問題12-1 $F(x) = x^4 - 2$, $d = \sqrt{12}$, $\bar{\lambda} = \sqrt{-1}$ とかく、以下を示せ、

- (1) F(x) は dの Q上での最小多項式である
- (2) F(x)のQ上での最小分解体はQ(d,i)に等しい.
- $\left(K=Q, n=4\tau\right)$ $G\cong D_4 になる何)$

- (3) $[Q(d,\bar{\lambda}):Q]=8.$
- (4) Q(d,i)の体の自己同型 U, T を次のように定義できる: U(f(d)) = f(id) (f(x) e Q(i)[x]), T(g(i)) = g(-i) (g(x) e Q(d)[x]),
- (5) $Gal(Q(a, \bar{a})/Q) = \langle \sigma, \tau \rangle \cong D_4$

解答例 (1) 2+1, 2|0, 2|0, 2|0, 2|-2, 2^2+-2 なので Eisenstein の判定法より, $F(x)=x^4-2$ は Q上の既約多項式である。 $F(\lambda)=F(\sqrt[4]{2})=(\sqrt[4]{2})=(\sqrt[4]{2})^4-2=0$. ゆンに、 $F(\lambda)$ は λ の Q上での最小多項式である。

(2) $F(x) = \chi^4 - 2$ の 4つの 根は d, id, -d, -id なので F(x) の Q上での最小分解体を Lと書くと、L=Q(d, id, -d, -id)。 $\lambda = \frac{id}{d}$ なので $\lambda \in L$ 、このことから L=Q(λ , a) つ"あることがわかる. (3) $L = Q(\lambda, \lambda), M = Q(\lambda) \ \forall \lambda, \zeta, L = M(\lambda) \ \forall \lambda, \zeta \in Q(\lambda) = \chi^2 + 1 \ \forall \lambda, \zeta \in [M; Q] = [Q(\lambda); Q] = \deg F(\lambda) = 4.$

もしも G(x) が M上 既約でないならその根土、は Mの元になるが, M = $Q(^4\Gamma_2)$ C R なので、そうならない、 ゆえに G(x) は M上 既約である. $G(\lambda) = \lambda^2 + 1 = 0$ なので、 G(x) は $\lambda = \sqrt{1}$ の M上での最小多項式になる、これより、 $[L:M] = [M(\lambda):M] = \deg G(x) = 2$. 以上より、 $[Q(\lambda,d):Q] = [L:M][M:Q] = 2 \times 4 = 8$.

(4)
$$[Q(\lambda_1 \lambda_1) : Q(\lambda_1)] = \frac{[Q(\lambda_1 \lambda_1) : Q]}{[Q(\lambda_1) : Q]} = \frac{8}{2} = \frac{4}{4} = \deg F(\lambda_1), F(\lambda_1) = 0 より,$$
 $F(\lambda_1) = \lambda_1^4 - 2$ は $\lambda_2 = 4$ の $Q(\lambda_1) \pm 2$ の最小多項式でもある.

上でG(ス)= パ+1が λ=「「のQ(とでの最小多項式であることは示してある、

F(x), G(x) はそれぞれ Q(x), Q(x)上のそれぞれの根の最小多項式にもなっている。

したかって、以下のようにして、体の(え,人)の自己同型の、ても定めることができると

$$Q(\lambda, \lambda) = Q(\lambda)(\lambda) \cong Q(\lambda)[\lambda]/(F(\lambda)) \cong Q(\lambda)(\lambda\lambda) = Q(\lambda, \lambda\lambda) = Q(\lambda, \lambda\lambda) = Q(\lambda, \lambda\lambda) = Q(\lambda, \lambda\lambda)$$

$$f(\lambda) \longleftrightarrow f(\lambda) \longleftrightarrow f(\lambda\lambda)$$

$$f(\lambda) \longleftrightarrow f(\lambda\lambda)$$

$$Q(\lambda, \lambda) = Q(\lambda)(\lambda) \cong Q(\lambda)(\lambda)/(G(\lambda)) \cong Q(\lambda)(-\lambda) = Q(-\lambda, \lambda) = Q(\lambda, \lambda)$$

$$g(\lambda) \longleftrightarrow g(\lambda) \longleftrightarrow g(-\lambda)$$

$$T_{-}$$

(5) $|Gul(Q(\tilde{\lambda},d)/Q)| = [Q(\tilde{\lambda},d):Q] = 8$

のとては F(x)=x4-2の4つの提に次のように作用している;

