

IFT2015 H19 :: Examen intra¹

L'EXAMEN vaut 100 points, et vous pouvez avoir jusqu'à 10 points de boni additionnels.

- * Aucune documentation n'est permise.
- * Décrivez vos algorithmes en pseudocode ou en Java(-esque).
- * Répondez à toutes les questions dans les cahiers d'examen.

FO Votre nom (1 point)

- ▶ Mettez votre nom et code permanent sur tous les cahiers soumis.
- F1 Types abstraits (14 points)
- a. Définition (5 points) Donner la définition de type abstrait [de données].
- **b.** Types fameux (9 points) Décrire les opérations principales pour les trois types abstraits suivants, sans discuter l'implantation :
 - (1) pile, (2) file FIFO (=queue), et (3) file de priorité.

F2 Tris (15 points)

▶ Pour chacun des algorithmes suivants, donner l'ordre de croissance du du temps de calcul en moyen et au pire cas, ainsi que de l'espace de travail² utilisé au pire : tri rapide, tri par tas, tri par fusion, tri par insertion, tri par sélection. Il n'est pas nécessaire de justifier vos réponses.

F3 File concatenable (20 points)

- \blacktriangleright Donner une implémentation de file FIFO avec concaténation, basée sur une liste circulaire (simplement) chaînée. Opérations à implémenter sur une file Q:
 - \star Q.enqueue(x) enfiler x
 - * Q.dequeue() supprimer et retourner le plus ancien élément sur la file
 - \star $Q.\mathsf{concat}(P)$ concaténer la file P après Q: équivalent d'enfiler tous les éléments de P sur Q. La file P est détruite par cette opération.

Toutes les opérations doivent s'exécuter en O(1).

The English translation follows.

Exo	points	boni
F0	1	
F1	9 + 5 = 14	
F2	15	
F3	20	
F4	25	
F5	10 + 15 = 25	10
Σ	100	10

 $^{^2}$ «espace de travail» : mémoire utilisé sans compter l'entrée de n éléments

tri	temps		mémoire
	moyen	pire	
rapide			
tas			
fusion			
insertion			
sélection			

F4 File égalitaire (25 points)

Étant donné une collection d'éléments comparables $\mathcal{C} = \{x_1 x_2, \dots, x_n\}$, un $x \in \mathcal{C}$ est un élément *médian* s'il permet de couper \mathcal{C} en deux parties égales :

$$\left| \left\{ i \colon x_i \le x \right\} \right| \ge \left\lceil \frac{n}{2} \right\rceil$$

et, en même temps

$$\left| \left\{ i \colon x_i \ge x \right\} \right| \ge \left\lceil \frac{n}{2} \right\rceil$$

au moins la moitié des éléments sont inférieurs ou égaux à x

au moins la moitié des éléments sont supérieurs ou égaux à x

▶ Concevoir une structure³ de données qui implante les opérations insert(x) et deleteMedian(). L'opération insert insère un nouvel élément; deleteMedian supprime et retourne un élément médian. Toutes les deux opérations doivent s'exécuter en $O(\log n)$.

³ Indice: : utiliser un min-tas et un max-

F5 Recherche trichotomique (25 points+10 points boni)

Professeure Boucles d'or propose une procédure récursive pour chercher un élément x dans un tableau trié A[0..n-1]. Une sous-tâche pour la récurrence est de chercher x aux indices $g \leq i < d$ (dans le «sous-tableau» A[g..d-1]); le premier appel est avec g=0 et d=n. Si d-g=0 alors retourner avec échec. Si d-g=1, alors examiner si x=A[g] et déclarer succès ou échec. Si d-g>1, alors définir les pivots y=A[p] et z=A[q] aux indices

$$p = \left\lfloor \frac{2g+d}{3} \right\rfloor$$
 et $q = \left\lfloor \frac{g+2d}{3} \right\rfloor$.

Maintenant, si x = y ou x = z, alors retourner avec succès. Si x < y, alors x est trop petit, et il faut continuer la recherche dans A[g..p-1]. Si x > z, alors x est trop grand, et il faut continuer la recherche dans A[q..d-1]. Autrement, si x n'est ni trop grand ni trop petit (y < x < z), il faut continuer la recherche dans A[p..q-1].

- *a. Pseudocode (10 points)* \blacktriangleright Décrire l'algorithme en pseudocode. (Retourner vrai/faux = si A[] contient x.)
- **b.** Analyse (15 points) \blacktriangleright Démontrer que le nombre d'accès⁴ au tableau est $\sim 2\log_3 n$ au pire. Comparer avec la recherche dichotomique.
- c. Tri par tas ternaire (10 points boni) Prof. Boucles d'or maintient que le tri par tas ternaire⁵ fait asymptotiquement moins de comparaisons au pire que le traditionnel tri par tas binaire. ▶ Confirmer ou infirmer sa proposition.

traditionnel tri par tas binaire. Confirmer ou infirmer sa proposition.

