
<151>	2004-08-05										
<150>	US 60/579,177										
<151>	2004-06-12										
<150>											
<151>	2003-08-07										
<160>	35										
<170>	PatentIn version 3.5										
<210>	1										
<211>	2122										
<212>	DNA										
<213>	Homo sapiens										
<400>	1										
ggcacga	aggg cggccccagt cagacgcagg cagccccaaa gcctgaacag gcagggccag	60									
acccago	cttc ttcgcctccg ccagcgggga ccccgagcta gagccgcagc gggacctgcc	120									
cggccc	ccgg ctccagcgag cgagcggcga gcaggcggct cacagaggcc tggccgccca	180									
cggaac	ccgg ggcccggcgg ccgccgccgc gatgtttccc cgcgagaaga cgtggaacat	240									
ctcgtt	cgcg ggctgcggct teeteggegt etactaegte ggcgtggeet eetgeeteeg	300									
cgagcad	cgcg cccttcctgg tggccaacgc cacgcacatc tacggcgcct cggccggggc	360									
gctcaco	ggec aeggegetgg teaeeggggt etgeetgggt gaggetggtg eeaagtteat	420									
tgaggta	atet aaagaggeee ggaageggtt eetgggeeee etgeaeeeet eetteaaeet	480									
ggtaaaq	gatc atccgcagtt tcctgctgaa ggtcctgcct gctgatagcc atgagcatgc	540									

cagtgggcgc ctgggcatct ccctgacccg cgtgtcagac ggcgagaatg tcattatatc 600

ccacttcaac tccaaggacg	agctcatcca	ggccaatgtc	tgcagcggtt	tcatccccgt	660
gtactgtggg ctcatccctc	cctccctcca	gggggtgcgc	tacgtggatg	gtggcatttc	720
agacaacctg ccactctatg	agcttaagaa	caccatcaca	gtgtcccct	tctcgggcga	780
gagtgacatc tgtccgcagg	acagctccac	caacatccac	gagctgcggg	tcaccaacac	840
cagcatccag ttcaacctgc	gcaacctcta	ccgcctctcc	aaggccctct	tecegeegga	900
gcccctggtg ctgcgagaga	tgtgcaagca	gggataccgg	gatggcctgc	gctttctgca	960
gcggaacggc ctcctgaacc	ggcccaaccc	cttgctggcg	ttgcccccg	cccgccccca	1020
cggcccagag gacaaggacc	aggcagtgga	gagcgcccaa	gcggaggatt	actcgcagct	1080
gccgggagaa gatcacatcc	tggagcacct	gcccgcccgg	ctcaatgagg	ccctgctgga	1140
ggcctgcgtg gagcccacgg	acctgctgac	caccctctcc	aacatgctgc	ctgtgcgtct	1200
ggccacggcc atgatggtgc	cctacacgct	gccgctggag	agcgctctgt	ccttcaccat	1260
ccgcttgctg gagtggctgc	ccgacgttcc	cgaggacatc	cggtggatga	aggagcagac	1320
gggcagcatc tgccagtacc	tggtgatgcg	cgccaagagg	aagctgggca	ggcacctgcc	1380
ctccaggctg ccggagcagg	tggagctgcg	ccgcgtccag	tcgctgccgt	ccgtgccgct	1440
gteetgegee geetaeagag	aggcactgcc	cggctggatg	cgcaacaacc	tctcgctggg	1500
ggacgcgctg gccaagtggg	aggagtgcca	gcgccagctg	ctgctcggcc	tcttctgcac	1560
caacgtggcc ttcccgcccg	aagctctgcg	catgcgcgca	cccgccgacc	cggctcccgc	1620
ccccgcggac ccagcatccc	cgcagcacca	gctggccggg	cctgcccct	tgctgagcac	1680
ccctgctccc gaggcccggc	ccgtgatcgg	ggccctgggg	ctgtgagacc	ccgaccctct	1740
cgaggaaccc tgcctgagac	gcctccatta	ccactgcgca	gtgagatgag	gggactcaca	1800
gttgccaaga ggggtctttg	ccgtgggccc	cctcgccagc	cactcaccag	ctgcatgcac	1860
tgagagggga ggtttccaca	ccctcccct	gggccgctga	ggccccgcgc	acctgtgcct	1920
taatetteee teeeetgtge	tgcccgagca	cctccccgc	ccctttactc	ctgagaactt	1980
tgcagetgee ettecetece	cgtttttcat	ggcctgctga	aatatgtgtg	tgaagaatta	2040
tttattttcg ccaaagcaca	tgtaataaat	gctgcagccc	aaaaaaaaa	aaaaaaaaaa	2100
aaaaaaaaaa aaaaaaaaaa	aa				2122

