Оглавление

L	O.C	υικπυ	венные дифференциальные уравнения первого порядка				
L	_	Уравнения первого порядка, разрешённые относительно производной					
	1.1		ные понятися и результаты				
		1.1.1	Объект изучения				
		1.1.2	Решения дифференциального уравнения				
		1.1.3	Задача Коши				
		1.1.4	О существовании решения внутренней задачи Коши				
		1.1.5	Продолжимость решения				
		1.1.6	Полное решение, интегральная кривая				
		1.1.7	Вопросы, связанные с единственностью решения				
		1.1.8	Достаточные условия единственности				
		1.1.9	Частные и особые решения				
		1.1.10	1				
			Поле направлений и метод изоклин				
	1.2		ствование решения внутренней задачи Коши				
		1.2.1	Ломаные Эйлера				
		1.2.2	Лемма о ε -решении				
		1.2.3	Лемма Арцела-Асколи				
		1.2.4	Теорема о существовании решения ВЗК				
	1.3	Сущес	ствование решения граничной задачи Коши				
		1.3.1	Граничные кривые и порождаемые ими множества				
		1.3.2	Граничный треугольник и граничный отрезок Пеано				
		1.3.3	Теоремы о существовании или отстутствии решений ГЗК				
	1.4	Единс	твенность решения задачи Коши				
		1.4.1	Теорема о локальной единственности решения внутренней задачи Коши				
		1.4.2	Лемма Гронуолла				
		1.4.3	Условия Липшица				
		1.4.4	Теоремы о глобальной единственности решений				
	1.5	Сущес	ствование общего решения				
		1.5.1	Область существования общего решения				
		1.5.2	Формула общего решения				
?	Ура	Уравнения первого порядка в симметричной форме					
	2.1	Сущес	ствование и единственность решения				
		2.1.1	Объект изучения				
		2.1.2	Решение уравнения в симметричной форме				
		2.1.3	Интегральные кривые				
		2.1.4	Существование и единственность решения				
	2.2	Интер	огал уравнения в симметричной форме				
		2.2.1	Определение интеграла				
		2.2.2	Характеристической свойство интеграла				
		2.2.3	Характеристическое свойство гладкого интеграла				
		2.2.4	Существование интеграла, связь между интегралами				
		2.2.5	Уравнение с разделяющимися переменными				
	2.3		пение в полных дифференциалах, интегрирующий множитель				
	-	2.3.1	Уравнение в полных дифференциалах				
		2.3.2	Интегриурющий множитель				
		2.3.3	Линейные уравнения				
		3.0	V + " · · · · · · · · · · · · · · · · · ·				

II	\mathbf{C}	истем	ны обыкновенных дифференциальных уравнений	4 5		
3	Нормальные системы ОДУ					
	3.1	Основные понятия				
		3.1.1	Виды систем	46		
		3.1.2	Решения нормальной системы и векторная запись	47		
		3.1.3	Обощение определений и рещультатов главы 1	47		
		3.1.4	Системы в симметричной форме	48		
	3.2	Форму	ула конечных приращений, условия Липшица	48		
		3.2.1	Лемма Адамара	48		
		3.2.2	Локальное и глобальное условия Липшица	49		
		3.2.3	Связь между дифференцируемостью и локальным условием Липшица	50		
	3.3	Метод	ц последовательных приближений Пикара	51		
		3.3.1	Теорема Пикара	51		
		3.3.2	Существование и единственность решений системы	54		
	3.4	Линей	иные системы. Введение	55		
		3.4.1	Существование и единственность решений	55		
		3.4.2	О продолжимости решений линейных систем	56		
		3.4.3	Комплекснозначные линейные системы	57		
	3.5	Завис	имость решения системы от начальных данных и параметра	57		
		3.5.1	Постановка задач	57		

Часть I

Обыкновенные дифференциальные уравнения первого порядка

Глава 1

Уравнения первого порядка, разрешённые относительно производной

1.1. Основные понятися и результаты

1.1.1. Объект изучения

Рассмотрим обыкновенное дифференциальное уравнение первого порядка, разрешённое относительно проиводной:

$$\frac{\mathrm{d}\,y(x)}{\mathrm{d}\,x} = f\big(x,y(x)\big), \qquad \text{или в краткой записи } y' = f(x,y) \tag{1.1}$$

где x – это независимая переменная, y = y(x) – искомая функция, а f(x,y), если не оговорено иное, – вещественная функция, определённая и непрерывная на множестве $\widetilde{G} = G \cup \widehat{G}$, где:

- $G \subset \mathbb{R}^2$ область;
- $\widehat{G} \subseteq \partial G$ (возможно пустое) множество, на котором f(x,y) непрерывна или может быть доопределена с сохранением непрерывности.

Обозначение. $G^*\coloneqq\partial G\setminus\widehat{G}$

1.1.2. Решения дифференциального уравнения

Обозначение. Символ (подразумевает одну из скобок: (или [, а символ) – скобку) или].

На вещественной оси рассмотрим непустое связное множество, не являющееся точкой. Это будет промежуток $\langle a,b \rangle$.

Определение 1. Функция $y = \varphi(x)$, заданная на промежутке $\langle a, b \rangle$ называется решением дифференциального уравнения (1.1), если для любого $x \in \langle a, b \rangle$ выполняются следующие три условия:

- 1. функция $\varphi(x)$ дифференцируема;
- 2. точка $(x, \varphi(x)) \in \widetilde{G}$;
- 3. $\varphi'(x) = f(x, \varphi(x))$.

Замечание. График решения по определению не может состоять из одной точки.

Замечание. Первые два условия являются вспомогательными и позволяют записать третье.

Замечание. Любое решение является функцией не просто дифференцируемой, а гладкой, т. е.

$$\varphi(x) \in \mathcal{C}^1(\langle a, b \rangle)$$

Доказательство. Функция $\varphi(x)$ дифференцируема (по условию 1). Значит, она непрерывна в любой точке $x \in \langle a,b \rangle$

Значит, правая часть тождества из условия 3 непрерывна (как композиция непрерывных функций) Значит, и левая часть непрерывна

При этом, если решение задано на отрезке [a,b], то на его концах существуют и непрерывны односторонние производные

Замечание. Поскольку решение – гладкая функция, то через любую точку $(x, \varphi(x))$ плоскости можно провести касательную под таким углом $\alpha(x)$ с осью абсцисс, что $\operatorname{tg}\alpha(x) = f(x, \varphi(x)) = \varphi'(x)$ Поэтому графики решений, имеющие общую точку соприкасаются в ней ("пересекаются под нулевым углом")

Определение 2. Решение $y = \varphi(x)$ уравнения (1.1), заданное на промежутке $\langle a, b \rangle$ будем называть:

- внутренним, если $(x, \varphi(x)) \in G$ для любого $x \in \langle a, b \rangle$;
- граничным, если $(x, \varphi(x)) \in \widehat{G}$ для любого $x \in \langle a, b \rangle$;
- смешанным, если найдутся такие $x_1, x_2 \in \langle a, b \rangle$, что точка $(x_1, \varphi(x_1)) \in G$, а точка $(x_2 \varphi(x_2)) \in \widehat{G}$.

Лемма 1 (о записи решения в интегральном виде). Для того чтобы определённая на промежутке $\langle a,b \rangle$ функция $y=\varphi(x)$ была решением дифференциального уравнения (1.1), необходимо и достаточно, чтобы функция $\varphi(x)$ была непрерывна на $\langle a,b \rangle$, её график лежал в \widetilde{G} и при некотором $x_0 \in \langle a,b \rangle$ выполнялос тождество

$$\varphi(x) \stackrel{\langle a,b \rangle}{\equiv} \varphi(x_0) + \int_{x_0}^x f(s,\varphi(s)) \, ds$$
 (1.2)

Доказательство.

• Необходимость

Пусть функция $y=\varphi(x)$ на $\langle a,b \rangle$ является решением уравнения (1.1)

Тогда, по определению, справедливо тождество $f(x, \varphi(x)) \stackrel{\langle a,b \rangle}{\equiv} \varphi'(x)$

Интегрируя его при любом фиксированном $x_0 \in \langle a, b \rangle$ по s от x до x_0 и перенося $\varphi(x_0)$ в правую часть, получаем тождество (1.2):

$$\int_{x_0}^x f(s, \varphi(s)) ds \stackrel{\langle a, b \rangle}{\equiv} \int_{x_0}^x \varphi'(s) ds = \varphi(x) - \varphi(x_0)$$

• Достаточность

Пусть непрерывная на промежутке $\langle a,b \rangle$ функция $y=\varphi(x)$ удовлетворяет тождеству (1.2) Тогда $\varphi(x)$ непрерывно дифференцируема на $\langle a,b \rangle$ (поскольку по (1.2) она равна интегралу с переменным верхиним пределом от композиции непрерывных функций)

Дифференцируя (1.2), заключаем, что выполняется и третье условие из определения решения

1.1.3. Задача Коши

Задача 1. Для любой точки $(x_0,y_0)\in \widetilde{G}$ задача Коши с начальными данными x_0,y_0 заключается в том, чтобы найти все решения $y=\varphi(x)$ уравнения (1.1), заданные на промежутках $\langle a,b\rangle\ni x_0$, в том числе внутренние, граничные или смешанные, такие что $\varphi(x_0)=y_0$

При этом говорят, что задача Коши поставлена в точке (x_0, y_0) , а найденные решения – это решения поставленной задачи Коши

Определение 3. Решение задачи Коши уравнения (1.1) с начальными анными x_0, y_0 существует, если существует такое решение $y = \varphi(x)$, определённое на промежутке $\langle a, b \rangle \ni x_0$, что $\varphi(x_0) = y_0$

Определение 4. Внутреннее (граничное, смешанное) решение задачи Коши с начальными данными

 x_0, y_0 существует, если точка $(x_0, y_0) \in G(\widehat{G}, \widetilde{G})$ и найдутся промежуток $\langle a, b \rangle \ni x_0$ и определённое на нём внутреннее (граничное, смешанное) решение $y = \varphi(x)$ такие, что $\varphi(x_0) = y_0$

Определение 5. Задачу Коши, поставленную в точке $(x_0, y_0) \in \widetilde{G}$ будем называть

- внутренней, если $(x_0, y_0) \in G$
- граничной, если $(x_0, y_0) \in \widehat{G}$

1.1.4. О существовании решения внутренней задачи Коши

Напоминание. Компакт в \mathbb{R}^n – замкнутое ограниченное множество

Алгоритм (Пеано). Очевидно, что для любой точки $(x_0,y_0)\in G$ найдутся такие константы a,b>0, что прямоугольник

$$\overline{R} = \{ (x, y) : |x - x_0| \le a, |y - y_0| \le b \}$$

являющийся компактом, лежит в области G

Сразу исключим из рассмотрения простейший случай, когда $f(x,y) \equiv 0$ на \overline{R} , в котором уравнение (1.1) имеет решение $y(x) \equiv y_0$ при $x \in [x_0 - a, x_0 + a]$

По второй теореме Вейерштрасса, f(x,y) достигает своего максимума на \overline{R} . Положим

$$M \coloneqq \max_{(x,y) \in \overline{R}} |f(x,y)| > 0, \qquad h = \min \left\{ \left. a, \frac{b}{M} \right. \right\} \quad (h > 0)$$

Определение 6. Отрезок $\overline{P_h}(x_0,y_0)=[x_0-h,x_0+h]$ называется отрезком Пеано, постоенным для точки $(x_0,y_0)\in G$

Отрезки $\overline{P_h^+}(x_0,y_0)=[x_0,x_0+h]$ и $\overline{P_h^-}=[x_0-h,x_0]$ называются соответственно правым и левым отрезками Пеано

Теорема 1 (Пеано, о существовании внутреннего решения). Пусть правая часть уравнения (1.1) непрерывна в области G.

Тогда для любой точки $(x_0, y_0) \in G$ и для любого отрезка Пеано $\overline{P_h}(x_0, y_0)$ существует по крайней мере одно решение задачи Коши уравнения (1.1) с начальными данными x_0, y_0 , определённое на $\overline{P_h}(x_0, y_0)$

Доказательство. Будет доказано в §2

1.1.5. Продолжимость решения

Определение 7. Пусть $y = \varphi(x)$ – решение уравнения (1.1) на $\langle a,b \rangle$. Если этот промежуток произвольным образом сузить, то на новом промежутке функция $y = \varphi(x)$ останется решением, которое называют сужением исходного решения

Определение 8. Решение уравнения (1.1), заданное на промежутке (a,b) продолжимо вправо в точку b или на границу, если найдётся такое решение $y = \widetilde{\varphi}(x)$, определённое на промежутке (a,b], что сужение $\widetilde{\varphi}(x)$ на (a,b) совпадает с $\varphi(x)$

Определение 9. Решение уравнения (1.1), заданное на промежутке $\langle a,b \rangle$ продолжимо вправо за точку b или за границу, если найдутся такие $\widetilde{b} > b$ и решение $y = \widetilde{\varphi}(x)$, определённое на промежутке $\left\langle a, \widetilde{b} \right\rangle$, что сужение $\widetilde{\varphi}(x)$ на $\langle a,b \rangle$ совпадает с $\varphi(x)$

Теорема 2 (о продолжимости решения на границу). $\varphi(x)$ — решение уравнения (1.1) на промежутке $\langle a,b\rangle, \quad b<+\infty$

Для того чтобы это решение было продолжимо вправо в точку b необходимо и достаточно, чтобы

существовали последовательность $\{x_k\}_{k=1}^{\infty}$ и число $\eta \in \mathbb{R}^1$ такие, что

$$\forall k \quad \begin{cases} x_k \in \langle a, b \rangle \\ \left(x_k, \varphi(x_k) \right) \xrightarrow[k \to \infty]{} (b, \eta) \in \widetilde{G} \end{cases}$$
 (1.3)

Аналогично формулируется условие для продолжиомсти влево

Доказательство.

• Достаточность

Пусть выполняется условие (1.3)

Утверждение 1. В силу того, что функция f(x,y) определена и непрерывна на множестве \widetilde{G} , найдутся такие c>0 и $M\geq 1$, что

$$\forall (x,y) \in \widetilde{G} \cap \overline{B_c}(b,\eta) \quad |f(x,y)| \le M$$

Доказательство.

 $-(b,\eta)\in G$, т. е. является внутренней Тогда существует $\overline{B_c}(b,\eta)\subset G$ – компакт, и на нём функция ограничена

 $-(b,\eta)\subset\widetilde{G}$ и "вблизи" находятся точки "плохой" границы Приведём рассуждение **от противного**: Допустим, $|f(b,\eta)|=M-1$ и существует последовательность $c_m\xrightarrow[m\to\infty]{}0$ $(c_m>0)$ и последовательность точек $(x_m,y_m)\in\widetilde{G}\cap\overline{B_{c_m}}(b,\eta)$ такие, что $|f(x_m,y_m)|>M$ Тогда $(x_m,y_m)\xrightarrow[m\to\infty]{}(b,\eta)$, а это значит, что функция |f(x,y)| терпит разрыв в точке (b,η) , так как $|f(x_m,y_m)|-|f(b,\eta)|>1$ для любого m

Докажем, что существует $\lim_{x\to b-} \varphi(x)$ и он равен η :

Для этого покажем, что для любого сколь угодно малого $\varepsilon > 0$ найдётся число $\delta \in (a,b)$, что

$$\forall x \in [\delta, b) : |\varphi(x) - \eta| < \varepsilon \tag{1.4}$$

Зафиксируем произвольный $0<\varepsilon\leq c$

Тогда $|f(x,y)| \leq M$ для любой точки $(x,y) \in \widetilde{G} \cap \overline{B_{\varepsilon}}(b,\eta)$ и по условию (1.3) найдётся такой номер m, что выполняются равентсва

$$b - x_m > \frac{\varepsilon}{2M}, \qquad |\varphi(x_m) - \eta| < \frac{\varepsilon}{2}$$
 (1.5)

По формуле Ньютона-Лейбница для всякого $x \in [x_m, b)$ имеем:

$$|\varphi(x) - \varphi(x_m)| = \left| \int_{x_m}^x \varphi'(s) \, ds \right| = \left| \int_{x_m}^x f(s, \varphi(s)) \, ds \right| \le \int_{x_m}^x |f(s, \varphi(s))| \, ds \le$$

$$\le M(x - x_m) < M(b - x_m) < \frac{\varepsilon}{2} \qquad (x_m \le x < b)$$

Поэтому

$$|\varphi(x) - \eta| \le |\varphi(x) - \varphi(x_m)| + |\varphi(x_m) - \eta| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Неравенство (1.4) верно при $\delta=x_m,$ а значит, $\varphi(x)\xrightarrow[x\to b^{-0}]{}\eta$

Доопределим функцию $y=\varphi(x)$ в точке b, положив $\varphi(b)=\eta$

Согласно (1.2) $\varphi(x) = \varphi(x_0) + \int_{x_0}^x f(s, \varphi(s)) ds$ для любых $x_0, x \in \langle a, b \rangle$

В этом тождестве можно перейти к пределу при $x \to b^{-0}$, получая равенство $\eta = \varphi(x_0) + \int_{x_0}^x f(s,\varphi(s)) \, \mathrm{d} \, s$, так как по условию точка $(b,\eta) \in \widetilde{G}$, а занчит, функция f(x,y) определена и непрерывна в этой точке

В результате функция

$$\widetilde{\varphi}(x) = \begin{cases} \varphi(x), & x \in \langle a, b \rangle \\ \eta & x = b \end{cases}$$

по определению является продолжением решения $y=\varphi(x)$ на $\langle a,b|$

• Необходимость

Допустим, что на промежутке (a,b] существует решение $y=\widetilde{\varphi}(x)$ такое, что $\widetilde{\varphi}(x)\equiv \varphi(x)$ на (a,b) Поскольку $\widetilde{\varphi}(x)$ непрерывна, то $\widetilde{\varphi}(x)=\eta=\lim_{x\to b}\widetilde{\varphi}(x)$

Но тогда $\eta = \lim_{x \to b^-} \varphi(x)$ и требуемая послеовательность точек x_k существует, причём по поределению решения точка $(b,\eta) \in \widetilde{G}$

Лемма 2 (о продолжимости решения за границу отрезка). Пусть решение $y = \varphi(x)$ уравнения (1.1) определено на промежутке $\langle a,b \rangle$ и точка $(b,\varphi(b)) \in G$

Тогда это решение продолжимо вправо за точку b на полуотрезок Пеано, построенный для точки $(b, \varphi(b))$

Доказательство. По теореме Пеано (теор. 1) на отрезке Пеано $\overline{P_h}\big(b,\varphi(b)\big)$ существует внутреннее решение $y=\psi(x)$ задачи Коши с начальными данными $\big(b,\varphi(b)\big)$ Тогда функция $y=\widetilde{\varphi}(x)$, где

$$\widetilde{\varphi}(x) = \begin{cases} \varphi(x), & x \in \langle a, b | \\ \psi(x), & x \in [b, b+h] \end{cases}$$

по определению является решением уравнения (1.1) на $\langle a, b+h \rangle$

В самом деле, в точке b производная функции $\widetilde{\varphi}(x)$ существует, так как

$$\widetilde{\varphi}'_{-}(b) = \varphi'_{-}(b) = f(b, \varphi(b)) = \psi'_{+}(b) = \widetilde{\psi}'_{+}(b)$$

А выполнение других условий из определения решения для $\widetilde{\varphi}(x)$ очевидно

Утверждение о продолжимости решения, определённого на промежутке $[a,b\rangle$, влево за точку a формулируется аналогично

Следствие. Если решение $y = \varphi(x)$ уравнения (1.1) определено на промежутке (a,b] и не продолжимо вправо за точку b, то $(b,\varphi(b)) \in \widehat{G}$

A если оно определено на промежутке $[a,b\rangle$ и не продолжимо влево за точку a, то $(a,\varphi(a))\in \widehat{G}$

Доказательство. Предположение противного противоречит лемме

Из теоремы о продолжимости решения на границу и последней леммы вытекает следующее утверждение:

Лемма 3 (о продолжимости решения на границу интервала). Пусть решение $y = \varphi(x)$ уравнения (1.1) определено на промежутке $\langle a,b \rangle$, существует число $\eta = \lim_{x \to b^-} \varphi(x)$ и точка $(b,\eta) \in G$

Тогда это решение продолжимо вправо за точку b

Утверждение о продолжимости решения, заданного на (a,b), влево за точку a формулируется аналогично

1.1.6. Полное решение, интегральная кривая

Определение 10. Решение называется полным, или максимально продолженным, или непродолжимым в случае, если его нельзя продолжить ни влево, ни вправо, или что то же самое, когда оно не является сужением никакого другого решения

Определение 11. Внутреннее (граничное) решение называется полным, если его нельзя продолжить ни влево, ни вправо так, чтобы оно осталось внутренним (граничным)

Определение 12. Промежуток, на котором определено полное решение, бедм называть максимальным интервалом существования и обозначим I_{\max} , а если для полного решения была поставлена задача Коши с начальными данными x_0, y_0 , то $I(x_0, y_0)$

Из леммы о продолжимости решения за границу отрезка с очевидностью вытекает следующий факт:

Утверждение 2. Максимальный интервал существования любого внутреннего решения – это интервал

Теорема 3 (о существовании полного решения). Любое решение уравнения (1.1) может быть продолжено до полного решения

Другая формулировка. Любое решение уравнения (1.1), не являющееся полным, является сужением некоторого полного решения

Доказательство. Приведено в дополнении 14

Определение 13. График полного решения будем называть интегральной кривой уравнения (1.1) Дуга интегральной кривой – это график решения, заданного на любом промежутке $\langle a,b \rangle \subsetneq I_{\max}$

Таким образом, интегральные кривые уравнения (1.1) лежат в \widetilde{G} , не могут иметь вертикальных касательных и не могут пересекаться под ненулевым углом, т. е. могут только соприкасаться

Теорема 4 (о поведении интегральной кривой полного внутреннего решения). Предположим, что внутреннее решение $y=\varphi(x)$ уравнения (1.1) определено на промежутке $\langle a,\beta\rangle$ и не продолжимо вправо. Тогда для любого компакта $\overline{H}\subset G$ найдётся такое число $\delta\in\langle a,\beta\rangle$, что для всякого $x\in(\delta,\beta)$ точка $(x,\varphi(x))\in G\setminus\overline{H}$

Другая формулировка. При стремлении аргумента полного внутреннего решения к границе максимального интервала существования дуга интегральной кривой покидает любой компакт, лежащий в области G, и никогда в него не возвращается

Доказательство. Переходя в условиях теоремы на язык последовательностей, докажем, что для любого компакта $\overline{H} \subset G$ и для любой последовательности $x_k \xrightarrow[k \to \infty]{} \beta, \ x_k \in \langle a, \beta \rangle$ существует K > 0 такое, что $(x_k, \varphi(x_k)) \in G \setminus \overline{H}$ при всех k > K

Рассуждая от противного, допустим, что существуют компакт $\overline{H}_* \subset G$ и последовательность $x_k \to \beta$, $x_k \in \langle a, \beta \rangle$ такие, что $(x_k, \varphi(x_k)) \in \overline{H}_*$ для k = 1, 2, ...

Отсюда сразу же вытекает, что $\beta < +\infty$, так как в противном случае найдётся такой индекс k^* , что точка $(x_{k^*}, \varphi(x_{k^*}))$ будет лежать вне компакта в силу его ограниченности

НУО считаем, что последовательность x_k – сходящаяся (иначе перейдём к сходящейся подпоследовательности)

Пусть $(\beta, \eta) = \lim_{k \to \infty} (x_k, \varphi(x_k))$

Тогда предельная точка (β, η) также принадлежит компакту \overline{H}_* , а значит, выполняются условия теоремы о продолжимости решения (теор. 2), согласно которой решение $y = \varphi(x)$ продолжимо на промежуток $\langle a, \beta \rangle - \not$ с условием теоремы

Аналогичный результат имеет место для внутреннего решения, определённого на (α,b) и непродолжимого влево

1.1.7. Вопросы, связанные с единственностью решения

Определение 14. Точка $(x_0,y_0)\in \widetilde{G}$ называется точкой неединственности, если существуют такие решения $y=\varphi_1(x)$ и $y=\varphi_2(x)$ задачи Коши уравнения (1.1) с начальными данными x_0,y_0 , определённые на промежутке $\langle a,b\rangle$, и такая последовательность $x_k\xrightarrow[k\to\infty]{}x_0,\,x_k\in\langle a,b\rangle$, что $\varphi_1(x_k)\neq\varphi_2(x_k)\quad (k=1,2,\ldots)$

В противном случае точка (x_0, y_0) называется точкой единственности

Замечание. Любая точка граничного множества \widehat{G} , в которой решение задачи Коши отсутствует, по определению будет точкой единственности

Определение 15. Точка $(x_0, y_0) \in \widetilde{G}$ называется точкой неединственности, если найдутся такие решения $y = \varphi_1(x)$ и $y = \varphi_2(x)$ задачи Коши уравнения (1.1) с начальными данными x_0, y_0 , определённые на $\langle a, b \rangle$, что

$$\forall (\alpha, \beta) \ni x_0 \quad \exists x^* \in (\alpha, \beta) \cap \langle a, b \rangle : \quad \varphi_1(x^*) \neq \varphi_2(x^*)$$

Утверждение 3. Определения точки неединственности равносильны

Доказательство.

