PHY-B-P11

Gültig ab WS11/12 bis (leer) / Bitte beachten Sie auch die Bemerkungen unter Punkt 13.

1. Name des Moduls:	Mathematik für Physiker			
2. Fachgebiet / Verantwortlich:	Mathematik / Fakultät, der Studiendekan			
3. Inhalte des Moduls:	PHY-B-P 11.1: Analysis I			
	 natürliche und ganze Zahlen vollständige Induktion reelle Zahlen (axiomatisch) Folgen und Reihen Grenzwerte Stetigkeit Zwischenwertsatz Differenzierbarkeit Mittelwertsatz und l'Hospitalsche Regeln Riemann-Integral Funktionenfolgen (punktweise und gleichmäßige Konvergenz) elementare Funktionen Taylorentwicklung 			
	uneigentliche Integrale UNE PRAGE A. L.			
	 PHY-B-P 11.2: Analysis II für Physiker Kurven in R^n Differenzierbare Abbildungen in R^n Vektorfelder und Potentiale Taylor-Entwicklung in mehreren Variablen Minima und Maxima, auch mit Nebenbedingungen Sätze über Umkehrfunktionen und implizite Funktionen Polar- und Zylinderkoordinaten (Unter-)Mannigfaltigkeiten Gewöhnliche Differentialgleichungen: Existenz und Eindeutigkeit von Anfangswertproblemen Lineare Differentialgleichungen (Systeme 1. Ordnung und eine Gleichung n-ter Ordnung) Potenzreihenansatz für Differentialgleichungen Fourierreihen und Orthonormalsysteme PHY-B-P 11.3: Analysis III für Physiker			
	 Integration im R^n Transformationsformel und Satz von Fubini Oberflächenintegrale Integralsätze im R^n, insbesondere die Sätze von Gauß, Green und Stokes Holomorphe Funktionen und deren Eigenschaften Kurvenintegrale für komplexe Funktionen Cauchyscher Integralsatz und Cauchy-Integralformel 			

PHY-B-P11

gültig ab WS11/12 bis (leer)

	 Potenz- und Laurentreihen Isolierte Singularitäten holomorpher Funktionen Residuensatz und deren Anwendungen Rand- und Eigenwertprobleme für gewöhnliche Differentialgleichungen 2.Ordnung Separationsansatz für typische partielle Differentialgleichungen der mathematischen Physik Spezielle Funktionen, insbesondere Legendre- und Kugelfunktionen 		
4. Qualifikationsziele des Moduls / zu	Erwerb der Grundkenntnisse der Analysis.		
erwerbende Kompetenzen:	Die Fähigkeit zur selbstständigen Übertragung,		
	Verallgemeinerung und Abstraktion der erlernten		
	Beschreibungs- und Lösungsmethoden auf		
	mathematische Problemstellungen.		
5. Teilnahmevoraussetzungen:			
a) empfohlene Kenntnisse:	keine		
b) verpflichtende Nachweise:	keine		
6. Verwendbarkeit des Moduls:	BSc. Physik. Auch verwendbar für BSc. Nanoscience,		
	BSc. Computational Science, Lehramt Gymnasien Physik;		
	Standard sind hier aber eigene Module gemäß den		
	entsprechenden Prüfungsordnungen.		
7. Angebotsturnus des Moduls:	jährlich		
8. Das Modul kann absolviert werden in:	3 Semestern		
9. Empfohlenes Fachsemester:	1		
10. Gesamtaufwand des Moduls	Arbeitsaufwand:		
(Workload) / Anzahl Leistungspunkte:	Gesamt in Stunden: 600		
	davon:		
	1. Präsenzzeit: 18 SWS		
	2. Selbststudium (inkl. Prüfungsvorbereitung/		
	Prüfung): 330 Std. Leistungspunkte: 20		
	Loistungspunkte. 20		

Voraussetzung für die Vergabe der in Nr. 10 genannten Leistungspunkte ist das erfolgreiche Absolvieren aller in den Nrn. 11 und 12 aufgeführten Leistungen.

11. Modulbestandteile:

Nr	P/WP	Lehrform	Themenbereich/Thema	SWS/ Std.	Studienleistungen
PHY-B -P11. 1	Pflicht	Übung Vorlesung	Analysis I	6	Übungsaufgaben
PHY-B -P11. 2	Pflicht	Übung Vorlesung	Analysis II für Physiker	6	Übungsaufgaben
PHY-B -P11. 3	Pflicht	Übung Vorlesung	Analysis III für Physiker	6	Übungsaufgaben

PHY-B-P11

Gültig ab WS11/12 bis (leer) / Bitte beachten Sie auch die Bemerkungen unter Punkt 13.

12. Modulprüfung:							
Nr	Kompetenz / Thema	Art der Prüfung	Dauer	Zeitpunkt / Bemerkungen	Anteil an Modulnote		
PHY-B -P 11 .4	Alle Themen aus Analysis I-III	Mündlich	30 Minuten	Zeitpunkt: I.d.R. Ende der Vorlesungszeit des 3. Fachsemesters bis Semesterende	1		
PHY-B -P11. 1	Analysis I	Klausur		Dauer: zwischen 80 min und 210 min; Zeitpunkt: Vorlesungszeit bis Semesterende	0 siehe Bemerkungen		
PHY-B -P11. 2	Analysis II für Physiker	Klausur		Dauer: zwischen 80 min und 210 min; Zeitpunkt: Vorlesungszeit bis Semesterende	0 siehe Bemerkungen		
PHY-B -P11. 3	Analysis III für Physiker	Klausur		Dauer: zwischen 80 min und 210 min; Zeitpunkt: Vorlesungszeit bis Semesterende	0 siehe Bemerkungen		

13. Bemerkungen:

Die erfolgreiche Teilnahme an den Übungen ist Zulassungsvoraussetzung für die jeweilige Klausur. Es muss die Übung sowie eine unbenotete Klausur in einer der Veranstaltungen Analysis I, II oder III, sowie die benotete Modulprüfung absolviert werden. Studierenden, die die Mathematik-Vorlesungen Analysis I, II, III (Bachelor Mathematik) erfolgreich mit bestandenen Klausuren absolviert haben, wird die mündliche Prüfung für das Modul Mathematik für Physiker erlassen. Die Gesamtnote setzt sich in diesem Fall aus den zwei besten Noten der Klausuren zusammen. Weitere Informationen geben die Dozenten zu Veranstaltungsbeginn bekannt.