Project Prism

Actionable Insights

QuickBooks Commerce System

Sushant Joshi

Agenda

- Problem Statement
- The Product Managers Hat
- Requirements
- Measure of Success
- Architecture
- High Level Design
 - Data Ingestion
 - Data Storage
 - Prediction Engine
 - Serving Layer
 - Dashboard

- Operational Excellence
- Application Cost
- Appendix

"QuickBooks Commerce users need an efficient way to forecast their top-selling products and amounts across different categories. This feature should help users to better prepare

and adjust their business strategies accordingly."

The Product Managers Hat

Alex's story

Merchant's life cycle

- Onboarding on Shopify, Amazon, Etsy, eBay, Walmart, etc - too many options.
- Setting up Shop / Online Catalog / Pricing / Segments / Checkout and Payment Gateways
- Scaling Operations
- Access to multi-channel selling
- Driving the conversion
- Order Management and Fulfilment
- Abandoned Carts and Returns

Merchants Deeply Care About

- Establishing their brand
- Easily reaching customers and cohorts
- Growth
- Retention

- How much inventory should I plan for upcoming Valentines Day?
- Which categories and products should I focus on ?
- What channels are driving the most revenue and profits?
- What should my marketing strategy be for the next quarter?
- How do I bundle my products for maximizing revenue ?
- How do I reach my target customer base for my product lines?

• . . .

Product Requirement Document

Proposal: A sales forecasting feature within QuickBooks Commerce that predicts future sales based on historical data, trends, and seasonality. This will enable users to:

- Proactively manage inventory: Optimize stock levels to meet demand and minimize holding costs.
- Identify growth opportunities: Spot trends and capitalize on popular product categories.
- **Improve business planning:** Make informed decisions about pricing, marketing, and resource allocation.

MVP Scope:

- **Limited User Base:** Initial launch to 1,000 selected sellers across the US representing diverse business sizes and industries.
- Core Forecasting: Focus on predicting top-selling products and quantities across major categories for the next 3 months.
- Basic Visualization: Simple charts and graphs to display forecasted sales data.
- Feedback Mechanism: In-app surveys and feedback forms to gather user input for iterative improvements

PRD (contd)

Scaling Plan:

- Phase 1: Expand to 100,000 US sellers based on initial MVP feedback and performance data. (3 months post-MVP)
- Phase 2: Scale to 1 million US sellers, incorporating advanced forecasting features like custom date ranges and seasonality adjustments. (6 months post-Phase 1)
- **Phase 3:** Full rollout to 20 million US sellers, with continuous optimization and feature enhancements based on user feedback and market trends. (12 months post-Phase 2)

Success Metrics:

- Feature Adoption Rate: Percentage of eligible users actively utilizing the sales forecasting tool.
- Forecast Accuracy: Measure the deviation between predicted and actual sales.
- User Satisfaction: Track user feedback and satisfaction scores related to the forecasting feature.
- **Inventory Efficiency:** Monitor improvements in inventory turnover and stockout reduction.

This phased approach allows for iterative development, data-driven optimization, and a scalable solution that meets the needs of millions of QuickBooks Commerce users.

Domain Deep Dive

Inventory

Seasonality

Channel-wise distribution

Geography

State, City, Zip Code

Country & Region

Holiday events

Thanksgiving, CMBF

Family Oriented Events

Labor Day, Memorial Day

Chinese New Year

Special Events

NFL, Superbowl

Supply Chain Linearity

Forward Deployment

Dropship vs Direct to Store

Supply Imbalances

Pricing

Optimize for Profit

Optimize for Revenue

Excess Supply

Discounts

Promotions

Deals

Bundles

Dynamic Pricing

Competitor Pricing

Extreme Weather

Events Hurricanes, Storms

Strikes

Variances in Holidays

Offsets

Thanksgiving

Cannibalization

Marketing Strategies

Advertisements

Display Ads

Sponsored Ads

Automated emails

Sign-Ups, Abandoned Carts

Campaigns

Newsletters

A/B Testing

Social Media Posts

Promotional Mails

Manufacturer Discounts

Personalized Messaging

Customer Understanding

Channel Understanding

Rate Limiting

Engagement

From PRD: Focus on predicting top-selling products and quantities across major categories for the next 3 months.

