Лабораторная работа № 6

Асимметричный алгоритм шифрования RSA

Цель работы

Изучить принцип работы асимметричных алгоритмов шифрования на примере алгоритма RSA. Освоить методику создания комбинированных алгоритмов шифрования, которые совмещают достоинства методов симметричной и асимметричной криптографии.

Алгоритм шифрования RSA

Алгоритм RSA был разработан в 1977 году Роном Ривестом, Ади Шамиром и Леном Адлеманом и опубликован в 1978 году. С тех пор алгоритм *Rivest-Shamir-Adleman* (RSA) широко применяется практически во всех приложениях, использующих криптографию с открытым ключом [1, 2, 3].

Алгоритм RSA состоит из трёх этапов:

- I. **Вычисление ключей**. Важным моментом в этом криптоалгоритме является создание пары ключей: открытого и закрытого. Для алгоритма RSA этап создания ключей состоит из следующих операций:
 - 1. Выбираются два простых различных числа p и q. Вычисляется их произведение $n = p \cdot q$, называемое **модулем**.
 - 2. Вычисляется функция Эйлера $\varphi(n) = (p-1) \cdot (q-1)$.
 - 3. Выбирается произвольное число e (e < n) такое, что $1 < e < \varphi(n)$ и e не имеет с числом $\varphi(n)$ других общих делителей, кроме 1 (т.е. оно является взаимно простым с ним).
 - 4. Вычисляется d (алгоритмом Евклида) таким образом, что $(e \cdot d 1)$ делилось на $\varphi(n)$.
 - 5. Два числа (e, n) публикуются как *открытый ключ*.
 - 6. Число d хранится в секрете. Пара (d, n) есть закрытый ключ, который позволит читать все послания, зашифрованные с помощью пары чисел (e, n).
- II. *Шифрование* с помощью этих ключей производится следующим образом:
 - 1. Отправитель разбивает своё сообщение M на блоки m_i . Значение $m_i < n$, поэтому длина блока открытого текста m_i в битах не больше $k = [\log_2 n]$ бит, где квадратные скобки обозначают взятие целой части от дробного числа. Например, если n = 21, то максимальная длина блока открытого текста $k = [\log_2 21] = [4.39...] = 4$ бита.
 - 2. Подобный блок может быть интерпретирован как число из диапазона (0; $2^k 1$). Для каждого такого числа m_i вычисляется выражение (c_i зашифрованное сообщение):

$$c_i = (m_i)^e \mod n.$$

В качестве размера блока зашифрованного текста следует брать $k_e = \lceil \log_2 n \rceil$ бит, где операция $\lceil \rceil$ – это округление вверх до ближайшего целого.

Необходимо добавлять нулевые биты слева в двоичное представление блока c_i до размера k_e бит.

III. *Дешифрование* производится следующим образом:

1. Чтобы получить открытый текст, надо каждый блок зашифрованного текста длиной k_e бит дешифровать отдельно:

$$m_i = (c_i)^d \mod n$$
.

Пример:

Выбрать два простых числа p = 7, q = 17.

Вычислить $n = p \cdot q = 7 \cdot 17 = 119$.

Вычислить $\varphi(n) = (p-1) \cdot (q-1) = 96$.

Выбрать e так, чтобы e было взаимно простым с $\varphi(n) = 96$ и меньше, чем $\varphi(n)$: e = 5.

Определить d так, чтобы $d \cdot e \equiv 1 \mod 96$ и d < 96: d = 77, т.к. $77 \cdot 5 = 385 = 4 \cdot 96 + 1$.

Результирующие ключи: открытый ключ (5, 119) и закрытый ключ (77, 119). Пусть, например, требуется зашифровать сообщение M=19:

$$C = 19^5 = 66 \pmod{119}$$
.

Для дешифрования вычисляется $66^{77} \pmod{119} = 19$.

Комбинирование симметричных и асимметричных алгоритмов

Симметричные алгоритмы и, в частности, DES – быстрые, поэтому ими удобно шифровать большие объёмы информации. Однако для передачи ключа симметричного алгоритма требуется надёжный канал передачи, который очень часто отсутствует. Таким образом, преимущества таких алгоритмов сводятся на нет. С другой стороны, асимметричные алгоритмы не требуют секретного канала для передачи ключа, но на практике криптосистемы с открытым ключом используются для шифрования не сообщений, а ключей. На это есть две основные причины:

- 1. Алгоритмы шифрования с открытым ключом в среднем работают в тысячи раз медленнее, чем симметричные алгоритмы, а также они требовательны к памяти и вычислительной мощности компьютера, поэтому большие тексты кодировать этими алгоритмами нецелесообразно.
- 2. Алгоритмы шифрования с открытым ключом уязвимы по отношению к криптоаналитическим атакам со знанием открытого текста. Пусть C = E(P), где C обозначает шифртекст, P открытый текст, E функцию шифрования. Тогда, если P принимает значения из некоторого конечного множества, состоящего из n открытых текстов, криптоаналитику достаточно зашифровать все эти тексты, используя известный ему открытый ключ, и сравнить результаты с C. Ключ таким способом ему вскрыть не удастся, однако открытый текст будет успешно определён.

