[®] Off nl gungsschrift[®] DE 198 40 047 A 1

(f) Int. CI.⁷: **A 61 F 9/007** A 61 F 2/14

PATENT- UND
MARKENAMT

(2) Aktenzeichen: 198 40 047.0 (2) Anmeldetag: 2. 9. 1998 (3) Offenlegungstag: 23. 3. 2000 F 9/007 2/14

(71) Anmelder:

Neuhann, Thomas, Prof.Dr.med., 80801 München, DE

(74) Vertreter:

Rösler, U., Dipl.-Phys.Univ., Pat.-Anw., 81241 München ② Erfinder: gleich Anmelder

(56) Entgegenhaltungen:

EP 05 50 791 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- Worrichtung zur gezielten Verbesserung und/oder dauerhaften Gewährleistung des Durchlässigkeitsvermögens für Augenkammerwasser durch das Trabekelwerk in den Schlemmschen Kanal
- Beschrieben wird eine Vorrichtung zur gezielten Verbesserung und/oder dauerhaften Gewährleistung des Durchlässigkeitsvermögens für Augenkammerwasser durch das Trabekelwerk in den Schlemmschen Kanal. Die Erfindung zeichnet sich dadurch aus, daß ein röhrchenartig ausgebildetes Element vorgesehen ist, dessen Wandmaterial einen Hohlkanal einschließt, der beidseitig in Längserstreckung des Hohlkanals offen ausgebildet ist, daß Größe und Form des röhrchenartig ausgebildeten Elements in etwa der Innenkontur des Schlemmschen Kanals entspricht, und daß das Wandmaterial sowie die Wandstärke derart gewählt sind, daß das röhrshanatig ausgebildet.

daß das Wandmaterial sowie die Wandstärke derart gewählt sind, daß das röhrchenartig ausgebildete Element nach Einbringen in den Schlemmschen Kanal diesen offen hält sowie das angrenzende Trabekelwerk spannt.

Beschreibung

Technisches Gebiet

Die Erfindung bezieht sich auf eine Vorrichtung zur gezielten Verbesserung und/oder dauerhaften Gewährleistung des Durchlässigkeitsvermögens für Augenkammerwasser durch das Trabekelwerk in den Schlemm'schen Kanal.

Stand der Technik

In Fällen in denen das Augenkammerwasser nicht in ausreichendem Maße aus dem Augeninneren entweichen kann steigt der Augendruck, wodurch die Gefahr der Ausbildung eines Glaukom, zu deutsch, grüner Star steigt. Der grüne 15 Star ist eine besondere Form der Sehnervenatrophie welche überwiegend durch einen für seine gesunde Funktionsfähigkeit zu hohen Augeninnendruck zustandekommt.

Konsequenterweise ist die Senkung des Augeninnendrukkes auf wenigstens Werte im statistischen Normbereich er- 20 stes Ziel aller therapeutischen Bemühungen beim Glaukom.

Die Augendrucksenkung kann durch eine Reihe von Medikamenten, durch Laserverfahren der sogenannten Argon-Laser-Trabekuloplastik (ALT) oder durch operative Eingriffe im engeren Sinne erreicht werden.

Nachteile der medikamentösen Therapie sind ein nur begrenztes Drucksenkungspotential, unerwünschte Nebenwirkungen unterschiedlicher Art je nach eingesetzter Substanz und vor allem die Notwendigkeit der lebenslangen mehrfach täglichen Anwendung, die naturgemäß mit Problemen der 30 verläßlichen Anwendung (Compliance) verbunden ist.

Nachteile der Argon-Laser-Trabekuloplastik sind ihr begrenztes Drucksenkungspotential und ihre nur vorübergehende Wirkung durch Nachlassen des Effektes über die Zeit.

Unter den operativen Verfahren sind die sog. fistulieren- 35 den Eingriffe heutiger operativer Standard. Unter ihren zahlreichen Nachteilen seien besonders hervorgehoben das erhebliche Potential an postoperativen Komplikationen, die beschleunigte Entwicklung einer Linsentrübung, die Unvorhersagbarkeit des Effektes der von übermäßiger Drucksen- 40 kung bis zur raschen Vernarbung mit völligem Verlust der drucksenkenden Wirkung reichen kann.

