$\underline{\mathbf{Maths}}$: Analyse

Contents

T	Lim	ites			4
	1.1	Suites			4
		1.1.1	Définition (suite convergente)		4
		1.1.2	Définition (suite divergente)		4
		1.1.3	Divergence vers l'infini		4
		1.1.4	Définition (suites adjacentes)		4
		1.1.5	Propriétés		5
		1.1.6	Théorème des segments emboités		5
		1.1.7	Théorème de Bolzano-Weierstrass		5
	1.2	Fonction	ions		5
		1.2.1	Définition $(voisinage)$		5
		1.2.2	Définition (fonction définie au voisinage d'un point)		5
		1.2.3	Limite en un point réel		6
		1.2.4	Limite en $+\infty$		6
		1.2.5	Limite en $-\infty$		6
		1.2.6	Limite à droite et à gauche		7
		1.2.7	Propriété		7
		1.2.8	Propriétés locales		7
		1.2.9	Opérations algébriques sur les limites		8
		1.2.10	Théorème de comparaison		8
		1.2.11	Passage à la limite dans une inégalité large		8
		1.2.12	Théorème d'encadrement		9
		1.2.13	Limites d'une fonction composée		9
		1.2.14	Définition (bornes inférieure et supérieure d'une fonction)		9
		1.2.15	Théorème de la limite monotone		9
2	Con	tinuité	é		10
	2.1	En un	point		10
		2.1.1	Définition (continuité en un point)		10
		2.1.2	Propriétés		10
		2.1.3	Prolongement par continuité		
		2.1.4	Définition (continuité à droite et à gauche)		10
		2.1.5	Propriétés		
	2.2	Sur un	intervalle		
		2.2.1	Définition (Continuité sur un intervalle)		11
		2.2.2	Définition		

		2.2.3	Propriétés	11
	2.3	Théor	ème des valeurs intermédiaires	12
		2.3.1	Cas particulier	12
		2.3.2	Théorème des valeurs intermédiaires (cas général)	12
		2.3.3	Corollaire	12
		2.3.4	Corollaire	12
		2.3.5	Théorème	12
	2.4	Sur ur	n segment	13
		2.4.1	Définition ($segment$)	13
		2.4.2	Théorème	13
		2.4.3	Propriété	13
	2.5	Monot	tonie et bijection	13
		2.5.1	Propriété	13
		2.5.2	Propriété	13
		2.5.3	Théorème (continuité de la fonction réciproque)	14
		2.5.4	Théorème de la bijection	14
3		ivation		1 4
	3.1		ée en un point	
		3.1.1	Définition (dérivée en un point)	
		3.1.2	Propriété (équation de la tangente)	
		3.1.3	Propriété (CNS de dérivabilité en un point)	
		3.1.4	Propriété (continuité des fonctions dérivables)	
	3.2	Sur ur	n intervalle	
		3.2.1	Définition (fonction dérivée)	
		3.2.2	Propriété (continuité des fonctions dérivables)	
		3.2.3	Propriété (linéarité de la dérivation)	16
		3.2.4	Propriété (produit de dérivées)	16
	3.3	Dérivé	ées d'ordre supérieur	16
		3.3.1	Définition ($Dérivée \ n-ème$)	16
		3.3.2	Définition (Fonctions de classe C^n)	16
		3.3.3	Propriétés	17
		3.3.4	Propriété ($linéarité$ de la dérivation n -ème)	17
		3.3.5	Propriété (<i>Produit de dérivées n-èmes</i>)	17
		3.3.6	Propriété (dérivée n-ème des monômes)	18
	3.4	Quotie	ent	18
		3.4.1	Propriété (dérivée de l'inverse en un point)	18
		3.4.2	Propriété (dérivée de l'inverse sur un intervalle)	18
		3.4.3	Corollaire (dérivé d'un quotient)	18
	3 5	Comp	osée	10

	3.5.1	Propriété (dérivée d'une fonction composée en un point)	19
	3.5.2	Propriété (dérivée d'une fonction composée sur un intervalle)	19
	3.5.3	Propriété (Classe C^n)	19
3.6	Fonction	on réciproque	19
	3.6.1	Propriété (dérivée de la fonction réciproque en un point)	19
	3.6.2	Propriété (dérivée de la fonction réciproque sur un intervalle)	20
	3.6.3	Corollaire	20
	3.6.4	Propriété	20
3.7	Théorè	ème de Rolle	20
	3.7.1	Propriété	20
	3.7.2	Théorème de Rolle	20
3.8	Égalité	é des accroissements finis	20
	3.8.1	Théorème (égalité des accroissements finis)	20
	3.8.2	Définition (fonction lipschitzienne)	21
	3.8.3	Propriété	21
	3.8.4	Corollaire (Inégalité des accroissements finis)	21
	3.8.5	Propriétés	21
3.9	Monot	onie et dérivabilité	21
	3.9.1	Propriété (CNS de monotonie avec la dérivabilité)	21
	3.9.2	Propriété (conditions suffisantes de stricte monotonie)	22
	3.9.3	Théorème (CNS de stricte monotonie)	22
3.10	Théorè	ème de la limite de la dérivée	22
	3.10.1	Théorème de la limite de la dérivée	22
	3.10.2	Théorème de classe \mathcal{C}^k par prolongement	23

1 Limites

1.1 Suites

1.1.1 Définition (suite convergente)

Soit $(u_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ une suite.

On dit que la suite (u_n) est convergente (ou admet une limite finie), si :

$$\exists \ell \in \mathbb{R} \mid \forall \varepsilon \in \mathbb{R}_+^*, \ \exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_n - \ell| \leqslant \varepsilon$$

Dans ce cas, ℓ est unique, et est la limite de la suite (u_n) . On dit que la suite (u_n) converge vers ℓ , et on note :

$$u_n \xrightarrow[n \to +\infty]{} \ell$$

1.1.2 Définition (suite divergente)

Soit $(u_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ une suite.

