

ESPAÇO VETORIAL REAL

Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de *adição e multiplicação por escalar*, isto \acute{e} :

$$\forall u, v \in V, u + v \in V$$

 $\forall a \in \mathbf{R}, \forall u \in V, au \in V$

O conjunto V com estas duas operações é chamado *espaço vetorial real* se forem verificados os seguintes axiomas:

a) Em relação à adição:

$$(u+v)+w=u+(v+w), \forall u, v, w \in V$$

 $u+v=v+u, \forall u, v \in V$
 $\exists 0 \in V, \forall u \in V, \text{ tal que } u+0=u$
 $\forall u \in V, \exists (-u) \in V, u+(-u)=0$

b) Em relação à multiplicação:

$$(ab) v = a(bv)$$

 $(a + b) v = av + bv$
 $a (u + v) = au + av$
 $1u = u$,
para $\forall u, v \in V e \forall a, b \in \mathbf{R}$

- Os elementos *u*, *v*, *w*,..., de um espaço vetorial V são denominados *vetores*.
- Se a definição de espaço vetorial considerasse como escalares o conjunto C dos números complexos, V seria um *espaço vetorial complexo*. Entretanto serão considerados somente espaços vetoriais reais.
- Por Ter sido dada a definição de forma genérica, para um espaço vetorial V qualquer, ela serve para conjuntos diversos, tais como, R^2 , R^3 , o conjunto das matrizes $M_{(m, n)}$, etc. Assim, conforme seja o espaço vetorial considerado, os vetores terão a natureza dos elementos desse espaço e os conjuntos correspondentes terão a mesma "estrutura" em relação às operações de adição e multiplicação por escalar.

EXEMPLOS

1) O conjunto $V = \mathbf{R}^2 = \{(x, y) \mid x, y \in \mathbf{R}\}$ é um espaço vetorial com as operações de adição e multiplicação por um número real assim definidas:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

a. $(x, y) = (ax, ay)$

Essas operações são denominadas operações usuais.

Para verificar os oito axiomas de espaço vetorial, sejam $u = (x_1, y_1), v = (x_2, y_2)$ e $w = (x_3, y_3)$.

$$A_1$$
) $(u + v) + w = u + (v + w)$

A₂)
$$u + v = v + u$$

$$A_3$$
) $\exists 0 = (0, 0) \in \mathbb{R}^2$, $\forall u \in \mathbb{R}^2$, $u + 0 = u$

$$A_4$$
) $\forall u = (x_1, x_2) \in \mathbb{R}^2$, $\exists (-u) = (-x_1, -x_2) \in \mathbb{R}^2$, $u + (-u) = 0$

$$M_5$$
) (ab) $v = a(bv)$

$$M_6$$
) $(a + b) v = av + bv$

$$M_7$$
) a $(u + v) = au + av$

M₈)
$$1u = u$$

Para $\nabla u, v \in V e \nabla a, b \in \mathbf{R}$.

Obs.: Os elementos do espaço vetorial V serão chamados *vetores*, independentemente da sua natureza, polinômios, matrizes, números. As operações de adição e multiplicação por escalar realizadas com esses elementos se comportam de forma idêntica, como se estivéssemos trabalhando com os próprios vetores do \mathbf{R}^2 ou do \mathbf{R}^3 .

Propriedades:

- I) Existe um único vetor nulo em V (elemento neutro da adição).
- II) Cada vetor $u \in V$ admite apenas um simétrico $(-u) \in V$.
- III) Para quaisquer $u, v, w \in V$, se u + w = v + w, então u = v.
- IV) Qualquer que seja $v \in V$, tem-se -(-v) = v, isto é, o oposto de -v é v.
- V) Quaisquer que sejam $u, v \in V$, existe um e somente um $x \in V$ tal que: u + x = v; esse vetor x será representado por x = v u.
- VI) Qualquer que seja $v \in V$, tem-se: $\theta v = \theta$. Naturalmente, o primeiro zero é o número real zero, e o segundo é o vetor $\theta \in V$.
- VII) Qualquer que seja $\lambda \in \mathbf{R}$, tem-se: $\lambda 0 = 0$.
- VIII) $\lambda 0 = 0$ implies $\lambda = 0$ ou v = 0.
- IX) Qualquer que seja $v \in V$, tem-se: (-1)v = -v
- X) Quaisquer que sejam $v \in V$ e $\lambda \in \mathbb{R}$, tem-se: $(-\lambda)v = \lambda(-v) = -(\lambda v)$

