Фізичні принципи атомно-силової мікроскопії поверхні. Визначення рельєфу поверхні

Атомно-силова мікроскопія (АСМ)

— метод дослідження поверхні, який базується на взаємодії мікроскопічного зонда з поверхнею.

Параметром взаємодії виступає сила взаємодії атомів зонда з атомами зразка, яка залежить від відстані між зразком і зондом (Рис.1).

Рис.1

1. Фізичні принципи АСМ

Основним елементом атомно-силового мікроскопа (АСМк) є кантилевер — система, що складається з вістря, пружної консолі, на яку вістря нарощується, та кріплення (рис. 2). В АСМк розглядають два основних види взаємодії вістря з поверхнею — контактну та безконтактну.

В першому випадку вістря занурюється в матеріал зонда на відстані порядку міжатомних (0,1 – 1) нм, внаслідок чого виникає вигин кантилевера. При горизонтальному русі кантилевера за умови контакту з поверхнею вигин змінюється відповідно до форми рельєфу поверхні. При безконтактній взаємодії на відстанях одиниці — десятки нанометрів проявляються сили притягання між атомами поверхні і вістря, що також призводить до вигину кантилевера. Реєструючи вигін кантилевера в той чи інший спосіб, можна отримати масив значень

певного параметра вигину (наприклад, кута вигину $m{ heta}$) в різних точках поверхні, який відображує рельєф поверхні $\{m{ heta}(x,y\}$.

Для реєстрації кута вигину кантилевера використовується відбивання світла (випромінення лазера) від верхньої дзеркально полірованої поверхні консолі з подальшою реєстрацією відбитого світла фотодетектором (рис. 3). Як правило, детектор має чотири секції, кожна з яких реєструє частину інтенсивності відбитого пучка (рис.4). При русі вістря по поверхні зразка можливі як вертикальна, та і латеральна деформації консолі, які призводить до зсуву відбитої світлової плями в двох взаємно перпендикулярних напрямках (рис. 4). Відповідно, можна визначити зміну струму детектора як при вертикальному зміщенні (ΔI_z), так і при латеральному зміщенні (ΔI_L) (рис. 5).

Отже, в АСМк зміна вигину кантилевера вздовж осі **Z** відображує вертикальний рельєф поверхні зразка. Відтак, принципова схема АСМк має бути схожою зі схемою СТМк лише з тією відмінністю, що позиційно-чутливим параметром є кут вигину консолі, а не сила тунельного струму.

Рис. 4

Принципова схема АСМк наведена на рис. 6. Сила струму детектора ΔI_z , що пропорційна КУТУ вигину консолі, перетворюється на сигнал напруги подається на який $U_{z}(x,y) \sim \Delta I_{z}$, вхід системи зворотного зв'язку. У зв'язку він системі **ЗВОРОТНОГО** порівнюється з опорним сигналом $U_{\scriptscriptstyle 0}$. Величина останнього підбирається такою, щоб він відповідав середині діапазону кутів вигину консолі. Утворений сигнал $U_z(x,y) \sim \Delta I_z$ різниці $\Delta U_{z}(x,y) = U_{z}(x,y) - U_{0}$

записується у робочий файл сканування та трубчатого подається на електрод триподу, який спричиняє переміщення вертикалі так, зразка ПО щоб $\Delta U_{z}(x,y) \rightarrow 0$. Y moment $\Delta U_{z}(x,y) = 0$ вигін консолі відповідає середині діапазону кутів і визначається сигналом U_0 . В іншій точці поверхні вигін консолі буде вже іншим, сформується новий сигнал різниці, але за рахунок системи зворотного зв'язку вигин консол1 змінюється так, щоб повернутися до попереднього значення (рис.6).

Рис. 5

Рис. 6

Вказаний режим роботи, за якого створюється масив значень $\{\Delta U_z(x,y)|_{\theta_0=const}$, відповідає умові **сталої взаємодії.** При фіксованій висоті зразка Z реалізується **режим сталої висоти** $\{\Delta U_z(x,y)|_{z_0=const}$. Як видно з рис. 6, суттєва відмінність між АСМк та СТМк полягає у тому, що в АСМк **мікрозон**д (кантилевер) **залишається закріпленим** (змінюється тільки вигин консолі), а трикоординатне переміщення здійснюється зразком з використанням трубчатого триподу, тоді як в СТМ зразок нерухомий, а переміщується зонд.

Кантилевер виготовляють з монокристалічного кремнію методом фотолітографії. Типовий вигляд консолі з вістрям наведений на рис. 7. Кінцівкою вістря ϵ кремнієва напівсфера, як правило, радіусом R=10 нм.

