

Contrôle continu de mécanique du solide

Système à barres

Deux barres (S₁) et (S₂) de longueur 2ℓ et de masse m sont articulées en A l'une par rapport à l'autre De plus (S₁) est articulée en O et (S₂) est articulée en B par rapport à (S₃)

(S₃) est en liaison glissière d'axe O, $\overrightarrow{y_0}$ par rapport au bati fixe

On cherche à établir les équations d'équilibre issues de l'application du principe fondamental de la dynamique. En B on considère que les centre de la liaison glissière et de la liaison pivot sont confondus.

On considère les points B et O alignés sur l'axe O, $\overrightarrow{y_0}$

Le repère R_0 (O, $\overrightarrow{x_0}$, $\overrightarrow{y_0}$, $\overrightarrow{z_0}$) est lié à la partie fixe

Le repère R₁ (O, $\overrightarrow{x_1}$, $\overrightarrow{y_1}$, $\overrightarrow{z_0}$) est lié à S₁ Le repère R₂ (B, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_0}$) est lié à S₂

On considère le système comme plan et on néglige les frottements

On notera ℓ_0 la longueur libre du ressort

On donne les moments d'inertie des barres S_1 et S_2 par rapport à $(O, \overline{Z_0})$: $I_{G_1Z_0}(S_1) = I_{G_2Z_0}(S_2) = \frac{ml^2}{3}$ La masse du solide (S₃) est négligée.

La force développée par le ressort sera modélisée par le torseur $\{T_{ressort \to S_3}\} = \left\{\begin{array}{c} -k(y_B - l_0).\overrightarrow{y} \\ \overrightarrow{O} \end{array}\right\}_{n=1}^{\infty}$

l_o étant la longueur libre du ressort

L'action de la liaison pivot en A sera modélisée par le torseur $\{T_{S_2 \to S_1}\} = \{X_A \cdot \overrightarrow{x_1} + Y_A \cdot \overrightarrow{y_1} \}$ L'action de la liaison pivot en O sera modélisée par le torseur $\{T_{S_0 \to S_1}\} = \{X_0 \cdot \overrightarrow{x_0} + Y_0 \cdot \overrightarrow{y_0}\}$ L'action de la liaison en B sera modélisée par le torseur $\{T_{S_0 \to S_2 + S_3}\} = \{X_B \cdot \overline{X_0}\}$

Questions

- 1) Réaliser les figures des changements de bases
- 2) Calculer $\vec{\Omega}$ (S_1/R_0) et $\vec{\Omega}$ (S_2/R_0) .
- 3) Expliquer comment a été déterminé I₂₀, le centre instantanné de (S₂) par rapport à R₀
- 4) Isoler la barre (S₁), faire le bilan des actions qui lui sont appliquées.
- L'action de (S_2) sur (S_1) sera exprimée dans le repère R_1 ($O, \vec{x_1}, \vec{y_1}, \vec{z_0}$) Isoler l'ensemble des barres $\{(S_2) + (S_3)\}$, faire le bilan des actions qui lui sont appliquées.
- 5) Ecrire les composantes des torseurs des actions appliquées à (S₁) au point O
- 6) Ecrire les composantes des torseurs des actions appliquées à {(S2) + (S3)} au point I
- 7) Calculer la vitesse \vec{V}_{G_1/R_0} et l'accélération $\vec{\Gamma}_{G_1/R_0}$ de G_1 par rapport à R_0
- 8) Calculer la vitesse \vec{V}_{G_2/R_0} et l'accélération $\vec{\varGamma}_{G_2/R_0}$ de G_1 par rapport à R_0

Exprimer les 2 vecteurs dans le repère R_0 ($O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$)

- 9) Calculer le moment cinétique de (S_1) dans son mouvement par rapport à (S_0) au point G_1 puis au point O 10) Calculer le moment cinétique de $\{(S_2) + (S_3)\}$ dans son mouvement par rapport à (S_0) au point G_2 puis au point I
- 11) Calculer le moment dynamique de (S_1) dans son mouvement par rapport à (S_0) au point O Calculer le moment dynamique de $\{(S_2) + (S_3)\}$ dans son mouvement par rapport à (S_0) au point I
- 12) Appliquer le théorème du moment dynamique à (S1) et écrire l'équation qui en résulte
- 13) Appliquer le théorème du moment dynamique à $\{(S_2) + (S_3)\}$ et écrire l'équation qui en résulte
- 14) En combinant les équations obtenues aux questions 12) et 13) déduire la relation entre θ et ses dérivées