

Lecture 1

Course Introduction – Types of Robots and Application Areas – Terminologies

Course Introduction

Course Introduction - Topics

- Forward Kinematics
- Inverse Kinematics
- Velocity Kinematics
- Differential Kinematics
- Trajectory Generation
- Linear Control for Manipulators
- Robot Forces
- Dynamics
- Ethics

Course Introduction - Textbooks

Course Introduction - Outcomes

- Identify various terms for serial robot manipulators
- Derive kinematics and dynamic models
- Design algorithms to control the motion of the robot
- Program a complete real-world robotic system with ROS
- Choose and utilize sensors and actuators for a given robot configuration and task
- Implement kinematic models and control algorithms in robotic simulators

Course Introduction - Grading Policy

Quizzes and assignments	50%
Lab assignments	50%

Late Policy: Each day (>24 hours) of late submission results in a deduction of one point

Letter Grade	Percentage
Α	90 - 100
В	80 - 89
С	70 - 79
D	60 - 69
F	< 60

What is a robot?

Definition by Britannica:

"any automatically operated machine that replaces human effort, though it may not resemble human beings in appearance or perform functions in a humanlike manner."

Laws of Robotics

- 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- 2. A robot must obey the orders given by human beings, except when such orders would conflict with the first law.
- 3. A robot must protect its own existence, as long as such protection does not conflict with the first or second law.

Isaac Asimov

Today: Robotics is extensive and growing

Types of Robots

- 1. Aerospace
- 2. Consumer
- 3. Disaster Response
- 4. Drones
- 5. Education
- 6. Entertainment
- 7. Exoskeletons
- 8. Humanoids

- 9. Industrial
- 10. Medical
- 11. Military & Security
- 12. Research
- 13. Self-driving Cars
- 14. Telepresence
- 15. Underwater

Types of Robots - Aerospace

- SmartBird
 - Robotic seagull
- Raven
 - Surveillance drone
- Space robots
 - NASA's Robotnaut

SmartBird

rd Raven

NASA Robonaut

Types of Robots - Consumer

- Used for fun or help with your chores:
 - Aibo
 - Roomba vacuum
 - AI-powered robot assistants for kids

Types of Robots - Disaster Response

- Perform dangerous jobs
 - survivor searching
 - PackBots
 - Damage inspectors
 - Nuclear power station

Packbots

Flyability

Quince

Types of Robots - Drones

- Unmanned Aerial Vehicles (UAVs)
 - DJI Phantom
 - Skydio
 - Global Hawk

DJI Phantom

<u>Skydio</u>

Global Hawk

Types of Robots - Education

- Aimed for the next generation of roboticists
 - Home
 - classroom robots
 - Programmable Legos
 - 3D printers
 - Teacher robots
 - EMYS

FLASH Robotics

Types of Robots - Entertainment

- Designed to evoke emotional responses.
 - RoboThespian
 - Disney's' theme park robots
 - Navi Shaman
 - Musicians
 - Partner

RoboThespian

Navi Shaman

<u>Toyota</u> <u>Partner</u>

Types of Robots - Exoskeletons

- Physical-therapy robot
 - Industrial
 - Military
- Added mobility, endurance to the wearer

Ekso bionics

Guardian XO

HAL (Hybrid Assistive Limb)

Types of Robots - Humanoids

- Human-like structure and behavior
 - Honda Asimov
- Human-like appearance
 - Geminoid series

Geminoid F

Geminoid DK

Types of Robots - Industrial

- Robotic manipulators
 - Unimate
 - Amazon's warehouse robots
 - Collaborative robots
 - Rethink robots
 - Baxter
 - Sawyer

Warehouse robot

<u>Baxter</u>

Types of Robots - Medical

- Health-care robots
 - Surgical
 - Da Vinci
 - Bionic Prostheses
 - Exoskeletons
- Answering medical-related questions
 - Watson supercomputer

Bionic Prostheses

IBM - Watson

Types of Robots - Military & Security

- Ground systems
 - Endeavor Robotics' Packbot
- Troop assisting robot
 - BigDog
- Security systems
 - Cobalt

<u>BigDog</u>

Mostly

PackBot 510

Types of Robots - Research

- University-based robots
 - Laboratories
 - Corporate research labs

FLASH /Wroclaw University of Technology

Agility Robotics
/Oregon State
University

<u>Dash</u>
/<u>University of</u>
California Berkeley

Types of Robots - Self-Driving Cars

- Autonomous vehicles that drive people
 - DARPAS' autonomousvehicle competition
 - Google's Toyota Prius
 - Waymo

<u>Carnegie Mellon</u> <u>University</u>

Google's
Autonomous
Prius

<u>Waymo</u>

Types of Robots - Telepresence

- Robotic avatars connected to the internet
- <u>Tele-Medicine</u>
- Tele-Education

Types of Robots - Underwater

- Deep-sea exploration
 - Aquanaut
 - Ocean One
 - ACM-R5H snakebots

Terminologies

Kinematics vs. Kinetics

- Kinematics: Study of the motion of the body including position, velocity, and acceleration without considering the force causing the motion.
- Kinetics: Study of forces in the system. Usually known as Dynamics!