La suite (u_n) est divergente si elle ne converge pas, i.e si :

$$\forall \ell \in \mathbb{R}, \ \exists \varepsilon \in \mathbb{R}_+^* \mid \forall n_0 \in \mathbb{N}, \ \exists n \in \mathbb{N}, n \geqslant n_0 \mid |u_n - \ell| \geqslant \varepsilon$$

1.1.3 Divergence vers l'infini

Soit $(u_n)_{n\in\mathbb{N}}\subset\mathbb{R}$.

• La suite (u_n) tend vers $+\infty$, noté $u_n \xrightarrow[n \to +\infty]{} +\infty$, si :

$$\forall A \in \mathbb{R}, \ \exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow u_n \geqslant A$$

• La suite (u_n) tend vers $-\infty$, noté $u_n \xrightarrow[n \to +\infty]{} -\infty$, si :

$$\forall A \in \mathbb{R}, \ \exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow u_n \leqslant A$$

1.1.4 Définition (suites adjacentes)

Soient $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ deux suites.

Les suites (u_n) et (v_n) sont adjacentes si :

$$(1) v_n - u_n \xrightarrow[n \to +\infty]{} 0 ;$$

(2) (u_n) et (v_n) sont monotones de sens opposé.

1.1.5 Propriétés

Soient $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ deux suites adjacentes.

Alors ces suites sont convergentes de même limite ℓ , et si (u_n) est croissante, on a :

$$\forall n \in \mathbb{N}, \ u_n \leqslant \ell \leqslant v_n$$

1.1.6 Théorème des segments emboités

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ deux suites adjacentes, avec (u_n) croissante.

Soit $\forall n \in \mathbb{N}, I_n = [u_n; v_n]$

 $(I_n)_{n\in\mathbb{N}}$ est une suite de segments de \mathbb{R} dont la longueur tends vers 0 et telle que $\forall n\in\mathbb{N},\ I_{n+1}\subset I_n$.

Alors

$$\exists \ell \in \mathbb{R} \mid \bigcap_{n \in \mathbb{N}} I_n = \{\ell\}$$

et:

$$\forall (w_n)_{n\in\mathbb{N}} \mid \forall n \in \mathbb{N}, \ w_n \in I_n, \ w_n \xrightarrow[n \to +\infty]{} \ell$$

1.1.7 Théorème de Bolzano-Weierstrass

Toute suite réelle bornée admet une sous-suite convergente.

1.2 Fonctions

1.2.1 Définition (voisinage)

Soit $a \in \mathbb{R}$.

- Un voisinage de a est un ensemble qui contient l'intervalle $]a \varepsilon$; $a + \varepsilon[$, où $\varepsilon \in \mathbb{R}_+^*$.
- Un voisinage de a^+ (ou voisinage à droite de a) est un ensemble contenant l'intervalle $[a ; a + \varepsilon[, où \varepsilon \in \mathbb{R}_+^*]$.
- Un voisinage de a^- (ou voisinage à gauche de a) est un ensemble contenant l'intervalle $|a-\varepsilon; a|$, où $\varepsilon \in \mathbb{R}_+^*$.
- Un voisinage de $+\infty$ est un ensemble contenant l'intervalle h; $+\infty$, où $h \in \mathbb{R}$.
- Un voisinage de $-\infty$ est un ensemble contenant l'intervalle $]-\infty$; h[, où $h \in \mathbb{R}$.

1.2.2 Définition (fonction définie au voisinage d'un point)

Une fonction est définie au voisinage d'un point $a \in \mathbb{R}$ si elle est définie sur un voisinage de a, sauf peut-être en a.

1.2.3 Limite en un point réel

Soit $a \in \mathbb{R}$, et f une fonction définie sur \mathcal{D}_f , un voisinage de a, et à valeurs réelles.

• La fonction f admet une limite finie $\ell \in \mathbb{R}$ en a si :

$$\exists \ell \in \mathbb{R} \mid \forall \varepsilon \in \mathbb{R}_+^*, \ \exists \delta \in \mathbb{R}_+^* \mid \forall x \in \mathcal{D}_f, \ |x - a| \leqslant \delta \Rightarrow |f(x) - \ell| \leqslant \varepsilon$$

On note alors $f(x) \xrightarrow[x \to a]{} \ell$, ou $\lim_{x \to a} f(x) = \ell$, ou $\lim_{x \to a} f = \ell$.

• La fonction f admet $+\infty$ comme limite en a si :

$$\forall A \in \mathbb{R}, \exists \delta \in \mathbb{R}_+^* \mid \forall x \in \mathcal{D}_f, |x - a| \leqslant \delta \Rightarrow f(x) \geqslant A$$

On note alors $f(x) \xrightarrow[x \to a]{} +\infty$, ou $\lim_{a} f = +\infty$.

• La fonction f admet $-\infty$ comme limite en a si :

$$\forall A \in \mathbb{R}, \exists \delta \in \mathbb{R}_{+}^{*} \mid \forall x \in \mathcal{D}_{f}, |x - a| \leq \delta \Rightarrow f(x) \leq A$$

On note alors $f(x) \xrightarrow[x \to a]{} -\infty$, ou $\lim_{a} f = -\infty$.

1.2.4 Limite en $+\infty$

Soit f une fonction définie sur \mathcal{D}_f , un voisinage de $+\infty$, et à valeurs dans \mathbb{R} .

• La fonction f admet une limite finie $\ell \in \mathbb{R}$ en $+\infty$ si :

$$\exists \ell \in \mathbb{R} \mid \forall \varepsilon \in \mathbb{R}_+^*, \ \exists B \in \mathbb{R} \mid \forall x \in \mathcal{D}_f, \ x \geqslant B \Rightarrow |f(x) - \ell| \leqslant \varepsilon$$

On note alors $f(x) \xrightarrow[x \to +\infty]{} \ell$, ou $\lim_{x \to +\infty} f = \ell$.

• La fonction f admet $+\infty$ comme limite en $+\infty$ si:

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R} \mid \forall x \in \mathcal{D}_f, \ x \geqslant B \Rightarrow f(x) \geqslant A$$

On note alors $f(x) \xrightarrow[x \to +\infty]{} +\infty$, ou $\lim_{x \to +\infty} f = +\infty$.

