

ADC
ATMEGA328P

CONVERSÃO ANALÓGICO-DIGITAL

CONVERSÃO ANALÓGICO-DIGITAL

Resolução

ADC NO ATMEGA328P

- 10 bits de resolução (1024 pontos).
- Precisão de ± 2 LSBs (bits menos significativos).
- Tempo de conversão de 65 até 260 μs.
- Até 76,9 kSPS (kilo Samples Per Second), 15 kSPS na resolução máxima.
- 6 canais de entrada multiplexados (+2 nos encapsulamentos TQFP e QFN/MLF).
- Faixa de tensão de entrada de 0 até VCC.
- Tensão de referência selecionável de 1,1 V. 🗸
- Modo de conversão simples ou contínua.
- Interrupção ao término da conversão.
- Eliminador de ruído para o modo Sleep.
- Sensor interno de temperatura com ± 10 °C de precisão.

PEDIDO DE INTERRUPÇÃO DA CONVERSÃO COMPLETA DO ADC VIA DE DADOS DE 8 BITS SELEÇÃO DO REGISTRADOR DE DADOS (ADCH/ADCL) REGISTRADOR DE MULTIPLEXADOR (ADMUX) CONTR. & STATUS (ADCSRA) DECODIFICADOR DO MUX PRESCALER LÓGICA DE CONVERSÃO AVCC REFERÊNCIA COMPARADOR INTERNA (1,1V) DE AMOSTRAGEM E RETENÇÃO DAC DE 10-BIT SENSOR DE **TEMPERATURA** TENSÃO FIXA PARA REFERÊNCIA ADC7 ADC6 SAÍDA DO MULTIPLEXADOR INPUT ADC5 MUX ADC4 ADC3 ADC2 ADC1

DIAGRAMA DO ADC – ATMEGA328P

REGISTRADORES DO ADC

ADMUX (ADC Multiplexer Selection Register)

- Bits 7:6 **REFSI:0** Reference Selection Bit
- Bit 5 **ADLAR** ADC Left Adjust Result

REFS1	REFS0	Seleção da Tensão de Referência
0	0	AREF, tensão interna VREF desligada.
0	1	AVCC. Deve-se empregar um capacitor de 100 nF entre o pino AREF e o GND.
1	0	Reservado.
1	1	Tensão interna de referência de 1,1 V. Deve-se empregar um capacitor de 100 nF entre o pino AREF e o GND.

REGISTRADORES DO ADC

• Bits 3:0 - MUX3:0 - Analog Channel Selection Bits

MUX30	Entrada			
0000	ADC0			
0001	ADC1			
0010	ADC2			
0011	ADC3			
0100	ADC4			
0101	ADC5			
0110	ADC6			
0111	ADC7			
1000	Sensor interno de temperatura			
1001-1101	reservado			
1110	1,1 V (tensão fixa para referência)			
1111	0 V (GND)			

ADCSRA (ADC Control and Status Register A)

- Bit 7 ADEN ADC Enable ✓
- Bit 6 − ADSC − ADC Start Conversion ✓
- Bit 5 ADATE ADC Auto Trigger Enable ✓
- Bit 4 ADIF ADC Interrupt Flag ✓
- Bit 3 − ADIE − ADC Interrupt Enable
- Bits 2:0 − ADPS2:0 − ADC Prescaler Select Bits ✓

ADPS2	ADPS1	ADPS0	Fator de Divisão
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Para (10bits) o taxa máx é 15kSPS Cada amostra dura 13 clocks do ADC Única opção em 16MHz (16MHz/13)/128 = 9,6kSPS (16MHz/13)/64 = 19,2kSPS

ADCL/ADCH (ADC Data Register)

• Alinhamento a **Direita**

		15	14	13	12	11	10	9	8
ADLAR=0	ADCH	-	-	-	-	-	-	ADC9	ADC8
	ADCL	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
Bit	•	7	6	5	4	3	2	1	0

• Alinhamento a **Esquerda**

		15	14	13	12	11	10	9	8
ADLAR=1	ADCH	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2
	ADCL	ADC1	ADC0	-	-	-	-	-	-
Bit	•	7	6	5	4	3	2	1	0

ADCSRB (ADC Control and Status Register B)

• Bits 2:0 – **ADTS2:0** - ADC Auto Trigger Source

	ADTS2	ADTS1	ADTS0	Fonte de disparo
₩	0	0	0	conversão contínua 🗸
	0	0	1	comparador Analógico
	0	1	0	interrupção Externa 0
	0	1	1	igualdade de comparação A do TC0
	1	0	0	estouro de contagem do TC0
	1	0	1	igualdade de comparação B do TC1
	1	1	0	estouro de contagem do TC1
	1	1	1	evento de captura do TC1

DIDR0 (Digital Input Disable Register 0)

• Bits 5:0 – ADC5D:0D – ADC5:0 Digital Input Disable


```
#define F_CPU 16000000UL //Frequência de trabalho da CPU 5V
                                                                           1024 0611111111
#include <avr/io.h> 
#include <util/delay.h>
#include <avr/interrupt.h> 
#include "nokia5110.h" ____
#define tam vetor 4
unsigned char leitura ADC string[tam vetor];
uint16 t leitura ADC = 0;
ISR(ADC vect)
                                                        AREF
      leitura_ADC = ADC;
                                                0
                                                        AVCC
                                                        Tensão interna de referência de 1,1 V.
int main()
      //GPIO
      DDRB = 0xFF; //Porta B como saída 🗸
      DDRC = 0x00; //Porta C como entrada
      PORTC = 0xFE; //Desabilita o pullup do PC0 ✓
      //Configura_ADC
      ADMUX = 0b11000000; //Tensão interna de ref (1.1V), canal 0
                                                                       //Conversão de inteiro para string
      ADCSRA = 0b11101111; ✓/habilita o AD, habilita interrupção,
                                                                       void int2string(unsigned int valor,
      modo de conversão contínua, prescaler = 128
                                                                       unsigned char *disp)
      ADCSRB = 0x00; //modo de conversão contínua
      DIDR0 = 0b00111110; //habilita pino PC0 como entrada do ADC0
                                                                             for(uint8 t n=0; n<tam vetor;</pre>
                                                                              n++)
     /sei(); //Habilita interrupções globais
     mokia_lcd_init(); //Inicia o LCD
                                                                              dos digitos
      while(1)
                                                                             disp += tam vetor-1;
             nokia lcd clear(); //Limpa o LCD
           vint2string(leitura ADC, leitura ADC string);
             //converte a leitura do ADC em string
             nokia lcd write string(leitura ADC string,1);
            //Escreve a leitura no buffer do LCD
             nokia_lcd_render(); //Atualiza a tela do display com
             o conteúdo do buffer
             _delay_ms(1000);
                                                                              }while (valor!=0);
```

EXEMPLO: ADC

disp[n] = (0) + 48;

//pega o resto da

divisão por 10

disp--;

REFERÊNCIAS

IDE

Atmel Studio 7 (gratuito) https://www.microchip.com/mplab/avr-support/atmel-studio-7

Simuladores

- https://www.simulide.com/p/blog-page.html
- https://github.com/lcgamboa/picsimlab/releases
- https://www.labcenter.com/downloads/

Material de referência:

- Datasheet do Atmega 328p: https://www.microchip.com/wwwproducts/en/ATmega328p#datasheet-toggle
- Livro texto: http://borgescorporation.blogspot.com/2012/05/avr-e-arduino-tecnicas-de-projeto.html

