Compound Propositions

Logical connectives + negation \rightarrow more complicated compound propositions.

In truth tables: we use a separate column to find the truth value of each compound expression that occurs in the compound proposition.

Example: 'If I go to Harry's or go to the country I will not go shopping.'

P: I go to Harry's

Q: I go to the country

R: I will go shopping

If.....P.....or....Q.....then....not....R

 $(P \lor Q) \rightarrow \neg R$

Construct the truth table

Precedence of logical operators

Operator	Precedence
¬	1
^ V	2 3
$\overset{\rightarrow}{\leftrightarrow}$	4 5

 $\neg p \land q \equiv (\neg p) \land q$ $p \land q \lor r \equiv (p \land q) \lor r \text{ and not } p \land (q \lor r)$ $p \lor q \rightarrow r \equiv (p \lor q) \rightarrow r \text{ and not } p \lor (q \rightarrow r)$

Tautologies, Contradictions, and Contingencies

A **tautology** is a proposition which is always true. Example: p V¬p

A **contradiction** is a proposition which is always false. Example: $p \land \neg p$

A contingency is a proposition which is neither a tautology nor a contradiction. Example p

⇔ Logical Equivalences Ξ

Compound propositions (p, q) that have the same truth values in all possible cases $p \equiv q$, if $p \leftrightarrow q$ is tautology.

We can show it By using the truth table, or by developing a series of logically equivalent statements.

De Morgan's laws. $\neg(p \land q) \equiv \neg p \lor \neg q, \neg(p \lor q) \equiv \neg p \land \neg q$

Identity Laws $p \land T \equiv p, p \lor F \equiv p$ Domination Laws $p \lor T \equiv T, p \land F \equiv F$

Idempotent laws $p V p \equiv p, p \Lambda p \equiv p$

Double negation law $\neg(\neg p) \equiv p$

Commutative law p V q Ξ q V p, p Λ q Ξ q Λ p

```
Associative Laws (p V q) V r \equiv p V (q V r), (p \wedge q) \wedge r \equiv p \wedge (q \wedge r) Distributive Laws p V (q \wedge r) \equiv (p V q) \wedge (p V r), p \wedge (q V r) \equiv (p \wedge q) V (p \wedge r) Absorption laws. p V (p \wedge q) \equiv p, p \wedge (p V q) \equiv p Negation laws. p V \neg p \equiv T, p \wedge \neg p \equiv F
```

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Show that

p V (q
$$\wedge$$
 r) \Leftrightarrow (p V q) \wedge (p V r)
¬(p V(¬ \wedge q)) \equiv ¬ p \wedge ¬ q
(p \wedge q) \rightarrow (p \vee q) is a tautology