# Survival Analysis of Corporal Punishment Bans

Andy Grogan-Kaylor

16 Jun 2021 08:03:18

## Introduction

Corporal punishment is associated with a number of deleterious outcomes for children, including increases in behavior problems and mental health problems.

A number of countries have instituted country wide bans upon the use of corporal punishment with children.

Below, we employ a variety of empirical strategies to explore the institution of these bans.

## Get The Data

```
. use "../CPBans_w_AllCountries.dta", clear // data with ALL Countries; not just bans
```

NB It is important to have data with the *correct risk set* which includes *all countries*, not just countries that eventually ban corporal punishment.

In web versions of this tutorial, click the tabs below to access different sections of the tutorial.

Setup Parametric Survival Models Cox Model Life Table Discrete Time Survival Analysis Cox Model 2 Compare Estimates

## Setup

#### stset The Data

<sup>248</sup> total observations

```
248 observations remaining, representing
62 failures in single-record/single-failure data
500,452 total analysis time at risk and under observation
At risk from t = 0
Earliest observed entry t = 0
Last observed exit t = 2,021
```

## **Data Wrangling**

. encode continent, generate(continent\_NUMERIC) // numeric version of continent

## Graphs

#### **Survival Function**

```
    . sts graph, scheme(michigan) tmin(1970) // Kaplan-Meier Survivor Function
        Failure _d: f==1
        Analysis time _t: year_of_prohibition
    . graph export mysurvival.png, width(500) replace
        file /Users/agrogan/Box Sync/GitHub/research/cpbans/survival-analysis/mysurvival.png saved as PNG
        format
```



Figure 1: Kaplan-Meier Survivor Function

### Failure Function

```
    . sts graph, failure scheme(michigan) tmin(1970) // Kaplan-Meier Failure Function
        Failure _d: f==1
        Analysis time _t: year_of_prohibition
    . graph export myfailure.png, width(500) replace
        file /Users/agrogan/Box Sync/GitHub/research/cpbans/survival-analysis/myfailure.png saved as PNG
        format
```



Figure 2: Kaplan-Meier Failure Function

#### **Hazard Function**

```
    . sts graph, hazard scheme(michigan) tmin(1970) // Kaplan-Meier Failure Function
        Failure _d: f==1
        Analysis time _t: year_of_prohibition
    . graph export myhazard.png, width(500) replace
        file /Users/agrogan/Box Sync/GitHub/research/cpbans/survival-analysis/myhazard.png saved as PNG
        format
```

## Parametric Survival Models

Unlike other regression commands in Stata, survival analysis commands seem to require covariates. Since Europe is where these bans started, we will use Europe (category 4) as the reference category.

#### Weibull

```
. streg ib4.continent_NUMERIC, distribution(weibull) // Weibull distribution
        Failure _d: f==1
  Analysis time _t: year_of_prohibition
Fitting constant-only model:
               log likelihood = -148.2325
Iteration 0:
               \log \frac{1}{1} likelihood = -86.999055
Iteration 1:
               log \ likelihood = -27.073844
Iteration 2:
Iteration 3:
               log likelihood = 29.365489
               log likelihood = 77.015953
Iteration 4:
Iteration 5:
               log likelihood = 106.62899
               log likelihood = 115.32234
Iteration 6:
               log likelihood = 115.88805
Iteration 7:
Iteration 8:
               log likelihood = 115.89021
               log likelihood = 115.89021
Iteration 9:
```



Figure 3: Hazard Function

```
Fitting full model:
Iteration 0:
                log likelihood = 115.89021
                log likelihood = 139.32561
log likelihood = 142.87372
Iteration 1:
Iteration 2:
                log likelihood = 143.05492
Iteration 3:
                log likelihood = 143.05732
log likelihood = 143.05732
Iteration 4:
Iteration 5:
Weibull PH regression
No. of subjects =
                         248
                                                               Number of obs =
                                                                                     248
No. of failures =
Time at risk
                  = 500,452
                                                               LR chi2(5)
                                                                               = 54.33
Log likelihood = 143.05732
                                                               Prob > chi2
                                                                               = 0.0000
```

