范畴论简介(2)

自然变换 正合列

自然变换

Definition 1.5.1 取 $E, F: \mathcal{A} \to \mathcal{B}$ 间的函子,自然变换 $\tau: E \to F$ 为一族映射满足 $\tau_A: EA \to FA, \forall A \in \mathsf{Ob}(\mathcal{A})$,使得对任意 $f: A \to A'$ 总有左侧交换图(尤需注意正方形可换).

此时, 2-胞腔(右图)自然地给出态射间变换 $\tau: Ef \to Ff$.

Definition 1.5.2 给定函子间自然变换 $\theta: F \to G$, 若存在自然变换 $\psi: G \to F$ 使得 $\theta \circ \psi = \mathrm{Id}_G$, $\psi \circ \theta = \mathrm{Id}_F$, 则称 $\psi \in \theta$ **互逆**, 此时有函子间的同构 $F \cong G$. 特别地, 注意到自然变换的逆无非

$$egin{aligned} heta_X: FX \stackrel{\sim}{ o} GX, \ \psi_X &= (heta_X)^{-1}: GX \stackrel{\sim}{ o} FX. \end{aligned}$$

从而 θ 可逆若且仅若每一 θ_X 可逆.

Example 1.5.3 函子的横合成与纵合成如下

特别地, 横合成原理如下

Theorem 1.5.4 以下交换图给出 $(\theta'\circ\tau')\circ(\theta\circ\tau)=(\theta'\circ\theta)\circ(\tau'\circ\tau)$. 实际上, 任取 $f\in \mathrm{Hom}_{\mathcal{A}}(X,Y)$, 显然有如下元素与态射间的交换图 $(\tau,\tau',\theta,\theta'$ 均为自然变换)

❷链接

Theorem 1.5.5 有横结合律 $\psi \circ (\tau \circ \theta) = (\psi \circ \tau) \circ \theta$ $= \psi) \circ \tau \circ (\theta)$

实际上, ψ) \circ τ \circ (θ 也可定义, 即正方体另一条面对角线与棱之复合.

Theorem 1.5.6 有纵结合律 $\psi\circ(\tau\circ\theta)=(\psi\circ\tau)\circ\theta$. 图中, 中间方块可交换, 从而纵结合律成立.

Definition 1.5.7 若函子 $F: \mathcal{A} \to \mathcal{B}$, $G: \mathcal{B} \to \mathcal{A}$ 满足同构 $\psi: FG \overset{\sim}{\to} \mathrm{Id}_{\mathcal{A}}$ 与 $\theta: GF \overset{\sim}{\to} \mathrm{Id}_{\mathcal{B}}$, 则称 G 为 F 的拟逆函子.

特别地, 若 $FG=\mathrm{Id}_{\mathcal{A}}$ 且 $GF=\mathrm{Id}_{\mathcal{B}}$, 则称 F 与 G 是范畴间的同构.

Proposition 1.5.8 若函子 $G,G':\mathcal{B}\to\mathcal{A}$ 均为 $F:\mathcal{A}\to\mathcal{B}$ 的拟逆, 则 $G\cong G'$. 实际上,显然有

$$G\stackrel{\sim}{ o} G(FG')\stackrel{\sim}{ o} (GF)G'\stackrel{\sim}{ o} G'.$$

Example 1.5.9 记 $\mathcal V$ 为域 k 上线性空间所成之范畴, $\forall V\in \mathsf{Ob}(\mathcal V)$, 记 $V^*:=\mathrm{Hom}_k(A,k)$ 为对偶, 同理有 V^{**} . 定义共变函子 $F:\mathcal V\to\mathcal V$ 满足

- $FV = V^{**}$, $\forall V \in \mathsf{Ob}(\mathcal{V})$.
- $Ff = f^{**} := (f^*)^*, \forall f \in \operatorname{Hom}_k(V_1, V_2).$

定义自然变换 $au_V:V o V^{**}$ 为

$$au_V(x)(heta)=: heta(x), \quad orall x\in V, heta\in V^*.$$

容易验证右侧交换图. 从而 au 为 $\mathrm{Id}_{\mathcal{V}}$ 到 F 的自然变换.

