或者"宽"或者"高"

链与反链

对有限偏序集(S, ≼), $A \subseteq S$, A被称为

- 链(Chain): 如果对任 $意 x, y \in A, x \leq y$ 或 $y \leq x$ 。
- 反链(Antichain): 如果对任意 $x \neq y \in A$, $x \not \leq y$ 。 反链也称为独立集(Independent set)。

例: ({1,2,...,10},|)

链与反链

对有限偏序集(S,≤), $x,y \in S$, 称x,y

- 例: ({1,2,...,10},|)
- 可比较(Comparable): 若 $x \le y$ 或 $y \le x$ 。
- 不可比较 (Incomparable):
 若x ≰ y 且 y ≰ x。

- 链:可比较元素的集合。
- 反链:不可比较元素的集合。

注意:极大元、极小元的集合组成反链。

例: ({1,2,...,10},|)

最大独立集和最长链

给定有限偏序集 $P = (S, \leq)$

- $\alpha(P) = \max\{|A|: A \in P \perp n \in (独立集)\}$
- $\omega(P) = \max\{|A|: A \in P \perp 的链\}$

• **定理**: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \cdots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not\in E 反链, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$
 则 $t = \omega(P)$.

• **定理**: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \cdots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not \in E \text{ 反链}, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$
则 $t = \omega(P)$.

证明:

• 定理: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \cdots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not \in E \text{ 反链}, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$
 则 $t = \omega(P)$.

• **定理**: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \cdots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not \in E \text{ 反链}, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$
则 $t = \omega(P)$.

$$A_1 = \{1\}$$

• **定理**: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \cdots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not \in E \text{ 反链}, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$
 则 $t = \omega(P)$.

$$A_1 = \{1\}$$

• **定理**: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \dots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not\in E \text{ 反链}, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$

则 $t = \omega(P)$.

例:

/ •

$$A_2 = \{2,3,5,7\}$$

 $A_1 = \{1\}$

• **定理:** 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \dots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not\in E \text{ 反链}, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$

则 $t = \omega(P)$.

$$A_2 = \{2,3,5,7\}$$

$$A_1 = \{1\}$$

• **定理**: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \cdots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not\in E 反链, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$

则 $t = \omega(P)$.

$$A_3 = \{4,6,9,10\}$$

$$A_2 = \{2,3,5,7\}$$

$$A_1 = \{1\}$$

• **定理:** 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \cdots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not\in E 反链, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$
 则 $t = \omega(P)$.

例: 8.

$$A_3 = \{4,6,9,10\}$$
 $A_2 = \{2,3,5,7\}$
 $A_1 = \{1\}$

• **定理:** 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \cdots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not \in E \text{ 反链}, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$
则 $t = \omega(P)$.

例: 8.

$$A_4 = \{8\}$$
 $A_3 = \{4,6,9,10\}$
 $A_2 = \{2,3,5,7\}$
 $A_1 = \{1\}$

• **定理**: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ \begin{vmatrix} S = A_1 \cup \dots \cup A_k, \\ 1 \leq i \leq k, A_i \text{ 是反链,} \\ \text{任意} 1 \leq i \neq j \leq k, A_i \cap A_j = \emptyset. \right\}$$

则 $t = \omega(P)$.

$$A_4 = \{8\}$$

$$A_3 = \{4,6,9,10\}$$

$$A_2 = \{2,3,5,7\}$$

$$A_1 = \{1\}$$

• **定理**: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ \begin{vmatrix} S = A_1 \cup \dots \cup A_k, \\ 1 \leq i \leq k, A_i \in \mathbb{A}_i \in \mathbb{A}_i \in \mathbb{A}_i \in \mathbb{A}_i \in \mathbb{A}_i = \emptyset. \end{vmatrix} \right\}$$

则 $t = \omega(P)$.

$$A_4 = \{8\}$$

$$A_3 = \{4,6,9,10\}$$

$$A_2 = \{2,3,5,7\}$$

$$A_1 = \{1\}$$

• **定理**: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \cdots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not\in E 反链, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$
 则 $t = \omega(P)$.

证明: $\omega(P) \leq t$ 用歌龙原理记了

 $S = A_1 \cup A_2 \cup \cdots \cup A_t$, 其中 $\{A_1, \ldots, A_t\}$ 为不相交的反链划分,

 $C \subseteq S$ 是P中*任意*一条链, $f \mid C \cap A_i \mid \leq 1$.

$$|C| = |C \cap S| = |C \cap (A_1 \cup A_2 \cup \dots \cup A_t)|$$

$$= |(C \cap A_1) \cup \dots \cup (C \cap A_t)|$$

$$\leq t$$

• **定理**: 给定有限偏序集 $P = (S, \leq)$,将S划分成若干不相交的反链集,取最小划分数t,即

$$t = \min \left\{ k \middle| \begin{array}{l} S = A_1 \cup \dots \cup A_k, \\ 1 \leq i \leq k, \ A_i \not\in E \text{ \tilde{E}}, \\ \text{任意} 1 \leq i \neq j \leq k, \ A_i \cap A_j = \emptyset. \end{array} \right\}$$

则 $t = \omega(P)$.

