CIS 3223 Miniquiz 3

Name: Parth Patel

Dr Anthony Hughes

Temple ID (last 4 digits): 5761

1 (8 pts) Answer the following.

(a) Find the smallest integer b, $1 \le b < 34$, such that $15b \equiv 0 \pmod{35}$

$$\boxed{7} = \frac{35}{\gcd(15,35)} = \frac{35}{5}$$

(b) Compute $3^{2022} \mod 11$ $3^{2022} = 9 * 3^{2020}$

 $\overset{\mathrm{Euler's\ theorem}}{\Longrightarrow} 9*3^{2020} \equiv_{11} 9*1 = \boxed{9}$

9

 $\phi(33) = (3-1)(11-1) = 20$

(c) Compute $2^{2022} \mod 33$ $2^{2022} = 4 * 2^{2020}$

 $\stackrel{\text{Euler's theorem}}{\Longrightarrow}$

 $4 * 2^{2020} \equiv_{33} 4 * 1 = \boxed{4}$

4

(d) 1.13(P39)

 $5^{30000} = 5^{30^{1000}} \quad \overset{Euler's \; theorem}{\Longrightarrow}$ $5^{30^{1000}} \equiv_{31} = 1^{1000} = 1$ YES

 $\phi(31) = 31 - 1 = 30$

 $6^{123,456} = 6^6 6^{30^{4115}} \quad \overset{Euler's \; theorem}{\Longrightarrow}$

 $6^6 6^{30^{4115}} \mathop{\equiv_{31}} 6^6 \times 1$ $\equiv_{31} 5^3 = 4 * 31 + 1$ $\equiv_{31} = \boxed{1}$

Since $5^{30000} - 6^{123,456} \equiv_{31} 1 - 1 = 0$, $31|5^{30000} - 6^{123,456}$

2 (5 pts) Use the **modular exponentiation** algorithm to calculate 3^{13} **mod** 37.

$$z = 1$$
 13 = 1101₂

30

digit	power	z
1	$3^1\mathop{\equiv_3} 3$	$3 imes1\equiv_3 3$
0	$3^2 \equiv_3 9$	3
1	$3^4 \equiv_3 7$	$3 imes7\equiv_321$
1	$3^8 \equiv_3 12$	$21 * 12 \equiv_3 30$

3 (2 pts) 1.10 (p39)

Given:

• (1)
$$a \equiv b \mod N$$

• (2)
$$M|N$$

Since $a \equiv b \mod N$, N|b-a. This means that $\exists c \in \mathbb{Z}$ such that cN=b-a

Since M|N, $\exists k \in \mathbb{Z}$ such that kM=N

Therefore $cN=ck\cdot M=b-a$

Since $ck \in \mathbb{Z}$, M|b-a.

Therefore $a \equiv b \mod M$

4 (3 pts) Use the **extended Euclidean algorithm** to find integers x and y such that $40x + 3y = \gcd(40,3)$ (show all steps).

a	b	q	r	Q
40	3	13	1	$\begin{pmatrix} 0 & 1 \\ 1 & -13 \end{pmatrix}$
3	1	3	0	$\begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -13 \end{pmatrix} = \begin{pmatrix} 1 & -13 \\ -3 & 40 \end{pmatrix}$

5 (2 pts) Consider an RSA key set with N=55 and e=3.

What value of d should be used for the secret key?

27

[Hint: Look at the previous question]

$$p = 5$$

$$q = 11$$

$$\implies \phi(N) = 40$$

$$e = 3$$

$$d = -13$$

Since d < 0 we must consider $d \mod 40$ which is ${ extstyle 27}$