Lecture 2-Brushing Up Matrices

Multiplying and Factoring Matrices

Today's Discussion

- Five important Factorizations
- A=LU
- A=QR
- $S=Q\Lambda Q^T$
- A=X**/**1X⁻¹
- $A=U\Sigma V^T$

Source: Section I.2 in Linear Algebra and Learning from Data (2019) by Gilbert Strang

- 1. A=LU (elimination- solving linear systems). Matrix L is lower triangular, and U is upper triangular. but it's about elimination. Solving linear systems. (Discuss later)
- 2. A=QR-> Least Squares, the big application, the factorization. Letter Q? Orthogonal. Columns are orthogonal. Often orthonormal. Orthogonal means they're perpendicular to each other. And orthonormal means they're unit vectors. Q often represents a matrix with orthonormal columns. So, we say Gram-Schmidt, whose algorithm produces Q and R. Matrix Q is orthonormal columns QQ^T= I

$$\mathbf{Q}^{\mathsf{T}}\mathbf{Q} = \begin{bmatrix} -\mathbf{q}_{1}^{\mathsf{T}} - \\ -\mathbf{q}_{2}^{\mathsf{T}} - \\ -\mathbf{q}_{n}^{\mathsf{T}} - \end{bmatrix} \begin{bmatrix} \mathbf{q}_{1} & \mathbf{q}_{2} & \mathbf{q}_{n} \\ \mathbf{q}_{1} & \mathbf{q}_{2} & \mathbf{q}_{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = \mathbf{I}$$

$$\mathbf{q}_{i}^{\mathsf{T}}\mathbf{q}_{j} = \begin{cases} 0 & \text{when } i \neq j & (\textit{orthogonal } \text{vectors}) \\ 1 & \text{when } i = j & (\textit{unit } \text{vectors}) \\ 1 & \text{when } i = j & (\textit{unit } \text{vectors}) \end{cases}$$

 $oldsymbol{q}_i^{\mathrm{T}} oldsymbol{q}_i = \|oldsymbol{q}_i\|^2 = 1.$ Often Q is rectangular (m>n). Sometimes m=n

When Q is square, $Q^{T}Q=I$ means that $Q^{T}=Q^{-1}$: transpose = inverse

3. $S=Q\Lambda Q^T$. S stands for symmetric i.e., $S=S^T$. A special factorization for symmetric matrices λ is diagonal eigen value matrices- λ always for eigenvalues Q has orthonormal eigenvectors (Discuss later)

4. $A=X\Lambda X^{-1}$. A has a set of n independent eigen vectors; $x_1, x_2, ... x_n$. Multiply A X column by column to get the columns $\lambda_1 x_1$ to $\lambda_n x_n$. This matrix split into X times Λ

$$A \left[oldsymbol{x}_1 \ \ldots \ oldsymbol{x}_n
ight] = \left[Aoldsymbol{x}_1 \ \ldots \ Aoldsymbol{x}_n
ight] = \left[oldsymbol{\lambda}_1 oldsymbol{x}_1 \ \ldots \ oldsymbol{\lambda}_n oldsymbol{x}_n
ight] \left[egin{matrix} \lambda_1 \ \ddots \ \lambda_n \end{array}
ight]$$

This equation gives $AX = \Lambda X$ that implies that $A = X \Lambda X^{-1}$. if we know eigen values and eigen vectors, and matrix A, then we compute powers of A

$$oldsymbol{\Lambda}=$$
 diagonal eigenvalue matrix $A=X\Lambda X^{-1}$ $X=$ invertible eigenvector matrix $A^2=(X\Lambda X^{-1})\,(X\Lambda X^{-1})=X\Lambda^2 X^{-1}$

Note: $(X\Lambda X^{-1})(X\Lambda X^{-1}) = X(X\Lambda X^{-1}) \times \Lambda (X\Lambda X^{-1}) \times X^{-1}(X\Lambda X^{-1}) = X\Lambda^2 X^{-1}$ (since $X\Lambda = I$ and $XX^{-1} = I$ and $XX^{-1} = I$)

5. $A=U\Sigma V^T$ the Singular Value Decomposition (SVD) of matrix A (square or not). Singular values σ_1 , σ_2 ... σ_r in Σ . U and V are orthogonal matrices (Discuss later)

Let us discuss
$$S=Q \mathbf{1} Q^{\mathsf{T}}$$

$$\mathbf{Symmetric\ matrix}\ S \qquad S^{\mathsf{T}} = S \qquad \text{All } s_{ij} = s_{ji}$$

$$\mathbf{Orthogonal\ matrix}\ Q \qquad Q^{\mathsf{T}} = Q^{-1} \qquad \text{All } q_i \cdot q_j = \left\{ \begin{array}{ll} 0 & \text{for } i \neq j \cdot q_j \\ 1 & \text{for } i = j \end{array} \right.$$

$$SQ = S \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix} = \begin{bmatrix} \lambda_1 q_1 & \dots & \lambda_n q_n \end{bmatrix} = \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} = Q\Lambda$$

Multiply $SQ = Q\Lambda$ by $Q^{-1} = Q^{T}$ which gives us $S = Q\Lambda Q^{T} = a$ symmetric matrix

For Exp:
$$(Q\Lambda)(Q^T)$$
 = colmns of $Q\Lambda$ x (rows of Q^T) = $\begin{bmatrix} 1\\2 \end{bmatrix}$ [3 4] = $\begin{bmatrix} 3 & 4\\6 & 8 \end{bmatrix}$ which has rank = 1

 $(QA) (Q^{T}) = Sum of S = \lambda_{1} q_{1} q_{1}^{T} + \lambda_{2} q_{2} q_{2}^{T} + ... + \lambda_{n} q_{n} q_{n}^{T}$

 $\mathsf{Sq}_1 = \lambda_1 \, \mathsf{q}_1 \, \mathsf{q}_1^\mathsf{T} \, \mathsf{q}_1 + \ \lambda_2 \, \mathsf{q}_2 \, \mathsf{q}_2^\mathsf{T} \, \mathsf{q}_1 + \ldots + \ \lambda_n \, \mathsf{q}_n \, \mathsf{q}_n^\mathsf{T} \, \mathsf{q}_1 = \lambda_1 \, \mathsf{q}_1 \, \mathsf{q}_1^\mathsf{T} \, \mathsf{q}_1 \text{ as } \mathsf{q}'s \text{ are orthogonal other terms are zero.}$

This Implies that $Sq_1 = \lambda_1 q_1$

 $q_1 q_1^T = ||q_1||^2 \rightarrow Q$ is orthonormal matrix

Back-up Slides

Example:

Let
$$A = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}$$
. Find A^2 given that $A = X \Lambda X^{-1}$ where $X = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $\Lambda = \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}$ and $X^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$ $A^2 = (X \Lambda X^{-1})(X \Lambda X^{-1}) = X \Lambda (X X^{-1})(X X$

In general
$$A^k = XA^kX^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 5^k & 0 \\ 0 & 4^k \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2.5^k - 4^k & -5^k + 4^k \\ 2.5^k - 2.4^k & -5^k + 2.4^k \end{bmatrix}$$

A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, i.e., if $A = X\Lambda X^{-1}$ where X is invertible and Λ is a diagonal matrix

When is A diagonalizable? (The answer lies in examining the eigenvalues and eigenvectors of A)

Note that
$$\begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Altogether,
$$\begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 5 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} - & 0 \\ 0 & - \end{bmatrix}$$

Equivalently,
$$\begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1}$$