## КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

# ФУНКЦИИ ОДНОЙ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ (ПРЕДЕЛЫ, ПРОИЗВОДНЫЕ, ГРАФИКИ).

Учебное пособие

Казань

2012

#### УДК 517

Печатается по решению Редакционно-издательского совета

ФГАОУ ВПО "Казанский (Приволжский) федеральный университет учебно-методической комиссии механико-математического факультета Протокол № 9 от 25 мая 2012 г., заседания кафедры математического анализа Протокол № 6 от 11 апреля 2012 г.

Aвторы-составители: канд. физ.— мат. наук, доцент Луговая Г.Д., канд. физ.— мат. наук Скворцова Г.Ш. Peцензенты

кандидат физико-математических наук, доцент Веселова Л.В. кандидат физико-математических наук, доцент Турилова Е.А.

[Функции одной вещественной переменной (пределы, производные, графики).]: Учебное пособие. Издание второе, исправленное./ Луговая Г.Д., Скворцова Г.Ш. — Казань: Казанский (Приволжский) федеральный университет, 2012. – 85 с.

Данное учебное пособие предназначено для проведения занятий по курсу математического анализа со студентами, обучающимся по всем специальностям механико-математического факультета.

© Казанский (Приволжский) федеральный университет, 2012.

## СОДЕРЖАНИЕ

| Введение                                              | 4  |
|-------------------------------------------------------|----|
| І. ТЕОРИЯ ПРЕДЕЛОВ.                                   |    |
| 1. Предел последовательности                          | 5  |
| 2. Вычисление пределов последовательности             | 10 |
| 3. Предел функции                                     | 13 |
| 4. Использование замечательных пределов               | 9  |
| 5. Переход к эквивалентным функциям при               |    |
| вычислении пределов                                   | 26 |
| II. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ                       |    |
| ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ                              |    |
| 6. Производная явной функции                          | 29 |
| 7. Производная обратной функции. Производная функции, |    |
| заданной параметрически.                              |    |
| Производная неявной функции                           | 34 |
| 8. Геометрицеский смысл производной                   | 39 |
| 9. Дифференциал функции                               | 43 |
| 10. Правило Лопиталя                                  | 45 |
| 11. Производные и дифференциалы                       |    |
| высших порядков                                       | 49 |
| 12. Формула Тейлора                                   | 57 |
| 13. Экстремум функции. Наибольшее и                   |    |
| наименьшее значения функции                           | 63 |
| 14. Возрастание и убывание функции.                   |    |

| Выпуклость вверх и вниз.        |    |
|---------------------------------|----|
| Точки перегиба                  | 68 |
| 15. Асимптоты                   | 71 |
| 16. Построение графиков функций | 73 |
|                                 |    |

#### ВВЕДЕНИЕ

В пособии приведены некоторые теоретические сведения по темам, изучаемым в I семестре курса "Математический анализ". Также даны методические указания к решению задач по этим темам. Пособие содержит подборку задач, которые могут быть использованы для проведения практических занятий и самостоятельной работы студентов I курса всех специализаций механикоматематического факультета.

#### СОГЛАШЕНИЯ

| Значком   | $\bigvee$ | обозначается | начало | доказательства, | значком |  |
|-----------|-----------|--------------|--------|-----------------|---------|--|
| конец дон | каза      | ательства.   |        |                 |         |  |

#### І. ТЕОРИЯ ПРЕДЕЛОВ.

#### 1. ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

**1.1. Определение предела.** Число a называется npedenom nocnedoватель $ности <math>x_n$  (обозначается  $\lim_{n\to\infty} x_n = a$  или  $x_n \longrightarrow a$ ), если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ (|x_n - a| < \varepsilon).$$

1.2. Теорема о двух милиционерах.

Если 
$$z_n \le x_n \le y_n$$
 и  $\lim_{n \to \infty} z_n = \lim_{n \to \infty} y_n = a$ , то  $\lim_{n \to \infty} x_n = a$ .

#### 1.3. Критерий Коши

Последовательность  $x_n$  сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ \forall p \in \mathbb{N} \ (|x_{n+p} - x_n| < \varepsilon).$$

**1.4. Монотонные последовательности. Теорема.** Всякая монотонная ограниченная последовательность сходится.

**Замечание.** Так как всякая возрастающая (убывающая) последовательность  $x_n$  ограничена снизу (сверху) числом  $x_1$ , при применении теоремы к возрастающей (убывающей) последовательности достаточно проверить ее ограниченность сверху (снизу).

#### 1.5. Примеры.

**1.5.1. Пример.**  $\lim_{n\to\infty}q^n=0, \text{ если } |q|<1.$ 

abla Докажем с помощью определения. Имеем  $|q|<1\Longrightarrow \frac{1}{|q|}>1\Longrightarrow \frac{1}{|q|}=1+\delta$  , где  $\delta=\frac{1}{|q|}-1>0$ . Тогда, пользуясь формулой бинома Ньютона, получим

$$\left(\frac{1}{|q|}\right)^n = (1+\delta)^n = 1 + n\delta + \dots > n\delta,$$

что влечет  $|q|^n < \frac{1}{\delta n}$  и, следовательно, неравенство  $|q|^n < \varepsilon$  справедливо при

$$n > \frac{1}{\varepsilon \delta} = \frac{1}{\varepsilon \left(\frac{1}{|q|} - 1\right)}.$$

Таким образом,  $\forall \varepsilon>0$   $\exists N\in\mathbb{N}$  (в качестве N можно взять, например,  $[\frac{1}{\varepsilon\delta}]+1)$  такое, что  $\forall n>N(|q|^n<\varepsilon)$ , откуда и следует, что  $\lim_{n\to\infty}q^n=0$ .  $\square$ 

**1.5.2. Пример.**  $\lim_{n\to\infty}q^n=\infty$  , если |q|>1.

▽ Следует из примера 1.5.1:

$$q^n = \frac{1}{\left(\frac{1}{q}\right)^n} \longrightarrow \infty. \ \Box$$

## **1.5.3.** Пример. $\lim_{n\to\infty} \sqrt[n]{a} = 1$ (a > 0).

 $\nabla$  При a=1 равенство верно. Докажем для случая a>1 (тогда случай a<1 будет следовать из доказанного и выкладки

$$\sqrt[n]{a} = \frac{1}{\frac{1}{\sqrt[n]{a}}} \longrightarrow 1).$$

Обозначим  $\alpha_n = \sqrt[n]{a} - 1$  и докажем, что  $\lim_{n \to \infty} \alpha_n = 0$ . Имеем

$$a = (\sqrt[n]{a})^n = (1 + \alpha_n)^n > n\alpha_n$$

(здесь, как и в примере 1, мы воспользовались формулой бинома), откуда  $0<\alpha_n<\frac{a}{n}$  и, следовательно, по теореме "о двух милиционерах"  $\alpha_n\longrightarrow 0$ .  $\square$ 

## **1.5.4.** Пример. $\lim_{n\to\infty} \sqrt[n]{n} = 1$ .

 $\nabla$  Как и в предыдущем примере, обозначим  $\alpha_n = \sqrt[n]{n} - 1$  и докажем, что  $\lim_{n \to \infty} \alpha_n = 0$ . Пользуясь снова формулой бинома Ньютона, имеем

$$n = (1 + \alpha_n)^n = 1 + n\alpha_n + \frac{n(n-1)}{2}\alpha_n^2 + \dots > \frac{n(n-1)}{2}\alpha_n^2, \qquad n \ge 2$$

Учитывая, что  $n-1 \ge \frac{n}{2}$  при  $n \ge 2$ , получим

$$n > \frac{n^2}{4}\alpha_n^2 \Longrightarrow 0 < \alpha_n < \frac{2}{\sqrt{n}} \Longrightarrow \alpha_n \longrightarrow 0. \square$$

**1.5.5.** Пример. 
$$\lim_{n\to\infty} \frac{n}{a^n} = 0$$
  $(a>1)$ .

⊽ Воспользовавшись выкладкой предыдущего примера, получим

$$a^{n} = (1+a-1)^{n} > \frac{n(n-1)}{2}(a-1)^{2} \ge \frac{n^{2}}{4}(a-1)^{2}$$
  $(n \ge 2),$ 

откуда следует, что  $0<\frac{n}{a^n}\leq \frac{4}{n(a-1)^2}$  и, следовательно, по теореме "о двух милиционерах"  $\frac{n}{a^n}\longrightarrow 0.$   $\square$ 

**1.5.6.** Пример. 
$$\lim_{n\to\infty}\frac{n^k}{a^n}=0$$
  $(k\in\mathbb{N},a>1).$ 

▽ Следует из примера 1.5.5.:

$$0 < \frac{n^k}{a^n} = \left(\frac{n}{(\sqrt[k]{a})^n}\right)^k \longrightarrow 0.\square$$

#### 1.5.7. Пример.

$$x_n = \frac{\sin 1}{2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{2^n}.$$

 $\bigtriangledown$  Применим критерий Коши для доказательства сходимости данной последовательности. Пусть  $\varepsilon>0$  и  $p\in\mathbb{N}$ —произвольны. Тогда

$$|x_{n+p} - x_n| =$$

$$\left| \frac{\sin 1}{2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{2^n} + \frac{\sin(n+1)}{2^{n+1}} + \dots + \frac{\sin(n+p)}{2^{n+p}} - \frac{\sin 1}{2} - \frac{\sin 2}{2^2} - \dots + \frac{\sin n}{2^n} \right| =$$

$$= \left| \frac{\sin(n+1)}{2^{n+1}} + \dots + \frac{\sin(n+p)}{2^{n+p}} \right| \le \left| \frac{\sin(n+1)}{2^{n+1}} \right| + \dots + \left| \frac{\sin(n+p)}{2^{n+p}} \right| \le$$

$$\leq \frac{1}{2^{n+1}} + \ldots + \frac{1}{2^{n+p}} = \frac{\frac{1}{2^{n+1}} \left(1 - \frac{1}{2^p}\right)}{1 - \frac{1}{2}} < \frac{1}{2^n} < \varepsilon \text{ при } n > N = [\log_2 \frac{1}{\varepsilon}] + 1.$$

(Во втором равенстве мы воспользовались формулой суммы p членов геометрической прогрессии).  $\square$ 

**1.5.8. Пример.** Доказать, что последовательность  $x_n$  сходится (имеет предел).

$$x_n = \frac{10}{1} \cdot \frac{11}{3} \cdot \dots \cdot \frac{n+9}{2n-1}.$$

⊽ Покажем, что последовательность является убывающей.

$$\frac{x_{n+1}}{x_n} = \frac{10 \cdot 11 \cdot \dots \cdot (n+9)(n+10) \cdot 1 \cdot 3 \cdot \dots \cdot (2n-1)}{1 \cdot 3 \cdot \dots \cdot (2n-1)(2n+1) \cdot 10 \cdot 11 \cdot \dots \cdot (n+9)} = \frac{n+10}{2n+1} < 1, \ n > 9.$$

Следовательно,  $x_{n+1} < x_n$  (n > 9), то есть  $x_n$  убывает. Кроме того,  $x_n$  ограничена снизу:  $x_n > 0$ . Таким образом, по теореме о монотонной ограниченной последовательности  $x_n$  является сходящейся.  $\square$ 

**1.5.9. Пример.** С помощью теоремы о монотонной ограниченной последовательности доказать, что  $\lim_{n\to\infty}\frac{a^n}{n!}=0.$ 

abla Так как  $|x_n| \to 0$  влечет  $x_n \to 0$ , достаточно рассмотреть случай a>0. Покажем, что последовательность  $x_n=\frac{a^n}{n!}$  убывающая. Действительно,  $\frac{x_{n+1}}{x_n}=\frac{a^{n+1}n!}{a^n(n+1)!}=\frac{a}{n+1}<1$ , начиная с некоторого n. Кроме того  $x_n$  ограничена снизу:  $x_n>0$ . По теореме о монотонной ограниченной последовательности существует  $\lim_{n\to\infty}x_n$ . Обозначим его через c. Переходя к пределу в равенстве  $x_{n+1}=\frac{a}{n+1}x_n$ , получим:  $c=0\cdot c=0$ . Таким образом,  $c=\lim_{n\to\infty}\frac{a^n}{n!}=0$ .  $\square$ 

#### 1.6. УПРАЖНЕНИЯ

**1.6.1.** Пользуясь определением предела последовательности, доказать, что  $\lim_{n\to\infty} x_n = a$  (указать  $N\in\mathbb{N}$ ).

1) 
$$x_n = \frac{n}{n+1}$$
,  $a = 1$ .  
2)  $x_n = \frac{(-1)^{n+1}}{n}$ ,  $a = 0$ .  
3)  $x_n = \frac{2n}{n^3+1}$ ,  $a = 0$ .  
4)  $x_n = \frac{1}{n!}$ ,  $a = 0$ .  
5)  $x_n = (-1)^n 0,999^n$ ,  $a = 0$ .  
6)  $x_n = \frac{\log_b n}{n}$ ,  $a = 0$ .

$$7)x_n = \frac{3n-2}{2n-1}, \quad a = \frac{3}{2}.$$

$$8)x_n = \frac{7n+4}{2n+1}, \quad a = \frac{7}{2}.$$

$$9)x_n = \frac{7n-1}{n+1}, \quad a = 7.$$

$$10)x_n = \frac{9-n^3}{1+2n^3}, \quad a = -\frac{1}{2}.$$

$$11)x_n = \frac{1-2n^2}{2+4n^2}, \quad a = -\frac{1}{2}.$$

$$12)x_n = \frac{n+1}{1-2n}, \quad a = 2.$$

$$14)x_n = \frac{2n-5}{3n+1}, \quad a = \frac{2}{3}.$$

$$15)x_n = \frac{4n^2+1}{3n^2+2}, \quad a = \frac{4}{3}.$$

$$16)x_n = \frac{4n-3}{2n+1}, \quad a = 2.$$

$$17)x_n = \frac{2n+1}{3n-5}, \quad a = \frac{2}{3}.$$

$$18)x_n = \frac{3n^2+2}{4n^2-1}, \quad a = \frac{3}{4}.$$

$$19)x_n = \frac{5n+15}{6-n}, \quad a = -5.$$

$$13)x_n = \frac{4n-1}{2n+1}, \quad a = 2.$$

$$20)x_n = \frac{2-3n^2}{4+5n^2}, \quad a = -\frac{3}{5}.$$

**1.6.2.** С помощью критерия Коши доказать сходимость следующих последовательностей.

$$(1)x_n = a_0 + a_1q + ... + a_nq_n$$
, где  $|a_k| < M \ (k = 0, 1, ...), \ |q| < 1$ .

$$2)x_n = \frac{\cos(1!)}{1 \cdot 2} + \frac{\cos(2!)}{2 \cdot 3} + \dots + \frac{\cos(n!)}{n(n+1)}.$$

$$3)x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}.$$

Указание. Воспользоваться неравенством  $\frac{1}{(n+1)^2} < \frac{1}{n} - \frac{1}{n+1}$  для  $n \in \mathbb{N}$ .

**1.6.3.** Пользуясь теоремой о монотонной ограниченной последовательности доказать сходимость следующих последовательностей.

 $1)x_n=p_0+rac{p_1}{10}+\ldots+rac{p_n}{10^n},$  где  $p_i$  — целые неотрицательные числа, не превышающие 9, начиная с  $p_1$ .

$$2)x_n = (1 - \frac{1}{2})(1 - \frac{1}{4})...(1 - \frac{1}{2^n}).$$

$$3)x_n = (1 + \frac{1}{2})(1 + \frac{1}{4})...(1 + \frac{1}{2^n}).$$

#### 2. ВЫЧИСЛЕНИЕ ПРЕДЕЛОВ ПОСЛЕДОВАТЕЛЬНОСТЕЙ.

**2.1.** При вычислении пределов последовательностей используются следующие арифметические свойства.

$$\lim_{n\to\infty} cx_n = c \lim_{n\to\infty} x_n.$$

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n.$$

$$\lim_{n\to\infty} x_n y_n = \lim_{n\to\infty} x_n \lim_{n\to\infty} y_n.$$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n} \qquad (\lim_{n \to \infty} y_n \neq 0).$$

(Равенства понимаются в том смысле, что если существуют пределы в правых частях равенств, то существуют и в левых, и они равны)

2.2. Также будем использовать следующие свойства:

$$x_n \longrightarrow 0 \iff |x_n| \longrightarrow 0.$$

$$x_n \longrightarrow \infty \Longrightarrow \frac{1}{x_n} \longrightarrow 0.$$

$$x_n \longrightarrow 0 \Longrightarrow \frac{1}{x_n} \longrightarrow \infty.$$

#### 2.3. Примеры.

#### 2.3.1. Пример.

$$\lim_{n \to \infty} \frac{3 + (0,5)^n}{(0,3)^{n+1} + 5} = \frac{3+0}{0+5} = \frac{3}{5}.$$

(Здесь мы воспользовались арифметическими свойствами предела и примером 1.5.1.)

В случае неопределенности  $\frac{\infty}{\infty}$  следует вынести старшую степень в числителе и знаменателе и сократить на нее.

#### 2.3.2. Пример.

$$\lim_{n \to \infty} \frac{100n^2}{3n^3 + 2} = 100 \lim_{n \to \infty} \frac{n^2}{n^3 (3 + \frac{2}{n^3})} = 100 \lim_{n \to \infty} \frac{1}{n} \lim_{n \to \infty} \frac{1}{3 + \frac{2}{n^3}} = 0.$$

#### 2.3.3. Пример.

$$\lim_{n \to \infty} \frac{5 \cdot 2^n - 3 \cdot 5^{n+1}}{100 \cdot 2^n + 2 \cdot 5^n} = \lim_{n \to \infty} \frac{5^n \left(5 \left(\frac{2}{5}\right)^n - 3 \cdot 5\right)}{5^n \left(100 \left(\frac{2}{5}\right)^n + 2\right)} = \frac{5 \cdot 0 - 3 \cdot 5}{100 \cdot 0 + 2} = -\frac{15}{2}.$$

#### 2.3.4. Пример.

$$\lim_{n \to \infty} \left( \frac{2 - n}{n + 1} + \frac{n2^{-n}}{n + 2} \right) = \lim_{n \to \infty} \frac{n \left( \frac{2}{n} - 1 \right)}{n \left( 1 + \frac{1}{n} \right)} + \lim_{n \to \infty} \frac{n \frac{1}{2^n}}{n \left( 1 + \frac{2}{n} \right)} = -1 + 0 = -1.$$

Неопределенность  $\infty - \infty$  приводится к  $\frac{\infty}{\infty}$  с помощью предварительных преобразований (приведением к общему знаменателю, домножением на сопряженное и т.п.).

#### 2.3.5. Пример.

$$\lim_{n \to \infty} \left( \frac{n^2 + 1}{2n + 1} - \frac{3n^2 + 1}{6n + 1} \right) = \lim_{n \to \infty} \frac{(n^2 + 1)(6n + 1) - (3n^2 + 1)(2n + 1)}{(2n + 1)(6n + 1)} = \lim_{n \to \infty} \frac{6n^3 + 6n + n^2 + 1 - 6n^3 - 2n - 3n^2 - 1}{(2n + 1)(6n + 1)} = \lim_{n \to \infty} \frac{4n - 2n^2}{(2n + 1)(6n + 1)} = \lim_{n \to \infty} \frac{n^2(\frac{4}{n} - 2)}{n^2(2 + \frac{1}{n})(6 + \frac{1}{n})} = \lim_{n \to \infty} \frac{-2}{12} = -\frac{1}{6}.$$

#### 2.3.6. Пример.

$$\lim_{n \to \infty} (\sqrt{n^2 + n} - n) = \lim_{n \to \infty} \frac{(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n)}{\sqrt{n^2 + n} + n} = \frac{1}{n}$$

$$\lim_{n \to \infty} \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{n}{n(\sqrt{1 + \frac{1}{n} + 1})} = \frac{1}{2}.$$

Обратим внимание на одну типичную ошибку, допускаемую многими студентами. Например, при вычислении предела  $\lim_{n\to\infty} \frac{(-1)^n+\frac{1}{n}}{\frac{1}{n^2}-(-1)^n}$  поступают так:

$$\lim_{n\to\infty}\frac{(-1)^n+\frac{1}{n}}{\frac{1}{n^2}-(-1)^n}=\lim_{n\to\infty}\frac{(-1)^n}{-(-1)^n}=-1, \text{ объясняя при этом, что }\frac{1}{n}$$
 и  $\frac{1}{n^2}$  стремятся к  $0$ , что, конечно, верно, но переход к пределу совершен не по правилам.

мятся к 0, что, конечно, верно, но переход к пределу совершен не по правилам.

Верное решение:

$$\lim_{n \to \infty} \frac{(-1)^n + \frac{1}{n}}{\frac{1}{n^2} - (-1)^n} = \lim_{n \to \infty} \frac{(-1)^n \left(1 + \frac{1}{n(-1)^n}\right)}{(-1)^n \left(\frac{1}{(-1)^n n^2} - 1\right)} = \frac{1+0}{0-1} = -1.$$

(Здесь  $\frac{1}{n(-1)^n}$  и  $\frac{1}{(-1)^n n^2}$  стремятся к 0, так как стремятся к 0 их модули.)

#### 2.4. УПРАЖНЕНИЯ

**2.4.1** Вычислить пределы следующих последовательностей (найти  $\lim_{n\to\infty} x_n$ ) [в квадратных скобках приведены ответы].

$$1)x_{n} = \left(\frac{n-1}{n}\right)^{5} \qquad [1].$$

$$2)x_{n} = \frac{n+1}{\sqrt{n^{2}+1}} \qquad [1].$$

$$3)x_{n} = \frac{\sqrt[3]{n^{2}+n}}{n+2} \qquad [0].$$

$$4)x_{n} = \frac{\sqrt{n^{2}+1}+\sqrt{n}}{\sqrt[3]{n^{3}+n}+n} \qquad [\frac{1}{2}].$$

$$5)x_{n} = \frac{n^{3}+27}{n^{4}-15} \qquad [0].$$

$$6)x_{n} = \frac{(n+5)^{3}-n(n+7)^{2}}{n^{2}} \qquad [1].$$

$$8)x_{n} = \frac{3n}{5+3^{n+1}} \qquad [0].$$

$$8)x_{n} = \frac{2^{n+2}+3^{n+3}}{2^{n}+3^{n}} \qquad [27].$$

$$9)x_{n} = \frac{(-1)^{n}\cdot 6^{n}-5^{n+1}}{5^{n}-(-1)^{n+1}\cdot 6^{n+1}} \qquad [\frac{1}{6}].$$

$$10)x_{n} = \frac{(-2)^{n}+3^{n}}{(-2)^{n+1}+3^{n+1}} \qquad [\frac{1}{3}].$$

$$11)x_{n} = (\sqrt{n+1}-\sqrt{n}) \qquad [0].$$

$$12)x_{n} = \sqrt{n^{2} - 1} - (n+1) \quad [-1].$$

$$13)x_{n} = \sqrt{n^{2} + n} - \sqrt{n^{2} - n} \quad [1].$$

$$14)x_{n} = \sqrt[3]{n^{3} + 2n^{2}} - n \quad [\frac{2}{3}].$$

$$15)x_{n} = \frac{n}{2}(\sqrt[3]{1 + \frac{2}{n}} - 1) \quad [\frac{1}{3}].$$

$$17)x_{n} = \frac{n^{10} - 1}{1 + n(1, 1)^{n}} \quad [0].$$

$$18)x_{n} = \sqrt[n]{3^{n} + n \cdot 2^{n}} \quad [3].$$

$$19)x_{n} = \sqrt[n]{\frac{n^{2} + 4^{n}}{n + 5^{n}}} \quad [\frac{4}{5}].$$

$$16)x_{n} = \frac{n^{3} + 3^{n}}{n + 3^{n+1}} \quad [\frac{1}{3}].$$

$$20)x_{n} = \sqrt[n]{\frac{10}{n} - \frac{1}{(1, 2)^{n}}} \quad [1].$$

#### 3. ПРЕДЕЛ ФУНКЦИИ

**3.1.** Определение. Пусть a—предельная точка множества E. Число  $\alpha$  называется  $npedenom \phi yhkuuu <math>f: E \to \mathbb{R}$  в точке a, если

$$\forall \varepsilon>0 \ \exists \delta=\delta(\varepsilon)>0 \ \forall x\in E \ (0<|x-a|<\delta\Rightarrow|f(x)-\alpha|<\varepsilon),$$
 (обозначется  $\lim_{x\to a}f(x)=\alpha$ ).

