In the claims:

Cancel claims 2, 7-9, 12 and 16-18.

Amend claims 34-39 where indicated.

1.- 33. (Cancelled)

1	34. (Currently Amended) A-magnetic head assembly as claimed in claim 2 further
2	comprising: A magnetic head assembly having an air bearing surface (ABS) comprising:
3	a read head including:
4	first and second ferromagnetic shield layers;
5	a read sensor recessed from the ABS and which includes a ferromagnetic free layer;
6	a ferromagnetic flux guide magnetically connected to the read sensor and extending
7	from the read sensor to the ABS for conducting field signals to the read sensor;
8	each of the read sensor and the flux guide being located between ferromagnetic first
9	and second shield layers;
10	a distance between the first and second shield layers at the ABS being less than a
11	distance between the first and second shield layers at the read sensor; and
12	a longitudinal biasing stack (LBS) magnetically coupled to the free layer for biasing
13	a magnetic moment of the free layer parallel to the ABS and parallel to major planes of the
14	<u>layers;</u>
15	the LBS including:
16	a hard bias layer; and
17	a nonmagnetic metal spacer layer located between and interfacing the free layer and
18	the hard bias layer;
19	each of the free layer, hard bias layer and spacer layer having top and bottom large surfaces
20	which are bounded by front and rear surfaces and first and second side surfaces wherein the front
21	surfaces form a portion of the ABS and each of the top and bottom large surfaces has a larger surface
22	area than each of the front and rear surfaces and each of the first and second side surfaces and is
23	perpendicular thereto; and
24	each of the top and bottom large surfaces of the spacer layer interfacing a respective large
25	surface area of the free layer and the hard bias layer.

1	35. (Currently Amended) A magnetic head assembly as claimed in claim 2 further				
2	comprising: A magnetic head assembly having an air bearing surface (ABS) comprising:				
3	a read head including:				
4	first and second ferromagnetic shield layers;				
5	a read sensor recessed from the ABS and which includes a ferromagnetic free layer;				
6	a ferromagnetic flux guide magnetically connected to the read sensor and extending				
7	from the read sensor to the ABS for conducting field signals to the read sensor,				
8	each of the read sensor and the flux guide being located between ferromagnetic first				
9	and second shield layers;				
10	a distance between the first and second shield layers at the ABS being less than a				
11	distance between the first and second shield layers at the read sensor; and				
12	a longitudinal biasing stack (LBS) magnetically coupled to the free layer for biasing				
13	a magnetic moment of the free layer parallel to the ABS and parallel to major planes of the				
14	layers;				
15	the LBS including:				
16	a hard bias layer; and				
17	a nonmagnetic metal spacer layer located between and interfacing the free layer and				
18	the hard bias layer;				
19	the read sensor having a sensor stripe height and the flux guide having a flux guide stripe				
20	height; and				
21	dielectric layers electrically insulating some of the layers of the read head along the flux				
22	guide stripe height except along the sensor stripe height.				
1	36. (Previously Presented) A magnetic head assembly as claimed in claim 35 further				
2	comprising:				
3	each of the free layer, hard bias layer and spacer layer having top and bottom large surfaces				
4	which are bounded by front and rear surfaces and first and second side surfaces wherein the front				
5	surfaces form a portion of the ABS and each of the top and bottom large surfaces has a larger surface				
6	area than each of the front and rear surfaces and each of the first and second side surfaces and is				
7	perpendicular thereto; and				
8	each of the top and bottom large surfaces of the spacer layer interfacing a respective large				

3

surface area of the free layer and the hard bias layer.

