

Session 07: Multiple Lineare Regression

Dominic Schmitz & Janina Esser

Verein für Diversität in der Linguistik

Beispieldaten

Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Stressed Vowels sind kürzer je nachdem wie viele Konsonanten ihnen folgen:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

Beispieldaten

Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Unabhängig von diesem Vowel Shortening gilt, dass offene Vokale länger sind als halb-offene Vokale, und halb-offene Vokale sind länger als geschlossene Vokale:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

Simple Lineare Regression

Simple Lineare Regression: Formel

Multiple Lineare Regression: Formel

Multiple Lineare Regression in R

- Mehr Variablen = mehr Zeitaufwand
- Typische Schritte bei Multipler Linearer Regression sind
 - 1. Distribution der abhängigen Variable überprüfen
 - 2. "volles" Modell erstellen
 - 3. "bestes" Modell finden
 - 4. Assumptions überprüfen
 - 5. Modell interpretieren

1: Distribution der abhängigen Variable

- Wie wir bereits wissen, nutzen wir hierzu den Shapiro-Wilk Test
- Die abhängige Variable in unserem Beispiel, duration, ist nicht normalverteilt
- Daher nutzen wir wieder eine log-transformierte Version der Variable, durationLog

2: "Volles" Modell

- Unsere abhängige Variable ist durationLog
- Als nächstes müssen wir die unabhängigen Variablen identifizieren, die wir nutzen möchten
- In diesem Beispiel sind es die folgenden Variablen:

structure i.e. coda structure

vowe1 i.e. vowel quality

• rate i.e. speech rate

number

 i.e. slide number during experiment

2: "Volles" Modell

Erstellen des "vollen" Modells:

- Theoretisch müssten wir nun alle möglichen Variabel-Kombinationen testen um das "beste" Modell zu finden
- Allerdings ist dieser Vorgang manuell durchgeführt fehleranfällig und zeitaufwendig (und macht wirklich keinen Spaß)
- Zum Glück gibt es eine Funktion, die diesen Schritt übernimmt:

step(model)

000

> step(model)

> step(model)

Akaike Information Criterion

The lower, the better the model fit

Start:

AIC=-1167.31

durationLog ~ structure + vowel + rate + number

> step(model)

Akaike Information Criterion

The lower, the better the model fit

Start: AIC=-1167.31

durationLog ~ structure + vowel + rate + number

	Df	Sum of Sq	RSS	AIC	
- number	1	0.0536	31.839	-1168.55	a model without
<none></none>			31.786	-1167.31	number
- rate	1	0.8500	32.636	-1157.48	
- vowel	4	3.4109	35.197	-1129.64	a model without vowe1
- structure	2	14.9708	46.756	-998.41	


```
Step:
```

AIC=-1168.55

durationLog ~ structure + vowel + rate

best model found by the step() function and its AIC

	Df	Sum of Sq	RSS	AIC
<none></none>			31.839	-1168.55
- rate	1	0.8416	32.681	-1158.86
- vowel	4	3.4070	35.246	-1131.01
- structure	2	14.9881	46.827	-999.73

additional proof that further reduction is not improving model fit

00

best model found by the step() function and its call

Call:

 $lm(formula = durationLog \sim structure + vowel + rate, data = data)$

Coefficients:

vowele	structuresingle	structureopen	(Intercept)
-0.1441	0.1219	0.4340	-1.5062
rate	vowelu	vowelo	voweli
-0.2532	-0.2365	-0.1229	-0.2374

model coefficients – we will take a closer look in step 5

- Multiple Lineare Regression folgt den gleichen Assumptions, denen auch Simple Lineare Regression folgt
 - Linearity
 - Homoscedasticity
 - Normality
 - Independence

Linearity Assumption:

The relationship between X and the mean of Y is linear.

The line should be horizontal and flat.

Homoscedasticity Assumption:

The variance of residuals is the same for any value of X.

 Data should be spread equally around the line, with no obvious patterns visible.

Normality Assumption:

For any fixed value of X, Y is normally distributed.

Normality of Residuals
Distribution should be close to the normal curve

 The distribution of a linear model's residuals should follow a normal distribution.

