

10주차: 일반화 선형 모델

ChulSoo Park

School of Computer Engineering & Information Technology

Korea National University of Transportation

08 2 2 2 4 4 4 4 4 5 6 7 8 9 10 10 10 11 12 12 13 14 15 16 17 17 18 19 10 10 10 10 11 12 12 13 14 15 16 17 18 19 10 10 11 12 12 13 14 15 16 17 18 19 10 10 11 12 12 12 12 12 12 12 13 14

- 8.1 일반화 선형 모델은 왜 필요한가?
- 8.2 일반화 선형 모델
- 8.3 로지스틱 회귀
- 8.4 로지스틱 회귀의 적용:UCLA admission 데이터
- 8.5 로지스틱 회귀의 적용: colon 데이터
 - ※ 과잉적합요약

- 머플러 판매 데이터에 일반 선형 모델인 glm 함수 적용
 - 이전과 달라진 것은 Im이 glm이 되고, family=binomial 옵션을 추가한 것
 - binomial 옵션은 반응 변수인 profit이 두 가지 값만 가진다고 glm에게 알려 주는 역할

```
Console C:/RSources/
> muffler=data.frame(discount=c(2.0, 4.0, 6.0, 8.0, 10.0),profit=c(0,0,0,1,1))
> muffler
  discount profit
2
        10
> rest_gml=glm(profit~discount, data=muffler, family = binomial)
경고메시지(들):
glm.fit: 적합된 확률값들이 0 또는 1 입니다
> coef(rest_gml)
               discount
(Intercept)
 -160.80782
               22.98592
> fitted(rest_gml)
2.220446e-16 2.220446e-16 1.142877e-10 1.000000e+00 1.000000e+00
> residuals(rest_gml)
-2.107342e-08 -2.107342e-08 -1.511871e-05 1.376758e-05 2.107342e-08
> deviance(rest_gml)
[1] 4.181229e-10
```


- 머플러 판매 데이터에 일반 선형 모델인 glm 함수 적용
 - > plot(muffler, pch=20, cex=2)

line width

> abline(rest_gml, col='blue', lwd=1)

Discount (%)	Profit(0 or 1)
2	0
4	0
6	0
8	1
10	1

- 머플러 판매 데이터에 glm 함수 적용
 - 새로운 데이터(할인율 1%, 5%, 12%, 20%, 30%)에 대한 예측
 - 적용 모델 : profit = 22.98592 X discount 160.80782
 - 예측 결과 : ≒ 0, 0, 1, 1, 1

Console C:/RSources/ *→*

- > newdisc=data.frame(discount=c(1,5,12,20,30)) # 5개의 새로운 할인율
- > pred=predict(rest_gml, newdisc, type='response')
- > pred
- 1 2 3 4 5 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00
- >

type=c("link", "response", "terms") : 예측 결과의 유형을 지정한다. 기본값음 "link이다.

- ✓ link : 선형 독립 변수들의 연산 결과의 크기로 값을 반환한다.
- ✓ response : 반응변수의 크기로 값을 반환하며 로지스틱 회귀의 경우 확률이다.
- ✓ terms : 행렬에 모델 포뮬러의 각 변수에 대한 적합된 값을 선형 예측 변수의 크 기로 반환한다.

- 머플러 판매 데이터에 glm 함수 적용
 - 예측 결과를 기준으로 그래프를 그리면
 - > plot(muffler, pch=20, cex=2, xlim=c(0,32))
 - > abline(rest_gml, col='blue', lwd=2)
 - > res = data.frame(discount=newdisc, profit=pred)
 - > points(res, pch=15, cex=2, col='red')
 - > legend("bottomright", legend = c("train data", "new data"), pch=c(20,15), cex=0.7,col=c("black","red"),bg="gray")

- Haberman survival 읽어 들이고 확인하기
 - UCI 리퍼지토리에서 제공
 - URL은 웹에서 이름으로 검색
 - 네 개의 변수
 - 설명 변수: 수술 받을 당시 나이, 수술 연도, 양성 림프샘 개수
 - 반응 변수: 수술 후 생존 연수(5년 이상은 1, 5년 이내는 2)

Download: Data Folder, Data Set Description

Abstract: Dataset contains cases from study conducted on the survival of patients who had undergone surgery for breast cancer

