

Ù&@^œ^¦ÊÁQ}&È		FÍ»ÁVã¦oÁ, Đị ÁÙ^ã;{ã&ÁÖ^∙ã}}
PÔX	Ùœ), 忦åÁÚXT 引jãÚæ&\引j*ÁÛ^• ৫^{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁÄÆÜÐÒÖÁÜËF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V = 160 mph Exposure Category = C
Height ≤ 15 ft Importance Category = II

Peak Velocity Pressure, $q_z = 40.19 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.04 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations: 1.2D + 1.6S + 0.5W

> 1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6\mathsf{D} + 0.6\mathsf{W}^{\ M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ $0.362D + 0.875E^{\circ}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	2		
M4	Outer	M15	5		
M8	Inner	M16A	Ą		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>48</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.75	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _y =	0.407	k-ft
$M_z =$	0.024	k-ft
M _{y allowable} =	1.266	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>35%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type =	1.5x0.25
Aluminum Type = F_{ty} =	6061-T6 35 ksi
Φ =	0.90
S _y =	0.02 in ³
E =	10100 ksi
$I_y =$	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
M _y =	0.002 k-ft
P _n =	0.070 k
$M_{y \text{ allowable}} =$	0.046 k-ft
P _{n allowable} =	11.813 k
Utilization =	<u>5%</u>

A cross brace kit is required every 40 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	523.21	<u>1508.40</u>	k
Compressive Load =	1380.22	985.57	k
Lateral Load =	<u>1.44</u>	<u>547.66</u>	k
Moment (Weak Axis) =	0.00	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 21265.0 in-lbs Resisting Force Required = 708.83 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1181.39 lbs to resist overturning. Minimum Width = 21 in in Weight Provided = 1903.13 lbs Sliding Force = 126.37 lbs Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 315.94 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 126.37 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	21 in	22 in	23 in	<u>24 in</u>	
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) =$	1903 lbs	1994 lbs	2084 lbs	2175 lbs	

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	419 lbs	419 lbs	419 lbs	419 lbs	546 lbs	546 lbs	546 lbs	546 lbs	694 lbs	694 lbs	694 lbs	694 lbs	-239 lbs	-239 lbs	-239 lbs	-239 lbs
FB	302 lbs	302 lbs	302 lbs	302 lbs	390 lbs	390 lbs	390 lbs	390 lbs	497 lbs	497 lbs	497 lbs	497 lbs	-695 lbs	-695 lbs	-695 lbs	-695 lbs
F _V	21 lbs	21 lbs	21 lbs	21 lbs	219 lbs	219 lbs	219 lbs	219 lbs	179 lbs	179 lbs	179 lbs	179 lbs	-253 lbs	-253 lbs	-253 lbs	-253 lbs
P _{total}	2624 lbs	2715 lbs	2805 lbs	2896 lbs	2839 lbs	2929 lbs	3020 lbs	3111 lbs	3094 lbs	3184 lbs	3275 lbs	3366 lbs	208 lbs	262 lbs	317 lbs	371 lbs
M	252 lbs-ft	252 lbs-ft	252 lbs-ft	252 lbs-ft	621 lbs-ft	621 lbs-ft	621 lbs-ft	621 lbs-ft	639 lbs-ft	639 lbs-ft	639 lbs-ft	639 lbs-ft	451 lbs-ft	451 lbs-ft	451 lbs-ft	451 lbs-ft
е	0.10 ft	0.09 ft	0.09 ft	0.09 ft	0.22 ft	0.21 ft	0.21 ft	0.20 ft	0.21 ft	0.20 ft	0.20 ft	0.19 ft	2.17 ft	1.72 ft	1.42 ft	1.22 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	265.3 psf	263.2 psf	261.2 psf	259.4 psf	239.2 psf	238.2 psf	237.3 psf	236.5 psf	265.9 psf	263.7 psf	261.7 psf	259.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	334.4 psf	329.1 psf	324.2 psf	319.8 psf	409.6 psf	400.9 psf	392.9 psf	385.6 psf	441.2 psf	431.0 psf	421.8 psf	413.3 psf	239.9 psf	122.4 psf	102.5 psf	96.4 psf

Maximum Bearing Pressure = 441 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_O = 0.0 \text{ ft-lbs}$

Resisting Force Required = 0.00 lbs S.F. = 1.67 Weight Required = 0.00 lbs

Minimum Width = 21 in in Weight Provided = 1903.13 lbs

A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		21 in			21 in			21 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	50 lbs	128 lbs	48 lbs	196 lbs	585 lbs	193 lbs	15 lbs	37 lbs	14 lbs	
F _V	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	2406 lbs	2484 lbs	2404 lbs	2439 lbs	2828 lbs	2436 lbs	704 lbs	726 lbs	703 lbs	
М	0 lbs-ft	0 lbs-ft	0 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.29 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	
f _{min}	275.0 sqft	283.9 sqft	274.7 sqft	278.5 sqft	323.1 sqft	278.3 sqft	80.4 sqft	83.0 sqft	80.3 sqft	
f _{max}	275.0 psf	283.9 psf	274.7 psf	278.9 psf	323.3 psf	278.5 psf	80.4 psf	83.0 psf	80.3 psf	

Maximum Bearing Pressure = 323 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.062 k	Maximum Axial Load =	1.142 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>19%</u>	Utilization =	<u>20%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.188 k	Maximum Axial Load =	0.070 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>3%</u>	Utilization =	<u>1%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 28.39 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.568 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.003 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 48.00 \text{ in}$$

$$J = 0.255$$

$$124.989$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\phi F_L = 29.7 \text{ ksi}$

S2 = 1/01.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

Weak Axis:

3.4.14

4.14
$$L_b = 48.00 \text{ in}$$

$$J = 0.255$$

$$129.794$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\phi F_I = 29.7$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F \varphi$$

$$\phi F_L St = 29.7 \text{ ksi}$$

$$lx = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.266 \text{ k-ft}$$

43.2 ksi

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

 $\phi F_L =$

 $\phi F_L =$

3.4.9

b/t = 7.4

S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

φF_L= φyFcy

b/t = 23.9 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L = 28.5 \text{ ksi}$

33.3 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

 $\begin{array}{ll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.41 \\ & 20.702 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

3.4.15

N/A for Strong Direction

 $\phi F_L = 29.9 \text{ ksi}$

Weak Axis:

3.4.11

$$L_{b} = 33.78 \text{ in}$$

$$ry = 1.374$$

$$Cb = 1.41$$

$$24.5845$$

$$S1 = \frac{1.2(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_{c}$$

$$S2 = 79.2$$

$$\phi F_{L} = \phi b[Bc-Dc^{*}Lb/(1.2^{*}ry^{*}\sqrt{(Cb)})]$$

$$\phi F_{L} = 29.9 \text{ ksi}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\left(R_{t-1} \frac{\theta_{y}}{2} F_{cx}\right)^{2}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

Rb/t = 0.0 N/A for Weak Direction
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.2

N/A for Strong Direction

3.4.16.2 b/t =24.46 2.6 t = 6.05 ds = rs = 3.49 S = 21.70 ρst = 0.22 $F_{UT} =$ 9.37 $F_{ST} =$ 28.24 $\phi F_L = Fut + (Fst - Fut)\rho st < Fst$ $\phi F_L =$ 13.5 ksi

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.9 \text{ ksi}$$
 $Ix = 364470 \text{ mm}^4$
 0.876 in^4
 $y = 37.77 \text{ mm}$
 $Sx = 0.589 \text{ in}^3$
 $M_{max} St = 1.466 \text{ k-ft}$

3.4.18

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

$$x = 29 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.457 in³

0.513 k-ft

Compression

$$\begin{array}{lll} \lambda = & 0.46067 \\ r = & 1.374 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.90326 \\ & \phi F_L = & \phi cc(Bc-Dc^*\lambda) \\ & \phi F_L = & 30.1251 \text{ ksi} \end{array}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

28.2 ksi

3.4.10

Rb/t =

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$$\phi F_L = 31.2 \text{ ksi}$$

3.4.14

Weak Axis:

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$V = 15 \text{ mm}$$

0.163 in³

3.4.18

h/t =

$$\begin{array}{rcl} S1 = & 36.9 \\ m = & 0.65 \\ C_0 = & 15 \\ Cc = & 15 \\ S2 = \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L \text{Wk} = & 31.2 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ \end{array}$$

 $M_{max}Wk = 0.423 \text{ k-ft}$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

y =

 $M_{max}St = 0.423 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$\phi F_L = 24.5226 \text{ ksi}$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2
 $P_{max} = 12.31 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663
 $(R_C - \frac{\theta_y}{2} F_{CY})^{-1}$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$

43.2 ksi

 $\phi F_L =$

$$0.096 \text{ in}^4$$

 $y = 15 \text{ mm}$
 $Sx = 0.163 \text{ in}^3$

$$M_{\text{max}}St = 0.404 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 33.3 \text{ ksi} \\ l y = & 39958.2 \text{ mm}^4 \\ & & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ S y = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$\phi F_L {= \phi y F c y}$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 29.96 \text{ in}$$

$$J = 0.16$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.5 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.$$
 $k_1 B p$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.5 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

0.096 in⁴

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.413 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 29.96 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.5$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{\kappa_1 B B T}{2}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

$$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.28467 \\ \textbf{r} = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi \textbf{cc} = & 0.75985 \\ & \phi \textbf{F}_{L} = & (\phi \textbf{cc} \textbf{Fcy})/(\lambda^2) \\ & \phi \textbf{F}_{L} = & 16.1143 \text{ ksi} \\ \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 16.11 \text{ ksi}$
A = 323.87 mm²
0.50 in²
 $\phi F_L = 8.09 \text{ kips}$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.248	-63.248	0	0
2	M16	Υ	-63.248	-63.248	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-112.091	-112.091	0	0
2	M16	V	-179.345	-179.345	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	228.665	228.665	0	0
2	M16	V	112.091	112.091	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Y		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Y		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	115.378	2	240.1	2	.004	10	0	9	0	1	0	1
2		min	-141.796	3	-363.676	3	192	3	0	3	0	1	0	1
3	N7	max	0	15	348.883	1	.022	10	0	10	0	1	0	1
4		min	108	2	-118.369	3	36	1	0	1	0	1	0	1
5	N15	max	0	15	1061.707	2	.085	9	0	9	0	1	0	1
6		min	-1.105	2	-402.471	3	454	3	0	3	0	1	0	1
7	N16	max	373.999	2	758.131	2	0	11	0	9	0	1	0	1
8		min	-421.28	3	-1160.305	3	-58.654	3	0	3	0	1	0	1
9	N23	max	0	15	349.092	1	.477	1	0	1	0	1	0	1
10		min	108	2	-118	3	021	10	0	10	0	1	0	1
11	N24	max	115.378	2	242.396	2	59.164	3	0	9	0	1	0	1
12		min	-142.106	3	-362.666	3	004	10	0	3	0	1	0	1
13	Totals:	max	603.433	2	2976.777	2	0	2						
14		min	-705.553	3	-2525.486	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	250.919	1	.669	4	.121	1	0	10	0	3	0	1
2			min	-364.982	3	.158	15	135	3	0	1	0	2	0	1
3		2	max	251.015	1	.631	4	.121	1	0	10	0	9	0	15
4			min	-364.91	3	.149	15	135	3	0	1	0	10	0	4
5		3	max	251.112	1	.593	4	.121	1	0	10	0	1	0	15
6			min	-364.837	3	.14	15	135	3	0	1	0	3	0	4
7		4	max	251.208	1	.555	4	.121	1	0	10	0	1	0	15
8			min	-364.765	3	.131	15	135	3	0	1	0	3	0	4
9		5	max	251.304	1	.517	4	.121	1	0	10	0	1	0	15
10			min	-364.693	3	.122	15	135	3	0	1	0	3	0	4
11		6	max	251.401	1	.48	4	.121	1	0	10	0	1	0	15
12			min	-364.621	3	.114	15	135	3	0	1	0	3	0	4
13		7	max	251.497	1	.442	4	.121	1	0	10	0	1	0	15
14			min		3	.105	15	135	3	0	1	0	3	0	4
15		8	max	251.594	1	.404	4	.121	1	0	10	0	1	0	15
16			min		3	.096	15	135	3	0	1	0	3	0	4
17		9	max	251.69	1	.366	4	.121	1	0	10	0	1	0	15
18			min	-364.404	3	.087	15	135	3	0	1	0	3	0	4
19		10	_		1	.328	4	.121	1	0	10	0	1	0	15
20			min	-364.332	3	.078	15	135	3	0	1	0	3	0	4
21		11	max	251.883	1	.291	4	.121	1	0	10	0	1	0	15
22				-364.259	3	.069	15	135	3	0	1	0	3	0	4
23		12	max	251.979	1	.253	4	.121	1	0	10	0	1	0	15
24			min		3	.06	15	135	3	0	1	0	3	0	4
25		13	1	252.075	1	.215	4	.121	1	0	10	0	1	0	15
26				-364.115	3	.051	15	135	3	0	1	0	3	0	4
27		14	max		1	.177	4	.121	1	0	10	0	1	0	15
28				-364.042	3	.042	15	135	3	0	1	0	3	0	4
29		15	max	252.268	1	.139	4	.121	1	0	10	0	1	0	15
30			min	-363.97	3	.034	15	135	3	0	1	0	3	0	4
31		16		252.364	1	.101	4	.121	1	0	10	0	1	0	15
32				-363.898	3	.025	15	135	3	0	1	0	3	0	4
33		17	max		1	.066	2	.121	1	0	10	0	1	0	15
34				-363.826	3	.016	15	135	3	0	1	0	3	0	4
35		18		252.557	1	.037	2	.121	1	0	10	0	1	0	15
36		1	min		3	.002	9	135	3	0	1	0	3	0	4
37		19	max		1	.008	10	.121	1	0	10	0	1	0	15
<u> </u>		, ,,	mux	_000-											