Robotic Manipulators

- Manipulator
 - Series of links connected via joints
 - Actuators (e.g., motors)
 cause relative motion
 - Base
 - End-effector

Robotic Operating System (ROS)

Robotic Manipulators

- Fixed Robots: (fixed in place) manipulation (mostly industrial robots)
 - Serial arm robots (manipulators)

Basic terms:

- Manipulation: making changes to the environment no matter what!
- Manipulator: A robot that does manipulate (does manipulation tasks)!
- Workspace: the space or the total volume reachable by the end-effector of the manipulator.
- End-effector: the tip of the manipulator used to manipulate the environment
- <u>Degrees-of-freedom</u>: an independent joint that can provide freedom of movement of the manipulator
- Joint-type: the way a joint link moves the neighbor joints.

Robotic Manipulators - Workspace

Representation of the portion of the environment the manipulator's end-effector

can access.

Shape and volume depend on

- the manipulator structure
- the mechanical joint limits

Robotic Manipulators - Workspace - Examples

Cartesian manipulator and its workspace

SCARA manipulator and its workspace

 $Gantry\ manipulator$

Cylindrical manipulator and its workspace

Spherical manipulator and its workspace

Anthropomorphic manipulator and its workspace

Worcester Polytechnic Institute

Robotic Manipulators - Degrees of Freedom (DoF)

- Independent joint that provide freedom of movement
 - Rotational
 - Translational
- 6 DoFs required for manipulation of objects in 3D space
- > 6 DoFs: <u>Redundant</u> manipulator

6-DOF serial robot OUR-1.

Robotic Manipulators - Joint types

- Revolute joint (R): is like a hinge and allows relative rotation between two links.
 - The joint variable is θ .
- Prismatic joint (P): allows a linear relative motion between two links.
 - The joint variable is d.

Robotic Manipulators - Joint types - Examples

Articulated

RPP Cylindrical

RRP Spherical

Robotic Manipulators - Types

- 1. Cartesian / Gantry robot
- 2. Collaborative robot / Cobot
- 3. Cylindrical
- 4. Spherical / Polar
- 5. SCARA
- 6. Articulated
- 7. Parallel
- 8. Anthropomorphic

Robotic Manipulators - Types - Cartesian/Gantry

- Designed with three perpendicular axes (x, y, z)
- Accurate positioning along straight lines
- Constructed with rigid beams and linear actuators
- High repetitive tasks with speed
- Applications:
 - Manufacturing
 - Packaging
 - Assembly lines

Robotic Manipulators - Types - Collaborative

- Designed to work alongside humans
- Equipped with advanced sensors and safety features
- Flexible, adaptable to perform various tasks
- Safe Human-Robot Interaction (HRI)

Robotic Manipulators - Types - Cylindrical

- Designed with a cylindrical coordinate system
- Precise lateral movements and vertical reach
- Navigate around object
- Access areas with restricted space
- Applications:
 - Assembly lines
 - Materials handling
 - Machining operations

Robotic Manipulators - Types - Spherical / Polar

- Designed with spherical joints
- Employ spherical coordinate system
- Flexibility in reaching diverse positions and orientations
- Applications:
 - Assembly lines
 - Inspection
 - Medical procedures

Robotic Manipulators - Types - SCARA

- Selective Compliance Assembly Robotic Arm (SCARA)
- Feature three parallel rotary joints
 - movements X-Y plane
 - arm remains rigid in Z-axis direction
- Assembly lines, pick and place
- Handling tasks with high speed and accuracy

Robotic Manipulators - Types - Articulated

- Mimic the human arm
- Wide range of motion
- Equipped with sensors, motors and advanced control systems
- Applications:
 - Manufacturing,
 - Assembly lines
 - Surgery

Robotic Manipulators - Types - Parallel

- Interconnected, parallel-arranged links and joints
- Multiple limbs that converge on a common end -effector
 - Enhanced stability and precision
 - Efficient force distribution
 - Reduced inertia
 - Increased payload capacity
- Applications:
 - Manufacturing
 - Aerospace
 - Medical fields

Robotic Manipulators - Types - Anthropomorphic

- Mimic the structure and functionality of the human arm
- Human-like movements and dexterous manipulation
- Perform tasks that may be hazardous to humans
- Applications:
 - Manufacturing
 - Healthcare
 - Space exploration

... end of Lecture 1

