(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 24 January 2002 (24.01.2002)

PCT

(10) International Publication Number WO 02/06452 A2

(51) International Patent Classification7:

_ _ _

C12N 9/00

(21) International Application Number: PCT/CA01/01032

(22) International Filing Date:

13 July 2001 (13.07.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/218,842

18 July 2000 (18.07.2000) US

(71) Applicant (for all designated States except US): NA-TIONAL RESEARCH COUNCIL OF CANADA [CA/CA]; Corporate Services, Intellectual Property Services, 1200 Montreal Road, Building M-58, Room EG-12, Ottawa, Ontario K1A 0R6 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): IWAKI, Hiroaki [JP/CA]; 1625 West De Maisonneuve Boulevard, Suite 1508, Montreal, Québec H3H 2N4 (CA). HASEGAWA, Yoshie [JP/JP]; 8-45 Gojo-cho, Higashi-Osaka, Higashi-Osaka, Osaka 579-8042 (JP). LAU, Peter, C., K. [CA/CA]; 30 Piper's Crescent, Kirkland, Québec H9H 3J4 (CA).

(74) Agent: SWABEY OGILVY RENAULT; Suite 1600, 1981 McGill College Avenue, Montreal, Québec H3A 2Y3 (CA).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: CLONING, SEQUENCING AND EXPRESSION OF A COMAMONAS CYCLOPENTANONE 1,2-MONOOXYGE-NASE-ENCODING GENE IN ESCHERICHIA COLI

(57) Abstract: Cyclopentanone 1,2-monooxygenase (CPMO) from Comamonas (previously Pseudomonas) sp. strain NCIMB 9872 carries out the second step of a degradation pathway that allows the bacterium to use cyclopentanol as a sole carbon source for growth. In the present invention there is reported the localization of the CPMO-encoding gene (cpnB) on a 4.3-kb SphI fragment, the determination of its sequence. The 550-amino acid CPMO polypeptide (M_r , 62,111) encoded by the gene was found to have 36.5% identity with the sequence of cyclohexanone 1,2-monooxygenase (CHMO) of Acinetobacter sp. strain NCIMB 9871. The 62-kDa CPMO was expressed in E. coli as an IPTG-inducible protein.

٦,

5

10

15

20

25

30

CLONING, SEQUENCING AND EXPRESSION OF A COMAMONAS CYCLOPENTANONE 1,2-MONOOXYGENASE-ENCODING GENE IN ESCHERICHIA COLI

TECHNICAL FIELD

The present invention relates to an isolated DNA encoding a cyclopentanone monooxygenase (CPMO), or an enzymatically active portion thereof, and expression vector and a transformed cell containing the isolates DNA.

BACKGROUND OF THE INVENTION

Comamonas (previously Pseudomonas) sp. NCIMB 9872 was one of the few microorganisms that have been characterized to produce a Baeyer-Villiger monooxygenase (BVMO; Griffin, M., et al., Biochem. J. 129:595-603, 1972; Griffin, M., et al., Eur. J. Biochem. 63:199-209, 1976; and Willetts, A., Trends in Biotech. 15:55-62, 1997; for a recent review). BVMOs are flavoproteins that mimic the classical Baeyer-Villiger organic chemical reaction which is a peracidcatalyzed oxidation of a ketone to an ester or lactone. The use of enzyme substitutes for the production of lactones in high yield and optical purity is an attractive feature in current trends of research and development toward replacing chemical methods with biological alternatives (Stinson, S.C., Chem. Eng. News, 83-104, 1998). To date, the best characterized BVMO enzyme is that of cyclohexanone monooxygenase (CHMO) produced by Acinetobacter sp. NCIMB 9871 (Stewart, J.D., Curr. Org. Chem. 2:195-216, 1998; Willetts, A., Trends in Biotech. 15:55-62, 1997). This is also the only BVMO whose gene has been cloned and sequenced (Chen, et al., J. Bacteriol. 170:781-789, 1988). Recently, this valuable resource was used to engineer a "designer yeast" in a whole-cell approach to effect a variety of asymmetric Baeyer-Villiger oxidations (Stewart, J.D., et al., J. Am. Chem. Soc. 120:3541-3548, 1998).

It would be highly desirable to be provided with a new CPMO having an increased enzymatic activity for growing cells in a medium containing cyclopentanol or cyclopentanone as sole carbon source.

10

15

20

25

SUMMARY OF THE INVENTION

One aim of the present invention is to provide a new CPMO having an increased enzymatic activity for growing cells in a medium containing cyclopentanol or cyclopentanone as sole carbon source.

In accordance with the present invention there is provided an isolated DNA encoding a cyclopentanone monooxygenase (CPMO), or an enzymatically active portion thereof, the isolated DNA being characterized by the ability to hybridize specifically with the complement of the DNA represented in SEQ ID NO:8 under stringent hybridization conditions.

Also in accordance with the present invention, there is provided an isolated DNA, wherein it codes for a cyclopentanone monooxygenase (CPMO), and contains:

- (1) the nucleic acid sequence of SEQ ID NO:8;
- (2) a sequence corresponding to said nucleic acid sequence in the scope of the degeneration of the genetic code; or
- (3) a sequence hybridizing under stringent conditions with the sequence from (1) or (2), and still coding for cyclopentanone monooxygenase (CPMO).

Still in accordance with the present invention, there is provided an isolated DNA encoding a cyclopentanone monooxygenase (CPMO), or an enzymatically active portion thereof, said isolated DNA having SEQ ID NO:8.

The present invention further provides an isolated DNA expression vector encoding an enzymatically active cyclopentanone monooxygenase (CPMO) comprising a DNA characterized by a sequence as set forth in SEQ ID NO:8, or a portion thereof, said portion encoding said CPMO, in expressible form.

In accordance with the present invention, there is also provided a recombinant vector comprising the isolated DNA as decribed above, wherein the isolated DNA encodes cyclopentanone monooxygenase.

PCT/CA01/01032

5

15

25

In a preferred embodiment of the present invention, the isolated DNA has a nucleic acid sequence of SEQ ID NO:8 or which, due to the degeneracy of the genetic code, is a functional equivalent thereof.

Also in accordance with the present invention, there is provided a recombinant vector containing one or more copies of a recombinant DNA described above.

The recombinant vector may be a prokaryotic vector. The recombinant vector may also be a plasmid.

Therefore, in accordance with the present invention, there is also provided a biologically functional plasmid or viral DNA vector, which contains a DNA as described above.

The present invention also provide a host cell comprising a recombinant vector as described above.

Accordingly, there is also provided a cell transformed with a heterologous DNA expression construct encoding an enzymatically active cyclopentanone monooxygenase (CPMO) comprising a DNA characterized by a sequence as set forth in SEQ ID NO:8, or a portion thereof, said portion encoding said CPMO, in expressible form.

The cell may be a prokaryotic cell or it may be E. coli.

Still in accordance with the present invention, there is also provided a purified cyclopentanone monooxygenase (CPMO) having:

- a) an amino acid sequence as set forth in SEQ ID NO:5;
- an amino acid sequence encoded by a nucleic acid sequence as set forth in SEQ ID NO:8; or
- c) an amino acid sequence encoded by a nucleic acid sequence hybridizing to a nucleic acid sequence complementary to the nucleic acid sequence of step b) above under stringent conditions, said amino acid sequence encoded in step c) having a same activity as the amino acid sequence in a).

15

20

25

The present invention also provides a recombinant cyclopentanone monooxygenase (CPMO) having an enzymatic activity superior to the one from a native *Pseudomonas*, and more preferably twice superior.

The recombinant cyclopentanone monooxygenase (CPMO) may be prepared from Comamonas sp. NCIMB 9872. The recombinant cyclopentanone monooxygenase (CPMO) has preferably a sequence as set forth in SEQ ID NO:5.

A method for growing cells *in vitro* in presence of cyclopentanol or cyclopentanone as sole source of carbon, said method comprising the steps of:

- a) transforming a cell with the expression construct described above; and
- b) growing the cell of step a) under suitable conditions in a medium containing cyclopentanol or cyclopentanone as a sole source of carbon.

To increase this gene potential, according to the invention it is reported herein the cloning of a cyclopentanone monooxygenase (CPMO)-encoding gene (*cpnB*) from Comamonas (*Pseudomonas*) sp. NCIMB 9872, the determination of its DNA and surrounding sequence and expression of CPMO activity and protein in *E. coli*.

BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 illustrates the first two steps of cyclopentanol degradation by *Pseudomonas* sp. NCIMB 9872;
- Fig. 2 illustrates the genetic organization in *Comamonas* sp. NCIMB 9872 in the *Sph*I fragment containing cyclopentanone monooxygenase-encoding gene (*cpnB*) and additional open reading frames;
 - Fig. 3 illustrates an alignment of the amino acid sequence of the CPMO of Comamonas sp. NCIMB 9872 with that of CHMO from Acinetobacter sp.

10

15

20

25

30

NCIMB 9871 and a steroid monooxygenase (STMO) from *Rhodococcus* rhodochrous;

Fig. 4 illustrates a SDS-PAGE of crude extracts from *E. coli* (pCMP201); and

Fig. 5 illustrates CPMO-encoding gene, designated cpnB.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Cloning of the Comamonas sp. NCIMB 9872 CPMO-encoding gene

Pseudomonas sp. NCIMB 9872 (henceforth strain 9872) identified as a Comamonas by 16S rDNA sequencing in this study, was purchased from the National Collections of Industrial and Marine Bacteria Ltd (NCIMB, Aberdeen, Scotland) and grown at 30°C in Luria-Bertani (LB) broth (Sambrook, J., et al., Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y, 1989), or mineral salt medium (MSM), pH 7.0, containing 2 ml of cyclopentanone. The MSM recipe contains per liter: 1.0 g of NH_4NO_3 , 1.5 g of KH_2PO_4 , 1.5 g of Na_2HPO_4 , 0.2 g $MgSO_4 \cdot 7H_2O$, 0.01 g of CaCl₂·2H₂O, 0.005 of FeSO·7H₂O, 0.002 g of MnSO₄·4H₂O and 0.1 g of yeast extract. Agar was added to 1.5% for plates. Genomic DNA of strain 9872 was prepared by the Marmur method (Marmur, J., J. Mol. Biol. 3: 208-218, 1961). At first, a Southern hybridization of DNA digested with BamHI was carried out using the Acinetobacter NCIMB 9871 CHMO-containing gene as probe. Since there was no positive result (hybridization conditions carried out at 65°C) the CPMO protein was purified in order to obtain an N-terminal amino acid sequence. The purification of CPMO protein from cyclopentanone-grown cells was according to Griffin and Turgill (Griffin, M., et al., Eur. J. Biochem. 63:199-209, 1976). Using an automated protein sequencer (Perkin-Elmer model 477) a 40-residue amino-terminal sequence of the purified CPMO was obtained (Fig. 2). This sequence, longer by 11 amino acids, is in perfect agreement with that reported previously from the same organism (Willetts, A., Trends in Biotech. (5'primers **15**:55-62. 1997). Two degenerate oligodeoxynucleotide ACIACIATGA CIACNATGAC-3' (SEQ ID NO:1) and 5'-ARRTGRTAIA

10

15

20

25

30

RYTGRTA-3' (SEQ ID NO:2), corresponding to amino acids 2-8 and 35-40, respectively) were synthesized to amplify a 116-bp product from total DNA prepared from strain 9872. The PCR amplification was performed in a Perkin Elmer-Model 2400 Thermal Cycler™ and the amplification conditions were 94°C for 1 min, 50°C for 1 min and 72°C for 1 min for 30 cycles. The amplified product was cloned directly in the pXcmkn12 vector (Cha, J., et al., *Gene* 136, 369-370, 1993), transformed in *E. coli* JM109 and the resulting plasmid was designated pCMP10. Before using the amplified product as a gene probe its nucleotide sequence was confirmed. Nucleotide sequencing was determined by the Taq DyeDeoxy terminator cycle sequencing kit and the ABI Prism 310 Genetic Analyzer (Perkin Elmer). Plasmid isolation was performed by the method of Birnboim and Doly (Birnboim, H. C., and J. Doly, *DNA. Nucleic Acids Res.* 7:1513-1523, 1979).

