

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019406

International filing date: 24 December 2004 (24.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2003-430954
Filing date: 25 December 2003 (25.12.2003)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

09.2.2005

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2003年12月25日
Date of Application:

出願番号 特願2003-430954
Application Number:

[ST. 10/C] : [JP2003-430954]

出願人 東京エレクトロン株式会社
Applicant(s):

2004年 9月29日

特許庁長官
Commissioner,
Japan Patent Office

小川

出証番号 出証特2004-3087239

【書類名】 特許願
【整理番号】 TEL03015
【提出日】 平成15年12月25日
【あて先】 特許庁長官 今井 康夫 殿
【国際特許分類】 H01L 21/00
【発明者】
【住所又は居所】 東京都港区赤坂五丁目3番6号 TBS放送センター 東京エレクトロン株式会社内
【氏名】 野沢 俊久
【発明者】
【住所又は居所】 東京都港区赤坂五丁目3番6号 TBS放送センター 東京エレクトロン株式会社内
【氏名】 小谷 光司
【特許出願人】
【識別番号】 000219967
【氏名又は名称】 東京エレクトロン株式会社
【代理人】
【識別番号】 100096389
【弁理士】
【氏名又は名称】 金本 哲男
【電話番号】 03-3226-6631
【選任した代理人】
【識別番号】 100095957
【弁理士】
【氏名又は名称】 亀谷 美明
【電話番号】 03-5919-3808
【選任した代理人】
【識別番号】 100101557
【弁理士】
【氏名又は名称】 萩原 康司
【電話番号】 03-3226-6631
【手数料の表示】
【予納台帳番号】 040235
【納付金額】 21,000円
【その他】 「国等の委託研究の成果に係る特許出願（平成15年度新エネルギー・産業技術総合開発機構「マイクロ波励起高密度プラズマ技術を用いた半導体製造装置の技術開発」委託研究、産業活力再生特別措置法第30条の適用を受けるもの）」
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 9602173

【書類名】特許請求の範囲**【請求項 1】**

温度調節対象を有する複数の基板処理部に対し、一台の冷凍機から冷媒を分割供給して、前記各基板処理部の温度調節対象の温度を調節することを特徴とする、温度調節方法。

【請求項 2】

前記冷凍機から前記各基板処理部に供給された冷媒を、前記各基板処理部毎に設定された循環路において循環させて、当該循環路の一部での熱交換によって前記温度調節対象の温度を調節することを特徴とする、請求項 1 に記載の温度調節方法。

【請求項 3】

前記循環路には、前記冷凍機からの冷媒を供給する往路と、冷凍機へと戻る還路が接続され、

前記往路及び還路を閉鎖し、前記循環路内にある冷媒の循環によって、前記温度調節対象の温度を調節することを特徴とする、請求項 2 に記載の温度調節方法。

【請求項 4】

さらに前記循環路内の冷媒の流速を制御することで、前記温度調節対象の温度を調節することを特徴とする、請求項 3 に記載の温度調節方法。

【請求項 5】

前記温度調節対象の温度に基づいて、前記往路及び管路を開放して前記冷凍機から新たなる冷媒を前記循環路に導入することを特徴とする、請求項 3 又は 4 に記載の温度調節方法。

【請求項 6】

複数の基板処理部の各温度調節対象の温度を調節するための温度調節装置であつて、

1台の冷凍機と、

前記冷凍機から前記各基板処理部に冷媒を供給するための第1の流路と、

前記各基板処理部から前記冷凍機に冷媒を戻すための第2の流路と、

前記各基板処理部の温度調節対象内を通り、冷媒を循環させる循環路と、を備え、

前記循環路には、前記第1の流路と前記第2の流路が接続されており、

前記第1の流路から前記循環路に流入する冷媒の流量を調節する弁をさらに備えたことを特徴とする、温度調節装置。

【請求項 7】

前記弁は、三方弁であり、前記循環路において冷媒が循環する流れと、前記第1の流路、前記循環路及び前記第2の流路を順に冷媒が流通する流れとを切り替え可能であることを特徴とする、請求項 6 に記載の温度調節装置。