**3.2.** Вычисление пределов функций Вычисление пределов основывается на следующих арифметических свойствах предела функции .

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x).$$

$$\lim_{x \to 1} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x).$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \qquad (\lim_{x \to a} g(x) \neq 0).$$

Равенства понимаются в том смысле, что, если существуют пределы в правых частях, то сушествуют и в левых, и они равны.

**3.3.** Вычисление пределов рациональных функций В случае, когда числитель и знаменатель дроби стремятся к  $\infty$  (говорят, что имеет место

неопределенность вида  $\frac{\infty}{\infty}$ ), надо вынести в числителе и знаменателе старшую степень и сократить на нее (см. примеры 3.5.3., 3.5.4.).

В случае, когда числитель и знаменатель дроби стремятся к 0 (говорят, что имеет место  $neonpedenehnocmb euda <math>\frac{0}{0}$ ), следует, разложив числитель и знаменатель на множители, выделить сомножитель, стремящийся к 0, и сократить на него (см. примеры 3.5.5., 3.5.6.).

Неопределенность вида  $\infty - \infty$  приводится к неопределенности вида  $\frac{\infty}{\infty}$  (см. пример 3.5.11.).

**3.4.** Вычисление пределов иррациональных функций В примерах, содержащих иррациональности, для того, чтобы выделить выражение, подлежащее сокращению, следует предварительно умножить числитель и знаменатель на сопряженное (см. примеры 3.5.7., 3.5.8,3.5.11.).

#### 3.5. Примеры.

**3.5.1. Пример.** Доказать, что  $\lim_{x\to -3} \frac{2x^2 + 5x - 3}{x+3} = -7.$ 

⊽ Докажем с помощью определения (в нашем случае

$$f(x) = \frac{2x^2 + 5x - 3}{x + 3}, a = -3, \alpha = -7).$$

Для произвольного  $\varepsilon > 0$  оценим разность  $|f(x) - \alpha| = \left| \frac{2x^2 + 5x - 3}{x + 3} + 7 \right| = \left| \frac{2x^2 + 5x - 3 + 7x + 21}{x + 3} \right| = \left| \frac{2x^2 + 12x + 18}{x + 3} \right| = \left| \frac{2(x + 3)^2}{x + 3} \right| = 2|x + 3| < \varepsilon$  при  $0 < |x + 3| < \delta = \frac{\varepsilon}{2}$ .  $\square$ 

**3.5.2.** Пример. 
$$\lim_{x\to 0} \frac{x^2-1}{2x^2-x-1} = \frac{\lim_{x\to 0} (x^2-1)}{\lim_{x\to 0} (2x^2-x-1)} = \frac{0-1}{0-1} = 1.$$

3.5.3. Пример. 
$$\lim_{x \to \infty} \frac{x^2 - 1}{2x^2 - x - 1} = \lim_{x \to \infty} \frac{x^2 \left(1 - \frac{1}{x^2}\right)}{x^2 \left(2 - \frac{1}{x} - \frac{1}{x^2}\right)} =$$

$$\lim_{x \to \infty} \frac{1 - \frac{1}{x^2}}{2 - \frac{1}{x} - \frac{1}{x^2}} = \frac{1 - 0}{2 - 0 - 0} = \frac{1}{2}.$$

3.5.4. Пример. 
$$\lim_{x \to \infty} \frac{(2x-3)^{20}(3x+20)^{30}}{(2x+1)^{50}} = \lim_{x \to \infty} \frac{x^{20}\left(2-\frac{3}{x}\right)^{20}x^{30}\left(3+\frac{20}{x}\right)^{30}}{x^{50}\left(2+\frac{1}{x}\right)^{50}} =$$

$$= \lim_{x \to \infty} \frac{\left(2 - \frac{3}{x}\right)^{20} \left(3 + \frac{20}{x}\right)^{30}}{\left(2 + \frac{1}{x}\right)^{50}} = \frac{2^{20} \cdot 3^{30}}{2^{50}} = \left(\frac{3}{2}\right)^{30}.$$

3.5.5. Пример. 
$$\lim_{x\to 1} \frac{x^2-1}{2x^2-x-1} =$$

$$= \lim_{x \to 1} \frac{(x-1)(x+1)}{(x-1)(2x+1)} = \lim_{x \to 1} \frac{x+1}{2x+1} = \frac{2}{3}.$$

3.5.6. Пример. 
$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^3 + x^2 - x - 1} = \lim_{x \to 1} \frac{x^2(x - 1) - (x - 1)}{x^2(x + 1) - (x + 1)} = \lim_{x \to 1} \frac{(x - 1)(x^2 - 1)}{(x + 1)(x^2 - 1)} = \lim_{x \to 1} \frac{x - 1}{x + 1} = \frac{0}{2} = 0.$$

3.5.7. Пример. 
$$\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x} = \lim_{x\to 0} \frac{(\sqrt{x+4}-2)(\sqrt{x+4}+2)}{x(\sqrt{x+4}+2)} = \lim_{x\to 0} \frac{x+4-4}{x(\sqrt{x+4}+2)} = \lim_{x\to 0} \frac{1}{\sqrt{x+4}+2} = \frac{1}{4}.$$

( Здесь мы умножили числитель и знаменатель на  $\sqrt{x+4}+2$ —сопряженное к  $\sqrt{x+4}-2$ , затем применили в числителе формулу разности квадратов).

3.5.8. Пример. 
$$\lim_{x \to -8} \frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}} =$$

$$= \lim_{x \to -8} \frac{(\sqrt{1-x}-3)(\sqrt{1-x}+3)(4-2\sqrt[3]{x}+\sqrt[3]{x^2})}{(2+\sqrt[3]{x})((4-2\sqrt[3]{x}+\sqrt[3]{x^2})(\sqrt{1-x}+3)} =$$

$$= \lim_{x \to -8} \frac{(1-x-9)(4-2\sqrt[3]{x}+\sqrt[3]{x^2})}{(8+x)(\sqrt{1-x}+3)} =$$

$$= -\lim_{x \to -8} \frac{4-2\sqrt[3]{x}+\sqrt[3]{x^2}}{\sqrt[4]{1-x}+3} = -\frac{4+4+4}{3+3} = -2.$$

(Здесь мы умножили числитель и знаменатель на выражения  $(\sqrt{1-x}+3)$  и на  $(4-2\sqrt[3]{x}+\sqrt[3]{x^2})$ , а затем применили формулы разности квадратов в числителе и суммы кубов в знаменателе.

**3.5.9. Пример.** Найти  $\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x}$ .  $\bigcirc$  Положим  $1+x=y^n$ . Тогда

$$\lim_{x \to 0} \frac{\sqrt[n]{1+x}-1}{x} = \lim_{y \to 1} \frac{y-1}{y^n-1} = \lim_{y \to 1} \frac{y-1}{(y-1)(y^{n-1}+y^{n-2}+\ldots+1)} = \frac{1}{n}. \ \Box$$

**3.5.10. Пример.** Найти 
$$\lim_{x\to 0} \frac{\sqrt[3]{1+\frac{x}{3}}-\sqrt[4]{1+\frac{x}{4}}}{1-\sqrt{1-\frac{x}{2}}}.$$

 $\nabla$  Вычислим этот предел с использованием результата примера 3.5.9. Вычитая и добавляя единицу в числителе и разделив числитель и знаменатель на x, получим

$$\lim_{x \to 0} \frac{\sqrt[3]{1 + \frac{x}{3}} - \sqrt[4]{1 + \frac{x}{4}}}{1 - \sqrt{1 - \frac{x}{2}}} = \lim_{x \to 0} \frac{\sqrt[3]{1 + \frac{x}{3}} - 1}{3 \cdot \frac{x}{3}} - \frac{\sqrt[4]{1 + \frac{x}{4}} - 1}{4 \cdot \frac{x}{4}}}{\sqrt{1 + (-\frac{x}{2}) - 1}} = \frac{\sqrt{1 + (-\frac{x}{2})} - 1}{2(-\frac{x}{2})}$$

$$\frac{\frac{1}{3} \cdot \frac{1}{3} - \frac{1}{4} \cdot \frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2}} = \frac{7}{36}. \ \Box$$

#### 3.5.11. Пример.

$$\lim_{x \to +\infty} (\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3}) = \{\infty - \infty\} = \infty$$

$$= \lim_{x \to +\infty} \frac{(\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3})(\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3})}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} =$$

$$= \lim_{x \to +\infty} \frac{x^2 + 8x + 3 - x^2 - 4x - 3}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{x^2 + 4x + 3}} = \lim_{x \to +\infty} \frac{4x}{\sqrt{$$

$$= \{\frac{\infty}{\infty}\} = \lim_{x \to +\infty} \frac{4}{\sqrt{1 + 8/x + 3/x^2} + \sqrt{1 + 4/x + 3/x^2}} = \frac{4}{2} = 2.$$

#### 3.6. УПРАЖНЕНИЯ

**3.6.1.** В следующих примерах доказать (найти  $\delta(\varepsilon)$ ), что:

1) 
$$\lim_{x \to -2} \frac{3x^2 + 5x - 2}{x + 2} = -7.$$

$$2) \lim_{x \to 3} \frac{x^2 - 4x + 3}{x - 3} = 2.$$

3) 
$$\lim_{x \to 1} \frac{5x^2 - 4x - 1}{x - 1} = 6.$$

4) 
$$\lim_{x \to -1/2} \frac{6x^2 + x - 1}{x + 1/2} = -7.$$

4) 
$$\lim_{x \to 1/2} \frac{6x^2 - x - 1}{x - 1/2} = 5.$$

6) 
$$\lim_{x \to -7/5} \frac{10x^2 + 9x - 7}{x + 7/5} = -19.$$

3.6.2. Вычислить пределы функций [в квадратных скобках указаны ответы].

1) 
$$\lim_{x \to \infty} \frac{x^3 + 2x^2 + 3x + 4}{4x^3 + 3x^2 + 2x + 1}$$
  $\left[\frac{1}{4}\right]$ .

2) 
$$\lim_{x \to \infty} \frac{(x-1)(x-2)(x-3)(x-4)(x-5)}{(5x-1)^5}$$
  $\left[\frac{1}{5^5}\right]$ .

3) 
$$\lim_{x \to \infty} \frac{(x+1)(x^2+1)...(x^n+1)}{((nx)^n+1)^{\frac{n+1}{2}}}$$
  $\left[\frac{1}{n^{\frac{n(n+1)}{2}}}\right]$ .

4) 
$$\lim_{x \to \infty} \frac{3x^4 - 2}{\sqrt{x^8 + 3x + 4}}$$
 [3].

5) 
$$\lim_{x \to \infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}}$$
 [1].

6) 
$$\lim_{x \to \infty} \frac{\sqrt{x} + \sqrt[3]{x} + \sqrt[4]{x}}{\sqrt{2x+1}} \qquad \left[\frac{1}{\sqrt{2}}\right].$$

**3.6.3.** Вычислить следующие пределы [в квадратных скобках указаны ответы].

1) 
$$\lim_{x\to 0} \frac{(1+x)^3 - (1+3x)}{x^2 + x^5}$$
 [3].

2) 
$$\lim_{x \to 1} \frac{2x^2 - x - 1}{x^3 + 2x^2 - x - 2}$$
  $\left[\frac{1}{2}\right]$ .

3) 
$$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}$$
  $\left[\frac{2}{3}\right]$ .

4) 
$$\lim_{x \to 2} \frac{x^3 - 2x^2 - 4x + 8}{x^4 - 8x^2 + 16}$$
  $\left[\frac{1}{4}\right]$ .

5) 
$$\lim_{x \to 2} \frac{(x^2 - x - 2)^{20}}{(x^3 - 12x + 16)^{10}}$$
  $[(\frac{3}{2})^{10}].$ 

6) 
$$\lim_{x \to 1} \frac{x^m - 1}{x^n - 1}$$
  $\left[ \frac{m}{n} \right]$ .

**3.6.4.** Вычислить следующие пределы [в квадратных скобках указаны ответы].

1) 
$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$
  $\left[\frac{4}{3}\right]$ .

2) 
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$$
  $\left[ -\frac{1}{16} \right]$ .

3) 
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}$$
  $\left[\frac{1}{4}\right]$ .

4) 
$$\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x - x^2} - 2}{x + x^2}$$
  $\left[\frac{1}{4}\right]$ .

5) 
$$\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x}}{x + 2\sqrt[3]{x^4}}$$
 [ $\frac{2}{27}$ ].

6) 
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}}$$
  $\left[\frac{3}{2}\right]$ .

**3.6.5.** Используя результат **примера 3.5.9.**, вычислить пределы функций [в квадратных скобках указаны ответы].

1) 
$$\lim_{x\to 0} \frac{\sqrt[m]{1+\alpha x} - \sqrt[n]{1+\beta x}}{x} \quad \left[\frac{\alpha}{m} - \frac{\beta}{n}\right].$$

$$2) \lim_{x \to 0} \frac{\sqrt[m]{1 + \alpha x} \cdot \sqrt[n]{1 + \beta x} - 1}{x} \qquad \left[\frac{\beta}{n} + \frac{\alpha}{m}\right].$$

$$3) \lim_{x \to 1} \frac{\sqrt[m]{x} - 1}{\sqrt[n]{x} - 1} \qquad \left[\frac{n}{m}\right].$$

4) 
$$\lim_{x \to 1} \frac{(1 - \sqrt{x})(1 - \sqrt[3]{x})...(1 - \sqrt[n]{x})}{(1 - x)^{n-1}} \qquad \left[\frac{1}{n!}\right].$$

5) 
$$\lim_{x \to \infty} x^{1/3} ((x+1)^{2/3} - (x-1)^{2/3})$$
  $\left[\frac{4}{3}\right]$ .

6) 
$$\lim_{x \to +\infty} (\sqrt[3]{x^3 + 3x^2} - \sqrt{x^2 - 2x})$$
 [2].

**3.6.6.**Вычислить следующие пределы [в квадратных скобках указаны ответы].

1) 
$$\lim_{x \to \infty} (\sqrt[3]{x+1} - \sqrt[3]{x})$$
 [0].

2) 
$$\lim_{x \to +\infty} (\sqrt[3]{x^3 + 3x^2} - \sqrt{x^2 - 2x})$$
 [2]

3) 
$$\lim_{x \to \infty} (\sqrt[3]{x^3 + x^2 + 1} - \sqrt[3]{x^3 - x^2 + 1})$$
  $\left[\frac{2}{3}\right]$ .

4) 
$$\lim_{x \to +\infty} (\sqrt{x^2 + ax + b} - \sqrt{x^2 + cx + d})$$
  $[\frac{a - c}{2}].$ 

$$5) \lim_{x \to +\infty} (\sqrt{(x+a)(x+b)} - x) \qquad \left[\frac{a+b}{2}\right].$$

6) 
$$\lim_{x \to +\infty} (\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x})$$
  $\left[\frac{1}{2}\right]$ .

#### 4. ИСПОЛЬЗОВАНИЕ ЗАМЕЧАТЕЛЬНЫХ ПРЕДЕЛОВ .

4.1.Первый замечательный предел

$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

4.2. Второй замечательный предел

$$\lim_{\mathbf{x} o \infty} (\mathbf{1} + \frac{\mathbf{1}}{\mathbf{x}})^{\mathbf{x}} = \mathbf{e}$$

$$\lim_{\mathbf{x}\to\mathbf{0}} (\mathbf{1}+\mathbf{x})^{\frac{1}{\mathbf{x}}} = \mathbf{e}.$$

**4.3.** С помощью второго замечательного предела получается формула для раскрытия неопределенности вида  $\mathbf{1}^{\infty}$ , а именно, если  $U(x) \to 1$ , а  $V(x) \to \infty$  при  $x \to a$ , то

$$\lim_{x \to a} U(x)^{V(x)} = e^A$$
, где  $A = \lim_{x \to a} (U(x) - 1)V(x)$ .

(Формула получается из тождественного равенства:

$$U(x)^{V(x)} = \left( \left( 1 + (U(x) - 1) \right)^{\frac{1}{U(x) - 1}} \right)^{(U(x) - 1)V(x)}$$

4.4. Из второго замечательного предела также получаем:

$$\lim_{\mathbf{x}\to\mathbf{0}}\frac{\ln(\mathbf{1}+\mathbf{x})}{\mathbf{x}}=\mathbf{1}.$$

**4.5.** В свою очередь, из предыдущего получаются значения еще двух пределов:

$$\lim_{x\to 0}\frac{a^x-1}{x}=\ln a.$$

$$\lim_{\mathbf{x}\to\mathbf{0}}\frac{(\mathbf{1}+\mathbf{x})^{\mu}-\mathbf{1}}{\mathbf{x}}=\mu.$$

 $\nabla$  Для доказательства первого из двух равенств обозначим  $a^x-1=\alpha$  и прологарифмируем равенство  $a^x=1+\alpha$ . Получим  $x\ln a=\ln(1+\alpha)$ , откуда  $x=\frac{\ln(1+\alpha)}{\ln a}$ . Тогда

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{\alpha \to 0} \frac{\alpha \ln a}{\ln(1 + \alpha)} = \ln a.$$

Аналогично, для доказательства второго равенства обозначим  $(1+x)^{\mu}-1=\alpha$  и прологарифмируем равенство  $(1+x)^{\mu}=1+\alpha$ . Получим:  $\mu\ln(1+x)=\ln(1+\alpha)$ . Из равенств  $\frac{(1+x)^{\mu}-1}{x}=\frac{\alpha}{x}=\frac{\alpha}{\ln(1+\alpha)}\cdot\frac{\ln(1+\alpha)}{x}=\frac{\alpha}{\ln(1+\alpha)}\cdot\frac{\alpha}{x}=\frac{\alpha}{\ln(1+\alpha)}\cdot\frac{\alpha}{x}=\frac{\alpha}{\ln(1+\alpha)}\cdot\frac{\alpha}{x}=\frac{\alpha}{\ln(1+\alpha)}\cdot\frac{\alpha}{x}$  с учетом того, что  $x\to 0$  влечет  $\alpha\to 0$ , и  $\lim_{\alpha\to 0}\frac{\alpha}{\ln(1+\alpha)}=1$ , получим

$$\lim_{x \to 0} \frac{(1+x)^{\mu} - 1}{x} = \lim_{x \to 0} \frac{\mu \ln(1+x)}{x} = \mu.\Box$$

#### 4.6. Примеры.

**4.6.1.** Пример. 
$$\lim_{x\to 0} \frac{\operatorname{tg} x}{x} = \lim_{x\to 0} \frac{\sin x}{x \cos x} = \lim_{x\to 0} \frac{\sin x}{x} \cdot \lim_{x\to 0} \frac{1}{\cos x} = 1.$$

**4.6.2.** Пример. 
$$\lim_{x\to 0} \frac{\arcsin x}{x} = \lim_{x\to 0} \frac{\arcsin x}{\sin(\arcsin x)} = 1.$$

**4.6.3.** Пример. 
$$\lim_{x\to 0} \frac{\arctan x}{x} = \lim_{x\to 0} \frac{\arctan x}{\operatorname{tg}(\arctan x)} = 1.$$

**4.6.4.** Пример. 
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{2\sin^2\frac{x}{2}}{4\frac{x^2}{4}} = \lim_{x\to 0} \frac{1}{2} \left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 = \frac{1}{2}.$$

**4.6.5.** Пример. 
$$\lim_{x\to 0} \frac{x^2}{\sqrt{1+x\sin x} - \sqrt{\cos x}} =$$

$$= \lim_{x \to 0} \frac{x^2(\sqrt{1+x\sin x} + \sqrt{\cos x})}{(\sqrt{1+x\sin x} - \sqrt{\cos x})(\sqrt{1+x\sin x} + \sqrt{\cos x})} =$$

$$= \lim_{x \to 0} \frac{x^2(\sqrt{1 + x \sin x} + \sqrt{\cos x})}{1 + x \sin x - \cos x} = 2 \lim_{x \to 0} \frac{x^2}{1 - \cos x + x \sin x} =$$

$$=2\lim_{x\to 0}\frac{1}{\frac{1-\cos x}{x^2}+\frac{\sin x}{x}}=(\text{с учетом примера }4.6.4.)=2\frac{1}{\frac{1}{2}+1}=\frac{4}{3}.$$

**4.6.6.** Пример. 
$$\lim_{x \to \pi} \frac{x^2 - \pi^2}{\sin x} = \lim_{x \to \pi} \frac{(x - \pi)(x + \pi)}{\sin(\pi - x)} = \lim_{x \to \pi} \frac{(x - \pi)(x + \pi)}{-\sin(x - \pi)} = =$$

$$-\lim_{x\to\pi} \frac{x-\pi}{\sin(x-\pi)} \cdot \lim_{x\to\pi} (x+\pi) = -1 \cdot 2\pi = -2\pi.$$

**4.6.7.** Пример. 
$$\lim_{x\to\pi/3}\frac{1-2\cos x}{\pi-3x}=\lim_{x\to\pi/3}\frac{2(1/2-\cos x)}{3(\pi/3-x)}=$$

$$= \frac{2}{3} \lim_{x \to \pi/3} \frac{\cos \pi/3 - \cos x}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2} \sin \frac{\pi/3 - x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2}}{\pi/3 - x} = \frac{2}{3} \lim_{x \to \pi/3} \frac{-2\sin \frac{\pi/3 + x}{2}}{\pi/3 - x} =$$

$$= -\frac{2}{3} \lim_{x \to \pi/3} \sin \frac{\pi/3 + x}{2} \cdot \lim_{x \to \pi/3} \frac{\sin \frac{\pi/3 - x}{2}}{\frac{\pi/3 - x}{2}} = -\frac{2}{3} (\sin \pi/3) \cdot 1 = -\frac{\sqrt{3}}{3}.$$

**4.6.8. Пример.** 
$$\lim_{x\to 0} (1+x^2)^{\operatorname{ctg}^2 x} = \{1^\infty\} = e^A$$
, где

$$A = \lim_{x \to 0} (1 + x^2 - 1) \operatorname{ctg}^2 x = \lim_{x \to 0} x^2 \frac{\cos^2 x}{\sin^2 x} = \lim_{x \to 0} \frac{x^2}{\sin^2 x} \cdot \lim_{x \to 0} \cos^2 x = 1.$$

Таким образом,  $\lim_{x\to 0} (1+x^2)^{\operatorname{ctg}^2 x} = e$ .

**4.6.9. Пример.**  $\lim_{x \to \infty} \left( \sin \frac{1}{x} + \cos \frac{1}{x} \right)^x = e^A$ , где

$$A = \lim_{x \to \infty} \left( \sin \frac{1}{x} + \cos \frac{1}{x} - 1 \right) x =$$

$$= \lim_{x \to \infty} \left( \frac{\sin \frac{1}{x}}{\frac{1}{x}} - \frac{1 - \cos \frac{1}{x}}{\frac{1}{x^2}} \cdot \frac{1}{x} \right) = 1 - \frac{1}{2} \cdot 0 = 1.$$

Таким образом,  $\lim_{x\to\infty} \left(\sin\frac{1}{x} + \cos\frac{1}{x}\right)^x = e.$ 

**4.6.10. Пример.** 
$$\lim_{x \to \pi/2} \left( \operatorname{tg} \frac{x}{2} \right)^{\frac{1}{x-\pi/2}} = e^A$$
, где  $A = \lim_{x \to \pi/2} \frac{\operatorname{tg} x/2 - 1}{x - \pi/2} =$ 

$$= \lim_{x \to \pi/2} \frac{\sin x/2 - \cos x/2}{(\cos x/2)(x - \pi/2)} = \lim_{x \to \pi/2} \frac{\cos(\pi/2 - x/2) - \cos x/2}{x - \pi/2} =$$

$$= \lim_{x \to \pi/2} \frac{2(\sin \pi/4) \sin \frac{x - \pi/2}{2}}{x - \pi/2} = \lim_{x \to \pi/2} \frac{\sqrt{2} \sin \frac{x - \pi/2}{2}}{2 \cdot \frac{x - \pi/2}{2}} = \frac{\sqrt{2}}{2}.$$

Таким образом,  $\lim_{x\to\pi/2} \left(\operatorname{tg}\frac{x}{2}\right)^{\frac{1}{x-\pi/2}} = e^{\sqrt{2}/2}$ .  $\lim_{x\to 0} (1+x^2)^{\operatorname{ctg}^2 x} = \{1^\infty\} = e^A$ , где

$$A = \lim_{x \to 0} (1 + x^2 - 1) \operatorname{ctg}^2 x =$$

$$= \lim_{x \to 0} x^2 \frac{\cos^2 x}{\sin^2 x} == \lim_{x \to 0} \frac{x^2}{\sin^2 x} \cdot \lim_{x \to 0} \cos^2 x = 1.$$

Таким образом,  $\lim_{x\to 0} (1+x^2)^{{\rm ctg}^2 x} = e$ .

