CLAIMS

1	1. A method for controlling the voltage on a lens of an electron emitting device,					
2	the method comprising the steps of:					
3	supplying an emitter voltage to an electron emitter in the electron					
4	emitting device, wherein a current amplitude is established;					
5	sensing the emitter voltage on the electron emitter;					
6	supplying a non-inverted input voltage to an amplifier that follows the					
7	emitter voltage; and					
8	providing an amplifier output voltage from the amplifier to the lens,					
9	wherein the amplifier output voltage corresponds to the emitter voltage at the					
10	electron emitter.					
1	2. The method of claim 1, further comprising the step of:					
2	driving other lenses in the emitting device based on the amplifier					
3	output voltage supplied by the amplifier.					
1	3. The method of claim 1, further comprising the step of:					
2	adjusting the amplifier output voltage so that the lens optimizes the					
3	focal point of a beam emitted from the electron emitter.					
1	4. The method of claim 3, wherein the amplifier output voltage is adjusted by					
2	varying the gain of the amplifier.					

- 1 5. The method of claim 4, wherein the gain is varied by a variable resistor
- 2 coupled to the amplifier.
- 1 6. The method of claim 1, wherein said sensing step is performed by a sensing
- 2 diode.
- 1 7. The method of claim 1, wherein said sensing step is performed by an
- 2 electronic switch.
- 1 8. The method of claim 1, wherein said sensing step is performed by one or more
- 2 high-breakdown voltage MOS transistors.
- 1 9. The method of claim 1, wherein said amplifier is a non-inverting summer
- 2 circuit that sums the emitter voltage and a desired lens voltage.

1	10.	A storage device comprising:
2		an electron emitter;
3		a lens to adjust the focal point of a beam emitted from the electron
4		emitter;
5		a sensing switch coupled to the electron emitter to sense voltage on the
6		electron emitter;
7		an amplifier coupled to the sensing switch that follows the voltage on
8		the electron emitter, wherein the sensing switch is coupled to an input of the
9		amplifier and the output of the amplifier is coupled to the lens; and
10		wherein the output of the amplifier drives the voltage on the lens.
1	11.	The storage device of claim 10, further comprising:
2		a variable resistor coupled to an input of the amplifier, wherein the
3		gain of the amplifier is adjusted according to the variable resistor.
1	12.	The storage device of claim 10, wherein the sensing switch is a sensing diode.
1	13.	The storage device of claim 12, further comprising:
2		a plurality of additional sensing diodes coupled to the input of the
3		amplifier and other electron emitters.

1		14.	The storage device of claim 12, further comprising:
2			a compensating diode coupled to the sensing diode and the amplifier,
3		where	ein the compensating diode compensates for a voltage drop across the
4		sensir	ng diode; and
5			a bias resistor coupled to the amplifier side of the compensating diode
6		and g	round.
1	15.	The s	torage device of claim 10, further comprising:
2			an emitter current control switch; and
3			a current control circuit coupled to the sensing switch, emitter current
4		contr	ol switch, and the variable resistor, wherein the current control circuit
5		estab	lishes the current amplitude supplied to the electron emitter.
1	16.	An el	ectron emitting storage device, comprising:
2			emitter means for emitting electrons toward a storage medium;
3			lens means for focusing emitted electrons from the emitter means into
4		an op	otimized focal point on the storage medium;
5			means for sensing voltage applied to the emitter means;
6			amplifier means for providing an output voltage to the lens means that
7		is rel	ative to the voltage applied to the emitter means; and
8			means for adjusting input voltage to the amplifier means so that the
9		outpi	ut voltage to the lens means changes.

1	17.	The electron emitting storage device of claim 16, further comprising:				
2		means for controlling the current in the emitter means; and				
3		switching means for activating the emitter means.				
1	18.	The electron emitting storage device of claim 16, wherein the amplifier means				
2	is in a non-inverting configuration.					
		·				
1	19.	A method for controlling the voltage on a lens of an electron emitting device,				
2	the m	ethod comprising the steps of:				
3		supplying an emitter voltage to an electron emitter in the electron				
4		emitting device;				
5		sensing the emitter voltage on the electron emitter;				
6		summing the sensed emitter voltage and a desired lens voltage; and				
7		providing a voltage output that is the sum of the emitter voltage and the				
8		desired lens voltage to the lens of the electron emitting device.				
1	20.	The method of claim 19, further comprising the step of:				

- 2 driving other lenses in the emitting device based on the provided
- 3 voltage output.