EXERCÍCIO

Seja $\mathbf{R}^2 = \{(a, b)/ a, b \in \mathbf{R}\}$, verificar se \mathbf{R}^2 é espaço vetorial em relação às operações assim definidas:

1)
$$(a, b) + (c, d) = (a + c, b + d) e k(a, b) = (ka, b)$$

2)
$$(a, b) + (c, d) = (a, b) e k(a, b) = (ka, kb)$$

3)
$$(a, b) + (c, d) = (a + c, b + d) e k(a, b) = (k^2a, k^2b)$$

SUBESPAÇOS VETORIAIS

Sejam V um espaço vetorial e S um subconjunto não-vazio de V. O subconjunto S é um *subespaço vetorial* de V se S é um espaço vetorial em relação à adição e à multiplicação por escalar definidas em V.

Teorema: Um subconjunto S, *não vazio*, de um espaço vetorial V é um subespaço vetorial de V se estiverem satisfeitas as condições:

- I) Para quaisquer $u, v \in S$, tem-se: $u + v \in S$.
- II) Para quaisquer $\alpha \in \mathbb{R}$, $u \in S$, tem-se: $\alpha u \in S$.

Obs.: Todo espaço vetorial V admite pelo menos dois subespaços: o conjunto {0}, chamado subespaço zero ou subespaço nulo, e o próprio espaço vetorial. Esses dois são os subespaços *triviais* de V. Os demais subespaços são denominados subespaços *próprios* de V.

Por exemplo, os subespaços triviais de $V = \mathbf{R}^3$ são $\{(0, 0, 0)\}$ e o próprio \mathbf{R}^3 . Os subespaços próprios do \mathbf{R}^3 são as retas e os planos que passam pela origem.

Para $V = \mathbb{R}^2$, os subespaços triviais são: $\{(0, 0)\}\$ e \mathbb{R}^2 , enquanto os subespaços próprios são as retas que passam pela origem.

Exemplos:

1) $V = \mathbf{R}^5$ e $W = \{(0, x_2, x_3, x_4, x_5); x_i \in \mathbf{R}\}$. Isto é, W é o conjunto dos vetores de \mathbf{R}^5 , cuja primeira coordenada é nula. Verificar se W é subespaço de \mathbf{R}^5 .

1º condição:

$$u = (\ 0, \ x_2, \ x_3, \ x_4, \ x_5), \ v = (\ 0, \ y_2, \ y_3, \ y_4, \ y_5) \in \ W.$$

Então $u + v = (0, x_2 + y_2, x_3 + y_3, x_4 + y_4, x_5 + y_5)$ que ainda pertence a W, pois tem a primeira coordenada nula.

2º condição:

 $k\mathbf{u} = (0, kx_2, kx_3, kx_4, kx_5) \in W$, pois a primeira coordenada é nula para todo $k \in \mathbf{R}$.

Assim, W é um subespaço de \mathbb{R}^5 .

2) Sejam $V = R^3$ e $S = \{(x, y, z) \in R^3 / y = 2x - z\}$, determine se S é subespaço vetorial. Aqui fica dispensável verificar que S é conjunto não vazio e também apresenta o vetor nulo (x = 0 e z = 0). Pela lei dada, o vetor de S tem a característica: (x, 2x - z, z).