Data Set Characteristics:	Multivariate	Number of Instances:	306	Area:	Life
Attribute Characteristics:	Integer	Number of Attributes:	3	Date Donated	1999-03-04
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	229607

- Haberman survival Data Set Description
- 1. The dataset contains cases from a study that was conducted between 1958 and 1970 at the University of Chicago's Billings Hospital on the survival of patients who had undergone surgery for breast cancer.
- 2. Number of Instances: 306
- 3. Number of Attributes: 4 (including the class attribute)
- 4. Attribute Information:
 - ① Age of patient at time of operation (numerical)
 - 2 Patient's year of operation (year 1900, numerical)
 - 3 Number of positive axillary nodes detected (numerical)
 - 4 Survival status (class attribute)
 - 1 = the patient survived 5 years or longer
 - 2 = the patient died within 5 year
- 5. Missing Attribute Values: None

- Haberman survival 읽어 들이고 확인하기
 - 먼저 data를 받은 후 메모장이나 엑셀로 데이터 확인
 - header 가 없는 data 확인

■ 변수의 유형

1. 기능에 따른 분류

survival 변수는 ?

- ① 독립 변수
- ② 종속 변수(반응 변수)
- ③ 매개 변수
- ④ 조절 변수와 통제 변수
- 2. 측정 수준에 따른 분류
 - ① 명목 변수(성별, 종교, 직업 등)
 - ② 서열 변수(범주 간의 순위를 매겨질 수 있는 변수)
 - ③ 등간 변수(①,②의 속성을 가지며 변수 값 간의 간격을 알 수 있는 변수(온도, 지능지수, 학년 등)
 - ④ 비율 변수((①,②,③의 속성을 다 가지면서 절대 영점의 의미추가, 모든 수학적 조작 가능

- Haberman survival 읽어 들이고 확인하기
 - 먼저 data를 받은 후 메모장이나 엑셀로 데이터 확인
 - 년도 : 끝 두 자리 사용
 - 변수 4개 전체가 정수형 임.
 - survival data는 정수 아니라 0과 1의 범주형 변수임

```
Console C:/RSources/
> head(haberman)
  age op_year_no_nodes survival
1 30
          64
 30
          62
3 30
          65
4 31
          59
5 31
          65
   33
                    10
           58
> str(haberman)
               306 obs. of 4 variables:
'data.frame':
       : int 30 30 30 31 31 33 33 34 34 34 ...
 $ age
 $ op_year : int 64 62 65 59 65 58 60 59 66 58 ...
 $ no_nodes: int
                 1 3 0 2 4 10 0 0 9 30 ...
 $ survival: int
```


- Haberman survival 읽어 들이고 확인 및 변경
 - survival data는 범주형이나 0과 1의 범주형으로 변경

```
Console C:/RSources/
> haberman=read.csv("c:/rdata/haberman.csv",header=FALSE)
> names(haberman)=c('age','op_year','no_nodes','survival')
> head(haberman)
  age op_year no_nodes survival
          64
1 30
          62
2 30
3 30
      65
4 31
      59
5 31
          65
6 33
           58
                   10
> str(haberman)
'data.frame':
               306 obs. of 4 variables:
 $ age
       : int 30 30 30 31 31 33 33 34 34 34 ...
 $ op_year : int 64 62 65 59 65 58 60 59 66 58 ...
 $ no_nodes: int 1 3 0 2 4 10 0 0 9 30 ...
 $ survival: int
> haberman$survival=factor(haberman$survival)
> str(haberman)
'data.frame':
               306 obs. of 4 variables:
          : int 30 30 30 31 31 33 33 34 34 34 ...
 $ op_year : int 64 62 65 59 65 58 60 59 66 58 ...
 $ no nodes: int 1 3 0 2 4 10 0 0 9 30
 $ survival: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 2 2 1 ...
```


- 일반화 선형 모델 적용(glm)
 - survival data는 범주형이나 0과 1의 범주형으로 변경

```
Console C:/RSources/ > resh=glm(survival~age+op_year+no_nodes, data=haberman,family=binomial)
> coef(resh) # 계수를 계산하는 함수
(Intercept) age op_year no_nodes
-1.86162525 0.01989935 -0.00978386 0.08844244
> resh=glm(survival~., data=haberman,family=binomial)
> coef(resh) # 계수를 계산하는 함수
(Intercept) age op_year no_nodes
-1.86162525 0.01989935 -0.00978386 0.08844244
> deviance(resh) # 잔차제곱
[1] 328.2564
```

모델을 구했으니 새로운 환자가 오면 생존 여부를 예측할 수 있다.

