```
In []: import pandas as pd
         import numpy as np
         %matplotlib inline
         import matplotlib.pyplot as plt
         from pandas profiling import ProfileReport
         #read in who_life_exp.csv
         df = pd.read_csv('who_life_exp.csv')
         df.head()
                                                                                                    age1-
            country country_code region year life_expect life_exp60 adult_mortality infant_mort
                                                                                                                  ... che_gdp
                                                                                                   4mort
         0 Angola
                             AGO
                                   Africa 2000
                                                  47.33730
                                                             14.73400
                                                                            383.5583
                                                                                        0.137985 0.025695 1.47439
                                                                                                                       1.90860 16395.
                                   Africa 2001
                                                  48.19789
                                                             14.95963
                                                                            372.3876
                                                                                        0.133675 0.024500 1.94025
                                                                                                                       4.48352 16945.
         1 Angola
                             AGO
             Angola
                             AGO
                                   Africa 2002
                                                  49 42569
                                                             15 20010
                                                                            354 5147
                                                                                        0.128320 0.023260 2.07512
                                                                                                                       3 3 2 9 4 6 1 7 5 1 9 .
             Angola
                             AGO
                                   Africa 2003
                                                  50.50266
                                                             15.39144
                                                                            343.2169
                                                                                        0.122040 0.021925 2.20275 ... 3.54797 18121.
         4 Angola
                             AGO
                                   Africa 2004
                                                  51.52863
                                                             15.56860
                                                                            333.8711
                                                                                        0.115700 0.020545 2.41274 ... 3.96720 18758.
        5 rows × 32 columns
```

Create profile for EDA, optional

profile = ProfileReport(df, title='Pandas Profiling Report', minimal=True, correlations={"pearson": {"calculate": True}}) profile.to_file("life_exp_eda.html")

```
In [ ]: plt.scatter(df['measles'],df['polio'])
```

Out[]: <matplotlib.collections.PathCollection at 0x268b3110be0>

Feature removal and decorrelation

```
In []: #Based on EDA, the following features are basically the same thing as life expectancy and should be removed
bad_features = ['une_infant', 'une_life', 'country_code']
df = df.drop(columns=bad_features)

#The following features are highly correlated with the target. We may consider trying models with or without the
highly_correlated_features = ['adult_mortality', 'infant_mort']

#The columns 'diptheria', 'polio', and 'measles' are essentially measuring the same thing and will be averaged u
df['diseases'] = (df['diphtheria'] + df['polio'] + df['measles']) / 3

#The features 'une_gni' and 'gni_capita' are virtually the same feature and the latter will be removed.
df = df.drop(columns=['gni_capita'])
```

One-hot-encoding of categorial feature 'region'

: df	= pd.get_dum	mies(df, column	s=['region	'1)						
df											
	country	year	life_expect	life_exp60	adult_mortality	infant_mort	age1- 4mort	alcohol	bmi	age5- 19thinness	 une_edu_spend
	0 Angola	2000	47.33730	14.73400	383.5583	0.137985	0.025695	1.47439	21.7	11.0	 2.60753
	1 Angola	2001	48.19789	14.95963	372.3876	0.133675	0.024500	1.94025	21.8	10.9	 NaN
	2 Angola	2002	49.42569	15.20010	354.5147	0.128320	0.023260	2.07512	21.9	10.7	 NaN
	3 Angola	2003	50.50266	15.39144	343.2169	0.122040	0.021925	2.20275	22.0	10.5	 NaN
	4 Angola	2004	51.52863	15.56860	333.8711	0.115700	0.020545	2.41274	22.2	10.3	 NaN
310	Lao People's Democratic Republic	2012	64.49448	16.57977	209.2666	0.055840	0.004845	6.29833	22.4	9.2	 1.82147
310	People's Democratic Republic	2013	64.79716	16.64219	205.1459	0.055350	0.004600	6.42186	22.6	9.1	 3.23381
310	People's Democratic Republic	2014	65.10757	16.70787	200.8204	0.054585	0.004405	6.64447	22.7	9.0	 2.93781
310	People's Democratic Republic	2015	65.45008	16.77074	196.6613	0.053465	0.004160	6.83826	22.8	8.9	 NaN
311	People's Democratic Republic	2016	65.79089	16.83024	192.7939	0.051895	0.003990	7.11148	22.9	8.9	 NaN
311	l rows × 34 co	olumns	;								

Missing value imputation

4

For the purpose of this analysis we care about modeling a single year for every country. This is because if we include multiple years of the same country as observations, the observations will be highly correlated. So it is better if we simply fit a model to the 200 some-odd points where each country only appears once. Furthermore, it does not really matter that all observations come from the same year, as we only need a "snapshot" of a country at some point in time. Besides, countries are individually on different stages of development so the hypothetical restriction of observations to a single year is completely arbitrary. From a statistical point of view, we only need samples from the joint distribution of covariates, for which any year (independently) will suffice.

As such, we would like to select, for each country, the year with the fewest number of missing values. We will then impute the remaining missing values based on the last non-null entry for that covariate.

```
In [ ]: #Find indexes of 'best' rows for each country
best_rows = df.groupby('country').apply(lambda x: x.isna().sum(axis=1).idxmin())

#Fill all of the NaNs using the closest non-NaN entry. Uses alternating forward and backward fill until all NaNs
country_col = df['country']

for i in range(20):
    if i = 0:
        df_filled = df.groupby('country').fillna(method='ffill', limit=1)
        df_filled ['country'] = country_col
        df_filled['country'] = country_col
        else:
        df_filled = df_filled.groupby('country').fillna(method='ffill', limit=1)
        df_filled['country'] = country_col
        df_filled = df_filled.groupby('country').fillna(method='bfill', limit=1)
        df_filled['country'] = country_col
        df_filled['country'] = country_col
        df_filled['country'] = country_col
```

```
In [ ]: best observations = df filled.loc[best rows]
  In [ ]: best observations
                                                                                age1-
                                                                                                         age5-
                                                                                                                    age5-
                   year life expect life exp60 adult mortality infant mort
                                                                                                                               une literacy un
                                                                                      alcohol bmi
                                                                               4mort
                                                                                                    19thinness
                                                                                                                19obesity
            1371 2011
                           61.72234
                                      16.01989
                                                                   0.067105 0.006270 0.00992 22.8
                                                       248 1654
                                                                                                           184
                                                                                                                       2.0
                                                                                                                                  31.74112
            1718 2001
                           73 99104
                                      19 62673
                                                       100 / 158
                                                                   0.022340 0.000730 4.50817 25.2
                                                                                                            22
                                                                                                                       23
                                                                                                                                  98 71298
              603 2008
                           74 80502
                                      21.01600
                                                       108 3008
                                                                   0.024880 0.001095 0.37239 24.9
                                                                                                            6.0
                                                                                                                       a n
                                                                                                                                  75 13605
                           61.67921
                                      17.21005
                                                       243.9467
                                                                   0.063120 0.008560 7.48675 23.2
                                                                                                                       2.0
                                                                                                                                  66.03011
              14 2014
                                                                                                            8.6
                           73 02618
                                                                   0.011640 0.000445 6.85232 25.2
             817 2001
                                      19 13280
                                                       154 4558
                                                                                                            3.6
                                                                                                                       53
                                                                                                                                  98 95000
              902 2001
                           72.13280
                                      20.29395
                                                       174.5862
                                                                   0.017980 0.000795 8.15050 26.3
                                                                                                            1.8
                                                                                                                      10.1
                                                                                                                                  92.97983
            2865 2009
                           75.28961
                                      22.02871
                                                       133.1758
                                                                   0.018500 0.001205 1.96956 20.9
                                                                                                                       0.9
                                                                                                                                  93.52045
                                                                                                           15.0
             1517 2004
                           62 46558
                                      15 97963
                                                       247 6339
                                                                   0.059785 0.005360 0.06000 22.7
                                                                                                           13 0
                                                                                                                       2 9
                                                                                                                                  54 10000
              163 2010
                           57.54378
                                      16.74589
                                                       363.5941
                                                                   0.057145 0.007990 3.58587 22.2
                                                                                                            6.7
                                                                                                                       1.8
                                                                                                                                  83.00767
              184 2014
                           59 94043
                                                       358 4411
                                                                   0.044875 0.005250 4.05568 23.8
                                                                                                                       3.4
                                      17 29870
                                                                                                            6.1
                                                                                                                                  88 69342
            183 rows × 34 columns
4
```

