Parallelizing Inductive Logic Programming in ASP

Nikolay Paleshnikov

June 24, 2016

Induction in ASP

Dependency graph

Algorithm summary

Related work: PASPAL

Evaluation

Future work

Example of induction in ASPAL

Solve the inductive learning task with

```
► B = \{r(a). t(a). t(b).\}
```

- ► $M_h = \{ modeh(p(+t)). \}$ and $M_b = \{ modeb(q(+t)). modeb(r(+t)). \}$
- $E^+ = \{p(a)\}$ and $E^- = \{p(b)\}$

Example of induction in ASPAL

Solve the inductive learning task with

```
    ▶ B = {r(a). t(a). t(b).}
    ▶ M<sub>h</sub> = {modeh(p(+t)).} and
    M<sub>b</sub> = {modeb(q(+t)). modeb(r(+t)).}
```

► E⁺ = {p(a)} and E⁻ = {p(b)}
The skeleton rules are the following:

```
S_{M} = \{ \\ p(A) \leftarrow t(A). \\ p(A) \leftarrow t(A), q(A). \\ p(A) \leftarrow t(A), r(A). \\ p(A) \leftarrow t(A), r(A). \\ p(A) \leftarrow t(A), q(A), r(A). \}
```

Example of induction in ASPAL

Solve the inductive learning task with

```
\triangleright B = {r(a). t(a). t(b).}

ightharpoonup M_h = \{ modeh(p(+t)). \} and
     M_b = \{ modeb(q(+t)), modeb(r(+t)). \}
  E^+ = \{p(a)\}\ and E^- = \{p(b)\}\ 
The skeleton rules are the following:
S_M = \{
p(A) \leftarrow t(A).
p(A) \leftarrow t(A), q(A).
p(A) \leftarrow t(A), r(A).
p(A) \leftarrow t(A), q(A), r(A).
The only optimal solution H is
p(A) := t(A), r(A).
such that \{r(a), t(a), t(b), p(a)\} \in AS(B \cup H)
```

Induction in ASP

An inductive learning task < B, E, M > is defined through:

- ▶ background knowledge B
- ightharpoonup positive examples E^+ and negative examples E^-
- ▶ head declarations M_h and body declarations M_b

Induction in ASP

An inductive learning task < B, E, M > is defined through:

- background knowledge B
- ▶ positive examples E^+ and negative examples E^-
- ▶ head declarations M_h and body declarations M_b

An inductive solution H of < B, E, M>, called a hypothesis, must satisfy the following conditions:

- $ightharpoonup H \subseteq S_M$
- ▶ $\exists a \in AS(B \cup H) \text{ s.t. } \forall e \in E^+ \ (e \in a) \land \forall e \in E^- \ (e \notin a)$

Induction in ASP

An inductive learning task < B, E, M > is defined through:

- ▶ background knowledge B
- ightharpoonup positive examples E^+ and negative examples E^-
- ▶ head declarations M_h and body declarations M_b

An inductive solution H of < B, E, M>, called a hypothesis, must satisfy the following conditions:

- ▶ $H \subseteq S_M$
- ▶ $\exists a \in AS(B \cup H) \text{ s.t. } \forall e \in E^+ \ (e \in a) \land \forall e \in E^- \ (e \notin a)$

Main issue

Grounding of the meta task restricts scalability since it grows exponentially in respect to the:

- ▶ size of hypothesis space
- ► Herbrand domain of the program

Example of a split

```
% mode declarations
modeh(scientist(+child)).
modeh(explorer(+child)).
modeh(proud(+parent)).
modeh(lonely(+childless)).
modeb(scientist(+child)).
modeb(explorer(+child)).
modeb(adventurous(+child)).
modeb(curious(+child)).
modeb(forpring(+parent,-child)).
```

```
% background knowledge humanist (X):— scientist (X). child (annika). child (tommy). child (back). parent (john). parent (clara). child less (persephone). offspring (clara, annika). offspring (john, jack). adventurous (tommy). curious (annika).
```

```
% examples example (humanist (tommy), -1). example (humanist (annika), 1). example (explorer (tommy), 1). example (explorer (annika), -1). example (proud (clara), 1). example (proud (john), -1). example (lonely (persephone), 1).
```

