Bidirectional Learning for Domain Adaptation of Semantic Segmentation

CVPR 2019

Yunsheng Li*, Lu Yuan`, Nuno Vasconcelos*

*UC San Deigo, `Microsoft

발표자: 한양대학교 인공지능연구실 김병조

Problem – semantic segmentation

Problem – domain adaptation

Source

Target

Problem – domain adaptation of semantic segmentation

Problem – domain adaptation of semantic segmentation

Two Steps

- 1. Image-to-Image translation : Reduce domain gap
- 2. Learn Semantic Segmentation Model

S

S' Discriminator

S

Two Steps

- 1. Image-to-Image translation : Reduce domain gap
- 2. Learn Semantic Segmentation Model

Problem

If F is fails, Nothing can be done..

Once F is learnt, it is fixed. -> No Feedback from M.

One-trial learning for M seems to just learn limited transferable knowledge.

Keyword(Novelty) in this paper

Bidirectional learning with perceptual loss self-supervised learning

F

$$\ell_{\mathbf{M}} = \lambda_{adv} \ell_{adv}(\mathbf{M}(\mathcal{S}'), \mathbf{M}(\mathcal{T})) + \ell_{seg}(\mathbf{M}(\mathcal{S}'), Y_{\mathcal{S}})$$

$$\ell_{\mathbf{M}} = \lambda_{adv} \ell_{adv}(\mathbf{M}(\mathcal{S}'), \mathbf{M}(\mathcal{T})) + \ell_{seg}(\mathbf{M}(\mathcal{S}'), Y_{\mathcal{S}})$$

$$\begin{split} \ell_{adv}(\mathbf{M}(\mathcal{S}'), \mathbf{M}(\mathcal{T})) &= \mathbb{E}_{I_{\mathcal{T}} \sim \mathcal{T}}[D_{\mathbf{M}}(\mathbf{M}(I_{\mathcal{T}}))] \\ &+ \mathbb{E}_{I_{\mathcal{S}} \sim \mathcal{S}}[1 - D_{\mathbf{M}}(\mathbf{M}(I_{\mathcal{S}}'))] \\ &\quad \quad \text{translated source image} \\ &\quad \quad \text{(given by F)} \end{split}$$

$$\ell_{\mathbf{M}} = \lambda_{adv} \ell_{adv}(\mathbf{M}(\mathcal{S}'), \mathbf{M}(\mathcal{T})) + \ell_{seg}(\mathbf{M}(\mathcal{S}'), Y_{\mathcal{S}})$$

$$\ell_{seg}(\mathbf{M}(\mathcal{S}'), Y_{\mathcal{S}}) = -\frac{1}{HW} \sum_{H,W} \sum_{c=1}^{C} \mathbb{1}_{[c=y_{\mathcal{S}}^{hw}]} \log P_{\mathcal{S}}^{hwc} \mathbf{M}(I_{\mathcal{S}}')$$

cross-entropy loss

$$\ell_{\mathbf{F}} = \lambda_{GAN}[\ell_{GAN}(\mathcal{S}', \mathcal{T}) + \ell_{GAN}(\mathcal{S}, \mathcal{T}')]$$

$$+ \lambda_{recon}[\ell_{recon}(\mathcal{S}, \mathbf{F}^{-1}(\mathcal{S}')) + \ell_{recon}(\mathcal{T}, \mathbf{F}(\mathcal{T}'))]$$

$$+ \ell_{per}(\mathbf{M}(\mathcal{S}), \mathbf{M}(\mathcal{S}')) + \ell_{per}(\mathbf{M}(\mathcal{T}), \mathbf{M}(\mathcal{T}'),$$

$$\ell_{\mathbf{F}} = \lambda_{GAN}[\ell_{GAN}(\mathcal{S}', \mathcal{T}) + \ell_{GAN}(\mathcal{S}, \mathcal{T}')]$$

$$+ \lambda_{recon}[\ell_{recon}(\mathcal{S}, \mathbf{F}^{-1}(\mathcal{S}')) + \ell_{recon}(\mathcal{T}, \mathbf{F}(\mathcal{T}'))]$$

$$+ \ell_{per}(\mathbf{M}(\mathcal{S}), \mathbf{M}(\mathcal{S}')) + \ell_{per}(\mathbf{M}(\mathcal{T}), \mathbf{M}(\mathcal{T}'),$$

$$\ell_{GAN}(\mathcal{S}',\mathcal{T}) = \mathbb{E}_{I_{\mathcal{T}}\sim\mathcal{T}}[D_{\mathbf{F}}(I_{\mathcal{T}})] + \mathbb{E}_{I_{\mathcal{S}}\sim\mathcal{S}}[1 - D_{\mathbf{F}}((I_{\mathcal{S}}'))]$$

