[JP/JP]; 10, Kitatsukurimichi-cho, Sagatenryu-ji, Ukyo-ku,

Kyoto-shi, Kyoto 616 (JP). HATA, Takehisa [JP/JP]; 2-4-2.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

A61K 37/64, 47/10, 47/12, 47/14, 47/40

(11) International Publication Number:

WO 94/25062

(43) International Publication Date:

Osaka 532 (JP).

10 November 1994 (10.11.94)

(21) International Application Number:

PCT/JP94/00670

A1

(22) International Filing Date:

22 April 1994 (22.04.94)

(30) Priority Data:

5/102161 28 April 1993 (28.04.93) JP JP 5/105720 6 May 1993 (06.05.93) 6 May 1993 (06.05.93) 5/105721 JP

(81) Designated States: AU, CA, CN, JP, KR, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Kayougaoka, Nagaokakyo-shi, Kyoto 617 (JP).

(74) Agent: SEKI, Hideo; Fujisawa Pharmaceutical Co., Ltd., Osaka Factory, 1-6, Kashima 2-chome, Yodogawa-ku, Osaka-shi,

(71) Applicant (for all designated States except US): FUJISAWA PHARMACEUTICAL CO., LTD. [JP/JP]; 4-7, Doshomachi 3-chome, Chuo-ku, Osaka-shi, Osaka 541 (JP).

(72) Inventors: and

(75) Inventors/Applicants (for US only): YAMAGUCHI, Hisami [JP/JP]; 5-19-19, Shinkofudai, Toyono-cho, Toyono-gun, Osaka 563-01 (JP). HATTORI, Masamichi [JP/JP]; 15-6, Hiyoshidai Rokuban-cho, Takatasuki-shi, Osaka 569 (JP). IBUKI, Rinta [JP/JP]; 8-5-306, Hirata-cho, Ashiyashi, Hyogo 659 (JP). YOSHIDA, Hiromitsu [JP/JP]; 33, Fukakusa Kaido-cho, Fushimi-ku, Kyoto-shi, Kyoto 612 (JP). SHIMAZAKI, Yasuo [JP/JP]; 3-3-2-306, Akuraminami, Takarazuka-shi, Hyogo 665 (JP). KAWAMURA, Akio [JP/JP]; 2-7-7, Nishigawara, Ibaraki-shi, Osaka 567 (JP). TAKAHASHI, Toshiya [JP/JP]; 68-44, Hashimoto Hiranoyama, Yawata-shi, Kyoto 614 (JP). OHNISHI, Norio

Published

With international search report.

(54) Title: ORAL PHARMACEUTICAL COMPOSITIONS CONTAINING RENIN INHIBITORS

(57) Abstract

This invention relates to an pharmaceutical composition characterized by comprising an amino acid derivative of general formula (I) wherein each symbol is as defined in the description, or a salt thereof and one or more ingredient(s) selected from the group consisting of tartaric acid, citric acid, higher alcohol, cyclodextrin, sucrose ester of fatty acid and polyglycerin ester of fatty acid.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	· GB	United Kingdom	MIR	Mauritania
ΑU	Australia .	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BB	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	TE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Кепуа	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM ·	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FT	Pinland	MIL	Mali	· UZ	Uzbekistan
FR '	France	MN	Mongolia	VN	Vict Nam
GA	Gabon		-		

15

20

25

30

- 1 -

DESCRIPTION

ORAL PHARMACEUTICAL COMPOSITIONS CONTAINING RENIN INHIBITORS

5 Technical Field

This invention relates to an oral pharmaceutical composition comprising a compound of general formula (I) given below or a salt thereof, which has renininhibitory activity, and more particularly to an oral pharmaceutical composition comprising said compound (I) or a salt thereof and one or more ingredient(s) selected from the group consisting of tartaric acid, citric acid, higher alcohol, cyclodextrin, sucrose ester of fatty acid and polyglycerin ester of fatty acid.

Accordingly, one object of this invention is to provide an oral pharmaceutical composition comprising said compound (I) or a salt thereof and one or more ingredient(s) selected from the group consisting of tartaric acid, citric acid, higher alcohol, cyclodextrin, sucrose ester of fatty acid and polyglycerin ester of fatty acid.

