Cascade Schemes for Calculus Exercises

Andrea Lavino

April 17, 2025

Contents

1	Integrals	3
	1.1 Integral function exercises	3
	1.2 Improper Integral exercises	
2	Differential Equations	20
3	Appendix: Taylor/Maclaurin Polynomials and Standard Limits	21
\mathbf{A}	ppendix: Taylor/Maclaurin Polynomials and Standard Limits	21
	3.1 Taylor and Maclaurin Polynomials	21
	3.2 Standard Limits	22

Introduction

This document collects cascade schemes for exercises, techniques, and fundamental concepts in calculus, organized by chapter. Each scheme follows a hierarchical and synthetic model to facilitate quick consultation and memorization.

1 Integrals

In this section we will explore some types of exercises that can be asked in a typical calculus exam. Specifically we will explore two categories:

- Integral function exercises
- Improper integral exercises

1.1 Integral function exercises

Computing the derivative of a composition of the integral function

Key Question: How can we compute the derivative of a function that is the composition of the integral function with another function?

- Remember the derivative formula for composite functions
 - $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$
- Consider Torricelli's Theorem
 - $F(x) = \int_a^x f(t)dt$
 - F'(x) = f(x)
- Example
 - $G(x) = \int_{a}^{m(x)} f(t) dt = F(m(x))$
 - $G'(x) = F'(m(x)) \cdot m'(x) = f(m(x)) \cdot m'(x)$

Computing the derivative of an integral with variable limits

Key Question: How can we compute the derivative of a function defined by an integral where both limits depend on x, i.e., $G(x) = \int_{n(x)}^{m(x)} f(t)dt$?

- 1. Split the integral using a constant lower limit
 - Use the property of definite integrals: $\int_a^b f(t)dt = \int_c^b f(t)dt \int_c^a f(t)dt$.
 - Apply this to G(x): Choose an arbitrary constant a (often 0 or 1) in the domain of f.

$$G(x) = \int_{n(x)}^{m(x)} f(t)dt = \int_{a}^{m(x)} f(t)dt - \int_{a}^{n(x)} f(t)dt$$

- 2. Define an auxiliary function using Torricelli's Theorem
 - Let $F(x) = \int_a^x f(t)dt$.
 - By the Fundamental Theorem of Calculus (Part 1 / Torricelli's Theorem), F'(x) = f(x).
 - Rewrite G(x) using F: G(x) = F(m(x)) F(n(x)).
- 3. Differentiate using the Chain Rule

• Apply the chain rule to differentiate F(m(x)) and F(n(x)):

$$(F(h(x)))' = F'(h(x)) \cdot h'(x) = f(h(x)) \cdot h'(x)$$

• Therefore, the derivative of G(x) is:

$$G'(x) = \frac{d}{dx}[F(m(x))] - \frac{d}{dx}[F(n(x))]$$

$$G'(x) = F'(m(x)) \cdot m'(x) - F'(n(x)) \cdot n'(x)$$

$$G'(x) = f(m(x)) \cdot m'(x) - f(n(x)) \cdot n'(x)$$

• 4. Example

- Compute the derivative of $G(x) = \int_x^{2x} \frac{\sin t}{t} dt$.
- Here, $f(t) = \frac{\sin t}{t}$, m(x) = 2x, and n(x) = x.
- Choose a = 1 (any constant works). Let $F(x) = \int_1^x \frac{\sin t}{t} dt$.
- Then G(x) = F(2x) F(x).
- The derivatives are m'(x) = 2 and n'(x) = 1.
- Applying the formula:

$$G'(x) = f(m(x)) \cdot m'(x) - f(n(x)) \cdot n'(x)$$

$$G'(x) = f(2x) \cdot 2 - f(x) \cdot 1$$

$$G'(x) = \frac{\sin(2x)}{2x} \cdot 2 - \frac{\sin x}{x} \cdot 1$$

$$G'(x) = \frac{\sin(2x)}{x} - \frac{\sin x}{x} = \frac{\sin(2x) - \sin x}{x}$$

Computing limits involving integrals and indeterminate forms

Key Question: How to compute the limit:

$$\lim_{x \to 0} \frac{x - \int_0^x (e^{-t^2} + \sin^2 t) dt}{x(x^2 - \sin^2 x)}$$

- Initial Check: Identify Indeterminate Form
 - Substitute x = 0 into the numerator: $0 \int_0^0 (e^{-t^2} + \sin^2 t) dt = 0 0 = 0$.
 - Substitute x = 0 into the denominator: $0 \cdot (0^2 \sin^2 0) = 0 \cdot (0 0) = 0$.
 - The limit presents the indeterminate form $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
- Apply L'Hôpital's Rule
 - Differentiate the numerator with respect to x. Requires the Fundamental Theorem of Calculus (Torricelli-Barrow) for the integral part:

$$\frac{d}{dx}\left(x - \int_0^x (e^{-t^2} + \sin^2 t)dt\right) = 1 - (e^{-x^2} + \sin^2 x)$$

• Differentiate the denominator with respect to x using the product rule:

$$\frac{d}{dx}(x(x^2 - \sin^2 x)) = (x^2 - \sin^2 x) + (2x^2 - x\sin(2x))$$

• The limit becomes (applying L'Hôpital's Rule):

$$L \stackrel{H}{=} \lim_{x \to 0} \frac{1 - e^{-x^2} - \sin^2 x}{(x^2 - \sin^2 x) + (2x^2 - x\sin(2x))}$$

- Evaluate the New Limit (Using Taylor Series Approximation)
 - The limit is still in the form $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Further application of L'Hôpital's Rule is possible, but Taylor expansions are often more efficient.
 - Approximate numerator and denominator for $x \to 0$:
 - $1 e^{-x^2} \sin^2 x = \frac{5}{6}x^4 + o(x^4)$
 - $(x^2 \sin^2 x) + (2x^2 x\sin(2x)) = \frac{5}{2}x^4 + o(x^4)$
 - Substitute the approximations back into the limit:

$$L = \lim_{x \to 0} \frac{\frac{5}{6}x^4 + o(x^4)}{\frac{5}{3}x^4 + o(x^4)} = \frac{5/6}{5/3} = \frac{5}{6} \cdot \frac{3}{5} = \frac{1}{2}$$

• **Result:** The limit exists and its value is $\frac{1}{2}$.

