(54) 명칭(Title)

DIGITAL IMAGE INFORMATION MEDIUM, DIGITAL IMAGE INFORMATION RECORDING AND REPRODUCING APPARATUS, AND DIGITAL IMAGE INFORMATION PROCESSING METHOD

2001284024

(19)(13) 구분

(11) 공개번호(Pub.No.)/ 일자

(21) 출원번호(Appl.No.)/ 일자

(21) 관련출원번호(Appl.No.)/ 일자

(51) 국제특허분류(Int. Cl.)

(51) IPC INDEX

2000322875 (2000.11.24)

● JP A 사 국가별 특허문헌코드

1999131475 (1999.05.12)

2001284023 2002115032

G11B 27/00; G11B 7/00; G11B 27/10; H04N 5/92

대표도 (Representative Drawing)

PROBLEM TO BE SOLVED: To allow an entry point (bookmark) to be inserted at any desired recording position in image data, audio data, or the like, in such a manner as if a bookmark is placed in a book.

SOLUTION: Information RTR-VMG for managing a recorded object includes a movie cell entry point information M-C-EPI. This M-C-EPI includes information EP-PTM regarding entry point reproduction time and text information PRM-TXTI regarding an entry point. Style information and date information for the entry point as well as text information regarding the contents thereof are allowed to be stored into this PRM-TXTI. COPYRIGHT: (C)2000, JPO

"서부항목 숨기가 설정

※ 아래항목중 불필요한 항목이 있으시면 "세부항목숨기기 설정"을 이용하시기 바랍니다.

(71) 출원인(Applicant)

(57) 요약(Abstract)

TOSHIBA CORP

TOSHIBA AVE CO LTD

currently require to be at the

(72) 발명자(Inventors)

TSUMAGARI YASUSHI KIKUCHI SHINICHI

(30) 우선권번호(Priorty No.)/ 일자

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-322875 (P2000-322875A)

(43)公開日 平成12年11月24日(2000.11.24)

神奈川県川崎市幸区柳町70番地 株式会社

(外6名)

(51) Int.Cl.7		識別記号		FΙ				วี	·-マコード(参考)
G11B	27/00			G 1 1	В	27/00			5 C 0 5 3
	7/00					7/00			5 D O 7 7
	27/10					27/10			5 D O 9 O
H 0 4 N	5/92			H 0 4	N	5/92		Н	5 D 1 1 0
				G11	В	27/00		D.	
		審	查請求	未請求	請求	項の数3	OL	(全 40 頁)	最終頁に続く
(21)出願番号		特願平11-131475		(71) 出	」頭	000003	078		
						株式会	社東芝		
(22)出願日		平成11年5月12日(1999.5.12)				神奈川	県川崎	市幸区堀川町	72番地
				(71) 出	順人	000221	029		
						東芝工	ー・ブ	イ・イー株式	会社
						東京都	港区新	橋3丁目3番	9号
				(72)务	明都	1 津曲)	康史		
				ŀ					

最終頁に続く

(54) 【発明の名称】 デジタル映像情報媒体、デジタル映像情報記録再生装置およびデジタル映像情報処理方法

(57)【要約】

【課題】本にしおりを挟むような感覚で、映像・音声等の任意の記録箇所にエントリポイント (ブックマーク)を挿入できるようにする。

【解決手段】記録されたオブジェクトを管理する情報RTR_VMGは、ムービーセルエントリポイント情報M_C_EPIを含む。このM_C_EPIは、エントリポイント再生時間の情報EP_PTMとエントリポイントに関するテキスト情報PRM_TXTIとを含んでいる。このPRM_TXTIに、エントリポイントの形式情報および日付情報とともに、その内容に関するテキスト情報を格納できるようにする。

ムービーセルエントリポイント情報 (M_C EPI) の内容

東芝柳町工場内

弁理士 鈴江 武彦

(74)代理人 100058479

	とルエントラホイント情報(.M
RBP	ファイル名	内容
0	EP_TY	エントリポイントの形式
1-6	EP_PTM	エントリポイントの再生時間
7-134	PRM_TXTI	一次テキスト情報
R & P =	相対バイト位置	
	情報タイプ	
	情報日付	
	テキスト情報	

【特許請求の範囲】

【請求項1】 管理領域およびデータ領域を含むボリュームスペースを持ち、前記データ領域にはデータが1以上のオブジェクトに分かれて格納され、それぞれのオブジェクトは1以上のデータユニットで構成され、前記データユニットには所定時間以内に再生されるべき映像または音声が1以上のパックにパック化されて格納され、前記管理領域には前記オブジェクトを管理する管理情報があり、前記管理情報はオブジェクトの再生順序を指定するプログラムチェーン情報を持ち、前記プログラムチェーン情報を持ち、前記プログラムチェーン情報は1以上のプログラム情報および1以上のセル情報を含み、前記セル情報には再生されるべきオブジェクトを指定する指定情報が含まれた記録再生可能な情報記録媒体において、

前記指定情報には、オブジェクト内の再生箇所を指定するためのエントリポイント情報が記録され、前記エントリポイント情報が、エントリポイントに関する情報を含むことを特徴とするデジタル映像情報媒体。

【請求項2】 記録情報としてのオブジェクトを管理する管理情報内にムービーセル情報を持つ記録再生可能媒体に、前記オブジェクトの内容を記録しまたは再生する装置であって、

所望のエントリポイントを前記ムービーセル情報に設定するエントリポイント設定部と;前記エントリポイントに対して付加情報を入力する付加情報入力部と;前記付加情報を前記エントリポイントに設定する付加情報設定部とを具備することを特徴とするデジタル映像情報記録再生装置。

【請求項3】 記録情報としてのオブジェクトを管理する管理情報内にムービーセル情報を持つ記録再生可能媒体に、前記オブジェクトの内容を記録しまたは再生するものにおいて、

所望のエントリポイントを前記ムービーセル情報に設定し;前記エントリポイントに対して付加情報を入力し;前記付加情報を前記エントリポイントに設定することを特徴とするデジタル映像情報処理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、ビデオ映像等のリアルタイム・デジタル記録が可能な装置/方法およびそこで利用されるデジタル情報媒体(リアルタイムデジタルビデオ録画再生システム)に関する。

【0002】とくに、記録・再生可能なDVDディスク(DVD-RAMディスク等)に特別な情報格納領域を設け、この領域に格納される情報を適宜利用して、録画されたビデオプログラムの再生・消去等に便宜を図った装置/方法および媒体に関する。

[0003]

【従来の技術】現在、ビデオ(動画映像)のデジタル記録/再生にMPEG2(ムービングピクチャエキスパー

トグループ2) 方式を利用し、オーディオ(音声)のデジタル記録/再生にAC-3(デジタルオーディオコンプレッション3)方式等を利用したDVDビデオ規格がまとまり、この規格を利用した種々な再生機器(DVDビデオプレーヤ)が市販されている。

【0004】このDVDビデオ規格は、MPEG2システムレイヤに従って、動画圧縮方式としてはMPEG2、音声記録方式としてはリニアPCMの他にAC-3オーディオおよびMPEGオーディオをサポートしている。また、このDVDビデオ規格は、字幕用に副映像データ、早送り巻き戻しデータサーチ等の再生制御用にナビゲーションデータ、コンピュータ対応用にISO9660およびUDFブリッジフォーマットもサポートしている。

【0005】さらに、書込可能なDVDディスク(リード・ライト可能なDVD-RAM/DVD-RWあるいはライトワンスのDVD-R)の開発もなされ、書込可能DVDディスクを利用したデジタル映像情報の記録再生機器(従来のビデオカセットテープレコーダに取って代わるもの)の開発が可能な環境が整いつつある。

【0006】以上の状況から、リアルタイムでビデオ映像等のデジタル記録・再生を行うため、DVD-RTR(DVDリアルタイムレコーディング)規格が提案され、正式の規格としてまとまりつつある。

[0007]

【発明が解決しようとする課題】しかしながら、ディスクの記録容量が大きくなると、記録されるプログラムコンテンツの種類・数も増える傾向が強くなり、ユーザはその記録内容を把握することが困難になってくる。そのため、録画済みディスクの管理という面では、問題が生じる。

【0008】この発明は上記事情に鑑みなされたもので、その目的は、たとえば本を読んでいるとき読み途中のページまたは重要な箇所にしおりを挟むような感覚で、映像・音声等の任意の記録箇所にマーク(エントリポイント)を書き込んだり消去したりできる、装置/方法および媒体を提供することである。

[0009]

【課題を解決するための手段】上記目的を達成するために、この発明に係るデジタル映像情報媒体は、管理領域(70)およびデータ領域(DA)を含むボリュームスペース(図2の28)を持っている。

【0010】前記データ領域(DA)には、データが1以上のオブジェクト(図2のDA22~DA24;図5のRTR_MOV. VRO、RTR_STO. VRO、RTR_STA. VRO)に分かれて格納される。それぞれのオブジェクト(たとえばDA22)は、1以上のデータユニット(図3のVOBU)で構成される(図3において1以上のVOBUがセルを構成し、1以上のセルがビデオオブジェクトDA22を構成している)。前

記データユニット (VOBU) には所定時間 (0.4~1.2秒) 以内に再生されるべき映像または音声が 1以上のパック (図3のビデオパック、オーディオパック) にパック化されて格納される。

【0011】前記管理領域(70)には前記オブジェクト(DA22~DA24)を管理する管理情報(図5、図6のRTR_VMG)がある。前記管理情報(RTR_VMG)はオブジェクトの再生順序を指定するプログラムチェーン情報(図6のORG_PGCI)を持つ。前記プログラムチェーン情報(図19のPGCI)は1以上のプログラムチェーン情報(図19のPGCI)は1以上のプログラム情報(図19のPGI)および1以上のセル情報(図19のCI)を含む。前記セル情報(CI)には再生されるべきオブジェクトを指定する指定情報(図22、図23のM_CI)が含まれる。

【0012】前記指定情報(M_CI)には、オブジェクト内の再生箇所を指定するためのエントリポイント情報(図23、図25のM_C_EPI)が記録される。 【0013】ここで、前記エントリポイント情報(図25のM_C_EPI)が、エントリポイントに関する情報(PRM_TXTI)を含んでいる。

【0014】また、上記目的を達成するために、この発明に係るデジタル映像情報記録再生装置は、記録情報としてのオブジェクト(図5のRTR_MOV. VRO)を管理する管理情報(図5のRTR_VMG)内にムービーセル情報(図23のM_CI)を持つ記録再生可能媒体(図1の10)を用いて、前記オブジェクト(RTR_MOV. VRO)の内容を記録しまたは再生するように構成される。

【0015】このデジタル映像情報記録再生装置(図29)は、所望のエントリポイント(図23のM_C_E PIの#1~#n;図36の↑)を前記ムービーセル情報(M_CI)に設定するエントリポイント設定部(図29のMPU30+図32または図33の処理)と;前記エントリポイント(M_C_EPI)に対して付加情報(図25のPRM_TXTI中の情報タイプ、情報日付、テキスト情報等)を入力する付加情報入力部(図29のMPU30+図34のST100~ST112の処理)と;前記付加情報を前記エントリポイント(M_C_EPI)に設定する付加情報設定部(図29のMPU30+図34のST114~ST116の処理)とを具備している。

【0016】また、上記目的を達成するために、この発明に係るデジタル映像情報処理方法は、記録情報としてのオブジェクト(図5のRTR_MOV. VRO)を管理する管理情報(図5のRTR_VMG)内にムービーセル情報(図23のM_CI)を持つ記録再生可能媒体(図1の10)を用いて、前記オブジェクト(RTR_MOV. VRO)の内容を記録しまたは再生するように構成される。

【0017】このデジタル映像情報処理方法では、所望のエントリポイント(図23のM_C_EPIの#1~#n;図36の↑)を前記ムービーセル情報(M_CI)に設定し(図32または図33の処理);前記エントリポイント(M_C_EPI)に対して付加情報(図25のPRM_TXTI中の情報タイプ、情報日付、テキスト情報等)を入力し(図34のST100~ST112の処理);前記付加情報を前記エントリポイント(M_C_EPI)に設定する(図34のST114~ST116の処理)ようにしている。

【0018】上記エントリポイントを適宜利用すれば、ユーザはディスクの録画コンテンツを容易に知ることができる。また、このエントリポイントの情報を用いて、ユーザは好みの箇所から、記録・再生を行うことができる。

[0019]

【発明の実施の形態】以下、図面を参照して、この発明の一実施の形態に係る媒体(DVD録再ディスク)の構成、この媒体を利用したDVD-RTR(DVDリアルタイムレコーディング)の記録再生装置(RTRビデオレコーダ)構成およびこの装置の各種動作を説明する。【0020】図1は、DVD-RTR記録再生装置に使用される光ディスク10の構造を説明する図である。図示するように、この光ディスク10は、それぞれに層17Aおよび17Bが設けられた一対の透明基板14を、接着層20で貼り合わせた構造を持つ。

【0021】このディスク10が単層のDVD-RAM (またはDVD-RW) ディスクなら、第1情報記録層 17Aは相変化記録層で構成され、第2情報記録層17Bはダミー層(そのディスクのラベルを兼ねていても良い)で構成される。

【0022】このディスク10が片面2層のDVD-R OM/RAMディスクなら、第1情報記録層17Aはピットが形成された半透明膜(金薄膜等)構成され、第2 情報記録層17Bは相変化記録層で構成される。

【0023】このディスク10が両面2層のDVD-RAM(またはDVD-RW)ディスクなら、第1情報記録層17Aおよび第2情報記録層17Bは、ともに、相変化記録層で構成される。

【0024】各基板14は0.6 mm厚のポリカーボネートで構成することができ、接着層20は極薄(40μ m~ 70μ m程度)の紫外線硬化性樹脂で構成することができる。これら一対の0.6 mm基板14を、層17Aおよび17Bが接着層20の面上で接触するようにして貼り合わすことにより、1.2 mm厚の大容量光ディスク10が得られる。

【0025】光ディスク10には中心孔22が設けられており、ディスク両面の中心孔22の周囲には、この光ディスク10を回転駆動時にクランプするためのクランプエリア24が設けられている。中心孔22には、図示

しないディスクドライブ装置に光ディスク10が装填された際に、ディスクモータのスピンドルが挿入される。 そして、光ディスク10は、そのクランプエリア24において、図示しないディスククランパにより、ディスク回転中クランプされる。

【0026】光ディスク10は、クランプエリア24の周囲に、ビデオデータ、オーディオデータその他の情報を記録することができる情報エリア25を有している。【0027】情報エリア25のうち、その外周側にはリードアウトエリア26が設けられている。また、クランプエリア24に接する内周側にはリードインエリア27が設けられている。そして、リードアウトエリア26とリードインエリア27との間にデータ記録エリア28が定められている。

【0028】図1には、光ディスク10のデータ記録エリア28とそこに記録されるデータの記録トラックとの対応関係も例示されている。

【0029】情報エリア25の記録層17Aおよび17Bには、記録トラックがたとえばスパイラル状に連続して形成されている。その連続トラックは複数セクタに分割され、これらのセクタには連続番号が付されている。このセクタを記録単位として、光ディスク10に種々なデータが記録される。

【0030】データ記録エリア28は、実際のデータ記録領域であって、記録・再生情報として、映画等のビデオデータ(主映像データ)、字幕・メニュー等の副映像データおよび台詞・効果音等のオーディオデータが、同様なピット列(レーザ反射光に光学的な変化をもたらす物理的な形状あるいは相状態)として記録されている。

【0031】光ディスク10が片面1層で両面記録のRAMディスクの場合は、各記録層17Aおよび17Bは、2つの硫化亜鉛・酸化シリコン混合物(ZnS・SiO2)で相変化記録材料層(たとえばGe2Sb2Te5)を挟み込んだ3重層により構成できる。

【0032】光ディスク10が片面1層で片面記録のRAMディスクの場合は、読み出し面19側の記録層17Aは、上記相変化記録材料層を含む3重層により構成できる。この場合、読み出し面19から見て反対側に配置される層17Bは情報記録層である必要はなく、単なるダミー層でよい。

【0033】光ディスク10が片面読み取り型の2層RAM/ROMディスクの場合は、2つの記録層17Aおよび17Bは、1つの相変化記録層17B(読み出し面19からみて奥側;読み書き用)と1つの半透明金属反射層17A(読み出し面19からみて手前側;再生専用)で構成できる。

【0034】光ディスク10がライトワンスのDVDーRである場合は、基板としてはポリカーボネートが用いられ、図示しない反射膜としては金、図示しない保護膜としては紫外線硬化樹脂を用いることができる。この場

合、記録層17Aまたは17Bには、有機色素が用いられる。この有機色素としては、シアニン、スクアリリウム、クロコニック、トリフェニルメンタン系色素、キサンテン、キノン系色素(ナフトキン、アントラキノン等)、金属錯体系色素(フタロシアン、ボルフィリン、ジチオール錯体等)その他が利用可能である。

【0035】このようなDVD-Rディスクへのデータ 書き込みは、たとえば波長650nmで出力 $6\sim12m$ W程度の半導体レーザを用いて行うことができる。

