(Teil)Homomorphe Verschlüsselung

S.Seidl, M.Nening, T.Niederleuthner

Inhalt

- Motivation
- Definition Homomorphismus
- Arten
- 4 Einsatzgebiete
- 6 Algorithmen
- Open the second of the seco

Inhalt

- Motivation
 - Ziele
 - Geschichte Idee
- Definition Homomorphismus
- Arten
- 4 Einsatzgebiete
- 6 Algorithmen
- 6 Program

Ziele

Motivation & 7iele

- Primär sicheres sharing von Daten
- Berechnungen \rightarrow Entschlüsselung \rightarrow angreifbar
- Lösung: Operationen auf verschlüsselten Daten ermöglichen
- **Vorteil:** Berechnungen auslagern (3.Partei)

- Informell: Abbildung von einer Menge in eine zweite, sodass Relation zwischen den Elementen erhalten bleibt
- Problem in algebraischem System

Geschichte - Idee

- Idee schon lange bekannt
- Vorgeschlagen von Rivset, Adleman und Dertouzos (1978)
- 2 Agenda
 - sicheres Schema
 - interessante Operationen
- es folgten einige teilhomomorphe Schemen (+,*)
- beides schwer
- man hielt vollhomomorphes Schema für möglich

Geschichte - Idee

- ab 1991 wieder mehr Fokus auf vollhomomorphes Schema
- doppelt homomorph:
 - "erster Schritt"= "letzter Schritt"
 - bitwise 1+A*B (NAND)
- Craig Gentry: erstes Vollhomomorphes Schema 2009
- Aber: extrem hoher Rechenaufwand

"Eine dieser Boxen mit Handschuhen, die bei der Arbeit mit toxischen Chemikalien verwendet werden...Alle Manipulationen geschehen in der Box und die Chemikalien werden nie der Außenwelt ausgesetzt"

Inhalt

- Motivation
- Definition Homomorphismus
 - Gruppenhomomorphismus
- 3 Arten
- 4 Einsatzgebiete
- 6 Algorithmen
- 6 Program

Gruppenhomomorphismus

Definition (Gruppenhomomorphismus $(G,*_G)$, $(H,*_H)$)

Eine Funktion $f: G \to H$ ist ein Gruppenhomomorphismus, wenn die Gruppenoperation wie folgt erhalten bleibt:

$$f(g_1 *_G g_2) = f(g_1) *_H f(g_2)$$

Sein e_G , e_H die neutralen Elemente:

$$f(e_G) = e_H$$

Auch die inverse Abbildung muss erhalten bleiben:

$$f(g^{-1}) = f(g)^{-1}$$

Inhalt

- Motivation
- 2 Definition Homomorphismus
- Arten
 - Teilhomomorphe Verschlüsselung
 - Vollhomomorphe Verschlüsselung
- 4 Einsatzgebiete
- 6 Algorithmen
- 6 Program

Teilhomomorphe Verschlüsselung

Teilhomomorphe Verschlüsselungen unterstützen entweder Addition oder Multiplikation auf Ciphertexte.

Additive Verfahren: $\exists \psi : m(x_1) \psi m(x_2) = m(x_1 + x_2)$

Paillier

Multiplikative Verfahren: $\exists \psi : m(x_1) \psi m(x_2) = m(x_1 * x_2)$

- RSA
- ElGamal

Vollhomomorphe Verschlüsselung

- Eine Verschlüsselung, die beliebige Operationen auf den Ciphertext erlaubt, nennt man Vollhomomorphe Verschlüsselung.
- Erstes System von Craig Gentry 2009
- Brakerski-Gentry-Vaikuntanathan cryptosystem BGV 2011-2012

Probleme

- sehr aufwendig und kompliziert
- wesentlich h\u00f6here Rechenleistung notwendig Erstes System ben\u00f6tigte 30 Minuten f\u00fcr eine Bitoperation.
- Viele Systeme haben eine beschränkte Anzahl an Operationen, die ausgeführt werden können, oder sind durch Konstruktion beschränkt.

Inhalt

- Motivation
- Definition Homomorphismus
- 3 Arten
- 4 Einsatzgebiete
 - Cloud Computing
 - Wahlen
- 6 Algorithmen
- 6 Program

Cloud Computing - Gründe

- Outsourcing
- Lastspitzen abdecken
- Flexibilität
- Kosten

Aber: Ob es wirklich einsetzbar ist, steht und fällt mit der Vertrauenswürdigkeit des Cloud-Anbieters!

