EE 334 Response of LTI Circuits to AC and DC Inputs

Prof. A. M. Kulkarni

Electrical Engineering Dept. IITB, Mumbai

January, 2020

Considering peak value ...

Time-domain circuit

$$\mathbf{v_s}(\mathbf{t}) = \mathbf{100} \sin(\mathbf{2}\pi \mathbf{50t}) \, \mathbf{V}$$

$$R = 10 \Omega$$
, $L = 0.05 H$, $C = 100 \mu F$

Phasor equivalent circuit

$$\rightarrow \quad \bar{V}_s = 100 \angle 0^\circ \text{ V}$$

Applying KVL:

$$\bar{I} = \frac{\bar{V}_s}{\left(R + j\omega L + \frac{1}{j\omega C}\right)}$$

$$\mathbf{i}(\mathbf{t}) = \mathbf{5.27}\sin(2\pi\mathbf{50t} + \mathbf{58.2^{\circ}})\,\mathbf{A} \leftarrow \mathbf{\bar{I}} = \mathbf{5.27}\angle\mathbf{58.2^{\circ}}\,\mathbf{A}$$

This is sinusoidal steady-state solution.

Considering peak value ...

Time-domain circuit

$$\mathbf{v_s}(\mathbf{t}) = \mathbf{100} \sin(\mathbf{2}\pi \mathbf{50t}) \, \mathbf{V}$$

$$\rightarrow$$

$$ightarrow~ar{
m V}_{
m s}=100 \angle -90^{\circ}~{
m V}$$

$$R = 10 \Omega$$
, $L = 0.05 H$, $C = 100 \mu F$

Applying KVL:

$$\bar{I} = \frac{\bar{V}_s}{\left(R + j\omega L + \frac{1}{j\omega C}\right)}$$

$$\mathbf{i}(\mathbf{t}) = \mathbf{5.27} \mathrm{cos}(\mathbf{2}\pi\mathbf{50}\mathbf{t} - \mathbf{31.8}^{\circ}) \ \mathrm{A} \qquad \leftarrow \qquad \mathbf{\bar{I}} = \mathbf{5.27} \angle - \mathbf{31.8}^{\circ} \ \mathrm{A}$$

Or
$$\mathbf{i}(\mathbf{t}) = \mathbf{5.27} \sin(2\pi \mathbf{50t} + \mathbf{58.2}^{\circ}) \text{ A}$$

This is sinusoidal steady-state solution.

Considering RMS value ...

Time-domain circuit

$$\mathbf{v_s}(\mathbf{t}) = \mathbf{100} \sin(2\pi \mathbf{50t}) \, \mathbf{V}$$
 \rightarrow $\mathbf{\bar{V}_s} = \mathbf{70.71} \angle -\mathbf{90}^{\circ} \, \mathbf{V}$

$$rac{ ext{Or } \mathbf{v_s}(\mathbf{t}) = \mathbf{100} \, \cos(\mathbf{2}\pi \mathbf{50t} - \mathbf{90}^\circ) \, \mathbf{V}$$

$$R = 10 \Omega$$
, $L = 0.05 H$, $C = 100 \mu F$

Phasor equivalent circuit

$$\overline{
m V}_{
m s}=70.71 \angle -90^{\circ}~{
m V}$$

Applying KVL:

$$\bar{I} = \frac{\bar{V}_s}{\left(R + j\omega L + \frac{1}{j\omega C}\right)}$$

$$\mathbf{i}(\mathbf{t}) = \mathbf{5.27} \mathrm{cos}(\mathbf{2\pi50t} - \mathbf{31.8}^{\circ}) \, \mathbf{A} \qquad \leftarrow \qquad \mathbf{\bar{I}} = \mathbf{3.727} \angle - \mathbf{31.8}^{\circ} \, \mathbf{A}$$

Or
$$i(t) = 5.27 \sin(2\pi 50t + 58.2^{\circ})$$
 A

This is sinusoidal steady-state solution.

Considering RMS value ...

Time-domain circuit

$$\mathbf{v_s}(\mathbf{t}) = \mathbf{100} \sin(\mathbf{2}\pi\mathbf{50t}) \, \mathbf{V}$$
 \rightarrow $\mathbf{\bar{V}_s} = \mathbf{70.71} \angle \mathbf{0}^{\circ} \, \mathbf{V}$

 $R = 10 \Omega$, L = 0.05 H, $C = 100 \mu F$

Phasor equivalent circuit

$$ightarrow ~ar{f V}_{
m s} = {f 70.71} \angle 0^\circ ~{
m V}_{
m s}$$

Applying KVL:

$$\bar{I} = \frac{\bar{V}_s}{\left(R + j\omega L + \frac{1}{j\omega C}\right)}$$

$${f i}({f t}) = {f 5.27} \sin(2\pi {f 50t} + {f 58.2}^{\circ}) \ {f A} \ \leftarrow \ ar{f I} = {f 3.727} \angle {f 58.2}^{\circ} \ {f A}$$

This is sinusoidal steady-state solution.