【0036】上記各種の光ディスク10において、再生専用のROM情報はエンボス信号として記録層に記録される。これに対して、読み書き用(またはライトワンス用)の記録層を持つ基板14にはこのようなエンボス信号は刻まれておらず、その代わりに、連続のグルーブ溝が刻まれている。このグルーブ溝に、相変化記録層が設けられるようになっている。読み書き用DVDーRAMディスクの場合は、さらに、グルーブの他にランド部分の相変化記録層も情報記録に利用される。

【0037】なお、光ディスク10が片面読み取りタイプ(記録層が1層でも2層でも)の場合は、読み出し面19から見て裏側の基板14は読み書き用レーザに対して透明である必要はない。この場合は裏側基板14全面にラベル印刷がされていても良い。

【0038】後述するDVDーRTR録再機は、DVDーRAMディスク(またはDVD-RWディスク)に対する反復記録・反復再生(読み書き)と、DVDーRディスクに対する1回の記録・反復再生と、DVD-ROMディスクに対する反復再生が可能なように構成できる。

【0039】ディスク10がDVD-RAM(またはDVD-RW)の場合は、デリケートなディスク面を保護するために、ディスク10の本体をカートリッジ11に収納するよう構成できる。

【0040】DVD-RAMディスク10がカートリッジ11ごとDVD-RTR録再機のディスクドライブに挿入されると、カートリッジ11からディスク10が引き出されて図示しないスピンドルモータのターンテーブルにクランプされ、図示しない光ヘッドに向き合うようにして回転駆動される。

【0041】一方、ディスク10がDVDーRまたはDVDーROMの場合は、ディスク10の本体はカートリッジ11に収納されておらず、裸のディスク10がディスクドライブのディスクトレイに直接セットされるようになる。

【0042】図1に示した情報エリア25の記録層17には、データ記録トラックがスパイラル状に連続して形成されている。その連続するトラックは、図示するように、一定記憶容量の複数論理セクタ(最小記録単位)に分割され、この論理セクタを基準にデータが記録されている。1つの論理セクタの記録容量は、後述する1パッ

クデータ長と同じ2048バイト (あるいは2kバイト) に決められている。

【0043】データ記録エリア28には、実際のデータ 記録領域であって、管理データ、主映像(ビデオ)デー タ、副映像データおよび音声(オーディオ)データが同 様に記録されている。

【0044】なお、図示はしないが、ディスク10のデータ記録エリア28は、リング状(年輪状)に複数の記録エリア(複数の記録ゾーン)に分割することができる。各記録ゾーン毎にディスク回転の角速度は異なるが、各ゾーン内では線速度または角速度を一定にすることができる。この場合、各ゾーン毎に予備の記録エリア(フリースペース)を設けることができる。このゾーン毎のフリースペースを集めて、そのディスク10のリザーブエリアとすることができる。

【0045】図2は、図1の光ディスクに記録される情報の階層構造を説明する図である。

【0046】この構造において、リードインエリア27は、光反射面が凹凸形状を持つエンボスデータゾーンと、表面が平坦(鏡面)なミラーゾーンと、情報の書き替えが可能なリライタブルデータゾーンとを含んでいる。リードアウトエリア26も、情報書き替えが可能なように構成されている。

【0047】データ記録エリア(ボリュームスペース)28は、ユーザによる書き替えが可能なボリューム/ファイル管理情報70およびデータエリアDAで構成されている。

【0048】ボリューム/ファイル管理情報70には、データエリアDAに記録されたオーディオ・ビデオデータのファイル情報やボリューム全体に関する情報が記録

【0049】データエリアDAには、コンピュータデータを記録するエリアDA1およびDA3、ビデオデータ/オーディオデータなどを記録するオーディオ・ビデオデータエリアDA2が、混在して記録できるようになっている。なお、コンピュータデータとオーディオ・ビデオデータの記録順序および記録情報サイズ等は任意である。データエリアDAにコンピュータデータだけを記録することも、オーディオ・ビデオデータだけを記録することも、可能である。

【0050】オーディオ・ビデオデータエリアDA2 は、制御情報DA21、ビデオオブジェクトDA22、 ピクチャオブジェクトDA23およびオーディオオブジェクトDA24を含んでいる。

【0051】制御情報DA21は、記録(録画および/または録音)、再生、編集、検索等の各処理を行なうときに必要な制御情報を含むことができる。

【0052】ビデオオブジェクトDA22は、記録されたビデオデータの中身(コンテンツ)の情報を含むことができる。

【0053】ピクチャオブジェクトDA23は、スチル画、スライド画等の静止画情報を含むことができる。

【0054】オーディオオブジェクトDA24は、記録されたオーディオデータの中身(コンテンツ)の情報を含むことができる。

【0055】なお、ビデオオブジェクトDA22は、ビデオオブジェクトセットVOBSにより構成される。このVOBSは各々が異なる方法でセル再生順序を指定した1以上のプログラムチェーンPGC#1~#kに対応した内容を持つ。

【0056】リードインエリア27のエンボスデータゾーンには、たとえば以下の情報が事前に記録されている:

- (1) DVD-ROM、DVD-RAM (またはDVD-RW)、DVD-R等のディスクタイプ; 12cm、8 cm等のディスクサイズ; 記録密度; 記録開始/記録終了位置を示す物理セクタ番号、その他の、情報記憶媒体全体に関する情報;
- (2) 記録パワーと記録パルス幅;消去パワー;再生パワー;記録・消去時の線速度、その他の、記録・再生・消去特性に関する情報;および
- (3)製造番号等、個々の情報記録媒体の製造に関する情報。

【0057】また、リードインエリア27およびリードアウトエリア26のリライタブルゾーンは、それぞれ、たとえば以下の領域を含んでいる:

- (4)各情報記録媒体毎の固有ディスク名を記録する領域;
- (5) 試し記録領域(記録消去条件の確認用);
- (6) データエリアDA内の欠陥領域に関する管理情報を記録する領域。

【0058】上記(4)~(6)の領域には、DVD-RTR録再機(<math>RTRビデオレコーダあるいはDVD-RAMドライブ付パーソナルコンピュータ)による記録が可能となっている。

【0059】ディスク10がDVD-RTR録再機(RTRビデオレコーダ)にセットされると、まずリードインエリア27の情報が読み取られる。このリードインエリア27には、セクタ番号の昇順に沿って、所定のリファレンスコードおよび制御データが記録されている。

【0060】リードインエリア27のリファレンスコードは、2つのエラー訂正コードブロック(ECCブロック)で構成されている。各ECCブロックは16セクタで構成される。この2つのECCブロック(32セクタ)は、スクランブルデータを付加して生成されるようになっている。スクランブルデータが付加されたリファレンスコードを再生したときに、特定のデータシンボル(たとえば172)が再生されるよう再生側のフィルタ操作等を行って、その後のデータ読み取り精度を確保するようにしている。

【0061】リードインエリア27の制御データは、192のECCブロックで構成されている。この制御データの部分には、各ブロック内の16セクタの内容が、192回繰り返し記録されている。

【0062】16セクタで構成されるこの制御データは、最初の1セクタ(2048バイト)に物理フォーマット情報を含み、その後にディスク製造情報およびコンテンツプロバイダ情報を含んでいる。

【0063】上記制御データに含まれる物理フォーマット情報は、以下のような内容を含む。

【0064】すなわち、最初の位置には、記録情報がDVD規格のどのバージョンに準拠しているのかが記載される。

【0065】2番目の位置には、記録媒体(光ディスク10)のサイズ(12cm、8cm、その他)および最小読出レートが記載される。読出専用DVDビデオの場合、最小読出レートとしては、2.52Mbps、5.04Mbpsおよび10.08Mbpsが規定されているが、それ以外の最小読出レートもリザーブされている。たとえば、可変ビットレート記録が可能なRTRビデオレコーダにより2Mbpsの平均ビットレートで録画が行われた場合、上記リザーブ部分を利用することにより、最小読出レートを、1.5~1.8Mbpsに設定することができる。

【0066】3番目の位置には、記録媒体(光ディスク10)のディスク構造(記録層の数、トラックピッチ、記録層のタイプなど)が記載される。この記録層のタイプにより、そのディスク10が、DVD一ROMなのかDVD一RなのかDVD一RAM(またはDVD一RW)なのかを識別することができる。

【0067】4番目の位置には、記録媒体(光ディスク10)の記録密度(リニア密度およびトラック密度)が記載される。リニア密度は、1ビット当たりの記録長(0.267 μ m/ビットあるいは0.293 μ m/ビットなど)を示す。また、トラック密度は、隣接トラック間隔(0.74 μ m/トラックあるいは0.80 μ m/トラックなど)を示す。DVDーRAMあるいはDVDーRのリニア密度およびトラック密度として、別の数値が指定できるように、4番目の位置には、リザーブ部分も設けられている。

【0068】5番目の位置には、記録媒体(光ディスク10)のデータエリア28の開始セクタ番号および終了セクタ番号等が記載される。

【0069】6番目の位置には、バーストカッティングエリア(BCA)記述子が記載される。このBCAはDVD-ROMディスクだけにオプションで適用されるもので、ディスク製造プロセス終了後の記録情報を格納するエリアである。

【0070】7番目の位置には、記録媒体(光ディスク10)の空き容量が記述される。たとえばディスク10

が片面1層記録のDVD-RAMディスクである場合、ディスク10のこの位置には、2.6GB(またはこのバイト数に対応したセクタ数)を示す情報が記載される。ディスク10が両面記録DVD-RAMディスクである場合は、この位置に、5.2GB(またはこのバイト数に対応したセクタ数)を示す情報が記載される。【0071】その他の位置は、将来のためにリザーブさ

れている。 【0072】図3は、図2のビデオオブジェクトのデータ構造を説明する図である。

【0073】図示するように、ビデオオブジェクトDA22を構成する各セル(たとえばセル#m)は1以上のビデオオブジェクトユニット(VOBU)により構成される。そして、各VOBUは、ビデオパック、副映像パック、オーディオパックおよびダミーパック等の集合体(パック列)として構成されている。

【0074】これらのパックは、いずれも2048バイトの所定サイズを持ち、データ転送処理を行う際の最小単位となる。また、論理上の処理を行う最小単位(映像情報の最小基本単位)はセル単位であり、論理上の処理はこのセル単位で行わる。

【0075】上記VOBUの再生時間は、VOBU中に 含まれる1以上の映像グループ(グループオブピクチ ャ;略してGOP)で構成されるビデオデータの再生時 間に相当し、その再生時間は0.4秒~1.2秒の範囲 内に定められる。 1 G O P は、M P E G 規格では通常約 0.5秒であって、その間に15枚程度のフレーム画像 を再生するように圧縮された画面データである。 (VO BUは、ビデオデータの流れにギャップが生じるような 特別な場合を除き、整数個のGOPを含む。つまり、V OBUは、通常はGOPに同期した映像情報圧縮単位で あるといえる。)VOBUがビデオデータを含む場合に は、ビデオパック、副映像パック、オーディオパック等 から構成されるGOP(MPEG規格準拠)が配列され てビデオデータストリームが構成される。しかし、この GOPの数とは無関係に、GOPの再生時間を基準にし てVOBUが定められる。

【0076】なお、ビデオを含まないオーディオおよび / または副映像データのみの再生データであっても、 V O B U を 1 単位として再生データが構成される。たとえば、オーディオパックのみで V O B U が構成されいる場合、ビデオデータのビデオオブジェクトの場合と同様に、そのオーディオデータが属する V O B U の再生時間内に再生されるべきオーディオパックが、その V O B U に格納される。

【0077】各VOBUを構成するパックは、ダミーパックを除き、同様なデータ構造を持っている。オーディオパックを例にとると、図3に例示するように、その先頭にパックヘッダが配置され、次にパケットヘッダが配置され、その次にサブストリームIDが配置され、最後

にオーディオデータが配置される。このようなパック構成において、パケットヘッダには、パケット内の最初のフレームの先頭時間を示すプレゼンテーションタイムスタンプPTSの情報が書き込まれている。

【0078】ところで、図3に示すような構造のビデオオブジェクトDA22を含むビデオプログラムを光ディスク10に記録できるDVD一RTR録再機では、このプログラムの記録後に記録内容を編集したい場合が生じる。この要求に答えるため、各VOBU内に、ダミーパックを適宜挿入できるようになっている。このダミーパックは、後に編集用データを記録する場合などに利用できる。

【0079】図3のダミーパックは、図4に示すようなデータ構造を持っている。すなわち、1パックのダミーパック89は、パックヘッダ891と、所定のストリームIDを持つパケットヘッダ892と、所定のコード(無効データ)で埋められたパディングデータ893とで、構成されている。ここで、パケットヘッダ892およびパティングデータ893が、パティングパケット890を構成している。未使用ダミーパックのパディングデータ893の内容は、特に意味を持たない。

【0080】このダミーパック89は、図1のディスク 10に所定の録画がなされたあと、この録画内容を編集 する場合、その他に、適宜利用することができる。

【0081】具体的には、ダミーパックは、録画後に追加記録する情報の事後追加用(アフターレコーディング情報をオーディオパックの中に入れてダミーパックと交換するメモ情報を、副映像情報として副映像パック内に挿入してダミーパックと交換する等);VOBUのサイズをECCブロックサイズ(32kバイト)の整数倍に一致させるため、32kバイトの整数倍から不足するサイズを補う;などの使用目的で各VOBU内に挿入されている。

【0082】また、ダミーパックは、ユーザメニューに 適宜表示される縮小画像(サムネールピクチャ)のデー タを格納することにも、利用することができる。

【0083】図5は、図2のデータ構造でもって図1の 光ディスクに記録される情報(データファイル)のディ レクトリ構造の一例を説明する図である。

【0084】リアルタイムでビデオ映像のデジタル記録 /再生が可能なDVD-RTR規格によると、DVDディスクのコンテンツは図5に示すようなディレクトリ構造で管理され、IS09660やUDFなどのフアイルシステムに従って保存される。

【0085】ディスク/装置側では図2のようなデータ 構造をとっていても、ユーザにはこのデータ構造は見え ない。ユーザが知覚できるデータ構造は、図5のような 階層ファイル構造である。

【0086】すなわち、図2のデータエリアDAに記録されるデータの種類に応じて、ルートディレクトリの表

示画面(図示せず)には、DVD_RTRディレクトリ、VIDEO_TSディレクトリ、AUDIO_TSディレクトリ、コンピュータデータファイルのディレクトリ等が、メニュー画面あるいはアイコン等によって表示される。

【0087】図5のDVD_RTRディレクトリには、ナビゲーションデータRTR_VMGのファイルRTR. IFO、ムービービデオオブジェクトRTR_MOV. VRO、スチルピクチャビデオオブジェクトRTR_STO. VOBのファイルRTR_STO. VRO、スチルピクチャビデオオブジェクトRTR_STA. VOBのファイルRTR_STA. VRO、等が格納される。

【0088】ここで、ファイルRTR. IFOには、プログラムセット、プログラム、エントリポイント、プレイリスト等の動画情報を管理するための管理情報が格納される。

【0089】また、ファイルRTR_MOV. VROには記録した動画情報およびその音声情報が格納され、ファイルRTR_STO. VROには記録した静止画情報およびその音声情報が格納され、ファイルRTR_STA. VROには静止画用のアフレコデータ等が格納される。

【0090】DVD-RTR録再機(RTRビデオレコーダ)が図5のディレクトリを表示(または出力)する機能を持ち、DVDビデオディスク(ROMディスク)の再生機能を持つ場合、そのディスクドライブにDVDビデオディスクがセットされると、図5のVIDEO_TSディレクトリがアクティブとなる。この場合、VIDEO_TSディレクトリを開くと、セットされたデスクの記録内容が更に表示される。

【0091】また、DVD-RTR録再機がDVDオーディオの再生機能を持つ場合、そのディスクドライブにDVDオーディオディスクがセットされると、図5のAUDIO_TSディレクトリがアクティブとなる。この場合、AUDIO_TSディレクトリを開くと、セットされたデスクの記録内容が更に表示される。

【0092】さらに、DVD-RTR録再機がDVD-RAMドライブ付のパーソナルコンピュータで構成され、コンピュータデータの処理機能も持つ場合、そのディスクドライブにコンピュータデータが記録されたDVD-RAM(またはDVD-ROM)ディスクがセットされると、図5のコンピュータデータディレクトリがアクティブとなる。この場合、コンピュータデータディレクトリを開くと、セットされたデスクの記録内容が更に表示される。

【0093】ユーザは、図5のディレクトリ構造で表示されるメニュー画面またはウインドウ表示画面を見ながら、パーソナルコンピュータを扱う感覚で、DVDビデオ録画のソースにもDVDビデオROMにもDVDオー

ディオにもコンピュータデータ(コンピュータプログラ ムも含む)にもアクセスできる。

【0094】図6は、図5のナビゲーションデータファイル(RTR_VMG)のデータ構造を説明する図である。ナビゲーションデータとしてのRTRビデオマネージャRTR_VMGは、図6に示すような各種情報で構成される。

【0095】図6において、RTRビデオマネージャ情報RTR_VMGIには、図1の記録再生可能光ディスク(RTRディスク)10の基本的な情報が記述される。このRTR_VMGIは、ビデオマネージャ情報管理テーブルVMGI_MATおよびプレイリストサーチポインタテーブルPL_SRTPを含んでいる。