Важливе питання ACM – **які сили** задіяні при взаємодії кантилевера та зразка? При контактній

Рис. 7

взаємодії основними вважаються **сили пружності.** Експерименти показують, що для вістря R=10 **нм** та прикладеній силі прижиму $F=5\cdot 10^{-9}\,\mathrm{H}$ прогин поверхні зразка складає h=1,4 нм для скла та h=0,04 нм для алмаза. При цьому радіус плями контакту відповідно a=3,7 нм та a=0,4 нм. При безконтактній взаємодії у випадку незаряджених поверхонь зразка та вістря основними вважаються сили взаємодії електронейтральних атомів — **сили Ван-дер-Ваальса.** Залежність **потенціальної енергії взаємодії** цих сил від відстані $U(r)=-A/r^6$, відповідно $F(r)=6A/r^7$ (A — параметр Гамакера, який визначається парою речовин вістря-зразок).

2. Контактний та безконтактний режими сканування АСМк

Контактний режим має суттєві обмеження: 1) при механічному контакті вістря зі зразком можливе спотворення і навіть руйнування поверхні зразків, особливо, виготовлених з крихких та пластичних матеріалів (органічні матеріали, біологічні об'єкти тощо); 2) при сильно розвиненому рельєфі поверхні можливо руйнування кантилевера. Тому основним є безконтактний режим сканування, а контактний використовується вже тоді, коли рельєф поверхні в цілому з'ясований і є потреба його прецизійного вивчення.

2.1. Безконтактний коливальний режим

Розглянемо систему вістря-консоль як фізичний маятник масою m на пружній невагомій консолі. Консоль кріпиться до п'єзовібратора (ПВ), на який подається гармонічна напруга частотою ω . В результаті зворотного п'єзоефекту збуджуються вимушені малі механічні коливання маятника під дією зовнішньої сили $F = F_0 \cos \omega t$. (рис. 8). При наявності в системі дисипативної сили $F_d = \alpha (dZ / dt)$ маятник здійснює вимушені гармонічні коливання, які описуються рівнянням (1). Розв'язком цього рівняння після встановлення коливань є функція

$$Z(t) = Z_0(\omega)\cos(\omega t + \varphi)$$

Амплітудно-частотна характеристика коливань (АЧХ) визначається залежністю (2), а фазово-частотна характеристика (ФЧХ) залежністю (3), їх графіки наведені на рис. 9. Резонансна частота визначається (4).

$$Z'' + 2\beta Z' + \omega_0^2 Z = A_0 \cos \omega t \quad (1)$$

$$2\beta = \frac{\alpha}{m}; \omega_0^2 = \frac{k}{m}; A_0 = \frac{F_0}{m}$$

$$Z_0(\omega) = \frac{A_0}{\sqrt{\left(\omega^2 - \omega_0^2\right)^2 + 4\beta^2 \omega^2}}$$
 (2)

$$tg\varphi = \frac{2\beta\omega}{\omega^2 - \omega_0^2} \tag{3}$$

$$\omega_p = \sqrt{\omega_0^2 - 2\beta^2} \tag{4}$$

Нехай вістря підведено до зразка на відстань декількох нанометрів H. На таких відстанях буде проявлятися притягання вістря до зразка через дію сил Ван-дер-Ваальса f(H) (рис.10). Як правило, відхилення вістря Z при вимушених

коливаннях не перевищує 0,1-0,5 нм, тому такі коливання можна вважати малими і описувати рівнянням малих коливань (1). Розкладемо силу f(Z+H) в ряд в околі точки H, вважаючи відхилення Z від положення рівноваги малим $Z(t) \approx dZ$

$$f(Z+H) = f(H) + \frac{\partial f}{\partial Z}dZ \approx f(H) + f'_Z \cdot Z(t)$$
 (5)

3 врахуванням (5) рівняння вимушених коливань набуде вигляду

$$Z'' + 2\beta Z' + \omega_0^2 Z = \frac{f(H)}{m} + A_0 \cos \omega t \implies Z'' + 2\beta Z' + \left(\omega_0^2 + \frac{f_Z'}{m}\right) Z - \frac{f_Z'}{m} = A_0 \cos \omega t \qquad (6)$$

3 рівняння (6) випливає, що власна частота коливань системи (в дужках) залежить від похідної $\tilde{Z}_0(\omega) = -$ сили Ван-дер-Ваальса f'(Z), яка є функцією відстані вістря-поверхня, тобто, функцією рельєфу. Тоді АЧХ (2) та ФЧХ (3) записуються вже у вигляді (7), (8) і також стають чутливими до величини f'(Z). Важливо, що поява сил Ван-дер-Ваальса зміщує також і резонансну частоту (4), як правило, у бік менших частот (при притяганні f'(Z) > 0) – див. (9).

