

王石嵘

February 28, 2020

Contents

1	Cor	nfiguration Interaction
	4.1	Multiconfigurational Wave Functions and the Structure of Full CI Matrix
		4.1.1 Intermediate Normalization and an Expression for the Correlation Energy
		Ex 4.1
		Ex 4.2
		Ex 4.3
	4.2	Doubly Exited CI
	4.3	Some Illustrative Calculations
	4.4	Natural Orbitals and the 1-Particle Reduced DM
		Ex 4.4
		Ex 4.5
		Ex 4.6
		Ex 4.7
		Ex 4.8
	4.5	The MCSCF and the GVB Methods
		Ex 4.9
	4.6	Truncated CI and the Size-consistency Problem
		Ex 4.10

4 Configuration Interaction

4.1 Multiconfigurational Wave Functions and the Structure of Full CI Matrix

4.1.1 Intermediate Normalization and an Expression for the Correlation Energy

Ex 4.1 If $a \notin \{c, d, e\}$ and $r \notin \{t, u, v\}$,

$$\left\langle \Psi_{a}^{r} \left| \mathcal{H} \left| \Psi_{cde}^{tuv} \right\rangle = 0 \right. \tag{4.1.1}$$

Let's suppose a = e, thus

$$\left\langle \Psi_{a}^{r} \middle| \mathcal{H} \middle| \Psi_{cde}^{tuv} \right\rangle = \left\langle \Psi_{a}^{r} \middle| \mathcal{H} \middle| \Psi_{acd}^{vtu} \right\rangle \tag{4.1.2}$$

if $r \neq v$, this term will still be zero, thus

$$\sum_{c < d < e, t < u < v} c_{cde}^{tuv} \left\langle \Psi_a^r \middle| \mathcal{H} \middle| \Psi_{cde}^{tuv} \right\rangle = \sum_{c < d, t < u} c_{acd}^{rtu} \left\langle \Psi_a^r \middle| \mathcal{H} \middle| \Psi_{acd}^{rtu} \right\rangle \tag{4.1.3}$$

Ex 4.2

$$\begin{vmatrix}
-E_{\text{corr}} & K_{12} \\
K_{12} & 2\Delta - E_{\text{corr}}
\end{vmatrix} = 0 \tag{4.1.4}$$

$$-E_{\rm corr}(2\Delta - E_{\rm corr}) - K_{12}^2 = 0 (4.1.5)$$

$$E_{\text{corr}} = \frac{2\Delta \pm \sqrt{4\Delta^2 + 4K_{12}^2}}{2} = \Delta \pm \sqrt{\Delta^2 + K_{12}^2}$$
 (4.1.6)

choosing the lowest eigenvalue,

$$E_{\rm corr} = \Delta - \sqrt{\Delta^2 + K_{12}^2} \tag{4.1.7}$$

Ex 4.3 At R = 1.4,

$$\Delta = \varepsilon_2 - \varepsilon_1 + \frac{1}{2}(J_{11} + J_{22}) - 2J_{12} + K_{12}$$

$$= 0.6703 + 0.5782 + \frac{1}{2}(0.6746 + 0.6975) - 2 \times 0.6636 + 0.1813$$

$$= 0.78865 \tag{4.1.8}$$

$$E_{\text{corr}} = \Delta - \sqrt{\Delta^2 + K_{12}^2} = 0.78865 - \sqrt{0.78865^2 + 0.1813^2} = -0.020571$$
 (4.1.9)

$$c = \frac{E_{\text{corr}}}{K_{12}} = \frac{-0.020571}{0.1813} = -0.1135 \tag{4.1.10}$$