1º condição:

Sejam u e v pertencente a S, onde
$$u = \begin{bmatrix} x_1 \\ 2x_1 - z_1 \\ z_1 \end{bmatrix}$$
 e $v = \begin{bmatrix} x_2 \\ 2x_2 - z_2 \\ z_2 \end{bmatrix}$

Fazendo u + v teremos:
$$\begin{bmatrix} x_1 + x_2 \\ 2x_1 + 2x_2 - z_1 - z_2 \\ z_1 + z_2 \end{bmatrix}$$

Fazendo u + v teremos:
$$\begin{bmatrix} x_1 + x_2 \\ 2x_1 + 2x_2 - z_1 - z_2 \\ z_1 + z_2 \end{bmatrix}$$
Portanto $u + v = \begin{bmatrix} x_1 + x_2 \\ 2(x_1 + x_2) - (z_1 + z_2) \\ z_1 + z_2 \end{bmatrix}$ tem todas as características de S. $z_1 + z_2$

2º condição:

Sejam u pertencente à V e k um número real, teremos: w = k.u

$$w = \begin{bmatrix} kx_1 \\ k(2x_1 - z_1) \\ kz_1 \end{bmatrix} \quad \text{ou} \quad w = \begin{bmatrix} kx_1 \\ 2kx_1 - kz_1 \\ kz_1 \end{bmatrix}$$

Vemos que, decididamente, nas duas operações w mantém as características de S.

Dessa forma, S é um subespaço.

3) Sejam V = M(3, 1) e S o conjunto-solução de um sistema linear homogêneo a três variáveis. Verificar se o sistema é subespaço vetorial de M(3, 1):

$$\begin{cases} 3x + 4y - 2z = 0 \\ 2x + y - z = 0 \\ x - y + 3z = 0 \end{cases}$$

Fazendo: A =
$$\begin{bmatrix} 3 & 4 & -2 \\ 2 & 1 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ e $0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, o sistema em notação matricial, será

dado por AX = 0, sendo X elemento do conjunto solução S.

Se
$$u = X_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 $e \ v = X_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, temos como solução:

$$AX_1 = 0 e AX_2 = 0$$
.

1º condição: Somando essas igualdades, vem:

$$AX_1 + AX_2 = 0$$

$$A(X_1 + X_2) = 0 \Longrightarrow X_1 + X_2 \in S$$

Isto é, a soma de duas soluções é ainda uma solução do sistema.

2º condição:

$$\alpha(AX_1) = \alpha 0$$

$$A(\alpha X_1) = 0 \Rightarrow \alpha X_1 \in S$$

Isto é o produto de uma constante por uma solução é ainda uma solução.

Logo, o conjunto-solução do sistema linear homogêneo é um subespaço vetorial de M(3, 1)

4) Sejam V = \mathbb{R}^2 e $S = \{(x, y) \in \mathbb{R}^2 / y = 3x - 1\}$, determine se S é subespaço vetorial.

1º condição:

Sejam u e v pertencentes a S onde:
$$u = \begin{bmatrix} x_1 \\ 3x_1 - I \end{bmatrix}$$
 e $v = \begin{bmatrix} x_2 \\ 3x_2 - I \end{bmatrix}$

Então
$$u+v=\begin{bmatrix} x_1+x_2\\ 3(x_1+x_2)-2 \end{bmatrix}$$

Portanto a 1º condição já falha.

2º condição:

Seja k
$$\in$$
 R , então $k.u = \begin{bmatrix} kx_1 \\ kx_1 - k \end{bmatrix}$

A 2º condição também falha

Portanto podemos garantir que S não é um subespaço

EXERCÍCIO:

Verifique se é ou não um subespaço vetorial:

- 1) Sejam $V = \mathbb{R}^2$ e $S = \{(x, y) \in \mathbb{R}^2 | y = 2x \}$ ou $S = \{(x, 2x); x \in \mathbb{R}\}.$
- 2) Sejam V = \mathbb{R}^4 e S = {(a, b, 0, 0); a, b $\in \mathbb{R}$ }.
- 3) Sejam U = $\{(x, y, z, t) \in \mathbb{R}^4; 2x + y t = 0 \text{ e } z = 0\}$.

