MPS-based quantum impurity solvers for DMFT DMFT + DMRG

F. Alexander Wolf and U. Schollwöck

Arnold Sommerfeld Center for Theoretical Physics, LMU Munich

Uni Hamburg, 16 Oct 2014

Motivation Why use DMRG as impurity solver for DMFT?

Where is DMRG better than Quantum Monte Carlo?

- EQ: direct access to frequency-dependent observables / access T=0
- NEQ: no phase problem ▷ longer simulation times

Motivation Why use DMRG as impurity solver for DMFT?

Where is DMRG better than Quantum Monte Carlo?

- EQ: direct access to frequency-dependent observables / access T=0
- NEQ: no phase problem > longer simulation times

Where is DMRG better than NRG?

- EQ: homogeneous energy resolution / better scaling with number of bands
- NEQ: no application of NRG yet

Motivation Why use DMRG as impurity solver for DMFT?

Where is DMRG better than Quantum Monte Carlo?

- EQ: direct access to frequency-dependent observables / access T=0
- NEQ: no phase problem > longer simulation times

Where is DMRG better than NRG?

- EQ: homogeneous energy resolution / better scaling with number of bands
- NEQ: no application of NRG yet

Why hasn't it been used up to now?

- Lanczos: instable and not precise García, Hallberg & Rozenberg, PRL (2004)
- DDMRG: computationally extremely expensive Nishimoto & Jeckelmann, JPhysCondMat, 2 papers (2004), Karski, Raas & Uhrig, PRB (2005), Karski, Raas & Uhrig, PRB (2008)
- Chebyshev and Time evolution: much faster and precise Ganahl, Thunström, Verstraete, Held & Evertz, PRB (2014b), Ganahl, Aichhorn, Thunström, Held, Evertz & Verstraete, arxiv (2014a), Wolf, McCulloch, Parcollet & Schollwöck, PRB (2014a)

Outline

 Matrix product states: efficiently represent many-body wave functions of finite-size systems

o From finite-size systems to the thermodynamic limit

Solving equilibrium DMFT using "CheMPS"

Solving nonequilibrium DMFT using a time evolution algorithm

Review: Schollwöck, Annals of Physics (2011)

Product state of local states (compare e.g. Gutzwiller mean-field)

$$|\psi\rangle = \prod_{i=1...L}^{\otimes} \left(a^{\uparrow_i} | \uparrow_i \rangle + a^{\downarrow_i} | \downarrow_i \rangle \right), \quad a^{\sigma_i} \in \mathbb{C}$$
$$= \sum_{\sigma} \left(\prod_{i=1...L} a^{\sigma_i} \right) |\sigma\rangle, \quad \sigma = (\sigma_i)_{i=1}^L$$

Review: Schollwöck, Annals of Physics (2011)

Product state of local states (compare e.g. Gutzwiller mean-field)

$$|\psi\rangle = \prod_{i=1...L}^{\infty} \left(a^{\uparrow_i} | \uparrow_i \rangle + a^{\downarrow_i} | \downarrow_i \rangle \right), \quad a^{\sigma_i} \in \mathbb{C}$$
$$= \sum_{\sigma} \left(\prod_{i=1}^{L} a^{\sigma_i} \right) |\sigma\rangle, \quad \sigma = (\sigma_i)_{i=1}^{L}$$

 \triangleright of all possible many body states (superpositions $\sum_{\sigma} c_{\sigma} | \sigma \rangle$, $c_{\sigma} \in \mathbb{C}$), those with zero entanglement are realized

Review: Schollwöck, Annals of Physics (2011)

Product state of local states (compare e.g. Gutzwiller mean-field)

$$|\psi\rangle = \prod_{i=1...L}^{\infty} \left(a^{\uparrow_i} | \uparrow_i \rangle + a^{\downarrow_i} | \downarrow_i \rangle \right), \quad a^{\sigma_i} \in \mathbb{C}$$
$$= \sum_{\sigma} \left(\prod_{i=1...L} a^{\sigma_i} \right) |\sigma\rangle, \quad \sigma = (\sigma_i)_{i=1}^L$$

 \triangleright of all possible many body states (superpositions $\sum_{\sigma} c_{\sigma} |\sigma\rangle$, $c_{\sigma} \in \mathbb{C}$), those with zero entanglement are realized

