Description of the methods used in the SDFC package

Robin Y.

October 7, 2020

Abstract

Contents

Introduction		1	
Notations			
1	Generic estimation		2
	1.1	Maximum likelihood estimation	2
	1.2	Bayesian estimation	2
2	Normal distribution		2
	2.1	Definition	2
	2.2	Likelihood function	2
3	GE	V distribution	3
	3.1	Definition	3
	3.2	Likelihood function	3
	3.3	L-moments estimator	5
Summary		5	

Introduction

Our goal is to find the parameters of a probability distribution, e.g. for a Normal distribution $\mathcal{N}(\mu, \sigma)$ to find μ and σ (see. Sec. 2 for the definition). We place ourselves in a very general context: we assumes that μ and σ can vary with time t, and depend of "true" parameters θ . Mathematically, we write:

$$\begin{pmatrix} \mu_t \\ \sigma_t \end{pmatrix} = \mathcal{L}(\theta, X_t) = \begin{pmatrix} \mathcal{L}_{\mu}(\theta, X_t) \\ \mathcal{L}_{\sigma}(\theta, X_t) \end{pmatrix}$$

The variable $\theta \in \mathbb{R}^p$ is the parameter that we want to infer, X_t is called a *co-variable*, which describes the time dependance. The function \mathcal{L} is called the *link function*.

Notations

$$Z = \frac{Y - \mu}{\sigma}$$

$$\mathcal{Z} = 1 + \xi Z$$

1 Generic estimation

1.1 Maximum likelihood estimation

1.2 Bayesian estimation

2 Normal distribution

2.1 Definition

Definition 2.1 (Normal distribution). A random variable Y follows the Normal distribution, noted $Y \sim \mathcal{N}(\mu, \sigma), \ \mu \in \mathbb{R}, \ \sigma > 0$ if

$$\mathbb{P}(Y \le y) := \int_{-\infty}^{y} f(\tilde{y}) . d\tilde{y}$$
$$f(y) := \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2}Z^{2}\right]$$

The function f is the density of the Normal distribution, μ is called the *location* parameter, and σ is called the *scale* parameter.

2.2 Likelihood function

For a time series of observations $(Y_k)_{k=1...K}$, the negative log-likelihood function is given by:

$$\mathbf{NL}(Y_k) := \sum_{k=1}^K \frac{1}{2} Z_k^2 + \log(\sigma_k)$$

Proposition 2.1. The gradient of the negative log-likelihood of the Normal distribution is given by

$$\partial_{\theta_j} \mathbf{NL}(Y_k) = \sum_{k=1}^K \partial_{\theta_j} \mu \left[-\frac{Z_k}{\sigma_k} \right] + \partial_{\theta_j} \sigma \left[-\frac{Y_k Z_k}{\sigma_k^2} + \frac{\mu_k Z_k}{\sigma_k^2} + \frac{1}{\sigma_k} \right]$$

Proof. Start with the gradient in the direction θ_i

$$\partial_{\theta_{j}} \mathbf{NL}(Y_{k}) = \sum_{k=1}^{K} \partial_{\theta_{j}} \left[Z_{k} \right] Z_{k} + \frac{\partial_{\theta_{j}} \sigma_{k}}{\sigma_{k}}$$

We have

$$\partial_{\theta_j} Z_k = -\frac{Y_k}{\sigma_k^2} \partial_{\theta_j} \sigma_k - \frac{\sigma_k \partial_{\theta_j} \mu_k - \mu_k \partial_{\theta_j} \sigma_k}{\sigma_k^2}$$

Consequently

$$\partial_{\theta_{j}} \mathbf{NL}(Y_{k}) = \sum_{k=1}^{K} \left[-\frac{Y_{k}}{\sigma_{k}^{2}} \partial_{\theta_{j}} \sigma_{k} - \frac{\partial_{\theta_{j}} \mu_{k}}{\sigma_{k}} + \frac{\mu_{k}}{\sigma_{k}^{2}} \partial_{\theta_{j}} \sigma_{k} \right] Z_{k} + \frac{\partial_{\theta_{j}} \sigma_{k}}{\sigma_{k}}$$

$$= \partial_{\theta_{j}} \mu \left[-\frac{Z_{k}}{\sigma_{k}} \right] + \partial_{\theta_{j}} \sigma \left[-\frac{Y_{k} Z_{k}}{\sigma_{k}^{2}} + \frac{\mu_{k} Z_{k}}{\sigma_{k}^{2}} + \frac{1}{\sigma_{k}} \right]$$

