Exercises – Week 45

Introduction to Financial Engineering

Note: You may choose to work in R or Matlab. Sometimes solutions will be available in one language, sometimes in both.

- 1. (Two-fund separation) Using the data from Week 40, Exercise 1).
 - (a) Calculate the portfolio weights for the global minimum variance portfolio
 - (b) Calculate the portfolio weights for the tangent portfolio
 - (c) Pick a point μ_C between μ_{GMV} and μ_{tan} and calculate the portfolio weights for this portfolio
 - (d) Find a fraction α such that α invested in the GMV-portfolio and $1-\alpha$ invested in the tangent portfolio matches the portfolio in the previous question
 - (e) Confirm that for each asset, the ratio of excess return to its' covariance with the tangent portfolio is identical. Hint: The covariance of asset with the tangent portfolio is easily obtained by multiplying portfolio weights with the covariance matrix.

- 2. (Empirical testing of CAPM) Pick daily historical data for the following eight stocks: American Express, McDonald's, Google, Exxon Mobil Corporation, IBM, Nike, Walmart, Coca-Cola for the period January 1, 2009 to Jan 1, 2019. Also find data for the market (use S&P-500 as "the market", symbol: "SPY").
 - (a) Calculate daily returns for all data
 - (b) Calculate expected market return and the variance
 - (c) Calculate β for each stock using the definition of β
 - (d) Plot historical average returns as a function of β
 - (e) Does the stock data look consistent with CAPM?
 - (f) Repeat the analysis using weekly returns does this change anything?