







Log in

home setup stereo flow sceneflow depth odometry object tracking road semantics raw data submit results

Visual Odometry / SLAM Evaluation 2012

A. Geiger | P. Lenz | C. Stiller | R. Urtasun



trajectories for training and 11 sequences (11-21) without ground truth for evaluation. For this benchmark you may provide results using monocular or stereo visual odometry, laser-based SLAM or algorithms that combine visual and LIDAR information. The only restriction we impose is that your method is fully automatic (e.g., no manual loop-closure tagging is allowed) and that the same parameter set is used for all sequences. A development kit provides details about the data format. Download odometry data set (grayscale, 22 GB) Download odometry data set (color, 65 GB)

- Download odometry data set (velodyne laser data, 80 GB) Download odometry data set (calibration files, 1 MB)
- Download odometry ground truth poses (4 MB) Download odometry development kit (1 MB)
- Lee Clement and his group (University of Toronto) have written some python tools for loading and parsing the KITTI raw and odometry datasets
- From all test sequences, our evaluation computes translational and rotational errors for all possible subsequences of length (100,...,800) meters. The evaluation table below ranks methods according to the average of those values, where errors are measured in percent (for translation) and in

underneath. Note: On 03.10.2013 we have changed the evaluated sequence lengths from (5,10,50,100,...,400) to (100,200,...,800) due to the fact that the GPS/OXTS ground truth error for very small sub-sequences was large and hence biased the evaluation results. Now the averages below take into account longer sequences and provide a better indication of the true performance. Please consider reporting these number for all future submissions. The last leaderboard right before the changes can be found here! Important Policy Update: As more and more non-published work and re-implementations of

degrees per meter (for rotation). A more detailed comparison for different trajectory lengths and driving speeds can be found in the plots

