ANTIBIOTIC COMPOSITIONS FOR TREATMENT OF THE EYE, EAR AND NOSE

Claim for Priority

5

10

15

20

25

30

The present application is a continuation of U.S. Patent Application Serial No. 10/200,868 filed July 22, 2002 (allowed), which claims priority from U.S. Patent Application Serial No. 09/646,797 filed September 22, 2000, which is the National Stage of International Application Serial No. PCT/US99/22622 filed September 29, 1999, which claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Serial Nos. 60/102,504 and 60/102,506 filed on September 30, 1998.

Background of the Invention

The present invention is directed to the provision of topical antibiotic pharmaceutical compositions for the treatment of ophthalmic, otic and nasal infections, particularly bacterial infections, and to methods of treating ophthalmic, otic and nasal infections by applying those compositions to the affected tissues. The compositions and methods of the invention are based on the use of a new class of antibiotics. The compositions of the present invention may also contain one or more anti-inflammatory agents.

The use of quinolone antibiotics to treat infections represents the current state of the art in the field of ophthalmic pharmaceutical compositions and methods of treatment. For example, a topical ophthalmic composition containing the quinolone ciprofloxacin is marketed by Alcon Laboratories, Inc. under the name CILOXANTM (Ciprofloxacin 0.3%) Ophthalmic Solution. The following quinolones have also been utilized in ophthalmic antibiotic compositions:

Quinolone	<u>Product</u>	<u>Manufacturer</u>
Ofloxacin	OCUFLOX™	Allergan
Norfloxacin	CHIBROXIN™	Merck
Lomefloxacin	LOMEFLOX TM	Senju

The foregoing quinolone antibiotic compositions are generally effective in treating ophthalmic infections, and have distinct advantages over prior ophthalmic antibiotic compositions, particularly those having relatively limited spectrums of antimicrobial activity, such as: neomycin, polymyxin B, gentamicin and tobramycin, which are primarily useful against gram negative pathogens; and bacitracin, gramicidin, and erythromycin, which are primarily active against gram positive pathogens. However, despite the general efficacy of the ophthalmic quinolone therapies currently available, there is a need for improved compositions and methods of treatment based on the use of antibiotics that are more effective than existing antibiotics against key ophthalmic pathogens, and less prone to the development of resistance by those pathogens.

5

10

15

20

25

There is an even greater need for effective topical compositions and methods for treating otic and nasal infections, particularly bacterial infections. The use of oral antibiotics to treat otic infections in children has limited efficacy, and creates a serious risk of pathogen resistance to the orally administered antibiotics.

Ophthalmic, otic and nasal infections are frequently accompanied by inflammation of the infected ophthalmic, otic and nasal tissues and perhaps even surrounding tissues. Similarly, ophthalmic, otic and nasal surgical procedures that create a risk of microbial infections frequently also cause inflammation of the affected tissues. Thus, there is also a need for ophthalmic, otic and nasal pharmaceutical compositions that combine the anti-infective activity of one or more antibiotics with the anti-inflammatory activity of one or more steroid or non-steroid agents in a single composition.

Summary of the Invention

5

10

20

25

30

The invention is based on the use of a potent new class of antibiotics to treat ophthalmic, otic and nasal infections, as well as the prophylactic use of these antibiotics following surgery or other trauma to ophthalmic, otic or nasal tissues. The compositions of the present invention may also be administered to the affected tissues during ophthalmic, otic or nasal surgical procedures to prevent or alleviate post-surgical infection.

The compositions preferably also contain one or more anti-inflammatory agents to treat inflammation associated with infections of ophthalmic, otic or nasal tissues. The anti-inflammatory component of the compositions is also useful in treating inflammation associated with physical trauma to ophthalmic, otic or nasal tissues, including inflammation resulting from surgical procedures. The compositions of the present invention are therefore particularly useful in treating inflammation associated with trauma to ophthalmic, otic or nasal tissues wherein there is either an infection or a risk of an infection resulting from the trauma.

Examples of ophthalmic conditions that may be treated with the compositions of the present invention include conjunctivitis, keratitis, blepharitis, dacyrocystitis, hordeolum and corneal ulcers. The compositions of the invention may also be used prophylactically in connection with various ophthalmic surgical procedures that create a risk of infection.