【0096】RTR_VMGは、さらに、ムービーAVファイル情報テーブルM_AVFIT、スチル画AVファイル情報テーブルS_AVFIT、オリジナルPGC情報ORG_PGCI、ユーザ定義PGC情報テーブルUD_PGCIT、テキストデータマネージャTXTDT_MGおよび製造者情報テーブルMNFITを、含んでいる。

【0097】図7は、図6のビデオマネージャ情報管理 テーブルVMGI_MATの内容を示す。

【0098】図7において、VMG識別子VMG__IDは、ISO646のキャラクタセットコードでもって、RTR__VMGファイルを特定する「DVD__RTR__ VMG0」を記述したものである。

【0099】RTR__VMG__EAは、RTR__VMG の最初のバイトからの相対バイト番号でもって、RTR __VMGの終了アドレスを記述したものである。

【0100】VMGI_EAは、RTR_VMGの最初のバイトからの相対バイト番号でもって、RTR_VMGIの終了アドレスを記述したものである。

【0101】VERNは、ビデオ記録(リアルタイムビデオ録画)用のDVD規格のバージョン番号を記述したものである。

【O102】TM_ZONEは、RTRディスクのタイムゾーンを記述したものである。DVD_RTR規格では、5種類のデータフィールド(PL_CREATE_TM、5種類のデータフィールド(PL_CREATE_TM、VOB_REC_TM、VOB_REC_TM、VOBU_REC_TM、VOBU_REC_TM、VOBU_REC_TM)が規定されている。これら5種のデータフィールドは、一括してREC_TMと呼ばれる。REC_TMはTZ_TYおよびTZ_OFFSETというデータを含む。TZ_TYは統合化されたユニバーサルタイムまたはローカルタイムを記述したものであり、TZ_OFFSETは統合化されたユニバーサルタイムからの日時のオフセットを分単位で記述したものである。

【0103】STILL_TMは、スチル画のスチル時間を秒単位で記述したものである。

【0104】.CHRSは、一次テキスト情報に使用されるキャラクタセットコードを記述したものである。このCHRSにより、たとえばISO8859-1のキャラクタセットコードあるいはシフトJIS漢字コードを指定できるようになっている。

【0105】RSM_MRKIは、プログラムチェーン 番号PGCN、プログラム番号PGN、セル番号CN、 マーカポイントMRK_PT、およびマーカ作成時間M RK_TMを記述したものである。ここでのPGCN は、マーカポイントが存在するプログラムチェーンの番 号を示す。元々のオリジナルPGCにマーカが存在する ときは、PGCNは「O」にセットされる。またPGN は、マーカポイントが存在するプログラムの番号を示 す。ユーザが定義したPGCにレジュームマーカが存在 するときは、PGNは「O」にセットされる。またCN は、マーカポイントが存在するセルの番号を示す。また MRK_PTは、目標セル内のマーカポイントを示す。 ムービーセル内にレジュームマーカが存在するときは、 MRK_PTは、RTRの再生時間記述フォーマットに より再生時間(PTM)を記述したものになる。またM RK_TMは、マーカが作成されたときの時間を、RT Rの日時記述フォーマットにより記述したものである。 **【0106】REP__PICTIは、プログラムチェー** ン番号PGCN、プログラム番号PGN、セル番号C N、ピクチャポイントPICT_PT、およびディスク の代表画像作成時間CREAT_TMを記述したもので ある。

【0107】ここでのPGCNは、ディスクの代表画像 が存在するプログラムチェーンの番号を示す。ディスク の代表画像はオリジナルPGC内のポインタのみにより 指定される。したがって、この代表画像ポインタが存在 するときは、PGCNは「O」にセットされる。またP GNは、ディスクの代表画像が存在するプログラムの番 号を示す。ユーザが定義したPGCにレジュームマーカ が存在するときは、PGNは「O」にセットされる。ま たCNは、ディスクの代表画像が存在するセルの番号を 示す。またPICT_PTは、目標セル内のディスクの 代表画像を示す。ムービーセル内にこの代表画像が存在 するときは、PICT_PTは、RTRの再生時間記述 フォーマットにより再生時間(PTM)を記述したもの になる。スチル画セル内にこの代表画像が存在するとき は、PICT_PTは、対応するスチル画VOBグルー プ(S_VOG)内のスチル画VOBエントリ番号(S __VOB__ENTN)を記述したものになる。またCR EAT_TMは、ディスクの代表画像が作成されたとき の時間を、RTRの日時記述フォーマットにより記述し たものである。

【0108】M_AVFIT_SAは、RTR_VMG の最初のバイトからの相対バイト番号でもって、図6の ムービーAVファイル情報テーブルM_AVFITの開 始アドレスを記述したものである。

【0109】S_AVFIT_SAは、RTR_VMGの最初のバイトからの相対バイト番号でもって、図6のスチル画AVファイル情報テーブルS_AVFITの開始アドレスを記述したものである。

【0110】ORG__PGCI__SAは、RTR__VMGの最初のバイトからの相対バイト番号でもって、図6のオリジナルPGC情報ORG__PGCIの開始アドレスを記述したものである。

【0111】UD_PGCIT_SAは、RTR_VMGの最初のバイトからの相対バイト番号でもって、図6のユーザ定義PGC情報テーブルUD_PGCITの開始アドレスを記述したものである。UD_PGCITが存在しないときは、UD_PGCIT_SAは「000000000h」に設定される。

【0112】TXTDT_MG_SAは、RTR_VMGの最初のバイトからの相対バイト番号でもって、図6のテキストデータマネージャTXTDT_MGの開始アドレスを記述したものである。TXTDT_MGが存在しないときは、TXTDT_MG_SAは「000000000h」に設定される。

【0113】MNFIT_SAは、RTR_VMGの最初のバイトからの相対バイト番号でもって、図6の製造者情報テーブルMNFITの開始アドレスを記述したものである。MNFITが存在しないときは、MNFIT_SAは「0000 0000h」に設定される。

【0114】図8は、図6のプレイリストサーチポインタテーブルPL_SRPTのデータ構造を示している。【0115】PL_SRPTは、RTRディスク内のプレイリストを検索しアクセスするのに必要な情報を記述したものであり、プレイリストサーチポインタテーブル情報PL_SRPTIおよび1以上のプレイリストサーチポインタPL_SRP# $1\sim$ PL_SRP#nを含んでいる。

【0116】各プレイリストはユーザ定義PGCにより構成され、 APL_SP はそのプレイリストに対応するPGC番号を持っている。

【0117】プレイリストは、そこに付されたプレイリスト番号PLNにより特定される。PLNは全てのPL $_SRP$ に付与されるもので、これらのPLNには、PL $_SRP$ T 内の1 以上のPL $_SRP$ の記述順に、1 から最大9 9 まで付番される。

【0118】ユーザは、PLNを用いることで、特定のプレイリストをその他のものから識別できる。あるいは、プレイリストに付与されたテキスト情報によっても、ユーザは、特定のプレイリストをその他のものから識別できる。

【0119】図9は、図8のプレイリストサーチポイン タテーブル情報PL_SRPTIの内容を示している。 【0120】PL_SRP_Nsは、PL_SRPT内 のプレイリストサーチポインタ PL_SRP の数を示す。

【0121】また、PL_SRPT_EAは、PL_SRPTの最初のバイトからの相対バイト番号でもって記述された、プレイリストサーチポインタPL_SRPTの終了アドレスを示す。

【0122】図10は、図8のプレイリストサーチポインタテーブルPL_SRPの内容を示している。

【0123】図10において、PL_TYは、プレイリストの形式を記述したものである。すなわち、PL_TYの内容(4バイトのPL_TY1)により、ムービーのプレイリストなのかスチル画のプレイリストなのかハイブリッド(ムービーとスチル画の混成)のプレイリストなのかが、特定できる。

【0124】 $PGCNは、対応するユーザ定義プログラムチェーンUD_PGCの番号を記述したものである。$ この<math>PGCNの最大数は99である。

【O125】PL_CREATE_TMは、プレイリストが作成されたときの時間を、RTRの日時記述フォーマットにより記述したものである。このPL_CREATE_TMは、年、月、日、時、分、秒まで記述できるようになっている。

【0126】PRM_TXTIは、プレイリスト用の一次テキスト情報を記述したものである。このPRM_TXTIは128バイトで構成され、最初の64バイトはASCIIキャラクタセットによる一次テキスト情報の記述に用いられ、残りの64バイトは他のキャラクタセット(シフトJISあるいはISO8859-15など)による一次テキスト情報の記述に用いられる。他のキャラクタセットコードは、VMGI_MATに記述されており、該当ディスク内の全ての一次テキスト情報で利用できるようになっている。なお、ターミナル制御コードはPRM_TXTIには記載されない。

【0127】IT_TXT_SRPNは、プレイリストのIT_TXT_SRPの番号を記述したものである。(アイテムテキストIT_TXTについては、図18を参照して後述する。)THM_PTRIは、サムネールポインタTHM_PTRの情報を記述したものである。サムネールポインタ情報THM_PTRIの設定または利用は、RTRレコーダにとってもRTRプレーヤにとっても、オプション扱いとすることができる。RTRレコーダがTHM_PTRIを扱える能力を持たないときは、8バイトのTHM_PTRIの全てを「FFh」にセットすれば良い。RTRプレーヤがTHM_PTRIを扱える能力を持たないときは、単にTHM_PTRIを扱える能力を持たないときは、単にTHM_PTRIを振える能力を持たないときは、単にTHM_PTRIを無視すれば良い。

【0128】なお、サムネール(Thumbnail)とは、親指の爪程度の大きさの小さな画像をイメージしたものであり、通常は、録画されたビデオ映像中のスチル画をサムネールサイズに縮小した画像のことをいう。

【0129】図11は、図10のサムネールポインタ情報THM_PTRIの内容を示している。図11において、CNは、サムネールポイントが存在するセルの番号を記述したものである。また、THM_PTは、目標セル内のサムネールポイントを記述したものである。

【0130】ここで、ムービーセル内にレジュームマーカが存在するときは、THM_PTは、RTRの再生時間記述フォーマットにより再生時間(PTM)を記述したものになる。

【0131】また、サムネールがスチル画セル内に存在するときは、 THM_PT は、対応するスチル画VOBグループ(S_VOG)内のスチル画VOBエントリ番号(S_VOB_ENTN)を記述したものになる。

【0132】図12は、図6のムービーAVファイル情報テーブルM_AVFITのデータ構造を示している。

【O133】M_AVFITは、ムービーAVファイル(図5のファイルRTR_MOV. VRO)の情報を記述したものであり、ムービーAVファイル情報テーブル情報M_AVFITLと、1以上のムービーVOBストリーム情報M_VOB_STI#1~M_VOB_STI#nと、ムービーAVファイル情報M_AVFIとを含んでいる。

【0134】また、M_AVFIは、所定のファイル名(RTR_MOV. VRO)を持つムービーAVファイルの情報であり、ムービーAVファイル情報一般情報M_AVFI_GIと、1以上のムービーVOB情報サーチポインタM_VOBI_SRP#1~M_VOBI_SRP#nと、1以上のムービーVOB情報M_VOBI#1~M_VOBI#nとを含んでいる。

【0135】1つのムービーAVファイルは1以上のVOBを含むことができ、各VOBはM_AVFI内のVOBのためのムービーVOB情報M_VOBIを持つ。M_AVFI中の1以上のM_VOBIは、ムービーAVファイル内に格納されたVOBデータと同じ順序で記述される。

【0136】図13は、図12のムービーVOB情報M _VOBIのデータ構造を示している。図示するよう に、M_VOBIは、ムービーVOB一般情報M_VO BI_GIと、シームレス情報SMLIと、オーディオ ギャップ情報AGAPIと、タイムマップ情報TMAP Iとを含んでいる。

【0137】図13のM_VOBI_GIは、VOBの形式を記述したVOB_TYと、VOBの先頭の記録時間をRTR日時記述フォーマットにより記述したVOB_REC_TMと、VOBの先頭の記録時間(サブセコンド情報)をビデオフィールド数により記述したVOB_REC_TM_SUBと、ムービーVOBストリーム情報の番号を記述したM_VOB_STINと、VOBの最初のビデオフィールドの再生開始時間をRTR再生時間記述フォーマットにより記述したVOB_VS

PTMと、VOBの最後のビデオフィールドの再生終了時間をRTR再生時間記述フォーマットにより記述した VOB_V_E_PTMとを含んでいる。

【0138】上記VOB_TYは、そのVOBが仮消去状態であるかどうかを示すTEと、オーディオストリーム#0の状態を示すA0_STATUSと、オーディオストリーム#1の状態を示すA1_STATUSと、アナログコピープロテクトの形式あるいはオン・オフ状態を示すアナログプロテクションシステムAPSと、VOBをシームレスに再生すべきかどうかを示すSML_FLGと、オーディオストリーム#0内にオーディオギャップが存在するかどうかと存在するなら何処にオーディオギャップがあるかを示すA0_GAP_LOCと、オーディオストリーム#1内にオーディオギャップが存在するかどうかと存在するなら何処にオーディオギャップがあるかを示すA1_GAP_LOCとを含んでいる。

【 0 1 3 9 】上記 V O B __ R E C __ T M は、 V O B の 先 頭部分が削除 (消去) された場合、 残りの V O B の 先頭 が記録されたときの時間を示すように 更新される。

【0140】すなわち、「新たなVOB_REC_TM =古いVOB_REC_TM+削除部分の再生持続時 間」となる。

【0141】一方、仮に削除部分の再生持続時間が秒単位で表示できない場合(たとえば削除部分の再生持続時間が60.5秒といった場合)は、「新たなVOB_REC_TM—SUB=古いVOB_REC_TM十古いVOB_REC_TM—SUB+削除部分の再生持続時間」となる。

【0142】なお、VOB_REC_TMはビデオ記録の日時を記述したものなので、オーディオデータが修正されたとしても、そのことでVOB_REC_TMが影響されることはない。

【0143】ここで、前述したRTR日時記述フォーマットについて簡単に説明しておく。このフォーマットでは、再生時間PTMを、PTMベースとPTMエクステンションにより表すようにしている。PTMベースは90kHzを単位に計測される値であり、PTMエクステンションは27MHzを単位に計測される値である。

【OI44】図I3のSMLIは、現VOBの先頭パックのSCR(システムクロックリファレンス)をRTR再生時間記述フォーマットにより記述したVOB_FIRST_SCRと、先行VOBの最終パックのSCRをRTR再生時間記述フォーマットにより記述したPREV_VOB_LAST_SCRとを含んでいる。

【0145】図14は、図13のタイムマップ情報TMAPIのデータ構造を示している。タイムマップ情報TMAPIは、特別な再生(ユーザ定義PGCを利用した個別ユーザ独自の順序によるセル再生など)およびタイムサーチを実行する際に利用される。

【0146】タイムマップ情報TMAPIは、タイムマ

ップ一般情報TMAP_GIと、1以上のタイムエントリTM_ENT#1~TM_ENT#rと、1以上のVOBUエントリVOBU_ENT#1~VOBU_ENT#qとを含んでいる。

【0147】各VOBUエントリは、各VOBUのサイズおよび再生時間の情報を含む。VOBUのサイズはセクタ(2kバイト)単位で示され、再生時間はビデオフィールド(NTSCでは1フィールド1/60秒;PALでは1フィールド1/50秒)単位で示される。

【0148】 VOBUのサイズは上述のようにセクタ単位で示されるため、VOBUにはセクタ単位のアドレスでアクセスできる。

【0149】各VOBUエントリは、基準ピクチャサイズ情報1STREF_SZと、VOBU再生時間情報VOBU_PB_TMと、VOBUサイズ情報VOBU_SZとを含んでいる。

【0150】ここで、VOBU_PB_TMは、該当VOBUの再生時間をビデオフィールド単位で表したものである。また、基準ピクチャサイズ情報1STREF_SZは、該当VOBUの最初の基準ピクチャ(MPEGのIピクチャに対応)のサイズをセクタ単位で表したものである。

【0151】一方、各タイムエントリは、対応VOBUのアドレス情報(VOBU_ADR)と、時間差情報(TM_DIFF)を含む。この時間差情報は、タイムエントリにより指定される再生時間とVOBUの再生開始時間との差を示したものである。

【0152】いま、2つの連続タイムエントリの時間間隔(タイムユニットTMU)が10秒であるとすれば、このタイムエントリ間隔は、たとえばNTSCビデオで600フィールドに相当することになる。

【0153】なお、通常は、VOBUエントリでは「VOBUの時間間隔」をフィールド数で表しているが、他の方法として、「VOBUの時間間隔」を表すのに、

「あるVOBUから次のVOBUまでのクロックカウンタによるカウント値」を利用することもできる。

【0154】具体的に例示すれば、「1個のVOBUの 先頭位置でのプレゼンテーションタイムスタンプPTS とその直後のVOBUの先頭位置でのPTSの値との間 の差分値」で「VOBUの時間間隔」を表すことができ る。

【0155】換言すれば、「特定ユニット内でのクロックカウンタの差分値でそのユニット内の時間間隔を示す」ことができる。

【0156】図15は、図14のタイムマップ一般情報 TMAP_GIの内容を示している。

【0157】このタイムマップ一般情報TMAP_GIは、該当タイムマップ情報内のタイムエントリ数を示すTM_ENT_Nsと、該当タイムマップ情報内のVOBUエントリ数を示すVOBU_ENT_Nsと、該当