Extend the ansatz by replacing $a^{\sigma_i} \in \mathbb{C}$ with $A^{\sigma_i} \in \mathbb{C}^{m_i \times m_{i+1}}$, $m_1 = 1$, $m_{L+1} = 1$.

$$|\psi\rangle = \sum_{\boldsymbol{\sigma}} \Big(\prod_{i=1...L} A^{\sigma_i} \Big) |\boldsymbol{\sigma}\rangle, \quad \boldsymbol{\sigma} = (\sigma_i)_{i=1}^L$$

Review: Schollwöck, Annals of Physics (2011)

Product state of local states (compare e.g. Gutzwiller mean-field)

$$|\psi\rangle = \prod_{i=1...L}^{\infty} \left(a^{\uparrow_i} | \uparrow_i \rangle + a^{\downarrow_i} | \downarrow_i \rangle \right), \quad a^{\sigma_i} \in \mathbb{C}$$
$$= \sum_{\sigma} \left(\prod_{i=1...L} a^{\sigma_i} \right) |\sigma\rangle, \quad \sigma = (\sigma_i)_{i=1}^L$$

 \triangleright of all possible many body states (superpositions $\sum_{\sigma} c_{\sigma} | \sigma \rangle$, $c_{\sigma} \in \mathbb{C}$), those with zero entanglement are realized

Extend the ansatz by replacing $a^{\sigma_i} \in \mathbb{C}$ with $A^{\sigma_i} \in \mathbb{C}^{m_i \times m_{i+1}}$, $m_1 = 1$, $m_{L+1} = 1$.

$$|\psi\rangle = \sum_{\boldsymbol{\sigma}} \Big(\prod_{i=1...L} A^{\sigma_i}\Big) |\boldsymbol{\sigma}\rangle, \quad \boldsymbol{\sigma} = (\sigma_i)_{i=1}^L$$

▷ No longer factorizes into product of local states ▷ entangled!

Review: Schollwöck, Annals of Physics (2011)

Manage (truncate) matrix dimensions:

Weight of a Fock state $|\sigma
angle$ in $|\psi
angle$ (almost) invariant under (truncated) SVD

$$c_{\sigma} = \prod_{\sigma_i \in \sigma} A^{\sigma_i} = \prod_{\sigma_i \in \sigma} U^{\sigma_i} S^{\sigma_i} (V^{\sigma_i})^{\dagger}$$

Review: Schollwöck, Annals of Physics (2011)

Manage (truncate) matrix dimensions:

Weight of a Fock state $|\sigma
angle$ in $|\psi
angle$ (almost) invariant under (truncated) SVD

$$c_{\sigma} = \prod_{\sigma_i \in \sigma} A^{\sigma_i} = \prod_{\sigma_i \in \sigma} U^{\sigma_i} S^{\sigma_i} (V^{\sigma_i})^{\dagger}$$

DMRG: Vartiational ground state search (minimize Rayleigh quotient)

$$\partial_{A_{\mu\nu}^{\sigma_i*}} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} = 0$$

solved efficiently as ansatz is linear in $A_{\mu\nu}^{\sigma_i*}$.

Important: Short-range interactions ⇒ low entanglement

Review: Schollwöck, Annals of Physics (2011)

Manage (truncate) matrix dimensions:

Weight of a Fock state $|m{\sigma}
angle$ in $|\psi
angle$ (almost) invariant under (truncated) SVD

$$c_{\sigma} = \prod_{\sigma_i \in \sigma} A^{\sigma_i} = \prod_{\sigma_i \in \sigma} U^{\sigma_i} S^{\sigma_i} (V^{\sigma_i})^{\dagger}$$

DMRG: Vartiational ground state search (minimize Rayleigh quotient)

$$\partial_{A_{\mu\nu}^{\sigma_i*}}\frac{\langle\psi|H|\psi\rangle}{\langle\psi|\psi\rangle}=0$$

solved efficiently as ansatz is linear in $A_{\mu\nu}^{\sigma_i*}$.

Important: Short-range interactions ⇒ low entanglement

Time evolution

Represent $\exp(-iHt)$ in Krylov subspace $\{|t_0\rangle, H|t_0\rangle, H^2|t_0\rangle, \dots\}$.

