Resolução

Matemática A – 12º ano • Prova Modelo de Exame 2 • 2020

1. Como ${}^{n}C_{n-5} = {}^{n}C_{5}$ e ${}^{n}C_{4} + {}^{n}C_{5} = {}^{n+1}C_{5}$, vem que ${}^{n}C_{4} + {}^{n}C_{n-5} + {}^{n+1}C_{6} = {}^{n+1}C_{5} + {}^{n+1}C_{6} = {}^{n+2}C_{6}$. Uma vez que ${}^{n+2}C_{6}$ é o termo central de uma linha do Triângulo de Pascal, tem-se que $n+2=12 \Leftrightarrow n=10$.

O desenvolvimento $\left(ax^2 + \frac{1}{ax}\right)^{10}$ é tal que cada um dos seus termos é dado por:

$${}^{10}C_k \left(ax^2\right)^{10-k} \left(\frac{1}{ax}\right)^k = {}^{10}C_k \ a^{10-k} \left(x^2\right)^{10-k} \ a^{-k} x^{-k} = \left({}^{10}C_k \ a^{10-2k}\right) x^{2(10-k)-k} = \left({}^{10}C_k \ a^{10-2k}\right) x^{20-3k}$$

O termo de grau 2 obtém-se para $20 - 3k = 2 \Leftrightarrow k = 6$, e o coeficiente desse termo é dado por ${}^{10}C_6 \, a^{10-2\times 6} = \frac{{}^{10}C_6}{a^2}$. Uma vez que, pelo enunciado, sabe-se que o termo de grau 2 tem coeficiente $\frac{70}{3}$, vem:

$$\frac{{}^{10}C_6}{a^2} = \frac{70}{3} \iff a = \pm \sqrt{\frac{3 \times {}^{10}C_6}{70}} \stackrel{a \in \mathbb{R}^+}{\iff} a = 3$$

Resposta: (C)

2.

2.1. O ponto A é o ponto da reta AB que pertence ao eixo Ox, pelo que as suas coordenadas são da forma $(x_A,0,0)$. As coordenadas genéricas de um ponto da reta AB podem ser escritas como (x,y,z) = (-2 - k,6 + k,0), $k \in \mathbb{R}$. Ao ponto A corresponde o valor de k tal que 6 + k = 0 \wedge $0 = 0 \Leftrightarrow k = -6$, vindo que a abcissa do ponto A é -2 - (-6) = 4. Conclui-se que o ponto A é o ponto de coordenadas (4,0,0).

Como o ponto P é o ponto de interseção da reta AB com o plano β , as suas coordenadas respeitam as coordenadas genéricas da reta AB e a equação geral do plano β , logo obtém-se:

$$3(-2-k) + 4(6+k) + 0 = 15 \Leftrightarrow -6-3k + 24 + 4k = 15 \Leftrightarrow k = -3 \Leftrightarrow k = -1$$

concluindo-se que o ponto P é o ponto de coordenadas (-2 - (-3), 6 - 3, 0) = (1,3,0).

Designando por θ a amplitude do ângulo AOP, pode-se escrever $\cos \theta = \frac{\overrightarrow{OA} \cdot \overrightarrow{OP}}{\|\overrightarrow{OA}\| \times \|\overrightarrow{OP}\|}$, tal que:

- $\overrightarrow{OA} = A O = A = (4,0,0)$, vindo que $\|\overrightarrow{OA}\| = 4$
- $\overrightarrow{OP} = P O = P = (1,3,0)$, vindo que $||\overrightarrow{OP}|| = \sqrt{(1^2 + 3^2 + 0^2)} = \sqrt{10}$
- $\overrightarrow{OA} \cdot \overrightarrow{OP} = (4,0,0) \cdot (1,3,0) = 4$

 $\therefore \cos \theta = \frac{4}{4\sqrt{10}} = \frac{1}{\sqrt{10}}, \text{ pelo que a âmplitude do ângulo } AOP, \text{ com arredondamento às unidades \'e}, \theta = \cos^{-1}\left(\frac{1}{\sqrt{10}}\right) \approx 72^{\circ}.$

2.2. O plano EFG é paralelo ao plano ABC e contém o ponto H, pelo que comecemos por determinar um vetor normal ao plano ABC.

