Homework 8

- 1. Exercise A6.5.
- 2. [Pronzato] Consider a collection of m points a_1, \ldots, a_m in \mathbb{R}^n . The smallest ball that contains the m points can be computed by solving the optimization problem

minimize
$$t$$

subject to $||a_i - x||_2^2 \le t$, $i = 1, \dots, m$, (1)

with variables $x \in \mathbf{R}^n$ and $t \in \mathbf{R}$.

- (a) State the optimality (Karush–Kuhn–Tucker) conditions for this problem.
- (b) We denote the radius and center of the smallest covering ball by R and c. In other words, $t = R^2$ and x = c are optimal in (1). Let $\bar{a} = (1/m)(a_1 + \cdots + a_m)$ be the mean of the points, and suppose $\lambda_1, \ldots, \lambda_m$ are optimal dual multipliers in the Lagrange dual of (1). Show that

$$R^{2} + \|c - \bar{a}\|_{2}^{2} = \sum_{i=1}^{m} \lambda_{i} \|a_{i} - c\|_{2}^{2} + \|c - \bar{a}\|_{2}^{2}$$
 (2a)

$$= \sum_{i=1}^{m} \lambda_i ||a_i - \bar{a}||_2^2$$
 (2b)

$$\leq \max_{i=1,\dots,m} \|a_i - \bar{a}\|_2^2 \tag{2c}$$

and that

$$R^{2} - \|c - \bar{a}\|_{2}^{2} \ge \frac{1}{m} \sum_{i=1}^{m} \|a_{i} - c\|_{2}^{2} - \|c - \bar{a}\|_{2}^{2}$$
 (2d)

$$= \frac{1}{m} \sum_{i=1}^{m} \|a_i - \bar{a}\|_2^2. \tag{2e}$$

The inequalities (2c) and (2e) give bounds on R and $\|c - \bar{a}\|_2$ in terms of two quantities

$$\beta = \frac{1}{m} \sum_{i=1}^{m} \|a_i - \bar{a}\|_2^2, \qquad \gamma = \max_{i=1,\dots,m} \|a_i - \bar{a}\|_2^2,$$

that are easily computed from the problem data. This is illustrated in the figure below. The shaded region in the figure shows the values of R and $\|c - \bar{a}\|_2$ that satisfy two inequalities

$$R^2 + \|c - \bar{a}\|_2^2 \le \gamma, \qquad R^2 - \|c - \bar{a}\|_2^2 \ge \beta.$$

- 3. Exercise A12.12.
- 4. Exercise A8.1.
- 5. Exercise A8.7. Hint. The Hessian of the cost function can be written as

$$H = I + A^{T}(\mathbf{diag}(z) - zz^{T})A$$

where z is a positive vector with $\mathbf{1}^T z = 1$. Show that

$$H = I + B^T \operatorname{\mathbf{diag}}(z)^{-1} B,$$

where $B = (\mathbf{diag}(z) - zz^T)A$, and follow the approach of page 10–30 of the lecture slides.