Examples of otic conditions that may be treated with the compostions of the present invention include otitis externa and otitis media. With respect to the treatment of otitis media, the compositions of the present invention are primarily useful in cases where the tympanic membrane has ruptured or tympanostomy tubes have been implanted. The compositions may also be used to treat infections associated with otic surgical procedures, such as tympanostomy, or to prevent such infections.

The compositions of the present invention are specially formulated for topical application to ophthalmic, otic and nasal tissues. The compositions are preferably sterile, and have physical properties (e.g., osmolality and pH) that are specially suited for application to ophthalmic, otic and nasal tissues, including tissues that have been compromised as the result of preexisting disease, trauma, surgery or other physical conditions.

Detailed Description of the Invention

The antibiotics used in the compositions and methods of the present invention have the following formula:

$$\begin{array}{c} X^{1} & O \\ \hline F & & \\ \hline & N \\ \hline & 1 \end{array}$$

wherein:

5

10

15

20

25

30

35

A is CH, CF, CCl, C-OCH₃, or N;

X¹ is H, halogen, NH₂, or CH₃;

 R^1 is C_1 to C_3 alkyl, FCH_2CH_2 , cyclopropyl or phenyl, optionally mono-, di- or trisubstituted by halogen, or A and R_1 together can form a bridge of formula C-O- CH_2 - $CH(CH_3)$;

 R^2 is H, C_1 to C_3 alkyl (optionally substituted by OH, halogen or NH_2), or 5-methyl-2-oxo-1,3-dioxol-4-yl-methyl; and

B is a selected from the group consisting of:

$$R^3$$
 N Y R^4 N Y R^4 N Y R^4 N Y

wherein:

10

15

20

30

35

Y is O or CH₂;

R³ is C₂-C₅ alkoxyl, CH₂-CO-C₆H₅, CH₂CH₂CO₂R', R'O₂C-CH=C-CO₂R', CH=CH-CO₂R' or CH₂CH₂-CN,

wherein:

R' is H or C_1 to C_3 alkyl;

 R^4 is H, C_1 to C_3 alkyl, C_2 - C_5 alkoxyl, CH_2 -CO- C_6H_5 , $CH_2CH_2CO_2R'$, $R'O_2C$ -CH=C- CO_2R' , CH=CH- CO_2R' , CH_2CH_2 -CN or 5-methyl-2-oxo-1,3-dioxol-4-yl-methyl,

wherein:

R' is H or C_1 to C_3 alkyl; and

their pharmaceutically useful hydrates and salts.

The compound Moxifloxacin is most preferred. Moxifloxacin has the following structure:

F M e O

Further details regarding the structure, preparation, and physical properties of Moxifloxacin and other compounds of formula (I) are provided in United States Patent No. 5,607,942.

The concentrations of the antibiotics of formula (I) in the compositions of the present invention will vary depending on the intended use of the compositions (e.g., treatment of existing infections or prevention of post-surgical infections), and the relative antimicrobial activity of the specific antibiotic selected. The antimicrobial activity of antibiotics is generally expressed as the minimum concentration required to inhibit the growth of a specified pathogen. This concentration is also referred to as the "minimum inhibitory concentration" or "MIC". The term "MIC90" refers to the minimum concentration of antibiotic required to inhibit the growth of ninety percent (90%) of the strains of a species. The concentration of an antibiotic required to totally kill a specified bacteria is referred to as the "minimum bactericidal concentration" or "MBC". The minimum inhibitory concentration of Moxifloxacin for several bacteria commonly associated with ophthalmic, otic and nasal infections are provided in the following table:

	Microorganism	<u>MIC 90</u>
20	S. aureus/methicillin sensitive	0.13
	S. aureus/methicillin resistant	4.0
	S. aureus/quinolone resistant	4.0
	S. epidermidis/methicillin sensitive	0.25
	S. epidermidis/methicillin resistant	4.0
25	S. pneumoniae/penicillin sensitive	0.25
	S. pneumoniae/penicillin resistant	0.25
	P. aeruginosa	8.0
	H. influenzae/β-lactamase positive	0.06
	H influenzae/βlactamase negative	0.06

5

10

15

All of the foregoing concentrations are expressed as micrograms per milliliter ("mcg/ml").

