

机器学习A 5.线性模型I

何向南

中国科学技术大学 数据科学实验室LDS

Classification 分类

Classification: Analyzing sentiment 分类器——分析情感

Linear classifiers

线性分类器

Simple linear classifier

Score(x) = weighted sum of features of sentence

Sentence from review

Input: x

If $Score(\mathbf{x}) > 0$:

$$\hat{y} = +1$$

Else:

$$\hat{\mathbf{y}} = -1$$

Linear classifiers 线性分类器

一个简单的例子: 词频(Word Count):

特征(Feature)	系数(Coefficient)
good	1.0
great	1.2
awesome	1.7
bad	-1.0
terrible	-2.1
awful	-3.3
restaurant, the, we, where	0.0
	•••

输入 x_i

Sushi was great. the food was <u>awesome</u>, but the service was terrible.

$$\hat{y}$$
 =+1 (表示正面评论)

这叫线性分类器,因为分数是特征的加权和。

More generically... 更通用的...

Model:
$$\hat{y}_i = \text{sign}(\text{Score}(\mathbf{x}_i))$$

Score $(\mathbf{x}_i) = w_0 h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + ... + w_D h_D(\mathbf{x}_i)$

$$= \sum_{j=0}^D w_j h_j(\mathbf{x}_i) = w^\top h(\mathbf{x}_i)$$

```
feature 1 = h_0(\mathbf{x}) ... e.g., 1

feature 2 = h_1(\mathbf{x}) ... e.g., \mathbf{x}[1] = \#awesome

feature 3 = h_2(\mathbf{x}) ... e.g., \mathbf{x}[2] = \#awful

or, \log(\mathbf{x}[7]) \mathbf{x}[2] = \log(\#bad) x \#awful

or, \inf(\#awful")
```

...

feature $D+1 = h_D(\mathbf{x})$... some other function of $\mathbf{x}[1],...,\mathbf{x}[d]$

Decision boundaries 决定边界

Suppose only two words had non-zero coefficient

假设我们只有2个非零系数

输入 (Input)	系数 (Coefficient)	值 (Value)
	w_0	0.0
#awesome	w_1	1.0
#awful	W_2	-1.5

Score(x)=1.0 #awesome – 1.5 #awful

Decision boundaries example 决定边界例子

输入 (Input)	系数 (Coefficient)	值 (Value)
	w_0	0.0
#awesome	w_1	1.0
#awful	W_2	-1.5

Score(x)=1.0 #awesome - 1.5 #awful

For more inputs (linear features)... 更多输入(线性特征)

For general features... 通用特征

For more general classifiers (not just linear features)

→ more complicated shapes

Are you sure about the prediction? Class probability

你能确定预测吗? 类别概率

How confident is your prediction? 预测的置信度?

- Thus far, we've outputted a prediction +1 or -1
- But, how sure are you about the prediction?

"The sushi was good, the service was OK" Not sure

Using probabilities in classification 在分类中使用概率

How confident is your prediction?

Goal: Learn conditional probabilities from data

目标: 从数据中学习条件概率

Training data: N observations (\mathbf{x}_i, y_i)

x[1] = #awesome	x[2] = #awful	y = sentiment
2	1	+1
0	2	-1
3	3	-1
4	1	+1
•••	***	•••

Optimize **quality metric** on training data

Find best model P by finding best w

Useful for predicting ŷ

Goal: Learn conditional probabilities from data

目标: 从数据中学习条件概率

Sentence from

Input: x

Predict most likely class

P(y|x) = estimate of class probabilities

If
$$P(y=+1|x) > 0.5$$
:

$$\hat{\mathbf{v}} = +1$$

Else:

$$\hat{\mathbf{y}} = -1$$

Estimating $\hat{P}(y|x)$ improves interpretability:

- Predict $\hat{y} = +1$ and tell me how sure you are

Predicting class probabilities with logistic regression 用Logistic回归预测类别概率

Predicting class probabilities with logistic regression 用Logistic回归预测类别概率

Thus far, we focused on decision boundaries

目前为止,我们关注决策边界

Use regression to build classifier 用回归构建分类

Use regression to build classifier 用回归构建分类

Logistic 函数 (也叫做Sigmoid, Logit)

$$Sigmoid(Score) = \frac{1}{1 + e^{-Score}}$$

Score	-∞	-2	0	+2	+∞
Sigmoid	0	0.12	0.5	0.88	1

Understanding the logistic regression model 理解Logistic回归

$$P(y=+1|x_i,w) = \frac{1}{1 + e^{-w^{T}h(x)}}$$

Score(x _i)	P(y=+1 x _i ,w)
0	0.5
-2	0.12
2	0.88
4	0.98

$$Score = \mathbf{w}^T h(x)$$

Logistic regression -> Linear decision boundary Logistic回归 -> 线性决策边界

Effect of coefficients on logistic regression model Logistic回归模型系数的影响

Score(x) = -2 + #awesome - #awful

Compare and contrast regression models 对比回归模型

Linear regression with Gaussian errors

$$y_i = \mathbf{w}^T h(\mathbf{x}_i) + \mathbf{\epsilon}_i \quad \mathbf{\epsilon}_i \sim N(0, \sigma^2)$$

$$\rightarrow$$
 p(y|x,w) = N(y; w^Th(x), σ^2)

Logistic regression

$$P(y|\mathbf{x},\mathbf{w}) = \begin{cases} \frac{1}{1 + e^{-\mathbf{w}^T h(\mathbf{x})}} & y = +1\\ \frac{e^{-\mathbf{w}^T h(\mathbf{x})}}{1 + e^{-\mathbf{w}^T h(\mathbf{x})}} & y = -1 \end{cases}$$

Loss function for logistic regression: (Negative log-)
Likelihood for maximum likelihood estimation (MLE)

Logistic回归的损失函数:最大似然估计 (MLE)的(负对数)似然性

Recall: Gaussian linear regression model

回顾: 高斯线性回归模型

ε_i 的模型:

初步假设: $E[\varepsilon_i] = 0$

更强的假设: $\varepsilon_i \sim N(0, \sigma^2)$

y_i 的分布:

$$y_i = h^T(x_i)w + \varepsilon_i$$

$$P(y_i|x_i;w) \sim N(h^T(x_i)w, \sigma^2)$$

Recall: Maximum likelihood estimation

回顾:最大似然估计

Maximize log-likelihood w.r.t w

$$\ln p(\mathbf{y}|\mathbf{X};\mathbf{w}) = \ln[(\frac{1}{\sigma\sqrt{2\pi}})^N \times \prod_{i=1}^N \exp(\frac{-(y_i - \mathbf{h}(\mathbf{x}_i)^T \mathbf{w})^2}{2\sigma^2})]$$

$$\underset{w}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{X}; \mathbf{w}) = \underset{w}{\operatorname{argmax}} \ln p(\mathbf{y}|\mathbf{X}; \mathbf{w})$$

$$= \underset{w}{\operatorname{argmax}} \left[-N \ln \sigma \sqrt{2\pi} - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \mathbf{h}(\mathbf{x}_i)^T \mathbf{w})^2 \right]$$

$$= \underset{w}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \mathbf{h}(\mathbf{x}_i)^T \mathbf{w})^2$$

MLE估计最终形式和最小均方差形式相同

x[1] = #awesome	x[2] = #awful	y = sentiment
2	1	+1
0	2	-1
3	3	-1
4	1	+1
1	1	+1
2	4	-1
0	3	-1
0	1	-1
2	1	+1

x[1] = #awesome	x[2] = #awful	y = sentiment
0	2	-1
3	3	-1
2	4	-1
0	3	-1
0	1	-1
2	4	-1
0	3	-1
0	1	-1

x[1] = #awesome	x[2] = #awful	y = sentiment
2	1	+1
4	1	+1
1	1	+1
2	1	+1
1	1	+1
2	1	+1

x[1] = #awesome	x[2] = #awful	y = sentiment
0	2	-1
3	3	-1
2	4	-1
0	3	-1
0	1	-1

x[1] = #awesome	x[2] = #awful	y = sentiment	
2	1	+1	
4	1	+1	
1	1	+1	
2	1	+1	

$$P(y=+1|x_i,w) = 0.0$$

$$P(y=+1|x_i,w) = 1.0$$

Want w that makes

Learn logistic regression model with maximum likelihood estimation (MLE)

