```
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")

cake = pd.read_csv('xnas-itch-20240822.mbo.CAKE.csv',parse_dates=['ts_re
```

```
import matplotlib.pyplot as plt
```

cake.columns

```
cake['action'].unique()
```

```
array(['R', 'A', 'C', 'T', 'F'], dtype=object)
```

cake_trades=pd.read_csv('xnas-itch-20240822.tbbo.CAKE.csv',parse_dates=[

cake_trades.head()

								_
	ts_recv	ts_event	rtype	publisher_id	instrument_id	action	side	С
	2024-08-22 13:28:00.059387613+00:00	2024-08-22 13:28:00.059217193+00:00	1	2	2639	Т	N	С
	2024-08-22 13:28:00.059387613+00:00	2024-08-22 13:28:00.059217547+00:00	1	2	2639	Т	N	С
	2024-08-22 13:30:00.918500023+00:00	2024-08-22 13:30:00.918318809+00:00	1	2	2639	Т	N	С
	3 2024-08-22 13:30:05.131885094+00:00	2024-08-22 13:30:05.131717397+00:00	1	2	2639	Т	N	С
	2024-08-22 13:30:45.269318156+00:00	2024-08-22 13:30:45.269151493+00:00	1	2	2639	Т	А	С
4								•

```
ts_recv
                                                                   ts ε
0\ 2024-08-22\ 13:28:00.059387613+00:00\ 2024-08-22\ 13:28:00.059217193+6
1\ 2024-08-22\ 13:28:00.059387613+00:00\ 2024-08-22\ 13:28:00.059217547+0
2\ 2024-08-22\ 13:30:00.918500023+00:00\ 2024-08-22\ 13:30:00.918318809+6
3\ 2024-08-22\ 13:30:05.131885094+00:00\ 2024-08-22\ 13:30:05.131717397+6
4 2024-08-22 13:30:45.269318156+00:00 2024-08-22 13:30:45.269151493+6
          publisher_id instrument_id action side
                                                    depth
                                                           price
0
       1
                     2
                                  2639
                                            Т
                                                        0 38.76
                                                                    60
1
       1
                     2
                                  2639
                                            Τ
                                                        0 38.76
                                                                    40
2
                     2
                                                                  3061
       1
                                  2639
                                            Т
                                                 N
                                                        0 38.66
3
       1
                     2
                                            Τ
                                                        0 38.78
                                  2639
                                                 N
                                                                     34
                     2
4
       1
                                  2639
                                            Τ
                                                 Α
                                                        0 38.75
                                                                     1
   ts_in_delta sequence bid_px_00 ask_px_00 bid_sz_00 ask_sz_00
0
        170420 14286651
                              38.00
                                          40.53
                                                         1
                                                                 1000
                                                         1
1
        170066 14286652
                              38.00
                                          40.53
                                                                 1000
2
        181214 17284072
                              38.64
                                          39.36
                                                        95
                                                                  200
3
        167697
                17937927
                                          38.97
                                                                  100
                              38.60
                                                       234
                                                                   100
cake_trades.columns
Index(['ts_recv', 'ts_event', 'rtype', 'publisher_id', 'instrument_id'
       'action', 'side', 'depth', 'price', 'size', 'flags', 'ts_in_del
       'sequence', 'bid_px_00', 'ask_px_00', 'bid_sz_00', 'ask_sz_00',
       'bid_ct_00', 'ask_ct_00', 'symbol'],
      dtype='object')
#a.
cake_trades['dollar_vol']=cake_trades['price']*cake_trades['size']
dtv=cake_trades.groupby(cake_trades['ts_event'].dt.floor('min'))['dollar
dtv.plot(title='Dollar trading volume',logy=True)
<Axes: title={'center': 'Dollar trading volume'}, xlabel='ts_event'>
★ Download
```


<Figure size 640x480 with 1 Axes>

dtv.describe()

```
2.970000e+02
count
         2.912566e+04
mean
         1.748573e+05
std
         3.867000e+01
min
25%
         2.444520e+03
50%
         8.180130e+03
75%
         1.969411e+04
         2.895873e+06
max
Name: dollar_vol, dtype: float64
```

