Les bases de la dynamique des populations

À voir:

- [Bacaer 2009] très intéressante perspective historique
- [Boularas et al 2009] présentation très vivante et accessible des modèles différentiels
- [Otto et Dray2007] très complet et tourné vers les biologistes

Modèles différentiels

Nous voulons modéliser l'évolution de la taille d'une population composée d'une seule espèce. Notons n(t) la taille de cette population à l'instant t, il s'agit d'une quantité entière. Nous allons modéliser l'évolution de cette taille à des instants t_k , que nous supposerons pour simplifier équirépartis, i.e. $t_k = k \, h$ avec h > 0:

Modéliser l'évolution de la taille de population consiste à définir la variation $\Delta n(t_k)$ de cette taille entre les instants t_k et t_{k+1} :

$$n(t_{k+1}) = n(t_k) + \Delta n(t_k).$$

On suppose donc que ces accroissements dépendent de la taille courante de la population. Il est pertinent de s'intéresse à la variation de la taille de la population par unité de temps:

$$\frac{n(t_{k+1})-n(t_k)}{h}=\frac{\Delta n(t_k)}{h}.$$

On fait l'hypothèse que les instants t_k sont rapprochés, i.e. h petit.

Dans l'équation précédente on fait tendre h vers 0 et k vers l'infini de telle sorte que $t_k \to t$ pour t donné. On suppose aussi que $\Delta n(t_k)$ tend vers l'infini de telle sorte que le rapport $\Delta n(t_k)/h$ tende vers un certain F(n(t)):

$$\dot{n}(t) = F(n(t))$$
.

Enfin, la taille n(t) de la population est supposée très grande et nous faisons le changement d'échelle suivant:

$$x(t) := \frac{n(t)}{M}$$

Ce changement de variable peut s'interpréter de différentes façons. Par exemple pour une population de bactéries:

- M peut être vu comme l'inverse de la masse d'une bactérie, alors x(t) désigne la {biomasse} de la population;
- M peut être le volume dans lequel vit cette population, x(t) est alors une densité de population;
- M peut être simplement un changement d'échelle, si la taille de la population est de l'ordre de 10^9 individus et si $M=10^3$ alors x(t) désignera la taille de la population de méta-individus (1 méta-individu = 10^3 individus).

L'équation (???) devient:

$$\frac{\dot{n}(t)}{M} = \frac{1}{M} F\left(M \frac{n(t)}{M}\right)$$

et en posant $f(x) := \frac{1}{M} F(M x)$ on obtient l'équation différentielle ordinaire (EDO):

$$\dot{x}(t) = f(x(t)), \ x(0) = x_0$$

et son état x(t) peut donc désigner la *taille* d'une population, sa *biomasse*, sa *densité* (nombre d'individus par unité de volume), ou bien encore sa *concentration* (massique ou molaire); pour simplifier nous dirons que x(t) "est'' la population; x_0 désigne la population initiale, supposée connue.

Dans beaucoup d'exemples de dynamique de population f est de la forme:

$$f(x) = r(x) x$$

où r(x) s'interprète comme un **taux de croissance per capita** (par individu). En effet si x(t+h)=x(t)+f(x(t)) (h=1 unité de temps) et si par exemple f(x(t))=5 il y alors eu un accroissement de 5 individus (dans l'échelle x) sur la période de temps h: est-ce grand ou petit ? Cela est relatif à la taille x(t) de la population, c'est donc le rapport $\frac{f(x(t))}{x(t)}=r(x(t))$ qui importe.

Croissance exponentielle

Division céllulaire pouvant être vue comme un modèle d'ordre 1:

$$X \longrightarrow 2X$$

La première étape consiste à appréhender la croissance géométique (temps discret) et exponentielle (temps continu).

On considère une population dont la taille évolue de la façon suivante:

$$n(t_{k+1}) = n(t_k) + \lambda n(t_k) h - \mu n(t_k) h$$

où λ est le taux de naissance et μ celui de mort. Il est nécessaire ici que l'intervalle de temps $[t_k, t_{k+1}]$ soit suffisamment petit pour que $n(t_k)$ évolue peu, mais aussi suffisamment grand pour que des événements de naissance et mort surviennent. Après changement d'échelle, l'équation précédente devient:

$$\dot{x}(t) = (\lambda - \mu) x(t), \ x(0) = x_0$$

taux de naissance $\lambda > 0$, taux de mort $\mu > 0$.