| _t                | Haz. ratio           | Std. err.            | z     | P> z  | [95% conf.           | interval]            |
|-------------------|----------------------|----------------------|-------|-------|----------------------|----------------------|
| continent_NUMERIC |                      |                      |       |       |                      |                      |
| Africa            | .1684617             | .0612563             | -4.90 | 0.000 | .0826011             | .3435709             |
| Americas          | .1938708             | .0704541             | -4.51 | 0.000 | .0950997             | .395226              |
| Asia              | .1520997             | .0603348             | -4.75 | 0.000 | .0698995             | .3309653             |
| NA                | .0916735             | .0931508             | -2.35 | 0.019 | .0125119             | .6716806             |
| Oceania           | .0356574             | .0362323             | -3.28 | 0.001 | .0048666             | .2612621             |
| _cons             | 0                    | 0                    | -8.57 | 0.000 | 0                    | 0                    |
| /ln_p             | 5.278967             | .1166492             | 45.26 | 0.000 | 5.050339             | 5.507596             |
| p<br>1/p          | 196.1672<br>.0050977 | 22.88274<br>.0005946 |       |       | 156.0754<br>.0040558 | 246.5576<br>.0064072 |

Note:  $\_{cons}$  estimates baseline hazard.

. est store Weibull

## Exponential

. streg ib4.continent\_NUMERIC, distribution(exponential) // Exponential distribution

#### Failure \_d: f==1 Analysis time \_t: year\_of\_prohibition Iteration 0: log likelihood = -148.2325 Iteration 1: log likelihood = -139.40941 Iteration 2: log likelihood = -131.58499 Iteration 3: $\log$ likelihood = -131.55897 Iteration 4: log likelihood = -131.55892 Iteration 5: log likelihood = -131.55892 Exponential PH regression No. of subjects = 248 Number of obs = No. of failures = Time at risk = 500,452LR chi2(5) = 33.35 Prob > chi2 = 0.0000 Log likelihood = -131.55892

| _t                | Haz. ratio | Std. err. | z      | P> z  | [95% conf. | interval] |
|-------------------|------------|-----------|--------|-------|------------|-----------|
| continent_NUMERIC |            |           |        |       |            |           |
| Africa            | .2736219   | .099129   | -3.58  | 0.000 | .134516    | .5565804  |
| Americas          | .3052592   | .1105907  | -3.28  | 0.001 | .1500692   | .6209345  |
| Asia              | .2489781   | .0984172  | -3.52  | 0.000 | .1147345   | .5402914  |
| NA                | .1586176   | .1610769  | -1.81  | 0.070 | .0216746   | 1.160782  |
| Oceania           | .061017    | .061963   | -2.75  | 0.006 | .0083378   | .4465293  |
| _cons             | .000312    | .0000552  | -45.67 | 0.000 | .0002206   | .0004412  |

Note: \_cons estimates baseline hazard.

## Cox Proportional Hazards Model

```
. stcox ib4.continent_NUMERIC // Cox Proportional Hazards Model
        Failure _d: f==1
  Analysis time _t: year_of_prohibition
Iteration 0: log likelihood = -333.92184
               log likelihood = -317.94407
Iteration 1:
Iteration 2: log likelihood = -308.96171
               log likelihood = -308.00801
log likelihood = -308.00737
Iteration 3: Iteration 4:
Refining estimates:
Iteration 0: \log likelihood = -308.00737
Cox regression with Breslow method for ties
No. of subjects =
                       248
                                                           Number of obs =
                                                                               248
No. of failures =
               = 500,452
Time at risk
                                                           LR chi2(5)
                                                                          = 51.83
                                                           Prob > chi2
                                                                         = 0.0000
Log likelihood = -308.00737
```

| _t                | Haz. ratio | Std. err. | z     | P> z  | [95% conf. | interval] |
|-------------------|------------|-----------|-------|-------|------------|-----------|
| continent_NUMERIC |            |           |       |       |            |           |
| Africa            | .1769827   | .0643396  | -4.76 | 0.000 | .0867938   | .3608887  |
| Americas          | .2023186   | .0735008  | -4.40 | 0.000 | .0992661   | .4123544  |
| Asia              | .1610376   | .0638871  | -4.60 | 0.000 | .0740009   | .3504428  |
| NA                | .0969297   | .0984941  | -2.30 | 0.022 | .0132287   | .7102257  |
| Oceania           | .0380401   | .038653   | -3.22 | 0.001 | .0051919   | .2787139  |
|                   |            |           |       |       |            |           |

