Production des Ménages, Marchés, et Séparation¹

Pierre Biscaye

Janvier 2025

¹Le contenu de ce cours est tiré du cours Microeconomics of Development de Jeremy Magruder à l'UC Berkeley, ainsi que du cours AEA Continuing Education en économie du développement de Emily Breza et Supreet Kaur.

Agenda

- Présentations
- Syllabus
- Motivation : marchés incomplets et séparation ménage-producteur
- Modélisation de la séparation
- ► Test de la séparation : Benjamin (1992)
- PAUSE
- ► Test de la séparation : LaFave & Thomas (2016)
- Marchés incomplets
- Défaillances de marché et adoption de technologies : Jones et al. (2022)

Présentations

- ► Votre nom
- D'où vous venez

Syllabus

Link

Questions

?

Principes de la microéconomie

Les consommateurs résolvent

$$\max_x \quad u(x) \quad \text{s.t.} \quad px \leq W$$

$$\text{FOC: } u'(x) = \lambda p$$

Principes de la microéconomie

Les consommateurs résolvent

$$\max_x \quad u(x) \quad \text{s.t.} \quad px \leq W$$

$$\text{FOC: } u'(x) = \lambda p$$

Rendant l'offre de travail endogène:

$$\max_x \quad u(c,l) \quad \text{s.t.} \quad pc \leq (L-l) * w$$

$$\text{FOCs: } u'(c) = \lambda p, \qquad u'(l) = \lambda w$$

Principes de la microéconomie

Les producteurs résolvent

$$\label{eq:max_KL} \max_{K,L} \quad pf(K,L) - wL - rK$$
 FOCs: $pf_1 = r, \qquad pf_2 = w$

Le monde réel

- ► Comment l'optimisation diffère-t-elle dans le monde réel ?
- ▶ Dans ce cours : comment les facteurs contextuels dans les pays à faible revenu influencent-ils les décisions des entreprises ?
- ► Aujourd'hui : marchés incomplets et ménages-producteurs

Motivation: Marchés incomplets

- ► Marchés incomplets : l'optimisation n'est pas possible
 - Pas de marché foncier ou marché foncier contraint ⇒ impossible d'optimiser l'utilisation des terres
 - Pas de marché du travail ou marché du travail contraint ⇒ impossible d'optimiser l'offre de travail
 - Pas de marché du crédit ou marché du crédit contraint ⇒ impossible d'optimiser l'un ou l'autre intrant
- Ces problèmes sont fréquents dans les zones rurales et les régions à faible revenu
- Implications économiques :
 - Différents comportements deviennent rationnels, par exemple, la faible adoption de technologies rentables
 - Productivité plus faible due à une mauvaise allocation des ressources et à un manque d'investissement
 - Les chocs peuvent affecter à la fois la production et la consommation dans les ménages qui sont également producteurs : entrepreneurs

Motivation : Offre de travail entre différentes activités

TABLE 5.1 Participation in Labour Activities During the Past 7 days (% of persons >5 years old)

		By Activity								
	Nonfarm Agriculture Enterprise		Wage		Apprenticeship		No Activity			
Region	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female
Post-planting (July-Aug)										
North Central	61.4	48.2	10.4	17.7	6.7	5.1	1.9	2.4	28.6	33.8
North East	57.0	35.4	21.3	24.3	8.0	1.1	2.8	0.6	30.1	47.6
North West	53.2	17.3	24.9	33.3	5.4	1.2	1.1	1.2	34.8	54.5
South East	40.1	48.8	23.2	20.2	7.6	7.7	1.8	22	40.2	35.5
South South	40.6	42.9	23.1	26.0	8.9	6.3	3.5	2.3	37.9	36.1
South West	26.6	16.2	26.8	36.1	12.7	8.1	5.6	4.2	38.4	42.5
Urban	20.0	14.4	29.4	31.7	12.0	7.8	3.3	2.5	45.9	50.6
Rural	59.8	40.4	18.6	25.0	5.9	2.8	2.1	1.7	30.2	40.6
NGA	48.6	33.1	21.6	26.9	7.6	4.2	2.5	1.9	34.6	43.4
Post-harvest (Jan-Feb)										
North Central	37.0	23.9	9.5	13.0	8.1	4.7	1.7	1.6	48.0	58.8
North East	23.8	14.7	15.1	11.8	6.4	1.6	3.7	2.2	57.3	71.8
North West	28.3	9.0	22.1	22.6	4.9	1.2	0.9	0.3	54.3	69.0
South East	20.2	27.9	18.7	16.8	8.7	7.5	3.0	2.8	53.8	51.0
South South	26.8	28.7	15.9	18.3	12.9	7.0	2.8	3.5	49.5	50.2
South West	21.5	12.2	20.3	30.5	16.2	7.8	4.3	2.6	43.9	50.7
Urban	11.1	7.0	24.0	25.8	13.5	7.5	2.9	2.2	53.8	59.6
Rural	33.4	22.4	14.8	16.1	6.6	3.0	2.2	1.8	51.1	60.9
NGA	27.1	18.1	17.4	18.8	8.5	4.2	2.4	1.9	51.9	60.6

Source: Nigerian National Bureau of Statistics, GHSP 2018-19 Survey Report

Motivation: Ménages-Producteurs

- Une grande partie des populations pauvres dans le monde sont des entrepreneurs
 - Agriculteurs de petite exploitation
 - Propriétaires de petites entreprises
- ► En quoi la prise de décision est-elle différente pour les entrepreneurs ?
- Quel est l'effet des marchés manquants et des autres défaillances de marché ?
- Question du jour : comment les défaillances de marché affectent-elles la séparation entre les problèmes de consommation et de production ?

