Et Find a root of the equation $n^2 + n - 720$ by birection method, where upto a decimal places.

Sol": $f(n) = n^2 + n - 7$ $f(2) = -1 \qquad f(3) = 5$ So a root lies between 2 and 3

	Left end pt	Right end pt	midpt.	
n	an	6n	Anti anton	f(n+1)
0	2	3	2.5	1.750
1	2	2.5	2.250	0.313
2	2	2-250	2-125	- 0.359
3	2.125	2-250	2.188	-0.027
4	2-188	2-250	2-219	0.113
5	2-188	2-219	2.204	0.062
6	2-188	2.201	2-196	0.018
7	2-188	2.196	2-192	-0.003
8	2-192	2-196	2-194	0.008
9	2-192	2.194	2.193	0.003
10	2-192	2.193	2-193	0.003

Therefore the root is 2.19 correct upto 2 decimal places.

Iteration method or fined point iteration

Let f(n) be a f^n . continuous on the interval [g,6] and the eqn. f(n) > 0 has at least one root on [g,6]. The eqn. f(n) > 0 can be written in the form n > p(n) = 0 (i)

Suppose $n_0 \in [a, b]$ be an initial guess to the desired root a_0 . Then $a_0(n_0)$ is evaluated and this value is denoted by a_1 . It is the first approximation of the root a_0 . Again a_0 is substituted for a_0 to the RHS of (i) and obtained a new value $a_0 = a_0(a_1)$. This process is continued to generate the sequence of numbers $a_0, a_0, a_0, \dots, a_0$. These are defined by the following relation:

 $n_{n+1} = \varphi(n)$ $n_{n} = 0, 1, 2, -...$

This successive iterations are repeated till the approximate numbers n_i 's converges to the root with desired accuracy i.e. $|n_{n+1}-n_n| \leq 2$, where ϵ is the error tolerance.

Note: There is no guarantee that this sequence n_0, n_1, \dots will converge. The f''. $f(n) \ge 0$ can be written as $n \ge Q(n)$ in many different evays. The f''. Q(n) is very important for convergence. For example, $n \ge n \ge n \ge n$.

 $n = \frac{1-n^2}{n^2}$; $n = (1-x^2)^{1/3}$; $n = \sqrt{\frac{1-n^2}{n}}$; $n = \sqrt{1-n^3}$; $n = \sqrt{\frac{1-n^2}{n}}$

Sufficient condition for convergence Theorem

Let $\frac{1}{2}$ be a root of the egn. f(x)=0 and it can be written as $x=\phi(x)$ and further that

(i) the f. q(n) is defined and differentiable on [9,6]

(i) 10/21/21 × x ∈ [a,6]

Then the sequence $\{nn\}$ in $n_{n+1} = p(n_n)$, $n = 0,1,2,\cdots$ convert to the desired root ξ irrespective of the choice of the initial approximation $n \in [a,6]$ and the root ξ is unique

Order of convergence Let an converges to the exact root 3 so that 3 = 9(3)

Thus anti-3 = 9(2n) - 9(3)

Let Ent1 = 3n+1 - 3

= q(an)-q(g)

= 9(3+En)-9(3) [: En=7n-3]

= En 9/(3)+ = En 9/(3)+---

= En 9(3) + 0 (2n2)

i- En+1 = En q'(3)

i Order of convergence is linear.

[The exponent of 2n in the first non vanishing term is called the order of the iteration process. Order measures the speed of convergence.]

Using on the interval [0,1] with an accuracy of 10-1 [1] [1] [1] [2]

 Newton-Raphson method

Let no be an approximate root of the equation f(n)=0. Suppose $n_1=n_0+h$ be the exact root of the eqn., where h is the correction of the root (error). Then $f(n_1)=0$. Using Taylor's series, $f(n_1)=f(n_0+h)$ is expanded in the following form

f(no) + hf'(no) + 12 f"(no) + -- =0

Neglecting the second and higher order derivatives, the above egn. reduces to

$$f(n_0) + hf'(n_0) = 0$$

$$\Rightarrow h = -\frac{f(n_0)}{f'(n_0)}$$

i.
$$n_{1} = n_{0} + h = n_{0} - \frac{f(n_{0})}{f'(n_{0})}$$
 (1)

To compute the value of h, the second and higher powers of h are neglected, so the value of $h = -\frac{f(n)}{f'(n)}$ is not exact, it is an approximate value, so the n, obtained from (1) is not a root of the egn. But it is a better approximation of n than no. In general,

Et Use Newton Raphson method to find a root of the egn. 23+2-120. [Initial guess 2020]

Sd":
$$f(n) = n^3 + n - 1$$

 $f(0) = -1 \times 0$
 $f(1) = 1 \times 0$

i One root lies between o and 1. Let 200 be the initial root. The iteration scheme is

The sequence {nn} for different values of n is shown below.

M	nn	nntl
0	0	1
l	l	0-7500
2	0.7500	0-6861
3	0.6861	0.6823
A	0.6823	0.6823

Therefore a root of the eqn. is 0.682 correct up to three decimal places.

Interpolation

Sometimes we have to compute the value of the defendant variable for a given independent variable, but the explicit relation between them is not known. In these cases, we can use interpolation.