qui admet la solution explicite suivante:

$$x(t) = x_0 e^{(\lambda - \mu) t}, \quad t \ge 0.$$

```
In [2]: %matplotlib inline
   import numpy as np
   import matplotlib.pyplot as plt

t0, t1 = 0, 10
   temps = np.linspace(t0,t1,200, endpoint=True)

population = lambda t: x0*np.exp((rb-rd)*t)

legende = []
   for x0, rb, rd in zip([1, 1, 1], [1, 1, 0.9], [0.9, 1, 1]):
        plt.plot(temps, population(temps))
        legende = legende + [r'$\lambda=$'+str(rb)+r', $\mu=$'+str(rd),
        ]
   plt.legend(legende, loc='upper left')
   plt.show()
```


Ainsi

- lorsque $\mu > \lambda$ la population croît exponentiellement
- lorsque $\lambda < \mu$ la population tend exponentiellement vers 0.

On parlera de croissance (ou décroissance) malthusienne.

Lorsque $\lambda < \mu$ la population décroît exponentiellement vite vers 0 mais à tout instant fini cette population est strictement positive, pourtant si $M=10^3$ et si x(t) descend en dessous de 10^{-3} alors x(t) représentera moins d'un individu. Ce point n'est pas cohérent avec l'hypothèse de population grande et donc limite l'intérêt de ce modèle pour les petites tailles de population.

Croissance logistique

$$X \longrightarrow 2X$$
 avec inhibition

En 1838, <u>Pierre François Verhulst (https://en.wikipedia.org/wiki/Pierre Francois Verhulst)</u> (1804-1849) proposa un modèle de croissance dont le taux de croissance diminue linéairement en fonction de la taille de la population rendant ainsi compte de la capacité maximale d'accueil du milieu.

$$\dot{x}(t) = r \times \left(1 - \frac{x(t)}{K}\right) x(t), \ x(0) = x_0$$

admet l'unique solution:

$$x(t) = K \frac{1}{1 + \left(\frac{K}{x_0} - 1\right) e^{-rt}} = \frac{1}{\frac{x_0}{K} (e^{rt} - 1) + 1} x_0 e^{rt}$$

```
In [3]: t0, t1 = 0, 10
        temps = np.linspace(t0,t1,300, endpoint=True)
        population = lambda t: K*1/(1+(K/x0-1))* np.exp(-r*t)
        x0, K = 1, 5
        legende = []
        for r in [2, 1, 0.5]:
            plt.plot(temps, population(temps))
            legende = legende + [r'$r=$'+str(r),]
        plt.ylim([0,K*1.2])
        plt.legend(legende, loc='lower right',title=r'taux de croissance $r
        plt.plot([t0, t1], [K, K], color="k", linestyle='--')
        plt.text((t1-t0)/50, K, r"$K$ (capacité d'accueil)",
                 verticalalignment='bottom', horizontalalignment='left')
        plt.xlabel(r'temps $t$')
        plt.ylabel(r'taille $x(t)$ de la population')
        plt.show()
```



```
In [4]: from ipywidgets import interact, fixed

def pltlogistique(x0,K,r):
    population2 = K*1/(1+ (K/x0-1) * np.exp(-r*temps))
    plt.plot(temps, population2)
    plt.ylim([0,6])
    plt.plot([t0, t1], [K, K], color="k", linestyle='--')
    plt.show()

interact(pltlogistique, x0=(0.01,6,0.1), K=(0.01,6,0.1), r=(0.1,20,0.1))
    plt.show()
```

Modèle de Lotka-Volterra

$$\begin{array}{ccc} A \longrightarrow 2\,A & \text{reproduction des proies} \\ A + B \longrightarrow B + \gamma B & \text{prédation} \\ B \longrightarrow \emptyset & \text{disparition des prédateurs} \end{array}$$

matrice de Petersen:

réaction	ordre	Α	В	taux de réaction
reproduction des proies	1	+1	0	$k_1[A]$
prédation	2	-1	γ	$k_2[A][B]$
disparition des prédateurs	1	0	-1	$k_3[B]$

$$\frac{d[A]}{dt} = k_1[A] - k_2[A][B]$$

$$\frac{d[B]}{dt} = \gamma k_2[A][B] - k_3[B]$$

[1kg d'herbe ne fait pas 1kg de vache]

Il existe de nombreuses présentations de ce modèles, pour un résumé mathématique précis voir par exemple <u>ce document PDF (http://w3.bretagne.ens-cachan.fr/math/people/gregory.vial/files/cplts/volterra.pdf)</u>.

Le <u>modèle de Lotka-Volterra (https://fr.wikipedia.org/wiki/Équations_de_Lotka-Volterra)</u> représente deux populations en interaction:

- des proies, de taille $x_1(t)$, ayant accès à une ressource ilimitée (non modélisée)
- et des prédateurs, de taille $x_2(t)$, se nourissant de proies.