<210> 2

<211> 1515

<212> DNA

<400> 2

<400/ Z						
atgtttcccc	gcgagaagac	gtggaacatc	tcgttcgcgg	gctgcggctt	cctcggcgtc	60
tactacgtcg	gcgtggcctc	ctgcctccgc	gagcacgcgc	ccttcctggt	ggccaacgcc	120
acgcacatct	acggcgcctc	ggccggggcg	ctcacggcca	cggcgctggt	caccggggtc	180
tgcctgggtg	aggctggtgc	caagttcatt	gaggtatcta	aagaggcccg	gaagcggttc	240
ctgggccccc	tgcacccctc	cttcaacctg	gtaaagatca	tccgcagttt	cctgctgaag	300
gtectgectg	ctgatagcca	tgagcatgcc	agtgggcgcc	tgggcatctc	cctgacccgc	360
gtgtcagacg	gcgagaatgt	cattatatcc	cacttcaact	ccaaggacga	gctcatccag	420
gccaatgtct	gcagcggttt	cateceegtg	tactgtgggc	tcatccctcc	ctccctccag	480
ggggtgcgct	acgtggatgg	tggcatttca	gacaacctgc	cactctatga	gcttaagaac	540
accatcacag	tgtcccctt	ctcgggcgag	agtgacatct	gtccgcagga	cagctccacc	600
aacatccacg	agctgcgggt	caccaacacc	agcatccagt	tcaacctgcg	caacctctac	660
cgcctctcca	aggecetett	cccgccggag	cccctggtgc	tgcgagagat	gtgcaagcag	720
ggataccggg	atggcctgcg	ctttctgcag	cggaacggcc	tcctgaaccg	gcccaacccc	780
ttgctggcgt	tgcccccgc	ccgccccac	ggcccagagg	acaaggacca	ggcagtggag	840
agcgcccaag	cggaggatta	ctcgcagctg	ccgggagaag	atcacatcct	ggagcacctg	900
cccgcccggc	tcaatgaggc	cctgctggag	gcctgcgtgg	agcccacgga	cctgctgacc	960
accctctcca	acatgctgcc	tgtgcgtctg	gccacggcca	tgatggtgcc	ctacacgctg	1020
ccgctggaga	gcgctctgtc	cttcaccatc	cgcttgctgg	agtggctgcc	cgacgttccc	1080
gaggacatcc	ggtggatgaa	ggagcagacg	ggcagcatct	gccagtacct	ggtgatgcgc	1140
gccaagagga	agctgggcag	gcacctgccc	tccaggctgc	cggagcaggt	ggagctgcgc	1200
cgcgtccagt	cgctgccgtc	cgtgccgctg	tcctgcgccg	cctacagaga	ggcactgccc	1260
ggctggatgc	gcaacaacct	ctcgctgggg	gacgcgctgg	ccaagtggga	ggagtgccag	1320
cgccagctgc	tgctcggcct	cttctgcacc	aacgtggcct	tecegeeega	agctctgcgc	1380
atgcgcgcac	ccgccgaccc	ggctcccgcc	cccgcggacc	cagcatcccc	gcagcaccag	1440
ctggccgggc	ctgcccctt	gctgagcacc	cctgctcccg	aggcccggcc	cgtgatcggg	1500
gccctggggc	tgtga					1515

```
<211> 504
<212> PRT
<213> Homo sapiens
<400> 3
Met Phe Pro Arg Glu Lys Thr Trp Asn Ile Ser Phe Ala Gly Cys Gly
  5 10 15
Phe Leu Gly Val Tyr Tyr Val Gly Val Ala Ser Cys Leu Arg Glu His
              25 30
       20
Ala Pro Phe Leu Val Ala Asn Ala Thr His Ile Tyr Gly Ala Ser Ala
    35 40 45
Gly Ala Leu Thr Ala Thr Ala Leu Val Thr Gly Val Cys Leu Gly Glu
         55 60
Ala Gly Ala Lys Phe Ile Glu Val Ser Lys Glu Ala Arg Lys Arg Phe
         70
Leu Gly Pro Leu His Pro Ser Phe Asn Leu Val Lys Ile Ile Arg Ser
        85 90 95
Phe Leu Leu Lys Val Leu Pro Ala Asp Ser His Glu His Ala Ser Gly
              105
       100
                                    110
Arg Leu Gly Ile Ser Leu Thr Arg Val Ser Asp Gly Glu Asn Val Ile
    115 120 125
Ile Ser His Phe Asn Ser Lys Asp Glu Leu Ile Gln Ala Asn Val Cys
  130
        135
                      140
Ser Gly Phe Ile Pro Val Tyr Cys Gly Leu Ile Pro Pro Ser Leu Gln
145 150 155 160
Gly Val Arg Tyr Val Asp Gly Gly Ile Ser Asp Asn Leu Pro Leu Tyr
                 170
          165
Glu Leu Lys Asn Thr Ile Thr Val Ser Pro Phe Ser Gly Glu Ser Asp
                    185
        180
                                    190
```