Défaillances de la séparation

- ▶ Supposons qu'il existe des frictions dans un marché ou un autre
- ► Le défi développé dans Benjamin (1992) est que les décisions de production et de consommation deviennent liées
- Défaillances du marché du travail : si vous devez utiliser votre propre travail pour produire, vous considérez à la fois le produit marginal et la demande de loisir
- ► Pourquoi cela est-il important ?

Situation extrême : Ménages-producteurs en autarcie

Les ménages maximisent

$$u_h = u(c, l; a)$$

et produisent

$$q = F(L; A)$$

- c est la consommation
- ▶ *l* est le loisir
- a représente les caractéristiques des ménages qui influencent l'utilité
- L est la main d'oeuvre pour la production
- A représente les caractéristiques des ménages qui influencent la production

Problème statique du ménage-producteur en autarcie

Supposons:

- ▶ Disponibilité totale de travail T(a) = L + l
- ightharpoonup F(L;A) et u(c,l) se comportent normalement, sans autres restrictions
- Le prix du bien produit/consommé est normalisé à 1
- Le ménage dispose d'un revenu supplémentaire y et n'a pas d'épargne
- ► Le ménage consomme l'intégralité de son revenu et de sa production

Le ménage-producteur optimise

$$\max_{L} \quad u(y + F(L; A), T(a) - L; a)$$

$$\mathsf{CPO} : u_1 F_1 - u_2 = 0 \Rightarrow F_1 = \frac{u_2}{u_1}$$

(CPO = Condition de Premier Ordre)

Problème statique du ménage-producteur en autarcie

$$\max_{L} \quad u(y + F(L; A), T(a) - L; a)$$

$$\mathsf{CPO} : u_1 F_1 - u_2 = 0 \Rightarrow F_1 = \frac{u_2}{u_1}$$

- L'utilité marginale du loisir détermine l'allocation du travail
 Pas le prix du travail
- Que se passerait-il pour la production des entreprises ou des exploitations agricoles si les ménages devenaient (de manière exogène) plus riches ?
- ► Pas de séparation

Et s'il existait un marché du travail fonctionnel ?

- Les ménages allouent leur temps de travail à leur entreprise/ferme (L^F) , au travail salarié (L^O) et aux loisirs l, avec un temps total $T(a) = L^F + L^O + l$
- Les ménages disposent d'un revenu exogène y
- lacktriangle Les ménages peuvent embaucher L^H unités de travail
- lacktriangle Même salaire w pour le travail salarié et le travail embauché

Le ménage-producteur optimise

$$\begin{aligned} \max_{L^H,L^O,L^F} & u(c,l;a)\\ \text{s.t. } c = F(L^F + L^H;A) - wL^H + wL^O + y\\ & \text{et } l + L^F + L^O = T(a) \end{aligned}$$

Résolution du problème

$$\max_{L^H,L^O,L^F} \quad u(F(L^F+L^H;A)-wL^H+wL^O+y,T-L^F-L^O)$$
 CPOs :
$$L^O: \quad u_1w-u_2=0$$

 $L^{F}: u_{1}F' - u_{2} = 0$ $L^{H}: u_{1}(F' - w) = 0$

Implications de l'optimisation

CPOs:

$$L^{O}: u_{1}w - u_{2} = 0$$

 $L^{F}: u_{1}F' - u_{2} = 0$
 $L^{H}: u_{1}(F' - w) = 0$
 $\Rightarrow F' = w, \frac{u_{2}}{u_{1}} = w$

- Quelles sont les implications pour l'offre de travail ?
 - ▶ Rappel : $F(L^F + L^H; A)$ est la fonction de production de l'entreprise, w est le salaire

Implications de l'optimisation

CPOs:

$$L^{O}: u_{1}w - u_{2} = 0$$

 $L^{F}: u_{1}F' - u_{2} = 0$
 $L^{H}: u_{1}(F' - w) = 0$
 $\Rightarrow F' = w, \frac{u_{2}}{u_{1}} = w$

- Quelles sont les implications pour l'offre de travail ?
 - Rappel : $F(L^F + L^H; A)$ est la fonction de production de l'entreprise, w est le salaire
- Employer du travail jusqu'à ce que le produit marginal soit égal au salaire
- ➤ Avec un marché du travail, les ménages-producteurs maximisent leurs profits, indépendamment de leurs caractéristiques/préférences a
- $\frac{u_2}{u_1}=w$: Les décisions de production n'influencent les choix travail-loisir du ménage que par la contrainte budgétaire

