CHAPTER 7: Markov Chain Monte Carlo Methods

(a) Metropolis/Hastings

where $P(x=i) = \pi_i$ is not known exactly, but only up to a normalization constant (or factor). That is, we know Suppose that we wish to generate a random variable X,

b(i); ie 8, but calculating

but calculating
$$K = \sum_{i \in S} b(i) \tag{1}$$

blem). Here, is a very difficult numerical task (large combinatorial pro-

$$\pi_i = \mathbb{P}(X=i) = \frac{b(i)}{k}.$$

via physical links. Each link has a different failure probability Example: Telecommunications or LAN network: connects node original network (physical)

sub-trees represent working links

operations through access points (ATM's), etc. (Other examples Banks as example: sensitive data, storage systems, distributed connected, knowing the individual link failure joint probabilities. in genetic information, national security, crime labs...). Reliability problem: evaluate the probability that all nodes are R = Z P (V is a connected graph), v : set of all subgraphs.

> Bruteforce approach:
> • Enumerate all possible "up-down" hink scenarios,

For each one, calculate if it is a softe connected.

(if 3 a subtree).

subtrees with uniform probability. Then we prenerate Instead, suppose that we can generate all connected the corresponding link variables $\xi_{\ell} \in \{0,1\}$. If at least one of them is not working ($\xi_{\ell}=0$) then $\chi_{n}=0$ for that sample. Otherwise X_{n-1} .

TDEA: Build a succesive algorithm that will be a Markov chain { In, such that II, are the => How to generate the sub-trees with uniform probability? We only know b(i) = K a constant. limiting probabilities. Then for any bounded function we can estimate Eh(x) using sample ay: E(MX)) = lim & Nh(Xn).

Define a Markov chain { xn} through its transition Thm: Let Q = {qij} be an irreducible matrix, i,jes.

$$P_{ij} = \begin{cases} q_{ij} & \alpha_{ij} & \alpha_{i\neq j} \\ q_{ii} + \sum_{k \neq i} q_{ik} (1 - \alpha_{ik}) & \alpha_{i=j} \end{cases}$$

where $\alpha_{ij} = \min \left(\frac{b_{(i)} q_{ij}}{b_{(i)} q_{ij}}, 1 \right)$. Then $\{X_n\}$ is an ergodic MC with limiting probabilities $\pi_i = \frac{b_{(i)}}{b_{(i)}}$,

Proof: Using the theorem for reversible Harkov chains, if

we can verify that Vije S

$$\pi_i P_{ij} = \pi_j P_{ji} \quad \forall i \neq j, \quad (2)$$

then the claim follows, identifying b(i)=KTi. Now given itjes, we have two possibilities:

$$\alpha'ij = \frac{b(j)q_{ji}}{b(i)q_{ij}}$$
 and $\alpha'_{ji} = 1$, or

and
$$a_{ji} = \frac{b(i)q_{ij}}{b(j)q_{ji}}$$

Suppose wlog that $\alpha_{ij} = \frac{b(j)}{b(i)} \frac{a_{ii}}{a_{ij}} \leq 1$, then by definition:

$$P_{ij} = q_{ij} \alpha_{ij} = \frac{T_{ij}}{T_{ii}} q_{ji} \Rightarrow T_{i}P_{ij} = T_{ij}q_{ji}$$

and $P_{ji} = q_{ji} \alpha_{ji} = q_{ji}$. Thus (2) is verified. QED.

ALGORITHM:

i = Xn

Generate $j \sim Q_i$. Generate $U_{n+1} \sim U(0,1) \perp j$ If $U_n \leq Q_{ij} \Rightarrow X_{m+1} = j$ Else $X_{n+1} = i$

> The MCHC methods have the general form of an acceptance/ rejection test with state-dependency. Today, many "search" algorithms have the general structure of Markov chains.

(b) The Glbbs Sampler.

Generalizes M-H to vectors of random variables. Example 4.39 p.262-263 Ross and 10a.p.250 Ross (8).

