Klausurvorbereitung Teil 1

Lea Hering

Universität Tübingen

02.02.2022

Welches Unterabtastverfahren ist dargestellt?

Welcher Kompressionsfaktor wird hier erreicht?

Unterabtastverfahren ⇒ 4 : 4 : 4

Komprimierungsfaktor: $\frac{\text{zusehen}}{\text{max. möglich}} = \frac{48}{48}$

Was passiert in diesen Histogrammen?

Leichte Uberbelichtung, Kontrast innerhalb eines Bereiches wird verbessert durch Grauwertspreizung.

Grauwertspreizung / Lineare Transformation

Welche Art von Rauschen ist im Bild zu sehen? Welchen Filter sollte man hier anwenden?

 $\Rightarrow \mathsf{Salt}\text{-}\mathsf{and}\text{-}\mathsf{Pepper},\ \mathsf{Medianfilter}$

Nennen Sie die Namen der Filter:

$$\mathsf{K}1 = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

$$K2 = \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

$$K3 = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$K4 = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$

$$\mathsf{K}1 = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} \Rightarrow \mathsf{SobelY}$$

► K3=
$$\frac{1}{9}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 \Rightarrow Boxcar

$$K4= \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix} \Rightarrow 45 \text{ Grad rotierter Prewitt}$$

Gegebener Filterkernel:

$$K3 = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Gegebenes Bild:

$$B = \begin{bmatrix} 6 & 6 & 5 \\ 5 & 1 & 5 \\ 5 & 6 & 6 \end{bmatrix}$$

Berechnen Sie B[1][1] nach Anwendung von K3.

$$B_{old} = \begin{bmatrix} 6 & 6 & 5 \\ 5 & 1 & 5 \\ 5 & 6 & 6 \end{bmatrix} \qquad \qquad K3 = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Neues Bild:

$$Bnew = \begin{bmatrix} 6 & 6 & 5 \\ 5 & 5 & 5 \\ 5 & 6 & 6 \end{bmatrix}$$

Lösung:

$$B[1][1] = \frac{1}{9}(6+6+5+5+1+5+5+6+6) = \frac{45}{9} = 5$$

Gegebener Filterkernel:

$$K5_{g1} = \begin{pmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{pmatrix}$$

Gegebenes Bild:

$$B = \begin{bmatrix} 6 & 6 & 5 \\ 5 & 1 & 5 \\ 5 & 6 & 6 \end{bmatrix}$$

Berechnen Sie B[1][1] nach Anwendung von $K5_{g1}$.

$$B_{old} = \begin{bmatrix} 6 & 6 & 5 \\ 5 & 1 & 5 \\ 5 & 6 & 6 \end{bmatrix}$$

$$K5_{g1} = \begin{pmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{pmatrix}$$

Neues Bild:

$$B_{new} = \begin{bmatrix} 6 & 6 & 5 \\ 5 & 4 & 5 \\ 5 & 6 & 6 \end{bmatrix}$$

Kirsch-Operator

Lösung:

$$B[1][1] = 5 \cdot 6 + 5 \cdot 5 + (-3) \cdot 5 + 0 \cdot 1 + (-3) \cdot 5 + (-3) \cdot 5 + (-3) \cdot 6 + (-3) \cdot 6 = 4$$

Bildanalyse

0	1	0
1	-4	1
0	1	0

LaPlace Filter

5	3	5	6	2
5	6	1	9	1
7	2	9	2	3
9	7	1	0	3
0	9	1	5	6

-13	

Bildanalyse

0	1	0
1	-4	1
0	1	0

5	3	5	6	2
5	6	1	9	1
7	2	9	2	3
9	7	1	0	3
0	9	1	5	6

-13	25	-26
21	-30	13
-7	13	11

Signalverarbeitung

Abtasttheorem

Wie lautet das Abtasttheorem?

Signalverarbeitung

Abtasttheorem

Abtasttheorem

Die Abtastrate $\frac{1}{T}$ muss größer sein als die doppelte Grenzfrequenz f_{max} des abzutastenden Signals.

$$\frac{1}{T} > 2 \cdot f_{max}$$

Nachfolgend ist ein periodisches Rechtecksignal mit der Periodendauer $T_0 = \frac{1}{f_0}$ abgebildet. Führen Sie beginnend mit dem Zeitpunk t=0 eine Digitalisierung des Rechtecksignals graphisch durch. knapp nach dem Zeitpunkt t=0

$$f_1 = 2 \cdot f_0$$

- Ungefähre Abtastzeitpunkte auf Zeitachse ○
- 2 Auf der Signalfunktion markieren x
- 3 Digitalisiertes Rechtecksignal erstellen

$$f_1 = 2 \cdot f_0$$

- Ungefähre Abtastzeitpunkte auf Zeitachse ○
- 2 Auf der Signalfunktion markieren x
- 3 Digitalisiertes Rechtecksignal erstellen

$$f_1 = 2 \cdot f_0$$

- Ungefähre Abtastzeitpunkte auf Zeitachse ○
- 2 Auf der Signalfunktion markieren x
- 3 Digitalisiertes Rechtecksignal erstellen

$$f_2 = 4 \cdot f_0$$

- Ungefähre Abtastzeitpunkte auf Zeitachse ○
- 2 Auf der Signalfunktion markieren x
- 3 Digitalisiertes Rechtecksignal erstellen

 $f_2 = 4 \cdot f_0$

- Ungefähre Abtastzeitpunkte auf Zeitachse ○
- 2 Auf der Signalfunktion markieren x
- 3 Digitalisiertes Rechtecksignal erstellen

$$f_2 = 4 \cdot f_0$$

- Ungefähre Abtastzeitpunkte auf Zeitachse ○
- 2 Auf der Signalfunktion markieren x
- 3 Digitalisiertes Rechtecksignal erstellen

