Flusso geodetico e frazioni continue

Davide Modesto

Relatore Prof. Carlo Carminati

Università di Pisa

Anno accademico: 2021/2022

1 Frazione continua e mappa di Gauss

Frazione continua Mappa di Gauss

2 Semipiano di Poincaré

Azione di $\mathrm{PSL}_2(\mathbb{R})$ su \mathbb{H} Azione di $\mathrm{PSL}_2(\mathbb{R})$ su $\mathcal{T}^1\mathbb{H}$ Camminini geodetici nel semipiano di Poincaré

- 3 Flusso geodetico
- 4 Coordinate naturali
- 6 Ergodicità

Ergodicità mappa di Gauss Velocità asintotica di convergenza dei convergenti Una frazione continua è un'espressione della forma

$$a_0 + rac{1}{a_1 + rac{1}{a_2 + rac{1}{a_3 + rac{1}{a_4 + \cdots}}}}$$

che indicheremo anche con

$$[a_0; a_1, a_2, a_3, \ldots]$$

con $a_n \in \mathbb{N}$ per $n \geq 1$ e $a_0 \in \mathbb{N}_0$. Scriveremo anche

$$[a_0; a_1, a_2, \ldots, a_n]$$

per indicare le frazioni finite

$$a_0 + rac{1}{a_1 + rac{1}{a_2 + \dots + rac{1}{a_{n-1} + rac{1}{a_n}}}}$$

I numeri an sono i quozienti parziali della frazione continua.

Teorema

Fissiamo una successione $(a_n)_{n\geq 0}$ con $a_0\in \mathbb{N}_0$ e $a_n\in \mathbb{N}$ per $n\geq 1$. Siano p_n,q_n interi coprimi tali per cui

$$\frac{p_n}{q_n}=[a_0;a_1,a_2,\ldots,a_n]$$

allora

$$p_{n+1} = a_{n+1}p_n + p_{n-1}, \ q_{n+1} = a_{n+1}q_n + q_{n-1}$$

Corollario

$$[a_0; a_1, \ldots, a_n] = \frac{p_n}{q_n} = a_0 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{q_{n-1}q_n},$$

con

$$q_n \ge 2^{(n-2)/2}$$

per ogni $n \geq 1$.

Quindi

$$[a_0; a_1, a_2, \ldots] = \lim_{n \to \infty} [a_0; a_1, \ldots, a_n]$$
$$= \lim_{n \to \infty} \frac{p_n}{q_n} = a_0 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{q_{n-1}q_n}$$

Sia $Y = [0,1] \backslash \mathbb{Q}$ e definiamo la mappa

$$T \colon Y \longrightarrow Y$$
$$x \longmapsto \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor$$

Definiamo per $n \ge 1$

$$a_n(x) = \left\lfloor \frac{1}{T^{n-1}x} \right\rfloor$$
 ovvero $T^n(x) = \frac{1}{T^{n-1}(x)} + a_n(x)$

Lemma

Per ogni $x \in Y$ gli $(a_n(x))$ sono i quozienti parziali dello sviluppo in frazione continua di x, ovvero

$$x = [a_1(x), a_2(x), \ldots].$$

Il Semipiano di Poincarè è lo spazio metrico (\mathbb{H}, d)

- 2 $d(z_0, z_1) = \inf_{\phi} L(\phi) \text{ con } \phi(0) = z_0 \text{ e } \phi(0) = z_1$

dove

$$L(\phi) = \int_0^1 \|(\phi(t), \phi'(t))\|_{\phi(t)} dt$$

con $\|\cdot\|_z$ indotto da

$$\langle (z,u),(z,v)\rangle_z:=\frac{\langle u,v\rangle}{(\Im z)^2}$$

Lemma

 $\mathrm{SL}_2(\mathbb{R})$ agisce su \mathbb{H} mediante la trasformazione di Möbius così definita

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto \frac{az+b}{cz+d} \tag{1}$$

 $-I_2$ agisce banalmente su \mathbb{H} , quindi (1) definisce un'azione del $\mathrm{PSL}_2(\mathbb{R})$ su \mathbb{H} .

La derivata Dg di g definita come

$$Dg: T \mathbb{H} \longrightarrow T \mathbb{H}$$
$$(z, v) \longmapsto (g(z), g'(z)v)$$

estende l'azione di $\mathrm{PSL}_2(\mathbb{R})$ a $T\mathbb{H} = \mathbb{H} \times \mathbb{C}$. Inoltre

$$\langle Dg((z, v_0)), Dg((z, v_1)) \rangle_{g \cdot z} = \langle (z, v_0), (z, v_1) \rangle_z$$

quindi definisce un'azione su $T^1\mathbb{H} = \{(z, v) \in T\mathbb{H} | ||v||_z = 1\}$. Inoltre l'azione è semplicemente transitiva quindi

$$\mathrm{PSL}_2(\mathbb{R}) \leftrightarrow T^1(\mathbb{H})$$
$$g \mapsto Dg((i,i))$$

Definizione (Geodetica semipiano di Poincaré)

Un cammino ϕ è una geodetica se $L(\phi) = d(\phi(0), \phi(1))$.

