ECE30017, Fall 2020 Problem Solving through Computational Thinking

# Week 12

C9. Interview

Deadline: 11:59 PM, 20 November (Fri)

P10. Tumor

Deadline: 4:00 PM, 23 November (Mon)

# C9. Interview

A company is hiring new software developers. For N applicants, document reviews and programming tests were already conducted, and the score of an applicant  $P_i$  is determined as a pair of two positive integers  $(x_i, y_i)$  where  $x_i$  is the document review score and  $y_i$  is the programming test score.

To arrange their job interviews, you are asked to group these *N* applicants according to the following rules:

- 1. Two applicants  $P_i$  and  $P_j$  must belong to a same group if (1)  $x_i < x_j$  and  $y_i > y_j$ , or (2)  $x_i > x_j$  and  $y_i < y_j$ , and
- 2. Groups must be made as many as possible

Write a program that determines the maximum number of possible applicant groups for given document review and programming test scores

#### Input

- Input is given as text via the standard input
- The first line has one integers N for  $1 \le N \le 8000$ .
- From the second to the (N+1)-th lines, each line has two integers  $x_i$  and  $y_i$  for  $0 \le x_i \le 1000000$  and  $0 \le y_i \le 1000000$ .

#### **Output**

 Print the maximum number of possible interview groups. Your program should return the answer within 0.5 second.

#### Test case example

## Input



#### Output



# C9 Teams

| Team 901 | 윤지영 | 정희석 |     |
|----------|-----|-----|-----|
| Team 902 | 송수근 | 박수현 |     |
| Team 903 | 강하영 | 정진혁 |     |
| Team 904 | 정원식 | 황소정 |     |
| Team 905 | 김기훈 | 최재혁 |     |
| Team 906 | 전해주 | 한정섭 |     |
| Team 907 | 송진범 | 정예은 |     |
| Team 908 | 홍원표 | 정현섭 |     |
| Team 909 | 김석진 | 최우석 |     |
| Team 910 | 신희주 | 임예찬 |     |
| Team 911 | 지성민 | 김지원 |     |
| Team 912 | 홍석현 | 이예준 |     |
| Team 913 | 박민준 | 한찬솔 |     |
| Team 914 | 김유진 | 김윤정 |     |
| Team 915 | 김승우 | 김준서 | 윤다은 |

### P10. Tumor

A new kind of cancer is recently discovered. To study its characteristics, a physiologist had cultivated *N* tumor cells on a tissue of 2-D plane in a Petri dish. Today the physiologist opened up the Petri dish, and found that tumor cells had been grown up in various sizes, and blood vessels are developed to connect some of tumor cells. The physiologist discovered that the blood vessels of these tumor cells have the following characteristics:

- a blood vessel is always constructed upon tissue, and
- a blood vessel is connecting only two tumor cells, and
- a blood vessel never crosses another blood vessel

The physiologist measured the weight of each tumor cell, and identified all pairs of tumor cells connected to each other with a blood vessel. A set of tumor cells forms a *tumor cluster* if every pair of these tumor cells is connected with a blood vessel. The weight of a tumor cluster is the sum of weights of its component tumor cells.

Write a program that finds the maximum tumor cluster weight for given tumor cell weights and tumor cell connections (i.e., blood vessels).

#### Input

- Input is given as text via the standard input
- The first line has two positive integers N and B for  $2 \le N \le 450$  and  $1 \le B \le 900$ . The number tumor cells is N, and the number of the developed blood vessels is B.
- From the second to the (N+1)-th lines, each line gives a tumor weight between 100 and 10000. The integer at the (i+1)-th line is the weight of the i-th tumor cell.
- From the (N+2)-th to the (N+B+1)-th lines, each line contains a pair of tumor IDs that are connected by a blood vessel

#### Output

 Print the maximum weight of a tumor cluser. Your program should return the answer within 1.0 second.

# Test case examples

# Input I

| 4 6 |  |
|-----|--|
| 10  |  |
| 500 |  |
| 100 |  |
| 200 |  |
| 1 2 |  |
| 1 3 |  |
| 1 4 |  |
| 2 3 |  |
| 2 4 |  |
| 3 4 |  |

## Output I



## Input 2



# Output 2



#### Input data

- Input is given as text via the standard input
- The first line has two numbers N and B for  $2 \le n \le 450$  and  $1 \le B \le 900$ . N is the number tumor cells, and B is the number of the developed blood vessels.
- From the second to the (N+1)-th lines, the (i+1)-th line has one integer between 100 and 10000, that represents the weight of the i-th tumor cell.
- From the (N+2)-th to the (N+B+1)-th lines, each line contains a pair of tumor ID's that are connected by a blood vessel

#### **Output data**

 Print the maximum weight of a tumor cluser. Your program should return the answer within 1.0 second.

#### Test case example

|       | <b>1</b> |        |     |  |  |  |
|-------|----------|--------|-----|--|--|--|
| Input | 4 6      | Output | 810 |  |  |  |
|       | 10       |        |     |  |  |  |
|       | 500      |        |     |  |  |  |
|       | 100      |        |     |  |  |  |
|       | 200      |        |     |  |  |  |
|       | 1 2      |        |     |  |  |  |
|       | 1 3      |        |     |  |  |  |
|       | 1 4      |        |     |  |  |  |
|       | 2 3      |        |     |  |  |  |
|       | 2 4      |        |     |  |  |  |
|       | 3 4      |        |     |  |  |  |
|       |          |        |     |  |  |  |