• La fonction f admet $-\infty$ comme limite en $+\infty$ si:

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R} \mid \forall x \in \mathcal{D}_f, \ x \geqslant B \Rightarrow f(x) \leqslant A$$

On note alors $f(x) \xrightarrow[x \to +\infty]{} -\infty$, ou $\lim_{x \to +\infty} f = -\infty$.

1.2.5 Limite en $-\infty$

Soit f une fonction définie sur \mathcal{D}_f , un voisinage de $-\infty$, et à valeurs dans \mathbb{R} .

• La fonction f admet une limite finie $\ell \in \mathbb{R}$ en $-\infty$ si :

$$\exists \ell \in \mathbb{R} \mid \forall \varepsilon \in \mathbb{R}_+^*, \ \exists B \in \mathbb{R} \mid \forall x \in \mathcal{D}_f, \ x \leqslant B \Rightarrow |f(x) - \ell| \leqslant \varepsilon$$

On note alors $f(x) \xrightarrow[x \to -\infty]{} \ell$, ou $\lim_{x \to -\infty} f = \ell$.

• La fonction f admet $+\infty$ comme limite en $-\infty$ si :

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R} \mid \forall x \in \mathcal{D}_f, \ x \leqslant B \Rightarrow f(x) \geqslant A$$

On note alors $f(x) \xrightarrow[x \to -\infty]{} +\infty$, ou $\lim_{x \to -\infty} f = +\infty$.

• La fonction f admet $-\infty$ comme limite en $-\infty$ si :

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R} \mid \forall x \in \mathcal{D}_f, \ x \leqslant B \Rightarrow f(x) \leqslant A$$

On note alors $f(x) \xrightarrow[x \to -\infty]{} -\infty$, ou $\lim_{x \to -\infty} f = -\infty$.

1.2.6 Limite à droite et à gauche

Soit $a \in \mathbb{R}$, et f une fonction définie sur un voisinage \mathcal{D}_f de a, et à valeurs dans \mathbb{R} .

• La fonction f admet une limite finie $\ell \in \mathbb{R}$ à droite si :

$$\exists \ell \in \mathbb{R} \mid \forall \varepsilon \in \mathbb{R}_+^*, \ \exists \delta \in \mathbb{R}_+^* \mid \forall x \in \mathcal{D}_f \cap] - \infty \ ; \ a], \ |x - a| \leqslant \delta \Rightarrow |f(x) - \ell| \leqslant \varepsilon$$

On note alors : $f(x) \xrightarrow[x \to a^+]{} \ell$, ou $\lim_{a^+} f = \ell$.

Resp. pour la limite à gauche :

$$\exists \ell \in \mathbb{R} \mid \forall \varepsilon \in \mathbb{R}_+^*, \ \exists \delta \in \mathbb{R}_+^* \mid \forall x \in \mathcal{D}_f \cap [a ; +\infty[, \ |x-a| \leqslant \delta \Rightarrow |f(x) - \ell| \leqslant \varepsilon$$

On note alors : $f(x) \xrightarrow[x \to a^{-}]{} \ell$, ou $\lim_{a^{-}} f = \ell$.

1.2.7 Propriété

Soit f une fonction définie sur]a - h; $a + h[\setminus \{a\}, \text{ où } h \in \mathbb{R}_+^*]$.

Alors:

$$\exists \ell \in \mathbb{R} \mid f(x) \xrightarrow[x \to a^{-}]{} \ell \iff \exists \ell' \in \mathbb{R} \mid f(x) \xrightarrow[x \to a^{-}]{} \ell'$$

Et dans ce cas, $\ell = \ell'$.

1.2.8 Propriétés locales

Soit $a \in \mathbb{R}$, et f une fonction définie sur un voisinage \mathcal{D}_f de a, à valeurs réelles.

• Si $\exists \ell \in \mathbb{R} \mid f(x) \xrightarrow[x \to a]{} \ell$, alors f est bornée au voisinage de a, i.e pour $h \in \mathbb{R}_+^*$:

$$\exists m, M \in \mathbb{R} \mid \forall x \in]a - h ; a + h[, m \leqslant f(x) \leqslant M]$$

• Si $\exists \ell \in \mathbb{R}_+^* \mid f(x) \xrightarrow[x \to a]{} \ell$, alors f est minorée par un réel strictement positif au voisinage de a, i.e pour $h \in \mathbb{R}_+^*$, on a :

$$\exists m \in \mathbb{R}_+^* \mid \forall x \in]a - h \; ; \; a + h[, \; m \leqslant f(x)]$$

1.2.9 Opérations algébriques sur les limites

Soit $a \in \overline{\mathbb{R}}$, I un voisinage de a, et $f, g \in \mathbb{R}^I$ admettant des limites finies en a. Alors $\forall \lambda, \mu \in \mathbb{R}$,

$$\lim_{a} (\lambda f + \mu g) = \lambda \lim_{a} f + \mu \lim_{a} g$$

Et:

$$\lim_{a} (fg) = (\lim_{a} f)(\lim_{a} g)$$

De plus, si $\lim_a f \in \mathbb{R}^*$, alors $\frac{1}{f}$ est définie au voisinage de a, et :

$$\lim_{a} \left(\frac{1}{f} \right) = \frac{1}{\lim_{a} f}$$

Remarque:

$$\begin{array}{cccc} \varphi_a & : & E_a & \longrightarrow & \mathbb{R} \\ & f & \longmapsto & \lim_a f \end{array}$$

où
$$E_a = \left\{ f \in \mathbb{R}^I \mid \exists \ell \in \mathbb{R} \mid f(x) \xrightarrow[x \to a]{} \ell \right\}$$

est une forme linéaire.

1.2.10 Théorème de comparaison

Soit $a \in \overline{\mathbb{R}}$, et soient f, g deux fonctions définies au voisinage I de a, telles que $\forall x \in I, f(x) \leq g(x)$.

