Algebra: Chapter 0 Exercises

Chapter 3, Section 5 Modules over a ring

David Melendez

September 17, 2018

Problem 5.4. Let R be a ring. A nonzero R-module M is simple (or irreducible) if its only submodules are $\{0\}$ and M. Let M, N be simple modules, and let $\varphi : M \to N$ be a homomorphism of R-modules. Prove that either $\varphi = 0$ or φ is an isomorphism.

Solution. Let $\varphi: M \to N$ be an R-module homomorphism. Then $\ker \varphi$ is a submodule of M, and hence is either $\{0\}$ or M. If $\ker \varphi = M$, then φ is the zero homomorphism.

Otherwise, we have $\ker \varphi = \{0\}$, telling us that φ is injective, and we turn our attention to im φ . Since $\ker \varphi = 0$, and M, N are nonzero, we know that im φ has at least one nonzero element. Since im φ is a submodule of N, this implies that im $\varphi = N$, as N is simple. Thus φ is surjective, and so it is an isomorphism, as desired.

j++i

Problem 5.5. Let R be a commutative ring, viewed as an R-module over itself, and let M be an R-module. Prove that $\operatorname{Hom}_{R\operatorname{-Mod}}(R,M) \cong M$ as R-modules.

Solution. Let $\varphi: M \to \operatorname{Hom}_{R\text{-}\mathbf{Mod}}(R,M)$ be the function defined by

$$\varphi(m)(r)=rm.$$

Then note that

$$\varphi(m+n)(r) = r(m+n)$$

$$= rm + rn$$

$$= \varphi(m)(r) + \varphi(n)(r)$$

$$= (\varphi(m) + \varphi(n))(r),$$

and

$$\varphi(sm)(r) = r(sm)$$

$$= (rs)m$$

$$= (sr)m$$

$$= s(rm)$$

$$= s\varphi(m)(r)$$

$$= (s\varphi(m))(r),$$

and so φ is an $R - \mathbf{Mod}$ homomorphism. Additionally, we have:

$$\varphi(m)(r+s) = (r+s)m$$

$$= rm + sm$$

$$= \varphi(m)(r) + \varphi(n)(r)$$

and

$$\varphi(m)(rs) = (rs)m$$

$$= r(sm)$$

$$= r\varphi(m)(s),$$

and so $\varphi(m)$ is an $R-\mathbf{Mod}$ homomorphism for all $m \in M$.

Now, to prove that φ is injective, note that if $\varphi(m) = 0$, then $m = 1_R m = \varphi(m)(1) = 0$, and so φ is injective. For surjectivity, we need the following insight: For all $m \in M$ and $r \in R$, we have

$$\varphi(m)(r) = \varphi(m)(r \cdot 1_R)$$
$$= r\varphi(m)(1_R),$$

and so if $\psi \in \operatorname{Hom}_{R\text{-}\mathbf{Mod}}(R, M)$, then we have, for all $r \in R$,

$$\psi(r) = r\psi(1_R)$$

= $\varphi(\psi(1_R)(r);$

thus, ψ is in the image of φ and φ is surjective. Therefore, ψ is an isomorphism and the modules are isomorphic as desired.

Problem 5.6. Let G be an abelian group. Prove that if G has a structure of \mathbb{Q} -vector space, then it has only one such structure. (Hint: First prove that every element of G has necessarily infinite order. Alternative hint: The unique ring homomorphism $\mathbb{Z} \to \mathbb{Q}$ is an epimorphism.)