4次の二面体群D4は正方形を90°回転させる操作 d と次の図の線対扱変換βから主成される位数8の群であった:

以上を比較すると、 $Gal(Q(\lambda, \lambda)/Q) \cong D_4$ であることがわかる、 $\sigma \longleftrightarrow \beta$

問題12-21 L=Q(52,53)とおく、以下を示せ、

- (1) $F(x) = \chi^4 10\chi^2 + 1$ は $d = \sqrt{2} + \sqrt{3}$ の Q上での最小多項式である。
- (2) L=Q(52, 51) は F(x)のQ上での最小分解体である。
 (K=Q, n=4で
 G ≅ C2×C2 となる例)
- (3) L/Q は 4次の Galois 拡大である。

- (4) LのQ上での自己同型の、てを次のように定めることかいできる? $T(f(I_2)) = f(-I_2) (f(x) \in Q(I_3)[x]), \quad T(g(I_3)) = g(-I_3) (g(x) \in Q(I_2)[x])$
- (5) $Gal(L/Q) = \langle \sigma, \tau \rangle \cong C_1 \times C_2$ (C_n は位数nの巡回群)、F(x)9报金体の集合の置換料の中の Kleinの四元群に一致、

解答例 ((1) ~ (4) は 問題4-1の解答例ですでに示してあるとみなせれる、)

(1),(2),(3) をまとめて示そう,

$$(\chi - (\sqrt{12} + \sqrt{3}))(\chi - (-\sqrt{12} + \sqrt{3}))(\chi - (\sqrt{12} - \sqrt{3}))(\chi - (-\sqrt{12} - \sqrt{3}))$$

$$= ((\chi - \sqrt{3})^2 - (\sqrt{12})^2)((\chi + \sqrt{3})^2 - (\sqrt{12})^2) = (\chi^2 + 1 - 2\sqrt{3} + \chi)(\chi^2 + 1 + 2\sqrt{3} + \chi)$$

$$= (\chi^2 + 1)^2 - (2\sqrt{3} + \chi)^2 = \chi^4 + 2\chi^2 + 1 - 12\chi^2 = \chi^4 - 10\chi^2 + 1 = F(\chi),$$

 $F(\lambda)$ の Q上での最小分解体を L'と書こう、 $F(\lambda)$ の 4つの根 $\Gamma(\lambda)$ $\Gamma(\lambda)$

 $\frac{1}{\sqrt{1+13}} = \sqrt{3} - \sqrt{2}$, $\frac{(\sqrt{12}+\sqrt{3})-(\sqrt{13}-\sqrt{2})}{2} = \sqrt{2}$, $(\sqrt{13}-\sqrt{2})+\sqrt{2}=\sqrt{3}$ か $Q(A)=Q(\sqrt{12}+\sqrt{3})$ に含まれることから, $Q(A)=Q(\sqrt{12},\sqrt{3})=L$ となることもわかる。 $[Q(A):Q]=[L:Q]=4=\deg F(A)$ より, F(A) は $d=\sqrt{12}+\sqrt{13}$ の Q+での 最小多項式であることがわかる。 これで (1) が示された。

(4) $G(x)= \chi^2-2$, $H(x)=\chi^2-3$ はそれるかれ $Q(s_1)$, $Q(s_1)$ 上のそれらの根の最小多項式とかなされるので、以下のようにして、 $L=Q(s_2,s_3)$ の自己同型の、てを定めることができるこ

$$L = Q(\overline{I_3})(\overline{I_2}) \cong Q(\overline{I_3})[X]/(G(X)) \cong Q(\overline{I_3})(-\overline{I_2}) = L$$

$$f(\overline{I_2}) \longleftrightarrow f(-\overline{I_2})$$

$$L = Q(I3)(I3) \cong Q(I2)[x]/(H(x)) \cong Q(I3)(-I3) = L$$

$$Q(I3) \longleftrightarrow Q(I3) \longleftrightarrow Q(I3)$$

(5) |Gd(L/Q)| = [L:Q] = 4

の、て、のてはF(x)= x4-10x2+1の4つの根の集合に次のように作用している:

$$\sqrt{2} + \sqrt{3} \stackrel{\nabla}{\longleftrightarrow} - \sqrt{2} + \sqrt{3}$$
 $\sqrt{2} + \sqrt{3} \stackrel{\nabla}{\longleftrightarrow} - \sqrt{2} + \sqrt{3}$
 $\sqrt{2} + \sqrt{2} + \sqrt{2} \stackrel{\nabla}{\longleftrightarrow} - \sqrt{2} + \sqrt{3}$
 $\sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2}$
 $\sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2}$
 $\sqrt{2} + \sqrt{2}$
 $\sqrt{2}$

これより、F(x)の4つの根を $d_1 = \sqrt{2} + \sqrt{3}$, $d_2 = -\sqrt{2} + \sqrt{3}$, $d_3 = \sqrt{2} - \sqrt{3}$, $d_4 = -\sqrt{2} - \sqrt{3}$ と書くとき、 σ 、て、 σ に なえれぞれ 置程(1,2)(3,4)、(1,3)(2,4)、(1,4)(2,3) に 対応していることかわる。

したかいって、

/ Kleinの切元群

 $Gal(L/Q) = \{1, \sigma, \tau, \sigma\tau\} \cong \{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\} \cong C_2 \times C_2,$

問題12-3 $F(x) = x^3 - 21x + 28$ とおく、以下を示せ、

K=Q, n=3

(1) F(x) は Q 上 既約である.

(2) F(x)の3つの根をd, β , γ と書き, $D=(d-\beta)^2(d-\gamma)^2(\beta-\gamma)^2$ とおいと、 $D=126^2$ となる. 位数39巡回群

(3) F(x)のQ上での最小分解体をLと書くと, Gal(L/Q) \(C3, \) \(\) \

解答例 $F(x) = \chi^3 + \alpha \chi + b = (\chi - \chi)(\chi - \beta)(\chi - \beta)(\chi - \gamma)$ のとき, $D := (\lambda - \beta)^2 (\lambda - \gamma)^2 (\beta - \gamma)^2 = -4\alpha^3 - 27b^2 \qquad となることを示えう,$

 $d + \beta + \delta' = 0, \quad d\beta + d\beta' + \beta \gamma' = \alpha, \quad d\beta \gamma' = -b \quad \zeta \circ \tau',$ $d^{2} + \beta^{2} + \gamma'^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma) = -2\alpha,$ $d^{2}\beta^{2} + d^{2}\gamma'^{2} + \beta^{2}\gamma'^{2} = (\alpha\beta + \alpha\gamma + \beta\gamma)^{2} - 2\alpha\beta\gamma(\alpha + \beta + \gamma) = \alpha^{2}.$

 $F'(d) = 3d^{2} + \alpha = (d - \beta)(d - \beta), \quad F'(\beta) = 3\beta^{2} + \alpha = (\beta - d)(\beta - \gamma), \quad F'(\gamma) = 3\gamma^{2} + \alpha = (\gamma - d)(\gamma - \beta) f'(\gamma)$ $(d - \beta)^{2}(d - \gamma)^{2}(\beta - \gamma)^{2} = -F'(d)F'(\beta)F'(\gamma)$ $= -(\alpha^{3} + 3(d^{2} + \beta^{2} + \gamma^{2})\alpha^{2} + 9(d^{2}\beta^{2} + J^{2}\gamma^{2} + \beta^{2}\gamma^{2})\alpha + 27J^{2}\beta^{2}\gamma^{2})$ $= -(\alpha^{3} - 6\alpha^{3} + 9\alpha^{3} + 27J^{2}) = -4\alpha^{3} - 27J^{2},$

