Estadística y pronósticos para la toma de decisiones.

Profesor: Dr. Naím Manríquez

Universidad Tecmilenio

Objetivo del ejercicio: Obtener los coeficientes de correlación de dos variables cuantitativas, así como realizar el análisis de autocorrelación en datos de una serie de tiempo.

Descripción del ejercicio: A través de este ejercicio el alumno obtendrá conocimiento de cómo medir la asociación entre dos variables cuantitativas, así como realizar el análisis de autocorrelación de una serie de tiempo.

Instrucciones:

1. El gerente de un banco está interesado en reducir el tiempo que las personas esperan para ver a su asesor financiero. También le interesa la relación entre el tiempo de espera (Y) en minutos y el número de asesores atendiendo (X). Se registraron los siguientes datos:

Χ	2	3	5	4	2	6	1	3	4
Υ	12.8	11.3	3.2	6.4	11.6	3.2	8.7	10.5	8.2

- a) Calculen el coeficiente de correlación. (De forma manual y de forma directa con la fórmula de Excel).
- b) Interpreta tus resultados.
- c) Calcula la media, varianza y desviación estándar de cada variable e interpreta tus resultados.
- d) Realiza un gráfico de dispersión e interprétalo.

Estadística. Universidad Tecmilenio – Campus Mazatlán

2. Una empresa refresquera está estudiando el efecto de su última campaña publicitaria. Se eligieron personas al azar y se les llamó para preguntarles cuantas latas de su refresco habían comprado la semana anterior y cuántos anuncios de su refresco habían leído o visto durante el periodo. Los datos se presentan a continuación:

X (número de anuncios)	3	7	4	2	0	4	1	2
Y (latas compradas)	11	18	9	4	7	6	3	8

- a) Determina el coeficiente de correlación. (De forma manual y con la fórmula de Excel).
- b) Interpreta los resultados del inciso a).
- c) ¿Estás de acuerdo con el planteamiento de las variables del problema? ¿Qué sucedería con la interpretación si X es el número de latas compradas y Y el número de anuncios? ¿Tendría sentido este último planteamiento?, ¿sí o no?, ¿por qué?
- d) Realiza un gráfico de dispersión para el problema inicial e interpreta el mismo de manera detallada.

Estadística. Universidad Tecmilenio – Campus Mazatlán

3. El siguiente conjunto de datos son las ventas semanales de un artículo de comida (en miles).

Determinen el coeficiente de autocorrelación y prueben la hipótesis de que:

Hipótesis nula: $H_0: \rho_1 = 0$ (La autocorrelación es igual a cero)

Hipótesis alternativa: $H_a: \rho_1 \neq 0$ (La autocorrelación es diferente de cero).

Donde ρ_k es el coeficiente de autocorrelación poblacional en el lapso k.

Utilicen $\alpha = 0.05$ y un $\alpha = 0.01$.

- a) Compara ambos resultados y realiza una conclusión de los mismos.
- b) ¿Es relevante emplear esta serie de tiempo para realizar pronósticos?
- c) Plantea un pronóstico con el modelo de suavización exponencial o de promedios móviles y justifica tu elección de modelo. ¿Por qué elegiste ese modelo?

Nota para el alumno: considera que tu **ejercicio** debe estar documentado (proceso) y fundamentado.