Department of Computer Science and Engineering (CSE) BRAC University

Summer 2022

CSE250 – Circuits and Electronics

Ideal & non-ideal sources, Source transformation

Purbayan Das, C. Lecturer
Department of Computer Science and Engineering (CSE)
BRAC University

Circuit laws, method of analysis, & theorems

Laws

- Ohm's Law
- Kirchhoff's current law
- Kirchhoff's voltage law

Method of analysis

- Nodal analysis
- Mesh analysis

Theorems

- Source transformation
- Superposition theorem
- Thevenin's theorem
- Norton's theorem
- Maximum power transfer theorem

Source transformation

A source transformation is the process of replacing a voltage source vs in series with a resistor R by a current source is in parallel with a resistor R, or vice versa.

- Note that the arrow of the current source is directed toward the positive terminal of the voltage source.
- Note that source transformation is not possible when R = 0, which is the case with an ideal voltage source. However, for a practical, nonideal voltage source, $R \neq 0$. Similarly, an ideal current source with $R = \infty$ cannot be replaced by a finite voltage source.

Ideal and non-ideal sources

An ideal voltage source provides a constant voltage irrespective of the current drawn by the load, while an ideal current source supplies a constant current regardless of the load voltage.

• Practical voltage and current sources are not ideal, due to their *internal* resistances or source resistances R_s and R_p . They become ideal as $R_s \rightarrow 0$ and $R_p \rightarrow \infty$.

• Use source transformation to reduce the circuit between terminals *a* and *b* shown to a single voltage source in series with a single resistor.

• Find i_0 in the circuit using source transformation.

Ans: $i_0 = 1.78 A$

• Use source transformation to find V_x

Ans: $V_x = 2.98 V$

• Use source transformation to find $\mathbf{i}_{\mathbf{x}}$ in the following circuit.

 $\underline{\text{Ans}}$: $\mathbf{i}_{\mathbf{x}} = \mathbf{1.6} \, \mathbf{A}$

Thank you for your attention

