Ход работы

В схеме согласно Рис. 1 получим интерфереционную картину. Радиусы r(m) тёмных колец при расстоянии L=60 см приведены в Таблице 1. На Рис. 3(6) изображён график $r^2=f(m)$.

\overline{m}	1	2	3	4	5	6	7	8
r_m , cm	1.8	2.7	3.5	4.2	4.7	5.1	5.6	5.9

Таблица 1: Радиусы тёмных колец.

Из МНК угловой коэффициент получаем $k=4.36\pm0.04~{\rm cm}^2$. Отсюда для значений $n_0=2.29,~\lambda=0.63~{\rm mkm},~l=26~{\rm mm}$ получаем из формулы (2)

$$n_0 - n_e = 0.105 \pm 0.010.$$

На установке по Рис. 2 определим полуволновое напряжение по разности напряжений при максимуме и минимуме у фигуры Лиссажу: $U_{\lambda/2}=450\pm15$ В. Подавая на кристалл $U_{\lambda/4}=\frac{1}{2}U_{\lambda/2}$ убеждаемся, что поляризация круговая.

Вид фигуры Лиссажу, наблюдаемой на осциллографе, представлен на Рис. 3(а). Первый минимум соответсвует $U_{\lambda/2}$, максимум – U_{λ} , второй минимум – $U_{3\lambda/2}$. При изменение полярности поляроида картина отображается симметрично оси OX.

Рис. 3