ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Отчёт по лабораторной работы 3.6.1 Спектральный анализ электрических сигналов

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Изучить спектральный состав периодических электрических сигналов.

В работе используются:

Генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье.

Теоретические сведения:

Разложение сложных сигналов на периодические колебания

Используется разложение в сумму синусов и косинусов с различными аргументами или, как чаще его называют, разложение в ряд Фурье.

Пусть задана функция f(t), которая периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T — период повторения импульсов. Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$

$$\tag{1}$$

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n).$$
(2)

Если сигнал чётен относительно t=0, в тригонометрической записи остаются только члены с косинусами. Для нечетной наоборот.

Коэффициенты определяются по формуле

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$
(3)

Здесь t_1 — время, с которого мы начинаем отсчет.

Сравнив формулы (1) и (2) можно получить выражения для A_n и ψ_n :

$$A_n = \sqrt{a_n^2 + b_n^2},$$

$$\psi_n = \arctan \frac{b_n}{a_n}.$$
(4)

Рис. 1: Изображение прямоугольных импульсов и их спектров.

Введем величину: $\Omega_1=\frac{2\pi}{T}$, где T — период повторения импульсов. Коэффициенты при косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}.$$
 (5)

Здесь V_0 - амплитуда сигнала.

Поскольку наша функция четная, то $b_n = 0$.

Пусть T кратно τ . Тогда введем ширину спектра, равную $\Delta \omega$ — расстояние от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедиться при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi \Rightarrow \Delta\nu\Delta t \simeq 1. \tag{6}$$

Периодическая последовательность цугов

Рис. 2: Изображение цугов и их спектра

Возьмём цуги колебания $V_0\cos(\omega_0t)$ с длительностью цуга τ и периодом повторений T. Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике

согласно формуле (3) равен

$$a_{n} = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_{0} \cos(\omega_{0}t) \cdot \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin\left[\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}} + \frac{\sin\left[\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}} \right). \tag{7}$$

Пусть T кратно τ . Тогда спектры последовательности прямоугильных сигналов и цугов аналогичны, но максимумы сдвинуты на ω_0 .

Амплитудно-модулированные колебания

Рис. 3: Изображение АМ колебаний и их спектра.

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$.

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t. \tag{8}$$

Коэффициент m называется глубиной модуляции. При m < 1 амплитуда меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}. (9)$$

Простым тригонометрическим преобразованием уравнения (8) можно найти спектр колебаний

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t.$$
 (10)

Ход работы и обработка результатов.

Исследование спектра периодической последовательности прямоугольных импульсов

1. Проведем серию измерений ширины спектра $\Delta \nu$ от времени импульса τ при фиксированной частоте $\nu_{\text{повт}} = 1$ к Γ ц. Полученные данные занесем в таблицу и построим график зависимости $\Delta \nu (1/\tau)$

$\Delta \nu$, к Γ ц	49,9	25,0	16,6	12,5	9,9	8,5	7
τ , MKC	20	40	60	80	100	120	140

Таблица 1: Зависимость ширины спектра от времени импульса.

Рис. 4: График зависимости $\Delta \nu (1/\tau)$.

Рис. 5: $\nu_{\text{повт}} = 0, 5 \text{ к} \Gamma \text{ц}, \ \tau = 50 \text{с}$

Рис. 6: $\nu_{\text{повт}}=1$ к Γ ц, $\tau=50$ с

Рис. 7: $\nu_{\text{повт}} = 1,5$ к Γ ц, $\tau = 50$ с

Рис. 8: $\nu_{\text{повт}}=1$ к Γ ц, $\tau=75\mathrm{c}$

Рис. 9: $\nu_{\text{повт}} = 1 \ \text{к}\Gamma \text{ц}, \, \tau = 100 \text{с}$

Исследование спектра периодической последовательности цугов

2. При фиксированных параметрах $\nu=50$ к Γ ц и N = 5 измерим зависимость расстояния $\delta\nu$ между соседними спектральными компонентами сигнала от периода T повторения импульсов. Полученные данные занесем в таблицу и построим график зависимости $\delta\nu(1/T)$

δu , к Γ ц	1,20	0,90	0,76	0,60	0,56	0,52	0,40	0,32	0,30	0,24	0,22	0,2
T, MC	1	1,2	1,4	1,6	1,8	2,0	2,5	3,0	3,5	4,0	4,5	5,0

Таблица 2: Зависимость расстояния между соседними спектральными компонентами сигнала от периода повторения импульсов.

Рис. 10: График зависимости $\delta\nu(1/T)$

Обсуждение результатов и выводы:

В данной работе мы изучили спектры периодической последовательности прямоугольных импульсов и периодической последовательности цугов. Для каждого спектра определили зависимость ширины $\delta \nu$ спектра от времени τ , построили графики зависимость $\delta \nu(1/\tau)$ и подтвердили таким образом соотношение неопределенности $\delta \nu \cdot \tau = 1$