HDS5230 Homework 4

February 11, 2019

Author: Miao Cai miao.cai@slu.edu

1 Gender mortality

```
In [2]: import numpy as np
        import pandas as pd
        Patient = pd.read_csv("Dropbox/02018 SPRING HDS5230 High \
        performance computing/HDS5230Homework/healthcare2/Patient.csv")
        Patient['Gender']\
            .replace(['male', 'female', 'MISSING'],
                     ['Male', 'Female', 'Other'], inplace = True)
        Patient\
            .fillna('Other', inplace=True)
        Mortality = pd.read_csv("Dropbox/02018 SPRING HDS5230 High \
        performance computing/HDS5230Homework/healthcare2/Mortality.csv")
        p1 = pd.merge(Patient, Mortality, on = 'PatientID', how = 'left')
        p1.groupby('Gender')['DateOfDeath'].apply(lambda x: x.notnull().sum()/len(x))
Out[2]: Gender
        Female
                  0.351115
                  0.359471
        Male
                  0.349267
        Other
        Name: DateOfDeath, dtype: float64
1.1 Testing statistical significance using logistic regression
In [3]: p1['death'] = np.where(p1['DateOfDeath'].isnull(), 0, 1)
        p1logit = p1.join(pd.get_dummies(p1['Gender'], prefix = 'dum'))
        import statsmodels.api as sm
        logit_model = sm.Logit(p1logit.death, p1logit[['dum_Female', 'dum_Male']])
```

print(logit_model.fit().summary2())

```
Optimization terminated successfully.

Current function value: 0.653888

Iterations 4
```

Results: Logit

Model:	Logit	Pseudo R-squared:	-0.006
Dependent Variable:	death	AIC:	26159.5194
Date:	2019-02-11 16:28	BIC:	26175.3264
No. Observations:	20000	Log-Likelihood:	-13078.
Df Model:	1	LL-Null:	-13006.
Df Residuals:	19998	LLR p-value:	1.0000
Converged:	1.0000	Scale:	1.0000
No. Iterations:	4.0000		

Coef. Std.Err. z P>|z| [0.025 0.975]

dum_Female -0.6141 0.0215 -28.5778 0.0000 -0.6563 -0.5720
dum_Male -0.5777 0.0221 -26.1894 0.0000 -0.6209 -0.5344

2 Gender and disease patterns

```
In [4]: OutpatientVisit = pd.read_csv("Dropbox/@2018 SPRING HDS5230 High \
        performance computing/HDS5230Homework/healthcare2/OutpatientVisit.csv")
        DiseaseMap = pd.read_csv("Dropbox/@2018 SPRING HDS5230 High \
        performance computing/HDS5230Homework/healthcare2/DiseaseMap.csv")
        Patient = pd.read_csv("Dropbox/@2018 SPRING HDS5230 High \
        performance computing/HDS5230Homework/healthcare2/Patient.csv")
        Patient['Gender'].replace(['male', 'female', 'MISSING'],
                                  ['Male', 'Female', 'Other'], inplace = True)
       Patient.fillna('Other', inplace=True)
        denom = Patient.groupby('Gender').size().reset_index(name = 'denominator')
        OutpatientVisitlong = pd.melt(OutpatientVisit, id_vars = 'PatientID',
                var_name = 'DiagNum', value_name = 'ICD10',
                value_vars = ['ICD10_1', 'ICD10_2', 'ICD10_3'])
        patdiseasemap = pd.merge(OutpatientVisitlong,
                                 DiseaseMap, on = 'ICD10', how = 'left')
       patcount = patdiseasemap.groupby(['PatientID', 'Condition'])\
            .size().reset index(name = "n")
        p2 = pd.merge(patcount, Patient, on = 'PatientID', how = 'left')
        q2_1 = p2.groupby(['Gender', 'Condition'])\
```

```
.size().reset_index(name = "Ncond")
q2_1 = pd.merge(q2_1, denom, on = 'Gender', how = 'left')
q2_1['mortality'] = q2_1.Ncond/q2_1.denominator

q2_2 = p2.groupby('Condition').size().reset_index(name = 'Ncond')
q2_2['Gender'] = 'Overall'
q2_2['denominator'] = Patient.shape[0]
q2_2['mortality'] = q2_2.Ncond/q2_2.denominator

q2_final = q2_1.append(q2_2, ignore_index = True)
q2_final = q2_final[['Condition', 'Gender', 'mortality']]
q2_final.pivot(index='Condition', columns='Gender', values='mortality')
```

/Users/miaocai/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py:6211: FutureWarning: of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

sort=sort)

Out[4]:	Gender	Female	Male	Other	Overall
	Condition				
	Alcohol	0.077546	0.079870	0.080943	0.07885
	Cancer	0.049979	0.049961	0.047164	0.04975
	Congestive_heart_failure	0.030619	0.056122	0.045889	0.04320
	Dementia	0.031881	0.029797	0.030593	0.03085
	Depression	0.124369	0.084127	0.110261	0.10530
	Diabetes_with_complications	0.041772	0.038535	0.044614	0.04055
	Diabetes_without_complications	0.102483	0.098017	0.093053	0.09975
	Drugs	0.040720	0.038423	0.037604	0.03945
	HIV	0.005682	0.006273	0.009560	0.00625
	Hypertension	0.285354	0.321049	0.281071	0.30095
	LiverMild	0.009470	0.009298	0.007011	0.00920
	LiverSevere	0.048401	0.052201	0.055449	0.05065
	Metastatic_solid_tumour	0.032828	0.034614	0.024219	0.03295
	${f Myocardial_infarction}$	0.031566	0.058922	0.047164	0.04500
	Obesity	0.183607	0.139689	0.159337	0.16210
	Paralysis	0.014625	0.011650	0.015934	0.01340
	Peptic_ulcer_disease	0.010206	0.008962	0.008923	0.00955
	Peripheral_vascular_disease	0.024095	0.022404	0.029955	0.02380
	Pulmonary	0.070707	0.072477	0.072658	0.07165
	Renal	0.036301	0.034166	0.030593	0.03490
	Rheumatic	0.013047	0.010978	0.013384	0.01215
	Stroke	0.026620	0.030357	0.024857	0.02815

3 Mortality Rate over time

```
In [5]: outpat = pd.read_csv("Dropbox/@2018 SPRING HDS5230 \
        High performance computing/HDS5230Homework/healthcare2/OutpatientVisit.csv")
        outpat['VisitDate'] = outpat['VisitDate'].astype('datetime64[ns]')
        from itertools import product
        outpatID = outpat[outpat.PatientID.notnull()].PatientID.unique()
        year=list(range(2005, 2019))
        patient_years = pd.DataFrame(list(product(outpatID, year)),
                                     columns = ['PatientID', 'year'])
       pat_min_vis = outpat[outpat.VisitDate.notnull()]\
            .groupby(['PatientID']).agg({'VisitDate':'min'}).reset_index()
       pat_min_vis['min_vis'] = pat_min_vis['VisitDate'].dt.year
        del pat_min_vis['VisitDate']
        patient_years = pd.merge(patient_years, pat_min_vis,
                                 on = 'PatientID', how = 'left')
        Mortality = pd.read_csv("Dropbox/@2018 SPRING HDS5230 \
        High performance computing/HDS5230Homework/healthcare2/Mortality.csv")
        patient_years = pd.merge(patient_years, Mortality,
                                 on = 'PatientID', how = 'left')
       patient_years['deathyear'] = patient_years['DateOfDeath'].str.slice(0, 4)
        patient_years['deathyear'] = patient_years['deathyear'].astype(float)
        del patient_years['DateOfDeath']
        patient_years['dead'] = np.where(
            patient_years['year'] >= patient_years['deathyear'], 1, 0)
        patient_years['atrisk'] = np.where(
            (patient_years['year'] >= patient_years['min_vis']) &
            ((patient_years['year'] <= patient_years['deathyear'])|</pre>
             (patient_years['deathyear'].isnull())), "yes", "no")
       patient_years.loc[patient_years.atrisk == "yes"].groupby('year')['dead']\
            .agg({'n_at_risk':'count', 'n_dead':'sum', 'mortality_rate':'mean'})
```

/Users/miaocai/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:31: FutureWarning: is deprecated and will be removed in a future version

Out[5]:		${\tt n_at_risk}$	n_{dead}	mortality_rate
	year			
	2005	859	34	0.039581
	2006	2280	157	0.068860
	2007	3697	247	0.066811
	2008	5077	329	0.064802
	2009	6432	395	0.061412

2010	7652	483	0.063121
2011	8793	523	0.059479
2012	9872	598	0.060575
2013	10791	611	0.056621
2014	11720	618	0.052730
2015	12734	612	0.048060
2016	13309	651	0.048914
2017	12914	582	0.045067
2018	12370	219	0.017704