▼ Proof of the theorem

实际上, 对任意 $x\in V_1$, $\theta\in V_2^*$, 总有 $au_{V_2}(1_{\mathcal{V}}f)(x)(\theta)=\theta f(x)$. 注意到 f^* 诱导映射

$$f^*:V_2^* o V_1^*, (heta:V_2 o k)\mapsto heta f.$$

从而
$$(f^*)^* au_{V_1}(x)(heta)= au_{V_1}(x)f^* heta=(f^* heta)x= heta f(x).$$

从而根据余直积之定义,存在唯一的 $h_i:X \to X$ 使得 $hq_i=q_i$,从而 $h_i=1_X=\sum_{j=1}^n q_j p_j$.

正合列

Definition 1.6.1 记 $\{M_i\}$ 为一族左 R-模, $\{f_i\}$ 为一族模同态. 称

$$\cdots o M_k \stackrel{f_k}{ o} M_{k+1} \stackrel{f_{k+1}}{ o} M_{k+2} \stackrel{f_{k+2}}{ o} M_{k+3} \stackrel{f_{k+3}}{ o} M_{k+4} o \cdots$$

正合,当且仅当 $\ker f_{k+1} = \operatorname{Im} f_k$ 对一切 k 恒成立,如下图所示.

Proposition 1.6.2 在同一模范畴内, 自然有以下结论:

- $0 \to \ker f \stackrel{i}{\hookrightarrow} M \stackrel{f}{\to} N$ 正合, 特别地, $0 \to M \stackrel{f}{\to} N$ 正合当且仅当 f 为单同态;
- $M \stackrel{f}{\to} N \stackrel{\pi}{ o} \operatorname{coker} f \to 0$ 正合,特别地, $M \stackrel{f}{\to} N \to 0$ 正合当且仅当 f 为满同态;
- $0 \to M \stackrel{f}{\to} N \to 0$ 正合当且仅当 f 为同构.

Theorem 1.6.3 (五引理) 选取横正合列间的的交换图如下

- 若 t_4 与 t_2 均为满射, t_5 为单射, 则 t_3 为满射. $\binom{****0}{*0*0*} \Longrightarrow \binom{****0}{*0*0*0}$.
- 若 t_4 与 t_2 均为单射, t_1 为满射, 则 t_3 为单射. $\binom{*0*0*}{0****} \Longrightarrow \binom{*0 \boxed{0}}{0} \binom{*}{0} \binom{*}{0} \binom{*}{0}$
- 若 t_2 , t_4 均为同构, t_5 为单射, t_1 为满射, 则 t_3 为同构.

▼ Proof of the theorem

• 若 t_4 与 t_2 均为满射, t_5 为单射. 任取 $b_3\in B_3$, 则存在 $a_4\in A_4$ 使得 $t_4(a_4)=g_3(b_3)$. 由于

$$0=g_4g_3(b_3)=g_4t_4(a_4)=t_5f_4(a_4),$$

加之 t_5 为单射, $f_4(a_4)=0$. 因此存在 $a_3\in A_3$ 使得 $f_3(a_3)=a_4$. 再注意到

$$egin{aligned} g_3(t_3(a_3)-b_3) &= g_3t_3(a_3)-g_3b_3 \ &= t_4f_3(a_3)-t_4a_4 \ &= t_4(a_4)-t_4(a_4) \ &= 0. \end{aligned}$$

从而存在 $b_2 \in B_2$ 使得 $g_2(b_2) = t_3(a_3) - b_3$. 由于 f_2 为满射, 故存在 a_2 使得 $t_2(a_2) = b_2$.

可发现 b_3 的某一原像大致与 $f_2(a_2)$ 以及 a_3 有关. 计算得

$$egin{aligned} t_3f_2(a_2) &= g_2t_2(a_2) \ &= g_2(b_2) \ &= t_3(a_3) - b_3. \end{aligned}$$

因此 b_3 的某一原像为 $a_3 - f_2(a_2)$, 从而 t_3 为满射.

