Aplikasi Augmented Reality Dinamis Pengenalan Huruf Kanji (AR-Kanji) Berbasis Android

Ida Bagus Nyoman Yoga Ligia Prapta, I Ketut Gede Darma Putra, I Made Agus Dwi Suarjaya

Program Studi Teknologi Informasi, Fakultas Teknik, Universitas Udayana Bukit Jimbaran, Bali, Indonesia, telp. (0361) 701806

e-mail: yoga_prapta@yahoo.co.id, ikgdarmaputra@gmail.com, agussuarjaya@it.unud.ac.id

Abstrak

Huruf Kanji bagi pembelajar bahasa Jepang dirasa paling sulit untuk dipelajari karena Kanji memiliki karakteristik yang unik. Setiap karakteristik Kanji memiliki jumlah lebih dari satu, sehingga sulit untuk dihapal. Aplikasi Augmented Reality Kanji dibuat untuk mengatasi kesulitan pembelajar bahasa Jepang dalam mengenal atau mempelajari huruf Kanji. Augmented Reality merupakan teknologi penggabungan objek virtual dua dimensi atau tiga dimensi ke dalam lingkungan nyata secara real-time. Penelitian ini menggunakan software utama Unity 3D dan Web server Library Vuforia dengan Bahasa pemrograman C#. Aplikasi AR Kanji ini dibuat melalui beberapa tahapan proses yaitu memperoleh informasi kebutuhan sistem, perancangan dan dilanjutkan dengan tahapan implementasi. Hasil yang didapat yaitu image-target dari masing-masing huruf Kanji dan aplikasi AR Kanji berbasis Android. Pengujian aplikasi AR Kanji menunjukan, aplikasi dapat menampilkan setiap informasi beserta audio dari masing-masing huruf Kanji yang di-tracking dengan kondisi cahaya yang baik dan dapat digunakan sesuai fungsinya pada perangkat smartphone dengan spesifikasi yang berbeda. Tingkat kepuasan pengguna terhadap aplikasi AR Kanji menunjukkan angka 85%.

Kata Kunci: Augmented Reality, Huruf Kanji, Unity 3D, Android

Abstract

The Kanji letter for Japanese learners is considered the most difficult to learn because Kanji has unique characteristics. Each Kanji color has more than one number, it is difficult to memorize. Kanji Augmented Reality application is made to overcome the difficulties of Japanese learners in recognizing or working on Kanji letters. Augmented Reality is the technology of combining two-dimensional or three-dimensional virtual objects into real-time environments. This study uses the main Unity 3D software and the Vuforia Web Server Library with the C # programming language. This AR Kanji application is made through several stages of the process, which includes information on system requirements, design and implementation with the implementation stages. The results obtained are the target images of each Kanji letter and the Android-based AR Kanji application. The AR Kanji test application shows, the application can display every information and audio from each Kanji letter that is tracked in good condition and can be used on smartphone devices with different specifications. The level of user satisfaction with the application shows 85%.

Keywords: Augmented Reality, Kanji, Unity 3D, Android

1. Pendahuluan

Kata "*Kanji*" adalah kata dalam bahasa Jepang yang mengacu pada sekelompok ribuan simbol yang digunakan dalam bahasa Tionghoa, Jepang, dan bahasa Asia lainnya.

Karakter Kanji kadang juga disebut *pictograms*, atau sejumlah istilah yang serupa, karena banyak karakter *Kanji* tertua yang digambarkan secara grafis menggambarkan objek atau ide yang mereka wakili.[1]. Secara harfiah *Kanji* berarti "*Han character*" atau karakter Cina yang sangat identik di Cina untuk menggambarkan tulisan mereka. Huruf *Kanji* juga biasa disebut dengan istilah *monji* dan ada yang menyebutnya hanya dengan istilah *ji*. Huruf *Kanji* adalah huruf lambing, ada yang berdiri sendiri dan ada yang harus digabung dengan huruf *hiragana* ketika digunakan untuk menunjukkan suatu kata.

Huruf *Kanji* bagi pembelajar Bahasa jepang hingga saat ini dirasakan paling sulit untuk dipelajari. Penyebab dari kesulitan belajar Bahasa jepang dikarenakan karakteristik *Kanji* yang unik, yaitu memiliki *bushu* (radikal), *kakusuu* (jumlah coretan), *hitsujun* (urutan menulis), serta *yomikata* (cara baca). Setiap karakteristik *Kanji* memiliki jumlah lebih dari satu, sehingga sulit untuk dihapal [2]. Dalam mengatasi kesulitan mempelajari huruf *Kanji* banyak diciptakan cara atau media untuk mempelajari huruf *Kanji*. Salah satu media pembelajaran yaitu dengan teknologi *Augmented Reality*.

