

Sri Lanka Institute of Information Technology B. Sc Degree in IT/IS/CSN, Diploma in Information Technology Year 01 – Semester I – 2017 Mathematics for Computing (IT1030)

Tutorial 01

1. Consider the expressions.

$$I. F = XY + X\overline{Y} - T$$

II.
$$B = XYZ + XY\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}\overline{Z}) - \overline{A}$$

III.
$$D = \overline{W}\overline{X}\overline{Y}\overline{Z} + \overline{W}\overline{X}Y\overline{Z} + \overline{W}X\overline{Y}\overline{Z} + \overline{W}XY\overline{Z}$$

Build the truth table for the above expressions.

2. Simplify the following expressions using rules of Boolean algebra.

$$I. \qquad C + \overline{BC} - T$$

II.
$$\overline{AB} (\overline{A} + B)(\overline{B} + B) - \overline{A}$$

III.
$$(A+C)(A\overline{D}+AD)+AC+C-(A+C)$$

IV.
$$\bar{A}(A+B)(AA+B)(A+\bar{B})-(A+B)$$

3. Find the expression that gives the following truth table.

X	Y	Z	Z
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

X	Y	Z	\mathbf{z}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

X	Y	Z	G
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

X	Y	Z	E
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

4. Write the truth table for the following functions, and express the functions as sum-of-minterms and product-of-maxterms.

I.
$$(XY + Z)(Y + XZ)$$

II.
$$(\bar{A}+B)(\bar{B}+C)$$

III.
$$WX\bar{Y} + WX\bar{Z} + WXZ + Y\bar{Z}$$

- 5. Write down the De Morgan's Theorem.
- 6. With the aid of truth table justify De Morgan's Theorem.