

## Geodatenanalyse I: Univariate Statistik und statistisches Testen

#### Kathrin Menberg



# Karlsruher Institut für Technologie

## Stundenplan

|            | Vorläufiger Stundenplan                         |                 |  |
|------------|-------------------------------------------------|-----------------|--|
| Datum      | Thema                                           | Dozent          |  |
| 20.10.2021 | Einführung in die Programmierung mit Python     | Gabriel Rau     |  |
| 25.10.2021 | Univariate Statistik und statistisches Testen   | Kathrin Menberg |  |
| 01.11.2021 | Feiertag                                        |                 |  |
| 08.11.2021 | Variablen, Datentypen und Logik eines Programms | Gabriel Rau     |  |
| 15.11.2021 | Bivariate und schließende Statistik             | Kathrin Menberg |  |
| 22.11.2021 | Umgang und Berechnung von Datensätzen           | Gabriel Rau     |  |
| 29.11.2021 | Multivariate Statistik                          | Kathrin Menberg |  |
| 06.12.2021 | Datenvisualisierung mit matplotlib              | Gabriel Rau     |  |
| 13.12.2021 | Monte-Carlo Methoden                            | Kathrin Menberg |  |
| 20.12.2021 | Datenformate, Datenspeicherung und Datenbanken  | Gabriel Rau     |  |
| 27.12.2021 | Weihnachtsferien                                |                 |  |
| 03.01.2022 | Weihnachtsferien                                |                 |  |
| 10.01.2022 | Sensitivitätsanalyse                            | Kathrin Menberg |  |
| 17.01.2022 | Analyse und Visualisierung von Geodaten         | Gabriel Rau     |  |
| 24.01.2022 | Räumliche Interpolation                         | Kathrin Menberg |  |
| 31.01.2022 | Datenethik, Lizensierung und Entwicklungstools  | Gabriel Rau     |  |
| 07.02.2022 | Regressionsanalyse                              | Kathrin Menberg |  |
|            |                                                 |                 |  |

## Vorlesungsplan



| Uhrzeit       | Inhalt                   |
|---------------|--------------------------|
| 10:00 – 10:20 | Univariate Statistik     |
| 10:20 – 11:00 | Übung                    |
| 11:00 – 11:10 | Diskussion und Reflexion |
| 11:10 – 11:25 | <u>Pause</u>             |
| 11:25 – 11:45 | Statistisches Testen     |
| 11:45 – 12:20 | Übung                    |
| 12:20 – 12:30 | Diskussion und Reflexion |

#### **Lernziele Univariate Statistik**



#### Am Ende der Stunde werden die Teilnehmer:

- ... grundlegende Begriffe der univariaten Statistik und Datenanalyse kennen.
- … in Python statistische Momente bestimmen können.
- ... empirische Verteilungen charakterisieren können.





**Geostatistik** – auf Mathematik basierende Methoden zur Analyse quantitativer Daten mit Raumbezug (Geodaten)

#### Geodaten

- Geschätzt 80% aller Daten haben einen Raumbezug!
- Sammeln von Daten (Feld, Labor, Satellitendaten, usw.)
  - Begrenzte Probenzahl (n)
  - Messunsicherheit



b











Trauth (2015) Fig. 1.2



#### Geodaten

Grundgesamtheit und Stichprobe

(engl. population, sample)



Trauth (2015) (Fig. 1.1)

## **Typische Arten von Geodaten**



#### Nominale Daten (nominal data)

Cyclotella ocellata

- C. meneghiniana
- C. ambigua
- C. agassizensis
- Aulacoseira granulata
- A. granulata var. curvata
- A. italica
- Epithemia zebra
- E. sorex
- Thalassioseira faurii

#### Verhältnisdaten (ratio data)



#### Ordinale Daten (ordinal data)

- 1. Talc
- Gypsum 3. Calcite
- 4. Flurite
- 5. Apatite
- 6 Orthoclase
- 7. Quartz
- 8. Topaz
- 9. Corundum
- 10. Diamond

#### Intervalldaten (interval data)



#### Geschlossene Daten

(closed data)



