1. Oznaczenia kątów, gdy TestStand jest w pozycji Alpha=0 i Theta=0

Nadano numery paneli, od 1 do 4. W Ustawieniu Alpha = 0 i Theta = 0, ich rozmieszczenie jest

2. Numery czujników na konkretnych panelach

Są 4 panele: Panel 1, Panel 2, Panel 3 i Panel 4. Na każdym z paneli są 3 czujniki. Numery tych czujników są zaznaczone poniżej.

Zdjęcie z bliska na czujniki od Panelu 1 (kropki w dolnej linii obudowy oznaczają numer panelu):

Zdjęcie z bliska na czujniki od Panelu 2 (kropki w dolnej linii obudowy oznaczają numer panelu):

Zdjęcie z bliska na czujniki od Panelu 3 (kropki w dolnej linii obudowy oznaczają numer panelu):

Zdjęcie z bliska na czujniki od Panelu 4 (kropki w dolnej linii obudowy oznaczają numer panelu):

3. Interfejs łączący czujnik z PC

Czujnik podłączony jest poprzez Arduino Nano (z konwerterem UART-USB opartym o CH340) do PC. Podłączenie interfejsu do czujnika odbywa się poprzez przewód IDC-20:

Podczas testów korzystano z przewodów IDC-20 o długości 20cm i 120cm.

Arduino Nano należy połączyć z PC za pomocą przewodu mini USB.

4. Budowa modułu SunS

SunS oparty jest o 12 czujników BH1730FVC, odczytywanych równolegle przez Arduino Nano z użyciem interfejsy I2C. Dla wszystkich czujników linia SCL interfejsy I2C jest wspólna, a linie SDA są łączone niezależnie do Arduino. Takie połączenie jest wymagane, aby odczytywać czujniki równolegle, w tym samym momencie. Czujniki zasilane są z 3.3V, a linie SCL i SDA są podciągane do 3.3V rezystorami $8.2k\Omega$.

Wnętrzne czujnika:

Widok na rezystory podciągające do 3.3V:

Złącze IDC-20 pod czujnikiem:

Jest to złącze IDC-20, do którego bezpośrednio podłączono 12-czujników BH1730FVC. Numerowanie wyprowadzeń:

Podłączenie czujników wewnątrz SunS do złącza IDC-20:

Numer wyprowadzenia IDC- 20	Podłączenie wewnątrz SunS
1	GND
2	-
3	3.3V
4	-
5	SCL
6	SCL
7	-
8	-
9	Sensor0/SDA1
10	Sensor2/SDA1
11	Sensor0/SDA2
12	Sensor2/SDA2
13	Sensor0/SDA3
14	Sensor2/SDA3
15	Sensor1/SDA1
16	Sensor3/SDA1
17	Sensor1/SDA2
18	Sensor3/SDA2
19	Sensor1/SDA3
20	Sensor3/SDA3

5. Budowa interfejsu z Arduino Nano

Interfejs ten łączy SunS z PC. Oparty jest o Arduino Nano, który odczytuje, równolegle, wartości z czujników i wysyła do PC. Podłączenie do SunS zrealizowana poprzez przewód IDC-20.

Podłączenie wyprowadzeń złącza IDC-20 z Arduino Nano:

Numer wyprowadzenia IDC-20	Podłączenie wewnątrz SunS
1	GND
2	-
3	3.3V

4	-
5	Arduino A0 / AVR Port PC0 / HAL Pin 23
6	-
7	-
8	-
9	Arduino A1 / AVR Port PC1 / HAL Pin 24
10	Arduino D7 / AVR Port PD7 / HAL Pin 13
11	Arduino D2 / AVR Port PD2 / HAL Pin 4
12	Arduino D8 / AVR Port PB0 / HAL Pin 14
13	Arduino D3 / AVR Port PD3 / HAL Pin 5
14	Arduino D9 / AVR Port PB1 / HAL Pin 15
15	Arduino D4 / AVR Port PD4 / HAL Pin 6
16	Arduino D10 / AVR Port PB2 / HAL Pin 16
17	Arduino D5 / AVR Port PD5 / HAL Pin 11
18	Arduino D11 / AVR Port PB3 / HAL Pin 17
19	Arduino D6 / AVR Port PD6 / HAL Pin 12
20	Arduino D12 / AVR Port PB4 / HAL Pin 18

6. Czujniki temperatury

Planowane jest dodanie czujników temperatury, po jednym na każdy panel. Następnie zostaną podłączone poprzez przewód IDC-20 (pozostały 4 wolne przewody) do interfejsu z Arduino Nano.