References

- [1] R. Montalba Mesa, "Parameter Estimation of a Six-Phase Machine for a Marine Application," Master's thesis, KTH Royal Institute of Technology, Jun. 2021, *Not published yet*.
- [2] P. Krause, O. Wasyncyuk, S. Sudhoff, S. Pekarek, *Analysis of Electric Machinery and Drive Systems*, 3rd ed., M. E. El-Hawary, Ed. John Wiley & Sons, Inc., 2013, ISBN: 978-1-118-02429-4, Available online:https://ieeexplore.ieee.org/servlet/opac?bknumber=5265638.
- [3] N. Mohan, T. M. Undeland, W. P. Robbins, *Power Electronics*, 2nd ed., S. M. Elliot, S. M. Culhane, S. Amanatidis, Ed. John Wiley & Sons, Inc., 1995, ISBN: 0-471-58408-8.
- [4] D. G. Holmes, T. A. Lipo, *Pulse Width Modulation For Power Converters*, S. V. Kartalopoulos, Ed. John Wiley & Sons, Inc., 2003, ISBN: 0-471-20814-0.
- [5] A. E. Fitgerald, C. Kingsley Jr., S. D. Umans, *Electrical Machinery*, 6th ed. McGraw Hill, 2003, ISBN: 0-07-366009-4.
- [6] M. H. Rashid, *Power Electronics Handbook*, 3rd ed. Elsevier, 2011, ISBN: 978-0-12-382036-5.
- [7] A. Wintrich, U. Nicolai, W. Tursky, T. Reimann, *Application Manual Power Semiconductors*, 2nd ed., Semikron International GmbH, Ed. ISLE Verlag, 2015, ISBN: 978-3-938843-83-3, Available online: https://www.semikron.com/service-support/application-manual.html.
- [8] L. Peretti, G. Zanuso, *Technology Aspects and Analytical Modelling of Multi-Phase Synchronous and Induction Machines*, Oct. 2020.

- [9] L. Roebel, "Leiter für elektrische Maschinen, welcher aus zwei oder mehr Gruppen von Teilleitern besteht," Germany patent DE277 012C, Mar. 19, 1912.
- [10] A. Tessarolo, "Modeling and Analysis of Multiphase Electric Machines for High-Power Applications," phdthesis, University of Padova, Jan. 2011, Available online: http://paduaresearch.cab.unipd.it/4076/1/PHD_THESIS.pdf.
- [11] B. Moore, D. Tarrant, R. Melaia. Generator Rewind Technology and Efficiency improvements Implemented on Rewinds in Africa. Available online: http://az817975.vo.msecnd.net/wm-418498-cmsimages/
 AcknowledgmentstoPowerGenAfrica&PennwellCorporation.pdf.
- [12] S. Williamson, S. Smith, "Pulsating Torque and Losses in Multiphase Induction Machines," *IEEE Transactions on Industry Applications*, vol. 39, no. 4, pp. 986–993, Jul. 2003, DOI: 10.1109/IAS.2001.955635, Available online: https://ieeexplore.ieee.org/document/955635.
- [13] H. A. Toliyat, T. A. Lipo, J. C. White, "Analysis of a Concentrated Winding Induction Machine for Adjustable Speed Drive Applications. II. Motor Design and Performance," *IEEE Transactions on Energy Conversion*, vol. 6, no. 4, pp. 684–692, Dec. 1991, DOI: 10.1109/60.103642, Available online: https://ieeexplore.ieee.org/document/103642.
- [14] Y. Hu, Z. Q. Zhu, M. Odavic, "Torque Capability Enhancement of Dual Three-Phase PMSM Drive with Fifth and Seventh Current Harmonics Injection," *IEEE Transactions on Industry Applications*, vol. 53, no. 5, pp. 4526–4535, 2016, DOI: 10.1109/TIA.2017.2707330, Available online: https://core.ac.uk/download/pdf/207497257.pdf.
- [15] K. K. Mohapatra, R. S. Kanchan, M. R. Maiju, P. N. Tekwani, K. Gopakumar, "Independent Field-Oriented Control of Two Split-Phase Induction Motors From a Single Six-Phase Inverter," *IEEE Transactions on Industrial Electronics*, vol. 52, no. 5, pp. 1372–1382, Oct. 2005, DOI: 10.1109/TIE.2005.855659, Available online: https://ieeexplore.ieee.org/document/1512470.
- [16] M. Jones, S. N. Vukosavic, E. Levi, A. Iqbal, "A six-phase series-connected two motor drive with decoupled dynamic control," *IEEE Transactions on Industry Applications*, vol. 41, no. 4, pp. 1056–1066, Jul. 2005, DOI:

- 10.1109/TIA.2005.851020, Available online: https://ieeexplore.ieee.org/document/1468283.
- [17] E. Levi, R. Bojoi, F. Profumo, H. Toliyat, S. Williamson, "Multiphase Induction Motor Drives A Technology Status Review," *IET Electric Power Applications*, vol. 1, no. 4, pp. 489–516, Aug. 2007, DOI: 10.1049/iet-epa:20060342, Available online: https://www.researchgate.net/publication/3478317_Multiphase_induction_motor_drives_-_A_technology_status_review.
- [18] Y. Zhao, T. A. Lipo, "Space Vector PWM Control of Dual Three-Phase Induction Machine using Space Vector Decomposition," *IEEE Transactions on Industry Applications*, vol. 31, no. 5, pp. 1100–1109, Sep. 1995, DOI: 10.1109/28.464525, Available online: https://ieeexplore.ieee.org/document/464525.
- [19] A. A. Rockhill, T. A. Lipo, "A Generalized Transformation Methodology for Polyphase Electric Machines and Networks," in *IEMDC*, ser. International Electric Machines & Drives Conference. IEEE, Feb. 2015, DOI: 10.1109/IEMDC.2015.7409032, Available online: https://ieeexplore.ieee.org//document/7409032.
- [20] R. H. Nelson, P. C. Krause, "Induction Machine Analysis for Arbitrary Displacement Between Multiple Winding Sets," *IEEE Transactions on Power Apparatus and Systems*, vol. PAS-93, no. 3, pp. 841–848, May 1974, DOI: 10.1109/TPAS.1974.293983, Available online: https://ieeexplore.ieee.org/document/4075429.
- [21] X. Wang, Z. Wang, Z. Xu, M. Cheng, W. Wang, Y. Hu, "Comprehensive Diagnosis and Tolerance Strategies for Electrical Faults and Sensor Faults in Dual Three-Phase PMSM Drives," *IEEE Transactions on Power Electronics*, vol. 34, no. 7, pp. 6669–6684, Jul. 2019, DOI: 10.1109/TPEL.2018.2876400, Available online: https://ieeexplore.ieee.org/document/8493278.
- [22] C. L. Fortescue, "Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks," *Transactiions of the American Institute of Electrical Engineers*, vol. 37, no. 2, pp. 1027–1140, Jul. 1918, DOI: 10.1109/T-AIEE.1918.4765570, Available online: https://ieeexplore.ieee.org/document/4765570.

