Machine Learning Foundations

(機器學習基石)

Lecture 12: Nonlinear Transformation

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- **3 How Can Machines Learn?**

Lecture 11: Linear Models for Classification

binary classification via (logistic) regression; multiclass via OVA/OVO decomposition

Lecture 12: Nonlinear Transformation

- Quadratic Hypotheses
- Nonlinear Transform
- Price of Nonlinear Transform
- Structured Hypothesis Sets
- 4 How Can Machines Learn Better?

Linear Hypotheses

up to now: linear hypotheses

- visually: 'line'-like boundary
- mathematically: linear scores s = w^Tx

but limited . . .

- theoretically: d_{VC} under control :-)
- practically: on some D,
 large E_{in} for every line :-(

how to break the limit of linear hypotheses

Circular Separable

- ullet ${\cal D}$ not linear separable
- but circular separable by a circle of radius $\sqrt{0.6}$ centered at origin:

$$h_{\text{SEP}}(\mathbf{x}) = \text{sign}\left(-x_1^2 - x_2^2 + 0.6\right)$$

re-derive Circular-PLA, Circular-Regression, blahblah . . . all over again? :-)

Circular Separable and Linear Separable

$$h(\mathbf{x}) = \operatorname{sign}\left(\underbrace{\begin{array}{ccc} 0.6 \\ \tilde{w}_0 \end{array}} \cdot \underbrace{\begin{array}{ccc} 1 \\ \tilde{z}_0 \end{array}} + \underbrace{\begin{pmatrix} -1 \\ \tilde{w}_1 \end{pmatrix}} \cdot \underbrace{\begin{array}{ccc} x_1^2 \\ \tilde{z}_1 \end{array}} + \underbrace{\begin{pmatrix} -1 \\ \tilde{w}_2 \end{pmatrix}} \cdot \underbrace{\begin{array}{ccc} x_2^2 \\ \tilde{z}_2 \end{array}} \right)$$

$$= \operatorname{sign}\left(\tilde{\mathbf{w}}^T \mathbf{z}\right)$$

- $\{(\mathbf{x}_n, y_n)\}$ circular separable $\Rightarrow \{(\mathbf{z}_n, y_n)\}$ linear separable
- $\mathbf{x} \in \mathcal{X} \stackrel{\Phi}{\longmapsto} \mathbf{z} \in \mathcal{Z}$: (nonlinear) feature transform Φ

circular separable in $\mathcal{X} \Longrightarrow$ linear separable in \mathcal{Z} vice versa?

Linear Hypotheses in Z-Space

$$(z_0, z_1, z_2) = \mathbf{z} = \mathbf{\Phi}(\mathbf{x}) = (1, x_1^2, x_2^2)$$

$$h(\mathbf{x}) = \tilde{h}(\mathbf{z}) = \operatorname{sign}\left(\tilde{\mathbf{w}}^T \mathbf{\Phi}(\mathbf{x})\right) = \operatorname{sign}\left(\tilde{\mathbf{w}}_0 + \tilde{\mathbf{w}}_1 x_1^2 + \tilde{\mathbf{w}}_2 x_2^2\right)$$

$\tilde{\mathbf{w}} = (\tilde{w}_0, \tilde{w}_1, \tilde{w}_2)$

- (0.6, −1, −1): circle (∘ inside)
- (-0.6, +1, +1): circle (∘ outside)
- (0.6, -1, -2): ellipse
- (0.6, −1, +2): hyperbola
- (0.6, +1, +2): constant :-)

lines in \mathcal{Z} -space

 \iff **special** quadratic curves in \mathcal{X} -space

General Quadratic Hypothesis Set

a 'bigger'
$$\mathcal{Z}\text{-space}$$
 with $\Phi_2(\boldsymbol{x})=\left(1,x_1,x_2,x_1^2,x_1x_2,x_2^2\right)$

perceptrons in \mathcal{Z} -space \iff quadratic hypotheses in \mathcal{X} -space

$$\mathcal{H}_{\Phi_2} = \left\{ h(\mathbf{x}) \colon h(\mathbf{x}) = \tilde{h}(\Phi_2(\mathbf{x})) \text{ for some linear } \tilde{h} \text{ on } \mathcal{Z} \right\}$$

