Electronic Systems Active Filters Sheet 1

- 1. The circuits shown represent an op-amp inverting and non-inverting amplifiers respectively. Op-amps has a finite open-loop DC gain A_o = 10^5 and open-loop Band-Width ω_b = 10 rad/sec.
 - Derive an expression for the closed-loop gain $A_V = V_o/V_{in}$.
 - Calculate the closed loop DC gain A_m and closed-loop Band-Width ω_C .
 - Calculate the Gain-Band-Width Product (GBP) for open and closed-loops.

- 2. Analyze the circuits shown using ideal Op-amp.
 - Drive an expression for the closed-loop gain $A_V = V_o/V_{in}$.
 - Calculate the maximum DC gain (A_m) and the cut-off frequency (f_c) .
 - Calculate the unity-gain frequency (f_T) .
 - Sketch the frequency response magnitude
 - What is the filter type produced by each circuit?

- 3. Analyze the circuits shown using ideal Op-amp.
 - Drive an expression for the closed-loop gain $A_V = V_o/V_{in}$.
 - Calculate the Lower and Higher cut-off frequencies (f_L and f_H).
 - Sketch the frequency response magnitude
 - What is the filter type produced by each circuit?

- 4. Analyze the circuit shown using ideal Op-amp.
 - Drive an expression for the closed-loop gain gain $A_V = V_o/V_{in}$.
 - Sketch the frequency response magnitude
 - What is the filter type?

5. By cascading a first-order op amp-RC low-pass circuit with a first-order op amp-RC high-pass circuit, one can design a wideband bandpass filter. Provide such a design for the case in which the midband gain is 12 dB and the 3 dB bandwidth extends from 100 Hz to 10 kHz. Select appropriate component values under the constraint that no resistors higher than $100 \text{ k}\Omega$ are to be used and that the input resistance is to be as high as possible.