|                      |                                                     | existing value submission or journal are not a policy is targeted months conferent bibliogra | work is ons with all are a allowed adopted venue old but inces, 6 phy inf | submitted to h significant in a signific | o KITTI, we have eshovelty that are lear modifications of emust be evaluated must detail their stration. Furthermore ymous or do not haugh to determine if r longer review cyclitional informations left and right (steep duses point clouds tion: This method | tablished a pading to a pexisting algon a split on a spaper for a paper for a paper hables, you need to be split on a spl |                                                                                                                                            |                                |
|----------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                      | Method                                              | Setting                                                                                      |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rotation                                                                                                                                                                                                                                                       | Runtime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Environment                                                                                                                                | Compare                        |
| 1                    | SOFT2                                               | 88                                                                                           |                                                                           | 0.53 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0009 [deg/m]                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 cores @ 2.5 Ghz (C/C++)                                                                                                                  | Compare                        |
| I. Cvišić, I.        | . Marković and I. Petrović                          | : Enhanced ca                                                                                | alibration                                                                | of camera setups f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for high-performance visua                                                                                                                                                                                                                                     | al odometry. Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne Metric. IEEE Transactions on Robotics 2022.<br>botics and Autonomous Systems 2022.<br>European Conference on Mobile Robots (ECMR) 2021. |                                |
| 2<br>J. Zhang a      | V-LOAM  nd S. Singh: Visual-lidar (                 | Odometry and                                                                                 | Mapping:                                                                  | 0.54 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0013 [deg/m]                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++) on Robotics and Automation(ICRA) 2015.                                                                           |                                |
| 3                    | LOAM                                                | ***                                                                                          |                                                                           | 0.55 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0013 [deg/m]                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++)                                                                                                                  |                                |
| J. Zhang a           | nd S. Singh: <u>LOAM: Lidar</u> <u>TVL-SLAM+</u>    | Odometry and                                                                                 | d Mapping                                                                 | 0.56 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ootics: Science and System  0.0015 [deg/m]                                                                                                                                                                                                                     | s Conference (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 core @ 3.0 Ghz (C/C++)                                                                                                                   |                                |
| C. Chou an           | nd C. Chou: <u>Efficient and</u> <u>Traj-LIO</u>    | Accurate Tigh                                                                                | <u>ntly-Coupl</u>                                                         | ed Visual-Lidar SLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                | ntelligent Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | portation Systems 2021.  4 cores @ 2.5 Ghz (C/C++)                                                                                         |                                |
| (. Zheng a           | nd J. Zhu: <u>Traj-LIO: A Re</u>                    | esilient Multi-L                                                                             |                                                                           | .:L<br>ti-IMU State Estima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | itor Through Sparse Gaussi                                                                                                                                                                                                                                     | an Process. arX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iv preprint arXiv:2402.09189 2024.                                                                                                         |                                |
| 6<br>Dellenb         | CT-ICP2<br>ach, J. Deschaud, B. Jaco                | quet and F. Go                                                                               | <u>code</u><br>oulette: <u>C</u>                                          | 0.58 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0012 [deg/m]  lastic LiDAR Odometry wit                                                                                                                                                                                                                      | 0.06 s<br>h Loop Closure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 core @ 3.5 Ghz (C/C++)  . 2022 International Conference on Robotics and Automation (ICRA                                                 | ) 2022.                        |
| 7<br>C. Zheng a      | <u>Traj-LO</u><br>ind J. Zhu: <u>Traj-LO: In De</u> | efense of LiDA                                                                               | <u>code</u><br>R-Only Od                                                  | 0.58 %<br>lometry Using an E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0014 [deg/m]                                                                                                                                                                                                                                                 | 0.1 s<br><u>Trajectory</u> . IEEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 cores @ 3.5 Ghz (C/C++) E Robotics and Automation Letters 2024.                                                                          |                                |
| 8                    | GLIM                                                | ***                                                                                          |                                                                           | 0.59 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0015 [deg/m]                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GPU @ 2.5 Ghz (C/C++)                                                                                                                      |                                |
| 6. Koide, <i>N</i>   | M. Yokozuka, S. Oishi and Universal-SLAM            | A. Banno: Glo                                                                                | opally Cor                                                                | 0.59 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Napping with GPU-accelera<br>0.0014 [deg/m]                                                                                                                                                                                                                    | 0.04 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ning Cost Factors. IEEE Robotics and Automation Letters 2021.  1 cores @ 2.5 Ghz (C/C++)                                                   |                                |
| 10                   | <u>CT-ICP</u>                                       | ***                                                                                          | <u>code</u>                                                               | 0.59 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0014 [deg/m]                                                                                                                                                                                                                                                 | 0.06 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 core @ 3.5 Ghz (C/C++)                                                                                                                   |                                |
| . Dellenba           | ach, J. Deschaud, B. Jaco<br><u>DG-LIO</u>          | quet and F. Go                                                                               | oulette: <u>C</u>                                                         | T-ICP: Real-time E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lastic LiDAR Odometry wit<br>0.0014 [deg/m]                                                                                                                                                                                                                    | h Loop Closure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2022 International Conference on Robotics and Automation (ICRA 4 cores @ >3.5 Ghz (C/C++)                                                  | ) 2022.                        |
| 12                   | SDV-LOAM                                            | ***                                                                                          | <u>code</u>                                                               | 0.60 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0015 [deg/m]                                                                                                                                                                                                                                                 | 0.06 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 core @ 2.5 Ghz (C/C++)                                                                                                                   |                                |
| . Yuan, Q            | . Wang, K. Cheng, T. Had<br>MagneticPillars++       | o and X. Yang:                                                                               | SDV-LOA                                                                   | M: Semi-Direct Visi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ual-LiDAR Odometry and M<br>0.0018 [deg/m]                                                                                                                                                                                                                     | lapping. IEEE Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GPU @ >3.5 Ghz (Python)                                                                                                                    |                                |
| 14                   | <u>CELLmap</u>                                      | ***                                                                                          |                                                                           | 0.61 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0017 [deg/m]                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 core @ 2.5 Ghz (C/C++)                                                                                                                   |                                |
| . Duan, X            | KISS-ICP                                            | . Chu, J. Ji and                                                                             | d Y. Zhan                                                                 | g: <u>CELLmap: Enhar</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0017 [deg/m]                                                                                                                                                                                                                                                 | Elastic and Ligh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | titweight Spherical Map Representation. arXiv preprint arXiv:2409.1                                                                        | 9597 2024.                     |
| . Vizzo, T.          |                                                     |                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P Simple, Accurate, and Robust Registration If Done the Right W                                                                            | <u>/ay</u> . IEEE Robotics and |
| 16                   | MOLA-LO                                             | ***                                                                                          | <u>code</u>                                                               | 0.62 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0017 [deg/m]                                                                                                                                                                                                                                                 | 0.05 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 cores @ 3.0 Ghz (C/C++)                                                                                                                  |                                |
| 17<br>'. Bhandar     | SiMpLE<br>ri, T. Phillips and P. McAi               | ree: Minimal c                                                                               | <u>code</u><br>onfigurat                                                  | 0.62 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0015 [deg/m]                                                                                                                                                                                                                                                 | 0.35 s<br>International Jo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >8 cores @ 2.5 Ghz (C/C++)                                                                                                                 |                                |
| 18                   | MOLA (Kitti config)                                 | ***<br>***                                                                                   |                                                                           | 0.62 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0017 [deg/m]                                                                                                                                                                                                                                                 | 0.05 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 cores @ 2.5 Ghz (C/C++)                                                                                                                  |                                |
| 19                   | <u>p2mesh</u>                                       |                                                                                              |                                                                           | 0.64 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0019 [deg/m]                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 core @ 2.5 Ghz (C/C++)                                                                                                                   |                                |
|                      |                                                     | Posewsky, J. E                                                                               | code<br>Behley and                                                        | 0.64 %<br>d C. Stachniss: <u>PIN</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0015 [deg/m] -SLAM: LiDAR SLAM Using a                                                                                                                                                                                                                       | 0.1 s<br>Point-Based In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GPU @ >3.5 Ghz (Python)  nplicit Neural Representation for Achieving Global Map Consistence                                                | y. IEEE Transactions of        |
| 21                   | filter-reg                                          | ***<br>***                                                                                   |                                                                           | 0.65 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0016 [deg/m]                                                                                                                                                                                                                                                 | 0.01 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GPU @ 2.6 Ghz (C/C++)                                                                                                                      |                                |
| . Zheng a            | SOFT-SLAM                                           | tive Continuou                                                                               | s-Time O                                                                  | dometry Using Rang<br>0.65 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ge Image for LiDAR with Sr<br>0.0014 [deg/m]                                                                                                                                                                                                                   | nall FoV. IEEE/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RSJ International Conference on Intelligent Robots and Systems (IR<br>2 cores @ 2.5 Ghz (C/C++)                                            | OS) 2023.                      |
| Cvišić, J            |                                                     | . Petrović: <u>SOI</u>                                                                       | -                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fficient Stereo Visual SLAM                                                                                                                                                                                                                                    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | us UAVs. Journal of Field Robotics 2017.                                                                                                   |                                |
| 23<br>. Pan, P.      | MULLS Xiao, Y. He, Z. Shao and                      | Z. Li: MULLS:                                                                                | <u>code</u><br>Versatile                                                  | 0.65 %<br>LiDAR SLAM via Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0019 [deg/m]  ulti- metric Linear Least Sc                                                                                                                                                                                                                   | 0.08 s<br><u>juare</u> . IEEE Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 cores @ 2.2 Ghz (C/C++) rnational Conference on Robotics and Automation (ICRA) 2021                                                      |                                |
| 24                   | MOLA-LO + LC                                        | ***                                                                                          | <u>code</u>                                                               | 0.66 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0016 [deg/m]                                                                                                                                                                                                                                                 | 0.05 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 cores @ 2.5 Ghz (C/C++)                                                                                                                  |                                |
| 25<br>. Zheng a      | ELO<br>and J. Zhu: Efficient LiDA                   | R Odometry fo                                                                                | or Autonoi                                                                | 0.68 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0021 [deg/m] Robotics and Automation                                                                                                                                                                                                                         | 0.005 s<br>Letters(RA- L) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GPU @ 2.6 Ghz (C/C++)(0.027s Jetson AGX)                                                                                                   |                                |
| 26<br>RROR: Wr       | AZZ<br>rong syntax in BIBTEX file                   | 1                                                                                            | <u>code</u>                                                               | 0.68 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0017 [deg/m]                                                                                                                                                                                                                                                 | 0,1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 core @ 2.5 Ghz (C/C++)                                                                                                                   |                                |
| 27                   | IMLS-SLAM                                           | ***<br>***                                                                                   |                                                                           | 0.69 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0018 [deg/m]                                                                                                                                                                                                                                                 | 1.25 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 core @ >3.5 Ghz (C/C++)                                                                                                                  |                                |
| Deschau<br>28        | ıd: IMLS-SLAM: Scan-to-M                            | odel Matching                                                                                | Based on                                                                  | 0.69 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E International Conference  0.0016 [deg/m]                                                                                                                                                                                                                     | e on Robotics ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd Automation (ICRA) 2018.  4 cores @ 2.5 Ghz (C/C++)                                                                                      |                                |
| . Neuhaus            | s, T. Koss, R. Kohnen and                           | . —                                                                                          | code                                                                      | Real-Time Inertial L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | idar Odometry using Two-                                                                                                                                                                                                                                       | Scan Motion Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bmpensation. German Conference on Pattern Recognition 2018.  4 cores @ 3.0 Ghz (C/C++)                                                     |                                |
|                      | C. Wang and L. Xie: <u>Inten</u>                    | . —                                                                                          |                                                                           | ii<br>ng intensity and ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ometry relations for loop                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on. 2020 IEEE International Conference on Robotics and Automatio                                                                           | n (ICRA) 2020.                 |
| 30<br>. Wang, (      | FLOAM C. Wang, C. Chen and L.                       | Xie: <u>F-LOAM</u> :                                                                         | <u>code</u><br>Fast LiDA                                                  | 0.72 %<br>R Odometry and M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0022 [deg/m]<br>apping. 2021 IEEE/RSJ Inte                                                                                                                                                                                                                   | 0.1 s<br>ernational Confe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 core @ 2.5 Ghz (C/C++)<br>erence on Intelligent Robots and Systems (IROS) 2021.                                                          |                                |
| 31                   | APMC-LOM                                            | ***                                                                                          |                                                                           | 0.77 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0019 [deg/m]                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 core @ 2.5 Ghz (C/C++)                                                                                                                   |                                |
| 32<br>. Chen, B      | PSF-LO<br>B. Wang, X. Wang, H. Der                  | ng, B. Wang an                                                                               | nd S. Zhan                                                                | 0.82 %<br>g: <u>PSF-LO: Parame</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0032 [deg/m]<br>terized Semantic Features                                                                                                                                                                                                                    | 0.2s<br>Based Lidar Od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 cores @ 3.2 GHz<br>dometry. 2021 IEEE International Conference on Robotics and Auto                                                      | mation (ICRA) 2021.            |
| 33                   | RADVO                                               | Tand Accurate                                                                                | Dotormir                                                                  | 0.82 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0018 [deg/m]                                                                                                                                                                                                                                                 | 0.07 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 core @ 3.0 Ghz (C/C++)                                                                                                                   | Carrier (ION CNSS)             |
| 34                   |                                                     | TATIO ACCURATE                                                                               | Determin                                                                  | 0.82 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0020 [deg/m]                                                                                                                                                                                                                                                 | 0.2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 cores @ 2.5 Ghz (C/C++)                                                                                                                  | /igation (ION GN35+            |
|                      |                                                     | I. Petrović: Ex                                                                              | actly spa                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ph SLAM. The International Journal of Robotics Research 2018.                                                                              |                                |
| 35<br>I. Buczko      | RotRocc+<br>and V. Willert: Flow-Dec                | oupled Norma                                                                                 | lized Rep                                                                 | 0.83 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0026 [deg/m] Visual Odometry. 19th IEE                                                                                                                                                                                                                       | 0.25 s<br>E Intelligent Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 cores @ 2.0 Ghz (C/C++) cansportation Systems Conference (ITSC) 2016.                                                                    |                                |
| N. Buczko:           | : <u>Automotive Visual Odon</u>                     | <u>netry</u> . 2018.                                                                         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | icles Symposium (IV) 2018.                                                                                                                 |                                |
| 36<br>. Graeter      | LIMO2 GP<br>, A. Wilczynski and M. La               |                                                                                              | <u>code</u><br>lar-Monoc                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0022 [deg/m]  try. arXiv preprint arXiv:18                                                                                                                                                                                                                   | 0.2 s<br>307.07524 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 cores @ 2.5 Ghz (C/C++)                                                                                                                  | <u> </u>                       |
|                      |                                                     | 7. Wang, J. Ma                                                                               | code<br>nanpää, H                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0025 [deg/m]<br>d R. Chen: <u>CAE-LO: LiDAR</u>                                                                                                                                                                                                              | 2 s<br>Odometry Leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 cores @ 3.5 Ghz (Python) <u>Praging Fully Unsupervised Convolutional Auto-Encoder for Interest</u>                                       | Point Detection and            |
| 38                   | GDVO                                                | ďď                                                                                           |                                                                           | 0.86 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0031 [deg/m]                                                                                                                                                                                                                                                 | 0.09 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 core @ >3.5 Ghz (C/C++)                                                                                                                  |                                |
| . Zhu: <u>lma</u>    | age Gradient-based Joint  LIMO2                     |                                                                                              |                                                                           | y for Stereo Camer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                       | ference on Artif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ficial Intelligence, IJCAI 2017.  2 cores @ 2.5 Ghz (C/C++)                                                                                |                                |
| . Graeter            | , A. Wilczynski and M. La                           | uer: <u>LIMO: Lid</u>                                                                        | <u>code</u><br>lar-Monoc                                                  | .i.<br>ular Visual Odomet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t <u>ry</u> . arXiv preprint arXiv:18                                                                                                                                                                                                                          | 307.07524 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                          | <u> </u>                       |
| 40<br>Ji and T       | CPFG-slam  Thuiyan Chen: CPFG-SLA                   | AM:a robust Sir                                                                              | multaneo                                                                  | 0.87 % us Localization and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0025 [deg/m]  I Mapping based on LIDAR i                                                                                                                                                                                                                     | 0.03 s<br>in off-road envi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 cores @ 2.5 Ghz (C/C++)  ronment. IEEE Intelligent Vehicles Symposium (IV) 2018.                                                         |                                |
| 41<br>. Cvišić an    | <u>SOFT</u><br>nd I. Petrović: Stereo odo           | metry based o                                                                                | on careful                                                                | 0.88 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0022 [deg/m]  and tracking. European Co                                                                                                                                                                                                                      | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++)                                                                                                                  |                                |
| 42                   | RotRocc                                             | ďď                                                                                           |                                                                           | 0.88 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0025 [deg/m]                                                                                                                                                                                                                                                 | 0.3 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.0 Ghz (C/C++)                                                                                                                  |                                |
| ۸. Buczko<br>43      | and V. Willert: Flow-Dec                            | oupled Norma                                                                                 | llized Rep                                                                | 0.88 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Visual Odometry. 19th IEE 0.0021 [deg/m]                                                                                                                                                                                                                       | E Intelligent Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ansportation Systems Conference (ITSC) 2016.  1 core @ 2.5 Ghz (C/C++)                                                                     |                                |
| N. Yang, L.<br>2020. | . Stumberg, R. Wang and                             | D. Cremers:                                                                                  | 03VO: Dec                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>sual Odometry</u> . The IEEE Conference on Computer Vision and Patte                                                                    | ern Recognition (CVPR          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CT-ICP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>code</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.58 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0012 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 core @ 3.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| . Dellenba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nch, J. Deschaud, B. Jacq<br>Traj-LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uet and F. G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oulette: <u>CT</u><br><u>code</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-ICP: Real-time E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lastic LiDAR Odometry wit<br>0.0014 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h Loop Closure.  0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2022 International Conference on Robotics and Automation (ICRA) 4 cores @ 3.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2022.               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Robotics and Automation Letters 2024.  GPU @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A. Banno: GI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | obally Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing Cost Factors. IEEE Robotics and Automation Letters 2021.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Universal-SLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.59 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0014 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| Dellenba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CT-ICP<br>ach, J. Deschaud, B. Jacq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uet and F. G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>code</u><br>oulette: <u>C1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.59 %<br>-ICP: Real-time E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0014 [deg/m]  lastic LiDAR Odometry wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06 s<br>h Loop Closure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 core @ 3.5 Ghz (C/C++)  2022 International Conference on Robotics and Automation (ICRA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2022.               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DG-LIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.59 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0014 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 cores @ >3.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 2<br>Yuan, Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDV-LOAM<br>Wang, K. Cheng, T. Hao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and X. Yang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>code</u><br>: <u>SDV-LOAN</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.60 %<br>N: Semi-Direct Vis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0015 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 core @ 2.5 Ghz (C/C++) ansactions on Pattern Analysis and Machine Intelligence 2023.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| ···· <del>·</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MagneticPillars++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.60 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0018 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GPU @ >3.5 Ghz (Python)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CELLmap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.61 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0017 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| Duan, X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zhang, Y. Li, G. You, X. KISS-ICP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chu, J. Ji ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d Y. Zhang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : <u>CELLmap: Enhar</u><br>0.61 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ncing LiDAR SLAM through I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Elastic and Light  0.05 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tweight Spherical Map Representation. arXiv preprint arXiv:2409.19  1 core @ 4.5 Ghz (Python/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 597 2024.           |
