0 Задачи к части 2

Задача 0.1 (1). Пусть X – бесконечномерное ТВП, $X = \cup_n E_n$, где $E_n \leqslant X$ – конечномерно. Тогда X – I категории в себе.

Доказательство.

Задача 0.2 (4). Доказать, что $L^2[0,1] \subset L^1[0,1]$ является множеством I категории тремя способами:

- 1. Показать, что множество $\{f: \int |f|^2 \leqslant n\}$ замкнуто, но имеет пустую внутренность в L^1 .
- 2. Пусть Показать, что $g_n(x) = \begin{cases} n, x \in [0, \frac{1}{n^3}] \\ 0, x \in [\frac{1}{n^3}, 1] \end{cases}$

$$\int fg_n \to 0 \qquad \forall f \in L^2 \& \ \ \forall f \in L^1$$

3. Показать, что естественное вложение $L^2 \to L^1$ непрерывно, но не сюръективно.

Задача 0.3 (6). Определим коэффициенты Фурье:

$$f \in L^2(T) \leadsto \hat{f}(n) = \frac{1}{2\pi} \int_T f(s) s^{-n} ds = \frac{1}{2\pi} \langle f, s^n \rangle$$

Положим

$$\Lambda_n f = \sum_{k=-n}^n \hat{f}(n)$$

Доказать, что множество $R = \{f : \text{ существует } \lim_{n \to \infty} \Lambda_n f \}$ является **(а)** всюду плотным в L^2 , **(b)** множеством I категории в L^2