In Fig. 2, Orf1 is most likely a transcriptional activator of the NtrC-type (Morett, E., L. Segovia, *J. Bacteriol.* **175**:6067-6074, 1993). The amino acid sequence of ORF1 (C-terminal 391-amino acids) showed 38-40% identity to equivalent regions of proteins such as NTRC_ECOLI (Nitrogen regulation protein NR(I) from *E. coli*; Miranda, et al., *The complete nucleotide sequence of the glnALG operon of Eschericha coli K12* **15**:2757-2770, 1987), ACOR_ALCEU (Acetoin catabolism regulatory protein from *Ralstonia eutropha*; Kruger, N., et al., *J. Bacteriol.* **179**:4391-4400, 1992). The amino acid sequence of ORF2, showing similarity to enzymes of the short-chain alcohol dehydrogenase family (Jornvall, H., et al., *Biochemistry* **34**: 6003-6013, 1995), is most homologous (45-46% identity) to a putative oxidoreductase CY39.16C of *Mycobacterium tuberculosis* (Swiss Prot sp:Q10855) and fadG3 of *M. tuberculosis* (GenBank accession number Z74025). For *Pseudomonas* sp. strain HI-201 the *lacZ*-Km^r cassette from pKOK6.1 (Kokotek, W., et al., *Gene* **84**: 467-471, 1989) was inserted into *cpnB* at the *Nsi*I site.

In Fig. 2, the following terms are defined as follows: t_{fd}, transcriptional termination sequence of phage fd; Km^r, kanamycin resistance gene, *lacZ*, gene encoding b-galactosidase. Genes and markers are indicated with arrows.

15

20

25

30

To clone the CPMO-containing gene, the DNA insert from pCMP10 was amplified, labeled by the digoxigenin-11-UTP system according to manufacturer's instructions (Boehringer Mannheim GmbH) and used to probe a Southern hybridization of strain 9872 genomic DNA digested with various restriction enzymes (*BamHI*, *EcoRI*, *HindIII*, *KpnI*, *NheI*, *PstI*, *SalI*, *SphI* and *XbaI*). As a result, a single hybridizing band of *ca* 4.3-kb *SphI* fragment was obtained. Conditions of hybridization were as before. Subsequently, a purified 4.0- to 4.5-kb size fraction of *SphI*-cut total DNA separated on a 0.8 % agarose gel was ligated to *E. coli* plasmid pUC18, which had been linearized and dephosphorylated. A clone containing the 4.3-kb insert was screened by colony hybridization using the PCR product as a probe; this recombinant plasmid was designated pCMP200.

DNA sequence of the CPMO-encoding gene (cpnB) and the flanking region

Nucleotide sequencing of the CPMO-encoding gene was initiated by using a primer designed from the sequence of the PCR product cloned in pCMP10 and further extended using oligonucleotides derived from the new sequence. Both DNA strands of the SphI fragment were sequenced and found to consist of 4281 base pairs (bp). The sequence was analyzed by GENETYX-Mac (Software Development Co., Ltd. Chiba, Japan) and the BLAST program (Altschul, S. F., et al., Nucleic Acids Res. 25:3389-3402, 1997). As a result three open reading frames (ORFs) arranged in the same direction were predicted (Fig. 2). The nucleotide sequence of the 1650-bp ORF encoding CPMO is preceded by a partial ORF1 (1173-bp) coding for the C-terminus of an NtrC-type transcriptional activator (Miranda, et al., The complete nucleotide sequence of the glnALG operon of Eschericha coli K12 15:2757-2770, 1987) and by a complete ORF2 (750-bp) coding for a homolog of the short-chain dehydrogenases/reductases (Jornvall, H., et al., Biochemistry 34: 6003-6013, 1995). The two intergenic regions are 244-bp and 32-bp, respectively. The CPMO-encoding gene is referred to cpnB (cyclopentanone and B designates the second step of the degradation pathway, see Fig. 1) hereafter. In Fig. 5, the CPMO-encoding gene starts at nucleotide position 1822 and ends 3471 that does not include the stop codon. Accordingly, the boundary of cpnA is 3507-

10

15

20

25

30

4256. The partial open reading frame preceding cpnB is from 1-1174.

Fig. 1 has been adapted from Griffin, M., et al. (Griffin, M., et al., Biochem. J. 129:595-603, 1972). The designated genes are: cpnA encoding cyclopentanol dehydrogenase; cpnB encoding cyclopentanone 1,2-monooxygenase (CPMO). An alternative name for 5-valerolactone is 5-pentanolide. Subsequent reaction steps are the formation of 5-hydroxyvalerate, 5-oxovalerate, glutarate and finally acetyl CoA.

The amino acid sequence of the CPMO enzyme consists of 550 residues (Fig. 3). This sequence shows 36.5% identity and an additional 13.6% amino acid similarity with the 543-residue CHMO of *Acinetobacter* sp. strain NCIMB 9871. An equally related protein (549 amino acids; 37.3% identity and 12.4% similarity) is the putative steroid monooxygenase (STMO) of *Rhodococcus rhodochrous* (Morii, S., et al., GenBank accession number AB010439, 1998). The latter enzyme carries out the oxidation of progesterone to produce testosterone acetate. A CLUSTAL alignment of these three sequences gave 24.6% positional identity (Fig. 3).

In Fig. 3, asterisks indicate identical amino acids, dots indicated similar amino acids and dashes indicate gaps introduced to maximize the alignment. The amino-terminal peptide sequence confirmed by Edman degradation is underlined. The locations of the consensus FAD fingerprint sequences as described by Eppink et al. (Eppink, et al., *Prot. Sci.* **6**:2454-2458, 1997) are as indicated. The conserved GD motif found in flavoprotein hydroxylases as a second FAD fingerprint is also indicated. Not shown is the DG motif of flavoprotein hydroxylases which has the sequence of chhhssDGxcSxhR. Lower case letters identify certain residues types: h, hydrophobic residues, s, small residues, c, charged residues, and x, any residues. Note that a DG doublet is present in CPMO and STMO sequence.

A notable sequence motif present in CPMO and related proteins is the FAD-binding fingerprint (GXGXXG) that is similar to those found in flavoprotein hydroxylases (Eppink, et al., *Prot. Sci.* **6:**2454-2458, 1997). Flavoprotein hydroxylases (eg. phenol hydroxylase, the structure is now known; Enroth, C.,

10

15

20

25

30

et al., *Structure* **6**:605-617, 1998) are monooxygenases that catalyze the insertion of one atom of molecular oxygen into the substrate using NAD(P)H as electron donor. These proteins possess a conserved "Asp-Gly (DG)" motif for both FAD and NAD(P)H binding in between two fingerprint motifs for the FAD binding (fingerprint 1: GXGXXG; fingerprint 2: Gly-Asp [GD] motif). Sequence motifs in CPMO, STMO and CHMO differ from those in flavoprotein hydroxylases by having a repeated GXGXXG motif (amino acids 24 to 33 and 193 to 202 in CPMO numbering). The possibility that the second FAD fingerprint in CPMO and related proteins fulfils a dual role of FAD and NADPH binding awaits structural determination of a representative member of this family of proteins. It is reasonable to assume that a different mechanism in catalysis is reflected in the motifs seen in the two classes of proteins.

Expression of cpnB gene in E. coli

Two primers of the following sequence were synthesized to amplify the cpnB gene and the resultant 1.7-kb DNA fragment was cloned in the pSD80 plasmid to yield pCMP201. Plasmid pSD80 is a third generation derivative of the commercially available pKK223-3 vector (Pharmacia) that contains a tac promoter upstream of the multiple cloning site (MCS), an unc terminator sequence downstream of the MCS, and lacl^q elsewhere on the plasmid (Smith, S.P., et al., Biochemistry 35:8805-8814, 1996). The primers were: 5'-AAAAGGCCTG AACTTCAATT ATTTAGGAGA C-3' (SEQ ID NO:3) and 5'-AAAACTGCAG GAGTTGCACA ACAGAGTCTT AG-3' with built-in Stul and Pstl restriction sites (underlined), respectively, to facilitate cloning at the compatible sites (Smal and Pstl) of the pSD80 vector. Vent DNA polymerase (New England BioLabs, Beverly, MA) was used and the amplification conditions were 94°C for 1 min, 50°C for 1 min, and 72°C for 1 min, for 30 cycles. The amplified DNA fragment was purified from an agarose gel and digested with Stul and Pstl. One of the resulting recombinant plasmids was designated pCMP201. By DNA sequencing it was established that no mutation had been introduced in the cpnB gene during PCR amplification.