用MLE学习Logistic回归

Data point	x[1]	x[2]	у	Choose w to maximize
x ₁ ,y ₁	2	1	+1	$P(y=+1 \mathbf{x}[1]=2, \mathbf{x}[2]=1,\mathbf{w})$
x ₂ ,y ₂	0	2	-1	$P(y=-1 \mathbf{x}[1]=0, \mathbf{x}[2]=2, \mathbf{w})$
x ₃ ,y ₃	3	3	-1	$P(y=-1 \mathbf{x}[1]=3, \mathbf{x}[2]=3, \mathbf{w})$
X ₄ ,y ₄	4	1	+1	$P(y=+1 \mathbf{x}[1]=4, \mathbf{x}[2]=1,\mathbf{w})$

$$P(y|\mathbf{x},\mathbf{w}) = \begin{cases} \frac{1}{1 + e^{-\mathbf{w}^{T}h(\mathbf{x})}} y = +1\\ \frac{e^{-\mathbf{w}^{T}h(\mathbf{x})}}{1 + e^{-\mathbf{w}^{T}h(\mathbf{x})}} y = -1 \end{cases}$$

$$\ell(\mathbf{w}) = \frac{P(y_1|\mathbf{x}_1,\mathbf{w}) \qquad P(y_2|\mathbf{x}_2,\mathbf{w}) \qquad P(y_3|\mathbf{x}_3,\mathbf{w}) \qquad P(y_4|\mathbf{x}_4,\mathbf{w})}{\prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i,\mathbf{w})}$$

Find best classifier 寻找最好的分类器

Maximize likelihood over all possible w₀,w₁,w₂

Gradient ascent for logistic regression Logistic回归的梯度上升

Maximizing likelihood

最大似然

从最大化概率似然的角度出发,概率越大越好,因此应该执 行梯度上升,而不是针对损失函数的梯度下降

Gradient ascent for logistic regression Logistic回归的梯度上升

Our optimization objective 优化目标

Can compute gradient, but no closed-form solution to:

能够计算梯度,但不一定是闭式解(指有公式的解): $\nabla l(w) = 0$

- Use gradient ascent 使用梯度上升
- As with MLE for Gaussians, rewrite objective as 对于高斯分布的MLE,把目标重写为 $\widehat{w} = arg\max l\left(w\right) = arg\max l\left(w\right)$ (Log-Likelihood)

Gradient of logistic log-likelihood Logistic对数似然的梯度

Sum over data points Difference between truth and prediction
$$\frac{\partial \ell\ell(\mathbf{w})}{\partial \mathbf{w}_{j}} = \sum_{i=1}^{N} h_{j}(\mathbf{x}_{i}) \left(\mathbb{1}[y_{i} = +1] - P(y = +1 \mid \mathbf{x}_{i}, \mathbf{w})\right)$$

$$\frac{\partial \ell\ell(\mathbf{w})}{\partial \mathbf{w}_{j}} = \sum_{y_{i}=1} \frac{\partial \ln \frac{1}{1 + \exp(-\mathbf{w}^{T}h(\mathbf{x}))}}{\partial \mathbf{w}_{j}} + \sum_{y_{i}=-1} \frac{\partial \ln \frac{\exp(-\mathbf{w}^{T}h(\mathbf{x}))}{1 + \exp(-\mathbf{w}^{T}h(\mathbf{x}))}}{\partial \mathbf{w}_{j}}$$

$$= -\sum_{y_{i}=1} \frac{1}{1 + u} \frac{\partial u}{\partial \mathbf{w}_{j}} + \sum_{y_{i}=-1} \frac{1}{(1 + u)u} \frac{\partial u}{\partial \mathbf{w}_{j}} \dots \underline{u} = \exp(-\mathbf{w}^{T}h(\mathbf{x}))$$

$$= \sum_{y_{i}=1} \frac{u}{1 + u} h_{j}(\mathbf{x}) - \sum_{y_{i}=-1} \frac{1}{(1 + u)} h_{j}(\mathbf{x}) = \pm \mathbf{x}$$
(注: 1[Condition] = 1 当且仅当condition为真,否则为0。)

