Sécurité des réseaux Informatique

Questionnent des cours

1- Qu'est-ce que la sécurité?

La sécurité sur un réseau consiste à s'assurer que celui qui modifie ou consulte des données du système en a l'autorisation et qu'il peut le faire correctement car le service est disponible.

2- Quels sont les principaux objectifs de la sécurité informatique ?

L'intégrité, La confidentialité, La disponibilité, La non répudiation, L'authentification

3- Quelle est la différence entre l'approche réactive et proactive dans la gestion des risques ?

- •L'approche proactive efficace permette de diminuer considérablement les risques d'incidents de sécurité.
- •L'approche réactive puisse s'avérer efficace pour résoudre des incidents de sécurité liés à l'exploitation de risques de sécurité.

4- Quels sont les types de pirates?

- ·Les « white hat hackers »
- Les « black hat hackers »
- Les « script kiddies »
- ·Les « phreakers »
- •Les « carders »
- Les « crackers »

5- Quels sont les types d'attaques?

- Attaque direct
- Attaque par rebond
- Attaque indirecte par réponse

6- Donner quelques outils de détection des vulnérabilités réseaux ?

- •MBSA
- •GFA LANguard
- •Nessus

7- Donnez quelques outils pour sécuriser notre système informatique ?

- Antivirus
- Pare Feu
- Proxv
- Anti-malwares
- •DMZ

8- Pourquoi les systèmes sont-ils vulnérables?

La sécurité est devenue un point crucial des systèmes d'informations. Cependant, les organisations sont peu ou pas protégées contre les attaques sur leur réseau ou les hôtes du réseau.

9- Qu'est-ce qu'un agent mobile?

Un agent mobile est un programme autonome qui peut se déplacer de son propre chef, de machine en machine sur un réseau hétérogène dans le but de détecter et combattre les intrusions.

10- Quelle est la différence entre DES et RSA?

- •DES utilise des clés d'une taille de 56 bits ce qui la rend de nos jours faciles à casser avec les nouvelles technologies de cryptanalyse.
- •RSA d'utiliser des clés de longueur variable de 40 à 2 048 bits.

11- Donnez l'équation qui caractérise le terme risque?

Risque = (Menace * Vulnérabilité) /contre-mesure

12- Quel est le but du chiffrement?

L'authenticité

13- Citer les principaux dispositifs permettant de sécuriser un réseau contre les intrusions ?

Agent Mobile, Proxy, Firewall.

14- Qu'est-ce que l'hameçonnage (phishing)?

Le piratage de lignes téléphoniques Un procédé frauduleux permettant de collecter des informations personnelles.

15- En matière de sécurité informatique, Que désigne-t-on par cheval de Troie ?

Un logiciel malveillant ayant l'apparence d'un logiciel inoffensif mais qui comporte des instructions nuisibles qui s'exécutent une fois le logiciel installé

16- Comment appelle-t-on un programme qui s'installe discrètement sur l'ordinateur, collecte et envoie des informations personnelles à des organisations tierces ?

Espiogiciel

17- Quelles sont les méthodes d'authentification?

- Authentification par mot de passe
- Authentification GSSAPI
- Authentification SSPI
- Authentification Kerberos
- Authentification DES
- Authentification RSA
- Authentification LDAP

18-Donner les trois catégories de sécurité réseaux :

La sécurité physique La sécurité logique La sécurité administrative

19- Les différents types d'attaques réseau

- Les attaques de reconnaissance (Un balayage de «Ping » ; Le balayage de port ; Un capture de paquets (Sniffing)
- Les attaques de mot de passe (L'attaque par une liste de mot ; L'attaque par force brute)
- Les attaques d'accès (Le Phishing Le Pharming L'attaque de « Man-inthe-middle » : spoofing et hijacking - Les attaques mélangées)
- Les attaques de réseau contre la disponibilité (les dénis de service par saturation-les dénis de service par exploitation de vulnérabilités-L 'attaque SYN flood-L'attaque ICMP flood)
- Les attaques rapprochées
- Les attaques de relation d'approbation

