# Topics in Topology Presentation

S. Farrokhi, Student Number: 14719185

April 4, 2023

#### 1 General Overview

The goal of these notes is to give a general overview of Braids and how they relate to the Yang-Baxter Equation. More importantly, it opens a way to compute the Jones Polynomial in a new way. Firstly, we are going to introduce the Braid Group, give its general definition and state the Markov and Alexander theorem. Secondly, we are going to discuss the Yang-Baxter equation and show that for finite dimensional vector spaces V we have  $\operatorname{End}(V) \otimes \operatorname{End}(V) \simeq \operatorname{End}(V \otimes V)$ . If we represent elements of the spaces  $\operatorname{End}(V)$  as matrices the latter gives us a convenient way of manipulating them and doing computations when taking tensor products over such endomorphism spaces. Hereafter we are going to define a braid invariant under the Markov moves and in the end we conclude these notes with some remarks on how to compute the Alexander polynomial using this braid invariant.

#### 2 Braids

First of all we are going to discuss the definition of a braid group  $B_n$  and state the Alexander and Markov theorems. We will discuss several different ways to define a braid group and give the Artin representation of the braid group.

A braid is a collection of n strands embedded in  $\mathbb{R}^2 \times [0,1]$  such that its boundary is the set  $\{1, ... n\} \times \{0\} \times \{0, 1\}$  in  $\mathbb{R}^2 \times [0, 1]$  and such that no strand has a critical point with respect to the vertical coordinate. Two braids are called isotopic if there are is an isotopy from  $\mathbb{R}^2 \times [0, 1]$  preserving its boundary and vertical coordinates.

This can be turned quite easily into a geometrical picture by imagining this n-strands in 3 dimensional space up to isotopy (endpoints of the strand are fixed). The braid group is then the group in n-strands, denoted by  $B_n$  where the group operation is defined by gluing of the strands. A picture of a braid is shown below:



Figure 1: Braid in 5 strands.

Two important theorems about braids are Alexanders theorem and Markovs theorem. Alexander theorem states that every link is isotopic to the closure of a braid. Here with closure we mean connecting the upper and lower part of a braid as shown in the picture below:



Figure 2: Closure af an arbitrary braid b in  $B_n$ 

Before discussing Markovs theorem we need first an more convenient way of representing braids.

#### 2.1 Artin Presentation

There are several ways to encode the information of specific braids up to isotopy. However, the Artin presentation of the braid group  $B_n$  is particularly usefull and given by the following presentation:

$$B_n = \langle \sigma_1, \dots, \sigma_n | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ for all } i, \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for all } |i-j| > 1 \rangle$$

where  $\sigma_i$  and  $\sigma_i^{-1}$  denote the crossings as depicted below.

$$+ + \underset{\sigma_{i}}{\bigvee} + - + \underset{\sigma_{i}^{-1}}{\bigvee} + -$$

Figure 3: The crossings  $\sigma_i^1$  and  $\sigma_i^{-1}$  as in braids.

In therms of Figure 1 this presentation is:  $\sigma_1\sigma_3\sigma_2^{-1}\sigma_4^{-1}\sigma_1\sigma_4^{-1}\sigma_2\sigma_3^{-1}$ . We can now discuss the Markov theorem. Markov theorem states that the closure of braids A and B are isotopic if and only if B can be obtained from A by either a sequence of the two Markov moves (I and II): (MI)  $AA' \longleftrightarrow A'A$  for  $A' \in B_n$  and (MII)  $A\sigma_n \longleftrightarrow A \longleftrightarrow A\sigma_n^{-1}$  where A in  $A\sigma_n$  is regarded as living in the space  $B_{n+1}$  by adding the trivial (n+1) strand to A.

Markovs theorem implies the following interesting equality

oriented links/isotopy = 
$$(\bigcup_{n=1}^{\infty} B_n/MI$$
 and MII moves).

This is interesting as we can reduce the study of isotopy classes of links to study of the braids up to Markov moves.

