

Our Music Playlists

Netflix Data Science BootCamp Final Project Group 4

Adeh Hakobian, Lisa Hong, Justin Baytosh, Saad Iqbal, and Ashwini Athreya

Source	Kaggle
Rows	586672
Columns	21
Features Danceability, Loudness, Valence, Acoust Tempo, Energy, Popularity, etc	

Library

Our Music Playlists

Our Goal

To predict the popularity of a song based off of a song's audio features

Data Cleanup

Separated popularity into 5 bins

Resample

Imbalanced data

Better expose important relationships between input and target

Imbalanced Support Vector Machine

0.516

Accuracy score

	Precision	Recall
0	0.73	0.53
1	0.50	0.01
2	0.48	0.95
3	0.53	0.02
4	0.00	0.00

Correlation to Target + PolyFeats

Random Forest Classifier

85%

Total Accuracy Of the Model

Results

0.8466

Accuracy score

	Precision	Recall
0	0.89	0.94
1	0.77	0.79
2	0.70	0.59
3	0.85	0.91
4	0.99	1.00

Optimization of Classifier

Sequential

Feature

Selection

Important Use Cases

Promotion

Help Potential Stars

Boosting songs that have potential for high virality

Creativity

Tailor-made

Spark creativity for artists to utilize current trends

Growth

Maximize Revenue

By increasing profits for songs that will increase subscribers

Conclusion

- High precision for most popular songs
- 85% overall accuracy
- Possibly improve accuracy with more computing power
- Promoting songs with most potential which can drive profits

Library

Our Music Playlists

Thank

You!

