CS201

Mathematics For Computer Science Indian Institute of Technology, Kanpur

Group Number: 35 Samarth Varma (180655), Parag Gupta (180500), Satvik Jain (180678)

Assignment

4

Date of Submission: 16/12/2020

Question 1

Let S be a finite set and F be set of all bijections from S to S. Show that F along with the composition operation is a group.

Solution

We need to prove that composition operation satisfies Closure, Associativity, Identity and Inverse Properties.

Let $f: S \to S$ and $g: S \to S$ belongs to F.

- Closure
 - Let $h: S \to S$ be such that $h = f \circ g$. Let $a \in S$ and $b \in S$
 - Let $h(a) = h(b) \implies f \circ g(a) = f \circ g(b)$. which gives g(a) = g(b) as f is one-one. Now since g(a) = g(b), a = b as g is one-one. Hence h is one-one.
 - Let $c \in S$. Then for some $a \in S$, f(a) = c. Now $a \in S$ so for some $b \in S$, g(b) = a. Hence for every $c \in S$ there exist $b \in S$ such that h(b) = c. Hence h is onto.
 - h is one-one and onto and hence $h \in F$. Thus for every f and g in F there is a function $h = f \circ g$ in F.

- Associativity: Since composition is associative for an arbitrary function, it is associative also for the subset of functions given by bijective ones i.e $f \circ (g \circ h) = (f \circ g) \circ h$ for $f, g, h \in F$
- Identity: Let $g \in F$ be such that g(a) = a where $a \in S$. Then for any $f \in F$, $f \circ g(a) = f(a) \implies f \circ g = f$.
- Inverse: $f \in F$ is bijective. Let $g = f^{-1}$ be the inverse. Suppose $b, y \in S$ with $f^{-1}(b) = a = f^{-1}(y)$. Thus b = f(a) = y, so f^{-1} is injective. Now suppose $a \in S$ and let b = f(a). Then $f^{-1}(b) = a$. Thus $S = range(f^{-1})$ and so f^{-1} is surjective. Thus $f^{-1} \in F$.

Let G be a non-commutative group and $e \in G$ be the identity element. The **order** of an element $g \in G$ denoted as ord(g) is the smallest natural number s such that $g^s = e$ where

$$g^i = \underbrace{g.g.g...g}_{\text{number of } g \text{ is } i}$$

Let a and b be elements of G such that ord(a) = 7 and $a^3b = ba^3$. Prove that ab = ba.

Solution

Since G is a non-commutative group and $a \in G$, inverse of a exists and is unique. Since $\operatorname{ord}(a) = 7$,

$$a^{7} = e$$

$$\implies a^7 = a.a^6 = e$$

Hence a^6 is the inverse of a.

We are given

$$a^3b = ba^3 \tag{2.1}$$

Pre-multiplying 2.1 by a^3

$$a^6b = a^3ba^3 \tag{2.2}$$

Post multiplying 2.1 with a^3

$$a^3ba^3 = ba^6 (2.3)$$

Equating 2.2 and 2.3 to obtain,

$$a^6b = ba^6 \tag{2.4}$$

Pre multiplying and post multiplying 2.4 by a to get-

$$a^7ba = aba^7 (2.5)$$

LHS-

$$a^7 = e \implies a^7ba = eba = ba$$

RHS-

$$a^7 = e \implies aba^7 = abe = ab$$

Equating LHS and RHS to obtain

$$ab = ba$$

Hence Proved

GP 35

Let $\mathbb{Q}[\alpha, \beta]$ denote the smallest subring of \mathbb{C} containing rational numbers \mathbb{Q} and the element $\alpha = \sqrt{2}$ and $\beta = \sqrt{3}$. Let $\gamma = \alpha + \beta$. Is $\mathbb{Q}[\alpha, \beta] = \mathbb{Q}[\gamma]$?

