Санкт-Петербургский Государственный Политехнический университет Высшая школа прикладной математики и вычислительной физики Дисциплина "Математическая статистика"

Отчёт по лабораторной работе $\mathbb{N}^{2}1$

Работу выполнил:

Крупица С.В.

Группа: 5030102/20101

Преподаватель: Баженов А.Н.

 ${
m Caнкт-}\Pi{
m e}{
m Te}{
m p}{
m fypr}$ 2025

Содержание

1	Формулировка задания	2
2	Полученные данные	2
3	Графики	3
4	Выводы	4

1 Формулировка задания

Для 4 распределений:

- Нормальное распределение N(x,0,1)
- Распределение Коши С(х,0,1)
- Распределение Пуассона P(k,1,0)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$
- 1. Сгенерировать выборки размером 10, 50 и 1000 элементов. Построить на одном рисунке гистограмму и график плотности рас пределения.
- 2. Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характе ристики положения данных: \hat{x} , medx, z_Q . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов.

2 Полученные данные

В данной таблице представленные все необходимые данные для каждого распределения и каждой выборки:

Распределение	Выборка	\overline{x}	medx	z_Q	$\overline{x^2}$	$medx^2$	z_Q^2	D(x)
Коши	10	-0.8592	0.0228	-0.0012	1729.3039	0.3715	0.8725	1728.5657
	50	0.7522	0.0046	0.0051	2385.0325	0.0562	0.1127	2384.4667
	1000	0.1350	0.0008	-0.0010	948.2135	0.0023	0.0052	948.1953
Нормальное	10	-0.0154	-0.0265	-0.0120	0.0943	0.1341	0.1051	0.0941
	50	0.0057	0.0073	0.0029	0.0190	0.0281	0.0230	0.0189
	1000	-0.0014	-0.0019	-0.0005	0.0010	0.0016	0.0013	0.0010
Пуассоновское	10	10.0021	9.8635	9.9340	101.0023	98.7053	99.8338	0.9603
	50	9.9966	9.8255	9.8948	100.1278	96.8713	98.1694	0.1958
	1000	9.9986	9.9945	9.9949	99.9826	99.8953	99.9003	0.0100
Равномерное	10	0.0069	0.0096	0.0062	0.1004	0.2318	0.1423	0.1004
	50	0.0008	0.0047	-0.0012	0.0205	0.0579	0.0301	0.0205
	1000	-0.0018	-0.0033	-0.0016	0.0010	0.0030	0.0015	0.0010

3 Графики

Рис. 1 График распределения Коши

Рис. 2 График нормального распределения

Рис. 3 График распределения Пуассона

Рис. 4 График равномерного распределения

4 Выводы

По результатам численных экспериментов и графических данных можно сказать, что статистика начинается с объёма выборки в 1000, потому что при таком объёме гистограмма начинает достаточно хорошо походить на плотность распределения.

Приложение: Ссылка на GitHub

 $https://github.com/Cegeria/Polytech_Statistics/tree/main/lab_1$