

Search for NMSSM $h \rightarrow aa \rightarrow 4\mu$ at the LHC

Sergey Senkin

Alexei Safonov

Jim Pivarski

Texas A&M University

Alexander Belyaev

University of Southampton

5 May, 2009

- Next-to-minimal supersymmetry (NMSSM) solves the μ coincidence problem by promoting the μ term into a new singlet superfield
- ▶ Also has a richer Higgs sector with CP-even (h_1, h_2) and CP-odd (a_1, a_2) scalars
 - more parameter space survives LEP Higgs bounds than MSSM
 - Higgs-to-Higgs decays can be significant
- \blacktriangleright Exotic case: if a_1 is light (1–10 GeV) and $\mathcal{B}(h_1 \to a_1 a_1)$ is significant, normal detector signatures ($b\bar{b}$, W^*W , $\tau^+\tau^-$) do not apply
- Previously studied: $h_1 \rightarrow a_1 a_1 \rightarrow 4\tau/2\tau 2\mu$ when $2m_{\tau} < m_{a_1} < 2m_b$
- \blacktriangleright With a very light $m_{a_1} < 2m_{\tau}$ and $m_{h_1} < 114$ GeV, primary decay mode would be

$$h_1 \rightarrow a_1 a_1 \rightarrow 4\mu$$

where LEP bounds do not apply to h_1 because of this exotic (but very distinct!) final state

▶ Two tightly-collimated $\mu^+\mu^-$ pairs, labeled 1-2 and 3-4

- ▶ Leading μ $p_T >$ 20 GeV: negligible background from J/ψ
- ▶ Because of low backgrounds, one does not need to resort to sub-dominant vector boson fusion production for tagging

News: DØ search for $h \rightarrow 4\mu$

Jim Pivarski 4/10

▶ Released upper limit on $h \rightarrow aa \rightarrow 4\mu$: Conference Note 5891-CONF http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/HIGGS/H67/

- Insufficient muon granularity to resolve two muons with a small opening angle
- Paired identified muon with "companion track" in narrow cone
- muon + track pair isolated to reduce backgrounds
- $ightharpoonup m_a = 0.5 \text{ GeV}, 1 \text{ GeV}, \text{ and } 3 \text{ GeV}$ simulations and 3 surviving data events shown in m_{12} vs. m_{34} plane
- Assuming an h production cross-section of 1 pb, $D\emptyset$ sets an upper limit on $\mathcal{B}(h \to aa)$ at 10%

 h_1 has a non-standard coupling to gg, $b\bar{b}$; NMSSM prefers low cross-section

NMSSMTools uniform scan over parameters:

$$0<\kappa/\lambda<0.8 \ 0<\lambda<0.1 \ -0.1< A_{\kappa}<0~{
m GeV} \ 0< A_{\lambda}<4~{
m TeV} \ 100<\mu<200~{
m GeV} \ 10< aneta<60$$

Cross-section \ll limit for most parameters

(note log scales)

Branching fractions study

Jim Pivarski 6/10

▶ Significant for 1 GeV $< m_a < 2m_{\tau} = 3.55$ GeV and $m_h < 114$ GeV

• A_{κ} and λ must be small for $m_a < 2m_{\tau}$ (linear scale)

- ho κ/λ and μ must be small for $\mathcal{B}(h o aa)\gtrsim 50\%$ (log scale)
- Different regions have qualitatively different behvaior

- CMS as a benchmark
- ► Finer granularity in muon identification than DØ: require 4 muons
 - highest $p_T > 20$ GeV, all others > 5 GeV
 - ▶ $|\eta| < 2.4$
 - minimize $\Delta R(\mu_1, \mu_2)^2 + \Delta R(\mu_3, \mu_4)^2$ to pair 1-2 and 3-4
 - \triangleright simultaneously fit m_{12} , m_{34} , and m_{1234} spectra
- Simulated distributions with detector resolution (CMS TDR):

Acceptance

Jim Pivarski

8/10

Backgrounds

	Inclusive $\mu + X$	diboson/DY	J/ψ
before cuts (100 pb^{-1})	150,000	48	120
kinematic cuts on 4μ	150	5.9	$0^{+0.07}_{-0.00}$
effective region of fit*	$0^{+2.0}_{-0.0}$	$0^{+0.005}_{-0.000}$	

^{*}fit sensitive to m_{12} , $m_{34}<4$ GeV, $m_{1234}>60$ GeV, and $|m_{12}-m_{34}|<0.08$ GeV +0.005 $(m_{12}+m_{34})$

► Example likelihood function with no signal

95% C.L. on
$$\sigma(pp o h) imes \mathcal{B}(h o aa)$$
 at $\mathcal{L} = 100 \; \mathrm{pb}^{-1}$

	$m_a=1\;{\sf GeV}$	2 GeV	3 GeV
$m_h = 80 \text{ GeV}$	10.9 pb	4.1 pb	4.6 pb
100 GeV	8.9 pb	3.4 pb	3.8 pb
120 GeV	7.7 pb	2.9 pb	3.4 pb

- ▶ NMSSM solves naturalness problems in them MSSM, including tension from LEP Higgs limit
- Introduces a rich Higgs sector with Higgs-to-Higgs decays
- ▶ $h \rightarrow aa \rightarrow 4\mu$ is a sensitive discovery mode when $m_a < 2m_{\tau}$
- ▶ DØ search doesn't rule out the 4μ parameter space
- ► CMS muon spectrometer allows for identification of all four muons