CSE 5319/6319 Homework 4

Due April 17, 5:00 p.m. on Canvas

- 1. KP p. 266, problem 14.18.
- 2. Similar to p. 25-26 of notes 03.2.mech.pdf, analyze the Allocation Algorithm for Downward Sloping Valuations for following $v_i(k)$ values for buyer i. Note that $v_i(k) = v_{i1} + v_{i2} + \ldots + v_{ik}$. The result is a table of clearing prices and allocations like the one at the top of p. 26.

	k															
	$v_i(k)$	0	1	2		3		4		5		6		7		8
	1	0	50 50	100 50												269
i	2	0	70	135		188		223		257		287		313		323
	3	0		65 115 55		160		200		236		263		287		304

3. Compute the VCG payments for the minimum spanning tree for this graph.

4. Determine the optimal fixed price for the following bids for copies of a digital good:

10 10 10 9 9 8 8 8 7 7 6 6 5 5 4 4 4 4 4 4