A reta AB está contida no plano ABC, assim como, a título de exemplo, a reta AC. Sabe-se que a reta AB tem a direção do vetor (-1,1,0) e a reta AC tem a direção do vetor $\overrightarrow{AC} = C - A = (1,1,1) - (4,0,0) = (-3,1,1)$. Designando por \overrightarrow{n} um vetor normal ao plano ABC, tal que $\overrightarrow{n} = (a,b,c)$, pode-se escrever:

$$\begin{cases} \overrightarrow{n} \cdot \overrightarrow{AB} = 0 \\ \overrightarrow{n} \cdot \overrightarrow{AC} = 0 \end{cases} \begin{cases} (a,b,c) \cdot (-1,1,0) = 0 \\ (a,b,c) \cdot (-3,1,1) = 0 \end{cases} \Leftrightarrow \begin{cases} -a+b=0 \\ -3a+b+c=0 \end{cases} \Leftrightarrow \begin{cases} a=b \\ c=2b \end{cases}$$

pelo que um vetor normal ao plano $\overrightarrow{n}(b,b,2b), b \in \mathbb{R}\setminus\{0\}$. Por exemplo, para b=1, obtém-se $\overrightarrow{n}(1,1,2)$.

Note que como EFG é paralelo ao plano ABC, a direção do vetor normal ao plano EFG é a mesma da de \overrightarrow{n} . Desta forma, uma equação geral do plano EFG é da forma x + y + 2z + d = 0. Uma vez que H está contido em EFG, tem-se $5 + 1 + 2 \times 2 + d = 0 \Leftrightarrow d = -10$, de onde se conclui que o plano EFG é definido pela equação x + y + 2z = 10.

3. Note-se que o número de casos possíveis corresponde ao total de números de sete algarismos que se podem formar. Logo, o número de casos possíveis é 9×10^6 (o algarismo 0 não pode ser o primeiro algarismo).

Como os números que são elementos de A contém um 2, um 3 e um 4, comecemos por dispor esses três números nas sete possíveis posições: ${}^{7}C_{3}$. Como os números terão de estar dispostos por ordem crescente ou decrescente, existem $2 \times {}^{7}C_{3}$ formas de dispor esses três números nas condições do enunciado. Uma vez que nenhum dos algarismos dos números pertencentes a A é igual a 0, e não existem quaisquer números repetidos, os restantes 4 algarimos podem ser escolhidos de ${}^{6}A_{4}$ formas diferentes. Logo, o número de casos favoráveis é $2 \times {}^{7}C_{3} \times {}^{6}A_{4}$.

Pela Regra de Laplace obtém-se que a probabilidade pedida é $p = \frac{^{7}C_{3} \times {^{6}A_{4}}}{9 \times 10^{6}} = \frac{7}{2500}$

Resposta: (A)

4.

4.1. Seja A o acontecimento "o livro escolhido é do 12° ano", e B o acontecimento "o livro escolhido é um manual". Do enunciado, vem que: $P(A) = 3P(\overline{A})$, $P(B|A) = \frac{2}{5}$ e $P(\overline{A}|\overline{B}) = 30\% = \frac{3}{10}$.

Pretende-se determinar P(B).

Começando por notar que $P(A) = 3P(\overline{A}) \Leftrightarrow 1 - P(\overline{A}) = 3P(\overline{A}) \Leftrightarrow P(\overline{A}) = \frac{1}{4} \Leftrightarrow P(A) = \frac{3}{4}$, tem-se:

$$P(B) = P(A \cap B) + P(\overline{A} \cap B) = P(B|A) \times P(A) + P(\overline{A}) - P(\overline{A} \cap \overline{B})$$

$$= P(B|A) \times P(A) + P(\overline{A}) - P(\overline{A}|\overline{B}) \times P(\overline{B})$$

$$= \frac{2}{5} \times \frac{3}{4} + \frac{1}{4} - \frac{3}{10} (1 - P(B)) = \frac{3}{10} + \frac{1}{4} - \frac{3}{10} + \frac{3}{10} P(B)$$

$$= \frac{1}{4} + \frac{3}{10} P(B)$$

de onde vem $P(B) = \frac{1}{4} + \frac{3}{10}P(B) \iff P(B) = \frac{1/4}{7/10} = \frac{5}{14}$.

4.2. Dos 140 livros da estante do Professor, sabe-se que $140 \times \frac{3}{4} = 105$ desses são do 12° ano, e 140 – 105 = 35 livros são do 10° ou 11° ano. Entre esses, sabe-se que dois em cada cinco são manuais, pelo que existem 42 manuais do 12° ano e 105 - 42 = 63 livros de exercícios do 12° ano.

