CRPL-F133

haprits . 9

FOR OFFICIAL USE

Reference been not to be taken from the larry.

IONOSPHERIC DATA

ISSUED SEPTEMBER 1955

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

Issued 26 Sept. 1955

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	ő
Hourly Ionospheric Data at Washington, D. C	7, 13, 25, 51
Ionospheric Storminess at Washington, D. C 8	3, 37
Radio Propagation Quality Figures	3, 38
Observations of the Solar Corona	9, 40
Relative Sunspot Numbers	10, 46
Observations of Solar Flares	11, 48
Indices of Geomagnetic Activity	11, 49
Sudden Ionosphere Disturbances	12, 50
Tables of Ionospheric Data	13
Graphs of Ionospheric Data	51
Index of Tables and Graphs of Ionospheric Data in CRPL-F133	37

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above, plus an additional symbol, R: "Scaling of characteristic is influenced or prevented by absorption in the neighborhood of the critical frequency," (May 1955).

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, R, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h°F2 (and h°E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic; the symbol D_{\bullet} only when it replaces a frequency characteristic.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h°Fl, foFl, h°E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h°Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month				Pred	icted	Suns	pot Ni	umber			
	1955	1954	1953	1952	1951	1950	1949	1948	1947	1946	1945
December		11	15	22	52	0.4	108	114	196	0.5	20
December		11	15	33	53	86		114	126	85	38
November		10	16	38	52	87	112	115	124	83	36
October		10	17	43	52	90	114	116	119	81	23
September		8	18	46	54	91	115	117	121	79	22
August	27	8	18	49	57	96	111	12 3	122	77	20
July	22	8	20	51	60	101	108	125	116	7 3	
June	18	9	21	52	63	103	108	129	112	67	
May	16	10	22	52	68	102	108	130	109	67	
April	13	10	24	52	74	101	109	133	107	62	
March	14	11	27	52	78	103	111	133	105	51	
February	14	12	29	51	82	103	113	133	90	46	
January	12	14	30	53	85	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Republica Argentina, Ministerio de Marina: Buenos Aires, Argentina Decepcion I.

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia Canberra, Australia Hobart, Tasmania Townsville, Australia

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:
Watheroo. Western Australia

University of Graz: Graz, Austria

Meteorological Service of the Belgian Congo and Ruanda-Urundi: Elisabethville. Belgian Congo

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.

Ibadan, Nigeria (University College of Ibadan)

Invernéss. Scotland

Singapore, British Malaya

Slough, England

Danish National Committee of URSI: Godhavn, Greenland

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

Indian Council of Scientific and Industrial Research, Radio Research Committee, New Delhi, India:

Ahmedabad, India (Physical Research Laboratory)

Bombay, India (All India Radio)

Calcutta, India (Institute of Radio Physics and Electronics)

Delhi, India (All India Radio)

Madras, India (All India Radio)

Tiruchý (Tiruchirapalli), India (All India Radio)

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan:

Akita, Japan Tokyo (Kokubunji), Japan Wakkanai, Japan Yamagawa, Japan

Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research:

Christchurch, New Zealand Rarotonga. Cook Is.

Norwegian Defence Research Establishment, Kjeller per Lillestrom, Norway:

Tromso, Norway

Manila Observatory:

Baguio, P. I.

United States Army Signal Corps:

Adak, Alaska

Ft. Monmouth, New Jersey

United States Army Signal Corps (continued):
Okinawa I.
White Sands, New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):

Anchorage, Alaska
Fairbanks, Alaska (Geophysical Institute of the
University of Alaska)
Guam I.
Maui, Hawaii
Narsarssuak, Greenland
Panama Canal Zone
Puerto Rico, W. I.
San Francisco, California (Stanford University)
Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 73 through 84 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 85 presents ionosphere character figures for Washington, D. C., during August1955, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

RADIO PROPAGATION QUALITY FIGURES

Tables 86a and 86b give for July 1955 the radio propagation quality figures for the North Atlantic area, the relevant CRPL advance and short-term forecasts, a summary geomagnetic activity index and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures, Qa, separately for each 6-hour interval of the Greenwich day, viz., 00-06, 06-12, 12-18, 18-24 hours UT (Universal Time or GCT).
- (b) whole-day radio quality indices (beginning October 1952). Each index is a weighted average of the four quarter-day Qa-figures, before rounding off, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which designate whenever possible the days when significant disturbance or unusually quiet conditions will occur.
- (c) short-term forecasts, issued by CRPL every six hours (nominally one hour before 00^h , 06^h , 12^h , 18^h UT) and applicable to the period 1 to 13 (especially 1 to 7) hours ahead. Note that new scoring rules have been adopted beginning with October 1952 data.
- (d) advance forecasts, issued semiweekly (CRPL-J reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole-day quality indices.
- (e) half-day averages of the geomagnetic K indices measured by the Cheltenham Magnetic Observatory of the U. S. Coast and Geodetic Survey.
- (f) illustration of the comparison of short-term forecasts with Qafigures and also with estimates of radio quality based on CRPL observations only.
- (g) illustration of the outcome of advance forecasts (1 to 3 or 4 days ahead) and, for comparison, the outcome of a type of "blind" forecast. For the latter the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

These radio propagation quality figures, Qa, are prepared from radio traffic data reported to CRPL by American Telephone and Telegraph Company, Mackay Radio and Telegraph Company, RCA Communications, Inc., Marconi Company, British Admiralty Signal and Radar Establishment, and the following agencies of the U.S. Government:--Coast Guard, Navy, Army Signal Corps, and U.S. Information Agency. The method of calculation, summarized below, is similar to that described in a 1946 report, IRPL-R31, now out of print. Only reports of radio transmission on North Atlantic paths closely approximating New York-London are included in the estimation of quality.

The original reports are submitted on various scales and for various time intervals. The observations for each 6-hour interval are averaged on the quality scale of the original reports. These 6-hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least four months, usually a year, with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. The 6-hourly quality figures are (subjectively) weighted means of the reports received for that period. These 6-hourly quality figures replace, beginning January 1953, the half-daily quality figures which formerly appeared in this table. (These forecasts and quality indices are prepared by the North Atlantic Radio Warning Service, the CRPL forecasting center at Ft. Belvoir, Virginia.)

These quality figures are, in effect, a consensus of reported radio propagation conditions. The reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. These considerations should be taken into account in interpreting research correlations between the Q-figures and solar, auroral, geomagnetic or similar indices.

Note: A tabulation of forecasts for the North Pacific area and comparisons with observed radio propagation conditions will appear in a later issue.

OBSERVATIONS OF THE SOLAR CORONA

Tables 87 through 89 give the observations of the solar corona during August 1955, obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 90 through 92 list the coronal observations obtained at

Sacramento Peak, New Mexico, during August 1955, derived by Harvard College Observatory as a part of its performance of a research contract with the Upper Air Research Observatory, Geophysical Research Directorate, Air Force Cambridge Research Center. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Beginning with January 1, 1955, the Climax, Colorado, coronal measurements are reported in absolute units rather than on the arbitrary relative scale that has been used in the past. Absolute intensities are given in millionths of the intensity in one angstrom of the spectrum of the center of the solar disk at the wavelength of the coromal line. Two conversion tables from arbitrary relative to absolute units were published in CRPL-F127, March 1955. One table gave the green-line conversions to absolute units applicable for all readings made since 1943. The other table gave the red-line conversions applicable for the years 1952 to the present. For earlier years a table is available from the High Altitude Observatory, Boulder, Colorado, showing changes in red-green sensitivity. Absolute vellow-line $(\lambda 5694)$ intensities may be obtained approximately by multiplying the values in the $\lambda 5303$ table by 0.75. Absolute far red ($\lambda 6702$) may be obtained approximately by multiplying the values in the $\lambda 6374$ table bv. 0.9.

The Sacramento Peak measurements will continue to be on an arbitrary relative scale.

Table 87 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 88 gives similarly the intensities of the first red (6374A) coronal line; and table 89, the intensities of the second red (6702A) coronal line; all observed at Climax in August 1955.

Table 90 gives the intensities of the green (5303A) coronal line; table 91, the intensities of the first red (6374A) coronal line; and table 92, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in August 1955.

The following symbols are used in tables 87 through 92; a, observation of low weight for whole limb (if in date column) or for portion of limb indicated; -, corona not visible; and X, no observation for whole limb (if in date column) or for portion of limb indicated.

RELATIVE SUNSPOT NUMBERS

Table 93 lists the daily provisional Zürich relative sunspot number, R_Z , for August 1955, as communicated by the Swiss Federal Observatory. Table 94 contains the daily American relative sunspot number, R_A , for July 1955, as compiled by the Solar Division, American Association of Variable Star Observers.

OBSERVATIONS OF SOLAR FLARES

Table 95 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris) and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY.

Table 96 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures, C; (2) geomagnetic planetary three-hour-range indices, Kp; (3) daily "equivalent amplitude," Ap; (4) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a month, its geomagnetic activity is assigned by weighting equally the following three criteria: (1) the sum of the eight Kp's; (2) the greatest Kp; and (3) the sum of the squares of the eight Kp's.

Kp is the mean standardized K-index from 12 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics.

Ap indicates magnetic activity on a linear scale rather than the quasi-logarithmic scale of the K-indices. The column headed Ap gives the daily average for the eight values ap per day, where ap is defined as one-half the average gamma range of the most disturbed of the three force components, in the three-hour interval at standard stations. Ap is computed from the 8 indices Kp per day, see IATME Bulletin No. 12h (for 1953), p. VIII f. Values of Ap (like Kp and Cp) have been published for the Polar Year 1932/33 and currently since January 1937.

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index. Current tables are also published quarterly in the <u>Journal of Geophysical Research</u> along with data on sudden commencements (sc) and solar flare effects (sfe).

SUDDEN IONOSPHERE DISTURBANCES

Tables 97 and 98 list, respectively, the sudden ionosphere disturbances observed at Washington, D. C., for August 1955 and at Riverhead. New York, for July and August 1955.

July 1955

Inly 1055

				Table	<u>l</u>			
Washing	ton, D. C.	(38.79)	N, 77.1°	()				August 1955
Time	h'F2	foF2	h*Fl	foFl	h E	foE	f Es	(M3000)F2
00	270	3.7					3.2	3.1
01	270	3.2					3.0	3.05
02	270	3.0					2.4	3,1
03	280	2.6					2.7	3,1
04	280	2.4					2.3	3.1
05	270	2.5					2.9	3.2
06	250	3.0	230	3.1	120	1.7	3.5	3.3
07	290	4.5	220	3.7	110	2.4	3.8	3.2
08	300	5.1	210	4.0	110	2.7	4.0	3.2
09	300	5.5	200	4.2	100	2.9	4.4	3.25
10	320	5.6	200	4.4	100	3.1	4.3	3.2
11	340	5.5	200	4.5	100	3.3	4.3	3.1
12	350	5.5	200	4.5	100	3.4	4.2	3.0
13	360	5.5	200	4.4	100	3.4	4.1	3.0
14	350	5.4	200	4.4	100	3.3	3.8	3.05
15	330	5.4	200	4.2	100	3.2	3.9	3.1
16	330	5.4	210	4.1	110	2.9	3.9	3.1
17	300	5.5	220	3.8	110	2.5	4.2	3.1
18	270	5.6	230	3.4	120	2.0	3.3	3.1
19	250	6.0					3.1	3.1
20	240	6.2					3.2	3.15
21	240	5.4					3.1	3.1
22	240	4.7					3.1	3.1
23	250	4.2					3.1	3.1

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds. Time h⁴F2 h*F1 h°E foF2 foFl foE f Es (M3000)F2 00 (3.1) 4.2 01 270 200 (3.9)4.0 (3.1)02 3.1 3.0 3.0 4.0 4.6 (2.9) (3.2) 03 310 4.2 240 5.1 4.5 04 350 4.2 220 210 110 (2.0) 05 (2.1) 2.4 2.5 3.0 2.9 3.0 360 4.4 3.4 3.6 110 4.4 06 380 200 4.6 100 4.6 4.7 07 08 09 380 4.7 200 100 200 200 2.7 2.8 2.9 4.0 4.9 4.2 2.9 2.8 2.8 400 4.0 4.0 100 400 4.6 4.0 4.1 100 10 420 4.0 200 200 200 4.2 4.2 4.2 4.3 2.9 2.9 2.8 420 4.8 100 12 13 410 4.8 4.7 100 100 (3.0)4.0 3.4 3.4 2.0 200 430 (3.0)14 15 16 400 200 100 4.8 100 2.8 3.0 380 200 4.2 350 200 4.0 3.9 3.0 3.2 3.2 3.2 3.2 3.2 3.2 (3.1) <2.7 2.9 3.7 340 100 2.3 210 220 18 19 20 21 22 23 300 4.7 (3.6)110 270 4.6 (3.5)110 230 120 (1.8) 4.5 3.5 2.2 3.8 240 4.4 ---

Table 2

147.8°W)

150.0°W. Time:

250

250

Fairbanks, Alaska (64.9°N,

1.0 Mc to 25.0 Mc in 13.5 seconds. 5weep:

4.2

(4.2)

					-			
Narsars	suak, Gree	enland (6	1.2°N.	45.4°W)				July 1955
Time	h°F2	foF2	h*F1	foFl	h ® E	foE	f Es	(M3000)F2
00	300	(3,4)					4.6	3.1
01	310	3.1					4.8	3.05
02	320	3.2					4.4	3.1
03	(320)	(3.1)					4.9	(3,2)
04	(320)	3.5					4.8	3.2
05	290	3.7	250		110	2.1	4.0	3.2
06	340	4.1	220	3.6	110	2.4	4.6	3.2
07	370	4.2	210	3.8	110	2.5	3.4	3.0
08	380	4.5	200	4.0	110	2.7	3.3	3.0
09	380	4.6	210	4.1	100	2.9	3.1	2.05
10	380	4.8	200	4.1	100	3.0	3.2	3.0
11	380	4.8	200	4.2	100	3.0		2.9
12	400	4.8	210	4.2	100	3.1		2.9
13	390	4.8	210	4.2	100	3.1		2.9
14	380	4.0	200	4 1	110	3.0		2 95

Table 3

3.0 2.9 2.8 2.7 2.4 2.1 2.95 3.0 3.0 4.9 4.9 4.9 200 210 220 220 4.1 4.0 4.0 3.8 380 15 16 17 110 360 110 3.2 4.2 4.1 4.1 4.3 4.6 360 110 3.0 18 19 20 240 250 350 4.7 110 3.0 4.5 4.4 310 3.4 110 3.1 3.2 300 ---21 22 23 290 (4.0) (3,15) 280 3.7 3.5 3.2 3.2 5.7 270 4.3

45.0°W.

5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table 4 Adak Alaska (51 99N 176 69W)

Adak, A	Taska (JI	•9-N, II	0.0-111					July 1955
Time	h°F2	foF2	h°F1	foF1	h*E	foE	f Es	(M3000)F2
00	260	4.5					3.1	3.1
01	260	3.9					2.6	3.0
02	270	3.6					2.5	3.0
03	280	3.6					2.5	3.0
04	310	3.7	270	2.7	140	1.3	2.5	2.9
05	300	4.4	240	3.3	120	1.9	3.0	2.9
06	370	4.0	230	3.6	110	2.4	3.6	2.8
07	360	5.2	220	3.0	110	2.7	4.0	2.9
08	380	5.3	220	4.0	100	2.9	4.9	2.9
09	360	5.3	218	4.2	100	3.0	6.0	2.9
10	360	5.4	200	4.2	100	3.1	6.0	2.9
11	380	5.3	200	4.3	100	3.1	5.4	3.0
12	370	5.3	200	4.3	110	3.1	4.7	3.0
13	400	5.0	200	4.4	110	3.1	4.4	3.0
14	400	4.9	200	4.3	110	3.0	4.0	2.95
15	380	4.9	200	4.2	100	3,0	4.0	3.0
16	370	4.8	210	4.0	110	2.8	3.6	3.0
17	340	4.7	220	4.0	110	2.6	3.8	3.0
18	320	4.8	240	3.7	110	2.2	4.0	3.0
19	290	5.0	250		120	1.7	4.0	3.05
20	270	5.5					4.4	3.1
21	250	6.1					4.5	3.1
22	250	5.0					3.6	3.1
23	250	5.2					3.8	3.1

Time: 100.0°W.

5weep: 1.0 Nc to 25.0 Mc in 27 seconds.

				Table 5				
Ft. Mon	nouth, New	w Jersey	(40.0°N	, 74.0°W)			July 1955
Time	h*F2	foF2	h*F1	foFl	h E	foE	f Es	(M3000)F2
00	260	3.9					2.4	3.1
01	260	3.5					2.5	3.0
02	<270	3.2					2.5	3.0
03	<260	2.8					<2.0	3.1
04	260	2.5					<2.6	3.1
05	250	3.2	220				<2.0	3.3
06	320	4.0	220	3.5	120	(2.2)	3.6	3.2
07	350	4.5	220	3.9	110	(2.7)	4.4	3.1
08	370	4.9	210	4.1	110	(2.9)	4.6	3.1
09	350	5.0	200	4.3	110	(3.2)	4.5	3.1
10	370	5.2	200	4.4	110	(3.3)	4.1	3.0
11	380	5.3	200	4.4	110		3.8	3.0
12	390	5.2	190	4.4	110		4.2	3.0
13	400	5.2	<200	4.4	110	(3.4)	4.4	3.0
14	380	5.2	200	4.3	110	(3.3)	3.9	3.0
15	400	5.2	210	4.3	110	3.2	3.7	2.9
16	350	5.3	<220	4.2	110	(3.0)	3.5	3.0
17	330	5.5	220	3.9	110	2.7	3.9	3.0
18	300	5.7	230	3.5	120	(2.3)	4.6	3.1
19	250	5.8					3.6	3.1
20	240	6.0					3.4	3.1
21	240	5.6					4.0	3.1
22	250	4.8					3.6	3.0
23	260	4.4					3.0	3.0

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds. Table 6

White S	ands, New	Mexico	(32.3°N,	106.5°W)				July 1955
Time	h*F2	foF2	h*F1	foFl	h E	foE	f Es	(M3000)F2
00	270	3.6					5.0	3.0
01	270	3.5					4.0	3.0
02	260	3.6					3.7	3.1
03	250	3.4					3.0	3.1
04	250	3.3					2.0	3.1
05	240	3.2					3.5	3,25
06	300	4.1	220	3.4	110	2.0	3.8	3.3
07	320	4.8	200	3.0	100	(2.5)	4.6	3.1
08	310	5.5	200	4.2	100	(2.0)	5.3	3.15
09	350	5.2	190	4.4	100	3.2	7.0	3.05
10	380	5.2	100	4.5	100	3.3	6.4	2.95
11	380	5.6	190	4.5	100	3.5	7.8	2.9
12	380	5.6	190	4.5	100	3.4	5.0	2.9
13	360	5.9	190	4.5	100	(3.5)	6.2	2.9
14	350	5.9	200	4.5	100	(3.3)	5.3	3.0
15	350	5.0	200	4.3	100	3.2	4.8	3.0
16	320	5.9	200	4.2	100	3.0	4.9	3.1
17	300	5.9	210	4.0	100	2.7	5.0	3.2
18	290	5.8	220	(3.6)	110	(2.2)	4.0	3.1
19	240	6.2	240				4.4	3,2
20	220	6.3					3.8	3.3
21	220	5.4					4.8	3.3
22	230	4.4					5.0	3,2
23	250	3.8					4.9	3.1

Time: 105.0°W.

5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Okinaus	I. (26.39	PN 127 8	0F)	Table 7				July 1955
Time	h*F2	foF2	h*F1	f oF l	h°E.	foE	f Es	(M3000)F2
00	300	(5,0)					3.9	(2,9)
01	300	(4.6)					3.8	3.0
02	270	5.1					3.8	3, 15
03	250	4.6					3.8	3.1
04	250	(4.3)					3.6	(3,2)
05	240	(3.9)					3.6	3.35
06	240	4.3	240				3.3	3, 4
07	260	5.5	220	(3.6)	110	(2.4)	4.3	3.5
08	270	5.8	210	(4.2)	110	2.7	4.9	3.4
09	320	5.8	210	4.5	100	(3,1)	5.8	3,2
10	350	5.8	200	4.6	100	(3,4)	6.2	3.1
11	380	5.9	200	4.7	100	(3.5)	7.9	2.9
12	400	6.6	(220)	(4.6)	100	(3.6)	7.8	2.8
13	370	6.9	220	4.6	110	(3.6)	7.6	2.9
14	350	7.4	210	4.6	100	(3.5)	7.0	2.9
15	350	7.8	220	(4.5)	100	(3.3)	7.4	2.85
16	340	7.9	220	4.4	100	>3.0	6.0	2.95
17	320	8.2	220	4.2	100	(2.8)	5.7	3.0
18	290	8.2	230	3.9	100	(2,3)	5.8	3.1
19	250	(8.0)	230				4.8	(3,2)
20	240	>6.8					4.5	(3.0)
21	260	(5.7)					>4.5	(3,1)
22	300	(5.2)					4.8	(2.9)
23	300	(5.2)					4.5	(2.8)

Time: 135.0°E.

Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Puerto	Rico, W.	1. (18.5	°N, 67.2	⊃W)				July 1955
Time	h*F2	foF2	h*Fl	foF1	h*E	foE	f Es	(M3000)F2
00	280	5.1					2.1	3.0
01	270	5.2					2.5	3.0
02	250	5.0					<1.8	3.1
03	250	4.3					<1.7	3.1
04	260	3.9					<1.8	3,1
05	260	3.4					<2.0	3.1
06	260	3.6					<2.1	3.2
07	280	4.8	220	3.6	120	2.2	4.2	3.3
08	300	5.4	210	4.1	110	2.7	3.5	3,2
09	340	5.8	210	4.3	110	3.1	4.4	3.1
10	370	6.0	200	4.5	110	3.2	5.2	2.9
11	380	6.5	190	4.5	110	3.4	4.4	2.8
12	360	7.5	200	4.5	110	3.5	4.4	2.8
13	340	8.5	210	4.6	110	3.5	4.4	2.9
14	330	8.5	210	4.5	110	3.4	4.3	2.9
15	320	8.4	210	4.5	110	3.3	4.6	2.95
16	310	8.5	210	4.2	110	3.1	4.4	3.0
17	290	8.4	220	4.0	110	2.8	4.4	3.0
18	270	8.7	220	3.5	110	2.3	3.8	3.15
19	230	8.0					3.2	3,2
20	230	6.8					3.7 •	3.2
21	240	6.2					2.7	3.0
22	260	5.8					2.5	3.0
23	280	5.1					2.3	2.9

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 1	1			
i'a nama	Canal Zone	(9.4°N,	79.9°W)					July 1955
Time	h°F2	foF2	h*Fl	foF1	h*E	foE	f Es	(M3000)F2
00	250	5.6					1.9	3.2
01	250	5.0					<1.6	3.1
02	240	4.3					2.1	3.1
03	260	3.9					<1.6	3.0
04	260	3.7					<1.6	3.1
05	250	3.4					<1.6	3,2
06	250	3.5					3.1	3.3
07	270	4.8	220		120	2.2	3.0	3,2
08	330	5.5	200	4.2	110	2.8	3.7	3.1
09	400	5.7	200	4.4	110	3.1	3.7	2.8
10	430	6.5	200	4.4	110	3.3	4.3	2.6
11	430	7.3	200	4.5	110	3.5	4.4	2.6
12	400	8.5	<200	4.5	110	3.6	4.6	2.7
13	380	9.4	200	4.5	110	3.6	4.5	2.8
14	360	9.8	200	4.5	110	3.5	4.4	2.8
15	330	10.3	200	4.4	110	3.3	4.4	2.9
16	310	10.5	210	4.2	110	3.0	4.4	3.0
17	300	10.4	<220	4.0	110	2.6	3.9	3.1
18	270	9.6	230	(3,5)	120	(2.0)	3.5	3.2
19	230	9.2					3.5	3.2
20	230	7.9					2.7	3.0
21	240	7.0					2.3	3.1
22	250	6.5					2.2	3.0
23	260	5.7					1.8	3, 1

Time: $75.0^{\circ}W$. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Maul, Ha	awaii (20	.8°N. 15	6.5°W)	Table {	3			July 1955	-
Time	h*F2	foF2	h*F1	f oF l	h*E	foE	f Es	(M3000)F2	
00	330	5.9					3.0	2.7	
01	310	5.6					2.6	2.7	
02	310	5.6					3.4	2.85	
03	290	5.0					2.4	2.95	
04	300	4.5					2.4	2.9	
05	300	3.4					2.0	2.8	
06	300	4.0	300				2.6	2.9	
07	320	5.2	260	3.8	130	2.3	4.0	2.9	
08	360	5.7	240	4.3	120	2.7	6.0	2.8	
09	490	5.6	230	4.5	120	3.1	5.5	2.4	
10	500	6.2	230	4.5	120	3.3	7.8	2.3	
11	510	7.3	230	4.6	120	3.4	7.2	2.4	
12	480	7.9	220	4.6	120	3.5	6.9	2.4	'
13	460	8.6	230	4.6	120	3.5	5.5	2.4	
14	440	9.2	230	4.5	120	3.5	5.6	2.5	1
15	410	9.8	250	4.4	120	3.3	5.3	2,6	, !
16	380	10.0	260	4.3	120	3.1	5.0	2.6	
17	350	10.5	260	4.2	130	2.8	5.1	2.8	1
18	310	10.5	270	3.7	130	2.2	5.0	2.9	
19	280	10.1	300				5.0	3.0	
20	270	8.6					4.8	2.9	
21	300	7.0					4.6	2.8	
22	300	6.4					4.1	2.7	
23	310	6.1					3.6	2.7	-

iii iii

Table 8

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

<u>Table l</u>

Guam I.	(13.6°N,	144.9°E)		Table 1	.0			July 1955
Time	h*F2	foF2	h*Fl	foF1	h°E	foE	f Es	(M3000)F2
00	340	3.8					2.5	2,8
01	340	3.3					2.4	2.9
02	350	3.0					2.0	2.9
03	340	(2.9)					<1.8	(3.05)
04	300	2.7					<1.9	3.15
05	250	2.7					1.8	3,35
06	240	3.6					<1.9	3.4
07	240	5.9	210		110	2.2	2.6	3.5
08	260	6.5	200		100	2.8	3.3	3.4
09	300	6.3	200	4.3	100	3.1	3.7	3,1
10	360	6.8	200	4.6	100	3.3	4.1	2.8
11	390	7.0	200	4.6	100	3.6	4.5	2,6
12	430	7.2	200	4.7	100	3.7	5.3	2,5
13	430	7.5	200	4.5	100	3.7	4.9	2.5
14	410	8.0	200	4.5	100	3.5	5.0	2.5
15	380	8.I	200	4.4	100	3,3	5.2	2.7
16	360	8.7	200	4.3	100	3.1	4.6	2.8
17	330	8.9	210	4.0	100	2.7	4.2	2.9
18	300	9.0	220		110	2.0	4.1	3.0
19	250	8.8					4.0	3.1
20	240	8.0					3.6	3.2
21	240	6.0					3.3	3, 15
22	280	4.8					2.5	3.0
23	330	4.0					2.5	2.8

Time: 150.0° E. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Table	1.9
 TODIC	1 49

Tromso,	Norway	(69.7°N,	19.0°E)	Table 1.	2			June 1955
Time	h*F2	foF2	h°F1	foFl	h * E	foE	f Es	(M3000)F2
00	315	4.5					3.5	2,95
01	320	4.5	280				4.0	2.9
02	340	4.3	250				3.9	2.9
0.3	350	4.3	240	3.2			3.7	2.9
04	360	4.4	225	3.4	100	2.0	3.0	2.9
05	355	4.6	210	3.6	100	2.3	3.1	2.9
06	375	4.6	210	3.8	100	2.4	2.9	2.85
07	385	4.8	210	3.9	100	2.6	2.9	2.9
08	375	4.8	205	4.0	100	2.8	3.0	2.9
09	400	4.8	205	4.1	100	2.8	3.1	2.9
10	380	5.2	210	4.1	100	2.9	3.4	2.95
11	385	5.0	200	4.2	100	2:9	3.1	2.95
12	390	5.0	205	4.2	100	3.0	3.2	2.9
13	395	4.9	210	4.2	100	2.9	3.2	2.9
14	375	4.9	200	4.2	100	2.8	3.2	3.05
15	370	4.7	205	4.1	100	2.8	3.1	3.05
16	365	4.7	210	4.0	100	2.7	3.2	3.0
17	345	4.8	220	4.0	100	2.6	3.4	3.1
18	340	4.6	225	3.8	105	2.4	3.4	3.1
19	320	4.7	235		105	2.2	3.8	3.1
20	300	4.6	240		105	2.0	4.1	3.1
21	295	4.5	245				4.2	3.1
22	(290)	4.2					4.2	(3.1)
23		(4,4)					3.8	(3,05)

Time: $15.0^{\circ}E$. Sweep: $0.7~\mathrm{Mc}$ to $25.0~\mathrm{Mc}$ in $5~\mathrm{minutes}$, automatic operation.