Gradient of logistic log-likelihood Logistic对数似然的梯度

	$P(y=+1 x_i,w)\approx 1$	$P(y=+1 x_i,w)\approx 0$
$y_i = +1$	Δ _i ≈ 0 不改变	$\Delta_i \approx 1$ 增加 w_j 增加 $P(y = +1 x_i, w)$
$y_i = -1$	$\Delta_i \approx 1$ 减少 w_j 减少 $P(y = +1 x_i, w)$	Δ _i ≈ 0 不改变

Gradient ascent for logistic regression Logistic回归的梯度上升

init
$$\mathbf{w}^{(1)} = \mathbf{0}$$
 (or randomly, or smartly), $t = 1$

$$\mathbf{while} \ || \nabla \ell(\mathbf{w}^{(t)})|| > \mathbf{\epsilon} \qquad \text{Difference between truth and prediction}$$

$$\mathbf{for} \ j = 0, ..., D$$

$$\mathsf{partial}[j] \ = \sum_{i=1}^{N} h_j(\mathbf{x}_i) \Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \Big)$$

$$\mathsf{w}_j^{(t+1)} \leftarrow \mathsf{w}_j^{(t)} + \mathbf{\eta} \ \mathsf{partial}[j] \qquad \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{h}(\mathbf{x}_i))}$$

$$\mathsf{t} \leftarrow \mathsf{t} + 1$$

$$\frac{\partial ll(\mathbf{w}^{(t)})}{\partial \mathbf{w}_i}$$

Summary for linear classifiers and logistic regression 线性分类器和Logistic回归的总结

- Describe decision boundaries and linear classifiers
- Use class probability to express degree of confidence in prediction
- Define a logistic regression model
- Interpret logistic regression outputs as class probabilities
- Describe impact of coefficient values on logistic regression output
- Measure quality of a classifier using the likelihood function
- Learn a logistic regression model with gradient descent for negative log-likelihood loss

Linear classifiers: overfitting

线性分类器: 过拟合

Review: Bias, variance and error

回顾: 偏差,方差,误差

如果我们将我们尝试预测的变量表示为Y和我们的协变量作为X,我们可以假设存在一种将一个与另一个相关的关系,例如 $Y=f(X)+\varepsilon$ 其中 error 项 ε 呈正态分布,均值为零,如下所示 $\varepsilon\sim\mathcal{N}(0,\sigma_{\varepsilon})$

我们可以估计一个模型 $\hat{f}(X)$ 之f(X)使用线性回归或其他建模技术。在这种情况下,某个点的预期平方预测误差x是:

$$Err (x) = E \left[(Y - \hat{f}(x))^2 \right]$$

然后,此错误可以分解为偏差分量和方差分量:

$$Err\left(x
ight) = \left(E[\hat{f}\left(x
ight)\] - f(x)
ight) + E\left[\left(\hat{f}\left(x
ight)\ - E[\hat{f}\left(x
ight)]
ight)
ight] + \sigma_{e}^{2}$$

$$Err (x) = Bias^2 + Variance + Irreducible Error$$

第三项,不可约误差,是真实关系中的噪声项,任何模型都无法从根本上简化。给定真实模型和无限数据来校准它,我们应该能够将偏差和方差项都减少到 0。然而,在模型不完美且数据有限的世界中,需要在最小化偏差和最小化方差之间进行权衡。

Review: Bias, variance and error

回顾: 偏差, 方差, 误差

- 偏差(bias):模型依靠自身能力进行预测的平均 准确程度(准)
- 方差(variance):模型在不同训练集上表现出来的差异程度(确)

More complex models tend to have less bias... 更复杂的模型倾向于更小的偏差

Sentiment classifier using single words can do OK, but...