As $R \to \infty$, $\varepsilon_2 - \varepsilon_1 \to 0$, all 2e integrals $\to \frac{1}{2}(\phi_1\phi_1|\phi_1\phi_1)$, thus

$$\lim_{R \to \infty} \Delta = 0 + \lim_{R \to \infty} \left[\frac{1}{2} (J_{11} + J_{22}) - 2J_{12} + K_{12} \right] = 0$$
 (4.1.11)

$$\lim_{R \to \infty} E_{\text{corr}} = -\lim_{R \to \infty} K_{12} \tag{4.1.12}$$

$$\lim_{R \to \infty} c = \lim_{R \to \infty} \frac{E_{\text{corr}}}{K_{12}} = -1 \tag{4.1.13}$$

As $R \to \infty$, the full CI wave function will be

$$|\Phi_0\rangle = |\Psi_0\rangle - |\Psi_{1\bar{1}}^{2\bar{2}}\rangle = |\psi_1\bar{\psi}_1\rangle - |\psi_2\bar{\psi}_2\rangle \tag{4.1.14}$$

Since

$$\psi_1 = \frac{1}{\sqrt{2(1+S_{12})}}(\phi_1 + \phi_2) \tag{4.1.15}$$

$$\psi_2 = \frac{1}{\sqrt{2(1 - S_{12})}} (\phi_1 - \phi_2) \tag{4.1.16}$$

we get

$$|\psi_1 \bar{\psi}_1 \rangle = \frac{1}{2(1 + S_{12})} (|\phi_1 \bar{\phi}_1 \rangle + |\phi_1 \bar{\phi}_2 \rangle + |\phi_2 \bar{\phi}_1 \rangle + |\phi_2 \bar{\phi}_2 \rangle) \tag{4.1.17}$$

$$|\psi_2\bar{\psi}_2\rangle = \frac{1}{2(1-S_{12})} (|\phi_1\bar{\phi}_1\rangle - |\phi_1\bar{\phi}_2\rangle - |\phi_2\bar{\phi}_1\rangle + |\phi_2\bar{\phi}_2\rangle)$$
 (4.1.18)

As $R \to \infty$, $S_{12} \to 0$, thus

$$|\Phi_0\rangle = |\psi_1\bar{\psi}_1\rangle - |\psi_2\bar{\psi}_2\rangle = \frac{1}{2}(|\phi_1\bar{\phi}_2\rangle + |\phi_2\bar{\phi}_1\rangle)$$

$$(4.1.19)$$

Renormalize it, we get

$$|\Phi_0\rangle = \frac{1}{\sqrt{2}} (|\phi_1 \bar{\phi}_2\rangle + |\phi_2 \bar{\phi}_1\rangle) \tag{4.1.20}$$

4.2 Doubly Exited CI

4.3 Some Illustrative Calculations

4.4 Natural Orbitals and the 1-Particle Reduced DM

Ex 4.4

$$\gamma_{ij} = \int d\mathbf{x}_1 d\mathbf{x}_1' \chi_i^*(\mathbf{x}_1) \gamma(\mathbf{x}_1, \mathbf{x}_1') \chi_j(\mathbf{x}_1')$$
(4.4.1)

$$\gamma_{ji}^* = \int d\mathbf{x}_1 d\mathbf{x}_1' \chi_j(\mathbf{x}_1) \gamma^*(\mathbf{x}_1, \mathbf{x}_1') \chi_i^*(\mathbf{x}_1')$$

$$= \int d\mathbf{x}_1' d\mathbf{x}_1 \chi_j(\mathbf{x}_1') \gamma^*(\mathbf{x}_1', \mathbf{x}_1) \chi_i^*(\mathbf{x}_1)$$

$$= \int d\mathbf{x}_1' d\mathbf{x}_1 \chi_j(\mathbf{x}_1') \gamma(\mathbf{x}_1', \mathbf{x}_1) \chi_i^*(\mathbf{x}_1)$$

$$= \gamma_{ij}$$

$$(4.4.2)$$

 $\therefore \gamma$ is Hermitian.