**4.6.11. Пример.**  $\lim_{x \to \infty} \left( \sin \frac{1}{x} + \cos \frac{1}{x} \right)^x = e^A$ ,где  $A = \lim_{x \to \infty} \left( \sin \frac{1}{x} + \cos \frac{1}{x} - 1 \right) x =$ 

$$= \lim_{x \to \infty} \left( \frac{\sin \frac{1}{x}}{\frac{1}{x}} - \frac{1 - \cos \frac{1}{x}}{\frac{1}{x^2}} \cdot \frac{1}{x} \right) = 1 - \frac{1}{2} \cdot 0 = 1.$$

Таким образом,  $\lim_{x \to \infty} \left( \sin \frac{1}{x} + \cos \frac{1}{x} \right)^x = e$ .

4.6.12. Пример. 
$$\lim_{x \to \pi/2} \left( \operatorname{tg} \frac{x}{2} \right)^{\frac{1}{x-\pi/2}} = e^A, \text{ где } A = \lim_{x \to \pi/2} \frac{\operatorname{tg} x/2 - 1}{x - \pi/2} =$$

$$= \lim_{x \to \pi/2} \frac{\sin x/2 - \cos x/2}{(\cos x/2)(x - \pi/2)} = \lim_{x \to \pi/2} \frac{\cos(\pi/2 - x/2) - \cos x/2}{x - \pi/2} =$$

$$= \lim_{x \to \pi/2} \frac{2(\sin \pi/4) \sin \frac{x - \pi/2}{2}}{x - \pi/2} = \lim_{x \to \pi/2} \frac{\sqrt{2} \sin \frac{x - \pi/2}{2}}{2 \cdot \frac{x - \pi/2}{2}} = \frac{\sqrt{2}}{2}.$$

Таким образом,  $\lim_{x\to\pi/2} \left(\operatorname{tg}\frac{x}{2}\right)^{\frac{1}{x-\pi/2}} = e^{\sqrt{2}/2}.$ 

4.6.13. Пример. 
$$\lim_{x \to 0} \frac{7^{2x} - 5^{3x}}{2x - \operatorname{arctg} 3x} = \lim_{x \to 0} \frac{(7^{2x} - 1) - (5^{3x} - 1)}{2x(1 - \frac{\operatorname{arctg} 3x}{2x})} = \lim_{x \to 0} \frac{7^{2x} - 1}{2x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} - \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} \cdot \frac{3}{2} = \lim_{x \to 0} \frac{7^{2x} - 1}{2x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot \frac{\operatorname{arctg} 3x}{3x})} = \lim_{x \to 0} \frac{5^{3x} - 1}{3x(1 - \frac{3}{2} \cdot$$

$$= \lim_{x \to 0} \frac{7^{2x} - 1}{2x} \cdot \lim_{x \to 0} \frac{1}{\left(1 - \frac{3}{2} \cdot \frac{\arctan 3x}{3x}\right)} - \frac{3}{2} \lim_{x \to 0} \frac{5^{3x} - 1}{3x} \cdot \lim_{x \to 0} \frac{1}{\left(1 - \frac{3}{2} \cdot \frac{\arctan 3x}{3x}\right)} =$$

$$= \ln 7 \cdot \frac{1}{1 - \frac{3}{2} \cdot 1} - \frac{3}{2} \ln 5 \cdot \frac{1}{1 - \frac{3}{2} \cdot 1} = -2 \ln 7 + 3 \ln 5 = \ln \frac{125}{49}.$$

4.6.14. Пример. 
$$\lim_{x \to 1} \frac{x^2 - 1}{\ln x} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{\ln(1 + x - 1)} =$$
$$= \lim_{x \to 1} \frac{x - 1}{\ln(1 + (x - 1))} \cdot \lim_{x \to 1} (x + 1) = 1 \cdot 2 = 2.$$

4.6.14. Пример. 
$$\lim_{x\to 0}\left(\frac{a^{x^2}+b^{x^2}}{a^x+b^x}\right)^{\frac{1}{x}}=\{1^\infty\}=e^A,$$
 
$$A=\lim_{x\to 0}\left(\frac{a^{x^2}+b^{x^2}}{a^x+b^x}-1\right)\frac{1}{x}=$$
 (так как  $a^x+b^x\longrightarrow 2$  при  $x\to 0$ )

$$=\frac{1}{2}\lim_{x\to 0}\frac{a^{x^2}-a^x+b^{x^2}-b^x}{x}=\frac{1}{2}\lim_{x\to 0}\frac{a^x(a^{x^2-x}-1)+b^x(b^{x^2-x}-1)}{x(x-1)}\cdot(x-1)=$$

$$=-\frac{1}{2}\lim_{x\to 0}\frac{a^{x^2-x}-1}{x^2-x}-\frac{1}{2}\lim_{x\to 0}\frac{b^{x^2-x}-1}{x^2-x}=-\frac{1}{2}(\ln a+\ln b)=-\ln \sqrt{ab}.$$
Таким образом, 
$$\lim_{x\to 0}\left(\frac{a^{x^2}+b^{x^2}}{a^x+b^x}\right)^{\frac{1}{x}}=e^{-\ln \sqrt{ab}}=\frac{1}{\sqrt{ab}}.$$

#### 4.7. УПРАЖНЕНИЯ

4.7.1Вычислить следующие пределы [в квадратных скобках указаны ответы].

$$1) \lim_{x \to 0} \frac{\sin 5x}{x} \qquad [5]. \qquad 11) \lim_{x \to a} \frac{\sin x - \sin a}{x - a} \qquad [\cos a].$$

$$2) \lim_{x \to 0} x \cdot \cot 3x \qquad \left[\frac{1}{3}\right]. \qquad 12) \lim_{x \to a} \frac{\tan x - \tan a}{x - a} \qquad \left[\frac{1}{\cos^2 a}\right].$$

$$3) \lim_{x \to 0} \frac{3x^2 - 5x}{\sin 3x} \qquad \left[-\frac{5}{3}\right]. \qquad 13) \lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{x \sin x} \qquad \left[\frac{1}{4}\right].$$

$$4) \lim_{x \to 0} \frac{\sin 7x}{x^2 + \pi x} \qquad \left[\frac{7}{\pi}\right]. \qquad 14) \lim_{x \to 0} \frac{2x \sin x}{1 - \cos x} \qquad [4].$$

$$5) \lim_{x \to 0} \frac{\tan x}{\sin^3 x} \qquad \left[\frac{1}{2}\right]. \qquad 15) \lim_{x \to 0} \frac{\tan x}{x(1 - \cos 2x)} \qquad \left[\frac{1}{4}\right].$$

$$6) \lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x} \qquad \left[2\right]. \qquad 16) \lim_{x \to 0} \frac{\sqrt{1 - \cos x^2}}{1 - \cos x} \qquad \left[\sqrt{2}\right].$$

$$7) \lim_{x \to 0} \frac{\cos x - \cos 3x}{x^2} \qquad \left[4\right]. \qquad 17) \lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{1 - \cos \sqrt{x}} \qquad \left[0\right].$$

$$8) \lim_{x \to 0} \frac{1 - \cos^3 x}{4x^2} \qquad \left[\frac{3}{8}\right]. \qquad 18) \lim_{x \to \pi} \frac{1 - \sin(x/2)}{\pi - x} \qquad \left[0\right].$$

$$9) \lim_{x \to \pi} \frac{1 - \cos^2 x}{(\pi - x)^2} \qquad \left[1\right]. \qquad 19) \lim_{x \to 1} \frac{1 - x^2}{\sin \pi x} \qquad \left[\frac{2}{\pi}\right].$$

$$10) \lim_{x \to 0} \frac{\sin^2 x - \tan^2 x}{x^4} \qquad \left[-1\right]. \qquad 20) \lim_{x \to 0} \frac{\cos 3x - \cos x}{\tan^2 x} \qquad \left[-1\right].$$

$$21) \lim_{x \to 0} \frac{\sqrt{\cos x} - \sqrt[3]{\cos x}}{\sin^2 x} \qquad \left[-\frac{1}{12}\right]. \qquad 22) \lim_{x \to 0} \frac{\sqrt{1 + \tan x}}{x^3} \qquad \left[\frac{1}{4}\right].$$

4.7.2. Вычислить следующие пределы [в квадратных скобках указаны ответы].

1) 
$$\lim_{x \to \infty} \left( \frac{x^2 + 1}{x^2 - 1} \right)^{x^2}$$
 [e<sup>3</sup>].

2) 
$$\lim_{x \to 0} \sqrt[x]{1 - 2x}$$
  $[e^{-2}]$ .

3) 
$$\lim_{x \to 1} (1 + \sin \pi x)^{\text{ctg } \pi x}$$
 [ $e^{-1}$ ].

4) 
$$\lim_{x \to 0} \left( \frac{1 + \operatorname{tg} x}{1 + \sin x} \right)^{\frac{1}{\sin x}}$$
 [1].

5) 
$$\lim_{x \to 0} \left( \frac{1 + \operatorname{tg} x}{1 + \sin x} \right)^{\frac{1}{\sin^3 x}} \qquad [\sqrt{e}].$$

6) 
$$\lim_{x \to a} \left( \frac{\sin x}{\sin a} \right)^{\frac{1}{x - a}}$$
 [ $e^{\operatorname{ctg} a}$ ].

7) 
$$\lim_{x \to 0} \left( \frac{\cos x}{\cos 2x} \right)^{\frac{1}{x^2}} \qquad [e^{3/2}].$$

8) 
$$\lim_{x \to \pi/4} (\operatorname{tg} x)^{\operatorname{tg} 2x} \qquad \left[\frac{1}{e}\right].$$

9) 
$$\lim_{x \to \pi/2} (\sin x)^{\operatorname{tg} x}$$
 [1].

$$10) \lim_{x \to 0} \left( \operatorname{tg}(\frac{\pi}{4} - x) \right)^{\operatorname{ctg} x} \qquad [e^{-2}]$$

$$20) \lim_{x \to 0} \left( 5 - \frac{4}{\cos x} \right)^{\frac{1}{\sin^2 3x}} \quad [e^{-2/9}].$$

11) 
$$\lim_{x \to 0} \sqrt[x]{\cos\sqrt{x}}$$
  $\left[\frac{1}{\sqrt{e}}\right]$ .

12) 
$$\lim_{x \to 1} (3 - 2x)^{\text{tg}} \frac{\pi x}{2}$$
  $[e^{4/\pi}].$ 

13) 
$$\lim_{x \to 3} \left( \frac{6-x}{3} \right)^{\operatorname{tg}} \frac{\pi x}{6} \qquad [e^{2/\pi}].$$

$$\frac{\cot 2x}{\sin 3x} = [e^{-1/12}].$$

15) 
$$\lim_{x \to a} \left(2 - \frac{x}{a}\right)^{\operatorname{tg}} \frac{\pi x}{2a}$$
  $[e^{2/\pi}].$ 

$$\frac{1}{16} \lim_{x \to 2\pi} (\cos x) \frac{1}{\sin^2 2x} \qquad [e^{-1/8}].$$

17) 
$$\lim_{x \to \pi/2} \left( \operatorname{ctg} \frac{x}{2} \right) \frac{1}{\cos x}$$
 [e].

$$18) \lim_{x \to 4\pi} (\cos x) \frac{\operatorname{ctg} x}{\sin 4x} \qquad [e^{-1/4}].$$

$$10) \lim_{x \to 0} \left( \operatorname{tg}(\frac{\pi}{4} - x) \right)^{\operatorname{ctg} x} \qquad [e^{-2}]. \qquad 19) \lim_{x \to 0} \left( 6 - \frac{5}{\cos x} \right)^{\operatorname{ctg}^2 x} \qquad [e^{-5/2}].$$

4.7.3 Вычислить следующие пределы [в квадратных скобках указаны ответы.

1) 
$$\lim_{x\to 0} \frac{6^{2x} - 7^{-2x}}{\sin 3x - 2x}$$
 [ln 1764]

1) 
$$\lim_{x\to 0} \frac{6^{2x} - 7^{-2x}}{\sin 3x - 2x}$$
 [ln 1764]. 3)  $\lim_{x\to 0} \frac{3^{5x} - 2^x}{x - \sin 9x}$  [ $\frac{1}{8} \ln \frac{2}{243}$ ].

2) 
$$\lim_{x\to 0} \frac{3^{2x} - 5^{3x}}{\operatorname{arctg} x + x^3}$$
  $\left[\ln \frac{9}{125}\right]$ .

4) 
$$\lim_{x \to 0} \frac{e^x - e^{3x}}{3x - \lg 2x}$$
 [-2].

5) 
$$\lim_{x \to 0} \frac{e^{2x} - e^x}{x + \operatorname{tg}(x^2)}$$
 [1].

6) 
$$\lim_{x\to 0} \frac{2^{3x} - 3^{2x}}{x + \arcsin(x^3)}$$
  $\left[\ln \frac{8}{9}\right]$ .

6) 
$$\lim_{x \to 0} \frac{2^{3x} - 3^{2x}}{x + \arcsin(x^3)}$$
 [ $\ln \frac{8}{9}$ ].  
7)  $\lim_{x \to 0} \frac{9^x - 2^{3x}}{\arctan 2x - 7x}$  [ $\frac{1}{5} \ln \frac{8}{9}$ ].  
8)  $\lim_{x \to 0} \frac{e^x - e^{-2x}}{x + \sin(x^2)}$  [3].

8) 
$$\lim_{x\to 0} \frac{e^x - e^{-2x}}{x + \sin(x^2)}$$
 [3]

9) 
$$\lim_{x\to 0} \frac{3^{5x} - 2^{-7x}}{2x - \lg x} \quad [\frac{1}{2}\ln(3^5 \cdot 2^7)].$$

$$10)\lim_{x\to 0}\frac{\ln x - \ln a}{x - a} \qquad \left[\frac{1}{a}\right]$$

10) 
$$\lim_{x \to 0} \frac{\ln x - \ln a}{x - a} \qquad \left[\frac{1}{a}\right].$$
11)  $\lim_{x \to 1} \frac{\sqrt{x^2 - x + 1} - 1}{\ln x} \qquad \left[\frac{1}{2}\right].$ 

12) 
$$\lim_{x \to 0} \frac{\ln(x^2 + 1)}{1 - \sqrt{x^2 + 1}}$$
 [-2].

13) 
$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{\sin 4x}$$
  $\left[\frac{1}{4}\right]$ .

14) 
$$\lim_{x \to 0} \frac{1 - \cos 10x}{e^{x^2} - 1}$$
 [50].

15) 
$$\lim_{x \to 0} \frac{a^{x^2} - b^{x^2}}{(a^x - b^x)^2} \qquad \left[\frac{1}{\ln \frac{a}{b}}\right].$$

16) 
$$\lim_{x \to 0} (x + e^x) \frac{1}{x}$$
 [ $e^2$ ].

17) 
$$\lim_{x \to 0} \left( \frac{1 + x \cdot 2^x}{1 + x \cdot 3^x} \right)^{\frac{1}{x^2}}$$
  $\left[ \frac{2}{3} \right]$ .

18) 
$$\lim_{x \to a} \frac{a^{a^x} - a^{x^a}}{a^x - x^a}$$
  $[a^{a^a} \ln a].$ 

19) 
$$\lim_{h \to 0} \frac{a^{x+h} - a^{x-h} - 2a^x}{h^2} \quad [a^x \ln^2 a].$$

$$20) \lim_{x \to 0} \left( \frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}} \quad [\sqrt[3]{abc}].$$

### 5. ПЕРЕХОД К ЭКВИВАЛЕНТНЫМ ФУНКЦИЯМ ПРИ ВЫЧИСЛЕНИИ ПРЕДЕЛОВ.

**5.1.** Определение. Функции f(x) и g(x) называются эквивалентными при  $x \to a$  ( пишут  $f(x) \sim g(x)$  (  $x \to a$ )), если

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

- **5.2. Теорема.** Если  $f(x) \sim g(x)(x \to a)$ , и существует  $\lim_{x \to a} g(x)h(x)$ , то существует  $\lim_{x\to a} f(x)h(x)$ , и  $\lim_{x\to a} f(x)h(x) = \lim_{x\to a} g(x)h(x)$ .
- 5.3. Приведем ряд эквивалентностей, используемых при вычислении пределов.

$$\sin x \sim x \quad (x \to 0),$$
  $\ln(1+x) \sim x \quad (x \to 0),$   $a^x - 1 \sim x \ln a \quad (x \to 0),$   $\tan x \sim x \quad (x \to 0)$ 

#### 5.4. Примеры.

5.4.1. Пример. 
$$\lim_{x \to \pi} \frac{\sin\left(\frac{x^2}{\pi}\right)}{2^{\sqrt{\sin x + 1}} - 2} = \lim_{x \to \pi} \frac{\sin\left(\pi - \frac{x^2}{\pi}\right)}{2(2^{\sqrt{\sin x + 1} - 1} - 1)} =$$

$$= \lim_{x \to \pi} \frac{\pi - \frac{x^2}{\pi}}{2(\sqrt{\sin x + 1} - 1)\ln 2} = \lim_{x \to \pi} \frac{\pi^2 - x^2}{2\pi \cdot \frac{1}{2}\sin x \cdot \ln 2} =$$

$$= \lim_{x \to \pi} \frac{(\pi - x)(\pi + x)}{\pi \sin(\pi - x) \cdot \ln 2} = \frac{2}{\ln 2}.$$

(Здесь мы применили следующие эквивалентности:

$$\sin(\pi - \frac{x^2}{\pi}) \sim \pi - \frac{x^2}{\pi} \text{ (так как } \pi - \frac{x^2}{\pi} \to 0 \text{ при } x \to \pi),$$

$$2^{\sqrt{\sin x + 1} - 1} - 1 \sim (\sqrt{\sin x + 1} - 1) \ln 2 \text{ (так как } \sqrt{\sin x + 1} - 1 \to 0$$
при  $x \to \pi$ ),
$$\sqrt{\sin x + 1} - 1 \sim \frac{1}{\pi} \sin x \text{ (так как } \sin x \to 0 \text{ при } x \to \pi).$$

$$\sqrt{\sin x + 1} - 1 \sim \frac{1}{2}\sin x$$
 (так как  $\sin x \to 0$  при  $x \to \pi$ ).)

5.4.2. Пример. 
$$\lim_{x \to 2} \frac{\operatorname{tg}(\ln(3x-5))}{e^{x+3} - e^{x^2+1}} = \lim_{x \to 2} \frac{\ln(3x-5)}{e^{x^2+1}(e^{x+3-x^2-1}-1)} =$$
$$= \frac{1}{e^5} \lim_{x \to 2} \frac{\ln(1+(3x-6))}{x-x^2+2} = -\frac{1}{e^5} \lim_{x \to 2} \frac{3x-6}{(x-2)(x+1)} =$$
$$= -\frac{3}{e^5} \lim_{x \to 2} \frac{x-2}{(x-2)(x+1)} = \frac{1}{e^5}.$$

(Здесь мы применили следующие эквивалентности:

$$\begin{split} & \operatorname{tg}(\ln(3x-5)) \sim \ln(3x-5) \ \, (\operatorname{так} \, \operatorname{как} \, \ln(3x-5) \to 0 \, \operatorname{при} \, x \to 2), \\ & e^{x-x^2+2}-1 \sim x-x^2+2 \, \, (\operatorname{так} \, \operatorname{как} \, x-x^2+2 \to 0 \, \operatorname{при} \, x \to 2), \\ & \ln(1+(3x-6)) \sim 3x-6 \, \, (\operatorname{так} \, \operatorname{как} \, 3x-6 \to 0 \, \operatorname{при} \, x \to 2).) \end{split}$$

#### 5.5. УПРАЖНЕНИЯ

5.5.1 Вычислить следующие пределы [в квадратных скобках указаны ответы.

1) 
$$\lim_{x\to 0} \frac{\ln(\operatorname{tg}(\frac{\pi}{4} + ax))}{\sin bx}$$
  $\left[\frac{2a}{b}\right]$ .

2) 
$$\lim_{x \to \pi/2} \frac{\ln(\sin x)}{(2x - \pi)^2}$$
  $\left[-\frac{1}{8}\right]$ .

3) 
$$\lim_{x \to 1} \frac{\sqrt[3]{1 + \ln^2 x} - 1}{1 + \cos(\pi x)}$$
  $\left[\frac{2}{3\pi^2}\right]$ .

4) 
$$\lim_{x \to 1} \frac{\sin^2(\pi 2^x)}{\ln(\cos(\pi 2^x))}$$
 [-2].

5) 
$$\lim_{x \to \pi} \frac{(x^3 - \pi^3)\sin(5x)}{e^{\sin^2 x} - 1}$$
 [-15 $\pi^2$ ].

6) 
$$\lim_{x \to a} \frac{a^{x^2 - a^2} - 1}{\operatorname{tg}(\ln(\frac{x}{a}))}$$
 [2 $a^2 \ln a$ ].

7) 
$$\lim_{x \to \pi} \frac{\ln(\cos 2x)}{\ln(\cos 4x)} \qquad [-\frac{1}{4}].$$

8) 
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\operatorname{tg} 2x - \sin x}$$
 [2]

9) 
$$\lim_{x \to -2} \frac{\arcsin(\frac{x+2}{2})}{3^{\sqrt{2+x+x^2}} - 9}$$
  $[-\frac{2}{27} \ln 3].$  19)  $\lim_{x \to 0} \frac{\ln(1+xe^x)}{\ln(x+\sqrt{1+x^2})}$ 

10) 
$$\lim_{x \to 2\pi} \frac{\ln(\cos x)}{3^{\sin 2x} - 1}$$
 [0].

11) 
$$\lim_{x \to -2} \frac{\operatorname{tg}(e^{x+2} - e^{x^2 - 4})}{\operatorname{tg} x + \operatorname{tg} 2} \quad \left[\frac{5}{\cos^2 2}\right].$$

12) 
$$\lim_{x \to \pi} \frac{\ln(2 + \cos x)}{(3^{\sin x} - 1)^2}$$
  $\left[\frac{1}{2 \ln^2 3}\right]$ .

13) 
$$\lim_{x \to -1} \frac{\operatorname{tg}(x+1)}{e^{\sqrt[3]{x^3 - 4x^2 + 6}} - e} \qquad \left[\frac{3}{11e}\right].$$

14) 
$$\lim_{x \to \pi} \frac{\operatorname{tg}(3^{\pi/x} - 3)}{3^{\cos(3x/2)} - 1} \qquad [-\frac{2}{\pi}].$$

15) 
$$\lim_{x \to 3} \frac{\ln(2x - 5)}{e^{\sin \pi x} - 1}$$
  $\left[ -\frac{2}{\pi} \right]$ .

16) 
$$\lim_{x \to \pi/2} \frac{e^{\sin 2x} - e^{\lg 2x}}{\ln \frac{2x}{\pi}}$$
 [-2\pi].

17) 
$$\lim_{x \to 0} \frac{e^{\alpha x} - e^{\beta x}}{\sin(\alpha x) - \sin(\beta x)}$$
 [1].

18) 
$$\lim_{x \to 0} \frac{a^{x^2} - b^{x^2}}{(a^x - b^x)^2} \qquad \left[\frac{1}{\ln \frac{a}{b}}\right].$$

19) 
$$\lim_{x \to 0} \frac{\ln(1 + xe^x)}{\ln(x + \sqrt{1 + x^2})}$$
 [1].