Lemma

Siano $z_0, z_1 \in \mathbb{H}$ allora

$$\phi \colon [0, d(z_0, z_1)] \longrightarrow \mathbb{H}$$

$$t \longmapsto g \cdot (e^t i)$$

con $g \in \mathrm{PSL}_2(\mathbb{R})$ è l'unica geodetica di velocità unitaria da z_0 a z_1 .

Proposizione

Il supporto di ogni geodetica è contenuto in una retta verticale oppure una semicirconferenza con centro reale.

Definizione (Flusso geodetico)

Definisco il flusso geodetico su $T^1\mathbb{H}$ come

$$g: \mathbb{R} \times T^1 \mathbb{H} \to T^1 \mathbb{H}$$
$$(t, (z, v)) \mapsto (\phi_{(z, v)}(t), \phi'_{(z, v)}(t))$$

con $\phi_{(z,v)}$ l'unica geodetica di velocità unitaria t.c. $(\phi_{(z,v)}(0),\phi'_{(z,v)}(0))=(z,v)$.

Inoltre $g_t(k \cdot (z, v)) = Dk(g_t(z, v))$ con $k \in \mathrm{PSL}_2(\mathbb{Z})$ quindi g_t passa al quoziente definendo un flusso \widetilde{g}_t su $\mathrm{PSL}_2(\mathbb{Z}) \setminus T^1 \mathbb{H}$ e quindi su $X_2 = \mathrm{PSL}_2(\mathbb{Z}) \setminus \mathrm{PSL}_2(\mathbb{R})$ che si scrive esplicitamente come $\widetilde{R}_{a_t}(\pi(g)) = \pi(ga_t^{-1})$ con

$$a_t = \begin{pmatrix} e^{-t/2} & 0 \\ 0 & e^{t/2} \end{pmatrix}$$

Per ogni $(z, v) \in T^1 \mathbb{H}$ con $v \neq \pm i$ sono associati due numeri reali $y_{(z,v)}$ e $\widetilde{y}_{(z,v)}$ in modo univoco

$$y_{(z,v)} := \lim_{t \to +\infty} \phi_{(z,v)}(t), \quad \widetilde{y_{(z,v)}} := \lim_{t \to -\infty} \phi_{(z,v)}(t)$$

Definiamo ora

$$C_{+} = \{(ib, v) | \Re v > 0, \Im v < 0, y_{(z,v)} \in [0, 1), \widetilde{y} \le -1 \}$$

$$C_{-} = \{(ib, v) | \Re v < 0, \Im v < 0, y_{(z,v)} \in [0, -1), \widetilde{y} \ge 1 \}$$

$$C = C_{+} \cup C_{-}$$

Ci sono delle coordinate naturali (y, z, ϵ) per i punti (z, v) di C

$$\epsilon = -\operatorname{sgn}(\widetilde{y}_{(z,v)})$$

$$y = \epsilon y_{(z,v)}$$

$$z = \frac{1}{\epsilon(y_{(z,v)} - \widetilde{y}_{(z,v)})}$$

Siccome $\pi | C$ è bigettiva posso estenderle a $\pi(C)$.

Definiamo il tempo di ritorno a $\pi(C)$ rispetto al flusso geodetico come

$$r_C(x) = \min\{t|t>0, \widetilde{g}_t(x) \in \pi(C)\}$$

Definiamo
$$\widetilde{Y} = \overline{Y} \times \{\pm 1\}$$
 con $\overline{Y} = \{(y, z) | y \in [0, 1] \setminus \mathbb{Q}, \ z \in [0, 1]\}.$

Lemma

Sia $x(y,z,\epsilon)$ l'unico elemento di $\pi(C)$ di coordinate naturali $(y,z,\epsilon)\in\widetilde{Y}$ allora $r_C(x(y,z,\epsilon))<+\infty$ e le coordinate naturali di $\widetilde{g}_{r_C(x)}\left(x(y,z,\epsilon)\right)$ sono $\left(\left\{\frac{1}{y}\right\},y(1-yz),-\epsilon\right)$.

Posso quindi definire la mappa di primo ritorno in coordinate naturali come segue

$$\widetilde{T}: \widetilde{Y} \longrightarrow \widetilde{Y}$$

$$(y, z, \epsilon) \longmapsto \left(\left\{\frac{1}{y}\right\}, y(1-yz), -\epsilon\right)$$

e la corrispondente mappa dei tempi di primo ritorno

$$\widetilde{r}\colon \widetilde{T}\longrightarrow \widetilde{T}$$
 $(y,z,\epsilon)\longmapsto r_C(x_2((y,z,\epsilon)))$

Sia (X, A, μ) uno spazio di probabilità.

Definizione

Una mappa $T: X \to X$ misurabile si dice che *preserva* μ se $\mu(T^{-1}(A)) = \mu(A)$ per ogni $A \in \mathcal{A}$. In questo caso si dice che la misura μ è T-invariante e (X, \mathcal{A}, μ, T) un sistema che preserva la misura.