• 若 t_4 与 t_2 均为单射, t_1 为满射. 任取 $a_3 \in A_3$ 使得 $t_3(a_3) = 0$, 下验证 a_3 只能为 0. 根据交换图以及 t_4 为单的,

$$0 = g_3 t_3(a_3) = t_4 f_3(a_3) = f_3(a_3).$$

从而存在 $a_2 \in A_2$ 使得 $f_2(a_2) = a_3$. 注意到

$$g_2t_2(a_2) = t_3f_2(a_2) = t_3(a_3) = 0,$$

则存在 $b_1\in B_1$ 使得 $g_1(b_1)=t_2(a_2)$. 由于 t_1 为满射, 取 $a_1\in A_1$ 使得 $t_1(a_1)=b_1$. 再注意到

$$t_2(a_2) = g_1(b_1) = g_1t_1(a_1) = t_2f_1(a_1).$$

从而 $f_1(a_1) = a_2$. 故 $a_3 = f_2 f_1(a_1) = 0$.

• 最后一则是显然的.

Theorem 1.6.4 (同调列中的蛇引理) 以笔者怠惰故,此段摘抄自同调代数笔记,读者可将一切复形视作模同一范畴的对象,将相应的链复形同态视作模同态。 对链复形与短正合列 $0 \to C \xrightarrow{f} D \xrightarrow{g} E \to 0$,交换图

中横行均正合. 对 $e_q \in Z_q(E)$ 定义**边缘同态**

$$\partial_*: H_q(E)
ightarrow H_{q-1}(C), \quad [e_q] \mapsto [f_{q-1}^{-1} \partial_q g_q^{-1}(e_q)].$$

从而可良定义长正合列

$$\cdots \stackrel{\partial_*}{ o} H_{q+1}(C) \stackrel{f_*}{ o} H_{q+1}(D) \stackrel{g_*}{ o} \boxed{H_{q+1}(E) \stackrel{\partial_*}{ o} H_q(C)} \stackrel{f_*}{ o} H_q(D) \stackrel{g_*}{ o} H_q(E) \stackrel{\partial_*}{ o} \cdots.$$

▼ Proof of the theorem

实际上, 只需证明以下正合横列给出同态 $\ker(\partial_q'')\stackrel{\delta}{ o} \operatorname{coker}(\partial_q')$

补全纵列作短正合列, 得右 图.

下依次证明:

11 蓝线 (连接框的路径) 给 出

$$egin{aligned} \delta := \overline{\partial_q'} \ f_{q-1}^{-1} \ \partial_q \ g_q^{-1} \ \partial_{q0}'' : \ \ker(\partial_q'') &
ightarrow \operatorname{coker}(\partial_1'); \end{aligned}$$

- 2δ 为良定义的同态;

$oxdot{1}$ 证明 δ 为映射 (即无法一对多):

- 1. $\forall e \in \ker(\partial_q'')$, 由于 g_q 为满射, 固存在 $d \in D_q$ 使得 $g_q(d) = \partial_{q0}''(e)$.
- 2. 注意到 $\partial_q''\circ\partial_{q0}''\equiv 0$, 从而 $\partial_q''g_q(d)=g_{q-1}\partial_q(d)=0$.
- 3. 根据短正合列, $\partial_q(d)\in\ker(g_{q-1})=\operatorname{im}(f_{q-1})$, 因此存在 $c'\in C_{q-1}$ 使得 $f_{q-1}(c')=\partial_q(d)$. 此处 f_{q-1} 为单的, c' 的选取仅取决于 d.
- 4. 对任意 d_1 与 d_2 使得 $g_q(d_1)=g_q(d_2)=\partial''_{q0}(e)$, $(d_1-d_2)\in\ker(g_q)=\operatorname{im}(f_q)$. 取 $c\in C_q$ 使得 $f_q(c)=d_1-d_2$,
- 5. 当 d_1 变为 d_2 时, c_1' 变为 c_2' , 其间相差 $\partial_q'(c) \in \ker(\overline{\partial_q'})$, 从而 $\overline{\partial_q'}(c_1') = \overline{\partial_q'}(c_2')$. 可见 δ 为良定义的映射.
- $oxed{2}\delta$ 显然为良定义的同态, 就 $oxed{1}$ 中各步骤逐一验证即可.
- $oxed{3}$ 分两步证明 $\operatorname{im}(g_{q0}) = \ker(\delta)$:
- 1. 任取 $d \in \ker(\partial_q)$, 则 $g_{q0}(d) \in \ker(\partial_q'')$, 从而依照交换图有 (六步变四步)