Further, another object of this invention is to provide a process for preparing an oral pharmaceutical composition comprising said compound (I) or a salt thereof and one or more ingredient(s) selected from the group consisting of tartaric acid, citric acid, higher alcohol, cyclodextrin, sucrose ester of fatty acid and polyglycerin ester of fatty acid.

Background Art

A compound of general formula (I):

10

15

20

25

wherein R¹ is a lower alkyl group which may be substituted with a substituent selected from the group consisting of acyl, hydroxy, lower alkoxy, aryl, lower alkylthio and a group of the formula:

$$-N$$
 R^5

in which R⁵ is hydrogen or an acyl group, and R⁶ is hydrogen or a lower alkyl group,

 R^2 is hydrogen or a lower alkyl group, R^3 is hydrogen or a lower alkyl group, R^4 is a lower alkyl group, and X is O or NH,

or a salt thereof is known to be a substance having renin-inhibitory activity (cf. Japanese Patent Application Publication Nos. 19071/1988, 243674/1990, 279570/1992) and is expected to find application in the field of medicine as a therapeutic drug for hypertension, heart failure, etc..

For any renin inhibitors, the development of oral dosage forms is considered desirable in view of the above-mentioned indications but many of renin inhibitors reported so far are poorly absorbed from the gastrointestinal tract and this has been a major deterrent to the development of oral dosage forms. For the above compound (I) or salt thereof [hereinafter referred to collectively as compound (I)], too,

10

25

30

35

attempts have been made to develop them as renin inhibitors for oral administration but a further improvement is needed in oral absorbability.

The inventors of this invention did much research for enhancing the oral absorption of compound (I) and found that tartaric acid, citric acid, higher alcohol, cyclodextrin, sucrose ester of fatty acid and/or polyglycerin ester of fatty acid contributes a great deal to improved absorbability of compound (I) after oral administration. They accordingly have completed this invention.

Disclosure of the Invention

The oral pharmaceutical composition of this invention is characterized in that it comprises an active ingredient comprising compound (I) and one or more ingredient(s) selected from the group consisting of tartaric acid, citric acid, higher alcohol, cyclodextrin, sucrose ester of fatty acid and polyglycerin ester of fatty acid.

The definitions used in general formula (I) and relevant specific examples as well as preferred working modes are explained in detail below.

The term "lower" means a group having 1 - 7 carbon atoms unless otherwise indicated.

Suitable "lower alkyl" includes straight-chain or branched alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, ethylbutyl, pentyl, isopentyl, hexyl, methylhexyl, heptyl or the like.

Suitable "aryl" includes phenyl, naphthyl, tolyl, xylyl, mesityl, cumenyl or the like, and the more preferred one is phenyl.

Suitable "lower alkoxy" includes a straight-chain

or branched alkoxy group such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tert-butoxy, pentyloxy, hexyloxy or the like, and the more preferred ones are C_1 - C_4 alkoxy groups.

5 Suitable "acyl" includes lower alkanoyl groups such as formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, 4-methylvaleryl, etc., mono- or di(lower)alkylamino(lower)alkanoyl groups such as methylaminoacetyl, methylaminopropionyl, 10 dimethylaminobutyryl, etc., lower alkoxy(lower)alkanoyl groups such as methoxyacetyl, methoxypropionyl, ethoxypropionyl, etc., aroyl groups such as benzoyl, toluoyl, etc., cyclo(lower)alkylcarbonyl groups such as cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentyl-15 carbonyl, cyclohexylcarbonyl, etc., amino acid residues whose amino groups may be protected, such as glycyl, benzoylglycyl, tert-butoxycarbonylglycyl, tertbutoxycarbonylleucyl, acetylleucyl, tert-butoxycarbonylhistidyl, etc., carbamoyl, mono- or di(lower)-20 alkylcarbamoyl groups such as methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, isopropylcarbamoyl, butylcarbamoyl, pentylcarbamoyl, isobutylcarbamoyl, tertbutylcarbamoyl, dimethylcarbamoyl, diethylcarbamoyl, methylethylcarbamoyl, methylisopropylcarbamoyl, methyl-25 isobutylcarbamoyl, etc., heterocyclic(lower)alkylcarbamoyl groups such as picolylcarbamoyl, pyridylethylcarbamoyl, thiazolylmethylcarbamoyl, morpholinomethylcarbamoyl, morpholinoethylcarbamoyl, etc., Nheterocyclic(lower)alkyl-N-lower alkylcarbamoyl groups 30 such as N-picolyl-N-methylcarbamoyl, N-pyridylethyl-Nmethylcarbamoyl, N-morpholinomethyl-N-ethylcarbamoyl, N-morpholinoethyl-N-methyl-carbamoyl, etc., ar(lower)alkylcarbamoyl groups such as benzylcarbamoyl, phenethylcarbamoyl, benzhydrylcarbamoyl, etc., N-35 ar(lower)alkyl-N-lower alkylcarbamoyl groups such as N-

