Hledání kořenů rovnic jedné reálné proměnné – metoda Regula Falsi –

Michal Čihák

26. října 2011

- hybridní metoda je kombinací metody sečen a metody půlení intervalů
- předpokladem je (podobně jako u metody půlení intervalů), že funkce f(x) je na intervalu $\langle a,b\rangle$ spojitá a f(a) a f(b) mají rozdílna znaménka
- tato metoda vždy nalezne s předem danou přesností interval, ve kterém leží kořen rovnice f(x)=0

- hybridní metoda je kombinací metody sečen a metody půlení intervalů
- předpokladem je (podobně jako u metody půlení intervalů), že funkce f(x) je na intervalu $\langle a,b\rangle$ spojitá a f(a) a f(b) mají rozdílná znaménka
- tato metoda vždy nalezne s předem danou přesností interval, ve kterém leží kořen rovnice f(x)=0

- hybridní metoda je kombinací metody sečen a metody půlení intervalů
- předpokladem je (podobně jako u metody půlení intervalů), že funkce f(x) je na intervalu $\langle a,b\rangle$ spojitá a f(a) a f(b) mají rozdílná znaménka
- tato metoda vždy nalezne s předem danou přesností interval, ve kterém leží kořen rovnice f(x)=0

Na začátku položíme $a_1=a,b_1=b.$ Rovnice sečny grafu funkce f v bodech $[a_1,f(a_1)]$ a $[b_1,f(b_1)]$ je

$$y = f(a_1) + \frac{f(b_1) - f(a_1)}{b_1 - a_1}(x - a_1).$$

Hodnota p_2 (další iterace) se určí jako průsečík sečny s osou x soustavy souřadnic (stejně jako u metody sečen):

$$p_2 = a_1 - \frac{f(a_1)(b_1 - a_1)}{f(b_1) - f(a_1)}.$$

Pokud je $f(p_2) = 0$, pak je p_2 hledaným kořenem rovnice.

V opačném případě má $f(p_2)$ stejné znaménko buď jako $f(a_1)$, nebo jako $f(b_1)$.

Pokud má $f(p_2)$ stejné znaménko jako $f(a_1)$, pak hledaný kořen rovnice leží v intervalu $\langle p_2,b_1\rangle$ a položíme $a_2=p_2,b_2=b_1.$

Pokud má $f(p_2)$ stejné znaménko jako $f(b_1)$, pak hledaný kořen rovnice leží v intervalu $\langle a_1,p_2\rangle$ a položíme $a_2=a_1,b_2=p_2$

Nyní opakujeme stejný proces na interval $\langle a_2,b_2\rangle$, poté na interval $\langle a_3,b_3\rangle$, atd.

Každý nově vzniklý interval obsahuje hledaný kořen (podobně jako u metody půlení intervalu.

Algoritmus metody Regula Falsi – shrnutí

Interval $\langle a_{n+1},b_{n+1}\rangle$, kde n>1, obsahující kořen rovnice f(x)=0 získáme z intervalu $\langle a_n,b_n\rangle$ obsahujícího kořen rovnice tak, že nejprve vypočteme

$$p_{n+1} = a_n - \frac{f(a_n)(b_n - a_n)}{f(b_n) - f(a_n)}$$

a poté položíme $a_{n+1}=a_n$ a $b_{n+1}=p_{n+1}$, pokud je $f(a_n)\cdot f(p_{n+1})<0$, nebo $a_{n+1}=p_{n+1}$ a $b_{n+1}=b_n$, pokud je $f(a_n)\cdot f(p_{n+1})>0$.

Existují 3 základní kritéria pro ukončení algoritmu metody Regula Falsi:

- 1. některé p_{n+1} je přímo kořenem rovnice $f(p_{n+1})=0$
- 2. hodnota $|p_{n+1} p_n|$ klesne pod předem danou toleranci TOL
- 3. počet iterací algoritmu překročí předem danou mez $N_{
 m 0}$

Existují 3 základní kritéria pro ukončení algoritmu metody Regula Falsi:

- 1. některé p_{n+1} je přímo kořenem rovnice $f(p_{n+1})=0$
- 2. hodnota $|p_{n+1} p_n|$ klesne pod předem danou toleranci TOL
- 3. počet iterací algoritmu překročí předem danou mez $N_{
 m 0}$

Existují 3 základní kritéria pro ukončení algoritmu metody Regula Falsi:

- 1. některé p_{n+1} je přímo kořenem rovnice $f(p_{n+1})=0$
- 2. hodnota $|p_{n+1} p_n|$ klesne pod předem danou toleranci TOL
- 3. počet iterací algoritmu překročí předem danou mez N_{0}

Příklad

Zadání: Najděte kořen rovnice $x^3+4x^2-10=0$ v intervalu $\langle 1,2\rangle$ s tolerancí $0{,}0005$.

Příklad

Zadání: Najděte kořen rovnice $x^3+4x^2-10=0$ v intervalu $\langle 1,2\rangle$ s tolerancí $0{,}0005$.

Řešení: Položíme $a_1=1, b_1=2$ a postupně vypočítáme:

\overline{n}	a_n	b_n	p_{n+1}	$f(p_{n+1})$
1	1.00000000	2.00000000	1.26315789	-1.60227438
2	1.26315789	2.000000000	1.33882784	-0.43036475
3	1.33882784	2.000000000	1.35854634	-0.11000879
4	1.35854634	2.00000000	1.36354744	-0.02776209
5	1.36354744	2.00000000	1.36480703	-0.00698342
6	1.36480703	2.00000000	1.36512372	-0.00175521
7	1.36512372	2.00000000	1.36520330	-0.00044106

Příklad

Zadání: Najděte kořen rovnice $x^3+4x^2-10=0$ v intervalu $\langle 1,2\rangle$ s tolerancí $0{,}0005$.

Řešení: Položíme $a_1=1,b_1=2$ a postupně vypočítáme:

\overline{n}	a_n	b_n	p_{n+1}	$f(p_{n+1})$
1	1.00000000	2.00000000	1.26315789	-1.60227438
2	1.26315789	2.00000000	1.33882784	-0.43036475
3	1.33882784	2.00000000	1.35854634	-0.11000879
4	1.35854634	2.00000000	1.36354744	-0.02776209
5	1.36354744	2.00000000	1.36480703	-0.00698342
6	1.36480703	2.00000000	1.36512372	-0.00175521
7	1.36512372	2.00000000	1.36520330	-0.00044106

Všimněte si, že $|p_6-p_5|=0{,}00007958$, což je hodnota menší než daná hodnota TOL.

Výhody metody Regula Falsi

- metoda vždy konverguje (metoda vždy nalezne s předem danou přesností interval, ve kterém leží kořen rovnice f(x)=0)
- jednoduchý princip a snadná implementace (naprogramování algoritmu v konkrétním programovacím jazyce)

Výhody metody Regula Falsi

- metoda vždy konverguje (metoda vždy nalezne s předem danou přesností interval, ve kterém leží kořen rovnice f(x)=0)
- jednoduchý princip a snadná implementace (naprogramování algoritmu v konkrétním programovacím jazyce)

Nevýhody metody sečen

 metoda konverguje pomaleji než metoda sečen (v některých případech dokonce pomaleji než metoda půlení intervalu)

Rizika implementace metody na počítači

• stejná jako u předchozích metod (odečítání blízkých čísel)