Como pelo menos 9 dos 10 livros doados deverão ser do 12° ano e exatamente 5 desses mesmos deverão ser manuais do 12° ano, existem duas possibilidades de escolher os livros:

- são doados 9 livros do 12° ano e 1 livro de um outro ano, sabendo que 5 desses 9 livros do 12° ano deverão ser manuais: ${}^{42}C_5 \times {}^{63}C_4 \times {}^{35}C_1$;
- são doados 10 livros do 12° ano, sabendo que 5 desses 10 livros do 12° ano deverão ser manuais: ${}^{42}C_5 \times {}^{63}C_5$;

Desta forma, a escolha dos livros pode ser feita de $^{42}C_5 \times ^{63}C_4 \times ^{35}C_1 + ^{42}C_5 \times ^{63}C_5 = ^{42}C_5 \times (^{63}C_4 \times 35 + ^{63}C_5)$.

5. Designe-se a reta tangente ao gráfico de f no ponto P, ponto do gráfico de f de abcissa a, por s. A reta s tem declive $m_s = f'(a)$. Uma vez que a reta r é perpendicular à reta s, tem-se que o seu declive, m_r , é tal que $m_r = -\frac{1}{m_s}$.

Tem-se que:

$$f'(x) = \left(5 - x^2 e^{0.01x} + \ln x\right)' = (5)' - \left[(x^2)' (e^{0.01x}) + x^2 (e^{0.01x})' \right] + (\ln x)' = -2xe^{0.01x} - 0.01x^2 e^{0.01x} + \frac{1}{x}$$

Sabe-se ainda que [OQ] é um lado de um quadrado cuja medida da área é 2 u.a. Logo, pode-se escrever $\overline{OQ}^2 = 2 \stackrel{\overline{OQ} > 0}{\Leftrightarrow} \overline{OQ} = \sqrt{2}$. Desta forma, como o ponto Q pertence ao eixo Ox, sabe-se que $Q\left(-\sqrt{2},0\right)$ ou $Q\left(\sqrt{2},0\right)$. Esse ponto Q é também a interseção da reta P com o eixo Qx.

3

© 2020 José Carlos Pereira, Nuno Miguel Guerreiro, Valter Carlos

A equação da reta $r \in y = m_r x + b$, tal que $y = -\frac{1}{m_s} x + b \Leftrightarrow y = -\frac{1}{f'(a)} x + b$.

Como passa em (a, f(a)), tem-se:

 $f(a) = -\frac{a}{f'(a)} + b \Leftrightarrow b = f(a) + \frac{a}{f'(a)}$, pelo que a reta r é definida pela equação $y = -\frac{1}{f'(a)}x + f(a) + \frac{a}{f'(a)}$.

Como a reta r contém o ponto Q têm-se duas hipóteses:

• Se
$$Q(\sqrt{2},0)$$
, tem-se $-\frac{\sqrt{2}}{f'(a)} + f(a) + \frac{a}{f'(a)} = 0 \stackrel{f'(a)\neq 0}{\Leftrightarrow} f'(a) \cdot f(a) + a = \sqrt{2}$;

• Equivalentemente às duas condições acima, pode-se optar por resolver $|f'(a) \cdot f(a) + a| = \sqrt{2}$.

Na figura acima está representado o gráfico de $g(x) = |f'(x) \cdot f(x) + x|$ em $\left[\frac{1}{2}, \frac{3}{2}\right]$. Recorrendo às capacidades gráficas da calculadora poderão determinar-se as soluções da equação $g(x) = \sqrt{2}$. Conclui-se então que existem dois pontos que são solução da equação acima. As abcissas desses mesmos são os possíveis valores de a: $a \approx 0,66$ e $a \approx 0,85$ (representados na figura como a_1 e a_2 , respetivamente).

6. Uma vez que $v_{n+1} - \frac{2}{3}v_n = 0 \Leftrightarrow \frac{v_{n+1}}{v_n} = \frac{2}{3}, \forall n \in \mathbb{N}, \text{ tem-se que } (v_n) \text{ é uma progressão geométrica de razão } r = \frac{2}{3}$.

Tem-se ainda:

$$v_2 \times v_3 = \frac{9}{2} \Leftrightarrow v_2 \times (v_2 \times r) = \frac{9}{2} \Leftrightarrow (v_2)^2 \times \frac{2}{3} = \frac{9}{2} \Leftrightarrow v_2 = \pm \sqrt{\frac{9/2}{2/3}} \stackrel{\text{(1)}}{\Leftrightarrow} v_2 = \sqrt{\frac{27}{4}} \Leftrightarrow v_2 = \frac{3\sqrt{3}}{2} \Rightarrow v_1 = \frac{v_2}{r} = \frac{\frac{3\sqrt{3}}{2}}{\frac{2}{3}} = \frac{9\sqrt{3}}{4}.$$

em que se usou o facto de (v_n) ser uma sucessão de termos positivos em (1).

O termo geral de (v_n) é $v_n = v_1 \times r^{n-1} = \frac{9\sqrt{3}}{4} \left(\frac{2}{3}\right)^{n-1}$.