Example: {1,...n}a given set of numbers, and

 $P = \{(x_1, ... x_n) \text{ a permutation } ; \sum_j x_j > \alpha\},$ where $\alpha > 0$ is a given number. Goal: generate a uniform distribution on the set P.

Define the concept of "neighborhood" ar follows: if $(\chi_4, ... \chi_n)$ is a given vector, then a neighbor is another vector we obtained by swapping two

elements i +j, that is:

$$(x_1, \dots x_i, \dots x_j, \dots x_n)$$
 and $(x_1, \dots x_j, \dots x_i, \dots x_n)$

are neighbors

Jek such that $y_i = x_i$ and $y_i = x_k$.

on the neighborhoods to generate the candidate; We may want to use, for example, a uniform probability

[In example,

whatio IN(x)1?

$$q(x,y) = \frac{1}{|N(x)|} 1 (y \in N(x))$$

use:
$$\alpha(x,y) = \min\left(\frac{|N(x)|}{|N(y)|}, 1\right).$$

General structure:

- A neighborhood of each possible state,

- A distribution @ for the candidate,

- The acceptance/rejection test or probability.

M-Halpprithm above is when the conclitional probabilities: A particular case of application of the vectorial version of the

$$\mathbb{P}(X_i = x_i | X_j = x_j; j \neq i) = p(x | x_i) \quad (3)$$

are known exactly, even though 1P(x=x)=Tx is not known.

[Examples in Ross (S) and SGS paper.]

$$\chi_i = (\chi_j; i + i)$$

In this case, a neighborhood of $(x_1, ..., x_n)$ is defined

by:
$$N(x) = \{ y : (y_j = x_j; j \neq i) ; i = 1, -n \}$$

That is, only one component of y is different from the

bution for candidates given by: corresponding one in a. Application of HH uses the distri-

uniformly and generating only the component X: It corresponds to choosing a random index ief1,...n} distribution of the cardidate exactly to fit the cordinated conditional on $\overline{\chi}_i$ in (3). Because it shapes the distribution of X (the target), it turns out that there is no rejection in the alporithm.

Exercise: show that &(x,y) = 1 for this algorithm

(p.251 R-s).

The above algorithm is called the Gibbs sampler. [Examples in book p. 254-262 Ross-8].

DISCRETE OPTIMIZATION WITH MCHC

(c) Simulated Annealing

We wish to find the aphimal "devign" or "configuration" Let f(x) be a cost associated with state $x \in S$. that minimizes the cost, that is: S is a finite but probably very large set, say $S = \{1, \dots m\}$.

$$f * = min f(x).$$

The parameter T is called the "temperature" and we define $\lambda = \frac{1}{T}$ as the algorithm's parameter. Let on = {xes: f(x)=f*} be the optimal set.

Define the probability:

$$P_{\lambda}(x) = \frac{e^{-\lambda f(x)}}{\sum_{x \in S} e^{-\lambda f(x)}} = \frac{e^{-\lambda \left[f(x) - f^*\right]}}{\left[m\right] + \sum_{x' \notin m} e^{-\lambda \left[f(x') - f^*\right]}}$$

Notice that $f(x)-f^*>0 \ \forall x \notin \mathcal{A}$, then as $\lambda \to +\infty$

probability (as & increases) is concentrated on the optimal $P_{\lambda}(x) \rightarrow 0$ for all $x \notin \mathcal{M}$, and therefore the limiting set. Mathemotically, if $X_{2} \sim P_{2}(\cdot)$ then as $2 > \infty$ $X_{\lambda} \Rightarrow X_{\infty}$ (convergence indistribution)

where $P(X_{\infty} \notin \mathfrak{M}) = 0$.

The idea is to use MCMC to produce a Markov chain $\{X_n(\lambda)\}$ with limiting probabilities $p_{\lambda}(\cdot)$.

