

---

# SHARP

# SERVICE MANUAL

---



## MODEL PC-1211, CE-121

### CONTENTS

|                                     |    |
|-------------------------------------|----|
| 1. Specifications .....             | 2  |
| 2. Block diagram .....              | 4  |
| 3. LSI signal description .....     | 12 |
| 4. About servicing .....            | 17 |
| 5. Cassette operation .....         | 18 |
| 6. Check program .....              | 25 |
| 7. Circuit diagram .....            | 26 |
| 8. PC-1211 parts list & guide ..... | 32 |
| 9. CE-121 parts list & guide .....  | 34 |

# 1. SPECIFICATIONS



## 1-1. Display

- Display tube: LF8017JE
- Display method: 5 x 7 dot matrix liquid crystal
- Display capacity: 24 columns (alphanumerics and symbols)

## 1-2. Basic functions

- Computational capacity: 12 digits of mantissa and 2 digits of exponent.
- Computational method: According to mathematical formula (with priority consideration and judge function)
- Capacities:
  - Program memory; 1424 steps, max (PC1211)
  - Data memory; Fixed memory  
26 memories
  - Flexible memory (commonly usable with the program memory)  
178 memories, max (PC1211)
  - Reserve program; 18 kinds, 48 steps, max
  - Input buffer; 80 steps
  - Data buffer; 8 stages
  - Functional buffer; 16 stages (but 15 stages for parenthesis)
  - Subroutine buffer; 4 stages
  - “FOR NEXT” statement buffer: 4 stages
- Buffers:
  - Functional buffer; 16 stages (but 15 stages for parenthesis)
  - Subroutine buffer; 4 stages
  - “FOR NEXT” statement buffer: 4 stages

## 1-3. Arithmetic functions

- Add (+), Subtract (-), Multiply (\*), Divide (/), Power raising (^)
- Trigonometric functions: SIN (sine), COS (cosine), TAN (tangent)
- Inverse trigonometric functions: ASN (sine<sup>-1</sup>), ACS (cosine<sup>-1</sup>), ATN (tangent<sup>-1</sup>)
- Logarithmic functions: LOG (common logarithm), LN (natural logarithm [ln])
- Exponential functions: EXP (exponential)
- Angular transformations:
  - DMS (decimal notation to sexagesimal notation),
  - DEG (sexagesimal notation to decimal notation)
- Square root extraction:  $\sqrt{\phantom{x}}$
- Signum function: SGN
- Absolute value: ABS (| X |)
- Interpolation: INT

Execution of arithmetic operation is commanded by the ENTER key.

## 1-4. Editorial functions

|               |                     |
|---------------|---------------------|
| Cursor shift: | ► (right), ◀ (left) |
| Insertion:    | INS                 |
| Deletion:     | DEL                 |
| Line control: | ↓ (down), ↑ (up)    |

## 1-5. Programming language

BASIC (Beginner's All purpose Symbolic Instruction Code)

## 1-6. Power source

|                           |                               |
|---------------------------|-------------------------------|
| Battery:                  | Four MR44 (mercury batteries) |
| Battery life:             | 300 hours                     |
| Power consumption:        | 0.011W                        |
| Automatic power shut off: | About 6 minutes               |

## 1-7. Others

|                      |                                                                                                       |
|----------------------|-------------------------------------------------------------------------------------------------------|
| Data protection:     | Program memory, data memory, reserve program memory                                                   |
| Peripheral unit:     | Audio cassette unit (recording/reading of the program memory, data memory and reserve program memory) |
| Physical dimensions: | 175(W) x 70(D) x 44(H) mm                                                                             |

## 4 2. BLOCK DIAGRAM



## System configuration (see the system block diagram)

System of this unit consists of the following components:

- 1) CPU I (SC43157) x 1
- 2) CPU II (SC43178) x 1
- 3) 4K-bit RAM (TC5514P x 3)
- 4) Display chip (SC43125 x 3, with built-in RAM)
- 5) 2AND gate (TC4011UBP x 1)
- 6) 2AND 2OR (TC4019BP x 1)
- 7) Inverter (TC4069BP x 1)
- 8) Qward Analog Switch Multiplexer (TC4066BP)
- 9) LCD (24-digit FEM dot LCD)
- 10) Key
- 11) Crystal (CSB2560)

## 2-1. CPU I, CPU II

These CPUs are provided with internal ROM, and each of CPUs shares the following assignments:

| CPU I                                                                                                           | CPU II                     |
|-----------------------------------------------------------------------------------------------------------------|----------------------------|
| Key input routine                                                                                               | Display processing routine |
| Acknowledgement of the remaining program                                                                        | Input buffer               |
| One instruction to one program step incorporation                                                               | Computational result       |
| Interpreter:<br>Program execute statement<br>Cassette control statement<br>Command statement<br>Printer control | Error                      |
| Execution of manual operation                                                                                   | Arithmetic routine         |
| Power shut off control                                                                                          | Character generator        |
| Clock stop control                                                                                              | Cassette routine           |
|                                                                                                                 | Print routine              |
|                                                                                                                 | Buzzer                     |
|                                                                                                                 | Recognition of printer     |
|                                                                                                                 | Power off                  |
|                                                                                                                 | Clock stop                 |

- The CPU I functions to read key-in data or read the instruction to be executed from the RAM, and decides what is to be done for the control of arithmetical operation (i.e. control of arithmetic sequence, memorizing of arithmetical data, and its readout), or interprets the syntax of the BASIC instruction for deciding what is to be executed, or determines and prepares the information to be displayed, but the CPU I does not perform any execution by itself. It only arranges the data and information in proper sequence and acts to provide instruction code to the CPU II via the buffer. On the other hand, the CPU II constantly receives execution instructions from the CPU I via the transfer buffer and executes operation against each of instructions or sometimes performs to exchange data depending on the situation. Although it shares major part of execution in term of execution, it performs some kinds of auxiliary CPU when looked in the view that it does not perform any decision by itself.