Diese insgesamt unbefriedigende Erfolgsbilanz und Erfolgsvorhersagbarkeit dieses Standardeingriffes hat zu zahlreichen anderen operativen Ansätzen geführt, von denen 45 insbesondere die Trabekulotomie und die tiefe Sklerektomie genannt seien, beides Operations-Methoden, die einen erleichterten Kammerwasserabfluß durch das Vorsehen physiologischer Abflußwege ermöglichen. Auch diesen Verfahren ist als Nachteil jedoch zu eigen, daß ihr Effekt teilweise 50 oder ganz durch Wundheilungsvorgänge wieder verloren gehen kann.

Die nachfolgenden Ausführungen sollen dem besseren Verständnis der Glaucom-Problematik dienen:

Der Raum zwischen der Augenlinse und der Hornhau- 55 trückfläche, die durch die Regenbogenhaut, der Iris, in die hintere und die vordere Augenkammer unterteilt wird, ist von Kammerwasser angefüllt. Das Kammerwasser wird fortlaufend vom Strahlenkörper, dem Ciliarkörper des Au-Von dort fließt das Kammerwasser durch die Pupille in die vordere Augenkammer, wo es einer Wärmeströmung unterliegt und gelangt von dort in den Kammerwinkel durch das Maschenwerk des corneoskleralen Trabekelwerkes in den Schlemm'schen Kanal. Von hier aus gelangt das Kammer- 65 und damit zum natürlichen Abflußsystem findet. wasser schließlich durch Abflußkanäle in das Venensystem der Aug noberfläche.

Die Aufgabe der in einem homöostatischen Gleichge-

wicht stehenden Kammerwassersekretion und seines Abflusses ist die Aufrechterhaltung eines in engen Grenzen konstanten Augeninnendruckes, welcher hoch genug sein muß um die Formstabilität des Auges aufrechtzuerhalten, jedoch niedrig genug, um die Ernährung des Sehnerven nicht zu behindern. Als Normbereich des Augeninnendrukkes gelten grob Werte von 10 mm Quecksilbersäule bis 20 mm Quecksilbersäule. Eine scharfe Abgrenzung zwischen normalen und krankhaft erhöhten Werten gibt es je-10 doch nicht: Der Übergang ist fließend, wobei mit zunehmender Höhe der Augeninnendruckwerte eine Glaukomerkrankung immer wahrscheinlicher wird.

Eine krankhafte Erhöhung des Augeninnendruckes kann prinzipiell sowohl durch übermäßige Kammerwassersekretion wie durch zu geringen Abfluß verursacht werden. Für die Zwecke dieser Darstellung soll nur die dem sog. primären chronischen Offenwinkelglaucom (Glaucoma chronicum simplex) zugrundeliegende Erhöhung des Abflußwiderstandes im juxta-canaliculären Trabekelwerk eingegangen werden, die nach der wissenschaftlichen Literatur für etwa 85-90% aller dieser Glaukome verantwortlich ist.

Das Glaucoma chronicum simplex stellt seinerseits mehr als ¾ aller Glaukomfälle dar. Die Ursachen für diese Widerstandserhöhung im juxta-canaliculären Trabekelwerk sind 25 im einzelnen nicht letztlich geklärt. Genetische Faktoren, die Anlagerung von Substanzen an das Maschenwerk, die die Maschenweite verengen und damit den Widerstand erhöhen sowie ein mechanischer Kollaps des Maschenwerkes sind Aspekte die als gesichert gelten.

Da heute verwendete Prinzip der Trabekulotomie stellt sich so dar:

Ausgehend von der an sich bekannten Trabekulotomie wird nun der Schlemm'sche Kanal von außen aufgesucht und geöffnet. Anschließend wird eine Metallsonde in den Kanal eingeführt und in die Vorderkammer eingeschwenkt. Hierdurch wird jedoch das gesamte Trabekelwerk regelrecht zerrissen, wodurch eine offene Verbindung zwischen der vorderen Augenkammer und dem darin zirkulierenden Kammerwasser und dem Schlemm'schen Kanal hergestellt wird.

