Análise do Aerossol Atmosférico e de suas Fontes no Bairro Africano de Nina, em Acra, capital de Gana.

Thiago Gomes Veríssimo <thiago.verissimo at usp.br> Orientador: Américo Kerr

Instituto de Físisca

27 de Agosto de 2015

- Projeto
- 2 Experimento
- 3 Metodologia
- 4 Resultados

Poluição do Ar em Acra, capital de Gana

Projeto Internacional:

Air Pollution in Accra Neighborhoods: Spatial, Socioeconomic, and Temporal Patterns coordenado por pesquisadores da Harvard School of Public Healt nos Estados Unidos e da Universidade de Ghana.

África Subsariana (SSA)

Diferente das cidade dos países desenvolvidos, que tem como principais fontes de poluição a industria e o transporte, nas cidade da SSA as fontes tem outro perfil, pois na SSA:

- população predominantemente rural;
- grande parte das vias não pavimentadas;
- maior taxa de crescimento populacional urbano do mundo;
- não possuem sistemas de monitoramento sistemático de Poluição do Ar;
- é comum o uso da queima de biomassa para o cozimento de alimentos (comercial e doméstico), tanto em regiões urbanas quanto rurais.

Fotos do bairro de Nima

Figura: Fotos do bairro de Nima

Localização no Mapa

Figura: Localização no Mapa

Amostragem

Características dos locais amostrados (2007 e 2008):

- Residencial (5°35′2.00″ e -0°11.0′58″): Avenida com pouco tráfego de veículos e não pavimentada
- Tráfego (5°34′54″ e -0°11′56.30″): Avenida pavimentada com tráfego intenso de veículos (com exceção do período noturno).

Pontos de amostragem em Nima

Figura: Amostragem Nima

Figura: Distribuição das frequência de direção dos ventos, dados da NOAA

Fluorescência de Raios X - ED-XRF

Modelamento matemático usado na ED-XRF:

$$N_{ij} \propto \frac{m_{ij}}{A_i} I_i \Delta t_i$$
 (1)

Onde,

- N_{ij} = Contagem de fótons na amostra i para o elemento químico j;
- I_i = Corrente (ampère) na amostra i;
- Δt_i = Tempo vivo (segundos) que a amostra i foi irradiada;
- m_{ij} = Massa (grama) na amostra i para o elemento químico j;
- $A_i = \text{Área } (cm^2)$ irradiada da amostra i.

Calibração: Ajuste do Fator de Resposta

Constante de proporcionalidade: Fator de Resposta:

$$R_j = \frac{A_i}{m_{ij}} \frac{N_{ij}}{I_i \Delta t_i} \tag{2}$$

Limite de Detecção

Modelo receptor

Modelo Receptor é uma abordagem matemática para quantificar o efeito das fontes nas amostras. Determinar as fontes a partir do receptor.

Análise Multivariada reduz as dimensões (variáveis) de um conjunto de dados em um conjunto de dados analítico complexo que poderão ser interpretados como tipo de fontes.

Conservação de massa

Fundamentação do modelo receptor: Conservação de massa. Todos modelos resolvem a mesma equação:

$$x_{ij} = \sum_{\rho=1}^{P} g_{i\rho} f_{\rho j} + \epsilon_{ij}$$
 (3)

- x_{ij} = concentração na amostra i da espécie j;
- f_{pj} = concentração da espécie j emitida na fonte p (ferfil da fonte, assinatura da fonte ou Factor Loadings);
- $g_{ip} = \text{contribuição da fonte p para amostra i } (Factor Score);$
- $\epsilon = \text{Erro do modelo empregado/resíduo}$.

Positive Matrix Factorizarion

Função objeto - Q - é uma função que precisa ser minimizada ou maximizada usando métodos numéricos para equações não lineares, pois não tem solução analítica.

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left[\frac{e_{ij}}{u_{ij}} \right]^2 \tag{4}$$

Comparação das análises com a da EPA

Sigla	n	Média	Desvio Padrão	Mediana	Ultrapassagens
RFcH	197	83.28	18.12	29.43	66.5 %
RlcH	197	113.77	11.55	58.72	43.65 %
TFcH	200	76.42	9.47	36.36	92 %
TIcH	199	133.99	11.63	72.72	54.27 %
RFsH	118	28.68	1.6	24.5	44.92 %
RIsH	118	99.2	29.25	39.48	23.73 %
TFsH	121	34.34	3.42	24.74	46.28 %
TIsH	120	32.75	3.14	24.7	7.5 %

Tabela: Estatística descritiva e ultrapassagens dos padrões de referência da Organização Mundial de Saúde (OMS). 25 ug/m^3 para $MP_{2.5}$ e 70 ug/m^3 para MP_{10} . R/T: Residêncial ou Tráfego Intenso; F/G/I: Fino, Grosso ou Inalável; cH/sH: com Harmatã ou sem Harmatã.

