

Gradient Boosting

Model Logistic Regression	AUC 0.995	CA 0.932	F1	Prec	Recall	MCC
Logistic Regression	0.995	0.932				
		0.552	0.932	0.932	0.932	0.914
kNN	0.981	0.875	0.875	0.884	0.875	0.844
SVM	0.995	0.918	0.919	0.921	0.918	0.897
Tree	0.874	0.787	0.786	0.789	0.787	0.729
Random Forest	0.976	0.862	0.861	0.863	0.862	0.825
Gradient Boosting	0.984	0.905	0.904	0.904	0.905	0.879

logistic regression

			Predicted							
		fly	gnat	midge	mothfly	thrips	Σ			
g	fly	87	3	2	2	1	95			
	gnat	6	74	2	0	0	82			
La La	midge	2	0	110	1	1	114			
Actual	mothfly	2	0	1	43	5	51			
	thrips	0	0	0	2	97	99			
	Σ	97	77	115	48	104	441			

KNN

D	rod	ict	od
Г	reu	ICT	eu

		fly	gnat	midge	mothfly	thrips	Σ
	fly	72	18	2	2	1	95
	gnat	1	76	4	1	0	82
na	midge	1	1	111	1	0	114
Actual	mothfly	1	0	3	44	3	51
	thrips	1	1	10	4	83	99
	Σ	76	96	130	52	87	441

SVM

-	Jγ	$^{\prime}$	п	ct	$^{\circ}$

		fly	gnat	midge	mothfly	thrips	Σ
	fly	90	3	1	1	0	95
	gnat	9	72	1	0	0	82
Actual	midge	2	0	108	1	3	114
Act	mothfly	3	0	1	43	4	51
	thrips	2	0	2	3	92	99
	Σ	106	75	113	48	99	441

tree

		Predicted					
		fly	gnat	midge	mothfly	thrips	Σ
	fly	74	15	2	2	2	95
	gnat	12	61	7	1	1	82
Actual	midge	3	4	99	1	7	114
Act	mothfly	5	2	3	34	7	51
	thrips	5	1	12	2	79	99
	Σ	99	83	123	40	96	441

random forest

Predicted

		fly	gnat	midge	mothfly	thrips	Σ
	fly	82	8	3	2	0	95
	gnat	12	69	1	0	0	82
па	midge	2	2	107	3	0	114
Actual	mothfly	6	3	2	35	5	51
	thrips	2	1	6	3	87	99
	Σ	104	83	119	43	92	441

gradient boosting

			Predicted						
		fly	gnat	midge	mothfly	thrips	Σ		
	fly	86	6	1	2	0	95		
	gnat	7	70	3	2	0	82		
Actual	midge	1	1	108	3	1	114		
Act	mothfly	3	1	0	41	6	51		
	thrips	1	0	4	0	94	99		
	Σ	98	78	116	48	101	441		

Q:Why linear regression can't use for classification? Please write down your explanation in PDF file.

A:The linear regression algorithm is designed for predicting continuous numerical values rather than for classification tasks. Therefore, using it for classification problems may lead to inaccurate results.