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft	1 LC \	/-y Mome		z-z Mome	. LC
38			min	-363.681	3	023	9	135	3	0	1	0	3	0	4
39	M3	1	max	56.05	2	1.817	4	.004	10	0	10	0	1	0	4
40			min	-48.325	9	.428	15	138	1	0	1	0	10	0	15
41		2	max	55.983	2	1.639	4	.004	10	0	10	0	1	0	4
42			min	-48.38	9	.386	15	138	1	0	1	0	10	0	15
43		3	max	55.916	2	1.461	4	.004	10	0	10	0	1	0	2
44			min	-48.436	9	.344	15	138	1	0	1	0	10	0	15
45		4	max	55.848	2	1.283	4	.004	10	0	10	0	1	0	15
46			min	-48.492	9	.302	15	138	1	0	1	0	10	0	4
47		5	max	55.781	2	1.105	4	.004	10	0	10	0	1	0	15
48			min	-48.548	9	.26	15	138	1	0	1	0	10	0	4
49		6	max	55.714	2	.927	4	.004	10	0	10	0	1	0	15
50			min	-48.604	9	.218	15	138	1	0	1	0	10	0	4
51		7	max	55.647	2	.749	4	.004	10	0	10	0	1	0	15
52			min	-48.66	9	.177	15	138	1	0	1	0	10	0	4
53		8	max	55.58	2	.571	4	.004	10	0	10	0	1	0	15
54			min	-48.716	9	.135	15	138	1	0	1	0	10	0	4
55		9	max	55.513	2	.393	4	.004	10	0	10	0	1	0	15
56			min	-48.772	9	.093	15	138	1	0	1	0	10	001	4
57		10	max	55.446	2	.215	4	.004	10	0	10	0	1	0	15
58		10	min	-48.828	9	.051	15	138	1	0	1	0	10	001	4
59		11	max		2	.04	2	.004	10	0	10	0	1	0	15
60			min	-48.884	9	.009	15	138	1	0	1	0	10	001	4
61		12	max		2	033	15	.004	10	0	10	0	1	0	15
62		12	min	-48.94	9	141	4	138	1	0	1	0	10	001	4
63		13	max	55.245	2	075	15	.004	10	0	10	0	1	0	15
64		10	min	-48.995	9	319	4	138	1	0	1	0	10	001	4
65		14	max	55.177	2	116	15	.004	10	0	10	0	9	0	15
66		14	min	-49.051	9	497	4	138	1	0	1	0	11	001	4
67		15	max	55.11	2	4 <i>91</i> 158	15	.004	10	0	10	0	10	0	15
68		13	min	-49.107	9	675	4	138	1	0	1	0	1	0	4
69		16	max		2	073 2	15	.004	10	0	10	0	10	0	15
70		10	min	-49.163	9	853	4	138	1	0	1	0	1	0	4
71		17	max		2	242	15	.004	10	0	10	0	10	0	15
72		17	min	-49.219	9	-1.031	4	138	1	0	1	0	1	0	4
73		18			2	284	15	.004	10	0	10	0	10	0	15
74		10	max min	-49.275	9	-1.209	4	138	1	0	1	0	1	0	4
75		19			2	326	15	.004			10	0		0	1
76		19	max	-49.331	9		4	138	10	0	1		10		1
	NA4	1	min		1	-1.387	1	.022	-	0	1	0		0	
77 78	M4		max	347.718 -119.242		0	1	382	10	0	1	0	3	0	1
		2													$\overline{}$
79		4		347.783	1	0	1	.022	10	0	1 1	0	15	0	1
80		2		-119.194		0		382	10	0	-	0	1		1 1
81		3		347.848	1	0	1	.022	10	0	1	0	15	0	1
82		A	min	-119.145	3	0	1	382	1	0	1 1	0	10	0	1
83		4		347.912	1	0	1	.022	10	0	1	0	10	0	1
84		-		-119.097	3	0	1	382	1	0	1	0	1	0	1
85		5		347.977	1	0	1	.022	10	0	1	0	10	0	1
86				-119.048		0	1	382	1	0	1 1	0	1	0	1
87		6	max		1	0	1	.022	10	0	1	0	10	0	1
88		-	min	-119	3	0	1	382	1	0	1	0	1	0	1
89		7		348.106	1	0	1	.022	10	0	1	0	10	0	1
90		-		-118.951	3	0	1	382	1	0	1 1	0	1	0	1
91		8		348.171	1	0	1	.022	10	0	1	0	10	0	1
92			min	-118.903	3	0	1	382	1	0	11	0	1	0	1
93		9		348.236	1	0	1	.022	10	0	1	0	10	0	1
94			min	-118.854	3	0	1	382	1	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
95		10	max	348.3	1	0	1	.022	10	0	1	0	10	0	1
96			min	-118.806	3	0	1	382	1	0	1	0	1	0	1
97		11	max	348.365	1	0	1	.022	10	0	1	0	10	0	1
98			min	-118.757	3	0	1	382	1	0	1	0	1	0	1
99		12	max	348.43	1	0	1	.022	10	0	1	0	10	0	1
100			min	-118.709	3	0	1	382	1	0	1	0	1	0	1
101		13	max	348.495	1	0	1	.022	10	0	1	0	10	0	1
102			min	-118.66	3	0	1	382	1	0	1	0	1	0	1
103		14	max	348.559	1	0	1	.022	10	0	1	0	10	0	1
104			min	-118.612	3	0	1	382	1	0	1	0	1	0	1
105		15	max	348.624	1	0	1	.022	10	0	1	0	10	0	1
106			min	-118.563	3	0	1	382	1	0	1	0	1	0	1
107		16	max		1	0	1	.022	10	0	1	0	10	0	1
108			min		3	0	1	382	1	0	1	0	1	0	1
109		17	max	348.753	1	0	1	.022	10	0	1	0	10	0	1
110			min	-118.466	3	0	1	382	1	0	1	0	1	0	1
111		18	max		1	0	1	.022	10	0	1	0	10	0	1
112			min	-118.417	3	0	1	382	1	0	1	0	1	0	1
113		19	max		1	0	1	.022	10	0	1	0	10	0	1
114			min	-118.369	3	0	1	382	1	0	1	0	1	0	1
115	M6	1	max	792.418	1	.658	4	.031	9	0	3	0	3	0	1
116			min	-1141.887	3	.156	15	289	3	0	2	0	1	0	1
117		2	max	792.514	1	.62	4	.031	9	0	3	0	3	0	15
118			min	-1141.815	3	.148	15	289	3	0	2	0	1	0	4
119		3	max	792.61	1	.582	4	.031	9	0	3	0	3	0	15
120			min	-1141.743	3	.139	15	289	3	0	2	0	2	0	4
121		4	max		1	.544	4	.031	9	0	3	0	3	0	15
122			min	-1141.671	3	.13	15	289	3	0	2	0	2	0	4
123		5	max		1	.507	4	.031	9	0	3	0	9	0	15
124		J	min	-1141.598	3	.121	15	289	3	0	2	0	3	0	4
125		6	max		1	.469	4	.031	9	0	3	0	9	0	15
126		-	min	-1141.526	3	.112	15	289	3	0	2	0	3	0	4
127		7	max	792.996	1	.431	4	.031	9	0	3	0	9	0	15
128			min	-1141.454	3	.103	15	289	3	0	2	0	3	0	4
129		8	max	793.092	1	.393	4	.031	9	0	3	0	9	0	15
130		0	min	-1141.381	3	.094	15	289	3	0	2	0	3	0	4
131		9	max		1	.355	4	.031	9	0	3	0	9	0	15
132		9	min	-1141.309	3	.085	15	289	3	0	2	0	3	0	4
133		10	max	793.285	1	.317	4	.031	9	0	3	0	9	0	15
134		10	min	-1141.237	3	.076	15	289	3	0	2	0	3	0	4
135		11		793.381	1	.28	4	.031	9	0	3	0	9	0	15
136		11	min	-1141.165	3	.067	15	289	3	0	2	0	3	0	4
137		12		793.478	1		4	.031	9	0	3	0	9	0	15
138		12	min	-1141.092	3	.242	15	289	3		2	0	3	0	4
		12			1	.059	2	.031	9	0	3				
139		13		793.574		.212	15	289	3	0	2	0	9	0	15
140		4.4			3	.05									4
141		14	max		1	.182	2	.031	9	0	3	0	9	0	15
142		4.5	min	-1140.948	3	.041	15	289	3	0	2	0	3	0	4
143		15		793.767	1	.153	2	.031	9	0	3	0	9	0	15
144		40	min	-1140.875	3	.032	15	289	3	0	2	0	3	0	4
145		16			1	.123	2	.031	9	0	3	0	9	0	15
146			min	-1140.803	3	.023	15	289	3	0	2	0	3	0	4
147		17	max		1	.094	2	.031	9	0	3	0	9	0	15
148			min	-1140.731	3	.002	9	289	3	0	2	0	3	0	4
149		18	max	794.056	1	.064	2	.031	9	0	3	0	9	0	15
150			min	-1140.659	3	023	9	289	3	0	2	0	3	0	4
151		19	max	794.152	1	.035	2	.031	9	0	3	0	9	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
152			min	-1140.586	3	047	9	289	3	0	2	0	3	0	4
153	M7	1	max	187.722	2	1.813	4	0	2	0	9	0	1	0	4
154			min	-91.09	9	.427	15	018	1	0	3	0	3	0	15
155		2	max	187.655	2	1.635	4	0	2	0	9	0	1	0	2
156			min	-91.146	9	.385	15	018	1	0	3	0	3	0	15
157		3	max		2	1.457	4	0	2	0	9	0	1	0	2
158			min	-91.201	9	.343	15	018	1	0	3	0	3	0	9
159		4	max		2	1.279	4	0	2	0	9	0	1	0	10
160			min	-91.257	9	.302	15	018	1	0	3	0	3	0	14
161		5	max		2	1.101	4	0	2	0	9	0	1	0	15
162		3				.26	15	018	1		3	0	3		
			min	-91.313	9					0				0	4
163		6	max		2	.923	4	0	2	0	9	0	1	0	15
164		_	min	-91.369	9	.218	15	018	1	0	3	0	3	0	4
165		7	max	187.32	2	.745	4	0	2	0	9	0	1	0	15
166			min	-91.425	9	.176	15	018	1	0	3	0	3	0	4
167		8	max	187.252	2	.567	4	0	2	0	9	0	1_	0	15
168			min	-91.481	9	.134	15	018	1	0	3	0	3	0	4
169		9	max	187.185	2	.389	4	0	2	0	9	0	1	0	15
170			min	-91.537	9	.092	15	018	1	0	3	0	3	001	4
171		10	max	187.118	2	.21	4	0	2	0	9	0	1	0	15
172			min	-91.593	9	.051	15	018	1	0	3	0	3	001	4
173		11	max		2	.057	2	0	2	0	9	0	1	0	15
174			min		9	.001	9	018	1	0	3	0	3	001	4
175		12	max		2	033	15	0	2	0	9	0	1	0	15
176		12	min	-91.705	9	146	4	018	1	0	3	0	3	001	4
177		13	max		2	075	15	0	2	0	9	0	1	0	15
		13			_						3				
178		4.4	min		9	324	4	018	1	0		0	3	001	4
179		14	max		2	117	15	0	2	0	9	0	1	0	15
180		4.5	min	-91.816	9	502	4	018	1	0	3	0	3	001	4
181		15	max		2	159	15	0	2	0	9	0	1	0	15
182			min	-91.872	9	68	4	018	1	0	3	0	3	0	4
183		16	max		2	201	15	0	2	0	9	0	1	0	15
184			min	-91.928	9	858	4	018	1	0	3	0	3	0	4
185		17	max		2	242	15	0	2	0	9	0	9	0	15
186			min	-91.984	9	-1.036	4	018	1	0	3	0	3	0	4
187		18	max		2	284	15	0	2	0	9	0	9	0	15
188			min	-92.04	9	-1.214	4	018	1	0	3	0	3	0	4
189		19	max	186.514	2	326	15	0	2	0	9	0	9	0	1
190			min	-92.096	9	-1.392	4	018	1	0	3	0	3	0	1
191	M8	1	max	1060.542	2	0	1	.091	9	0	1	0	2	0	1
192				-403.345		0	1	426	3	0	1	0	3	0	1
193		2		1060.607	2	0	1	.091	9	0	1	0	9	0	1
194		_	min			0	1	426	3	0	1	0	3	0	1
195		3		1060.671	2	0	1	.091	9	0	1	0	9	0	1
196			min		3	0	1	426	3	0	1	0	3	0	1
197		4		1060.736	2	0	1	.091	9	0	1	0	9	0	1
198		-			3	0	1	426	3	0	1		3	0	1
		_	min				_					0			_
199		5		1060.801	2	0	1	.091	9	0	1	0	9	0	1
200			min	-403.151	3	0	1	426	3	0	1	0	3	0	1
201		6		1060.865	2	0	1	.091	9	0	1	0	9	0	1
202			min	-403.102	3	0	1	426	3	0	1	0	3	0	1
203		7		1060.93	2	0	1	.091	9	0	1	0	9	0	1
204			min		3	0	1	426	3	0	1	0	3	0	1
205		8	max	1060.995	2	0	1	.091	9	0	1	0	9	0	1
206			min	-403.005	3	0	1	426	3	0	1	0	3	0	1
207		9		1061.059	2	0	1	.091	9	0	1	0	9	0	1
208			min		3	0	1	426	3	0	1	0	3	0	1
					_								_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
209		10	max	1061.124	2	0	1	.091	9	0	1	0	9	0	1
210			min	-402.908	3	0	1	426	3	0	1	0	3	0	1
211		11	max	1061.189	2	0	1	.091	9	0	1	0	9	0	1
212			min	-402.86	3	0	1	426	3	0	1	0	3	0	1
213		12	max	1061.254	2	0	1	.091	9	0	1	0	9	0	1
214			min	-402.811	3	0	1	426	3	0	1	0	3	0	1
215		13	max	1061.318	2	0	1	.091	9	0	1	0	9	0	1
216			min	-402.763	3	0	1	426	3	0	1	0	3	0	1
217		14	max	1061.383	2	0	1	.091	9	0	1	0	9	0	1
218			min	-402.714	3	0	1	426	3	0	1	0	3	0	1
219		15		1061.448	2	0	1	.091	9	0	1	0	9	0	1
220			min	-402.666	3	0	1	426	3	0	1	0	3	0	1
221		16		1061.512	2	0	1	.091	9	0	1	0	9	0	1
222			min	-402.617	3	0	1	426	3	0	1	0	3	0	1
223		17		1061.577	2	0	1	.091	9	0	1	0	9	0	1
224				-402.568	3	0	1	426	3	0	1	0	3	0	1
225		18		1061.642	2	0	1	.091	9	0	1	0	9	0	1
226			min	-402.52	3	0	1	426	3	0	1	0	3	0	1
227		19		1061.707	2	0	1	.091	9	0	1	0	9	0	1
228			min	-402.471	3	0	1	426	3	0	1	0	3	0	1
229	M10	1		252.241	1	.669	4	0	10	0	1	0	1	0	1
230			min	-327.436	3	.158	15	105	1	0	3	0	3	0	1
231		2	max	252.338	1	.631	4	0	10	0	1	0	1	0	15
232				-327.363	3	.149	15	105	1	0	3	0	3	0	4
233		3	max	252.434	1	.593	4	0	10	0	1	0	1	0	15
234				-327.291	3	.14	15	105	1	0	3	0	3	0	4
235		4	max	252.53	1	.555	4	0	10	0	1	0	10	0	15
236		_	1	-327.219	3	.131	15	105	1	0	3	0	3	0	4
237		5	max	252.627	1	.517	4	0	10	0	1	0	10	0	15
238			min	-327.146	3	.122	15	105	1	0	3	0	3	0	4
239		6	max	252.723	1	.479	4	0	10	0	1	0	10	0	15
240			min	-327.074	3	.113	15	105	1	0	3	0	3	0	4
241		7	max	252.82	1	.442	4	0	10	0	1	0	10	0	15
242				-327.002	3	.105	15	105	1	0	3	0	3	0	4
243		8	max	252.916	1	.404	4	0	10	0	1	0	10	0	15
244		0	min		3	.096	15	105	1	0	3	0	3	0	4
245		9	max		1	.366	4	0	10	0	1	0	10	0	15
246		9		-326.857	3	.087	15	105	1	0	3	0	3	0	4
247		10	max	253.109	_ <u></u>	.328	4	<u>103 </u>	10	0	1	0	10	0	15
248		10	min	-326.785	3	.078	15	105	1	0	3	0	3	0	4
249		11		253.205	<u> </u>	.29	4	<u>105</u> 0	10	0	1	0	10	0	15
250				-326.713	3	.069	15	105	1	0	3	0	3	0	4
251		12		253.301	<u> </u>	.252	4	<u>105</u> 0	10	0	1	0	10	0	15
252		14		-326.641	3	.06	15	105	1	0	3	0	3	0	4
253		13		253.398	<u>ა</u> 1	.215	4	<u>105</u> 0	10	0	1	0	10	0	15
254		13		-326.568	3	.051	15	105	1	0	3	0	3	0	4
		1.1		253.494				<u>105</u> 0				_			
255		14			1	.177	15	105	10	0	1	0	10 3	0	15
256		4.5		-326.496	3	.042			10	0	3	0		0	15
257		15	max	253.59	<u>1</u>	.139	4	105	10	0	1	0	10	0	15
258		10	min	-326.424	3	.033	15	105	10	0	1	0	3	0	15
259		16		253.687	1	.101	4	<u> </u>	10	0		0	10	0	15
260		47		-326.351	3	.025	15	105	1	0	3	0	3	0	4
261		17	max		1_	.073	3	0	10	0	1	0	10	0	15
262		40		-326.279	3	.016	15	105	1	0	3	0	3	0	4
263		18	max	253.88	1_	.051	3	0	10	0	1	0	10	0	15
264		40		-326.207	3	.002	9	105	1	0	3	0	3	0	4
265		19	max	253.976	1	.028	3	0	10	0	1	0	10	0	15

