Logique et raisonnement

Quelques motivations

- Il est important d'avoir un langage rigoureux. La langue française est souvent ambigüe. Prenons l'exemple de la conjonction « ou » ; au restaurant « fromage ou dessert » signifie l'un ou l'autre mais pas les deux. Par contre si dans un jeu de carte on cherche « les as ou les cœurs » alors il ne faut pas exclure l'as de cœur. Autre exemple : que répondre à la question « As-tu 10 euros en poche ? » si l'on dispose de 15 euros ?
- Il y a des notions difficiles à expliquer avec des mots : par exemple la continuité d'une fonction est souvent expliquée par « on trace le graphe sans lever le crayon ». Il est clair que c'est une définition peu satisfaisante. Voici la définition mathématique de la continuité d'une fonction $f: I \to \mathbb{R}$ en un point $x_0 \in I$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in I(|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon).$$

- C'est le but de ce chapitre de rendre cette ligne plus claire! C'est la logique.
- Enfin les mathématiques tentent de distinguer le vrai du faux. Par exemple « Est-ce qu'une augmentation de 20%, puis de 30% est plus intéressante qu'une augmentation de 50%? ». Vous pouvez penser « oui » ou « non », mais pour en être sûr il faut suivre une démarche logique qui mène à la conclusion. Cette démarche doit être convaincante pour vous mais aussi pour les autres. On parle de raisonnement. Les mathématiques sont un langage pour s'exprimer rigoureusement, adapté aux phénomènes complexes, qui rend les calculs exacts et vérifiables. Le raisonnement est le moyen de valider ou d'infirmer– une hypothèse et de l'expliquer à autrui.

Une assertion est une phrase soit vraie, soit fausse, pas les deux en même temps. Exemples :

- « Il pleut. »
- « Je suis plus grand que toi. »
- -- (2+2=4)
- $-- ~ ~ ~ 2 \times 3 = 7 ~$
- « Pour tout $x \in \mathbb{R}$, on a $x^2 \ge 0$. »
- « Pour tout $z \in \mathbb{C}$, on a |z| = 1. »
- Si P est une assertion et Q est une autre assertion, nous allons définir de nouvelles assertions construites à partir de P et de Q.

L'assertion « P et Q » est vraie si P est vraie et Q est vraie. L'assertion « P et Q » est fausse sinon. On résume ceci en une table de vérité :

Q	V	F
V	V	F
F	F	F

Figure 6.1 – Table de vérité de « P et Q »

Par exemple si P est l'assertion « Cette carte est un as » et Q l'assertion « Cette carte est cœur » alors l'assertion « P et Q » est vraie si la carte est l'as de cœur et est fausse pour toute autre carte.

L'assertion « P ou Q » est vraie si l'une des deux assertions P ou Q est vraie. L'assertion « P ou Q » est fausse si les deux assertions P et Q sont fausses. On reprend ceci dans la table de vérité :

FIGURE 6.2 – Table de vérité de « P ou Q »

Si P est l'assertion « Cette carte est un as » et Q l'assertion « Cette carte est cœur » alors l'assertion « P ou Q » est vraie si la carte est un as ou bien un cœur (en particulier elle est vraie pour l'as de cœur).

Remarque Pour définir les opérateurs « ou », « et » on fait appel à une phrase en français utilisant les mots ou, et! Les tables de vérités permettent d'éviter ce problème.

Écrire la table de vérité du « ou exclusif ». (C'est le ou dans la phrase « fromage ou dessert », l'un ou l'autre mais pas les deux.)

L'assertion « non P » est vraie si P est fausse, et fausse si P est vraie.

Figure 6.3 – Table de vérité de « non P »

52 Exercice

Corr. p. ??

Écrire la table de vérité de « non (P et Q) ». Que remarquez vous?

La définition mathématique est la suivante : L'assertion « (non P) ou Q » est notée « $P \Rightarrow Q$ ». Sa table de vérité est donc la suivante :

Figure 6.4 – Table de vérité de « $P\Rightarrow Q$ »

L'assertion « $P \Rightarrow Q$ » se lit en français « P implique Q ». Elle se lit souvent aussi « si P est vraie alors Q est vraie » ou « si P alors Q ». Par exemple :

- « $0 \le x \le 25 \Rightarrow \sqrt{x} \le 5$ » est vraie (prendre la racine carrée).
- « $x \in]-\infty, -4[\Rightarrow x^2+3x-4>0$ » est vraie (étudier le binôme).
- « $\sin(\theta) = 0 \Rightarrow \theta = 0$ » est fausse (regarder pour $\theta = 2\pi$ par exemple).
- « $2+2=5 \Rightarrow 2=2$ » est vraie! Eh oui, si P est fausse alors l'assertion « $P \Rightarrow Q$ » est toujours vraie.