# 3 Yang Baxter Equation and Vector Space Isomorhpism

In this section wer are going to explore the Yang-Baxter equation and concretely proof the isomorphism  $\operatorname{End}(V) \otimes \operatorname{End}(V) \simeq \operatorname{End}(V \otimes V)$ . We define an automorphism  $R: V \otimes V \to V \otimes V$  as the solution to the Yang-Baxter equation:

$$(R \otimes Id)(Id \otimes R)(R \otimes Id) = (Id \otimes R)(R \otimes Id)(Id \otimes R) \in \text{End}(V^{\otimes 3}).$$

We show that such an R gives rise to a representation  $\rho_{R,n} = \rho_n : B_n \to \operatorname{End}(V^{\otimes n})$  given by

$$\rho_n(\sigma_i) = Id^{\otimes i-1} \otimes R \otimes Id^{\otimes n-i-1}.$$

For this we have to show that the identities

$$\rho_n(\sigma_i)\rho_n(\sigma_{i+1})\rho_n(\sigma_i) = \rho_n(\sigma_{i+1})\rho_n(\sigma_i)\rho_n(\sigma_{i+1})$$

and

$$\rho_n(\sigma_i)\rho_n(\sigma_j) = \rho_n(\sigma_j)\rho_n(\sigma_i)$$

hold. The latter we need also |i - j| > 1.

The first one is easily seen to hold as:

$$\rho_{n}(\sigma_{i})\rho_{n}(\sigma_{i+1})\rho_{n}(\sigma_{i}) = (Id^{\otimes i-1} \otimes R \otimes Id^{\otimes n-i-1})(Id^{\otimes i} \otimes R \otimes Id^{\otimes n-i-2})(Id^{\otimes i-1} \otimes R \otimes Id^{\otimes n-i-1}) = Id^{\otimes i-1} \otimes (R \otimes Id)(Id \otimes R)(R \otimes Id) \otimes Id^{\otimes n-i-2} = Id^{\otimes i-1} \otimes (Id \otimes R)(R \otimes Id)(Id \otimes R) \otimes Id^{\otimes n-i-2} = (Id^{\otimes i} \otimes R \otimes Id^{n-i-2})(Id^{\otimes i-1} \otimes R \otimes Id^{n-i-2})(Id^{\otimes i-1} \otimes R \otimes Id^{n-i-2}) = \rho(\sigma_{i+1})\rho(\sigma_{i})\rho(\sigma_{i+1}).$$

The second relation is also seen to hold trivially from the definition of the presentation  $\rho_n$ . Before proceeding we are going to first discuss a convenient way to work with tensor products over endomorphism spaces.

### 3.1 Identifying vector spaces

We are also going to show that  $f \otimes g \to f \otimes g$  between  $\operatorname{End}(V) \otimes \operatorname{End}(V) \simeq \operatorname{End}(V \otimes V)$  is an isomorphism. In the first case we have two elements from  $f,g \in \operatorname{End}(V)$  where we see f,g as elements of the vector spaces  $\operatorname{End}(V)$  and we take the tensor product of these two elements  $f \otimes g \in \operatorname{End}(V) \otimes \operatorname{End}(V)$ . This element is mapped to  $f \otimes g$  which is an element of the vector space  $\operatorname{End}(V \otimes V)$ , which consists of endomorphisms over the tensor product  $V \otimes V$ . Hence the latter one maps elements  $(f \otimes g)(a \otimes b) = f(a) \otimes g(b)$ . We are know going to show the isomorphism between these two spaces.

Note that the map  $V^* \otimes V \to \operatorname{End}(V)$  given by  $\omega \otimes e \to (v \to \omega(v)e)$  defines a linear ismorphism. Let f,g be two arbitrary elements of  $\operatorname{End}(V)$  and let  $f \otimes g \in \operatorname{End}(V) \otimes \operatorname{End}(V)$ . Note that  $V \otimes W \simeq W \otimes V$  which is one of the properties of a tensor product. Hence when we identify f with  $\omega \otimes e$  and g with  $\omega' \otimes e'$  we see that  $f \otimes g \to (\omega \otimes e) \otimes (\omega' \otimes e')$  defines a linear isomorphims between the spaces  $\operatorname{End}(V) \otimes \operatorname{End}(V)$ . When we use the property on the middle two spaces of this tensor product we obtain:  $(\omega \otimes e) \otimes (\omega' \otimes e') \to (\omega \otimes \omega') \otimes (e \otimes e')$ . This element lives in the space  $V^* \otimes V^* \otimes V \otimes V \simeq (V \otimes V)^* \otimes (V \otimes V)$ , as  $V^* \otimes V^* \simeq (V \otimes V)^*$  by the map  $\omega \otimes \omega' \to \omega \otimes \omega'$ .

Therefore we have that  $(\omega \otimes \omega') \otimes (e \otimes e') \in (V \otimes V)^* \otimes (V \otimes V) \simeq \operatorname{End}(V \otimes V)$  and hence that the map  $f \otimes g \to f \otimes g$  defines a linear isomorphism between  $\operatorname{End}(V) \otimes \operatorname{End}(V)$  and  $\operatorname{End}(V \otimes V)$ .

