Detección de comportamientos distractores al conducir un automóvil

2172016 – Kevin Javier Lozano Galvis 2170688 – Brayan Rodolfo Barajas Ochoa

Descripción del problema y motivación

Estadísticas de Accidentes de Tráfico

Cada año mueren 1,3 millones de personas en todo el mundo en accidentes de tráfico

20-50 millones de personas resultan heridas o discapacitadas

Conducción Distraída

Aplicar los métodos de Deep Learning para detectar distracciones manuales, a partir de la actividad que realizan los conductores y de esta forma identificar la causa de la distracción

02

Dataset

Dataset

State Farm Distracted Driver Detection

22% Etiquetados

78%
No etiquetados

Etiquetados: 22,424 imágenes

No etiquetados: 79,726 imágenes

co: Safe driving

c1: Texting - right

c2: Talking on the phone - right

c3: Texting - left

c4: Talking on the phone - left

c5: Operating the radio

c6: Drinking

c7: Reaching behind

c8: Hair and makeup

c9: Talking to passenger

Distribución de las clases

Imágenes del Dataset

Safe driving

Texting - right

Talking on phone - right

Preprocesamiento

Modelos utilizados

Modelo

Datos Etiquetados

22,424

Train: 17,630 imágenes

Test: 4,794 imágenes

En función de identificadores:

	subject	classname	img
0	p002	c0	img_44733.jpg
1	p002	c0	img_72999.jpg
2	p002	c0	img_25094.jpg
3	p002	c0	img_69092.jpg
4	p002	c0	img_92629.jpg

Modelos de Entrenamiento

Batch size: 128

Model	Parámetros totales	Parámetros entrenables	Optimizer	Learning rate	Epochs
Simple CNN	391,050	390,730	SGD	0.001	14
VGG16	15,061,322	12,144,650	SGD	0.0004	18
VGG19	20,024,384	17,698,816	SGD	0.0005	20
DenseNet169	12,642,880	10,412,032	SGD	0.002	27

Modelos

Model	Accuracy	Loss	Training time (s)
Simple CNN	38,03%	2,1263	78,104
VGG16	80,54%	0,60842	1243,292
VGG19	82,48%	0,55474	1443,273
DenseNet169	84,58%	0,49359	1662,872

Modelos

Model	Accuracy	Loss	Training time (s)
Simple CNN	38,03%	2,1263	78,104
VGG16	80,54%	0,60842	1243,292
VGG19	82,48%	0,55474	1443,273
DenseNet169	84,58%	0,49359	1662,872

Resultados VGG19

	Precision	Recall	f1-score
cO	0,87	0,88	0,88
c1	0,95	1,00	0,97
c2	0,96	0,94	0,95
с3	0,92	0,99	0,95
c4	0,97	0,96	0,97
c5	1,00	0,99	1,00
с6	0,99	0,92	0,95
с7	0,97	0,99	0,98
c8	0,86	0,86	0,86
с9	0,87	0,82	0,85

Resultados DenseNet169

	Precision	Recall	f1-score
cO	0,75	0,73	0,74
c1	0,95	0,92	0,93
c2	0,79	0,81	0,80
c3	0,86	0,97	0,91
с4	0,96	0,85	0,90
c5	0,92	0,97	0,95
с6	0,99	0,83	0,90
с7	0,95	0,93	0,94
c8	0,65	0,86	0,74
с9	0,70	0,59	0,64

Matriz de Confusión

77

13

- 400

- 300

- 200

- 100

- 0

Evaluación Kaggle, datos no etiquetados

DenseNet169

Your most recent submission

Name submission_DenseNet169.csv Submitted a few seconds ago Wait time 1 seconds Execution time 4 seconds

Score 0.82048

Complete

Evaluación Kaggle, datos no etiquetados

VGG19

Your most recent submission

Name submission_VGG19.csv Submitted a few seconds ago Wait time 5 seconds Execution time 3 seconds Score 0.75916

Complete

Resultados Experimentales, VGG19

Talking on the phone - right

Proyectos Futuros

1

Considerar más distracciones de los conductores y así tener un modelo más robusto.

2

Implementar sensores que permitan entrenar el modelo con distintos datos de velocidad, nivel de gasolina, temperatura y demás.

3

Desarrollar un modelo a partir de datos obtenidos en forma de vídeo.

¡Gracias!

https://github.com/KevinLozanoG/Proyecto-Inteligencia-Artificial-II