June 1955

(M3000)F2

2.85

ì		Table 13								Anchorage, Alaska (61.2°N, 149,9°W)								
i	Reykjav	ik, Icelar	id (64.1°	N, 21.8	∘W)				June 1955	Anchora	ge, Alask	a (61.2°	N, 149.9	ow)				June 1955
	Time	h'F2	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2	Time	h°F2	foF2	h*F1	foFl	h° E	foE	f Es	(M3000)F2
1	00	(340)	(3.8)					4.3		00	280	3.6					2.3	2.85
ì	01	(300)	(3.6)					4.2		01	280	3.2					2.0	2.9
	02	(300)	3.7					3.9	3.0	02	300	3.4					1.7	2.9
	03	300	3.8			110		3.6	2.95	03	350	3.6	270	2.5	120	1.4	2.4	2.8
ł	04	310	3.9	240		110		3.5	3.0	04	380	4.0	240	2.9	120	1.7	2.3	2.8
	05	370	3.9	230	3,3	110	2.1	<2.5	3.0	05	380	4.4	230	3.3	110	2.0	2.6	2.9
	06	380	4.0	220	3.5	100	(2.3)		2.9	06	400	4.4	220	3.5	110	2.3	2.4	2.75
	07	400	4.3	210	3.7	100	2.5		2.9	07	410	4.6	210	3.7	110	2.4	2.4	2.7
	08	370	4.5	220	3.9	100	2.7		3.0	08	440	4.6	210	3.8	110	2.7	3.0	2.65
	09	400	4.6	200	4.0	100	(2.7)		2.9	09	450	4.7	200	3.9	110	2.8	3.2	2.7
	10	400	4.7	210	4.0	100	(2.8)		2.9	10	420	4.7	210	4.0	110	2.9	3.0	2.8
	11	400	4.9	200	4.1	100			2.9	11	430	4.8	210	4.0	110	(2.9)	3.2	2.7
	12	400	4.8	200	4.1	100		2.6	2.8	12	460	4.7	210	4.1	110	(3.0)	3.4	2.65
	13	410	4.8	200	4.1	100			2.85	13	450	4:7	210	4.1	110	3.0	3.4	2.7
	14	420	4.8	210	4.1	100		<3.1	2.8	14	460	4.6	210	4.1	110	2.9	3.2	2.7
	15	370	5.0	210	4.0	100			3.0	15	450	4.6	210	4.0	110	2.8	3.1	2.7
	16	390	4.8	210	4.0	100	2.8	<3.1	2.9	16	400	4.5	220	4.0	110	(2.6)		2.8
	17	370	4.8	220	4.0	100	2.7		2.9	17	370	4.6	220	3.8	110	2.5	2.7	2.8
	18	340	4.8	230	3.8	100	2.6	3.3	3.0	18	340	4.6	230	3.6	110	2.3	2.7	3.0
	19	330	4.7	240	3.6	110	2.3	3.6	3.0	19	300	4.7	240	3.4	120	2.0	3.1	3.0
1	20	310	4.6	240	3.2	110	(2.1)	3.7	3.0	20	280	4.6	240		120	1.7	2.9	3.1
	21	300	(4.4)			110		3.9	(3.0)	21	250	4.6					2.2	3.1
	22	300	(4, 4)					4.0	(3.0)	22	260	4.5					2.0	3.1
	23	300	(3,9)					4.2		23	270	3.8					1.7	3.0
		1																

15.0°W. Time:

1.0 Mc to 25.0 Mc in 16.2 seconds. Sweep:

150.0°W.

h'F2

(250)

370

Time

00

13

1.0 Mc to 25.0 Mc in 13.5 seconds. Sweep:

San Francisco, California (37.4°N, 122.2°W)

h*Fl

200

foF2

(4.0)

Graz, A	ustria (4	7.1°N, 15	5.5°E)	Table 1	<u>5</u>			June 1955
Time	h'F2	foF2	h'Fl	foF1	h°E	foE	f Es	(M3000)F2
00	280	4.9						
01	300	4.5						
02	300	4.3						
03	300	4.2						
04	300	3.8						
05	300	4.4		(3, 2)				
06	300	5.0	240	3.8				
07	305	5.2	220	4.0			4.5	
08	340	5.3	200	4.2			5.0	
09	340	5.5	200	4.3			4.8	
10	330	6.0	200	4.5			5.0	
11	330	5.9	200	4.5			5.0	
12	335	6.0	200	4.6			5.0	
13	340	5.8	200	4.6			4.8	
14	345	5.4	200	4.5			4.0	
15	340	5.3	200	4.4			4.2	
16	305	5.3	200	4.2			4.7	
17	300	5.3	215	4.0			4.0	
18	290	6.0		3.7			5.0	
19	260	6.2					4.6	
20	250	6.4					3.8	
21	250	(6.1)					4.8	
22	250	6.2						
23	280	5.2						

280 5.2 Time: 15.0°E. 2.5 Mc to 12.0 Mc in 2 minutes. Sweep:

(3,7) (3,3) (3.0) (3.0) 01 (270) (3,9) 02 03 260 (3.8)(3, 1)(2.9)(3,0) (3,0) (3,1) (260) 260 (3.7)(3.2)04 (3,3)(3.4)05 280 (3.5) (3,1) 3.1 3.1 2.8 2.9 2.9 06 07 340 4.3 220 200 (3.4)(100)(2.1)(3.6) 4.8 5.0 (2,6) (3,0) 330 (3.8) (4.0) (100)4.1 4.3 08 390 (100) (200) 09 360 5.3 (200) (100) (3.1) 10 11 350 370 5.5 5.6 5.6 5.8 5.8 (200) (220) (4.3)(100) (100) 4.8 2.8 (3.4) (4,4)4.5 380 (210) (4.4) (100) (3.4) 2.8

(4.4)

foFl

h e E

foE

f Es

5.0 5.2

14 15 360 340 (210) (220) (4,4) (4,3) (100) (110) 2.9 2.9 (3, 2) (4.5) 16 340 5.8 210 (4, 2)(100) (3.0)4.7 3.0 17 18 310 280 220 (3,9) (3,6) 4.3 4.2 3.0 5.6 (100)(2.8)3.1 3.2 3.2 3.25 (3.05) 220 (100) 5.6 19 20 21 22 250 5.8 (4.2)220 220 5.9 (3.5)(5.6) (5.0) (3,6) (3,3) (230) 23 (250)(4.2)(4.0)(3.0)

Time: 120.0°W . Sweep: 1.0~Mc to 25.0~Mc in 13.5~seconds.

<u>Table 17</u>										
Elisabe	thville.	Belgian (Congo (1	1,6°S, 27	7.5°E)		J	une 1955		
Time	h°F2	foF2	h*F1	foFl	h*E	foE	fEs fEs*(M2000)F2		
00	260	2,3					2.2 1.8	2,5		
01	270	2.1					2.3 2.2	2.5		
02	285	2.0					2.4 3.2	2.4		
03	270	2.0					2.9 2.8	2.5		
04	240	2.5					1.8 2.6	2.4		
05	240	5.3	230		130	1.7	2.2 2.9	2.7		
06	250	6.3	230		115	2.6	2.8 3.3	2.8		
07	255	7.1	220	4.0	110	3.0	2.2 3.8	2.7		
08	270	6.8	215	4.2	110	3.1	2.1 4.0	2.6		
09	280	6.9	220	4.4	110	3,2	3.6 3.0	2.6		
10	285	6.5	225	4.5	110	3.3	3.8 2.4	2.5		
11	300	6.9	220	4.3	110	3,3	3.7 4.1	2.5		
12	290	7.0	225	4.2	110	3,2	3.6	2.45		
13	280	6.8	230	4.0	110	3.0	3.8	2.5		
14	255	6.2	230		110	2.8	3 .6	2.6		
15	240	6.0	230		120	2.1	3.6	2.6		
16	230	5.8					3.1	2.6		
17	220	5.4					2.9	2.7		
18	210	3.8					2.8	2.8		
19	220	2.6					3.1	2.7		
20	270	2.6					2.5	2.4		
21	270	2.5					2,2	2.5		
22	270	2.4					2,2	2.5		
23	250	2.4					2.1	2.5		

r me:	0.0					
Sweep:	1.0 Nc to	16.0	Mc in	7	seconds.	
*These	April 1955	data	compl	e t	e the fFs	

ete the fEs column of table 25, CRPL-F131. Figure 49, CRPL-F131, should be modified accordingly.

Time h*F2 foF2 h*F1 foF1 h*E foE fEs 00 285 4.2 </th <th>(M3000)F2</th> <th></th> <th colspan="11">Graz, Austria (47.1°N, 15.5°E)</th>	(M3000)F2		Graz, Austria (47.1°N, 15.5°E)										
01 285 4.1 02 285 3.8 03 290 3.5 04 280 3.6 05 260 4.9 06 260 4.9 07 280 5.2 230 4.0 4.0 08 290 5.8 220 4.1 4.0 09 300 6.0 200 4.2 4.0 10 290 6.1 200 4.5 4.3 11 300 (6.0) 200 4.5 4.0 12 310 (5.9) 200 4.5 4.0 13 320 5.8 200 4.6 4.0 14 300 5.8 200 4.1 4.0 15 320 5.8 200 4.3 4.0 16 300 5.8 220 4.1 4.0		I ES	foE	h°E	foFl	h*Fl	foF2	h°F2	Time				
02 285 3.8 03 290 3.5 04 280 3.6 05 260 4.0 06 260 4.9 245 3.6 07 280 5.2 230 4.0 4.0 08 290 5.8 220 4.1 4.0 09 300 6.0 200 4.2 4.0 10 290 6.1 200 4.5 4.3 11 300 (6.0) 200 4.5 4.0 12 310 (5.9) 200 4.5 4.0 13 320 5.8 200 4.6 4.0 14 300 5.8 200 4.1 4.0 15 320 5.8 200 4.3 4.0 16 300 5.8 220 4.1 4.0							4.2	285	00				
03 290 3.5 04 280 3.6 05 260 4.0 06 260 4.9 245 07 200 5.2 230 4.0 08 290 5.8 220 4.1 4.0 09 300 6.0 200 4.5 4.3 11 300 (6.0) 200 4.5 4.0 12 310 (5.9) 200 4.5 4.0 12 310 (5.9) 200 4.5 4.0 14 390 5.8 200 4.6 4.0 14 300 5.8 200 4.1 4.0 15 320 5.8 200 4.1 4.0 16 300 5.8 220 4.1 4.0							4.1	285	01				
04 280 3,6 05 260 4,0 06 260 4,9 245 3,6 07 280 5,2 230 4,0 4,0 08 290 5,8 220 4,1 4,0 09 300 6,0 200 4,2 4,0 10 290 6,1 200 4,5 4,3 11 300 (6,0) 200 4,5 4,0 12 310 (5,9) 200 4,5 4,0 13 320 5,8 200 4,6 4,0 14 300 5,8 200 4,1 4,0 15 320 5,8 200 4,3 4,0 16 300 5,8 220 4,1 4,0							3.8	285	02				
05 260 4.0 06 260 4.9 245 3.6 07 260 5.2 230 4.0 4.0 08 290 5.8 220 4.1 4.0 09 300 6.0 200 4.5 4.3 10 290 6.1 200 4.5 4.3 11 300 (6.0) 200 4.5 4.0 12 310 (5.9) 200 4.5 4.0 13 320 5.8 200 4.6 4.0 14 300 5.8 200 4.1 4.0 15 320 5.8 200 4.1 4.0 16 300 5.8 220 4.1 4.0							3.5	290	03				
06 260 4.9 245 3.6 07 280 5.2 230 4.0 4.0 08 290 5.8 220 4.1 4.0 09 300 6.0 200 4.2 4.0 10 290 6.1 200 4.5 4.3 11 300 (6.0) 200 4.5 4.0 12 310 (5.9) 200 4.5 4.0 13 320 5.8 200 4.6 4.0 14 300 5.8 200 4.1 4.0 15 320 5.8 200 4.1 4.0 16 300 5.8 220 4.1 4.0							3.6	280	04				
07 280 5,2 230 4,0 4,0 08 290 5,8 220 4,1 4,0 09 300 6,0 200 4,2 4,0 10 290 6,1 200 4,5 4,3 11 300 (6,0) 200 4,5 4,0 12 310 (5,9) 200 4,5 4,0 13 320 5,8 200 4,6 4,0 14 390 5,8 200 4,1 4,0 15 320 5,8 200 4,3 4,0 16 300 5,8 220 4,1 4,0							4.0	260	05				
08 290 5.8 220 4.1 4.0 09 300 6.0 200 4.2 4.0 10 290 6.1 200 4.5 4.3 11 300 (6.0) 200 4.5 4.0 12 310 (5.9) 200 4.5 4.0 13 320 5.8 200 4.6 4.0 14 390 5.8 200 4.1 4.0 15 320 5.8 200 4.3 4.0 16 300 5.8 220 4.1 4.0					3.6	245	4.9	260	06				
09 300 6,0 200 4,2 4,0 10 290 6,1 200 4,5 4,3 11 300 (6,0) 200 4,5 4,0 12 310 (5,9) 200 4,5 4,0 13 320 5,8 200 4,6 4,0 14 300 5,8 200 4,1 4,0 15 320 5,8 200 4,3 4,0 16 300 5,8 220 4,1 4,0		4.0			4.0	230	5.2	280	07				
10 290 6.1 200 4.5 4.3 11 300 (6.0) 200 4.5 4.0 12 310 (5.9) 200 4.5 4.0 13 320 5.8 200 4.6 4.0 14 300 5.8 200 4.1 4.0 15 320 5.8 200 4.3 4.0 16 300 5.8 220 4.1 4.0		4.0			4.1	220	5.8	290	08				
11 300 (6,0) 200 4.5 4.0 12 310 (5,9) 200 4.5 4.0 13 320 5.8 200 4.6 4.0 14 390 5.8 200 4.1 4.0 15 320 5.8 200 4.3 4.0 16 300 5.8 220 4.1 4.0		4.0			4.2	200	6.0	300	09				
12 310 (5.9) 200 4.5 4.0 13 320 5.8 200 4.6 4.0 14 300 5.8 200 4.1 4.0 15 320 5.8 200 4.3 4.0 16 300 5.8 220 4.1 4.0		4.3			4.5	200	6.1	290	10				
13 320 5.8 200 4.6 4.0 14 300 5.8 200 4.1 4.0 15 320 5.8 200 4.3 4.0 16 300 5.8 220 4.1 4.0		4.0			4.5	200	(6.0)	300	11				
14 300 5.8 200 4.1 4.0 15 320 5.8 200 4.3 4.0 16 300 5.8 220 4.1 4.0		4.0			4.5	200	(5,9)	310	12				
15 320 5.8 200 4.3 4.0 16 300 5.8 220 4.1 4.0		4.0			4.6	200	5.8	320	13				
16 300 5.8 220 4.1 4.0		4.0			4.1	200	5.8	300	14				
					4.3		5.8	320	15				
					4.1	220	5.8	300	16				
17 290 6.0 230 3.9 4.0		4.0			3.9	230	6.0	290	17				
18 270 6.6 (3.6) 4.0					(3,6)		6.6		18				
19 250 7.0 4.0							7.0	250	19				
20 245 7.2 3.8									20				
21 250 (5.8) 3.7 22 250 (5.3) 2.8							(5.8)		21				

Time: $15.0^{\circ}E$. Sweep: 2.5 Mc to 12.0 Mc in 2 minutes.

Wakkana	i, Japan	(45.4°N,	141.7°E	Table 1	9			May 1955	Akita,	Japan (39	.7°N, 14	0.1°E)
Time	h°F2	foF2	h*Fl	foF1	h®E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h*Fl
00	280	4.6					3.5		00	300	4.7	
01	290	4.6					3.5		01	300	4.4	
02	290	4.4					3.5		02	290	4.5	
03	270	4.2					3.0		03	290	4.1	
04	260	4.2					2.5		04	290	4.0	
05	260	4.6					1.7		05	270	4.6	
06	320	5.1					4.0		06	300	5.4	
07	310	5.5					4.8		07	300	5.9	
08	310	5.6					5.6		08	310	5.9	
09	320	5.6					5.1		09	350	5.7	
10	350	5.6					5.0		10	350	5.0	
11	360	5.5					5.3		11	380	5.0	
12	380	5.5					5.8		12	390	6.0	
13	360	5.7					5.0		13	400	6.1	
14	360	5.6					4.5		14	370	6.1	
15	350	5.6					4.7		15	340	6.6	
16	320	5.9					4.6		16	340	6.9	
17	300	6.1					4.7		17	300	7.0	
18	290	6.0					4.6		18	290	6.7	
19	270	6.5					4.1		19	270	6.5	
20	270	6.5					3.0		20	280	6.5	
21	270	6.2					3.7		21	290	6.0	
22	260	5.5					4.3		22	290	5.5	
23	280	5.2					4.0		23	300	5.2	

Time: 135.0°E. Sweep: 1.0 Mc to 22.0 Mc in 1 minute.

Time: 135.0°E. Sweep: 0.05 Mc to 22.0 Mc in 2 minutes.

Tokyo.	Japan (35	.7°N, 13	9.5°E)					May 1955
Time	h*F2	foF2	h°F1	foFl	h®E	foE	f Es	(M3000)F2
00	200	4.4					4.5	3.0
01	280	4.4					3.8	3.0
02	260	4.4					3.6	3,0
03	250	3.9					3.3	3.1
04	260	3.8					3.0	3.0
05	240	4.5			130	1.6	3.0	3.3
06	260	5.5	240	3.6	120	2.2	3.7	3.3
07	260	5.8	230	4.0	110	2.6	5.0	3.4
80	280	6.2	230	4.2	110	3.0	6.0	3.3
09	290	5.8			110	3.0	5.7	3.2
10	320	5.9			110	3.1	5.9	3.1
11	350	6.0	210	4.5	110	3.2	5.6	3.0
12	360	6.0	230	4.4	110	3.2	5.4	3.0
13	340	6.6	240	4.4	110	3.1	5.0	3.0
14	320	7.0	260	4.4	110	3.1	4.5	3.0
15	300	7.4	230	4.2	110	3.0	4.5	3.1
16	280	7.3	240	4.1	110	2.8	5.6	3,1
17	280	7.2	240	3.6	110	2.5	5.1	3.15
18	270	7.0	240	3.0	120	1.0	4.4	3.2
19	240	7.1					5.0	3.2
20	240	6.2					5.4	3.1
21	260	5.5					5.0	3.0
22	290	5.2					5.0	3.0
23	200	4.0					5.0	3.0

Time: 135.0°E. Sweep: 1.0 Nc to 17.2 Mc in 2 minutes.

Yamagaw	a, Japan	(31,2°N,	130.6°E)					May 1955
Time	h*F2	foF2	h°F1	f oF 1	h*E	foE	f Es	(M3000)F2
00	320	5.3					6.5	
01	300	5.3					5.9	
02	290	5.3					5.9	
03	200	4.4					5.9	
04	290	4.1					3.8	
05	280	3.9					3.7	
06	250	5.3					4.2	
07	250	6.1					5.6	
08	270	6.0					6.1	
09	310	5.9					6.8	
10	350	5.0					6.5	
11	300	6.4					6.7	
12	300	6.0					6.4	
13	350	7.8					6.2	
14	340	8.7					5.8	
15	310	9.5					6.1	
16	300	0.0					5.8	
17	290	0.9					5.9	
10	280	8.5					5.8	
19	250	0.4					4.7	
20	250	7.0					5.8	
21	280	6.0					6.5	
22	300	5.5					5.8	
23	320	5.4					5.9	

Table 22

Table 20

foF1

h*E

foE

f Es

May 1955 (M3000)F2

Time: 135.0°E. Sweep: 1.0 Mc to 22.0 Mc in 1 minute.

Baquio.	Baguio, P. I. (16.4°N, 120.6°E) Table 23										
Time	h*F2	foF2	h*Fl	f oF l	h ® E	foE	f Es	(M3000)F2			
00	300	5.0					3.2	3,0			
01	250	5.0					2.6	3.2			
02	240	4.0					2.5	3.3			
03	220	4.3					2.4	3.4			
04	220	3.2					2.4	3.4			
05	230	2.6					3.0	3.4			
06	230	4.8					3.4	3.5			
07	220	6.2			110	2.5	6.4	3.4			
08	300	6.7	210				6.6	3.0			
09	340	7.5	200				6.9	2.8			
10	370	0.1	200	4.4			6.6	2.6			
11	390	8.6	200	4.4	100		6.6	2.5			
12	390	9.0	200	4.4	100	3.4	6.0	2.4			
13	380	9.3	200	4.4	110	3.4	4.6	2.4			
14	350	9.5	200	4.3	110	3.3	5.0	2.6			
15	330	9.6	200	4.1	110	3.1	4.5	2.7			
16	300	9.8	210		110	2.8	5.6	2.8			
17	290	10.2	220		110	2.2	5.6	3.0			
18	240	10.2					4.1	3.1			
19	230	9.5					4.0	3.1			
20	250	7.0					3.1	3.0			
21	280	6.9					2.6	3.0			
22	300	6.0					3.8	2.9			
23	310	5.3					3.0	2.0			

Time: 120.0° E. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Wathero	<u>Table 24</u> Watheroo, W. Australia (30.3°S, 115.0°E) May 193										
Time	h*F2	foF2	h*Fl	f oF l	h*E	foE	f Es	(M3000)F2			
00 01 02 03 04 05 06 07 00 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	250 240 240 230 200 200 210 210 220 250 250 250 270 250 210 210 200 240 240 240 240 240	3.4 3.6 3.8 3.0 3.4 2.9 4.3 5.8 6.4 6.6 6.0 6.9 6.0 6.9 4.3 3.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	200 210 200 200 200 200 210 220	2.7 3.9 4.1 4.3 4.3 4.3 4.2 3.9 3.4		1.6 2.3 2.6 2.9 3.0 3.1 3.1 3.0 2.8 2.5 2.0	3.3 3.6 3.8 3.0 3.7 4.1 3.2 3.6 3.0 2.6 2.7	3.1 3.2 3.3 3.3 3.4 3.2 3.5 3.6 3.6 3.5 3.5 3.4 3.5 3.6 3.5 3.5 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8			

Time: 120.0°E. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 45 seconds.

Ruonas	Aires, Ar	nentina ((34 5°S	Table 2 58.5°W)	<u> </u>			May 1955
Time	h*F2	foF2	h'Fl_	foFl	h°E	foE	f Es	(M3000)F2
00	300	2.8	-					3.05
01	300	2.9						3.0
02	300	2.8						3.0
03	290	2.8						3.1
04	240	3.0						3.5
05	230	2.7						3.5
06	280	2.4						3.4
07	220	4.4						3.5
08	220	5.4						3.6
09	250	5.8	220					3.5
10	250	6.0	210		100	3.1	3.7	3.5
11	260	6.9	200				3.5	3.5
12	250	6.5	200				4.0	3.5
13	260	6.8	210				3.9	3.4
14	250	7.6	220				3.6	3.5
15	230	7.0	210					3.6
16	220	6.5						3.5
17	210	5.7						3.5
18	220	4.3						3.5
19	250	3.9						3,3
20	240	4.3						3, 4
21	250	3.7						(3, 45)
22	280	(3.2)						(3,3)
23	300	3.0						3.1

Time: $60.0^{\circ}\text{W}_{\star}$. Sweep: 1.0~Mc to 25.0~Mc in $27~\text{seconds}_{\star}$.