$$S' = F(S)$$
 $F()$: S domain에서 T domain으로 $T' = F^{-1}(T)$ $F^{-1}()$: T domain에서 S domain으로

$$\ell_{\mathbf{F}} = \lambda_{GAN}[\ell_{GAN}(\mathcal{S}', \mathcal{T}) + \ell_{GAN}(\mathcal{S}, \mathcal{T}')]$$

$$+ \lambda_{recon}[\ell_{recon}(\mathcal{S}, \mathbf{F}^{-1}(\mathcal{S}')) + \ell_{recon}(\mathcal{T}, \mathbf{F}(\mathcal{T}'))]$$

$$+ \ell_{per}(\mathbf{M}(\mathcal{S}), \mathbf{M}(\mathcal{S}')) + \ell_{per}(\mathbf{M}(\mathcal{T}), \mathbf{M}(\mathcal{T}'),$$

$$\ell_{recon}(\mathcal{S}, \mathbf{F}^{-1}(\mathcal{S}')) = \mathbb{E}_{I_{\mathcal{S}} \sim \mathcal{S}}[||\mathbf{F}^{-1}((I_{\mathcal{S}}')) - I_{\mathcal{S}}||_{1}]$$

$$\mathbf{F}^{-1}(\mathbf{F}(\mathbf{S}))$$

$$S' = F(S)$$
 $F()$: S domain에서 T domain으로 $T' = F^{-1}(T)$ $F^{-1}()$: T domain에서 S domain으로

$$\ell_{\mathbf{F}} = \lambda_{GAN}[\ell_{GAN}(\mathcal{S}', \mathcal{T}) + \ell_{GAN}(\mathcal{S}, \mathcal{T}')]$$

$$+ \lambda_{recon}[\ell_{recon}(\mathcal{S}, \mathbf{F}^{-1}(\mathcal{S}')) + \ell_{recon}(\mathcal{T}, \mathbf{F}(\mathcal{T}'))]$$

$$+ \ell_{per}(\mathbf{M}(\mathcal{S}), \mathbf{M}(\mathcal{S}')) + \ell_{per}(\mathbf{M}(\mathcal{T}), \mathbf{M}(\mathcal{T}'),$$

$$\ell_{per}(\mathbf{M}(\mathcal{S}), \mathbf{M}(\mathcal{S}')) = \lambda_{per} \mathbb{E}_{I_{\mathcal{S}} \sim \mathcal{S}} ||\mathbf{M}(I_{\mathcal{S}}) - \mathbf{M}((I'_{\mathcal{S}}))||_{1} + \lambda_{per_recon} \mathbb{E}_{I_{\mathcal{S}} \sim \mathcal{S}} [||\mathbf{M}(\mathbf{F}^{-1}((I'_{\mathcal{S}}))) - \mathbf{M}(I_{\mathcal{S}})||_{1}]$$

to keep the semantic consistency between S and S' between S, F⁻¹(F(S))

Method $\ell_{\mathbf{M}} = \lambda_{adv} \ell_{adv}(\mathbf{M}(\mathcal{S}'), \mathbf{M}(\mathcal{T}))$ $+ \ell_{seg}(\mathbf{M}(\mathcal{S}'), Y_{\mathcal{S}}) + \ell_{seg}(\mathbf{M}(\mathcal{T}_{ssl}), \widehat{Y}_{\mathcal{T}})$

Self-Supervised Learning (SSL)

- labeled data로 모델 학습
- unlabeled data 예측
- 확률 값이 높은 데이터들을 pseudo-labeled data로 사용
- 다시 학습

•

Method
$$\ell_{\mathbf{M}} = \lambda_{adv} \ell_{adv}(\mathbf{M}(\mathcal{S}'), \mathbf{M}(\mathcal{T}))$$

