Optimization 1 — Tutorial 9

December 24, 2020

Separation Theorem

Let $\emptyset \neq C \subseteq \mathbb{R}^n$ be closed and convex. Let $\mathbf{y} \notin C$. Then there exist $\mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$ and $\alpha \in \mathbb{R}$ such that

 $\mathbf{p}^T \mathbf{y} > \alpha$ and $\mathbf{p}^T \mathbf{x} \le \alpha$ for all $\mathbf{x} \in C$.

Farkas' Lemma

Let $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following systems has a solution:

- $(I) \quad \mathbf{A}\mathbf{x} \le \mathbf{0}_n, \, \mathbf{c}^T \mathbf{x} > 0.$
- (II) $\mathbf{A}^T \mathbf{y} = \mathbf{c}$, $\mathbf{y} \ge 0$.

KKT Conditions for Convex and Linearly Constrained Problems

Consider the optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x})$$
s.t. $\mathbf{A}\mathbf{x} \le \mathbf{a}$, $\mathbf{B}\mathbf{x} = \mathbf{b}$.

where $f: \mathbb{R}^n \to \mathbb{R}$ is a convex and continuously differentiable function, $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^m$. Let \mathbf{x}^* be a feasible solution of the problem. Then \mathbf{x}^* is an optimal solution of the problem if and only if there exist $\lambda \in \mathbb{R}^m_+$ and $\mu \in \mathbb{R}^m$ such that

$$\begin{cases} \nabla f(\mathbf{x}^*) + \mathbf{A}^T \lambda + \mathbf{B}^T \mu = \mathbf{0}_n, \\ \lambda^T (\mathbf{A}\mathbf{x}^* - \mathbf{b}) = \mathbf{0}_n. \end{cases}$$

Problem 1

Prove the non-homogeneous Farkas' lemma: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ and $d \in \mathbb{R}$. Suppose that there exists $0 \leq \mathbf{y}_0 \in \mathbb{R}^m$ such that $\mathbf{A}^T \mathbf{y}_0 = \mathbf{c}$. Prove that exactly one of the following two systems is feasible:

(I) $\mathbf{A}\mathbf{x} \leq \mathbf{b}, \, \mathbf{c}^T\mathbf{x} > d.$

(II)
$$\mathbf{A}^T \mathbf{y} = \mathbf{c}, \ \mathbf{b}^T \mathbf{y} \le d, \ \mathbf{y} \ge 0.$$

Solution

 \Leftarrow : If (II) is feasible then (I) is infeasible $((II) \Longrightarrow \neg(I))$:

Note: equivalently, we can show that

- If (I) is feasible then (II) is infeasible; or,
- (I) and (II) cannot both be feasible.

Now we prove the required:

- Assume on the contrary that (I) holds. From (I) we have $\mathbf{A}\mathbf{x} \leq \mathbf{b} \Longrightarrow \mathbf{x}^T \mathbf{A}^T \leq \mathbf{b}^T$, and for any $\mathbf{y} \geq 0$ we have $\mathbf{x}^T \mathbf{A}^T \mathbf{y} \leq \mathbf{b}^T \mathbf{y}$.
- Since (II) holds, there exists $\mathbf{y} \ge 0$ such $\mathbf{A}^T \mathbf{y} = \mathbf{c}$. Plugging in the above yields $\mathbf{x}^T \mathbf{c} \le \mathbf{b}^T \mathbf{y}$.
- From (I) and (II) we have $d < \mathbf{x}^T \mathbf{c} \le \mathbf{b}^T \mathbf{y} \le d$ which is a contradiction.

 \Rightarrow : If (II) is infeasible then (I) is feasible $(\neg(II) \Longrightarrow (I))$:

Note: equivalently, we can show that

- If (I) is infeasible then (II) is feasible; or,
- (I) and (II) cannot both be infeasible.

Proof using (homogeneous) Farkas' lemma:

• Define the following equivalent system to (II):

$$(II')$$
 $\mathbf{A}^T \mathbf{v} = \mathbf{c}, \mathbf{b}^T \mathbf{v} + t = d, t > 0, \mathbf{v} > 0.$

- (II) and (II') are equivalent in the sense that if (II) has a solution $\mathbf{y} \geq 0$, then $(\mathbf{y}, t = d \mathbf{b}^T \mathbf{y}) \geq 0$ is a solution to (II').
- If (II') has a solution $(\mathbf{y}, t) \ge 0$, then $\mathbf{y} \ge 0$ is a solution to (II). So (II) has a solution if and only if (II') has a solution.
- We notice that we can rewrite (II') as

$$\begin{pmatrix} \mathbf{A}^T & \mathbf{0}_n \\ -\mathbf{b}^T & -1 \end{pmatrix} \begin{pmatrix} \mathbf{y} \\ t \end{pmatrix} = \begin{pmatrix} \mathbf{c} \\ -d \end{pmatrix}, \quad \begin{pmatrix} \mathbf{y} \\ t \end{pmatrix} \ge 0.$$