Godhayn Greenland (69,2°N, April 1955 Time h°F2 foF2 h*Fl foFl h°E foE f Es (M3000)F2 00 (2.6)2.4 3.1 260 (2.9)(2.7) (2.7) (2.5) 01 260 (2.9)(2.95) (2.9) (2.9) (3.0) 02 1.3 2.4 3.2 280 03 280 04 (290) (2.8)05 (280) (280) (3,0) 230 (130) (1.7)3.1 (3.2)06 (1.9) (2.0) (2.4) 3.3 2.8 2.5 (3.3)220 220 120 120 (3, 2)07 (320) (3,6) (3.1) (3,2) (3,0) 08 (410) (3,9)(240) 120 (3.5) (3.6) 3.6 (3.7) (3.0) 2.9 3.0 09 (370)(4.0) (4.2) (240) 230 110 (2.5)10 (390) 120 110 2.6 2.6 11 370 (4.3)230 12 13 (390) (4.4) (4.4) (230) 110 2.8 (2.8)(2.8) (2.9) (2.9) (2.9) (2.95) (2.9) (400) 3.7 3.7 2.6 110 (400) 230 14 2.6 110 (370) (360) (4.5) (4.5) 220 230 15 (3.6)110 (2.4)3.2 16 (3.5) (3.4) 110 2.4 (340) (4.2)230 120 2.6 17 18 330 (4.1) 240 (3.2)120 (2.0) (3.0) (3.0) 280 (4.0)---19 240 120 1.8 2.4 (3.1)250 260 (3.7)(3,1) (3,1) (3,0) 20 120 (1.6) 1.8 3.0 21 260 (3.4)22 23 (3,3) (2,8) 250 2.8 260 (2.9)

Table 26

Time: 45.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

Graz, A	ustria (4	7.1°N. 15	5.5°E)	Table 2	7			April_1955
Time	h°F2	foF2	h°F1	foFl	h*E	foE	f Es	(M3000)F2
00		3.1						
01		3.2						
02		3.2						
03		3.1						
04		3, 1						
05	290	3, 2						
06	255	3.8						
07	250	4.6	220	3.7				
08	280	5.1	210	4.0			3.3	
09	280	5.2	200	4.0			3.5	
10	280	5.5	200	4.1			3.7	
11	300	5.5	200	4.2			3.6	
12	285	5.5	200	4.3			3.7	
13	300	5.4	200	4.3			3.4	
14	290	5.5	200	4.2			3.3	
15	300	5.4	210	4.0				
16	270	5.6	230	4.0				
17	260	5.8	250	3.6				
18	250	5.7						
19	250	(6.0)						
20	250	(5.2)						
21	250	(4.2)						
22	250	3.6						
23		3.6						

Time: 15.0°E.

Sweep: 2.5 Mc to 12.0 Mc in 2 minutes.

Buenos	Buenos Aires, Argentina (34.5°S, 58.5°W)										
Time	h*F2	foF2	h*Fl	foFl	h*E	foE	f Es	April 1955 (M3000)F2			
00	300	3.6					2.8	3.0			
01	300	3.2					2.5	3.0			
02	300	3.1					2.8	3.0			
03	280	3.5					3.4	3.15			
04	220	3.4						3.6			
05	260	3.0					2.6	3.4			
06	260	3.0						3.4			
07	220	5.2						3.5			
08	220	6.1	210					3.5			
09	260	6.7	210				3.5	3.5			
10	260	7.9	210				4.0	3.5			
11	260	8.4	200				4.3	3.4			
12	260	8.8	200				5.2	3.4			
13	270	9.3	200				4.9	3.3			
14	260	9.4	210				4.1	3.3			
15	260	10.7	(230)				5.0	3.4			
16	220	9.5	230				4.0	3.5			
17	210	8.0					4.8	3.5			
18	210	6.4					3.9	3.6			
19	220	4.4						3.2			
20	250	4.3						3.2			
21	270	3.7						3.0			
22	280	3.7						3.1			
23	290	3.8						3.0			

Time: 60.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 27 seconds.

Table 29										
Christe	hurch. New	Zealand	(43.6%	5, 172.89	°E)			April 1955		
Time	h*F2	foF2	h °F1	foFl	h°E	foE	f Es	(M3000)F2		
00	280	3.2						3.0		
01	280	3.2						2.9		
02	280	3.0						3.0		
03	280	3.1						2.9		
04	270	3, 1						3.0		
05	240	2.8						3.2		
06	270	2.4				Ε		3.1		
07	250	4.0	260	2.4		1.4		3.4		
08	260	4.8	250	3.2		2.1		3.4		
09	280	5.2	240	3.7		2.4		3.4		
10	280	5.7	230	3.9		2.6		3,3		
11	280	6.0	230	4.1		2.8		3.3		
12	280	6.3	230	4.1		2.8		3,3		
13	280	6.3	230	4.0		2.8		3.3		
14	280	6.2	240	3.9		2.7		3,3		
15	270	5.9	250	3.7		2.5		3.4		
16	260	5.7	250	3,2		2.1		3,4		
17	250	5.4	260	2,2		1.6		3, 3		
18	250	5.1					2.5	3,2		
19	260	4.9					2.8	3.1		
20	260	4.3					2.8	3.0		
21	270	3.9					2.4	3.0		
22	270	3.6					2.7	3.0		
23	(280)	3.4					2.3	2.9		

Time: $172.5^{\circ}E$. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Table 30										
Decepci	on I. (63	.0°5, 60	.7°W)					April 1955		
Time	h*F2	foF2	h°F1	foFl	h*E	foE	f Es	(M3000)F2		
00	300	3.2						3.1		
01	300	3.2						3.1		
02	300	3.2						3, 1		
03	300	3.1						3.1		
04	300	3.2						3.2		
05	280	3.1						3.3		
06	250	3.1					1.8	3.5		
07	220	3.6						3.6		
08	220	5.1						3.7		
09	220	5.8					2.7	3.6		
10	220	6.6					2.7	3.7		
11	220	6.7					3.4	3.7		
12	220	6.7					3.3	3.8		
13	220	6.4					2.8	3.8		
14	220	5.6					2.6	3.8		
15	220	5.4					2.4	3.8		
16	220	4.9					1.8	3.8		
17	220	5.0						3.6		
18	220	4.8						3.5		
19	230	4.5						3.5		
20	240	4.4						3.4		
21	260	3.9						3.4		
22	280	3.4						3.2		
23	300	3.4						3,1		

Time: 60.0°W.

Sweep: 1.5 Mc at 16.0 Mc in 15 minutes, manual operation.

				Table 3	1			
Godhavn	, Greenlan	id (69.2°	N, 53.5°	W)				March 1955
Time	h°F2	foF2	h*F1	foF1	h*E	foE	f Es	(M3000)F2
00	260	(2.3)					2.5	(3.0)
01	280	(2.4)						(2.9)
02	(300)	(2.0)					2.7	(3.0)
03	(280)	(2,2)					2.7	(2.95)
04	(290)	(2,2)					3.2	(2.9)
05	(280)	(2.3)					2.8	(2.9)
06	(280)	(2.6)					3.5	(3.2)
07	(270)	(2.9)					4.3	(3.2)
08	(260)	(3,3)	240				3.2	(3.25)
09	(270)	(3.6)	(230)	2.9	120	(2.1)		(3.2)
10	(320)	(4.0)	(250)	(3.2)	120	(2,4)		(3.1)
11	(360)	(4.2)	(240)	(3.4)	120	(2.4)		(3.0)
12	(340)	(4.4)	(240)	(3.4)	120	(2.5)		(3.1)
13	(370)	(4.2)	(230)	(3.5)	120	2.4	2.6	(3.0)
14	(320)	(4.3)	(230)	(3.4)	120	(2.3)	2.6	(3.1)
15	(350)	(4.0)	(240)	(3.2)	120	(2.2)	2.6	(2,9)
16	300	(4.0)	240	(3.1)	120	(2.1)	3.4	(3.1)
17	270	(4.0)	240	2.9	120	(1.9)	2.1	(3,2)
18	250	(3.7)	240		120	(1.7)	2.3	(3.1)
19	250	(3.5)					3.4	(3, 1)
20	240	(3,3)					3.2	(3,1)
21	250	(3.0)					2.4	(3.1)
22	250	(2.6)					2.3	(3,0)
23	260	(2.7)					1.2	(3.1)

45.0°W. Time:

1.0 Mc to 25.0 Mc in 16.2 seconds. Sweep:

Time:

Inverness

Time

00

01

02 03

04

05

06

07

08

09

10

11

12

13

14

15

18

19

20

21 22

0.0°. 0.67 Mc to 25.0 Mc in 5 minutes. Sweep:

Scotland (57.4°N,

foF2

2.0

(1.7)

(1.6)

1.7 1.6 1.7

2.3 3.2

4.0

4.3

4.6

4.8

4.9

5.0 5.2

5.0

4.9 4.7 4.5

4.4 4.2 3.4 2.5 2.2

h °F1

210 210

205

205

205 210

210

210

220

220

h*F2

315

320

315

310

310

315

285

240

245

265

305

315

300 295

280

270

240

245

250 265 270

315

330

*Average values except foF2 and fEs, which are median values.

Table 32*

h º E

130

120

110

110

110

110 105

110

110 115 125

130

foE

1.7 1.9 2.2 2.4 2.6 2.6 2.7

2.6 2.5 2.2

1.8

1.7

f Es

1.3

2.8 2.4 2.7 2.6

2.4

foF1

(3.1) 3.6 3.7

3.8 3.9 3.9

3.7

3.7

3.4

Table 3/4

March 1955

(M3000)F2

2.8 2.7 2.7

2.7

2.8

3.3

3.3

3.3

3.1 3.2 3.3 3.3 3.3 3.2 3.2

3.1

3.0

2.8

Tib Sie *|-

Table 33* England (51,5°N March 1955 0.6°W) Slough h 'F1 h°E foE f Es (M3000)F2 Time h*F2 foF2 foF1 2.8 2.8 2.6 2.4 2.6 2.5 2.5 2.6 2.85 2.0 2.8 2.85 2.9 00 280 01 280 02 280 2.6 2.4 2.1 03 04 275 270 05 265 2.6 2.95 06 07 08 2.6 2.7 3.0 255 2.6 (150) 1.8 2.2 2.5 2.7 2.8 2.7 3.3 3.8 3.9 240 225 220 130 120 3.4 3.8 4.4 4.8 5.2 5.4 5.6 270 215 215 210 09 300 115 3.6 3.3 3.25 3.25 10 290 295 115 4.1 11 12 115 3.6 2.9 2.9 2.8 4.0 300 115 13 280 280 5.5 5.6 5.4 5.3 220 215 4.1 115 3.3 3.3 3.3 4.0 3.8 14 15 115 115 2.6 2.8 2.6 2.5 2.0 275 220 2.6 275 255 16 230 115 17 18 5.1 225 125 140 2.0 3.3 3.1 240 1.6 19 240 3.1 3.15 3.05 2.9 20 21 245 -255 4.4 3.6 22 23 270 2.8 2.85 285 2.0

Table 35 Rarotonga I, (21,3°S, 159,0°W) March 1955										
aroton ime	ga I, (21. h*F2	3°S, 15 foF2	9.0°W) h*F1	f oF l	h*E	foE	f Es	March 1955 (M3000)F2		
00	280	4.4					1.6	3.0		
01	270	4.7					3.0	3.1		
02	250	4.4					2.4	3.2		
03	250	3.6					7	3.2		
)4	290	2.8					2.5	2.05		
05	300	2.8					2.0	2.9		
06	270	3.0					2.2	3.1		
7	250	5.9	240			2.0	3.0	3.3		
08	270	7.5	230	4.1	105	2.6	3.6	3.3		
9	270	8.0	220	4.4	105	3.0	4.1	3.4		
0	280	8.3	210	4.5	105	3.2	4.7	3.3		
1	290	7.9	210	4.6	105	3.3	4.4	3.25		
2	290	8.4	200	4.6	105	3.4	4.2	3.2		
3	280	8.7	200	4.6	100	3.4	4.8	3.25		
4	290	7.5	210	4.5	105	3.3	4.4	3.2		
15	300	7.9	220	4.4	110	3.2	4.1	3,2		
6	280	7.5	250	4.3	105	3.0	4.1	3.1		
17	270	7.4	240		110	2.6	3.9	3,2		
8	260	7.8				2.0	3.8	3.2		
)	250	7.4					3.2	3.2		
0	240	6.2					3, 1	3.1		
21	260	5.8					3.0	2.85		
22	280	5.2					2.7	2.8		
23	290	5.0					2.1	2.8		

157.5°W.

1.5 Mc to 20.0 Mc in 5 minutes, manual operation.

				Table 34	1°			
Singapo	re, Britis	sh Malaya	(1.3°N	. 103.8°E	0			March 1955
Time	h*F2	foF2	h*F1	foFl	h* E	foE	f Es	(M3000)F2
00	210	6.8						3.3
01	220	4.7						3.0
02	255	4.2						2.9
03	260	3.6						2.9
04	250	3.2					1.7	3.0
05	250	2.8					1.9	3.3
06	255	3.1					1.9	(3.2)
07	240	6.4			125	2.1	3.1	3.3
08	280	7.6	220	(4.1)	120	2.7	4.1	3.1
09	310	8.2	210	4.4	115	3.1	4.3	2.7
10	340	9.0	205	4.5	110	3.3	4.8	2.4
11	365	9.2	200	4.5	110	3.5	4.2	2.2
12	385	8.9	200	4.6	110	3.5	4.3	2.0
13	365	9.0	200	4.5	110	3.5	4.8	2.3
14	330	9.5	200	4.4	110	3.4	3.8	2.5
15	310	9.6	205	4.3	110	3.2	3.6	2.6
16		9.5	210	(4.0)	110	2.8	3.7	2.5
17	(230)	9.7	225		115	2.3	3.2	2.5
18	255	9.6			165	1.8	3.0	2.6
19	280	9.6					2.9	2.6
20	280	9.3					2.5	2.8
21	255	9.0					2.3	2.9
22	240	9.1					2.4	3.1
23	220	8.7						3,2

Time: 105.0°E. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.

*Swerage values except foF2 and fEs, which are median values.

Table 36									
Christo	hurch, Nev	v Zealand	1 (43.60	S. 172.8	°E)			March 1955	
Time	h*F2	foF2	h°F1	foFl	h*E	foE	f Es	(M3000)F2	
00	280	3.2					2.5	2.9	
01	280	3.0						3.0	
02	280	2.7						3.0	
03	280	2.6						3.0	
04	270	2.5					2.0	3.1	
05	260	2.1					2.9	3.1	
06	260	2.8				1.3		3.3	
07	250	4.2	250	2.8		1.8		3.4	
08	300	4.7	240	2.7		2.3		3.2	
09	290	5.3	230	3.9		2.6		3.3	
10	300	6.0	220	4.1		2.8		3.2	
11	290	6.1	220	4.2		2.9	4.2	3,3	
12	300	5.9	220	4.3		3.0		3.2	
13	310	6.0	220	4.2		3.0		3.2	
14	300	6.0	230	4.1		2.8		3.3	
15	290	5.8	240	4.0		2.7		3.3	
16	280	5.5	240	3.7		2.4		3.3	
17	270	5.2	250	3.2		2.1		3.2	
18	250	5.5	260	2.7		1.6		3.1	
19	260	5.8						3.05	
20	250	5.1					2.3	3.1	
21	260	4.6					2.7	3.1	
22	270	4.1					2.6	3.0	
23	280	3.6					2.4	2.9	

Time: 172.5°E.

1.0 Mc to 13.0 Mc in 1 minute 55 seconds. Sweep:

February 1955

(M3000)F2**

				Table 3	11								Table 3	<u>38</u>			
Godha∀n	Greenlan	d (69.2°	N, 53.59	W)			Fe	bruary 1955	Delhi,	India (28.	.6°N, 77	.1°E)				Fe	ebruary 1955
Time	h°F2	foF2	h*Fl_	foFl	h*E	foE	f Es	(M3000)F2	Time	•	foF2	h*Fl	foFl	h*E	foE	f Es	(M3000)F2**
00	270	(2.2)					2.7	(3.0)	00	260	2.9						3.35
01	(270)	(2.2)					3.3	(3.0)	01	280	3.0						3.25
02	(280)	(2.2)					3.1	(2.9)	02			0					(3,25)
03	(290)	(2,3)					3.5	(3.0)	03	1							
04	(280)	(2.3)					3.9	(3.0)	04	260	2.8						3.45
05	(270)	(2.3)					3.2		05	260	2.8						3.4
06	(250)	(2.6)					4.0	(3.25)	06	260	2.8						3.45
07	(260)						3.6		07	220	5.3						3.75
08	260	(2.5)					3.7	(3.15)	08	240	6.2						3.6
09	260	(3, 4)					2.5	(3.15)	09	240	6.8						3.55
10	250	(4.0)					2.7	(3.3)	10	240	7.4						3.5
ii	(270)	(4.2)	250	(3.0)	120	(2.1)	2.5	(3.3)	11	240	7.7						3.5
12	(270)	(4.2)	(240)	(3.2)	(120)	(2.2)	(2.6)	(3,2)	12	260	8.0						3.4
13	(260)	(4.2)	(240)	(3.1)	(130)	(2.3)		(3.3)	13	240	8.4						3.45
14	(260)	(4.2)	250	(3,0)	140	(2.3)		(3, 2)	14	240	7.5						3.45
15	(260)	(4.0)	(240)		140		4.0	(3.3)	15	240	6.7						3.6
16	250	(4.0)	230		130	(1.9)	(4,4)	(3, 2)	16	240	6.1						3.6
17	240	(3,7)					4.4	(3, 1)	17	240	6.2						3.65
18	240	(3,6)					(4.5)	(3.1)	18	230	5.8						3.75
19	240	(3,5)					4.1	(3.1)	19	240	4.4						3.6
20	240	(3,5)					3.4	(3.1)	20	240	4.1						3.55
21	240	(3,0)					3.7	(3.1)	21	240	3.6						3.6
22	250	(2.5)					3.3	(3.1)	22	240	3.2						3.5
23	(260)	(2,2)					2.8	(3.05)	23	240	3.0						3.45

Time: 45.0°W. 5weep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

Time: 75.0°E.

Time

00

5weep: 5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

h'F1

Madras, India (13.0°N, 80.2°E)

**Average values; other columns, median values.

foF2

Bombay.	India (1	9.0°N. 7	3.0°E)	Table 3	<u> 39</u>		Fe	ebruary 1955
Time	*	foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2**
00 01								
02								
03								
04 05								
06:30	270	4.3						3.35
07	300	4.8						3.15
08:30	300	6.2						3.05 2.95
09	330	6.8						2.95 2.85
10 11	360 360	7.4 8.4						2.75
12	390	9.4						2.7
13	390	9.8						2.65
14	390	10.4						2.65 2.6
15	390 390	10.8 10.4						2.6
16 17	360	9.2						2.75
18	360	8.2						2.75
19	330	7.2						2.9
20	330	6.5						3.0 3.1
21 22	300 300	5.3 4.8						3.2
23	300	4.0						

00			
01			
02			
03			
04			
05			
06	300	5.4	3.05
07	330	6.7	2.9
08	360	7.3	2.75
09	390	7.4	2.65
10	420	7. 5	2.6
11	420	7.6	2.6
12	420	7.9	2.6
13	390	8.2	2.6
14	390	8.8	2.65
15	390	9.2	2.7
16	390	9.8	2.75
17	360	9.9	2.75
18 19	360	9.2	2,85
19	330	8.2	2.95
20	330	7.3	3.0
21	300	>6.8	3,05
22			
23			

Table 40

h°E

foE

f Es

foFl

75.0°E. Time:

5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

**Average values; other columns, median values.

Table 41 India (10.8°N, 78.8°E) February 1955 Tiruchy (M3000)F2 foE f Es h°E foFl * foF2 h'Fl Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2.7 2.5 2.4 2.3 2.25 2.3 2.2 2.2 2.2 2.25 2.3 4.1 360 420 6.1 7.0 7.0 7.0 7.0 7.2 7.4 460 480 480 510 510 510 510 7.6 480 7.6 7.8 480 2.35 2.4 2.4 2.4 7.4 7.5 7.2 450 450 440 450 7.0 (2.5)(440) (7.0)

Time: 75.0° E. 5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

**Average values: other columns, median values.

				Table 43	2*			
Ibadan,	Nigeria	(7.4°N, 4	1.0°E)				F	bruary 1955
Time	h°F2	foF2	h'F1	foFl	h°E	foE	f Es	(M3000)F2
Time 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	h*F2 240 240 240 250 250 290 320 355 370 370 360 345 330 300	5.8 5.8 5.8 5.3 4.5 3.9 3.2 3.5 6.5 7.7 8.2 7.5 7.0 7.4 7.7 8.3 8.3 8.3			125 120 110 105 105 105 105 100 110 110	1.2 2.2 2.8 3.1 3.3 3.4 3.5 3.5 3.5 3.5 3.2 8 2.2	fEs 3.6 3.2 3.6 3.5 3.4 3.1 3.5 4.0 6.6 12.4 13.1 13.2 12.3 11.0 9.4 10.5 7.5 6.4	(M3000)F2 3. 4 3. 1 3. 1 3. 0 3. 2 3. 5 3. 2 3. 4 3. 0 2. 6 2. 4 2. 5 2. 5 2. 5 2. 5 2. 5 2. 5 2. 6
18 19 20 21 22 23	265 300 300 270 245 240	8.1 7.5 7.6 7.4 7.5 6.5	200		120	(1.4)	4.0 3.8 3.6 3.6 3.4 3.5	2.5 2.5 2.6 3.0 3.0 3.2

Time: 75.0°E.

Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. **Beight at 0.83 foF2.

**Average values; other columns, median values.

Time: 0.0°. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.

*Average values except foF2 and fEs, which are median values.

Townsvi	lle, Austr	alia (19	.3°S. 14	Table 4	3		Fe	bruary 1955
Time	h¹F2	foF2	h*Fl	foFl	h ª E	foE	f Es	(M3000)F2
00	270	>5.2					2.5	(3.0)
01	250	>4.6					3.0	3.0
02	230	4.1					3.0	3.2
03	250	3.5					2.8	3.1
04	260	3.2					2.6	3.0
05	280	3.0					2.5	3.0
06	260	3.4				1.3	2.6	3.2
07	240	4.7	240		120	2.2	3.2	3.4
08	320	5.4	230	4.0	110	2.6	3.8	3.2
09	300	6.2	220	4.2	100	3.0	4.4	3,2
10	300	6.8	210	4.3	100	3.2	5.2	3.2
11	320	7.0	200	4.4	100	3.4	5.0	3.0
12	340	7.0	200	4.5	100	3.4	4.8	2.95
13	340	7.3	190	4.4		3.4	4.4	2.9
14	330	7.6	190	4.4	100	3.4	4.3	2.9
15	320	7.5	200	4.3		3.2	4.0	3.0
16	300	7.2	230	4.1	100	3.0	4.0	3.1
17	290	6.9	220	3.8	100	2.6	3.6	(3.2)
18	(250)	(6.5)	240		120	2.0	2.9	(3,2)
19	240	>6.4					3.0	(3,1)
20	250	5.6					2.1	(2.95)
21	280	5.4					2.2	(2.8)
22	280	5.4					2.1	(2.8)
23	280	5.0					2.1	(2,9)

Time: 150.0°E.

1.0 Mc to 16.0 Mc in 1 minute 55 seconds. 5weep:

Table 45

Camberra	a, Austra	February 1955						
Time	h*F2	foF2	b°F1	foFl	h * E	foE	f Es	(M3000)F2
00		4.0					3.6	3.0
01		4.0					3.6	3.1
02		3.8					3.6	3.1
03		3.3					3.6	3.2
04		3.0					3.2	3.1
05		2.7					3.1	3.0
06	250	3.8				1.8	2.0	3.4
07	240	4.4	240	3.6	110	2.4		3.4
08	350	4.7	220	4.0	110	2.8	3.6	3.1
09	380	5.0	220	4.2	110	3.0	3.8	3.0
10	340	5.2	200	4.2	110	3.2	4.0	3.05
11	320	6.0	200	4.2	110	3.3	4.1	3.1
12	320	6.0	200	4.2	110	3.4	4.0	3.2
13	330	5.8	200	4.2	110	3.4	4.1	3.1
14	340	5.6	200	4.2	110	3.2	3.8	3.1
15	330	5.6	210	4.2	100	3.1	3.8	3.1
16	320	5.5	210	4.1	100	3.0	3.6	3.2
17	290	5.4	220	3.9	110	2.6	3.1	3.2
18	250	5.1	240	(3.4)	120	2.1		3.3
19	240	4.9						3.2
20		5.0						3,1
21		4.8						3.0
22		4.4					3.0	3.0
23		4.2					3.6	3.0

Time: 150.0°E.

