AS Final Exam: Revision 2 Functions

P1 June 08

- 6 The function f is such that $f(x) = (3x + 2)^3 5$ for $x \ge 0$.
 - (i) Obtain an expression for f'(x) and hence explain why f is an increasing function. [3]
 - (ii) Obtain an expression for $f^{-1}(x)$ and state the domain of f^{-1} . [4]
- 8 Functions f and g are defined by

$$f: x \mapsto 4x - 2k$$
 for $x \in \mathbb{R}$, where k is a constant,

$$g: x \mapsto \frac{9}{2-x}$$
 for $x \in \mathbb{R}, x \neq 2$.

- (i) Find the values of k for which the equation fg(x) = x has two equal roots. [4]
- (ii) Determine the roots of the equation fg(x) = x for the values of k found in part (i). [3]

P1 Nov 08

- 11 The function f is defined by $f: x \mapsto 2x^2 8x + 11$ for $x \in \mathbb{R}$.
 - (i) Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]
 - (ii) State the range of f. [1]
 - (iii) Explain why f does not have an inverse. [1]

The function g is defined by $g: x \mapsto 2x^2 - 8x + 11$ for $x \le A$, where A is a constant.

- (iv) State the largest value of A for which g has an inverse. [1]
- (v) When A has this value, obtain an expression, in terms of x, for $g^{-1}(x)$ and state the range of g^{-1} . [4]

P1 June 07

11

The diagram shows the graph of y = f(x), where $f: x \mapsto \frac{6}{2x+3}$ for $x \ge 0$.

- (i) Find an expression, in terms of x, for f'(x) and explain how your answer shows that f is a decreasing function. [3]
- (ii) Find an expression, in terms of x, for $f^{-1}(x)$ and find the domain of f^{-1} . [4]
- (iii) Copy the diagram and, on your copy, sketch the graph of $y = f^{-1}(x)$, making clear the relationship between the graphs. [2]

The function g is defined by $g: x \mapsto \frac{1}{2}x$ for $x \ge 0$.

(iv) Solve the equation
$$fg(x) = \frac{3}{2}$$
. [3]

P1 Nov 07

11 The function f is defined by $f: x \mapsto 2x^2 - 8x + 11$ for $x \in \mathbb{R}$.

(i) Express
$$f(x)$$
 in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]

The function g is defined by $g: x \mapsto 2x^2 - 8x + 11$ for $x \le A$, where A is a constant.

(v) When A has this value, obtain an expression, in terms of x, for $g^{-1}(x)$ and state the range of g^{-1} .

P1 June 06

11 Functions f and g are defined by

$$f: x \mapsto k - x$$
 for $x \in \mathbb{R}$, where k is a constant,
 $g: x \mapsto \frac{9}{x+2}$ for $x \in \mathbb{R}$, $x \neq -2$.

- (i) Find the values of k for which the equation f(x) = g(x) has two equal roots and solve the equation f(x) = g(x) in these cases. [6]
- (ii) Solve the equation fg(x) = 5 when k = 6. [3]
- (iii) Express $g^{-1}(x)$ in terms of x. [2]

P1 Nov 06

- 10 The function f is defined by $f: x \mapsto x^2 3x$ for $x \in \mathbb{R}$.
 - (i) Find the set of values of x for which f(x) > 4. [3]
 - (ii) Express f(x) in the form $(x-a)^2 b$, stating the values of a and b. [2]
 - (iii) Write down the range of f. [1]
 - (iv) State, with a reason, whether f has an inverse. [1]

The function g is defined by $g: x \mapsto x - 3\sqrt{x}$ for $x \ge 0$.

(v) Solve the equation g(x) = 10. [3]

P1 June 05

- 7 A function f is defined by $f: x \mapsto 3 2\sin x$, for $0^{\circ} \le x \le 360^{\circ}$.
 - (i) Find the range of f. [2]
 - (ii) Sketch the graph of y = f(x). [2]

A function g is defined by $g: x \mapsto 3 - 2\sin x$, for $0^{\circ} \le x \le A^{\circ}$, where A is a constant.

