ECON 425 HW8

February 29, 2024

Due Thu, Mar 7, 6pm in Bruinlearn

Problem 1 Use the dataset 'marketing-campaign.csv' uploaded on Canvas (description can be found here: https://archive.ics.uci.edu/dataset/222/bank+marketing). Convert categorical variables of you choice (you need not use all of them) into dummies and allocate a third of your data to the testing sample.

- (i) First, suppose each tree in a random forest picks a random subset of $m = \sqrt{p}$ features at each split, where p is the number of features in the data. On the training sample, fit the random forest to predict subscription to a term deposit. Vary the number of trees in the range $\{1, 2, 3, 4, 5, 10, 20, 50\}$. Plot accuracy, precision, recall, and F1 score on the testing sample against the number of trees.
- (ii) Repeat (i) with bagging, i.e. m = p.
- (iii) Pick the best-performing model and use the feature_importances_ attribute of Random-ForestClassifier to evaluate importance of different features. Is there a clearly dominating feature? Explain.
- (iv) Beyond sampling variation, is there any other explanation for the alternating pattern in some performance metrics arising when the number of trees is very small?

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.metrics import accuracy_score, precision_score, recall_score,
      ⇔f1_score
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.model_selection import train_test_split
     import warnings
     warnings.filterwarnings('ignore')
[2]: df=pd.read_csv('/Users/sandinatatu/Desktop/marketing_campaign.csv',sep=';')
     catcols=['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'day', 'month', 'pouto
     df=pd.get_dummies(df, columns=catcols)
[3]: X=df.drop('y', axis=1).copy()
     y=df[['y']]
     X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.33,_
      →random_state=0)
     n_trees=[1,2,3,4,5,10,20,50]
     n_features=[int(np.sqrt(X.shape[1])), X.shape[1]]
[4]: for feature in n_features:
         print(f"We are at max_features {feature}")
         accuracies, precisions, recalls, f1s=[],[],[],[]
         for tree in n_trees:
             print(f"We are considering {tree} trees")
             rf=RandomForestClassifier(max_features=feature, n_estimators=tree, u
      →random_state=0).fit(X_train, y_train)
             y_pred=rf.predict(X_test)
             accuracies.append(accuracy_score(y_test, y_pred))
```

