Overview of Climate Science and Policy

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #2: Fri. Aug. 24 2018

Organizational Things:

- Next Week
- Preparing for lab on Monday

Aral Sea

Questions from Reading?

Severe Storms and Disasters

 Are severe storms, such as hurricanes and tornadoes becoming more severe because of climate change?

Hurricane Damages

Hurricane Landfalls

Severe Tornadoes

All Weather Disasters

Human Impact on Climate System:

Important Concepts:

- What kinds of things can cause the global temperature to change?
 - Energy Balance:
 - Temperature is steady when Heatin = Heatout.
 - What happens when Heatin > Heatout?
 - What kinds of things can cause Heatin to change?
 - What kinds of things can cause Heat out to change?

Temperature Change

- How much has earth warmed in the last century or so?
 - About 1.0°C (1.8°F)
- If CO₂ emissions keep rising, how much do scientists expect it to warm in the next century?
 - Somewhere around 3–6°C (5–11°F)
- What is the seasonal temperature change in Nashville (winter to summer)?
 - Around 23°C (42°F) 47°F in January, 89°F in August.
- What is the average daily temperature range in Nashville (night to day)?
 - Around 11°C (20°F)
 - So why do people worry about global warming?

Predictions

- Meteorologists can't predict whether it will rain three weeks from today with any confidence.
- So how can I trust predictions about the climate 100 years from now?

What Earth's History Tells Us

800,000 years of CO₂

800,000 years of CO₂ and Temperature

Using Past Climates to Test Theory

Source: J. Hansen et al., Phil. Trans. Roy. Soc. A 371, 20120394 (2013).

Temperature and Sea-Level

Key Concepts: Dynamics and Time Scales

Latitude

Dynamics:

- Forcing:
 - Something that pushes a system out of equilibrium
 - The sun gets brighter
- Response:
 - How the system responds to the forcing
 - The earth gets warmer
- Feedback:
 - The response causes a new forcing

Characteristic Time Scales

Component	Response Time
Atmopshere	Hours to weeks
Land surface	Hours to months
Ocean surface	Days to months
Vegetation	Hours to decades/centuries
Sea ice	Weeks to years
Mountain glaciers	Decades to centuries
Deep ocean	100–1500 years
Ice sheets	centuries-10,000 years
Carbon dioxide	10s-100s of thousands of years

Outline of climate science

- Earth's Temperature
 - Set by energy balance: $H_{out} = H_{in}$.
- Greenhouse Effect:
 - Natural phenomenon (discovered 1827)
 - Due mostly to CO₂, H₂O. (discovered in 1863)
 - Greenhouse gases affect Hout
- Global warming from burning fossil fuels
 - Predicted in 1896
 - Detailed calculations impossible without computers (1956)

Economy-Energy-Environment

Wealth & Energy Use

Wealth & CO₂ Emissions

Economics, Policy, Climate

- Why don't markets manage greenhouse gas emissions well?
 - Pollution is an externality
- How does Nordhaus propose to fix this problem?
 - Ronald H. Coase (1920–2013):
 - Solve externality problems by assigning property rights
 - Cap-and-trade: Permits
 - Emissions tax: Put price on emissions

Economics and Vulnerability

- For an economist, what are the big dangers associated with climate change?
 - Managed vs. unmanaged, unmanageable resources