20- Les types de trafic réseau

- Le plan de gestion
- Le plan de contrôle
- Le plan de données

21- le rôle de NTP

Le protocole NTP (Network Time Protocol ou NTP) permet de synchroniser l'horloge locale d'un élément réseau informatique avec celle d'un serveur de référence (un serveur de temps public sur Internet ou avec une source de temps interne)

22- le rôle de protocole SNMP :

Le protocole SNMP (Simple Network Management Protocol) permet de superviser,

Diagnostiquer et gérer, les équipements réseau à distance.

23- le rôle du protocole AAA:

Le Protocole AAA est une stratégie de sécurité implémenté dans certains routeurs Cisco qui réalise trois fonctions : l'authentification, l'autorisation, et la traçabilité

24- Les types de pare-feu :

- Pare-feu NAT
- Pare-feu de filtrage de paquets
- Pare-feu de filtrage de paquet avec état
- Pare-feu applicatif (pare-feu proxy)

25- Les types d'attaques sur la couche 2 :

- Les attaques d'inondation d'adresse MAC
- L'attaque par usurpation d'adresse MAC (ARPspoofing)

- L'attaque DHCP Starvation
- L'attaque par saut de VLAN
- Les attaques à base du protocole STP

26- Les algorithmes de chiffrements symétrique :

- DES
- 3DES
- AES
- IDEA
- RC2, RC4, RC5, RC6
- Blowfish

27- Les algorithmes de chiffrements symétrique :

- RSA
- Diffie-Hellman
- DSA

28- Les types de hachage les plus utilisés

- DMD5 : permet de créer des empreintes numériques de taille 128-bit.
- SHA-1 : permet de créer des empreintes numériques de taille160-bit.
- DSHA-2 : permet de créer des empreintes numériques de taille entre 224 bits et 512 bits.

Terminologie

- Ressource : tout objet ayant une valeur pour une organisation et qui doit être
 - Protégée.
- **Une vulnérabilité :** C'est une faiblesse d'un système qui pourrait être exploitée par une Menace.
- **Une menace :** Un danger potentiel pour une ressource ou pour la fonctionnalité du

Réseau.

- **Une attaque**: C'est une action prise par un attaquant pour nuire à une ressource.
- **Un risque :** c'est la possibilité de la perte, l'altération, la destruction ou autres

Conséquences négatives de la ressource d'une organisation. Le risque peut naître

D'une seule ou plusieurs menaces ou de l'exploitation d'une vulnérabilité. Risque = Une Ressource + Menace + Vulnérabilité

- **Une contre-mesure :** Une protection qui atténue une menace potentielle ou un risque
- **Virus :** c'est un programme qui s'attache à un logiciel pour exécuter une fonction spécifique non souhaitée sur un ordinateur.
- **Worms :** ce sont des programmes autonomes qui exploitent des vulnérabilités connues Dans le but de ralentir un réseau. Ils ne nécessitent pas l'activation de l'utilisateur et ils se dupliquent et tente d'infecter d'autres hôtes dans le réseau
- **Spyware** : ce sont des logiciels espions qui sont généralement utilisés dans le but
 - D'influencer l'utilisateur pour acheter certaine produits ou services. Les spywares, en Générale, ne se propagent pas automatiquement, mais ils s'installent sans autorisation.
- **Adware :** se réfère à tout logiciel qui affiche des publicités, sans l'autorisation de
 - L'utilisateur parfois sous la forme de publicités pop-up.
- **Scaryware** se réfère à une classe de logiciels utilisés pour de convaincre les
 - Utilisateurs que leurs systèmes sont infectés par des virus et leur proposer une solution Dans le but de vendre des logiciels.
- Un système de détection d'intrusion IDS (Intrusion Détection System) est un
 - Capteur capable d'analyser les paquets circulant sur un ou plusieurs lien(s) réseau dans le but de détecter les activités suspectes.
- **Un système de prévention d'intrusion IPS** (Intrusion Prevention System) est un capteur capable de détecter et d'empêcher toutes les attaques potentielles sur un hôte Ou sur le réseau.
- **Cryptanalyse** : désigne l'ensemble des techniques et méthodes utilisées pour tenter de retrouver le texte en clair à partir du texte crypté.
- La substitution poly-alphabétique : consiste à remplacer un caractère par une autre choisie d'une façon dynamique, déterminé par la clé de cryptage, et non plus d'une manière fixe.

