APSC 174 - Midterm 1

February 2021

A. Ableson

F. Alajaji

T. LINDER

A. Zalloum

Instructions:

The exam has **five** questions, worth a total of 100 marks.

Separately write on paper your answers to each problem. At the end of the test, scan and upload your answers to each problem/question in their corresponding slot on **Crowdmark**.

To receive full credit you must show your work, clearly and in order.

No textbook, lecture notes, calculator, or other aid, is allowed.

Good luck!

1	2	3	4	5	Total
/20	/20	/20	/20	/20	/100

1. In the vector space

$$\mathbb{R}^3 = \{ (x, y, z) : x, y, z \in \mathbb{R} \}$$

under the usual addition and scalar multiplication operations seen in class, consider the vectors $\mathbf{v}_1 = (2, 1, 0), \mathbf{v}_2 = (1, 2, 0), \mathbf{v}_3 = (4, -1, 0).$

- [8 pts] (a) Is \mathbf{v}_3 a linear combination of \mathbf{v}_1 and \mathbf{v}_2 ? (Justify your answer.)
- [6 pts] (b) Is the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ linearly dependent, or linearly independent? (Justify your answer.)
- [6 pts] (c) Is the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linearly dependent, or linearly independent? (Justify your answer.)

2. Consider the vector space

$$\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$$

under the usual addition and scalar multiplication operations seen in class.

Let **H** be the set of all points in the second and fourth quadrants of \mathbb{R}^2 , as indicated by the *green shaded regions* in the diagram at right. More precisely, we have that

$$\mathbf{H} = \{(x, y) \in \mathbb{R}^2 : xy \le 0\}.$$

 \mathbb{R}^2 , with the set **H** shaded in green.

- [4 pts] (a) Does **H** contain the zero vector of \mathbb{R}^2 ? Justify your answer.
- $[6 \ \mathrm{pts}]$ (b) Is **H** closed under addition? If yes, prove your statement; if not, provide a counter-example.
- [6 pts] (c) Is **H** closed under scalar multiplication? If yes, prove your statement; if not, provide a counter-example.
- [4 pts] (d) Determine whether or not \mathbf{H} is a vector subspace of \mathbb{R}^2 , referring to your answers in parts (a)-(c).

3. Recall that $C^{\infty}(\mathbb{R})$ is the vector space of functions from \mathbb{R} to \mathbb{R} that can be differentiated arbitrarily many times. The operations on $C^{\infty}(\mathbb{R})$ are the usual addition and scalar multiplication of functions as seen in class. Let

$$\mathbf{W} = \left\{ f \in C^{\infty}(\mathbb{R}) : f'(0) = f(3) \right\} \subset C^{\infty}(\mathbb{R})$$

where f' denotes the derivative of f.

[8 pts] (a) Consider the functions f_1 and f_2 in $C^{\infty}(\mathbb{R})$ given by

$$f_1(x) = -1 - 4x + x^2$$

and

$$f_2(x) = (x - 3)^2$$

for $x \in \mathbb{R}$. Determine (with justification) whether the functions f_1 and/or f_2 belong to **W**.

[12 pts] (b) Determine, with proof, whether or not **W** is a subspace of $C^{\infty}(\mathbb{R})$.

- 4. Consider a vector space V. Answer the questions below about this vector space.
- [5 pts] (a) Define what it means for a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ in \mathbf{V} to be linearly independent.
- [5 pts] (b) Define the span $S_{(\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n)}$ of a set of vectors $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}$ in \mathbf{V} .
- [5 pts] (c) Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbf{V} , show that if every vector \mathbf{w} in $S_{(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p)}$ can be written in exactly one way as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$, then the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is linearly independent.
- [5 pts] (d) Suppose $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly independent set of vectors in \mathbf{V} . Fix $\mathbf{u} \in \mathbf{V}$ and let $\mathbf{u}_1 = \mathbf{v}_1 + \mathbf{u}$ and $\mathbf{u}_2 = \mathbf{v}_2 + \mathbf{u}$. Prove that if $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a linearly dependent set, then we must have that $\mathbf{u} \in S_{(\mathbf{v}_1, \mathbf{v}_2)}$.

5. Consider the set $\mathbf{V} = \{x \in \mathbb{R} : x > 3\}$ with the following **new** addition and scalar multiplication operations:

Addition: For any $x, y \in \mathbf{V}$,

$$x \oplus y = xy - 3(x+y) + 12.$$

Scalar Multiplication: For any $\alpha \in \mathbb{R}$, $x \in \mathbf{V}$,

$$\alpha \cdot x = (x-3)^{\alpha} + 3.$$

It can be proved (and you do not have to do this) that V with these operations is a vector space.

- [4 pts] (a) Determine $4 \oplus 5$ and $-2 \cdot 5$ using the operations in **V**.
- [4 pts] (b) Determine the zero vector $\mathbf{0}$ of \mathbf{V} .
- [4 pts] (c) Given $x \in \mathbf{V}$, determine its additive inverse; that is, find $y \in \mathbf{V}$ such that $x \oplus y = \mathbf{0}$.
- [4 pts] (d) Given u = 4, v = 5 and w = 7 in **V**, determine (using the operations in **V**) whether or not w is a linear combination of u and v.
- [4 pts] (e) Determine, with proof (using the operations in \mathbf{V}), whether or not the set $\{u, v, w\}$ above is linearly independent.