 $+ \ell_{seg}(\mathbf{M}(\mathcal{S}'), Y_{\mathcal{S}}) + \ell_{seg}(\mathbf{M}(\mathcal{T}_{ssl}), \widehat{Y}_{\mathcal{T}})$

$$m_{\mathcal{T}} = \mathbb{1}_{[\operatorname{argmax} \mathbf{M}(I_{\mathcal{T}}) > \operatorname{threshold}]}$$

$$\ell_{seg}(\mathbf{M}(\mathcal{T}_{ssl}), \widehat{Y}_{\mathcal{T}}) = -\frac{1}{HW} \sum_{H,W} m_{\mathcal{T}}^{hw} \sum_{c=1}^{C} \mathbb{1}_{[c=y_{\mathcal{T}}^{hw}]} \log P_{\mathcal{T}}^{hwc}$$

to help promote the segmentation adaptation model M

Training Algorithm

Algorithm 1 Training process of our network

```
Input: (S, Y_S), (T, T_{ssl} = \emptyset), \mathbf{M}^{(0)}
Output: \mathbf{M}_{N}^{(K)}(\mathbf{F}^{(K)})
   for k \leftarrow 1 to K do (Bidirectional Learning)
         train \mathbf{F}^{(k)} with Equation 2
         train \mathbf{M}_0^{(k)} with Equation 1
         for i \leftarrow 1 to N do (SSL)
              update \mathcal{T}_{ssl} with \mathbf{M}_{i-1}^{(k)}
              train \mathbf{M}_{i}^{(k)} again with Equation 3
         end for
    end for
```


Bidirectional Learning without SSL

$GTA5 \rightarrow City$	scapes
model	mIoU
$\mathbf{M}^{(0)}$	33.6
$\mathbf{M}^{(1)}$	40.9
$\mathbf{M}^{(0)}(\mathbf{F}^{(1)})$	41.1
${f M}_0^{(1)}({f F}^{(1)})$	42.7
${f M}_0^{(2)}({f F}^{(2)})$	43.3

Bidirectional Learning with SSL

Table 3: Influence of threshold Table 4: Influence of N

GTA5 -	→ Cityscape	s
model	threshold	mIoU
${f M}_1^{(1)}({f F}^{(1)})$	0.95	45.7
${f M}_1^{(1)}({f F}^{(1)})$	0.9	46.8
${f M}_1^{(1)}({f F}^{(1)})$	0.8	46.4
${f M}_1^{(1)}({f F}^{(1)})$	0.7	45.9
${f M}_1^{(1)}({f F}^{(1)})$	_	44.9

GTA5 → Cityscapes												
model	pixel ratio	mIoU										
$\mathbf{M}_0^{(1)}$	66%	40.9										
${f M}_0^{(1)}({f F}^{(1)})$	69%	42.7										
${f M}_1^{(1)}({f F}^{(1)})$	79%	46.8										
${f M}_2^{(1)}({f F}^{(1)})$	81%	47.2										
${f M}_3^{(1)}({f F}^{(1)})$	81%	47.1										

Bidirectional Learning with SSL

											-		-			-					
	$GTA5 \rightarrow Cityscapes$																				
		road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegetation	terrain	sky	person	rider	car	truck	snq	train	motorbike	bicycle	mIoU
	$\mathbf{M}^{(0)}$	69.0	12.7	69.5	9.9	19.5	22.8	31.7	15.3	73.9	11.3	67.2	54.7	23.9	53.4	29.7	4.6	11.6	26.1	32.5	33.6
	$\mathbf{M}_{0}^{(1)}(\mathbf{F}^{(1)})$	89.1	42.0	82.0	24.3	15.1	27.4	35.7	24.6	81.1	32.4	78.0	57.6	28.7	76.0	26.5	36.0	4.0	25.7	24.9	42.7
k = 1	$\mathbf{M}_{1}^{(1)}(\mathbf{F}^{(1)})$	91.2	47.8	84.0	34.8	28.9	31.7	37.7	36.0	84.0	40.4	76.6	57.9	25.3	80.4	31.2	41.7	2.8	27.2	32.4	46.8
	${f M}_2^{(1)}({f F}^{(1)})$	91.4	47.9	84.2	32.4	26.0	31.8	37.3	33.0	83.3	39.2	79.2	57.7	25.6	81.3	36.3	39.7	2.6	31.3	33.5	47.2
	$\mathbf{M}_{0}^{(2)}(\mathbf{F}^{(2)})$	88.2	41.3	83.2	28.8	21.9	31.7	35.2	28.2	83.0	26.2	83.2	57.6	27.0	77.1	27.5	34.6	2.5	28.3	36.1	44.3
k = 2	${f M}_1^{(2)}({f F}^{(2)})$	91.2	46.1	83.9	31.6	20.6	29.9	36.4	31.9	85.0	39.7	84.7	57.5	29.6	83.1	38.8	46.9	2.5	27.5	38.2	47.6
	$\mathbf{M}_{2}^{(2)}(\mathbf{F}^{(2)})$	91.0	44.7	84.2	34.6	27.6	30.2	36.0	36.0	85.0	43.6	83.0	58.6	31.6	83.3	35.3	49.7	3.3	28.8	35.6	48.5