- **Chiffrement symétrique :** Dans le chiffrement symétrique, la même clé est utilisée pour le chiffrement et le déchiffrement d'où l'obligation que celle-ci reste confidentielle.
- **Le chiffrement asymétrique** (ou chiffrement à clés publiques), une clé différente est utilisée à la fois pour chiffrer et déchiffrer les données, et il est impossible de générer une clé à partir de l'autre.

Commandes

La sécurisation des mots de passe

Router(config)# service password-encryption	Cryptez tous les mots de passe
Router(config)# security passwords min-length length	Appliquer une longueur minimale pour tous les nouveaux mots de passe. La longueur peut être de 1 à 16.
Router(config)# enable algorithm-type {md5 scrypt sha256 }secret password	Crypter le mot de passe du mode privilégié à l'aide de message de l'algorithme MD5

L'implémentation des restrictions de connexion

Login block-for X attempts Y within Z	Cette commande permet de bloquer l'accès
	Pendant « X » secondes après « Y » essaie
	d'accès dans 'z' secondes
Login delay second	Configurer un délai entre les tentatives
	successives de connexion.

La sécurisation de l'accès par les lignes console, VTY et auxiliaire

Router(config)# username name	Créer une base de données d'utilisateurs locaux
privilege level secret password	et crypter leurs mots de passe.
Router(config)#line vty 0 4	
Router(config-line) # login local	Réglez l'intervalle d'inactivité à une valeur.
Router(config-line) #exec-timeout minutes	La valeur par défaut est 10 minutes.
seconds	
Router(config-line)# line aux 0	Accéder au mode « line auxiliaire ».
Router(config-line)# no exec	Désactiver le port auxiliaire.
Router(config)# ip ssh version [1 2]	Il est recommandé d'utiliser la version 2
Router(config)# ip ssh time-out seconds	Définir le nombre de secondes à attendre pour que le client SSH réponde pendant la phase de négociation. La valeur par défaut est 120 secondes.
Router(config)# ip ssh authentication-retries	Limitez le nombre de tentatives de connexion.
Integer	La valeur par défaut est 3.

Router(config)# login block-for seconds	Sécuriser la connexion vty.
Attempts tries within Seconds	
Router(config-line) # transport input ssh	Autoriser uniquement les sessions SSH.
	•
Router(config-line) # access-class	Appliquez une ACL pour contrôler l'accès à la
ACL-number	ligne vty.

Configurer un niveau de privilège

	<u> </u>
Router(config)# privilege mode {level level	Autoriser l'utilisation d'une commande à un
command reset command}	Niveau de privilège personnalisé.
Router(config)# enable secret level level	Permettre d'assignez un mot de passe au
password	niveau de privilège personnalisé.
R1# show privilege	La Vérification du niveau de privilège
Router>enable level	Accéder au niveau de privilège
	personnalisé.
R1(config)# line console 0	Accéder au port console (ou auxiliaire)
R1(config-line)# privilege level 4	Définir un niveau de privilège pour utiliser ce
	mode.