- 일반화 선형 모델 적용(glm)
 - 모델을 가지고 새로운 환자 생존율 예측
 - ✓ 환자 1 : 나이 37, 수술 연도 1958, 림프샘 개수 5
 - ✓ 환자 2 : 나이 66, 수술 연도 1960, 림프샘 개수 32
 - predict 함수에 type='response' option에 주목

```
Console C:/RSources/
> new_patients1=data.frame(age=c(37),op_year=c(58),no_nodes=c(5))
> predict(resh,newdata=new_patients1,type='response')
0.2225961
> new_patients2=data.frame(age=c(66),op_year=c(60),no_nodes=c(32))
> predict(resh,newdata=new_patients2,type='response')
0.844862
type=c("link", "response", "terms")
  # 예측 결과의 유형을 지정한다. 기본값음 "link이다.
  # link: 선형 독립 변수들의 연산 결과의 크기로 값을 반환한다.
  # response : 반응변수의 크기로 값을 반환하며 로지스틱 회귀의 경우 확률이다.
  # terms : 행렬에 모델 포뮬러의 각 변수에 대한 적합된 값을 선형 예측 변수의 크기로 반환한다
```


■ 일반화 선형 모델 적용(glm) 결과 해석

환자	나이	수술 연도	림프샘 개수
환자 1	33	1958	5
환자 2	66	1960	32

- 결과 해석
 - 예측 결과 [0, 1] 사이의 확률로 5년 내에 사망할 확률
 - 즉 환자1은 5년 이내에 사망할 확률 22% 1년 이상 생존 확률 78%
 - 환자 2는 5년 이내에 사망할 확률 84%이고 5년 이상 생존할 확률은 16%이다

- 일반화 선형 모델 특징 선택 (feature selection)
 - 어떤 기준에 따라 일부 설명 변수만 선택하는 작업을 특징 선택이라 함
 - 설명 변수의 중요도를 계산하고 중요도가 높은 변수를 자동으로 선택
 - 예제) Haberman survival의 경우 수술 연도는 생존에 영향을 미치지 않는다고 생각하고 수작업으로 제외
 - 분석 결과: 3개의 변수의 잔차 328.2564와 2개 변수의 잔차 328.3107로
 3개의 변수를 선택하는 것이 유리하지 않음을 알 수 있다.

■ 일반화 선형 모델 특징 선택 (feature selection)방법

Predict the selling price of Toyota corolla...

Dependent variable (target)

Independent variables (attributes, features)

Variable	Description		
Price	Offer Price in EUROs		
Age_08_04	Age in months as in August 2004		
KM	Accumulated Kilometers on odometer		
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)		
HP	Horse Power		
Met_Color	Metallic Color? (Yes=1, No=0)		
Automatic	Automatic ((Yes=1, No=0)		
CC	Cylinder Volume in cubic centimeters		
Doors	Number of doors		
Quarterly_Tax	Quarterly road tax in EUROs		
Weight	Weight in Kilograms		

■ 일반화 선형 모델 특징 선택 (feature selection)방법

Goal

- Fit a linear relationship between a quantitative dependent variable Y and a set of predictors X_1 , X_2 , ..., X_p .

