1-7 In-Class Exercise

1. Find all values of x for which A is invertible.

$$A = \begin{bmatrix} x - \frac{1}{2} & 0 & 0 \\ x & x - \frac{1}{3} & 0 \\ x^2 & x^3 & x + \frac{1}{4} \end{bmatrix}$$

From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero. Therefore, the given lower triangular matrix is invertible for any real number x such that

$$x \neq \frac{1}{2}$$
, $x \neq \frac{1}{3}$, and $x \neq -\frac{1}{4}$.

1-7 Suggested Exercise

1. Compute the product by inspection.

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} (-1)(3)(5) & 0 & 0 \\ 0 & (2)(5)(-2) & 0 \\ 0 & 0 & (4)(7)(3) \end{bmatrix} = \begin{bmatrix} -15 & 0 & 0 \\ 0 & -20 & 0 \\ 0 & 0 & 84 \end{bmatrix}$$

2. Use what you have learned in this section about multiplying by diagonal matrices to compute the product by inspection.

a.
$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix}$$
 b.
$$\begin{bmatrix} r & s & t \\ u & v & w \\ x & y & z \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

3. Show that if A is a symmetric $n \times n$ matrix and B is any $n \times m$ matrix, then the following products are symmetric:

$$B^TB$$
, BB^T , B^TAB

Because $(AB)^T = B^T A^T$. Therefore we have:

$$\left(B^TB\right)^T = B^T\left(B^T\right)^T = B^TB,$$

$$\left(BB^T\right)^T = \left(B^T\right)^TB^T = BB^T, \text{ and }$$

$$\left(B^TAB\right)^T = \left(B^T\left(AB\right)\right)^T = \left(AB\right)^T\left(B^T\right)^T = B^TA^TB = B^TAB \text{ since } A \text{ is symmetric.}$$

4. Find a diagonal matrix *A* that satisfies the given condition.

$$A^{-2} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For example
$$A = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 or $\begin{bmatrix} -\frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix}$, etc.

- 5. Let A be an $n \times n$ symmetric matrix.
 - a) Show that A^2 is symmetric.
 - **b)** Show that $2A^2 3A + I$ is symmetric.

a) Because
$$(AB)^T = B^T A^T$$

Therefore,
$$(A^2)^T = (AA)^T = A^T A^T = (A^T)^2 = A^T A^T = A^T$$

which shows that A^2 is symmetric.

b)

$$\left(2A^{2} - 3A + I\right)^{T} \underset{\text{Th. }}{=} 2\left(A^{2}\right)^{T} - 3A^{T} + I^{T} \underset{\text{Th. }}{=} 2\left(A^{T}\right)^{2} - 3A^{T} + I^{T} \underset{\text{are symmetric}}{=} 2A^{2} - 3A + I$$

which shows that $2A^2 - 3A + I$ is symmetric.

- **6.** Let $A = [a_{ij}]$ be an $n \times n$ matrix. Determine whether A is symmetric.
 - **a.** $a_{ij} = i^2 + j^2$ **b.** $a_{ij} = i^2 j^2$
 - **c.** $a_{ij} = 2i + 2j$ **d.** $a_{ij} = 2i^2 + 2j^3$

- (a) $a_{ji} = j^2 + i^2 = i^2 + j^2 = a_{ij}$ for all i and j therefore A is symmetric.
- **(b)** $a_{ji} = j^2 i^2$ does not generally equal $a_{ij} = i^2 j^2$ for $i \neq j$ therefore A is not symmetric (unless n = 1).
- (c) $a_{ji} = 2j + 2i = 2i + 2j = a_{ij}$ for all i and j therefore A is symmetric.
- (d) $a_{ji} = 2j^2 + 2i^3$ does not generally equal $a_{ij} = 2i^2 + 2j^3$ for $i \neq j$ therefore A is not symmetric (unless n = 1).

7. Find an upper triangular matrix that satisfies

$$A^3 = \begin{bmatrix} 1 & 30 \\ 0 & -8 \end{bmatrix}$$

For a general upper triangular 2×2 matrix $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ we have

$$A^{3} = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$

$$= \begin{bmatrix} a^2 & ab+bc \\ 0 & c^2 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = \begin{bmatrix} a^3 & a^2b+(ab+bc)c \\ 0 & c^3 \end{bmatrix} = \begin{bmatrix} a^3 & (a^2+ac+c^2)b \\ 0 & c^3 \end{bmatrix}$$

Setting $A^3 = \begin{bmatrix} 1 & 30 \\ 0 & -8 \end{bmatrix}$ we obtain the equations $a^3 = 1$, $(a^2 + ac + c^2)b = 30$, $c^3 = -8$.

The first and the third equations yield a=1, c=-2.

Substituting these into the second equation leads to (1-2+4)b=30, i.e., b=10.

We conclude that the only upper triangular matrix A such that $A^3 = \begin{bmatrix} 1 & 30 \\ 0 & -8 \end{bmatrix}$ is $A = \begin{bmatrix} 1 & 10 \\ 0 & -2 \end{bmatrix}$.