

03____ травня_____ 20_24__ р

Вчитель: Родіна А.О.

[дата]

Тема: Коло і круг

Мета:

- *Навчальна:* пригадати та закріпити означення кола і круга, поглибити знання про коло і круг; розглянути та довести теореми (про порівняння діаметра і хорди; кут, під яким видно відрізок з точки кола; властивість діаметра кола, перпендикулярного до хорди)
- Розвиваюча: розвивати вміння аналізувати отримані знання, правильно користуватися креслярським приладдям;
- Виховна: виховувати інтерес до вивчення точних наук;

Компетенції:

- математичні
- комунікативні

Тип уроку: засвоєння нових знань;

Обладнання: конспект, презентація, мультимедійне обладнання;

Хід уроку

І. Організаційний етап

- Привітання
- Перевірка присутніх на уроці
- Перевірка виконання д/з
- Налаштування на роботу

II. Вивчення нового матеріалу

- ▶ Пригадайте з попередніх класів, в чому різниця між колом і кругом? (Учні висловлюють власну думку)
- ➤ Попросимо хлопчиків стати в коло, а дівчаток в круг

Пригадайте, що таке радіус кола? Як у попередніх класах ви будували коло із заданим радіусом? (Учні висловлюють власну думку)

Для побудови нам знадобляться:

Лінійка

1. Зафіксуємо циркулем вказаний радіус. Наприклад, 3 см

2. Побудуємо коло з радіусом 3 см

// Коло

Колом називається геометрична фігура, яка складається з усіх точок площини, рівновіддалених від даної точки.

Центр кола – це задана точка, від якої рівновіддалені усі точки цієї геометричної фігури (кола).

Радіус — це відрізок, що сполучає центр з будь-якою точкою кола (padiyc, як правило, позначають літерою <math>r або R)

Хорда – це відрізок, що сполучає дві точки кола

Діаметр — це хорда, що проходить через центр кола (діаметр кола, як правило, позначають літерою d)

- ightharpoonup Чи ϵ діаметр хордою? (Так)
- У скільки разів діаметр більший за радіус? (Діаметр більший за радіус у два рази)

$$d = 2r$$

Як побудувати рівне коло на футбольному полі за допомогою мотузки і палиці?

Приклад побудови кола на місцевості

➤ Як можна назвати найбільшу хорду у колі? (Діаметр)

Теорема (про порівняння діаметра і хорди) Діаметр ϵ найбільшою з хорд

Дано:

MN — діаметр кола r — радіус кола AB — хорда

Довести:

MN > AB

Доведення:

Розглянемо $\triangle AOB$:

$$AB < AO + OB$$
 (за теоремою про нерівність трикутника) $\rightarrow AB < 2r$

$$\begin{vmatrix} AB < 2r \\ MN = 2r \end{vmatrix} \to MN > AB$$

Доведено

Кут MAN — це **кут, під яким видно відрізок** MN з точки A

Теорема (про кут, під яким видно діаметр з точки кола) Діаметр з будь-якої точки кола видно під прямим кутом

Дано:

MN – діаметр кола;

A — довільна точка кола;

Довести:

 $\angle MAN = 90^{\circ}$

Доведення:

ightharpoonup Поясніть, чому OM = OA? (Учні висловлюють власну думку)

Розглянемо ΔMOA : OM = OA (як радіуси) $\rightarrow \Delta MOA$ – рівнобедрений;

ightharpoonup Поясніть, чому $\angle OMA = \angle OAM$? (Учні висловлюють власну думку)

 ΔMOA — рівнобедрений → $\angle OMA$ = $\angle OAM$ (як кути при основі рівнобедреного трикутника)

ightharpoonup Поясніть, чому $\angle OMA = \angle OAM$? (Учні висловлюють власну думку)

$$\angle ONA = \angle OAN$$
 (аналогічно з $\triangle AON$ як із $\triangle MOA$)

Нехай

$$\angle OMA = \angle OAM = \alpha$$

 $\angle ONA = \angle OAN = \beta$

Розглянемо ΔMAN :

ightharpoonup Поясніть, чому $\angle M + \angle MAN + \angle N = 180$ °?