Time-domain circuit

$$\begin{array}{lll} \mathbf{v_s(t)} = \mathbf{100}\,\sin(2\pi\mathbf{50t})\,\,\mathbf{V} & \rightarrow & \mathbf{\bar{V}_s} = \mathbf{70.71}\angle\mathbf{0}^\circ\,\,\mathbf{V} \\ \mathbf{i(t)} = \mathbf{5.27}\sin(2\pi\mathbf{50t} + \mathbf{58.2}^\circ)\,\,\mathbf{A} & \rightarrow & \mathbf{\bar{I}} = \mathbf{3.727}\angle\mathbf{58.2}^\circ\,\,\mathbf{A} \end{array}$$

$$egin{aligned} ar{\mathbf{V}}_{\mathrm{s}} &= \mathbf{70.71} \angle \mathbf{0}^{\circ} \ \mathrm{V} \ &
ightarrow & ar{\mathbf{I}} &= \mathbf{3.727} \angle \mathbf{58.2}^{\circ} \ \mathrm{A} \end{aligned}$$

Time-domain circuit

$$\begin{array}{lll} \mathbf{v_s(t)} = \mathbf{100} \, \sin(\mathbf{2\pi50t}) \, \mathbf{V} & \rightarrow & \mathbf{\bar{V}_s} = \mathbf{70.71} \angle \mathbf{0}^\circ \, \mathbf{V} \\ \mathbf{i(t)} = \mathbf{5.27} \sin(\mathbf{2\pi50t} + \mathbf{58.2}^\circ) \, \mathbf{A} & \rightarrow & \mathbf{\bar{I}} = \mathbf{3.727} \angle \mathbf{58.2}^\circ \, \mathbf{A} \end{array}$$

$$egin{aligned} ar{\mathbf{V}}_{\mathrm{s}} &= \mathbf{70.71} \angle 0^{\circ} \ \mathrm{V} \ &
ightarrow & ar{\mathbf{I}} &= \mathbf{3.727} \angle \mathbf{58.2}^{\circ} \ \mathrm{A} \end{aligned}$$

Time-domain circuit

$$egin{aligned} \mathbf{v_s(t)} &= \mathbf{100} \, \sin(\mathbf{2\pi50t}) \, \mathrm{V} &
ightarrow & \mathbf{ar{V}_s} &= \mathbf{70.71} \angle \mathbf{0}^\circ \, \mathrm{V} \\ \mathbf{i(t)} &= \mathbf{5.27} \sin(\mathbf{2\pi50t} + \mathbf{58.2}^\circ) \, \mathrm{A} &
ightarrow & \mathbf{ar{I}} &= \mathbf{3.727} \angle \mathbf{0}^\circ \, \mathrm{V} \end{aligned}$$

$$egin{array}{lll}
ightarrow & ar{\mathbf{V}}_{\mathrm{s}} = \mathbf{70.71} \angle \mathbf{0}^{\circ} \ \mathrm{V} \
ightarrow & ar{\mathbf{I}} = \mathbf{3.727} \angle \mathbf{58.2}^{\circ} \ \mathrm{A} \end{array}$$

Time-domain circuit

$$\begin{array}{llll} \mathbf{v_s(t)} = \mathbf{100} \, \sin(\mathbf{2\pi50t}) \, \mathbf{V} & \rightarrow & \mathbf{\bar{V}_s} = \mathbf{70.71} \angle \mathbf{0}^\circ \, \mathbf{V} \\ \mathbf{i(t)} = \mathbf{5.27} \sin(\mathbf{2\pi50t} + \mathbf{58.2}^\circ) \, \mathbf{A} & \rightarrow & \mathbf{\bar{I}} = \mathbf{3.727} \angle \mathbf{0}^\circ \, \mathbf{V} \end{array}$$

$$egin{array}{lll}
ightarrow & ar{\mathbf{V}}_{\mathrm{s}} = \mathbf{70.71} \angle \mathbf{0}^{\circ} \ \mathrm{V} \
ightarrow & ar{\mathbf{I}} = \mathbf{3.727} \angle \mathbf{58.2}^{\circ} \ \mathrm{A} \end{array}$$

5. What is Reactive Power?

Consider a single phase system with

$$v_s(t) = V_m \sin(\omega t)$$
 and $i(t) = I_m \sin(\omega t - \phi)$:

