Xử lý ảnh số và video số

Bài giảng 6 (tt): Phép biến đổi Hough

PGS.TS. Lý Quốc Ngọc

- 6.1. Giới thiệu
- 6.2. Phát hiện đoạn thẳng
- 6.3. Phát hiện đường tròn
- 6.4. Phát hiện đường cong tham số
- 6.5. Phát hiện đường cong không có phương trình tham số hoặc tường minh.

6.1. Giới thiệu

- ♣ Ånh chứa các đối tượng với hình dạng, kích thước đã biết.
- ♣ Để định vị các đối tượng -> tạo mask + di chuyển mask + tính độ tương quan giữa mask và vùng ảnh.
- ♣ Dùng phép biến đổi Hough (giảm độ phức tạp tính toán và tình trạng đối tượng bị che khuất).

6.2. Phát hiện đoạn thẳng

6.2. Phát hiện đoạn thẳng

- Phương trình đường thẳng

$$y = ax + b$$

- Đường thẳng qua (x_1,y_1) trong không gian (x,y) ứng với đường thẳng $\mathbf{b} = -\mathbf{a} \cdot \mathbf{x}_1 + \mathbf{y}_1$ trong không gian tham số (a,b).
- Đường thẳng qua (x_2,y_2) trong không gian (x,y) ứng với đường thẳng $\mathbf{b} = -\mathbf{a} \cdot \mathbf{x}_2 + \mathbf{y}_2$ trong không gian tham số (a,b).

6.2. Phát hiện đoạn thẳng

- Giao điểm (a',b') của hai đường trong không gian tham số (a,b) xác định đường thẳng qua (x_i,y_i) , i=1,2.

6.2. Phát hiện đoạn thẳng

Giải thuật

B1. Rời rạc hóa không gian tham số và khởi động mảng P(a,b).

 $a_1 \le a \le a_K; b_1 \le b \le b_L$

- **B2**. Với mỗi pixel (x_i,y_i) có giả trị 1 trong ảnh nhị phân, tính $b=-a.x_i+y_i$
- **B3**. Với mỗi $a_1 \le a \le a_K$, b được xác định và cập nhật P(a,b) += 1
- **B4**. Nếu P(a,b) >= T thì đường thẳng y = a.x + b được xác nhận tồn tại.

6.2. Phát hiện đoạn thẳng

6.2. Phát hiện đoạn thẳng

$$r = x\cos\theta + y\sin\theta$$

$$-\sqrt{N_1^2 + N_2^2} \le r\sqrt{N_1^2 + N_2^2}$$

$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

6.3. Phát hiện đường tròn

$$\begin{cases} (x-a)^2 + (y-b)^2 = R^2 \\ \begin{cases} x = a + R\cos\theta \\ y = b + R\sin\theta \end{cases} \Rightarrow \begin{cases} a = x - R\cos\theta \\ b = y - R\sin\theta \end{cases}$$

6.3. Phát hiện đường tròn

$$\begin{cases} x = a + R\cos\theta \\ y = b + R\sin\theta \end{cases}$$

$$\Rightarrow \begin{cases} a = x - R\cos\theta \\ b = y - R\sin\theta \end{cases}$$

(a)

TS. Lý Quốc Ngọc

6.3. Phát hiện đường tròn

$$\begin{cases} x = a + R\cos\theta \\ y = b + R\cos\theta \end{cases}$$

$$\Rightarrow \begin{cases} a = x - R\cos\theta \\ b = y - R\cos\theta \end{cases}$$

6.3. Phát hiện đường tròn

Giải thuật

B1. Rời rạc hóa không gian tham số (r,a,b) và khởi động mảng P(r,a,b).

$$0 \le r \le r_{\text{max}}; a_1 \le a \le a_K; b_1 \le b \le b_L$$

B2. Với mỗi pixel (x_i, y_i) có giá trị 1 trong ảnh nhị phân, và với mỗi

$$0 \le r \le r_{\text{max}} \text{, tinh (a,b)}$$

$$\begin{cases} a = x_i - r \cos \theta \\ b = y_i - r \sin \theta \end{cases}$$

B3. Với mỗi (r,a,b) được xác định, cập nhật

$$P(r,a,b) += 1$$

B4. Nếu P(r,a,b) >= T thì đường tròn tâm (a,b) bán kính r được xác nhận tồn tại.

cdio

6. Phép biến đổi Hough

6.4. Phát hiện đường cong tham số f(x,a)=0

Giải thuật

B1. Rời rạc hóa không gian tham số a và khởi động mảng P(a).

B2. Với mỗi pixel (x_i,y_i) có giá trị 1 trong ảnh nhị phân, cập nhật P(a) nếu f(x,a)=0

$$P(a) += 1$$

Với mọi a trong khoảng rời rạc.

B3. Xác định cực đại cực bộ của P(a). Giá trị a làm P(a) đạt cực đại cục bộ xác nhận sự tồn tại của đường cong tham số f(x,a)=0 trong ảnh.

6.5. Phát hiện đường cong không có phương trình tham số hoặc tường minh.

6.5. Phát hiện đường cong không có phương trình tham số hoặc tường minh.

6.5. Phát hiện đường cong không có phương trình tham số hoặc tường minh.

Giải thuật

B1. Xây dựng bảng R-table đối với đối tượng cần tìm.

B2. Tạo mảng tích lũyA chứa các tham số và khởi độngA

$$A(x^R, S, \tau) = 0$$

B3. Với mỗi pixel (x_1, x_2) có giá trị 1, tính $\Phi(x)$, tìm tất cả các điểm tham chiếu x^R và cập nhật $A(x^R, S, \tau) + = 1$ với mọi (S, τ)

$$x_1^R = x_1 + r(\phi)S\cos(\alpha(\phi) + \tau)$$

$$x_2^R = x_2 + r(\phi)S\cos(\alpha(\phi) + \tau)$$

B4. Vị trí của đối tượng cần tìm đc xác định bởi các tham số làm cực đại $A(x^R, S, \tau)$