

Deep Learning

Introduction to Gradient Descent

Tuesday 29th November

Dr. Nicholas Cummins

Supervised Learning

- Transforming one dataset into another
- Taking what you know as input and transforming it into what you want to know at the output
- Input: observable, recordable, and knowable data
- Output: data for logical analysis

Supervised parametric learning

- A learning model that summarizes data with a set of parameters of fixed size
 - Independent of the number of training examples
- Such algorithms involve two steps:
 - 1. Select a form for the function
 - 2. Learn the coefficients for the function from the training data
- Example simple linear regression

$$b_o + b_1 x_1 + b_2 x_2 = y$$

Supervised parametric learning analogy:

- Machine with a fixed number of knobs
- Position of knobs indicates how to process the data
- Processing transforms input data into an output prediction
- Learning is accomplished by tuning the knobs

- Key steps in supervised parametric learning
 - Step 1: Predict
 - Gather data, send through machine, make a prediction
 - Step 2: Compare with truth
 - Compare the prediction with the actual score

Prediction: 98% > Truth: 0%

- Step 3: Learn the pattern
 - Adjust the knobs to make a more accurate prediction
 - Considers the input data, and how much the models prediction missed by
 - Each knob represents the prediction's sensitivity to the different types of input data

Compare

Prediction: 98% > Truth: 0%

Prediction with a single network

Simple predictions

- One input data point, one output prediction
- Build a network with one single knob (the weight), to learn a mapping to one single output

Prediction with a single network

Key steps

- 1) Define network
- 2) Feed input value into network
- 3) Multiply input value by weight
- 4) Output Prediction

```
weight = 0.1
def neural_network(input, weight):
    prediction = input * weight
    return prediction

number_of_offsides = [8.5, 9.5, 10, 9]
input = number_of_offsides[0]
pred = neural_network(input, weight)
print(pred)
```


Prediction with a single network

What is a prediction?

- The output of the network, given the current input data
- Is this prediction always right?
 - Of course not, neural networks make mistakes
 - During training, the network learns from these mistakes
 - Prediction is too high, adjust the weights lower
 - Prediction is too low, adjust the weights higher

How does the network learn?

Trail and error: making predictions and learn from them

Learning with a single network

How do we set the weights?

Compare

- Evaluate how well the network performed
- Measure of how much a prediction 'missed' by
- Mean Squared Error (MSE) metric

Learn

- Adjusting each weight to reduce the error
- Gradient Descent Algorithm

Measuring predictive performance

- Calculate error by squaring the difference between the networks prediction and its goal
- Squaring the error forces it to be positive

Squaring the error

- Big errors become bigger
- Small errors become smaller
- These effects help the network learn
 - Pays more attention to the big errors
 - Pays less attention to smaller ones
- Mean Square Error Equation:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Compare

Why measure error?

- Aim of network training is to make correct predictions
- This can be achieved two ways:
 - Adjust weights such that prediction equal target

```
pred = goal_pred
```

Adjust weights such that error equals zero

- Both essentially say the same thing
- Tuning weights to predict the target is actually a more complicated task than tuning weights to set error to zero
- Therefore tune network such that Error == 0

Compare

• Why positive errors?

- Large networks can have millions of connections
- Therefore millions of pred ↔ goal pred pairs
- In these circumstances we need take the average error down to zero
 - This presents a problem if the error can be positive and negative
 - Consider network predicting two data points with errors:

$$-(y_1 - \hat{y}_1) = 1000 \text{ and } (y_2 - \hat{y}_2) = -1000$$

- The average error is zero!
- We want positive errors so they don't cancel each other out when they are average

- Measuring error and finding the direction and amount!
 - Represents how you want to change weight
 - Pure Error
 - Scaling, negative reversal and stopping
 - This can be achieved in a single line of code!

What is direction and amount?

```
direction_and_amount = (pred - goal_pred) * input
```

- How much to change weight by to reduce the error
- Two core parts:
 - 1. The Pure Error: pred goal_pred
 - 2. Multiplication by the input: ***input**
 - Modifying the pure error so it's ready to update the weight.
 - Performs scaling, negative reversal and stopping

What is Pure Error?

```
pred - goal pred
```

- An indication of the raw direction the current prediction missed by
 - If this is a *positive* number, the prediction is too *high*
 - If this is a *negative* number, the prediction is too *low*
- Also an indication of the *amount* the current prediction missed by:
 - If this is a big number, the prediction has missed by a big amount
 - If this is a *small* number, the prediction has missed by a *small* amount

What are scaling, negative reversal, and stopping?

