Список сокращений

СТС – сложная техническая система;

ТТХ – тактико-технические характеристики;

АБ – авиационная бомба;

УАБ – управляемая авиационная бомба;

КАБ – корректируемая авиационная бомба;

УПАБ – управляемо-планирующая авиационная бомба;

ГСН – головка самонаведения;

Методики сравнительной оценки технического уровня альтернативных вариантов СТС на примере УАР.

Технический уровень (ТУ) СТС – относительная характеристика качества СТС, основанная на сопоставлении показателей характеризующих техническое совершенство оцениваемой СТС, с соответствующими базовыми значениями.

<u>Постановка задачи.</u> Даны альтернативные варианты СТС и известны их ТТХ. Требуется разработать методику оценки их технического уровня на основе многокритериального выбора, лучшего варианта из заданных альтернатив.

Оценка технического уровня СТС методом весовых коэффициентов (МВК).

Для оценки ТУ методом ВК используется критерий:

$$K_{TV} = \sum_{i=1} K_{\Pi_i} \cdot \varphi_0(i)$$
, где $\varphi_0(i) = \frac{\overline{\varphi}(i)}{\sum \overline{\varphi}(i)}$, (1)

 $K_{\scriptscriptstyle TV}$ - коэффициент технического уровня;

 $\varphi_0(i)$ - функция нормирующая вес i -ого показателя;

 $\overline{\varphi}(i)$ - среднее арифметическое значения весомости i -го показателя характеризующего техническое совершенство оцениваемой СТС.

Весомость i -го показателя $i=\overline{1,n}$ определяется по результатам моделирования, либо задается экспертным путем.

n-общее число показателей, учитываемых при определении K_{TV} . В качестве показателей рассмотрим основные ТТХ СТС;

 K_{\varPi_i} - относительное значение i -го показателя, которое определяется по формуле (2)

$$K_{\Pi_i} = \frac{K_i}{K_{B_i}},\tag{2}$$

если повышению ТУ соответствует увеличение i -го показателя. Либо по формуле (3)

$$K_{\Pi_i} = \frac{K_{E_i}}{K_i},\tag{3}$$

если повышению ТУ соответствует уменьшение \dot{i} -го показателя.

 K_i - величина i -го показателя СТС, ТУ которой подлежит определению;

 $K_{\scriptscriptstyle E_i}$ - величина i -го показателя образца аналога, принятого в качестве базового для сравнения;

Если в качестве аналогов принято несколько S>0 образцов, i -ый показатель некоторого усредненного аналога определяется по формуле:

$$K_{E_i} = \sqrt[S]{K_{E_1} \cdot K_{E_2} ... K_{E_S}}$$
 (4)

Считается, что при $K_{TV}>1$ рассматриваемая СТС лучше, а при $K_{TV}\leq 1$ хуже или соответствует уровню выбранных аналогов. Если весомости показателей, рассматриваемые при определении K_{TV} , задаются экспертным путем, то для определения согласованности мнений экспертов используется следующие формулы математической статистики:

1) средне-арифметическое значение весомости \boldsymbol{i} -го показателя

$$\overline{\varphi}(i) = \frac{\sum \varphi(i)_j}{m} , \qquad (5)$$

 $arphi(i)_j$ - весомость i -го показателя, заданная j -ым экспертом, где $j=\overline{1,m}$, m - число экспертов.

