Laboratório de Circuitos Lógicos - 3º Experimento

CIRCUITOS COMBINACIONAIS: MAPA DE KARNAUGH

OBJETIVO: O mapa de Karnaugh é apresentado como uma ferramenta muito útil para a simplificação de funções booleanas de até cinco variáveis. Um circuito de decisão de maioria, em que a saída é 1 se e somente se a maioria das entradas for 1, é considerado como um exemplo de aplicação.

1. INTRODUÇÃO TEÓRICA

1.1. GENERALIDADES

O mapa de Karnaugh é uma forma ordenada para simplificar uma expressão booleana que geralmente nos leva a um circuito com configuração mínima. Não utiliza a tabela da verdade e pode ser facilmente aplicado em funções envolvendo duas a cinco variáveis. Para seis ou mais variáveis o método começa a se tornar incômodo e podemos usar outras técnicas mais elaboradas. Também pode ser usado para determinar se portas duais ou complementares tornarão o circuito mais simples.

1.2. MINTERMOS E MAPAS DE 2 A 5 VARIÁVEIS

Qualquer função booleana pode ser escrita na forma canônica disjuntiva ou conjuntiva. A forma canônica disjuntiva é também conhecida como **soma de produtos**, e é escrita como soma de termos que apresentam sempre todas as variáveis envolvidas. Por exemplo, a função $f_1(A, B, C) = A \cdot (C + \overline{B})$ pode ser escrita na forma canônica disjuntiva como se segue:

$$f_1(A, B, C) = A \cdot (C + \overline{B}) = A \cdot C + A \cdot \overline{B} = A \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{C}$$

Cada termo é conhecido como **produto padrão**, **produto canônico** ou **mintermo**.

O mapa de Karnaugh é uma forma de representar uma dada função de maneira que cada mintermo mantenha-se vizinho de todos aqueles dos quais difere apenas por uma variável (de 1 muda para 0 ou vice-versa). Assim, os mapas de Karnaugh de 2 a 5 variáveis são indicados na **Figura 1**.

Os números dentro das células representam o mintermo correspondente. No caso, por exemplo, de 3 variáveis tem-se:

$$m_0 = \overline{A} \cdot \overline{B} \cdot \overline{C}$$
 $m_1 = \overline{A} \cdot \overline{B} \cdot C$ $m_2 = \overline{A} \cdot B \cdot \overline{C}$ $m_3 = \overline{A} \cdot B \cdot C$ $m_4 = A \cdot \overline{B} \cdot \overline{C}$ $m_5 = A \cdot \overline{B} \cdot C$ $m_6 = A \cdot B \cdot \overline{C}$ $m_7 = A \cdot B \cdot C$

Assim, o mapa de Karnaugh da função f_1 do exemplo anterior terá 1's nas células 4, 5 e 7; como indicado na **Figura 2**.

A	0	1	AB C	00	01	11	10
0	0	2	0	0	2	6	4
1	1	3	1	1	3	7	5

					A	0			1				
\AB	00	01	11	10	BC DE	00	01	11	10	10	11	01	00
00	0	4	12	8	00	0	4	12	8	24	28	20	16
01	1	5	13	9	01	1	5	13	9	25	29	21	17
11	3	7	15	11	11	3	7	15	11	27	31	23	19
10	2	6	14	10	10	2	6	14	10	26	30	22	18

Figura 1 – Mapa de Karnaugh para 2, 3, 4 e 5 variáveis

AB C	00	01	11	10
0				1
1			1	1

Figura 2 – Mapa de Karnaugh de f_1

A minimização pelo uso do mapa de Karnaugh baseia-se na relação $A \cdot B + A \cdot \overline{B} = A$.

Na **Figura 2** as células 4 e 5 são vizinhas pois $m_4 = A \cdot \overline{B} \cdot \overline{C}$ e $m_5 = A \cdot \overline{B} \cdot C$, ou seja, eles diferem somente pelo C. Desta forma, elas podem ser agrupadas para produzir o termo $A \cdot \overline{B} = A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C$.

Esta ideia pode ser estendida para grupos de 2, 4, 8, ..., 2ⁿ (n natural) células.

1.3. EXEMPLOS

Minimizando a função $f_2 = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{B} \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot C$:

Figura 3 – Mapa de Karnaugh de f2

A função mínima será $f_2 = \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C}$.

Figura 4 – Mapa de Karnaugh de f₃

A função mínima será $f_3 = \overline{C} \cdot \overline{D} + B \cdot C + A \cdot \overline{D}$.