benzyl-N-methylcarbamoyl, N-phenethyl-N-methylcarbamoyl, N-phenethyl-N-ethylcarbamoyl, etc., N-aryl-N-lower alkylcarbamoyl groups such as N-phenyl-Nmethylcarbamoyl etc., lower alkoxycarbonyl(lower)alkylcarbamoyl groups such as methoxycarbonylmethylcarbamoyl, ethoxycarbonylmethylcarbamoyl, ethoxycarbonylethylcarbamoyl, etc., lower alkoxy(lower)alkylcarbamoyl groups such as methoxymethylcarbamoyl, methoxyethylcarbamoyl, ethoxypropylcarbamoyl, etc., aroylcarbamoyl 10 groups such as benzoylcarbamoyl, toluoylcarbamoyl, etc., heterocycliccarbamoyl groups such as pyridylcarbamoyl, morpholinocarbamoyl, thiazolylcarbamoyl, etc., N-heterocyclic-N-lower alkylcarbamoyl groups such as N-pyridyl-N-methylcarbamoyl, N-thiazolyl-N-methylcarbamoyl, etc., heterocycliccarbonyl groups and more 15 preferably N-containing heterocyclic-N-ylcarbonyl groups which may be substituted with lower alkyl, such as morpholinocarbonyl, thiomorpholinocarbonyl, piperidinocarbonyl, 4-methyl-1-piperazinylcarbonyl, 20 1,2,3,6-tetrahydro-1-pyridylcarbonyl, etc., lower alkoxycarbonyl groups such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, tert-butoxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl, etc., mono-(or di-25 or tri-)halo(lower)alkoxycarbonyl groups such as iodoethoxycarbonyl, dichloroethoxycarbonyl, trichloroethoxycarbonyl, trifluoromethoxycarbonyl, etc., hydroxy(lower)alkoxycarbonyl groups such as hydroxymethoxycarbonyl, hydroxyethoxycarbonyl, hydroxypropoxy-30 carbonyl, hydroxybutoxycarbonyl, etc., ar(lower) alkoxycarbonyl groups such as benzyloxycarbonyl, phenethyloxycarbonyl, 4-nitrobenzyloxycarbonyl, trityloxycarbonyl, benzhydryloxycarbonyl, etc., lower alkenyloxycarbonyl groups such as vinyloxycarbonyl, 35 allyloxycarbonyl, etc., lower alkanoyl(lower)alkoxy-

10

15

20

25

30

35

carbonyl groups such as acetylmethoxycarbonyl, propionylmethoxycarbonyl, acetylethoxycarbonyl, etc.,
lower alkylsulfonyl groups such as mesyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl,
isobutylsulfonyl, tert-butylsulfonyl, pentylsulfonyl,
hexylsulfonyl, etc., arylsulfonyl groups such as
phenylsulfonyl, tosyl, etc. or the like.

Suitable "lower alkylthio" includes straight-chain or branched alkylthio groups such as methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, tert-butylthio, pentylthio, hexylthio or the like. The more preferred ones are C_1 - C_4 alkylthio groups.

Suitable salts of compound (I) include conventional non-toxic salts, for example, organic acid addition salts such as formate, acetate, trifluoroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc., inorganic acid addition salts such as hydrochloride, hydrobromide, sulfate, phosphate, etc., salts with amino acids, such as aspartate, glutamate, etc. or the like.

Compound (I) may occur as stereoisomers, such as optical isomers and geometrical isomers, due to the asymmetric carbon and double bond and these isomers are also included within the scope of this invention.

Higher alcohol used in this invention includes C_{8} - C_{20} , straight-chain or branched, saturated or unsaturated alcohol such as cetyl alcohol, stearyl alcohol, oleyl alcohol or the like, in which more preferred ones are C_{14} - C_{20} alcohol and the most preferred one is cetyl alcohol.