Sécuriser l'accès à l'aide de la gestion de « vues »

R1(config)# parser view SHOWVIEW	Créer une vue nommée« ShowView »
R1(config-view) # secret cisco123	Assignez une mot de passe à la vue.
R1(config-view)# commands exec include	Cette vue peut utiliser tous les commandes
show	du mode EXEC privilégié
.R1(config-view)# commands exec include	Cette vue peut utiliser la commande « ping » du
ping	mode EXEC privilégié.
R1# enable view SHOWVIEW	Se connecter à la vue ShowView pour la
	vérifier.
Router(config)# parser view viewname	Créer une Super-vue en mode de configuration
Superview	
Router(config-view) # secret password	Assigner un mot de passe à la Super-vue.
Router(config-view)# view view-name	Affecter une vue existante à la SuperView. Des
	vues multiples peuvent être assignées à une
	SuperView
Router# enable view view-name	Se connecter à la Super-vue pour la vérifier
R1#show parser view all	Afficher la liste des vues

Configuration du protocole NTP

	- F
Router(config)# ntp master <i>stratum</i>	Configurez le routeur pour qu'il soit le maitre
, 5, 1	NTP.
Router(config)# ntp authenticate	Activer l'authentification NTP
Router(config)# ntp authentication-key key-	Définissez la clé et le mot de passe NTP et
number md 5 key-value	cryptez-le à l'aide de MD5.

Router(config)# ntp trusted-key key-number	Identifiez la clé de confiance sur le maître.
Client(config)# ntp server ntp-server-address	Définir le routeur maitre NTP auquel le client va se synchroniser.
Configurer un client SysLog	
Router(config)# service timestamps log datetimemsec	Activer les horodatages sur les messages de débogage et de journalisation.
Router(config)# logging host [ip-address hostname]	Identifiez l'adresse du serveur SysLog ou son nom d'hôte.
Router(config)# logging trap level	Limiter les messages connectés aux serveurs syslog en fonction de la gravité. La valeur par défaut est 0 – 6.
Router(config)# logging on	Activer l'envoie des messages pour la Journalisation. La valeur est « on » par défaut
Router# show logging	Afficher l'état de journalisation et le contenu du tampon de journalisation système standard.

Configuration du SNMP

Router(config)#snmp-server community[tri] [ro]	Configurer l'identifiant de la « communauté » et son niveau d'accès (lecture seule ou lecture/écriture).
Router(config)#snmp-server enable traps[nom de traps]	Activer une «traps » SNMP.
Router(config)#snmp-server host [@ IP Gestionnaire SNMP][nom_community].	Superviser votre équipement
Router#show snmp.	Vérifier de la configuration SNMP

Sécurisation de l'accès de gestion avec AAA

Router(config)# username <i>username</i> privilege	Créer un utilisateur à la base de données locale
level secret password	et lui attribuer un mot de passe.
Router(config)# aaa new-model	Créer un nouveau modèle AAA.
Router(config)# aaa authentication login {	Définir la méthode d'authentification à utiliser
<pre>default list-name} { method1[method2]}</pre>	lors de l'accès aux lignes console, vty ou aux. La méthode d'authentification incluelocal, localcase et Enable.
Router(config)# aaa local	Sécurisez les comptes AAA en verrouillant
Authentication attempts max-fail number	les comptes qui ont dépassé le nombre maximal de tentatives d'échec prédéfini
R1(config)# tacacs-server host{ host-name	Configurer l'adresse IP (ou le nom) du serveur
host-ip-address}[key string] [port [integer]]	TACACS +. Les autres paramètres sont
[single-connection] [timeout	optionnels.
[seconds]]	
R1(config)# radius-server host{ host-name	Configurer l'adresse IP (ou le nom) du serveur

host-ip-address }[auth-port port-number][acct-port port-number] [key password]	RADIUS. Les autres paramètres sont optionnels.
Router(config)# aaa group server radius groupname	Grouper des hôtes de serveur RADIUS existants et les utiliser pour un service particulier
Router(config-sg-radius) # server <i>ip-address</i> [auth- port <i>port-number</i>] [acct- port <i>port-number</i>]	Configurez l'adresse IP du serveur RADIUS pour le serveur de groupe.
Router(config)# aaa group server tacacs+ group-name	Regroupez les hôtes TACACS + Server existants et utilisez-les pour un service particulier.
Router(config-sg-tacacs+)# server server-ip	Configurez l'adresse IP du
Router(config)# aaa authorization {exec	Définit la stratégie d'autorisation à utiliser lors
network commands level } { default List-name } { method 1 [method 2] }	de l'accès aux modes exec,network,command