Never classifies correctly: "The sushi was <u>not good</u>."

More complex model: consider pairs of words (bigrams)

Word	Weight
good	+1.5
not good	-2.1

Less bias ->
potentially more accurate,
needs more data to learn

More complex models tend to have less bias... 更复杂的模型倾向于更小的偏差

Models with less bias tend to need more data to learn well, but do better with sufficient data

偏差小的模型需要更多数据学习,但数据充足时做的更好

Learned decision boundary 学习得到的决策边界

Feature	Value	Coefficient learned
$h_0(\mathbf{x})$	1	0.23
h ₁ (x)	x [1]	1.12
h ₂ (x)	x [2]	-1.07

Quadratic features (in 2d)

二维平方特征

Feature	Value	Coefficient learned
h ₀ (x)	1	1.68
h ₁ (x)	x [1]	1.39
h ₂ (x)	x [2]	-0.59
h ₃ (x)	$(x[1])^2$	-0.17
h ₄ (x)	$(x[2])^2$	-0.96

Note: we are not including cross terms for simplicity

Degree 6 features (in 2d) 二维6次方特征

including cross Coefficient terms for simplicity **Feature** Value learned $h_0(\mathbf{x})$ 21.6 1 Coefficient values $h_1(\mathbf{x})$ x[1] 5.3 getting large -42.7 $h_2(\mathbf{x})$ x[2] $(x[1])^2$ -15.9 $h_3(\mathbf{x})$ $Score(\mathbf{x}) < 0$ $h_4(\mathbf{x})$ $(x[2])^2$ -48.6 $(x[1])^3$ $h_5(\mathbf{x})$ -11.03 $(x[2])^3$ $h_6(x)$ 67.0 x[2] x[2] $(x[1])^4$ 1.5 $h_7(\mathbf{x})$ 0 $(x[2])^4$ 48.0 $h_8(x)$ -14.4 h9(x) $(x[1])^5$ -2 -2 $(x[2])^5$ $h_{10}(x)$ -14.2

x[1]

2

 $h_{11}(x)$

 $h_{12}(x)$

 $(x[1])^6$

 $(x[2])^6$

0.8

-8.6

x[1]

Note: we are not

-4

Degree 20 features (in 2d) 二维20次方特征

Featur e	Value	Coefficien t learned	
$h_0(\mathbf{x})$	1	8.7	
h ₁ (x)	x [1]	5.1	
h ₂ (x)	x [2]	78.7	
	***	***	
h ₁₁ (x)	(x [1]) ⁶	-7.5	
h ₁₂ (x)	(x [2]) ⁶	3803	
h ₁₃ (x)	$(x[1])^7$	21.1	
h ₁₄ (x)	$(x[2])^7$	-2406	
***	***		
h ₃₇ (x)	$(x[1])^{19}$	-2*10 ⁻⁶	
h ₃₈ (x)	(x[2])19	-0.15	
h ₃₉ (x)	(x[1])20	-2*10-8	
h ₄₀ (x)	(x[2])29	0.03	

Note: we are not including cross terms for simplicity

Often, overfitting associated with very large estimated coefficients w

Overfitting in classification 分类中的过拟合

Overfitting in classifiers->Overconfident predictions 分类器过拟合导致预测过于自信

Logistic regression model

$$-\infty \stackrel{\mathbf{w}^{\top}h(\mathbf{x}_{i})}{0.0} + \infty$$

$$0.0 \stackrel{\mathbf{v}^{\top}h(\mathbf{x}_{i})}{0.0} \rightarrow 1.0$$

$$P(\mathbf{y}=+\mathbf{1}|\mathbf{x}_{i},\mathbf{w}) = sigmoid(\mathbf{w}^{\top}h(\mathbf{x}_{i}))$$

2024/9/30 48

Overfitting in classifiers->Overconfident predictions 过拟合的分类器->过于自信的预测

The subtle (negative) consequence of overfitting in logistic regression

Logistic回归过拟合的细微(负面)影响

Overfitting -> Large coefficient values

 $\mathbf{w}^{\mathsf{T}} h(\mathbf{x}_i)$ is very positive (or very negative) \rightarrow sigmoid($\mathbf{w}^{\mathsf{T}} h(\mathbf{x}_i)$) goes to 1 (or to 0)

