数字逻辑设计

王鸿鹏 计算机科学与技术学院 wanghp@hit.edu.cn

卡诺图 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图
- 填写卡诺图
- 卡诺图化简法

函数的最简形式

When a function is realized using **AND** and **OR** gates, the cost of realizing the function is directly related to the number of gates and gate inputs used.

开关函数的最简形式

一个最简表达式中

- 逻辑门的数量最少
- 逻辑门的输入个数最少

与最小项(最大项)表达式不同

- 最简表达式不一定是唯一的.
- 但最简表达式的实现代价是相同的(逻辑门的 数量相同、输入变量的个数相同)

卡诺图 Karnaugh Maps

■ 开关函数的最简形式

■ 多变量卡诺图

■ 填写卡诺图

■ 卡诺图化简法

逻辑函数的表达方式之一

■化简三变量或者四变量的逻辑函数时,卡诺图特别有用!

什么是卡诺图?

- ■卡诺图通常为2ⁿ个小格构成的正方形或矩形,每个小格 代表一个最小项(最大项)。
- 单元格对应的最小项(最大项)按**典型格雷码**摆放
- 任两个相邻单元格对应的项只有一个变量取值不同

1. 两变量卡诺图

例: F=f(A, B)=A'B+AB'

AB	0	1
0	0	1
1	1	0

卡诺图的特征

◆卡诺图上几何相邻的最小项逻辑上也相邻。

● 几何相邻 { 相接 行或列首尾相接

●逻辑相邻——两个最小项中只有一个变量出现的形式不同

三变量卡诺图&四变量卡诺图

F=f(A, B, C)

BC	00	01	11	10
0	0	1	3	2
1	4	5	7	6

F=f(A,B,C,D)

AB\	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

五变量卡诺图

F=f(A, B, C, D, E)

AB\	000	001	011	010	110	111	101	100
00	0	1	3	2	6	7	5	4
01	8	9	11	10	14	15	13	12
11	24	25	27	26	30	31	29	28
10	16	17	19	18	22	23	21	20
L								

卡诺图 Karnaugh Maps

■ 开关函数的最简形式

■ 多变量卡诺图

■ 填写卡诺图

■ 卡诺图化简法

填写卡诺图

● 已知真值表

 $F = \Pi M(0, 1, 2, 4)$

● 已知标准与或式 与项是最小项时,按最小项编号的位置直接填入。

真值表

AB C	F
0 0 0	0 🗸
001	0 √
010	0 √
011	1√
100	0 √
101	1√
110	1√
111	1√

填写卡诺图——

$$F = AB + BC + AC$$

$$=AB(C+\overline{C})+BC(A+\overline{A})+AC(B+\overline{B})$$

$$=ABC+AB\overline{C}+ABC+\overline{A}BC+ABC+A\overline{B}C$$

最小项编号: 7 6 7 3 7

填写卡诺图——例2

$$F = (A \oplus B)(C+D)$$

$$= \overline{A} \oplus B + (\overline{C} + \overline{D})$$

$$= \overline{A} \overline{B} + AB + \overline{C} \overline{D}$$
最小项编号
$$\overline{AB} = \underline{0000} + \underline{0001} + \underline{0010} + \underline{0011}$$

$$AB = \underline{1100} + \underline{1101} + \underline{1110} + \underline{1111}$$

$$\overline{CD} = \underline{0000} + \underline{0100} + \underline{1000} + \underline{1100}$$

CD AB	00	01	11	10
00	1	1	1	1
01	1	0	0	0
11	1	1	1	1
10	1	0	0	0

填写卡诺图——例3

$$F = A \oplus C \cdot \overline{B} (A\overline{C}\overline{D} + \overline{A}C\overline{D})$$

$$= \overline{A} \oplus \overline{C} + \overline{B} (A\overline{C}\overline{D} + \overline{A}C\overline{D})$$

$$= A \odot C + A\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}C\overline{D}$$

$$= AC + \overline{A}\overline{C} + A\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}C\overline{D}$$

$$= 1010 + 1011 + 1110 + 1111 + 0000$$

$$+0001 + 0100 + 0101 + 1000 + 0010$$

CD AB	00	01	11	10
00	1	1	0	1
01	1	1	0	0
11	0	0	1	1
10	1	0	1	1

按相邻关系填写卡诺图

与项不是最小项的形式,直接填入卡诺图。

例: F(A, B, C, D)=A'CD+ABD

例4 将逻辑表达式直接填入卡诺图

将逻辑表达式F=BC'+B'D'填入卡诺图

例5 将逻辑表达式直接填入卡诺图

将逻辑表达式F=B'C+ABD' 填入卡诺图

基于卡诺图的逻辑运算

基于卡诺图的逻辑运算

卡诺图 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图
- 填写卡诺图
- 卡诺图化简法

卡诺图化简法

• 代数法

$$F(A,B,C) = ABC + A'BC$$
$$= (A+A')BC = BC$$

- ●卡诺图法
 - ●图形法化简逻辑函数

从卡诺图读取逻辑表达式

- 1圈/画 卡诺圈
- 2按照规则读卡诺图

从一个卡诺图中可以读取:

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)

如何从卡诺图读最简与或式——1

- ① 画卡诺圈(K圈)
 - ●将相邻为1的小方格圈在一起,且圈必须为矩形或者正方形
 - ●相邻:紧靠在一起的、行列首尾的、对称的小方格
 - ●圈中小方格的个数必须为 2m (m=0,1,2...)
 - ●圏越大越好
 - ●小方格可以**重复**使用(被圈多次)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 1//\	> -		
AB	00	01	11	10
00	1)	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1)	0	0	1