20) 
$$\lim_{x \to 0} \frac{\cos(xe^x) - \cos(xe^{-x})}{x^3}$$
 [-2].

$$21)\lim_{h\to 0}\frac{\arctan(x+h)-\arctan x}{h}\qquad \left[\frac{1}{1+x^2}\right].$$

$$\frac{\ln\frac{1+x}{1-x}}{\arctan\frac{1+x}{\arctan(1+x)-\arctan(1-x)}} \qquad [2].$$

## II. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

#### 6. ПРОИЗВОДНАЯ ЯВНОЙ ФУНКЦИИ

**6.1. Определение производной.** Пусть функция f определена в некоторой окрестности точки x. Функция f называется  $\partial u \phi \phi$  ееренцируемой в точке x, если существует

 $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}.$ 

Этот предел называется *производной* f в точке x и обозначается f'(x). Функция называется  $\partial u \phi \phi$  еренцируемой на интервале, если она дифференцируема в каждой точке этого интервала.

На практике производную функции чаще вычисляют с помощью основных правил дифференцирования, используя уже известные производные элементарных функций.

6.2. Производные элементарных функций.

$$(x^n)' = nx^{n-1} \ (n - \text{ константа}), \quad (\sin x)' = \cos x, \quad (\cos x)' = -\sin x,$$
 
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}, \quad (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x},$$
 
$$(\operatorname{arcsin} x)' = \frac{1}{\sqrt{1 - x^2}}, \quad (\operatorname{arccos} x)' = -\frac{1}{\sqrt{1 - x^2}},$$
 
$$(\operatorname{arctg} x)' = \frac{1}{1 + x^2}, \quad (\operatorname{arcctg} x)' = -\frac{1}{1 + x^2},$$
 
$$(a^x)' = a^x \ln a, \quad (e^x)' = e^x, \quad (\log_a x)' = \frac{1}{x \ln a}, \quad (\ln x)' = \frac{1}{x}$$
 
$$(\operatorname{sh} x)' = \operatorname{ch} x, \quad (\operatorname{ch} x)' = \operatorname{sh} x, \quad (\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}, \quad (\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}.$$

- 6.3. Основные правила дифференцирования.
- **6.3.1.** Производные суммы, произведения и частного. Если функции f и g дифференцируемы в точке x и C—константа, то

$$(Cf(x))' = Cf'(x);$$

$$(f(x) + g(x))' = f'(x) + g'(x);$$

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x);$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}.$$

**6.3.2.** Производная сложной функции. Если функция g дифференцируема в точке x, функция f дифференцируема в точке g(x), то

$$(f(g(x)))' = f'(g(x))g'(x).$$

**6.3.3.** Производная функции вида  $f(x)^{g(x)}$ . По свойствам 6.3.1.и 6.3.2. если функции f и g дифференцируемы в точке x и f(x) > 0, то

$$\left(f(x)^{g(x)}\right)' = \left(e^{g(x)\ln f(x)}\right)' = f(x)^{g(x)} \left(g'(x)\ln(f(x)) + \frac{f'(x)g(x)}{f(x)}\right).$$

При дифференцировании функции, заданной фигурной скобкой, пользуются следующим свойством производной.

**6.4.** Пусть

$$f'_{-}(x) = \lim_{h \to 0-} \frac{f(x+h) - f(x)}{h}, \quad f'_{+}(x) = \lim_{h \to 0+} \frac{f(x+h) - f(x)}{h}$$

(эти пределы называются соответственно *левой* и *правой* производной функции f в точке x.) Функция f в точке x дифференцируема тогда и только тогда, когда

$$f'_{-}(x) = f'_{+}(x) = f'(x).$$

#### 6.5. Примеры.

**6.5.1.** Найти f'(1), если  $f(x) = (x-1)(x-2)^2(x-3)^3$ .  $\nabla$  Найдем f'(1) с помощью определения.

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h-1)(1+h-2)^2(1+h-3)^3 - 0}{h} = \lim_{h \to 0} \frac{h(h-1)^2(h-2)^3}{h} = (-1)^2(-2)^3 = -8.\Box$$

**6.5.2.** Найти f'(x), если  $f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}$ .

⊽ По формуле производной сложной функции

$$f'(x) = \frac{1}{2} \left( x + \sqrt{x + \sqrt{x}} \right)^{\frac{1}{2} - 1} \left( x + \sqrt{x + \sqrt{x}} \right)' =$$

$$= \frac{1}{2} \left( x + \sqrt{x + \sqrt{x}} \right)^{-\frac{1}{2}} \left( 1 + \frac{1}{2} \left( x + \sqrt{x} \right)^{\frac{1}{2} - 1} \left( x + \sqrt{x} \right)' \right) =$$

$$= \frac{1}{2} \left( x + \sqrt{x + \sqrt{x}} \right)^{-\frac{1}{2}} \left( 1 + \frac{1}{2} \left( x + \sqrt{x} \right)^{-\frac{1}{2}} \left( 1 + \frac{1}{2\sqrt{x}} \right) \right) . \square$$

**6.5.3.** Найти f'(x), если  $f(x) = \cos x \ln \operatorname{tg}\left(\frac{x}{2}\right)$ .

⊽ По формулам производной произведения и производной сложной функции

$$f'(x) = \cos' x \ln t g \frac{x}{2} + \cos x \left( \ln t g \frac{x}{2} \right)' = -\sin x \ln t g \frac{x}{2} + \frac{\cos x}{t g \frac{x}{2}} \left( t g \frac{x}{2} \right)' =$$

$$= -\sin x \ln t g \frac{x}{2} + \frac{\cos x}{t g \frac{x}{2}} \frac{1}{\cos^2 \frac{x}{2}} \left( \frac{x}{2} \right)' = -\sin x \ln t g \frac{x}{2} + \frac{\cos x}{t g \frac{x}{2} \cos^2 \frac{x}{2}} \frac{1}{2} =$$

$$= -\sin x \ln t g \frac{x}{2} + \frac{\cos x}{2 t g \frac{x}{2} \cos^2 \frac{x}{2}}.\Box$$

**6.5.4.** Найти f'(x), если  $f(x) = (\arccos x)^x$ .

 $\nabla$  Запишем функцию в следующем виде  $f(x) = e^{\ln(\arccos x)^x} = e^{x \ln \arccos x}$ . Теперь по формуле производной сложной функции

$$f'(x) = e^{x \ln \arccos x} (x \ln \arccos x)' =$$

$$= (\arccos x)^x \left( \ln \arccos x + \frac{x}{\arccos x} (\arccos x)' \right) =$$

$$= (\arccos x)^x \left( \ln \arccos x + \frac{x}{\arccos x} \left( -\frac{1}{\sqrt{1 - x^2}} \right) \right) =$$

$$= (\arccos x)^x \left( \ln \arccos x - \frac{x}{\sqrt{1 - x^2} \arccos x} \right).$$

Также можно было использовать формулу 6.3.3. □

**6.5.5.** Найти f'(x), если

$$f(x) = \begin{cases} 1 - x & \text{при } -\infty < x < 1, \\ (1 - x)(2 - x) & \text{при } 1 \le x \le 2, \\ -(2 - x), & \text{при } 2 < x + \infty. \end{cases}$$

 $\nabla$  Во всех точках числовой прямой, за исключением точек x=1 и x=2, производная вычисляется по основным правилам и

$$f'(x) = \begin{cases} -1 & \text{при } -\infty < x < 1, \\ -3 + 2x & \text{при } 1 < x < 2, \\ 1, & \text{при } 2 < x < +\infty. \end{cases}$$

Посчитаем f'(1) и f'(2). Вначале, в точках x=1 и x=2 найдем левые и правые производные  $f'_{-}(1), f'_{+}(1)$  и  $f'_{-}(2), f'_{+}(2)$ :

$$f'_{-}(1) = \lim_{h \to 0-} \frac{(1 - (1+h)) - 0}{h} = \lim_{h \to 0-} \frac{-h}{h} = -1,$$

$$f'_{+}(1) = \lim_{h \to 0+} \frac{(1 - (1+h))(2 - (1+h)) - 0}{h} = \lim_{h \to 0+} \frac{-h(1-h)}{h} = -1.$$

Так как  $f'_{-}(1) = f'_{+}(1)$ , то

$$f'(1) = f'_{-}(1) = f'_{+}(1) = -1.$$

Аналогично

$$f'_{-}(2) = \lim_{h \to 0-} \frac{(1 - (2+h))(2 - (2+h)) - 0}{h} = \lim_{h \to 0-} \frac{(-1-h)(-h)}{h} = 1,$$
$$f'_{+}(2) = \lim_{h \to 0+} \frac{-(2 - (2+h)) - 0}{h} = \lim_{h \to 0+} \frac{h}{h} = 1.$$

Значит  $f'(2) = 1.\square$ 

**6.5.6.** Найти f'(x), если f(x) = |x|.

 $\nabla$  Во всех точках числовой прямой, за исключением точки x=0 производная вычисляется по основным правилам и

$$f'(x) = \begin{cases} -1 & \text{при } -\infty < x < 0, \\ 1, & \text{при } 0 < x < +\infty. \end{cases}$$

Найдем  $f'_{-}(0), f'_{+}(0).$ 

$$f'_{-}(0) = \lim_{h \to 0-} \frac{|h| - 0}{h} = \lim_{h \to 0-} \frac{-h}{h} = -1,$$
  
$$f'_{+}(0) = \lim_{h \to 0+} \frac{|h| - 0}{h} = \lim_{h \to 0+} \frac{h}{h} = 1.$$

Так как левая и правая производные в точке x=0 не совпадают, то функция  $f(x)=\mid x\mid$  в этой точке не дифференцируема.  $\square$ 

#### 6.6. УПРАЖНЕНИЯ

6.6.1. Исходя из определения, найти производные следующих функций:

$$1)y = \sqrt[3]{x}, 2)y = \arcsin x, 3)y = \arctan x.$$

- **6.6.2.** Найти f'(2), если  $f(x) = x^2 \sin(x-2)$ .
- **6.6.3.** Пользуясь таблицей производных и правилами дифференцирования, найти производные следующих функций:

$$1)y = \frac{x}{\sqrt{a^2 - x^2}},$$

$$2)y = \sqrt[3]{\frac{1 + x^3}{1 - x^3}},$$

$$3)y = \sqrt{x + \sqrt{x + \sqrt{x}}},$$

$$4)y = \sin(\sin(\sin x)),$$

$$5)y = tg \frac{x}{2} - ctg \frac{x}{2},$$

$$6)y = \sqrt[3]{\cot^2 x} + \sqrt[3]{\cot^3 x},$$

$$19)y = \arcsin(\sin x),$$

$$20)y = \arcsin(\sin x),$$

$$20)y = \arcsin(\sin x),$$

$$20)y = \arccos(\cos^2 x),$$

$$21)y = \arctan \frac{1 + x}{1 - x},$$

$$22)y = \arcsin \frac{1 - x^2}{1 + x^2},$$

$$22)y = \arcsin \frac{1 - x^2}{1 + x^2},$$

$$22)y = \arcsin \frac{1 - x^2}{1 + x^2},$$

$$23)y = \frac{1}{\arccos^2 x^2},$$

$$24)y = \ln(1 + \sin^2 x) - 2\sin x \arctan(\sin x),$$

$$25)y = \frac{\arccos x}{x} + \frac{1}{2} \ln \frac{1 - \sqrt{1 - x^2}}{1 + \sqrt{1 - x^2}},$$

$$26)y = \arctan(tg^2 x),$$

$$27)y = \sqrt{x^2 + 1} \ln \sqrt{\frac{1 - x}{1 + x}} + \arcsin x,$$

$$28)y = \log_{x} e$$

$$29)y = x + x^{x} + x^{x^{x}},$$

$$30)y = \sqrt[x]{x},$$

$$34)y = \frac{\operatorname{ch} x}{\operatorname{sh}^{2} x} + \operatorname{ln} \operatorname{cth} \frac{x}{2},$$

$$31)y = (\sin x)^{\cos x} + (\cos x)^{\sin x},$$

$$32)y = \frac{(\ln x)^{x}}{x^{\ln x}},$$

$$33)y = \ln \operatorname{ch} x + \frac{1}{2 \operatorname{ch}^{2} x},$$

$$34)y = \frac{\operatorname{ch} x}{\operatorname{sh}^{2} x} + \ln \operatorname{cth} \frac{x}{2},$$

$$35)y = \arccos \frac{1}{\operatorname{ch} x},$$

$$36)y = \operatorname{arctg}(\operatorname{th} x).$$

6.6.4. Найти производные следующих функций:

$$1)f(x) = \begin{cases} x & \text{при } x < 0, \\ \ln(1+x) & \text{при } 0 \ge x. \end{cases}$$
$$2)f(x) = x \mid x \mid .$$

6.6.5. Найти левую и правую производную, если:

$$1)f(x) = \frac{x}{1 + e^{\frac{1}{x}}}, \text{при } x \neq 0, f(0) = 0,$$

$$2)f(x) = \sqrt{1 - e^{-x^2}}.$$

$$3)f(x) = \begin{cases} 1 + \frac{1}{x} & \text{при } x < 0, \\ \sqrt{1 + \sqrt[3]{x^4}} & \text{при } 0 \ge x. \end{cases}$$

$$4)f(x) = \begin{cases} \arctan \frac{1+x}{1-x} & \text{при } x \neq 0, \\ \frac{\pi}{2} & \text{при } x = 0. \end{cases}$$

# 7. ПРОИЗВОДНАЯ ОБРАТНОЙ ФУНКЦИИ. ПРОИЗВОДНАЯ ФУНКЦИИ, ЗАДАННОЙ ПАРАМЕТРИЧЕСКИ. ПРОИЗВОДНАЯ НЕЯВНОЙ ФУНКЦИИ

**7.1.** Производная обратной функции. Пусть функция f(x) обладает непрерывной производной на интервале (a,b), причем  $f'(x) \neq 0 \quad \forall x \in (a,b)$ . Тогда f(x) на интервале (a,b) имеет однозначную дифференцируемую обратную функцию  $x = \varphi(y) = f^{-1}(y)$  и  $\forall y_0 = f(x_0)$ 

$$\varphi'(y_0) = \frac{1}{f'(x_0)}.$$

7.2. Производная функции, заданной параметрически. Пусть функции  $x = \varphi(t)$  и  $y = \psi(t)$  дифференцируемы интервале  $(\alpha, \beta)$ , причем производная x'(t) непрерывна и  $x'(t) \neq 0 \quad \forall t \in (\alpha, \beta)$ . Тогда на интервале  $(\varphi(\alpha), \varphi(\beta))$  определена однозначная дифференцируемая функция от переменной x вида  $f(x) = \psi(\varphi^{-1}(x))$  и  $\forall x_0 = \varphi(t_0)$ 

$$f_x'(x_0) = \frac{\psi'(t_0)}{\varphi'(t_0)}.$$

**7.3.** Производная функции, заданной неявно. Если функция f(x) задана неявно уравнением F(x,y)=0, то, дифференцируя тождество

$$F(x, f(x)) = 0$$

как сложную функцию, можно найти  $f'_x(x)$ .

#### 7.4. Примеры.

**7.4.1.** Выделить однозначные непрерывные ветви обратной функции x = x(y) и найти их производные, если  $f(x) = 2x^2 - x^4$ . Найти x'(0).

 $\nabla$  Функция  $f(x)=2x^2-x^4$  является дифференцируемой и ее производная  $f'(x)=4x-4x^3$  непрерывна. В точках  $x=0,\ x=1,$  и x=-1 производная  $f'(x)=4x-4x^3=0.$  Эти точки разбивают числовую прямую на 4 интервала  $(\infty,-1),(-1,0),(0,1),(1,\infty).$  Обозначим

$$f_1(x) = f(x)(x \in (\infty, -1)), \quad f_2(x) = f(x)(x \in (-1, 0)),$$

$$f_3(x) = f(x)(x \in (0,1)), \quad f_4(x) = f(x)(x \in (1,\infty)).$$

Производные  $f_i'(x) \neq 0 (i=1,2,3,4)$ , значит определены однозначные дифференцируемые обратные функции  $x_i(y) = f_i^{-1}(y) (i=1,2,3,4)$ . Эти обратные функции являются однозначными непрерывными ветвями обратной функции x=x(y) и для  $y=2x^2-x^4$ 

$$(f_i^{-1})'(y) = \frac{1}{4x - 4x^3} (i = 1, 2, 3, 4).$$

Для того, чтобы найти x'(0), сначала выясним, при каких значениях x переменная y=0. Для этого решим уравнение  $2x^2-x^4=0$ . Корнями уравнения являются значения  $x=0,\ x=\sqrt{2},\ x=-\sqrt{2}$ . Точка x=0 является границей одного из интервалов, указанных выше, поэтому обратная функция не определена однозначно, следовательно производная не определена. Точка  $x=\sqrt{2}\in(1,\infty)$ , следовательно,  $x=\sqrt{2}=x_4(0)$ , производная считается по формуле, выведенной выше и

$$x'(0) = (f_4^{-1})'(0) = \frac{1}{4\sqrt{2} - 4\sqrt{2}^3} = \frac{1}{4\sqrt{2}(1-2)} = \frac{-1}{4\sqrt{2}}.$$

Аналогично при  $x = -\sqrt{2} = x_1(0)$  производная

$$x'(0) = (f_1^{-1})'(0) = \frac{1}{-4\sqrt{2} + 4\sqrt{2}^3} = \frac{1}{4\sqrt{2}}.\Box$$

**7.4.2.** Найти производную  $f_x'(x)$  от функции y=f(x), заданной параметрически уравнениями  $x=-1+2t-t^2, y=2-3t+t^3$ . Чему равна  $f_x'(x)$  при x=0 и x=-1.

 $\nabla$  Продифференцируем x(t) и y(t). Получаем производные

$$x'(t) = 2 - 2t, y'(t) = -3 + 3t^{2}.$$

Производная x'(t)=2-2t=0 при t=1. Следовательно, данными параметрическими уравнениями определены две однозначные дифференцируемые функции:  $f_1(x)$  при t<1 и  $f_2(x)$  при t>1. При  $t\neq 1$  производные обеих функций имеют вид

$$f_x'(x) = \frac{-3+3t^2}{2-2t} = \frac{3(1+t)}{2}.$$

Так как x=-1 при t=0 и t=2, то

$$(f_1)'(-1) = \frac{-3+3\cdot 0}{2-2\cdot 0} = \frac{-3}{2}$$

$$(f_2)'(-1) = \frac{-3+3\cdot(2)^2}{2-2\cdot 2} = \frac{-9}{2}.$$

В точке t=1 (т.е. при x=0) производная f'(x) не может быть найдена по формуле из 7.2. Попробуем найти производную по определению:

$$f'_{x}(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{t \to 0} \frac{y(1+t) - y(1)}{x(1+t) - x(1)} =$$

$$= \lim_{t \to 0} \frac{2 - 3(1+t) + (1+t)^{3} - 0}{-1 + 2(1+t) - (1+t)^{2} - 0} =$$

$$= \lim_{t \to 0} \frac{3t^{2} + t^{3}}{-t^{2}} = -3.\Box$$

**7.4.3.** Найти производную  $y'_x(x)$  от функции y = f(x), заданной неявно следующим уравнением

$$x^2 + 2xy - y^2 = 2x.$$

Чему равно  $y'_x(x)$  при x = 2, y = 4 и при x = 2, y = 0.

 $\nabla$  Запишем данное уравнение в виде  $x^2 + 2xy(x) - y^2(x) = 2x$  и продифференцируем его как сложную функцию. Получаем

$$2x + 2y(x) + 2xy'(x) - 2y(x)y'(x) = 2.$$

Откуда выражаем

$$y'_x(x) = \frac{2 - 2x - 2y(x)}{2x - 2y(x)} = \frac{1 - x - y(x)}{x - y(x)}.$$

Следовательно,

при 
$$x=2,y=4$$
 производная  $y_x'(2)=\frac{1-2-4}{2-4}=\frac{5}{2},$ 

при 
$$x=2,y=0$$
 производная  $y_x'(2)=\frac{1-2-0}{2-0}=\frac{-1}{2}.\square$ 

**7.4.3.** Найти производную  $y_x'(x)$  от функции y=f(x), заданной в полярной системе координат  $r=a(1+\cos\varphi)$ , где  $r=\sqrt{x^2+y^2}, \varphi=\arctan\frac{y}{x}$ .

 $\nabla$  Можно считать, что функция y=f(x) задана параметрически с параметром  $\varphi$  следующими уравнениями

$$x = r\cos\varphi = a(1 + \cos\varphi)\cos\varphi,$$

$$y = r\sin\varphi = a(1 + \cos\varphi)\sin\varphi.$$

Найдем производные

$$x'(\varphi)=-a\sin\varphi\cos\varphi-a(1+\cos\varphi)\sin\varphi=$$
 
$$=-2a\sin\varphi\cos\varphi-a\sin\varphi=-a(\sin2\varphi+\sin\varphi)=-2a\sin\left(\frac{3\varphi}{2}\right)\cos\frac{\varphi}{2},$$
 
$$y'(\varphi)=-a\sin^2\varphi+a(1+\cos\varphi)\cos\varphi)=a(\cos2\varphi+\cos\varphi)=2a\cos\left(\frac{3\varphi}{2}\right)\cos\frac{\varphi}{2}.$$
 Заметим, что  $x'(\varphi)=0$  при  $\varphi=0,\pm\frac{2\pi}{3}$ . Тогда, при  $\varphi\neq0,\pm\frac{2\pi}{3}$ , по формуле пункта 7.2,

$$f'_x(x) = \frac{y'(\varphi)}{x'(\varphi)} = \frac{2a\cos\left(\frac{3\varphi}{2}\right)\cos\frac{\varphi}{2}}{-2a\sin\left(\frac{3\varphi}{2}\right)\cos\frac{\varphi}{2}} = \operatorname{ctg}\left(\frac{3\varphi}{2}\right).\square$$

### 7.5. УПРАЖНЕНИЯ

- **7.5.1** Показать, что существует однозначная дифференцируемая обратная функция y(x), удовлетворяющая уравнению  $y^3+3y=x$  и найти ее производную.
- **7.5.2.** Выделить однозначные непрерывные ветви обратной функции x = x(y) и найти их производные, если

1) = 
$$\frac{x^2}{1 + -x^2}$$
,  
2) =  $2e^{-x} - e^{-2x}$ .

**7.5.3.** Найти производные  $y_x'(x)$  от функций, заданных параметрически уравнениями

1)
$$x = \sin^2 t, y = \cos^2 t,$$
  
2) $x = \cosh t, y = \sinh t,$   
3) $x = e^{2t} \cos^2 t, y = e^{2t} \sin^2 t,$   
4) $x = \arcsin \frac{t}{1+t^2}, y = \arccos \frac{1}{1+t^2}.$ 

**7.5.4.** Найти производные  $y_x'(x)$  от функций, заданных неявно

$$1)y^2 = 2px,$$

$$2)\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$
$$3)x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}.$$

**7.5.5.** Найти производные  $y_x'(x)$  от функций, заданных в полярной системе координат  $1)r = a\varphi$ ,  $2)r = ae^{m\varphi}$ , где  $r = \sqrt{x^2 + y^2}$ ,  $\varphi = \arctan \frac{y}{x}$ .

# 8. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ

- **8.1.** Если функция f дифференцируема в точке x, то производная f'(x) равна угловому коэффициенту касательной к графику функции, проведенной в точке (x, f(x)).
- **8.2.** Уравнения касательной и нормали. Уравнение касательной к графику дифференцируемой функции y = f(x), проведенной в точке  $(x_0, f(x_0))$  имеет вид:

$$y - f(x_0) = f'(x_0)(x - x_0).$$

Уравнение нормали к графику дифференцируемой функции y = f(x), проведенной в точке  $(x_0, f(x_0))$  имеет вид:

$$y - f(x_0) = \frac{-1}{f'(x_0)}(x - x_0).$$

Говорят, что кривые  $y = f_1(x)$  и  $y = f_2(x)$  пересекаются под углом  $\alpha$ , если под углом  $\alpha$  пересекаются касательные к этим кривым, проведенные в точке пересечения  $x_0$ . Угол  $\alpha = |\arctan f_1'(x_0) - \arctan f_2'(x_0)|$ .