Outline

 Matrix product states: efficiently represent many-body wave functions of finite-size systems

o From finite-size systems to the thermodynamic limit

Solving equilibrium DMFT using "CheMPS"

Solving nonequilibrium DMFT using a time evolution algorithm

Extract continuous spectral function $\rho(\omega)$ of thermodynamic limit from a finite system with discrete energy levels?

Spectral function at T=0

$$\begin{split} \rho(\omega) &= -\frac{1}{\pi} \text{Im} \, G(\omega), \\ &= \sum w_n \delta(\omega - (E_n - E_0)), \qquad w_n = |\langle E_n | a^\dagger | E_0 \rangle|^2 \end{split}$$

of single-particle Green's function

$$G(\omega) = \langle E_0 | a \frac{1}{\omega + i0^+ - (H - E_0)} a^{\dagger} | E_0 \rangle.$$

Review: Lin, Saad & Yang, ArXiv (2013)

Method 1 discrete representation of $\rho(\omega) = \sum_n w_n \delta(\omega - E_n)$

$$\rho_{\rm discr}(\omega) = \sum \frac{w_n}{\Delta_n} \chi\Big(\frac{\omega - E_n}{\Delta_n}\Big), \quad \Delta_n = \frac{1}{2}(E_{n+1} - E_{n-1}), \quad \chi \text{ indicator function}$$

Review: Lin, Saad & Yang, ArXiv (2013)

Method 1 discrete representation of $\rho(\omega) = \sum_n w_n \delta(\omega - E_n)$

$$\rho_{\mathrm{discr}}(\omega) = \sum_{n} \frac{w_n}{\Delta_n} \chi\Big(\frac{\omega - E_n}{\Delta_n}\Big), \quad \Delta_n = \frac{1}{2}(E_{n+1} - E_{n-1}), \quad \chi \text{ indicator function}$$

Example free SIAM

hybrid.
$$t_0=V$$
, hopping $t_{i>0}=t$
$$w_n=|\langle E_n|a_0^\dagger|E_0\rangle|^2\Rightarrow \rho(\omega)=\text{LDOS}$$

$$H=-\sum_{i=0}^{L-2}t_i(a_i^\dagger a_{i+1}+\text{h.c.})$$

- $\ \, \text{o} \ \, \text{for} \,\, \omega = E_n, \, \text{rapid pointwise} \\ \, \text{convergence to thermodynamic} \\ \, \text{limit} \,\,$
- but: necessitates precise knowledge of poles and weights

Review: Lin, Saad & Yang, ArXiv (2013)

Method 1 discrete representation of $\rho(\omega) = \sum_n w_n \delta(\omega - E_n)$

$$\rho_{\mathrm{discr}}(\omega) = \sum_{n} \frac{w_n}{\Delta_n} \chi\Big(\frac{\omega - E_n}{\Delta_n}\Big), \quad \Delta_n = \frac{1}{2}(E_{n+1} - E_{n-1}), \quad \chi \text{ indicator function}$$

Example free SIAM

hybrid. $t_0=V$, hopping $t_{i>0}=t$ $w_n=|\langle E_n|a_0^\dagger|E_0\rangle|^2\Rightarrow \rho(\omega)=\text{LDOS}$ $H=-\sum_{i=0}^{L-2}t_i(a_i^\dagger a_{i+1}+\text{h.c.})$

- $\ \, \text{o} \ \, \text{for} \,\, \omega = E_n, \, \text{rapid pointwise} \\ \, \text{convergence to thermodynamic} \\ \, \text{limit} \,\,$
- but: necessitates precise knowledge of poles and weights

Review: Lin, Saad & Yang, ArXiv (2013)

Method 1 discrete representation of $\rho(\omega) = \sum_n w_n \delta(\omega - E_n)$

$$\rho_{\mathrm{discr}}(\omega) = \sum_{n} \frac{w_n}{\Delta_n} \chi\Big(\frac{\omega - E_n}{\Delta_n}\Big), \quad \Delta_n = \frac{1}{2}(E_{n+1} - E_{n-1}), \quad \chi \text{ indicator function}$$

