Relazione Lavoro svolto Task 4 Prima Iterazione

Gruppo G15

Vitagliano Michele M63001535 Russo Antonio M63001460 Pierno Matteo Salvatore M63001439 De Ieso Matteo M63001561

1. Introduzione

Durante la prima iterazione (fase di ideazione) il team, nel corso di sei incontri della durata media di 2 ore, per un totale di 12 ore complessive, ha esplorato i requisiti riguardanti il task T4 assegnato inerente alla permanenza dei dati relativi allo storico delle partite.

2. Use Case Model

Durante i primi incontri si è delineato un primo modello dei casi d'uso del componente Games Repository oggetto del task T4. In primo luogo, si è definito il boundary del nostro Sistema 'GS' (Games Repository) individuando gli attori. Nel caso in esame l'unico attore primario che interagisce direttamente con il Sistema è il componente Game Engine, la Logica di Gioco dell'applicativo; mentre il Sistema necessita delle informazioni relative ai Giocatori e i Robot contenute rispettivamente nei componenti di Student Repository e nel Test Environment che ricoprono il ruolo di attori esterni.

Una volta completato la definizione di attori e quindi del boundary del nostro sistema si è passato a una prima specifica dei casi d'uso utilizzando una formalità di tipo breve. I casi d'uso individuati sono riassunti di seguito:

Figura 1: Use Case Diagram

ID 1: Gestione Round

La logica di gioco usa il Sistema per gestire (CRUD) lo storico di un singolo round e lo associa a uno storico di una specifica partita e le informazioni ad esso relative (Score, ID Round, ID Robot, Casi di Test Creati etc.).

ID 2: Gestione Partita

La logica di gioco usa il sistema per gestire (CRUD) lo storico di una singola partita e le informazioni ad essa relative (Score, ID Partita, etc.)

ID 3: Ricerca Partita

La logica di gioco usa il sistema per effettuare una ricerca sullo storico delle partite salvate fornendo in input una chiave (ID Partita, ID Robot, etc.).

ID 4: Ricerca Round

La logica di gioco usa il sistema per effettuare una ricerca sullo storico dei round giocati fornendo in input una chiave (ID Round, ID Robot, etc.).

3. Class Diagram

Vista la natura del task T4 è stato necessario produrre un Diagramma delle classi per individuare i dati che dovranno essere gestiti dal Sistema Games Repository.

Il Diagramma di Classe prodotto è visibile in Figura 2.

Figura 2: Class Diagram

Per poter rispondere ai requisiti legati ai possibili scenari di partite multigiocatore, si è deciso di aggiungere una classe Lista Partecipanti per tenere traccia di tutti i Player presenti in Partita escluso il Giocatore a cui è associata la particolare istanza di Storico Partita in esame.

4. Sequence Diagram

Dalla specifica dei casi d'uso è emersa la funzionalità principale che il Sistema Games Repository deve fornire è quella di "creazione di uno Storico Partita" a cui è semanticamente connessa la funzionalità di "creazione di un Round". Tale legame è esplicitato anche nel Class Diagram attraverso la relazione di composizione tra la singola istanza di Storico Partita e una istanza di Round.

Figura 3: Sequence Diagram

Attraverso il Diagramma di Sequenza prodotto è stato individuato un gruppo di servizi principali che il Sistema dovrà esporre al componente Game Engine. Tali servizi primari sono riassunti in seguito:

Figura 4: Games Repository Interface

5. Tecnologie Studiate

In questa prima iterazione è stata evidente la necessità di utilizzare tecnologie per la permanenza dei dati quali database relazionali. A tal proposito è stata esplorata la possibilità di utilizzare il pattern architetturale Repository quale soluzione comune applicabile al contesto assegnato.