Ex 4.5

$$\langle \Phi | \Phi \rangle = \frac{1}{N} \int d\mathbf{x}_1 \gamma(\mathbf{x}_1, \mathbf{x}_1)$$

$$= \int d\mathbf{x}_1 \sum_{ij} \chi_i(\mathbf{x}_1) \gamma_{ij} \chi_j^*(\mathbf{x}_1)$$

$$= \frac{1}{N} \sum_{ij} \left[\int d\mathbf{x}_1 \chi_j^*(\mathbf{x}_1) \chi_i(\mathbf{x}_1) \right] \gamma_{ij}$$

$$= \frac{1}{N} \sum_{ij} \delta_{ji} \gamma_{ij}$$

$$= \frac{1}{N} \operatorname{tr} \boldsymbol{\gamma}$$
(4.4.3)

thus

$$\operatorname{tr} \gamma = N \tag{4.4.4}$$

Ex 4.6

a.

$$\langle \Phi \mid \mathcal{O}_1 \mid \Phi \rangle = \sum_{i} \langle \Phi \mid h(\mathbf{x}_1) \mid \Phi \rangle$$

$$= N \int d\mathbf{x}_1 \int d\mathbf{x}_2 \cdots d\mathbf{x}_N \Phi^*(\mathbf{x}_1, \cdots, \mathbf{x}_N) h(\mathbf{x}_1) \Phi(\mathbf{x}_1, \cdots, \mathbf{x}_N)$$

$$= N \frac{1}{N} \int d\mathbf{x}_1 [h(\mathbf{x}_1) \gamma(\mathbf{x}_1, \mathbf{x}_1')]_{\mathbf{x}_1' = \mathbf{x}_1}$$

$$= \int d\mathbf{x}_1 [h(\mathbf{x}_1) \gamma(\mathbf{x}_1, \mathbf{x}_1')]_{\mathbf{x}_1' = \mathbf{x}_1}$$

$$(4.4.5)$$

b.

$$\langle \Phi \mid \mathcal{O}_{1} \mid \Phi \rangle = \int d\mathbf{x}_{1} [h(\mathbf{x}_{1})\gamma(\mathbf{x}_{1}, \mathbf{x}_{1}')]_{\mathbf{x}_{1}'=\mathbf{x}_{1}}$$

$$= \int d\mathbf{x}_{1} [h(\mathbf{x}_{1}) \sum_{ij} \chi_{i}(\mathbf{x}_{1})\gamma_{ij}\chi_{j}^{*}(\mathbf{x}_{1}')]_{\mathbf{x}_{1}'=\mathbf{x}_{1}}$$

$$= \sum_{ij} \left[\int d\mathbf{x}_{1}\chi_{j}^{*}(\mathbf{x}_{1})h(\mathbf{x}_{1})\chi_{i}(\mathbf{x}_{1}) \right] \gamma_{ij}$$

$$= \sum_{ij} h_{ji}\gamma_{ij}$$

$$= \sum_{j} (\mathbf{h}\gamma)_{jj}$$

$$= \operatorname{tr}(\mathbf{h}\gamma)$$

$$(4.4.6)$$

Ex 4.7

a.

$$\langle \Phi \mid \mathscr{O}_1 \mid \Phi \rangle = \sum_{ij} \langle i \mid h \mid j \rangle \langle \Phi \mid a_i^+ a_j \mid \Phi \rangle \tag{4.4.7}$$

while

$$\langle \Phi \mid \mathscr{O}_1 \mid \Phi \rangle = \sum_{ij} h_{ij} \gamma_{ji} \tag{4.4.8}$$

٠٠.

$$\gamma_{ji} = \left\langle \Phi \mid a_i^+ a_j \mid \Phi \right\rangle \tag{4.4.9}$$

i.e.

$$\gamma_{ij} = \left\langle \Phi \mid a_j^+ a_i \mid \Phi \right\rangle \tag{4.4.10}$$

b.

$$\gamma_{ij}^{\text{HF}} = \left\langle \Psi_0 \mid a_j^+ a_i \mid \Psi_0 \right\rangle \tag{4.4.11}$$