Computing Maclaurin Polynomials for Composite Functions with Integrals

Key Question: How to determine the Maclaurin polynomial for $F(x) = \sin\left(\int_0^x e^{-t^2} dt\right)$?

- Define Auxiliary Function for the Integral
 - Let $G(x) = \int_0^x e^{-t^2} dt$.
 - The original function becomes $F(x) = \sin(G(x))$.
- Find the Maclaurin Series for the Auxiliary Function G(x)
 - Calculate derivatives of G(x) and evaluate at x=0:
 - $G(0) = \int_0^0 e^{-t^2} dt = 0$
 - $G'(x)=e^{-x^2}$ (by Fundamental Theorem of Calculus) $\to G'(0)=e^0=1$ $G''(x)=-2xe^{-x^2}\to G''(0)=0$

 - $G'''(x) = -2e^{-x^2} + 4x^2e^{-x^2} \to G'''(0) = -2$
 - Construct the Maclaurin series for G(x) using $G(x) = \sum_{n=0}^{\infty} \frac{G^{(n)}(0)}{n!} x^n$:

$$G(x) = G(0) + G'(0)x + \frac{G''(0)}{2!}x^2 + \frac{G'''(0)}{3!}x^3 + o(x^3)$$

$$G(x) = 0 + 1 \cdot x + \frac{0}{2}x^2 + \frac{-2}{6}x^3 + o(x^3) = x - \frac{1}{3}x^3 + o(x^3)$$

- Use the Known Maclaurin Series for the Outer Function (sin)
 - Recall the Maclaurin series for sin(z):

$$\sin(z) = z - \frac{z^3}{6} + o(z^3)$$

5

Substitute the Series for G(x) into the Series for $\sin(z)$

• Replace z with $G(x) = x - \frac{1}{3}x^3 + o(x^3)$:

$$F(x) = \sin(G(x)) = \left(x - \frac{1}{3}x^3 + o(x^3)\right) - \frac{1}{6}\left(x - \frac{1}{3}x^3 + o(x^3)\right)^3 + o\left((G(x))^3\right)$$

- Since $G(x) \approx x$ for $x \to 0$, we have $o((G(x))^3) = o(x^3)$.
- Expand and keep terms up to x^3 :

$$\left(x - \frac{1}{3}x^3 + o(x^3)\right)^3 = (x + o(x))^3 = x^3 + o(x^3)$$

• Substitute back:

F(x) =
$$\left(x - \frac{1}{3}x^3\right) - \frac{1}{6}(x^3) + o(x^3)$$

$$F(x) = x - \left(\frac{1}{3} + \frac{1}{6}\right)x^3 + o(x^3) = x - \frac{2+1}{6}x^3 + o(x^3) = x - \frac{3}{6}x^3 + o(x^3)$$

$$F(x) = x - \frac{1}{2}x^3 + o(x^3)$$

- Result: Maclaurin Polynomial
 - The Maclaurin polynomial of order 3 for F(x) is $P_3(x) = x \frac{1}{2}x^3$.

Proving Existence and Uniqueness of Solutions Involving Integral Functions

Key Question: How to prove that the equation f(x) = 1 - x, where $f(x) = \int_0^x e^{-t^2} dt$, has a unique solution?

- Reformulate the Problem
 - Define a new function g(x) = f(x) (1 x) = f(x) + x 1.
 - The original problem is equivalent to proving that g(x) = 0 has exactly one solution (a unique zero).
- Prove Existence of a Zero (Intermediate Value Theorem)
 - Continuity: f(x) is continuous because it's an integral function of a continuous integrand (e^{-t^2}) . The term x-1 is also continuous. Therefore, g(x) is continuous on \mathbb{R} .
 - Find points with opposite signs:
 - Evaluate g(0): $g(0) = f(0) + 0 1 = \int_0^0 e^{-t^2} dt 1 = 0 1 = -1$. So, g(0) < 0.
 - Evaluate the limit as $x \to +\infty$:

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \left(\int_0^x e^{-t^2} dt + x - 1 \right)$$

The integral $\int_0^\infty e^{-t^2} dt$ converges to a finite value $(\frac{\sqrt{\pi}}{2})$. The term x goes to $+\infty$.

$$\lim_{x \to +\infty} g(x) = \left(\lim_{x \to +\infty} \int_0^x e^{-t^2} dt\right) + \left(\lim_{x \to +\infty} x\right) - 1 = \frac{\sqrt{\pi}}{2} + \infty - 1 = +\infty$$

• Since the limit is $+\infty$, there must exist some value \bar{x} such that for all $x > \bar{x}$, g(x) > 0. Let's pick one such value \bar{x} .

- Apply IVT: Since g(x) is continuous on $[0, \bar{x}]$, g(0) < 0, and $g(\bar{x}) > 0$, the Intermediate Value Theorem guarantees that there exists at least one $x_0 \in (0, \bar{x})$ such that $g(x_0) = 0$.
- Prove Uniqueness of the Zero (Monotonicity)
 - Calculate the derivative g'(x):

$$g'(x) = \frac{d}{dx}(f(x) + x - 1) = f'(x) + 1$$

• Apply the Fundamental Theorem of Calculus to find f'(x):

$$f'(x) = \frac{d}{dx} \left(\int_0^x e^{-t^2} dt \right) = e^{-x^2}$$

• Substitute back into g'(x):

$$g'(x) = e^{-x^2} + 1$$

- Analyze the sign of g'(x): Since $e^{-x^2} > 0$ for all real x, we have $g'(x) = e^{-x^2} + 1 > 0 + 1 = 1$.
- Since g'(x) > 0 for all $x \in \mathbb{R}$, the function g(x) is strictly increasing on its entire domain.

