

Wait... there is Image Sensor

CCD Sensor

Analog sensors, high power

Why Do We Need Them?

Convert photons to digital signals

CMOS Sensor

Digital sensors, low power

Sony IMX Image Sensor

Shutter

Controls the amount of light

Global Shutter

Better for moving subjects

Rolling Shutter

Better for static subjects

Pixels in each image can have a brightness intensity between 0 and 255.

Human Vision v/s Computer Vision

Human Vision

Our eyes depend on Light

Conversion

Image gets divided into a matrix

Computer Vision

Computers depend on Pixels

How Computers See

What is a Pixel?

Pixeled Picture of Jack Sparrow

That's a Pixel!

Small colored units/squares

Binary code for red, blue, green

Combined for continuous image

Color Spaces aka Filters

GRAYSCALE

HSV

LAB

HDR, RAW and Image Compression

High range, greater detail.

RAW

Uncompressed, no effects, flexible to edit.

HDR Images

Compression

Generally, in JPEG, smaller size, effects.

RAW Images

Original JPG 824 KB 50% Lossy Compression 76 KB 80% Lossy Compression

Compressed Image

Original Image —

Advantage: Gives us Depth

Stereo Vision Camera Setup

Results

Stereo Geometry

 $P(X_L,Y_L,Z_L)$

$$d = x_L - x_R$$

$$x_L = f \frac{x_L}{x_L}$$

$$x_R = f \frac{x_R}{x_R}$$

f is focal length b is baseline length

$$Z_R = Z_L = Z$$
 and $X_L = X_R + b$

$$d = x_L - x_R = f \frac{X_R + b}{Z} - X_R = f \frac{X_R + b - X_R}{Z} = f \frac{b}{Z}$$

$$d = f \frac{b}{z}$$
$$z = f \frac{b}{d}$$

As disparity increases, Z value is smaller.
As disparity decreases, point goes further away.

Left Camera

Right Camera

360° Images

360 Camera Setup on Google Street View Car

Streamlit

References

- https://www.photoreview.com.au/tips/shooting/mechanical-vs-electronic-shutters/
- https://thinklucid.com/tech-briefs/understanding-digital-image-sensors/
- https://smartphones.gadgethacks.com/how-to/everything-you-should-know-about-rolling-shutter-your-phones-camera-0196244/
- https://www.canon.co.nz/explore/camera-lenses-explained-jenn-cooper
- https://opticsmag.com/what-is-liquid-lens-technology/
- https://www.arrow.com/en/research-and-events/articles/introduction-to-bayer-filters
- https://en.wikipedia.org/wiki/Bayer_filter
- https://en.wikipedia.org/wiki/Channel_(digital_image)#:~:text=An%20RGB%20image%20has%20threecomputer%20displays%20and%20image%20scanners.
- https://www.wtamu.edu/~cbaird/sq/2015/01/22/why-are-red-yellow-and-blue-the-primary-colors-in-painting-but-computer-screens-use-red-green-and-blue/
- http://files.acdsystems.com/english/support/canvas/canvas-software-downloads/pdf-tutorials/color_channels.pdf
- http://files.acdsystems.com/english/support/canvas/canvas-software-downloads/pdf-tutorials/color channels.pdf
- https://santanderglobaltech.com/en/computer-vision-vs-human-vision-this-is-how-computers-see/
- https://xd.adobe.com/ideas/principles/emerging-technology/what-is-computer-vision-how-does-it-work/
- https://www.analyticsinsight.net/computer-vision-vs-human-vision-filling-the-void-is-indeed-difficult/
- https://www.pixelmator.com/tutorials/resources/pixels-explained/
- https://www.mathworks.com/help/images/understanding-color-spaces-and-color-space-conversion.html
- https://en.wikipedia.org/wiki/Google_Earth

