

PCT/IB04/51718

16 14011001718
PCT/IB04/51718

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

RECD 14 SEP 2004

WIPO PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

03103502.5

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

R C van Dijk

PRIORITY

DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Anmeldung Nr:
Application no.: 03103502.5
Demande no:

Anmeldetag:
Date of filing: 22.09.03
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Philips Intellectual Property & Standards
GmbH

20099 Hamburg
ALLEMAGNE
Koninklijke Philips Electronics N.V.
Groenewoudseweg 1
5621 BA Eindhoven
PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Verfahren zur Bestimmung eines Nullpunktes eines Stromsensors

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

H05B41/292

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of
filing/Etats contractants désignés lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL
PT RO SE SI SK TR LI

BESCHREIBUNG

Verfahren zur Bestimmung eines Nullpunktes eines Stromsensors

Die Erfindung betrifft ein Verfahren zur Bestimmung eines Nullpunktes eines Stromsensors in einer Schaltung zum Betreiben einer Gasentladungslampe.

5

Aus der US 4,734,624 ist eine solche elektronische Schaltung mit einem Wechselrichter bekannt. Der Wechselrichter weist vier Transistoren auf, von denen jeweils zwei in Reihe geschaltet sind und jeweils eine Halbbrücke bilden. Die beiden Halbbrücken sind parallel zwischen einem Betriebspotential und einem Bezugspotential geschaltet. Den einzelnen Transistoren ist jeweils eine Freilaufdiode parallel geschaltet. Die Halbbrücken fungieren als Wechselrichter und stellen einen rechteckförmigen Wechselstrom für den Betrieb der Gasentladungslampe bereit. Die Gasentladungslampe selber ist Bestandteil einer Reihenschaltung, die eine erste Spule, dieser nachgeschaltet die Gasentladungslampe und dieser wiederum nachgeschaltet eine zweite Spule aufweist.

10 15 Diese Reihenschaltung ist zwischen die Ausgänge der beiden Halbbrücken geschaltet. Die Reihenschaltung wird ergänzt durch einen Kondensator, welcher parallel zu der Gasentladungslampe und der zweiten Spule geschaltet ist. Die Gasentladungslampe ist eine UHP - oder HID - Lampe. Die Abkürzung UHP steht für den englischen Ausdruck Ultra High Pressure oder Ultra High Performance, zu deutsch Ultra Hochdruck oder Ultra Hochleistung. Die Abkürzung HID steht für den englischen Begriff High Intensity Discharge, zu deutsch Hoch Intensitäts Entladung. Die Schaltungen werden im wesentlichen für Daten- und Videoprojektoren verwendet. In den Schaltungen werden bipolare Stromsensoren zur Messung und Regelung des Lampenstromes benutzt. Der bipolare Stromsensor ist in der Reihenschaltung zwischen einer der Spulen und der Gasentladungslampe angeordnet. Vor dem Starten der Lampe wird das Signal des Sensors gemessen und dadurch der Nullpunkt festgelegt. Verschiebt sich der Nullpunkt während des Lampenbetriebs, zum Beispiel durch Erwärmung, bilden sich Amplituden von positiver und negativer Halbwelle des Lampenstromes unterschiedlich aus. Das führt zu Beeinträchtigungen der Lampenlebensdauer und auch zu sichtbaren Artefakten

im dargestellten Projektionsbild.

Der Erfindung liegt daher die Aufgabe zugrunde, ein einfaches Verfahren und eine einfache Schaltung zur Nullpunktsbestimmung während des Betriebes anzugeben.