Análise de Fatores:	DE-U L.	and the second second second	ataman lautala dan ar	
Analise de Eatores	KESH a	comunalidade: b:	singularidade: c:	complexidade.

Espécie	Solo	Biomassa	Mar	Veículo	Zn	a	b	С
Al	0.98	0.11	-0.06	0.07	0.05	0.99	0.01	1.05
Si	0.98	0.12	-0.05	0.05	0.04	0.99	0.01	1.05
Ti	0.98	0.11	-0.07	0.07	0.07	0.99	0.01	1.05
Fe	0.98	0.11	-0.07	0.08	0.08	0.99	0.01	1.06
Mn	0.98	0.13	-0.06	0.09	0.07	0.99	0.01	1.07
Ca	0.98	0.12	-0.02	0.06	0.09	0.98	0.02	1.06
Mg	0.96	0.12	0.08	0.08	0.02	0.95	0.05	1.06
mass	0.92	0.27	-0.01	0.17	0.11	0.96	0.04	1.27
V	0.78	0.05	0.07	0.30	-0.03	0.71	0.29	1.31
K	0.65	0.59	0.12	0.26	0.12	0.87	0.13	2.48
S	0.06	0.87	0.42	0.01	0.08	0.94	0.06	1.47
P	0.44	0.80	0.00	0.02	0.00	0.84	0.16	1.56
Na	-0.28	0.19	0.81	-0.08	0.05	0.77	0.23	1.39
Cl	0.41	-0.04	0.76	-0.06	0.24	0.81	0.19	1.79
Br	-0.13	0.20	0.66	0.26	-0.06	0.56	0.44	1.61
BC	0.14	0.15	-0.16	0.78	0.19	0.71	0.29	1.35
Pb	0.22	-0.08	0.31	0.75	0.05	0.72	0.28	1.57
Zn	0.12	0.09	0.13	0.21	0.93	0.94	0.06	1.20
SS loadings	9.13	2.04	2.03	1.52	1.03			
Proportion Var	0.51	0.11	0.11	0.08	0.06			
Cumulative Var	0.51	0.62	0.73	0.82	0.88			
Cum. factor Var	0.58	0.71	0.84	0.93	1			

Análise de Fatores:	TECH LO	comunalidado: bi	cingularidado: c:	comployidada
Analise de Fatores:	IFSH a:	comunalidade: b:	singularidade: c:	complexidade.

Espécie	Solo	Biomassa	Mar	Veículo	Lixo Sólido	a	b	С
Fe	0.98	0.13	-0.02	0.09	0.02	1.00	0.00	1.06
Ti	0.98	0.13	-0.03	0.07	0.01	0.99	0.01	1.05
Ca	0.98	0.13	0.02	0.09	0.03	0.99	0.01	1.06
Mn	0.98	0.13	-0.02	0.08	0.02	0.99	0.01	1.05
Si	0.98	0.16	-0.04	0.05	0.02	0.98	0.02	1.06
Al	0.97	0.16	-0.05	0.06	0.01	0.98	0.02	1.07
mass	0.95	0.15	0.02	0.18	0.10	0.97	0.03	1.15
Mg	0.94	0.19	0.06	0.06	0.03	0.93	0.07	1.10
V	0.87	0.13	0.03	0.21	0.07	0.83	0.17	1.18
K	0.84	0.28	0.06	0.27	0.20	0.90	0.10	1.57
Pb	0.68	-0.02	0.16	0.40	0.30	0.74	0.26	2.18
Zn	0.68	0.02	0.21	0.33	0.19	0.64	0.36	1.86
P	0.33	0.88	-0.10	0.08	-0.01	0.90	0.10	1.32
S	0.18	0.85	0.25	0.08	0.31	0.92	0.08	1.57
Na	-0.34	0.18	0.85	-0.06	0.10	0.88	0.12	1.47
CI	0.48	-0.08	0.76	0.00	0.13	0.83	0.17	1.78
BC	0.21	0.12	-0.08	0.92	0.03	0.92	0.08	1.16
Br	0.08	0.20	0.16	0.06	0.94	0.96	0.04	1.17
SS loadings	10.48	1.87	1.48	1.32	1.19			
Proportion Var	0.58	0.1	0.08	0.07	0.07			
Cumulative Var	0.58	0.69	0.77	0.84	0.91			
Cum. factor Var	0.64	0.76	0.85	0.93	1			

Análise de Fatores:	DCaH I a	. comunalidado: h	. cinaularidada: c.	comployidado
Analise de Fatores:	RGSH a	: comunalidade: b	: singularidade: c:	complexidade.