1.0 Mc to 16.0 Mc in 1 minute 55 seconds. 5weep:

Table 47%

			Table 4	1"			
d Is. (51	.7°S, 57.	8°W)				Fe	ebruary 1955
h°F2	foF2	h ¹Fl	foFl	h ® E	foE	f Es	(M3000)F2
305	5.0					4.6	(2.8)
300	4.9					3.3	(2.9)
300	4.7					3.0	(2.8)
280	4.5					3.1	(2,9)
280	4.3					1,2	2.9
260	4.3			170	1.4		3.0
250	4.8	245		120	1.8	3.0	3.4
280	4.7	245		115	2.4	3.8	3.3
315	5.0		4.0	110	2.7	4.4	3.2
325	5.4	240	4.2	105	2.9	5.7	(3.1)
310	5.8		4.4	105	3.1	5.8	3.1
295	6.1		4.4	105	3.2	6.2	3.2
315	6.1	210	4.4	105	3.2	6.4	3.2
300	6.2	220	4.4	105	3.2	6.1	3.2
300	6.0	220	4.4	105	3.1	5.7	3.1
295	5.8	240	4.3	105		5.8	3.2
295	5.6	230	4.2	110	2.8	4.4	3.2
290	5.8	240	3.9	115	2.5	3.7	3.2
265	5.9	245	3.3	125	2.1	3.4	3.2
255	5.6					3.1	3.2
270	5.5					3.5	3.0
285	5.6					5.4	3.0
290	5.2					5.0	(2.9)
300	5.1					5.2	(2.9)
	h*F2 305 300 300 300 280 280 250 280 250 280 315 325 310 295 315 300 295 225 270 285 270 285	h'F2 foF2 305 5.0 300 4.7 280 4.5 280 4.3 250 4.8 280 4.7 315 5.0 325 5.4 310 5.8 295 6.1 300 6.2 300 6.0 295 5.8 290 5.8 265 5.9 255 5.6 270 5.5 285 5.6 290 5.2	305 5.0 300 4.9 300 4.7 280 4.5 280 4.3 260 4.3 250 4.8 245 280 4.7 245 315 5.0 325 5.4 240 310 5.8 295 6.1 315 6.1 210 300 6.2 220 300 6.0 220 295 5.8 240 295 5.6 230 290 5.8 240 265 5.9 245 255 5.6 270 5.5 285 5.6 290 5.2	# Is, (51.7°S, 57.8°W) h*F2 foF2 h*F1 foF1 305 5.0 300 4.9 300 4.7 280 4.5 280 4.3 250 4.8 245 280 4.7 245 315 5.0 4.0 325 5.4 240 4.2 310 5.8 4.4 295 6.1 4.4 315 6.1 210 4.4 315 6.1 210 4.4 300 6.0 220 4.4 300 6.0 220 4.4 295 5.6 230 4.2 290 5.8 240 3.9 265 5.6 270 5.5 285 5.6 290 5.2	h*F2 foF2 h*F1 foF1 h*E 305 5.0 300 4.9 300 4.9 300 4.7 280 4.5 280 4.3 260 4.3 170 250 4.8 245 120 115 315 5.0 4.0 110 325 5.4 240 4.2 105 310 325 5.4 240 4.2 105 315 6.1 210 4.4 105 300 6.1 210 4.4 105 300 6.1 220 4.4 105 300 6.0 220 4.4 105 295 5.8 240 4.3 105 295 5.8 240 4.3 105 295 5.8 240 4.3 105 295 5.8 240 4.3 105 295 5.8 240 4.3 105 295 5.8 240 4.2 110 290 5.8 240 3.9 115 <td># Is, (51.7°S, 57.8°W) h F</td> <td># Is, (51,7°S, 57.8°W) h'F2 foF2 h'F1 foF1 h'E foE fEs </td>	# Is, (51.7°S, 57.8°W) h F	# Is, (51,7°S, 57.8°W) h'F2 foF2 h'F1 foF1 h'E foE fEs

Time: 60.0°W.

5weep: 0.67 Mc to 25.0 Mc in 5 minutes.

*Average values except foF2 and fEs, which are median values.

2.6 3.0 00 280 4.6 270 $\frac{3.1}{3.2}$ 01 4.4 02 260 4.0 03 04 3.4 3.1 (260) 2.6 (3.0)(290)3.0 3.5 05 (260) <2.1 06 07 250 (280) 4.3 2.5 3.0 3.2 3.4 3.5 5.0 120 3.4 08 220 220 4.2 120 4.0 4.5 3.2 300 5.5 3.1 4.3 09 340 5.6 110 3.1 3.1 3.1 3.0 200 110 4.0 10 6.1 320 5.0 4.5 5.8 320 200 4.6 110

4.6

4.5

4.3

4.1

Table 44

foFl

h*E

110

110

110

foE

3.5 3.3 3.2

f Es

4.4 4.0

4.0

February 1955

(M3000)F2

3.0 3.1 3.15

3.3 3.2

3.1

2.9

2.8

2.9

3.0

3.0

3.0 2.95

2.9

2.9

153.0°E)

h °Fl

---2.4 240 3.7 280 6.0 17 250 5.7 <2.1 18 250 5.6 5.4 20 260 300 21 300 4.8 23 300 4.8

200 200

200

200 210

150.0°E. Time: 5weep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Australia (27.5°S,

foF2

6.4

6.3

6.3

6.2

6.4

h¹F2

320

340

340

330

300

Brisbane,

Time

11

12

13

14

15

16

14

15

16

18 19

20

21

22

340

340

300

210

230

240

250

250

250

260

147.3°E) Tasmania (42.9°5, February 1955 Hobart, h°E f Es (M3000)F2 Time h⁴F2 foF2 h*Fl foFl foE 2.9 00 01 2.9 260 260 2.6 3.0 2.5 2.0 2.1 3.0 02 260 3.5 03 280 3.0 270 04 05 250 2.8 Е 3.0 2.0 220 100 3.1 100 3.1 07 220 4.0 200 4.0 100 2.6 2.9 340 4.5 08 09 370 200 4.1 100 3.0 2.8 2.85 4.3 4.4 3.1 3.2 10 380 5.1 200 100 2.85 2.9 2.9 200 100 11 350 5.5 5.4 3.2 3.2 360 200 4.4 100 12 3.5 3.8 3.9 13 350 5.5 5.5 5.5 200 4.4 100

4.3

4.2

4.0

100

100

100

100

100

3.1

3.0 2.7 2.4

1.9

23 3.2 Time: $150.0^{\circ}E$. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

5.2

5.1

5.0

5.0

4.8

4.5

200

200

200

Godhavn	. Greenlar	nd (69.2°	N 53.5	Table 4	18			January 1955
Time	h'F2	foF2	h Fl	foF1	h®E	foE	f Es	(M3000)F2
00	240	(2.1)					3.8	3.2
01	280	(2.4)					4.1	3.0
02	(280)	(2.5)					3.4	(3.1)
03	(270)	(2.6)					4.6	(3.0)
04	(280)	(2.7)					3.9	(3.1)
05	280	(3.0)					4.0	(3.1)
06	(260)	(3,2)					4.3	(3,2)
07	240	(3,2)					3.4	(3,2)
80	(230)	(3.0)					4.1	(3.3)
09	(240)	(3.4)					4.1	(3,3)
10	260	(3.7)					3.4	(3.3)
11	250	(4.1)					3.2	(3,3)
12	240	(4.5)					4.0	(3.25)
13	220	(4.3)					3.4	(3.4)
14	230	(4.4)					6.4	(3.3)
15	230	(4.1)					5.0	(3.2)
16	230	(4.0)					4.7	(3.3)
17	230	(3,9)					6.2	(3.1)
18	230	(3.8)					3.8	(3.2)
19	230	(3.5)					3.7	(3.2)
20	240	(3.3)					3.1	(3,2)
21	240	(3.0)					4.7	(3.2)
22	240	(2.8)					4.3	(3.2)
23	250	(2.3)					3.2	(3.1)

Time: 45.0°%.

1.0 Mc to 25.0 Mc in 16.2 seconds. 5weep:

January 1955 (M3000)F2

3.15

3.2 3.4 3.55

3.4

3.1 3.2 3.55

3.55

3.45 3.4 3.3

3.2 3.2 3.3

3.4 3.6 3.7 3.75

3.2 3.3 3.4 3.3

3.15

!				Table 4	19			
Delhi.	lndia (28.	6°N, 77	.1°E)					January 1955
Time		foF2	h°F1	foFl	h ª E	foE	f Es	(M3000)F2
00	280	2.8						3,25
01	280	2.9						3,25
02								
03								
04	240	2.7						3.6
05	250	2.7						3.5
06	240	2.8						3.6
07	220	4.5						3.8
08	220	5.7						3.8
09	240	6.2						3.6
10	240	6.8						3.6
11	240	7.5						3.6
12	240	6.9						3.6
13	240	6.8						3.6
14	240	6.7						3.6
15	240	5.9						3.6
16	240	5.8						3.6
17	220	5.3						3.8
18	240	4.1						3.6
19	240	4.0						3,6
20	240	3.4						3.6
21	(240)	3.5						(3,6)
22	260	3.2						3.4
23	260	3.0						3.25

Time: $75.0^{\circ}E$. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2. Time:

				Table 5	51			
Calcutt	a, India (22.6°N,	88.4°E)		_			January 1955
Time	h*F2	foF2	h*Fl	foFl	h ® E	foE	f Es	(M3000)F2
00	(240)	(3,9)						(3.1)
01	(240)	(3.4)						(3.1)
02	(225)	(3, 4)						(3,3)
03	(210)	(2.8)						(3.4)
04	(210)	(2.5)						(3.4)
05	(220)	(2,2)					(2, 2)	(3.4)
06	(210)						(2.9)	(3,4)
07	(210)	(4.5)				2.0	(2.3)	(3,3)
08	(230)	(5.5)				2.3	(3.0)	(3.1)
09	(260)	(7.6)				2.8	(3, 4)	(3.05)
10	(250)	(9.2)				3.1		(3.05)
11	(255)	(9.8)				3.4		(2.9)
12	270	10.8				3.3		2.9
13	260	11.0				3.3		2.9
14	240	10.6				3.1		3.05
15	240	9.6				2.9	3.8	3.1
16	230	9.0				2.4	3.7	3.1
17	210	7.9					4.6	3.3
18	(195)	(5.2)					(3.6)	(3.55)
19	(220)	(4.4)					(2.9)	(3.2)
20	(220)	(4.5)						(3.2)
21	(225)	(4.6)						(3.15)
22	(240)	(4.2)						(3.1)
23	(240)	(4,1)						(3,05)

90.0°E. Sweep: 0.5 Mc to 18.0 Mc in 10 minutes, manual operation. 75.0°E.

Ahmedabad, India (23.0°N, 72.6°E)

foF2

2.8

2.6

2.0

1.8

4.2

5.8

6.7 7.2

8.4 9.9 8.8

9.4

9.0 7.8

>7.0

6.1 4.8 4.6

4.2 3.4 3.2

h*Fl

225

215

210

210

220

210

210

220 220

230

h°F2

260

260 250

230

230 300

265

230

245

260

260

275

280 275

270

255 240 225

200 205

240

240

250 260

Time

00

01

02 03

04

05

07 08

09

10

11 12

13

14

15 16 17

18 19

20

21 22

23

0.6 Mc to 25.0 Mc in 5 minutes, automatic operation. Sweep:

Table 50

h°E

110

110

105

105

105 105

107

107

110 115

foE

2.1 2.7 2.9 3.1 3.2 3.1 2.9 2.5 2.0

f Es

1.7

2.2

1.6

3.9

3.8

4.0 3.8

3.5

3.6

4.2 3.9 3.9

3.8

3.5

3.8

3.4

3.1

foFl

3.6 4.0

4.2

4.5

4.3

4.2 3.7 3.0

Table 52

Bombay,	India (1	9.0°N, 7	3.0°E)					January 1955
Time		foF2	h 'Fl	foFl	h º E	foE	f Es	(M3000)F2
00								
01								
02								
03								
04								
05								
06:30	270	4.5						3.35
07	300	5.2						3.15
08:30	300	6.1						3.15
09	330	6.8						2.95
10	360	7.6						2.8
11	360	8.8						2.8
12	390	9.4						2.65
13	390	10.1						2.65
14	390	10.7						2.65
15	420	11.2						2.55
16	420	11.2						2.55
17	390	10.4						2.65
18	380	9.5						2.7
19	360	8.4						2.8
20	330	7.4						2.95
21	300	6.3						3.15
22	300	5.6						3.15
23								

Time: 75.0°E.

Sweep: 1.5 Mc to 10.0 Mc in 5 minutes, manual operation. *Height at 0.03 foF2. Sweep:

Madras,	India (1	3.0°N, 8	0.2°E)	Table 5	<u>i3</u>			January 1955
Time		foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 300 360 390 390 390 420 400 390 360 360 330 300	5.2 6.1 7.2 7.6 7.4 7.3 7.4 7.8 8.4 8.3 7.5 6.9 6.2						3.35 3.15 2.8 2.65 2.65 2.65 2.65 2.65 2.65 2.8 2.95 3.15 3.15

Tiruchy	, lndia (10.8°N.	78.8°E)	Table 5	4			January 1955
Time		foF2	h 'Fl	foF1	h°E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	360 420 450 480 510 510 510 510 480 450 440 (420)	3.5 5.8 6.5 6.5 6.7 7.2 7.7 7.5 7.2 7.0 6.8 (6.0)						2.8 2.55 2.45 2.3 2.25 2.25 2.25 2.25 2.25 2.3 2.3 2.45 2.5 (2.55)

Time: 75.0°E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

Time: 75.0°E.

5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. * Height at 0.83 foF2.

Townsvi	lle, Aust	ralia (19	9.3°S 1	Table 5	<u>5</u>			January 1955
Time	h*F2	foF2	h°F1	foF1	h°E	foE	f Es	(M3000)F2
00	250						3,7	
01	240						4.0	
02	250	(4.0)					3.7	(3.2)
03	260	(3.6)					3.6	(3.1)
04	270	(3,0)					3.0	(3.0)
05	260	(3,0)					2.6	(3.0)
06	250	3.6			140	1.6	>3.0	3.3
07	250	4.5	230	3.6	120	2.2	4.0	3.2
08	360	5.2	240	4.0	110	2.8	5.0	3.0
09	360	6.0	220	4.2	110	3.1	5.4	3.0
10	340	6.8	210	4.4	110	3.3	5.7	3.0
11	350	7.4	200	4.4	110	3.4	6.2	2.9
12	340	7.7	200	4.5	110	3.4	6.5	2.95
13	330	7.9	200	(4.4)		3.5	5.6	(3.0)
14	310	7.9	190	(4.4)	110	3.4	>5.3	3.05
15	300	7.9	210	4.3		3.2	4.7	3.1
16	300	(7.0)	200	4.1	120	3.0	4.3	(3,2)
17	300	>6.0	230	3.9	110	2.7	4.3	3.1
18	250	5.6	240	2.7	120	2.1	4.0	3.2
19	260	5.4					3.4	(3,1)
20	300	>5.5					3.8	(3.0)
21	300	>5.5					4.0	(3.0)
22	270						>4.0	
23	270						>4.1	

Time: 150.0°E.

5weep: $1.0~\mathrm{Mc}$ to $16.0~\mathrm{Mc}$ in 1 minute 55 seconds.

(300)	5.5					(6.3)	(3.3)
(320)	5.9					5.9	3.2
310	6.6					6.2	3.1
330	6.6					6.5	3.1
340	6.2					7.3	3.0
(330)	6.6					(6.6)	3.1
310	6.3					(5.8)	3.1
300	6.6					6.0	3.2
300	6.0					5.6	3.2
(280)	5.4					5.8	3.2
(290)	5.4					5.6	3.2
	5.5					(5.3)	3.1
	5.8						2.95
	5.7					(5.7)	3.1
	(5.2)						
	(5.4)					(5.4)	
	(320) 310 330 340 (330) 310 300 (280) (290)	(300) 5.5 (320) 5.9 310 6.6 330 6.6 340 6.2 (330) 6.6 310 6.3 300 6.6 (280) 5.4 (290) 5.4 (290) 5.5 5.8 5.8 (5.2)	(300) 5,5 (320) 5,9 310 6.6 330 6.6 (330) 6.6 310 6.3 300 6.6 300 6.0 (280) 5,4 (290) 5,4 5,5 5,8 5,7 (5,2)	(300) 5.5 (320) 5.9 310 6.6 330 6.6 (330) 6.6 310 6.3 300 6.6 300 6.6 (280) 5.4 5.5 5.8 5.7 (5,2)	(300) 5.5 (320) 5.9	(300) 5.5 (320) 5.9 310 6.6 330 6.6 310 6.3 310 6.3 300 6.6 310 6.3 300 6.6 300 6.0 5.5 5.8 5.7 7 (5,2)	(300) 5.5 (6.3) (320) 5.9 5.9 310 6.6 6.2 330 6.6 7.3 (330) 6.6 (6.6) 310 6.3 (6.6) 310 6.3 6.0 300 6.6 5.6 (280) 5.4 5.5 (290) 5.4 5.5 5.5 5.7 (5.2) (6.2)

Table 56

h*E

foE

f Es

5.2 (5.8) (5.2)

(5.6)

foFl

January 1955

(M3000)F2

(3.4)

December 1954

(M3000)F2**

Time: 150,0°E.

Delhi, India (28.6°N, 77.1°E)

Time

Brisbane,

Time 00

01 02

03 04

05

06 07

h*F2

1.0 Mc to 16.0 Mc in 1 minute 55 seconds. 5weep:

foF2 h *F1

Australia (27.5°S, 153.0°E)

b 'Fl

foF2

5.1

(4.7)

4.7 5.0

Table 57 Canberra, Australia (35.3°S, 149.0°E) January 1955												
Canberra	a, Austral	lia (35.3	3°5, 149.	· 0oE)				January 1955				
Time	h*F2	foF2	b°F1	foFl	h*E	foE	f Es	(M3000)F2				
00		4.1					3,2	3.1				
01		3.8					3.7	3, 1				
02		(3.6)					4.0	3.1				
03		3.0					3.6	3.05				
04	(260)	2.8					3.2	(3.1)				
05	250	3.0				E	3.1	3.1				
06	240	3.8			(110)	2.0	3.2	3.35				
07	320	4.3	240	3.7	110	2.5	3.5	3,2				
08	330	4.9	220	4.0	110	3.0	4.2	3.2				
09	370	5.3	210	4.2	110	3.1	4.2	3.1				
10	340	5.6	220	4.2	110	3.3	5.5	3.1				
11	320	6.0	200	4.2	110	3.4	5.0	3.1				
12	340	5.9	200	4.3	100	3.4	4.2	3.1				
13	340	6.0	200	4.3	100	3.4	4.1	3.1				
14	330	5.9	200	4.2	110	3.3	4.1	3.1				
15	325	5.6	200	4.2	110	3.2	3.8	3.1				
16	330	5.5	210	4.1	110	3.0	3.4	3.1				
17	300	5.2	220	3.9	110	2.7	3.8	3.2				
18	270	5.1	240	(3.5)	120	2.2	3.6	3,2				
19	240	5.0					3.1	3.2				
20		5.0						3.0				
21		(4.8)					3.1	(3.0)				
22		(4.7)					3.2	(3.0)				
23		(4.6)					3.5	(3.05)				

Time: 150.0°E . 5weep: 1.0~Mc to 16.0~Mc in 1 minute 55 seconds.

00	280	2.6	3,35
01	280	2.7	3.3
02	(240)	(2.7)	(3.5)
03			
04	240	2.9	3.6
05	240	2.7	3.6
06	260	2.7	3.4
07	240	4.5	3.75
08	230	5.8	3.7
09	240	6.2	3.6
10	240	6.2	3.6
11	240	6.1	3.55
12	240	>6.4	3.5
13	240	6.8	3.5
14	240	6.4	3.55
15	240	6.0	3.6
16	220	5.6	3.75
17	220	>5.0	3.8
18	220	3.8	3.75
19	240	3.3	3,55
20	240	3.2	3.55
21	240	2.8	3.6
22	240	2.4	3.45
23	280	2.5	3,25

Table 58

h*E

foE

f Es

foFl

Time: 75.0°E.

5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Time • foF2 h*F1 foF1 h*E foE fEs (M3000	Table 59 Bombay, India (19.0°N, 73.0°E) December 1954												
	00)F2**												
01 02 03 04 05 06:30 07 300 5.1 3.1 08:30 330 6.5 330 6.5 3.0 9 10 330 6.9 10 360 7.6 11 360 7.6 11 360 7.6 12 390 9.7 13 390 10.5 14 390 11.1 1 2.6 14 390 11.7 15 420 11.7 16 420 11.7 16 420 11.5 17 390 10.8 18 360 9.6 19 330 8.1 2.55 17 390 10.8 2.65 17 390 10.8 2.65 17 390 10.8 2.65 17 390 10.8 2.65 17 390 10.8 2.65 17 390 10.8 2.65 17 390 10.8 2.65 17 390 10.8 360 9.6 3.75 20 330 7.2 21 300 5.4 3.1	1 0 95 8 75 665 665 66 55 55 75 85 95												

Time: 75.0°E.

**Average values; other columns, median values.

Madras,								ecember 1954
Time		foF2	h'Fl	foFl	h*E	foE	f Es	(M3000)F2*
00								
01								
02								
03								
04								
05								
06	300	5.4						3.0
07	330	6.3						2.9
08	360	7.3						2.85
09	360	7.5						2.75
10	360	7.4						2.75
11	390	>7.5						2.7
12	390	>7.7						2.65
13	390	8.2						2.7
14	390	8.2						2.75
15	360	8.4						2.8
16	360	8.8						2.85
17	340	>8.0						2.85
18	330	>7.5						2.9
19	330	7.0						2.95
20	330	6.2						2.95
21	300	5.7						3.05
22 23								

Time: 75.0° E, Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

**Average values; other columns, median values.

M3000)F2 ** 3.35 3 35 (3.35)3.6 3.45 3.45 3.65 3.6 3.6 3.6 3.6 3.5 3.6 3.8 3.85 3.8 3.45 3.65 3.5 3.3

November 1954

(M3000)F2**

2.95 2.85 2.75 2.7

2.65 2.6 2.55

2.55 2.55

2.55

2.5

2.75 2.75

2.85

-				Table (16								Table (52			
Tiruchy	India (10.8°N,	78.8°E)				D	ecember 1954	Delhi,	India (28	.6°N, 77	. 1°E)	Table (22		N	lovember 1954
Time	*	foF2	h*F1	foFl	h*E	foE	f Es	(M3000)F2**	Time		foF2	h*Fl	foF1	h * E	foE	f Es	(M3000)F2 *
00									00	280	2.6						3.35
01									01	280	2.8						3.35
02									02	280	2.7						(3.35)
03									03								
04									04	240	3.1						3.6
05									05	260	3.0						3.45
06	390	4.3						2,65	06	260	3.4						3.45
07	420	6.1						2.45	07	240	5.8						3.65
08	480	6.9						2.35	08	240	6.8						3.6
09	510	6.9						2.25	09	240	7.0						3.6
10	510	6.7						2.2	10	240	7.4						3.6
11	510	6.8						2.2	11	240	7.3						3.6
12	540	7.0						2.15	12	240	6.9						3.5
13	540	7.0						2.15	13	240	7.3						3.5
14	540	7.7						2.2	14	240	7.2						3.6
15	510	7.6						2.25	15	220	7:4						3.7
16	480	7.5						2.3	16	220	6.4						3.8
17	480	7.1						2.35	17	200	5.6						3.85
18	450	7.0						2.5	18	200	3.9						3.8
19	420	6.5						2.45	19	240	3.4						3,45
20	(420)	(6.6)						(2.55)	20	240	3.5						3,6
21	(420)	(6.1)						(2.55)	21	240	3.2						3.65
22									22	240	2.8						3.5
23									23	280	2.6						3.3
Time:	75.0°E.								Time:	75.0°E.							

Time:

5weep:

75.0°E.

*Height at 0.83 foF2.

5weep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Bombay, India (19,0°N, 73.0°E) Table 63 November 19													
Time	*	foF2	h*F1	foF1	h° E	foE	f Es	(M3000)F2**					
00 01 02 03 04 05 06:30 07 08:30 09 10 11 12 13 14 15 16 17 18 19 20 21	270 300 330 330 390 390 420 420 420 390 360 340 330	4.7 5.6 6.9 7.6 8.4 9.4 10.8 11.8 10.7 9.6 8.4 7.3	a ri	1011	11 2	102	100	3.25 3.1 3.0 2.9 2.8 2.7 2.65 2.55 2.5 2.55 2.75 2.9 3.0 3.15					
22	300	5.2						3.15					

Time:

 $75.0^{\circ}\,\text{E}_{\star}$ 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. 5weep:

Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.

h*F1

Table 64

foF1

h* E

foE

f Es

**Average values; other columns, median values.

India (13.0°N, 80.2°E)

foF2

7.0

7.7 8.2

8.6

9.8

9.5 8.7

>8.0

>7.0

>6.5

>10.0

>10.0

*Height at 0.83 foF2.

*Height at 0.83 foF2.

360

360

390

390

390 420

420

420

420

440

400

390

390

360

360

Time

07

08

10

11

12 13

14

15

16

17

18

19

20

21 22

**Average values; other columns, median values.

Table 65 Tiruchy, India (10.8°N, 78.8°E) November 1954 f.FO h*F1 foF1 h*F foE fFc (M3000)E3##

1.5 Mc to 18.0 Mc in 5 minutes, manual operation.

**Average values; other columns, median values.

Time: $75.0^{\circ}E$. Sweep: $1.5~\mathrm{Mc}$ to $18.0~\mathrm{Mc}$ in $5~\mathrm{minutes}$, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Delhi	. India (28	3.6°N, 77	.1°E)				(ctober 1954
Time	*	foF2	h*F1	foF1	h*E	foE	f Es	(M3000)F2**
00	280	3.0	_					3,35
01	280	2.9						3.35
02	260	2.8						3.4
03	200							
04	240	2.8						3.45
05	240	3.0						3.5
06	240	4.2						3.6
07	220	6.7						3.75
08	240	7.5						3.7
09	240	7.8						3.65
10	240	8.1						3.55
11	240	8.1						3.5
12	250	8.8						3.4
13	280	9.7						3.35
14	260	9.7						3.45
15	249	9.4						3,55
16	240	8.4						3.65
17	220	7.9						3.8
18	200	6.1						3.85
19	220	4.0						3.75
20	260	3.2						3.4
21	260	3.3						3.4
22	280	3.0						3,25
23	280	3.1						3.2

Table 66

Time: 75.0°E.

1.5 Mc to 18.0 Mc in 5 minutes, manual operation. 5ween:

*Height at 0.83 foF2.

