Midterm of FCS

Swen Chan

July 2023

3

(1)

If the first letter is 'a': The passwords can have 1 lowercase-letter or 2 lowercase-letters

When exists 1 lower case-letter,number of passwords= 10*9*8*7*6=30240; When exists 2 lower case-letters,number of passwords= 26*10*9*8*7*C(5,1)=655200

So when the first letter is 'a', the number of passwords = $30240+655200 = \underline{685440}$

If the first letter is '1': The passwords can have no/1/2 lowercase-letters.

When no lowercase-letter, number of passwords = 9 * 8 * 7 * 6 * 5 = 15120

When exists 1 lower case-letter,number of passwords= 26*10*9*8*7*C(5,1) = 655200

When exists 2 lower case-letters, number of passwords= $26^2*10*9*8*C(5,2) = 4867200$

So when the first letter is '1', the number of passwords= $15120+655200+4867200=\underline{5537520}$

 $Total\ number = 685440 + 5537520 = 6222960$

Thus, there are $\bf 6222960$ passwords.