 Have the combined effect of translating the pure error into the absolute amount you want to change weight.

Stopping

Do not adjust weights when input is zero

Negative Reversal

 Ensuring that weight moves in the correct direction even when input is negative

Scaling

Weight changes are proportional to input size

Basic Gradient Descent Algorithm

The golden method for neural learning

```
pred = input * weight
error = (pred - goal_pred) ** 2

delta = pred - goal_pred
weight_delta = delta * input
weight = weight - weight_delta
```

- This approach adjusts each weight in the correct direction and by the correct amount so that error reduces to 0
 - Secret lies in the pred and error calculations

Basic Gradient Descent Algorithm

- Measuring error and finding the direction and amount
 - Gradient Descent in Action
 - Albeit in a bit of an oversimplified environment!

Basic Gradient Descent Algorithm

```
weight = 0.5
goal_pred = 0.8
input = 0.5
for iteration in range(20):
    pred = input * weight
    error = (pred - goal_pred) ** 2
    direction_and_amount = (pred - goal_pred) * input
    weight = weight - direction_and_amount
    print("Error:" + str(error) + " Prediction:" + str(pred))
```

```
Error:0.3025 Prediction:0.25
Error:0.170 Prediction:0.388
Error:0.096 Prediction:0.491
...
Error:1.709e-05 Prediction:0.796
Error:9.615e-06 Prediction:0.797
Error:5.408e-06 Prediction:0.798
```


Combining the pred and error calculations

```
error = ((input * weight)- goal_pred) ** 2
```

- For any input/prediction pair, an exact relationship can be defined between error and weight
- This is found by combining the prediction and error formulas
 - E.g when goal_pred = 0.8 and input = 0.5

```
error = ((0.5 * weight) - 0.8) ** 2
```


The relationship between error and weight

error =
$$((0.5 * weight) - 0.8) ** 2$$

Graph

- Black dot: the current point of both error and weight
- The dotted circle is where we want to be (error == 0).

Key Points

- No matter where you are, the slope also points to the minimum point in the function.
- You can use this to find the minimum

Can we find the minima?

- Consider the following function

```
weight, goal_pred, input = (0.0, 0.8, 1.1)

for iteration in range(4):
    print("----\nWeight:" + str(weight))
    pred = input * weight
    error = (pred - goal_pred) ** 2

    delta = pred - goal_pred
    weight_delta = delta * input

    weight = weight - weight_delta
    print("Error:" + str(error) + " Prediction:" + str(pred))
    print("Delta:" + str(delta) + " Weight Delta:" + str(weight_delta))
```


• First update:

• Second update:

• Third update:

• Last update:

What is happening?

- Consider a function
 - A function defines some sort of relationship between the input number(s) and the output number(s).
- Every function has what you might call moving parts
 - Pieces we can tweak or change to make the output different.

```
error = ((input * weight) - goal_pred) ** 2
```

- What's controlling the relationship between input and the output (error)?

What is happening?

– What's controlling the relationship between input and the output (error)?

```
error = ((input * weight) - goal_pred) ** 2
```

- We could change goal pred to reduce error
 - Essentially denying we missed
- We could change input to reduce error
 - This would not work in the real world!
- We could change the sqauring, or the mathematical operators
 - This is just changing how you calculate error in the first place.

What is happening?

- What's controlling the relationship between input and the output (error)?

```
error = ((input * weight) - goal_pred) ** 2
```

- The only thing left we can change is weight
 - Adjusting this doesn't change your perception of the world, doesn't change your goal, and doesn't destroy your error measure.
- Changing weight means the function conforms to the patterns in the data.