Example free SIAM

hybrid.
$$t_0=V$$
, hopping $t_{i>0}=t$
$$w_n=|\langle E_n|a_0^\dagger|E_0\rangle|^2\Rightarrow \rho(\omega)=\text{LDOS}$$

$$H=-\sum_{i=0}^{L-2}t_i(a_i^\dagger a_{i+1}+\text{h.c.})$$

- $\ \, \text{o} \ \, \text{for} \,\, \omega = E_n, \, \text{rapid pointwise} \\ \, \text{convergence to thermodynamic} \\ \, \text{limit} \,\,$
- but: necessitates precise knowledge of poles and weights

Review: Lin, Saad & Yang, ArXiv (2013)

Method 2 Broadened version of $\rho(\omega) = \sum_n w_n \delta(\omega - E_n)$

$$\rho_{\eta}(\omega) = \sum_{n} w_{n} h_{\eta}(\omega - E_{n})$$

with either
$$h^g_\eta(x)=rac{1}{\sqrt{2\pi\eta}}e^{-rac{x^2}{2\eta^2}}$$
 (Gaussian) or $h^l_\eta=rac{1}{\pi}rac{1}{x^2+\eta^2}$ (Lorentzian).

Review: Lin, Saad & Yang, ArXiv (2013)

Method 2 Broadened version of $\rho(\omega) = \sum_n w_n \delta(\omega - E_n)$

$$\rho_{\eta}(\omega) = \sum_{n} w_{n} h_{\eta}(\omega - E_{n})$$

with either $h_{\eta}^g(x)=\frac{1}{\sqrt{2\pi}\eta}e^{-\frac{x^2}{2\eta^2}}$ (Gaussian) or $h_{\eta}^l=\frac{1}{\pi}\frac{1}{x^2+\eta^2}$ (Lorentzian).

Gaussian

- \circ uniform convergence for $\eta \to 0$ and $L \to \infty$ requires larger systems than pointwise approach
- can be generated by expansions in smooth functions, without the precise knowledge of spectrum and weights

Review: Lin, Saad & Yang, ArXiv (2013)

Method 2 Broadened version of $\rho(\omega) = \sum_n w_n \delta(\omega - E_n)$

$$\rho_{\eta}(\omega) = \sum_{n} w_{n} h_{\eta}(\omega - E_{n})$$

with either $h_{\eta}^g(x)=\frac{1}{\sqrt{2\pi}\eta}e^{-\frac{x^2}{2\eta^2}}$ (Gaussian) or $h_{\eta}^l=\frac{1}{\pi}\frac{1}{x^2+\eta^2}$ (Lorentzian).

Gaussian

- \circ uniform convergence for $\eta \to 0$ and $L \to \infty$ requires larger systems than pointwise approach
- can be generated by expansions in smooth functions, without the precise knowledge of spectrum and weights

Review: Lin, Saad & Yang, ArXiv (2013)

Method 2 Broadened version of $\rho(\omega) = \sum_n w_n \delta(\omega - E_n)$

$$\rho_{\eta}(\omega) = \sum_{n} w_{n} h_{\eta}(\omega - E_{n})$$

with either $h_{\eta}^g(x)=\frac{1}{\sqrt{2\pi}\eta}e^{-\frac{x^2}{2\eta^2}}$ (Gaussian) or $h_{\eta}^l=\frac{1}{\pi}\frac{1}{x^2+\eta^2}$ (Lorentzian).

Gaussian

- \circ uniform convergence for $\eta \to 0$ and $L \to \infty$ requires larger systems than pointwise approach
- can be generated by expansions in smooth functions, without the precise knowledge of spectrum and weights

Outline

 Matrix product states: efficiently represent many-body wave functions of finite-size systems

o From finite-size systems to the thermodynamic limit

Solving equilibrium DMFT using "CheMPS"

Solving nonequilibrium DMFT using a time evolution algorithm

Chebyshev expansion of spectral function

Weiße, Wellein, Alvermann & Fehske, RMP (2006) / Holzner, Weichselbaum, McCulloch, Schollwöck & von Delft, PRB (2011)

Explicit
$$T_n(x) = \cos(n \arccos(x))$$

Recursive
$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

$$T_0(x) = 1 \qquad T_1(x) = x$$

Complete
$$\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}} T_m(x) T_n(x) \propto \delta_{mn}$$

Chebyshev expansion of spectral function

Weiße, Wellein, Alvermann & Fehske, RMP (2006) / Holzner, Weichselbaum, McCulloch, Schollwöck & von Delft, PRB (2011)