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$
coefficients unexplained

Example: predict the selling price of Toyota corolla

Price	Age_08_04	KM	Fuel_Type	HP	Met_Color	Automatic	СС	Doors	Quarterly_Tax	Weight
13500	23	46986	Diesel	90	1	0	2000	3	210	1165
13750	23	72937	Diesel	90	1	0	2000	3	210	1165
13950	24	41711	Diesel	90	1	0	2000	3	210	1165
14950	26	48000	Diesel	90	0	0	2000	3	210	1165
13750	30	38500	Diesel	90	0	0	2000	3	210	1170
12950	32	61000	Diesel	90	0	0	2000	3	210	1170
16900	27	94612	Diesel	90	1	0	2000	3	210	1245
18600	30	75889	Diesel	90	1	0	2000	3	210	1245
21500	27	19700	Petrol	192	0	0	1800	3	100	1185
12950	23	71138	Diesel	69	0	0	1900	3	185	1105
20950	25	31461	Petrol	192	0	0	1800	3	100	1185
19950	22	43610	Petrol	192	0	0	1800	3	100	1185
19600	25	32189	Petrol	192	0	0	1800	3	100	1185
21500	31	23000	Petrol	192	1	0	1800	3	100	1185
22500	32	34131	Petrol	192	1	0	1800	3	100	1185
22000	28	18739	Petrol	192	0	0	1800	3	100	1185
22750	30	34000	Petrol	192	1	0	1800	3	100	1185
17950	24	21716	Petrol	110	1	0	1600	3	85	1105
16750	24	25563	Petrol	110	0	0	1600	3	19	1065

With six variables

The Regression Model

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3874.492188	1415.003052	0.00640071	97276411904
Age_08_04	-123.4366303	3.33806777	0	8033339392
KM	-0.01749926	0.00173714	0	251574528
Fuel_Type_Petrol	2409.154297	319.5795288	0	5049567
HP	19.70204735	4.22180223	0.00000394	291336576
Quarterly_Tax	16.88731384	2.08484554	0	192390864
Weight	15.91809368	1.26474357	0	281026176

Training Data scoring - Summary Report

Model Fit ———		Total sum of squared errors	RMS Error	Average Error
		1516825972	1326.521353	-0.000143957

Validation Data scoring - Summary Report

Predictive performance (compare to 12-predictor model!)

Total sum of squared errors	RMS Frror	Average Error
1021510219	1334.029433	118.4483556

8.3 로지스틱 회귀

- 로지스틱 회귀
 - 목적 : 일반적인 회귀 분석의 목표와 동일하게 종속 변수와 독립 변수간
 의 관계를 구체적인 함수로 나타내어 향후 예측 모델에 사용
 - 반응 변수가 두 가지 값만 가지는 경우의 회귀 (참/거짓, 성공/실패, 환자/정상, 사망/생존, 승리/패배 등)
 - 로지스틱 분석은 독립 변수의 선형 결합으로 종속 변수를 설명한다는 관점에서는 선형 회귀 분석과 유사하다. 하지만 로지스틱 회귀는 선형 회귀 분석과는 다르게 종속 변수가 범주형 데이터를 대상으로 하며 입력 데이터가 주어졌을 때 해당 데이터의 결과가 특정 분류로 나뉘기 때문에 일종의 분류 (classification) 기법으로도 볼 수 있다.

8.3 로지스틱 회귀

■ 원리

- 설명 변수를 x, 반응 변수를 l로 표기 [그림 (a)]에서 가로축은 x, 세로축은 l을 나타냄 $l = a_1 x + a_0$ 식(1)
- 반응 변수 I의 범위는 [-∞, ∞]이므로 로지스틱 회귀를 모델링할 수 없음
- 해결책: 로짓 함수(logit function)라 부르는 식 (2)를 추가로 사용 → 범위를 [0,1]로 축소
- [그림(b)]에서 가로축은 *l*, 세로축은 y를 나타내며 y는 [0,1] 사이로 축소되었음

$$y=\frac{1}{1+e^{-l}}$$
 식(2)

선형 회귀 함수와 로짓 함수

8.3 로지스틱 회귀

- 원리
 - 여기서 l을 잠복(latent) 변수 또는 은닉(hidden) 변수라 부름

- 일반화 선형 회귀는 두 단계 변환
 - 일반화 선형 회귀에는 로지스틱 회귀뿐 아니라 지수 회귀, 포와송 회귀 등이 있음
 - 로지스틱 회귀는 식 (1)과 식 (2)를 사용
 - 식 (2)와 같은 함수를 링크 함수라 부름 (로지스틱 회귀는 링크 함수로 로짓 함수를 사용)

$$l = a_1 x + a_0$$
 4(1)

$$y = \frac{1}{1 + e^{-l}}$$
 $4(2)$

Thank you