Cyclodextrin used in this invention includes α -cyclodextrin, β -cyclodextrin, hydroxypropyl- β -cyclodextrin, γ -cyclodextrin, dimethyl- β -cyclodextrin

or the like, in which the most preferred one is β -cyclodextrin.

5

10

15

20

25

30

35

Sucrose ester of fatty acid used in this invention includes sucrose ester of mono-, di-, tri- or poly-, saturated or unsaturated fatty acid such as sucrose ester of lauric acid, sucrose ester of myristic acid, sucrose ester of palmitic acid, sucrose ester of stearic acid, sucrose ester of oleic acid, etc., and mixture thereof, sucrose ester of hardening beef tallow fatty acid [e.g. DK ester F-160, DK ester SS (manufactured by Dai-ichi Kogyo-Seiyaku Co., Ltd.)] or the like.

Polyglycerin ester of fatty acid used in this invention includes decaglycerin ester of fatty acid such as decaglycerin ester of monolauric acid [e.g. Decaglyn 1-L (trademark, manufactured by Nikko Chemicals Co., Ltd.)], decaglycerin ester of monostearic acid, etc. or the like.

The amount of tartaric acid or citric acid in the oral pharmaceutical composition of this invention is not so critical but is preferably 0.01 - 20 times and, for still better results 0.1 - 2 times, most preferably 0.5-1 times the amount of compound (I) contained in the composition.

The amount of higher alcohol in the oral pharmaceutical composition of this invention is not so critical but is preferably 0.05 - 20 times and, for still better results 0.1 - 10 times, most preferably 0.2-4 times the amount of compound (I) contained in the composition.

The amount of cyclodextrin, sucrose ester of fatty acid and polyglycerin ester of fatty acid in the oral pharmaceutical composition of this invention is not so critical but is preferably 0.5 - 20 times and, for still better results, 0.5 - 3 times the amount of

10

. 15

20

25

30

35

compound (I) contained in the composition.

Where necessary, the composition of this invention' may further contain those additives which are conventionally used in pharmaceutical formulation, such as a disintegrator, lubricant, excipient, coloring agent, effervescent agent or the like. There is no limitation on dosage form. Thus, for oral administration, the composition can be used in such forms as powders, fine granules, granules, capsules, tablets, pills, liquid preparations, or the like.

Suitable disintegrator includes starches (e.g. potato starch, corn starch, hydroxypropylstarch, carboxymethylstarch sodium, etc.), cellulose derivatives (e.g. carboxymethylcellulose calcium, carboxymethylcellulose sodium, carboxymethylcellulose, lowsubstitution hydroxypropylcellulose, crystalline cellulose, etc.), polyvinylpyrrolidone, croscarmellose sodium or the like. Suitable lubricant includes talc, waxes (e.g. bleached beeswax, hydrogenated oil, etc.), stearic acid compounds (e.g. stearic acid, magnesium stearate, calcium stearate, etc.) or the like. Suitable excipient includes sugars (e.g. lactose, sucrose, Dmannitol, etc.), starches (e.g. corn starch etc.), inorganic salts of calcium (e.g. calcium hydrogen phosphate, calcium sulfate, etc.) or the like. Suitable coloring agent includes yellow oxide of ion, tar dyes or the like. Suitable effervescent agent includes a tartaric acid-sodium hydrogen carbonate system or the These are not exclusive choices, however, and any materials that are commonly used in the art can be utilized.

Where desired, the composition can be processed into a dosage form such as one coated with an enteric coating agent such as hydroxypropylmethylcellulose phthalate.

10

15

20

25

30

35

Furthermore, the tartaric acid or citric acid in this invention can be expected to double as a release enhancing agent.

The composition of this invention can be produced by blending compound (I) with one or more ingredient(s) selected from the group consisting of tartaric acid, citric acid, higher alcohol, cyclodextrin, sucrose ester of fatty acid and polyglycerin ester of fatty acid, and, optionally, further with conventional additives.

The method of production includes the conventional procedures. Moreover, such compositions as mentioned above can be comminuted for reducing the particle size. Such comminution can be made by the conventional procedures.

The powdery mixture so produced can be further processed, if desired, into various dosage forms by the processes well established in the art, such as pulverization, sieving, kneading, granulation, compression, coating or the like. These processes can each be carried out in the conventional manner.

In case that cyclodextrin is contained in the composition of this invention, an inclusion compound of compound (I) and cyclodextrin may be formed, and said inclusion compound is also included within the scope of this invention.