- Dashboard requirements
 - Users should be able to sign in to a portal integrated with QuickBooks Commerce
 - · Users should be able to view the inventory forecast of top selling product over a given time period
 - Users should be able to view the top performing categories
 - Users should be able to view the top performing products within given categories
 - Users should be able to select different time ranges for the dashboard 1 week, 1 month, 1 quarter, 1 year
 - Dashboards should provide a Role Based Access
- API requirements
 - Design a scalable API microservice that will power the above dashboards.
 - API should provide inventory predictions for the top selling product over a given time period (3 months) for the authenticated user.
 - Given a sellerId and channelId, get top most category for channel, then get top selling product for that category, and finally get inventory predictions for that product for the next 3 months
 - API should return predictions that take into account Historical Trends, Seasonality, Holidays and Channels.
 - API should return daily level forecast data for the given product
 - Input forecast range: 1 week Return: 7 days of forecast
 - Input forecast range: 1 month Return: 30 days of forecast
 - Input forecast range: 1 quarter Return: 90 days of data
 - Input forecast range: 1 year Return: 365 days of data
 - API should be integrated with experimentation platform to enable A/B experimentation involving model and feature improvements.
 - API should be secure and should only return relevant sellers' forecasts.

Scalable

- Supports 10s of millions of sellers across geographies
- Supports 10s of channels
- Supports 1000s of products across
 10s of categories per seller

Performant

- Low Latency
- Dashboards load up in milliseconds
- Reactive to changes in data patterns
- SLA: 250 msec @ 95th percentile

Available

- System as a whole is Highly Available
- Redundancies carefully crafted
- Stateless and loosely coupled

Fault Tolerant

- Handles Systemic Failures
- Handles Data Delays
- Provides Fail-Safe Mode of Operations

Secure | Cloud Native | Cost Sensitive

Architecture

Blueprint

Fig: Architecture Blueprint

Data

Data

- Type
 - Transactional Data
 - Order Data
 - Invoice Data
 - Online Data
 - Store Data
 - Payment Data
 - POS Data
 - Click Stream Data
 - Sales Reports
 - Structured or Unstructured

- Data Access Pattern
 - Push Based
 - Pull Based
 - Drop Box
 - API
 - Messaging
- Data Issues
 - Delayed Data
 - Missing Data
 - Lost Data
 - Duplicate Data
 - Garbage/Invalid Data

Key Data Attributes

- Date
 - Transaction Date
 - Order Date
 - Invoice Date
 - Delivered Date
 - Returned Date
- Order
 - Order Id
 - Total Order Value
- Channel
 - Channel Id
 - Channel Name
- Subscription
 - SubscriberID
- Device
 - IP Address
 - Device Type

- Item
 - Item Id
 - Item name
 - Item Price
 - Item Description
 - SKU Number
 - UPC
 - Offer Id
 - Bundle Id
 - Variant Information
 - Unit Count
 - Product URL
 - Ratings
 - Reviews
 - Price
 - Item Price
 - Sale Price

- Category
 - Category Id
 - Category Name
 - Sub Category Id
 - Sub Category Name
 - Category Hierarchy
- Customer
 - Customer Id
 - Customer Name
- Geographical
 - City
 - State
 - Country
 - Zip
 - Latitude
 - Longitude

Sample Order Payload

data ingestion

```
"orderId": "a1b2c3d4-e5f6-7890-1234-567890abcdef",
"customerId": "f8e7d6c5-b4a3-9281-0123-456789abcdef",
"orderDate": "2023-12-20T10:30:00Z",
"channelId": "CH002",
"device": {
  "deviceType": "Mobile",
 "os": "Android",
  "browser": "Chrome"
"products": [
    "productId": "97865432-10fe-dcba-8765-43210fedcba9",
    "productName": "Laptop",
    "quantity": 1,
    "price": 1200.00,
    "offerId": "c4d3e2f1-a0b9-8765-4321-0fedcba98765",
    "salePrice": 1000.00,
    "rating": 4.5,
    "sellerId": "a0b9c8d7-e6f5-4321-0fed-cba987654321"
    "productId": "86754321-0fed-cba9-8765-43210fedcba8",
    "productName": "Mouse",
    "quantity": 1,
    "price": 25.00,
    "offerId": null,
    "salePrice": 25.00,
    "rating": 4.2,
    "sellerId": "a0b9c8d7-e6f5-4321-0fed-cba987654321"
```