Décisions de consommation et de loisir des ménages

Considérons la valeur nette de la production

$$\rho(w; A) \equiv F(L; A) - wL^H - wL^F$$

- Nous venons de voir qu'avec séparation, les ménages-producteurs maximiseront d'abord $\rho(w;A)$
- Appelons cette fonction maximisée $\pi(w; A)$

Considérons maintenant la valeur totale de la consommation d'utilité

$$M \equiv c + wl = y + \rho(w; A) + wT(a)$$

Simplifions le problème du ménage

$$\max_{c,L^H,L^O,L^F,l} u(c,l;a)$$
$$\max_{l} u(y + \pi(w;A) + wT(a) - wl,l;a)$$

Avec séparation, les ménages ne choisissent que le l optimal

Illustration de la séparation (avec contrainte)

- lacktriangle Offre totale de travail des ménages $L^S=L^F+L^O$
- lacktriangle Travail total de production $L^D=L^F+L^H$

Figure 1.—Separation.

Résumé du rôle des marchés du travail dans la séparation

- Sans marché du travail
 - Les décisions de production dépendent des arbitrages entre consommation et loisir
 - Ces décisions varient entre les différents ménages-producteurs
 ⇒ la production dépend des caractéristiques des ménages
- Avec un marché du travail
 - Les décisions de production équilibrent les coûts et les bénéfices marginaux
 - Ces décisions maximisent les profits sur les terres et ne dépendent pas des caractéristiques des ménages
 - ▶ **Résultat de séparation** : la maximisation des profits est séparable de la maximisation de l'utilité

Modéliser les marchés du travail de manière plus réaliste

Benjamin (1992) considère plusieurs frictions possibles

- 1. Contraintes sur la quantité de travail pouvant être embauchée (L^H) cela peut conduire à un produit marginal de $L^F>$ au taux de salaire
- 2. Contraintes sur la quantité de travail pouvant être vendue (L^O) cela peut conduire à un produit marginal de $L^F<$ au taux de salaire
- Distorsions entre les salaires du travail embauché et du travail vendu
 - ► Exemple : préférences des agriculteurs pour travailler sur leurs exploitations, le travail familial et le travail embauché ne sont pas des substituts parfaits dans la production

Concentrons-nous sur la deuxième : $L^O \leq H$, où H est le nombre maximal d'heures que les membres du ménage peuvent travailler en dehors du foyer

Offre excédentaire de travail hors ferme $(L^O = H)$

Offre optimale de travail du ménage-ferme

$$L^{D*}(w,A) \equiv (L^{F*} + L^{H*})|w,A$$

$$L^{S}(w,M;a) = T(a) - l(w,y + \pi(w;A) + wT(a);a)$$

Si la contrainte est active et que ${\cal L}^{\cal O}={\cal H}$, alors :

$$T(a) - l^* > L^{D*} + L^O = L^{D*}(w, A) + H$$

Dans ce cas, les ménages alloueront plus de travail familial à leur ferme qu'il ne semble optimal étant donné les salaires : $L^D = L^F + L^H > L^{D*}(w,A)$

Salaire au noir (shadow wage)

- Pour tout L^D , définissez le salaire au noir w^* comme le salaire pour lequel *il serait optimal* de travailler autant sur votre ferme
- Ainsi, si la ferme s'étend pour absorber une offre de travail supplémentaire, nous avons $L^D > L^{D*}(w;A)$, $w^* < w$
- On peut alors définir les profits optimisés si le salaire était le salaire au noir

$$\pi(w^*; A) = \max_{L}^{D} F(L^D, A) - w^* L^D = F(L^{D*}; A) - w^* L^{D*}(w^*, A)$$
$$\frac{\partial \pi}{\partial w^*} = F_1 \frac{\partial L^{D*}}{\partial w^*} - [L^{D*} + w^* \frac{\partial L^*}{\partial w^*}] = -L^{D*}$$

Interprétation de l'algèbre

$$\pi(w^*; A) = \max_{L}^{D} F(L^D, A) - w^* L^D = F(L^{D*}; A) - w^* L^{D*}(w^*, A)$$
$$\frac{\partial \pi}{\partial w^*} = F_1 \frac{\partial L^{D*}}{\partial w^*} - [L^{D*} + w^* \frac{\partial L^*}{\partial w^*}] = -L^{D*}$$
$$\Rightarrow \frac{\partial L^{D*}}{\partial a} = -\pi_{11}(w^*; A) \frac{\partial w^*}{\partial a}$$

- ▶ En d'autres termes, le changement dans la demande de travail sur la ferme L^D lorsque les caractéristiques du ménage (a) changent est équivalent à :
 - Le changement dans le salaire au noir avec a
 - Multiplié par la courbure de la fonction de profit (>0 selon le théorème de l'enveloppe)
- La contrainte crée une faillance de séparation
- ▶ Sans la contrainte, $w^* = w$ et $\partial L^D/\partial a = 0$

Modèle de ménages agricoles (aucune contrainte)

FIGURE 2.—Case 1 constraint H on off-farm labor supply.