De forma a que $\frac{8\sqrt{3}}{27}$ seja um termo de (v_n) é necessário que exista um $k \in \mathbb{N}$ tal que $v_k = \frac{8\sqrt{3}}{27}$. Ora:

$$v_k = \frac{8\sqrt{3}}{27} \Longleftrightarrow \frac{9\sqrt{3}}{4} \left(\frac{2}{3}\right)^{k-1} = \frac{8\sqrt{3}}{27} \Longleftrightarrow \left(\frac{2}{3}\right)^{k-1} = \frac{8\times4}{27\times9} \Longleftrightarrow \left(\frac{2}{3}\right)^{k-1} = \frac{2^5}{3^5} \Longleftrightarrow \left(\frac{2}{3}\right)^{k-1} = \left(\frac{2}{3}\right)^5 \Longleftrightarrow k-1 = 5 \Longleftrightarrow k = 6$$

pelo que se conclui que $\frac{8\sqrt{3}}{27}$ é o termo de ordem 6 de (v_n) .

7. Tem-se que $|w| = \sqrt{\left(-2\sqrt{3}\right)^2 + 2^2} = \sqrt{12 + 4} = \sqrt{16} = 4$, e Arg $\left(-2\sqrt{3} + 2i\right) = \operatorname{tg}^{-1}\left(\frac{2}{-2\sqrt{3}}\right) = \left(-\frac{\sqrt{3}}{3}\right)^{\frac{(1)}{2}} \frac{5\pi}{6}$, em que se usou o facto do afixo de w pertencer ao 3° quadrante em (1).

Com auxílio da figura abaixo vão ser analisadas cada uma das afirmações:

- Note-se que o triângulo [ABO] é retângulo em O, logo $\overline{OA}^2 + \overline{OB}^2 = \overline{AB}^2$. Como $|w| = \overline{OA} = \overline{OB}$, tem-se que $\overline{AB}^2 = A^2 + A^2 = 32$. Visto que a área do quadrado [ABCD] é dada por \overline{AB}^2 , conclui-se que a área é 32 u.a. A afirmação (A) é verdadeira.
- $A \in G$ são afixos de duas raízes quintas de um mesmo número complexo. Como $G\hat{O}A = G\hat{O}H + H\hat{O}A = \frac{2\pi}{5} + \frac{2\pi}{5} = \frac{4\pi}{5}$, pode-se escrever que G é o afixo do número complexo w_G , tal que $|w_G| = |w| = 4 \,\mathrm{eArg}(w_G) = \mathrm{Arg}(w) \frac{4\pi}{5} = \frac{5\pi}{6} \frac{4\pi}{5} = \frac{\pi}{30}$. Logo, $w_G = 4e^{i\left(\frac{\pi}{30}\right)}$. A afirmação **(B)** é **verdadeira**.

- Tem-se que $z^5 z^4 = 0 \Leftrightarrow z\left(z^4 1\right) = 0 \Leftrightarrow z = 0 \lor z^4 = 1$. Toda e qualquer raíz quarta de 1 tem módulo 1. Como |w| = 4, tem-se que $\sqrt[4]{|w|} = \sqrt[4]{4} \neq 1$, logo w não é solução da equação $z^5 z^4 = 0$. A afirmação **(C)** é falsa.
- Note-se que o perímetro de [AHGFE] é dado por $5 \times \overline{EF} = 5 \times \left(2\overline{EI}\right) = 10 \ \overline{EI}$. Como o triângulo [EOI] é retângulo em I e $\overline{EO} = |w| = 4$, pode-se escrever sen $\frac{\pi}{5} = \frac{\overline{EI}}{\overline{EO}} = \frac{\overline{EI}}{4}$, de onde vem $\overline{EI} = 4 \operatorname{sen} \frac{\pi}{5}$. Desta forma, o perímetro de [AHGFE] é $40 \operatorname{sen} \frac{\pi}{5} \approx 23,5$ u.a. A afirmação **(D)** é **verdadeira**.

