EE564 PROJECT #2 MOTOR WINDING DESIGN AND ANALYSIS

CİHAN AYDAR 2043677

TABLE OF CONTENTS

1. INTRODUCTION	3
2. WINDING DESIGN	3
3. MOTOR PARAMETER ESTIMATION	5
4. DETAILED ANALYSIS AND VERIFICATION	6
4.1 INPUTS	
4.2 OUTPUTS	
5. CONCLUSION	
6. REFERENCES	
0. REFERENCES	24
LIST OF TABLES	
Table 1 Winding Design Parameters	
Table 2 Winding Design Calculations	
Table 3 Winding Diagram	
Table 4	er işareti tanımlanmamış.
LIST OF FIGURES	
Figure 1 MMF Waveform	5
Figure 2 Stator Inputs	6
Figure 3 Stator Geometry	7
Figure 4 Stator Winding	7
Figure 5 Stator Insulation	7
Figure 6 B-H Characteristics	8
Figure 7 Rotor Structure	8
Figure 8 Rotor Geometry	9
Figure 9 Input Data	9
Figure 11 Locked Rotor Operation	
Figure 12 Material Consumption	11
Figure 13 No Load Operation	12
Figure 14 Rated Electric Data	12
Figure 15 Rated Magnetic Data	13
Figure 16 Rated Parameters	14
Figure 17 Rated Performance	14
Figure 18 Stator Slot Geometry	15
Figure 19 Stator Winding	
Figure 20 Phase Current vs Output Power	16
Figure 21 Phase Current vs Speed	17
Figure 22 Power Factor vs Output Power	17

gure 27 Inc	•			
5.00		Torque	Maxwell2DDe	esign3
0.00				
5.00				
5.00				
5.00			Curve Info avg	
			Moving1.Torque Setup1: Transient 1.9190	
0.00				
.00				
.00				
0.00	20.00	Time [ms]	60.00 80.00	100
0.00				2
-	_			

1. INTRODUCTION

The main purposes of project are to design three phase induction motor and then verify it in a FEA program.

2. WINDING DESIGN

Firstly, lamination 1 is chosen for induction motor design. All calculation methods can be seen in 'Winding Design' excel file.

Number of Poles	4				
	Integral, Double Layer, Distributed				
Type of Winding	Winding	3. H	5. H	7. H	9. H
Winding Factors	0,9598	0,66667	0,21757	-0,1774	-0,3333
Number of Turns	180				
Wire Size	14AWG	<	2,177	(mm^2)	
Fill Factor	0,7				
Winding Connection	wye				
Voltage Rating (V)	380				
Current Rating (A)	4,6				

Output Power Rating (W)	3000		
Frequency	50		
Input Power Rating (W)	3308,15		

Table 1 Winding Design Parameters

Number of StatorSlots	36	
Slots per Pole	9	
Slot per Pole per Phase	3	
Slot Angle (degree)	20	0,34907
Conductors per Slot	30	
Nphase	180	

Table 2 Winding Design Calculations

	Α	C-				В		
a1	a2	a3	c10-	c11-	c12-	b1	b2	b3
a10	a11	a12	c7-	c8-	c9-	b10	b11	b12

	Α-			С			B-	
a4-	a5-	a6-	c1	c2	с3	b4-	b5-	b6-
a1-	a2-	a3-	c10	c11	c12	b1-	b2-	b3-

	Α			C-			В	
a7	a8	a9	c4-	c5-	с6-	b7	b8	b9
a4	a5	a6	c1-	c2-	c3-	b4	b5	b6

	A-			С			B-	
a10-	a11-	a12-	c7	с8	с9	b10-	b11-	b12-
а7-	a8-	a9-	c4	c5	c6	b7-	b8-	b9-

Table 3 Winding Diagram

Figure 1 MMF Waveform

3. MOTOR PARAMETER ESTIMATION

Flux per Pole (Wb)	0,00572		
Bavg (T)	0,31667		
Airgap Clearance (m)	0,001		
Torque (N.m)	20,4628		
Speed (rad/s)	146,608	1400	rpm

Axial Length (m)	Di (m)	Do (m)	A (mm^2)
0,2	0,115	0,17	93,3

Specific Magnetic Loading			Specific Electric Loading-q
(T)	Flux Density in Teeth (T)	Flux Density in Core (T)	(A/m)
0,316665866	1,5	1,5	16962,62751

Full-Load Efficiency	Full-Load Power Factor	ns (rps)	Output Coefficient	D^2.L(m^3)
0,90685043	0,8	25	41,14255258	0,002645

Pole Pitch (m)	I_mt (m)	Phase Resistance (ohm)	Stator Copper Losses (W)
0,090320789	0,84774	3,081200902	195,5946332
		(17AWG-1,04mm^2)	

Phase Inductance (mH)	Leakage Inductance (mH)	Core Mass (kg)	Core Loss (W)
20,3575204	-	35,63587087	33,85407732

Table 4 Calculation Results

4. DETAILED ANALYSIS AND VERIFICATION

4.1 INPUTS

Figure 2 Stator Inputs

Figure 3 Stator Geometry

Figure 4 Stator Winding

Figure 5 Stator Insulation

Figure 6 B-H Characteristics

Figure 7 Rotor Structure

Figure 8 Rotor Geometry

Figure 9 Input Data

4.2 OUTPUTS

Figure 10 Locked Rotor Operation

Figure 11 Material Consumption

Figure 12 No Load Operation

Figure 13 Rated Electric Data

Figure 14 Rated Magnetic Data

Figure 15 Rated Parameters

Figure 16 Rated Performance

Figure 17 Stator Slot Geometry

Figure 18 Stator Winding

Figure 19 Phase Current vs Output Power

Figure 20 Phase Current vs Speed

Figure 21 Power Factor vs Output Power

Figure 22 Power Factor vs Speed

Simulation: Setup1 Performance

Design Variation:

Performance Design Sheet Curves

Name: Efficiency vs Speed

75.00
62.50
62.50
63.7.50

Figure 23 Efficiency vs Output Power

Figure 24 Efficiency vs Speed

750.00 Speed (rpm) 1000.00

500.00

25.00

12.50

0.00 -

250.00

Curve Info

Efficiency

1500.00

1250.00

Figure 25 Torque vs Speed

Figure 26 Induced Voltages vs Time

Figure 27 Torque vs Time

Figure 28 Power vs Time

Figure 29 Input Phase Currents

Figure 30 Flux Lines

Figure 31 Magnitude of Magnetic Flux Density

Figure 32 Magnetic Flux Density Vector

5. CONCLUSION

There are several significant design goals such as overall system efficiency, weight, cost, size. In order to achieve design optimization goal, the interaction between design parameters must be known well.

Best power factor with maximum efficiency is the main goal of design process. Geometry of the design is already chose. Design steps are based on following algorithm:

- 1. Calculate magnetic loading to get desired voltage
- 2. Determine rated torque and speed of induction motor
- 3. Calculate the approximate core and copper losses at the rated operating conditions by considering friction and windage losses
- 4. Calculate output coefficient based on geometry and desired output power Q
- 5. Calculate specific electrical loading

All in all, analytical approach is verified via FEA tool as seen above. All design process such as advantages and disadvantages of different stator designs, choices are referred on 'Design of Induction Motors' material [1].

6. REFERENCES

[1] Keysan, O. (2018, 03). Design of Induction Motors: Received from http://keysan.me/ee564/