Definizione

Una mappa T che preserva μ si dice *ergodica* se per ogni $A \in \mathcal{A}$

$$T^{-1}(A) = A \implies \mu(A) = 0 \circ \mu(A) = 1$$

In alternativa diciamo che μ è T-ergodica.

Teorema Ergodico di Birkhoff

Teorema

Sia (X,\mathcal{A},μ,T) un sistema che preserva la misura. Se $f\in\mathscr{L}^1_\mu$, allora

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}f\left(T^{j}x\right)=f^{*}(x)$$

converge μ -quasi ovunque e in L^1_μ a una funzione T-invariante $f^* \in \mathcal{L}^1_\mu$. Inoltre se T è ergodica vale

$$f^*(x) = \int f d\mu$$

 μ -quasi ovunque.

Sia m_{X_2} la misura su X_2 indotta dal volume iperbolico

$$dV = \frac{1}{y^2} dx dy d\theta$$

definito su $T^1\mathbb{H}$ allora

Teorema

Ogni elemento non banale del flusso (ovvero, la mappa \widehat{R}_{a_t} con $t \neq 0$) è una trasformazione ergodica su X_2 rispetto a m_{X_2}

Lemma (Flusso speciale)

Sia μ una misura di probabilità T-invariante e $r: Y \to \mathbb{R}^+$ una funzione misurabile. Allora posso definire un flusso sullo spazio

$$X_r = \{(y, s) \mid y \in Y, 0 \le s < r(y)\}$$

(con la misura m_r definita dalla restrizione di $\mu \times m_{\mathbb{R}}$ a X_r) come

$$T_t(y,s) = \begin{cases} (y,s+t) & 0 \leq s+t < r(y), \\ (Ty,s+t-r(y)) & 0 \leq s+t-r(y) < r(Ty), \\ \vdots & \end{cases}$$

Lemma

Se m_r è finita, allora la mappa T è ergodica se e solo se il flusso $\{T_t\}$ è ergodico.

Teorema

La mappa di Gauss $T(y) = \{\frac{1}{y}\}$ su $Y = [0,1] \setminus \mathbb{Q}$ è ergodica rispetto alla misura μ .

Lemma

 $\widetilde{\mu}=\frac{1}{2\log(2)}(\lambda\times\nu)$ definita su \widetilde{Y} con λ la misura di Lebesgue su \overline{Y} e ν quella che conta i punti su $\{\pm 1\}$, è una misura di probabilità \widetilde{T} -invariante.

Lemma

Se \widetilde{T} è ergodica rispetto a $\widetilde{\mu}$ su \widetilde{Y} allora T è ergodica rispetto a μ su $Y=[0,1]\backslash \mathbb{Q}$, con $d\mu=\frac{1}{\log(2)}\frac{1}{1+x}$.

Dimostrazione Teorema.

E' sufficiente dimostrare l'ergodicità di $\widetilde{\mathcal{T}}$ rispetto a $\widetilde{\mu}.$

Siano $X_{\widetilde{r}}$ e $m_{\widetilde{r}}$ dati dalla costruzione del flusso speciale di $(\widetilde{T}, \widetilde{\mu})$ rispetto a \widetilde{r} .

Allora $\phi(y, z, \epsilon, s) = \widetilde{R}_{a_s}((x(y, z, \epsilon)))$ definisce un'immersione di $X_{\widetilde{r}}$ in X_2 .

Siccome $\phi_*(m_{\overline{r}}) = cm_{X_2}$ con c > 0 finito e $\phi(T_t(y, z, \epsilon, s)) = \widetilde{R}_{a_t}(\phi(y, z, \epsilon, s))$ allora T_t è ergodica poichè \widetilde{R}_{a_t} lo è.

Concludo applicando la caratterizzazione di ergodicità per il flusso speciale.

Proposizione

Per quasi ogni $x \in [0,1] \backslash \mathbb{Q}$ allora

$$\lim_{n\to\infty} \frac{1}{n} \log q_n(x) = \frac{\pi^2}{12\log 2} \tag{2}$$

е

$$\lim_{n \to \infty} \frac{1}{n} \log \left| x - \frac{p_n(x)}{q_n(x)} \right| \longrightarrow -\frac{\pi^2}{6 \log 2}$$
 (3)

Dimostrazione.

Per induzione su n si dimostra

$$-\frac{1}{n}\log q_n(x) = \frac{1}{n}\sum_{j=0}^{n-1}\log\left(T^jx\right) - R_n$$

con $R_n \to 0$. Concludo applicando il Teorema di Birkhoff

$$\lim_{n \to \infty} \frac{1}{n} S_n = \frac{1}{\log 2} \int_0^1 \frac{\log x}{1+x} dx = -\frac{\pi^2}{12 \log 2}.$$

Il punto (3) segue da (2) osservando che

$$\log q_n + \log q_{n+1} \le -\log \left| x - \frac{p_n}{q_n} \right| \le \log q_n + \log q_{n+2}.$$