10

15

20

25

30

Fig. 4 shows the production of a 60-kDa protein in a Coomassie bluestained SDS-polyacrylamide gel of the crude protein extract prepared from E. . coli JM109 (pCMP201) cells that were induced by 0.1 mM isopropyl-beta-Dthiogalactopyranoside (IPTG). The cells were induced at an absorbance (A600 nm) of 0.4 to 0.5 and the induction period was up to 4 hr. The observed molecular mass was in agreement with the predicted size of the 62-kDa CPMO. In the absence of IPTG, this protein band was not produced. Also, the CPMO enzyme activity was observed only in those cells grown in the presence of IPTG. CPMO activity was assayed at 25°C by measuring a decrease in absorbance at 340 nm in 50 mM phosphate buffer (pH 7.8) containing 1 µmol of cyclopentanone, 0.2 µmol of NADPH, and the crude enzyme extract prepared from E. coli JM109 (pCMP201). These cells were cultivated in 100 ml of LB medium containing 100 µg/ml of ampicillin at 25°C. The IPTG-induced cells were harvested by centrifugation, washed in 50 mM phosphate buffer (pH 7.2), resuspended in 1/20 volume of same buffer, and sonicated by four-20 sec bursts with a Braun-Sonifier™ 250 apparatus. After centrifugation for 30 min at 18,000 x g and at 4°C, the supernatant was used for determination of enzyme activity. One unit (U) of activity is defined as the amount of enzyme required to convert 1 µmol of substrate in 1 min. Protein concentration was determined by the method of Bradford (Bradford, M. M., Anal. Biochem. 72: 248-254, 1976). As a result the specific activity of the CPMO enzyme was found to be 0.28 U/mg. The specific activity of CPMO in the native Pseudomonas was reported to be 0.11 U/mg (Griffin, M., et al., Biochem. J. 129:595-603, 1972).

In Fig. 4, lane 1 has been loaded with extracts of IPTG-induced *E. coli* and lane 2 has been loaded with extracts of *E. coli* in absence of IPTG. M means molecular weight markers as indicated in kilo daltons. The arrow indicates the production of the desired 60-kDa protein.

Inactivation of cpnB gene

Pseudomonas sp. strain HI-201 was constructed by chromosomal inactivation of the *cpnB* gene using a *lacZ*-Km^r cassette from the mobilizable pKOK6.1 vector (Kokotek, W., et al., *Gene* **84**: 467-471, 1989). In pKOK6.1 the

10

15

20

25

lacZ gene is promoterless and in addition to Km^r it is ampicillin resistant (Ap^r). The *lacZ*-Km^r cassette was excised as a *Pst*l-fragment and inserted into the *Nsī*l site within the *cpnB* gene in pCMP200, yielding pCMP202. Electroporation of this plasmid into 9872 cells was carried out in the Gene Pulser™ (BioRads) and the parameters of electroporation were 2.5 kV, 25 uF and 200 ohm. The cells were initially washed with 1mM HEPES buffer and resuspended in 1mM HEPES containing 10% glycerol. Km^r colonies were selected on LB plates containing Km (250 μg/ml). To select for double crossover mutants, a second screening on LB plates containing Ap (300 μg /ml) was carried out. The inactivation of *cpnB* (Fig. 2), was confirmed by PCR. The resulting mutant HI-201 was found not to be able to grow on cyclopentanol or cyclopentanone as a sole carbon and energy source. This result indicated that *cpnB* is essential for the degradaton of cyclopentanol and it appeared that there was only one copy of the *cpnB* gene in strain 9872.

As expected of a flavoprotein the amino acid sequence of CPMO contains motifs of FAD fingerprints similar to those found in flavoprotein hydroxylases.

Nucleotide sequence accession number

The DNA sequence of the 4,281-bp *SphI* fragment has been submitted to DDBJ and assigned accession number AB022102. The release of this data awaits the inventors' authorization.

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth, and as follows in the scope of the appended claims.

WHAT IS CLAIMED IS:

- 1. An isolated DNA encoding a cyclopentanone monooxygenase (CPMO), or an enzymatically active portion thereof, the isolated DNA being characterized by the ability to hybridize specifically with the complement of the DNA represented in SEQ ID NO:8 under stringent hybridization conditions.
- 2. An isolated DNA, wherein it codes for a cyclopentanone monooxygenase (CPMO), and contains:
 - (a) the nucleic acid sequence of SEQ ID NO:8;
 - (b) a sequence corresponding to said nucleic acid sequence in the scope of the degeneration of the genetic code; or
 - (c) a sequence hybridizing under stringent conditions with the sequence from (1) or (2), and still coding for cyclopentanone monooxygenase (CPMO).
- 3. An isolated DNA encoding a cyclopentanone monooxygenase (CPMO), or an enzymatically active portion thereof, said isolated DNA having SEQ ID NO:8.
- 4. An isolated DNA expression vector encoding an enzymatically active cyclopentanone monooxygenase (CPMO) comprising a DNA characterized by a sequence as set forth in SEQ ID NO:8, or a portion thereof, said portion encoding said CPMO, in expressible form.
- 5. A recombinant vector comprising the isolated DNA of any one of claims 1 to 3, wherein the isolated DNA encodes cyclopentanone monooxygenase.
- 6. The recombinant vector of claim 5, wherein the isolated DNA has a nucleic acid sequence of SEQ ID NO:8 or which, due to the degeneracy of the genetic code, is a functional equivalent thereof.
- 7. A recombinant vector, wherein it contains one or more copies of a recombinant DNA according to claim 1, 2 or 3.
- 8. A recombinant vector according to claim 4, 5, 6 or 7, wherein it is a prokaryotic vector.

- 9. A recombinant vector according to claim 4, 5, 6 or 7, wherein it is a plasmid.
- 10. Biologically functional plasmid or viral DNA vector, which contains a DNA as defined in claim 1, 2 or 3.
- 11. A host cell comprising a recombinant vector of any one of claims 4 to 9.
- 12. A cell transformed with a heterologous DNA expression construct encoding an enzymatically active cyclopentanone monooxygenase (CPMO) comprising a DNA characterized by a sequence as set forth in SEQ ID NO:8, or a portion thereof, said portion encoding said CPMO, in expressible form.
- 13. A cell as defined in claim 12, which is a prokaryotic cell.
- 14. A cell as defined in claim 12, which is E. coli.
- 15. A purified cyclopentanone monooxygenase (CPMO) having:
 - (a) an amino acid sequence as set forth in SEQ ID NO:5;
 - (b) an amino acid sequence encoded by a nucleic acid sequence as set forth in SEQ ID NO:8; or
 - (c) an amino acid sequence encoded by a nucleic acid sequence hybridizing to a nucleic acid sequence complementary to the nucleic acid sequence of step b) above under stringent conditions, said amino acid sequence encoded in step c) having a same activity as the amino acid sequence in a).
- 16. A recombinant cyclopentanone monooxygenase (CPMO) having an enzymatic activity superior to the one naturally occurring.
- 17. The recombinant cyclopentanone monooxygenase (CPMO) of claim 16, wherein said CPMO is prepared from Comamonas sp. NCIMB 9872.
- 18. The recombinant cyclopentanone monooxygenase (CPMO) of claim 16, wherein said CPMO has a sequence as set forth in SEQ ID NO:5.

- 19. The recombinant cyclopentanone monooxygenase (CPMO) of claim 16, wherein said CPMO has an enzymatic activity twice superior to that of a CPMO from a native *Pseudomonas*.
- 20. A method for growing cells in vitro in presence of cyclopentanol or cyclopentanone as sole source of carbon, said method comprising the steps of:
 - (a) transforming a cell with the expression construct of claim 4, 5, 6, 7, 8 or 9; and
 - (b) growing the cell of step a) under suitable conditions in a medium containing cyclopentanol or cyclopentanone as a sole source of carbon.

SUBSTITUTE SHEET (RULE 26)

GxGxxG

CHMO	1:-		. 			-MS(QKMI	DFD	AIV	IGG	GFG	GLY	AVE	KLI	RDE	LELI	KVQ	AFC	KA	TDV	AGT	45
STMO	1:1	MNGQH	IPRSV	VT.	APD	ATT(GTTS	SYD	vvv	VGA	GIA	GLY	AII	IRFI	RSQ	-GL	rvr	AFE	AA	SGV	GGV	59
CPMO	1:1	MTTME	TMT	reQ	LGM	NNS	VNDI	KLD.	ΛΓΓ	IGA	GFT	GLY	'QL	HL	KL	-GY	KVH	ΓΛ[AG	ADI	GGI	59
								*		. *	*.	* * *			k		*.		,		*	
СНМО	46:	WYWNR	RYPGI	ALT	DTE	THL	YCY	SWD	KEL	LQS	LEI	KKK	(YVÇ	QGPI	OVR:	KYL(QQV	AEF	(HD	LKK	SYQ	105
STMO	60:1	WYWNF	RYPG	ARC	DVE	SID	YSY	SFS	PEL	EQE	WNW	SEK	(YA)	[QP]	EIL.	AYL	EHV	ADF	RFD	LRR	DIR	119
CPMO	60:1	WHWNC	CYPG	ARV	DTH	CQI	YQY	SI-	PEL	WQE	ENW	KEI	FPI	AWI/	QMR	EYF	HFA	DKF	(LD	LSK	DIS	118
	;	*.**	***	*	*		* *	*	* *	*						*.			*	* .		
CHMO	106:1	FNTAV	/QSAI	HYN	EAD	ALW	EVT'	TEY	GDK	YTA	RFI	ITA	ALG1	LLS	APN	LPN	IKG	IN()FK	GEL	ннт	165
STMO	120:	FDTRV	TSA	۷LD	EEG	LRW	TVR'	TDR	GDE	VSA	RFI	۷۷۲	AAGI	PLS	NAN	TPA	FDG	LDF	RFT	'GDI	VHT	179
CPMO	119:	FNTRV	/QSA	VFD	EGT	'REW'	TVR	SIG	HQP	IQA	RFV	'I AN	ILG I	FGA	SPS	T'PN'	VDG	IET	rk	:GQW	THY	178
		. *	* **		*	*	*	•		*	**.		*			*	*		*	* .	* *	
							Gx	Gxx	G													
CHMO	166:	SRWP	D-V	SFE	GKR	VGV	IGT	GST	GVQ	riv	'AVA	APL <i>I</i>	AKH]	LTV	FQR	SAQ	YSV	PI	GNE	PLS	EED	224
STMO	180:	ARWP	ł DGV	DFT	'GKR	VGV	IGT	GSS	GIQ	SIF	PII	AEQ <i>I</i>	AEQ!	LFV	FQR	SAN	YSI	PA	GNV	PLD	DAT	239
CPMO	179:	ALWP(QEGV!	NMA	GKR	IAV	IGT	GSS	GVQ	VAÇ	EA <i>I</i>	ALD <i>I</i>	AKQ'	VTV	YQR	TPN	LAI	PMI	łQK	QLS	AED	238
		. **	*	. *	***	.*	* * *	*.*	. *		*	*		*.	**.		*		•	*		
CHMO	225:	VKKI	KDNY	DKS	LGW	ICMN	SAL	AFA	LNE	STV	/PAN	1SVS	SAE	ERK	AVF	EKA	rgw	'GG(GFF	REME	ETF	284
STMO	240:	RAEQI	KANY.	AER	RRL	SRE	SGG	GSP	HRP	HPF	KSAI	EVS	SEE	ERR	AVY	EER	WKI	GG-	V	LFS	KAF	297
CPMO	239:	NLRMI	KPEL	PAA	FER	RGK	CFA	GFD	FDF	'IAF	KNAT	CELS	SAA	ERT	EIL	EEL	WNA	GG.	-FF	RYWL	ANF	297
		,	* .								*	•	*	* *		*.	*	* *		•	*	