Les ACL IPv4

R1(config)#access-list number [deny permit]	Créer une ACL Standard numéroté
source [masque générique]	
R1(config)#ip access-list standard nom_ACL	Créer une ACL Standard nommée
R1(Config-if) #ip access-group [number	Activer une ACL sur une interface
name [in out]]	
R1Config)#access-list number { deny	Créer une ACL Etendue numérotée.
<pre>permit } protocol source[masque</pre>	
générique]destination[masque générique]	
R1(config)# ip access-list extended	Créer une ACL Etendue nommée
nom_ACL	

Les ACL IPv6

R1(config)# ipv6 access-list nom_ACL	Création de l'ACL de IPv6
R1(config-ipv6-acl) # {deny permit}	Configuration d'une ACL IPv6
Protocole <i>ipv6-source/CIDR</i>	_
[{eq neq gt lt range} port] ipv6-	
destination/CIDR [{eq neq gt lt range} port]	
R1(config)#interfacetype numéro	Activation d'une ACL sur une interface
R1(config-if)#ipv6 traffic-filte nom_ACL	
{in out}	

Configuration de l'IPS

Router(config)#ip ips name ips-name [list acl	Créer un nom pour la règle IPS.
Router(config)#ip ips config location	Spécifier l'emplacement du fichier de signature
flash:dirname	IPS.
Router(config)# ip http server	Activer le serveur http (requis lors de
	l'utilisation de SDEE).
Router(config)# ip ips notify sdee	Activer la notification d'événement SDEE.
Router(config)# ip ips notify log	Activer la journalisation.

Router(config)# ip ips signature-category	Entrez dans le mode de configuration des Catégories des signatures IPS.
Router(config-ips-category) # category { all ios_ips [basic advanced]}	Spécifiez la catégorie de signature à modifier
Router(config-if)# ip ips ips-name { in out }	Appliquez la règle IPS à une interface.

Les attaques d'inondation d'adresse MAC

Switch(config-if) # switchport mode access	Activer la sécurité des ports et attribuez l'adresse
Switch(config-if) # switchport port-security	MAC actuelle au port.
Switch(config-if) # switchport port-security	Définir le nombre maximal d'adresses MAC
maximum value	sécurisées pour l'interface.
Switch(config-if)# switchport port-security	Affecter manuellement les adresses MAC qui
mac-address mac-address	peuvent se connecter à ce port.
Switch(config-if) # switchport port-security	Configurer l'action à prendre lorsque le nombre
violation { protect restrict shutdown	d'adresses MAC a dépassé le maximum
shutdown vlan }	prédéfini.
Switch(config)# errdisable recoveryinterval	Configurer la période de désactivation d'un
seconds	port.

L'attaque par usurpation d'adresse MAC (ARPspoofing)

	<u> </u>
switch(config)#ip arp inspection vlan vlan	Activer l'inspection ARP dynamique (DAI) sur
	un VLAN spécifique.
Switch(config)#interface g0/0	configurer un port comme port fiable
switch(config-if)#ip arp inspection trust	

L'attaque DHCP Starvation

S1(config)#ip dhcp snooping	activer la fonctionnalité « DHCP snooping » sur
	tous les VLAN.
S1(config)#ip dhcp snooping vlan vlan	Activer la fonctionnalité « DHCP snooping » sur un VLAN spécifique.
S1(config)#interface g0/0	configurer un port fiable
S1(config-if)#ip dhcp snooping trust	
S1#show ip dhcp snooping	afficher la configuration « DHCP snooping »