Die anatomische Struktur des Trabekelwerks, in dem der erhöhte Abfußwiderstand liegt, wird mit der beschriebenen Vorgehensweise jedoch regelrecht zerstört. Obwohl diese Operationsmethode anfänglich nur wenig überzeugende Resultate lieferte, hat sie in den letzten Jahren durch verfeinerte Ausführungen erheblich an Bedeutung gewonnen. So sind unter bestimmten Bedingungen die Drucksenkungserfolge mit dieser Methode von keiner anderen Methode erreicht worden. Ihr Problem besteht jedoch darin, daß sich die beiden Enden der Aufriß-Strecke wieder verschließen können, so daß nur die tatsächlich aufgerissene Strecke, nicht jedoch der gesamte Kanalumfang für den Abfluß zur Verfügung steht.

Hinzukommt, daß das aufgerissene Trabekelwerk in bestimmten Fällen wieder verkleben kann, indem sich die beiden aufgerissenen Teile des Trabekelwerkes gleichsam türflügelartig wieder schließen. Solche Wieder-Verschlüsse werden durch Rückflußblutungen aus dem mit dem Schlemm'schen Kanal verbundenen Venensystem gefördert.

Prinzipiell würde eine vergleichsweise kleine Öffnung im ges gebildet und in die hintere Augenkammer abgegeben. 60 Trabekelwerk genügen, um den gewünschten Effekt der Augeninnendruck-Regelung zu ermöglichen, wenn denn gewährleistet werden könnte, daß die Öffnung nicht verschlossen wird, so daß das Kammerwasser durch diese wenn auch kleine Lücke Zugang zum gesamten Schlemm'schen Kanal

Darstellung der Erfindung

Der Erfindung liegt die Aufgabe zugrunde die vorstehend geschilderte Problematik bei der Durchführung von Operationen zur Behebung von Glaukom und insbesondere zur Wiederherstellung einer gezielten Regulierung des Augeninnendruckes dahingehend zu lösen, daß ein Wiederverschluß von in das Trabekelwerk eingebrachter Durchführungskanäle vollständig vermieden werden soll. Insbesondere sollen die traumatischen Gewebeirritationen innerhalb 10 des Trabekelwerkes reduziert werden, wodurch auch der Wundheilungsprozeß verbessert werden kann. Schließlich soll die erfindungsgemäße Maßnahme dazu beitragen, daß auch ohne Verletzung des Trabekelwerkes das Durchlässigkeitsvermögen grundsätzlich erhöht werden kann.

Die Lösung der Erfindung zugrundeliegenden Aufgabe ist Gegenstand des Anspruchs 1. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.

Erfindungsgemäß ist eine Vorrichtung zur gezielten Verbesserung und/oder dauerhaften Gewährleistung des Durch- 20 lässigkeitsvermögens für Augenkammerwasser durch das Trabekelwerk in den Schlemm'schen Kanal, derart ausgebildet, daß ein röhrchenartig ausgebildetes Element vorgesehen ist, dessen Wandmaterial einen Hohlkanal einschließt, der beidseitig in Längserstreckung des Hohlkanals offen 25 ausgebildet ist, daß Größe und Form des röhrchenartig ausgebildeten Elements in etwa der Innenkontur des Schlemm'schen Kanals entspricht, und daß das Wandmaterial sowie die Wandstärke derart gewählt sind, daß das röhrchenartig ausgebildete Element nach Einbringen in den 30 Beschreibung von Ausführungsbeispielen und gewerblicher Schlemm'schen diesen sowie das angrenzende Trabekelwerk leicht verformt.

Die Erfindung liegt grundsätzlich die Idee zugrunde, in den Schlemm Kanal ein Röhrchen, einen sogenannten Stent, einzuführen. Die Aufgabe dieses Stents ist es das Trabekel- 35 werk an seiner Innenseite aufzuspreizen und somit den Abflußwiderstand zu erniedrigen.

Genügt diese Abflußwiderstandserniedrigung nicht aus, ermöglicht der Stent überdies das Trabekelwerk an seiner durchlässigen, dem Trabekelwerk zugewandten Seite zu er- 40 öffnen oder zu entfernen, und dabei den Wiederverschluß der Öffnung im Trabekelwerk und das Verkleben des Schlemm Kanals zu verhindern.

Das Kammerwasser erhält somit ungehindert Zugang zur gesamten Circumferenz des Schlemm Kanals und seinen ab- 45 führenden Kanälen.

Um diesen Anforderungen gerecht zu werden muß das Röhrchen oder Stent) aus geeignetem Material gefertigt sein, welches eine äußere Form besitzt, die weitgehend inneren Form des Schlemm'schen Kanals entspricht oder die- 50 sen neu formt. Überdies weist das Röhrchen im Inneren einen Hohlkanal auf, der gerade genügend Wandstärke übrigläßt, um einen Kollaps des Stents zuverlässig zu verhindern.