If i is unoccupied, thus $\gamma_{ij}^{\rm HF}=0$ as we cannot annihilate electrons from it. If j is unoccupied, $\gamma_{ij}^{\rm HF}=\delta_{ij}-\left\langle\Psi_0\left|a_ia_j^+\right|\Psi_0\right\rangle=\delta_{ij}-\delta_{ij}=0$. Otherwise, when i,j are occupied, it's clear that $\gamma_{ij}^{\rm HF}=\delta_{ij}$.

$$\gamma_{ij}^{\text{HF}} = \begin{cases} \delta_{ij} & i, j \text{ are occupied} \\ 0 & \text{otherwise} \end{cases}$$
 (4.4.12)

Ex 4.8

a. Since

$$|^{1}\Phi_{0}\rangle = c_{0} |\psi_{1}\bar{\psi}_{1}\rangle + \sum_{r=2}^{K} c_{1}^{r} \frac{1}{\sqrt{2}} (|\psi_{1}\bar{\psi}_{r}\rangle + |\psi_{r}\bar{\psi}_{1}\rangle) + \frac{1}{2} \sum_{r=2}^{K} \sum_{s=2}^{K} c_{11}^{rs} \frac{1}{\sqrt{2}} (|\psi_{r}\bar{\psi}_{s}\rangle + |\psi_{s}\bar{\psi}_{r}\rangle)$$
(4.4.13)

we can write

$$|^{1}\Phi_{0}\rangle = \sum_{i}^{K} \sum_{j}^{K} C_{ij} |\psi_{i}\bar{\psi}_{j}\rangle \tag{4.4.14}$$

When one or two of i, j equals 1, it is clear that $C_{ij} = C_{ji}$. Otherwise, $c_{11}^{rs} = c_{11}^{sr}$. Thus, **C** is symmetric.

b.

$$\gamma(\mathbf{x}_{1}, \mathbf{x}_{1}') = 2 \int d\mathbf{x}_{2} \sum_{ij} C_{ij} \frac{1}{\sqrt{2}} (\psi_{i}(\mathbf{x}_{1}) \bar{\psi}_{j}(\mathbf{x}_{2}) - \psi_{i}(\mathbf{x}_{2}) \bar{\psi}_{j}(\mathbf{x}_{1})) \sum_{kl} C_{kl}^{*} \frac{1}{\sqrt{2}} (\psi_{k}^{*}(\mathbf{x}_{1}') \bar{\psi}_{l}^{*}(\mathbf{x}_{2}) - \psi_{k}^{*}(\mathbf{x}_{2}) \bar{\psi}_{l}^{*}(\mathbf{x}_{1})) \\
= \sum_{ij} \sum_{kl} C_{ij} C_{kl}^{*} \int d\mathbf{x}_{2} (\psi_{i}(\mathbf{x}_{1}) \bar{\psi}_{j}(\mathbf{x}_{2}) - \psi_{i}(\mathbf{x}_{2}) \bar{\psi}_{j}(\mathbf{x}_{1})) (\psi_{k}^{*}(\mathbf{x}_{1}') \bar{\psi}_{l}^{*}(\mathbf{x}_{2}) - \psi_{k}^{*}(\mathbf{x}_{2}) \bar{\psi}_{l}^{*}(\mathbf{x}_{1}')) \\
= \sum_{ij} \sum_{kl} C_{ij} C_{kl}^{*} [\psi_{i}(\mathbf{x}_{1}) \psi_{k}^{*}(\mathbf{x}_{1}') \delta_{jl} + \bar{\psi}_{j}(\mathbf{x}_{1}) \bar{\psi}_{l}^{*}(\mathbf{x}_{1}') \delta_{ik}] \\
= \sum_{ij} \sum_{k} C_{ij} C_{kj}^{*} \psi_{i}(\mathbf{x}_{1}) \psi_{k}^{*}(\mathbf{x}_{1}') + \sum_{ij} \sum_{l} C_{ij} C_{il}^{*} \bar{\psi}_{j}(\mathbf{x}_{1}) \bar{\psi}_{l}^{*}(\mathbf{x}_{1}') \\
= \sum_{ik} (\mathbf{C}\mathbf{C}^{\dagger})_{ik} \psi_{i}(\mathbf{x}_{1}) \psi_{k}^{*}(\mathbf{x}_{1}') + \sum_{jl} (\mathbf{C}^{\dagger}\mathbf{C})_{lj} \bar{\psi}_{j}(\mathbf{x}_{1}) \bar{\psi}_{l}^{*}(\mathbf{x}_{1}') \\
= \sum_{ij} (\mathbf{C}\mathbf{C}^{\dagger})_{ij} \psi_{i}(\mathbf{x}_{1}) \psi_{j}^{*}(\mathbf{x}_{1}') + \sum_{ij} (\mathbf{C}\mathbf{C}^{\dagger})_{ji} \bar{\psi}_{i}(\mathbf{x}_{1}) \bar{\psi}_{j}^{*}(\mathbf{x}_{1}') \\
= \sum_{ij} (\mathbf{C}\mathbf{C}^{\dagger})_{ij} [\psi_{i}(1) \psi_{j}^{*}(\mathbf{x}_{1}') + \bar{\psi}_{i}(1) \bar{\psi}_{j}^{*}(\mathbf{x}_{1}')] \tag{4.4.15}$$