【請求項 8】

前記温度調節対象の温度を検出する温度センサと、

前記温度センサによって検出された温度に基づいて前記弁の動作を制御する弁制御部と、をさらに備えたことを特徴とする、請求項 6 又は 7 のいずれかに記載の温度調節装置。

【請求項 9】

前記循環路内を循環する冷媒を加熱する加熱部材と、

前記温度センサによって検出された温度に基づいて前記加熱部材による加熱を制御する加熱制御部と、をさらに備えたことを特徴とする、請求項 8 に記載の温度調節装置。

【請求項 10】

前記循環路には、冷媒を循環させるポンプが設けられていることを特徴とする、請求項 6 , 7 , 8 又は 9 のいずれかに記載の温度調節装置。

【請求項 11】

前記基板処理部は、プラズマを発生させて基板を処理するものであることを特徴とする、請求項 6 , 7 , 8 , 9 又は 10 のいずれかに記載の温度調節装置。

【書類名】明細書

【発明の名称】温度調節方法及び温度調節装置

【技術分野】

【0001】

本発明は、複数の基板処理部の温度を調節するための温度調節方法及び温度調節装置に関する。

【背景技術】

【0002】

例えば半導体デバイスの製造工程では、例えばプラズマを用いてウェハを処理する、成膜処理やエッチング処理等のプラズマ処理が行われている。

【0003】

これらのプラズマ処理は、通常工場内に複数台設置されているウェハ処理部において行われている。プラズマ処理は、そのウェハ処理部が有する処理容器内において高温状態の下で行われるが、ウェハの処理状態を一定に保つため、処理中は、処理容器内の温度を一定に維持する必要がある。このため、従来より工場内の各ウェハ処理部には、温度が上がり過ぎないように処理容器等に蓄熱された熱を取り去るための冷却用チラーが一台ずつ設けられていた。この冷却用チラーは、例えばウェハ処理部に冷媒を送って処理容器の熱を吸収することによって、処理容器の温度を一定に維持することができる。

【0004】

しかしながら、上記冷却用チラーは、通常ウェハ処理部が設置された場所から離れた、例えば床下に設置されていた（例えば、特許文献1参照。）。このため、各ウェハ処理部毎に、冷却用チラーとウェハ処理部と接続する長い配管が必要であった。また、上記冷却用チラーの冷媒には、通常比重が2程度の例えばフロン系のものが用いられ、配管抵抗を抑えるために比較的太い配管が必要であった。この結果、工場内には、一対の冷却用チラーとウェハ処理部毎に、太くて長い配管を設置する必要があり、当該配管ために広いスペースが必要であった。またその配管の設置等ためのコストも膨大になっていた。さらに、上記冷却用チラーから太くて長い配管を通して床上のウェハ処理部に冷媒を供給するためには強力なポンプが必要であり、これが原因で冷却用チラーやポンプに過剰な負荷がかかっていた。このため、冷却用チラーやポンプの稼働時のエネルギー損失が大きくなり、消費電力などのエネルギーのコストも増大していた。

【0005】

【特許文献1】特開2001-332463号公報

【発明の開示】

【発明が解決しようとする課題】

【0006】

本発明は、かかる点に鑑みてなされたものであり、ウェハ処理部などの基板処理部が複数設置された工場において、配管に要するスペースを低減し、従来より省エネルギー、省コストの温度調節を実現できる温度調節方法及び温度調節装置を提供することをその目的とする。

【課題を解決するための手段】

【0007】

上記目的を達成するために、本発明の温度調節方法は、温度調節対象を有する複数の基板処理部に対し、一台の冷凍機から冷媒を分割供給して、前記各基板処理部の温度調節対象の温度を調節することを特徴とする。