- [23] E. Clarke, Circuit Analysis of A-C Power Systems; Symmetrical and Related Components, ser. General Electric Series. John Wiley & Sons, Inc., 1943, vol. 1.
- [24] R. H. Park, "Two-Reaction Theory of Synchronous Machines, Generalized Method of Analysis Part I," *Transactions of the American Institute of Electrical Engineers*, vol. 48, no. 3, pp. 716–727, Jul. 1929, DOI: 10.1109/T-AIEE.1929.5055275, Available online: https://ieeexplore.ieee.org/document/5055275.
- [25] T. A. Lipo, *Analysis of Synchronous Machines*, 2nd ed. Taylor & Francis Ltd., 2017, ISBN: 978-1-4398-8068-5. [Online]. Available: https://www.ebook.de/de/product/21177936/t_a_lipo_analysis_of_synchronous_machines.html
- [26] H. Kuchling, *Taschenbuch der Physik*, 21st ed. Hanser Fachbuchverlag, 2014, ISBN: 978-3-446-44218-4.
- [27] (2021) Graphite. Minerals Education Coalition. Retrieved 2021-02-01. [Online]. Available: https://mineralseducationcoalition.org/minerals-database/graphite/
- [28] Y. P. Frei, "EJ2222 Project 1: Analysis of an induction machine using a FEM based software," KTH Royal Institute of Technology, Tech. Rep., Sep. 2020, KTH internal document.
- [29] X. Nan, C. R. Sullivan, "An improved calculation of proximity-effect loss in high-frequency windings of round conductors," in *PESC*, ser. Annual Conference on Power Electronics Specialist, vol. 34. IEEE, Jun. 2003, pp. 853–860, DOI: 10.1109/PESC.2003.1218168, Available online: https://ieeexplore.ieee.org/document/1218168.
- [30] C. Du-Bar, O. Wallmark, "Eddy Current Losses in a Hairpin Winding for an Automotive Application," in *ICEM*, ser. International Conference on Electrical Machines, vol. 13. IEEE, Sep. 2018, DOI: 10.1109/ICELMACH.2018.8507265, Available online: https://ieeexplore.ieee.org/document/8507265.
- [31] A. Tessarolo, "On the Modeling of Poly-Phase Electric Machines through Vector-Space Decomposition: Numeric Application Cases," in *POWERENG*, ser. International Concerence on Power Engineering, Energy and Electric Drives, Apr. 2009, DOI: 10.1109/POWERENG.2009.4915235, Available online: https://www.researchgate.net/publication/224442175_

- On_the_modeling_of_poly-phase_electric_machines_through_Vector-Space_ Decomposition Numeric application cases.
- [32] S. Halasz, "PWM strategies of multi-phase inverters," ser. Annual Conference of IEEE Industrial Electronics, vol. 34. IEEE, Nov. 2008, DOI: 10.1109/ IECON.2008.4758075, Available online: https://ieeexplore.ieee.org/document/4758075.
- [33] R. Bojoi, F. Farina, F. Profumo, A. Tenconi, "Dual-Three Phase Induction Machine Drives Control—A Survey," *IEEJ Transactions on Industry Applications*, vol. 126, no. 4, pp. 420–429, Jul. 2006, DOI: 10.1541/ieejias.126.420, Available online: https://www.jstage.jst.go.jp/article/ieejias/126/4/126_4_420/_article/-char/en.
- [34] E. Levi, "Advances in Converter Control and Innovative Exploitation of Additional Degrees of Freedom for Multiphase Machines," *IEEE Transactions on Industrial Electronics*, vol. 63, no. 1, pp. 433–448, Jan. 2016, DOI: 10.1109/TIE.2015.2434999, Available online: https://ieeexplore.ieee.org/document/7110356.
- [35] V. Oleschuk, R. Bojoi, F. Profumo, A. Tenconi, A. M. Stankovic, "Multifunctional Six-Phase Motor Drives with Algorithms of Synchronized PWM," in *IECON*, ser. Annual Conference on IEEE Industrial Electronics, vol. 32. IEEE, Nov. 2006, DOI: 10.1109/IECON.2006.347753, Available online: https://ieeexplore.ieee.org/document/4153482.
- [36] V. Oleschuk, G. Grandi, F. A. Dragonas, "Five-phase and six-phase converters with synchronized PWM: An overview," ser. International Symposium on Industrial Electronics. IEEE, Jun. 2011, DOI: 10.1109/ISIE.2011.5984171, Available online: https://ieeexplore.ieee.org/document/5984171.
- [37] F. Jenni, D. Wüest, *Steuerverfahren für selbstgeführte Stromrichter*, 1st ed. vdf Hochschulverlag AG an der ETH Zürich, 1995, ISBN: 978-3-7281-2141-7, Available online: https://vdf.ch/steuerverfahren-fur-selbstgefuhrte-stromrichter.html.
- [38] B. M. Shihab, H. S. Che, W. P. Hew, "Symmetrical six-phase PWM methods using similar and dissimilar zero-sequences ignals injection," in *CEAT*, ser. Clean Energy and Technology Conference, vol. 4. IET, Nov. 2016, DOI:

- 10.1049/cp.2016.1335, Available online: https://ieeexplore.ieee.org/document/8278639.
- [39] K. A. Chinmaya, G. K. Singh, "Analysis of space vector PWM techniques for dual three-phase induction machine," in *i-PACT*, ser. Innovations in Power and Advanced Computing Technologies. IEEE, Apr. 2017, DOI: 10.1109/IPACT.2017.8245131, Available online: https://ieeexplore.ieee.org/document/8245131.
- [40] D. Yazdani, S. A. Khajehoddin, A. Bakhshai, G. Joos, "A Generalized Space Vector Classification Technique for Six-Phase Inverters," ser. Power Electronics Specialists Conference. IEEE, Jun. 2007, DOI: 10.1109/PESC.2007.4342321, Available online: https://ieeexplore.ieee.org/document/4342321.
- [41] (2021) Over 50 Years of Moore's Law. Intel Corporation. Retrieved 2021-03-01. [Online]. Available: https://www.intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html
- [42] K. Marouani, L. Baghli, D. Hadiouche, A. Kheloui, A. Reyyoug, "A New PWM Strategy Based on a 24-Sector Vector Space Decomposition for a Six-Phase VSI-Fed Dual Stator Induction Machine," *IEEE Transactions on Industrial Electronics*, vol. 55, no. 5, pp. 1910–1920, May 2008, DOI: 10.1109/TIE.2008.918486, Available online: https://ieeexplore.ieee.org/document/4454447.
- [43] C. B. Jacobina, I. S. de Freitas, C. R. da Silva, M. B. de Rossiter Corrêa, E. R. C. da Silva, "Reduced Switch-Count Six-Phase AC Motor Drive Systems Without Input Reactor," *IEEE Transactions on Industrial Electronics*, vol. 55, no. 5, pp. 2024–2032, May 2008, DOI: 10.1109/TIE.2008.918482, Available online: https://ieeexplore.ieee.org/document/4454444.
- [44] Ò. Lòpez, J. Àlvarez, J. Doval-Gandoy, F. D. Freijedo, "Multilevel Multiphase Space Vector PWM Algorithm," *IEEE Transactions on Industrial Electronics*, vol. 55, no. 5, pp. 1933–1942, Apr. 2008, DOI: 10.1109/TIE.2008.918466, Available Online: https://ieeexplore.ieee.org/document/4505406.
- [45] J. Lutz, *Halbleiter-Leistungsbauelemente*, 2nd ed. Springer Vieweg, 2012, ISBN: 978-3-642-29795-3.

- [46] F. Fiorillo, *Characterization and Measurement of Magnetic Materials*, I. Mayergoyz, Ed. Elsevier Inc., 2004, ISBN: 978-0-12-257251-7.
- [47] O. Wallmark, *AC Machine Analysis Fundamental Theory*. KTH Royal Institute of Technology, 2020, *KTH internal document*.
- [48] J. Tellinen, "A simple scalar model for magnetic hysteresis," *IEEE Transactions on Magnetics*, vol. 34, no. 4, pp. 2200–2206, Jul. 1998, DOI: 10.1109/20.703856, Available online: https://ieeexplore.ieee.org/document/703856.
- [49] L. Papula, *Mathematik für Ingenieure und Naturwissenschaftler*, 14th ed., T. Zipsner, Ed. Springer Vieweg, 2014, vol. 1, ISBN: 978-3-658-05619-3.
- [50] Y. Kali, M. Ayala, J. Rodas, M. Saad, J. Doval-Gandoy, R. Gregor, K. Benjelloun, "Current Control of a Six-Phase Induction Machine Drive Based on Discrete-Time Sliding Mode with Time Delay Estimation," *Energies*, vol. 12, no. 1, 2019, DOI: 10.3390/en12010170, Available online: https://www.mdpi.com/1996-1073/12/1/170.
- [51] O. Gonzales, M. Ayala, J. Doval-Gandoy, J. Rodas, R. Gregor, M. Rivera, "Predictive-Fixed Switching Current Control Strategy Applied to Six-Phase Induction Machine," *Energies*, vol. 12, no. 12, 2019, DOI: 10.3390/en12122294, Available online: https://www.mdpi.com/1996-1073/12/12/2294.
- [52] G. Heinzel, A. Rüdiger, R. Schilling, "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new flat-top windows," Feb. 2002, Available online: https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_152164.
- [53] *Model SR785 Dynamic Signal Analyzer*, 1st ed., Stanford Research Systems, Mar. 2017, Available online: https://thinksrs.com/downloads/pdfs/manuals/SR785m.pdf.
- [54] R. Antonello, L. Peretti, F. Tinazzi, M. Zigliotto, "Self-commissioning calculation of dynamic models for synchronous machines with magnetic saturation using flux as state variable," in *PEMD*, ser. International Conference on Power Electronics, Machines and Drives, vol. 9. IET, Apr. 2018, DOI: 10.1049/joe.2018.8259,