Conclusion

- We have shown that g(x) = 0 has at least one solution (by IVT).
- We have shown that g(x) is strictly increasing, which means it can cross the x-axis (equal zero) at most once.
- Therefore, the equation g(x) = 0 has exactly one unique solution. This implies the original equation f(x) = 1 x also has a unique solution.

Finding Order and Principal Part for Functions with Integrals (Derivative Method)

Key Question: Determine the order and principal part of $G(x) = x - \int_0^x e^{-(t+x)^2} dt$ as $x \to 0$.

- Strategy: Analyze the Derivative G'(x)
 - It's often easier to find the Maclaurin expansion (order/principal part) of the derivative first, and then integrate.
 - Simplify the integral (Optional Variable Change): Let z = t + x, dz = dt. Limits change from $t \in [0, x]$ to $z \in [x, 2x]$.

$$G(x) = x - \int_x^{2x} e^{-z^2} dz$$

• Rewrite using a fixed lower limit: Let $H(x) = \int_0^x e^{-t^2} dt$. Then $\int_x^{2x} e^{-z^2} dz = H(2x) - H(x)$.

$$G(x) = x - (H(2x) - H(x)) = x - H(2x) + H(x)$$

• Compute the Derivative G'(x)

• Apply differentiation rules, including the Fundamental Theorem of Calculus and Chain Rule:

$$G'(x) = \frac{d}{dx}(x) - \frac{d}{dx}(H(2x)) + \frac{d}{dx}(H(x))$$
$$G'(x) = 1 - (H'(2x) \cdot 2) + H'(x)$$

Since $H'(x) = e^{-x^2}$:

$$G'(x) = 1 - (e^{-(2x)^2} \cdot 2) + e^{-x^2} = 1 - 2e^{-4x^2} + e^{-x^2}$$

- Find Maclaurin Expansion of G'(x)
 - Use the known expansion $e^u = 1 + u + o(u)$ for $u \to 0$.
 - $e^{-4x^2} = 1 4x^2 + o(x^2)$
 - $e^{-x^2} = 1 x^2 + o(x^2)$
 - Substitute into G'(x):

$$G'(x) = 1 - 2(1 - 4x^{2} + o(x^{2})) + (1 - x^{2} + o(x^{2}))$$

$$G'(x) = 1 - 2 + 8x^{2} + o(x^{2}) + 1 - x^{2} + o(x^{2})$$

$$G'(x) = (1 - 2 + 1) + (8x^{2} - x^{2}) + o(x^{2}) = 7x^{2} + o(x^{2})$$

- The principal part of G'(x) is $7x^2$, and its order is 2.
- Determine Order and Principal Part of G(x)
 - Since $G'(x) \sim 7x^2$ as $x \to 0$, and $G(0) = 0 \int_0^0 \cdots = 0$, we can integrate the principal part of G'(x) to find the principal part of G(x):

$$G(x) \approx \int_0^x 7t^2 dt = 7 \left[\frac{t^3}{3} \right]_0^x = \frac{7}{3}x^3$$

- The principal part of G(x) is $\frac{7}{3}x^3$.
- The order of G(x) is 3.
- Thus, $G(x) = \frac{7}{3}x^3 + o(x^3)$ for $x \to 0$.
- Verification (Using L'Hôpital's Rule on the Remainder)
 - To confirm $G(x) = \frac{7}{3}x^3 + o(x^3)$, we must show $\lim_{x\to 0} \frac{G(x) \frac{7}{3}x^3}{x^3} = 0$.

8

• Apply L'Hôpital's Rule (since form is $\frac{0}{0}$):

$$\lim_{x \to 0} \frac{G'(x) - \frac{d}{dx}(\frac{7}{3}x^3)}{\frac{d}{dx}(x^3)} = \lim_{x \to 0} \frac{G'(x) - 7x^2}{3x^2}$$

• Substitute the expansion of G'(x):

$$\lim_{x \to 0} \frac{(7x^2 + o(x^2)) - 7x^2}{3x^2} = \lim_{x \to 0} \frac{o(x^2)}{3x^2} = 0$$

• The limit is 0, confirming the order and principal part.

Qualitative Graph Sketching of Integral Functions near x

Key Question: How to draw a qualitative graph of $f(x) = \int_0^x \frac{e^t}{2t^2+1} dt$ in a neighborhood of x = 0?

- Strategy: Analyze Local Behavior using Derivatives at x=0
 - The behavior of a function near a point (like x = 0) is determined by its value and the values of its derivatives at that point. This is the foundation of Taylor series approximations.
- Calculate f(0)
 - Substitute x = 0 into the integral definition:

$$f(0) = \int_0^0 \frac{e^t}{2t^2 + 1} dt = 0$$

- The function passes through the origin (0,0).
- Calculate f'(x) and f'(0)
 - Apply the Fundamental Theorem of Calculus (Part 1):

$$f'(x) = \frac{d}{dx} \left(\int_0^x \frac{e^t}{2t^2 + 1} dt \right) = \frac{e^x}{2x^2 + 1}$$

• Evaluate at x = 0:

$$f'(0) = \frac{e^0}{2(0)^2 + 1} = \frac{1}{1} = 1$$

- The slope of the tangent line at the origin is 1. The function is increasing at r=0
- Calculate f''(x) and f''(0)
 - Differentiate f'(x) using the quotient rule $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$:

$$u = e^x \implies u' = e^x$$

$$v = 2x^2 + 1 \implies v' = 4x$$

$$f''(x) = \frac{(e^x)(2x^2 + 1) - (e^x)(4x)}{(2x^2 + 1)^2} = \frac{e^x(2x^2 - 4x + 1)}{(2x^2 + 1)^2}$$

• Evaluate at x = 0:

$$f''(0) = \frac{e^0(2(0)^2 - 4(0) + 1)}{(2(0)^2 + 1)^2} = \frac{1(1)}{(1)^2} = 1$$

- Since f''(0) > 0, the function is concave up at x = 0.
- Sketching the Graph near x=0
 - The graph passes through (0,0).
 - The tangent line at (0,0) has a slope of 1 (like the line y=x).
 - The graph is concave up at (0,0), meaning it lies above its tangent line near the point of tangency.
 - Combining these: Start at the origin, draw a curve that is initially tangent to y = x and curves upwards (concave up).