53 Exercice

Corr. p. ??

Écrire la négation de « $P \Rightarrow Q$ ».

L'équivalence est définie par : « $P\Leftrightarrow Q$ » est l'assertion « $(P\Rightarrow Q)$ et $(Q\Rightarrow P)$ ». On dira « P est équivalent à Q » ou « P équivaut à Q » ou « P si et seulement si Q ». Cette assertion est vraie lorsque P et Q sont vraies ou lorsque P et Q sont fausses. La table de vérité est :

Figure 6.5 – Table de vérité de « $P \Leftrightarrow Q$ »

TRIG.

Exemples:

- Pour $x, x_0 \in \mathbb{R}$, l'équivalence « $x \times x_0 = 0 \Leftrightarrow (x = 0 \text{ ou } x_0 = 0)$ » est vraie.
- Voici une équivalence toujours fausse (quelque soit l'assertion P) : « $P \Leftrightarrow \text{non}(P)$ ».

Proposition 6.1 Soient P,Q, R trois assertions. Nous avons les équivalences (vraies) suivantes :

- 1. $P \Leftrightarrow non(non(P))$
- 2. $(P \ et \ Q) \Leftrightarrow (Q \ et \ P)$
- 3. $(P \ ou \ Q) \Leftrightarrow (Q \ ou \ P)$
- 4. $non(P \ et \ Q) \Leftrightarrow (nonP) \ ou \ (nonQ)$
- 5. $non(P \ ou \ Q) \Leftrightarrow (nonP) \ et \ (nonQ)$
- 6. P et (Q ou $R) \Leftrightarrow (P$ et Q) ou (P et R)
- 7. P ou (Q et $R) \Leftrightarrow (P$ ou Q) et (P ou R)
- 8. $P \Rightarrow Q \Leftrightarrow non(Q) \Rightarrow non(P)$

Preuve

4. Il suffit de comparer les deux assertions « $\operatorname{non}(P \text{ et } Q)$ » et « $(\operatorname{non} P)$ ou $(\operatorname{non} Q)$ » pour toutes les valeurs possibles de P et Q. Par exemple si P est vrai et Q est vrai alors « P et Q » est vrai donc « $\operatorname{non}(P \text{ et } Q)$ » est faux; d'autre part $(\operatorname{non} P)$ est faux, $(\operatorname{non} Q)$ est faux donc « $(\operatorname{non} P)$ ou $(\operatorname{non} Q)$ » est faux. Ainsi dans ce premier cas les assertions sont toutes les deux fausses. On dresse ainsi les deux tables de vérités et comme elles sont égales les deux assertions sont équivalentes.

P Q	V	F
V	F	V
F	V	V

FIGURE 6.6 – Tables de vérité de « non(PetQ) » et de « (nonP)ou(nonQ) »

6. On fait la même chose mais il y a trois variables : P, Q, R. On compare donc les tables de vérité d'abord dans le cas où P est vrai (à gauche), puis dans le cas où P est faux (à droite). Dans les deux cas les deux assertions « P et (Q ou R) » et « (P et Q) ou (P et R) » ont la même table de vérité donc les assertions sont équivalentes.

Q	V	F
V	V	V
F	V	F

8. Par définition, l'implication « $P\Rightarrow Q$ » est l'assertion « (nonP)ouQ ». Donc l'implication « $\text{non}(Q)\Rightarrow \text{non}(P)$ » est équivalente à « non(non(Q)) ou non(P) » qui équivaut encore à « Q ou non(P) » et donc est équivalente à « $P\Rightarrow Q$ ». On aurait aussi pu encore une fois dresser les deux tables de vérité et voir qu'elles sont égales.

54 Exercice

Chapitre 6. Logique et raisonnement

Corr. p. ??

Démontrer les assertions restantes de la proposition 1.

