StaaS: almacenamiento como servicio

info@flossystems.com

Murcia, 1-2 de junio de 2012

Licencia

StaaS: almacenamiento como servicio

info@flossystems.com

RAIL

Niveles estándar de RAII

LVM

Gestión de volúmenes lógicos (LVM) Eiemplo de LVM en Linux

7FS

© 2012 FLOSSystems S.L.

This work is licensed under a Creative Commons Attribution 3.0 License

http://creativecommons.org/licenses/by/3.0/es

Quiénes somos: FLOSSYSTEMS

- Larga experiencia como administradores de sistemas.
- ► Fundadores de FLOSSYSTEMS, compañía especializada en servicios avanzados basados en plataformas y sistemas con software libre.
- Diseño de plataformas: Virtualización, Clusters de Alta Escalabilidad, Clusters HA, Almacenamiento masivo, Seguridad...
- ► También impartimos formación especializada.
- ▶ Más info: http://flossystems.com

StaaS: almacenamiento como

info@flossystems.com

RAID

Niveles estándar de RAI

LVM

Gestión de volúmei lógicos (LVM)

Agenda

RAID

Niveles estándar de RAID

IVM

Gestión de volúmenes lógicos (LVM) Ejemplo de LVM en Linux

ZFS

StaaS: almacenamiento como servicio

info@flossystems.com

RAID

Niveles estándar de RAII

IVM

Gestión de volúmei lógicos (LVM)

Motivación

Por qué estudiar las tecnologías de almacenamiento:

- ► Es una de las tecnologías básicas que se combina con clusters, virtualización y cloud computing.
- Rendimiento y escalabilidad, replicación, migración no disruptiva de datos...
- Virtualización del almacenamiento.
- Reducción de los requerimientos de espacio y ahorro en costes de energía.

StaaS:

almacenamiento como servicio

info@flossystems.com

RAIL

Niveles estándar de RAI

LVM

Gestión de volúmenes lógicos (LVM)

StaaS: almacenamiento como servicio

info@flossystems.com

6 RAID

Niveles estándar de RAI

LVIV

Gestión de volúmenes lógicos (LVM)

Ejemplo de LVM en Linux

ZFS

RAID

RAID: Redundant Array of Independent Disks

StaaS: almacenamiento como servicio

info@flossystems.com

RAID

Niveles estándar de RAID

LVM

Gestión de volúmenes Jógicos (LVM)

Ejemplo de LVM en Linux

7FS

- Es un sistema que utiliza varios discos duros para distribuir o replicar datos a través de los discos.
- Evita pérdida de datos.
- Minimiza los tiempos de caída asociados a fallos de hardware (a menudo los reduce a cero).
- ► También puede incrementar el rendimiento.
- ▶ Se puede implementar en el hardware o vía software.

Redundant Array of Independent Disks

StaaS: almacenamiento como servicio

info@flossystems.com

RAID

Niveles estándar de RAID

LVM

Gestión de volúmenes lógicos (LVM)

Ejemplo de LVM en Linux

RAID puede hacer dos cosas básicas:

- 1. Puede mejorar el rendimiento dividiendo (stripping) los datos a través de varios discos, que trabajan simultáneamente con un flujo único de datos.
- 2. Puede duplicar datos (mirror) a través de varios discos, reduciendo el riesgo asociado al fallo de un disco.

Niveles estándar de RAID

StaaS: almacenamiento como servicio

info@flossystems.com

Nivolos ostán

Niveles estándar de RAID

LVM

Gestión de volúmenes lógicos (LVM) Eiemplo de LVM en Linux

'FS

- ► RAID 0 (stripping): discos divididos sin paridad ni espejo
- RAID 1 (mirroring o duplicación): es el primer nivel que ofrece redundancia.
- ▶ RAID 4: divide el volumen con paridad dedicada. Compite (y pierde en consistencia) con RAID 5.
- ► RAID 5: Volumen dividido (*stripped*) con paridad distribuida. RAID 5 requiere al menos 3 discos.
- ▶ RAID 10 o RAID 1+0: es un volumen de datos espejado (RAID 1) que a su vez es dividido (RAID 0). RAID 10 requiere al menos 4 discos.

- RAID 0 (discos divididos sin paridad ni mirroring): usa dos o más discos de igual tamaño para reducir los tiempos de acceso y escritura. Se emplea exclusivamente para mejorar rendimiento.
- ► Tolerancia a fallos: 0 discos

StaaS: almacenamiento como servicio

info@flossystems.com

10 Niv

Niveles estándar de RAID

LVM

Gestión de volúmenes lógicos (LVM)

Ejemplo de LVM en Linux

32

- Volumen duplicado ("espejado") sin paridad ni stripping: ofrece redundancia. Los datos son duplicados en dos o más discos de forma simultánea.
- ► Tolerancia a fallos: n-1 discos

StaaS: almacenamiento como

servicio info@flossystems.com

RAII

1 Niveles estándar de RAID

LVM

Gestión de volúmenes lógicos (LVM)

Ejemplo de LVM en Linux

7FS

- Discos divididos con un disco dedicado a información de paridad.
- Incurre en tiempos de espera cuando escribe la paridad.
- ▶ Pierde en comparación con RAID 5, su competidor.
- ► Tolerancia a fallos: 1 discos
- ▶ Requiere al menos 3 discos.