【0008】

本発明によれば、一台の冷凍機から複数の基板処理部に対し冷媒が分割供給されるので、従来に比べて工場内の配管の数を減らすことができ、配管のためのスペースを低減できる。また、上述したように従来複数台設置されていた冷却用チラーが一台の冷凍機で足りるので、その設置スペースも低減できる。さらに、従来複数台設置されていた冷却用チラーやポンプに要していた消費電力も低減され、省エネルギー、省コストが図られる。

[0 0 0 9]

前記冷凍機から前記各基板処理部に供給された冷媒を、前記各基板処理部毎に設定された循環路において循環させて、当該循環路の一部での熱交換によって前記温度調節対象の温度を調節するようにしてもよい。このように、各基板処理部毎の循環路において冷媒を循環させることによって、各基板処理部における個々の温度調節対象を適正な温度に調節することができる。また、冷凍機と前記各基板処理部との間の全体の系で冷媒を循環させる場合に比べて、必要な熱交換量が最適化されるので、この結果循環路内の冷媒の温度差が抑制され、温度調節対象に対し温度斑のない温度調節を行うことができる。

[0 0 1 0]

前記循環路には、前記冷凍機からの冷媒を供給する往路と、冷凍機へと戻る還路が接続され、前記往路及び還路を閉鎖し、前記循環路内にある冷媒の循環によって、前記温度調節対象の温度を調節するようにしてもよい。このように循環路内にある冷媒の循環だけで温度調節することによって、温度差のない冷媒により温度調節が行われ、安定した温度調節が実現できる。また、新たな冷媒を供給する必要がないので、例えば冷媒を供給するためのエネルギーを削減できる。

[0 0 1 1]

さらに前記循環路内の冷媒の流速を制御することで、前記温度調節対象の温度を調節するようにしてもよい。かかる場合、例えば循環路内の冷媒の流速を上げて、循環路内で循環する冷媒の温度差をさらに低減することができる。この結果、温度調節対象に対し斑のない温度調節を行うことができる。

[0 0 1 2]

前記温度調節対象の温度に基づいて、前記往路及び管路を開放して前記冷凍機から新たな冷媒を前記循環路に導入するようにしてもよい。かかる場合、例えば温度調節対象の温度が所定の温度範囲を外れた場合に、所定の温度に管理された新たな冷媒が循環路内に導入されるので、循環路内で循環している冷媒の温度が変更され、当該冷媒によって温度調節対象の温度を所定の温度範囲に戻すことができる。

[0 0 1 3]

本発明によれば、複数の基板処理部の各温度調節対象の温度を調節するための温度調節装置であって、1台の冷凍機と、前記冷凍機から前記各基板処理部に冷媒を供給するための第1の流路と、前記各基板処理部から前記冷凍機に冷媒を戻すための第2の流路と、前記各基板処理部の温度調節対象内を通り、冷媒を循環させる循環路と、を備え、前記循環路には、前記第1の流路と前記第2の流路が接続されており、前記第1の流路から前記循環路に流入する冷媒の流量を調節する弁をさらに備えたことを特徴とする。

【0014】

本発明によれば、一台の冷凍機によって複数の基板処理部に対して冷媒を分割供給できるので、従来に比べて工場内の配管の数を減らすことができ、配管のためのスペースを低減できる。また、従来のように各基板処理部毎に冷却用チラーが必要でないので、その設置スペースも低減できる。さらに、従来複数台あった冷却用チラーやポンプに要していた消費電力も低減されるので、その分省エネルギー、省コストが図られる。また、冷凍機から各基板処理部に供給された冷媒を、各循環路において循環させて、温度調節対象の温度を調節できる。この場合、循環する冷媒によって各基板処理部の温度調節対象を適正な温度に調節することができる。また、循環路内を冷媒が比較的短い周期で循環するので、循環路内の冷媒の温度差が抑制され、温度調節対象に対して斑のない温度調節を行うことができる。

[0015]

前記弁は、三方弁であり、前記循環路において冷媒が循環する流れと、前記第1の流路、前記循環路及び前記第2の流路を順に冷媒が流通する流れとを切り替え可能であってもよい。さらに、前記温度調節装置は、前記温度調節対象の温度を検出する温度センサと、前記温度センサによって検出された温度に基づいて前記弁の動作を制御する弁制御部と、前記温度センサによって例えば温度調節対象が所定をさらに備えていてもよい。かかる場合、温度センサによって