4) W =
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ com } a, b, c, d \in R \text{ e } b = c \right\}$$

5) W=
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ com } a, b, c, d \in R \text{ e } b = c + 1 \right\}$$

COMBINAÇÃO LINEAR

O objetivo principal do uso de combinação linear é a obtenção de novos vetores a partir da combinação das duas operações anteriores com vetores dados.

Definição: Sejam V um espaço vetorial real (ou complexo), $v_1, v_2,..., v_n \in V$ e $a_1,..., a_n$ escalares (reais ou complexas).

Qualquer vetor $v \in V$ da forma:

$$v = a_1 v_1 + a_2 v_2 + ... + a_n v_n$$

é chamado de uma combinação linear dos vetores v₁, v₂,..., v_n.

Ex.: O vetor u = (-4, -18, 7) do espaço R³ é uma combinação linear dos vetores $v_1 = (1, -3, 2)$ e $v_2 = (2, 4, -1)$ do R³, pois:

$$u = 2.v_1 - 3.v_2$$

$$u = 2.(1, -3, 2) - 3(2, 4, -1)$$

$$u = (2, -6, 4) + (-6, -12, 3)$$

$$u = (-4, -18, 7)$$

EXERCÍCIOS:

Verificar se é possível escrever v como combinação linear, justifique:

- 1) No espaço vetorial P_2 dos polinômios de grau \leq 2, o polinômio $v = 7x^2 + 11x 26$, pode ser escrito como combinação linear de $v_1 = 5x^2 3x + 2$ e $v_2 = -2x^2 + 5x 8$?
- 2) Sendo v = (4, 3, -6) é possível escrever v como combinação linear de $v_1 = (1, -3, 2)$ e $v_2 = (2, 4, -1)$?
- 3) Determinar k para que o vetor u = (-1, k, -7) seja combinação linear de $v_1 = (1, -3, 2)$ e $v_2 = (2, 4, -1)$.
- 4) Escreva v = (1, -2, 5) como combinação linear dos vetores $e_1 = (1, 1, 1)$, $e_2 = (1, 2, 3)$ e $e_3 = (2, -1, 1)$.
- 5) Escreva a matriz $E = \begin{pmatrix} 3 & I \\ I & -I \end{pmatrix}$ como combinação linear das matrizes $A = \begin{pmatrix} I & I \\ I & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ I & I \end{pmatrix}$ e $C = \begin{pmatrix} 0 & 2 \\ 0 & -I \end{pmatrix}$.

DEPENDÊNCIA E INDEPENDÊNCIA LINEAR (LI E LD)

Sabemos que podemos gerar um subespaço vetorial através de combinação linear entre vetores, nossa preocupação é de saber se não existe nenhum vetor descartável (supérfluo) nesta combinação.

Definição: Sejam $v_1, v_2, ..., v_n \in V$ (espaço vetorial). Dizemos que o conjunto { $v_1, v_2, ..., v_n$ } é **linearmente independente** (LI), ou que os vetores $v_1, v_2, ..., v_n$ são LI se a equação:

$$a_1 v_1 + a_2 v_2 + \dots + a_n v_n = 0$$
 implica que $a_1 = a_2 = \dots + a_n = 0$

Se existir algum $a_i \neq 0$ que satisfaça a equação, dizemos que $\{v_1,....,v_n\}$ é **linearmente dependente** (LD). Prova:

Seja a equação:

 $a_1v_1 + + a_kv_k + + a_nv_n = 0$ supondo algum coeficiente qualquer $a_i \neq 0$, chamaremos de a_k então podemos reescrever a equação como :

$$a_k v_k = \hbox{-} a_1 v_1 \hbox{-} ...\hbox{-} a_{k\text{-}1} v_{k\text{-}1} - a_{k\text{+}1} v_{k\text{+}1} \hbox{-} ...\hbox{-} a_n v_n$$

$$v_k = -1/a_k (a_1v_1 + ... + a_{k-1}v_{k-1} + a_{k+1}v_{k+1} + ... + a_nv_n)$$

Assim vemos que o vetor v_k pode ser obtido da combinação linear dos demais.