证明: $\omega(P) \geq t$

 $A_1 = S$ 的极小元集合,

 $A_{i+1} = S \setminus (A_1 \cup \cdots \cup A_i)$ 的极小元集合。

每一个 A_i 都是一个反链(独立集)。

有限步后 $A_1 \cup \cdots \cup A_m = S$ 。

由t的最小性, $m \ge t$ 。 只需证明, $\omega(P) \ge m$ 。

证明: $\omega(P) \geq m$

思路: 找长度为m的链。

有限偏序集 $P = (S, \leq), A_1, A_2, ..., A_m$. $A_1 = S$ 的极小元集合, $A_{i+1} = S \setminus (A_1 \cup \cdots \cup A_i)$ 的极小元集合。

任取 $x_m \in A_m$

问: x_m 不属于 A_{m-1} 的原因是什么?

答: x_m 不是 $S \setminus (A_1 \cup \cdots \cup A_{m-2})$ 的极小元。

故: 存在 $x_{m-1} \in A_{m-1}$, $x_{m-1} < x_m$.

问: x_{m-1} 不属于 A_{m-2} 的原因是什么?

:

$$x_1 < x_2 < \dots < x_{m-1} < x_m.$$

证明: $\omega(P) \geq m$

思路: 找长度为m的链。

有限偏序集 $P = (S, \leq), A_1, A_2, ..., A_m$. $A_1 = S$ 的极小元集合, $A_{i+1} = S \setminus (A_1 \cup \cdots \cup A_i)$ 的极小元集合。

任取 $x_m \in A_m$

问: x_m 不属于 A_{m-1} 的原因是什么?

答: x_m 不是 $S \setminus (A_1 \cup \cdots \cup A_{m-2})$ 的极小元。

故: 存在 $x_{m-1} \in A_{m-1}$, $x_{m-1} < x_m$.

问: x_{m-1} 不属于 A_{m-2} 的原因是什么?

:

$$x_1 < x_2 < \dots < x_{m-1} < x_m.$$

证明: $\omega(P) \geq m$

思路: 找长度为m的链。

有限偏序集 $P = (S, \leq), A_1, A_2, ..., A_m$. $A_1 = S$ 的极小元集合, $A_{i+1} = S \setminus (A_1 \cup \cdots \cup A_i)$ 的极小元集合。

- **定理:** 给定有限偏序集 $P = (S, \leq)$, $\max\{|C|: C \neq P \perp \text{ big}\} = \min\{|\Pi|: \Pi \neq S \text{ big}\}\}$.
- 推论: 给定有限偏序集 $P = (S, \leq)$

$$\alpha(P) \cdot \omega(P) \geq |S|$$
. $\Box A \Rightarrow \Box A \Rightarrow \Box$

证明:

$$P = A_1 \cup A_2 \cup \cdots \cup A_t$$

$$t = \omega(P)$$

$$|A_i| \le \alpha(P)$$

$$|S| = |A_1| + |A_2| + \cdots + |A_t| \le \alpha(P) \cdot \omega(P)$$

- **定理:** 给定有限偏序集 $P = (S, \leq)$, $\max\{|C|: C \neq P \perp \text{ bit}\} = \min\{|\Pi|: \Pi \neq S \text{ bit } D \in \mathbb{Z}\}$.
- 推论: 给定有限偏序集 $P = (S, \leq)$ $\alpha(P) \cdot \omega(P) \geq |S|$.

对任意有限偏序集 $P = (S, \leq)$, $\alpha(P)$ 或 $\omega(P)$ 之一 至少为 $\sqrt{|S|}$ 。 し ハラキナラ)

直观:任意有限偏序集或者"宽",或者"高"。

• Erdös-Szekeres引理:

任意含有 $n^2 + 1$ 个元素的实数序列 $(x_1, ..., x_{n^2+1})$ 中都含有一个长度为n+1 的单调子序列。 (x_1, x_1, x_2, x_3)

• Erdös-Szekeres引理:

任意含有 $n^2 + 1$ 个元素的实数序列 $(x_1, ..., x_{n^2+1})$ 中都含有一个长度为n+1 的单调子序列。

例: n=3, (1, 2, 10, 4, 3, 5, 1, 6, 5, 8)

• Erdös-Szekeres引理:

任意含有 $n^2 + 1$ 个元素的实数序列 $(x_1, ..., x_{n^2+1})$ 中都含有一个长度为n+1 的单调子序列。

例: n=3, (1, 2, 10, 4, 3, 5, 1, 6, 5, 8)

• Erdös-Szekeres引理:

任意含有 $n^2 + 1$ 个元素的实数序列 $(x_1, ..., x_{n^2+1})$ 中都含有一个长度为n+1的单调子序列。

证明: 对 $(x_1, ..., x_{n^2+1})$,设 $I = \{1, 2, ..., n^2 + 1\}$ 在集合I上定义关系 \leq : $i \leq j$ 当且仅当 $(i \leq j) \land (x_i \leq x_j)$ (I, \leq) 是偏序集。

- $\omega(I, \leq) > n$: 非递减子序列 $x_{i1} \leq x_{i2} \leq \cdots \leq x_{im}$.
- $\alpha(I, \leq) > n$: 独立集 $\{i_1, i_2, ..., i_m\}$, 设 $i_1 < i_2 < \cdots < i_m$ $x_{i1} > x_{i2} > \cdots > x_{im}$,非递增子序列。

总结

- 链、反链(独立集)
- 最大独立集、最长链
- 最长链长度 = 最小反链划分数
- Erdös-Szekeres引理

- Mirsky's theorem定理: 给定有限偏序集 $P = (S, \leq)$, $\max\{|C|: C \neq P \perp$ 的链 $\} = \min\{|\Pi|: \Pi \neq S \in M \}$.

 https://www.math.cmu.edu/~af1p/

 https://www.math.cmu.edu/~af1p/Teaching /Combinatorics/Slides/Posets.pdf