EDA of imputed data

profile = ProfileReport(best_observations, title='Pandas Profiling Report', minimal=True, correlations={"pearson": {"calculate": True}}) profile.to_file("life_expect_best_rows.html")

Further NaN handling

There are still missing values. Based on the above EDA, the features with missing values can be split cleanly into two categories: features where only a small (<2%) of countries have missing data, and features where many (>20%) have missing data. It is easy to simply drop the former since it will not significantly impact the number of observations and this takes care of most of the missing values. Then, we can

- Try regressions on this set of data with reduced number of features (only the ones without missing values). This gives a larger number of observations with fewer features
- Try regressions on only the observations without missing values (but all observations). This gives a larger number of features with fewer observations

```
In []: few_missing_value_feats = ['alcohol', 'bmi', 'age5-19thinness', 'age5-19obesity', 'hepatitis', 'doctors', 'gghe-
many_missing_value_feats = ['hospitals', 'une_hiv', 'une_poverty', 'une_edu_spend', 'une_literacy', 'une_school'

In []: # The first approach, this gives 165 observations, with 26 potential features
    obs_full = best_observations.dropna(subset=few_missing_value_feats)
    obs_full_obs = obs_full.drop(columns=many_missing_value_feats)
    obs_full_obs
```

	year	life_expect	life_exp60	adult_mortality	infant_mort	age1- 4mort	alcohol	bmi	age5- 19thinness	age5- 19obesity	 une_pop	une_
1371	2011	61.72234	16.01989	248.1654	0.067105	0.006270	0.00992	22.8	18.4	2.0	 30117.413	162
603	2008	74.80502	21.01600	108.3998	0.024880	0.001095	0.37239	24.9	6.0	9.0	 34730.608	1212
14	2014	61.67921	17.21005	243.9467	0.063120	0.008560	7.48675	23.2	8.6	2.0	 26941.779	676
817	2001	73.02618	19.13280	154.4558	0.011640	0.000445	6.85232	25.2	3.6	5.3	 77.212	1533
812	2013	76.31533	21.44949	116.4624	0.011435	0.000355	8.20306	27.4	0.9	15.7	 42196.030	1993