#b.
trade_counts_min=cake_trades.groupby(cake_trades['ts_event'].dt.floor('m

trade_counts_min.plot(title='No. of trades per min',logy=True)

<Axes: title={'center': 'No. of trades per min'}, xlabel='ts_event'>

★ Download

<Figure size 640x480 with 1 Axes>

trade_counts_min.describe()

count	297.000000
mean	10.218855
std	17.198638
min	1.000000
25%	3.000000
50%	7.000000
75%	12.000000
max	190.000000

Name: sequence, dtype: float64

order_counts_min=cake.groupby(cake['ts_event'].dt.floor('min'))['sequenc

order_counts_min.plot(logy=True)

<Axes: xlabel='ts_event'>

★ Download


```
#c.
open=cake_trades.iloc[0]['price']
open
38.76
close=cake_trades.iloc[-1]['price']
close
38.74
high=max(cake_trades['price'])
high
39.09
low=min(cake_trades['price'])
low
38.265
#d.
cake_vwap=cake_trades.groupby(cake_trades['ts_event'].dt.floor('min')).a
cake_vwap.plot()
<Axes: xlabel='ts_event'>
★ Download
```


cake_vwap.describe()

```
297.000000
count
          38.746883
mean
           0.136048
std
min
          38.286692
25%
          38.690647
50%
          38.737566
75%
          38.830000
          39.090000
max
dtype: float64
```

```
#e.
cake_trades['spread']=cake_trades['ask_px_00']-cake_trades['bid_px_00']
cake_trades['avl']=0
for index,row in cake_trades.iterrows():
    if(row['side']=='A'):
        row['avl']=row['bid_sz_00']
    elif(row['side']=='B'):
        row['avl']=row['ask_sz_00']
    else:
        row['avl']=row['bid_sz_00']+row['ask_sz_00']
```

cake_spread_min=cake_trades.groupby(cake_trades['ts_event'].dt.floor('mi

cake_spread_min.plot(logy=True)

<Axes: xlabel='ts_event'>

★ Download

<Figure size 640x480 with 1 Axes>

 $\begin{array}{l} {\sf cake_trades.loc[np.where(cake_trades['side']=='A')[0],'avl']=cake_trades \\ {\sf cake_trades.loc[np.where(cake_trades['side']=='B')[0],'avl']=cake_trades \\ {\sf cake_trades.loc[np.where(cake_trades['side']=='N')[0],'avl']=cake_trades \\ \end{array}$

cake_depth_min=cake_trades.groupby(cake_trades['ts_event'].dt.floor('min

cake_depth_min.plot()

<Axes: xlabel='ts_event'>

± Download

<Figure size 640x480 with 1 Axes>

test_depth=2*cake_spread_min.mean()

```
#h.
cake_trades['mid']=(cake_trades['ask_px_00']+cake_trades['bid_px_00'])/2
```

```
cake_mid_1s=cake_trades.groupby(cake_trades['ts_event'].dt.floor('s'))['
cake_tsp_1s=cake_trades.groupby(cake_trades['ts_event'].dt.floor('s'))['
```

```
cake_1s=pd.DataFrame({'mid price':cake_mid_1s,'transaction price':cake_t
cake_1s.plot()
cake_1s.describe()
```

	mid price	transaction price
count	749.000000	749.000000
mean	38.696509	38.696302
std	0.180203	0.178756
min	38.265000	38.270000
25%	38.630000	38.630000
50%	38.720000	38.715000
75%	38.810000	38.810000
max	39.265000	39.090000

	mid price	transaction price
count	749.000000	749.000000
mean	38.696509	38.696302
std	0.180203	0.178756
min	38.265000	38.270000
25%	38.630000	38.630000
50%	38.720000	38.715000
75%	38.810000	38.810000
max	39.265000	39.090000