Teknologi Augmented Reality (AR) merupakan contoh dari pesatnya perkembangan di bidang teknologi informasi saat ini. Augmented Reality adalah variasi dari Virtual Environment (VE) atau yang sering disebut teknologi Virtual Reality (VR). Teknologi Virtual Reality membenamkan pengguna kedalam lingkungan yang sintetik sementara, sehingga pengguna tidak dapat melihat dunia nyata disekelilingnya. Sebaliknya teknologi Augmented Reality mengambil informasi yang dihasilkan komputer atau perangkat digital berupa gambar, audio, video, dan menampilkan secara real-time. [3].

Penelitian [4] mengunakan *tool* ARToolKit dan menghasilkan implementasi animasi 3 dimensi berupa cerita mengenai tulisan *Kanji* yang ditampilkan dalam bentuk kubus ketika marker dideteksi oleh sistem.Berdasarkan kesimpulan yang dipaparkan oleh penulis bahwa tool ARToolKit merupakan salah satu alternatif media pembelajaran dalam mempelajari tulisan *Kanji*, dimana aplikasi tersebut menyajikan gambar secara visual dalam proses belajar dalam bentuk 3 dimensi. Serta mempelajari tulisan *Kanji* menggunakan aplikasi *Augmented Reality* sangatlah membantu dan pengguna dapat mengerti dan memahami tulisan *Kanji* dengan waktu yang relatif singkat.

Penelitian [5] berhasil mengimplementasikan teknologi *Augmented Reality* kedalam media pembelajaran mengenal huruf alphabet pada perangkat berbasis *mobile* android dengan menggunakan *tools* Unity dan Library Vuforia. Cara kerja dari apikasi ini adalah menyiapkan kartu alfabet yang pada masing-masing kartu alfabet terdapat bentuk huruf alfabet, nama objek dari huruf alfabet, dan gambar dari objek huruf alphabet yang nantinya akan keluar abjek 3D ketika kartu di-*scan*.

Penilitian [6] berhasil mengimplementasikan penggunaan teknologi Augmented Reality menggunakan tool ARtoolkit dengan library yang dibuat dengan Bahasa C++. Marker yang digunakan pada penelitian ini masih menggunakan marker dengan bentuk kotak berbingkai hitam dan ukuran tidak lebih dari 631x634 pixel.

Aplikasi AR Kanji ini dibangun dengan beberapa kelebihan dibandingkan dengan aplikasi pengenalan huruf pada penelitian sebelumnya. Kelebihan tersebut yaitu aplikasi APlikasi AR Kanji dibuat menggunakan software Unity 3D yang memiliki dukungan GUI serta memudahkan untuk mengedit dan membuat script. AR Kanji tidak menggunakan 3D animasi untuk menampilkan huruf, sehingga aplikasi menjadi lebih ringan. Aplikasi AR Kanji menggunakan server Vuforia sebagai library untuk menyimpan sejumlah image-target dan file metadata informasi dari masing-masing image-target, sehingga aplikasi menjadi dinamis yang memungkinkan perubahan terhadap informasi maka cukup dengan mengedit metadata-nya sehingga tidak membongkar aplikasi.

Penelitian "Aplikasi Augmented Reality Dinamis Pengenalan Huruf Kanji Berbasis Android" mengimplementasikan teknologi Augmented Reality yang dirancang menggunakan tool Unity 3D dan web server Vufuria pada perangkat smartphone Android dengan minimal versi 4.0 (Jelly Bean). Aplikasi AR Kanji menampilkan informasi pada layar smartphone ketika perangkat berhasil terhubung ke server Vuforia menggunakan koneksi internet.

2. Metodelogi Penelitian

Metodelogi Penelitian meliputi Gambaran umum dan *Use Case* Diagram dari aplikasi *Augmented Reality* Pengenalan Huruf *Kanji.* Aplikasi AR *Kanji* ini diimplementasikan pada perangkat *platform* Android dengan versi Android minimal 4.1 (Jelly Bean). Gambaran umum sistem aplikasi AR Kanji ini merupakan gambaran dari cara kerja untuk menghasilkan suatu hasil yang diinginkan. Sedangkan *Use Case* Diagram digunakan untuk mendeskripsikan aktifitas sistem dari sudut pandang pengguna.

