Опр. 1. Топологическое пространство X называется компактным, если оно обладает следующим свойством: во всяком семействе открытых подмножеств $\{U_{\alpha}\}$, обладающем тем свойством, что $X=\cup_{\alpha}U_{\alpha}$, существует такое конечное подсемейство $\{U_{\alpha_1},U_{\alpha_2},\ldots,U_{\alpha_n}\}$, что $X=U_{\alpha_1}\cup U_{\alpha_2}\cup\ldots\cup U_{\alpha_n}$ (кратко эту мысль выражают так: из всякого открытого покрытия можно выбрать конечное подпокрытие).

Подмножество Y в топологическом пространстве X называется компактным, если оно компактно в топологии, индуцированной с X.

- 1. Докажите, что всякое компактное подмножество $M \subset \mathbb{R}$ обязано быть ограниченным.
- 2. Является ли интервал (0;1) компактным множеством?
- 3. (**Лемма Гейне Бореля**) Докажите, что всякий отрезок $[a;b] \subset \mathbb{R}$ компактен.
- 4. Пусть X компактное топологическое пространство и $Y \subset X$ его замкнутое подмножество. Докажите, что Y компактно.
- 5. Пусть X хаусдорфово пространство и $K \subset X$ его компактное подмножество. Докажите, что K замкнуто.
- 6. Докажите, что подмножество $X \subset \mathbb{R}$ компактно тогда и только тогда, когда оно замкнуто и ограничено.
- 7. Пусть $f: X \to Y$ непрерывное отображение топологических пространств, причём X компактно. Докажите, что подмножество $f(X) \subset Y$ компактно.
- 8. Пусть $f\colon X\to Y$ непрерывное отображение топологических пространств, причём X компактно, а Y хаусдорфово. Докажите, что f переводит замкнутые подмножества X в замкнутые подмножества Y.
- 9. Докажите, что взаимно однозначное и непрерывное отображение φ компакта X на хаусдорфово пространство Y есть гомеоморфизм.
- 10. Пусть $f\colon X\to \mathbb{R}$ непрерывная функция на компактном пространстве X. Докажите, что f достигает на X наибольшего и наименьшего значения.
- 11. Пусть X и Y компактные топологические пространства. Докажите, что произведение $X \times Y$ также компактно.

Опр. 2. Параллелепипедом называется множество вида

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n: a_1\leq x_1\leq b_1,\ldots,a_n\leq x_n\leq b_n\}.$$

- 12. Докажите, что всякий параллелепипед в \mathbb{R}^n компактен.
- 13. Докажите, что подмножество $X \subset \mathbb{R}^n$ компактно тогда и только тогда, когда оно замкнуто и ограничено.
- Опр. 3. Пусть $\{x_n\}_{n\in\mathbb{N}}$ последовательность точек в топологическом пространстве X и $a\in X$. Точка а называется предельной точкой последовательности $\{x_n\}$, если для любой окрестности $U\ni a$ существует бесконечно много $n\in\mathbb{N}$, для которых $x_n\in U$. Легко видеть, что если пространство X метрическое, то это равносильно тому, что существует подпоследовательность последовательности $\{x_n\}$, сходящаяся κ a.
- **Опр. 4.** Пространство называется секвенциально (счётно) компактным, если всякая последовательность его точек имеет предельную точку.
- **Опр. 5.** Множество S называется ε -сетью в метрическом пространстве X, если $X = \bigcup_{x \in S} \bar{B}_{\varepsilon}(x)$.
- **Опр. 6.** Метрическое пространство X называется вполне ограниченным, если в нём для любого $\varepsilon > 0$ найдётся некоторая конечная ε -сеть.
 - 14. Докажите, что всякое компактное метрическое пространство вполне ограничено.

