目次

1 Introduction
2 Proof of proposition 1
3 proof of Propostion 2
2

1 Introduction

十分単射的対象を持つアーベル圏 A からアーベル圏 A' への左完全な加法 的関手 F に対し,導来関手 R^iF がただひとつ存在する.『コホモロジーのこころ』では,A の対象 A に対し, R^iFA が定義されたが,射に関する部分が 省略された.そのため,射に関する部分を証明し,導来関手の存在を確認する.つまり,A の射 $f:A\to B$ に対し, $R^iF(f):R^iF(A)\to F^iF(B)$ が定まり,以下を満たすことである.

$$R^i F(id) = id (1)$$

$$R^{i}F(f)\circ R^{i}F(g) = R^{i}F(f\circ g) \tag{2}$$

これは $f: A \to B$ に対し以下を示せばよい.

Propostion 1.1. A の射 $f: A \to B$ と A, B の単射的分解 I^i, J^i に対し、以下を可換にするような射 $f^i: I^i \to J^i$ が存在する.

$$0 \longrightarrow A \xrightarrow{\alpha^{-1}} I^0 \xrightarrow{\alpha^0} I^1 \xrightarrow{}$$

$$\downarrow^f \ \ \ \ \ \ \ \downarrow^{f^0} \ \ \ \ \ \downarrow^{f^1}$$

$$0 \longrightarrow B \xrightarrow{\beta^{-1}} J^0 \xrightarrow{\beta^0} J^1 \xrightarrow{}$$

Propostion 1.2. \mathcal{A} の射 $f: A \to B$ と A, B の単射的分解 I^i, J^i に対し、上の命題を満たす、 f^i, g^i はホモトピックとなる.

この 2 つの命題を示せば関手となることがいえる。軽く確認しておくと、ホモトピックであれば、 $\mathcal{F}(f^i) = \mathcal{F}(g^i)$ となるので、f のみで、 f^i の取り方によらなない。また、そのような f^i が必ず存在するので R^if が well-defined である。また、 $R^i\mathcal{F}(id) = id$ と、 $R^i\mathcal{F}(f) \circ R^i\mathcal{F}(g) = R^i\mathcal{F}(f \circ g)$ も射の取り方によらないことと \mathcal{F} の関手性から示せる。

2 Proof of proposition 1

1 つめの命題を示す. f^0 と f^1 の存在を示す. f^2 以降は f^1 の場合と同じ議論より言える.

• 0の時

上の図の斜線の射の存在を示す.これは $\alpha^{-1}:A\to I^0$ が単射で, $\beta^{-1}\circ f:A\to J^0$ となるので, J^0 が単射的対象であることから,斜線の射の存在が従う.

1の時

 \tilde{f}^0 の存在を示す. $I^0/\mathrm{Im}\alpha^{-1}\to J^0$ が定義できれることを示す. それは $\beta^0\circ f^0\circ\alpha^{-1}(A)$ が図式の可換性から, $\beta^0\circ\beta^{-1}\circ f(A)$ と等しいことと, $\beta^0\circ\beta^{-1}=0$ より言える. これから $\mathrm{Im}\alpha^0\to J^0\to J^1$ という射が定義でき, $\mathrm{Im}\alpha^0\to I^1$ が単射であり, J^1 が単射的対象であることから, $I^1\to J^1$ で上の図式を可換にするものが存在する.

3 proof of Propostion 2

すいません,時間がなかったので,また今度…. 証明自体は『コホモロジーのこころ』67P と同様にすればよい. (ここでいう h^i として f^i-g^i を取れば良い.)