

Home range methods on indoor data

Hector Marina

Brief introduction

Home range:

- Area where it spends its time
- Encompasses all the resources the animal requires to survive and reproduce

(Burt, 1943)

Different methods

First-generation estimators

- Local convex hull
- Fixed kernel home range

Second-generation estimators

Plug-in Kernel home range

Third generation estimators

- Movement-based kernel density estimator
- Brownian bridge movement model

Minimum Convex Polygon

Convex hull or convex envelope or convex closure

Minimum Convex Polygon

Convex hull or convex envelope or convex closure

Minimum Convex Polygon

Convex hull or convex envelope or convex closure

- Brownian bridge movement model
 - 1. Sequential location data
 - 2. Estimated error
 - 3. Grid-cell size for utilization distribution
 - Paired locations becomes less realistic as the time interval increases

Convex hulls Brown

Brownian bridge

- Brownian bridge movement model
 - 1. Sequential location data
 - 2. Estimated error
 - 3. Grid-cell size for utilization distribution
 - Paired locations becomes less realistic as the time interval increases

Convex hulls

Brownian bridge

- Kernel density estimators
 - One of the most popular methods for measuring home ranges.
 - Several types of kernels
 - Similar results
 - Smoothing bandwidth (ad hoc method)

Convex hulls

Brownian bridge

Kernel

Krysten et al., (2014):

"Examine the point distribution; justify the choice of smoothing parameter based on the objectives of the study."

Kernel density estimators

Real-time Location System

Interpolation methods

Interpolation methods

Maximising the information

Boundaries

Boundaries

Indoor home ranges applications

Applications of indoor home ranges

- Area usage of the animals
 - Cubical preference
 - Feed bunk preference

Locate high density areas

Applications of indoor home ranges

Barn area preference

Detect changes in behaviour

Recommended literature

- 1. Burt, W. H. (1943). Territoriality and home range concepts as applied to mammals. *Journal of Mammalogy*, 24, 346–352.
- 2. Roger A. Powell, Michael S. Mitchell, What is a home range?, *Journal of Mammalogy*, Volume 93, Issue 4, 14 September 2012, Pages 948–958, https://doi.org/10.1644/11-MAMM-S-177.1
- 3. Broekman, M. J. E., Hoeks, S., Freriks, R., Langendoen, M. M., Runge, K. M., Savenco, E., ter Harmsel, R., Huijbregts, M. A. J., & Tucker, M. A. (2023). *HomeRange*: A global database of mammalian home ranges. *Global Ecology and Biogeography*, 32, 198–205. https://doi.org/10.1111/geb.13625
- 4. Walter, W.D., Onorato, D.P. & Fischer, J.W. Is there a single best estimator? Selection of home range estimators using area-under-the-curve. *Mov Ecol* 3, 10 (2015). https://doi.org/10.1186/s40462-015-0039-4
- 5. Krysten L. Schuler, Greg M. Schroeder, Jonathan A. Jenks, and John G. Kie "Ad hoc smoothing parameter performance in kernel estimates of GPS-derived home ranges," Wildlife Biology 20(5), 259-266, (1 October 2014). https://doi.org/10.2981/wlb.12117
- 6. Ren, K., Nielsen, P.P., Alam, M., Rönnegård, L., 2021. Where do we find missing data in a commercial real-time location system? Evidence from 2 dairy farms. JDS Commun. 2, 345–350. https://doi.org/10.3168/JDSC.2020-0064
- 7. Ren, K., Alam, M., Nielsen, P.P., Gussmann, M., Rönnegård, L., 2022. Interpolation Methods to Improve Data Quality of Indoor Positioning Data for Dairy Cattle. Front. Anim. Sci. 0, 53. https://doi.org/10.3389/FANIM.2022.896666
- 8. Churakov, M., Silvera, A.M., Gussmann, M., Nielsen, P.P., 2021. Parity and days in milk affect cubicle occupancy in dairy cows. Appl. Anim. Behav. Sci. 244, 105494. https://doi.org/10.1016/J.APPLANIM.2021.105494
- 9. Benhamou, S., Cornélis, D., 2010. Incorporating Movement Behavior and Barriers to Improve Kernel Home Range Space Use Estimates. J. Wildl. Manage. 74, 1353–1360. https://doi.org/10.1111/J.1937-2817.2010.TB01257.X
- 10. Hansson, I., Silvera, A., Ren, K., Woudstra, S., Skarin, A., Fikse, W.F., Nielsen, P.P., Rönnegård, L., 2023. Cow characteristics associated with the variation in number of contacts between dairy cows. J. Dairy Sci. 106, 2685–2699. https://doi.org/10.3168/JDS.2022-21915