**Average values; other columns, median values.

Bombay,	India (1	9.0°N, 7	3.0°E)	Table 6	01		4	October 1954
Time	ф	foF2	h*F1	foF1	h*E	foE	f Es	(M3000)F2**
00								
01	1							
02								
03								
04								
05								
06:30	270	5.6						3,25
07	300	6.8						3.1
08:30	330	7.5						2.9
09	360	7.9						2.8
10	360	9.0						2.7
11	390	10.1						2.6
12	390	10.9						2.55
13	420	>12.0						2.5
14	420	13.0						2.5
15	420	>12.9						2.5
16	420	12.6						2.5
17	390	11.9						2.65
18	360	10.6						2.7
19	360	8.9						2.75
20	360	8.3						2.8
21	320	7.0						2.95
22	300	6.4						3.0
23								

Time: 75.0°E, Sweep: 1.5 Mc to 10.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

**Average values; other columns, median values.

	/ .	0.00%	ma 00 m	Table 6	9		,)-A-b 1054
	India (1				1.1.0	4 P		october 1954
Time		foF2	h*F1	foF1	h*E	foE	f Es	(M3000)F2**
00								
01								
02								
03								
04								
05								
06	390	>5.6						2.7
07	420	7.2						2.5
08	450	7.6						2.4
09	460	>7.5						2.35
10	480	7.3						2.3
11	480	7.0						2.3
12	480	7.4						2,25
13	480	7.8						2,25
14	480	>8.4						2.25
15	480	>8.5						2.3
16	480	8.8						2.3
17	480	8.6						2.35
18	450	8.5						2.35
19	440	8.3						2.45
20	(450)	(7.5)						(2.45)
21	(450)	(7.0)						(2.4)
22								
23								

Time: 75.0°E, Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. "Height at 0.83 foF2. "*Average values: other columns, median values.

Madras.	India (1	3.0°N. 8	0.2°E)	Table	<u>71</u>		Sei	ptember 1954
Time	*	foF2	h*F1	foFl	h° E	foE	f Es	(M3000)F2*
00								
01								
02								
03								
04								
05								
06	330	5.6			•			2.9
07	360	7.1						2.75
80	390	7.5						2.6
09	420	7.2						2.5
10	450	>7.0						2.45
11	450	7.2						2.45
12	420	7.4						2.45
13	420	>7.5						2.45
14	420	8.3						2.45
15	420	9.2						2.45
16	420	9.5						2.5
17	420	9.4						2.55
18	390	8.6						2.6
19	390	7.7						2.65
20	360	6.8						2.8
21	330	>6.0						2.95
22								(2.65)
23								

Time: 75.0°E, Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.03 foF2. **Average values; other columns, median values.

Time		foF2	h°F1	foF1	h*E	foE	f Es	0ctober 1954 (M3000)F2
1 Ime		1012	11 1 1	1011	11 6	102	112	(10000071-2
00								
01								
02								
03								
04								
05								
06	330	>6.2						2.95
07	360	>7.6						2.8
08	390	>8.4						2.65
09	420	8.4						2.55
10	420	8.1						2.5
11	420	8.4						2.5
12	450	8.6						2.5
13	420	9.0						2.5
14	420	9.6						2.5
15	420	>10.0						2.5
16	420	10.2						2.5
17	420	10.5						2.55
18	390	10.1						2,65
19	390	9.2						2.65
20	360	8.4						2.8
21	(300)	>7.0						(2.95)
22								(2.8)

Table 68

Time: 75.0° E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

**Average values; other columns, median values.

Delhi, 1	India (28	.6°N, 11	. 1 - 67					otember 1954
Time		f oF2	h*F1_	foFl	h * E	foE	f Es	(M3000)F2**
00	260	3.8						3.4
01	260	3.6						3.3
02	280	3.4						(3.35)
03								
04	280	3.2						3.3
05	240	3.5						3,45
06	240	4.4						3.6
07	240	5.7						3.6
08	240	6.6						3.6
09	240	6.6						3.3
10	280	6.6						3.3
11	280	7.8						3,25
12	280	8.6						3.25
13	260	8.6						3.3
14	280	8.3						3,25
15	240	8.2						3.4
16	240	8.0						3.45
17	240	7.3						3.55
18	240	6.9						3.6
19	220	6.1						3.75
20	240	4.3						3.45
21	280	3.8						3.25
22	280	3.8						3.25
23	280	3.5						3.25

Time: 75.0°E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2. *Average values; other columns, median values.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,		Table 7	2			
Tiruchy	India (10.8°N,	78.8°E)				Se	otember 1954
Time	0	foF2	h*F1	foFl	h°E	foE	f Es	(M3000)F2**
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	360 420 450 480 510 540 510 480 510 450 450 420 420 (420)	5.0 6.8 7.2 6.6 6.5 6.5 6.8 7.2 8.0 8.4 8.6 8.1 8.4 7.6 7.0 (7.0)	n*F1	1011	n E	102		(2.85) 2.5 2.35 2.25 2.2 2.15 2.2 2.25 2.25 2.35 2.35 2.35 2.35 2.45 (2.55)
	. 1207							

Time: 75.0°E.
Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.
*Height at 0.03 foF2.
**Average values; other columns, median values.

TABLE 73 Central Radia Propagatian Labaratory, National Bureau of Standards, Washington $25,\,\mathrm{D.\,C.}$

form adopted June 1946

National Bureau of Standards (Institution)

Scaled by: J.S. J. W.P.

DATA ONOSPHERIC

August (Month)

h F2 (Charocteristic)

Washington, D. C.

Observed at ___

Sweep 1.0 Mc to 25.0 Mc in 13.5 sec.

Manual

Automotic

Manual

TABLE 74 Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

955

fo F2 Mc August (Unit) (Month)

5 Σ ω National Bureau of Standards
Scaled by J.J.S., J. W.P. A N M N

Maskindran, D. Carrolland, D. Carr	Scaled by J.J.S., J.W.P.	Calculated by: J.W.P., N.B., L.F.M., J.J.S.	15 16 17 18 19 20 21 22 23	58 54 57 5.5 56 603 57 48 48	50 5.0 52 56 62 58 5.7 4.9 44	49 50 49 53 57 63 57 49 42	50 48 50 54 52 F 47 F (4.0) 3 (31) 3 29 F	49 48 54 57 60 62 50 8(38) 6 2	100 CO	52K 53K 56K (60) 5 62K 62K 60K 53K 46	50K 57K 55K 56K 52K 52K (46)x 3.1 29F	6.2 5.8 6.0 59 63 67 57 47 42	54 5.3 5.3 5.2 5.3 5.1 49 46 44	53 53 58 58 57 503 52 43 38	52 52 50 52 57 62 5.5 45 42	60 57 56 56 64 63 56 51 47	62 61 61 66 76 6.6 6.8 63 5.8	5.8 6.0 6.2 6.2 6.8 6.8 5.4 4.4 3.9	58 55 5.5 58 67 6.5 5.0 (47) 37	6.0 57 5.6 58 65 67 57 48 42	69 6.8 6.5 69 68 67 5.7 5.4 43	5.6 5.6 58 5.6 57 54 5.0 46 37	55 52 53 53 50 5.3 (47)\$ [34] 4 3.6	5.6 5.4 5.4 5.0 54 6.1 54 47 39	1 56 54 54 52 52 56 [49] 4 44 44F	54 [53] 4 5.2 5.3 63 62 5.0 43 38	52 55 55 60 62 (55) 48 43	51 5.4 54 51 5.7 62 5.3 48 433	54 57 56 62 66 62 52 44 40	5.3 5.2 5.2 54 (5.5)3 6.2 5.4 42 35	5.6 5.7 58 60 60 6.4 5.8 4.6 39	4.8 K 46 K 47 K 47 K 47 K 50 K 45 K 39 K 36 K	5.4 52 58 59 6.3 66 5.8 4.8 3.6	6.0 6.0 62 6.3 6.8 67 5.8 4.9 47 8	62 63 63 66 7.0 67 6.3 58 5.0		54 54 55 56 60 62 54 47 42
Moshington D.C. Lang Z71PW	[15	3 58	4 50	44	5.0	A 11 9		K 52 K	3 G 50 K	6.2	54	53	52	09	۲9	5.8	5.8	0.9	69	5.6	55	5.6	v 56	54	52	21	2 54	5.3	5.6	8 K 4.8 F	4 5.4	0.9 0.	79		
Mashington, D. C. Lot 38.7 PM Lot 38.7		Mean	H	5.4	4 5.5	8 50	5.2	0.3	2	7 0 T	× 44 ×	5 57	5947	9 50	53	5.9	6.3	57	5.5	55	0.0	57	52	55	5.8	5.5	F 5.4	53	5.4	2 7.0	6.3	0 5.0 F	6 5.4	5.9	2 6.5		5.5
Moshington, D.C. Loi 38.77N, Long 77.1°W. ot o2 o3 o4 o5 o6 o7 o8 o9 32 27 23 21 21 24 34 48 60 67 38 33 29 26 20 2 33 40 45 53 38 30 26 20 2 21 22 33 40 45 53 38 30 26 20 20 20 20 20 20 20 20 20 38 30 26 20 27 22 33 40 45 53 40 34 31 22 25 22 33 40 45 50 40 34 30 24 24 25 25 33 40 45 50 40 34 30 24 24 24 24 38 42 46 50 40 34 30 24 24 24 36 41 49 52 38 32 22 28 42 50 38 33 32 28 28 42 50 38 33 32 28 28 42 50 38 33 32 28 28 42 50 38 33 32 28 28 42 50 38 33 32 28 28 42 50 38 33 32 28 28 42 50 38 33 32 28 28 42 50 38 33 32 28 28 42 50 38 33 32 28 28 42 50 38 33 32 28 28 28 42 50 38 38 39 30 24 24 25 38 30 28 28 28 28 28 28 28 38 30 20 20 20 20 20 38 30 20 20 20 20 20 38 30 20 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 30 20 20 20 20 38 40 40 40 50 50 50 50 50 50 50 50		75°	=	2 F	0 53	50	٤	50		ストイエースト	X X	3 55	7 H 51	0 49	53	0.9 0	3 6.3	84 9	5.5 6	5.6	3 61 #	2 48	5.4	60	5.8	3 5.6	o 5.8 H	3 (52) §	6 5.6	8 5.7	6.5	4 4 5	K 5.5 x	6.7	63		56 55
Mashington, D.C. Lai 28 20 N., Long 77 10 W. Lai 28 20 N., Long 77 10 W. 32			Н	6.7	5.0	5.3	Ę	G (45) J	2 (7 2) S	74 20 74 74	PX A X	53 F	51	50	6 4.5	5.8	62	_		19		9	9 5.0		Н	8		±	-		69	5 494	K 5.1 K	0 58	∞		2/2
Mashington, D. C. Loi 38-70N. Long 7710W Loi 38-70N. Long 7710W ol 02 03 04 05 32 27 27 18 2 2 1 2 2 2 2 2 3 3 3 2 4 2 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2			02 9	8 h y	66 44	3 40	3 (38)	A 40 K	/ J J J	0 X 3 5 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X 7 X	3 K 38 K <	0 42	45	47	hh 8	2 50	4.6	2 50	7 45	84 0	2 F 56	7 4386	44	8 49	3 5.4	f 45	46	0 47	8 50	9 51	4.5	F 42 H	7 4 Y	7 4			~
Mashington, D. C. Loi Shington, D. C. Loi Shington, D. C. Loi Shington, D. C. Shington, D.		W	0.5	F 24	F 26 F 4	F 25	Faz	F 2 F	, , , , , , , , , , , , , , , , , , ,	7 (21) 5 <	7 23 K	27 F	F 29 F	25	7 +	2.8	29	3.1	7 4	FZZF	F 28F	F 24F	26	5 (24) 5	25	27	F 23 F	F 28 F	76	25	26F	F	TX (20) 5	(1.7) 5	FZZF		4
Mashington Lol 3Bnoton Lol 3Bn	a	– , Lang	\vdash	3 F 2	9 F 2	6 (2	7	3 % F	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1(20)5	22 K	(22) 7		0 F 2	_		3.1 F 2	3	2	۲	30F 2	2 2	8	4 (2	7 0	24F 2	F	28F 2	2.4 2	9 2	5	F	1.7 F	1.9 2	3.0 F 2		26 27
1	Congression Washington.	Lot 38.7°N	10	F 32 3	5 3	3.8	4 3	F31FJ2		5 K 24	K 37 K 32	(24) 7 (24)	2 3.	40 3	1 3	0 3	4 F (36)	4 84	7	3 F 2	F 38 F 3.5	3.6 3	3.3	5 25 2	2 3	F 29 29	F 3.2 F 3	F 36F 31	26 (25)	33 3.	7 8 7	F (26) 5 (21)	x 22 x [2]	24 1.8	F 3.7 F 33	\dashv	3.0

Sweep10 Mc ta 25.0 Mc in 13.5 sec. Manual Autamatic 8

CPO 836048

TABLE 75 Central Rodio Propagation Labaratory, National Bureau of Standards, Washington 25, D. C.

Form adapted June 1946

L.F.M.

IONOSPHERIC

955

August

Mc (Unit)

foF2

o o

Washington,

Observed at

National Bureau of Standards DATA

Scaled by-

29 F 4.2 F 2330 4. 5.63 4.2 00 4.2 35 3.4 5 +0 + 3 4.4 40 #3 90 (% 2 (m) 00 M 4.0 \sim 3.6 46 48 F 80 F 3.0 F 5.0 K 38K (31) 46 F (3.6)5 [+3] A 2230 P. N.B. ++ 4.4 ++ 7 + 44 400 63 4.2 4.2 4 73 746 40 1 42 30 4.4 47 4.4 44 ± 56 3 55K 72 Y 35F 50K (38) (++) S 2130 53 5.0 5:0 3 3 5.2 74 7 49 55 65 4.9 49 3 5.4 (##) 45 48 5.0 20 5 400 45 F 48x 4 00 H 2030 600 52 50 4 6.0 6,3 55 5.0 50 63 (5.4) 200 -5.8 -/9 20 29 5.8 80 67 00 (i) 5.5 63 200 50 6.5 17 64 K 5.3 K 7.65 50 r 63 c (8.9) 48 9. 7.0 -1 99 5.2 30 99 5.3 09 65 10 5.0 6.0 5,5 26 49 63 6.2 9 3 57 K 58 X 47 K (5.8]A 53 63 2.0 5.2 20 24 58 5.4 ص ف 00 57 62 8.8 5.3 5.9 6.0 7.4 53 58 0 5.6 75 54 19 00 65 89 3 6.3x 56K 47 K 1730 23 54 50 5.2 6.3 3 09 5.7 5.3 50 4.9 5.4 63 62 5.7 54 5 5.7 2.4 5,8 500 5.6 5.3 5.9 6,7 5.3 ~ 45 K 5.4 K 5 4 K (52)5 1630 5.0 55 5.5 5.0 50 80 49 5,3 56 6.2 5.8 5.6 55 52 5.4 24 54 55 0.9 3 49 90 5.2 26 5.8 5,3 50 47 X 5.0 K (4.9) 1530 5. - x 5.0 5.0 65 62 5.6 7.0 56 5.0 5,00 5.4 5,4 6.2 5.4 4.8 5.2 5.00 55 5.3 5.6 5.0 5.4 -9 n 5.8 5.6 5,3 5.4 5,3 (48) A VX VX 49 K 4 9 X (56) 49 30 6.0 9.9 03 5.2 62 5.5 30 1430 6.0 5.6 52 75 5.7 50 5.0 53 5.2 50 5.6 5,8 56 26 5.5 55 3 54 0.9 49 K (4.7) B 4.8 K 47 K C#56 0:5 1330 5.4 5 5.5 5.0 62 6.0 56 49 5.5 5.7 53 56 49 5.4 55 6.0 33 53 7:5 6.7 (2) 54 27 6.3 2 X 76 x (5.3)A (5:3)5 1230 2,0 M∘92 3,00 5,0 50 64 5 5:5 00 47 15 6.0 63 23 5.7 5.5 53 56 8.3 5.4 5.5 56 5.3 5.5 30 V 58 ₹ 5.3 X (5.2) 5.6 # 5.4 1130 5 45 52 5.4 5.7 61 4.8 4.7 5.0 50 48 56 6,1 9.9 63 3 54 50 6.0 57 5.4 6.3 2.0 6,5 6.3 25 K (5.0] XX 5.2 # 5.5K 5(64) (5,2)5 クチーグ 7 4 50 1030 6.0 24 53 4.9 50 0.0 2.0 5.0 49 S 50. 55 5.7 63 5,6 63 5.7 5.3 5.3 5.4 6.3 47 <u>-</u> 6.5 (436 5.1 H 52 K 7 409 59 # 0930 5.7 29 6.4 5 5-5.0 5.9 33 50 6.3 69 6.0 5 24 5.4 ف 6.4 5,5 5.8 30 50 30 6.3 24 ₹ 45 K 5,2 K 0830 2 00:5 5,6 5.0 2,0 5.7 5.2 30 5-5.0 ## 5.4 5.7 5.7 9.9 49 5.0 5.9 5,0 4 09 5.4 75 200 48 e-K 4. Ex 0730 <369 5 49 00 4.2 46 5.3 5.2 5.2 £-0 5.4 m 4.6 400 3 5.2 5 30 43 4.9 5,0 5,0 4 5.4 52 40 49 5.3 6 45 45 W PX <356> 0630 1 × 五. 3.6 76 43 44 4 45 43 4 49 00 (17) 7: 7 400 4.0 75 43 7 4.5 4.0 76 4.3 44 47 7. 43 m 29X [26]A 3. 25 F 3.2 F 23 8F 12 6 77 0530 32F 3.2 32 F 30 64 5 3 ος (γ 3 78 200 3 37 33 32 32 3 3.3 <u>...</u> 40 m) 7 27 F 7 T. 1. 24F 4 4 7 (2.7)5 136) 1.83 24 0430 19 K 22 F 2.3 F Lot 38.7°N , Long 77.1°W 0 ر ر e/ # 2.3 5 2.3 2.7 5 44 25 44 (L) 3 1.7 K (27) 0330 (20) (26) 5 274 245 245 es 3.5 4 7 % 35 7 4 3.0 30 50 23 2.3 3.0 3 4 t 3 (2.5) 9 n 3 0230 2.9 X (3.0) 5 3. 28F (23) E 26F X 19 F (27) 2 FF 00 32F 3.0 F 12 OF 3.0 F 33 8 30 2 1.4 7 30 3 26 1.00 3# 3,-2.0 3.2 [26]A 2.6 X しろみ (38)4 7.45 2.9 26 € 305 K X 0130 3.57 <u>-</u> 2.0 3 30 3.0 (M) 3 2.3 3,5 g. 32 3 35 $_{\zeta }^{\omega }$ 2 30 6.0 3.6 27 K # 17 K 27F 3.8 F 3.3F 3.0 F 2.3 x 3.6 F 23 F 3.9 F (4.7)E 0030 27 7: 4.0 3-4.0 5.0 1.4 3 W S 3,0 3 (r) 3,00 3.3 (n) 3.6 36 3 3.3 $\frac{1}{2}$ Median Count 6 2 4 m o 0 2 4 9 __ 20 56 Day = 2 5 8 2 | 22 23 24 27 28 29 30 25

Sweep.10 Mc to 25.0 Mc in 135 sec.

Manual 🗅 Automatic 🗷

National Bureau of Standards (Institution)

TABLE 76 Central Radia Propagatian Lobaratory, National Bureou of Standards, Washington 25, D C

IONOSPHERIC DATA

1955

Characteristic) Km August (Manth)

4	(Characteristic)		(Unit)	((Manth)						2	りして	CNOSPHERIC		DAIA				Color	Stoled by Stoley		(Institution)) (u	
1	Observed (2	Shingtor 38.7°N	1	77 10W	>		ı				76		foca Time					a dec	Lyded by	N P	m	F	S
2.00 2.20	\vdash	-	11 02	1	04	-	\vdash	-	80	60	01	Ш	1	13	-	-	17	8	61	20	21 22	\parallel		
1	-	-	+		-	\vdash	╁	2	# (210)	L	200		\vdash	I	1	-	H (220)		В		-	-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2						23		-		[200]		II.	И		_	210							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ю						p	240	_	190	18.0 #		-		£	X	220	220						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4						д	190	Ų,	M	ž		.		Ŧ		Σ	230						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10						Q		200		200	_			_	_		210						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	-					27	×	<	220 K	220	Σ×	V.	2.4	7. 4	A 220	H 220	240				_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7						H	A H	230	[22]		E 2	E.*	~	×	¥	W. <							
	80						3	-		210	180 4		±					A 230						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0						23	210	300				-		*		*	220						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01						2.5	-		[220] A	220#		2		I		Ħ	240						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	=					_	H			200		200	-	-		2:	H	240						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12						24		210	200 #	081		\vdash	4:	-	-	_	Н						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 53						9		_				¥	I	-	-	-	230						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-						23	-		200	200		I	-		T.	7 220							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15						24		-	H 061		D:		ŀ	1			Н						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	91						23		\vdash			I			*	I	-	340						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.7						23		220		200	Dr.		I	×	200	I	240						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8						25	220	I	200		E			-	_	-	220						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	61						0			200	210					-		Н						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20						Н	1240	Н	200	200 H	F		I				220						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21					_	a	-	H			-	1	-			1	Щ				_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22						a	_	210 #		200 H			I				240						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23						a			190	I			₹			Ħ	Н						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24						2,				130 #	//					A 210	220						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25						5	-	210	200 H		Н	\vdash	I	\vdash	\vdash		230						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26						2,			200	210	H	H		-	-	-	230						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27						a		200				_		*	I		230						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28						21				180	200 H		¥		×	I×		L.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59						0	~	220	220	(200! 4	200 x		¥	_			240						
4 220 230 190 200 W 200 W 200 W 200 W 200 120 W 200 200 200 W 200 200 200 200 200 2	30						0		-	210	200				E	210	¥	230						
230 220 200 200 200 200 200 200 300 300	3-						0	\dashv	\dashv		200	-	-	¥		I		250						
130 220 210 200 100 200 200 200 200 200 20						-	-																	
36 30 30 30 30 30 30 30 30 30 30 30 30 30	Median					-	23	-	\dashv	200	300		-	-	-	\dashv		230						
	Caunt					_		_	30	30	23	29	_	_			200	7.7						

| 29 | 29 | 29 | 30 | Sweep LQ Mc to 225.0 Mc in 135 sec. | Monual □ Automatic 図

National Bureau of Standards

TABLE 77 Central Radio Propagation Loboralory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

fo FI (Characteristic) (Minority (Month)

Sweep.10 Mc to 25.0 Mc in 13.5 sec.
Monuol D Automotic 3

National Bureau of Standards (Institution)

Scaled by J.J.S. J.W.P.

 $TABLE \quad 78 \\ \text{Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.}$

(Characteristic) (Unit) (Month) Observed at Washington, D. C.

IONOSPHERIC DATA

		Lat 25. (*IN	IN , Lang	9 ((.I - W	A							MA_C	Mean_T	Time					Calcufe	Lalculated by ک	J.W.P.	N N	-1	F.M.	J. J.S.
Day	00	0 10	02 03		0.4	0.5	90	07 08	8 09	0	=	12	13	4	15	91	17	8	6	20	21	22	23		_
-				_			(120)5	110 100	001 00	001 0	100	100	00/	001	100	110	H 0 H	120	A						_
2							(120)>	1001	001 001	011	001	100	001	001	100	00/	00/	100							L
ю							120	110 11	110 100	00/ 0	100	100	90/	100	00/	001	110	011							
4						_	5(011)	100 M	n M	E	٤	W	400/	001	00/	00/	011	(120)A							
5							A(011)	110 16	100 100	001	100	100	00/	5(011)	00/	90/	100	1/0							
9				H			110 K	110K 10	100K 100K	JK 100K	i	100th	100 K	100 K	110 K	110K	(110) B	(120) S	X						-
7							110 K	110 K 10	100K 100	100K 100K	K 100 K	100K	100 K	100 K	100 K	100K	110 H	110 K	×						
80							001	DOOJA 10	100 1006	00/ 90	00/	100	011	100	100	9011	110	120							
6							011	110 10	100/ 100/	00/	100	100 M	00/	100	A(001)	001	011	120#							
0_					-		011	21 011	001 001	001 6	00/	100	00/	H 00/	00/	110	110	110							
=				-	-	F	5(021)	110 110	0// 0	00/	00/	001	001	100	011	011	110	110							_
12					_		A	011 001	00/ 0	00/	001	00/	00/	001	H(001)	001	001	(120)5							
13							5	110 100	00/ 0	001 0	00/	100	100	00/	00/	011	HOH	120							
4							5	110 110	00/ 0.	00/ 0	100	001	00/	1001	110H	00/	00/	011							_
15							(120)5	110 100	00/ 01	00/	00/	001	00/	H 001	1001	1004	100	120							
91							5	11 011	110 (100)A	A (100) A	A (100) A	A(001)	A(001)	100 H	001	110	110	120							_
17							A	A 11	110 100	100	(100) A	4(00))	A (00)	N(001)	H 001	A(001)	H 001	(120)2							
8							(130)A	110 11	110 100	(100) 5	9 110	110	00/	100	(100)A	100 H	100	120							
61			_				S	110 11	110 100	100	700/	100	100	100	100	110	110	110							
20							S	110 11	100 100	100	100	00/	100	110	110	110	110	120							
2							5	110 10	100 100	00/	100	H00/	110	001	011	4011	110	120							
22							5	120 11	110# 110	011	00/	110	011	110 #	110	110 #	011	(120) 5							
23							5	110 11	110 100	00/ 0	00/	100	00/	110	W(011)	A(011)	011	110							
24							5	110 11	100 100	100	100	00/	00/	001	00/	110	A(011)	A	S						
25							130	11 0/1	110 110	001	100	100	00/	00/	00/	00/	011	110							
56				-			ر ا	11 011	110 110	01/	001	100	1004	20/	00/	110	100 H	N							
27					_			110 11	110	011	110	00/	100	001	001	011	110	5 (011)							
28							> /	120 12	120 110	110	1004	001	100K	100K	110 K	110K	110 K	X X	×						_
59							S K	120K 11	110 K	110K 110K	110 H	0//	H001	00/	00/	100	A(001)	(130)5							
30							S	120 12	120 110	011	100	00/	100	00/	H(001)	A(001)	(100)A	(100)A							L
31				-			S	120 11	110 110	0//	100	100	100	001	110	110 #	110	130						Ì	
Median							120	110 11	110 100	001 0	100	00/	100	100	100	110	011	120	1						
Caunt							14	30 50	0 30	30	30	30	31	31	31	3	2	e4 00							Н

Sweep.LO Mc to.25.0 Mc in 13.5 sec. Manual □ Autamatic ⊠

 $TABLE \quad 79$ Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

National Bureau of Standards

IONOSPHERIC DATA

foE Mic August

L'E N.B. 23 Calculated by: J.W.P., L.F.M. 22 Scaled by: J.W.P., J. J.S. 2 20 6 4.6 × ¥ (2.2) A 2.2 A 2.0 2.0 1.9 8 3 6.1 A 4 A A. H A [2.5] (2.5)# (2.5) B (2.5) 7.4 25 25 25 2.7 2.57 B H æ 2.9 # 29# (2.8) A (2.9) 2.9 2.9 (2.9) 3.0 25 9.9 3.0 3.0 2.8 7 A B A (3.0) # 3,2 93 4 3.2 3 2 (3.2) 3.2 # A A 3.3 3.3 # (3.3) 4 3.2 # (3.1) # 4 3.4 (3.4) ر ن ن 3.0 20 H H A Œ Mean Time (3.5) P [3.4] # (3.3) A [3.4] A 3.4 3.4 (3.4) 3 3.4 3.4 3,7 3.4 3.3 3,3 3.2 3.3 18 A B A A A Œ A A Ø Ð 3.4 # 3.4 (3.3) " 75°W 2 A B B B A A 3.4 Ø ~ B Œ [3.3] -3 A B ξ Œ. A A K ر س س (3.3) # 33) 3.4 = Ø K A Œ. H R H В Œ B 3.0. (3:1) 33 ~ 2.9 0 B T H E Æ Œ Ø A H B (3.0) (2.9) [2.8] 4 (2.8) 3.0 B 2.9 3.0 60 3.0 B B D A A A Σ Ø A Œ Œ A A A d. B A I (2.9) A 2.7 2.7 2.7 2.6 08 Σ Ø Œ A A Ø B Ø A I A AA Œ Ø Œ Œ A æ (2,4) A (2.3) P (2.5)A (2.3) 2.4 2.5 2.2 2.2 3.5 7.4 A B (74) 07 Œ A В Ø A A 4 A B T Ø Œ Œ A a 4 H 1.7 90 9-1 1.7 2.0 1.7 S 60 % S A A BB BSB Æ A A B A S BB SS S S S S 05 Lot 38.7°N, Long 77.1°W 0 4 Observed of Washington, D. C. 03 02 ō 00 Median Caunt 28 23 2 9 ω 6 0 24 26 Day 12 4 5 9 8 6 20 2 | 22 25 27 29 30 3

Sweep 1.0 Mc to 25.0 Mc in 13.5 sec.