Probleme

- Vertrauenswürdigkeit des Anbieters
- Rechtssprechung des Serverstandorts
- Angriffe gegen den Anbieter
- (evtl Outsourcing des Anbieters)

Lösung: zu keiner Zeit unverschlüsselte Daten beim Cloud-Anbieter

 \Rightarrow (idealerweise voll-)homomorphe Verschlüsselung

Wahlen - Anforderungen

- einfache Durchführung für den Wähler
- jeder Wähler muss eindeutig identifizierbar sein, um Wahlberechtigung zu verifizieren
- jeder Wähler darf nur eine Stimme abgeben
- sichere und anonyme Stimmabgabe
- korrekte Auszählung

Vorgehen

- Wähler verschlüsselt seine Stimme
- Stimme wird verschlüsselt übertragen
- durch (additiv) homomorphe Verschlüsselung wird das Wahlergebnis berechnet
- ightarrow mehr dazu später

Inhalt

- Motivation
- Definition Homomorphismus
- Arten
- 4 Einsatzgebiete
- 6 Algorithmen
 - RSA
 - Paillier
- Opening the second of the s

non-padded RSA

ullet Verschlüsselung mit arepsilon :

$$\varepsilon(m_1) = m_1^e \pmod{n}$$
 $\varepsilon(m_2) = m_2^e \pmod{n}$

• multiplikative homomorphe Eigenschaft:

$$\varepsilon(m_1 * m_2) = (m_1 * m_2)^e \pmod{n}
= m_1^e * m_2^e \pmod{n}
= \varepsilon(m_1) * \varepsilon(m_2) \pmod{n}$$

RSA

Unterschied padded - non-padded RSA

- Padding wird dazu eingesetzt, um das Ergebnis zu randomisieren.
- Damit wird erreicht, dass bei zweimaligem Verschlüsseln derselben Nachricht zwei unterschiedliche Ciphertexte erzeugt werden.
- Padding zerstört die homomorphe Eigenschaft von RSA.

Sicherheit von non-padded RSA (1)

Deterministisch

- 2 Gleiche Plaintexte ergeben 2 gleiche Ciphertexte.
- bei kurzem Plaintext oder wenn die möglichen Plaintexte bekannt sind, ist es möglich, alle unterschiedlichen Ciphertexte zu berechnen und diese mit dem abgefangenen Ciphertext zu vergleichen.

Sicherheit von non-padded RSA (2)

Verändern der Nachricht

- Angreifer fängt Ciphertext c ab und berechnet $c' = c * 2^e \mod n$
- Entschlüsseln: $2m = c'^d \mod n$ Somit wurde die Nachricht im verschlüsselten Zustand verändert

RSA Beispiel(1)

•
$$p = 5$$
; $q = 11$

•
$$N = p * q = 55$$

•
$$\varphi(N) = (p-1)*(q-1) = 4*10 = 40$$

•
$$e = 7$$

•
$$7*d + 40k = 1 = ggT(7, 40) \rightarrow d = 23$$

RSA Beispiel(2)

Verschlüsseln von $m_1 = 4$ und $m_2 = 6$

- $c_1 \equiv 4^7 \mod 55 \to c_1 = 49$
- $c_2 \equiv 6^7 \mod 55 \to c_2 = 41$

Berechnen von $c_1 * c_2$

•
$$\varepsilon(m_1) * \varepsilon(m_2) = c_1 * c_2 \mod N = 49 * 41 \mod N = 29$$

Entschlüsseln

•
$$m_3 = c_3^d \mod N = 29^{23} \mod N = 24$$

Paillier - Eigenschaften

- 1999 entwickelt
- probabilistisch
- additiv homomorph
- sicher, da nicht effizient berechenbar, ob:

$$\exists y \ z \equiv_{n^2} y^n$$

Restklassen

- Restklassenring $(\mathbb{Z}/n\mathbb{Z})$
- Restklasse $[x]_n$ enthält die Zahlen, die mod n x ergeben
- prime Restklasse: wenn für $[x]_n$ gilt, dass ggT(x, n) = 1
- prime Restklassengruppe $(\mathbb{Z}/n\mathbb{Z})^*$ Gruppe, zusammengesetzt aus primen Restklassen

Schlüssel generieren

- wähle 2 zufällige Primzahlen p und q
- setze $n = p \cdot q$
- wähle g zufällig, wobei $g \in (\mathbb{Z}/n^2\mathbb{Z})^*$
- berechne $\lambda = kgV(p-1, q-1)$

Der Public-Key ist Tupel (n, g), der Private-Key λ .

