20.10	_Date / /
0	laven f(x)= sinze
	$\frac{f(x) = sinx}{f(-x) = -sinx = sinx}$
	: wen function
	$\frac{1}{4}(x) = \frac{a_0}{2} + \frac{4}{2}, a_n \cos n x + \frac{8}{2}, b_n \sin n x$
	4(x) = 40 + 41 + 41 + 41 + 41 + 41 + 41 + 41 +
	(7.7)
	(C, C+21)
	=> C=-7 9 1=10
_	$\therefore q_0 = \frac{1}{2} \int_{-\infty}^{\infty} f(x) dx$
b	7 J J(n)01
	= 2 sinon dx
	T of
	(: for even f" fin xoix = 2 T failor
	$\frac{z}{4} = \frac{2}{4} \left(-\omega_{2} \chi\right)^{\frac{1}{4}} = \frac{4}{4}$
•	<u></u>
7	$a_n = 2 \int_{-\infty}^{\pi} f(x) \cos n x dx$
	$\frac{Q_n = \frac{2}{\pi} \int f(x) \cos n x dx}{\pi}$
41	= d Show coon nody
7	= 1 / sin (1+m)x + sin (1-n)x 04
	1: Lin A roll of the
Williams	(: sin A cos B = 1 [gin (A+B) + sin (A-B)])
2.05	Cooped with Com

Scanned with CamScanner

pate
$$-1-1$$

$$= \frac{1}{\pi} \left[-\frac{\cos(1+n)\pi}{1+n} + \frac{\cos(1-n)\pi}{1-n} \right]^{\frac{\pi}{n}}$$

$$= \frac{1}{\pi} \left[-\frac{\cos(1+n)\pi}{1+n} - \frac{\cos(1-n)\pi}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1+n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{1}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1+n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1+n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{2}{1-n} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\cos(\pi+n\pi)}{1-n} - \frac{\cos(\pi-n\pi)}{1-n} + \frac{\cos(\pi-n\pi)}{1-n}$$

 $\frac{2}{\pi(1-n^2)}$ $\frac{(G1)^n+1}{(G1)^n+1}$ $n \rightarrow odd \neq 1$, $a_n = 0$ $a_n = 2$ $\int_{-\pi}^{\pi} sin\pi condx = 1$ $\int_{-\pi}^{\pi} sin2\pi dx$ $b_n = \int \sin u \sin n x \, dx = 0$ (of ginne sin mx de = 0) :. f(n) = ao + 5 4 cos 2n m (% Only for m -, even, $a_n \neq 0$ so m = 2n) $f(n) = 2 - \frac{4}{n} \frac{S}{n} \cdot \frac{g}{n} \left(\frac{(D) 2nn}{4 + 2 - 1} \right)$


```
Date
          2n con 7
                   (con T
               ma redd
```