5 Die Aufgabe wird gemäss der Merkmale der nebengeordneten Ansprüche 1, 8, 9 und 10 gelöst. Gemäß Anspruch 1 ist die Lösung dieser Aufgabe durch folgende Verfahrensschritte gekennzeichnet: der Strom durch den Sensor wird während einer ersten Halbwelle kurzzeitig ausgeschaltet und ein erster Messwert wird ermittelt, dann wird

10 der Strom durch den Sensor während einer zweiten, eine andere Polarität aufweisenden Halbwelle kurzzeitig ausgeschaltet und ein zweiter Messwert wird ermittelt, danach wird ein Mittelwert mittels der beiden Messwerte gebildet und dann wird der Nullpunkt mittels des Mittelwertes bestimmt, indem eine gewichtete Summe aus dem Mittelwert und dem bisher angenommenen Wert für den Sensornullpunkt (V_x) gebildet wird. Eine

15 zuverlässige Bestimmung des Nullpunktes, im folgenden auch als Sensornullpunkt bezeichnet, ist dann möglich, wenn der Strom im Sensor selbst auf andere Weise bekannt ist. Dazu wird während des Betriebes für eine kurze, für das Auge nicht sichtbare Zeit die Stromversorgung, zum Beispiel während der positiven Stromhalbwelle, dadurch abgeschaltet beziehungsweise unterbrochen, dass alle Leistungstransistoren

20 deaktiviert werden. Damit ist eine Stromauslastlücke erzeugt. Dadurch lässt sich erreichen, dass der Strom im Sensor innerhalb weniger Mikrosekunden auf Null fällt. Eine geeignete Zeitspanne ist zum Beispiel 100 μ s. Diese Zeitspanne ist lang genug, um den Strom im Sensor sicher auf Null zu bringen und erlaubt darüber hinaus ein weitgehendes Abklingen von Einschwingvorgängen in den Filtern der Strommessschaltung.

25 Ein völliges Einschwingen dauert jedoch unendlich lange, so dass nun nur noch Restwerte einer früheren Messung wirksam sind. Es wird nunmehr ein erster Messwert ermittelt. Um den Effekt von Restwerten früherer Messungen auszugleichen, wird in einer der folgenden, eine andere Polarität aufweisenden Halbwellen der Abschaltvorgang mit gleicher Dauer wiederholt. Der Restwert hat nun ein negatives Vorzeichen.

30 Es wird nunmehr ein zweiter Messwert ermittelt. In beiden Fällen ist aber der Sensornullpunkt als konstanter Anteil enthalten, so dass eine Mittelwertbildung einen verbesserten

serten Schätzwert für den Nullpunktsfehler, im folgenden auch als Abweichung vom Nullpunkt, als Sensoroffset oder als Offsetfehler bezeichnet, liefert. Ist der Sensoroffset schließlich korrekt ermittelt, ergeben sich auch keine weiteren Korrekturen mehr.

- 5 Um die Sichtbarkeit der Stromaustastlücken zu verringern, können in vorteilhafter Weise verschiedene weitere Maßnahmen angewendet werden. Das Auge ist besonders unempfindlich, wenn eine Stromaustastlücke, und damit eine Lichtmindermenge, in kurzem zeitlichen Abstand von einer entsprechenden zusätzlichen Lichtmenge ausgeglichen wird, so dass sich über eine Zeit von etwa 10 ms die gleiche mittlere 10 Lichtleistung einstellt wie in den Betriebsphasen ohne Stromaustastlücke. Da die Veränderung des Sensornullpunktes normalerweise sehr langsam erfolgt, sind keine häufigen Messungen notwendig. Daher ist es ausreichend, die Messung im Abstand mehrerer Sekunden bis Minuten zu wiederholen. Um die Sichtbarkeit der Stromaustastlücke weiter zu verringern, kann ein zeitlicher Abstand variiert werden. Dadurch 15 kann sich der Beobachter nicht auf ein festes Warteintervall einstellen. Bei zeitlich sequentiell arbeitenden Projektionssystemen wird eine bestimmte zeitliche Position im Lampenstrom auf eine bestimmte Stelle des Projektionsschirmes abgebildet. Bei solchen Systemen empfiehlt es sich auch, die Position der Stromaustastlücke, im folgenden auch als Messaustastpuls oder als Austastpuls bezeichnet, in Bezug auf die 20 resultierende Bildschirmposition zu variieren, um gegebenenfalls sichtbare Effekte auf den ganzen Bildschirm zu verteilen. Um nach dem Start des Projektors möglichst schnell einen geeigneten Nullpunkt zu erhalten, kann zunächst mit höherer, später mit niedrigerer Messfrequenz gearbeitet werden. Ein Intervall zwischen zwei Messgruppen, bestehend aus je einer Messung in zwei kurz aufeinander folgenden Halbwellen 25 unterschiedlicher Polarität, beträgt mehrere Sekunden bis Minuten, das heißt, das Messintervall liegt zwischen 10 Sekunden und 5 Minuten, in vorteilhafter Weise zwischen 50 Sekunden und 2 Minuten.