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome		z-z Mome	
266			min	-326.135	3	023	9	105	1	0	3	0	3	0	4
267	<u>M11</u>	1	max	55.644	2	1.817	4	.144	1_	0	3	0	3	0	4
268			min	-48.457	9	.428	15	024	3	0	10	0	1	0	15
269		2	max	55.577	2	1.639	4	.144	1_	0	3	0	3	0	4
270			min	-48.513	9	.386	15	024	3	0	10	0	1	0	15
271		3	max	55.509	2	1.461	4	.144	1_	0	3	0	3	0	2
272			min	-48.569	9	.344	15	024	3	0	10	0	1_	0	3
273		4	max	55.442	2	1.283	4	.144	1_	0	3	0	3	0	15
274			min	-48.625	9	.302	15	024	3	0	10	0	1	0	4
275		5	max	55.375	2	1.105	4	.144	1	0	3	0	3	0	15
276			min	-48.681	9	.26	15	024	3	0	10	0	1	0	4
277		6	max	55.308	2	.927	4	.144	1	0	3	0	3	0	15
278			min	-48.737	9	.218	15	024	3	0	10	0	1	0	4
279		7	max	55.241	2	.749	4	.144	1	0	3	0	3	0	15
280			min	-48.793	9	.177	15	024	3	0	10	0	1	0	4
281		8	max	55.174	2	.571	4	.144	1	0	3	0	3	0	15
282			min	-48.849	9	.135	15	024	3	0	10	0	1	0	4
283		9	max	55.107	2	.393	4	.144	1	0	3	0	3	0	15
284			min	-48.905	9	.093	15	024	3	0	10	0	1	001	4
285		10	max	55.04	2	.215	4	.144	1	0	3	0	3	0	15
286			min	-48.961	9	.051	15	024	3	0	10	0	1	001	4
287		11	max	54.973	2	.04	2	.144	1	0	3	0	3	0	15
288			min	-49.016	9	.003	3	024	3	0	10	0	1	001	4
289		12	max	54.906	2	033	15	.144	1	0	3	0	3	0	15
290			min	-49.072	9	141	4	024	3	0	10	0	1	001	4
291		13	max	54.838	2	075	15	.144	1	0	3	0	3	0	15
292		10	min	-49.128	9	319	4	024	3	0	10	0	1	001	4
293		14	max	54.771	2	116	15	.144	1	0	3	0	3	0	15
294		17	min	-49.184	9	497	4	024	3	0	10	0	10	001	4
295		15	max	54.704	2	158	15	.144	1	0	3	0	3	0	15
296		13	min	-49.24	9	675	4	024	3	0	10	0	10	0	4
297		16	max	54.637	2	2	15	.144	1	0	3	0	3	0	15
298		10	min	-49.296	9	854	4	024	3	0	10	0	10	0	4
299		17	max	54.57	2	242	15	.144	1	0	3	0	3	0	15
300		17		-49.352	9	-1.032	4	024	3	0	10	0	10	0	4
301		18	min	54.503	2	284	15	.144	1		3	0	3	0	15
		10	max	-49.408		-1.21		024	3	0	10	0	10		
302		40	min		9		4			0				0	4
303		19	max	54.436	2	326	15	.144	1	0	3	0	3	0	1
304	N440	4	min	-49.464	9	-1.388	4	024	3	0	10	0	10	0	
305	M12	1	max		1	0	1	.507	1	0	1	0	2	0	1
306				-118.873		0	1	022	10	0	1	0	3	0	1
307		2	max		1	0	1	.507	1	0	1	0	1	0	1
308			min	-118.825	3	0	1	022	10	0	1	0	15	0	1
309		3		348.056	1	0	1	.507	1	0	1	0	1	0	1
310			min		3	0	1	022	10	0	1	0	10	0	1
311		4		348.121	1_	0	1	.507	1	0	1	0	1	0	1
312			min		3_	0	1	022	10	0	1	0	10	0	1
313		5	max		1_	0	1	.507	1	0	1	0	1_	0	1
314				-118.679	3	0	1	022	10	0	1	0	10	0	1
315		6	max		1_	0	1	.507	1_	0	1	0	1_	0	1
316				-118.631	3	0	1	022	10	0	1	0	10	0	1
317		7	max		_1_	0	1	.507	1	0	1	0	1	0	1
318			min	-118.582	3	0	1	022	10	0	1	0	10	0	1
319		8	max		1_	0	1	.507	1	0	1	0	1	0	1
320			min	-118.534	3	0	1	022	10	0	1	0	10	0	1
321		9	max	348.445	1_	0	1	.507	1	0	1	0	1	0	1
322			min	-118.485	3	0	1	022	10	0	1	0	10	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	348.509	1	0	1	.507	1	0	1	0	1	0	1
324			min	-118.436	3	0	1	022	10	0	1	0	10	0	1
325		11	max	348.574	1	0	1	.507	1	0	1	0	1	0	1
326			min	-118.388	3	0	1	022	10	0	1	0	10	0	1
327		12	max	348.639	1	0	1	.507	1	0	1	0	1	0	1
328			min	-118.339	3	0	1	022	10	0	1	0	10	0	1
329		13	max	348.703	1	0	1	.507	1	0	1	0	1	0	1
330			min	-118.291	3	0	1	022	10	0	1	0	10	0	1
331		14	max	348.768	1	0	1	.507	1	0	1	0	1	0	1
332			min	-118.242	3	0	1	022	10	0	1	0	10	0	1
333		15	max	348.833	1	0	1	.507	1	0	1	0	1	0	1
334			min	-118.194	3	0	1	022	10	0	1	0	10	0	1
335		16	max	348.897	1	0	1	.507	1	0	1	0	1	0	1
336			min	-118.145	3	0	1	022	10	0	1	0	10	0	1
337		17	max	348.962	1	0	1	.507	1	0	1	0	1	0	1
338			min	-118.097	3	0	1	022	10	0	1	0	10	0	1
339		18	max	349.027	1	0	1	.507	1	0	1	0	1	0	1
340			min	-118.048	3	0	1	022	10	0	1	0	10	0	1
341		19	max		1	0	1	.507	1	0	1	0	1	0	1
342			min	-118	3	0	1	022	10	0	1	0	10	0	1
343	M1	1	max	51.995	1	343.592	3	.383	10	0	1	.024	1	0	2
344			min	1.622	15	-254.011	1	-12.25	1	0	3	0	10	0	3
345		2	max	52.067	1	343.39	3	.383	10	0	1	.021	1	.055	1
346			min	1.644	15	-254.281	1	-12.25	1	0	3	0	10	075	3
347		3	max	61.408	1	4.061	9	.383	10	0	3	.019	1	.11	1
348			min	-5.875	3	-21.607	3	-12.166	1	0	1	0	10	148	3
349		4	max	61.48	1	3.836	9	.383	10	0	3	.016	1	.11	1
350			min	-5.821	3	-21.809	3	-12.166	1	0	1	0	10	143	3
351		5	max	61.553	1	3.611	9	.383	10	0	3	.013	1	.111	1
352			min	-5.766	3	-22.011	3	-12.166	1	0	1	0	10	138	3
353		6	max	61.625	1	3.387	9	.383	10	0	3	.011	1	.113	2
354			min	-5.712	3	-22.214	3	-12.166	1	0	1	0	10	134	3
355		7	max	61.697	1	3.162	9	.383	10	0	3	.008	1	.116	2
356			min	-5.658	3	-22.416	3	-12.166	1	0	1	0	10	129	3
357		8	max	61.769	1	2.937	9	.383	10	0	3	.005	1	.12	2
358			min	-5.604	3	-22.618	3	-12.166	1	0	1	0	10	124	3
359		9	max	61.842	1	2.712	9	.383	10	0	3	.003	1	.123	2
360			min	-5.55	3	-22.82	3	-12.166	1	0	1	0	10	119	3
361		10	max	61.914	1	2.487	9	.383	10	0	3	.001	3	.127	2
362			min	-5.495	3	-23.023	3	-12.166	1	0	1	0	15	114	3
363		11		61.986		2.263	9	.383	10	0	3	0	3	.131	2
364			min	-5.441	3	-23.225	3	-12.166	1	0	1	003	1	109	3
365		12	1		1	2.038	9	.383	10	0	3	0	10	.135	2
366			min	-5.387	3	-23.427	3	-12.166	1	0	1	005	1	104	3
367		13			1	1.813	9	.383	10	0	3	0	10	.138	2
368			min	-5.333	3	-23.63	3	-12.166	1	0	1	008	1	099	3
369		14	max		1	1.588	9	.383	10	0	3	0	10	.142	2
370			min	-5.279	3	-23.832	3	-12.166	1	0	1	01	1	094	3
371		15	max		1	1.364	9	.383	10	0	3	0	10	.146	2
372			min	-5.224	3	-24.034	3	-12.166	1	0	1	013	1	088	3
373		16	max		2	16.466	2	.387	10	0	1	0	10	.15	2
374			min	-34.665	3	-50.69	3	-12.294	1	0	10	016	1	083	3
375		17	max		2	16.197	2	.387	10	0	1	0	10	.147	2
376			min		3	-50.893	3	-12.294	1	0	10	019	1	072	3
377		18		-1.643	15	340.097	2	.409	10	0	3	0	10	.074	2
378		10	min	-52.016	1	-166.354	3	-12.673	1	0	2	021	1	036	3
379		10	max		15	339.827	2	.409	10	0	3	0	10	0	2
013		ן וא	πιαλ	-1.021	Iυ	JJ3.021		.408	ΙŪ	U	_ J	U	LIU	U	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
380			min	-51.944	1	-166.556	3	-12.673	1	0	2	024	1	0	3
381	M5	1	max	129.039	1	1103.768	3	0	11	0	9	.008	3	0	3
382			min	-1.994	3	-811.527	1	-53.112	3	0	3	0	11	0	2
383		2	max	129.111	1	1103.566	3	0	11	0	9	0	9	.175	1
384			min	-1.94	3	-811.797	1	-53.112	3	0	3	004	3	239	3
385		3	max		1	6.266	9	5.717	3	0	3	0	9	.348	1
386			min	-42.944	3	-75.859	3	101	9	0	9	015	3	473	3
387		4	max		1	6.041	9	5.717	3	0	3	0	9	.353	1
388		 	min	-42.89	3	-76.061	3	101	9	0	9	013	3	456	3
389		5		157.568	1	5.816	9	5.717	3		3	0	9	.357	1
		- 5	max		3		3		9	0	9	012	3		3
390			min	-42.836		-76.263		101		0				44	
391		6	max	157.64	1	5.591	9	5.717	3	0	3	0	9	.362	1
392			min	-42.782	3	<u>-76.466</u>	3	101	9	0	9	011	3	423	3
393		7	max	157.713	1	5.367	9	5.717	3	0	3	0	9	.372	2
394			min	-42.727	3	-76.668	3	101	9	0	9	01	3	407	3
395		8	max		1_	5.142	9	5.717	3	0	3	0	9	.384	2
396			min	-42.673	3	-76.87	3	101	9	0	9	008	3	39	3
397		9	max	157.857	1	4.917	9	5.717	3	0	3	0	1	.396	2
398			min	-42.619	3	-77.072	3	101	9	0	9	007	3	373	3
399		10	max	157.929	1	4.692	9	5.717	3	0	3	0	1	.408	2
400			min	-42.565	3	-77.275	3	101	9	0	9	006	3	357	3
401		11	max		1	4.468	9	5.717	3	0	3	0	2	.42	2
402			min	-42.511	3	-77.477	3	101	9	0	9	005	3	34	3
403		12	max	158.074	1	4.243	9	5.717	3	0	3	0	2	.432	2
404		12	min	-42.456	3	-77.679	3	101	9	0	9	004	3	323	3
405		13	max		1	4.018	9	5.717	3	0	3	0	11	.445	2
406		13	min	-42.402	3	-77.882	3	101	9	0	9	002	3	306	3
		1.1											_		
407		14	max		1	3.793	9	5.717	3	0	3	0	11	.457	2
408		4.5	min	-42.348	3	-78.084	3	101	9	0	9	001	3	289	3
409		15	max	158.291	1	3.568	9	5.717	3	0	3	0	3	.469	2
410		1.0	min	-42.294	3	-78.286	3	101	9	0	9	0	9	272	3
411		16	max		2	65.832	2	5.693	3	0	3	0	3	.481	2
412			min	-106.368	3	-134.086	3	103	9	0	2	0	9	255	3
413		17	max		2	65.562	2	5.693	3	0	3	.002	3	.467	2
414			min	-106.314	3	-134.289	3	103	9	0	2	0	9	226	3
415		18	max	-1.673	12	1086.514	2	5.261	3	0	3	.003	3	.235	2
416			min	-129.225	1	-524.935	3	02	1	0	9	0	9	113	3
417		19	max	-1.636	12	1086.244	2	5.261	3	0	3	.004	3	0	3
418			min	-129.153	1	-525.138	3	02	1	0	9	0	9	0	2
419	M9	1	max	51.961	1	343.539	3	55.736	3	0	3	0	10	0	2
420			min		15		1	383	10	0	1	024	1	0	3
421		2	max		1	343.337	3	55.736	3	0	3	0	10	.055	1
422		_	min	1.641	15	-254.28	1	383	10	0	1	021	1	075	3
423		3	max		1	4.049	9	12.061	1	0	1	.012	3	.109	1
424		T .	min	-6.145	3	-21.52	3	-2.562	3	0	5	018	1	148	3
425		4	max		1	3.824	9	12.061	1	0	1	.011	3	.11	1
426		+	min	-6.091	3	-21.722	3	-2.562	3		5		1		3
		-								0		016		143	
427		5	max		1	3.599	9	12.061	1	0	1	.01	3	.111	1
428			min	-6.036	3	-21.924	3	-2.562	3	0	5	013	1	138	3
429		6	max	61.92	1	3.375	9	12.061	1	0	1	.01	3	.113	2
430			min	-5.982	3	-22.126	3	-2.562	3	0	5	011	1	133	3
431		7	max		1	3.15	9	12.061	1	0	1	.009	3	.116	2
432			min	-5.928	3	-22.329	3	-2.562	3	0	5	008	1	129	3
433		8	max	62.065	1	2.925	9	12.061	1	0	1	.009	3	.12	2
434			min	-5.874	3	-22.531	3	-2.562	3	0	5	005	1	124	3
435		9	max		1	2.7	9	12.061	1	0	1	.008	3	.123	2
436			min	-5.82	3	-22.733	3	-2.562	3	0	5	003	1	119	3

