United States Army Medical Research Institute of Infectious Diseases

Increased Stability of a Designed, Single Domain Ricin A-chain Vaccine

John H. Carra

November 17, 2003

Toxinology and Aerobiology Division USAMRIID Fort Detrick, Maryland

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 01 OCT 2005		2. REPORT TYPE N/A		3. DATES COVE	RED
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
Increased Stability of a Designed, Single Domain Ricin A-cl			hain Vaccine 5b. GRANT NUMBER		/IBER
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
	ZATION NAME(S) AND AE Probiology Division V		trick,	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
	otes 51, Proceedings of t Research, 17-20 No				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF				18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	23	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188 Goal: Create a soluble and stable platform for safe presentation of a neutralizing epitope against ricin A-chain.

Limitations of earlier vaccine candidates:

- Residual catalytic activity
- Poor solubility -- aggregation
- Relatively unstable

Solution: Design a stable, monomeric, single-domain derivative of RTA by protein engineering.

Mark Olson

• Virginia Roxas

• Leonard Smith, Robert Wannemacher

• many others ... team effort

modeling

cloning

toxicology, immunology

The A-chain of Ricin (267 a.a.)

(1rtc.pdb, Mlsna et al., 1993, *Protein Sci.* 2:429-435)

Vaccine candidates created: RTA 1-33/44-198
RTA 1-198

Design considerations:

- 1. Conservation of structure from WT RTA
 - Maintain epitope in natural conformation.
- 2. Soluble and monomeric
 - No aggregation.
- 3. High stability
 - Avoid degradation during production and storage.
 - Avoid need for stabilizing excipients in formulation, the "cold chain."
- 4. No toxicity, adequate neutralizing antigenicity
 - Verified in mouse model

Secondary structure contents close to that of RTA are predicted for the mutants, if the N-terminal domain is not altered by the residue deletions

Table:	1	Predicted Second	lary Struc	ture Contenta
Idolo	Ι.	TICALOROW DOCUM	am y wa uc	1041 C O O 1111 C 1111

Protein	% β sheet	% α helix	% Other
RTA	16	32	52
RTA 1-198	16	34	50
RTA 1-33/44-198	17	36	47

^a Percentage of amino acids predicted in each type of secondary structure, based on the known structure of RTA (Mlsna et al., 1993).

The RTA derivatives are folded and have secondary structure contents similar to recombinant and natural wild-type RTA

Fourier-transform infrared spectra in the amide I' region also indicate conservation of structure

RTA 1-33/44-198 is a monodisperse monomer in solution

Table 2. Dynamic Light Scattering Measurements

Protein	$\mathbb{R}_{\mathbf{h}^{a}}$	hydrodynamic MW, ^b	actual MW,c	
RTA	2.53	29.5 x 10 ³	30.0 x 10 ³	
RTA 1-198	2.16	20.4×10^3	22.5×10^3	
RTA 1-33/44-198	2.11	19.3×10^3	21.3×10^3	

^a The hydrodynamic radius of the protein in solution as measured by DLS, in nanometers.

0.8 mg/ml protein in PBS buffer PBS buffer was used in all experiments because this is the expected formulation condition.

^b Molecular weight calculated using the Dynamics software (Protein Solutions).

^o Molecular weight predicted from the amino acid sequence.

RTA 1-33/44-198 and RTA 1-198 have increased thermostability

- 1 rRTA
- 2 nRTA
- 3 1-198
- 4 1-33/44-198

RTA 1-33/44-198 is more stable to long-term incubation at 37 °C

rRTA and RTA 1-33/44-198 were mixed together and incubated at 37 °C for a period of time, then precipitated protein was removed by centrifugation and the soluble fraction run on a gel.

% Solubility of proteins after extended incubation at 37 °C RTA 1-33/44-198 remains in solution longest

Denaturation by guanidine-HCl followed by CD at 225 nm RTA 1-33/44-198 is the most stable to chemical denaturation

Stabilities of wild-type and mutant RTA molecules

Table 3.	Stability	parameters	of RTA	molecules.
----------	-----------	------------	--------	------------

Protein	$T_d{}^a$	$C_m{}^b$	% soluble °
rRTA	46.6 ±0.1	1.56 ± 0.022	6
rRTA 1-198	50.8 ±0.5	2.29 ±0.004	25
rRTA 1-33/44-198	53.1 ±0.1	2.53 ±0.041	58
nRTA	45.6 ±0.1	1.39 ± 0.020	31

^a Temperature of onset of denaturation in thermal melting in °C as monitored by CD at 205 nm.

 T_d was taken as the point at which the signal had diverged from that of the native state by 5%.

Results are the average and standard error of three measurements.

Errors are shown in Figure 5.

^b The midpoint of denaturation in Molar [GuHCl] as measured by CD at 225 nm.

^c The percent of protein remaining soluble after incubation at 37 °C for 106 hours.

Demonstrated:

- 1. Conservation of secondary structure from wild-type RTA
 - Circular dichroism and FTIR data
- 2. Soluble and monomeric
 - Dynamic light scattering
- 3. High stability
 - Melting curves
 - Extended incubation at physiological temperature

What is the origin of the increased stability of RTA 1-33/44-198 and 1-198?

Three-state unfolding of RTA through an intermediate

Denaturation of wild-type rRTA by guanidine-HCl proceeds through a partially unfolded intermediate

- ▲ Fluor ex 295 em 320
- ▲ CD 225 nm
- ▲ Fluor ex 280 em 303
- ANS Fluor 480 nm

Anilinonaphthalene sulfonic acid (ANS)

Denaturation of wild-type rRTA by guanidine-HCl

Followed by fluorescence emission with excitation at 280 nm

Denaturation of the truncated RTA derivatives by guanidine-HCl shows no intermediate -- a two-state process

- 1-33/44-198 CD 225
- 1-198 CD 225
- 1-33/44-198 Fluor (ex 280, em 303)
- 1-198 Fluor
- △ 1-33/44-198 ANS
- △ 1-198 ANS

Denaturation of RTA1-33/44-198 by guanidine-HCl

Followed by tyrosine fluorescence emission with excitation at 280 nm

Three-state unfolding of RTA through an intermediate

Comparison of tryptophan vs. tyrosine fluorescence emission data and the absence of the intermediate for the vaccine candidates indicate that the C-terminal domain of RTA is relatively unstable, unfolding before the N-terminal domain.

Intracellular translocation of RTA uses pathways for export from the ER of misfolded proteins.

-- A physiological role for an intermediate state?

[Argent et al., 2000, *JBC* 275:9263-9269, Day et al., 2002, *Biochemistry* 41:2836-2843, Sandvig and van Deurs, 2002, *FEBS Letts.* 529:49-53]

Main conclusions

- 1. The RTA vaccine candidates are soluble, folded, monomeric, and more stable than WT RTA.
 - Superior biophysical properties for a vaccine.
- 2. Unfolding of RTA involves a partially unfolded intermediate state with a disrupted C-terminal domain.
- 3. Mutant derivatives lacking the C-domain do not adopt the intermediate state, which helps explain their greater stability.
 - The native state of RTA is limited in its stability by a propensity to transform to a partially unfolded state.

Acknowledgements

Colleen McHugh Rowena Schokman Christine Johnston

Ralph Tammariello
LTC Charles Millard