Solution. Let G be an abelian group. A \mathbb{Q} -vector space structure on G is precisely a ring homomorphism $\sigma: G \to \operatorname{Hom}_{\mathbf{Ab}}(G)$. Let σ_1, σ_2 , then, be two of these ring homomorphisms. Note that σ_1 and σ_2 agree on the integers, as if we view \mathbb{Q} and $\operatorname{Hom}_{\mathbf{Ab}}(G)$ as \mathbb{Z} -modules, we then have, for all $n \in \mathbb{Z}$,

$$\varphi_1(n) = \varphi_1(n \cdot 1)$$

$$= n \cdot \varphi_1(1)$$

$$= n \cdot id$$

$$= n \cdot \varphi_2(1)$$

$$= \varphi_2(n \cdot 1)$$

$$= \varphi_2(n).$$

Thus, if $\iota : \mathbb{Z} \to \mathbb{Q}$ is the unique ring homomorphism $\mathbb{Z} \to \mathbb{Q}$, i.e. the inclusion, we have $\sigma_1 \iota = \sigma_2 \iota$. Since ι is a ring epimorphism, this then implies that $\sigma_1 = \sigma_2$, and so there is only one \mathbb{Q} -vector space structure on \mathbb{G} , as desired.

Problem 5.7. Let K be a field, and let $k \subseteq K$ be a subfield of K. Show that K is a vector space over k (and in fact a k-algebra) in a natural way. In this situation, we say that K is an *extension* of k.

Solution. Note that the inclusion $\sigma: k \to \operatorname{Hom}_{\mathbf{Ab}}(K)$ is a ring homomorphism, and thus a natural k-vector space structure on K. This σ also gives us a k-algebra structure on K since the center of K is K itself, and so im $\sigma \subseteq Z(K)$.

More explicitly, the "scalar" multiplication κx for $\kappa \in k$ and $x \in K$ is just multiplication within the field K, and the k-algebra structure on K also consists of multiplication as defined in the field K.

Problem 5.8. What is the initial object of the category *R*-Alg?

Solution. Let A be an R-algebra, and let $\varphi: R \to S$ be an R-Alg homomorphism, where the R-algebra structure on R is given by the identity map. The conditions on R-algebra homomorphisms then force, for all $r \in R$,

$$\varphi(r) = \varphi(r \cdot 1_R)$$

$$= r \cdot \varphi(1_R)$$

$$= r \cdot 1_A.$$

To verify that φ is an R-Alg homomorphism, note that:

$$\varphi(r_1 + r_2) = (r_1 + r_2) \cdot 1_A$$

= $r_1 \cdot 1_A + r_2 \cdot 1_A$
= $\varphi(r_1) + \varphi(r_2)$,

$$\varphi(r_1 r_2) = (r_1 r_2) \cdot 1_A
= (r_1 r_2) \cdot (1_A 1_A)
= (r_1 \cdot 1_A)(r_2 \cdot 1_A)
= \varphi(r_1)\varphi(r_2),$$

$$\varphi(1_R) = 1_R \cdot 1_A$$
$$= 1_A,$$

and

$$\varphi(sr_1) = (sr_1) \cdot 1_R$$
$$= s \cdot (r_1 \cdot 1_R)$$
$$= s \cdot \varphi(r_1),$$

using R's properties as a ring, R-module, and R-algebra.

Since φ is the unique homomorphism $R \to A$ for all R-algebras A, we then have that R is initial in R-Alg.

Problem 5.9. Let R be a commutative ring, and let M be an R-module. Prove that the operation of composition on the R-module $\operatorname{End}_{R\operatorname{-Mod}}(M)$ makes the latter an R-algebra in a natural way.

Prove that $\mathcal{M}_n(R)$ is an R-algebra, in a natural way.

Solution. Let $\alpha: R \to \operatorname{End}_{R\text{-}\mathbf{Mod}}(M)$ be the ring homomorphism defined by

$$\varphi(r)(m) = rm;$$

it is easy to verify that $\varphi(r)$ is an R-module endomorphism for all $r \in R$, and that φ itself is a ring homomorphism.

Note that if φ is an R-module endomorphism of M, then we have, for all $r \in R$,

$$(\alpha(r) \circ \varphi)(m) = \varphi(r)(\varphi(m))$$

$$= r \cdot \varphi(m)$$

$$= \varphi(r \cdot m)$$

$$= (\varphi \circ \alpha(r))(m),$$

and so $\varphi(r)$ is in the center of $\operatorname{End}_{R\text{-}\mathbf{Mod}}(M)$ for all $r \in R$.