Resposta: (C)

8. Como $i^{17} = i^{16} \times i = 1 \times i = i$, e $(w_1)^2 = (1 + \sqrt{3}i) = (1 + \sqrt{3}i)(1 + \sqrt{3}i) = 1 + 2\sqrt{3}i + (\sqrt{3}i)^2 = 1 + 2\sqrt{3}i - 3 = -2 + 2\sqrt{3}i$, tem-se: $w = \frac{(w_1)^2}{1+i} - w_2 = \frac{-2 + 2\sqrt{3}i}{1+i} - (i + \sqrt{3}) = \frac{\left(-2 + 2\sqrt{3}i\right)(1-i)}{(1+i)(1-i)} - \sqrt{3} - i = \frac{-2 + 2i + 2\sqrt{3}i - 2\sqrt{3}i^2}{1^2 - i^2} - \sqrt{3} - i$ $= \frac{-2 + 2\sqrt{3}i + 2i + 2\sqrt{3}i}{2} - \sqrt{3} - i = -1 + \sqrt{3}i - i = -1 + \sqrt{3}i$

tal que $|w| = \sqrt{(-1)^2 + \left(\sqrt{3}\right)^2} = \sqrt{1+3} = \sqrt{4} = 2$ e Arg $(w) = \operatorname{tg}^{-1}\left(\frac{\sqrt{3}}{-1}\right) = \operatorname{tg}^{-1}\left(-\sqrt{3}\right) \stackrel{\text{(1)}}{=} \frac{2\pi}{3}$, em que se usou o facto do afixo de w pertencer ao 2° quadrante em (1).

Considerando um número complexo z = a + bi, tem-se que Re(z + i) = Re(a + bi + i) = Re(a + (b + 1)i) = a = Re(z), e ainda que $Im(\overline{z} + i) = Im(a - bi + i) = Im(a + (1 - b)i) = 1 - b = 1 - Im(z)$.

Desta forma, pode-se escrever:

 $\operatorname{Re}(z+i) \le 2 \land \operatorname{Im}(\overline{z}+i) \ge 0 \Leftrightarrow \operatorname{Re}(z) \le 2 \land 1 - \operatorname{Im}(z) \ge 0 \Leftrightarrow \operatorname{Re}(z) \le 2 \land \operatorname{Im}(z) \le 1.$

E portanto:

 $0 \leq \operatorname{Arg}(z+2+2i) \leq \operatorname{Arg}(w) \wedge \operatorname{Re}(z+i) \leq 2 \wedge \operatorname{Im}(\overline{z}+i) \geq 0 \\ \Leftrightarrow 0 \leq \operatorname{Arg}(z+2+2i) \leq \frac{2\pi}{3} \wedge \operatorname{Re}(z) \leq 2 \wedge \operatorname{Im}(z) \leq 1.$

O quadrilátero representado por esta condição está esboçado na figura abaixo, na qual A é afixo de -2 - 2i.

Como $B\hat{A}D = B\hat{A}E + E\hat{A}D \Leftrightarrow \frac{2\pi}{3} = \frac{\pi}{2} + E\hat{A}D \Leftrightarrow E\hat{A}D = \frac{\pi}{6}$, vem que sen $\frac{\pi}{6} = \frac{\overline{ED}}{EA} \Leftrightarrow \overline{ED} = 3 \times \frac{\sqrt{3}}{3} = \sqrt{3}$.

A área do quadrilátero [ABCD] é dada por: $\left(\frac{\overline{AB} + \overline{CD}}{2}\right) \times \overline{CB} = \left(\frac{4+4+\sqrt{3}}{2}\right) \times 3 = \frac{24+3\sqrt{3}}{2}$.

© 2020 José Carlos Pereira, Nuno Miguel Guerreiro, Valter Carlos

9.

9.1. Tem-se que $\lim u_n = \lim \frac{n^2 - n}{n - 1} = \lim \frac{n^2}{n} = \lim n = +\infty$, pelo que $\lim (-u_n) = -\infty$.

Desta forma, conclui-se que:

$$\lim g(-u_n) = \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{\sqrt{x^2 + x + 4}}{x + 1} \stackrel{\text{def}}{=} \lim_{x \to -\infty} \frac{\sqrt{x^2 \left(1 + \frac{1}{x} + \frac{4}{x^2}\right)}}{x + 1} = \lim_{x \to -\infty} \frac{\sqrt{x^2}}{x + 1} \times \lim_{x \to -\infty} \sqrt{1 + \frac{1}{x} + \frac{4}{x^2}}$$

$$\stackrel{\text{(1)}}{=} \lim_{x \to -\infty} \frac{-x}{x + 1} \times \sqrt{1 + \frac{1}{+\infty} + \frac{4}{+\infty}} = \lim_{x \to -\infty} \frac{-x}{x} \times \sqrt{1 + 0 + 0} = -1 \times 1 = -1$$

em que se usou o facto de $\sqrt{x^2} = |x| = -x$, $\forall x < 0$ em (1).

