PU M Tech Electronics and Communication Engg

1 of 100 182 PU_2015_304 The ratio of conduction current density to the displacement current density is:-□ _{jσ/ωε} σ/jωε □ σω/jε Γ $\sigma \epsilon / j \omega$ 2 of 100 171 PU_2015_304 The maximum data rate supported by IEEE 802.11a at 5 GHz is:-C 100 Mbps 10 Mbps 48 Mbps 54 Mbps 3 of 100 107 PU_2015_304 In the interval $[0, \pi]$, the equation $x = \cos x$ has:-no solution exactly one solution an infinite number of solutions exactly two solutions 4 of 100 111 PU_2015_304 Which of the following is not a logical operator in C programming? $\square_{\&}$ 5 of 100 160 PU_2015_304 100 Base T refers to:-Fibre Connectivity Thick Ethernet SONET Twisted Pair

6 of 100

	PU_2015_304 ch of the following is used as a data selector?
C	Encoder
\Box	Decoder
\Box	Demultiplexer
	Multiplexer
	F 100 PU_2015_304
Lap	lace transform of 8t ³ is :-
C	8 s ⁴
	$\frac{16}{s^4}$
U	$\frac{24}{s^4}$
C	$\frac{48}{s^4}$
206 The	F 100 PU_2015_304 phase angle corresponding to λ/4 in a standing-wave pattern is:- 30° 180° 45° 90°
141	F 100 PU_2015_304 best electronic device for fast switching is:-
	MOSFET BJT
	Triode
C	FET
10 of 100 153 PU_2015_304 What do the contents of instruction register specify?	
	Op code for the instruction to be executed next
	Operand for the instruction to be executed next
	Operand for the instruction being executed
	Op code for the instruction being executed

162 The	PU_2015_304 Ethernet protocol uses:- CSMA/CA Slotted ALOHA SCPC CSMA/CD
12 (184	PU_2015_304 ctly speaking, in a microstrip the propagating mode that is excited is:- only TE mode non-TEM mode only TM mode only TEM mode
142	PU_2015_304 SCR is a semiconductor device made up of:- Three P-type and one N-type layers One P-type and three N-type layers Two P-type and two N-type layers Four N-type layers
146 The	PU_2015_304 Darlington pair is a multistage configuration of:- CC-CC CE-CB CE-CE CC-CE
210	PU_2015_304 emitter follower has high input impedance because of:- Negative feedback in the base emitter circuit Emitter resistance Large biasing resistance Large load resistance

	6 of 100 50 PU_2015_304 Cs, which are made by sputtering materials on a ceramic substrate are called: Thin film Hybrid Thick film Monolithic
1 b	7 of 100 65 PU_2015_304 The number of subcarriers used in OFDM technology for IEEE 802.16e network with the system randwidth of 10 MHz is:- 256 1024 52 128
	8 of 100 52 PU_2015_304 A fetch cycle is the:- First part of the instruction cycle Intermediate part of the instruction cycle Last part of the instruction cycle Auxiliary part of the instruction cycle
1 ACC th	9 of 100 83 PU_2015_304 A transmission line with a characteristic impedance Z_1 is connected to a transmission line with characteristic impedance Z_2 . If the system is being driven by a generator connected to the first line, then the overall transmission coefficient will be: $ Z_1/Z_1+Z_2 $ $ Z_2/Z_1+Z_2 $ $ Z_2/Z_1+Z_2 $ $ Z_2/Z_1+Z_2 $ $ Z_2/Z_1+Z_2 $
2 A C	20 of 100 204 PU_2015_304 A wave is propagated in a waveguide at frequency of 9 GHz and separation is 2 cm between walls. Find out off wavelength for dominant mode. 8 cm 2 cm 4 cm 1 cm

200	of 100 PU_2015_304 rea type one system, the steady—state error due to step input is equal to:- zero 0.25 0.5 infinite
127 Pilo	of 100 7 PU_2015_304 bit carrier transmission is one in which:- Two sidebands as well as a trace of carrier are transmitted Only two sidebands are transmitted One sideband and carrier are transmitted Only one sideband is transmitted
192	of 100 2 PU_2015_304 a series resonance circuit, the impedance of the circuit is:- minimum one zero maximum
121 The	of 100 I PU_2015_304 e concept of segmenting an image based on discontinuity or similarity of the gray level values of its els is applicable to dynamic images static images indexed images dynamic and static images
120	of 100 PU_2015_304 reased pulse-width in the flat top sampling leads to in reproduction. greater aliasing errors attenuation of high frequencies no harmful effects attenuation of low frequencies

202	of 100 2 PU_2015_304 ak overshoot of step-input response of an underdamped second-order system is explicitly indicative settling time damping ratio rise time natural frequency
147	1 0
181	of 100 PU_2015_304 a travelling electromagnetic wave, E and H vector fields are:- parallel in space perpendicular in space H is in the direction of wave travel E is in the direction of wave travel
110	of 100 PU_2015_304 MATLAB function to generate "00000" as output is:- zeros (1,5) zeros(5x1) zeros(5,1) zeros (1x5)
180	of 100 PU_2015_304 e wavelength of 2 GHz wave is:- 15 mm 1.5 cm 15 mm

205 A w Cal	of 100 5 PU_2015_304 ave is propagated in a waveguide at frequency of 9 GHz and separation is 2 cm between walls. culate group velocity for dominant mode.
	1.8 x 10 ⁸ m/sec
	5 x 10 ⁸ m/sec
	1.5 x 10 ⁸ m/sec
	3 x 10 ⁸ m/sec
140 A p	of 100 PU_2015_304 ush pull amplifier balances out:-
	Neither odd nor even harmonics
	Both odd as well as even harmonics
	Odd harmonics
	Even harmonics
112 The	of 100 PU_2015_304 Fourier series of an odd periodic function contains only:-
	sine terms
	cosine terms
	even harmonics
	odd harmonics
126 The	of 100 5 PU_2015_304 • function of baffles in speaker system is:-
F 7	To avoid cancellation of compression
	To produce echo effect and ratification of air
[]	To allow high frequencies to pass
	To provide stability to the speaker
161	of 100 PU_2015_304 232 interface:-
	a logic high uses positive voltage
	uses only positive logic
	uses only negative logic
C	cannot transmit signals over long distance

129	of 100 PU_2015_304 M, if modulation index is more than 100%, then:-
	Efficiency of transmission increases
\Box	Wave gets distorted
\Box	Bandwidth increases
	Power of the wave increases
109	of 100 PU_2015_304 en values of a real symmetric matrix are always:-
	negative .
	complex
	positive
	real
145 An	of 100 5 PU_2015_304 index register in digital computer is used for:-
	Pointing to the stack address
	Performing arithmetic and logic operations
	Address modification
	Storing one of the operands
	of 100 B PU_2015_304 MATLAB variables are:- one dimensional array multidimensional array three dimensional array
	two dimensional array
125 Wh	of 100 5 PU_2015_304 ich of the following is not uniformly distributed over all frequencies?
	Flicker noise
	White noise
	Thermal noise
	Shot noise

193 In a	of 100 3 PU_2015_304 Iloss free RLC circuit the transient current is:- Sinusoidal Square wave
	Cosine wave Oscillating
203	of 100 a PU_2015_304 input impedance of short-circuited line of length / where $\lambda/4 < l < \lambda/2$, is:- inductive resistive complex capacitive
172 A m theo	of 100 PU_2015_304 ressage signal band limited to 5 kHz is sampled at the minimum rate as dictated by the sampling orem. The number of quantization levels is 64. If the samples are encoded in binary form, the asmission rate is:- 60 kbps 32 kbps 52 kbps 10 kbps
212	of 100 PU_2015_304 ascade amplifier will have a higher cut off frequency that is:- Equal to that of single stage amplifier Less than that of single stage amplifier More than that of single stage amplifier Becomes double
163	of 100 PU_2015_304 number of bits used to denote the address of source and destination in IPV4:- 32 bits 128 bits 256 bits 64 bits

213	of 100 PU_2015_304 oscillator that uses a tapped coil in the LC tuned circuit is the:-
	Armstrong oscillator
\Box	Colpitts oscillator
	Hartley oscillator
	Pierce oscillator
149	PU_2015_304 roprogramming is a technique:- Microprogramming is a technique for writing small programs efficiently for programming the control steps of computer for programming output/input
128	PU_2015_304 elta modulation, the slope overload distortion can be reduced by:- Increasing step size Decreasing step size Decreasing sampling rate Increasing granular noise
124	PU_2015_304 DM system, different signals are distinguished from each other:- Only in frequency Only in amplitude Only in time Both in time and frequency
113	PU_2015_304 amplitude spectrum of Gaussian pulse is:- Gaussian an impulse function a sine function uniform
	dillotti

201	of 100 PU_2015_304 LVDT is primarily used for the measurement of:- displacement velocity acceleration humidity
151 808 [] []	of 100 PU_2015_304 5 has software restarts and hardware restarts. 6, 6 10, 5 7, 5 8, 4
211 The C C	PU_2015_304 typical turn off time of a transistor is:- 10 ns 70 ns 40 ns 60 ns
148	PU_2015_304 Ich of the following interrupts in 8085 microprocessor has highest priority? RST 5.5 INTR TRAP RST 6.5
143	PU_2015_304 quency stability in an oscillator is achieved by:- Controlling its gain Adjusting the phase shift Employing automatic biasing Incorporating tuned circuit

114 If a	of 100 PU_2015_304 signal f(t) has energy E, the energy of the signal f(2t) is equal to:-
	2E
\Box	
\Box	E/2
170 Whi	of 100 PU_2015_304 ich of the following requirements is necessary for fast communication,
	Higher transmitter power
	Higher channel Capacity
\Box	Larger Bandwidth
	High S/N ratio
164 The	of 100 PU_2015_304 EIEEE 802.15.4 standard is used to specify technology.
	WBAN
	Bluetooth
	ZigBee
	UWB
173	of 100 PU_2015_304
Con .Wh	nsider a single error correcting (7,4) cyclic code with the generator matrix $g(x) = x^3 + x^2 + 1$ at will be the transmitted data if received vector is 1101101?
	1100
\Box	1010
	1110
	0001
106 The	of 100 PU_2015_304 product of two complex numbers 1 + <i>i</i> and 2 - 5 <i>i</i> is:- 7 + 3i
	-3 - 4i
	3 - 4i
L	7- 3i

253 A 12 AD0	of 100 PU_2015_304 Pbit ADC is operating with a 1μs clock period and the total conversion time is seen to be 14 μs. The C must be of the:-	
	Successive Approximation Type	
	Integrating Type	
	Counting Type	
	Flash Type	
233 A tra max whice	PU_2015_304 ansmitted using AM has in modulated carrier output power of 10 kW and can be modulated to a simum depth of 90% by a sinusoidal modulating voltage without causing overloading. Find the value to ch an modulated carrier power can be increased without resulting in overloading if the maximum mitted modulating index is 40%:-	
	26.96 kW	
	2.96 kW	
	12.96 kW	
251 A si	of 100 PU_2015_304 gnal of maximum frequency of 10 kHz is sampled at Nyquist rate. The time interval between two cessive samples is:-	
	100 μs	
	1000 μs	
	50 μs	
	500 μs	
64 of 100 232 PU_2015_304 A 10 km long line has a characteristic impedance of 400 ohms. If line length is 100 km, the characteristic impedance is:-		
	400 Ω	
	40 Ω	
	4 Ω	
	4000 Ω	
228 A (7 can	of 100 PU_2015_304 5 - j 40) Ω load is connected to a co-axial line of Z_0 = 75 Ω at 6 MHz. The load matching on the line be accomplished by connecting:-	
	an inductance at the load	
	a short circuit stub at the load	

	a short circuit stub at a specific distance from the load
	a capacitance at a specific distance from the load
	of 100 2 PU_2015_304
	npn transistor with C=0.3 pF has a unity gain cut-off frequency f_T of 400 MHz at a dc bias current I_c =1 and V_T =26 mV. The value of its C μ is approximately:-
	50 pF 15 pF 30 pF 96 pF
250 The	of 100 0 PU_2015_304 e power content of a sideband of an AM wave with 60% modulation is 720 W. If the modulation is reased to 80%, then sideband power will become:- 1280 W 460 W 960 W 540 W
230 A tı	of 100 0 PU_2015_304 ransmission line is feeding 1 watt of power to a horn antenna having a gain of 10 dB. The antenna is tched to the transmission line. The total power radiated by the horn antenna into the free space is:- 75 W 100 W 10 W
222	of 100 2 PU_2015_304 or a matrix, rank equals both the number of rows and number of columns, then the matrix is called:- singular minor non-singular transpose
	•

70 of 100

249 PU 2015 304

If an 18 MHz band were to be considered for use with the same standards that apply to the 88 -108 MHz FM broadcast band, how many FM stations could be accommodated?

