МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫХ НАУК КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Численные методы

Домашняя работа №1.3 «Методы простой итерации и Зейделя Методы касательных, секущих, метод деления отрезка пополам» Группа ФН11-52Б

Вариант №9

Студент: Очкин Н.В.

Преподаватель: Кутыркин В.А.

Оценка:

Задание 1.1

Используя метод простой итерации с нулевым начальным вектором, найти приближённое решение СЛАУ: A > x = b, с матрицей, имеющей диагональное преобладание. Абсолютная погрешность приближённого решения не должна превышать величины 0,01. Предполагается, что все компоненты решения заданной СЛАУ равны единице. Кроме того, используя неравенство

$$||x_{(k)}|| > x_*|| \le \frac{||F||^k}{1 - ||F||} \cdot ||x_{(k)}|| + ||F||^k \cdot ||x_{(k)}||,$$

найти в методе простой итерации число шагов, необходимое для того чтобы гарантировать абсолютную погрешность приближённого решения не более 0,01. Сравнить это расчётное количество шагов с реальным количеством шагов, обеспечившим заданную погрешность

Дано

$$A = \begin{pmatrix} 10.6 & 1.0 & 2.0 & 3.0 \\ -1.0 & 10.6 & -3.0 & 2.0 \\ 2.0 & 3.0 & 10.6 & 1.0 \\ 3.0 & 2.0 & 1.0 & 10.6 \end{pmatrix} \quad b = \begin{pmatrix} 16.6 \\ 8.6 \\ 16.6 \\ 16.6 \end{pmatrix} \quad x_0 = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix}$$

Решение

Рабочая формула метода простой итерации для решения СЛАУ:

$$x_{k+1} = F \cdot x_{(k)} + g,$$
 (1)

где

$$F = E - D \cdot A,$$

Е - единичная матрица,

D - матрица, состоящая только из диагонали матрицы A, где каждый элемент находится в -1 степени,

$$||F|| < 1,$$

$$g = D \cdot b$$

Все вычисления произведем в python, при помощи библиотеки numpy

$$D = \begin{pmatrix} 0.094 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.094 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.094 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.094 \end{pmatrix} \quad E = \begin{pmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{pmatrix}$$

$$F = \begin{pmatrix} 0.0 & -0.094 & -0.189 & -0.283 \\ 0.094 & 0.0 & 0.283 & -0.189 \\ -0.189 & -0.283 & 0.0 & -0.094 \\ -0.283 & -0.189 & -0.094 & 0.0 \end{pmatrix} ||F|| = 0.566$$

$$g = \begin{pmatrix} 1.566 \\ 0.811 \\ 1.566 \\ 1.566 \end{pmatrix}$$

Вычислим теоретическое количество шагов, необходимых для результата с заданной погрешностью

Воспользуемся рабочей формулой (1)

Итого мы получили ответ с заданной погрешностью за k=5 шагов.

Задание 1.2

Используя метод Зейделя с нулевым начальным вектором, найти приближённое решение СЛАУ: $A \cdot {}^> x = {}^> b$, с матрицей, имеющей диагональное преобладание. Абсолютная погрешность приближённого решения не должна превышать величины 0,01. Предполагается, что все компоненты решения заданной СЛАУ равны единице. Сравнить в методах простой итерации и Зейделя количество шагов для достижения абсолютной погрешности, не превышающей величины 0,01.

Дано

$$A = \begin{pmatrix} 10.6 & 1.0 & 2.0 & 3.0 \\ -1.0 & 10.6 & -3.0 & 2.0 \\ 2.0 & 3.0 & 10.6 & 1.0 \\ 3.0 & 2.0 & 1.0 & 10.6 \end{pmatrix} \quad b = \begin{pmatrix} 16.6 \\ 8.6 \\ 16.6 \\ 16.6 \end{pmatrix} \quad x_0 = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix}$$

Решение

Рабочая формула метода Зейделя для решения СЛАУ:

$$y_{(k)} = (E - Q)^{-1} \cdot P \cdot y_{(k-1)} + (E - Q)^{-1} \cdot g,$$
 (2)

