Sport frei! Mit Core Motion

Core Motion?

- Core Motion ist Apple's Framework zum Observieren von Bewegungs- und Orientierungsänderungen in iOS-Geräten
- Kam mit iOS 4 (2010), ab iPhone 4 voll unterstützt
- Kein Testen im iOS Simulator
- Spiele, Augmented Reality, 3D-Visualisierung, Fitness-Apps,
 ...

"Früher..."

- iPhone 1: Nur Accelerometer
 - iOS 2.0: UIAccelerometer
- iPhone 3GS: Magnetometer (Kompass app)
 - iOS 3.0: CMMagnetometerData
- iPhone 4: Gyroscope
 - iOS 4.0: Core Motion

"Früher..."

- iPhone 5S hat M7 Motion Co-Processor
 - iOS 7.0: CMMotionActivity, CMStepCounter
- iPhone 6 hat M8 Motion Co-Processor
 - iOS 8.0: CMPedometer, erweitert CMStepCounter

Accelerometer, aka Beschleunigungsmesser

- Misst Gravitation und Beschleunigung
- Stromsparend, sehr responsiv
- Wird relativ zur Erdbeschleunigung gemessen, in g

Gähn...

- Zentrale Instanz: CMMotionManager
- Check ob Sensor verfügbar
- Update-Interval setzen:
 - Präzision
 - Rauschen
 - Stromverbrauch

Datenerfassung: Pull

- NSOperationQueue + block
- Wird bei jedem neuen Sample aufgerufen
- Alle Samples
- Höherer Overhead

Datenerfassung: Push

- CMMotionManager in bestimmten Abständen nach neuen Werten fragen
- Effizienter
- Braucht extra Timer

```
- (void)fetchAccelerationUpdates
CMMotionManager *motionManager = [CMMotionManager new];
 if (!motionManager.isAccelerometerAvailable)
  return;
 // Set update interval to 60 Hz
motionManager.accelerometerUpdateInterval = 1.0/60.0;
 // Pull updates
 [motionManager startAccelerometerUpdates];
CMAccelerometerData *acceleration = motionManager.accelerometerData;
 // Alternatively, push updates
 [motionManager startAccelerometerUpdatesToQueue:NSOperationQueue.mainQueue
 withHandler:^(CMAccelerometerData *accelerometerData, NSError *error) {
  // ...
```

Demo

Gyroskop

• Misst Rotationsrate in rad/sec

Probleme: Accelerometer

- Beschleunigung herausrechnen?
 - Tiefpass für Beschleunigung
 - Hochpass für Gravitation
 - Probleme:
 - Datenverlust
 - Latenz

Probleme: Gyroskop

- Räumliche Orientierung berechnen?
 - Leichte Abweichung
 - Wenn man Werte über Zeit integriert akkumuliert sich Abweichung

Sensor Fusion

- Accelerometer + Magnetometer + Gyroskop
 - = Device Motion
 - Räumliche Orientierung (Attitude)
 - Rotationsrate
 - Gravitation
 - Beschleunigung

Demo

Kniebeuge (Squats)

Kniebeuge erkennen

Kniebeuge erkennen

Demo

Russian Twists

Russian Twists erkennen

Russian Twists erkennen

Demo