CHMO	285:GDIATNMEANIEAQNFIKGKIAEIVKDPAIAQKLMPQDLYAKRPLCDSGYYNTFN	340
STMO	298.PDQLTDPAANDTARAFWEEKIRAVVDDPAVAELLTPKDHAIGAKRIVTDSGYYETYN	355
CPMO	298:QDYLFDDKANDYVYEFWRDKVRARIKDPKVAEKLAPMKKPHPYGAKRPSLEQWYYEIFN	2 357
	* . ** * * ** . ** . ** . ** . *	•
CHMO	341.DNVRLEDVKANPIVEITENGVKLENGDFVELDMLICATGFDAVDGNYVRMDIQGKNGLA	M 400
STMO	356:DNVELVDLRSTPIVGMDETGIVT-TGAHYDLDMIVLATGFDAMTGSLDKLEIVGRGGRT	ե 414
CPMO	358:NNVTLVDVNETPVLRITEKGIVT-AEGEAEFDLIVFATGFDAVTGGITSIDFRNNQGQS	F 416
	.** * * * *	•
СНМО	401:KDYWKEGPSSYMGVTVNNYPNMFMVLGPNGPFTNLPPSIESQVEWISDTIQYTVENN	V 458
STMO	415:KETWAAGPRTYLGLGIDGFPNFFNLTGPGSPSVLANMVLHSELHVDWVADAIAYLDARG	A 474
CPMO	417:KDVWSDGIRTQLGVATAGFPNLLFGYGPQSPAGFCNGPSSAEYQGDLLIQLMNYLRDNN	I 476
	*. * * * ** * . * * *	
CHMO	459:ESIEATKEAEEQWTQTCANIAEMTLFPKAQSWIFGANIPGKKNTVYFYLGGLKEYRTCA	S 518
STMO	475:AGIEGTPEAVADWVEECRNRAEASLLNSANSWYLGANIPGRPRVFMPFLGGFGVYREII	T 534
CPMO	477:SRIEAQSEAQEEWSKLIADFWDSSLFPRAKSWYQGSNIPGKKVESLNFPLGLPTYISKF	N 536
	** ** .* * . * . * .	
СНМО	519:NCKNHAYEGFDIQLQRSDIKQPANA 543 SEQ ID NO:7	
STMO	535:EVAESGYKGFAILEG 549 SEQ ID NO:6	
CPMO	537:ESAEKGYAGFSLAS 550 SEQ ID NO:5	
	* ** .	

60 20 30 40 50 10 GCATGCGATAGCGGCACGTTGGTGGGCGGGCGAGCGCGCCACGAGCGCGTCTCTCGCTC 1 CGTACGCTATCGCCGTGCAACCACCCGCCCGCTCGCGCCGGTGCTCGCGCAGAGAGCGAG CACCGACATCACATCGCCGGTCACCGGCGAGAACATTGGCAAGATCCTGCGCTTTTCGCC 61 GTGGCTGTAGTGTAGCGGCCAGTGGCCGCTCTTGTAACCGTTCTAGGACGCGAAAAGCGG GCTGAAGCCGCAGGGCTACGAGAGAATTTTTCAGTCCGGCCTGGCGGACTCGACCCAGCA 121 CGACTTCGGCGTCCCGATGCTCTCTTAAAAAGTCAGGCCGGACCGCCTGAGCTGGGTCGT 241 CCTGGAGACATTGGAGCGGATCGCGCGCGCGCGCGACGTCAATGTCTTGCTGCATGGAGAGAC GGACCTCTGTAACCTCGCCTAGCGCGCGCGCGCTGCAGTTACAGAACGACGTACCTCTCTG 301 GGGCACGGGCAAAGAGCTGATAGCTCGCCACATTCATGTCGCGAGCCGCCGGCGGGATGC ${\tt CCCGTGCCCGTTTCTCGACTATCGAGCGGTGTAAGTACAGCGCTCGGCGGCCGCCCTACG}$ 361 GCCCTACCTCGCCATCAACTGCGGGGCAATCAGCTCGGAGTTGCTGGAGAGTACTTTTTT CGGGATGGAGCGGTAGTTGACGCCCCGTTAGTCGAGCCTCAACGACCTCTCATGAAAAAA 421 TGGCTATGTGCGCGGAGCATTCTCCGGGGCAGATCCCAAGGGCCGCCGCCGCCTACTTTGA ACCGATACACGCGCCTCGTAAGAGGCCCCGTCTAGGGTTCCCGGCGCGCGGCCGATGAAACT 481 ATCGGTGGCGAAGGCACCTTGTTTCTGGACGAGATCGGCGAGCTGCCCTTGGCCATGCA TAGCCACCCGCTTCCGTGGAACAAAGACCTGCTCTAGCCGCTCGACGGGAACCGGTACGT 541 GGCGGCATTGTTGCGCGTGCTGGAAGACGGAAGCTTTCTGCGTGTGGGCCTCATCGACCCC CCGCCGTAACAACGCGCACGACCTTCTGCCTTCGAAAGACGCACACCCGAGTAGCTGGGG 601 GCAGCGCCCTCGTGCCGCATTATCGCGGCCACGCACCGCAATCTGGAGGAACTCATCGC CGTCGCGGGAGCACGGCGTAATAGCGCCGGTGCGTGGCGTTAGACCTCCTTGAGTAGCG 661 ACAGGGCCTGTTTCGCCAGGATCTCTACTACCGTCTCAAGATCGTTCAGAAAAGGCTCAA TGTCCCGGACAAAGCGGTCCTAGAGATGATGGCAGAGTTCTAGCAAGTCTTTTCCGAGTT

7=== 5A

721 GCCGATACGGGAACGCACCTGTGACATCGCCTTGCTGGCAGAGCAATTCAAATCTGCACT CGGCTATGCCCTTGCGTGGACACTGTAGCGGAACGACCGTCTCGTTAAGTTTAGACGTGA 781 GGCGCAAAAGCACCAGATCCCGAACGTGCAGATCCACCCCGAGGCCATGGCAGTCATGGA ${\tt CCGCGTTTTCGTGGTCTAGGGCTTGCACGTCTAGGTGGGGGCTCCGGTACCGTCAGTACCT}$ 841 GCGCTACCAGTGGCCGGGCAATGCGCGCGAAATCCGCAATGTGATGGAAGCCGCCCTGAT CGCGATGGTCACCGGCCCGTTACGCGCGCTTTAGGCGTTACACTACCTTCGGCGGGACTA 901 CTGCTCCGATGGTGAAATCACGCTCGCCAGCCTGCCCCCGGAAGTATCTGAGAACTCCAC GACGAGGCTACCACTTTAGTGCGAGCGGTCGGACGGGGCCTTCATAGACTCTTGAGGTG 961 CTATCCTCTGCAAAGCCGGGTGGCCGAAGCGAATAGCGAGATGCCTCCCGTCTCCGGCAA GATAGGAGACGTTTCGCCCACCGGCTTCGCTTATCGCTCTACGGAGGGCAGAGGCCGTT 1021 CGACTATGAACGGCAACTCATCGTGGGTTTGCTGCGCAAGTACCGAAAGGTCAATCATGT GCTGATACTTGCCGTTGAGTAGCACCCAAACGACGCGTTCATGGCTTTCCAGTTAGTACA 1081 GGCGAGGGCCCTGGGCCTCGCGCGCTCCACGCTCTATCGGAAATTCGCAGACTTGGGCAT CCGCTCCCGGGACCCGGAGCGCGCGAGGTGCGAGATAGCCTTTAAGCGTCTGAACCCGTA 1141 TGACCAACGCGAGTATGTCAATGATCTGTCCGATTAACACTGCTGCGCCCTGCGCTTGCG ACTGGTTGCGCTCATACAGTTACTAGACAGGCTAATTGTGACGACGCGGGACGCGAACGC 1201 GCAACGCAGTATCGTCGGAACGCGGGCAACGCTAAAGGCAGCCGCCGTCGGCATCGGTTG CGTTGCGTCATAGCAGCCTTGCGCCCGTTGCGATTTCCGTCGGCGGCAGCCGTAGCCAAC 1261 CCGCCCGGTGTTGTTTGTCGGCTGAGACCGCCTGCAGCACCAGCCCCTCCATTCCTCGTG GGCGGCCACAACAACAGCCGACTCTGGCGGACGTCGTGGTCGGGGAGGTAAGGAGCAC 1321 TCTAGATCTCCTTGCAACGCTGTCACAGCGTGCTTTTTTCGTGGCGCGCGGGACTTCTCGCG AGATCTAGAGGAACGTTGCGACAGTGTCGCACGAAAAAAGCACCGCGCCCTGAAGAGCGC 1381 ATGAGGGCCTGCAAGGGCGCGCATCAAAACAAGCGCCCTGTCCTCAGGACGTTTGCGCC TACTCCCGGACGTTCCCGCCGCGTAGTTTTGTTCGCGGGACAGGAGTCCTGCAAACGCGG 1441 GTCGCTGGCTATGGGCAGTCTGCATGATCCGCTTGGGCTTGCCCACCATGCGCGCGACTG

