## Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

**Мегафакультет**: Компьютерных технологий и Управления **Факультет**: Безопасности информационных технологий

Направление (специальность): «Информационная безопасность»

**Профиль**: 10.03.01 «Комплексная защита объектов информатизации»

### Лабораторные работы

по дисциплине

#### Криптографические методы защиты информации

**Тема задания**: «Атаки на алгоритм шифрования RSA»

|                                 | Выполнил: |
|---------------------------------|-----------|
| студент Смирнов М. Г.           |           |
|                                 | Проверил: |
| к.т.н., доцент Михайличенко О.В |           |
|                                 |           |
|                                 |           |
| Дата:                           |           |
| Оценка:                         |           |
| Оценка                          |           |

# Содержание

| 1 | Атака на алгоритм шифрования RSA посредством метода Ферма                          | 2  |
|---|------------------------------------------------------------------------------------|----|
| 2 | Атака на алгоритм шифрования RSA методом повторого шифрования                      | 4  |
| 3 | Атака на алгоритм шифрования RSA методом бесключевого чтения                       | 5  |
| 4 | Атака на алгоритм шифрования RSA, основанный на китайской теоре-<br>ме об остатках | 9  |
| 5 | Атака на алгоритм шифрования RSA посредством метода Ферма                          | 12 |
| 6 | Атака на алгоритм шифрования RSA методом бесключевого чтения                       | 18 |
| 7 | Атака на алгоритм шифрования RSA, основанный на китайской теоре-<br>ме об остатках | 21 |

# 1 Атака на алгоритм шифрования RSA посредством метода Ферма

**Цель работы**: изучить атаку на алгоритм шифрования RSA посредством метода Ферма.

Дано: N=84032429242009, e=2581907, c=54879925681459721670081829291 7828219756166178143997449483713663608001177223434260215427241527942673759 27192643574021335775875169031132502017752005215695641247980943013.

- 1. Вычисляем  $n = \sqrt{N} + 1$ . В поле A помещаем N, в поле B -2; нажимаем кнопку «D = A(1/B)». В поле D заносится число 9166921. В первой строке таблицы появляется сообщение «[error]». Это свидетельствует о том, что N не является квадратом целого числа.
- 2.  $t_1 = n + 1$ . Возводим число  $t_1$  в квадрат: A := 9166922, B := 2, C := 0 (возведение в квадрат будет производиться не по правилам модульной арифметики), нажимаем « $D = AB \mod C$ » => D = t12 = 84032458954084. Вычисляем w1 = t12 N. Для этого A := t12, B := -N, затем нажимаем «D = A + B» => D = w1 = 29712075. Проверяем, является ли w1 квадратом целого числа: A := w1, B := 2, нажимаем «D = A(1/B)» => в первой строке таблицы появляется сообщение «[error]».
- 3. При вычислении квадратного корня w4 первая строка таблицы остается пустой, а  $D = \operatorname{sqrt}(w4) = r$ , что свидетельствует об успехе факторизации. t4 = 9166925.
- 5. Производим дешифрацию шифрблока C: A:= C; B:= d; C:= N. Нажимаем «D = A B mod C». В поле D находится исходное сообщение М. Переводим М в текстовый вид. Для этого A:= M, нажимаем «D = text(A)». Повторяем с каждым шифроблоком.



Рис. 1: Результат работы программы BCalc

## 2 Атака на алгоритм шифрования RSA методом повторого шифрования

**Цель работы**: изучить атаку на алгоритм шифрования RSA посредством повторного шифрования.

Исходные данные: N=453819149023; e=1011817; C=442511634532.



Рис. 2: Вывод программы PS

## 3 Атака на алгоритм шифрования RSA методом бесключевого чтения

**Цель работы**: изучить атаку на алгоритм шифрования RSA посредством метода бесключевого чтения.

Исходные данные:  $N=516439217617; e_1=1206433; e_2=1141277; C_1=400408$  3204442415452468012822230797554903289787483505098110061423567550751095473 1411641482385993333099039568537747173260944017319588499241372980171071879  $560; C_2=374984721363438491303024498951362977218681974856365827206348175$  0497816563591115054602977347467419696315219736213858479710275820736437817 394150120430068125.

