# Lecture 4a:

# **Code Complexity**

Discussing Algorithm Efficiency

#### Algorithm and Analysis

#### Algorithm

A step-by-step procedure for solving a problem

#### Analysis of Algorithm

- To evaluate rigorously the resources (time and space) needed by an algorithm and represent the result of the evaluation with a formula
- We focus more on time requirement in our analysis
- The time requirement of an algorithm is also called the time complexity of the algorithm

#### Measure Actual Running Time?

- We can measure the actual running time of a program
  - Use wall clock time or insert timing code into program

- However, running time is not meaningful when comparing two algorithms:
  - a. Coded in different languages
  - Using different data sets
  - c. Running on different computers

### Counting Operations

- Instead, we count the number of operations
  - e.g. arithmetic, assignment, comparison, etc.

- Counting an algorithm's operations is a way to assess its efficiency
  - An algorithm's execution time is related to the number of operations it requires

# Example: Counting Operations

Total Ops = 
$$\mathbf{A} + \mathbf{B} = \sum_{i=1}^{n} 100 + \sum_{i=1}^{n} (\sum_{j=1}^{n} 2)$$
  
=  $100n + \sum_{i=1}^{n} 2n = 100n + 2n^2 = 2n^2 + 100n$ 

[ TIC1002 AY2021S2 L4a ]

## Example: Counting Operations

- Knowing the number of operations required by the algorithm, we can state that
  - Algorithm X takes <u>2n<sup>2</sup> + 100n</u> operations to solve problem of size <u>n</u>

- If the time t needed for one operation is known, then we can state
  - Algorithm X takes  $(2n^2 + 100n)t$  time units

### Example: Counting Operations

- However, time t is directly dependent on the factors mentioned earlier
  - E.g. different languages, compilers and computers

- Instead of tying the analysis to actual time t, we can state
  - Algorithm X takes time that is proportional to 2n² + 100n for solving problem of size n

## Approximation of Analysis Results

- Suppose the time complexity of
  - Algorithm **A** is  $3n^2 + 2n + \log n + 30$
  - Algorithm **B** is  $0.39n^3 + n$
- Intuitively, we know Algorithm A will outperform B
  - When solving larger problem, i.e. larger n
- The dominating term 3n<sup>2</sup> and 0.39n<sup>3</sup> can tell us approximately how the algorithms perform
- The terms  $n^2$  and  $n^3$  are even simpler and preferred
- These terms can be obtained through asymptotic analysis

### **Asymptotic Analysis**

- An analysis of algorithms that focuses on
  - a. Analyzing problems of large input size
  - b. Consider only the leading term of the formula
  - c. Ignore the coefficient of the leading term

[ TIC1002 AY2021S2 L4a ]

#### The Big-O Notation: Definition

Algorithm A is of O(f(n))if there exist a constant k, and a positive integer  $n_0$ such that Algorithm A requires no more than k \* f(n) time units to solve a problem of size  $n >= n_0$ 



#### The Big-O Notation

- When problem size is larger than n<sub>0</sub>, Algorithm A is bounded from above by k \* f(n)
- Observations
  - n<sub>0</sub> and k are not unique
  - There are many possible f(n)



### Example: Finding $n_0$ and k

- Given complexity of Algorithm A is  $2n^2 + 100n$
- Claim: Algorithm A is of  $O(n^2)$
- Solution
  - $2n^2 + 100n < 2n^2 + n^2 = 3n^2$  whenever n > 100
  - Set the constants to be k = 3 and  $n_0 = 101$
  - By definition, we say **Algorithm A** is  $O(n^2)$
- Questions
  - Can we say A is  $O(2n^2)$  or  $O(3n^2)$ ?
  - Can we say A is  $O(n^3)$ ?

#### **Growth Terms**

- By asymptotic analysis, it is clear that:
  - Coefficient of the f(n) can be absorbed into the constant k
  - E.g. A is  $O(3n^2)$  with constant  $k_1$ 
    - $\rightarrow$  A is  $O(n^2)$  with constant  $k = k_1 * 3$
  - So, f(n) can be reduced to function with coefficient of 1 only
- Such a term is called a growth term
- Ordered list of the commonly seen growth terms:

$$O(1) < O(lg(n)) < O(n) < O(n lg(n)) < O(n^2) < O(n^3) < O(2^n)$$
"slowest"

- "lg" = log<sub>2</sub>
- In big-O, log functions of different bases are all the same (why?)

## Problem: Arithmetic Progression

#### Given:

■ N: A positive integer number

#### Your tasks:

- 1. Calculate the sum of 1 + 2 + 3 + ... + N
- 2. Give two different solutions if possible
- 3. Try to figure out the Big-O of your solutions

#### Problem: N-Unique

#### Given:

- Original: a string of N characters
- nCopy: maximum occurrences of lower case letter

#### Your tasks:

- 1. Write a function to do this "filtering"
- 2. Try to figure out the Big-O of your solution

| original                       | nCopy | result                      |
|--------------------------------|-------|-----------------------------|
| "abcdef!!abc, cba defa bcaba." | 1     | "abcdef!!, ."               |
| "abcdef!!abc, cba defa bcaba." | 2     | "abcdef!!abc, def ."        |
| "abcdef!!abc, cba defa bcaba." | 3     | "abcdef!!abc, cba def ."    |
| "abcdef!!abc, cba defa bcaba." | 4     | "abcdef!!abc, cba defa bc." |

#### Summary

- Algorithm analysis
  - Time complexity
- Counting operations
- Asymptotic Analysis
  - Big-O notation
- Common growth terms