c.

$$\mathbf{d} = \mathbf{U}^{\dagger} \mathbf{C} \mathbf{U} \tag{4.4.16}$$

$$\mathbf{d}^{\dagger} = (\mathbf{U}^{\dagger} \mathbf{C} \mathbf{U})^{\dagger} = \mathbf{U}^{\dagger} \mathbf{C}^{\dagger} \mathbf{U} \tag{4.4.17}$$

Since U is unitary

$$\mathbf{d}^2 = \mathbf{d}\mathbf{d}^{\dagger} = \mathbf{U}^{\dagger} \mathbf{C} \mathbf{U} \mathbf{U}^{\dagger} \mathbf{C}^{\dagger} \mathbf{U} = \mathbf{U}^{\dagger} \mathbf{C} \mathbf{C}^{\dagger} \mathbf{U}$$
(4.4.18)

d. Since

$$\psi_k = \sum_i U_{ik}^{\dagger} \zeta_i \tag{4.4.19}$$

$$\gamma(\mathbf{x}_{1}, \mathbf{x}_{1}') = \sum_{ij} (\mathbf{C}\mathbf{C}^{\dagger})_{ij} \left[\psi_{i}(1) \psi_{j}^{*}(1') + \bar{\psi}_{i}(1) \bar{\psi}_{j}^{*}(1') \right] \\
= \sum_{ij} (\mathbf{C}\mathbf{C}^{\dagger})_{ij} \left[\sum_{k} U_{ki}^{\dagger} \zeta_{k}(1) \sum_{l} U_{lj}^{\dagger *} \zeta_{l}^{*}(1') + \sum_{k} U_{ki}^{\dagger} \bar{\zeta}_{k}(1) \sum_{l} U_{lj}^{\dagger *} \bar{\zeta}_{l}^{*}(1') \right] \\
= \sum_{k} \sum_{l} \sum_{ij} U_{ki}^{\dagger} (\mathbf{C}\mathbf{C}^{\dagger})_{ij} U_{jl} \left[\zeta_{k}(1) \zeta_{l}^{*}(1') + \bar{\zeta}_{k}(1) \bar{\zeta}_{l}^{*}(1') \right] \\
= \sum_{k} \sum_{l} (\mathbf{U}^{\dagger}\mathbf{C}\mathbf{C}^{\dagger}\mathbf{U})_{kl} \left[\zeta_{k}(1) \zeta_{l}^{*}(1') + \bar{\zeta}_{k}(1) \bar{\zeta}_{l}^{*}(1') \right] \\
= \sum_{k} \sum_{l} d_{k}^{2} \delta_{kl} \left[\zeta_{k}(1) \zeta_{l}^{*}(1') + \bar{\zeta}_{k}(1) \bar{\zeta}_{l}^{*}(1') \right] \\
= \sum_{k} d_{k}^{2} \left[\zeta_{k}(1) \zeta_{k}^{*}(1') + \bar{\zeta}_{k}(1) \bar{\zeta}_{k}^{*}(1') \right] \tag{4.4.20}$$

e.