Example of a split

```
% mode declarations
modeh(scientist(+child)).
modeh(explorer(+child)).
modeh(proud(+parent)).
modeh(lonely(+childless)).
modeb(scientist(+child)).
modeb(explorer(+child)).
modeb(adventurous(+child)).
modeb(curious(+child)).
modeb(offspring(+parent,-child)).
```

```
% background knowledge humanist (X):— scientist (X). child (annika). child (tommy). child (jack). parent (john). parent (clara). child less (persephone). offspring (clara, annika). offspring (john, jack). adventurous (tommy). curious (annika).
```

We can split the head declarations into

```
modeh(scientist(+child)).
modeh(explorer(+child)).
modeh(proud(+parent)).
```

and

```
modeh (lonely (+ childless)).
```

```
as well as the examples into
```

% examples

```
example (humanist (tommy), -1).
example (humanist (annika), 1).
example (explorer (tommy), 1).
example (explorer (annika), -1).
example (proud (clara), 1).
example (proud (iohn), -1).
```

example (humanist (tommy), -1).

example (humanist (annika), 1).

example (explorer (annika), -1).

example (lonely (persephone), 1).

example (explorer (tommy), 1).

example (proud (clara),1).

example (proud (john), -1).

and

```
example (lonely (persephone), 1).
```

Example of a split

```
% mode declarations
modeh(scientist(+child)).
modeh(explorer(+child)).
modeh(proud(+parent)).
modeh(lonely(+childless)).
modeb(scientist(+child)).
modeb(explorer(+child)).
modeb(adventurous(+child)).
modeb(orious(+child)).
modeb(orious(+child)).
```

```
% background knowledge humanist(X):— scientist(X). child (annika). child (tommy). child (jack). parent(john). parent(clara). childless (persephone). offspring (clara, annika). offspring (john, jack). adventurous (tommy). curious (annika).
```

```
% examples example (humanist (tommy), -1). example (humanist (annika), 1). example (explorer (tommy), 1). example (explorer (annika), -1). example (proud (clara), 1). example (proud (john), -1). example (lonely (persephone), 1).
```

We can split further to obtain

```
modeh(scientist(+child)).
modeh(explorer(+child)).
modeh(proud(+parent)).
```

and

```
modeh (lonely (+ childless)).
```

as well as

```
\begin{array}{ll} \operatorname{example} \big(\operatorname{humanist} \big(\operatorname{tommy}\big), -1\big). \\ \operatorname{example} \big(\operatorname{humanist} \big(\operatorname{annika}\big), 1\big). \\ \operatorname{example} \big(\operatorname{explorer} \big(\operatorname{tommy}\big), 1\big). \\ \operatorname{example} \big(\operatorname{explorer} \big(\operatorname{annika}\big), -1\big). \end{array}
```

example (proud (clara), 1). example (proud (john), -1).

and

```
example (lonely (persephone),1).
```

Example of a split

head declarations

```
modeh(scientist(+child)).
modeh(explorer(+child)).
modeh(proud(+parent)).
```

solutions

```
\begin{split} & scientist\left(A\right):-child\left(A\right), curious\left(A\right), \\ & explorer\left(A\right):-child\left(A\right), adventurous\left(A\right), \\ & proud\left(A\right):-parent\left(A\right), offspring\left(A,B\right), \\ & child\left(B\right), scientist\left(B\right). \end{split}
```

and

```
 \begin{array}{ll} \text{scientist}\left(A\right):= \text{child}\left(A\right), \text{curious}\left(A\right), \\ \text{explorer}\left(A\right):= \text{child}\left(A\right), \text{adventurous}\left(A\right), \\ \text{proud}\left(A\right):= \text{parent}\left(A\right), \text{ offspring}\left(A,B\right), \\ \text{child}\left(B\right), \text{curious}\left(B\right). \end{array}
```

head declaration

```
modeh(lonely(+childless)).
```

solutions

```
lonely(A):-childless(A).
```

Example of a split

head declarations

```
modeh( scientist(+ child )).
modeh( explorer(+ child )).
modeh( proud(+ parent )).
```

