Bike Buyers Analysis

Arrhat Maharjan

2025-03-28

Task 1. Data Cleaning and Preparation

library(ggplot2)

##

In this section, we'll clean the bike buyers dataset and prepare it for analysis. This includes handling missing values, checking for outliers, and ensuring proper data types.

```
library(corrplot)
# task 1 - data cleaning and preparation
# load the dataset
bike_buyers.dataset <- read.csv("./bike_buyers.csv", stringsAsFactors = TRUE)</pre>
# replace the empty value with NA
bike_buyers.dataset[bike_buyers.dataset == ""] <- NA</pre>
# make a copy of the dataset
dataset <- bike_buyers.dataset
# structure of the dataser
str(dataset)
## 'data.frame':
                    1000 obs. of 13 variables:
                      : int 12496 24107 14177 24381 25597 13507 27974 19364 22155 19280 ...
   $ Marital.Status : Factor w/ 3 levels "","Married","Single": 2 2 2 3 3 2 3 2 NA 2 ...
                      : Factor w/ 3 levels "", "Female", "Male": 2 3 3 NA 3 2 3 3 3 3 ...
##
   $ Gender
## $ Income
                             40000 30000 80000 70000 30000 10000 160000 40000 20000 NA ...
## $ Children
                      : int 1 3 5 0 0 2 2 1 2 2 ...
## $ Education
                      : Factor w/ 5 levels "Bachelors", "Graduate Degree", ..: 1 4 4 1 1 4 3 1 5 4 ...
                      : Factor w/ 5 levels "Clerical", "Management", ...: 5 1 4 4 1 3 2 5 1 3 ...
## $ Occupation
## $ Home.Owner
                      : Factor w/ 3 levels "", "No", "Yes": 3 3 2 3 2 3 NA 3 3 3 ...
## $ Cars
                      : int 0 1 2 1 0 0 4 0 2 1 ...
   $ Commute.Distance: Factor w/ 5 levels "0-1 Miles","1-2 Miles",..: 1 1 4 5 1 2 1 1 5 1 ...
                      : Factor w/ 3 levels "Europe", "North America",..: 1 1 1 3 1 1 3 1 3 1 ...
##
  $ Region
                      : int 42 43 60 41 36 50 33 43 58 NA ...
   $ Age
## $ Purchased.Bike : Factor w/ 2 levels "No", "Yes": 1 1 1 2 2 1 2 2 1 2 ...
#summary of the dataset
summary(dataset)
```