 4 «accès au tableau» : chaque fois qu'on accède à une case A[j]

⁵ Tas ternaire dans A[0..n-1]: enfants de A[i] aux indices 3i+1,3i+2,3i+3, parent à $\lfloor (i-1)/3 \rfloor$. On change la procédure de sink, mais autrement le tri procède de même façon :

for
$$i \leftarrow n-2, n-1, \ldots, 0$$
 do $\operatorname{sink}(A[i], i, A, n)$
for $i \leftarrow n-1, n-2, \ldots, 1$ do
échanger $A[0] \leftrightarrow A[i]$
 $\operatorname{sink}(A[0], 0, A, i)$

BONNE CHANCE!

Mid-term examination

THE EXAMEN is worth 100 points, and you can collect up to 10 additional bonus points.

- * No documentation is allowed.
- * Write your algorithms in (Java-style) pseudocode.
- ★ You may write your answers in English or in French.
- * Answer each question in the exam booklet.

Exercise	points	bonus
E0	1	
E1	9 + 5 = 14	
E2	15	
E3	20	
E4	25	
E5	10 + 15 = 25	10
\sum_{i}	100	10

E0 Your name (1 point)

▶ Write your name and *code permanent* on each booklet that you submit.

.....

- E1 Abstract types (14 points)
- (a) **Definition** (5 points) Define what is an abstract data type.
- (b) Famous types (9 points) ▶ Describe the fundamental operations for the following three abstract data types, without discussing implementation:
 - (1) [LIFO] stack, (2) [FIFO] queue, (3) priority queue.

.....

E2 Sorting (15 points)

▶ Give the growth order for the running time in the worst and average case, as well as the worst-case work space⁶ requirements for the following sorting algorithms: quicksort, heapsort, mergesort, insertion sort, and selection sort. You do not need to justify your answers.

- E3 Concatenable queue (20 points)
- \blacktriangleright Give an implementation of a FIFO queue with concatenation, using a (single-)linked circular list. Operations to implement for a queue Q:

.....

- \star Q.enqueue(x) adds x to the queue
- * Q.dequeue() removes and returns the oldest element in the queue
- * Q.concat(P) concatenates the queue P after Q: equivalent to adding all elements of P to Q. (P is destroyed in this operation.)

All operations must take O(1) time.

method	time		memory
	average	worst	
quicksort			
heapsort			
mergesort			
insertion sort			
selection sort			

⁶ "work space" : memory usage excluding the *n*-element input array

Given a collection of comparable elements $\mathcal{C} = \{x_1 x_2, \dots, x_n\}$, an $x \in \mathcal{C}$ is a *median* element if it cuts \mathcal{C} in two near-equal parts :

$$\left|\left\{i\colon x_i\leq x\right\}\right|\geq \left\lceil\frac{n}{2}\right|$$

and, at the same time

$$\left|\left\{i\colon x_i\geq x\right\}\right|\geq \left\lceil\frac{n}{2}\right\rceil$$

at least half of the elements are less than or equal to x

at least half of the elements are greater than or equal to :

▶ Give a data structure⁷ that implements the operations insert(x) that inserts a new element x in the collection, and deleteMin() that removes and returns a median element. Both operations must take $O(\log n)$ time.

⁷ **Hint:** : use a min-heap and a max-heap.

E5 Ternary search (25 points+10 bonus points)

Professor Goldilocks proposes a recursive procedure to search for an x in a sorted array A[0..n-1]. One subproblem for the recursion is searching for x at the indices $g \le i < d$ (in the «subarray» A[g..d-1]); the first call is with g=0 and d=n. If d-g=0 then return with failure. If d-g=1, then examine if x=A[g] and declare success or failure. If d-g>1, then define the pivots y=A[p] et z=A[q] at the indices

$$p = \left\lfloor \frac{2g+d}{3} \right\rfloor$$
 and $q = \left\lfloor \frac{g+2d}{3} \right\rfloor$.

Now, if x = y ou x = z, then return with success. If x < y, then x is too small, and the search continues in A[g..p-1]. If x > z, then x is too big, and the search continues in A[q..d-1]. Otherwise, if x is not too small and not too big (y < x < z), continue with A[p..q-1].

- *a. Pseudocode (10 points)* \blacktriangleright Describe the algorithm in pseudocode. (Return true/false whether $A[\]$ contains x.)
- **b.** Analysis (15 points) \blacktriangleright Show that the number of array accesses⁸ in the worst case is $\sim 2 \log_3 n$. Compare to binary search.
- c. Ternary-heap sort (10 bonus points) Prof. Goldilocks maintains that heap-sort with a ternary heap makes asymptotically fewer comparisons in the worst case than the traditional binary-heap sort. ▶ Prove or disprove Goldilocks' assertion.

 8 "array access" : every time a cell A[j] is consulted

⁹ Ternary heap in A[0..n-1]: children of A[i] with indices 3i+1,3i+2,3i+3; parent at $\lfloor (i-1)/3 \rfloor$. One needs to change sink, but otherwise the sort proceeds the same way:

for
$$i \leftarrow n-2, n-1, \ldots, 0$$
 do $\operatorname{sink}(A[i], i, A, n)$
for $i \leftarrow n-1, n-2, \ldots, 1$ do
échanger $A[0] \leftrightarrow A[i]$
 $\operatorname{sink}(A[0], 0, A, i)$

GOOD LUCK!