- Решаем уравнение  $e_1 \cdot r e_2 \cdot s = \pm 1$ . Для этого в поле A помещаем значение  $e_1$ , в поле B значение  $e_2$ . Нажимаем кнопку «A · D B · C = N»; C = s = -406030; D = r = 286243
- $c_1 = 400408320444$ ,  $c_2 = 94559770883$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=230407699699$ ,  $c_2^{-s}=32354372535$ .
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=745469655099$  3853366965. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=200458576327$  и преобразуем в текст «»
- $c_1 = 241545246801$ ,  $c_2 = 144847640787$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=51618928882,$   $c_2^{-s}=27509250912.$
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=141999806642$  3621640384. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=82130033820$  и преобразуем в текст «»
- $c_1 = 282223079755$ ,  $c_2 = 236499554090$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень -s по модулю N, тогда  $c_1^r=259972599441,$   $c_2^{-s}=8867154266.$

- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=230521714417$  6372365306. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=117686786725$  и преобразуем в текст «»
- $c_1 = 490328978748$ ,  $c_2 = 91691946714$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=318730996923$ ,  $c_2^{-s}=306230064232$ .
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=976050136604$  59684358136. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=315058382091$  и преобразуем в текст «»
- $c_1 = 350509811006$ ,  $c_2 = 195676236846$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=8257228465$ ,  $c_2^{-s}=292435110568$ .
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=241470351914$  7511918120. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=100777754363$  и преобразуем в текст «»
- $c_1 = 142356755075, c_2 = 105890375451$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=133217995591,\,c_2^{-s}=125953470039.$
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=167792688163$  26652598049. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=276740551605$  и преобразуем в текст «»
- $c_1 = 109547314116$ ,  $c_2 = 248047563144$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=237537182768$ ,  $c_2^{-s}=342278387913$ .
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=813038439872$  26683083184. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=283204328507$  и преобразуем в текст «»

- $c_1 = 414823859933, c_2 = 134557356194$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=277612889360$ ,  $c_2^{-s}=125487085349$ .
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=348368323411$  00813986640. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=190359328241$  и преобразуем в текст «»
- $c_1 = 330990395685, c_2 = 223041604801$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=47552794481,$   $c_2^{-s}=179282854294.$
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=852540072420$  9650351414. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=71874538543$  и преобразуем в текст «»
- $c_1 = 377471732609$ ,  $c_2 = 138272971125$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=172757639651$ ,  $c_2^{-s}=10278982505$ .
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=177577275557$  7723305755. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=307737033561$  и преобразуем в текст «»
- $c_1 = 44017319588$ ,  $c_2 = 249978808424$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень -s по модулю N, тогда  $c_1^r=352291575112,$   $c_2^{-s}=269888526727.$
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=950794541853$  11940018424. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=201830183707$  и преобразуем в текст «»
- $c_1 = 499241372980$ ,  $c_2 = 344974502483$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=17047766454,$   $c_2^{-s}=211271016734.$

- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=360169895178$  0357841236. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=230705485731$  и преобразуем в текст «»
- $c_1 = 171071879560$ ,  $c_2 = 108413221760$
- Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  в степень –s по модулю N, тогда  $c_1^r=37543645247,\,c_2^{-s}=335279611747.$
- После этого результаты перемножаем и получаем, что  $m^{e1\cdot r-e2\cdot s}=125876188019$  81261916509. Далее берём модуль от полученного значения:  $m^{(e1\cdot r-e2\cdot s)}modN)=201615547888$  и преобразуем в текст «»

# 4 Атака на алгоритм шифрования RSA, основанный на китайской теореме об остатках

Дано:  $N_1 = 420250053679$ ,  $N_2 = 420998138947$ ,  $N_3 = 422793377077$ .

| $c_1$        | $c_2$        | $c_3$        |
|--------------|--------------|--------------|
| 17599664694  | 388099839383 | 84003082499  |
| 221343847340 | 141363764478 | 245906362572 |
| 181796040962 | 253757042128 | 398398702796 |
| 210108814452 | 162556515860 | 157559004814 |
| 124320289825 | 289849639847 | 157418944324 |
| 323995715057 | 126598663712 | 411242039391 |
| 260285700707 | 171600933709 | 270378838199 |
| 72474978285  | 80576580207  | 182942084181 |
| 226746757036 | 347679322161 | 33847193530  |
| 369084323018 | 408725538627 | 149137845569 |
| 133261286623 | 244886980553 | 382620866773 |
| 336107911000 | 171682264557 | 120769412025 |
| 303767221006 | 366784660912 | 272019119100 |

#### Последовательно вычисляем следующие значения:

 $M_0 = N_1 \cdot N_2 \cdot N_3 = 138555669564008119302694433926047373$ 

 $m_1 = N_2 \cdot N_3 = 381126913374147389205901$ 

 $m_2 = N_1 \cdot N_3 = 190130221862955939995887$ 

 $m_3 = N_1 \cdot N_2 = 264927981225542872108867$ 

 $n_1 = m_1^{-1} \mod N_1 = 287993142707$ 

 $n_2 = m_2^{-1} \mod N_2 = 106614970676$ 

 $n_3 = m_3^{-1} \mod N_3 = 32171022265$ 

 $c_1 = 17599664694, c_2 = 388099839383, c_3 = 84003082499$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 105147981958387942412346590774$  90050150451181999

 $S \mod M_0 = 110624273670950750074744468357233918$ 

 $M = (S \mod M_0)^{1/e} = 480046687691$ 

 $c_1 = 221343847340, c_2 = 141363764478, c_3 = 245906362572$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 292565368798172764575797870873$ 62781446538351776