- Available online: https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/joe.2018.8259.
- [55] L. Harnefors, M. Hinkkanen, O. Wallmark, *Control of Voltage-Source Converters* and *Variable-Speed Drives*. KTH Royal Institute of Technology, 2020, *KTH internal document*.
- [56] A. S. Sedra, P. O. Brackett, *Filter Theory and Design: Active and Passive*. Pitman Publishing Ltd, 1978, ISBN: 978-0273014294.
- [57] J. Prieto, E. Levi, F. Barrero, S. Toral, "Output current ripple analysis for asymmetrical six-phase drives using double zero-sequence injection PWM," in *IECON*, ser. Annual Conference of the IEEE Industrial Electronics Society, vol. 37. IEEE, Nov. 2011, DOI: 10.1109/IECON.2011.6119909, Available online: https://ieeexplore.ieee.org/document/6119909.
- [58] (2021) Fast Fourier transform MATLAB fft. The MathWorks, Inc. Retrieved 2021-03-19. [Online]. Available: https://www.mathworks.com/help/matlab/ref/fft.html
- [59] A. R. Bakhshai, G. Joos, H. Jin, "Space vector PWM control of a split-phase induction machine using the vector classification technique," in *APEC*, ser. Annual Applied Power Electronics Conference and Exposition, vol. 13. IEEE, Feb. 1998, DOI: 10.1109/APEC.1998.653990, Available online: https://ieeexplore.ieee.org/document/653990.
- [60] L. Peretti, M Hirvonen, S Kallio, "Control of a Multiphase Machine," European Patent EP3 713 079A1, Sep. 23, 2020. [Online]. Available: https://worldwide.espacenet.com/publicationDetails/biblio?II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20200923&CC=EP&NR=3713079A1&KC=A1#
- [61] D. Yazdani, S. A. Khajehoddin, A. Bakhshai, G. Joos, "Full Utilization of the Inverter in Split-Phase Drives by Means of a Dual Three-Phase Space Vector Classification Algorithm," *IEEE Transactions on Industrial Electronics*, vol. 56, no. 1, pp. 120–129, Jan. 2009, DOI: 10.1109/TIE.2008.927405, Available online: https://ieeexplore.ieee.org/document/4555651.
- [62] D. Dujic, M. Jones, E. Levi, "Analysis of Output Current Ripple rms in Multiphase Drives Using Space Vector Approach," *IEEE Transactions on Power Electronics*,

