2017-2018 学年第二学期《大学物理 I》(课内)期末试卷 A卷

(机电工程学院 2017 级)

授课班号____

动惯量 J_z = _______。

学号 姓名_

总分

题分	56	14	16	14		
得分						
相关常数:1	大气压=1.013	8×10 ⁵ pa. 0°C	= 273.15K,	R = 8.31J/m	ol.K, $k = 1.38$	$\times 10^{-23} J/K$
	$N_0 = 6.02$	×10 ²³ 。			阅卷	得分
一、填空题	(毎空2分, 非	₹ 56 分)				
1、质量	为 2kg 的物体	在外力作用下	,其的运动方	理为 $\begin{cases} x = 2\cos x \\ y = 3\sin x \end{cases}$	πt πt (SI 制),则i	核物体在 仁
时速度	v =		m/s m-s-1, 加	速度 ā =		m/s2 .
切向加速	速度的大小a,	=		加速度大小 a, =	=	7/52: 该物体
在最初	1秒中受到外;	力的冲量		N·s,外力对其	₩功A=	J
					後。开始时杆静	
止于水	(平方向,当	它自由下落至	与铅直线成 4	5°角时,该细	杆的角加速度	
为	,角	速度为				A
3, (m)	图所示: 在 XO	Y平面内沿 y=x	方向放置一根	长为L、质量为	m áti fa stí éta áti	v.A

组棒中心处于原点;则该细棒对X轴的转动惯量 $J_X=$ _____,对Z轴的转

	Construction for the first of	hate and the
4、一质量为 M 的物体在光滑水平面上作简谐振动,		
24cm/s, 该谐振动的周期 T=, 当速	度是 18cm/s 时物体离开平衡位置	的距离
为		
5、一根长为1的细绳一端固定,另一端系一质量为	m 的物体组成的单摆; 今将物体在平	衡位置
时给与一个微小水平初速 vo, 任其在整直平面内做小角	度的角振动。以放手时刻作为计时起	点, 物
体起始运动方向为角位移正方向。则物体做简谐振动的	的振幅为,周期为	
初相位为,从起始位置运动到振幅一半位置		
6、一平面简谐波沿 Ox 轴正向传播,波函数为y=0.1	$1\cos[2\pi(\frac{t}{4}-\frac{x}{3})-\frac{\pi}{2}]$ (SI 制),则 $t=1s$ 时	, x=1m
处质点的位移为。速度为。		
7、图示为平面简谐波在 $t=0$ 时的波形图,设此简度为 $10m_g'$;	J谐波在介质中的传播速 (205)	x(m)
(1) 若该波沿 x 轴正向传播,则该简谐波的波函	数为	_,
(2) 若该波沿 x 轴正向传播,则该简谐波的波函	数为	
8、标准状态下(1 个大气压,0℃),氧气分子(分子有效直径为3×10 ⁻¹⁰ m)的平均平式	动动能
为,分子的平均速率为		
9、假设某种气体的分子速率分布函数f(v)与速率 t	1	
分子总数为 N, 则 k =; 而 ʃ	*Nf(v)dv 的意义	
是	o v ₀ 2t	-> v

2. 计算题(44分) 1. (14分) 一切原理杆长 I=0.5m. 质量为 I=24c. 可使上端的先 限卷 得分 图卷 用分 图卷 图卷 图卷 图卷 图卷 图卷 图卷 图	7 10、一定	量的某种双原子分子理想	气体在等压过程	中对外作功为	100万: 贝	讨谈过程中	中气体内部
1、(14分) 一均质细杆长 I=0.5m, 质量为 M=2kg, 可绕上端的光 阅要 图分	量为	J; 吸收热量为_	J.				
1、(14分) 一均质细杆长 I=0.5m, 质量为 M=2kg, 可绕上端的光 阅要 图分							
1、(14分) 一均质细杆长 I=0.5m, 质量为 M=2kg, 可绕上端的光 得出空轴 O 在客育平面内自由转动。有一质量为 m=20g 的子弹以							
	1. (144	分) 一均质细杆长 l=0.5m	,质量为 M=2kg	,可绕上阳阳允		阿米	得分
	滑固定轴 O	在竖直平面内自由转动速度水平击中静止悬挂的	。有一质量为 m 的细杆中心,并以	=20g 的子弹以 l 80 ^{m/} s 的速度	-		

2、(16分) 一平面简谐波沿 x 轴正向传播。已知振幅为 A, 频率 为 v. 游长为 2.