- опр. 14 \Longrightarrow опр. 15 Из опр. 14 вытекает, что для всякого интервала $(\alpha, \beta) \ni x_0$ найдётся такой индекс k^* , что $x_{k^*} \in (\alpha, \beta)$, поэтому в опр. 15 $x^* = x_{k^*}$
- опр. 15 \Longrightarrow опр. 14 Можно выбрать последовательность интервалов (α_k, β_k) , которая с ростом k стягивается в точку x_0 . Тогда по опр. 15 для всякого k найдётся $x_k^* \in (\alpha_k, \beta_k) \cap \langle a, b \rangle$, что $\varphi_1(x_k^*) \neq \varphi_2(x_k^*)$, т. е. x_k^* последовательность из опр. 14

Отрицая опр. 15, получаем "прямое" определение точки единственности:

Определение 16. Точку $(x_0, y_0) \in \widetilde{G}$ будем называть точкой единственности в следующих случаях:

- 1. задача Коши уравнения (1.1) с начальными данными x_0, y_0 не имеет решений
- 2. для любых двух решений $y = \varphi_1(x)$ и $y = \varphi_2(x)$ этой задачи Коши, определённых на некотором промежутке $\langle a,b \rangle$, найдётся интервал $(\alpha,\beta) \ni x_0$ такой, что

$$\forall x \in (\alpha, \beta) \cap \langle a, b \rangle \quad \varphi_1(x) = \varphi_2(x)$$

Примечание. Здесь надо иметь в виду следующее:

- Если $(x_0, y_0) \in G$:
 - Случай 1 не может возникнуть
 - По теореме Пеано (теор. 1) все решения задачи Коши определены на отрезке Пеано $[x_0 h, x_0 + h]$ (h > 0) Поэтому в определении точки единственности для любых двух решений достаточно требовать наличия интервала $(\alpha, \beta) \ni x_0$, на котором они совпадают
- Если $(x_0, y_0) \in \widehat{G}$ и, например, решение нельзя продолжить за точку x_0 вправо, то в определнии для любых двух решений задач Коши при их наличии надо потребовать существования промежутка $(\alpha, x_0]$, на котором они совпадают

Определение 17. Решение задачи Коши уравнения (1.1), поставленной в точке $(x_0, y_0) \in \widetilde{G}$ называется:

- ullet неединственным, если (x_0,y_0) точка неединственности
- ullet единственным в точке, если оно сущетвует и (x_0,y_0) точка единственности

Определение 18. Решение внутренней задачи Коши уравнения (1.1), поставленной в точке (x_0, y_0) называется локально единственным, если существует интервал $(\alpha, \beta) \ni x_0$ такой, что все решения этой задачи продолжимы на (α, β) и для любых двух её решений $y = \varphi_1(x)$ и $y = \varphi_2(x)$, при необходимости произвольным образом продолженных на (α, β) , имеем $\varphi_1(x) \equiv \varphi_2(x)$ на (α, β)

Теорема 5 (о локальной единственности решения внутренней задачи Коши). Пусть $(x_0, y_0) \in G$ – это точка единственности

Тогда решение задачи Коши уравнения (1.1) с начальными данными x_0, y_0 является локально единственным

Доказательство. Будет доказано позже

Следствие. Из этой теоремы вытекает, что для внутренней задачи Коши понятия единственности решения в точке и локальной единственности равносильны

1.1.8. Достаточные условия единственности

Определение 19. Будем говорить, что решение задачи Коши $y = \varphi(x)$, поставленное в точке $(x_0, y_0) \in \widetilde{G}$ и определённое на промежутке $\langle a, b \rangle \ni x_0$, единственно на этом промежутке, или, просто, единственно, если для любого $x \in \langle a, b \rangle$ точка $(x, \varphi(x))$ является точкой локальной единственности

Определение 20. Область $G^{\circ} \subset G$ будем называть областью единственности для уравнения (1.1), если каждая точка G° является точкой единственности. Множество $\widetilde{G}^{\circ} = G^{\circ} \cup \widehat{G}^{\circ}$, в котором \widehat{G}° – это множество граничных точек G° , являющихся точками единственности, будем называть множеством единсвтенности

Теорема 6 (о единственности; слабая). Пусть в уравнении (1.1) функция f(x,y) определена и непрерывна в области G, а частная производная $\frac{\partial f(x,y)}{\partial y}$ определена и непрерывна в области $G^{\circ} \subset G$ Тогда G° является областью единственности

Доказательство. Эта теорема является следствием более сильных теорем о единственности, которые будут свормулированы и доказаны в $\S4$, п. 4° , причём не только для области G, а для всего множества \widetilde{G}

1.1.9. Частные и особые решения

Определение 21. Решение уравнения (1.1), заданное на промежутке $\langle a,b \rangle$, будем назвыать частным (особым), если его график состоит только из точек единственности (неединственности) и это решение является полным в том смысле, что не может быть продолжено ни влево, ни вправо так, чтобы его график состоял только из точек единственности (неединственности). В этом случае промежуток $\langle a,b \rangle$ будем называть максимальным интервалом существования частного (особого) решения

1.1.10. Понятие общего решения

Определение 22. Общим решением уравнения (1.1) на некотором связном множестве A^* , лежащем в области единственности G° , называется функция $y=\varphi(x,C)$, определённая и непрерывная по совокупности аргументов на множестве $Q_{A^*}=\{\ (x,C)\ |\ x\in\langle a(C),b(C)\rangle\ ,\quad C\in\langle C_1,C_2\rangle\ \}$, если выполняются следующие два условия:

- 1. для любой точки $(x_0, y_0) \in A^*$ уравнение $y_0 = \varphi(x_0, C)$ имеет единственное решение $C = C_0$
- 2. функция $y = \varphi(x, C_0)$ это решение задачи Коши уравнения (1.1) с начальными данными $x_0, y_0,$ определённое на промежутке $\langle a(C_0), b(C_0) \rangle$

Теорема 7 (о существовании общего решения). Для произвольной точки (x_0^*, y_0^*) из области единственности G° уравнения (1.1) найдётся связное множество $A^*: (x_0^*, y_0^*) \in A^* \subset G^\circ$, на котором существует общее решение

Доказательство. Приведено в §5

1.1.11. Поле направлений и метод изоклин

Определение 23. Отрезок проивольной длины с центром в точке $(x_0, y_0) \in \widetilde{G}$ и тангенсом угла наклона, равным $f(x_0, y_0)$, будем называть отрезком поля направлений, построенным в точке (x_0, y_0) Само множество \widetilde{G} , запоненное отрезками поля направлений будем называть полем направлений, ин-

дуцированным уравнением (1.1)

Кривая, лежащая в \widetilde{G} , является интегральной тогда и только тогда, когда она гладкая и в каждой точке направление касательной к ней совпадает с направлением поля в этой точке

Определение 24. Изоклиной уравнения (1.1) называется любая кривая, расположенная во множестве \widetilde{G} , в каждой точке которой направление поля имеет один и тот же угол наклона

Замечание. Все изоклины задаются уравнением f(x,y) = k, где k – любое вещественное число из области значений f(x,y)

Метод изоклин заключается в том, чтобы, нарисовав достаточное число изоклин и отрезков поля на них, начертить характерные интегральные кривые, которые, опадая на очередную изоклину, должны касаться отрезков поля направлений, построенных на ней

1.2. Существование решения внутренней задачи Коши

В этом параграфе будет доказана теорема Пеано о существовании решения внутренней задачи Коши уравнения (1.1) y'=f(x,y) (теор. 1), т. е. будет рассматриваться задача Коши, поставленная в любой внутренней точке \widetilde{G} , и строиться решение этой задачи, график которого лежит в области G Будем строить решение при помощи "метода ломаных Эйлера"

1.2.1. Ломаные Эйлера

Выберем в области G произвольную точку (x_0, y_0) и построим в ней отрезок поля направлений столь малой длины, что он целиком лежит в G, начинаясь в какой-то точке (x_{-1}, y_{-1}) и заканчиваясь в точке (x_1, y_1)

Проведём вправо через точку (x_1,y_1) и влево через точку (x_{-1},y_{-1}) полуотрезки поля, лежащие в G и заканчивающиеся в точках (x_2,y_2) и (x_{-2},y_{-2}) соответственно, и так далее

Этот процесс можно продолжать любое конечное число шагов N, поскольку область G – открытое множество График полученной таким образом непрерывной кусочно-линейной функции $y=\psi(x)$ называется ломаной Эйлера

Итак, установлено, что ломаная Эйлера лежит в области G, проходит через точку (x_0, y_0) и абсциссы её угловых

точек равны x_j $(j = \overline{-N, N})$

Определение 25. Рангом дробления ломаной Эйлера назовём число, равное

$$\max_{j=\overline{1-N,N}} \left\{ x_j - x_{j-1} \right\}$$

Формула, реккурентно задающая ломаную Эйлера $y=\psi(x)$, иммеет вид: $\psi(x_0)=y_0$ и далее при j=0,1,...,N-1 для любого $x\in(x_j,x_{j+1}]$ или при j=0,-1,...,1-N для любого $x\in[x_{j-1},x_j)$

$$\psi(x) = \psi(x_i) + f(x_i, \psi(x_i))(x - x_i) \tag{1.6}$$

В частности, при j=0 отрезок ломаной Эйлера определён для любого $x\in [x_{-1},x_1]$ и, делясь на два полуотрезка, проходит через точку (x_0,y_0) под углом, тангенс которого равен $f(x_0,y_0)$ Из формулы (1.6) вытекает, что для всякого $j=\overline{0,N-1}$ производная $\psi'(x)=f\left(x_j,\psi(x_j)\right)$ при $x\in (x_j,x_{j+1})$, а в точке x_{j+1} она не определна, как и в точках x_{j-1} при $j\leq 0$

Доопределим $\psi'(x)$ в точках разрыва как левостороннюю производную при $x>x_0$ и как правостороннюю производную при $x< x_0$, положив

$$\psi'(x_j) = \psi'_{\mp}(x_j) \lim_{x \to x_j^{\mp 0}} \frac{\psi(x) - \psi(x_j)}{x - x_j} \qquad (j = \pm 1...., \pm N)$$

А при j=0 существует полная производная $\psi'(x_0)=f(x_0,y_0)$ Таким образом, для любого $x\in (x_j,x_{j+1}]$ (j=0,1,...,N-1) или для любого $x\in [x_{j-1},x_j)$ (j=0,-1,...,1-1)

$$\psi'(x) = f(x_j, \psi(x_j)), \qquad j \in \{1 - N, ..., N - 1\}$$
(1.7)

1.2.2. Лемма о ε -решении

Покажем, что на некотором промежутке всегда можно построить функцию, график которой проходит через заданную точку области G, такую, что при подстановке этой функции в уравнение (1.1) окажется, что разность между левой и правой частями уравнения по модулю не превосходит любого сколь угодно малого наперёд заданного положительного числа

Определение 26. Для всякого $\varepsilon > 0$ непрерывная и кусочно-гладкая на отрезке [a,b] функция $y = \psi(x)$ называется ε -решением уравнения (1.1) на [a,b], если для любого $x \in [a,b]$ точка $(x,\psi(x)) \in G$ и

$$\left|\psi'(x) - f(x,\psi(x))\right| \le \varepsilon$$
 (1.8)

Лемма 4 (о ломаных Эйлера в роли ε -решения). Для любой точки $(x_0,y_0)\in G$ и для любого отрезка Пеано $\overline{P_h}(x_0,y_0)$ имеем:

- 1. Для любого $\delta > 0$ на $\overline{P_h}$ можно построить ломаную Эйлера $y = \psi(x)$ с рангом дробления, не превосходящим δ , график которой лежит в прямоугольнике \overline{R} из определения отрезка Пеано
- 2. Для любого $\varepsilon > 0$ найдётся такое $\delta > 0$, что всякая ломаная Эйлера $y = \psi(x)$ с рангом дробления, не превосходящим δ , является ε -решением уравнения (1.1) на $\overline{P_h}(x_0, y_0)$

Доказательство.

1. Для произвольной точки (x_0, y_0) из G построим прямоугольник $\overline{R} \subset G$ с центром в (x_0, y_0) и два лежащих в нём равнобедренных треугольника $\overline{T^-}, \overline{T^+}$ с общей вершиной в точке (y_0, x_0) и основаниями, параллельными оси ординат, как это было сделано при построении отрезка Пеано При этом зафиксируются константы a, b, M, h

Выберем $\delta_* < \delta$ так, чтобы число $\frac{h}{\delta_*} =: N \in \mathbb{N}$

Положим $x_{j+1} := x_j + \delta_* \ (j = \overline{0, N-1}),$ тогда $x_N = x_0 + h$

Для всякого $x>x_0$ будем последовательно строить отрезки ломаной Эйлера $y=\psi(x)$ с узлами в точках x_i

Для любого j=0,...,N это сделать возможно, так как модуль тангенса укла наклона каждого отрезка равен $|f(x_j,\psi(x_j))|$, а тангенсы углов наклона боковых сторон треугольника $\overline{T^+}$ по построению равны $\pm M$, где $M=\max|f(x,y)|$ на компакте \overline{R}

Поэтому любой отрезок ломаной Эйлера, начиная с первого, не может пересечь боковую стенку $\overline{T^+}$, а значит, содержится в нём

В результате для всех $x \in [x_0, x_0 + h]$ точка $(x, \psi(x)) \in \overline{T^+}$ и требуемая ломаная Эйлера построена на $[x_0, x_0 + h]$

Для левого полуотрезка Пеано всё аналогично

2. Зафиксируем теперь произвольное положительное число ε

Функция f(x,y) непрерывна на компакте \overline{R} , следовательно, по теореме Кантора f равномерно непрерывна на нём. По определнию это занчит, что существует такое $\delta_1 > 0$, что для любых двух точек (x'y') и (x'',y'') из прямоугольника \overline{R} таких, что $|x'-x''| \leq \delta_1$ и $|y'-y''| < \delta_1$, выполняется неравенство $|f(x',y')-f(x'',y'')| \leq \varepsilon$

Положим $\delta := \min\left\{\delta_1, \frac{\delta_1}{M}\right\}$ и покажем, что для любой ломаной Эйлера $y = \psi(x)$ с рангом дробления меньшим, чем δ на отрезке Пеано $\overline{P_h}(x_0, y_0) = [x_0 - h, x_0 + h]$, справедливо неравенство (1.8):

Возьмём любую точку x из отрезка Пеано, например справа от x_0

Найдётся индекс $j \in \{0,...,N-1\}$ такой, что $x \in (x_j,x_{j+1}]$, т. е. x_j – ближайшая к x левая угловая точка ломаной Эйлера

Согласно (1.7)

$$\psi'(x) - f(x, \psi(x)) = f(x_j, \psi(x_j)) - f(x, \psi(x))$$

Оценим близость аргументов функции f:

По выбору δ и j имеем

$$|x - x_j| \le \delta \le \delta_1, \qquad |\psi(x) - \psi(x_j)| \xrightarrow{\text{(1.6)}} |f(x_j, \psi(x_j))| \cdot |x - x_j| \le M\delta \stackrel{\text{def } \delta}{\le} \delta_1$$

Поэтому из равномерной непрерывности функции f вытекает, что

$$|f(x_j, \psi(x_j)) - f(x, \psi(x))| \le \varepsilon$$

А значит, неравенство (1.8) из определения ε -решения выполняется на отрезке Пеано

1.2.3. Лемма Арцела-Асколи

Пусть последовательность функций { $h_n(x)$ } $_{n=1}^\infty$ задана на [a,b]

Определение 27. Каждая из функций последовательности $\{h_n(x)\}_{n=1}^{\infty}$ ограничена на [a,b], если

$$\forall n \ge 1 \quad \exists K_n > 0: \quad \forall x \in [a, b] \quad |h_n(x)| \le K_n$$

Определение 28. Последовательность $\{h_n(x)\}_{n=1}^{\infty}$ **равномерно** ограничена на отрезке [a,b], если

$$\exists K > 0: \forall n \geq 1 \quad \forall x \in [a, b] \quad |h_n(x)| \leq K$$

Определение 29. Каждая из функций последовательности $\{h_n(x)\}_{n=1}^{\infty}$ непрерывна на отрезке [a,b], значит, согласно теореме Кантора, равномерно непрерывна на [a,b], если

$$\forall \varepsilon > 0 \quad \forall n \ge 1 \quad \exists \, \delta_n > 0 : \quad \forall x', x'' \in [a, b] \quad \left(|x' - x''| \le \delta_n \implies |h_n(x') - h_n(x'')| \le \varepsilon \right)$$

Определение 30. Последовательность $\{h_n(x)\}_{n=1}^{\infty}$ равностепенно непрерывна на отрезке [a,b], если

$$\forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall n \ge 1 \quad \forall x', x'' \in [a, b] \quad \left(|x' - x''| \le \delta \implies |h_n(x') - h_n(x'')| \le \varepsilon \right)$$

Определение 31. Последовательность функций $\{h_n(x)\}_{n=1}^{\infty}$ поточечно сходится к некоторой функции h(x) на отрезке [a,b], если

$$\forall \varepsilon > 0 \quad \forall x \in [a, b] \quad \exists N_x > 0: \quad \forall i, j \ge N_x \quad |h_i(x) - h_j(x)| \le \varepsilon$$

Определение 32. Последовательность $\{h_n(x)\}_{n=1}^{\infty}$ равномерно сходится к некоторой функции h(x) на отрезке [a,b], если

$$\forall \varepsilon > 0 \quad \exists N > 0: \quad \forall i, j \ge N \quad \forall x \in [a, b] \quad |h_i(x) - h_j(x)| \le \varepsilon$$

Обозначение. Для любого $x \in [a,b]$ поточечная сходимость обозначается $h_n(x) \to h(x)$

Обозначение. Равномерная относительно [a,b] сходимость обозначается $h_n(x) \xrightarrow{[a,b]} h(x)$

Замечание. В определениях 28 и 30 слова "равномерно" и "равностепенно" означают, что константы K, δ не зависят от выбора n, а в 32 – что номер N не зависит от выбора x

Лемма 5 (Арцела-Асколи; о существовании равномерно сходящейся подпоследовательности). Из любой ограниченной и равностепенно непрерывной на [a,b] последовательности функций $\{h_n\}_{n=1}^{\infty}$ можно выделить равномерно сходящуюся на [a,b] подпоследовательность

Доказательство. Рациональные числа образуют счётное всюду плотное множество на любом промежутке вещественной прямой

Счётность множества рациональных чисел, расположенных на отрезке [a,b] означает, что их можно перенумеровать: $r_1, r_2, ...$

В точке r_1 числовая последовательность $\{h_n\}_{n=1}^{\infty}$ по предположению сходится, поэтому из неё можно выбрать сходящуюся подпоследовательность, т. е. существует такая последовательность натуральных

 $n^{(1)} = \left\{ \left. n_i^{(1)} \right. \right\}_{i=1}^{\infty}, \qquad n_i^{(1)} < n_{i+1}^{(1)}$

что последовательность значений $\left\{h_{n_i^{(1)}}(r_1)\right\}_{i=1}^{\infty}$ сходится В точке r_2 последовательность $\left\{h_{n_i}^{(1)}(r_2)\right\}_{i=1}^{\infty}$ также ограничена, и из ней можно извлечь сходящуюся подпоследовательность, т. е. у последовательности индексов $n^{(1)}$ имеется такая подпоследовательность индексов $n^{(2)} = \left\{n_i^{(2)}\right\}_{i=1}^{\infty}$, что последовательность значений $\left\{h_{n_i^{(2)}}(r_2)\right\}_{i=1}^{\infty}$ тоже сходится. При этом она сходится и в точке r_1 как подпоследовательность сходящейся последовательности Продолжаем этот процесс

Введём последовательность индексов $\left\{n_i^{(i)}\right\}_{i=1}^{\infty} \quad (n_i^{(i)} < n_{i+1}^{(i)})$, где $n_i^{(i)} - i$ -й член подпоследователь-

ности $n^{(i)}$ Функциональная подпоследовательность $\left\{h_{n_i}^{(i)}(x)\right\}_{i=1}^{\infty}$ сходится во всех рациональных точках [a,b],

поскольку в любой рациональной точке r_k последовательность $\left\{h_{n_i^{(k)}}(x)\right\}_{i=1}^\infty$ сходится по построению, а любая другая с меньшим верхним индексом является её подпоследовательностью Покажем, что $\left\{h_{i_*}(x)\right\}_{i=1}^\infty$, где $i_*=n_i^{(i)}$ является искомой подпоследовательностью:

Зафиксируем произвольное $\varepsilon > 0$

По условию леммы последовательность $\{h_{i_*}(x)\}_{i=1}^{\infty}$ равностепенно непрерывна, следовательно, по выбранному ε найдётся такое число $\delta > 0$, что

$$\forall i \in \mathbb{N} \quad \forall x', x'' \in [a, b] : \quad \left(|x' - x''| < \delta \implies |h_{i_*}(x') - h_{i_*}(x'')| \le \frac{\varepsilon}{3} \right)$$

По построению последовательность функций $\{h_{i_*}(x)\}_{i=1}^{\infty}$ сходится поточечно во всех рациональных точках r_k из [a,b]

Поэтому по выбранному ε для любого $k \in \mathbb{N}$ найдётся такой номер $N_{r_k} > 0$, что $|h_{i_*}(r_k) - h_{j_*}(r_k)| \le \varepsilon/3$ для любых $i_*, j_* > N_{r_k}$

Последовательность индексов $N_{r_1}, N_{r_2}, ...,$ – счётная, поэтому она может стремиться к бесконечности. Перейти к конечной подпоследовательности позволяет использование появившейся из определения равностепенной непрерывности универсальной константы δ и плотности множества рациональных чи-

Разобьём отрезок [a,b] на непересекающиеся промежутки, длина которых не превосходит δ . Пусть их окажется l штук

Множество рациональных чисел всюду плотно, поэтому в каждом промежутке можно выбрать по рациональному числу: $r_1^*, ..., r_l^*$

Пусть $N=\max\left\{ \stackrel{\sim}{N_{r_{1}^{*}}},\dots,\stackrel{\sim}{N_{r_{N}^{*}}}\right\}$, где константы N_{r} взяты из определения поточечной сходимости по-

Возьмём произвольное число $x \in [a,b]$. Предположим, что оно попало в промежуток с номером p. Тогда для любых $i_*, j_* > N$ получаем:

$$|h_{i_*}(x) - h_{j_*}(x)| \stackrel{\triangle}{\leq} |h_{i_*}(x) - h_{i_*}(r_p^*)| + |h_{i_*}(r_p^*) - h_{j_*}(r_p^*)| + |h_{j_*}(r_p^*) - h_{j_*}(x)| \leq \varepsilon$$

так как $|x-r_p^*| \leq \delta$ и верна оценка из определения равномерной сходимости

Итак, для любого $\varepsilon > 0$ нашлось такое N, что для любых $i_*, j_* \geq N$ и $x \in [a,b]$ справедливо неравенство $|h_{i_*}(x) - h_{j_*}(x)| \leq \varepsilon$

Замечание. При выполнении условий леммы Арцела-Асколи она позволяет "объявить о рождении" функции h(x), определённой на отрезке [a,b] и предельной для некоторой подпоследовательности функций $h_n(x)$

При этом, по теореме Стокса-Зайделя предельная функция непрерывна на [a,b]

Примечание. Теорема Стокса-Зайделя – некоторое обобщение формулы Ньютона-Лейбница

1.2.4. Теорема о существовании решения ВЗК

Докажем теорему 1:

Теорема 8. Пеано; о существовании внутреннего решения Пусть правая часть уравнения (1.1) непрерывна в области G

Тогда для любой точки $(x_0, y_0) \in G$ и для любого отрезка Пеано $\overline{P_h}(x_0, y_0)$ существует по крайней мере одно решение задачи Коши уравнения (1.1) с начальными данными x_0, y_0), определённое на $\overline{P_h}(x_0, y_0)$

Доказательство. Возьмём произвольную точку (x_0, y_0) из области G и построим какой-либо отрезок Пеано $\overline{P_h}(x_0, y_0)$

Выберем произвольную последовательность положительных чисел ε_n , стремящуюся к нулю при $n \to \infty$

Тогда по лемме об ε -решении для всякого n можно построить ломаную Эйлера $\psi_n(x)$, проходящую через точку (x_0, y_0) , определённую на $\overline{P_h}(x_0, y_0)$ и являющуюся ε_n -решением уравнения (1.1) на отрезке $\overline{P_i}(x_0, y_0)$

Поэтому для любых $n \in \mathbb{N}$ и $x \in \overline{P_h}(x_0, y_0)$ точка $\left(x, \psi_n(x)\right) \in \overline{R}$ и выполняется неравенство (1.8)

 $|\psi_n'(x) - f(x, \psi_n(x))| < \varepsilon_n$

Покажем, что последовательность ломаных Эйлера $\{\psi_n(x)\}_{n=1}^\infty$ на отрезке Пеано удовлетворяет лемме Арцела-Асколи

Последовательность $\{\psi_n(\underline{x})\}_{n=1}^\infty$ равномерно ограничена, так как график любой функции $y=\psi_n(x)$ лежит в прямоугольнике \overline{R} , а значит, $|\psi_n(x)| \leq |y_0| + b$ для любого $x \in [x_0-h,x_0+h]$

Для доказательства равностепенной непрерывности зафиксируем произвольное $\varepsilon>0$

Положим $\delta = {\varepsilon/M},$ где $M = \max_{(x,y) \in \overline{R}} |f(x,y)|$

Тогда для любых $n \in \mathbb{N}$ и $x', x'' \in \overline{P_h}(x_0, y_0)$ таких, что $|x'' - x'| \leq \delta$, получаем:

$$\begin{aligned} |\psi_n(x'') - \psi_n(x')| &= \bigg| \int_{x_0}^{x''} \psi_n'(s) \, \operatorname{d} s - \int_{x_0}^{x'} \psi_n'(s) \, \operatorname{d} s \bigg| = \bigg| \int_{x'}^{x''} \psi_n'(s) \, \operatorname{d} s \underset{(1.7)}{\leq} \\ &\leq \bigg| \int_{x'}^{x''} \max_{j=1-N,\dots,N-1} \big| f\big(x,\psi_n(x_j)\big) \big| \, \operatorname{d} s \bigg| \leq M|x'' - x'| \leq M\delta = \varepsilon \end{aligned}$$

Действительно, интегрируя кусочно-постоянную функцию $\psi'(x)$ по s от x_0 до x, для любого $x\in [x_{-N},x_N]$ имеем: $\psi(x)=\psi(x_0)+\int_{x_0}^x\psi'(s)\;\mathrm{d}\, s$, где

$$\int_{x_0}^x \psi(s) \, ds = \sum_{k=0}^{j-1} \int_{x_k}^{x_{k+1}} \psi'(s) \, ds + \int_{x_j}^x \psi'(s) \, ds, \qquad x \in (x_j, x_{j+1}], \quad j \in \{0, ..., N-1\}$$

$$\int_{x_0}^x \psi'(s) \, ds = \sum_{k=j+1}^{-1} \int_{x_{k+1}}^{x_k} \psi'(s) \, ds + \int_{x_{j+1}}^x \psi'(s) \, ds, \qquad x \in [x_j, x_{j+1}), \quad j \in \{-N, ..., -1\}$$

В результате последовательность ломаных Эйлера $\psi_n(x)$ удовлетворяет условиям леммы Арцела-Асколи, и из неё можно выделить равномерно сходящуюся подпоследовательность $\{\psi_{i_*}(x)\}_{i_*=1}^{\infty}$

Пусть
$$\psi_{i_*} \xrightarrow[i_* \to \infty]{x \in P_h} \varphi(x)$$

Тогда, согласно замечанию после леммы Арцела-Асколи функция $y=\varphi(x)$ непрерывна на отрезке Пеано

Поскольку $\psi_{i_*}(x)$ по построению является ε_{i_*} -решением, из неравенства (1.8) вытекает, что

$$\forall x \in \overline{P_h}(x_0, y_0) \quad \forall i_* \in \mathbb{N} : \quad \psi'_{i_*}(x) = f(x, \psi_{i_*}(x)) + \Delta_{i_*}(x), \qquad |\Delta_{i_*}(x)| \le \varepsilon_{i_*}$$

Интегрируя это равенство по s от x_0 до x получаем:

$$\psi_{i_*}(x) - \psi_{i_*}(x_0) = \int_{x_0}^x f(s, \psi_{i_*}(s)) \, \mathrm{d}s + \int_{x_0}^x \Delta_{i_*}(s) \, \mathrm{d}s$$
 (1.9)

причём
$$\psi_{i_*}(x_0)=y_0$$
 и $\left|\int_{x_0}^x \Delta_{i_*}(s) \, \mathrm{d} s\right| \leq \varepsilon_{i_*}|x-x_0| \xrightarrow[i_*\to\infty]{} 0$, так как $|x-x_0|\leq h$

Кроме того, $f(s, \psi_{i_*}(s)) \xrightarrow[i_* \to \infty]{s \in \overline{P_h}} f(s, \varphi(s))$, поскольку любая точка $(s, \psi_{i_*}(s)) \in \overline{R}$ и f(x, y) по теореме Кантора равномерно непрерывна на \overline{R}

Утверждение 4. Поэтому можно осуществить предельный переход под знаком интеграла:

$$\int_{x_0}^x f(s, \psi_{i_*}(s)) ds \xrightarrow[i_* \to \infty]{} \int_{x_0}^x f(s, \varphi(s)) ds$$

Доказательство. Действительно, зафиксируем произвольное число $\varepsilon > 0$

Из равномерной непрерывности функции f(x,y) на компакте \overline{R} вытекает, что по выбранному ε найдётся такое δ , что для любых $(x,\widetilde{y}),(x,\widehat{y})\in \overline{R}$ выполнено $|\widehat{y}-\widetilde{y}|<\delta \Longrightarrow |f(x,\widehat{y})-f(x,\widetilde{y})|<\varepsilon/h>
Теперь из равномерной относительно <math>x\in [x_0-h,x_0+h]$ сходимости последовательности функций $\psi_{i_*}(x)$ к функции $\varphi(x)$ вытекает, что для найденного δ существует такой номер N, что $|\psi_{i_*}(x)-\varphi(x)|<\delta$ для любых $i_*\geq N$ и $x\in \overline{P_h}(x_0,y_0)$, причём графики $y=\psi_{i_*}(x)$ и $y=\varphi(x)$ по доказанному лежат в \overline{R}

Следовательно, $\left|f(x,\psi_{i_*}(x)) - f(x,\varphi(x))\right| < \varepsilon/h$, и при $i_* \ge N$ имеем:

$$\left| \int_{x_0}^x f(s, \psi_{i_*}(s)) \, \mathrm{d} \, s - \int_{x_0}^x f(s, \varphi(s)) \, \, \mathrm{d} \, s \right| \leq \left| \int_{x_0}^x \left| f(s, \psi_{i_*}(s)) - f(s, \varphi(s)) \right| \, \mathrm{d} \, s \right| < \frac{\varepsilon |x - x_0|}{h} \leq \varepsilon$$

Перезодя в обеих частях равенств (1.9) к пределу при $i_* \to \infty$, получаем тождество (1.2):

$$\varphi(x) \stackrel{[x_0-h,x_0+h]}{\equiv} \varphi(x_0) + \int_{x_0}^x f(s,\varphi(s)) ds$$

Поэтому, согласно лемме о записи решения в интегральном виде, предельная функция $y = \varphi(x)$ является решением ВЗК (x_0, y_0) уравнения (1.1) на отрезке Пеано $[x_0 - h, x_0 + h]$

Замечание. Теорема Пеано не даёт информации о количестве решений, проходящих через заданную точку области G

Замечание. Для точек неединственности существуют решения, которые нельзя приблизить ломанными Эйлера

1.3. Существование решения граничной задачи Коши

В этом параграфе будут указаны условия, при которых существует решение ГЗК уравнения (1.1), поставленной в произвольной точке $(x_0, y_0) \in \hat{G} \subset \partial G$, и условия, при которых такое решение отсутсвует. Поставленная задача решается путём выделения тех случаев, в которых возможно построение аналогов труегольника и отрезка Пеано, с последующим применением метода ломаных Эйлера.