55 Exercice

Corr. p. ??

Écrire la négation de « P et (Q ou R) ».

1.2.1

Le quantificateur \forall : « pour tout »

Une assertion P peut dépendre d'un paramètre x, par exemple « $x^2 \ge 1$ », l'assertion P(x) est vraie ou fausse selon la valeur de x. L'assertion $\forall x \in E$ P(x) est une assertion vraie lorsque les assertions P(x) sont vraies pour tous les éléments x de l'ensemble E. On lit « Pour tout x appartenant à E, P(x) », sous-entendu « Pour tout x appartenant à E, P(x) est vraie ». Par exemple :

- « $\forall x \in [1, +\infty[(x^2 \ge 1))$ » est une assertion vraie.
- « $\forall x \in \mathbb{R} \ (x^2 \ge 1)$ » est une assertion fausse.
- « $\forall n \in \mathbb{N} \ n(n+1)$ est divisible par 2 » est vraie.

1.2.2

Le quantificateur ∃ : « il existe »

L'assertion $\exists x \in E \ P(x)$ est une assertion vraie lorsque l'on peut trouver au moins un x de E pour lequel P(x) est vraie. On lit « il existe x appartenant à E tel que P(x) (soit vraie) ». Par exemple :

- « $\exists x \in \mathbb{R} \ (x(x-1) < 0)$ » est vraie (par exemple $x = \frac{1}{2}$ vérifie bien la propriété).
- « $\exists n \in \mathbb{N} \ n^2 n > n$ » est vraie (il y a plein de choix, par exemple n = 3 convient, mais aussi n = 10 ou même n = 100, un seul suffit pour dire que l'assertion est vraie).
- « $\exists x \in \mathbb{R} \ (x^2 = -1)$ » est fausse (aucun réel au carré ne donnera un nombre négatif).

1.2.3

La négation des quantificateurs

La négation de « $\forall x \in E \ P(x)$ » est « $\exists x \in E \ \text{non}P(x)$ ». Par exemple la négation de « $\forall x \in [1, +\infty[\ (x^2 \ge 1)$ » est l'assertion « $\exists x \in [1, +\infty[\ (x^2 < 1)$ ». En effet la négation de $x^2 \ge 1$ est $\text{non}(x^2 \ge 1)$ mais s'écrit plus simplement $x^2 < 1$.

La négation de « $\exists x \in E \ P(x)$ » est « $\forall x \in E \ \text{non} P(x)$ ». Voici des exemples :

- La négation de « $\exists z \in \mathbb{C} \ (z^2 + z + 1 = 0)$ » est « $\forall z \in \mathbb{C} \ (z^2 + z + 1 \neq 0)$ ».
- La négation de « $\forall x \in \mathbb{R} \ (x+1 \in \mathbb{Z})$ » est « $\exists x \in \mathbb{R} \ (x+1 \notin \mathbb{Z})$ ».
- Ce n'est pas plus difficile d'écrire la négation de phrases complexes. Pour l'assertion : $\forall x \in \mathbb{R} \exists y > 0 \ (x+y>10)$ sa négation est $\exists x \in \mathbb{R} \forall y > 0 \ (x+y\leq 10)$.

Remarques

L'ordre des quantificateurs est très important. Par exemple les deux phrases logiques $\forall x \in \mathbb{R} \exists y \in \mathbb{R} \ (x+y>0)$ et $\exists y \in \mathbb{R} \ (x+y>0)$. sont différentes. La première est vraie, la seconde est fausse. En effet une phrase logique se lit de gauche à droite, ainsi la première phrase affirme « Pour tout réel x, il existe un réel y (qui peut donc dépendre de x) tel que x+y>0. » (par exemple on peut prendre y=x+1). C'est donc une phrase vraie. Par contre la deuxième se lit : « Il existe un réel y, tel que pour tout réel x, x+y>0. » Cette phrase est fausse, cela ne

DERIV.

Chapitre 6. Logique et raisonnement

peut pas être le même y qui convient pour tous les x! On retrouve la même différence dans les phrases en français suivantes. Voici une phrase vraie « Pour toute personne, il existe un numéro de téléphone », bien sûr le numéro dépend de la personne. Par contre cette phrase est fausse : « Il existe un numéro, pour toutes les personnes ». Ce serait le même numéro pour tout le monde!