Velocity

- Continuous Stream
 - Real Time
 - Near Real Time
- MicroBatches
 - Accumulated Data
- Batches
 - Hourly Data
 - Daily Data
 - Weekly Data
 - Monthly Data
- Irregular Data Flow

Variety

- Structured
 - CSV
 - JSON
 - AVRO
 - XML
- Unstructured
 - TEXT
 - IMAGES
 - PDF
- Compressed
- Encoded
- Encrypted

Volume

(next slide)

Volume

Estimates

- Number of sellers 20 Million
- Number of channels 3 (AMAZON, eBAY, SHOPIFY)
- Number of products sold / seller / day 100 (Avg) across 3 channels
- Each order payload 1 kilobyte raw uncompressed

Daily Data Generation

- Daily Orders
 - 20,000,000 sellers * 100 orders/seller/day
 - 2,000,000,000 orders/day
- Daily Volume
 - 2,000,000,000 orders/day * 1
 kilobyte/order * 0.35 CR
 - o 700,000,000 kilobytes/day
 - ~ 650 GB / day

Yearly Data Generation

- Yearly Volume
 - 650 GB/day * 365 days/year
 - ≈ 230 Terabytes /year

Data Ingestion Considerations

- Retention Policy
 - Raw Data Retention Policy
 - Client Tier Specific Configuration
 - Premier User, Business User, Standard User
- Archival Policy
 - Cold Storage
 - Client Tier Specific Configuration
- Data Compression and Overhead
 - Compression Techniques
 - Data Schema Standardization

- Replication Strategy
 - Optimal replica count
 - Replicas distribution
 - Across Data Center vs Cloud Region
- Sharding / Partitioning
 - Date Level
 - Channel Level
 - Seller Level
 - Nested Hierarchical
- Growth Projections
 - Growth over next 5 years, 10 years, 15 years...

HLD

Data Ingestion
Data Storage
ML Platform
Serving Layer
Presentation Layer

- 2. ML Platform
- 3. Serving Layer

2. ML Platform

3. Serving Layer

Framing the ML Problem

Objective

Develop a machine learning model to accurately forecast the top-selling products and their corresponding sales quantities across various product categories for QuickBooks Commerce users.

Machine Learning Task

- Time series forecasting problem.
 - Predict future values (sales quantity) based on past values and other features.

Temporal Features

- Day of week
- Week of month
- Week of the year
- Month of the year
- Holidays
- Seasonality indicators
- Cyclical patterns (back-to-school)

Product Features

- Name
- Description
- Product Reviews
- Product Ratings

- Product categories
- Product sub-categories
- Seller Features
 - Seller Ratings
- Geographic Features
 - city
 - state
 - country
 - zip
 - regions
- Sales Channel Features:
 - amazon
 - eBay
 - shopify

{ product + category + geography + seller + temporal + ... }

- Mean Absolute Error (MAE)
 - Measures the average absolute difference between predicted and actual sales.
- Root Mean Squared Error (RMSE)
 - Penalizes larger errors.
- Mean Absolute Percentage Error (MAPE)
 - Measures the average percentage error in the predictions.

ML Model Considerations

Ethical Considerations

• Train the model across sellers, channels, geographies?

Data Sparsity

- Products might have sparse and limited historical data.
 - Easter Eggs, Christmas Trees, Halloween Candy
- Flash Sales

Cold Start Problem

- Predicting sales for new products
- Predicting for new sellers on platform

Seasonality and Trends

 Capturing complex seasonal patterns and trends

External Factors

- Incorporating and quantifying the impact of external factors
 - Elections, Wars, Extreme Events, Natural Disasters, Pandemic

Explainability

 Providing users with insights into why the model made certain predictions.

