Photodiode (Bestrahlungsgesetz)

Lie.

Wir messen mit Hilfe einer Photodiode, wie die Lichtintensität vom Abstand zu einer kleinen Lampe abhängt (Bestrahlungs- oder Beleuchtungsgesetz).

Material:

Photodiode, Voltmeter, Widerstand, Glühlämpchen, optische Schiene, Rechner

1. Schaltung: Bauen Sie die folgende Schaltung auf und lassen Sie sie kontrollieren.

Die gemessene Spannung ist proportional zur Bestrahlungsstärke, falls der Widerstand R richtig gewählt wird. Die Bestrahlungsstärke oder Lichtintensität J ist definiert als auftreffende Strahlungsleistung pro Fläche, J = P/A, und hat die Einheit W/m².

2. Messung

- a) Fixieren Sie die Lampe an einem Ende der optischen Schiene. Richten Sie die Photodiode in Seite und Höhe so auf die leuchtende Lampe aus, dass eine möglichst grosse Spannung U angezeigt wird. Messen Sie dann die Spannung U als Funktion des Abstands r von der Photodiode zur Lichtquelle.
- b) Messen Sie den Einfluss des Umgebungslichtes, indem Sie die Lampe abdunkeln.

3. Auswertung

Bestimmen Sie mit dem Taschenrechner jene Regressionsfunktion U(r), die am Besten zu den Daten passt. Von der Theorie her erwartet man eine Potenzfunktion mit ganzzahligem Exponenten.

4. Aufgabe

a) Falls J(r) respektive U(r) eine Potenzfunktion ist, sollte in einer graphischen Darstellung von $log(U/U_0)$ gegen $log(r/r_0)$ eine Gerade erscheinen. Warum?

Wie gross ist die Steigung und welche Bedeutung hat sie?

Warum $log(U/U_0)$ und nicht einfach log(U)?

Hat die Wahl von U₀ und r₀ Einfluss auf die Steigung?

b) Sei P die Leistung, welche die kleine Lampe abstrahlt. Wie gross ist in der Theorie die Bestrahlungsstärke J im Abstand r? Passen Theorie und Experiment zusammen?