Ex: Actions of CPU I and CPU II at the time of key data entry.



In the case of manual operation of the pocket computer, the instruction code (key code) is written into the RAM in the display chip (input buffer) after information is put through the keyboard and converted into the instruction code by the CPU I, then this instruction code (display, at this case) is transferred to the CPU II via the transfer buffer. As the CPU II receives this instruction, the CPU II then decodes this instruction (display, at this case) and executes display processing. Upon the completion of this processing, it is then notified to the CPU I, then the CPU I confirms the completion of the task by the CPU II before terminating their jobs.

## 2-2. RAM

A certain number of C-MOS RAM (1 ~ 3 chips, 4K bits each) and another RAM incorporated inside the display chip are used in this pocket computer, having varieties of configurations as described below:

- Map of 4K-bit RAM



Although RAM area is mainly shared by the program, data and reserve program memories, it is also used for the subroutine stack, FOR NEXT statement stack and fixed memories (W, X, Y, Z).

- Map of the RAM incorporated in the display chip

There are three 1K-bit RAMs (128 bytes each) incorporated in each of display chips (SC43125), having the following configurations:



- 8-digit display buffer

40 bytes of 8-digit display buffer is used as a display data buffer during displaying and also used as a buffer memory for arithmetical result during the arithmetical operation.

- Fixed memory

The total memory of 176 bytes from the display chip 2 and 3 is used as a fixed memories, A~V (22 memories).



- Transfer buffer

8 bytes (1 memory equivalent) of the display chip 1 is used as a transfer buffer which is used in the transaction of instruction between the CPU I and the CPU II.

- Input buffer

Remaining 80 bytes (10 memories equivalent) of the display chip 1 is used for the input buffer, which is used in the following functions:

1. Any information entered through the keyboard is stored once in this buffer, thus allowing up to 80 steps.
2. The display contents is stored by the CPU I and the CPU II makes selection out of this data.
3. When an arithmetical instruction is entered, its procedure is stored in this buffer by the CPU I and the CPU II performs operation according to this procedure.
4. When program or reserve program is to be recorded or read out during the execution of the cassette control instruction, action takes place through this input buffer.

## 2-3. Display

The contents of display indicated by the CPU I is received by the CPU II via the input buffer and makes converted into respective character codes, then they are carried over to the display buffer in the display chip through the address data bus.

- Designation of the display data

The following structure is observed in the display buffer in the display chip.



Fig 2-3-1

The numeric figure "4", to be displayed by the CPU II, is converted into the relevant character code and carried through on the address data bus. First of all, the segment S1 is selected with the address A8~A1 "00000000" to store the data DI04~DI01 "1000" in the display buffer (see Fig. 2-3-1). To store second half 4 bits of the data, only A5 in the address is turned "1" to make the address "00010000" to store data "0001". In the same manner, the address "00000001" is selected for storing the first half 4-bit data "0100" for the segment S2 and the second half 4-bit data "0001" is stored with the address "00010001".



Fig 2-3-2

**HA:** Clock frequency for the counter. This signal is counted and decoded to perform synchronization with the command signal, H1~H7, generated from the CPU II.

**DISP:** With high level of this signal, processing of display operation is indicated (RAM data designated by H1~H8 is sent out on S1~S40).

The data stored in the display buffer is carried through S1~S40 (Fig. 2-3-2) to be fed to the LCD. (To indicate "4" on the display, H4 and H5 are engaged for S1, H3 and H5 for S2, etc., all the same throughout S6~S40.)

## 2-4. Power source



- The liquid crystal reference voltage VDISP is generated in the above circuitry in order to avoid occurrence of such unpleasant phenomena as blurred character or contrast variation that might degrade display performance, which is caused by a slight voltage variation in the liquid crystal reference voltage VDISP, since the  $5 \times 7$  dot matrix liquid crystal is used in the display of this pocket computer.

A) VDD is generated in the CPU II on the basis of VGG.

B) The gate voltage of MOS FET is controlled by the  $250\text{K}\Omega$  pot to regulate the voltage for  $\text{VDISP}$ . Furthermore, the voltage of  $\text{VDISP}$  is changed by the thermistor to meet with temperature variation, so as to maintain proper display performance.

C) Line between the reference voltage  $VDISP$  and GND is divided by resistor to make out  $VA$ ,  $VM$  and  $VB$

VDISP: Low side voltage of common signals (H1~H7) for LCD.

VA: High side voltage for segment signals (S1 ~ S40)

VM: Intermediate voltage of the common and segment signals

VB: Low side voltage of segment signals

NOTE: VA, VM and VB become pulses in an amplitude of several volts owing to influence caused from the LSI.

- Adjustments of reference voltage VDISP

The VDISP had been precisely adjusted to become  $-3.74V$  at an ambient temperature of  $20^{\circ}\text{C}$  and  $-4.29V$  at  $0^{\circ}\text{C}$ . In case there is a need of readjusting the voltage after servicing the LCD or exchanging some of power source components, be sure to look on the LCD from  $30^{\circ}$  of angle from the vertical line while adjusting the pot.