Note que é possível desenhar o mapa de Karnaugh sem mesmo escrever a função na forma canônica disjuntiva. Basta vermos o mapa como regiões que representam as variáveis. A região de cada variável será composta pelas células onde seu valor é 1. Para um mapa com 4 variáveis temos as regiões mostradas na **Figura 5**.

Figura 5 – Regiões das variáveis no mapa de Karnaugh

Minimizando a função
$$f_4 = B \cdot (\overline{A} + C) \cdot (A \cdot D + \overline{A} \cdot \overline{D}) + A \cdot \overline{C} \cdot (B + D) \cdot (\overline{B} + D)$$
:

O primeiro termo será a interseção de B com $(\overline{A} + C)$ e ainda com $(A \cdot D + \overline{A} \cdot \overline{D})$. A primeira parte da **Figura 6** indica como encontrar este termo.

Analogamente, o mapa de Karnaugh do segundo termo está indicado na segunda parte da **Figura 6**. A função *f*₄ é a união desses dois conjuntos conforme é indicado na última parte da **Figura 6**.

Figura 6 – Mapa de Karnaugh de f_4

No primeiro mapa da **Figura 6**, temos a região amarela representando $(\overline{A} + C)$. A região delimitada pela linha vermelha representa B. E a união das células com pontos vermelhos forma a região que representa o termo $(A \cdot D + \overline{A} \cdot \overline{D})$. Os 1's mostram as células que fazem parte das três regiões.

No segundo mapa da **Figura 6**, temos a região amarela representando (B+D). A região delimitada pela linha vermelha representa $(\overline{B}+D)$. E a união das células com pontos vermelhos forma a região que representa o termo $A \cdot \overline{C}$. Os 1's mostram as células que fazem parte das três regiões.

Unindo-se os 1's aos pares como é mostrado na terceira parte da **Figura 6** obtém-se a função mínima desejada: $f_4 = A \cdot \overline{C} \cdot D + A \cdot B \cdot D + \overline{A} \cdot B \cdot \overline{D}$.

Quando a função envolver 5 variáveis é necessário um certo cuidado para considerar devidamente as células vizinhas simetricamente distribuídas em relação ao eixo vertical de simetria. Por exemplo, minimizando a seguinte função:

$$f_5 = E \cdot \left(\overline{A} \cdot \overline{C} + A \cdot C \cdot D + \overline{A} \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot C \cdot \overline{D} \right) + \overline{B} \cdot \overline{E} \cdot \left(A \cdot C + A \cdot \overline{C} + \overline{A} \cdot C \right):$$

A função mínima obtida pelo mapa da **Figura 7** é $f_5 = \overline{B} \cdot C + \overline{A} \cdot \overline{C} \cdot E + A \cdot \overline{B} \cdot \overline{E} + A \cdot C \cdot D \cdot E$.

A		()		1			
BC DE	00	01	11	10	10	11	01	00
00		1					1	1
01	1	1		1			1	
11	1	1		1		1	1	
10		1					1	1

Figura 7 – Mapa de Karnaugh de f5

Resumindo, a minimização pelo uso de mapas de Karnaugh de até 5 variáveis pode ser esquematizada como se segue:

1º passo: Coloque 1's em todas as células correspondentes aos mintermos envolvidos na

função.

2º passo: Identifique e marque circundando todos os grupos de 16 mintermos, se houver,

que possuam adjacências dois a dois.

3º passo: Repita o 2º passo para grupos de 8, 4 ou 2 mintermos que ainda não tenham sido

circundados.

4º passo: Identifique e marque circundando todos os mintermos que não possuem

adjacências e ainda não tenham sido circundados.

5º passo: Escreva a função mínima a partir dos maiores grupos de mintermos assim

formados.

Observe que podem ocorrer situações em que resulte mais de uma expressão mínima. Neste caso é indiferente adotar-se uma ou outra expressão.

Finalmente, note-se que existem situações em que é mais cômodo trabalhar com a forma canônica conjuntiva (produto de somas). Por exemplo, para a função $f_6 = A \cdot C + A \cdot D + \overline{B} \cdot C + \overline{B} \cdot D$, temos:

` -	-		-	- 0
AB CD	00	01	11	10
00	0	0	0	0
01	1	0	1	1
11	1	0	1	1
10	1	0	1	1

Figura 8 – Mapa de Karnaugh de f_6

Pela **Figura 8**, tem-se utilizado produto de somas: $f_6 = (C + D) \cdot (A + \overline{B})$.

