

CLOUD COMPUTING

CLOUD SECURITY IV

Security Issues in Collaborative SaaS Cloud

PROF. SOUMYA K. GHOSH
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
IIT KHARAGPUR

Security Issues in Cloud Computing

- Unique security features:
 - Co-tenancy
 - Lack of control on outsourced data and application
- General concerns among cloud customers [Liu'11]:
 - Inadequate policies and practices
 - Insufficient security controls
- Customers use cloud services to serve their clients
- Need to establish trust relationships
- Beneficial to both stakeholders

Security Responsibilities

SaaS Cloud-based Collaboration

- APIs for sharing resources/information
 - Service consumer(customers): human users, applications, organizations/domains,
 etc.
 - Service provider: SaaS cloud vendor
- SaaS cloud-centric collaboration: valuable and essential
 - Data sharing
 - Problems handled: inter-disciplinary approach
- Common concerns:
 - Integrity of data, shared across multiple users, may be compromised
 - Choosing an "ideal" vendor

SaaS Cloud-based Collaboration

- Types of collaboration in multi-domain/cloud systems:
 - Tightly-coupled or federated
 - Loosely-coupled
- Challenges: securing loosely-coupled collaborations in cloud environment
 - Security mechanisms: mainly proposed for tightly-coupled systems
 - Restrictions in the existing authentication/authorization mechanisms in clouds

Motivations and Challenges

- SaaS cloud delivery model: maximum lack of control
- No active data streams/audit trails/outage report
 - Security: Major concern in the usage of cloud services
- Broad scope: address security issues in SaaS clouds
- Cloud marketplace: rapid growth due to recent advancements
- Availability of multiple service providers
 - Choosing SPs from SLA guarantees: not reliable
 - Inconsistency in service level guarantees
 - Non-standard clauses and technical specifications
- Focus: selecting an "ideal" SaaS cloud provider and address the security issues

Motivations and Challenges

- Online collaboration: popular
- Security issue: unauthorized disclosure of sensitive information
 - Focus: selecting an ideal SaaS cloud provider and secure the collaboration service offered by it
- Relevance in today's context: loosely-coupled collaboration
 - Dynamic data/information sharing
- Final goal (problem statement): selecting an ideal SaaS cloud provider and securing the loosely-coupled collaboration in its environment

Objective - I

A framework (SelCSP) collaboration service pr

Customer #J

Request: Select a
SaaS CSP for
business outsourcing

orthy and competent

SaaS Clouds

SelCSP: Framework to select Trusworthy & Competent CSP

PTEL ONLINE ERTIFICATION COURSES

Objective - II

Select requests (for accessing local resources) from anonymous users, such that both access risk and security uncertainty due to information sharing are kept low.

Objective - III

Formulate a heuristic for solving the IDRM problem, such that minimal excess privilege is granted

Objective - IV

Selection of Trustworthy and Competent SaaS Cloud Provider for Collaboration

Trust Models in Cloud

Challenges

- Most of the reported works have not presented mathematical formulation or validation of their trust and risk models
- Web service selection [Liu'04][Garg'13] based on QoS and trust are available
 - Select resources (e.g. services, products, etc.) by modeling their performance
- Objective: Model trust/reputation/competence of service provider

Service Level Agreement (SLA) for Clouds

- Challenges:
 - Majority of the cloud providers guarantee "availability" of services
 - Consumers not only demand availability guarantee but also other performance related assurances which are equally business critical
 - Present day cloud SLAs contain non-standard clauses regarding assurances and compensations following a violation[Habib'11]
- Objective: Establish a standard set of parameters for cloud SLAs, since it reduces the perception of risk in outsourced services

SelCSP Framework

SelCSP Framework - Overview

Recommending Access Requests from Anonymous Users for Authorization

Risk-based Access Control (RAC)

- RAC: Gives access to subjects even though they lack proper permissions
 - Goal: balance between access risk and security uncertainty due to information sharing
 - Flexible compared to binary MLS
- Challenges
 - Computing security uncertainty: not addressed
 - Authorization in existing RAC system: based on risk threshold and operational need.
 - Operational need: not quantified.
 - Discards many requests which potentially maximizes information sharing

Distributed RAC using Fuzzy Inference System

Mapping of Authorized Permissions into Local Roles

Inter-Domain Role Mapping (IDRM)

- Finds a minimal set of role which encompasses the requested permission set.
 - No polynomial time solution
 - Greedy search-based heuristics: suboptimal solutions
- Challenges:
 - There may exist multiple minimal role sets
 - There may not exist any role set which exactly maps all permissions
- Two variants of IDRM proposed: *IDRM-safety, IDRM-availability*
- Objective: formulate a novel heuristic to generate better solution for the IDRMavailability problem.
- Minimize the number of additional permissions

Distributed Role Mapping Framework

Dynamic Detection and Removal of Access Policy Conflicts

Access Conflicts

Cyclic Inheritance Conflict

Violation of SoD Constraint

Objective

- Dynamic detection of conflicts to address security issue
- Removal of conflicts to address availability issue

Proposed: distributed secure collaboration framework

- Role Sequence Generation
 - Interoperation request: pair of entry (from requesting domain), exit (from providing domain) roles
 - Role sequence: ordered succession of entry and exit roles
 - Role cycle:
 - Safe role cycle
 - Unsafe role cycle

Conflict Detection

- Detection of inheritance conflict
 - Necessary condition: at least one exit role
 - Sufficient condition: current entry role is senior to at least one exit role
- Detection of SoD constraint violation
 - Necessary condition: at least one exit role
 - Sufficient condition: current entry role and at least one exit role forms conflicting pair

Cyclic Inheritance

- Two cases arise:
 - Exactly matched role set exists
 - RBAC hybrid hierarchy
 - I-hierarchy, A-hierarchy, IA-hierarchy
 - Replacing *IA-relation* with *A-relation* between exit role in previous domain and entry role in current domain
 - No-exactly matched role set exists
 - Introduce a virtual role

Cyclic Inheritance: Inheritance Conflict Removal Rule for Exactly Matched Role

Cyclic Inheritance: Inheritance Conflict Removal Rule for No-Exactly Matched Role

SoD Constraint Violation

- Two cases: similar to removal of inheritance conflict
 - Additional constraint: identifying conflicting permission between collaborating role and entry role in current domain
 - Conflicting permission
 - Objects are similar
 - Hierarchical relation exists between access modes
- Remove conflicting permission from permission set of collaborating role

SoD Constraint Violation: SoD Conflict Removal Rule for Exactly Matched Role

SoD Constraint Violation: SoD Conflict Removal Rule for No-Exactly Matched Role

Summary

Secure Collaboration SaaS Clouds: A Typical Approach

- Selection of Trustworthy and Competent SaaS Cloud Provider for Collaboration
- Recommending Access Requests from Anonymous Users for Authorization
- Mapping of Authorized Permissions into Local Roles
- Dynamic Detection and Removal of Access Policy Conflicts

Thank You!