Explicit
$$T_n(x) = \cos(n \arccos(x))$$

Recursive
$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

$$T_0(x) = 1 \qquad T_1(x) = x$$

Complete
$$\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}} T_m(x) T_n(x) \propto \delta_{mn}$$

Expand
$$\delta(x-H)$$
 in Chebyshev polynomials $\delta_N(\omega)=\sum_{n=1}^N \frac{T_n(\omega)}{\sqrt{1-\omega^2}}T_n(H)$

$$\rho_N(\omega) = \langle t_0 | \delta_N(\omega - H) | t_0 \rangle, \quad |t_0\rangle = a^{\dagger} |E_0\rangle$$

Evaluate $T_n(H)|t_0\rangle$ recursively / "Probe" spectrum of H in vicinity of $|E_0\rangle$

$$|t_n\rangle=2H|t_{n-1}\rangle-|t_{n-2}\rangle$$
 iterative MPS compression $|t_1\rangle=H|t_0\rangle$ $|E_0\rangle$ by standard DMRG calculation

Two-site cluster DCA

Wolf, McCulloch, Parcollet & Schollwöck, PRB (2014a) / CTQMC by Ferrero, Cornaglia, De Leo, Parcollet, Kotliar & Georges, PRB (2009)

Model: Hole-doped Hubbard model on 2 dimensional square lattice

During Chebyshev recursion, as well as during time evolution, entanglement is generated and limits the accessible "time" (number of Chebyshev vectors).

What is the fundmental problem?

Wolf, McCulloch, Parcollet & Schollwöck, PRB (2014a) / Wolf, McCulloch & Schollwöck, ArXiv (2014b)

Must represent hybridization function $\Lambda(t,t')$ of impurity problem with veritable quantum degrees of freedom / cannot be analytically evaluated as in CTQMC!

What is the fundmental problem?

Wolf, McCulloch, Parcollet & Schollwöck, PRB (2014a) / Wolf, McCulloch & Schollwöck, ArXiv (2014b)

Must represent hybridization function $\Lambda(t,t')$ of impurity problem with veritable quantum degrees of freedom / cannot be analytically evaluated as in CTQMC!

▷ Choose the least-entangled representation for these quantum degrees of freedom

$$\begin{split} H^{\rm star} &= H_{\rm imp} + H_{\rm bath} + H_{\rm hyb}, \\ H_{\rm bath} &= \sum_{l=1}^{L_b} \sum_{\sigma} \epsilon_l c_{l\sigma}^{\dagger} c_{l\sigma}, \\ H_{\rm hyb} &= \sum_{l=1}^{L_b} \sum_{\sigma} \left(V_l c_{0\sigma}^{\dagger} c_{l\sigma} + {\rm H.c.} \right), \\ \Lambda^{\rm star}(\omega) &= \sum_{l=1}^{L_b} \sum_{\sigma} \left(\widetilde{V}_l c_{0\sigma}^{\dagger} c_{l\sigma} + {\rm H.c.} \right), \\ \Lambda^{\rm chain}(\omega) &= \frac{|\widetilde{V}_0|^2}{\omega - \epsilon_l} \\ \Lambda^{\rm chain}(\omega) &= \frac{|\widetilde{V}_0|^2}{\omega - \widetilde{\epsilon}_2 - \frac{|\widetilde{V}_1|^2}{\omega - \widetilde{\epsilon}_{L_b} - 1 - \frac{|\widetilde{V}_{L_b-1}|^2}{\omega - \widetilde{\epsilon}_{L_b}}}, \end{split}$$

Different entanglement in star and chain geometry

Wolf, McCulloch & Schollwöck, ArXiv (2014b)

Model: DMFT for single-band Hubbard model on Bethe lattice

> Very different matrix dimension growth in different geometries

Non-equilibrium DMFT

Wolf, McCulloch & Schollwöck, ArXiv (2014b)

Model: single-band Hubbard model on Bethe lattice

 \triangleright quench from atomic limit v=0 to $v=v_0$

Nonequilibrium Hamiltonian representation by Gramsch, Balzer, Eckstein & Kollar, PRB (2013)

Up to now: exact diagonalization $\triangleright t_{\rm max} \sim 3/v_0$ for $U/v_0=10$