T== 5B

	CAGCGACCGATACCCGTCAGACGTACTAGGCGAACCCGAACGGGTGGTACGCGCGCTGAC
1501	${\tt CGCTCTTTCCTGTTGGGCGCATCGTCATCCCGACCTTCCTGAAATCCATTTCCACAGGGC}$
	${\tt GCGAGAAAGGACAACCCGCGTAGCAGTAGGGCTGGAAGGACTTTAGGTAAAGGTGTCCCG}$
1561	$\tt CGGCCTGAGCCAGACAGCGATCGGCAGGCTCTCGCATCTCGGACAGTGGTGCGCTACACCCCCTGGGCGGGGGGGG$
	GCCGGACTCGGTCTGTCGCTAGCCGTCCGAGAGCGTAGAGCCTGTCACCACGCGATGTGG
1621	ACAGGACACAAGTGTCCGGCGCGTGGCACGCACGCGCCCTTTGCTGCGCACGATGCGTGCT
	TGTCCTGTGTTCACAGGCCGCGCACCGTGCGTCGCCGGAAACGACGCGTGCTACGCACGA
1681	TTTGGCACATGGAAACCCTCGGTTTTTCCGAACCAGAGACCTGGCACAAGTCTTGATAAC
	AAACCGTGTACCTTTGGGAGCCAAAAAGGCTTGGTCTCTGGACCGTGTTCAGAACTATTG
1741	TCCTGAGTGACTGATGCAACGCATCTCAGTCCGGGAGCGTGGACGACACGCCCCTGAACT
	AGGACTCACTGACTACGTTGCGTAGAGTCAGGCCCTCGCACCTGCTGTGCGGGGACTTGA
1801	TCAATTATTTAGGAGACCCATATGACCACCATGACCACCATGACCACCGAACAACTCGGC
	AGTTAATAAATCCTCTGGGTATACTGGTGGTACTGGTGGTACTGGTGGCTTGTTGAGCCG
1861	ATGAACAACTCTGTCAATGACAAGCTTGACGTTTTGCTCATCGGCGCCGGCTTCACCGGT
	TACTTGTTGAGACAGTTACTGTTCGAACTGCAAAACGAGTAGCCGCGGCCGAAGTGGCCA
1921	CTCTACCAGCTCTATCACCTGCGCAAGCTGGGCTACAAGGTTCATCTCGTCGACGCCGGT
	GAGATGGTCGAGATAGTGGACGCGTTCGACCCGATGTTCCAAGTAGAGCAGCTGCGGCCA
1981	GCCGATATTGGCGGGATCTGGCATTGGAACTGCTACCCCGGAGCGCGTGTGGATACCCAC
	CGGCTATAACCGCCCTAGACCGTAACCTTGACGATGGGGCCTCGCGCACACCTATGGGTG
2041	TGCCAGATCTACCAGTACTCCATTCCAGAGTTGTGGCAGGAGTTCAACTGGAAAGAGCTG
	ACGGTCTAGATGGTCATGAGGTAAGGTCTCAACACCGTCCTCAAGTTGACCTTTCTCGAC
2101	TTCCCTAACTGGGCGCAAATGCGCGAGTATTTCCATTTTGCCGACAAGAAGCTCGACCTG
	AAGGGATTGACCCGCGTTTACGCGCTCATAAAGGTAAAACGGCTGTTCTTCGAGCTGGAC
2161	AGCAAGGACATCAGCTTCAACACCCGTGTGCAGTCGGCCGTCTTTGACGAAGGCACACGC
	TO THE TOTAL PROPERTY AND THE PROPERTY OF THE

2221 GAATGGACGGTACGCTCGATCGGACACCAGCCGATCCAGGCCAGGTTCGTCATCGCCAAC CTTACCTGCCATGCGAGCTAGCCTGTGGTCGGCTAGGTCCGGTCCAAGCAGTAGCGGTTG 2281 CTTGGCTTCGGTGCCAGCCCCAGCACGCCCAATGTCGATGGCATCGAGACATTCAAAGGC GAACCGAAGCCACGGTCGGGGTCGTGCGGGTTACAGCTACCGTAGCTCTGTAAGTTTCCG 2341 CAGTGGTATCACACTGCTCTGTGGCCCCAGGAAGGCGTGAACATGGCCGGCAAGCGCGTG GTCACCATAGTGTGACGAGACACCGGGGTCCTTCCGCACTTGTACCGGCCGTTCGCGCAC 2401 GCCATCATTGGCACCGGCTCCAGCGGGGTCCAGGTCGCCCAGGAGGCTGCCCTTGATGCG CGGTAGTAACCGTGGCCGAGGTCGCCCCAGGTCCAGCGGGTCCTCCGACGGGAACTACGC 2461 AAACAGGTGACGGTGTACCAGCGCACCCCAACCTGGCCTTGCCCATGCATCAGAAGCAG TTTGTCCACTGCCACATGGTCGCGTGGGGGTTGGACCGGAACGGGTACGTAGTCTTCGTC 2521 CTCAGCGCCGAGGACAATCTGCGCATGAAGCCCGAGCTTCCCGCAGCGTTCGAGAGACGC GAGTCGCGGCTCCTGTTAGACGCGTACTTCGGGCTCGAAGGCGTCGCAAGCTCTCTGCG 2581 GGCAAGTGCTTCGCCGGCTTCGACTTCGACTTCATCGCCAAGAACGCGACCGAGCTGTCC ${\tt CCGTTCACGAAGCGGCCGAAGCTGAAGCTGAAGTAGCGGTTCTTGCGCTGGCTCGACAGG}$ 2641 GCTGCGGAGCGCACAGAGATCTTGGAAGAGCTGTGGAACGCCGGCGGCTTCCGCTACTGG CGACGCCTCGCGTGTCTCTAGAACCTTCTCGACACCTTGCGGCCGCCGAAGGCGATGACC 2701 CTGGCCAATTTCCAAGACTATCTGTTCGATGACAAGGCCAACGATTACGTCTACGAGTTC GACCGGTTAAAGGTTCTGATAGACAAGCTACTGTTCCGGTTGCTAATGCAGATGCTCAAG 2761 TGGCGCGACAAGGTCCGCGCCCGCATCAAGGATCCGAAAGTTGCCGAGAAGCTCGCCCCC ACCGCGCTGTTCCAGGCGCGGGCGTAGTTCCTAGGCTTTCAACGGCTCTTCGAGCGGGG 2821 ATGAAGAAGCCGCATCCTTACGGAGCCAAGCGCCCTTCGCTGGAGCAGTGGTACTACGAG TACTTCTTCGGCGTAGGAATGCCTCGGTTCGCGGGAAGCGACCTCGTCACCATGATGCTC 2881 ATCTTCAATCAGAACAACGTCACGCTGGTGGATGTCAACGAAACACCGGTGCTTCGCATC TAGAAGTTAGTCTTGTTGCAGTGCGACCACCTACAGTTGCTTTGTGGCCACGAAGCGTAG 2941 ACCGAGAAAGGCATCGTGACCGCTGAGGGTGAAGCCGAATTCGACCTGATCGTGTTCGCG

SUBSTITUTE SHEET (RULE 26)

TGGCTCTTTCCGTAGCACTGGCGACTCCCACTTCGGCTTAAGCTGGACTAGCACAAGCGC 3001 ACCGGCTTCGACGCAGTGACCGGGGGACTCACCAGCATCGACTTCCGCAACAACCAGGGC TGGCCGAAGCTGCGTCACTGGCCCCCTGAGTGGTCGTAGCTGAAGGCGTTGTTGGTCCCG 3061 CAGAGCTTCAAGGATGTGTGTCTGACGGAATCCGCACCCAGCTGGGAGTGGCCACGGCA GTCTCGAAGTTCCTACACACCAGACTGCCTTAGGCGTGGGTCGACCCTCACCGGTGCCGT 3121 GGTTTTCCCAACTTGCTCTTTGGCTACGGACCTCAATCGCCTGCGGGCTTCTGCAACGGT CCAAAAGGGTTGAACGAGAAACCGATGCCTGGAGTTAGCGGACGCCCGAAGACGTTGCCA 3241 AACAACATCTCGCGCATCGAAGCCCAGTCCGAGGCACAGGAAGAATGGAGCAAGCTGATC TTGTTGTAGAGCGCGTAGCTTCGGGTCAGGCTCCGTGTCCTTCTTACCTCGTTCGACTAG 3301 GCAGACTTCTGGGACAGCTCGCTGTTCCCCCGCGCAAAGTCCTGGTACCAAGGATCCAAC CGTCTGAAGACCCTGTCGAGCGACAAGGGGGCGCGTTTCAGGACCATGGTTCCTAGGTTG 3361 ATCCCGGGCAAGAAGTCGAGAGCCTGAACTTCCCGCTGGGGCTGCCAACCTATATATCC TAGGGCCCGTTCTTTCAGCTCTCGGACTTGAAGGGCGACCCCGACGGTTGGATATATAGG 3421 AAATTCAATGAAAGCGCTGAAAAAGGATATGCAGGCTTCTCGCTGGCCAGCTAAGACTCT TTTAAGTTACTTTCGCGACTTTTTCCTATACGTCCGAAGAGCGACCGGTCGATTCTGAGA 3481 GTTGTGCAACTCCTGGAGACAAGCATATGGGACGTGTAAATGACAAAGTGGTTCTCGTCA CAACACGTTGAGGACCTCTGTTCGTATACCCTGCACATTTACTGTTTCACCAAGAGCAGT 3541 CTGGCGGTGCCATGGGAATGGGCCTGACCCATTGCACCTTGCTGGCCCGCGAGGGGGCCA GACCGCCACGGTACCCTTACCCGGACTGGGTAACGTGGAACGACCGGGCGCTCCCCCGGT 3601 CCGTTTACCTCAGCGACATGAATGAGGAACTGGGCCACCAAGCCGTAGCGGAGATCCGTC GGCAAATGGAGTCGCTGTACTTACTCCTTGACCCGGTGGTTCGGCATCGCCTCTAGGCAG 3661 GGCAAGGTGGCAAGGCCCACTTCCTGCACCTGGACGTGACCAACGAGAATCACTGGACAG $\tt CCGTTCCACCGTTCCGGGTGAAGGACGTGGACCTGCACTGGTTGCTCTTAGTGACCTGTC$

SUBSTITUTE SHEET (RULE 26)