Gambar 1. Gambaran Umum Aplikasi

Gambar 1 menjelaskan alur dari proses Aplikasi Augmented Reality Pengenalan Huruf Kanji. Langkah pertama yaitu user membuka Aplikasi AR Kanji yang sudah di-install pada smartphone Android. Tahapan selanjutnya user memilih menu Start Scan dan mulai melakukan tracking pada image-target yang sudah disiapkan. Aplikasi melakukan kontak identifikasi image-target pada Server Vuforia dan membaca metadata dari image-target sehingga output yang dihasilkan yaitu berupa nama Kanji, informasi Kanji dan audio dari huruf Kanji yang di pindai.

2.1 Use Case Diagram

Use Case Diagram menggambarkan batasan sistem dari fungsi-fungsi utamanya serta mendeskripsikan aktifitas sistem dari sudut pandang pengguna (interaksi antara pengguna dan sistem). Berikut merupakan use case diagram dari Aplikasi Augmented Reality Pengenalan Huruf Kanji.

Gambar 2. Use Case Diagram Aplikasi Augmented Reality Pengenalan Huruf Kanji

Gambar 2. merupakan *use case diagram* dari Aplikasi *Augmented Reality* Huruf *Kanji*. Diagram *use case* menggambarkan interaksi yang terjadi antara pengguna dengan aplikasi *Augmented Reality* Pengenalan Huruf *Kanji* dan antara elemen *use case* dengan elemen *use case* lainnya. Pengguna dapat menggunakan *use case* yang dirancangn *d*engan 3 pilihan menu utama yaitu, *Start Scan*, *How to Use* dan *About*, serta 2 sub menu dari menu *About*.

2.2 Pengumpulan Data

Pengumpulan data pada penelitian ini dilakukan dengan mencari dan menganalisa data *image-target* huruf *Kanji* berdasarkan sumber-sumber dari buku jurnal dan internet. Data kemudian diolah untuk dijadikan *image-target* dan file *metadata* informasi yang selanjutnya diunggah ke *library* server Vuforia.

3. Kajian Pustaka

Kajian pustaka merupakan pemaparan dari teori-teori penunjang yang digunakan sebagai acuan dalam pembuatan aplikasi *Augmented Reality* Pengenalan Huruf *Kanji*.

3.1 Kanji

Kanji berasal dari Cina ke Jepang. Istilah "Kanji" secara harfiah berarti Han karakter atau karakter Cina dan identik dengan karakter di Cina untuk menggambarkan tulisan mereka. Kanji terutama digunakan untuk menggambarkan nama dan kata bahasa. Ketika digunakan dalam kata kerja dan kata sifat mereka sebagian besar ditulis dalam kombinasi dengan huruf hiragana. Kalimat-kalimat yang kebanyakan meliputi Kanji serta sebagai hiragana. Dalam kamus Jepang Kanji terdaftar sekitar 10.000 Kanji. Pemerintah Jepang membatasi Kanji yang digunakan dalam publikasi resmi untuk Kanji Touyou tahun 1945 dengan 4.000 bacaan. Japanese Language Proficiency Test (JLPT) didasarkan pada Kanji 1945 touyou ini. Orang Jepang dengan pendidikan rata-rata tahu sekitar 3000 Kanji dan diperkirakan sekitar 4000 Kanji digunakan dalam literatur Jepang [1].

3.2 Augmented Reality

Augmented Reality (AR) adalah teknologi yang menggabungkan benda maya dua dimensi dan tiga dimensi kedalam lingkungan nyata secara real-time. Berbeda dengan virtual reality yang sepenuhnya mengubah dunia nyata menjadi maya, namun augmented reality menambahkan atau melengkapi dunia nyata dengan objek dua dimensi atau tiga dimensi yang dibuat. [7]

3.3 Cloud Recognition

Cloud recognition merupakan sebuah layanan proses pengenalan terhadap image-target yang dilacak menggunakan cloud database. Database image-target tidak lagi digabungkan dengan aplikasi sehingga menjadi lebih efisien. Menggunakan cloud recognition juga dapat mempermudah perubahan pada aplikasi. Karena, jika terjadi perubahan informasi dari masingmasing image-target, maka hanya mengedit metadata-nya saja yang terdapat pada cloud database di vuforia.