5

10

15

20

25

30

The appropriate antibiotic concentration for ophthalmic compositions will generally be an amount of one or more antibiotics of formula (I) sufficient to provide a concentration in the aqueous humor and lacrimal fluid of the eye equal to or greater than the MIC90 level for the selected antibiotic(s), relative to gram-negative and gram-positive organisms commonly associated with ophthalmic infections. The appropriate concentration for otic and nasal compositions will generally be an amount of one or more antibiotics of formula (I) sufficient to provide a concentration in the infected tissues equal to or greater than the MIC90 level for the selected antibiotic(s), relative to gram-negative and gram-positive organisms commonly associated with otic or nasal infections. Such amounts are referred to herein as "an antimicrobial effective amount". The compositions of the present invention will typically contain one or more compounds of formula (I) in a concentration of from about 0.1 to about 1.0 percent by weight ("wt. %") of the compositions.

The compositions of the present invention may also contain one or more antiinflammatory agents. The anti-inflammatory agents utilized in the present invention are broadly classified as steroidal or non-steroidal. The preferred steroidal anti-inflammatory agents are glucocorticoids.

The preferred glucocorticoids for ophthalmic and otic use include dexamethasone, loteprednol, rimexolone, prednisolone, fluorometholone, and hydrocortisone. The preferred glucocorticoids for nasal use include mometasone, fluticasone, beclomethasone, flunisolide, triamcinolone and budesonide.

The dexamethasone derivatives described in U.S. Patent No. 5,223,493 (Boltralik) are also preferred steroidal anti-inflammatory agents, particularly with respect to compositions for treating ophthalmic inflammation. The following compounds are especially preferred:

These compounds are referred to herein as "21-ether derivatives of dexamethasone". The 21-benzyl ether derivative (i.e., compound AL-2512) is particularly preferred.

The preferred non-steroidal anti-inflammatory agents are: prostaglandin H synthetase inhibitors (Cox I or Cox II), also referred to as cyclooxygenase type I and type II inhibitors, such as diclofenac, flurbiprofen, ketorolac, suprofen, nepafenac, amfenac, indomethacin, naproxen, ibuprofen, bromfenac, ketoprofen, meclofenamate, piroxicam, sulindac, mefanamic acid, diflusinal, oxaprozin, tolmetin, fenoprofen, benoxaprofen, etodolac, phenylbutazone, nabumetome, aspirin, oxyphenbutazone, NCX-4016, HCT-1026, NCX-284, NCX-456, tenoxicam and carprofen; cyclooxygenase type II selective inhibitors, such as NS-398, vioxx, celecoxib, P54, etodolac, L-804600 and S-33516; PAF antagonists, such as SR-27417, A-137491, ABT-299, apafant, bepafant, minopafant, E-6123, BN-50727, nupafant and modipafant; PDE IV inhibitors, such as ariflo, torbafylline, rolipram, filaminast, piclamilast, cipamfylline, CG-1088, V-11294A, CT-2820, PD-168787, CP-293121, DWP-205297, CP-220629, SH-636, BAY-19-8004, and roflumilast; inhibitors of cytokine production, such as inhibitors of the NFkB transcription factor; or other anti-inflammatory agents known to those skilled in the art.

5

10

15

The concentrations of the anti-inflammatory agents contained in the compositions of the present invention will vary based on the agent or agents selected and the type of inflammation being treated. The concentrations will be sufficient to reduce inflammation in the targeted ophthalmic, otic or nasal tissues following topical application of the compositions to those tissues. Such an amount is referred to herein as "an anti-inflammatory effective amount". The compositions of the present invention will typically contain one or more anti-inflammatory agents in an amount of from about 0.01 to about 1.0 wt.%.