**8.3.** Бесконечная производная. Если функция f непрерывна в точке x и

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \infty,$$

то говорят, что в точке x функция имеет бесконечную производную. В этом случае касательная к графику функции f в точке (x, f(x)) перпендикулярна оси Ox.

## 8.4. Примеры.

## 8.4.1. Написать уравнения касательной и нормали к кривой

$$y = (x+1)\sqrt[3]{3-x}$$

в точках A(-1,0), B(2,3) и C(3,0).

∨ Найдем производную от данной функции:

$$y'(x) = \sqrt[3]{3-x} - \frac{x+1}{3\sqrt[3]{(3-x)^2}}.$$

Так как  $y'(-1) = \sqrt{4}$ , y(-1) = 0, то уравнение касательной к графику данной функции в точке A имеет вид:  $y = \sqrt{4}(x+1)$ .

Так как  $y'(2)=0,\ y(2)=3,$  то касательная к графику функции в точке B параллельна оси Ox. Уравнение касательной в точке B имеет вид : y=3.

В точке C(3,0) функция имеет бесконечную производную, так как

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(4+h)\sqrt[3]{h} - 0}{h} = \infty.$$

Значит касательная к графику функции в точке C(3,0) перпендикулярна оси Ox и ее уравнение  $x=0.\square$ 

# 8.4.2. Определить угол между левой и правой касательными к кривой

$$y = \sqrt{1 - e^{-a^2 x^2}}$$
 в точке  $x = 0$ .

 $\nabla$  Найдем  $f'_{-}(0), f'_{+}(0)$ .

$$f'_{-}(0) = \lim_{h \to 0-} \frac{\sqrt{1 - e^{-a^2h^2}} - 0}{h} = \lim_{h \to 0-} \frac{|ah|}{h} = -|a|,$$

$$f'_{+}(0) = \lim_{h \to 0-} \frac{\sqrt{1 - e^{-a^2h^2}} - 0}{h} = \lim_{h \to 0+} \frac{|ah|}{h} = |a|.$$

Так как левая и правая производные в точке x=0 не совпадают, то заданная функция в этой точке не дифференцируема. В точке x=0 можно построить касательную к левой части графика (левую касательную) и к правой части графика (правую касательную). Угловой коэффициент левой касательной равен  $k_1=-\mid a\mid$ , а угловой коэффициент правой касательной  $k_2=\mid a\mid$ . Пусть

lpha — угол между левой касательной и положительным направлением оси, а eta — угол между правой касательной и положительным направлением оси. Тогда  $\mathrm{tg}(lpha) = - \mid a \mid , \mathrm{tg}(eta) = \mid a \mid .$  Угол между касательными есть угол  $\gamma = \beta - \alpha$  и

$$\operatorname{tg}(\gamma) = \frac{-2 \mid a \mid}{1 - a^2}.\square$$

**8.4.3.** Написать уравнения касательной и нормали к кривой, задаваемой параметрическими уравнениями  $x(t)=2t-t^2,\ y(t)=3t-t^3$  в точках t=0,t=1.

 $\nabla$  Продифференцируем x(t) и y(t). Получаем производные

$$x'(t) = 2 - 2t, y'(t) = 3 - 3t^{2}.$$

Производная x'(t)=2-2t=0 при t=1. Следовательно, данными параметрическими уравнениями определены две однозначные дифференцируемые функции:  $f_1(x)$  при t<1 и  $f_2(x)$  при t>1. При  $t\neq 1$  производные обеих функций имеют вид

$$f'(x) = \frac{3 - 3t^2}{2 - 2t}.$$

В точке t=0 переменная x(0)=0, значение функции  $f_1(x)=f_1(0)=y(0)=0$  и производная  $f'(0)=\frac{3}{2}$ . Следовательно, уравнение касательной в точке t=0 имеет вид  $y=\frac{3}{2}x$ , а уравнение нормали  $y=\frac{-2}{3}x$ . В точке t=1 переменная x(1)=1, значение функции f(x)=f(1)=y(1)=2. Так как x'(t)=2-2t=0 при t=1 производная f'(x) не может быть найдена по формуле из 2.2. Найдем производную по определению:

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{t \to 0} \frac{y(1+t) - y(1)}{x(1+t) - x(1)} =$$

$$= \lim_{t \to 0} \frac{3(1+t) - (1+t)^3 - 2}{2(1+t) - (1+t)^2 - 1} =$$

$$= \lim_{t \to 0} \frac{-3t^2 - t^3}{-t^2} = 3.$$

Следовательно, уравнение касательной в точке t=1 имеет вид

$$y-2=3(x-1)$$
, r.e.  $y=3x-1$ ,

а уравнение нормали

$$y-2=\frac{-(x-1)}{3}$$
, r.e.  $y=\frac{-x}{3}+2\frac{1}{3}$ .

### 8.5. УПРАЖНЕНИЯ.

- **8.5.1.** В каких точках кривой  $y = 2 + x x^2$  касательная к ней а) параллельна оси ординат, б) параллельна биссектрисе первого координатного угла
- **8.5.2.** Напишите уравнения касательных к следующим кривым в заданных точках

$$1)y(x) = \sqrt{5 - x^2}, M(1; 2);$$

$$2)y(x) = \arcsin \frac{x}{2}, M(0; 0).$$

$$3)y(x) = \ln \frac{x^2 - 2x + 1}{x^2 + x + 1}, M(0; 0);$$

$$4)y(x) = \cos 2x - 2\sin x, M(\pi; 1).$$

8.5.3. Найдите углы, под которыми пересекаются следующие пары кривых:

$$1)y = x^2 \text{ и } x = y^2,$$
$$2)y = \sin x \text{ и } y = \cos x.$$

8.5.4. Найдите угол между правой и левой касательными к кривой:

$$1)y = \arcsin \frac{2x}{1+x^2}$$
 в точке  $x=1,$   $2)y = \sqrt{2x^3 + 9x^2}$  в точке  $x=0.$ 

8.5.5. Напишите уравнения касательных к следующим кривым

$$1)x=2t-t^2,y=3t-t^3\text{ в точках }t=0;t=1,$$
 
$$2)x=\frac{2t+t^2}{1+t^3},y=\frac{2t-t^2}{1+t^3}\text{ в точках }t=0;t=1;t=\infty.$$

**8.5.6.** Напишите уравнения касательных к следующим кривым в заданных точках

$$1)\frac{x^2}{100} + \frac{y^2}{64} = 1, M(6; 6, 4);$$

$$(2)yx + \ln y = 1, M(1;1);$$

$$(3)x^5 + y^5 = 2xy, M(1; 1).$$

# 9. ДИФФЕРЕНЦИАЛ ФУНКЦИИ.

**9.1.** Функция f имеет конечную производную в точке x тогда и только тогда, когда приращение функции может быть представленно в виде

$$\triangle f(x) = f(x + dx) - f(x) = A(x)dx + o(dx) \ (dx \to 0).$$

Линейная часть этого приращения называется  $\partial u \phi \phi$  еренциалом  $\phi$  ункции f в точке x и обозначается df(x). Дифференциал равен

$$df(x) = f'(x)dx.$$

Пренебрегая бесконечно малой o(dx), для приближенных подсчетов можно пользоваться формулой

$$f(x+dx) - f(x) \approx f'(x)dx \ (dx \to 0).$$

# 9.2. Примеры.

**9.2.1.** Для функции  $f(x) = x^3 - 2x + 1$  определить  $\triangle f(1), df(1)$  и сравнить их, если dx = 1; dx = 0, 1; dx = 0, 01.

$$\triangle f(1) = f(1+dx) - f(1) = (1+dx)^3 - 2(1+dx) + 1 - 0 = (dx)^3 + 3(dx)^2 + dx.$$

Для того, чтобы найти дифференциал функции, вычислим производную

$$f'(x) = 3x^2 - 2, f'(1) = 1.$$

Дифференциал равен df(1) = f'(1)dx = dx. Представим результаты вычислений в виде таблицы

| dx = 1    | $\triangle f(1) = 5$        | df(1) = 1     |
|-----------|-----------------------------|---------------|
| dx = 0, 1 | $\triangle f(1) = 0,131$    | df(1) = 0, 1  |
| dx = 0,01 | $\triangle f(1) = 0,010301$ | df(1) = 0,01. |

Как видно из таблицы, при убывании к нулю значений dx значения  $\triangle f(1)$  и df(1) становятся приблизительно равны.  $\square$ 

**9.2.2.** Найти  $d(\sqrt{a^2 + x^2})$ .

⊽ Для того, чтобы найти дифференциал, найдем

$$f'(x) = \frac{x}{\sqrt{a^2 + x^2}}.$$

Тогда по формуле из 4.1

$$df(x) = f'(x)dx = \frac{x}{\sqrt{a^2 + x^2}}dx.\Box$$

**9.2.3.** Пусть u, v — дифференцируемые функции от x. Найти  $d\left(\frac{u}{v^2}\right)$ .

∨ Используя правила нахождения производной, получаем

$$d\left(\frac{u}{v^2}\right) = \frac{v^2du - udv^2}{v^4} = \frac{v^2du - 2uvdv}{v^4}.$$

**9.2.4.** Заменяя приращение функции дифференциалом, найти приближенно  $\sqrt[3]{1,02}$ .

 $\nabla$  Обозначим  $f(x) = \sqrt[3]{x}$ . Нужно найти f(1+0,02). Заменяя приращение функции дифференциалом, получим  $f(1+dx) - f(1) \approx f'(1)dx$ . При dx = 0,02, формула примет вид  $f(1+0,02) \approx f'(1)0,02 + f(1)$ . Для окончательного результата осталось вычислить f'(x) в точке x = 1 и f(1):

$$f'(x) = \frac{1}{3\sqrt[3]{x^2}}, \ f'(1) = \frac{1}{3}, \ f(1) = 1.$$

Следовательно

$$\sqrt[3]{1,02} = f(1+0,02) \approx f'(1)0,02 + f(1) = \frac{0,02}{3} + 1 \approx 1,0067.$$

### 9.3. УПРАЖНЕНИЯ.

**9.3.1.** Найдите дифференциал функции y, если

$$1)y = \frac{1}{x},$$

$$2)y = \arcsin \frac{x}{a},$$

$$3)y = \ln|x + \sqrt{x^2 + a^2}|,$$

$$4)y = \sin x - x \cos x,$$

$$5)y = xe^x,$$

$$6)y = \frac{\ln x}{\sqrt{x}},$$

$$7)y = \frac{x}{\sqrt{1 - x^2}}.$$

- **9.3.2.** Заменяя приращение функции дифференциалом, найти приближенно  $1)\sin 29^{\circ}$ ,  $2)\arctan 1,05$ ,  $3)\ln 11$ .
- 9.3.3. Доказать приближенную формулу

$$\sqrt[n]{a^n + x} \approx a + \frac{x}{na^{n-1}}, \ a > 0, \ x \to 0.$$

С помощью этой формулы приближенно вычислить 1)  $\sqrt[3]{9}$ , 2)  $\sqrt[4]{80}$ , 3)  $\sqrt[7]{100}$ , 4)  $\sqrt[10]{1000}$ .

#### 10. ПРАВИЛО ЛОПИТАЛЯ

**10.1.** Пусть  $a \in \mathbb{R}$  и f,g определены и дифференцируемы в некоторой проколотой окрестности U точки a, причем  $g(x),g^{'}(x)\neq 0$  и выполнено одно из условий

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \qquad ,$$

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty.$$

Тогда  $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$ , если существует (возможно, несобственный) предел в правой части. Правило верно также для случаев  $a=\infty,\pm\infty,x\to a\pm$ .

**10.2.** Раскрытие неопределенностей других видов. Раскрытие неопределенностей вида  $0\cdot\infty$  и  $\infty-\infty$  путем алгебраических преобразований приводится к раскрытию неопределенностей двух основных типов  $\frac{0}{0}$  или  $\frac{\infty}{\infty}$ . Для раскрытия неопределенностей вида  $0^0, \infty^0, 1^\infty$  при вычислении пределов функций  $\varphi(x) = (f(x))^{g(x)}$ , следует представить функцию  $\varphi(x)$  в виде

$$\varphi(x) = e^{g(x)\ln f(x)}$$

и свести вычисление предела функции  $g(x) \ln f(x)$  к раскрытию неопределенности вида  $0 \cdot \infty$ .

При раскрытии неопределенностей с помощью правила Лопиталя можно пользоваться замечательными пределами и эквивалентностями.

# 10.3. Примеры.

**10.3.1.** Пример. 
$$\lim_{x\to 0} \frac{\operatorname{tg} x - x}{x - \sin x} = \{\frac{0}{0}\} = \lim_{x\to 0} \frac{(\operatorname{tg} x - x)'}{(x - \sin x)'} =$$

$$\lim_{x \to 0} \frac{\frac{1}{\cos^2 x} - 1}{1 - \cos x} = \lim_{x \to 0} \frac{1 - \cos^2 x}{\cos^2 x (1 - \cos x)} = \lim_{x \to 0} \frac{(1 + \cos x)(1 - \cos x)}{1 - \cos x} = 2.$$

10.3.2. Пример. 
$$\lim_{x \to \pi/2} \frac{\operatorname{tg} 3x}{\operatorname{tg} x} = \{\frac{\infty}{\infty}\} = \lim_{x \to \pi/2} \frac{(\operatorname{tg} 3x)'}{(\operatorname{tg} x)'} =$$

$$\lim_{x \to \pi/2} \frac{\frac{1}{\cos^2 3x} \cdot 3}{\frac{1}{\cos^2 x}} = 3 \lim_{x \to \pi/2} \frac{\cos^2 x}{\cos^2 3x} = \left\{ \frac{0}{0} \right\} = 3 \lim_{x \to \pi/2} \frac{2 \cos x \cdot (-\sin x)}{2 \cos 3x \cdot (-\sin 3x) \cdot 3} = \frac{1}{\cos^2 x}$$

$$= -\lim_{x \to \pi/2} \frac{\cos x}{\cos 3x} = \left\{ \frac{0}{0} \right\} = -\lim_{x \to \pi/2} \frac{-\sin x}{(-\sin 3x) \cdot 3} = \frac{1}{3}.$$

10.3.3. Пример. 
$$\lim_{x\to 0+} x^2 \cdot \ln x = \{0\cdot\infty\} = \lim_{x\to 0+} \frac{\ln x}{1/x^2} = \{\frac{\infty}{\infty}\} = \{0\cdot\infty\}$$

$$= \lim_{x \to 0+} \frac{(\ln x)'}{(1/x^2)'} = \lim_{x \to 0+} \frac{1/x}{-2/x^3} = -\frac{1}{2} \lim_{x \to 0+} x^2 = 0.$$

10.3.4. Пример. 
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right) = \{\infty - \infty\} = \lim_{x\to 0} \frac{e^x - 1 - x}{x(e^x - 1)} = \{\frac{0}{0}\} = \lim_{x\to 0} \frac{e^x - 1}{e^x - 1 + xe^x} = \{\frac{0}{0}\} = \lim_{x\to 0} \frac{e^x}{e^x + e^x + xe^x} = \frac{1}{2}.$$

**10.3.5.** Пример. 
$$\lim_{x\to 0+} x^x = \{0^0\} = \lim_{x\to 0+} e^{x\cdot \ln x} = e^{\lim_{x\to 0+} x\cdot \ln x}$$

$$\lim_{x \to 0+} x \cdot \ln x = \{0 \cdot \infty\} = \lim_{x \to 0+} \frac{\ln x}{1/x} = \{\frac{\infty}{\infty}\} = \lim_{x \to 0+} \frac{1/x}{-1/x^2} = 0.$$

Таким образом,  $\lim_{x\to 0+} x^x = e^0 = 1$ .

10.3.6. Пример. 
$$\lim_{x \to \pi/2} (\operatorname{tg} x)^{2\cos x} = \{\infty^0\} = e^{\lim_{x \to \pi/2} 2\cos x \cdot \ln(\operatorname{tg} x)}$$

$$= \lim_{x \to \pi/2} \frac{\frac{1}{\lg x} \cdot \frac{1}{\cos^2 x}}{-\frac{1}{\cos^2 x} (-\sin x)} = \lim_{x \to \pi/2} \frac{\cos x}{\sin^2 x} = 0.$$

Таким образом,  $\lim_{x \to \pi/2} (\operatorname{tg} x)^{2\cos x} = e^0 = 1.$ 

10.3.7. Пример. 
$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x^2} = \{1^\infty\} = e^{\lim_{x\to 0} \frac{1}{x^2} \ln \frac{\sin x}{x}},$$

$$\lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \lim_{x \to 0} \frac{\ln \frac{\sin x}{x}}{x^2} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{x}{\sin x} \cdot \frac{x \cos x - \sin x}{x^2 \cdot 2x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{\sin x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} \ln \frac{1}{x^2} = \frac{1}{2} \lim_{x \to 0} \frac{1}{x^2} = \frac{1}{2} \lim_{$$

$$= \lim_{x \to 0} \frac{x \cos x - \sin x}{2x^3} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{6x^2} = -\frac{1}{6} \lim_{x \to 0} \frac{\sin x}{x} = -\frac{1}{6}.$$

Таким образом,  $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x^2} = e^{-1/6}$ . В этом примере мы воспользовалились известным пределом  $\lim_{x\to 0} \frac{x}{\sin x} = 1.$ 

#### 10.4. УПРАЖНЕНИЯ.

10.4.1. Вычислить следующие пределы [в квадратных скобках указаны ответы.

1) 
$$\lim_{x \to 0} \frac{\sin ax}{\sin bx}$$
  $\left[\frac{a}{b}\right]$ .

$$2)\lim_{x\to 0}\frac{\operatorname{ch} x - \cos x}{x^2} \qquad [1].$$

3) 
$$\lim_{x \to 0} \frac{3 \operatorname{tg} 4x - 12 \operatorname{tg} x}{3 \sin 4x - 12 \sin x}$$
 [-2].

4) 
$$\lim_{x\to 0} \frac{x \operatorname{ctg} x - 1}{x^2}$$
  $[-\frac{1}{3}].$ 

5) 
$$\lim_{x \to \pi/4} \frac{\sqrt[3]{\lg x} - 1}{2\sin^2 x - 1}$$
  $\left[\frac{1}{3}\right]$ .

6) 
$$\lim_{x \to 0} \frac{x(e^x + 1) - 2(e^x - 1)}{x^3}$$
  $\left[\frac{1}{6}\right]$   
7)  $\lim_{x \to 0} \frac{1 - \cos x^2}{x^2 \sin x^2}$   $\left[\frac{1}{2}\right]$ .

7) 
$$\lim_{x \to 0} \frac{1 - \cos x^2}{x^2 \sin x^2}$$
  $\left[\frac{1}{2}\right]$ .

8) 
$$\lim_{x \to 0} \frac{\arcsin 2x - 2\arcsin x}{x^3}$$
 [1].  
9) 
$$\lim_{x \to 0} \frac{a^x - a^{\sin x}}{x^3}$$
 
$$\left[\frac{\ln a}{6}\right].$$

9) 
$$\lim_{x \to 0} \frac{a^x - a^{\sin x}}{x^3}$$
  $\left[\frac{\ln a}{6}\right]$ .

$$10)\lim_{x\to 0} \frac{\ln(\sin ax)}{\ln(\sin bx)} \qquad [1]$$

11) 
$$\lim_{x \to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)} \qquad \left[\frac{a^2}{b^2}\right].$$

$$14) \lim_{x \to \infty} \frac{x^n}{e^{ax}} \qquad [0].$$

12) 
$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4}$$
  $\left[\frac{1}{6}\right]$ .

15) 
$$\lim_{x \to a} \frac{a^x - x^a}{x - a}$$
 [ $a^a (\ln a - 1)$ ].

$$13) \lim_{x \to \infty} \frac{\ln x}{x^{10}} \qquad [0].$$

16) 
$$\lim_{x \to 1} \frac{x^x - x}{\ln x - x + 1}$$
 [-2].

10.4.2. Вычислить следующие пределы [в квадратных скобках указаны ответы].

1) 
$$\lim_{x \to +\infty} x^2 \cdot e^{-0.01x}$$
 [0].

7) 
$$\lim_{x \to 1} \left( \frac{1}{\ln x} - \frac{1}{x - 1} \right)$$
  $\left[ \frac{1}{2} \right]$ .

2) 
$$\lim_{x \to 1+} \ln x \cdot \ln(x-1)$$
 [0].

$$8)\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right) \qquad [0].$$

3) 
$$\lim_{x \to 0} \sin x \cdot \ln \cot x$$
 [0].

9) 
$$\lim_{x \to 0} \left( \frac{1}{x} - \frac{1}{\arcsin x} \right) \qquad [0].$$

4) 
$$\lim_{x \to +\infty} x \ln(\frac{2}{\pi} \operatorname{arctg} x)$$
  $[-\frac{2}{\pi}].$ 

10) 
$$\lim_{x \to 0} \left( \frac{1}{x^2} - \frac{1}{\sin^2 x} \right) \qquad [-\frac{1}{3}].$$

5) 
$$\lim_{x \to +\infty} x^n e^{-x^3}$$
 [0].

11) 
$$\lim_{x\to 0} \left( \frac{1}{x \arctan x} - \frac{1}{x^2} \right)$$
  $\left[ \frac{1}{3} \right]$ .

6) 
$$\lim_{x \to +\infty} (\pi - 2 \arctan \sqrt{x}) \sqrt{x}$$
 [2].

12) 
$$\lim_{x \to +\infty} x(\pi - 2\arcsin(x/\sqrt{x^2 + 1}))$$
 [2].

10.4.3. Вычислить следующие пределы [в квадратных скобках указаны ответы].

1) 
$$\lim_{x \to (\pi/2)-} (\pi - 2x)^{\cos x}$$
 [1].

6) 
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$
  $[e^{-1}].$ 

2) 
$$\lim_{x\to 0} (\cos x)^{3/x^2}$$
 [ $e^{-6}$ ].

7) 
$$\lim_{x \to 1} (2 - x)^{\lg \frac{\pi x}{2}}$$
  $[e^{2/\pi}].$ 

3) 
$$\lim_{x \to \infty} (x + 2^x)^{1/x}$$
 [2].

8) 
$$\lim_{x \to \pi/4} (\operatorname{tg} x)^{\operatorname{tg} 2x} \qquad [e^{-1}].$$

4) 
$$\lim_{x \to 0} \left( \frac{\operatorname{tg} x}{x} \right)^{1/x^2}$$
 [ $e^{1/3}$ ].

9) 
$$\lim_{x \to 0} (\operatorname{ctg} x)^{\sin x}$$
 [1].

5) 
$$\lim_{x \to 0+} x^{\frac{1}{1 + \ln x}}$$
 [e].

10) 
$$\lim_{x \to +\infty} \left(\frac{2}{\pi} \operatorname{arctg} x\right)^x \qquad [e^{-2/\pi}].$$

11) 
$$\lim_{x \to 0+} \left( \ln \frac{1}{x} \right)^x$$
 [1]. 15)  $\lim_{x \to 0} \left( \frac{\arctan x}{x} \right)^{\frac{1}{x^2}}$  [ $e^{-1/3}$ ]. 12)  $\lim_{x \to \infty} \left( \operatorname{tg} \frac{\pi x}{2x+1} \right)^{\frac{1}{x}}$  [1]. 16)  $\lim_{x \to 0} \left( \frac{(1+x)^{1/x}}{e} \right)^{1/x}$  [ $e^{-1/2}$ ]. 13)  $\lim_{x \to a} \left( \frac{\operatorname{tg} x}{\operatorname{tg} a} \right)^{\operatorname{ctg}(x-a)}$  [ $e^{\frac{2}{\sin 2a}}$ ]. 17)  $\lim_{x \to 0} \left( \frac{2}{\pi} \arccos x \right)^{\frac{1}{x}}$  [ $e^{-2/\pi}$ ]. 14)  $\lim_{x \to 0} \left( \frac{\operatorname{tg} x}{x} \right)^{\frac{1}{x^2}}$  [ $e^{1/3}$ ]. 18)  $\lim_{x \to 0} \left( \frac{\arcsin x}{x} \right)^{\frac{1}{x^2}}$  [ $e^{1/6}$ ]. 19)  $\lim_{x \to 0} \left( \frac{a^x - x \ln a}{b^x - x \ln b} \right)^{\frac{1}{x^2}}$  [ $e^{\frac{1}{2}(\ln^2 a - \ln^2 b)}$ ].