Some representative test data are given below for showing the effect of the invention.

Test compounds

 $(2S,3S)-2-[N^{\alpha}-[(S)-2-[N-Methyl-N-[2-{N-(morpholino-carbonyl)-N-methylamino}]$ aminocarbonyloxy]-3-phenylpropionyl]- N^{α} -methyl-L-histidyl]amino-1-cyclohexyl-3-hydroxy-6-methylheptane hydrochloride

(hereinafter referred to Compound A)

 $(2S,3S)-2-[N^{\alpha}-[(S)-2-\{N-(2-Morpholinocarbonylethyl)-N-methylaminocarbonyloxy\}-3-phenylpropionyl]-N^{\alpha}-methyl-L-histidyl]amino-1-cyclohexyl-3-hydroxy-6-methylheptane hydrochloride$

(hereinafter referred to Compound B)

Test 1 Solubility test

10 Method

An aqueous solution of the test compound (2 ml, concentration: 20 mg/ml, about pH 4) was prepared and maintained at 37°C. A solution of β -cyclodextrin, DK ester SS or Decaglyn 1-L in two-fold salt concentration of Second Fluid of The Pharmacopoeia of Japan (2 ml, concentration: 10 mg/ml, pH 6.8) was added thereto. The solubility of the test compound was determined by high performance liquid chromatography. Results

20

25

15

5

Additives		β-cyclo- dextrin	DK ester SS	Decaglyn 1-L	none
Solubility (mg/ml)	Compound À	. 4.7	3.4	2.1	0.1
	Compound B	1.9	5.6*	1.9*	0.3

* a solution of two-fold concentration of Second Fluid of The Pharmacopoeia of Japan concentration: 20 mg/ml

30

It is apparent from the above test results that the solubility of the compound (I) is greatly improved ' by cyclodextrin, sucrose ester of fatty acid or polyglycerin ester of fatty acid.

5

10

15

Test 2 Oral absorption test-1 Method

Male S.D. rats (body weights 200 - 270 g), fasted overnight, were used in groups of 3. The dosing samples shown below were respectively administered orally to the rats in the dose of 10 mg/kg. After the administration, the blood was serially withdrawn from the femoral artery and the concentration of the test compound was determined by high performance liquid chromatography.

Dosing sample

20

Formulation	Formulation 1	Control
Compound A	20 mg	20 mg
β-cyclodextrin	46 mg	
Purified water	10. ml	10 ml

25

Results

30

The test results are shown below in the table. The maximum plasma concentration (Cmax, $\mu g/ml$) and the area under the plasma concentration-time curve (AUC₀₋₆ hr, $\mu g \cdot hr/ml$) are shown together as oral absorption parameters. Each value is the mean \pm standard error.

15

20

25

30

Formulation	n	Cmax (µg/ml)	AUC ₀₋₆ hr (µg•hr/ml)
1	3	1.02±0.15	0.95 ± 0.17
Control	3	0.80±0.10	0.56 ± 0.07

10 <u>Test 3</u> <u>Oral absorption test-2</u> Method

Male S.D. rats (body weights 200 - 270 g), fasted overnight, were used in groups of 3. The dosing samples shown below were respectively administered orally to the rats in the dose of 32 mg/kg. After the administration, the blood was serially withdrawn from the femoral artery and the concentration of the test compound was determined by high performance liquid chromatography.

Dosing sample

Formulation	Formulation 2	Control
Compound A	64. mg	64 mg
Tartaric acid	32 mg	-
Purified water	10 ml	10 ml

Results

Formulation	n	Cmax (µg/ml)	AUC ₀₋₆ hr (µg•hr/ml)
. 2	3	0.40±0.08	1.38 ± 0.30
Control	3	0.21±0.64	0.64 ± 0.13

10

5

Test 4 Oral absorption test-3

Method

The test was carried out according to a similar manner to that of $\underline{\text{Test 3}}$.

15

Dosing sample

	Formulation	Formulation 3	Control
20	Compound A	64 mg	64 mg
	Cetyl alcohol	128 mg	-
25	Sorbitan sesqui- oleate (surfactant)	12.8 mg	12.8 mg
	Purified water	10 ml	10 ml

30

Results

Formulation	n	Cmax (µg/ml)	AUC ₀₋₆ hr (µg•hr/ml)
3	3	0.70±0.15	1.45 ± 0.41
Control	3	0.24±0.05	0.88 ± 0.12

10

15

5

It is apparent from the above test results that the oral pharmaceutical composition of this invention is superior to the cyclodextrin-free control composition, the tartaric acid-free control composition or the higher alcohol-free control composition in the oral absorbability of compound (I).