Das Röhrchen ist grundsätzlich von beliebiger Länge, sinnvollerweise entspricht die Länge des Röhrchens nicht 55 weniger als 30° und nicht mehr als 90° im Bogenmaß des ringförmig verlaufenden Schlemm'schen Kanals. Andere Längen und ihre sinnvolle Anwendung sind jedoch grundsätzlich denkbar.

Das Röhrchen besitzt vorzugsweise eine Krümmung, die 60 der Krümmung des Schlemm'schen Kanals im zu operierenden Auge besitzt. So ist das Röhrchen entweder individuell anzufertigen oder aber zu standardisieren.

Wenigstens an der konkaven Seite der Krümmung des Röhrchens ist das Röhrchen flüssigkeitsdurchlässig, wobei 65 es gleichzeitig das Gewebe spannt und den Kanal offen hält. Dies ist die Seite, die dem Trabekelwerk und der Vorderkammer im eingesetzten Zustand unmittelbar zugewandt ist.

Vorzugsweise weist das Röhrchen auf dieser Seite Öffnungen im Wandmaterial auf, das Röhrchen kann aber auch aus einem Wandmaterial gefertigt sein, das selbst durchlässig ist. So eignen sich hierzu beispielsweise Materialgeflechte mit einer endlich großen bzw. kleine Maschenweite durch die das Kammerwasser hindurchfließen kann. Beispielsweise eignen sich Geflechte, die zum einen die Wasserdurchlässigkeit aufweisen und überdies die für die genannten Dehnungen erforderliche Steifigkeit und Widerstandsfähigkeit besitzen.

Außerdem ist das Röhrchen an seinen beiden Enden geöffnet. Alle Offnungskanten sind feinstpoliert und abgerundet. Das verwendete Material muß rigide genug sein, um den Kollaps des Kanals zu verhindern und völlig gewebeverträglich sein, um Wundheilungsvorgänge zu verhindern. Eine Beispielsausführung könnte aus Titan, galvanisch vergoldetem Implantationsstahl oder anderen Materialien sein.

Kurze Beschreibung der Zeichnungen

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:

Fig. 1a, b, c Dreiseitendarstellung eines erfindungsgemäß ausgebildeten röhrchenförmigen Elements

Fig. 2a, b Darstellungen zum Einbringen des röhrchenförmigen Elements in den Schlemm'schen Kanal

Anwendbarkeit

In Fig. 1a ist eine Seitendarstellung durch das röhrchenförmige Element 1 gezeigt. Es weist lang seiner Längserstreckung eine Krümmung auf. Konkavseitig sind zwei Öffnungen 2, 3 in die Außenwandung des röhrchenförmigen Elements eingearbeitet. Beidseitig an den Endbereichen des röhrchenförmigen Elements sind zwei Öffnungen 4, 5, vorgesehen.

Alle Kanten der Öffnungen 2, 3, 4 und 5 sind feinstpoliert und abgerundet um traumatische Gewebeirritationen zu vermeiden.

Der Innendurchmesser des in der Fig. 1c dargestellten Querschnitts beträgt im gezeigten Fall 170 µm, der Außendurchmesser 270 µm.

Durch eine geeignete Operationstechnik, die im wesentlichen die vom Erfinder beschriebene Modifikation der Trabekulotomie ist, wird unter einer Skleralamelle, der Lederhaut 6 (siehe Fig. 2a) am Auge 7 der Schlemm'sche Kanal von außen aufgesucht und eröffnet. Das Röhrchen 1 (Glaukomstent) wird in den Schlemm'schen Kanal 1 eingebracht und je nach Bedarf an eine geeignete Stelle plaziert. Hierfür können sich speziell angefertigte Einführungsinstrumente 9 als dienlich erweisen. Der Schlemm'schen Kanals 8 wird sodann wieder verschlossen und die Skleralamelle wieder in ihrem Bett fixiert, was entweder durch Nähte oder durch Gewebekleber geschehen kann.