(За теоремою про суму кутів трикутника)

 \succ За якою властивістю ∠ $MAN = \alpha + \beta$? (За основною властивістю вимірювання кутів)

$$\angle M + \angle MAN + \angle N = 180^{\circ}$$

$$\angle M = \alpha$$

$$\angle N = \beta$$

$$\angle MAN = \alpha + \beta$$

$$\rightarrow 2\alpha + 2\beta = 180^{\circ}$$

$$2\alpha + 2\beta = 180^{\circ}$$
$$2(\alpha + \beta) = 180^{\circ}$$
$$\alpha + \beta = \frac{180^{\circ}}{2} = 90^{\circ}$$

$$\angle MAN = \alpha + \beta$$
 $\alpha + \beta = 90^{\circ}$
 $\Rightarrow \angle MAN = 90^{\circ}$

Доведено

Теорема (властивість діаметра кола, перпендикулярного до хорди) Діаметр кола, перпендикулярний до хорди, ділить її навпіл

MN — діаметр кола AB — хорда, що не ϵ діаметром

 $MN \perp AB$

 $MN \cap AB = K$

Довести:

$$AK = KB$$

Доведення:

ightharpoonup Поясніть, чому ΔAOB — рівнобедрений? (Учні висловлюють власну думку)

$$AO = OB$$
 (як радіуси) $\rightarrow \Delta AOB$ – рівнобедрений

Що ви знаєте про висоту рівнобедреного трикутника?

(Висота рівнобедреного трикутника, проведена до основи, ϵ медіаною і бісектрисою)

Доведено

Теорема (властивість діаметра кола, що проходить через середину хорди) Діаметр кола, що проходить через середину хорди, яка не є діаметром, перпендикулярний до цієї хорди.

Дано:

MN – діаметр кола

K — середина хорди AB

Довести:

 $MN \perp AB$

Доведення:

ightharpoonup Поясніть, чому ΔAOB — рівнобедрений? (Учні висловлюють власну думку)

AO = OB (як радіуси) $\rightarrow \Delta AOB$ – рівнобедрений;

Що ви знаєте про медіану рівнобедреного трикутника?

(Mediaна рівнобедреного трикутника, проведена до основи, є висотою і бісектрисою)

 ΔAOB — рівнобедрений $\rightarrow OK$ — медіана, висота і бісектриса $\rightarrow MN \perp AB$

Доведено

Круг – це коло разом з його внутрішньою областю.

Центр, радіус, діаметр, хорда круга — це відповідно центр, радіус, діаметр, хорда кола, яка ϵ межею даного круга.

ightharpoonup Чи належить центр кола O_1 колу? *(Ні)*

0.

Чи належить центр круга *О* кругу?(Так)

Учи належить радіус круга − кругу?
(Так)

Чи належить радіус кола – колу?(Hi)

Учи належить діаметр круга − кругу? (Так)

Чи належить діаметр кола – колу?(Hi)

Учи належить хорда круга − кругу? (Так)

ightharpoonup Чи належить хорда кола — колу? (Hi)

Чи належить коло, що обмежує круг – кругу? (Так)

III. Закріплення нових знань та вмінь учнів

№1

Обчисліть діаметр кола, якщо його радіус дорівнює:

- 1) 7 cm;
- 2) 3,7 см;

Розв'язання:

Так як d = 2r, то:

- 1) $d = 2 \cdot 7 = 14$ cm
- 2) $d = 2 \cdot 3.7 = 7.4 \text{ cm}$

Відповідь: 1) 14 см; 2) 7,4 см

№2

Накресліть коло, радіус якого дорівнює 4 см. Проведіть у ньому діаметр MN та хорду MK. Знайдіть $\angle NKM$.