Verschlüsseln

- Sei m die Nachricht in Plaintext, c der Ciphertext
- wähle zufälligen Wert $r \in (\mathbb{Z}/n\mathbb{Z})^*$

$$c = (g^m \cdot r^n) \mod n^2$$

Entschlüsseln

Definiere Funktion L folgendermaßen:

$$L(x) := \frac{x-1}{n}$$

Dann ist die entschlüsselte Nachricht m:

$$m = L(c^{\lambda} \mod n^2) * \lambda^{-1} \mod n$$

Addition 2er Nachrichten $m_1 + m_2$:

$$\varepsilon(m_1) \cdot \varepsilon(m_2) = \mod n^2$$

$$= g^{m_1} \cdot r_1^n \cdot g^{m_2} \cdot r_2^n \mod n^2$$

$$= g^{m_1} \cdot g^{m_2} \cdot r_1^n \cdot r_2^n \mod n^2$$

$$= g^{m_1+m_2} \cdot (r_1 \cdot r_2)^n \mod n^2$$

$$= \varepsilon(m_1 + m_2) \mod n^2$$

Addition Nachricht m + Plaintext k

$$\varepsilon(m) \cdot g^k = \mod n^2$$

$$= g^m \cdot r^n \cdot g^k \mod n^2$$

$$= g^{(m+k)} \cdot r^n \mod n^2$$

$$= \varepsilon(m+k) \mod n^2$$

Multiplikation Nachricht m · Plaintext k

$$\varepsilon(m)^{k} = \mod n^{2}$$

$$= (g^{m} \cdot r^{n})^{k} \mod n^{2}$$

$$= (g^{m})^{k} \cdot (r^{n})^{k} \mod n^{2}$$

$$= g^{km} \cdot (r^{k})^{n} \mod n^{2}$$

$$= \varepsilon(k \cdot m) \mod n^{2}$$

Beispiel Wahlvorgang - Vorbereitung

Wahlkommission kennt/setzt folgende Werte:

- Abstimmung Ja= 10, Nein= 01
- Wähler V_1, V_2, V_3
- p=17, q=19
- g = 324
- Public-Key (323, 324)
- Private-Key ($\lambda = 288$)
- $\lambda^{-1} = 203$

Wählersicht

Wähler	Gewähltes	r_i	C_i
$\overline{V_1}$	10	3	33.092
V_2	01	8	57.734
V_3	10	2	84.617

"Gläserne Wahlurne" 33.092 57.734 84.617

Ergebnis

Es wird ausgezählt, also das Produkt der c_i gebildet.

$$\Rightarrow c = 29.927$$

Die Wahlkommission kennt den Private-Key, berechnet das Wahlergebnis:

$$m = L(29.927^{288} \mod 323^2) * 203 \mod 323 =$$

$$= \frac{75.582}{323} * 203 \mod 323 =$$

$$= 21$$

Inhalt

- Motivation
- Definition Homomorphismus
- 3 Arten
- 4 Einsatzgebiete
- 6 Algorithmen
- ProgramGMP

- GNU Multiple Precision Library
- Augenmerk auf Schnelligkeit
- #include <gmp.h>
- mit libgmp library linken (-lgmp)

Typen & Funktionen

```
(ca. 150 Funktionen)
Integers:
                mpz t
```

(ca. 35 Funktionen) Rationals: mpq t

(ca. 70 Funktionen) Floats: mpf t

Random state: gmp randstate t

- low-level Funktionen (von Obigen verwendet)
- GMP kümmert sich um Speicherverwaltung

Initialisieren & Zuweisen

Initialisieren und freigeben

- *void* **mpz_inti[s]** (*mpz_t* × [...])
- void mpz_clear[s] (mpz_t x [...])
- void mpz_set_[ui/si/d/str...] (mpz_t rop,...)
- void mpz_init_set_[ui/si/d/str...] (mpz_t rop,...)

Konvertieren

• ... mpz_get_[ui/si/d/str...] (const mpz_t op,...)

Arithmetische Funktionen

- void mpz_add[_ui] (mpz_t rop, const mpz_op,...)
- void mpz_sub[_ui] (mpz_t rop, const mpz_op,...)
- void mpz_mul[_ui/si] (mpz_t rop, const mpz_op,...)

- ... mpz_mod[_ui] (mpz_t rop, const mpz_op,...)
- void mpz_powm[_ui] mpz_t rop,..., mpz_t mod)
- int mpz_congruent_p (mpz_t rop, ...)

Weitere Funktionen

- int mpz_probab_prime_p (mpz_t n, int reps)
- void mpz_nextprime (mpz_t rop, const mpz_op)
- ... mpz_gcd[_ui] (mpz_t rop, const mpz_op1,...)
- void mpz_invert (mpz_t rop, const mpz_op1,...)
- int mpz_comp_[d/si,ui] (const mpz_t op1, ...)
- auch bitwise Funktionen

Weitere Funktionen

File I/O

- size_t mpz_out_str (FILE*stream, int base,...)
- size_t mpz_inp_str (mpz_t rop, FILE*stream,...)