の温度範囲を外れたことを検出した場合に、弁制御部によって弁を開放し、所定温度の冷媒を循環路内に取り入れることによって、循環路内の冷媒温度を変更し、当該冷媒によって温度調節対象を所定の温度範囲に調節することができる。

【0016】

前記温度調節装置は、前記循環路内を循環する冷媒を加熱する加熱部材と、前記温度センサによって検出された温度に基づいて前記加熱部材による加熱を制御する加熱制御部とをさらに備えていてもよい。かかる場合、例えば温度調節対象の温度が目標温度よりも低下した場合、加熱制御部の制御の下、加熱部材によって冷媒を加熱して温度調節対象の温度を目標温度に戻すことができる。つまり、温度調節対象を積極的に昇温させ、温度調節対象を所望の目標温度に維持することができる。

【0017】

前記循環路には、前記冷媒を循環させるポンプが設けられていてもよい。かかる場合、循環路内の循環を促進し、循環路内の冷媒の流速を上げることができる。これにより、循環路内の冷媒の温度差がさらに抑制され、温度調節対象に対しさらに斑のない温度調節を行うことができる。

【0018】

前記基板処理部は、プラズマを発生させて基板を処理するものであってもよい。かかる基板処理部では、多量の熱が発生する上に、厳密な温度管理が要求されるので、本発明をこの基板処理部に適用することは有効である。

【発明の効果】

【0019】

本発明によれば、一台の冷却機で複数の基板処理部の温度調節を行うことができるので、省スペース、省エネルギー及び省コストが図られる。

【発明を実施するための最良の形態】

【0020】

以下、本発明の好ましい実施の形態について説明する。図1は、本実施の形態にかかる温度調節装置が用いられる基板処理システム1の構成の概略を示す平面図である。

【0021】

基板処理システム1は、例えばカセット載置台2と、搬送チャンバ3及び真空処理部4とをX方向（図1中の左右方向）に沿って直線上に接続した構成を有している。

【0022】

カセット載置台2には、例えば25枚のウェハWを多段に配置させて収容するFOUP（Front Opening Unified Pod）などの密閉性を有するカセットCが載置できる。カセット載置台2には、例えばカセットCをY方向（図1の上下方向）に沿って、例えば2つ並べて載置できる。

【0023】

搬送チャンバ3には、カセットCから取り出されたウェハWの位置合わせを行うアライメントステージ10と、ウェハWを搬送する多関節アームを備えたウェハ搬送体11が設けられている。ウェハ搬送体11は、カセット載置台2上のカセットC、アライメントステージ10及び真空搬送部4に対しアクセスしウェハWを搬送できる。

【0024】

真空処理部4には、搬送チャンバ3からX方向に沿って延伸する搬送路12が形成されている。搬送路12には、例えば2つのロードロック室13、14と、基板処理部としての3つのCVD（chemical vapor deposition）処理部15a、15b、15cが接続されている。ロードロック室13は、例えば搬送路12の搬送チャンバ3側の両側面に接続されている。CVD処理部15a～15cは、搬送路12のX方向正方向（図1の右方向）側の両側面にそれぞれ接続されている。ロードロック室13、14と搬送チャンバ3との接続部には、ウェハWを搬送する際に開閉するゲートバルブ20が設けられている。また、搬送路12とロードロック室13、14との接続部、及び搬送路12とCVD処理部15a～15cとの接続部にも、ゲートバルブ21が設けられ

ている。

【0025】

真空処理部4の搬送路12内には、レール22に沿ってX方向に移動自在なウェハ搬送装置23が設けられている。ウェハ搬送装置23は、ウェハWを保持する多関節アームを有し、ロードロック室13、14、CVD処理部15a～15cに対してアクセスしてウェハWを搬送できる。