902	2001	72.13280	20.29395	174.5862	0.017980	0.000795	8.15050	26.3	1.8	10.1	 24646.472	1184
2865	2009	75.28961	22.02871	133.1758	0.018500	0.001205	1.96956	20.9	15.0	0.9	 87092.252	356
1517	2004	62.46558	15.97963	247.6339	0.059785	0.005360	0.06000	22.7	13.9	2.9	 19540.098	323
163	2010	57.54378	16.74589	363.5941	0.057145	0.007990	3.58587	22.2	6.7	1.8	 13605.984	305
184	2014	59.94043	17.29870	358.4411	0.044875	0.005250	4.05568	23.8	6.1	3.4	 13586.707	240
	e seco			ves 61 observa		32 pote	ntial fe	ature.	s			>
# The mask obs_1	= seco = bes full_f	t_observat	ions.notnu	ves 61 observa ll().all(axis= vations.loc[ma	1)	32 pote	ntial fe	ature.	S			•
# The mask obs_1	e seco = bes Full_f	t_observat eatures = eatures	ions.notnu best_obser	ll().all(axis=	ask]	32 potes age1- 4mort	ntial fe		age5- 19thinness	age5- 19obesity	une_litera	
# The mask obs_1	e seco = bes Full_f	t_observat eatures = eatures	ions.notnu best_obser	ll().all(axis= vations.loc[ma	ask]	age1-			age5-			cy u
# The mask obs_1	e seco = bes Full_f Full_f	t_observat eatures = eatures life_expect	ions.notnu best_obser	<pre>11().all(axis= vations.loc[ma adult_mortality</pre>	ask] infant_mort	age1- 4mort	alcohol	bmi 25.7	age5- 19thinness	19obesity	 99.400	16 u
# The mask obs_1 obs_1 1735 2580 2525	e seco = bes full_f Full_f year 2001 2013 2009	t_observat eatures = eatures life_expect 72.18071	ions.notnubest_obser	adult_mortality	infant_mort 0.028865	age1- 4mort 0.000935 0.002065 0.000350	alcohol 2.86603 0.00402 13.98003	bmi 25.7 21.4 26.3	age5- 19thinness 2.1 18.7 2.2	19obesity 2.6	 99.400	16 54
# The mask obs_1 obs_1 1735 2580 2525 36	e seco = bes full_f full_f year 2001 2013 2009 2002	t_observat eatures = eatures life_expect 72.18071 71.37015 70.17339 56.10347	life_exp60 18.96136 19.23323 17.48758 16.42120	adult_mortality 143.15140 137.97630 225.22220 283.68710	infant_mort 0.028865 0.034120 0.004495 0.091855	age1- 4mort 0.000935 0.002065 0.000350 0.014550	alcohol 2.86603 0.00402 13.98003 1.34153	bmi 25.7 21.4 26.3 22.3	age5- 19thinness 2.1 18.7 2.2 9.5	2.6 2.0 5.3 1.0	 99.400 61.015 99.617	16 54 06
# The mask obs_1 obs_1 1735 2580 2525 36	e seco = bes full_f Full_f year 2001 2013 2009	t_observat eatures = eatures life_expect 72.18071 71.37015 70.17339	life_exp60 18.96136 19.23323 17.48758	adult_mortality 137.97630 225.22220	infant_mort 0.028865 0.034120 0.004495	age1- 4mort 0.000935 0.002065 0.000350	alcohol 2.86603 0.00402 13.98003	bmi 25.7 21.4 26.3 22.3	age5- 19thinness 2.1 18.7 2.2	2.6 2.0 5.3 1.0	 99.400 61.015 99.617	16 54 06
# The mask obs_1 obs_1 1735 2580 2525 36	e seco = bes Full_f Full_f 2001 2003 2009 2002	t_observat eatures = eatures life_expect 72.18071 71.37015 70.17339 56.10347 69.20242	life_exp60 18.96136 19.23323 17.48758 16.42120 20.07917	adult_mortality 143.15140 137.97630 225.22220 283.68710 222.02600	infant_mort 0.028865 0.034120 0.004495 0.091855 0.031530	age1- 4mort 0.000935 0.002065 0.000350 0.014550 0.001815	alcohol 2.86603 0.00402 13.98003 1.34153 0.29944	bmi 25.7 21.4 26.3 22.3 23.5	age5- 19thinness 2.1 18.7 2.2 9.5 16.6	2.6 2.0 5.3 1.0 2.3	 99.400 61.015 99.617 34.657 57.033	u 116 554 006 885 660
# The mask obs_1 obs_1 obs_1 1735 2580 2525 36 2596	e secoo = bess Full_f Full_f year 2001 2002 2002 2012 	t_observat eatures = eatures life_expect 72.18071 71.37015 70.17339 56.10347 69.20242 58.61579	life_exp60 18.96136 19.23323 17.48758 16.42120 20.07917 14.89114	adult_mortality 143.15140 137.97630 225.22220 283.68710 22.02600 290.52180	infant_mort 0.028865 0.034120 0.004495 0.091855 0.031530 0.060545	age1- 4mort 0.000935 0.002065 0.000350 0.014550 0.001815 	alcohol 2.86603 0.00402 13.98003 1.34153 0.29944 	bmi 25.7 21.4 26.3 22.3 23.5 23.2	age5- 19thinness 2.1 18.7 2.2 9.5 16.6	2.6 2.0 5.3 1.0 2.3 	 99.400 61.015 99.617 34.657 57.033	116 554 006 885 660
# Thm mask obs_1 1735 2580 2525 36 2596 283	e bes = bes Full_f Full_f year 2001 2002 2002 2012 2011 2010	t_observat eatures = eatures life_expect 72.18071 71.37015 70.17339 56.10347 69.20242 58.61579 74.89726	life_exp60 18.96136 19.23323 17.48758 16.42120 20.07917 14.89114 19.52879	adult_mortality 143.15140 137.97630 225.22220 283.68710 22.02600 290.52180 99.42535	infant_mort 0.028865 0.034120 0.004495 0.031530 0.060545 0.015465	age1- 4mort 0.000935 0.002065 0.000350 0.014550 0.001815 0.008140 0.000645	alcohol 2.86603 0.00402 13.98003 1.34153 0.29944 1.13957 1.25903	bmi 25.7 21.4 26.3 22.3 23.5 23.2 25.9	age5- 19thinness 2.1 18.7 2.2 9.5 16.6 7.3	19obesity 2.6 2.0 5.3 1.0 2.3 1.4 6.2	 99.400 61.015 99.617 34.657 57.033	116 1554 006 885 600
# Thm mask obs_1 for the mask ob	e seco = bes Full_f	t_observat eatures = eatures life_expect 72.18071 71.37015 70.17339 56.10347 69.20242 58.61579 74.89726 59.47330	life_exp60 18.96136 19.23323 17.48758 16.42120 20.07917 14.89114 19.52879 16.94417	adult_mortality 143.15140 137.97630 225.22220 283.68710 22.02600 290.52180 99.42535 335.35090	infant_mort 0.028865 0.034120 0.004495 0.031530 0.060545 0.015465 0.049225	age1- 4mort 0.000935 0.002065 0.000350 0.014550 0.001815 0.008140 0.000645 0.006405	alcohol 2.86603 0.00402 13.98003 1.34153 0.29944 1.13957 1.25903 8.38765	bmi 25.7 21.4 26.3 22.3 23.5 23.2 25.9 22.1	age5- 19thinness 2.1 18.7 2.2 9.5 16.6 7.3 6.3 5.9	19obesity 2.6 2.0 5.3 1.0 2.3 4.4 6.2 1.2	 99.400 61.015 99.617 34.657 57.033 60.409 79.130	116 554 006 885 60 94 558
# The mask obs_1 o	e seco = bess full_f full_f year 2001 2013 2009 2002 2012 2011 2010 2012 2016	t_observat eatures = life_expect 72.18071 71.37015 70.17339 56.10347 69.20242 58.61579 74.89726 59.47330 77.06158	life_exp60 18.96136 19.23323 17.48758 16.42120 20.07917 14.89114 19.52879 16.94417 22.29529	adult_mortality 143.15140 137.97630 225.22220 283.68710 22.02600 290.52180 99.42535 335.35090 113.93880	infant_mort 0.028865 0.034120 0.004495 0.031530 0.060545 0.015465 0.049225 0.011750	age1- 4mort 0.000935 0.002065 0.000350 0.014550 0.001815 0.008140 0.000645 0.006405 0.000565	alcohol 2.86603 0.00402 13.98003 1.34153 0.29944 1.13957 1.25903 8.38765 5.52664	bmi 25.7 21.4 26.3 22.3 23.5 23.2 25.9 22.1 27.4	age5- 19thinness 2.1 18.7 2.2 9.5 16.6 7.3 6.3 5.9 1.5	19obesity 2.6 2.0 2.0 5.3 1.0 2.3 1.4 6.2 1.2 13.8	 99.40C 61.015 99.617 34.657 57.033 60.409 79.13C 70.198	116 154 006 885 660 994 558 222
# The mask obs_f o	= bes full_f year 2001 2013 2009 2002 2011 2010 2012 2014 2014	t_observat eatures = eatures life_expect 72.18071 71.37015 70.17339 56.10347 69.20242 58.61579 74.89726 59.47330	life_exp60 18.96136 19.23323 17.48758 16.42120 20.07917 14.89114 19.52879 16.94417	adult_mortality 143.15140 137.97630 225.22220 283.68710 22.02600 290.52180 99.42535 335.35090	infant_mort 0.028865 0.034120 0.004495 0.031530 0.060545 0.015465 0.049225	age1- 4mort 0.000935 0.002065 0.000350 0.014550 0.001815 0.008140 0.000645 0.006405 0.000565	alcohol 2.86603 0.00402 13.98003 1.34153 0.29944 1.13957 1.25903 8.38765	bmi 25.7 21.4 26.3 22.3 23.5 23.2 25.9 22.1 27.4	age5- 19thinness 2.1 18.7 2.2 9.5 16.6 7.3 6.3 5.9	19obesity 2.6 2.0 2.0 5.3 1.0 2.3 1.4 6.2 1.2 13.8	 99.40C 61.015 99.617 34.657 57.033 60.409 79.13C 70.198	116 154 006 885 660 994 558 222

A final approach is to use KNN to impute missing values. This way we can fit to all 182 observations with all 32 potential features.

In summary we now have 3 fully non-NaN datasets to use:

- obs_full_obs, a dataset that contains most observations and most features
- obs_full_features, a dataset that contains some observations and all features

 obs_imputed, a dataset that includes all observations and all features but is potentially less accurate as it used KNN on up to 30% of some features.

