Learning Sum-Product Networks

Martin Trapp

Probabilistic Machine Learning

 Sum-product networks (SPNs) [Poon2011] are general-purpose probabilistic machine learning models that admit tractable exact probabilistic inference.

- Sum-product networks (SPNs) [Poon2011] are general-purpose probabilistic machine learning models that admit tractable exact probabilistic inference.
- What are tractable probabilistic models?

- Sum-product networks (SPNs) [Poon2011] are general-purpose probabilistic machine learning models that admit tractable exact probabilistic inference.
- What are tractable probabilistic models?
- A class of queries Q on a class of models M is tractable, iff for any query q ∈ Q and model m ∈ M the computational complexity is at most polynomial.

- Sum-product networks (SPNs) [Poon2011] are general-purpose probabilistic machine learning models that admit tractable exact probabilistic inference.
- What are tractable probabilistic models?
- A class of queries Q on a class of models M is tractable, iff for any query q ∈ Q and model m ∈ M the computational complexity is at most polynomial.
- SPNs admit many probabilistic inference tasks, such as marginalisation, in linear time in their representation size.

Sum-Product Networks

- Sum-product networks (SPNs)¹ is a class of general-purpose probabilistic machine learning models that admit tractable probabilistic inference.
- SPNs are a sub-class of so-called tractable probabilistic models or probabilistic circuits.
- A class of queries Q on a class of models M is tractable, iff for any query q ∈ Q and model m ∈ M the computational complexity is at most polynomial.
- SPNs admit many probabilistic inference tasks, such as marginalisation, in linear time in their representation size.

¹H. Poon & P. Domingos: Sum-product networks: A new deep architecture. In UAI, 2011.

What is a Sum-Product Network?

- Let $\mathbf{X} = \{X_1, \dots, X_D\}$ be set of D random variables.
- An SPN is a distribution over **X** defined as a 4-tuple $S = (G, \psi, w, \theta)$.
 - G is a computational graph.
 - ψ is a so-called scope function.
 - w denotes the set of sum-weights and θ the set of leaf node parameters.

This definition² is conceptually different to the original definitions as it disentangles the computational graph and the scope function.

²M. Trapp et al.: Bayesian Learning of Sum-Product Networks. In NeurIPS, 2019.

Computational Graph $\mathcal G$

 $\mathcal G$ is a rooted connected directed acyclic graph (DAG), containing: sum (S), product (P) and leaf nodes (L).

Figure 1: Example of a tree-shaped computational graph.

Leaves L in \mathcal{G}

Leaf nodes are input nodes with arbitrary distribution, e.g. Gaussian, Multinomial, variational autoencoder.

$$L(x) = p(x \mid \theta_L)$$

Product Nodes P in \mathcal{G}

Product nodes encode independence assumptions between sets of random variables.

Sum Nodes S in \mathcal{G}

Sum nodes³ replace independence with conditional independence within the network.

³We assume that $w_{S,C} \ge 0$.

Scope Function ψ

 ψ is a function assigning each node N in a sub-set of **X**,⁴ and has to fulfil the following properties:

- 1. If N is the root node, then $\psi(N) = X$.
- 2. If N is a sum or product, then $\psi(N) = \bigcup_{N' \in \mathbf{ch}(N)} \psi(N')$.
- 3. For each $S \in S$ we have $\forall N, N' \in \mathbf{ch}(S) \colon \psi(N) = \psi(N') \ (completeness)^a$.
- 4. For each $P \in \mathbf{P}$ we have $\forall N, N' \in \mathbf{ch}(P) \colon \psi(N) \cap \psi(N') = \emptyset$ (decomposability).

^aComplete and decomposable SPNs are referred to as valid SPNs.

⁴This sub-set is often referred to as the scope of a node.

Example SPN $S = (G, \psi, w, \theta)$

After applying a scope function ψ on \mathcal{G} we obtain the SPN. Most structure learners learn both in an entangled way. Note that we define L(x) := 1 for every x if and only if $\psi(L) = \emptyset$.

Parameter Learning

Parameter Learning in SPNs

Generative Learning^a

$$\mathcal{L}(\theta \mid \mathcal{X}) = \sum_{n=1}^{N} \log \mathcal{S}(\mathbf{x}_n \mid \phi) - \log \mathcal{S}(* \mid \phi), \ \mathbf{x}_n \in \mathbb{R}^D$$
 (1)

Note that $S(* | \phi)$ is the partition function which can be evaluated efficiently using a single upward pass.