| Vizzo, T.<br>Itomation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and C. Stachniss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | int-to- Point ICF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P Simple, Accurate, and Robust Registration If Done the Right Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y. IEEE Robotics a  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MOLA-LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>code</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.62 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0017 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 cores @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SiMpLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>code</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.62 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0015 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.35 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >8 cores @ 2.5 Ghz (C/C++) urnal of Robotics Research 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOLA (Kitti config)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>.omgarati</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.62 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0017 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p2mesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.64 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0019 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PIN-SLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>code</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.64 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0015 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GPU @ >3.5 Ghz (Python)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| botics (TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RO) 2024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Behley and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | plicit Neural Representation for Achieving Global Map Consistency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| .1<br>Zheng an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>filter-reg</u><br>nd J. Zhu: <u>ECTLO: Effecti</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ve Continuou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | us-Time Od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.65 %<br>ometry Using Ran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0016 [deg/m]<br>ge Image for LiDAR with Sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GPU @ 2.6 Ghz (C/C++) RSJ International Conference on Intelligent Robots and Systems (IRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (S) 2023.           |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOFT-SLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ăă<br>Determi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.65 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0014 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MULLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.65 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0019 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | us UAVs. Journal of Field Robotics 2017.  4 cores @ 2.2 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Pan, P. X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MOLA-LO + LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z. Li: MULLS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Versatile I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LiDAR SLAM via Mu<br>0.66 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ulti- metric Linear Least Sq<br>0.0016 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>uare</u> . IEEE Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rnational Conference on Robotics and Automation (ICRA) 2021  8 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ELO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>code</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.68 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0021 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.005 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GPU @ 2.6 Ghz (C/C++)(0.027s Jetson AGX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or Autonom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Robotics and Automation I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 26<br>RROR: Wro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AZZ ong syntax in BIBTEX file.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>code</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.68 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0017 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IMLS-SLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.69 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0018 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.25 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 core @ >3.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| Deschaud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d Automation (ICRA) 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MC2SLAM<br>, T. Koss, R. Kohnen and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D. Paulus: M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2SLAM: Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.69 %<br>eal-Time Inertial I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0016 [deg/m]<br><u>lidar Odometry using Two-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1 s<br>Scan Motion Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 cores @ 2.5 Ghz (C/C++)  mpensation. German Conference on Pattern Recognition 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 9<br>Wang C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ISC-LOAM Wang and I Xie: Intens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sity scan cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0022 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 cores @ 3.0 Ghz (C/C++)<br>n. 2020 IEEE International Conference on Robotics and Automation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ICRA) 2020         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FLOAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0022 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| Wang, C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . Wang, C. Chen and L. X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ie: <u>F-LOAM :</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fast LiDAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Odometry and M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | apping. 2021 IEEE/RSJ Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rnational Confe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erence on Intelligent Robots and Systems (IROS) 2021.  1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | APMC-LOM<br>PSF-LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.77 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0019 [deg/m]<br>0.0032 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1 s<br>0.2s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.2 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| Chen, B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . Wang, X. Wang, H. Deng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g, B. Wang a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd S. Zhang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : <u>PSF-LO: Parame</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | terized Semantic Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Based Lidar Od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ometry. 2021 IEEE International Conference on Robotics and Autom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nation (ICRA) 2021. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Accurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e Determin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.82 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0018 [deg/m] etry. Proceedings of the 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.07 s<br>rd International                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 core @ 3.0 Ghz (C/C++)  I Technical Meeting of the Satellite Division of The Institute of Navi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gation (ION GNSS+   |
| 20) 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TY ACCURACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.82 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0020 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , ,,, J,,,,,,,      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Petrović: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xactly spars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ilter on Lie groups for long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 cores @ 2.5 Ghz (C/C++)  ch SLAM. The International Journal of Robotics Research 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 35<br>Buczko a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RotRocc+ and V. Willert: Flow-Deco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bupled Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alized Repr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.83 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0026 [deg/m]<br>Visual Odometry. 19th IEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.25 s<br>E Intelligent Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 cores @ 2.0 Ghz (C/C++) ansportation Systems Conference (ITSC) 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| Buczko,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd J. Adamy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Visual Odometry</u> . 19th IEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Graeter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LIMO2 GP  A. Wilczynski and M. Lau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jer: LIMO: Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.84 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0022 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| Graeter,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A. Wilczynski and M. Lau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ıer: <u>LIMO: Li</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dar-Monocu<br>code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | llar Visual Odome<br>0.86 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | try. arXiv preprint arXiv:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 cores @ 3.5 Ghz (Python)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| Yin, Q. Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | raging Fully Unsupervised Convolutional Auto-Encoder for Interest P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oint Detection and  |
| 7hu: Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GDVO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Direct Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Odo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.86 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0031 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.09 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 core @ >3.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| Zhu: <u>Ima</u><br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>LIMO2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Direct Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Odometry<br>code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.86 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a. International Joint Conf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erence on Artifi<br>0.2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | icial Intelligence, IJCAI 2017.  2 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uer: <u>LIMO: Li</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dar-Monocu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t <u>ry</u> . arXiv preprint arXiv:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| Ji and T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>CPFG-slam</u><br>. Huiyan Chen: <u>CPFG-SLA</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M:a robust Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | multaneou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.87 % s Localization and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0025 [deg/m]    Mapping based on LIDAR i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03 s<br>n off-road envir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 cores @ 2.5 Ghz (C/C++)  onment. IEEE Intelligent Vehicles Symposium (IV) 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | řă                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.88 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0022 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| Cvišić and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d I. Petrović: <u>Stereo odor</u> RotRocc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | netry based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on careful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.88 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and tracking. European Co<br>0.0025 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nference on Mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bile Robots (ECMR) 2015.  2 cores @ 2.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oupled Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alized Repr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ansportation Systems Conference (ITSC) 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D3VO<br>Stumberg, R. Wang and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D. Cremers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D3VO: Dee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.88 %<br>p Depth, Deep Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0021 [deg/m]<br>se and Deep Uncertainty for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1 s<br>or Monocular Vis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 core @ 2.5 Ghz (C/C++) <u>sual Odometry</u> . The IEEE Conference on Computer Vision and Patter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Recognition (CV   |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PNDT LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.89 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0030 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 cores @ 3.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rmal distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | utions trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n. IEEE/RSJ International Conference on Intelligent Robots and Syst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tems (IROS) 2017.   |
| 45<br>. Yang, R.<br>)18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DVSO Wang, J. Stueckler and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D. Cremers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deep Virtua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.90 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0021 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GPU @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 110.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y: Leveraging Deep Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frediction for h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monocular Direct Sparse Odometry. European Conference on Compu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ter Vision (ECCV)   |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LIMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>code</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.93 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0026 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aonocular Direct Sparse Odometry. European Conference on Compu  2 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ter Vision (ECCV)   |
| Graeter,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A. Wilczynski and M. Lau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uer: <u>LIMO: Li</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.93 %<br>Ilar Visual Odome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0026 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ter Vision (ECCV)   |
| Graeter,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A. Wilczynski and M. Lau<br>Stereo DSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uer: <u>LIMO: Li</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dar-Monocu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.93 %<br>ular Visual Odome<br>0.93 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0026 [deg/m]<br>try. ArXiv e-prints 2018.<br>0.0020 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2 s<br>0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Graeter, 47 . Wang, M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ers: LIMO: Lid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dar-Monocu<br>dso: Large-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  llar Visual Odome  0.93 %  scale direct spars  0.94 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2 s  0.1 s  reo cameras. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Graeter, 47 . Wang, M. 48 . Korovko,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ers: LIMO: Lid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dar-Monocu<br>dso: Large-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  llar Visual Odome  0.93 %  scale direct spars  0.94 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m] e visual odometry with ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2 s  0.1 s  reo cameras. In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| . Wang, M. 48 <u>Is</u> . Korovko, 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIMO: Lider: LIMO: Lider: LIMO: Lider: LIMO: Lider: Limorers: Stereo de la companion de la com | dar-Monocu<br>dso: Large-<br>ovsky and S<br>code<br>d G. Le Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Rea  0.94 %  snerais: OV2SLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0026 [deg/m]  Lry. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  altime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  tor Real-Time Applications. IEEE Robotics and Automation Letters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.                 |
| Graeter, 47 48 48 48 49 50 Ferrera,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ier: LIMO: Lid  ier: Stereo  ie | dar-Monocu<br>dso: Large-<br>ovsky and S<br>code<br>ad G. Le Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.93 %  llar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Res  0.94 %  snerais: OV2SLAM  0.98 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  attime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.                 |
| Graeter, 47 Wang, M. 48 Is Korovko, 49 Ferrera, 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A. Wilczynski and M. Lau  Stereo DSO  I. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LIMO: Lider: LIMO: Lider: LIMO: Lider: LIMO: Lider: Limor: Stereo de la lideria de la  | dar-Monocu<br>dso: Large-<br>ovsky and S<br>code<br>d G. Le Be<br>code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.93 %  llar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Rea  0.94 %  snerais: OV2SLAM  0.98 %  snerais: OV2SLAM  0.98 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0026 [deg/m]  Lry. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  oltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry.  0.01 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.03 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.                 |
| Graeter, 47 Wang, M. 48 Is Korovko, 49 Ferrera, 50 Buczko a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. Schwland  A. Eudes, J. Moras, M. Schwland  ROCC  and V. Willert: How to Disched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anfourche ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | code code code dG . Le Be code dG . Le Be code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Res  0.94 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.98 %  utliers in Visual Odome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  oltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.03 s  tomotive Applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  I for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  I for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.                 |
| Graeter, 47 Wang, M. 48 Is Korovko, 49 Ferrera, 50 Buczko a 52 Korovko,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stereo DSO  Schw\"orer and D. Crem SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Discontinuous Lance LibrusSLAM  D. Robustov, D. Slepiche  J. Robustov, D. Slepiche  D. Robustov, D. Slepiche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | anfourche ar anfourche ar attinguish Inliev, E. Vendro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | code code code code code code code code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Rea  0.94 %  snerais: OV2SLAM  0.98 %  snerais: OV2SLAM  0.98 %  utliers in Visual Outliers in Visual Outli | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m] e visual odometry with ste  0.0019 [deg/m] attime Stereo Visual Odome  0.0023 [deg/m] : A Fully Online and Versa  0.0023 [deg/m] : A Fully Online and Versa  0.0028 [deg/m] dometry for High-speed Au  0.0020 [deg/m] attime Stereo Visual Odome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.08 s  comotive Applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  sations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.                 |
| Graeter, 47 Wang, M. 48 Is Korovko, 49 Ferrera, 50 Buczko a 52 Korovko, 53 Chen, S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to District to Dist | anfourche ar  THE STINGUIST INC.  THE STINGUIS | code code code code code code code code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.94 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.98 %  Jtliers in Visual Odome  0.99 %  Volodarskiy: Rea  0.99 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  oltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.008 s  etry  0.1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  cations. IEEE Intelligent Vehicles Symposium (IV) 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2021.               |
| Graeter,  Wang, M.  Is Korovko,  Ferrera,  Go Buczko a  Korovko,  Chen, S. utomation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Distance IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | anfourche ar  THE STINGLES STEREO OF THE STIN | code code code code code code code code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.94 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.98 %  Jtliers in Visual Odome  0.99 %  Volodarskiy: Rea  0.99 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  oltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.008 s  etry  0.1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  actions. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2021.               |
| Graeter,  Wang, M.  Is Is Korovko,  Ferrera,  Go Buczko a  Go Korovko,  Go Chen, S. Itomation  Go Chen, A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stereo DSO  Schw\"orer and D. Crem SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Dis  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anfourche ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | code code code code code code code code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Res  0.94 %  snerais: OV2SLAM  0.98 %  snerais: OV2SLAM  0.98 %  utliers in Visual Odome  0.99 %  . Volodarskiy: Res  0.99 %  1.06 %  and C. Stachniss: Se  1.06 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0026 [deg/m]  Lry. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  attime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  attime Stereo Visual Odome  0.0033 [deg/m]  O.0033 [deg/m]  Moving Object Segmentatio  0.0034 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.01 s  tomotive Applic  0.008 s  etry  0.1s  n in 3D LiDAR Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  ata: A Learning-based Approach Exploiting Sequential Data. IEEE Robotics and Symposium (IV) 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2021                |
| Graeter,  Wang, M.  Is Korovko,  Ferrera,  Gu  Buczko a  Chen, S.  Itomation  Chen, A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stereo DSO  Schw\"orer and D. Crem SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div.  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | anfourche ar  an | code code code code code code code code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Rea  0.94 %  snerais: OV2SLAM  0.98 %  snerais: OV2SLAM  0.98 %  utliers in Visual Odo  0.99 %  . Volodarskiy: Rea  0.99 %  nd C. Stachniss: A  1.06 %  d C. Stachniss: Si  1.06 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m] e visual odometry with ste  0.0019 [deg/m] attime Stereo Visual Odome  0.0023 [deg/m] : A Fully Online and Versa  0.0023 [deg/m] : A Fully Online and Versa  0.0028 [deg/m] dometry for High-speed Au  0.0020 [deg/m] attime Stereo Visual Odome  0.0033 [deg/m]  Avoving Object Segmentatio  0.0034 [deg/m]  UMa++: Efficient LiDAR-bas  0.0024 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.08 s  tomotive Applic  0.08 s  etry  0.1s  0.1s  0.1 s  0.1 s  0.07 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  atations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  ata: A Learning-based Approach Exploiting Sequential Data. IEEE Robotics and Symposium (IV) 2016.  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Symposium (IV) 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2021                |
| Graeter,  Wang, M.  Is Is Korovko,  Ferrera,  Go Buczko a  Go Chen, S.  Istomation  Go Chen, A.  Go Chen, A.  Go Chen, A.  Go Chen, A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A. Wilczynski and M. Lau  Stereo DSO  I. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | anfourche ar  an | code code code code code code code code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Rea  0.94 %  snerais: OV2SLAM  0.98 %  snerais: OV2SLAM  0.98 %  utliers in Visual Or  0.99 %  . Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0026 [deg/m]  Lty. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  attime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  attime Stereo Visual Odome  0.0033 [deg/m]  attime Stereo Visual Odome  0.0034 [deg/m]  JMa++: Efficient LiDAR-bas  0.0024 [deg/m]  uning of Lidar Features for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.08 s  tomotive Applic  0.08 s  etry  0.1 s  0.1 s  0.1 s  0.1 s  1 0.1 s  1 0.2 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Tor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Tor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  Lations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  Lata: A Learning-based Approach Exploiting Sequential Data. IEEE Robotics and Sy  1 core @ 2.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  bilistic Trajectory Estimator. IEEE Robotics and Automation Letters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2021.               |
| Graeter,  Wang, M.  Korovko,  Ferrera,  Buczko a  Chen, S. tomation  Chen, A.  Yoon, H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A. Wilczynski and M. Lau  Stereo DSO  I. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Zhang, M. Gridseth, H. To  CV4xv1-sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | anfourche ar  Thomas and  Thomas and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | code Code Code Code Code Code Code Code C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Res  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Les  1.09 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  eltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  uMa++: Efficient LiDAR-bas  0.0024 [deg/m]  rming of Lidar Features for  0.0029 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.008 s  etry  0.1s  0.1 s  0.1 s  complete of Semantic SLAM  0.3 s  Use in a Probat  0.145 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ataions. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  ata: A Learning-based Approach Exploiting Sequential Data. IEEE Robotics and Symposium (IV) 2016.  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Symposium (IV) 2016.  GPU and CPU @ 2.2 Ghz (Python + C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2021.               |
| Graeter,  Wang, M.  Wang, M.  Wang, M.  Wang, M.  Wang, M.  Wang, M.  Salar  Korovko,  Ferrera,  60  Buczko a  62  Korovko,  63  Chen, S.  Itomation  64  Chen, A.  65  Yoon, H.  67  Persson,  68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A. Wilczynski and M. Lau  Stereo DSO  I. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Dig  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Zhang, M. Gridseth, H. T.  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | anfourche ar  Thomas and  Thomas and  Thomas and  Thomas and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | code Code Code Code Code Code Code Code C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Res  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.99 %  Volodarskiy: Res  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Les  1.09 %  ereo Visual Odom  1.09 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  eltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  eltime Stereo Visual Odome  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  uMa++: Efficient LiDAR-bas  0.0024 [deg/m]  value - Efficient LiDAR-bas  0.0036 [deg/m]  urning of Lidar Features for  0.0029 [deg/m]  etry from Monocular Technical of the prints of  | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  0.1 s  ed Semantic SL  0.07 s  0.3 s  Use in a Probat  0.145 s  niques. IEEE Inte  0.1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ataions. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  billistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.               |
| Graeter, 47 Wang, M. 48 Ls Korovko, 49 Ferrera, 50 Buczko a 52 Korovko, 53 Chen, S. utomation 54 Chen, A. 55 Persson, 68 Qin, J. Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. To  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | anfourche ar  an | code Code Code Code Code Code Code Code C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Res  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.99 %  Volodarskiy: Res  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Les  1.09 %  ereo Visual Odom  1.09 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m] e visual odometry with ste  0.0019 [deg/m] attime Stereo Visual Odome  0.0023 [deg/m] : A Fully Online and Versa  0.0023 [deg/m] : A Fully Online and Versa  0.0028 [deg/m] dometry for High-speed Au  0.0020 [deg/m] attime Stereo Visual Odome  0.0033 [deg/m]  AVOING Object Segmentation  0.0034 [deg/m]  0.0034 [deg/m]  0.0024 [deg/m]  0.0026 [deg/m]  uning of Lidar Features for  0.0029 [deg/m] etry from Monocular Teches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  0.1 s  ed Semantic SL  0.07 s  0.3 s  Use in a Probat  0.145 s  niques. IEEE Inte  0.1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ataions. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  billistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.               |
| Graeter, 47 Wang, M. 48 Ls Korovko, 49 Ferrera, 50 Ferrera, 51 Buczko a 52 Korovko, 53 Chen, S. utomation 54 Chen, A. 55 Persson, 66 Qin, J. Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A. Wilczynski and M. Lau  Stereo DSO  I. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Dig  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. To  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion  Oan, S. Cao and S. Shen: A  MonoROCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | anfourche ar  an | code Code Code Code Code Code Code Code C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Res  0.98 %  snerais: OV2SLAM  0.98 %  stliers in Visual Odome  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  tereo Visual Odome  1.09 %  based Framework  1.11 %  /isual Odometry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  attime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  attime Stereo Visual Odome  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  uMa++: Efficient LiDAR-bas  0.0024 [deg/m]  uma++: Efficient LiDAR-bas  0.0029 [deg/m]  etry from Monocular Techn  0.0033 [deg/m]  etry from Monocular Techn  0.0038 [deg/m]  for Local Odometry Estim  0.0028 [deg/m]  EEE Intelligent Vehicles Sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2 s  0.1 s  reo cameras. In  0.007 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.08 s  tomotive Applic  0.1 s  o.1 s  o.1 s  o.1 s  red Semantic SLAM  0.1 s  o.1 s  o.1 s  o.1 s  ed Semantic SLAM  0.1 s  o.1 s  o.1 s  o.1 s  o.1 s  d.1 s  miques. IEEE Inter  o.1 s  ation with Multi  1 s  mposium (IV) 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  International IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  AMA. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  Dilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  ple Sensors. 2019.  2 cores @ 2.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2021.               |
| Graeter, Wang, M.  Residue of the service of the se | A. Wilczynski and M. Lau  Stereo DSO  I. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Dig  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. To  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | anfourche ar  an | code Code Code Code Code Code Code Code C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVSLAM  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  tereo Visual Odom  1.09 %  based Framework  1.11 %  //sual Odometry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  visual odometry with ste  0.0019 [deg/m]  oltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  uMa++: Efficient LiDAR-bas  0.0024 [deg/m]  vming of Lidar Features for  0.0029 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  for Local Odometry Estim  0.0023 [deg/m]  EEE Intelligent Vehicles Sy  0.0023 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  0.1s  0.1 s  ed Semantic SLA  0.3 s  Use in a Probat  0.145 s  niques. IEEE Inte  0.1s  ation with Multi  1 s  mposium (IV) 20  0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  Indications. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  AMA. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  Delistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  ple Sensors. 2019.  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2021.               |
| Graeter, Wang, M.  Balance Korovko, Graeter, Graeter, Wang, M.  Balance Korovko, Graeter, Gra | A. Wilczynski and M. Lau  Stereo DSO  I. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to District of the second  | anfourche ar  an | code code code code code code code code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Res  0.94 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.98 %  utliers in Visual Odomatics  1.06 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  sereo Visual Odomatics  1.09 %  dereo Visual Odomatics  1.11 %  1.11 %  1.11 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0026 [deg/m]  Lry. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  attime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  attime Stereo Visual Odome  0.0020 [deg/m]  olometry for High-speed Au  0.0033 [deg/m]  Aoving Object Segmentatio  0.0034 [deg/m]  uMa++: Efficient LiDAR-bas  0.0024 [deg/m]  0.0024 [deg/m]  colomous Geg/m]  rming of Lidar Features for  0.0029 [deg/m]  etry from Monocular Tech  0.0028 [deg/m]  for Local Odometry Estim  0.0023 [deg/m]  EEE Intelligent Vehicles Sy  0.0023 [deg/m]  EEE Intelligent Vehicles Sy  0.0023 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.08 s  etry  0.1s  0.1s  0.1s  o.1s  use in a Probat  0.145 s  o.145 s  o.145 s  o.145 s  iniques. IEEE Interval of the properties of t       | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  International IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  AMA. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  Dilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  ple Sensors. 2019.  2 cores @ 2.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2021.               |
| Graeter, Wang, M.  Korovko, Graeter, Wang, M.  Korovko, Graeter, G | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to District of the second of  | anfourche ar  an | code Code Code Code Code Code Code Code C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Res  0.94 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.98 %  utliers in Visual Odomative  1.06 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lead  1.09 %  cereo Visual Odomative  1.11 %  disual Odometry  1.11 %  1.11 %  Monocular Odomative  1.15 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m] e visual odometry with ste  0.0019 [deg/m] ettime Stereo Visual Odome  0.0023 [deg/m] : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0020 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]  Moving Object Segmentation  0.0034 [deg/m]  uning of Lidar Features for  0.0029 [deg/m]  etry from Monocular Tech  0.0028 [deg/m]  etry from Monocular Tech  0.0028 [deg/m]  etry from Wonocular Tech  0.0028 [deg/m]  etry from Monocular Tech  0.0028 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.08 s  tomotive Applic  0.08 s  etry  0.1s  0.1s  n in 3D LiDAR D  0.1 s  ed Semantic SLAM  0.3 s  Use in a Probat  0.145 s  niques. IEEE Interval  0.1s  ation with Multi  1 s  mposium (IV) 20  0.1 s  al Conference of  0.06 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  International Conference on Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  bilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2021.               |
| Graeter, Wang, M.  Residue of the second of  | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to District of the second of  | anfourche ar  an | code Code Code Code Code Code Code Code C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Res  0.94 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.98 %  utliers in Visual Odomative  1.06 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lead  1.09 %  cereo Visual Odomative  1.11 %  disual Odometry  1.11 %  1.11 %  Monocular Odomative  1.15 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m] e visual odometry with ste  0.0019 [deg/m] ettime Stereo Visual Odome  0.0023 [deg/m] : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0020 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]  Moving Object Segmentation  0.0034 [deg/m]  uning of Lidar Features for  0.0029 [deg/m]  etry from Monocular Tech  0.0028 [deg/m]  etry from Monocular Tech  0.0028 [deg/m]  etry from Wonocular Tech  0.0028 [deg/m]  etry from Monocular Tech  0.0028 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.08 s  tomotive Applic  0.08 s  etry  0.1s  0.1s  n in 3D LiDAR D  0.1 s  ed Semantic SLAM  0.3 s  Use in a Probat  0.145 s  niques. IEEE Interval  0.1s  ation with Multi  1 s  mposium (IV) 20  0.1 s  al Conference of  0.06 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  Interce @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  Dilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2021.               |
