RPROGRAMING

Text Mining

INTRODUCTIONS

Who is this guy?

3/451° (Kroger)

SETTING THE EXPECTATIONS

- Introduction to R
- Intermediate R
- Text Mining with R

- Applied Analytics with R
- Machine Learning with R (May 14-15)

†A modified version of Hadley Wickham's analytic process

SETTING THE EXPECTATIONS

Day I

- Understanding the tidyverse
- Regular expressions
- Organizing unstructured text
- Frequency analysis

Day 2

- Sentiment analysis
- Word association
- Topic modeling
- Predictive modeling

organize & clean

describe & predict

You will be overwhelmed!

My Teaching Philosophy

THIS IS MEANT TO BE A DISCUSSION

YOURTURN!

Lots of hands-on coding exercises

Strong proponent of collaborative work!

YOURTURN!

Introduce yourself to your neighbors:

Who are you and what is your experience with R?

Regarding the topics that will be covered what are your strengths? Weaknesses?

WARM-UPS

Enough chit-chatting, time to code!

VECTOR EXERCISES

- 1. check out the built-in vector state.region
- 2. what type of data does this contain?
- 3. Subset for only north central states. How many north central states are there?
- 4. Change state.name to a character variable, add **state.region** values as names to the **state.name** vector, subset for north central states.

```
# 1
state.region
# 2
class(state.region)
[1] "factor"
# 3
nc_states <- state.region[state.region == "North Central"]</pre>
length(nc_states)
[1] 12
# 4
state.name <- as.character(state.name)</pre>
names(state.name) <- state.region</pre>
state.name[names(state.name) == "North Central"]
```

MATRIX EXERCISES

- 1. check out the built-in VADeaths matrix data
- 2. what attributes does VADeaths have?
- 3. Calculate averages for each column and row
- 4. Can you figure out how to add these averages to your table so the output looks like:

	Rural Male	Rural Female	Urban Male	Urban Female	Avg_by_Age
50-54	11.70	8.70	15.40	8.40	11.050
55-59	18.10	11.70	24.30	13.60	16.925
60-64	26.90	20.30	37.00	19.30	25.875
65-69	41.00	30.90	54.60	35.10	40.400
70-74	66.00	54.30	71.10	50.00	60.350
Avg_by_Local	32.74	25.18	40.48	25.28	30.920

```
# 1. check out the built-in VADeaths
VADeaths
```

2. what attributes does VADeaths have?
attributes(VADeaths)

Calculate averages for each column and row
Avg_by_Age <- rowMeans(VADeaths)
Avg_by_Local <- colMeans(VADeaths)</pre>

4. Can you figure out how to add these averages to your table addmargins(VADeaths, FUN = mean)

	Rural Male	Rural Female	Urban Male	Urban I	Female	mean
50-54	11.70	8.70	15.40		8.40	11.050
55-59	18.10	11.70	24.30		13.60	16.925
60-64	26.90	20.30	37.00		19.30	25.875
65-69	41.00	30.90	54.60		35.10	40.400
70-74	66.00	54.30	71.10		50.00	60.350
mean	32.74	25.18	40.48		25.28	30.920

DATA FRAME EXERCISES

- 1. Load the nycflights13 package
- 2. Using the flights data, select the first 1000 rows and the following columns: month, dep_delay, carrier, distance, time_hour. Save this as small_flights
- 3. Look at the structure and summary of small_flights
- 4. Rename the columns of small_flights to "Month", "Delay", "Carrier", "Distance", "Date-Time"
- 5. Look at the first and last 15 rows

```
# 1. Load the nycflights13 package
library(nycflights13)
# 2. select the first 1000 rows and the following columns: month, dep_delay, carrier, distance, time_hour.
# Save this as small_flights
small_flights <- flights[1:1000, c("month", "dep_delay", "carrier", "distance", "time_hour")]
# 3. Look at the structure and summary of small_flights
str(small_flights)
summary(small_flights)
# 4. Rename the columns of small_flights to c("Month", "Delay", "Carrier", "Distance", "Date-Time")
names(small_flights) <- c("Month", "Delay", "Carrier", "Distance", "Date-Time")</pre>
# 5. Look at the first and last 15 rows
head(small_flights, 15)
tail(small_flights, 15)
```

LIST EXERCISES

1. Create this this regression model:

- 2. What list items does flight_lm contain?
- 3. Extract the residuals from the flight_lm list
- 4. What is the min, max, median, and mean of these residuals?

```
# 1. Create this this regression model:
flight_lm <- lm(arr_delay \sim dep_delay + month + carrier, data = flights)
# 2. what list items does flight_lm contain?
names(flight_lm)
 [1] "coefficients" "residuals" "effects" "rank" "fitted.values"
 [6] "assign" "qr"
                           "df.residual" "na.action" "contrasts"
[11] "xlevels" "call"
                        "terms"
                                            "model"
# extract residuals from flight_lm list
residuals <- flight_lm$residuals
# compute summary statistics
summary(residuals)
   Min. 1st Qu.
                  Median
                             Mean
                                  3rd Qu.
                                              Max.
-109.000 -10.980
                  -2.066
                            0.000
                                    8.602
                                           207.200
```

