La crittografia simmetrica

Milani Francesco 5AI

Introduzione alla crittografia

La crittografia è la branca della crittologia che tratta delle "scritture nascoste", ovvero dei metodi per rendere un messaggio "offuscato", in modo da non essere comprensibile a persone non autorizzate a leggerlo.

Consente di:

- Identificare un utente;
- Autenticare un messaggio;
- Firmare digitalmente un messaggio;

Due processi principali:

- cifratura: processo attraverso il quale un messaggio viene reso incomprensibile;
- decifratura: processo inverso della cifratura, attraverso il quale un messaggio cifrato viene reso comprensibile.

Regola di cifratura:

- regola vera e propria → algoritmo di criptazione
- parametri → chiave

Schemi crittografici:

- chiave di criptazione uguale a chiave di decriptazione → schema simmetrico

- chiave di criptazione diversa a chiave di decriptazione → schema asimmetrico

Crittoanalisi

La crittoanalisi è lo studio dei metodi per ottenere il significato di informazioni cifrate, senza aver accesso diretto all'informazione stessa.

Principio di Kerchoffs:

- La chiave è l'elemento fondamentale

Corollario di Shannon:

- "Il nemico conosce il sistema"

Proprietà fondamentali di Shannon:

- Confusione
- Diffusione

Cifrari a chiave simmetrica

- DES
 - 1976
 - Horst Feisel
- 3-DES
 - 1999
 - IBM

- IDEA
 - 1991
 - Xuejja Lai James L. Massey
- AES
 - 1997
 - Vincent Rijmen JoanDaemen

DES – Data Encryption Standard

- Cifrario a blocchi
- Chiave segreta a 64 bit: 8 controllo di parità
 - 56 utili
- Messaggio: diviso in blocchi da 8 byte
 - codifica in ASCII di ogni blocco, per ottenere blocchi da 64 bit
- Struttura dell'algoritmo : Permutazione iniziale
 - Divisione dei blocchi in due metà di 32 bit
 processati in maniera alternata → "rete di Feistel"
 - Applicazione della funzione Feistel per 16 round consecutivi
 - Permutazione finale

DES – Data Encryption Standard

Funzione Feistel

Consiste di 4 passi:

- Espansione
- Miscelazione con la chiave
- Sostituzione
- Permutazione o Trasposizione

Funzione creata rispettando i principi di Claude Shennon:

- Espansioni, miscelazioni, sostituzioni e permutazioni forniscono una "confusione" del messaggio con la chiave, quindi scarsamente attaccabile attraverso crittoanalisi.

3-DES – Triple DES

- Cifrario a blocchi
- Introdotto per sostituire il DES non più sicuro
- Composto da 3 passi di cifratura DES consecutivi
- Utilizza 3 chiavi: 168 bit utili
 - 24 bit di controllo
- Migliore rispetto al DES per la lunghezza tripla della chiave
- Compatibile con DES normale

3-DES – Triple DES

- Struttura dell'algoritmo: Cifrazione con la prima chiave
 - Decifrazione con la seconda chiave
 - Cifrazione con la terza chiave
- La decifrazione viene eseguita per poter essere compatibile con DES
- 3 combinazioni di chiavi: k1, k2, k3 diverse
 - k1 = k3, k2 diversa (112 bit di sicurezza)
 - -k1 = k2 = k3 (solo per DES)

IDEA – International Data Encryption Algorithm

- Cifrario a blocchi
- Introdotto per sostituire il DES non più sicuro
- Simile al DES: Chiave a 128 bit
 - Messaggio diviso in blocchi da 64 bit
- Cifrario a chiave segreta più utilizzato nei software commerciali di crittografia, per la sua velocità e sicurezza

IDEA – International Data Encryption Algorithm

- Chiave: 128 bit divisi in 8 sottochiavi da 16 bit
- Messaggio: 64 bit divisi in 4 blocchi da 16 bit
- Struttura dell'algoritmo: Serie di 8 round durante i quali si eseguono
 combinazioni di tre operazioni
 su numeri a 16 bit
- Operazioni eseguite: XOR (oppure OR esclusivo)
 - Addizione senza riporto modulo 2¹⁶
 - Moltiplicazione modulo 2¹⁶ +1
- Rotazione della chiave: Chiave divisa in 16 bit ad ogni passaggio
 - Utilizzo di 6 chiavi, quindi di 96 bit dei 128 totali
 - Dopo ogni passaggio viene ruotata di 25 bit a sinistra, riprendendo i primi 6 blocchi di 16 bit

AES – Advanced Encryption Standard

- Cifrario a blocchi
- Standard USA
- Progettato sulla base di tre caratteristiche: resistenza
 - velocità e compattezza
 - semplicità progettuale

Creato per il concorso indetto dal NIST
 per la sostituzione del DES come standard

Valutato dal NIST secondo due giudizi:

- Prima valutazione: sicurezza
 - costo
 - caratteristiche dell'algoritmo
 - caratteristiche dell'implementazione
- Seconda valutazione: sicurezza generale
 - implementazioni software
 - ambienti con spazio limitato
 - crittografia e decrittografia
 - agilità della chiave
 - versatilità e flessibilità
 - potenzialità di sfruttamento del parallelismo

AES – Advanced Encryption Standard

- Messaggio: diviso in blocchi da 128 bit
- Chiave: può essere di 128, 192 o 256 bit
- Matrici 4x4 chiamate "stati" quando la chiave è a 128 bit.

Struttura dell'algoritmo:

- Passaggio iniziale: Add Round Key
- 10 round composti da 4 operazioni: Substitute Bytes
 - Shift Rows
 - Mix Columns
 - Add Round Key
- L'ultimo round salta il passaggio Mix Columns

Vantaggi e svantaggi degli algoritmi simmetrici

Vantaggi

- Velocità di esecuzione
- Potenza di calcolo bassa

I sistemi a cifratura asimmetrica sono molto più lenti e richiedono una potenza di calcolo maggiore a causa delle chiavi più lunghe

Svantaggi

Distribuzione della chiave

I sistemi a cifratura asimmetrica sono superiori in quanto non è necessario concordare chiavi di cifratura