| Graeter, Wang, M.  48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A. Wilczynski and M. Lau  Stereo DSO  I. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to District of the second  | anfourche ar  anfourche ar  anfourche ar  anfourche ar  anfourche ar  anfourche ar  ann, J. Gall,  Gigul`ere, J.  Thomas and d.  A General Operation of the country of the  | code Code Code Code Code Code Code Code C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  ereo Visual Odom  1.09 %  based Framework  1.11 %  1.14 %  Monocular Odom  1.15 %  LAM System for Medical Accordance of the supervised of  | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  visual odometry with ste  0.0019 [deg/m]  oltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  unda++: Efficient LiDAR-bas  0.0024 [deg/m]  vming of Lidar Features for  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry. IEEE/RSJ International  0.0027 [deg/m]  onocular, Stereo and RGB-  10.0025 [deg/m]  ization and Mapping. Conf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.03 s  tomotive Applic  0.08 s  etry  0.1s  0.1s  0.1s  0.1s  0.1s  1 s  on a Probat  0.145 s  iniques. IEEE Inte  0.1s  0.1s  0.1s  1 s  considerence of the construction of the construct       | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  attions. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  ata: A Learning-based Approach Exploiting Sequential Data. IEEE Robotics and Systems (IV)  GPU and CPU @ 2.2 Ghz (C/C++)  CPU @ 3.5 Ghz (C/C++)  GPU @ 3.5 Ghz (C/C++)  celligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  ple Sensors. 2019.  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 cores @ 2.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  3 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  5 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  5 cores @ 3.5 Ghz (C/C++)  6 cores @ 3.5 Ghz (C/C++)  6 cores @ 3.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2021.               |
| Graeter, 47 Wang, M. 48 Is Korovko, 49 Ferrera, 50 Korovko, 51 Korovko, 53 Chen, S. Graeter, 54 Chen, S. Graeter, 56 Chen, S. Graeter, 57 Chen, S. Graeter, 58 Qin, J. Particological Stang, M. 59 Chang, M. 51 Chang, M. 52 Mur-Artal 53 Rabiee ar 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A. Wilczynski and M. Lau  Stereo DSO  J. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to District of the second  | anfourche ar  an | code Code Code Code Code Code Code Code C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93 %  Ilar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  Juliers in Visual Odome  1.06 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  based Framework  1.11 %  1.11 %  1.11 %  Monocular Odom  1.15 %  LAM System for Me  imultaneous Local  1.17 %  inultaneous Local  1.17 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0026 [deg/m]  Lry. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  attime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  attime Stereo Visual Odome  0.0020 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  attime Stereo Visual Odome  0.0033 [deg/m]  Moving Object Segmentation  0.0034 [deg/m]  uning of Lidar Features for  0.0029 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  etry. IEEE Intelligent Vehicles Sy  0.0023 [deg/m]  0.0023 [deg/m]  etry. IEEE/RSJ Internationa  0.0027 [deg/m]  onocular, Stereo and RGB-  0.0025 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.01 s  tomotive Applic  0.008 s  etry  0.1s  n in 3D LiDAR D  0.1s  o.1s  o.1s  o.3 s  tomotive Applic  0.1s  o.1s  considerence of o.1s  o.1s  o.1s  o.1s  o.1s  o.1s  o.1s  o.1s  considerence of o.1s  o.1s  o.1s  o.1s  considerence of o.1s  o.1s  o.1s  o.1s  o.1s  o.1s  considerence of o.1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  bilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  In Intelligent Robots and Systems (IROS) 2014.  2 cores @ 2.5 Ghz (C/C++)  In Intelligent Robots and Systems (IROS) 2014.  2 cores @ 3.5 Ghz (C/C++)  Transactions on Robotics 2017.  GPU @ 2.5 Ghz (C/C++)  I core @ 3.0 Ghz (C/C++)  Transactions on Robotics 2017.  GPU @ 2.5 Ghz (C/C++)  I core @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021.               |
| Graeter, Wang, M.  18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A. Wilczynski and M. Lau  Stereo DSO  J. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to District of the second of the | anfourche ar  an | code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Rea  0.94 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.98 %  utliers in Visual On  0.99 %  . Volodarskiy: Rea  0.99 %  nd C. Stachniss: A  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  ereo Visual Odom  1.09 %  based Framework  1.11 %  //isual Odometry.  1.11 %  //isual Odometry.  1.11 %  //isual Odometry.  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m] e visual odometry with ste  0.0019 [deg/m] eltime Stereo Visual Odome  0.0023 [deg/m] : A Fully Online and Versa  0.0023 [deg/m] : A Fully Online and Versa  0.0028 [deg/m] dometry for High-speed Au  0.0020 [deg/m] eltime Stereo Visual Odome  0.0033 [deg/m]  Noving Object Segmentation  0.0034 [deg/m]  uning of Lidar Features for  0.0029 [deg/m] etry from Monocular Techn  0.0028 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  etry. IEEE Intelligent Vehicles Sy  0.0028 [deg/m]  EEE Intelligent Vehicles Sy  0.0028 [deg/m]  etry. IEEE/RSJ International 0.0027 [deg/m]  onocular, Stereo and RGB-  0.0025 [deg/m]  ization and Mapping. Conf  0.0035 [deg/m]  ering. German Conference  0.0025 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.08 s  tomotive Applic  0.1 s  ed Semantic SLAM  0.1 s  ed Semantic SLAM  0.1 s  o.1 s  o.1 s  ed Semantic SLAM  0.1 s  o.1 s  o.1 s  o.1 s  consideration with Multical series on Robor  0.1 s  o.1 s  o.1 s  o.1 s  o.1 s  consideration with Multical series on Robor  0.1 s  o.1 s  o.1 s  o.1 s  o.1 s  o.1 s  consideration with Multical series on Robor  o.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  Internations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  Dilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2021.               |
| Graeter,  Wang, M.  Wang,  | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Distance Interest (RA-L) 2021.  SuMa-MOS  Li, B. Mersch, L. Wiesman Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. Townson Cover and V. Willert: Monocular  Vins  DEMO  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  al and J. Tard\'os: ORB-SL  IV-SLAM  IV-SLAM  MOTF  Iller and J. Eggert: Stereo  S-PTAM  Fischer, G. Castro, P. De  Fischer, J. Civera, P. Cris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anfourche ar  an | dar-Monoculation described and solution for Variation for Sunce Su | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  Juliers in Visual Odome  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  Lereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.11 %  1.14 %  Monocular Odome  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.19 %  and J. Jacobo Bero  1.19 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  exitime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  attime Stereo Visual Odome  0.0020 [deg/m]  dowing Object Segmentation  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  wha++: Efficient LiDAR-bas  0.0024 [deg/m]  condition of Lidar Features for  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  etry. IEEE/RSJ International  0.0027 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  ization and Mapping. Conf  cong. German Conference of the conferen | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters 8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters 2 cores @ 2.0 Ghz (C/C++)  Internations. IEEE Intelligent Vehicles Symposium (IV) 2016. 3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy 1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  Dilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  In Intelligent Robots and Systems (IROS) 2014. 2 cores @ 2.5 Ghz (C/C++)  Transactions on Robotics 2017.  GPU @ 2.5 Ghz (C/C++)  It Learning (CoRL) 2020.  1 core @ 3.0 Ghz (C/C++)  Mapping. Robotics and Autonomous Systems (RAS) 2017.  Laization. IROS 2015.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2021.               |
| Graeter, 47 Wang, M. 48 Is Korovko, 49 Ferrera, 50 Ferrera, 51 Buczko a 52 Korovko, 53 Chen, S. Itomation 54 Chen, A. 55 Ferreson, 68 Qin, J. Persson, 68 Qin, J. Persson, 68 Qin, J. Persson, 68 Chen, S. Chen, S | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Crem  SaacElbrusGPUSLAM D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to District of the second o | anfourche ar  an | code code code code code code code code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.99 %  . Volodarskiy: Rea  0.99 %  . Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  lereo Visual Odom  1.09 %  based Framework  1.11 %  1.11 %  1.14 %  Monocular Odom  1.15 %  LAM System for Manultaneous Local  1.17 %  imultaneous Local  1.19 %  and J. Jacobo Berlo-Berlles: Stereo In  1.20 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  eltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  eltime Stereo Visual Odome  0.0033 [deg/m]  dowing Object Segmentation  0.0034 [deg/m]  voing Object Segmentation  0.0036 [deg/m]  voing Object Segmentation  0.0024 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry. IEEE/RSJ International  0.0023 [deg/m]  etry. IEEE/RSJ International  0.0027 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  ization and Mapping. Conf  0.0035 [deg/m]  ization and Mapping. Conf  0.0025 [deg/m]  etring. German Conference of Conference | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  0.1s  0.1s  0.1s  0.15  1 o.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0.15  0       | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  In core @ 2.5 Ghz (C/C++)  1 core @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  Dilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  In Intelligent Robots and Systems (IROS) 2014.  2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  Mapping. Robotics and Autonomous Systems (RAS) 2017.  Calization. IROS 2015.  1 core @ 3.5 Ghz (C/C++)  Mapping. Robotics and Autonomous Systems (RAS) 2017.  Calization. IROS 2015.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2021.               |
| Graeter, Wang, M.  Korovko, General, Goneral, Go | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  BaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to District of the second of  | Thomas and  | dar-Monoculation described and G. Le Be Code and | 0.93 %  Ilar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  Juliers in Visual Odome  1.09 %  Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  Lereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.14 %  Monocular Odome  1.15 %  LAM System for Me  1.17 %  imultaneous Local  1.17 %  and J. Jacobo Berlo-Berlles: Stereo In  1.20 %  LAM with Stereo Co  1.20 %  LAM with Stereo Co  1.22 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  eltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  dometry for High-speed Au  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  voing Object Segmentation  0.0024 [deg/m]  0.0024 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry. IEEE/RSJ Internationa  0.0023 [deg/m]  etry. IEEE/RSJ Internationa  0.0025 [deg/m]  etry. IEEE/RSJ Internationa  0.00029 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.03 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  0.1s  0.1s  0.1s  0.15  10.15  11s  11s  11s  11s  11s  11s  11s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 Learning-based Approach Exploiting Sequential Data. IEEE Reflections and Systems (ICC)  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  core @ 3.5 Ghz (C/C++)  GPU @ 3.5 Ghz (C/C++)  core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  3 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.6 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  Mapping. Robotics and Autonomous Systems (RAS) 2017.  alization. IROS 2015.  1 core @ 2.0 Ghz (C/C++)  Mapping. Robotics and Autonomous Systems (RAS) 2017.  alization. IROS 2015.  1 core @ 2.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| Graeter, Wang, M.  Wang, M.  Solution Wang, M.  Sol | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Crem  GaacElbrusGPUSLAM D. Robustov, D. Slepiche  OV2SLAM A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Distance Interest (RA-L) 2021.  SuMa-MOS Li, B. Mersch, L. Wiesman Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI Thang, M. Gridseth, H. Townson  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2 all and J. Tard\'os: ORB-SL  IV-SLAM  MOTF  Iller and J. Eggert: Stereo  S-PTAM  Fischer, G. Castro, P. De  Fischer, G. Castro, P. Cris  S-LSD-SLAM  St\"uckler and D. Creme  VOBa  M. George, M. Laverne, A. Wan 2010.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | anfourche ar  an | dar-Monoculation described and G. Le Be Code and | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Nolodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  stliers in Visual Odome  1.09 %  Nolodarskiy: Rea  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  lereo Visual Odome  1.09 %  lereo Visual Odome  1.09 %  lereo Visual Odome  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.12 %  1.13 %  1.14 %  Monocular Odome  1.17 %  Indicate of the color of | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  attime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  attime Stereo Visual Odome  0.0020 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  doving Object Segmentation  0.0033 [deg/m]  wha++: Efficient LiDAR-bas  0.0024 [deg/m]  uning of Lidar Features for  0.0029 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  etry. IEEE/RSJ International  0.0027 [deg/m]  onocular, Stereo and RGB-letry. IEEE/RSJ International  0.0025 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  conocular, Stereo and RGB-letry. IEEE/RSJ International  0.0029 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  reo cameras. In  0.007 s  tile Visual SLAM  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.08 s  tomotive Applic  0.1 s  o.1 s  o.1 s  o.1 s  o.1 s  ed Semantic SLA  0.1 s  o.1 s  o.1 s  o.1 s  consideration with Multival  1 s  mposium (IV) 20  0.1 s  o.1 s  ation with Multival  1 s  mposium (IV) 20  0.1 s  o.1 s  o.1 s  consideration with Multival  1 s  mposium (IV) 20  0.1 s  o.1 s  o.1 s  consideration with Multival  1 s  mposium (IV) 20  0.1 s  o.1 s  o.1 s  consideration with Multival  1 s  mposium (IV) 20  0.1 s  o.1 s  o.1 s  consideration with Multival  1 s  mposium (IV) 20  0.1 s  o.1 s  o.1 s  o.1 s  o.1 s  consideration with Second Seco | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 2.0 Ghz (C/C++)  1 core @ 3.3 Ghz (C/C++)  1 core @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  2 cores @ 2.6 Ghz (C/C++)  3 cores @ 3.7 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  3 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  5 Transactions on Robotics 2017.  6 GPU @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  5 Transactions on Robotics 2017.  6 Cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  5 Transactions on Robotics 2015.  1 core @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                     |                     |
| Graeter, Wang, M.  Resident States of States o | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to District of the second of  | anfourche ar  ann, J. Gall,  ann, J. Gall, | dar-Monoculation described and G. Le Be described and G. Le Gode and G. Le | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVSSLAM  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  rereo Visual Odom  1.09 %  based Framework  1.11 %  1.11 %  1.14 %  Monocular Odom  1.15 %  LAM System for M  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.19 %  and J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM with Stereous  1.22 %  new approach to  1.22 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  visual odometry with ste  0.0019 [deg/m]  oltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  doving Object Segmentation  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  unant Efficient LiDAR-bas  0.0024 [deg/m]  visual Odometry Estim  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry. IEEE/RSJ International  0.0023 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  ization and Mapping. Conf  0.0025 [deg/m]  iration and Mapping. Conf  0.0025 [deg/m]  iration and Mapping. Conf  0.0025 [deg/m]  iration and Mapping. Conf  0.0025 [deg/m]  vision-aided inertial navigation  vision-aided inertial navigation  vision-aided inertial navigation  vision-aided inertial navigation  0.0058 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.08 s  etry  0.1s  0.1s  0.1s  0.1s  0.1s  0.17 s  ed Semantic SLAM  0.3 s  Use in a Probat  0.145 s  iniques. IEEE Inte  0.1s  0.1s  0.1s  ation with Multi  1 s  mposium (IV) 20  0.1 s  conference on  0.06 s  0.1 s  conference on  0.06 s  0.1 s  erence on Robor  0.1 s  erence on Robor  0.1 s  con Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 Learning-based Approach Exploiting Sequential Data. IEEE Reflections and Systems (ICC)  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  core @ 3.5 Ghz (C/C++)  GPU @ 3.5 Ghz (C/C++)  core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  3 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.6 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  Mapping. Robotics and Autonomous Systems (RAS) 2017.  alization. IROS 2015.  1 core @ 2.0 Ghz (C/C++)  Mapping. Robotics and Autonomous Systems (RAS) 2017.  alization. IROS 2015.  1 core @ 2.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| Graeter,  Wang, M.  Balance Reference Referenc | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Distance Inches  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Theicini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  at and J. Tard\"os: ORB-SL  IV-SLAM  IV-SLAM  MOTF  Iller and J. Eggert: Stereo  S-PTAM  Fischer, G. Castro, P. De  Fischer, J. Civera, P. Cris  S-LSD-SLAM  St\"uckler and D. Creme  VOBa  M. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A.  LiViOdo  Yoon and T. Barfoot: A.  LiViOdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | anfourche ar  an | dar-Monoculation described and G. Le Be descr | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVSLAM  0.99 %  Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  ereo Visual Odom  1.09 %  based Framework  1.11 %  1.14 %  Monocular Odom  1.15 %  LAM System for Manular Odom  1.17 %  imultaneous Local  1.19 %  and J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM with Stereo County of the special series of the | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  visual odometry with ste  0.0019 [deg/m]  oltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  doving Object Segmentation  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  unda++: Efficient LiDAR-bas  0.0024 [deg/m]  oldeg/m]  oldeg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry. IEEE/RSJ International  0.0023 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  conocular, Stereo and RGB-location and Mapping. Confing. German Conference of the confinence of the confinen | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.08 s  etry  0.1s  0.1s  0.1s  0.1s  0.1s  0.17 s  ed Semantic SLAM  0.3 s  Use in a Probat  0.145 s  iniques. IEEE Inte  0.1s  0.1s  0.1s  ation with Multi  1 s  mposium (IV) 20  0.1 s  conference on  0.06 s  0.1 s  conference on  0.06 s  0.1 s  erence on Robor  0.1 s  erence on Robor  0.1 s  con Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  0.1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  ata: A Learning-based Approach Exploiting Sequential Data. IEEE Robotics and Sy  1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  bilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.6 Ghz (C/C++)  1 core @ 3.7 Ghz (C/C++)  1 core @ 3.8 Ghz (C/C++)  1 core @ 3.9 Ghz (C/C++)                                                                                                                                                                                                                                                                    |                     |
| Graeter,  Wang, M.  Korovko,  Graeter,  Korovko,  Graeter,  Graeter,  Korovko,  Graeter,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  GaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Distance Inches  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. Townson  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  al and J. Tard\'os: ORB-SL  IV-SLAM  IV-SLAM  MOTF  Iller and J. Eggert: Stereo  S-PTAM  Fischer, G. Castro, P. De  Fischer, G. Castro, P. De  Fischer, G. Castro, P. Cris  S-LSD-SLAM  St\"uckler and D. Creme  VOBa  M. George, M. Laverne, A.  Was 270, M. Laverne, A.  Was 2710, M. Sarfoot: A.  Yoon and T. Barfoot: A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | anfourche ar  an | dar-Monoculation described and G. Le Be descr | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVSLAM  0.99 %  Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  ereo Visual Odom  1.09 %  based Framework  1.11 %  1.14 %  Monocular Odom  1.15 %  LAM System for Manular Odom  1.17 %  imultaneous Local  1.19 %  and J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM with Stereo County of the special series of the | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  visual odometry with ste  0.0019 [deg/m]  oltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  doving Object Segmentation  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  unda++: Efficient LiDAR-bas  0.0024 [deg/m]  oldeg/m]  oldeg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry. IEEE/RSJ International  0.0023 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  conocular, Stereo and RGB-location and Mapping. Confing. German Conference of the confinence of the confinen | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 1 S  1 0.008 s  1 0.008 s  1 0.01 s  1 0.1 s | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  ata: A Learning-based Approach Exploiting Sequential Data. IEEE Robotics and Automation Letters  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy 1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  bilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  Intelligent Robots and Systems (IROS) 2014.  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  Transactions on Robotics 2017.  GPU @ 2.5 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  Intelligent Robots and Autonomous Systems (RAS) 2017.  alization. IROS 2015.  1 core @ 3.0 Ghz (C/C++)  Acores @ 3.5 Ghz (C/C++)  Acores @ 3.6 Ghz (C/C++)  Acores @ 3.7 Ghz (C/C++)  Acores @ 3.8 Ghz (C/C++)  Acores @ 3.9 Ghz (C/C++)  Acores @  |                     |
| Graeter,  Wang, M.  Korovko,  Graeter,  Korovko,  Graeter,  Ferrera,  Graeter,  Ferrera,  Graeter,  Graeter,  Ferrera,  Graeter,  Graete | Stereo DSO  Schw\"orer and D. CrembaceElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Distance Interest (RA-L) 2021.  SuMa-MOS  Li, B. Mersch, L. Wiesman Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. T.  CV4XV1-SC  T. Piccini, R. Mester and VINS-Fusion  Pan, S. Cao and S. Shen: And MonoROCC  and V. Willert: Monocular Vins  DEMO  M. Kaess and S. Singh: Real ORB-SLAM2  all and J. Tard\'os: ORB-SL  IV-SLAM  Tore Interest  | anfourche ar  an | dar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Mo | 0.93 %  cale Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  stliers in Visual Odome  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  ereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.12 %  imultaneous Local  1.17 %  imultaneous Local  1.20 %  LAM with Stereo (  1.22 %  imultaneous Local  1.23 %  imultaneous Local  1.24 %  imultaneous Local  1.25 %  imultaneous Local  1.25 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  attime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  attime Stereo Visual Odome  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  uning of Lidar Features for  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  etry from Monocular Techn  0.0028 [deg/m]  etry. IEEE/RSJ International  0.0028 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  etry. IEEE/RSJ International  0.0027 [deg/m]  etry. IEEE/RSJ International  0.0028 [deg/m]  etry. IEEE/RSJ International  0.0029 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  ization and Mapping. Conf  0.0025 [deg/m]  tring. German Conference  0.0026 [deg/m]  etry. ArXiv e-prints 2018.  0.0041 [deg/m]  environment. ISPRS Journal  environment. ISPRS Journal  environment. ISPRS Journal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  bilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  //SJ International Conference on Intelligent Robots and Systems (RAS) 2017.  alization. IROS 2015.  1 core @ 2.5 Ghz (C/C++)  //RSJ International Conference on Intelligent Robots and Systems (RAS) 2017.  alization. IROS 2015.  1 core @ 2.5 Ghz (C/C++)  //RSJ International Conference on Intelligent Robots and Systems (RAS) 2017.  alization. IROS 2015.  1 core @ 2.5 Ghz (C/C++)  //RSJ International Conference on Intelligent Robots and Systems (RAS) 2017.  1 core @ 2.5 Ghz (C/C++)  //RSJ International Conference on Intelligent Robots and Systems (RAS) 2017.  1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)                                                                                               |                     |
| Graeter, 77 Wang, M. 88 Signature, 88 Korovko, 99 Ferrera, 10 Ferrera, 11 Buczko a 12 Korovko, 13 Chen, S. tomation 14 Chen, A. 15 Graeter, 17 Persson, 18 Rabiee ar 19 Buczko a 10 Chen, J. P. 17 Persson, 18 Rabiee ar 14 Deigmoel 15 Fire, T. F. 16 Fire, T. F. 17 Graeter, 17 Graeter, 19 Graeter, 10 Qu, B. So 11 Chen, S. Chen, S | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  BaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Dig  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Zhang, M. Gridseth, H. T.  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  at and J. Tard\'os: ORB-SL  IV-SLAM  IV-SLAM  TOTF  Iller and J. Eggert: Stered  S-PTAM  Fischer, G. Castro, P. De  Fischer, J. Civera, P. Cris  S-LSD-SLAM  St\"uckler and D. Creme  VOBa  M. George, M. Laverne, A.  Wan 2010.  STEAM-L  Oheilian and N. Paparodit  STEAM-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LIMO: Liner: LIMO: Liner: LIMO: Liner: LIMO: Liner: Stereo of the control of the  | dar-Monocudar Monocudar Mo | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVSLAM  0.99 %  Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  ereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.14 %  Monocular Odom  1.15 %  LAM System for M  1.17 %  imultaneous Local  1.12 %  chand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM with Stereous  1.22 %  new approach to  1.25 %  alization in urban  1.26 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  visual odometry with ste  0.0019 [deg/m]  oltime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  doving Object Segmentation  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  uning of Lidar Features for  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry. IEEE/RSJ International  0.0023 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  etry. IEEE/RSJ International  0.0026 [deg/m]  etry. IEEE/RSJ International  0.0027 [deg/m]  etry. IEEE/RSJ International  0.0028 [deg/m]  etry. IEEE/RSJ International  0.0029 [deg/m]  etry. IEEE/RSJ International  0.0026 [deg/m]  environ and Mapping. Confing.  0.0027 [deg/m]  environ and International Inte | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.03 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  n in 3D LiDAR D  0.1 s  ed Semantic SL  0.07 s  0.145 s  niques. IEEE Inte  0.1s  0.1s  1 s  mposium (IV) 20  0.1 s  1 conference of  0.1 s  con Pattern Reco  0.06 s  0.1 s  erence on Robor  0.45 s  on Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.1 s  erence on Robor  0.2 s  stimation on SE  0.1 s  on Pattern Reco  0.1 s  elligent Robot S  on Pattern Reco  0.1 s  elligent Robot S  on Pattern Robot S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  **Ifor Real-Time Applications**. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  **Ifor Real-Time Applications**. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  **Itations**. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  bilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  **Mapping**. Robotics and Autonomous Systems (RAS) 2017.  alization**. IROS 2015.  1 core @ 3.5 Ghz (C/C++)  **Mapping**. Robotics and Autonomous Systems (RAS) 2017.  alization**. IROS 2015.  1 core @ 3.5 Ghz (C/C++)  **Mapping**. Robotics and Autonomous Systems (RAS) 2017.  alization**. IROS 2015.  1 core @ 2.5 Ghz (C/C++)  **Mapping**. Robotics and Autonomous Systems (RAS) 2017.  alization**. IROS 2015.  1 core @ 2.5 Ghz (C/C++)  **Mapping**. Robotics and Systems (RAS) 2017.  alization**. IROS 2015.  1 core @ 2.5 Ghz (C/C++)  **Mapping**. Robotics and Systems (RAS) 2017.  alization**. IROS 2015.  1 core @ 2.5 Ghz (C/C++)  **Mapping**. Robotics and Systems (RAS) 2017.  alization**. IROS 2015.  1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)                                                                                        |                     |
| Graeter, 7   Wang, M. 8   Is   Korovko, 9   Ferrera, 10   Ferrera, 11   Sample   Ferrera, 12   Korovko, 13   Chen, S. tomation 14   Chen, A. 15   Ferrera, 16   Ferrera, 17   Ferrera, 18   Ferrera, 19   Ferrera, 10   Ferrera, 11   Ferrera, 12   Ferrera, 13   Ferrera, 14   Ferrera, 16   Ferrera, 17   Ferrera, 18   Ferrera, 19   Ferrera, 10   Ferrera, 11   Ferrera, 12   Ferrera, 13   Ferrera, 14   Ferrera, 15   Ferrera, 16   Ferrera, 17   Ferrera, 18   Ferrera, 19   Ferrera, 10   Ferrera, 11   Ferrera, 12   Ferrera, 13   Ferrera, 14   Ferrera, 16   Ferrera, 17   Ferrera, 18   Ferrera, 19   Ferrera, 10   Ferrera, 11   Ferrera, 12   Ferrera, 13   Ferrera, 14   Ferrera, 16   Ferrera, 17   Ferrera, 18   Ferrera, 19   Ferrera, 10   Ferrera, 10   Ferrera, 11   Ferrera, 12   Ferrera, 13   Ferrera, 14   Ferrera, 16   Ferrera, 17   Ferrera, 18   Ferrera, 19   Ferrera, 10   Ferrera, 11   Ferrera, 12   Ferrera, 13   Ferrera, 14   Ferrera, 16   Ferrera, 17   Ferrera, 18   Ferrera, 19   Ferrera, 10   Ferrera, 10   Ferrera, 10   Ferrera, 11   Ferrera, 12   Ferrera, 13   Ferrera, 14   Ferrera, 16   Ferrera, 17   Ferrera, 18   Ferrera, 19   Ferrera, 10   Ferrera, 10   Ferrera, 10   Ferrera, 11   Ferrera, 12   Ferrera, 13   Ferrera, 14   Ferrera, 16   Ferrera, 17   Ferrera, 18   Ferrera, 19   Ferrera, 10   Ferrera, 1 | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  BaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Dig  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Zhang, M. Gridseth, H. T.  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  at and J. Tard\'os: ORB-SL  IV-SLAM  IV-SLAM  TOTF  Iller and J. Eggert: Stered  S-PTAM  Fischer, G. Castro, P. De  Fischer, J. Civera, P. Cris  S-LSD-SLAM  St\"uckler and D. Creme  VoBa  M. George, M. Laverne, A.  Wan 2010.  STEAM-L  Yoon and T. Barfoot: A.  LiViOdo  A. Wilczynski and M. Lau  STEAM-L  Yoon, F. Pomerleau and  FRVO  TRVO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limo: Limo: Lino  Limo: Limo: Lino  Limo: Limo: Lino  Limo: Stereo of the control  Limo: Limo: Limo: Lino  Limo: | dar-Monocudar Monocudar Mo | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.99 %  1.06 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  lereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.14 %  Monocular Odom  1.17 %  imultaneous Local  1.120 %  LAM with Stereo O  1.22 %  new approach to  1.26 %  Bias Correction for Con  1.26 %  Bias Correction for Con  1.26 %  Bias Correction for Con  1.26 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  altime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]  dowing Object Segmentation  0.0034 [deg/m]  Inning of Lidar Features for  0.0029 [deg/m]  cetry from Monocular Techn  0.0023 [deg/m]  cetry from Monocular Techn  0.0023 [deg/m]  EEE Intelligent Vehicles Sy  0.0023 [deg/m]  conocular, Stereo and RGB-  0.0025 [deg/m]  cetry. IEEE/RSJ International  0.0025 [deg/m]  cetry. IEEE/RSJ International  0.0025 [deg/m]  conocular, Stereo and RGB-  0.0025 [deg/m]  conocular, Stereo and RGB-  0.0025 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0025 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0025 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0026 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0027 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0026 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0041 [deg/m]  10.0041 [deg/m]  10.0061 [deg/m]  10.0061 [deg/m]  10.0038 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.03 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  n in 3D LiDAR D  0.1 s  ed Semantic SL  0.07 s  0.145 s  niques. IEEE Inte  0.1s  0.1s  1 s  mposium (IV) 20  0.1 s  con Pattern Reco  0.06 s  0.1 s  erence on Robor  0.1 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.03 s  el Tracking and ing for sobot loc  0.1 s  erence on Robor  0.1 s  eligent Robot S  on Pattern Reco  0.1 s  eligent Robot S  on Pattern Robot S  on Pattern Reco  0.1 s  eligent Robot S  on Pattern Robot S  o       | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  AM, IEEE/RSJ International Conference on Intelligent Robots and Systems (ROS) 2015.  1 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  polistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.6 Ghz (C/C++)  1 core @ 3.7 Ghz (C/C++)  1 core @ 3.8 Ghz (C/C++)  1 core @ 3.9 Ghz (C/C++)  2 cores @ 3.9 Ghz (C/C++)  3 cores @ 3.9 Ghz (C/C++)                                                                       |                     |
| Graeter,  Graeter,  Wang, M.  Korovko,  Graeter,  Korovko,  Graeter,  Graeter,  Korovko,  Graeter,  Graete | A. Wilczynski and M. Lau  Stereo DSO  Schw\"orer and D. Crem  BaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Dig  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Zhang, M. Gridseth, H. T.  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  at and J. Tard\'os: ORB-SL  IV-SLAM  IV-SLAM  TOTF  Iller and J. Eggert: Stered  S-PTAM  Fischer, G. Castro, P. De  Fischer, J. Civera, P. Cris  S-LSD-SLAM  St\"uckler and D. Creme  VoBa  M. George, M. Laverne, A.  Wan 2010.  STEAM-L  Yoon and T. Barfoot: A.  LiViOdo  A. Wilczynski and M. Lau  STEAM-L  Yoon, F. Pomerleau and  FRVO  TRVO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limo: Limo: Lino  Limo: Limo: Lino  Limo: Limo: Lino  Limo: Stereo of the control  Limo: Limo: Limo: Lino  Limo: | dar-Monocudar Monocudar Mo | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.99 %  1.06 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  lereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.14 %  Monocular Odom  1.17 %  imultaneous Local  1.120 %  LAM with Stereo O  1.22 %  new approach to  1.26 %  Bias Correction for Con  1.26 %  Bias Correction for Con  1.26 %  Bias Correction for Con  1.26 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  altime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]  dowing Object Segmentation  0.0034 [deg/m]  Inning of Lidar Features for  0.0029 [deg/m]  cetry from Monocular Techn  0.0023 [deg/m]  cetry from Monocular Techn  0.0023 [deg/m]  EEE Intelligent Vehicles Sy  0.0023 [deg/m]  conocular, Stereo and RGB-  0.0025 [deg/m]  cetry. IEEE/RSJ International  0.0025 [deg/m]  cetry. IEEE/RSJ International  0.0025 [deg/m]  conocular, Stereo and RGB-  0.0025 [deg/m]  conocular, Stereo and RGB-  0.0025 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0025 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0025 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0026 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0027 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0026 [deg/m]  conocular, Stereo Paralloparallel tracking and mapp  10.0041 [deg/m]  10.0041 [deg/m]  10.0061 [deg/m]  10.0061 [deg/m]  10.0038 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.03 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  n in 3D LiDAR D  0.1 s  ed Semantic SL  0.07 s  0.145 s  niques. IEEE Inte  0.1s  0.1s  1 s  mposium (IV) 20  0.1 s  con Pattern Reco  0.06 s  0.1 s  erence on Robor  0.1 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.03 s  el Tracking and ing for sobot loc  0.1 s  erence on Robor  0.1 s  eligent Robot S  on Pattern Reco  0.1 s  eligent Robot S  on Pattern Robot S  on Pattern Reco  0.1 s  eligent Robot S  on Pattern Robot S  o       | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  GPU and CPU @ 2.3 Ghz (C/C++)  GPU @ 3.5 Ghz (C/C++)  celligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.3 Ghz (C/C++)  3 cores @ 3.3 Ghz (C/C++)                                                                                                                                                                                                                                                       |                     |
| Graeter, Graeter, Wang, M.  Korovko, Graeter, Gr | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Crem  BaacElbrusGPUSLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. T.  CV4xV1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  A. Kaess and S. Singh: Rea  ORB-SLAM2  al and J. Tard\"os: ORB-SL  IV-SLAM  MOTF  Iler and J. Eggert: Stereo  S-PTAM  Fischer, J. Civera, P. Cris  S-LSD-SLAM2  al and J. Tard\"os: ORB-SL  IV-SLAM  Toyon, S. Cao and S. Singh: Rea  ORB-SLAM2  A. George, M. Laverne, A.  St\"uckler and D. Creme  VoBa  A. George, M. Laverne, A.  St\"uckler and D. Creme  VoBa  A. George, M. Laverne, A.  St\"uckler and D. Creme  VoBa  A. George, M. Laverne, A.  St\"uckler and D. Creme  VoBa  A. George, M. Laverne, A.  Toyon and T. Barfoot: A.  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L  Yoon, F. Pomerleau and  FRVO  , L. Siew-Kei and S. Tham  JFBVO-FM  , V. Karar and S. Poddar:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | anfourche ar  an | dar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Monocudar-Mo | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  stliers in Visual Odome  1.09 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  ereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.12 %  imultaneous Local  1.17 %  imultaneous Local  1.18 %  AM System for M  1.15 %  LAM System for M  1.15 %  LAM System for M  1.15 %  LAM System for M  1.15 %  Aliar Visual Odome  1.22 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.10 %  imultaneous Local  1.11 %  imultaneous Local  1.12 %  imultaneous Local  1.13 %  imultaneous Local  1.14 %  imultaneous Local  1.15 %  imultaneous Local  1.17 %  imultaneous Local  1.18 %  imultaneous Local  1.19 %  imultaneous Loca | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  e visual odometry with ste  0.0019 [deg/m]  altime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]  dowing Object Segmentation  0.0034 [deg/m]  doving Object Segmentation  0.0036 [deg/m]  roning of Lidar Features for  0.0029 [deg/m]  etry from Monocular Techn  0.0029 [deg/m]  etry. IEEE/RSJ International  0.0023 [deg/m]  etry. IEEE/RSJ International  0.0025 [deg/m]  etry. IEEE/RSJ International  0.0026 [deg/m]  etry. IEEE/RSJ International  0.0027 [deg/m]  etry. IEEE/RSJ International  0.0028 [deg/m]  etry. IEEE/RSJ International  0.0029 [deg/m]  etry. IEEE/RSJ International  0.0038 [deg/m]  environment. ISPRS Journal  10.0041 [deg/m]  environment. ISPRS Journal  10.0041 [deg/m]  environment. ISPRS Journal  10.0041 [deg/m]  environment. ISPRS Journal  10.0038 [deg/m]  10.0049 [deg/m]  10.0049 [deg/m]  10.0049 [deg/m]  10.0049 [deg/m]  10.0040 [deg/m]  10.0040 [deg/m]  10.0040 [deg/m]  10.0040 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  billistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  core @ 3.0 Ghz (C/C++)  pletigent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.6 Ghz (C/C++)  1 core @ 3.7 Ghz (C/C++)  1 core @ 3.8 Ghz (C/C++)  1 core @ 3.9 Ghz (C/C++)  2 cores @ 3.9 Ghz (C/C++)  3 cores @ 3.9 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  1 core @ 3.9 Ghz (C/C++)  2 cores @ 3.9 Ghz (C/C++)  2 cores @ 3.9 Ghz (C/C++)  2 cores @ 3.9 Ghz (C/C++)  3 cores @ 3.9 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  2 cores @ 3.9 Ghz (C/C++)  3 cores @ 3.9 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  |                     |
