LC 08 : cinétique et catalyse

Niveau: lycée

<u>Prérequis</u>:

- Absorbance, Loi de Beer Lambert
- Equations différentielles d'ordre 1

Expérience introductive

Expérience introductive

Expérience introductive

Vitesse volumique de disparition : exemple

• Réaction étudiée : $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$

Vitesse volumique de disparition : exemple

• Réaction étudiée : $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$

Identification du <u>réactif</u>: H₂O₂

Vitesse volumique de disparition : exemple

• Réaction étudiée : $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$

• Identification du <u>réactif</u> : H₂O₂

• Définition :
$$v_d = -\frac{d[H_2O_2]}{dt}$$

$$B(aq) \to E(aq)$$
Rose Incolore

$$B(aq) \to E(aq)$$

Rose

Incolore

• Définition :
$$v_{\epsilon}$$

$$v_d = -\frac{d[B]}{dt}$$

$$B(aq) \to E(aq)$$

Rose

Incolore

• Définition:
$$v_d = -\frac{a[D]}{dt}$$

• Modèle d'ordre 1 :
$$v_d = k[B]$$

$$B(aq) \rightarrow E(aq)$$

Rose

Incolore

• Donc:
$$-\frac{a[B]}{dt} = k[B]$$

$$B(aq) \rightarrow E(aq)$$

Rose

Incolore

• Donc :
$$-\frac{a[B]}{dt} = k[B]$$

• Solution :

$$[B](t) = [B]_0 exp(-kt)$$

• <u>Définition</u>: temps nécessaire pour consommer la moitié du réactif initial

$$[B](t_{\frac{1}{2}}) = \frac{[B]_0}{2}$$

Solution d'érythrosine B de concentration <u>initiale</u> connue

Solution d'érythrosine B de concentration <u>initiale</u> connue

Solution d'érythrosine B de concentration <u>initiale</u> connue

Solution décolorée après un certain temps

• Loi de Beer Lambert : $\ A=\epsilon l[B](t)$

• <u>Vérification</u> du premier ordre :

$$ln(A)(t) = f(t)$$

est une droite

Animation facteurs cinétiques

https://www.edumedia-sciences.com/fr/media/564-facteur-cinetique

Oxydation du tartrate

Oxydation du tartrate

Quelques grains de chlorure de cobalt

Oxydation du tartrate

Quelques grains de chlorure de cobalt