Resposta: (B)

9.2. Para $x \ge -1$ tem-se $g(x) = 8^x - 13 \times 4^x = 2^{3x} - 13 \times 2^{2x}$. Tem-se então:

$$g(x) + 9 \times 2^{x+2} \ge 0 \Leftrightarrow 2^{3x} - 13 \times 2^{2x} + 9 \times 2^{x+2} \ge 0 \Leftrightarrow 2^{x} \left(2^{2x} - 13 \times 2^{x} + 9 \times 2^{2}\right) \ge 0 \stackrel{\text{(1)}}{\Leftrightarrow} 2^{2x} - 13 \times 2^{x} + 36 \ge 0$$
$$\Leftrightarrow \left(2^{x}\right)^{2} - 13 \times 2^{x} + 36 \ge 0$$

em que se usou o facto de $2^x > 0$, $\forall x \ge -1$ em (1).

Note-se que:

$$(2^{x})^{2} - 13 \times 2^{x} + 36 = 0 \Leftrightarrow 2^{x} = \frac{-(-13) \pm \sqrt{(-13)^{2} - 4 \times 1 \times 36}}{2 \times 1} \Leftrightarrow 2^{x} = \frac{13 \pm \sqrt{25}}{2} \Leftrightarrow 2^{x} = \frac{13 \pm 5}{2} \Leftrightarrow 2^{x} = 4 \times 2^{x} = 9 \Leftrightarrow x = \log_{2} 4 \times x = \log_{2} 9 \Leftrightarrow x = 2 \times x = \log_{2} 9$$

Concluindo-se que $g(x) + 9 \times 2^{x+2} \ge 0 \Leftrightarrow (2^x - 4)(2^x - 9) \ge 0$.

Através de uma tabela de sinal, obtém-se:

х	-1		2		$\log_2 9$	+∞
2 ^x - 4	_	_	0	+	+	+
2 [×] – 9	_	_	_	_	0	+
$(2^{x}-4)(2^{x}-9)$	+	+	0	_	0	+

Logo, o conjunto-solução da inequação $g(x) + 9 \times 2^{x+2} \ge 0$ é $[-1, 2] \cup [\log_2 9, +\infty[$.

10. O ponto $A(x_A, y_A)$ pertence à circunferência e ao eixo Oy, logo $x_A = 0$, e portanto:

$$(0-1)^2 + (y_A - 2)^2 = 5 \Leftrightarrow (y_A - 2)^2 = 4 \Leftrightarrow y_A - 2 = \pm 2 \Leftrightarrow y_A = 0 \lor y_A = 4$$
, e como $y_A > 0$, tem-se que $A(0,4)$.

A reta s tem inclinação $\frac{\pi}{4}$, pelo que o seu declive é m_s = tg $\frac{\pi}{4}$ = 1. Como passa em A, a sua ordenada na origem é 4, a equação reduzida que define a reta é y = x + 4.

A reta r é tangente à circunferência no ponto de coordenadas (3,1), logo tomando P(x,y) como um ponto da reta r, tem-se $\overrightarrow{BP} \cdot \overrightarrow{BC} = 0$, em que C é o centro da circunferência de coordenadas (1,2).

Como
$$\overrightarrow{BP} = P - B = (x,y) - (3,1) = (x - 3, y - 1)$$
, e $\overrightarrow{BC} = C - B = (1,2) - (3,1) = (-2,1)$, tem-se: $\overrightarrow{BP} \cdot \overrightarrow{BC} = 0 \Leftrightarrow (x - 3, y - 1) \cdot (-2,1) = 0 \Leftrightarrow -2(x - 3) + y - 1 = 0 \Leftrightarrow y = 2x - 5$.

O ponto de interseção das retas r e s é tal que x + 4 = 2x - 5 \Leftrightarrow x = 9, e a sua ordenada é 9 + 4 = 13. Logo, as coordenadas de T são (9,13).

Resposta: (D)

11. Repare que x tg $x=1 \Leftrightarrow$ tg $x=\frac{1}{x}$, pelo que em cada intervalo da forma $]k\pi,\pi+k\pi[$, $k\in\mathbb{Z}$ (ver figura abaixo), a equação tem exatamente uma solução. Logo, em $]-20\pi,20\pi[$, a equação tem 40 soluções.

Resposta: (C)

12. A função f tem cinco zeros e é tal que o seu máximo absoluto tem valor menor que 1 e o seu mínimo valor é -4. Uma vez que a função h definida por $h(x) = \ln(g(x))$ está definida em [-4,4], tem-se que g(x) > 0, $\forall x \in [-4,4]$.

Esboço de y = f(x) + 4

Esboço de y = -f(x) + 1

Por observação dos gráficos acima conclui-se que, entre as opções dadas, apenas g(x) = -f(x) + 1 é uma expressão analítica válida de forma a que a função h tenha domínio [-4,4].

Resposta: (B)

13.