00 0 1 1 0 01 0 0 0 0 11 0 0 0 0 10 0 1 1 0	CD AB	00	01	11	10
11 0 0 0	00	0	1	1	0
	01	0	0	0	0
10 0 1 1 0	11	0	0	0	0
	10	0	/1	1	0

卡诺圈练习

CD AB	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	0	0	0

CD AB	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

CD AB	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	0	1
10	0	0	0	0

CD AB	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	0	1	0

CD AB	00	01	11	10
00	0	1	0	0
01	0	1	1	0
11	0	1	1	0
10	0	0	0	0

CD AB	00	01	11	10
00	1	1	1	1
01	0	0	0	0
11	0	0	0	0
10	1	1	1	1

如何从卡诺图读最简与或式——2

每个圈代表一个与项

变量取值不同——消去相应变量

变量取值相同——按约定保留相应变量

1: 原变量

0:反变量

	CD AB	00	01	11	10
A'C'D	00	0	1	0	0
	01	0	1	1	0
BD	11	0	1	1	0
	10	0	0	0	0

B'

如何从卡诺图读最简与或式——3

将所有的与项相或(相加)

从卡诺图读出的最简与或式唯一吗?

BC A	00	01	11	10
0	1	1	0	1
1	0	1	1	1

如何从卡诺图读最简与或式

从卡诺图中读取:

■ 最简与或式(AND-OR)

■ 最简或与式(OR-AND)

■ 最简与或非式(AND-OR-NOT)

如何从卡诺图读最简或与式——1

- ① 画卡诺圈(K圈)
 - ●将相邻为0的小方格圈在一起,且圈必须为矩形或者正方形
 - ●相邻:紧靠在一起的、行列首尾的、对称的小方格
 - ●小方格的个数必须为 2^m (m=0,1,2...)
 - ●圏越大越好
 - ●小方格可以**重复**使用(被圈多次)

BC	00	01	11	10
0	1	1	0	1
1	1	0	0	0

~ /13	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ _		
AB	00	01	11	10
00	0	1	1	0
01	1	1	1	1
11	1	1	1	1
10	0	1	1	0

CD AB	00	01	11	10
00	1	0	0	1
01	1	1	1	1
11	1	1	1	1
10	1	0	0	1

如何从卡诺图读最简或与式——2

每个圈代表一个或项(和项)

变量取值不同——消去相应变量

变量取值相同——按约定保留相应变量

0: 原变量

1: 反变量

B'+D'

B

如何从卡诺图读最简或与式——3

将所有的和项相与(相乘)

读取与或式

$$F_1=A'C'+AC+B'D'$$

CD AB	00	01	11	10
00	1	1	0	1
01	1	1	0	0
11	0	0	1	1
10	1	0	1	1

卡诺图化简法

从卡诺图中读取

■ 最简与或式(AND-OR)

■ 最简或与式(OR-AND)

■ 最简与或非式(AND-OR-NOT)

如何从卡诺图读最简与或非式

- 读 F '的与或式
 - ●方法:按读取与或式的规则(1:原变量,0:反变量),但 是主要关注"0"
- 对F'求反

卡诺图中的几个概念

- 蕴含项 (implicant): 只包含1的卡诺圈
- 主蕴含项/首要蕴含项 (prime implicant): 扩展到最大的蕴含项
- 所有首要蕴含项都可以通过卡诺图求得
- ●最简积之和由某些首要蕴含项组成
 - 若含有非首要蕴含项,可能不是最简式
- 完全由无关项组成的首要蕴含项不可能成为最简结果的一部分

卡诺图中的几个概念——续

● 奇异"1"单元(Distinguished 1-cell): 仅被 单一首要蕴含项覆盖的输入组合

技巧: 圈卡诺图时,从合并奇异1单元开始

● 质主蕴含项(Essential Prime implicant) / 基本首要蕴含项:

覆盖一个或者多个奇异"1"单元的主蕴含项

扩展知识: 如何使逻辑表达式最简?

- ●卡诺图
 - ●具体步骤参见P111-112

- 首要蕴含项表 (P136)
 - ●假设某逻辑函数的表达式如6-2所示。
 - 经过化简后如6-3所示
 - ●用表6-2和6-3得到最简积之和表达式

带无关项的卡诺图化简——例

A				
В			_ <i>F</i>	
C			→ <i>Γ</i>	
D _	→			
AB CD	00	01	11	10
00	0	0	X	1
01	0	1	X	1
11	0	1	X	X
10	0	1	X	X

ABCD	F	ABCD	F
0 0 0 0	0	1 0 0 0	1
0 0 0 1	0	1 0 0 1	1
0 0 1 0	0	1 0 1 0	X
0 0 1 1	0	1 0 1 1	X
0 1 0 0	0	1 1 0 0	X
0 1 0 1	1	1 1 0 1	X
0 1 1 0	1	1 1 1 0	X
0 1 1 1	1	1111	X

带无关项的卡诺图化简——例

设计一个能将4位二进制数转换为余3码的电路

二进制数	余三码	二进制数	余三码
WXYZ	A B C D	WXYZ	A B C D
0 0 0 0	0 0 1 1	1 0 0 0	1 0 1 1
0 0 0 1	0 1 0 0	1 0 0 1	1 1 0 0
0 0 1 0	0 1 0 1	1 0 1 0	×
0 0 1 1	0 1 1 0	1011	×
0 1 0 0	0 1 1 1	1 1 0 0	×
0 1 0 1	1 0 0 0	1 1 0 1	×
0 1 1 0	1 0 0 1	1 1 1 0	×
0 1 1 1	1 0 1 0	1111	×

带无关项的卡诺图化简

卡诺图 Karnaugh Maps

- 开关函数的最简形式
- 多变量卡诺图
- 填写卡诺图
- 卡诺图化简法