Синтез энергоэффективных регуляторов для систем векторного управления асинхронным двигателем силовой установки электромобиля

А. Н. Попов Южный федеральный университет anpopov@sfedu.ru

Аннотация. В статье рассматриваются вопросы синтеза регуляторов для систем векторного управления асинхронным двигателем, работающим в составе силовой установки электромобиля. Представлена процедура синергетического синтеза алгоритмов векторного управления, обеспечивающих заданную скорость движения электромобиля при минимизации суммарных потерь в двигателе. Теоретические выводы подтверждаются компьютерным моделированием замкнутых Проводится анализ энергетической эффективности силовой установки электромобиля с предложенными алгоритмами управления.

Ключевые слова: силовая установка электромобиля; системы векторного управления асинхронным двигателем; энергосберегающее управление; синергетический синтез регуляторов

І. Введение

Возрастающие энергетические и экологические вызовы заставляют автопроизводителей уделять все большее внимание вопросам разработки автомобилей с электрической или гибридной силовой установкой.

Ядро силовой установки любого электромобиля — тяговый электрический привод, преобразующий бортовую электроэнергию в движение транспортного средства. По сравнению с приводами промышленного применения приводы электромобилей должны удовлетворять следующим дополнительным требованиям [1]: высокий удельный момент и высокая удельная мощность; широкий диапазон регулирования скорости, включающий режимы «ползучей» скорости в пробах и высокоскоростное движение по автомагистралям; высокая эффективность в широком диапазоне изменения крутящего момента и скорости двигателя; высокий крутящий момент при разгоне и преодолении подъемов.

Обеспечение указанных требований осуществляется посредством соответствующей микропроцессорной системы управления, являющейся неотъемлемой и важнейшей частью тягового привода электромобиля. Это система на основании текущей ситуации и требуемых характеристик движения, в режиме реального времени

Работа выполнена при финансовой поддержке РФФИ, проект №18-08-0924

рассчитывает сигналы управления для электрических силовых преобразователей (инверторов и DC/DC конверторов), которые в свою очередь формируют необходимые напряжения на обмотках электродвигателя. В электромобилях в основном используются двигатели переменного тока — асинхронные с короткозамкнутым ротором и синхронные с постоянными магнитами. Поэтому задача системы управления сводится к выработке управляющих воздействий для автономного инвертора с ШИМ, который преобразует постоянной напряжение системы энергообеспечения (батареи, суперконденсатора, топливного элемента) в переменное напряжение заданной амплитуды и частоты, подаваемое на статорную обмотку пвигателя.

Наибольшее распространение в практике проектирования систем управления асинхронным двигателем (АД), в том числе и тяговым, получил принцип векторного или полеориентированного управления (ПОУ), предложенный F. Blaschke [2] и реализованный фирмой Siemens в системе Transvector [3]—[4].

Классическая система ПОУ представляет собой двухканальную систему управления — канал управления потокосцеплением и канал управления моментом (скоростью). Каждый канал реализует принцип подчиненного регулирования координат и содержит два контура с ПИ-регуляторами. Таким образом, структура системы управления является линейной и неизменной, а синтез сводится к выбору параметров ПИ-регуляторов.

Следует, однако, заметить, что каналы управления в системах ПОУ являются связанными, а их разделение и независимое рассмотрение не совсем корректно. В этой связи, в структуру систем ПОУ вводятся дополнительные блоки развязки каналов управления и разрабатываются различные методики расчета параметров ПИ-регуляторов, компенсирующих взаимовлияние каналов управления и естественную обратную связь по ЭДС двигателя [3], [4]. Естественно, это не может не сказываться на точности и эффективности системы управления и ограничивает область ее устойчивости.

В работах научной школы кафедры синергетики и процессов управления Южного федерального университета [5]–[8] предлагается отойти от типовой структуры системы ПОУ и синтезировать алгоритмы

векторного управления АД на основе исходной нелинейной модели. Такие алгоритмы будут естественным образом учитывать все указанные особенности АД как объекта управления. Кроме того, появляются дополнительные возможности в плане повышения эффективности процесса электромеханического преобразования энергии.

В данной статье рассмотрено решение задачи синергетического синтеза регуляторов для систем ПОУ АД в составе силовой установки электромобиля, которые обеспечивают минимизацию потерь энергии в различных режимах его движения.

II. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Для синтеза алгоритмов управления используется математическая модель, состоящая из модели АД в координатной системе xy, вращающейся синхронно с магнитным полем и ориентированной по вектору потокосцепления обмотки ротора, и уравнения продольного движения электромобиля [9]:

$$\begin{split} \frac{d\omega}{dt} &= a_1 \psi_r i_{sy} - a_2 c_1 F_t; \\ \frac{d\psi_r}{dt} &= a_3 i_{sx} - a_4 \psi_r; \\ \frac{di_{sx}}{dt} &= -a_5 i_{sx} + a_4 a_6 \psi_r + a_7 \omega i_{sy} + a_3 \frac{i_{sy}^2}{\psi_r} + b_1 u_{sx}; \\ \frac{di_{sy}}{dt} &= -a_5 i_{sy} - a_6 a_7 \omega \psi_r - a_7 \omega i_{sx} - a_3 \frac{i_{sx} i_{sy}}{\psi_r} + b_1 u_{sy}; \\ m \frac{dV}{dt} &= F_t - F_{aero} - F_{roll} - mg \sin \alpha. \end{split}$$
 (1)

Здесь и далее: u_{sx} , u_{sy} и i_{sx} , i_{sy} – проекции напряжения и тока статора на оси системы координат; ψ_r – модуль вектора потокосцепления ротора, ω – угловая скорость ротора, J – приведенный к валу двигателя момент инерции, р - количество пар полюсов обмотки статора L_s, L_r, L_m – собственные и взаимная индуктивности обмоток, а r_s, r_r – их активные сопротивления, m – масса электромобиля, а V – его скорость, F_t – сила тяги, возникающее при сцеплении колес с дорогой И электродвигателем, F_{aero} — аэродинамическая сила, F_{roll} сила трения качения, д - ускорение свободного падения, lpha — угол наклона дороги, R_{w} — радиус колес, k_{red} передаточное число редуктора. Коэффициенты модели (1) определены следующим образом:

$$a_{1} = 3pL_{m}/(2JL_{r}), \quad a_{2} = 1/J, \quad a_{3} = r_{r}L_{m}/L_{r}, \quad a_{4} = r_{r}/L_{r},$$

$$a_{5} = (r_{r}L_{m}^{2} + r_{s}L_{r}^{2})/(L_{r}(L_{s}L_{r} - L_{m}^{2})), \quad a_{6} = L_{m}/(L_{s}L_{r} - L_{m}^{2}),$$

$$a_{7} = p, \quad b_{1} = L_{r}/(L_{s}L_{r} - L_{m}^{2}), \quad c_{1} = R_{w}/k_{red}.$$

Аэродинамическая сила вычисляется $F_{aero} = 0.5 \rho C_d A_F (V + V_{wind})^2$, где ρ – плотность воздуха, C_d – коэффициент аэродинамической силы, A_F – площадь лобового обтекания, V_{wind} — скорость ветра. Сила качению обычно пропорционально сопротивления нормальной силе и вычисляется как $F_{roll} = k_{roll} mg \cos \alpha$, где k_{roll} – коэффициент трения качения. Сила тяги F_t пропорционально основана на трении, которое скольжению между колесом и дорожным покрытием. Величина этой силы определяется произведением нормальной силы на функцию скольжения. В большинстве случаях эту функцию можно считать линейной, а силу тяги вычислять как $F_t = \mu_s s_x mg \cos \alpha$, где μ_s — коэффициент трения скольжения, $s_x = (R_w \omega / k_{red} - V) / (R_w \omega / k_{red})$ – относительное скольжение.

III. Синтез регулятора

Задача синтеза регулятора для систем ПОУ АД электромобиля формулируется как задача нахождения функций, определяющих математическую связь между текущими значениями переменных состояний и текущими значениями управляющих воздействий, т.е. функций $u_{sx} = u_{sx}(\omega, i_{sx}, i_{sy}, \psi_r, V)$ и $u_{sy} = u_{sx}(\omega, i_{sx}, i_{sy}, \psi_r, V)$. Эти функции фактически определяют структуру векторного регулятора как совокупность обратных связей, обеспечивающих выполнение задач управления АД.

Стандартной задачей управления АД в составе тяговой установки является задача стабилизации скорости движения электромобиля: $V=V_{ref}$. В традиционных системах ПОУ второй задачей управления является задача стабилизации потокосцепления ротора в номинальном значении $\psi_r = \psi_{rnom}$. Однако поддержание номинального потока при малом значении крутящего момента приводит к существенному уменьшению КПД двигателя.