Feature tranformations

```
In [ ]: #Based on EDA, the features to be Log-transformed
        log_features = ['une_poverty', 'une_gni', 'une_hiv', 'une_pop', 'age1-4mort', 'infant_mort']
        log_features_full_obs = ['une_pop', 'age1-4mort', 'infant_mort']
        #Transform these features (keeping the old feature) for each of our 3 datasets
        for feat in log features:
            obs_full_features[f'log_{feat}'] = np.log(obs_full_features[feat])
            obs_imputed[f'log_{feat}'] = np.log(obs_imputed[feat])
        for feat in log features full obs:
            obs_full_obs[f'log_{feat}'] = np.log(obs_full_obs[feat])
        C:\Users\leonw\AppData\Local\Temp\ipykernel_15696\1738252845.py:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret
        urning-a-view-versus-a-copy
          obs full features[f'log {feat}'] = np.log(obs full features[feat])
        C:\Users\leonw\AppData\Local\Temp\ipykernel_15696\1738252845.py:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret
        urning-a-view-versus-a-copy
          obs_full_features[f'log_{feat}'] = np.log(obs_full_features[feat])
        C:\Users\leonw\AppData\Local\Temp\ipykernel_15696\1738252845.py:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret
        urning-a-view-versus-a-copy
          obs_full_features[f'log_{feat}'] = np.log(obs_full_features[feat])
        C:\Users\leonw\AppData\Local\Temp\ipykernel 15696\1738252845.py:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret
        urning-a-view-versus-a-copy
          obs_full_features[f'log_{feat}'] = np.log(obs_full_features[feat])
        C:\Users\leonw\AppData\Local\Temp\ipykernel_15696\1738252845.py:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret
        urning-a-view-versus-a-copy
          obs_full_features[f'log_{feat}'] = np.log(obs_full_features[feat])
        C:\Users\leonw\AppData\Local\Temp\ipykernel 15696\1738252845.py:7: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret
        urning-a-view-versus-a-copy
        obs full features[f'log {feat}'] = np.log(obs full features[feat])
```

Modeling

```
In [ ]: import statsmodels.api as sm
        def fit ols(data, predictors = None, drops = None):
            data = data.drop(columns = ['year', 'country'])
            y = data['life_expect']
            if predictors is not None:
                X = data[predictors]
            elif drops is not None:
                X = data.drop(columns=drops)
                X = X.drop(columns= ['life expect'])
            else:
                X = data.drop(columns = ['life_expect'])
            X = sm.add\_constant(X)
            X = np.asarray(X.astype(float))
            y = np.asarray(y.astype(float))
            model = sm.OLS(y, X).fit()
            return model
In [ ]: model1 = fit_ols(obs_full_obs, drops = highly_correlated_features)
        model2 = fit_ols(obs_full_features, drops = highly_correlated_features)
        model3 = fit_ols(obs_imputed, drops = highly_correlated_features)
```

Try forward and backward selection with AIC as the criterion

```
In [ ]: # define function for calculating AIC
        def get_aic(model):
            return model aic
        # define function for backward feature selection with AIC
        def backward_selection_aic(X, y):
            selected = set(X.columns)
            current_score, best_new_score = float('inf'), float('inf')
            while X.shape[1] > 0:
                scores_with_candidates = []
                for candidate in X.columns:
                    if candidate in selected:
                       model = sm.OLS(y, sm.add_constant(X[list(selected-set([candidate]))])).fit()
                        aic = get_aic(model)
                        scores_with_candidates.append((aic, candidate))
                scores with candidates.sort()
                best_new_score, best_candidate = scores_with_candidates[0]
                if best_new_score < current_score:
                    selected.remove(best_candidate)
                    current_score = best_new_score
                else:
                    break
            model = sm.OLS(y, sm.add_constant(X[list(selected)])).fit()
            return model
```

```
In [ ]: # define function for calculating AIC
        def get_aic(model):
            return model.aic
        # define function for forward feature selection with AIC
        def forward_selection_aic(X, y):
            selected = set()
            current_score, best_new_score = float('inf'), float('inf')
            while X.shape[1] > 0:
               scores with candidates = []
                for candidate in X.columns:
                    if candidate not in selected:
                        model = sm.OLS(y, sm.add_constant(X[list(selected)+[candidate]])).fit()
                        bic = get_aic(model)
                        scores_with_candidates.append((bic, candidate))
                scores with candidates.sort()
                best_new_score, best_candidate = scores_with_candidates[0]
                if best_new_score < current_score:</pre>
                    selected.add(best_candidate)
                    current_score = best_new_score
                else.
                    break
            model = sm.OLS(y, sm.add_constant(X[list(selected)])).fit()
            return model
```

obs_imputed feature selection

OLS Regression Results

Dep. Variable:	life_expect	R-squared:	0.884
Model:	OLS	Adj. R-squared:	0.873
Method:	Least Squares	F-statistic:	84.47
Date:	Tue, 09 May 2023	Prob (F-statistic):	1.04e-69
Time:	15:48:51	Log-Likelihood:	-455.41
No. Observations:	183	AIC:	942.8
Df Residuals:	167	BIC:	994.2
Df Model:	15		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	44.2470	5.590	7.916	0.000	33.211	55.283
log_une_hiv	-1.4014	0.228	-6.141	0.000	-1.852	-0.951
region_Eastern Mediterranean	5.7100	1.396	4.089	0.000	2.953	8.467
diphtheria	0.0804	0.069	1.160	0.248	-0.056	0.217
age5-19obesity	0.2990	0.114	2.619	0.010	0.074	0.525
diseases	0.0234	0.006	4.009	0.000	0.012	0.035
measles	-0.0586	0.047	-1.237	0.218	-0.152	0.035
gghe-d	0.3685	0.163	2.266	0.025	0.047	0.690
region_South-East Asia	8.9900	1.357	6.624	0.000	6.311	11.669
region_Western Pacific	8.8458	1.070	8.268	0.000	6.734	10.958
bmi	-0.7126	0.244	-2.923	0.004	-1.194	-0.231
log_une_gni	1.8670	0.389	4.798	0.000	1.099	2.635
polio	0.0484	0.071	0.685	0.494	-0.091	0.188
region_Europe	7.4115	1.276	5.810	0.000	4.893	9.930
age5-19thinness	-0.2822	0.099	-2.845	0.005	-0.478	-0.086
basic_water	0.1069	0.030	3.608	0.000	0.048	0.165
region_Africa	4.9395	1.047	4.716	0.000	2.871	7.008
region_Americas	8.3503	1.080	7.730	0.000	6.218	10.483

2.032	Duibin-watson.	4.433	Ollillibus.
4.057	Jarque-Bera (JB):	0.105	Prob(Omnibus):
0.132	Prob(JB):	-0.329	Skew:
2.18e+18	Cond. No.	3.316	Kurtosis:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.51e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

	Kesuits		
Dep. Variable:	life_expect	R-squared:	0.881
Model:	OLS	Adj. R-squared:	0.874
Method:	Least Squares	F-statistic:	127.1
Date:	Tue, 09 May 2023	Prob (F-statistic):	5.69e-74
Time:	15:48:51	Log-Likelihood:	-457.56
No. Observations:	183	AIC:	937.1
Df Residuals:	172	BIC:	972.4
Df Model:	10		
Covariance Type:	nonrobust		

OLC Bearsesies Beaute

	coef	std err	t	P> t	[0.025	0.975]
const	55.7245	6.231	8.943	0.000	43.425	68.023
region_Africa	-3.5001	0.831	-4.209	0.000	-5.141	-1.859
log_une_hiv	-1.3042	0.217	-6.015	0.000	-1.732	-0.876
region_Eastern Mediterranean	-2.5881	0.920	-2.812	0.005	-4.405	-0.771
log_une_gni	1.7066	0.374	4.559	0.000	0.968	2.445
bmi	-0.8176	0.231	-3.546	0.001	-1.273	-0.363
age5-19thinness	-0.2336	0.081	-2.868	0.005	-0.394	-0.073
basic_water	0.1156	0.029	4.017	0.000	0.059	0.172
diphtheria	0.0886	0.020	4.387	0.000	0.049	0.128
gghe-d	0.3350	0.155	2.157	0.032	0.029	0.641
age5-19obesity	0.3815	0.099	3.860	0.000	0.186	0.577