Portanto concluímos que $\{v_1,...,v_k,...,v_n\}$ é LD

Exemplificando de forma mais palpável.

Podemos imaginar o espaço R¹, vemos que qualquer conjunto de dois ou mais vetores não nulos, tornam-se LD, todos serão colineares ou proporcionais.

O mesmo problema ocorre no R², com três ou mais vetores coplanares, pois bastariam dois vetores não alinhados para formar todo o plano.

Exemplos:

1) No espaço R^2 , verificar se os vetores u = (2, 0) e v = (1, -3) são LI.

$$a_{1}.u + a_{2}.v = 0$$

$$a_{1}.\begin{bmatrix} 2 \\ 0 \end{bmatrix} + a_{2}.\begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2a_{1} + a_{2} \\ -3a_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Estamos diante de um sistema homogêneo com única solução : $a_1 = 0$ e $a_2 = 0$ Portanto $\{u, v\}$ são LI.

Obs:

Como sempre a análise passa por um sistema homogêneo, e normalmente "quadrado" (número de vetores igual a dimensão do espaço), podemos usar o conceito de **Cramer** para a análise do sistema, isto é, usando o valor do determinante da matriz formada pelos vetores dispostos em colunas :

- Se D = 0 então o sistema é SPI portanto LD;
- Se **D** ≠ **0** então o sistema é SPD portanto **LI**.

Assim o exercício anterior seria analisado:

$$\begin{vmatrix} 2 & 1 \\ 0 & -3 \end{vmatrix} = -6 - 0 = -6$$
 que é diferente de zero, portanto são **LI**

2) Verificar se é LD: $\{1 + 2x - x^2, 2 - x + 3x^2, 3 - 4x + 7x^2\}$

EXERCÍCIOS:

- 1) Verifique se são LD ou LI
- a) u = (1, -1, -2), v = (2, 1, 1) e w = (-1, 0, 3) (L1)
- b) u = (0, 1, 0, -1), v = (1, 1, 1, 1), w = (1, 2, 0, 1), z = (1, 2, 1, 0) (LD)
- c) $1 + 3x + x^2$, $2 x x^2$, $1 2x 3x^2$, $-2 + x + 3x^2$ (LD)
- d) $v_1 = (2, -1, 3), v_2 = (-1, 0, -2) e v_3 = (2, -3, 1)$ (LD)
- e) $v_1 = (2, 2, 3, 4), v_2 = (0, 5, -3, 1) e v_3 = (0, 0, 4, -2)$ (L1)

f)
$$A = \begin{bmatrix} 1 & 2 \\ -4 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 6 \\ -12 & -9 \end{bmatrix}$ (LD)
g) $A = \begin{bmatrix} -1 & 2 & 1 \\ 3 & -2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 0 & -1 & 2 \\ -2 & 1 & 0 \end{bmatrix}$ e $C = \begin{bmatrix} -1 & 0 & 5 \\ -1 & 0 & 3 \end{bmatrix}$ (LI)

- 2) Determine o valor de k para que seja LI o conjunto $\{ (-1, 0, 2), (1, 1, 1), (k, -2, 0) \}$ $(k \neq -3)$
- 3) Determine k para que $\left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ k & 0 \end{bmatrix} \right\}$ seja LD (k = 3)

BASE DE UM ESPAÇO VEORIAL

Definição:

Um conjunto $\{v_1, v_2..., v_n\}$ será uma base para o espaço vetorial V se atender duas condições:

- i) $\{v_1, v_2 ..., v_n\}$ é LI
- ii) $[v_1, v_2 \dots, v_n] = V$ (gera o espaço)

Em outras palavras, base é o conjunto de vetores necessários para gerar o espaço vetorial V.