### 3. LSI SIGNAL DESCRIPTIONS

#### 3-1. SC43157 (CPU I)

| Pin No.                                      | Signal name                                          | In/Out                                               | Description                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4                             | F4a<br>F3a<br>F2a<br>F1a                             | Out<br>Out<br>Out<br>Out                             | Chip Enable signal (RAM3 select signal)<br>Chip Enable signal (RAM2 select signal)<br>Chip Enable signal (RAM1 select signal)<br>Chip Enable signal (Display chip 1 select signal, for input buffer and transfer buffer usage)<br>During display: Low<br>During read-in: turns momentarily high |
| 6                                            | V <sub>GG</sub>                                      | In                                                   | Source voltage ("—" voltage of battery)                                                                                                                                                                                                                                                         |
| 7                                            | V <sub>GG</sub>                                      | In                                                   |                                                                                                                                                                                                                                                                                                 |
| 8                                            | Xin                                                  | In                                                   | Basic clock (pulse signal in 256KHz)                                                                                                                                                                                                                                                            |
| 9<br>10                                      | TEST1<br>TEST2                                       |                                                      | Connected with GND                                                                                                                                                                                                                                                                              |
| 11                                           | RESET                                                | In                                                   | All reset switch input<br>Normally high but turns low when the all reset switch is depressed.                                                                                                                                                                                                   |
| 12                                           | R/Wa                                                 | Out                                                  | RAM Data Read/Write signal<br>During display: High<br>Depression of the key causes it momentary low!                                                                                                                                                                                            |
| 13<br>14<br>15<br>16                         | DIO1<br>DIO2<br>DIO3<br>DIO3                         | In/Out<br>In/Out<br>In/Out<br>In/Out                 | Data Bus (for address designation of the input buffer and transfer buffer in RAM and display chip 1).<br>During display: High<br>During read-in: Low                                                                                                                                            |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | B8a<br>B7a<br>B6a<br>B5a<br>B4a<br>B3a<br>B2a<br>B1a | Out<br>Out<br>Out<br>Out<br>Out<br>Out<br>Out<br>Out | Address Bus (for address designation of the input buffer and transfer buffer in RAM and display chip 1).<br>During display: Mementary generation<br>During read-in:                                                                                                                             |
| 30                                           | GND                                                  | In                                                   | Source voltage (0V)                                                                                                                                                                                                                                                                             |
| 40                                           | S16a                                                 | Out                                                  | Busy signal to the CPU II (High during the execution in the CPU I)<br>During display: Low<br>During read-in: turns momentarily high                                                                                                                                                             |

| Pin No. | Signal name   | In/Out | Description                                                                                                                                  |
|---------|---------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 41      | Sn            | Out    | Key Strobe signal, RAM Address signal                                                                                                        |
| 42      | Si            | Out    | Key Strobe signal, RAM Address signal                                                                                                        |
| 43      | S13           | Out    | Key Strobe signal                                                                                                                            |
| 44      | S12           | Out    |                                                                                                                                              |
| 45      | S11           | Out    | During display: High                                                                                                                         |
| 46      | S10           | Out    | Depression of the key causes it momentary low                                                                                                |
| 47      | S9            | Out    |                                                                                                                                              |
| 48      | S8            | Out    |                                                                                                                                              |
| 49      | S7            | Out    |                                                                                                                                              |
| 50      | S6            | Out    |                                                                                                                                              |
| 51      | S5            | Out    |                                                                                                                                              |
| 52      | S4            | Out    |                                                                                                                                              |
| 53      | S3            | Out    |                                                                                                                                              |
| 54      | S2            | Out    |                                                                                                                                              |
| 55      | Ki1           | In     | Key input signal                                                                                                                             |
| 56      | Ki2           | In     |                                                                                                                                              |
| 57      | Ki3           | In     | During display: Low                                                                                                                          |
| 58      | Ki4           | In     | Depression of the key causes it momentary high                                                                                               |
| 59      | S16b<br>(Ki5) | In     | Busy signal of the CPU II (high during the execution of the CPU II)<br>During display: Low<br>Depression of the key causes it momentary high |

### 3-2. SC43178 (CPU II)

| Pin No. | Signal name | In/Out | Description                                                                                                                                                                                              |
|---------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | F4          | Out    | Buzzer signal<br>When the buzzer is off: Low<br>When the buzzer is on:                                              |
| 2       | F3          | Out    | Chip Enable signal (Display chip 3 select signal)                                                                                                                                                        |
| 3       | F2          | Out    | Chip Enable signal (Display chip 2 select signal)                                                                                                                                                        |
| 4       | F1          | Out    | Chip Enable signal (Display chip 1 select signal)<br>During display: Low<br>During read-in: Turns momentarily high  |
| 5       | VDD         | Out    | For liquid crystal drive voltage preparation (VDD ≈ VGG)                                                                                                                                                 |
| 6       | VGG         | In     |                                                                                                                                                                                                          |
| 7       | VGG         | In     | Source voltage ("—" voltage of the battery)                                                                                                                                                              |
| 8       | Xin         | In     | Basic clock (Pulse signal in 256KHz)                                                                                                                                                                     |
| 11      | RESET       | In     | All reset switch input                                                                                                                                                                                   |