Remark: λ is a "design parameter" chosen by the programmer, and it is assumed that for any $x \in S$, the value f(x) can be evaluated or observed (from a simulation, an observation, or an execution of a computation). However, because 1SI is very large, the calculation of the normalization factor $K = \sum_{x \in S} e^{-\lambda f(x)}$ may be impossible or impractical. Here we identify $b(x) = e^{-\lambda f(x)}$

the 'neighborhoods' of any element xes can be defined in any convenient manner, as long as they connect all the state space (see proposition below for precise condition).

(interpret: why do we move?)

Example: if the state space contains vectors such as the buffer occupancies in large computer networks, then a neighbor may be any other vector that differs in only one of the component values.

Let: $q(x,y) = \frac{1}{|N(x)|} \mathcal{L}(y \in N(x))$.

Proposition: The mothix Q is irreducible iff $\forall x,y \in S$ there is a sequence of states $\chi=i_1,i_2,\ldots,i_m=y$, called the with $i_{K+1} \in N(i_K)$.

Thm: If the neighborhoods satisfy the reachability,

property, using: $\alpha_{x,y}(x) = \min\left(\frac{e^{-\lambda f(x)}}{e^{-\lambda f(x)}} \frac{|N(x)|}{|N(y)|}, 4\right)$

to build a M-H Markor cham { Xn (21}, then this chain is ergodic and it has limit probabilities

In the algorithm, if the current state $X_n = i$, and assuming that |N(i)| = dc, then:

assuming that |N(i)| = dc, then:

of is uniformly chosen in N(i)of f(j) < f(i) = 0 "move to j" $(X_{n+1} = j)$ of f(j) > f(i) = 0 move to j w.p. $e^{-x(f(j) + f(i))} < 1$ of f(j) > f(i) = 0 move to j w.p. $e^{-x(f(j) + f(i))} < 1$

PROBLEM: The limiting probabilities also not ensure -5-that the algorithm will converge to an optimal value, even if this has "large" probability.

SOLUTION: (i) Use sequentially increasing parameters $\lambda_n \to \infty$ ($T_n \to 0$ is associated with cooling temperature in the annealing process). (ii) Main questions: how fast should λ_n increase? Should one use a bi-level approach or a two-time scale approach?

Bilevel: For each An, find him {P(Xk(A))}
by approximation (when to stop the simulation?)

Two-time scale: Use a non-homogeneous MC model, changing the candidate probabilities at each iteration: P_{ij} ; $n = \int q_{ij} \alpha_{ij}(\lambda n) i \neq j$

We will study the question on the when to stop a simulation in our chapter on output analysis: For the two-time scale problem, techniques such as weak ergodicity conditions and stochastic approximation have been used to establish that if $\lambda_n \leq c\log(n+n)$ then In converges in distribution to a limit ru with support on the optimal set on. Comments: very popular algorithm 80's and 90's, but "slow".

(d) Stochastic Ruler

Suppose that, given a "design" or choice $x \in S$ (a very large set), the cost function f(x) cannot be computed analytically, and can only be observed with noise. Specifically, $f(x) \in S_x$ on a space (S_1, S_1, P) such that $f(x) = \mathbb{E}(h(x, S_x)), \in (a, b)$.

To simplify notation, we will assume that given a value x, an observation $\hat{f}(x) = h(x, \S_x)$ is made, and that it is statistically independent of previous observations.

ALGORITHM: i=Xn is current state

- Generate a candidate $j \in N(i)$ (neighborhood) with distribution $Q(i, \circ)$
- For $k=1,..., M_n$ $(M_n \to \infty)$ - Generate $\widehat{f}^{(k)}(j)$
- Generate $\mathbb{R}_{\bullet}^{(k)} \sim \text{TJ}(a,b)$ "stochastic ruler" - If $\hat{f}^{(k)}(j) > \mathbb{R}^{(k)} \Rightarrow \text{STOP & Xn+1} = \text{Xn}$. else continue and set Xn+1 = j.