| Graeter,  Wang, M.  Korovko,  Greerera,  Graeter,  Korovko,  Greerera,  Greer | Stereo DSO  Schwi'orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Di  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. Townson  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  Iller and J. Eggert: Stereo  S-PTAM  Fischer, G. Castro, P. De  Fischer, G. Castro, P. De  Fischer, J. Civera, P. Cris  S-LSD-SLAM  St\"uckler and D. Creme  VoBa  M. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A.  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L  Yoon, F. Pomerleau and  FRVO  J. L. Siew-Kei and S. Tham  JFBVO-FM  V. Karar and S. Poddar:  MFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | anfourche ar  an | dar-Monocu daso: Large- doso: Large- doso doso doso: Large- doso doso doso doso doso doso doso dos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVSLAM  0.99 %  Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  tereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.17 %  imultaneous Local  1.12 %  cand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for M  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.12 %  cand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM with Stereo G  1.22 %  new approach to  1.22 %  cand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM with Stereo G  1.20 %  LAM with Stereo G  1.22 %  new approach to  1.22 %  clar Visual Odome  1.25 %  alization in urban  1.26 %  Bias Correction for  To Fast and Robus  certy pipeline with  1.30 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0026 [deg/m]  try. ArXiv e-prints 2018.  0.0020 [deg/m]  visual odometry with ste  0.0019 [deg/m]  altime Stereo Visual Odome  0.0023 [deg/m]  : A Fully Online and Versa  0.0028 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]  dometry for High-speed Au  0.0020 [deg/m]  altime Stereo Visual Odome  0.0033 [deg/m]  doving Object Segmentation  0.0034 [deg/m]  and Happing Confort Lidar Features for Cocal Odometry Estime  0.0029 [deg/m]  etry from Monocular Technology  0.0028 [deg/m]  etry from Monocular Technology  0.0029 [deg/m]  etry. IEEE/RSJ International Commocular, Stereo and RGB-less: SI-PI TAM: Stereo Parallogometry. IEEE Tameras. IntConfon Int.  0.0025 [deg/m]  ameras. IntConfon Int.  0.0029 [deg/m]  try. ArXiv e-prints 2018.  0.0033 [deg/m]  ameras. IntConfon Int.  0.0041 [deg/m]  environment. ISPRS Journal Oncoular Conformation Conformatical Conformation Conformation Conformation Conformation Conformatical Conformation C                   | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.008 s  etry  0.1s  n in 3D LiDAR D  0.1 s  ed Semantic SLA  0.1 s  ed Semantic SLA  0.1 s  old Semantic SLA  0.1 s  old Semantic SLA  0.1 s  ed Semantic SLA  0.1 s  old Semantic SLA  0.1 s  old Semantic SLA  0.1 s  old Semantic SLA  0.1 s  ed Semantic SLA  0.1 s  old Semantic SLA  old Sema       | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  ata: A Learning-based Approach Exploiting Seguential Data. IEEE Robotics and Automation Letters  1 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  Dilistic Trajectory Estimator. IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  Mapping. Robotics and Autonomous Systems (RAS) 2017.  alization. IROS 2015.  1 core @ 3.5 Ghz (C/C++)  A core @ 3.5 Ghz (C/C++)  I core @ 2.5 Ghz (C/C++)  A core @ 3.5 Ghz (C/C++)  A core @ 2.5 Ghz (C/C++)  A core @ 2.5 Ghz (C/C++)  A core @ 3.5 Ghz (C/C++)         |                     |
| Graeter,  Wang, M.  Korovko,  Greerera,  Go Ferrera,  Go  | A. Wilczynski and M. Lau  Stereo DSO  J. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  J. D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Divide the service of t | anfourche ar  an | dar-Monocudar Monocudar Mo | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVSLAM  0.99 %  Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  cereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.14 %  Monocular Odom  1.17 %  imultaneous Local  1.12 %  chand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for Mand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for Mand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for Mand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for Mand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for Mand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for Mand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for Mand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for Mand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for Mand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM System for Mand J. Jacobo Berlo-Berlles: Stereous  1.20 %  In Jacobo Berlo-Berlles: Stereous  In Jacobo Berlles: Stereous  In Jacobo Berlles: Stereous  In Ja | 0.0026 [deg/m]   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.03 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  n in 3D LiDAR D  0.1 s  ed Semantic SL  0.07 s  0.1 s  ed Semantic SL  0.1 s  1 s  mposium (IV) 20  0.1 s  1 s  mposium (IV) 20  0.1 s  1 s  con Pattern Reco  0.06 s  0.1 s  con Pattern Reco  0.07 s  el Tracking and ing for robot loc  0.07 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  0.1 s  erence on Robor  0.1 s  con Pattern Reco  0.2 s  el Tracking and ing for robot loc  0.1 s  con Pattern Reco  0.1 s  eligent Robot S  0.1 s  con Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  0.1 s  con Pattern Reco  0.03 s  eligent Robot S  0.1 s  con Pattern Robot        | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 2.0 Ghz (C/C++)  1 core @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  1 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.6 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  5 cransactions and Autonomous Driving at iCCV 2013.  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.6 Ghz (C/C++)  2 cores @ 3.7 Ghz (C/C++)  3 cores @ 3.8 Ghz (C/C++)  4 cores @ 3.8 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  5 cransactions and Autonomous Driving at iCCV 2013.  1 core @ |                     |
| Graeter,  Graeter,  Wang, M.  Korovko,  Graeter,  Graeter,  Korovko,  Graeter,  Graete | Stereo DSO  Schw\"orer and D. Creme SaacElbrusGPUSLAM  D. Robustov, D. Slepiche OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Diversion SuMa-MOS  Li, B. Mersch, L. Wiesman Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. T.  cv4xv1-sc  T. Piccini, R. Mester and VINS-Fusion Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  all and J. Tard\"os: ORB-SL  IV-SLAM  MOTF  Iller and J. Eggert: Stereo  S-PTAM  St\"uckler and D. Creme  VoBa  M. George, M. Laverne, A.  wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  St\"uckler and D. Creme  VoBa  M. George, M. Laverne, A.  wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  St\"uckler and D. Creme  VoBa  M. George, M. Laverne, A.  wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  St\"uckler and S. Than  STEAM-L  Yoon, F. Pomerleau and  FRVO  J. LiviOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L  Yoon, F. Pomerleau and  FRVO  J. Lisiew-Kei and S. Than  JFBVO-FM  JYBVO-FM  JYBYO-FM  JYBYO | anfourche ar  an | dar-Monoculation das de la code d | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OvSLAM  0.99 %  Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  cereo Visual Odom  1.09 %  based Framework  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.12 %  chan J. Jacobo Berlo-Berlles: Stereo I  1.20 %  LAM System for M  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.12 %  chan J. Jacobo Berlo-Berlles: Stereo I  1.20 %  LAM System for M  1.15 %  LAM System for M  1.16 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.18 %  chan J. Jacobo Berlo-Berlles: Stereo I  1.20 %  LAM with Stereo (Cook)  1.22 %  chan J. Jacobo Berlo-Berlles: Stereo I  1.20 %  LAM with Stereo (Cook)  1.22 %  chan J. Jacobo Berlo-Berlles: Stereo I  1.26 %  con Fast and Robus  1.26 %  cor Fast and Robus  1.30 %  ty Whalti-frame Feat  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  1.36 %  cry with two- stage  con Stage Stage  con Stage Stage  1.36 %  cry with two- stage  con Stage St | 0.0026 [deg/m]   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.3 Ghz (C/C++)  1 core @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.6 Ghz (C/C++)  2 cores @ 3.7 Ghz (C/C++)  3 cores @ 3.8 Ghz (C/C++)  4 cores @ 3.8 Ghz (C/C++)  1 core @ 3.9 Ghz (C/C++)  1 core @ 3.9 Ghz (C/C++)  2 cores @ 3.9 Ghz (C/C++)  3 cores @ 3.9 Ghz (C/C++)   |                     |
| Graeter,  Wang, M.  Residence of the second  | A. Wilczynski and M. Lau  Stereo DSO  J. Schw\"orer and D. Crem  SaacElbrusGPUSLAM  J. D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  J. D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Theicini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  A. Kaess and S. Singh: Rea  ORB-SLAM2  all and J. Tard\'os: ORB-SL  IV-SLAM  St\"uckler and D. Creme  VOBa  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiV-SLAM  St\"uckler and D. Creme  VOBa  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L  Yoon, F. Pomerleau and  FRVO  J. L. Siew-Kei and S. Tham  JFBVO-FM  JV. Karar and S. Poddar:  MFI  A. Yamamoto and T. Kan  TLBBA  JEBVO-FM  JV. Karar and S. Poddar:  MFI  A. Yamamoto and T. Kan  TLBBA  Jiang and J. Liu: High-per  2FO-CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | anfourche ar  an | dar-Monoculation das                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVSLAM  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  cereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.14 %  Monocular Odom  1.09 %  based Framework  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.12 %  chand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM with Stereo County Stereous  1.22 %  new approach to  1.22 %  new approach to  1.22 %  new approach to  1.26 %  stion Prior for Con  1.22 %  new approach to  1.25 %  alization in urban  1.26 %  Bias Correction for  1.26 %  Bias Correction for  T.26 %  or Fast and Robus  1.30 %  y Multi-frame Feat  1.30 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0026 [deg/m]   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.3 s  tomotive Applic  0.008 s  etry  0.1s  n in 3D LiDAR D  0.1 s  ed Semantic SLA  0.07 s  0.1 s  ed Semantic SLA  0.1 s  on 1 s  el Tracking and ing for robot location on SE  0.1 s  erence on Robor  0.45 s  on Pattern Reco  0.07 s  elligent Robot S  on Pattern Reco  0.07 s  elligent Robot S  on Pattern Reco  0.1 s  erence on Robor       | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 2.0 Ghz (C/C++)  1 core @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  1 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.6 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  5 cransactions and Autonomous Driving at iCCV 2013.  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.6 Ghz (C/C++)  2 cores @ 3.7 Ghz (C/C++)  3 cores @ 3.8 Ghz (C/C++)  4 cores @ 3.8 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  5 cransactions and Autonomous Driving at iCCV 2013.  1 core @ |                     |
| Graeter,  Wang, M.  18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Creme  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Zhang, M. Gridseth, H. T.  CV4xV1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  all and J. Tard\"os: ORB-SL  IV-SLAM  The Stamp of the Stamp  | Thomas and  | dar-Monocudas described and G. Le Be describe | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVSLAM  0.99 %  Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  cereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.14 %  Monocular Odom  1.15 %  LAM System for Mand J. Jacobo Berio-Berlles: Stereo in the stereo of the ster | 0.0026 [deg/m]   Ity. ArXiv e-prints 2018.   0.0020 [deg/m]   e visual odometry with stee   0.0019 [deg/m]   e visual odometry with stee   0.0023 [deg/m]   e visual odometry with stee   0.0023 [deg/m]   e visual odometry by the stereo Visual odometry for High-speed Au   0.0028 [deg/m]   e visual odometry for High-speed Au   0.0020 [deg/m]   e visual odometry for High-speed Au   0.0033 [deg/m]   e visual odometry for High-speed Au   0.0034 [deg/m]   e visual odometry for High-speed Au   0.0034 [deg/m]   e visual odometry estime   0.0024 [deg/m]   e visual odometry estime   0.0028 [deg/m]   e visual odometry estime   0.0029 [deg/m]   e visual odometry estime   0.0028 [deg/m]   e visual odometry estime   0.0028 [deg/m]   e visual odometry estime   0.0028 [deg/m]   e visual odometry estime   0.0029 [deg/m]   e visual odometry estime   0.0025 [deg/m]   e visual odometry estime   0.0025 [deg/m]   e visual odometry estime   0.0035 [deg/m]   e visual odometry estime   0.0036 [deg/m]   e visual odometry estime   0.0038 [deg/m]   0.0038 [deg/m]   0.0038 [deg/m]   0.0038 [deg/m]   0.0038 [deg/m]   0.0038 [deg/m]     | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.03 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  n in 3D LiDAR D  0.1 s  ed Semantic SL  0.07 s  0.1 s  o.1 s  o.1 s  in a Probat  0.145 s  iniques. IEEE Inte  0.1 s  ation with Multi  1 s  mposium (IV) 20  0.1 s  1 conference of  0.06 s  0.1 s  erence on Robor  0.05 s  con Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.1 s  erence on Robor  0.1 s                                                    | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 2.0 Ghz (C/C++)  1 core @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  5 cores @ 2.0 Ghz (C/C++)  6 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 2.5 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 2.5 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  5 core @ 2.2 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 2.2 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  6 core @ 3.0 Ghz (C/C++)  6 core @ 3.0 Ghz (C/C++)  7 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C |                     |
| Graeter, 47 Wang, M. 48 Is Korovko, 49 Ferrera, 50 Ferrera, 51 Buczko a 52 Korovko, 53 Chen, S. Itomation 54 Chen, A. 55 Fire, T. F 66 Fire, T. F 66 Fire, T. F 66 Fire, T. F 66 Fire, T. F 67 Chang, M 68 Chang, M 69 Chang, M 69 Chang, M 69 Chang, M 69 Chen, S. Chen | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Creme  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Zhang, M. Gridseth, H. T.  CV4xV1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  al and J. Tard\"os: ORB-SL  IV-SLAM  The Stamp of the Stamp o | Thomas and  | dar-Monocudas described and G. Le Be describe | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVSLAM  0.99 %  Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  cereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.14 %  Monocular Odom  1.15 %  LAM System for Mand J. Jacobo Berio-Berlles: Stereo in the stereo of the ster | 0.0026 [deg/m]   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.03 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  n in 3D LiDAR D  0.1 s  ed Semantic SL  0.07 s  0.1 s  o.1 s  o.1 s  in a Probat  0.145 s  iniques. IEEE Inte  0.1 s  ation with Multi  1 s  mposium (IV) 20  0.1 s  1 conference of  0.06 s  0.1 s  erence on Robor  0.05 s  con Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.03 s  el Tracking and ing for robot loc  0.07 s  elligent Robot S  on Pattern Reco  0.1 s  erence on Robor  0.1 s                                                    | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 2.0 Ghz (C/C++)  1 core @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  5 cores @ 2.0 Ghz (C/C++)  6 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 2.5 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 2.5 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  5 core @ 2.2 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 2.2 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  4 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  5 core @ 3.0 Ghz (C/C++)  6 core @ 3.0 Ghz (C/C++)  6 core @ 3.0 Ghz (C/C++)  7 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C |                     |
| Graeter,  47 Wang, M.  48 S Korovko,  49 Ferrera,  60 Ferrera,  61 Buczko a  62 Korovko,  63 Chen, S.  tomation  64 Chen, A.  65 Ferreson,  68 Qin, J. P.  69 Buczko a  60 Tang, D.  61 Tang, D.  62 Mur-Artal  63 Rabiee ar  64 Deigmoel  65 Fire, T. F  66 Fire, T. F  66 Fire, T. F  67 Capta and  67 Tang, D.  67 Tang, D.  68 Tang, D.  69 Graeter,  70 Qu, B. So  71 Tang, D.  72 Chen, A.  74 Badino, A.  75 Kovalenk  78 Behley ar  78 Kovalenk  78 Behley ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Creme  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. Toward  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  al and J. Tard\"os: ORB-SL  IV-SLAM  nd J. Biswas: IV-SLAM: In  NOTF  Iller and J. Eggert: Stereo  S-PTAM  Fischer, G. Castro, P. De  Fischer, J. Civera, P. Cris  S-LSD-SLAM  St\"uckler and D. Creme  VOBa  M. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViodo  A. Wilczynski and M. Lau  SLUP  Oheilian And T. Barfoot: A\  Liviodo  A. Wilczynski and M. Lau  STEAM-L  Yoon, F. Pomerleau and  FRVO  J. L. Siew-Kei and S. Tham  JFBVO-FM  JV. Karar and S. Poddar:  MFI  A. Yamamoto and T. Kan  TLBBA  iang and J. Liu: High-per  2FO-CC  d. S. Šegvić: Improving the  SuMa  and C. Stachniss: Efficient  MAC Stachniss: Efficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ier: LIMO: Line  Liminers: Stereo of the proving vince and the pro | dar-Monoculation described by sky and S code and G. Le Be described by sky and S code and G. Le Be described by sky and S code and G. Le Be described by sky and S code and G. Le Be described by sky and S code and G. Behley and G. Code and G. Stentz: A code and G. Code and G | 0.93 %  clar Visual Odome 0.93 % scale direct spars 0.94 % Snerais: OVZSLAM 0.98 % snerais: OVZSLAM 0.98 % stliers in Visual Odome 1.06 % 1.06 % 1.06 % 1.07 % Unsupervised Lea 1.09 % ereo Visual Odome 1.09 % based Framework 1.11 % 1.11 % 1.11 % 1.11 % 1.11 % 1.11 % 1.11 % 1.12 % multaneous Local 1.17 % multaneous Local 1.17 % multaneous Local 1.17 % multaneous Local 1.12 % tion Prior for Con 1.22 % new approach to 1.22 % new approach to 1.26 % for Fast and Robus 1.26 % for Fast and Robus 1.28 % etry pipeline with 1.30 % y Multi-frame Feat 1.30 % ty Multi-frame Feat 1.37 % by Correcting the 1.37 % r Odometry. 2019 1.39 % g 3D Laser Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0026 [deg/m]   17. ArXiv e-prints 2018.   0.0020 [deg/m]   18.   0.0020 [deg/m]   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.   19.    | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications, IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications, IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations, IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  Billistic Trajectory Estimator, IEEE Robotics and Automation Letters  GPU @ 3.5 Ghz (C/C++)  CPU and CPU @ 3.5 Ghz (C/C++)  CPU and CPU @ 3.5 Ghz (C/C++)  I core @ 3.0 Ghz (C/C++)  CPU and CPU @ 3.5 Ghz (C/C++)  I core @ 3.0 |                     |
| Graeter, Wang, M.  Wang, M.  Secondary  Graeter, Wang, M.  Secondary  Ferrera, Go Ferrera, | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Creme  BaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Distance IbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. T.  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  al and J. Tard\os: ORB-SL  IV-SLAM  IV-SLAM  IN JEBWO  St\"uckler and D. Creme  VOBa  M. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiviOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L  Yoon, F. Pomerleau and  FRVO  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L  Yoon, F. Pomerleau and  FRVO  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L  Yoon, F. Pomerleau and  FRVO  A. Wilczynski and M. Lau  SLUP  Oheilian and T. Kan  TIBBA  A. Yamamoto and T. Kan  JFBVO-FM  A. Yamamoto and A. Mi  SuMa  and C. Stachniss: Efficient  ProSLAM                                                                                                                                                                                                                                                                                                                                                                                                                              | Interest Limo: Line  Interest Limo: Line  Interest Stereo of the control of the c | dar-Monocu daso: Large- ovsky and S code d G. Le Be d Code d G. Le Be d Code d Code J. Behley an code d Code | 0.93 %  clar Visual Odome 0.93 % scale direct spars 0.94 % Snerais: OVZSLAM 0.98 % snerais: OVZSLAM 0.98 % snerais: OVSSLAM 0.99 % 1.06 % 1.06 % 1.06 % 1.07 % Unsupervised Lea 1.09 % Lereo Visual Odome 1.09 % based Framework 1.11 % 1.14 % Monocular Odom 1.15 % LAM System for Manultaneous Local 1.17 % Imultaneous Local 1.17 % Imultaneous Local 1.17 % Imultaneous Local 1.17 % Imultaneous Local 1.19 % Ind J. Jacobo Berlo-Berlles: Stereous 1.20 % LAM with Stereo County Stereous Local 1.17 % Imultaneous Local 1.18 % Ind J. Jacobo Berlo-Berlles: Stereous 1.20 % LAM with Stereo County Stereous Local 1.17 % Imultaneous Local 1.18 % Ind J. Jacobo Berlo-Berlles: Stereous 1.20 % Indication in urban | 0.0026 [deg/m]  1. CY. ArXiv e-prints 2018.  0.0020 [deg/m]  1. Visual odometry with steen in the stereo visual Odometry with steen in the stereo visual Odometry for High-speed Au in the stereo visual Odometry in the stereo visual Odo | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 0.001 s  1 0.008 s  1 0.009 s  1 0.01 s  1 | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.0 Ghz (C/C++)  1 core @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  GPU @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  3 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 core @ 2.5 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 core @ 2.5 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  3 core @ 3.2 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  2 cores @ 3.3 Ghz (C/C++)  3 core @ 3.4 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  2 cores @ 3.5 Ghz (C/C++)  3 core @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C+ |                     |
| Graeter, 77 Wang, M. 18 Is Is Korovko, 19 Ferrera, 10 Ferrera, 11 Buczko a 12 Korovko, 13 Chen, S. tomation 14 Chen, A. 15 Graeter, 17 Persson, 18 Qin, J. P. 19 Buczko a 0 Chen, A. 17 Persson, 18 Graeter, 19 Graeter, 10 Chen, A. 11 Chen, A. 15 Chen, A. 15 Chen, S. | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Creme  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Divibility  J. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Theicini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  M. Kaess and S. Singh: Rea  ORB-SLAM2  all and J. Tard\"os: ORB-SL  All and J. Eggert: Stereo  S-PTAM  Fischer, G. Castro, P. De  Fischer, J. Civera, P. Cris  S-LSD-SLAM  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A.  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodity  A. Yamamoto and T. Kan  TLBBA  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A.  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodity  A. Yamamoto and T. Kan  TLBBA  T. Siew-Kei and S. Than  JFBVO-FM  O. V. Karar and S. Poddar:  MFI  A. Yamamoto and T. Kan  TLBBA  | Interest Stereo of the control of th | dar-Monocu dar-Monocu daso: Large- doso: Large- doso: Large- doso: Large- doso: Large- doso: Le Be doso doso doso doso doso doso doso dos                                                                                                                                                                                                                                                                                                                                                              | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  lereo Visual Odome  1.09 %  based Framework  1.11 %  1.14 %  Monocular Odom  1.15 %  LAM System for M  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.12 %  cand J. Jacobo Berlo-Berlles: Stereous  1.20 %  LAM with Stereo of  1.22 %  incompany of the stereous o | 0.0026 [deg/m]   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  ata: A Learning-based Approach Exploiting Sequential Data. IEEE Robotics and Automation Letters  1 core @ 3.5 Ghz (C/C++)  M. IEEE/RSJ International Conference on Intelligent Robots and Systems (RDG) 2015.  GPU and CPU @ 2.2 Ghz (Python + C/C++)  GPU and CPU @ 2.3 Ghz (C/C++)  Elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C+ |                     |
| Graeter, 7 Wang, M. 8 Is Korovko, 9 Ferrera, 0 Ferrera, 1 Buczko a 2 Korovko, 3 Chen, S. tomation 4 Chen, A. 5 Graeter, 7 Persson, 8 Rabiee an 4 Deigmoel 5 Fire, T. F Fire, T. F G Engel, J. 7 Tardif, M ipei, Taiv 8 Rabiee an 4 Deigmoel 5 Fire, T. F Fire, T. F G Engel, J. 7 Tardif, M ipei, Taiv 8 Chen, S. Che | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Creme  BaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. T.  CV4xV1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  A. Kaess and S. Singh: Rea  ORB-SLAM2  al and J. Tard\"os: ORB-SL  IV-SLAM  MOTF  Iller and J. Eggert: Sterec  S-PTAM  Fischer, G. Castro, P. De  Fischer, J. Civera, P. Cris  S-LSD-SLAM  St\"uckler and D. Creme  VOBa  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViodo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L WNOJ  Yoon and T. Barfoot: A\  Liviodo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L WNOJ  YOON, F. Pomerleau and  FRYO  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  YOON, F. Pomerleau and  FRYO  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L WNOJ  YOON, F. Pomerleau and  FRYO  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L WNOJ  YOON, F. Pomerleau and  FRYO  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L WNOJ  YOON, F. Pomerleau and  FRYO  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L WNOJ  Yoon, F. Pomerleau and  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  YOON, F. Pomerleau  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Kan  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Kan  A. George, M. Laverne, A.  Wan 2010.  The A. Yamamoto and G. Grisett  ProSLAM  M. Colosi and G. Grisett  A. Suchala and C. Grisett  ProSLAM  M. Colosi and G. Grisett  A. George, M. Laverne, A.  M. Col | ier: LIMO: Lie  Limit Limo: Lie  Limit Limit Limit Lie  Limit Limit Limit Lie  Limit Limit  | dar-Monocu dar-Monocu daso: Large- doso: Large- doso: Large- doso: Large- doso: Large- doso: Le Be doso doso doso doso doso doso doso dos                                                                                                                                                                                                                                                                                                                                                              | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.99 %  Volodarskiy: Rea  0.99 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  lereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.11 %  1.14 %  Monocular Odome  1.15 %  LAM System for Me  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.18 %  And J. Jacobo Berlo-Berlles: Stereo In  1.19 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.18 %  imultaneous Local  1.19 %  imultaneous Local  1.10 %  imultaneous Local  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  Indication in urban  1.12 %  imultaneous Local  1.12 %  imultaneous Local  1.12 %  imultaneous Local  1.13 %  imultaneous Local  1.14 %  imultaneous Local  1.15 %  imultaneous Local  1.17 %  imultaneous Local  1.17 %  imultaneous Local  1.18 %  imultaneous Local  1.19 %  imultaneous Local  1.10 %  imultaneous Local  1.10 %  imultaneous Local  1.11 %  imultaneous Local  1.12 %  imultaneous Local  1.13 %  imultaneous Local  1.14 %  imultaneous Local  1.15 %  imultaneous Local  1.10 %  imultaneous L | 0.0026 [deg/m]   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  reo cameras. In  0.007 s  etry  0.01 s  tile Visual SLAM  0.03 s  tomotive Applic  0.008 s  etry  0.1s  0.1s  n in 3D LiDAR D  0.1s  olyse in a Probat  0.15  olyse in a Probat  0.145 s  olyse in a Probat  0.15  olyse in a Probat  olyse in a        | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications: IEEE Robotics and Automation Letters 8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications: IEEE Robotics and Automation Letters 2 cores @ 2.0 Ghz (C/C++)  attions. IEEE Intelligent Vehicles Symposium (IV) 2016. 3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy 1 core @ 2.5 Ghz (C/C++)  Bilistic Trajectory Estimator: IEEE Robotics and Automation Letters GPU @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  Mappine. Robotics and Automations Systems (RAS) 2017.  altration. IROS 2015.  1 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 cores @ 3.6 Ghz (C/C++)  4 cores @ 3.7 Ghz (C/C++)  1 core @ 3.8 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  1 core @ 3.9 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  1 core @ 3.9 Ghz (C/C++)  1 core @ 3.9 Ghz (C/C++)  4 cores @ 3.9 Ghz (C/C++)  1 core @ 3.9 Ghz (C |                     |
| Graeter, 7 Wang, M. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A. Wilczynski and M. Lau  Stereo DSO  D. Schw\"orer and D. Creme  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Thang, M. Gridseth, H. T.  CV4xV1-SC  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MONOROCC  and V. Willert: Monocular  Vins  DEMO  A. Kaess and S. Singh: Rea  ORB-SLAM2  al and J. Tard\"os: ORB-SL  IV-SLAM  INOTF  Iller and J. Eggert: Sterect  S-PTAM  Fischer, G. Castro, P. De  Fischer, J. Civera, P. Cris  S-LSD-SLAM  St\"uckler and D. Creme  VOBa  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  S-LSD-SLAM  OK, Castro, P. De  Fischer, J. Civera, P. Cris  S-LSD-SLAM  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  YOON, F. Pomerleau and  FRYO  , L. Siewski and S. Tham  JFBVO-FM  , V. Karar and S. Poddar:  MFI  A. Yamamoto and T. Kan  TLBBA  Tang and J. Liu: High-per  2FO-CC  d. S. Šegvić: Improving the  SuMa  and C. Stachniss: Efficient  ProSLAM  , M. Colosi and G. Grisett  ProSLAM  A. Gorge, C. Tran, K. P.  A. Yamaroto on G. Tran, K. P.  T. Nguyen, C. Tran, K.  | ier: LIMO: Lid    Existinguish Inli   Existing | dar-Monoculation described and a language and a lan | 0.93 % lar Visual Odome 0.93 % scale direct spars 0.94 % Volodarskiy: Rea 0.94 % snerais: OV2SLAM 0.98 % snerais: OV2SLAM 0.99 % 1.06 % 1.06 % 1.06 % 1.07 % Unsupervised Lea 1.09 % lereo Visual Odome 1.09 % based Framework 1.11 % land Odometry. 1.11 % 1.14 % Monocular Odom 1.17 % imultaneous Local 1.17 % imultaneous Local 1.17 % imultaneous Local 1.17 % imultaneous Local 1.12 % cand J. Jacobo Bero 0-Berlles: Stereo of 1.22 % imultaneous Local 1.17 % imultaneous Local 1.17 % imultaneous Local 1.18 % imultaneous Local 1.19 % imultaneous Local 1.10 % imultaneous Local | 0.0026 [deg/m]   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  ata: A Learning-based Approach Exploiting Sequential Data. IEEE Robotics and Automation Letters  1 core @ 3.5 Ghz (C/C++)  M. IEEE/RSJ International Conference on Intelligent Robots and Systems (RDG) 2015.  GPU and CPU @ 2.2 Ghz (Python + C/C++)  GPU and CPU @ 2.3 Ghz (C/C++)  Elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  2 cores @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C+ |                     |
| Graeter,  Wang, M.  Korovko,  Graeter,  Korovko,  Graeter,  Graete | A. Wilczynski and M. Lau  Stereo DSO  . Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesma  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Zhang, M. Gridseth, H. C.  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  A. Kaess and S. Singh: Rea  ORB-SLAM2  all and J. Tard\os: ORB-SL  IV-SLAM  IV-SLAM  md J. Biswas: IV-SLAM: In  NOTF  Iller and J. Eggert: Sterect  S-LSD-SLAM  St\"uckler and D. Creme  VOBa  A. George, M. Laverne, A.  wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and S. Poddar:  Was  A. George, M. Laverne, A.  wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and S. Poddar:  Was  A. Yamamoto and T. Kan  TLBBA  iang and J. Liu: High-per  2FO-CC  d. S. Šegvić: Improving the  SALO  Ko, M. Korobkin and A. Mi  SALO  Ko, M. Korobkin and A. Mi  SALO  Ko, M. Korobkin and A. Mi  JFBVO  T. Nguyen, C. Tran, K. P  tt and Communication (IM  JFBVO  R. Kottath, V. Karar and  StereoSFM  A. StereoSFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ier: LIMO: Line  Liminers: Stereo of the control of | dar-Monoculation described and a code and a  | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  Nolodarskiy: Rea  0.94 %  snerais: OV2SLAM  0.98 %  snerais: OV2SLAM  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  lereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.12 %  Ind J. Jacobo Berlob Berlob Berles: Stereo In the stereo of | 0.0026 [deg/m]   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  for Real-Time Applications. IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  CPU and CPU @ 2.2 Ghz (Python + C/C++)  CPU and CPU @ 3.5 Ghz (C/C++)  CPU @ 3.5 Ghz (C/C++)  CPU @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  cores @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 co |                     |
| Graeter, 47 48 48 48 48 48 56 50 50 51 51 52 52 68 52 68 53 69 61 69 61 70 68 69 61 71 68 69 61 71 66 68 69 61 71 66 68 69 69 61 71 72 73 74 75 76 76 77 70 71 72 72 73 74 75 76 76 77 76 77 78 78 79 79 79 79 79 79 79 79 70 70 71 71 72 72 73 74 75 76 76 77 76 77 78 78 79 79 79 70 70 71 71 72 72 73 74 75 76 77 76 77 76 77 77 78 78 78 79 79 79 79 79 70 70 71 71 72 72 73 74 75 76 77 76 77 77 78 78 79 79 79 79 79 79 79 79 70 70 71 71 72 72 73 74 75 76 77 76 77 76 77 77 78 78 79 79 79 79 79 79 79 79 79 79 79 70 70 70 71 71 72 72 73 74 75 76 76 77 76 77 78 78 79 79 79 79 79 70 70 70 71 71 72 72 73 74 75 76 77 76 77 78 78 79 79 79 79 79 70 70 70 71 71 72 72 73 74 75 76 77 76 77 78 78 79 79 79 79 79 70 70 70 70 71 70 71 71 72 72 73 74 75 76 76 77 77 78 78 79 79 79 70 70 70 70 71 70 71 71 72 72 73 74 75 76 77 76 77 78 78 79 79 79 79 79 70 70 70 70 70 70 71 70 71 71 72 72 73 74 75 76 76 77 77 78 78 79 79 79 79 70 70 70 70 70 70 70 70 70 70 70 70 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A. Wilczynski and M. Lau  Stereo DSO  . Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesma  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Zhang, M. Gridseth, H. C.  CV4xv1-sc  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  Vins  DEMO  A. Kaess and S. Singh: Rea  ORB-SLAM2  all and J. Tard\os: ORB-SL  IV-SLAM  IV-SLAM  md J. Biswas: IV-SLAM: In  NOTF  Iller and J. Eggert: Sterect  S-LSD-SLAM  St\"uckler and D. Creme  VOBa  A. George, M. Laverne, A.  wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and S. Poddar:  Was  A. George, M. Laverne, A.  wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and N. Paparodit  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViOdo  A. Wilczynski and M. Lau  SLUP  Oheilian and S. Poddar:  Was  A. Yamamoto and T. Kan  TLBBA  iang and J. Liu: High-per  2FO-CC  d. S. Šegvić: Improving the  SALO  Ko, M. Korobkin and A. Mi  SALO  Ko, M. Korobkin and A. Mi  SALO  Ko, M. Korobkin and A. Mi  JFBVO  T. Nguyen, C. Tran, K. P  tt and Communication (IM  JFBVO  R. Kottath, V. Karar and  StereoSFM  A. StereoSFM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ier: LIMO: Lid  ier: LIMO: Lid  ier: LIMO: Lid  ier: Stereo d  ier: Limo: Lid  i | dar-Monoculation described and a code and a  | 0.93 %  clar Visual Odome  0.93 %  scale direct spars  0.94 %  Nolodarskiy: Rea  0.94 %  snerais: OV2SLAM  0.98 %  snerais: OV2SLAM  0.99 %  1.06 %  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  ereo Visual Odome  1.09 %  based Framework  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.12 %  multaneous Local  1.17 %  multaneous Local  1.18 %  Alization in urban  1.20 %  LAM with Stereo O  1.22 %  new approach to  1.22 %  mew approach to  1.25 %  alization in urban  1.26 %  for Fast and Robus  1.26 %  for Fast and Robus  1.28 %  etry pipeline with  1.30 %  y Multi-frame Fea  1.30 %  y Multi-frame Fea  1.37 %  by Correcting the  1.37 %  rodometry. 2019  1.39 %  g 3D Laser Range  1.39 %  novel translation  1.42 %  novel translation  1.42 %  novel translation  1.43 %  rodometry. 2019  1.39 %  g 3D Laser Range  1.39 %  g 3D Laser Range  1.39 %  g 3D Laser Range  1.42 %  novel translation  1.43 %  rodometry. 2019  1.39 %  g 3D Laser Range  1.39 %  rodometry. 2019  1.39 %  g 3D Laser Range  1.39 %  rodometry. 2019  1.39 %  g 3D Laser Range  1.39 %  rodometry. 2019  1.39 %  g 3D Laser Range  1.42 %  novel translation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0026 [deg/m]   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.001 s  1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Ifor Real-Time Applications, IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)  Ifor Real-Time Applications, IEEE Robotics and Automation Letters  2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  ata: A Learnins-based Approach Exploiting Sequential Data, IEEE Robotics and Automation Letters  1 core @ 3.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy  1 core @ 3.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (C/C++)  GPU and CPU @ 2.3 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  ple Sensors, 2019.  2 cores @ 2.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  Mappine. Robotics 2017.  GPU @ 2.5 Ghz (C/C++)  Mappine. Robotics and Autonomous Systems (RSS) 2017.  calization. IROS 2015.  1 core @ 3.0 Ghz (C/C++)  Mappine. Robotics and Autonomous Systems (RSS) 2017.  calization. IROS 2015.  1 core @ 3.5 Ghz (C/C++)  Mappine. Robotics and Autonomous Systems (RSS) 2017.  calization. IROS 2015.  1 core @ 3.5 Ghz (C/C++)  Mappine. Robotics and Autonomous Systems (RSS) 2017.  calization. IROS 2015.  1 core @ 3.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.6 Ghz (C/C++)  1 core @ 3.7 Ghz (C/C++)  1 core @ 3.8 Ghz (C/C++)  1 core @ 3.9 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  1 core @ |                     |
| Graeter, 47 48 48 48 48 48 49 49 50 50 51 51 52 52 60 53 60 53 60 54 60 61 70 60 61 71 60 61 71 60 61 71 60 61 71 60 61 71 60 61 71 60 61 71 60 61 71 60 61 71 60 60 61 71 60 60 61 71 60 60 61 71 60 60 61 71 60 60 61 71 60 60 61 71 60 60 61 71 60 60 61 71 60 60 61 60 61 60 61 60 61 60 61 60 60 61 60 60 61 60 60 61 60 60 61 60 60 61 60 60 60 60 60 60 60 60 60 60 60 60 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A. Wilczynski and M. Lau  Stereo DSO  . Schw\"orer and D. Crem  SaacElbrusGPUSLAM  D. Robustov, D. Slepiche  OV2SLAM  A. Eudes, J. Moras, M. S.  OV2SLAM  A. Eudes, J. Moras, M. S.  ROCC  and V. Willert: How to Div  IsaacElbrusSLAM  D. Robustov, D. Slepiche  SuMa-MOS  Li, B. Mersch, L. Wiesman  Letters (RA-L) 2021.  SuMa++  Milioto, E. Palazzolo, P.  V2-SLAM  ULF-ESGVI  Zhang, M. Gridseth, H. T.  CV4xV1-SC  T. Piccini, R. Mester and  VINS-Fusion  Pan, S. Cao and S. Shen: A  MonoROCC  and V. Willert: Monocular  vins  DEMO  A. Kaess and S. Singh: Rea  ORB-SLAM2  Bl and J. Tard\'os: ORB-SL  IV-SLAM  IV-SLAM  INOTF  Iller and J. Eggert: Sterect  S-PTAM  St\"uckler and D. Creme  VOBa  A. George, M. Laverne, A.  Wan 2010.  STEAM-L WNOJ  Yoon and T. Barfoot: A\  LiViOdo  A. Wilczynski and M. Lau  SLUP  Cheilian and N. Paparodit  STEAM-L  Yoon, F. Pomerleau and  FRYO  A. Wilczynski and M. Lau  SLUP  Cheilian and S. Poddar:  MFI  A. Yamamoto and T. Kan  TLBBA  iang and J. Liu: High-per  2FO-CC  d. S. Šegvić: Improving the  SALO  RO, M. Korobkin and A. Mi  STEAM-L  SUMA  M. Salo  R. Kottath, V. Karar and  SALO  RO, M. Korobkin and A. Mi  SLUP  OR, R. Kottath, V. Karar and  SALO  RO, M. Korobkin and A. Mi  SALO  RO, M. Korobkin and A. Mi  SALO  RO, M. Korobkin and A. Mi  SSLAM  M. Fanfani, F. Pazzaglia  M. Kanade: A Head-W  SSLAM  M. Fanfani, F. Pazzaglia  M. Kanade: A Head-W  SSLAM  M. Fanfani, F. Pazzaglia  M. Kanade: A Head-W  SSLAM  M. Fanfani, F. Pazzaglia  M. Fanfani, F. Pazzaglia  M. Kanade: A Head-W  SSLAM  M. Fanfani, F. Pazzaglia  M. Kanade: A Head-W  SSLAM  M. Fanfani, F. Pazzaglia                                                                                                                                                                                                              | ier: LIMO: Line    Eximination     Eximination | dar-Monoculation described and a code and a  | 0.93 %  lar Visual Odome  0.93 %  scale direct spars  0.94 %  . Volodarskiy: Rea  0.98 %  snerais: OVZSLAM  0.98 %  snerais: OVZSLAM  0.99 %  . Volodarskiy: Rea  0.99 %  . Volodarskiy: Rea  0.99 %  nd C. Stachniss: M  1.06 %  1.06 %  1.07 %  Unsupervised Lea  1.09 %  based Framework  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.11 %  1.12 %  Ind J. Jacobo Berlo-Berlles: Stereo of the stereo o | 0.0026 [deg/m]   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 s  0.1 s  1 0.007 s  1 0.007 s  1 0.01 s  1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 cores @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  ternational Conference on Computer Vision (ICCV), Venice, Italy 20  Jetson AGX  1 core @ 2.5 Ghz (C/C++)  Tor Real-Time Applications. IEEE Robotics and Automation Letters 8 cores @ 3.0 Ghz (C/C++)  Tor Real-Time Applications. IEEE Robotics and Automation Letters 2 cores @ 2.0 Ghz (C/C++)  ations. IEEE Intelligent Vehicles Symposium (IV) 2016.  3 cores @ 3.3 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  ations. IEEE/RSJ International Conference on Intelligent Robots and Sy 1 core @ 2.5 Ghz (C/C++)  AM. IEEE/RSJ International Conference on Intelligent Robots and Sy 1 core @ 2.5 Ghz (C/C++)  GPU and CPU @ 2.2 Ghz (Python + C/C++)  GPU and CPU @ 2.3 Ghz (C/C++)  Elligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  2 cores @ 2.0 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.0 Ghz (C/C++)  3 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  Appoine, Robotics and Autonomous Systems (RAS) 2017.  2 cores @ 3.0 Ghz (C/C++)  3 core @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  4 cores @ 3.0 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  4 cores @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  4 core @ 3.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 2.5 Ghz (C/C++)  1 core @ 3.4 Ghz (C/C++)  4 cores @ 3.3 Ghz (C/C++)  1 core @ 3.5 Ghz (C/C++)  1 core @ 3.6 Ghz (C/C++)  1 core @ 3.7 Ghz (C/C++)  1 core @ 3.8 Ghz (C/C++)  1 core @ 3.9 G |                     |