Limit Computation using Integral Inequalities and Squeeze Theorem

Key Question: Calculate the limit $L = \lim_{x\to 0^+} x \int_{x-x^2}^x \frac{dt}{\sin^3 t}$, if it exists.

- Step 1: Analyze Integrand and Integration Interval
 - The integration variable is t, and the interval is $[x x^2, x]$.
 - As $x \to 0^+$, both x and $x x^2 = x(1 x)$ approach 0^+ . Thus, $t \to 0^+$.
 - For $t \in (0, \pi/2)$, sin t is positive and strictly increasing.
 - Consequently, $\sin^3 t$ is also positive and strictly increasing for $t \in (0, \pi/2)$.
 - Therefore, the integrand $g(t) = \frac{1}{\sin^3 t}$ is positive and strictly decreasing for t in the interval $(0, \pi/2)$.
- Step 2: Establish Inequalities for the Integrand
 - Since $t \in [x-x^2, x]$ and $g(t) = \frac{1}{\sin^3 t}$ is decreasing on this interval (for sufficiently small positive x), the minimum value of g(t) occurs at t = x and the maximum value occurs at $t = x x^2$.
 - For $t \in [x x^2, x]$, we have:

$$\frac{1}{\sin^3 x} \le \frac{1}{\sin^3 t} \le \frac{1}{\sin^3 (x - x^2)}$$

- Step 3: Integrate the Inequalities
 - Integrate all parts of the inequality over the interval $[x-x^2, x]$. Since the bounds $\frac{1}{\sin^3 x}$ and $\frac{1}{\sin^3 (x-x^2)}$ are constant with respect to t, we get:

$$\int_{x-x^2}^x \frac{1}{\sin^3 x} dt \le \int_{x-x^2}^x \frac{1}{\sin^3 t} dt \le \int_{x-x^2}^x \frac{1}{\sin^3 (x-x^2)} dt$$

• The length of the integration interval is $x - (x - x^2) = x^2$.

$$\frac{1}{\sin^3 x} \cdot x^2 \le \int_{x-x^2}^x \frac{1}{\sin^3 t} dt \le \frac{1}{\sin^3 (x-x^2)} \cdot x^2$$

$$\frac{x^2}{\sin^3 x} \le \int_{x-x^2}^x \frac{1}{\sin^3 t} dt \le \frac{x^2}{\sin^3 (x-x^2)}$$

- Step 4: Incorporate the External Factor and Compute Limits
 - Multiply the inequality by x (note x > 0 as $x \to 0^+$):

$$\frac{x^3}{\sin^3 x} \le x \int_{x-x^2}^x \frac{1}{\sin^3 t} dt \le \frac{x^3}{\sin^3 (x-x^2)}$$

• Compute the limit of the lower bound as $x \to 0^+$:

$$\lim_{x \to 0^+} \frac{x^3}{\sin^3 x} = \lim_{x \to 0^+} \left(\frac{x}{\sin x}\right)^3 = (1)^3 = 1$$

(using the standard limit $\lim_{u\to 0} \frac{\sin u}{u} = 1$)

• Compute the limit of the upper bound as $x \to 0^+$:

$$\lim_{x \to 0^+} \frac{x^3}{\sin^3(x - x^2)} = \lim_{x \to 0^+} \left(\frac{x}{\sin(x - x^2)}\right)^3$$

We use $\sin(x-x^2) \sim x - x^2$ as $x \to 0$.

$$\lim_{x \to 0^+} \left(\frac{x}{x - x^2} \right)^3 = \lim_{x \to 0^+} \left(\frac{x}{x(1 - x)} \right)^3 = \lim_{x \to 0^+} \left(\frac{1}{1 - x} \right)^3 = \left(\frac{1}{1 - 0} \right)^3 = 1$$

10

• Step 5: Apply the Squeeze Theorem

• We have shown:

$$\lim_{x \to 0^+} \frac{x^3}{\sin^3 x} = 1$$

$$\lim_{x \to 0^+} \frac{x^3}{\sin^3 (x - x^2)} = 1$$

$$\frac{x^3}{\sin^3 x} \le x \int_{x - x^2}^x \frac{1}{\sin^3 t} dt \le \frac{x^3}{\sin^3 (x - x^2)}$$

- By the Squeeze Theorem, the limit of the middle expression must also be 1.
- Therefore, $L = \lim_{x \to 0^+} x \int_{x-x^2}^x \frac{dt}{\sin^3 t} = 1$.

Limit Computation using Mean Value Theorem and Squeeze Theorem

Key Question: Calculate the limit $L = \lim_{x \to +\infty} x^3 \int_{x^2}^{x^2 + x} \sin\left(\frac{1}{t^2}\right) dt$.

- Step 1: Apply Mean Value Theorem for Integrals
 - Theorem Statement: If f is continuous on [a,b], there exists $c \in [a,b]$ such that $\int_a^b f(t)dt = f(c)(b-a)$.
 - Application:
 - Let $f(t) = \sin\left(\frac{1}{t^2}\right)$. This function is continuous on $[x^2, x^2 + x]$ for large x (since $x^2 > 0$).
 - The interval length is $(x^2 + x) x^2 = x$.
 - By the MVT for Integrals, there exists $z \in [x^2, x^2 + x]$ such that:

$$\int_{x^2}^{x^2+x} \sin\left(\frac{1}{t^2}\right) dt = \sin\left(\frac{1}{z^2}\right) \cdot x$$

• Rewrite the Limit: Substitute this result back into the limit expression:

$$L = \lim_{x \to +\infty} x^3 \left[x \sin\left(\frac{1}{z^2}\right) \right] = \lim_{x \to +\infty} x^4 \sin\left(\frac{1}{z^2}\right)$$

where z depends on x and satisfies $x^2 \le z \le x^2 + x$.