- Since we assume that (II) is infeasible, then (II') is infeasible.
- Using (homogeneous) Farkas' lemma, the following system is feasible

$$\begin{pmatrix} \mathbf{A} & -\mathbf{b} \\ \mathbf{0}_n^T & -1 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ s \end{pmatrix} \leq \mathbf{0}_{n+1}, \quad \begin{pmatrix} \mathbf{c} \\ -d \end{pmatrix}^T \begin{pmatrix} \mathbf{x} \\ s \end{pmatrix} > 0, \quad \begin{pmatrix} \mathbf{x} \\ s \end{pmatrix} \in \mathbb{R}^{n+1}.$$

- Writing this system explicitly we have $\mathbf{A}\mathbf{x} \leq s\mathbf{b}$, $0 \leq s$, $\mathbf{c}^T\mathbf{x} > ds$. We will show that s > 0.
 - If s > 0 then $\mathbf{A}\left(\frac{\mathbf{x}}{s}\right) \leq \mathbf{b}$, $\mathbf{c}^{T}\left(\frac{\mathbf{x}}{s}\right) > d$ and (I) has a solution.

- Assume s = 0, meaning $\mathbf{A}\mathbf{x} \le s\mathbf{b} = \mathbf{0}_n$ and $\mathbf{c}^T\mathbf{x} > 0$.
 - * We know that there exists $0 \leq \mathbf{y}_0 \in \mathbb{R}^m$ such that $\mathbf{A}^T \mathbf{y}_0 = \mathbf{c}$.
 - * Therefore, from the (homogeneous) Farkas' lemma we derive that there is no solution to the system $\mathbf{A}\mathbf{x} \leq \mathbf{0}_n$ and $\mathbf{c}^T\mathbf{x} > 0$, which is a contradiction.
- Therefore, s > 0 and (I) has a solution.

Proof using the separation theorem:

• Consider the closed and convex set

$$S = \{(\mathbf{z}, w) \in \mathbb{R}^{n+1} : \exists \mathbf{y} \ge 0 \text{ such that } \mathbf{z} = \mathbf{A}^T \mathbf{y}, \ \mathbf{b}^T \mathbf{y} \le w \}.$$

(It closed and convex since it is the image of a closed and convex set in $(\mathbf{z}, w, \mathbf{y})$ under the linear projection onto (\mathbf{z}, w)).

- Since we assume that (II) is infeasible, then $(\mathbf{c}, d) \notin S$.
- By the separation theorem, there exist $(\mathbf{p}, q) \in \mathbb{R}^{n+1} \setminus \{\mathbf{0}_n\}$ and $\alpha \in \mathbb{R}$ such that $\mathbf{p}^T \mathbf{c} + qd < \alpha$ and $\mathbf{p}^T \mathbf{z} + qw \ge \alpha$ for any $(\mathbf{z}, w) \in S$.
- If q = 0 then $\mathbf{p} \neq \mathbf{0}$, and so $\mathbf{p}^T \mathbf{c} < \alpha \leq \mathbf{p}^T \mathbf{z} = \mathbf{p}^T \mathbf{A}^T \mathbf{y}$.
 - Therefore $\mathbf{p}^T (\mathbf{c} \mathbf{A}^T \mathbf{y}) < 0$ for any $\mathbf{y} \ge 0$, which contradicts the fact that $\mathbf{A}^T \mathbf{y}_0 = \mathbf{c}$ for $\mathbf{y}_0 \ge 0$.
- If q < 0 we can take $w \to \infty$, in contradiction to the fact that $\mathbf{p}^T \mathbf{z} + qw \ge \alpha$ (notice that we cannot take $w \to -\infty$ since $\mathbf{b}^T \mathbf{y} \le w$).
- So q > 0. We divide by q and get $\tilde{\mathbf{p}}^T \mathbf{c} + d < \tilde{\alpha}$ and $\tilde{\mathbf{p}}^T \mathbf{z} + w \ge \tilde{\alpha}$, where $\tilde{\mathbf{p}} = \frac{\mathbf{p}}{q}$ and $\tilde{\alpha} = \frac{\alpha}{q}$.
 - Choose $w = \mathbf{b}^T \mathbf{y}$ and then

$$\tilde{\alpha} \leq \tilde{\mathbf{p}}^T \mathbf{z} + \mathbf{b}^T \mathbf{v} = \tilde{\mathbf{p}}^T \mathbf{A}^T \mathbf{v} + \mathbf{b}^T \mathbf{v} = \mathbf{v}^T (\mathbf{A} \tilde{\mathbf{p}} + \mathbf{b}).$$