# 11. ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ.

**11.1.** Определение производной порядка n . Пусть функция f(x) дифференцируема на некотором интервале и f'(x) — ее производная. Пусть f'(x) также дифференцируемая функция. Второй производной от f(x) называется производная от f'(x), т.е.

$$f''(x) = (f'(x))'.$$

Последовательнымим соотношениями (при условии, что дифференцирование имеет смысл) определяется npouseodhas nopsdka n om f(x) как

$$f^{(n)}(x) = (f^{(n-1)}(x))'.$$

**11.2.** Определение дифференциалов порядка n . Дифференциал порядка n определяется формулой

$$d^n f(x) = d(d^{n-1} f(x)).$$

Если x — независимая переменная, то (так как dx не зависит от x)

$$d^n x = d^n x = \ldots = d^n x = 0$$

$$d^n f(x) = f^{(n)}(x)(dx)^n.$$

Если x — промежуточный аргумент, то есть  $x = \varphi(t)$ , тогда

$$d^{2}x(t) = d(dx(t)) = d(x'(t)dt) = x''(t)(dt)^{2}, \quad df(x) = f'(x)dx = f'(x)x'(t)dt$$

$$d^{2}f(x) = d(f'(x)dx) = f''(x)(dx)^{2} + f'(x)d^{2}x(t) = f''(x)(dx)^{2} + f'(x)x''(t)(dt)^{2}.$$

Для вычисления производных высших порядков используются правила вычисления производных, формула Лейбница и формулы производных высших порядков от элементарных функций.

11.3. Формулы производных высших порядков от элементарных функций.

$$(x^{m})^{(n)} = m(m-1)\dots(m-n+1)x^{m-n},$$

$$(\sin x)^{(n)} = \sin(x + \frac{n\pi}{2}),$$

$$(\cos x)^{(n)} = \cos(x + \frac{n\pi}{2}),$$

$$(a^{x})^{(n)} = a^{x}(\ln a)^{n},$$

$$(\ln x)^{(n)} = \frac{(-1)^{n}(n-1)!}{x^{n}}.$$

**11.4.** *Формула Лейбница.* Если функции u(x) и v(x) n раз дифференцируемы, то

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)},$$

где  $u^{(0)}=u,v^{(0)}=v,$  и  $C_n^k=\frac{n!}{k!(n-k)!}$  — биномиальные коэффициенты.

## 11.5. Примеры.

**11.5.1.** Найти f''(x), если  $f(x) = \frac{\arcsin x}{\sqrt{1-x^2}}$ .

∨ Найдем сначала первую производную:

$$f'(x) = \frac{(\arcsin x)'\sqrt{1 - x^2} - (\sqrt{1 - x^2})' \arcsin x}{(\sqrt{1 - x^2})^2} = \frac{\frac{1}{\sqrt{1 - x^2}}\sqrt{1 - x^2} - \frac{-x}{\sqrt{1 - x^2}} \arcsin x}{1 - x^2}$$
$$= \frac{1 + \frac{x \arcsin x}{\sqrt{1 - x^2}}}{1 - x^2} = \frac{\sqrt{1 - x^2} + x \arcsin x}{\sqrt{(1 - x^2)^3}}.$$

Дифференцируя полученную функцию, получим:

$$f''(x) = \frac{(\sqrt{1-x^2} + x\arcsin x)'\sqrt{(1-x^2)^3} - (\sqrt{(1-x^2)^3})'(\sqrt{1-x^2} + x\arcsin x)}{(1-x^2)^3}$$

$$= \frac{(\frac{-x}{\sqrt{1-x^2}} + \arcsin x + \frac{x}{\sqrt{1-x^2}})\sqrt{(1-x^2)^3} - (\frac{3}{2}\sqrt{1-x^2})(\sqrt{1-x^2} + x\arcsin x)}{(1-x^2)^3}$$

$$= \frac{\sqrt{(1-x^2)^3}\arcsin x - 1,5x\sqrt{1-x^2}\arcsin x - 1,5(1-x^2)}{(1-x^2)^3} =$$

$$= \frac{(1-x^2)\arcsin x - 1,5x\arcsin x - 1,5\sqrt{1-x^2}}{\sqrt{(1-x^2)^5}}.\Box$$

- **11.5.2.** Найти  $d^2f(x)$  для  $f(x)=e^x$  в случае а) x независимая переменная;
- б) x промежуточный аргумент.
- $\nabla$  а) Если x независимая переменная, то

$$d^{(2)}f(x) = f^{(2)}(x)(dx)^2 = e^x(dx)^2.$$

б) Если x — промежуточный аргумент (т.е. x = x(t)), то

$$d^{2}f(x) = d(f'(x)dx) = f''(x)(dx)^{2} + f'(x)d^{2}x(t) = e^{x}(dx)^{2} + e^{x}d^{2}x(t).\Box$$

**11.5.3.** Найти производные  $f'_x, f''_{xx}$  и  $f'''_{xxx}$  (нижний индекс обозначает, что производные берутся по переменной x) от функции y = f(x), заданной параметрически уравнениями  $x = 2t - t^2, y = 3t - t^3$ .

 $\nabla$  Продифференцируем x(t) и y(t). Получаем производные

$$x'(t) = 2 - 2t, \ y'(t) = 3 - 3t^2.$$

Производная x'(t) = 2 - 2t = 0 при t = 1. Следовательно, данными параметрическими уравнениями определены две однозначные дифференцируемые ветви y = f(x):  $f_1(x)$  при t < 1 и  $f_2(x)$  при t > 1. При  $t \neq 1$  производные обеих ветвей имеют вид:

$$f_x' = \frac{3 - 3t^2}{2 - 2t} = \frac{3(1+t)}{2}.$$

Функция  $y=f_x'$  также является параметрически заданной функцией и по формуле производной параметрически заданной функции при  $x_0=x(t_0)$ 

$$f_{xx}''(x_0) = \frac{f_{xt}''(t_0)}{x'(t_0)}.$$

Так как

$$f_{xt}'' = \frac{3}{2}$$
, to  $f_{xx}'' = \frac{3}{2} \div (2 - 2t) = \frac{3}{4(1 - t)}$ .

Аналогично

$$f_{xxx}^{""}(x_0) = \frac{f_{xxt}^{""}(t_0)}{x'(t_0)}.$$

Вычисляя

$$f_{xxt}''' = \frac{3}{4(1-t)^2}$$
, получаем  $f_{xxx}''' = \frac{3}{4(1-t)^2} \div (2-2t) = \frac{3}{8(1-t)^3}$ .  $\square$ 

**11.5.4.** Найти производные  $y_x', y_{xx}''$  и  $y_{xxx}'''$  от функции, заданной неявно уравнением  $x^2+y^2=25$  . Чему равны  $y_x', y_{xx}''$  и  $y_{xxx}'''$  в точке M(3,4).

 $\nabla$  Продифференцируем данное уравнение, считая что y=y(x). Получаем

$$2x + 2y(x)y'(x) = 0$$
 или  $x + y(x)y'(x) = 0$ , то есть  $y'(x) = \frac{-x}{y(x)}$ .

Продифференцируем уравнение еще раз: 1 + y'(x)y'(x) + y(x)y''(x) = 0. Подставляя y'(x) и учитывая, что  $x^2 + y^2 = 25$ , выводим:

$$y''(x) = \frac{-1 - (y'(x))^2}{y(x)} = \frac{-(x^2 + y(x)^2)}{y(x)^3} = \frac{-25}{y(x)^3}.$$

Продифференцируем последнее выражение

$$y'''(x) = \frac{-25 \cdot (-3)y'(x)}{y(x)^4} = \frac{-75x}{y(x)^5}.$$

В точке M(3,4) производные принимают следующие значения:

$$y'(3) = \frac{-3}{4}, \ y''(3) = \frac{-25}{64}, \ y'''(3) = \frac{-225}{1024}.$$

**11.5.5.** Пусть функция y = f(x) дифференцируема достаточное число раз и пусть определена обратная функция  $x = f^{-1}(y)$  вместе со своими производными  $x'(y), x''(y), x'''(y), x^{IV}(y)$ . Найти эти производные.

 $\nabla$  Как известно,  $x'(y) = \frac{1}{y'(x)}$ . Найдем x''(y), как производную сложной функции

$$x''(y) = \left(\frac{1}{y'(x)}\right)' = \frac{-x'(y)y''(x)}{y'(x)^2} = \frac{-y''(x)}{y'(x)^3}.$$

Аналогично, используя формулы производной сложной функции и отношения функций, получим:

$$x'''(y) = \left(\frac{-y''(x)}{y'(x)^3}\right)' = \frac{-y'''(x)x'(y)y'(x)^3 + 3y'(x)^2y''(x)x'(y)y''(x)}{y'(x)^6} =$$

$$= \frac{-x'(y)y'(x)^2 \cdot (y'''(x)y'(x) - 3y''(x)^2)}{y'(x)^6} = -\frac{y'''(x)y'(x) - 3y''(x)^2}{y'(x)^5}.$$

$$x^{IV}(y) = \left(-\frac{y'''(x)y'(x) - 3y''(x)^2}{y'(x)^5}\right)' =$$

$$= -\frac{x'(y)(y''''(x)y'(x) + y'''(x)y''(x) - 6y''(x)y'''(x))y'(x)^5}{y'(x)^{10}} -$$

$$-\frac{5y'(x)^4y''(x)x'(y)(y'''(x)y'(x) - 3y''(x)^2)}{y'(x)^{10}} =$$

$$= -\frac{x'(y)y'(x)^4 \cdot (y''''(x)y'(x)^2 - 10y'''(x)y''(x)y'(x) + 15(y''(x))^3)}{y'(x)^{10}} =$$

$$= -\frac{y''''(x)y'(x)^2 - 10y'''(x)y''(x) + 15(y''(x))^3}{y'(x)^7}. \square$$

**11.5.6.** Найти производную  $y^{(20)}$  от функции  $y = x^2 e^{2x}$ .

⊽ По формуле Лебница

$$y^{(20)} = \sum_{k=0}^{20} C_{20}^k (x^2)^{(k)} (e^{2x})^{(20-k)}.$$

Вычислим  $(e^{2x})^{(k)}$ . Первая производная  $(e^{2x})'=2e^{2x}$ , вторая  $(e^{2x})''=4e^{2x}$ , очевидно по индукции  $(e^{2x})^{(k)}=2^ke^{2x}$ . Теперь посчитаем  $(x^2)^{(k)}$ . Получаем

$$(x^2)^{(0)}=x^2, \ (x^2)'=2x, \ (x^2)''=2$$
 и  $(x^2)^{(k)}=0$  для всех  $k=3,\ldots n.$ 

Значит суммироваться будут только слагаемые с номерами k=0,1,2. Нам нужны

$$(e^{2x})^{(20)}=2^{20}e^{2x},\;(e^{2x})^{(19)}=2^{19},\;(e^{2x})^{(18)}=2^{18}e^{2x}$$
 и  $C_{20}^0=1,\;C_{20}^1=20,\;C_{20}^2=\frac{20\cdot 19}{2}=190.$ 

Подставляя полученные выражения в формулу Лейбница, выводим

$$y^{(20)} = 2^{20}e^{2x}x^2 + 2^{19}e^{2x} \cdot 2x \cdot 20 + 2^{18}e^{2x} \cdot 2 \cdot 190 = 2^{20}e^{2x}(x^2 + 20x + 95). \square$$

**11.5.7.** Найти производную  $f^{(n)}(x)$  от функции

$$f(x) = \frac{1}{x^2 - 3x + 2}.$$

 $\bigtriangledown$  Разложим функцию f(x) на сумму простейших дробей

$$f(x) = \frac{1}{x^2 - 3x + 2} = \frac{1}{(x - 2)(x - 1)} = \frac{1}{x - 2} - \frac{1}{x - 1}.$$

Найдем производные порядка n от полученных дробей

$$y = \frac{1}{x - a} = (x - a)^{-1}.$$

Последовательно вычисляя, находим

$$y' = -(x-a)^{-2}, \ y'' = 2(x-a)^{-3}, \ y''' = -2 \cdot 3(x-a)^{-4}, \ \dots y^{(n)} = (-1)^n n! (x-a)^{-(n+1)}.$$

Следовательно,

$$f^{(n)}(x) = \left(\frac{1}{x-2}\right)^{(n)} - \left(\frac{1}{x-1}\right)^{(n)} = (-1)^n n! \left(\frac{1}{(x-2)^{(n+1)}} - \frac{1}{(x-1)^{(n+1)}}\right).$$

**11.5.8.** Найти производную  $y^{(n)}(x)$  от функции

$$y(x) = \frac{x}{\sqrt[3]{1-x}}.$$

 $\nabla$  Представим функцию y(x)в виде произведения

$$y = x \cdot (1 - x)^{-\frac{1}{3}}.$$

По формуле Лейбница

$$y^{(n)} = \sum_{k=0}^{n} C_n^k(x)^{(k)} ((1-x)^{-\frac{1}{3}})^{(n-k)}.$$

Так как

$$(x)^{(0)} = x$$
,  $x' = 1$  и  $(x)^{(k)} = 0$  для всех  $k = 2, \dots n$ ,

то суммироваться будут только два первых слагаемые. Найдем  $(1-x^{-\frac{1}{3}})^{(k)}$ . Начнем с вычисления

$$((1-x)^{-\frac{1}{3}})' = -\frac{1}{3} \cdot (1-x)^{-\frac{4}{3}} \cdot (-1) = \frac{1}{3} \cdot (1-x)^{-\frac{4}{3}},$$

$$((1-x)^{-\frac{1}{3}})'' = \frac{1}{3} \left( -\frac{4}{3} \right) \cdot (1-x)^{-\frac{7}{3}} \cdot (-1) = \frac{4}{9} \cdot (1-x)^{-\frac{7}{3}}.$$

$$((1-x)^{-\frac{1}{3}})''' = \frac{4}{9} \left( -\frac{7}{3} \right) \cdot (1-x)^{-\frac{10}{3}} \cdot (-1) = \frac{4 \cdot 7}{3^3} \cdot (1-x)^{-\frac{10}{3}}.$$

По аналогии вычисляется

$$((1-x)^{-\frac{1}{3}})^{(k)} = \frac{4 \cdot 7 \dots (3k-2)}{3^k} \cdot (1-x)^{-\frac{(3k+1)}{3}} = \frac{4 \cdot 7 \dots (3k-2)}{3^k (1-x)^{k+\frac{1}{3}}}.$$

Подставляя полученные выражения в формулу Лейбница, выводим

$$y^{(n)} = x((1-x)^{-\frac{1}{3}})^{(n)} + n((1-x)^{-\frac{1}{3}})^{(n-1)} =$$

$$= x\frac{4 \cdot 7 \dots (3k-2)}{3^n (1-x)^{n+\frac{1}{3}}} + n\frac{4 \cdot 7 \dots (3(n-1)-2)}{3^{(n-1)} (1-x)^{(n-1)+\frac{1}{3}}} =$$

$$= x\frac{4 \cdot 7 \dots (3k-2)}{3^n (1-x)^{n+\frac{1}{3}}} + n\frac{4 \cdot 7 \dots (3n-5)}{3^{(n-1)} (1-x)^{n-1+\frac{1}{3}}} =$$

$$= \frac{4 \cdot 7 \dots (3n-5)}{3^n (1-x)^{n+\frac{1}{3}}} \cdot ((3n-2)x + 3n(1-x)) =$$

$$= \frac{(3n-2x)4 \cdot 7 \dots (3n-5)}{3^n (1-x)^{n+\frac{1}{3}}}.\square$$

### 11.6. УПРАЖНЕНИЯ.

**11.6.1.** Найдите y''(x), если

$$4)y = \sin x - x \cos x,$$

$$1)y = x\sqrt{1+x^2},$$

$$5)y = e^{-x^2},$$

$$6)y = \frac{\ln x}{\sqrt{x}},$$

$$3)y = x \ln x,$$

$$7)y = \operatorname{tg} x.$$

- **11.6.2.** Найти  $d^2f(x)$  в случае x независимая переменная для  $1)f(x)=\sqrt{1+x^2}$ ,  $2)f(x)=\frac{\ln x}{x}$ ,  $3)f(x)=x^x$ .
- **11.6.3.** Найти производные  $f'_x, f''_{xx}$  и  $f'''_{xxx}$  от функции y = f(x), заданной параметрически нижеследующими уравнениями в точке  $x_0$

1)
$$x = a(t - \sin t), y = a(1 - \cos t), x_0 = \frac{a(\pi - 2)}{2},$$
  
2) $x = a\cos t, y = a\sin t, x_0 = 0,$   
3) $x = e^t\cos t, y = e^t\sin t, x_0 = 1.$ 

- **11.6.4.** Найти производные  $y_x', y_{xx}''$  и  $y_{xxx}'''$  от функции, заданной неявно уравнением 1)  $y^2 = 2px$ , 2)  $x^2 xy + y^2 = 1$ .
- **11.6.5.** Найти производные  $y'_x, y''_{xx}$ , если  $y^2 + 2 \ln y = x^4$ .
- 11.6.6. Найти производную указанного порядка

1)
$$y^{(100)}$$
 of  $y = \frac{1+x}{\sqrt{1-x}}$ ,  
2) $y^{(100)}$  of  $y = x \operatorname{sh} x$ ,  
3) $y^{(8)}$  of  $y = \frac{x^2}{1-x}$ ,

4)
$$y^{(10)}$$
 of  $y = \frac{e^x}{x}$ ,  
5) $y^{(5)}$  of  $y = x \ln x$ ,  
6) $y^{(10)}$  of  $y = \frac{\cos 3x}{\sqrt[3]{1 - 3x}}$ ,  
7) $y^{(5)}$  of  $y = \frac{\ln x}{x}$ .

**11.6.7.** Найти производную  $f^{(n)}(x)$  от функций

$$1)y = \frac{1}{x(1-x)},$$

$$2)y = \frac{x}{\sqrt{1-2x}},$$

$$3)y = \sin^2 x,$$

$$4)y = \cos^3 x,$$

$$5)y = \sin^4 x + \cos^4 x,$$

$$6)y = x \cos ax,$$

$$7)y = (x^2 + 2x + 2)e^{-x},$$

$$8)y = \frac{e^x}{x},$$

$$9)y = e^x \cos ax,$$

$$10)y = \ln \frac{a + bx}{a - bx}.$$

# 12. ФОРМУЛА ТЕЙЛОРА

**12.1.** Формула Тейлора с остатком в форме Пеано. Если функция f(x) дифференцируема n раз в точке a, то при  $(x \to a)$ 

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \dots + \frac{f^{(n)}(a)(x-a)^n}{n!} + o((x-a)^n).$$

Разложение в сумму с остатком в форме Пеано единственно.

**12.2.** Формула Тейлора. Пусть функция f(x) имеет непрерывные производные f'(x), f''(x),  $f^{(n-1)}(x)$  на отрезке [a,b] и производную  $f^{(n)}(x)$  на интервале (a,b), тогда для любого x из [a,b] верно

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \ldots + \frac{f^{(n-1)}(a)(x - a)^{n-1}}{(n-1)!} + R_n(x),$$

где  $R_n(x)$  — остаток в форме Лагранжа. Остаток в форме Лагранжа имеет вид

$$R_n(x) = \frac{f^{(n)}(c)(x-a)^n}{n!}, \ c$$
 — некоторая точка интервала  $(a,b)$ .

При разложении функций по формуле Тейлора часто применяются разложения элементарных функций.

**12.3.** Разложение по формуле Тейлора важнейших элементарных функций. Если переменная  $x \to 0$ 

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n}),$$

$$\sin x = x - \frac{x^{3}}{3!} + \dots + \frac{(-1)^{n} x^{2n-1}}{(2n-1)!} + o(x^{2n}),$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \dots + \frac{(-1)^{n} x^{2n}}{(2n)!} + o(x^{2n+1}),$$

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!} x^{2} + \dots + \frac{m(m-1) \dots (m-n+1)}{n!} x^{n} + o(x^{n}).$$

## 12.4. Примеры.

**12.4.1.** Написать разложение по целым неотрицательным степеням переменной x до члена с  $x^4$  функции

$$f(x) = \frac{1 + x + x^2}{1 - x + x^2}.$$

Чему равно  $f^{(4)}(0)$ ?