Company Designer Job Number Model Name Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
437		10	max	62.209	1	2.476	9	12.061	1	0	1	.008	3	.127	2
438			min	-5.765	3	-22.936	3	-2.562	3	0	5	0	1	114	3
439		11	max	62.282	1	2.251	9	12.061	1	0	1	.007	3	.131	2
440			min	-5.711	3	-23.138	3	-2.562	3	0	5	0	10	109	3
441		12	max	62.354	1	2.026	9	12.061	1	0	1	.007	3	.135	2
442			min	-5.657	3	-23.34	3	-2.562	3	0	5	0	10	104	3
443		13	max	62.426	1	1.801	9	12.061	1	0	1	.008	1	.138	2
444			min	-5.603	3	-23.543	3	-2.562	3	0	5	0	10	099	3
445		14	max	62.498	1	1.577	9	12.061	1	0	1	.01	1	.142	2
446			min	-5.549	3	-23.745	3	-2.562	3	0	5	0	10	094	3
447		15	max	62.571	1	1.352	9	12.061	1	0	1	.013	1	.146	2
448			min	-5.494	3	-23.947	3	-2.562	3	0	5	0	10	088	3
449		16	max	69.291	2	16.221	2	12.197	1_	0	10	.016	1	.15	2
450			min	-35.419	3	-51.041	3	-2.577	3	0	3	0	10	083	3
451		17	max	69.363	2	15.951	2	12.197	1	0	10	.018	1_	.147	2
452			min	-35.365	3	-51.244	3	-2.577	3	0	3	0	10	072	3
453		18	max	-1.639	15	340.097	2	12.694	1_	0	2	.021	1	.074	2
454			min	-51.971	1	-166.348	3	-2.242	3	0	3	0	10	036	3
455		19	max	-1.618	15	339.827	2	12.694	1	0	2	.024	1	0	2
456			min	-51.899	1	-166.55	3	-2.242	3	0	3	0	10	0	3
457	M13	1	max	55.734	3	253.858	1	-1.619	15	0	2	.024	1	0	1
458			min	383	10	-343.571	3	-51.959	1	0	3	0	10	0	3
459		2	max	55.734	3	180.64	1	-1.226	15	0	2	.01	3	.131	3
460			min	383	10	-244.078	3	-39.015	1	0	3	002	10	097	1
461		3	max	55.734	3	107.423	_1_	682	10	0	2	.007	3	.217	3
462			min	383	10	-144.585	3	-26.071	1	0	3	011	1	161	1
463		4	max	55.734	3	34.205	1	.404	10	0	2	.005	3	.259	3
464			min	383	10	-45.092	3	-13.127	1	0	3	019	1	192	1
465		5	max	55.734	3	54.402	3	2.116	2	0	2	.004	3	.257	3
466			min	383	10	-39.013	1	-3.548	3	0	3	022	1	191	1
467		6	max	55.734	3	153.895	3	12.762	1	0	2	.002	3	.211	3
468			min	383	10	-112.23	1	-2.975	3	0	3	02	1	157	1
469		7	max	55.734	3	253.388	3	25.706	1_	0	2	0	3	.12	3
470			min	383	10	-185.448	1	-2.403	3	0	3	011	1	091	1
471		8	max	55.734	3	352.881	3	38.65	1	0	2	.004	2	.007	1
472			min	383	10	-258.665	1	-1.831	3	0	3	0	12	014	3
473		9	max	55.734	3	452.374	3	51.595	1_	0	2	.023	1	.139	1
474			min	383	10	-331.883	1_	-1.259	3	0	3	0	3	193	3
475		10	max	55.734	3	-8.127	15	64.539	1	0	2	.049	1	.302	1
476			min	383	10	-551.867	3	.606	12	0	3	009	3	417	3
477		11	max	12.266	1	331.883	1	1.891	3	0	3	.023	1	.139	1
478			min	383	10	-452.374	3	<u>-51.561</u>	1	0	2	008	3	193	3
479		12	max	12.266	1	258.665	1	2.464	3	0	3	.004	2	.007	1
480			min	383	10	-352.881	3	-38.617	1	0	2	007	3	014	3
481		13		12.266	1	185.448	1	3.036	3	0	3	0	10	.12	3
482			min	383	10	-253.388	3	-25.673	1	0	2	011	1_	091	1
483		14	max		1	112.23	1	3.608	3	0	3	0	15	.211	3
484			min	383	10	-153.895	3	-12.729	1	0	2	02	1	157	1
485		15	max	12.266	1	39.013	1	4.18	3	0	3	0	15	.257	3
486		4.0	min	383	10	-54.401	3	-2.116	2	0	2	022	1	191	1
487		16	max	12.266	1	45.092	3	13.16	1	0	3	0	12	.259	3
488			min	383	10	-34.205	1	404	10	0	2	019	1	192	1
489		17	max	12.266	1	144.585	3	26.104	1	0	3	.002	3	.217	3
490			min	383	10	-107.423	1	.682	10	0	2	011	1	161	1
491		18		12.266	1	244.078	3	39.048	1	0	3	.004	3	.131	3
492			min	383	10	-180.64	1	1.229	15	0	2	002	10	097	1
493		19	max	12.266	1	343.571	3	51.992	_ 1_	0	3	.024	1	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	<u>LC</u>
494			min	383	10	-253.858	1	1.622	15	0	2	0	10	0	3
495	M16	1	max	2.243	3	339.893	2	-1.618	15	0	3	.024	1	0	2
496			min	-12.678	1	-166.564	3	-51.901	1	0	2	0	10	0	3
497		2	max	2.243	3	241.743	2	-1.224	15	0	3	.004	1	.063	3
498			min	-12.678	1	-118.882	3	-38.957	1	0	2	002	10	129	2
499		3	max	2.243	3	143.593	2	661	10	0	3	0	12	.106	3
500			min	-12.678	1	-71.199	3	-26.013	1	0	2	011	1	215	2
501		4	max	2.243	3	45.443	2	.425	10	0	3	0	15	.127	3
502			min	-12.678	1	-23.517	3	-13.069	1	0	2	019	1	257	2
503		5	max	2.243	3	24.166	3	2.157	2	0	3	0	15	.127	3
504			min	-12.678	1	-52.707	2	-2.231	3	0	2	022	1	255	2
505		6	max	2.243	3	71.848	3	12.82	1	0	3	0	15	.105	3
506			min	-12.678	1	-150.857	2	-1.659	3	0	2	019	1	21	2
507		7	max	2.243	3	119.531	3	25.764	1	0	3	0	10	.063	3
508			min	-12.678	1	-249.007	2	-1.086	3	0	2	011	1	121	2
509		8	max	2.243	3	167.213	3	38.708	1	0	3	.004	2	.011	2
510			min	-12.678	1	-347.157	2	514	3	0	2	005	3	001	3
511		9	max	2.243	3	214.896	3	51.652	1	0	3	.024	1	.187	2
512		1	min	-12.678	1	-445.307	2	.058	3	0	2	005	3	086	3
513		10	max	.409	10	-8.125	15	64.597	1	0	15	.049	1	.407	2
514		10	min	-12.678	1	-543.457	2	-1.481	3	0	2	004	3	192	3
515		11	max	.409	10	445.307	2	691	12	0	2	.023	1	.187	2
516		+		-12.658				-51.607	1		3	0	3		3
		40	min		1	-214.896	3			0		_		086	
517		12	max	.409	10	347.157	2	309	12	0	2	.004	2	.011	2
518		40	min	-12.658	1	-167.213	3	-38.663	1	0	3	0	3	001	3
519		13	max	.409	10	249.007	2	.236	3	0	2	0	10	.063	3
520			min	-12.658	1	-119.531	3	-25.719	1	0	3	011	1	121	2
521		14	max	.409	10	150.857	2	.808	3	0	2	0	12	.105	3
522			min	-12.658	1	-71.848	3	-12.774	1	0	3	019	1	21	2
523		15	max	.409	10	52.707	2	1.38	3	0	2	0	3	.127	3
524			min	-12.658	1	-24.166	3	-2.157	2	0	3	022	1	255	2
525		16	max	.409	10	23.517	3	13.114	1	0	2	0	3	.127	3
526			min	-12.658	1	-45.443	2	425	10	0	3	019	1	257	2
527		17	max	.409	10	71.199	3	26.058	1	0	2	.002	3	.106	3
528			min	-12.658	1	-143.593	2	.661	10	0	3	011	1	215	2
529		18	max	.409	10	118.882	3	39.002	1	0	2	.004	1	.063	3
530			min	-12.658	1	-241.743	2	1.228	15	0	3	002	10	129	2
531		19	max	.409	10	166.564	3	51.947	1	0	2	.024	1	0	2
532			min	-12.658	1	-339.893	2	1.621	15	0	3	0	10	0	3
533	M15	1	max	0	1	.824	3	.136	3	0	1	0	1	0	1
534			min	-69.458	3	0	1	0	1	0	3	0	3	0	1
535		2	max	0	1	.732	3	.136	3	0	1	0	1	0	1
536			min	-69.512	3	0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.641	3	.136	3	0	1	0	1	0	1
538			min	-69.566	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.549	3	.136	3	0	1	0	1	0	1
540			min	-69.62	3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.458	3	.136	3	0	1	0	1	0	1
542			min	-69.674	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.366	3	.136	3	0	1	0	1	0	1
544		Ĭ	min	-69.728	3	0	1	0	1	0	3	0	3	0	3
545		7	max	0	1	.275	3	.136	3	0	1	0	3	0	1
546			min	-69.782	3	0	1	0	1	0	3	0	1	0	3
547		8	max	0	1	.183	3	.136	3	0	1	0	3	0	1
548			min	-69.836	3	0	1	0	1	0	3	0	1	0	3
549		9	max	0	1	.092	3	.136	3	0	1	0	3	0	1
550		-	min	-69.89	3	0	1	0	1	0	3	0	1	0	3
550			1111111	-03.03	J	U		U		U	J	U		U	J

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
551		10	max	0	1	0	1	.136	3	0	1	0	3	0	1
552			min	-69.944	3	0	1	0	1	0	3	0	1	0	3
553		11	max	0	1	0	1	.136	3	0	1	0	3	0	1
554			min	-69.998	3	092	3	0	1	0	3	0	1	0	3
555		12	max	0	1	0	1	.136	3	0	1	0	3	0	1
556		40	min	-70.052	3	183	3	0	1	0	3	0	1	0	3
557		13	max	0	1	0	1	.136	3	0	1	0	3	0	1
558		4.4	min	<u>-70.106</u>	3	275	3	0	1	0	3	0	1	0	3
559		14	max	0	1	0	1	.136	3	0	1	0	3	0	1
560		4.5	min	<u>-70.16</u>	3	366	3	0	1	0	3	0	1	0	3
561		15	max	0 -70.214	1	0	1	.136	3	0	1	0	3	0	1
562		4.0	min		3	458	3	0	1	0	3	0	1	0	3
563		16	max	<u> </u>	1	0	1	.136	3	0	1	0	3	0	1
564		47	min	-70.268	3	549	3	0	1	0	3	0	1	0	3
565		17	max	-70.322	1	0	1	.136	3	0	1	0	3	0	3
566		10	min		3	641	3	126		0	3	0		0	$\overline{}$
567		18	max	0 270	1	722	1	.136	3	0	1	0	3	0	1
568		40	min	-70.376	3	732	3	0	1	0	3	0	1	0	3
569		19	max	0 70 40	1	0	1	.136	3	0	1	0	3	0	1
570	MAGA	1	min	-70.43	2	824	3	.046	1	0	3	0	1	0	1
571	M16A		max	0		1.409	2	053	3		3	0	3	0	1
572		2	min	<u>-69.18</u>	2	1 252				0	_		_		_
573		2	max	0		1.253	4	.046	1	0	3	0	3	0	2
574		2	min	-69.126	3	1 000	2	053	3	0		0		0	4
575		3	max	0 -69.072	3	1.096 0	2	.046 053	3	0	3	0	3	0	2
576		4	min		2							_		_	4
577		4	max	0	3	.939	2	.046 053	3	0	3	0	3	0	4
578			min	<u>-69.018</u>		702			1	0	3	0		0	
579		5	max	-68.964	3	.783 0	2	.046 053	3	0	1	0	3	001	4
580 581		6	min max	<u>-00.904</u> ()	2	.626	4	.046	1	0	3	0	3	001 0	2
582		0	min	-68.91	3	0	2	053	3	0	1	0	1	001	4
583		7	max	0	2	.47	4	.046	1	0	3	0	3	0	2
584			min	-68.856	3	0	2	053	3	0	1	0	1	001	4
585		8	max	0	2	.313	4	.046	1	0	3	0	3	0	2
586		0	min	-68.802	3	0	2	053	3	0	1	0	1	002	4
587		9	max	0	2	.157	4	.046	1	0	3	0	3	0	2
588			min	-68.748	3	0	2	053	3	0	1	0	1	002	4
589		10	max	00.740	2	0	1	.046	1	0	3	0	3	0	2
590		10	min	-68.694	3	0	1	053	3	0	1	0	1	002	4
591		11	max		13	0	2	.046	1	0	3	0	3	0	2
592			min	-68.64	3	157	4	053	3	0	1	0	1	002	4
593		12	max	.092	13	0	2	.046	1	0	3	0	3	0	2
594			min	-68.586	3	313	4	053	3	0	1	0	1	002	4
595		13	max	.167	13	0	2	.046	1	0	3	0	1	0	2
596		'	min	-68.532	3	47	4	053	3	0	1	0	4	001	4
597		14	max	.241	13	0	2	.046	1	0	3	0	1	0	2
598			min	-68.478	3	626	4	053	3	0	1	0	3	001	4
599		15	max	.315	13	0	2	.046	1	0	3	0	1	0	2
600			min	-68.424	3	783	4	053	3	0	1	0	3	001	4
601		16	max	.407	4	0	2	.046	1	0	3	0	1	0	2
602			min	-68.37	3	939	4	053	3	0	1	0	3	0	4
603		17	max	.499	4	0	2	.046	1	0	3	0	1	0	2
604			min	-68.316	3	-1.096	4	053	3	0	1	0	3	0	4
605		18	max	.592	4	0	2	.046	1	0	3	0	1	0	2
606			min	-68.262	3	-1.253	4	053	3	0	1	0	3	0	4
607		19	max	.684	4	0	2	.046	1	0	3	0	1	0	1
		, ,,	mun	.001				.0.10							<u> </u>

Model Name

: Schletter, Inc. : HCV

110 V

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-68.208	3	-1.409	4	053	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope incili			on Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	1	.005	2	.002	1	5.023e-6	10	NC	3	NC	1
2			min	003	3	005	3	001	3	-1.795e-4	1	5552.937	2	NC	1
3		2	max	.002	1	.005	2	.002	1	4.782e-6	10	NC	3	NC	1
4			min	003	3	004	3	001	3	-1.718e-4	1	6034.955	2	NC	1
5		3	max	.002	1	.005	2	.002	1	4.541e-6	10	NC	1	NC	1
6			min	002	3	004	3	001	3	-1.642e-4	1	6604.045	2	NC	1
7		4	max	.002	1	.004	2	.001	1	4.301e-6	10	NC	1	NC NC	1
8		-		002	3	004	3	001	3	-1.565e-4	1	7280.82	2	NC NC	1
		-	min												
9		5	max	.001	1	.004	2	.001	1	4.06e-6	<u>10</u>	NC	1_	NC NC	1
10			min	002	3	004	3	0	3	-1.488e-4	1_	8092.643	2	NC	1
11		6	max	.001	1	.003	2	.001	1	3.819e-6	<u>10</u>	NC	1	NC	1
12			min	002	3	004	3	0	3	-1.411e-4	_1_	9076.45	2	NC	1
13		7	max	.001	1	.003	2	0	1	3.578e-6	10	NC	_1_	NC	1
14			min	002	3	003	3	0	3	-1.334e-4	1_	NC	1_	NC	1
15		8	max	.001	1	.003	2	0	1	3.337e-6	10	NC	1	NC	1
16			min	002	3	003	3	0	3	-1.257e-4	1	NC	1	NC	1
17		9	max	.001	1	.002	2	0	1	3.097e-6	10	NC	1	NC	1
18			min	002	3	003	3	0	3	-1.18e-4	1	NC	1	NC	1
19		10	max	0	1	.002	2	0	1	2.856e-6	10	NC	1	NC	1
20			min	001	3	003	3	0	3	-1.104e-4	1	NC	1	NC	1
21		11	max	0	1	.002	2	0	1	2.615e-6	10	NC	1	NC	1
22			min	001	3	003	3	0	3	-1.027e-4	1	NC	1	NC	1
23		12	max	0	1	.003	2	0	1	2.374e-6	10	NC	1	NC	1
24		12	min	001	3	002	3	0	3	-9.499e-5	1	NC NC	1	NC NC	1
		40									•		1		
25		13	max	0	1	.001	2	0	1	2.133e-6	<u>10</u>	NC NC	_	NC	1
26		4.4	min	0	3	002	3	0	3	-8.73e-5	1_	NC NC	1_	NC NC	1
27		14	max	0	1	0	2	0	1	1.893e-6	10	NC	1	NC	1
28			min	0	3	002	3	0	3	-7.962e-5	_1_	NC	1	NC	1
29		15	max	0	1	0	2	0	1	1.652e-6	10	NC	_1_	NC	1
30			min	0	3	001	3	0	3	-7.193e-5	1_	NC	1	NC	1
31		16	max	0	1	0	2	0	1	1.411e-6	10	NC	1	NC	1
32			min	0	3	001	3	0	3	-6.425e-5	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	1.17e-6	10	NC	1	NC	1
34			min	0	3	0	3	0	3	-5.656e-5	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1	9.293e-7	10	NC	1	NC	1
36			min	0	3	0	3	0	3	-4.888e-5	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	6.885e-7	10	NC	1	NC	1
38		· · ·	min	0	1	0	1	0	1	-4.119e-5	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.879e-5	1	NC	1	NC	1
40	IVIO			0	1	0	1			-3.174e-7		NC	1	NC	1
		2	min					0	10						
41		2	max	0	9	0	2	0		2.611e-5	1	NC NC	1	NC NC	1
42			min	0	2	0	3	0	1	-6.051e-7	10	NC NC	1_	NC NC	1
43		3	max	0	9	0	2	0	10		1_	NC	1	NC NC	1
44			min	0	2	001	3	0	1	-8.928e-7	10	NC	1_	NC	1
45		4	max	0	9	0	2	0	10	4.073e-5	_1_	NC	1	NC	1
46			min	0	2	002	3	0	1	-1.18e-6	10	NC	1	NC	1
47		5	max	0	9	0	2	0	3	4.805e-5	1_	NC	1	NC	1
48			min	0	2	003	3	0	9	-1.468e-6	10	NC	1	NC	1
49		6	max	0	9	0	2	0	3	5.536e-5	1	NC	1	NC	1
50			min	0	2	003	3	0	9	-1.756e-6	10	NC	1	NC	1
51		7	max	0	9	0	2	0	3	6.268e-5	1	NC	1	NC	1
			IIIUA							0.2000					