Terminons avec d'autres remarques.

- Quand on écrit « $\exists x \in \mathbb{R} \ (f(x) = 0)$ » cela signifie juste qu'il existe un réel pour lequel f s'annule. Rien ne dit que ce x est unique. Dans un premier temps vous pouvez lire la phrase ainsi : « il existe au moins un réel x tel que f(x) = 0 ». Afin de préciser que f s'annule en une unique valeur, on rajoute un point d'exclamation : $\exists ! x \in \mathbb{R} \ (f(x) = 0)$.
- Pour la négation d'une phrase logique, il n'est pas nécessaire de savoir si la phrase est fausse ou vraie. Le procédé est algorithmique : on change le « pour tout » en « il existe » et inversement, puis on prend la négation de l'assertion P.
- Pour la négation d'une proposition, il faut être précis : la négation de l'inégalité stricte « < » est l'inégalité large « ≥ », et inversement.
- Les quantificateurs ne sont pas des abréviations. Soit vous écrivez une phrase en français : « Pour tout réel x, si f(x)=1 alors $x\geq 0$. », soit vous écrivez la phrase logique : $\forall x\in\mathbb{R} \ (f(x)=1\Rightarrow x\geq 0)$. Mais surtout n'écrivez pas « $\forall x$ réel, si $f(x)=1\Rightarrow x$ positif ou nul ». Enfin, pour passer d'une ligne à l'autre d'un raisonnement, préférez plutôt « donc » à « \Rightarrow ».
- Il est défendu d'écrire $\not\exists$, $\not\Rightarrow$. Ces symboles n'existent pas!

56 Exercice

Corr. p. ??

Écrire à l'aide des quantificateurs la phrase suivante : « Pour tout nombre réel, son carré est positif ou nul ». Puis écrire la négation.

57 Exercice

Corr. p. ??

Mêmes questions avec les phrases : « Pour chaque réel, je peux trouver un entier relatif tel que leur produit soit strictement plus grand que 1 ». Puis « Pour tout entier naturel n, il existe un unique réel x tel que $\exp(x)$ égale n ».

2 Raisonnements

On veut montrer que l'assertion « $P \Rightarrow Q$ » est vraie. On suppose que P est vraie et on montre qu'alors Q est vraie. C'est la méthode à laquelle vous êtes le plus habitué.

Exemple Montrer que si $a, b \in \mathbb{Q}$ alors $a + b \in \mathbb{Q}$.

Démonstration

Prenons $a \in \mathbb{Q}, b \in \mathbb{Q}$. Rappelons que les rationnels \mathbb{Q} sont l'ensemble des réels s'écrivant $\frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$.

2. Raisonnements

Alors $a = \frac{p}{q}$ pour un certain $p \in \mathbb{Z}$ et un certain $q \in \mathbb{N}^*$. De même $b = \frac{p_0}{q_0}$ avec $p_0 \in \mathbb{Z}$ et $q_0 \in \mathbb{N}^*$. Maintenant

$$a+b = \frac{p}{q} + \frac{p_0}{q_0} = \frac{pq_0 + qp_0}{qq_0}$$

Or le numérateur $pq_0 + qp_0$ est bien un élément de \mathbb{Z} ; le dénominateur qq_0 est lui un élément de \mathbb{N}^* . Donc $a + b \in \mathbb{Q}$.

58 Exercice

Corr. p. ??

Soient $a, b \in \mathbb{R}^+$. Montrer que si $a \leq b$ alors $a \leq \frac{a+b}{2} \leq b$ et $a \leq \sqrt{ab} \leq b$.

Si l'on souhaite vérifier une assertion P(x) pour tous les x dans un ensemble E, on montre l'assertion pour les x dans une partie A de E, puis pour les x n'appartenant pas à A. C'est la méthode de disjonction ou du cas par cas.

Exemple

Montrer que pour tout $x \in \mathbb{R}$ $|x-1| \le x^2 - x + 1$.

Démonstration

Soit $x \in \mathbb{R}$. Nous distinguons deux cas. Premier cas : $x \ge 1$. Alors |x-1| = x-1. Calculons alors $x^2 - x + 1 - |x-1|$.

$$|x^{2} - x + 1 - |x - 1| = |x^{2} - x + 1 - (x - 1)| = |x^{2} - 2x + 2| = |(x - 1)^{2} + 1| \ge 0.$$

Ainsi $x^2 - x + 1 - |x - 1| \ge 0$ et donc $x^2 - x + 1 \ge |x - 1|$.

