

Mahindra University Hyderabad École Centrale School of Engineering Minor - 2

Program: B. Tech Branch: CSE/ARI/CAM/ECM/ECE Year: II Semester:2
Subject:- Theory of Computation (CS/AI 2204)

Date: 19/04/2024

Time Duration: 1 h 30 m

Start Time: 10:00 AM

Max. Marks: 50

Instructions:

Answer all the questions.

• All the sub-questions belonging to a question should be answered together and in the given order.

· Write less and write only that is needed.

Q1. Regular vs Non-regular

Consider the following languages:

1. $L_1 = \{a^m b^n | m, n \in \mathbb{N}\}$

2. $L_2 = \{a^p b^2 | p \text{ is a perfect square}\}$

3. $L_3 = \{a^m b^n | m + n \text{ is odd}\}$

4. $L_4 = \{a^m b^n | 2m + n = 55\}$

5. $L_5 = \{w \in \{0,1\}^* | w \text{ has equal number of 0's and 1's} \}$

1. Which among $\{L_1, L_2, L_3, L_4, L_5\}$ are regular?

2. Pick a language that is non-regular from the above and justify your claim using pumping lemma for regular languages.

Q2: Context Free Languages

Following is a (N)PDA designed to recognize the language

$$L = \{0^n 1^n | n \ge 0\}$$

(10 M)

(5)

(5)

(10 M)

Make necessary modifications to it so it recognizes the following language instead.

$$L = \{0^n 1^n | n > 2\}$$

Hint: You will only need to introduce one new state apart from the other modifications.

Q3: Regular Expressions

(10 M)

Let $G = (Q, \Sigma, \delta, q_{start}, q_{acc})$ be a Generalized Non-deterministic Finite Automaton (GNFA). What are the domain and range of the transition function δ ?

(5)

(5)

$$\delta: __?__ \rightarrow __?_$$

 \not Given below is a GNFA (G) with 3 states $\{S, 1, a\}$.

Pluck out the state \bigcirc and draw the updated GNFA. What is the regular expression for the language that is intended to be recognized by G?

(5)

24: Pushdown Automata

(10 M)

The following PDA is supposed to recognize the language L, which is defined as

$$L = \{ w \# w^R \, | \, w \in \{0,1\}^* \}$$

where

- w is some string in binary,
- w^R is the reverse of the string w, and
- # is a special symbol to separate w and w^R .

A typical string in L would look something like 010011#110010.

Finish the design of the PDA by filling the four labels appropriately. Don't write anything more than what's asked for.

Every context-free language is also a regular language.	True / False)
Every context-free language is also a regular language.	raise)
A Prime and the second	True / False)
3. If N is an NFA then the language $L(N)^{\circ}$ can be accepted by a DFA.	True / False)
The pumping lemma is a useful tool to show that a language is regular.	True / False)
1. If L is a regular language, the language $\{xy x,y\in L\}$ is also regular.	True / False)
Only provide the answer.	
Q5: True or False	$5 \times 2 = 10$