Для упрощения обозначений и формул, используемых в дальнейшем при решении граничной задачи Коши, НУО будем считать, что задача всегда ставится в начале координат и функция f там равна нулю, т. е. уравнение (1.1) имеет вид

$$y' = f_0(x, y) (1.10)$$

где функция f_0 определена и непрерывна на множестве $\widetilde{G} = G \cup \widehat{G}$, точка $O = (0,0) \in \widetilde{G}$, $f_0(0,0) = 0$ и поставлена граничная задача Коши с начальными данными 0,0

Доказательство (HVO). В самом деле, пусть для уравнения (1.1) y' = f(x,y) задача Коши поставлена в точке $(x_0,y_0) \in \hat{G}$. Тогда замена

$$x = u + x_0,$$
 $y = v + y_0 + f(x_0, y_0)(x - x_0)$

сводит уравнение (1.1) к уравнению $v' = f_0(u, v)$, в котором

$$f_0(u,v) = f\left(u + x_0, v + f(x_0, y_0)u + y_0\right)$$

При этом для $x = x_0, y = y_0$ получаем:

$$u = u_0 = 0,$$
 $v = v_0 = 0,$ $f_0(0,0) = 0$

1.3.1. Граничные кривые и порождаемые ими множества

Ключевую роль для существования или отсутсвия решения ГЗК уравнения (1.10) будет играть структура граничного множества в \widehat{G} в малой окрестности точки O и значения функции f_0 на нём, а также расположение всего множества \widetilde{G} по отношению к оси абсцисс

Определение 33. Функцию $y=b_{a,u}^+(x)$ заданную на отрезке [0,a] будем называть верхнеграничной, если для неё выполняются следующие пять условий:

- 1. $b_{a,u}^+(x) \in \mathcal{C}^1([0,a])$
- 2. $b_{a,u}^+(0) = 0$
- 3. $b_{a,u}^+{}'(0) \ge 0$
- 4. $b_{a,u}^+$ вогнута на [0,a], если $b_{a,u}^+{}'(0)=0$
- 5. Правая верхнеграничная кривая $\gamma_{a,u}^+=\left\{\,x\in[0,a],\quad y=b_{a,u}^+(x)\,\right\}\subset\widehat{G}$

Примечание. Условие 3 допускает случай, когда $b_{a,u}^{+}{}'(0) = +\infty$

В условии 4 вогнутость понимается в нестрогом смысле, т. е. допускается тождество $b_{a,u}^+(x) \equiv 0$

Аналогично вводится правая нижнеграничная функция $y=b_{a,l}^+(x)$, и правая нижнеграничная кривая $\gamma_{a,l}^+$ – график $b_{a,l}^+(x)$. Только в условии 3 предполагаем, что $b_{a,l}^+{}'(0) \leq 0$, и допускаем случай, когда $b_{a,l}^+{}'(0) = -\infty$, а в условии 4 предполагаем, что $b_{a,l}^+(x)$ выпукла

Введём две ключевые константы:

$$au_u = rac{b_{a,u}^+{}'(0)}{2}, \qquad au_u = 1, ext{ если } b_{a,u}^+{}'() = +\infty$$
 $au_l = -rac{b_{a,l}^+{}'(0)}{2}, \qquad au_l = -1, ext{ если } b_{a,l}^+{}'(0) = -\infty$

НУО будем считать, что выполняются условия:

$$\begin{cases} b_{a,u}^{+}(a) \leq a & \text{при } \tau_{u} = 0 \\ \forall x \in [0, a] & b_{a,u}^{+}{}'(x) \geq \tau_{u} & \text{при } \tau_{u} > 0 \\ -b_{a,l}^{+}(a) \leq a & \text{при } \tau_{l} = 0 \\ \forall x \in [0, a] & -b_{a,l}^{+}{}'(x) \geq \tau_{l} & \text{при } \tau_{l} > 0 \end{cases}$$

$$(1.11)$$

поскольку непостредственно из определения вытекает, что для любой правой граничной функции $b_a^+(x)$ функция $b_{\check a}^+(x)$, являющаяся её сужением на произвольный отрезок $[a,\check a]$ с $\check a < a$, остаётся правой граничной.

В результате $\gamma_{a,u}^+$ – гладкая кривая из \widehat{G} , параметризованная неубывающей с учётом (1.11) функцией $b_{a,u}^+(x)$. Она расположена в первой четверти и содержит точку O. $\gamma_{a,l}^+$ – гладкая кривая из \widehat{G} , параметризованная невозрастающей функцией $b_{a,l}^+(x)$. Она расположена в четвёртой четверти и содержит точку O Для всякого c>0 рассмотрим правую c-окрестность (это не окрестность – она не открыта) точки O:

$$N_c^+ := \{ (x, y) \mid x \in (0, c], \quad |y| \le c \}$$

В прямоугольнике N_c^+ длина верхней стороны выбирается так, чтобы каждая "выходящая" из точки O правая граничная кривая, при наличии хотя бы одной, имела пересечение с одной из его сторон. При этом "поведение" гранчных кривых после первого попадания на границу N_c^+ интереса не представляет.

Любое последующее уменьшение c ситуацию не меняет, разве что отсекаются части граничных кривых, попавших в прямоугольник снаружи.

В частности, неравенства $b_{a,u}^+(a) \le a$ или $-b_{a,l}^+(a) \le a$ из (1.11) при всех $c \le a$ гарантируют пересечение правых граничных кривых γ_a^+ именно с боковой стороной прямоугольника N_c^+ .

Всегда в дальнейшем, "обрезая" при необходимости кривые γ_a^+ , будем считать, что правый конец $(a,b_a^+(a))$ любой из них – это первая точка выхода граничной кривой на границу прямоугольника N_c^+ Выделим для уравнения (1.10) четыре варианта расположения граничных кривых в малой окрестности точки O при x>0:

Определение 34. Будем говорить, что

1. реализуется случай (W^+) , если

$$\exists c_W > 0: W_{c_W}^+ \cap \widehat{G} = \emptyset, W_{c_W}^+ = N_{c_W}^+$$

2. реализуется случай (U^+) , если

$$\exists c_U > 0: \quad U_{c_U}^+ \cap \widehat{G} = \gamma_{a,u}^+ \setminus \{O\}$$

$$U_{c_U}^+ := \left\{ (x, y) \mid \left(x \in (0, a], \quad -c_u \le y \le b_{a, u}^+(x) \right) \cup \left(x \in (a, c_U], \quad y \le c_U \right) \right\}$$

3. реализуется случай (O^+) , если

$$\exists c_O > 0: \quad O_{c_O}^+ \cap \widehat{G} = \gamma_{a,l}^+ \setminus \{O\}$$

$$O_{c_O}^+ := \left\{ (x, y) \mid \left(x \in (0, a], \quad b_{a, l}^+(x) \le y \le c_O \right) \cup \left(x \in (a, c_O], \quad |y| \le c_O \right) \right\}$$

4. реализуется случай (B^+) , если

$$\exists c_B > 0 : B_{c_B}^+ \cap \widehat{G} = \left(\gamma_{a,u}^+ \cup \gamma_{a,l}^+ \right) \setminus \{ O \}, \qquad B_{c_B}^+ \coloneqq U_{c_B}^+ \cap O_{c_B}^+$$

Обозначение. (X^+) и (X_{c*}^+) будут обозначать далее, что реализуется любой из четырёх описанных выше случаев на соответствующем множестве

В случае (X^+) или (X_{c*}^+) имеет место одна из двух возможностей:

- 1. $X_{c*}^+ \cap G \neq \emptyset$, что равносильно тому, что X_{c*}^+ без входящих в него граничных кривых лежит в G
- 2. $X_{c*}^+ \cap G = \emptyset$

В результате случай (X^+) в зависимости от расположения множества X_{c*} распадается на два подслучая, которые будем обозначать (X_1^+) и (X_2^+)

А дополнительный индекс >, =, <, при его наличии в обозначении любого из шести возникших случаев (кроме (W_1^+)) и (W_2^+)), будет уточнять знак производной соответсвующих правых граничных функций в нуле

В итоге, получаются случаи:

 U_1^+ : $(U_{c_U}^+ \setminus \gamma_{a,u}^+) \subset G$, два подслучая:

$$U_1^{+,>}: b_{a,u}^{+,\prime}(0) > 0$$

$$U_1^{+,=}: b_{a,u}^{+,'}(0) = 0$$

 U_2^+ : $U_{cu}^+ \cap G = \emptyset$, подслучаи те же

 O_1^+ : $(O_{co}^+ \setminus \gamma_{a,l}^+) \subset G$, два подслучая:

$$O_{1}^{+}: b_{a,l}^{+}'(0) < 0$$

$$O_{1,=}^{+}: b_{a,l}^{+}'(0) = 0$$

 O_2^+ : $O_{co}^+ \cap G = \emptyset$, подслучаи те же

$$B_1^+$$
: $\left(B_{c_B}^+\setminus (\gamma_{a,u}^+\cup \gamma_{a,l}^+)\right)\subset G$, четыре подслучая:

$$B_{1,<}^{+,>}$$
: $b_{a,u}^{+}{}'(0) > 0$, $b_{a,l}^{+}{}'(0) < 0$

$$\begin{split} B_{1,=}^{+,=} \colon \ b_{a,u}^{+}{}'(0) &= 0, \quad b_{a,l}^{+}{}'(0) = 0 \\ B_{1,=}^{+,>} \colon \ b_{a,u}^{+}{}'(0) &> 0, \quad b_{a,l}^{+}{}'(0) = 0 \\ B_{1,<}^{+,=} \colon \ b_{a,u}^{+}{}'(0) &= 0, \quad b_{a,l}^{+}{}'(0) &< 0 \end{split}$$

 B_{2}^{+} : $B_{c_{B}}^{+} \cap G = \emptyset$, подслучаи те же

Замечание. Прямоугольник N_c^+ может содержать более одной нижнеграничной и более одной нижнеграничной кривой. Но наличие или отсутсвие граничных кривых в N_c^+ вне множества X_c^+ не влияет на существование решения $\Gamma \Im K(x_0,y_0)$

Замечание. При наличии в N_c^+ единственной граничной кривой, дежащей на оси абсцисс, будем считать, что имеет место случай $(U_1^{+,=})$ с $b_{a,u}^+ \equiv 0$, а не $(O_{2,=}^+)$ с $b_{a,l}^+ \equiv 0$. То же касается случаев $(O_{1,=}^+)$ и $(U_2^{+,=})$

1.3.2. Граничный треугольник и граничный отрезок Пеано

Для доказательства существования решения $\Gamma 3K(O=(0,0)\in \widehat{G})$, график которого расположен, скажем, в правой полуплоскости, в первую очередь следует выделить так называемый правый граничный отрезк Пеано $\overline{P_h+}^+(O)=[0,h^+]$ ($h^+>0$). А для этого необходимо построить правый граничный треугольник $\overline{T_b^+}$, во многом аналогичный треугольнику $\overline{T^+}$ из определения отрезка Пеано для внутренней задачи Коши, высота которого как раз и здадаёт константу h^+ . Осуществить это удаётся в случаях $(N_1^+), (U_1^+), (O_1^+), (B_1^+)$ при дополнительных предположениях о поведении функции f_0 на тех граничных кривых, которые в нуле имеют нулевую производную

При построении будет использоваться непрерывность функции $f_0(xy)$ в граничной точке O, где по условию f_0 равна нулю, означающая, что

$$\forall \tau > 0 \quad \exists \, \delta_{\tau} > 0 : \quad \forall (x, y) \in \overline{V}_{\delta_{\tau}} \cap \widetilde{G} \quad |f_0(x, y)| \le \tau, \qquad \overline{V}_{\delta_{\tau}} \coloneqq \{ (x, y) \mid |x| \le \delta_{\tau}, \quad |y \le \delta_{\tau} \}$$
 (1.12)

В простейшем случае (W_1^+) , когда весь прямоугольник N_{cw}^+ лежит в G (граничные кривые в c_W -окрестности точки O могут быть расположены только на оси ординат или в левой полуплоскости), правый треугольник $\overline{T_h^+}$ и правый отрезок Пеано $[0, h^+]$ строятся стандартно:

угольник $\overline{T_b^+}$ и правый отрезок Пеано $[0,h^+]$ строятся стандартно: Выберем, например, $\tau=1$. Тогда, согласно (1.12) найдётся $\delta_1>0$ такое, что $|f_0(x,y)|\leq 1$ на множестве $\overline{V}_{\delta_1}\cap\widetilde{G}$

Положим $\widetilde{c} := \min \{ c_W, \delta_1 \}$

Построим в прямоугольнике $N_{\widetilde{c}}^+$, не содержащем граничных кривых, с добавленной к нему точкой O, прямоугольный равнобедренный треугольник $\overline{T_b}^+$ с вершинами в точках $(0,0),(\widetilde{c},\widetilde{c}),(\widetilde{c},-\widetilde{c})$. Тогда длина его высоты h^+ равна \widetilde{c} , а его боковые стороны имеют углы наклона, равные $\pm \frac{\pi}{4}$, поэтому любая ломаная Эйлера, "выпущенная" из начала координат, в силу выбора $\tau=1$ в (1.12) будет продолжима до точки (h^+,y_*) , лежащей на основании $\overline{T_b^+}$, совпадающем в данном случае с правой стороной $N_{\widetilde{c}}^+$

Похожие построения будут проведены для случаев $(U_1^{+,>}), (O_{1,<}^+), (B_{1,<}^{+,>})$

В остальных пяти случаях из-за того, что в каждом производная хотя бы одной из граничных функций в нуле равна нулю, может оказаться, что не все ломанные Эйлера могут быть продолжены до основания любого "классического" правого треугольника Пеано. Дело в том, что часть граничной кривой вблизи точки O такой граничной функции будет обязательно лежать внутри треугольника со сколь угодно малым углом при вершине O. Поэтому может найтись точка на этой части границы, в которой модуль угла наклона касательной будет меньше значения функции f_0 в этой точке, а значит, при попадании ломаной в эту точку её продолжение вправо должно будет покинуть множество \widetilde{G} , что невозможно

Примечание. На рисунке описанная ситуация возникает в случае $(U_1^{+,=})$

Действительно, каким бы малым ни выбрать τ в формуле (1.12), вссегда найдётся константа $c \leq \min \{ c_I, \delta_\tau \}$ такая, что в прямоугольнике $N_{\widetilde{c}^+}$ с $\widetilde{c} = \min \{ c_U, \delta_\tau \}$ часть правой верхнеграничной кривой $\gamma_{\widetilde{c},u}^+$, примыкающая к точке O, будет лежать под верхней боковой стороной прямоугольника T_b^+ , имеющей угол наклона $\arctan \tau$. Поэтому ломаная Эйлера, которая не может покидать \widetilde{G} , попадая в какой-то точке $(x_*, b_{\widetilde{c},u}^+(x_*))$ $(x_* < \widetilde{c})$ на $\gamma_{\widetilde{c},u}^+$, не сможет быть продолжена вправо, если вы этой точке отрезок поля направлений будет иметь угол наклона, не превосходищий $\arctan \tau$, но больший угла наклона касательной к $\gamma_{\widetilde{c},u}^+$

Для устранения этой проблемы во всех точках кривых $\gamma_{a,u}^+$ и $\gamma_{a,l}^+$ введём ограничения на функцию f_0 в случаях $(U_1^{+,=}), (O_{1,=}^+), (B_{1,=}^{+,=}), (B_{1,=}^{+,>})$ и $(B_{1,<}^{+,=})$:

$$\forall x \in (0, a] \quad \begin{cases} f_0(x, b_{a,u}^+(x)) \le b_{a,u}^+{}'(x), & \text{если } b_{a,u}^+{}'(0) = 0 \\ f_0(x, b_{a,l}^+(x)) \ge b_{a,l}^+{}'(x), & \text{если } b_{a,l}^+{}'(0) = 0 \end{cases}$$
 (1.13)

означающие, что в любой точке $\gamma_{a,u}^+$ и $\gamma_{a,l}^+$ правый полуотрезок поля направлений уравнения (1.10) направлен внутрь или по границе области G

Построим отрезок Пеано в восьми случаях (X_1^+) :

 $U_{\mathbf{1}}^{+,>}$. Пусть $\widetilde{c} = \min \{ c_U, \delta_{\tau_u} \}$, где τ_u из (1.11), а δ_{τ_u} задана в (1.12). Тогда $U_{\widetilde{c}}^+ \setminus \gamma_{\widetilde{a},u}^+ \subset G$, где \widetilde{a} — точка пересечения $\gamma_{a,u}^+$ с верхней или боковой ($\widetilde{a} = \widetilde{c}$) границей $N_{\widetilde{c}}^+$, $|f_0(x,y)| \leq \tau_u$ при $(x,y) \in U_{\widetilde{c}}^+$ и $h^+ = \widetilde{a}$

Геометрически надо из точки O провести лучи с тангенсами углов наклона, равными $\pm \tau$, до пересечения с вертикальной прямой $x \equiv \widetilde{a}$. В полученном равнобедренном треугольнике $\overline{T_b^+}$ высота $h_{\Delta}^+ = \widetilde{a}$. При этом $\overline{T_b^+} \setminus \{\,O\,\} \subset U_{\widetilde{c}}^+$ (и расположен под кривой $\gamma_{\widetilde{a},u}^+$) в силу выбора \widetilde{a} , так как согласно (1.11) верно неравенство $b_{\widetilde{a},u}^+(x) \geq \tau_u x$ при $x \in [0,\widetilde{a}]$

- $U_1^{+,=}$. Пусть в (1.12) $\tau=1$, $\widetilde{c}=\min\{c_U,\delta_1\}$. Тогда $U_{\widetilde{c}}^+\setminus\gamma_{\widetilde{a},u}^+\subset G$, причём $\widetilde{a}=\widetilde{c}$, так как правый конец $\gamma_{\widetilde{a},u}^+$ с учётом (1.11) заканчивается на боковой стороне $N_{\widetilde{c}}^+,|f_0(x,y)|\leq 1$ при $(x,y)\in U_{\widetilde{c}}^+$ и $h^+=\widetilde{c}$ Геометрически надо соединить точки O и $(\widetilde{c},-\widetilde{c})$. Тогда полученный отрезок вместе с кривой $\gamma_{\widetilde{a},u}^+$ и отрезком боковой стороны $N_{\widetilde{c}}^+$ образует криволинейный треугольник $\overline{T_b^+}$ с высотой $h_{\Delta}^+=\widetilde{c}$, при этом $\overline{T_b^+}\setminus O\subset U_{\widetilde{c}}^+$
- $O_{1,<}^+, O_{1,=}^+$. Аналогично, только на рисунке для случая $(O_{1,<}^+)$ кривая $\gamma_{\widetilde{a},l}^+,$ над которой расположен треугольник $\overline{T_b^+},$ пересекается не с нижней, а с боковой стороной прямоугольника $N_{\widetilde{c}^+}$

- $B_{1,<}^{+,>}$. Пусть $\widetilde{c}=\min\{\,c_B,\delta_{\widetilde{ au}}\,\}$, где $\widetilde{ au}=\min\{\,\tau_u,\tau_l\,\}$ (см. (1.11)). Тогда $B_{\widetilde{c}^+}\setminus\left(\gamma_{a_u,u}^+\cup\gamma_{a_l,l}^+\right)\subset\gamma,\ |f_0(x,y)|\leq\widetilde{\tau}$ при $(x,y)\in B_{\widetilde{c}}^+$ и $h^+=\widetilde{a}=\min\{\,a_u,a_l\,\}$ Геометрически надо из точки O провести лучи с тангенсами углов наклона $\pm\widetilde{\tau}$ до пересечения с вертикальной прямой $x\equiv\widetilde{a}$. В полученном треугольнике $\overline{T_b^+}$ высота $h_{\Delta}^+=\widetilde{a}$. При этом $\overline{T_b^+}\setminus O\subset B_{\widetilde{c}}^+$ в силу выбора \widetilde{a}
- $B_{1,=}^{+,=}$. По определению множества $B_{c_B}^+$ и условию (1.11) правые концы кривых $\gamma_{a_u,u}^+, \gamma_{a_l,l}^+$ лежат на боковой стороне прямоугольнкиа $N_{\widetilde{c}}^+$ с $\widetilde{c}=c_B$, поэтому $a_u=a_l=\widetilde{c},\, B_{\widetilde{c}}^+\setminus \left(\gamma_{a_u,u}^+\cup\gamma_{a_l,l}^+\right)\subset G$ и $h^+=\widetilde{c}$ Геометрически само множество $B_{\widetilde{c}}^+$ образует криволинейный треугольник T_b^+ с высотой $h_{\Delta}^+=\widetilde{c}$
- $B_{1,=}^{+,>}$. Пусть $\widetilde{c}=\min$ { $c_B,c_O,\delta_{ au_u}$ }, где au_u из (1.11), а $\delta_{ au_u}$ из (1.12). Тогда $B_{\widetilde{c}^+}\setminus\left(\gamma_{\widetilde{a},u}^+\cup\gamma_{\widetilde{c},l}^+\right)\subset G,$ $|f_0(x,y)|\leq au_u$ при $(x,y)\in B_{\widetilde{c}}^+$ и $h^+=\widetilde{a}$ Геометрически надо из точки O провести луч с таненсом угла наклона, равным au_u , до пересечения с прямой $x\equiv \widetilde{a}$, где \widetilde{a} точка пересечения $\gamma_{\widetilde{a},u}^+$ с верхней или боковой $(\widetilde{a}=\widetilde{c})$ границей $N_{\widetilde{c}}^+$. Третьей стороной криволинейного треугольника $\overline{T_b^+}$ является кривая $\gamma_{\widetilde{a},l}^+$. При этом в треугольнике высота $h_{\Delta}^+=\widetilde{a}$ и $\overline{T_b^+}\setminus O\subset B_{\widetilde{c}}^+$ в силу выбора \widetilde{a}

$B_{1,<}^{+,=}$. Аналогично

1.3.3. Теоремы о существовании или отстутствии решений ГЗК

Теорема 9 (о существовании решения граничной задачи Коши). Предположим, что в уравнении (1.10) функция f_0 определена и непрерывна на множестве \widetilde{G} .