【0026】

以上のように構成された基板処理システム1では、カセット載置台2上のカセットC内のウェハWが、ウェハ搬送体11によって取り出され、アライメントステージ10に搬送されて位置合わせされる。その後、ウェハWは、ウェハ搬送体11によってロードロック室13に搬入され、ウェハ搬送装置23によって、ロードロック室13からCVD処理部15a～15cに搬入され、CVD処理が施される。CVD処理の施されたウェハWは、ウェハ搬送装置23によってロードロック室13に搬入され、その後ウェハ搬送体11によってカセットCに戻される。

【0027】

ここで、本実施の形態にかかる温度調節装置によって温度調節が行われるCVD処理部15a～15cの構成について説明する。図2は、CVD処理部15aの構成の概略を示すための縦断面の説明図である。

【0028】

例えばCVD処理部15aは、処理室Sを形成する略円筒状の処理容器としての筐体30を有している。筐体30内には、ウェハWを載置する載置台31が設けられている。載置台31内には、載置されたウェハWを昇温させるための第1のヒータ32が内蔵されている。載置台31は、ロッドステージ33に立設された縦長のロッド34の上に支持されている。ロッドステージ33は、筐体30の下部に設けられた昇降機構35に連動している。この昇降機構35により、ロッドステージ33が昇降し、載置台31は筐体30内で昇降できる。載置台31の熱が伝導する上記ロッドステージ33内には、例えば後述する冷凍機101から供給される冷媒を流通させる第1の冷媒流通部36と、ロッドステージ33の温度を検出する第1の温度センサ37が設けられている。

【0029】

筐体30内には、搬出入時にウェハWを支持する支持ピン40が設けられている。支持ピン40は、ウェハWを支持した後、載置台31が上昇することによって、載置台31にウェハWを渡すことができる。

【0030】

筐体30の天井部50には、マイクロ波発生装置51が設けられている。天井部50には、後述する冷凍機101からの冷媒を流通させる第2の冷媒流通部52と、天井部50の温度を検出する第2の温度センサ53が設けられている。第2の冷媒流通部52は、例えば天井部50の中央にあるマイクロ波供給管54を中心とした、平面から見て渦巻き状に配置された流路によって構成されている。

【0031】

筐体30には、例えばプラズマを発生させるためのガスを処理室S内に導入するガス導入部60が設けられている。また、筐体30の側壁部61の内側面には、処理室S内を昇温するための第2のヒータ62が設けられている。筐体30の側壁部61内には、後述する冷凍機からの冷媒を流通させる第3の冷媒流通部63と、側壁部61の温度を検出する第3の温度センサ64が設けられている。第3の冷媒流通部63は、例えば環状の側壁部61内を蛇行しながら一周する流路によって構成されている。

【0032】

例えば上述の各温度センサ37、53、64による検出結果は、例えばCVD処理部15aの各種諸元の動作を制御する制御部65に出力できる。

【0033】

筐体30の下部には、処理室S内の雰囲気を排氣する排氣部70が形成されている。筐

体30の側壁部61には、ウェハWを搬入出するための搬入出口71が形成されている。

【0034】

本実施の形態においてCVD処理部15b, 15cの構成は、CVD処理部15aと同様であるので、その説明を省略する。

【0035】

以上のように構成されたCVD処理部15a～15cでは、第1及び第2のヒータ32, 62により処理室S内と載置台31が所定の温度まで昇温された状態で、処理室S内にウェハWが搬入される。処理室S内に搬入されたウェハWは、支持ピン40に支持された後、載置台31上に載置される。その後、ガス導入部60から処理室S内に所定のガスが導入され、マイクロ波発生装置51によってそのガスにマイクロ波が付加される。そのマイクロ波の付加によって、処理室S内にプラズマが生成され、そのプラズマによってウェハW上に所定の膜が形成される。