Возможно следующее решение: сообщение шифруется симметричным алгоритмом, что позволяет выиграть в скорости, т.к. сообщение может быть сколь угодно большим, а ключ симметричного алгоритма (обычно маленький, для DES – 56 бит) шифруется асимметричным алгоритмом [1].

Задание

Результатом данной лабораторной работы должны стать приложения, совмещающие в себе достоинства симметричных и асимметричных методов шифрования.

- I. Реализовать приложение для шифрования, позволяющее выполнять следующие действия:
 - 1. Вычислять открытый и закрытый ключи для алгоритма RSA:
 - 1) числа p и q генерируются программой или задаются из файла;
 - 2) числа p и q должны быть больше, чем 2^{128} ;
 - 3) сгенерированные ключи сохраняются в файлы: открытый ключ (e, n) в один файл, закрытый (d, n) в другой.
 - 2. Шифровать указанным в варианте симметричным алгоритмом открытый текст, а асимметричным ключ симметричного алгоритма:
 - 1) шифруемый текст T должен храниться в одном файле, открытый ключ (e, n) для алгоритма RSA в другом;
 - 2) ключ K для симметричного алгоритма должен генерироваться случайным образом;
 - 3) зашифрованный текст должен сохраняться в одном файле, а зашифрованный асимметричным алгоритмом ключ *К* симметричного алгоритма – в другом;
 - 4) в процессе шифрования предусмотреть возможность просмотра и изменения шифруемого текста в шестнадцатеричном и символьном виде;
 - 5) программа должна уметь работать с текстом произвольной длины.
- II. Реализовать приложение для дешифрования.
 - 1. Зашифрованный текст должен храниться в одном файле, зашифрованный ключ симметричного алгоритма в другом, а секретный ключ для алгоритма RSA в третьем.

- 2. Приложение расшифровывает зашифрованный ключ K с помощью алгоритма RSA, а затем с помощью симметричного алгоритма с ключом K расшифровывает зашифрованный текст.
- 3. Расшифрованный текст должен сохраняться в файл.
- 4. В процессе дешифрования предусмотреть возможность просмотра и изменения зашифрованного текста в шестнадцатеричном и символьном виде.
- 5. Программа должна уметь работать с текстом произвольной длины.
- III. С помощью реализованных приложений выполнить следующие задания.
 - 1. Протестировать правильность работы разработанных приложений.
 - 2. Сделать выводы о проделанной работе.

Дополнительные критерии оценивания качества работы

- 1. Наглядность приложений:
 - 1 приложения позволяют просматривать и изменять ключи, шифруемый и зашифрованный тексты во всех предусмотренных заданием представлениях;
 - 0 приложения позволяют просматривать ключи, шифруемый и зашифрованный тексты только в каком-то одном представлении;
 - *л.р. не принимается* иначе.

Варианты

Бригады с нечётным номером в качестве симметричного алгоритма должны использовать алгоритм DES, а бригады с чётным – ГОСТ.

Вопросы для защиты

- І. Первая часть защиты (обязательная):
 - 1. В чём заключается алгоритм RSA?
 - 2. Для чего и почему используют комбинированные криптоалгоритмы?
 - 3. В чём заключаются достоинства и недостатки асимметричных алгоритмов?
 - 4. В чём заключаются достоинства и недостатки симметричных алгоритмов?
- II. Вторая часть защиты: Найти алгоритмом Евклида элемент d такой, что $e \cdot d \equiv 1 \pmod{n}$, если:
 - 1. e = 15, n = 82;
- 3. e = 29, n = 86;
- 5. e = 49, n = 122;

- 2. e = 58, n = 115;
- 4. e = 24, n = 95;
- 6. e = 18, n = 107.

Список литературы

- 1. Мао, В. Современная криптография: теория и практика : Пер. с англ. / В. Мао. М. : Издательский дом "Вильямс", 2005. 768 с.
- 2. Шнайер, Б. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си / Б. Шнайер. М.: Триумф, 2002. 816 с.
- 3. PKCS #1 v2.1: RSA Cryptography Standard. Bedford: RSA Laboratories, 2002. 61 p.