Predicting Insurance Charges and Classifying High-Cost Customers using Machine Learning

1. Problem Statement

The objective of this project is two-fold:

- 1. To build a **classification model** that predicts whether an individual is likely to incur high insurance charges based on demographic and health features.
- 2. To build a **regression model** that predicts the **actual insurance cost** for an individual using the same set of features.

2. Dataset Description

Source: https://www.kaggle.com/datasets/mirichoi0218/insurance

Feature	Description
age	Age of the primary beneficiary
sex	Gender (male/female)
bmi	Body Mass Index
children	Number of children covered by health insurance
smoker	Smoking status (yes/no)
region	Residential area in the US
charges	Final insurance cost billed to the customer

Derived Feature:

 high_cost: A binary variable created by labeling individuals whose charges exceed the median as 1 (high cost), and others as 0 (low cost). Used as the target for classification.

3. Exploratory Data Analysis (EDA)

- No missing values were found in the dataset.
- Categorical features were inspected using count plots.
- Numerical features such as age, bmi, and charges were visualized using histograms.
- Class balance in the new high_cost variable was checked and found to be balanced (669 high-cost, 669 low-cost).

4. Data Preprocessing

- Categorical variables (sex, smoker, region) were encoded using **Label Encoding**.
- Numerical features (age, bmi, children) were **standardized** using StandardScaler.
- Two separate train/test splits were prepared:
 - o For classification: y = high_cost
 - o For regression: y = charges

5. Model Building

A. Classification Model

• Target Variable: high_cost

Model Used: Logistic Regression

• Metrics Used: Accuracy, Precision, Recall, F1-score, Confusion Matrix

Results:

Metric	Score		
Accuracy	91%		
Precision	90%		
Recall	92%		
F1-Score	91%		

Confusion Matrix:

[[120 14]

[11 123]]

The model performs well with a balanced precision and recall, and minimal misclassifications.

B. Regression Model

• Target Variable: charges

• Model Used: Linear Regression

• Metrics Used: MAE, MSE, RMSE, R2 Score

Results:

Metric	Value		
MAE	4186.51		
MSE	33,635,210		
RMSE	5799.59		
R ² Score	0.78		

The regression model explains approximately 78% of the variance in insurance charges. Errors are reasonable given the scale of the target variable.

6. Conclusion

This project successfully demonstrates the application of machine learning techniques on real-world health insurance data for both classification and regression tasks. The models built were:

- A Logistic Regression classifier to identify high-cost customers with strong performance (F1-Score: 91%)
- A **Linear Regression model** to predict actual charges with good predictive power (R² Score: 0.78)

Further improvement can be made by exploring:

- Advanced models like Random Forest or Gradient Boosting
- Hyperparameter tuning with GridSearchCV
- Feature engineering or polynomial features