- (iii) State the largest value of A for which g has an inverse. [1]
- (iv) When A has this value, obtain an expression, in terms of x, for $g^{-1}(x)$. [2]

P1 June 04

10 The functions f and g are defined as follows:

$$f: x \mapsto x^2 - 2x, \quad x \in \mathbb{R},$$

 $g: x \mapsto 2x + 3, \quad x \in \mathbb{R}.$

- (i) Find the set of values of x for which f(x) > 15. [3]
- (ii) Find the range of f and state, with a reason, whether f has an inverse. [4]
- (iii) Show that the equation gf(x) = 0 has no real solutions. [3]
- (iv) Sketch, in a single diagram, the graphs of y = g(x) and $y = g^{-1}(x)$, making clear the relationship between the graphs. [2]

P1 Nov 04

- 9 The function $f: x \mapsto 2x a$, where a is a constant, is defined for all real x.
 - (i) In the case where a = 3, solve the equation ff(x) = 11. [3]

The function $g: x \mapsto x^2 - 6x$ is defined for all real x.

(ii) Find the value of a for which the equation f(x) = g(x) has exactly one real solution. [3]

The function h: $x \mapsto x^2 - 6x$ is defined for the domain $x \ge 3$.

- (iii) Express $x^2 6x$ in the form $(x p)^2 q$, where p and q are constants. [2]
- (iv) Find an expression for $h^{-1}(x)$ and state the domain of h^{-1} . [4]

P1 June 03

- The function f is defined by $f: x \mapsto ax + b$, for $x \in \mathbb{R}$, where a and b are constants. It is given that f(2) = 1 and f(5) = 7.
 - (i) Find the values of a and b. [2]
 - (ii) Solve the equation ff(x) = 0. [3]

11 The equation of a curve is $y = 8x - x^2$.

- (i) Express $8x x^2$ in the form $a (x + b)^2$, stating the numerical values of a and b. [3]
- (ii) Hence, or otherwise, find the coordinates of the stationary point of the curve. [2]
- (iii) Find the set of values of x for which $y \ge -20$. [3]

The function g is defined by $g: x \mapsto 8x - x^2$, for $x \ge 4$.

- (iv) State the domain and range of g⁻¹. [2]
- (v) Find an expression, in terms of x, for $g^{-1}(x)$. [3]

P1 Nov 03

10 Functions f and g are defined by

$$f: x \mapsto 2x - 5, \quad x \in \mathbb{R},$$

 $g: x \mapsto \frac{4}{2-x}, \quad x \in \mathbb{R}, \quad x \neq 2.$

- (i) Find the value of x for which fg(x) = 7. [3]
- (ii) Express each of $f^{-1}(x)$ and $g^{-1}(x)$ in terms of x. [3]
- (iii) Show that the equation $f^{-1}(x) = g^{-1}(x)$ has no real roots. [3]
- (iv) Sketch, on a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, making clear the relationship between these two graphs. [3]

P1 June 02

10 The functions f and g are defined by

$$f: x \mapsto 3x + 2,$$
 $x \in \mathbb{R},$
 $g: x \mapsto \frac{6}{2x + 3},$ $x \in \mathbb{R}, x \neq -1.5.$

- (i) Find the value of x for which fg(x) = 3.
- (ii) Sketch, in a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, making clear the relationship between the two graphs. [3]

[3]

(iii) Express each of $f^{-1}(x)$ and $g^{-1}(x)$ in terms of x, and solve the equation $f^{-1}(x) = g^{-1}(x)$. [5]

P1 Nov 02

- 11 (i) Express $2x^2 + 8x 10$ in the form $a(x+b)^2 + c$. [3]
 - (ii) For the curve $y = 2x^2 + 8x 10$, state the least value of y and the corresponding value of x. [2]
 - (iii) Find the set of values of x for which $y \ge 14$. [3]

Given that $f: x \mapsto 2x^2 + 8x - 10$ for the domain $x \ge k$,

- (iv) find the least value of k for which f is one-one, [1]
- (v) express $f^{-1}(x)$ in terms of x in this case. [3]