5: Interpretation

- Generell sind wir an zwei Dingen interessiert:
 - 1. die p-Werte der einzelnen Predictors
 - 2. die Effekte der einzelnen Predictors

5: Interpretation – *p*-Werte

1. Mit der anova() Funktion erhalten wir p-Werte

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
structure	2	15.131	7.5654	104.4874	< 2.2e-16 ***
vowel	4	3.507	0.8767	12.1079	2.41e-09 ***
rate	1	0.842	0.8416	11.6241	0.0007112 ***
Residuals	439	31.786	0.0724		

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1.50620	0.10486	-14.364	< 2e-16 ***
structureopen	0.43395	0.03112	13.947	< 2e-16 ***
structuresingle	0.12186	0.03117	3.910	0.000107 ***
vowele	-0.14406	0.04033	-3.572	0.000393 ***
voweli	-0.23739	0.04035	-5.883	7.97e-09 ***
vowelo	-0.12292	0.04034	-3.048	0.002446 **
vowelu	-0.23653	0.04033	-5.864	8.87e-09 ***
rate	-0.25324	0.07425	-3.410	0.000708 ***

2. Mit der **summary**() Funktion können wir einen Blick auf die einzelnen Effekte der Predictors werfen

structure:double + vowel:a + rate:start

Estimate Std. Error t value Pr(>|t|) (Intercept) -1.506200.10486 -14.364 < 2e-16structureopen 0.12186 structuresingle 0.03117 3.910 0.000107 * * * vowele to obtain the estimated mean value of voweli durationLog in structure: single words, we vowelo have to add its estimate to the intercept, i.e. vowelu -1.50620 + 0.12186 = -1.38434rate

 Mit der summary() Funktion k\u00f6nnen wir einen Blick auf die einzelnen Effekte der Predictors werfen

structure:single + vowel:a + rate:start

Estimate	Std. Error	t value	Pr(> t)	
-1.50620	0.10486	-14.364	< 2e-16	***
0.43395	0.03112	13.947	< 2e-16	
e 0.12186	0.03117	3.910	0.000107	***
-0.14406	0.04033	-3.572	0.000393	
-0.23739	0.04035	-5.883	7.97e-09	***
	-1.50620 0.43395 e 0.12186 -0.14406	-1.50620 0.10486 0.43395 0.03112 e 0.12186 0.03117 -0.14406 0.04033	-1.50620	-1.50620

vowelo vowelu rate

to obtain the estimated mean value of durationLog in structure:single & vowel:i words, we have to add both estimates to the intercept, i.e.

-1.50620 + 0.12186 - 0.23739 = -1.62173

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen Effekte der Predictors werfen

structure:double + vowel:a + rate:start

	Estimate	durationLog is			
(Intercept)	-1.50620		***		
structureopen	0.43395	 significantly longer in open coda words 			
structuresingle 0.12186			***		
vowele	-0.14406	coda words			
voweli	-0.23739	than in complex coda words			
vowelo	-0.12292	·	5 %		
vowelu	-0.23653	0.04033 -5.864 8.87e-09 *			
rate	-0.25324	0.07425 -3.410 0.000708 *	* * *		

2. Mit der **summary()** Funktion können wir einen Blick auf die einzelnen Effekte der Predictors werfen

structure:double + vowel:a + rate:start

Estimate Std. Error t value Pr(>|t|) (Intercept) -1.506200.10486 -14.364 < 2e-16structureopen structuresingle durationLog is -0.14406 *** vowele -0.23739* * * voweli significantly shorter in words -0.12292** vowelo with all other vowels, i.e. /e, i, o, u/ vowelu -0.23653 * * * than in words with /a/

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept) -1.50620	0.10486	-14.364	< 2e-16	
structureo	pen 0.43395	0.03112	13.947	< 2e-16	
structures	ingle 0.12186	0.03117	3.910	0.000107	
vowele	-0.14406	0.04033	-3.572	0.000393	
voweli	the higher the spe	_	. 883	7.97e-09	
vowelo	lower the value of	durationLog	. 048	0.002446	
vowelu	3.23653	0.04033	-5.864	8.87e-09	
rate	-0.25324	0.07425	-3.410	0.000708	***

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1.50620	0.10486	-14.364	< 2e-16 ***
structureopen	0.43395	0.03112	13.947	< 2e-16 ***
structuresingle	0.12186	0.03117	3.910	0.000107 ***
vowele	-0.14406	0.04033	-3.572	0.000393 ***
voweli	-0.23739	0.04035	-5.883	7.97e-09 ***
vowelo	-0.12292	0.04034	-3.048	0.002446 **
vowelu	-0.23653	0.04033	-5.864	8.87e-09 ***
rate	-0.25324	0.07425	-3.410	0.000708 ***

Der s.g. "Tukey-Contrast" zeigt uns die Unterschiede innerhalb eines kategorischen Predictors

```
> tukey(model = mdl_fin, predictor = structure)
```

```
Estimate Std. Error t value Pr(>|t|) open - double == 0 0.43395 0.03112 13.95 < 1e-04 *** single - double == 0 0.12186 0.03117 3.91 0.00031 *** single - open == 0 -0.31209 0.03111 -10.03 < 1e-04 ***
```