Тогда в каждом из случаев $(N_1^+), (U_1^{+,>}), (O_{1,<}^+), (B_{1,<}^{+,>})$ и в каждом из случаев $(U_1^{+,=}), (O_{1,=}^+), (B_{1,=}^{+,=}), (B_{1,=}^{+,$ $(B_{1,=}^{+,>}),(B_{1,<}^{+,=})$ при условиях (1.13) на любом правом граничном отрезке Пеано существует по крайней мере одно решение граничной задачи Коши c начальными данными (0,0)

Доказательство. Рассмотрим, например, случай $(B_{1,=}^{+,>})$ Согласно (1.11) (первые два неравенства) правая верхнеграничная функция $b_{a,u}^+(x)$, параметризующая кривую $\gamma_{a_u,u}^+{}'(x) \geq \tau_u$ для любого $x \in (0,a_u]$. А у правой нижнеграничной привой $\gamma_{a_l,l}^+$ константа $a_l = c_O$ в силу (1.11) (последние два нераенства)

Пусть $c_* \coloneqq \min\{c_U, c_O\}$, тогда множество $B_{c_*}^+ \setminus (\gamma_{a_u, u}^+ \cup \gamma_{a_l, l}^+) \subset G$ Далее, для τ_u найдётся (см. (1.12)) такая δ_{τ_u} , что $|f_0(x, y)| \le \tau_u$ в любой точке δ_{τ_u} -окрестности начала координат, принадлежащей G

Положим $\tilde{c} := \min\{c_*, \delta_{\tau_u}\}$, тогда на множестве $B_{\tilde{c}}^+$ для функции $|f_0|$ справедлива та же оценка

Построим теперь лежащий в $B_{\widetilde{c}}^+$ криволинейный треугольник $\overline{T_b^+}$, как это было сделано при описании случая $(B_1^{+,>})$. Его высота $h^+ = \tilde{a}$

Поскольку отрезок оси абсцисс $[0, h^+]$ лежит в \widetilde{G} и является отрезком поля направлений в точке $O \in \widehat{G}$, из точки О вправо можно начать строить ломаную Эйлера с проивольным рангом дробления

Ломаная Эйлера не может покинуть $\overline{T_b^+}$ через верхнюю боковую сторону, лежащую на прямой $y=\tau_u x$, так как в любой её точке $|f_0(x,y)| \leq \tau_u$. Аналогично при попадании ломаной Эйлера при $x=x_*>0$ на нижнюю боковую сторону, являющуюся частью правой нижнеграничной кривой $\gamma_{\widetilde{a},l}^+,$ по условию (1.13) (второе неравенство) $f_0ig(x_*,b^+_{\widetilde{a},l}(x_*)ig) \geq b^+_{\widetilde{a}}{}'(x_*)$, а значит, при $x>x_*$ следующий отрезок ломаной будет либо лежать на $\gamma_{\widetilde{a},l}^+$, либо внутри треугольника в силу выпуклости $\gamma_{\widetilde{a},l}^+$. Поэтому ломаная Эйлера с произвольным выбранным рангом дробления может быть продолжена на весь правный граничный отрезок Пеано $[0, h^+]$

Дальше дословно повторяется доказательство теоремы Пеано (теор. 1)

Аналогичные рассуждения проводятся и в остальных случаях

Рассмотренные в теореме 9 девять случаев не исчерпывают все ситуации, в которых можно доказать существование решения ГЗК уравнения (1.10). Это удаётся сделать ещё в ряде случаев, но уже другим

Все новые случаи предполагают наличие двух граничных функций, которые будем обозначать $b_a^{+,u}$ и $b_a^{+,l}$, а их графики – $\gamma_a^{+,u}$ и $\gamma_a^{+,l}$. Например, $\gamma_{a,u}^{+,l}$ – это нижняя верхнеграничная кривая. При этом в определении граничных функций можно отказаться от условия о выпуклости, требуя от них только отсутсвия общих точек, кроме точки ${\cal O}$

Для функций $b_a^{+,*}(x)$ (* – это u или l) положим $\tau^* \coloneqq \frac{b_a^{+,*'}(0)}{2}$

Будем использовать два варианта сравнительного поведения правых граничных функций $b_a^{+,*\prime}(x)$ и функции $f_0(x, b_a^{+,*})$ на отрезке [0, a]:

$$\begin{bmatrix}
f_0(x, b_a^{+,u}(x)) \le b_a^{+,u'}(x), & f_0(x, b_a^{+,l}(x)) \le b_a^{+,l'}(x) \\
f_0(x, b_a^{+,u}(x)) \ge b_a^{+,u'}(x), & f_0(x, b_a^{+,l}(x)) \ge b_a^{+,l'}(x), & \tau^u \cdot \tau^l = 0
\end{bmatrix}$$
(1.14)

Иными словами, в первом варианте построенные на обеих границах отрезки поля направлений напрвалены (с увеличением x) по границе или внутрь области G, лежащей между граничными кривыми, а во втором варианте – наружу. Кроме того, во втором варианте требуется, чтобы хотя бы одна граничных кривых имела в начале координат горизонтальную касательную

Теорема 10 (о существовании решения граничной задачи Коши). Пусть в уравнении (1.10) функция f_0 определена и непрерывна на множестве \hat{G} и имеет место один из вариантов из условия (1.14), тогда на отрезке [0,a] существует по крайней мере одно решение $\Gamma 3K(0,0)$

Доказательство. Без доказательства

Перечислим и опишем новые случаи в привычных обозначениях: Во-первых, ими являются три знакомых случая $(B_{1,=}^{+,=}), (B_{1,=}^{+,>}), (B_{1,<}^{+,>}),$ но с иным поведением отрезков поля направлений на граничных кривых

Следующие два случая – подслучаи $(U_2^{+,=})$, где стало существенно наличие второй верхнеграничной кривой и расположение области G между кривыми. Обозначим их $(B_2^{+,>,=})$, $(B_2^{+,=,=})$ по аналогии со случаем

Последние два случая, обозначаемые $(B_{2,=,=}^+)$ и $(B_{2,<,=}^+)$ относятся к $(O_{2,=}^+)$

Изучим теперь нигде пока не рассмотренные случаи $(U_2^{+,>}), (O_{2,<}^+), (B_{2,<}^{+,>})$ и вырожденный случай (N_2^+) : $\exists \, c>0$: $G\cap N_c^+=\emptyset$, в котором отсутсвуют граничные кривые, имеющие в точке O горизонтальную касательную:

Теорема 11 (об отсутствии решений граничной задачи Коши). В каждом из случаев $(U_2^{+,>})$, $(O_{2,<}^+)$, $(B_{2,<}^{+,>})$, (N_2^+) граничная задача Коши с начальными данными (0,0) не имеет решений в правой полуплоскости

Доказательство. Допустим, что в каждом случае из условия теоремы на некотором отрезке [0,a] существует решение $y=\varphi(x)$ задачи Коши уравнения (1.10) с начальными данными (0,0), т. е. $\varphi(0)=0$. Тогда $\varphi'(0)=f_0\big(0,\varphi(0)\big)=0$. Но график любого решения должен лежать в \widetilde{G} , а значит, располагаться не ниже правой верхнеграничной кривой, у которой в точке O тангенс угла наклона согласно (1.11) равен $2\tau_u>0$, или не выше правой нижнеграничной кривой, имеющей в точке O тангенс угла наклона, равный $-2\tau_l<0$. Поэтому $\varphi'(0)\neq 0-\frac{\ell}{2}$

Замечание. Теоремы, подобные приведённым, можно сформулировать для левой полуплоскости

1.4. Единственность решения задачи Коши

1.4.1. Теорема о локальной единственности решения внутренней задачи Коши

В этом разделе будет доказана теорема 5 (о локальной единственности решения внутренней задачи Коши)

Лемма 6 (о продолжимости решений на отрезок Пеано). Пусть $y=\varphi(x)$ – это решение внутренней задачи Коши с начальными данными x_0,y_0 , определённое на $\overline{P_h}(x_0,y_0)$.

Тогда любое другое решение уравнения (1.1) $y = \psi(x)$ этой же задачи Коши, определённое на промежутке $\langle a,b \rangle \subsetneq [x_0-h,x_0+h]$, продолжимо на $\overline{P_h}(x_0,y_0)$

Доказательство. Докажем, например, продолжимость решения $y=\psi(x)$ с $\psi(x_0)=y_0$ на правый полуотрезок Пеано:

Если $\langle a,b\rangle=\langle a,b\rangle$ (т. е. $b\leq x_0+h$), то график решения $y=\psi(x)$ при $x\in[x_0,b)$ лежит в треугольнике $\overline{T^+}$, построенном для решения $y=\varphi(x)$. Поэтому у любой последовательности $x_k\in[x_0,b)$ и $x_k\xrightarrow[k\to\infty]{}b$

точки $(x+k,\psi(x_k)) \in \overline{T^+} \subset \overline{R}$, а значит, найдётся сходящаяся последовательность $(x_{k_l},\psi(x_{k_l}))$. Её предел – точка $(b,\eta) \in \overline{T^+}$

Следовательно, по теореме о продолжимости решения (теор. 2) $y = \psi(x)$ продолжимо на $[x_0, b]$, хотя могло быть там сразу и задано

- Если теперь $b = x_0 + h$, то лемма доказана
- Пусть $b < x_0 + h$. Построим равнобедренный треугольник $\overline{T_1^+}$ с вершиной в точке (b,η) , боковыми сторонами, имеющими тангенсы углов наклона $\pm M$, и основанием, лежащим на основании треугольника $\overline{T^+}$ с абсциссой $x_0 + h$. Тогда $\overline{T_1^+} \subset \overline{T^+}$ и по теореме Пеано (теор. 1) на $[b,x_0+h]$ существует решение задачи Коши с начальными данными (b,η) , продолжающее $\psi(x)$ до точки

По лемме для любой точки $(x_0, y_0) \in G$ и для любого $\overline{P_h}(x_0, y_0)$ любое решение задачи Коши уравнения (1.1) с начальными данными x_0, y_0 продолжимо на $[x_0 - h, x_0 + h]$. Поэтому, НУО будем считать, что все решения поставленной ЗК определены на выбранном отрезке $\overline{P_h}(x_0, y_0)$. В частности, в определении локальной единственности решения (опр. 18) в качестве (α, β) можно будет выбрать любой интервал из $\overline{P_h}(x_0, y_0)$

Пусть $(x_0, y_0) \in G$, $\overline{P_h}(x_0, y_0)$ – некий отрезок Пеано и $\{\chi_k(x)\}_{k=1}^{\infty}$ – произвольная последовательность решений $3K(x_0, y_0)$ уравнения (1.1), определённых на $[x_0 - h, x_0 + h]$

Утверждение 5. Для любых $k \in \mathbb{N}$, $x \in [x_0 - h, x_0 + h]$ функции

$$\chi_k^l(x) \coloneqq \min \left\{ \, \chi_1(x), ..., \chi_k(x) \, \right\}, \qquad \chi_k^u(x) \coloneqq \max \left\{ \, \chi_1(x), ..., \chi_k(x) \, \right\}$$

также являются решениями поставленной задачи на $\overline{P_h}(x_0,y_0)$

Доказательство. Действительно, эти функции удовлетворяют всем трём условиям из определения решения, поскольку для любого $x_* \in [x_0 - h, x_0 + h]$ найдётся такой индекс $1 \le j \le k$, что, например, $\chi_k^l(x_*) = \chi_j(x_*)$, и если $\chi_j(x_*) = \chi_m(x_*)$, то $\chi_j'(x_*) = \chi_m'(x_*) = f(x_*, \chi_k^l(x_*))$

Лемма 7 (о нижнем и верхнем решениях). Существуют решения $3K(x_0, y_0)$ $y = \chi^l(x)$ и $y = \chi^u(x)$ уравнения (1.1) такие, что

$$\forall k \in \mathbb{N} \quad \forall x \in [x_0 - h, x_0 + h] : \begin{cases} \chi^l(x) \le \chi^l_k(x) \\ \chi^u(x) \ge \chi^u_k(x) \end{cases}$$
 (1.15)

Доказательство. Рассмотрим, например, последовательность решений $\left\{x_k^l(x)\right\}_{k=1}^{\infty}$ на отрезке

 $[x_0,x_0+h]$. Поскольку все их графики лежат в треугольнике $\overline{T^+}$, полученном при построении отрезка Пеано, эта последовательность равномерно ограничена и равностепенно ограничена (см. док-во теоремы Пеано). Следовательно, по лемме Арцела-Асколи из неё можно выделить равномерно на $\overline{P_h}(x_0,y_0)$ сходящуюся подпоследовательность, предел которой тоже будет решением уравнения (1.1) на отрезке Пеано

Но последовательность $\chi_k^l(x)$ монотонно убывает, поэтому она сама будет сходиться к нижнему решению $y = \chi^l(x)$, для которого, очевидно, будет верно неравенство (1.15)

Рассуждения для отрезка аналогичны так же, как и доказательство сходиомости функции $\chi_k^u(x)$ к верхнему решению $y=\chi^u(x)$

Теорема 12 (о локальной единственности решения внутренней ЗК). Пусть $(x_0, y_0) \in G$ – это точка единственности.

Тогда решение $3K(x_0, y_0)$ уравнения (1.1) является локально единственным

Доказательство. От противного

Построим какой-нибудь отрезок Пеано $P_h(x_0, y_0)$ и допустим, что для любого интревала (α, β) такого, что $x_0 \in (\alpha, \beta) \subset [x_0 - h, x_0 + h]$, существуют такие решения ЗК $y = \varphi(x)$ и $y = \psi(x)$, не совпадающие на (α, β)

Тогда для всякого k=1,2,... найдутся решения $y=\varphi_k(x)$ и $y=\psi_k(x)$ ЗК, определённые на отрезке Пеано, такие, что

$$\exists x_k \in \left(x_0 - \frac{h}{k}, x_0 + \frac{h}{k}\right) : \quad \varphi_k(x_k) < \psi_k(x_k)$$

Согласно утверждению 5 функция $\varphi_k^l = \min \{ \varphi_1(x), ..., \varphi_k(x) \}$ и функция $\psi_k^u(x)$, удовлетворяющие неравенства типа (1.15)

В результате $x_k \xrightarrow[k \to \infty]{} x_0$ и справедливы неравенства

$$\forall k = 1, 2, \dots \quad \varphi^l(x_k) \le \varphi_k(x_k) < \psi_k(x_k) \le \psi^u(x_k)$$

означающие, что (x_0,y_0) – точка единственности – $\frac{1}{2}$

1.4.2. Лемма Гронуолла

Лемма 8 (Гронуолла; об интегральной оценке функции сверху). Пусть функция $h(x) \in \mathcal{C}(\langle a,b \rangle)$ и существуют такие $x_0 \in \langle a,b \rangle$, $\lambda \geq 0$, $\mu > 0$, что

$$\forall x \in \langle a, b \rangle \quad 0 \le h(x) \le \lambda + \mu \left| \int_{x_0}^x h(s) \, ds \right|$$
 (1.16)

Тогда для любого $x \in \langle a, b \rangle$ справедливо неравенство

$$h(x) \le \lambda e^{\mu|x-x_0|} \tag{1.17}$$

Доказательство.

• Предположим, что $x \ge x_0$ Введём в рассмотрение функцию $g(x) = \int_{x_0}^x h(s) \, \mathrm{d} \, s$

$$\implies$$
 $g(x_0) = 0$, $g(x) \ge 0$, $g(x) \in \mathcal{C}^1([x_0, b])$, $g'(x) = h(x) \ge 0$

Подставим g(x) в (1.16):

$$g'(x) \le \lambda + \mu g(x) \implies g'(x) - \mu g(x) \le \lambda \implies e^{-\mu(x-x_0)} \left(g'(x) - \mu g(x) \right) \le \lambda e^{-\mu(x-x_0)}$$

При этом,

$$\left(g(x)e^{-\mu(x-x_0)}\right)' = g'(x)e^{-\mu(x-x_0)} - \mu e^{-\mu(x-x_0)}g(x) = e^{-\mu(x-x_0)}\left(g'(x) - \mu g(x)\right)$$

Отсюда

$$\left(g(x)e^{-\mu(x-x_0)}\right)' \le \lambda$$

Проинтегрируем по s от x_0 до x:

$$g(x)e^{-\mu(x-x_0)} - \underbrace{g(x_0)}_0 \le \lambda \int_{x_0}^x e^{-\mu(s-x_0)} ds = -\frac{\lambda}{\mu} (e^{-\mu(x-x_0)} - 1)$$

Умножим на $e^{\mu(x-x_0)}$:

$$g(x) \le \frac{\lambda}{\mu} (e^{\mu(x-x_0)} - 1)$$

Подставим в (1.16):

$$h(x) < \lambda + \mu q(x) < \lambda e^{\mu(x-x_0)}$$

Таким образом, неравенство доказано для всех $x \in [x_0, b)$

• Если $x \le x_0$, то в (1.16)

$$h(x) \le \lambda - \mu \int_{x_0}^x h(s) \, ds, \qquad g(x) \le 0$$

Дальнейшее доказательство аналогично

Следствие. Если $\lambda = 0$, то есть

$$0 \le h(x) \le \mu \left| \int_{x_0}^x h(s) \, \mathrm{d} s \right|$$

TO
$$h(x) \stackrel{\langle a,b \rangle}{\equiv} 0$$

1.4.3. Условия Липшица

Бывает, что требование дифференцируемости функции оказывается чрезмерным. Тогда его заменяют "локальным условием Липшица", которое не допускает более чем линейного роста функции по этой

переменной в малой окрестности каждой точки из некоторого множества

Определение 35. Функция f(x,y) удовлетворяет условию Липшица по y глобально на множестве $D \subset \mathbb{R}^2$, если

$$\exists L > 0: \quad \forall (x, y_1), (x, y_2) \in D \quad |f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$
 (1.18)

Обозначение. $f \in \operatorname{Lip}_{y}^{gl}(D)$

Определение 36. Функция f(x,y) удовлетворяет условию Липшица по y локально на множестве \widetilde{G} , если для любой точки $(x_0,y_0)\in \widetilde{G}$ найдётся замкнутая c-окрестность $\overline{B}_c(x_0,y_0)$ такая, что функция f удовлетворяет условию Липшица по y глобально на множестве $U_c=\widetilde{G}\cap \widetilde{B}_c(x_0,y_0)$

Обозначение. $y \in \operatorname{Lip}_y^{loc}(\widetilde{G})$

1.4.4. Теоремы о глобальной единственности решений

Теорема 13 (о множестве единственности). Пусть в уравнении (1.1) функция f(x,y) опредлена и непрерывна на множестве \widetilde{G} и удовлетворяет условию Липшица по y локально на множестве $\widetilde{G}^{\circ} = G^{\circ} \cup \widehat{G}^{\circ}$, где $G^{\circ} \subset G$ – область, а $\widehat{G}^{\circ} \subset \partial G^{\circ} \cap \widehat{G}$.

Тогда \widetilde{G}° – множество единственности для уравнения (1.1)

Доказательство. Возьмём любую точку (x_0, y_0) из множества \widetilde{G}° и покажем, что она является точкой единственности.

Поскольку $f \in \operatorname{Lip}_y^{loc}(\widetilde{G}^\circ)$, найдутся $\overline{B}_c(x_0,y_0)$ и L>0 такие, что $f \in \operatorname{Lip}_y^{gl}(U_c)$ с константой L, где $U_c = \widetilde{G}^\circ \cap \overline{B}_c(x_0,y_0)$

- Если $(x_0, y_0) \in G^\circ$, то найдётся c > 0 такое, что $U_c = \overline{B}_c(x_0, y_0)$, решение $3K(x_0, y_0)$ существует на некотором интервале $(a, b) \ni x_0$ и для любого решения этой задачи, уменьшая при необходимости (a, b), можно добиться, чтобы его график лежал в U_c
- Пусть $(x_0, y_0) \in \widehat{G}^{\circ}$
 - Если решение $3K(x_0, y_0)$ отсутсвует, то (x_0, y_0) это точка единственности по определению
 - Пусть решение существует на некотром промежутке $\langle a,b \rangle$ таком, что $x_0 \in \langle a,b \rangle \subset [x_0-c,x_0+c]$

Утверждение 6. Тогда, уменьшая $\langle a,b \rangle$ при необходиости можно добиться, чтобы график решения лежал в U_c

Доказательство. Действительно, очевидно, что с уменьшением $\langle a,b \rangle$ график решения попадает в $\overline{B}_c(x_0,y_0)$. А ситуация, когда при $x < x_0$ и (или) $x > x_0$ график, оставаясь в \widetilde{G} , не принадлежит \widetilde{G}° , преодолевается за счёт выбора константы $c_1 > c$ такой, что в $\overline{B}_{c_1}(x_0,y_0)$ юудет выполняться глобальное условие Липшица с константой, скажем, $L_1 \coloneqq L+1$. В результате с учётом непрерывности функции f(x,y) бласть \widetilde{G}° увеличиться, включив в себя дугу интегральной кривой в малой окрестности точки (x_0,y_0)

Рассмотрим любые два решения $y = \varphi_1(x)$ и $y = \varphi_2(x)$ ЗК (x_0, y_0) , которые определены по крайней мере на некотором общем промежутке $\langle \alpha, \beta \rangle$ таком, что $x_0 \in \langle \alpha, \beta \rangle \subset [x_0 - c, x_0 + c]$

Как установлено выше, уменьшая при необходимости $\langle \alpha, \beta \rangle$, можно добиться, чтобы для всякого $x \in \langle \alpha, \beta \rangle$ точки $(x, \varphi_1(x)), (x, \varphi_2(x)) \in U_c$

По лемме о записи решения в интегральном виде $\varphi_1(x)$ и $\varphi_2(x)$ удовлетворяют тождеству (1.2) на $\langle \alpha, \beta \rangle$, т. е. для любого $x \in \langle \alpha, \beta \rangle$ справедливо

$$\varphi_j(x) = \varphi_j(x_0) + \int_{x_0}^x f(s, \varphi_j(s)) ds, \quad j = 1, 2$$

Поэтому

$$\varphi_2(x) - \varphi_1(x) = \int_{x_0}^x \left(f(s, \varphi_2(s)) - (s, \varphi_1(s)) \right) ds$$

точки $(s, \varphi_i(s)) \in U_c$ и для них выполнено неравенство (1.18). Тогда

$$|\varphi_2(x) - \varphi_1(x)| \le \left| \int_{x_0}^x \left| f(s, \varphi_2(s)) - f(s, \varphi_1(s)) \right| ds \right| \le \left| \int_{x_0}^x L \left| \varphi_2(s) - \varphi_1(s) \right| ds \right|$$

К последнему неравенству можно применить следствие к лемме Гронуолла (лемма 8), где $h(x) = |\varphi_2(x) - \varphi_1(x)|, \quad \lambda = 0, \quad \mu = L$

Тогда $|\varphi_2(x)-\varphi_1(x)|\stackrel{\langle\alpha,\beta\rangle}{\equiv} 0$, т. е. решения $y=\varphi_1(x)$ и $\varphi_2(x)$ ЗК (x_0,y_0) совпадают в каждой точке $\langle\alpha,\beta\rangle\ni x_0$. Поэтому по определению (x_0,y_0) – это точка единственности

Частный случай Предположим, что в уравнении (1.1) функция f(x,y) непрерывна в области G и удовлетворяет условию Липшица по y локально в области $G^{\circ} \subset G$. Тогда G° – это область единственности

Теорема 14 (о множестве единственности; слабая). Предположим, что в уравнении (1.1) функция f(x,y) определена и непрерывна на множестве \widetilde{G} , функция $\frac{\partial f(x,y)}{\partial y}$ определена и непрерывна в области $G^{\circ} \subset G$.

Тогда мноежство $\widetilde{G}^{\circ} = G^{\circ} \cup \widehat{G}^{\circ}$, где $\widehat{G}^{\circ} \subset \partial G^{\circ} \cap \widehat{G}$ и состоит из точек, в которых $\frac{\partial f(x,y)}{\partial y}$ может быть доопределена по непрерывности, является множеством единственности для уравнения (1.1), если при этом для любой точки $(x_0,y_0) \in \widehat{G}^{\circ}$ найдётся $\overline{B}_c(x_0,y_0)$ такая, что множество $\widetilde{G}^{\circ} \cap \overline{B}_c(x_0,y_0)$ выпукло по y

Примечание. Выпуклость множетсва по y означает, что множеству принадлежит отрезок, соединяющий любые две его точки с одинаковой абсциссой

Примечание. Существование функции $\frac{\partial f(x,y)}{\partial y}$ предполагается только в области, а на границе её приходится доопределять, поскольку для определения частной производной обычно требуется, чтобы функция f была задана в полной окрестности этой точки

Примечание. В последнем пердположении теоремы говорится о произвольной точке границы множества \widetilde{G}° , поскольку для любой точки из области G° требуемое условие выполняется автоматически

Доказательство. Рассмотрим произвольную точку $(x_0, y_0) \in \widetilde{G}^{\circ}$. Поскольку функция $\frac{\partial f(x,y)}{\partial y}$ непрерывна в точке (x_0, y_0) , существует такое δ , что $0 \le \delta \le c$, где c берётся из формулировки теоремы, и для любой точки $(x,y) \in U_{\delta} := \widetilde{G}^{\circ} \cap \overline{B}_{\delta}(x_0, y_0)$ верно неравенство

$$\left| \frac{\partial f(x,y)}{\partial y} - \frac{\partial f(x_0,y_0)}{\partial y} \right| \le 1$$

Таким образом, установлено, что U_{δ} выпукло по y и

$$\left| \frac{\partial f(x,y)}{\partial y} \right| \le L := \left| \frac{\partial f(x_0, y_0)}{\partial y} \right| + 1 \quad \forall (x,y) \in U_{\delta}$$

По теореме Лагранжа для любых двух точек $(x, y_1), (x < y_2) \in U_\delta, \quad y_1 < y_2,$

$$\exists y^*(x) \in (y_1, y_2): \quad f(x, y_2) - f(x, y_1) = \frac{\partial f(x, y^*(x))}{\partial y} (y_2 - y_1)$$

Здесь точка $(x, y^*(x)) \in U_\delta$, так как множество U_δ выпукло по y. Поэтому в U_δ верно неравенство

$$|f(x, y_2) - f(x, y_1)| \le L|y_2 - y_1|$$

означающее, что $f \in \operatorname{Lip}_y^{gl}(U_\delta)$. Тогда по определению выполнено локальное условие Липшица, а значит, по теореме о единственности \widetilde{G}° – это множество единственности

Не только гладкость функции f по y, но и локальное условие Липшица не является необходимым:

Теорема 15 (Осгуда; о единственности в области; сильная). Пусть в уравнении (1.1) функция f(x,y)непрерывна в области G и

$$\forall (x, y_1), (x, y_2) \in G \quad |f(x, y_2) - f(x, y_1)| \le h(|y_2 - y_1|) \tag{1.19}$$

где функция h(s) определена, непрерывна и положительна для всякого $s \in (0, +\infty)$ и

$$\int_{\varepsilon}^{a} h^{-1}(s) \, \mathrm{d} s \xrightarrow[\varepsilon \to 0]{} \infty, \qquad a > \varepsilon > 0$$

Тогда G – это область единственности для уравнения (1.1)

Доказательство. Без доказательства

Замечание. В качаестве h(s) можно выбрать линейную функцию Ls. Тогда неравенство (1.19) окажется глобальным условием Липшица, а теорема о единственности будет вытекать из теоремы Осгуда

1.5. Существование общего решения

В этом параграфе будет доказана теорема о существовании общего решения (теор. 7)

1.5.1. Область существования общего решения

Опишем множество A^* , в котором можно построить общее решение, поскольку гарантировать его существование во всей области единственности G° нельзя, какой бы малой она ни была В этом параграфе в роли A^* будет выступать вводимый ниже компакт \overline{A}

Алгоритм (построения \overline{A}). Пусть G° – область единственности для уравнения (1.1)

Возьмём любую точку $(x_0^*, y_0^*) \in G^\circ$

Поскольку G° является открытым множеством, существует такое $\delta > 0$, что $\overline{B}_{2\delta}(x_0^*, y_0^*) \subset G^{\circ}$

Пусть числа y_1, y_2 таковы, что

$$\begin{cases} 0 < y_0^* - y_1 < \delta \\ 0 < y_2 - y_0^* < \delta \end{cases}$$

и найдётся отрезок $[a,b] \ni x_0^*$ такой, что графики решений $3\mathrm{K}(x_0^*,y_1)\ y=\varphi_1(x)$ и $3\mathrm{K}(x_0^*,y_2)\ y=\varphi_2(x)$ лежат в \overline{B}_c при $x \in [a, b]$. Тогда в \overline{B}_δ содержится компакт

$$\overline{A} = \{ (x, y) \mid a \le x \le b, \quad \varphi_1(x) \le y \le \varphi_2(x) \}$$

$$(1.20)$$

При этом A (то же самое, со строгими неравенствами) – это область, так как по построению $\varphi_1(x_0^*)=$ $y_1 < y_2 = \varphi_2(x_0^*)$, а значит, $\varphi_1(x) < \varphi_2(x)$ для всякого $x \in [a, b]$, поскольку в области единственности G° дуги интегральных кривых не могут соприкасаться и разбивать A на несвязные подмножества

Лемма 9 (о поведении решений на компакте \overline{A}). Для любой точки $(x_0, y_0) \in \overline{A}$ решение $3K_{(1.1)}(x_0, y_0)$ $y = \varphi(x)$ продолжимо на отрезок [a, b]

Доказательство. Для любой точки $(x_0^*,y_0^*)\in G^\circ$ построим компакт \overline{A} вида (1.20), тогда $\overline{A}\subset \overline{B}_\delta\subset$

Возьмём произвольную точку $(x_0, y_0) \in \overline{A}$. Тогда прямоугольник

$$\overline{R} := \{ (x, y) \mid |x - x_0| \le \delta, \quad |y - y_0| \le \delta \} \subset \overline{B}_{2\delta}$$