【0036】

次に、上述のCVD処理部15a～15cの温度制御を行う温度調節装置100について説明する。図3は、温度調節装置100の構成の概略を示す模式図である。

【0037】

温度調節装置100は、例えば一台の冷凍機101と、冷凍機101から各CVD処理部15a～15cに冷媒を供給する往路である第1の流路102と、各CVD処理部15a～15cから冷凍機101に冷媒を戻す還路である第2の流路103と、各CVD処理部15a～15c毎に配置された循環路104a, 104b, 104cを有している。

【0038】

第1の流路102の上流部には、各CVD処理部15a～15cに冷媒を圧送するためのポンプPが設けられている。第1の流路102は、途中で分岐し、各CVD処理部15a～15cの各循環路104a～104cに接続されている。例えば第1の流路102と各循環路104a～104cとの接続部には、三方弁105a, 105b, 105cがそれぞれ設けられている。これにより、第1の流路102、循環路104a～104c及び第2の流路103を順に流通する冷媒の流れと、循環路104a～104c内で冷媒が循環する流れとを切り換えることができる。また、冷媒が循環している状態の循環路104a内に第1の流路102から所定の流量の冷媒を流入させることができる。

【0039】

循環路104a～104cは、図2及び図3に示すように各CVD処理部15a～15cの所定の温度調節対象、例えばロッドステージ33を通るように配置されている。つまり、上述した各CVD処理部15a～15cの第1の冷媒流通部36は、循環路104a～104cの一部を構成している。各循環路104a～104cには、各循環路104a～104c内の冷媒の循環を促進させる循環用ポンプ106a, 106b, 106cが設けられている。

【0040】

第2の流路103は、図3に示すように各循環路104a～104cに接続されており、各循環路104a～104c内を通過した冷媒を冷凍機101に戻すことができる。

【0041】

上述した各CVD処理部15a～15cの各制御部65は、各CVD処理部15a～15cの第1の温度センサ37によって検出された温度に基づいて循環用ポンプ106a～106cの動作を制御するポンプ動作制御部107a, 107b, 107cを備えている。これにより、ロッドステージ33の温度に基づいて循環用ポンプ106a～106cの動作の制御して、循環路104a～104c内の冷媒の流速を調整できる。また、制御部65は、第1の温度センサ37によって検出された温度に基づいて三方弁105a～105cの動作を制御する弁制御部108a, 108b, 108cを備えている。これにより、ロッドステージ33の温度に基づいて、三方弁105a～105cの開閉度を制御して、第1の流路102から各循環路104a～104c内への冷媒の取り入れの有無や冷媒の取り入れ流量の調整を行うことができる。なお、冷凍機101には、例えば工場循環水

が流通する管路109が設けられている。

【0042】

次に、以上のように構成された温度調節装置100の動作について説明する。冷凍機101が稼動し、ポンプPによって第1の流路102に冷媒が送られると、冷媒は、第1の流路102を通って各CVD処理部15a～15cの各循環路104a～104cに分割供給され、その後、各循環路104a～104cから第2の流路103を通って冷凍機101に戻される。また、例えば各CVD処理部15a～15cにおける三方弁105a～105cによって、第1の流路102から循環路104a～104cへの冷媒の流れが遮断され、循環用ポンプ106a～106cが稼動すると、各循環路104a～104c内において冷媒が循環する。

【0043】

また、三方弁105a～105cの開閉度を調節して、第1の流路102から循環路104a～104cへの冷媒の流れと循環路104a～104c内の冷媒の流れの両方を維持すると、冷凍機101から供給される所定流量の冷媒が循環路104a～104c内で循環している冷媒内に取り入れられる。そして、第1の流路102から流入した分量の冷媒が循環路104a～104cから第2の流路103に流出し、第2の流路103を通して冷凍機101に戻される。

【0044】

例えば、各CVD処理部15a～15cにおけるCVD処理中は、載置台31の温度が安定するように、ロッドステージ33の温度が所定の温度以上ならないように温度調節される。CVD処理中は、各CVD処理部15a～15cにおいて、第1の温度センサ37により、ロッドステージ33の温度が常にモニタリングされている。