| Pin No.                                      | Signal name                                          | In/Out                                               | Description                                                                                                                                                                                      |
|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12                                           | R/W                                                  | Out                                                  | RAM Data Read/Write signal<br>During display: High<br>During read-in: Turns momentarily low                                                                                                      |
| 13<br>14<br>15<br>16                         | DIO4<br>DIO3<br>DIO2<br>DIO1                         | In/Out<br>In/Out<br>In/Out<br>In/Out                 | Data Bus (for data transaction between RAM and display chip)<br>During display: High<br>During read-in: Turns low                                                                                |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | B8b<br>B7b<br>B6b<br>B5b<br>B4b<br>B3b<br>B2b<br>B1b | Out<br>Out<br>Out<br>Out<br>Out<br>Out<br>Out<br>Out | Address Bus (for address designation of the display chip)<br>During display: B1b=high, B2b=low, B3b=low, B4b=low, B5b=high, B6b=high, B7b=low, B8b=low<br>During read-in: Turns momentarily high |
| 25                                           | HA                                                   | Out                                                  | Display signal (Common signal counting pulse)<br>Being generated during displaying                                                                                                               |
| 26                                           | DISP                                                 | Out                                                  | Display command signal<br>During display: High<br>During execution: Low                                                                                                                          |
| 27<br>28<br>29                               | VM<br>VA<br>GND                                      | In<br>In<br>In                                       | LCD display voltage (Intermediate voltage of the segment signal)<br>LCD display voltage (High side voltage of the segment signal)<br>Supply voltage (0V)                                         |
| 30<br>31<br>32<br>33<br>34<br>35<br>36       | H4<br>H7<br>H3<br>H6<br>H2<br>H5<br>H1               | Out<br>Out<br>Out<br>Out<br>Out<br>Out<br>Out        | LCD common signals (backplate)                                                                                                                                                                   |
| 37<br>38                                     | VDISP<br>VB                                          | In<br>In                                             | LCD display voltage (Low side voltage of the common signal)<br>LCD display voltage (Low side voltage of the segment signal)                                                                      |
| 39                                           | S16                                                  | Out                                                  | Busy signal to the CPU I (High during the execution in the CPU II)<br>During display: Low<br>Depression of key causes it momentarily high.                                                       |
| 40                                           | S15                                                  | Out                                                  | Record signal to the cassette tape and print data.                                                                                                                                               |
| 41                                           | S14                                                  | Out                                                  | Remote signal to the MT.                                                                                                                                                                         |

| Pin No. | Signal name   | In/Out | Description                                                                                                  |
|---------|---------------|--------|--------------------------------------------------------------------------------------------------------------|
| 42      | S13           | Out    | Busy signal to the printer.                                                                                  |
| 43      | S12           | Out    | Expansion signal<br>During display: Low<br>Depression of the CA (ON) key causes an instant pulse generation. |
| 49      | S6            | Out    | For DEF symbol display (engaged: low, not engaged: high)                                                     |
| 54      | S1            | Out    | For symbol display (SHIFT, DGE, RAD, GRAD, RESERVE, PRO, RUN)<br>Same waveform as the segment signal.        |
| 55      | Ki1<br>(S16a) | In     | CPU I Busy signal (High during the execution in CPU I)                                                       |
| 56      | Ki2           | In     | Expansion signal<br>To be connected to S12 (CPU II) for PC-1211.                                             |
| 57      | Ki3           | In     | Printer Busy signal<br>Low when the printer is not operated.                                                 |
| 58      | Ki4           | In     | Printer connection identifying signal.<br>Low when the printer is not connected.                             |
| 59      | Ki5           | In     | Cassette reproduct signal.                                                                                   |
| 60      | Ki6           | In     | ON key input signal                                                                                          |

### 3-3 IC

TC 4011 UBP

( Quad 2-input positive NAND gate )



TC 4069 P

( HEX inverter )



TC 4019 BP

( Quad AND-OR select gate )



TC 4066 BP

( Quad bilateral switch )



## 4. ABOUT SERVICING

### ● Disassembly procedure

- 1) Remove the 2 screws (a) and 2 screws (b).
- 2) Separate the upper cabinet from the lower cabinet from the screw side, as they are latched together at three points, A, B, and C.

### ● Repairing procedure

- 1) As the back of the arithmetic printed board comes into sight after the removal of the lower cabinet, the arithmetic printed board can be checked from the back side.
- 2) Replacement of the CPU II is possible.
- 3) If the key printed board is to be checked, the arithmetic printed board has to be bent in right angle after removing the screws (d) and (e). Inspection of the CPU I is possible if the buzzer is removed after removing the screw (c).
- 4) The key printed board can be dismounted from the upper cabinet when the 9 screws (f) and 2 screws (g) are removed. But, care must be exercised in dismounting the printed board, as key tops may come falling down one after another.

### ● Replacement of the LSI

- 1) It will be much convenient if the LSI use soldering pencil (UKOG-0078CSZZ) is used for replacing the LSI.
- 2) Be sure to remove the key printed board from the upper cabinet first, if the LSI on the key printed board is to be removed. If the LSI was removed with the key printed board being fitted on the upper cabinet, there is a possibility of deforming the key rubber by the heat of the soldering pencil.
- 3) Be sure to cut the legs of IC, if IC was removed.

### ● Measuring current consumption

Power source voltage. 4.72V

Current consumption:

After depress the ON key: Under 850 $\mu$ A

After depress the OFF key: Under 12 $\mu$ A



Fig 4-1



Fig 4-2

## 5. CASSETTE OPERATION

### 5-1. Recording

#### Recording method



- 1 = Check sum code (after every 8 steps or one data memory.)
- 2 = 8 steps of program or reserve program
- 3 = End code of recording.
- 4 = This gap, composed of all "1", is inserted at each step the recording exceeds 80 steps, during which time the next 80 steps of data to be input is prepared in the input buffer.
- 5 = All "1" is recorded for a period of about 6 seconds in order to avoid non-recordable area located at the top of the tape and is also used for the cueing of the recording head.
- 6 = With this program or reserve program name is indicated.
- 7 = File name
- 8 = Data memory is indicated with this code.
- 9 = Area for one data memory.

#### Recording method

Data "0" and "1" are identified by changing the frequency of the recording signal (F4").