Пусть $M\coloneqq\max_{\overline{B}_{2\delta}}|f(x,y)|>0$ (при M=0 лемма очевидна) Положим $h\coloneqq\min\Big\{\delta, {}^{\delta}\!\!\!/_M\Big\}$. Тогда $P_h(x_0,y_0)=[x_0-h,x_0+h]$ – отрезок Пеано, построенный для произвольной точки $(x_0, y_0) \in \overline{A}$

Следовательно, по теореме Пеано решение $3K(x_0,y_0)$ $y=\varphi(x)$ определено на отрезке Пеано $[x_0 [h, x_0 + h]$, длина которого неизменна для всех точек $(x_0, y_0) \in \overline{A}$

• Рассмотрим функцию $\varphi(x)$ при $x > x_0$:

- Если $x_0+h < b$, то $\varphi_1(x_0+h) \le \varphi(x_0+h) \le \varphi_2(x_0+h)$, а значит, точчка x_0+h , $(x_0+h,\varphi(x_0+h))$ Выбрав эту точку в качетстве начальной, решение $y-\varphi(x)$ можно продолжить вправо на полуотрезок Пеано $[x_0+h,x_0-h]$
 - * Если $x_0 + 2h \ge b$, то лемма доказана
 - * Иначе сделаем очередное продолжение решения вправо на длину h В результате за конечное число шагов будет продолжено вправо до точки b включительно
- Аналогично $y=\varphi(x)$ можно продолжить влево до точки a

1.5.2. Формула общего решения

Для любой точки $(x_0,y_0)\in\overline{A}$ обозначим через $y=y(x,x_0,y_0)$ решение $3\mathrm{K}_{(1.1)}(x_0,y_0)$ Тогда $y(x_0,x_0,y_0)=y_0$, и по лемме о поведении решений на компакте (лемма 9) решение $y=(x,x_0,y_0)$ определено для всякого $x\in[a,b]$

Для произвольной точки $\zeta \in [a,b]$ рассмотрим функцию

$$\varphi(xC) = y(x, \zeta, C), \qquad (\zeta, C) \in \overline{A}$$
 (1.21)

на прямоугольнике $\overline{Q} = \overline{Q}_{\overline{A}} \coloneqq \{ (x,C) \mid a \le x \le b, \quad \varphi_1(\zeta) \le C \le \varphi_2(\zeta) \}$, который является частным случаем множества Q_{A^*} из определения общего решения (опр. 22)

В самом деле, $\varphi_1(\zeta) \leq C \leq \varphi_2(\zeta)$ по построению \overline{A} . А по лемме решение $y = y(x, \zeta, C)$ определено для любого $x \in [a, b]$ и при $x = \zeta$ по определению решения ЗК $\varphi(\zeta, C) = y(\zeta, \zeta, C) = C$

Теорема 16 (о существовании общего решения). Введённая в формуле (1.21) функция $y=\varphi(x,C)$ является общим решением уравнения (1.1) на компакте \overline{A} из (1.20), построенном в окрестности произвольной точки из области единственности G°

Доказательство. Покажем, что функция $y = \varphi(x, C)$ удовлетворяет определению общего решения уравнения (1.1):

1. Возьмём произвольную точку $(x_0, y_0) \in \overline{A}$ и рассмотрим уравнение $y_0 = \varphi(x_0, C)$ или согласно (1.21) уравнение

$$y_0 = y(x_0, \zeta, C) \tag{1.22}$$

Наличие у него решения $C = C_0$ фактически означает, что "выпущенное" из точки $(\zeta, C_0) \in \overline{A}$ решение уравнения (1.1) в момент x_0 попадает в точку $(x_0, y_0) \in \overline{A}$

Покажем, что решение уравнения (1.22) сущетсувует и единственно:

"Выпустим" из точки (x_0, y_0) решение $y = y(x, x_0, y_0)$, которое по лемме 9 определено на всём отрезке [a, b] и, в частности, при $x = \zeta \in [a, b]$ по определению (1.21)

Пусть $C_0 = y(\zeta, x_0, y_0)$. Тогда (ζ, C) – это точка единственности, так как принадлежит графику решения $y = y(x, x_0, y_0)$

Поэтому решение $3K(\zeta,C)$ $y=u(x,\zeta,C_0)$ с начальными данными ζ,C_0 по лемме о поведении решений на компакте \overline{A} (лемма 9) продолжимо на [a,b] и совпадает с решением $y=y(x,x_0,y_0)$ Следовательно, $y_0=y(x_0,\zeta,C)$, т. е. график функции $y=y(x,\zeta,C_0)$ проходит через точку (x_0,y_0) . Другими словами, дуга интегральной кривой, проходящая через точки (x_0,y_0) , (ζ,C_0) , имеет на отрезке [a,b] две параметризации $y=y(x,x_0,y_0)$ и $y=(x,\zeta,C_0)$

Итак, установлено, что уравнение (1.22) имеет единственное решение $C=C_0=y(\zeta,x_0,y_0)$, т. е. $y_0=y\big(x_0,\zeta,y(\zeta,x_0,y_0)\big)$

- 2. Функция $y=\varphi(x,C_0)$ является решением $3{\rm K}_{(1.1)}(x_0,y_0)$, поскольку согласно (1.21) и (1.22) $\varphi(x_0,C_0)=y(x_0,\zeta,C_0)=y_0$
- 3. Осталось доказать, что функция $y=\varphi(x,C)$ из (1.21) непрерывна на компакте \overline{Q} по совокупности переменных:
 - Поскольку для всякого $C \in [\varphi_1(\zeta), \varphi_2(\zeta)]$ функция $y = \varphi(x, C)$ это решение уравнения (1.1), она непрерывна по x при $x \in [a, b]$
 - Покажем, что для всякого $x\in [a,b]$ функция $y=\varphi(x,C)$ непрерывна по C при $C\in [\varphi_1(\zeta),\varphi_2(\zeta)]$:

Допуская **противное**, предположим, что найдутся $\tilde{\varepsilon} > 0$, $\tilde{x} \in [a,b]$ и последовательность

 $C_k \xrightarrow[k \to \infty]{} \widetilde{C}, C_k \in [\varphi_1(\zeta), \varphi_2(\zeta)]$ такие, что $\left| \varphi(\widetilde{x}, C_k) - \varphi(\widetilde{x}, \widetilde{C}) \right| \ge \widetilde{\varepsilon}$ при всех $k \ge 1$. Это значит, что при $x=\widetilde{x}$ функция $\varphi(\widetilde{x},C)$ терпит разрыв в точке $\widetilde{C}\in [\varphi_1(\zeta),\varphi_2(\zeta)],$ поскольку любой компакт, в частности отрезок $[\varphi_1(\zeta), \varphi_2(\zeta)]$, содержит все свои предельные точки. В этом случае, кстати, $\widetilde{x} \neq \zeta$, так как по определению $\varphi(\zeta, C_k) = C_k \xrightarrow[k \to \infty]{} C = \varphi(\zeta, C)$

Выпуская из точек $(\zeta, C_k) \in \overline{A}$ дуги интегральных кривых, получаем последовательность решений $y = y(x, \zeta, C_k) = \varphi(x, C_k)$. Поскольку из любой сходящейся последовательности можно выдулить монотонную подпоследовательность, НУО считаем, что последовательность C_k монотонно возрастает, т. е. $C_k < C_{k+1} < C$ для любого $k \ge 1$

В области G° интегральные кривые не имеют общих точек, поэтому последовательность $\varphi(\widetilde{x},C_k)$ тоже монотонно возрастает и ограничена, так как $\varphi(\widetilde{x},C_k) \leq \varphi(\widetilde{x},C) - \widetilde{\varepsilon}$ по предположению. Но любая ограниченная монотонная последовательность имеет предел

Пусть $\widetilde{y} = \lim_{k \to \infty} \varphi(\widetilde{x}, C_k)$, тогда $\widetilde{y} \le \varphi(\widetilde{x}, \widetilde{C}) - \widetilde{\varepsilon}$

Выберем произвольную точку y^* из интервала $(\widetilde{y}, \varphi(\widetilde{x}, \widetilde{C}))$

Рассмотрим определённое на [a,b] решение $3K(\widetilde{x},y^*)$, обозначаемое $y=y(x,\widetilde{x},y^*)$

Пусть $C^* = y(\zeta, \widetilde{x}, y^*)$. Тогда $C^* < \widetilde{C}$, так как $y^* < \varphi(\widetilde{x}, \widetilde{C}) = y(\widetilde{y}, \zeta, \widetilde{C})$

Дугу интегральной кривой решения $y = y(x, \tilde{x}, y^*)$ на [a, b], как было установлено, параметризует также решение с начальными данными ζ, C^* , имеющее согласно формуле (1.21) вид $y = \varphi(x, C^*)$, причём $\varphi(\widetilde{x}, C^*) = y^*$

Однако существует индекс k^* такой, что член C^{k*} сходящейся к \widetilde{C} последовательности C_k будет больше, чем C^*

В результате получилось так, что дуги интегральных кривых решений $y=\varphi(x,C_{k*})$ и y= $\varphi(x,C^*)$ пересекаются в некоторой точке x^* , лежащей между ζ и \widetilde{x} , поскольку $\varphi(\zeta,C_{k*})=$ $C_{k*} > C^* = \varphi(\zeta, C^*)$, а $\varphi(\widetilde{x}, C_{k*}) < \widetilde{y} < y^* = y(\widetilde{x}, \zeta, C^*) = \varphi(\widetilde{x}, C^*) -$ \not с тем, что G – область единственности

Итак, доказано, что функция $y = \varphi(x, C)$ непрерывна по каждой из переменных в прямоугольнике \overline{Q} . Но этого недостаточно для её непрерывности по совокупности переменных Воспользуемся ещё одним свойством функции φ :

Поскольку $y = \varphi(x, C)$ при любой константе $C \in [\varphi_1(\zeta), \varphi_2(\zeta)]$ есть решение уравнения (1.1), то $\frac{\partial \varphi(x,C)}{\partial x} \equiv f\!\left(x,\varphi(x,C)\right)$ на [a,b]

 $\mathrm{Ho}\left(x,\varphi(x,C)\right)\in\overline{A}$, когда точка $(x,C)\in\overline{Q}$, а на компакте \overline{A} выполняется неравенство $|f(x,y)|\leq \overline{A}$

M. Следовательно, функция $\left|\frac{\partial \varphi(x,C)}{\partial x}\right|$ ограничена на [a,b] С учётом теоремы Лагранжа заключаем, что для любой константы $C \in [\varphi_1(\zeta), \varphi(\zeta)]$ и для любых $x_1, x_2 \in [a,b], \ x_1 < x_2$ найдётся такое $x_C \in (x_1,x_2),$ что $\varphi(x_2,C) - \varphi(x_1,C) = \frac{\partial \varphi(x_C,C)}{\partial x}(x_2-x_1)$ Этого достаточно, чтобы непрерывность функции $y = \varphi(x, C)$ по x на [a, b], равномерная относительно $C\in [\varphi_1(\zeta),\varphi_2(\zeta)]$ в силу признака Вейрештрасса с $\delta=\varepsilon/M$, стала очевидной Последнее свойство функции φ наряду с её поточечной непрерывностью по C гранатирует непре-

рывность arphi(x,C) по совокупности переменных в прямоугольнике QДействительно, возьмём произвольную точку $(x_0,C_0)\in Q$ и покажем, что функция arphi(x,C) непре-

рывна в этой точке:

Для этого зафиксируем любое число $\varepsilon>0$. Тогда в силу непрерывности функции φ по C найдётся такое $\delta_{x_0} > 0$, что

$$\forall C \quad \left(|C - C_0| < \delta_{x_0} \implies |\varphi(x_0, C) - \varphi(x_0, C_0)| < \frac{\varepsilon}{2} \right)$$

А из равномерной непреывности $\varphi(x,C)$ по x относительно C вытекает, что

$$\exists \, \delta_0 > 0: \quad \forall C \in [x\varphi_1(\zeta), \varphi_2(\zeta)] \quad \forall x \quad \left(|x - x_0| < \delta_0 \implies |\varphi(x, C) - \varphi(x_0, C)| < \frac{\varepsilon}{2} \right)$$

Выберем число $\delta := \min \{ \delta_{x_0}, \delta_0 \}$, тогда для любой точки (x, C) получаем:

$$||(x,C)-(x_0,C_0)|| := \max\{|x-x_0|,|C-C_0|\} < \delta$$

Следовательно,

$$|\varphi(x,C)-\varphi(x_0,C_0)| \stackrel{\vartriangle}{\leq} |\varphi(x,C)-\varphi(x_0,C)| + |\varphi(x_0,C)-\varphi(x_0,C_0)| = \varepsilon$$

Определение 37. Общее решение $y = \varphi(x, C)$, определённое формулой (1.21), будем называть общим решением в форме Коши или классическим общим решением уравнения первого порядка (1.1)

Теорема 17 (о дифференцируемости общего решения). Пусть на компакте \overline{A} из (1.20) при некотором $\zeta \in [a,b]$ формула (1.21) задаёт общее решение $y=\varphi(x,C)$, и в уравнении (1.1) f(x,y) непрерывно дифференцируема по y в некоторой окрестности \overline{A}

$$\implies \forall (x,C) \in \overline{Q}: \quad \frac{\partial \varphi(x,C)}{\partial x} = \exp\left(\int_{\zeta}^{x} \frac{\partial f(t,\varphi(t,C))}{\partial y} \, \mathrm{d}\, t\right) \tag{1.23}$$

Доказательство. Зафиксируем произвольным образом константу $C \in [\varphi_1(\zeta), \varphi_2(\zeta)]$, после чего для всякого $x \in [a,b]$ положим $\Delta \varphi = \varphi(x,C+\Delta C) - \varphi(x,C)$, где ΔC – приращение аргумента C Поскольку при фиксированной C функция $y = \varphi(x,C)$ является решением уравнения (1.1), справедлива цепочка равенств:

$$\begin{split} &\frac{\mathrm{d}(\Delta\varphi)}{\mathrm{d}\,x} = f\bigg(x, \varphi(x, C + \Delta C)\bigg) - f\bigg(x, \varphi(x, C)\bigg) = \int_0^1 \; \mathrm{d}\,\bigg(f\big(x, \varphi(x,) + \Delta\varphi \cdot s\big)\bigg) = \\ &= \int_0^1 \frac{\mathrm{d}\,f\bigg(x, \varphi(x, C) + \Delta\varphi \cdot s\bigg)}{\mathrm{d}\,s} \; \mathrm{d}\,s = p(x, \Delta C)\Delta\varphi, \qquad p(x, \Delta C) \coloneqq \int_0^1 \frac{\partial f\bigg(x, \varphi(x, C) + \Delta\varphi \cdot s\big)}{\partial y} \; \mathrm{d}\,s \end{split}$$

• Пусть $\Delta C \neq 0$, тогда, поделив первое и последнее выражение в цепочке на ΔC , убеждаемся, что функция $\psi(x,\Delta C) \coloneqq \frac{\Delta \varphi}{\Delta C}$ является решением $\Im K(\zeta,1)$ линейного однородного уравнения $\frac{\mathrm{d}\, u}{\mathrm{d}\, x} = p(x,\Delta C)u$, так как

$$\psi(\zeta, \Delta C) = \frac{\varphi(\zeta, C + \Delta C) - \varphi(\zeta, C)}{\Delta C} \xrightarrow{\boxed{(1.21)}} \frac{C + \Delta C - C}{\Delta C} = 1$$

Следовательно, $\psi(x, \Delta C) = \exp\left(\int_{\zeta}^{x} p(t, \Delta C) dt\right)$

• Но $p(x, \Delta C)$ существует и при $\Delta C = 0$:

$$p(x,0) = \frac{\partial f\left(x,\varphi(x,C)\right)}{\partial y}$$

Поэтому

$$\frac{\partial \varphi(x,C)}{\partial C} = \lim_{\Delta C \to 0} \psi(x,\Delta C) = \exp\left(\lim_{\Delta C \to 0} \int_{C}^{x} p(t,\Delta C) \; \mathrm{d}\, t\right)$$

В результате частная производная общего решения $y=\varphi(x,C)$ по C существует, непрерывна и вычисляется по формуле (1.23)

Замечание. В теореме доказано, что если в уравнении (1.1) правая часть непрерывно дифференцируема по y, то решение $y=y(x,x_0,y_0)$, рассматриваемое как функция трёх переменных, имеет непрерывную положительнею производную по y_0

Глава 2

Уравнения первого порядка в симметричной форме

2.1. Существование и единственность решения

2.1.1. Объект изучения

Уравнение первого порядка в симметрической форме имеет вид

$$M(x,y) dx + N(x,y) dy = 0$$
 (2.1)

и в нём вещественные функции M и N определены и непрерывны на связном множестве $\widetilde{B} = B \cup \widehat{B} \cup \widecheck{B}$, где B – это область в \mathbb{R}^2 , в которой

$$M^{2}(x,y) + N^{2}(x,y) \neq 0$$
(2.2)

а множества \widehat{B} , \widecheck{B} , возможно пустые, состоят из граничных точек области B, причём для точек из множества \widehat{B} условие (2.2) выполняется, а лдя точек из множества \widecheck{B} — нет

Таким образом, ни в одной из точек множеств B и \widehat{B} функции M и N могут одновременно обратиться в нуль, а для любой точки $(x,y) \in \widecheck{B}$ справедливы равенства M(x,y) = N(x,y) = 0

Кроме того, в каждой точке граничного множества $B^* = \partial B \setminus (\widehat{B} \cup \widecheck{B})$ хотя бы одна из функций M или N не определена или разрывна

Определение 38. Точки из множества \breve{B} будем называть особыми, а точки из множества $B \cup \widehat{B}$ – обыкновенными или неособенными

Уравнение (2.2) будет рассматриваться и решаться на множестве обыкновенных точек, поскольку в особых точках оно фактически вырождается

2.1.2. Решение уравнения в симметричной форме

Выделим замкнутые множества нулей функций M и N:

$$\overline{M^{\circ}} \coloneqq \left\{ \; (x,y) \in \widetilde{B} \; \middle| \; M(x,y) = 0 \; \right\}, \qquad \overline{N^{\circ}} \coloneqq \left\{ \; (x,y) \in \widetilde{B} \; \middle| \; N(x,y) = 0 \; \right\}$$

Обозначим через $\widetilde{B_N}$ и $\widetilde{B_M}$ произвольные компоненты связности соответсвенно множества $\frac{\widetilde{B}}{\overline{N^\circ}}$, на котором

 $N(x,y) \neq 0$ и множества $\frac{\widetilde{B}}{M^{\circ}}$, на котором $M(x,y) \neq 0$. Введём также множество $\widetilde{B}_{MN} = \widetilde{B}_M \cap \widetilde{B}_N$

Очевидно, что все три разновидности введённых множеств могут иметь общие границы и состоят из обыкновенных точек

Уравнение (2.1) на любом из множеств \widetilde{B}_N равносильно уравнению, разрешённому относительно производной

$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = -\frac{M(x,y)}{N(x,y)}\tag{2.3}$$

на множествах \widetilde{B}_M оно равносильно еревёрнутому уравнению

$$\frac{\mathrm{d}\,x}{\mathrm{d}\,y} = -\frac{N(x,y)}{M(x,y)}\tag{2.4}$$

а на любом из множеств \widetilde{B}_{MN} уравнение в симметричной форме (2.1) равносильно каждому из уравнений (2.3), (2.4)

Но на любом пожмножестве множества \widetilde{B}_N , содержащем хотя бы одну точку из \overline{M}° , можно перейти только к уравнению (2.3). Аналогично обстоит дело в случае, когда $\widetilde{B}_M \cap \overline{N}^\circ \neq \emptyset$ Это приводит к вынужденному обобщению понятия решения:

Определение 39. Решением уравнения (2.1) называется определённая на некотром промежутке $\langle a,b \rangle$ функция $y=\varphi(x)$ или функция $x=\psi(y)$, удовлетворяющая следующим условиям:

- 1. функция $\varphi(x)$ или $\psi(y)$ дифференцируема на $\langle a,b\rangle$
- 2. точка $(x,\varphi(x))\in \widetilde{B}\setminus \breve{B}$ для любого $x\in\langle a,b\rangle$ или точка $(\psi(y),y)\in \widetilde{B}\setminus \breve{B}$ для любого $y\in\langle a,b\rangle$
- 3. $M(x,\varphi(x))+N(x,\varphi(x))\varphi'(x)\equiv 0$ на $\langle a,b\rangle$ или $M(\psi(y),y)\psi'(y)+N(\psi(y),y)\equiv 0$ на $\langle a,b\rangle$

При этом решения уравнения (2.1) подразделяются на внутренние, граничные и смешанные в соответствии с аналогичным подразделением решений уравнения (1.1)

Замечание. По определению график любого решения состоит только из обыкновенных точек

Замечание. По аналогии с уравнением (1.1) для уравнения (2.1) вводится понятие полного решения, в котором максимальный интервал указывается либо для решения $y = \varphi(x)$, график которого лежит в \widetilde{B}_N , любо для решения $x = \psi(y)$ с графиком из \widetilde{B}_M

Определение 40. Точка $(x_0, y_0) \in \widetilde{B} \setminus \widecheck{B}$ называется точкой неединственности уравнения (2.1), если хотя бы для одного из уравнений (2.3), (2.4) она окажется точкой неединственности. В противном случае точка (x_0, y_0) – это точка единственности

Замечание. Решения уравнения (2.1) могут быть частными или особыми точкно так же, как это происходит с решениями уравнения, разрешённого относительно производной

2.1.3. Интегральные кривые

Уравнение в симметричной форме позволяет обобщить понятие интегральной кривой. Действительно, через каждую точку мноежства $\widetilde{B} \setminus \widecheck{B}$, используя одно из разрешённых уравнений, можно провести отрезок поля, построив, тем самым, поле направлений уравнения (2.1)

Наличие поля направлений позволяет сохранить геометрическое определение интегральной кривой, а именно

Определение 41. Интегральной кривой уравнения (2.1) на множестве $\widetilde{B} \setminus \widecheck{B}$ назовём любую гладкую кривую, лежащую в этом множестве, напраление касательной к которой в каждой точке совпадает с направлением поля в этой точке

В результате локально интегральная кривая задаётся или функцией $y=\varphi(x),$ или $x=\psi(y)$

2.1.4. Существование и единственность решения

Поскольку уравнение (2.1) в некоторой окрестности любой неособой точки сводится к одному из разрешённых уравнений, то все локальные определения и теоремы из главы 1 остаются верными

Замечание. В дальнейшем уравнение (2.1) юудет рассматриваться только в области B, в которой по определению рассматриваются только особые точки

В результате по определению все решения будут внутренними и их максимальные интервалы существования всегда будут интервалами

Теорема 18 (о существовании решения). Пусть в уравнении (2.1) функции M(x,y) и N(x,y) непрерывны в области B

Тогда для любой точки $(x_0, y_0) \in B$ и для любого отрезка Пеано $P_h(x_0, y_0)$, построенного для одного из

уравнений (2.3), (2.4), определённого в некоторой окрестности $B_c(x_0, y_0) \subset B$, существует по крайней мере одно решение $3K_{(2.1)}(x_0, y_0)$, заданное на $P_h(x_0y_0)$

Теорема 19 (о единственности в области; слабая). Пусть в уравнении (2.1) функции M(x,y) и N(x,y) непрерывны в области B, а в области $B^{\circ} \subset B$ верно хотя бы одно из двух условий:

- $N(x,y) \neq 0$, существуют и непрерывны частные производные $M'_{u}(x,y), N'_{u}(x,y)$
- $M(x,y) \neq 0$, существуют и непрерывны чатсные производные $M'_x(x,y), N'_x(x,y)$

Тогда B° – это область единственности

Доказательство. Действительно, при выполнении первого условия, например, в области B° уравнение (2.1) равносильно уравнению (1.1) с $F = -\frac{M(x,y)}{N(x,y)}$, и частная производная $\frac{\partial f}{\partial y} = \frac{M\frac{\partial N}{\partial y} - N\frac{\partial M}{\partial y}}{N^2}$ непрерывна, а значит, верна слабая теорема о единственности (теор. 6)

Следствие. Область B будет областью единственности, если найдётся открытое покрытие её областями, для каждой их которых выполняется хотя бы одно из приведённых в формулировке теоремы условий

2.2. Интергал уравнения в симметричной форме

2.2.1. Определение интеграла

Интегральные кривые уравнения в симметричной форме по определению могут иметь любые касательные. Параметризуют их непрерывные неявные функции U(x,y)=0. Именно в таком виде будем искать решение уравнения (2.1), называя их при этом интегралами. Аналог общего решения будем называть общим интегралом

Определение 42. Непрерывную в области $B \subset \mathbb{R}^2$ функцию U(x,y) будем называть допустимой, если для любой точки $(x_0,y_0) \in B$ найдётся такая непрерывная функция $y=\xi(x)$ или $x=\eta(y)$, определённая на интервале (α,β) , содержащем точку x_0 или y_0 , что:

- 1. $y_0 = \xi(x_0)$ или $x_0 = \eta(y_0)$
- 2. точка $(x, \xi(x)) \in B$ для любого $x \in (\alpha, \beta)$ или точка $(\eta(y), y) \in B$ для любого $y \in (\alpha, \beta)$
- 3. $y = \xi(x)$ или $x = \eta(y)$ единственное решение уравнения

$$U(x,y) = U(x_0, y_0) (2.5)$$

Замечание. Условие 3 означает, что выполняется по крайней мере одно из тождеств:

$$\begin{bmatrix} U(x,\xi(x)) & \stackrel{(\alpha,\beta)}{=} U(x_0,y_0) \\ U(\eta(y),y) & \stackrel{(\alpha,\beta)}{=} U(x_0,y_0) \end{bmatrix}$$

В дальнейшем будем всегда предполагать, что B – это область единственности, так как общий интеграл может быть построен только в области единственности

Определение 43. Допустимая функция U(x,y) называется интегралом уравнения (2.1) в области единственности B° , если для любой точки $(x_0,y_0)\in B^{\circ}$ единственная функция $y=\xi(x)$ или $x=\eta(y)$ из определения допустимой функции – это решение $3\mathrm{K}_{(2.1)}(x_0,y_0)$ на (α,β) , т. е. удовлетворяет тождеству 3_1 или 3_2 из определения решения

2.2.2. Характеристической свойство интеграла

Примечание. В математике часто характеристическим свойством назвыают другое определение того же объекта

Теорема 20 (о характеристическом свойстве интеграла). Для того чтобы допустимая функция U(x,y) была интегралом уравнения в симметричной форме (2.1) в области единственности B° , необходимо и достаточно, чтобы U(x,y) обращалась в постоянную вдоль любого решения (2.1), т. е. чтобы:

- $U(x,\varphi(x))\stackrel{\langle a,b\rangle}{\equiv} C$ для любого решения $y=\varphi(x)$, определённого на $\langle a,b\rangle$
- $U(\psi(y),y)\stackrel{\langle a,b\rangle}{\equiv} C$ для любого решения $x=\varphi(y)$, определённого на $\langle a,b\rangle$

Доказательство.

