3ELE002 - Circuitos de Comunicação

Experiência 4 - Oscilador a Cristal Piezoelétrico

Taufik ABRÃO[†], Lab. Telecom - Depto Eng. Elétrica da Univ. Estadual de Londrina

RESUMO projeto e análise de osciladores de RF à cristal com transistor bipolar, configuração Base comum.

palavras-chave: osciladores à cristal; transistor bipolar.

1. OBJETIVOS

- comprovar na prática a validade e limitações de um projeto um oscilador a cristal piezoelétrico empregando modelo de pequenos sinais;
- determinar a frequência de oscilação no modo série de um oscilador a cristal com transistor bipolar configurado em base comum;
- analisar a estabilidade de frequência em função da variação da tensão de alimentação e temperatura.
- avaliar o conteúdo harmônico e a potência à saída do oscilador a partir do analisador de espectro.

2. INTRODUÇÃO

Veja Notas de aula, Unidade 2 - Osciladores de RF

2.1 Caracterísiticas do Circuito Oscilador à Cristal

A configuração do circuito da figura 1 é conhecida como oscilador Butler. O cristal está colocado na malha de realimentação positiva, entre os emissores de Q1 e Q2, operando portanto no modo de ressoância série. No entanto, com a introdução de C_1 em série o cristal passa a operar na região de ressonância paralela, sendo que a reatância indutiva do cristal é cancelada pela reatância capacitiva de C_1 , com o conjunto ainda operando no modo de ressoância série. Esta configuração permite portanto trabalhar com cristais especificados para oscilarem no modo série e paralelo, bastando inserir ou retirar C_1 .

Outras vantagens desta configuração são:

- saída pode ser retirada do coletor de Q2, estando isolada do elo de realimentação do cristal
- relacionando adequadamente R_3/R_4 é possível especificar o nível máximo de tensão ou corrente que será aplicado ao cristal

2.2 Projeto do Oscilador à cristal com transistor bipolar configuração base comum

Na condição de oscilação, admitindo-se que o amplificador não introduz desvio de fase, o cristal (junto com C_1) comporta-se como um resistor (ressonância série), como indicado nas figuras 2 e 3.

Versão α , August 15, 2002.

Fig. 1 — Oscilador Butler a cristal piezoel étrico com transistor bipolar em configuração base-comum (Q1) e estágio buffer (Q2)

Condição de oscilação:

$$A = \frac{r_i}{r_i + r_s} G > 1$$

$$= \frac{r_i}{r_i + r_s} g_m R_C > 1$$
(1)

onde $r_i = r_{e_1}//R_2$ = resistência equivalente de entrada do amplificador, com e r_{e_1} = resistência de entrada do primeiro estágio amplificador (base comum) e r_s = resistência de perdas do cristal, figura 2

 ${\bf Fig.\,2} \qquad {\rm Modelo\,para\,o\,oscilador\,\hat{a}\,cristal\,incluindo\,o\,circuito\,equivalente\,para\,o\,cristal\,piezoel{equivalence}}$

Com a hipótese de I_C de Q1 ser tal que a sua resistência de entrada seja dada por

$$r_{e_1} = \frac{1}{g_m} = \frac{1}{36I_{C_1}} << R_2$$

Fig. 3 Modelo equivalente para o oscilador à cristal na condição de ressonância série do cristal.

e muito menor que R_2 ; desta forma, pode-se simplificar a equação (1) admitindo-se $r_i \cong r_{e_1}$

$$A = \frac{r_{e_1}}{r_{e_1} + r_s} G = \frac{r_{e_1}}{r_{e_1} + r_s} g_m R_C = \frac{R_C}{\frac{1}{g_m} + r_s} > 1$$
Portanto,
$$R_C > r_s + \frac{1}{g_m}$$
 (2)

Assumindo que:

- 1. a freq de oscilação será 1 a 3 MHz e o cristal especificado para operar no modo paralelo com capacitância de carga de 32pF. A resistência sére deste cristal (consultando a tabela 1 das notas de aula) está em torno de $r_s=400$ a 50Ω , aproximada e respectivamente.
- 2. ganho de malha seja A=3, resulta que $R_C>3(r_s+\frac{1}{g_m})$. Como pode ser desprezado na eq $(2)\Rightarrow R_C\cong 3r_s=1200$ ou 150Ω , dependendo do cristal utilizado.
- 3. No circuito da figura 1 tem-se que

$$R_C = R_1 / / h_{fe} R_4 = \frac{R_1 h_{fe} R_4}{R_1 + h_{fe} R_4}$$

Procurando minimizar o valor de R_4 , vamos adotar $h_{fe}R_4=1800$ ou 240Ω respectivamente. Adotando Q1=Q2=BF495 devido aos baixos valores de capacitâncias de junção. Para estes transistores podese considerar $h_{fe}\geq 30 \Rightarrow R_4=\frac{1800}{30}=60\Omega$ ou $\frac{240}{30}=8$ Ω . Adotaremos R_4 na faixa de 68 a 10Ω , conforme a freq de oscilação do cristal, $f_{osc}=1$ a 3 MHz.

- 4. Dimensionamento de R_3 deve satisfazer as seguintes condições:
 - a. deve ter o menor valor possível, para que o circuito tenha menor impedância de saída.
 - b. excursão do sinal à saída (coletor de Q2) maior que $V_{cc}/2$ para que este sinal possa ser diretamente compatível com diversas aplicações.
 - c. potência de excitação do cristal limitada em torno de 1mW (fabricante). Isto implica em:

$$\frac{V_s^2}{r_s} \le 1mW \Rightarrow$$

para $f_{osc} = 1MHz$:

$$V_s^2 \leq \sqrt{400 \times 10^{-3}} = 630 \ mV_{rms} = 1,78V_{pp}$$
ou para $f_{osc} = 3MHz$:
$$V_s^2 \leq \sqrt{50 \times 10^{-3}} = 223 \ mV_{rms} = 631 mV_{pp}$$

3. Parte experimental

Observação importante: antes de ir ao laboratório, prepare tabelas, gráficos e equações que serão utilizadas na execução do experimento. Desenhe diagramas de instrumentos (setup de medidas) necessários às medidas.

3.1 Etapas

1. Montar o circuito oscilador à cristal da figura 4 com os valores dados na tabela 1.

Fig. 4 Circuito final para o oscilador a cristal com transistor bipolar, configuração base comum.

$R_1 = 12K\Omega$	$R_6 = 6,8K\Omega$
$R_2 = 470\Omega$	$R_7 = 33K\Omega$
$R_3 = 680\Omega$	$R_8 = 33K\Omega$
$R_4 = 220\Omega$	$R_5 = 4,7K\Omega$
$C_1 = 2 - 70pF$	XRF = 1 a 10 mH
$C_1 = 2 - 70pF$ $C_2 = 10nF$	XRF = 1 a 10 mH $Q1 = BF495$
$C_1 = 2 - 70pF$ $C_2 = 10nF$ $C_3 = 10nF$	

Tabela 1 Valores para os componentes do Oscilador Butler a cristal + Buffer

- 2. Com o oscilóscópio, avalie a forma de onda à saida do estágio oscilador e de saída:
 - a. freqüência e amplitude.
 - b. distorção na forma de onda senoidal
 - c. diferença de fase entre a entrada e saída do elemento ativo (base comum). Obtenha as diferenças de fase nos pontos pertencentes à malha de realimentação, β. Veja Apêndice 5 para determinação de defasagem entre dois sinais utilizando osciloscópio no modo X-Y.