Ex.:

1) O espaço V = R^2 com os vetores $e_1 = (1,0)$ e $e_2 = (0,1)$

{ e₁, e₂ } é base de V, pois além de gerar qualquer vetor de V, é LI.

- I) $a_1. e_1 + a_2. e_2 = 0$ $a_1(1, 0) + a_2(0, 1) = (0, 0)$ $(a_1, 0) + (0, a_2) = (0, 0)$ $(a_1, a_2) = (0, 0)$ II) V gera R², pois (x, y) = x(1, 0) + y(0, 1)
- Esta base é chamada de **base canônica**.

2) Sejam os vetores $v_1 = (1, 2, 3)$, $v_2 = (0, 1, 2)$ e $v_3 = (0, 0, 1)$. Mostrar que o conjunto $B = \{v_1, v_2, v_3\}$ é uma base do R^3 .

3) Mostrar que B =
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 é base de M(2,2)

EXERCÍCIOS

- 1) Verificar quais dos vetores formam uma base:
- a) $\{(1, 2), (-1, 3)\}$
- b) $\{(0,0),(2,3)\}$
- c) $\{(3,-1),(2,3)\}$
- 2) Para que valores de k o conjunto $\beta = \{(1, k), (k, 4)\}\$ é base de \mathbb{R}^2 ? $(k \neq \pm 2)$
- 3) Verificar quais dos seguintes conjuntos de vetores formam uma base do R³:

(a, c)

- a) (1, 1, -1), (2, -1, 0), (3, 2, 0)
- b) (1,0,1), (0,-1,2), (-2,1,-4)
- (a)
- 4) Quais dos conjuntos de vetores formam uma base de P₂?
- a) $2t^2 + t 4$, $t^2 3t + 1$ b) 2, 1 x, $1 + x^2$ c) $1 + x + x^2$, $x + x^2$, x^2

- (b, c)
- $\left\{ \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix} \right\}$ é uma base de 5) Mostrar que o conjunto M(2, 2).
- 6) Mostrar que o conjunto {(1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 3), (0, 0, 0, 5)} é base de R⁴.

COMPONENTES DE UM VETOR

Sejam $\beta = \{v1, v2, ..., vn\}$ base de V, então qualquer vetor de V pode ser escrito como

$$v = a_1 v_1 + a_2 v_2 + ... + a_n v_n$$
.

Os coeficientes a1, a2,..., an , representarão as coordenadas de v em relação à base β e denotado por:

$$\begin{bmatrix} v \end{bmatrix}_{\beta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Ex.: 1) Considerando o vetor v.

Na base canônica = $\{e_1, e_2\}$, ficaria graficamente representado:

$$v = 2.e_1 + 3.e_2$$

$$v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 na base canônica onde $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ e $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

O mesmo vetor representado numa base $\beta = \{v_1, v_2\}$ onde $v_1 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ e $v_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$, ficaria assim $v = \frac{5}{6}v_1 + \frac{13}{12}v_2$

Podendo ser representado por
$$[v]_{\beta} = \begin{bmatrix} \frac{5}{6} \\ \\ \frac{13}{12} \end{bmatrix}$$