• Необходимость:

Пусть U(x,y) – интеграл уравнения (2.1) в области единственности B° , и пусть, например, $y=\varphi(x)$ – какое-либо решение уравнения (2.1), определённое на промежутке $\langle a,b\rangle$ НУО 1 будем считать, что $\langle a,b\rangle=(a,b)$

Возьмём произвольную точку $x_0 \in (a,b)$ и положим $y_0 \coloneqq \varphi(x_0)$

Точка $(x_0, y_0) \in B^\circ$, поэтому по определению допустимой функции уравнение (2.5) $U(x, y) = U(x_0, y_0)$ однозначно разрешимо или относительно x, или относительно y:

— Пусть (2.5) однозначно разрешимо относительно y, т. е. существует такая единственная функция $y=\xi(x)$, заданная на некотором $(\alpha,\beta)\ni x_0$, что $U\left(x,\xi(x)\right)\stackrel{(\alpha,\beta)}{\equiv}U(x_0,y_0)$ Эта функция по опреелению интеграла является решением $\mathrm{3K}_{(2.1)}(x_0,y_0)$

Поскольку B° – область единственности, $\varphi(x) \stackrel{(\widetilde{\alpha},\widetilde{\beta})}{\equiv} \xi(x)$, где $(\widetilde{\alpha},\widetilde{\beta}) = (a,b) \cap (\alpha,\beta)$. Следовательно,

$$U(x,\varphi(x)) \stackrel{(\tilde{\alpha},\tilde{\beta})}{=} U(x_0,y_0) \tag{2.6}$$

— Пусть (2.5) однозначно разрешимо относительно x, т. е. на некотором интервале $(\alpha, \beta) \ni y_0$ существует единственная функция $x = \eta(y)$ такая, что $\eta(y_0) = x_0$ и $U(\eta(y), y) \equiv U(x_0, y_0)$ на (α, β)

Тогда по определению интеграла $x=\eta(y)$ на (α,β) является решением $3\mathrm{K}_{(2.1)}(y_0,x_0)$, а значит, единственное решение этой $3\mathrm{K}$ имеет два представления: $y=\varphi(x)$ и $x=\eta(y)$. Поэтому дуга интегральной кривой такого решения в некоторой окрестности точки (x_0,y_0) , не имея вертикальных и горизонтальных касательных, может быть параметризована как функцией $y=\varphi(x)$, так и функцией $x=\eta(x)$

Иными словами, сущетвуют такие интервалы $(\widetilde{a},\widetilde{b})$ и $(\widetilde{\alpha},\widetilde{\beta})$, что

$$x_0 \in (\widetilde{a}, \widetilde{b}) \subset (a, b), \quad y_0 \in (\widetilde{\alpha}, \widetilde{\beta}) \subset (\alpha, \beta), \qquad y \stackrel{(\widetilde{a}, \widetilde{\beta})}{=} \varphi(\eta(y)), \quad x \stackrel{(\widetilde{a}, \widetilde{b})}{=} \eta(\varphi(x))$$

Поэтому справедлива доказывающая (2.6) цепочка равенств:

$$U\big(x,\varphi(x)\big) \overset{)\widetilde{\alpha},\widetilde{b}}{\equiv} U\bigg(\eta\big(\varphi(x)\big),\varphi(x)\bigg) \overset{(\widetilde{\alpha},\widetilde{\beta})}{\equiv} U\big(\eta(y),y\big) \overset{(\widetilde{\alpha},\widetilde{\beta})}{\equiv} U(x_0,y_0)$$

— Осталось показать, что (2.6) выполняется на всём интервале (a,b):

Допустим, что $\widetilde{\beta} < b$ и найдутся такие $x_1, x_2 \in [\widetilde{\beta}, b), \ (x_1 < x_2), \$ что $U(x, \varphi(x)) \stackrel{(\widetilde{\alpha}, x_1]}{\equiv} U(x_0, y_0), \quad U(x, \varphi(x)) \neq U(x_0, y_0)$ для любого $x \in (x_1, x_2)$

При $y_1 = \varphi(x_1)$ в последнем тождестве $U(x_1, y_1) = U(x_0, y_0)$. По определению решения точка $(x_1, y_1) \in B^{\circ}$, поэтому для неё верны все рассуждения, касающщиеся точки (x_0, y_0)

Пусть $y = \xi_1(x)$ — единственное на (α_1, β_1) , $\left(x_! \in (\alpha_1, \beta_1) \subset (x_0, x_2)\right)$ решение уравнения $U(x,y) = U(x_1,y_1)$, т. е. $U\left(x,\xi_1(x)\right) \equiv U(x_1,y_1)$ на (α_1,β_1) , и оно же по определению интеграла является единственным решением $3\mathrm{K}(x_1,y_1)$. Тогда $\xi_1(x) \equiv \varphi(x)$ на (α_1,β_1) , и $U\left(x,\varphi(x)\right) \stackrel{[x_1,\beta_1)}{\equiv} U(x_1,y_1) = U(x_0,y_0)$ — $\frac{\xi}{2}$

Ситуация с точками $x_1, x_2 \in (a, \tilde{\alpha}]$ рассматривается аналогично

- Лостаточность

Пусть допустимая функция U(x,y) обращается в постоянную на любом решении уравнения (2.1). Покажем, что в таком случае U(x,y) – интеграл этого уравнения в области едиснтвенности B°

Возьмём произвольную точку $(x_0, y_0) \in B^\circ$. Тогда существует единственное решение $3K(x_0, y_0)$ вида $y = \varphi(x)$ на $(a, b) \ni x_0$, или $x = \psi(y)$ на $(a, b) \ni y_0$

Пусть, например, $x = \psi(y)$ является решением уравнения (2.1). Тогда по условию теоремы $U(\psi(y), y) \equiv U(x_0, y_0)$ на (a, b)

Если функция U(x,y), будучи допустимой, однозначно разрешима относительно x, т. е. на некотором $(\alpha,\beta)\ni y_0$ существует и единственна функция $x=\eta(y)$ такая, что $U(\eta(y),y)\equiv U(x_0,y_0)$ на (α,β) , то $\psi(y)\equiv \eta(y)$ на $(a,b)\cap(\alpha,\beta)$. А если уравнение (2.5) однозначно разрешимо относительно y, то можно показать, как и при доказательстве необходимости, что функция $y=\xi(x)$ — решение уравнения (2.1), поскольку является обратной к решению $x=\psi(y)$

В результате допустимая функция U(x,y) – это интеграл уравнения (2.1) в области единственности B°

Действительно, если $\langle a,b\rangle=[a,b],$ то по лемме о продолжимости решения, решение может быть продолжено на интервал $(a_1,b_1)\supset [a,b]$

2.2.3. Характеристическое свойство гладкого интеграла

Определение 44. Гладкую функцию U(x,y) будем называть галдкой допустимой в области B, если $U_x'^2 + U_y'^2 > 0$ для любой точки $(x,y) \in B$

Определение 45. Интеграл U(x,y) уравнения (2.1) будем называть гладким, если U – гладкая допустимая функция

Теорема 21 (о характеристическом свойстве гладкого интеграла). Для того чтобы гладкая допустимая функция U(x,y) была гладким интегралом уравнения (2.1) в области единственности B° , необходимо и достаточно, чтобы выполнялось тождество

$$N(x,y)U'_{x}(x,y) - M(x,y)U'_{y}(x,y) \stackrel{B^{\circ}}{=} 0$$
 (2.7)

Доказательство.

• Необходимость

Пусть U(x,y) – это гладкий интеграл уравнения (2.1). Возьём любую точку $(x_0,y_0) \in B^{\circ}$ Тогда $M^2(x_0,y_0) + N^2(x_0,y_0) \neq 0$. Пусть, например, $N(x_0,y_0) \neq 0$ Тогда $(x_0,y_0) \in B^{\circ}$, гле B°

Тогда $(x_0, y_0) \in B_N^{\circ}$, где B_N° – некая компонента связности открытого множества $B^{\circ} \setminus \overline{N}_0$ (см. п. 2.1.2), в которой $N(x, y) \neq 0$ и уравнение (2.1) равносильно уравнению (2.3)

Пусть $y = \varphi(x)$ – решение $3K_{(2.1),(2.3)}(x_0,y_0)$, определённое на некотором интервале $(a,b) \ni x_0$ Тогда по определению решениия

$$\varphi'(x) \equiv -\frac{M(x,\varphi(x))}{N(x,\varphi(x))}$$
 на (a,b)

По теореме о характеристическом свойстве интегала имеем:

$$U(x,\varphi(x)) \stackrel{(a,b)}{\equiv} U(x_0,y_0)$$

Продиффиренцируем по x:

$$U'_x(x,\varphi(x)) + U'_y(x,\varphi(x))\varphi'(x) \stackrel{(a,b)}{\equiv} 0$$

Подставляя $\varphi'(x)$ и домножая на N, получаем:

$$N(x,\varphi(x))U'_x(x,\varphi(x)) - M(x,\varphi(x))U'_y(x,\varphi(x)) \stackrel{(a,b)}{\equiv} 0$$

Положим $x=x_0$, тогда $\varphi(x_0)=y_0$, и для любой точки $(x_0,y_0)\in B^\circ$ получаем равенство (2.7)

Достаточность

Пусть в B° выполняется тождество (2.7)

Возьмём любую точку $(x_0,y_0)\in B^\circ$, и пусть, например, $U_y'(x_0,y_0)\neq 0$

Тогда $U'_{\eta}(x,y) \neq 0$ в некоторой окрестности $V(x_0,y_0)$ и в ней уравнение (2.5) $U(x,y) = U(x_0,y_0)$ однозначно разрешимо относительно y, т. е. существует и единственна функция $y=\xi(x)$, определённая на нектором интервале $(\alpha, \beta) \ni x_0$ такая, что $\xi(x_0) = y_0$, $\xi \in \mathcal{C}^1((\alpha, \beta))$ и $U(x, \xi(x)) \equiv$ $U(x_0,y_0)$ на (α,β)

Дифференцируя последнее тождество, получаем

$$U_x'(x,\xi(x)) + U_y'(x,\xi(x))\xi'(x) \stackrel{(\alpha,\beta)}{\equiv} 0, \qquad (x,\xi(x)) \in V$$

а значит,
$$\xi'(x) \equiv -\frac{U_x'\left(x,\xi(x)\right)}{U_y'\left(x,\xi(x)\right)}$$

а значит, $\xi'(x) \equiv -\frac{U_x'\big(x,\xi(x)\big)}{U_y'\big(x,\xi(x)\big)}$ Покажем, что $y=\xi(x)$ является решением уравнения (2.1), т. е. на интервале (a,b), например, удовлетоворяет тождеству 3_1 из определения решения. Подставляя $\xi(x)$ в левую часть этого тождества, получаем:

$$M(x,\xi(x)) + N(x,\xi(x))\xi'(x) \equiv \frac{M(x,\xi(x))U_y'(x,\xi(x)) - N(x,\xi(x))U_x'(x,\xi(x))}{U_y'(x,\xi(x))} \stackrel{(2.7)}{\equiv} 0$$

Следствие. Гладкая допустимая функция U(x,y) есть гладкий интеграл уравнения (1.1) y' = f(x,y)в области единственности G° тогда и только тогда, когда верно тождество

$$U'_{r}(x,y) + f(x,y)U'_{r}(x,y) \stackrel{G^{\circ}}{\equiv} 0$$

2.2.4. Существование интеграла, связь между интегралами

Теорема 22 (о существовании непрерывнорго ингеграла). Для любой точки (x_0, y_0) из области единственности B° найдётся окрестность $S \subset B^{\circ}$, в которй уравнение (2.1) имеет интеграл U(x,y)

Доказательство. Пусть (x_0, y_0) — это произвольная точка из области едлинственности B° и, например, $N(x_0,y_0) \neq 0$. Тогда найдётся окрестность B_N° , в которой $N(x,y) \neq 0$, а значит, в ней уравнение в симметричной форме (2.1) равносильно уравнению (2.3) $y' = -\frac{M(x,y)}{N(x,y)}$ Согласно теореме о существовании общего решения в области

$$A = \{ (x, y) \mid a < x < b, \quad \varphi_1(x) < y < \varphi_2(x) \} \subset B_N^{\circ}$$

существует общее решение $y = \varphi(x, C)$ уравнения (2.3)

По определению общего решения уравнение $y=\varphi(x,C)$ однозанчно разрешимо относительно C для любой точки $(x,y)\in A$, т. е. C=U(x,y), причём $U\left(x,\varphi(x,C)\right)\stackrel{(a,b)}{\equiv}C$

В результате уравнение U(x,y)=C однозначно разрешимо относительно y, а значит, функция U допустимая и постоянна вдоль любого решения, график которого лежит в области A

По теореме о характеристическом свойстве интеграла функция U(x,y) является интегралом уравнения (2.1) в области A

Определение 46. U(x,y) – интеграл уравнения (2.1) в области единственности B° Тогда равенство U(x,y) = C называется общим интегралом уравнения (2.1)

Теорема 23 (о существовании гладкого интеграла).

В уравнении (2.1) функции $M(x,y), N(x,y) \in C^1(B)$

Тогда для любой точки (x_0, y_0) из области B существует её окрестность $A \subset B$, в которой уравнение (2.1) имеет гладкий интеграл U(x,y)

Доказательство. По слабююй теореме о единственности в области множество B является областью единственности

Возьмём любую точку (x_0,y_0) из B. И пусть, например, $N(x_0,y_0) \neq 0$, B_N — окрестность (x_0,y_0) , в которой $N(x,y) \neq 0$ и уравнение (2.1) равносильно уравнению (2.3) $y' = f_*(x,y)$ с $f_* \coloneqq -\frac{M(x,y)}{N(x,y)}$. При этом по условию теоремы в области B_N определена и непрерывна частная производная $\frac{\partial f_*(x,y)}{\partial y}$ Пусть $A \coloneqq \{ (x,y) \mid a < x < b, \quad \varphi_1(x) < y < \varphi_2(x) \}$ — окрестность точки (x_0,y_0) , лежащая в B_N вместе со своим замыканием. По теореме о существовании общего решения в A существует общее решение $y = \varphi(x,C)$ уравнения $y' = f_*(x,y)$, задаваемое формулой (1.21) $\varphi(x,C) = y(x,\xi C)$, в которой $\xi \in (a,b)$ выбирается произвольным образом, $(\xi,C) \in \overline{A}$, т. е. $C \in [\varphi_1(\xi),\varphi_2(\xi)]$, а $y(x,\xi,C)$ — решение $3K(\xi,C)$ Положим $\xi = x_0$. Согласно (1.23)

$$\frac{\partial \varphi(x,C)}{\partial C} = \exp\left(\int_{x_0}^x \frac{\partial f_*(t,\varphi(t,C))}{\partial y} \, \mathrm{d}t\right), \qquad \frac{\partial \varphi(x_0,C)}{\partial C} = 1 \quad \forall C \in [\varphi_1(x_0), \varphi_2(x_0)]$$

Следовательно, по теореме о неявной функции уравнение $\varphi(x,C)-y=0$ однозначно разрешимо относительно C. Его решение C=U(x,y), как установлено в доказательстве теоремы о существовании непрерывного интеграла, является интегралом уравнения (2.1) и непрерывно дифференцируемо по y в области A.

Остаётся заметить, что функция U(x,y) является также гладкой по x, (т. к. обратная к ней $y=\varphi(x,C)$ гладкая по определнию общего решения).

Поэтому U(x,y) — гладкая допустимая функция, а значит, и гладкий интеграл.

Случай, когда $N(x_0, y_0) = 0$, $M(x_0, y_0) \neq 0$ рассматривается аналогично.

Теорема 24 (о связи между интегралами). U(x,y) — интеграл уравнения (2.1) в некоторой области A. Тогда:

1. если $U_1(x,y)$ — ещё один интеграл в A, то существует функция $\Phi(x)$ такая, что $U_1(x,y) \stackrel{A}{\Longrightarrow} U(x,y)$;

Доказательство. Пусть интеграл U(x,y) построен в области A при помощи общего решения $\varphi(x,C)$. Тогда $U(x,\varphi(x,C)) \stackrel{(a,b)}{=\!=\!=\!=} C$. Поскольку $U_1(x,y)$ — тоже интеграл в A, то

$$\forall C \in \mathbb{R} \quad U_1(x, \varphi(x, C)) \stackrel{(a,b)}{=\!=\!=\!=} \Phi\Big(U(x, \varphi(x, C))\Big)$$

Но точки $(x, \varphi(x, C))$ заполняют всю область Am поэтому в A справедливо тождество $U_1(x,y) \equiv \Phi(U(x,y))$.

2. если функци $\Phi(U(x,y))$ допустима, то $U_1(x,y) \stackrel{A}{=\!\!=\!\!=} \Phi(U(x,y))$ – это интеграл уравнения (2.1) в области A.

Доказательство. Пусть Φ — произвольная вещественная функция такая, что функция $\Phi(u(x,y))$ допустима.

Положим $U_1(x,y) := \Phi(U(x,y))$. Тогда функция U_1 допустима и обращается в постоянную вдоль любого решения (т. к. по предположению, U – это интеграл). Поэтому U_1 является интегралом.

2.2.5. Уравнение с разделяющимися переменными

Определение 47. Уравнением с разделяющимися переменными в симметрической форме будем называть уравнение (2.1) вида

$$g_1(x)h_2(y) dx + g_2(x)h_1(y) dy = 0$$
(2.8)

в котором $g_1(x), g_2(x) \in \mathcal{C}(\langle a, b \rangle), h_1(y), h_2(y) \in \mathcal{C}(\langle c, d \rangle),$ причём

$$(a,b) \setminus (g_1^{\circ} \cup g_2^{\circ}) = \bigcup_{k=1}^{k_*} (a_k, b_k), \qquad (c,d) \setminus (h_1^{\circ} \cup h_2^{\circ}) = \bigcup_{l=1}^{l_*} (c_l, d_l)$$
 (2.9)

$$\forall x \in (a,b) \quad g_1^2(x) + g_2^2(x) \neq 0, \qquad \forall y \in (c,d) \quad h_1^2(y) + h_2^2(y) \neq 0 \tag{2.10}$$

где $g_i^\circ=\{\,x\in\langle a,b\rangle\mid g_i(x)=0\,\}\,,\quad h_i^\circ=\{\,y\in\langle c,d\rangle\mid h_i(y)=0\,\}$ — замкнутые множества нулей функций g и h

Таким образом,

$$M(x,y) = g_1(x)h_2(y) \in \mathcal{C}(\widetilde{R}), \qquad N(x,y) = g_2(x)h_2(y) \in \mathcal{C}(\widetilde{R})$$

где прямоугольник $\widetilde{R}=\{\,(x,y)\mid x\in\langle a,b\rangle\,,\quad y\in\langle c,d\rangle\,\}$

Условие (2.9) позволяет избежать "экзотических" ситуаций, типа канторовых множеств.

Условие (2.10) означает, что \widetilde{R} не пересекают ни горизонтальные, ни вертикальные прямые, состоящие из особых точек и "разрезающие" его на части. Только любой из четырёх отрезков, ограничивающих \widetilde{R} может целиком состоять из особых точек. Рассмотрим

$$H_i := \{ (x, y) \mid x \in g_i^{\circ}, h_i^{\circ} \}, \quad i = 1, 2$$

Тогда H_i может состоять из не более чем счётного объединения точек, отрезков и четырёхугольников. Кроме того, $H_1 \cap H_2$ может содержать только вершины \widetilde{R} .

В результате уравнение (2.8) рассматриваем на множестве $\widetilde{B}=B\cup\widehat{B}\cup\widecheck{B}$, в котором

$$B = R \setminus (H_1 \cup H_2), \qquad \check{B} = (H_1 \cup H_2) \cap \partial B, \qquad \widehat{B} = \partial B \setminus \check{B}, \qquad R = \{ (x, y) \mid x \in (a, b), y \in (c, d) \}$$

Для любых $x_2 \in g_2^\circ$ и $y_2 \in h_2^\circ$ функции $N(x_2,y) \equiv M(x,y_2) \equiv 0$. Поэтому функции $x(y) = x_2$ при $y \in (c,d)$ и $y(x) = y_2$ при $x \in (a,b)$ удовлетворяют уравнению, являясь полными внутренними решениями соответственно на всех интервалах $(c_l,d_l) \subset (c,d) \setminus g_2^\circ$ и $(a_k,b_k) \subset (a,b) \setminus g_2^\circ$. Остаётся решить уравнение в каждой из областей

$$B_{kl} := \{ (x, y) \mid x \in (a_k, b_k), \quad y \in (c_l, d_l) \} \setminus (H_1 \cup H_2), \qquad \bigcup_{k, l \ge 1} B_{kl} =: B$$

причём для любой точки $(x,y) \in B_{kl}$ справедливы условия

$$g_2(x) \neq 0, \qquad h_2(y) \neq 0, \qquad g_1^2(x) + h_1^2(y) \neq 0$$
 (2.11)

Покажем, что любая область B_{kl} — это область единственности:

Возьмём произвольную точку $(x_k, y_l) \in B_{kl}$ и рассмотрим случай, когда $h_1(y_l) \neq 0$:

Существует интеграл $(\widetilde{c},\widetilde{d}) \subset c_l,d_l$ такой, что $h_1(y) \neq 0$ для всякого $y \in (\widetilde{c},\widetilde{d})$. Поэтому в области

$$G^{\circ} := \left\{ (x, y) \mid x \in (a_k, b_k), \quad y \in (\widetilde{c}, \widetilde{d}) \right\}$$

уравнение (2.8) равносильно уравнению (1.1) вида

$$y' = g(x)h(y) \tag{2.12}$$

в котором в данном случае $g = -g_1(x)g_2^{-1}(x)$, $h = h_2(y)h_1^{-1}(y) \neq 0$, и f(x,y) = g(x)h(y) непрерывна в прямоугольной области G°

Определение 48. Уравнение (2.12), в котором $g \in \mathcal{C}((a_k, b_k))$, $h \in \mathcal{C}((\widetilde{c}, \widetilde{d}))$, называют уравнением с разделяющимися переменными, разрешённым относительно производной

Покажем, что G° — область единственности для уравнения (2.12). Этого достаточно, чтобы произвольным образом выбранная точка (x_k, y_l) из B_{kl} оказаласть точкой единственности для уравнения (2.8).

Пусть $H(y) \coloneqq \int h^{-1}(y) \, dy$, и, для определённости, функция h(y) > 0 при $y \in (\widetilde{c}, d)$. Тогда H(y) — гладкая, строго возрастающая функция.

Сделаем в уравнени (2.12) замену u := H(y). Для этого продифференцируем тождество u(x) = H(y(x)) по x в силу уравнения (2.12), получая

$$\frac{\mathrm{d} u(x)}{\mathrm{d} x} = \frac{|diH(y(x))|}{\mathrm{d} y} \cdot \frac{\mathrm{d} y(x)}{\mathrm{d} x} = h^{-1}(y(x)) \cdot g(x) \cdot h(y(x)) = g(x)$$
$$u' = g(x)$$

Это уравнение определно в области

$$G_u^\circ = \left\{ \; (x,y) \mid x \in (a,b), \quad u \in \left(H(\widetilde{c}), H(\widetilde{d})\right) \; \right\}$$

Его общее решение:

$$u(x,C) = \int g(x) \, dx + C$$

Область G_u° является областью единственности для уравнения u'=g(x), так как интегральные кривые в ней не могут иметь общих точек. Они получены параллельными переносами одной и той же первообразной. А поскольку замена u=H(y) обратима, G° оказывается областью единственности для уравнения (2.12). В результате установлено, что B_{kl} — область единственности для уравнения (2.8), и в ней (2.8) с учётом (2.11) равносильно уравнению с разделёнными переменными:

$$\frac{g_1(x)}{g_2(x)} dx + \frac{h_1(y)}{h_2(y)} dy = 0$$
(2.13)

Рассмотрим в любой области B_{kl} гладкую функцию

$$U(x,y) = \int_{x_0}^{x} \frac{g_1(s)}{g_2(s)} ds + \int_{y_0}^{y} \frac{h_1(s)}{h_2(s)} ds, \qquad x_0, y_0 \in B_{kl}$$
(2.14)

Тогда

$$U'_{x}(x,y) = \frac{g_{1}(x)}{g_{2}(x)}, \qquad U'_{y}(x,y) = \frac{h_{1}(y)}{h_{2}(y)}$$

$$\Longrightarrow U'_{x}(x,y) = \frac{h_{1}(y)}{h_{2}(y)}$$

$$\Longrightarrow U'_{x}(x,y) = \frac{h_{1}(y)}{h_{2}(y)}$$

U—гладкая допустимая функция и для неё, очевидно, выполняется тождество (2.7), а значит, по теореме о характеристическом свойстве гладкого интеграла функция U(x,y) является интегралом уравнения (2.13). В результате, доказана следующая теорема:

Теорема 25 (об интеграле уравнения с разделяющимися переменными). Любая область B_{kl} с учётом условий (2.11) является областью еджинственности уравнения (2.8), и в ней функция U(x,y) является гладким интегралом уравнения (2.8)

2.3. Уравнение в полных дифференциалах, интегрирующий множитель

2.3.1. Уравнение в полных дифференциалах

Определение 49. Уравнение (2.1) называется уравнением в полных дифференциалах (УПД) в области B, если существует функция $U(x,y) \in \mathcal{C}^1(B)$ такая, что для всякой точки $(x,y) \in B$,

$$U'_x(x,y) = M(x,y), \qquad U'_y(x,y) = N(x,y)$$
 (2.15)

В этом случае, очевидно,
d $U(x,y) \equiv M(x,y) \, \mathrm{d}\, x + N(x,y) \, \mathrm{d}\, y$

Теорема 26 (об интеграле УПД). U(x,y) — это гладкий интеграл УПД в B

Доказательство. Пусть существует гладкая функция U(x,y), для которой в B выолняются равенства (2.15). Тогда $U_x'^2 + U_y'^2 \neq 0$, а значит, по определению U-гладкая допустимая функция.

При этом, в B очевидым образом выполняется тождество (2.7), следовательно, по теореме о характеристическом свойстве гладкого интеграла функция U(x,y) явлется глдаким интегралом в B. Остаётся показать, что B—это область единственности.

Возьмём произвольную точку $(x_0, y_0) \in B$ и произвольное решение $y = \varphi(x)$ $3K_{(2.1)}(x_0, y_0)$ на какомлибо интервале $(a, b) \ni x_0$. Тогда $\varphi(x_0) = y_0$, и по определению решения

$$M(x, \varphi(x)) + N(x, \varphi(x))\varphi'(x) = 0 \quad \forall x \in (a, b)$$

$$\implies d U(x, \varphi(x)) = U'_x(x, \varphi(x)) d x + U'_y(x, \varphi(x)) d \varphi(x) = 0$$

$$\implies U(x, \varphi(x)) \stackrel{(a,b)}{=\!=\!=\!=} U(x_0, \varphi(x_0))$$

В результате любое решение поставленной $3K_{\text{УПД}}$ удовлетворяет уравнению (2.5) в некоторой окрестности точки x_0 . А функция U, будучи допустимой, однозначно разершима, следоваетельно, в B не

Теорема 27 (об УПД; локальная). Предположим, что для уравнения (2.1) выолняются условия:

- 1. прямоугольник $R = \{ (x, y) \mid x \in (a, b), y \in (c, d) \} \subset B;$
- 2. в B существуют и непрерывны частные производные $M_u', N_u';$
- 3. верно тождество

$$M'_{y}(x,y) - N'_{x}(x,y) \equiv 0$$
 (2.16)

Тогда (2.1) — УПД в R, и для любых $x_0, x \in (a, b), y_0, y \in (c, d)$ его интегралами являются функции

$$U_1(x,y) = \int_{x_0}^x M(s,y_0) \, ds + \int_{y_0}^y N(x,s) \, ds$$
 (2.17)

$$U_2(x,y) = \int_{x_0}^x M(s,y) \, ds + \int_{y_0}^y N(x_0,s) \, ds$$

Доказательство. Возьмём, например, гладкую функцию $U_1(x,y)$ и покажем, что она удовлетворяет равенствам (2.15) для любой точки $(x,y) \in R$. Этого достаточно, чтобы (2.1) было УПД в R. Дифференцируя (2.17) сначала по y, а затем по x, получаем:

$$\frac{\partial U_1(x,y)}{\partial y} = N(x,y), \qquad \frac{\partial U_1(x,y)}{\partial x} = M(x,y_0) + \int_{y_0}^y \frac{\partial N(x,s)}{\partial x} \, \mathrm{d} \, s$$

Теперь во втором равенстве испольуем тождество (2.16):

$$\frac{\partial U_1(x,y)}{\partial x} = M(x,y_0) + \int_{y_0}^y \frac{\partial M(x,s)}{\partial y} \, \mathrm{d}\, s = M(x,y)$$

2.3.2. Интегриурющий множитель

Определение 50. Функция $\mu(x,y)$, определённая, непрерывная и не обращающаяся в ноль в области B, называется интегрирующим множителем дифференциального уравнения (2.1), если уравнение

$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$
(2.18)

является УПД в B.