Ile Cys Pro Gln Asp Ser Ser Thr Asn Ile His Glu Leu Arg Val Thr
195 200 205

Asn	Thr 210	Ser	Ile	Gln	Phe	Asn 215	Leu	Arg	Asn	Leu	Tyr 220	Arg	Leu	Ser	Lys
Ala 225	Leu	Phe	Pro	Pro	Glu 230	Pro	Leu	Val	Leu	Arg 235	Glu	Met	Cys	Lys	Gln 240
Gly	Tyr	Arg	Asp	Gly 245	Leu	Arg	Phe	Leu	Gln 250	Arg	Asn	Gly	Leu	Leu 255	Asn
Arg	Pro	Asn	Pro 260	Leu	Leu	Ala	Leu	Pro 265	Pro	Ala	Arg	Pro	His 270	Gly	Pro
Glu	Asp	Lys 275	Asp	Gln	Ala	Val	Glu 280	Ser	Ala	Gln	Ala	Glu 285	Asp	Tyr	Ser
Gln	Leu 290	Pro	Gly	Glu	Asp	His 295	Ile	Leu	Glu	His	Leu 300	Pro	Ala	Arg	Leu
Asn 305	Glu	Ala	Leu	Leu	Glu 310	Ala	Cys	Val	Glu	Pro 315	Thr	Asp	Leu	Leu	Thr 320
Thr	Leu	Ser	Asn	Met 325	Leu	Pro	Val	Arg	Leu 330	Ala	Thr	Ala	Met	Met 335	Val
Pro	Tyr	Thr	Leu 340	Pro	Leu	Glu	Ser	Ala 345	Leu	Ser	Phe	Thr	Ile 350	Arg	Leu
Leu	Glu	Trp 355	Leu	Pro	Asp	Val	Pro 360	Glu	Asp	Ile	Arg	Trp 365	Met	Lys	Glu
Gln	Thr 370	Gly	Ser	Ile	Суз	Gln 375	Tyr	Leu	Val	Met	Arg 380	Ala	Lys	Arg	Lys
Leu 385	Gly	Arg	His	Leu	Pro 390	Ser	Arg	Leu	Pro	Glu 395	Gln	Val	Glu	Leu	Arg 400
Arg	Val	Gln	Ser	Leu 405	Pro	Ser	Val	Pro	Leu 410	Ser	Cys	Ala	Ala	Tyr 415	Arg
Glu	Ala	Leu	Pro 420	Gly	Trp	Met	Arg	Asn 425	Asn	Leu	Ser	Leu	Gly 430	Asp	Ala