9

1	37. (Currently Amended) A magnetic disk drive as claimed in claim 12 further
2	comprising: A magnetic disk drive that has a magnetic head assembly which has an air bearing
3	surface (ABS) and a read head and a write head, the magnetic disk drive comprising:
4	the read head including:
5	first and second ferromagnetic shield layers;
6	a read sensor recessed from the ABS and which includes a ferromagnetic free layer;
7	a ferromagnetic flux guide magnetically connected to the read sensor and extending
8	from the read sensor to the ABS for conducting field signals to the read sensor;
9	each of the read sensor and the flux guide being located between ferromagnetic first
10	and second shield layers;
11	a distance between the first and second shield layers at the ABS being less than a
12	distance between the first and second shield layers at the read sensor; and
13	a longitudinal biasing stack (LBS) magnetically coupled to the free layer for biasing
14	a magnetic moment of the free layer parallel to the ABS and parallel to major planes of the
15	<u>layers;</u>
16	the LBS including:
17	a hard bias layer; and
18	a nonmagnetic metal spacer layer located between and interfacing the free layer and
19	the hard bias layer;
20	each of the free layer, hard bias layer and spacer layer having top and bottom large surfaces
21	which are bounded by front and rear surfaces and first and second side surfaces wherein the front
22	surfaces form a portion of the ABS and each of the top and bottom large surfaces has a larger surface
23	area than each of the front and rear surfaces and each of the first and second side surfaces and is
24	perpendicular thereto; and
25	each of the top and bottom large surfaces of the spacer layer interfacing a respective large
26	surface area of the free layer and the hard bias layer[[.]];
27	the write head including:
28	ferromagnetic first and second pole piece layers that have a yoke portion located
29	between a pole tip portion and a back gap portion;
30	a nonmagnetic write gap layer located between the pole tip portions of the first and
31	second pole piece layers;
32	an insulation stack with at least one coil layer embedded therein located between the
33	yoke portions of the first and second pole piece layers; and

34	the first and second pole piece layers being connected at their back gap portions;	
35	a housing;	
36	a magnetic disk rotatably supported in the housing;	
37	a support mounted in the housing for supporting the magnetic head assembly with said ABS	
38	facing the magnetic disk so that the magnetic head assembly is in a transducing relationship with the	
39	magnetic disk;	
40	a spindle motor for rotating the magnetic disk;	
41	an actuator positioning means connected to the support for moving the magnetic he	
42	assembly to multiple positions with respect to said magnetic disk; and	
43	a processor connected to the magnetic head assembly, to the spindle motor and to the actuator	
44	positioning means for exchanging signals with the magnetic head assembly, for controlling	
45	movement of the magnetic disk and for controlling the position of the magnetic head assembly.	
1	38. (Currently Amended) A magnetic disk drive as claimed in claim 12 further	
2	comprising: A magnetic disk drive that has a magnetic head assembly which has an air bearing	
3	surface (ABS) and a read head and a write head, the magnetic disk drive comprising:	
4	the read head including:	
5	first and second ferromagnetic shield layers;	
6	a read sensor recessed from the ABS and which includes a ferromagnetic free layer;	
7	a ferromagnetic flux guide magnetically connected to the read sensor and extending	
8	from the read sensor to the ABS for conducting field signals to the read sensor;	
9	each of the read sensor and the flux guide being located between ferromagnetic first	
10	and second shield layers;	
11	a distance between the first and second shield layers at the ABS being less than a	
12	distance between the first and second shield layers at the read sensor; and	
13	a longitudinal biasing stack (LBS) magnetically coupled to the free layer for biasing	
14	a magnetic moment of the free layer parallel to the ABS and parallel to major planes of the	
15	layers;	
16	the LBS including:	
17	a hard bias layer; and	
18	a nonmagnetic metal spacer layer located between and interfacing the free layer and	
19	the hard bias layer;	