Figure: Sample Plot forecasting next 12 months from model trained using Prophet Time Series Model over 2012 to 2015 dataset

- 1. Data Ingestion
- 2. Prediction Engine

3. Serving Layer

API Specification

Endpoint: GET /v1/predict/top-sales

Request

Field	Data Type	Description
fRange	string	Forecast range (1d, 1w, 1m, 1q, 1y)
sellerId	GUID	Seller ID

Response

Field	Data Type	Description
result	array	Array of sales predictions for each channel
channelld	string	Channel ID
products	array	Array of products
productId	string	Product ID
productName	string	Product name
categoryName	string	Category name
categoryld	string	Category ID
predictions	array	Array of sales data
date	string	Forecast date (MM-DD-YYYY)
quantity	integer	Sales units

Error Codes

Error Code	Description	
400	Bad Request (invalid request body or parameters)	
404	Not Found (seller ID or channel not found)	
500	Internal Server Error (prediction model error or database issue)	

```
Response
"result": [
  "channelld": "CH001",
  "products": [
    "productId": "12345",
    "productName": "Laptop",
    "categoryName": "Electronics",
    "categoryId": "C001",
    "predictions": [
      "date": "01-10-2025",
      "quantity": 120
      "date": "01-11-2025",
      "quantity": 150
      "date": "03-26-2025",
      "quantity": 70
```

API Specification (Additional Endpoints)

1. Get a list of all channels for seller

Endpoint: GET /v1/sellers

- Request Parameters:
 - sellerId (query parameter)
 - limit (query parameter, optional, default=3)
- Response: JSON array of all the channels for the sellerId

2. Get Top Categories for each channel

Endpoint: GET /v1/channels/{channelId}/top-categories

- Request Parameters:
 - channelld (path parameter)
 - sellerId (query parameter)
 - limit (query parameter, optional, default=1)
- Response: JSON array of top categories for the channel

3. Get Top Selling Products for top 3 categories

Endpoint: GET /v1/categories/{categoryId}/top-products

- Request Parameters:
 - sellerId (query parameter)
 - channelld (query parameter)
 - categoryld (path parameter)
 - limit (query parameter, optional, default=1)
- Response: JSON array of top selling products for the category

4. Get Top Selling Products for Seller (Query)

Endpoint: GET /v1/products

- Request Parameters:
 - sellerId (query parameter, required)
 - channelLimit(query parameter, optional, default=3)
 - categoryLimit (query parameter, optional, default=1)
 - productLimit (query parameter, optional, default=1)
- Response: JSON array of top selling products for seller

5. Get Inventory Predictions for Product (Forecast)

Endpoint: GET /v1/products/{productId}/forecast

- Request Parameters:
 - sellerId (query parameter)
 - productId (path parameter)
 - forecastRange (query parameter, default="1q")
- Response: JSON object with inventory prediction data for the product

Relational Databases (SQL)

- Structured data
- Strong querying capabilities
- Robust tools
- ACID properties

- Predefined Schema
- Scaling challenges

Strong Querying and Structured Data

Time-Series Databases

- Optimized for time-series data
- Support time-based queries
- High ingestion rates
- Built-in functions

- Limited non-time-series data
- Limited querying flexibility

Optimized for time-series handling

NoSQL Databases

- Semi-structured data
- Schema flexibility
- Simple Querying
- Horizontally scalable

Limited query complexity

Data consistency challenges

Maximum flexibility and Scalability

Serving Layer Flow

- Request Controller
 - Accept Input Request
 - Set RequestContext
- Request Validator
 - Validate Query Parameters and Request Body
 - Apply A/B Experiment Context
 - Update RequestContext
- Query
 - Get the all channels for seller Id
 - Get the top category within each channel
 - Get top product within the top category
 - {sellerId, channelId, productId}
 - Update RequestContext
- Online Inference
 - Real-time updates
 - Flexibility
 - Computational Cost
 - Latency Impact
 - Scalability Challenges
- Offline Inference
 - Low Latency
 - Low Computational Cost
 - No Real Time Updates
 - Stale Predictions
- Hybrid
 - Best of both worlds
 - Tunable for Tiered Client Configuration
 - Data Update Frequency for Client
 - Sensitivity to Accuracy
- Response Generator
 - Add Metadata
 - Massage Response

TimeScale DB: Scaling and Performance

- Indexing
- Compression
- Continuous Aggregates
- Multi-Node Cluster
- Sharding
- Partitioning

Table	Partitioned by	Sharded By	indexed on
sales	sale_timestamp	seller_id	seller_id, sale_timestamp
			category_id, sale_timestamp
product_forecast	forecast_timestamp	seller_id, category_id	seller_id, forecast_timestamp
			category_id, forecast_timestamp

TimescaleDB: Capacity Estimation

sales

- Total orders per day 20 million sellers × 100 line items per day = 2 billion orders per day.
- Storage per day = 2 billion rows × 44 bytes = 88 GB per day.
- Storage per Year: 88 GB/day × 365 days = 32 TB per year.
- Over 5 years: **5-year sales data** = 160.6 TB/year × 5 years = **160 TB**.

product_forecast

- Forecast entries per seller per year = 5 categories × 5 products × 365 days = 9,125 forecast entries per year.
- Total forecast entries per year = 20 million sellers × 9,125 forecast entries = 182.5 billion forecast entries per year.
- Storage per year = 182.5 billion entries × 44 bytes ≈ 7.8 TB per year
- .5-year forecast data = 7.8 TB/year × 5 years = 39 TB.

