

2024, June 13th

Efficient Molecule Captioning

Machine Learning in Bioinformatics
Term Project

Background - Baselines

(Model – <u>TextChemT5</u>) Multi-task & Multi-domain language model (LM)

> text2text text2mol mol2mol

mol2text = Molecule Captioning

Unifying Molecular and Textual Representations via Multi-task Language Modelling

Dimitrios Christofidellis *1 Giorgio Giannone *123

Jannis Born 14 Ole Winther 25 Teodoro Laino 1 Matteo Manica 1

"TextChemT5"

(Dataset)
160,492 'Molecule-Description' pairs

L+M-24: Building a Dataset for Language+Molecules @ ACL 2024

Carl Edwards¹, Qingyun Wang¹, Lawrence Zhao² and Heng Ji¹

¹University of Illinois Urbana-Champaign ²Yale University
{cne2, qingyun4, hengji}@illinois.edu, larry.zhao@yale.edu

Motivation – TextChemT5

(Christofidellis et al, 2023)

Good performance
Coherent Word Matching (BLEU & ROUGE)
&
Semantic Similarity (METEOR)

→ What about the meaning?

Table 3: Results of the SMILES to Caption (mol2text) task. The baselines include Transformer (Edwards et al., 2022), T5 (fine-tuned), and MolT5 (Edwards et al., 2022). The metrics used in the table include BLEU-2, BLEU-4, Rouge-1, Rouge-2, Rouge-L, and Meteor, all of which are common metrics used to evaluate text generation models. The table shows that our proposed model, Text+Chem T5, outperforms the other baselines in all the metrics. Overall, Text+Chem T5 is able to generate more accurate and informative captions for SMILES.

	Size	BLEU-2↑	BLEU-4↑	Rouge-1↑	Rouge-2↑	Rouge-L↑	Meteor 1
Transformer (Edwards et al., 2022)	-	0.061	0.027	0.188	0.0597	0.165	0.126
T5 (fine-tuned) (Raffel et al., 2020)	small	0.501	0.415	0.602	0.446	0.545	0.532
MolT5 (Edwards et al., 2022)	small	0.519	0.436	0.620	0.469	0.563	0.551
Text+Chem T5 (ours)	small	0.553	0.462	0.633	0.481	0.574	0.583
Text+Chem T5-augm (ours)	small	0.560	0.470	0.638	0.488	0.580	0.588
T5(fine-tuned) (Raffel et al., 2020)	base	0.511	0.424	0.607	0.451	0.550	0.539
MolT5 (Edwards et al., 2022)	base	0.540	0.457	0.634	0.485	0.578	0.569
Text+Chem T5 (ours)	base	0.580	0.490	0.647	0.498	0.586	0.604
Text+Chem T5-augm (ours)	base	0.625	0.542	0.682	0.543	0.622	0.648

Input: Caption the following smile: COC1=C(C=C2C3CC4=CC(=C(C=C4C(N3)CC2=C1)OC)OC)OC

Expected output: The molecule is a racemate comprising equimolar amounts of (R,R)- and (S,S)-pavine. It has a role as a plant metabolite. It contains a (R,R)-pavine and a (S,S)-pavine. It is a conjugate base of a pavine(1+).

From descriptive \rightarrow more comprehensive captions.

Motivation – L+M24

Figure 1: Example descriptions created for molecules from the training set.

Goal & Approach

Two Steps:

Improve performance → Finetune TextChemT5 on L+M 24 Dataset

Accelerate inference speed → Speculative Decoding*

Improving Performance

Training Settings:

20 epochs Optimizer: Adafactor* Learning Rate: 2e-5 Batch Size: 128 (Small) & 96 (Base)

> Input Max Length: 128 Output Max Length: 128

Prompt: "Caption the following SMILES: <input>"

Multi-GPU: From ~16 to <1 GPU hour per epoch

Model	BLEU-2	BLEU-4	ROUGE-1	ROUGE-2	ROUGE-L	METEOR
MolT5-Small +	70.9	51.2	74.5	55.8	54.4	70.1
$MolT5$ -Base \dagger	73.8	53.5	75.0	55.9	53.9	71.8
$ m MolT5 ext{-}Large \ ^+$	76.9	55.6	77.7	58.0	55.7	74.3
Meditron-7B ⁺	79.2	57.6	79.7	60.2	57.5	75.7
(Baseline - Not FineTuned)						
TextChemT5-Small	7.1	3.1	17.1	8.2	15.4	14.9
TextChemT5-Base	7.0	3.2	13.7	6.3	12.3	10.9
(Fine-Tuned)						
TextChemT5-Small	76.3	$\bf 55.4$	76.2	57.1	54.9	72.9
TextChemT5-Base	77.1	55.5	77.1	57.6	$\bf 55.2$	73.8

Molecule captioning results on the validation split of L+M-24. (Marked models' results are reported from the original L+M-24 Manuscript)

(Edwards et al, 2023)

Results:

Small (60M) > Base (220M) Base (220M) performs similarly to Large (738M)

Accelerating Inference (1)