#### Räumliche Daten (spatial data)



#### Richtungsabhängige Daten (directional data)





Trauth (2015) Fig. 1.3

## Weitere Grundbegriffe



- Messgröße (measured variable)
- Zufallsgröße (random variable)
- Diskrete Daten, bzw. Funktionen (discrete data)
- Stetige Daten, bzw. Funktionen (continuous data)
- Parameter
- Variable
- Freiheitsgrade (degrees of freedom)
- Wahrscheinlichkeit (probability)
- Unsicherheit (uncertainty)





Stetige Daten

## Methoden zur Datenanalyse



- Univariate Methoden: eine unabhängige Messgröße
- Bivariate Methoden: zwei abhängige Messgrößen
- Multivariate Methoden: mehrdimensionale Datensätze
- Zeitreihenanalyse: Datenwerte als Funktion der Zeit
- Räumliche Analyse: Daten mit Koordinaten in 2D oder 3D

... und viele mehr.

# Karlsruher Institut für Technologie

#### **Beschreibende Statistik**

- Statistische Charakterisierung von Stichproben
- ► Empirische Verteilungen von Messwerten (empirical distribution)
- Graphische Darstellung



Trauth (2015) (Fig. 3.1)

... auch deskriptive Statistik genannt (descriptive statistics)

#### Schließende Statistik



- Analyse der Grundgesamtheit
- ► Theoretische Verteilungen von Zufallsvariablen (theoretical distribution)

#### Empirische Häufigkeitsverteilung

#### Theoretische (angepasste) Wahrscheinlichkeitsverteilung



... dazu später mehr!

## Charakterisierung von Stichproben



#### Statistische Parameter (statistical measures)

Trauth (2015) (Fig. 3.2)

#### 1. Lageparameter (central tendency)

- Arithmetisches Mittel (mean)
- Geometrisches Mittel
- Harmonisches Mittel
- Median (median)
- Modus (mode)
  - Nur für diskrete, bzw. nominale Daten!
- Quartile, Quantile, Perzentile
- usw.







## **Charakterisierung von Stichproben**



#### 2. Streuungsmaß (dispersion)

- Range (Maximum Minimum)
- empirische Varianz (σ²)
- empirische Standardabweichung (σ)
- (Inter)Quartilabstand (IQR)
- usw.





## **Charakterisierung von Stichproben**



#### 3. Schiefe (skewness)

- nach Pearson
- nach Fisher
- Quantil-basiert
- usw.

#### 4. Wölbung (kurtosis)

- Im Vergleich zu einer Normalverteilung
- nach Fisher



## Übung 1: Univariate Statistik



- Grundwasserdatensatz Karlsruhe
  - Messwerte zu
     Grundwassertemperatur,
     hydrochemische Parameter,
     faunistische Daten
  - Datentypen
  - Bestimmung statistischer Parameter
- Aufgaben in Jupyter Notebook:01\_Univariate\_Statistik\_loesung



Koch et al. (2020) HESS-D Oligochaeten

Crustaceen









| Parameter                              | Datentyp                    |
|----------------------------------------|-----------------------------|
| Pegel                                  | Nominale Daten              |
| Tiefe                                  | Verhältnisdaten (stetig)    |
| Sauerstoff                             | Verhältnisdaten (stetig)    |
| Temperatur                             | Intervalldaten (stetig)     |
| Elektrische Leitfähigkeit              | Verhältnisdaten (stetig)    |
| pH Wert                                | Verhältnisdaten (stetig)    |
| Eisen, Mangan, Phosphat, Nitrat        | Verhältnisdaten (stetig)    |
| Detritus, Sediment                     | Ordinale Daten (diskret)    |
| Geologische Einheit, Flächennutzung    | Ordinale Daten (diskret)    |
| Anzahl Arten, Anzahl Individuen        | Verhältnisdaten (stetig)    |
| Anteil Crustaceen, Anteil Oligochaeten | Geschlossene Daten (stetig) |





| Variable | Python-Datentyp |
|----------|-----------------|
| GWT      | list            |
| n        | int             |

| Variable                                  | Wert                |
|-------------------------------------------|---------------------|
| arithm. Mittel                            | 13.5                |
| mean                                      | 13.5                |
| Median_1                                  | 14.1                |
| Median_2                                  | 14.0                |
| Mode (Geologie) (nur für diskrete Daten!) | 4                   |
| Quartile                                  | [11.4, 14. 0, 15.0] |
| Range                                     | 7.0                 |
| IQR                                       | 3.6                 |
| Standardabweichung                        | 2.11                |
| Varianz                                   | 4.45                |





| Variable         | Python-Datentyp |
|------------------|-----------------|
| Skewness Pearson | -0.27           |
| Skewness Fisher  | 0.29            |
| Kurtosis         | 3.53            |

... noch Fragen?