3721	GTGCCGTGGACACCATCCTCGCCGAGTCCGACCGGCTGGACGCGCTGGTCAACAACGCCG
	${\tt CACGGCACCTGTGGTAGGAGCGGCTCAGGCTGGCCGACCTGCGCGACCAGTTGTTGCGGCGACCAGTTGTTGTTGCGGCGACCAGTTGTTGTTGCGGCGACCAGTTGTTGTTGCGGCGACCAGTTGTTGTTGCGGCGACCAGTTGTTGTTGCGGCGACCAGTTGTTGTTGCGGCGACCAGTTGTTGTTGTGAGAGAGA$
3781	GCATTTTGACCCTCAAACCCGTTCAGGACACCAGCAACGAAGAATGGGATCGCATCTTTG
	${\tt CGTAAAACTGGGAGTTTGGGCAAGTCCTGTGGTCGTTGCTTCTTACCCTAGCGTAGAAACTGGGAGAAACTGGGGAGTTTGGGGCAAGTCCTGTGGTCGTTGCTTCTTACCCTAGCGTAGAAACTGGGAGAAACTGGGGAGAAACTGGGGAGAAACTGGGGAGAAACTGGGGAGAAAACTGGGGAGAAAACTGGGGAGAAAACTGGGGAGAAAACTGGGAGAAAACTGGGAGAAAACTGGGAGAAAACTGGGAGAAAACTGGGAGAAAACTGGGAGAAAACTGGGAGAAAACTGGGAGAAAACTGGGAGAAAACTGGAGAAAACTGGAGAAAACTGGAGAAAACTGGAGAAAACTGGAGAAAACTGGAGAAAACTGAGAAAACTGGAGAAAACTGGAGAAAACTGGAGAAAACTGGAGAAAACTGGAGAAAACTGGAGAAAAACTGGAGAAAACTGGAGAAAACTGAGAAAACTGAGAAAACTGAGAAAACTGAGAAAAACTGAGAAAAACTGAGAAAAACTGAGAAAAACTGAGAAAAACTGAGAAAAAAAA$
3841	AAATCAATGTCCGCAGTGTTCTTGGGCACGCGAGCAGTGATCGAGCCCATGCGTAAAG
	TTTAGTTACAGGCGTCACACAAGAACCCGTGCGCTCGTCACTAGCTCGGGTACGCATTTC
3901	$\tt CCCATAAAGGCTGCATCGTCAATGTGTCGTCCATCTACGGTCTGGTGGGTG$
	GGGTATTTCCGACGTAGCAGTTACACAGCAGGTAGATGCCAGACCACCCAC
3961	$\tt CTGCGGCCTACGAGGCCTCCAAAGGTGCCGTGCGCTTGTTTACCAAGGCTTGCGCGGTGGGTG$
	GACGCCGGATGCTCCGGAGGTTTCCACGGCACGCGAACAAATGGTTCCGAACGCGCCACC
4021	${\tt ACCTGGCACCGTTCAATATTCGGGTCAACTCGGTCCACCCAGGGGTGATCGCAACACCCAACACCCAACACCCCAACACCCCAACACCCCAACAC$
	TGGACCGTGGCAAGTTATAAGCCCAGTTGAGCCAGGTGGGTCCCCACTAGCGTTGTGGGT
4081	TGACGCAGCAGATCCTGGACGCCCCACAGAGCGCACGTGCGCTTCTGGGCCCCACGCTGC
	ACTGCGTCGTCTAGGACCTGCGGGGTGTCTCGCGTGCACGCGAAGACCCGGGGTGCGACG
4141	TGGGTCGTGCGGCCCAGCCGATGGAGGTCTCCCAGGCGGTGCTTTTCCTGGTCTCGGACG
	ACCCAGCACGCCGGGTCGGCTACCTCCAGAGGGTCCGCCACGAAAAGGACCAGAGCCTGC
4201	AGGCCTCGTTCGTGCATGGCTCTGAACTCGTCGTCGACGGAGGGTATACGGCGAACTGAG
	TCCGGAGCAAGCACGTACCGAGACTTGAGCAGCAGCTGCCTCCCATATGCCGCTTGACTC
4261	AAAGGAACATCCTCGGCATGC
	TTTCCTTGTAGGAGCCGTACG

<223> I

SEQUENCE LISTING

```
<110> NATIONAL RESEARCH COUNCIL OF CANADA
      IWAKI, Hiroaki
      HASEGAWA, Yoshie
      LAU, Peter C.K.
<120> Cloning, Sequencing and Expression of a
  Comamonas Cyclopentanone 1,2-Monooxygenase-Encoding Gene in
  Escherichia coli
<130> 2139-16PCT
<150> US 60/218,842
<151> 2000-07-18
<160> 8
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Primers for Comamonas sp.
<221> modified base
<222> (3)...(3)
<223> I
<221> modified base
<222> (6) ... (6)
<223> I
<221> modified_base
<222> (12)...(12)
<223> I
<221> unsure
<222> (15)...(15)
<223> N = any base
<400> 1
                                                                        20
acnacnatga cnacnatgac
<210> 2
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Primers for Comamonas sp.
<221> modified_base
<222> (9)...(9)
```

```
<400> 2
                                                                       17
arrtgrtana rytgrta
<210> 3
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Primers for Comamonas sp.
<400> 3
                                                                       31
aaaaggcctg aacttcaatt atttaggaga c
<210> 4
<211> 32
<212> DNA
<213> Artificial Sequence
<223> Primers for Comamonas sp.
                                                                       32
aaaactgcag gagttgcaca acagagtctt ag
<210> 5
<211> 550
<212> PRT
<213> Comamonas sp
Met Thr Thr Met Thr Met Thr Thr Glu Gln Leu Gly Met Asn Asn
Ser Val Asn Asp Lys Leu Asp Val Leu Leu Ile Gly Ala Gly Phe Thr
Gly Leu Tyr Gln Leu Tyr His Leu Arg Lys Leu Gly Tyr Lys Val His
                            40
Leu Val Asp Ala Gly Ala Asp Ile Gly Gly Ile Trp His Trp Asn Cys
Tyr Pro Gly Ala Arg Val Asp Thr His Cys Gln Ile Tyr Gln Tyr Ser
                                         75
Ile Pro Glu Leu Trp Gln Glu Phe Asn Trp Lys Glu Leu Phe Pro Asn
                 85
                                     90
Trp Ala Gln Met Arg Glu Tyr Phe His Phe Ala Asp Lys Lys Leu Asp
                                 105
Leu Ser Lys Asp Ile Ser Phe Asn Thr Arg Val Gln Ser Ala Val Phe
                             120
Asp Glu Gly Thr Arg Glu Trp Thr Val Arg Ser Ile Gly His Gln Pro
                                             140.
                         135
Ile Gln Ala Arg Phe Val Ile Ala Asn Leu Gly Phe Gly Ala Ser Pro
                     150
                                         155
Ser Thr Pro Asn Val Asp Gly Ile Glu Thr Phe Lys Gly Gln Trp Tyr
                                     170
                 165
His Thr Ala Leu Trp Pro Gln Glu Gly Val Asn Met Ala Gly Lys Arg
                                 185
Val Ala Ile Ile Gly Thr Gly Ser Ser Gly Val Gln Val Ala Gln Glu
                             200
                                                 205
Ala Ala Leu Asp Ala Lys Gln Val Thr Val Tyr Gln Arg Thr Pro Asn
                                             220
```

210

```
Leu Ala Leu Pro Met His Gln Lys Gln Leu Ser Ala Glu Asp Asn Leu
                                         235
 Arg Met Lys Pro Glu Leu Pro Ala Ala Phe Glu Arg Arg Gly Lys Cys
                                     250
                 245
 Phe Ala Gly Phe Asp Phe Asp Phe Ile Ala Lys Asn Ala Thr Glu Leu
                                 265
 Ser Ala Ala Glu Arg Thr Glu Ile Leu Glu Glu Leu Trp Asn Ala Gly
                             280
                                                 285
 Gly Phe Arg Tyr Trp Leu Ala Asn Phe Gln Asp Tyr Leu Phe Asp Asp
                         295
 Lys Ala Asn Asp Tyr Val Tyr Glu Phe Trp Arg Asp Lys Val Arg Ala
                                         315
                     310
 Arg Ile Lys Asp Pro Lys Val Ala Glu Lys Leu Ala Pro Met Lys Lys
                                     330
                 325
 Pro His Pro Tyr Gly Ala Lys Arg Pro Ser Leu Glu Gln Trp Tyr Tyr
                                 345
 Glu Ile Phe Asn Gln Asn Asn Val Thr Leu Val Asp Val Asn Glu Thr
                             360
 Pro Val Leu Arg Ile Thr Glu Lys Gly Ile Val Thr Ala Glu Gly Glu
                                             380
                         375
 Ala Glu Phe Asp Leu Ile Val Phe Ala Thr Gly Phe Asp Ala Val Thr
                     390
                                         395
 Gly Gly Leu Thr Ser Ile Asp Phe Arg Asn Asn Gln Gly Gln Ser Phe
                                     410
 Lys Asp Val Trp Ser Asp Gly Ile Arg Thr Gln Leu Gly Val Ala Thr
                                 425
             420
 Ala Gly Phe Pro Asn Leu Leu Phe Gly Tyr Gly Pro Gln Ser Pro Ala
                             440
 Gly Phe Cys Asn Gly Pro Ser Ser Ala Glu Tyr Gln Gly Asp Leu Leu
                         455
 Ile Gln Leu Met Asn Tyr Leu Arg Asp Asn Asn Ile Ser Arg Ile Glu
                                         475
                     470
 Ala Gln Ser Glu Ala Gln Glu Glu Trp Ser Lys Leu Ile Ala Asp Phe
                 485
                                     490
 Trp Asp Ser Ser Leu Phe Pro Arg Ala Lys Ser Trp Tyr Gln Gly Ser
                                 505
 Asn Ile Pro Gly Lys Lys Val Glu Ser Leu Asn Phe Pro Leu Gly Leu
                             520
                                                 525
 Pro Thr Tyr Ile Ser Lys Phe Asn Glu Ser Ala Glu Lys Gly Tyr Ala
                         535
 Gly Phe Ser Leu Ala Ser
 .<210> 6
 <211> 549
 <212> PRT
 <213> Rhodococcus rhodochrous
 Met Asn Gly Gln His Pro Arg Ser Val Val Thr Ala Pro Asp Ala Thr
 Thr Gly Thr Thr Ser Tyr Asp Val Val Val Gly Ala Gly Ile Ala
 Gly Leu Tyr Ala Ile His Arg Phe Arg Ser Gln Gly Leu Thr Val Arg
                             40
 Ala Phe Glu Ala Ala Ser Gly Val Gly Gly Val Trp Tyr Trp Asn Arg
                         55
 Tyr Pro Gly Ala Arg Cys Asp Val Glu Ser Ile Asp Tyr Ser Tyr Ser
                      70
                                          75
```