Estas coordenadas poderiam ser calculada a partir da combinação linear :

$$a.v_1 + b.v_2 = v$$

$$a = \frac{5}{6}$$

$$a.\begin{bmatrix} 5 \\ 1 \end{bmatrix} + b.\begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$b = \frac{13}{12}$$

$$b = \frac{13}{12}$$

EXERCÍCIOS

- 1) Encontre o vetor coordenada de v = (4, -3, 2) em relação à base: $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ do R^3 .
- 2) Seja o espaço vetorial das matrizes 2 x 2 sobre R. Encontre o vetor coordenada da matriz $A \in V$ em relação à base β , nos casos:

a)
$$\beta = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
, onde $A = \begin{pmatrix} 2 & 3 \\ 4 & -7 \end{pmatrix}$

b)
$$\beta = \left\{ \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 4 & -1 \\ -1 & -5 \end{pmatrix} \right\}$$
, onde $A = \begin{pmatrix} 4 & -11 \\ -11 & -7 \end{pmatrix}$

- 3) Calcular o vetor coordenada de p=-2 $9x-13x^2$ na base $\beta=\{p_1,\,p_2,\,p_3\}$, sendo $p_1=I+2x-3x^2,\,p_2=I-3x+2x^2e\,p_3=2-x+5x^2$
- 4) Determine o vetor coordenada de v = (6, 2) em relação às bases:
- a) $\alpha = \{(3, 0), (0, 2)\}$
- b) $\beta = \{(1, 2), (2, 1)\}$
- c) $\gamma = \{(1, 0), (0, 1)\}$
- 5) No espaço vetorial R^3 , consideremos a base $B = \{(1, 0, 0), (0, 1, 0), (1, -1, 1)\}$. Determine o vetor coordenada de $v \in R^3$ em relação à base B se:
- a) v = (2, -3, 4)
- b) v = (1, -1, 1)

MUDANÇA DE BASE

Muitas vezes, problemas de engenharia tornam-se mais simples quando fazemos uma mudança conveniente de referencial.

Uma vez escolhido o novo referencial, temos que desenvolver um mecanismo que relacione os dois referenciais, podendo dessa forma mudar de referencial no instante desejado. O desenvolvimento a seguir tem tal objetivo.

Sejam $B_1 = \{u_1, u_2, ..., u_n\}$ e $B_2 = \{v_1, v_2, ..., v_n\}$ duas bases de um espaço vetorial V. Então um vetor $w \in V$ pode ser escrito das seguintes formas:

$$w = x_1.u_1 + x_2.u_2 + ... + x_n.u_n$$
 ou $[w]_{B1} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$
 $w = y_1.v_1 + y_2.v_2 + ... + y_n.v_n$ ou $[w]_{B2} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

Assim podemos escrever a relação:

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Obs: Tanto B_1 como B_2 , geram qualquer vetor de V, pelo fato de serem bases, são constituídas de vetores num número igual a dimensão do espaço V, portanto as matrizes dos vetores das bases são quadradas e admitem inversa (det. \neq 0).

Sem perda de generalidade, podemos escrever a relação acima usando o espaço R².

Sejam $B_1 = \{ u_1, u_2 \}$ e $B_2 = \{ v_1, v_2 \}$ bases do espaço \mathbb{R}^2 , onde:

$$u_1 = \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$$
 ; $u_2 = \begin{bmatrix} a_2 \\ b_2 \end{bmatrix}$ e $v_1 = \begin{bmatrix} c_1 \\ d_1 \end{bmatrix}$; $v_2 = \begin{bmatrix} c_2 \\ d_2 \end{bmatrix}$

Qualquer vetor w de R² pode ser escrito como:

$$w = x_1.u_1 + x_2.u_2$$
 ou $[w]_{BI} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
 $w = y_1.v_1 + y_2.v_2$ ou $[w]_{B2} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

Daí tiramos que:

$$\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 \\ d_1 & d_2 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

E ainda:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} c_1 & c_2 \\ d_1 & d_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Portanto:

$$\begin{bmatrix} w \end{bmatrix}_{BI} = \begin{bmatrix} I \end{bmatrix}_{BI}^{B2} \cdot \begin{bmatrix} w \end{bmatrix}_{B2} \qquad \text{com} \qquad \begin{bmatrix} I \end{bmatrix}_{BI}^{B2} = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} c_1 & c_2 \\ d_1 & d_2 \end{bmatrix}$$

Onde $\begin{bmatrix} I \end{bmatrix}_{BI}^{B2}$ é a matriz mudança de base B_2 para B_1

Dessa forma podemos escrever qualquer vetor ,do espaço R^2 , que tenham coordenadas na base B_2 para coordenadas referente a base B_1 .

