COMP 4300 Exam Review 2

Internal Memory

- SRAM/DRAM
 - o DRAM Dynamic RAM
 - Made with cells that store data as charge on capacitors
 - Presence or absence of charge in capacitor is interpreted as a binary 1 or 0.
 - Requires periodic charge refreshing to maintain data storage
 - Tendency of the stored charge to leak away, even with power continually applied (hence the term dynamic)
 - Simpler to build
 - More dense (smaller cells = more cells per unit area)
 - Less expensive
 - Requires supporting refresh circuitry
 - Tend to be favored for large memory requirements
 - Used for main memory
 - o SRAM Static RAM
 - Digital device uses the same logic elements used in the processor
 - Binary values are stored using traditional flip-flop logic gate configurations
 - Will hold its data as long as power is supplied to it
 - Faster
 - Used for cache memory
- ROMS/PROMS/EEPROMS
 - o Read Only Memory (ROM)
 - Data cannot be changed or added to
 - No power source required to maintain the bit values in memory
 - Data or program is permanently in main memory and never needs to be locate din secondary memory
 - Data is actually wired into the chip as part of the fabrication process
 - Disadvantage
 - No room for error
 - o Data insertion has a relatively large cost

- Programmable Read Only Memory (PROM)
 - Less expensive alternative
 - Nonvolatile
 - May be written to once
 - Provides flexibility and convenience
 - Writing process is performed electrically and may be performed at a later time than the original chip fabrication
- Electrically Erased Programmable Read Only Memory (EEPROM)
 - Can be written into at any time without erasing prior contents
 - Combines non-volatility with the flexibility of being updatable in place
 - More expensive than EPROM and less dense
- o Flash
 - Uses an electrical erasing technology like EEPROM except it is much faster
 - Memory cells erased in a single action, hence "flash"
 - NOR
 - Cells connected in parallel o the bit lines so that each cell can be read/write/erased individually
 - Bit line goes low if any memory cell of the device is turned on b the corresponding word line
 - NAND
 - Organized in transistor array with 16 or 32 transistors
 - Bit line goes low only if all transistors in the corresponding word lines are turned on
- Refresh Operation
 - Used in DRAM
 - o Problems
 - Capacitors do not hold their charge indefinitely
 - Can cause memory to be lost
 - Point of refresh operation
- Interleaved Memory
 - o Banks

- A number of chips can be grouped together to form a memory bank
- Each bank is able to complete a memory read or write request on its own.
- o Not random, rather spatial, temporal localities
- Hamming Codes and Parity
 - Soft Errors
 - Random, non-destructive even that alters the contents of one or more memory cells
 - No permanent damage to memory
 - Causes
 - Power supply problems
 - Alpha particles
 - Hard Errors
 - Permanent physical defect
 - Memory cell(s) affected cannot reliably store data but become stuck at 0 or 1 or switch erratically between the two.
 - Causes
 - Harsh environmental abuse
 - Manufacturing defects
 - Wear
- SDRAM & DDR-SDRAM
 - o SDRAM Synchronous DRAM
 - One of the most widely used forms of DRAM
 - Exchanges data with the processor synchronized to an external clock signal that runs at full speed of the processor/memory bus without imposing wait states.
 - Other tasks can safely be done while SDRAM is processing.
 - o DDR-RAM Double Data Rate SDRAM
 - Widely used in desktop computers and servers
 - Achieves higher data rates in three ways
 - Data transfer is synchronized to both rising and falling clock edges instead of just rising edge
 - Uses a higher clock rate on the bus to increase the transfer rate
 - A buffering scheme is used

External Memory

- Magnetic Disks Function
 - Disk constructed of nonmagnetic material coated with a magnetizable material
 - Substrate, nonmagnetic material, is generally aluminum or aluminum allot material
 - Glass substrates recently introduced
 - Benefits
 - Improvement of uniformity of the magnetic film surface to increase disk reliability
 - Reduction is overall surface defects reducing read-write errors
 - Ability to support lower fly heights
 - o Better stiffness to reduce disk dynamics
 - Greater ability to withstand shock and damage
- Seek time, rot delay, track, sector, access time, transfer time
 - Seek time time it takes to position the head at the track
 - Rotational delay time it takes for the beginning of the sector to reach the head
 - Track Organizations of data in a concentric set of rings located on the platter.
 - There are thousands of tracks per surface
 - Sector Data transfers to and from the disk in sectors
 - There are usually hundreds of sectors in a single track with either a fixed or variable length
 - Access time Time it takes to get into position to read or write
 - Seek Time + Rotational Delay = Access Time
 - o Transfer time Time it takes for the data to be transferred
- Circular redundancy check
- RAID Error Control
 - o parity, Hamming Code, mirroring
 - Parity
 - Bits are updated each time a write occurs
 - Each strip write = 2 reads and 2 writes
 - User data must also be updated
 - Parity Strip