3 GEV distribution

3.1 Definition

Definition 3.1 (Normal distribution). A random variable Y follows the Generalized Extreme Value distribution (GEV), noted $Y \sim \text{GEV}(\mu, \sigma, \xi), \, \mu, \xi \in \mathbb{R}, \, \sigma > 0$ if

$$\mathbb{P}(Y \le y) := \exp\left[-\mathcal{Z}^{-1/\xi}\right] = \int_{-\infty}^{y} f(\tilde{y}).d\tilde{y}$$
$$f(y) := \frac{1}{\sigma} \mathcal{Z}^{-1-1/\xi} \exp\left[\mathcal{Z}^{-1/\xi}\right]$$

The function f is the density of the GEV distribution, μ is called the *location* parameter, σ is called the *scale* parameter and ξ is called the *shape* parameter.

3.2 Likelihood function

For a time series of observations $(Y_k)_{k=1...K}$, the negative log-likelihood function is given by:

$$\mathbf{NL}(Y_k) := \sum_{k=1}^{K} \left(1 + \frac{1}{\xi_k} \right) \log(\mathcal{Z}_k) + \mathcal{Z}_k^{-1/\xi_k} + \log(\sigma_k)$$

Proposition 3.1. The gradient of the negative log-likelihood of the GEV distribution is given by

$$\partial_{\theta_{j}} \mathbf{NL}(Y_{k}) = \sum_{k=1}^{K} \partial_{\theta_{j}} \mu \left[-\frac{\xi_{k}}{\sigma_{k}} \kappa_{k} \right] + \partial_{\theta_{j}} \sigma \left[\frac{1}{\sigma_{k}} - \xi_{k} \frac{Z_{k}}{\sigma_{k}} \kappa_{k} \right] + \partial_{\theta_{j}} \xi \left[\log(\mathcal{Z}_{k}) \frac{\mathcal{Z}_{k}^{-1/\xi_{k}} - 1}{\xi_{k}^{2}} + Z_{k} \kappa_{k} \right]$$

$$\kappa_{k} = \frac{1}{\mathcal{Z}_{k}} \left(1 + \frac{1}{\xi_{k}} \right) - \frac{\mathcal{Z}_{k}^{-1/\xi_{k} - 1}}{\xi_{k}}$$

Proof. Start with the gradient in the direction θ_i

$$\partial_{\theta_{j}} \mathbf{NL}(Y_{k}) = \sum_{k=1}^{K} \partial_{\theta_{j}} \left[\left(1 + \frac{1}{\xi_{k}} \right) \log(\mathcal{Z}_{k}) \right] + \partial_{\theta_{j}} \left[\mathcal{Z}_{k}^{-1/\xi_{k}} \right] + \partial_{\theta_{j}} \log(\sigma_{k})$$

$$= \sum_{k=1}^{K} \left[-\frac{\partial_{\theta_{j}} \xi_{k}}{\xi_{k}^{2}} \log(\mathcal{Z}_{k}) + \left(1 + \frac{1}{\xi_{k}} \right) \frac{\partial_{\theta_{j}} \mathcal{Z}_{k}}{\mathcal{Z}_{k}} \right] + \partial_{\theta_{j}} \left[\mathcal{Z}_{k}^{-1/\xi_{k}} \right] + \frac{\partial_{\theta_{j}} \sigma_{k}}{\sigma_{k}}$$

The term $\partial_{\theta_k} \mathcal{Z}_k$ is given by

$$\begin{split} \partial_{\theta_{j}} \mathcal{Z}_{k} &= \partial_{\theta_{j}} \left[1 + \xi_{k} \frac{Y_{k} - \mu_{k}}{\sigma_{k}} \right] \\ &= Z_{k} \partial_{\theta_{j}} \xi_{k} + \xi_{k} \partial_{\theta_{j}} \frac{Y_{k} - \mu_{k}}{\sigma_{k}} \\ &= Z_{k} \partial_{\theta_{j}} \xi_{k} + \xi_{k} \left[-Y_{k} \frac{\partial_{\theta_{j}} \sigma_{k}}{\sigma_{k}^{2}} - \frac{\sigma_{k} \partial_{\theta_{j}} \mu_{k} - \mu_{k} \partial_{\theta_{j}} \sigma_{k}}{\sigma_{k}^{2}} \right] \\ &= \partial_{\theta_{j}} \mu_{k} \left[-\frac{\xi_{k}}{\sigma_{k}} \right] + \partial_{\theta_{j}} \sigma_{k} \left[\xi_{k} \frac{\mu_{k} - Y_{k}}{\sigma_{k}^{2}} \right] + \partial_{\theta_{j}} \xi_{k} \left[Z_{k} \right] \end{split}$$