$$|^{1}\Phi_{0}\rangle = \sum_{i}^{K} \sum_{j}^{K} C_{ij} |\psi_{i}\bar{\psi}_{j}\rangle$$

$$= \sum_{i}^{K} \sum_{j}^{K} C_{ij} \left| \left(\sum_{k} U_{ki}^{\dagger} \zeta_{k} \right) \left(\sum_{l} U_{lj}^{\dagger} \bar{\zeta}_{l} \right) \right\rangle$$

$$= \sum_{i}^{K} \sum_{j}^{K} \sum_{k} \sum_{l} U_{ki}^{\dagger} C_{ij} U_{jl} |\zeta_{k}\bar{\zeta}_{l}\rangle$$

$$= \sum_{k} \sum_{l} d_{k} \delta_{kl} |\zeta_{k}\bar{\zeta}_{k}\rangle$$

$$= \sum_{k} d_{k} |\zeta_{k}\bar{\zeta}_{k}\rangle$$

$$(4.4.21)$$

4.5 The MCSCF and the GVB Methods

Ex 4.9

a.

$$\langle u | u \rangle = \frac{1}{a^2 + b^2} \langle a\psi_A + b\psi_B | a\psi_A + b\psi_B \rangle$$

$$= \frac{1}{a^2 + b^2} (a^2 + b^2)$$

$$= 1 \tag{4.5.1}$$

$$\langle v | v \rangle = \frac{1}{a^2 + b^2} \langle a\psi_A - b\psi_B | a\psi_A - b\psi_B \rangle$$

$$= \frac{1}{a^2 + b^2} (a^2 + b^2)$$

$$= 1 \tag{4.5.2}$$

$$\langle u | v \rangle = \frac{1}{a^2 + b^2} \langle a\psi_A + b\psi_B | a\psi_A - b\psi_B \rangle$$

$$= \frac{a^2 - b^2}{a^2 + b^2}$$
(4.5.3)

b.

$$\begin{split} |\Psi_{\text{GVB}}\rangle &= [2(1+S^2)]^{-1/2}[u(1)v(2) + u(2)v(1)]2^{-1/2}[\alpha(1)\beta(2) - \alpha(2)\beta(1)] \\ &= \left[2 + 2\left(\frac{a^2 - b^2}{a^2 + b^2}\right)^2\right]^{-1/2}(a^2 + b^2)^{-1} \\ &\times \left[(a\psi_A(1) + b\psi_B(1))(a\psi_A(2) - b\psi_B(2)) + (a\psi_A(2) + b\psi_B(2))(a\psi_A(1) - b\psi_B(1))\right] \\ &\times 2^{-1/2}[\alpha(1)\beta(2) - \alpha(2)\beta(1)] \\ &= \left[2(a^2 + b^2)^2 + 2\left(a^2 - b^2\right)^2\right]^{-1/2}[2a^2\psi_A(1)\psi_A(2) - 2b^2\psi_B(1)\psi_B(2)] \times 2^{-1/2}[\alpha(1)\beta(2) - \alpha(2)\beta(1)] \\ &= \left[4(a^4 + b^4)\right]^{-1/2}[2a^2\psi_A(1)\psi_A(2) - 2b^2\psi_B(1)\psi_B(2)] \times 2^{-1/2}[\alpha(1)\beta(2) - \alpha(2)\beta(1)] \\ &= \left(a^4 + b^4\right)^{-1/2}[a^2\psi_A(1)\psi_A(2) - b^2\psi_B(1)\psi_B(2)] \times 2^{-1/2}[\alpha(1)\beta(2) - \alpha(2)\beta(1)] \end{split} \tag{4.5.4}$$

i.e.

