Section 6.3- The Natural Exponential Function

Name/ Uid:______ Date:_____

Since the function $y = \ln x$ is one-to-one for x > 0, it has an inverse:

Definition. The inverse of $\ln x$ is the natural exponential function denoted $\exp x$ or e^x .

The fact that $\ln x$ and e^x are inverses implies that $e^{\ln x} = x$ for x > 0 and $\ln e^x = x$ for all x.

Proposition 1 (Properties of the Natural Exponential). For any a, b,

- 1. $e^0 = 1$
- 2. $e^a e^b = e^{a+b}$
- 3. $\frac{e^a}{e^b} = e^{a-b}$

Example 1. Use properties of the natural exponential to evaluate the following:

- 1. $e^{\ln 3}$
- 2. $\ln\left(\frac{e^5}{e^3}\right)$
- 3. $e^{(\ln 1 \ln 2)} \ln (e^2)$

Example 2. Solve for x:

(a)
$$\ln(5+x^2)=6$$

(b)
$$e^{4-2x} = 7$$
.

To find the derivative of e^x , we use logarithmic differentiation. If $y = e^x$, then $\ln y = x$ and so

$$1 = D_x(x) = D_x(\ln y) = \frac{1}{y} \frac{dy}{dx}$$

From this we obtain

$$D_x(e^x) = e^x \iff \int e^x dx = e^x + C$$

Example 3. Differentiate the following functions:

(a)
$$D_x(e^{-3x})$$

(b)
$$D_x(xe^{x^2})$$

(c)
$$D_x(e^x \sin(e^x))$$

Example 4. Find the following indefinite integrals:

(a)
$$\int e^{-3x} dx$$

(b)
$$\int xe^{x^2} dx$$

$$(c) \int e^x \sin\left(e^x\right) \, dx$$