- Si $f(x) \xrightarrow[x \to a]{} +\infty$, alors $g(x) \xrightarrow[x \to a]{} +\infty$.
- Si $g(x) \xrightarrow[x \to a]{} -\infty$, alors $f(x) \xrightarrow[x \to a]{} -\infty$.

1.2.11 Passage à la limite dans une inégalité large

Soit $a \in \overline{\mathbb{R}}$, et soient f, g deux fonctions définies au voisinage I de a telles que

$$\exists \ell, \ell' \in \mathbb{R} \mid f(x) \xrightarrow[x \to a]{} \ell$$

et telles que $\forall x \in I, \ f(x) \leq g(x)$.

Alors:

$$\ell \leqslant \ell'$$

1.2.12Théorème d'encadrement

Soit $a \in \mathbb{R}$, et soient f, g, h trois fonctions définies au voisinage I de a, telles que $\forall x \in I, \ f(x) \leqslant g(x) \leqslant h(x).$

Si
$$\exists \ell \in \mathbb{R} \left| \begin{array}{l} f(x) \xrightarrow[x \to a]{} \ell \\ h(x) \xrightarrow[x \to a]{} \ell \end{array} \right|$$
, alors g admet une limite en a , et

$$g(x) \xrightarrow[x \to a]{} \ell$$

Limites d'une fonction composée 1.2.13

Soient $f \in \mathbb{R}^{\mathcal{D}_f}$ et $g \in \mathbb{R}^{\mathcal{D}_g}$ tel que $f(\mathcal{D}_f) \subset \mathcal{D}_g$

Si $\exists a, b, c \in \overline{\mathbb{R}}$ tel que

$$g(y) \xrightarrow[y \to b]{} f(x) \xrightarrow[x \to a]{} b$$

Alors
$$(g \circ f)(x) \xrightarrow[x \to a]{} c$$

Définition (bornes inférieure et supérieure d'une fonction) 1.2.14

Soit $D \subset \mathbb{R}$, et $f \in \mathbb{R}^D$.

On définit :

- $\sup_{D}(f) = \sup \{f(x) \mid x \in D\}$ $\inf_{D}(f) = \inf \{f(x) \mid x \in D\}$

1.2.15Théorème de la limite monotone

Soit I un intervalle de \mathbb{R} , $\begin{vmatrix} m = \inf(I) \\ M = \sup(I) \end{vmatrix}$ Soit $f \in \mathbb{R}^I$ une fonction monotone sur I.

Alors

$$\forall a \in I, \ \exists \ell, \ell' \in \overline{\mathbb{R}} \mid f(x) \xrightarrow[x \to a^{-}]{} \ell$$

De plus, si f est croissante, on a :

- $f(x) \xrightarrow[x \to m^+]{inf} \inf_{m;M[} (f)$ $f(x) \xrightarrow[x \to M^-]{inf} \sup_{m;M[} (f)$
- $\bullet \ \exists c \in \mathbb{R} \mid \forall x \in I, \ f(x) \geqslant c \ \Leftrightarrow \ \lim_{m^{-}} (f) \neq -\infty$
- $\exists C \in \mathbb{R} \mid \forall x \in I, \ f(x) \leqslant C \iff \lim_{M^+} (f) \neq +\infty$
- $\forall x \in]m; M[, \lim_{m^+} (f) \leqslant f(x) \leqslant \lim_{M^-} (f)$

2 Continuité

2.1 En un point

2.1.1 Définition (continuité en un point)

Soit $f \in \mathbb{R}^{\mathcal{D}_f}$, et $a \in \mathcal{D}_f$.

La fonction f est continue en a si elle y admet une limite finie, i.e si (cf 1.2.3, page 6)

$$\exists \ell \in \mathbb{R} \mid \forall \varepsilon \in \mathbb{R}_+^*, \ \exists \delta \in \mathbb{R}_+^* \mid \forall x \in \mathcal{D}_f, \ |x - a| \leqslant \delta \Rightarrow |f(x) - \ell| \leqslant \varepsilon$$

2.1.2 Propriétés

Soit $f \in \mathbb{R}^{\mathcal{D}_f}$, et $a \in \mathcal{D}_f$.

 \bullet Si f est continue en a, alors

$$f(x) \xrightarrow[x \to a]{} f(a)$$

• La fonction f est continue en $a \Leftrightarrow$

$$f_{|\mathcal{D}_f\setminus\{a\}}(x) \xrightarrow[x\to a]{} f(a)$$

Remarque : par abus d'écriture, on abrège souvent cela par : f continue en $a \Leftrightarrow f(x) \xrightarrow[x \to a]{} f(a)$.

2.1.3 Prolongement par continuité

Soit I un intervalle de \mathbb{R} , $a \in I$, et $f \in \mathbb{R}^{I \setminus \{a\}}$.

La fonction f est prolongeable par continuité en a si elle admet une limite finie en a, et dans ce cas, son prolongement par continuité est la fonction

$$I \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} f(x) & \text{si } x \neq a \\ \lim_{a} (f) & \text{sinon} \end{cases}$$

2.1.4 Définition (continuité à droite et à gauche)

Soit D un sous-ensemble de \mathbb{R} , $a \in D$, et $f \in \mathbb{R}^D$.

La fonction f est continue à gauche (resp. à droite) en a si elle admet une limite à gauche (resp. à droite) en a (cf 1.2.6, page 7), **et** si cette limite est f(a).

2.1.5 Propriétés

Soit D un sous-ensemble de \mathbb{R} , $a \in D$, et $f \in \mathbb{R}^D$.

• La fonction f est continue en $a \Leftrightarrow$

$$\begin{cases} f(x) \xrightarrow[x \to a^{-}]{} f(a) \\ f(x) \xrightarrow[x \to a^{+}]{} f(a) \end{cases}$$

 \bullet Si f est continue en a, alors elle est bornée au voisinage de a.

2.2 Sur un intervalle

2.2.1 Définition (Continuité sur un intervalle)

Soit I un intervalle de \mathbb{R} , et $f \in \mathbb{R}^I$.

