1. Porównać proces i wątek.

Proces- Środowisko, w którym wykonuje się watek.

Wątek- Aktywność w systemie, ciąg wykonywanych instrukcji.

Wątek nie może istnieć poza procesem, a proces bez żadnych wątków nie ma sensu.

2. Rozwiń skrót POSIX i wytłumacz czym się on charakteryzuje.

Portable Operating System Interface for Unix- Przenośny interfejs dla systemu operacyjnego UNIX. POSIX standaryzuje interfejs programistyczny (API), interfejs użytkownika, właściwości powłoki systemowej.

3. Wytłumacz problematykę sekcji krytycznej.

Gdy jeden proces wykonuje sekcję krytyczną, żaden inny proces nie jest dopuszczony do wykonywania swojej sekcji krytycznej związanej z tymi samymi zasobami krytycznymi. Rozwiązanie problemu musi spełniać trzy warunki: Wzajemne wykluczanie, postęp, ograniczone czekanie.

4. Wytłumacz różnice pomiędzy barierą, a blokadą.

Bariera- Wyrównuje bieg procesów (np. "poczekaj na wszystkich"). Stosowanie bariery w pętli bywa kosztowne.

Blokada wirująca- Sposób realizacji synchronizacji międzyprocesowej, w którym oczekiwanie na zwolnienie blokady polega na ciągłym jej badaniu. Działa na zasadzie aktywnego oczekiwania, zużywa czas procesora wykonując pustą pętlę.

5. Naszkicować rozwiązanie bufora ograniczonej pojemności, do którego może pisać, i z którego może czytać wiele wątków współbieżnie.

Rozwiązanie w języku Java:

6. Podać kilka metod synchronizacji i komunikacji procesów.

	KOMUNIKACJA	SYNCHRONIZACJA
SYSTEMY SCENTRALIZOWANE	Pliki Potoki Potoki nazwane Pamięć dzielona Komunikaty systemowe	Semafory Monitory Sygnały Bariera
SYSTEMY ROZPROSZONE	Gniazda RPC RMI Biblioteki przekazywania komunikatów CORBA	Brak elementów współdzielonych, synchronizacja za pomocą komunikatów

7. Rozwiń skrót RPC i scharakteryzuj go.

RPC- Remote Procedure Call, zdalne wywołanie procedury. Serwer nasłuchuje na porcie czy ktoś się z nim łączy. Klient nawiązuje łączność => wysyła dane => serwer realizuje usługę i odsyła odpowiedź lub błąd w razie niepowodzenia.

8. Co to jest równoważenie obciążenia i po co się je stosuje.

Równoważenie obciążenia to odpowiednie rozsyłanie zadań pomiędzy procesorami, by każdy miał coś (proporcjonalnie wiele) do zrobienia. Stosowane w celu poprawienia wydajności systemu równoległego.

9. Rozwiń skrót SMT i scharakteryzuj go.

SMT- Simultaneous Multi-Threading czyli wielowątkowość współbieżna. Technika poprawy wydajności mikroprocesorów superskalarnych pozwalająca pojedynczej superskalarnej jednostce wykonawczej wykonywać jednocześnie instrukcje z wielu wątków jednocześnie.

10. Dana jest macierz o wielkości 2 000 x 2 000 i 1 000 000 wektorów, które trzeba przemnożyć przez macierz. Do dyspozycji jest komputer Core2Duo 2GHz, P4 3GHz i 2 PIII 1,5 GHz. Jak zrealizować to zadanie najszybciej? Pomiń metody komunikacji, ważne co i kiedy się przesyła, nie jak.

Macierz należy przesłać do najszybszych komputerów czyli Core2Duo i P4, następnie do 2x PIII. Zaraz po wysłaniu należy zacząć rozdzielać wektory do przemnożenia przez macierz między komputery, czekając na odpowiedź zwrotną z przemnożoną macierzą.

11. Opisz różnice między statycznym, a dynamicznym równoważeniem obciążenia.

Obciążenie statyczne- Przed uruchomieniem obliczeń, określamy jak trzeba je rozdzielić pomiędzy dostępnymi procesorami.

Obciążenie dynamiczne- Obciążenie procesorów jest monitorowane w trakcie obliczeń, a wykonywane zadania przemieszczane są na bieżąco tak by żaden procesor nie pozostawał bezczynny.

12. Scharakteryzuj wykonywanie atomowe.

Wykonywanie atomowe jest to sekwencja jednej lub więcej ilości instrukcji wykonywanych sekwencyjnie, bez przerwy. Jeśli chcemy upewnić się, że sekwencja operacji jest atomowa należy użyć synchronizacji np: "locking".