Consecutive values of $\{X_n\}$ are estimates of the optimal value x*, what $f(x*) \le f(x) \ \forall x \in S$. Point generated j (w.p. Q(i,j)) is accepted only when all the observations $\{h(j, S_i^{(\kappa)}), k=1, \dots M_n\}$ are satisfy $h(j, S_i^{(\kappa)}) \le \mathbb{R}^{\kappa}$. The acceptance pub. is:

Use: P(h(j, s;(w)> R(x)) = E(P(R(w) ≤ h(j, s;(w)) | h(j, s;(w)))

$$= \mathbb{E}\left(\frac{h(j, \mathbf{s}_{j}^{(k)}) - a}{b - a}\right) = \frac{f(j) - a}{b - a}.$$

=> smaller values of f(j) have higher acceptance probabilities.

Let
$$P(j) = 1 - \frac{f(j) - \alpha}{b - \alpha}$$
, then

$$P(X_{n+1}=j|X_n=i)=Q(i,j)(P(j))^{M_n}$$

which is largest when f(j) is closest to a (minimal possible value). [See analysis in AlfAnd 1997].

Remark: if P(i) > P(j) => f(i) < f(j).

For any value
$$\times_n \in S$$
, we have here:
 $\mathbb{P}(\times_{n+1} + x*| \times_n) \approx (4-f)^{M_n} > 0$

where $\beta = \min_{x \neq x*} \frac{f(x) - \alpha}{b - \alpha} > 0$.

a certain rate to ensure convergence. therefore, similarly to simulated annealing, Mn > 0 at

(Jeneralizations: other supports, accelerating convergence, Regult: As Mn > 00 with Mn ~ O(lnn), xn > x*

choice of neighborhoods ...

(e) Stachastic Comparisons

The set-up in as im (d), where observations are noisy but unbiased.

Menerake

ALGORITHM: $i = X_n$, f(i) current estimate of f(i)

· Generate j~ Q(i, ·), jen(i)

For k= 1,.. Mr - Generate f(x)(j)

-If (f(x)(j) > f(i)) => Xn+1=i

else continue and set:

$$\xi(i) < f^{(k)}(j)$$
 has small probability if $f(i) > f(j)$.

 $P(f^{(k)}(j) > f(i)) = P(f^{(k)}(j) > f(i)) = P(f^{(k)}(j) > f(i) - f(j)), \quad \text{for } = 0.$

Here, $P(x_{n+1} = j \mid x_n = i, f(i) < f(j)) \approx [p(i,j)]^{N_n}$

where $P(i,j) < 1$, so that acceptance $\Rightarrow 0$ as $M_n \Rightarrow \infty$.

The structure of these algorithms is always of the form:
- Define neighborhood structure satisfying reachability.

Trade off between simple structures and small neighborhoods and overall speed: the neighborhoods determine the "exploration" capabilities. Try to define "clever" structures.

- Acceptance / rejection criteria in terms of function evaluations. Because of noise in observations, the amount of samples determines the "exploitation" requirements: reduce noise (=>) increase computational effort. It is often the case that for off-line routines the program keeps a "best candidate" solution using cummulative averages.

- Adapting the exploration density: genetic algorithm, ants, bee swarms, cross-entropy methods and other popular heuristics.

- Convergence analysis (VERY IMPORTANT, CPEN QUESTION FOR MANY MACHINE LEARNING METHODS)

Example: stochastic ruler with constant M. This procedure will yield positive probability to be away from x*, but best candidate may still converge to x*, as shown;

Thm: (AlfAnd 1997 p. 354)

(a2) If P(i) >P() => f(i) < f(j)

.

 $V_n(i) = \sum_{k=1}^{n} 1(x_{n}=i)$ be the

total number of visits to state i up to iteration n, and define $x_n^* = \begin{cases} x_n & \text{if } V_n(x_n) > V_n(x_n^*) \end{cases}$

Xn* otherwise

If $Q(i, \cdot)$ is the uniform sampling probability on N(i) ties, then $Xn^* \to x^*$ w.p.1.