Model becomes extremely overconfident of predictions

2024/9/30 49

Effect of coefficients on logistic regression model Logistic回归模型系数的影响

Input x: #awesome=2, #awful=1

W ₀	0
W#awesome	+1
W _{#awful}	-1

w ₀	0
W _{#awesome}	+2
W _{#awful}	-2

Learned probabilities

学习到的概率

Feature	Value	Coefficient learned	
h ₀ (x)	1	0.23	
h ₁ (x)	x [1]	1.12	
h ₂ (x)	x [2]	-1.07	

$$P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$$

Quadratic features: Learned probabilities

二次特征: 学习到的概率

更好拟合数据

Feature	Value	Coefficien t learned
h ₀ (x)	1	1.68
h ₁ (x)	x [1]	1.39
h ₂ (x)	x [2]	-0.58
h ₃ (x)	(x [1]) ²	-0.17
h ₄ (x)	(x [2]) ²	-0.96

$$P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$$

Uncertainty region narrow S

Overfitting -> Overconfident predictions 过拟合->过于自信的预测

2024/9/30 53

Overfitting in logistic regression: Another perspective Logistic回归的过拟合: 另一个角度

Linearly-separable data

线性可分数据

Note 1: If you are using D features, linear separability happens in a D-dimensional space

Note 2: If you have enough features, data are (almost) always linearly separable

Data are linearly separable if:

- There exist coefficients w such that:
 - For all positive training data $score(x) = \widehat{\mathbf{w}}^{\mathrm{T}} h(x) > 0$
 - For all negative training data $score(x) = \widehat{\mathbf{w}}^{\mathrm{T}} h(x) < 0$

 $training_error(\hat{\mathbf{w}}) = 0$

Effect of linear separability on coefficients

系数对线性可分性的影响

Data are linearly separable with $\hat{w}_1 = 1.0$ and $\hat{w}_2 = -1.5$

Data also linearly separable with $\hat{w}_1 = 10$ and $\hat{w}_2 = -15$

Data also linearly separable with $\hat{\mathbf{w}}_1 = 10^9$ and $\hat{\mathbf{w}}_2 = -1.5 \times 10^9$

Effect of linear separability on coefficients

系数对线性可分性的影响

Maximum likelihood estimation (MLE) prefers most certain model → Coefficients go to infinity for linearly-separable data!!!

Data is linearly separable with \hat{w}_1 =1.0 and \hat{w}_2 =-1.5

Data also linearly separable with \hat{w}_1 =10 and \hat{w}_2 =-15

Data also linearly separable with \hat{w}_1 =10⁹ and \hat{w}_2 =-1.5x10⁹

Overfitting in logistic regression is "twice as bad" Logistic回归的过拟合是" twice as bad"

Penalizing large coefficients to mitigate overfitting 惩罚大系数,缓解过拟合

Desired total cost format 期望的总代价格式

Want to balance:

- How well function fits data
- ii. Magnitude of coefficients

Regularization and Lagrange multiplier method 正则化与Lagrange乘子法

- 通过在模型中添加惩罚项或约束条件来控制模型复杂度,获得bias-variance trade-off
 - 可以减小线性回归的过度拟合和多重共线性等问题

岭回归和LASSO

具体来讲,岭回归和LASSO分别对应 ℓ_2 和 ℓ_1 正则化,对系数向量 \mathbf{w} 提出的先验假设分别为 $\|\mathbf{w}\|_2 \leq C$ 和 $\|\mathbf{w}\|_1 \leq C$,C为预先取定的常数. 也就是说,我们关注下面带约束的优化问题,对于岭回归

min
$$\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$
 s.t. $\|\mathbf{w}\|_2 \le C$,

利用拉格朗日乘子法,以上约束优化问题等价于无约束的惩罚函数优化问题

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2}$$

其中正则化系数 $\lambda > 0$ 是依赖于C的常数.