$$\delta(g_{q0}(d)) = \overline{\partial_q'} \, f_{q-1}^{-1} \, \partial_q \, g_q^{-1} \, \partial_{q0}'' \, g_{q0}(d) = \overline{\partial_q'} \, f_{q-1}^{-1} \, \partial_q \, \partial_{q0}(d) = 0.$$

因此得 $\operatorname{im}(g_{q0}) \subseteq \ker(\delta)$.

2. 另一方面, 沿用 11 中符号. 任取 $\forall e \in \ker(\delta)$, 则 $c' \in \ker(\overline{\partial_q'}) = \operatorname{im}(\partial_q')$. 取 c 使得 $\partial_q'(c) = c'$, 从而 $f_{q-1}(c') = \partial_q f_q(c)$, 即 $d - f_q(c) \in \ker(\partial_q) = \operatorname{im}(\partial_{q0})$. 故存在 $d' \in \ker(\partial_q)$ 使得 $\partial_{q0}(d') = d - f_q(c)$. 因此

$$\partial_{q0}''g_{q0}(d') = g_q\partial_{q0}(d') = g_q(d) = \partial_{q0}''(e).$$

由于 ∂_{q0}'' 为单的, 故 $\operatorname{im}(g_{q0}) \supseteq \ker(\delta)$.

得证.

4 类比 3.

至此,我们证明了 $\red 3$ 引理. 短正合列 $0 \to C \overset{f} \to D \overset{g} \to E \to 0$ 导出长正合同调列. Theorem 1.6.5 (强形式蛇引理) 同一模范畴中,横正合列间的交换图

给出正合列 $\ker(f) \stackrel{a'}{\to} \ker(g) \stackrel{b'}{\to} \ker(h) \stackrel{\partial}{\to} \operatorname{coker}(f) \stackrel{c'}{\to} \operatorname{coker}(g) \stackrel{d'}{\to} \operatorname{coker}(h).$ **Proposition 1.6.6** ∂ 是自然的, i.e., 上方交换图导出下方交换图

范畴论简介(2)

Theorem 1.6.7 观察如下 R-模同态图

其中左(右)图上下两行均为短正合列且左(右)侧方块交换, 则存在唯一的模同态 $h:Z\to Z'$ ($f:X\to X'$) 使得右(左)边方块也交换.

并且若 f 是满同态, 则有正合列

$$0 o \ker(f) \overset{ ilde{a}}{ o} \ker(g) \overset{ ilde{b}}{ o} \ker(h) o 0.$$

范畴论简介(2)

若h是单同态,则有正合列

$$0 o \operatorname{coker}(f) \overset{ ilde{a}'}{ o} \operatorname{coker}(g) \overset{ ilde{b}'}{ o} \operatorname{coker}(h) o 0.$$

▼ Proof of the proposition

对左图而言, 由于 (b'g)a=0. 根据 $\ker b\ (=a(X))$ 之泛性质, 存在唯一的 $h:Z\to Z'$ 使得 hb=(b'g); 右图同理, 利用 $\operatorname{coker}(a)\ (=b(Z))$ 之泛性质即可. 端详蛇引理给出的长正合列

$$0 o \ker(f) \overset{ ilde{a}}{ o} \ker(g) \overset{ ilde{b}}{ o} \ker(h) o \operatorname{coker}(f) \overset{ ilde{a}'}{ o} \operatorname{coker}(g) \overset{ ilde{b}'}{ o} \operatorname{coker}(h) o 0.$$

- f 满若且仅若 $\operatorname{coker}(f) = 0$;
- h 单若且仅若 $\ker(h) = 0$.