Table 5: Comparison results from GTA5 to Cityscapes

	$GTA5 \rightarrow Cityscapes$																				
Oracle	Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegetation	terrain	sky	person	rider	car	truck	snq	train	motorbike	bicycle	mIoU
	Cycada[12]	86.7	35.6	80.1	19.8	17.5	38.0	39.9	41.5	82.7	27.9	73.6	64.9	19	65.0	12.0	28.6	4.5	31.1	42.0	42.7
ResNet101[11]	AdaptSegNet[33]	86.5	25.9	79.8	22.1	20.0	23.6	33.1	21.8	81.8	25.9	75.9	57.3	26.2	76.3	29.8	32.1	7.2	29.5	32.5	41.4
65.1	DCAN[36]	85.0	30.8	81.3	25.8	21.2	22.2	25.4	26.6	83.4	36.7	76.2	58.9	24.9	80.7	29.5	42.9	2.50	26.9	11.6	41.7
05.1	CLAN[19]	87.0	27.1	79.6	27.3	23.3	28.3	35.5	24.2	83.6	27.4	74.2	58.6	28.0	76.2	33.1	36.7	6.7	31.9	31.4	43.2
	Ours	91.0	44.7	84.2	34.6	27.6	30.2	36.0	36.0	85.0	43.6	83.0	58.6	31.6	83.3	35.3	49.7	3.3	28.8	35.6	48.5
	Curriculum[37]	74.9	22.0	71.7	6.0	11.9	8.4	16.3	11.1	75.7	13.3	66.5	38.0	9.3	55.2	18.8	18.9	0.0	16.8	16.6	28.9
	CBST[39]	66.7	26.8	73.7	14.8	9.5	28.3	25.9	10.1	75.5	15.7	51.6	47.2	6.2	71.9	3.7	2.2	5.4	18.9	32.4	30.9
VGG16[32]	Cycada[12]	85.2	37.2	76.5	21.8	15.0	23.8	22.9	21.5	80.5	31.3	60.7	50.5	9.0	76.9	17.1	28.2	4.5	9.8	0	35.4
60.3	DCAN[36]	82.3	26.7	77.4	23.7	20.5	20.4	30.3	15.9	80.9	25.4	69.5	52.6	11.1	79.6	24.9	21.2	1.30	17.0	6.70	36.2
	CLAN[19]	88.0	30.6	79.2	23.4	20.5	26.1	23.0	14.8	81.6	34.5	72.0	45.8	7.9	80.5	26.6	29.9	0.0	10.7	0.0	36.6
	Ours	89.2	40.9	81.2	29.1	19.2	14.2	29.0	19.6	83.7	35.9	80.7	54.7	23.3	82.7	25.8	28.0	2.3	25.7	19.9	41.3

Table 6: Comparison results from SYNTHIA to Cityscapes

	$SYNTHIA \rightarrow Cityscapes$																	
Oracle	Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegetation	sky	person	rider	car	pns	motorbike	bicycle	mIoU
ResNet101[11]	AdaptSegNet[33]	79.2	37.2	78.8	-	-	-	9.9	10.5	78.2	80.5	53.5	19.6	67.0	29.5	21.6	31.3	45.9
71.7	CLAN[19]	81.3	37.0	80.1	-	-	-	16.1	13.7	78.2	81.5	53.4	21.2	73.0	32.9	22.6	30.7	47.8
/1./	Ours	86.0	46.7	80.3	-	-	-	14.1	11.6	79.2	81.3	54.1	27.9	73.7	42.2	25.7	45.3	51.4
	FCN wild[13]	11.5	19.6	30.8	4.4	0.0	20.3	0.1	11.7	42.3	68.7	51.2	3.8	54.0	3.2	0.2	0.6	20.2
VGG16[32]	Curriculum[37]	65.2	26.1	74.9	0.1	0.5	10.7	3.5	3.0	76.1	70.6	47.1	8.2	43.2	20.7	0.7	13.1	29.0
59.5	CBST[39]	69.6	28.7	69.5	12.1	0.1	25.4	11.9	13.6	82.0	81.9	49.1	14.5	66.0	6.6	3.7	32.4	35.4
39.3	DCAN[36]	79.9	30.4	70.8	1.6	0.6	22.3	6.7	23.0	76.9	73.9	41.9	16.7	61.7	11.5	10.3	38.6	35.4
	Ours	72.0	30.3	74.5	0.1	0.3	24.6	10.2	25.2	80.5	80.0	54.7	23.2	72.7	24.0	7.5	44.9	39.0

QnA