La fonction f est continue sur l'intervalle I si elle est continue en tout point de I, i.e si :

$$\forall a \in I, \ f_{|I \setminus \{a\}}(x) \xrightarrow[x \to a]{} f(a)$$

2.2.2 Définition

Soient I, J des intervalles de \mathbb{R} .

On note $C^0(I,J)$ l'ensemble des fonctions continues de J^I :

$$\mathcal{C}^{0}(I,J) = \left\{ f \in J^{I} \mid \forall a \in I, \ f_{|I \setminus \{a\}}(x) \xrightarrow[x \to a]{} f(a) \right\}$$

Dans le cas où $J = \mathbb{R}$, on note plus simplement $C^0(I) = C^0(I, \mathbb{R})$.

2.2.3 Propriétés

• Soit I un intervalle de \mathbb{R} , et $f, g \in \mathcal{C}^0(I)$.

On a:

$$\forall \lambda, \mu \in \mathbb{R}, \ \lambda f + \mu g \in \mathcal{C}^0(I)$$

$$fg \in \mathcal{C}^0(I)$$

• Soient I, J des intervalles de $\mathbb{R}, f \in \mathcal{C}^0(I, J)$, et $g \in \mathcal{C}^0(J, \mathbb{R})$.

Alors:

$$g\circ f\in \mathcal{C}^0(I)$$

2.3 Théorème des valeurs intermédiaires

2.3.1 Cas particulier

Soient $a, b \in \mathbb{R} \mid a < b, I = [a, b], \text{ et } f \in \mathcal{C}^0(I) \text{ telle que}$

$$f(a)f(b) \leq 0$$

Alors

$$\exists x \in I \mid f(x) = 0$$

2.3.2 Théorème des valeurs intermédiaires (cas général)

Soient $a, b \in \mathbb{R} \mid a < b, I = [a, b], \text{ et } f \in \mathcal{C}^0(I).$

On a:

$$\forall d \in \left[\inf_{I}(f) \; ; \; \sup_{I}(f)\right], \; \exists x \in I \mid d = f(x)$$

Autrement dit:

$$\left[\inf_{I}(f) \; ; \; \sup_{I}(f)\right] \subseteq f(I)$$

2.3.3 Corollaire

Soit I un intervalle de \mathbb{R} et $f \in \mathcal{C}^0(I) \mid \forall x \in I, \ f(x) \neq 0$. Alors f est de signe constant sur I.

2.3.4 Corollaire

Soit I un intervalle de \mathbb{R} , $f \in \mathcal{C}^0(I)$, et $\begin{vmatrix} a = \inf(I) \\ b = \sup(I) \end{vmatrix}$.

On a:

$$\exists \ell, \ell' \in \overline{\mathbb{R}} \begin{cases} f(x) \xrightarrow[x \to a]{} \ell \\ f(x) \xrightarrow[x \to b]{} \ell' & \Rightarrow \exists x \in I \mid f(x) = 0 \\ \ell \ell' < 0 \end{cases}$$

2.3.5 Théorème

Soit I un intervalle de \mathbb{R} , et $f \in \mathcal{C}^0(I)$. Alors f(I) est un intervalle.

2.4 Sur un segment

2.4.1 Définition (segment)

Un segment de \mathbb{R} est un intervalle fermé, *i.e* un intervalle du type $[a \; ; \; b]$, où $a,b \in \mathbb{R}$, a < b.

2.4.2 Théorème

Soit I un segment de \mathbb{R} , et $f \in \mathcal{C}^0(I)$.

Alors:

$$\exists a, b \in I \mid \forall x \in I, \ f(a) \leqslant f(x) \leqslant f(b)$$

et par définition,
$$\mid \begin{array}{l} f(a) = \inf_I(f) = \min_I(f) \\ f(b) = \sup_I(f) = \max_I(f) \end{array}.$$

On dit aussi qu'une fonction continue sur un segment est bornée et atteint ses bornes.

2.4.3 Propriété

Soient $a, b \in \mathbb{R} \mid a < b, I = [a ; b], \text{ et } f \in \mathcal{C}^0(I).$

Alors:

$$f(I) = \left[\min_{I}(f) \; ; \; \max_{I}(f)\right]$$

2.5 Monotonie et bijection

2.5.1 Propriété

Soit I un intervalle de \mathbb{R} , et $f \in \mathbb{R}^I$ une fonction monotone telle que f(I) soit un intervalle.

Alors:

$$f\in\mathcal{C}^0(I)$$

2.5.2 Propriété

Soit I un intervalle de \mathbb{R} , et $f \in \mathcal{C}^0(I)$.

Alors:

f injective $\Leftrightarrow f$ strictement monotone

2.5.3 Théorème (continuité de la fonction réciproque)

Soient I, J des intervalles de \mathbb{R} , et $f \in \mathcal{C}^0(I, J)$ une fonction bijective.

On a alors:

$$f^{-1} \in \mathcal{C}^0(J, I)$$

2.5.4 Théorème de la bijection

Soient $a, b \in \mathbb{R} \mid a < b, I = [a \; ; \; b]$, et $f \in \mathcal{C}^0(I)$ une fonction strictement monotone. Alors :

- f réalise une bijection de I sur $J = \begin{cases} [f(a) \; ; \; f(b)] & \text{si } f \text{ croissante} \\ [f(b) \; ; \; f(a)] & \text{sinon} \end{cases}$
- \bullet Sa fonction réciproque $f^{-1}: J \longrightarrow I$ est continue, strictement monotone, et de même sens de variations que f.

Remarque : on peut ouvrir un / les crochets de I, et dans ce cas, on ouvre le / les crochets correspondant dans J, en remplaçant f(x) par $\lim_x f$ (où $x \in \{a,b\}$).

3 Dérivation

On fixe un intervalle I de \mathbb{R} non trivial.