タイムマップ情報に対するタイムオフセットTM_OS Fと、該当タイムマップ情報のアドレスオフセットAD R_OFSとを含んでいる。

【0158】NTSCビデオで600フィールド(あるいはPALビデオで500フィールド)に相当する値(10秒相当)をタイムユニットTMUとした場合において、上記タイムオフセットTM_OSFは、TMU以

内の時間のずれを示すのに用いられる。

【0159】また、VOBのサイズをセクタ数で表す場合において、上記アドレスオフセットADR_OFSは、AVファイルの先頭からのファイルポインタを示すのに用いられる。

【0160】図16は、図14のタイムエントリTM_ ENTの内容を示している。

【0161】このタイムエントリTM_ENTは、対応するVOBUエントリの番号を示すVOBU_ENTNと、タイムエントリにより指定されたVOBUの再生開始時間と算出された再生時間との時間差を示すTM_DIFFと、目標のVOBUアドレスを示すVOBU_ADRとを含んでいる。

【0162】NTSCにおいてタイムユニットTMUを600フィールドで表した場合(あるいはPALにおいてタイムユニットTMUを500フィールドで表した場合)、タイムエントリ#jに対する上記「算出された再生時間」は、TMU×(j-1)+TM $_O$ SFで表すことができる。

【0163】また、上記VOBU_ADRは、VOBUサイズをセクタ単位で表した場合において、該当VOBの先行VOBUsの合計サイズにより目標のVOBUアドレスを表したものである。

【0164】上に例示したようなデータ構成において、あるVOBUの途中から再生を開始するには、そのアクセスポイントを確定しなければならない。このアクセスポイントをタイムエントリポイントとする。

【0165】このタイムエントリポイントは、VOBUのムービーアドレス情報が示す位置から、タイムエントリTM_ENT内の時間差情報TM_DIFFが示す時間差だけ離れた位置にある。このタイムエントリポイントが、タイムマップ情報TMAPIにより示される特別な再生開始点(あるいはタイムサーチ点)となる。

【0166】図17は、図6のユーザ定義PGC情報テーブルUD_PGCITのデータ構造を示している。

【0167】UD_PGCITは、ユーザ定義PCG情報テーブル情報UD_PGCITIと、1以上のユーザ定義PGCIサーチポインタUD_PGCI_SRP#1~UD_PGCI_SRP#度PGCI#1~UD_PGCI#nとを含んでいる。

【0168】全てのUD_PGCには、UD_PGCI T内のUD_PGCI_SRPの記載順序で、1から9 9までのプログラムチェーン番号 PGCNが割り当てられる。この PGCNにより、各 PGCを特定できる。

【0169】ここで、UD_PGCITIは、UD_PGCI_SRP_NGCI_SRP_Nsと、UD_PGCITの終了アドレスを示すUD_PGCIT_EAとを含んでいる。

【0170】なお、UD_PGCI_SRP_Nsの最大値はたとえば「99」に設定されている。UD_PGCIT_EAは、UD_PGCITの最初のバイトからの相対バイト番号でもってUD_PGCITの終了アドレスを表したものである。

【0171】また、UD_PGCI_SRPは、UD_PGCIの開始アドレスUD_PGCI_SAを含んでいる。このUD_PGCI_SAは、UD_PGCITの最初のバイトからの相対バイト番号でもってUD_PGCIの開始アドレスを表したものである。

【0172】図18は、図6テキストデータマネージャ TXTDT_MGのデータ構造を示している。

【0173】TXTDT_MGは、テキストデータ情報 TXTDTIと、1以上のアイテムテキストサーチポインタIT_TXT_SRP#1~IT_TXT_SRP #nと、1以上のアイテムテキストIT_TXTとを含んでいる。

【0174】TXTDTIは、TXTDT_MG内で使用されるキャラクタセットコード(ISO8859-1またはシフトJIS漢字)を記述したCHRSと、IT_TXT_SRPの数を記述したIT_TXT_SRP_Nsと、TXTDT_MGの最初のバイトからの相対バイト番号でもってTXTDT_MGの終了アドレスを記述したTXTDT_MG_EAとを含んでいる。

【0175】各IT_TXT_SRPは、TXTDT_ MGの最初のバイトからの相対バイト番号でもってIT _TXTの開始アドレスを記述したIT_TXT_SA を含んでいる。

【0176】また、IT_TXTは、上記CHRSで指定されるキャラクタコードでもってアイテムテキストを記述したものである。IT_TXTのデータ長(バイト数)はテキストの内容に応じて変化するようになっている。

【0177】図19は、PGC情報PGCI(オリジナルPGCまたはユーザ定義PGCの情報)のデータ構造を示している。

【0178】PGCIはプログラムチェーンPGCのためのナビゲーション情報を含んでいる。

【0179】このプログラムチェーンには、オリジナル PGCとユーザ定義PGCの2種類がある(図6のRT R_VMGの内容参照)。オリジナルPGCはVOBお よびPGCIを持つ。ところが、ユーザ定義PGCは、 それ自身のVOBは持たず、オリジナルPGC内のVO Bを参照するように構成されている。 【0180】図19に示すように、PGC情報(PGCI#i)は、PGC一般情報PGC_GIと、1以上のプログラム情報PGI#1~PGI#mと、1以上のセル情報サーチポインタCI_SRP#1~CI_SRP#nと、1以上のセル情報CI#1~CI#nとを含んでいる。

【0181】ここで、セル情報CIの開始アドレスは、 PGCIの最初のバイトからの相対バイト番号でもって 記述されるCI_SAによって、示すことができる。

【0182】図20は、図19のPGC一般情報PGC __GIの内容を示している。

【0183】このPGC_GIは、PGC内のプログラム数を記述したPG_Nsと、PGC内のCI_SRPの数を記述したCI_SRP_Nsとを含んでいる。

【0185】図21は、図19のプログラム情報PGIの内容を示している。

【0186】このPGIは、プログラムの形式を記述したPG_TYと、PG中のセルの数を記述したC_Nsと、PGに用いる一次テキスト情報PRM_TXTIと、テキストデータがPGに対応するところのIT_TXTのサーチポインタ数IT_TXT_SRPTNと、サムネールポインタ情報THM_PTRTとを含んでいる。

【0187】ここで、 $PRM_TXTIは128バイト$ のフィールドで構成されており、その初めの64バイトがASCIIキャラクタセットにより記述される。<math>ASCIIテキストが64バイト未満のときは、余白のバイトには「<math>00h]が書き込まれる。

【0188】上記128バイトフィールドの後半の64 バイトは他のキャラクタセット(たとえばシフトJIS あるいはISO8859-15)の一次テキストを記述するのに使用される。ここで「他のキャラクタセット」のコードはVMGI_MATないに記述され、ディスク内の全ての一次テキスト情報に共有される。

【 0 1 8 9 】なお、「 0 1 h」から「 1 F h」までの間の値を取るターミナル制御コードは、 P R M _ T X T I 内に記載されることはない。

【0190】上記THM_PTRIは、サムネールポインタの情報を記述したものである。すなわち、THM_PTRIは、サムネールポイントが存在するセルの番号を記述したCNと、目標セル内のサムネールポイントを記述したTHM_PTとを含んでいる。

【0191】ここで、ムービーセル内にレジュームマーカが存在するときは、THM_PTは、RTRの再生時間記述フォーマットにより再生時間(PTM)を記述したものになる。

【0192】また、サムネールがスチル画セル内に存在するときは、 THM_PT は、対応するスチル画VOB グループ (S_VOG) 内のスチル画VOBエントリ番号 (S_VOB_ENTN) を記述したものになる。

【0193】THM_PTRIの設定または利用は、RTRレコーダにとってもRTRプレーヤにとっても、オプション扱いとすることができる。RTRレコーダがTHM_PTRIを扱える能力を持たないときは、8バイトのTHM_PTRIの全てを「FFh」にセットすれば良い。RTRプレーヤがTHM_PTRIを扱える能力を持たないときは、単にTHM_PTRIを無視すれば良い。

【0194】図22は、図19のセル情報CIのデータ構造を示している。図示するように、セル情報には、ムービーセル情報M_CIおよびスチル画セル情報S_CIの2種類がある。

【0195】エントリポイントに関する情報(M_C_EPI)は、図5のナビゲーションデータファイルRTR.IFOの中のムービーセル情報M_CI内に、書き込まれている。

【0196】図23は、図22のムービーセル情報M_CIのデータ構造を示している。図示するように、M_CIは、ムービーセル一般情報M_C_GIと、1以上のムービーセルエントリポイント情報M_C_EPI#1~M_C_EPI#nとを含んでいる。

【0197】図24は、図23のムービーセル一般情報 M_C_GIの内容を示している。

【0198】すなわち、M_C_GIは、セルの形式を記述したC_TYと、このセルのVOBに対応するムービーVOBIサーチポインタの番号を記述したM_VOBI_SRPNと、セルエントリポイント情報の数を記述したC_EPI_Nsと、このセルの再生開始時間をRTR再生時間記述フォーマットでもって記述したC_V_S_PTMと、このセルの再生終了時間をRTR再生時間記述フォーマットでもって記述したC_V_E_PTMとを含んでいる。

【0199】ここで、C__V_S__PTMおよびC__V __E__PTMには、次の条件を満足するようになっている。

【0200】(1) オリジナルPGC内のセルの場合 C_V_S_PTMは、対応VOBの最初の4つのVO BU内に入ること; C_V_E_PTMは、対応VOB の最後の4つのVOBU内に入ること;

(2) ユーザ定義 P G C 内のセルの場合

 $O_{C_{V_S_PTM} \le C_{V_S_PTM} < C_{V_S_S_PTM} < C_{V_S_PTM} < C_{V_S_S_PTM} < C_{V_S_PTM} < C_{V_S_S_PTM} < C_{V_S_PTM} < C_{V_S_PTM} < C_{V_S_S_PTM} < C_{V_S_S_S_PTM} < C_{V_S_S_S_PTM} < C_{V_S_S_S_PTM} < C_{V_S_S_S_PTM} < C_{V_S_S_S_PTM} < C_{V_S_S_S_S_PTM} < C_{V_S_S_S_S_S_PTM} < C_{V_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S_S_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S_S_S_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S_S_S_S_S_S_S_S_S} < C_{V_S_S_S_S_S_S_S_S_S_S_S_S_S_$

時間を示す。

【0201】図25は、図23のムービーセルエントリポイント情報M__C_EPIの内容を示している。

【0202】このM_C_EPIには、2種類(タイプ 1とタイプ2)がある。テキスト情報のないタイプ1の M_C_EPIはEP_TYおよびEP_PTMで構成 され、テキスト情報のあるタイプ2のM_C_EPIは EP_TY、EP_PTMおよびPRM_TXTIで構 成される。図25はタイプ2の場合を示している。

【0203】図25に示すようにM_C_EPIは、エントリポイントの形式を記述したEP_TYと、エントリポイントの再生時間をRTR再生時間記述フォーマットで記述したEP_PTMと、エントリポイントの一次テキスト情報等を記述したPRM_TXTIとを含んでいる。

【0204】なお、再生が行われるときは、 EP_PT Mの値、セル再生時間は、タイムマップTMAP情報 (図14~図16参照) によりVOBUを指すファイル

(図14~図16 参照) により V O B O を指す ファイル ポインタに変換され、これが更にファイルシステムによって物理アドレスに変換されるようになっている。

【0205】M_C_EPIのPRM_TXTIは128バイトフィールドで構成されている。最初の64バイトはASCIIキャラクタセットで一次テキストを記述するのに用いられる。ASCIIキャラクタセットの一次テキストが64バイト未満のときは、64バイトに満たない分は「00h」で埋められる。残りの64バイトは、他のキャラクタセット(シフトJIS、ISO8859-15等)で一次テキストを記述するのに用いられる。この「他のキャラクタセット」はVMGI_MATに記述され、そのディスクの全ての一次テキスト情報に供給される。

【0206】なお、01h」から1Fh」までの間の値を取るターミナル制御コードは、 PRM_TXTI 内に記載されることはない。

【0207】 $M_C_EPIOEP_TYは、<math>2$ ビットのタイプ識別コードを含む1バイトデータで構成される。こ識別のコードが「00 b」ならタイプ1の M_C _ EPI (一次テキストデータが空あるいはなし)であることが示され、「01 b」ならタイプ2 (一次テキストデータあり)の M_C_EPI であることが示されるようになっている。

【0208】このEP_TYは、上記タイプ1とタイプ2を識別する2ビットのタイプ識別コード以外に、6ビット分の予約領域を持っている。この予約領域の一部または全部のビットを利用して、M_C_EPIのPRT_TXTIの内容をさらに特定することができる。(6ビット全てを利用すれば最大64通りの特定ができる。この指定コードに6ビット以上を割り当てて、より多くの種類を指定できるようにしても良い。)以下、この予約領域を利用したビットを、一次テキスト情報の内容を

指定する指定コードと呼ぶことにする。

【0209】上記指定コードの特定ビットにより、図25のM_C_EPIのPRM_TXTIが、「情報タイプ」および/または「情報日付」を伴った「テキスト情報」なのか、「情報タイプ」および/または「情報日付」を伴なわない「テキスト情報」なのかを指定できる。

【0210】さらに、上記指定コードの特定ビットにより、図25のM_C_EPIのPRM_TXTIが、「情報タイプ」および/または「情報日付」の他に、対応する「サムネール情報」も伴う「テキスト情報」なのか、「サムネール情報」を伴なわない「テキスト情報」なのかを指定できる。(ここでの「サムネール情報」は、たとえば図21のサムネールポインタ情報THM_PTRIに対応する情報である。)

さらに、上記指定コードの特定ビットにより、図25の M_C_EPIのPRM_TXTIが、「テキスト情報」なしで「サムネール情報」だけなのか、「テキスト情報」を伴う「サムネール情報」なのかも指定できる。【0211】上記EP_TY中の指定コード(図示せず)が図25の「情報タイプ」、「情報日付」および「テキスト情報」を指定する場合、これらの情報は以下の内容を表現するのに用いることができる。

【0212】すなわち、「情報タイプ」にはエントリポイントの属性が記述され、「情報日付」にはエントリポイントが登録(ディスクに記録)された日時が記述され、「テキスト情報」にはそのエントリポイントに関する付加情報(エントリポイントの映像の簡単な記述など)が記述される。

【0213】上記「情報タイプ」に記述されるエントリポイントの属性としては、たとえば次のようなものがある:

情報タイプ [1] = 0; ユーザマーク (ユーザがエントリポイントを登録)

情報タイプ [1] = 1; セットマーク (録再機がエントリポイントを登録)

情報タイプ [1] = 2; 欠陥開始マーク

情報タイプ[1]=3;欠陥終了マーク

情報タイプ[1]=4;再生開始マーク

情報タイプ[1]=5;再生終了マーク

情報タイプ [1] = 6;消去不可マーク

情報タイプ [1] = 7; その他のマーク(ユーザ、録再 機以外からの指示等)

ここで、情報タイプ [1] の [1] は、情報タイプのデータフィールドの1番目を意味する。このデータフィールドが3ビット構成なら、情報タイプ [1] は8種類のマークを示すことができる。

【0214】なお、図25の「情報タイプ」、「情報日付」および/または「テキスト情報」(さらには「サムネール情報」)と同様な情報は、図10のプレイリスト

サーチポインタPL_SRP中に設けることもできる。 【0215】ところで、DVD_RTRシステムでは、 図18のテキストデータマネージャTXTDT_MGで 管理されるテキスト以外のテキスト情報を扱えるように 構成されている。このテキスト情報として、プログラム に記述された一次テキスト情報(図21)、プレイリス トに記述された一次テキスト情報(図10)および選択 されたエントリポイントに記述された一次テキスト情報 (図25)がある。

【0216】これらの一次テキスト情報PRM_TXT Iは、ASCIIやシフトJIS等のキャラクタセット を用いて、該当する記録内容をユーザが識別するのに利 用される。

【0217】その一例を、図26に示す。すなわち、プレーヤ(RTR録再機)は図21の一次テキスト情報PRM_TXTIをディス10クから読み出して、録画されたプログラム(PG1、PG2、PG3、…)の録画日時情報を、プレーヤのディスプレイパネルに表示する(この例ではプログラム#1が昼の12時30分15秒から録画開始されたことを示している)。

【0218】ディスクから該当する一次テキスト情報PRM_TXTIを読み出すと、プレーヤはその結果をモニタ(テレビジョン)に出力する。すると、録画されたプログラム(PG1、PG2、PG3、…)の再生が始まる前に、そのディスク10に録画されているプログラムの簡単な内容(PG1の「家族でバーベキュー」やPG2の「娘7歳の誕生日」など)が、モニタスクリーンに表示される。

【0219】ユーザは、この表示から、所望のプログラムを容易に選択できる。ユーザが所望のプログラム(たとえば「家族でバーベキュー」)を図示しないリモコンのカーソル操作等で選択し再生ボタンを押すと、プログラム#1の再生が開始される。