明所欲证.

Definition 1.6.8 称 Abel 范畴 \mathcal{C} 与 \mathcal{D} 间的加性共变函子 $F:\mathcal{C}\to\mathcal{D}$ 为

- 半正合的,若且仅若 $\mathcal C$ 中正合列 $(0\to)A\to B\to C(\to 0)$ 推出正合列 $FA\to FB\to FC$.
- 左正合的,若且仅若 $\mathcal C$ 中正合列 $0 \to A \to B \to C(\to 0)$ 推出正合列 $0 \to FA \to FB \to FC$.
- 右正合的,若且仅若 $\mathcal C$ 中正合列 $(0 \to)A \to B \to C \to 0$ 推出正合列 $FA \to FB \to FC \to 0$.
- 正合的,若且仅若 $\mathcal C$ 中正合列 $0 \to A \to B \to C \to 0$ 推出正合列 $0 \to FA \to FB \to FC \to 0$.

此处考虑或忽视括号中内容均可, 同为正合性之等价定义.关于 Abel 范畴上加性反变函子的正合性之序数同理, 此处从略.

Definition 1.6.9 称 Abel 范畴 \mathcal{C} 与 \mathcal{D} 间的加性反变函子 $F:\mathcal{C}\to\mathcal{D}$ 为

- 半正合的, 若且仅若 $\mathcal C$ 中正合列 $(0\to)A\to B\to C(\to 0)$ 推出正合列 $FC\to FB\to FA$.
- 左正合的,若且仅若 $\mathcal C$ 中正合列 $(0\to)A\to B\to C\to 0$ 推出正合列 $0\to FC\to FB\to FA$.
- 右正合的, 若且仅若 $\mathcal C$ 中正合列 $0 \to A \to B \to C(\to 0)$ 推出正合列 $FC \to FB \to FA \to 0$.

• 正合的,若且仅若 ${\cal C}$ 中正合列 $0\to A\to B\to C\to 0$ 推出正合列 $0\to FC\to FB\to FA\to 0$.

Proposition 1.6.10 Hom 函子给出模到 Abel 群

- $\operatorname{Hom}_R(_RM,-):_R\mathcal{M}\to\mathbb{A}G$ 为左正合共变函子;
- $\operatorname{Hom}_R(-, {}_RM): {}_R\mathcal{M} \to \mathbb{A}G$ 为左正合反变函子;
- $\operatorname{Hom}_R(-,_RM):_R\mathcal{M}\to \mathbb{A}G$ 并非右正合反变函子;
- $\operatorname{Hom}_R(_RM,-):_R\mathcal{M}\to\mathbb{A}G$ 并非右正合共变函子.

▼ Proof of the proposition

 $oxed{1}$ 考虑 R-正合列 $0 o X \overset{f}{ o} Y \overset{g}{ o} Z$, 只需证明以下为正合列

$$0 o \operatorname{Hom}_R(M,X) \stackrel{\operatorname{Hom}_R(M,f)}{\longrightarrow} \operatorname{Hom}_R(M,Y) \stackrel{\operatorname{Hom}_R(M,g)}{\longrightarrow} \operatorname{Hom}_R(M,Z).$$

- 兹有断言: $\operatorname{Hom}_R(M,f)$ 为单射. 实际上, 任选 $\varphi \in \operatorname{Hom}_R(M,X)$ 使得 $\operatorname{Hom}_R(M,f)(\varphi) = f\varphi = 0$, 由于 f 为单射, 故 $\varphi = 0$.
- 再有断言: $\operatorname{im}(\operatorname{Hom}_R(M,f)) = \ker(\operatorname{Hom}_R(M,g))$. 任取 $\psi \in \operatorname{im}(\operatorname{Hom}_R(M,f))$, 总有 $\varphi \in \operatorname{Hom}_R(M,f)$ 使得 $f\varphi = \psi$. 故

$$\operatorname{Hom}_R(M,g)(\psi)=g\psi=gf\varphi=0,$$

从而 $\operatorname{im}(\operatorname{Hom}_R(M,f)) \subseteq \ker(\operatorname{Hom}_R(M,g)).$