Recording signal (F4'') generation circuit



When recording signal "1" is to be recorded, S15 is turned low level and the signal F4 (clock pulse of  $\approx 4\text{KHz}$ ) is output during that period. When recording signal "0" is to be recorded, S15 is turned high level and the F4 output is inhibited during that period, at which duration the reverse signal of HA (clock pulse of  $\approx 2\text{KHz}$ ) is carried on the recording signal.

Then, this signal is supplied to the MIC terminal of the tape recorder via the modulation circuit of the CE121.

## 5-2. Reproduction

Output signal from the EAR PHONE jack of the tape recorder is amplified and shaped in the Schmitt circuit, to be input to the CPU II through the KI5 terminal of the CPU II.



## 5-3. Remote control

The CE121 will control the REMOTE terminal in automatic manner against the record, playback and check commands.



The TC 4528P is a mono-stable multivibrator which can perform trigger operation and reset operation and two circuits are contained in the same chip.

“A” outputs a pulse which is dependable on the time constant of CR at the falling edge of the input signal, and “B” outputs a pulse which is dependable on the time constant of CR at the rising edge of the input signal. The relay operates ON and OFF according to the current flow to the coil, and it is activated when “A” is active and deactivated when “B” is active.



## 5-4. Testing the CE121

### 1. Writing test data to PC-1211

First of all, test data must be entered to PC1211 for checking CE121.

| No. | Read in                   | Display                       | Remarks                                                                          |
|-----|---------------------------|-------------------------------|----------------------------------------------------------------------------------|
| 1   | MODE ~ MODE               | > RESERVE                     | Make the RESERVE symbol indicated on the display after depressing the ENTER key. |
| 2   | NEW                       | NEW _ RESERVE                 |                                                                                  |
| 3   | ENTER                     | > RESERVE                     |                                                                                  |
| 4   | SHFT Z                    | Z: _ RESERVE                  |                                                                                  |
| 5   | P.# SHFT ▼AV SHFT; A(204) | Z: P.#▼AV; A(204) RESERVE     |                                                                                  |
| 6   | ENTER                     | Z: PRINT #▼AV; A(204) RESERVE |                                                                                  |
| 7   | SHFT X                    | X: _ RESERVE                  |                                                                                  |
| 8   | I.# SHFT ▼AV SHFT ; A(76) | X: I. #▼AV; A(204) _ RESERVE  |                                                                                  |
| 9   | ENTER                     | X: INPUT #▼AV; A(204) RESERVE |                                                                                  |
| 10  | SHFT SPC                  | : _ RESERVE                   |                                                                                  |
| 11  | A(76)                     | : A(204) RESERVE              |                                                                                  |
| 12  | ENTER                     | : A(204)                      |                                                                                  |
| 13  | MODE                      | > DEF                         |                                                                                  |
| 14  | MODE                      | > RUN                         |                                                                                  |
| 15  | SHFT SPC =100             | A(204)=100 _ RUN              |                                                                                  |
| 16  | ENTER                     | RUN 100                       |                                                                                  |

The test data have to be written into PC-1211 in the above manner.

### 2. Checking CE121

Assumes that the step 1 has already been executed.

| No. | Read in | Display | Remarks                                                                                                         |
|-----|---------|---------|-----------------------------------------------------------------------------------------------------------------|
| 1   | OFF     |         |                                                                                                                 |
| 2   |         |         | Connect the CE121 with the tape recorder.                                                                       |
| 3   |         |         | Connect the PC1211 with the CE121.                                                                              |
| 4   | ON      | > RUN   | Make sure that the symbol RUN is on the display. Otherwise, let the symbol RUN be displayed using the MODE key. |

| No. | Read in         | Display                        | Remarks                                                                     |
|-----|-----------------|--------------------------------|-----------------------------------------------------------------------------|
| 5   |                 | > RUN                          | Make sure of the tape recording location.                                   |
| 6   |                 | > RUN                          | Depress the [REC] and [PLAY] buttons. Then, the cassette will come to halt. |
| 7   | <b>SHFT Z</b>   | PRINT # <b>AV</b> ; A(204)_RUN |                                                                             |
| 8   | <b>ENTER</b>    | RUN                            | The cassette starts to run generating sound.                                |
| 9   |                 | > RUN                          | The cassette comes to stop quitting sound generation.                       |
| 10  |                 | > RUN                          | Depress the (PLAY) button. But, the cassette is still at halt.              |
| 11  |                 | > RUN                          | Return the cassette tape until the beginning of the recording.              |
| 12  | <b>SHFT X</b>   | INPUT # <b>AV</b> ; A(204)_RUN |                                                                             |
| 13  | <b>ENTER</b>    | RUN                            | The cassette starts to run generating reproducing sound.                    |
| 14  |                 | > RUN                          | The cassette comes to stop quitting sound generation.                       |
| 15  | <b>SHFT SPC</b> | A(204)_ RUN                    |                                                                             |
| 16  | <b>ENTER</b>    | RUN 100.                       |                                                                             |
| 17  |                 | RUN 100.                       | Push the [STOP] button.                                                     |
| 18  | <b>OFF</b>      |                                |                                                                             |
| 19  |                 |                                | Disconnect PC1211 from CE121.                                               |
| 20  |                 |                                | Disconnect CE121 from the cassette recorder unit.                           |

I. It requires inspection if one of following conditions is recognized.

1. When the cassette starts to run at Step 6.
2. When the cassette fails to run or no sound is heard at Step 8.
3. When the cassette does not stop at Step 9.
4. When reproducing sound is not heard at Step 13.

II. Repeat the procedure in the following case.

1. When "5 .... ..." is displayed at Step 13, repeat operation from Step 10. If the same indication is still on the display, repeat the procedure from Step 5 after entering "A(204)=100". If the same indication is to remain on the display even after this, it requires detailed inspection.
2. When "100." is not displayed at Step 16, repeat operation from Step 10. If the specific indication does not appear on the display, repeat the procedure from Step 5 after entering "A(204)=100". If the specific indication is not to appear on the display even after this, it requires detailed inspection.