Using MPS: $t_{\rm max} \sim 7/v_0$ for $U/v_0 = 10$

Non-equilibrium DMFT

Wolf, McCulloch & Schollwöck, ArXiv (2014b)

Model: single-band Hubbard model on Bethe lattice

 \triangleright quench from atomic limit v=0 to $v=v_0$

Nonequilibrium Hamiltonian representation by Gramsch, Balzer, Eckstein & Kollar, PRB (2013)

Up to now: exact diagonalization $\triangleright t_{\sf max} \sim 3/v_0$ for $U/v_0 = 4$

Using MPS: $t_{\rm max} \sim 5.5/v_0$ for $U/v_0 = 4$

Non-equilibrium DMFT

Wolf, McCulloch & Schollwöck, ArXiv (2014b)

Model: single-band Hubbard model on Bethe lattice \triangleright quench from atomic limit v=0 to $v=v_0$

Nonequilibrium Hamiltonian representation by Gramsch, Balzer, Eckstein & Kollar, PRB (2013)

With known hybridization function (no self-consistency) Balzer, Li, Vendrell & Eckstein, ArXiv (2014)

Summary and Outlook

Summary

- Use Chebyshev polynomials to compute spectral functions!
- DMFT with DMRG + CheMPS much more efficient than previous MPS methods
- Entanglement depends strongly on representation of impurity model ▷ star geometry favorable
- Solving NEQDMFT using MPS allows to access larger times

Summary and Outlook

Summary

- Use Chebyshev polynomials to compute spectral functions!
- DMFT with DMRG + CheMPS much more efficient than previous MPS methods
- Entanglement depends strongly on representation of impurity model ▷ star geometry favorable
- Solving NEQDMFT using MPS allows to access larger times

Outlook

- o further understand entanglement properties of impurity problems
- in equilibrium: apply these results to three-band models ▷ conductivities
- o in nonequilibrium: treat quenches with correlated initial states

Summary and Outlook

Summary

- Use Chebyshev polynomials to compute spectral functions!
- o DMFT with DMRG + CheMPS much more efficient than previous MPS methods
- Entanglement depends strongly on representation of impurity model ▷ star geometry favorable
- Solving NEQDMFT using MPS allows to access larger times

Outlook

- o further understand entanglement properties of impurity problems
- o in equilibrium: apply these results to three-band models ▷ conductivities
- o in nonequilibrium: treat quenches with correlated initial states

Thanks for your attention!

- Balzer, K., Z. Li, O. Vendrell & M. Eckstein, 2014, ArXiv , 1407.6578.
- Ferrero, M., P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar & A. Georges, 2009, Physical Review B 80, 064501.
- Ganahl, M., M. Aichhorn, P. Thunström, K. Held, H. G. Evertz & F. Verstraete, 2014a, ArXiv, 1405.67281405.6728.
- Ganahl, M., P. Thunström, F. Verstraete, K. Held & H. G. Evertz, 2014b, Phys. Rev. B **90**, 045144.
- García, D. J., K. Hallberg & M. J. Rozenberg, 2004, Phys. Rev. Lett. 93, 246403.
- Gramsch, C., K. Balzer, M. Eckstein & M. Kollar, 2013, Phys. Rev. B 88, 235106.
- Holzner, A., A. Weichselbaum, I. P. McCulloch, U. Schollwöck & J. von Delft, 2011, Phys. Rev. B 83, 195115.
- Karski, M., C. Raas & G. S. Uhrig, 2005, Phys. Rev. B **72**, 113110.
- Karski, M., C. Raas & G. S. Uhrig, 2008, Phys. Rev. B 77, 075116.
- Lin, L., Y. Saad & C. Yang, 2013, ArXiv 1308.5467.
- Nishimoto, S. & E. Jeckelmann, 2004, J. Phys.: Condens. Matter 16, 613.
- Schollwöck, U., 2011, Annals of Physics 326, 96.
- Weiße, A., G. Wellein, A. Alvermann & H. Fehske, 2006, Rev. Mod. Phys. 78, 275.
- Wolf, F. A., I. P. McCulloch, O. Parcollet & U. Schollwöck, 2014a, Phys. Rev. B 90, 115124.
- Wolf, F. A., I. P. McCulloch & U. Schollwöck, 2014b, ArXiv, 1410.3342.