solutions

```
 \begin{array}{l} \text{scientist}\left(A\right):=\text{child}\left(A\right),\text{curious}\left(A\right),\\ \text{explorer}\left(A\right):=\text{child}\left(A\right),\text{adventurous}\left(A\right),\\ \text{proud}\left(A\right):=\text{parent}\left(A\right),\text{offspring}\left(A,B\right),\\ \text{child}\left(B\right),\text{scientist}\left(B\right). \end{array}
```

and

```
scientist(A):- child(A), curious(A).
explorer(A):- child(A), adventurous(A).
proud(A):- parent(A), offspring(A,B),
child(B), curious(B).
```

head declaration

```
modeh \, (\, \, lo\, n\, e\, l\, y \, (+\, c\, h\, i\, l\, d\, l\, e\, s\, s\, \,)\, \,)\, .
```

solutions

```
lonely (A): - childless (A).
```

solutions of the original task

```
\begin{split} & scientist\left(A\right):=child\left(A\right), curious\left(A\right). \\ & explorer\left(A\right):=child\left(A\right), adventurous\left(A\right). \\ & proud\left(A\right):=parent\left(A\right), offspring\left(A,B\right), \\ & child\left(B\right), scientist\left(B\right). \\ & lonely\left(A\right):=childless\left(A\right). \end{split}
```

and

```
\label{eq:scientist} \begin{split} & scientist (A):- child (A)\,, curious (A)\,, \\ & explorer (A):- child (A)\,, adventurous (A)\,, \\ & proud (A):- parent (A)\,, offspring (A,B)\,, \\ & child (B)\,, curious (B)\,, \\ & lonely (A):- childless (A)\,. \end{split}
```

Example of a split

head declarations

```
modeh( scientist(+ child )).
modeh( explorer(+ child )).
modeh( proud(+ parent )).
```

solutions

```
\begin{split} & scientist\left(A\right) := child\left(A\right) \,,\, curious\left(A\right) \,,\\ & explorer\left(A\right) := child\left(A\right) \,,\, adventurous\left(A\right) \,,\\ & proud\left(A\right) := parent\left(A\right) \,,\, offspring\left(A,B\right) \,,\\ & child\left(B\right) \,,\, scientist\left(B\right) \,. \end{split}
```

and

```
 \begin{array}{l} \text{scientist}\left(A\right) := \text{child}\left(A\right), \text{curious}\left(A\right), \\ \text{explorer}\left(A\right) := \text{child}\left(A\right), \text{adventurous}\left(A\right), \\ \text{proud}\left(A\right) := \text{parent}\left(A\right), \text{offspring}\left(A,B\right), \\ \text{child}\left(B\right), \text{curious}\left(B\right). \end{array}
```

head declarations

```
\begin{array}{ll} \operatorname{modeh} \big( \ \operatorname{scientist} \big( + \operatorname{child} \big) \big) \, . \\ \operatorname{modeh} \big( \ \operatorname{explorer} \big( + \operatorname{child} \big) \big) \, . \end{array}
```

solutions

```
\begin{array}{l} \texttt{scientist}\left(A\right) := \texttt{child}\left(A\right), \texttt{curious}\left(A\right). \\ \texttt{explorer}\left(A\right) := \texttt{child}\left(A\right), \texttt{adventurous}\left(A\right). \end{array}
```

rules from above plus head declaration

```
\mathsf{modeh}\,(\,\mathsf{proud}\,(+\,\mathsf{parent}\,)\,)\,.
```

solutions

```
proud(A): - parent(A), offspring(A,B),
  child(B), scientist(B).
```

and

```
proud(A): - parent(A), offspring(A,B),
  child(B), curious(B).
```

% mode declarations

Example of a split

% background knowledge

```
modeh (scientist (+child)).
                                         humanist(X) :- scientist(X).
modeh (explorer (+ child)).
                                         child (annika).
modeh (proud (+parent)).
                                         child (tommy).
modeh (lonely (+ childless)).
                                         child (jack).
                                         parent (john).
modeb(scientist(+child)).
                                         parent (clara).
modeb(explorer(+child)).
                                         childless (persephone).
modeb (adventurous (+ child)).
                                         offspring (clara, annika).
modeb (curious (+ child)).
                                         offspring (john, jack).
modeb (offspring (+parent, -child)).
                                         adventurous (tommy).
                                         curious (annika).
                                                              offspring
                       humanist
                                                                adventurous
                       curious
                                           scientist
                                           explore
```

% examples example (humanist (tommy), -1). example (humanist (annika), 1). example (explorer (tommy), 1). example (explorer (annika), -1). example (proud (clara),1). example (proud (john), -1). example (lonely (persephone), 1).

Example of a split

```
% mode declarations
modeh (scientist (+child)).
modeh (explorer (+ child)).
                                        child (annika).
modeh (proud (+parent)).
                                        child (tommy).
modeh (lonely (+ childless)).
                                        child (jack).
                                        parent (john).
modeb(scientist(+child)).
                                        parent (clara).
modeb(explorer(+child)).
modeb (adventurous (+ child)).
modeb (curious (+ child)).
modeb (offspring (+parent, -child)).
                                        adventurous (tommy).
                                        curious (annika).
```

```
% background knowledge humanist(X): - scientist(X). child (annika). child (jack). example (humanist (annika), 1). example (explorer (tommy), 1). example (explorer (tommy), 1). example (cara). example (explorer (annika), -1). example (proud (clara), 1). example (proud (clara), 1). example (proud (john), -1). example (proud (john), -1). example (proud (john), -1). example (proud (john), -1).
```



```
modeb(scientist(+child)).
modeb(explorer(+child)).
modeb(adventurous(+child)).
modeb(curious(+child)).
```

```
modeh(scientist(+child)).
modeh(explorer(+child)).
```

Example of the dependency graph construction

modeb(offspring(+parent, -child)). modeh(proud(+parent)).

Example of the dependency graph construction

modeb(offspring(+parent, - child)). modeh(proud(+parent)).


```
modeb( offspring(+parent, - child )).
modeb( scientist(+child )).
modeb( explorer(+child )).
modeb( adventurous(+child )).
modeb( curious(+child )).
```



```
modeb( offspring(+parent, - child )).
modeb( scientist(+child )).
modeb( explorer(+child )).
modeb( adventurous(+child )).
modeb( curious(+child )).
```

Example of reduction

humanist(X) :- scientist(X).
example(humanist(tommy), -1).
example(humanist(annika), 1).

Example of reduction

 $\{(\{\mathsf{humanist}, \mathsf{scientist}\}, \{\mathsf{explorer}\}), \ (\{\mathsf{explorer}\}, \{\mathsf{humanist}, \mathsf{scientist}\})\} \subset E$

Example of reduction

Correctness of the horizontal split

Definition

We call two sets of head declarations M_1 and M_2 disconnected iff $pred(M_1)$ and $pred(M_2)$ are disjoint and there is no predicate in any of $pred(M_1)$ and $pred(M_2)$ dependent on a predicate in the another.

Correctness of the horizontal split

Definition

We call two sets of head declarations M_1 and M_2 disconnected iff $pred(M_1)$ and $pred(M_2)$ are disjoint and there is no predicate in any of $pred(M_1)$ and $pred(M_2)$ dependent on a predicate in the another.

Theorem

For an inductive learning task < B, E, M > and head declaration sets $\{h_1, ..., h_n\}$ to be split along, which are pairwise disconnected and satisfy $\bigcup \{mode(h) \mid h \in h_1 \cup ... \cup h_n\} = M_h$,

$$ASPAL^*(< B, E, M >) =$$

 $\times \{ASPAL^*(< B, E_h, < mode(h), M_b >>) \mid h \in \{h_1, ..., h_n\}\}$

Correctness of the vertical split

```
Definition

For an inductive learning task < B, E, M > and CC \in connComp(redDepGr(B, M)), define CCRules(CC) as follows:

Base case: CC has a single node.

CCRules(CC) = ASPAL^*(< B, E_{CC}, < M_{CC}, M_b >>)

Inductive clause:

CCRules(CC) = \{defComb \cup leafComb \mid defComb \in X\{CCRules(CSUBC) \mid CSUBC \in connComp(remNs(CC, leaves(CC)))\} \land leafComb \in X\{ASPAL^*(< B \cup defComb, E_I, < mode(I), M_b >>) \mid I \in leaves(CC)\}\}
```

