МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кемеровский государственный университет»

Институт фундаментальных наук
Кафедра ЮНЕСКО по информационным вычислительным технологиям

ОТЧЕТ по учебной практике, технологической (проектно-технологической) практике проект «Инструменты анализа производительности программ С++» (название проекта) студентов 1 курса <u> Цариковой Дарьи Игоревны</u> (ФИО полностью) Андрющенко Ивана Александровича направление подготовки 02.03.03 Математическое обеспечение и администрирование информационных систем. направленность (профиль) подготовки «Информационные системы и базы данных». Руководитель практики: канд. физ.-мат. наук, доцент К.С. Иванов (ученая степень, звание, должность, ФИО) Зав. кафедрой ЮНЕСКО по ИВТ доктор физ.-мат. наук, профессор Ю.Н. Захаров (ученая степень, звание, должность, ФИО) Работа защищена с оценками:

гетвориетенно

Царикова Д.И.

Андрющенко И.А.

«<u>21</u> » игоня 2021 г.

«<u>21</u> » *шени* 2021 г.

Ссылка на репозиторий: https://github.com/dariatsarikova/ProgecttesterC.git

Цель

Создать рабочее приложение используя ПО для анализа производительности программ на языке С++. Приложение: Калькулятор.

Задачи проекта

Проанализировать работу аналитического ПО, Изучить соответствующий теоретический материал, Закрепить навыки по работе с репозиторием Git.

Актуальность проблемы

Данная проблема актуальна в рамках данной дисциплины уникальна. Позволит ознакомиться с аналитикой производительности, и с её использованием произвести продукт.

Ход работы:

За время работы мы собрали основную теоретическую базу по использованию ПО анализа производительности, изучили её. Реализовали базовый функционал собственных приложений. Один из калькуляторов реализован на библиотеках SDL, а второй реализован с помощью WinAPI32. Основываясь на этом и на материале собственных лабораторных работ, провели следующее исследование.

Демонстрация результатов практической деятельности:

Программное обеспечение: Visual Studio 2019

Краткое руководство по запуску процессов

Запуск среды разработки Visual studio -> Открытие в ней проекта для анализа -> Выбрать в строке меню "Отладка" -> Выбрать "Профилировщик производительности" -> Выбрать необходимый критерий анализа -> Запустить тест.

Среда разработки Visual Studio позволяет анализировать производительность программного кода. Функция профилировщик производительности автоматически формирует отчёт.

Ниже представлен отчёт по приложению Калькулятор:

А) С точки зрения инструментирования

Функции, выполняющие максимальную индивидуальную работу					
Рами	Эксклюзивное время %				
GetMessageW	94.35				
NtdllDefWindowProc_W	2.97				
CreateWindowExW	1.67				
DispatchMessageW	0.42				
UpdateWindow	0.35				

Б) С точки зрения использования памяти

Ниже представлена проверка другого приложения, созданного в результате проектной деятельности

Программное обеспечение: Cppcheck 2.3

Краткое руководство по запуску процессов

Запуск CppCheck 2.3 -> Открытие в ней .cpp файла для анализа -> Выбрать в строке меню "Файл" -> Запустить тест

Ниже представлена статистика производительности проектного приложения

Ошибки: 0

Предупреждения: 0

Стилистические предупреждения: 0
Предупреждения переносимости: 0
Проблемы с производительностью: 0
Информационные сообщения: 0

После выполнения даже незначительных изменений программного кода программа анализа работает корректно, выводит ошибки и недочёты. Но время анализа хоть и снижается, но всё же не так быстро как с консольными приложениями.

Выбранный путь:sers/hp/Desktop/WindowsProject23Количество просканированных файлов:1Продолжительность сканирования:2 секунд

Ниже представлена проверка сданных лабораторных работ этого семестра.

Приводятся из-за того, что на их основе строился код приложения.

Проект	Последнее сканирование	Статистика	История	
Выбранный путь:		C:/Users/hp/Desktop/lab		
Количест	во просканированных файлов:			2
Продолжи	ительность сканирования:		0.13	3 секунд

Проект Последнее сканирование Статистика

Ошибки: 0

Предупреждения: 0

Стилистические предупреждения: 15 Предупреждения переносимости: 0 Проблемы с производительностью: 0 Информационные сообщения: 0 Ниже приведена результаты неотлаженной функции решения Системы линейных алгебраических уравнений.

Выбранный путь: rs/hp/Desktop/ConsoleApplication1

Количество просканированных файлов:

Продолжительность сканирования: 0.12 секунд

Ошибки: 8

Предупреждения: 0

Стилистические предупреждения: 10 Предупреждения переносимости: 0 Проблемы с производительностью: 0 Информационные сообщения: 0

На основании этих данных соберём данные после поверхностного исследования в таблицу

Количество	Время	Общее	Виды ошибок	Работает ли	
файлов	обработки	количество ошибок		корректно	
1	3 секунды	0	-	Работает	
2	0.13 секунд	унд 15	Стилистические	Работает	
			предупреждения		
			8-Ошибок		
1	0.12 секунд	18	10-	Не работает	
			Стилистических		
			предупреждений		

Сделаем выводы по работе самого ПО анализа производительности:

- Время обработки исходного кода зависит от: веса файла с кодом, количества файлов исходного кода, того какой раз запускается анализ одного и того же файла.
- Программный код может работать корректно, если отсутствуют грубые нарушения логики языка C++.
- Если сравнивать среду разработки Visual studio 2019 и ПО анализа производительности CppCheck 2.3, то первая более низкого уровня доступа к программного кода. К тому же используется запуск кода и тест в процессе работы приложения. Данная функция позволяет произвести более точный анализ.
- Также из плюсов среды разработки является формирование наглядного отчёта.

Список используемой литературы:

- http://cppcheck.sourceforge.net/
- https://eax.me/c-static-analysis/

- https://scan.coverity.com/
- ${\color{blue} \underline{https://docs.microsoft.com/ru-ru/cpp/windows/walkthrough-creating-windows-desktop-applications-cpp?view=msvc-160\&viewFallbackFrom=vs-2019} \\$
- $\bullet \quad https://docs.microsoft.com/ru-ru/visual studio/profiling/profiling-feature-tour?view=vs-2019 \\$