Income

Children

Gender

Marital.Status

```
: 0
                                                Min. : 10000
                                                                  Min. :0.00
## Min. :11000
                                         : 0
   1st Qu.:15291
                    Married:535
                                   Female:489
                                                 1st Qu.: 30000
                                                                  1st Qu.:0.00
                                                 Median : 60000
   Median :19744
                    Single:458
                                   Male :500
                                                                  Median:2.00
         :19966
                    NA's : 7
                                   NA's : 11
                                                      : 56268
                                                                        :1.91
##
   Mean
                                                 Mean
                                                                  Mean
##
   3rd Qu.:24471
                                                 3rd Qu.: 70000
                                                                  3rd Qu.:3.00
##
   Max.
         :29447
                                                 Max.
                                                        :170000
                                                                  Max.
                                                                         :5.00
##
                                                 NA's
                                                        :6
                                                                  NA's
                                                                         :8
                                                                    Cars
##
                  Education
                                       Occupation Home. Owner
##
   Bachelors
                       :306
                              Clerical
                                             :177
                                                        : 0
                                                               Min.
                                                                      :0.000
##
   Graduate Degree
                       :174
                                                               1st Qu.:1.000
                              Management
                                             :173
                                                    No :314
  High School
                       :179
                              Manual
                                             :119
                                                    Yes :682
                                                               Median :1.000
  Partial College
                       :265
                                            :276
                                                    NA's: 4
                                                               Mean
                              Professional
                                                                      :1.455
   Partial High School: 76
                                                               3rd Qu.:2.000
                              Skilled Manual:255
##
                                                                      :4.000
                                                               Max.
##
                                                               NA's
                                                                      :9
##
      Commute.Distance
                                 Region
                                                 Age
                                                            Purchased.Bike
##
   0-1 Miles :366
                                     :300
                                                  :25.00
                                                            No :519
                       Europe
                                           Min.
   1-2 Miles :169
                       North America:508
                                            1st Qu.:35.00
                                                            Yes:481
   10+ Miles :111
                       Pacific
                                    :192
                                           Median :43.00
                                           Mean
   2-5 Miles :162
                                                 :44.18
##
   5-10 Miles:192
                                            3rd Qu.:52.00
##
                                           Max.
                                                   :89.00
##
                                           NA's
                                                   :8
#check number of NAs
colSums(is.na(dataset))
##
                 ID
                      Marital.Status
                                                Gender
                                                                 Income
##
                  0
                                                    11
##
           Children
                                            {\tt Occupation}
                                                             Home.Owner
                           Education
##
                  8
##
               Cars Commute.Distance
                                                Region
                                                                    Age
##
                  9
                                                     0
                                                                      8
##
    Purchased.Bike
##
# omit the row with any NA values
dataset <- na.omit(dataset)</pre>
# drop unused factor levels
dataset <- droplevels(dataset)</pre>
#check number of NAs
colSums(is.na(dataset))
##
                 ID
                      Marital.Status
                                                Gender
                                                                 Income
##
                  0
                                                     0
##
           Children
                                            Occupation
                                                             Home.Owner
                           Education
##
                                                     0
                                                                      0
##
               Cars Commute.Distance
                                                Region
                                                                    Age
##
                                                     0
                                   Ω
                                                                      0
##
    Purchased.Bike
##
```

```
# save cleaned dataset
write.csv(dataset, "new_data.csv", row.names = FALSE)
# structure of cleaned dataset
str(dataset)
```

```
952 obs. of 13 variables:
## 'data.frame':
## $ ID
                    : int 12496 24107 14177 25597 13507 19364 22173 12697 25323 23542 ...
   $ Marital.Status : Factor w/ 2 levels "Married", "Single": 1 1 1 2 1 1 1 2 1 2 ...
##
## $ Gender : Factor w/ 2 levels "Female", "Male": 1 2 2 2 1 2 1 1 2 2 ...
                    : int 40000 30000 80000 30000 10000 40000 30000 90000 40000 60000 ...
## $ Income
## $ Children
                     : int 1 3 5 0 2 1 3 0 2 1 ...
## $ Education
                    : Factor w/ 5 levels "Bachelors", "Graduate Degree", ...: 1 4 4 1 4 1 3 1 4 4 ...
## $ Occupation
                   : Factor w/ 5 levels "Clerical", "Management", ..: 5 1 4 1 3 5 5 4 1 5 ...
                    : Factor w/ 2 levels "No", "Yes": 2 2 1 1 2 2 1 1 2 1 ...
## $ Home.Owner
## $ Cars
                     : int 0 1 2 0 0 0 2 4 1 1 ...
## $ Commute.Distance: Factor w/ 5 levels "0-1 Miles", "1-2 Miles", ...: 1 1 4 1 2 1 2 3 2 1 ...
## $ Region
                  : Factor w/ 3 levels "Europe", "North America", ..: 1 1 1 1 1 1 3 3 1 3 ...
                     : int 42 43 60 36 50 43 54 36 35 45 ...
## $ Age
## $ Purchased.Bike : Factor w/ 2 levels "No", "Yes": 1 1 1 2 1 2 2 1 2 2 ...
## - attr(*, "na.action")= 'omit' Named int [1:48] 4 7 9 10 13 28 50 99 111 118 ...
    ..- attr(*, "names")= chr [1:48] "4" "7" "9" "10" ...
```

The structure stays the same after cleaning the data.