- (1) $F(x) = x^3 21x + 28$ は 7ト1,710,71-21,7128,73+28 と Eisensteinの判定法より、Q上既約である。
- (2) 前ページの公式を 0 = -21, b = 28の場合に用いると, $D = (d-\beta)^2(d-\gamma)^2(\beta-\gamma)^2 = -40^3 27b^2$ $= 4\cdot 21^3 - 27\cdot 28^2 = 2^2\cdot 3^3\cdot 7^3 - 2^4\cdot 3^3\cdot 7^2$ $= 2^2\cdot 3^3\cdot 7^2(7-2^2) = 2^2\cdot 3^4\cdot 7^2 = (2\cdot 3^2\cdot 7)^2 = 126^2$.
- (3) $F(A) \cap Q \perp \tau$ の最小分解体をLと書き、G = GQ(L/Q) とおく、F(A) が Q上既的なので、 $G \cap \{d,\beta,\gamma\}$ への作用 は 推移的になるので $G \cong A_3$ または $G \cong S_3$ となる、 $\Delta = (d-\beta)(d-\gamma)(\beta-\gamma)$ とおくと、 $\Delta^2 = D = 12b^2$ より $\Delta = \pm 12b \in Q$ となる、 ゆえた、任意の $\sigma \in G$ について、 $\sigma(\Delta) = \Delta$ となり、 σ は、 σ の 偶置換 になる、これより、 $\sigma \cong A_3 \cong C_3$.

問題 12-4 $F(x) = \chi^3 + 3\chi^2 - 3$ とかく,以下を示せ、

- (1) F(x) は Q上既的である.
- (2) F(x)の3つの根を d, β , γ と書くとき、 $D = (a-\beta)^2 (a-\gamma)^2 (\beta-\gamma)^2 とおくと、<math>D = q^2$ となる、
- (3) F(X)のQ上での最小分解体をしと書くと、Gal(L/Q) ~ Ca.

解答例
$$F(x) = x^3 + \alpha x^2 + b = (x - d)(x - \beta)(x - \beta)$$
のとき, $(a - \beta)^2 (d - \delta)^2 (\beta - \delta)^2 = -b(4\alpha^3 + 27b)$ となることを示えう、

$$\begin{aligned}
d + \beta + \gamma &= -\alpha, \quad d\beta + d\gamma + \beta \gamma &= 0, \quad d\beta \gamma &= -b. \\
F'(\alpha) &= 3d^{2} + 2\alpha d = (d - \beta)(d - \gamma), \quad F'(\beta) &= 3\beta^{2} + 2\alpha \beta = (\beta - d)(\beta - \gamma), \quad F'(\gamma) &= 3\gamma^{2} + 3\alpha \gamma = (\gamma - d)(\gamma - \beta) \neq 1, \\
(\alpha - \beta)^{2} (d - \gamma)^{2} (\beta - \gamma)^{2} &= -F'(\alpha) F'(\beta) F'(\gamma) &= -\beta \gamma (3d + 2\alpha) (3\beta + 2\alpha) (3\gamma + 2\alpha) \\
&= -\frac{d\beta \gamma}{d\beta} (8\alpha^{3} + 12(\alpha + \beta + \gamma)\alpha^{2} + 18(\beta + \beta \gamma)\alpha + 2\gamma \beta \gamma) \\
&= b
\end{aligned}$$

$$= b(8a^3 - 12a^3 - 27b) = -b(4a^3 + 27b),$$

- (1) F(x) = x³+3x²-3 は、3+1、3|3、3|0、3|-3、3²+3とEisensteinの判定法より、 Q上既的である。
- (2) 前ページの公式を $\alpha = 3$, b = -3 た用いると, 3^3 $D = (\alpha \beta)^2 (\alpha \delta)^2 (\beta \delta)^2 = -b(4\alpha^3 + 27b) = 3(4\cdot 3^3 27\cdot 3) = 3^4 = 9^2$
- (3) $F(\lambda)$ の Q上での最小分解体をLと書き、G = Gal(L/Q)とおく、 $F(\lambda)$ は Q上既約 なので、Gの $\{d,\beta,\epsilon\}$ への作用は推移的になるので、 $G\cong A_3$ または $G\cong S_3$ となる

注意 $F(x-1) = (x-1)^3 + 3(x-1)^2 - 3 = x^3 - 3x^2 + 3x - 1 + 3x^2 - 6x + 3 - 3 = x^3 - 3x - 1$. $x^3 - 3x - 1 + 0$ 上 既的になり、そのの上での最小分解体は上と同じしになり、Gal(L/Q) $\cong A_3 \cong C_3$ となる。