Stratégie empirique de Benjamin pour tester l'échec de la séparation

Le modèle suggère :

$$log(L_i^D) = \alpha + \beta log(w_i^*) + \gamma log(A_i)$$
(1)

$$log(L_i^D) = \alpha + \beta \sum_{j=1}^G \delta_j a_{ij} + \gamma log(A_i) + u_i$$
 (2)

- ▶ S'il y a séparation, $\delta_j = 0$
- ► Test spécifique : considérer comme caractéristiques du ménage le dénombrement des membres du ménage par âge et sexe
 - La taille et la composition du ménage ne devraient pas affecter l'allocation du travail agricole, sauf s'il y a une violation de l'hypothèse de séparation
- ► Problèmes possibles ?

Contexte: Indonesia 1980 SUSENAS HH survey

TABLE II LABOR USE ON RICE FARMS

	Percent Use ^a	Person Days ^b	Percent Hire ^c	Average Hired Person Days ^d	Average Family Person Days	Labor Days per Hectare ^e	Average Daily Wage ^f
Labor Type:							
Plowing	49	4.1	37	3.1	1.0	8.5	900
Hoeing	99	20.6	73	13.6	7.0	46.6	475
Planting	99	20.9	86	18.1	2.9	43.0	270
Weeding	96	23.7	68	17.3	6.4	45.0	293
Harvesting	100	29.4	79	23.5	6.0	64.8	625
Other Labor	52	5.7	27	2.5	3.2	13.7	622
Total Labor	100	104.5	95	78.2	26.3	221.7	

^a Percent Use is the percentage of farmers who report employing that type of labor.

Average Wage is the average daily wage for that task (in Rp.).

b Person Days is the average annual person days of labor per farm for that task.

^c Percent Hire is the percentage of farmers who hire some of their labor for that task.
^d Average Hired/Family Person Days are average annual person days of each type of labor used.

^e Labor per Hectare is the annual average person days of labor per hectare of rice land harvested.

Séparation?

TABLE V

Implied Demographic Elasticities from Table IV
(Standard Errors in Parentheses)

	Elasticity of Labor Demand with respect to additional Household Members:							
Specification:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Type of member:								
Prime age male	0.012	0.028	0.010	0.027	0.032	0.007	0.010	
•	(0.024)	(0.025)	(0.018)	(0.024)	(0.026)	(0.031)	(0.030)	
Prime age female	-0.016	0.013	-0.004	0.022	0.027	0.005	0.006	
_	(0.025)	(0.027)	(0.019)	(0.025)	(0.028)	(0.003)	(0.032)	
Elderly male	0.008	0.017	0.013	0.010	0.017	0.012	0.013	
-	(0.005)	(0.006)	(0.005)	(0.005)	(0.006)	(0.006)	(0.007)	
Elderly female	0.001	0.010	0.006	0.003	0.008	0.003	0.004	
	(0.005)	(0.005)	(0.004)	(0.005)	(0.005)	(0.006)	(0.006)	
Child (< 15 yrs)	0.038	0.011		-0.007	0.012	0.005	0.006	
	(0.018)	(0.017)		(0.016)	(0.018)	(0.020)	(0.021)	

Specifications: (1) Parsimonious OLS. (2) OLS with full set of control variables. (3) OLS with full set of control variables, but children under 15 yrs. excluded from household size. (4) Within cluster estimation. (5) 2SLS for correction of measurement error of wage. (6) 2SLS for correction for potential simultaneity of wage and adjustment of area harvested.

Séparation?

TABLE V

Implied Demographic Elasticities from Table IV
(Standard Errors in Parentheses)

	Elas	ticity of Labor	Demand with	respect to addi	tional Housel	nold Members	s:
Specification:	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Type of member:							
Prime age male	0.012	0.028	0.010	0.027	0.032	0.007	0.010
	(0.024)	(0.025)	(0.018)	(0.024)	(0.026)	(0.031)	(0.030)
Prime age female	-0.016	0.013	-0.004	0.022	0.027	0.005	0.006
•	(0.025)	(0.027)	(0.019)	(0.025)	(0.028)	(0.003)	(0.032)
Elderly male	0.008	0.017	0.013	0.010	0.017	0.012	0.013
	(0.005)	(0.006)	(0.005)	(0.005)	(0.006)	(0.006)	(0.007)
Elderly female	0.001	0.010	0.006	0.003	0.008	0.003	0.004
	(0.005)	(0.005)	(0.004)	(0.005)	(0.005)	(0.006)	(0.006)
Child (< 15 yrs)	0.038	0.011		-0.007	0.012	0.005	0.006
	(0.018)	(0.017)		(0.016)	(0.018)	(0.020)	(0.021)

Specifications: (1) Parsimonious OLS. (2) OLS with full set of control variables, (3) OLS with full set of control variables, but children under 15 yrs. excluded from household size. (4) Within cluster estimation. (5) 2SLS for correction of measurement error of wage. (6) 2SLS for correction for potential simultaneity of wage and adjustment of area harvested.