Solution

We have been asked whether $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\sqrt{2} + \sqrt{3}]$ From the definition of $\mathbb{Q}[\alpha, \beta]$ we can say that,

$$\mathbb{Q} \subseteq \mathbb{Q}[\sqrt{2}, \sqrt{3}]$$

We have also been given that $\sqrt{2}$ and $\sqrt{3}$ are in $\mathbb{Q}[\sqrt{2},\sqrt{3}]$ which is under closed addition,

$$\sqrt{2} + \sqrt{3} \in \mathbb{Q}[\sqrt{2}, \sqrt{3}]$$

 $\mathbb{Q}[\sqrt{2},\sqrt{3}]$ is a subring of \mathbb{C} that contains $\sqrt{2}+\sqrt{3}$ and \mathbb{C} . Since we know that $\mathbb{Q}[\sqrt{2}+\sqrt{3}]$ is the smallest such subring,

$$\mathbb{Q}[\sqrt{2}, \sqrt{3}] \subset \mathbb{Q}[\sqrt{2} + \sqrt{3}]$$

Also,

$$(\sqrt{2} + \sqrt{3})^3 = 2\sqrt{2} + 3\sqrt{3} + 6\sqrt{3} + 9\sqrt{2}$$

$$= 11\sqrt{2} + 9\sqrt{3}$$

$$\implies \sqrt{2} = \frac{1}{2}((\sqrt{2} + \sqrt{3})^3 - 9(\sqrt{2} + \sqrt{3}))$$
(3.1)

Since $\frac{1}{2} \in \mathbb{Q}[\sqrt{2} + \sqrt{3}]$ and $\sqrt{2} + \sqrt{3} \in \mathbb{Q}[\sqrt{2} + \sqrt{3}]$ which is itself closed under addition and multiplication, we can say that $\sqrt{2} \in \mathbb{Q}[\sqrt{2} + \sqrt{3}]$.

In a similar way from (3.1), $\sqrt{3}$ can be written as,

$$\sqrt{3} = -\frac{1}{2}((\sqrt{2} + \sqrt{3})^3 - 11(\sqrt{2} + \sqrt{3}))$$

and therefore we can say that $\sqrt{3} \in \mathbb{Q}[\sqrt{2} + \sqrt{3}]$

Thus $\mathbb{Q}[\sqrt{2}+\sqrt{3}]$ is a subring of $\mathbb{Q},\sqrt{2},\sqrt{3}$ and since $\mathbb{Q}[\sqrt{2},\sqrt{3}]$ is the smallest sub-

ring, we can conclude that

$$\mathbb{Q}[\sqrt{2}, \sqrt{3}] \subseteq \mathbb{Q}[\sqrt{2} + \sqrt{3}]$$

But we already know that $\mathbb{Q}[\sqrt{2}+\sqrt{3}]\subseteq\mathbb{Q}[\sqrt{2},\sqrt{3}]$ and now that we got to know that $\mathbb{Q}[\sqrt{2},\sqrt{3}]\subseteq\mathbb{Q}[\sqrt{2}+\sqrt{3}]$. Therefore this implies that

$$\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\sqrt{2} + \sqrt{3}]$$

or,

$$\mathbb{Q}[\alpha,\beta] = \mathbb{Q}[\gamma]$$

Where $\alpha = \sqrt{2}, \beta = \sqrt{3}, \gamma = \alpha + \beta$. Hence Proved

GP 35

An element n of a ring R is called **nilpotent** if there exists $j \in \mathbb{N}$ such that $n^j = 0$. An element u of a ring R is called a **unit** if there exists $v \in R$ such that uv = 1. Prove that if $r \in R$ is nilpotent, then 1 - r is a unit.

Solution

For a nilpotent element $r \in \mathbb{R}$, there exists $j \in \mathbb{N}$ such that $r^j = 0$. We can use the identity given by

$$1 - r^{j} = (1 - r)(1 + r + r^{2} + r^{3} \dots r^{j-1})$$

$$\implies 1 - 0 = (1 - r)(1 + r + r^{2} + r^{3} \dots r^{j-1})$$

Therefore,

$$\implies (1-r)(1+r+r^2+r^3\dots r^{j-1})=1$$

Let u = 1 - r and $v = 1 + r + r^2 + r^3 \dots r^{j-1}$.

Since R is closed under addition and multiplication, u and v are in R.

This is of the form uv = 1. Hence we can say that 1 - r is a unit.

GP 35

Let I and J be ideals of a ring R such that I+J=R. Prove that $IJ=I\cap J$ where $IJ=\{xy|x\in I,y\in J\}$.

Solution

First of all, we start by proving that both IJ and $I \cap J$ are ideals.