 $\nabla$  Предположим, что при  $x \to 0$ 

$$f(x) = \frac{1+x+x^2}{1-x+x^2} = a + bx + cx^2 + dx^3 + ex^4 + o(x^4)$$

— требуемое разложение. Тогда  $1+x+x^2=(1-x+x^2)(a+bx+cx^2+dx^3+ex^4+o(x^4))$ . Перемножим скобки в правой части, учитывая, что при  $x\to 0$  сумма  $o(x^4)+o(x^4)$  и произведение  $x^n\cdot o(x^4)$  есть  $o(x^4)$ , также при m>4 все  $x^m=o(x^4)$ . Получим

$$1 + x + x^2 = a + bx - ax + cx^2 - bx^2 + ax^2 + dx^3 - cx^3 + bx^3 + ex^4 - dx^4 + cx^4 + o(x^4).$$

Так как разложение по формуле Тейлора единственно, то коэффициенты при одинаковых степенях x в правой и левой частях последнего равенства совпадают. Приравнивая коэффициенты при одинаковых степенях x в правой и левой частях, получим систему уравнений

$$\begin{cases} 1 = a \; (\text{при } x^0) \\ 1 = b - a \; (\text{при } x^1) \\ 1 = c - b + a \; (\text{при } x^2) \\ 0 = d - c + b \; (\text{при } x^3) \\ 0 = e - d + c \; (\text{при } x^4). \end{cases}$$

Решая полученную систему, находим

$$a = 1, b = 2, \gamma = 2, d = 0, e = -2.$$

Таким образом, при  $x \to 0$ 

$$f(x) = \frac{1+x+x^2}{1-x+x^2} = 1 + 2x + 2x^2 - 2x^4 + o(x^4).$$

По формуле Тейлора коэффициент при  $x^4$  равен  $\frac{f^{(4)}(0)}{4!}$ , в нашем разложении этот коэффициент равен -2. Так как разложение по формуле Тейлора единственно, то  $\frac{f^{(4)}(0)}{4!}=-2$  и, следовательно,  $f^{(4)}(0)=-2\cdot 4!=-48.\square$ 

**12.4.2.** Написать разложение по целым неотрицательным степеням переменной x до члена с  $x^2$  функции

$$f(x) = \frac{(1+x)^{100}}{(1-2x)^{40}(1+2x)^{60}}.$$

 $\nabla$  Представим функцию f(x)в виде произведения трех функций

$$f(x) = (1+x)^{100}(1-2x)^{-40}(1+2x)^{-60}$$

Используя формулу

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \ldots + \frac{m(m-1)\ldots(m-n+1)}{n!}x^n + o(x^n)$$

разложим по степеням переменной x до члена с  $x^2$ 

$$(1+x)^{100} = 1 + 100x + \frac{100 \cdot 99}{2!}x^2 + o(x^2) = 1 + 100x + 4950x^2 + o(x^2),$$
  
$$(1-2x)^{-40} = 1 - 40(-2x) + \frac{-40 \cdot (-41)}{2!}(-2x)^2 + o(x^2) = 1 + 80x + 3240x^2 + o(x^2),$$

$$(1+2x)^{-60} = 1 - 60 \cdot 2x + \frac{-60 \cdot (-61)}{2!} (2x)^2 + o(x^2) = 1 - 120x + 7320x^2 + o(x^2)).$$

Значит

$$(1+x)^{100}(1-2x)^{-40}(1+2x)^{-60} =$$

$$= (1 + 100x + 4950x^2 + o(x^2)) \cdot (1 + 80x + 3240x^2 + o(x^2)) \cdot (1 - 120x + 7320x^2 + o(x^2)).$$

Перемножим скобки в правой части. Сумма слагаемых порядка малости большей, чем 2, есть  $o(x^2)$  при  $x \to 0$ . Поэтому

$$(1+100x+4950x^2+o(x^2))\cdot(1+80x+3240x^2+o(x^2)) =$$

$$= 1 + 100x + 4950x^2 + 80x + 80 \cdot 100x^2 + 3240x^2 + o(x^2) = 1 + 180x + 16190x^2 + o(x^2),$$

$$(1+180x+16190x^2+o(x^2))(1-120x+7320x^2+o(x^2)) =$$

$$= 1-120x+7320x^2+180x-120\cdot180x^2+16190x^2+o(x^2) = 1+60x+1950x^2+o(x^2).\Box$$

**12.4.3.** Написать разложение по целым неотрицательным степеням переменной x до члена с  $x^{13}$  функции

$$f(x) = \sqrt[3]{\sin x^3}.$$

 $\nabla$  Разложим сначала по формуле Тейлора при  $x \to 0$ 

$$\sin(x^3) = x^3 - \frac{(x^3)^3}{3!} + \frac{(x^3)^5}{5!} + o((x^3)^6) = x^3 - \frac{x^9}{3!} + \frac{x^{15}}{5!} + o(x^{18}) =$$

$$= x^3 \left( 1 - \frac{x^6}{3!} + \frac{x^{12}}{5!} + o(x^{15}) \right).$$

Получаем

$$f(x) = \sqrt[3]{x^3 \left(1 - \frac{x^6}{3!} + \frac{x^{12}}{5!} + o(x^{15})\right)} = x\sqrt[3]{1 - \frac{x^6}{3!} + \frac{x^{12}}{5!} + o(x^{15})}.$$

Разложим выражение

$$\sqrt[3]{1 - \frac{x^6}{3!} + \frac{x^{12}}{5!} + o(x^{15})}$$

до слагаемого с  $x^{12}$ . Используем формулу

$$(1+x)^{\frac{1}{3}} = 1 + \frac{x}{3} + \frac{1}{3} \left(-\frac{2}{3}\right) \frac{x^2}{2!} + \dots + (-1)^n \frac{1 \cdot 2 \cdot 5 \cdot 8 \dots}{3^n \cdot n!} x^n + o(x^n).$$

Получаем

$$\sqrt[3]{1 - \frac{x^6}{3!} + \frac{x^{12}}{5!} + o(x^{15})} =$$

$$= 1 + \frac{1}{3} \left( -\frac{x^6}{3!} + \frac{x^{12}}{5!} + o(x^{15}) \right) - \frac{2}{3^2 \cdot 2!} \left( -\frac{x^6}{3!} + \frac{x^{12}}{5!} + o(x^{15}) \right)^2 + \dots$$

Заметим, что слагаемые вида  $o(\left(-\frac{x^6}{3!}+\frac{x^{12}}{5!}+o(x^{15})\right)^n)$  есть  $o(x^{5n})$ . Поэтому в разложении до члена с  $x^{12}$  должны участвовать только слагаемые с номерами n=0,1,2. Приводя подобные и записывая все члены  $x^n$  с n>12 в  $o(x^{12})$  выводим

$$\sqrt[3]{1 - \frac{x^6}{3!} + \frac{x^{12}}{5!} + o(x^{15})} =$$

$$= 1 - \frac{x^6}{3 \cdot 3!} + \frac{x^{12}}{3 \cdot 5!} - \frac{2}{3^2 \cdot 2!} \left(\frac{x^6}{3!}\right)^2 + o(x^{12}) =$$

$$= 1 - \frac{x^6}{3 \cdot 3!} + \left(\frac{1}{3 \cdot 5!} - \frac{2}{3^2 \cdot 2! \cdot (3!)^2}\right) x^{12} + o(x^{12}) =$$

$$= 1 - \frac{x^6}{18} - \frac{x^{12}}{3240} + o(x^{12}).$$

Окончательно получаем

$$f(x) = x\sqrt[3]{1 - \frac{x^6}{3!} + \frac{x^{12}}{5!} + o(x^{15})} =$$

$$= x\left(1 - \frac{x^6}{18} - \frac{x^{12}}{3240} + o(x^{12})\right) = 1 - \frac{x^7}{18} - \frac{x^{13}}{3240} + o(x^{13}).\Box$$

**12.4.4.** С помощью формулы Тейлора приближенно вычислить  $\sqrt[3]{30}$  и оценить погрешность.

 $\nabla$  Используем формулу Тейлора для функции  $(1+x)^m$  при малых x. Представим  $\sqrt[3]{30}$  как значение функции  $(1+x)^{\frac{1}{3}}$  при некотором малом x

$$\sqrt[3]{30} = \sqrt[3]{3^3 + 3} = 3\sqrt[3]{1 + \frac{1}{9}} = 3\left(1 + \frac{1}{9}\right)^{\frac{1}{3}}.$$

Применяя формулу Тейлора с остатком в форме Лагранжа, получим

$$\left(1 + \frac{1}{9}\right)^{\frac{1}{3}} = 1 + \frac{1}{3} \cdot \frac{1}{9} - \frac{2}{3^2 \cdot 2!} \cdot \left(\frac{1}{9}\right)^2 + R_2\left(\frac{1}{9}\right).$$

Откидывая остаток, вычисляем

$$\sqrt[3]{30} = 3\left(1 + \frac{1}{9}\right)^{\frac{1}{3}} \simeq 3\left(1 + \frac{1}{3^3} - \frac{1}{9^3}\right) = 3,10699.$$

Погрешность при вычислении равна величине остатка в форме Лагранжа

$$|R_2\left(\frac{1}{9}\right)| = \left|\frac{f^{(2)}(c)}{9^2 \cdot 2!}\right| = \left|\frac{2}{3^2\sqrt[3]{(1+c)^5}}\right| < \frac{2}{3^2}, \quad c \in (0, \frac{1}{9}).$$

Значит погрешность не превышает

$$|R_2\left(\frac{1}{9}\right)| < \frac{2}{2!3^29^2} = 0,0041.\square$$

12.4.5. С помощью формулы Тейлора найти

$$\lim_{x \to 0} \frac{e^x \sin x - x(1+x)}{x^3}.$$

 $\nabla$  Записывая все члены с  $x^n$  при n>3 в  $o(x^3),$  разложим по формуле Тейлора функцию,

$$e^{x} \sin x = \left(1 + x + \frac{x^{2}}{2!} + o(x^{2})\right) \left(x - \frac{x^{3}}{3!} + o(x^{4})\right) =$$

$$= 1\left(x - \frac{x^{3}}{3!} + o(x^{4})\right) + x\left(x - \frac{x^{3}}{3!} + o(x^{4})\right) + \frac{x^{2}}{2!}\left(x - \frac{x^{3}}{3!} + o(x^{4})\right) + o(x^{3}) =$$

$$= x - \frac{x^{3}}{3!} + x^{2} + \frac{x^{3}}{2!} + o(x^{3}) = x + x^{2} + \frac{x^{3}}{3} + o(x^{3}).$$

Подставим полученное выражение в предел и приведем подобные

$$\lim_{x \to 0} \frac{e^x \sin x - x(1+x)}{x^3} = \frac{x + x^2 + \frac{x^3}{3} + o(x^3) - x - x^2}{x^3} = \frac{1}{3} + \lim_{x \to 0} \frac{o(x^3)}{x^3} = \frac{1}{3}.\Box$$

## 12.5 УПРАЖНЕНИЯ.

12.5.1 Написать разложение по целым неотрицательным степеням переменной до членов указанного порядка включительно следующих функций

$$1)y = \frac{(1+x)^{100}}{(1-2x)^{40}(1+2x)^{60}}$$
 до члена с  $x^2$ , 
$$2)y = \sqrt[n]{a^n+x}$$
 до члена с  $x^2$ , 
$$3)y = e^{2x-x^2}$$
 до члена с  $x^5$ , 
$$4)y = \frac{x}{e^x-1}$$
 до члена с  $x^4$ , 
$$5)y = \sqrt[3]{\sin x^3}$$
 до члена с  $x^{13}$ , 
$$6)y = \ln \cos x$$
 до члена с  $x^6$ , 
$$7)y = \ln \frac{\sin x}{x}$$
 до члена с  $x^6$ .

12.5.2. С помощью формулы Тейлора приближенно вычислить

1)
$$\sqrt[5]{250}$$
, 2) $\sqrt{e}$ , 3) sin 18°,  
4) ln(1, 2), 5) arctg 0, 8

и оценить погрешность.

12.5.3. С помощью формулы Тейлора найти

1) 
$$\lim_{x \to 0} \frac{\cos x - e^{-x^2/2}}{x^4}$$
,  
2)  $\lim_{x \to +\infty} \sqrt[6]{x^6 + x^5} - \sqrt[6]{x^6 - x^5}$ ,  
3)  $\lim_{x \to 0} \frac{a^x + a^{-x} - 2}{x^2}$ .

# 13. ЭКСТРЕМУМ ФУНКЦИИ.

# НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ ФУНКЦИИ.

**13.1.** Локальный экстремум. По определению, функция f(x) имеет в точке  $x_0$  локальный максимум, если существует такая окрестность  $(x_0 - \delta, x_0 + \delta)$ 

точки  $x_0$ , что для всех  $x \in (x_0 - \delta, x_0 + \delta)$  выполнено неравенство  $f(x_0) \ge f(x)$ . Аналогично, функция f(x) имеет в точке  $x_0$  локальный минимум, если существует такая окрестность  $(x_0 - \delta, x_0 + \delta)$  точки  $x_0$ , что для всех  $x \in (x_0 - \delta, x_0 + \delta)$  выполнено неравенство  $f(x_0) \le f(x)$ . Говорят, что функция f(x) имеет в точке  $x_0$  локальный экстремум, если функция f(x) имеет в точке  $x_0$  локальный максимум или минимум.

- **13.1.1.** *Необходимое условие экстремума.* В точке экстремума производная функции либо не существует либо равна нулю. Точки, в которых производная функции либо не существует либо равна нулю будем называть *критическими точками*.
- 13.2. Достаточные условия экстремума.
- **13.2.1** Первое достаточное условие экстремума. Пусть функция f(x) непрерывна в некоторой окрестности точки  $x_0$  и имеет производную во всех точках этой окрестности, за исключением, возможно, самой точки  $x_0$ . Если производная меняет знак при переходе  $x_0$ , то  $x_0$  есть точка локального экстремума. Причем, если

$$f'(x) \le 0$$
 при  $x < x_0$  и  $f'(x) \ge 0$  при  $x > x_0$ 

(т.е. знак производной меняется с "-"на "+"при возрастании аргумента x), то  $x_0$  есть точка локального минимума, если

$$f'(x) \ge 0$$
 при  $x < x_0$ и  $f'(x) \le 0$  при  $x > x_0$ 

(т.е. знак производной меняется с "+"на "-"при возрастании аргумента x), то  $x_0$  есть точка локального максимума. Если производная не меняет знак при переходе  $x_0$ , то в  $x_0$  нет локального экстремума.

13.2.2 Второе достаточное условие экстремума. Если функция f(x) имеет вторую производную,  $f'(x_0) = 0$  и  $f''(x_0) \neq 0$ , то в  $x_0$  функция имеет локальный экстремум. Причем, если  $f''(x_0) > 0$ , то  $x_0$  есть точка локального минимума, если  $f''(x_0) < 0$ , то  $x_0$  есть точка локального максимума.

**13.2.3** *Третье достаточное условие экстремума.* Пусть функция f(x) дифференцируема n раз и

$$f^{(k)}(x_0) = 0, k = 1, \dots, n - 1, \ f^{(n)}(x_0) \neq 0.$$

Тогда, если n — число четное, то в  $x_0$  функция имеет локальный экстремум. Причем, если  $f^{(n)}(x_0) > 0$ , то  $x_0$  есть точка локального минимума, если  $f^{(n)}(x_0) < 0$ , то  $x_0$  есть точка локального максимума. Если n — число нечетное, то в  $x_0$  функция не имеет локального экстремума.

13.3 Наибольшее и наименьшее значения функции. Наибольшее и наименьшее значения непрерывной на отрезке [a,b] функции f(x) достигаются либо в критических точках(т.е. там, где производная функции не существует или равна нулю), либо на концах отрезка.

# 13.4. Примеры.

# 13.4.1. Найти экстремумы функции

$$y = \frac{2x}{1+x^2}.$$

$$y' = \frac{2(1-x^2)}{(1+x^2)^2}.$$

Производная определена на всей числовой прямой и равна нулю в x=-1 и x=1. Следовательно, точки экстремума функции находятся среди этих точек. Выясним, в каких точках выполняется первое достаточное условие экстремума. Изменение знака производной приводится в следующей таблице:

Знак производной меняется при переходе каждой из этих точек. Значит обе точки x=-1 и x=1 являются экстремумами функции. Как следует из

таблицы, точка x=-1 — точка минимума и значение f(-1)=-1, а x=1 — точка максимума и  $f(1)=1.\square$ 

# 13.4.2. Найти экстремумы функции

$$y = x\sqrt[3]{1-x}.$$

$$y = \sqrt[3]{1-x} - \frac{x}{3\sqrt[3]{(1-x)^2}} = \frac{3-4x}{3\sqrt[3]{(1-x)^2}}.$$

Производная равна нулю при  $x=\frac{3}{4}$  и неопределена в точке x=1. Согласно необходимому условию экстремума, точки экстремума функции находятся среди этих точек. Выясним, как меняется знак производной:

В точке  $x=\frac{3}{4}$  знак производной меняется с "+"на "- поэтому  $x=\frac{3}{4}$  является точкой локального максимума. В точке x=1 знак производной не меняется, поэтому точка x=1 не является экстремумом.  $\square$ 

# 13.4.3. Найти экстремумы функции

$$y = \cos x + \frac{1}{2}\cos 2x.$$

 $\nabla$  Вычислим производную функции  $y' = -\sin x - \sin 2x$ . Производная определена на всей числовой прямой. Выясним в каких точках производная равна нулю. Решая тригонометрическое уравнение  $\sin x + \sin 2x = 0$ , находим бесконечное число критических точек  $x = \pi k$ ,  $k \in \mathbb{Z}$  и  $x = \pm \frac{2\pi}{3} + 2\pi n$ ,  $n \in \mathbb{Z}$ . Воспользуемся вторым достаточным условием экстремума, для того чтобы выбрать среди критических точек точки экстремума . Найдем вторую производную функции  $y'' = -\cos x - 2\cos 2x$ . Приведем значения второй призводной в найденных точках в таблице

$$x = 2\pi k, k \in \mathbb{Z} \quad x = \pi(2k+1), k \in \mathbb{Z} \quad x = \pm \frac{2\pi}{3} + 2\pi n, n \in \mathbb{Z}$$
$$y''(x) = -3 < 0 \qquad y''(x) = -1 < 0 \qquad y''(x) = \frac{3}{2} > 0$$

Из второго достаточного условия экстремума следует, что точки вида

$$x = \pi k, k \in \mathbb{Z}$$

являются точками локального максимума, а точки

$$x = \pm \frac{2\pi}{3} + 2\pi, n \in \mathbb{Z}$$

являются точками локального миниимума.

## **13.4.4.** Найти экстремумы функции $y = x + \sin x$ .

 $\nabla$  Вычислим производную функции  $y'=1+\cos x$ . Производная равна нулю в бесконечном числе критических точек  $x=(2k+1)\pi, k\in\mathbb{Z}$ . Воспользуемся третьим достаточным условием экстремума, для того чтобы выбрать среди критических точек точки экстремума . Найдем вторую производную функции  $y''=-\sin x$ . Значения второй призводной в найденных точках  $y''((2k+1)\pi)=0$ . Найдем третью производную функции  $y'''=-\cos x$ , тогда  $y'''((2k+1)\pi)=1$ . Так как первая и вторая производные в критических точках равны нулю, а третья производная в критических точках не равна нулю, то согласно третьему достаточному условию экстремума у данной функции экстремумов нет.  $\square$ 

# 13.4.5. Найти наибольшее и наименьшее значение функции

$$y = x + \frac{1}{x}$$

на отрезке [0, 01; 100].

⊽ Найдем критические точки функции. Для этого вычислим производную

$$y = 1 - \frac{1}{r^2} = \frac{x^2 - 1}{r^2}.$$

Производная равна нулю в точках x=1 и x=-1 и не определена в точке x=0. Точка x=0 не принадлежит области допустимых значений функции, а точка x=0 не принадлежит отрезку [0,01;100]. В точке x=1 производная меняет знак с "-"на "+ поэтому точка x=1 является точкой локального минимума. Для нахождения абсолютных минимума

и максимума на отрезке [0,01;100], сравним значения функции на концах отрезка  $f(0,01)=100,01,\ f(100)=100,01$  и значение функции в точке локального минимума f(1)=2. Очевидно наибольшим значением является значение f(0,01)=f(100)=100,01, а наименьшим значением является значение f(1)=2.

#### 13.5. УПРАЖНЕНИЯ.

## 13.5.1 Найти экстремумы следующих функций

$$5)y = \sin^4 x + \cos^4 x,$$

$$1)y = \frac{x^2 - 3x + 2}{x^2 + 2x + 1},$$

$$6)y = \sqrt{x} \ln x,$$

$$7)y = \arctan x - \frac{1}{2} \ln(1 + x^2),$$

$$3)y = \cos x + \cosh x,$$

$$8)y = \frac{e^x}{x},$$

$$4)y = xe^x,$$

$$9)y = e^x \sin x.$$

13.5.2. Найти наибольшее и наименьшее значения следующих функций

$$1)y = x^2 - 4x + 6$$
на отрезке  $[-3; 10],$   $1)y = \sqrt{5 - 4x}$ на отрезке  $[-1; 1].$ 

# 14. ВОЗРАСТАНИЕ И УБЫВАНИЕ ФУНКЦИЙ.

## ВЫПУКЛОСТЬ ВВЕРХ И ВНИЗ. ТОЧКИ ПЕРЕГИБА.

**14.1.** Возрастание и убывание функций. Функция f(x) называется возрастающей на промежутке (a,b), если

$$f(x_1) < f(x_2)$$
 при  $a < x_1 < x_2 < b$ .

Функция f(x) называется убывающей на промежутке (a,b), если

$$f(x_1) > f(x_2)$$
 при  $a < x_1 < x_2 < b$ .

Если функция возрастает или убывает на некотором промежутке, то говорят, что она *монотонна* на этом промежутке.

- **14.2.** Признак монотонности функций. Если f'(x) > 0 при  $x \in (a,b)$ , то функция f(x) возрастает на промежутке (a,b). Если f'(x) < 0 при всех x из (a,b), то функция f(x) убывает на промежутке (a,b).
- **14.3.** Выпуклость вверх и вниз. Функция f(x) называется выпуклой вверх на промежутке (a,b), если график y=f(x)(a < x < b) расположен ниже касательной, проведенной к графику в любой точке промежутка (a,b).

Функция f(x) называется выпуклой вниз на промежутке (a,b), если график y = f(x)(a < x < b) расположен выше касательной, проведенной к графику в любой точке промежутка (a,b).

- **14.4.** Признак выпуклости вверх и вниз. Если f''(x) > 0 при x из (a,b), то функция f(x) является выпуклой вниз на промежутке (a,b). Если f''(x) < 0 при  $x \in (a,b)$ , то функция f(x) является выпуклой вверх на промежутке (a,b).
- **14.5.** Точки перегиба. Точки, в которых меняется направление выпуклости функции называются точка и перегиба. Для того, чтобы точка  $x_0$  была точкой перегиба необходимо, чтобы  $f''(x_0) = 0$  либо вторая производная в  $x_0$  не существовала, и достаточно, чтобы f''(x) меняла свой знак при переходе через  $x_0$ .

# 14.6. Примеры.

14.6.1. Определить промежутки возрастания и убывания функции

$$y = \frac{2x}{1+x^2}.$$

| $\overline{x < -1}$ | -1 < x < 1 | x > 1     |
|---------------------|------------|-----------|
| y'(x) < 0           | y'(x) > 0  | y'(x) < 0 |

Следовательно на промежутках  $(-\infty, -1)$  и  $(1, +\infty)$  функция убывает, а на промежутке (-1, 1) возрастает.  $\square$ 

14.6.2. Определить промежутки выпуклости вверх и вниз, найти точки перегиба функции

$$y = \frac{2x}{1+x^2}.$$

⊽ Первая производная вычислена в примере 13.4.1.

$$y' = \frac{2(1-x^2)}{(1+x^2)^2}.$$

Вторая производная

$$y'' = \frac{-4x(4-x^2)}{(1+x^2)^3}$$

определена на всей числовой прямой и равна нулю при  $x=-2\,,\;x=0\,$  и  $x=2\,.$  Изменение знака второй производной приводится в следующей таблице:

$$\begin{array}{c|ccccc} x < -2 & -2 < x < 0 & 0 < x < 2 & x > 2 \\ \hline y''(x) < 0 & y''(x) > 0 & y''(x) < 0 & y''(x) > 0 \end{array}$$

Следовательно, на промежутках  $(-\infty, -2)$  и (0, 2) функция выпукла вверх, а на промежутках (-2, 0) и  $(2, +\infty)$  выпукла вниз. Точки x = -2, x = 0 и x = 2 являются точками перегиба.  $\square$ 

#### 14.7. УПРАЖНЕНИЯ.

14.7.1. Определить промежутки возрастания и убывания следующих функций

$$5)y = \sin^4 x + \cos^4 x,$$

$$1)y = 3x - x^3,$$

$$2)y = \frac{\sqrt{x}}{x + 100},$$

$$3)y = x + \sin x,$$

$$4)y = \frac{x^2}{2^x},$$

$$5)y = \sin^4 x + \cos^4 x,$$

$$6)y = x^2 - \ln x^2,$$

$$7)y = x + \sin x,$$

$$8)y = x(\sqrt{\frac{3}{2}} + \sin \ln x).$$

**14.7.2.** Определить промежутки выпуклости вверх и вниз, найти точки перегиба следующих функций

$$5)y = e^{-x^{2}},$$

$$1)y = 3x^{2} - x^{3},$$

$$2)y = \frac{a^{3}}{x^{2} + a^{2}},$$

$$3)y = x + x^{\frac{5}{3}},$$

$$4)y = \sqrt{1 + x^{2}},$$

$$5)y = e^{-x^{2}},$$

$$6)y = \ln(1 + x^{2}),$$

$$7)y = x + \sin x,$$

$$8)y = x^{x}.$$

## 15. АСИМПТОТЫ

**15.1.** Определение асимптоты. Пусть функция f(x) задана при достаточно больших x. Прямая y = kx + b называется асимптотой  $\kappa$  графику функции f(x) при  $x \to +\infty$ , если

$$\lim_{x \to +\infty} (f(x) - kx - b) = 0.$$

Аналогично определяется асимптота к графику функции при  $x \to -\infty$ . Если k=0, то прямая y=b называется горизонтальной асимптотой. Вертикальной асимптотой при  $x \to a$  называется прямая x=k, если

$$\lim_{x \to k} f(x) = \infty.$$

**15.2.** Отыскание асимптот к графику функции f(x). Если существуют пределы

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k \text{ in } \lim_{x \to +\infty} (f(x) - kx) = b,$$

то прямая y = kx + b является асимптотой к графику функции f(x) при  $x \to +\infty$ . Аналогично отыскивается асимптота при  $x \to -\infty$ .

**15.3.** Отыскание асимптот к кривой, заданной параметрически. Пусть кривая задана параметрически уравнениями x=x(t); y=y(t). Если существует такое  $t_0$ , что  $\lim_{t\to t_0} x(t)=+\infty$ ,  $\lim_{t\to t_0} y(t)=+\infty$  и существуют пределы

$$\lim_{t \to t_0} \frac{y(t)}{x(t)} = k \text{ if } \lim_{x \to t_0} (y(t) - kx(t)) = b,$$

то прямая y=kx+b является асимптотой к кривой при  $x\to +\infty$ . Аналогично отыскивается асимптота при  $x\to -\infty$ .