另一方面, 取 $\psi \in \ker(\operatorname{Hom}_R(M,g)) \subseteq \operatorname{Hom}_R(M,Y)$, 则 $g\psi = 0$. 下只需证明存在 $h \in \operatorname{Hom}_R(M,X)$ 使得 $fh = \psi$. 注意到 $\operatorname{im}(\psi) \subseteq \ker(g) = \operatorname{im}(f)$, 故有映射

$$h:f^{-1}\circ \psi: m\mapsto x(\in X'\subseteq X) \quad (f(x)=\psi(m)).$$

此处 $\psi(M)\subseteq f(M)$ 作为子模, 故存在 X 的子模 X' 使得 $f:X'\overset{\sim}{\to}\psi(M)$ 为同构. 从而 $\operatorname{im}(\operatorname{Hom}_R(M,f))\supseteq \ker(\operatorname{Hom}_R(M,g))$.

② 考虑 R-正合列 $X\stackrel{f}{\to} Y\stackrel{g}{\to} Z\to 0$, 只需证明以下为正合列

$$0 o \operatorname{Hom}_R(Z,M) \overset{\operatorname{Hom}_R(g,M)}{\longrightarrow} \operatorname{Hom}_R(Y,M) \overset{\operatorname{Hom}_R(f,M)}{\longrightarrow} \operatorname{Hom}_R(X,M).$$

- 兹有断言: $\operatorname{Hom}_R(g,M)$ 为单射. 实际上, 任选 $\varphi \in \operatorname{Hom}_R(Z,M)$ 使得 $\operatorname{Hom}_R(g,M)(\varphi) = \varphi g = 0$, 由于 g 为满射, 故 $\varphi = 0$.
- 再有断言: $\operatorname{im}(\operatorname{Hom}_R(g,M)) = \ker(\operatorname{Hom}_R(f,M))$. 任取 $\psi \in \operatorname{im}(\operatorname{Hom}_R(g,M))$, 总有 $\varphi \in \operatorname{Hom}_R(g,M)$ 使得 $\varphi g = \psi$. 故

$$\operatorname{Hom}_R(f,M)(\psi) = \psi f = \varphi g f = 0,$$

从而 $\operatorname{im}(\operatorname{Hom}_R(g,M)) \subseteq \ker(\operatorname{Hom}_R(f,M)).$

另一方面, 取 $\psi \in \ker(\operatorname{Hom}_R(f,M)) \subseteq \operatorname{Hom}_R(Y,M)$, 则 $\psi f = 0$. 下只需证明存在 $h \in \operatorname{Hom}_R(Z,M)$ 使得 $hg = \psi$. 注意到 $\ker(g) = \operatorname{im}(f) \subseteq \ker(\psi)$, 故有 映射

$$h:=\psi\circ g^{-1}:Z o M, z\mapsto \psi(y)\quad (g(y)=z).$$

从而 $\operatorname{im}(\operatorname{Hom}_R(g,M)) \supseteq \ker(\operatorname{Hom}_R(f,M)).$

③ 与 ④ 同理. 例如正合列 $0\to m\mathbb{Z}\stackrel{i}{\hookrightarrow}\mathbb{Z}$ 在 $\mathrm{Hom}_{\mathbb{Z}}(-,\mathbb{Z})$ 下非反变正合函子. 端详链

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}) \stackrel{\operatorname{Hom}_{\mathbb{Z}}(i,\mathbb{Z})}{\longrightarrow} \operatorname{Hom}_{\mathbb{Z}}(m\mathbb{Z},\mathbb{Z}) o 0$$

可知 $\operatorname{Hom}_{\mathbb{Z}}(i,\mathbb{Z})$ 并非满射 $(m\mapsto 1$ 没有原像).