- Step 2: Establish Bounds using $z \in [x^2, x^2 + x]$
 - From $x^2 \le z \le x^2 + x$, we have:

$$\frac{1}{x^2 + x} \le \frac{1}{z} \le \frac{1}{x^2}$$

Squaring (all terms are positive for large x):

$$\frac{1}{(x^2+x)^2} \le \frac{1}{z^2} \le \frac{1}{x^4}$$

- As $x \to +\infty$, all terms in the inequality approach 0^+ .
- Since $\sin u$ is an increasing function for u near 0^+ , we can apply \sin to the inequalities (for sufficiently large x):

$$\sin\left(\frac{1}{(x^2+x)^2}\right) \le \sin\left(\frac{1}{z^2}\right) \le \sin\left(\frac{1}{x^4}\right)$$

11

- Step 3: Apply the Squeeze Theorem
 - Multiply the inequality by x^4 (which is positive):

$$x^4 \sin\left(\frac{1}{(x^2+x)^2}\right) \le x^4 \sin\left(\frac{1}{z^2}\right) \le x^4 \sin\left(\frac{1}{x^4}\right)$$

• Limit of the Upper Bound:

$$\lim_{x \to +\infty} x^4 \sin\left(\frac{1}{x^4}\right)$$

Use the standard limit $\lim_{u\to 0} \frac{\sin u}{u} = 1$. Let $u = 1/x^4$. As $x \to +\infty$, $u \to 0^+$.

$$= \lim_{u \to 0^+} \frac{1}{u} \sin(u) = 1$$

• Limit of the Lower Bound:

Let $v = 1/(x^2 + x)^2$. As $x \to +\infty$, $v \to 0^+$. Use $\sin v \sim v$ for $v \to 0$.

$$\lim_{x \to +\infty} x^4 \sin\left(\frac{1}{(x^2 + x)^2}\right)$$

$$= \lim_{x \to +\infty} x^4 \cdot \frac{1}{(x^2 + x)^2} = \lim_{x \to +\infty} \frac{x^4}{(x^2(1 + 1/x))^2} = \lim_{x \to +\infty} \frac{x^4}{x^4(1 + 1/x)^2} = 1$$

• Conclusion: Since the expression $x^4 \sin(1/z^2)$ is squeezed between two functions that both tend to 1 as $x \to +\infty$, by the Squeeze Theorem (Teorema dei Carabinieri):

$$L = \lim_{x \to +\infty} x^4 \sin\left(\frac{1}{z^2}\right) = 1$$

Integration using Weierstrass Substitution (Tangent Half-Angle)

Key Question: How to calculate the integral $I = \int \frac{\tan x}{\sin x + \tan x} dx$?

- Step 1: Simplify the Integrand
 - Rewrite $\tan x$ as $\sin x/\cos x$:

$$\frac{\tan x}{\sin x + \tan x} = \frac{\frac{\sin x}{\cos x}}{\sin x + \frac{\sin x}{\cos x}}$$

• Find a common denominator in the denominator:

$$\frac{\frac{\sin x}{\cos x}}{\sin x + \frac{\sin x}{\cos x}} = \frac{\frac{\sin x}{\cos x}}{\frac{\sin x \cos x + \sin x}{\cos x}}$$

• Simplify (assuming $\sin x \neq 0$, $\cos x \neq 0$):

$$\frac{\frac{\sin x}{\cos x}}{\frac{\sin x \cos x + \sin x}{\cos x}} = \frac{\sin x}{\sin x \cos x + \sin x} = \frac{\sin x}{\sin x (\cos x + 1)} = \frac{1}{\cos x + 1}$$

• The integral becomes significantly simpler: $I = \int \frac{1}{\cos x + 1} dx$.

12

- Step 2: Apply the Weierstrass Substitution $(t = \tan(x/2))$
 - Motivation: This substitution transforms rational functions of $\sin x$ and $\cos x$ into rational functions of t, which can often be integrated using standard techniques (like partial fractions, although not needed here).
 - The Substitution Formulas:

• Let
$$t = \tan\left(\frac{x}{2}\right)$$

- Then $\cos x = \frac{1-t^2}{1+t^2}$
- And $dx = \frac{2}{1+t^2}dt$
- (Also $\sin x = \frac{2t}{1+t^2}$, though not required for this specific simplified integral).
- Step 3: Substitute into the Simplified Integral
 - Replace $\cos x$ and dx with their t-equivalents:

$$I = \int \underbrace{\frac{1}{\left(\frac{1-t^2}{1+t^2}\right)+1}}_{\stackrel{\text{constant}}{\underbrace{-1}}} \cdot \underbrace{\left(\frac{2}{1+t^2}\right)dt}_{dx}$$

• Simplify the first part (the integrand in terms of x expressed in t):

$$\frac{1}{\frac{1-t^2+1+t^2}{1+t^2}} = \frac{1}{\frac{2}{1+t^2}} = \frac{1+t^2}{2}$$

• Substitute this back into the integral expression:

$$I = \int \left(\frac{1+t^2}{2}\right) \cdot \left(\frac{2}{1+t^2}\right) dt$$

- Step 4: Evaluate the Integral in t
 - The integrand simplifies dramatically:

$$I = \int 1 dt$$

• Compute the straightforward integral:

$$I = t + C$$

- Step 5: Substitute Back to x
 - Replace t with its definition in terms of x:

$$I = \tan\left(\frac{x}{2}\right) + C$$

13

• **Result:** The integral evaluates to $\int \frac{\tan x}{\sin x + \tan x} dx = \tan \left(\frac{x}{2}\right) + C$.

1.2 Improper Integral exercises

Evaluating Improper Integrals using the Definition

Key Question: How to compute the value of the improper integral $\int_0^1 \log x \, dx$?