2.116	Durbin-Watson:	3.951	Omnibus:
3.579	Jarque-Bera (JB):	0.139	Prob(Omnibus):
0.167	Prob(JB):	-0.266	Skew:
3.50e+03	Cond. No.	3.432	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.5e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Now we try LASSO as a feature selection method

```
In []: #Collect resulting coefficients in dataframe
    summary_df = pd.DataFrame({'Feature': X.columns, 'Coefficient': lasso_cv.coef_})

#Show only nonzero coefficients
    summary_df[summary_df['Coefficient'] != 0].reset_index().drop(columns = ['index'])
```

	Feature	Coefficient
0	bmi	-0.951555
1	age5-19thinness	-0.257362
2	age5-19obesity	0.410026
3	hepatitis	0.005659
4	measles	-0.030502
5	polio	0.033703
6	diphtheria	0.073439
7	basic_water	0.152293
8	doctors	-0.002661
9	hospitals	-0.020912
10	gghe-d	0.485722
11	une_edu_spend	-0.148449
12	une_literacy	0.035406
13	region_Africa	-1.242741
14	region_Western Pacific	0.013534
15	log_une_poverty	-0.127873
16	log_une_gni	0.964615
17	log_une_hiv	-1.336286
18	log_une_pop	-0.120379

LASSO selected 16 features. This is only one less than the backward selection.

Let's also try bootstrapped LASSO to determine which features are significant

```
In [ ]: import numpy as np
        import pandas as pd
        from sklearn.linear_model import LassoCV
        from sklearn.utils import resample
        import warnings
        from sklearn.exceptions import ConvergenceWarning
        warnings.filterwarnings('ignore', category=ConvergenceWarning)
        class BootstrappedLasso:
            def __init__(self, n_bootstrap=100, n_samples=None, n_features=None, alpha_min=0.0001, alpha_max=1.0, n_alph
                self.n_bootstrap = n_bootstrap
                self.n_samples = n_samples
                self.n_features = n_features
                self.alpha min = alpha min
                self.alpha_max = alpha_max
                self.n_alpha = n_alpha
                self.coefs_ = None
                self.alphas_ = None
                self.X = None
            def fit(self, X, y):
                self.X = X
                self.n_samples = X.shape[0]
                self.n_features = X.shape[1]
                self.coefs_ = np.zeros((self.n_bootstrap, self.n_features))
                self.alphas_ = np.zeros(self.n_bootstrap)
                for i in range(self.n_bootstrap):
                    X_b, y_b = resample(X, y, n_samples=self.n_samples, replace=True)
                    alpha_list = np.logspace(np.log10(self.alpha_min), np.log10(self.alpha_max), self.n_alpha)
                    lasso_cv = LassoCV(alphas=alpha_list, cv=5, max_iter=10_000)
                    lasso_cv.fit(X_b, y_b)
                    self.coefs_[i,:] = lasso_cv.coef_
                    self.alphas_[i] = lasso_cv.alpha_
                return self
            def summary(self):
                coefs_mean = np.mean(self.coefs_, axis=0)
                coefs_std = np.std(self.coefs_, axis=0)
                coefs_std_out = np.abs(coefs_mean / (coefs_std + 1e-8))
                coefs_significant = coefs_std_out > 2
                summary_df = pd.DataFrame({'Feature': self.X.columns,
                                    'Coefficient Mean': coefs_mean,
```

'Coefficient Std': coefs_std, 'How Many Std Out': coefs_std_out, 'Significant': coefs_significant})

return summary_df

```
In [ ]: significant_features = []
         # run bootstrapped Lasso
         bootlass = BootstrappedLasso()
         bootlass.fit(X, y)
         summary = bootlass.summary()
         significant_features += summary[summary['Significant']]['Feature'].to_list()
         print(significant_features)
summary_sort values(by='How Many Std Out'.ascending=False)
```

<pre>summary.sort_values(by='How Many Std Out',ascending=False) ['bmi', 'age5-19obesity', 'basic_water', 'gghe-d', 'log_une_gni', 'log_une_hiv']</pre>					
,				How Many Std Out	
25	log_une_hiv	-1.336946	0.275104	4.859787	Tru
1	bmi	-0.860639	0.311966	2.758760	Tru
8	basic_water	0.126716	0.047386	2.674111	Tru
3	age5-19obesity	0.356440	0.137005	2.601654	Tru
11	gghe-d	0.496799	0.222349	2.234324	Tru
24	log_une_gni	1.401342	0.672540	2.083657	Tru
2	age5-19thinness	-0.263585	0.139453	1.890129	Fals
17	region_Africa	-1.800007	1.384159	1.300434	Fals
7	diphtheria	0.107249	0.089956	1.192238	Fals
19 regio	n_Eastern Mediterranean	-1.205189	1.181873	1.019728	Fals
26	log_une_pop	-0.129381	0.139152	0.929781	Fals
14	une_literacy	0.022888	0.026140	0.875592	Fals
22	region_Western Pacific	0.642093	0.767174	0.836959	Fals
18	region_Americas	0.488497	0.633313	0.771336	Fals
23	log_une_poverty	-0.170274	0.228975	0.743636	Fals
13	une_edu_spend	-0.126295	0.173014	0.729970	Fals
4	hepatitis	0.009357	0.013502	0.693000	Fals
5	measles	-0.035080	0.051483	0.681388	Fals
21	region_South-East Asia	0.514420	1.037073	0.496031	Fals
0	alcohol	-0.038445	0.086815	0.442833	Fals
16	diseases	-0.013923	0.053219	0.261611	Fals
10	hospitals	-0.030686	0.125389	0.244724	Fals
6	polio	0.019014	0.092976	0.204499	Fals
20	region_Europe	-0.044690	0.307677	0.145250	Fals
9	doctors	-0.003929	0.035737	0.109942	Fals
12	che_gdp	-0.015485	0.188889	0.081978	Fals
15	une_school	-0.005025	0.112075	0.044835	Fals

In []: lasso_bootstrap_model = sm.OLS(y, sm.add_constant(X[significant_features])).fit() lasso_bootstrap_model.summary()

	s					
Dep. Variable	e:	life_expe	ect	R-sq	uared:	0.837
Mode	ı:	0	LS Ad	lj. R-sq	uared:	0.832
Method	d: Le	east Squar	es	F-st	atistic:	151.0
Date	e: Tue, 0	9 May 20	23 Prob	(F-sta	tistic):	1.08e-66
Time	e:	15:49:	03 Lo	g-Likel	ihood:	-485.97
No. Observation	s:	18	83		AIC:	985.9
Df Residual	s:	1	76		BIC:	1008.
Df Mode	ı:		6			
Covariance Type	e:	nonrobu	ıst			
	coef	std err	t	P> t	[0.025	0.975]
const	49.1425	5.630	8.728	0.000	38.031	60.254
bmi	-0.5835	0.227	-2.576	0.011	-1.031	-0.136
age5-19obesity	0.3941	0.112	3.533	0.001	0.174	0.614
basic_water	0.2101	0.026	8.073	0.000	0.159	0.261
gghe-d	0.7221	0.158	4.558	0.000	0.409	1.035
log_une_gni	1.3466	0.415	3.248	0.001	0.528	2.165
log_une_hiv	-1.4866	0.206	-7.205	0.000	-1.894	-1.079
Omnibus:	6.101		-Watson:		2.034	
Prob(Omnibus):	0.047	Jarque-B	era (JB):		5.782	
Skew:	-0.422	F	Prob(JB):	0.	0555	
Kurtosis:	3.213	С	ond. No.	1.95	e+03	

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.95e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Fascinating results here. A lot to say.