Cloud recognition target adalah sekumpulan gambar yang dijadikan marker atau markerless dan diunggah pada cloud database di Vuforia. Pada saat aplikasi dijalankan, Vuforia akan melakukan pelacakan image-target dan mengenali objek serta metadata dari image-target tersebut. Secara cloud database image-target dikelola oleh Vuforia Web Service API atau Target Manager yang disediakan oleh Vuforia [8].

3.4 Unity 3D

Unity 3D adalah *tool* yang digunakan untuk membuat *aplikasi atau games* 3D yang terintegrasi dan menghasilkan suatu animasi 3 dimensi atau 2 dimensi secara *real-time. Unity 3D* dilengkapi dengan GUI yang memudahkan pengembang untuk membuat, mengedit dan menciptakan sebuah game 3D. Selain digunakan untuk membuat game console Unity 3D juga dapat digunakan untuk membangun game PC [9].

3.5 Android

Android merupakan sistem operasi yang berjalan di *smartphone*. Android menyediakan *platform* terbuka (*open source*) untuk pengembang aplikasi menciptakan berbagai macam aplikasi. Awal mula Android terjadi ketika Google Inc membeli saham Android Inc, pendatang baru yang membuat *software* (perangkat lunak) untuk telepon genggam. Kemudian Android berkembang dan terbentuk Open Handset Alliance yang merupakan gabungan dari 344 perusahaan piranti keras, piranti lunak dan telekomunikasi termasuk Google HTC, Intel, Motorola, Qualcomm. TMobile. dan NVidia.

Tanggal 5 Nopember 2017 merupakan rilis perdana dari sistem operasi Android. Bersama Open Headset Alliance, Android mendukung penuh *open source* pada perangkat *smartphone*. Sedangkan pihak Google merilis kode Android dibawah lisensi Apache, dimana apache merupakan lisensi untuk perangkat lunak dan standar terbuka pada *smartphone*. Google Mail Service (GMS) merupakan distributor yang dapat dukungan penuh dari Google, sedangkan Open Handset Distributor (DHD) merupakan distributor yang bebas atau tanpa dukungan langsung dari Google [10].

4. Hasil dan Pembahasan

Hasil dan pembahasan memaparkan hasil dari implementeasi Aplikasi *Augmented Reality* Pengenalan Huruf *Kanji* Berbasis Android.

Gambar 3. Tampilan Menu Utama Aplikasi Augmented Reality Pengenalan Huruf Kanji

Gambar 3 merupakan tampilan dari menu utama aplikasi. Terdapat 3 *button* pada menu utama yang menghubungkan ke 3 *scene* berbeda, yaitu Start Scene, How to Use, dan About. Desain tampilan menu utama dibuat sederhana dengan tidak banyaknya gambar yang didesain pada aplikasi. Untuk mulai menggunakan aplikasi, pengguna dapat memilih *button* Start Scan untuk melakukan *tracking image-target*, *button* How to Use digunakan untuk menampilkan informasi cara penggunaan dari aplikasi *Augmented Reality* Pengenalan Huruf *Kanji*. Sedangkan *button* About menampilkan informasi dari pengembang aplikasi dan informasi dari aplikasi *Augmented Reality* Pengenalan Huruf *Kanji*.

4.2 Hasil Pengujian

Uji coba dan pengujian dilakukan menggunakan smartphone yang sudah terinstall aplikasi Augmented Reality Pengenalan Huruf Kanji.

a. Uji Coba Aplikasi

Hasil perancangan dan implementasi dari aplikasi ini menampilkan informasi dari huruf *Kanji* yang berhasil di-*tracking* serta *button* audio dari *Kanji* tersebut.

Gambar 4. Tampilan Informasi *Image-Target* Huruf *Kanji* pada Layar *Smartphone*

Gambar 4. merupakan tampilan layar *smartphone* yang menampilkan informasi dari *image-target* yang berhasil di-*tracking* secara *real-time*. Selain menampilkan deskripsi informasi, aplikasi juga menampilkan *button* audio ketika *image-target* berhasil di-*tracking*.

b. Pengujian Sistem

Pengujian sistem dilakukan menggunakan 7 buah *image-target* yang sudah disiapkan. Pengujian yang dilakukan meliputi pengujian intensitas cahaya, pengujian deteksi *image-target* pada beberapa perangkat *smartphone* Android, serta pengujian durasi waktu deteksi *image-target*.