And the term $\partial_{\theta_k} \mathcal{Z}_k^{-1/\xi_k}$ is given by

$$\begin{split} \partial_{\theta_{j}} \left[\mathcal{Z}_{k}^{-1/\xi_{k}} \right] &= \partial_{\theta_{j}} \exp \left[-\frac{1}{\xi_{k}} \log \left[\mathcal{Z}_{k} \right] \right] \\ &= \partial_{\theta_{j}} \left[-\frac{1}{\xi_{k}} \log \left[\mathcal{Z}_{k} \right] \right] \mathcal{Z}_{k}^{-1/\xi_{k}} \\ &= \left[\frac{\partial_{\theta_{j}} \xi_{k}}{\xi_{k}^{2}} \log \left[\mathcal{Z}_{k} \right] - \frac{1}{\xi_{k}} \frac{\partial_{\theta_{j}} \mathcal{Z}_{k}}{\mathcal{Z}_{k}} \right] \mathcal{Z}_{k}^{-1/\xi_{k}} \\ &= \partial_{\theta_{j}} \xi_{k} \left[\log \left[\mathcal{Z}_{k} \right] \frac{\mathcal{Z}_{k}^{-1/\xi_{k}}}{\xi_{k}^{2}} \right] - \frac{\mathcal{Z}_{k}^{-1/\xi_{k}-1}}{\xi_{k}} \partial_{\theta_{j}} \mathcal{Z}_{k} \end{split}$$

Thus, we find

$$\partial_{\theta_{j}} \mathbf{NL}(Y_{k}) = \sum_{k=1}^{K} -\frac{\partial_{\theta_{j}} \xi_{k}}{\xi_{k}^{2}} \log(\mathcal{Z}_{k}) + \left(1 + \frac{1}{\xi_{k}}\right) \frac{\partial_{\theta_{j}} \mathcal{Z}_{k}}{\mathcal{Z}_{k}} + \partial_{\theta_{j}} \left[\mathcal{Z}_{k}^{-1/\xi_{k}}\right] + \frac{\partial_{\theta_{j}} \sigma_{k}}{\sigma_{k}}$$

$$= \sum_{k=1}^{K} \partial_{\theta_{j}} \xi_{k} \left[\log\left[\mathcal{Z}_{k}\right] \frac{\mathcal{Z}_{k}^{-1/\xi_{k}} - 1}{\xi_{k}^{2}}\right] + \underbrace{\left[\frac{1}{\mathcal{Z}_{k}} \left(1 + \frac{1}{\xi_{k}}\right) - \frac{\mathcal{Z}_{k}^{-1/\xi_{k} - 1}}{\xi_{k}}\right]}_{=\kappa_{k}} \partial_{\theta_{j}} \mathcal{Z}_{k} + \frac{\partial_{\theta_{j}} \sigma_{k}}{\sigma_{k}}$$

$$= \sum_{k=1}^{K} \partial_{\theta_{j}} \mu_{k} \left[-\frac{\xi_{k}}{\sigma_{k}} \kappa_{k}\right] + \partial_{\theta_{j}} \sigma_{k} \left[\frac{1}{\sigma_{k}} - \xi_{k} \frac{\mathcal{Z}_{k}}{\sigma_{k}} \kappa_{k}\right] + \partial_{\theta_{j}} \xi_{k} \left[\log\left[\mathcal{Z}_{k}\right] \frac{\mathcal{Z}_{k}^{-1/\xi_{k}} - 1}{\xi_{k}^{2}} + \mathcal{Z}_{k} \kappa_{k}\right]$$

3.3 L-moments estimator

See Hosking et al. (1985).

Summary

References

Hosking, J. R. M. et al. (1985). "Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments". In: *Technometrics* 27.3, pp. 251–261.

Tabulars

Figures