"Ensemble, les preuves ne sont pas compatibles avec un excédent de main-d'œuvre ou des contraintes sur l'offre de travail agricole"

BREAK

Reconsidérer Benjamin (1992) : LaFave & Thomas (2016)

- Le résultat de Benjamin (1992) est influent, mais il y a certaines préoccupations concernant les données et l'économétrie
- ► LaFave & Thomas (2016) mettent à jour le test original avec de meilleures données de panel provenant d'Indonésie
 - ► Échantillon plus large (≈4000)
 - ▶ 11 vagues ⇒ peuvent introduire des effets fixes à la ferme
 - ► Identifier la composition des ménages à partir des changements dans le profil d'âge des membres ⇒ éviter endogéneité
 - Utiliser les effets fixes de la communauté × temps pour prendre en compte salaires et d'autres prix

Panel C	
Farm Labor in the Last 4 Mo	nths
	Mean
	(4)
Person days of []	
Total labor demand	72.45
	(0.30)
Family supplied labor	54.38
Failing supplied labor	(0.22)
	(0.22)
Hired labor	18.07
	(0.19)
Family labor supplied by [] Male household members Female household members	40.33 (0.18) 14.05 (0.10)
Person days hired for []	
Planting	6.39
	(0.07)
Harvesting	4.86
Weeding	(0.07) 4.10
weeding	(0.08)
Other farm tasks	2.72
	(0.08)

Stratégie empirique de LaFave et Thomas

Spécification de régression

$$\ln L_{hjt} = \alpha + \beta N_{hjt} + \delta X_{hjt} + \mu_h + \eta_{jt} + \varepsilon_{hjt}$$

- $ightharpoonup L_{hjt}$ nombre total de jours-personne utilisés à la ferme h pendant la période t
- ▶ N_{hjt} démographie des ménages $(H_0: \beta = 0)$
- lacktriangle X_{hjt} autres caractéristiques de la ferme et du ménage
- \blacktriangleright μ_h effets fixes de la ferme
- lacktriangledown η_{jt} effets fixes de la communauté imes temps

Résultats

	A. Pooled C	Pross-Sections		B. Inclu	
	N.	Household	N.	Variation	
Household	Household	Size and	Household	From Aging	
Demographic	Members	Shares	Members	Only	
Composition	(1)	(2)	(3)	(4)	
Number of male.	s in farm HH				
0 to 14 years	0.02	-	-0.001	_	
-	(0.01)		(0.016)		
15 to 19	0.11	0.40	0.09	0.09	
	(0.02)	(0.08)	(0.02)	(0.05)	
20 to 34	0.17	0.59	0.13	0.15	
	(0.01)	(0.07)	(0.02)	(0.11)	
35 to 49	0.23	0.65	0.16	0.15	
	(0.02)	(0.09)	(0.03)	(0.12)	
50 to 64	0.32	0.76	0.22	0.24	
	(0.03)	(0.09)	(0.03)	(0.12)	
65 and older	0.21	0.45	0.20	0.24	
	(0.03)	(0.10)	(0.04)	(0.14)	

	A. Pooled C	Cross-Sections	B. Inch		
	N.	Household	N.	Variation	
Household	Household	Size and	Household	From Aging	
Demographic	Members	Shares	Members	Only	
Composition	(1)	(2)	(3)	(4)	
Number of females in	farm HH				
0 to 14 years	-0.02	-0.15	-0.04	-	
•	(0.01)	(0.07)	(0.02)		
15 to 19	0.02	0.10	-0.01	0.02	
	(0.02)	(0.08)	(0.02)	(0.05)	
20 to 34	0.04	0.12	0.06	0.23	
	(0.02)	(0.09)	(0.02)	(0.10)	
35 to 49	0.09	0.30	0.16	0.33	
	(0.02)	(0.09)	(0.03)	(0.11)	
50 to 64	0.10	0.27	0.13	0.35	
	(0.02)	(0.09)	(0.03)	(0.12)	
65 and older	-0.05	-0.10	0.05	0.26	
	(0.02)	(0.09)	(0.03)	(0.13)	
Log household size		0.34			
-		(0.03)			

Tests conjoints de $H_0: \beta = 0$

	A. Pooled C	Cross-Sections		B. Includir	
	N.	Household	N.	Variation	
Household	Household	Size and	Household	From Aging	
Demographic	Members	Shares	Members	Only	
Composition	(1)	(2)	(3)	(4)	
Tests for joint significance of dem	ographic co	mposition			
All groups	37.27	33.65	13.13	2.53	
<i>p</i> -value	0.00	0.00	0.00	0.005	
Males	49.88	21.67	18.27	1.90	
<i>p</i> -value	0.00	0.00	0.00	0.09	
Females	10.58	10.99	7.70	2.78	
<i>p</i> -value	0.00	0.00	0.00	0.02	
Prime age adults	45.13	14.55	22.52	2.18	
p-value	0.00	0.00	0.00	0.04	
C-test—1 and 2 period lags (χ^2) p-value)				
Observations	38,189	38,189	38,189	11,594	
N. Households	4,452	4,452	4,452	1,584	

Séparation ?