<u>Speculative Decoding – Keypoints:</u>

Idea: In a single forward pass,

- Use a <u>smaller</u> model to decode (generate) MULTIPLE tokens faster
- Iteratively Accept/Reject the tokens through the larger model.

```
Best case: all "draft tokens" are accepted → We saved time!

Average case: first "draft tokens" are accepted, then the next ones are rejected → We saved time!

Worst case: the very first "draft token" is rejected → We don't save time... but we don't lose time either!
```

```
[START] japan 's benchmark nikkei 22 75

[START] japan 's benchmark nikkei 22 75

[START] japan 's benchmark nikkei 225 index rose 22 76

[START] japan 's benchmark nikkei 225 index rose 226 69 7 points

[START] japan 's benchmark nikkei 225 index rose 226 69 points or 9 1

[START] japan 's benchmark nikkei 225 index rose 226 69 points or 9 1

[START] japan 's benchmark nikkei 225 index rose 226 69 points or 1 5 percent or 10 9859

[START] japan 's benchmark nikkei 225 index rose 226 69 points or 1 5 percent or 10 9859 79 Tin

[START] japan 's benchmark nikkei 225 index rose 226 69 points or 1 5 percent or 10 989 79 Tin

[START] japan 's benchmark nikkei 225 index rose 226 69 points or 1 5 percent or 10 989 79 In tokyo late

[START] japan 's benchmark nikkei 225 index rose 226 69 points or 1 5 percent or 10 989 79 In tokyo late

[START] japan 's benchmark nikkei 225 index rose 226 69 points or 1 5 percent or 10 989 79 In tokyo late
```

(Leviathan et al, 2023)

Accelerating Inference (2)

> /gamma 4

Gamma: 4

```
> Caption the following SMILES: CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C
 ======= Speculative =======
 Out: The molecule is a stabilizing mitochondrial structure, proton trap for oxidative phosphorylation, stabilizing cytochrome oxid
 ase that impacts aging and tangier disease. The molecule is a cholesterol translocation and a apoptosis that impacts non-alcoholic
    fatty liver disease, barth syndrome, and diabetic heart disease.
Acceptance rate: 1.000
 Throughput: 211.7 tokens/s
  ====== Speculative =======
  ======= Target AR ========
 Out: The molecule is a stabilizing mitochondrial structure, cholesterol translocation, stabilizing cytochrome oxidase that impacts
    tangier disease and barth syndrome. The molecule is a proton trap for oxidative phosphorylation and a apoptosis that impacts agin
 g, non-alcoholic fatty liver disease, and diabetic heart disease.
 Throughput: 149.0 tokens/s
 ====== Target AR =======
Throughput increase: 142.1%
 > /gamma 25
Gamma: 25
 > Caption the following SMILES: CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C=C\C/C
 Out: The molecule is a stabilizing mitochondrial structure, cholesterol translocation, proton trap for oxidative phosphorylation t
 hat impacts aging and non-alcoholic fatty liver disease. The molecule is a stabilizing cytochrome oxidase and a apoptosis that imp
 acts tangier disease, barth syndrome, and diabetic heart disease.
 Acceptance rate: 0.860
 Throughput: 193.4 tokens/s
   ======= Speculative =======
   ======= Target AR ========
 Out: The molecule is a stabilizing mitochondrial structure, cholesterol translocation, stabilizing cytochrome oxidase that impacts
    tangier disease and barth syndrome. The molecule is a proton trap for oxidative phosphorylation and a apoptosis that impacts agin
  g. non-alcoholic fatty liver disease, and diabetic heart disease.
  Throughput: 148.9 tokens/s
      ======= Target AR ========
  Throughput increase: 129.9%
```

(Code is adapted from R Storai, Speculative Decoding, Github Repository 2024, https://github.com/romsto/Speculative-Decoding)

Accelerating Inference (3)

Out of 20 random samples (gamma 25):

Average acceptance rate: 89.3%

Average throughput increase: 136.5%

With the same accuracy!

Recap

Two Steps:

- 1. Improve performance → Finetune TextChemT5 on L+M 24 Dataset
- 2. Accelerate inference speed → Speculative Decoding*

What's Next?

Performance & Speed:

• Train Larger Models (T5 Large/3B/11B)

Interpretability:

 Finetune on approved drugs dataset using more specific knowledge (pharmacogenomics, metabolic reactions...)

e.g. DrugBank

Model	BLEU-2	BLEU-4	ROUGE-1	ROUGE-2	ROUGE-L	METEOR
MolT5-Small +	70.9	51.2	74.5	55.8	54.4	70.1
$MolT5$ -Base \dagger	73.8	53.5	75.0	55.9	53.9	71.8
$ m MolT5 ext{-}Large +$	76.9	55.6	77.7	58.0	55.7	74.3
Meditron-7B †	79.2	57.6	79.7	60.2	57.5	75.7
(Baseline - Not FineTuned)						
TextChemT5-Small	7.1	3.1	17.1	8.2	15.4	14.9
TextChemT5-Base	7.0	3.2	13.7	6.3	12.3	10.9
(Fine-Tuned)						
TextChemT5-Small	76.3	55.4	$\bf 76.2$	57.1	54.9	72.9
TextChemT5-Base	77.1	55.5	77.1	57.6	$\bf 55.2$	73.8

Molecule captioning results on the validation split of L+M-24. (Marked models' results are reported from the original L+M-24 Manuscript)

(Edwards et al, 2023)

Thank you