Теорема 28 (о существовании интегрирующего множителя). Если в области единственности $B^{\circ} \subset B$ уравнение (2.1) имеет гладкий интеграл, тогда в B° существует интегрирующий множитель.

Доказательство. Пусть U(x,y) — гладкий интеграл уравнения (2.1) в области B° . Тогда из тождества (2.7) вытекает, что в B°

$$\frac{U_x'(x,y)}{M(x,y)} = \frac{U_y'(x,y)}{N(x,y)}$$

причём числитель и значенатель в одной из частей равенства могут одновременно обращаться в ноль. Поэтому функция

$$\mu(x,y) \coloneqq \frac{U_x'(x,y)}{M(x,y)} = \frac{U_y'(x,y)}{N(x,y)}$$

удовлетворяет определнию интегриующего множителя.

Если (2.18) — УПД, то сголасно тождеству (2.16) $(\mu M)'_y - (\mu N)'_x = 0$. Перегруппируем:

$$\mu_x'N - \mu_y'M - (M_y' - N_x')\mu \tag{2.19}$$

Теорема 29 (о нахождении интегрирующего множителя).

Пусть нашлась такая функция $\omega(x,y) \in \mathcal{C}^1(B)$, что

$$\frac{M'_y(x,y) - N'_x(x,y)}{\omega'_x(x,y)N(x,y) - \omega'_y(x,y)M(x,y)} = \psi(\omega)$$
 (2.20)

Тогда уравнение (2.1) имеет интегрирующий множитель $\mu(\omega) = \exp\left(\int \psi(\omega) \ \mathrm{d}\,\omega\right)$

Доказательство. Будем искать μ как функцию ω .

В этом случае уравнение (2.19) примет вид

$$\frac{\mathrm{d}\,\mu}{\mathrm{d}\,\omega}\omega_x'N - \frac{\mathrm{d}\,\mu}{\mathrm{d}\,\omega}\omega_y'M = (M_y' - N_x')\mu$$

или с учётом предположения (2.20):

$$\frac{\mathrm{d}\,\mu(\omega)}{\mathrm{d}\,\omega} = \psi(\omega)\mu(\omega)$$

Функция $\mu(\omega)=C\exp\left(\int \psi(\omega)\;\mathrm{d}\,\omega\right)$ является общим решением этого линейного однородного уравнения. Можно выбрать C=1.

2.3.3. Линейные уравнения

Определение 51. Уравнение, разрешённое относительно производной, вида

$$y' + p(x)y = q(x), p(x), q(x) \in \mathcal{C}((a,b))$$
 (2.21)

называется линейным диффренциальным уравнением первого порядка.

Найдём общее решение уравнения (2.21) и решение $3K(x_0, y_0)$, используя интегрирующий множитель, для чего перепишем уравнение (2.21) в симметричной форме:

$$\left(p(x)y - q(x)\right) dx + dy = 0 \tag{2.22}$$

Очевидно, что в G существуют и непрерывны M'_{u}, N'_{x} .

Будем искать μ как функцию x, т. е. $\omega(x,y)=x$.

Тогда в формуле (2.20) $\psi(x) = p(x)$ и по теореме о нахождении интегрирующего множителя для любого $x_0 \in (a,b)$ имеем:

$$\mu(x) = e^{P(x)} \neq 0, \qquad P(x) \coloneqq \int_{x_0}^x p(t) dt$$

Умножая (2.22) на μ , получаем УПД:

$$e^{P(x)} \left(p(x)y - q(x) \right) dx + e^{P(x)} dy = 0$$

При $y_0 = 0$ из (2.17) находим

$$U = -\int_{x_0}^{x} e^{P(s)} q(s) ds + \int_{0}^{y} e^{P(x)} ds$$

Это — интеграл уравнения (2.21).

Тогда равенство

$$e^{P(x)}y - \int_{x_0}^x e^{P(s)}q(s) ds = C$$

является общим интегралом уравнения (2.22). Отсюда

$$y = \varphi(x, C) = e^{-P(x)} \left(C + \int_{x_0}^x e^{P(s)} q(s) \, ds \right)$$

является классическим общим решением линейного уравнения (2.21), а формула

$$y = y(x, x_0, y_0) = \exp\left(-\int_{x_0}^x p(t) dt\right) \left(y_0 + \int_{x_0}^x \exp\left(\int_{x_0}^s p(t) dt\right) ds\right)$$

задаёт решение $3K(x_0, y_0)$, определённое на (a, b) и называется формулой Коши.

Часть II

Системы обыкновенных дифференциальных уравнений

Глава 3

Нормальные системы ОДУ

3.1. Основные понятия

3.1.1. Виды систем

В общем виде система из n ОДУ с n неизвестными выглядит так:

$$\begin{cases}
F_1(x, y_1, y_1', \dots y_1^{(m_1)}, \dots, y_n, y_n', \dots, y_n^{(m_n)}) = 0 \\
\dots \\
F_n(x, y_1, y_1', \dots, y_1^{(m_1)}, \dots, y_n, y_n', \dots, y_n^{(m_n)}) = 0
\end{cases}$$
(3.1)

Решением системы будем называть n функций $y_1(x), \ldots, y_n(x)$, определённых на некотором промежутке $\langle a, b \rangle$, таких, что подстановка из в систему (3.1) обращает её в n тождеств на $\langle a, b \rangle$. Если удаётся систему разрешить относительно старших производных, то она принимает вид

$$\begin{cases}
y_1^{(m_1)} = f_1(x, y_1, y_1', \dots, y_1^{(m_1 - 1)}, \dots, y_n, y_n', \dots, y_n^{(m_n - 1)}) \\
\dots \\
y_n^{(m_1)} = f_n(x, y_1, y_1', \dots, y_1^{(m_1 - 1)}, \dots, y_n, y_n', \dots, y_n^{(m_n - 1)})
\end{cases}$$
(3.2)

Рассмотрим два важнейших частных случая последней системы:

1. $m_1 = \cdots = m_n = 1$

$$\begin{cases} y_1' = f_1(x, y_1, \dots, y_n) \\ \dots \\ y_n' = f_n(x, y_1, \dots, y_n) \end{cases}, \quad f_1, \dots, f_n \in \mathcal{C}(G), \quad G \subset \mathbb{R}^{n+1}$$

$$(3.3)$$

Определение 52. Эта система называется нормальной системой ОДУ порядка n.

2.
$$n = 1$$
 $(m_1 = m)$
$$y^{(m)} = f(x, y, y', \dots, y^{(m-1)})$$
 (3.4)

Определение 53. Это уравнение называется ОДУ порядка m, разрешённым относительно старшей производной.

Оно является частным случаем системы (3.3) порядка m, так как это уравнение всегда можно свести к системе заменой

$$y = y_1, \quad y' = y_2, \quad \dots, \quad y^{(m-1)} = y_m$$
 (3.5)

Последовательно дифференцируя эти равенства, а затем подставляя в последнее из них правую часть (3.4), получаем нормальную систему

$$y'_1 = y_2, \dots, y'_{m-1} = y_m, y'_m = f(x, y_1, \dots, y_m)$$
 (3.6)

Если $y = \varphi(x)$ является решением уравнения, то решение системы — это вектор

$$(\varphi(x), \varphi'(x), \dots, \varphi^{(m-1)}(x))$$

и наоборот.

3.1.2. Решения нормальной системы и векторная запись

Определение 54. Решением нормальной системы (3.3) называются n непрерывных на промежутке $\langle a,b \rangle$ функций $y_1 = \varphi_1(x), \ldots, y_n = \varphi_n(x)$, для вяского $x \in \langle a,b \rangle$ удовлетворяющих следующим условиям:

- 1. функции $\varphi_1(x),\ldots,\varphi_n(x)$ дифференцируемые;
- 2. точка $(x, \varphi_1(x), \dots, \varphi_n(x)) \in G;$
- 3. $\varphi_i'(x) = f_i(x, \varphi_1(x), \dots, \varphi_n(x)), \quad i = \overline{1, n}$

Из условия 3, в частности, вытекает, что все функции $\varphi_i(x)$ гладкие.

Любое решение нормальной системы является внутренним.

Нормальную систему удобнее записывать в векторном виде:

$$y' = f(x, y),$$
 $y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix},$ $y' = \begin{bmatrix} y'_1 \\ \vdots \\ y'_n \end{bmatrix},$ $f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$

Будем использовать норму, заданную как $||y|| := \max\{ ||y_1|, \dots, |y_n| \}$

3.1.3. Обощение определений и рещультатов главы 1

Следующие результаты переносятся на системы без изменений:

- 1. Лемма о записи решения в интегральном виде (лемма 1).
- 2. Постановка ЗК (внутренней), определение начальных данных, решения (внутреннего) ЗК и его существование.
- 3. Определение отрезка Пеано и теорема Пеано (теор. 1)
- 4. Определение продолжимоси решения. Доказательство достаточности в теореме о продолжимости решения на границу упрощается за счёт наличия замкнутой c-окрестности точки $(b,\eta) \in G$, также лежащей в области G, на которой функция ||f(x,y)|| достигает максимума.
- 5. Определения полного решения, максимальноготь интервала существования решения, всегда являеющегося интегралом, интегральной кривой, теорема о существовании полного решения (теор. 7), лемма о продолжимости решения на отрезок Пеано, теорема о поведении интегральной кривой полного внутреннего решения:

Теорема 30 (о поведении итегральной кривой полного решения).

Пусть в системе (3.3) $f(x,y) \in \mathcal{C}(G)$.

Тогда при стремлении аргумента любого полного решения к границе своего максимального интервала существования дуга интегральной кривой стремится к границе области G, т. е. покидает любой компакт $\overline{H} \subset G$ и никогда в него не возвращается.

Следствие. Пусть $G=(a,b)\times D,$ где область $D\subset\mathbb{R}^n.$ Тогда

- или полное решение $y = \varphi(x)$ системы (3.3) определно на всём интервале (a, b),
- или при стремлении аргумента x к границе максимального интервала существования его интегральная кривая покидает любой компакт $\overline{D}_1 \subset D$ и никогда в него не возвращается.

Доказательство. Если, например, у максимального интервала существования (α, β) решения $y = \varphi(x)$ правый конец $\beta < b$, то β конечно.

Если допустить, что найдётся $\overline{D}_1 \subset D$ такая, что $\varphi(x) \in \overline{D}_1$ для любого $x \in [\delta, \beta)$, то $(x, \varphi(x)) \in [\delta, \beta] \times \overline{D}_1 \subset G$

6. Определния точек единственности и неединственности упрощаются, поскольку все точки—внутренние:

Определение 55. Точка $(x_0,y_0)\in G$ называется точкой неединственности, если существуют такие решения $y=\varphi_1(x)$ и $y=\varphi_2(x)$ ЗК $_{(3.3)}(x_0,y_0)$, что для любого интервала $(\alpha,\beta)\ni x_0$ найдётся $x^*\in(\alpha,\beta)$ такое, что $\varphi_1(x^*)\neq\varphi_2(x^*)$. Иначе — точка единственности.

- 7. Что касается вопросов глобально единственности, то требуется обобщение теоремы Лагранжа. Также требуется установить связь между локальным и глобальным условиями Липшица. Само определение области G° переносится дословно.
- 8. Обобщим понятие общего решения:

Определение 56. Общим решением системы (3.3) в области $A\subset G^\circ$ называется непрерывная по совокупности аргументов вектор-функция $y=\varphi(x,C)$, где $C=(c_1,\ldots,C_n)$, определённая в области Q_A , елис для любой точки $(x_0,y^\circ)\in A$ существует и единственно решение $C=C^\circ$ алгебраичекой системы

$$y_i^{\circ} = \varphi_i(x_0, C), \qquad i = \overline{1, n}$$

такое, что функция $y = \varphi(x, C^{\circ})$ есть решение $3K_{(3.3)}(x_0, y^{\circ})$

3.1.4. Системы в симметричной форме

Определение 57. Систему дифференциальных уравнений порядка n

$$\frac{\mathrm{d}\,x_1}{X_1(x_1,\dots,x_{n+1})} = \dots = \frac{\mathrm{d}\,x_{n+1}}{X_{n+1}(x_1,\dots,x_{n+1})} \tag{3.7}$$

где X_1, \ldots, X_{n+1} определены и непрерывны в области G пространства (x_1, \ldots, x_{n+1}) , называют системой в симметричной форме.

Определение 58. Точка $x^{\circ} = (x_{1}^{\circ}, \dots, x_{n+1}^{\circ})$ из области G называется особой для системы (3.7), если $X_{i}(x^{\circ}) = 0$ для всякого $i = \overline{1, n+1}$. Иначе — обыкновенной.

Теорема 31 (о связи системы в симметричной форме и нормальной системы). Для всякой обыкновенной точки $x^{\circ} \in G$ существует окрестность $V(x^{\circ})$, в которой система в симметричной форме (3.7) эквивалентна нормальной системе (3.3) порядка n.

Доказательство. Пусть x° — обыкновенная точка для системы (3.7). Тогда, например, $X_{n+1}(x^{\circ}) \neq 0$ (иначе можно перенумеровать переменные).

Поскольку функция X_{n+1} непрерывна в области G, то найдётся такая окрестность $V(x^{\circ}) \subset G$, что для всякого $x = (x_1, \dots, x_{n+1}) \in V(x^{\circ})$ функция $X_{n+1}(x) \neq 0$. Теперь в окрестности $V(x^{\circ})$ систему (3.7) можно переписать в виде

$$\frac{\mathrm{d}\,x_1}{\mathrm{d}\,x_{n+1}} = \frac{X_1(x_1,\ldots,x_{n+1})}{X_{n+1}(x_1,\ldots,x_{n+1})}, \quad \ldots, \quad \frac{\mathrm{d}\,x_n}{\mathrm{d}\,x_{n+1}} = \frac{X_n(x_1,\ldots,x_{n+1})}{x_1,\ldots,x_{n+1}}$$

получая нормальную систему, правые части которой непрерывны в $V(x^{\circ})$

3.2. Формула конечных приращений, условия Липшица

3.2.1. Лемма Адамара

Пусть $x=x(x_1,\ldots,x_l),\quad y=(y_1,\ldots,y_m)$, скалярная функция f(x,y) определена и непрерывна всесте с частынии производными по y_1,\ldots,y_m в некоей области $G\subset\mathbb{R}^{l+m}$, которая выпукла по y. То есть для любых двух точек $(x,\widetilde{y}),\ (x,\widehat{y})\in G$ для всякого $s\in[0,1]$ точка $(x,u(s))\in G$, где $u(s)\coloneqq\widetilde{y}+s(\widehat{y}-\widetilde{y})$. Тогда

$$f(x,\widehat{y}) - f(x,\widehat{y}) = f(x,u(1)) - f(x,u(0)) = \int_0^1 \frac{\mathrm{d} f(x,u(s))}{\mathrm{d} s} \,\mathrm{d} s$$

Ho
$$u(s) = \begin{bmatrix} u_1(s) \\ \vdots \\ u_m(s) \end{bmatrix}$$
, поэтому

$$\frac{\mathrm{d} f(x, u(s))}{\mathrm{d} s} = \sum_{j=1}^{m} \frac{\partial f(x, u(s))}{\partial y_j} \cdot \frac{\mathrm{d} u_j(s)}{\mathrm{d} s}, \qquad \frac{\mathrm{d} u_j(s)}{\mathrm{d} s} = \widehat{y}_j - \widetilde{y}_j$$

В результате получаем формулу конечных приращений для скалярной функции векторного аргумента:

$$f(x,\widehat{y}) - \frac{x,\widetilde{y}}{=} \sum_{j=1}^{m} \int_{0}^{1} \frac{\partial f(x,u(s))}{\partial y_{j}} ds \cdot (\widehat{y}_{j} - \widetilde{y}_{j})$$
(3.8)

Пусть теперь
$$f(x,y) = \begin{bmatrix} f(x_1,\ldots,x_l,y_1,\ldots,y_m) \\ \vdots \\ f_n(x_1,\ldots,x_l,y_1,\ldots,y_m) \end{bmatrix}$$
.

Полученная формула справедлива для любой компоненты f_i . Для функции f(x,y) формула имеет вид:

$$d(x,\widehat{y}) - f(x,\widetilde{y}) = \int_0^1 \frac{\partial f(x, u(s))}{\partial y} \, ds \cdot (\widehat{y} - \widetilde{y})$$

Лемма 10 (Адамара). Если вектор-функция f(x,y) непрерывна вместе с частной производной по y в выуклой области G, то для любых $(x,\widetilde{y}),\ (x,\widehat{y})\in G$ существуют непрерывные вектор-функции $h^{(1)}(x,\widetilde{y},\widehat{y}),\dots,h^{(m)}(x,\widetilde{y},\widehat{y})$ такие, что

$$f(x,\widehat{y}) - f(x,\widetilde{y}) = \sum_{j=1}^{m} h^{(j)}(x,\widetilde{y},\widehat{y}) \cdot (\widehat{y}_j - \widetilde{y}_j)$$

Доказательство. Действительно,

$$h^{(j)}(x, \widetilde{y}, \widehat{y}) = \int_0^1 \frac{\partial f(x, u(s))}{\partial y_i} \, \mathrm{d} s$$

3.2.2. Локальное и глобальное условия Липшица

Пусть x- скалярная переменая, y- вектор размерности $n, \quad f(x,y)-$ вектор-функция размерности n, непрерывная в области $G\subset \mathbb{R}^{n+1}$

Определение 59. Функция f(x,y) удовлетворяет условиб Липшица глобально по y на множестве $B\subset G$, если найдётся такая константа $L=L_B>0$, что

$$\forall (x, \widetilde{y}), (x, \widehat{y}) \in B \quad \|f(x, \widehat{y}) - f(x, \widetilde{y})\| \le L \|\widehat{y} - \widetilde{y}\|$$
(3.9)

Обозначение. $f \in \operatorname{Lip}_{y}^{gl}(B)$

Определение 60. Функция f(x,y) удовлетворяет условию Липпица локально по y в области G, если для любой точки $(x_{\circ},y^{\circ}) \in G$ существуют окрестность $V(x_{\circ},y^{\circ}) \subset G$ и константа Липпица $L = L_V > 0$ такие, что для любых двух точек $(x,\widehat{y}),(x,\widehat{y}) \in V(x_{\circ},y^{\circ})$ выолняется неравенство (3.9).

Обозначение. $f \in \operatorname{Lip}_{u}^{loc}(G)$

Лемма 11 (о связи между локальным и глобальным условиями Липшица). Если $f(x,y) \in \operatorname{Lip}_y^{loc}(G)$, то для любого компакта $\overline{H} \subset G$ выполнено $f(x,y) \in \operatorname{Lip}_y^{gl}(\overline{H})$

Доказательство. Рассуждая **от противного**, допустим, что существует компакт $\overline{H} \in G$, в котором $f(x,y) \notin \operatorname{Lip}_{y}^{gl}(\overline{H})$.

Это значит, что найдутся такие последовательности точек $(x_k, \widetilde{y}^{(k)}), (x_k, \widehat{y}^{(k)}) \in \overline{H}$ и костант $L_k \xrightarrow[k \to \infty]{}$ ∞ , что

$$\forall k \ge 1 \quad \left\| f(x_k, \hat{y}^{(k)}) - f(x_k, \tilde{y}^{(k)}) \right\| \ge L_k \left\| \hat{y}^{(k)} - \tilde{y}^{(k)} \right\|$$
 (3.10)

Надо показать, что при каком-то k это неравенство нарушается.

Разряжая при необходимости два раза подряд последовательность инексов k и пользуясь принципом выбора Больцано—Вейерштрасса, выберем такую подпоследовательность индексов $k_l \xrightarrow[l \to \infty]{l} \infty$, что $(x_k, \widetilde{y}^{(k_l)}) \to (x_\circ, \widetilde{y}^{(\circ)}), \quad (x_{k_l}, \widehat{y}^{(k_l)}) \to (x_\circ, \widehat{y}^{(\circ)})$. При этом обе точки $(x_\circ, \widetilde{y}^{(\circ)}), (x_\circ, \widehat{y}^{(\circ)}) \in \overline{H}$, поскольку замкнутое множество содержит все свои предельные точки. В результате векторы $\widetilde{y}^{(0)}$ и $\widehat{y}^{(0)}$ либо совпадают, либо нет.

• $\widetilde{y}^{(0)} \neq \widehat{y}^{(0)}$ Тогда можно ввести в рассмотрение функцию

$$h(x, \widetilde{y}, \widehat{y}) := \frac{\|f(x, \widehat{y}) - f(x, \widetilde{y})\|}{\|\widehat{y} - \widetilde{y}\|}$$

определённую в некоторой окрестности точки $(x_{\circ}, \widetilde{y}^{(0)}, \widehat{y}^{(0)})$.

Положим $h(x_{\circ}, \widetilde{y}^{(0)}, \widehat{y}^{(0)}) =: L_{\circ}$. Тогда существует окрестность $V(x_0, \widetilde{y}^{(0)}, \widehat{y}^{(0)})$, в которой h непрерывна и $h(x, \widetilde{y}, \widehat{y}) < L_{\circ} + 1$.

$$\implies \exists K > 0: \quad \forall k_l > K \quad (x_{k_l}, \widetilde{y}^{(k_l)}, \widetilde{y}^{(k_l)}) \in V(x_{\circ}, \widetilde{y}^{(0)}, \widetilde{y}^{(0)})$$

а значит, $h(x_{k_l}, \widetilde{y}^{(k_l)}, \widehat{y}^{(k_l)}) < L_{\circ} + 1$, или

$$\left\| f(x_{k_l}, \widehat{y}^{(k_l)}) - f(x_{k_l}, \widetilde{y}^{(k_l)}) \right\| < (L_{\circ} + 1) \left\| \widehat{y}^{(k_l)} - \widetilde{y}^{(k_l)} \right\|$$

Однако это неравенство при $l=l^*$ противоречит неравенству (3.10), поскольку всегда найдётся индекс l^* такой, что $L_{k_{l^*}} > L_{\circ} + 1$, т. к. $L_{k_{l}} \xrightarrow[l \to \infty]{} + \infty$.

• $y^{(0)} := \widetilde{y}^{(0)} = \widehat{y}^{(0)}$

Тогда точка $(x_{\circ}, y^{(0)}) \in \overline{H} \subset G$. В этом случае используем предположение о том, что функция f удовлетворяет локальному условию Липшица.

По определению для точки $(x_{\circ}, y^{(0)})$ существуют лежащая в G окрестность $V(x_{\circ}, y^{(0)})$ т константа Липшица L>0 такие, что для любых двух точек $(x,\widehat{y}), (x,\widehat{y})\in V(x_{\circ}, y^{(0)})$ верно неравенство (3.9). При этом обе подпоследовательности $-(x_{k_l}, \widehat{y}^{(k_l)})$ и $(x_{k_l}, \widehat{y}^{(k_l)})$ — имеют общий предел — точку $(x_{\circ}, y^{(0)})$.

Поэтому найдётся такое число K>0, что для всякого $k_l>K$ точки $(x_{k_l},\widetilde{y}^{(k_l)})$ и $(x_{k_l},\widehat{y}^{(k_L)})\in V(x_\circ,y^{(0)})$, а значит, выполняется неарвенство (3.9). Но существует такой индекс l^* , что $L_{k_{l^*}}>L$. Следовтельно, неравенства (3.9) и (3.10) несовместны при $l=l^*$.

3.2.3. Связь между дифференцируемостью и локальным условием Липшица

Лемма 12 (о достаточном условии локальной липшицевости). Если вектор-функция f(x,y) непрерывна всесте со своими частными производными по y_1, \ldots, y_n в области G, то она удовлетворяет условию Липшица по y локально в G.

Доказательство. Пусть V — окрестнгость произвольной точки из области G. Очевидно, что её можно выбрать выпуклой по y и такой, что $\overline{V} \subset G$. Для этого достаточно в качестве V взять куб с центром в выбранной точке и достаточно маленьким ребром.

Покажем, что $f(x,y) \in \operatorname{Lip}_{y}^{gl}(V)$:

По формуле конечных приращений имеем:

$$\forall (x, \widetilde{y}), (x, \widehat{y}) \in V \quad f(x, \widehat{y}) - f(x, \widetilde{y}) = \sum_{j=1}^{n} h^{(j)}(x, \widetilde{y}, \widehat{y}) \cdot (\widehat{y}_j - \widetilde{y}_j)$$

50

где

$$h^{(j)} := \int_0^1 \frac{\partial f(x, u(s))}{\partial y_j} \, \mathrm{d} s, \qquad u(s) := \widetilde{y} + s(\widehat{y} - \widetilde{y}) \quad \forall s \in [0, 1]$$

При этом $(x, u(s)) \in V$ в силу выпуклостти окрестности по y.

Поскольку чатсные производные f по y непрерывны в g и их конечное число, а компакт $\overline{V}\subset G$ по построению, то

$$\exists M > 0: \quad \forall s \in [0,1] \quad \forall j = \overline{1,n} \quad \left\| \frac{\partial f(x,u(s))}{\partial y_j} \right\| \leq M$$

Поэтому

$$||f(x,\widehat{y}) - f(x,\widetilde{y})|| \leq \sum_{j=1}^{n} \left\| \int_{0}^{1} \frac{\partial f(x,u(s))}{\partial y_{j}} ds \cdot (\widehat{y}_{j} - \widetilde{y}_{j}) \right\| \leq \sum_{j=1}^{n} \int_{0}^{1} \left\| \frac{\partial f(x,u(s))}{\partial y_{j}} \right\| ds \cdot |\widehat{y}_{j} - \widetilde{y}_{j}| \leq Mn \cdot \max j = \overline{1,n} |\widehat{y}_{j} - \widetilde{y}_{j}| = nM ||\widehat{y} - \widetilde{y}||$$

и верно неравенство (3.9) с глобальной константой Липшица L=nM, обслуживающей окрестность V произвольной точки из области G.

3.3. Метод последовательных приближений Пикара

3.3.1. Теорема Пикара

Рассмотрим нормальную систему y' = f(x,y) с $f \in \mathcal{C}(G)$. Наша задача заключается в построении решения $3K_{(3.3)y=y(x)}((x_{\circ},y^{\circ})) \in G \subset \mathbb{R}^{n+1}$, определённого на каком-нибудь отрезке, содержащем точку x_{\circ} .