StaaS: almacenamiento como servicio

info@flossystems.com

RAII

Niveles estándar de RAID

LVM

Gestión de volúmenes lógicos (LVM)

Ejemplo de LVM en Linux

FS

Volumen dividido con paridad distribuida: es el nivel estándar más completo de RAID. Dividiendo datos e información de paridad, crea una arquitectura redundante que al mismo tiempo mejora los tiempos de lectura/escritura.

- ▶ Tolerancia a fallos: 1 disco.
- ▶ RAID 5 requiere al menos 3 discos.

StaaS: almacenamiento como servicio

info@flossystems.com

RAID

Niveles estándar de RAID

LVM

Gestión de volúmenes lógicos (LVM)

Ejemplo de LVM en Linux

ZFS

servicio

StaaS: almacenamiento como info@flossystems.com

LVM

14 LVM

lógicos (LVM)

Antes de los volúmenes lógicos

Al principio, cada sistema de ficheros manejaba un único disco:

Figura: No era muy grande.

StaaS: almacenamiento como servicio

info@flossystems.com

RAID

ALC I AC I I DAID

5)LVM

Gestión de volúmenes lógicos (LVM) Eiemplo de LVM en Linux

-S

Por qué existen volúmenes lógicos

Los usuarios precisaban más espacio, ancho de banda, fiabilidad y flexibilidad:

Figura: Fácil: inserta un "volumen" para juntar discos.

StaaS: almacenamiento como servicio

info@flossystems.com

DAID

5 LVM

Gestión de volúmenes lógicos (LVM)

Gestión de volúmenes lógicos (LVM)

- LVM es un método genérico de asignar el espacio de almacenamiento.
- Más flexible que los esquemas de particionado convencionales.
- Existen distintas implementaciones:
 - Vinum (FreeBSD)
 - LVM (NetBSD)
 - LVM (Linux)
 - 7FS
 - LVM (AIX –1989–, HP-UX)
- ▶ LVM ayuda a los sysadmins a asignar eficientemente el espacio disponible en disco.
- ► LVM es una de las muchas formas de virtualización del almacenamiento.

StaaS: almacenamiento como servicio

info@flossystems.com

Gestión de volúmenes lógicos (LVM)

Gestión de volúmenes lógicos (LVM)

► LVM permite que el espacio sea dinámicamente asignado desde una partición grande a las particiones que van necesitándose.

- Permite concatenar, dividir, juntar o cualquier otra combinación entre particiones en una partición virtual mayor, que los sysadmins pueden cambiar el tamaño o mover.
- ▶ Idealmente sin interrupción del sistema.
- Desventajas:
 - puede complicar el arranque en un disaster recovery.
 - puede sufrir fragmentación externa a causa del FS subyacente, reduciendo el rendimiento de E/S.

StaaS: almacenamiento como servicio

info@flossystems.com

RAID

Niveles estándar de RAID

LVM

Gestión de volúmenes lógicos (LVM)

Ejemplo de LVM en Linux

StaaS:

almacenamiento como servicio

info@flossystems.com

RAID

Niveles estándar de RAID

LVM

Gestión de volúmenes lógicos (LVM)

Ejemplo de LVM en Linux

ZFS

Ejemplo de LVM en Linux

StaaS: almacenamiento como

servicio info@flossystems.com

RAID

Niveles estándar de RAI

LVN

Gestión de volúmenes lógicos (LVM)

Eiemplo de LVM en Linux

....

Creación de volúmenes físicos

pvcreate /dev/sdb1

pvcreate /dev/sdb2

Creación del Virtual Group

vgcreate mynew_vg /dev/sdb1 /dev/sdb2

Añadir nuevos volúmenes físicos a un grupo virtual

vgextend mynew_vg /dev/sdb3

Ejemplo de LVM en Linux

StaaS:

almacenamiento como servicio

info@flossystems.com

Eiemplo de LVM en Linux

Creación de Volúmenes Lógicos

- # lvcreate -L 400 -n vol01 mynew_vg
- # lvcreate -L 1000 -n vol02 mynew_vg

Mostrar Grupos y Volúmenes Lógicos

- # vgdisplay
- # lvdisplay

Creación de un sistema de ficheros en volúmenes lógicos

- # mkfs.ext3 /dev/mynew_vg/vol01
- # mount /dev/mynew_vg/vol01 /home/foobar

ZFS

StaaS: almacenamiento como servicio

info@flossystems.com

RAIL

Niveles estándar de RAID

LVM

Gestión de volúmenes lógicos (LVM)

Ejemplo de LVM en I

) ZES

Un vistazo a ZFS

➤ ZFS es un potente, escalable (128bit) y moderno sub-sistema de almacenamiento.