- d. Qual a influência da ponta de prova do osciloscópio sobre o valor de f_{osc} quando colocada na saída de cada estágio? Meça com um frequencímetro a freq de oscilação nas diferentes situações.
- 3. Determinação da estabilidade com V_{CC} . Varie a tensão de alimentação em $\pm 20\%$ em relação à nominal medindo a correspondente variação de freq. Calcule a estabilidade relativa, $\frac{\Delta f}{f}/V$ em $\left[\frac{Hz}{MHz}/V\right]$ e $\left[ppm/V\right]$, parte por milhão por volts.
- 4. Obtenção da quantidade de realimentação necessária à manutenção das oscilações. Note que neste oscilador à cristal, a realimentação é controlada pela resistência série do cristal na ressonância.
 - a. Reduza a tensão de alimentação até o limiar onde as oscilações cessem (observadas à saída de Q2), mantendo as oscilações neste limite. Lembre-se que o g_m (transcondutância do transistor) depende de V_{CC} . Nesta condição, meça a amplitude das oscilações no coletor de Q2 e a tensão C.C. no emissor de Q1.
 - b. Estime a resistência série do cristal, admitindo que nesta condição o ganho de malha é igual a 1. Considere o efeito de R_2 em paralelo com r_{e1} no cálculo da atenuação.
 - c. Obtenha (calcule) o fator de mérito do circuito carregado, Q_{Load} .
 - d. Medida do ganho real do amplificador.
 - i. Remova o cristal.
 - ii. Injete um sinal senoidal (gerador de RF) no emissor de Q1; ajuste o sinal para a f_{osc} e regule o nível do sinal de modo que o sinal amplificado no emissor de Q2 não apresente distorção aparente.
 - iii. calcule o ganho como sendo a relação entre as amplitudes do sinal nos emissores de Q2 e Q1 (utilize pontas de prova X1, observando os dois pontos simultaneamente para evitar desbalanceamento no carregamento).
- Refaça o cálculo do índice de mérito do circuito oscilador a cristal com o ganho de malha obtido experimentalmente.

4. ANÁLISE

- 1. Refazer o projeto a partir dos valores dos componentes (freq. do cristal etc) disponíveis na montagem e comparar com os resultados experimentais. Considere $V_{CC}=12V$ (nominal).
 - a. Simular o circuito obtido utilizando simulador elétrico Spice ou similar.
 - b. Obter o Q^{Loaded} do oscilador a partir da análise espectral do oscilador à XTAL no Spice.
 - c. obter o Q^{Loaded} do oscilador através do cálculo teórico. Comparar com o resultado obtido anteriormene (Spice). Justifique possíveis discrepâncias

- 2. Qual o tipo de realimentação é utilizada para obter as oscilações?
- 3. O cristal opera no modo de ressonânia série ou paralelo ?
- 4. Quais as características de uma ponta de prova utilizadas com o osciloscópio, se conhecidas, para avaliar o efeito sobre a freq de oscilação de um circuito. Caso não se disponha das especificações da ponta de prova utilizada, utilize valores típicos. Proponha um método de medida levando-se em consideração o efeito da ponta de prova.
 - a. esta toplogia de oscilador é mais ou menos sensível ao efeito da ponta de prova em relação ao oscilador LC analisado na experiência anterior?
- 5. Analise os resultados obtidos experimentalmente e por simulação (Spice), observando e comparando a defasagem nos vários pontos da malha de realimentação do circuito oscilador, verificando a condição de fase, isto é: $\angle A.\beta = 0^o$.

5. APÊNDICES

5.1 Equações úteis

 $r_i = \frac{r_{\pi}}{\beta}$, com $\beta = \text{ganho de corrente base-coletor}$

$$r_{\pi} = \frac{kT}{q} \frac{\beta}{I_C} = \frac{0,026\beta}{I_C}$$

onde I_C = polarização DC de coletor; q = carga do eletron; k = constante de Boltzmann e T = temperatura; para temperatura ambiente, T = 290K \Longrightarrow kT/q = 0.026V.

Transcondutância: $g_m.r_\pi = \beta = \frac{qI_C}{kT} \approx 40I_C \ ou \approx 36I_C$

portanto, g_m é diretamente proporcional a I_C .