Die Senkung des Augeninnendruckes kann nun entweder allein dadurch erfolgen, daß das Trabekelwerk 10 (siehe Fig. 2b) über den Öffnungen 2, 3 des Glaukomstents 1 ausgespannt ist und das Maschenwerk 10 dadurch soweit erweitert ist, daß in diesem Bereich eine für die Drucksenkung genügende Absenkung des Abflußwiderstandes zustandekommt.

Ist dies nicht der Fall, wird das Trabekelwerk 10 über eine oder mehrere, an der konkaven Seite des Stents befindlichen Offnungen oder über eine der seitlichen Öffnungen des Stents eröffnet, was entweder intraoperativ chirurgisch oder

15

20

25

postoperativ beispielsweise durch disruptive Laserapplikation, aber auch andere denkbare Verfahren erfolgen kann.

Das Kammerwasser gewinnt nun durch diese neugeschaffenen Öffnungen Zugang zum Stent und über dessen beide seitlichen Öffnungen 4, 5 die im intakten Schlemm'schen 5 Kanal 8 stecken, Zugang zur gesamten Circumferenz des Kanals und den daraus ausmündenden natürlichen Kammerwasser-Abflußwegen 11. Eine die Öffnung verschließende Wundheilung kann nicht erfolgen, weil ein Kollabieren der Öffnungsgrenzen durch den Glaukomstent und der Zugang 10 zum Schlemm'schen Kanal durch ihn aufgehalten wird.

Bezugszeichenliste

1 röhrchenartig ausgebildetes Element, Stent

2, 3 Öffnung in Wandung des Stents

4, 5 Öffnungen in Längserstreckung des Stents

6 Lederhaut

7 Auge

8 Schlemm'scher Kanal

9 Einführinstrument

10 Trabekelwerk

11 Kammerwasser-Abflußweg

Patentansprüche

- 1. Vorrichtung zur gezielten Verbesserung und/oder dauerhaften Gewährleistung des Durchlässigkeitsvermögens für Augenkammerwasser durch das Trabekelwerk in den Schlemm'schen Kanal, dadurch gekennzeichnet, daß ein röhrchenartig ausgebildetes Element vorgesehen ist, dessen Wandmaterial einen Hohlkanal einschließt, der beidseitig in Längserstreckung des Hohlkanals offen ausgebildet ist, daß Größe und Form des röhrchenartig ausgebildeten Elements in etwa der Innenkontur des Schlemm'schen Kanals entspricht, und daß das Wandmaterial sowie die Wandstärke derart gewählt sind, daß das röhrchenartig ausgebildete Element nach Einbringen in den Schlemm'schen diesen sowie das angrenzende Trabekelwerk aufspannt.
- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das röhrchenartig ausgebildete Element eine Krümmung entlang seiner Längserstreckung aufweist, die in etwa der natürlichen Krümmung des Schlemm'schen Kanals entspricht und durch die das 45 Trabekelwerk nach Einbringen in den Schlemm'schen Kanal gedehnt und der Schlemm'sche Kanal offen gehalten wird.
- 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Wandmaterial aus einem Geflecht gearbeitet ist und über die gesamte Längserstrekkung durchlässig für das Kammerwasser ist.
- 4. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Wandmaterial aus einem massivem Material besteht, vorzugsweise aus Titan, galvanisch vergoldetem Implantationsstahl oder aus einem Kunststoff-Verbundwerkstoff, oder sonstigen dafür geeigneten Materialien.
- 5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das röhrchenartig ausgebil- 60 dete Element einen Außendurchmesser im Bereich zwischen 180 μm und 350 μm und einen Innendurchmesser zwischen 150 μm und 200 μm aufweist.
- 6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß im Wandmaterial wenig- 65 stens eine Öffnung eingearbeitet ist, durch die Kammerwasser seitlich in den Hohlkanal fließen kann.
- 7. Vorrichtung nach einem der Ansprüche 1 bis 6, da-

durch gekennzeichnet, daß jegliche Kanten feinstpoliert und abgerundet sind.

- 8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Querschnitt des röhrchenartig ausgebildeten Elements vorzugsweise kreisrund oder dreieckig oder sonstigen geeigneten Querschnitt ausgebildet ist.
- 9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Länge des röhrchenartig ausgebildeten Elements etwa 1 bis 11 mm bzw. 30° bis 90° Bogenmaß des ringförmig ausgebildeten Schlemm'schen Kanals beträgt.

Hierzu 2 Seite(n) Zeichnungen