 $S \mod M_0 = 40577920039147034674136415638130387$ 

 $M = (S \mod M_0)^{1/e} = 343634369153$ 

 $c_1 = 181796040962, c_2 = 253757042128, c_3 = 398398702796$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 284936794123323264735894914868$  84003799811808050

 $S \mod M_0 = 52775616232621334839512327051614659$ 

 $M = (S \mod M_0)^{1/e} = 375097731523$ 

 $c_1 = 210108814452, c_2 = 162556515860, c_3 = 157559004814$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 276999655189753875769905936959$  26707856916432054

 $S \mod M_0 = 88842311650790900984055860480132406$ 

 $M = (S \mod M_0)^{1/e} = 446210668924$ 

 $c_1 = 124320289825, c_2 = 289849639847, c_3 = 157418944324$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 208627813962460740292423305916$  33759317742504759

 $S \mod M_0 = 32170757173949146869483491582604026$ 

 $M = (S \mod M_0)^{1/e} = 318043917480$ 

 $c_1 = 323995715057, c_2 = 126598663712, c_3 = 411242039391$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 416336620639102725384464312286$ 21375248272736348

 $S \mod M_0 = 52156347312869698471911761543648627$ 

 $M = (S \mod M_0)^{1/e} = 373624823501$ 

 $c_1 = 260285700707, c_2 = 171600933709, c_3 = 270378838199$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 343523785983460037754449318686$  98886947562031102

 $S \mod M_0 = 37673264933439911170012711671965786$ 

 $M = (S \mod M_0)^{1/e} = 335231190925$ 

 $c_1 = 72474978285, c_2 = 80576580207, c_3 = 182942084181$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 111475560955725320312789356130$  98612755579107334

 $S \mod M_0 = 71912722526217905903475739498076467$ 

 $M = (S \mod M_0)^{1/e} = 415848599920$ 

 $c_1 = 226746757036, c_2 = 347679322161, c_3 = 33847193530$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 322243561320241504603319657426$  31903537373319934

 $S \mod M_0 = 66936152118519354642795034669973240$ 

 $M = (S \mod M_0)^{1/e} = 406025753498$ 

 $c_1 = 369084323018, c_2 = 408725538627, c_3 = 149137845569$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 500676770984054905453438966365$  17774794185587445

 $S \mod M_0 = 97389835841695388062951689302461590$ 

 $M = (S \mod M_0)^{1/e} = 460084791933$ 

 $c_1 = 133261286623, c_2 = 244886980553, c_3 = 382620866773$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 228521335723880949630482063790$  73748323029996412

 $S \mod M_0 = 118953111957199429876997195076880799$ 

 $M = (S \mod M_0)^{1/e} = 491803863419$ 

 $c_1 = 336107911000, c_2 = 171682264557, c_3 = 120769412025$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 414012982100248963687743955831$  72840391080652759

 $S \mod M_0 = 22222176162815442818986498572631613$ 

 $M = (S \mod M_0)^{1/e} = 281144027527$ 

 $c_1 = 303767221006, c_2 = 366784660912, c_3 = 272019119100$ 

 $S = c1 \cdot n_1 \cdot m_1 + c2 \cdot n_2 \cdot m_2 + c3 \cdot n_3 \cdot m_3 = 430954908844880462909413503174$  92948288913737686

 $S \mod M_0 = 8253717267097216095400514295609965$ 

 $M = (S \mod M_0)^{1/e} = 202092344693$ 

# 5 Атака на алгоритм шифрования RSA посредством метода Ферма

**Цель работы**: изучить атаку на алгоритм шифрования RSA посредством метода Ферма.

Дано: N=84920690254116819980017474476393118148268821013112888110434002286862060838164293058912544765163219640705110180259944198609255581868934872999810160228209843869386758250683376679520802497046978250461593283557666939606457018130540475876808030500520994415313016543600381848593348673332775443216238563477836798692543716771690964018098579428819953280204930478963564013572076789009718840237654608474337325427262588758054279994682489408386577557217078829277198874401836992816519924056484943107623171715299799789082009713473704559057405215272897426454335415434721217841792235406225913392971814851935883371979117772731283861673, e = 11561117, C = 2760683922915972420219289759000610381217596030907365898849073952843608537473677003781350392503400969884639212247724859693162601502006665103498606746936519 008989154273589118976120252556746100540955662254282687601781914758646735172423845460427002061777612200240197006451618170451331015817980987204015018850626099847382770818495367825289855795431138729833880211912702827983950201235949685089851289489019113034053824838821745055260778171268106565703893666668749716689217513724983160321295430932225088571383388154517247768340767597728787736870516150.

