Ro11 No	
MCA/D-14 1 DISCRETE MATHEMATICAL STRUCTURES Paper—MCA-103	0368
Time Allowed: 3 Hours] [Maximum Marks Note: Attempt five questions in all, selecting at least one question from each Unit. Questing a compulsory.	
Compulsory Question	
 Write short notes on the following: (a) Prove that subgroup of an abelian group is normal. (b) Find the order of each element of the group (Z₆, t₆). (c) Consider the language L = la, b, c] over A = (a, b, Find L³. (d) What is a Regular Graph? (e) Define Partial ordering with suitable example. (f) What is Switching Circuit? (g) Explain briefly the concept of Irreducible Polynomial. (h) Prove that the Polynomial x 4 + x + 1 is redouble over (z3, x3, td. 	=24
UNIT-I	
 2. (a) Let (S₃, O) be a permutation group over A = (1, 2, 3). Find all the Subgroups of (S₃, their generators. (b) Consider H and K be groups. Then define the direct group product G = H*K of H and What is the identity element and order of G = H*K? 	7
3. (a) Define Finite State Machines. Describe state table and state diagram of a 'finite, state machine.(b) What is Language? Briefly, explain the concept of Regular Languages.	e 7 7
UNIT-II 4. (a) What is a Graph? If a Graph contains two distinct paths from vertex ti to vertex v, p that G has a cycle. (b) Define Adjacency matrix. Write an algorithm for determining cycle in a Graph.	orove 7 7
 5. (a) What is a Tree? Consider the algebraic expression E = (2x y) (5a b)°. Draw the tree which corresponds to the expression E. (b) Whit is a Weighted Graph? Write an algorithm to find shortest path from the node a node z in a Weighted Graph. UNIT—III 	7
6. Consider Boolean expression $E = xz' + y'z + xye$, then simplify E algebraically. Also dr circuit diagram and _switching circuits for E and the simplified E.	aw the
 7. (a) Elaborate various laws of Boolean algebra. Write dual of (a,+ b) (b.+ c) = ac + b. (b) Describe the usage of Logic gates and circuits with examples: 	7 7

8. Define Field and Splitting Field. Find splitting field of $x3 + x + 1$ over $(z \ 2, t \ 2, x2)$.	14
9. (a) Prove that the set R. of real numbers form a field with respect to the usual operations of	
addition and multiplication.	7
(b) Define Integral domain. Show that a finite integral domain is a field.	7