So far I like the forward selected model the best. It has one of the best R^2 despite having one of the fewest numbers of features. Let's look into this model with more detail.

```
In []: residuals = mod_aic_forward.resid

# Create the residual plot using matplotlib
fig, ax = plt.subplots()
ax.scatter(mod_aic_forward.predict(), residuals)
ax.axhline(y=0, color='r', linestyle='-')
ax.set_xlabel('Predicted values')
ax.set_ylabel('Residuals')
plt.show()
```



```
In [ ]: import statsmodels
fig, ax = plt.subplots()
statsmodels.graphics.gofplots.qqplot(residuals, ax=ax, line='r')
plt.show()
```


According to google this parabolic residual plot can indicate the need for a quadratic term in the model. At least the qq plot is quite good.

EHW robust standard errors and confidence intervals

In []: #find the Eicker Huber White robust standard errors
from statsmodels.stats import sandwich_covariance

display(ehw errors)

#reorder columns

display(error estimates)

	coefficient	ehw_robust_se
0	const	7.260642
1	region_Africa	0.892612
2	log_une_hiv	0.247479
3	region_Eastern Mediterranean	0.863685
4	log_une_gni	0.369160
5	bmi	0.275976
6	age5-19thinness	0.085905
7	basic_water	0.032111
8	diphtheria	0.028063
9	gghe-d	0.154950
10	age5-19obesity	0.116980

```
In [ ]: #construct the confidence intervals using the robust standard errors
        conf_int = pd.DataFrame()
         conf_int['lower'] = mod_aic_forward.params - 1.96*robust_se
         conf_int['upper'] = mod_aic_forward.params + 1.96*robust_se
        conf_int['coef'] = mod_aic_forward.params
conf_int['feature'] = mod_aic_forward.params.index
         conf_int = conf_int.sort_values(by='coef', ascending=False)
In [ ]: #compare ehw robust standard errors to the standard errors from the model
         #put into dataframe with coefficient_name and error_estimate
         model_errors = pd.DataFrame()
        model_errors['coefficient'] = mod_aic_forward.params.index
model_errors['forward_selection_se'] = mod_aic_forward.bse.values
In [ ]: #join model_errors and ehw_errors
         error_estimates = model_errors.merge(ehw_errors, on='coefficient')
         #add 2 columns for the 2 confidence intervalse
         error_estimates['lower'] = mod_aic_forward.params.values - 1.96*error_estimates['forward_selection_se']
         error_estimates['upper'] = mod_aic_forward.params.values + 1.96*error_estimates['forward_selection_se']
         #add robust confidence intervals
         error_estimates['ehw_lower'] = mod_aic_forward.params.values - 1.96*error_estimates['ehw_robust_se']
         error_estimates['ehw_upper'] = mod_aic_forward.params.values + 1.96*error_estimates['ehw_robust_se']
```

error_estimates = error_estimates[['coefficient', 'forward_selection_se', 'lower', 'upper', 'ehw_robust_se', 'eh'

	coefficient	forward_selection_se	lower	upper	ehw_robust_se	ehw_lower	ehw_upper
0	const	6.230970	43.511757	67.937158	7.260642	41.493599	69.955316
1	region_Africa	0.831493	-5.129795	-1.870341	0.892612	-5.249588	-1.750548
2	log_une_hiv	0.216830	-1.729210	-0.879235	0.247479	-1.789281	-0.819164
3	region_Eastern Mediterranean	0.920405	-4.392102	-0.784112	0.863685	-4.280930	-0.895285
4	log_une_gni	0.374320	0.972976	2.440310	0.369160	0.983090	2.430196
5	bmi	0.230559	-1.269495	-0.365705	0.275976	-1.358512	-0.276688
6	age5-19thinness	0.081432	-0.393164	-0.073950	0.085905	-0.401931	-0.065183
7	basic_water	0.028773	0.059180	0.171971	0.032111	0.052638	0.178514
8	diphtheria	0.020195	0.049009	0.128174	0.028063	0.033589	0.143595
9	gghe-d	0.155256	0.030659	0.639262	0.154950	0.031259	0.638662
10	age5-19obesity	0.098835	0.187800	0.575233	0.116980	0.152236	0.610797

```
poly = PolynomialFeatures(degree=2, include_bias=False)
         X_poly = pd.DataFrame(poly.fit_transform(fav_model_X))
In [ ]: polymod = forward_selection_aic(X_poly,y)
In [ ]: polymod.summary()
                             OLS Regression Results
                                                                0 020
             Dep. Variable:
                                 life expect
                                                  R-squared:
                   Model:
                                      OLS
                                             Adj. R-squared:
                                                                0.911
                  Method:
                               Least Squares
                                                                104.4
                                                  F-statistic:
                    Date: Tue, 09 May 2023 Prob (F-statistic): 6.07e-80
                    Time:
                                   15:49:11
                                             Log-Likelihood:
                                                              -421 30
         No. Observations:
                                       183
                                                        AIC:
                                                                880.8
              Df Residuals:
                                       164
                                                                941.8
                                                        BIC:
                Df Model:
                                        18
          Covariance Type:
                                 nonrobust
                                     t P>|t| [0.025 0.975]
                   coef std err
         const 68.2264
                          5.107 13.360 0.000
                                             58.143 78.310
                -0.8148
                         0.244
                                -3.342 0.001
                                              -1.296
                                                     -0.333
            2 -4 8495
                          1.810
                               -2.679 0.008
                                              -8.424 -1.275
                 0.4960
                         0.197
                                 2.517 0.013
                                               0.107
                                                      0.885
            13
                 0.0566
                         0.020
                                2.818 0.005
                                               0.017
                                                     0.096
                 0.0006
                         0.005
                                0.126 0.900
                                              -0.009
                                                      0.011
            22
                                               0.002
                                                      0.014
            24
                 0.0081
                         0.003 2.791 0.006
            29
                 -4.8495
                          1.810 -2.679 0.008
                                              -8.424 -1.275
                 0.0984
                         0.042
                               2.346 0.020
                                               0.016
                                                     0.181
            36
            37 -0.0587
                         0.013 -4.368 0.000
                                              -0.085
                                                     -0.032
            39
                 0.0754
                         0.049
                                1.526 0.129
                                              -0.022
                                                      0.173
                 -0.0717
                         0.020 -3.525 0.001
                                              -0.112
                                                     -0.032
            43
                -0.0106
                         0.004 -2.910 0.004
                                              -0.018 -0.003
            46
                 0.9263
                         0.506
                               1.831 0.069
                                              -0.073
                                                      1.925
                 -0.0376
                         0.083 -0.452 0.652
                                             -0.202
                                                     0.127
                 0.0155
                         0.003
                               4.932 0.000
                                               0.009
                                                      0.022
            54
                -1 2400
                         0.496 -2.500 0.013 -2.219 -0.261
            56
                -0.5557
                         0.132 -4.216 0.000 -0.816
                                                     -0.295
                -0.1973
                         0.125 -1.575 0.117 -0.445
                                                      0.050
                         0.036 -3.347 0.001 -0.190 -0.049
            60 -0.1192
               Omnibus:
                         5.654
                                 Durbin-Watson:
                                                     2.210
         Prob(Omnibus): 0.059 Jarque-Bera (JB):
                                                     5.989
                  Skew: -0.275
                                       Prob(JB):
                                                    0.0501
                Kurtosis: 3.694
                                       Cond. No. 4.25e+19
```

fav_model_X = X[fav_model_features]
In []: from sklearn.preprocessing import PolynomialFeatures