- \Box 23
- □ ₃₂₅
- □ ₄₅
- □ ₁₂₀

71 of 100

235 PU 2015 304

A loss less line of characteristic impedance Z_0 is terminated in pure reactance of $-jZ_0$ its VSWR is:-

- \Box
- □ 1.5
- \square_1

72 of 100

248 PU_2015_304

 $x(t) = V \sin \alpha t$ is given by:-

The auto correlation function for the function

- $U^2 \cos^2 \alpha t$
 - $V^2 \cos \alpha t$
- $U^2 \cos \alpha t$
- $2V^2\cos\alpha t$

73 of 100

229 PU 2015 304

The depth of penetration of EM wave in medium having conductivity σ at a frequency of 1 MHz is 25 cm. The depth of penetration at a frequency of 4 MHz will be:-

- 12.5 cm
- □ _{50 cm}
- 25 cm
- C 6.25 cm

74 of 100 254 PU_2015_304 The number of distinct Boolean expressions of 4 variables is:- 1 65536 1 256 1 1024
75 of 100 234 PU_2015_304 A 3 m long lossless air-filled transmission line has a characteristic impedance of 120 Ω, that is terminated by short circuit, and is excited with a frequency of 37.5 MHz. What is the nature of the input impedance (Zin)? L Inductive Open
Short
Capacitive
76 of 100 231 PU_2015_304 A certain fiber-optic cable has the following characteristics: $n_1 = 1.82$ and $n_2 = 1.73$. What is the value of θ_c ?
77 of 100 255 PU_2015_304 A 4 bit ripple counter and a 4 bit synchronous counter are made using flips flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then:- R=10 ns; S=40 ns R=20 ns; S=30 ns
R=30 ns; S=20 ns
C R=40 ns ;S=10 ns
78 of 100 243 PU_2015_304 The library function used to find the last occurrence of a character in a string is:- strnstr() laststr() strrchr()

C strstr()
79 of 100 220 PU_2015_304 A body originally at 60° cools down to 40° in 15 minutes when kept in air at a temperature of 25°C.What would be the temperature of the body at the end of 30 minutes? 1 35.2°C 28.7°C
□ _{31.5°C} □ _{15°C}
80 of 100 227 PU_2015_304 The minimum required bandwidth for transmission of n signals, each band-limited to fm Hz is:-
81 of 100 284 PU_2015_304 The noise figure of a radar receiver is 12 dB and its bandwidth is 2.5 MHz. The value of P _{min} for the radar will be:- 1.59x10 ⁻⁹ W 1.59x10 ⁻¹⁷ W 1.59x10 ⁻¹³ W 1.59x10 ⁻¹⁵ W
82 of 100 276 PU_2015_304 The radiation resistance of a circular loop of one turn is 0.01Ω . The radiation resistance of five turn of such a loop will be:-
83 of 100 265 PU_2015_304 A current of 2 A flows for 10 hour through a 100 ohm resistor. The energy consumed by the resistor is:- L 2 kWh L 0.5 kWh L 4 kWh

□ _{0.02 kWh}

84 of 100

275 PU_2015_304

The bit rate of a digital communication system is R kbps. The modulation used is 32-QAM. The minimum bandwidth required for ISI free transmission is:-

R/5 kHz

R/5 Hz

R/10 kHz

R/10 Hz

85 of 100

274 PU_2015_304

In the given figure reflection coefficient at load is:-

-0.5

-0.6

0.6

□ _{0.5}

86 of 100

269 PU 2015 304

For a series RLC circuit energized with a sinusoidal voltage source of frequency 4 rad / sec, the applied voltage lags the current by an angle of $\tan^{-1}2^{\circ}$. Then the value of R for L = 1H and C = 0.05 F is:-

0.25 Ω

💾 1Ω

0.1 Ω

0.5 Ω

87 of 100

277 PU_2015_304

In BiCMOS inverters, the design approach is to use:-

MOS - Logic BIPOLAR – Driving

MOS – Logic & Driving BIPOLAR - Switching

MOS - Driving BIPOLAR – Logic

None of the above
88 of 100 273 PU_2015_304 A hollow rectangular waveguide has dimensions of $a = 2b$. Calculate the amount of attenuation, if the frequency is 3 GHz, and $b = 1$ cm. \Box 47.33 dB \Box 50 dB \Box 49 dB \Box 50.33 dB
89 of 100 270 PU_2015_304 ZL = 200 Ω and it is desired that Zi = 50 Ω The quarter wave transformer should have a characteristic impedance of:-
90 of 100 290 PU_2015_304 Consider the following devices:-
1. RTL 2. High Speed TTL 3. ECL 4. CMOS
The correct sequence of their decrease in power dissipation is:-
91 of 100 294 PU_2015_304 The depth of penetration of electromagnetic wave in a medium having conductivity σ at a frequency of 1 MHz is 25 cm. The depth of penetration at a frequency of 4 MHz will be:- C 6.25 cm C 50 cm C 100 cm C 12.5 cm

92 of 100

292 PU_2015_304

The peak to peak input to an 8-bit PCM coder is 2 volts. The signals power-to- quantization noise power ratio (in dB) for an input of 0.5coswmt is:-

49.8

C _{95.6}

47.8

C _{99.6}

93 of 100

285 PU 2015 304

Determine the power content of the carrier of an AM signal that has a percent modulation of 85% and contains 1200 W total power:-

402.5 W

C _{20.4 W}

881.5 W

C 48.7 W

94 of 100

287 PU 2015 304

Consider a cellular system which has a total of S duplex channels available for use. If each cell is allocated a group of K channels (K < S) and if the S channels are divided among N cells then the total number of available radio channels can be expressed as:-

 $S = \frac{K}{N}$

 $S = \frac{N}{K}$

 $C_{S=KN}$

 $C_{S=K+N}$

95 of 100

268 PU_2015_304

A circuit of resistance R ohm and inductance L Hendry has a direct voltage applied to it. The current has a direct voltage applied to it. The current reaches 3.2% of its steady state value of 1 mA in 1 second. After the current has reached its final steady state value the circuit is suddenly short circuited. What will be the current after 2 seconds?

0.27 mA

0.47 mA

0.17 mA

□ _{0.37 mA}

96 of 100

293 PU 2015 304

The skin depth at 10 MHz for a conductor is 1 cm. The phase velocity of an electromagnetic wave in the conductor at 1000 MHz is about:-

	6x10 ⁶ m/sec 6x10 ⁷ m/sec 3x10 ⁷ m/sec 3x10 ⁸ m/sec
291 A ze	of 100 PU_2015_304 ero mean white Gaussian noise passed through an idle low pass filter of bandwidth 10 kHz. The put is uniformly sampled with sampling period t _s =0.03m/sec. The samples so obtained would be: Uncorrelated Statistically dependent Correlated Orthogonal
266 In a volt	9
286 A 5 mod	3 6
267 An (O of 100 PU_2015_304 electric circuit consists a resistance 10 kΩ and a capacitor 1 μF. What is the transient voltage across resistor and capacitor after 5 sec. if 200 V DC is applied to the circuit? 121.306 V, -121.306 V -242.612 V, 242.612 V 242.612 V, - 242.612 V -121.306 V, 121.306 V

304 PU M.Tech Electronics & Communication Engineering

212	f 100 PU_2016_304_E T is
0000	Wide band Amplifier
	Oscillator
	Tuned Amplifier
	Both amplifier and Oscillator
207	f 100 PU_2016_304_E current gain of a PNP transistor is:-
0	The ratio of collector current to base current.
0	The collector current divided by the emitter current.
0	The negative of the NPN current gain.
0	Near zero.
219	F 100 PU_2016_304_E maximum power efficiency of an AM modulator is:- 100% 50% 75%
188	f 100 PU_2016_304_E ich of the following layer is not in OSI layer?
0	Data link layer
0	Physical layer
0	Transport layer
0	Internet layer
198	f 100 PU_2016_304_E n electromagnetic wave, the phase difference between electric and magnetic field vectors E and B is: π zero
0	π/ 2

Ο π/4
6 of 100 218 PU_2016_304_E A device used for coupling microwave energy is known as:-
Loop
Resonator
C Transmitter
Waveguide
7 of 100 151 PU_2016_304_E Which transmission media has the highest transmission speed in a network:-
© Electrical cable
Coaxial cable
C Twisted pair cable
Optical fibre
8 of 100 167 PU_2016_304_E The impulse response of a LTI system is a unit step function, then the corresponding transfer function is:-
$O = \frac{1}{s^2}$
$ \bigcirc \frac{1}{s} $
s ·
1
9 of 100 138 PU_2016_304_E
Which of the following technology results in least power dissipation?
ECL
NMOS
° ttl
CMOS
10 of 100 104 PU_2016_304_E e ^z is periodic with a period of:-
Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π
π

ο 2π
^C 2πi
11 of 100 176 PU_2016_304_E The next number in the sequence 3, 6, 11, 18 ,27 is:- 40 36 34 38
12 of 100 191 PU_2016_304_E In asymmetric key cryptography, the private key is kept by:- Sender Receiver All the connected devices to the network Sender and receiver
13 of 100 111 PU_2016_304_E Thermal runaway will take place if the quiescent point is such that:- $V_{CE} > \frac{1}{2}V_{CC}$ $V_{CE} < 0.25 V_{CC}$ $V_{CE} > 0.25 V_{CC}$ $V_{CE} > 0.25 V_{CC}$ $V_{CE} > 0.25 V_{CC}$
14 of 100 142 PU_2016_304_E In a microprocessor, the register which holds the address of the next instruction to be fetched is:- Instruction register Accumulator Program counter Stack pointer
15 of 100 148 PU_2016_304_E The time required for a satellite to make a complete trip around the earth is determined by:- Kepler's law Faraday's law