Вычисляем n = [sqrt(N)] + 1

 $\mathbf{A} = \mathbf{N}, \, \mathbf{B} = \mathbf{2}, \, D = A^{1/B} = 29141154790796609743747566801214222187629856907$  9318524242183274281819560023886760140878408980756408066198439646241201452 2878574029918933833459019038982086660194188347163892166397706579800672173 9557524816687439243468745301418901487327153872491959581701065163607385000 1657701568380505256583708704660403902559824

В первой строке таблицы появляется сообщение «[error]». Это свидетельствует о том, что N не является квадратом целого числа.

$$t_1 = n + 1$$

Возводим число t1 в квадрат:

A = 29141154790796609743747566801214222187629856907931852424218327428

 $1819560023886760140878408980756408066198439646241201452287857402991893383\\ 3459019038982086660194188347163892166397706579800672173955752481668743924\\ 3468745301418901487327153872491959581701065163607385000165770156838050525\\ 6583708704660403902559825$ 

$$B=2$$

$$C = 0$$

 $D=A^B\mod C=t_1^2=849206902541168199800174744763931181482688210131$  1288811043400228686206083816429305891254476516321964070511018025994419860 9255581868934872999810160228209843869386758250683376679520802497046978250 4615932835576669396064570181305404758768080305005209944153130165436003818 4859334867333277544321623856347783679869349134148431632636769679232360916 2882891818766325608811365088727920620660427829598196956096469067001914231 7138473124295439540014170188404123297626877556219779764254671106385659991 0019879415506723263863079655924122773512221675028647975048833029723538184 0884921062606668844521377162476008780949846833187704030625

Вычисляем  $w_1 = t_1^2 - N$ 

$$A = t_1^2$$

$$B = -N$$

 $D = A + B = w_1 = 9476247126253623495982128947892096026868882873620447$  9779301193891090182019017498972261877104180441315617743385262994013556742 3859801761583052563813353784985159905543054153622891477027078855267443556 6210830855366686777170014773890532961529148625141639990926856563807554515 49562310540125408970729060456420168952

Проверяем, является ли  $w_1$  квадратом целого числа:

$$A = w_1$$

$$B=2$$

$$D=A^{1/B}= <\!\!<[error] >\!\!>$$

$$t_2 = n + 2$$

 $A=29141154790796609743747566801214222187629856907931852424218327428\\1819560023886760140878408980756408066198439646241201452287857402991893383\\3459019038982086660194188347163892166397706579800672173955752481668743924\\3468745301418901487327153872491959581701065163607385000165770156838050525\\6583708704660403902559826$ 

$$B=2$$

$$C = 0$$

 $D=A^B\mod C=t_2^2=849206902541168199800174744763931181482688210131$  1288811043400228686206083816429305891254476516321964070511018025994419860 9255581868934872999810160228209843869386758250683376679520802497046978250 4615932835576669396064570181305404758768080305005209944153130165436003818 4859334867333277544321623856347783679869407416458013225856257174365963344 7326644415904484245859849455276484259780475603118478712914430579818046628 5931397948324485297162230026271790215664955520393100152631365434169992786 4151475428950202378912713030802609711002824512831622629356578013642701586 2188193210306672159924513923486521948367256153995509150276

Вычисляем 
$$w_2 = t_2^2 - N$$

$$A = t_2^2$$

$$B = -N$$

 $D = A + B = w_2 = 1530447808441294544473164230813494046439485425520681$  8462773784874745409402379485100043755890033172292885743131451123430401431 3866578554834974436762115020231719874321248693205617101834303898970223470 7117416834321538052623029855418799839230364701705798020395957804080758766 952699071550638576388138381264225288603

Проверяем, является ли  $w_2$  квадратом целого числа:

$$A = w_2$$

$$B=2$$

$$D=A^{1/B}= <\!\!<[error] >\!\!>$$

$$t_3 = n + 3$$

 $A=29141154790796609743747566801214222187629856907931852424218327428\\1819560023886760140878408980756408066198439646241201452287857402991893383\\3459019038982086660194188347163892166397706579800672173955752481668743924\\3468745301418901487327153872491959581701065163607385000165770156838050525\\6583708704660403902559827$ 

$$B=2$$

$$C = 0$$

 $D=A^B\mod C=t_3^2=849206902541168199800174744763931181482688210131$  1288811043400228686206083816429305891254476516321964070511018025994419860 9255581868934872999810160228209843869386758250683376679520802497046978250 4615932835576669396064570181305404758768080305005209944153130165436003818

 $4859334867333277544321623856347783679869465698767594819075744669499565773\\1770397013042642882908333821825047898900523376638760469732392092634179025\\4724322772353531054310289864139457133703033484566420541008059761954325581\\8283071442393681493962346405681096648493427350634597283664322997561864988\\3491465358006675475327650684497035115784665474803314269929$ 

Вычисляем 
$$w_3 = t_3^2 - N$$

$$A = t_3^2$$

$$B = -N$$

 $D = A + B = w_3 = 2113270904257226739348115566837778490192082563679318$  8947617450360381800602857220302861324069648300454209711924375947459447188 5347176933511643617142894661964923758088191971048945055965899912413702585 7613750583106407427529058233448546382307814540897432041699229951780762082 355835832561151743805547702072030408256

Проверяем, является ли  $w_3$  квадратом целого числа:

$$A = w_3$$

$$B=2$$

 $D=A^{1/B}=4597032634490674071342735069225280752860203391680839781226\\4455041567960827591052996772483599768476236004358388365770278914227572357628639076590737735330984$ 

При вычислении квадратного корня  $w_3$  первая строка таблицы остаётся пустой, что свидетельствует об успехе факторизации.

