Science of Visualization - Handout

Overview of material from Data Visualization, a Coursera Course by John C. Hart from University of Illinois

https://class.coursera.org/datavisualization-001

What is visualization

Data visualization is a **high bandwidth connection** between **data** on a computer system and a **human brain**, facilitated by visual communication.

This includes: Data Acquisition, Data Processing, Data Display, Human Perception, Human Memory, and Human Cognition.

How the brain processes information / images:

The Eye and Visual Perception

What challenges exist communicating visually

In neurobiology, lateral inhibition is the capacity of an excited neuron to reduce the activity of its neighbors. Lateral inhibition disables the spreading of action potentials from excited neurons to neighboring neurons in the lateral direction.

Actual Data Visualization

Quantitative	Ordinal
Position	Position
Length	Density
Angle	Saturation
Slope	Hue
Area	
Volume	
Density	
Saturation	
Hue	

	Quantitative	Ordinal	Nominal
	Position	Position	Position
	Length	Density	Hue
	Angle	Saturation	Texture
	Slope	Hue	Connection
	Area	Texture	Containment
	Volume	Connection	Density
	Density	Containment	Saturation
Saturatio Hue	Saturation	Length	Shape
	Hue	Angle	Length
		Slope	Angle
		Area	Slope
		Volume	Area
I Mackinlay /	Automating the Design of Grap	shical Presentations of	Volume
	ormation, ACM Transactions of		

		What to	Use?
Dep.	Quantitative Continuous	Bar	Line
	Quantitative Discrete	Bar	Bar
Ind.	Quantitative Continuous	Gantt	Scatter
	Nominal or Q. Discrete	Table	Gantt
		Nominal or Q. Discrete	Quantitative Continuous
		Independent	

Edward Tufte Pointers

Let the Data Speak · Avoid summaries and aggregations · Show where data is missing but don't let it distract the viewer Rely on the deductive, inductive and abductive reasoning of the viewer

A Picture is Worth a Thousand Words · Consider using pictures/icons/glyphs in place of words • Tufte: "Only a picture can carry such a volume of data in such a small space" Charles Minard, 1869

The Data-Ink Ratio · Maximize the ratio of data to ink in your visualization · Don't waste ink on elements of the visualization not associated with data Tufte's minimalism

Chartjunk · Making a visualization look prettier often makes it less effective at communicating its Using 3-D can make a 2-D boring chart more engaging Using 3-D can often lead to erroneous interpretations

Multiples · Maintain a consistent design · Do not change appearance for the sake of change only · Consistent appearance puts emphasis on data, not the visual design · Changes in design can distract from irregularities in the data

Micro/Macro Fine micro-level details become texture when viewed at the macro level Create interactive zoomable interfaces when possible Leads to part of Schneiderman's mantra: overview first, then details on demand

- **Focus on Content not Format** Present wider not taller
- Repeat differences together with consistent format
- Allow Viewer to Browse from Macro to Micro, not navigate down into
- **Annotate Links and Causal Arrows**
- Integrate Text, Images, Icons, etc. for a more complete view of the data