Newton's law
Ohm's law
16 of 100 181 PU_2016_304_E A radio communication link is to be established via the ionosphere. The virtual height at the midpoint of the path is 300Km and the critical frequency is 9MHz. the maximum usable frequency for the link between the stations of distance 800Km assuming flat earth is:- 25MHz 12MHz
25.5MHz 15MHz
17 of 100 146 PU_2016_304_E In a TDM system each signal is allotted in a frame with a unique and fixed: Phase slot Time slot Amplitude slot Frequency slot
18 of 100 211 PU_2016_304_E Reflex Klystron is a Oscillator Amplifier Filter Attenuator
19 of 100 172 PU_2016_304_E If the Laplace transform of a signal y(t) is Y(s)= 1/(s(s-1)), then its final value is:- Unbounded 1 -1 0
20 of 100 186 PU_2016_304_E Which of the following is not applicable for IP? Error reporting

0	Handle addressing conventions
0	Packet handling conventions
0	Datagram format
131	PU_2016_304_E power spectral density of white noise is:- Band limited Constant Band passed Impulse
197	of 100 PU_2016_304_E e intrinsic impedance of free space is:-
0	120 πohm
0	377ohm
0	75 ohm
0	73 ohm
217	PU_2016_304_E a random variable x having the PDF as shown in below Figure the mean and the variance are,
	-1 1 2 3
0 0 0	1 and 2/3 1 and 4/3 1/2 and 2/3 2 and 4/3 of 100 PU_2016_304_E
Sim	ple Mail Transfer Protocol (SMTP) utilizes as the transport layer protocol for electronic transfer. SCTP

000	UDP DCCP TCP
171	PU_2016_304_E vstem with an input x(t) and output y(t) is described by the relation: y(t)=t x(t). This system is:- Linear and time varying Linear and time-invariant Non-linear and time-varying Non-linear and time-invariant
147	PU_2016_304_E handoff, a mobile station communicates with one base station. Moving Medium Soft Hard
107 The	PU_2016_304_E expression curl(grad f) where f is a scalar function is:- A scalar of zero magnitude Equal to div (grad f) A vector of zero magnitude Equal to $\nabla^2 f$
141 An i	PU_2016_304_E nstruction used to set the carry flag in a computer can be classified as:- Data transfer Program control Logical Arithmetic
137	PU_2016_304_E CM, the quantization noise depends on:- Bandwidth

0	Sampling rate
0	Number of quantization levels
0	Signal power
132 The	of 100 PU_2016_304_E message signal contains three frequencies 5 KHz, 10 KHz and 20 KHz respectively. The bandwidth ne AM signal is:-
0	30KHz
0	10 KHz
0	20KHz
0	40 KHz
122 Whi	of 100 PU_2016_304_E ch of the following is not bilateral:-
0	Inductor
0	Capacitor
0	Diode
0	Resistor
206	of 100 PU_2016_304_E SCR is considered to be a semi controlled device because:-
0	Only during one half cycle of an alternating current wave.
0	It can be turned ON only during one half cycle of an AC
0	It can be turned ON but not OFF with a gate pulse.
0	It can be turned OFF but not ON with a gate pulseit conducts.
126	of 100 PU_2016_304_E en load impedance equals to Z_0 of the line, it means that the load all the power.
0	Reflects
0	attenuates
0	Absorbs
0	radiates
	of 100 PU 2016 304 F

216 PU_2016_304_E
Communication in the traditional cable TV network is:-

_		
0	omnidirectional	
0	bidirectional.	
	No direction	
0	unidirectional	
177	PU_2016_304_E in histogram equalization stands for:- Probability density function Partial density function Parametric density function Probability dual function	
112 The	PU_2016_304_E upper cut-off frequencies f ₂₁ and f ₂₂ of the two stages of a cascaded amplifier are respectively 5 MHz 3.3 MHz. The equivalent upper cut-off frequency of the cascaded amplifier would be:- 2 MHz 4.16 MHz 5 MHz	
0	3.33 MHz	
208	of 100 PU_2016_304_E age Series feedback (also called series-shunt feedback) results in:- Decreases in both input & output impedances. Increase in input impedance & decreases in output impedances. Decrease in input impedance & increase in output impedance. Impedance Increase in both input & output impedances.	
38 of 100 106 PU_2016_304_E		
0000	inverse Laplace transform of $\frac{1}{(s^2 + 2s)}$ is:- $ (1 + e^{+2t}) / 2 $ $ (1 - e^{+2t}) / 2 $ $ (1 - e^{-2t}) / 2 $ $ (1 - e^{-2t}) $ of 100	

	PU_2016_304_E ich layer links the network support layers and user support layers:-
0	Network layer
0	Session layer
0	Data link layer
0	Transport layer
201 The	of 100 PU_2016_304_E multivibrator characterized by one quasi-stable state is:-
0	Astable multivibrator
0	Monostable multivibrator
0	Schmitt trigger
0	Bistable multivibrator
166	of 100 PU_2016_304_E ar cell works based on:-
0	Photo-conduction
0	Thermal emission
0	Tyndall effect
0	Laser technology
102 A h	of 100 PU_2016_304_E ydraulic structure has four gates which operate independently. The probability of failure of each gate is Given that gate 1 has failed, the probability that both gates 2 and 3 will fail is:-
0	0.040
0 0	0.200
	0.240
	0.008
178 Let	of 100 PU_2016_304_E the peak power be 10,00,000 W and average power be 800 W. The duty cycle will be:-
0	8 %
0	0.008%
0	0.08%
O	0.8%

44 of 100 162 PU_2016_304_E In a klystron amplifier the input cavity is called:-
Buncher
Catcher
Collector
Pierce gun
45 of 100 196 PU_2016_304_E For a line of characteristic impedance, Z_o terminated in a load, Z_R such that $Z_R > Z_O$, the Voltage Standing Wave Ratio (VSWR) is given by:-
$^{\circ}$ $Z_{R}^{\star}Z_{o}$
$^{\circ}$ $_{Z_{R}}$
C Z _R /Zo
C Zo/ Z _R
46 of 100 103 PU_2016_304_E X is uniformly distributed random variable that take values between 0 and 1.The value of E (X³) will be: 1/2 0 1/4
1/8
47 of 100 121 PU_2016_304_E A branch of a network is said to be passive when it contains:-
Current source
Battery
Voltmeter
Voltage source
48 of 100 117 PU_2016_304_E The minimum number of MOS transistors required to make dynamic RAM cell is:-
° 3

49 of 100 192 PU_2016_304_E A is a program that can infect other programs by modifying them, the modification includes a copy of the virus program, which can go on to infect other programs.		
Trap doors		
C Zombie		
Worm		
6		
Virus		
50 of 100 168 PU_2016_304_E		
If the transfer function of a first-order system is $G(s) = \frac{1}{(s+6)}$, then the time constant of the system is:-		
the transfer function of a first-order system is , then the time constant of the system is		
\circ $\frac{1}{4}$		
$C = \frac{1}{8}$		
$ \begin{array}{ccc} C & \frac{1}{8} \\ C & \frac{1}{6} \end{array} $		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
51 of 100 187 PU_2016_304_E		
Error detection at data link layer is achieved by:-		
Cyclic redundancy codes		
C Hamming code		
Equalization		
C Bit stuffing		
52 of 100 156 PU_2016_304_E Which of the following is not applicable to IP protocol:-		
Oatagram format		
Handling address conventions		
Packet handling conventions		
Error reporting		
53 of 100 127 PU_2016_304_E The energy that neither radiated into space nor completely transmitted is:- Incident waves		

0	Standing waves
0	Reflected waves
0	Captured waves
157	PU_2016_304_E at should be the flag value to indicate the last fragment:- 2 3 1
158	of 100 PU_2016_304_E size of IP address in IPv6 is:-
0	8 bits
0	100 bits
0	128 bits
0	4 bits
136	PU_2016_304_E PDM signal is converted into PPM with the help of a:- Flip-flop Astable Timer Monostable
202	of 100 PU_2016_304_E 255, under the I/O mode of operation, we have modes.
0	3
_	2
0	1
\cup	4
	of 100 PU_2016_304_E -5+i10
Tho	value of the expression $3+4i$

\circ	1 + 2i	
\circ	2+i	
\circ	2 - i	
0	1 - 2i	
116	PU_2016_304_E number of distinct Boolean expressions of 4 variables is:- 16 65536 1024 256	
182	of 100 PU_2016_304_E global communication, minimum number of satellite required is seven three eleven one	
258	PU_2016_304_M Eline of an 8085 microprocessor is used to Execute the instruction supplied by external device Execute a NOP Execute RST by a hardware Execute an instruction from a memory location 20H	
62 of 100 254 PU_2016_304_M		

Write the Output for the program given below:

```
void main()
       int a .b:
       a=1.b=2:
       if(a++ \le 1 \& \& b++ > 2)
       printf ("hello a=%d b=%d", a, b);
       printf (" welcome a=%d b=%d", a, b);
       }
    hello a = 2 b = 3
    welcome a = 2 b = 3
    a = 3 b = 4
    a = 2b = 3
63 of 100
257 PU_2016_304_M
 For the 8085 assembly language program given below, the content of the
accumulator after the execution of the program is
                      3000 MVI
                                    A. 54H
                                    B, A
                      3002 MOV
                      3003 STC
                      3004 CMC
                      3005 XRA
                                    B
    7EH
    44H
    E7H
    54H
64 of 100
224 PU_2016_304_M
The voltages across R and L in a series RL circuit are found to be 200 V and 150 V respectively. The rms
value of the voltage across the series combination is:-
0
    250
    360
    200
    450
```

65 of 100

242 PU_2016_304_M

The equivalent inductance measured between the terminals 1 and 2 for the circuit shown in figure, is:-

66 of 100

253 PU_2016_304_M

Predict the output for the program given below.

```
main()
{
    float me = 1.1;
    double you = 1.1;
    if(me==you)
        printf("Welcome to C");
    else
        printf("Welcome to C++");
}
```

- C-17
- \circ
- Welcome to C++
- Welcome to C

67 of 100

237 PU_2016_304_M

Light is confined within the core of simple optical fibre by:-

- Total internal reflection at the core cladding boundary
- Refraction

0	Total internal reflection at the outer edge of the cladding	
0	Reflection from fibre's plastic coating	
228 A lo	of 100 PU_2016_304_M ng wire composed of a smooth round conductor runs above and parallel to the ground. A high voltage its between the conductor and the ground. The maximum electric stress occurs at:- The lower surface of the conductor The ground surface Midway between the conductor and the ground The upper surface of the conductor	
222 The	of 100 PU_2016_304_M system y(n) = 2x(2 ⁿ) is	
0	Time - variant and non-causal	
0	Time -invariant and non-causal	
0	Time -invariant and causal	
0	Time -variant and causal	
70 of 100 232 PU_2016_304_M The bandwidth required for transmitting 4KHz signal using PCM with 128 quantizing levels is:- 24 KHz 28 KHz 8 KHz		
248	16 KHz of 100 PU_2016_304_M x, y) = x ² +y ² + 6x + 12 then minimum value f(x, y) is:- -3 3 0 6	
238	of 100 PU_2016_304_M type of light source and the fibre chosen for FDDI networks are:- Single mode fibre and 1550 nm lasers	