Вычисляем  $p = t_3 + sqrt(w3)$ 

$$A = t_3$$

$$B = sqrt(w_3)$$

 $D = A + B = p = 291411547907966097437475668012142221876298569079318524 \\ 2421832742818195600238867601408784089807564080661984396462412014522878574 \\ 0299189338334590190389820871198974517962312993006712135023287474599760916 \\ 4975272204699142494582149842464324535497403195585486887640432238367427980 \\ 482608077614212347781251141637890811$ 

 $q = t_3 - sqrt(w_3) = 29141154790796609743747566801214222187629856907931852$  4242183274281819560023886760140878408980756408066198439646241201452287857 4029918933833459019038982086200490924898096485032124199657272596887935413 3135847658017023241144622818728221854195243599604853441563171546163588742 2654152932898955069628069666167228843

Вычисляем 
$$Phi(N) = (p-1)(q-1)$$

A = p-1

$$B = q$$
–1

 $D = A \cdot B = Phi(N) = 8492069025411681998001747447639311814826882101311 \\ 2888110434002286862060838164293058912544765163219640705110180259944198609 \\ 2555818689348729998101602282098438693867582506833766795208024970469782504 \\ 6159328355766693960645701813054047587680803050052099441531301654360038184 \\ 8593348673332775443216238563477836798691960893675875031823223628092795668 \\ 83645233333408049269650877102404460797201898810881925805074657497726256574 \\ 0070220008650381086275123329206258539506660541966077768225462370650982808 \\ 1855755165364997931513379724919689682499186894867679911257965595529583820 \\ 488963258525910077568678090925370204561708451923478742020$ 

### Вычисляем d, как обратный экспоненте e:

A = e

B = -1

C = Phi(N)

 $D = A^B mod C = d = 14468764328633144155555109499723048929104078633164\\ 0363766036351872068373841212108814039986298489330039535204021265793680261\\ 6386116097523570928017227179027651541288343220046140141878041218968693234\\ 3495634382579225199261187753153611244710949843282119225970576521909877752\\ 9647184047836756960887501093161995825600113491754183544881302938240852551\\ 3241212567678804124526120355649249799229915448220963261871633031541178654\\ 5777123411725136642180000800445064214772179714428926431844908470748019344\\ 4178299907900478496616222389715722401903940909665094242708308782587585280\\ 83640192152641232901045005421446363836778234700836429253$ 

### Производим дешифрацию шифрблока:

A = C

B = d

C = N

 $D = A^B mod C = 182766125384130959395618370923846858447905657014067637\\ 8135270478122258697254998218454942377216470497789727245323580130409751689\\ 5325334345360741184143794550152588743791476884138331380200865981563304009\\ 6321583781100408460451569979829856942655825433210419460193589542232971390\\ 5722651724343445137060326248770190369550013034236337747150886965134068936$ 

 $6087196622462451311742385563984149916067629581627999175763144914497537559\\7303416055034160720664104003682770512881256946249124042012123115603206177\\8493888517417629187982460589379145535512730513566800235525890007820127375\\039523278283105089457820683207623444271262303$ 

Ответ: "технологическая, производственная, финансово-экономическая или иная информация (в том числе составляющая секреты производства (ноу-хау), которая имеет действительную или потенциальную коммерческую ценность в силу неизвестности ее третьим лицам".

## 6 Атака на алгоритм шифрования RSA методом бесключевого чтения

**Цель работы**: изучить атаку на алгоритм шифрования RSA посредством метода бесключевого чтения.

Дано:

N=12999930287191924431376539346299017010017110757740921516255625276736938341707759829697430675432898253598392520230520704679160980923414190358178622745742624474755389622466492660886890337924536205112736638940978976344972253628353579832538666892892665706708885193359305409807981966665666702224514486914538968870073023511710369161207889173238412011206880810244366176665150381905574765282393727109561493216690612279226503572974152890921340588167058405144084456523945787108461024171789972198504480081600349216283801717806994595190979350072982046379512550434705815641316760415616932877994091207418811935739845349184344241913

