

Data Structures & Algorithms Using C

Sparse Matrix and it's Representations

Contents:

- > Introduction
- ➤ Memory Representations of sparse matrix
 - ➤ Triplet Representation
 - ► Linked List Representation
- Classification of Sparse Matrix
 - ➤ Triangular Matrices
 - **►** Band Matrix

What are SPARSE MATRICES?

- A matrix is a 2-dimensional data object composed of m rows and n columns, therefore having total m x n values.
- In computer programming, a matrix can be defined with a 2-dimensional array.
 - Any array with 'm' rows and 'n' columns represent a m X n matrix.
- If most of the elements of the matrix have 0 value, then such a matrix is termed as "Sparse matrix"

Consider the following as an example of a sparse matrix **A**:

```
| 10 0 3 0 0 0 |
| 21 2 0 4 0 0 |
| 0 3 6 0 5 0 |
| 0 0 23 24 0 26 |
| 81 0 0 94 65 0 |
| 71 92 0 0 55 36 |
```


Why to use Sparse Matrix?

- Storage: There are lesser non-zero elements than zeros and thus lesser memory can be used to store only those elements.
 - space calculation: Matrix having m rows and n columns the space required to store the numbers will be m*n*s where s is the number of bytes required to store the value.
 - E.g. Suppose there are 10 rows and 10 columns and we have to store the integer values then the space complexity will be bytes.

 <u>Computing time</u>: Computing time can be saved by logically designing a data structure traversing only non-zero elements.

Sparse Matrix Representations

- > Representing a sparse matrix with a 2D array results in wastage of memory and processing time.
- E.g. consider a matrix of size 100 X 100 containing only 10 non-zero elements.
- In this matrix, only 10 spaces are filled with non-zero values and remaining spaces of the matrix are filled with zero.
- Space allocated: 100 X 100 X 2 = 20,000 bytes to store this integer matrix.
- Access time of 10 non-zero elements: 10,000 scans.
- > To avoid such circumstances different techniques are used such as:
 - 1) Triplet Representation (Array Representation)
 - 2) Linked list representation

Method 1: Triplet Representation (Array Representation)

- 2D array is used to represent a sparse matrix in which there are three rows named as:
- Row: Index of row, where non-zero element is located
- Column: Index of column, where non-zero element is located
- Value: Value of the non zero element located at index (row , column)

Triplet as - (Row, Column, value)

Consider the following as an example of a sparse matrix **B**:

١	00304								
	00570		Row	0	0	1	1	3	3
		\Longrightarrow	Column	2	4	2	m	1	2
	0 0 0 0 0		Value	m	4	5	7	2	6
١	0 2 6 0 0								

Method 2: Linked List Representation

- In linked list, each node has four fields. These four fields are defined as:
- Row: Index of row, where non-zero element is located
- Column: Index of column, where non-zero element is located
- Value: Value of the non zero element located at index (row , column)
- Next node: Address of the next node

Classification of Sparse Matrix

Triangular Matrices

- Triangular matrices have the same number of rows as they have columns; i.e. they have n rows and n columns.
- Thus, triangular matrix is a special kind of square matrix.

Band Matrix

• A **band matrix** is a sparse matrix whose non-zero entries are confined to a diagonal *band*, comprising the main diagonal and zero or more diagonals on either side.

Types of Triangular Matrices

Upper Triangular Matrices

A matrix A is an upper triangular matrix if its nonzero elements are found only in the upper triangle of the matrix, including the main diagonal;

$$U = egin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & \dots & u_{1,n} \ & u_{2,2} & u_{2,3} & \dots & u_{2,n} \ & & \ddots & \ddots & dots \ & & & \ddots & \ddots & dots \ & & & \ddots & u_{n-1,n} \ 0 & & & u_{n,n} \end{bmatrix}$$

Lower Triangular Matrices

A matrix **A** is a lower triangular matrix if its nonzero elements are found only in the lower triangle of the matrix, including the main diagonal;

$$L = egin{bmatrix} \ell_{1,1} & & & & & 0 \ \ell_{2,1} & \ell_{2,2} & & & & \ \ell_{3,1} & \ell_{3,2} & \ddots & & & \ dots & dots & \ddots & \ddots & & \ \ell_{n,1} & \ell_{n,2} & \dots & \ell_{n,n-1} & \ell_{n,n} \end{bmatrix}$$

Types of Band Matrices

Diagonal Matrix

Let A be a square matrix (with entries in any field). If all off-diagonal entries of A are zero, then A is a diagonal matrix.

Square diagonal matrix:

$$egin{bmatrix} 1 & 0 & 0 \ 0 & 4 & 0 \ 0 & 0 & -2 \end{bmatrix}$$

Rectangular diagonal matrix:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 & 0 \end{bmatrix}$$

Tri-Diagonal Matrices

A tri-diagonal matrix is a matrix that has nonzero elements only in the main diagonal, the first diagonal below this, and the first diagonal above the main diagonal.

$$egin{pmatrix} 1 & 4 & 0 & 0 \ 3 & 4 & 1 & 0 \ 0 & 2 & 3 & 4 \ 0 & 0 & 1 & 3 \end{pmatrix}.$$

References

- [1] https://www.geeksforgeeks.org/sparse-matrix-representation/
- [2] Lipschutz, S. (1987). Schaum's Outline of Data Structure. McGraw-Hill, Inc.
- [3] https://en.wikipedia.org/wiki/Sparse matrix

Inank