Phe Ser Pro Glu Leu Glu Gln Glu Trp Asn Trp Ser Glu Lys Tyr Ala 90 Thr Gln Pro Glu Ile Leu Ala Tyr Leu Glu His Val Ala Asp Arg Phe 105 Asp Leu Arg Arg Asp Ile Arg Phe Asp Thr Arg Val Thr Ser Ala Val 120 Leu Asp Glu Glu Gly Leu Arg Trp Thr Val Arg Thr Asp Arg Gly Asp 135 Glu Val Ser Ala Arg Phe Leu Val Val Ala Ala Gly Pro Leu Ser Asn 155 150 Ala Asn Thr Pro Ala Phe Asp Gly Leu Asp Arg Phe Thr Gly Asp Ile 165 Val His Thr Ala Arg Trp Pro His Asp Gly Val Asp Phe Thr Gly Lys 185 Arg Val Gly Val Ile Gly Thr Gly Ser Ser Gly Ile Gln Ser Ile Pro 200 205 Ile Ile Ala Glu Gln Ala Glu Gln Leu Phe Val Phe Gln Arg Ser Ala . 215 220 Asn Tyr Ser Ile Pro Ala Gly Asn Val Pro Leu Asp Asp Ala Thr Arg 235 Ala Glu Gln Lys Ala Asn Tyr Ala Glu Arg Arg Arg Leu Ser Arg Glu 250 Ser Gly Gly Ser Pro His Arg Pro His Pro Lys Ser Ala Leu Glu Val Ser Glu Glu Glu Arg Arg Ala Val Tyr Glu Glu Arg Trp Lys Leu 280 Gly Gly Val Leu Phe Ser Lys Ala Phe Pro Asp Gln Leu Thr Asp Pro 295 . 300 Ala Ala Asn Asp Thr Ala Arg Ala Phe Trp Glu Glu Lys Ile Arg Ala 315 310 Val Val Asp Asp Pro Ala Val Ala Glu Leu Leu Thr Pro Lys Asp His 330 Ala Ile Gly Ala Lys Arg Ile Val Thr Asp Ser Gly Tyr Tyr Glu Thr 345 Tyr Asn Arg Asp Asn Val Glu Leu Val Asp Leu Arg Ser Thr Pro Ile 360 365 Val Gly Met Asp Glu Thr Gly Ile Val Thr Thr Gly Ala His Tyr Asp 375 380 Leu Asp Met Ile Val Leu Ala Thr Gly Phe Asp Ala Met Thr Gly Ser 395 Leu Asp Lys Leu Glu Ile Val Gly Arg Gly Gly Arg Thr Leu Lys Glu Thr Trp Ala Ala Gly Pro Arg Thr Tyr Leu Gly Leu Gly Ile Asp Gly 425 420 Phe Pro Asn Phe Phe Asn Leu Thr Gly Pro Gly Ser Pro Ser Val Leu 440 445 Ala Asn Met Val Leu His Ser Glu Leu His Val Asp Trp Val Ala Asp 455 Ala Ile Ala Tyr Leu Asp Ala Arg Gly Ala Ala Gly Ile Glu Gly Thr 470 475 Pro Glu Ala Val Ala Asp Trp Val Glu Glu Cys Arg Asn Arg Ala Glu 490 485 Ala Ser Leu Leu Asn Ser Ala Asn Ser Trp Tyr Leu Gly Ala Asn Ile 505 Pro Gly Arg Pro Arg Val Phe Met Pro Phe Leu Gly Gly Phe Gly Val 520 Tyr Arg Glu Ile Ile Thr Glu Val Ala Glu Ser Gly Tyr Lys Gly Phe 535 Ala Ile Leu Glu Gly 545

```
<210> 7
<211> 543
<212> PRT
<213> Acinetobacter sp
<400> 7
Met Ser Gln Lys Met Asp Phe Asp Ala Ile Val Ile Gly Gly Phe
Gly Gly Leu Tyr Ala Val Lys Lys Leu Arg Asp Glu Leu Glu Leu Lys
Val Gln Ala Phe Asp Lys Ala Thr Asp Val Ala Gly Thr Trp Tyr Trp
                             40
Asn Arg Tyr Pro Gly Ala Leu Thr Asp Thr Glu Thr His Leu Tyr Cys
Tyr Ser Trp Asp Lys Glu Leu Leu Gln Ser Leu Glu Ile Lys Lys
                                         75
                     70
Tyr Val Gln Gly Pro Asp Val Arg Lys Tyr Leu Gln Gln Val Ala Glu
                                     90
· Lys His Asp Leu Lys Lys Ser Tyr Gln Phe Asn Thr Ala Val Gln Ser
                                105
            100
Ala His Tyr Asn Glu Ala Asp Ala Leu Trp Glu Val Thr Thr Glu Tyr
                             120
                                                 125
Gly Asp Lys Tyr Thr Ala Arg Phe Leu Ile Thr Ala Leu Gly Leu Leu
                         135
 Ser Ala Pro Asn Leu Pro Asn Ile Lys Gly Ile Asn Gln Phe Lys Gly
 Glu Leu His His Thr Ser Arg Trp Pro Asp Asp Val Ser Phe Glu Gly
                                     170
                 165
Lys Arg Val Gly Val Ile Gly Thr Gly Ser Thr Gly Val Gln Val Ile
                                 185
 Thr Ala Val Ala Pro Leu Ala Lys His Leu Thr Val Phe Gln Arg Ser
                             200
Ala Gln Tyr Ser Val Pro Ile Gly Asn Asp Pro Leu Ser Glu Glu Asp
                                             220
                         215
 Val Lys Lys Ile Lys Asp Asn Tyr Asp Lys Ser Leu Gly Trp Cys Met
                     230
                                         235
Asn Ser Ala Leu Ala Phe Ala Leu Asn Glu Ser Thr Val Pro Ala Met
                245
                                     250
 Ser Val Ser Ala Glu Glu Arg Lys Ala Val Phe Glu Lys Ala Trp Gln
                               . 265
 Thr Gly Gly Gly Phe Arg Phe Met Phe Glu Thr Phe Gly Asp Ile Ala
                             280
 Thr Asn Met Glu Ala Asn Ile Glu Ala Gln Asn Phe Ile Lys Gly Lys
                         295
 Ile Ala Glu Ile Val Lys Asp Pro Ala Ile Ala Gln Lys Leu Met Pro
                     310
                                         315
 Gln Asp Leu Tyr Ala Lys Arg Pro Leu Cys Asp Ser Gly Tyr Tyr Asn
                 325
                                     330
 Thr Phe Asn Arg Asp Asn Val Arg Leu Glu Asp Val Lys Ala Asn Pro
                                 345
Ile Val Glu Ile Thr Glu Asn Gly Val Lys Leu Glu Asn Gly Asp Phe
                             360
 Val Glu Leu Asp Met Leu Ile Cys Ala Thr Gly Phe Asp Ala Val Asp
                         375
                                             380
 Gly Asn Tyr Val Arg Met Asp Ile Gln Gly Lys Asn Gly Leu Ala Met
                                        395
                     390
 Lys Asp Tyr Trp Lys Glu Gly Pro Ser Ser Tyr Met Gly Val Thr Val
                                     410
                 405
```

```
Asn Asn Tyr Pro Asn Met Phe Met Val Leu Gly Pro Asn Gly Pro Phe
                                                    430
                                425
            420
Thr Asn Leu Pro Pro Ser Ile Glu Ser Gln Val Glu Trp Ile Ser Asp
                                                445
                            440
Thr Ile Gln Tyr Thr Val Glu Asn Asn Val Glu Ser Ile Glu Ala Thr
                        455
Lys Glu Ala Glu Glu Gln Trp Thr Gln Thr Cys Ala Asn Ile Ala Glu
465
                                        475
Met Thr Leu Phe Pro Lys Ala Gln Ser Trp Ile Phe Gly Ala Asn Ile
                                    490
                485
Pro Gly Lys Lys Asn Thr Val Tyr Phe Tyr Leu Gly Gly Leu Lys Glu
                                                    510
                                505
            500
Tyr Arg Thr Cys Ala Ser Asn Cys Lys Asn His Ala Tyr Glu Gly Phe
                            520
Asp Ile Gln Leu Gln Arg Ser Asp Ile Lys Gln Pro Ala Asn Ala
                        535
<210> 8
<211> 4281
<212> DNA
<213> Comamonas sp
<220>
<221> CDS
<222> (1822)...(3471)
<400> 8
gcatgcgata gcggcacgtt ggtgggcggg cgagcgcggc cacgagcgcg tctctcgctc
                                                                      60
caccgacatc acatcgccgg tcaccggcga gaacattggc aagatcctgc gcttttcgcc
                                                                     120
gctgaagccg cagggctacg agagaatttt tcagtccggc ctggcggact cgacccagca
                                                                     180
                                                                     240
cctggagaca ttggagcgga tcgcgcgcgc cgacgtcaat gtcttgctgc atggagagac
                                                                     300
gggcacgggc aaagagctga tagctcgcca cattcatgtc gcgagccgcc ggcgggatgc
                                                                     360
                                                                     420
gccctacctc gccatcaact gcggggcaat cagctcggag ttgctggaga gtacttttt
                                                                     480
tggctatgtg cgcggagcat tctccggggc agatcccaag ggccgcgccg gctactttga
atcggtgggc gaaggcacct tgtttctgga cgagatcggc gagctgccct tggccatgca
                                                                     540
ggcggcattg ttgcgcgtgc tggaagacgg aagctttctg cgtgtgggct catcgacccc
                                                                     600
gcagcgcgcc tcgtgccgca ttatcgcggc cacgcaccgc aatctggagg aactcatcgc
                                                                     660
acagggcctg tttcgccagg atctctacta ccgtctcaag atcgttcaga aaaggctcaa
                                                                     720
gccgatacgg gaacgcacct gtgacatcgc cttgctggca gagcaattca aatctgcact
                                                                     780
                                                                     840
qqcqcaaaaq caccagatcc cgaacqtqca gatccacccc gaggccatgg cagtcatgga
gcgctaccag tggccgggca atgcgcgcga aatccgcaat gtgatggaag ccgccctgat
                                                                     900
ctgctccgat ggtgaaatca cgctcgccag cctgcccccg gaagtatctg agaactccac
                                                                     960
ctatcctctg caaagccggg tggccgaagc gaatagcgag atgcctcccg tctccggcaa
                                                                    1020
cgactatgaa cggcaactca tcgtgggttt gctgcgcaag taccgaaagg tcaatcatgt
                                                                    1080
ggcgagggcc ctgggcctcg cgcgctccac gctctatcgg aaattcgcag acttgggcat
                                                                     1140
tgaccaacgc gagtatgtca atgatctgtc cgattaacac tgctgcgccc tgcgcttgcg
                                                                     1200
gcaacgcagt atcgtcggaa cgcgggcaac gctaaaggca gccgccgtcg gcatcggttg
                                                                    1260
ccgcccggtg ttgtttgtcg gctgagaccg cctgcagcac cagcccctcc attcctcgtg
                                                                    1320
tctagatctc cttgcaacgc tgtcacagcg tgcttttttc gtggcgcggg acttctcgcg
                                                                    1380
atgagggeet geaagggegg egeateaaaa caagegeeet gteeteagga egtttgegee
                                                                     1440
gtcgctggct atgggcagtc tgcatgatcc gcttgggctt gcccaccatg cgcgcgactg
                                                                    1500
cgctctttcc tgttgggcgc atcgtcatcc cgaccttcct gaaatccatt tccacagggc
                                                                    1560
cggcctgagc cagacagcga tcggcaggct ctcgcatctc ggacagtggt gcgctacacc
                                                                     1620
                                                                     1680
acaggacaca agtgtccggc gcgtggcacg cagcggcctt tgctgcgcac gatgcgtgct
                                                                     1740
 tttggcacat ggaaaccctc ggtttttccg aaccagagac ctggcacaag tcttgataac
                                                                     1800
 tcctgagtga ctgatgcaac gcatctcagt ccgggagcgt ggacgacacg cccctgaact
 tcaattattt aggagaccca t atg acc acc atg acc acc atg acc acc gaa
                                                                     1851
                        Met Thr Thr Met Thr Thr Met Thr Thr Glu
```

