

第九节 布尔代数(2)

三. 有限布尔代数结构

原子

[定义1] 设<B, \lor , \land , \neg 布尔代数,元素 $a \in B$, $a \ne 0$,对任何元素 $x \in B$, 有 $x \land a = a$, 或 $x \land a = 0$, 则称a是原子。 [定义2] <B, \leq >是布尔格,在<B, \leq >的哈斯图中称盖住全下界0的元素为原子。

图中三个布尔代数的原子构成的集合分别为 $\{1\}$, $\{a,b\}$, $\{d,e,f\}$

[Stone定理] 设<B, \lor , \land , $^>$ 是有限布尔代数,M是B中所有原子构成的集合,则<B, \lor , \land , $^>$ 与<P(M), \cup , \cap , \sim >同构。

例:如下图布尔代数 <A, <>,构造幂集代数 <P(M), <>, $P(M) = {\emptyset,{d},{e},{f},{d,e},{d,f},{e,f}}$,以及如下映射f,

那么f就是从A到幂集P(M)的同构映射

f	
$0 \bigcirc \xrightarrow{B \xrightarrow{f} P(N)}$	M)
<i>d</i> O	$\rightarrow O \{d\}$
<i>e</i> O	→ O { <i>e</i> }
<i>f</i> o——	→O { <i>f</i> }
<u>a</u> O	$\rightarrow \bigcirc \{d,e\}$
	\rightarrow $\{d,f\}$
<i>c</i> O	\rightarrow $\{e,f\}$
1 0	$\rightarrow \bigcirc \{d,e,f\}$

[推论1] 任何有限布尔代数的元素个数为 2^n , $n \in N$

证明:设B是有限布尔代数,M是B的所有原子构成的集合,且 $|M|=n,n\in N$ 。

由定理得 $B \cong P(M)$, 而 $|P(M)| = 2^n$, 所以 $|B| = 2^n$.

[推论2] 两个有限布尔代数同构的充分且必要条件是元素个数相同。

结论:

- 有限布尔代数的基数都是2的幂;
- •对于任何自然数11,仅存在一个21元的布尔代数。

右图给出了2元,4元和8元的布尔代数.

本节重点掌握布尔代数的性质,Stone定理及其推论

