AE1MCS: Mathematics for Computer Scientists

Huan Jin University of Nottingham Ningbo China

1/19

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

■ Chapter 7, Section 7.1 An Introduction to Discrete Probability

Discrete Probability

- Combination and probability theory share common origins (analyzing gambling games).
- The theory of probability now plays an essential role in a wide variety of disciplines (e.g. the study of genetics).
- In computer science,
 - Probability theory plays an important role in the study of the complexity of algorithms.
 - Probabilistic algorithms vs. deterministic algorithms.
 - Probability theory can help us answer questions that involve uncertainty.
 - **...**

Content

- Probability of an Event
- Probabilities of Complements and Unions of Events

Monty Hall Three-Door Puzzle

You are asked to select one of three doors to open; the large prize is behind one of the three doors and the other two doors are losers. Once you select a door, the game show host, who knows what is be behind each door:

- whether or not you selected the winning door, he opens one of the other two doors that he knows is a losing door (selecting at random if both are losing doors).
- Then he asks you whether you would like to switch doors.

Monty Hall Problem

Finite Probability

Laplace's definition of the probability of an event with **finitely many**, **equally likely**, **possible outcomes** is as follows.

Definition

If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that is, a subset of S, then the probability of E is

$$p(E) = \frac{|E|}{|S|}$$

- An **experiment** is a procedure that yields one of a given set of possible outcomes.
- The **sample space** of the experiment is the set of possible outcomes.
- An **event** is a subset of the sample space.

Huan Jin AE1MCS 6 / 19

Probability of an Event

In the eighteenth century, the French mathematician Laplace, who also studied gambling, defined the probability of an event as the number of successful outcomes divided by the number of possible outcomes.

Example: Poker 1

Find the probability that a hand of five cards in poker contains four cards of one kind.

- A deck of cards contains 52 cards.
- There are 13 different kinds of cards, with four cards of each kind.
- These kinds are twos, threes, fours, fives, sixes, sevens, eights, nines, tens, jacks, queens, kings, and aces.
- There are 4 suits: spades, clubs, hearts, and diamonds, each containing 13 cards.

Example: Poker 2

What is the probability that a poker hand contains a full house, that is, three of one kind and two of another kind?

Probabilities of Complements and Unions of Events

Theorem

Let E be an event in a sample space S. The probability of the event $\overline{E} = S - E$, the complementary event of E, is given by

$$p(\overline{E}) = 1 - p(E)$$

Theorem

Let E_1 and E_2 be events in the sample space S. Then

$$p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$$

How to prove them?

10 / 19

Huan Jin AE1MCS

Example

- A sequence of 10 bits is randomly generated. What is the probability that at least one of these bits is 0?
- What is the probability that a positive integer selected at random from the set of positive integers not exceeding 100 is divisible by either 2 or 5?

Example 1

A sequence of 10 bits is randomly generated. What is the probability that at least one of these bits is 0?

Example 2

What is the probability that a positive integer selected at random from the set of positive integers not exceeding 100 is divisible by *either* 2 or 5?

Monty Hall Three-Door Puzzle

You are asked to select one of three doors to open; the large prize is behind one of the three doors and the other two doors are losers. Once you select a door, the game show host, who knows what is be behind each door:

- whether or not you selected the winning door, he opens one of the other two doors that he knows is a losing door (selecting at random if both are losing doors).
- Then he asks you whether you would like to switch doors.

The Monty Hall Problem

Monty Hall Three-Door Puzzle

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

■ Chapter 7, Section 7.1 An Introduction to Discrete Probability