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC				
52			min	0	2	004	3	0	9 -2.044e-6 10	NC	1_	NC	1
53		8	max	0	9	0	2	0	3 6.999e-5 1	NC	1_	NC	1
54			min	0	2	004	3	0	9 -2.331e-6 10	NC	1_	NC	1
55		9	max	0	9	0	2	0	1 7.73e-5 1	NC	1_	NC	1
56		1.0	min	0	2	005	3	0	10 -2.619e-6 10	NC	1_	NC	1
57		10	max	0	9	.001	2	0	1 8.462e-5 1	NC	1	NC NC	1
58		+	min	0	2	005	3	0	10 -2.907e-6 10	NC NC	1_	NC NC	1
59		11	max	0	9	.002	2	0	1 9.193e-5 1	NC	1	NC NC	1
60		40	min	0	2	006	3	0	10 -3.194e-6 10	NC NC	1_	NC NC	1
61		12	max	0	9	.002	2	0	1 9.925e-5 1	NC NC	1	NC NC	1
62		42	min	0		006	3	0	10 -3.482e-6 10	NC NC	•	NC NC	1
63		13	max	0	9	.003	3	0	1 1.066e-4 1	NC NC	1	NC NC	1
64 65		14	min	0	9	006 .003	2	<u> </u>	10 -3.77e-6 10 1 1.139e-4 1	NC NC	1	NC NC	1
66		14	max	0	2	006	3	0	1 1.139e-4 1 10 -4.057e-6 10	NC NC	1	NC NC	1
67		15	min max	0	9	.004	2	.001	1 1.212e-4 1	NC NC	1	NC NC	1
68		13	min	0	2	007	3	0	10 -4.345e-6 10	NC	1	NC NC	1
69		16	max	0	9	.005	2	.001	1 1.285e-4 1	NC	1	NC NC	1
70		10	min	0	2	007	3	0		9142.315	2	NC NC	1
71		17	max	0	9	.006	2	.001	1 1.358e-4 1	NC	1	NC	1
72		1 '	min	0	2	007	3	0	10 -4.92e-6 10	7770.866	2	NC	1
73		18	max	0	9	.007	2	.001	1 1.431e-4 1	NC	3	NC	1
74		1	min	0	2	007	3	0	10 -5.208e-6 10	6717.76	2	NC	1
75		19	max	0	9	.008	2	.002	1 1.504e-4 1	NC	3	NC	1
76			min	0	2	007	3	0	10 -5.496e-6 10	5899.813	2	NC	1
77	M4	1	max	.002	1	.006	2	0	10 5.47e-6 10	NC	1	NC	1
78			min	0	3	005	3	001	1 -1.538e-4 1	NC	1	NC	1
79		2	max	.002	1	.006	2	0	10 5.47e-6 10	NC	1	NC	1
80			min	0	3	005	3	001	1 -1.538e-4 1	NC	1	NC	1
81		3	max	.001	1	.006	2	0	10 5.47e-6 10	NC	1	NC	1
82			min	0	3	004	3	001	1 -1.538e-4 1	NC	1	NC	1
83		4	max	.001	1	.005	2	0	10 5.47e-6 10	NC	1	NC	1
84			min	0	3	004	3	0	1 -1.538e-4 1	NC	1	NC	1
85		5	max	.001	1	.005	2	0	10 5.47e-6 10	NC	1_	NC	1
86			min	0	3	004	3	0	1 -1.538e-4 1	NC	1	NC	1
87		6	max	.001	1	.004	2	0	10 5.47e-6 10	NC	1	NC	1
88			min	0	3	004	3	0	1 -1.538e-4 1	NC	1	NC	1
89		7	max	.001	1	.004	2	00	10 5.47e-6 10	NC	1_	NC	1
90			min	0	3	003	3	0	1 -1.538e-4 1	NC	1	NC	1
91		8	max	.001	1	.004	2	0	10 5.47e-6 10	NC	1_	NC	1
92			min	0	3	003	3	0	1 -1.538e-4 1	NC	1	NC	1
93		9	max	0	1	.003	2	0	10 5.47e-6 10	NC	1	NC NC	1
94		10	min	0	3	003	3	0	1 -1.538e-4 1	NC NC	1_	NC NC	1
95		10	max	0	1	.003	2	0	10 5.47e-6 10	NC	1	NC	1
96		44	min	0	3	002	3	0	1 -1.538e-4 1	NC NC	1_	NC NC	1
97		11	max	0	1	.003	2	0	10 5.47e-6 10	NC	1	NC NC	1
98		40	min	0	3	002	3	0	1 -1.538e-4 1	NC NC	1_	NC NC	1
99		12	max	0	1	.002	2	0	10 5.47e-6 10	NC	1_	NC NC	1
100		40	min	0	3	002	3	0	1 -1.538e-4 1	NC NC	1_	NC NC	1
101		13	max	0	3	.002	2	0	10 5.47e-6 10	NC NC	1	NC NC	1
102		11	min	0		002 .002	2	0	1 -1.538e-4 1 10 5.47e-6 10	NC NC	<u>1</u> 1	NC NC	1
103		14	max	0	3	002 001	3	0 0	10 5.47e-6 10 1 -1.538e-4 1	NC NC	1	NC NC	1
		15			1			0		NC NC	1	NC NC	1
105 106		15	max	0	3	.001	3	0	10 5.47e-6 10 1 -1.538e-4 1	NC NC	1	NC NC	1
106		16	min	0	1	001 .001	2	0	1 -1.538e-4 1 10 5.47e-6 10	NC NC	1	NC NC	1
107		10	max		3		3				1		1
IUQ			min	0	3	0	3	0	1 -1.538e-4 1	NC		NC	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
109		17	max	0	1	0	2	0	10	5.47e-6	10	NC	1	NC	1
110			min	0	3	0	3	0	1	-1.538e-4	1	NC	1	NC	1
111		18	max	0	1	0	2	0	10	5.47e-6	10	NC	1	NC	1
112			min	0	3	0	3	0	1	-1.538e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	5.47e-6	10	NC	1	NC	1
114			min	0	1	0	1	0	1	-1.538e-4	1	NC	1	NC	1
115	M6	1	max	.006	1	.018	2	0	9	2.923e-4	3	NC	3	NC	1
116			min	008	3	013	3	004	3	-8.849e-8	2	1710.596	2	7389.299	3
117		2	max	.006	1	.016	2	0	9	2.858e-4	3	NC	3	NC	1
118			min	008	3	013	3	004	3	-8.382e-8	2	1826.677	2	7912.218	3
119		3	max	.005	1	.015	2	0	9	2.794e-4	3	NC	3	NC	1
120			min	008	3	012	3	004	3	-8.487e-7	1	1959.238	2	8525.052	3
121		4	max	.005	1	.014	2	0	9	2.73e-4	3	NC	3	NC	1
122			min	007	3	011	3	003	3	-2.34e-6	1	2111.587	2	9247.926	3
123		5	max	.005	1	.013	2	0	9	2.666e-4	3	NC	3	NC	1
124			min	007	3	011	3	003	3	-3.832e-6	1	2287.984	2	NC	1
125		6	max	.004	1	.012	2	0	9	2.602e-4	3	NC	3	NC	1
126			min	006	3	01	3	003	3	-5.323e-6	1	2494.011	2	NC	1
127		7	max	.004	1	.011	2	0	9	2.537e-4	3	NC	3	NC	1
128			min	006	3	009	3	002	3	-6.815e-6	1	2737.115	2	NC	1
129		8	max	.004	1	.01	2	0	9	2.473e-4	3	NC	3	NC	1
130			min	005	3	009	3	002	3	-8.307e-6	1	3027.46	2	NC	1
131		9	max	.003	1	.009	2	0	9	2.409e-4	3	NC	3	NC	1
132			min	005	3	008	3	002	3	-9.798e-6	1	3379.285	2	NC	1
133		10	max	.003	1	.008	2	<u>.002</u>	9	2.345e-4	3	NC	3	NC	1
134		10	min	004	3	007	3	002	3	-1.129e-5	1	3813.164	2	NC	1
135		11	max	.003	1	.007	2	0	9	2.281e-4	3	NC	3	NC	1
136			min	004	3	007	3	001	3	-1.278e-5	1	4359.965	2	NC	1
137		12		.002	1	.006	2	<u>001</u> 0	9	2.216e-4	3	NC	3	NC	1
138		12	max	003	3	006	3	001	3	-1.427e-5	1	5068.207	2	NC NC	1
139		13	min	.003	1	.005	2		9	2.152e-4	3	NC		NC NC	1
140		13	max	003	3	005	3	<u>0</u> 	3		1	6018.757	<u>3</u>	NC NC	1
141		14	min	.003	1	005 .004	2			-1.576e-5		NC	1	NC NC	1
		14	max		3			0	9	2.088e-4	3				1
142		4.5	min	002		004	3	0		-1.726e-5	1	7357.189	2	NC NC	
143		15	max	.001	1	.003	2	0	9	2.024e-4	3	NC 0074.CF	1	NC NC	1
144		4.0	min	002	3	003	3	0	3	-1.875e-5	1_	9374.65	2	NC NC	•
145		16	max	0	1	.002	2	0	1	1.96e-4	3	NC	1_	NC NC	1
146		47	min	001	3	003	3	0	3	-2.024e-5	1_	NC NC	1_	NC NC	1
147		17	max	0	1	.002	2	0	1	1.895e-4	3_	NC NC	1	NC NC	1
148		40	min	0	3	002	3	0	3	-2.173e-5	1_	NC NC	1_	NC NC	1
149		18	max		1	0	2	0	1	1.831e-4		NC	1	NC NC	1
150		40	min	0	3	0	3	0	3	-2.322e-5	1_	NC	1_	NC	1
151		19	max	0	1	0	1	0	1	1.767e-4	3	NC	1	NC NC	1
152			min	0	1	0	1	0	1	-2.471e-5	1_	NC	1_	NC	1
153	<u>M7</u>	1	max	0	1	0	1	0	1	1.126e-5	_1_	NC	1_	NC	1
154			min	0	1	0	1	0	1	-8.002e-5	3	NC	1_	NC	1
155		2	max	0	9	.001	2	0	3	1.085e-5	_1_	NC	_1_	NC	1
156			min	0	2	001	3	0	1	-6.267e-5	3	NC	1_	NC	1
157		3	max	0	9	.002	2	0	3	1.044e-5	1_	NC	1_	NC	1
158			min	0	2	003	3	0	1	-4.532e-5	3	NC	1_	NC	1
159		4	max	0	9	.003	2	.001	3	1.004e-5	1_	NC	1	NC	1
160			min	0	2	004	3	0	1	-2.797e-5	3	NC	1_	NC	1
161		5	max	0	9	.004	2	.001	3	9.631e-6	_1_	NC	_1_	NC	1
162			min	0	2	006	3	0	1	-1.062e-5	3	NC	1	NC	1
163		6	max	0	9	.005	2	.002	3	9.225e-6	1_	NC	1_	NC	1
164			min	0	2	007	3	0	1	0	2	8748.546	2	NC	1
165		7	max	0	9	.006	2	.002	3	2.409e-5	3	NC	3	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
166			min	0	2	008	3	0	1	0	2	7237.41	2	NC	1
167		8	max	0	9	.008	2	.002	3	4.144e-5	3	NC	3	NC	1
168			min	0	2	01	3	0	1	0	10	6124.783	2	NC	1
169		9	max	0	9	.009	2	.002	3	5.879e-5	3	NC	3	NC	1
170			min	0	2	011	3	0	1	0	5	5267.039	2	NC	1
171		10	max	0	9	.01	2	.002	3	7.614e-5	3	NC	3	NC	1
172			min	001	2	012	3	0	1	-7.249e-8	13	4584.475	2	NC	1
173		11	max	0	9	.011	2	.002	3	9.349e-5	3	NC	3	NC	1
174			min	001	2	013	3	0	1	-2.173e-7	4	4029.038	2	NC	1
175		12	max	0	9	.013	2	.003	3	1.108e-4	3	NC	3	NC	1
176		1	min	001	2	014	3	0	1	-9.36e-7	9	3569.749	2	NC	1
177		13	max	0	9	.014	2	.003	3	1.282e-4	3	NC	3	NC	1
178		10	min	001	2	015	3	0	9	-1.683e-6	9	3185.5	2	NC	1
179		14	max	0	9	.016	2	.003	3	1.455e-4	3	NC	3	NC	1
180			min	002	2	016	3	0	9	-2.43e-6	9	2861.233	2	NC	1
181		15	max	0	9	.018	2	.002	3	1.629e-4	3	NC	3	NC	1
182		10	min	002	2	017	3	0	9	-3.177e-6	9	2585.8	2	NC	1
183		16	max	0	9	.02	2	.002	3	1.803e-4	3	NC	3	NC	1
184		10	min	002	2	018	3	0	9	-3.924e-6	9	2350.7	2	NC	1
185		17	max	0	9	.021	2	.002	3	1.976e-4	3	NC	3	NC	1
186		+ ' '	min	002	2	019	3	0	9	-4.671e-6	9	2149.306	2	NC	1
187		18	max	0	9	.023	2	.002	3	2.15e-4	3	NC	3	NC	1
188		1.0	min	002	2	019	3	0	9	-5.418e-6	9	1976.363	2	NC	1
189		19	max	.002	9	.025	2	.002	3	2.323e-4	3	NC	3	NC	1
190		13	min	002	2	02	3	0	9	-6.165e-6	9	1827.654	2	NC	1
191	M8	1	max	.005	2	.02	2	0	9	-7.541e-8	10	NC	1	NC	1
192	IVIO		min	002	3	015	3	001	3	-1.845e-4	3	NC	1	NC	1
193		2	max	.005	2	.019	2	0	9	-7.541e-8	10	NC	1	NC	1
194			min	002	3	014	3	001	3	-1.845e-4	3	NC	1	NC	1
195		3	max	.002	2	.018	2	0	9	-7.541e-8	10	NC	1	NC	1
196		+ -	min	002	3	013	3	001	3	-1.845e-4	3	NC	1	NC	1
197		4	max	.002	2	.017	2	0	9	-7.541e-8	10	NC	1	NC	1
198		+-	min	002	3	012	3	001	3	-1.845e-4	3	NC	1	NC	1
199		5	max	.002	2	.016	2	0	9	-7.541e-8	10	NC	1	NC	1
200		-	min	001	3	012	3	0	3	-1.845e-4	3	NC	1	NC	1
201		6	max	.004	2	.015	2	0	9	-7.541e-8	10	NC	1	NC	1
202		1	min	001	3	011	3	0	3	-1.845e-4	3	NC	1	NC	1
203		7	max	.003	2	.013	2	0	9	-7.541e-8	10	NC	1	NC	1
204		+ ′	min	001	3	01	3	0	3	-1.845e-4	3	NC	1	NC	1
205		8	max	.003	2	.012	2	0	9	-7.541e-8		NC	1	NC	1
206		10	min	001	3	009	3	0	3	-1.845e-4		NC	1	NC	1
207		9	max	.003	2	.011	2	0	9	-7.541e-8		NC	1	NC	1
208		-	min	001	3	008	3	0	3	-1.845e-4	3	NC	1	NC	1
209		10	max	.003	2	.01	2	0	9	-7.541e-8		NC	1	NC	1
210		10	min	0	3	007	3	0	3	-1.845e-4	3	NC	1	NC	1
211		11	max	.002	2	.009	2	0	9	-7.541e-8	10	NC	1	NC	1
212			min	0	3	007	3	0	3	-1.845e-4	3	NC	1	NC	1
213		12	max	.002	2	.008	2	0	9	-7.541e-8	10	NC	1	NC	1
214		12	min	0	3	006	3	0	3	-1.845e-4	3	NC	1	NC	1
215		13	max	.002	2	.007	2	0	9	-7.541e-8	10	NC	1	NC	1
216		13	min	.002	3	005	3	0	3	-1.845e-4	3	NC NC	1	NC NC	1
217		14	max	.001	2	.006	2	0	9	-7.541e-8	10	NC	1	NC NC	1
218		14	min	0	3	004	3	0	3	-1.845e-4	3	NC NC	1	NC NC	1
219		15		.001	2	.004	2	0	9	-7.541e-8	10	NC NC	1	NC NC	1
220		10	max min	0	3	003	3	0	3	-1.845e-4	3	NC NC	1	NC NC	1
221		16		0	2	.003	2	0	9	-1.845e-4 -7.541e-8		NC NC	1	NC NC	1
		10	max								<u>10</u>				
222			min	0	3	002	3	0	3	-1.845e-4	3	NC	1_	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

