

NEWS HEADLINE GENERATION

Using Encoder-Decoder Architectures with Attention Mechanisms

Group Members:-

Shravani Sakore Manavi Pawar

Kanishka Garud

Sakshi Dube

202201060025

202201040050

202201070062

202201040155

GUIDE:

MRS.SUNITA BARVE

INTRODUCTION

- The digital news industry generates massive content daily.
- Readers prefer short, concise headlines to decide whether to read full articles.
- Manual headline writing is time-consuming and lacks scalability.
- Automatic headline generation using Deep Learning can solve this.

PAPER SUMMARY

Aspect	Summary		
Title	Fact-Preserved Personalized News Headline Generation		
Working	The paper proposes a Transformer-based dual-encoder model (FPN-P): - Transformer is used to encode factual and personalized information They also tested LSTM/GRU-based baselines (e.g., GRU encoders or decoders) for comparison.		
Performance Evaluation	 Used ROUGE-1, ROUGE-L, and BLEU scores for automatic evaluation. The FPN-P (Transformer-based) model outperformed LSTM/GRU and other baselines in both ROUGE and BLEU scores. 		
Findings	 Transformer-based FPN-P effectively balances personalization and factual correctness. Shows higher ROUGE/BLEU scores compared to other traditional methods. Reinforces the superiority of Transformer models in sequence generation tasks. 		
Gaps / Limitations	 Transformer models require more data and computing resources than GRU-based model No extensive comparison of efficiency between in terms of runtime/memory. 		

PROBLEM STATEMENT

Generating short, accurate and meaningful headlines from articles is challenging, this project explores deep learning-based sequence-to-sequence model to generate meaningful headlines with accuracy and quality.

OBJECTIVES

- To implement a system that can:
- Generate human-like news headlines from long article texts.
- Experiment with multiple deep learning models:
 - LSTM (without attention)
 - Bahdanau (With Attention)
 - Transformer (Self-Attention)
- Evaluate performance using BLEU and ROUGE scores.
- Analyze the impact of attention mechanisms and compare their results.

DATASET DESCRIPTION

News Headline Generation Dataset

Generate news headlines from article content using NLP models like RNN and Trans

k kaggle.com

Attribute	Description		
Input max length	50		
Output max length	20		
Number of Articles	1000 news articles		
Columns	input_text (news article body), target_text (corresponding headline)		
Rows	Each row corresponds to one article-headline pair		
Text Type	Abstractive summarization (free-form headline generation, not extractive)		
Primary Use	Training models for headline generation and text summarization in NLP		
Data Format	CSV format commonly used for loading with pandas or similar tools		

METHODOLOGY

01

DATASET

Kaggle's News Headline Generation

Dataset

News Headline Generation Dataset

Generate news headlines from article content using NLP models like RNN and Trans

k kaggle.com

PREPROCESSING:

- Remove noise and special characters.
- Tokenize and pad sequences.

Analysis of attention mechanisms and evalute the scores using metrics BLEU, ROUGE-1,ROUGE-L.

MODELING:

- Encoder-Decoder without Attention (LSTM)
- Encoder-Decoder with Attention (Bahdanau)
- Transformer-based model

Compare the model performance with research paper.

SYSTEM ARCHITECTURE

Explain:

- Encoder: Converts input sequence into context vector.
- Attention: Helps decoder focus on important input words.
- Decoder: Generates output headline token by token.

ENCODER-DECODER ARCHITECTURE

EVALUATION AND RESULTS

- Metrics Used:
- 1. BLEU Score: Measures n-gram overlap.
- 2. ROUGE-1, ROUGE-L: Measures recall-oriented matches.
- Results:

Model	BLEU	ROUGE-1	ROUGE-L
LSTM	0.27	0.41	0.37
Bahdanau	0.32	0.46	0.42
Transformer	0.38	0.52	0.50

• Conclusion: Transformer-based model performed best across all metrics.

GRAPHS

CONCLUSION

- Successfully implemented and compared multiple headline generation models.
- Attention-based and Transformer models significantly improved output quality.
- The project shows promising scope in content summarization, journalism, and personalized news delivery.

THANK YOU