0	Multi mode fibre and 1300 nm lasers
0	Single mode fibre and 1300 nm lasers
	Multi mode fibre and 1300 nm LED's
An i pow	PU_2016_304_M independent voltage source in series with an impedance $Z_s = R_s + jX_s$ delivers a maximum average ver to a load impedance Z_L when:- $Z_L = R_s + jX_s$ $Z_L = R_s - jX_s$ $Z_L = R_s$ $Z_L = R_s$
233 The O	PU_2016_304_M noise margin of a TTL gate is about:- 0.4 V 0.2 V 0.8 V 0.6 V
223	of 100 PU_2016_304_M ystem with an input x(t) and output y(t) is described by the relation: y(t)=t x(t). This system is:- Non-linear and time-varying Linear and time varying Non-linear and time-invariant Linear and time-invariant
	of 100 PU_2016_304_M

Predict the output for the program given below:

```
void main()
{

Int a.b;

a=10, b=5;

a=a+++++b;

b=b+++++a;

printf ("a=%d b=%d", a, b);
}

a = 16 b = 22

a = 25 b = 18

a = 17 b = 24

a = 18 b = 25
```

77 of 100

243 PU_2016_304_M

The minimum number of equations required to analyze the circuit shown in figure is:-

О.,

U 7

o e

U a

78 of 100

247 PU_2016_304_M

$$f(x) = \frac{\sin x}{e^x}$$

The value of 'c' of Rolle's theorem for

in $(0, \pi)$ is:-

 \circ $_{\scriptscriptstyle extsf{T}}$

	$\frac{\pi}{}$		
O	$\frac{\pi}{3}$ $\frac{\pi}{2}$		
0			
0	$\frac{\pi}{4}$		
79 of 100 227 PU_2016_304_M The internal impedance of a source is 3 + j4 Ω .It is desired to supply maximum power to a reThe load resistance should be:-			
0	5 Ω		
0	4 Ω		
0	3 Ω		
0	7 Ω		
234 Wh	of 100 PU_2016_304_M at is the frequency range of 802.11a standard:-		
0	5 Gbps		
0	2.4 Gbps		
0	2.4 GHz		
0	5 GHz		
81 of 100 284 PU_2016_304_D A graded index fibre has a core with a parabolic refractive index profile which has a diameter of 5 The fibre has a numerical aperture of 0.2. Estimate the total number of guided modes propagating fibre when it is operating at a wavelength of 1 μ m.			
	256		
0	125		
0	147		
0	247		
266	of 100 PU_2016_304_D tep voltage E is applied to an R-L series circuit. At t = 0, the current in the circuit is:-		
0	E/R		
0	E/L		
0	Zero		
7,7	Infinity		

83 of 100 298 PU_2016_304_D Maximum gain of antenna using an illuminated 6 feet parabolic reflector used at 6MHz will be:- 1008 8050 950 428
84 of 100 290 PU_2016_304_D Radiation resistance of a monopole of height h=1/2 approximately equals:- $400(h\lambda)^2$ $100 (h/\lambda)^2$ $400 (h/\lambda)^2$ $400 (h/\lambda)^2$
85 of 100 268 PU_2016_304_D An 8-bit microcontroller has an external RAM with memory map from 8000H to 9FFFH.The number of bytes this RAM can store is:- 8192 8000 8193 8191
86 of 100 278 PU_2016_304_D The bit rate of a digital communication system is X Kbits/s. The modulation used is 32-QAM. The minimum bandwidth required for ISI free transmission is:- $\frac{X}{32}$ $\frac{X}{5}$ $\frac{X}{10}$ $\frac{X}{2}$
87 of 100 295 PU_2016_304_D The pinch off voltage for a n-channel JFET is 4 V, when V $_{GS}$ = 1V,the pinch off occurs for V $_{DS}$ equals to:- 5 V

1 V 88 of 100 288 PU_2016_304_D The radiation resistance of a λ/16 wire dipole in free space will be nearly:- 3Ω 30Ω 13Ω 1Ω 89 of 100 276 PU_2016_304_D If E _b , the energy per bit of a binary digital signal is10° watt-sec and the one-sided power spectral density of the white noise, N ₀ =10° W/Hz, then the output SNR of the matched filter is:- 20 dB 26 dB 10 dB 13 dB 90 of 100 274 PU_2016_304_D c(t) and m(t) are used to generate an AM signal. The modulation index of generated AM signal is 0.5. Then the total quantity side band power is:- 1/6 1/6 1/8 1/4 1/2 91 of 100 293 PU_2016_304_D The frequency of a continuous time signal x (t) changes on transformation from x (t) to x (a, t), a > 0 by a factor:- α 1-α	° _{3 V} ° _{4 V}
288 PU_2016_304_D The radiation resistance of a λ/16 wire dipole in free space will be nearly:- 3Ω 3Ω 13Ω 1Ω 89 of 100 276 PU_2016_304_D If E _b , the energy per bit of a binary digital signal is10 ⁻⁵ watt-sec and the one-sided power spectral density of the white noise, N ₀ =10 ⁻⁶ W/Hz, then the output SNR of the matched filter is:- 20 dB 26 dB 10 dB 13 dB 90 of 100 274 PU_2016_304_D c(t) and m(t) are used to generate an AM signal. The modulation index of generated AM signal is 0.5. Then the total quantity side band power arrier power is:- 1/6 1/8 1/4 1/2 91 of 100 293 PU_2016_304_D The frequency of a continuous time signal x (t) changes on transformation from x (t) to x (a, t), a > 0 by a factor:- α	_
276 PU_2016_304_D If E _b , the energy per bit of a binary digital signal is10 ⁻⁵ watt-sec and the one-sided power spectral density of the white noise, N ₀ =10 ⁻⁶ W/Hz, then the output SNR of the matched filter is:- 20 dB 26 dB 10 dB 13 dB 90 of 100 274 PU_2016_304_D c(t) and m(t) are used to generate an AM signal. The modulation index of generated AM signal is 0.5. Then the total quantity side band power arrier power is:- 1/6 1/8 1/4 1/2 91 of 100 293 PU_2016_304_D The frequency of a continuous time signal x (t) changes on transformation from x (t) to x (a, t), a > 0 by a factor:- α	288 PU_2016_304_D The radiation resistance of a λ /16 wire dipole in free space will be nearly:- 3Ω 30Ω 13Ω
274 PU_2016_304_D c(t) and m(t) are used to generate an AM signal. The modulation index of generated AM signal is 0.5. Then the total quantity side band power carrier power is:- 1/6 1/8 1/4 1/2 91 of 100 293 PU_2016_304_D The frequency of a continuous time signal x (t) changes on transformation from x (t) to x (a, t), a > 0 by a factor:- α	276 PU_2016_304_D If E_b , the energy per bit of a binary digital signal is10 ⁻⁵ watt-sec and the one-sided power spectral densit of the white noise, N_0 =10 ⁻⁶ W/Hz, then the output SNR of the matched filter is:- 20 dB 26 dB 10 dB
AM signal is 0.5. Then the total quantity side band power is:- 1/6 1/8 1/4 1/2 91 of 100 293 PU_2016_304_D The frequency of a continuous time signal x (t) changes on transformation from x (t) to x (a, t), a > 0 by a factor:-	
1/6 1/8 1/4 1/2 91 of 100 293 PU_2016_304_D The frequency of a continuous time signal x (t) changes on transformation from x (t) to x (a, t), a > 0 by a factor:- α	
293 PU_2016_304_D The frequency of a continuous time signal x (t) changes on transformation from x (t) to x (a, t), a > 0 by a factor:- α	1/6 C 1/8 C 1/4
Ο 1/α	293 PU_2016_304_D The frequency of a continuous time signal x (t) changes on transformation from x (t) to x (a, t), a > 0 by factor:- α $1-\alpha$

92 of 100

283 PU_2016_304_D

The Bode plot of a transfer function G (s) is shown in the figure below.

The gain $(20 \log G(s))$ is 32 dB and -8 dB at 1 rad/s and 10 rad/s respectively, The phase is negative for all w. The G(s) is

- $O = \frac{32}{s}$
- 39.8 C s
- 39.8 S²
- 32 s²

93 of 100

273 PU_2016_304_D

Four signals each band limited to 5 KHz, 10KHz, 10KHz, 10KHz are transmitted to a channel simultaneously after modulation the modulation used as AM,DSB-SC,SSB-SC and SSB-SC respectively assume the guard period 2KHz. Determine the bandwidth of multiplexed signal.

- 60KHz
- O 50KHz
- [™] 56KHz
- O 40KHz

94 of 100

280 PU_2016_304_D

The signal m(t) as shown is applied to both a phase modulator (with k_p as the phase constant) and a frequency modulator (with k_f as the frequency constant) having the same carrier frequency.

The ratio kp/kf(in rad/Hz) for the same maximum phase deviation is

- \circ .
- Ο 8π
- Ο 2π
- [©] 4π

95 of 100

264 PU_2016_304_D

A recursive filter is described by y(n) = 0.7 y[n-1] - 0.3 y[n-2] - 6x[n-1].

The static gain of the filter is:-

- 0
- O 10
- [©] 20
- O 1

96 of 100

270 PU_2016_304_D

The number of comparators in a 4-bit flash ADC is:-

- O 5
- O 16
- [©] 15
- O 4

97 of 100

286 PU_2016_304_D

For the circuit shown in the following figure, transistor M₁and M₂are identical NMOS transistors. Assume the M2 is in saturation and the output is unloaded.

The current Ix is related to Ibias as _____

$$I_x = I_{bias} - I_S$$

$$I_x = -I_{bias}$$

$$I_x = I_{bias}$$

$$I_x = I_{bias} + I_S$$

98 of 100

294 PU 2016 304 D

A quarter wave transformer matches a 100 ohm load to a transmission line with L=1.35 μ H/m and C=60 pFm. The characteristic impedance of matching transformer is:-

⁰ 122.5 Ω

[©] 150 Ω

275 Ω

300 Ω

99 of 100

275 PU_2016_304_D

A signal is sampled at 8 kHz and is quantized using 8 - bit uniform quantizer Assuming SNR_q for a sinusoidal signal, the correct statement for PCM signal with a bit rate of R is:-

 $R = 32 \text{ kbps}, SNR_q = 49.76 \text{ dB}$

 $R = 64 \text{ kbps}, SNR_q = 49.76 \text{ dB}$

 $R = 64 \text{ kbps}, SNR_q = 49.8 dB$

Arr R = 32 kbps, SNR_q = 25.8 dB

100 of 100 260 PU_2016_304_D

The fundamental period of $x(n) = e^{j0.2n\pi} + e^{-j0.3n\pi}$ is:-

- \circ 30
- 10
- 20
- 40

Sr No.	MTech Electronics & Communication Engineering
1	Which fraction comes next in the sequence
	$\frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{7}{16}, \frac{7}{16}$?
Alt1	9/32
Alt2	10/17
Alt3	11/34
Alt4	12/35
	Choose the missing term out of the given options: Accabbacaabaacac aacb
-	acbc
	babb
Alt4	bcbb
Alt1 Alt2 Alt3 Alt4	Leaf is related to Sap in the same way as Bone is related?? Fluid Blood Marrow Calcium Select the lettered pair that has the same relationship as the original pair of words: Rotate: Gyrate
	Putrefy: Reject
	Anachronism: Cubism
	Accolade: Criticism Absolve: Eventrate
5	Absolve: Exonerate Choose the alternative, which is similar to the given words: Liver: Heart: Kidney
	Blood
-	Nose
	Lung
Alt4	Urine
Alt1	Spot the defective segment from the following: The more you read
	the more will you
	get to know
Alt4	about more things

