3 11102024-173009

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.27 + 0.23\mathrm{i}$.

Найти модуль (в дБ) коэффициента передачи s_{21} .

Варианты ОТВЕТА:

- 1) -1.2 дБ
- 2) -1.9 дБ
- 3) -0.6 дБ
- 4) -0.9 дБ

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -3.7\,$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 11~ дБм.

Какая мощность рассеивается внутри цепи коррекции?

Варианты ОТВЕТА:

- 1) 7.2 мBт
- 2) 4.7 mBT
- 3) 5.4 мВт
- 4) 1.2 mBT

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 2 ситуаций соответствует эта частотная характеристика?

Рисунок 2 – Различные реализации Г-образной цепи согласования

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\rm h}=7.0~\Gamma\Gamma$ ц и $f_{\rm b}=7.8~\Gamma\Gamma$ ц, используя рисунок 3.

Рисунок 3 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.1 дБ 2) 0.6 дБ 3) 1.4 дБ 4) 1.2 дБ

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.6	0.457	-151.6	18.003	90.5	0.028	56.5	0.324	-70.8

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет docmamouho, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

Варианты ОТВЕТА:

- 1) аттенюатор с затуханием 2.5 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 1.1 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 0.8 дБ, подключённый к плечу 2;
- 4) аттенюатор с затуханием 1.7 дБ, подключённый к плечу 2.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.352	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 4), который может обеспечить согласование со стороны плеча 1 на частоте 2.0 $\Gamma\Gamma$ ц.

Рисунок 4 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D