

Physico or Physicopy

24.05.2021

Overview

A Python project to solve basic physics problems.

Till now I have created a quantity.py file which contain a Charge Class which has arguments of Magnitude and Coordinate. For more info about charge please visit: https://en.wikipedia.org/wiki/Electric charge

Quantity.py

A constants.py file which contains physical constants and their values. constants.py

Anyone who is free please add this constants to the constants.py file in github

c	velocity of light in vacuum	2.997 924 58 · 10 ⁸ m/s
h	Planck's constant	$6.626\ 069\cdot10^{-34}\ \mathrm{J/s}$
\hbar	$(=h/2\pi)$	$1.054\ 571\ \cdot\ 10^{-34}\ \mathrm{J/s}$
e	electronic charge	1.602 176 · 10 ^{−19} C
$\mu_{ m e}$	electron magnetic moment	$-928.476\ 362\cdot 10^{-26}\ \text{J/T}$
$\mu_{ m B}$	Bohr magneton	927.400 899 \cdot 10 ⁻²⁶ J/T
$\mu_{ m N}$	nuclear magneton	$5.050\ 783\ 17\cdot 10^{-27}\ J/T$
$m_{\rm e}$	electron mass	9.109 381 88 · 10 ⁻³¹ kg
$m_{\rm P}$	proton mass	$1.672\ 621\ 58\cdot 10^{-27}\ kg$
$m_{\rm N}$	neutron mass	1.674 927 16 · 10 ⁻²⁷ kg
$k_{ m B}$	Boltzmann's constant	$1.380~650\cdot 10^{-23}~\mathrm{J/K}$
N_{A}	Avogadro's constant	$6.022\ 142\cdot 10^{23}$
R	molar gas constant	$N_{\rm A} \cdot k_{\rm B} = 8.314 \ 472 \ {\rm J/mol \cdot K}$
F	Faraday constant	96 485.3415 C/mol

And lastly a force.py file which is used to calculate forces between two charges and it takes the argument. More info here: https://en.wikipedia.org/wiki/Coulomb%27s law

Goals

- 1. Till now I have only calculated the magnitude of the Force but We have to implement a vector form of the Force. More info regarding vectors can be found here.
 - https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:vectors/x9e81a4f98389efdf:component-form/a/vector-magnitude-and-direction-review
- We have to implement Vector addition so as to upgrade from Force due to two charge systems to n- charge systems. https://www.varsitytutors.com/hotmath/hotmath-help/topics/adding-and-subtracting-vectors

Specifications

- 1. I have used pipenv to work on this project which can be easily installed using
- 2. pip or pip3 install pipenv.
- 3. Then go to the project folder and type pipenv shell.
- 4. And finally to install all the dependencies like numpy use pipenv install --dev Or pipenv install