| 44<br>H. Ho          | PNDT LO<br>ng and B. Lee: <u>Probabilistic norm</u>                          | nal distribut                                | ions tran                                      | U.89 %<br>sform representation   | on for accurate 3d point cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U.Z S<br>oud registration  | 8 CORES @ 3.3 GNZ (C/C++)<br>on. IEEE/RSJ International Conference on Intelligent Robots and Sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tems (IROS   | <br>5) 201               |
|----------------------|------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| 45                   | DVSO                                                                         |                                              |                                                | 0.90 %                           | 0.0021 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | GPU @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                          |
| N. Yar<br>2018.      | ng, R. Wang, J. Stueckler and D.                                             | Cremers: De                                  | eep Virtu                                      | al Stereo Odometry               | : Leveraging Deep Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prediction for I           | Monocular Direct Sparse Odometry. European Conference on Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uter Vision  | (ECC                     |
| 46<br>J. Gra         | LIMO<br>eter, A. Wilczynski and M. Lauer                                     | r: LIMO: Lida                                | <u>code</u><br>ar-Monoci                       | 0.93 %                           | 0.0026 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 s                      | 2 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [            |                          |
| 47                   | Stereo DSO                                                                   | ăă                                           |                                                | 0.93 %                           | 0.0020 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | 1 core @ 3.4 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (            |                          |
|                      |                                                                              |                                              | so: Large                                      | scale direct sparse              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eo cameras. Ir             | iternational Conference on Computer Vision (ICCV), Venice, Italy 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 ,          | $\overline{\overline{}}$ |
| 48<br>A. Kor         | IsaacElbrusGPUSLAM ovko, D. Robustov, D. Slepichev                           | E. Vendrov                                   | sky and S                                      |                                  | 0.0019 [deg/m]<br>time Stereo Visual Odome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Jetson AGX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>     |                          |
| 49                   | <u>OV2SLAM</u>                                                               | m                                            | <u>code</u>                                    | 0.94 %                           | 0.0023 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01 s                     | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                          |
| м. Fei<br>50         | OV2SLAM                                                                      | Tourche and                                  | code                                           | 0.98 %                           | 0.0023 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01 s                     | A for Real-Time Applications. IEEE Robotics and Automation Letters  8 cores @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :            | $\Box$                   |
| M. Fei               |                                                                              | fourche and                                  | _                                              | i<br>esnerais: <u>OV2SLAM :</u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | In the Applications of the Real-Time | -            | <u> </u>                 |
| 51<br>M. Bu          | ROCC czko and V. Willert: How to Disti                                       | inguish Inlier                               | rs from 0                                      | 0.98 %<br>Outliers in Visual Odd | 0.0028 [deg/m] ometry for High-speed Aut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3 s                      | 2 cores @ 2.0 Ghz (C/C++)  cations. IEEE Intelligent Vehicles Symposium (IV) 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | <u> </u>                 |
| 52                   | <u>IsaacElbrusSLAM</u>                                                       | ďď                                           |                                                | 0.99 %                           | 0.0020 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008 s                    | 3 cores @ 3.3 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (            |                          |
| A. Kor<br>53         | rovko, D. Robustov, D. Slepichev                                             | , E. Vendrov                                 | <u> </u>                                       | . Volodarskiy: <u>Real</u>       | time Stereo Visual Odome<br>0.0033 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>try</u><br>0.1s         | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | $\overline{-}$           |
| X. Che               | SuMa-MOS<br>en, S. Li, B. Mersch, L. Wiesmann<br>nation Letters (RA-L) 2021. | : —                                          | code<br>Behley a                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Data: A Learning-based Approach Exploiting Sequential Data. IEEE R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lobotics and | <br>d                    |
| 54                   | SuMa++                                                                       | <b> </b>                                     | <u>code</u>                                    | 1.06 %                           | 0.0034 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | 1 core @ 3.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                          |
|                      |                                                                              |                                              | Behley a                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | AM. IEEE/RSJ International Conference on Intelligent Robots and S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ystems (IRC  | )S) 2(                   |
| 55                   | V2-SLAM                                                                      | <b>::</b>                                    |                                                | 1.06 %                           | 0.0024 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07 s                     | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [            | <u> </u>                 |
| 56<br>D. You         | ULF-ESGVI<br>on, H. Zhang, M. Gridseth, H. Th                                | omas and T.                                  | . Barfoot:                                     | 1.07 %  Unsupervised Lear        | 0.0036 [deg/m]<br>ning of Lidar Features for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3 s<br>Use in a Proba    | GPU and CPU @ 2.2 Ghz (Python + C/C++) bilistic Trajectory Estimator. IEEE Robotics and Automation Letters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s (RAL) 202  | 1.                       |
| 57                   | <u>cv4xv1-sc</u>                                                             | ďď                                           |                                                | 1.09 %                           | 0.0029 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.145 s                    | GPU @ 3.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                          |
| M. Pe                | rsson, T. Piccini, R. Mester and A  VINS-Fusion                              | A. Felsberg:                                 | <u>code</u>                                    |                                  | o.0033 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | niques. IEEE Int           | relligent Vehicles Symposium 2015.  1 core @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                          |
|                      | , J. Pan, S. Cao and S. Shen: A C                                            | : —                                          | <u> </u>                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ation with Mult            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <u> </u>                 |
| <b>59</b><br>M. Bu   | MonoROCC czko and V. Willert: Monocular O                                    | Outlier Detec                                | tion for                                       | 1.11 %<br>Visual Odometry, IE    | 0.0028 [deg/m] EE Intelligent Vehicles Svi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 s                        | 2 cores @ 2.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                          |
| 60                   | <u>vins</u>                                                                  | ďď                                           |                                                | 1.11 %                           | 0.0023 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [            |                          |
| 61                   | <u>DEMO</u>                                                                  | :::                                          |                                                | 1.14 %                           | 0.0049 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | 2 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [            | <u> </u>                 |
|                      | <u> </u>                                                                     |                                              | <del></del>                                    | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | in Intelligent Robots and Systems (IROS) 2014.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·<br>·       | _                        |
| 62<br>R. Mu          | ORB-SLAM2<br>r-Artal and J. Tard\'os: ORB-SLAM                               | M2: an Open                                  | <u>code</u><br>-Source S                       | 1.15 %<br>LAM System for Mor     | 0.0027 [deg/m]<br>nocular, Stereo and RGB-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.06 s<br>Cameras. IEE     | 2 cores @ >3.5 Ghz (C/C++) E Transactions on Robotics 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                          |
| 63                   | <u>IV-SLAM</u>                                                               | ďď                                           | <u>code</u>                                    | 1.17 %                           | 0.0025 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | GPU @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (            |                          |
| S. Rab<br>64         | oiee and J. Biswas: <u>IV-SLAM: Intro</u>                                    | ospective Vi                                 | sion for S                                     | Simultaneous Localiz             | zation and Mapping. Confe<br>0.0035 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erence on Robo             | 1 core @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>     |                          |
|                      | gmoeller and J. Eggert: Stereo V                                             |                                              | etry with                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                          |
| 65<br>T Pir          | S-PTAM  B. T. Fischer, G. Castro, P. De Cr                                   | rist\'oforis                                 | <u>code</u>                                    | 1.19 %                           | 0.0025 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03 s                     | 4 cores @ 3.0 Ghz (C/C++)  Mapping. Robotics and Autonomous Systems (RAS) 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [            | <u> </u>                 |
| T. Pir               | e, T. Fischer, J. Civera, P. Crist\                                          | '{o}foris and                                | J. Jacob                                       | o-Berlles: <u>Stereo pa</u>      | arallel tracking and mappi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng for robot lo            | calization. IROS 2015.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>     |                          |
| 66<br>J. Eng         | S-LSD-SLAM<br>el, J. St\"uckler and D. Cremers:                              | Large-Scale                                  | <u>code</u><br>e Direct S                      | 1.20 %<br>SLAM with Stereo Ca    | 0.0033 [deg/m]<br>ameras. Int.~Conf.~on Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07 s<br>elligent Robot S | 1 core @ 3.5 Ghz (C/C++)<br>Systems (IROS) 2015.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>     |                          |
| 67                   | <u>VoBa</u>                                                                  | ăă .                                         |                                                | 1.22 %                           | 0.0029 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | 1 core @ 2.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (            |                          |
|                      | dir, m. George, m. Laverne, A. K<br>i, Taiwan 2010.                          |                                              | Stentz: A                                      | · · ·                            | ision-aided inertial naviga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | E/RSJ International Conference on Intelligent Robots and Systems,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Uctober 18   | -22,                     |
| 68<br>T. Tar         | STEAM-L WNOJ ng, D. Yoon and T. Barfoot: A Wh                                | nite-Noise-O                                 | n-Jerk Mo                                      | 1.22 % otion Prior for Conti     | 0.0058 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 s<br>timation on SE    | 1 core @ 2.5 Ghz (C/C++)  (3). arXiv preprint arXiv:1809.06518 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | <u> </u>                 |
| 69                   | <u>LiViOdo</u>                                                               | **                                           |                                                | 1.22 %                           | 0.0042 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5 s                      | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [            |                          |
| J. Gra<br>70         | eter, A. Wilczynski and M. Lauer  SLUP                                       | r: <u>LIMO: Lida</u>                         | ar-Monoci                                      | ular Visual Odometr              | y. ArXiv e-prints 2018.<br>0.0041 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.17 s                     | 4 cores @ 3.3 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | $\overline{\neg}$        |
|                      | <del></del>                                                                  | :                                            | based loc                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | metry and Remote Sensing 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                          |
| 71                   | STEAM-L                                                                      | Parfort Le                                   | i arning a                                     | 1.26 %                           | 0.0061 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2 s                      | 1 core @ 2.5 Ghz (C/C++)<br>ference on Computer and Robot Vision (CRV) 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (            |                          |
| 72                   |                                                                              | . вагтоот. <u>се</u>                         | earning a                                      | 1.26 %                           | 0.0038 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03 s                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [            |                          |
|                      | •                                                                            | <u>:                                    </u> | mework                                         |                                  | <u>Visual Odometry</u> . IEEE Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | intelligent Transportation Systems 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | <u> </u>                 |
| <b>7</b> 3<br>R. Sar | JFBVO-FM<br>dana, V. Karar and S. Poddar: <u>Im</u>                          | nproving visu                                | ual odom                                       | 1.28 %<br>etry pipeline with f   | 0.0010 [deg/m]<br>eedback from forward and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1 s<br>d backward mo     | 1 core @ 3.4 Ghz (C/C++)<br>tion estimates. Machine Vision and Applications 2023.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [            |                          |
| 74                   | <u>MFI</u>                                                                   | 88                                           |                                                | 1.30 %                           | 0.0030 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | 1 core @ 2.2 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                          |
| H. Bad<br>75         | dino, A. Yamamoto and T. Kanad  TLBBA                                        | le: <u>Visual Od</u>                         | <u>lometry l</u>                               | oy Multi-frame Feat              | ure Integration. First Integration of the original of the orig | rnational Work  0.1 s      | shop on Computer Vision for Autonomous Driving at ICCV 2013.  1 Core @2.8GHz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | $\overline{}$            |
|                      |                                                                              |                                              | al odome                                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Vehicles Symposium (IV), 2013 IEEE 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | <u> </u>                 |
| 76<br>I. Kre         | 2FO-CC so and S. Segvić: Improving the E                                     | gomotion Es                                  | <u>code</u>                                    | 1.37 %                           | 0.0035 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | 1 core @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [            |                          |
| 77                   | SALO                                                                         | <b>::</b>                                    |                                                | 1.37 %                           | 0.0051 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6 s                      | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (            |                          |
|                      | valenko, M. Korobkin and A. Mini                                             |                                              | ware Lida                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·            |                          |
| 78<br>J. Beh         | SuMa<br>Ney and C. Stachniss: Efficient St                                   | urfel-Based                                  | SLAM usii                                      | 1.39 %<br>ng 3D Laser Range D    | 0.0034 [deg/m]<br>Data in Urban Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1 s<br>s. Robotics: So   | 1 core @ 3.5 Ghz (C/C++) cience and Systems (RSS) 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>     |                          |
| 79                   | <u>ProSLAM</u>                                                               | <b>88</b>                                    | code                                           | 1.39 %                           | 0.0035 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02 s                     | 1 core @ 3.0 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (            |                          |
| D. Sch<br>80         | nlegel, M. Colosi and G. Grisetti:                                           | FIUSLAM: G                                   | rapn SLA                                       | M from a Programm  1.42 %        | o.0048 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 s                        | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [            |                          |
|                      | uyen, T. Nguyen, C. Tran, K. Phu<br>gement and Communication (IMC            |                                              | iguyen: A                                      | novel translation e              | stimation for essential ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atrix based ste            | :<br>reo visual odometry. 2021 15th International Conference on Ubiqui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tous Inform  | natio                    |
| 81                   | JFBVO                                                                        | <b>88</b>                                    |                                                | 1.43 %                           | 0.0038 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 s                     | 1 core @ 3.4 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (            |                          |
| R. Sar<br>82         | dana, R. Kottath, V. Karar and S StereoSFM                                   | . Poddar: <u>Jo</u>                          | code                                           | ard-Backward Visua               | O.0042 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | neras. Proceed             | dings of the Advances in Robotics 2019 2019.  2 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | $\overline{}$            |
|                      |                                                                              | <u>: — </u>                                  | <u>:                                      </u> |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | e and Motion. IAPR Conference on Machine Vision Application 2011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | <u> </u>                 |
| 83<br>F. Bel         | SSLAM lavia, M. Fanfani, F. Pazzaglia ar                                     | nd C. Colom                                  | code                                           | 1.57 %                           | 0.0044 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5 s                      | 8 cores @ 3.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                          |
| F. Bel               | lavia, M. Fanfani and C. Colombo                                             | o: Selective                                 | visual od                                      | lometry for accurate             | e AUV localization. Autono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | omous Robots 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                          |
| 84<br>P. Frf         | <u>Stereo-RIVO</u><br>an Salehi: <u>Stereo-RIVO: Stereo-R</u>                | obust Indire                                 | oct Visual                                     | 1.61 %                           | 0.0025 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07 s                     | 4 cores @ 2.5 Ghz (Matlab)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (            |                          |
| 85                   | <u>VOLDOR</u>                                                                |                                              | code                                           | 1.65 %                           | 0.0050 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | GPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [            |                          |
|                      |                                                                              | Visual Odor                                  | metry Fro                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | ference on Computer Vision and Pattern Recognition (CVPR) 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                          |
| 86<br>87             | <u>ddvo</u>                                                                  |                                              |                                                | 1.70 %                           | 0.0064 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.16 s<br>0.05 s           | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>     |                          |
| 87<br>M. Sar         | <u>eVO</u><br>nfourche, V. Vittori and G. Besne                              | :                                            | A realtime                                     |                                  | 0.0036 [deg/m]<br>odometry for MAV applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 2 cores @ 2.0 Ghz (C/C++)  J International Conference on Intelligent Robots and Systems (IROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5) 2013.     | <u> </u>                 |
| 88                   | Stereo DWO                                                                   | inska: Stored                                | <u>code</u>                                    | 1.76 %                           | 0.0026 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 s                      | 4 cores @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | no Instit    |                          |
| Naviga               | ation (ION GNSS+ 2015) 2015.                                                 | inska: <u>Stered</u>                         | o-mertial                                      | :                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 27th International Technical Meeting of The Satellite Division of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ie institute | υī                       |
| 89<br>F. Per         | BVO<br>eira, J. Luft, G. Ilha, A. Sofiatti                                   | and A. Susir                                 | n: <u>Backwa</u>                               | 1.76 %<br>ard Motion for Estim   | 0.0036 [deg/m]<br>nation Enhancement in Spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1 s<br>arse Visual Odo   | 1 core @ 2.5GHz (Python)  metry. 2017 Workshop of Computer Vision (WVC) 2017.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>     |                          |
| 90                   | 3DOF-SLAM                                                                    | ort sall                                     | code                                           | 1.89 %                           | 0.0083 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02 s                     | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Duta: 1/2    |                          |
| and C                | omputer Graphics Theory and Ap                                               |                                              | Volume :                                       | 3: VISAPP, (VISIGRA              | PP 2016) 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | omous Vehicles. Proceedings of the 11th Joint Conference on Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jucer Vision | ı, Im                    |
| 91<br>G. Wa          | EfficientLO-Net<br>Ing, X. Wu, S. Jiang, Z. Liu and H                        | . Wang: <u>Eff</u>                           | code<br>icient 3D                              | 1.92 %<br>Deep LiDAR Odome       | 0.0052 [deg/m]<br>try. arXiv preprint arXiv:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03 s<br>2111.02135 202   | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u> (   |                          |
| 92                   | D6DVO                                                                        | MX Ouada                                     | rif -                                          | 2.04 %                           | 0.0051 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03 s                     | 1 core @ 2.5 Ghz (C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [            |                          |
| M. Me                | mport, E. Malis and P. Rives: Acc<br>illand, A. Comport and P. Rives:        |                                              |                                                | g of large scale env             | rironments for real-time lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ocalisation. ICR           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>     |                          |
| 93                   | PMO / PbT-M2                                                                 |                                              |                                                | 2.05 %                           | 0.0051 [deg/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 s                        | 1 core @ 2.5 Ghz (Python + C/C++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                          |