We can also look at this in terms of matrices. Then we see that a map  $A, B \in \text{End}(V)$  are represented by  $A(e_i) = \sum_j A_i^j e_j$  and B in a similar manner. Then we see that  $A \otimes B \to A \otimes B$ , where  $(A \otimes B) \in \text{End}(V \otimes V)$  can be seen as  $(A \otimes B)(e_i \otimes e_j) = A(e_i) \otimes B(e_j) = \sum_k A_i^k e_k \otimes \sum_l B_j^l e_l = \sum_{k,l} A_i^k B_j^l (e_k \otimes e_l)$ . One can define a matrix new  $n^2 \times n^2$  matrix  $C_{ij}^{kl} = A_i^k B_j^l$ .

#### 4 Construction R Matrix

Let V be the 2 dimensional vector space over  $\mathbb{Q}(q)$  with fixed basis  $(e_1, e_2)$ . Let X be as defined as the element that recovered the Jones polynomial as described in lecture 7.

$$X = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}_{i} \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix}_{j} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}_{i} \begin{pmatrix} q^{-1} & 0 \\ 0 & q \end{pmatrix}_{j} + (q - q^{-3}) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}_{i} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}_{j}.$$

Note that  $X \in \text{End}(V) \otimes \text{End}(V)$  and that we can define a map  $\phi : \text{End}(V) \otimes \text{End}(V) \to \text{End}(V \otimes V)$ . When we act with this map on X we can use the matrix representation of  $\text{End}(V \otimes V)$  derived in the previous paragraph to obtain (this is just the Kronecker product of matrix tensor multiplication)

We can also define a map  $P : \operatorname{End}(V \otimes V) \to \operatorname{End}(V \otimes V)$  by  $P(e_i \otimes e_j) = e_j \otimes e_i$ . P with standard basis for  $V \otimes$  consisting of  $(e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2)$  will have the form:

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

When we apply  $(P \circ \phi)(X) = P(\phi(X))$  we obtain:

$$R = P(\phi(R)) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \circ \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & q^{-1} & q - q^{-3} & 0 \\ 0 & 0 & q^{-1} & 0 \\ 0 & 0 & 0 & q \end{pmatrix} = \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 0 & q^{-1} & 0 \\ 0 & q^{-1} & q - q^{-3} & 0 \\ 0 & 0 & 0 & q \end{pmatrix}$$

We show that *R* is indeed an *R* matrix satisfying:

$$(R \otimes Id_V) \circ (Id_V \otimes R) \circ (R \otimes Id_V) = (Id_V \otimes R) \circ (R \otimes Id_V) \circ (Id_V \otimes R) \in \text{End}(V^{\otimes 3}).$$

Note that we have the following identity for  $R \otimes Id_V$  and  $Id_V \otimes R$ 

$$R \otimes Id_V = (q) \oplus egin{pmatrix} q & 0 & 0 \ 0 & 0 & q^{-1} \ 0 & q^{-1} & q - q^{-3} \end{pmatrix} \oplus egin{pmatrix} 0 & q^{-1} & 0 \ q^{-1} & q - q^{-3} & 0 \ 0 & 0 & q \end{pmatrix} \oplus (q)$$

and

$$Id_V\otimes R=(q)\oplus egin{pmatrix} 0 & q^{-1} & 0 \ q^{-1} & q-q^{-3} & 0 \ 0 & 0 & q\end{pmatrix}\oplus egin{pmatrix} q & 0 & 0 \ 0 & 0 & q^{-1} \ 0 & q^{-1} & q-q^{-3} \end{pmatrix}\oplus (q).$$

From these identities we see that

$$(R \otimes Id_{V}) \circ (Id_{V} \otimes R) \circ (R \otimes Id_{V}) = (q^{3}) \oplus \begin{pmatrix} 0 & 0 & q^{-1} \\ 0 & q^{-1} & q - q^{-3} \\ 0 & q - q^{-3} \end{pmatrix} \oplus \begin{pmatrix} 0 & 0 & q^{-1} \\ 0 & q^{-1} & q - q^{-3} \\ q^{-1} & q - q^{-3} & q^{3} - q^{-1} \end{pmatrix} \oplus (q^{3})$$

and as expected also

$$(Id_{V}\otimes R)\circ (R\otimes Id_{V})\circ (Id_{V}\otimes R)=(q^{3})\oplus \begin{pmatrix} 0 & 0 & q^{-1} \\ 0 & q^{-1} & q-q^{-3} \\ 0 & q-q^{-3} & \end{pmatrix} \oplus \begin{pmatrix} 0 & 0 & q^{-1} \\ 0 & q^{-1} & q-q^{-3} \\ q^{-1} & q-q^{-3} & q^{3}-q^{-1} \end{pmatrix} \oplus (q^{3}).$$

