### Lecture 4: Linking the observed data to the SCM, The statistical model

#### A roadmap for causal inference

- 1. Specify **Causal Model** representing <u>real</u> background knowledge
- 2. Specify Causal Question
- 3. Specify Observed Data and link to causal model
- 4. Identify: Knowledge + data sufficient?
- 5. Commit to an **estimand** as close to question as possible, and a **statistical model** representing real knowledge.
- 6. Estimate
- 7. Interpret Results

#### Outline

- 1. The observed data and their link to the SCM
- 2. From the SCM to a Statistical Model
  - What causal structures result in statistical independence
    - The d-separation criteria
  - How to tell what restrictions, if any, the SMC places on the allowed distributions for the observed data

#### References

- TLB. Chapter 2
- Pearl. "An Introduction to Causal Inference" Int J Biostat, 6(2): Article 7, 2010.
- Greenland and Pearl. "Causal Diagrams" in S. Boslaugh, editor, <u>Encyclopedia of Epidemiology</u>.
   Sage Publications, Thousand Oaks, CA, 2007
- Greenland, Pearl and Robins. "Causal Diagrams for Epidemiologic Research" *Epidemiology*, 10(1): 37-48, 1999.

#### Specify the Observed Data

- Of course, you can do this without the benefit of a causal model
- Example: Observed data are
  - Baseline covariates W= (age, sex, SES)
  - Exposure A= Vitamin Use
  - Outcome Y= Breast cancer status at 5 years
  - $O=(W,A,Y)^P_0$
- Note: the observed data are a (multidimensional) random variable and have a distribution

#### Linking the observed data to the SCM

- We assume that the observed data were generated by a data generating system compatible with our SCM
  - O is a subset of X
- The distribution of U and the structural equations F identify the distribution of X, and thus the distribution of O
  - For example: For O=X

$$P_0(O = o) = \sum_{u} P_f(X = x | U = u) P(U = u) = \sum_{u} I(X(u) = x) P(U = u)$$

#### Linking the observed data to the SCM

- We observe a sample of size n of the random variable O
  - For now we will work with independent samples
  - The framework is not restricted to this
- This gives us n i.i.d. copies O<sub>1</sub>,O<sub>2</sub>,...,O<sub>n</sub> drawn from probability distribution P<sub>0</sub>
- In other words, we assume our observed data were generated by sampling n times from the data generating system specified in our causal model

### What restrictions, if any, does the SCM put on the observed data distribution?

- How to tell what these are?
  - You can work it out based on functions F and allowed distributions for P<sub>U</sub>
  - You can evaluate the causal graph using the dseparation criteria
- Why is this helpful? Any such restrictions
- 1. Give us our statistical model
  - Set of allowed distributions for P<sub>0</sub>
- 2. Give us the testable implications (if any) of our SCM

## What causal structures can lead to dependence between two observed variables?

#### 1. Direct and Indirect Effects

An effect of A on Y can result in an association



### What causal structures can lead to dependence between two observed variables?

#### 2. Shared common cause

 Common cause (measured or unmeasured) of A and Y can result in an association

 When the common cause is not included in X, it is represented through the dependence it induces between errors U





# If neither of these sources of dependence are present, A and Y will be independent in every probability distribution P<sub>0</sub> compatible with the SCM

- In other words, any data generating experiment that is compatible with the SCM will give rise to an observed data distribution in which A and Y are independent
  - Regardless of functional form, strength of associations, etc...
  - See also Pearl Causality Chapter 1

#### Examples: A and Y independent?



### What causal structures can lead to dependence between two observed variables?

- 3. Conditioning on a Collider
  - Collider= "inverted fork" a->b<-c</li>
  - Conditioning on a common effect (descendent)
     of A and Y can result in an association between A
     and Y
    - Berkson's bias/ selection bias



#### Example: Sprinkler, rain and wet pavement

- Say the sprinkler is on a timer (unknown to us)
- What would an SCM look like for these three variables?
- Does the Graph imply that the sprinkler going off and it raining are independent?
  - If we learn that the sprinkler went off, does it give us any additional information about whether it rained?
  - If we learn that it rained, does it give us any additional information about whether the sprinkler went off?

#### Example: Sprinkler, rain and wet pavement

- Both cause the pavement to be wet
- Are sprinkler and rain independent conditional on whether the pavement is wet?
  - If we see the pavement is wet and learn that the sprinkler went off, does it give us any additional information about whether it rained?