000	Member	Sec	Ī	x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
223		17	max	0	2	.002	2	0	9	-7.541e-8	10	NC	1	NC NC	1
224		10	min	0	3	002	3	0	3	-1.845e-4	3	NC	1_	NC NC	1
225		18	max	0	2	.001	2	0	9	-7.541e-8	10	NC	1	NC	1
226			min	0	3	0	3	0	3	-1.845e-4	3	NC	1_	NC	1
227		19	max	0	1	00	1	0	1_	-7.541e-8	10	NC	_1_	NC	1
228			min	0	1	0	1	0	1	-1.845e-4	3	NC	1	NC	1
229	M10	1	max	.002	1	.005	2	0	3	1.835e-4	_1_	NC	3	NC	1
230			min	002	3	005	3	001	1	-3.959e-4	3	5563.113	2	NC	1
231		2	max	.002	1	.005	2	0	3	1.75e-4	_1_	NC	3	NC	1
232			min	002	3	004	3	001	1	-3.848e-4	3	6046.237	2	NC	1
233		3	max	.002	1	.005	2	0	3	1.664e-4	1	NC	1	NC	1
234			min	002	3	004	3	001	1	-3.736e-4	3	6616.675	2	NC	1
235		4	max	.002	1	.004	2	0	3	1.579e-4	1	NC	1	NC	1
236			min	002	3	004	3	0	1	-3.624e-4	3	7295.105	2	NC	1
237		5	max	.001	1	.004	2	0	3	1.494e-4	1	NC	1	NC	1
238			min	002	3	004	3	0	1	-3.513e-4	3	8108.981	2	NC	1
239		6	max	.001	1	.003	2	0	3	1.409e-4	1	NC	1	NC	1
240			min	002	3	004	3	0	1	-3.401e-4	3	9095.365	2	NC	1
241		7	max	.001	1	.003	2	0	3	1.324e-4	1	NC	1	NC	1
242			min	002	3	004	3	0	1	-3.29e-4	3	NC	1	NC	1
243		8	max	.001	1	.003	2	0	3	1.239e-4	1	NC	1	NC	1
244			min	001	3	003	3	0	1	-3.178e-4	3	NC	1	NC	1
245		9	max	.001	1	.002	2	0	3	1.154e-4	1	NC	1	NC	1
246		Ť	min	001	3	003	3	0	1	-3.067e-4	3	NC	1	NC	1
247		10	max	0	1	.002	2	0	3	1.069e-4	1	NC	1	NC	1
248		10	min	001	3	003	3	0	1	-2.955e-4	3	NC	1	NC	1
249		11	max	0	1	.002	2	0	3	9.838e-5	1	NC	1	NC	1
250			min	001	3	003	3	0	1	-2.844e-4	3	NC	1	NC	1
251		12	max	0	1	.001	2	0	3	8.987e-5	1	NC	1	NC	1
252		12	min	0	3	002	3	0	1	-2.732e-4	3	NC	1	NC	1
253		13	max	0	1	<u>002</u> 0	2	0	3	8.136e-5	1	NC	1	NC	1
254		13	min	0	3	002	3	0	1	-2.621e-4	3	NC	1	NC	1
255		14	max	0	1	<u>002</u> 0	2	0	3	7.286e-5	<u> </u>	NC	1	NC	1
256		14	min	0	3	002	3	0	1	-2.509e-4	3	NC	1	NC	1
257		15	max	0	1	<u>002</u> 0	2	0	3	6.435e-5	1	NC	1	NC	1
258		15	min	0	3	002	3	0	1	-2.398e-4	3	NC	1	NC	1
259		16	max	0	1	<u>002</u> 0	2	0	3	5.584e-5	<u> </u>	NC	1	NC	1
260		10	min	0	3	001	3	0	1	-2.286e-4	3	NC NC	1	NC	1
261		17			1		2				<u> </u>	NC NC	1	NC NC	1
		17	max	0	3	0 0	3	0	3	4.733e-5	3	NC NC	1		1
262		10	min	0				0	-	-2.175e-4	<u>ა</u>		1	NC NC	1
263		18		0	1	0	2	0	3	3.882e-5	2	NC NC	1	NC NC	1
264		10	min	0	3	0	3	0	1	-2.063e-4	3	NC NC	1	NC NC	1
265		19	max	0	1	0	1	0	1	3.032e-5	1	NC NC	1	NC NC	1
266	D 4 4 4	A	min	0	1	0	-	0	1	-1.952e-4	3	NC NC	1_	NC NC	1
267	<u>M11</u>	1	max	0	1	0	1	0	1	8.909e-5	3_1	NC NC	1	NC NC	1
268			min	0	1	0	1	0	1	-1.391e-5	1_	NC NC	1_	NC NC	1
269		2	max	0	9	0	2	0	1	7.188e-5	3	NC	1	NC NC	1
270			min	0		0	3	0	3	-2.224e-5	1_	NC NC	1_	NC NC	1
271		3	max	0	9	0	2	0	1	5.466e-5	3	NC	1	NC NC	1
272		-	min	0	2	001	3	0	3	-3.058e-5	1_	NC NC	1_	NC NC	1
273		4	max	0	9	0	2	0	1	3.745e-5	3	NC	1_	NC NC	1
274		+-	min	0	2	002	3	001	3	-3.891e-5	1	NC NC	1_	NC NC	1
275		5	max	0	9	0	2	0	11	2.024e-5	3_	NC	1	NC NC	1
276			min	0	2	003	3	002	3	-4.724e-5	1_	NC	1_	NC NC	1
277		6	max	0	9	0	2	0	2	3.028e-6	3_	NC	1	NC NC	1
278		+-	min	0	2	003	3	002	3	-5.557e-5	1_	NC	1_	NC NC	1
279		7	max	0	9	0	2	0	10	2.09e-6	10	NC	_1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC) LC
280			min	0	2	004	3	002	3	-6.39e-5	1	NC	1_	NC	1
281		8	max	0	9	0	2	0	10	2.385e-6	10	NC	_1_	NC	1
282			min	0	2	005	3	002	3	-7.223e-5	1_	NC	1_	NC	1
283		9	max	0	9	0	2	0	10	2.68e-6	10	NC	1_	NC	1
284		10	min	0	2	005	3	002	3	-8.056e-5	1_	NC	1_	NC	1
285		10	max	0	9	.001	2	0	10	2.974e-6	10	NC	1	NC	1
286		4.4	min	0	2	006	3	002	3	-8.889e-5	1_	NC NC	1_	NC NC	1
287		11	max	0	9	.002	2	0	10	3.269e-6	<u>10</u>	NC NC	1_	NC	1
288		40	min	0	2	006	3	003	3	-9.722e-5	1	NC NC	1_	NC NC	1
289		12	max	0	9	.002	3	003	10	3.564e-6 -1.056e-4	<u>10</u>	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min			006 .003	2	003 0	3		1	NC NC	1	NC NC	1
292		13	max	0	9	006	3	003	10	3.859e-6 -1.175e-4	<u>10</u> 3	NC NC	1	NC NC	1
293		14		0	9	.003	2	<u>003</u> 0	10	4.154e-6	<u> </u>	NC NC	1	NC NC	1
294		14	max min	0	2	007	3	003	3	-1.347e-4	3	NC NC	1	NC NC	1
295		15	max	0	9	.004	2	- <u>003</u> 0	10	4.448e-6	10	NC	1	NC	1
296		13	min	0	2	007	3	002	3	-1.519e-4	3	NC	1	NC	1
297		16	max	0	9	.005	2	0	10	4.743e-6	10	NC	1	NC	1
298		10	min	0	2	007	3	002	3	-1.691e-4	3	9153.918	2	NC	1
299		17	max	0	9	.006	2	0	10	5.038e-6	10	NC	1	NC	1
300		<u> </u>	min	0	2	007	3	002	3	-1.863e-4	3	7779.607	2	NC	1
301		18	max	0	9	.007	2	0	10	5.333e-6	10	NC	3	NC	1
302			min	0	2	007	3	002	3	-2.035e-4	3	6724.555	2	NC	1
303		19	max	0	9	.008	2	0	10	5.628e-6	10	NC	3	NC	1
304			min	0	2	007	3	002	1	-2.207e-4	3	5905.256	2	NC	1
305	M12	1	max	.002	1	.006	2	.002	1	2.352e-4	3	NC	1	NC	1
306			min	0	3	005	3	0	10	-5.621e-6	10	NC	1	NC	1
307		2	max	.002	1	.006	2	.001	1	2.352e-4	3	NC	1	NC	1
308			min	0	3	005	3	0	10	-5.621e-6	10	NC	1	NC	1
309		3	max	.001	1	.006	2	.001	1	2.352e-4	3	NC	1_	NC	1
310			min	0	3	004	3	0	10	-5.621e-6	10	NC	1_	NC	1
311		4	max	.001	1	.005	2	.001	1	2.352e-4	3	NC	1_	NC	1
312			min	0	3	004	3	0	10	-5.621e-6	10	NC	1_	NC	1
313		5	max	.001	1	.005	2	.001	1	2.352e-4	3_	NC	_1_	NC	1
314			min	0	3	004	3	0	10	-5.621e-6	10	NC	1_	NC	1
315		6	max	.001	1	.004	2	0	1	2.352e-4	3	NC	_1_	NC	1
316		<u> </u>	min	0	3	004	3	0	10	-5.621e-6	10	NC	1_	NC	1
317		7	max	.001	1	.004	2	0	1	2.352e-4	3	NC		NC	1
318			min	0	3	003	3	0	10	-5.621e-6	10	NC	1_	NC	1
319		8	max	.001	1	.004	2	0	1	2.352e-4	3	NC NC	1_	NC NC	1
320			min		3	003	3	0		-5.621e-6			1	NC NC	1
321		9	max	0	3	.003	2	0	1	2.352e-4	3	NC NC	1_1	NC NC	1
322		10	min	0	1	003	2	0	1	-5.621e-6		NC NC	<u>1</u> 1	NC NC	1
323		10	max	0	3	.003	3	0 0		2.352e-4 -5.621e-6	3	NC NC	1	NC NC	1
324		11	min	0	1	002 .003	2	0	10	2.352e-4	<u>10</u> 3	NC NC	1	NC NC	1
326			max min	0	3	002	3	0	10	-5.621e-6	10	NC	1	NC	1
327		12	max	0	1	.002	2	0	1	2.352e-4	3	NC	1	NC	1
328		12	min	0	3	002	3	0	10	-5.621e-6		NC	1	NC	1
329		13	max	0	1	.002	2	0	1	2.352e-4	3	NC NC	1	NC NC	1
330		13	min	0	3	002	3	0	10	-5.621e-6	10	NC NC	1	NC	1
331		14	max	0	1	.002	2	0	1	2.352e-4	3	NC	1	NC	1
332		-	min	0	3	001	3	0		-5.621e-6		NC	1	NC	1
333		15	max	0	1	.001	2	0	1	2.352e-4	3	NC	1	NC	1
334		'	min	0	3	001	3	0	10	-5.621e-6	10	NC	1	NC	1
335		16	max	0	1	.001	2	0	1	2.352e-4	3	NC	1	NC	1
336		· Ŭ	min	0	3	0	3	0		-5.621e-6	10	NC	1	NC	1
000					_				- 10	3.02.10.0			_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio) LC
337		17	max	0	1	0	2	0	1	2.352e-4	3	NC	1	NC	1
338			min	0	3	0	3	0	10	-5.621e-6	10	NC	1	NC	1
339		18	max	0	1	0	2	0	1	2.352e-4	3	NC	1	NC	1
340			min	0	3	0	3	0	10	-5.621e-6	10	NC	1	NC	1
341		19	max	0	1	0	1	0	1	2.352e-4	3	NC	1	NC	1
342			min	0	1	0	1	0	1	-5.621e-6	10	NC	1	NC	1
343	M1	1	max	.005	3	.021	3	.002	3	6.458e-3	1	NC	1	NC	1
344			min	005	2	018	2	0	9	-8.51e-3	3	NC	1	NC	1
345		2	max	.005	3	.011	3	.002	3	3.161e-3	1	NC	4	NC	1
346			min	005	2	01	1	001	1	-4.179e-3	3	5008.146	3	NC	1
347		3		.005	3	.002	3	.001	3	7.251e-5	3	NC	4	NC	1
		3	max								-				
348		-	min	005	2	002	1	002	1	-7.585e-5	1_	2600.548	3	NC NC	1
349		4	max	.005	3	.006	2	.001	3	7.022e-5	3	NC	4_	NC	1
350		_	min	005	2	005	3	002	1	-5.902e-5	1_	1862.214	3	NC	1
351		5_	max	.005	3	.012	2	0	3	6.793e-5	3	NC	_4_	NC	1
352			min	005	2	011	3	002	1	-4.278e-5	9	1511.964	3	NC	1
353		6	max	.005	3	.017	2	0	3	6.564e-5	3	NC	4_	NC	1
354			min	005	2	016	3	002	1	-3.011e-5	9	1292.473	2	NC	1
355		7	max	.005	3	.021	2	0	3	6.335e-5	3	NC	5	NC	1
356			min	006	2	02	3	002	1	-1.745e-5	9	1154.862	2	NC	1
357		8	max	.005	3	.024	2	0	3	6.106e-5	3	NC	5	NC	1
358			min	006	2	022	3	001	1	-4.778e-6	9	1069.143	2	NC	1
359		9	max	.005	3	.026	2	0	3	5.877e-5	3	NC	5	NC	1
360		Ť	min	006	2	023	3	0	1	-9.682e-7	10	1019.076	2	NC	1
361		10	max	.005	3	.026	2	0	3	5.648e-5	3	NC	5	NC	1
362		10	min	006	2	024	3	0	9	-1.546e-6	10	996.96	2	NC	1
		11			3		2	•				NC			
363		11	max	.005		.026		0	3	5.874e-5	1		5	NC NC	1
364		40	min	006	2	023	3	0	9	-2.124e-6	<u>10</u>	1000.092	2	NC NC	1
365		12	max	.005	3	.024	2	0	1	7.557e-5	1_	NC	_5_	NC	1
366		10	min	006	2	021	3	0	10	-2.702e-6		1029.738	2	NC	1
367		13	max	.005	3	.022	2	.001	1	9.239e-5	_1_	NC	5_	NC	1
368			min	006	2	018	3	0	10	-3.28e-6	10		2	NC	1