## 5 Markov Trace

In this section we are going to define a braid invariant under the Markov moves. Let  $\rho_n: B_n \to \operatorname{End}(V^{\otimes n})$  be the representation for the braid group representation associated to R. Let C be the element  $C = \begin{pmatrix} q^2 & 0 \\ 0 & q^{-2} \end{pmatrix}$ . Let  $C^{\otimes n}$  be the corresponding map  $C^{\otimes n}: V^{\otimes n} \to V^{\otimes n}$ . In this section we are going to show that  $tr(C^{\otimes n} \circ \rho_n(\beta)) \in \mathbb{Q}(q)$  is invariant under the Markov moves. Before proceeding we first discuss some properties and ways to see the trace of an arbitrary matrix.

### 5.1 General Properties of the Trace

When we have an arbitrary  $A \in \operatorname{End}(V)$  where V is n dimensional and thus A can be represented as an  $n \times n$  matrix, we have that  $tr(A) = \sum_i A_i^i$ . Let  $V_1$  and  $V_2$  be vector spaces over  $\mathbb{C}$ , then we can define  $tr_i$  of the endomorphism in  $\operatorname{End}(V_i \otimes V_i)$  as

$$tr_1 : \text{End}(V_1 \otimes V_2) = (V_1 \otimes V_2)^* \otimes (V_1 \otimes V_2) = V_2^* \otimes V_1^* \otimes V_1 \otimes V_2 \to V_2^* \otimes V_2 = \text{End}(V_2),$$

$$tr_2 : \text{End}(V_1 \otimes V_2) = (V_1 \otimes V_2)^* \otimes (V_1 \otimes V_2) = V_2^* \otimes V_1^* \otimes V_1 \otimes V_2 \to V_1^* \otimes V_1 = \text{End}(V_1)$$

where the arrows depict contractions  $V_i^* \otimes V_i \to \mathbb{C}$  for i=1,2 respectively. Let  $\{e_i\}$  and  $\{e_i'\}$  depict bases of  $V_1$  and  $V_2$ . In the same fashion as section 2 we see that for a linear map  $A \in \operatorname{End}(V_1 \otimes V_2)$  we have that  $A(e_i \otimes e_j) = \sum_{k,l} A_{ij}^{kl}(e_k \otimes e_l)$ . Then the  $tr_1$  and the  $tr_2$  map are represented by

$$(tr_1(A))(e'_i) = \sum_{jk} A^{kj}_{ki} e'_j$$

$$(tr_2(A))(e_i) = \sum_{jk} A_{ki}^{kj} e_j.$$

In our case, we have V the two dimensional vector space with basis  $e_1, e_2$ . When we have a matrix  $A = (A_{ij}^{kl}) \in \operatorname{End}(V \otimes V)$  with respect to the basis  $\{e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2\}$  of  $V \otimes V$ , we see that

$$tr_1(A) = \begin{pmatrix} A_{00}^{00} + A_{10}^{10} & A_{00}^{01} + A_{10}^{11} \\ A_{01}^{00} + A_{11}^{10} & A_{01}^{01} + A_{11}^{11} \end{pmatrix}$$

$$tr_2(A) = \begin{pmatrix} A_{00}^{00} + A_{01}^{01} & A_{00}^{10} + A_{01}^{11} \\ A_{10}^{00} + A_{11}^{01} & A_{10}^{10} + A_{11}^{11} \end{pmatrix}.$$

From this we see that  $tr_2$  might be of help to us in future computations.

#### 5.2 Construction of the Trace Invariant

Recall that 
$$R = \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 0 & q^{-1} & 0 \\ 0 & q^{-1} & q - q^{-3} & 0 \\ 0 & 0 & 0 & q \end{pmatrix}$$
 and note that  $R^{-1} = \begin{pmatrix} q^{-1} & 0 & 0 & 0 \\ 0 & q^{-1} - q^{3} & q & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & 0 & q^{-1} \end{pmatrix}$ .