Obs.: A transformação inversa , isto é, passar da base B_1 para a base B_2 , será feita pela inversão da matriz mudança de base , nesse caso , representada por $\begin{bmatrix} I \end{bmatrix}_{R_2}^{B_I}$.

A matriz mudança de base B_2 para a base B_1 é constituída , na realidade, pelas coordenadas dos vetores da base B_2 em relação a base B_1 , dispostas em colunas.

$$[I]_{BI}^{B2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 onde
$$[v_I]_{BI} = \begin{bmatrix} a_{1I} \\ a_{2I} \end{bmatrix}$$

$$e$$

$$[v_2]_{B_I} = \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix}$$

Ex.: Sejam $B_1 = \{(1,1),(0,2)\}\ e\ B_2 = \{(-1,0),(1,2)\}$ bases do R^2 . Determine a matriz mudança de base B_1 para base B_2 e defina as coordenadas do vetor $[w]_{B1}$ =(-3,4) na base B_2 .

EXERCÍCIOS:

1. Sejam B= $\{(1, 0), (0, 1)\}$, B₁ = $\{(1, 1), (-1, 0)\}$, B₂ = $\{(-1, 1), (2, -3)\}$, bases do \mathbb{R}^2 . Determine as matrizes mudança de base:

a)
$$\begin{bmatrix} I \end{bmatrix}_{B_1}^{B_1}$$
, b) $\begin{bmatrix} I \end{bmatrix}_{B_2}^{B}$ a) $\begin{bmatrix} 1 & -I \\ I & 0 \end{bmatrix}$, b) $\begin{bmatrix} -3 & -2 \\ -I & -I \end{bmatrix}$

- 2. Considerando as seguintes bases do \mathbb{R}^3 A = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} e B = {(1, 0, -1), (0, 1, -1), (-1, 1, 1)}, determine:
- a) A matriz mudança de base de A para B;
- b) o vetor v_B , sendo $v_A = (1, 2, 3)$. $v_B = (7, -4, 6)$

3. Se
$$\begin{bmatrix} I \end{bmatrix}_{\alpha}^{\beta} = \begin{bmatrix} I & I & 0 \\ 0 & -I & I \\ I & 0 & -I \end{bmatrix}$$
, ache:

a)
$$[v]_{\alpha}$$
 onde $[v]_{\beta} = \begin{bmatrix} -I \\ 2 \\ 3 \end{bmatrix}$ $[v]_{\alpha} = \begin{bmatrix} I \\ I \\ -4 \end{bmatrix}$

b)
$$[v]_{\beta}$$
 onde $[v]_{\alpha} = \begin{bmatrix} -I \\ 2 \\ 3 \end{bmatrix}$ $[v]_{\beta} = \begin{bmatrix} 2 \\ -3 \\ -I \end{bmatrix}$

4. Sabendo que:
$$\begin{bmatrix} I \end{bmatrix}_{B}^{A} = \begin{bmatrix} -I & 4 \\ 4 & -II \end{bmatrix}$$
 e B = {(3, 5), (1, 2)}, determine a base A.
A= {(1, 3), (1, -2)}

5. Sabendo que: $\begin{bmatrix} I \end{bmatrix}_{B}^{A} = \begin{bmatrix} -7 & 6 \\ -11 & 8 \end{bmatrix}$ e A = {(1, 3), (2, -4)}, determine a base B.

$$B = \{(3, -2), (-2, 1)\}$$

6. Mostrar que para qualquer base A de um espaço vetorial, a matriz mudança de base [1]; é a matriz identidade.