Решение будем строить при помощи последовательных приближений Пикара , которые будут определяться рекуррентно.

Зафиксируем произвольную точку $(x_{\circ}, y^{\circ}) \in G$.

В качестве нулевого приближения возьмём функцию $y^{(0)}(x) \equiv y^{\circ}$. Очевидно, что она определена для любого $x \in \mathbb{R}$, но возможно не при всех значениях аргумента точка $(x, y^{(0)}(x))$ окажется в области G. Однако существует интервал (α_1, β_1) такой, что $x_{\circ} \in (\alpha_1, \beta_1)$ и для всякого $x \in (\alpha_1, \beta_1)$ точка $(x, y^{(0)}(x)) \in G$, а значит, функция $f(x, y^{(0)}(x))$ определна и непрерывна на (α_1, β_1) .

Теперь в качестве первого пикаровского приближения можно выбрать функцию

$$y^{(1)}(x) := y^{\circ} + \int_{x_0}^x f(s, y^{(0)}(s)) ds,$$

и оно определено и непрерывно как композиция непрерывных функций на (α_1, β_1) .

Но, опять-таки, возможно не при всех x точка $(x, y^{(1)}(x))$ попадёт в область G. В этом случае (α_1, β_1) придётся уменьшить.

Сущетвует интервал $(\alpha_2, \beta_2) \subset (\alpha_1, \beta_1)$ такой, что $x_0 \in (\alpha_2, \beta_2)$ и для всякого $x \in (\alpha_2, \beta_2)$ точка $(x, y^{(1)}(x)) \in G$, а значит, функция $f(x, y^{(1)}(x))$ определена и непрерывна на (α_2, β_2) . И так далее.

......

Предположим, что пикаровское приближение $y^{(k)}(x)$ определено и непрерывно на некотором интервале $(\alpha_k, \beta_k) \ni x_\circ$, и $y^{(k)}(x_\circ) = y^\circ$. Тогда существует такой интервал $(\alpha_{k+1}, \beta_{k+1}) \subset (\alpha_k, \beta_k)$, что $x_\circ \in (\alpha_{k+1}, \beta_{k+1})$ и для всякого $x \in (\alpha_{k+1}, \beta_{k+1})$ точка $(x, y^{(k)}(x)) \in G$.

Введём (k+1)-е приближение по Пикару:

$$y^{(k+1)}(x) = y^{\circ} + \int_{x_0}^{x} f(s, y^{(k)}(s)) ds.$$
(3.11)

Оно определено и непрерывно на интервале $(\alpha_{k+1}, \beta_{k+1})$.

Таким образом каждое пикаровское приближение определено в некоторой окрестности точки x_{\circ} и $y^{(k)}(x_{\circ}) = y^{\circ}$ при любом $k \geq 0$.

Но последовательность вложенных интервалов (α_k, β_k) при их пересечении может стянуться в точку x_{\circ} , т. е. общий интервал для всех пикаровских приближений, вообще говоря, может отсутсвовать. Также чожет оказаться, что вектор-функции $y^{(k)}(x)$ не будут равномерно ограничены сверху по норме. Каждая из этих возможностей мешает получить предельную функцию.

Теорема 32 (Пикара). $f(x,y) \in \mathcal{C}(G), \quad f(x,y) \in \operatorname{Lip}_{y}^{loc}(G)$

Для любой точки $(x_0, y^\circ) \in G$ последовательные приближения Пикара $y^{(k)}(x)$ (k = 0, 1, ...) с начальными данными x_0, y° определены на некотором отрезке $[\alpha, \beta]$, причём существует такой компакт $\overline{H} \subset G$, что для любых $k \ge 0$ и $x \in [\alpha, \beta]$ точка $(x, y^{(k)}(x)) \in \overline{H}$.

Тогда функции $y^{(k)}(x)$ равномерно относительно $[\alpha, \beta]$ стремятся при $k \to \infty$ к предельной функции y(x), являющейся решением $3K_{(3,3)}(x_{\circ}, y^{\circ})$ на отрезке $[\alpha, \beta]$.

Доказательство. Возьмём произвольную точку $(x_{\circ}, y^{\circ}) \in G$

По условию теоремы для этой точки надётся отрезок $[\alpha, \beta] \ni x_{\circ}$ и компакт $\overline{H} \subset G$ такие, что можно построить последовательные пикаровские приближения

$$y^{(k)}(x) = y^{\circ} + \int_{x_{\circ}}^{x} f(s, y^{(k-1)}(s)) ds, \qquad k = 1, 2, \dots,$$

определённые для всякого $x \in [\alpha, \beta]$ такие, что их графики, т. е. точки $(x, y^{(k)}(x))$, при всех x и k принадлежат \overline{H} .

Наличие компакта позволяет ввести на нём две глобальные константы:

- Обозначим через L>0 константу Липшица, обслуживающую \overline{H} . Она существует по лемме о связи между условиями Липшица (лемма 11), согласно которой $f(x,y) \in \operatorname{Lip}_{u}^{gl}(\overline{H})$.
- Положим $M \coloneqq \max_{\overline{H}} \|f(x,y)\|.$

Нужно установить равномерную сходимость последовательности пикаровских отображений. Сделаем это при помощи функциональных рядов:

Введём последовательность функций $\varphi^{(k)}(x)$, определённых на отрезке $[\alpha, \beta]$:

$$\varphi^{(0)}(x) \coloneqq y^{(0)}(x), \quad \varphi^{(1)}(x) \coloneqq y^{(1)}(x) - y^{(0)}(x), \quad \dots, \quad \varphi^{(k)}(x) \coloneqq y^{(k)}(x) - y^{(k-1)}(x), \quad \dots$$

Рассмотрим функциональный ряд

$$\varphi(x) = \sum_{k=0}^{\infty} \varphi^{(k)}(x)$$

По определению $\varphi^{(k)}$,

$$S_n(x) = \sum_{k=0}^n \varphi^{(k)}(x) = y^{(n)}(x)$$

Поэтому сходимость ряда $\varphi(x)$ равносильна сходимости последовательности пикаровских приближений $y^{(k)}(x)$.

Построим для ряда $\varphi(x)$ мажорантный ряд, оценив сверху по норме методом **индукции** члены $\varphi^{(k)}(x)$:

• База.

Для всякого $x \in [\alpha, \beta]$ имеем:

$$\left\| \varphi^{(0)}(x) \right\| = \left\| y^{(0)}(x) \right\|,$$

$$\left\| \varphi^{(1)}(x) \right\| = \left\| y^{(1)}(x) - y^{(0)}(x) \right\| = \left\| \int_{x_0}^x f(s, y^{(0)}(s)) \, \mathrm{d} s \right\| \le \left\| \int_{x_0}^x \left\| f(s, y^{(0)}(s)) \right\| \, \mathrm{d} s \right\|$$

Но по условию теоремы любая точка $(s,y^{(0)}(s))$ лежит в \overline{H} , т. к. $[x_{\circ}\ \ \]$ Следовательно,

$$\left\| y^{(1)}(x) \right\| \le M|x - x_{\circ}|.$$

Далее,

$$\|\varphi^{(2)}(x)\| \le \left| \int_{x_{\circ}}^{x} L \|y^{(1)}(s) - y^{(0)}(s)\| \, \mathrm{d} \, s \right| = L \left| \int_{x_{\circ}}^{x} \|\varphi^{(1)}(s)\| \, \mathrm{d} \, s \right| \le$$

$$\le L \left| \int_{x_{\circ}}^{x} M|s - x_{\circ}| \, \mathrm{d} \, s \right| \le LM \frac{|x - x_{\circ}|^{2}}{2} = \frac{M}{L} \cdot \frac{(L|x - x_{\circ}|)^{2}}{2!}$$

• Предположим, что для любых $k \geq 2$ и $x \in [\alpha, \beta]$

$$\|\varphi^{(k)}(x)\| \le \frac{M}{L} \cdot \frac{(L|x-x_0|)^2}{2!}.$$
 (3.12)

• **Переход.** Оценим $\varphi^{(k+1)}(x)$:

$$\begin{aligned} \left\| \varphi^{(k+1)}(x) \right\| &= \left\| y^{(k+1)}(x) - y^{(k)}(x) \right\| = \left\| \int_{x_0}^x f\left(s, y^{(k)}(s)\right) \, \mathrm{d} \, s - \int_{x_0}^x f\left(s, y^{(k-1)}(s)\right) \, \mathrm{d} \, s \right\| \leq \\ &\leq \left| \int_{x_0}^x f\left(s, y^{(k)}(s)\right) - f\left(s, y^{(k-1)}(s)\right) \, \mathrm{d} \, s \right|. \end{aligned}$$

Поскольку аргументы $f \in \overline{H}$, используем для оценок глобальное условие Липшица:

$$\begin{split} \left\| \varphi^{(k+1)}(x) \right\| & \leq \int_{x_{\circ}}^{x} L \left\| y^{(k)}(s) - y^{(k-1)}(s) \right\| \, \mathrm{d} \, s \right| = L \left| \int_{x_{\circ}}^{x} \left\| \varphi^{(k)}(s) \right\| \, \mathrm{d} \, s \right| \leq \sup_{\mathbf{npegn}} \\ & \leq L \left| \int_{x_{\circ}}^{x} \frac{M}{N} \cdot \frac{(L|s - x_{\circ}|)^{k}}{k!} \, \, \mathrm{d} \, s \right| \leq \frac{M}{N} \cdot \frac{(L|x - x_{\circ}|^{k+1})}{(k+1)!} \end{split}$$

Таким образом, индукцонное предположение доказано.

Поскольку $|x-x_{\circ}| \leq \beta - \alpha$, справедлива равномерная оценка членов ряда $\varphi(x)$:

$$\left\| \varphi^{(k)}(x) \right\| \le \frac{M}{N} \cdot \frac{\left(L(\beta - \alpha) \right)^k}{k!} \quad \forall x \in [\alpha, \beta]$$

Мажорантный для $\varphi(x)$ числовой ряд

$$||y^{\circ}|| + \frac{M}{L} \cdot \sum_{k=1}^{\infty} \frac{\left(L(\beta - \alpha)\right)^k}{k!}$$

сходится при любых конечных α, β .

По признаку Вейерштрасса функциональный ряд $\sum \varphi^{(k)}(x)$ сходится равномерно на $[\alpha, \beta]$, а значит, последовательноть $y^{(k)} \xrightarrow{[\alpha,\beta]} y(x)$.

Для всякого $x \in [\alpha, \beta]$ предельная функция y(x) непрерывна по теореме Стокса—Зайделя и точка (x, y(x)), являясь предельной, содержится в \overline{H} . Следовательно, $\int_{x_{\circ}}^{x} f(s, y(s)) \, \mathrm{d} s$ существует. Рассмотрим равенство (3.11), устремив в нём k к бесконечности. Тогда слева получим y(x), а справа

$$\int_{x_0}^x f(s, y^{(k)}(s)) ds \to \int_{x_0}^x f(s, y(s)) ds,$$

т. е. возможен переход к пределу под знаком интеграла.

Таким образом, в правой части (3.11) тоже можно перейти к пределу, получая формулу

$$y(x) = y^{\circ} + \int_{x_{\circ}}^{x} f(s, y(s)) ds \quad \forall x \in [\alpha, \beta],$$

т. е. y(x) удовлетворяет интегральному уравнению, что равносильно тому, что $y(x) \in ($ является решением) $3K_{(3.3)}(x_{\circ}, y^{\circ})$ на отрезке $[\alpha, \beta]$.

Следствие. Имеет место следующая оценка остатка:

$$||y(x) - y^{(k)}(x)|| \le \frac{M}{L} \cdot \frac{(L|x - x_0)^{k+1}}{(k+1)!} \le \frac{M}{L} \cdot \frac{(L(\beta - \alpha))^{k+1}}{(k+1)!}$$

Доказательство. Индукция.

• База. k = 0

$$\left\| y(x) - y^{(0)}(x) \right\| \le \left\| \int_{x_0}^x f(s, y(s)) \, \mathrm{d}s \right\| \le M|x - x_0| \le \frac{M}{L} \cdot L(\beta - \alpha)$$

• Переход.

$$\begin{aligned} \left\| y(x) - y^{(k+1)}(x) \right\| & \leq \left\| \int_{x_{\circ}}^{x} \left(f\left(s, y(s)\right) - f\left(s, y^{(k)}(s)\right) \right) \, \mathrm{d} \, s \right\| \leq \left| \int_{x_{\circ}}^{x} L \left\| y(s) - y^{(k)}(s) \right\| \, \mathrm{d} \, s \right| \leq \\ & \leq L \left| \int_{x_{\circ}}^{x} \frac{M}{L} \cdot \frac{\left(L|s - x_{\circ}| \right)^{k+1}}{(k+1)!} \, \, \mathrm{d} \, s \right| \leq \frac{M}{L} \frac{\left(L|x - x_{\circ}| \right)^{k+2}}{(k+2)!} \leq \frac{M}{L} \cdot \frac{\left(L(\beta - \alpha) \right)^{k+2}}{(k+2)!} \quad \forall x \in [\alpha, \beta] \end{aligned}$$

3.3.2. Существование и единственность решений системы

Из теоремы Пикара следует, что для доказательства существования решения системы (3.3), проходящего через точку (x_{\circ}, y°) , остаётся найти отрезок, на котором будут определены все пикаровские приближения, и компакт, в котором будут лежать все их графики.

Теорема 33 (о существовании и единственности решения). Пусть в системе (3.3) f(x,y) непрерывна и $f \in \operatorname{Lip}_{u}^{loc}(G)$.

Тогда для любой точки $(x_0, y^0) \in G$ и для любого отрезка Пеано $P_h(x_0, y^0)$ на этом отрезке существует и единственно решение $3K(x_0, y^0)$.

Доказательство.

• Существование.

Возьмём любую точку $(x_0,y^0)\in G$ и найдём для неё отрезок $[\alpha,\beta]$ и компакт \overline{H} из теоремы Пикара.

Сначала построим отрезок Пеано с центром в т. x_0 . Для этого возьмём такие a,b>0, что компакт $\overline{R}=\left\{\;(x,y)\mid \mid x-x_0\mid < a,\; \left\|y-y^0\right\|\leq b\;\right\}\subset G.$

Положим

$$M = \max_{(x,y) \in \overline{R}} \left\| f(x,y) \right\|, \quad h = \min \left\{ a, \frac{b}{M} \right\}, \alpha = x_0 - h, \quad \beta = x_0 + h$$

Тогда $[\alpha, \beta]$ — это искомый отрезок Пеано $P_h(x_0, y^0)$.

Выберем $\overline{H}=\left\{\;(x,y)\;\middle|\;\alpha\leq x\leq \beta,\;\left\|y-y^0\right\|\leq b\;\right\}$. Тогда $\overline{H}\subset\overline{R}$.

Докажем **индукцией** по $k = 0, 1, \dots$, что

$$\forall x \in [\alpha, \beta] \quad \left\| y^{(k)}(x) - y^0 \right\| \le b \tag{3.13}$$

Тогда точка $(x, y^{(k)}(x))$ попадёт в компакт \overline{H} , что позволит определить пикаровское приближение $y^{(k+1)}$ на всём отрезке Пеано $[\alpha, \beta]$.

- По определению, $(^{(0)}x) \equiv y^0$, поэтому **база** очевидна.
- Допустим, что неравенство (3.13) верно. Тогда для любого $x \in [\alpha, \beta]$

$$\left\| y^{(k+1)}(x) - y^0 \right\| = \left\| \int_{x_0}^x f(s, y^{(k)}(s)) \, ds \right\| \le \left\| \int_{x_0}^x \left\| f(s, y^{(k)}(s)) \right\| \, ds \right\|$$

Но согласно (3.13) точка $(s, y^{(k)}(s)) \in \overline{H} \subset \overline{R}$, поэтому под знаком интеграла $||f|| \leq M$ и $||y^{(k+1)}(x) - y^0|| \leq M|x - x_0| \leq Mh \leq b$.

• Единственность

Докажем от противного.

Предположим, что существует ещё одно решение $\widetilde{y}(x)$ с теми же начальными данными, т. е. $\widetilde{y}(x_0) = y^0$, определённое на некотором интервале $(\widetilde{\alpha}, \widetilde{\beta}) \ni x_0$.

Пусть [a,b] — отрезок, на котором определены оба решения. Достаточно показать, что на (a,b) решения y(x) и $\widetilde{y}(x)$ совпадают.

Используя интегральную формулу (1.2), для любого $x \in (a,b)$ запишем разность этих решений:

$$y(x) - \widetilde{y}(x) = \int_{x_0}^x \left(f(s, y(s)) - f(s, \widetilde{y}(s)) \right) ds$$

При этом, существует такой компакт $\overline{H} \subset G$, что для всякого $s \in [a,b]$ точки $(s,y(s)), (s,\widetilde{y}(s)) \in \overline{H}$.

По условию теоремы в области G для функции f(x,y) выполняется локальное условие Липшица. А значит, по лемме о связи между локальным и глобальным условиями Липшица функция $f \in \operatorname{Lip}_u^{gl}(\overline{H})$ и L-глобальная константа Липшица. Поэтому

$$\|y(x) - \widetilde{y}(x)\| \le \left| \int_{x_0}^x \|f(s, y(s)) - f(s, \widetilde{y}(s))\| \, \mathrm{d}s \right| \le L \left| \int_{x_0}^x \|y(s) - \widetilde{y}(s)\| \, \mathrm{d}s \right|$$

Применяя следствие из теоремы Гронуолла с $\mu = L$ заключаем, что $\|y(x) - \widetilde{y}(x)\| \stackrel{(a,b)}{=\!=\!=\!=} 0$. Тогда $y(x) - \widetilde{y}(x) \stackrel{(a,b)}{=\!=\!=\!=} 0$.

Следствие. G является областью единственности.

3.4. Линейные системы. Введение

3.4.1. Существование и единственность решений

Определение 61. Система (3.3) называется линейной, если она имеет вид

$$\begin{cases} y_1' = p_{11}(x)y_1 + \dots + p_{1n}(x)y_n + q_1(x) \\ \dots \\ y_n' = p_{n1}(x)y_1 + \dots + p_{nn}(x)y_n + q_n(x) \end{cases}$$
(3.14)

или в векторной записи

$$y' = P(x)y + q(x)$$

где функции $p_{ij}(x)$ и $q_i(x) \in \mathcal{C}((a,b))$.

Другая формулировка. Нормальная система является линейной, если f(x,y) = P(x)y + q(x), а $G = (a,b) \times \mathbb{R}^n$.

Определение 62. Линейная система (3.14) называется однородной (ЛОС), если в ней $q(x) \stackrel{(a,b)}{=\!=\!=\!=} 0$. В противном случае система называется неоднородной (ЛНС). Функция q(x) — это неоднородность системы (3.14).

Определение 63. Линейная система (3.14) называется вещественной, если коэффициенты $p_{ij}(x)$, $q_i(x)$ принимают только вещественные значения.

В дальнейшем, если не оговорено иное, будем рассматривать только вещественные системы.

Исходя из структуры области G, начальные данные для $3\mathbf{K}$ — это произвольная точка x_0 из интервала (a,b) и произвольный вектор $y^0=(y_1^0,\ldots,y_n^0)$ из пространства \mathbb{R}^n .

Теорема 34 (о существовании и единственности решений линейных систем). Для любой точки $x_0 \in (a,b)$, для любого вектора $y^0 \in \mathbb{R}^n$ и для любого отрезка Пеано $P_h(x_0,y^0)$ существует и единственно решение $3\mathrm{K}_{(3.14)}(x_0,y^0)$, определённое на $P_h(x_0,y^0)$.

Доказательство. Поскольку функция $f(x,y) \in \mathcal{C}(G)$ и $f_y'(x,y) = P(x) \in \mathcal{C}(G)$, а значит, $f \in \operatorname{Lip}_y^{loc}(G)$, к системе (3.14) применима предыдущая теорема.

3.4.2. О продолжимости решений линейных систем

Определение 64. Система (3.3) называется *почти линейной*, если $f(x,y) \in \mathcal{C}(G)$, где $G = (a,b) \times \mathbb{R}^n$, и существуют непрерывные и неотрицательные на (a,b) функции L(x), M(x) такие, что $||f(x,y)|| \le L(x) + M(x) ||y||$ для любой точки $(x,y) \in G$.

Теорема 35 (о продолжимости решений почти линейных систем). Любое решение почти линейной системы продолжимо на интервал (a,b).

Доказательство. Рассмотрим произвольное решение почти линейной системы $y = \varphi(x)$, заданное на максимальном интервале существования (α, β) . Для всякого $x_0 \in (\alpha, \beta)$ по интегральной формуле, аналогичной (1.2),

$$\varphi(x) \stackrel{(\alpha,\beta)}{=\!\!\!=\!\!\!=} \varphi(x_0) + \int_{x_0}^x f(s,\varphi(s)) \, \mathrm{d} \, s$$

$$\implies \|\varphi(x_0)\| + \left| \int_{x_0}^x \|f(s,\varphi(s))\| \, \mathrm{d} \, s \right| < \|\varphi(x_0)\| + \left| \int_{x_0}^x \left(L(s) + M(s) \|\varphi(s)\| \right) \, \mathrm{d} \, s \right|$$

Если $\beta < b$, то отрезок $[x_0, \beta] \subset (a, b)$, и в силу непрерывности функций L и M имеем:

$$L(x) \le L_0, \quad M(x) \le M_0 \qquad \forall x \in [x_0, \beta]$$

Поэтому

$$\|\varphi(x)\| \le \|\varphi(x_0)\| + L_0(\beta - x_0) + M_0 \left| \int_{x_0}^x \|\varphi(s)\| \, ds \right|$$

По лемме Гронуолла

$$\|\varphi(x)\| \le \left(\|\varphi(x_0)\| + L_0(\beta - x_0)\right) e^{M_0(\beta - x_0)} \quad \forall x \in [x_0, \beta],$$

что противоречит теореме о поведении интегральной кривой полного решения.

Аналогично рассматривается случай, когда $\alpha > a$.

Теорема 36 (о продолжимости решений линейных систем). Любое решение линейной системы (3.14) продолжимо на интервал (a,b).

Доказательство. Покажем, что линейная система является почти линейной. Положим

$$p_0(x) := \max_{i,j=1,n} \{ |p_{ij}(x)| \}, \qquad q_0 := \max_{i=1,n} \{ |q_i(x)| \}$$

Тогда функции $p_0(x), q_0(x) \in \mathcal{C}(a, b)$.

Оценим сверху компоненты правой части системы (3.14):

$$|f_i(x,y)| = |p_{i1}(x)y_1 + \dots + p_{in}(x)y_n + q_i(x)| \le \sum_{j=1}^n |p_{ij}(x)| \cdot |y_j| + |q_i(x)| \le \sum_{j=1}^n p_0(x)|y_j| + q_0(x) \le np_0(x) \max_{j=1,n} |y_j| + q_0(x)$$

По определению нормы $||f(x,y)|| \le np_0(x) ||y|| + q_0(x)$, т. е. система (3.14) почти линейна.

3.4.3. Комплекснозначные линейные системы

Если в линейной системе (3.14) $p_{ij}(x)$ и $q_i(x)$ — комплекснозначные функции вещественного аргумента x, то решение системы (3.14) y = y(x) также будет иметь комплексные значения.

Пусть y = u(x) + iv(x), P = R(x) + iS(x), q = g(x) + ih(x). Тогда согласно определению решения, подставляя y(x) в систему (3.14), получаем тождество на интервале (a, b):

$$u' + iv' \equiv (R + iS)(u + iv) + g + ih$$

Выделяя в нём вещественную и мнимую части, заключаем, что вектор-функция (u(x), v(x)) удовлетворяют вещественной линейной системе из 2n уравнений с 2n неизвестными:

$$u' \equiv Ru - Sv + q, \qquad v' \equiv Su + Rv + h,$$

к которой можно применить теоремы о существовании и единственности и продолжимости решений.

3.5. Зависимость решения системы от начальных данных и параметра

3.5.1. Постановка задач

Рассмотрим нормальную систему (3.3), зависящую от параметра $\mu = (\mu_1, \dots, \mu_m)$:

$$y' = f(x, y, \mu), \tag{3.15}$$

где вещественная функция $f(x,y,\mu)$ непрерывна и удовлетворяет условию Липшица по y локально в некоторой области $F \subset \mathbb{R}^{1+n+m}$.

Примечание. Эти ограничения на f минимальны и в дальнейшем будут усиливаться.

По теореме о существовании и единственности решения для любого $\widetilde{\mu}$ множество

$$G_{\widetilde{\mu}} = \{ (x, y) \mid (x, y, \widetilde{\mu}) \in F \},$$

если оно не пусто, является областью единственности для нормальной системы вида (3.3) $y' = f(x, y, \widetilde{\mu})$.

Фактически система (3.15) представляет собой семейство систем, каждая из которых отвечает своему значению вектора μ . Понятно, что не может идти и речи о нахождении общего решения системы (3.15), поскольку даже приближённое интегрирование осуществимо только для дискретных значений параметра.

Пусть функция $y=y(x,x_0,y^0,\mu), \quad y(x_0,x_0,y^0,\mu)=y^0$ обозначает решение $3K_{(3.15)},$ заданное на множестве

$$D = \{ (x, x_0, y^0, \mu) \mid x \in I(x_0, y^0, \mu), \quad (x_0, y^0, \mu) \in F \},$$

где I — максимальный интервал существования решения.

Множество D является областью.

Особое место среди систем (3.15) занимает т. н. порождающая (невозмущённая) система

$$y' = f(x, y, \widehat{\mu}), \tag{3.16}$$

в которой $\widehat{\mu}$ — числовой вектор *расчётных* значений параметров, например, средних или наиболее вероятных. (3.15) можно трактовать как *возмущённую* систему.

Зафиксируем расчётные значения начальных данных $x_0 = \hat{x}_0, \ y^0 = \hat{y}^0$ так, чтобы $(\hat{x}_0, \hat{y}^0, \hat{\mu}) \in F$.

Рассмотрим решение ЗК $\varphi(x) = y(x, \widehat{x}_0, \widehat{y}^0, \widehat{\mu}), \quad \varphi(\widehat{x}_0) = \widehat{y}^0$ системы (3.16) на максимальном интервале существования (α, β) , и выберем произвольный отрезок $[a, b] : \widehat{x}_0 \in [a, b] \subset (\alpha, \beta)$.

Решение $y=\varphi(x)$ при $x\in[a,b]$ будем также называть расчётным. Оно описывает расчётное (модельное) движение материальной точки в пространственно-временном континууме. Это решение предполагается известным.

Понятно, что реальное движение материальной точки, описываемое решением $y(x,x_0,y^0,\mu)$ возмущённой системы (3.15) с начальными данными $x_0 \in [a,b], \ y^0$, по норме близким к $\varphi(x_0)$, и вектором параметров μ , близким к $\widehat{\mu}$, юудет определено в некоторолй окрестности точки x_0 и будет отличаться от расчётного движения. Вопрос в том, можно ли это решение продолжить на весь отрезок [a,b], и насколько велико окажется отличие.

Введём следующие обозначения:

$$\overline{U}_d^{x,y}(\varphi,\widehat{\mu}) := \{ (x,y,\mu) \mid x \in [a,b], \quad \| y - \varphi(x) \| \le d, \quad \|\mu - \widehat{\mu}\| \le d \}$$

$$(3.17)$$