(1) 若 r=0 时,原点 O 处质元正好由平衡位置向位移正方向运 动,写出此波的波函数:

(2) 若在 $x = \frac{3\lambda}{4}$ 处有一反射面,如图所示,设反射波的报幅与入射波相同,求反射波的波函

0 技術 技密 ← 3½ → X 数; (3) 写出因入射波与反射波干涉而静止的各点位置坐标。

3、(14分) 20克氢气经历如图所示的循环过程。其中 ca 是等语

	阅卷	得分
1		

过程。

求;(1)写出a,b,c三个状态点的压强、温度;(2)各分过程吸收的热量;(3)此循环的效率。

一、填空题(共56分,每空2分)

1,
$$-3\pi \overline{j}$$
, $2\pi^2 \overline{i}$, 0 , $2\pi^2$, $-12\pi \overline{j}$, 0

$$2, \ \frac{3\sqrt{2}g}{4l}, \ \sqrt{\frac{3\sqrt{2}g}{2l}}$$

$$3. \ \, \frac{1}{24}mL^2 \cdot \frac{1}{12}mL^2$$

$$4, \ \frac{2\pi}{3}(s) \ , \quad \underline{8cm}$$

$$5. \ \frac{v_0}{\sqrt{gl}} \ \cdot \ \frac{2\pi\sqrt{\frac{l}{g}}}{\sqrt{g}} \ \cdot \ \frac{-\pi}{2} \ \cdot \ \frac{\pi}{6}\sqrt{\frac{l}{g}}$$

6.
$$-0.05m$$
 . $\frac{\sqrt{3}\pi}{40}$

7.
$$y_i = 0.1\cos\left[2\pi\left(\frac{35t}{6} - \frac{7x}{12}\right) - \frac{\pi}{3}\right]$$
 $y_i = 0.1\cos\left[2\pi\left(\frac{35t}{6} + \frac{7x}{12}\right) + \frac{\pi}{3}\right]$

8.
$$5.654 \times 10^{-21} J$$
. $426 \frac{m}{s}$. $9.34 \times 10^{-8} m$

9、
$$\frac{2}{3\nu_0}$$
、 $\underline{\mathcal{O}}$ 、 $\underline{\mathcal{O}}$ 这事在 $(0, \nu_0)$ 区间内的分子数、 $\underline{\frac{7}{9}\nu_0}$ 、

三、计算题: (共44分)

$$mv_1 \frac{l}{2} = mv_2 \frac{l}{2} + \frac{1}{3}Ml^2 \omega$$

$$\omega = 3.6 rad/$$
(7 53)

(2) 碰撞后能量守恒

$$\frac{1}{2} \cdot \frac{1}{3} M l^2 \omega^2 = M g \frac{l}{2} (1 - \cos \theta)$$
 (7.5)

$$\theta = \arccos 0.784$$

. (16分)

(1)
$$y_1 = 0.1\cos 2\pi \left(t - \frac{x}{10}\right)$$
 $0 \le x \le 15$ (6.5)

(2)
$$y_2 = 0.1\cos\left[2\pi\left(t + \frac{x}{10}\right) + \pi\right] \quad x \le 15$$
 (6.37)

3 (14分)

$$p_a = 10^5 \text{ pa}, V_a = 0.1 \text{m}^3, T_a = 240 \text{K};$$
 (152)

(1)
$$p_b = 10^5 pa_s V_b = 0.8m^3$$
, $T_a = 1920 K$; (2½)
 $p_c = 3.12 \times 10^3 pa_s V_c = 0.8m^3$, $T_c = 60 K$; (2½)

$$O_{+} = 5 \times 2.5R \times \Delta T = 1.745 \times 10^{5} J;$$
 (2½)

$$Q_{ab} = 5 \times 2.5R \times \Delta T = 1.745 \times 10^{5} J;$$
 (2) $Q_{ab} = 5 \times 1.5R \times \Delta T = -1.159 \times 10^{5} J;$ (2)

2)
$$Q_{cc} = 5 \times 1.5 R \times \Delta I = -1.159 \times 10^{-3}$$
, (2) $Q_{cd} = 0$; (1分)

(3)
$$\eta = 1 - \frac{Q_2}{Q_1} = 33.58\%$$
 (4%)

日期: 20(8.6.4