► Fiable, administración sencilla, integridad de datos y servicios integrados.

- ➤ ZFS combina los roles tradicionales de Volume Manager (RAID) y Sistema de Ficheros.
- ▶ La idea es que el disco debería ser algo similar a los módulos DIMM de RAM, conectar y usar.
- ZFS se lleva muy bien con SSD, y sabe cómo usarlo.

almacenamiento como

info@flossystems.com

RAID

Niveles estándar de RAII

LVM

estión de volúmenes ógicos (LVM)

ZFS: características únicas (1)

- ► *Pool* de almacenamiento: elimina por completo el viejo concepto de volumen lógico como capa aparte.
- ➤ ZFS es Copy-on-Write transaccional: si múltiples procesos piden recursos iguales, se les devuelven punteros al mismo recurso.
- ► Siempre consistente (no necesidad de fsck)
- Integridad de datos: detecta y corrige silenciosamente corrupción de datos.
- ► Inmensa escalabilidad

StaaS: almacenamiento como servicio

info@flossystems.com

RAID

Niveles estándar de RAII

LVM

Gestión de volúmenes ógicos (LVM)

ZFS: características únicas (y 2)

- Características avanzadas: snapshots, clones, rollbacks, deduplication, compresión, replicación, cifrado, compartición nativa vía nfs. cifs o iscsi...
- Administración simple: zfs y zpool.
- Estado del arte, marca el camino a los futuros FS (como btrfs)
- Limitaciones:
 - ZFS no es un FS de tipo cluster ni un sistema distribuido o paralelo.
 - Muy exigente en recursos.

En el proceso de escritura (I/O), un bloque puede ser comprimido, cifrado, realizada la suma de comprobación y a continuación deduplicado, en ese orden.

almacenamiento como servicio

info@flossystems.com

RAID

Nicolae anticolae de DAII

LVM

Gestión de volúmenes lógicos (LVM) Eiemplo de LVM en Linux

. .

ZFS: pools de almacenamiento

StaaS: almacenamiento como

info@flossystems.com

RAID

Nivoles estándar de RAI

LVN

Gestión de volúmenes lógicos (LVM) Eiemplo de LVM en Linux

ZFS

- Los sistemas de ficheros se crean sobre pools de almacenamiento virtual llamados zpools.
- Un zpool se construye a partir de dispositivos virtuales (vdevs) desde dispositivos de bloques: ficheros, particiones de disco duro o discos enteros.

Modo transaccional COW en ZFS

StaaS: almacenamiento como

servicio info@flossystems.com

AID

AIR I AZ I I DAIR

LVM

Gestión de volúmenes lógicos (LVM) Eiemplo de LVM en Linux

ZES

Volumen/FS vs. pool de almacenamiento

Volúmenes tradicionales:

- Abstracción: disco virtual
- ► Partición/volumen para cada FS
- ► Crece o se reduce manualmente
- ► Cada FS tiene ancho de banda limitado
- ▶ El almacenamiento se fragmenta

StaaS:

almacenamiento como servicio

info@flossystems.com

RAID

Nivolos estándar de RAII

LVM

Gestión de volúmenes lógicos (LVM) Eiemplo de LVM en Linux

755

Volumen/FS vs. pool de almacenamiento

Almacenamiento con ZFS pools:

- ► Abstracción: malloc/free
- ▶ No hay particiones que manejar
- Crece o se reduce automáticamente
- ▶ Todo el ancho de banda está siempre disponible
- ▶ Todo el almacenamiento en el pool es compartido

StaaS:

almacenamiento como

info@flossystems.com

RAID

Niveles estándar de RAII

LVM

Gestión de volúmenes lógicos (LVM)

RAID Z

- RAID no estándar: específico de ZFS.
- Similar a RAID 5, pero evita el write hole de RAID 5 (si se produce un apagón durante una escritura, paridad o datos pueden quedar inconsistentes/corruptos).
- Existe también RAID Z2 que dobla (o triplica) la estructura de partidad alcanzando resultados similares a RAID 6.
- En Julio de 2009, se incorporó RAID Z de triple paridad a OpenSolaris.
- No precisa ningún hardware especial.

StaaS: almacenamiento como servicio

info@flossystems.com

RAID

Missian antiquia de DAI

LVM

estión de volúmenes gicos (LVM)

StaaS: almacenamiento como servicio

info@flossystems.com

RAII

Niveles estándar de RAID

LVM

▶ ZFS Demo

Gestión de volúmenes lógicos (LVM)

Ejemplo de LVM en Linu

)ZES

StaaS: almacenamiento como servicio

info@flossystems.com

Murcia, 1-2 de junio de 2012