The data cleaning process involved:

- 1. Converting empty strings to NA values
- 2. Removing rows with any NA values
- 3. Dropping unused factor levels
- 4. Saving the cleaned dataset for future use

Task 2. Summary of Variables

In this section, we'll look at the variables in our dataset using descriptive statistics and visualizations to understand the data.

Summary of Variables:

ID (Numerical): Unique identifier (not useful for analysis). 952 entries after cleaning the data.

Marital.Status (Categorical): Represents the marital status of an individual. 518 Married individuals, 434 Single.

```
# define color pallette for our visual representation
colors <- c("skyblue", "coral1", "darkseagreen", "mediumpurple", "darkorange1")

# pie chart marital status distribution
marital_count <- table(dataset$Marital.Status)
marital_percent <- round(100 * marital_count / sum(marital_count), 1)
martial_label <- paste(names(marital_count), "\n", marital_percent, "%")
pie(marital_count,
    labels = martial_label,
    col = colors,
    main = "Marital Status Distribution")</pre>
```

Marital Status Distribution

Gender (Categorical): Represents the gender of the individual. 473 Females, 479 Males.

```
# pie chart gender distribution
gender_count <- table(dataset$Gender)
gender_percent <- round(100 * gender_count / sum(gender_count), 1)
gender_label <- paste(names(gender_count), "\n", gender_percent, "%")
pie(gender_count,
    labels = gender_label,
    col = colors,
    main = "Gender Distribution")</pre>
```

Gender Distribution

Marital. Status and Gender have a fairly balanced distribution with marital (49.7% Female, 50.3% Male) and marital status (54.4% Married, 45.6% Single). **Income (Numerical)**: Annual income of the individual (continuous). Ranges from \$10,000 to \$170,000, with a median of \$60,000 and mean \$55,903.

```
# histogram income distribution
ggplot(dataset, aes(x = Income)) +
  geom_histogram(
    binwidth = 10000,
    fill = "skyblue",
    color = "black",
    alpha = 1
    ) +
  labs(title = "Income Distribution", x = "Income", y = "Frequency")
```

Income Distribution

Children (Numerical): Number of children (discrete). Minimum 0, maximum 5, with an average of 1.89 children per household.

Children

Education (Categorical): Indicates the highest level of education completed. Most individuals have a Bachelor's degree (30.7%/292) or Partial College education (26.5%/252).

```
# bar chart education distribution
ggplot(dataset, aes(x = Education)) +
  geom_bar(fill = "skyblue") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(title = "Education Distribution", x = "Education", y = "Count")
```

Education Distribution

Occupation (Categorical): Job category of the individual. Professionals (27.6%/263) and Skilled Manual workers (25.4%/242) are the most common occupations.

```
# bar chart occupation distribution
ggplot(dataset, aes(x = Occupation)) +
  geom_bar(fill = "skyblue") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(title = "Occupation Distribution", x = "Occupation", y = "Count")
```

Occupation Distribution

Home.Owner (Categorical): Indicates whether the individual owns a home. Most individuals (68.5%/652) own their homes while the rest(300) do not.

```
# pie chart for home ownership
home_owner_count <- table(dataset$Home.Owner)
home_owner_percent <- round(100 * home_owner_count / sum(home_owner_count), 1)
home_owner_label <- paste(names(home_owner_count), "\n", home_owner_percent, "%")
pie(home_owner_count,
    labels = home_owner_label,
    col = colors,
    main = "Home Ownership Distribution")</pre>
```

Home Ownership Distribution

Cars (Numerical): Number of cars owned (discrete). Most individuals own 1 or 2 cars, with a maximum being 4.