20	the read sensor having a sensor stripe height and the flux guide having a flux guide stripe
21	height; and
22	dielectric layers electrically insulating some of the layers of the read head along the flux
23	guide stripe height except along the sensor stripe height[[.]];
24	the write head including:
25	ferromagnetic first and second pole piece layers that have a yoke portion located
26	between a pole tip portion and a back gap portion;
27	a nonmagnetic write gap layer located between the pole tip portions of the first and
28	second pole piece layers;
29	an insulation stack with at least one coil layer embedded therein located between the
30	yoke portions of the first and second pole piece layers; and
31	the first and second pole piece layers being connected at their back gap portions;
32	a housing;
33	a magnetic disk rotatably supported in the housing;
34	a support mounted in the housing for supporting the magnetic head assembly with said ABS
35	facing the magnetic disk so that the magnetic head assembly is in a transducing relationship with the
36	magnetic disk;
37	a spindle motor for rotating the magnetic disk;
38	an actuator positioning means connected to the support for moving the magnetic head
39	assembly to multiple positions with respect to said magnetic disk; and
40	a processor connected to the magnetic head assembly, to the spindle motor and to the actuator
41	positioning means for exchanging signals with the magnetic head assembly, for controlling
42	movement of the magnetic disk and for controlling the position of the magnetic head assembly.
l	39. (Currently Amended) A magnetic head assembly disk drive as claimed in claim
2	38 further comprising:
3	each of the free layer, hard bias layer and spacer layer having top and bottom large surfaces
4	which are bounded by front and rear surfaces and first and second side surfaces wherein the front
5	surfaces form a portion of the ABS and each of the top and bottom large surfaces has a larger surface
6	area than each of the front and rear surfaces and each of the first and second side surfaces and is

each of the top and bottom large surfaces of the spacer layer interfacing a respective large

920000114:af2-

surface area of the free layer and the hard bias layer.

perpendicular thereto; and

7

8

9

Add new claims 40-47.

1		40. (New) A magnetic head assembly as claimed in claim 34 further comprising:
2		the flux guide including an extension of the free layer which extends from the sensor to the
3	ABS;	
4		the read sensor further including:
5		a ferromagnetic pinned layer that has a magnetic moment;
5		an antiferromagnetic pinning layer exchange coupled to the pinned layer for pinning
7		the magnetic moment of the pinned layer; and
3		a spacer layer located between the pinned layer and said free layer; and
9		said pinned layer, pinning layer and spacer layer being located only in said read sensor.
l		41. (New) A magnetic head assembly as claimed in claim 40 wherein the spacer layer
2	is a no	nmagnetic electrically nonconductive barrier layer.
l		42. (New) A magnetic head assembly as claimed in claim 35 further comprising:
2		the flux guide including an extension of the free layer which extends from the sensor to the
3	ABS;	
1		the read sensor further including:
5		a ferromagnetic pinned layer that has a magnetic moment;
5		an antiferromagnetic pinning layer exchange coupled to the pinned layer for pinning
7		the magnetic moment of the pinned layer; and
3		a spacer layer located between the pinned layer and said free layer; and
)		said pinned layer, pinning layer and spacer layer being located only in said read sensor.
l		43. (New) A magnetic head assembly as claimed in claim 42 wherein the spacer layer
2	is a no	onmagnetic electrically nonconductive barrier layer.
l		44. (New) A magnetic disk drive as claimed in claim 37 further comprising:
2		the flux guide including an extension of the free layer which extends from the sensor to the
3	ABS;	
4		the read sensor further including:
5		a ferromagnetic pinned layer that has a magnetic moment;

920000114:af2 7

6	an antiferromagnetic pinning layer exchange coupled to the pinned layer for pinning
7	the magnetic moment of the pinned layer; and
8	a spacer layer located between the pinned layer and said free layer; and
9	said pinned layer, pinning layer and spacer layer being located only in said read sensor.
1	45. (New) A magnetic disk drive as claimed in claim 44 wherein the spacer layer is a
2	nonmagnetic electrically nonconductive barrier layer.
1	46. (New) A magnetic disk drive as claimed in claim 38 further comprising:
2	the flux guide including an extension of the free layer which extends from the sensor to the
3	ABS;
4	the read sensor further including:
5	a ferromagnetic pinned layer that has a magnetic moment;
6	an antiferromagnetic pinning layer exchange coupled to the pinned layer for pinning
7	the magnetic moment of the pinned layer; and
8	a spacer layer located between the pinned layer and said free layer, and
9	said pinned layer, pinning layer and spacer layer being located only in said read sensor.
1	47. (New) A magnetic disk drive as claimed in claim 46 wherein the spacer layer is a
2	nonmagnetic electrically nonconductive harrier layer