Questions, Metrics and Data Science

Colin Jemmott and Giorgio Quer

Percentage of men aged 25 to 54 who are not employed versus the official unemployment rate

Male Educational Attainment

- More than 6 years of schooling in 2005
 - 1. 0-30%
 - 2. 30-40%
 - 3. 40-50%
 - 4. 50-60%
 - 5. 60-70%
 - 6. 70-100%

Male Educational Attainment

more than six

vears of

schooling

of schooling

- More than 6 years of schooling in 2005
 - 1. 0-30%
 - 2. 30-40%
 - 40-50%
 - 4. 50-60%
 - 5. 60-70%
 - 6. 70-100%

- Is this graph correct?
 - Doing analysis right
 - Providing the right answer
- Misleading means lying!

2005

7.00%

41.00%

52.00%

• Every man in my family has heart disease. I want to be the last.

Audience	Impressions	Clicks	Click rate
General	255,349	6425	2.5%
Heart	165,952	2055	1.2%

• Every man in my family has heart disease. I want to be the last.

- Is this message appealing for people who had a heart disease?
 - Yes, but
 - Is this meaningful?
 - What about the population?

Audience	Impressions	Clicks	Click rate
General	255,349	6425	2.5%
Heart	165,952	2055	1.2%
disease			

• Every man in my family has heart disease. I want to be the last.

- Is this message appealing for people who had a heart disease?
 - Yes, but
 - Is this meaningful?
 - What about the population?

Audience	Impressions	Clicks	Click rate
General	255,349	6425	2.5%
Heart	165,952	2055	1.2%

- % over 65 age
 - General
 - 40 %
 - Heart disease
 - 80 %
- Are we still sure?

- Data driven culture
 - Data
 - Significance
 - Trust
 - Audience
 - Literacy
 - Decision making
- Data scientist
 - Answer one question
 - Experiment
 - Present your data
 - Get feedback
 - Iterate

- You are a Data Scientist
 - In a research program, with email marketing
- We want to understand people engagement with new emails we send: when is user engagement down?
- You need to design a metric to track it
- You have access to a real-time flow of events
 - Design a metric to alert if something goes wrong

Run hourly:

```
# Count emails sent in last 24 hours
emailCount = COUNT(event) WHERE
                      event["actionType"] == "Sent" AND
                      event["occuredAt"] < ( TODAY()-1 )
# Count click events in the last 24 hours
clickCount = COUNT(event) WHERE
                      event["actionType"] == "Click" AND
                      event["occuredAt"] < ( TODAY()-1 )
# Calculate the click rate
clickRate = clickCount / emailCount
# Compare to threshold
threshold = 0.17
IF clickRate > threshold:
     alertState = True
```

- What can go wrong?
 - Small numbers
 - frequent threshold crossing

- Clicks are delayed!
 - Clicks may not correspond to the email sent in the previous hour
- Unique vs total clicks
- Click per send or click per open?
- What time window is appropriate?

- Consumers of data science products are making datadriven decisions
- If a data consumer is mislead:
 - They may make important business or life decisions that are based on falsehoods
 - They may quickly lose trust that you may not be able to recover
- To maintain this:
 - Never knowingly ship bad data or analysis
 - Acknowledge and quickly fix mistakes that are reported
 - Check in with users to make sure they actually understand what is being presented

Right question

- Ask a sharp question
 - a sharp question must be answered with numbers, which is what you extract from data
 - "What's going to happen with my stock?" ---> "The price will change"
 - "What will my stock's sale price be next week?" ---> specific price!
- Make sure your data can answer the question!

Right question

- Ask a sharp question
 - a sharp question must be answered with numbers, which is what you extract from data
 - "What's going to happen with my stock?" ---> "The price will change"
 - "What will my stock's sale price be next week?" ---> specific price!
- Make sure your data can answer the question!
- Reformulate your question
 - insight from data
 - can they be generalized
 - can they be used for future prediction
- Questions we can answer now:
 - Is the police pulling over car at the right moment?
 - What time are cars usually pulled over?
 - What time are crashing usually happening?
 - Day of the week
 - Geographical area

Discussion

 Thinking about the SDPD data, let's ask a few questions and then translate them into math, data needs and algorithms.