REPRESENTACIONES

E = Aristas / V = Vertices

Matriz de incidencia

	Α	В	CI	D	Е	F
a1	1	1	0	0	0	0
a2	1	0	1	0	0	0
а3	0	1	1	0	0	0
a4	0	1	0	0	1	0
a5	0	0	0	1	1	0
a6	0	0	0	1	0	1
a7	1	0	0	1	0	0

Costos

- ¿En Espacio?		O(V*E)
- ¿Agregar un vértice?		O(V*E)
 ¿Agregar una arista? 		O(V*E)
- ¿Ver si dos vértices son	adyacentes?	O(E)
- ¿Obtener los adyacente	es de un vértice?	O(E) I

Matriz de incidencia (II) (con pesos y dirigido)

	Α	В	C	D	Е
a1	-3	3	0	0	0
a2	0	-1	0	1	0
а3	0	-5	0	0	5
a4	0	0	-6	0	6
a5	0	-6	6	0	0
a6	0	0	0	-7	7

Matriz de Adyacencia

	Α	В	C	D	Ε	F
Α	0	1	1	1	0	0
В	1	0	1	0	1	0
С	1	1	0	0	0	0
D	1	0	0	0	1	1
E	0	1	0	1	0	0
F	0	0	0	1	0	0

Matriz de Adyacencia (II) (con pesos y dirigido)

	Α	В	C	D	Ε
Α	0	3	0	0	0
В	0	0	6	1	5
C	0	0	0	0	6
D	0	0	0	0	7
Ε	0	0	0	0	0

Costos

-	¿En Espacio?	O(V^2)
-	¿Agregar un vértice?	O(V^2)
-	¿Agregar una arista?	O(1)
-	¿Ver si dos vértices son adyacentes?	O(1)
-	¿Obtener los adyacentes de un vértice?	O(V)

Listas de adyacencia

Costos

-	¿En Espacio?	O(V+E)
-	¿Agregar un vértice?	O(1) u O(V)
-	¿Agregar una arista?	O(V)
-	¿Ver si dos vértices son adyacentes?	O(V)
-	¿Obtener los adyacentes de un vértice?	O(V)

Matriz de Adyacencia ++ Listas de adyacencia (II)

Cuánto cuesta:

-	¿En Espacio?		O(V+E)
	¿Agregar un vértice?	I	O(1)
-	¿Agregar una arista?		O(1)
-	¿Ver si dos vértices son adyacentes?		O(1)
-	¿Obtener los adyacentes de un vértice	?	O(1) u O(V

(Diccionario de diccionario)

RECORRIDOS

En Anchura: BFS (dirigido y no dirigido)

Codigo Complejidad = O(V+E)

```
def bfs(grafo, origen):
    visitados = set()
                                      while !q.esta_vacia():
                                           v = q.desencolar()
    padres = {}
    @rden = {}
                                           for w in grafo.adyacentes(v):
    q = Cola()
                                                if w not in visitados:
    visitados.agregar(origen)
                                                     visitados.agregar(w)
    padres[origen] = None
                                                     padre[w] = v
    orden[origen] = 0
                                                     orden[w] = orden[v] + 1
    q.encolar(origen)
                                                     q.encolar(w)
                                      return padre, orden
```

En Profundidad: DFS

Codigo Complejidad = O(V+E)

ORDEN TOPOLOGICO

Tareas a realizar en general (algunas deben hacerse antes que otras) Se usan algoritmos de tipo BFS y DFS para resolver los distintos problemas

Algoritmo de Tarjan

Usos

Componentes Fuertemente Conexas

Codigo

```
def cfc(grafo, v, visitados, pila, apilados, orden, mas_bajo, cfcs, *indice):
      visitados.add(v)
      pila.apilar(v)
      apilados.add(v)
      Mas_bajo[v] = orden[v]
      for w in grafo.adyacentes(v):
            if w not in visitados:
                  orden[w] = *indice + 1
                  *indice++
                  cfc(grafo, w, visitados, pila, apilados, orden, mas_bajo, cfcs)
                  mas_bajo[v] = min(mas_bajo[v], mas_bajo[w])
            else if w in apilados:
                  mas_bajo[v] = min(mas_bajo[v], orden[w])
      if mas_bajo[v] == orden[v]:
            nueva_cfc = []
            do:
                  w = pila.desapilar()
                  apilados.remove(w)
                  nueva_cfc.append(w)
            while w != v
            cfcs.append(nueva_cfc)
```