NOTE:

- When next CE121 check is to be performed in executing secondary test, be sure to enter "A(204)=100".
- Repeat once again from the "1. Writing test data to PC1211", if the contents of PC1211 happens to change.

## 5-5. About repairing of CE121

### Program

```
1 0 : P R I N T  # ▼ D ▼ ; A(201) : P A U S E  1
0 : G O T O  1 0
```

The CE121 is in proper operation if the following procedures are ended successfully.

| No. | Read in        | Display        | Plug        |     |            | Tape recorder |     |      | Remarks                                                                                                                        |
|-----|----------------|----------------|-------------|-----|------------|---------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------|
|     |                |                | EAR<br>PHOE | MIC | REM<br>OTE | PLAY          | REC | STOP |                                                                                                                                |
| 1   | ( OFF )        |                |             |     |            |               |     |      | Connect PC1211 with CE121.                                                                                                     |
| 2   | ON             | > RUN          | ○           | ○   |            |               |     |      | Determine the location of the tape to be recorded.                                                                             |
| 3   |                | > RUN          | ○           | ○   | ○          | ○             | ○   |      | Make sure that the cassette tape does not run.                                                                                 |
| 4   | CS. SHIFT ▼ A  | CS. ▼ A_ RUN   | ○           | ○   | ○          | ○             | ○   |      |                                                                                                                                |
| 5   | ENTER          | RUN            | ○           | ○   | ○          | ○             | ○   |      | The cassette tape starts to run and the recording sound is heard.                                                              |
| 6   |                | > RUN          | ○           | ○   | ○          |               |     | ○    | The sound is interrupted and the cassette tape comes to halt with ">" indicated on the display.                                |
| 7   |                | > RUN          | ○           | ○   |            |               |     |      | Return the tape to the beginning of the recording.                                                                             |
| 8   |                | > RUN          | ○           | ○   | ○          | ○             |     |      |                                                                                                                                |
| 9   | CLO.? SHFT ▼ A | CLO.? ▼ A_ RUN | ○           | ○   | ○          | ○             |     |      |                                                                                                                                |
| 10  | ENTER          | RUN            | ○           | ○   | ○          | ○             |     |      | The display contents comes to disappear from the display and the cassette tape starts to run generating the reproducing sound. |
| 11  |                | > RUN          | ○           | ○   | ○          |               |     | ○    | Sound generation is interrupted and the cassette tape comes to halt with ">" indicated on the display.                         |
| 12  |                | RUN            |             |     |            |               |     |      |                                                                                                                                |
| 13  | OFF            |                |             |     |            |               |     |      |                                                                                                                                |

[Cautions]

1. Check the machine with the check procedure provided separately, if the cassette tape happens to keep running at Step 3, the cassette tape fails to run at Step 5, or the cassette tape fails to stop at Step 6.
2. Check the recording circuit of the CE121 if no recording sound is audible at Step 5.
3. In case no reproducing sound is audible at Step 10, proceed to playback another recorded tape to check if reproducing sound is audible with that tape. If reproducing sound is not audible with that tape, proceed to check the reproducing circuit of the CE121 as it may be not functioning properly. If the reproducing sound is audible with the second tape, check the recording circuit of the CE121 as no proper recording may not have been carried out.

| No. | Read in | Display  | Remarks                                                                                        |
|-----|---------|----------|------------------------------------------------------------------------------------------------|
| 1   | RUN     | RUN_ RUN | No need of running the tape recorder.                                                          |
| 2   | ENTER   | RUN      | Recording sound is audible.                                                                    |
| 3   |         | RUN      | Recording sound goes out and "10." is displayed on the display for a period of about 1 second. |
| 4   |         | RUN      |                                                                                                |



Cassette operation ON/OFF control must be properly executed when the above signals are observed during the execution of program.