```
precisions.append(precision_score(y_test, y_pred, pos_label='yes'))
        recalls.append(recall_score(y_test, y_pred, pos_label='yes'))
        f1s.append(f1_score(y_test, y_pred, pos_label='yes'))
        frame=pd.DataFrame({'Importance':rf.feature_importances_}, index=list(X.
  ⇔columns))
        print(frame.sort_values(by='Importance', ascending=False))
    plt.plot(n_trees, accuracies)
    plt.plot(n_trees, precisions)
    plt.plot(n_trees, recalls)
    plt.plot(n_trees, f1s)
    plt.xlabel("Number of trees")
    plt.legend(['Accuraccy','Precision','Recall','F1'])
    plt.title(f"Scores for {feature} max_features")
    plt.show()
We are at max_features 9
We are considering 1 trees
                  Importance
duration
                    0.264673
poutcome_success
                    0.095791
balance
                    0.072229
                    0.069830
age
campaign
                    0.035303
day_27
                    0.001931
default_no
                    0.001928
default_yes
                    0.000852
job_unknown
                    0.000729
                    0.000573
day_31
[81 rows x 1 columns]
We are considering 2 trees
```

	0
	Importance
duration	0.254467
balance	0.078974
age	0.073560
poutcome_success	0.058036
campaign	0.037304
•••	•••
day_24	0.001920
default_no	0.001252
default_yes	0.001054
day_31	0.000797
job_unknown	0.000694

W	е	are	consid	dering	3	trees
---	---	-----	--------	--------	---	-------

	Importance
duration	0.251260
balance	0.081173
age	0.076500
poutcome_success	0.069186
campaign	0.035508
•••	•••
job_housemaid	0.002216
default_no	0.001243
default_yes	0.001120
day_31	0.000885
job_unknown	0.000855

We are considering 4 trees

	Importance
duration	0.255956
balance	0.079927
age	0.074760
poutcome_success	0.058347
pdays	0.039236
	•••
job_housemaid	0.002215
default_no	0.001323
default_yes	0.001158
day_31	0.000911
job_unknown	0.000805

[81 rows x 1 columns]

We are considering 5 trees

mportance 0.256133
0.080618
0.074960
0.050996
0.036250
•••
0.002342
0.001380
0.001059
0.000912
0.000880

[81 rows x 1 columns]

We are considering 10 trees
Importance

duration 0.250900

balance	0.081934
age	0.079230
poutcome_success	0.044083
pdays	0.040527
•••	•••
job_housemaid	0.002504
default_no	0.001468
default_yes	0.001119
day_31	0.001019
job_unknown	0.000887

We are considering 20 trees

	0
	${\tt Importance}$
duration	0.252402
balance	0.082086
age	0.080178
pdays	0.041009
poutcome_success	0.040894
•••	•••
job_housemaid	0.002692
default_no	0.001223
default_yes	0.001156
day_31	0.001078
job_unknown	0.000916

[81 rows x 1 columns]

We are considering 50 trees

	•
	Importance
duration	0.250921
balance	0.082004
age	0.081320
poutcome_success	0.041847
pdays	0.037019
•••	•••
day_24	0.002518
day_31	0.001311
default_yes	0.001098
job_unknown	0.001067
default_no	0.001061

[81 rows x 1 columns]

We	are	at	max	_feat	ure	es	81	
We	are	COI	nside	ering	g 1	tr	ee	s
					Imp	por	ta	nce
dur	ratio	n			(0.2	274	813
ba]	Lance	9			(0.0	93	819
pou	ıtcon	ne_s	succe	ess	(0.0	91	346
age	Э				(0.0	75	659
pda	ays				(0.0	31	564
•••								
def	fault	_у	es		(0.0	000	734
day	7_31				(0.0	000	580
def	ault	_no)		(0.0	000	554
job	_unk	not	√n		(0.0	000	450
pot	ıtcon	ne_ı	ınkno	own	(0.0	000	446

[81 rows x 1 columns]
We are considering 2 trees
Importance
duration 0.267694
poutcome_success 0.094011

balance	0.087792
age	0.076685
pdays	0.036679
•••	
poutcome_unknown	0.001317
job_unknown	0.001060
day_31	0.000763
default_yes	0.000676
default_no	0.000277

We are considering 3 trees

	Importance
duration	0.268442
poutcome_success	0.095686
balance	0.083181
age	0.079971
pdays	0.037954
	•••
poutcome_unknown	0.001195
default_yes	0.001184
job_unknown	0.000712
day_31	0.000696
default_no	0.000368

[81 rows x 1 columns]

We are considering 4 trees

	Importance
duration	0.268039
poutcome_success	0.095112
balance	0.083130
age	0.081234
pdays	0.036710
•••	•••
poutcome_unknown	0.001614
default_yes	0.001163
job_unknown	0.000788
default_no	0.000607
day_31	0.000598

[81 rows x 1 columns]

We are considering $5\ \mathrm{trees}$

	•
	Importance
duration	0.268928
poutcome_success	0.096801
age	0.082590
balance	0.082309
pdays	0.038978

poutcome_unknown	0.001722
default_yes	0.001162
default_no	0.000833
job_unknown	0.000790
day_31	0.000735
F04 4 7	-
[81 rows x 1 column	
We are considering	
	Importance
duration	0.266941
poutcome_success	0.096939
balance	0.083348
age	0.080388
pdays	0.038788
poutcome_unknown	0.001859
default_yes	0.001322
day_31	0.001057
job_unknown	0.000735
default_no	0.000700
[81 rows x 1 column	
We are considering	
	Importance
duration	0.267467
poutcome_success	0.095287
balance	0.085369
age	0.079069
pdays	0.038033
•••	•••
poutcome_unknown	0.001868
day_31	0.001313
default_yes	0.001220
job_unknown	0.000928
default_no	0.000666
F0.4	-
[81 rows x 1 column	
We are considering	
	Importance
duration	0.267728
poutcome_success	0.094582
balance	0.085523
age	0.077207
pdays	0.038924
•••	•••

0.001971

0.001460

poutcome_unknown

day_31

 default_yes
 0.000996

 job_unknown
 0.000884

 default_no
 0.000841

[81 rows x 1 columns]

[]: