ZILFIMIAN

KNN/Regularization (Q8L9)

19% (4/21)

- 1. The bias of an estimator (e.g. z^) equals...Hint: the OLS coefficients are unbias :)
 - (A) E(z^) z
 - B E(z^2) [E(z)]^2
 - C [E(z^2) E(z)]^2
 - D E(z^2)
 - (E) I do not know
- ✓ 2. The main idea of regularization is
 - A To introduce a small amount of bias in order to have less variance.
 - (B) To introduce a small amount of variance in order to have less bias.
 - (c) To introduce a small amount of variance and bias in order to have less bias.
 - D I do not know
- ✓ 3. How the tune of any parametr can be made
 - A using Cross validation
 - (B) It is impossible
 - C I do not now
 - (D) using larger sample
 - (E) only having population
- × 4. The ridge coefficient estimates shrink towards zero
 - (A) when lambda increases
 - B when lambda decreases
 - C when lambda = 0
 - D I do not know
- X 5. Which one can shrink the slope all the way to 0?
 - (A) Lasso
 - B Ridge
 - C Regression
 - D I do not know

×	6.	When lambda = 0, we have
	A	Ridge
	\bigcirc B	Lasso
	(c)	EL
	\bigcirc	Regression
	E	I do not know
×	7.	When alpha = 0, we have
	\bigcirc A	Ridge
	В	Lasso
	(c)	EL
		Regression
	E	I do not know
	0	Which function can halp to nowform gross validation for regularization in D2
	8. A	Which function can help to perform cross-validation for regularization in R? cv.glmnet()
	B	cros_val()
	\simeq	glmnet(method = "cv)
	(c)	
		I do not know
×	9.	KNN is
	\bigcirc A	Data-driven
	\bigcirc B	Model-driven
	C	I do not now
×	10.	KNN is
	\bigcirc A	parametric method
	(B)	non-parametric method
	C	I do not know
×	11.	The dependent variable of the (OLS) regression is
	\bigcirc A	categorical
	(B)	ordinal
	(c)	continuous
		count
	E	I do not know

Mary Page 2 of 4

X	12.	The dependent variable of the classification is categorical
	\bigcirc B	numeric
	C	I do not know
	13.	How to chose K?
	A	pick own
	В	using cross-validation
	(c)	the largest one
	D	the smallest one
×	14.	KNN can be used for regression
	\bigcirc A	Yes
	(B)	No
	C	I do not know
×	15.	In the case of KNN classification we use
	(A)	average of outcomes
	(B)	majority voting scheme
		I do not know
		T do Not know
×	16.	Which of these errors will increase constantly by increasing k?
	A	train error
	B	test error
	C	both
	D	I do not know
×	17.	This function can be used to perform KNN in R
	A	knn()
	B	k_nn()
	(c)	knnreg()
		knearneib()
		I do not know

Mary Page 3 of 4

18. With the increase of k, the decision boundary will be A simplified B more complex C I do not know D unchanged

X 19. The best k correspond to

- (A) the lowest point of test error
- (B) the lowest point of train error
- (c) the highest point of test error
- I do not know

× 20. KNN algorithm is sensitive to outliers

- (A) True
- B False
- C I do not know

X 21. KNN

- (A) is a supervised learning algorithm.
- (B) is an unsupervised learning algorithm.
- C I do not know

Mary Page 4 of 4