Упражнения

- 1. Пусть A подмножество отрезка [0,1], состоящее из всех тех чисел, в десятичной записи которых участвуют только цифры 0,4 и 7. Компактно ли множество A?
- 2. Пусть $f(z) = a_n z^n + \ldots + a_0$ многочлен с комплексными коэффициентами. Докажите, что функция $z \mapsto |f(z)|$ принимает на $\mathbb C$ наименьшее значение.
- 3. Пусть f многочлен от двух переменных с действительными коэффициентами. Верно ли, что функция $(x,y) \mapsto |f(x,y)|$ принимает на \mathbb{R}^2 наименьшее значение?
- 4. Пусть X компактное пространство, а $\{C_n\}_{n\in\mathbb{N}}$ последовательность непустых вложенных замкнутых множеств: $C_1\supset C_2\supset C_3\supset\dots$ Докажите, что пересечение $\cap_n C_n$ не пусто.
- 5. Пусть A и B непересекающиеся компактные подмножества хаусдорфова пространства X. Докажите, что существуют такие непересекающиеся открытые подмножества U, $V \subset X$, что $A \subset U$ и $B \subset V$.
- 6. Пусть X топологическое пространство, а A и B его компактные подмножества. Докажите, что $A \cup B$ компактное множество, а если X хаусдорфово, то и $A \cap B$ компактно.
- 7. Пусть E множество всех рациональных чисел $q \in \mathbb{Q}$, удовлетворяющих неравенствам $2 < q^2 < 3$. Докажите, что E замкнуто и ограничено во множестве рациональных чисел с естественной топологией, но не является компактным.
- 8. Функция $f\colon X\to \mathbb{R}$ называется локально ограниченной, если для любой точки $x\in X$ существует такая ее окрестность, в которой функция f ограничена. Докажите, что если X компактно, а функция $f\colon X\to \mathbb{R}$ локально ограничена, то она ограничена.
- 9. Пусть ℓ^{∞} множество всех ограниченных последовательностей. Докажите, что функция $\rho(\{x_n\}_{n\in\mathbb{N}},\{y_n\}_{n\in\mathbb{N}})=\sup_{n\in\mathbb{N}}|x_n-y_n|$ является метрикой на ℓ^{∞} . Компактны ли замкнутые шары пространства ℓ^{∞} ?
- 10. Пусть $f: X \to Y$ непрерывное отображение метрических пространств, причём X компактно. Докажите, что f равномерно непрерывное отображение.
- 11. Придумайте такое непрерывное взаимно однозначное отображение топологических пространств $f\colon M\to N,$ что M компактно, но f не гомеоморфизм.
- 12. Нормой в векторном пространстве V над \mathbb{R} (\mathbb{C}) называется всякий функционал $\|\cdot\|\colon V \to \mathbb{R}$, удовлетворяющий следующим аксиомам:
 - (a) ||x|| = 0 тогда и только тогда, когда x = 0;
 - (b) $||x + y|| \le ||x|| + ||y||$, для всех $x, y \in V$;
 - (c) $\|\alpha x\| = |\alpha| \cdot \|x\|$, для всех $x \in V$ и $\alpha \in \mathbb{R}$ (\mathbb{C}).

Докажите, что в любом конечномерном нормированном пространстве V все нормы эквивалентны, а именно, что для любых двух норм $\|\cdot\|_1$ и $\|\cdot\|_2$ найдутся такие действительные числа $\alpha_1, \alpha_2 > 0$, что $\alpha_1 \|x\|_1 \le \|x\|_2 \le \alpha_2 \|x\|_1, x \in V$.

- 13. (Диагональная процедура) Пусть $(f_n)_{n\in\mathbb{N}}$ последовательность отображений метрических пространств $f_n\colon X\to Y$, а Y компакт. Докажите, что для произвольного счётного подмножества $S\subset X$ найдётся подпоследовательность $(f_{n_i})_{i\in\mathbb{N}}$ функций, сходящихся в каждой точке множества S.
- 14. (Теорема Арцела Асколи) Пусть последовательность функций $(f_n)_{n\in\mathbb{N}}$, $f\colon K_1\to K_2$, где (K_1,ρ_1) и (K_2,ρ_2) метрические компакты, является равностепенно непрерывной: $\forall \varepsilon>0\ \exists \delta>0\ \forall x,y\in K_1,\ n\in\mathbb{N}$ из $\rho_1(x,y)\leq \delta$ следует неравенство $\rho_2\big(f_n(x),f_n(y)\big)\leq \varepsilon$. Докажите, что из последовательности $(f_n)_{n\in\mathbb{N}}$ можно извлечь равномерно сходящуюся подпоследовательность.