Vector Database Schema

Field Name	Data Type	Description
seller_id	INT64	Unique identifier for the seller
embedding	FLOAT_VECTOR	Vector representation of the seller's features (dim depends on model)
timestamp	INT64	Unix timestamp of when the embedding was generated
Field Name	Data Type	Description
channel_id	INT64	Unique identifier for the channel
embedding	FLOAT_VECTOR	Vector representation of the channel's features (dim depends on model)
timestamp	INT64	Unix timestamp of when the embedding was generated

Incoming API Traffic Estimation

- Total Number of Sellers: 20 million
- Daily Active Users: 4 million (20%)
 ~ 4,000,000 / (10 * 60 * 60)
 ~ 120 QPS

Capacity Per Server

- Max Time Budget per API Call 250 msec
- 3 requests per core per second 4 core, 16 GB Memory, 100 GB Disk Node
 - 12 requests per node per second

Total Number of Servers per data center / cloud region

- 10 servers per cloud region Redundancy 3 Cloud regions
- Total 30 sérvers

API Caching: Redis

What to Cache

- {seller_id, channel_id, category_id, product_id}
- {seller_id, product_id, fRange, forecast}

Why to Cache

- Avoid expensive database lookup
- Avoid expensive inference execution
- Improve API throughput
- Reduce Latency

How Long to Cache

- Cache TTL
 - Different strategies possible
 - Fixed time
 - 1 hour, 1 day, etc
 - Greater than 95th percentile of max session time
 - Needs to be tuned

Cache Ratio

- Assume 2% DAU of 20 Million Users
- It Depends
 - Tune and obtain the right ratio of requests to be cached

Serving Layer

HLD

Data Ingestion
Data Storage
ML Platform
Serving Layer
Presentation Layer

Application Cost

AWS S3	AWS Estimate
Active Storage (S3 Standard) with 3 years Retention	\$250,000
Archival in Glacier Storage	\$60,000
Total Annual Cost	~ \$320,000/year
AWS PostgreSQL	AWS Estimate
Storage (40 TB)	\$40,00/year
Compute (2 x r5.24 xlarge instances)	\$30,000/year
Data Transfer (egress, 1TB/month)	\$1,080/year
High Availability (Multi-AZ)	\$50,000/year
Total Annual Cost	~ \$70,000/year
Serving Layer	AWS Estimate
Annual EC2 cost	\$50,000
Annual EBS storage cost	\$3,000
Annual Data transfer cost	\$100
Total Annual Cost	~ \$55,000 per year

^{*} Not included: ML Prediction and Inference Costs, Cache, VectorDB costs

Observability

Monitoring and Alerting Plan

- RUM
 - Bounce Rate
 - Login Rate
 - Session Time
 - Average number of operations per session
- Application metrics
 - Latency
 - Error rate
 - Exception Counts

- CPU
- Memory
- Disk
- Network IO
- Data Metrics
 - Data Health
 - Data Lag
 - Data Availability
 - Data Volume
 - Data Schema

- Prometheus
 - For monitoring latency, throughput, and memory usage.
- Grafana
 - For visualizing performance metrics.
- New Relic
 - For monitoring API performance and identifying bottlenecks.
- Splunk
 - Log Aggregation Analysis, dashboarding and monitoring
- PagerDuty / xMatters / Slack
 - Alerting Tools

Playbooks

- Versioned Release
- Deployment
- A/B Experiments
 - Measuring Statistical Significance
 - Production Rollout
 - Data
 - Model
 - Application
- Production Issue Triaging
 - Application Issues
 - System Issues
 - Cloud Issues

- Feature Switches
- Fail Safe mode
- Failover Strategies
 - Automated Failover
 - Manual Failover
- Restore Operations
- Rollback

