EE210: Microelectronics-I

Lecture-23: Common Base Amplifier-1

Instructor - Y. S. Chauhan

Slides - B. Mazhari Dept. of EE, IIT Kanpur

Outline

- Voltage Gain, Input and Output Resistance, current gain
 Comparison with CE amplifier
 Frequency response
- Cascode amplifier

Common Base Amplifier

Why do we need another amplifier when we have a CE amplifier?

Problem: Miller's capacitance reduces bandwidth at high gain

$$\omega_{H} \cong \frac{1}{(R'_{S} || r_{\pi}) \{C_{\pi} + C_{\mu} (1 + g_{m} R'_{C})\} + R'_{C} C_{\mu}}$$

Look for an amplifier circuit in which there is no capacitance between input and output ports

Note that there is no capacitance between emitter and collector

G-Number

Natural solution is a Common Base (CB) Amplifier

dc Analysis

$$I_{CQ} = \frac{V_{CC} \frac{R_2}{R_1 + R_2} - V_{BE}(on)}{\frac{R_B}{\beta} + R_E}$$

$$V_{CC} = V_{CEQ} + I_{CQ}(R_C + R_E)$$

$$S = \frac{\Delta I_{CQ}/I_{CQ}}{1}$$

$$V_{CC} = V_{CEQ} + I_{CQ} (R_C + R_E)$$

$$S = \frac{\Delta I_{CQ} / I_{CQ}}{\Delta \beta / \beta} = \frac{1}{1 + \frac{\beta R_E}{R_B}}$$

Mid-frequency small signal analysis

$$A_{V} = +\frac{I_{CQ}}{V_{T}} \times R_{C} \| R_{L}$$

Same as CE amplifier but non-inverting

$$R_{in} \cong \frac{r_{\pi}}{\beta} \| R_E$$

Short Circuit Current Gain

$$A_{IS} = \frac{I_O}{I_{IN}} \cong -\frac{\beta}{\beta + 1}$$

Tradeoff between voltage gain, input and output resistances

Parameter	Voltage	Input	Output
	Gain	Resistance	Resistance
Value	High	Low	Medium

Amplifier	Voltage Gain	Input Resistance	Output Resistance
CE	High	Medium	Medium
СВ	High	Low	Medium

$$\frac{A_{V} \times R_{in}}{R_{O}} \leq \beta$$

$$\frac{A_V \times R_{in}}{R_O} \le 1$$

A better Comparison with CE amplifier

$$\frac{A_{V}(CB) \times R_{in}(CB)}{R_{O}(CB)} \sim 1 \qquad \frac{A_{V}(CE) \times R_{in}(CE)}{R_{O}(CE)} \sim \beta$$

$$\frac{A_{V}(CE)}{A_{V}(CB)} \times \frac{R_{in}(CE)}{R_{in}(CB)} \times \frac{R_{O}(CB)}{R_{O}(CE)} \sim \beta$$

$$1 \times 10^{2} \qquad 1 \times 10^{2} \qquad 1 \times 10^{2}$$

Frequency Response

Lower Cutoff frequency is similar to CE amplifier

Upper Cutoff Frequency

Negligible Rs

CB has same upper cutoff frequency as CE!

Example

Simulation Results

$$A_{V} = -110.7$$

$$R_{in} = 0.82k\Omega; R_{o} = 2.2k\Omega$$

$$\frac{A_{v} \times R_{in}}{R_{O}} = 41 < \beta$$

$$f_{H} = 5.8MHz$$

$$A_{V} = 110.7$$

$$R_{in} = 9.66\Omega; R_{o} = 2.2k\Omega$$

$$\frac{A_{V} \times R_{in}}{R_{O}} = 0.48$$

$$f_{H} = 5.8MHz$$

RS = 2.2k

CE:
$$A_V = -30$$
; $f_H = 1.76MHz$

CB:
$$A_V = 0.48$$
; $f_H = 61MHz$

Effect of emitter (source) resistance

$$R_{\pi} = \frac{1 + \frac{R_E}{r_{bb}}}{1 + \frac{g_m R_E}{1 + \frac{r_{bb}}{r_{\pi}}}} \times (r_{bb} \parallel r_{\pi})$$

$$1 + \frac{r_{bb}}{r_{\pi}}$$

$$R_{\mu} = r_{bb} + R_C + \frac{(\beta R_C - r_{bb}) \times r_{bb}}{r_{\pi} + r_{bb} + (1 + \beta)R_E}$$

$$\cong r_{bb} + R_C \text{ as } R_E \to \infty$$

Large source and emitter resistance

No Miller's effect and effect of Cπ is reduced as well

$$CB: A_V = 0.1; f_H = 73.5MHz$$

 $A_V = -110.7; R_{in} = 0.82k\Omega; R_o = 2.2k\Omega$ $f_H = 5.8MHz$

CE: $A_V = -8.3$; $f_H = 1.45MHz$

 $f_H = 5.8MHz$

 $CB: A_V = 0.1; f_H = 73.5MHz$

$$\frac{v_o}{v_s} = \left(\frac{1}{1 + \frac{R_S}{R_{in}}}\right) \times \left(\frac{1}{1 + \frac{R_O}{R_L}}\right) \times A_{VO}$$

Low input resistance is desirable for current input:trans-resistance amplifier

Low input resistance in CB amplifier makes it well suited for current input

$$v_o \cong i_s \times R_C \| R_L$$

How do we utilize an amplifier with current input and high bandwidth?