Исследованию вопросов повышения энергетической эффективности электромеханического преобразования в АД посвящено большое количество работ. В [3], [10] показано, что при выполнении определенных условий возможна минимизация уровня энергетических потерь в АД при изменении его скоростного режима и момента нагрузки на его валу. Эти условия, записанные в математической и представляющие форме соотношения, определенным некоторые связывающие переменные модели АД и характеризующие режим минимальных потерь энергии, в работах [5], [6], [11], [12] названы энергетическими инвариантами.

Энергетические инварианты устанавливают оптимальное с точки зрения минимума потерь энергии значение одной из электромагнитных переменных модели АД. В данной работе используется энергетический инвариант, определяющий оптимальное значение потокообразующей проекции тока статора:

$$i_{sx}^{opt} = \frac{M_{ref}^{0.5}}{L_m} \left(\frac{k_1}{k_2 + k_3 \omega_{ref}^{\beta}} \right)^{0.25}, \tag{2}$$

где $k_1=4ig(r_sL_r^2+r_rL_m^2ig)/ig(3p^2L_m^2ig)$, $k_2=3r_s/L_m^2$, $k_3=\Delta P_{st.nom}/ig(314^\beta\psi_{r\ nom}^2ig)$, $\Delta P_{st.nom}$ — номинальное значение потерь в стали, $\beta\approx 1,2$ — коэффициент, зависящий от марки стали. M_{ref} и ω_{ref} — значения момента и скорости АД в заданном установившемся режиме, вычисляемые на основе заданного значения скорости движения электромобиля V_{ref} из уравнений движения ротора двигателя и электромобиля:

$$\omega_{ref} = V_{ref} \left(1 - \frac{k_{aero}V_{ref}^2}{\mu_s mg \cos\alpha} - \frac{k_{roll}}{\mu_s} - \frac{\operatorname{tg}\alpha}{\mu_s} \right)^{-1} c_1^{-1},$$

$$M_{ref} = \mu_s mg \cos\alpha (c_1 \omega_{ref} - V_{ref}) / \omega_{ref}$$
.

Общие вопросы синергетического синтеза алгоритмов векторного управления АД подробно изложены в [6]–[8]. Рассмотрим особенности процедуры синтеза векторного регулятора для ПОУ АД, обеспечивающего стабилизацию скорости движения электромобиля и минимизацию потерь энергии в двигателе.

На первом этапе синтеза вводятся инвариантные многообразия (ИМ):

$$\psi_1 = i_{sx} - i_{sx}^{opt} = 0,$$
 $\psi_2 = i_{sy} - \varphi_1 = 0,$
(3)

где i^{opt}_{sx} определяется выражением (2), а φ_1 — некоторая, пока неизвестная функция.

На пересечении ИМ (3) динамика декомпозированной системы описывается уравнениями:

$$\frac{d\omega}{dt} = a_1 \psi_r \varphi_1 - a_2 c_1 F_t;$$

$$\frac{d\psi_r}{dt} = a_3 i_{sx}^{opt} - a_4 \psi_r;$$

$$m \frac{dV}{dt} = F_t - F_{aero} - F_{roll} - mg \sin \alpha.$$
(4)

В модели (4) функцию φ_1 можно рассматривать как «внутреннее» управление и продолжить процедуру синтеза, задав «внутреннее» ИМ, определяющее желаемую динамику скорости электромобиля:

$$\psi_3 = \left(F_t - F_{aero} - F_{roll} - mg\sin\alpha\right)/m - l_1(V - V_{ref}) = 0 \; . \label{eq:psi_3}$$

Рис. 1. Переходные процессы скорости электромобиля

Рис. 2. Переходные процессы угловой скорости двигателя

На $\psi_3=0$ эта динамика описается уравнением $dV/dt=l_1(V-V_{ref})$, обладающим свойством асимптотической устойчивости относительно V_{ref} при $l_1<0$.

Функция φ_1 находится из решения функционального уравнения $T_3 d\psi_3/dt + \psi_3 = 0$ в силу модели (4). ИМ $\psi_2 = 0$ приобретает конкретный вид, а искомый закон управления ищется из решения системы уравнений $T_i d\psi_i/dt + \psi_i = 0, i = 1, 2$ в силу исходной модели (1).

