软件工程第四次作业

作业题1:

某计算机语言中规定,"标识符是由字母开头,后跟字母或数字的任意组合构成。有效字符数为8个,最大字符数为80个。不能是保留字"。请用等价类划分方法对标识符命名是否正确进行测试。要求给出等价类表,和具体的覆盖数据。

解答:

绘制等价类表如下

输入条件	有效等价类	无效等价类
标识符的开头	(1) 开头为字母;	(2) 开头为数字;
		(3) 开头为非字母非数字的字 符;
标识符除了开头外的后续构 成	(4) 空;	(8) 存在非字母和数字的字符
	(5) 纯字母组合;	
	(6) 纯数字组合;	
	(7) 字母和数字组合;	
字符数	(9) 1~8个字符	(10) 空
		(11) 9~80个字符
		(12) >80个字符
是否保留字	· (13) 不与任何保留字匹 配	(14) 存在一个保留字与之匹配

覆盖数据如下

测试用例编号	输入	预期输出	覆盖等价类
1	К	True	(1)(4)(9)(13)
2	Satori	True	(1)(5)(9)(13)
3	F12	True	(1)(6)(9)(13)
4	USTC1958	True	(1)(7)(9)(13)
5	9isSmart	False	(2)
6	@12	False	(3)
7	orz_	False	(8)
8		False	(10)
9	Touhou12th	False	(11)
10	LagacyOfLunaticKingdom(大于80个字符)	False	(12)
11	while(假定while是该编程语言的保留字)	False	(14)

作业题2:

给出以下两个代码的**环路复杂度**,并给出所有的**独立路径**,同时对于每条独立路径给出**完整测试用例以** 及对应输出

代码一:

```
1 \mid \text{int i = 0};
2 int n = 4;
3 while (i < n-1) {
4
     j = i + 1;
     while(j < n) {
      if (A[i] < A[j]) {
6
7
             swap(A[i],A[j]);
         }
8
9
         j = j + 1
10
11 i = i + 1;
12 }
```

绘制流图 (数字代表行号)

环路复杂度为 4 , 于是设计四个独立程序路径如下

• 测试路径a: [1,2] -- [3] -- [12]

• **测试路径b:** [1,2] -- [3] -- [4] -- [5] -- [10,11] -- [3] -- [12]

• **测试路径c:** [1,2] -- [3] -- [4] -- [5] -- [6] -- [8,9] -- [5] --[10,11] -- [3] -- [12]

• **测试路径d:** [1,2] -- [3] -- [4] -- [5] -- [6] -- [7] -- [8,9] -- [5] -- [10,11] -- [3] -- [12]

给出测试用例如下([1,2]理解为输入),考虑测试路径 b ,如果其通过 [3] 到达 [4] ,那么 i 必定小于 n - 1,而同时在判定点 [5] 处,j=i+1 < n,所以必然走到 [6] 而不可能跳转到 [10,11],故这条路径实际上并不可能被执行到。而同时,它所包含的各个结点都可以在 c 、d 路径被执行到,故此处测试用例不考虑 b 路径。

测试路径	用例	预期输出	
a	int i = 4; int n = 4; A为升序数组	A未动,i、n等变量值不动	
С	int i = 0; int n = 2; A = [2,1]	A=[2,1], i = 1, j=2	
d	int i = 0; int n = 2; A = [1,2]	A=[2,1], i = 1, j=2	

代码二:

```
8
             while(
                    <n && result
   { 9 10
                 i = i + 1;
                 result = result + i;
     11
             }
             if(result <= upperbound) {</pre>
     12
    13
                 System.out.printin("The sum is " + result);
             }
     14
     15
             else {
                 System.out.printin("The sum is too large!");
     16
     17
10
    18
             return result;
     19 }
```

绘制流图 (各个基本块已在代码中注明)

环路复杂度为5,于是设计五个独立程序路径如下

测试路径a: [1] -- [2] -- [4] -- [7] -- [8] -- [10]
 测试路径b: [1] -- [2] -- [4] -- [7] -- [9] -- [10]
 测试路径c: [1] -- [2] -- [4] -- [5] -- [7] -- [9] -- [10]
 测试路径d: [1] -- [2] -- [3] -- [4] -- [5] -- [7] -- [9] -- [10]
 测试路径e: [1] -- [2] -- [4] -- [5] -- [6] -- [4] -- [7] -- [8] -- [10]

给出测试用例如下

测试路径	用例	预期输出
a	n = 0, upperbound = 0	程序结束,输出"The sum is 0"
b	n = 0, upperbound = -1	程序结束,输出"The sum is too large!"
С	n = 1, upperbound = -1	程序结束,输出"The sum is too large!"
d	n = -1, upperbound = -1	程序结束,输出"The sum is too large!"
е	n = 1, upperbound = 5	程序结束,输出"The sum is 1"