The compositions are typically administered to the affected ophthalmic, otic or nasal tissues by topically applying one to four drops of a sterile solution or suspension, or a comparable amount of an ointment, gel or other solid or semisolid composition, one to four times per day. However, the compositions may also be formulated as irrigating solutions that are applied to the affected ophthalmic, otic or nasal tissues during surgical procedures.

The ophthalmic, otic and nasal compositions of the present invention will contain one or more compounds of formula (I) and preferably one or more anti-inflammatory agents, in pharmaceutically acceptable vehicles. The compositions will typically have a pH in the range of 4.5 to 8.0. The ophthalmic compositions must also be formulated to have osmotic values that are compatible with the aqueous humor of the eye and ophthalmic tissues. Such osmotic values will generally be in the range of from about 200 to about 400 milliosmoles per kilogram of water ("mOsm/kg"), but will preferably be about 300 mOsm/kg.

25

30

5

10

15

20

Ophthalmic, otic and nasal pharmaceutical products are typically packaged in multidose form. Preservatives are thus required to prevent microbial contamination during use. Suitable preservatives include: polyquaternium-1, benzalkonium chloride, thimerosal, chlorobutanol, methyl paraben, propyl paraben, phenylethyl alcohol, edetate disodium, sorbic acid, or other agents known to those skilled in the art. The use of

polyquaternium-1 as the antimicrobial preservative is preferred. Typically such preservatives are employed at a level of from 0.001% to 1.0% by weight.

The solubility of the components of the present compositions may be enhanced by a surfactant or other appropriate co-solvent in the composition. Such co-solvents include polysorbate 20, 60, and 80, polyoxyethylene/polyoxypropylene surfactants (e.g., Pluronic F-68, F-84 and P-103), cyclodextrin, or other agents known to those skilled in the art. Typically such co-solvents are employed at a level of from 0.01% to 2% by weight.

5

10

15

20

The use of viscosity enhancing agents to provide the compositions of the invention with viscosities greater than the viscosity of simple aqueous solutions may be desirable to increase ocular absorption of the active compounds by the target tissues or increase the retention time in the eye, ear or nose. Such viscosity building agents include, for example, polyvinyl alcohol, polyvinyl pyrrolidone, methyl cellulose, hydroxy propyl methylcellulose, hydroxyethyl cellulose, carboxymethyl cellulose, hydroxy propyl cellulose or other agents know to those skilled in the art. Such agents are typically employed at a level of from 0.01% to 2% by weight.

The following examples are provided to further illustrate the ophthalmic, otic and nasal compositions of the present invention.

Example 1

Ophthalmic/Otic/Nasal Solution

5	<u>Ingredient</u>	Amount (wt. %)
	Moxifloxacin	0.35
	Sodium Acetate	0.03
	Acetic Acid	0.04
	Mannitol	4.60
10	EDTA	0.05
	Benzalkonium Chloride	0.006
	Water	q.s. 100

15

Example 2

Ophthalmic/Otic/Nasal Suspension

	<u>Ingredient</u>	Amount (wt. %)
	Moxifloxacin	0.3
	Dexamethasone, Micronized USP	0.10
	Benzalkonium Chloride	0.01
20	Edetate Disodium, USP	0.01
	Sodium Chloride, USP	0.3
	Sodium Sulfate, USP	1.2
	Tyloxapol, USP	0.05
	Hydroxyethylcellulose	0.25
25	Sulfuric Acid and/or	
	Sodium Hydroxide, NF	q.s. for pH adjustment to 5.5
	Purified Water, USP	q.s. to 100

Example 3

Ophthalmic Ointment

5	<u>Ingredient</u>	Amount (wt.%)
	Moxifloxacin	0.35
	Mineral Oil, USP	2.0
	White petrolatium, USP	q.s 100

Example 4

10

Ophthalmic Ointment

	<u>Ingredient</u>	Amount (wt.%)
	Moxifloxacin	0.3
	Fluorometholone Acetate, USP	0.1
15	Chlorobutanol, Anhydrous, NF	0.5
	Mineral Oil, USP	5
	White Petrolatum, USP	q.s. 100

The invention has been described herein by reference to certain preferred
embodiments. However, as obvious variations thereon will become apparent to those skilled in the art, the invention is not to be considered as limited thereto.