Let us compute the following traces:

$$tr_2((Id_V\otimes C)\circ R)=tr_2egin{pmatrix} q^3 & 0 & 0 & 0 \ 0 & 0 & q^{-3} & 0 \ 0 & q & q^3-q^{-1} & 0 \ 0 & 0 & 0 & q^{-1} \end{pmatrix}=q^3iggl( egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}=q^3Id_V.$$

Similarly we see that

$$tr_2((Id_V \otimes C) \circ R^{-1}) = tr_2 egin{pmatrix} q & 0 & 0 & 0 \ 0 & q^{-3} - q & q & 0 \ 0 & q^3 & 0 & 0 \ 0 & 0 & 0 & q^{-3} \end{pmatrix} = q^{-3} egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = q^{-3}Id_V.$$

Hence we have that  $tr_2((Id_V \otimes C) \circ R^{\pm 1}) = q^{\pm 3}Id_V$ . From this we see that

$$tr(C^{\otimes (n+1)} \cdot \rho_{n+1}(\sigma_n^{\pm 1}\beta)) = tr(C^{\otimes (n+1)} \cdot (id_V^{\otimes (n-1)} \otimes R^{\pm 1}) \cdot \rho_{n+1}(\beta)) = q^{\pm 3}tr(C^{\otimes n}\rho_n(\beta)).$$

Hence, we see that *tr* is invariant under the Markov II move up to a deframing constant. For proving that this identity is also invariant under the Markov I move we note that

$$(C\otimes C)\otimes R = \begin{pmatrix} q^4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q^{-4} \end{pmatrix} \circ \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 0 & q^{-1} & 0 \\ 0 & q^{-1} & q - q^{-3} & 0 \\ 0 & 0 & 0 & q \end{pmatrix} = \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 0 & q^{-1} & 0 \\ 0 & q^{-1} & q - q^{-3} & 0 \\ 0 & 0 & 0 & q \end{pmatrix} \circ \begin{pmatrix} q^4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q^{-4} \end{pmatrix} = R\otimes (C\otimes C).$$

From this we can see that  $\rho_n(\beta)$  indeed commutes with  $C^{\otimes n}$  ans hence

$$tr(C^{\otimes n}\rho_n(\sigma_n^{-1}\beta\sigma_n^1)) = tr(C^{\otimes n}\rho_n(\sigma_n^{-1})\rho_n(\beta)\rho_n(\sigma_n^1)) =$$
  
$$tr(\rho_n(\sigma_n^1)C^{\otimes n}\rho_n(\sigma_n^{-1})\rho_n(\beta)) = tr(C^{\otimes n}\rho_n(\sigma_n^1\sigma_n^{-1})\rho_n(\beta)) =$$
  
$$tr(C^{\otimes n}\rho_n(\beta)).$$

Hence we see that this trace is also invariant under the Markov I move and thus Invariant under all the Markov moves up to the deframing.

As an example we are going to compute this Markov invariant trace for the element  $\sigma_1^2$ :

$$tr(C^{\otimes n}\rho_n(\sigma_1^2)) = tr((C^{\otimes 2} \otimes C^{\otimes (n-2)})(R \otimes Id^{\otimes (n-2)})(R \otimes Id^{\otimes (n-2)})) =$$
$$tr((C^{\otimes 2}R^2 \otimes C^{\otimes (n-2)})) = tr(C^{\otimes 2}R^2) \cdot tr(C)^{n-2} = (q^6 + 3q^{-2})(q^2 + q^{-2})^{n-2}$$

### 5.3 Jones Polynomial and Markov Trace

We are now going to link the Jones Polynomial to the Markov trace. We first note an interesting property of our *R* matrix which can be computed quite easily:

$$qR - q^{-1}R^{-1} = (q^2 - q^{-2})Id_{V \otimes V}.$$

This shows that the Skein Relation of the Markov trace is the same as the Skein relation of  $Z_{\text{End}(V)}$  as in the lecture notes (see theorem 14 of lecture 7 [1]) where  $R^{\pm 1}$  is identified with  $L^{\pm}$  and  $Id_{V\otimes V}$  is identified with  $L_0$ . From the previous paragraph we see that deframing property also holds and as in theorem 14 [1].

This together with Alexanders theorem which states that every link is isotopic to the closure of a braid (leaving the writhe invariant) we see that indeed  $J_{cl(\beta)} = \frac{1}{q^2+q^{-2}} tr(C^{\otimes n} \hat{\rho}_n(\beta))$  where  $tr(C^{\otimes n} \hat{\rho}_n(\beta)) = q^{-3w(\beta)} tr(C^{\otimes n} \hat{\rho}_n(\beta))$ . Hence, we found a new way of computing the Alexander polynomial!

# References

- [1] Lecture 7: The Jones Polynomial Revisited, dr. J. Becerra and prof. R.I. Van der Veen
- [2] Quantum Invariants, a study of knots, 3-manifolds and their sets, T. Ohtsuki. (§2.2)