SIMULATION

And the modeling cycle

Simulation

- Simulation is a particular type of modelling
- Modeling is a well recognized way of understanding the world:
 - something we subconsciously do all the time,
- A model is a simplification smaller, less detailed, less complex, or all of these together – of some other structure or system.
 - Gives us the power of prediction

Doing Science with Models and Simulations

1. Formulate the Question

- We need to start with a very clear research question
- clear question requires a clear focus
- For complex systems, getting focused can be difficult
- Very often, even our questions are only experimental and later we might need to reformulate the question

2. Assemble hypotheses

- Agent based modeling directly represent the agents and their behavior
- We create the agents, put them in a virtual environment, and then run the simulation.
- We have to formulate many hypotheses for what processes and structures are essential
 - What factors have strong influence in the phenomenon of interest?
 - Are these factors independent or interacting?
 - Are they affected by important other factors?

3. Choose model Structure

Scales

Distance, time and other relevant units mapped to the simulated world

Entities

Agents and environment (you can think of environment as immobile agents)

■ State variables

- Variables to capture states of agents and environments

Processes

- Agent actions for every time-step based on state and parameters
- Agent-to-agent interactions based on state and parameters
- Agent-to-environment interactions and parameters

Parameters

- Initial Setup and randomization parameters. Independent/input variables

4. Implement the model

- Setup procedures
- Agent procedures
- World/Observer procedures
- Monitors and reporters
- Interfaces parameters & plots
 - This is what you will learn this week

Agent Based Modeling (Recap)

The idea that the world can be modeled using

Agents – individuals with specific characteristics: location, behavior, etc.

Environment – The simulated world where these agents are deployed

Agent-to-Agent Interaction - How agents interact (cooperate/compete/coexist) with other agents

Agent-to-Environment Interaction – How agents are affected-by/reacts-to the environment and How the environment is affected by the action(s) of the agent(s)

Agent Based Modeling Toolkits

M A S O N

This course will introduce you to NetLogo

Why NetLogo?

Pros

- Low threshold Easy to learn and to start modeling
- High Ceiling Supports Highly complex (Professional/Scientific/Industrial-scale) models
- Successfully used in many domains and scientific publications

Cons

- You have to learn a new programming language (But a very simple language)
- Under-the-hood investigation (or improvement) of the platform requires understanding of Scala

The Setup

Observer (Us)

Turtles (Mobile Agents)

Agents

Patches (Static/Environment)

Creation Observer (Us) But only in Setup (can't create new patches during simulation) (aka hatching) **Agents Turtles Patches** (Mobile Agents) (Static/Environment) (aka sprouting)

Context

- Every piece of code executed has a "context"
- Put simply: "context" represents "who executes it"
- The default context is the observer context
- You can use ask to switch context
 - You can also establish context in command-center & directly set context in buttons (But it's very uncommon)

Context example

Observer (Us)

```
ask turtles
[
ask patch-here
[
set pcolor white
]
]
```


Current Context: Observer

(Context Switched)
Current Context: Turtles

(Context Switched)
Current Context: Patches

Command executed in Patches context

Execution completed - pcolor is now white

Execution completed - turtle command is completed

Context example

Observer (Us)

```
ask turtles
[
ask patch-here
[
set pcolor white
]
]
```

```
Turtles
(Mobile Agents)

Agents

Patches
(Static/Environment)
```

Execution completed - turtle command is completed

Context example

Observer (Us)

Execution completed - observer command is now completed

NetLogo Commands, Reporters and Procedures

1. Commands

a. directives given to an agent: turtle(s)/patch(es)/link(s)

2. Reporters

a. queries (request for report) given to an agent/observer, which in turn returns the answer for the query

3. Procedures (user defined)

a. **command-procedure**: A sequence of commands

starts with to and concludes with end

b. **reporter-procedure**: A sequence of computation which returns a value

starts with to-report and concludes with end

Lets see a demo!

5. Analyze the model

- Subcomponent or model validation
 - Isolated sub-models to test specific behavior
- Experimental runs and interrupts to catch extreme behavior
- Revise the model as necessary
- If satisfied, run the experiments and capture results

6. Communicate the model and the results

- **Info tab** should explain each element of the interface and what happens underneath
- Document the model (using **ODD** or other formulation)
 - Detailed enough for replicating the model
- Make the model available for other researchers
 - To scrutinize
 - To expand