• can implement all possible quadratic curve boundaries: circle, ellipse, rotated ellipse, hyperbola, parabola, ...

ellipse
$$2(x_1 + x_2 - 3)^2 + (x_1 - x_2 - 4)^2 = 1$$

 $\iff \tilde{\mathbf{w}}^T = [33, -20, -4, 3, 2, 3]$

include lines and constants as degenerate cases

next: **learn** a good quadratic hypothesis *g*

Using the transform $\Phi_2(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$, which of the following weights $\tilde{\mathbf{w}}^T$ in the \mathbb{Z} -space implements the parabola $2x_1^2 + x_2 = 1$?

- 1 [-1,2,1,0,0,0]
- [0,2,1,0,-1,0]
- **3** [-1, 0, 1, 2, 0, 0]
- 4 [-1,2,0,0,0,1]

Using the transform $\Phi_2(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$, which of the following weights $\tilde{\mathbf{w}}^T$ in the \mathbb{Z} -space implements the parabola $2x_1^2 + x_2 = 1$?

- [0,2,1,0,-1,0]
- (3) [-1,0,1,2,0,0]
- 4 [-1,2,0,0,0,1]

Reference Answer: (3)

Too simple, uh? :-) Flexibility to implement arbitrary quadratic curves opens new possibilities for minimizing E_{in} !

Good Quadratic Hypothesis

- want: get good perceptron in Z-space
- known: get **good perceptron** in \mathcal{X} -space with data $\{(\mathbf{x}_n, y_n)\}$

todo: get **good perceptron** in \mathbb{Z} -space with data $\{(\mathbf{z}_n = \Phi_2(\mathbf{x}_n), y_n)\}$

Nonlinear Transform

The Nonlinear Transform Steps

- **1** transform original data $\{(\mathbf{x}_n, y_n)\}$ to $\{(\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n), y_n)\}$ by $\mathbf{\Phi}$
- 2 get a good perceptron $\tilde{\mathbf{w}}$ using $\{(\mathbf{z}_n, y_n)\}$ and your favorite linear classification algorithm \mathcal{A}
- 3 return $g(\mathbf{x}) = \text{sign}\left(\tilde{\mathbf{w}}^{\mathsf{T}}\mathbf{\Phi}(\mathbf{x})\right)$

Nonlinear Model via Nonlinear Φ + Linear Models

two choices:

- feature transformΦ
- linear model A, not just binary classification

Pandora's box :-):

can now freely do quadratic PLA, quadratic regression, cubic regression, ..., polynomial regression

Feature Transform •

not new, not just polynomial:

raw (pixels)

concrete (intensity, symmetry)

the force, too good to be true? :-)

Consider the quadratic transform $\Phi_2(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^d$ instead of in \mathbb{R}^2 . The transform should include all different quadratic, linear, and constant terms formed by (x_1, x_2, \dots, x_d) . What is the number of dimensions of $\mathbf{z} = \Phi_2(\mathbf{x})$?

- 10
- $\frac{d^2}{2} + \frac{3d}{2} + 1$
- 3 $d^2 + d + 1$
- 4 2^d

Consider the quadratic transform $\Phi_2(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^d$ instead of in \mathbb{R}^2 . The transform should include all different quadratic, linear, and constant terms formed by (x_1, x_2, \dots, x_d) . What is the number of dimensions of $\mathbf{z} = \Phi_2(\mathbf{x})$?

- 10
- $\frac{d^2}{2} + \frac{3d}{2} + 1$
- 3 $d^2 + d + 1$
- 4 2^d

Reference Answer: (2)

Number of different quadratic terms is $\binom{d}{2} + d$; number of different linear terms is d; number of different constant term is 1.