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 2.15e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
# Create the residual plot using matplotlib
fig, ax = plt.subplots()
ax.scatter(polymod.predict(), residuals)
ax.axhline(y=0, color='r', linestyle='-')
ax.set_xlabel('Predicted values')
ax.set_ylabel('Residuals')
plt.show()
```


I've tried a lot of things (not shown). It doesn't seem adding any combination of interaction or squared terms fixes the residuals significantly (at least for any model that is not terribly overfitted).

Let's try some other diagnostics next

```
In []: leverage = mod_aic_forward.get_influence().hat_matrix_diag

# Plot the Leverage values
plt.plot(np.arange(len(leverage)), leverage, 'o')
plt.axhline(y=np.mean(leverage), color='r', linestyle='--')
plt.xlabel('Observation Index')
plt.ylabel('Leverage')
plt.show()
```



```
In [ ]: influence = mod_aic_forward.get_influence()
cd, _ = influence.cooks_distance

# Plot the Cook's distance values
plt.plot(np.arange(len(cd)), cd, 'o')
```

```
plt.axhline(y=np.mean(cd), color='r', linestyle='--')
plt.xlabel('Observation Index')
plt.ylabel("Cook's Distance")
plt.show()
```



```
In [ ]: np.where(cd > 0.05)
```

Out[]: (array([55, 87, 88, 93, 139], dtype=int64),)

In []: best_observations.iloc[[55,87,88,93,139]]

age1age5age5year life expect life exp60 adult mortality infant mort alcohol bmi une literacy un 19thinness 4mort 19obesity 221 2000 48.63049 15.34542 539.93450 0.082225 0.011565 6.80285 25.5 9.9 1.0 81.66070 **3073** 2013 65.99978 16.78192 202 99580 0.045770 0.003320 0.74510 29.8 20.4 NaN 0.1 **1655** 2006 73.52585 17.21701 87.16492 0.011810 0.000445 0.01498 28.7 3.1 19.9 93.28212 **581** 2003 46.81549 14.34517 607.87410 0.090445 0.008945 1.97190 24.2 10.6 1.1 86.25443 2898 2008 0.015520 0.000740 3.97080 31.3 13.9 98.97326 72.82797 18.46681 139.05050 0.2

5 rows × 34 columns

Out[1:

OLS Regression Results

Dep. Variable:	life_expect	R-squared:	0.896
Model:	OLS	Adj. R-squared:	0.890
Method:	Least Squares	F-statistic:	143.9
Date:	Tue, 09 May 2023	Prob (F-statistic):	1.22e-76
Time:	15:49:12	Log-Likelihood:	-428.36
No. Observations:	178	AIC:	878.7
Df Residuals:	167	BIC:	913.7
Df Model:	10		
Covariance Type:	nonrobust		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	50.0564	5.971	8.384	0.000	38.269	61.844
bmi	-0.6789	0.226	-3.006	0.003	-1.125	-0.233
basic_water	0.0723	0.028	2.586	0.011	0.017	0.128
region_Eastern Mediterranean	-2.5787	0.853	-3.024	0.003	-4.262	-0.895
age5-19obesity	0.4205	0.099	4.241	0.000	0.225	0.616
gghe-d	0.4388	0.149	2.942	0.004	0.144	0.733
log_une_gni	1.8810	0.357	5.274	0.000	1.177	2.585
region_Africa	-3.4454	0.766	-4.498	0.000	-4.958	-1.933
log_une_hiv	-1.2026	0.204	-5.894	0.000	-1.605	-0.800
age5-19thinness	-0.1471	0.078	-1.890	0.060	-0.301	0.007
diphtheria	0.1277	0.020	6.424	0.000	0.088	0.167

2.077	Durbin-Watson:	3.649	Omnibus:
3.197	Jarque-Bera (JB):	0.161	Prob(Omnibus):
0.202	Prob(JB):	-0.280	Skew:
3.64e+03	Cond. No.	3.343	Kurtosis:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.64e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In []: residuals = final_mod.resid

# Create the residual plot using matplotlib
fig, ax = plt.subplots()
ax.scatter(final_mod.predict(), residuals)
ax.axhline(y=0, color='r', linestyle='-')
ax.set_xlabel('Predicted values')
ax.set_ylabel('Residuals')
plt.show()
```



```
In [ ]: fig, ax = plt.subplots()
statsmodels.graphics.gofplots.qqplot(residuals, ax=ax, line='r')
plt.show()
```


Residuals looks roughly the same, but the coefficients did change a bit. Perhaps it is more accurate?

Taking break from this to try the other datasets (Spoiler: it doesnt make much of a difference)

```
In []: X = obs_full_obs.drop(columns = ['year','country'])
y = obs_full_obs['life_expect']

#Also drop the closely related features like infant mortality, etc
X = X.drop(columns=highly_correlated_features)
X = X.drop(columns= ['life_expect'])
X = X.drop(columns= ['life_expect'])
X = X.drop(columns=['une_gni', 'une_pop', 'agel-4mort'])
X = X.drop(columns=['log_infant_mort','log_agel-4mort'])
In []: mod_aic_backward= backward_selection_aic(X,y)
In []: mod_aic_backward.summary()
```

Out[1:

OLS Regression Results

Dep. Variable:		life_expect		ared:	0.850	
Model:		OLS	Adj. R-squared:			0.839
Method:	Le	ast Squares		F-sta	tistic:	71.98
Date:	Tue, 09	9 May 2023	Prob	(F-stat	istic):	2.33e-56
Time:		15:49:15	Log	j-Likelil	nood:	-428.44
No. Observations:		165			AIC:	882.9
Df Residuals:		152			BIC:	923.3
Df Model:		12				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	79.0951	6.263	12.629	0.000	66.721	91.469
diphtheria	0.0270	0.078	0.346	0.730	-0.127	0.181
age5-19obesity	0.4818	0.106	4.534	0.000	0.272	0.692
diseases	0.0154	0.008	2.017	0.045	0.000	0.031
measles	-0.0368	0.052	-0.703	0.483	-0.140	0.067
doctors	0.0825	0.035	2.342	0.020	0.013	0.152
gghe-d	0.8654	0.254	3.407	0.001	0.364	1.367
hepatitis	0.0214	0.014	1.534	0.127	-0.006	0.049
bmi	-1.3209	0.256	-5.170	0.000	-1.826	-0.816
polio	0.0561	0.078	0.721	0.472	-0.098	0.210
age5-19thinness	-0.2697	0.092	-2.938	0.004	-0.451	-0.088
basic_water	0.1759	0.029	6.077	0.000	0.119	0.233
region_Africa	-5.5507	0.887	-6.260	0.000	-7.303	-3.799
che_gdp	-0.3440	0.166	-2.075	0.040	-0.672	-0.017
Omnibus:	3.429	Durbin-W	atson:	2.	206	
Prob(Omnibus):	0.180	Jarque-Ber	a (JB):	2.	950	
Skew:	-0.288	Pro	ob(JB):	0.	229	
Kurtosis:	3.312	Con	d. No.	1.73e	+16	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 2.54e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

