Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ingeniería Eléctrica Departamento de Control y Robótica

Laboratorio de

Fundamentos de Instrumentación Biomédica, Gpo 2. Profesor: Armando Salomón Hernández Delgado M.I.

Lab2:Introducción al uso de Hardware para Adquisición de Señales Analógicas.

**Objetivo:** El alumno conocerá y aplicará la plataforma de Hardware Arduino para su posterior implementación en un sistema de medición automática.

# Trabajo Previo:

- 1. Instalar el ambiente de programación Arduino IDE.
- 2. En el ambiente de programación de Arduino explique qué es el Programa principal, Loop, bucle o lazo infinito.
- 3. ¿Cuáles son los rangos de operación del ADC del Arduino?
- 4. Explique en qué consiste una Conversión Analógico/Digital
- 5. Explique en qué consiste una conversión A/D con un circuito de aproximaciones sucesivas.
- 6. Explique qué es el Período de muestreo (Teorema de muestreo de Nyquist).
- 7. Probar la instalación del IDE y Drivers de la tarjeta Arduino: En el ambiente de programación Arduino, implemente los programas de ejemplo Blink y AnalogReadSerial (Ubicados en *Archivo → Ejemplos → Básicos*).
- 8. Registre en la siguiente tabla, para qué sirve cada función así como sus parámetros

| Función                  | Descripción |  |
|--------------------------|-------------|--|
| pinMode(PIN, Modo);      |             |  |
| digitalWrite(PIN, State) |             |  |
| digitalRead(PIN)         |             |  |
| delay(tiempo)            |             |  |

1. Registre en la siguiente tabla, para qué sirve cada función así como sus parámetros

| Función                  | Descripción |
|--------------------------|-------------|
| Serial.begin(9600)       |             |
| analog.Read(A4)          |             |
| Serial.print(dato)       |             |
| Serial.println(dato,FMT) |             |
| Serial.write(dato)       |             |

2. Implementar en la protoboardel circuito resistivo y el multiplexor analógico de la práctica 1 para medir voltajes entre nodos.

### Material:

### Hardware

Circuito resistivo y el multiplexor analógico de la práctica 1

1 Tarjeta de desarrollo Arduino

El mapa de pines (pinout o pinmap) con las funciones alternas para la tarjeta

1 Potenciómetro 10Kohm, o sensor analógico, por ejemplo: acelerómetro analógico MMA7361.

LEDs, Resistencias 330Ohm, PushButtons, Protoboard

### Software

Instalar en la PC o Laptop el ambiente de programación Arduino, Terminal serial RealTerm. En caso de ser necesario llevar el software a otra PC, portar los programas en una USB.

### Desarrollo:

# 1. Manejo de entradas/salidas digitales del uC.

a) Implemente un circuito con push botton para que cada vez que se presione el botón, se envíe una señal '1' lógico a la terminal 4 del Arduino configurada como entrada. Escriba un nuevo programa para encender el LED cada vez que se presiona el botón.

# 2. Empleo del ADC del uC y envío de datos al puerto serie del PC.

Implemente el programa para muestreo de señales con el ADC. La señal de entrada es una senoidal de 1Vpp@60 Hz + offset de 2.5V

# 3. Lectura automática de varios canales analógicos.

Empleando el circuito resistivo y el multiplexor, registre con el Arduino los voltajes de cada nodo. En el programa implementado, realice las operaciones necesarias para calcular automáticamente el volumen simulado. El programa debe ejecutarse de forma continua.

## 4. Visualización/Despliegue de datos.

Empleando el puerto serie del Arduino, envíar el resultado de volumen calculado.

#### Resultados.

Incluya diagramas, figuras, gráficas, aspectos particulares de implementación o dificultades con ésta, tablas de resultados.

### Conclusiones.

Referencias.