[Andiaddohir 1996]
min f(0)
bes

 $f(\theta) = \mathbb{E}(x_n(\theta))$

|S| - K

some simulation experiment

7

 S^* : set of optimal solutions.

Assumption 1: * 3 rv y (i > j):

ies*, j & s* => P(y(j-i)>0)>P(y(i-i)>0)

· i,j = P(Y(n+i)>0)>P(Y(n-j)>0)

[interpret: "moves" in right direction have larger probs].

Example: stochastic companion may use y (i-i)= Xn(i)-Xn(j), w. independent sampling

- Generate of (untimm on SIOn)

- Generale an observation of the test $y^{\theta_n \to \theta_n}$ and call it Rm. If Rm > 0 \Rightarrow accept: $\theta_{n+1} = \theta_n$, otherwise $\theta_{n+1} = \theta_n$.

- Count the visits: $N_{m+1}(\theta_{n+1}) = N_n(\theta_{n+1}) + 1$, $N_{n+1}(\cdot) = N_n(\cdot) \cdot \theta_n \cdot \theta_n$

- Candidate: if Nn+1 (Bn+1) > Nn+1 (B*) > B*n+1-Bm1.
(Neighborhood structure cam be generalized.)

Theorem: Under assumption 1, 16m; conviges:

On - Ores * w.p.1.

Proof :

(1) hon by is a MC:

P(i,j) = 1 P(Y(i > j)>0), i + j

 $P(i,i) = 1 - \sum_{k=1}^{n} (i,j)$ $= 1 - \frac{1}{k-1} \sum_{j} IP(y^{(i-j)} > 0)$

 $= \frac{1}{k-1} \sum_{j} (1 - \mathbb{P}(Y^{(i \to j)} > 0))$ $= \frac{1}{k-1} \sum_{j} \mathbb{P}(Y^{(i \to j)} \leq 0)$ $= \frac{1}{k-1} \sum_{j} \mathbb{P}(Y^{(i \to j)} \leq 0)$

(assumes indep. samples IRn (of the test).

Suppose the chain i, irreducible un stat prob π . $T_j = \sum_{i \in S} T_i p(i,j)$.

By assumption $1 + \text{algebra}_j$, it is shown that $y \in \mathbb{S}^*$, $y \in \mathbb{S}^* \Rightarrow \text{the proof of the shows that}$ argmax $y \in \mathbb{S}^*$. $y := \text{If}(\# \text{iterations between nonto to } j) = \frac{1}{17}$.

Notice that $\frac{\text{Nn}(\theta)}{n} \to \mathbb{T}_{\theta} \text{ a.s.}$

I null set A such that tweA

$$N_n(\theta,w) \rightarrow T_\theta$$

then, by definition, on the for each we A

(H) (w) = argmax | Nn (0, w) | wasaysaas

Because of a.s convergence and the fact that

Ti-Ti>O>O Yie S*, jas, then I Miles m(w): Yn>,m(w),@*(w)es* qeD.

- · How to construct the test?
- · Assumption 1 may not be rentiable for processes, but some bout.

min f(6) = E[g(B, X,(8), X, (6))]

Z can be random stopping time.

Theorem 3.3 im And. p. 522 (1996)

Example 1: buffer allocation in routing network. pages 2-3 leyran 8hi. + page 22.

with optimal "cost". Example 2: stochastic travelling saleman with Ditemo totall. Tind route ((1, ..., rm) (permutation of (1, m))

Time of travel t(i,j) is random Resolution

For each i, demand of good and price vary , d (i), p(i) are random

what is the cost of voute? :

- \(\sum_{i=1} \) d(r_i) p(r_i) c 2 t(ri, ri+1)

May seek to minimize I (cest). where $c = \min(i : \sum_{j=1}^{n} d(r_j) = D)$