435 440 445	
Cys Thr Asn Val Ala Phe Pro Pro Glu Ala Leu Arg Met Arg Ala Pro 450 455 460	
Ala Asp Pro Ala Pro Ala Pro Ala Asp Pro Ala Ser Pro Gln His Gln 465 470 475 480	
Leu Ala Gly Pro Ala Pro Leu Leu Ser Thr Pro Ala Pro Glu Ala Arg 485 490 495	
Pro Val Ile Gly Ala Leu Gly Leu 500	
<210> 4 <211> 404 <212> DNA <213> Homo sapiens	
<400> 4 cageggaacg geeteetgaa eeggeeeaae eeettgetgg egttgeeeee egeeegeeee	60
cacggcccag aggacaagga ccaggcagtg gagagcgccc aagcggagga ttactcgcag	120
ctgccgggag aagatcacat cctggagcac ctgcccgccc ggctcaatga ggccctgctg	180
gaggeetgeg tggageeeae ggaeetgetg accaecetet ceaacatget geetgtgegt	240
ctggccacgg ccatgatggt gccctacacg ctgccgctgg agagcgctct gtccttcacc	300
atccgcttgc tggagtggct gcccgacgtt cccgaggaca tccggtggat gaaggagcag	360
acgggcagca tctgccagta cctggtgatg cgcgccaaga ggaa	404
<210> 5 <211> 134 <212> PRT <213> Homo sapiens	
<400> 5	
Gln Arg Asn Gly Leu Leu Asn Arg Pro Asn Pro Leu Leu Ala Leu Pro 1 5 10 15	

