BITS, PILANI – K. K. BIRLA GOA CAMPUS

Design & Analysis of Algorithms

(CS F364)

Lecture No. 8

The 0-1 Knapsack Problem

Given: A set S of *n* items, with each item *i* having

w, - a positive "weight"

v_i - a positive "benefit"

Goal:

Choose items with maximum total benefit but with weight at most **W**.

And we are not allowed to take fractional amounts
In this case, we let *T* denote the set of items we take

Objective : maximize
$$\sum_{i \in T} v_i$$

Constraint:
$$\sum_{i \in T} w_i \leq W$$

Greedy approach

Possible greedy approach:

Approach1: Pick item with largest value first

Approach2: Pick item with least weight first

Approach3: Pick item with largest value per

weight first

We know that none of the above approaches work

Exercise:

Prove by giving counterexamples.

Brute Force Approach

Brute Force

The naive way to solve this problem is to go through all 2ⁿ subsets of the *n* items and pick the subset with a legal weight that maximizes the value of the knapsack.

Optimal Substructure

As we did before we are going to solve the problem in terms of sub-problems.

 Our first attempt might be to characterize a sub-problem as follows:

Let O_k be the optimal subset of elements from $\{I_0, I_1, ..., I_k\}$.

Observe

Optimal subset from the elements $\{I_0, I_1, ..., I_{k+1}\}$ may not correspond to the optimal subset of elements from $\{I_0, I_1, ..., I_k\}$

That means, the solution to the optimization problem for S_{k+1} might NOT contain the optimal solution from problem S_k .

where S_k : Set of items numbered 1 to k.

Optimal Substructure

Example: Let W=20

<u>Item</u>	<u>Weight</u>	<u>Value</u>	
I ₀	3	10	
I ₁	8	4	
	9	9	
I ₃	8	11	

- The best set of items from $\{l_0, l_1, l_2\}$ is $\{l_0, l_1, l_2\}$
- BUT the best set of items from $\{l_0, l_1, l_2, l_3\}$ is $\{l_0, l_2, l_3\}$.

Note

- 1. Optimal solution, $\{l_0, l_2, l_3\}$ of S_3 for does NOT contain the optimal solution, $\{l_0, l_1, l_2\}$ of S_2
- 2. $\{l_0, l_2, l_3\}$ build's upon the solution, $\{l_0, l_2\}$, which is really the optimal subset of $\{l_0, l_1, l_2\}$ with weight 12 or less.

(We incorporates this idea in our 2nd attempt)

Recursive Formulation

 S_{k} : Set of items numbered 1 to k.

Define B[k,w] to be the best selection from S_k with weight at most w

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

Our goal is to find **B[n, W]**, where n is the total number of items and W is the maximal weight the knapsack can carry.

This does have Optimal Substructure property.

Exercise – Prove Optimal Substructure property.

Optimal Substructure

Gonsider a most valuable load L where $W_L \le W$ Suppose we remove item j from this optimal load L

The remaining load $L_{j}^{'}=L-\{I_{j}\}$

must be a most valuable load weighing at most

$$W_j' = W - \{w_j\}$$

pounds that the thief can take from

$$S_j' = S - \{I_j\}$$

That is L_j' should be an optimal solution to the

0-1 Knapsack Problem (S'_j, W'_j)

The 0-1 Knapsack Problem

Exercise

Overlapping Subproblems

Analysis

Pseudo- code

```
for w = 0 to W
        B[0,w] = 0
for i = 1 to n
        B[i,0] = 0
for i = 1 to n
   for w = 0 to W
        if w_i \le w // item i can be part of the solution
           if b_i + B[i-1,w-w_i] > B[i-1,w]
                B[i,w] = b_i + B[i-1,w-w_i]
           else
                B[i,w] = B[i-1,w]
        else B[i,w] = B[i-1,w]
                                       //w_i > w
```

The 0-1 Knapsack Problem

How to find actual Knapsack Items?

if $B[i,k] \neq B[i-1,k]$ then

mark the *ith* item as in the knapsack

 $i = i-1, k = k - w_i$

else

i = i-1 // Assume the ith item is not in the
knapsack