3.1 Dérivée en un point

3.1.1 Définition (dérivée en un point)

Soit $f \in \mathbb{R}^I$, et $a \in I$

Soit τ_a le taux d'accroissement de f en a:

$$\tau_a : I \setminus \{a\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

La fonction f est $d\acute{e}rivable$ (resp. $d\acute{e}rivable$ à gauche, à droite) en a si τ_a admet une limite (resp. limite à gauche, droite) finie en a, et on note :

$$f'(a) = \lim_{x \to a} \tau_a(x) \quad \left(\text{resp.} \middle| \begin{array}{l} f'_{g}(a) = \lim_{x \to a^{-}} \tau_a(x) \\ f'_{d}(a) = \lim_{x \to a^{+}} \tau_a(x) \end{array}\right)$$

Remarque : on note aussi $\frac{\mathrm{d}f}{\mathrm{d}x}(a)$ la dérivée de f en a par rapport à x.

3.1.2 Propriété (équation de la tangente)

Soit $a \in I$, et $f \in \mathbb{R}^I$ une fonction dérivable en a.

La tangente au graphe de f en a a pour équation :

$$y = f'(a)(x - a) + f(a)$$

3.1.3 Propriété (CNS de dérivabilité en un point)

Soit $a \in I \setminus \{\inf(I), \sup(I)\}$, et $f \in \mathbb{R}^I$.

La fonction f est dérivable en $a \Leftrightarrow \begin{cases} f \text{ est dérivable à droite et à gauche en } a \\ f'_{\rm g}(a) = f'_{\rm d}(a) \end{cases}$

3.1.4 Propriété (continuité des fonctions dérivables)

Soit $f \in \mathbb{R}^I$, et $a \in I$.

Si f est dérivable (resp. dérivable à gauche, droite) en a, alors f est continue (resp. continue à gauche, droite) en a.

3.2 Sur un intervalle

3.2.1 Définition (fonction dérivée)

Soit $f \in \mathbb{R}^I$.

La fonction f est dérivable sur I si elle est dérivable en tout point de I, et la dérivée de f est la fonction

$$\begin{array}{cccc} f' & : & I & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & f'(x) \end{array}$$

On note $\mathcal{D}(I,J)$ l'ensemble des fonctions dérivables sur I à valeurs dans \mathbb{R} . On omet J lorsque celui-ci est \mathbb{R} .

Remarque : on note aussi $\frac{\mathrm{d}f}{\mathrm{d}x} = f'$.

3.2.2 Propriété (continuité des fonctions dérivables)

Soit $f \in \mathbb{R}^I$.

On a

$$f \in \mathcal{D}(I) \Rightarrow f \in \mathcal{C}^0(I)$$

i.e

$$\mathcal{D}(I)\subset\mathcal{C}^0(I)$$

3.2.3 Propriété (linéarité de la dérivation)

Soit l'application

$$\begin{array}{cccc} \varphi & : & \mathcal{D}(I) & \longrightarrow & \mathbb{R}^I \\ & f & \longmapsto & f' \end{array}$$

Alors φ est une application linéaire, *i.e* :

$$\forall \lambda, \mu \in \mathbb{R}, \forall f, g \in \mathcal{D}(I), \ \varphi(\lambda f + \mu g) = \lambda \varphi(f) + \mu \varphi(g)$$

i.e:

$$\forall \lambda, \mu \in \mathbb{R}, \forall f, g \in \mathcal{D}(I), (\lambda f + \mu g)' = \lambda f' + \mu g'$$

Remarque : $\forall a \in I, \forall f \in \mathcal{D}(I)$, soit $\varphi_a(f) = \varphi(f)(a)$. Alors φ_a est une forme linéaire.

3.2.4 Propriété (produit de dérivées)

Soient $f, g \in \mathcal{D}(I)$.

Alors $fg \in \mathcal{D}(I)$, et:

$$(fg)' = f'g + g'f$$

3.3 Dérivées d'ordre supérieur

3.3.1 Définition (Dérivée n-ème)

Soit $f \in \mathbb{R}^I$.

On définit par récurrence, pour $n \in \mathbb{N}$, la dérivée n-ème $f^{(n)}$ de f, si elle existe, par :

$$\begin{cases} f^{(0)} = f \\ f^{(n)} = (f^{(n-1)})' \end{cases}$$

En cas d'existence, on dit que f est n-fois dérivable.

Remarque : on note aussi $\frac{\mathrm{d}^n f}{\mathrm{d}x^n} = f^{(n)}$.

3.3.2 Définition (Fonctions de classe C^n)

• On note $C^n(I,J)$ l'ensemble des fonctions n-fois dérivables sur I à valeurs dans J, et dont la dérivée n-ème est continue. On omet J si celui-ci est \mathbb{R} .

Si $f \in \mathcal{C}^n(I)$, on dit que f est de classe \mathcal{C}^n sur I.

• On note $\mathcal{C}^{\infty}(I,J) = \{ f \in J^I \mid \forall n \in \mathbb{N}, f \in \mathcal{C}^n(I,J) \}$, *i.e* l'ensemble des fonctions dérivables à tout ordre. De même que précédemment, on omet J dans le cas $J = \mathbb{R}$. Si $f \in \mathcal{C}^{\infty}(I)$, on dit que f est de classe \mathcal{C}^{∞} sur I.

3.3.3 Propriétés

• Soient $n, p \in \mathbb{N} \mid p \leqslant n$.

Alors

$$C^n(I) \subset C^p(I)$$

 \bullet Soit $n \in \mathbb{N}^*,$ et $f \in \mathbb{R}^I$ une fonction n-fois dérivable.

Alors

$$\forall p \in \llbracket 0 \; ; \; n-1 \rrbracket, \; f \in \mathcal{C}^p(I)$$

• On a

$$\mathcal{C}^{\infty}(I) = \bigcap_{n \in \mathbb{N}} \mathcal{C}^n(I)$$

• Soit $n \in \mathbb{N}$, et $f \in \mathcal{D}(I)$.

Alors

$$f \in \mathcal{C}^n(I) \iff f' \in \mathcal{C}^{n-1}(I)$$

3.3.4 Propriété (linéarité de la dérivation n-ème)

Soit $n \in \mathbb{N}$.