- Step 1: Identify the Point of Impropriety
 - The function $f(x) = \log x$ is defined on (0,1].
 - The integral is improper because the integrand $\log x$ approaches $-\infty$ as x approaches the lower limit of integration, x = 0.
- Step 2: Apply the Definition of Improper Integral
 - Replace the problematic lower limit 0 with a variable ϵ and take the limit as ϵ approaches 0 from the right side (since the interval is (0,1]):

$$\int_0^1 \log x \, dx \stackrel{\text{def}}{=} \lim_{\epsilon \to 0^+} \int_{\epsilon}^1 \log x \, dx$$

- Step 3: Find the Antiderivative
 - Compute the indefinite integral $\int \log x \, dx$ using integration by parts:
 - Let $u = \log x \implies du = \frac{1}{x} dx$
 - Let $dv = dx \implies v = x$

$$\int \log x \, dx = uv - \int v \, du = x \log x - \int x \left(\frac{1}{x}\right) dx$$
$$= x \log x - \int 1 \, dx = x \log x - x + C = x(\log x - 1) + C$$

- An antiderivative is $F(x) = x(\log x 1)$.
- Step 4: Evaluate the Definite Integral and Compute the Limit
 - Use the antiderivative to evaluate the definite integral inside the limit (Fundamental Theorem of Calculus / Torricelli-Barrow):

$$\int_{\epsilon}^{1} \log x \, dx = [x(\log x - 1)]_{\epsilon}^{1} = (1(\log 1 - 1)) - (\epsilon(\log \epsilon - 1))$$
$$= (1(0 - 1)) - (\epsilon \log \epsilon - \epsilon) = -1 - \epsilon \log \epsilon + \epsilon$$

• Now, compute the limit as $\epsilon \to 0^+$:

$$\lim_{\epsilon \to 0^+} (-1 - \epsilon \log \epsilon + \epsilon)$$

• Use the standard limit $\lim_{\epsilon \to 0^+} \epsilon \log \epsilon = 0$.

$$=-1-0+0=-1$$

- Conclusion
 - Since the limit exists and is finite, the improper integral converges.

14

• The value of the integral is $\int_0^1 \log x \, dx = -1$.

Integration using Weierstrass Substitution (Tangent Half-Angle)

Key Question: How to calculate the integral $I = \int \frac{\tan x}{\sin x + \tan x} dx$?

- Step 1: Simplify the Integrand
 - Rewrite $\tan x$ as $\sin x/\cos x$:

$$\frac{\tan x}{\sin x + \tan x} = \frac{\frac{\sin x}{\cos x}}{\sin x + \frac{\sin x}{\cos x}}$$

• Find a common denominator in the denominator:

$$= \frac{\frac{\sin x}{\cos x}}{\frac{\sin x \cos x + \sin x}{\cos x}}$$

• Simplify (assuming $\sin x \neq 0$, $\cos x \neq 0$):

$$=\frac{\sin x}{\sin x \cos x + \sin x} = \frac{\sin x}{\sin x (\cos x + 1)} = \frac{1}{\cos x + 1}$$

- The integral becomes significantly simpler: $I = \int \frac{1}{\cos x + 1} dx$.
- Step 2: Apply the Weierstrass Substitution $(t = \tan(x/2))$
 - Motivation: This substitution transforms rational functions of $\sin x$ and $\cos x$ into rational functions of t, which can often be integrated using standard techniques (like partial fractions, although not needed here).
 - The Substitution Formulas:
 - Let $t = \tan\left(\frac{x}{2}\right)$ Then $\cos x = \frac{1-t^2}{1+t^2}$

 - And $dx = \frac{2}{1+t^2}dt$
 - (Also $\sin x = \frac{2t}{1+t^2}$, though not required for this specific simplified inte-
- Step 3: Substitute into the Simplified Integral
 - Replace $\cos x$ and dx with their t-equivalents:

$$I = \int \underbrace{\frac{1}{\left(\frac{1-t^2}{1+t^2}\right)+1}}_{\stackrel{\text{cos } x+1}{\text{cos } x+1}} \cdot \underbrace{\left(\frac{2}{1+t^2}\right)dt}_{dx}$$

Simplify the first part (the integrand in terms of x expressed in t):

15

$$\frac{1}{\frac{1-t^2+1+t^2}{1+t^2}} = \frac{1}{\frac{2}{1+t^2}} = \frac{1+t^2}{2}$$

• Substitute this back into the integral expression:

$$I = \int \left(\frac{1+t^2}{2}\right) \cdot \left(\frac{2}{1+t^2}\right) dt$$

Step 4: Evaluate the Integral in t

• The integrand simplifies dramatically:

$$I = \int 1 \, dt$$

• Compute the straightforward integral:

$$I = t + C$$

- Step 5: Substitute Back to x
 - Replace t with its definition in terms of x:

$$I = \tan\left(\frac{x}{2}\right) + C$$

• **Result:** The integral evaluates to $\int \frac{\tan x}{\sin x + \tan x} dx = \tan \left(\frac{x}{2}\right) + C$.

Convergence of Improper Integrals with Oscillating Numerators

Key Question: How to discuss the convergence of the improper integral $I = \int_0^\infty \frac{\cos x}{1+x^2} dx$?