 $e_1 = 1361953$ 

 $e_2 = 1360027$ 

 $C_1 = 1208834325220597369817787949553255816062840715991959889790035840\\ 4178513416771114151553436558862570513528584259439782876460111075107403457\\ 9754207137635995915616172811147086968594724655389753198777435125590060598\\ 8637473653209186796195547103909916785033265703379584395434954395303225849\\ 1203901363222148491195613271905897998400944808165294965913009501612898001\\ 1715415034401631948225809780428428106078179734396739381024755570249238388\\ 3603276470712856595676015689313414830072335623880290146831394236177760084\\ 7182124122062344034877306087933560979545981654480134659927243673325694450\\ 087057858249060039863739686707181557266325$ 

 $C_2 = 3632596499635208802727013836949475633207276327184684611958676229 \\ 2891597434291641511369495230243876744889029515795528812937053569413408157 \\ 2468179363645046558988116451960372069411615883271246572778366814914120801 \\ 3652277885435122116207293245584954272586183721860723057650098382143053027 \\ 1503424518352321412808522821222691101878111813946329467634473543472848869 \\ 2747458456411691653429430840421600113305878973232852200010542512528272763 \\ 5139623150119311575596771108338670881632831767884342265415756274407322097 \\ 7110855698912291481389769663032352186231615129981728880893289779768450914 \\$ 

#### 5949791493289998100323724505141715276442

Решаем уравнение  $e_1cdotr-e_2 \cdot s = \pm 1$ 

$$A = e_1$$
  
 $B = e_2$   
 $A \cdot D - B \cdot C = N$   
 $C = s = 140721 D = r = 140522$   
 $A \cdot D - B \cdot C = -1$ 

Производим дешифрацию:  $c_1$  возводим в степень r, а  $c_2$  – в степень –s по модулю N .

 $c_1^r = 12212443334325089604301103215893734943220381756214881084473343919\\8317053151077911751580970281014416316060018003049513316362031942447369998\\3101776218450591419248119614995305136111990735728481417035665700777169705\\7558809163936113504819554364078092811676290638758929901622170727992517600\\1410080510164167520982534104151582461594373558983708565293513461149598943\\6407502230611889201918717087109649739317641485624560928598284013745528729\\4307324013401628714337774040807431207440180870753535734077459334516661746\\8051299986120867168239118999290891754429881912236213271170713316071715887\\08540505332158809054001388485431781785030$ 

 $c_2^{-s} = 1103137850309229271123313451196272171318386946434602365986446237\\ 9023978034133076057222785405722929251844473674675187104620095083578561801\\ 5102950709387212339195438501359606368992471701000194463433664198717391744\\ 4663997498907506356250567010672813091258267144596551333207010980721486129\\ 2597755146939668991252052871935444897081567161440546481274282978023890124\\ 0086729391814923230925260444836741642485711685014447006244985867065940807\\ 5824930856014168923653505436276049605152989862197979084034160262428047045\\ 9919233969146647784011941020901287626782949857716596921107893341923220570\\ 492472920423972519893447823707834337739893$ 

После этого перемножаем результаты и получаем, что  $m^{e1\cdot r-e2\cdot s}=134720084868$  5065549805418502465134553100191945547551508921682490258438323812257685252 8638920490199769891563986990566757664621340585882310560693169166098713283 9119585782584000019730782111004680659598512547483428155440658624680483124 5427271427645266820406100699600912676416144647441726155778123469929241171 9074324203466032918383360780790800866616096272199125365504411788162151939 4514314955417466872235270612210682253250336739998123184522517848284050695

 $5853873600217752714846265334800192237903161716565566555000152715089772474\\ 3462120950446321488490263306048573167769513203365421393651943361171047403\\ 6950126970134031711989814134199867883675093769513088239973167431033379627\\ 1939295989338204815371157124832185219356381886090953561137151087121660940\\ 2271657798038535454380591525345164164316581050889139298431369195681380413\\ 2899364628286049764104198260046328582399227672818115806911372190930387350\\ 8123085827195903267849089645868908746171032422073536017822767776984208169\\ 4528346003802631879337124799628047491007875705011371508352739166876669148\\ 8283273014178013153022907494520890943475064061235282174711610682656964807\\ 0282496636071133302558980912597007696633781465398241484202718666640009069\\ 69599762574629192119425964473396238876963895381201790$ 

Далее находим обратное значение по модулю:  $(m^{-(e^1 \cdot r - e^2 \cdot s)} mod N) = 1752652383$  4011375301459908193412802991623654982595821126180572931785172280097964981 4063445338335392759639631744869717035996621763396869753410738504838820801 9312951076510427991896407754755207130549401218037374833776972246651238777 0343615717282236128392166775639177967789975964911825613287722577727696074 3613118250481577582542426531186352677937948331819750504569641756894020836 1917046444415191835412524437761677823496205223586990355807338279483286814 8272942483789083658214636280320858798449795477610689452882790799897335372 1118269303174144991284042933057091049136793717087732905053034508323792661 4247927967604575

Ответ: "информация - сведения (сообщения, данные) независимо от формы их представления; информационная система - совокупность содержащейся в базах данных информации и обеспечивающих ее обработку информационных технологий и технических средств"

## 7 Атака на алгоритм шифрования RSA, основанный на китайской теореме об остатках

Цель работы: изучить атаку на алгоритм шифрования RSA посредством китайской теоремы об остатках.