7	Choose the meaning of the idiom/phrase from among the options given:
	A rainy day
Alt1	a holiday
Alt2	a difficult time
Alt3	a fine day
Alt4	a wet day
8	The villagers plan to the elections in protest.
Alt1	avoid
Alt2	ignore
Alt3	neglect
Alt4	boycott
9	Choose the option closest in meaning to the given word:
	PUERILE
Alt1	vulgar
Alt2	perverse
Alt3	childish
Alt4	young
10	Choose the antonymous option you consider the best:
	OBTUSE
Alt1	fast
Alt2	sharp
Alt3	reliable
Alt4	lucid
11	In a Cricket tournament, each of the six teams will play every other term exactly once during the league
	phase. How many matches will be played during the league phase in total?
Alt1	12
Alt2	36
Alt3	15
Alt4	24
12	A walks 10 metres in front and 10 metres to the right. The every time turning to his left, he waks 5, 15 and 15
	metres respectively. How far is he now from the starting point?
Alt1	15 metres
Alt2	5 metres
Alt3	10 metres
Alt4	30 metres
13	The sum of the income of A and B is more than that of C and D taken together. The sum of the income of A and
	C is the same as that of b and D taken together. Moreover, A earns half as much as the sum of the income of b
	and D. Whose income is he highest?
Alt1	
Alt2	В

Alt3	
Alt4	D
14	Five boys A, B, C, D and E are seated on a bench. A is to the left of C. b is to the immediate right of D and there
	are two people between C and D. E is to the extreme right of the row. Who is exactly at the middle of this group
	?
Alt1	A
Alt2	В
Alt3	С
Alt4	E
15	A man is facing south. He turns 1350 in the anticlockwise direction and then 1800 in the clockwise direction.
	Which direction is he facing now?
Alt1	North East
Alt2	North West
Alt3	South East
Alt4	South West
16	Find the number which when added to itself 17 times becomes 126.
Alt1	13
Alt2	7
Alt3	9
Alt4	18
17	Ravi is exactly 9999 days old today. How old is he?
Alt1	27
Alt2	28
Alt3	26
Alt4	29
18	A Maths teacher usually has 21 students in his class. A,B & C are asleep. D&E are in the bathroom and the
	teacher has sent F&G to the principal's office. How many students are left in the classroom?
Alt1	
Alt2	
Alt3	
Alt4	17
19	JIPMER is coded as 589142;
	AIPMT is coded as 78910;
	Then JEE is coded as
Alt1	
Alt2	
Alt3	
Alt4	914

20	Mr. Arvind drove 90 km at 30 kmph and then an additional 90 km at 45 kmph. What is his average speed over
	his 180 km ?
	37.5 kmph
	35 kmph
Alt3	36 kmph
Alt4	38 kmph
21	A PLA can be used:-
Alt1	As a microprocessor
Alt2	To realize a combinational logic
	To realize a sequential logic
	As a dynamic memory
	The second of th
	The most commonly used filters in SSB generation are
	Low pass
Alt2	
Alt3	
Alt4	High pass
23	What determines antenna polarization?
	The direction of the magnetic field vector
	The direction of the electric field vector
	The frequency of the radiated wave
	The direction of the radiated wave
7.11.0.1	The direction of the fadiated wave
24	The input $x(t)$ and output $y(t)$ of a system are related as $y(t) = \int_{-\infty}^{t} x(\tau) \cos(5\tau) d\tau$. The system is:-
Alt1	stable and not time-invariant
	not time-invariant and not stable
	time-invariant and stable
	time-invariant and not stable
25	If F is the Floration field integrate, the group of the color of discovering of few deficitions.
	If E is the Electric field intensity ,then what is the value of divergence of (curl of E):-
	Zero
Alt2	
Alt3	
Alt4	Null vector
26	The amplitude spectrum of a Gaussian pulse is:-
	and the foundation
	a sine function
Alt1	Uniform
Alt1 Alt2	

	Device that provides the connectivity to a WiMAX network is known as:-
	Gateway
	Firewall
	Subscriber stations
Alt4	Base stations
28	The first six points of the 8- point DFT of a real valued sequence are 5, 1+j3, 0, 3-j4, 0, and 3+j4. The last two
	points of the DFT are respectively:-
Alt1	0, 1+j3
	0, 1-j3
	1+j3, 5
	1-j3, 5
20	The periodic convolution of $y(n)=\{1,2,0,1\}$ and $h(n)=\{2,2,2,0\}$ is:
	The periodic convolution of $x(n)=\{1, 2, 0, 1\}$ and $h(n)=\{2, 2, 3, 0\}$ is:-
	{ 4,9,7,8}
	{ 9,6,8,2}
	{3,6,8,4}
Alt4	{2,5,8,4}
30	Which multiple access technique is used by IEEE 802.11 standard for wireless LAN?
Alt1	ALOHA
Alt2	CDMA
Alt3	CA CA
Alt4	CSMA/CA
<u> </u>	
31	Medium Earth Orbit satellites are located at altitudes between:-
Alt1	5000 and 15000 Km
Alt2	5000 and 10000 Km
Alt3	1000 and 5000 Km
	3000 and 5000 Km
22	
32	When the PLL is being used as a frequency multiplier or a frequency divider, the output is taken from:-
Alt1	the output of phase comparator
Alt2	the VCO input
Alt3	LPF output
Alt4	the VCO output
33	By default a real number is treated as a:-
	Long double
	Far double
	Float
AI(4	Double
34	A device which converts a balanced line to an unbalanced line of a transmission line is:-
	Balun

Alt2	Stub
	Directional coupler
	Hybrid
	L '
35	The rank of matrix Shown in Image is:-
- 55	FO 0 21
	0 0 -5
	0 2 5
	9 3 5
	L3 1 1 J
Alt1	1
Alt2	
Alt3	
Alt4	3
36	For transmission line, open circuit and short circuit impedances are 20 Ω and 5 Ω respectively. Then the
	characteristic impedance is:-
Alt1	25 Ω
Alt2	100 Ω
Alt3	10 Ω
Alt4	50 Ω
,	
	How many bits are needed to address 64K memory location:-
Alt1	
Alt2	
Alt3	
Alt4	16
	Why is a digital network preferred over an analogue network?
	It has lower power consumption It is newer
	It has higher capacity for the same bandwidth
	It is smaller
AIL4	it is smaller
30	The gray code decimal equivalent to 6 is
	1000
	110
	101
	1001
40	Viterbi decoding is one of the most commonly used technique in modern systems that are used to decode the
-	data encoded by
	,
Alt1	Hamming coding
	Hamming coding Block coding

Alt4	CRC coding
	The impedance measured at the input of the transmission line when its length is infinity:-
	Open circuit impedance
	Input impedance
	Short circuit impedance
Alt4	Characteristic impedance
42	An amplifier with mid-band gain, A= 500 is provided with 1% of negative feedback. If the upper cut-off
	frequency without feedback is 60 KHz ,with feedback it becomes:-
	300 KHz
	360 KHz
	12 KHz
Alt4	10 KHz
	What is another name for a one-shot?
	Tristable
	Monostable
	Bistable
Alt4	Astable
	Standard GSM systems support a data rate of:-
	12kbps
	9.6kbps
	256kbps
Alt4	128kbps
	Snell's law relates:-
	Light absorption
	Light refraction
	Light Transmission
Alt4	Light reflection
	An RL impedance function can also be realized as:-
	RC admittance function
	LC impedance function
	RC impedance function
AIL4	LC admittance function
47	The standing wave ratio is equal to if the load is properly matched with the transmission line.
Alt1	
Alt2	
	Infinity
Alt4	0
48	Source encoding in a data communication system is done in order to:-

Alt1	Conserve the transmitted power
	Facilitate clock recovery in the receiver
	Enhance the information transmission rate
	Reduce the transmission errors
7	
49	Transmission efficiency increases as
Alt1	Voltage increases but power factor decreases
Alt2	Voltage and power factor both increase
Alt3	Voltage decreases but power factor increase
Alt4	Voltage and power factor both decrease
ΕO	For the differential equation shows in image with $y(0)=1$, the general solution is:
30	For the differential equation shown in image with y(0)=1 ,the general solution is:-
	$\frac{dy}{dt} + 5y = 0$
Alt1	e5t
Alt2	e V = 55
Alt3	e(-5t)
Alt4	5e(-5t)
51	Whenever current is applied by a source its terminal voltage
	Fluctuates
Alt2	Increases
Alt3	Decreases
Alt4	Remains constant
	The type of signalling that have the same circuit and is used for both signalling and voice communication is called:-
Alt1	out-band
Alt2	signal points
Alt3	in-band
Alt4	signal transport ports
53	The number of flip-flops required to construct a MOD-10 counter that counts from zero to decimal 9 is:-
0114	- 8
AITT	
Alt1 Alt2	
Alt2	
	4

Alt1 LM710

Alt2	LM748
Alt3	LM741
Alt4	747
55	SDMA makes use of:-
Alt1	Different codes
Alt2	Different frequencies
Alt3	Different radiation patterns
Alt4	Different time slots
56	The Fourier series of a real periodic function has only
	P. Cosine terms if it is even
	Q. Sine terms if it is even
	R. Cosine terms if it is odd
	S. Sine terms if it is odd
	Which of the above statements are correct?
Alt1	Q and R
Alt2	P and R
	Q and S
Alt4	P and S
57	A radar receives an echo from a target 20 microseconds after sending the signal. The approximate range of the
	target is:-
	300m
	600m
	3000m
Alt4	6000m
	Figure of merit is always unity in:-
Alt1	
	SSB-SC
	AM-SC
Alt4	AM
- 50	A dimensis DANA sansista of
	A dynamic RAM consists of:-
	2 transistors and 2 capacitors
	6 transistors only 1 transistor and 1 capacitor
AIT4	2 capacitors only
60	The semiconductor diode which can be used in switching circuit in microwave range is:-
	PIN diode
	Tunnel diode
	Varactor diode
	Gunn diode
AIL4	ourn douc

6	The main advantage of microwave is that
Al	High penetration power
Αl	Highly Directive
Αl	S/N ratio grater
Al	Moves at the speed of light
6	Which topology contains a central controller or hub:-
Al	Bus
Al	t2 Star
Al	Ring
Al	Mesh Mesh
6	The below circuit represent Gate
	A · B
Αl	11 OR Gate
Al	12 NAND Gate
Al	NOR Gate
Al	AND Gate
	In a cellular communication system, the noise is best described as:-
	11 Exponential
	12 Rayleigh
	t3 Gaussian
	t4 Uniform
	:
ε	Find the bandwidth of SSB-SC technique when message signal has combination of two frequencies i.e. 200 Hz and 400Hz.
Al	11 800Hz
	12 600Hz
	13 200Hz

66 If for a control system, the Laplace transform of error e (t) is as shown in image as then the steady state value of the error works out as:-