# Pause

... bis 11:25 Uhr



## Vorlesungsplan



| Uhrzeit       | Inhalt                   |
|---------------|--------------------------|
| 10:00 – 10:20 | Univariate Statistik     |
| 10:20 – 11:00 | Übung                    |
| 11:00 – 11:10 | Diskussion und Reflexion |
| 11:10 – 11:25 | <u>Pause</u>             |
| 11:25 – 11:45 | Statistisches Testen     |
| 11:45 – 12:20 | Übung                    |
| 12:20 – 12:30 | Diskussion und Reflexion |

#### Lernziele statistisches Testen



#### Am Ende der Stunde werden die Teilnehmer:

- ... die theoretischen Grundlagen des klassischen statistischen Testens kennen.
- verschiedene statistische Tests für unterschiedliche Zwecke in Python kennen und anwenden können.
- ... die Testergebnisse in Bezug auf Signifikanz und p-Wert bewerten und kritisch diskutieren können.

## **Problemstellung**



Grundwassertemperaturen in Karlsruhe und im Hardtwald:



- ... passt unsere ursprüngliche Vermutung, dass die Temperatur im Wald 11°C beträgt?
- ... sind die Temperaturen in der Stadt h\u00f6her, oder doch eher gleich?

#### Klassisches statistisches Testen



- Aufstellen einer Hypothese
  - z.B. "Die mittlere Grundwassertemperatur im Hardtwald beträgt 11°C".
- Prüfen der Hypothese
  - Vergleich von dem was man sieht, mit dem was man beobachten würde, wenn die Hypothese stimmt.
  - Je besser die Beobachtung zur Hypothese passt, desto eher wird man ihr vertrauen
- Eine Hypothese kann nicht endgültig bestätigt oder widerlegt werden!
- ... wir können uns aber dafür entscheiden sie anzunehmen oder abzulehnen

# Tschirk (2014)

#### Ablauf eines statistisches Tests



- **Nullhypothese H<sub>0</sub>**: "Die mittlere Temperatur beträgt 11°C."
- Hypothetischer Wert  $\mu_0 = 11$
- Alternative Hypothese: "Die mittlere Temperatur beträgt nicht 11°C."



#### Ablauf eines statistisches Tests

- Definition eines Annahme, bzw. Ablehnungsbereichs
- Bedingte Wahrscheinlichkeit, dass wir  $H_0$  ablehnen, obwohl  $H_0$ stimmt
- Signifikanzniveau α (oftmals 0.05 oder 0.01)







|                       | $H_0$ ist richtig   | $H_0$ ist falsch    |
|-----------------------|---------------------|---------------------|
| $H_0$ wird angenommen | richtig entschieden | $\beta$ -Fehler     |
| $H_0$ wird abgelehnt  | α-Fehler            | richtig entschieden |

Tschirk (2014)

- 2 mögliche Fehler:
  - Ablehnen einer richtigen Nullhypothese: α-Fehler oder Fehler 1. Art
  - Annehmen einer falschen Nullhypothese: β-Fehler oder Fehler 2. Art

## Ein- und zweiseitige Tests



► Zweiseitig: Nullhypothese  $\mu_0$  = 11



► Einseitig: Nullhypothese  $\mu_0 \le 11$ 



## Interpretation des Testergebnisses



- Signifikanzwert, p-Wert
- ▶ Wahrscheinlichkeit den beobachteten Wert zu erhalten, unter der Bedingung dass H₀ stimmt
- ► Ablehnen der Nullhypothese, wenn p-Wert  $\leq \alpha$ 
  - Annahme der alternativen Hypothese
  - "statistisch signifikant" = "überzufällig"
- ► Ermöglicht Vergleich verschiedener Testergebnisse
- Gibt keine Aussage über die Größe des wahre Effekts
- Sagt nicht aus wie wahrscheinlich die Nullhypothese ist