Monual

Autamatic

Manual

National Bureau of Standards

Scaled by J. J. S., J. W.P.

 $TABLE \quad 80 \\ \text{Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.}$

355

August (Month)

Mc Km

Washington, D. C.

Observed at

Day

2 М 4 S ~ 00 თ 0

9

2 ... 4

=

9 17 8 6 20 2 22 23

5

IONOSPHERIC DATA

J. J.S. L.F.M. 3.5 110 0 23 110 61.65 00 110 0 Calculated by: J.W.P., N.B. **5**2 011 2 120 120 120 0 20 3.3 120 10 <u>ග</u> 120 165 4.3 3.2 3.4 110 140 120 120 130 0// 10 120 0 8 9 3.5 7.2 120 4.2 120 4.8 4.0 120 4.3 120 3.9 120 9 4.3 140 130 110 9 b 3.2 4.7 120 3.4 4.4 120 100 130 **-**5 9 100 (6.9) 120 30 100 4.3 110 3.6 110 4 0 7.4 110 4.7 56 110 42 110 110 10 Ð 0 Ф <u>m</u> G 9 9.4 3.5 5.7 100 100 110 110 M°57 C Z 4.3 120 100 = ž 3.5 120 110 0 7 60 110 100 110 110 110 110 08 Σ 4.7 7.7 120 120 07 4.6 110 130 110 90 2.9 05 No. 72.1°W 0 4 10 0.5 (69) 5 2.3 (20 (2.8)5/110 7.2 100 110 110 110 41.65 5 110 03 ч (1.65 4.65 1.65 5 110 02 <1.35 <1.6 4.2 100 3.6 100 41.65 100 5 < 1.6 5 177 110 3.5)5 12.5 110 4.8 100 43 110 3.0 100 8 41.65 K1.65 S 100 S 00 59:1> s9.1

Sweep.1.0 Mc to 25.0 Mc in 13.5 sec. Manual

Automatic

3.

3 31

3 3

3.2

<u>ب</u>

ις L 3

4.2

30

3.9

33

Η.

ر بر

4.3

4.3 30

7.4 30

4.0

3.8 3

3.5

2.9 31

2.3

2.7

2.4 31

3.0 3

3.2

Median Count

31

31

3 |

30

3

30

31

3

31

<u>~</u>

3

<u>ج</u>)

4165

110 3.7 110

120 KI15 S

100

100 3.3 100 3.3 130 3.7 110

00/

100

S

G

G

Ð

b

Ó

4.7 110

3.5 110

2.3 130 4.7 110

2.9 100

00/

2.3

×1.65 S

110

4.0 110 4.0 120

3.8 120 3.27 110

2.4 110

2.8 110

2.4 110

00/

100 100

4.3 100

25 56 27 28 59 30

24

120

120 3.5 120

120

6 4.8

P

ථ

Ġ

O

c

Ġ

Ф Ð

3.9

3.9

110 110

9.0

5.4 120

120 100

120

10

59.1

4.7 120

110

c

110

0

110

÷ %

110 4.5

Sweep.10 Mc ta 25.0 Mc in 135 sec.

Manual

Autamatic

Manual

 $\mathsf{TABLE} \quad \mathsf{81}$ Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

National Bureau of Standards

Scaled by J.J.S., J.W. P.

ONOSPHERIC DATA

August

D C

Washinaton.

Observed of

(Unit)

(M1500)F2

 $\mathsf{TABLE} \quad \mathsf{82}$ Central Radia Propagatian Laboratary, National Bureau of Standards, Washington 25, D.C.

		J.S.																																			GPO 816048
S		M																																			Ü
tandarc	led by: J. J. S., J. W. P.	LF	23	32	32	30	30 F	29 F	28 4	29 F	3/	29	29	30	31	30	28	30	30	31	31	3.2	32	33 F	55	32	2 (4 8)	3.2	2.5	32	3 / F	1 8	318	30	31	18	
of S	W. P.	NB	22	32	30	33	2	(33) F	29 1	30	30	30	30	29	31	30	29	32)5	30	31	(33) F	Н	32	30	33	50	3.3	3,	23	e. e	3.1 5	5 5	18	30	15	29	
Burea	S	J.W.D	21	3.2	ر چ	30	2 5	32 4	29 K	(32) 5	31	29	30	31	30	29	29	32	32	65	3/	(35) 8	32	Н	34	(32)	30	32	3/	33	314	31	31	30	ر ج	29	
ational	Scaled by: J. J. S.	ated by:-	20	4	, 65	0 %	33 F	32	27 "	31 4	32	31	7 (18)	32	18	31	31	وي دي	3.2	3.2	31	32	32	31	es es	30	32	67	32	32	30 4	3 /	2.5	30	315	30	
ž	Scaled	Calcutated	6	30	32	30	32 F	32	28 A	31 4	31	32	32	30	32	3,	31	31	3.0	32	31	3.2	31	32	32	18	31	32	7	2,2	31 K	32	31	30	 31	30	
		!	<u>8</u>	34	32	31	30	32	(29) F	30 K	30	16	3.2	3 /	3.1	30	29	30	31	30	3.2	67 67	e. e.	32 F	ъ.	2 2	18	8 8	ρ.) ε.ι	5.5	30 K	18	32	31	16	/60	
5, D.C.			17	32	3.0	30	30	29	29 KM	3.0 1	32	31	3/	30	3/	3.2	29	32	3.2	18	18	, 60	32	32	32	33	es es	16	32	5 5	3.0 F	16	3.2	32	31	3,	
ingtan 25			91	30	30	31	28	26	28 K	30 4	31	30	29	29	30	32	30	1 67	31	18	ري ا	5 5	32	32	H	84	18	16	1 60	32	29 %	29	32	31	3/	30	
rds, Wosh ∧	1		5	55	31	29	27	30	277	27 4	32	29	29	200	15	3/	200	31	31	3/	/ 65	€ €	8 8	31	2,2	3 /	5.5	30	es es	31	30 F	15	32	31	3.1	3,	
of Standard	1	ne	4	31	3.2	27	24	Н	26 4	6 4	30	28	27	27	100	00	27	30	30	30	31	3,	e5 e5	316	ي جي	32	32	30	6 6	3.1	28 A	3/	3.1	31	305	30	15 sec.
Bureau		Mean Time	53	31	100	29	24	30	23 1	26 4	0.	G	29	30	29	32	29	30	30	30	31	30	31	5 6	33	33	32	30	5. 6.	3.1	31 5	30	32	3 /	30	31	25.0 Mc in 13. Automotic 🕅
IONION Laboratory, National Bur		75°W	12	29	30	27	ź	29	G "	H K	200	32	22	e 6	30	31	30	30	31	١, ح	ga ex	32	32	30	34	3 + F	62	30	1 5	34	80	3.0	32	18	30	29	7
aboratary	5	7	=	3.	5,5	20	Ŋ	36	G 1	A K	29	3/	27	30	31	15	29	29	E 6	29#	26	3 4	ي ق	32	١ ور	32 H	(32) g	32	2 2	3.4	26	31 4	£ E	31	31		Sweep <u>1.0</u> Mc t
agation L	5		0	3.4 F	31	18	¥	29	A 8	H K	55 %	29 4	29	30	3,23	e2 e2	31	0 50	18	32	5 53	34	32	7 6	3 4	e. e.	34	33	5 5	5 5	3 / #	304	φ.) φ.	22	2.5	29	Swee
Radia Propagatian Laboratory, National Bureau of Standards, Washington 25,			60	3.7	32	32	¥	اد ی	A P	H A	30 €	29	0 8	25	7 5	32	2.9	32	60	65	34	3 4	32	ي ج	5.5	5 (46)	3 4	35	2	جي جي	B / H	32 X	8	32	325	38	
Central Ra			0.8	3 4	34	82	Σ	G	G 4	× 5	31	31	28	3,2	3.2	3.4	ک ق	30	32	e2 62	3,	25.50	32	33	3.1	3 4	× 1 8	34	5 5	5 3	7 (18)	34 4	د بی	5 5	3 2	30	
ŏ			07	2.5	31	23	h 4	31	<i>₽</i>	3.3 A	3 4 F	32	31	29	2	33	e2 e2	30	32	3 3	ф	3	ی ج	3 6	36	34	3.2	35	36	34	H / E	32 #	رى رى	5.2	2 2	30	
			90	32 F	P	5 5	ς, ε,	Ħ	B 4	33 F	3 3	32	32	18	34	ę, ç,	رى وي	15	34	7 55 5	7 5	8 8	es es	36	35 F	3 4	34	ري ري	36	36	33 F	34 K	48	ې ح	E 60	30	
. 1955 1955			0.5	5 5	34 F	3/	32	27 F	K30)F	32 %	34 F	33 F	29	2 2	2 2	32	5	3 /	32F	7 5 5	34 F	3/	300	32	5 3	32 F	3 / 5	3 23	32	7 5 5	F	31) 5	7	318	63	29	
		77.1°W	0.4	31 F	31 F	30)	31 F	29 F	1,30) 7	J 5	30	30 F	29	18	30	30	0.5	29	30 F	32 F	3/8	0 80	2 (18)	5 5	3,	A 6. 6.		326	32	3/5	¥	31 5	30	318	15	67	
August	(Month) D. C.	gue	03	31 F	3.2 F	30	3.2	30 F	(26) E	30 5	2004	30	30 F	7.65	31	30 €	0 %	32 F	29	32 F	31	2.9	2 2	3.2	32 6	4 8 8		315	32	3.0	A	30 F		32F	, 6	30	
1	o U	1 1	0.2	3 /	31	30	29	30 F	29 11 1	30 1	F 4	3 /	31	1 6	3,	7 (05)	18	28	28 F	31 F	30	32	3/	32	7 8 8	5.5	4 6 6	(3.2)	63	3 /	(2 S)F	× H	- 1	32 F	3.1	29	
2	(Unit) Washinaton.	Lat 38.7°N	ō	31	32	32	29	34 F	29 %	29 F	P 4	30	30	30	18	32 F	30	27	30 F	٦ / ي	30	30	30	30	32	325	32	16	30	18	(31) 5	4 68	3 2	318	305	30	
(M3000)F2	acteristic)		00	32 F	3 /	31	30	24 4	29 K	3 1 4	2 y F	31	29	30	30	30	3/	28	29	3.0 F	30	31	(31) #	31	۶.۶ ۶	A 50 E	32	es go	31	3.3	30 F	7 1 S	1 8	325	3/	181	
(M3C	(Character		Day	-	2	ю	4	5	9	7	80	6	01	=	12	13	4	15	91	17	-8	61	20	2 }	22	23	24	25	26	27	28	59	30	31	Median	Count	

 $TABLE \ 83$ Central Radia Propagatian Laboratory, National Bureau of Standards, Washington 25, D. C.

Form adopted June 1946

National Bureau of Standards (Institution)

IONOSPHERIC DATA

August (Month)

(M3000)F1,

Doy

œ Sweep.10 Mc to 25.0 Mc in 13.5 sec. Manual

Automatic

Manual

Count Median

 Form adopted June 1946

National Bureau of Standards

Scoled by: J.J.S., J.W.P.

TABLE 84 Central Radia Propagatian Labaratary, National Bureau of Standards, Washington 25, D $_{\odot}$

pogotian Laboratory, National Bureau of Standards, Wash IONOSPHERIC DATA

1955

August (Month)

(MISOO) E (Characteristic) Observed at

Washington, D. C.

J. J. S. F.R 23 Calculated by: J.W.P., N.B. 22 2 20 6 S d. × H.7. (45) H 15.7 4.4 5 4.3 4.4 4.3 4.4 4.3 4.4 7 0 U d-D A B Œ Œ A A A B 4.3 A (H.3) A 4.4 (4.4) A (4.4) 4 (H.H) 4.3 4.4 1 4.4 4.3 4.4 1.4 4.4 4.3 4.4 23 2 2 Œ Œ Œ Œ a-Œ 4.3 # 4.3 H (H.H) A (H.3) A (4.4) (H:H) 11 11 4.4 4.4 (4.5) 7 -4.3 7 4.4 4.3 4.3 4.3 4.4 4.3 4.4 4.3 4.3 9 B 24 Q-Œ H Œ Н 4.2 # (4.3)4 (4.4) п. Н. Н 4.4 4:5 7.4 4.4 7 43 7. 4 67 4.4 43 4.5 7. 7.4 4.3 2 Œ D. Œ. A A Œ H. 4. 4.3 # 4.4 H.4) H (4.3) A 4.3 # (4.4) H 4.3 # (4:5) (44) 7 1. 4 5 (4.3) 4.4 7.4 7 4.3 Œ Д 4 Œ H Œ at 4.5.4 (4.5) 7.7 (4:4) 4.4 5 4.3 4.4 4.4 7 43 4.3 <u>m</u> H Œ H a. U H Œ T Ħ C. Œ Œ Œ H T. A 7 M°57 (H.3) F 4.5 7 1 4.4 4.4 h'h 4.3 12 4.4 Ä 4.3 B Œ Œ ₹ at: В A a Œ В THE D Ø Œ at-A 7 4.4 7.7 (4.5) (4.4) (4.4) 7. 1.7 7.7 H B H Σ H Œ Œ. A d-Œ Ċ d a Œ Œ (H.S) A 1. 4.5 7.4 4.3 0 H \leq 4:3 4.4 44 Œ 0 A A H (4.5) A 4.3 4.4 (4.5) (4.4) 4.4 4.4 60 4.4 H Œ H Œ T T Œ Z П Œ H Ø 4 Œ H Æ (4.5) (4.4) (4.S) 4.4 4.4 08 4.5 4.4 4.3 at-H € Œ Œ. Œ I A Œ a. (4.4) A (4.4) H (H.3) A (4.3) # 44 (4.4) P 4:57 4.5 4.3 7 07 Œ 4.4 B 4.4 H A H 4.4 Œ. B Œ at. d. Œ Œ Ø H Q D A 4.4 A.5 90 4.3 Lo 4.3 A 1.4 4.4 S S Œ H BBBB S S) 5 H B Ø S S D S Y 0.5 , Long 77.1°W 0 4 03 Lot 38.7°N 02 0 00 Median Count Day 00 6 5 80 2 9 0 2 4 9 _ 2 6 20 22 23 24 25 56 29 27 28 30 <u>-</u>

Sweep.1.0 Mc to.25.0 Mc in 13.5 sec. Monual (1) Automatic (8)

<u>Table 85</u>

<u>Ionospheric Storminess at Washington, D. C.</u>

August 1955

			1 1 1 1			
		s	Principal			9
Day	Ionospheric	character*	Beginning	End	Geomagnetic	character**
	00-12 GCT	12-24 GCT	GCT	GCT	00-12 GCT	12-24 GCT
1	1	1			1	1
2	1	2			1	1
3	1	3			3	2
4	2	3			4	3
5	2	3	2100		3	3
6	4	5			5	3
7	4	5		2100	4	3
8	3	2			2	2
9	1	3			2	2
10	1	3			2	1
11	2	3			1	2
12	2	0			2	1
13	1	3			2	2
14	2	2			2 2 3	3
15	3	1			3	1
16	3	1			2	2
17	2	1			1	2
18	1	2			3	2
19	1	2			2	1
20	$\bar{2}$	2			2	ī
21	1	2			2	2
22	ì	2			0	ī
23	ì	2			ì	î
24	î	3			2	2
25	2	2 2 2 2 2 3 2 2 2			2	2
26	1	2			1	2 2
27	2	2			1	2
28	3	4	1300		4	2
29	4	3		1100	2	2 3
30	3	1	ercin crain mass crain	1100		J D
31		- 1			1	2 2
21	1	1			2	6

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9. 9 representing the greatest disturbance.

scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic Kfigures on an arbitrary scale of 0 to 9, 9 representing the greatest
disturbance.

⁻⁻⁻⁻Dashes indicate continuing storm.

Radio Propagation Quality Figures

(Including Comparisons with Short-Term and Advance Forecasts)

North Atlantic Path - July 1955

	North Atlantic 6-hourly quality figures	Short-term forecasts issued about one hour in advance of:	day (J-r quality whole	ce forecasts eports) for day; issued advance by:	Geomag- netic ^K Ch
Day	00 06 12 18 to to to to 06 12 18 24	00 06 12 18		4-7 8-25 s days days	Half Day (1) (2)
1 2 3 4 5	7 7 7 7 7 6 7 6 6 5 7 7 6 6 7 7 7 7 7 7	7 7 7 7 7 7 7 7 6 5 6 6 6 6 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7	2 1 2 (4) 3 2 · 2 1 1 1
6 7 8 9 10	7 6 7 7 7 6 7 7 7 6 7 7 7 6 6 7 7 7 7 7	7 7 7 7 7 6 7 7 6 7 7 7 7 6 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7	1 2 3 2 3 3 2 2 2 3
11 12 13 14 15	7 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 6 6 7 7	7 7 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7	3 3 3 2 2 2 2 1 (4)
16 17 18 19 20	7 7 7 7 7 6 7 7 7 7 7 7 7 6 7 7 7 6 7 7	7 7 7 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7	3 2 3 2 3 1 1 1
21 22 23 24 25	7 6 7 7 7 7 7 7 7 6 7 7 7 6 7 7 7 6 7 7	7 7 7 7 7 6 7 7 7 7 7 7 7 7 6 7 7 6 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7	1 1 1 1 2 3 3 2 2 2
26 27 28 29 30 31	7 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 5 7 7 6 6 7 7	7 7 7 7 7 6 7 7 7 7 7 7 7 6 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7	3 3 2 1 1 1 2 2 2 2 2 2
Score	:				
	Quiet Periods	P 28 16 28 29 S 3 14 3 2 U 0 1 0 0 F 0 0 0 0	31 0 0 0	31 0 0 0	
	Disturbed Periods	P 0 0 0 0 0 0 S 0 0 0 0 U 0 0 0 0 F 0 0 0 0	0 0 0	0 0 0	

Scales:

Q-scale of Radio Propagation Quality

- (1) useless (2) very poor (3) poor (4) poor to fair 5 fair 6 fair to good

- 7 good 8 very good 9 excellent

K-scale of Geomagnetic Activity
O to 9, 9 representing the greatest disturbance; K_{Ch} \gg 4 indicates significant disturbance, enclosed in () for emphasis

Scoring: (beginning October 1952)

P - Perfect: forecast quality equal to observed
S - Satisfactory: (beginning October 1952)
forecast quality one grade different
from observed

U - Unsatisfactory: forecast quality two or more grades different from observed when both forecast and observed were ≥5, or both≤5 F - Failure: other times when forecast quality

two or more grades different from observed

 $\frac{\text{Symbols:}}{X - \text{probable disturbed date}}$

Note: All times are UT (Universal Time or GCT)

<u>Table 86 b</u>

Short-Term Forecasts — July 1955

10

20

31 DAYS

COMPARISON (SEE TEXT)

Ó

Table 87a

Coronal observations at Climax, Colorado, (5303A), east limb

	(Abs	olu	te	val	ues													one			_		-					the	so	lar	di	sk)				
Date				Deg	ree	s n	ortl	h o	f t	he	sol	ar	equ	ato	or				0°				De	gre	ees	SOL	ith	of	the	SO	lar	eq	uat	or			7
UT	90	85	80	75	70	65	60 5	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75 8	80 8	85 5	ā
1955																																					-
Aug 1.x																																					
2.x																																					
3.x																																					
4.x																		- 1																			
5.x																																					
6.x																		-																			1
7.x																		Ì																			
8.x																																					-
9.x																																					1
10.x																																					
11.x																																					
12.x																																					
13.x																																					1
14.X																																					1
15.8a	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_			-	_	-	_	_		_	_	_	_	-	-	-	-		-		-	-	-
16.6a	-	_	_	_	-	_	_	_	_	_	3	4	3	_	-	-	-	-	_	-	_	_	_	_	-	-	-	-	-	-	-	-	_	-	-	-	- ,
17.x																																					į
18.6		_	_	-		_	_	_	-	_	-	-	-	-	_	_	_	4	-	_	_	_	_	-	-	-	_	_	_	-	-	-	-	-	-	-	-
19.7	-	-	-	_	-	_	_	_	_	_	_	-		_	_	-	_	-	_	_	_	-	_	_	_		**	_	_	-	-	-	-	-	-	-	-
20.6	-	_	_	-	-	_	-	-	-	-	-	-	_		_	-	-	-	-	-	_	_	_		_	_	-	-	-	_	-	-	-	-	-	-	-
21.X																		- 1																			
22.6a	-	_	-	_	_	_	_	_	_	-	_	_	_	_	_	-	_	-	-	_	_	_	-	-	_	-	_	-	-	-		-	-	-		-	-
23.6a		_	-	_	-	-	_	_	_	-	-	-	-	_	-	_	_	-		-	-	-	_	-	_	_	-	-	_	_	-	-	_	_	-	-	-
24.7	-	-	_	_	-	-	-	_	-	_	-	_	3	4	3	_	_	\dashv	- 1	_	-	_	_	_	5	5	6	5	_	_	_	-	_	-	-	-	-1
25.7a	-	-	5	5	5	3	_	**	_	5	20	35	50	16	5	-	_	-	-		-	-	-		3	10	5	-	-	-	-	-	-	-	-	-	-
26.7	-	_	_	_	_	_	_	_	3	6	12	25	40	34	20	5	-	-	-	-	-	10			8	5	5	2	***	-	-	_	-		-	-	-
27.6	-	-	-	_	_	_	_	_		-	5	15	26	60	90	30	10	\dashv	-	-	-				43	23	5	5	5	3	-	-	-	_	-	-	-
28.6	_	-	_		_	_	-	-	_		-	-	3	3	_	-	_	4	-	-	-	5		20		8	_	-	_	-	-	_	-	_	-	-	-
29.6a	-	_	-	-	_		_	_	-	-							10	14	10	-	-	-				63		-	-	-	-	-	-	-	-	-	-
30.6	-	_	-	-	_	_	_		_	-						46		\dashv	-	-	-	-				22		-	-	-	-	-	-	-	-	-	-
31.5a	-	-	-	-	-	-	-	-	-	-	-	-	40	50	40	66	77	5	-	-	-	-	10	40	95	105	27	5	-	-	-	-	-	-		-	-