【0045】

例えば冷凍機101から供給される冷媒の温度が-30℃で、CVD処理部15aのロッドステージ33の上限温度が-20℃に設定されている場合、ロッドステージ33の温度が-20℃未満のときには、例えば三方弁105aにより第1の流路102から循環路104aへの冷媒の流入が遮断され、循環用ポンプ106aにより循環路104a内の冷媒が循環路104a内を所定の速度で循環する。このとき、循環路104a内では、冷媒が短い周期で循環するため、循環路104a内の冷媒の温度差が小さくなる。この結果、第1の冷媒流通部36の入口と出口における冷媒の温度差も小さくなり、ロッドステージ33の温度が斑なく維持される。また、このとき、冷凍機101からの冷媒の供給が停止され、循環路104a内の少ない冷媒量で温度調節されるので、冷凍機101等の消費電力を低減できる。

【0046】

例えばロッドステージ33の温度が-20℃を越えたときには、三方弁105aの開閉度が調整され、循環路104a内の冷媒の循環が維持されまま、第1の流路102から循環路104a内に-30℃の低温の冷媒が取り入れられる。これにより、循環路104a内で循環する冷媒の温度が低下し、ロッドステージ33の温度が下げられる。

【0047】

CVD処理部15b, 15cにおいても、CVD処理部15aと同様に、第1の温度センサ37によって検出されたロッドステージ33の温度に基づいて、循環路105b, 105cにおける冷媒の循環と、第1の流路102から循環路105b, 105c内への新しい冷媒の取り入れとを切り換えることによって、各CVD処理部15b, 15cで各自定められた温度以下にロッドステージ33の温度を維持することができる。

【0048】

以上の実施の形態によれば、一台の冷凍機101と複数のCVD処理部15a～15cを接続する第1の流路102が配置され、冷凍機101から複数のCVD処理部15a～15cに冷媒を分割供給できるようにしたので、従来に比べて配管の総数を減らすことができ、配管の設置スペースやコストを低減できる。また、冷凍機101の設置スペースも少なく抑えることができる。各CVD処理部15a～15cに配置された短い循環路10

4 a～104 cで冷媒を循環させ、循環路104 a～104 c内の冷媒の温度差を抑制したので、各CVD処理部15 a～15 cにおけるロッドステージ33を斑なく安定的に温度調節することができる。

【0049】

第1の流路102と各循環路104 a～104 cの接続部に三方弁105 a～105 cが設けられたので、第1の流路102内の新しい冷媒を必要に応じて循環路104 a～104 c内に取り入れることができる。これにより、例えばロッドステージ33の温度が上昇した場合に、冷凍機101からの低温の冷媒が循環路104 a～104 c内で循環している冷媒内に混合され、循環路104 a～104 c内の冷媒温度を低下させることができる。この結果、ロッドステージ33の温度を迅速に下げることができる。また、三方弁105 a～105 cの動作制御が、第1の温度センサ37による温度の検出結果に基づいて行われたので、温度調節を正確かつ迅速に行うことができる。

【0050】

以上の実施の形態における各CVD処理部15 a～15 cの各循環路104 a～104 cに、図4に示すように加熱部材としてのヒータ120 a, 120 b, 120 cが設けられてもよい。この場合、各制御部65には、第1の温度センサ37によって検出された温度に基づいてヒータ120 a～120 cによる加熱を制御する加熱制御部121 a, 121 b, 121 cが設けられる。かかる場合、例えばCVD処理部15 a～15 cの例えはロッドステージ33の温度が目標温度よりも下がったとき、加熱制御部121 a～121 cによってヒータ120 a～120 cを作動させ、循環路104 a～104 c内の冷媒を昇温させる。こうすることによって、ロッドステージ33の温度を積極的に上昇させることができ、例えばロッドステージ33を所望の目標温度に調節することができる。

【0051】

以上の実施の形態では、載置台31の温度を安定させるために、ロッドステージ33の温度を調節していたが、載置台31内に循環路104 a～104 cを通して載置台31を直接温度調節してもよい。

