In 3.18, "Assume both inputs are unsigned 6-bit integers" should be "Assume both inputs are unsigned 8-bit integers"

3.9 [10] <\$3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in two's complement format. Calculate 151 + 214 using saturating arithmetic. The result should be written in decimal. Show your work.

$$(151)_{10} = (100|0|11)_{2} \rightarrow (0|10|00|)_{2} = -(105) 214$$

$$(214)_{10} = (110|0|10)_{2} \rightarrow (00|0|0|0)_{2} = (-42) 100|01|$$

$$151 + 214 = 0[10|00| -10t - 42 100|01|0$$

$$00|0|0|0 - 10t - 42$$

$$100|00|0$$
because of saturating arithmetic, the result is (-128)

3.10 [10] <\$3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in two's complement format. Calculate 151 - 214 using saturating arithmetic. The result should be written in decimal. Show your work - 10[-(-42)

$$(|5|)_{10} = (|00|0|1|)_{2} \rightarrow (0||0|00|)_{2} \quad |00|0|1|$$

$$(2|4)_{10} = (||0|0|10)_{2} \rightarrow (00|0|0|0)_{2}$$

$$|5| - 2|4 = 0 ||0|00|$$

$$0 \circ |0|0|0$$

$$(|00|1|1|1|1) = (|03|00)$$
So the result is b3.

3.11 [10] <\$3.2> Assume 151 and 214 are unsigned 8-bit integers. Calculate 151 + 214 using saturating arithmetic. The result should be written in decimal. Show your work.

$$(15|)_{10} = ((00|01||)_{2}$$

$$(214)_{10} = (110|0||0)_{2}$$

$$(5|+214 = (00|01||)$$

since we use saturating arithmetic, so the result is (255)10.

3.13 [20] <\$3.3> Using a table similar to that shown in Figure 3.6, calculate the product of the hexadecimal unsigned 8-bit integers 62 and 12 using the hardware described in Figure 3.5. You should show the contents of each register on each step.

$$(62)_{16} = (0|10|00|0)_2$$

 $(12)_{16} = (000|00|0)_2$

content of register

Iteration	Step	product (15 bits)	multiplicand	
0	initial	product (15 bits) 00000000 0100010	00010010	
1	0: no operation		000/00/0	
	shift pro right	0.0000000000000000000000000000000000000	00010010	
2	1: add multiplicant	000100100 0110001	01001000	
	1: add multiplicant to left bit of product Shift pro pright	00000000000000000	00010010	
3	o: no operation		000/00/0	
	shift pro right	000000000000000000000000000000000000000	0 00 00 00 0	
4	0: no operation		000/00/0	
	shift pro right	000000000000000000000000000000000000000	00010010	
5	0: no operation	· •	000/00/0	
	Shift pro right	0000000000000000000	000 000	
6	1: add	00000000000	0100/000	
	shift pro right	000000110010000	000/00/0	

3.16 [20] <\$3.3> Calculate the time necessary to perform a multiply using the approach given in Figure 3.7 if an integer is 8 bits wide and an adder takes 4 time units.

So the time nessary is 12 time units,

3.18 [20] <\$3.4> Using a table similar to that shown in Figure 3.10, calculate 74 divided by 21 using the hardware described in Figure 3.8. You should show the contents of each register on each step. Assume both inputs are unsigned 8-bit integers.

$$(74)_{10} = (000 | 0 | 0)_2$$
 $(21)_{10} = (000 | 0 | 0)_2$ contents of register

Herati quotient Remainder Step Divicor on 0 initial values 0000 0000 000 000 00000000 1000 1010 000 1010 1: Rem= Rem-Div 0000 D000 0000 0000 0000 0000 0000 0000 000 OVOD DOVD Renko, + Div, SII Q, Qo=D 0000 010 0000 0000 0000 000 (40 DOOD DOOD shift Divisor right לענים סרום 2. 0000 000 0000 0000 1111 000 1000 1000 Rem = Rem - Div 0000 0000 RemKO, + Div, SII Q, Qo=0 shift Divisor right 0000 0000 3 DUUD DUU Rem - = Div Rem40, SIIQ, Qo=D 0000 0101 01000000 0000 0000 000 000 0000000 0000 0010 10101000 D000 0000 0 00 (do Shift Divisor right 0000000 000 0010 [011 111] amolo) 0/00 0000 4 0000 0000 Rem-= DiV Rendo, SIIO, Oo= 0 0000 00m 0000 000(010)0000 0000 0000 0000 000 0000 0000 Shift Divisor right DUVO DUVO Rem - = Div 0000 000) 010/0000 0000 0000 0100 (do 0000 0000 Rem<0 toiv sllo Qo=0 Shift Divisor right 0000 0000 0000 0000 0000 0000 1111 1111 000 0000 ODUO UUUD Rem -= Div 0000 0000/0/0/000 0000 0000 000 100 Remco + Div SID Qo=0 0000 0000 0100 0000 01010100 0000 0000 000 1do Shift Divisor right ovo avod 0000 0000 000 000 1111 1111 0110 Rem -= Div 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 1469 Remco + Div sllo Do=0 0000 0000 0010 1010 0000 0000 000 100 DVVV VVVV Shift Divisor right 0000 0000 0000 0000 0000 0000 0000 0000 8 ono bood Rem -= DiV Rem>0 S/1Q Q=1 00000 |00 and 0100 0|0 0 (no and and 1000 0001

	shift Di visor right	ტუტი იი <i>ი</i> ე	nana oooo buol olu	Macopo alla adocom
9	Rem -= Div	00000001	0000 0000 000 000 000 000	ווסו מחמ החמה תעונון ול
- 1	Demon Clip Qn=1	Opposel	0000 0000 0000 0	of COOO ODOD ODDO Ide
	Remoo sllQQo= Shift Divisor right	000000[]	מו מסכי החתה התחם	[0 0000 0000 0000 01]
	SITE DIVISOR TIGHT	000000	3000 000 000	
	Co. Ha oustion	. / .,)		· · · · · · · · · · · · · · · · · · ·
	So the quotient $(o)_z$.	15 (11)2	und the ren	nainder is
	(1011)2.			