Because of this, α then gives us an R-module (and indeed an R-algebra) structure on the ring $\operatorname{End}_{R\operatorname{-Mod}}(M)$, which is precisely the usual R-module structure on $\operatorname{End}_{R\operatorname{-Mod}}(M)$, as desired.

In the case of the ring $\mathcal{M}_n(R)$, we can endow the ring with an R-algebra structure using the homomorphism $\alpha: R \to \mathcal{M}_n(R)$, defined by

$$\alpha(r)(A) = rA,$$

where the multiplication on the right-hand side is just scalar multiplication. Another way to think of this is the fact that α maps $r \in R$ to the matrix with r's on the diagonal and 0 elsewhere. It's pretty clear that this is a ring homomorphism whose image is contained in the center of $\mathcal{M}_n(A)$ (since diagonal matrices over a commutative ring commute with all other matrices), so I'll stop there.

Problem 5.10. Let R be a commutative ring, and let M be a simple R-module. Prove that $\operatorname{End}_{R\operatorname{-Mod}}(M)$ is a division R-algebra.

Solution. Since M is simple, every R-module endomorphism of M is either zero or an isomorphism, i.e. has an inverse in $\operatorname{End}_{R\operatorname{-Mod}}(M)$. Hence $\operatorname{End}_{R\operatorname{-Mod}}(M)$ is a division ring, and thus a division algebra over R by the previous exercise.

Problem 5.11. Let R be a commutative ring, and let M be an R-module. Prove that there is a natural bijection between the set of R[x]-module structures on M and $\operatorname{End}_{R-\operatorname{Mod}}(M)$.

Problem 5.12. Let R be a ring. Let M, N be R-modules, and let $\varphi : M \to N$ be a homomorphism of R-modules. Assume φ is a bijection, so that it has an inverse φ^{-1} as a set-function. Prove that φ^{-1} is a homomorphism of R-modules, and hence that a bijective R-module homomorphism is an isomorphism of R-modules.

Solution. Since φ is a bijective homomorphism of groups, we know already that φ is a isomorphism between the groups M and N, and φ^{-1} is a group homomorphism.

Let $r \in R$ and $m \in M$. Note, then, that

$$r\varphi^{-1}(m) = \varphi^{-1}(\varphi(r\varphi^{-1}(m)))$$
$$= \varphi^{-1}(r\varphi(\varphi^{-1}(m)))$$
$$= \varphi^{-1}(rm),$$

and so φ^{-1} is a homomorphism of R-modules. Therefore, φ is an isomorphism of R-modules, as desired.

Problem 5.13. Let R be an integral domain, and let I be a nonzero principal ideal of R. Prove that I is isomorphic to R as an R-module.

Solution. Let $a \in R$ be nonzero, and let $I = (a) \subseteq R$ be the principal ideal of R generated by a. Note that if $x \in I$, then there exists some $r \in R$ such that x = ra. Since R is an integral domain, we can see that $x = r_1a = r_2a$ implies $r_1 = r_2$, and so the following function is well-defined:

$$\varphi: I \to R;$$

$$ra \mapsto r$$

To verify that this is an R-module homomorphism, note that we have, for all $r \in R$,

$$\varphi(r_1a + r_2a) = \varphi((r_1 + r_2)a)$$

$$= r_1 + r_2$$

$$= \varphi(r_1a) + \varphi(r_2a).$$

Additionally, we have for all $r, s \in R$,

$$\varphi(s(ra)) = \varphi((sr)a)$$

$$= sr$$

$$= s\varphi(ra);$$

hence φ is an R-module homomorphism, as desired.

Additionally, note that if $r \in R$, then $r\varphi(ra)$, and so φ is surjective. If $\varphi(ra) = 0$, then r = 0 by definition, and so φ is injective. Hence φ is an isomorphism of R-modules between I and R, as desired.