【0052】

また、以上の実施の形態では、CVD処理部15 a～15 cのロッドステージ33を温度調節の対象にしていたが、CVD処理部15 a～15 cにおける他の部分、例えば筐体30の天井部50、側壁部61を温度調節の対象にしてもよい。この場合、各CVD処理部15 a～15 cにおいて、例えば図5に示すように第2の冷媒流通部52を通る循環路130と、第3の冷媒流通部63を通る循環路131が形成され、その循環路130, 131が第1の流路102と第2の流路103に接続される。循環路130, 131には、それぞれ三方弁132, 133と循環用ポンプ134, 135が設けられる。そして、上述したロッドステージ33の温度調節と同様に、第2の温度センサ53と第3の温度センサ64によって検出された温度に基づいて、三方弁132, 133と循環用ポンプ134, 135の動作が制御され、天井部50と側壁部61の温度が調整される。

【0053】

以上、本発明の実施の形態の一例について説明したが、本発明はこの例に限らず種々の態様を探りうるものである。例えば、本実施の形態では、温度調節装置100によって、3台のCVD処理部が温度調節されていたが、その数は、任意に選択できる。温度調節される基板処理部は、CVD処理部15 a～15 cに限られず、例えば温度制御の必要な、CVD以外の膜形成処理部、エッティング処理部及び熱処理部等の他の基板処理部であってもよい。また、温度調節される基板処理部は、同じ基板処理システム1内の基板処理部に限られず、複数の基板処理システムに渡る基板処理部であってもよい。本実施の形態で記載したウェハWは、例えばFPD(フラットパネルディスプレイ)基板、マスク基板、レクチル基板などの他の基板であってもよい。

【産業上の利用可能性】

【0054】

本発明は、工場内の複数の基板処理部の温度制御を、省スペース、省コストで実現する

際に有用である。

【図面の簡単な説明】

【0055】

【図1】基板処理システム1の構成の概略を示す平面図である。

【図2】CVD処理部の構成の概略を示す縦断面の説明図である。

【図3】温度調節装置の構成の概略を示す模式図である。

【図4】ヒータを備えた温度調節装置の構成の概略を示す模式図である。

【図5】筐体の天井部と側壁部の温度調節を行う場合のCVD処理部の構成の概略を示す縦断面の説明図である。

【符号の説明】

【0056】

1 基板処理システム

15a～15c CVD処理部

33 ロッドステージ

100 温度調節装置

101 冷凍機

102 第1の流路

103 第2の流路

104a～104c 循環路

105a～105c 三方弁

106a～106c 循環用ポンプ

W ウエハ

特願 2003-430954

ページ： 1/

【書類名】 図面

出証特 2004-3087239

【図 1】

【図2】

【図3】

【図 4】

【図5】

【書類名】要約書

【要約】

【課題】 工場内の複数の基板処理部の温度調節を、省スペース、省エネルギーで行う。

【解決手段】 一台の冷凍機 101 から各 CVD 処理部 15a～15c に冷媒を供給する第 1 の流路 102 と、各 CVD 処理部 15a～15c から冷凍機 101 に冷媒を戻す第 2 の流路 103 が配置され、冷凍機 101 から各 CVD 処理部 15a～15c に冷媒を分割供給する。各 CVD 処理部 15a～15c には、温度調節対象であるロッドステージ 33 を通る循環路 104a～104c がそれぞれ設けられ、各循環路 104a～104c は、第 1 の流路 102 と第 2 の流路 103 に接続される。循環路 104a～104c 内で冷媒を循環させてロッドステージ 33 を安定的に温度調節し、ロッドステージ 33 の温度上昇時には、第 2 の流路 103 から循環路 104a～104c 内に低温の冷媒を取り入れ、ロッドステージ 33 を冷却する。

【選択図】 図 3

特願 2003-430954

出願人履歴情報

識別番号

[000219967]

1. 変更年月日 2003年 4月 2日

[変更理由] 住所変更

住 所 東京都港区赤坂五丁目3番6号
氏 名 東京エレクトロン株式会社