- Rejet solide de la séparation dans chaque test
 - Les ménages avec plus de membres fournissent plus de main d'oeuvre agricole familial
- ► Test du mécanisme de surveillance
 - Hypothèse : Les membres du ménage sont plus faciles à surveiller
 - ► Trouve des effets similaires pour le travail à la récolte (facile à surveiller) et pour d'autres opérations
- ► Tests d'hétérogénéité entre les ménages
 - Pas de différences selon le niveau d'éducation du chef de ménage
 - Les effets de la composition des ménages sont plus faibles pour les ménages ayant plus de ressources (dépenses plus élevées)
 - ▶ Pas d'effets dans le top 15% des ménages en termes de dépenses par tête

Et si les ménages ne sont pas unitaires ?

- Udry (1996) pose la question : les ménages peuvent-ils allouer efficacement leurs ressources ?
- La séparation peut échouer si les ménages ne réagissent pas aux marchés du travail en tant que décideurs collectifs
- Benjamin suppose un ménage unitaire avec un décideur central prenant les décisions de travail et de consommation pour tous les membres du ménage
 - ► Efficace (si pas nécessairement égal) si les décisions de consommation et de production sont séparées
- Udry observe que la production agrégée efficace nécessite une production efficace des cultures sur les parcelles
- ▶ Test de séparation : les intrants de production sont-ils distribués efficacement entre les différentes parcelles du ménage ?
 - Contexte : Les parcelles des ménages au Burkina Faso sont gérées par des membres particuliers du ménage

Udry: Genre et production agricole au Burkina Faso

Test empirique de la séparation

$$Q_{htc} = \beta X_{htci} + \gamma G_{htci} + \lambda_{htc} + \varepsilon_{htci}$$

- Parcelle i, culture c, ménage h, temps t
- Jusqu'aux caractéristiques de la parcelle X, le genre du gestionnaire G devrait être exclu des équations des intrants/rendements
- Dispose de riches données de panel au niveau des parcelles

Différences selon le genre du gestionnaire de parcelle

 $\begin{tabular}{ll} TABLE\ 1\\ MEAN\ YIELD,\ Area,\ And\ Labor\ Inputs\ per\ Plot\ by\ Gender\ of\ Cultivator\\ (N=4.655) \end{tabular}$

	Crop Output per Hectare (1,000 FCFA)*	Area (Hectare)	Male Labor (Hours/ Hectare)	Female Labor (Hours/ Hectare)	Nonfamily Labor (Hours/ Hectare)	Child Labor (Hours/ Hectare)	Manure Weight (kg/ Hectare)
Men's plots	79.9	.740	593	248	106	104	2,993
	(186)	(1.19)	(1,065)	(501)	(407)	(325)	(11,155)
Women's plots	105.4	.100	128	859	46	53	764
	(286)	(.16)	(324)	(1,106)	(185)	(164)	(5,237)
T-statistic H_0 : $\mu_m = \mu_w$	-3.27	29.03	22.16	-21.31	6.89	7.08	7.68

- Différences significatives de rendement selon le genre à travers plusieurs spécifications
- Suggère que les effets sont dus à des intrants moindres pour les femmes, même en contrôlant les caractéristiques de la parcelle
 - Le fertilisant est alloué beaucoup plus aux hommes, malgré une productivité marginale bien établie en déclin
- Ne répond pas à la question de ce qui cause l'inefficacité
 - Facteurs potentiels : échecs des marchés du travail et financiers

Marchés incomplets

- L'exemple de Benjamin (1992) sur les échecs de séparation se concentre sur les frictions sur le marché du travail
- On pourrait encore restaurer la séparation avec des marchés du travail incomplets mais des marchés fonciers fonctionnels :
 - Redistribuer des terres (par location ou vente) aux ménages plus grands pour égaliser les salaires fantômes entre les fermes
- Les échecs de séparation nécessitent généralement l'incomplétude dans *plus d'un marché*
 - ► LaFave et Thomas échouent à rejeter la séparation pour les ménages les plus riches
 - D'autres marchés (par exemple, le crédit, l'assurance) peuvent être plus complets pour eux

Autres échecs de marché : marchés financiers incomplets

Supposons que :

- La production est risquée, avec θ un choc de moyenne 1 de la TFP (productivité totale des facteurs), ce qui signifie que le revenu agricole $y=\theta F(L)$
- Les ménages sont averses au risque, u' est convexe
- Marché d'assurance incomplet (inexistant)
- Marché de crédit incomplet (inexistant)
- Les ménages fournissent de manière inélastique une dotation de travail T, avec L pour la ferme et T-L pour le marché pour un salaire w
- ightharpoonup Le marché du travail se résout avant que heta soit connu

Cela peut-il générer un échec de séparation ?

Marchés financiers et échecs de séparation ?

Le ménage agricole résout

$$\begin{aligned} \max_{L} \quad & E_{\theta}[u(c)] \\ \text{s.t. } c &= wT + \theta F(L) - wL \\ \text{COP: } E[u'(c)(\theta F'(L) - w)] &= 0 \end{aligned}$$

Que cela implique-t-il?

Marchés financiers et échecs de séparation ?