 $N_1 = 1791200968200830750629954503426580750507884578095731278842775792\\ 3017236749088908831167341406531197617035995249239102277375981357827165610\\ 5145038374328455717203673268773870116593721517668866056472453891164158800\\ 7073376755465519781238762404706402807126346273751324804349196484425909341\\ 5227255401869822664150863096680176326054913755479830808858724247708186195\\ 0002733356797576502275644836304455168841968183404139742494845985931559736\\ 4096335819965532382998212948088995309530268763640919049150005284869051975\\ 0150419877656788027501208445665275713027040339197717683210463957207718285\\ 878714105987417443525583574122688980729971$ 

 $N_2 = 1406462212479204626285017588796274949567658912636517625237429629 \\ 1320904778604756740222204829477876646644622820371734857059896175099940994 \\ 4120777560638142089740817777120685326884265216822599247528229711292675456 \\ 2358344294889118146764407866048204012446213404872422117461022001812091428 \\ 3115589657262609674418382288631494709878007673042642813995454933637648009 \\ 8813009303775422324823348699477907474685431560714205838301695049688173668 \\ 3198033042067443578244629717638127168932456019230341578151572503550783853 \\ 4410598614905942528084555613228030630219707236327979827978582398148814671 \\ 694992930315805810952071217202862575894057$ 

 $N_3 = 1873213247520748895115808503947634151741314945297680014190528373\\ 5911675059368828255327933225288665141571137045791108365764511605094676778\\ 2870648935519048292214781300914009286018853694815392630504415859933574039\\ 4800863870004158243618276510495793806817365530825486158539988358146943946\\ 2625879036589921882061838751390544116837789152223414469000251255180000668\\ 8586024758633088629386941613905627297143354659808052338448311909606707935\\ 5355350027505304257455251137030180566169031871027263930538138355259170017\\ 7825169933522265175587987556294985109452472983329472874811647165593682375\\ 072477678194734406639831760074646991257739$ 

 $C_1 = 2944142023459557662986088211732040163534364430536687699134081179$ 3250593478038038501523086069574841536421173316021114105118354894076699998  $5419147116149314323249556938143441404937266427224957500772067439069244960\\9811758976579872377951311102218785113557706987353491762233111815035625474\\1082712591179435855895652909221003751088612785498510995759747238516410600\\5608562471669109826065524063856818642596402120874331718252534973195702544\\8109087259852307960624232368823284963730604573206886387928858290603439905\\6572126705158161083661203228758788310743456262627867604674727403496243472\\77376129276681557179147157312060958099491$ 

 $C_2 = 9550913916998590886511967803533297874042310468050045838430599754\\ 5228413204964491594633408566154279464779915078832671713894733364703619536\\ 3543072092106554747544784277173044322668087833565852170839523646663440880\\ 6578421346746702321207743218577701503880921235466059820344966240509889823\\ 1136714449917151834199531592607265276944668388272612470135663357889115598\\ 1417515171297090378548505572509531738237484835359963175819307778206530912\\ 9762981896010979299803546849875342013083533792315328997970523021737562452\\ 5490234408636644350032530287243955993974050817902471162381202482144272395\\ 76041145352608444688471352979061733790719$ 

 $C_3 = 1248333924648744582328509345246337248018854199338185258911583418\\8342542228852295993938854887711060121391165692564218410012152384277085663\\6508426756213335810843286876813092800900169966958821079941676728438176636\\1579883557071817989983577829379436986731244291225552255332570867530130570\\9159348085839366134594954118346515599980891238041058191196761932448323337\\3606513761688486779520529607326640882191713210715253633169368006613770814\\4248726641521927810966160736808474074745450613007119187207375411698778694\\2682787310119865604591629462987177781441642793245496630353007876129264976\\166002188371149195814102354192348117595045$ 

#### Последовательно вычисляем:

 $M_0 = N_1 \cdot N_2 \cdot N_3 = 47191046061142706396459205624204445260160502026688273$  1002710381307503316011703225473958190197183649799524686554324722236000494 9181498985072038807332192081714015956855525753083791080575861628758937522 2286991977018509966566449507406931728034818596093052930655528432305257951 9178727270364665499141057970557695150780542647299836853439836651549124549 8112331257863535204608927082434263380277269044999724498926805223884599284 4566295638962094457562623141538559883439372518120187324475280699533360164 2453891282687315649131346996760909226215092809479273829774717410091681860

