Tutorial 19

Problem 1

- 1. Suppose that $\sum_{n=0}^{\infty} a_n^2$ converges. Must it also be the case that $\sum_{n=0}^{\infty} a_n$ converges?
- 2. Suppose that $\sum_{n=0}^{\infty} a_n$ converges. Must it also be the case that $\sum_{n=0}^{\infty} a_n^2$ converges?

2. No.
$$\frac{50}{n=0}$$
 (-1) $\frac{1}{\sqrt{n+1}}$ (onerge) by Alternoting Series Test, but $\frac{1}{n=0}$ diverge).

Note: if
$$f$$
 ct, at L and $(g_n) \longrightarrow L$,
then $f(g_n) \longrightarrow f(L)$.
Here, $(S_n) \longrightarrow 1$

Here,
$$(S_n) \longrightarrow L$$

but $f(S_n) \neq \sum_{k=0}^{n} f(a_k)$

Problem 2

Suppose that (a_n) is a sequence of *positive* real numbers such that $\sum_{n=1}^{\infty} a_n$ converges. Let $r_n = \sum_{m=n}^{\infty} a_m$. Prove that if m < n,

$$\frac{a_m}{r_m} + \dots + \frac{a_n}{r_n} > 1 - \frac{r_n}{r_m}$$

and deduce that $\sum_{n=1}^{\infty} \frac{a_n}{r_n}$ diverges.

Let
$$S_{h} = \sum_{k=1}^{\infty} a_{k}$$
 S_{h} increasing (since q_{h} positive).
2. In decreasing Let $S = \sum_{h=1}^{\infty} a_{h}$, then $r_{h} = \sum_{k=1}^{\infty} a_{k} - \sum_{k=1}^{\infty} a_{k} = S - S_{h-1}$.
3. $\sum_{k=1}^{\infty} \frac{a_{k}}{r_{k}}$ not county, then $\sum_{k=1}^{\infty} \frac{a_{k}}{r_{k}}$ diverges.

$$\sum_{k=1}^{\infty} \frac{\alpha_k}{r_k} \qquad \text{Let } T_n = \sum_{k=1}^{n} \frac{\alpha_k}{r_k},$$

Observe:
$$\forall m \in \mathbb{N}$$
 $\lim_{N \to \infty} \frac{r_N}{r_M} = 0$.

(Since $\lim_{K \to 1} \frac{r_N}{r_M} = 0$.

Since $\lim_{K \to 1} \frac{r_N}{r_M} = 0$.

So:
$$\sum_{k=m}^{n} \frac{a_k}{r_k} > \left| -\frac{r_n}{r_m} > \frac{1}{2} \right|$$
 (Choosing any m, if n large enough)

Solution. Define $s_1 = 0$ and $s_n = \sum_{n=1}^{n-1} a_n$ where n > 1, and let $S = \sum_{n=1}^{\infty} a_n$. Note that since (a_n) is positive, (s_n) is increasing, so $(r_n) = (S - s_n)$ is decreasing and positive. Thus

$$\frac{a_m}{r_m} + \dots + \frac{a_n}{r_n} > \frac{a_m}{r_m} + \dots + \frac{a_n}{r_m} = \frac{a_m + \dots + a_n}{r_m} > \frac{a_m + \dots + a_{n-1}}{r_m} = \frac{r_m - r_n}{r_m} = 1 - \frac{r_n}{r_m}.$$

Note that $1 - \frac{r_n}{r_m} > 0$ because (r_n) is decreasing. Now, note that $\lim_{n \to \infty} 1 - \frac{r_n}{r_m} = 1$, so $\sum_{i=m}^n \frac{a_i}{r_i} \ge 1$. Thus, the sequence of partial sums is not Cauchy and the series does not converge.

Problem 3

Using the identity for geometric series

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

for |x| < 1, express the following series as expressions not involving summations, and state for which x they converge.

$$1. \sum_{k=0}^{\infty} (-1)^k x^{2k} = \sum_{k=0}^{\infty} \left(-\chi^2\right)^k = \frac{|}{|+\chi^2|} \quad \text{Meed} \quad |-\chi^2| \leq |\chi| \leq |\chi|$$

$$2. \sum_{k=0}^{\infty} (1-x)^{3k} = \sum_{k=0}^{\infty} \left(\left(\frac{1-x}{1-x} \right)^{3} \right)^{k} = \frac{1}{1-\left(\left(-x \right)^{3} \right)} \text{ he ed } \left| \left(\frac{1-x}{1-x} \right)^{3} \right| \leq 1$$

3.
$$\sum_{k=0}^{\infty} \frac{1}{(x-2)^k} = \sum_{k=0}^{\infty} \left(\frac{1}{\chi-2} \right)^k = \frac{1}{|-\frac{1}{\chi-2}|} \quad \text{held} \quad \left| \frac{1}{\chi-2} \right| \leq 1$$

Problem 4

Prove that if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then $\left| \sum_{n=1}^{\infty} a_n \right| \leq \sum_{n=1}^{\infty} |a_n|$.

$$|S_N| = \left| \sum_{k=1}^N a_{k} \right| \leq \left| \sum_{k=1}^N |a_k| \right|$$

$$\lim_{N\to\infty} |S_N| < \lim_{N\to\infty} \sum_{k=1}^{N} |a_k| = \sum_{k=1}^{\infty} |a_N|$$
 exists $|S_N| < \sum_{k=1}^{\infty} |a_k| < \sum_{k$

$$\lim_{N\to\infty} |S_N| = \lim_{N\to\infty} |S_N$$