- vol. 24, no. 8, pp. 1926–1938, Aug. 2009, DOI: 10.1109/TPEL.2009.2017746, Available online: https://ieeexplore.ieee.org/document/5200694.
- [63] —, "Analysis of Output Current-Ripple RMS in Multiphase Drives Using Polygon Approach," *IEEE Transactions on Power Electronics*, vol. 25, no. 7, pp. 1838–1849, Jul. 2010, DOI: 10.1109/TPEL.2010.2042969, Available online: https://ieeexplore.ieee.org/document/5411794.
- [64] S. Halasz, "Overmodulation region of multi-phase inverters," ser. International Power Electronics and Motion Control Conference, vol. 13. IEEE, Sep. 2008, DOI: 10.1109/EPEPEMC.2008.4635343, Available online: https://ieeexplore.ieee.org/document/4635343.
- [65] C. Yhou, G. Yang, J. Su, "PWM Strategy With Minimum Harmonic Distortion for Dual Three-Phase Permanent-Magnet Synchronous Motor Drives Operating in the Overmodulation Region," *IEEE Transactions on Power Electronics*, vol. 31, no. 2, pp. 1367–1380, Feb. 2016, DOI: 10.1109/TPEL.2015.2414437, Available online: https://ieeexplore.ieee.org/document/7063269.
- [66] J. Prieto, F. Barrero, M. J. Duran, S. T. Marin, M. A. Perales, "SVM Procedure for n-Phase VSI With Low Harmonic Distortion in the Overmodulation Region," *IEEE Transactions on Industrial Electronics*, vol. 61, no. 1, pp. 92–97, Jan. 2014, DOI: 10.1109/TIE.2013.2240638, Available online: https://ieeexplore.ieee.org/document/6413224.

APPENDIX

Appendix - Contents

Α	Initial Project Plan					
В	Tables for the Results					
	B.1	Modulator Comparison	IV			
		B.1.1 $f_{sw}=$ 30 kHz \dots	IV			
		B.1.2 $f_{sw}=$ 20 kHz	/			
		B.1.3 $f_{sw}=$ 40 kHz \dots	ΧI			
		B.1.4 Current and Voltage Spectra	ΊV			
B.2		Switching Frequency Analysis	X۷			
		B.2.1 Carrier Based PWM	X۷			
		B.2.2 Carrier Based PWM with Harmonic Injection	ΊX			
		B.2.3 Dual Three-Phase Space Vector Modulation	(III			
		B.2.4 Six-Phase Space Vector Modulation	VII			
	B.3	Overmodulation	ίXI			
С	Мат	rlab-Code XXX	ΧII			
	C.1	Modulator Theory Calculations	ΧII			
		C.1.1 Solver: Harmonic Injection Magnitude	(LI			
	C.2	Simulation Main File	LII			
	C.3	Machine Data File	LV			
	C.4	Simulation Loop File	ΙX			
	C.5	Machine Parameter Identification	١V			
	C.6	Inverse Functions	(III			
	C.7	Transformation Functions	/			
	C.8	Dual Three-Phase Space Vector Modulator	ΊX			
		C.8.1 Switching Time Calculator	ΊX			

		C.8.2	Switching Sequence Generator	. LXX		
	C.9	nase Space Vector Modulator	LXXIV			
		C.9.1	Switching Time Calculator	LXXIV		
		C.9.2	Switching Sequence Generator	LXXIX		
	C.10 Loss Calculation					
		C.10.1	Winding Conduction Losses	. XC		
		C.10.2	2 Winding Resistance Polynomial	. XCII		
		C.10.3	Iron Losses	. XCIII		
		C.10.4	Converter Losses	. XCV		
		C.10.5	Switching Loss Polynomial	XCVIII		
		C.10.6	Converter Losses for the Base Case	.XCIX		
D	Sıм	ULINK	z-Screenshots	С		
	D.1	Comm	non Mode Removal	. CI		
	D.2	Model	Overview	. CII		
	D.3	ne Model	. CIII			
		D.3.1	Fundamental Frame Machine Model	. CIII		
		D.3.2	Harmonic Frame Machine Model	. CIV		
		D.3.3	Mechanical Load	. CIV		
		D.3.4	Current Controller	. CV		
		D.3.5	Voltage Saturation	. CVI		
		D.3.6	Field Weakening	. CVII		
		D.3.7	Speed Controller	. CVIII		
	D.4	Invers	e Function	. CIX		
	D.5 Mod		ator Models	. CX		
		D.5.1	Base Case: Ideal Sines	. CX		
		D.5.2	Carrier Based PWM	. CXI		
		D.5.3	Carrier Based PWM with Harmonic Injection	. CXII		
		D.5.4	Dual Three-Phase Space Vector Modulation	. CXIII		
		D.5.5	Six-Phase Space Vector Modulation	.CXIV		
Ε	Dig	Digital Appendix				