Key Message:

- Learning is adjusting the weight to reduce the error to 0
- Knowing how to do this is all about understanding the relationship between weight and error
 - How does changing one variable effect the other?
- This is the sensitivity between the two variables
- Goal: know the direction and the amount that error changes when you change weight
 - This relationship is defined through the derivative of the error function

Derivatives

 With derivatives, you can pick any two variables in any formula, and know how they interact

• Use in training a neural network

- A neural network is essentially a bunch of weights used to compute an error function
- For any error function we can compute the relationship between any weight and the final error of the network.
 - With this information, we change each weight in the network to reduce error to 0

Gradient Descent for neural learning

```
pred = input * weight
error = (pred - goal_pred) ** 2
delta = pred - goal_pred
weight_delta = delta * input
weight = weight - weight_delta
```

- error is a measure of how much the network missed by
 - We define error to be always positive
- weighted delta is the derivate of weight and error
 - Defines the relationship between the weights and the total error

weighted delta is the derivate

- For each point of our error function the derivative tells you how much error changes when we change weight
- The derivative is always pointed in the opposite direction to the minimum point
- To reduces error to zero, move the weight value opposite the gradient value

```
weight = weight - weight_delta
```

 It is the minus sign in the weight update step that enables us to go in the opposite direction

Gradient Descent: Divergence

Divergence in Gradient Descent

Consider the following function

```
weight, goal_pred, input = (0.5, 0.8, 2.0)

for iteration in range(20):
    print("----\nWeight:" + str(weight))
    pred = input * weight
    error = (pred - goal_pred) ** 2
    delta = pred - goal_pred
    weight_delta = delta * input
    weight = weight - weight_delta
    print("Error:" + str(error) + " Prediction:" + str(pred))
```


Gradient Descent: Divergence

• First update:

Gradient Descent Divergence

• Second update:

Gradient Descent Divergence

• Third update:

Gradient Descent: Divergence

Observation: The predictions are exploding

- At every update the network overcorrects the weights
 - They alternate from negative to positive and negative to positive, getting farther away from the true answer at every step. In

```
Error:0.04 Prediction:1.0
Error:0.36 Prediction:0.2
Error:3.24 Prediction:2.6
...
Error:6.67e+14 Prediction:-25828031.8
Error:6.00e+15 Prediction:77484098.6
Error:5.40e+16 Prediction:-232452292.6
```


Gradient Descent: Divergence

Why are the predictions exploding?

– Consider how the weights are updated:

```
weight = weight - (input * (pred - goal_pred)))
```

- If the input is sufficiently large, the weight update will also be large, even when the error is small.
- When you have a large weight update and a small error, the network overcorrects
- The bigger the error, the more the network overcorrects

- How to prevent divergence:
 - Introduce a new variable, alpha, to scale the weight updates

```
weight = weight - derivative
weight = weight - (alpha*derivative)
```

 In most cases, this involves multiplying the weight update by a single real-valued number between 0 and 1

How to set Alpha?

```
weight = weight - (alpha*derivative)
```

- Empirically, watching errors over time
 - If it starts diverging (going up), then the alpha is too high and needs to be decreased
 - If learning is happening too slowly, then the alpha is too low and should be increased

Divergence Example

Effect of introducing alpha into previous example

```
weight = 0.5
goal_pred = 0.8
input = 2
alpha = 0.1

for iteration in range(20):
    pred = input * weight
    error = (pred - goal_pred) ** 2
    derivative = input * (pred - goal_pred)
    weight = weight - (alpha * derivative)
    print("Error:" + str(error) + " Prediction:" + str(pred))
```


Divergence Example

- Effect of introducing alpha into previous example
 - The neural network can now make good predictions again

```
Using:
weight = weight - derivative

Error:0.04 Prediction:1.0
Error:0.36 Prediction:0.2
Error:3.24 Prediction:2.6
...
Error:6.67e+14 Prediction:-25828031.8
Error:6.00e+15 Prediction:77484098.6
Error:5.40e+16 Prediction:-232452292.6
```

```
Using:
weight = weight - (alpha*derivative)

Error:0.04 Prediction:1.0
Error:0.0144 Prediction:0.92
Error:0.005184 Prediction:0.872
...
Error:1.146e-09 Prediction:0.800033853319
Error:4.126e-10 Prediction:0.800020311991
Error:1.485e-10 Prediction:0.800012187195
```


Basic Gradient Descent for Neural Learning


```
pred = input * weight
error = (pred - goal_pred) ** 2
derivative = input * (pred - goal_pred)
weight = weight - (alpha * derivative)
```

- Pred is the output of the network given the current input
 - We want the network to learn to make correct predictions
- error is a measure of how much the network missed by
 - We define error to be always positive, we learn by reducing the error to zero
- derivative is the derivate of weight and error
 - Predicts both direction and amount to adjust the weights
- Alpha scales the weight update
 - Helps minimise divergence effects when the input is large