RÓWNANIA RÓŻNICZKOWE, II ROK MATEMATYKI LISTA 2

Zadanie 1. Znaleźć rozwiązanie ogólne równania $\dot{x} = Ax$ dla

$$A = \left(\begin{array}{cc} a & b \\ -b & a \end{array}\right).$$

Zadanie 2. Znaleźć rozwiązania ogólne równań

$$y'' + y' - 2y = 0, \quad y^{(4)} + 4y = 0, \quad y^{(5)} - 6y^{(4)} + 9y^{(3)} = 0,$$
$$y'' + y = 4\sin x, \quad y'' - 2y' + y = 6e^{x}x, \quad y'' - 5y' = 3x^{2} + \sin 5x.$$

Zadanie 3. Znaleźć rozwiązania szczególne równań

$$y'' - 2y' + 2y = e^x + x \cos x$$
, $y'' - y = 4 \sinh x$,

nie korzystając z metody uzmienniania parametrów.

Zadanie 4. Scałkować równania używając metody uzmienniania parametrów

$$y'' - 2y' + y = \frac{e^x}{x}$$
, $y'' + 4y = 2 \operatorname{tg} x$.

Zadanie 5. Rozwiązać zagadnienia początkowe

$$y'' - 2y' + y = 0, \quad y(2) = 1, \ y'(2) = -2,$$
$$y^{(3)} - y' = 0, \quad y(0) = 3, \ y'(0) = -1, \ y''(0) = 1,$$
$$y^{(3)} - 3y' - 2y = 9e^{2x}, \quad y(0) = 0, \ y'(0) = -3, \ y''(0) = 3.$$

Zadanie 6. Znaleźć postać ogólną rozwiązania równania y'' + y = f(t). Znaleźć warunki jakie powinna spełniać funkcja f na to, aby wszystkie rozwiązania tego równania były ograniczone dla $t \to +\infty$.

Zadanie 7. W jest podprzestrzenią niezmienniczą operatora liniowego A: $\mathbb{R}^n \to \mathbb{R}^n$. Pokazać, że jeżeli $x_0 \in W$, to rozwiązanie x(t) zagadnienia $\dot{x} = Ax$, $x(0) = x_0$ spełnia warunek: dla każdego $t \in \mathbb{R}$ $x(t) \in W$.

- **Zadanie 8.** Załóżmy, że przynajmniej jedna wartość własna operatora liniowego A na \mathbb{R}^n ma ściśle dodatnią część rzeczywistą. Pokazać, że dla dowolnych $a \in \mathbb{R}^n$, $\varepsilon > 0$ istnieje rozwiązanie równania $\dot{x} = Ax$ takie, że $||x(0) a|| < \varepsilon$ oraz $\lim_{t \to \infty} ||x(t)|| = \infty$.
- **Zadanie 9.** Skonstruować równanie różniczkowe liniowe jednorodne trzeciego rzędu, które spełniają funkcje x, x^2, e^x .
- **Zadanie 10.** Znaleźć rozwiązanie ogólne równania $(1 x^2)y'' xy' + 9y = 0$, jeżeli wiadomo, że ma ono rozwiązanie szczególne będące wielomianem stopnia 3.

Uwaga: równanie Czebyszewa $(1-x^2)y''-xy'+n^2y=0$ zawsze ma rozwiązanie szczególne będące wielomianem stopnia n.

Zadanie 11. Rozważamy równanie y'' + p(x)y' + q(x)y = 0.

- (i) Używając podstawienia $y(x) = z(x) \exp\left(-\frac{1}{2} \int p(s) \, ds\right)$ sprowadzić powyższe równanie do postaci z'' + b(x)z = 0.
- (ii) Spróbować znaleźć podstawienie redukujące wyjściowe równanie do w'' + c(x)w' = 0.
- (iii) Zakładając, że y_1 jest rozwiązaniem, znaleźć rozwiązanie y_2 (w postaci $y_2 = y_1 z$) niezależne od y_1 .
- **Zadanie 12.** Pokazać, że rozwiązanie równania y'' + p(x)y' + q(x)y = 0 albo ma na każdym skończonym przedziale [a, b] tylko skończenie wiele zer, albo jest tożsamościowo równe zeru. Jak uogólnić ten wynik na równania liniowe wyższego rzędu?
- **Zadanie 13.** Udowodnić, że rozwiązania równania y'' + p(x)y' + q(x)y = 0 z q(x) < 0 nie mogą mieć dodatnich maksimów (lokalnych).
- **Zadanie 14.** Przeanalizować rozwiązania równania Eulera $t^2x'' + bx = 0$.
- **Zadanie 15.** Wyznaczyć rozwiązania równania Airy'ego x'' tx = 0 w postaci szeregów potęgowych zmiennej t.
- **Zadanie 16.** Dla jakich wartości k i ω równanie $x'' + k^2 x = \sin \omega t$ ma przynajmniej jedno rozwiązanie okresowe?
- **Zadanie 17.** Udowodnić, że jeżeli $|b(t)| \le ct^{-1-a}$ dla pewnego a > 0 i wszystkich $t \ge 1$, to równanie x'' + (1+b(t))x = 0 ma dwa rozwiązania x_1, x_2 takie, że $x_1(t) = \cos t + \mathcal{O}(t^{-a}), x_2(t) = \sin t + \mathcal{O}(t^{-a})$ dla $t \to \infty$.

Wsk. przenieść wyraz b(t)x na prawą stronę równania i spróbować metody uzmienniania parametru.

Zadanie 18. Pokazać, że jeżeli wszystkie rozwiązania y i ich pochodne y' równania y'' + p(t)y' + q(t)y = 0 dążą do 0 gdy $t \to \infty$, to $\int_0^t p(s) ds \to +\infty$ dla $t \to +\infty$.

Wsk. zastosować wzór Liouville'a.

Zadanie 19. Znaleźć postać ogólną rozwiązania równania $y^{(4)} + \lambda y = 0$, $\lambda \in \mathbb{R}$.

Zadanie 20. Funkcje $f_1(t) = t^2$ i $f_2(t) = t|t|$ są liniowo niezależne na przedziale (-1,1) oraz $W(f_1,f_2) = 0$. Jak się ma ten fakt do odpowiedniego twierdzenia o wrońskianie?

Zadanie 21. Funkcja $y_1(t) = t$ jest rozwiązaniem równania y'' + ty' - y = 0. Znaleźć $y_2(t)$ tak aby y_1 i y_2 tworzyły układ fundamentalny rozwiązań.

13 marca 2020

Piotr Biler