【0220】プレイリストの一次テキスト情報 P R M_T X T I (図10)を利用した表示/ユーザ選択/再生動作、あるいはエントリポイントの一次テキスト情報 P R M_T X T I (図25)を利用した表示/ユーザ選択/再生動作も、ユーザにとっては同様な感覚で行なうことができる。

【0221】すなわち、図27に例示されるように、各プログラム中の任意の箇所にエントリポイント(本に例えれば「しおり」に相当)を付けておき、そのエントリポイントの一次テキスト情報PRM_TXTI(図25)に「家族でバーベキュー」のようなテキストを格納しておくことができる。

【0222】また、ユーザが、録画済みのプログラム#1~#4を任意のパーツに分解し、分解したパーツの再生順序をプレイリスト#1、#2に登録し、各パーツにエントリポイントが付いている場合も、同様である。

【0223】さらに、各プレイリストの一次テキスト情

報PRM_TXTI(図10)に「おばあちゃんとバーベキュー」といったショートタイトルを書き込んでおくこともできる。

【0224】図28は、ユーザ定義PGC(またはオリジナルPGC)を構成するセルの再生開始時間/再生終了時間と、図5のムービービデオオブジェクトRTR_MOV. VROを構成する各ビデオオブジェクトVOBのVOBUに対するオフセットアドレスとの対応例を説明する図である。

【0225】図28において、PGCIおよび M_{VO} BIの情報は図5のRTR. IFOファイルに格納される。また、セル集合のPCGに対応するVOB U集合のVOBは、図5のRTR $_{MOV}$. VROファイルに格納される。

【0226】図28のオリジナルPGCのプログラムチェーン情報PGCIは1以上のセル集合であるプログラムの再生方法を管理し、ユーザ定義PGC各々はユーザが決めた1以上のセル集合の再生方法を管理するものである。

【0227】また、オリジナルPGCのセルあるいはユーザ定義PGCのセルの再生開始時間および再生終了時間は、図13のM_VOBI#iそれぞれに含まれるタイムマップ情報TMAPIにより、対応するビデオデータ等が格納されたVOBUの、VROファイルの先頭からのファイルポインタに変換され、ファイルシステムにより物理アドレスに変換される。

【0228】各セルを再生するために、対応するVOBの番号、再生開始時間、再生終了時間がセルの情報として記述されている。セルを再生する際は、再生開始および終了時間を対応するVOBIに渡し、VOBIに含まれるタイムマップ(TMAP)を用いて、セルの再生時間に対応するVOBUを指すファイルボインタに変換し、更にファイルシステムによって物理アドレスに変換して、VOBにアクセスする。

【0229】たとえば図2のオーディオ・ビデオデータエリアDA2に記録されるビデオデータ(VOBS)は、1以上のプログラムチェーンPGCの集まりで構成されている。各PGCは1以上のセル集合であるプログラムが集まったものであり、どのセルをどんな順序で再生してプログラムを構成するかは、オリジナルPGC情報あるいはユーザ定義のPGC情報により決定できるようになっている。

【0230】オリジナルPGC情報あるいはユーザ定義PGC情報で指定されたセルの再生時間およびその再生順序は、図14のタイムマップ情報TMAPIの内容(図28のタイムマップTMAP)に基づき、再生しようとするセルそれぞれを構成するVOBUのアドレスに変換される。

【0231】すなわち、オリジナルPGC(最初の録画 状態のセル再生順序)で再生を行なうときは、図6のO RG_PGCIの内容に従いタイムマップ情報 (TMAP)を介して再生すべき時間帯のVOBUのアドレスが求められ、その順序で再生が行われる。

【0232】一方、ユーザが独自に定義したPGC(録画後再生順序をユーザが編集した場合など)で再生を行なうときは、図17のUD_PGCIの内容に従いタイムマップ情報(TMAP)を介して再生すべき時間帯のVOBUのアドレスが求められ、その順序で再生が行われる。

【0233】ユーザ定義のPGC情報UD_PGCIによるセル再生順序は、オリジナルPGC情報ORG_PGCIによるセル再生順序と全く別物にしてしまうことができる。

【0234】上記再生の時間と再生対象 V O B U のアドレスとは、図14に示したタイムマップ情報 T M A P I 内のタイムエントリおよび V O B U エントリの内容を参照して、対応付けることができるようになっている。

【0235】図29は、図1の記録・再生可能光ディスク10を用いてビデオプログラム等のリアルタイム録画・再生を行なう装置(RTRビデオレコーダ)の構成の一例を説明するブロック図である。

【0236】図29に示すRTRビデオレコーダの装置本体は、大まかにいって、DVDーRAMまたはDVDーRディスク10を回転駆動し、このディスク10に対して情報の読み書きを実行するディスクドライブ部(32、34等)と、録画側を構成するエンコーダ部50と、再生側を構成するデコーダ部60と、装置本体の動作を制御するマイクロコンピュータブロック30とで構成されている。

【0237】エンコーダ部50は、ADC(アナログ・デジタル変換器)52と、ビデオエンコーダ(Vエンコーダ)53と、オーディオエンコーダ(Aエンコーダ)54と、副映像エンコーダ(SPエンコーダ)55と、フォーマッタ56と、バッファメモリ57とを備えている。

【0238】ADC52には、AV入力部42からの外部アナログビデオ信号+外部アナログオーディオ信号、あるいはTVチューナ44からのアナログTV信号+アナログ音声信号等が入力される。このADC52は、入力されたアナログビデオ信号を、たとえばサンプリング周波数13.5MHz、量子化ビット数8ビットでデジタル化する。

【0239】同様に、ADC52は、入力されたアナログオーディオ信号を、たとえばサンプリング周波数48kHz、量子化ビット数16ビットでデジタル化する。【0240】なお、ADC52にアナログビデオ信号およびデジタルオーディオ信号が入力されるときは、ADC52はデジタルオーディオ信号をスルーパスさせる。【0241】一方、ADC52にデジタルビデオ信号およびデジタルオーディオ信号が入力されるときは、AD

C 5 2 はデジタルビデオ信号およびデジタルオーディオ 信号をスルーパスさせる。

【0242】ADC52からのデジタルビデオ信号成分は、ビデオエンコーダ(Vエンコーダ)53を介してフォーマッタ56に送られる。また、ADC52からのデジタルオーディオ信号成分は、オーディオエンコーダ(Aエンコーダ)54を介してフォーマッタ56に送られる。

【0243】 Vエンコーダ53は、入力されたデジタルビデオ信号を、MPEG2またはMPEG1規格に基づき、可変ビットレートで圧縮されたデジタル信号に変換する機能を持つ。

【0244】また、Aエンコーダ54は、入力されたデジタルオーディオ信号を、MPEGまたはAC-3規格に基づき、固定ビットレートで圧縮されたデジタル信号(またはリニアPCMのデジタル信号)に変換する機能を持つ。

【0245】DVDビデオ信号がAV入力部42から入力された場合、あるいはDVDビデオ信号が放送されそれがTVチューナ44で受信された場合は、DVDビデオ信号中の文字放送信号成分が、SPエンコーダ55に入力される。SPエンコーダ55に入力された副映像データは、所定の信号形態にアレンジされて、フォーマッタ56に送られる。

【0246】フォーマッタ56は、バッファメモリ57をワークエリアとして使用しながら、入力されたビデオ信号、オーディオ信号、副映像信号等に対して所定の信号処理を行い、所定のフォーマット(ファイル構造)に合致した記録データをデータプロセサ36に出力する。

【0247】ここで、上記記録データを作成するための標準的なエンコード処理内容を簡単に説明しておく。すなわち、図29のエンコーダ部50においてエンコード処理が開始されると、ビデオデータその他のエンコードにあたって必要なパラメータが設定される。次に、設定されたパラメータを利用して主映像データがプリエンコードされ、設定された平均転送レート(記録レート)に最適な符号量の分配が計算される。こうしてプリエンコードで得られた符号量分配に基づき、主映像のエンコードが実行される。このとき、オーディオデータのエンコードも同時に実行される。

【0248】プリエンコードの結果、データ圧縮量が不十分な場合(録画しようとするDVD一RAMディスクまたはDVDーRディスクに希望のビデオプログラムが収まり切らない場合)、再度プリエンコードする機会を持てるなら(たとえば録画のソースがビデオテープあるいはビデオディスクなどの反復再生可能なソースであれば)、主映像データの部分的な再エンコードが実行され、再エンコードした部分の主映像データがそれ以前にプリエンコードした主映像データ部分と置換される。このような一連の処理によって、主映像データおよびオー

ディオデータがエンコードされ、記録に必要な平均ビットレートの値が、大幅に低減される。

【0249】同様に、副映像データをエンコードするに必要なパラメータが設定され、エンコードされた副映像データが作成される。

【0250】以上のようにしてエンコードされた主映像データ、オーディオデータおよび副映像データが組み合わされて、DVD_RTRビデオの構造に変換される。【0251】エンコードされた主映像データ、オーディオデータおよび副映像データは、図3に示すような一定サイズ(2048バイト)のパックに細分化される。これらのパックには、ダミーパックが適宜挿入される。なお、ダミーパック以外のパック内には、適宜、PTS(プレゼンテーションタイムスタンプ)、DTS(デコードタイムスタンプ)等のタイムスタンプが記述される。副映像のPTSについては、同じ再生時間帯の主映像データあるいはオーディオデータのPTSより任意に遅延させた時間を記述することができる。

【0252】そして、各データのタイムコード順に再生可能なように、VOBU単位で各データセルが配置されて、複数のセルで構成されるVOBが構成される。このVOBを1以上まとめたRTR_MOV. VROファイルが、図5の構造でフォーマットされる。

【0253】なお、DVDビデオプレーヤからDVD再生信号をデジタルコピーする場合は、セル、プログラムチェーン、管理テーブル、タイムスタンプ等の内容は初めから決まっているので、これらを改めて作成する必要はない。(ただし、DVD再生信号をデジタルコピーできるようにRTRビデオレコーダを構成するには、電子すかしその他の著作権保護手段が講じられている必要がある。)DVDディスク10に対して情報の読み書き

(録画および/または再生)を実行するディスクドライブ部は、ディスクドライブ32と、一時記憶部34と、データプロセサ36と、システムタイムカウンタ(またはシステムタイムクロック;STC)38とを備えている。

【0254】一時記憶部34は、ディスクドライブ32を介してディスク10に書き込まれるデータ(エンコーダ部50から出力されるデータ)のうちの一定量分をバッファイリングしたり、ディスクドライブ32を介してディスク10から再生されたデータ(デコーダ部60に入力されるデータ)のうちの一定量分をバッファイリングするのに利用される。

【0255】たとえば一時記憶部34が4Mバイトの半導体メモリ(DRAM)で構成されるときは、平均4Mbpsの記録レートでおよそ8秒分の記録または再生データのバッファリングが可能である。また、一時記憶部34が16MバイトのEEPROM(フラッシュメモリ)で構成されるときは、平均4Mbpsの記録レートでおよそ30秒の記録または再生データのバッファリン

グが可能である。さらに、一時記憶部34が100Mバイトの超小型HDD(ハードディスク)で構成されるときは、平均4Mbpsの記録レートで3分以上の記録または再生データのバッファリングが可能となる。

【0256】一時記憶部34は、録画途中でディスク10を使い切ってしまった場合において、ディスク10が新しいディスクに交換されるまでの録画情報を一時記憶しておくことに利用できる。

【0257】また、一時記憶部34は、ディスクドライブ32として高速ドライブ(2倍速以上)を採用した場合において、一定時間内に通常ドライブより余分に読み出されたデータを一時記憶しておくことにも利用できる。再生時の読み取りデータを一時記憶部34にバッファリングしておけば、振動ショック等で図示しない光ピックアップが読み取りエラーを起こしたときでも、一時記憶部34にバッファリングされた再生データを切り替え使用することによって、再生映像が途切れないようにできる。

【0258】図29では図示しないが、RTRビデオレコーダに外部カードスロットを設けておけば、上記EEPROMはオプションのICカードとして別売できる。また、RTRビデオレコーダに外部ドライブスロットあるいはSCSIインターフェイスを設けておけば、上記HDDもオプションの拡張ドライブとして別売できる。【0259】なお、DVD-RAMドライブ付のパーソナルコンピュータをソフトウエアでRTRビデオレコーダ化する場合(図示せず)では、パーソナルコンピュータ自身のハードディスクドライブの空き領域の一部またはメインメモリの一部を、図29の一時記憶部34として利用できる。

【0260】図29のデータプロセサ36は、マイクロコンピュータブロック30の制御にしたがって、エンコーダ部50からのDVD_RTR記録データをディスクドライブ32に供給したり、ディスク10から再生されたDVD_RTR再生信号をドライブ32から取り出したり、ディスク10に記録された管理情報(図5のファイルデータの一部)を書き換えたり、ディスク10に記録されたデータ(ファイルの一部あるいは全部)の削除をしたりする。

【O261】マイクロコンピュータブロック30は、MPU(またはCPU)、制御プログラム等が書き込まれたROM、およびプログラム実行に必要なワークエリアを提供するRAMを含んでいる。

【0262】このマイクロコンピュータブロック30のMPUは、そのROMに格納された制御プログラムに従い、そのRAMをワークエリアとして用いて、後述するエントリポイント登録処理、テキスト情報入力処理、再生メニュー表示処理、テキスト情報検索処理(録画内容検索処理)、欠陥登録処理、優先消去順位登録処理などを、実行する。

【0263】これらの処理において、RTRビデオレコーダのユーザが入力するデータ(録画内容のショートタイトルのテキスト入力など)は、情報入力部100からMPU30に提供される。この情報入力部100としては、図示しないが、パーソナルコンピュータのキーボードあるいはリモコンのカーソルキー/テンキーを利用することができる。

【0264】MPU30の実行結果のうち、RTRビデオレコーダのユーザに通知すべき内容は、RTRビデオレコーダの表示部48に表示される。そして、この通知内容は、適宜、モニタディスプレイに、オンスクリーンディスプレイ(OSD)や副映像等を利用して、表示される。

【0265】なお、MPU30がディスクドライブ32、データプロセサ36、エンコーダ部50および/またはデコーダ部60を制御するタイミングは、STC38からの時間データに基づいて、実行することができる(録画・再生の動作は、通常はSTC38からのタイムクロックに同期して実行されるが、それ以外の処理は、STC38とは独立したタイミングで実行されてもよい)。

【0266】また、MPU30は、計時部40からの時間データに基づいて、ディスク10に記録された各プログラムの録画日時、エントリポイントの登録日時などの処理も実行することができるようになっている。

【0267】デコーダ部60は、図3に示すようなパッ ク構造を持つDVD__RTR再生データから各パックを 分離して取り出すセパレータ62と、パック分離その他 の信号処理実行時に使用するメモリ63と、セパレータ 62で分離された主映像データ(ビデオパックの内容) をデコードするビデオデコーダ(Vデコーダ)64と、 セパレータ62で分離された副映像データ(副映像パッ クの内容)をデコードする副映像デコーダ (SPデコー ダ)65と、セパレータ62で分離されたオーディオデ ータ(オーディオパックの内容)をデコードするオーデ ィオデコーダ (Aデコーダ) 68と、Vデコーダ64か らのビデオデータにSPデコーダ65からの副映像デー タを適宜合成し、主映像にメニュー、ハイライトボタ ン、字幕その他の副映像を重ねて出力するビデオプロセ サ66と、ビデオプロセサ66からのデジタルビデオ出 力をアナログビデオ信号に変換するビデオ・デジタル・ アナログ変換器(V・DAC)67と、Aデコーダ68 からのデジタルオーディオ出力をアナログオーディオ信 号に変換するオーディオ・デジタル・アナログ変換器 (A・DAC) 69を備えている。

【0268】 V・DAC67からのアナログビデオ信号 およびA・DAC69からのアナログオーディオ信号 は、AV出力部46を介して、図示しない外部コンポー ネント(2チャネル~6チャネルのマルチチャネルステ レオ装置+モニタTVまたはプロジェクタ)に供給され る。

【0269】MPU30から適宜出力されるOSDデータは、デコーダ部60内のビデオプロセサ66に入力される。すると、このOSDデータが主映像に重畳され、それがAV出力部46に接続された外部モニタTVに供給される。すると、種々なテキスト情報が、主映像とともに表示される。

【0270】RTRビデオレコーダにおけるデータ処理には、大きく分けて、録画処理と再生処理の2つがある。

【0271】図30は、図29のRTRビデオレコーダ における録画動作の一例を説明するフローチャートであ る。

【0272】まず、ユーザによるリモコン操作あるいはタイマ録画プログラム(図示せず)によりMPU30が録画命令受けると、MPU30は、ドライプ32にセットされたディスク10(図1)から、管理データ(ファイルシステム等)を読み込み(ステップST10)、録画領域(書込領域)を決定する。

【0273】ディスク10に必要最小限のサイズの未記録領域あるいは上書き消去可能領域がなく、空き容量なしの場合は(ステップST12ノー)、「録画スペースがない」旨の警告表示を行い(ステップST14)、録画を中止する。

【0274】空き容量がある場合は(ステップST12イエス)、書込アドレスを決定し(ステップST16)、決定された領域に録画(書込)が行われるように管理領域(RTR_VMGファイル等)に必要な書込を行なう(ステップST18)。