Table 88a

Octonal observations at Climax, Colorado, (6374A), east limb

	(Abs	0].1	te	va l	Lues	in	ni	11i	.ont	as	0.5	th	. Ъ	righ	ntre	255	of	ons	a ar	ngsi	tro	n a	t ti	ne (ent	er	of	the	e sc	lar	·di	sk))			
Date				Degi	ree	s n	ort	h o	ft	he	sol	ar	equ	ato	r				o°	T			De	gre	ees	SOU	th	of	the	SC	lar	eq	uat	or			-
UT	90	85														15	10	5	0-	5	10	15												75	80	85	90
1955																				1																	
Aug 1.x																				-																	
2.x																		- 1		1																	
3.x																																					1
4.x																		- 1		1																	
5.x																																					1
6.x																																					
7.x																		- 1																			1
8.x																				1																	1
9.x																		- }																			1
10.x																				1																	
11.x																																					j
12.x																		- 1																			8
13.X																		i																			-
14.X																				-																	-
15.8a	_	_	_	_	-	_	-	_	_	-	_	-	1	8	3	3	3	5	5	8	5	5	_	-	-	_	_	_	-	_	_	_	_	_	_		-
16.6a	_	-	_	_	_	_	_	1	1	1	2	2	4	5	5	10	15	8	8	12	12	12	10	8	6	4	2	2	2	2	1	1	1	1	1	1	- 1
17.x																																					- 1
18.x																																					
19.7	1	1	1	1	1	1	1	1	1	1	3	4	4	1	2	2	2	3	3	3	3	_	_	_	-	-	2	2	2	2	2	2	2	2	1	1	1
20.6	_	-	_	-	_	_	_	_	_		5	10	5	5	5	X	Х	Х	Х	2	2	2	3	4	4	5	5	-	_	_	_	_	_	_	_	_	-
21.7a	2	2	3	3	5	10	10	3	3	5	3	3	3	3	3	5	4	3	2	2	2	Χ	Х		X	Х	Х	Х	Χ	Х	X	λ	X	À	X	-	-
22.6a	-		_	_	-	-	_	_	_	_	_	_	-	_	-	_		3	3	4	4	5	3	_	-	-	_	_	_	_	2	2	_		_	_	-
23.x																		-																			
24.7	_	_	_	_	_	_	_	-	_	-	-	_	_	_	_	_	3	3	2	3	3	2	1	1	1	_	_	-	_	_	_	_	_	_	_	3	3
25.7a	3	3	_	-	-	_	_	_	_	-	_	-	Χ	Х	X	X	X	$-\lambda$	Х	X	Х	X	X	Х	X	X	Х	Х	X	X	X	Х	Х	Х	Х	Χ	X
26.7	3	3	_	_	_	_	_	_	5	10	20	12	20	15	10	12	14	6	10	10	15	6	20	25	36	6	5	5	4	_	_		-	_	_	2	3
27.6	-	_	-	_	-	-	_	-	-	-	5	12	41	45	25	10	_	-	_	15	10	5	10	5	5	- '	-	_	_			-			_	_	-
28.6	_	_	_	_	_	-	_	-	_	_	_	_	Х	Х	Х	X	-	4	7	10	5	12	5	2	2	2	2	_	_	_	_	_	_	_		2	2
29.6	-	_	_	_	-	_	_	_	_		15	20	14	12	19	19	3	3	3	3	2	2	3	8	6	_	-	-	-	-	_	-	_	-	-	-	-
30.6	2	_	-	_	-	-	-		-	-	-	-	30					5	10	10		15	10	10	24	32	2	4	2	2	-	-	-	-	-	-	-
31.6	-	_	-		-	_	2	2	3	3	3	3	3	9	12	20	6	28	1	2	4	4	1	5	6	4	1	1	4	4	1	-	-	-	_	-	-

Table 87b

Coronal observations at Climax, Colorado, (5303A), west limb (Absolute values in millionths of the brightness of one angstrom at the center of the solar disk)

Date				Deg	ree	S 6	out	h o	f t	he	sol	ar	equ	ato	or				o°	Г									'th									_
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	-0	5	10	15	20	25	3(3.	5 4(45	50	55	6 6) 65	5 7	0 7	5 8	30 8	5 9	90
1955																																						
Aug 1:x																																						
2.x																																						
3.x																																						
4.X																		- 1																				
5.x																		ŀ																				
6.x																		-																				
7.x																																						
8.x																				1																		
9.x																																						
10.x																																						
11.x																																						
12.x																		- 1		l																		
13.x																		- 1																				
14.x										~ ~		00		. ~	7.0					-							- 20	, , ,										
15.8a	_	-	-	-	-	-	-	-	-				40				_	-	-	-	_	-	3				38) 10		, .	, ,		_	~	-	_	_
16.6a	_	_	-	-	_	-	-	-	-	4	4	12	25	30	2	2	1	-	-	-	_	_)) () (3 I.) T	ار ا) I() /	+ 4	4 :)	-	_	-	_	_
17.x										_	,	00		20	٦.	_							_	. ,	,		7 7	_										
18.6	_	-	-	-	-	-	-	-	_	3	0	23	48	33	15	5	-	_	_	-	_	_	2	4			7 14		_	. "	٠,		-	_	_	-	_	_
19.7	-	-	-	_	-	-	-	_	_		TR	24	70	75	55	T2	-		_	-	_	_	_						30	ΤC	,	-	-	_	-	-	_	_
20.6	_	-	-	-	-	-	_	Ь	6	3	3	Ь	21	27	24	33	10	기	-	-	_	_	-	. I	141) 4	2/	, 0	-	•			-	_		-	_	-
21.x 22.6a																				1							, ,	. ,										
22.6a	-	-	-	_	_	-	-	-	_	-	_	_	-	10	_	_	-	-	_	-	-	_	_			• '	+ () 4	-	-	•	<u> </u>	v	v	~	v	_	-
24.7	_	_	_	-	_	-	_	_	_	-	-	_	10	TO	_	_	_	_	_	-	_	_	2	12	20	י נ י ר	7 -	-	_			Λ	Λ.	Λ	Λ	Α	-	_
25.7a	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	٦	5	h-	20	7.5			. 20	,			_	_			_	_	_	-	_	_
26.7	_	_	_	_	_	_	_	-	_	_	-	_	-	-	_	-	_)	۳	20	10	10	. 3	3 4				-				-	_	-	-	_	_
27.6	_	_	_	_	_	_	_	_	_	_	_	5	5	_	_	_	_		_	1_	_	_	_	_	,		, 5 10) -			3	5 .	_	_	-	-	_	-
28.6		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	ΙĪ	_	_) <u>I</u>		, ,			2 1	2	6	_	_	_	_
29.6a	_	_	_	_	_	_	_	_	_	_	_	_	_	10	10	_	_		_	1_	_	_	_										_	_			_	_
30.6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	15	5	_		_	1_	_	_										_	_	_	_	_	_	_
31.6a	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	1_	_	_	_			_						_	_	_	_	_	_	_
32.0a																				ــــــــــــــــــــــــــــــــــــــ																		

Table 88b

Coronal observations at Climax, Colorado, (6374A), west limb

(Absolute values in millionths of the brightness of one angstrom at the center of the solar disk)

		nonces of one angeorom de one co	
Date	Degrees south of the solar equator	Degrees no	orth of the solar equator
UT	90 85 80 75 70 65 60 55 50 45 40 35 30 25 20	15 10 5 5 10 15 20 25 30 35	40 45 50 55 60 65 70 75 80 85 90
1955			
Aug 1.x		1 1	
2.x			
3.x			
4.x			
5.x		1	
6.x			
7.x			
8.x		[]	
9.x		l i	
10.x			
11.x			
12.x			
13.x			
14.X			
15.8a		3 5 12	z =
16.6a	4 4 6 8 16	8 4 4 5 10 12 14 14 20 5	5 5 20 3
17.x			
18.x			
19.7	1 1 2 2 2 2 2 2	8 5 5 5 7 4 4 3 12 3 3	3 4 5 2 2 2 1 1 1 1 1 1
20.6		25 20 10 20 25 20 30 34 - - -	
21.7a		3 3 15 15 15 10 10 12 12 20 15	, 2
22.6a		- 2	
23.x			
24.7	3 3 2 2		
25.7a	X X X X X X X X X X X X X X X X X X X	X X X 2 2 2 5 2 2 2 1	L 3 3
26.7		10 15 25 20 30 20 30 20 12	3
27.6	5 10	5 5 5 15 30 25 10 5	
28.6	2 2 2 5 13 4	5 7 10 10 10 18 18 15 10 5 5	4 4 4
29.6		- 2 6 6 8 8 6 4 2 2 2 10 10 5 20 15 5 5 3 3 2 2	
30.6	5 5 10 10 5 5 5 10	1 F2 2 2 2 2 2	
31.6		2 4 5 9 7 4 3 X X X X	, , , , , , , , , , , , , , , , , , ,

Table 89a

Coronal observations at Climax, Colorado, (6702A), east limb

(Absolute values in millionths of the brightness of one angstrom at the center of the solar disk)

										~ .			_								_							+ l.	- 6	160		10						
Dat			-		Deg	ree	sn	ort	n o	ft	ne	SOI	ar	equ	ato	r	3.5		_	00	_	3.0	3.5	De	gre	20	sou	40	01	the	50	lar	· eq	uau	or	00	OF	-
UI		90	85	80	75	70	65	60	55_	50	45	40	35	30	25	20	15	10	-51		15	10	15	20	25	50	35	40	45	50	55	60	65	70	/5	80	85	90
195																																						
Aug																					1																	
	2.x																		- 1																			
	3.x																				ı																	
	4.X																																					
	5.x																				1																	
	6.x																		- }		1																	
	7.X																		- 1																			
	8.x																																					
	9.x																																					
	LO.X																																					
	1.X																																					
	2.x																																					
	13.x																		- 1		l																	
1	4.x																				l																	
1	5.8a	-	_	_	_	-	-	_	_	_	_	_	_	_	_	. –	_	_	-	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
	6.x																																					
1	7.x																				1																	
1	L8.x																		- 1																			
1	19.x																				ļ																	
2	20.6	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	Х	Χ	Х	Х	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2	21.7a	-	_	-	_	_	-	-	_	_	-	_	_	_	_	_	_	_	_	_	l –	_	Х	X	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	_	_
2	22.6a	_	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	23.x																																					
	24.7	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2	25.7a	_	_	_	_	_	_	_	_	_	_	_	_	X	χ	χ	χ	Х	x	Х	ŀχ	Χ	Х	Χ	X	Χ	Χ	Х	Χ	Χ	χ	Х	X	X	χ	Х	Χ	X
2	26.x													**							ļ	**		**										3.			4.	,,
	27.x																																					
2	8.6	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	χ	Χ	Х	Х	Х	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	29.6			_						_		5		5	6	3	_	_	_	_	-	_	_	_	_	_	3	3	_	_	_	_	_	_	_	_	_	_
	50.6			Х						_	_	_	_	3	1.	1.	3	_	_	_	_	_	_	_	_	_	3	í	_	_	_	_	_	_	_	_	_	_
	31.x	3.	31	31	31	31	41	1	41.					-	44	-+		_										_										

Table 90a

Coronal observations at Sacramento Peak, New Mexico, (5303A), east limb

															(AT	bi t	rai	y S	cal	Le)																		
Date	T				Deg															0°										the								_
UT		90	85	80	75	70	65	60	55	50	4 5	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1955																																						
Aug 1.7		-	-	-	-	-	2	5	6	7	8	11	14	16	20	23	16	S	4	2	-	3	4	8	25	26	15	8	5	5	4	3	5	4	2	-	_	-
2.x																			- 1		1																	
3.x																			- 1																			
4.6		-	-	2	2	3	3	4	4	5	8	10	12	16	16	13	13	14	3	2	-	2	2	11	20	28	34	20	11	8	5	6	5	3	2	-	_	- 1
5.x																			-		1																	
6.x					_			_		_			- /			_			_																			
7.7		_	_	-	3	3	4	5	7					18			4	3	2		-	-	2	3		32					11	8	9	5	Х	Х	Х	X
8.6		-	_	****	3	4	4		13										31	2	-	_	-	3	6					10	6	4	5	3	2	-	-	-
9.6		-	_	_	_	2	3		8			70								-	-	-	-	3	5			12		8	5	8	8	7	5	2	_	-
10.7		-	_	-	_	2	3	4	5	8	8	9	8	6	5	6	8	4	3	-	-	_	-	_	2	5	8	6	5	3	4	5	4	5	5	3	_	-
11.x																			ı																			
12.x 13.6						2	2	_	,	E	8	8	8	6	5	/.	3	2	- 1		1									2	2	2	2	3		2	2	,
13. c		_	_	_	-	~	~)	4)	0	0	0	0)	4)	2	1	-	-	-	-	_	_	_	_	_	_	2	2	2	2)	_	2)	4
15. x																					ł																	
16.7		_	_	_	_	_	_	2	3	3	1.	/.	/.	5	5	1.	3	2	2	_	_	_	_	_	2	3	3	3	7.	3	3	2	_	_	_	_	_	_
17.6		_	_	_	_	_	2	3	3	1.	5	1.	1.	3	2	-	_	~		_	_	_	_	_	~	_	_	5	3	5	_	~	_	_	_	_	_	_
18. 3							~			4			-		~													~		^								
19.7																			- 1																			
20.3																			- 1		l																	
21.6		_	_	_	_	_	2	3	4	4	5	5	4	3	5	8	6	3	2	_	_	-	_	_	_	2	3	4	3	2	2	-	_	_	_	_	_	-
22.3																																						
23.7		2	2	2	-	2	3	4	5	6	8	10	12	13	14	11	10	4	3	-	-	_	2	3	5	10	14	15	12	4	3	2	2	2	_	_	_	-
24.X																			- 1																			
25.6		_	_	_	3	4	4	4	5	5	8	12	16	14	15	11	8	3	2	2	_	3	5	6	9	11	10	6	2	2	_	_	_	_	_	_	_	-
26.7		-		-	_	2	3	4	5	6	8	12	16	23	22	17	12	10	4	3	-	-	2	5	18	13	11	12	11	5	5	4	3	2	-	_	_	-
27.9		_	_	_	-	3	4	5	5	6	7	8	16	16	25	12	8	5	4	2	-	2	3	5	8	7	5	3	2	_	-	_	_	_	_	_	_	-
28.3																																						
29.7	7a	_	_	-	-	_	2	3	3	5	6	12	13	28	27	26	20	12 20	6	3	2	_	3	5	10	13	12	8 7	6	53	2	3	2	_	-	-	_	-
30.7		_	mph	-	-	-	-	-	2	3	4	5	7	13	20	16	18	20	1)	2	-	-	3	4	7	13	12	7	4	3	2	2	2	-	-	-	-	-
31.7	7	-	-	-	-	-	-	6	7	7	6	6	12	25	23	27	28	24	14	5	3	2	5	16	ZT.	40	29	14	9	6	4	3	2	-	-	_	-	

Table 89b

Coronal observations at Climax, Colorado, (6702A), west limb (Absolute values in millionths of the brightness of one angstrom at the center of the solar disk)

Degrees south of the solar equator 1955	Date				Deg:	ree	S 80	outl	n 01	f tl	he :	50l	ar	equa	ato.	r			T	o°	Г			De	gre	es	nor	th	of	the	so	lar	eq	iato	or			_
1955 Aug 1.x 2.x 3.x 4.x 5.x 6.x 7.x 8.x 9.x 10.x 11.x 12.x 13.x 14.x 15.8a 16.x 17.x 18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 25.7a 24.7 25.7a 2 X X X X X X X X X X X X X X X X X X X		90	85	80	75	70 (65	60 5	55 5	50 4	45 4	10	35	30	25	20	15	10	5	-	5	10	15	20	25	30	35	40	45	50	55	60	65	70 °	75 8	30 8	5 5	Ю
Aug 1.x 2.x 3.x 4.x 5.x 6.x 7.x 8.x 9.x 10.x 11.x 12.x 13.x 14.x 15.8a 16.x 17.x 18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 22.6a 23.x 24.7 25.7a 26.x 27.x 28.6 29.6 30.6 X X X X X X X X X X X X X X X X X X X	1955																		ı																			
2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 14 x 15 x 8 x 17 x 18 x 19 x 17 x 18 x 19																					ı																	
4.X 5.X 6.X 7.X 8.X 9.X 10.X 11.X 12.X 13.X 14.X 15.8a 16.X 17.X 18.X 19.X 20.6 21.7a 22.6a 23.X 24.7 25.7a X X X X X X X X X X X X X X X X X X X																			ı																			
5.x 6.x 7.x 8.x 9.x 10.x 11.x 12.x 13.x 14.x 15.8a 16.x 17.x 18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 25.7a 26.x 27.x 28.6 29.6 30.6 X X X X X X X X X X X X X X X X X X X	3.x																		- 1																			
6.X 7.X 8.X 9.X 10.X 11.X 12.X 13.X 14.X 15.8a 16.X 17.X 18.X 19.X 20.6 21.7a 22.6a 23.X 24.7 25.7a X X X X X X X X X X X X X X X X X X X	4.X																		-																			
7.X 8.X 9.X 10.X 11.x 12.x 13.x 14.x 15.8a 16.x 17.x 18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 25.7a X X X X X X X X X X X X X X X X X X X	5.x																		- 1																			
8.X 9.X 10.X 11.X 12.X 15.8a 16.X 17.X 18.X 19.X 20.6 21.7a 22.6a 23.X 24.7 25.7a 27.X 28.6 29.6 29.6 20.6 20.7	6.x																		- (1																	
9.X 10.X 11.X 12.X 13.X 14.X 15.8a 16.X 17.X 18.X 19.X 20.6 21.7a 22.6a 22.6a 23.X 24.7 25.7a 26.X 27.X 28.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 20.6 20.7 20	7.X																		ļ		i																	
9.X 10.X 11.X 12.X 13.X 14.X 15.8a 16.X 17.X 18.X 19.X 20.6 21.7a 22.6a 22.6a 23.X 24.7 25.7a 26.X 27.X 28.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 20.6 20.7 20	8.x																																					
11.x 12.x 13.x 14.x 15.8a 16.x 17.x 18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 25.7a 26.x 27.x 28.6 29.6 30.6	9.x																																					
12.x 13.x 14.x 15.8a 16.x 17.x 18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 25.7a 25.7a 26.x 27.x 28.6 29.6 30.6 X X X X X X X X X X X X X X X X X X X	10.x																																					
13.x 14.x 15.8a 16.x 17.x 18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 24.7 25.7a 24.7 25.7a 27.x 28.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 20.7 2																			-																			
14.x 15.8a 16.x 17.x 18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 25.7a 26.x 27.x 28.6																																						
15.8a 16.x 17.x 18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 25.7a 26.x 27.x 28.6																																						
16.x 17.x 18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 25.7a X X X X X X X X X X X X X X X X X X X	14.X																																					
17.x 18.x 19.x 20.6	15.8a	-	-	_	-	-	-	-	-	-	_	_	-	-	-	-	-	_	-	-	-	-	_	-	_	-	_	_	_	-	_	-	_	-	-	_	-	-
18.x 19.x 20.6 21.7a 22.6a 23.x 24.7 25.7a X X X X X X X X X X X X X X X X X X X																																						
19.x 20.6 21.7a 22.6a 23.x 24.7 25.7a 26.x 27.x 28.6 29.6 30.6 X X X X X X X X X X X X X X X X X X X																																						
20.6 21.7a 22.6a 23.x 24.7 25.7a 26.x 27.x 28.6 29.6 30.6 X X X X X X X X X X X X X X X X X X X																					1																	
21.7a																	_									^	2	_										
22.6a	20.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	3	_	٦	-	-	_	_	-	_	2	3	2	_	_	-	_	_	-	-	-	_	-
23.x 24.7 25.7a 26.x 27.x 28.6 29.6 30.6	21.7a	-	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	٦	-	-	_	_	_	-	_	_	_	-	_	-	-	_	_	_	-	_	_
24.7 25.7a 26. x 27. x 28.6 29.6 30.6	22.6a	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	٦	-	-	_	-	_	_	_	_	_	_	_	-	-	_	-	_	-	_	_
25.7a	23.x																		- 1																			
26.x 27.x 28.6	24.7	-	-	_	_	_	_	_	_	-	_	-	-	-	-	_	-	-	7	_	-	_	-	_	-	-	-	_	_	_	_	_	_	_	_	-	_	_
27.x 28.6 29.6 	25.7a	X	X	Х	Х	Χ	Х	Χ	Х	Х	X	X.	Х	Х	X	Х	Х	X	4	-	-	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	_
28.6																			Į		1																	
29.6																			- 1		1																	
30.6 X X X X X X X X	28.6	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	٦	-	-	-	-	-	_	-	-	_	_	_	_	_	_	_	_		_	_
50.0 A A A A A A A A A A A A A A A A A A		-	_	_	-	_	_	_	_	-	-	-	-	-	-	-	-	_	٦	-	-	_	-	_	-	-	-	_	_	_	_			v	_ v	v	v	v
31.x		Х	X	Х	Х	Х	Х	Х	X	-	_	-	-	-	-	-	-	_	٦	_	-	_	-	_	_	_	-	_	_	_	_	Α.	Λ	Λ	Λ	Λ	Λ	Λ
	31.x																				L																	

Table 90b

Coronal observations at Sacramento Peak, New Mexico, (5303A), west limb (Arbitrary Scale)

Data				Dar				1		- h-o		10.00			-			- 1		_		_				20.0	- + h	o.f.	42.		olar		t				
Date	-00	O.E.					out									3.5	10	5	0°	1	7.0	7.5													80	ÓF.	00-
UT	90	85	80	75	70	65	60	ວວ	50	45	40	35	30	45	40	12	TO	- 3		13	10	T2	40	45	30	25	40	45	50	55	00	65	70	75	80	85	90
1955										_	_	_	_	_		_	_				_	_			_	-	~	-	,	-	,	,	_	_	_	_	
Aug 1.7a	_	-	-	-	-	_	-	-	-	2	3	2	2	2	-	2	3	~	-	~	2	2	-	-	3	5	7	5	4	5	4	4	2	3	2	2	-
2 .x																		- 1		i																	
3.x																		- 1		1						_	_	_	_			_	_				
4.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1-	-	-	-	-	-	2	3	2	2	3	4	3	2	-	-	_	-
5.x																		- 1		1																	
6.x																		- 1																			
7.7a	Х	_	-	-	-	2	3	4	5	8	5		14		8	2.	-	-	-	1-	-	-	4	5	4	3	3	4	3	2	4	3	3	2	-	-	_
8.6	-	-	_	-	2	3	4	4	5	5				22	5	3		-	-	-	2	3		18			8	6	8	7	6	5	3	2	_	-	-
9.6	-	-	-	-	2	3	5	7	8					23				-	-	-	-	2				20				5	5	4	3	2	2	2	_
10.7a	-	_	_	-	_	-	2	4	5	6	7	8	14	13	11	7	5	3	-	-	_	-	4	5	14	20	16	14	10	6	5	4	3	2	-	_	-
11.X																				1																	
12.x																		- 1		1																	
13.6	4	4	3	4	3	2	4	5	6	8	10	11	12	14	20	18	15	8	3	-	3	4	8	20	28	32	36	39	32	11	6	4	3	2	_	-	-
14.x		,		-			•											I	-	1	-																
15.x															•			ı		ł																	
16.7	_	_	_	2	3	5	6	5	4	8	17.	23	32	36	3/.	17.	11	8	5	3	8	15	16	20	23	28	32	16	11	9	8	6	5	4	_	_	-
17.6	_	_	_	2	3	5	6	g									18									23						6	5	3	2	_	_
18.x	_	-		~		,	0	0	,	_		10)	"	~ 0	10	-~		1	~	2.~	~ 0	~0	~ /	~				•	_	_					
19.x																																					
20.x																																					
21.6a	_					2	6	5	,	3	6	3.7	16	7/	12	10	3	2	_	_	_	2	3.7	30	36	28	18	16	12	6	3	3	2	_	_		_
22.x	-	_	_	_	_	~	O)	4)	0	тт	10	14	12.	10)	^	_	-	_	~	тт	12	20	20	10	10	1~	0			~				
23.7						2	5	Q	6	5	5	6	7	. 8	7	6	,	3	_	12	3	5	15	28	27	28	23	21	16	17	13	5	3	_	_	_	2
24.x	-	_	_	_	_	~	.)	0	U))	0	- /	. 0	,	U	4	7	_	1~)	,	エノ	20	~ 1	20	رے	~1	10	14		,					~
25.6						2	2	2		2	2	2	2	,	2	3			_	_	2	2	_	20	22	15	11	7.2	10	0	6	Ė	3	_	_	_	_
	_	-	_		_	2	2	۷.	2	2	3	ر	2	4))	-	-	-	1-	~	2	-		8		7	1~	10	7	_	7	,	2	_	_	_
26.7a	_	-	-	-	-	_	-	2	2	3	3	4	2	2	-	_	-	-	-	-	_	2	3	3		-	4	5	4	4	7	6	5	5	2	_	_
27.9a	-	-	_	-		-	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	_	-	3	4	3	4	4)	0	1	0)))	-	-
28.x									_	_	2	,	,	2	_									2	,	2	,	2	_	,	_	_	,	2	2		
29.7a	-	-	-	, -	-	-	_	-	2	3	3	4	4	3	2	_	-	-	_	-	-	-	-	3	4	3	4	3)	4	2	2	4))	-	-
30.7a	-	-	-	-	-	-	٠	-	-	-	-	-	-	-	2	_	-	-	-	-	-	_	-	-	_	_	-	2	3	3	3	2	2	2	_	_	_
31.7	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	2		4	>		3)	4)	~	-	_	

Table 91a

Coronal observations at Sacramento Peak, New Mexico, (6374A), east limb (Arbitrary Scale)