L'application

$$\varphi_n : \mathcal{C}^n(I) \longrightarrow \mathbb{R}^I \\
f \longmapsto f^{(n)}$$

est linéaire, i.e:

$$\forall \lambda, \mu \in \mathbb{R}, \forall f, g \in \mathcal{C}^n(I), \ (\lambda f + \mu g)^{(n)} = \lambda f^{(n)} + \mu g^{(n)}$$

3.3.5 Propriété (Produit de dérivées n-èmes)

Soient $n \in \mathbb{N}$, et $f, g \in \mathcal{C}^n(I)$.

Alors $fg \in \mathcal{C}^n(I)$, et :

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$

(formule de Leibniz).

Remarque : $C^n(I)$ est un sous-anneau de $(\mathbb{R}^I, +, \times)$.

3.3.6 Propriété (dérivée n-ème des monômes)

• Soit $p \in \mathbb{N}$.

On a: $x \longmapsto x^p \in \mathcal{C}^{\infty}(\mathbb{R})$, et:

$$\forall n \in \mathbb{N}, \ \frac{\mathrm{d}^n[x^p]}{\mathrm{d}x^n} = \begin{cases} \frac{p!}{(p-n)!} x^{p-n} & \text{si } n \leqslant p\\ 0 & \text{sinon} \end{cases}$$

• On a: $x \longmapsto \frac{1}{x} \in \mathcal{C}^{\infty}(\mathbb{R}^*)$, et:

$$\forall n \in \mathbb{N}, \ \frac{\mathrm{d}^n \left[\frac{1}{x}\right]}{\mathrm{d}x^n} = (-1)^n \frac{n!}{x^{n+1}}$$

3.4 Quotient

3.4.1 Propriété (dérivée de l'inverse en un point)

Soit $a \in I$, et $f \in \mathbb{R}^I$ une fonction dérivable en a et telle que $\forall x \in I$, $f(x) \neq 0$. Alors $\frac{1}{f}$ est dérivable en a, et :

$$\left(\frac{1}{f}\right)'(a) = -\frac{f'(a)}{\left(f(a)\right)^2}$$

3.4.2 Propriété (dérivée de l'inverse sur un intervalle)

• Soit $f \in \mathcal{D}(I) \mid \forall x \in I, \ f(x) \neq 0.$

Alors
$$\frac{1}{f} \in \mathcal{D}(I)$$
, et

$$\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$$

• Soit $f \in \mathcal{C}^n(I, \mathbb{R}^*)$.

Alors
$$\frac{1}{f} \in \mathcal{C}^n(I)$$
.

3.4.3 Corollaire (dérivé d'un quotient)

• Soient $f, g \in \mathcal{D}(I) \mid \forall x \in I, \ g(x) \neq 0.$

Alors
$$\frac{f}{g} \in \mathcal{D}(I)$$
, et
$$\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}$$

• Soient $f, g \in \mathcal{C}^n(I) \mid \forall x \in I, \ g(x) \neq 0.$ Alors $\frac{f}{g} \in \mathcal{C}^n(I).$

3.5 Composée

3.5.1 Propriété (dérivée d'une fonction composée en un point)

Soient I, J des intervalles de \mathbb{R} , $a \in I$, et $\begin{vmatrix} f \in J^I \\ g \in \mathbb{R}^J \end{vmatrix}$ telles que f soit dérivable en a et g en f(a).

Alors $g \circ f$ est dérivable en a, et :

$$(g \circ f)'(a) = f'(a) \cdot g'(f(a))$$

3.5.2 Propriété (dérivée d'une fonction composée sur un intervalle)

Soient I, J des intervalles de \mathbb{R} , et $\begin{vmatrix} f \in \mathcal{D}(I, J) \\ g \in \mathcal{D}(J, \mathbb{R}) \end{vmatrix}$.

Alors $g \circ f \in \mathcal{D}(I)$, et

$$(q \circ f)' = f' \cdot (q' \circ f)$$

3.5.3 Propriété ($Classe C^n$)

Soient I, J des intervalles de \mathbb{R} , $n \in \mathbb{N}$, et $\left| \begin{array}{l} f \in \mathcal{C}^n(I, J) \\ g \in \mathcal{C}^n(J, \mathbb{R}) \end{array} \right|$. Alors $g \circ f \in \mathcal{C}^n(I)$.

3.6 Fonction réciproque

3.6.1 Propriété (dérivée de la fonction réciproque en un point)

Soit $a \in I$, et $f \in \mathcal{C}^0(I)$ une fonction bijective de I sur J = f(I), dérivable en a, telle que $f'(a) \neq 0$.

Alors f^{-1} est dérivable en f(a), et

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$

3.6.2 Propriété (dérivée de la fonction réciproque sur un intervalle)

Soit $f \in \mathcal{D}(I)$ une fonction bijective de I sur J = f(I), telle que $\forall x \in I$, $f'(x) \neq 0$. Alors $f^{-1} \in \mathcal{D}(J)$, et

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

3.6.3 Corollaire

Soit $f \in \mathcal{D}(I)$ une fonction bijective de I sur J = f(I).

Alors

$$f^{-1} \in \mathcal{D}\left(\left\{f(x) \in J \mid x \in I \mid f'(x) \neq 0\right\}\right)$$

3.6.4 Propriété

Soit $n \in \mathbb{N}^*$, et $f \in \mathcal{C}^n(I) \mid \forall x \in I, f'(x) \neq 0$.

Alors f réalise une bijection de I sur f(I), et $f^{-1} \in \mathcal{C}^n(f(I))$.

Remarque : un telle fonction s'appelle un \mathcal{C}^n -difféomorphisme.

3.7 Théorème de Rolle

3.7.1 Propriété

Soit $a \in I \setminus \{\inf(I), \sup(I)\}, \text{ et } f \in \mathcal{D}(I).$

Si f admet un extremum en a, alors f'(a) = 0.

Remarques : un tel point est un point critique. La réciproque est fausse $(x \longmapsto x^3$ en 0).