| institute of insti |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| istitute of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| istitute of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| istitute of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| or Vision, Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| r Vision, Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nputing 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nputing 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nputing 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nputing 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nputing 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mputing 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 019 Worksho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A 2012.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A 2012.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A 2012.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>110</sup> 3.80 % 0.0150 [deg/m] GPU @ 2.5 Ghz (Python) 111 **DeepCLR** \*\*\* <u>code</u> 3.83 % 0.0104 [deg/m] 0.05 sGPU @ 1.0 Ghz (Python) M. Horn, N. Engel, V. Belagiannis, M. Buchholz and K. Dietmayer: <u>DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point Cloud Registration</u>. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020. 1 core @ 2.0 Ghz (C/C++) 3.94 % 0.0099 [deg/m] 0.51 s **VOFS** M. Kaess, K. Ni and F. Dellaert: <u>Flow separation for fast and robust stereo odometry</u>. ICRA 2009. P. Alcantarilla, L. Bergasa and F. Dellaert: <u>Visual Odometry priors for robust EKF-SLAM</u>. ICRA 2010. 0.52 s1 core @ 2.0 Ghz (C/C++) 0.0112 [deg/m] M. Kaess, K. Ni and F. Dellaert: <u>Flow separation for fast and robust stereo odometry</u>. ICRA 2009. P. Alcantarilla, L. Bergasa and F. Dellaert: <u>Visual Odometry priors for robust EKF-SLAM</u>. ICRA 2010. .001 s GPU @ 2.5 Ghz (Matlab) 4.36 % 0.0052 [deg/m] CUDA-EgoMotion A. Aguilar-González, M. Arias- Estrada, F. Berry and J. Osuna-Coutiño: The Fastest Visual Ego-motion Algorithm in the West. Microprocessors and Microsystems 2019. 115 4.57 % 1 core @ 2.5 Ghz (Python) DVLO 0.0069 [deg/m] 0.1s 116 4.59 % 0.0175 [deg/m] 1 s 1 core @ 2.5 Ghz (C/C++) M. Velas, M. Spanel, M. Hradis and A. Herout: CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR. ArXiv e-prints 2017. 0.0154 [deg/m] GPU @ 2.5 Ghz (Python) P. Adis, N. Horst and M. Wien: <u>D3DLO: Deep 3D LiDAR Odometry</u>. 2021. 0.0274 [deg/m] 1 core @ 2.5 Ghz (Matlab) Z. Boukhers, K. Shirahama and M. Grzegorzek: <a href="Example-based 3D Trajectory Extraction of Objects from 2D Videos">Extraction of Objects from 2D Videos</a>. Circuits and Systems for Videos Technology (TCSVT), IEEE Transaction on 2017. Z. Boukhers, K. Shirahama and M. Grzegorzek: <a href="Less restrictive camera odometry estimation from monocular camera">Less restrictive camera odometry estimation from monocular camera</a>. Multimedia Tools and Applications 2017. 7.40 % 0.0142 [deg/m] 1 core @ 2.5 Ghz (C/C++) Y. Zou, P. Ji, Q. Tran, J. Huang and M. Chandraker: Learning Monocular Visual Odometry via Self-Supervised Long-Term Modeling. ECCV 2020. 1 core @ 2.5 Ghz (C/C++) 7.46 % 0.0245 [deg/m] 0.15 s <u>VISO2-M + GP</u> A. Geiger, J. Ziegler and C. Stiller: <u>StereoScan: Dense 3d Reconstruction in Real-time</u>. IV 2011.
S. Song and M. Chandraker: <u>Robust Scale Estimation in Real-Time Monocular SFM for Autonomous Driving</u>. CVPR 2014. 9.21 % 0.0163 [deg/m] 1 core @ 2.5 Ghz (C/C++) M. Velas, M. Spanel, M. Hradis and A. Herout: CNN for IMU Assisted Odometry Estimation using Velodyne LiDAR. ArXiv e-prints 2017. 122 3DG-DVO 11.38 % 0.0305 [deg/m] 0.04 sGPU @ 1.5 Ghz (Python)