Correctness of the vertical split

```
Definition

For an inductive learning task < B, E, M > and CC \in connComp(redDepGr(B, M)), define CCRules(CC) as follows:

Base case: CC has a single node.

CCRules(CC) = ASPAL^*(< B, E_{CC}, < M_{CC}, M_b >>)

Inductive clause:

CCRules(CC) = \{defComb \cup leafComb \mid defComb \in \times \{CCRules(CSUBC) \mid CSUBC \in connComp(remNs(CC, leaves(CC)))\} \land leafComb \in \times \{ASPAL^*(< B \cup defComb, E_I, < mode(I), M_b >>) \mid I \in leaves(CC)\}\}
```

Theorem

```
For an ILP task < B, E, M > and a connected component CC \in connComp(redDepGr(B, M)), CCRules(CC) \subseteq ASPAL(< B, E_{CC}, < M_{CC}, M_b >>).
```

Algorithm summary

```
1: procedure Parallelizer(ASPAL input file)
       \langle B, E, M \rangle \leftarrow parseFile(ASPAL input file)
2:
      graph \leftarrow \text{RedDepGr}(B, M)
3:
      component\_rules\_set \leftarrow \emptyset
4:
       for CC \in connComp(graph) do
5:
           component_rules_set.add(CCRules(CC))
6.
7.
       end for
       return × component_rules_set
8.
9: end procedure
```

Comparison with PASPAL

PASPAL

- defines a split into subtasks with a single head declaration each if there are no interdependencies
- passes the task unamended to ASPAL otherwise

Comparison with PASPAL

PASPAL

- defines a split into subtasks with a single head declaration each if there are no interdependencies
- passes the task unamended to ASPAL otherwise
- ⇒ coincides with our horizontal split if there are no interdependencies

Evaluation

Table : Runtimes of Parallelizer, PASPAL and ASPAL on the original mobile task

	general solutions	optimal solutions
Parallelizer	22m34s	25m11s
PASPAL	51m36s	_
ASPAL	ran out of memory	ran out of memory
	and crashed after 26m	and crashed after 30m50s

Evaluation

Table : Runtimes of Parallelizer, PASPAL and ASPAL on the original mobile task

	general solutions	optimal solutions
Parallelizer	22m34s	25m11s
PASPAL	51m36s	_
ASPAL	ran out of memory	ran out of memory
	and crashed after 26m	and crashed after 30m50s

Table: Runtimes of Parallelizer and ASPAL on the enriched mobile task

	general solutions	optimal solutions
Parallelizer	10m17s	11m1s
ASPAL	ran out of memory	ran out of memory
	and crashed after 17m34s	and crashed after 19m26s

Future work

Main setback of our approach

For a given ILP task, the split within a connected component of its reduced dependency graph is incomplete under optimal solution settings. Furthermore, the computation of general solutions is often infeasible in practice.

Future work

Main setback of our approach

For a given ILP task, the split within a connected component of its reduced dependency graph is incomplete under optimal solution settings. Furthermore, the computation of general solutions is often infeasible in practice.

Possible solutions

Split into subtasks, each containing a single head declaration and a set of abducibles for all head declarations in the connected component.

Future work

Main setback of our approach

For a given ILP task, the split within a connected component of its reduced dependency graph is incomplete under optimal solution settings. Furthermore, the computation of general solutions is often infeasible in practice.

Possible solutions

- Split into subtasks, each containing a single head declaration and a set of abducibles for all head declarations in the connected component.
- ▶ Run RASPAL to obtain the solutions of each connected component.

Summary of contributions

- Development of a theoretical framework capturing dependencies between predicates of a given ILP task
- ▶ Definition of a split for an arbitrary ILP task into subtasks for pairwise disconnected sets of predicates; Proof of its soundness and completeness when either general or optimal solutions are considered
- Inductive definition of a split for the predicates of a connected component of the reduced dependency graph; Proof of its soundness in terms of optimal solutions; Proof of its soundness and completeness in terms of general solutions
- Construction of an algorithm encompassing both splits and its implementation in Python.
- ▶ Assessment of the performance of our Python script in comparison with other existing approaches at parallelizing ILP and ASPAL itself.