Zufallszahlen

- void mpz_urandomb (mpz_t rop,...)
- void gmp_randseed[_ui] (gmp_randstate_t,...)

krypto.h

```
RSA
    typedef struct {
 3
                     //modulo
       mpz_t n;
 4
       mpz_t e; //exponent
 5
    } publicKeyRSA;
 6
 7
    typedef struct {
 8
       mpz_t n; //modulo
 9
       mpz_t d; //inverse of exponent
10
    } privateKevRSA;
11
12
    unsigned long long randomSeed();
13
    void generateKeysRSA(publicKeyRSA* pk, privateKeyRSA* sk, long seed);
14
    void storePublicKey(publicKeyRSA* pk, char* filename);
15
    void readPublicKey(publicKeyRSA* pk, char* filename);
16
17
    void encryptRSA(publicKeyRSA* pk, mpz_t op, mpz_t cipher);
18
    void decryptRSA(privateKeyRSA* sk, mpz t cipher, mpz t op);
```

krypto.c

```
mpz_ui_pow_ui (rangeMin, 2, size-1);
 3
        mpz_ui_pow_ui (rangeMax, 2, size);
 4
 5
        do {
 6
            do {
               // find "good" p
 8
               mpz_urandomb(p, state, size);
 9
               mpz_nextprime (p, p);
10
            } while (mpz_cmp(p, rangeMin) < 0 || mpz_cmp(p, rangeMax) > 0);
11
12
            // find "good" q
13
           mpz_nextprime (q, p);
14
15
        } while (mpz_cmp(q, rangeMax) > 0);
```

krypto.c

```
----- n, phi(n)
                                                 //n = p * q
        mpz_mul(n, p, q);
 3
        mpz_sub_ui(t1, p, 1);
                                                 //p - 1
 4
        mpz_sub_ui(t2, q, 1);
                                                 //q - 1
 5
                                                 //phi(n) = (p - 1)(q - 1)
        mpz_mul(phin, t1, t2);
 6
        mpz urandomb(e, state, 128);
 8
        mpz_gcd(t1, phin, e);
 9
10
        while(mpz_cmp_ui(t1, 1) != 0) {
11
            mpz_urandomb(e, state, 128);
12
            mpz_gcd(t1, phin, e);
13
        };
14
15
        mpz invert(d, e, phin);
16
17
        mpz set(pk -> n, n);
18
        mpz_set(pk -> e, e);
19
20
        mpz set(sk -> n, n);
21
        mpz_set(sk -> d, d);
22
```

krypto.c

```
void encryptRSA(publicKeyRSA* pk, mpz_t op, mpz_t cipher){
 2
 3
          mpz_powm(cipher, op, pk -> e, pk -> n);
 4
       }
 5
 6
       void decryptRSA(privateKeyRSA* sk, mpz t cipher, mpz t op) {
 7
 8
          mpz_powm(op, cipher, sk -> d, sk -> n);
 9
       }
10
11
       unsigned long long randomSeed() {
12
         unsigned long long random;
13
         FILE* file:
14
15
         file = fopen("/dev/urandom", "r");
16
         fread(&random, sizeof(random), 1, file);
17
         fclose(file);
18
19
         return random:
20
       }
```

smartCalc.c

```
printf("\n----\n"):
       printf("
                       Smart Caluclator\n"):
 3
       printf("----\n\n"):
 4
       receiveString(buffer, address, &mode);
 5
       printf("Operator: %s\n\n", buffer);
 6
       if (strcmp(buffer, "*") == 0) {
 8
          receiveString(buffer, address, &mode);
 9
10
          while (strcmp(buffer, "=") != 0) {
11
12
             mpz set str (cipher, buffer, BASE);
13
             mpz_mul(result, result, cipher);
             if (mode == 'r')
14
15
                mpz mod (result, result, pk -> n);
16
17
             receiveString(buffer, address, &mode);
          }
18
19
20
       mpz_get_str(buffer, BASE, result);
21
       transmitString(buffer, address, mode);
```

Zeitmessungen Encryption/Decryption

Zeitmessungen KeyGen

Zeitmessungen Berechnung (klein)

Zeitmessungen Berechnung (groß)

Quellen

- http://dmg.tuwien.ac.at/drmota/DA Sigrun% 20Goluch FINAL.pdf
- http://www.liammorris.com/crypto2/ Homomorphic%20Encryption%20Paper.pdf
- https://eprint.iacr.org/2016/430.pdf
- https://gmplib.org/manual/Integer-Functions. html#Integer-Functions

Vielen Dank für die Aufmerksamkeit!