- 30 Zum besseren Verständnis der Erfindung wird nachstehend ein Ausführungsbeispiel anhand der Zeichnung näher erläutert.

Es zeigen

Fig. 1 ein Zeitdiagramm mit einem rechteckförmigen Lampenstrom,
Fig. 2 ein zweites Zeitdiagramm mit einem Sensorsignal,
5 Fig. 3 ein drittes Zeitdiagramm mit einem zweiten rechteckförmigen Lampenstrom und
Fig. 4 ein vierter Zeitdiagramm mit einem zweiten Sensorsignal.

Figur 1 zeigt einen rechteckförmigen Stromsignalverlauf 1 durch eine Gasentladungslampe. Unter der Voraussetzung eines korrekt arbeitenden Sensors bleibt innerhalb einer Periode 2 der Absolutwert I_1 des Lampenstromes 1 gleich, nur das Vorzeichen wechselt, so dass sich ein positiver und ein negativer Strom $+I_1$ und $-I_1$ für jeweils eine halbe Periode 3 und 4 ergeben. Die Periode 2 weist eine Zeitspanne T auf und dementsprechend die halben Perioden 3 und 4 jeweils eine Zeitspanne $T/2$ auf. Die halbe Periode 3,4 wird nachfolgend auch als Halbperiode oder Halbwelle bezeichnet. Ein rechteckförmiger Stromverlauf und eine für die Erzeugung geeignete Schaltung ist in der US PS 10 4, 734, 624 beschrieben. Der Inhalt der US PS 4, 734, 624 soll dieser Schrift einverleibt sein. In der ersten Halbperiode 3 positiver Polarität ist ab einem Zeitpunkt t_1 für eine Zeitspanne Δt der Lampenstrom 1 unterbrochen und damit ist eine Stromaustastlücke 15 erzeugt. In der zweiten Halbperiode 4 negativer Polarität ist ab einem Zeitpunkt t_2 für dieselbe Zeitspanne Δt der Lampenstrom 1 ebenfalls unterbrochen.
20

Figur 2 zeigt ein Spannungssignal 5 eines Sensors, das ein Abbild des Lampenstromes 1 darstellt und zu einer Nullpunktslinie 6 symmetrisch liegt. Die Nullpunktslinie 6, im folgenden auch als wirklichen Nullpunktslinie bezeichnet, geht durch den Nullpunkt V_0 25 des Sensors, im folgenden auch als wirklicher Nullpunkt V_0 des Sensors bezeichnet. Das heißt, die Linie durch den Punkt V_0 stellt ein Ausgangssignal des Sensors dar, das sich bei einem Stromwert von Null tatsächlich ergibt. Zu dem Zeitpunkt t_1 beginnt die Spannung 5 innerhalb des Sensors aufgrund des Einflusses von Filtern und Bandbreitenbegrenzern exponentiell von einem Wert V_2 auf einen Wert V_3 30 abzusinken, dieser Wert V_3 wird nach einer Zeitspanne Δt erreicht. Zu dem Zeitpunkt t_2 beginnt die Spannung 5 innerhalb des Sensors exponentiell von einem Wert $-V_2$ auf

einen Wert $-V_3$ abzusinken, dieser Wert $-V_3$ wird nach einer Zeitspanne Δt erreicht. Die Werte V_3 und $-V_3$ stellen einen Restwert eines früheren Messwertes dar. Unter der Voraussetzung, dass ein bereits in einem Speicher gesetzter oder bereits aufgrund einer früheren Messung abgespeicherter Wert, im folgenden auch als angenommener Nullpunkt bezeichneter Wert, mit V_0 identisch ist, heben sich die beiden Werte V_3 und $-V_3$ genau auf. Eine Korrektur des Nullpunkts ist nicht erforderlich. Der Absolutwert der Restwerte V_3 und $-V_3$ ist für beide Halbperioden 3, 4 identisch.

Figur 3 zeigt einen rechteckförmigen Stromverlauf 11, der sich auf Grund eines Unterschiedes zwischen dem angenommenen Nullpunkt V_x des Sensors und dem wirklichen Nullpunkt V_0 ergibt. Innerhalb einer Periode 12 ergeben sich ein positiver und ein negativer Strom $+I_3$ und $-I_4$ unterschiedlicher Größe jeweils für eine halbe Periode 13 und 14. Die Periode 12 weist eine Zeitspanne T und dementsprechend die halben Perioden 13 und 14 jeweils eine Zeitspanne $T/2$ auf. In der ersten Halbperiode 13 positiver Polarität ist ab einem Zeitpunkt t_3 für die Zeitspanne Δt der Lampenstrom I unterbrochen. In der zweiten Halbperiode 14 negativer Polarität ist ab einem Zeitpunkt t_4 für dieselbe Zeitspanne Δt der Lampenstrom ebenfalls unterbrochen.

Figur 4 zeigt ein Spannungssignal 15 eines Sensors mit der tatsächlichen Nullpunktslinie 6 und der angenommenen Nullpunktslinie 7. Während der ersten Halbperiode 3 beginnt zu dem Zeitpunkt t_1 die Spannung 15 von einem Wert V_5 exponentiell auf einen Wert V_6 abzusinken. Nach einer Zeitspanne Δt wird kurz vor dem Wiedereinschalten des Lampenstromes 1 der Wert V_6 erreicht, dessen Abstand zu der angenommenen Nullpunktslinie 7 gemessen und abgespeichert wird. Während der zweiten negativen Halbperiode 4 beginnt zu dem Zeitpunkt t_2 die Spannung 15 von einem Wert $-V_8$ exponentiell auf einen Wert $-V_7$ abzusinken. Nach einer Zeitspanne Δt wird kurz vor dem Wiedereinschalten des Lampenstromes 1 der Wert $-V_7$ erreicht, dessen Abstand zu der angenommenen Nullpunktslinie 7 ebenfalls gemessen und abgespeichert wird. Die Abstände V_x-V_6 und $V_x-(-V_7)$ werden addiert, dann durch zwei geteilt, eventuell gewichtet, und zum Wert V_x hinzugeaddiert. Der sich daraus ergebende neue Wert für V_x liegt nun näher an dem korrekten Wert V_0 als der

vorherigen Wert für Vx. Wird der Vorgang mehrmals wiederholt, wird die Differenz zwischen V0 und dem Wert Vx immer geringer, bis der korrekte Sensornullpunkt ermittelt ist. Dieser Vorgang wird auch als Bestimmung, Festlegung oder Abgleich des Sensornullwertes V0 oder Bestimmung der Abweichung bezeichnet. Für den Fall, dass 5 das Sensorsignal zum Zeitpunkt der Messung bereits vollständig eingeschwungen ist, genügt ein einziger Messzyklus.

BEZUGSZEICHENLISTE

- 1 rechteckförmiger Stromverlauf
- 2 Periode
- 3 erste Halbperiode
- 4 zweite Halbperiode
- 5 Sensorsignal
- 6 Nullpunktslinie
- 7 angenommene Nullpunktslinie
- 8
- 9
- 10
- 11 rechteckförmiger Stromverlauf
- 12 Periode
- 13 erste Halbperiode
- 14 zweite Halbperiode
- 15 Sensorsignal

PATENTANSPRÜCHE

1. Verfahren zur Bestimmung eines Nullpunktes (V_0) eines Stromsensors in einer Schaltung zum Betreiben einer Gasentladungslampe, gekennzeichnet durch folgende Verfahrensschritte:
der Strom (11) durch den Sensor wird während einer ersten Halbwelle (13) kurzzeitig
ausgeschaltet und ein erster Messwert (V_6) wird ermittelt,
5 dann wird der Strom (11) durch den Sensor während einer zweiten eine andere Polarität aufweisenden Halbwelle (14) kurzzeitig ausgeschaltet und ein zweiter Messwert ($-V_7$) wird ermittelt,
danach wird ein Mittelwert mittels der beiden Messwerte ($V_6, -V_7$) gebildet und
10 dann wird der Nullpunkt (V_x, V_0) mittels des Mittelwertes bestimmt.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass das Ausschalten in zwei kurz aufeinander folgenden Halbwellen (13, 14) erfolgt.
15
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass zur Bestimmung des Nullpunktes (V_x, V_0) der Messwert ($V_6, -V_7$) des Stromsensors unmittelbar vor einem Wiedereinschalten des Stromes (11) verwendet
20 wird.

4. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass ein Intervall zwischen zwei Messgruppen, bestehend aus je einer Messung in zwei kurz aufeinander folgenden Halbwellen (13, 14) unterschiedlicher Polarität, mehrere 5 Sekunden bis Minuten beträgt.

5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet,
dass das Messintervall variiert wird.

- 10 6. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass eine Position (t3, t4) einer Stromauslastlücke innerhalb einer Halbperiode (13, 14) variiert wird.

- 15 7. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass in der Zeit vor oder nach der Stromauslastlücke der Lampenstrom erhöht wird.

- 20 8. Schaltung für eine Hochdruckgasentladungslampe mit einem Verfahren nach einem der Ansprüche 1 – 7.

9. Projektionssystem mit einer Schaltung für Hochdruckgasentladungslampen mit einem Verfahren nach einem der Ansprüche 1 – 7.

- 25 10. Schaltung zum Betrieb einer Gasentladungslampe mit einem rechteckförmigen Wechselstrom (1, 11), wobei die Schaltung einen bipolaren Stromsensor aufweist,
dadurch gekennzeichnet,
dass während einer Halbwelle (3, 4, 13, 14) der rechteckförmige Wechselstrom (1, 11) 30 kurzzeitig abschaltbar ist.

ZUSAMMENFASSUNG

Verfahren zur Bestimmung eines Nullpunktes eines Stromsensors

Die Erfindung betrifft ein Verfahren zur Bestimmung eines Nullpunktes (V_0) eines Stromsensors in einer Schaltung zum Betreiben einer Gasentladungslampe. Die Erfindung ist durch folgende Verfahrensschritte gekennzeichnet: der Strom (11) durch den Sensor wird während einer ersten Halbwelle (13) kurzzeitig ausgeschaltet und ein erster Messwert (V_6) wird ermittelt, dann wird der Strom (11) durch den Sensor während einer zweiten eine andere Polarität aufweisenden Halbwelle (14) kurzzeitig ausgeschaltet und ein zweiter Messwert ($-V_7$) wird ermittelt, danach wird ein Mittelwert mittels der beiden Messwerte ($V_6, -V_7$) gebildet und dann wird der Nullpunkt (V_0, V_x) mittels des Mittelwertes bestimmt. Damit wird verhindert, dass sich der Nullpunkt während des Lampenbetriebs zum Beispiel durch Erwärmung verschiebt, und dass sich Amplituden von positiver und negativer Halbwelle (13, 14) des Lampenstromes (11) unterschiedlich ausbilden. Beeinträchtigungen der Lampenlebensdauer und auch sichtbare Artefakte in einem dargestellten Projektionsbild sind verhindert.

Fig. 4

PCT/IB2004/051718