【0275】次に、録画用の初期設定を行なう(ステップST20)。すなわち、図29のエンコーダ部50の各エンコーダに平均転送レートを(たとえば4Mbpsに)設定し、STC38を所定値(たとえばゼロ)にリセットし、ドライブ32に書込開始アドレスを設定し、フォーマッタ56を(たとえばMPEG2/4MbpsによるNTSC録画用に)初期設定し、ダミーパック

(図3~図4)の登録設定を行い、セルの区切り時間を 所定値に設定し、セルエントリポイント情報の数C_E PI_Ns(図24)をゼロに設定する。

【0276】以上の初期設定が済むと、エンコーダ部50の各エンコーダに録画開始命令が設定されて録画が開始され(ステップST22)、録画処理(ステップST23)に入る。

【 O 2 7 7 】録画処理(ステップ S T 2 3)におけるビデオ信号の流れは、次のようになる。

【0278】まず、外部AV入力42に入力されたAV信号またはTVチューナ44で受信された放送信号は、ADC52においてA/D変換される。A/D変換されたデジタルビデオ信号はAエンコーダ54に入力される。また、放送に含まれているクローズドキャプション

信号または文字放送等のテキスト信号が、TVチューナ44からSPエンコーダ55に入力される。

【0279】各エンコーダは、それぞれに入力された信号を所定の方法で圧縮し、1パックあたり2048パイトになるように切り分けてパケット化して、フォーマッタ56に入力する。

【0280】ここで、各デコーダは、STC38からのカウント値に従つて各パケツトのPTS(プレゼンテーションタイムスタンプまたは再生時間スタンプ)、DTS(デコーディングタイムスタンプ)を必要に応じて決定し、記録を行う。

【0281】フォーマッタ56は、バッファメモリ57にパケットデータを一時保存し、その後、入力された各パケットデータをパック化して、GOP毎にミキシングして、データプロセサ36に転送する。

【0282】データプロセサ36は、転送されたパック (2kバイト)を16パック毎にまとめてグループ化 (32kバイト)し、たとえば積符号を利用したECC 処理を施して、ディスクドライブ 32へ送る。

【0283】このとき、まだドライブ32に記録準備ができていないなら、データプロセサ36からの記録信号は一時記憶部に転送され、ドライブ32がデータ記録の準備を完了するまで待つ。そして、データ記録の準備ができた段階で、ドライブ32は記録を開始する。

【0284】ここで、一時記憶部34としては、高速アクセスで数分以上の記録データを保持するため、大容量のメモリが使用される。

【0285】録画処理継続中において、所定の時間間隔(たとえば5分毎)でエントリポイントを自動的に登録する処理が行われる(ステップST25;図33参照)。このエントリポイント登録時間間隔は、たとえば1分単位でユーザが任意に設定できるようになっている。この時間間隔がディスク10の空き容量(録画可能時間)より長く設定されれば、エントリポイントの自動登録はなされないことになる。

【0286】録画中(ステップST27ノー) ユーザがエントリポイントの登録要求をすると(ステップST29イエス)、ステップST25の処理とは別に、エントリポイントの登録が行われる(ステップST31;図32参照)。

【0287】たとえば図示しないリモートコントローラにエントリポイントキーがあり、録画処理中にこのエントリポイントキーが押されると、そのときの録画内容に対応する箇所に、エントリポイントの情報(図25)が登録される。

【0288】このときMPU30は、ユーザまたはセット(RTRビデオレコーダ)からのエントリポイント登録要求に応じて、エントリポイントの情報を管理情報(図5のRTR_VMGファイル)に記録する。

【0289】録画が終了すると(ステップST27イエ

ス)、エンコーダ部50内の各エンコーダおよびフォーマッタを初期化し、所定の管理情報をドライブ32に送り、これをディスク10のRTR_VMGIに記録する(ステップST34)。

【0290】図31は、図29のRTRビデオレコーダ における再生動作の一例を説明するフローチャートであ る。

【0291】まず、ユーザによるリモコン操作あるいはタイマ再生プログラム(図示せず)によりMPU30が再生命令受けると、MPU30は、ディスク10の管理領域(RTR_VMG)を、ドライブ32およびデータプロセサ36を介して読み込み(ステップST40)、再生アドレスを決定する。

【0292】MPU30は、読み込んだ管理データに基づいて再生するプログラムチェーンおよびプログラムを選択し(ステップST42)、デコーダ部60の各デコーダに再生開始命令を設定する(ステップST44)。 【0293】次に、MPU30は、ドライプ32に決定された再生アドレスと読出命令を送り、再生処理に入る(ステップST46)。

【0294】ドライブ32は、送られてきた読出命令に従って、ディスク10(図1)のセクタデータを読み出し、データプロセサ36でエラー訂正を行い、パックデータの形にして、デコーダ部60に出力する。

【0295】デコーダ部60内では、読み出されたパックデータをセパレータ62が受け取る。セパレータ62は、受け取ったデータをパケット化し、データの種類(ビデオ、オーディオ、副映像など)に応じて、ビデオパケットデータ(MPEGビデオデータ)はVデコーダ64へ転送し、オーディオパケットデータはAデコーダ68へ転送し、副映像パケットデータはSPデコーダ65へ転送する。

【0296】各デコーダへのパケットデータ転送開始時に、SCR(システムクロックリファレンスまたは基準システムクロック)がSTC38にロードされる。そして、各デコーダは、パケットデータ内のPTS(図3参照)の値に同期して(具体的にはPTSとSTCの値を比較しながら)再生処理を行う。これにより、ビデオに同期した音声字幕付きの動画を再生することができるようになる。

【0297】再生時に特定セルのエントリポイントの再生要求があれば(ステップST50イエス)、対象エントリポイントのEP_PTM(図25参照)をTMAP(図14参照)によりファイルポインタに変換して、該当エントリポイントに対応するVOBU(図28参照)にアクセスする(ステップST52)。

【0298】エントリポイントの再生要求がなければ (ステップST50ノー)、再生処理が継続される。

【0299】再生処理時にエントリポイントの登録要求があれば(ステップST54イエス)、エントリポイン

トの登録処理が実施できる(ステップST31)。このエントリポイント登録処理は、録画時のエントリポイント登録処理(図30のST31)と同様な内容の処理でよい。

【0300】再生を終了するときは(ステップST48 イエス)、その時点で再生中のVOBUが再生し終わる まで待機したのち、デコード部60の各デコーダにデコ ードを停止時の設定を行って(ステップST58)、再 生処理を終了する。

【0301】図32は、RTRビデオレコーダ(録再機)が録画あるいは再生を行っているときに、ユーザまたは録再機が特定のビデオあるいはオーディオに対してエントリポイントを登録する要求を出したときの、処理の一例を説明するフローチャートである。このエントリポイント登録処理は、図30または図31のステップST31に対応する。

【0302】図29のRTRビデオレコーダ(録再機)のMPU30は、ユーザまたは録再機からエントリポイント登録要求を受け取ると(ステップST310)、ムービーセル一般情報M_C_GI内のC_EPI_Ns(図24)を1つインクリメントする(ステップST312)。

【0303】なお、エントリポイントの登録要求が全くない場合には、 C_EPI_Ns は「0」に設定されている。

【0304】 $C_EPI_Nsが1つインクリメントされたということは、現在録画中(あるいは再生中)のプログラムのセルにエントリポイント情報が1つ追加され得ることを意味する。そこで、MPU30はムービーセル情報(<math>M_CI$)内にムービーセルエントリポイント情報(M_CI)の領域を確保する。

【0305】その後、所定時間以内(たとえば30秒以内)にユーザからテキスト入力がなされ、あるいは録再機がエアチェック中の放送番組のクローズドキャプション等をテキスト入力として与えたとする(ステップST314イエス)。

【0306】なお、ここでのテキスト入力は、必ずしも 文字入力に限定されず、たとえばユーザがメニュー項目 を選択したりアイコンをマウスでクリックしたりする操 作結果の入力も含む。

【0307】すると、MPU30はムービーセルエントリポイント情報M_C_EPI中のエントリポイント形式EP_TYに「1」を設定する(ステップST316)。このEP_TY=「1」は、M_C_EPI中に一次テキスト情報PRM_TXTIが入っていることを示す。

【0308】続いて、MPU30は、現在のSTC38 のカウント値を読み取り、この読取値をM_C_EPI 内のエントリポイント再生時間EP_PTM(図25) に書き込む(ステップST320)。 【0309】さらに、MPU30は、計時部40から現在時刻(年月日および時、分、秒)を読み取り、この読取値をM_C_EPIの一次テキスト情報PRM_TXTI内の情報日付(図25)に書き込む(ステップST322)。

【0310】その後、MPU30は、一次テキスト情報 PRM_TXTI内の情報タイプ [1] に、以下の属性 データ (0~7のいずれか)を書き込む (ステップST 324):

情報タイプ [1] = 0; ユーザマーク (ユーザがエントリポイントを登録)

情報タイプ [1] = 1; セットマーク (録再機がエントリポイントを登録)

情報タイプ[1]=2;欠陥開始マーク

情報タイプ[1]=3;欠陥終了マーク

情報タイプ [1] = 4;再生開始マーク

情報タイプ [1] = 5;再生終了マーク

情報タイプ [1] = 6;消去不可マーク

情報タイプ [1] = 7;その他のマーク(ユーザ、録再 機以外からの指示等)

ここで、情報タイプ [1] の [1] は、情報タイプのデータフィールドの1番目を意味する。この1番目のデータフィールドが3ビット構成なら情報タイプ [1] は8種類の属性を示すことができ、8ビット構成なら256種類の属性を示すことができる。

【0311】具体的には、ユーザがエントリポイント登録を要求したときは情報タイプ [1] = 0となり、録再機すなわちRTRビデオレコーダのセットがエントリポイント登録を要求したときは情報タイプ [1] = 1となる。

【0312】後述する欠陥開始マークに対しては情報タイプ [1] = 2となり、欠陥終了マークに対しては情報タイプ [1] = 3となる。

【0313】後述する再生開始マークに対しては情報タイプ [1] = 4となり、再生終了マークに対しては情報タイプ [1] = 5となる。

【0314】後述する消去不可マークに対しては情報タイプ[1]=6となる。

【0315】また、エントリポイント登録要求が、放送番組録画中に放送局から送られてきたものであるか、通信回線を介してデジタルビデオデータをダウンロード中に通信相手から送られてきたものであるときは、情報タイプ[1]=7となる。

【0316】エントリポイント登録処理中にそのエントリポイントに対してテキスト入力がないときは(ステップST314ノー)、この EP_TY には「0」が設定される(ステップST318)。

【0317】すると、MPU30はムービーセルエントリポイント情報M__C__EPI中のEP__TYに「0」を設定する(ステップST316)。このEP__TY=

「O」は、M_C_EPI中の一次テキスト情報PRM _TXTIに中身がないことを示す。

【0318】この場合は、EP_PTMにPTSを設定し(ステップST330)、PRM_TXTI内の情報タイプ[1]に所定の内容を入れて(ステップST324)、エントリポイント登録処理を終了する。

【0319】図33は、図29のRTRビデオレコーダ におけるエントリポイント自動登録処理(一定時間間隔 でエントリポイントを登録)の一例を説明するフローチャートである。

【0320】この処理では、記録対象のビデオ映像あるいは音声の内容に関係なく、所定の時間間隔で(録画動作を中断することなく)エントリポイントが自動的に登録される。

【0321】まず、録画開始前に、ユーザが初期設定を行なう。すなわち、エントリポイント登録間隔を分単位で指定するパラメータaの数値がユーザにより設定され、インデックスパラメータnが1にプリセットされる(ステップST200)。

【0322】ユーザがなにもしないときは、パラメータ a として所定のデフォルト値(たとえば5分間隔の a = 5、あるいはエントリポイントの自動登録を禁止する a = 0 など)が選択され、nが1にプリセットされる録画 開始時の初期設定が済んだ後録画が開始されると、たとえば図30のステップST25のタイミングで、エントリポイントー定間隔登録処理が実行される。

【0323】すなわち、最初に、録画時間経過を示すS T C が $a \times n \times 5400000$ (90kHz クロックを用いる場合 an分に相当)と比較される(ステップST250)。

【0324】録画開始後まだan分(最初はan=5分)経過していなければ(ステップST250ノー)、図30の録画処理ST23に戻る。

【0325】録画開始後an分(an = 5分)経過したら(ステップST250イエス)、たとえば図32を参照して説明した内容のエントリポイント登録処理が実行される(ステップST31)。

【0326】そのとき(録画開始から5分目)のエントリポイント登録が済むと、インデックスパラメータnは 1つインクリメントされ(ステップST252)、図30の録画処理ST23に戻る。

【0327】録画開始後まだan分(次はan=10分)経過していなければ(ステップST250ノー)、図30の録画処理ST23に戻る。

【0328】録画開始後an分(an=10分)経過したら(ステップST250イエス)、たとえば図32を参照して説明した内容のエントリポイント登録処理が実行される(ステップST31)。

【0329】以上の動作は、録画が終了するまで反復される。その結果、たとえば54分のテレビ放送番組を録

画すると、そこに 1 0 カ所のエントリポイントが 5 分間 隔で自動的に登録される。

【0330】なお、RTRビデオレコーダが自動的にエントリポイントを入れるケースとしては、上述した録画内容に関係ない一定時間間隔登録の場合以外に、記録開始時、記録終了時、記録中の一時停止時、再生開始時、再生終了時、再生中の一時停止時、録画対象のビデオ映像が切り替わったとき、録画対象のビデオ音声が切り替わったときなどがある。

【0331】たとえば、録画ソースの音声レベルの切り替わり(所定レベル以下の音声が一定時間持続したかどうか)を検知して、その検知部分でエントリポイントを自動的に登録することができる。

【0332】あるいは、録画ソースのMPEG映像データの変化(シーンチェンジにより画像内容が急激に変化すると、動画圧縮率が下がるので、MPEGエンコーダ内のバッファ容量が短時間で急激に消費される)からシーンチェンジ検知して、その検知部分でエントリポイントを自動的に登録することができる。

【0333】図34は、図29のRTRビデオレコーダにおけるテキスト情報入力処理の一例を説明するフローチャートである。

【0334】まず、MPU30は、ディスク10から管理データ(図5、図6のRTR_VMG等)を読み込む(ステップST100)。この読み込みにより、MPU30は、プレイリストの情報内容(図8~図11)、PGCの情報内容(図19~図21)、およびムービーセル情報M_CIの内容(図23~図25)を、適宜知ることができるようになる。

【0335】次に、MPU30は、読み込んだ管理データから、全てのエントリポイントのムービーセルエントリポイント情報M_C_EPIの中身を読み取る(ステップST102)。

【0336】すなわち、MPU30は、各々のエントリポイントに対して、M_C_EPI(図25)から、エントリポイント形式EP_TY=「01b」(一次テキスト情報PRM_TXTIあり)のエントリポイントを選別抽出する。次に、PRM_TXTIありのエントリポイントに関して、エントリポイント再生時間EP_PTMと、一次テキスト情報PRM_TXTIを読み取る。そして、読み取ったPRM_TXTIから、そのエントリポイントの情報タイプと情報日付とテキスト情報を読み込む。

【0337】 com_C_EPI の読込処理は、未処理のエントリポイントがある間は(ステップST104ノー)反復される。

【0338】M_C_EPIの読込処理をしていない残りエントリポイントがなくなると(ステップST104イエス)、MPU30は、読み込んだ内容に基づいて、入力メニュー情報をモニタに出力する(ステップST1

06)。

【0339】この入力メニューでは、たとえば図35に例示するように、EP_PTMに基づく再生時間(時、分)と、PRM_TXTIのテキスト情報に基づくタイトルと、THM_PTRI(図10)に基づくサムネール画像と、PRM_TXTIの情報タイプに基づく属性と、PRM_TXTIの情報日付に基づくマーク記録日時(年月日、時、分)が、項目毎に分類され、かつ再生時間順(あるいは記録時間順)にソートされて、表示される。

【0340】ユーザは、図示しないリモートコントローラのカーソルキー操作あるいはオプションのキーボード等を利用して、メニュー内タイトル部分の所定の行位置にカーソルを移動させ、テキスト入力しようとするエントリポイントを選択する(ステップST108)。これにより、ユーザは、リモートコントローラあるいはキーボードを操作して、目的のエントリポイントに希望するテキスト入力を行なうことができる(ステップST110)。

【0341】以上のテキスト入力は、ユーザが希望するエントリポイント全てに対して実行される(ステップST112イエス、ST106~ST110)、テキスト入力がユーザ希望のエントリポイント全てに対して終了すれば(ステップST112ノー)、 M_C_EPI0 PRM_TXTI内のテキスト情報(図25)が図35に例示された内容に更新され(ステップST114)、更新後のデータが管理データ(RTR_VMG)の所定領域に書き込まれる(ステップST116)。

【0342】以上のようにして、ユーザが望むエントリポイントに対してユーザ希望のテキスト情報等が入力され、その内容が該当ディスク10(図1)に登録される。

【0343】図36は、図34の処理により図35に例示するような情報がディスク10に登録されたときの様子を模式的に示している。

【0344】図36において、記録時間00'00"の録画開始時のエントリポイントの属性「10」と、記録時間02'00"の録画終了時のエントリポイントの属性「10」は、RTRビデオレコーダが自動的にエントリポイントを挿入したことを示す。ここで、記録日時は図29の計時部40からのタイムデータに基づき書き込まれ、テキスト「シンデレラ」は放送プログラム(文字入り放送)中の冒頭にあるクローズドキャプションから取り出して自動的に費き込んだものである。