Следует отметить, что в случае экспертного заключения весомости показателей их общее число n не должно превышать 9-ти ($n \le 9$) по причине ограниченности человеческого восприятия;

2) средне-квадратическое отклонение весомости i -го показателя

$$\sigma(i) = \sqrt{\frac{\sum (\varphi(i)_j - \overline{\varphi}(i))^2}{m}} \quad ; \tag{6}$$

3) сумма рангов S_i по i -му показателю

$$S_i = \sum q_{ij} , \qquad (7)$$

 q_{ii} - ранг оценки весомости i -го показателя;

 S_i - сумма рангов по i -му показателю;

4) среднее арифметическое значение суммы рангов по всем показателям

$$S = \frac{\sum S_i}{n} \; ; \tag{8}$$

5) коэффициент изменчивости мнений экспертов по i -му показателю от среднего арифметического значения

$$V(i) = \frac{\sigma(i)}{\varphi(i)} \cdot 100; \tag{9}$$

 \dot{i} -му показателю от среднего арифметического значения

$$d_i = S_i - \overline{S} \; ; \tag{10}$$

7) показатель связанности рангов

$$t_i = \sum_{l_i}^{L_i} (t_{l_i}^3 - t_{l_i}), \tag{11}$$

 t_{l_i} - количество связных рангов в этой группе по \dot{i} -му показателю;

 L_i - количество групп связанных рангов;

8) коэффициент конкордации, характеризующий согласованность мнений экспертов по всем показателям:

$$\omega = \frac{12\sum_{i=1}^{n}d_{i}^{2}}{m^{2}(n^{3}-1)-m\sum_{i=1}^{n}T_{i}},$$
(12)

т - количество экспертов;

n - число показателей:

при согласованности мнений экспертов $\omega > 0$;

9) фактическое значение критерия χ^2 (хи)

$$\chi_{\phi}^{2} = \frac{12\sum d_{i}^{2}}{m \cdot n \cdot (n+1) - \frac{1}{n-1} \cdot \sum T_{i}}.$$
 (13)

Распределение χ^2 дает возможность оценить степень согласованности χ_{mcop} и χ_{ϕ} . Для определения теоретического значения $\chi(\nu, p = 1 - \mu)$ необходимо задать уровень значимости $\mu \approx 5\% (0,05)$ и определить число степеней свободы $\nu = n-1$ (таблицы теоретической вероятности Венцеля)

Если χ_{ϕ}^2 получается не меньше табличного, следовательно, согласованность мнений экспертов достаточная.

Применение МВК на примере сравнительного анализа УАБ.

УАБ состоит из головки самонаведения (ГСН), боевой части, системой управления, органов управления, двигатель-ускоритель для увеличения пробивающей способности.

минимизировать величину отклонений центра масс от баллистической траектории. Для поражения малоразмерных прочных целей при подавленной ПВО. ДД – короткая(до 5 км), малая - $5 \div 15$ км, средняя $20 \div 30$ км, большая 30-70 км, сверхбольшая >70 км, калибр 129, 9761 кг.

Траектория формируется таким образом, чтобы УПАБ используются в составе ударного авиационного комплекса для выполнения наиболее ответственных боевых задач без вхождения в зону объектовых средств поражения.

МВК состоит из 3-х процедур:

1) определение показателей используемых для СА разрабатываемого образца.

Все показатели подразделяются на классификационные и оценочные. Классификационные характеризуют назначение и область применения данного изделия. Их значение позволяет выделить аналог для последующего его сопоставления со сравниваемыми образцами. Применительно к УАБ – калибр, тип ГСН, дальность применения, тип боевой части, показатели наличия дополнительных устройств или свойств. *Оценочные* показатели характеризуют функциональные и стоимостные свойства образца. Они используются непосредственно для сопоставления оцениваемого образца с аналогами. К *оценочным* относятся: показатели назначения, надежности, безопасности, стоимости.

В качестве <u>показателей назначения</u> устанавливаются следующие TTX:

- точность наведения;
- массогабаритные характеристики образца и его составляющих, их относительные показатели;
- условия и режимы боевого применения, к которым относят: max и min высоты полета, углы и скорости встречи УАБ с преградой, max дальность сброса, относительный коэффициент автономности полета, круглосуточности всепогодности применения.

Показатели надежности и безопасности:

- вероятность безотказного функционирования УАБ в течение полета совместно с самолётомносителем и в автономном полёте;
 - среднее число отказов в течение заданного времени эксплуатации;
 - характеристики взрыва при срыве;
- характеристики стойкости в случае поражения осколками при огневом воздействии противника.

