Lecture !!

Example: Let $E_{\lambda}(x) = e^{x} + \lambda$ (exponential family)

To find the fixed points, we solve $E_{\lambda}(x) = x \iff e^{x} + \lambda = x$

when x=0, $(e^{x})'=1$. Which means that if x=0 is a fixed point, it is neutral.

- Find λ such that x=0 is a fixed point $\lambda = -1$
- · For $\lambda < -1$, $e^{x} + \lambda > \chi$ so there are no fixed paints
- · For $\lambda = -1$. There is one fixed points at x = 0. which is neutral.
- ·for $\lambda < -1$, there are 2 fixed pts. P<0<P, $\lambda < -1$ => E' λ (P)= e^{P} <1 attracting
 - $\Rightarrow E'_{\lambda}(P_{+}) = e^{P_{+}} > 1$ repelling

So The Exponential family $E_{\lambda}(x)$ has a saddle -node bifurcation at $\lambda_0 = -1$.

Example: Let $F_{\lambda}(x) = \lambda x (1-x)$ called the logistic family. We find the fixed points:

 $\lambda \times (1-x) = x \Rightarrow \times (\lambda(1-x)-1) = 0$ $\lambda \times (1-x) = x \Rightarrow \times (\lambda(1-x)-1) = 0$

 $\chi(\lambda - 1 - \lambda x) = 0 = \lambda x = 0$ or $x = 1 - 1/\lambda$

when $\lambda = 1$, we have 1 fixed point when $\lambda \neq 1$, there are 2 fixed pts. $\Rightarrow F_{\lambda}$ does not have a bifurcation.

§ 6.3 Period-doubling Bifurcation

Definition: A one parameter family $F_{\lambda}(x)$ has period-doubling bifurcation at λ_0 in the open interval I if there exists $\varepsilon>0$ S.t. (i) for each $\lambda \in [\lambda_0 - \varepsilon, \lambda_0 + \varepsilon]$, there is a unique fixed point P_{λ} for F_{λ} in I

- (ii) For all λ in one half of the interval $(\lambda E, \lambda_0 + E)$ including λ_0 , F_{λ} has no 2-cycles and F_{λ} is attracting (RESP. repelling)
- (iii) For all λ in the other half of $(\lambda_0 \xi, \lambda_0 + \xi)$ excluding λ_0 , ξ_λ has a unique 2-cycle, g'_λ , $g'_\lambda \in I$ with $\xi_\lambda(g'_\lambda) = g'_\lambda$ and $\xi_\lambda(g'_\lambda) = g'_\lambda(g'_\lambda) =$

(iv) As $\lambda \rightarrow \lambda_0$ (from the other half) $g_{\lambda}^{i} \rightarrow P_{\lambda_0}$

attron one side parte be repl. on Parte be the side parte of the s