Then the **instantaneous power** is given as:

$$p(t) = v_s(t) \times i(t)$$

$$p(t) = V_m I_m \sin(\omega t) \sin(\omega t - \phi)$$

$$= \frac{1}{2} V_m I_m [\cos(\phi) (1 - \cos(2\omega t)) - \sin(\phi) \sin(2\omega t)]$$

Real Power (or Average P) = $\frac{1}{2}V_mI_m\cos(\phi)$

Reactive Power (Q) =
$$\frac{1}{2}V_mI_m\sin(\phi)$$

Instantaneous power for $\phi = 0^{\circ}$:

Instantaneous power for $\phi = 45^{\circ}$:

Instantaneous power for $\phi = 90^{\circ}$:

Instantaneous power for $\phi = 0^{\circ}$:

Instantaneous power for $\phi = -45^{\circ}$:

Instantaneous power for $\phi = -90^{\circ}$:

6. Significance of Reactive Power

- Single phase instantaneous power is always **pulsating** at twice the supply frequency.
- If $\phi = 0^{\circ}$, then instantaneous power is always **positive** (resistor) and $\mathbf{Q} = \mathbf{0}$.
- If $\phi = \pm 90^{\circ}$, then only a zero average pulsating component is present (capacitor, inductor) and $\mathbf{P} = \mathbf{0}$.
- Also note that:

$$\tan(\phi) = \frac{Q}{P}, \qquad \frac{1}{2}V_m I_m = S = \sqrt{P^2 + Q^2}$$

Significance of Reactive Power

• Phasor analysis can be used: Sum of S absorbed by all branches connected to a node=0

$$\mathbf{S} = P + jQ = \bar{V}_s \times \bar{I}^*.$$

- S > P when 'reactive elements are present. Implies that more current is drawn for same amount of P. Results in **more losses, more voltage drops and bigger equipment** for same P rating.
- An inductor "absorbs" positive reactive power; a capacitor absorbs negative reactive power and vice versa for supply.

7. Production & Absorption of Reactive Power

- Synchronous Generators : Can generate or absorb reactive power.
- Overhead Lines : Absorb or supply reactive power.
- Cables : Generate reactive power.
- Transformers : Always absorb reactive power.
- Loads : Normally absorb reactive power.
- Compensating Devices : absorb or supply reactive power.

Quick revision:

Time-domain

$$v_s(t) = V_m \sin(\omega t + \alpha) \mathbf{V}$$

$$i_s(t) = \frac{V_m}{|Z_{eq}|} \sin(\omega t + \alpha - \angle Z_{eq})$$

= $I_m \sin(\omega t + \alpha - \phi) A$.

Phasor domain

$$\bar{V}_s = \frac{V_m}{\sqrt{2}} \angle \alpha^\circ = V_{rms} \angle \alpha^\circ \mathbf{V}$$

$$\begin{split} \bar{I}_s &= \frac{V_m}{\sqrt{2}} \angle \alpha. \frac{1}{Z_{eq}} = \frac{V_{rms} \angle \alpha^{\circ}}{Z_{eq}} \\ &= \frac{I_m}{\sqrt{2}} \angle (\alpha - \phi)^{\circ} = I_{rms} \angle (\alpha - \phi)^{\circ} \text{ A}. \end{split}$$

 Z_{eq} is the equivalent impedance seen by the source.

Quick revision:

Time-domain

Instantaneous Power

$$p(t) = v_s(t) \times i_s(t)$$

$$p(t) = \frac{1}{2} V_m I_m \left[\cos \phi \left(1 - \cos(2\omega t) \right) - \sin \phi \sin(2\omega t) \right]$$

Average Power:

$$P = \frac{1}{T} \int_0^T p(\tau) d\tau = \frac{V_m I_m}{2} \cos \phi$$

$$P = V_{rms} I_{rms} \cos \phi$$

Note:
$$T = \frac{2\pi}{\omega}$$

Phasor domain

Average Power is also found to be:

$$P = Real\{\bar{V}_s \bar{I}_s^*\}$$

$$= Real\{V_{rms} \angle \alpha (I_{rms} \angle (\alpha - \phi))^*\}$$

$$= Real\{V_{rms} \angle \alpha (I_{rms} \angle (\phi - \alpha))\}$$

$$= V_{rms} I_{rms} \cos \phi$$

Note: *P* is Real or active power.

Q is defined as:

$$Q = Imag\{\bar{V}_s \,\bar{I}_s^*\} = V_{rms} \, I_{rms} \sin \phi.$$

Define:

$$\bar{S} = P + j Q = \bar{V}_s \times \bar{I}_s^*$$

$$S = \sqrt{P^2 + Q^2} = V_{rms} I_{rms}$$

$$\tan \phi = \frac{Q}{P}$$

where,

S: apparent power in **VA** (volt ampere)

P: real / active / average power in W (watt)

Q: reactive power in **VAr** (volt ampere reactive)

$$\cos \phi = \frac{P}{S}$$
 = power factor.

