Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No	•••••
---------------	-------

Faculty of Engineering End Sem Examination Dec-2023 RA3CO23

Strength of Materials for Mechanical Engineers
Programme: B.Tech. Branch/Specialisation: RA

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of
Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if
necessary. Notations and symbols have their usual meaning.

necess	sary. I	Notations and symbols have the	eir usual meani	ng.	
Q.1	i. The maximum shear stress in a Mohr's Circle is equal to its			e is equal to its	1
		(a) Area (b) Radius ((c) Diameter	(d) Circumference	
	ii.	What will be the modulus of	of rigidity if	the value of modulus of	1
		elasticity is 200 and Poisson's ratio is 0.25?			
		(a) 70 (b) 80 ((c) 125	(d) 250	
	iii. At the point of contraflexure, the value of bending moment is				1
		(a) Zero (b) Maximum ((c) Minimum	(d) Can't be determined	
	iv.	Shear stress distribution over r	ectangular sec	etion will be	1
		(a) Parabolic (b) Elliptical ((c) Triangular	(d) Trapezoidal	
	v.	What are the units of torsional	rigidity?		1
		(a) $N-mm^2$ (b) N/mm	(c) N-mm	(d) N	
	vi. Which of the following function can the spring perform?		ng perform?	1	
		(a) Store energy(b) Absorb shock(c) Measure force(d) All of these		ock	
				e	
	vii. In cantilever beams, the slope is at fixed end.		fixed end.	1	
		(a) Maximum (b) Zero	(c) Minimum	(d) Uniform	
	viii.	. Elastic curve is also known as			1
		(a) Refraction curve	(b) Reflection	curve	
		(c) Deflection curve	(d) Newton cu	rve	
	ix. The cylinder has a tendency to split up along due			along due to	1
		circumferential stress.			
		(a) Area (b) Radius ((c) Diameter	(d) Length	
	х.	In thin cylinders, the thickness	ss should be _	times of internal	1
		diameter.			
		(a) 1/40 (b) 1/15 ((c) 1/30	(d) 1/20	

P.T.O.

What are principal planes and principal stresses? 2 Q.2 i. Explain thermal stress and thermal strain. iii. Derive the expression for extension of a circular tapered bar due to 6 axial load. OR iv. A rod of steel 60 mm wide & 15 mm thick is 8 m long. It extends by 6 5.31 mm when an axial pull of 120 kN is applied on it. Find the Young's Modulus of Elasticity for steel. What are the assumptions made in theory of simple bending? Q.3 i. ii. Derive the relation between bending moment and shear force in a 8 beam. What do you mean by point of contraflexure? OR iii. A rectangular beam 200 mm deep and 300 mm wide is simply 8 supported over a span of 8 m. What uniformly distributed load per meter the beam may carry, if the bending stress is not to exceed 120 N/mm². Q.4 i. Define the following terms: Torsional Rigidity, Polar modulus of 3 section, Spring Index. Derive the equation $\frac{T}{I} = \frac{\tau}{R} = \frac{G\theta}{L}$, where the symbols have their usual 7 meanings. OR iii. A close coiled helical spring of 10 cm mean diameter is made up of 7 1 cm diameter rod and has 20 turns. The spring carries an axial load of 200 N. Determine the shearing stress induced in spring material. Also determine the axial deflection due to this load. Take the value of shear modulus as 84 GPa. Explain the moment area method? Where it is conveniently used? O.5 i. A beam of length 6 m is simply supported at its ends. It carries a 6 uniformly distributed load of 10 kN/m as shown in figure. Determine the deflection of the beam at its mid-point. Also find the maximum deflection and position of maximum deflection. Take EI = $4.5 \times 10^5 \text{ N/mm}^2$ **←1 m→** 6m

OR iii. Describe the Macaulay's method for deflection of beams.

6

- Q.6 Attempt any two:
 - i. Define the term hoop stress and longitudinal stress of a thin shell? 5 Show that in thin cylinder shells subjected to internal fluid pressure, the circumferential stress is twice the longitudinal stress.

[3]

ii. A thin cylindrical shell of 120 cm diameter, 1.5 cm thick and 6 m long is subjected to internal fluid pressure of 2.5 MPa. If the value of $E = 2 \times 10^5$ N/mm² and $\mu = 0.3$, calculate hoop stress, longitudinal stress, change in diameter, change in length and change in volume.

5

iii. Describe the lames theorem for thick cylindrical shells.

[4]

Marking Scheme

RA3CO23 (T)-Strength of Materials for Mechanical Engineers

Q.1	i) (b) Radius	1 Marks	1
	ii) (b) 80	1 Marks	1
	iii) (a) Zero	1 Marks	1
	iv) (a) Parabolic	1 Marks	1
	v) (a) N-mm ²	1 Marks	1
	vi) (d) All of the mentioned	1 Marks	1
	vii (b) Zero	1 Marks	1
	vii (c) Deflection curve	1 Marks	1
	` '	1 Marks	1
	ix) (d) Length		
	x) (d) 1/20	1 Marks	1
0.2	i Daineinel aleman	1 M. J.	2
Q.2	i. Principal planes	1 Marks	2
	Principal stresses	1 Marks	_
	ii. Thermal stress	1 Marks	2
	Thermal strain	1 Marks	_
	iii. Diagram	1 Marks	6
ΩD	Derive the expression	5 Marks	~
OR	iv. As per attempt	6 Marks	6
Ω 2	: Assumetions (at least 4)	2 Maulza	2
Q.3	i. Assumptions (at least 4)	2 Marks	2
	ii. Derive the relation	6 Marks	8
OR	Point of contraflexure	2 Marks 8 Marks	8
OK	iii. As per attempt	o Iviaiks	o
0.4	i Torgional Disidity	1 Marks	3
Q.4	i. Torsional Rigidity Polar modulus of section	1 Marks	3
	Spring Index.	1 Marks	
	ii. Diagram	1 Marks	7
	Proper meaning of symbols	1 Marks	,
	Derive the equation	5 Marks	
OR	iii. Mention proper given values	1 Marks	7
	Shearing stress induced in spring material	3 Marks	
	Axial deflection.	3 Marks	
Q.5	i. Explain the moment area method?	2 Marks	4
	Where it is conveniently used?	2 Marks	

OR	 ii. Deflection of the beam at its mid-point. The maximum deflection and Position of maximum deflection. iii. Diagram Explanation Expression 	2 Marks 2 Marks 2 Marks 1 Marks 3 Marks 2 Marks	6
0.6	•		_
Q.6	i. Hoop stressLongitudinal stress of a thin shell	1 Marks 1 Marks	5
	Proof	3 Marks	
	ii. Hoop stress,	1 Marks	5
	Longitudinal stress,	1 Marks	
	Change in diameter,	1 Marks	
	Change in length and	1 Marks	
	Change in volume.	1 Marks	
OR	iii. Diagram	1 Marks	5
	Explanation	2 Marks	
	Expression	2 Marks	

P.T.O.