OLS Regression Results

Dep. Variable:	life_expect	R-squared:	0.851
Model:	OLS	Adj. R-squared:	0.840
Method:	Least Squares	F-statistic:	79.49
Date:	Tue, 09 May 2023	Prob (F-statistic):	1.77e-57
Time:	15:49:15	Log-Likelihood:	-428.05
No. Observations:	165	AIC:	880.1
Df Residuals:	153	BIC:	917.4
Df Model:	11		
Covariance Type:	nonrobust		
	coof std orr	+ D> + IO 02	E 0.07E1

	coef	std err	t	P> t	[0.025	0.975]
const	78.4732	6.239	12.578	0.000	66.148	90.798
region_Africa	-5.5363	0.869	-6.368	0.000	-7.254	-3.819
che_gdp	-0.3346	0.164	-2.041	0.043	-0.658	-0.011
hepatitis	0.0220	0.014	1.611	0.109	-0.005	0.049
bmi	-1.2999	0.254	-5.112	0.000	-1.802	-0.798
polio	0.0630	0.030	2.075	0.040	0.003	0.123
region_Europe	-1.1433	1.073	-1.066	0.288	-3.263	0.976
age5-19thinness	-0.2775	0.091	-3.033	0.003	-0.458	-0.097
doctors	0.1105	0.044	2.494	0.014	0.023	0.198
basic_water	0.1764	0.029	6.175	0.000	0.120	0.233
gghe-d	0.9013	0.254	3.550	0.001	0.400	1.403
age5-19obesity	0.4283	0.119	3.594	0.000	0.193	0.664

Omnibus:	3.268	Durbin-Watson:	2.205
Prob(Omnibus):	0.195	Jarque-Bera (JB):	2.827
Skew:	-0.301	Prob(JB):	0.243
Kurtosis:	3.220	Cond. No.	3.59e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.59e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In []: residuals = mod_aic_forward.resid

# Create the residual plot using matplotlib
fig, ax = plt.subplots()
ax.scatter(mod_aic_forward.predict(), residuals)
ax.axhline(y=0, color='r', linestyle='-')
ax.set_xlabel('Predicted values')
ax.set_ylabel('Residuals')
plt.show()
```


In []: fig, ax = plt.subplots()
 statsmodels.graphics.gofplots.qqplot(residuals, ax=ax, line='r')
 plt.show()


```
In []: X = obs_full_features.drop(columns = ['year', 'country'])
y = obs_full_features['life_expect']

#Also drop the cLosely related features like infant mortality, etc
X = X.drop(columns=highly_correlated_features)
X = X.drop(columns=['life_expect'])
X = X.drop(columns=['life_exped'])
X = X.drop(columns=['une_exped'])
X = X.drop(columns=['log_infant_mort', 'une_pni', 'une_pop', 'agel-4mort'])
In []: mod_aic_backward= backward_selection_aic(X,y)
In []: mod_aic_backward.summary()
```

0			

Regression	

Dep. Variable:	life_expect	R-squared:	0.930
Model:	OLS	Adj. R-squared:	0.904
Method:	Least Squares	F-statistic:	36.44
Date:	Tue, 09 May 2023	Prob (F-statistic):	3.96e-20
Time:	15:49:19	Log-Likelihood:	-132.12
No. Observations:	61	AIC:	298.2
Df Residuals:	44	BIC:	334.1
Df Model:	16		
Covariance Type:	nonrohust		

	coef	std err	t	P> t	[0.025	0.975]
const	68.4724	11.803	5.801	0.000	44.684	92.261
log_une_hiv	-1.3798	0.469	-2.940	0.005	-2.326	-0.434
region_Eastern Mediterranean	12.6172	3.028	4.167	0.000	6.515	18.719
une_literacy	0.0857	0.029	2.957	0.005	0.027	0.144
diphtheria	-0.0130	0.155	-0.083	0.934	-0.326	0.300
age5-19obesity	0.7652	0.237	3.228	0.002	0.287	1.243
diseases	0.0319	0.009	3.367	0.002	0.013	0.051
measles	0.1144	0.081	1.420	0.163	-0.048	0.277
region_South-East Asia	9.2756	1.923	4.823	0.000	5.399	13.152
region_Western Pacific	8.2497	2.331	3.539	0.001	3.552	12.948
bmi	-1.9990	0.538	-3.717	0.001	-3.083	-0.915
hospitals	-0.8866	0.315	-2.814	0.007	-1.522	-0.252
log_une_gni	2.0100	0.782	2.570	0.014	0.434	3.586
polio	-0.0058	0.144	-0.040	0.968	-0.296	0.284
region_Europe	13.7833	2.538	5.432	0.000	8.669	18.897
basic_water	0.0705	0.047	1.487	0.144	-0.025	0.166
log_une_pop	-0.7139	0.305	-2.341	0.024	-1.328	-0.099
region_Africa	9.3947	2.103	4.467	0.000	5.156	13.633
region_Americas	15.1519	2.322	6.527	0.000	10.473	19.831

2.548	Durbin-Watson:	2.128	Omnibus:
1.337	Jarque-Bera (JB):	0.345	Prob(Omnibus):
0.512	Prob(JB):	-0.290	Skew:
3.26e+18	Cond. No.	3.436	Kurtosis:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The smallest eigenvalue is 2.59e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Out[]:

OLS Regression Results

Dep. Variable:	life_expect	R-squared:	0.929
Model:	OLS	Adj. R-squared:	0.909
Method:	Least Squares	F-statistic:	46.95
Date:	Tue, 09 May 2023	Prob (F-statistic):	1.96e-22
Time:	15:49:19	Log-Likelihood:	-132.69
No. Observations:	61	AIC:	293.4
Df Residuals:	47	BIC:	322.9
Df Model:	13		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	85.4190	13.012	6.564	0.000	59.241	111.597
region_Africa	-5.2134	1.895	-2.751	0.008	-9.026	-1.400
log_une_hiv	-1.2486	0.423	-2.953	0.005	-2.099	-0.398
region_South-East Asia	-4.9321	1.862	-2.649	0.011	-8.678	-1.186
region_Western Pacific	-5.6993	1.746	-3.264	0.002	-9.212	-2.186
measles	0.1271	0.030	4.305	0.000	0.068	0.187
region_Eastern Mediterranean	-1.8611	1.561	-1.193	0.239	-5.001	1.278
log_une_gni	1.7760	0.720	2.466	0.017	0.327	3.225
hospitals	-0.9433	0.297	-3.176	0.003	-1.541	-0.346
une_literacy	0.0807	0.028	2.913	0.005	0.025	0.137
bmi	-2.0107	0.521	-3.862	0.000	-3.058	-0.963
basic_water	0.0722	0.045	1.617	0.113	-0.018	0.162
log_une_pop	-0.7479	0.291	-2.566	0.014	-1.334	-0.161
age5-19obesity	0.8798	0.196	4.497	0.000	0.486	1.273

2.549	Durbin-Watson:	1.752	Omnibus:
1.075	Jarque-Bera (JB):	0.416	Prob(Omnibus):
0.584	Prob(JB):	-0.289	Skew:
6.23e+03	Cond No.	3 298	Kurtosis:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.23e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In []: residuals = mod_aic_forward.resid

# Create the residual plot using matplotlib
fig, ax = plt.subplots()
ax.scatter(mod_aic_forward.predict(), residuals)
ax.axhline(y=0, color='r', linestyle='-')
ax.set_xlabel('Predicted values')
ax.set_ylabel('Residuals')
plt.show()
```


Turns out the non-imputed dataset performs very similarly.