Stanford CS224W: Message Passing and Node Classification

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Today's Lecture: Outline

- Main question today: Given a network with labels on some nodes, how do we assign labels to all other nodes in the network?
- Example: In a network, some nodes are fraudsters, and some other nodes are fully trusted. How do you find the other fraudsters and trustworthy nodes?
- We already discussed node embeddings as a method to solve this in Lecture 3

Example: Node Classification

- Given labels of some nodes
- Let's predict labels of unlabeled nodes
- This is called semi-supervised node classification

Today's Lecture: Outline

- Main question today: Given a network with labels on some nodes, how do we assign labels to all other nodes in the network?
- Today we will discuss an alternative framework:
 Message passing
- Intuition: Correlations (dependencies) exist in networks.
 - In other words: Similar nodes are connected.
 - Key concept is collective classification: Idea of assigning labels to all nodes in a network together.
- We will look at three techniques today:
 - Relational classification
 - Iterative classification
 - Correct & Smooth

Correlations Exist in Networks

- Behaviors of nodes are correlated across the links of the network
- Correlation: Nearby nodes have the same color (belonging to the same class)

Correlations Exist in Networks

Two explanations for why behaviors of nodes in networks are correlated:

Social Homophily

- Homophily: The tendency of individuals to associate and bond with similar others
 - "Birds of a feather flock together"
 - It has been observed in a vast array of network studies, based on a variety of attributes (e.g., age, gender, organizational role, etc.)
 - Example: Researchers who focus on the same research area are more likely to establish a connection (meeting at conferences, interacting in academic talks, etc.)

Homophily

Homophily: Example

Example of homophily

- Online social network
 - Nodes = people
 - Edges = friendship
 - Node color = interests (sports, arts, etc.)
- People with the same interest are more closely connected due to homophily

(Easley and Kleinberg, 2010)

Social Influence: Example

- Influence: Social connections can influence the individual characteristics of a person.
 - Example: I recommend my musical preferences to my friends, until one of them grows to like my same favorite genres!

Influence

Stanford CS224W: How do we leverage node correlations in networks?

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

Classification with Network Data

How do we leverage this correlation observed in networks to help predict node labels?

How do we predict the labels for the nodes in grey?

Motivation (1)

- Similar nodes are typically close together or directly connected in the network:
 - Guilt-by-association: If I am connected to a node with label X, then I am likely to have label X as well.
 - Example: Malicious/benign web page: Malicious web pages link to one another to increase visibility, look credible, and rank higher in search engines

Motivation (2)

- Classification label of a node v in network may depend on:
 - Features of v
 - Labels of the nodes in v's neighborhood
 - lacktriangle Features of the nodes in v's neighborhood

Semi-supervised Learning (1)

Formal setting:

Given:

- Graph
- Few labeled nodes

Find: Class (red/green) of remaining nodes

Main assumption: There is homophily in the network

Semi-supervised Learning (2)

Example task:

- Let A be a $n \times n$ adjacency matrix over n nodes
- Let $Y = \{0, 1\}^n$ be a vector of labels:
 - $Y_v = 1$ belongs to Class 1
 - $Y_v = 0$ belongs to Class 0
 - There are unlabeled node needs to be classified
- Goal: Predict which unlabeled nodes are likely
 Class 1, and which are likely Class 0

Problem Setting

- How to predict the labels Y_v for the unlabeled nodes v (in grey color)?
- Each node v has a feature vector f_v
- Labels for some nodes are given (1 for green, 0 for red)
- **Task:** Find $P(Y_v)$ given all features and the network $P(Y_v) = ?$

Example applications:

Many applications under this setting:

- Document classification
- Part of speech tagging
- Link prediction
- Optical character recognition
- Image/3D data segmentation
- Entity resolution in sensor networks
- Spam and fraud detection

Overview of What is Coming

- We focus on semi-supervised binary node classification
- We will introduce three approaches:
 - Relational classification
 - Iterative classification
 - Correct & Smooth

Stanford CS224W: Relational Classification

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Probabilistic Relational Classifier (1)

- Idea: Propagate node labels across the network
 - Class probability Y_v of node v is a weighted average of class probabilities of its neighbors.
- For **labeled nodes** v, initialize label Y_v with ground-truth label Y_v^* .
- For unlabeled nodes, initialize $Y_v = 0.5$.
- Update all nodes in a random order until convergence or until maximum number of iterations is reached.

Stanford CS224W: Iterative Classification

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Iterative Classification

- Relational classifier does not use node attributes.
- How can one leverage them?
- Main idea of iterative classification: Classify node v based on its attributes f_v as well as labels z_v of neighbor set N_v .

Summary

- We talked about 2 approaches to collective classification
- Relational classification
 - Iteratively update probabilities of node belonging to a label class based on its neighbors
- Iterative classification
 - Improve over collective classification to handle attribute/feature information
 - Classify node v based on its features as well as labels of neighbors

Stanford CS224W: Collective Classification: Correct & Smooth

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Correct & Smooth

 Setting: A partially labeled graph and features over nodes.

- C&S follows the three-step procedure:
 - Train base predictor
 - 2. Use the base predictor to predict soft labels of all nodes.
 - Post-process the predictions using graph structure to obtain the final predictions of all nodes.

Correct & Smooth: Summary

- Correct & Smooth (C&S) uses graph structure to post-process the soft node labels predicted by any base model.
- Correction step: Diffuse and correct for the training errors of the base predictor.
- Smooth step: Smoothen the prediction of the base predictor.
- C&S achieves strong performance on semisupervised node classification.

Summary

- We learned how to leverage correlation in graphs to make prediction on nodes.
- Key techniques:
 - Relational classification
 - Iterative classification
 - Correct & Smooth