IV. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Для оценки эффективности синтезированного регулятора было проведено компьютерное моделирование замкнутой системы ПОУ АД. При моделировании использовались параметры и номинальные данные двигателя 4A250M4 и параметры электромобиля Nissan Leaf.

На рис. 1—4 представлены переходные процессы основных механических и электромагнитных переменных. Имитировался следующий режим движения электромобиля: разгон до скорости $80~{\rm km/y}$ по горизонтальной дороге; движение «в гору» под углом 15^0 со скоростью $60~{\rm km/y}$; движение по горизонтальной дороге со скоростью $120~{\rm km/y}$; движение «с горы» под углом -15^0

со скоростью 60 км/ч; торможение по горизонтальной дороге до полной остановки.

Рис. 3. Переходные процессы электромагнитного момента

Рис. 4. Переходные процессы тока статора

ходе моделирования была проведена энергоэффективности предложенного алгоритма сравнении c традиционной системой обеспечивающей стабилизацию потокосцепления ротора в номинальном значении. На рис. 5 представлена диаграмма КПД АД в установившемся режиме на каждом из этапов моделируемого движения. Синие колонки соответствуют традишионному управлению, красные энергосберегающему управлению.

V. ЗАКЛЮЧЕНИЕ

Оценивая результаты проведенного компьютерного моделирования, можно сделать вывод, что предложенный алгоритм векторного управления АД, обеспечивает асимптотическую устойчивость замкнутой системы во всей допустимой области пространства состояний, а также позволяет существенно повысить энергетическую эффективность силовой установки электромобиля и, следовательно, увеличить запас хода на одной зарядке аккумуляторных батарей.

Рис. 5. Сравнительная диаграмма КПД двигателя

Список литературы

- [1] Chau K.T. Electric vehicle machine and drives: design, analysis and application, 2015, John Wiley & Sons Singapore Pte. Ltd. 400 p.
- [2] Blaschke F. The principle of field-orientation as applied to the transvector closed loop control system for rotating-field machines: Siemens Rev., vol. 34, no. 1, pp. 217–220, 1972.
- [3] Чиликин М.Г., Ключев В.И., Санлер А.С. Теория автоматизированного электропривода. М.: Энергия, 1979. 616 с.
- [4] Рудаков В.В., Столяров И.М., Дартау В.А. Асинхронные электроприводы с векторным управлением. Л.: Энергоатомиздат, 1987. 136 с.
- [5] Современная прикладная теория управления. Ч. III. Новые классы регуляторов технических систем /Под редакцией А.А. Колесникова. Таганрог: Изд-во ТРТУ, 2000. 656 с.
- [6] Колесников А.А., Веселов Г.Е., Попов А.Н., Колесников Ал. А., Топчиев Б.В., Мушенко А.С., Кобзев В.А. Синергетические методы управления сложными системами: механические и электромеханические системы. Изд. стереотип. URSS, 2019. 300 с.
- [7] Колесников А.А., Веселов Г.Е. Синергетическое управление нелинейными электроприводами. III. Векторное управление асинхронными электроприводами // Известия вузов «Электромеханика». 2006. № 2. С. 25-36.
- [8] Веселов Г.Е., Попов А.Н., Радионов И.А. Синергетическое управление асинхронным тяговым электроприводом локомотивов // Известия РАН. Теория и системы управления. 2014. № 4. С. 166-180.
- [9] Kwang Hee Nam. AC Motor Control and Electrical Vehicle Applications. CRC Press. 2019. 556 p.
- [10] Энергосберегающая технология электроснабжения народного хозяйства: Практ. Пособие / Под ред. В.А. Веникова. Кн. 2. Энергосбережение в электроприводе / Ильинский Н.Ф., Рожанковский Ю.В., Горнов А.О. М.: Высш. Школа, 1989. 127 с.
- [11] Колесников А.А., Веселов Г.Е., Попов А.Н. Инварианты электромеханических систем и вибромеханики // Синергетика и проблемы теории управления: Сб. науч. тр. М.: ФИЗМАТЛИТ, 2004. С. 251–269.
- [12] Попов А.Н. Синергетический синтез законов энергосберегающего управления электромеханическими системами. Таганрог: Изд-во ТРТУ, 2003. 67 с.