A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 1EG

Bookmark

Show all steps: (

ON

Problem

In any integral domain, if $x^2 = 1$, then $x^2 - 1 = (x + 1)(x - 1) = 0$; hence $x = \pm 1$. Thus, an element $x \neq \pm 1$ cannot be its own multiplicative inverse. As a consequence, p in p the integers p in p, the integers p in p, the integers p in p, the integers p in p the integers inverse.

Prove the following:

In
$$\mathbb{Z}_p$$
, $\overline{2} \cdot \overline{3} \cdot \cdot \cdot \cdot \overline{p-2} = \overline{1}$.

Step-by-step solution

Step 1 of 3

Consider the group Z_p , for some prime number p. Objective is to show that in Z_p ,

$$\overline{2} \cdot \overline{3} \cdots \overline{p-2} = \overline{1}$$

If p is any prime, then the only divisors of p will be 1 and p itself. So, the following numbers, that are less than p,

$$1, 2, 3, ..., p-2, p-1$$

will be relatively prime to p.

Comment

Step 2 of 3

Note that, for each of these integers a there is another b such that $ab = 1 \pmod{p}$, where b is

some unique modulo p.

From the question summary, if $x^2 = 1$ then $x = \pm 1$. That is, ± 1 are the only self-inverse elements. Since p is prime and a = b if and only if a = 1 or $a = -1 \equiv p - 1 \pmod{p}$. Now, if one omit 1 and p - 1, then the others remaining can be grouped into the pairs such that product of each pair is 1. Therefore, the product of $2, 3, \ldots, p - 2$ will be equal to 1.

Comment

Step 3 of 3

Hence, $\overline{2} \cdot \overline{3} \cdots \overline{p-2} = \overline{1}$

Comment