369		14	max	.005	3	.017	2	.001	1	1.092e-4	_1_	NC	_4_	NC	1
370			min	006	2	014	3	0	10	-3.858e-6	10	1199.606	2	NC	1
371		15	max	.005	3	.012	2	.002	1	1.26e-4	1_	NC	4	NC	1
372			min	006	2	01	3	0	10	-4.435e-6	10	1382.456	2	NC	1
373		16	max	.005	3	.005	2	.002	1	1.388e-4	1	NC	4	NC	1
374			min	006	2	004	3	0	10	-4.867e-6	10	1711.078	2	NC	1
375		17	max	.005	3	.002	3	.001	1	5.48e-5	1	NC	4	NC	1
376			min	006	2	003	2	0	10	-1.822e-6		2405.642	2	NC	1
377		18	max	.005	3	.009	3	0	1			NC	4	NC	1
378		1,0	min	006	2	013	2	0		-2.179e-3	3	4647.749	2	NC	1
379		19	max	.005	3	.016	3	0	3	8.58e-3	2	NC	1	NC	1
380		13	min	006	2	023	2	0	9	-4.441e-3	3	NC	1	NC	1
381	M5	1		.014	3	.066	3	.002				NC NC	1	NC NC	1
	CIVI		max		2		1		3	3.442e-6	<u>3</u> 1	NC NC	1		1
382			min	018		058		0	9	0 7 0770 5				NC NC	
383		2	max	.014	3	.036	3	.003	3	7.677e-5	3	NC 4504.00	4_	NC NC	1
384			min	018	2	03	1	0	9	-1.152e-5	9	1584.62	3	NC NC	1
385		3	max	.014	3	.008	3	.004	3	1.487e-4	3	NC	_5_	NC	1
386			min	018	2	005	1	0	9	-2.285e-5	9	823.15	3	NC	1
387		4	max	.014	3	.018	2	.005	3	1.466e-4	3_	NC	5_	NC	1
388			min	018	2	016	3	0	9	-2.141e-5	9	590.018	3	NC	1
389		5	max	.014	3	.038	2	.005	3	1.445e-4	3	NC	5	NC	1
390			min	018	2	035	3	0	9	-1.998e-5	9	473.919	2	NC	1
391		6	max	.014	3	.054	2	.005	3	1.424e-4	3	NC	5	NC	1
392			min	018	2	05	3	0	9	-1.855e-5	9	403.759	2	NC	1
393		7	max	.014	3	.067	2	.006	3	1.403e-4	3	NC	5	NC	1
		<u> </u>	mun			.001				, T		.,,			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
394			min	018	2	062	3	0	9	-1.712e-5	9	360.644	2	NC	1
395		8	max	.014	3	.077	2	.005	3	1.382e-4	3	NC	5	NC	1
396			min	018	2	069	3	0	9	-1.568e-5	9	333.776	2	NC	1
397		9	max	.014	3	.083	2	.005	3	1.361e-4	3	NC	5	NC	1
398		10	min	018	2	073	3	0	9	-1.425e-5	9	318.07	2	NC	1
399		10	max	.014	3	.085	2	.005	3	1.34e-4	3_	NC O44.440	5	NC NC	1
400		44	min	018	2	074	3	0	9	-1.282e-5	9	311.112	2	NC NC	1
401		11	max	.014	3	.084	2	.005	3	1.318e-4	3_	NC 040.054	5	NC NC	1
402		40	min	018	2	071	3	0	9	-1.139e-5	9	312.051	2	NC NC	1
403		12	max	.014	3	.078 065	3	004	9	1.297e-4	3	NC	5	NC NC	1
405		13	min	018 .014	3	.069	2	<u> </u>	3	-9.956e-6 1.276e-4	3	321.281 NC	5	NC NC	1
406		13	max min	018	2	056	3	0 <u>0</u>	9	-8.524e-6	9	340.636	2	NC NC	1
407		14	max	.014	3	.056	2	.003	3	1.255e-4	3	NC	5	NC NC	1
408		14	min	018	2	045	3	<u>.003</u>	9	-7.092e-6	9	374.302	2	NC	1
409		15	max	.014	3	.038	2	.002	3	1.234e-4	3	NC	5	NC	1
410		13	min	018	2	031	3	0	9	-5.66e-6	9	431.411	2	NC	1
411		16	max	.014	3	.017	2	.002	3	1.188e-4	3	NC	5	NC	1
412		10	min	018	2	014	3	0	9	-4.954e-6	9	534.081	2	NC	1
413		17	max	.014	3	.005	3	.001	3	5.348e-5	3	NC	5	NC	1
414			min	018	2	01	2	0	9	-2.153e-5	9	751.246	2	NC	1
415		18	max	.014	3	.027	3	0	3	2.615e-5	3	NC	4	NC	1
416			min	018	2	041	2	0	9	-1.105e-5	9	1451.896	2	NC	1
417		19	max	.014	3	.049	3	0	3	0	15	NC	1	NC	1
418			min	018	2	074	2	0	9	-4.699e-7	3	NC	1	NC	1
419	M9	1	max	.005	3	.021	3	.002	3	8.517e-3	3	NC	1	NC	1
420			min	005	2	018	2	0	9	-6.458e-3	1	NC	1	NC	1
421		2	max	.005	3	.011	3	0	3	4.236e-3	3	NC	4	NC	1
422			min	005	2	01	1	0	10	-3.178e-3	1	5010.706	3	NC	1
423		3	max	.005	3	.002	3	.001	1	4.189e-5	1_	NC	4	NC	1_
424			min	005	2	002	1	0	3	-2.323e-6	10	2601.913	3	NC	1
425		4	max	.005	3	.006	2	.002	1	2.668e-5	1_	NC	4	NC	1
426			min	005	2	005	3	001	3	-1.753e-6	10	1863.19	3	NC	1
427		5	max	.005	3	.012	2	.002	1_	1.366e-5	<u>11</u>	NC	4_	NC	1
428		_	min	005	2	011	3	002	3	-2.972e-6	9	1512.722	3	NC	1
429		6	max	.005	3	.017	2	.001	1	6.152e-6	<u>11</u>	NC	4_	NC	1
430			min	005	2	016	3	003	3	-1.333e-5	9	1292.72	2	NC NC	1
431		7	max	.005	3	.021	2	.001	1	-4.461e-8	10	NC	5	NC NC	1
432			min	005	2	02	3	003	3	-2.368e-5	9	1155.093	2	NC NC	1
433		8	max	.005	3	.024	2	0	1	5.25e-7	10	NC 4000 000	5	NC 0054 004	1
434			min		2	022	3	003		-3.417e-5					
435		9	max	.005	3	.026	2	0	1	1.095e-6 -4.939e-5	10	NC	5	NC 0700 460	1
436		10	min	006	2	024	3	004	3		1	1019.297	2	9780.469	3
437		10	max	.005	3	.026	3	0	11	1.664e-6	10	NC	5	NC 9872.473	2
438 439		11	min max	006 .005	3	024 .026	2	004 0	10	-6.46e-5 2.234e-6	<u>1</u> 10	997.184 NC	<u>2</u> 5	NC	3
440		11	min	006	2	023	3	004	3	-7.981e-5	1	1000.323	2	NC	1
441		12	max	.005	3	.023	2	004 0	10		10	NC	5	NC	1
442		12	min	006	2	021	3	003	3	-9.503e-5	1	1029.983	2	NC	1
443		13	max	.005	3	.022	2	003 0	10	3.373e-6	10	NC	5	NC	1
444		13	min	006	2	022 018	3	003	3	-1.102e-4	1	1092.04	2	NC NC	1
445		14	max	.005	3	.017	2	003 0	10	3.943e-6	10	NC	4	NC	1
446		14	min	006	2	01 <i>4</i>	3	003	3	-1.255e-4	1	1199.903	2	NC	1
447		15	max	.005	3	.012	2	<u>.003</u>	10	4.512e-6	10	NC	4	NC	1
448		13	min	006	2	01	3	002	3	-1.407e-4	1	1382.801	2	NC	1
449		16	max	.005	3	.005	2	0	10	4.929e-6	10	NC	4	NC	1
450		1.0	min	006	2	004	3	002	1	-1.525e-4	1	1711.5	2	NC	1
.00					_			.002		1.0200 T	-		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.005	3	.002	3	0	10	1.706e-6	10	NC	4	NC	1
452			min	006	2	003	2	002	1	-8.454e-5	1	2406.189	2	NC	1
453		18	max	.005	3	.009	3	00	10	2.191e-3	3	NC	4_	NC	1
454			min	006	2	013	2	001	1	-4.258e-3	2	4648.77	2	NC	1
455		19	max	.005	3	.016	3	0	3	4.44e-3	3	NC	_1_	NC	1
456	1440		min	006	2	023	2	0	9	-8.58e-3	2	NC	1_	NC	1
457	M13	1_	max	0	9	.021	3	.005	3	3.639e-3	3	NC	1	NC NC	1
458			min	002	3	018	2	005	2	-3.25e-3	2	NC NC	1_	NC NC	1
459		2	max	0	9	.065	3	.003	3	4.517e-3	3	NC 0405.045	4	NC	1
460		2	min	002	9	051 .101	3	005	2	-4.043e-3	2	2185.615 NC	3	NC NC	1
461 462		3	max	0 002	3	079		.005	9	5.394e-3	2	1188.895	5	NC NC	1
463		4	min	<u>002</u> 0	9	<u>079</u> .126	3	004 .007	9	-4.835e-3 6.272e-3	3	NC	<u>3</u> 5	NC NC	2
464		4	max	002	3	099	1	00 <i>7</i>	2	-5.627e-3	2	908.76	3	9870.807	1
465		5		002 0	9	<u>099</u> .137	3	.008	9	7.15e-3	3	NC	<u>5</u>	NC	2
466		- 5	max min	002	3	107	1	006	2	-6.419e-3	2	825.887	3	9469.19	1
467		6	max	0	9	.133	3	.007	9	8.028e-3	3	NC	5	NC	1
468			min	002	3	105	1	008	2	-7.212e-3	2	852.093	3	NC	1
469		7	max	0	9	.118	3	.008	3	8.906e-3	3	NC	5	NC	1
470		<u>'</u>	min	002	3	095	1	011	2	-8.004e-3	2	984.579	3	NC	1
471		8	max	0	9	.097	3	.01	3	9.784e-3	3	NC	4	NC	1
472			min	002	3	079	1	014	2	-8.796e-3	2	1266.117	3	NC	1
473		9	max	0	9	.076	3	.012	3	1.066e-2	3	NC	4	NC	1
474			min	002	3	065	1	017	2	-9.588e-3	2	1740,443	3	8635.991	2
475		10	max	0	9	.066	3	.014	3	1.154e-2	3	NC	4	NC	1
476			min	002	3	058	1	018	2	-1.038e-2	2	2108.778	3	7819.577	2
477		11	max	0	9	.076	3	.015	3	1.066e-2	3	NC	4	NC	1
478			min	002	3	065	1	017	2	-9.588e-3	2	1740.443	3	8636.033	2
479		12	max	0	9	.097	3	.015	3	9.786e-3	3	NC	4	NC	1
480			min	002	3	079	1	014	2	-8.796e-3	2	1266.116	3	8955.289	3
481		13	max	0	9	.118	3	.015	3	8.909e-3	3	NC	5_	NC	1
482			min	002	3	095	1	011	2	-8.004e-3	2	984.579	3	9367.504	
483		14	max	0	9	.134	3	.014	3	8.032e-3	<u>3</u>	NC	5	NC	1
484			min	002	3	105	1	008	2	-7.212e-3	2	852.093	3	NC	1
485		15	max	0	9	.137	3	.012	3	7.156e-3	3	NC	5	NC	2
486		40	min	002	3	107	1	006	2	-6.419e-3	2	825.887	3	9470.174	
487		16	max	0	9	.127	3	.01	3	6.279e-3	3	NC	5	NC	2
488		47	min	002	3	099	1	005	2	-5.627e-3	2	908.76	3_	9877.023	
489		17	max	0	9	.102	3	.008	3	5.402e-3	3	NC	5	NC NC	1
490		10	min max	002	9	079	3	004	2	-4.835e-3 4.525e-3	2	1188.895	3	NC NC	1
491		18		0		.065		.006				NC	4	NC NC	1
492 493		19	min	002 0	9	051 .021	3	005 .005	3	-4.043e-3 3.648e-3	3	2185.615 NC	<u>3</u>	NC NC	1
494		19	max	002	3	018	2	005	2	-3.251e-3	2	NC NC	1	NC NC	1
495	M16	1	max	<u>002</u> 0	9	.016	3	.005	3	3.923e-3	2	NC	1	NC	1
496	IVITO		min	0	3	023	2	006	2	-2.746e-3	3	NC NC	1	NC	1
497		2	max	0	9	.039	3	.006	3	4.883e-3	2	NC	4	NC	1
498			min	0	3	067	2	005	2	-3.389e-3	3	2167.302	2	NC	1
499		3	max	0	9	.058	3	.008	3	5.843e-3	2	NC	5	NC	1
500			min	0	3	105	2	004	2	-4.032e-3	3	1177.026	2	NC	1
501		4	max	0	9	.072	3	.01	3	6.803e-3	2	NC	5	NC	1
502			min	0	3	13	2	005	2	-4.675e-3	3	897.12	2	NC	1
503		5	max	0	9	.079	3	.012	3	7.763e-3	2	NC	5	NC	2
504			min	0	3	141	2	006	2	-5.317e-3	3	811.584	2	9678.73	1
505		6	max	0	9	.078	3	.013	3	8.724e-3	2	NC	5	NC	1
506		Ĭ	min	0	3	139	2	008	2	-5.96e-3	3	831.269	2	NC	1
507		7	max	0	9	.072	3	.014	3	9.684e-3	2	NC	5	NC	1
			,							, 3.00 10 0	_		_		<u> </u>

