

Mathématiques

Classe: BAC MATHS

Chapitre: Divisibilité dans Z

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

3 pt

- a. Déterminer les entiers n, pour lesquels 3n+5 divise 8.
- **b.** Déterminer les entiers n, pour lesquels 13 divise n+4 et $|n| \le 22$.
- **c.** Déterminer les entiers n tels que n-4 divise n+17.

Exercice 2

(5) 15 min

3 pt

- **a.** Résoudre dans \mathbb{Z}^2 l'équation $x^2=4y^2+3$.
- **b.** Développer (x-2)(y-3). Puis déduire les couples (x; y) de tel que xy = 3x+2y.
- **c.** Déterminer les couples (x; y) d'entiers relatifs tels que $x^2=y^2+13$.
- d. Déterminer les couples (x; y) d'entiers relatifs tels que 3x²+y²=21

Exercice 3

4 pt

- 1) Déterminer les entiers naturels a tel que 2 et 3 sont les seuls diviseurs premiers de a, et le nombre de diviseurs de a² et le triple du nombre de diviseurs de a.
- 2) Soit n un naturel impair. Montrer que la somme S de n entiers naturels consécutifs, est divisible par n.
- **3)a.** Soient a et b deux naturels non nuls, montrer que : (a²+b² est impair) ⇔ (a et b sont de parité différentes).
- **b.** Montrer que si un naturel impair n est la somme de deux carrés alors il existe $k \in \mathbb{N}$ tel que n=4k+1.

Exercice 4

(5) 15 min

4 pt

- 1)Sachant que $1159 = 47 \times 24 + 31$, en déduire le quotient q et le reste r de la division euclidienne de:
- **a.** 1159 par 47 1159 par -24.
- **b.** 1159 par 24
- **c.** -1159 par 24
- **d.** -1159 par -47
- e.
- 2) Soit n est un entier naturel tel que le reste de sa division euclidienne par 7 est égal au reste de sa division euclidienne par 3. Quels sont les valeurs possibles de n.
- 3) Les restes consécutifs de la division euclidienne de deux naturels m et n par 17 sont 8 et 12. Déterminer les restes de la division euclidienne de (m+n); mn et m² par 17.

Exercice 5

(\$\) 15 min

3 pt

- 1) Soit $n \in \mathbb{N}$, calculer $1+5+5^2+...5^n$, puis déduire le reste de la division euclidienne de 5ⁿ⁺¹ par 4.
- **2) a.** Montrer, par récurrence que: $\forall n \in \mathbb{N}$, le chiffre des unités de n^5 n est 0.
 - **b.** En déduire que $\forall p \in \mathbb{N}^*$, n^{p+1} et n^{p+5} ont le même chiffre des unités.

Exercice 6

(S) 25 min

4 pt

- 1) Soit $n \in \mathbb{N}$ *, effectuer la division euclidienne de a par b pour a=3n²+n et b=n+1.
- 2) Soit $n \in \mathbb{N}$, déterminer selon les valeurs de n le reste de la division euclidienne de 4n+27 par n+5.
- 3) Soit a et n deux entiers tel que a divise n-1 et $n^2 + n + 3$.
 - a. Déduire que a divise 3n + 2.
 - **b.** Montrer alors que a divise 5.
 - c. Déduire les valeurs possibles de a.

Exercice 7

(5) 15 min

3 pt

- 1) Vrai ou Faux:
- **a.** $45 \equiv 3[7]$ 7[10]
- **b.** $29 \equiv -1[6]$
- **c.** $-13 \equiv 2[3]$
- **d.** $152 \equiv 2[3]$
- **e.** $137 \equiv -3[5]$
- **f.** -17≡-

2) x un entier dont le reste modulo 7 est 2.

Déterminer les restes modulo 7 de (x+5), (x-5), (-15x) et x^3 .

- 3) n un entier naturel ≥ 2, dans chacun des cas ci-dessous déterminer les valeurs de n pour lesquelles:
- **a.** $46 \equiv 0 [\text{mod n}]$

- **b.** $10 \equiv 1 \text{[mod n]}$
- **c.** $27 \equiv 5 \pmod{n}$

Exercice 8

© 25 min

5 pt

- 1) Déterminer r dans chacun des cas ci-dessous:
- **a.** $7^{8043} \equiv r [\text{mod} 2011]$
- **b.** $7(3^{2000}) \equiv r[\text{mod}2]$ **c.** $(6^6)^6 \equiv r[\text{mod}7]$

- $7(49^{11})+1 \equiv r[23]$
- **e.** $6(8^{100}) + 1 \equiv r [\text{mod} 31]$ **f.** $53^{62} \equiv r [\text{mod} 61]$ **g.** $11(7^6)^{10} \equiv r [\text{mod} 13]$ **e.**

$$2^{103} + 1 \equiv r[97]$$
.

2) VRAI OU FAUX

Soit n un entier naturel, alors:

a.
$$3^{6n+3} + 1 \equiv 0 \lceil mod 7 \rceil$$
 b. $n^7 + 6n \equiv 0 \lceil mod 7 \rceil$ **c.** $7^{3n} \equiv 1 \lceil mod 9 \rceil$ **d.**

$$3^{6n+2} + 3^{3n+1} + 1 \equiv 0 \lceil mod 13 \rceil$$

- 3) Déterminer les restes modulo 7 de:
- **a.** 2^{213}
- **b.** 3²¹⁵
- **c.** 2012²¹³
- **d.** $421^{120} \times 99^{15}$
- **e.** 93¹²⁰- 44¹²⁰.

Exercice 9

5 pt

- **1)a.** Soit $n \in \mathbb{N}$, discuter suivant les valeurs de n les restes de la division euclidienne de 3^n et 4^n par7.
 - **b.** En déduire les solutions dans $\mathbb N$, de l'équation $3^x+4^x\equiv 0\big[mod7\big]$.
 - **c.** Montrer que $\forall n \in \mathbb{N}$, $2019^{6n+1} + 2 \times 2020^{3n+2}$ est divisible par 7.
- **2)** Pour tout entier naturel n, on pose: $u_n = 2 \times 3^n + 3 \times 4^n$ et $S_n = \sum_{k=0}^n u_k$.
 - a. Exprimer S_n en fonction de n.
 - **b.** pour quelles valeurs de $n, S_n \equiv 0 \lceil mod 7 \rceil$.

Exercice 10

5 pt

1) déterminer l'ensemble E des entiers tels que 4x = 6[7]

Méthode:

On travaille par disjonction des cas: on étudie suivant les congruences modulo 7 de x, les congruences de 4x modulo 7. On résume les résultats dans un tableau de congruences, puis on déduit les résultats.

x mod 7	0	1	2	3	4	5	6
4x mod 7							

- 2) Résoudre dans $\ensuremath{\mathbb{Z}}$ chacune des équations suivantes :
- **a.** $6x \equiv 3 [mod 4]$ **b.** $4x \equiv 3 [mod 7]$ **c.** $12x \equiv 2 [mod 9]$ **d.** $5x \equiv 4 [mod 6]$
- **e.** 2x = 3[mod5]

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000