13.1. Averiguemos a continuidade da função f no ponto de abcissa 0. De forma a que f seja contínua nesse ponto deve verificar-se $\lim_{x\to 0^+} f(x) = f(0) = \lim_{x\to 0^+} f(x)$.

Note-se que $\lim_{x\to 0^-} f(x) = f(0) = \sin^3(0) - \cos(0) = 0 - 1 = -1$, e que:

 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x^2 \ln x}{e^{2x} - 1} = \lim_{x \to 0^+} \frac{x}{e^{2x} - 1} \times \lim_{x \to 0^+} (x \ln x), \text{ de tal forma que:}$

• $\lim_{x \to 0^+} \frac{x}{e^{2x} - 1} = \frac{1}{2} \lim_{x \to 0^+} \frac{2x}{e^{2x} - 1} \stackrel{\text{(1)}}{=} \frac{1}{2} \times \frac{1}{\lim_{2x \to 0^+} \frac{e^{2x} - 1}{2x}} \stackrel{\text{(2)}}{=} \frac{1}{2} \times \frac{1}{1} = \frac{1}{2}$, em que se usou o facto de $x \to 0^+ \Rightarrow 2x \to 0^+$ em

(1), e o limite notável $\lim_{u\to 0} \frac{e^u - 1}{u} = 1$ em (2).

• $\lim_{x\to 0^+} (x \ln x) \stackrel{\text{(3)}}{=} \lim_{y\to +\infty} \left(\frac{1}{y} \ln \left(\frac{1}{y}\right)\right) \stackrel{\text{(4)}}{=} - \lim_{y\to +\infty} \frac{\ln y}{y} \stackrel{\text{(5)}}{=} 0$, em que se usou a mudança de variável $y=\frac{1}{x}$ de tal forma que $x\to 0^+ \Rightarrow y\to +\infty$ em (3), a propriedade dos logaritmos $\ln \left(\frac{1}{y}\right) = \ln \left(y^{-1}\right) = -\ln y$ em (4), e o limite notável $\lim_{u\to +\infty} \frac{\ln u}{u} = 0$ em (5).

Concluindo-se que $\lim_{x\to 0^+} f(x) = \frac{1}{2} \times 0 = 0$, logo como $-1 \neq 0$, conclui-se que f não é contínua em x=0 e, consequentemente, não é contínua no seu domínio.

13.2. A função f não é contínua em x=0 pelo que não estão asseguradas as condições necessárias para aplicação do Teorema de Bolzano em $\left|-\frac{\pi}{2},e\right|$. Conclui-se então que a afirmação I) é falsa.

Considerando $\cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)$, vem que $1 - \cos x = \sin^2\left(\frac{x}{2}\right) + \cos^2\left(\frac{x}{2}\right) - \left[\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)\right] = 2\sin^2\left(\frac{x}{2}\right)$:

$$\lim_{x \to 0^{-}} \frac{f(x) + 1}{x^{3}} = \lim_{x \to 0^{-}} \frac{\sin^{3} x - \cos x + 1}{x^{3}} = \lim_{x \to 0^{-}} \frac{\sin^{3} x}{x^{3}} + \lim_{x \to 0^{-}} \frac{1 - \cos x}{x^{3}} = \left(\lim_{x \to 0^{-}} \frac{\sin x}{x}\right)^{3} + \lim_{x \to 0^{-}} \frac{2 \sin^{2} \left(\frac{x}{2}\right)}{x^{3}}$$

$$\stackrel{\text{(1)}}{=} 1^{3} + 2 \times \left(\frac{1}{2} \lim_{\frac{x}{2} \to 0^{-}} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\right) \times \left(\frac{1}{2} \lim_{\frac{x}{2} \to 0^{-}} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\right) \times \lim_{x \to 0^{-}} \frac{1}{x} \stackrel{\text{(2)}}{=} 1 + 2 \times \frac{1}{2} \times 1 \times \frac{1}{2} \times 1 \times \frac{1}{0^{-}} = 1 + (-\infty) = -\infty$$

em que se usou o limite notável $\lim_{u\to 0}\frac{\sec u}{u}=1$, e o facto de $x\to 0^+\Rightarrow \frac{x}{2}\to 0^+$ em (1), e novamente o mesmo limite notável em (2). Conclui-se então que a afirmação II) é falsa.

