

Anisotropy of single-spin relaxation and spinvalley mixing in silicon quantum dots

Xin Zhang, Rui-Zi Hu, Yuan Zhou, Fang-Ming Jing, Ke Wang, Hai-Ou Li and Guo-Ping Guo

in collaboration with Gui-Lei Wang (IMECAS), Jian-Jun Zhang (IPCAS)

Motivation/Objective

- Spin qubits based on silicon quantum dots (QDs) provide a promising platform for large-scale quantum computation due to the high control and readout fidelity as well as compatibility with modern semiconductor technology [1-2].
- A double quantum dot (DQD) in silicon was fabricated and a charge stability diagram was measured by charge sensing.
- Single-shot readout of single spin in silicon quantum dot and measurement of spin relaxation times [3].
- Spin-valley mixing (SVM) was characterized by measuring spin relaxation rate (T_1^{-1}) as a function of strength and orientation of the external magnetic field [4].

Single-shot readout of a single spin in silicon quantum dot

Tunable valley splitting

 V_P .

splitting were measured as

a function of gate voltage

Anisotropy of spin-valley relaxation rate

 $T_1^{-1} = \Gamma_{SV}(\varphi) + \Gamma_0$ $\Gamma_{SV}(\varphi) = A[\sin \varphi - (\alpha_+/\alpha_-)\cos \varphi]^2$

В	0.8 T	1.5 T
α_D/α_R	2.9033	3.302
Γ_0 (Hz)	11.4136	32.79108

- Joint influence of the Rashba term (α_R) and Dresselhaus term (α_D) of SVM causes a sinusoidal variation of T_1^{-1} as a function of rotation angle of inplane magnetic field.
- From the position of the minimal T_1^{-1} the ratio of α_D and α_R can be inferred.

Future Directions

1.12

- Coherent control of single spin using electron spin resonance (ESR).
- Fidelity characterization of single-spin qubit.

0.88

0.96

 $V_{p}(V)$

• Implementation of single- and two- qubit logic gates.

References

- [1] C. H. Yang, K. W. Chan and R. Harper et al., Nat. Electron. 2, 151-158 (2019).
- [2] W. Huang, C.H. Yang, and K. W. Chan et al., Nature. **569**, 532-536 (2019).
- [3] C. H. Yang, A. Rossi, R. Ruskov and et al., Nat. Commun. 4: 2069 (2013).
- [4] P. Huang, X. Hu., Phys. Rev. B. 90, 235315 (2014).