Discriminative Learning^b

$$\mathcal{L}(\theta, \lambda \mid \mathcal{X}) = \sum_{n=1}^{N} \log \mathcal{S}(\mathbf{x}_{n}, \lambda_{n} \mid \phi) - \log \mathcal{S}(\mathbf{x}_{n} \mid \phi), \quad \mathbf{x}_{n} \in \mathbb{R}^{D}, \ \lambda_{n} \in \mathbb{R}$$
(2)

^aH. Poon & P. Domingos: Sum-product networks: A new deep architecture. In UAI, 2011.

^bR. Gens & P. Domingos: Discriminative learning of sum-product networks. In NeurlPS, 2012.

Parameter Learning in SPNs

Semi-Supervised Learning using Contrastive Pessimistic Likelihood Estimation (CPLE)⁵

$$\mathsf{CPLE} = \operatorname*{arg\,max}_{\boldsymbol{\theta} \in \Theta} \operatorname*{arg\,min}_{\boldsymbol{q} \in \Delta^M_{K-1}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{q} \mid \ \mathcal{X}, \mathcal{U}) - \mathcal{L}(\boldsymbol{\theta}^+, \boldsymbol{\lambda}, \boldsymbol{q} \mid \ \mathcal{X}, \mathcal{U})$$

$$\tag{3}$$

⁵M. Trapp et al.: Safe semi-supervised learning of sum-product networks. In UAI, 2017.

Overparameterization in SPNs⁶

$$w_k^{(t)} \approx w_k^{(t)} + \rho^{(t)} \nabla_{w_k^{(t)}} + \left[\sum_{l=0}^{L-1} \eta \nabla_{w_{\phi(k,l)}^{[l]}} (w_{\phi(k,l)}^{[l]})^{-1} \right] w_k^{(t)}$$
(4)

$$= w_k^{(t)} + \rho^{(t)} \nabla_{w_k^{(t)}} + \sum_{\tau=1}^{t-1} \mu^{(t,\tau)} \nabla_{w_k^{(\tau)}}$$
 (5)

Gradient-based optimisation in deep tree-structured sumproduct network with small (fixed) learning rate and near zero initialisation of the weights is equivalent to gradient-based optimisation with adaptive and time-varying learning rate and momentum term.

⁶M. Trapp et al.: Optimisation of Overparametrized Sum-Product Networks. ICML Workshop on Tractable Probabilistic Models, 2019.

Bayesian Parameter Learning

- The key insight for Bayesian parameter learning⁷ is that sum nodes can be interpreted as latent variables Z_S, clustering data instances.
- Given a vector of states for each sum, z induces a so-called induced tree (T) on S.

⁷Zhao et al.: Collapsed variational inference for sum-product networks. In ICML, 2016.

Structure Learning

Challenges in Structure Learning

- The generated structure has to be complete and decomposable, i.e., a sparsely connected graph.
- We are interested in structures that generalise well, many approaches learn deep trees that are prune to overfit.
- Until recently⁸, there has been no clear defined goal or principle of what makes a good structure.

⁸M. Trapp et al.: Bayesian learning of sum-product networks. In NeurIPS, 2019.

General-Purpose Learners (Selection)

- LearnSPN⁹ recursively constructs sum nodes using clustering and product nodes using independence test.
 The resulting SPN is a tree.
- ID-SPN¹⁰ is a generalisation of LearnSPN with tractable Markov networks as leaves.
- RAT-SPN¹¹ constructs region-graphs (meta-graph over SPNs) with random decompositions.
- BSPN⁸ learns structures and parameters using Bayesian inference.

⁹R. Gens & P. Domingos: Learning the structure of sum-product networks. In ICML, 2013.

¹⁰ A. Rooshenas & D. Lowd: Learning Sum-Product Networks with Direct and Indirect Variable Interactions. In ICML, 2014.

¹¹ R. Peharz et al.: Random sum-product networks: A simple but effective approach to probabilistic deep learning. In UAI, 2019.

Bayesian Structure & Parameter Learning

- We assume G is a tree-shaped region graph, i.e., the SPN is a not a tree.
- For each dimension d we introduce a latent variable $Y_{P,d}$ at each partition node (bucket of product nodes).
- The latent variables represent an assign of d to a child, given a unique path leading to the node.

Bayesian Structure & Parameter Learning

- Posterior inference can be performed using ancestral within Gibbs sampling.
- Bayesian structure learning obtains competitive results on benchmark datasets.
- We show that Bayesian SPNs can also be used in heterogeneous data domains and can be extended to nonparametric formulations, allowing principled online learning.
- Further, our approach is the only method that can consistently learn under missing data.

Applications