Computation/Storage Price

$$Q$$
-th order polynomial transform: $\mathbf{\Phi}_Q(\mathbf{x}) = \begin{pmatrix} & 1, & & & \\ & x_1, x_2, \dots, x_d, & & \\ & x_1^2, x_1 x_2, \dots, x_d^2, & & \\ & & \dots, & & \\ & & x_1^Q, x_1^{Q-1} x_2, \dots, x_d^Q \end{pmatrix}$

$$\underbrace{1}_{\widetilde{W}_0} + \underbrace{\widetilde{d}}_{\text{others}}$$
 dimensions

= # ways of \leq Q-combination from d kinds with repetitions

$$= \binom{Q+d}{Q} = \binom{Q+d}{d} = O(Q^d)$$

= efforts needed for computing/storing $\mathbf{z} = \mathbf{\Phi}_{O}(\mathbf{x})$ and $\tilde{\mathbf{w}}$

 $Q \text{ large} \Longrightarrow \text{difficult to compute/store}$

Model Complexity Price

$$Q$$
-th order polynomial transform: $\Phi_Q(\mathbf{x}) = \begin{pmatrix} & 1, & & & \\ & x_1, x_2, \dots, x_d, & & & \\ & x_1^2, x_1 x_2, \dots, x_d^2, & & & \\ & & \dots, & & & \\ & & x_1^Q, x_1^{Q-1} x_2, \dots, x_d^Q \end{pmatrix}$

$$\underbrace{\frac{1}{\tilde{w}_0}} + \underbrace{\frac{\tilde{d}}{d}}_{\text{others}} \text{ dimensions} = O(Q^d)$$

- number of free parameters $\tilde{w}_i = \tilde{d} + 1 \approx d_{VC}(\mathcal{H}_{\Phi_O})$
- $d_{VC}(\mathcal{H}_{\Phi_Q}) \leq \tilde{d} + 1$, why?

any $\tilde{d} + 2$ inputs not shattered in \mathcal{Z} \Longrightarrow any $\tilde{d} + 2$ inputs not shattered in \mathcal{X}

 $Q \text{ large} \Longrightarrow \text{large } d_{VC}$

Generalization Issue

which one do you prefer? :-)

- Φ₁ 'visually' preferred
- Φ_4 : $E_{in}(g) = 0$ but overkill

- Φ_1 (original \mathbf{x})
- 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
- 2 can we make $E_{in}(g)$ small enough?

trade-off:	$\tilde{d}\left(Q\right)$	1	2
	higher	:-(:-D
	lower	:-D	:-(

how to pick Q? visually, maybe?

Danger of Visual Choices

first of all, can you really 'visualize' when $\mathcal{X} = \mathbb{R}^{10}$? (well, I can't :-))

Visualize $\mathcal{X} = \mathbb{R}^2$

- full Φ_2 : $\mathbf{z} = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2), d_{VC} = 6$
- or $\mathbf{z} = (1, x_1^2, x_2^2), d_{VC} = 3$, after visualizing?
- or better $\mathbf{z} = (1, x_1^2 + x_2^2)$, $d_{VC} = 2$?
- or even better $\mathbf{z} = (\text{sign}(0.6 x_1^2 x_2^2))$?
- —careful about your brain's 'model complexity'

for VC-safety, Φ shall be decided without 'peeking' data

Consider the Q-th order polynomial transform $\Phi_Q(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^2$. Recall that $\tilde{d} = \binom{Q+2}{2} - 1$. When Q = 50, what is the value of \tilde{d} ?

- 1126
- 2 1325
- 3 2651
- **4** 6211

Consider the Q-th order polynomial transform $\Phi_Q(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^2$. Recall that $\tilde{d} = \binom{Q+2}{2} - 1$. When Q = 50, what is the value of \tilde{d} ?