 $m_1 = N_2 \cdot N_3 = 26346036485533884611514606492640881162853066356111963012$ 0324461780280169763212755882046228350164949380574375437092699135712621080  $0828546150646058308098287341084350073005819518807383288447075177969087280\\845357123$ 

 $m_2 = N_1 \cdot N_3 = 33553013826057878436059334266954393380122746407179821131$ 6022188322319111717598565131183891315836072548659638785367125125173774550

 $m_3 = N_1 \cdot N_2 = 25192564767306338683366669780997908949279272489093807901\\8256067254492304583016385976161119676781579900233550151107248483340470546\\3861987268592408884663581689456181026634115617775203183998219806456152498\\0202935481761225961517989143692044021151735726093040161894116507429383062\\6385854612157189477484871086684623735725240541184154194798774755243002418\\5336732944255022178206069250973097821153264285539390533080527790896029598\\1771840823385231757250803982309567073313634599000057238310480750593567606\\2404332315238654026749255190109427240418880078447729156141036607508144064\\4053913525613131703346160977913386151085594439383338777691634418537007730\\8694313961814018688459746799384947617711349159023173907994749974865131436\\5026163358545089668213581730731646515277135011583597470768311053874101379\\1967270075020620205499850336249224559074806818947197933816178435902078457\\9316284207810302370736761939804829525986662955327174563901647781557090231\\2008119478521850336367265426308587318234205191725780510934814393827400806$ 

 $6132827305951006783729449006864882048484533690917838507085897696518419984\\0810213176226210737914326189303234948166832695046586055328803653689479874\\4402092187946547372383528472950525641014958743040527657967764429123238779\\820682347$ 

 $n_1 = m_1^{-1} \mod N_1 = 10036601858969729118138436805395763082544639290891$  6272563012266789875588310830780514291944046026431722255027070738854822194 5257213595850977879975682642606224239945670055909136301835745054490450650 6766185005527863983202063537647848177335888842173969419368927218345023056 9635915709155844813245772546950785583837072102660917367721315613716236653 7336100167345431179744734148054430559216382545360870349148237541718654181 9955245554028387996595149233391673635430400131974601365699013608237404796 3167602536858141418024495639433558392998740085382939420532364247108947029 69504055143784348412859844231758597124934096047077084357

 $n_2 = m_2^{-1} \mod N_2 = 11535036877841514880785261954866511579582154939982 \\ 3544092935045605734686542696046542889178321776764805008481830282000176718 \\ 2341166617942400267633070604810583474380764091769166147907830372166100071 \\ 0637753489776075475930763721677889321404014236074261239614665180452971383 \\ 1380243777558338065102569984054839753228071045668247593848470998743345054 \\ 5818629818099281074953487406996464451313905372597814921002178815905119732 \\ 4366115682118591925198400032212027380610656297277752796402655535214139342 \\ 5035128724824608488570014790954876627485595621768982883711181692815204716 \\ 55540206860112273185721548188114680374579171538027170497$ 

 $n_3 = m_3^{-1} \mod N_3 = 11605050669107266807536495661415981690902401861561\\ 3894677985747031956966824784259714257824605765436323327585894613250320635\\ 0536022868062531336097325245294908987713957888811224199630661342680692441\\ 9178585716536206476712305693487970647062438535294890297128444779148756788\\ 1604831646517999135014177201846731678469584606209594281475595399342793466\\ 1316004032919797825445596052221246890758110674844768663602527416938428857\\ 3327468894808457186130036535490390962713975689881032943121455875848403512\\ 0727316686786981349287443006098967939801316772733261809916777097040286761\\ 36152955625027005221583765478153446558687643420649026329$ 

 $S = c_1 \cdot n_1 \cdot m_1 + c_2 \cdot n_2 \cdot m_2 + c_3 \cdot n_3 \cdot m_3 = 8124685610241935811863490469911260197$  7833860591114284697372405517485972683168308570416872133536051581992976256 0229493913235136994604862971787954020601951631846197564278618258984662948

 $S \mod M_0 = 196249357881548562298867002441214325934575881605358992516$  2904669808599989748165937101940096289980206629490951635556495240404866397

 $M = (S \mod M_0)^{1/e} = 269734241419982817844187133635161942321268942358$  8691045562511205262063384785502430283178063002210450600387809178553892505 4606842559105353067234863697273452547037908331856516083372454168438755803 2754529805347706084541089621014404394754704334720946331869254606352815641 4667257005590771118813369459699652113694174045954475432668012455395592215 0401224368772064968911668730019831599376165834814740264563473964185559499 0757759892507603196751298989675541974656133600272703623958282489208611291 4069527690319010620050289590321452506624385394464883959775879017239408883 3665417090055467574453981780605427068093851116

Ответ: "которых сведения, составляющие государственную тайну, находят свое

отображение в виде символов, образов, сигналов, технических решений и процессов; система защиты государственной тайны – совокупность органов защиты государственной тайны, используем"