- Step 1: Identify Potential Issues
 - Infinite Interval: The upper limit is $+\infty$, making it an improper integral of the first kind.
 - Sign Changes: The numerator $\cos x$ oscillates between -1 and 1, causing the integrand $f(x) = \frac{\cos x}{1+x^2}$ to change sign infinitely often.
 - **Problem with Direct Comparison:** Standard comparison tests (Direct Comparison, Limit Comparison) require the integrand to be non-negative (at least eventually), which is not the case here.
- Step 2: Use Absolute Convergence
 - Strategy: Test the convergence of the integral of the absolute value of the integrand:

$$I_{abs} = \int_0^\infty \left| \frac{\cos x}{1+x^2} \right| dx = \int_0^\infty \frac{|\cos x|}{1+x^2} dx$$

- Absolute Convergence Theorem: If I_{abs} converges, then the original integral I also converges.
- The new integrand $\frac{|\cos x|}{1+x^2}$ is now non-negative, allowing the use of comparison tests.
- Step 3: Apply Direct Comparison Test to I_{abs}
 - Establish Inequality: Use the property $|\cos x| \le 1$ for all x:

$$0 \le \frac{|\cos x|}{1+x^2} \le \frac{1}{1+x^2} \quad \text{for all } x \ge 0$$

• Analyze the Comparison Integral: Consider the integral $J = \int_0^\infty \frac{1}{1+x^2} dx$.

16

• Convergence of *J* (Method 1: Direct Integration):

$$J = \int_0^\infty \frac{1}{1+x^2} dx = [\arctan x]_0^\infty = \lim_{b \to \infty} (\arctan b) - \arctan 0 = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

Since the result is finite, J converges.

- Convergence of *J* (Method 2: Splitting & Asymptotic Comparison Important General Technique):
 - Split the integral: $J = \int_0^1 \frac{1}{1+x^2} dx + \int_1^\infty \frac{1}{1+x^2} dx$.
 - The integral $\int_0^1 \frac{1}{1+x^2} dx$ is proper and finite (integrand is continuous on [0,1]).
 - For $\int_1^\infty \frac{1}{1+x^2} dx$, compare with $\int_1^\infty \frac{1}{x^2} dx$. Since $0 < \frac{1}{1+x^2} \le \frac{1}{x^2}$ for $x \ge 1$ and $\int_1^\infty \frac{1}{x^2} dx$ converges (p-integral with p = 2 > 1), the integral $\int_1^\infty \frac{1}{1+x^2} dx$ converges by Direct Comparison.
 - Since both parts converge, J converges. (Note: Splitting is crucial when dealing with multiple improprieties or when asymptotic comparison is needed at different points).
- Conclusion of Comparison Test: Since $0 \le \frac{|\cos x|}{1+x^2} \le \frac{1}{1+x^2}$ and $\int_0^\infty \frac{1}{1+x^2} dx$ converges, by the Direct Comparison Test, $I_{abs} = \int_0^\infty \frac{|\cos x|}{1+x^2} dx$ must also converge.
- Step 4: Final Conclusion
 - We have shown that $I_{abs} = \int_0^\infty \left| \frac{\cos x}{1+x^2} \right| dx$ converges.
 - By the theorem on absolute convergence, if an integral converges absolutely, it also converges simply.
 - Therefore, the original integral $I = \int_0^\infty \frac{\cos x}{1+x^2} dx$ converges.

Determining Improper Integral Convergence using Asymptotic Comparison

Key Question: How can we determine if an improper integral converges when the integrand is complex, especially near a point of discontinuity?

• **Problem Setup:** Consider the integral:

$$I = \int_0^1 f(x)dx = \int_0^1 \frac{\sqrt{x(x^2 + 1)}e^{2x}}{\tan \sqrt[3]{x}} dx$$

The potential problem (discontinuity) is at x = 0.

- Check Conditions for Comparison Test:
 - The function f(x) must be continuous on (0,1].
 - The function f(x) must be non-negative on (0,1].
 - In this case, f(x) is non-negative for $x \in (0,1]$.
- Apply Asymptotic Comparison Test (Limit Comparison Test): We need to find a simpler function g(x) such that $f(x) \sim g(x)$ as $x \to 0^+$. The convergence of $\int_0^1 f(x)dx$ will be the same as the convergence of $\int_0^1 g(x)dx$.
 - Analyze numerator as $x \to 0^+$:

$$\sqrt{x(x^2+1)} = \sqrt{x^3+x} \sim \sqrt{x} = x^{1/2}$$

$$e^{2x} \sim e^0 = 1$$

So, Numerator $\sim x^{1/2}$.

• Analyze denominator as $x \to 0^+$:

$$\tan\sqrt{x} \sim \sqrt{x} = x^{1/2}$$

$$\tan \sqrt[3]{x} \sim x^{1/3} = x^{1/3}$$

• Determine asymptotic behavior of f(x):

$$f(x) \sim \frac{\sqrt{x}}{\sqrt[3]{x}} = \frac{x^{1/2}}{x^{1/3}} = x^{1/2 - 1/3} = x^{1/6}$$

So, we use $g(x) = x^{1/6}$.

• Analyze the Comparison Integral: We examine the convergence of $\int_0^1 g(x)dx$:

$$\int_0^1 x^{1/6} dx = \int_0^1 \frac{1}{x^{-1/6}} dx$$

This is a generalized p-integral $\int_0^1 \frac{1}{x^p} dx$. It converges if and only if p < 1. In our case, p = -1/6. Since p = -1/6 < 1, the comparison integral $\int_0^1 x^{1/6} dx$ converges.

• Conclusion: Since $f(x) \sim x^{1/6}$ as $x \to 0^+$ and $\int_0^1 x^{1/6} dx$ converges, by the Limit Comparison Test, the original integral

$$\int_0^1 \frac{\sqrt{x(x^2+1)}e^{2x}}{\tan\sqrt[3]{x}} dx \quad \textbf{converges.}$$

Convergence of Improper Integrals with Parameters using Taylor Expansion

Key Question: How can we determine the values of a parameter α for which an improper integral converges, especially when the integrand's behavior near the problematic point requires Taylor series?

• **Problem Setup:** Consider the integral dependent on α :

$$I(\alpha) = \int_0^1 \frac{3}{[2(x - \log(1+x))]^{3-3\alpha}} dx$$

We need to find the values of α for which this integral converges. The potential problem point is x = 0.

