TLUs

Xiang Zhuoya

zxiang@cs.ust.hk

February 17, 2015

TLUs

 A type of circuits of particular interest in AI is threshold logic unit (TLU), also called perceptron:

Linearly Separable

Definition: Linearly Separable

Given 2 point sets (classes) A and B, if there exists a hyperplane H that can separate A and B, then A,B are linearly separable.

In n-dimension space, a **hyperplane** H is defined by a linear function $a_1x_1 + a_2x_2 + \ldots + a_nx_n + a_0 = 0$, where at least one of a_i $(i = 1, 2, \ldots, n)$ is non-zero.

Relation between TLU and LS

• A function can be represented by a single TLU iff the function is Linearly Separable (two sets of points *A* and *B* are divided by function values, 0 or 1)

Question

How to prove the statement above?

- TLU \Rightarrow LS
- LS \Rightarrow TLU

Proof

$TLU \Rightarrow LS$

If a n-parameter function f can be represented by a TLU T_0 :

- weight vector: $W = \langle w_1, w_2, \dots, w_n \rangle$
- threshold: θ .

By the definition of TLU, for any sensory vector

$$v = \langle v_1, v_2, \dots, v_n \rangle$$
:

- if the value f(v) = 1, then $\sum_{i=1}^{n} v_i w_i \ge \theta$;
- if the value f(v) = 0 then $\sum_{i=1}^{n} v_i w_i < \theta$.

Thus, we can get a hyperplane $H: w_1x_1 + w_2x_2 + ... + w_nx_n - \theta = 0$. H separates the sets of points into two sets according to the function value.

Proof Cont'd

$LS \Rightarrow TLU$

If a n-parameter function f can be divided into two sets of points by a hyperplane H, according to the function values:

•
$$H: a_1x_1 + a_2x_2 + \ldots + a_nx_n + a_0 = 0$$

There are two possibilities:

- P1
 - for all sensory vector $v = \langle v_1, v_2, \dots, v_n \rangle$ s.t. f(v) = 1, locate above H, so $\sum_{i=1}^n a_i v_i + a_0 > 0$;
 - for all sensory vector v s.t. f(v) = 0, locate below H, so $\sum_{i=1}^{n} a_i v_i + a_0 < 0$;
- P2
 - for all sensory vector v s.t. f(v) = 1, $\sum_{i=1}^{n} a_i v_i + a_0 < 0$;
 - for all sensory vector v s.t. f(v) = 0, $\sum_{i=1}^{n} a_i v_i + a_0 > 0$;

Proof Cont'd

Then construct a TLU T_0 as:

- if **P1**:
 - the weight vector: $W = \langle a_1, a_2, \dots, a_n \rangle$
 - the threshold: $\theta = -a_0$
- if **P2**:
 - the weight vector: $\mathcal{W} = \langle -a_1, -a_2, \dots, -a_n \rangle$
 - the threshold: $\theta = a_0$

Exercises

Exercises on the tutorial page.