Deuxième cas : x < 1. Alors |x - 1| = -(x - 1). Nous obtenons

$$|x^{2} - x + 1 - |x - 1| = x^{2} - x + 1 + (x - 1) = x^{2} \ge 0.$$

Et donc $x^2 - x + 1 \ge |x - 1|$.

Conclusion. Dans tous les cas $x^2 - x + 1 \ge |x - 1|$.

59 Exercice

Corr. p. ??

Montrer que pour tout $n \in \mathbb{N}$ n(n+1) est divisible par 2 (distinguer les n pairs des n impairs).

Le raisonnement par contraposition est basé sur l'équivalence suivante (voir la proposition 1) : L'assertion « $P \Rightarrow Q$ » est équivalente à « $\operatorname{non}(Q) \Rightarrow \operatorname{non}(P)$ ». Donc si l'on souhaite montrer l'assertion « $P \Rightarrow Q$ », on montre en fait que si $\operatorname{non}(Q)$ est vraie alors $\operatorname{non}(P)$ est vraie.

Exemple

Soit $n \in \mathbb{N}$. Montrer que si n^2 est pair alors n est pair.

Démonstration

Nous supposons que n n'est pas pair. Nous voulons montrer qu'alors n^2 n'est pas pair. Comme n n'est pas pair, il est impair et donc il existe $k \in \mathbb{N}$ tel que n = 2k + 1. Alors $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2k' + 1$ avec $k' = 2k^2 + 2k \in \mathbb{N}$. Et donc n^2 est impair.

Conclusion : nous avons montré que si n est impair alors n^2 est impair. Par contraposition ceci est équivalent à : si n^2 est pair alors n est pair.

60 Exercice

Corr. p. ??

Soit $n \in \mathbb{N}^*$. Montrer que $\sqrt{n^2 + 1}$ n'est pas un entier.

Le raisonnement par l'absurde pour montrer « $P \Rightarrow Q$ » repose sur le principe suivant : on suppose à la fois que P est vraie et que Q est fausse et on cherche une contradiction. Ainsi si P est vraie alors Q doit être vraie et donc « $P \Rightarrow Q$ » est vraie.

Exemple

Soient $a, b \ge 0$. Montrer que si $\frac{a}{1+b} = \frac{b}{1+a}$ alors a = b.

$D\'{e}monstration$

Nous raisonnons par l'absurde en supposant que $\frac{a}{1+b} = \frac{b}{1+a}$ et $a \neq b$. Comme $\frac{a}{1+b} = \frac{b}{1+a}$ alors a(1+a) = b(1+b) donc $a+a^2 = b+b^2$ d'où $a^2-b^2 = b-a$. Cela conduit à (a-b)(a+b) = -(a-b). Comme $a \neq b$ alors $a-b \neq 0$ et donc en divisant par a-b on obtient a+b=-1. La somme de deux nombres positifs ne peut être négative. Nous obtenons une contradiction.

Conclusion : si $\frac{a}{1+b} = \frac{b}{1+a}$ alors a = b. Dans la pratique, on peut choisir indifféremment entre un raisonnement par contraposition ou par l'absurde. Attention cependant de bien écrire quel type de raisonnement vous choisissez et surtout de ne pas changer en cours de rédaction!

61 Exercice

Corr. p. ??

Soient $a, b \in \mathbb{Z}$. Montrer que si $b \neq 0$ alors $a + b\sqrt{2} \notin \mathbb{Q}$. (On utilisera que $\sqrt{2} \notin \mathbb{Q}$.)

Si l'on veut montrer qu'une assertion du type « $\forall x \in E \ P(x)$ » est vraie alors pour chaque x de E il faut montrer que P(x) est vraie. Par contre pour montrer que cette assertion est fausse alors il suffit de trouver $x \in E$ tel que P(x) soit fausse. (Rappelez-vous la négation de « $\forall x \in E \ P(x)$ » est « $\exists x \in E \ \text{non} P(x)$ »). Trouver un tel x c'est trouver un contre-exemple à l'assertion « $\forall x \in E \ P(x)$ ».

