Listing of the Claims

1-7	(Canceled)

 8. (Currently Amended) A computer implemented best indicator adaptive (BIA) method for demand forecasting comprising the steps of:

computer-implemented implementing a plurality of forecasting subsystems which make use of indicators Load (L), Ship (S) and Customer Acceptances (CA) history (CA_{ber});

 $\underline{computer-implemented} \ \ \underline{generating} \ \ a \ \ forecast \ (CA_t) \ \ from \ \ Load \ (L) \ \ \underline{by \ modeling \ the ratio}$ of quarter-to-date load to quarter CA actual as a random variable with gamma distribution so that the CA becomes a variable with generalized gamma distribution and computing the sample mean and sigma of the $\underline{quarter-to-date \ load \ to \ quarter\ CA \ actual \ \underline{Load-to-CA}}$ ratio for a final forecasted CA_t demand;

computer-implemented generating a forecast (CA_s) from Ship (S) by modeling the ratio of quarter-to-date ship to quarter CA actual as a random variable with gamma distribution so that the CA becomes a variable with generalized gamma distribution and computing the sample mean and sigma of the Ship-to-CA quarter-to-date ship to quarter CA actual ratio for a final forecasted CA_s demand;

computer-implemented generating a forecast (CA_{LS}) from Load and Ship (LS) by forecasting Customer Acceptances (CA) based on Load (L), Ship (S) and Customer Acceptances history (CA_{har}) to generate CA_{LS} by estimating the functional relationship and the parameters relating the two ratios $\frac{Load-to-CA}{LS}$ quarter-to-date load to quarter $\frac{CA}{LS}$ actual and $\frac{CA}{LS}$ quarter-to-date ship to quarter $\frac{CA}{LS}$ actual:

<u>computer-implemented</u> generating a forecast from Customer Acceptances history (CA_{hin});
<u>computer-implemented</u> refining the forecasts based on distribution demand using
Customer Requested Date (CRAD) by

generating a forecast from Load (L) and CRAD as CA_{LCRAD}, generating a forecast from Ship (S) and CRAD as CA_{SCRAD}, and generating a forecast from Load (L) and Ship (S) and CRAD as CA_{SCRAD}.

26 for each forecast CA_L, CA_S, CA_{LS}, CA_{LCRAD}, CA_{SCRAD}, CA_{LSCRAD}, and CA_{hir}, determining
27 a forecast error:

<u>computer-implemented</u> eliminating CA_{LS} and CA_{LS,CRAD} if data is for a historical period shorter than a predetermined period;

eliminating any other forecast due to expert knowledge;

28 29

30

31

32

33

2

3

7

10

11 12

13

14

15

16

17

18

19

20

for all remaining forecasts, selecting a <u>the</u> forecast having a <u>the forecast error</u> that is the smallest error; and

outputting a the selected forecast as an optimum forecast.

(Currently Amended) A computer implemented best indicator adaptive (BIA) method for demand forecasting comprising the steps of:

inputting Load (L), Ship (S) and Customer Acceptances (CA) quarterly history (CA_{hit}) data;

<u>computer-implemented</u> implementing a plurality of forecasting subsystems making use of four sources of information, Load (L), Ship (S), Customer Acceptances quarterly history (CA_{hin}) , and Customer Request Date (CRAD);

<u>computer-implemented</u> forecasting Customer Acceptances (CA) based on Load (L) to generate CA_L by modeling a ratio of quarter-to-date load to quarter CA actual as a random variable with gamma distribution so that the CA becomes a variable with generalized gamma distribution whose mean and sigma <u>can be are</u> easily computed from the sample mean and sigma of the <u>Load-to-CA</u> quarter-to-date load to quarter CA actual ratio;

computer-implemented forecasting Customer Acceptances (CA) based on Ship (5) to generate CA_S by modeling the ratio of quarter-to-date ship to quarter CA actual as a random variable with gamma distribution so that the CA becomes a variable with generalized gamma distribution whose mean and sigma can be are easily computed from the sample mean and sigma of the Ship-to-CA quarter-to-date ship to quarter CA actual ratio;

computer-implemented forecasting Customer Acceptances (CA) based on Load (L), Ship (S) and Customer Acceptances history (CA_{hird}) to generate CA_{LS} by estimating the functional relationship and the parameters relating the two ratios Load-to-CA quarter-to-date load to quarter

	CA actual and Ship-to-CA quarter-to-date ship to quarter CA actual;	
	computer-implemented using a log mean to sigma ratio of CRAD distribution, adjusting	
	the forecasts CA_L , CA_S and CA_{LS} to arrive at more accurate forecasts $CA_{L,CRAD}$, $CA_{S,CRAD}$, and	
	$CA_{LS,CRAD}$;	
	computer-implemented for each forecast CA_L , CA_S , CA_{LS} , CA_{LCRAD} , $CA_{S,CRAD}$, $CA_{LS,CRAD}$	
	and CA _{hist} , determining a forecast error;	
	computer-implemented eliminating CA_{LS} and $CA_{LS,CRAD}$ if data is for a historical period	
shorter than a predetermined period;		
	eliminating any other forecast due to expert knowledge;	
	for all remaining forecasts, selecting a the forecast having a the forecast error that is the	
smallest error; and		
	outputting a the selected forecast as an optimum forecast.	