

SAYISAL ANALIZ DÖNEM ÖDEVİ

B181200559 ARSENE ADJEVİ

Konu:

Bir matematikçi yandaki şeklin alanını analitik olarak AD= bulmuş ve bu şekle daire adını vermiştir.

Sadece ikiz kenar üçgenlerin alanını hesaplayabilen bir bilgisayarla bu dairenin alanını $\% \in_a <0.01$ hata ile bulabilecek bir algoritma oluşturun.

Başlangıçta daire dört tane böldüğümüz zaman dört tane ikiz kenar üçgen elde ederiz. Bu dört tane ikiz kenar üçgenlerden bir tane alıp onun alan için genel bir formula çıkartalım.

OAB alalım ve *A* onun alanı olsun:

$$A = \frac{AB * OC}{2}$$

AB ve OC değerleri bilmiyoruz. Önce bu değerleri arayalım.

$$\sin \gamma = \frac{AC}{OA} = = > AC = OA * \sin \gamma$$

AB = 2 * AC oldğu biliyoruz o zaman

$$AB = 2 * OA * \sin \gamma, OA = r(dairenin yariçapı)$$

 $AB = 2 * r * \sin \gamma$

Daire dört paçaya böldük ama yerine genel bir formül bulmak için 4 yerinde *n* kullanalım

$$\gamma = \frac{\alpha}{2}, \alpha = \frac{2\pi}{n}$$

Böylece
$$\gamma = \frac{\pi}{n}$$

$$AB = 2 * r * \sin\frac{\pi}{n}$$

OC değeri ise:

$$\cos \gamma = \frac{OC}{OA} = => OC = OA * \cos \gamma$$

$$OC = r * \cos \frac{\pi}{n}$$

Sonunda

OAB ikiz üçgenin alanı
$$A = \frac{2*r^2*\sin{\frac{\pi}{n}}*\cos{\frac{\pi}{n}}}{2}$$

$$A = r^2 * \sin \frac{\pi}{n} * \cos \frac{\pi}{n}$$

Daire *n* tane parçaya böldürse ikiz kenar üçgenlerin alanların toplamı

$$A[n] = n * \left(r^2 * \sin\frac{\pi}{n} * \cos\frac{\pi}{n}\right)$$
 Olur.

Yazacağımız algoritmaya göre üçgenlerin sayısı artırdıkça elde edeceğimiz hata düşük olur. Daha önce söyledim gibi \boldsymbol{n} üçgenlerin sayısı, $\boldsymbol{r}=3$ dairenin yarıçapı, $\boldsymbol{\pi}=22/7$, $\boldsymbol{e}_{\underline{1}}$ ilk hata, $\boldsymbol{e}_{\underline{0}}=\mathbf{0}.\,\mathbf{0}\mathbf{1}$ olsun. Başlangıçta n=4 alırsak $\boldsymbol{A}[4]=4*\left(\boldsymbol{r}^2*\sin\frac{\pi}{4}*\cos\frac{\pi}{4}\right)$ olacak . ilk hata $\boldsymbol{e}_{\underline{1}}=\left(\frac{A[n]-A[n-1]}{A[n]}\right)*\mathbf{100}$ formül ila bulacağız yanı $\boldsymbol{n}=4$ olduğunda $\boldsymbol{e}_{\underline{1}}=\left(\frac{A[4]-A[3]}{A[n4]}\right)*\mathbf{100}$ olacaktır. $\boldsymbol{e}_{\underline{1}}<\boldsymbol{e}_{\underline{0}}$ olana kadar n bire attıracağız Ve bu şekilde aşağıdaki akış diyagramı çizdiğimiz olur.