Convention for power calculations

Time-domain

$$v_{S}(t) = v_{S}(t) \times i_{S}(t)$$

If at any time instant:

p(t) > 0: instantaneous power is delivered.

p(t) < 0: instantaneous power is absorbed.

Phasor domain

In steady state:

P > 0: average power is delivered.

P < 0: average power is absorbed.

Q > 0: reactive power is delivered.

Q < 0:reactive power is absorbed.

Note: the voltage polarity and the sense of current flow.

Convention for power calculations

Time-domain

$$v_{S}(t) = v_{S}(t) \times i_{S}(t)$$

If at any time instant:

p(t) > 0: instantaneous power is absorbed.

p(t) < 0: instantaneous power is delivered.

Phasor domain

In steady state:

P > 0: average power is absorbed.

P < 0: average power is delivered.

Q > 0: reactive power is absorbed.

Q < 0:reactive power is delivered.

Note: the voltage polarity and the sense of current flow.

Power balancing in AC circuits

$$R$$
 = 10 Ω , L = 30 mH \bar{V}_s = 100 \angle 30° V (rms value) ω = 2 π 50 = 314.16 rad/s

Circuit-1: Solution:

$$\bar{I} = \frac{\bar{V}_s}{R + j\omega L} = 7.277 \angle -13.3^{\circ} \text{ A}.$$

$$ar{V}_r = R imes ar{I} = 72.77 \angle -13.3^\circ \, ext{V} \quad ext{ and } \quad ar{V}_L = j \omega L imes ar{I} = 68.584 \angle 76.7^\circ \, ext{V}$$

Apparent power supplied by source: $S_s = \bar{V}_s \bar{I}^* = (529.55 + j499.08)$ VA

Apparent power absorbed by the resistor: $S_R = \bar{V}_r \bar{I}^* = (529.55 + j0) \text{ VA}$

Apparent power absorbed by the inductor: $S_L = \bar{V}_L \bar{I}^* = (0 + j499.085)$ VA

Supplied apparent power = Absorbed apparent power in the circuit.

$$R$$
 = 10 Ω , C = 0.5 mF \bar{V}_s = 100 \angle 30° V (rms value) ω = 2 π 50 = 314.16 rad/s

Solution:

$$\bar{I}_r = \frac{\bar{V}_s}{R} = 10 \angle 30^\circ \text{ A} \quad \text{ and } \quad \bar{I}_c = \frac{\bar{V}_s}{\left(\frac{1}{j\omega C}\right)} = 15.708 \angle 120^\circ \text{ A}$$

$$\bar{I}_s = \bar{I}_r + \bar{I}_c = 18.621 \angle 87.52^{\circ} \text{ A}.$$

Apparent power supplied by source: $S_s = \bar{V}_s \times \bar{I}_s^* = (999.96 - j1570.83)$ VA

Apparent power absorbed by the resistor: $S_R = \bar{V}_s \times \bar{I}_r^* = (1000 + j0) \text{ VA}$

Apparent power absorbed by the capacitor: $S_c = \bar{V}_s \times \bar{I}_c^* = (0 - j1570.8)$ VA

Supplied apparent power = Absorbed apparent power in the circuit.

(Note: the numerical precision of calculations.)

$$R$$
 = 10 Ω , C = 0.5 mF \bar{V}_s = 100 \angle 30° V (rms value) ω = 2 π 50 = 314.16 rad/s \bar{I}_r = 10 \angle 30° A, \bar{I}_c = 15.708 \angle 120° A

 $\bar{I}_s = 18.621 \angle 87.52^{\circ} \text{ A}.$

$$R=10~\Omega,~~C=0.5~\mathrm{mF}$$
 $\bar{V}_s=100\angle30^\circ~\mathrm{V}~\mathrm{(rms~value)}$ $\omega=2\pi50=314.16~\mathrm{rad/s}$ $\bar{I}_r=10\angle30^\circ~\mathrm{A},~\bar{I}_c=15.708\angle120^\circ~\mathrm{A}$

 $\bar{I}_s = 18.621 \angle 87.52^{\circ} \text{ A}.$

$$R$$
 = 10 Ω , C = 0.5 mF
 \bar{V}_s = 100 \angle 30° V (rms value)
 ω = 2 π 50 = 314.16 rad/s
 \bar{I}_r = 10 \angle 30° A, \bar{I}_c = 15.708 \angle 120° A

 $\bar{I}_s = 18.621 \angle 87.52^{\circ} \text{ A}.$