Le ménage agricole résout

$$\begin{aligned} \max_{L} \quad & E_{\theta}[u(c)] \\ \text{s.t. } c &= wT + \theta F(L) - wL \\ \text{COP: } E[u'(c)(\theta F'(L) - w)] &= 0 \end{aligned}$$

L'échec de la séparation ! L sera une fonction des préférences (aversion au risque)

ightharpoonup On peut montrer que l'échec du marché de l'assurance (qui résoudrait l'incertitude sur heta) génère un sous-investissement en travail par rapport à un cadre de marchés complets

Alors quoi?

- Besoin d'une meilleure théorie appliquée, de modèles dynamiques
 - ► LaFave et Thomas : "Développer des modèles empiriquement tractables des ménages agricoles lorsque les marchés sont incomplets reste un défi important."
 - Crée des défis pour étudier et soutenir les ménages agricoles
- Comment identifier les échecs de marché ?
 - ► LaFave et Thomas : "Il n'est pas possible avec un test global pour les marchés complets d'identifier les sources de l'échec des marchés."
 - Diagnostiquer des échecs de marché spécifiques est particulièrement difficile étant donné qu'un marché pourrait en substituer un autre
- Quels sont les impacts de la non-séparation ?
 - Implications pour la mauvaise allocation des facteurs ?
 - Implications pour l'adoption de technologies ?

Mauvaise allocation ('Misallocation')

- Grande littérature dans LMICs
- ➤ Silver (2004) : Nouvelle méthode pour identifier séparément les distorsions des marchés financiers et des intrants
- Estime les effets sur la productivité agrégée de l'élimination de la mauvaise allocation due à ces distorsions en Thaïlande

Autres implications : adoption inefficace de technologies ?

Les distorsions sur les marchés de la terre, du travail, ou du capital peuvent ensemble mener à des allocations inefficaces des terres et du travail

- Si les ménages sont efficaces et que la séparation est maintenue ⇒ décisions optimales sur chaque parcelle, ET décisions productives non corrélées entre les parcelles, conditionnellement à la productivité
 - On a vu cet échec dans Udry (1996)
- Les échecs de séparation peuvent induire des dépendances au sein des ménages entre les parcelles
- Cela peut également mener à des distorsions dans l'adoption des technologies

Jones et al (2022) explorent le cas de l'adoption de l'irrigation, généralement pour les cash crops, au Rwanda

Contexte : étude de Jones et al (2022) au Rwanda

2 saisons agricoles : saison des pluies et saison sèche

- ➤ Saison des pluies : produire des cultures vivrières maïs et haricots ; l'irrigation n'est pas très utile
- ➤ Saison sèche : trop courte pour le cycle des cultures vivrières, on ne peut produire de l'horticulture (aubergines, tomates, ...) qu'avec l'irrigation
- Alternative : bananiers vivaces cultivés toute l'année, l'activité ne nécessite pas d'irrigation

Projets d'irrigation du gouvernement rwandais pour \Uparrow la productivité agricole

- Canaux d'irrigation creusés sur les collines
- ▶ Zone de Commande (ZC) : toutes les parcelles en aval du canal
 - Pas d'infrastructure de pompage : les parcelles en amont ne peuvent pas en bénéficier
- ightharpoonup pprox 40% d'adoption de l'irrigation dans la ZC
- ▶ Jones et al (2022) : cela est-il trop bas ?

Irrigation au Rwanda

Partie 1 : Impacts de l'irrigation pendant la saison sèche

Approche empirique : discontinuité de régression au-dessus et en dessous du canal

Panel B. Sharp increase in irrigation at

FIGURE 2. ESTIMATING THE IMPACT OF IRRIGATION EXPLOITING SPATIAL DISCONTINUITY IN ACCESS

Partie 1 : Impacts de l'irrigation pendant la saison sèche

- Augmentation substantielle de l'irrigation, bien que loin d'être universelle
- Augmentation de l'horticulture, diminution des bananes
- Augmentation du travail familial et salarié (principalement pour l'irrigation, l'entretien)
- Augmentation des rendements et des ventes
 - Difficile de calculer les profits sous les échecs de séparation
 - Quel est le salaire pertinent pour le travail des ménages ?
 - Les profits sont souvent négatifs si le travail des ménages est valorisé au salaire de marché
 - Rappel de Benjamin (1992) : sous une offre excédentaire de travail, le salaire fantôme du ménage est inférieur au salaire du marché

Partie 2 : Effets de débordement entre parcelles

Sous des ménages efficaces/séparation \Rightarrow décisions optimales sur chaque parcelle

FIGURE 4. SEPARATION FAILS, AS ACCESS TO IRRIGATION ON THE SAMPLE PLOT CAUSES
SUBSTITUTION OF IRRIGATION USE AWAY FROM THE LARGEST OTHER PLOT

- ▶ Le noir représente l'échantillon RD, le rose représente la plus grande autre parcelle pour les ménages dans l'échantillon de discontinuité
- ► Substitution substantielle entre les parcelles ⇒ inefficacité

Partie 3 : Cause de l'échec de séparation ?