2. PARTE EXPERIMENTAL

Considere-se um circuito de decisão de maioria com 4 entradas. A saída Y_1 será 1 se e somente se a maioria das entradas for 1. Listando-se todas as saídas em funções das variáveis de entradas obtemos a função desejada. Isto é:

$$Y_1 = \overline{A}BCD + A\overline{B}CD + AB\overline{C}D + AB\overline{C}D + ABC\overline{D} + ABCD$$

Simplificando-se esta função através do mapa de Karnaugh da **Figura 9**, temos:

$$Y_1 = ABD + ABC + BCD + ACD = AB \cdot (C + D) + CD \cdot (A + B)$$

Figura 9 – Mapa de Karnaugh de Y1

Implementando-se temos:

Figura 10 - Circuito de decisão de maioria

2.1. (**Pós-Experimento 1**) Projete (**Pré-Projeto 1**) e monte um circuito equivalente ao da **Figura 10** usando apenas portas NAND (com qualquer número de entradas), use as chaves (D,C,B,A) como entradas e o LED L0 como saída Y_I , fotografe o circuito montado e filme o procedimento para completar a tabela da verdade abaixo.

	Saída			
D	C	В	A	L0=Y ₁
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Tabela I – Tabela da verdade do circuito de decisão de maioria

- 2.2. (**Pós-Experimento 2**) Projete (**Pré-Projeto 2**) um circuito de decisão de minoria usando apenas portas NAND. A saída *Y*₂ (LED L1) será 1 se e somente se a maioria das 4 entradas (D,C,B,A) for 0. Monte o circuito projetado, fotografe o circuito montado, verifique seu funcionamento filmando o preenchimento da tabela verdade.
- 2.3. (**Pós-Experimento 3**) Dado que você projetou e possui os circuitos dos itens 2.1 e 2.2 ainda montados no *protoboard*, **use-os** e construa um circuito em que a saída *Y*₃ (LED L2) será 1 se e somente se o número de 1's e de 0's nas quatro entradas (D,C,B,A) forem iguais. Use apenas portas NAND e outro *protoboard* auxiliar, caso seja necessário. Fotografe o circuito obtido, filme o preenchimento da tabela verdade do seu circuito.

3. SUMÁRIO

O mapa de Karnaugh é apresentado como um procedimento simples e ordenado de simplificar uma função booleana de até 5 variáveis. As formas canônicas de expressões booleanas são dadas bem como o conceito de mintermos. São feitos o projeto, implementação e verificação de um circuito que simula um sistema de votação democrática.

4. EQUIPAMENTOS E MATERIAL

- Kit Digital;
- Fios conectores;
- Portas lógicas NAND(74HC00, 74HC10 e 74HC20)

5. TESTE DE AUTOAVALIAÇÃO

- 1. No mapa de Karnaugh da **Figura 11** a função dada é equivalente a:
 - a) $f = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B \cdot \overline{C}$
 - b) $f = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$
 - c) $f = \overline{A} \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C$
 - d) $f = \overline{A} \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C}$

Figura 11

- 2. Na Figura 11 a função minimizada é:
 - a) $f = \overline{A}$
 - b) $f = \overline{B}$
 - c) $f = \overline{A} \cdot \overline{B}$
 - d) f = C
- 3. Na **Figura 12**, suponha que X pode ser 1 ou 0 (*don't care*), a função mínima será:
 - a) $f = A + B \cdot D + \overline{B} \cdot \overline{D} + C \cdot D$
 - b) $f = A + B \cdot D + \overline{B} \cdot \overline{D} + C \cdot \overline{B}$
 - c) As opções **a** e **b** estão corretas.
 - d) NDA

Figura 12

4. Dada a seguinte função:

$$f = \frac{A \cdot \overline{B} \cdot C \cdot D + A \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot C \cdot \overline{D} + \overline{A} \cdot B \cdot C \cdot D + \overline{A} \cdot B \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D}{\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}}$$

Qual é a sua forma mínima?

a)
$$f = \overline{A} \cdot D + \overline{A} \cdot \overline{B} + \overline{B} \cdot D + \overline{A} \cdot C$$

b)
$$f = A \cdot \overline{D} + A \cdot B + B \cdot \overline{D} + A \cdot C$$

c)
$$f = \overline{A} \cdot D + A \cdot B + \overline{B} \cdot D + \overline{A} \cdot C$$

d)
$$f = \overline{A} \cdot D + A \cdot B + \overline{B} \cdot D + A \cdot \overline{C}$$

5. A função simplificada \overline{f} da questão 4 é:

a)
$$\overline{f} = A \cdot \overline{B} + \overline{A} \cdot D + B \cdot \overline{C} \cdot \overline{D}$$

b)
$$\overline{f} = A \cdot B + A \cdot \overline{B} \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}$$

c)
$$\overline{f} = A \cdot B + A \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D}$$

d)
$$\overline{f} = A \cdot B + A \cdot \overline{D} + B \cdot \overline{C} \cdot \overline{D}$$