$$|\Psi_{\text{GVB}}\rangle = (a^4 + b^4)^{-1/2} a^2 \times 2^{-1/2} \psi_A(1) \psi_A(2) [\alpha(1)\beta(2) - \alpha(2)\beta(1)] - (a^4 + b^4)^{-1/2} b^2 \times 2^{-1/2} \psi_B(1) \psi_B(2) [\alpha(1)\beta(2) - \alpha(2)\beta(1)] = (a^4 + b^4)^{-1/2} a^2 |\psi_A \bar{\psi}_A\rangle - (a^4 + b^4)^{-1/2} b^2 |\psi_B \bar{\psi}_B\rangle$$
(4.5.5)

thus $|\Psi_{\rm GVB}\rangle$ is identical to $|\Psi^{\rm MCSCF}\rangle$.

4.6 Truncated CI and the Size-consistency Problem

Ex 4.10

$$\begin{split} \langle \Psi_0 \, | \, \mathscr{H} \, | \, \mathbf{1}_1 \bar{\mathbf{1}}_1 \mathbf{2}_1 \bar{\mathbf{2}}_1 \rangle &= \langle \mathbf{1}_2 \bar{\mathbf{1}}_2 \, \| \, \mathbf{2}_1 \bar{\mathbf{2}}_1 \rangle \\ &= \langle \mathbf{1}_2 \bar{\mathbf{1}}_2 \, | \, \mathbf{2}_1 \bar{\mathbf{2}}_1 \rangle - \langle \mathbf{1}_2 \bar{\mathbf{1}}_2 \, | \, \bar{\mathbf{2}}_1 \mathbf{2}_1 \rangle \\ &= [\mathbf{1}_2 \mathbf{2}_1 | \bar{\mathbf{1}}_2 \bar{\mathbf{2}}_1] - [\mathbf{1}_2 \bar{\mathbf{2}}_1 | \bar{\mathbf{1}}_2 \mathbf{2}_1] \\ &= (\mathbf{1}_2 \mathbf{2}_1 | \mathbf{1}_2 \mathbf{2}_1) \\ &= 0 \end{split} \tag{4.6.1}$$

$$\begin{split} \langle 2_1 \bar{2}_1 1_2 \bar{1}_2 \, | \, \mathscr{H} \, | \, 1_1 \bar{1}_1 2_1 \bar{2}_1 \rangle &= \langle 2_1 \bar{2}_1 1_2 \bar{1}_2 \, | \, \mathscr{H} \, | \, 2_1 \bar{2}_1 1_1 \bar{1}_1 \rangle \\ &= \langle 1_2 \bar{1}_2 \, | \, 1_1 \bar{1}_1 \rangle \\ &= \langle 1_2 \bar{1}_2 \, | \, 1_1 \bar{1}_1 \rangle - \langle 1_2 \bar{1}_2 \, | \, \bar{1}_1 1_1 \rangle \\ &= [1_2 1_1 | \bar{1}_2 \bar{1}_1] - [1_2 \bar{1}_1 | \bar{1}_2 1_1] \\ &= (1_2 1_1 | 1_2 1_1) \\ &= 0 \end{split} \tag{4.6.2}$$

$$\begin{split} \langle 1_1 \bar{1}_1 2_2 \bar{2}_2 \, | \, \mathcal{H} \, | \, 1_1 \bar{1}_1 2_1 \bar{2}_1 \rangle &= \langle 2_2 \bar{2}_2 \, | \, 2_1 \bar{2}_1 \rangle \\ &= \langle 2_2 \bar{2}_2 \, | \, 2_1 \bar{2}_1 \rangle - \langle 2_2 \bar{2}_2 \, | \, \bar{2}_1 2_1 \rangle \\ &= [2_2 2_1 | \bar{2}_2 \bar{2}_1] - [2_2 \bar{2}_1 | \bar{2}_2 2_1] \\ &= (2_2 2_1 | 2_2 2_1) \\ &= 0 \end{split} \tag{4.6.3}$$