A função f admite uma assíntota horizontal ao gráfico de f se e só se o valor de $\lim_{x\to\infty} f(x)$ for finito. Tem-se:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 \ln x}{e^{2x} - 1} = \lim_{x \to +\infty} \frac{\frac{x^2 \ln x}{x^3}}{\frac{e^{2x} - 1}{x^3}} = \lim_{x \to +\infty} \frac{\ln x}{x} \times \frac{1}{\lim_{x \to +\infty} \frac{e^{2x}}{x^3} - \lim_{x \to +\infty} \frac{1}{x^3}} = 0 \times \frac{1}{\lim_{x \to +\infty} \frac{e^x}{x^3} \times \lim_{x \to +\infty} e^x - \frac{1}{+\infty}}$$

$$\stackrel{\text{(4)}}{=} 0 \times \frac{1}{+\infty \times (+\infty) - 0} = 0 \times \frac{1}{+\infty} = 0 \times 0 = 0$$

em que se usou o limite notável $\lim_{u\to +\infty} \frac{\ln u}{u} = 0$ em (3), e o limite notável $\lim_{u\to +\infty} \frac{e^u}{u^p} = +\infty$, $p\in \mathbb{R}$ em (4). Conclui-se que y=0 é assíntota horizontal ao gráfico de f, e a afirmação III) é verdadeira.

Resposta: (C)

13.3. Em $\left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right]$, $f(x) = \sin^3 x - \cos x$, logo a expressão analítica de g' é $g'(x) = \sin^3 x - \cos x + \frac{1}{4}\cos x = \sin^3 x - \frac{3}{4}\cos x$.

A segunda derivada de g, g'', é dada por:

$$g''(x) = \left(\sin^3 x - \frac{3}{4}\cos x\right)' = \left(\sin^3 x\right)' - \left(\frac{3}{4}\cos x\right)' = 3\sin^2 x\cos x - \left(-\frac{3}{4}\sin x\right) = \sin x\left(3\sin x\cos x + \frac{3}{4}\right)$$
$$= \sin x\left(\frac{3}{2}\sin(2x) + \frac{3}{4}\right)$$

pelo que, em \mathbb{R} , os zeros de g'' são:

$$g''(x) = 0 \Leftrightarrow \operatorname{sen} x \left(\frac{3}{2}\operatorname{sen}(2x) + \frac{3}{4}\right) = 0 \Leftrightarrow \operatorname{sen} x = 0 \lor \frac{3}{2}\operatorname{sen}(2x) + \frac{3}{4} = 0 \Leftrightarrow \operatorname{sen} x = 0 \lor \operatorname{sen}(2x) = -\frac{1}{2}$$
$$\Leftrightarrow x = \pi k \lor 2x = -\frac{\pi}{6} + 2\pi k \lor 2x = -\frac{5\pi}{6} + 2\pi k \Leftrightarrow x = \pi k \lor x = -\frac{\pi}{12} + \pi k \lor x = -\frac{5\pi}{12} + \pi k, k \in \mathbb{Z}$$

Ora, averiguem-se as soluções da equação acima em $\left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right]$:

- para k = -2, tem-se $x = -2\pi$ \vee $x = -\frac{\pi}{12} 2\pi = -\frac{25\pi}{12}$ \vee $x = -\frac{5\pi}{12} 2\pi = -\frac{29\pi}{12}$ \rightarrow nenhuma destas soluções pertence ao intervalo $\left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right]$;
- para k=-1, tem-se $x=-\pi$ \vee $x=-\frac{\pi}{12}-\pi=-\frac{13\pi}{12}$ \vee $x=-\frac{5\pi}{12}-\pi=-\frac{17\pi}{12}$ \rightarrow todas estas soluções pertencem ao intervalo $\left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right]$;
- para k=0, tem-se x=0 \vee $x=-\frac{\pi}{12}$ \vee $x=-\frac{5\pi}{12}$ \rightarrow nenhuma destas soluções pertence ao intervalo $\left[-\frac{3\pi}{2},-\frac{\pi}{2}\right]$.

Estudando o sinal de g'' através de uma tabela de sinal obtém-se:

Х	$-\frac{3\pi}{2}$		$-\frac{17\pi}{12}$		$-\frac{13\pi}{12}$		$-\pi$		$-\frac{\pi}{2}$
g"(x)	+	+	0	_	0	+	0	_	_
g(x)		U	p.i	n	p.i	C	p.i	Λ	

Conclui-se então que:

- o gráfico de g tem concavidade voltada para cima em $\left[-\frac{3\pi}{2}, -\frac{17\pi}{12}\right]$ e em $\left[-\frac{13\pi}{12}, -\pi\right]$;
- o gráfico de g tem concavidade voltada para baixo em $\left[-\frac{17\pi}{12}, -\frac{13\pi}{12}\right]$ e em $\left[-\pi, -\frac{\pi}{2}\right]$;
- o gráfico de g admite três pontos de inflexão nos pontos de abcissa $x=-\frac{17\pi}{12}$, $x=-\frac{13\pi}{12}$ e $x=-\pi$.