3.7.2 Théorème de Rolle

Soient $a, b \in \mathbb{R} \mid a < b$, et $f \in \mathcal{C}^0([a \; ; \; b]) \cap \mathcal{D}(]a \; ; \; b[) \mid f(a) = f(b)$.

Alors

$$\exists c \in]a \; ; \; b[\mid f'(c) = 0$$

3.8 Égalité des accroissements finis

3.8.1 Théorème (égalité des accroissements finis)

Soient $a, b \in \mathbb{R} \mid a < b$, et soit $f \in \mathcal{C}^0([a ; b]) \cap \mathcal{D}(]a ; b[)$.

Alors

$$\exists c \in]a \; ; \; b[\mid f'(c) = \frac{f(b) - f(a)}{b - a}$$

3.8.2 Définition (fonction lipschitzienne)

Soit $f \in \mathbb{R}^I$.

La fonction f est lipschitzienne si

$$\exists k \in \mathbb{R} \mid \forall x, y \in I, |f(x) - f(y)| \leq k |x - y|$$

Dans ce cas, on dit que f est k-lipschitzienne.

3.8.3 Propriété

Une fonction lipschitzienne est continue.

3.8.4 Corollaire (Inégalité des accroissements finis)

Soient $a, b \in \mathbb{R} \mid a < b$, et $f \in \mathcal{C}^0([a ; b]) \cap \mathcal{D}([a ; b])$ telle que

$$\exists m, M \in \mathbb{R} \mid \forall x \in]a ; b[, m \leqslant f'(x) \leqslant M.$$

Alors

$$\forall x, y \in [a ; b], x \leqslant y \Rightarrow m(y - x) \leqslant f(y) - f(x) \leqslant M(y - x)$$

i.e f est max(|m|, |M|)-lipschitzienne.

3.8.5 Propriétés

• Soit $f \in \mathcal{D}(I)$ une fonction lipschitzienne sur I.

Alors f' est bornée.

• Soient $a, b \in \mathbb{R} \mid a < b$, et $f \in \mathcal{C}^1([a ; b])$.

Alors f est lipschitzienne.

3.9 Monotonie et dérivabilité

3.9.1 Propriété (CNS de monotonie avec la dérivabilité)

Soit I un intervalle de \mathbb{R} , \widetilde{I} l'intérieur de I, et $f \in \mathcal{C}^0(I) \cap \mathcal{D}(\widetilde{I})$.

Alors:

$$\begin{array}{ccc} f \nearrow \Leftrightarrow & f' \geqslant 0 \\ f \searrow \Leftrightarrow & f' \leqslant 0 \end{array}$$

$$\exists a \in \mathbb{R} \mid \forall x \in I, \ f(x) = a \ \Leftrightarrow \ f' = 0$$

3.9.2 Propriété (conditions suffisantes de stricte monotonie)

Soit I un intervalle de \mathbb{R} , \widetilde{I} l'intérieur de I, et $f \in \mathcal{C}^0(I) \cap \mathcal{D}(\widetilde{I})$.

• Si

$$\forall x \in \widetilde{I}, \ f'(x) > 0 \text{ (resp. } f'(x) < 0),$$

alors f est strictement croissante (resp. strictement décroissante) sur I.

• Si

$$\begin{cases} \forall x \in \widetilde{I}, \ f'(x) \geqslant 0 \ (\text{resp. } f'(x) \leqslant 0) \\ \operatorname{card} \left\{ x \in \widetilde{I} \mid f'(x) = 0 \right\} < +\infty \end{cases}$$

alors f est strictement croissante (resp. strictement décroissante) sur I (corollaire du théorème suivant).

3.9.3 Théorème (CNS de stricte monotonie)

Soit I un intervalle de \mathbb{R} , \widetilde{I} l'intérieur de I, et $f \in \mathcal{C}^0(I) \cap \mathcal{D}(\widetilde{I})$. Alors f est strictement croissante sur $I \Leftrightarrow$

$$\begin{cases} \forall x \in \widetilde{I}, \ f(x) \geqslant 0 \\ \forall x, y \in \widetilde{I} \mid x < y, \ f'(x) = 0 = f'(y) \Rightarrow \exists x_0 \in]x \ ; \ y[\mid f'(x_0) \neq 0 \end{cases}$$

Et f est strictement décroissante sur $I \Leftrightarrow$

$$\begin{cases} \forall x \in \widetilde{I}, \ f(x) \leq 0 \\ \forall x, y \in \widetilde{I} \mid x < y, \ f'(x) = 0 = f'(y) \Rightarrow \exists x_0 \in]x \ ; \ y[\ \mid f'(x_0) \neq 0 \end{cases}$$

3.10 Théorème de la limite de la dérivée

3.10.1 Théorème de la limite de la dérivée

Soit $c \in I$, et $f \in \mathcal{C}^0(I) \cap \mathcal{D}(I \setminus \{c\})$.

• Si $\exists \ell \in \mathbb{R} \mid f'(x) \xrightarrow[x \to c]{} \ell$, alors $f \in \mathcal{D}(I)$,

$$f'(c) = \ell$$

et f' est continue en c.

De plus, si $f \in \mathcal{C}^1(I \setminus \{c\})$, alors $f \in \mathcal{C}^1(I)$.

• Si $f'(x) \xrightarrow[x \to c]{} \pm \infty$, alors la courbe représentative de f admet une tangente verticale au point d'abscisse c.

3.10.2 Théorème de classe C^k par prolongement

Soient $a \in I$, $n \in \mathbb{N}$, et $f \in \mathcal{C}^n(I \setminus \{a\})$ telle que

$$\forall k \in \llbracket 0 ; n \rrbracket, \exists \ell_k \in \mathbb{R} \mid f^{(k)}(x) \xrightarrow[x \to a]{} \ell_k.$$

Alors f est prolongeable par continuité en a, et en notant \widetilde{f} son prolongement, on a :

$$\widetilde{f} \in \mathcal{C}^n(I)$$

et:

$$\forall k \in \llbracket 0 ; n \rrbracket, \ \widetilde{f}^{(k)}(a) = \ell_k.$$