Alt4 400Hz

```
\frac{8(s+4)}{s(s+10)}
Alt1 2.4
Alt2 3.6
Alt3 3.2
Alt4 1.2
```

```
Analyze the output for the program given below:

void main()
{

Static int i=5;

if(--i){

main ();

printf ("%d ",i);
}

Alt1 1100

Alt2 0000

Alt3 1111

Alt4 0101
```

68	How many different three-member teams can be formed from six students?
Alt1	240
Alt2	120
Alt3	360
Alt4	20

```
69 What is the electrical wavelength of a 500 MHz signal?

Alt1 0.6 meters

Alt2 0.06 meters

Alt3 600 centimeters

Alt4 60 meters
```

```
The z- Transform of the function \sum_{k=0}^{\infty} \delta(n-k) is

Alt1 \frac{z}{(z-1)2}

Alt2 \frac{z}{(z-1)}

Alt3 \frac{z}{(z-1)2/z}
```

Alt4 (z-1)/z 71 For an air dielectric two-wire line, the minimum characteristic impedance value is:- Alt1 90 Ω Alt2 88 Ω Alt3 85 Ω Alt4 95 Ω 72 To couple a coaxial line to a parallel wire line it is best to use:- Alt1 λ/4 transformer	
71 For an air dielectric two-wire line, the minimum characteristic impedance value is:- Alt1 90 Ω Alt2 88 Ω Alt3 85 Ω Alt4 95 Ω 72 To couple a coaxial line to a parallel wire line it is best to use:- Alt1 $\lambda/4$ transformer	
71 For an air dielectric two-wire line, the minimum characteristic impedance value is:- Alt1 90 Ω Alt2 88 Ω Alt3 85 Ω Alt4 95 Ω 72 To couple a coaxial line to a parallel wire line it is best to use:- Alt1 $\lambda/4$ transformer	
Alt1 90 Ω Alt2 88 Ω Alt3 85 Ω Alt4 95 Ω 72 To couple a coaxial line to a parallel wire line it is best to use:- Alt1 $\lambda/4$ transformer	
Alt2 $88~\Omega$ Alt3 $85~\Omega$ Alt4 $95~\Omega$ 72 To couple a coaxial line to a parallel wire line it is best to use:- Alt1 $\lambda/4$ transformer	
Alt3 85Ω Alt4 95Ω 72 To couple a coaxial line to a parallel wire line it is best to use:- Alt1 $\lambda/4$ transformer	
Alt4 95 Ω 72 To couple a coaxial line to a parallel wire line it is best to use:- Alt1 λ/4 transformer	
72 To couple a coaxial line to a parallel wire line it is best to use:- Alt1 $\lambda/4$ transformer	
Alt1 λ/4 transformer	
Alt1 λ/4 transformer	
Alta I Directional Counter	
Alt2 Directional Coupler	
Alt3 Balun	
Alt4 Slotted line	
V_i R_2 V_o	
Alt1 – (R2+ R3)/R1	
Alt2 – R3/R1	
Alt3 – R2/R1	

74	A 4 bit modulo-16 ripple counter uses JK flip-flops. If the propagation delay of each FF is 50 ns, the maximum
	clock frequency that can be used is equal to:
Alt1	10 MHz
Alt2	4 MHz
Alt3	5 MHz
Alt4	20 MHz

75	The state-variable description of a linear autonomous system is $\dot{\bar{X}} = A\bar{X}$, where \bar{X} is a two-dimensional state vector and A is a matrix given by $\begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$. The poles of the system are located at:-
Alt1	3j and -3j
Alt2	-2j and 2j

Alt3	-2 and +2
Alt4	+3 and -3
	What is the loss of the circuit in dB if the power ratio of output to input is 0.01.
Alt1	
Alt2	
Alt3 Alt4	
AIL4	-40
77	In an AM wave, the total power content is 600 W and that of each sideband is 75 W. The modulation index is:
Alt1	0.403
Alt2	0.607
Alt3	0.535
Alt4	0.816
78	A series circuit consist of R = 20 Ω , L= 20 mH and AC supply of 60 V with f = 100 Hz. The voltage drop across R
Alt1	50.8
Alt2	
Alt3	
Alt4	30.6
70	
	How many non-overlapping channels are available with 802.11h standard?
Alt1	
Alt2 Alt3	
Alt4	
AILT	
80	To solve $x3 + x - 1 = 0$ by Iteration method, the equation is written as $x = \Phi(x)$ where $\Phi(x) = ?$
	(1-x)1/3
Alt2	$\frac{1}{1+x^2}$
Alt3	1 – x3
Alt4	0
81	The residue of equation shown below is:-
	$\frac{e^{Z}-1}{4} \text{ at } Z=0$

Alt1 1/2

ſ	Alt2	1/6
	Alt3	1/4
ĺ	Alt4	0

82	Find the phase velocity of dielectric medium with refractive index 2.2.
Alt1	2.12*108
Alt2	3*108
Alt3	1.21*108
Alt4	2*108

Alt1 0.25Ω	
Alt2 0.002 Ω	
Alt3 0.01Ω	

84	The Power Spectral Density of a WSS process with autocorrelation function
	$R_{\chi}(\tau) = 4 e^{-2 \tau }$ is given by:-
	A: $\frac{4}{\omega^2 + 16}$
	B: $\frac{16}{\omega^2 + 16}$
	C: $\frac{4}{\omega^2 + 4}$
	D: $\frac{16}{\omega^2 + 4}$
Alt1 A	
Alt2 B	
Alt3 C	

A I + 4	D
Alt4	U
Q.5	Hilbert Transform of sinw1t + cosw2t is:-
	sinw1t- cosw2t
	-cosw1t + sinw2t
	cosw1t - sinw2t
	sinw1t + sinw2t
7 (10 1	520
86	A quarter wave transformer matches a 100 ohm load to a transmission line with L=1.35 H/m and C=60 pFm.
	The characteristic impedance of matching transformer is:-
Alt1	300 Ω
Alt2	150 Ω
Alt3	275 Ω
Alt4	122.5 Ω
87	In a flag register of 8086, which bit number is used for overflow flag and zero flag:
Alt1	11 and 0
Alt2	10 and 9
Alt3	11 and 6
Alt4	9 and 0
Alt1	signal power (dB) and power at the output of an amplifier which has a gain of LdB=15dB
Alt2	
Alt3	
Alt4	
7 11 0-1	
89	The Fourier series expansion of a real periodic signal with fundamental frequence f_0 is given by $g_{p(t)=\sum_{n=-\infty}c_ne^{j2\pi f_0t}}$ is given that $c_3=3+j5$. Then c_{-3} is:-
Alt1	3 - j5
Alt2	
Alt3	-5
Alt4	5 + j3
90	Two cards are drawn at random from a standard deck of 52 cards, without replacement. What is the probabilit
	of drawing a 7 and a king in that order?
Alt1	4/1/1951

Alt2 4/663

Alt3	4/1/1952
Alt4	4/256

91	In order to radiate 100W from a circular loop of circumference equal to 0.1λ,the current required will be:-
Alt1	100 A
Alt2	200 A
Alt3	400 A
Alt4	0.416666667

A: $ a e^{-j\omega t_0}$ B: $\frac{1}{ a e^{-j\omega t_0}}$ C: $e^{-j\omega t_0}$ D: $\delta\left(\omega-\omega_0\right)e^{-j\omega t_0}$	92	The Fourier transform of $\delta\left[\frac{[t-t_0]}{a}\right]$ is
		B: $\frac{1}{ a e^{-j\omega t_0}}$ C: $e^{-j\omega t_0}$
AILZ B	-	
Alt3 C Alt4 D	Alt3	

93	Convolution of e-2tu(t - 2) with δ (t + 2) is:-
Alt1	$e^{-2t}u(t)$
Alt2	$e^{-2t} u(t+2)$
Alt3	$e^{-2(t+2)} u(t)$
Alt4	$e^{-2(t+2)}u(t+2)$

94	The resolution of a 4-bit counting ADC is 0.5 volts. For an analog input of 6.6 volts, the digital output of the ADC
	will be:-
Alt1	1011

Alt2	1101
Alt3	1100
Alt4	1110

A BPSK scheme operating over an AWGN channel with noise power spectral density of $N_0/2$, uses equiprobable signals $S_1(t) = \sqrt{\frac{2E}{T}} \sin(w_c(t))$ and $S_2(t) =$ $-\sqrt{\frac{2E}{T}}\sin(w_c(t))$ over the symbol interval (0,T). If the local oscillator in a coherent receiver is ahead in phase by 45° with respect to the received signal, the probability of error in the resulting system is:-

A:
$$Q\left(\sqrt{\frac{4E}{N_o}}\right)$$

B:
$$Q\left(\sqrt{\frac{E}{2N_o}}\right)$$

C:
$$Q\left(\sqrt{\frac{2E}{N_0}}\right)$$

D:
$$Q\left(\sqrt{\frac{E}{N_0}}\right)$$

Alt1 Alt2

Alt3

Alt4

96

The initial and final values of $X(z) = \left[2z\left(z-\frac{5}{12}\right)\right]/\left[\left(z-\frac{1}{2}\right)\left(z-\frac{1}{3}\right)\right]$; $|z| > \frac{1}{2}$ is respectively:-

Alt1	2 &	C

Alt2 1 & 0

Alt3 0 & 1

Alt4 0 & 2

Alt1 60 km

	Alt2	120 km
	Alt3	76 km
Ī	Alt4	225 km

	An analog signal is band-limited to 4 kHz .Sampled at the Nyquist rate and the samples are quantized into 4 levels. The quantized levels are assumed to be independent and equally probable.
Alt1	1 bit/sec
Alt2	3 bits/sec
Alt3	4 bits/sec
Alt4	2 bits/sec

is:-	
Alt1 0	
Alt2 1	
Alt3	
1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

100	200	rries a uniform current of 30 $\overrightarrow{a_Z}$ mA/m. At (1, 10, -2), the magnetic is:-
	A:	477.5 a _y μA/m
	B:	$15 a_Z \text{mA/m}$
	C:	$-15 a_Z \text{mA/m}$
	D:	18.85 a_y nA/m
Alt1	A	
Alt2	В	
Alt3	С	

Alt4 D

Examination: M.Tech. Electronics and Communication Engineering

Section 1 - Section 1

Question No.1 4.00
Bookmark □

The correct transfer characteristics is

O

0

0

Question No.2 4.00

Two coils have self inductances of 0.09H and 0.01H and a mutual inductance of 0.015H. The coefficient of coupling between the coils is

C 0.05

0 1

0.5

0.06

Question No.3 4.00

Bookmark [

A man makes 150 pots per minute. If 30 pots are packed in a case how many cases will be made ready by the Man in one hour?

C 250

C 300

C 1000

C 200

Question No.4 4.00

Bookmark |

A parallel plate air-filled capacitor has plate area of 10^{-4} m² and plate separation of 10^{-3} m. It is connected to a 0.5 V, 3.6 GHz source. The magnitude of the displacement current is $(\varepsilon_0 = 1/36\pi \times 10^{-9} F/m)$

Bookmark [

- C 10 mA
- C 1.59 mA
- C 100 mA
- O 10 A

Question No.5 4.00

How many registers can be utilized to write the programs by an effective selection of register bank in program status word (PSW)?