- Les résultats sont cohérents avec un échec de séparation.
- Le travail familial a été retiré de la plus grande autre parcelle et détourné vers la parcelle de l'échantillon.
 - ► Inefficiences potentielles sur les marchés fonciers : la réallocation pourrait augmenter l'adoption/les rendements.
 - Un exercice approximatif montre qu'avoir seulement 1 parcelle dans la ZC (plutôt que 2) augmenterait l'adoption de 5,5 points de pourcentage
- Pour un échec de séparation, un second marché doit également échouer. 3 possibilités :
 - Incomplétude du marché de l'assurance : les cultures irriguées peuvent être plus risquées
 - Incomplétude des marchés de crédit : manque d'accès au crédit pour les achats d'intrants
 - Incomplétude du marché du travail : excédent de l'offre de travail

Partie 3 : Comment identifier les échecs de marché ?

- Idée: Les différents échecs de marché ont un profil différent d'effets de traitement hétérogènes sur la plus grande autre parcelle (LOP)
- Incomplétude des marchés financiers (assurance, crédit)
 - Les ménages plus *riches* devraient être moins réactifs.
 - Les ménages plus grands devraient être moins réactifs (revenus plus élevés).
- Incomplétude du marché du travail : excédent de l'offre de travail
 - ▶ La relation avec la richesse est indéterminée. Si les ménages pauvres ont une offre de travail plus élastique à la ferme, les ménages plus pauvres devraient être moins réactifs.
 - Les ménages plus grands devraient être moins réactifs (en supposant également que les grands ménages sont plus élastiques).

Partie 3 : Tests des échecs de marché

Table 9—Larger	AND POORER	Households	Do Not Substitute Away
FROM LARGEST	OTHER PLOT	IN RESPONSE	TO SAMPLE PLOT SHOCK

	LOP, dry season, discontinuity sample						
	Cultivated (1)	Irrigated (2)	Horticulture (3)	Banana (4)	HH labor/ha (5)	Input exp./ha (6)	Hired labor exp./ha (7)
SFE (spatial FE, spec	ification (5))						
SP CA	-0.183	-0.117	-0.130	-0.058	-83.6	-9.3	-4.8
	(0.099)	(0.051)	(0.046)	(0.084)	(39.9)	(4.2)	(3.2)
	[0.065]	[0.021]	[0.005]	[0.489]	[0.036]	[0.026]	[0.138]
SP CA × No. of HH members	0.038 (0.015) [0.010]	0.016 (0.008) [0.049]	0.018 (0.008) [0.016]	0.025 (0.015) [0.088]	10.0 (4.7) [0.032]	0.6 (0.5) [0.269]	0.9 (0.4) [0.019]
$SP\ CA \times asset\ index$	-0.038	-0.037	-0.030	-0.009	-22.6	-4.0	-0.5
	(0.032)	(0.018)	(0.020)	(0.027)	(12.3)	(1.6)	(1.4)
	[0.232]	[0.044]	[0.139]	[0.737]	[0.067]	[0.016]	[0.734]
Joint F-stat [p]	3.0	2.4	2.7	2.3	2.0	2.5	2.0
	[0.031]	[0.069]	[0.045]	[0.072]	[0.110]	[0.055]	[0.115]
Average effect	0.002	-0.041	-0.042	0.067	-36.2	-6.6	-0.1
Observations	2,104	2,104	2,104	2,104	2,091	2,094	2,094
Clusters	165	165	165	165	165	165	165
Control mean	0.368	0.114	0.107	0.201	68.1	5.4	3.7

- La dotation en travail atténue la réallocation depuis la LOP
- La richesse des ménages aggrave la réallocation
- "Fortes preuves de l'existence d'échecs du marché du travail qui génèrent des échecs de séparation, ce qui à son tour entraîne une adoption inefficace de l'irrigation"

Conclusion de Jones et al 2022

- Preuves quasi-expérimentales cohérentes avec des échecs de séparation
- Un choc technologique positif sur une parcelle détourne des ressources d'autres parcelles
- Avoir 2 parcelles adaptées à l'adoption conduit à une adoption par parcelle inférieure à celle de n'avoir qu'une seule parcelle adaptée
 - Les marchés fonciers incomplets empêchent la réallocation des terres
 - Les marchés du travail incomplets empêchent la réallocation du travail
- ➤ Les échecs de marché peuvent entraîner une sous-adoption des nouvelles technologies, pourtant rentables
- Une plus grande adoption aurait rendu l'investissement initial du gouvernement plus justifiable et durable

Conclusions

- Les marchés incomplets sont courants dans de nombreux contextes de pays en voie de développement
- ► Ils entraînent des échecs de séparation pour les ménages-producteurs et une mauvaise allocation des ressources, tant au sein des producteurs qu'entre eux
 - Implication politique : les ressources ne sont pas allouées de manière productive à travers la société ⇒ trop de producteurs à faible productivité, les producteurs les plus productifs sont limités dans leur croissance
- Les frictions de marché causent également une adoption inefficace des technologies rentables
 - Implication politique : Fournir des technologies peut ne pas être durable en raison de l'adoption sous-optimale