Aşağıdaki C programlama dilinde yazdığım kodun ekran alıntı bulunmaktadır.

```
1 #include<stdint.h>
2 #include<stdio.h>
3 #include<math.h>
4 #define PI 3.142857142857143
5 #ifndef MAX
6 #define MAX 200
9 int main(int argc, char const *argv[])
    int n=4,r=3;
    float e 0=0.01,e 1,A[MAX];
      General Formule after calcule and at the begining a took n=4 for number
        n=n+1;
        A[n]=n*(pow(r,2)*sin(PI/n)*cos(PI/n));
        A[n-1] = (n-1)*(pow(r,2)*sin(PI/(n-1))*cos(PI/(n-1)));
       e 1=fabs((A[n]-A[n-1])/A[n])*100;
       printf("%d_ Air value:%lf with error: %lf\n",n,A[n],e_1);
       A[n-1]=A[n];
     } while (e 0 \le 1); //Control if(fabs((A[n]-A[n-1])/A[n])\le 0)
30 }
```

Kod dosyasındaki /*bin*/ dosyadaki bulunan *binary code* komut olarak ./donem_odev.out çalıştırnızda ya kendiniz **gcc** yanda *clang* compiler ile

gcc -g -Wall donem_odev.c -lm -o donem_odev.out yada clang -g -Wall donem_odev.c -lm -o donem_odev.out compile yapıp çaliştirabilirsiniz.

Ben kodu çeliştirdiğim zaman şu sonuçlar elde ettim:

- 5_ Air value:21.402287 with error: 15.896853
- 6_ Air value:23.388374 with error: 8.491774
- 7_ Air value:24.634787 with error: 5.059562
- 8_ Air value:25.463890 with error: 3.255997
- 9_ Air value:26.041615 with error: 2.218467
- 10_ Air value:26.459543 with error: 1.579501
- 11_ Air value:26.771294 with error: 1.164495
- 12 Air value:27.009855 with error: 0.883239
- 13 Air value:27.196383 with error: 0.685853
- 14_ Air value:27.344929 with error: 0.543231
- 15_ Air value:27.465120 with error: 0.437615
- 16_ Air value:27.563721 with error: 0.357718
- 17_ Air value:27.645599 with error: 0.296172
- 18_ Air value:27.714325 with error: 0.247979
- 19_ Air value:27.772568 with error: 0.209713
- 20_ Air value:27.822353 with error: 0.178941
- 21_ Air value:27.865238 with error: 0.153901
- 22_ Air value:27.902443 with error: 0.133339
- 23 Air value:27.934923 with error: 0.116271
- 24_ Air value:27.963449 with error: 0.102013
- 25_ Air value:27.988634 with error: 0.089982
- 26_ Air value:28.010983 with error: 0.079784
- 27_ Air value:28.030901 with error: 0.071059
- 28_ Air value:28.048733 with error: 0.063574
- 29_ Air value:28.064756 with error: 0.057095
- 30_ Air value:28.079210 with error: 0.051475

31_ Air value:28.092291 with error: 0.046563 32_ Air value:28.104168 with error: 0.042261 33_ Air value:28.114985 with error: 0.038473 34_ Air value:28.124863 with error: 0.035123 35_ Air value:28.133909 with error: 0.032155 36_ Air value:28.142212 with error: 0.029503 37_ Air value:28.149853 with error: 0.027143 38_ Air value:28.156900 with error: 0.025030 39_ Air value:28.163412 with error: 0.023121 40_ Air value:28.169443 with error: 0.021410 41_ Air value:28.175039 with error: 0.019862 42_ Air value:28.180241 with error: 0.018457 43_ Air value:28.185085 with error: 0.017189 44_ Air value:28.189602 with error: 0.016022 45_ Air value:28.193823 with error: 0.014971 46_ Air value:28.197771 with error: 0.014002 47_ Air value:28.201469 with error: 0.013114 48_ Air value:28.204941 with error: 0.012308 49_ Air value:28.208200 with error: 0.011556 50_ Air value:28.211267 with error: 0.010872

51_ Air value:28.214157 with error: 0.010242

52_ Air value:28.216881 with error: 0.009653

Yanı r=3 yarıçaplı daire içinde 52 tane ikiz kenarı üçgenler böldürse bu üçgenlerin alanları toplanırsa Dairenin alanı $\varepsilon=0.009653$ Hata ile $AD=28.216881br^2$ Bulmuş olur.