Examples

20

The following examples are intended to describe this invention in further detail.

Example 1

	Compound A	200	parts
	β -Cyclodextrin	465	parts
25	Crystalline cellulose	20	parts
	Tartaric acid	185	parts
	Sodium hydrogen carbonate	210	parts
	Crosslinked polyvinylpyrrolidone	10	parts
	Magnesium stearate	25	parts
30	Hydroxypropylmethylcellulose		
	2910	30	parts
	Hydroxypropylmethylcellulose		-
	phthalate 220824	50	parts
	Effervescent enteric tablets acco		-
35	above formula were manufactured by the	_	

method.

Exam	ρl	e	2
------	----	---	---

	Compound B	200	parts
5	DK ester SS	400	parts
	Crystalline cellulose	20	parts
	Tartaric acid	185	parts
	Sodium hydrogen carbonate	210	parts
	Crosslinked polyvinylpyrrolidone	10	parts
10	Magnesium stearate	25	parts
	Hydroxypropylmethylcellulose		
	2910	30	parts
	Hydroxypropylmethylcellulose		
•	phthalate 220824	50	parts
15	Effervescent enteric tablets acco	ordin	g to the
	above formulation were manufactured by	y the	conventional
	method.		

Example 3

20	Compound A 200 parts
	Decaglyn 1-L 400 parts
	Crystalline cellulose 20 parts
	Tartaric acid 185 parts
	Sodium hydrogen carbonate 210 parts
25	Crosslinked polyvinylpyrrolidone 10 parts
	Magnesium stearate 25 parts
	Effervescent tablets according to the above
	formulation were manufactured by the conventional
	method.

30

Example 4

	Compound A	600	parts
•	Lactose	45	parts
	d-Tartaric acid	300	parts
35	Hydrous silicon d	ioxide 80	parts

Crossli	ıkec	i po.	lyv:	inyl	lpyr	rolido	one	270	parts
Magnesi	ım s	stear	cate	9				54	parts
Tablets	aco	cord	ing	to	the	above	e fo	rmula	were
manufactured	by	the	COI	nver	ntion	nal me	etho	d.	

Example 5

	Compound A	600	parts
	Lactose	195	parts
•	Citric acid	150	parts
10	Hydrous silicon dioxide	80	parts
	Crosslinked polyvinylpyrrolidone	270	parts
	Magnesium stearate	54	parts
•	Tablets according to the above fo	rmula	ation were
	manufactured by the conventional metho	d.	

15

Example 6

	Compound A	400 parts
	Cetyl alcohol	400 parts
	Lactose	105 parts
20	Crosslinked polyvinylpyrrolidone	80 parts
	Magnesium stearate	15 parts
	Tablets according to the above fo	rmula were
	manufactured by the conventional metho	d.

25 <u>Example 7</u>

	$(2S,3S)-2-[N^{\alpha}-[N-[N-Methyl-N-carbonyl-N-methylamino)ethyl}$	• •
	phenylalanyl]-Nα-methyl-L-his	tidyl]amino-1-
	cyclohexyl-3-hydroxy-5-ethylh	eptane hydrochloride
30	(hereinafter referred to Comp	ound C)
		200 parts
	β-Cyclodextrin	465 parts
	Crystalline cellulose	- 20 parts
	Tartaric acid	185 parts
35	Sodium hydrogen carbonate	210 parts

Crosslinked polyvinylpyrrolidone 10 parts

			-
	Magnesium stearate	25	parts
	Hydroxypropylmethylcellulose		
	2910	30	parts
5	Hydroxypropylmethylcellulose		
	phthalate 220824	50	parts
	Effervescent enteric tablets acco	rding	to the
	above formula were manufactured by the	conv	ventional
	method.		
10			
	Example 8		
	Compound C	600	parts
	Lactose	45	parts
	d-Tartaric acid	300	parts
15	Hydrous silicon dioxide	80	parts
	Crosslinked polyvinylpyrrolidone	270	parts
	Magnesium stearate	54	parts
	Tablets according to the above fo	rmula	a were
	manufactured by the conventional metho	d.	
20			
	Example 9		
	Compound C	400	parts
	Cetyl alcohol	400	parts
	Lactose	105	parts
25	Crosslinked polyvinylpyrrolidone	80	parts
	Magnesium stearate	15	parts
•	Tablets according to the above fo	rmula	a were
	manufactured by the conventional metho	d.	