- Since this is true for any $\mathbf{y} \geq 0$ then $\mathbf{A}\tilde{\mathbf{p}} + \mathbf{b} \geq 0$ (otherwise $\mathbf{y}^T (\mathbf{A}\tilde{\mathbf{p}} + \mathbf{b})$ is not necessarily bounded from below by $\tilde{\alpha}$).
- Therefore $\mathbf{A}(-\tilde{\mathbf{p}}) \leq \mathbf{b}$ and $(-\tilde{\mathbf{p}})^T \mathbf{c} > d$. This means that (I) has a solution as required.

Problem 2

Let $\mathbf{Q} \in \mathbb{R}^{n \times n}$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{c} \in \mathbb{R}^m$. Suppose that $\mathbf{Q} \succ 0$ and that \mathbf{A} has full row rank. Solve the following problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} - \mathbf{b}^T \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} = \mathbf{c}$.

Solution

- The problem is feasible since **A** has full row rank and so $\mathbf{x} = \mathbf{A}^T \left(\mathbf{A} \mathbf{A}^T \right)^{-1} \mathbf{c}$ is a solution.
- The problem admits a minimizer since $\mathbf{Q} \succ 0$ so the objective is coercive over a closed set.
- The Lagrangian is

$$L\left(\mathbf{x},\mu\right) = \frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} - \mathbf{b}^{T}\mathbf{x} + \mu^{T}\left(\mathbf{A}\mathbf{x} - \mathbf{c}\right).$$

• Since the problem is convex with linear constraints, a solution is optimal if and only if it is a KKT point. The KKT conditions are:

$$\begin{cases} \nabla_{\mathbf{x}} L(\mathbf{x}, \mu) = \mathbf{Q} \mathbf{x} - \mathbf{b} + \mathbf{A}^{T} \mu = \mathbf{0}_{n}, & (i) \\ \mathbf{A} \mathbf{x} = \mathbf{c}. & (ii) \end{cases}$$

• From (i) we have $\mathbf{x} = \mathbf{Q}^{-1} (\mathbf{b} - \mathbf{A}^T \mu)$. Plugging into (ii) (feasibility constraint) we have

$$\mathbf{A}\mathbf{Q}^{-1}\left(\mathbf{b}-\mathbf{A}^{T}\boldsymbol{\mu}\right)=\mathbf{c}\Longleftrightarrow\mathbf{A}\mathbf{Q}^{-1}\mathbf{A}^{T}\boldsymbol{\mu}=\mathbf{A}\mathbf{Q}^{-1}\mathbf{b}-\mathbf{c}.$$

• We will show that $\mathbf{A}\mathbf{Q}^{-1}\mathbf{A}^T \succ 0$: notice that for any $\mathbf{y} \in \mathbb{R}^m$ we have

$$\mathbf{y}^{T} \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^{T} \mathbf{y} = 0 \iff (\mathbf{A}^{T} \mathbf{y}) \mathbf{Q}^{-1} (\mathbf{A}^{T} \mathbf{y}) = 0 \iff \mathbf{A}^{T} \mathbf{y} = \mathbf{0}_{n}$$

$$\underset{\mathbf{A} \text{ full row rank}}{\longleftrightarrow} \sum_{i=1}^{n} \mathbf{A}_{i}^{T} \mathbf{y}_{i} = \mathbf{0}_{n} \iff \mathbf{y} = \mathbf{0}_{n},$$

and therefore $\mathbf{A}\mathbf{Q}^{-1}\mathbf{A}^T \succ 0$.

• This means that $\mu = \left(\mathbf{A}\mathbf{Q}^{-1}\mathbf{A}^T\right)^{-1}\left(\mathbf{A}\mathbf{Q}^{-1}\mathbf{b} - \mathbf{c}\right) \in \mathbb{R}^m$. So

$$\mathbf{x} = \mathbf{Q}^{-1} \left(\mathbf{b} - \mathbf{A}^T \left(\mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^T \right)^{-1} \left(\mathbf{A} \mathbf{Q}^{-1} \mathbf{b} - \mathbf{c} \right) \right)$$

is a KKT point and thus an optimal solution.