Leu Ala Lys Trp Glu Glu Cys Gln Arg Gln Leu Leu Gly Leu Phe

Ala Gln Ala Glu Asp Tyr Ser Gln Leu Pro Gly Glu Asp His Ile Leu

Pro Ala Arg Pro His Gly Pro Glu Asp Lys Asp Gln Ala Val Glu Ser 20 25 30

35 40 45

Glu His Leu Pro Ala Arg Leu Asn Glu Ala Leu Leu Glu Ala Cys Val 50 55 60

Glu Pro Thr Asp Leu Leu Thr Thr Leu Ser Asn Met Leu Pro Val Arg
65 70 75 80

Leu Ala Thr Ala Met Met Val Pro Tyr Thr Leu Pro Leu Glu Ser Ala 85 90 95

Leu Ser Phe Thr Ile Arg Leu Leu Glu Trp Leu Pro Asp Val Pro Glu
100 105 110

Asp Ile Arg Trp Met Lys Glu Gln Thr Gly Ser Ile Cys Gln Tyr Leu 115 120 125

Val Met Arg Ala Lys Arg 130

<210> 6

<211> 29

<212> DNA

<213> Artificial

<220>

<223> Primer 1 for the construction of p12

<400> 6

caccatgcag cggaacggcc tcctgaacc

<210> 7

<211> 25

<212> DNA

<213> Artificial

<220>

<223> Primer 2 for the construction of p12

<400> 7

ctagttcctc ttggcgcgca tcacc

29

25

<210> 8

<211> 22

<212> DNA

<213> Artificial

<220>

<223>	Primer 3 for the construction of p12	
<400>	8	
	cttg gegegeatea ee	22
_		
<210>	9	
<211>	25	
<212>		
<213>	Artificial	
<2205		
<220>	Drimer 11 few the genetrustion of D1 supression vestors	
\2232	Primer 11 for the construction of R1 expression vectors	
<400>	9	
	gttt cecegegaga agaeg	25
•		
<210>	10	
<211>	25	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Primer 12 for the construction of R1 expression vectors	
<400>	10	
	cccc agggccccga tcacg	25
ccacag	agggeoegga ceaeg	20
<210>	11	
<211>	22	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Primer 13 for the construction of R1 expression vectors	
<400>	11	
	cagg geceegatea eg	22
cagece		
<210>	12	
<211>	1965	
<212>	DNA	
<213>	Mus musculus	
<400>	12	60
ggagaco	ccca aggtatcgag actgcgggac ccactgcccg caggacatcg agtcacgatg	60
ttccca	aggg agaccaagtg gaacatetea ttegetgget geggetteet eggggtetae	120
ccccg	aggg agaceangeg gaacacear coegeogger geggeeeeer eggggeeeae	
cacatto	ggcg tggcetectg ceteegtgag caegegeeet teetggtgge caaegeeact	180
•		
cacatct	tacg gageetegge aggggegete acegeeacag egetggteae tggggeetge	240
ctgggt	gaag caggtgccaa cattattgag gtgtccaagg aggcccggaa gcggttcctg	300

ggtcctctgc	atccctcctt	caacctggtg	aagaccatcc	gtggctgtct	actaaagacc	360	
ctgcctgctg	attgccatga	gcgcgccaat	ggacgcctgg	gcatctccct	gactcgtgtt	420	
tcagacggag	agaacgtcat	catatcccac	tttagctcca	aggatgagct	catccaggcc	480	
aatgtctgca	gcacatttat	cccggtgtac	tgtggcctca	ttcctcctac	cctccaaggg	540	
gtgcgctatg	tggatggcgg	catttcagac	aacttgccac	tttatgagct	gaagaatacc	600	
atcacagtgt	ccccattctc	aggcgagagt	gacatctgcc	ctcaggacag	ctccaccaac	660	
atccacgagc	ttcgcgtcac	caacaccagc	atccagttca	accttcgcaa	tctctaccgc	720	
ctctcgaagg	ctctcttccc	gccagagccc	atggtcctcc	gagagatgtg	caaacagggc	780	
tacagagatg	gacttcgatt	ccttaggagg	aatggcctac	tgaaccaacc	caaccctttg	840	
ctggcactgc	ccccagttgt	ccccaggaa	gaggatgcag	aggaagctgc	tgtggtggag	900	
gagagggctg	gagaggagga	tcaattgcag	ccttatagaa	aagatcgaat	tctagagcac	960	
ctgcctgcca	gactcaatga	ggccctgctg	gaggcctgtg	tggaaccaaa	ggacctgatg	1020	
accacccttt	ccaacatgct	accagtgcgc	ctggcaacgg	ccatgatggt	gccctatact	1080	
ctgccgctgg	agagtgcagt	gtccttcacc	atccgcttgt	tggagtggct	gcctgatgtc	1140	
cctgaagata	tccggtggat	gaaagagcag	acgggtagca	tctgccagta	tctggtgatg	1200	
agggccaaga	ggaaattggg	tgaccatctg	ccttccagac	tgtctgagca	ggtggaactg	1260	
cgacgtgccc	agtctctgcc	ctctgtgcca	ctgtcttgcg	ccacctacag	tgaggcccta	1320	
cccaactggg	tacgaaacaa	cctctcactg	ggggacgcgc	tggccaagtg	ggaagaatgc	1380	
cagcgtcagc	tactgctggg	tctcttctgc	accaatgtgg	ccttcccgcc	ggatgccttg	1440	
cgcatgcgcg	cacctgccag	ccccactgcc	gcagatcctg	ccaccccaca	ggatccacct	1500	
ggcctcccgc	cttgctgaga	atcaccattc	ccacatcgcc	cggctaccag	ccaagctcca	1560	
agttgtcctg	ccccactaag	aggagccccg	gggtggaaca	agateetgte	tgccccggct	1620	
ctccccctta	catgctgtgg	aatgaggaca	taggaccctg	cacagctgca	agtgggcttt	1680	
cgatgtgaaa	cctttcacca	gccactcact	atgctactcc	tggtggggag	ggatggggag	1740	
tegeeeteee	ccggagccca	cagageeete	ccccgtcacg	tcacctgtgc	cttactcctg	1800	
cccaccacct	tttcagtgca	gggtcagtct	taagaactcc	acatctgctg	ctgctccctg	1860	
gtgtccaagt	ttccttgcag	agtgtgtgaa	gaattattta	tttttgccaa	agcagatcta	1920	
ataaaagcca	cagctcagct	tctgccttcc	tcacttctgc	atgct		1965	