★ Download

cake_mid_1m=cake_trades.groupby(cake_trades['ts_event'].dt.floor('min'))
cake_tsp_1m=cake_trades.groupby(cake_trades['ts_event'].dt.floor('min'))
cake_1m=pd.DataFrame({'mid price':cake_mid_1s,'transaction price':cake_t
cake_1m.plot()
cake_1m.describe()

	mid price	transaction price
count	749.000000	749.000000
mean	38.696509	38.696302
std	0.180203	0.178756
min	38.265000	38.270000
25%	38.630000	38.630000
50%	38.720000	38.715000
75%	38.810000	38.810000
max	39.265000	39.090000

	mid price	transaction price
count	749.000000	749.000000
mean	38.696509	38.696302
std	0.180203	0.178756
min	38.265000	38.270000
25%	38.630000	38.630000
50%	38.720000	38.715000
75%	38.810000	38.810000
max	39.265000	39.090000

★ Download

<Figure size 640x480 with 1 Axes>

```
#i.
cake_logret_mpq_1s=np.log(cake_mid_1s).diff()
cake_logret_mpq_1s.plot(title="Log returns per second-midquote")
cake_logret_mpq_1s.describe()
```

count 748.000000 mean -0.000026 std 0.000574

```
min -0.006772
25% -0.000257
50% 0.000000
75% 0.000256
max 0.004423
Name: mid, dtype: float64
```

★ Download


```
cake_logret_mpq_1m=np.log(cake_mid_1m).diff()
cake_logret_mpq_1m.plot(title="Log returns per minute-midquote")
cake_logret_mpq_1m.describe()
```

count	296.000000
mean	-0.000065
std	0.001068
min	-0.010368

25% -0.000389 50% 0.000000 75% 0.000386 max 0.004423

Name: mid, dtype: float64

★ Download


```
cake_logret_tsp_1s=np.log(cake_tsp_1s).diff()
cake_logret_tsp_1s.plot(title="Log returns per second-tx price")
cake_logret_tsp_1s.describe()
```

```
count 7.480000e+02
mean -6.900121e-07
std 6.591143e-04
min -2.583313e-03
25% -2.587155e-04
50% 0.000000e+00
```

75% 2.585148e-04 max 9.857408e-03

Name: price, dtype: float64

★ Download


```
cake_logret_tsp_1m=np.log(cake_tsp_1m).diff()
cake_logret_tsp_1m.plot(title="Log returns per minute-tx price")
cake_logret_tsp_1m.describe()
```

count	296.000000
mean	-0.000002
std	0.001116
min	-0.003094
25%	-0.000517
50%	0.000000
75%	0.000516

max 0.009857

Name: price, dtype: float64

★ Download

<Figure size 640x480 with 1 Axes>

```
#j.
#realized variance calculation
rv_mpq_1s=cake_logret_mpq_1s.var()
rv_mpq_1m=cake_logret_mpq_1m.var()
rv_ts_1s=cake_logret_tsp_1s.var()
rv_ts_1m=cake_logret_tsp_1m.var()
```

rv_mpq_1s

3.292514787501337e-07

```
rv_mpq_1m
```

1.1396518675140203e-06

```
rv_ts_1s
```

4.3443172611155505e-07

```
rv_ts_1m
```

1.2464683371154937e-06

```
#k.
x=pd.plotting.autocorrelation_plot(cake_logret_mpq_1s[1:])
x.plot(title='Midquote 1s acf plot')
```

[]

★ Download

x=pd.plotting.autocorrelation_plot(cake_logret_mpq_1m[1:])
x.plot(title='Midquote 1m acf plot')

[]

★ Download


```
x=pd.plotting.autocorrelation_plot(cake_logret_tsp_1s[1:])
x.plot(title='Transaction price 1s acf plot')
```

[]

★ Download

<Figure size 640x480 with 1 Axes>

```
x=pd.plotting.autocorrelation_plot(cake_logret_tsp_1m[1:])
x.plot(title='Transaction price 1m acf plot')
```

[]