## 6. CHECK PROGR

## CHECK PROGRAM

## 7. CIRCUIT DIAGRAM PARTS

## 7-1. Operation Circuit Diagram



# GRAM PARTS & SIGNALS POSITION



## 7-2. Operation P.W.B.



TOP VIEW





TOP VIEW



### 7-3. Key Circuit







## 7-4. Key P.W.B.



## 7-5. CE-121 Circuit Diagram





## 7-6. CE-121 P.W.B.



## 8. PC-1211 PARTS LIST & GUIDE

| NO. | PARTS CODE    | DESCRIPTION              | NEW MARK | PARTS RANK | PRICE RANK |
|-----|---------------|--------------------------|----------|------------|------------|
| 1   | LX-BZ1102CCZZ | Screw                    | N        | C          | A B        |
| 2   | LX-BZ1032CCZZ | Screw                    |          | C          | A A        |
| 3   | HDECA1705CCZZ | Bottom cabinet           | N        | D          | A N        |
| 4   | PZETL1323CCZZ | Insulator sheet          | N        | C          | A B        |
| 5   | PTPEH1062CCZZ | Tap for chassis          |          | C          | A A        |
| 6   | LCHSS1078CCZZ | Chassis                  | N        | C          | A C        |
| 7   | GFTAA1231CCZZ | Lid                      | N        | D          | A B        |
| 8   | XBPSD20PO9000 | Screw                    |          | C          | A A        |
| 9   | RALMB1006CCZZ | Buzzer                   |          | B          | A H        |
| 10  | LX-BZ1060CCZZ | Screw X9                 |          | C          | A A        |
| 11  | XTPSD20PO5000 | Screw                    |          | C          | A A        |
| 12  | QCNTM1036CCZZ | All reset switch         |          | C          | A B        |
| 13  | PCUSS1081CCZZ | Cushion                  |          | C          | A A        |
| 14  | QCNW-1135CCZZ | Flexible wire (22pin)    | N        | B          | A C        |
| 15  | QCNCW1259CC01 | Connector (9pin)         | N        | B          | A H        |
| 16  | PGUMS1190CCZZ | Rubber connector         |          | C          | A F        |
| 17  | VVLLF8017JE-1 | LCD                      | N        | B          | B A        |
| 18  | PTPEH1033CCZZ | Tape for LCD             |          | C          | A A        |
| 19  | LANGK1290CCZZ | Angle for LCD            |          | C          | A D        |
| 20  | PF1LW1230CCZZ | Filter                   |          | C          | A H        |
| 21  | HDECA1527CCZZ | Display mask             |          | C          | A C        |
| 22  | PF1LW1228CCZZ | Display filter           |          | C          | A C        |
| 23  | PGUMM1254CCZZ | Key rubber               |          | B          | A K        |
| 24  | MSPRC1098CCZZ | Earth spring             |          | C          | A A        |
| 25  | JKNBZ1515CC04 | Key top (18key)          | N        | C          | A F        |
| 26  | JKNBZ1515CC05 | Keytop (17key)           | N        | C          | A F        |
| 27  | JKNBZ1516CC02 | Keytop (SHIFT) X20pcs    | N        | C          | A E        |
| 28  | JKNBZ1566CC01 | Keytop (ENTER) X10pcs    | N        | C          | A G        |
| 29  | JKNBZ1492CC02 | Keytop (Numeral)         | N        | C          | A E        |
| 30  | JKNBZ1567CC01 | Keytop (CL) X20pcs       | N        | C          | A E        |
| 31  | QTANZ1287CCZZ | Battery terminal (+, -)  |          | C          | A B        |
| 32  | QTANZ1292CCZZ | Battery terminal (+)     |          | C          | A B        |
| 33  | QTANZ1250CCZZ | Battery terminal (-)     |          | C          | A B        |
| 34  | XUSSD20PO4000 | Screw                    |          | C          | A A        |
| 35  | LANGT1336CCZZ | Angle for bottom cabinet | N        | C          | A B        |
| 36  | CCABB2299CC02 | Top cabinet              | N        | D          | A S        |
| 37  | GFTAA1232CCZZ | Lid for connector        | N        | D          | A B        |
| 38  | QCNW-1137CCZZ | Flexible wire            | N        | B          | A C        |
| 39  | QTANZ1293CCZZ | Battery terminal (+, -)  | N        | C          | A B        |
|     | UBAGZ1211CCZZ | Hard case                | N        | D          | A M        |
|     | SPAKA5108CCZZ | Packing cushion          | N        | D          | A F        |
|     | TINSE3137CCZZ | Instruction book (U.S.A) | N        | D          | A P        |

| NO. | PARTS CODE     | DESCRIPTION                | NEW MARK | PARTS RANK | PRICE |
|-----|----------------|----------------------------|----------|------------|-------|
|     | TMANE1010CCZZ  | Program library            | N        | D          | A Z   |
|     | SPAKC5012CCZZ  | Packing case               | N        | D          | A G   |
|     | TINSE2826CCZZ  | Basic text                 | N        | D          | A K   |
|     | LPLTP1070CCZZ  | Template                   | N        | D          | A B   |
|     | TLABZ1295CCZZ  | Name label                 |          | D          | A A   |
|     | RR-DZ1006CCZZ  | Resistor 1/8W 143Kohm ±2%  |          | C          | A B   |
|     | RR-DZ1007CCZZ  | Resistor 1/8W 12.7Kohm ±2% |          | C          | A B   |
|     | RR-DZ1008CCZZ  | Resistor 1/8W 21.0Kohm ±2% |          | C          | A B   |
|     | RVR-MB510QCZZ  | Variable resistor 250Kohm  |          | C          | A D   |
|     | VCEAAU1AW107Q  | Capacitor 1μF 50V          |          | C          | A E   |
|     | VCKYPU1HB221K  | Capacitor 220PF 50V        |          | C          | A B   |
|     | VHDDS1588L1-I  | Diode DS1588L1             |          | B          | A D   |
|     | VHH154KD-5/-I  | Thermistor 150Kohm         |          | B          | A C   |
|     | VHISCA43125/-I | L. S. i (Display chip)     |          | B          | A X   |
|     | VHISCA43157/-I | L. S. i (CPU- I)           | N        | B          | B F   |
|     | VHISCA43178/-I | L. S. i (CPU- II)          | N        | B          | B D   |
|     | VHITC4011UBP1  | i. C.                      |          | B          | A F   |
|     | VHITC4019P/-I  | i. C.                      |          | B          | A K   |
|     | VHITC4066P/-I  | i. C.                      |          | B          | A K   |
|     | VHITC4069P/-I  | i. C.                      |          | B          | A H   |
|     | VHITC5514P/-I  | L. S. i (RAM)              |          | B          | B D   |
|     | VRC-MT2BG165J  | Resistor 1/8W 1.6Mohm ±5%  |          | C          | A B   |
|     | VRD-ST2BY101J  | Resistor 1/8W 100ohm ±5%   |          | C          | A A   |
|     | VRD-ST2BY223J  | Resistor 1/8W 22Kohm ±5%   |          | C          | A A   |
|     | VRD-ST2BY103J  | Resistor 1/8W 10Kohm ±5%   |          | C          | A A   |
|     | VRD-ST2BY104J  | Resistor 1/8W 100Kohm ±5%  |          | C          | A A   |
|     | VRD-ST2BY105J  | Resistor 1/8W 1Mohm ±5%    |          | C          | A A   |
|     | VRD-ST2BY472J  | Resistor 1/8W 4.7Kohm ±5%  |          | C          | A A   |
|     | VRD-ST2BY474J  | Resistor 1/8W 470Kohm ±5%  |          | B          | A A   |
|     | VS2SC458KS/-I  | Transistor 2SC458KS        |          | B          | A C   |
|     | VS2SJ40-///-I  | MOS FET 2SJ40              |          | C          | A G   |
|     | RC-SZ1005CCZZ  | Capacitor 0.1μF 10V        |          | C          | A C   |
|     | RCRSP1024CCZZ  | Crystal                    | N        | C          | A H   |
|     | VCKYPU1HB101K  | Capacitor 100PF 50V        |          | C          | A A   |
|     | VCTYPU1EX103M  | Capacitor 10000PF 25V      |          | C          | A B   |
|     | RC-SZ1007CCZZ  | Capacitor 1μF 10V          |          | C          | A F   |
|     | VRD-ST2BY224J  | Resistor 1/8W 220Kohm ±5%  |          | C          | A A   |
|     | VCKYPU1HB102K  | Capacitor 1000PF 50V       |          | C          | A A   |
|     | DKIT-1001CCZZ  | SUB-PWB Kit                | N        |            |       |
|     |                |                            |          |            |       |
|     |                |                            |          |            |       |



