Multiple Linear Regression Analysis

mtcars

Outline

- Background and Objective
- Dataset
- Analysis Framework
- Findings
- Conclusion

Dataset

Given 10 variables to be checked further into their impact into the mpg variables

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21	6	160	110	3.9	2.62	16.46	0	1	4	4
Mazda RX4 Wag	21	6	160	110	3.9	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.44	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.46	20.22	1	0	3	1
Duster 360	14.3	8	360	245	3.21	3.57	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.19	20	1	0	4	2

Sample of the dataset

Analysis Framework

Findings - Import Dataset

In [80]:	1	df.head()											
Out[80]:		model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
	0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
	1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
	2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
	3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
	4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

We found lot of inter X (independent) is highly correlated

We will exclude certain independent variables that are highly correlated with one another to mitigate the risk of multicollinearity in the analysis

Model Deployment and Interpretation

New Dataset after we eliminate 5 variables with correlation threshold = 0.7

```
DataFrame setelah menghilangkan variabel dengan korelasi tinggi:

cyl drat qsec am carb

0 6 3.90 16.46 1 4

1 6 3.90 17.02 1 4

2 4 3.85 18.61 1 1

3 6 3.08 19.44 0 1

4 8 3.15 17.02 0 2

5 6 2.76 20.22 0 1
```

We found that there are 5 variables that has low correlation (correlation inter-X variables) <= 0.7

We generate quite "good" identifier with R-Squared 0.985, but 1 variable is not significant toward dependant variable

Dep. Varial	ble:		mpg R-squa				0.985
Model:		(OLS Adj. F	R-squared (incentered):		0.982
Method:		Least Squar	res F-stat	istic:			343.5
Date:	Sa	t, 12 Aug 20			:):		1.52e-23
Time:		20:11:	:25 Log-Li	kelihood:			-76.058
No. Observa	ations:		32 AIC:				162.1
Df Residua	ls:		27 BIC:				169.4
Df Model:			5				
Covariance	Type:	nonrobu	ıst				
	coef				[0.025	0.975]	
					-1.197	0.283	
drat	2.9094	1.419	2.050	0.050	-0.002	5.821	
qsec	0.7725	0.263	2.940	0.007	0.233	1.312	
am	5.0594	1.718	2.946	0.007	1.535	8.584	
carb					-2.121	-0.300	
Omnibus:		0.2				2.240	
Prob (Omnib	us):	0.8	362 Jarque	e-Bera (JB):	:	0.358	
Skew:			204 Prob(3			0.836	
Kurtosis:		2.6	680 Cond.	No.		81.0	

Interpretation

- R-squared = 0.985 means 98.5% of variance in the model is able to be explained by these 5 variables.
- Coefficient Overall

 We found that there is 1 column (cyl) that considered not significant p-value >= 0.05 so we will iterate the model later.
- Coefficient Interpretation

 Each coef show impact value between X
 (independent) variable into Y (dependent)

 variable

 e.g. if the car is automatic (am) → means the
 car has higher mpg for 5.0594

New Regression Results after 'cyl' column is eliminated

OLS Regressio	n Results	
	F-statistic):	0.981 0.979 500.6 4.61e-25 -79.291 164.6 169.0
 rr t	P> t [0.025	0.975]
78 7.835	0.000 1.033 0.000 6.243 0.000 -1.992	10.654
1.226 0.542 -0.353 2.379	Durbin-Watson: Jarque-Bera (JB) Prob(JB): Cond. No.	1.676 : 1.179 0.555 36.6
	-0.353	-0.353 Prob(JB):

Interpretation

- R-squared = 0.981 means 98.1% of variance in the model is able to be explained by these 5 variables.
- Coefficient Overall All of the correlation was significantly impact toward the Y variable
- Coefficient Interpretation
 - o 'qsec': A coefficient of 1.15 with a p-value of 0.000 indicates a positive effect on 'mpg' and is statistically significant.
 - o 'am' (automatic/manual transmission): A coefficient of 8.45 with a p-value of 0.000 indicates a significant positive effect on 'mpg.'
 - o 'carb' (carburetor): A coefficient of -1.37 with a p-value of 0.000 indicates a significant negative effect on 'mpg.'
- <u>Durbin-Watson</u>: A Durbin-Watson value of 1.67 indicates that there is no significant autocorrelation within the model.

Conclusion and Recommendation

Conclusion

- We could identify the mpg based on 3 independent variables: qsec, am, and carb.
- The equation of the last multicollinear regression is as follow:

• am variable become the most significant variable into the increasing of mpg

Alternative Recommendation(s)

- For users that likely to look **more 'economic'** which mean high mpg car kindly to look for high qsec, automatic, and low number of carburetor.
- Oppositely, kindly to look for low qsec, manual, and high number of carburetor

End

Feature Reduction to eliminate multicollinearity using VIF (Variance Inflation Factor)

1st FIV

eature	VIF
cyl	21.386214
drat	105.757854
qsec	88.304568
am	4.764444
carb	8.170409
	drat qsec am

2nd FIV

f	eature	VIF
0	cyl	21.346727
1	qsec	13.499495
2	am	2.259054
3	carb	7.464366

3rd FIV

f	eature	VIE		
0	qsec	3.626427		
1	am	1.647926		
2	carb	3.365382		