Розв'язання:

Так як діаметр з будь-якої точки кола видно під прямим кутом, то:

$$\angle MKN = 90^{\circ}$$

Відповідь: $\angle MKN = 90$

№3

Радіус кола дорівнює 4 см. Чи може хорда кола дорівнювати:

1) 2 cm

2) 3 cm

3) 3,5 см

4) 4 cm

5) 7 cm

6) 8,2 см

Розв'язання:

Хорда кола не може бути більшою за діаметр. Діаметр даного кола дорівнює:

$$d = 2r = 2 \cdot 4 = 8 \text{ cm}$$

Отже хорда не може бути більшою за 8 см, тому:

1) так; 2) так; 3) так; 4) так; 5) так; 6) ні

№4

На рисунку точка 0 – центр кола. Знайдіть градусну міру:

- 1) Кута O, якщо $\angle M = 47^{\circ}$
- 2) Кута N, якщо ∠ $0 = 94^{\circ}$

Розв'язання:

Розглянемо ΔMON :

$$OM = ON$$
 (як радіуси) $\rightarrow \Delta MON -$ рівнобедрений;

$$\Delta MON$$
 – рівнобедрений → ∠ $M = ∠N$

2) Якщо $\angle O=94^\circ$ і $\angle M=\angle N$ ($\Delta MON-$ рівнобедрений), то:

$$\angle M = \angle N = \frac{180^{\circ} - \angle O}{2} = \frac{180^{\circ} - 94^{\circ}}{2} = \frac{86^{\circ}}{2} = 43^{\circ}$$

Відповідь: 1) 86°; 2) 43°

№5

На рисунку точка O – центр кола, ∠NOV = 42°. Знайдіть ∠*NMV*.

> Скількома способами можна розв'язати це завдання?

(Можемо скористатися теоремою npo властивість зовнішнього кута трикутника або завдання довшим розв'язати це знайшовши спочатку кут MON за теоремою про властивість суміжних кутів, а потім знайти

необхідний кут за допомогою теореми про суму кутів трикутника)

Розв'язання:

Розглянемо ΔMON :

$$OM = ON (як радіуси) \rightarrow \Delta MON$$
 — рівнобедрений; ΔMON — рівнобедрений $\rightarrow \angle M = \angle N$

$$\angle NOV$$
 — зовнішній кут $\Delta MON \rightarrow \angle NOV = \angle M + \angle N$

Відповідь: 21°

У колі на рисунку MN — діаметр, $\angle MNV = 60^{\circ}$, NV = 4 см. Знайдіть діаметр кола.

0 90° V

Розв'язання:

Побудуємо хорду MV і розглянемо ΔMVN : MN діаметр $\rightarrow \angle MVN = 90^{\circ}$ (за теоремою про кут, під яким видно діаметр з точки кола) $\angle MVN = 90^{\circ} \rightarrow \Delta MVN -$ прямокутний;

 $\angle M = 180^{\circ} - \angle V - \angle N$ (за теоремою про суму кутів трикутника)

$$\angle M = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}$$

Так як катет прямокутного трикутника, що лежить проти кута 30°, дорівнює половині гіпотенузи, то:

$$MV = 2NV = 2 \cdot 4 = 8 \text{ cm}$$

Відповідь: 8 см

IV. Підсумок уроку

- Сформулюйте означення кола. У чому різниця між колом і кругом
- Поясніть, що таке радіус, діаметр і хорда кола
- За якої умови хорда може бути одночасно і діаметром?
- Під яким кутом діаметр видно з будь-якої точки кола(окрім точок, що є кінцями діаметра)?
- Сформулюйте властивість діаметра кола, перпендикулярного до хорди
- Сформулюйте властивість діаметра кола, що проходить через середину хорди

V. Домашнє завдання

Вивчити теорію по темі