# Detecting person's direction of interest



George Barvinok Marta Didych Denys Filippov Yurii Ostapchuk Andrii Palyha

UCU
Data Science
Summer School

Ricker Lyman Robotics

Supervised by: Oles Dobosevych

#### **Project**

- Proposed by Ricker Lyman Robotic
- Customers behaviour analysis
- Retail domain



#### Given











#### Goals

- Try and analyse different CV techniques / learn something
- Build a PoC

#### Dataset

#### Top-view cameras

- Stanford dataset (<a href="https://www.albert.cm/projects/viewpoint\_3d\_pose/">https://www.albert.cm/projects/viewpoint\_3d\_pose/</a>)
  - Depth cameras
  - Labeled joints
- Politecnica delle Marche (<a href="http://vrai.dii.univpm.it/re-id-dataset">http://vrai.dii.univpm.it/re-id-dataset</a>)
  - Depth & Colored
  - No labels











#### OpenCV Background subtraction + Hough Circles

#### Real-time solution!

- Background subtraction
- Mrophological operations to remove noise
- Bounding box
- Histogram equalization
   Blur
- Hough Circles
- CNN for head detection



#### Tensorflow Object Detection API

Pretrained SSD Mobilenet on COCO °

Trained on ~250 images

Head detection



#### Head segmentation with U-net

Masks received from depth maps and trained using VGG U-net

Train on **colored** images



























Predicted masks from U-net



#### Putting things together

Prepare labeled dataset +

TF Object Detection API - detect people heads +

CNN Regression - detect head direction +

OpenCV - visualize gaze gradient































#### **Technologies**

Python 3, OpenCV 3.4, Tensorflow 1.9, Keras 2.1

Google Cloud Platform for training on GPU

**Hough Circles** 

U-net custom / VGG

**Tensorflow Object Detection API** 

YOLO, SSD, Mobilenet

#### Summary / Lessons Learnt



- Dataset is the key, need more labeled data
- Classical CV is not enough but can improve quality
- Need much more optimizations for real-time solution
  - Right now ~2 frames per second

#### What's next?

- Prepare more data
- Different approach
  - whole body segmentation instead of head only
  - use more classical CV for preprocessing data
- Involve capturing from different angles
- Different models, hyperparameter tuning