### What can remove a source of dependence between variables?

 Conditioning on a causal intermediate or shared common cause between A and Y will remove that source of dependence



### Summing Up: When does a graph/SCM imply that variables/nodes are independent?

- Path= set of connected edges (any directionality)
- A is (unconditionally) independent of Y if
- 1. There is no path between A and Y

Or, 
$$A \longrightarrow W$$

2. All paths between A and Y are "blocked" by a collider



### Summing Up: When does a graph imply that variables/nodes are independent?

- A is independent of Y given W if W blocks all unblocked paths and doesn't create any new unblocked paths
  - Conditioning on a non-collider blocks a path



 Conditioning on a collider (or a descendent of a collider) opens a path



#### So when is a path blocked?

If it has a non-collider that has been conditioned on

or

 If it has a collider and neither the collider nor a descendent of the collider has been conditioned on

 Absence of unblocked paths implies (conditional) independence

#### Definition: D-separation

- A set of nodes S blocks a path if either
- 1) The path has at least one arrow emitting node in S
  - The path is open, but S blocks it
- 2) The path has at least one collider that is outside of S and has no descendent in S
  - The path is already blocked and S doesn't open it
- If S blocks all paths from X to Y then S <u>d-separates X</u> and Y, and X is independent of Y given S

#### Examples of d-separation

- Path W<sub>1</sub> to Y
  - Blocked by {}?
  - Blocked by W<sub>2</sub>?
  - Blocked by Z?
- Path W<sub>1</sub> to W<sub>2</sub>
  - Blocked by {}?
  - Blocked by Z?
  - Blocked by Y?



#### Why is *d-separation* helpful?

- Tells us what restrictions (if any) our causal model puts on the allowed distributions for the observed data
  - d-separation between two variables X and Y conditional on some subset of additional variables
     S implies X independent of Y given S in every probability distribution compatible with the SCM
- This is testable
- This gives us our statistical model

#### Statistical Models

- The statistical model  $\mathcal M$  is the set of possible distributions for the observed data:  $P_0 \in \mathcal M$
- Non-parametric Model: No restrictions on the set of possible distributions  $P_0$
- Semi-parametric Model: Puts some restrictions on the set of possible distributions for  $P_0$
- Parametric Model: Assumes that we know  $P_0$  up to a finite number of unknown parameters

#### Example: Parametric Model

- $O=X^P_0$ ; X continuous
- We know that X has exponential distribution

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$



- ${\mathcal M}$  is the set of all exponential distributions
  - Completely described by a single parameter  $\lambda$
- We know the distribution of X up to a finite number (in this case one) of unknown parameters

#### Non-Parametric Model

- All we know is that we have n i.i.d. copies of O
  - We may have some additional knowledge about how O was generated (represented in our SCM),
  - This knowledge does not imply any restrictions on the set of possible distributions for P<sub>0</sub>
- Example: Non-parametric Model
  - $O=X^P_0$ ; X continuous
  - $-\mathcal{M}$  is the set of all possible distributions for X
  - We do not know the distribution of X up to a finite number of unknown parameters

#### Parametric vs. Non-Parametric Models

- Parametric and Non-parametric models are not mutually exclusive categories
- If O is discrete with finite number of outcomes or possible values then we always know its distribution up to a finite number of unknown parameters
- So a <u>non-parametric model for discrete O</u> (ie a model that does not restrict the set of allowed distributions for O) <u>is also technically</u> <u>parametric</u> (has a finite number of unknown parameters).

#### Parametric vs. Non-Parametric Models

- Parametric and Non-parametric models are not mutually exclusive categories
- Example: O=(A,W), A and W both binary
  - 4 possible outcomes for O:(A=1,W=1); (A=1,W=0); (A=0,W=1); (A=0,W=0)
  - Probabilities of these mutually exclusive events have to sum to 1
  - -> Knowing the probability of 3 of these events gives us the whole probability distribution for O

#### Parametric vs. Non-Parametric Models

- A <u>non-parametric model for discrete O</u> (ie a model that does not restrict the set of allowed distributions for O) <u>is also parametric</u> (has a finite number of unknown parameters).
  - However, may be many possible parametric models for O that do restrict its set of allowed distributions.
- The point is not that parametric (or semiparametric) models are bad
- The point is that our model should accurately reflect our knowledge
  - It should contain the true distribution of O

#### Recap: Why is *d-separation* helpful?

- Tells us what restrictions (if any) our causal model puts on the allowed distributions for the observed data
  - d-separation between two variables X and Y conditional on some subset of additional variables
     S implies X independent of Y given S in every probability distribution compatible with the SCM
- This is testable
- This gives us our statistical model

- O=(W,A,Y)
  - No exclusion restrictions or independence assumptions
- What is the graph?
- What are the testable implications?
- What is the statistical model?



