

Atividade: Uma Viagem de Carro

Habilidades

LAF3 Calcular e interpretar a taxa de variação média de uma função em um intervalo dado, tanto algebricamente quanto a partir de dados gráficos ou de uma tabela, identificando tendências de crescimento e decrescimento.

Para o professor

Objetivos específicos

OE1 Interpretar, em uma situação concreta, o conceito de velocidade média e suas particularidades.

OE2 Representar graficamente (tabela e sistema de coordenadas) as informações do problema.

Observações e recomendações

■ A escolha dessa atividade se deu pelo fato de podermos usar o conceito de velocidade média (que é mais intuitivo e que o estudante já teve contato na disciplina de Física) como base para a generalização de taxa de variação média de uma função qualquer.

Atividade

Você está viajando de carro para uma cidade que está a 410 km de distância da sua casa. Você sai ao meio dia e depois de 2h de viagem faz a primeira parada em um posto de combustível na estrada. Olhando no GPS, calcula que já percorreu 140 km desde a sua partida. Depois de 30 minutos parte para a estrada novamente. Faz uma nova parada das 16h às 16h30 em outro posto 120 km adiante do anterior. E finalmente às 18h chega ao seu destino.

a) Preencha a tabela abaixo com as distâncias percorridas e marque no sistema de coordenadas os pares ordenados correspondentes (o eixo horizontal representa o tempo decorrido em horas desde a partida e o eixo vertical a distância percorrida em quilômetros).

Horário	Tempo decorrido desde a partida (h)	Distância percorrida (km)
	t	d(t)
12h	0	
14h	2	
14h30	2.5	
16h		
16h30		
18h		

OLIMPÍADA BRASILEIRA
O J DE MATEMÁTICA
DAS ESCOLAS PUBLICAS

b) A distância total percorrida na viagem foi de 410 km, e durou 6h. Podemos obter a velocidade média da viagem dividindo esses dois valores, obtendo

$$\frac{\Delta d}{\Delta t} = \frac{410}{6} = 51, 5 \cdot \frac{km}{h}$$

O que representa esse número no contexto do problema?

c) Calcule a velocidade média para o trecho da partida até chegar à primeira parada

$$\frac{\Delta d}{\Delta t} = \cdot = \frac{km}{h}$$

Ele é o mesmo que o anterior? Explique

- d) Sem fazer a conta, você imagina que o valor da velocidade média no trecho da partida até a hora de sída a primeira parada (14h30) será maior ou menor que o valor do item anterior? Por que?
- e) Preencha a tabela com as velocidade médias nos trechos indicados.

Intervalo de tempo a,b	Velocidade média $rac{\Delta d}{\Delta t} = rac{d(b) - (d(a)}{b-a}$
0, 2	
2, 2.5	
2.5, 4	
4, 4.5	
4.5, 6	

Itaú Social

260

260 410

ercorrida

Solução:

16h

16h30

18h

a)	Horário	Tempo decorrido desde a partida (h)	Distância pe (km)
		t	d(t)
	12h	0	0
	14h	2	140
	14h30	2.5	140

4

4.5

6

(km)							
. <u></u> 400						,	
distância percorrida (km)				.	- •		
distâr 000							
100		,	•				
0	1	2	3	4	5	6	7
					tempo des	sde a pa	artida (h)

- b) Que, em média, a cada hora a distância percorrida foi de $51,5\,\mathrm{km}$. Ou que se tivesse sido mantida uma velocidade constante ao longo de toda viagem (sem paradas) esse deveria ser o valor para se chegar ao mesmo tempo no destino.
- c) $\frac{\Delta d}{\Delta t}=\frac{140}{2}=70\frac{km}{h}$. O valor da velocidade média neste trecho é maior que o anterior. Em média, o carro andou mais rápido durante a primeira parte da viagem do que na viagem toda, fazendo $70~\rm km$ a cada hora.
- d) Será menor, pois o carro passou 30 minutos parado, o que diminui a velocidade média. Em termos da conta, mantém-se o numerador e aumenta-se o denominador, gerando um número menor.

Itaú Social

e)	Intervalo de tempo $\left[a,b ight]$	Velocidade média $\dfrac{\Delta d}{\Delta t} = \dfrac{d(b) - d(a)}{b - a}$
	[0, 2]	$\frac{\Delta d}{\Delta t} = \frac{140}{2} = 70km/h$
	[2, 2.5]	$\frac{\Delta d}{\Delta t} = \frac{0}{0,5} = 0km/h$
	[2.5, 4]	$\frac{\Delta d}{\Delta t} = \frac{120}{1,5} = 80km/h$
	[4, 4.5]	$\frac{\Delta d}{\Delta t} = \frac{0}{0.5} = 0km/h$
	[4.5, 6]	$\frac{\Delta d}{\Delta t} = \frac{150}{1.5} = 100 km/h$