Distribution of Cars Owned

Commute. Distance (Categorical): Represents how far the person commutes daily. Most individuals (35.6%/339) have a short commute of 0-1 miles, followed by 5-10 miles (19.1%/182).

```
# pie chart for commute distance
commute_count <- table(dataset$Commute.Distance)
commute_percent <- round(100 * commute_count / sum(commute_count), 1)
commute_label <- paste(names(commute_count), "\n", commute_percent, "%")
pie(commute_count,
    labels = commute_label,
    col = colors,
    main = "Commute_Distance_Distribution")</pre>
```

Commute Distance Distribution

Region (Categorical): The geographical region where the individual lives. The dataset is skewed toward North America (51.1%/486), with Europe (30.0%/286) and Pacific (18.9%/180) having fewer representatives.

```
# pie chart for region
region_count <- table(dataset$Region)
region_percent <- round(100 * region_count / sum(region_count), 1)
region_label <- paste(names(region_count), "\n", region_percent, "%")
pie(region_count,
    labels = region_label,
    col = colors,
    main = "Regional Distribution")</pre>
```

Regional Distribution

Age (Numerical): Age of the individual (continuous). Ranges from 25 to 89, with a median age of 43 and mean of 44.26. Majority of the individuals in middle-age.

```
# histogram age distribution
ggplot(dataset, aes(x = Age)) +
geom_histogram(
  binwidth = 5,
  fill = "skyblue",
  color = "black",
  alpha = 1
) +
labs(title = "Age Distribution", x = "Age", y = "Frequency")
```

Age Distribution

Purchased.Bike (Categorical): Indicates whether the individual purchased a bike. The data shows a fairly balanced distribution with 47.9%/456 of individuals having purchased a bike and 52.1%/496 not having done so

```
# pie chart for bike purchase
bike_purchase_count <- table(dataset$Purchased.Bike)
bike_purchase_percent <- round(100 * bike_purchase_count / sum(bike_purchase_count), 1)
bike_purchase_label <- paste(names(bike_purchase_count), "\n", bike_purchase_percent, "%")
pie(bike_purchase_count,
    labels = bike_purchase_label,
    col = colors,
    main = "Bike Purchase Distribution")</pre>
```

Bike Purchase Distribution

Table 1: Summary of Variables

Variable	Description
ID	952 entries after cleaning the data
Marital Status	518 Married (54.4%), 434 Single (45.6%)
Gender	473 Females (49.7%), 479 Males (50.3%)
Income	Range: \$10,000-\$170,000, Median: \$60,000, Mean: \$55,903
Children	Range: 0-5, Mean: 1.89 children per household
Education	Most common: Bachelors (30.7%), Partial College (26.5%)
Occupation	Most common: Professional (27.6%), Skilled Manual (25.4%)
Home Owner	68.5% own a home, $31.5%$ do not
Cars	Most own 1 or 2 cars, maximum: 4
Commute Distance	Most common: 0-1 Miles (35.6%), 5-10 Miles (19.1%)
Region	North America: 51.1%, Europe: 30.0%, Pacific: 18.9%
Age	Range: 25-89 years, Median: 43, Mean: 44.26
Purchased Bike	47.9% purchased a bike, $52.1%$ did not

Task 3. Income Analysis

a. Income Distribution and Statistics

```
# summary statistics income
summary_stats <- data.frame(
   Mean = mean(dataset$Income),
   Median = median(dataset$Income),
   Variance = var(dataset$Income),
   SD = sd(dataset$Income)
)
summary_stats</pre>
```

```
## Mean Median Variance SD
## 1 55903.36 60000 951443858 30845.48
```

The distribution is right-skewed (positively skewed). Right-skewed nature can be confirmed from the mean (\$55,903.36) being lower than the median (\$60,000). Peak frequency occurs around \$60,000 and followed by \$40,000. Low frequency observations at higher income levels above \$100,000 and very low after \$140,000.