									gac Asp 20							1899
atc Ile	ggc Gly	gcc Ala	ggc Gly 30	ttc Phe	acc Thr	ggt Gly	ctc Leu	tac Tyr 35	cag Gln	ctc Leu	tat Tyr	cac His	ctg Leu 40	cgc Arg	aag Lys	1947
									gcc Ala							1995
atc Ile	tgg Trp 60	cat His	tgg Trp	aac Asn	tgc Cys	tac Tyr 65	ccc Pro	gga Gly	gcg Ala	cgt Arg	gtg Val 70	gat Asp	acc Thr	cac His	tgc Cys	2043
cag Gln 75	atc Ile	tac Tyr	cag Gln	tac Tyr	tcc Ser 80	att Ile	cca Pro	gag Glu	ttg Leu	tgg Trp 85	cag Gln	gag Glu	ttc Phe	aac Asn	tgg Trp 90	2091
aaa Lys	gag Glu	ctg Leu	ttc Phe	cct Pro 95	aac Asn	tgg Trp	gcg Ala	caa Gln	atg Met 100	cgc Arg	gag Glu	tat Tyr	ttc Phe	cat His 105	ttt Phe	2139
gcc Ala	gac Asp	aag Lys	aag Lys 110	ctc Leu	gac Asp	ctg Leu	agc Ser	aag Lys 115	gac Asp	atc Ile	agc Ser	ttc Phe	aac Asn 120	acc Thr	cgt Arg	2187
gtg Val	cag Gln	tcg Ser 125	gcc Ala	gtc Val	ttt Phe	gac Asp	gaa Glu 130	ggc Gly	aca Thr	cgc Arg	gaa Glu	tgg Trp 135	acg Thr	gta Val	cgc Arg	2235
tcg Ser	atc I·le 140	gga Gly	cac His	cag Gln	ccg Pro	atc Ile 145	cag Gln	gcc Ala	agg Arg	ttc Phe	gtc Val 150	atc Ile	gcc Ala	aac Asn	ctt Leu	2283
									aat Asn							2331
ttc Phe	aaa Lys	ggc	cag Gln	tgg Trp 175	tat Tyr	cac His	act Thr	gct Ala	ctg Leu 180	tgg Trp	ccc Pro	cag Gln	gaa Glu	ggc Gly 185	gtg Val	2379
aac Asn	atg Met	gcc Ala	ggc Gly 190	aag Lys	cgc Arg	gtg Val	gcc Ala	atc Ile 195	att Ile	ggc Gly	acc Thr	ggc Gly	tcc Ser 200	agc Ser	gjå aaa	2427
gtc Val	cag Gln	gtc Val 205	gcc Ala	cag Gln	gag Glu	gct Ala	gcc Ala 210	ctt Leu	gat Asp	gcg Ala	aaa Lys	cag Gln 215	gtg Val	acg Thr	gtg Val	2475
tac Tyr	cag Gln 220	cgc Arg	acc Thr	ccc Pro	aac Asn	ctg Leu 225	gcc Ala	ttg Leu	ccc Pro	atg Met	cat His 230	cag Gln	aag Lys	cag Gln	ctc Leu	2523
agc Ser 235	Ala	gag Glu	gac Asp	aat Asn	ctg Leu 240	Arg	atg Met	aag Lys	ccc Pro	gag Glu 245	ctt Leu	ccc Pro	gca Ala	gcg Ala	ttc Phe 250	2571

gag a	aga Arg _.	cgc Arg	ggc Gly	aag Lys 255	tgc Cys	ttc Phe	gcc Ala	ggc	ttc Phe 260	gac Asp	ttc Phe	gac Asp	ttc Phe	atc Ile 265	gcc Ala	261	19
aag a	aac Asn	gcg Ala	acc Thr 270	gag Glu	ctg Leu	tcc Ser	gct Ala	gcg Ala 275	gag Glu	cgc Arg	aca Thr	gag Glu	atc Ile 280	ttg Leu	gaa Glu	266	57
gag (Glu :	ctg Leu	tgg Trp 285	aac Asn	gcc Ala	ggc	ggc Gly	ttc Phe 290	cgc Arg	tac Tyr	tgg Trp	ctg Leu	gcc Ala 295	aat Asn	ttc Phe	caa Gln	27	15
gac Asp	tat Tyr 300	ctg Leu	ttc Phe	gat Asp	gac Asp	aag Lys 305	gcc Ala	aac Asn	gat Asp	tac Tyr	gtc Val 310	tac Tyr	gag Glu	ttc Phe	tgg Trp	276	53
cgc Arg 315	gac Asp	aag Lys	gtc Val	cgc Arg	gcc Ala 320	cgc Arg	atc Ile	aag Lys	gat Asp	ccg Pro 325	aaa Lys	gtt Val	gcc Ala	gag Glu	aag Lys 330	28:	11
ctc Leu	gcc Ala	ccc Pro	atg Met	aag Lys 335	aag Lys	ccg Pro	cat His	cct Pro	tac Tyr 340	gga Gly	gcc Ala	aag Lys	cgc Arg	cct Pro 345	tcg Ser	28!	59
ctg Leu	gag Glu	cag Gln	tgg Trp 350	tac Tyr	tac Tyr	gag Glu	atc Ile	ttc Phe 355	aat Asn	cag Gln	aac Asn	aac Asn	gtc Val 360	acg Thr	ctg Leu	29	07
gtg Val	gat Asp	gtc Val 365	aac Asn	gaa Glu	aca Thr	ccg Pro	gtg Val 370	ctt Leu	cgc Arg	atc Ile	acc Thr	gag Glu 375	aaa Lys	ggc Gly	atc Ile	29!	55
gtg Val	acc Thr 380	gct Ala	gag Glu	ggt Gly	gaa Glu	gcc Ala 385	gaa Glu	ttc Phe	gac Asp	ctg Leu	atc Ile 390	gtg Val	ttc Phe	gcg Ala	acc Thr	30	03
ggc Gly 395	Phe	gac Asp	gca Ala	gtg Val	acc Thr 400	ggg Gly	gga Gly	ctc Leu	acc Thr	agc Ser 405	atc Ile	gac Asp	ttc Phe	cgc Arg	aac Asn 410	30	51
aac Asn	cag Gln	ggc Gly	cag Gln	agc Ser 415	ttc Phe	aag Lys	gat Asp	gtg Val	tgg Trp 420	tct Ser	gac Asp	gga Gly	atc Ile	cgc Arg 425	acc Thr	30:	99
cag Gln	ctg Leu	gga Gly	gtg Val 430	gcc Ala	acg Thr	gca Ala	ggt Gly	ttt Phe 435	ccc Pro	aac Asn	ttg Leu	ctc Leu	ttt Phe 440	ggc Gly	tac Tyr	31	47
gga Gly	cct Pro	caa Gln 445	tcg Ser	cct Pro	gcg Ala	ggc Gly	ttc Phe 450	tgc Cys	aac Asn	ggt Gly	ccg Pro	tcg Ser 455	agc Ser	gcc Ala	gaa Glu	. 31	95
tac Tyr	cag Gln 460	ggc Gly	gat Asp	ctg Leu	ctg Leu	atc Ile 465	cag Gln	ctg Leu	atg Met	aac Asn	tac Tyr 470	cta Leu	cgc Arg	gac Asp	aac Asn	32	43
aac Asn 475	atc Ile	tcg Ser	cgc Arg	atc Ile	gaa Glu 480	gcc Ala	cag Gln	tcc Ser	gag Glu	gca Ala 485	cag Gln	gaa Glu	gaa Glu	tgg Trp	agc Ser 490	32	91

aag ctg atc gca gac ttc tgg gac agc tcg ctg ttc ccc cgc gca aag Lys Leu Ile Ala Asp Phe Trp Asp Ser Ser Leu Phe Pro Arg Ala Lys 495 500 505	3339
tcc tgg tac caa gga tcc aac atc ccg ggc aag aaa gtc gag agc ctg Ser Trp Tyr Gln Gly Ser Asn Ile Pro Gly Lys Lys Val Glu Ser Leu 510 515 520	3387
aac ttc ccg ctg ggg ctg cca acc tat ata tcc aaa ttc aat gaa agc Asn Phe Pro Leu Gly Leu Pro Thr Tyr Ile Ser Lys Phe Asn Glu Ser 525 530 535	3435
gct gaa aaa gga tat gca ggc ttc tcg ctg gcc agc taagactctg Ala Glu Lys Gly Tyr Ala Gly Phe Ser Leu Ala Ser 540 545 550	3481
ttgtgcaact cctggagaca agcatatggg acgtgtaaat gacaaagtgg ttctcgtcac	3541
tggcggtgcc atgggaatgg gcctgaccca ttgcaccttg ctggcccgcg agggggccac	3601
cgtttacctc agcgacatga atgaggaact gggccaccaa gccgtagcgg agatccgtcg	3661
gcaaggtggc aaggcccact tcctgcacct ggacgtgacc aacgagaatc actggacagg	3721
tgccgtggac accatecteg ccgagtecga ccggetggac gcgetggtea acaacgeegg	3781
cattttgacc ctcaaacccg ttcaggacac cagcaacgaa gaatgggatc gcatctttga	3841
aatcaatgtc cgcagtgtgt tcttgggcac gcgagcagtg atcgagccca tgcgtaaagc	3901
ccataaaggc tgcatcgtca atgtgtcgtc catctacggt ctggtgggtg cgccgggagc	3961 4021
tgcggcctac gaggcctcca aaggtgccgt gcgcttgttt accaaggctt gcgcggtgga	4021
cctggcaccg ttcaatattc gggtcaactc ggtccaccca ggggtgatcg caacacccat	4141
gacgcagcag atcctggacg ccccacagag cgcacgtgcg cttctgggcc ccacgctgct gggtcgtgcg gcccagccga tggaggtctc ccaggcggtg cttttcctgg tctcggacga	4201
ggcctcgttc gtgcatggct ctgaactcgt cgtcgacgga gggtatacgg cgaactgaga	4261
aaggaacatc ctcggcatgc	4281

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.