MATH 311

Chapter 2

SECTION 2.5: ELEMENTARY MATRICES

Contents

Basics	2
Inverses and Elementary Matrices	۷

Created by: Pierre-Olivier Parisé Spring 2024

Basics

EXAMPLE 1. Let
$$E_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$, and $E_3 = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$. Let $A = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$.

- a) Find E_1A and interprete the result.
- b) Find E_2A and interprete the result.
- c) Find E_3A and interprete the result.

SOLUTION.

(a)
$$E_1 A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$

(b)
$$E_{z}A = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 1 \\ 9 & 1 & 9 & 2 & 9 \end{bmatrix}$$

(c)
$$E_3A = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

= $\begin{bmatrix} 3+5\cdot1 & 2+5\cdot2 & 1+5\cdot3 \\ 1 & 2 & 3 \end{bmatrix}$

R, was replaced by R, + 5Rz.

DEFINITION 1. An $n \times n$ matrix E is called an **elementary matrix** if it can be obtained from the identity matrix I_n by a single elementary row operation. We say that E is of type I, II, or III if the operation used to obtain E is of that type.

THEOREM 1.

- 1. If an elementary row operation is performed on an $m \times n$ matrix A, then the result is EA, where E is the associated elementary matrix.
- 2. Every elementary matrix E is invertible, and E^{-1} correspond to the inverse of the row operation that produces E.

Reminder:

Type	Operation	Inverse Operation
I	Interchange rows p and q	Interchange rows p and q
II	Multiply row p by $k \neq 0$	Multiply row p by $1/k$, $k \neq 0$
III	Add <i>k</i> times row <i>p</i> to row $q \neq p$	Subtract <i>k</i> times row <i>p</i> from row q , $q \neq p$

EXAMPLE 2. For each of the following matrices, describe the corresponding row operation and write the inverse.

$$E_{1} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad E_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
1) $R_{1} + 3R_{3}$
2) Interchange $R_{1} A R_{2}$

$$E_{1}^{-1} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$E_{2}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Inverses and Elementary Matrices

EXAMPLE 3. By recording each row operation as an elementary matrix, show that the invertible matrix $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ is a product of elementary matrices.

SOLUTION.

$$\begin{bmatrix} A \mid J \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -2 & 1 \end{bmatrix} R_{z-7R_1}$$
Set $E_1 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \Rightarrow E_1 A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = B_1$

$$Set E_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow E_2 B_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = B_2$$

$$Set E_3 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \Rightarrow E_3 B_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$
Thun, $E_3 E_2 E_1 A = I_2$

$$P_3 E_3 E_7 E_1 A = E_3^{-1} I_2 \rightarrow P_7 E_7 E_1 A = E_3^{-1} I_7 \rightarrow P_7 E_7 E_7 E_7 E_7^{-1}$$

THEOREM 2. A square matrix is invertible if and only if it is a product of elementary matrices.

Assume that an $m \times n$ matrix A is carried to a matrix B (written $A \to B$) by a series of k elementary row operations.

Let E_1, E_2, \ldots, E_k be the corresponding elementary matrices. Then

$$AI_m \to E_1A \to E_2E_1A \to \cdots \to E_kE_{k-1}\cdots E_2E_1A = B.$$

Writing $U = E_k E_{k-1} \cdots E_2 E_1$, then U is invertible and B = UA.

DEFINITION 2. We say that two matrices A and B are **row-equivalent** if there is an invertible matrix U such that B = UA.

EXAMPLE 4. Express the RREF of the matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & 0 \end{bmatrix}$ and a product UA, with U a 2×2 invertible matrix.

SOLUTION.

$$\begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -4 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -4 \end{bmatrix}$$