11.94 %

12.59 %

13.25 %

13.69 %

14.15 %

16.06 %

I. Slinko, A. Vorontsova, F. Konokhov, O. Barinova and A. Konushin: Scene Motion Decomposition for Learnable Visual Odometry. 2019.

C. Godard, O. Mac Aodha, M. Firman and G. Brostow: Digging into self-supervised monocular depth estimation. ICCV 2019.

<u>code</u>

<u>code</u>

A. Geiger, J. Ziegler and C. Stiller: <u>StereoScan: Dense 3d Reconstruction in Real-time</u>. IV 2011.

0.0234 [deg/m]

0.0312 [deg/m]

0.0097 [deg/m]

0.0355 [deg/m]

0.0228 [deg/m]

0.0320 [deg/m]

0.0135 [deg/m]

D. Frost, O. Kähler and D. Murray: Object-Aware Bundle Adjustment for Correcting Monocular Scale Drift. Proceedings of the International Conference on Robotics and Automation (ICRA) 2012.

J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M. Cheng and I. Reid: <u>Unsupervised scale-consistent depth and ego-motion learning from monocular video</u>. NeurIPS 2019.

0.1 s

0.03 s

0.01 s

0.01 s

0.1 s

A. Ranjan, V. Jampani, L. Balles, K. Kim, D. Sun, J. Wulff and M. Black: Competitive collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion segmentation. CVPR 2019.

Table as LaTeX | Only published Methods

1 core @ 2.5 Ghz (C/C++)

1 core @ 2.5 Ghz (C/C++)

GPU @ 2.5 Ghz (Python)

1 core @ 2.5 Ghz (C/C++)

GPU @ 1.5 Ghz (Python)

1 core @ 2.5 Ghz (C/C++)

1 core @ 3.5 Ghz (C/C++)

1 core @ 2.5 Ghz (C/C++)

>8 cores @ >3.5 Ghz (C/C++)

1 core @ 2.5 Ghz (C/C++)

- **Related Datasets** 
  - CMU Visual Localization Data Set: Dataset collected using the Navlab 11 equipped with IMU, GPS, Lidars and cameras. NYU RGB-D Dataset: Indoor dataset captured with a Microsoft Kinect that provides semantic labels. • TUM RGB-D Dataset: Indoor dataset captured with Microsoft Kinect and high-accuracy motion capturing.

• New College Dataset: 30 GB of data for 6 D.O.F. navigation and mapping (metric or topological) using vision and/or laser.

- The Rawseeds Project: Indoor and outdoor datasets with GPS, odometry, stereo, omnicam and laser measurements for visual, laser-based, omnidirectional, sonar and multi-sensor SLAM evaluation. • <u>Victoria Park Sequence</u>: Widely used sequence for evaluating laser-based SLAM. Trees serve as landmarks, detection code is included. • Malaga Dataset 2009 and Malaga Dataset 2013: Dataset with GPS, Cameras and 3D laser information, recorded in the city of Malaga, Spain. Ford Campus Vision and Lidar Dataset: Dataset collected by a Ford F-250 pickup, equipped with IMU, Velodyne and Ladybug.
- Citation

 $year = {2012}$ 

123

124

125

127

128

131

132

VISO2-M

MonoDepth2

SMD-LVO

SC-SfMLearner (cs+k)

<u>GraphAVO</u>

booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},

<sup>&</sup>lt;u>code</u> 21.47 % 0.0425 [deg/m] 0.01 sJ. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M. Cheng and I. Reid: <u>Unsupervised scale-consistent depth and ego-motion learning from monocular video</u>. NeurIPS 2019. 0.1042 [deg/m] 44.07 % 90.05 % 0.2645 [deg/m] 0.1 s Y. Zhou, H. Fan, S. Gao, Y. Yang, X. Zhang, J. Li and Y. Guo: Retrieval and Localization with Observation Constraints. CoRR 2021.