b. Bike Ownership by Income Level

```
# income ranges
income_groups <- cut(</pre>
  dataset$Income,
  breaks = c(0, 40000, 80000, 120000, 170000),
  labels = c(
    "Low 0-40k",
    "Medium 40k-80k",
    "High 80-120k",
    "Very High 120-170k"
 ),
  include.lowest = TRUE
# bike by income summary
bikebyincome_summary <- do.call(rbind, by(dataset, income_groups, function(x) {
  data.frame(
    Total = nrow(x),
    Purchased = sum(x$Purchased.Bike == "Yes"),
    Not_Purchased = sum(x$Purchased.Bike == "No")
 )
}))
bikebyincome_summary
```

```
##
                      Total Purchased Not_Purchased
## Low 0-40k
                        421
                                   194
                                                 227
                        396
                                   192
                                                 204
## Medium 40k-80k
## High 80-120k
                         96
                                   50
                                                  46
## Very High 120-170k
                                    20
                                                  19
                         39
```

Highest number of bike owners are low and medium income individuals. Although not much difference, high income individuals have a slightly higher bike ownership rate.

c. Income Outliers

Income Distribution Outliers

Most outliers are in the high income range.

d. Correlation with Bike Purchase

```
# data frame bike purchase correlation
cor_data <- data.frame(
    Marital.Status = as.numeric(factor(dataset$Marital.Status)),
    Gender = as.numeric(factor(dataset$Gender)),
    Income = as.numeric(as.character(dataset$Income)),
    Children = as.numeric(as.character(dataset$Children)),
    Education = as.numeric(factor(dataset$Education)),
    Home.Owner = as.numeric(factor(dataset$Home.Owner)),
    Cars = as.numeric(as.character(dataset$Cars)),
    Commute.Distance = as.numeric(factor(dataset$Commute.Distance)),
    Region = as.numeric(factor(dataset$Region)),
    Age = as.numeric(as.character(dataset$Age)),
    BikePurchase = ifelse(dataset$Purchased.Bike == "Yes", 1, 0)

# correlation matrix
correlation_matrix <- cor(cor_data)</pre>
```

```
# correlation graph
corrplot(
  correlation_matrix,
  method = "color",
  type = "full",
  addCoef.col = "black",
  tl.col = "black",
  tl.srt = 45
)
```


We can see that the highest correlation the attribute Purchased. Bike has other than itself is the field Age(0.54) followed by Cars(0.43); and the lowest being Home. Owner(-0.33).

```
#scatter plot age by bike
ggplot(subset(dataset, Purchased.Bike == "Yes"), aes(x = Purchased.Bike, y = Age, color = Purchased.Bik
geom_violin(fill = colors[1], color = "black", alpha = 0.6) +
geom_jitter(width = 0.3, alpha = 0.6) +
labs(title = "Age Correlation to Bike Purchased", x = "Bike Purchased", y = "Age") +
scale_color_manual(values = c(colors[3])) +
theme(axis.text.x = element_blank(), axis.ticks.x = element_blank())
```

Age Correlation to Bike Purchased

We can see in the visualization that the younger individuals have a higher number of bike owners.

Task 4. Income Distribution Compared to Age and Gender

```
# age group dataframe
age_group <- cut(
  dataset$Age,
  breaks = c(0, 35, 50, 100),
  labels = c("Young (18-35)", "Middle-aged (36-50)", "Senior (51+)")
)

# density plot income by age groups
ggplot(dataset, aes(x = Income, fill = age_group)) +
  geom_density(alpha = 0.5) +
  labs(title = "Income Density Distribution by Age Groups", x = "Income", y = "Density")</pre>
```

Income Density Distribution by Age Groups

We can see the younger individual mostly occupy the lower income category with the high density.

```
# density plot income by gender
ggplot(dataset, aes(x = Income, fill = Gender)) +
  geom_density(alpha = 0.5) +
  labs(title = "Income Density Distribution by Gender", x = "Income", y = "Density")
```

Income Density Distribution by Gender

The income between Male and Female is fairly balanced with a slight difference around certain income level like 0-25000 being higher for Female and 100000-125000 for Male.