Mikroişlemci Sistemleri

Dr. Öğr. Üyesi Erkan Uslu 2 YTÜ-CE

Ders-2 Konular

- Çevre Birimleri
- G/Ç Assembly Komutları
- G/Ç Haritalama
 Yöntemleri
- Basit Arayüz Devreleri
 - Düğme Arayüzü

- LED Arayüzü
- Basit Çevre Birimleri ve Adres Çözümleme
 - Basit Çıkış Birimi
 - Basit Giriş Birimi
- Çevre Birimleri
 Kontrolü

Çevre Birimleri (Peripheral devices)

- Giriş ve/veya çıkış cihazları
- Hafıza birimleri gibi belirli bir adres bölgesine yerleştirilir
- Hafıza birimine göre adres genişliği dardır (1-4 byte)

Çevre Birimleri

- Çıkış Birimi : Hafıza birimine benzer şekilde çıkış birimlerine veri yazılabilir → OUT
- Giriş Birimi : Hafıza birimiyle benzer şekilde giriş birimlerindev veri okunabilir → IN

G/Ç Assembly Komutları

	IN Komutu	OUT Komutu
Fixed address	IN AL, p8	OUT p8, AL
	IN AX, p8	OUT p8, AX
Variable address	IN AL, DX	OUT DX, AL
	IN AX, DX	OUT DX, AX

G/Ç Assembly Komutları

- 0-0FFH arası G/Ç (fixed address) işlemlerinde adres değeri komut içinde saklanır
- 0100H-FFFFH arası adresler DX yazmacı ile dolaylı olarak oluşturulur
- Herhangi bir G/Ç adresinden 8 bitlik veya 16 bitlik veri işlemi yapılabilir

G/Ç Haritalama Yöntemleri

- Isolated I/O Mapping \rightarrow M/\overline{IO} ucu adres çözümleme için kullanılır
- Memory Mapped I/O \Rightarrow M/IO ucu adres çözümleme için kullanılmaz

Isolated I/O – Memory Mapped I/O

Isolated I/O

- Hafıza uzayının tamamı hafıza birimleri için kullanılabilir
 - Hazıfa uzayında G/Ç için yer ayrılmamıştır
- G/Ç için daha hızlı olan özel komutları kullanılabilir
- G/Ç için daha basit adres çözümleme devreleri kullanılabilir

Memory Mapped I/O

- Bazı işlemciler sadece 1 adres uzayına izin verir, Bunlarda:
 - Hafıza komutları ile G/Ç birimlerine erişilebilir
 - G/Ç birimleri için ayrı komutlara gerek yoktur
 - G/Ç Hafıza işlemlerini ayıran fiziki uçlara gerek yoktur

Düğme Arayüzü (Basit Arayüz Devreleri)

- Basit giriş arayüzü olarak kullanılabilir
- Basılmadığı durumda geçerli lojik bir seviye üretmelidir
- Kontakt gürültüne karşı yazılımsal veya donanımsal önlem gereklidir

Düğme Arayüzü

Düğme Arayüzü – Kontakt Gürültüsü

Düğme t anında kapanırsa

- Kontakt gürültüsünü gidermek için yazılımsal veya donanımsal çözümler uygulanmalıdır
- Yazılımsal olarakkontakt gürültüsü giderme: ilk değişim yakalandıktan sonra belirli süre aktif bekleme yapılıp uç tekrar kontrol edilir

Hardware Debounce Switch

LED Arayüzü (Basit Arayüz Devreleri)

Basit Çevre Birimleri için Adres Çözümleme

Memory : A19-A(i+1)

Variable I/O : A15-A(i+1)

• Fixed I/O : A7-A(i+1)

Adres çözümleme devresine gitmeli

Basit Çıkış Birimi

- 8 LED kullanarak 0F000H adresine yerleştirilmiş basit bir çıkış biriminin tasarlanması → donanım + adres çözümleme
- LED'lerde (on,off,on,off...) şeklinde patern oluşturma → I/O programlama

Basit Giriş Birimi

- 8 düğme kullanarak 0F000H adresine yerleştirilmiş basit bir giriş biriminin tasarlanması → donanım + adres çözümleme
- Düğmelerin okunması → I/O programlama

Basit Giriş/Çıkış Birimi

- Aynı adreste giriş ve çıkış birimi yerleştirildi >> bu durum problem oluşturur mu?
- Basit giriş birimi / çıkış birimi 0F001H adresine yerleştirmek için ne yapılmalıdır?
- OF000H adresinden itibaren 16 bitlik bir basit çıkış birimi nasıl tasarlanmalıdır?

Çevre Birimleri Kontrolü

- Çevre birimilerinin kontrolünde
 - Polling: Çevre birim çevrim içinde sürekli control edilir, aranan durum oluşmuşsa işlem yapılır
 - Priority Polling
 - Round Robin Polling
 - Interrupt : Çevre birim ayarlanır, işlemci sürekli kontrol etmez, aranan durum oluştuğunda çevre birim işlemciyi uyarır

Priority Polling

Round Robin Polling

