Case Study: Extracting Insights for Fraud Detection

Janani Ravi Co-founder, Loonycorn

www.loonycorn.com

Overview

Case Study: Artificial Intelligence Enabled Financial Crime Detection

Towards Artificial Intelligence Enabled Financial Crime Detection

Background and Context

Exploring current techniques for the detection of money laundering

Money Laundering

Illegal process of concealing the source of money which has been obtained through criminal activities and putting this money into legitimate financial systems

Increased Money Laundering Risk

Growing use of digital channels and invention of digital money such as Bitcoin

Amount of money transferred using money laundering estimated to be between 2% - 5% of overall GDP throughout the world

Categories of Anti-money Laundering Models

Clustering Rule-based Classification **Anomaly Detection**

Categories of Anti-money Laundering Models

Rule-based

Rule-based Models

Initial step at financial institutions

Use pre-defined rules and thresholds to detect unusual transactions

- Transactions above a certain amount
- Transactions originating in black-listed country
- Transactions that include specific words
- Repeated transactions to an account

Rule-based Models

Suspicious transactions detected using statistical rules

Compare features such as amount and frequency with average

If deviation is above a certain amount flag as suspicious

Categories of Anti-money Laundering Models

Clustering

Apply clustering or grouping to transactions

Investigate each cluster

Identify outliers

K-means clustering a popular algorithm

Original k-means not successful at detecting outliers

Categories of Anti-money Laundering Models

Classification

Classification

Preprocess transaction data by labeling as suspicious or not

Create feature vector of transaction attributes

Traditional models - SVMs, Logistic Regression, Random Forest

Neural network models

Categories of Anti-money Laundering Models

Anomaly Detection

Anomaly Detection

Identify transactions that deviate from the usual behavior

Unexpected transactions

Similar to advanced rule-based models that use statistical parameters

Transactions which deviate from the average flagged as suspicious

Anomaly Detection

Isolation forest (iforest) an ML algorithm for anomaly detection

Uses a tree structure to fit on data

Leaf nodes deep in the tree unlikely to be outliers

Leaf nodes close to the root more likely to be outliers

Features Used in AML

Transaction features and customer features

Types of Features Used in AML

Transaction Features

Customer Features

Types of Features Used in AML

Transaction Features

Customer Features

Transaction Features

Attributes associated with the transaction itself - not with the sender or receiver

No data privacy or compliance issues

Transaction Features

Time of transaction

Origin and destination

Amount

Accumulated fund flow

Type of transaction - money transfer, wire transfer, cash

Types of Features Used in AML

Transaction Features

Customer Features

Customer Features

Attributes associated with the customer involved in the transaction

Involve collecting data on customers and their transactions and building profiles

Categorizing customers in predefined risk categories

Data may need to be anonymized or masked to deal with privacy issues

Data Labeling

Snorkel model for data labeling

Data Labeling

A critical pre-processing step before fitting an ML model

Hand-labeling data is expensive and time consuming

Hire large groups of people to label data

Use crowd sourcing to label data

Different labeling sources might label data in a conflicting manner

An ML model for labeling developed at Stanford University

Uses several labeling functions developed by subject matter experts

Model determines weight of each labeling function

Based on agreements and disagreements between labels for data points

Snorkel uses labels from weak supervision sources i.e. the labeling functions

Outputs probabilistic labels which are then used to train classifiers

Weak Supervision Sources

Generative Model

Use labeling functions' correlations i.e. whether they agree or disagree

Generative Model

Majority voting, model accuracies

Train a Discriminative Model

Generalize beyond the noisy generative model

Methodology and Model

Discuss methodology to detect and prevent money laundering, walk through model steps, evaluate results

Intelligent Hybrid Pipeline

Includes both supervised and unsupervised learning approaches

Classification + Anomaly detection

Intelligent Hybrid Pipeline

Classification Model to Detect Suspicious Transactions

Anomaly Detection to Capture Unusual Transactions

Logical AND to Improve Accuracy and Minimize False Positives

Snorkel for Data Labeling

Dataset contains a total of 100,000 records

Experts to label 10% of this data

Snorkel model for the rest

Simple Rules for Labeling Functions

If cash transaction for > 10000 = suspicious

If source country blacklisted = suspicious

If transaction category includes special words = suspicious

Snorkel for Data Labeling

Transaction Features

Apply Labeling Function to Each Transaction

Snorkel Decides a Single Label

Classification Model

Binary classification to predict suspicious transactions

Label 1 = suspicious

Label 0 = Not suspicious

Classification Model

Selecting Important Features

Converting Raw Data to Curated Data

Convert Numeric Features to Same Scale

Experts + Snorkel

Balancing Skewed Dataset

Evaluated Different Classification Models

Classification Model

Classification Method	Accuracy	F1 Score	Recall	Precision
Logistic Regression	0.883	0.874	0.883	0.865
Nearest Neighbors	0.907	0.907	0.908	0.907
Random Forest	0.923	0.911	0.919	0.903
Neural Network	0.924	0.917	0.910	0.924
Naive Bayes	0.908	0.889	0.871	0.908
Multinomial NB	0.706	0.776	0.861	0.706

Anomaly Detection

Non-suspicious transactions as training data (no suspicious transactions)

Computed average and standard deviation for transaction features in training data

Anomaly Detection

Combination of regular and suspicious transactions for validation

Compute probability for each transaction

Transactions with probability below threshold marked as suspicious

Anomaly Detection

	Result
Accuracy	0.893
Precision	0.904
Recall	0.912
F-1 Score	0.907

Logical AND to Improve Accuracy and Minimize False Positives

Intelligent Hybrid Pipeline

	Result
Accuracy	0.951
Precision	0.939
Recall	0.899
F-1 Score	0.919

Summary

Case Study: Artificial Intelligence Enabled Financial Crime Detection

Up Next:
Applying Machine Learning
Techniques to Financial Data