For $I \cap j$ -

By the definition of an ideal, $I \subseteq R$, $J \subseteq R$.

Hence $I \cap J \subseteq R$.

Now we need to show that $I \cap J$ is closed under addition and multiplication.

· Closed under addition

- Let $x, y \in I \cap J$. Then, $x, y \in I$ and $x, y \in J$.
- Since I is an ideal and hence closed under addition, $x+y \in I$. similarly, $x+y \in J$.
- Therefore, $x + y \in I \cap J$.

· Closed inder multiplication

- Let $x \in I \cap J$ and $y \in R$.
- By definition, $x \in I$ and $x \in J$.
- Since *I* is an ideal, the element $x.y \in I$. Similarly, $x.y \in J$.
- Hence $x.y \in I \cap J$.

Since $I \cap J$ is closed under addition and multiplication and $I \cap J \subseteq R$, we can conclude that $I \cap J$ is an ideal.

For IJ -

$$IJ = \{ \sum_{i} x_i y_i | x_i \in I, y_i \in J \}$$

Let $x \in I$ and $y \in J$.

Since $y \in J$ and $J \subseteq R$ therefore, $y \in R$.

Since *I* is an ideal, $xy \in I$ and $I \subseteq R$, therefore $xy \in R$.

Since R is closed under addition,

$$\{\sum_{i} x_i y_i | x_i \in I, y_i \in J\} \in R$$

This implies that all elements of the set IJ are in $R. \implies IJ \subseteq R$.

Now, we need to show that IJ is closed under addition and multiplication.

Closed under addtion

- Let $x,y\in IJ$ where $x=\sum_{i=0}^n x_iy_i$ and $y=\sum_{i=n+1}^{m+n} x_iy_i$. Here, $x_i\in I$ and $y_i\in J$
- Clearly, $x + y = \{\sum_{i=0}^{m+n} x_i y_i\} \in IJ$

· Closed under multiplication

- Let $x \in IJ$ and an arbitrary $r \in R$ where $x = \sum_{i=0}^{n} x_i y_i$ for some $x_i \in I$ and $y_i \in J$.
- We have, $rx = r\sum_{i=0}^n x_i y_i = \sum_{i=0}^n (rx_i)y_i$
- The above equality was possible because $x_i \in I$ and I is an ideal which in turn implies that I is associative under multiplication.
- Since $x_i \in I$ and I is an ideal, $rx_i \in I$, $r \in R$ by definition.
- **-** Let $z_i = rx_i \in I$. Then $\{\sum_{i=0}^n z_i y_i\} \in IJ$ where $Z_i \in I$ and $y_i \in J$.

Since IJ is closed under addition and multiplication and $IJ \subseteq R$, we can conclude that IJ is an ideal.

Now we know that both IJ and $I \cap J$ are ideals, we can freely compare them. Here, we will try to prove $IJ \subseteq I \cap J$ and $I \cap J \subseteq IJ$ which in turn would imply $IJ = I \cap J$.

• Proof that $IJ \subseteq I \cap J$

- Let $u \in IJ$ such that $u = \sum_i x_i y_i$ where $x_i \in I$ and $y_i \in J$.
- **-** y_i ∈ J \Longrightarrow y_i ∈ R. Hence x_iy_i ∈ I by the very definition of an ideal.
- Since an ideal is closed under addition, we conclude that $u = \sum_i x_i y_i \in I$.
- The same argument can be applied for the ideal J and shown that $u \in J$.

- Now, $u \in I$ and $u \in J$ implies that $u \in I \cap J$.
- Since u was arbitrary, we conclude that

$$IJ \subseteq I \cap J \tag{5.1}$$

• Proof that $I \cap J \subseteq IJ$

- To prove this part, we assume that the ring is commutative and $1 \in R$.
- Since $1 \in R$, there exists an $a \in I$ and $b \in J$ such that a + b = 1
- **–** Let some $r \in I \cap J$. It follows that $ar \in IJ$ and $br \in IJ$. Hence $ar + br \in IJ$.
- Since a + b = 1, $r \in IJ$.
- Now, r was arbitrary in $I \cap J$. Hence

$$I \cap J \subseteq IJ \tag{5.2}$$

Therefore it follows from 5.1 and 5.2 that

$$IJ=I\cap J$$

References