(The general interpolation problem can be states as! Let y > f(n) be a f'', whose analytic expression is not-known, but a table of values of y is known only at a set of values $n_0, n_1, n_2, \ldots, n_n$ of n. i.e. $f(n_i) = b_i'$, i > 0, 1, --, n. The problem of interpolation is to find the value of y(2-f(n)) for an argument, say n' when the value of y at n' is not avaitable in the table.)

A large number of different techniques are used to determine the value of y at n=n!. One common technique is to find an approximate f''. say $\phi(x)$ corresponding to the given f''. f(n) depending on the tabulated value.

pougnome a. Def". of interpolating polymial Let no, n, -- no be not distinct points in the interval [a,6], where the values of f(2) are known. Then Pn(2) is an intropolating polynomial to f(n) if Pn(ni) = f(ni), i=0,-n. In all practical cases, Pr(n) is considered as an approximation to f(n) at a pt. 222 provided the error [f(n)-Pn(n)] is small he. If(a) - Pr(a) (< & where the no. 8 >0 is called an error tolerance.

Interpolation of a ft.

The following theorem justifies the approximation of an unkno $f^{n} - f(n)$ to a polynomial $P_{n}(n)$.

Theorem

If the f^n is continuous in [a,b], then for any pre-assigned no. $\varepsilon > 0$, \exists a polynomial Pn(n) such that $|f(n) - Pn(n)| < \varepsilon + n \in [a,b]$.

It is obvious that if f(x) is affroximated by a polynomial 9(2), then there should be some error at the non-tabular points. The following theorem gives the amount of error in interpolating polynomial.

Let I be an interval containing all interpolating points nom,,--,an. Let f(2) be continuous and have continuous derivatives of order n+1 for all a in I and b(a) be a polynomial of degree < n that interpolates f(2) at (n+1) distinct points 20, -.. In. Then the error at any point n es given by ei given by $f(a) - \beta(a) = En(a) = (a-no)(a-ni) - - ...(a-nn) \frac{f^{(n+1)}(\frac{a}{3})}{(n+y)!}$ where 3 & C

The expression gives the error at any point n. But practically it has little utility, because, in many cases flt (3) cannot be determined. If Mn+1 be the upper bound of fth (3) in I, i.e. if |f(h+1)(3) \le Mn+1 in I, then the upper bound of En(a) is $|E_n(x)| \leq \frac{m_{n+1}}{(n+1)!} |w(x)|$ $\leq \frac{m_{n+1}}{(n+1)!} \max_{n \leq n \leq n} |w(n)|$ where $M_{n+1} = \max_{n \leq n \leq n} |f^{(n+1)}(n)|$. Ex If \$(a) is a folynomial that interpolates the fn. f(n)= sinn at 10 points on the interval [0,1]. Find an upper bound for the error. Proof: nH210 $f^{(n+1)}(3) = f^{(0)}(3) = -\sin 3$ $3 \in [0,1]$ En(n) < man | to! fo (3) (2-20) --- (2-210) man (2-20) -- (2-210) =1 $\max_{0 \le n \le 1} \left| f^{(n+1)}(\overline{3}) \right| = \max_{0 \le n \le 1} \left| -\sin \overline{3} \right| = 1$ [Eronor bound |f(2)-p(2)| < mar |(2-20)-(2-20)| 2+[99] + (3)| Finite differences

Let α fⁿ. γ > f(n) be known as (n; b;) at (n+1) phr. n: i = 0,1,-n where n:b are equally spaced i.e. n:b i.e. n: i = 0,1,-n where n:b are equally spaced i.e. n:b i.e. n: i = 0,1,-n where n:b are equally spaced i.e. n:b i.e. n: i = 0,1,-n where n:b is a successive phr. n:b i.e. n: i = 0,1,-n i.e.

Forward differences

The n:b order forward difference of n:b is defined as n:b order forward difference of n:b is defined as n:b order forward difference of n:b is defined as n:b order forward difference of n:b is defined as

Forward differences

The 1st order forward difference of f(n) is defined as $\Delta + f(n) = f(n+h) - f(n) \qquad \Delta = \text{forward diff. operator}$ $i \Delta f(n_0) = f(n_0+h) - f(n_0) = f(n_1) - f(n_0)$ $\Delta y_0 = y_1 - y_0 \qquad \text{using } y_1 = f(n_1)$ Similarly $\Delta y_1 = y_2 - y_1$

the 2nd order differences are

$$\Delta^{2}\eta_{0} > \Delta(\Delta^{3}\eta_{0}) = \Delta(\eta_{1} - \eta_{0})$$

$$= \Delta(\eta_{1} - \Delta^{3}\eta_{0}) - (\eta_{1} - \eta_{0})$$

$$= \eta_{2} - 2\eta_{1} + \eta_{0}$$

Similarly, 43% = 73-2% + 71In general, $4ky_0 = \%k - kc_1\%k - 1 + kc_2\%k - 2 + \cdots - (-1)^k y_0$ $4ky_i = \%k + i - kc_1\%k + i - 1 + kc_2\%k + i - 2 - (-1)^k y_i$