Licence 3 Université de Paris VIII

Licence mathmatiques

Introduction à la cryptographie Travaux dirigés n° 11: Signature numérique

S. Mesnager

Exercice 1. Deux documents $d_1 = 12$ et $d_2 = 13$ sont accompagnés d'une signature numérique, $\sigma_1 = 363$ pour d_1 et $\sigma_2 = 227$ pour d_2 , produites à l'aide d'une clé RSA dont le module est 1 833 et l'exposant public est 3. Les signatures de ces deux documents sont-elles correctes?

Exercice 2. Soit p = 499 et g = 7 un générateur de $\mathbb{Z}/p\mathbb{Z}^*$ les paramètres d'un schéma de signature ELGAMAL.

- 1. Le document d=300 est accompagné de la signature $\sigma=(232,282)$. La clé publique est y=173. Cette signature est-elle correcte?
- 2. La signature du message $m_1 = 400$ est (r, s) = (95, 197). Un adversaire sait que l'aléa k qui a servi à l'élaboration de cette signature est k = 299. Quelle est la clé privée du signataire?
- 3. Deux messages $m_1 = 100$ et $m_2 = 200$ ont pour signatures respectives $\sigma_1 = (417, 214)$ et $\sigma_2 = (417, 20)$. Un adversaire sait donc que ces signatures ont été élaborées avec le même aléa k. Quel est cet aléa? Quelle est la clé privée du signataire?

Exercice 3. Soient E et F deux ensembles finis. Soient f_0 et f_1 deux fonctions à sens unique $E \to F$. On dit que $\{f_0, f_1\}$ est une paire de fonctions qui ne se rencontrent pas s'il est difficile de trouver un couple $(a, b) \in E \times E$ tel que $f_0(a) = f_1(b)$.

1. Soit p un nombre premier suffisamment grand, g un générateur de $(\mathbb{Z}/p\mathbb{Z}^*, \times)$ et c un élément de $\mathbb{Z}/p\mathbb{Z}$ dont le calcul du logarithme en base g est difficile.

Démontrer que $f_0: \begin{cases} \{1,\dots,p-1\} & \to & \mathbb{Z}/p\mathbb{Z} \\ x & \mapsto & g^x \end{cases}$ et $f_1: \begin{cases} \{1,\dots,p-1\} & \to & \mathbb{Z}/p\mathbb{Z} \\ x & \mapsto & cg^x \end{cases}$ forment une paire de fonctions qui ne se rencontrent pas.

2. Soit $e \in \{1, \dots, p-1\}$ dont un antécédent par f_0 ou f_1 est difficile à trouver. Démontrer que $F: \{0,1\}^* \to \mathbb{Z}/p\mathbb{Z}$ est résistante aux collisions fortes. $x_1x_2\cdots x_k \mapsto f_{x_1}\circ f_{x_2}\circ \cdots \circ f_{x_k}(e)$

Exercice 4. Deux correspondants utilisent le schéma de signature de ELGAMAL avec la clé publique $(p, g, y = g^x)$ et la clé privée x. Un message m est accompagné de la signature (r, s). Un bug dans l'algorithme de vérification de signature fait qu'un message accompagné d'une signature (r, s) avec $r \ge p$ est également acceptée. Montrer comment un adversaire peut faire accepter comme valide un nouveau message μ , premier avec p-1 sans connaître la clé privée x s'il connaît m et sa signature (r, s).

Exercice 5. On utilise les même notations que dans l'exercice précédent. On suppose que $p \equiv 1 \pmod{4}$. On suppose que g divise g divise

- 1. On suppose que g est assez petit pour qu'un adversaire puisse calculer le logarithme discret dans H. Montrer qu'il est possible de trouver z tel que $g^{tz} = y^t \pmod{p}$.
- 2. Montrer que $g^{(p-1)/2} \equiv -1 \pmod{p}$, puis que $t^{(p-3)/2} \equiv g \pmod{p}$.
- 3. Un adversaire voulant signer le message m calcule r = t et $s = 1/2(p-3)(m-tz) \mod (p-1)$. Montrer que cette signature est acceptée comme valide.