Tabel 1. Pengujian Intensitas Cahaya

Pengujian intensitas cahaya dilakukan untuk mengetahui keakuratan dari sistem Vuforia. Pengujian dilakukan pada Siang dan Malam hari dengan cahaya yang banyak dan kurang. Hasil menunjukkan kecepatan *tracking image-target* pada siang hari sangat baik. Hal ini dikarenakan pada siang hari terdapat cahaya yang memadai sehingga kecepatan dan keakuratan kamera untuk mendeteksi *imaget-target* sangat baik. Sedangkan pengujian intensitas pada malam hari *image-target* tidak dapat terdeteksi. Hal ini dikarenakan minimnya cahaya pada malam hari yang membuat kamera tidak dapat mendeteksi *imaget-target*.

4.3 Hasil Kuisioner

Pengujian aplikasi dilakukan dengan menyebar kuisioner sejumlah 20 lembar. Terdapat 6 buah pertanyaan dalam kuisioner yang masing-masing memiliki nilai 1-5 dengan keterangan sangat tidak mudah sampai sangat mudah/sangat baik. Hasil kuisioner menunjukan tingkat presentase keberhasilan aplikasi AR Kanji yaitu 85,33%.

5. Kesimpulan

Kesimpulan dari pembahasan dan penelitian aplikasi AR Kanji adalah sebagai berikut: aplikasi dibuat menggunakan Unity 3D dengan web server Vuforia untuk menyimpan setiap image-target beserta file metadata informasi dari masing-masing huruf Kanji menggunakan Bahasa pemrograman C#. Secara keseluruhan aplikasi berjalan baik pada perangkat Android serta mampu mengenali dan menampilkan image-target pada siang hari dengan Intensitas cahaya yang banyak. Hasil pengujian dengan melakukan analisa kuisioner didapatkan tingkat keberhasil aplikasi AR Kanji sebesar 85,33%.

Daftar Pustaka

- [1] Takezaki, Kunii dan Bob Godin. "*Japanese Kanji Calligraphy*". Tuttle Publishing. Diakses 20 Agustus 2018 dari http://books.google.com/books
- [2] Dyah Prasetiani, Lispridona Diner, "Meningkatkan Kemampuan *Kanji* Mahasiswa Melalui Media Kartu Huruf *Kanji*" Jurnal Izumi, 2014, Volume 3, No 2.
- [3] Kipper, Gregory dan Joseph Rampolla. 2013. "Augmented Reality: An Emerging Technologies Guide to AR". British Library. Printed in the United States of America. Diakses 14 Agustus 2018, dari http://books.google.com/books
- [4] Riezqi Ardita Ulfiani, 2013, "Perancangan Aplikasi Pembelajaran Bahasa Jepang dalam Mempelajari Tulisan *Kanji* dengan Menggunakan *Augmented Reality*", Universitas Kristen Satya Wacana, Salatiga.
- [5] Rudy Octavianto. 2017. "Media Pembelajaran Mengenal Huruf Alfabet Berbasis Augmented Reality pada Perangkat Mobile Android" Universitas Kristen Satya Wacana Salatiga
- [6] Setia Wardani. 2015. "Pemanfaatan Teknologi Augmented Reality (AR) untuk Pengenalan Aksara Jawa pada Anak". Jurnal Teknologi, Volume 8 Nomor 2, Desember 2015, 104-111.
- [7] I Gede Aditya Nugraha. 2016. "Rancang Bangun Aplikasi Aplikasi Android AR Museum Bali: Gedung Karangasem dan Gedung Tabanan". LONTAR KOMPUTER VOL. 7, NO.2, AGUSTUS 2016.
- [8] Sari, Irma Permata, Sulistyo, Selo, dan Hantono, Bimo Sunarfri, 2014, "Evaluasi Kemampuan Sistem Pendeteksian Objek *Augmented Reality* secara *Cloud Recognition*", ISSN: 1907 5022
- [9] Theofilus Fiendi Hernowo, Evi Sulviana, Willy, Hernando Ivan Teddy, "Rancang Bangun Edugame Pembelajaran Kesehatan Gigi Untuk Anak-Anak Berbasis Unity 3d", 2014
- [10] Ardiansyah, Firdan. 2011. "Pengenalan Dasar Android Programming". Diakses 27 Juli 2017, dari scribd.com