Multimedia Data Representation

Issues to be covered (Over next few lectures):

- Digital Audio
 - Sampling Theorem
 - Digital Audio Signal Processing/Audio Effects
 - Digital Audio Synthesis
 - MIDI Synthesis and Compression Control
- Graphics/Image Formats
 - Colour Representation/Human Colour Perception
- Digital Video
 - Chroma Subsampling

смоз40 66

Multimedia

General Themes across all above

- Sampling/Digitisation
 - Sampling Artifacts Aliasing
- Compression requirements
 - Data formats especially size
 - Human Perception → compression ideas

Building up to full Multimedia Compression Algorithms — following lectures

Multimedia CM0340

Digital Audio

What is Sound?

- Source Generates Sound Air Pressure changes
 - Electrical Loud Speaker
 - Acoustic Direct Pressure Variations
- Destination Receives Sound

 - Electrical Microphone produces electric signal • Ears — Responds to pressure hear sound (more later (MPEG Audio))

Multimedia CM0340

Back

Digitising Sound (Recap from CM0268)

- Microphone produces analog signal
- Computer like discrete entities

Need to convert Analog-to-Digital — Specialised Hardware

Also known as Sampling

CM0340

Multimedia

Digital Sampling

Sampling basically involves:

- Measuring the analog signal at regular discrete intervals
- Recording the value at these points

Multimedia CM0340

70

Sample Rates and Bit Size

Multimedia CM0340

How do we store each sample value (*Quantisation*)?

8 Bit Value (0-255) 16 Bit Value (Integer) (0-65535)

How many Samples to take?

11.025 KHz — Speech (Telephone 8 KHz) 22.05 KHz — Low Grade Audio

(WWW Audio, AM Radio)

44.1 KHz — CD Quality

Back Close

Nyquist's Sampling Theorem

reproduce a digital version of an Analog Waveform

Sampling Frequency is Very Important in order to accurately

Nyquist's Theorem:

The Sampling frequency for a signal must be at least twice the highest frequency component in the signal.

Multimedia CM0340

Implications of Sample Rate and Bit Size

Affects Quality of Audio

- Ears do not respond to sound in a linear fashion ((more later (MPEG Audio))
- Decibel (dB) a logarithmic measurement of sound
- 16-Bit has a signal-to-noise ratio of 98 dB virtually inaudible
- 8-bit has a signal-to-noise ratio of 50 dB
- Therefore, 8-bit is roughly 8 times as noisy
 - 6 dB increment is twice as loud
- Click Here to Hear Sound Examples

Multimedia CM0340

76

Implications of Sample Rate and Bit Size (cont)

Affects Size of Data

File Type	44.1 KHz	22.05 KHz	11.025 KHz
16 Bit Stereo	10.1 Mb	5.05 Mb	2.52 Mb
16 Bit Mono	5.05 Mb	2.52 Mb	1.26 Mb
8 Bit Mono	2.52 Mb	1.26 Mb	630 Kb

Back

Practical Implications of Nyquist Sampling Theory

Must low pass filter signal before sampling:

- Analog low pass filter used as signal is not yet digitised.
- Otherwise strange artifacts from high frequency signals would appear — Aliasing

Why are CD Sample Rates 44.1 KHz?

Emerging Theme throughout this course:

- Perceptual traits of Human Auditory system.
- Don't both recording data above 22 KHz
- So filter them out low pass filter.

Multimedia

Common Audio Formats

- Popular audio file formats include
 - .au (*Origin: Unix, Sun*),
 - .aiff (*MAC*, *SGI*),
 - .wav (*PC*, *DEC*)
- Compression can be utilised in some of the above but is not
 Mandatory
- A simple and widely used (by above) audio compression method is Adaptive Delta Pulse Code Modulation (ADPCM).
 - Based on past samples, it predicts the next sample and encodes the difference between the actual value and the predicted value.
 - More on this later (Audio Compression)

Multimedia CM0340

80

Common Audio Formats (Cont.)

- Many formats linked to audio applications
- Most use some compression
- Common ones:
 - Sounblaster .voc (Can use Silence Deletion (More on this later (Audio Compression))
 - Protools/Sound Designer .sd2
 - Realaudio .ra.
 - Ogg Vorbis .ogg
 - AAC , Apple, mp4 More Later
 - Flac .flac, More Later
 - Dolby AC coding More Later
- MPEG AUDIO More Later (MPEG-3 and MPEG-4)

Multimedia CM0340

81

Back

Synthetic Sounds — reducing bandwidth?

- Synthesise sounds hardware or software
- Client produces sound only send parameters to control sound (MIDI/MP4 later)
- Many synthesis techniques could be used, For example:
 - FM (Frequency Modulation) Synthesis used in low-end Sound Blaster cards, OPL-4 chip, Yamaha DX Synthesiser range popular in Early 1980's.
 - Wavetable synthesis wavetable generated from sampled sound waves of real instruments
 - Additive synthesis make up signal from smaller simpler waveforms
 - Subtractive synthesis modify a (complex) waveform but taking out (Filtering) elements
 - Granular Synthesis use small fragments of existing samples to make new sounds
 - Physical Modelling model how acoustic sound in generated in software
 - Sample-based synthesis record and play back recorded audio, often small fragments and audion processed.
- Most modern Synthesisers use a mixture of samples and synthesis.

More on how synthesis works soon

Multimedia CM0340

82

Back