10

CLAIMS

1. An oral pharmaceutical composition, which comprises an amino acid derivative of the general formula:

wherein R¹ is a lower alkyl group which may be substituted with a substituent selected from the group consisting of acyl, hydroxy, lower alkoxy, aryl, lower alkylthio and a group of the formula:

$$-N \stackrel{R^5}{\underset{R^6}{\overline{}}}$$

20

25

30

35

15

in which R⁵ is hydrogen or an acyl group, and R⁶ is hydrogen or a lower alkyl group,

R² is hydrogen or a lower alkyl group,
R³ is hydrogen or a lower alkyl group,
R⁴ is a lower alkyl group, and
X is O or NH,

or a salt thereof and one or more ingredient(s) selected from the group consisting of tartaric acid, citric acid, higher alcohol, cyclodextrin, sucrose ester of fatty acid and polyglycerin ester of fatty acid.

2. An oral pharmaceutical composition according to claim 1, which comprises an amino acid derivative of

10

20

25

claim 1 or a salt thereof and tartaric acid.

- 3. An oral pharmaceutical composition according to claim 1, which comprises an amino acid derivative of claim 1 or a salt thereof and cetyl alcohol.
- 4. An oral pharmaceutical composition according to claim 1, which comprises an amino acid derivative of claim 1 or a salt thereof and β -cyclodextrin.

5. An oral pharmaceutical composition according to claim 2, 3 or 4, in which an amino acid derivative is the one wherein \mathbb{R}^1 is a lower alkyl group substituted with a group of the formula:

in which R^5 is hydrogen or morpholinocarbonyl, and R^6 is hydrogen or a lower alkyl group.

- 6. A process for preparing an oral pharmaceutical composition, which comprises blending an amino acid derivative of claim 1 or a salt thereof with one or more ingredient(s) selected from the group consisting of tartaric acid, citric acid, higher alcohol, cyclodextrin, sucrose ester of fatty acid and polyglycerin ester of fatty acid.
- 7. Use of an amino acid derivative of claim 1 or a salt thereof in the preparation of an oral pharmaceutical composition, together with one or more ingredient(s) selected from the group consisting of tartaric acid, citric acid, higher alcohol, cyclodextrin, sucrose ester of fatty acid and polyglycerin ester of fatty acid.

A. CLASSIFICATION OF SUBJECT IPC 5 A61K37/64

TER 1K47/10

A61K47/12

A61K47/14

61K47/40

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC $\frac{5}{61}$ A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DATABASE WPI Week 9050, Derwent Publications Ltd., London, GB; AN 90-370711 (50) cited in the application see abstract & JP,A,02 243 674 (FUJISAWA PHARM. KK) 27 September 1990	1-7
A	EP,A,O 476 515 (FUJISAWA PHARMACEUTICAL CO.,LTD.) 25 March 1992 cited in the application see claims see page 13, line 35 - line 53	1-7

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
*Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an entire the when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 6 July 1994	Date of mailing of the international search report 1 2. 07. 94
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Authorized officer Scarponi, U

INTERNATIONAL SEARCH REPORT

Inter and Application No
PCT/14704/00670

•		PCT/J	/006/0
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim 146.
A .	DATABASE WPI Week 9244, Derwent Publications Ltd., London, GB; AN 92-366167 (44) see abstract & WO,A,92 17456 (FUJISAWA PHARM. CO. LTD.) 15 October 1992		1-7
P,A	WO,A,93 12796 (FUJISAWA PHARMACEUTICAL CO.,LTD.) 8 July 1993 see claims see page 11, line 29 - line 34 see page 12, line 1 - line 8 see examples		1-7
	•		
	·		

Information on patent family members

PCT/1P 94/00670

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
JP-A-02243674	27-09-90			
EP-A-0476515	25-03-92	AU-B- AU-A- CN-A- JP-A-	646076 8379091 1063691 4279570	03-02-94 19-03-92 19-08-92 05-10-92
WO-A-9217456	15-10-92	NONE		
WO-A-9312796	08-07-93	AU-B-	3171293	28-07-93

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.