- O=(W,A,Y)
  - W does not affect A or Y; A does not affect Y
  - U<sub>A</sub> and U<sub>Y</sub> independent
- What is the graph?
- What are the testable implications?
- What is the statistical model?



- O=(W,A,Y)
  - W does not affect A
  - U<sub>A</sub> independent of U<sub>Y</sub> and U<sub>W</sub>
- What is the graph?
- What are the testable implications?
- What is the statistical model?



- O=(W,A,Y)
  - A does not affect Y
  - U<sub>A</sub> independent of U<sub>Y</sub> and U<sub>W</sub>
- What is the graph?
- What are the testable implications?
- What is the statistical model?



#### <u>D-separation implies conditional</u> <u>independence:</u>

If A and Y are d-separated by W, then A and Y are independent given W in <u>every</u> distribution compatible with the SCM

But...

Lack of d-separation does not imply conditional dependence ...

If A and Y are <u>not</u> d-separated by W, then A and Y dependent given W in <u>at least one</u> distribution compatible with the SCM

### Note: Lack of d-separation does not imply dependence...

- Various sources of dependence can cancel each other...
- Example:
  - A causes Y
  - W is a negative confounder of the effect of A on Y (eg W causes A and prevents Y)
  - If these two opposing sources of dependence have the same magnitude, A and Y may still be independent in a distribution compatible with this graph

### Implications...Learning graphs from data

- Why not look at independence in observed data distribution and use them to learn about the true causal model?
- In order to make progress, you end up needing a new assumption: "stability" or "faithfulness"
  - Basically- assumes that all the independencies we see in our observed data are structural (rather than reflecting various sources of dependence cancelling each other out)
- This is a large area of active research
  - We will not cover it in this class

#### What have done so far?

- We specified a structural causal model:  $\mathcal{M}^{\mathcal{F}}$ 
  - Consisted of specifying
    - X variables and U variables
    - Structural equations F (one for each X node)
      - Exclusion restrictions on the set of preceding nodes included in each parent set
    - Set of allowed distributions for P<sub>U</sub>
      - Assumptions on the independence of any two or more U variables
  - This gave the allowed distributions for  $(U,X)^P_{U,X}$

#### What have we done so far?

- We specified a target causal parameter using counterfactuals
  - Counterfactuals were derived by evaluating the system of structural equations under a specific intervention
  - The resulting counterfactual parameters are thus parameters of the distribution of (U,X):  $\Psi^F(P_{U,X})$ 
    - Example

$$\Psi^F(P_{U,X}) = E_{U,X}(Y_1 - Y_0)$$

#### What have we done so far?

- We linked the observed data to the SCM
  - We assumed that the observed data were drawn from the system we specified using a SCM
  - O is a subset of X
  - $-O^{P_0}$
- The model  $\mathcal{M}^{\mathcal{F}}$  (which gives us the allowed distributions for  $P_{U,X}$ ) implied a statistical model  $\mathcal{M}$  (which gives us the allowed distributions for  $P_0$ )

#### What have we done so far?

- The d-separation criteria provided a straightforward way to indentify what restrictions, if any, the SCM places on the allowed distributions for P<sub>0</sub>
  - Functional or inequality constraints may also restrict the statistical model
- Often, no restrictions: Non-parametric statistical model
- Sometimes, some restrictions: Semi-parametric statistical model
  - Randomization is a classic example

#### The Roadmap....

#### 1. Causal Model

Representing background knowledge and uncertainty

#### 3. Observed Data

Process that generated the data described by the causal model

### Statistical Model Possible distributions for the Observed data

#### 2. Question

Translate the scientific question into a formal causal quantity (using counterfactuals)

#### **Key Points**

- We assume that the system that generated our observed data is described by our SCM
- Observed data: O<sup>P</sup>0
- The SCM, which is a model on  $P_{U,X}$ , implies a model  $\mathcal M$  on  $P_0$ 
  - We refer to this as our statistical model
  - d-separation can be used to derive (many of) the testable implications of a SCM
- A <u>non-parametric</u> statistical model places no restrictions on the set of possible distributions for O