【0345】ディスクの記録時間00'30"と01'00"と01'10"の3カ所のエントリポイントは、上記シンデレラという録画済みプログラムの途中に、ユーザ操作により上替き録画された部分を示す。そのため、エントリポイントの属性はユーザマークの「00」とされ、記録日時もシンデレラの記録日時と大きく離れ

ている。

【0346】このユーザによるエントリポイントでは、その部分の画像(MPEGのIピクチャを縮小したもの)がサムネールとして取り出され、このサムネールが、エントリポイントのデータの一部として、プレイリストサーチポインタPL_SRP(図10)のTHM_PTRIに登録されている。

【0347】図37は、図36のようなサムネールの登録は行われず、その代わりに、エントリポイントにおいてユーザがテキスト入力を行い、そのテキスト情報がムービーセルエントリポイント情報M_C_EPIのPRM_TXTI(図25)に登録された場合を例示している。

【0348】図38は、図29のRTRビデオレコーダにおける再生メニュー表示処理の一例を説明するフローチャートである。

【0349】まず、MPU30は、ディスク10から管理データ(RTR_VMG等)を読み込む(ステップST700)。この読み込みにより、MPU30は、プレイリストの情報内容(図8~図11)、PGCの情報内容(図19~図21)、およびムービーセル情報M_CIの内容(図23~図25)を、適宜知ることができるようになる。

【0350】次に、MPU30は、読み込んだ管理データから、全てのエントリポイントのムービーセルエントリポイント情報M_C_EPIの中身を読み取る(ステップST702)。

【0351】すなわち、MPU30は、各々のエントリポイントに対して、M_C_EPI(図25)から、エントリポイント形式 EP_TY=「01b」(一次テキスト情報 PRM_TXTIあり)のエントリポイントを選別抽出する。次に、一次テキスト情報 PRM_TXTIを読み取り、そのエントリポイントの情報タイプ[1]を読み込む。

【0352】この情報タイプ[1]の記述内容は:情報タイプ[1]=0;ユーザマーク(ユーザがエントリポイントを登録)

情報タイプ [1] = 1;セットマーク (録再機がエント リポイントを登録)

情報タイプ[1]=2;欠陥開始マーク

情報タイプ[1]=3;欠陥終了マーク

情報タイプ [1] = 4;再生開始マーク

情報タイプ[1]=5;再生終了マーク

情報タイプ [1] = 6;消去不可マーク

情報タイプ [1] = 7;その他のマーク(ユーザ、録再 機以外からの指示等)

となっている。

【0353】読み込んだ情報タイプ [1] が0 (ユーザマーク) または1 (セットマーク) であれば (ステップ ST703イエス)、MPU30は、一次テキスト情報

PRM_TXTIから、情報日付とテキスト情報をさらに読み込む(ステップST704)。

【 0 3 5 4 】読み込んだ情報タイプ [1] が 0 でも 1 で もないときは(ステップ S T 7 0 3 ノー)、ステップ S T 7 0 4 はスキップされる。

【0355】上記M__C__EPIの情報読込処理(ST702~ST704)は、未処理のエントリポイントがある間は(ステップST706/一) 反復される。

【0356】この処理の反復により、MPU30は、ユーザマークまたはセットマークのエントリポイントのムービーセル情報を全て取り込むことができる。

【0357】 M_C_EPI の読込処理をしていない残りエントリポイントがなくなると(ステップST706イエス)、MPU30は、読み込んだ内容に基づいて、再生メニュー情報をモニタに出力する(ステップST708)。

【0358】この再生メニューでは、たとえば図39に例示するように、EP_PTMに基づく再生時間(時、分)と、PRM_TXTIのテキスト情報に基づくタイトルと、THM_PTRI(図10)に基づくサムネール画像と、PRM_TXTIの情報タイプに基づく属性と、PRM_TXTIの情報日付に基づくマーク記録日時(年月日、時、分)が、項目毎に分類され、かつエントリポイントの再生時間順(あるいはエントリポイントのマーク記録時間順)にソートされて、表示される。

【0359】ユーザは、たとえばリモートコントローラ (図示せず)のカーソルキー操作により、再生メニュー 内の所望の行位置にタイトル選択カーソルを移動させ、これから再生しようとするエントリポイントを選択する (ステップST710)。

【0360】こうして選択されたエントリポイントのエントリポイント再生時間値を、MPU30は、タイムマップの情報(図14~図16)に基づいて、対応するファイルポインタに変換する(ステップST712)。このファイルポインタを用いることにより、エントリポイント再生時間値をファイルシステムによって物理アドレス(VOBUアドレス)に変換して、再生を開始する。

【0361】図40は、図29のRTRビデオレコーダにおけるテキスト情報検索処理の一例を説明するフローチャートである。

【0362】まず、MPU30は、検索キーワード入力 用の再生メニューを表示する処理を行なう(ステップS T400)。

【0363】この検索用再生メニューは、各エントリポイントのM_C_EPI(図25)に記録された情報を対象に検索を行なうときのキーワードを、ユーザが入力するときに用いられる。

【0364】たとえば、図41に示すように、ユーザが、タイトル中に「シンデレラ」という文字列を含むものであって1999年1月にマークしたもの全てを検索

するように、検索キーワードを入力したとする (ステップST402)。

【0365】すると、MPU30は、ディスク10から 管理データ(RTR_VMG)を読み取って、記録され た全てのエントリポイントのムービーセル情報M_CI の内容を獲得する(ステップST404)。

【0366】そして、獲得した情報からM_C_EPIを取り出し、その中のPRM_TXTI(図25)から、情報日付およびテキスト情報を読み込む(ステップST406)。

【0367】次に、MPU30は、ユーザが設定したキーワード(99年1月にマークした「シンデレラ」という文字列を含むもの)を元に、検索を行なう。

【0368】その結果キーワードにマッチするエントリポイントが見つかれば(ステップST408イエス)、そのエントリポイントの PRM_TXTI から、そのエントリポイントの情報タイプ [1] を読み込む(ステップST410)。

【0369】この情報タイプ[1]の記述内容は: 情報タイプ[1]=0;ユーザマーク(ユーザがエント リポイントを登録)

情報タイプ [1] = 1; セットマーク (録再機がエントリポイントを登録)

情報タイプ[1]=2;欠陥開始マーク

情報タイプ [1] = 3; 欠陥終了マーク

情報タイプ[1] = 4;再生開始マーク

情報タイプ[1]=5;再生終了マーク

情報タイプ [1] = 6;消去不可マーク

情報タイプ [1] = 7; その他のマーク(ユーザ、録再機以外からの指示等)

となっている。

【0370】読み込んだ情報タイプ [1] の内容に基づいて、たとえば、読み込んだ情報タイプ [1] が1以外のエントリポイントを検索結果から外し、RTRビデオレコーダが録画時に書き込んだエントリポイントの部分だけを検索結果に残すことができる。

【0371】あるいは、読み込んだ情報タイプ [1] が2(または2X; Xは任意の整数値)と3(または3 X)のときは、そのエントリポイントに該当するセルの記録箇所に(再生時ECCエラー訂正失敗不能などの)欠陥があり、場合により、検索結果から外すことができる。

【0372】検索が全て終了し未検索のエントリポイントがなくなれば(ステップST412イエス)、MPU30は、たとえば図42に示すように、検索結果をモニタに表示する(ステップST414)。

【0373】こうして検索されたエントリポイントのエントリポイント再生時間値を、MPU30は、タイムマップの情報(図14~図16)に基づいて、対応するフアイルポインタに変換する(ステップST418)。こ

のファイルポインタを用いることにより、エントリポイント再生時間値をファイルシステムによって物理アドレス (VOBUアドレス) に変換することで、検索されたエントリポイントマーク部分だけを、選択的に再生できるようになる。

【0374】図43は、図29のRTRビデオレコーダにおける欠陥登録処理の一例を説明するフローチャートである。

【0375】この欠陥登録処理は、ユーザが使い古しディスクのチェックを希望するとき等に、実行される。

【0376】まず、MPU30は、管理データ(RTR_VMG)を読み取り(ステップST500)、欠陥フラグを「0」にリセットする(ステップST502)。 【0377】この欠陥フラグは、MPU30の内部RAMまたは内部レジスタの一部に設定することができる。 【0378】次にディスク10の再生を行なう(ステップST504)。この再生は図31のステップST46にと同様な処理である。

【0379】最初は欠陥フラグは「0」である(ステップST506イエス)。再生中、欠陥(ECCエラー訂正失敗)がなく(ステップST508ノー)、再生終了でなければ(ステップST516ノー)、通常とおり再生が継続される(ステップST504~ST516のループ)。

【0380】再生中に欠陥(ECCエラー訂正失敗)が発見されると(ステップST508イエス)、セルエントリポイント情報の数 C_EPI_Ns (図24)が1つインクリメントされ、エントリポイント形式 EP_T Y(図25)に「I」が設定され、エントリポイント再生時間 EP_PTM (図25)にその時点でのPTS

(図3) が設定され、一次テキスト情報 P R M_T X T I 内の情報日付(図25) に現在の日付(計時部40からの日付データ) が設定される(ステップ S T 510)。

【0381】次に、一次テキスト情報PRM_TXTI内の情報タイプ(図25)に2X(Xは任意の整数値)が設定される(ステップST512)。この2Xに設定された情報タイプにより、欠陥の開始点が登録される。【0382】ここで、欠陥が初めて発見されたものであれば、情報タイプの2Xは20となる。発見された欠陥が2番目なら情報タイプの2Xは21となり、3番目なら22となる。

【0383】欠陥開始点の登録が済むと、欠陥フラグが「1」にセットされる(ステップST514)。

【0384】その後、再生終了でなければ(ステップST516ノー)、再生が継続される(ステップST504)。

【0385】この継続再生の直前に欠陥フラグが「1」に設定されているので(ステップST506ノー)、今度は別の処理ループに入る。

【0386】まず、欠陥の有無(ECCエラー訂正の失敗の有無)がチェックされる。欠陥がまだ続いており(ステップST518イエス)、再生終了でなければ

(ステップST5187エス)、再生終了でなければ (ステップST526ノー)、MPU30は、欠陥部の 再生中であることをユーザに知らせるデータをビデオデ コーダ64に転送する。すると、図示しないモニタ画面 に、ブルーバックで「現在欠陥個所を再生中」といった 趣旨の警告文字あるいは警告マークが表示される(ステップST528)。あるいは欠陥フラグが「1」にセットされる直前の(無欠陥の) I ピクチャがデコーダ部60のビデオバッファ(図示せず)に残っているなら、その I ピクチャ(スチル画)を、欠陥個所再生中をユーザ に通知する意図で、ビデオデコーダ64に転送すること もできる。

【0387】欠陥フラグが「1」にセットされたあと欠陥がなくなると(ECCエラー訂正成功)と、そこは欠陥部分の終了点となる。

【0388】欠陥部分の再生が終了しECCエラー訂正が正常に機能するようになると(ステップST518ノー)、セルエントリポイント情報の数C_EPI_Ns(図24)が1つインクリメントされ、エントリポイント形式EP_TY(図25)に「1」が設定され、エントリポイント再生時間EP_PTM(図25)にその時点でのPTS(図3)が設定され、一次テキスト情報PRM_TXTI内の情報日付(図25)に現在の日付(計時部40からの日付データ)が設定される(ステップST520)。

【0389】次に、一次テキスト情報PRM_TXTI内の情報タイプ(図25)に3X(Xは任意の整数値)が設定される(ステップST522)。この3Xに設定された情報タイプにより、欠陥の終了点が登録される。【0390】ここで、欠陥が初めて発見されたものであれば、情報タイプの3Xは30となる。発見された欠陥が2番目なら情報タイプの3Xは31となり、3X632となる。

【0391】ここで、ステップST512の2X(20、21、22、…)はステップST522の3X(30、31、32、…)とペアになるっている。すなわち、最初の欠陥に対しては、その開始点と終了点のエントリポイントの情報タイプとして、「20」と「30」のペアが割り当てられる。

【0392】欠陥終了点の登録が済むと、欠陥フラグが「0」にリセットされる(ステップST524)。

【0393】その後、再生終了でなければ(ステップST526ノー)、再生が継続される(ステップST504)。

【0394】こんどは欠陥フラグが「0」なので、新たな欠陥個所の再生にはいるまで、ステップSTST504 \sim 516のループが実行される。

【0395】欠陥が全く発見されることなく再生が終了

すると(ステップST508ノー、ステップST516イエス)、情報タイプ2Xは登録されず、情報タイプ3 Xだけが登録される(ステップST522)ことになる。この場合、前述したエントリポイントのペアが成立しない。このことが、ディスク再生中に欠陥がなかったことの記録となる。

【0396】図44は、図43の処理により欠陥が2カ 所発見された場合のエントリポイントの例を示してい る。

【0397】図43のステップST512およびST522で登録した情報タイプのペア(図25のPRM_TXTIの内容)により、そのディスクの何処に欠陥があるのかが事前に分かれば、その部分の再生をどうするかも決めることができる。そこで、ユーザが欠陥部分の再生方法をどうするかを選択させるメニューが欲しくなる。図45は、そのような欠陥管理のメニューの一例である。

【0398】すなわち、たとえ欠陥があってMPEGのブロックノイズが多い(あるいはデジタル音声が歪みがちでたびたび途切れる)としても、その部分の内容確認程度の再生をしたいと欲するならば、ユーザは、「不完全な映像再生」という再生方法を選択できる。

【0399】欠陥が酷く見るに耐えないなら、「その部分をスキップし、スキップ動作中はモニタにブルーバックで警告表示を行なう」という再生方法を選択できる。 【0400】あるいは、ブルーバック/警告表示の代わりに、「エラー発生直前の I ピクチャのスチル画をバックに警告表示を行なう」という再生方法を選択することもできる。

【0401】上記再生方法に関するデータは、図25のM_C_EPIの何処かに(たとえば情報タイプの一種として)登録できる。

【0402】図46は、図29のRTRビデオレコーダにおける優先消去順位登録処理の一例を説明するフローチャートである。

【0403】まず、MPU30は、ディスク10から管理データ(RTR_VMG等)を読み込む(ステップST600)。この読み込みにより、MPU30は、プレイリストの情報内容(図8~図11)、PGCの情報内容(図19~図21)、およびムービーセル情報M_CIの内容(図23~図25)を、適宜知ることができるようになる。

【0404】次に、MPU30は、読み込んだ管理データから、全てのエントリポイントのムービーセルエントリポイント情報M_ C_EPI の中身を読み取る(ステップST602)。

【0405】すなわち、MPU30は、各々のエントリポイントに対して、M_C_EPI(図25)から、エントリポイント形式EP_TY=「01b」(一次テキスト情報PRM_TXTIあり)のエントリポイントを

選別抽出する。次に、一次テキスト情報 P R M_T X T I を読み取り、そのエントリポイントの情報タイプ [1] を読み込む。

【0406】この情報タイプ[1]の記述内容は: 情報タイプ[1]=0;ユーザマーク(ユーザがエント リポイントを登録)

情報タイプ [1] = 1; セットマーク (録再機がエントリポイントを登録)

情報タイプ[1]=2;欠陥開始マーク

情報タイプ[1]=3;欠陥終了マーク

情報タイプ [1] = 4; 再生開始マーク

情報タイプ [1] = 5; 再生終了マーク

情報タイプ [1] = 6;消去不可マーク

情報タイプ [1] = 7; その他のマーク(ユーザ、録再機以外からの指示等)

となっている。

【0407】読み込んだ情報タイプ [1] が4(再生開始マーク)または6(消去不可マーク)であれば(ステップST603イエス)、MPU30は、一次テキスト情報PRM_TXTIから、情報日付とテキスト情報をさらに読み込む(ステップST604)。

【0408】読み込んだ情報タイプ [1] が4でも6でもないときは(ステップST603ノー)、ステップST604はスキップされる。

【 0 4 0 9 】上記M__C__E P I の情報読込処理 (S T 6 0 2 ~ S T 6 0 4) は、未処理のエントリポイントがある間は (ステップ S T 6 0 6 ノー) 反復される。

【0410】この処理の反復により、MPU30は、再 生開始マークまたは消去不可マークのエントリポイント のムービーセル情報を全て取り込むことができる。

【0411】M_C_EPIの読込処理をしていない残りエントリポイントがなくなると(ステップST606イエス)、MPU30は、読み込んだ内容に基づいて、消去メニュー情報をモニタに出力する(ステップST608)。

【0412】この消去メニューでは、たとえば図48に例示するように、EP_PTMに基づく再生時間(時、分)と、PRM_TXTIのテキスト情報に基づくタイトルと、THM_PTRI(図10)に基づくサムネール画像と、PRM_TXTIの情報日付に基づく再生日時(年月日、時、分)と、PRM_TXTIの情報タイプ[0]に基づく消去順位(あるいは消去不可マーク)とが、項目毎に分類され、かつ再生時間順(あるいは記録時間順)にソートされて、表示される。

