

Course Name: Wireless Communications Dept. : Electronic & Electrical

Engineering

Exam Duration: 2 hours Exam Paper Setter: WANG Rui

Question No.	1	2	3	4	5	6	7	8	9	10
Score	25	25	30	20						

This exam paper contains <u>4</u> questions and the score is <u>100</u> in total. (Please hand in your exam paper, answer sheet, and your scrap paper to the proctor when the exam ends.)

Q1. Channel Model

- (a) Please discuss the relation between narrowband/wideband signals and flat/frequency selective fading channels.
- (b) For the following two-ray model with d = 100m, $h_t = 10m$, and $h_r = 2m$, please estimate the delay spread between two signals (light speed $c = 3 \times 10^8 m/s$).

- (c) Given a cellular system with central frequency at 900MHz. The transmit power of base station is 1W.
 - 1. Consider the simplified path-loss model with the path-loss exponent, constant of antenna and channel attenuation characteristics, reference distance as $\gamma = 4$, K = 15 dB, $d_0 = 2$ m. Suppose a user is 100 m away from the base station with environment noise -40 dBm. What's the receive SNR? ($\log_{10} 2 \approx 0.301$)
 - 2. Based on problem (1), assuming log-normal shadowing with standard deviation $\sigma = 5$ dB, please compute the probability that the user could receive data with a SNR above 10dB. $(Q(3.408) \approx 0.0003, Q(2.408 \approx 0.008), Q(1.408) \approx 0.0796, Q(0.408) \approx 0.3416)$

3. If there no LOS component exists from the base station to user, and the environment is filled with scatters, please tell which channel model is appropriate – Rayleigh or Rician? With the channel model and average received signal power 80 dBm, please find the outage probability relative to a threshold $P_0 = -90$ dBm.

Q2. Channel Capacity

Assume an i.i.d. channel with a flat fading channel amplitude gain $\sqrt{g[i]}$, which can take on three possible values: $\sqrt{g_1} = 0.1$ with probability $p_1 = 0.2$, $\sqrt{g_2} = 0.3$ with probability $p_2 = 0.5$, and $\sqrt{g_3} = 1$ with probability $p_3 = 0.3$. The average transmit power is 1mW, the noise power spectral density is $\frac{N_0}{2}$ with $N_0 = 10^{-9} \, W/Hz$, and the channel bandwidth is 20 kHz. Assume both the receiver and the transmitter have knowledge of CSI.

- (a) Find the ergodic capacity of this channel without power adaptation.
- (b) Find the ergodic capacity of this channel with power adaptation (Using water-filling method).
- (c) Find the zero-outage capacity of this channel.
- (d) Which one is the largest? Why?

Q3. Digital Modulation

- (a) What's the dimensions of signal spaces for digital modulation schemes: BPSK, QPSK, 2048QAM, 4-FSK?
- (b) Please explain why the Rayleigh fading channel leads to larger error probability than the AWGN channel for the same transmit signal and average receive signal power.
- (c) Consider the three signal waveforms $\{\phi_1(t), \phi_2(t), \phi_3(t)\}$ as follows. Please
 - 1. Show that these waveforms are orthonormal
 - 2. Express the waveform x(t) as a linear combination of $\{\phi_1(t), \phi_2(t), \phi_3(t)\}$ and find the coefficients, where x(t) is given as

$$x(t) = \begin{cases} 2 & 0 \le t < 2 \\ 4 & 2 < t < 4 \end{cases}$$

(d) Please use union bound to derive the average error probabilities of the following two constellations for AWGN channel. The variance of noise per signal-space dimension is $N_0/2$. Assume all the constellation points are transmitted with equal probability.

Q4. MIMO

Consider a 3×3 narrowband MIMO channel matrix \mathbf{H} with the following SVD form:

$$H = U\Sigma V^{H} = [u_{1}, u_{2}, u_{3}] \begin{bmatrix} \sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3} \end{bmatrix} [v_{1}, v_{2}, v_{3}]^{H},$$

where the singular values are $\sigma_1 = \sqrt{3}$, $\sigma_2 = \sqrt{2}$, $\sigma_3 = 1$. Let P and σ^2 be total transmit power of all antennas and average noise power, respectively. $P/\sigma^2 = 10dB$. Assuming channel state information is known at both transmitter and receiver, please find the channel capacities of this channel with bandwidth B=10KHz for the following three power allocation schemes.

- (a) Equal power allocation on all the three decomposed SISO channel;
- (b) Water-filling power allocation;
- (c) Allocate all the power to the channel with largest gain σ_1 .

What's the water-filling power allocation for $\frac{P}{\sigma^2} = 100 dB$ and $\frac{P}{\sigma^2} = -100 dB$? Please provide approximate values of power allocation on the three decomposed channels.