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

508	Member	Sec	x [in]	LC	y [in]	LC	z [in]		x Rotate [r		LC	LC
Second Color												•
STATE		8						_				_
S13												3
1513		9										•
S14												
Second Color		10										
Single												
STO 12 max		11										
Sign												
Sign		12										
Secondary Seco												•
S22		13										
S22			-							_		
523		14										
S24		4.5										
S25		15										
S26		40										
527		16										
528		4-7										
18 max		17										-
S30		40										•
531		18							4.8846-3			
S32		40										
533 M15		19										
534	NAA C	4										
535	IVITO											
S36		2		_							•	
S37												
538		2									•	
S39		3										
540 min 0 1 006 4 006 3 -1.343e-3 2 9528.629 4 6575.891 3 541 5 max 0 3 002 15 .008 1 2.078e-3 3 NC 3 NC 4 542 min 0 1 008 4 01 3 -1.776e-3 2 7435.286 4 4280.039 3 543 6 max 0 3 002 15 .012 1 2.517e-3 3 NC 3 NC 4 544 min 0 1 009 4 014 3 -2.209e-3 2 6257.579 4 3098.591 3 545 7 max 0 3 003 15 .016 1 2.956e-3 3 NC 5 NC 4 546 min 001 1 011 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td>		1									•	•
541 5 max 0 3 002 15 .008 1 2.078e-3 3 NC 3 NC 4 542 min 0 1 008 4 01 3 -1.776e-3 2 7435.286 4 4280.039 3 543 6 max 0 3 002 15 .012 1 2.517e-3 3 NC 3 NC 4 544 min 0 1 009 4 014 3 -2.209e-3 2 6257.579 4 3098.591 3 545 7 max 0 3 002 15 .016 1 2.956e-3 3 NC 5 NC 4 546 min 0 1 011 4 018 3 2.641e-3 2 5549.344 4 2412.153 3 547 8 max 0 3		4						_				_
542 min 0 1 008 4 01 3 -1.776e-3 2 7435.286 4 4280.039 3 543 6 max 0 3 002 15 .012 1 2.517e-3 3 NC 3 NC 4 544 min 0 1 009 4 014 3 -2.209e-3 2 6257.579 4 3098.591 3 545 7 max 0 3 002 15 .016 1 2.956e-3 3 NC 5 NC 4 546 min 0 1 011 4 018 3 2.641e-3 2 5549.344 4 2412.153 3 547 8 max 0 3 003 15 .019 1 3.394e-3 2 5124.296 4 1982.531 3 549 9 max 0 3		-	-									
543 6 max 0 3 002 15 .012 1 2.517e-3 3 NC 3 NC 4 544 min 0 1 009 4 014 3 -2.209e-3 2 6257.579 4 3098.591 3 545 7 max 0 3 002 15 .016 1 2.956e-3 3 NC 5 NC 4 546 min 0 1 011 4 018 3 -2.641e-3 2 5549.344 4 2412.153 3 547 8 max 0 3 003 15 .019 1 3.94e-3 3 NC 5 NC 4 548 min 001 1 011 4 022 3 -3.074e-3 2 5124.296 4 1982.531 3 549 9 max 0 3		5										
544 min 0 1 009 4 014 3 -2.209e-3 2 6257.579 4 3098.591 3 545 7 max 0 3 002 15 .016 1 2.956e-3 3 NC 5 NC 4 546 min 0 1 01 4 018 3 -2.641e-3 2 5549.344 4 2412.153 3 547 8 max 0 3 003 15 .019 1 3.394e-3 3 NC 5 NC 4 548 min 001 1 011 4 022 3 -3.074e-3 2 5124.296 4 1982.531 3 549 9 max 0 3 003 15 .023 1 3.833e-3 3 NC 5 NC 4 550 min 001 1 01		6									_	
545 7 max 0 3 002 15 .016 1 2.956e-3 3 NC 5 NC 4 546 min 0 1 01 4 018 3 -2.641e-3 2 5549.344 4 2412.153 3 547 8 max 0 3 003 15 .019 1 3.394e-3 3 NC 5 NC 4 548 min 001 1 011 4 022 3 -3.074e-3 2 5124.296 4 1982.531 3 549 9 max 0 3 003 15 .023 1 3.833e-3 3 NC 5 NC 4 550 min 001 1 012 4 026 3 -3.507e-3 2 4895.51 4 1702.17 3 551 10 min 001 1		0										
546 min 0 1 01 4 018 3 -2.641e-3 2 5549.344 4 2412.153 3 547 8 max 0 3 003 15 .019 1 3.394e-3 3 NC 5 NC 4 548 min 001 1 011 4 022 3 -3.074e-3 2 5124.296 4 1982.531 3 549 9 max 0 3 003 15 .023 1 3.833e-3 3 NC 5 NC 4 550 min 001 1 012 4 026 3 -3.507e-3 2 4895.51 4 1702.17 3 551 10 max 0 3 003 15 .025 1 4.272e-3 3 NC 5 NC 4 552 min 001 1 -		7										
547 8 max 0 3 003 15 .019 1 3.394e-3 3 NC 5 NC 4 548 min 001 1 011 4 022 3 -3.074e-3 2 5124.296 4 1982.531 3 549 9 max 0 3 003 15 .023 1 3.833e-3 3 NC 5 NC 4 550 min 001 1 012 4 026 3 -3.507e-3 2 4895.51 4 1702.17 3 551 10 max 0 3 003 15 .025 1 4.272e-3 3 NC 5 NC 4 552 min 001 1 012 4 029 3 -3.94e-3 2 4823.133 4 1517.337 3 553 11 max 0 3 003 15 .027 </td <td></td>												
548 min 001 1 011 4 022 3 -3.074e-3 2 5124.296 4 1982.531 3 549 9 max 0 3 003 15 .023 1 3.833e-3 3 NC 5 NC 4 550 min 001 1 012 4 026 3 -3.507e-3 2 4895.51 4 1702.17 3 551 10 max 0 3 003 15 .025 1 4.272e-3 3 NC 5 NC 4 552 min 001 1 012 4 029 3 -3.94e-3 2 4823.133 4 1517.337 3 553 11 max 0 3 003 15 .027 1 4.71e-3 3 NC 5 NC 4 554 min 002 1 <		Ω									•	
549 9 max 0 3 003 15 .023 1 3.833e-3 3 NC 5 NC 4 550 min 001 1 012 4 026 3 -3.507e-3 2 4895.51 4 1702.17 3 551 10 max 0 3 003 15 .025 1 4.272e-3 3 NC 5 NC 4 552 min 001 1 012 4 029 3 -3.94e-3 2 4823.133 4 1517.337 3 553 11 max 0 3 003 15 .027 1 4.71e-3 3 NC 5 NC 4 554 min 002 1 012 4 032 3 -4.373e-3 2 4895.51 4 1399.893 3 555 12 max 0 3				1					-3.0746-3			
550 min 001 1 012 4 026 3 -3.507e-3 2 4895.51 4 1702.17 3 551 10 max 0 3 003 15 .025 1 4.272e-3 3 NC 5 NC 4 552 min 001 1 012 4 029 3 -3.94e-3 2 4823.133 4 1517.337 3 553 11 max 0 3 003 15 .027 1 4.71e-3 3 NC 5 NC 4 554 min 002 1 012 4 032 3 -4.373e-3 2 4895.51 4 1399.893 3 555 12 max 0 3 003 15 .028 1 5.149e-3 3 NC 5 NC 5 556 min 002 1 <		q		3				1				
551 10 max 0 3 003 15 .025 1 4.272e-3 3 NC 5 NC 4 552 min 001 1 012 4 029 3 -3.94e-3 2 4823.133 4 1517.337 3 553 11 max 0 3 003 15 .027 1 4.71e-3 3 NC 5 NC 4 554 min 002 1 012 4 032 3 -4.373e-3 2 4895.51 4 1399.893 3 555 12 max 0 3 003 15 .028 1 5.149e-3 3 NC 5 NC 5 556 min 002 1 011 4 033 3 -4.806e-3 2 5124.296 4 1335.824 3 557 13 max 0 <t< td=""><td></td><td> </td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		 	-									
552 min 001 1 012 4 029 3 -3.94e-3 2 4823.133 4 1517.337 3 553 11 max 0 3 003 15 .027 1 4.71e-3 3 NC 5 NC 4 554 min 002 1 012 4 032 3 -4.373e-3 2 4895.51 4 1399.893 3 555 12 max 0 3 003 15 .028 1 5.149e-3 3 NC 5 NC 5 556 min 002 1 011 4 033 3 -4.806e-3 2 5124.296 4 1335.824 3 557 13 max 0 3 002 12 .028 1 5.587e-3 3 NC 5 NC 5 558 min 002 1		10									_	
553 11 max 0 3 003 15 .027 1 4.71e-3 3 NC 5 NC 4 554 min 002 1 012 4 032 3 -4.373e-3 2 4895.51 4 1399.893 3 555 12 max 0 3 003 15 .028 1 5.149e-3 3 NC 5 NC 5 556 min 002 1 011 4 033 3 -4.806e-3 2 5124.296 4 1335.824 3 557 13 max 0 3 002 12 .028 1 5.587e-3 3 NC 5 NC 5 558 min 002 1 011 4 032 3 -5.239e-3 2 5549.344 4 1320.871 3 559 14 max 0 <		10										
554 min 002 1 012 4 032 3 -4.373e-3 2 4895.51 4 1399.893 3 555 12 max 0 3 003 15 .028 1 5.149e-3 3 NC 5 NC 5 556 min 002 1 011 4 033 3 -4.806e-3 2 5124.296 4 1335.824 3 557 13 max 0 3 002 12 .028 1 5.587e-3 3 NC 5 NC 5 558 min 002 1 011 4 032 3 -5.239e-3 2 5549.344 4 1320.871 3 559 14 max 0 3 002 12 .026 1 6.026e-3 3 NC 3 NC 4 560 min 002 1		11										
555 12 max 0 3 003 15 .028 1 5.149e-3 3 NC 5 NC 5 556 min 002 1 011 4 033 3 -4.806e-3 2 5124.296 4 1335.824 3 557 13 max 0 3 002 12 .028 1 5.587e-3 3 NC 5 NC 5 558 min 002 1 011 4 032 3 -5.239e-3 2 5549.344 4 1320.871 3 559 14 max 0 3 002 12 .026 1 6.026e-3 3 NC 3 NC 4 560 min 002 1 009 4 03 3 -5.672e-3 2 6257.579 4 1360.533 3 561 15 max 0 3 001 12 .0												
556 min 002 1 011 4 033 3 -4.806e-3 2 5124.296 4 1335.824 3 557 13 max 0 3 002 12 .028 1 5.587e-3 3 NC 5 NC 5 558 min 002 1 011 4 032 3 -5.239e-3 2 5549.344 4 1320.871 3 559 14 max 0 3 002 12 .026 1 6.026e-3 3 NC 3 NC 4 560 min 002 1 009 4 03 3 -5.672e-3 2 6257.579 4 1360.533 3 561 15 max 0 3 001 12 .023 1 6.465e-3 3 NC 4 1360.533 3 562 min 002 1		12										
557 13 max 0 3 002 12 .028 1 5.587e-3 3 NC 5 NC 5 558 min 002 1 011 4 032 3 -5.239e-3 2 5549.344 4 1320.871 3 559 14 max 0 3 002 12 .026 1 6.026e-3 3 NC 3 NC 4 560 min 002 1 009 4 03 3 -5.672e-3 2 6257.579 4 1360.533 3 561 15 max 0 3 001 12 .023 1 6.465e-3 3 NC 3 NC 4 562 min 002 1 008 4 026 3 -6.104e-3 2 7435.286 4 1475.72 3 563 16 max 0 3 .017 1 6.903												
558 min 002 1 011 4 032 3 -5.239e-3 2 5549.344 4 1320.871 3 559 14 max 0 3 002 12 .026 1 6.026e-3 3 NC 3 NC 4 560 min 002 1 009 4 03 3 -5.672e-3 2 6257.579 4 1360.533 3 561 15 max 0 3 001 12 .023 1 6.465e-3 3 NC 3 NC 4 562 min 002 1 008 4 026 3 -6.104e-3 2 7435.286 4 1475.72 3 563 16 max 0 3 .017 1 6.903e-3 3 NC 1 NC 4		13		-				-				
559 14 max 0 3 002 12 .026 1 6.026e-3 3 NC 3 NC 4 560 min 002 1 009 4 03 3 -5.672e-3 2 6257.579 4 1360.533 3 561 15 max 0 3 001 12 .023 1 6.465e-3 3 NC 3 NC 4 562 min 002 1 008 4 026 3 -6.104e-3 2 7435.286 4 1475.72 3 563 16 max 0 3 .017 1 6.903e-3 3 NC 1 NC 4								3				
560 min 002 1 009 4 03 3 -5.672e-3 2 6257.579 4 1360.533 3 561 15 max 0 3 001 12 .023 1 6.465e-3 3 NC 3 NC 4 562 min 002 1 008 4 026 3 -6.104e-3 2 7435.286 4 1475.72 3 563 16 max 0 3 0 3 .017 1 6.903e-3 3 NC 1 NC 4		14										
561 15 max 0 3 001 12 .023 1 6.465e-3 3 NC 3 NC 4 562 min 002 1 008 4 026 3 -6.104e-3 2 7435.286 4 1475.72 3 563 16 max 0 3 0 3 .017 1 6.903e-3 3 NC 1 NC 4												_
562 min 002 1 008 4 026 3 -6.104e-3 2 7435.286 4 1475.72 3 563 16 max 0 3 0 3 .017 1 6.903e-3 3 NC 1 NC 4		15										
563 16 max 0 3 0 3 .017 1 6.903e-3 3 NC 1 NC 4												
		16		3								
			002		006			3			4	

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	Ö	3	.001	3	.009	1	7.342e-3	3	NC	1	NC	4
566			min	003	1	005	4	011	3	-6.97e-3	2	NC	1	2283.302	3
567		18	max	0	3	.003	3	.001	9	7.781e-3	3	NC	1	NC	4
568			min	003	1	003	14	005	2	-7.403e-3	2	NC	1	4062.632	3
569		19	max	.001	3	.004	3	.016	3	8.219e-3	3	NC	1	NC	1
570			min	003	1	001	9	018	2	-7.836e-3	2	NC	1	NC	1
571	M16A	1	max	0	2	0	3	.005	3	2.433e-3	3	NC	1	NC	1
572			min	001	3	0	1	006	2	-2.429e-3	2	NC	1	NC	1
573		2	max	0	2	0	12	0	9	2.329e-3	3	NC	1	NC	1
574			min	0	3	002	1	001	2	-2.315e-3	2	NC	1	NC	1
575		3	max	0	2	001	15	.004	1	2.224e-3	3	NC	1	NC	4
576			min	0	3	004	4	004	3	-2.2e-3	2	NC	1	6413.176	3
577		4	max	0	2	001	15	.006	1	2.119e-3	3	NC	1	NC	4
578			min	0	3	006	4	007	3	-2.086e-3	2	9528.629	4	4868.898	3
579		5	max	0	2	002	15	.008	1	2.015e-3	3	NC	3	NC	4
580			min	0	3	008	4	01	3	-1.972e-3	2	7435.286	4	4196.295	3
581		6	max	0	2	002	15	.009	1	1.91e-3	3	NC	3	NC	4
582			min	0	3	009	4	011	3	-1.858e-3	2	6257.579	4	3898.005	3
583		7	max	0	2	002	15	.01	1	1.806e-3	3	NC	5	NC	4
584			min	0	3	01	4	011	3	-1.744e-3	2	5549.344	4	3817.59	3
585		8	max	0	2	003	15	.01	1	1.701e-3	3	NC	5	NC	4
586			min	0	3	011	4	011	3	-1.63e-3	2	5124.296	4	3900.628	3
587		9	max	0	2	003	15	.009	1	1.597e-3	3	NC	5	NC	4
588			min	0	3	012	4	011	3	-1.515e-3	2	4895.51	4	4137.971	3
589		10	max	0	2	003	15	.008	1	1.492e-3	3	NC	5	NC	4
590			min	0	3	012	4	01	3	-1.401e-3	2	4823.133	4	4552.004	3
591		11	max	0	2	003	15	.007	1	1.387e-3	3	NC	5	NC	4
592			min	0	3	012	4	009	3	-1.287e-3	2	4895.51	4	5200.795	3
593		12	max	0	2	003	15	.006	1	1.283e-3	3	NC	5	NC	4
594			min	0	3	011	4	007	3	-1.173e-3	2	5124.296	4	6199.596	3
595		13	max	0	2	002	15	.004	1	1.178e-3	3	NC	5	NC	2
596			min	0	3	01	4	006	3	-1.059e-3	2	5549.344	4	7775.866	3
597		14	max	0	2	002	15	.003	1	1.074e-3	3	NC	3	NC	1
598			min	0	3	009	4	004	3	-9.446e-4	2	6257.579	4	NC	1
599		15	max	0	2	002	15	.002	1	9.691e-4	3	NC	3	NC	1
600			min	0	3	008	4	003	3	-8.304e-4	2	7435.286	4	NC	1
601		16	max	0	2	001	15	0	1	8.645e-4	3	NC	1	NC	1
602			min	0	3	006	4	001	3	-7.163e-4	2	9528.629	4	NC	1
603		17	max	0	2	0	15	0	4	7.599e-4	3	NC	1	NC	1
604			min	0	3	004	4	0	3	-6.021e-4	2	NC	1	NC	1
605		18	max	0	2	0	15	0	4	6.554e-4	3	NC	1	NC	1
606			min	0	3	002	4	0	2	-4.88e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	5.508e-4	3	NC	1	NC	1
608			min	0	1	0	1	0	1	-3.738e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\mathscr{\Psi}_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.