Umbilical Cord Blood DNA Methylation Loci Associated with Gestational Age at Birth

Timothy P. York 1, 2, 10

@timothypyork5

tpyork@vcu.edu

Shawn J. Latendresse² Colleen Jackson-Cook^{1, 2, 4} Dana M. Lapato¹ Sara Moyer¹ Aaron R. Wolen⁵ Roxann Roberson-Nay⁶ Elizabeth K. Do⁷ Susan K. Murphy⁸ Catherine Hoyo⁹ Bernard F. Fuemmeler⁷ Jerome F. Strauss III^{1, 2}

- ¹ Department of Human and Molecular Genetics, Virginia Commonwealth University
- ² Department of Obstetrics and Gynecology, Virginia Commonwealth University
- ³ Department of Psychology and Neuroscience, Baylor Univeristy
- ⁴ Department of Pathology, Virginia Commonwealth University
- ⁵ Department of Surgery, University of Tennessee Health Science Center
- ⁶ Department of Psychiatry, Virginia Commonwealth University ⁷ Department of Health Behavior and Policy, Virginia Commonwealth University
- ⁸ Department of Obstetrics and Gynecology, Duke University
- ⁹ Epidemiology and Environmental Epigenomics Laboratory, North Carolina State University

Introduction

DNA methylation (DNAm) is highly sensitive to in utero perturbations and has an established role in both early development and regulation of gene expression. The fetal genetic component has been shown to contribute significantly to timing of birth, yet little is known about the identity and behavior of individual genes.

Objectives

- 1. Test for association between **genome-wide DNAm** levels in umbilical cord blood with gestational age at birth.
- 2. Validate DNAm findings in an independent sample.
- 3. Multi-omic approach to evaluate DNAm cis-gene relationships with gene expression regulation.

Methods

- Illumina Infinium Human Methylation 450K BeadChip:
- Pregnancy, Race, Environment, Genes Study (PREG -VCU) (N= 124)
- Newborn Epigenetic STudy (NEST Duke) (N= 378)
- Consistency of differentially methylated positions (DMPs) was assessed in multiple ways:
- Degree of overlap in cohorts was non-random by simulation study
- Concordant in both direction of change and size of effects
- CpGs significant in both studies (FDR=5%) were tested for association with *cis*-gene expression

Support

NIHMD (P60MD002256, PI: York, Strauss); NIEHS (R21ES014947, PI: Hoyo) and NIEHS (R01ES016772, PI: Hoyo); NIDDK (R01DK085173, PI: Hoyo).

>50% of variation in gestational age explained by umbilical cord DNAm.

Figure 1: PREG and NEST cohort DNA methylation array probe and sample filtering summary for major processing steps.

		PREC	F / NEST CpG	and Gene Ov	erlap		
FDR	Significa	ant CpG	0.0000000000000000000000000000000000000	Cana Overlan1	Null CpG Overlap Estimate		
	PREG	NEST	CpG Overlap	Gene Overlap ¹	Median	IQR	P-val ²
1.00	445080	444484	444399	21316	NA	NA	NA
0.01	9647	16679	1569	1123	360.0	23.00	0
0.05	25421	29104	3964	2600	1662.5	50.25	0
0.10	45656	41083	7388	4364	4215.5	74.00	0
0.15	66943	52551	11655	6281	7902.5	107.25	0

Figure 2: Simulation study of overlapping CpG results from PREG and NEST

\mathbf{Gene}	Entrez ID	Affy Probeset	CpG Probe	Chrom.	CpG Position	\mathbf{Coef}	P-value	R-square ¹	Gene Relevance
TRIM33	51592	212435_at	cg26410133	chr1	115051834	-2.309	0.001	0.156	Regulates proinflammatory function of Th17 cells [58]
CD247	919	210031_{-at}	cg15518113	chr1	167400121	-1.124	0.000	0.395	Impaired immune response [59]
PLCH1	23007	214745_at	cg26690511	chr3	155422103	0.283	0.001	0.145	Cord blood association with PTF [60]
F2RL1	2150	213506_{-at}	cg00499700	chr5	76116088	-1.852	0.001	0.151	Regulation of myometrial function at labor and preterm labor [61]
KEL	3792	206077_at	cg17784922	chr7	142659425	-1.242	0.001	0.113	Anti-Kell associated with increase risk for PTB [62]
EXT1	2131	201995_at	cg20547777	chr8	119086580	0.841	0.000	0.141	Necessary for heparan sulfate elor gation which enhances neutrophil in filtration [63]
EXT1	2131	214985_{-at}	cg20547777	chr8	119086580	0.669	0.000	0.205	,,
EXT1	2131	201995_{-at}	cg16009311	chr8	119086762	0.876	0.000	0.149	"
EXT1	2131	214985_{-at}	cg16009311	chr8	119086762	0.668	0.000	0.198	"
SIGIRR	59307	218921_at	cg08869273	chr11	413594	-1.185	0.001	0.136	Negative regulation of TLR and IL- receptor signalling to illicit immun response [64]
CHD4	1108	201184_s_at	cg20600850	chr12	6712515	0.889	0.000	0.148	Nucleosome remodeling and deacety lase complex [65]
ART4	420	207220_{-} at	cg20967028	chr12	14996272	-1.696	0.000	0.106	ADP-ribosyltransferase 4 (Don brock blood group)
CTDP1	9150	205035_{-at}	cg24998981	chr18	77441810	-0.878	0.000	0.175	CTD phosphatase subunit 1
CST7	8530	$210140_{\rm at}$	cg19204859	chr20	24933798	-0.875	0.000	0.159	Innate immunity by affecting cytoxicity of NK cells [66]

Figure 3: DMP cis Gene Expression Association.

Figure 4: Gene-based enrichment for Gene Ontology groups and KEGG pathways.