<sup>.</sup> est store Cox

<sup>.</sup> est store Exponential

### **Survival Curves**

- . stcurve, survival scheme(michigan) // survival curve
- . graph export survival1A.png, width(500) replace file /Users/agrogan/Box Sync/GitHub/research/cpbans/survival-analysis/survival1A.png saved as PNG format



Figure 4: Survival Curve

- . stcurve, failure scheme(michigan) // failure curve
- . graph export survival1B.png, width(500) replace file /Users/agrogan/Box Sync/GitHub/research/cpbans/survival-analysis/surv
- file /Users/agrogan/Box Sync/GitHub/research/cpbans/survival-analysis/survival1B.png saved as PNG format
- . stcurve, failure at(continent\_NUMERIC= (1 2 3 4 5 6)) ///
- > legend(order(1 "Africa" 2 "Americas" 3 "Asia" ///
- > 4 "Europe" 5 "NA" 6 "Oceania")) ///
- > scheme(michigan) // survival curve by continent
- . graph export survival2.png, width(500) replace
- file /Users/agrogan/Box Sync/GitHub/research/cpbans/survival-analysis/survival2.png saved as PNG format.

## **Proportional Hazards Assumption**

. estat phtest  $\ensuremath{//}$  formal test of PH assumption

Test of proportional-hazards assumption
Time function: Analysis time

|             | chi2 | df | Prob>chi2 |
|-------------|------|----|-----------|
| Global test | 6.20 | 5  | 0.2870    |

. stphplot,  $by(continent_NUMERIC)$  scheme(michigan) // graphical test of PH assumption



Figure 5: Failure Curve



Figure 6: Failure Curve By Continent

Failure \_d: f==1
Analysis time \_t: year\_of\_prohibition

. graph export ph.png, width(500) replace file /Users/agrogan/Box Sync/GitHub/research/cpbans/survival-analysis/ph.png saved as PNG format



Figure 7: Graphical Test of Proportional Hazards Assumption

## Life Table

. ltable year\_of\_prohibition f, graph failure scheme(michigan) // lifetable

|      |       | Beg.  |        |      | Cum.    | Std.   |          |          |
|------|-------|-------|--------|------|---------|--------|----------|----------|
| Int  | erval | Total | Deaths | Lost | Failure | Error  | [95% Con | f. Int.] |
| 1979 | 1980  | 248   | 1      | 0    | 0.0040  | 0.0040 | 0.0006   | 0.0283   |
| 1983 | 1984  | 247   | 1      | 0    | 0.0081  | 0.0057 | 0.0020   | 0.0319   |
| 1987 | 1988  | 246   | 1      | 0    | 0.0121  | 0.0069 | 0.0039   | 0.0370   |
| 1989 | 1990  | 245   | 1      | 0    | 0.0161  | 0.0080 | 0.0061   | 0.0424   |
| 1994 | 1995  | 244   | 1      | 0    | 0.0202  | 0.0089 | 0.0084   | 0.0478   |
| 1997 | 1998  | 243   | 1      | 0    | 0.0242  | 0.0098 | 0.0109   | 0.0531   |
| 1998 | 1999  | 242   | 1      | 0    | 0.0282  | 0.0105 | 0.0136   | 0.0583   |
| 1999 | 2000  | 241   | 1      | 0    | 0.0323  | 0.0112 | 0.0163   | 0.0635   |
| 2000 | 2001  | 240   | 3      | 0    | 0.0444  | 0.0131 | 0.0248   | 0.0787   |
| 2002 | 2003  | 237   | 1      | 0    | 0.0484  | 0.0136 | 0.0278   | 0.0836   |
| 2003 | 2004  | 236   | 1      | 0    | 0.0524  | 0.0142 | 0.0308   | 0.0886   |
| 2004 | 2005  | 235   | 2      | 0    | 0.0605  | 0.0151 | 0.0369   | 0.0983   |
| 2005 | 2006  | 233   | 1      | 0    | 0.0645  | 0.0156 | 0.0400   | 0.1032   |
| 2006 | 2007  | 232   | 1      | 0    | 0.0685  | 0.0160 | 0.0432   | 0.1080   |
| 2007 | 2008  | 231   | 7      | 0    | 0.0968  | 0.0188 | 0.0659   | 0.1409   |
| 2008 | 2009  | 224   | 4      | 0    | 0.1129  | 0.0201 | 0.0794   | 0.1593   |
| 2010 | 2011  | 220   | 5      | 0    | 0.1331  | 0.0216 | 0.0965   | 0.1820   |
| 2011 | 2012  | 215   | 1      | 0    | 0.1371  | 0.0218 | 0.1000   | 0.1865   |
| 2013 | 2014  | 214   | 2      | 0    | 0.1452  | 0.0224 | 0.1069   | 0.1955   |
| 2014 | 2015  | 212   | 8      | 0    | 0.1774  | 0.0243 | 0.1352   | 0.2309   |
| 2015 | 2016  | 204   | 4      | 0    | 0.1935  | 0.0251 | 0.1496   | 0.2484   |
| 2016 | 2017  | 200   | 4      | 0    | 0.2097  | 0.0258 | 0.1641   | 0.2658   |
| 2017 | 2018  | 196   | 1      | 0    | 0.2137  | 0.0260 | 0.1677   | 0.2701   |
| 2018 | 2019  | 195   | 1      | 0    | 0.2177  | 0.0262 | 0.1713   | 0.2745   |
| 2019 | 2020  | 194   | 5      | 0    | 0.2379  | 0.0270 | 0.1897   | 0.2960   |
|      |       |       |        |      |         |        |          |          |

