1.	TO find Reflection of Ale ABC I would find
	Reflection to each of the given points.
	Given must AFDEN BF47.17 CF27.17
	Given points $A[2,5,1]$ $B[4,7,1]$ $C[2,7,1]$ line equation $y = 1$ at 3.
	(ine equation , y = 1 x 1 3.
	Basic Intuition is
-1	M=1×4-3
P'	
	merges with x-axis.
	2) then I will apply reflection
	P(Ayz) wit to x-axis.
	GT
	(3) To convert $y = \frac{1}{2}$ 2+3 such a way that it meases with x-axis we need Rotation 4 translation.
	with x-axis we need Rotation of translation.
-	(4) Since Du given point also moves wort to the
	line (assuming) [here we basically apply translation
	Since Dus given point also moves wort to the line (assuming) There we basically apply translation and rotation operation on our given point
	(9) then we reflect the point in such a way we
	(5) then we reflect the point in such a way we are reflecting with to x-axis.
	6) finally Two unds the steps (9+(3) by doing inverse rotation of translation.
	inverse rotation of translation.
((using the given tunetion)
	(using the given tunction)

$$2) x' = x cost + y sin + = 2(2) + 8(1) = 12 (v5) + (v5) = √5$$

$$= 9 \left(\frac{2}{\sqrt{5}}\right) - 2 \left(\frac{1}{\sqrt{5}}\right) = \frac{14}{\sqrt{5}}$$

$$\begin{array}{c|c}
\hline
3 & \boxed{12 & -14 & -1 \\
\hline
\sqrt{5} & \sqrt{5} & \sqrt{5}
\end{array}$$

$$=$$
 $\frac{24+14}{5} = \frac{38}{5}$

$$y' = x \sin\theta + y \cos\theta = \frac{(12)}{\sqrt{5}} \left(\frac{1}{\sqrt{5}}\right) + \frac{-14}{\sqrt{5}} \left(\frac{2}{\sqrt{5}}\right)$$

$$= \frac{12 - 28}{5} = \frac{-16}{5}$$

B [
$$y \neq 1$$
]

D ($y = 10 = 1$)

 $x' = x \cos + y \sin 0$
 $= (y)(\frac{2}{\sqrt{5}}) + 10(\frac{1}{\sqrt{5}})$
 $z' = z = 1$

$$\frac{8}{5^2}$$
, -29 , -1

$$\left(\begin{array}{c}
14 \\
\sqrt{5}
\end{array}\right) - \frac{18}{\sqrt{5}} - 1$$

$$\varphi x = x con \theta - y sin \theta$$

$$= (14)(2) - (-18)(3) = 46$$

$$(\sqrt{5})(\sqrt{5})(\sqrt{5}) = \sqrt{5}$$