Espécie	Solo	Biomassa	Lixo Sólido	Anti-mar	а	b	С
Mn	0.95	0.21	0.15	0.11	0.99	0.01	1.17
Ca	0.95	0.16	0.15	0.07	0.96	0.04	1.12
Ti	0.95	0.22	0.14	0.12	0.99	0.01	1.19
Fe	0.95	0.23	0.16	0.12	0.99	0.01	1.20
Si	0.94	0.25	0.13	0.13	0.97	0.03	1.23
Al	0.93	0.28	0.12	0.15	0.98	0.02	1.28
Mg	0.92	0.25	0.12	0.09	0.94	0.06	1.21
V	0.91	0.29	0.15	0.13	0.95	0.05	1.30
Cl	0.89	-0.01	0.02	-0.27	0.86	0.14	1.19
K	0.80	0.39	0.35	0.15	0.94	0.06	1.94
Pb	0.74	0.13	0.49	0.10	0.81	0.19	1.86
Zn	0.67	0.21	0.47	0.07	0.72	0.28	2.05
S	0.31	0.86	0.20	-0.13	0.90	0.10	1.43
P	0.36	0.83	0.02	0.11	0.83	0.17	1.41
BC	0.07	0.60	0.49	0.36	0.74	0.26	2.66
mass	0.09	0.05	0.77	0.09	0.62	0.38	1.07
Br	0.24	0.19	0.56	-0.30	0.49	0.51	2.25
Na	-0.25	-0.07	-0.02	-0.90	0.87	0.13	1.16
SS loadings	9.83	2.51	1.93	1.29			
Proportion Var	0.55	0.14	0.11	0.07			
Cumulative Var	0.55	0.69	0.79	0.86			
Cum. factor Var	0.63	0.79	0.92	1			

Análise de Fatores	TCILL		Paleston Inc.	attentional and deviler	and the second second second second
Analise de Eatores	I (3SH	a: comuna	alidade: b:	singularidade:	c: complexidade.

Espécie	Solo	Biomassa	Lixo Sólido	Anti-mar	а	b	С
Ti	0.98	0.14	0.11	0.08	0.99	0.01	1.08
Fe	0.97	0.14	0.11	0.08	0.99	0.01	1.08
Mn	0.97	0.11	0.11	0.07	0.98	0.02	1.06
Ca	0.97	0.12	0.12	0.04	0.97	0.03	1.07
Si	0.96	0.18	0.11	0.11	0.98	0.02	1.13
Al	0.95	0.20	0.10	0.14	0.98	0.02	1.16
V	0.95	0.15	0.09	0.08	0.94	0.06	1.08
Mg	0.94	0.19	0.10	0.10	0.94	0.06	1.13
CI	0.90	-0.01	0.09	-0.19	0.85	0.15	1.12
K	0.87	0.38	0.21	0.14	0.96	0.04	1.56
Pb	0.73	0.35	0.38	0.10	0.81	0.19	2.03
Р	0.72	0.50	-0.04	0.14	0.78	0.22	1.88
Zn	0.67	0.39	0.36	0.07	0.74	0.26	2.27
S	0.29	0.86	-0.03	-0.03	0.82	0.18	1.23
BC	-0.05	0.77	0.24	0.41	0.82	0.18	1.76
Br	0.19	0.56	0.20	-0.32	0.49	0.51	2.17
mass	0.20	0.15	0.89	0.02	0.85	0.15	1.16
Na	-0.23	-0.03	-0.04	-0.90	0.86	0.14	1.14
SS loadings	10.68	2.53	1.31	1.23			
Proportion Var	0.59	0.14	0.07	0.07			
Cumulative Var	0.59	0.73	0.81	0.87			
Cum. factor Var	0.68	0.84	0.92	1			

Tabela:

Análise de Fatores	: TlcH a	a: comun	alidade; b	: singula	ridade; c:	complex	cidade.	
Variable	PC1	PC2	PC3	PC4	PC5	h2	u2	com
Mn	0.98	-0.03	0.12	0.07	0.10	0.99	0.01	1.07
Fe	0.97	-0.05	0.14	0.08	0.13	0.99	0.01	1.09
Ti	0.97	-0.06	0.17	0.08	0.12	0.99	0.01	1.11
Ca	0.97	-0.03	0.15	0.11	0.08	0.98	0.02	1.10
V	0.96	-0.03	0.14	0.05	0.15	0.96	0.04	1.10
Si	0.95	-0.08	0.24	0.11	0.04	0.99	0.01	1.17
mass	0.95	0.04	0.10	0.08	0.09	0.93	0.07	1.06
Mg	0.95	-0.04	0.25	0.12	-0.03	0.98	0.02	1.18
Al	0.94	-0.10	0.26	0.09	0.07	0.98	0.02	1.21
K	0.92	-0.05	0.29	0.13	0.16	0.97	0.03	1.31
Zn	0.80	-0.03	0.24	0.11	0.46	0.92	0.08	1.87
Pb	0.80	-0.05	0.22	0.25	0.39	0.90	0.10	1.88
P	0.58	-0.25	0.53	-0.06	0.44	0.88	0.12	3.28
Cl	0.22	0.92	0.14	0.11	-0.01	0.93	0.07	1.20
Na	-0.45	0.85	-0.09	0.01	-0.04	0.93	0.07	1.55
S	0.27	0.14	0.91	0.22	0.05	0.97	0.03	1.37
Br	0.17	0.11	0.16	0.96	0.03	0.98	0.02	1.15
SS loadings	11.11	1.69	1.66	1.14	0.67			
Proportion Var	0.65	0.1	0.1	0.07	0.04			
Cumulative Var	0.65	0.75	0.85	0.92	0.96			
Cum. factor Var	0.68	0.79	0.89	0.96	1			

Impacto do Harmatã

Figura: Score para fator que representa solo/Harmatã e Queima de Biomassa, respectivamente.

Positive Matrix Factorization: RFsH

	americo	Biomassa	Mar	Solo	americo
BC	72.29				27.71
Zn	55.31				
Pb	54.95				27.3
K	48.11				
mass	46.54				
Br	43.91		33.24		
Mn	35.26			53.34	
V	31.73			25.08	25.2
Р		60.1			
S		49.07			
Na		40.1	58.24		
CI			81.78		
Mg				69.23	
Al				72.59	
Si				74.64	
Ca				48	31.62
Ti				67.29	
Fe				62.17	
	Cont	ribuição	Incerteza		
amer	ico	46.51	1.62		
Bioma	ssa	10.13	0.76		
N	1ar	5.99	0.45		
S	olo	23.94	5.23		
amer	ico	13.43	1.16		

Positive Matrix Factorization: TFsH

	Biomassa	americo	Solo	americo	americo
BC	40.6				59.4
Р	34.37	50.76			
Pb	31.72				41.85
V	27.73		32.68		
Zn	26.12				40.39
S		55.35			
Br		47.13			31.13
Na		44.8		55.2	
K		28.01			32.34
Si			81.56		
Al			79.61		
Ti			75.91		
Mg			72.24		
Fe			71.99		
Mn			63.55		
Ca			60.75		
mass			32.8		31.82
CI				86.21	
	Contri	buição	Incerteza		
Biomas	ssa	16.93	1.10		
ameri	ico	15.68	0.99		
So	olo	32.77	8.03		
ameri	ico	2.80	0.20		
ameri	ico	31.81	1.49		

Positive Matrix Factorization: RGsH

	Mar	Solo	americ	_	americo	Biomassa
			americ	.0	americo	Biomassa
CI	70.04	29.96				
Na	41.11				58.89	
Ca		61.39	28.41			
Fe		49.05	44.36			
Ti		48.29	46.78			
Mn		46.77	45.46			
Al		41.14	53.92			
Si		40.54	55.46			
Mg		40.42	52.29			
mass		34.55	32.48			
V		34.43	31.86			
BC			25.35		73.72	
Р						59.64
S						62.42
K					30.98	
Zn					51.69	
Br					52.69	
Pb					58.97	
	Со	ntribuição	Ince	rteza		
M	ar	1.95		0.14		
Sc	olo	34.54		7.00		
ameri	со	32.47		3.95		
ameri	со	22.20		0.93		
Biomas	sa	8.84		0.60		

Positive Matrix Factorization: TGsH

	Mar	Solo	amerio	:0	americo	Biomassa
CI	70.85	29.15				
Na	33.91		66.09			
Ca		64.55				
Fe		52.05			36.68	
Ti		50.95			39.78	
Mn		49.17			38	
Al		43.52			48.31	
Si		42.94			50.19	
V		41.44				
Mg		39.43			49.86	
mass		37.6	26.74		25.99	
K		26.71	35.84			
BC			85.78			
Pb			68.08			
Zn			61.17			
Br			48.03			31.41
Р						56.58
S						61.21
	Со	ntribuição	Ince	rteza	_	
M	ar	1.96		0.14	_	
Sc	olo	37.59		9.91		
ameri	со	26.75		0.81		
ameri	со	25.99		3.20		
Biomas	sa	7.72		0.51		