Показатели стоимости: стоимость разработки, изготовления, эксплуатации, хранения и утилизации. Общее число показателей в случае преувеличения экспертов для оценки их значимости по причине ограниченности человеческого восприятия ≤9. Так для экспертной оценки УАБ, предназначенных для поражения прочных целей, могут быть включены: точность наведения, масса боевой части, степень круглосуточности, степень автономности, тах дальность сброса, стоимость разработки.

Для УАБ (прочно, глубоко заложенные цели) значимыми могут быть:

 h_{np} - глубина проникания в грунт или параметры, влияющие на величину (V_c , θ_c - угол подхода к цели), а также значимым показателем может быть радиус зоны разрушения:

$$R_p = K_p \sqrt[3]{m_{BB}} ,$$

 K_{p} - тип преграды,

 m_{RR} - масса ВВ;

2) определение весомости показателей (ВП).

Для определения ВП используется МЭО (метод экспертных оценок), при котором экспертам предлагается перечень показателей для указания их весомости. При разработке УАБ проведена ЭО значимости показателей и сведена в таблице «а».

$$\sum \varphi(i) = 3,606$$
$$\sum (K_{\Pi_i} \cdot \varphi) = 4,089$$
$$K_{TV} = \frac{4,089}{3,606} = 1,134$$

Так как $K_{TV} > 1$, то разрабатываемая УАБ лучше аналогов.

Пределы изменения $oldsymbol{K}_{TV}$	Прогнозная оценка
$1,05 \div 1,065$	неперспективно
1,07 ÷1,13	малоперспективно

1,135÷1,265	перспективно
1,27 <	весьма перспективно

Таблица «а».

Рассматриваемая методика позволяет:

- 1) проводить анализ влияния каждого показателя или их совокупности на общий ТУ;
- 2) оценить ТУ нескольких вариантов и выбрать лучший;
- 3) определять соответствие разрабатываемого образца

<u>Недостаток:</u> метод определения ТУ требует сравнения с аналогом, при этом альтернативы друг с другом не сравниваются, а соотносятся последовательно через базу.

MBК целесообразно использовать при проведении сравнительного анализа базового образца с модернизированными альтернативами.

Была написана программа, реализующая алгоритм метода весовых коэффициентов (приложение 1).

Учитываются следующие весовые показатели:

- 1) **F**_{боевой} (F_{combat}) точность наведения, поражающий фактор, скорость соударения с целью, угол подхода к цели и т.д.;
- 2) **F**_{Тактический} (F_{tactical}) степень автономности, дальность применения, продольный/поперечный размер зоны возможных сбросов, степень реализации захвата и т.д.;
- 3) **F**_{надёжности} (F_{reliability}) вероятность безотказной работы;
- 4) **Г**_{выжимаемости} (F_{survival}) величина эффективной поверхности рассеивания, возможность противоракетного маневрирования, наличие горизонтального участка полёта, минимальная высота горизонтального участка полёта;
- 5) **F**эксплуатационно-технический (F_{operational}) назначенный ресурс, срок службы, контролепригодность и т.п.)
- 6) Fтехнологический (Ftechnological) степень преемственности;
- 7) **F**_{экономический} (**F**_{economical}) стоимость разработки, аппаратуры изделия, эксплуатации, снятия с вооружения и утилизации.

Приложение 1. Программа, реализующая алгоритм метода весовых коэффициентов.

- 1. Таблица оценки экспертами (expert) весовых показателей (weight indicators).
- 2. Таблица весовых показателей, сравниваемой АБ (GBU-0) и аналогов (Guided bomb units).
- 3. Таблица результативных расчётов.

Данная программа позволяет сравнить данный исходный образец (GBU-0) с различным количеством аналогов (но не больше 3) при помощи метода весовых коэффициентов.