Тому положення максимуму залежності $\tilde{Z}_0(\omega)$ (7) буде змінюватися при переході від точки поверхні з одним значенням f'(Z) до точки поверхні з іншим значенням. Цей факт відкриває можливість з високою чутливістю відслідковувати зміну рельєфу поверхні за зміщенням АЧХ та ФЧХ по частоті.

$$A_0(\omega) = \frac{A_0}{\sqrt{\left(\omega^2 - \omega_0^2 + \frac{f_Z'}{m}\right)^2 + 4\beta^2 \omega^2}}$$
(7)

$$tg\tilde{\varphi} = \frac{2\beta\omega}{\omega^2 - \omega_0^2 - \frac{f_Z'}{m}} \tag{8}$$

$$\tilde{\omega}_p = \sqrt{\omega_0^2 - \frac{f'}{m} \cdot 2\beta^2} \tag{9}$$

2.2. Процедура сканування в коливальному режимі:

1. Кантилевер віддалений від зразка, сили Ван-дер-Ваальса відсутні.

Подаємо змінний сигнал на кантилевер і для кожного значення частоти коливань за допомогою **синхронного детектора** визначаємо амплітуду вимушених коливань, тобто, отримуємо АЧХ-залежність $Z_0(\omega)$ (2). За виглядом залежності визначаємо резонансну частоту ω_p .

2. Збуджуємо вимушені коливання на частоті $\omega \approx \omega_p$ і повільно наближаємо кантилевер до зразка.

Поява сили Ван-дер-Ваальса змінить резонансну частоту $\omega_p \to \tilde{\omega}_p$ і змістить АЧХ в бік менших частот - на рис. 11 це зміщення АЧХ $1 \to 2$. На заданій частоті ω_p вже буде реєструватися тільки сигнал $\tilde{Z}(x,y)$. При переході в іншу точку поверхні іншими будуть похідна f'(Z) , частота $\tilde{\omega}_p$, отже, і сигнал $\tilde{Z}(x,y)$. Таким чином формується масив $\left\{\tilde{Z}(x,y)\right\}$. Аналогічно при зсуві ФЧХ (рис. 12) формується масив сигналу зсуву фази $\left\{\tilde{\varphi}(x,y)\right\}$.

При виконанні безконтактного сканування при підключеній системі зворотного зв'язку (стала взаємодія) сигнал $\tilde{Z}(x,y)$ порівнюється з опорним сигналом $Z^{(0)}$, що забезпечує підтримання вістря на заданій висоті над поверхнею.

2.2. Напівконтактний режим

При дослідженні рельєфу поверхні досить часто використовують так званий «напівконтактний» режим. В цьому режимі кантилевер розташовують на відстанях від поверхні до сотні нанометрів і вимушені коливання, що збуджуються, також мають амплітуду того ж порядку. Очевидно, такі коливання не можна вважати малими і вони не описуються рівняннями (1), (6). Амплітуду коливань підбирають так, щоб в нижчій точці вістря співударялося з поверхнею (рис. 13). Важливо, що при кожному співударі частина кінетичної енергії маятника втрачається, а величина таких втрат залежить від швидкості вістря в момент удару, тобто, від відстані між кантилевером та поверхнею. При малих відстанях вістря з високою швидкістю співударяється з поверхнею, втрачає значну енергію і амплітуда коливань $\tilde{Z}_0(x,y)$ зменшується (рис. 14). При віддалені кантилевера втрати енергії при співударі зменшуються і амплітуда $\tilde{Z}_0(x,y)$ зростає. Отже, при скануванні створюється масив $\{\tilde{Z}_0(x,y)\}$, який відображує рельєф поверхні. При увімкненій системі зворотного зв'язку амплітуда $\tilde{Z}_0(x,y)$ порівнюється з опорним сигналом $\mathbf{Z}^{(0)}$, формуючи сигнал різниці, який підтримує сталу висоту кантилевера над поверхнею.

Рис. 13

Рис. 14

3. Приклади

Вуглецеві нанотрубки

Зображення плівки поліетилену амплітудний контраст фазовий контраст

Тонка плівка поліетилену

Органічні сполуки

Віруси

Міцелій

c — бактеріофаг *d* – мімівірус (найкрупніший з відомих)