| 2020 | 2021 | 189 | 1 | 0   | 0.2419 | 0.0272 | 0.1934 | 0.3002 |
|------|------|-----|---|-----|--------|--------|--------|--------|
| 2021 | 2022 | 188 | 2 | 186 | 0.2579 | 0.0289 | 0.2062 | 0.3196 |

<sup>.</sup> graph export myltable.png, width(500) replace file /Users/agrogan/Box Sync/GitHub/research/cpbans/survival-analysis/myltable.png saved as PNG format



Figure 8: Graph Of Life Table

## Discrete Time Survival Analysis

Discrete time survival analysis is placed at the end because it requires us to restructure the data into a long format, where every row is a *country-year*.

### Restructuring the Data

We first need to generate a variable for the years during which a country was "at risk" of enacting a ban. Countries that have never enacted a ban are at risk up until the current year. Countries that enacted a ban leave the risk set once they have enacted a ban, and are thus at risk for a shorter time period.

```
. generate years_at_risk = year_of_prohibition - 1978 + 1 // years "at risk" of enacting a ban
```

We expand the data to generate one row of data for every year that each country is at risk.

```
. expand years_at_risk // "expand" the data; 1 row for every year at risk
(9,908 observations created)
```

We create a year variable.

```
. bysort country_code: generate year = _{\rm n} + 1977 // generate a year variable for each row
```

Lastly, we generate an indicator of the event, a 0/1' variable, which takes the value 1 for rows in which a ban was enacted, and 0 otherwise.

. generate event = type == "CP Ban" & year\_of\_prohibition == year // generate an event indicator

We list out a sample of the data to make sure that the data conform to our expectations. We focus on Norway, a country that *has* enacted a ban, and Great Britain, a country that *has not* enacted a ban.

. list country\_code year\_of\_prohibition event continent years\_at\_risk year /// > if country\_code == "NOR" | country\_code == "GBR" , ab(20) // list out a sample of the data