# 15.4. Примеры.

## 15.4.1. Найти асимптоты функции

$$y = \frac{2x}{1 + x^2}.$$

⊽Вычислим пределы

$$k = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{2x}{x(1+x^2)} = 0 \text{ if } b \lim_{x \to +\infty} f(x) - kx = \lim_{x \to +\infty} \frac{2x}{(1+x^2)} = 0.$$

Такие же пределы получаются при  $x \to -\infty$ . Значит при  $x \to \pm \infty$  функция обладает горизонтальной асимптотой  $y = 0.\square$ 

## 15.4.2. Найти асимптоты функции

$$y = \frac{x^2(x-1)}{(1+x)^2}.$$

▽ Вычислим пределы

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2(x-1)}{x(1+x)^2} = 1$$
 и

$$b = \lim_{x \to \infty} f(x) - kx = \lim_{x \to \infty} \frac{x^2(x-1)}{(1+x)^2} - x = -3.$$

Полученные пределы не зависят от знака x, поэтому при  $x \to \pm \infty$  функция обладает асимптотой y = x - 3.

Кроме того функция обладает вертикальной асимптотой x=-1, так как

$$\lim_{x \to -1} \frac{x^2(x-1)}{(1+x)^2} = \infty.\Box$$

**15.4.3.** Найти асимптоты функции y=f(x), заданной параметрически уравнениями  $x(t)=\frac{3at}{1+t^3}$  и  $y(t)=\frac{3at^2}{1+t^3}$ .

 $\bigtriangledown$  Заметим, что  $\lim_{t \to -1} x(t) = \infty$   $\lim_{t \to -1} y(t) = \infty$ . Вычислим пределы

$$k = \lim_{x \to \infty} \frac{y(t)}{x(t)} = \lim_{t \to -1} \frac{3at^2}{1+t^3} \div \frac{3at}{1+t^3} = -1$$
 и

$$\lim_{x \to \infty} y(t) - kx(t) = \lim_{t \to -1} \frac{3at^2}{1 + t^3} + \frac{3at}{1 + t^3} = \lim_{t \to -1} \frac{3at}{1 - t + t^2} = -a.$$

Полученные пределы не зависят от знака t и, следовательно, от знака x, поэтому при  $x \to \pm \infty$  функция y = f(x) обладает асимптотой y = -x - a.

#### 15.5. УПРАЖНЕНИЯ.

### 15.5.1. Найти асимптоты следующих функций

$$1)y = \frac{x^3}{3x^2 - x^3},$$

$$2)y = \sqrt{x^2 + x},$$

$$3)y = \sqrt[3]{x^2 + x^3},$$

$$4)y = \frac{xe^x}{e^x - 1},$$

$$5)y = \ln(1 + e^x),$$

$$8)y = x + \arccos\frac{1}{x}.$$

**15.5.1.** Найти асимптоты следующих функций, заданных параметрически уравнениями

1)
$$x = \operatorname{ch} t, y = \operatorname{sh} t,$$
  
2) $x = 2t - t^2, y = 3t - t^3,$   
3) $x = \frac{t^2}{1 - t^2}, y = \frac{t}{t^2 - 1},$   
4) $x = t + e^t, y = 2t + e^{2t}.$ 

# 16. ПОСТРОЕНИЕ ГРАФИКОВ ФУНКЦИЙ

- **16.1.** *План построения.* При построении графиков используется следующий план исследования функции.
  - І. Исследования, проводимые без использования производной.
- 1) Определить область существования функции.
- 2) Выяснить симметрию графика (четность или нечетность) и периодичность.
- 3) Найти нули функции, промежутки постоянства знака.
- 4) Найти точки разрыва функции, промежутки непрерывности.
- 5) Исследовать поведение функции на границе области существования, найти асимптоты.

- II. Исследования, проводимые при помощи производных.
- 6) Вычислить производную функции.
- 7) Найти точки экстремума и промежутки монотонности функции.
- 8) Найти точки перегиба и промежутки выпуклости вверх и вниз.

### 16.2. Примеры.

### 16.2.1. Построить график функции

$$y = \frac{x^2(x-1)}{(1+x)^2}.$$

 $\nabla$  Функция определена всюду, кроме точки x=-1. Данная функция не является четной или нечетной, не является периодичной. Решая уравнение

$$\frac{x^2(x-1)}{(1+x)^2} = 0,$$

находим нули функции x = 0 и x = 1.

Функция f(x)>0 при x>1 и f(x)<0 при x<1. Функция непрерывна на всей области существования. Как показано в примере 15.2.2., при  $x\to\pm\infty$  функция обладает асимптотой y=x-3 и функция обладает вертикальной асимптотой x=-1 при  $x\to-1$ .

Найдем производную

$$y' = \frac{(3x^2 - 2x)(x+1)^2 - 2(x+1)(x^3 - x^2)}{(1+x)^4} = \frac{x(x^2 + 3x - 2)}{(1+x)^3}.$$

Производная равна нулю в точках  $x=0,~x=\frac{-3-\sqrt{17}}{2}\simeq -3,56$  и  $x=\frac{-3+\sqrt{17}}{2}\simeq 0,56$  и не определена в точке x=-1. Обозначим точки по возрастанию  $x_1=\frac{-3-\sqrt{17}}{2},~x_2=-1,~x_3=0$  и  $x_4=\frac{-3+\sqrt{17}}{2}$ . Знак производной и промежутки монотонности приводятся в следующей таблице:

| $\overline{x < x_1}$ | $x_1 < x < x_2$ | $x_2 < x < x_3$ | $x_3 < x < x_4$ | $x > x_4$  |
|----------------------|-----------------|-----------------|-----------------|------------|
| y'(x) > 0            | y'(x) < 0       | y'(x) > 0       | y'(x) < 0       | y'(x) > 0  |
| возрастает           | убывает         | возрастает      | убывает         | возрастает |



Рис. 1: График функции примера 16.2.1

Как следует из таблицы, в точках  $x_2=-1$  и  $x_4=\frac{-3+\sqrt{17}}{2}$  — минимумы, а в точках  $x_1=\frac{-3-\sqrt{17}}{2}$  и  $x_3=0$  — максимумы. Причем  $f(x_1)\simeq -8,82,$   $\lim_{x\to -1}f(x)=\infty,\ f(x_1)=0$  и  $f(x_4)\simeq -0,06.$ 

Найдем вторую производную

$$y'' = \frac{(3x^2 + 6x - 2)(x - 1)^3 - 3(x + 1)^2(x^3 + 3x^2) - 2x}{(1 + x)^6} = \frac{10x - 2}{(1 + x)^4}.$$

Вторая производная равна нулю в точке x=0,2 и не определена в при x=-1. В точке x=0,2 вторая производная меняет знак с "-"на "+"и в точке x=-1 вторая производная не меняет знак. Следовательно, на промежутках  $(-\infty;-1)$  и (-1;0,2) функция выпукла вверх, а на промежутке  $(0,2;+\infty)$  выпукла вниз. Точка x=0,2 является точкой перегиба.

График функции представлен на рис. 1.□

### 16.2.2. Построить график функции

$$y = (x+2)^{\frac{2}{3}} - (x-2)^{\frac{2}{3}}.$$

 $\nabla$  Функция определена на всей числовой прямой. Данная функция является нечетной, поэтому достаточно исследовать ветвь графика при x>0. Для построения полного графика необходимо к полученной ветви добавить ее симметричное относительно начала координат отображение. Функция не периодична. Найдем нули функции. Уравнение

$$(x+2)^{\frac{2}{3}}-(x-2)^{\frac{2}{3}}=0$$
 эквивалентно  $|x+2|=|x+2|$ .

Решая последнее, получаем, что точка x=0 — нуль функции. Функция f(x)>0 при x>0 и f(x)<0 при x<0. Функция непрерывна на всей области существования. Так как предел

$$\lim_{x \to \infty} (x+2)^{\frac{2}{3}} - (x-2)^{\frac{2}{3}} = \lim_{x \to \infty} \frac{(x-2)^2 - (x+2)^2}{(x+2)^{\frac{4}{3}} + (x-2)^{\frac{2}{3}} (x+2)^{\frac{2}{3}} + (x-2)^{\frac{4}{3}}} = \lim_{x \to \infty} \frac{8x}{\sqrt[3]{x^4}} = 0,$$

то прямая y=0 является горизонтальной асимптотой к графику функции при  $x \to \infty$  .



Рис. 2: График функции примера 16.2.2.

Найдем производную

$$y' = \frac{2}{3\sqrt[3]{x+2}} - \frac{2}{3\sqrt[3]{x-2}} =$$

$$= \frac{2((x-2) - (x+2))}{3\sqrt[3]{x+2}\sqrt[3]{x-2}((x+2)^{\frac{4}{3}} + (x-2)^{\frac{2}{3}}(x+2)^{\frac{2}{3}} + (x-2)^{\frac{4}{3}})} =$$

$$= \frac{-8}{3\sqrt[3]{x+2}\sqrt[3]{x-2}((x+2)^{\frac{4}{3}} + (x-2)^{\frac{2}{3}}(x+2)^{\frac{2}{3}} + (x-2)^{\frac{4}{3}})}.$$

Производная не определена в точках x=-2, x=2 и нигде не равна нулю. В точке x=2 знак производной меняется с "+"на "- поэтому x=2 является точкой локального максимума. Из соображений симметрии x=-2 — точка минимума. Причем  $f(2)=2\sqrt[3]{2}\simeq 2,52, f(-2)=-2\sqrt[3]{2}\simeq -2,52$ . На промежутках  $(-\infty,-2)$  и  $(2,+\infty)$  функция убывает, а на промежутке (-2,2) возрастает.

Найдем вторую производную

$$y'' = \frac{-2}{9(x+2)^{\frac{4}{3}}} + \frac{2}{9(x-2)^{\frac{4}{3}}} =$$

$$= \frac{-2((x-2)^4 - (x+2)^4)}{9(x+2)^{\frac{4}{3}}(x-2)^{\frac{4}{3}}((x+2)^{\frac{8}{3}} + (x-2)^{\frac{4}{3}}(x+2)^{\frac{4}{3}} + (x-2)^{\frac{8}{3}})} =$$

$$= \frac{-8x(1+x^2)}{9(x+2)^{\frac{4}{3}}(x-2)^{\frac{4}{3}}((x+2)^{\frac{8}{3}} + (x-2)^{\frac{4}{3}}(x+2)^{\frac{4}{3}} + (x-2)^{\frac{8}{3}})}.$$

Вторая производная равна нулю в точке x=0 и не определена при x=-2 и x=2. В точке x=0 вторая производная меняет знак с "-"на "+"и при x=-2 и x=2 вторая производная не меняет знак. Следовательно, на промежутках  $(-\infty,-2)$  и (-2,0) функция выпукла вверх, а на промежутках (0,2) и  $(2,+\infty)$  выпукла вниз. Точка x=0 является точкой перегиба.

График функции представлен на рис. 2. □

### 16.2.3. Построить график функции

$$y = \sin x + \frac{\sin 3x}{3}.$$

 $\nabla$  Функция определена на всей числовой прямой и является нечетной. Функция периодична с периодом  $2\pi$ . Достаточно исследовать функцию на отрезке  $[0,\pi]$ . Весь график получается симметричным относительно начала координат продолжением графика на отрезке  $[0,\pi]$  и, далее, периодическим продолжением.

Найдем нули функциии. Упростим функцию

$$\sin x + \frac{\sin 3x}{3} = \sin x + \sin x - \frac{4}{3}\sin^3 x = 2\sin x(1 - \frac{2}{3}\sin^2 x).$$

Так как  $1 - \frac{2}{3}\sin^2 x > 0$  при всех x, то уравнение  $\sin x + \frac{\sin 3x}{3} = 0$  сводится к уравнению  $\sin x = 0$ . Решая последнее, получаем что точки  $x = \pi k, k \in \mathbb{Z}$  — нули функции. На отрезке  $[0,\pi]$  функция f(x) > 0, значит (исходя из нечетности) на отрезке  $[-\pi,0]$  функция f(x) < 0. Функция непрерывна и не имеет ассимптот.

Найдем производную

$$y' = \cos x + \cos 3x = \cos x + 4\cos^3 x - 3\cos x = 2\cos x(2\cos^2 x - 1) = 2\cos x\cos 2x.$$

На отрезке  $[0,\pi]$  производная равна нулю при  $x=\frac{\pi}{4},\ x=\frac{\pi}{2}$  и  $x=\frac{3\pi}{4}$ . Для исследования на экстремум используем второй достаточный признак экстремума. Найдем вторую производную  $y''=-(\sin x+3\sin 3x)$ . В точках  $x=\frac{\pi}{4}$  и  $x=\frac{3\pi}{4}$  вторая производная  $y''=-2\sqrt{2}<0$ , следовательно в этих точках — локальные максимумы и  $f(\frac{\pi}{4})=f(\frac{3\pi}{4})=\frac{2\sqrt{2}}{3}\simeq 0,94$ .

В точке  $x=\frac{\pi}{2}$  вторая производная y''=2>0, следовательно в точке  $x=\frac{\pi}{4}$  — локальнй минимум и  $f(\frac{\pi}{2})=\frac{2}{3}\simeq 0,67$ .

Найдем точки перегиба. Для этого решим уравнение

$$\sin x + 3\sin 3x = 10\sin x - 12\sin^3 x = 0.$$



Рис. 3: График функции примера 16.2.3.

Вторая производная на отрезке  $[0,\pi]$  равна нулю при

$$x_0 = 0, \ x_1 = \arcsin\sqrt{\frac{5}{6}} \simeq 0,37\pi, \ x_2 = \pi - \arcsin\sqrt{\frac{5}{6}} \simeq 0,63\pi, \ x_3 = \pi.$$

На отрезках  $[0, x_1]$  и  $[x_2, \pi]$  вторая производная отрицательна, следовательно функция выпукла вверх. На отрезке  $[x_1, x_2]$  вторая производная положительна, следовательно функция выпукла вниз. Точки  $x_0, x_1, x_2$  и  $x_3$  являются точками перегиба.

Построим график функции сначала на отрезке  $[0,\pi]$ . Затем отобразим полученную кривую симметрично началу координат. Имеем график функции на отрезке  $[-\pi,\pi]$ . Периодически продолжим график на всю числовую прямую. График функции представлен на рис.  $3.\square$ 

### 16.2.4. Построить кривую, заданную параметрически уравнениями

$$x(t) = \frac{3at}{1+t^3}; y(t) = \frac{3at^2}{1+t^3}.$$

 $\nabla$  Построим сначала вспомогательные графики функций x=x(t) и y=y(t). Обе функции определены всюду, кроме точки t=-1, не являются четными или нечетными, не являются периодичными. Точка t=0 является нулем обеих функций. Функция x(t)>0 при t<-1 и t>0, x(t)<0 при -1< t<0. Функция y(t)>0 при t>-1 и y(t)<0 при t<-1. Заметим, что  $\lim_{t\to\infty} x(t)=\lim_{t\to\infty}y(t)=0$ . Значит, прямая x=0 является горизонтальной асимптотой функции x=x(t) и прямая y=0 является горизонтальной асимптотой функции y=y(t). Кроме того, прямая t=0 является вертикальной асимптотой обеих функций.



Рис. 4: x=x(t).

Найдем производные

$$x'(t) = \frac{3a(1-2t^3)}{(1+t^3)^2}$$
 и  $y'(t) = \frac{3at(2-t^3)}{(1+t^3)^2}$ .

Производная x'(t)=0 при  $t=\frac{1}{\sqrt[3]{2}}$  и не определена при t=-1. Исследуя знак производной x'(t), получаем, что точка  $t=\frac{1}{\sqrt[3]{2}}$  — точка максимума функции x(t) и  $x(\frac{1}{\sqrt[3]{2}})=a\sqrt[3]{4}$ , а точка t=-1 не является экстремумом функции x(t). Производная y'(t)=0 при t=0 и  $t=\sqrt[3]{2}$  и неопределена при t=-1. Исследуя знак производной y'(t), получаем, что точка t=0 — точка минимума функции y(t) и y(0)=0; точка  $t=\sqrt[3]{2}$  — точка максимума функции y(t) и  $y(\sqrt[3]{2})=a\sqrt[3]{4}$ ; точка t=-1 не является экстремумом функции y(t). Графики функций x=x(t) и y=y(t) представлены на рис. 4 и рис. 5.

Приступим к построению графика кривой. Область изменения параметра t — числовая прямая, разбивается точками  $t=-1,\ t=0,\ t=\frac{1}{\sqrt[3]{2}}, t=\sqrt[3]{2}$  (это особые точки графиков x=x(t) и y=y(t)) на интервалы. Используя



Рис. 5: y=y(t).

вспомогательные графики, изучим поведение функций x=x(t) и y=y(t) на каждом из полученных интервалов. Полученные данные приведем в виде таблицы для  $t\leq 0$ :

| $t \to -\infty$ | t < -1                | $t \rightarrow -1-$ | $t \rightarrow -1+$ | -1 < t < 0            | t = 0    |
|-----------------|-----------------------|---------------------|---------------------|-----------------------|----------|
| $x(t) \to 0$    | $x(t) > 0 \uparrow$   | $x(t) \to +\infty$  | $x(t) \to -\infty$  | $x(t) < 0 \uparrow$   | x(t) = 0 |
| $y(t) \to 0$    | $y(t) < 0 \downarrow$ | $y(t) \to -\infty$  | $y(t) \to +\infty$  | $y(t) > 0 \downarrow$ | y(t) = 0 |
|                 |                       |                     |                     |                       | y(t)—min |

Продолжение таблицы для t > 0:

| $0 < t < \frac{1}{\sqrt[3]{2}}$ | $t = \frac{1}{\sqrt[3]{2}}$ | $\frac{1}{\sqrt[3]{2}} < t < \sqrt[3]{2}$ | $t = \sqrt[3]{2}$     | $t > \sqrt[3]{2}$     | $t \to +\infty$ |
|---------------------------------|-----------------------------|-------------------------------------------|-----------------------|-----------------------|-----------------|
| $x(t) > 0 \uparrow$             | $x(t) = a\sqrt[3]{4}$       | $x(t) > 0 \downarrow$                     | $x(t) = a\sqrt[3]{2}$ | $x(t) > 0 \downarrow$ | $x(t) \to 0$    |
| $y(t) > 0 \uparrow$             | $y(t) = a\sqrt[3]{2}$       | $y(t) < 0 \uparrow$                       | $y(t) = a\sqrt[3]{4}$ | $y(t) > 0 \downarrow$ | $y(t) \to 0$    |
|                                 | x(t)—max                    |                                           | y(t)— max             |                       |                 |

Из таблицы следует, во-первых, что точка  $\mathrm{O}(0,0)$  есть точка самопересечения кривой, так как x(t)=y(t)=0 при t=0 и при  $t\to +\infty$ . Во-вторых



Рис. 6: Параметрически заданная кривая.

точка x(t)=y(t)=0 есть точка минимума одной из ветвей кривой ( при  $-1< t<\frac{1}{\sqrt[3]{2}}$ ), так как при x< x(0)=0 параметр t<0 и y(t) убывает, а при x>x(0)=0 параметр t>0 и y(t) возрастает. В-третьих, точка  $x(t)=a\sqrt[3]{2},y(t)=a\sqrt[3]{4},t=\sqrt[3]{2}$  есть точка локально максимума ветви кривой при  $\frac{1}{\sqrt[3]{2}}< t$ , так как при переходе по возрастанию параметром t значения  $\sqrt[3]{2}$  переменная x(t) убывая переходит значение  $x(t)=a\sqrt[3]{2}$ , переменная же y(t) возрастает при  $t<\sqrt[3]{2}$  до значения  $y(t)=a\sqrt[3]{4}$ , а при  $t>\sqrt[3]{2}$  переменная y(t) убывает. В-четвертых точка  $x(t)=a\sqrt[3]{4}$ ,  $y(t)=a\sqrt[3]{2}$ ,  $t=\frac{1}{\sqrt[3]{2}}$  есть точка возврата кривой, так как при переходе по возрастанию параметром t значения  $\frac{1}{\sqrt[3]{2}}$  переменная y(t) возрастает при  $t<\frac{1}{\sqrt[3]{2}}$  до значения  $x(t)=a\sqrt[3]{4}$ , а при  $t>\frac{1}{\sqrt[3]{2}}$  переменная же x(t) возрастает при  $t<\frac{1}{\sqrt[3]{2}}$  до значения  $x(t)=a\sqrt[3]{4}$ , а при  $t>\frac{1}{\sqrt[3]{2}}$  переменная x(t) убывает.

В примере 15.4.3 найдена асимптота кривой при  $x \to \pm \infty$ . Это прямая с уравнением y = -x - a.

Найдем производные  $y_x'$  и  $y_{xx}''(x_0)$  по формулам производных параметрически

заданных функций:

$$y'_{x} = \frac{y'(t)}{x'(t)} = \frac{t(2-t^{3})}{1-2t^{3}}$$
$$y''_{xx} = \frac{y''_{xt}(t)}{x'(t)} = \frac{2(t^{3}+1)^{2}}{(1-2t^{3})^{2}} \div \frac{3a(1-2t^{3})}{(1+t^{3})^{2}} = \frac{2(t^{3}+1)^{4}}{(1-2t^{3})^{3}}.$$

Исследование знака первой производной подтверждает сведения, приведенные в таблице выше. Вторая производная меняет знак с "+"на "-"при возрастании параметра t в точке  $t=\frac{1}{\sqrt[3]{2}}$ . Следовательно, на промежутках  $(-\infty,-1)$  и  $(-1,\frac{1}{\sqrt[3]{2}})$  функция выпукла вниз, а на промежутке  $(\frac{1}{\sqrt[3]{2}},+\infty)$  выпукла вверх. Точка  $x(\frac{1}{\sqrt[3]{2}})=a\sqrt[3]{4}$  является точкой перегиба. Из графика видно, что точка x=0,y=0, соответствующая значению параметра  $t\to+\infty$ , также является точкой перегиба на одной из ветвей кривой.

Кривая изображена на рис. 6. □

#### 16.3. УПРАЖНЕНИЯ.

#### 16.3.1. Построить графики следующих функций

$$10)y = \cos^4 x + \sin^4 x,$$

$$1)y = 3x^2 - x^3,$$

$$2)y = \frac{x^4}{(1+x)^3},$$

$$11)y = \cos^2 x + \sin x,$$

$$12)y = \cos^2 x + \sin x,$$

$$13)y = \frac{\sin x}{\sin(x+\pi/4)},$$

$$14)y = e^{2x-x^2},$$

$$15)y = (1+x^2)e^{-x^2},$$

$$15)y = (1+x^2)e^{-x^2},$$

$$16)y = \frac{e^x}{1+x},$$

$$17)y = \ln(x+\sqrt{1+x^2}),$$

$$18)y = \frac{\ln x}{\sqrt{x}},$$

$$19)y = x + \arctan x,$$

$$20)y = x \arctan x,$$

$$21)y = \arcsin \frac{x}{1+x^2},$$

$$22)y = \arccos \frac{1-x^2}{1+x^2},$$

$$25)y = (x+2)e^{\frac{1}{x}},$$

$$26)y = x^x,$$

$$27)y = (1+x)^{\frac{1}{x}}.$$

**16.3.1.** Построить графики следующих кривых, заданных параметрически уравнениями

1)
$$x = \operatorname{ch} t$$
,  $y = \operatorname{sh} t$ ,  
2) $x = 2t - t^2$ ,  $y = 3t - t^3$ ,  
3) $x = \frac{t^2}{1 - t^2}$ ,  $y = \frac{t}{t^2 - 1}$ ,  
4) $x = t + e^t$ ,  $y = 2t + e^{2t}$ ,  
5) $x = a \cos 2t$ ,  $y = a \cos 3t$ ,  
6) $x = \cos^4 t$ ,  $y = \sin^4 t$ ,  
7) $x = t \ln t$ ,  $y = \frac{\ln t}{t}$ ,  
8) $x = \frac{a}{\cos^3 t}$ ,  $y = \operatorname{tg}^3 t$ .

## ЛИТЕРАТУРА

- 1. Демидович Б.П. Сборник задач и упраженений по математическому анализу.// М: Наука, 1977. 528 с.
- 1. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу, том 1.// М: Наука, 1986. 496 с.
- 1. Шерстнев А.Н. Конспект лекций по математическому анализу.// Казань: Изд. КГУ., 1989. 295 с.