On suppose que:

- en l'absence de prédateurs, la population de proies croit de façon exponentielle selon un taux r_1 :
- en l'abscence de proies, la population de prédateurs décroit de façon exponentielle selon un taux r_2 .

On suppose que r_1 dépend de $x_2(t)$ et que r_2 dépend de $x_1(t)$:

- $r_1 = a b x_2(t)$, où a est le taux de naissance des proies en l'absence de prédateurs et $b x_2(t)$ est le taux de prédation que l'on suppose linéaire en $x_2(t)$;
- $r_2 = c x_1(t) d$, où d est le taux de mort des prédateurs en l'absence de proies et $c x_1(t)$ est le taux de naissance des prédateurs que l'on suppose linéaire en $x_1(t)$.

On obtient donc un système de deux équations différentielles couplées:

$$\dot{x}_1(t) = [a - b x_2(t)] x_1(t)
\dot{x}_2(t) = [c x_1(t) - d] x_2(t)$$

ce système n'admet pas de solution explicite, on doit faire appel à une méthode numérique.

La solution est périodique de période \sqrt{ac} .

Voir par exemple dans le <u>SciPy Cookbook (http://scipy-cookbook.readthedocs.io/items/LoktaVolterraTutorial.html</u>).

```
In [6]: plt.plot(t, x_t[:,0], label=r"proies $x_1(t)$")
    plt.plot(t, x_t[:,1], label=r"prédateurs $x_2(t)$")
    plt.xlabel("temps")
    plt.ylabel("nombre d'animaux")
    plt.legend()
    plt.show()
```


Espace des phases

Au lieu de tracer $t \to x_1(t)$ et $t \to x_2(t)$, on trace les points $(x_1(t), x_2(t))$ lorsque t varie, donc le temps n'apparait plus, il s'agit d'une courbe dans l'<u>espace des phases</u> (https://fr.wikipedia.org/wiki/Espace_des_phases).

```
In [7]: plt.plot(x_t[:,0], x_t[:,1])
    plt.xlabel(r"nombre de proies $x_1(t)$")
    plt.ylabel(r"nombre de prédateurs $x_2(t)$")
    marker_style = dict(linestyle=':', markersize=10)
    equilibre = [d/c,a/b]
    plt.plot(equilibre[0], equilibre[1], marker='.', color="k")
    plt.text(1.05*equilibre[0], 1.05*equilibre[1], r'$(d/c,a/b)$')
    plt.xlim(300, 1300)
    plt.ylim(0, 500)
    plt.axis('equal') # les échelles en x et y sont égales
    plt.show()
```



```
In [8]:
        echelle = np.linspace(0.3, 0.9, 5)
        couleurs = plt.cm.winter(np.linspace(0.3, 1., len(echelle)))
        for v, col in zip(echelle, couleurs):
            val ini = np.multiply(v,equilibre)
            X = odeint( f, val ini, t)
            plt.plot( X[:,0], X[:,1], lw=1, color=col,
                     label=r'$(%.f, %.f)$' % tuple(val_ini) )
        x1max = plt.xlim(xmin=0)[1]
        x2max = plt.ylim(ymin=0)[1]
        nb points = 20
        x1 = np.linspace(0, x1max, nb points)
        x2 = np.linspace(0, x2max, nb points)
        X1 , X2 = np.meshgrid(x1, x2)
        DX1, DX2 = f([X1, X2], 0)
        vecteurs = np.hypot(DX1, DX2)
                                           # norme du taux de croissance
        vecteurs[ vecteurs == 0] = 1.
                                           # éviter la division par 0
        DX1 /= vecteurs
                                           # normalisation de chaque vecteur
        DX2 /= vecteurs
        plt.quiver(X1, X2, DX1, DX2, vecteurs, pivot='mid', cmap=plt.cm.hot
        )
        plt.xlabel(r"nombre de proies $x 1(t)$")
        plt.ylabel(r"nombre de prédateurs $x 2(t)$")
        plt.legend(title="condition initiale")
        plt.grid()
        plt.xlim(0, x1max)
        plt.ylim(0, x2max)
        plt.show()
```


References

[^](#ref-1) Nicolas Bacaër. 2009. *Histoires de mathématiques et de populations*.

[^](#ref-2) Driss Boularas and Daniel Fredon and Daniel Petit. 2009. *Mini Manuel de Mathématiques pour les sciences de la vie et de l'environnement*.

[^](#ref-3) Otto, Sarah P. and Day, Troy. 2007. A Biologist's Guide to Mathematical Modeling in Ecology and Evolution.