#### Trennschärfe eines Tests



β: Wahrscheinlichkeit, dass H<sub>0</sub>
 korrekterweise abgelehnt wird





- Funktion 1 β: auch Güte,
   Stärke, engl. power
- Abhängig von Anzahl der Proben

## Übersicht einiger typischer Tests



| Student's t-test (one sample) | Mittelwert einer Verteilung entspricht einem bestimmten Wert |
|-------------------------------|--------------------------------------------------------------|
| Student's t-test (two sample) | Mittelwert zweier Verteilungen sind identisch                |
| F-Test                        | Vergleicht die Varianz zweier<br>Proben                      |
| Mann-Whitney U-Test           | Differenz des Median zweier<br>Verteilungen                  |
| Shapiro-Wilk Test             | Test auf Normalverteilung                                    |

... viele mehr!

## Parametrische und nicht-parametrische Tests



- ► Parametrische Tests setzen eine Normalverteilung der Stichproben voraus → Überprüfen!
- ggfs. müssen Datensätze normalisiert, bzw. standardisiert werden
- Parametrische Test:
  - Student's t-test
  - F-test
  - Analysis of Variance (ANOVA)
  - **...**
- Nicht-Parametrische Test:
  - Mann-Whitney U-test
  - **...**

## **Limitierungen statistischer Tests**



- Eine Hypothese kann nicht endgültig bestätigt oder widerlegt werden
- Prüfung der Übereinstimmung von Stichprobe und Hypothese
- Der Test bevorzugt die Nullhypothese (kleinere p-Werte)
- Die Nullhypothese muss von der Stichprobe unabhängig sein

## ... was ein Test nicht kann

- 12 Missverständnisse zu p-Werten (Goodman, 2008):
- ▶ 1. mit p = 0.05 hat die Nullhypothese eine Chance von 5% wahr zu sein.
- 2. ein nicht-signifikanten Unterschied (p > 0.05) bedeutet, dass kein Unterschied zwischen den Gruppen besteht.
- 3. ein statistisch signifikantes Ergebnis ist wissenschaftlich bedeutsam.
- ▶ 7. p = 0.05 und  $p \le 0.05$  bedeuten das Gleiche.

## Übung 2: Statistisches Testen



- Grundwasserdatensatz Karlsruhe
  - Hypothesen testen
  - Verschiedene Tests
  - p-Werte bestimmen



- Aufgaben in Jupyter Notebook:
  - 02\_Statistisches\_Testen\_loesung

## Aufgabenbesprechung



- Hypothese 1:
  - Temperatur im Wald normalverteilt  $\rightarrow$  H<sub>0</sub> annehmen
  - Temperatur =  $11^{\circ}$ C?  $\rightarrow$  H<sub>0</sub> nicht annehmen (p = 0.005)
  - Mittelwert Temperatur =  $10.7^{\circ}$ C, n =  $8 \rightarrow$  Trennschärfe!
- Hypothese 2:
  - Sauerstoffsättigung normalverteilt → H<sub>0</sub> annehmen
  - F = 1.79,  $p = 0.12 \rightarrow H_0$  annehmen
  - T = 3.46, p = 0.0007, und  $T > T_kritisch \rightarrow H_0$  ablehnen
- Mann-Whitney U-test:
  - z.B. Phosphat, nicht normalverteilt, gleiche Verteilung in Wald und Stadt

#### Literatur



- Trauth (2015): MATLAB Recipes for Earth Sciences (4th Ed.), Springer
- ► Koch et al. (2020) Groundwater fauna in an urban area: natural or affected?, Hydrology and Earth System Sciences Discussions
- Tschirk (2014) Statistik: Klassisch oder Bayes, Springer
- Steve Goodman (2008) A Dirty Dozen: Twelve P-Value Misconceptions

#### Nützliche Links:

https://machinelearningmastery.com/statistical-hypothesis-tests-inpython-cheat-sheet/