- 0 16
- O 64
- 0 32
- C 8

Question No.6

4.00

Bookmark □

The dependent current source shown in figure:

- C Absorbs 40 W
- C Delivers 80 W
- ∩ Delivers 40 W

C Absorbs 80 W

Question No.7 4.00 Bookmark □

A four variable Karnaugh map has

- C 32 min terms
- C 16 min terms
- C 24 min terms
- C 8 min terms

Question No.8

Bookmark □

General solution of the differential equation $(D^2 - m^2)y = 0$ is

$$C \quad y = (C_1 + C_2 x)e^{nx}$$

$$O y = C_1 \cosh x$$

$$+C_2x\sinh x$$

$$C \quad y = C_1 \sin x \\ + C_2 \cos x$$

$$C \quad y = C_1 \cosh x + C_2 \sinh x$$

Question No.9 4.00

Bookmark [

The TTL circuit shown in the figure is fed with the waveform X (also shown). All gates have equal propagation delay of 10 ns. The output Y of the circuit is

○ Bees : Apiculture		
○ Fish : Pisiculture		
C Silkworm: Serculture		
C Birds : Horticulture		

Question No.13 4.00

Bookmark |

Twelve 1Ω resistances are used as edges to form a cube. The resistance between two diagonally opposite corners of the cube is

° 1Ω

 $\frac{3}{2}\Omega$

 $\frac{5}{6}\Omega$

 $\frac{6}{5}\Omega$

Question No.14 4.00

Bookmark 🖂

The incoming solar radiation at a place on the surface of the earth is 1.2 KW/m². The amplitude of the electric field corresponding to this incident power is nearly equal to

C 2.5 V/m

C 950 V/m

© 80 mV/m

O 30 V /m

Question No.15

4.00

Bookmark |

The voltage gain Av of the circuit shown below is

- $^{\circ} |A_{V}| = 20$
- $^{\circ}$ $|A_{V}| = 10$
- $|A_{\rm V}| = 100$
- $^{\circ}$ $|A_{\rm V}| = 200$

Question No.16

4.00

Bookmark \square

In the given circuit, the equivalent impedance seen across terminals a, b is:

- C 8/3+12j
- © 8/3-12j
- C 16/3
- 0 8/3

Question No.17

4.00

Bookmark [

Statement: The Company has recently announced a series of incentives to the employees who are punctual and sincere. **Assumptions:**

I.Those who are punctual will get motivated.

II. The Productivity of the company may increase.

- O If neither I nor II is implicit
- C If only assumption I is implicit
- C If only assumption II is implicit
- If both I and II are implicit

Question No.18

Bookmark

Exhausted: Tired

Arrogant: Docile

Progressive: RegressiveConsiderate: RudeDepressed: Sad

Question No.19

4.00

Bookmark |

In an experiment, a coin is tossed 4 times. What is the size of the sample space?

- O 16
- 0 12
- 0 14
- O 20

Question No.20

4.00

Bookmark

ROC for the signal $x[n] = -(0.5)^n u(n-1)$ is

$$|z| > -0.5$$

|z| > 0.5

 $^{\circ}$ |z| < 1

 $^{\circ}$ |z| < 0.5

Question No.21

4.00

Bookmark \square

The upper 128 bytes of an internal data memory from 80H through FFH usually represent _____

- stack pointers
- o program counters
- Special function registers
- o general-purpose registers

Question No.22

4.00

Bookmark [

In the circuit shown, what value of RL maximizes the power delivered to RL (in

OHHIS)!

C 6

C 8/3

C 2.4

0 4

Question No.23 4.00

Bookmark 🗆

A 8kHz communication channel has an SNR of 30dB. If the channel bandwidth is doubled, keeping the signal power constant, the SNR for the modified channel will be (in dB)

O 27

C 60

O 33

O 30

Question No.24 4.00

Bookmark [

Study the following information carefully and answer the question below it:

P, Q, R, S T went on a picnic. P is son of Q but Q is not the father of P. R is the son of S, who is the brother of P. T is the wife of S.

How is P related to S?

- C Brother
- Father
- Nephew
- None of these

Bookmark |

Question No.25

4.00

Which timer is attributed to the register pair of RCAP2H & RCAP2L for capture mode operation?

- C Timer 1
- C Timer 2
- C Timer 0
- C Timer 3

Question No.26

4.00

Bookmark

A two bit counter circuit is shown below

It the state QQ AB of the counter at the clock time t_n is '10' then the state QQ AB of the counter at $t_n + 3$ (after three clock cycles) will be

- C 00
- 0 01
- 0 10
- 0 11

Question No.27

4 00

Bookmark □

What will be output of the following program?

#include int main() {int a=2, b=7, c=10; c=a==b; printf("%d",c); return 0;}

- 0 0
- 0 10
- 0 7
- 02

Question No.28

4.00

Bookmark [

The system function H(z) for the difference equation

$$y[n] = -\frac{1}{2}y[n-1] + x[n]$$
 is

Admission	Aqlasen

	1 -	F Z	_
0			

$$0 \qquad \frac{1}{1+z^1}$$

$$\begin{array}{c} C & -\frac{1}{1+z^{-}} \end{array}$$

$$C = \frac{1}{1 - z^{-1}}$$

Question No.29

4.00 Bookmark □

Bookmark

Bookmark [

A channel has SNR of 63 and bandwidth of 1.2kHz. The maximum data rate that can be sent through the channel with arbitrary low probability of error is (ln bps)

- C 7200
- C 600
- C 1200
- C 4800

Question No.30 4.00

If the reflection co efficient of a 2 port network is 0.5 then the return loss in the network is:

- O 0.15 dB
- C 6.020 dB
- O 6.5 dB
- 10 dB

Question No.31 4.00

Bookmark ☐ Eigen vectors of a real symmetric matrix corresponding to different Eigen values are

- Non-orthogonal
- Non-singular
- Orthogonal
- Singular

Question No.32

4.00

Bookmark □

The Fourier Transform of a Gaussian time pulse is

- C Rayleigh
- C A pair of impulse
- C Uniform
- C Gaussian

Question No.33 4.00

When the bus was at full speed, its brakes failed and an accident was _____

- c essential
- o undeniable
- o inevitable

○ infallible **Question No.34** Bookmark | This pup is very naughty. It is always _____some mischief or the other. o in for out for O up at O up to **Question No.35** 4.00 Bookmark [The channel capacity under the Gaussian noise environment of a discrete memoryless channel with a bandwidth of 4MHz and SNR of 31 is O 4 Kbps C 8 Kbps C 20Mbps C 4 Mbps **Question No.36** 4.00 Bookmark | A source of angular frequency 1 rad/sec has source impedance consisting of 1Ω resistance in series with 1H inductance. The load that will obtain the maximum power transfer is C 1Ω resistance in parallel with 1 F capacitor $^{\circ}$ 1 Ω resistance in parallel with 1H inductance \cap 1 Ω resistance in series with 1 F capacitor 1 Ω resistance **Question No.37** 4.00 Bookmark [The range of values of a and b for which the linear time invariant system with impuse response $h(n) = \begin{cases} a^n, & n \ge \\ b^n n < 0 \end{cases}$ is stable |a| < 1, |b| > 1|a| < 1, |b| < 1|a| > 1, |b| > 1

|a| > 1, |b| < 1

Question No.38 4.00

Bookmark |

The following circuit has R=10 k Ω , C=10 μ F. The input voltage is a sinusoidal at 50 Hz with an rms value of 10 V. Under ideal conditions, the current Is from the source is

- C 10π mA lagging by 90%
- $^{\circ}$ 20 π mA leading by 90%
- $^{\circ}$ 10 π mA leading by 90%
- © 20π mA lagging by 90%

Question No.39 4.00

Bookmark |

For designing a multirate LPF with passband 0 to 50 Hz, stopband 60 to 280 Hz, stopband deviation 0.001, passband deviation 0.01 and sampling frequency (f_s) = 400 Hz, what would be the value of normalized transition width?

- O 1.50 Hz
- O 0.025 Hz
- C 1.25 Hz
- O 2.6 Hz

The maximum symmetrical output voltage swing from a common emitter circuit depends upon

- Input capacitor
- The Q point portion on dc load line
- The characteristics of CE
- Input signal

Question No.41 4.00

	Bookmark 🗆
The value of the integral of the function $g(x,y) = 4x^3 + 10 \ y^4$ along the straight line segment from the point $(0,0)$ to the point $(1,2)$ in the x-y plane is $\begin{array}{c} 0 \\ 40 \\ 0 \\ 33 \\ 0 \\ 35 \\ 0 \\ 56 \end{array}$	
Question No.42	4.00 Bookmark □
The computational procedure for Decimation in frequency algorithm takes C Log ₂ N ² stages C Log ₂ N Stages	DOOKMARK [
C Log ₂ N/2 stages C 2Log ₂ N stages	,
Question No.43	4.00
A video transmission system transmits 625 picture frames per second. Each frame consists of a 400x400 pixel grid intensity levels per pixel. The data rate of the system is (in Mbps) 600 16 100 6400	Bookmark ☐ with 64
Question No.44	4.00
The gain of a MOSFET amplifier reduces at high frequency due to Parasitic capacitor Oxide capacitor Bypass capacitor Coupling capacitor	Bookmark
Question No.45	4.00
If Road is coded as WTFI, what is the code for BEAT O HIGZ DEFG O GJFY O ABCD	Bookmark
Question No.46	4.00
The period of the function $\cos \frac{\pi}{4}(t-1)$ is 0.8 $0.1/4$ 0.4 $0.1/8$	Bookmark

Question No.47 4.00 Bookmark □
$\overline{A}\overline{B}\overline{C}\overline{D} + B\overline{C}D$ is equivalent to $+\overline{A}\overline{C} + A$
$C = \overline{A} + \overline{C}$
c \overline{c}
© 1 Question No.48 4.00
MOV A, @ R1 will:
Question No.49 4.00 Bookmark □
A 10MHz clock frequency is applied to a cascaded counter consisting of a MOD-5 Counter, a MOD-8 Counter and two MOD-10 counters. The lowest output frequency possible is © 2.5 kHz © 25 kHz © 10 kHz © 5 kHz
Question No.50 4.00 Bookmark
The order of error is the Simpson's rule for numerical integration with a step size, h is h^3 h^2 h^3
° h ⁴
Question No.51 4.00 Bookmark □
Evaluate
$\lim_{x\to\infty} \left[\frac{x-1}{x-2}\right]^x$
○ 1/4 ○ 1/2
O 1 O 1/3

4.00 Bookmark Question No.52

Why is the speed accessibility of external data memory slower than internal on-chip RAM?