Exemple

Montrer que l'assertion suivante est fausse « Tout entier positif est somme de trois carrés ». (Les carrés sont les $0^2, 1^2, 2^2, 3^2, \ldots$ Par exemple $6 = 2^2 + 1^2 + 1^2$.)

Démonstration

Un contre-exemple est 7 : les carrés inférieurs à 7 sont 0, 1, 4 mais avec trois de ces nombres on ne peut faire 7.

Corr. p. ??

Est-ce que pour tout $x \in \mathbb{R}$ on a $x < 2 \Rightarrow x^2 < 4$?

Exercice

Le principe de récurrence permet de montrer qu'une assertion P(n), dépendant de n, est vraie pour tout $n \in \mathbb{N}$. La démonstration par récurrence se déroule en trois étapes : lors de l'initialisation on prouve P(0). Pour l'étape d'hérédité ou de récurrence, on suppose $n \geq 0$ donné avec P(n) vraie, et on démontre alors que l'assertion P(n+1) au rang suivant est vraie. Enfin dans la conclusion, on rappelle que par le principe de récurrence P(n) est vraie pour tout $n \in N$.

Exemple

Montrer que pour tout $n \in \mathbb{N}$, $2^n > n$.

Démonstration

Pour $n \ge 0$, notons P(n) l'assertion suivante : $2^n > n$. Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \ge 0$. Initialisation. Pour n = 0 nous avons $2^0 = 1 > 0$. Donc P(0) est vraie. Hérédité. Fixons $n \ge 0$. Supposons que P(n) soit vraie. Nous allons montrer que $2^{n+1} = 2^n + 2^n$

$$P(n+1)$$
 est vraie. $> n+2^n$ car par $P(n)$ nous savons $2^n > n$, $> n+1$ car $2^n \ge 1$.

Donc P(n+1) est vraie. Conclusion. Par le principe de récurrence P(n) est vraie pour tout $n \ge 0$, c'est-à-dire $2^n > n$ pour tout $n \ge 0$.

- La rédaction d'une récurrence est assez rigide. Respectez scrupuleusement la rédaction proposée : donnez un nom à l'assertion que vous souhaitez montrer (ici P(n)), respectez les trois étapes (même si souvent l'étape d'initialisation est très facile). En particulier méditez et conservez la première ligne de l'hérédité « Fixons $n \ge 0$. Supposons que P(n) soit vraie. Nous allons montrer que P(n+1) est vraie. »
- Si on doit démontrer qu'une propriété est vraie pour tout $n \geq n_0$, alors on commence l'initialisation au rang n_0 .
- Le principe de récurrence est basé sur la construction de $\mathbb N$. En effet un des axiomes pour définir $\mathbb N$ est le suivant : « Soit A une partie de $\mathbb N$ qui contient 0 et telle que si $n \in A$ alors $n+1 \in A$. Alors $A=\mathbb N$ ».

63 Exercice

*

Corr. p. ??

Montrer que pour tout $n \ge 1, 1+2+\ldots+n = \frac{n(n+1)}{2}$.

64 Exercice

Corr. p. ??

Fixons un réel $x \ge 0$. Montrer que pour tout entier $n \ge 1$, $(1+x)^n \ge 1 + nx$.

65 Exercice

Corr. p. ??

Démontrer par récurrence les propriétés suivantes.

- 1. Pour tout entier $n \ge 1$, $1 + 3 + 5 + ... + (2n 1) = n^2$;
- 2. Pour tout entier n, $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$;

Principe d'induction

Soit un prédicat P(n) sur \mathbb{N} . Si les deux propriétés suivantes sont vérifiées :

- 1. Base : P(0) est vraie.
- 2. Induction : $\forall n \in \mathbb{N}$, si $(\forall k \in \mathbb{N} \mid k \leq n, P(k) \text{ est vraie})$, alors P(n+1) est vraie. alors $\forall n \in \mathbb{N} : P(n)$ est vraie.

Remarque : Les 2 principes (induction et récurrence) sont équivalents sur \mathbb{N} , tout ce qui peut se démontrer par l'un peut se démontrer par l'autre.

66

Exercice

Corr. p. ??

Prouver par induction que tout entier $n \ge 1$ peut être exprimé sous la forme $2^p(2q+1)$ avec p et q des entiers positifs.