|       | country_code | year_of_prohibition | event | continent | years_at_risk | year |
|-------|--------------|---------------------|-------|-----------|---------------|------|
| 3172. | GBR          | 2021                | 0     | Europe    | 44            | 1978 |
| 3173. | GBR          | 2021                | 0     | Europe    | 44            | 1979 |
| 3174. | GBR          | 2021                | 0     | Europe    | 44            | 1980 |
| 3175. | GBR          | 2021                | 0     | Europe    | 44            | 1981 |
| 3176. | GBR          | 2021                | 0     | -         | 44            | 1982 |
| 3176. | GDR          |                     |       | Europe    |               | 1902 |
| 3177. | GBR          | 2021                | 0     | Europe    | 44            | 1983 |
| 3178. | GBR          | 2021                | 0     | Europe    | 44            | 1984 |
| 3179. | GBR          | 2021                | 0     | Europe    | 44            | 1985 |
| 3180. | GBR          | 2021                | 0     | Europe    | 44            | 1986 |
| 3181. | GBR          | 2021                | 0     | Europe    | 44            | 1987 |
| 3182. | GBR          | 2021                | 0     | Europe    | 44            | 1988 |
| 3183. | GBR          | 2021                | 0     | Europe    | 44            | 1989 |
| 3184. | GBR          | 2021                | 0     | -         | 44            | 1990 |
| 3185. | GBR          | 2021                | 0     | Europe    | 44            | 1991 |
|       |              |                     |       | Europe    |               |      |
| 3186. | GBR          | 2021                | 0     | Europe    | 44            | 1992 |
| 3187. | GBR          | 2021                | 0     | Europe    | 44            | 1993 |
| 3188. | GBR          | 2021                | 0     | Europe    | 44            | 1994 |
| 3189. | GBR          | 2021                | 0     | Europe    | 44            | 1995 |
| 3190. | GBR          | 2021                | 0     | Europe    | 44            | 1996 |
| 3191. | GBR          | 2021                | 0     | Europe    | 44            | 1997 |
| 3192. | GBR          | 2021                | 0     | Europe    | 44            | 1998 |
| 3193. | GBR          | 2021                | 0     | Europe    | 44            | 1999 |
| 3194. | GBR          | 2021                | 0     | Europe    | 44            | 2000 |
|       |              |                     |       | -         | 44            |      |
| 3195. | GBR          | 2021                | 0     | Europe    |               | 2001 |
| 3196. | GBR          | 2021                | 0     | Europe    | 44            | 2002 |
| 3197. | GBR          | 2021                | 0     | Europe    | 44            | 2003 |
| 3198. | GBR          | 2021                | 0     | Europe    | 44            | 2004 |
| 3199. | GBR          | 2021                | 0     | Europe    | 44            | 2005 |
| 3200. | GBR          | 2021                | 0     | Europe    | 44            | 2006 |
| 3201. | GBR          | 2021                | 0     | Europe    | 44            | 2007 |
| 3202. | GBR          | 2021                | 0     | Europe    | 44            | 2008 |
| 3203. | GBR          | 2021                | 0     | Europe    | 44            | 2009 |
| 3204. | GBR          | 2021                | 0     | Europe    | 44            | 2010 |
| 3205. | GBR          | 2021                | 0     | Europe    | 44            | 2011 |
| 3206. | GBR          | 2021                | 0     | -         | 44            | 2012 |
| 3200. |              |                     |       | Europe    |               | 2012 |
| 3207. | GBR          | 2021                | 0     | Europe    | 44            | 2013 |
| 3208. | GBR          | 2021                | 0     | Europe    | 44            | 2014 |
| 3209. | GBR          | 2021                | 0     | Europe    | 44            | 2015 |
| 3210. | GBR          | 2021                | 0     | Europe    | 44            | 2016 |
| 3211. | GBR          | 2021                | 0     | Europe    | 44            | 2017 |
| 3212. | GBR          | 2021                | 0     | Europe    | 44            | 2018 |
| 3213. | GBR          | 2021                | 0     | Europe    | 44            | 2019 |
| 3214. | GBR          | 2021                | 0     | Europe    | 44            | 2020 |
| 3215. | GBR          |                     | 0     | -         | 44            |      |
|       |              | 2021                |       | Europe    |               | 2021 |
| 6811. | NOR          | 1987                | 0     | Europe    | 10            | 1978 |
| 6812. | NOR          | 1987                | 0     | Europe    | 10            | 1979 |
| 6813. | NOR          | 1987                | 0     | Europe    | 10            | 1980 |
| 6814. | NOR          | 1987                | 0     | Europe    | 10            | 1981 |
| 6815. | NOR          | 1987                | 0     | Europe    | 10            | 1982 |
| 6816. | NOR          | 1987                | Ö     | Europe    | 10            | 1983 |
| 6817. | NOR          | 1987                | 0     | Europe    | 10            | 1984 |

| 6818. | NOR | 1987 | 0 | Europe | 10 | 1985 |
|-------|-----|------|---|--------|----|------|
| 6819. | NOR | 1987 | 0 | Europe | 10 | 1986 |
| 6820. | NOR | 1987 | 1 | Europe | 10 | 1987 |

## Analysis

Lastly, we analyze the data using a straightforward logistic regression model. While there is some discussion on this point, we choose not to cluster the standard errors on country, because of the argument from Singer and Willett (2003) that the rows of data are *conditionally* independent.