类似的,如果我们采用L₁ 正则化,则可获得LASSO(Least Absolute Shrinkage and Section Operator):

$$\min_{\mathbf{w}} \quad \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} \longrightarrow \min_{\mathbf{w}} \quad \frac{1}{2}\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{1},$$
s.t. $\|\mathbf{w}\|_{1} \le C$.

考虑以下目标:

Select w to maximize:

$$\ell(\mathbf{w}) - \lambda ||\mathbf{w}||_2^2$$
tuning parameter = balance of fit and magnitude

*L*₂ regularized logistic regression

Pick **λ** using:

- Validation set (for large datasets)
- Cross-validation (for smaller datasets)
 (as in ridge/lasso regression)

Degree 20 features, effect of regularization penalty λ

20次方特征下正则化惩罚λ的影响

Regularizatio n	λ = 0	λ = 0.00001	λ = 0.001	λ = 1	λ = 10
Range of coefficients	-3170 to 3803	-8.04 to 12.14	-0.70 to 1.25	-0.13 to 0.57	-0.05 to 0.22
Decision boundary	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 3 2 1 7 8 0 -1 -2 -1 -5 -4 -3 -2 -1 0 1 2 3	4 3 2 1 2 0 1 2 0 1 2 1 2 3 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 3	*** *** *** *** *** *** *** *** *** *** *** *** **	# 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Degree 20 features: regularization reduces "overconfidence"

20次方特征下,正则化减缓了"过自信"的问题

Regularization	λ = 0	λ = 0.00001	λ = 0.001	λ = 1
Range of coefficients	-3170 to 3803	-8.04 to 12.14	-0.70 to 1.25	-0.13 to 0.57
Learned probabilities	10 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 3 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4	1	1 1 2 1 2 3 2 1 0 1 2 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1 1 2 3 1 1 1 1

Gradient ascent for L2 regularized logistic regression L2正则化Logistic回归的梯度上升

init
$$\mathbf{w}^{(1)} = 0$$
 (or randomly, or smartly), $t = 1$ while not converged: for $j = 0,...,D$ partial[j] = $\sum_{i=1}^{N} h_j(\mathbf{x}_i) \left(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \right)$ $\mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} + \mathbf{\eta} \text{ (partial[}j] - 2\lambda \mathbf{w}_j^{(t)})$ t $\leftarrow t + 1$

Sparse logistic regression with L1 penalty

L1惩罚用于稀疏的Logistic回归

Select w to maximize:

$$\ell(\mathbf{w}) - \lambda ||\mathbf{w}||_1$$
tuning parameter = balance of fit and magnitude

 L_1 regularized logistic regression

Pick \using:

- Validation set (for large datasets)
- Cross-validation (for smaller datasets)
 (as in ridge/lasso regression)

Coefficient path – L1 penalty 系数路径 — L1惩罚

General form of regularization 正则化通用形式

• La 正则化的通用形式:

$$\sum_{i=1}^{n} (y_1 - w^T x_i)^2 + \lambda ||w||^q$$

• q=2: 岭回归(Ridge Regression) ⇔ loss + L₂ 惩罚项

• q=1: LASSO ⇔ loss + L₁惩罚项

||w||^q=1示意图

Why does LASSO produce sparse solutions 为什么LASSO产生稀疏解

最优解:发生在目标函数的等高线和可行区域的交集处.

Summary of overfitting in logistic regression Logistic回归过拟合的总结

Describe symptoms and effects of overfitting in classification

- Identify when overfitting is happening
- Relate large learned coefficients to overfitting
- Describe the impact of overfitting on decision boundaries and predicted probabilities of linear classifiers

Summary of overfitting in logistic regression Logistic回归过拟合的总结

Use regularization to mitigate overfitting

- Motivate the form of L2 regularized logistic regression quality metric
- Describe the use of L1 regularization to obtain sparse logistic regression solutions
- Describe what happens to estimated coefficients as tuning parameter λ is varied
- Estimate L2 regularized logistic regression coefficients using gradient ascent
- Interpret coefficient path plot