где

$$F = E - D_1 \cdot A,$$

E - единичная матрица,

 D_1 - матрица, состоящая только из диагонали матрицы A, где каждый элемент находится в -1 степени,

$$g = D_1 \cdot b,$$

B - нижний треугольник матрицы F,

 D_2 - матрица, состоящая только из диагонали матрицы F,

$$Q = B - D_2,$$

$$P = F - Q$$
,

Все вычисления произведем в python, при помощи библиотеки numpy

$$D_1 = \begin{pmatrix} 0.094 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.094 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.094 & 0.0 \\ 0.0 & 0.0 & 0.094 & 0.0 \\ 0.0 & 0.0 & 0.094 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.094 \end{pmatrix}$$

$$E = \begin{pmatrix} 0.0 & -0.094 & -0.189 & -0.283 \\ 0.094 & 0.0 & 0.283 & -0.189 \\ -0.189 & -0.283 & 0.0 & -0.094 \\ -0.283 & -0.189 & -0.094 & 0.0 \end{pmatrix}$$

$$D_2 = \begin{pmatrix} 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0$$

$$||F|| = 0.566 \qquad g = \begin{pmatrix} 1.566 \\ 0.811 \\ 1.566 \\ 1.566 \end{pmatrix}$$

Воспользуемся рабочей формулой (2)

$$\begin{array}{llll} k:0 & & & & & & & & & & & & \\ y_{(0)}:[0.,0.,0.,0.] & & & & & & & & & \\ y_{(1)}:[1.566,0.959,0.999,0.848] & & & & & & \\ y_{(2)}:[1.047,1.033,0.996,0.981] & & & & & \\ y_{(2)}:[1.047,1.033,0.996,0.981] & & & & & \\ y_{(2)}:[1.047,1.033,0.996,0.981] & & & & & \\ y_{(3)}:[1.003,1.003,1.,0.999] & & & & \\ 0.5188807833469409 > 0.01 & & & & \\ \end{array}$$

k:3

 $y_{(3)}: [1.003, 1.003, 1., 0.999]$

 $y_{(4)}:[1.,1.,1.,1.]$

0.0029932562017636055 < 0.01

Итого мы получили ответ с заданной погрешностью за k=3 шагов.

Задание 2.1

С погрешностью, не превосходящей величину $\varepsilon = 0,0001$, найти все корни уравнения:

$$(N+5.2+(-1)^N\cdot\alpha)\cdot x^3-(2\cdot N^2+10.4\cdot N+(-1)^{N+1}\cdot\alpha)\cdot x^2-N^2\cdot (N+5.2)\cdot (x-2N)+(-1)^N\cdot\alpha$$

Нарисовать график функции, стоящей в левой части уравнения. Используя этот график отделить корни уравнения. Для определения левого корня использовать метод касательных, правого — метод секущих. Для определения срединного корня использовать метод деления отрезка пополам.

Дано

$$N = 9$$
 $n = 52$ $\alpha = 0.006$ $\varepsilon = 0.0001$

$$y = 14.194 \cdot x^3 - 255.606 \cdot x^2 - 1150.2 \cdot x + 20703.594$$

Решение

Воспользуемся библиотекой matplotlib для изображения заданного многочлена

С помощью библиотеки scipy найдем эталонные корни уравнения

$$[-9.000562591621339, 8.997886402334267, 18.010707751918982]$$

Найдем каждый из кореней тремя разными способами:

- Метод касательных (Ньютона).
- Метод секущих.
- Метод деления отрезка пополам.

Метод Ньютона

Для нахождения левого корня уравнения воспользуемся методом касательных (Ньютона). Рабочая формула

$$x_k = x_{k-1} - (f'(x_{k-1}))^{-1} \cdot f(x_{k-1})$$

Производную будем искать методом центральных разностей. Рабочая формула

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

В качестве x_0 возьмем -10.

Итого мы получили ответ с заданной погрешностью за ${\bf k}=3$ шагов

Метод деления отрезка пополам

Для нахождения срединного корня уравнения воспользуемся методом деления отрезка пополам.