We ask for *odds ratios* so that our results are roughly comparable to those from the continuous time survival models.

```
. logit event ib4.continent_NUMERIC year, or
Iteration 0:
              log likelihood = -377.92887
Iteration 1:
               log likelihood = -372.7393
               log likelihood = -330.01528
Iteration 2:
               \log \frac{1}{1} likelihood = -328.96762
Iteration 3:
               log likelihood = -328.96528
Iteration 4:
Iteration 5:
               log likelihood = -328.96528
Logistic regression
                                                         Number of obs = 10,156
                                                         LR chi2(6)
                                                                       = 97.93
                                                         Prob > chi2
                                                                       = 0.0000
Log likelihood = -328.96528
                                                         Pseudo R2
                                                                        = 0.1296
```

| event             | Odds ratio | Std. err. | z     | P> z  | [95% conf. | interval] |
|-------------------|------------|-----------|-------|-------|------------|-----------|
| continent_NUMERIC |            |           |       |       |            |           |
| Africa            | .1666907   | .0611921  | -4.88 | 0.000 | .0811775   | .3422843  |
| Americas          | .1916195   | .0703136  | -4.50 | 0.000 | .0933462   | .3933534  |
| Asia              | .1507161   | .0603004  | -4.73 | 0.000 | .0688019   | .3301562  |
| NA                | .0906814   | .092426   | -2.36 | 0.019 | .012301    | .6684916  |
| Oceania           | .0351902   | .0358209  | -3.29 | 0.001 | .0047859   | .2587488  |
| year              | 1.088786   | .013881   | 6.67  | 0.000 | 1.061917   | 1.116335  |
| _cons             | 2.05e-76   | 5.25e-75  | -6.81 | 0.000 | 3.38e-98   | 1.24e-54  |

Note: \_cons estimates baseline odds.

## Cox Model With Multiple Records Per Observation and Time Varying Covariates

We make use of the fact that the data are structured with multiple records per individual to include the effect of year, which is a *time varying covariate*. We need to newly stset the data to account for the multiple records per individual.

I am not sure how to use the tvc option to program this when there is only one record per *individual*.

```
// bysort country_y: egen maxyear = max(year) //
// bysort country_y: generate f2 = (f ==1) & (year ==maxyear) // // stset year, failure(f2 =
1) id(country_y) origin(time 1978) // stset the data with time, failure & id variables // // stcox ib4.continent_NUMERIC year //
// est store CoxTVC2
```

<sup>.</sup> est store Discrete

## Compare Estimates

Note the difference in the effect of year in the two models where this is included.

. estimates table Weibull Exponential Cox Discrete, /// > b(%9.3f) star stats(N r2\_a) equations(1) // nice table of estimates

| Variable     | Weibull      | Exponential | Cox       | Discrete    |
|--------------|--------------|-------------|-----------|-------------|
| #1           |              |             |           |             |
| continent_~C |              |             |           |             |
| Africa       | -1.781***    | -1.296***   | -1.732*** | -1.792***   |
| Americas     | -1.641***    | -1.187**    | -1.598*** | -1.652***   |
| Asia         | -1.883***    | -1.390***   | -1.826*** | -1.892***   |
| continentC   |              |             |           |             |
| NA           | -2.390*      | -1.841      | -2.334*   | -2.400*     |
| Oceania      | -3.334**     | -2.797**    | -3.269**  | -3.347**    |
| year         |              |             |           | 0.085***    |
| _cons        | -1492.992*** | -8.073***   |           | -174.278*** |
| ln_p         |              |             |           |             |
| _cons        | 5.279***     |             |           |             |
| Statistics   |              |             |           |             |
| N            | 248          | 248         | 248       | 10156       |
| r2_a         |              |             |           |             |

Legend: \* p<0.05; \*\* p<0.01; \*\*\* p<0.001

## References

Allison, P. D. (1984). Event History Analysis: Regression for Longitudinal Event Data. SAGE Publications.

Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: modeling change and event occurrence. Oxford; New York: Oxford University Press.

StataCorp. 2021. Stata 17 Survival Analysis Reference Manual. College Station, TX: Stata Press