- 1126
- 2 1325
- 3 2651
- 4 6211

Reference Answer: 2

It's just a simple calculation, but shows you how \tilde{d} becomes hundreds of times of d=2 after the transform.

Polynomial Transform Revisited

$$\Phi_0(\mathbf{x}) = (1), \Phi_1(\mathbf{x}) = (\Phi_0(\mathbf{x}), \quad x_1, x_2, \dots, x_d)$$

$$\Phi_2(\mathbf{x}) = (\Phi_1(\mathbf{x}), \quad x_1^2, x_1 x_2, \dots, x_d^2)$$

$$\Phi_3(\mathbf{x}) = (\Phi_2(\mathbf{x}), \quad x_1^3, x_1^2 x_2, \dots, x_d^3)$$

$$\dots$$

$$\Phi_Q(\mathbf{x}) = (\Phi_{Q-1}(\mathbf{x}), \quad x_1^Q, x_1^{Q-1} x_2, \dots, x_d^Q)$$

structure: nested \mathcal{H}_i

Structured Hypothesis Sets

Structured Hypothesis Sets

Let $g_i = \operatorname{argmin}_{h \in \mathcal{H}_i} E_{\operatorname{in}}(h)$:

use \mathcal{H}_{1126} won't be good! :-(

Linear Model First

- tempting sin: use \mathcal{H}_{1126} , low $E_{in}(g_{1126})$ to fool your boss —really? :-(a dangerous path of no return
- safe route: \mathcal{H}_1 first
 - if $E_{in}(g_1)$ good enough, live happily thereafter :-)
 - otherwise, move right of the curve with nothing lost except 'wasted' computation

linear model first: simple, efficient, safe, and workable!

Consider two hypothesis sets, \mathcal{H}_1 and \mathcal{H}_{1126} , where $\mathcal{H}_1 \subset \mathcal{H}_{1126}$. Which of the following relationship between $d_{VC}(\mathcal{H}_1)$ and $d_{VC}(\mathcal{H}_{1126})$ is not possible?

- $\mathbf{0} d_{VC}(\mathcal{H}_1) = d_{VC}(\mathcal{H}_{1126})$
- 2 $d_{VC}(\mathcal{H}_1) \neq d_{VC}(\mathcal{H}_{1126})$
- **3** $d_{VC}(\mathcal{H}_1) < d_{VC}(\mathcal{H}_{1126})$
- $d_{VC}(\mathcal{H}_1) > d_{VC}(\mathcal{H}_{1126})$

Consider two hypothesis sets, \mathcal{H}_1 and \mathcal{H}_{1126} , where $\mathcal{H}_1 \subset \mathcal{H}_{1126}$. Which of the following relationship between $d_{VC}(\mathcal{H}_1)$ and $d_{VC}(\mathcal{H}_{1126})$ is not possible?

- $\mathbf{0} d_{VC}(\mathcal{H}_1) = d_{VC}(\mathcal{H}_{1126})$
- **2** $d_{VC}(\mathcal{H}_1) \neq d_{VC}(\mathcal{H}_{1126})$
- 3 $d_{VC}(\mathcal{H}_1) < d_{VC}(\mathcal{H}_{1126})$
- $d_{VC}(\mathcal{H}_1) > d_{VC}(\mathcal{H}_{1126})$

Reference Answer: (4)

Every input combination that \mathcal{H}_1 shatters can be shattered by \mathcal{H}_{1126} , so d_{VC} cannot decrease.

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- **3 How Can Machines Learn?**

Lecture 11: Linear Models for Classification

Lecture 12: Nonlinear Transformation

Quadratic Hypotheses

linear hypotheses on quadratic-transformed data

- Nonlinear Transform
 - happy linear modeling after $\mathcal{Z} = \Phi(\mathcal{X})$
- Price of Nonlinear Transform
 computation/storage/[model complexity]
- Structured Hypothesis Sets

linear/simpler model first

- next: dark side of the force :-)
- 4 How Can Machines Learn Better?