- O Due to multiplexing of lower order byte of address-data bus
- O Due to multiplexing of higher order byte of address-data bus
- C Due to demultiplexing of higher order byte of address-data bus
- O Due to demultiplexing of lower order byte of address-data bus

Question No.53 4.00

Bookmark [

Given the z-transforms

$$X(z) = \frac{z(8z-7)}{4z^2-7z+3}$$
, Then its final value is

- 0
- Unbounded 0

Question No.54

Bookmark |

Residue of the function $\frac{1-e^{2z}}{z^4}$ at its poles is

Question No.55

Bookmark [

What will be the output of the program?

include int main() {int a[5]={5,1,15,20,25}; int [i, j, m; i=++a[1]; j=a[1]++;m=a[i++]; printf("%d, %d, %d", i,j,m); return0;}

- 3, 2, 15
- 1, 2, 5
- 0 2, 1, 15
- C 2, 3, 20

Question No.56 4.00

Bookmark |

The input to a matched filter is given by

$$S(t) = \begin{cases} 10sin(2\pi*10^{6}t & 0 < 1 < 10^{-4} \\ 0 & otherwise \end{cases}$$

The peak amplitude of the filter output is

- 10mV
- 10\/

rivalrysuspicioncompetitionfriendliness

Ω	stion	NIA	63

4.00

Bookmark |

An energy meter connected to an immersion heater (resistive) operating on an AC 230 V,50Hz, AC single phase source reads 2.3 units(kWh) in 1 hour. The heater is removed from the supply and now connected to a 400V peak to peak square wave source of 150Hz. The power in KW dissipated by the heater will be

- 0 1.739
- C 0.87
- C 1.54
- C 3.478

Question No.64 4.00

Bookmark

IC (instruction cycle), FC (fetch cycle) and EC (execution cycle) are related as

- OIC = FC EC
- C EC = IC + EC
- O IC = FC + 2EC
- O IC = FC + EC

Question No.65

Bookmark |

In the following question, the first two words (given in italics) have a definite relationship. Choose one word out of the given four alternatives which will fill the blank space and showthe same relationship with the third word as between the first two.

Hear is to Deafas as Speak is to?...

- Talkative
- O Dumb
- Silent
- Listen

Question No.66 4.00

Bookmark [

Correct the error in the italicized part of the sentence by choosing the most appropriate option.

Leaving aside little room for misinterpretation, the senior politician offered clarifications about his role in the party elections.

- C Leaving less room for
- Having left less room for
- C Leaving for little room to
- C Leaving little room for

Question No.67

Bookmark |

In the circuit shown, Vc is 0 volts at t = 0 sec. For t > 0, the capacitor current $i_c(t)$ where t is in seconds, is given by

- © 0.50 exp (-12.5 t) mA
- O 0.25 exp (-25 t) mA
- © 0.25 exp (-6.25 t) mA
- O 0.50 exp (-25 t) mA

Question No.68 4.00

Bookmark

People in the age group of 40 to 50 years are more likely to purchase ice cream and are more likely to purchase it in large amounts than are members of any other age group. The general perception that teenagers eat more ice cream than adults must, therefore, be incorrect.

The argument is hawed primarily because the author	
O depends on popular belief rather than on documented research findings	
O does not specify the precise amount of ice cream purchased by any demographic group	
O discusses ice cream rather than more nutritious and healthful foods	
○ fails to distinguish between purchasing and consuming	
Question No.69	4.00
	Bookmark □
Which register usually store the output generated by ALU in several arithmetic and logical operations?	
© Stack Pointer	
© Special Function Register © Accumulator	
© Timer Register	
C Time register	
Question No.70	4.00
	Bookmark □
The cascade amplifier is a multistage configuration of	
© CC-CB © CE-CC	
o CB-CC	
© CE-CB	
S GE-GB	
Question No.71	4.00
	Bookmark
Choose the synonym of the italicized word. Many cities were <i>incinerated</i> during the war.	
o bombed burnt	
C destroyed	
C attacked	
S diagnet	
Question No 72	4 00
Question No.72	4.00 Bookmark □
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band	Bookmark □
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre.	Bookmark □
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10	Bookmark □
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100	Bookmark □
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1	Bookmark □
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100	Bookmark □
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1	Bookmark □ , antenna
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are $S = \overline{A}\overline{B} + AB$,	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are $S = \overline{A}\overline{B} + AB$,	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Cuestion No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are $C = A + \overline{B}$	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. C 10 C 100 C 1 C 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are $C = A + B$ $C = A + B$	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are © $S = \overline{AB} + AB$, $C = A + \overline{B}$ © $S = AB + \overline{AB}$, $C = A + B$	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. C 10 C 100 C 1 C 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are $C = A + B$ $C = A + B$	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are $C = A + \overline{B}$ $C = A + \overline{B}$ $C = A + B$	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are $C = A + \overline{B}$ $C = A + \overline{B}$ $C = A + B$	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are $C = A + \overline{B}$ $C = A + \overline{B}$ $C = A + B$	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are $C = A + \overline{B}$ $C = A + \overline{B}$ $C = A + B$	Bookmark ☐ , antenna 4.00 Bookmark ☐
A 20 m antenna gives a certain uplink gain at frequencies of 4/6 GHz. For getting same gain in the 20/30 GHz band size required is metre. © 10 © 100 © 1 © 4 Question No.73 In a half adder having two inputs (A and B) and two outputs (Sum (S) and carry (C), the Boolean expression for S are of A and B are $C = A + \overline{B}$ $C = A + \overline{B}$ $C = A + B$	Bookmark ☐ , antenna 4.00 Bookmark ☐

Admis	sion	Aqlas	er

Question No.74 4.00

Bookmark

Two perfectly matched silicon transistor are connected as shown in the figure assuming the β of the transistors to be very high and the forward voltage drop in diodes to be 0.7 V, the value of current I is

- O 3.6 mA
- O 4.3 mA
- C 5.7 mA
- O mA

Question No.75 4.00

We're late again for the test, _____?

- are we?
- O is it?
- C aren't we?
- isn't it?

Question No.76 4.00

Bookmark

Bookmark

A 3V DC supply with an internal resistance of 2 Ω supplies a passive non linear resistance characterized by the relation $V_{N\!L} = {I_{N\!L}}^2$ The power dissipated in the non linear resistance is

- O 3.0W
- O 1.0W
- C 1.5W
- C 2.5W

4.00

Question No.77

Bookmark [

Two small diameter 5g dielectric balls can slide freely on a vertical non conducting thread. Each ball carries a negative charge of $2\mu C$. If the lower ball is restrained from moving, then separation between the two balls will be

- C 8.57mm
- C 85.7mm
- C 857mm
- C 8570mm

Question No.78

4.00

Bookmark [

Statement: Warning: Cigarette smoking is injurious to Health

Assumptions:

I. Non-Smoking Promotes Health

II. This warning is not necessary

- f only assumption I is implicit
- O If only assumption II is implicit
- Of both I and II are implicit
- Of fineither I nor II is implicit

Question No.79

Bookmark [

The bit rate of a digital communication system is 34Mbps. The modulation scheme is QPSK. The baud rate is (in Mbps)

- 0 17
- 0 8.5
- C 68
- 0 34

Question No.80 4.00

Bookmark □

- In a broadcast superheterodyne receiver
 - C the local oscillator operates above the signal frequency
 - O local oscillator frequency is normally double the IF
 - C the local oscillator operates below the signal frequency
 - C RF amplifier normally works at kHz above the carrier frequency

Question No.81 4.00

Bookmark \square

The Laplace transform of the square wave $x(t) = \begin{cases} 1 & for \ 0 < t < T \\ -1 & for \ T < t < 2T \end{cases}$ Is

$$\frac{1}{S}(1-e^{-sT})^2$$

$$C \frac{1}{S}(1+e^{-sT})^2$$

$$\frac{1}{S^2}(1-e^{-sT})^2$$

$$(1 - e^{-sT})$$

Question No.82 4.00

Bookmark [

Question No.88

Bookmark |

What will be the output of the following program?

main() { int i=5; printf("%d", i=++i==6); }

- 0 7
- 0 1
- 0
- 0 6

Question No.89

4.00

Bookmark [

The Z-transform of the signal $x(n) = na^n u(n)$ is

$$\begin{array}{c}
 az^{-1} \\
 \hline
 (1-az^{-1})
\end{array}$$

C
$$z^{-1}$$
 $(1-az^{-1})^2$

$$C \frac{az^{-1}}{(1-az^{-})^3}$$

$$\begin{array}{c}
 az^{-1} \\
 \hline
 (1 - az^{-1})^2
\end{array}$$

Question No.90

Bookmark [

Select the Pair that best respresents the relationship that is given in the question: Slapstick:Laughter

- C Satire: Sarcasm
- C Horror:Fear
- Mimicry:Laughter
- Clown: Comical

Question No.91 4.00

Bookmark \square

Let $x(t) = \sin^3(27 \pi t)$, the fundamental period of x(t) is

- 0 1/27
- 0 2/81
- 0 2/27
- 0 1/54

Question No.92 4.00

Bookmark |

A Series RLC circuit has a resonance frequency of 1kHz and a quality factor Q=100. If each of R,L and C is doubled from its original value, the new Q of the circuit is

- C 25
- O 100
- C 200

Question No.93	4.00
Question No.33	4.00

Bookmark |

Determine the order of a type I Low pass Chebyshev filter that has a 1 dB ripple in the passband, a cutoff frequency $\Omega_p = 1000\pi$, a stopband frequency of 2000π , and an attenuation of 40 dB.

- 02
- 05
- O 3
- 04

Question No.94 4.00

Bookmark [

Study the following information carefully and answer the question below it

The Director of an MBA college has decided that six guest lectures on the topics of Motivation, Decision Making, Quality Circle, Assessment Centre, Leadership and Group Discussion are to be organised on each day from Monday to Sunday.

- (i) One day there will be no lecture (Saturday is not that day), just before that day Group Discussion will be organised.
- (ii) Motivation should be organised immediately after Assessment Centre.
- (iii) Quality Circle should be organised on Wednesday and should not be followed by Group Discussion
- (iv) Decision Making should be organised on Friday and there should be a gap of two days between Leadership and Group Discussion

On which day the lecture on Leadership will be organised?

- Saturday
- Thursday
- Tuesday
- Monday

Question No.95 4.00

Bookmark

For the circuit shown in the figure, the $\underline{\text{Thevenin}}$ voltage and resistance looking into X-Y are

Admi	ssion	Aglasen
1101111	~~	113 10000

_	177	2/20	
	4 V	// 11)	

O 4/3 V, 2/3Ω

 $^{\circ}$ 4/3 V, 2 Ω

 \circ 4 V, 2Ω

Question No.96

4.00

Bookmark |

In Barlett window, the triangular function resembles the tapering of rectangular window sequence _____ from the middle to the ends.

- elliptically
- hyperbolically
- linearly
- parabolically

Question No.97

4.00

Bookmark

Determine the final value of x(t), if its Laplace transform is given by

$$X(s) = \frac{2s^2 + 3}{s^2 + 5s + 1}$$

0 1/5

 \circ 3

0 2

0

Question No.98

4.00

Bookmark |

The Nyquist sampling frequency (in Hz) of a signal given by $6 \times 10^4 \sin^2(400t) * 10^6 \sin^3(100t)$ is

O 1000

€ 200

C 1500

O 300

Question No.99

4.00

Bookmark [

The system of linear equations

$$(4d-1)x + y + z = 0$$

$$-y + z = 0$$

$$(4d-1)z=0$$

has a non-trivial solution, if d equals

- 0 1
- 0 2
- 0
- 0 3

Question No.100

4.00

Bookmark [

An electrostatic is said to be conservative when

- The curl of the field is equal to zero
 - ^C The curl of the field is equal to $-\partial B/\partial t$
 - $^{\circ}$ The Laplacian of the field is equal to $\mu\varepsilon$ ∂^2 E/ ∂t^2
 - The divergence of the field is equal to zero