- To calculate the new parity strip, must read old user strip and old parity strip
- Hamming Code
 - Correct single-bit errors
 - Detect double -bit errors
- Mirroring
 - Data striping is used but each logical strip is mapped to two separate physical disks so that every disk in the array has a mirror disk that contains the same data
- SSD Disks
 - o Block level erase, write
 - Before the block can be written back to flash memory, the entire block must be erased.
 - Wear leveling
 - Wear-leveling algorithms help evenly distribute writes across block of cells
 - Front interface with cache
 - Allows to delay and group write operations
- CD/DVD basic CD and CD R/W operation
 - \circ CD
 - Non-erasable
 - Stores digitized audio information
 - o CD-RW
 - Erase and rewrite to the disk multiple time
- Tapes
 - Uses same reading and recording techniques as disk systems
 - Medium is flexible polyester tape coated with magnetizable material
 - Serial Recording
 - Data is laid out as a sequence of bits along each track
 - o Data is read and written in contiguous blocks
 - Physical records
 - Blocks on tape are separated by gaps
 - Inter-record gaps

- Major functions of I/O Module
 - Two Major functions
 - Interface to the processor and memory via the system bus or central switch
 - Interface to one or more peripheral devices by tailored data links
- Programmed I/O, interrupt driven I/O, DMA
 - o Figure 7.4

Figure 7.4 Three Techniques for Input of a Block of Data

- o Compare and contrast techniques
 - Programmed I/O
 - Processor executes a program that gives it control over the I/O operation. If a command is issued, the processor must wait until the I/O operation is completed.
 - Interrupt-Driven I/O
 - Processor is interrupted by the I/O module when a command has been issued

- Direct Memory Access (DMA)
 - I/O module and main memory exchange data directly without processor involvement
 - More efficient technique when large volumes of data need to be moved
- Memory mapped I/O, isolated I/O
 - Memory Mapped I/O
 - Devices and memory share an address space
 - I/O looks just like memory read/write
 - No special commands for I/O
 - Large selection of memory access commands available
 - o Isolated I/O
 - Separate address spaces
 - Need I/O or memory select lines
 - Special commands for I/O
 - Limited set
- Device Identification ways to find a who caused an interrupt
 - Multiple interrupt lines
 - Most straightforward approach
 - If multiple lines are used, it is likely that each line will have multiple I/O modules attached to it
 - Software poll
 - When the processor detects an interrupt it branches to an interrupt service routine whose job is to poll each I/O module to determine which module caused the interrupt
 - Time consuming
 - o Daisy chain (hardware poll, vectored)
 - Interrupt acknowledge line is daisy chained through the modules
 - Vector address of the I/O module or some other unique identifier
 - Vectored Interrupt
 - Processor uses the vector as a pointer to the appropriate device-service routine avoiding the need to execute a general service routine first.
 - o Bus arbitration (vectored)

- I/O module must first gain control of thus bus before it can raise the interrupt request line
- When the processor detects the interrupt, it responds on the interrupt acknowledge line
- Then the requesting module places its vector on the data lines
- USB/FireWire (IEEE-1394)
 - o USB
 - Widely used for peripheral connections
 - Default interface for slower speed devices
 - Commonly used high-speed I/O
 - o FireWire Serial Bus
 - IEEE standard 1394, for a High Performance Serial Bus
 - Alternative to small computer system interface for small computers, workstations, and servers
 - Objective:
 - Meet the increasing demands for high I/O rates while avoiding the bulky and expensive I/O channel technologies developed for mainframe and supercomputer systems
 - 1022 FireWire buses can be interconnected using bridges
 - Hot plugging
 - Allows for connection and disconnection of peripherals without having to power the computer system down or reconfigure the system
 - Automatic configuration to assign addresses
 - No terminations
- DMA/breakpoints Figure 7.13, 7.15
 - 0 7.13

Figure 7.13 DMA and Interrupt Breakpoints During an Instruction Cycle

0 7.15

DREQ = DMA request
HLDA = HOLD acknowledge
HRQ = HOLD request

Figure 7.15 8237 DMA Usage of System Bus

Problems from class and in homework