## 9. CE-121 PARTS LIST & GUIDE

| NO. | PARTS CODE    | DESCRIPTION               | NEW MARK | PARTS RANK | PRICE RANK |
|-----|---------------|---------------------------|----------|------------|------------|
| 1   | GCABA2315CCZZ | Bottom cabinet            | N        | D          | A G        |
| 2   | LX-BZ1038CCZZ | Screw                     |          | C          | A A        |
| 3   | GLEGG1012CCZZ | Rubber foot               |          | C          | A A        |
| 4   | GFTAB1235CCZZ | Battery lid               | N        | D          | A C        |
| 5   | XTBSD20P06000 | Screw                     |          | C          | A A        |
| 6   | QPLGJ1008CCZZ | Plug                      | N        | B          | A Q        |
| 7   | QCNCM1260CC01 | Connector (9pin)          | N        | B          | A G        |
| 8   | XTBSD20P05000 | Screw                     |          | C          | A A        |
| 9   | LANGT1334CCZZ | Angle                     | N        | C          | A C        |
| 10  | QTANZ1266CCZZ | Battery terminal ⊖        |          | C          | A A        |
| 11  | QTANZ1072CCZZ | Battery terminal ⊕        |          | C          | A A        |
| 12  | HDECA1684CCZZ | Dec. panel A              | N        | D          | A C        |
| 13  | HDECA1685CCZZ | Dec. panel B              | N        | D          | A D        |
| 14  | GCABB2316CCZZ | Top cabinet               | N        | D          | A G        |
|     | SPAKA5097CCZZ | Packing case              | N        | D          | A D        |
|     | SPAKC5111CCZZ | Packing case              | N        | D          | A D        |
|     | SPAKA5109CCZZ | Packing cushion           | N        | D          | A E        |
|     | VCEAAU1CW106Q | Capacitor 10μF 16V        |          | C          | A B        |
|     | VCQYKU1HM472K | Capacitor 0.0047μF 50V    |          | C          | A B        |
|     | VCQYKU1HM473K | Capacitor 0.047μF 50V     |          | C          | A B        |
|     | VCTYPU1EX103M | Capacitor 0.01μF 25V      |          | C          | A B        |
|     | VCTYPU1NX104M | Capacitor 0.1μF 12V       |          | C          | A B        |
|     | VHDDS1588L1-1 | Diode DS1588L1            |          | B          | A B        |
|     | VHNR5711-/-1  | Relay NR5711              | N        | B          | A W        |
|     | VHTC4069P-1   | I. C. TC4069P             |          | B          | A H        |
|     | VHTC4528BP-1  | I. C. TC4528BP            | N        | B          | A P        |
|     | VRD-ST2BY103J | Resistor 1/8W 10Kohm ±5%  |          | C          | A A        |
|     | VRD-ST2BY104J | Resistor 1/8W 100Kohm ±5% |          | C          | A A        |
|     | VRD-ST2BY105J | Resistor 1/8W 1Mohm ±5%   |          | C          | A A        |
|     | VRD-ST2BY183J | Resistor 1/8W 18Kohm ±5%  |          | C          | A A        |
|     | VRD-ST2BY223J | Resistor 1/8W 22Kohm ±5%  |          | C          | A A        |
|     | VRD-ST2BY271J | Resistor 1/8W 270ohm ±5%  |          | C          | A A        |
|     | VRD-ST2BY474J | Resistor 1/8W 470Kohm ±5% |          | C          | A A        |
|     | VRD-ST2BY564J | Resistor 1/8W 560Kohm ±5% |          | C          | A A        |
|     | VRD-ST2EY330J | Resistor 1/4W 33ohm ±5%   |          | C          | A A        |
|     | VS2SA733-/-1  | Transistor 2SA733         |          | B          | A D        |
|     | VS2SC458KS-1  | Transistor 2SC458KS       |          | B          | A C        |
|     |               |                           |          |            |            |
|     |               |                           |          |            |            |
|     |               |                           |          |            |            |
|     |               |                           |          |            |            |
|     |               |                           |          |            |            |



**SHARP CORPORATION  
Industrial Instruments Group  
Reliability & Quality Control Department  
Yamatokoriyama, Nara 639-11, Japan**

1981 March Printed in Japan