Complejidad = O(V+E)

CAMINOS MINIMOS

- Grafo no pesado BFS (puede ser a un destino especifico o hacia todos los vertices)
- Grafos pesados Algoritmo de Dijkstra → Complejidad = O(E Log V)
 Una modificación sobre BFS
 Vamos a usar un Heap de minimos + actualizar distancias

```
(dirigido y no dirigido)
Codigo
                def camino_minimo(grafo, origen):
                     dist = \{\}
                     padre = {}
                     for v in grafo:
                                                                                    Grafo conexo
                          distancia[v] = infinito
                     dist[origen] = 0
                     padre[origen] = None
                     q = heap_crear()
                                                                                   Pesos Positivos
                     q.encolar(origen, 0)
                     while not q.esta_vacia():
                          v = q.desencolar()
                          for w in grafo.adyacentes(v):
                                                                                   Se puede usar para un
                               if dist[v] + grafo.peso_union(v, w) < dist[w]:</pre>
                                    dist[w] = dist[v] + grafo.peso_union(v, w)
                                                                                            vertice en particular
                                    padre[w] = v
                                    q.encolar(w, dist[w]) # o: q.actualizar(w, dist[w])
                     return padre, distancia
```

• Grafos dirigidos con pesos negativos - Algoritmo de Bellman-Ford

```
Complejidad = O(V * E)
                 def camino_minimo_bf(grafo, origen):
Codigo
                       dist = \{\}
                       padre = {}
                       for v in grafo:
                            distancia[v] = infinito
                       dist[origen] = 0
                       padre[origen] = None
                       aristas = obtener_aristas(grafo)
                       for i in range(len(grafo)):
                            for v, w, peso in aristas:
                                  if dist[v] + peso < dist[w]:</pre>
                                        padre[w] = v
                                        dist[w] = dist[v] + peso
                       for v, w, peso in aristas:
                            if dist[v] + peso < dist[w]:
                                  return None # Hay un ciclo negativo (lanzar excep)
                       return padre, dist
```

ARBOLES DE TENDIDO MINIMO

- Un grafo con los mismos vertices, con la minima cantidad de aristas para que se mantenga conexo
- MST Algoritmo de Prim

Pasos Complejidad = O(E Log V)

- 1. Comienza en un vértice aleatorio, encola en un heap todas sus aristas.
- 2. El vértice origen queda como visitado
- Mientras el heap no está vacío, saca una arista.
- Si ambos vértices de la arista fueron visitados, se descarta la arista (formaría un ciclo).
- Caso contrario, se agrega la arista al árbol, y se encolan todas las aristas del nuevo vértice visitado.
- 6. Volvemos al paso 3.

```
def mst_prim(grafo):
                                                   Codigo
     vertice = grafo.vertice_aleatorio()
     visitados = set()
     visitados.agregar(vertice)
     q = heap_crear()
     arbol = grafo_crear(grafo.obtener_vertices())
     for w in grafo.adyacentes(v):
          q.encolar((v, w) , grafo.peso_arista(v, w))
     while not q.esta_vacia():
          (v, w) = q.desencolar()
          if w in visitados:
                continue
          arbol.agregar_arista(v, w, grafo.peso_arista(v, w))
          visitados.agregar(w)
          for u in grafo.adyacentes(w):
                if u not in visitados: q.encolar((w, u), grafo.peso_arista(w, u))
     return arbol
```

MST - Algoritmo de Kruskal

Se usa el TDA UnionFind ("Todo O(1)")

return arbol

Codigo

Pasos

- 1. Ordenamos las aristas de menor a mayor
- Por cada arista (en ese orden), si los vértices no están en una misma componente conexa (dentro del árbol), agregamos la arista, y ahora ambos vértices están en la misma componente conexa.

```
Complejidad = O(E Log V)
```