- Asymptotic Analysis near x=0 using Taylor Expansion: To understand the behavior of the integrand $f(x,\alpha)=\frac{3}{[2(x-\log(1+x))]^{3-3\alpha}}$ as $x\to 0^+$, we need the Taylor expansion of $\log(1+x)$ around x=0.
 - Recall Taylor expansion:

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = x - \frac{x^2}{2} + o(x^2)$$
 as $x \to 0$

• Analyze the term $x - \log(1 + x)$:

$$x - \log(1+x) = x - \left(x - \frac{x^2}{2} + o(x^2)\right) = \frac{x^2}{2} + o(x^2)$$

18

Therefore, $x - \log(1+x) \sim \frac{x^2}{2}$ as $x \to 0^+$.

• Analyze the base of the power in the denominator:

$$2(x - \log(1+x)) \sim 2\left(\frac{x^2}{2}\right) = x^2 \text{ as } x \to 0^+$$

• Determine the asymptotic behavior of the integrand $f(x,\alpha)$:

$$f(x,\alpha) = \frac{3}{[2(x - \log(1+x))]^{3-3\alpha}} \sim \frac{3}{[x^2]^{3-3\alpha}} = \frac{3}{x^{6-6\alpha}}$$
 as $x \to 0^+$

• Apply Asymptotic Comparison Test: The convergence of $I(\alpha)$ is equivalent to the convergence of the comparison integral:

$$\int_0^1 \frac{3}{x^{6-6\alpha}} dx = 3 \int_0^1 \frac{1}{x^{6-6\alpha}} dx$$

- Analyze the Comparison Integral (Generalized p-integral): The integral $\int_0^1 \frac{1}{x^p} dx$ converges if and only if p < 1. In our case, the exponent is $p = 6 6\alpha$.
- Determine the Condition for Convergence: For convergence, we require p < 1:

$$6 - 6\alpha < 1$$

$$5 < 6\alpha$$

$$\alpha > \frac{5}{6}$$

• Conclusion: Based on the asymptotic comparison test and the condition for p-integral convergence, the original integral

$$\int_0^1 \frac{3}{[2(x-\log(1+x))]^{3-3\alpha}} dx \quad \text{converges if and only if } \alpha > \frac{5}{6}.$$

2 Differential Equations

Sample Cascade Scheme: Solving a First-Order Linear Differential Equation

First-Order Linear Differential Equation

Key Question: How do you solve y' + p(x)y = q(x)?

- Find the integrating factor
 - $\mu(x) = e^{\int p(x)dx}$
- Multiply both sides by $\mu(x)$
- Rewrite the left side as the derivative of a product
- Integrate both sides
- Isolate the general solution

3 Appendix: Taylor/Maclaurin Polynomials and Standard Limits

3.1 Taylor and Maclaurin Polynomials

General Taylor and Maclaurin Formulas

Taylor Polynomial of order n for f(x) at x = a:

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Maclaurin Polynomial: Taylor polynomial at a = 0:

$$T_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

Remainder (Peano form):

$$R_n(x) = o((x-a)^n)$$
 as $x \to a$

Maclaurin Series for Major Functions

Exponential:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Sine:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Cosine:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Tangent (first terms):

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + o(x^7)$$

Arctangent:

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

Natural Logarithm:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, \quad |x| < 1$$

Binomial Series: For |x| < 1, $\alpha \in \mathbb{R}$,

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \cdots$$

Inverse:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

Examples: Maclaurin Polynomials (Order 3 or 4)

•
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$$

•
$$\sin x = x - \frac{x^3}{6} + o(x^3)$$

•
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

•
$$\tan x = x + \frac{x^3}{3} + o(x^3)$$

•
$$\arctan x = x - \frac{x^3}{3} + o(x^3)$$

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$$

•
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}x^3 + o(x^3)$$

3.2 Standard Limits

Standard Limits as $x \to 0$

$$\bullet \quad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\bullet \quad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

•
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

•
$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

•
$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

$$\bullet \quad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\bullet \quad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

•
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \ (a > 0)$$

•
$$\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha \ (\alpha \in \mathbb{R})$$

$$\bullet \quad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\bullet \quad \lim_{x \to 0} \frac{x}{\ln(1+x)} = 1$$

$$\bullet \lim_{x \to 0} \frac{\sin(ax)}{x} = a$$

•
$$\lim_{x \to 0} \frac{\arctan(ax)}{x} = a$$

$$\bullet \lim_{x \to 0} \frac{\ln(1 + \sin x)}{x} = 1$$

$$\bullet \quad \lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$$

•
$$\lim_{x \to 0} \frac{(1+x)^n - 1}{x} = n \ (n \in \mathbb{N})$$

Standard Limits as $x \to \infty$

$$\bullet \quad \lim_{x \to \infty} \frac{\ln x}{x} = 0$$

•
$$\lim_{x \to \infty} \frac{x^a}{e^x} = 0$$
 for any $a > 0$

•
$$\lim_{x \to \infty} \frac{e^{ax}}{x^b} = \begin{cases} 0 & a < 0 \\ \infty & a > 0 \end{cases}$$

•
$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$$

•
$$\lim_{x \to \infty} x^{1/x} = 1$$

•
$$\lim_{x \to \infty} \frac{\ln x}{x^a} = 0$$
 for $a > 0$

•
$$\lim_{x \to \infty} \frac{x^a}{\ln x} = \infty$$
 for $a > 0$

•
$$\lim_{x \to \infty} \frac{x^a}{x^b} = \begin{cases} 0 & a < b \\ 1 & a = b \\ \infty & a > b \end{cases}$$

•
$$\lim_{x \to \infty} \arctan x = \frac{\pi}{2}$$

•
$$\lim_{x \to \infty} \frac{a^x}{b^x} = 0 \text{ if } 0 < a < b$$

Other Useful Limits

•
$$\lim_{x \to 0} (1+x)^{1/x} = e$$

•
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

$$\bullet \quad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\bullet \quad \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

•
$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{x} = 1$$

•
$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

$$\bullet \quad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

These formulas and limits are fundamental tools for solving calculus problems, especially for evaluating limits, approximating functions, and analyzing local behavior.