				-				,	0 1						-				, <u> </u>												-						
Date		0.5		Deg														_	0°	Ļ							ıth										
UT	90	85	80	/5	70	65	60	55	50	45	40	35	30	25	20	15	10	5	<u> </u>	15	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1955 Aug 1.7a	2	3	3	3	2	_	2	_	_	2	_	_	2	3	8	7	7	ø	11	h.	11	13	1/	20	14	5	3	2	2	3	3	2	_	_	_	_	- 1
2.x	~)))	~		~			~			~	-	0	′	,		1		-du-la			~0				~	~			~					
3.x																																					
4.6	2	2	2	2	2	3	2	2	2	3	2	3	6	5	7	2	11	10	9	8	5	6	8	15	26	10	8	5	3	4	2	2	3	2	3	2	2
5.x										-									l																		
6.x																			ŀ																		1
7.7a	3	3	2	2	2	2	2	3	_	3	3	2	3	5	6	7	7		11									3	2	2	3	3	X	X	X	X	X
8.6	3	4	5	4	3	3	2	2	2	_	3	4	5	4	6				14							8	9	5	-	-	_	-	2	2	2	3	2
9.6	3	4	3	3	2	3	2	_	-	_	3	5	5	4					14									8	4	5	4	5	4	4	4	3	3
10.7a	2	2	2	3	2	2	3	_	2	2	3	3	4	5	14	11	8	11	13	13	14	11	10	8	6	5	5	8	4	3	2	2	_	2	3	3	3
ll.x																																					
12.x																																					
13.6	3	4	2	3	4	3	2	2	3	3	4	4	5	4	3	5	8	8	9	8	9	7	6	5	4	2	3	5	5	4	5	3	2	3	3	3	4
14.x																																					
15.x																				١.										_		_	_	_	_		_
16.7	3	3	3	2	-	2	3	3	3	3	3	5	6	7	8				15					7		4	3	4	3	2	2	3	3	3	3	3	2
17.6	3	2	3	3	2	3	2	3	3	3	_	3	5	8	9	11	11	12	11	13	12	11	10	9	8	5	6	5	6	4	2	2	3	2	3	3	4
18.x																																					
19.x																			İ																		
20.x	_	_	_	_		_				_	_	,		~	_	٠.			١.,	h	3.0		• •	٠,	1 0	7.0		a	-	6	2	2	2	2	3	2	2
21.6	2	3	3	2	2	2	2	3	4	5	5	4	5	8	9	14	TO	14	12	123	12	11	13	14	13	12	ΤŢ	7	5	6	3	2	2	2)	2	3
22.X	_		_	_		_	_		,	~	~		- 0				٠.			١.	37		30	٦,	7.5	,	_			,	,	2	,	,	_	_	6
23.7	3	4	5	3	4	5	3	4	6	7	-7	12	13	14	ΤŢ	TO	14	7.4	16	۲۶	Τρ	13	13	14	15	4	5	6	6)	4	3	4	4)	5	0
24.x		_	_	_	_	_						_		_		_			,		_	,	,	_	,	2	2		2	2	2	2	2	2	2	2	2
25.6	2	3	3	2	2	2	2	2	3	3	2	3	3	3	3	5	4	2	6	8	5	4	6	5	4	2	3	_	3	3	2	3	2	3	3	3	3
26.7a	2	2		2	_	2	_	2	2	2	3	3	4	5	4	4	5	- 1	2	0	8	9		13		3	2	2		2	2	2	3))	4)
27.9a	3	3	3	4	4	2	3	2	2	3	12	14	5	2	3	3	3	4	3	13	4	4	4	4	2	3	4	2	4	2	3	~	-	_	-	-	-
28.x		0		0	_	_	_	2	_	2	0	٦,	3.0	7.6	3.6	٦,	11	إر	-	-	,	2	,	r	2	2		2	3	2	2	2	2				
29.7a	2	3	-	2	2	3	2	3	2	3	2	14	15		15				6	5	4	3	4	3	2	2	2	2	ر	~)	~	~	_	_	_	_
30.7a	-	-	_	-	-	_	-	_	-	- 0	- 2		7			5	8	- 1	2	1 %		-	15	16	6 37	2	11	3	3	3	1	_	2	_	_	2	2
31.7	-	_1	Τ	-	-	_	_	Τ	2	2	3	4	0	14	15	TT	30	-1	3	4	4	4	TO	TO	21	2	TT)))	Т	-	~	-	_	4	2

Table 92a

Coronal observations at Sacramento Peak, New Mexico, (6702A), east limb (Arbitrary Scale)

														(Ar	bit	rar	y S	cal	Le)			•		_	_		_	_									
Date				Deg	ree	es n	ort	h c	of t	the	sol	ar	equ	ato	or				0°	Г			De	gre	es	sou	th	of	the	sc	lar	eq	uat	or			_
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0-	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1955																																					
Aug 1.7a	-	_	_	-	_	_	_	_	_	_	_	_	_	2	2	_	_	-	_	-	_	_	-	2	2	_	-	_	_	_	_	_	_	_	-	_	-
2.x	l																																				
3.x																				1																	
4.6	-	_	_	-	_	_	_	-	_	_	_	_	_	_	_	-	_	-	-	-	_	_	2	3	4	4	3	2	_	-	_	_	_	_	_	_	-
5.x																																					
6.x																																					
7.7a	-	-	_	_	-	_	_	-	_	_	2	2	2	2	_	_	_	-	_	-	_	_	-	2	3	4	4	3	_	-	_	_	_	-	_	_	-
8.6	-	_	-	-	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	-	_	_	_	_	_	-	-	-	_	-	-	-	-	_	_	-	-
9.6	-	-	-	-	-	_	-	-	_	_	_	-	-	_	-	-	_	-	-	-	-	-	_	_	_	_	_	_	_	-	-	_	_	_	-	_	-
10.7a	-	_	-	_	-	_	_	-	_	-	-	_	_	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_	-	_	_	_	-	_	-	-	-
11.x																				l																	
12.x																				l																	
13.6	-	-	_	-	-	_	-	-	_	_	-	_	_	_	-	_	_	-	_	-	_	_	-	_	_	_	-	-	_	_	_	_	-	_	-	-	-
14.x																				[
15.x																																					
16.7	-	-	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_	-	_	-	_	_	_	_	_	-	-	-	-	_	-	_	-	-	-	-	-
17.6	-	-	_	_	_	_	_	-	_	_	-	_	_	-	_	_	_	-	-	-	_	-	_	-	_	_	_	-	_	_	-	_	_	-	-	-	-
18.x																																					
19.x																				1																	
20.x																																					
21.6	-	_	-	-	_	-	_	_	_	_	-	_	-	_	_	_	-	-	-	-	_	_	_	-	_	_	_	-	-	_	_	-	-	_	-	-	-
22.x																		ı		1																	
23.7	-	_	_	_	-	_	_	-	_	_	-	-	_	_	-	_	_	-	-	-	_	-	_	_	-	_	_	-	-	-	-	-	-	-	-	_	-
24.X																		-		1																	
25. 6	-	_	_	-	_	_	-	_	-	_	_	_	-	-	-	_	_	-	-	-	-	_	_	-	-	_	-	-	_	-	-	_	_	-	_	-	-
26.7a	_	_	_	_	_	_	_	_	-	_	2	3	3	2		2	_	4	-	-	-	_	_	_	-	_	_	-	_	-	-	-	-	-	-	-	-
27.9a	-	-	_	-	-	-	-	_	_	-	_	-	2	3	2	_	-	-	- :	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28.x																																					
29.7a	-	_	-	_	_	_	_	-	-	-	2	3	3	4	3	3	2	\dashv	-	-	_	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
30.7a	-	-	-	-	_	_	-	-	-	-	-	-	-	2	2	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
31.7	-	-	-	-	-	-	-	_	-	-	-	-	2	4	4	2	-	-	-	-	-	-	-	-	5	4	-	-	-	-	-	-	-	-	-	-	-
																		L																			

Table 91b

Coronal observations at Sacramento Peak, New Mexico, ($\underline{6374A}$), west limb (Arbitrary Scale)

Date								h o											0°	T											lar						
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1955																																					
Aug 1.7a	_	2	2	2	2	2	-	2	-	3	6	5	4	5	5	6	5	7	6	7	8	4	4	3	3	2	_	-	2	3	_	2	2	2	2	2	2
2.x																																					
3.x	_	_	_	_				_	_	_	_	_		_	,	~	_	_	~	1		^		_			_	_				_	_	_	_	_	_
4.6	2	2	3	3	_	_	-	3	3	2	2	3	4	5	6	7	8	8	7	8	8	3	4	5	4	4	3	2	_	_	_	2	2	2	2	2	2
5.x 6.x																																					
7.7a	X	3	3	3	2	2	3	2	2	2	2	3	8	7	8	11	13	12	12	12	11	7	6	5	6	4	2	3	3	2	2	_	_	2	2	2	3
8.6	2	3	3	2	_	2	2	-	3	2	3		11						15				8			10	7	4	3	3	3	2	2	3	3	2	3
9.6	3	4	4	3	3	3	4	5	4	4	5	8	8	7					16									6	4	3	4	2	2	2	3	3	3
10.7a	3	3	4	3	2	3	2	3	3	2	3	4	10	11	10	7	8	9	11	11	12	11	10	8	6	14	11	5	3	3	_	_	2	3	3	2	2
11.x																																					
12.x					_		_						_						_		_	,	_					_								_	
13.6	4	5	4	3	3	-	2	3	5	7	5	4	8	11	12	11	10	8	8	9	8	6	5	8	14	20	11	5	3	3	4	3	2	3	2	3	3
14.x																																					
15.x	_	_		_	_	_	_	_	_		_	_		_ ,				_		L				00		- /	01	- 0	0	_		_	_	_		_	
16.7	2	2	3	3	3	3	3	2	3	4	5						10							20					3	2	_	2	3	2	3	2	3
17.6	4	3	2	2	2	2	3	3	4	5	5	6	8	11	16	20	15	TO	8	19	11	TR	1.7	20	TO	T 0	20	22	14	2	_	-	3	2	3	3	2
18.x																																					
19.x																																					
20.x	2	2	2	2	2	2	3	3	2	3	3	,	2	,	~	30	77	7.2	14	1	77	77	10	٦,	6	5	2	2	3	2	2	3	3	2	2	3	2
21.6a	3	2	2	3	2	3	3	3	2	3)	4	2	4	1	TO	11	כב	14	۲	TT	тт	12	14	0)	~	~)	~	~))	~	~)	~
22.x 23.7	6	,	3	3	2	3	3	,	2	2	,	5	,	5	Q	12	13	15	16	5	16	17	20	10	13	12	1/	2	3	2	2	2	3	,	,	3	3
24.x	0	4))	~))	4	~	~	4)	4)	O	14	יב	יד	10	1	10	Τ,	20	19		1~	14	~		~	~	~		4	4	_	7
25.6	3	2	2	2	_	2	2	2	3	3	7.	5	3	7.	5	8	Q	11	12	h /	12	13	17.	16	17	10	7	3	3	2	3	2	2	2	2	3	2
26.7a	3	2	3	3	3	2	~	~	3	1.	7.	1.	5	8	8	7	8				13		8	4	5	4	5	3	2	2	_	_	2	~	2	2	2
27.9a	_	~	_	_	_	~	_	_	_	2	3	3	4	3	5	4	4	5		6	5	5	4	4	3	3	1.	1.	_	2	2	3	2	3	_	2	3
28.x										~						7	-		′	١			~	~			-	_		~	_		~				
29.7a	_	2	2	2	2	2	3	2	2	3	3	4	3	4	3	5	6	7	8	8	9	7	6	5	3	4	4	3	2	2	_	2	3	2	2	2	2
30.7a	_	_	_	_	_	_	_	_	_	_	_	2	2	2	3	4	5	6		4	4	3	4	3	3	2	2	_	2	2	_	-	_	_	_	_	_
31.7	2	2	-	2	-	-	-	-	2	3	4	4	5	6	6	12		11	12	8	8	7	10	9	5	4	6	5	5	2	-	-	-	-	_	_	-
												_													_			_					_				

Table 92b

Coronal observations at Sacramento Peak, New Mexico, (6702A), west limb (Arbitrary Scale)

														(Ar	bit	rar	y S	cal	.e)																		
Date				De	gree	es s	out	h c	of t	he	so.	lar	equ	ato	r				0°	Г			De	gre	es	nor	th	of	the	SC	lar	eç	uat	or			
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	U	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1955																																					_
Aug 1.7a	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_	-	-	_	_	-	_	_	-	-	_	_	_	\rightarrow	_	_	-	-	-
2.x																																					
3.x																				l																	
4.6	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	-	-	-	-	-	_	-	_	-	-	-	-	-	_	-	-	_	_	_	-	_	_
5.x																		- 1																			
6.x																				l																	
7.7a	_	_	_	_	-	_	_	_	_	_	_	_	2	2	_	_	_	-	-	-	-	-	_	_	_	-	-	-	_	_	_	_	-	_	-	_	-
8.6	_	_	_	_	_	_	-	-	-	-	-	_	-	_	_	_	-	-	_	-	_	-	_	-	_	_	-	_	_	_	-	-	_	-	-	_	-
9.6	_	-	-	_	_	_	_	_	_	_	_	_	_	-	_	_	-	-	-	-	-	-	_	2	2	2	-	_	_	\rightarrow	_	\rightarrow	_	_	-	_	-
10.7a	-	-	_	-	_	-	_	_	-	_	_	_	_	-	-	_	_	-[-	-	-	-	_	-	2	2	2	-	_	_	_	-	_	_		_	-
ll.x																		ı		i																	
12.x																																					
13.6	_	-	_	_	-	-	_	_	_	_	-	_	_	_	_	_	-	-	-	-	-	_	_	2	2	3	3	3	3	2	-	_	-	_	-	-	_
14.X																		ı																			
15.x																		- 1																			
16.7	_	-	_	-	_	_	_	_	_	2	2	3	4	5 5	4	3	2	\dashv	_	-	2	3	3	3 5	4	3	2	2	_	_	-	_	_	-	-	_	-
17.6	-	-	-	_	_	-	_	_	_	_	2	3	4	5	6	3	4	-	-	-	2	3	3	5	4	3	2	-	_	_	-	_	_	_	_	_	_
18.x																		1		1																	
19.x																				1																	
20.X																		- 1		1																	
21.6a	_	-	_	-	-	_	_	-	_	-	_	_	_	_	_	_	-	-	_	→	-	-	2	3	3	3	2	2	_	_	_	-	_	_	-	_	-
22.x																		- 1		Ì																	
23.7	_	-	-	-	-	_	-	-	-	-	_	_	_	_	_	_	_	-	_	-	_	2	2	3	3	2	-	-	_	_	_	_	_	-	-	_	-
24.X																		- 1		l																	
25.6	-	-	-	_	_	_	_	-	-	-	-	-	_	_	_	-	_	-	-	-	_	_	2	2	2	2	-	-	-	-	_	-	-	***	-	-	-
26.7a	_	-	_	_	_	_	_	_	-	-	_	_	-	_	_	-	-	-	-	i –	_	-	_	\rightarrow	-	-	-	_	_	_	-	_	-	_	-	_	_
27.9a	_	-	-	-	_	_	-	-	_	-	_	-	_	_	_	-	_	\dashv	-	-	-	-	-	_	-	_	-	-	-	-	-	-	_	-	-	_	-
28.X																																					
29.7a	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	4	_	-	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_	-	-
30.7a	_	-	_	_	_	Τ,	_	_	-	-	_	_	-	_	_	-	-	-	_	-	_	-	-	-	-	_	-	_	_	-	-	_	_	-	_	-	-
31.7	-	-	_	_	_	_	_	-	-	_	_	-	_	-	_	-	_	-	_	-	_	-	-	-	-	_	-	-	-	-	_	-	_	-	_	_	-

Table 93

Zurich Provisional Relative Sunspot Numbers

August 1955

Date	R ₂ *	Date	R _Z *
1	25	17	16
2	20	18	10
3	16	19	13
Į.	0	20	17
5	26	21	22
6	46	22	23
7	61	23	23
8	77	24	14
9	83	25	11
10	87	26	26
11	85	27	40
12	77	28	54
13	77	29	55
14	60	30	49
15	1:14	31	62
16	28	Mean:	40.2

^{*}Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Table 94

American Relative Sunspot Numbers

July 1955

Date	R _A (Date	R _{A ?}
1	35	17	7
2	42	18	1
3	42	19	25
L8	46	20	27
5	45	21	14
6.	51	22	11
7	55	23	0
8	ήS	24	0
9	32	25	1
10	35	26	2
11	18	27	10
12	21	28	12
13	27	29	17
14	28	30	22
15	20	31	21
16	10	Mean:	23.2

Table 95

Solar Flares August 1955

SID	Obser-	ved										Yes	Yes		s														- Alve			
Impor-	tance			2	î ~	1	9	1 -	1 -	٦,	٦ ً	+	<u></u>	-	٦	Ч	7	<u>-</u>	8	Н	-	g 		8		: 		?	<u>.</u>	-	8	
Rela-	tive	Area of	Maximum (Tenths)	7	B	1	~	\ 8		I	Ø	Ì	W	77	î	B	¥	80	9	1	77	9	9 .	7	1	7	9	ω	9	1	7	
Into	of	Maxi-	mum	18	ı	ì	ر بر	1		8	9	9	15	H	1	B	1	7	î	î	77	12	8	12			-		13	9	177	
Time	Jo	Maxi	(GCT)	1346	1	8	1252	J	1	9	8	1	1328	1350	g	8	8	1405	8	1	1332	1559	1	1447	9	1319B	1442	1413	1715	9	1711	time.
Position	Long	itude	Diff (Deg)	ET3	1472 L	۲. ب	100			<u>्</u>	五54	至33	329	王32	E33	E33	百25	至23	120	E20	W18	MI9	W22	90M	LOM:	202	8 8 8	1365 1365	13E	365	100E	given time,
Posi	Lati	tude	(Deg)	N21	N22	30)	000	000	700	523	9TN	NI 7	NJ5	523	\$25	71N	NI-6	523	S2 <u>1</u>	\$24	N33	N33	N33	\$22	\$25	N42	N25	N2L	N2L	N25	219	A m After
Area	(M111°)	(Jo)	(Visible) (Hemisph)	91	8	1	ı i	42	Ĉ,	0	0	9	86	. 76	Ū	3	9	1,8	8	8	72	45	ī	677	1	65	32	23	16	6	39	given time.
Dura-	tion		(Min)	20	8		1		2	ð	1	25	7,7,	18	9	38	v	\ <u>}</u>	ì	1	9	8	3	8	27	9	77	8	017	8	30	Before
	-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	End~	ing (GGT)	17,00	12056	4001-	402701	2001	1,501	1348A	2030A	1345	0/21	15.	ALOIL	1830	103	7.5	1615	2015	0171	1625	1959B	1510	1510	1410	1454	1425	1745	1725A	1740	æ
Time	Observed	Begin-	ning (TCF)	13/10	מטרטר מטרטר	ひつ ひつ し	1460.5	HVVIE 1011	1421	1348B	2030B	1320	1325	1307	13503	1752	1278		7071	2009B	1330B	1555	1959B	1440	1443	13193	1,440	1406A	1705	1715B	1710	mento Pe
Date			የ	NI.			th Say	Aug 5		Aug 5					000000000000000000000000000000000000000			Aug 0		00000	01 anv	Aug 10					Aug 29		Aug 30			Peak = Sacramento Peak,
Ohserva	+0rd	2		D O O	- 2	MCFER VII	McFigth	S. Feak	ndlath	McMath	McMath	MoMath	Acod S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MoM of the	Mo Math	MoMoth	Picita viii	MoNoth Monoth	McMath	S. Pissic	S. Peak	McMath	S. Peak	McMath	S. Peak	S. Peak				S. Peak	S. Pea

Table 96

Indices of Geomagnetic Activity for July 1955

Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Daily "equivalent amplitude", Ap; Magnetically selected quiet and disturbed days

ATTENDED 10 TO 10	(Values Kp		Final
July	C	Three-hour Gr. interval	Sum Ar	Selected
1955		1 2 3 4 5 6 7 8		Days
12345	0.1 1.0 0.7 0.0	1+1+2+1+ 10 1= 0+1- 1+20 1+2= 3= 4+5+4+ 30 4=2+3= 1+2=1+1+ 10 10 2=0+ 1=0+1=0+ 10 1=1=0+1=10 10 1+	90 230 17+ 60 7-	Quiet
6 7 8 9 10	0.4 0.7 0.8 0.2 0.7	1- 10 1- 0+ 1- 20 20 3+ 3+ 3+ 2+ 2- 2+ 20 1+ 2- 10 2- 20 3+ 2+ 4- 3- 2- 2- 1+ 10 2+ 20 30 2+ 2+	11- 6 180 10 18+ 10 11+ 5 20- 12	21 28
11 12 13 14 15	0.9 1.2 0.5 0.3 0.8	30 20 3+ 5- 4- 3+ 3- 30 5+ 2- 30 4- 30 2+ 3- 40 3+ 20 1- 1- 3- 3- 10 1+ 1+ 1+ 20 20 20 1+ 1+ 0+ 10 1- 1- 2- 4+ 5- 30 3-	26- 18 26- 20 14+ 8 12- 5 19- 11	Disturbed 2 11
16 17 18 19 20	0.6 0.3 0.3 0.1 0.1	3+ 20 1+ 20	170 9 13- 7 130 7 60 3 80 1	26
21 22 23 24 25	0.3 0.2 0.4 0.6 0.2	1+ 1- 00 1- 0+ 1- 10 2+ 10 10 1- 10 1- 10 0+ 2+ 3- 1+ 2- 10 10 10 20 3- 3- 30 2+ 2+ 1+ 10 1+ 1+ 20 2- 20 1+ 1+ 10 10 1+	70 L 80 L 13+ 7 15+ 8	Quiet
26 27 28 29 30 31	0.9 0.2 0.0 0.1 0.2 0.3	20 20 2+ 3+	22+ 11 11+ 6 70 14 120 6 12- 6 12- 6 Mean: 8	19 20 21 22 25

Sudden Ionosphere Disturbances Observed at Washington, D. C.

1955 Day	GCT Beginnin	g End	Locati	ion of tra	ansmitters	Relative intensity at minimum*	Other phenomena
Aug.	1321	1348		England, Dakota	Mexico,	0.1	Solar flare** before 1324 Solar flare***
8	2047	2113		England, Dakota	Mexico,	0.2	1325

^{*}Ratio of received field intensity during SID to average field intensity before and after, for station KQ2XAU (formerly W8XAL), 6080 kilocycles, 600 kilometers distant.

**Timé of observation at McMath-Hulbert Observatory, Pontiac, Michigan.

***Time of observation at Sacramento Peak, New Mexico.

Table 98

Sudden Ionosphere Disturbances Reported by RCA Laboratories Division

as Observed at Riverhead, New York

1955 Day	GC Beginniı		Location of transmitters	Other phenomena
July 4 4 Aug.	0933 1544	0956 1602	England, Brussels, Tangier England, Brussels, Tangier	Solar flare* 1547
8	1322	1344	England, Brussels	Solar flare* before 1324 Solar flare** 1325-1340

^{*}Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan.
**Time of observation at Sacramento Peak, New Mexico.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado: Attention: Mr. Vaughn Agy.

NOVEMBER 1954

28.6°N, 77.1°E

OCTOBER 1954

₹ 400

fo F2

0.83

A 100

HEIGHT

PERCENTAGE OF TOTAL TIME FOR fes>LIMITING FREQUENCY

NBS 490

Fig. 139. DELHI, INDIA

28.6°N, 77.1°E

SEPTEMBER 1954

LIMITING FREQUENCY = 3 Mc.
 LIMITING FREQUENCY = 5 Mc.
 LIMITING FREQUENCY = 7 Mc.

Fig. 138. TIRUCHY, INDIA

LOCAL TIME

Index of Tables and Graphs of Ionospheric Data

in CRPL-F133

<u>Ta</u>	ble page	Figure page
Adak, Alaska		
July 1955	13	52
Ahmedabad, India		
January 1955	21	75
Akita, Japan	16	60
May 1955	10	00
June 1955	15	57
Baguio, P. I.		
Máy 1955	16	62
Bombay, India		#0
February 1955	19	70
January 1955	21	76
December 1954	22	80
November 1954	23	82
October 1954	24	84
Brisbane, Australia		
February 1955	20	72
January 1955	22	78
Buenos Aires, Argentina		
May 1955	17	63
April 1955	17	64
Calcutta, India	- •	•
January 1955	21	76
Canberra, Australia		
February 1955	20	73
January 1955	22	79
Christchurch, New Zealand		• • • • • • • • • • • • • • • • • • • •
April 1955	17	65
March 1055	18	68
March 1955	10	00
Deception I.	17	45
April 1955	17	65
Delhi, India	10	/ 0
February 1955	19	69
January 1955	21	75
December 1954	22	79
November 1954	23	81
October 1954	23	83
Contombon 1054	24	85
September 1954	24	03
Elisabethville, Belgian Congo	15	60
June 1955	15	59
April 1955 (fEs, hours 00 through 11,		
table only)	15	co ao
Fairbanks, Alaska		
July 1955	13	51

Index (CRPL-F133, continued)

Table page	Figure page
Falkland Is.	
February 1955 20	74
Ft. Monmouth, New Jersey	V-2
July 1955	53
Godhavn, Greenland	
April 1955 17	63
March 1955	66
February 1955	69
January 1955 20	74
Graz, Austria	
June 1955	58
May 1955	59
April 1955	64
Guam I.	•
July 1955 14	55
Hobart, Tasmania	
February 1955 20	73
Ibadan, Nigeria	
February 1955	71
Inverness, Scotland	• •
March 1955	66
Madras, India	
February 1955 19	70
January 1955	77
December 1954	80
November 1954	82
October 1954	84
September 1954 24	86
Maui, Hawaii	
July 1955 14	54
Narsarssuak, Greenland	
July 1955	5 2
Okinawa I.	
July 1955 14	54
Panama Canal Zone	
July 1955 14	56
Puerto Rico, W. I.	
July 1955	55
Rarotonga I.	
March 1955	68
Reykjavik, Iceland	
June 1955	5 7
San Francisco, California	
June 1955	58
Singapore, British Malaya	
March 1955	67
Slough, England	
March 1955	67

Index (CRPL-F133, concluded)

	Table page	Figure page
Tiruchy, India		
February 1955	. 19	71
January 1955	. 21	77
December 1954	. 23	81
November 1954		83
October 1954		85
September 1954		86
Tokyo, Japan		
May 1955	. 16	61
Townsville, Australia		
February 1955	. 20	72
January 1955	. 22	78
Tromso, Norway		
June 1955	. 14	56
Wakkanai, Japan		
May 1955	. 16	60
Washington, D. C.		
August 1955	. 13	51
Watheroo, W. Australia		
May 1955	. 16	62
White Sands, New Mexico		
July 1955	. 13	53
Yamagawa, Japan		
May 1955	. 16	61

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request] Daily:

Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

North Atlantic Radic Propagation Forecast (of days most likely to be disturbed during following CRPL—J.

month).
North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following CRPL-Jp. month).

Semimonthly:

CRPL-Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL—D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.) On sale by Superintendent of Documents, U. S. Government Printing Office, Washington 25. D. C. Members of the Armed Forces should address cognizant military office.

CRPL-F. Ionospheric Data. Limited distribution. This publication is in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics and geophysics for the CRPL library.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

These circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington, 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

The publications listed above may be obtained without charge from the Central Radio Propagation Laboratory, unless otherwise indicated.