【0413】ここで、情報タイプ [0] は、図47のエントリポイントの属性欄に例示するように、情報タイプ [0] = 4X (消去開始点)と情報タイプ [0] = 5X (消去終了点)とでペアになっている。

【0414】この情報タイプ [0] には、ムービーセル情報のペア同士で同じ値を0から順にむき込むようにな

っているが、他のペアになっているムービーセル情報と同じ値を書き込んではならない。

【0415】たとえば図47において、エントリポイントの属性(情報タイプ [0])が「40」と「50」のペアである「ピース」というタイトルの記録映像(記録時間は00'30"から00'45"までの15分間)は、図48の消去メニューでは消去順位が1位であるので、録画中にディスクの残り容量が不足すると、この「ピース」というタイトルの記録映像が真っ先に上書き消去されることになる。

【0416】ユーザは、図示しないリモートコントローラのカーソルキー操作あるいはオプションのキーボード等を利用して、図48のメニュー内消去順位部分の所定位置にカーソルを移動させ、消去順位を変更しようとするエントリポイントを選択する。

【0417】選択したエントリポイントのセルの消去順位を低位に変更する場合は(ステップST610イエス)、(情報タイプ [1] = 4のものと情報タイプ [1] = 5のものの両方に対して)変更するエントリポイントの情報タイプ [0] の順位を1つ減らす(たとえば消去順位を2位から3位に下げる)(ステップST612)。

【0418】逆に、消去順位を高位に変更する場合は、ステップST612において、(情報タイプ [1] = 4 のものと情報タイプ [1] = 5 のものの両方に対して)変更するエントリポイントの情報タイプ [0] の順位を1つ増やす(たとえば消去順位を2位を1位に上げる)。

【0419】消去順位の変更ではなく(ステップST610/一)消去禁止にする場合は(ステップST614/イエス)、そのエントリポイントの情報タイプ [1] に6(消去不可マーク)を設定する(ステップST616)。

【0420】以上の消去順位変更または消去不可マーク設定が終了すれば(ステップST618イエス)、図25のPRM_TXTIに該当する情報が書き込まれた管理データ(RTR_VMG)が、ディスク10に書き込まれる(ステップST620)。

【0421】こ録画中にディスク10の残り容量が不足した場合、MPU30は、こうして書き込まれた管理データの内容を適宜参照することにより、消去順位の高い順に(消去順位の設定がない場合は記録日時または再生日時の古い順に)、エントリポイント単位でディスク10の一部を上書き消去しながら、録画を継続できる。

【0422】この発明の実施の形態(リアルタイムデジタルビデオ録画再生システム)によれば、たとえば本を読んでいるとき読み途中のページまたは重要な箇所にしおりを挟むような感覚で、映像・音声等の任意の記録箇所にマーク(エントリポイント)を書き込んだり消去したりできる。

【0423】上記マーク(エントリポイント)に関する情報を媒体の所定箇所(ムービーセルエントリポイント情報等)に適宜記録しておけば、そのディスクを用いて再生あるいは録画(上書き・消去も含む)をする際に、この情報を利用して、次のようなことが可能になる。

【0424】1) ディスクの何処にどのようなプログラムが記録されているかのインデックスを、自由に作成できる。

【0425】すなわち、そのディスクを装置にセットすれば、ユーザは、マーク箇所(エントリポイント)の録 画内容を容易に知ることができ、かつその箇所の再生を 簡単な操作で開始できる。

【0426】2)ディスクに記録された種々なプログラムから所望のプログラムを容易に検索できる。

【0427】すなわち、そのディスクを装置(RTRビデオレコーダ)にセットすれば、ユーザは、各マーク箇所(エントリポイント)のタイトルをキーワード検索できる。検索の結果、ディスクに記録された種々なプログラムのうち所望のプログラムだけを容易に知ることができ、かつその箇所の再生を簡単な操作で開始できる。

【0428】3)ディスクに記録された種々なプログラムのうち消去(上書き録画)しても良い部分(あるいは消去したくない部分)を容易に特定できる。

【0429】すなわち、そのディスクを装置にセットすれば、ユーザは、各マーク箇所(エントリポイント)の消去の優先順位あるいは消去可能/不可能を容易に知ることができ、かつその箇所の消去順位あるいは消去可能/不可能を簡単な操作で変更できる。消去不可に設定されていないマーク箇所のプログラムは、そのディスクに新たな録画をする際に、消去の優先順位に従って、自動的に上書き消去される。

【0430】4)録画済みディスクの一部に欠陥が生じ その部分の正常再生が不可能になった場合に、その正常 再生ができない欠陥部分を容易に特定できる。

【0431】すなわち、そのディスクを装置にセットすれば、ユーザは、各マーク箇所(エントリポイント)に欠陥があるかどうかを容易に知ることができる。また、欠陥があるなら、その部分の再生方法(欠陥部分のスキップ、欠陥部分再生中はブルーバック表示、正常部分の再生に入るまで欠陥直前のスチル画再生など)を任意に指定できる。

[0432]

【発明の効果】以上説明したように、この発明のリアルタイムデジタルビデオ録画再生システムによれば、記録するディスクの容量が大きくなっても、ユーザはその中身を簡単に管理できるようになり、ユーザの好きな箇所から記録・再生を行うことができる

【図面の簡単な説明】

【図1】この発明の一実施形態に係る記録再生可能光ディスクの構造を説明する図。

【図2】図1の光ディスクに記録されるデジタル情報の 構成を説明する図。

【図3】図2のビデオオブジェクトのデータ構造を説明する図。

【図4】図3のダミーパックのデータ構造を説明する図。

【図5】図1の光ディスクに記録されるデジタル情報のファイル構造を説明する図。

【図6】図5のナビゲーションデータファイル(RTR __VMG)のデータ構造を説明する図。

【図7】図6のビデオマネージャ情報管理テーブル(V MG I __MAT)の内容を説明する図。

【図8】図6のプレイリストサーチポインタテーブル (PL_SRPT) のデータ構造を説明する図。

【図9】図8のプレイリストサーチポインタテーブル情報(PL_SRPTI)の内容を説明する図。

【図10】図8のプレイリストサーチポインタテーブル (PL_SRP)の内容を説明する図。

【図11】図10のサムネールポインタ情報(THM_ PTRI)の内容を説明する図。

【図12】図6のムービーAVファイル情報テーブル(M_AVFIT)のデータ構造を説明する図。

【図13】図12のムービーVOB情報 (M_VOBI) のデータ構造を説明する図。

【図14】図13のタイムマップ情報(TMAPI)の データ構造を説明する図。

【図15】図14のタイムマップ一般情報 (TMAP_GI) の内容を説明する図。

【図16】図14のタイムエントリ(TM_ENT)の 内容を説明する図。

【図17】図6のユーザ定義PGC情報テーブル(UD PGCIT)のデータ構造を説明する図。

【図18】図6テキストデータマネージャ(TXTDT __MG)のデータ構造を説明する図。

【図19】PGC情報(PGCI;オリジナルPGCまたはユーザ定義PGCの情報)のデータ構造を説明する図。

【図20】図19のPGC一般情報(PGC_GI)の内容を説明する図。

【図21】図19のプログラム情報(PGI)の内容を 説明する図。

【図22】図19のセル情報(CI)のデータ構造を説明する図。

【図23】図22のムービーセル情報(M_CI)のデータ構造を説明する図。

【図24】図23のムービーセルー般情報(M_C_G I)の内容を説明する図。

【図25】図23のムービーセルエントリポイント情報 (M_C_EPI) の内容を説明する図。

【図26】一次テキスト情報(PRM_TXTI)の使

用例を説明する図。

۸.

【図27】プログラムセットを構成する各プログラムと、プレイリストを構成する各プログラムパーツとの対応例を説明する図。

【図28】ユーザ定義PGC(またはオリジナルPGC)を構成するセルの再生開始時間/再生終了時間と、図5のムービービデオオブジェクト(RTR_MOV.VRO)を構成する各VOBのVOBUに対するオフセットアドレスとの対応例を説明する図。

【図29】図1の記録・再生可能光ディスクを用いてビデオプログラム等のリアルタイム録画・再生を行なう装置(RTRビデオレコーダ)の構成の一例を説明するブロック図。

【図30】図29の装置における録画動作の一例を説明するフローチャート図。

【図31】図29の装置における再生動作の一例を説明 するフローチャート図。

【図32】図29の装置におけるエントリポイント登録 処理の一例を説明するフローチャート図。

【図33】図29の装置におけるエントリポイント自動登録処理(一定時間間隔でのエントリポイント登録)の一例を説明するフローチャート図。

【図34】図29の装置におけるテキスト情報入力処理の一例を説明するフローチャート図。

【図35】図34のテキスト情報入力処理におけるテキスト情報入力画面の一例を示す図。

【図36】図29の装置により録画された光ディスクの 記録映像と、エントリポイントと、記録映像の情報(属 性、記録日時など)との関係の一例を説明する図。

【図37】図29の装置により録画された光ディスクの記録映像と、エントリポイントと、記録映像の情報(属性、記録日時など)との関係の他例を説明する図。

【図38】図29の装置における再生メニュー表示処理の一例を説明するフローチャート図。

【図39】図38の再生メニュー表示処理における再生 メニュー表示画面の一例を示す図。

【図40】図29の装置におけるテキスト情報検索処理の一例を説明するフローチャート図。

【図41】図40のテキスト情報検索処理における検索キーワード入力画面の一例を示す図。

【図42】図40のテキスト情報検索処理における検索

【図4】

結果表示画面の一例を示す図。

【図43】図29の装置における欠陥登録処理の一例を 説明するフローチャート図。

【図44】図43の処理により検出された記録映像の欠陥部分と、エントリポイントとの関係の一例を説明する図。

【図45】図43の処理により検出された記録映像の欠陥部分およびその再生方法の表示例を示す図。

【図46】図29の装置における優先消去順位登録処理の一例を説明するフローチャート図。

【図47】図46の処理により検出された記録映像と、エントリポイントと、記録映像の情報(属性、記録日時など)との関係の一例を説明する図。

【図48】図46の処理により検出された記録映像の情報(録画時間、タイトル、サムネール、最後の再生日時など)およびその消去順位の表示例を示す図。

【符号の説明】

10…記録・再生可能光ディスク(DVD-RAM、D VD-RWまたはDVD-R);11…カートリッジ (DVD-RAMの場合);14…透明基板(ポリカー ボネート);16…光反射層;17A…第1情報記録層 (半透明ROM層または相変化記録RAM層);17B …第2情報記録層(相変化記録RAM層またはダミー 層);19…読み出し面;20…接着層;22…中心 孔;24…クランピングエリア;25…情報エリア;2 6…リードアウトエリア;27…リードインエリア;2 8…データ記録エリア;30…マイクロコンピュータブ ロック(MPU/ROM/RAM);32…ディスクド ライブ;34…一時記憶部;36…データプロセサ;3 8…システムタイムカウンタSTC;40…計時部;4 2…AV入力部; 44…TVチューナ (地上放送/衛星 放送チューナ); 46…AV出力部; 48…各種情報表 示部(液晶または蛍光表示パネル);50…エンコーダ 部;52…ADC;53…ビデオエンコーダ;54…オ ーディオエンコーダ;55…副映像エンコーダ;56… フォーマッタ;57…バッファメモリ;60…デコーダ 部;62…セパレータ;63…メモリ;64…ビデオデ コーダ;65…副映像デコーダ;66…ビデオプロセ サ;67…ビデオDAC;68…オーディオデコーダ; 69…オーディオDAC;70…ボリューム/ファイル 構造領域;100…情報入力部。

【図11】

サムネールポインタ情報(THM_PTRI)の内容

RBP	ファイル名	内容
138-139	CN	セル番号
140-145	ТНМРТ	サムネールポイント

RBP=相対パイト位置

02F000h

(2プロック)

02F020h

(3プロック)

02F200h

(192プロック)

OZFEOOh

(32プロック)

3048197 h(2k197 h)

[図5]

【図7】

ビデオマネージャ情報管理テーブル(VMGI_MAT)の内容

	ヤーンでは無量位ナーノル(VMG)	—MAII ON容
·я в Р	ファイル名	内容
0-11	VMG_ID	VMG識別子
12-15	RTR_VMG_EA	RTR_VMG終了アドレス
16-27	予約	予約
28-31	VMG1_EA	VMG I共丁アドレス
32-33	VERN	ビデオ録画用 D V D 規格の パージョン番号
34-127	予約	干的
128-129	TM_ZONE	タイムゾーン
130-131	STILL_TM	スチル箇用スチル時間
132-133	CHRS	一次テキスト用キャラクタ セットコード
134-148	RSM_MRK!	メーカ情報レジューム
149-163	REP_PICTI	ディスクの代表面情報
164-191	予约 ·	于的
192-195	M_AVFIT_SA	M_A V F I T開始アドレス
196-199	S_AVFIT_SA	S_AVFIT開始アドレス
200-207	予約	予約
208-211	ORG_PGCI_SA	ORG_PGC I 開始アドレス
212-215	UD_PGCIT_SA	UD_PGC T開始アドレス
216-219	TXTDT_MG_SA	TXTDT_MC制始アドレス
220-223	MNFIT_SA	MNF(下開始アドレス
224-511	予約	予約
000-	MAZIMA	

RBP=相対パイト位置

[図8]

【図9】

プレイリストサーチポインタテーブル情報(PL_SRPTI)の内容

RBP	ファイル名	内容
0-2	予約	予約
3	PL_SRP_Ns	プレイリスト サーチポインタの数
4-7	PL_SRPT_EA	PL_SRPT終了アドレス

RBP=相対バイト位置

【図13】

[図15]

タイムマップ一般情報(TMAP_GI)の内容

RBP	ファイル名	内容
0-1	TM_FNT_Ns	タイムエントリの数
2-3	VOBU_ENT_Ns	VOBUエントリの数
4-5	TM_OFS	タイムオフセット
6-9	ADR_OFS	アドレスオフセット

RBP=相対バイト位置

【図10】

プレイリストサーチポインタ (PL_SRP) の内容

RBP	ファイル名	内容
0	予約	予約
1	PL_TY	プレイリストの形式
2	PGCN	プログラムチェーン毎号
3-7	PL_CREATE_TM	プレイリスト作成時間
8-135	PRM_TXTI	一次テキスト情報
136-137	IT_TXT_SRPN	該当プレイリストの 「T_TXT_SRP番号
138-145	THM_PTRI	サムネールポインタ情報

RBP=相対パイト位置

【図14】

[図12]

【図16】

タイムエントリ (TM_ENT) の内容

RBP	ファイル名	内容
0-1	VOBU_ENTN	VOBUエントリ番号
2	TM_DIFF	時間差
3-6	VOBU_ADR	日徳のVOBUアドレス

RBP=相対バイト位置

【図17】

【図18】

【図19】

[図20]

PGC一般情報(PGC_GI)の内容

RBP	ファイル名	内容
0	予約	予約
1	P G _ N 8	プログラムの数
2-3	CI_SRP_Na	CI_SPRの数

RBP=相対バイト位置

【図21】

プログラム情報(PGI)の内容

RBP	ファイル名 .	内容
0	予約	子約
1	PG_TY	プログラムの形式
2-3	C_N 5	該当PG中のセルの数
4-131	PRM_TXTI	一次テキスト情報
132-133	IT_TXT_SRPN	IT_TXT_SRP番号
134-141	THM_PTRI	サムネールポインタ情報

【図22】

R8P=相対パイト位置

[図23]

【図24】

_ ムービーセル―般情報 (M__C_G I) の内容

RBP	ファイル名	内容
0	予約	予約
1	C_TY	セルの形式
2-3	M_VOBI_SRPN	ムービーVOB サーチポインタ番号
4-5	C_EPI_N 5	セルエントリ ポイント情報の数
6-11	C_V_S_PTM	該当セルの再生開始時間
12-17	C_V_E_PTM	該当セルの再生終了時間

R8P=相対パイト位置

【図25】

【図26】

【図29】

【図27】

【図32】

【図28】

【図35】

[図37]

【図39】

【図41】

[図44]

[図42]

【図45】

時間	再生方法	欠陥発 見	2日時
00'30" - 00'32"	不完全な映像・音声で再生	99.01.01	10:00
01'15" - 01'16"	ブルーバックで エラーの警告表示を ・ しながらスキップ	99.01.03	21 : 50
01'49" - 01'52"	エラー発生直前の スチル画をバックに エラーの警告表示 しながらスキップ	99.01.15	09:00

【図47】

[図48]

フロントページの続き

(51) Int.C1.7

識別記号

FΙ

テーマコート"(参考)

G 1 1 B 27/10

Δ

(72)発明者 菊地 伸一

東京都港区新橋3丁目3番9号 東芝工

ー・ブイ・イー株式会社内

Fターム(参考) 5C053 FA02 FA14 FA24 FA25 GA11

GB06 GB38 HA29 JA16 JA21

KAO4 KA21 KA24 LA06 LA11

5D077 AA30 BA08 BA14 CA02 DC08

DC22 EA34 HC25

5D090 AA01 BB04 CC04 CC14 DD03

DDO5 FF24 GG12 GG17 GG36

5D110 AA17 DA01 DB03 DB08 DE04

DE06