<210> 13

<211> 1461

<212> DNA

<213> Mus musculus

<400> 13

atgttcccga gggaga	.ccaa gtggaacatc	tcattcgctg	gctgcggctt	cctcggggtc	60
taccacattg gcgtgg	cctc ctgcctccgt	gagcacgcgc	ccttcctggt	ggccaacgcc	120
actcacatct acggag	cctc ggcaggggcg	ctcaccgcca	cagcgctggt	cactggggcc	180
tgcctgggtg aagcag	gtgc caacattatt	gaggtgtcca	aggaggcccg	gaagcggttc	240
ctgggtcctc tgcatc	cctc cttcaacctg	gtgaagacca	tccgtggctg	tctactaaag	300
accctgcctg ctgatt	gcca tgagcgcgcc	aatggacgcc	tgggcatctc	cctgactcgt	360
gtttcagacg gagaga	acgt catcatatcc	cactttagct	ccaaggatga	gctcatccag	420
gccaatgtct gcagca	catt tatcccggtg	tactgtggcc	tcattcctcc	taccctccaa	480
ggggtgcgct atgtgg	atgg cggcatttca	gacaacttgc	cactttatga	gctgaagaat	540
accatcacag tgtccc	catt ctcaggcgag	agtgacatct	gccctcagga	cagctccacc	600
aacatccacg agcttc	gcgt caccaacacc	agcatccagt	tcaaccttcg	caatctctac	660
cgcctctcga aggctc	tctt cccgccagag	cccatggtcc	tccgagagat	gtgcaaacag	720
ggctacagag atggac	ttcg attccttagg	aggaatggcc	tactgaacca	acccaaccct	780
ttgctggcac tgcccc	cagt tgtcccccag	gaagaggatg	cagaggaagc	tgctgtggtg	840
gaggagaggg ctggag	agga ggatcaattg	cagccttata	gaaaagatcg	aattctagag	900
cacctgcctg ccagac	tcaa tgaggccctg	ctggaggcct	gtgtggaacc	aaaggacctg	960
atgaccaccc tttcca	acat gctaccagtg	cgcctggcaa	cggccatgat	ggtgccctat	1020
actctgccgc tggaga	gtgc agtgtccttc	accatccgct	tgttggagtg	gctgcctgat	1080
gtccctgaag atatcc	ggtg gatgaaagag	cagacgggta	gcatctgcca	gtatctggtg	1140
atgagggcca agagga	aatt gggtgaccat	ctgccttcca	gactgtctga	gcaggtggaa	1200
ctgcgacgtg cccagt	ctct gccctctgtg	ccactgtctt	gcgccaccta	cagtgaggcc	1260
ctacccaact gggtac	gaaa caacctctca	ctgggggacg	cgctggccaa	gtgggaagaa	1320
tgccagcgtc agctac	tgct gggtctcttc	tgcaccaatg	tggccttccc	gccggatgcc	1380
ttgcgcatgc gcgcac	ctgc cagccccact	gccgcagatc	ctgccacccc	acaggatcca	1440
cetggeetee egeett	gctg a				1461

<210> 14 <211> 486 <212> PRT <213> Mus musculus

<400> 14

Met Phe Pro Arg Glu Thr Lys Trp Asn Ile Ser Phe Ala Gly Cys Gly
1 5 10 15

Phe Leu Gly Val Tyr His Ile Gly Val Ala Ser Cys Leu Arg Glu His 20 25 30