Данный метод может быть записан в виде псевдокода

```
input: Function f,
       endpoint values a, b,
       tolerance TOL,
       maximum iterations NMAX
conditions: a < b,
             either f(a) < 0 and f(b) > 0 or f(a) > 0 and f(b) < 0
output: value which differs from a root of f(x) = 0 by less than TOL
N ← 1
while N <= NMAX do // limit iterations to prevent infinite loop
    c \leftarrow (a + b)/2 // \text{ new midpoint}
    if f(c) = 0 or (b - a)/2 < TOL then // solution found
        Output(c)
        Stop
    end if
    N \leftarrow N + 1 // increment step counter
    if sign(f(c)) = sign(f(a)) then a \leftarrow c else b \leftarrow c // new interval
end while
Output("Method failed.") // max number of steps exceeded
```

В качестве отрезка [а, b] возьмем [5, 10].

```
k:0
                   k:1
                                      k:2
                                                          k:3
                   a:7.5
                                      a:8.75
a:5
                                                          a:8.75
b:10
                   b:10
                                      b:10
                                                          b:9.375
c: 7.5
                   c: 8.75
                                      c: 9.375
                                                          c: 9.0625
f(c):3687.35025
                   f(c): 578.38072
                                      f(c): -849.40649
                                                          f(c): -148.23685
2.5 > 0.0001
                   1.25 > 0.0001
                                      0.625 > 0.0001
                                                          0.3125 > 0.0001
k:4
                   k:5
                                       k:6
                                                           k:7
a: 8.75
                   a: 8.90625
                                       a: 8.98438
                                                           a: 8.98438
b:9.0625
                   b:9.0625
                                       b:9.0625
                                                           b:9.02344
c: 8.90625
                   c: 8.98438
                                       c: 9.02344
                                                           c:9.00391
                   f(c):31.13332
                                       f(c): -58.74804
f(c): 212.05338
                                                           f(c):-13.85611
                   0.07812 > 0.0001
0.15625 > 0.0001
                                       0.03906 > 0.0001
                                                           0.01953 > 0.0001
```

k:8	k:9	k:10	k:11
a: 8.98438	a: 8.99414	a: 8.99414	a: 8.99658
b:9.00391	b:9.00391	b: 8.99902	b: 8.99902
c: 8.99414	c: 8.99902	c: 8.99658	c: 8.9978
f(c): 8.62646	f(c): -2.61786	f(c): 3.00354	f(c): 0.19265
0.00977 > 0.0001	0.00488 > 0.0001	0.00244 > 0.0001	0.00122 > 0.0001
k:12	k:13	k:14	k:15
k: 12 a: 8.9978	k: 13 a: 8.9978	k: 14 $a: 8.9978$	k: 15 a: 8.9978
a: 8.9978	a: 8.9978	a: 8.9978	a: 8.9978
a: 8.9978 b: 8.99902	a: 8.9978 b: 8.99841	a: 8.9978 b: 8.99811	a: 8.9978 b: 8.99796

Итого мы получили ответ с заданной погрешностью за ${\bf k}=15$ шагов

Метод секущих

Для нахождения правого корня уравнения воспользуемся методом секущих. Рабочая формула

$$x_k = x_{k-1} - \frac{(b - x_{k-1})f(x_{k-1})}{f(b) - f(x_{k-1})}$$

В качестве отрезка [а, b] возьмем [15, 20];

В качестве x_0 возьмем 15.

k:0	k:1	k:2
$x_{(0)}:15$	$x_{(1)}: 17.02965$	$x_{(2)}: 17.75509$
$x_{(1)}: 17.02965$	$x_{(2)}: 17.75509$	$x_{(3)}: 17.94866$
	0.72544 > 0.0001	0.19357 > 0.0001
k:3	k:4	k:5
$x_{(3)}: 17.94866$	$x_{(4)}: 17.99592$	$x_{(5)}:18.0072$
$x_{(4)}: 17.99592$	$x_{(5)}:18.0072$	$x_{(6)}:18.00988$
0.04726 > 0.0001	0.01128 > 0.0001	0.00268 > 0.0001
k:6	k:7	k:8
$x_{(6)}: 18.00988$	$x_{(7)}:18.01051$	$x_{(8)}:18.01066$
$x_{(7)}:18.01051$	$x_{(8)}:18.01066$	$x_{(9)}:18.0107$
0.00063 > 0.0001	0.00015 > 0.0001	4e - 05 < 0.0001

Итого мы получили ответ с заданной погрешностью за k=8 шагов

Вывод

