Олимпиадное программирование Занятие 17. Мосты. Точки сочленения

Труфанов Павел Николаевич

Определение

Мост - ребро, при удалении которого увеличится количество компонент связности. Задача - найти все мосты.

Начало алгоритма

Запустим dfs на нашем графе. Давайте назовем ребра, по которым прошел dfs, прямыми. Остальные ребра мы назовем обратными, если они соединяют вершину и ее предка в дереве обхода, иначе перекрестными. Обратим внимание, что в дереве обхода dfs не может быть перекрестных ребер. Также заметим, что если обратных ребер совсем нет, то все ребра мосты, а граф - дерево. Значит, именно обратные ребра влияют на появление мостов.

Алгоритм

Давайте посчитаем динамику: dp[v] - минимальная глубина, на которую поднимаются обратные ребра из поддерева вершины v. Тогда ребро между предком вершины v и вершиной v мост, если dp[v] < d[v], где d[v] - глубина вершины v.

Компоненты реберной двусвязности

Компонента реберной двусвязности максимальное по включению множество вершин, что между каждой парой из них существует хотя бы два реберно-непересекающихся пути. Надо выделить все эти компоненты. Утверждение - если мы удалим все мосты, то оставшиеся компоненты связности и есть компоненты реберной двусвязности.

Задачи

- ▶ Дан неориентированный граф. Ориентируйте так ребра, чтобы вершин, которые станут достижимы из всех остальных, стало как можно больше.
- ▶ Дан неориентированный граф. Найдите минимальное количество вершин, которое надо закрасить, чтобы в случае удаления ровно одного ребра, из каждой вершины была бы доступна хотя бы одна закрашенная.

Точки сочленения

Точкой сочленения называется вершина, после удаления которой увеличится количество компонент связности. Поиск осуществляется похоже на поиск мостов.

Компоненты вершинной двусвязности

Компонента вершинной двусвязности - максимальное по включению множество ребер, что для каждой пары ребер верно, что существуют два вершинно-непересекающихся пути, соединяющие их концы.

До встречи!

FOXFORD.RU

Онлайн-школа Фоксфорд

