Party incumbency advantage and female exposure effect in French municipal elections

Emilie Facon

Tilburg University

13 July 2020

Outline

- Introduction
 - Research questions
 - Motivation
- 2 Data
- 3 Empirical strategy
- Results: Party incumbency advantage
- 5 Results: Female exposure effect
- **6** Conclusion

Research questions

Party incumbency advantage:

 What is the causal effect of being the incumbent party on vote shares and the probability of reelection in recent French municipal elections?

Female exposure effect:

 Does the election of a female mayor increase the probability that the following mayor will be female? Does it increase the vote share of the top female candidate in the following election?

Motivation

Party incumbency advantage:

- Incumbency advantage could mean a lack of electoral competition (Abramowitz, Alexander and Gunning, 2006)
- Evidence of a party incumbency advantage in the US (local and congressional elections), the UK (parliamentary elections), and France (legislative elections)

Female exposure effect:

- Gender of policy-makers have an impact on outcomes (Chattopadhyay and Duflo, 2004; Brollo and Troiano, 2016; Baskaran and Hessami, 2019)
- Only 16% of female mayors elected in 2014, 20% in 2020

Data

- French municipal elections in 2001, 2008 and 2014
- Towns of over 3500 inhabitants in 2008
- Party incumbency advantage: Link elections based on "political nuance" \Rightarrow Two sets of results (2001-2008 and 2008-2014)
- Female exposure effect: Link elections based on gender of lead candidate (available only for 2008 and 2014)
- Additional control variables (town characteristics in 2007) from Insee

Empirical strategy: Regression discontinuity (RD) design

RD equation

$$Y_{it} = f(V_{i,t-1}) + \gamma D_{it} + \epsilon_{it}$$

- Y_{it} : Vote share for the Left (top female candidate) in t
- V_{it} : Left (female) margin of victory in t-1: Difference in the vote share of the Left (top female candidate) and the vote share of the Right (top male candidate)
- D_{it} : Dummy variable equal to one if the incumbent mayor belongs to the Left (is a woman), and zero otherwise

$V_{i,t-1}$ and D_{it} are related

$$D_{it} = \begin{cases} 1, & \text{if } V_{i,t-1} \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

Party incumbency advantage: Results

Figure 1: Incumbency advantage: RD plot

Party incumbency advantage: Results

Figure 2: Incumbency advantage: Local polynomial regressions

Party incumbency advantage: Robustness checks

- Alternative specifications
 - No significant party incumbency advantage for the Right and the 2008 election
 - No significant party incumbency advantage for probability of victory
- Mechanism: Personal incumbency effect
 - Include a dummy variable for repeat candidates
 - Party incumbency advantage for the Left disappears
 - Repeat candidate: 7-8 percentage points increase in vote share (but not causal)

Female exposure effect: Results

Figure 3: Female exposure effect: RD plot

Female exposure effect: Results

Figure 4: Female exposure effect: Local polynomial regressions

Female exposure effect: Robustness checks

- Alternative specifications
 - No conclusive evidence of female exposure effect on probability of victory in first round
 - Positive effect for final-round results (for both probability of victory and vote shares)
 - Positive and significant effect on proportion of female candidates
- Mechanism: Personal incumbency effect
 - Include a dummy variable for repeat candidates
 - Female exposure effect becomes insignificant (although point estimate

 14 percentage points)
 - Repeat candidate: 31 percentage points increase in vote share (but not causal)

Conclusion

- Party incumbency advantage
 - Party incumbency advantage in first-round vote share for the Left in 2014 (about 8 percentage points)
 - No clear evidence of an effect for the Right, the 2008 election, or probability of victory
- Pemale exposure effect
 - Female exposure effect of 22 percentage points in first-round vote shares, but no significant effect on probability of victory
 - Positive effect for both vote shares and probability of victory in final-round results
- Mechanism: Personal incumbency advantage
 - Controlling for repeat candidates
 - Party incumbency advantage disappears
 - Female exposure effect becomes insignificant, but still economically significant (≥ 14 percentage points)

References I

- Abramowitz, Alan I., Brad Alexander, and Matthew Gunning. 2006. "Incumbency, Redistricting, and the Decline of Competition in U.S. House Elections." *Journal of Politics*, 68(1): 75–88.
- Baskaran, Thushyanthan, and Zohal Hessami. 2018. "Does the Election of a Female Leader Clear the Way for More Women in Politics?" American Economic Journal: Economic Policy, 10(3): 95–121.
- Baskaran, Thushyanthan, and Zohal Hessami. 2019. "Competitively Elected Women as Policy Makers." CESifo Working Paper Series 8005.
- Beaman, Lori, Raghabendra Chattopadhyay, Esther Duflo, Rohini Pande, and Petia Topalova. 2009. "Powerful Women: Does Exposure Reduce Bias?" The Quarterly Journal of Economics, 124(4): 1497–1540.
- Bhalotra, Sonia, Irma Clots-Figueras, and Lakshmi Iyer. 2017. "Pathbreakers? Women's Electoral Success and Future Political Participation." *The Economic Journal*. 128(613): 1844–1878.
- Brollo, Fernanda, and Ugo Troiano. 2016. "What happens when a woman wins an election? Evidence from close races in Brazil." Journal of Development Economics, 122: 28–45.
- Chattopadhyay, Raghabendra, and Esther Duflo. 2004. "Women as Policy Makers: Evidence from a Randomized Policy Experiment in India." Econometrica, 72(5): 1409–1443.
- Eggers, Andrew C., and Arthur Spirling. 2017. "Incumbency Effects and the Strength of Party Preferences: Evidence from Multiparty Elections in the United Kingdom." *The Journal of Politics*, 79(3): 903–920.
- Ferlenga, Francesco, and Vincenzo Galasso. 2019. "Incumbency Advantage in a Runoff Plurality System: Evidence from France." Preliminary paper.
- Ferreira, Fernando, and Joseph Gyourko. 2014. "Does gender matter for political leadership? The case of U.S. mayors." Journal of Public Economics, 112: 24–39.
- Klašnja, Marko, and Rocío Titiunik. 2017. "The Incumbency Curse: Weak Parties, Term Limits, and Unfulfilled Accountability." American Political Science Review, 111(1): 129–148.
- Lee, David S. 2008. "Randomized experiments from non-random selection in U.S. House elections." Journal of Econometrics, 142(2): 675–697.
- Lippmann, Quentin. 2019. "Persistence of Incumbents and Female Access to Political Positions." Preliminary paper.
- McCrary, Justin. 2008. "Manipulation of the running variable in the regression discontinuity design: A density test."

 Journal of Econometrics, 142(2): 698 714. The regression discontinuity design: Theory and applications.
- **Trounstine, Jessica.** 2011. "Evidence of a Local Incumbency Advantage." *Legislative Studies Quarterly*, 36(2): 255–280.

Appendix A: Tables

Incumbency advantage: Literature review

Table 1: Incumbency advantage: Summary of the literature

Study	Context	Findings		
Lee (2008)	US House of Representative elections, 1946-1998	Vote share: +8 percentage points		
Eggers and Spirling (2017)	British parliamentary elections, 1950-2010	Vote share: +2 percentage points (Conservative vs Labour), up to +7 percentage points (Conservative vs Liberal)		
Ferlenga and Galasso (2019)	French legislative elections, 1958-2012	First-round vote share: +5 percentage points. Probability of winning: No effect		
Trounstine (2011)	US local elections, 1915- 1985	Vote share: +22 percentage points		
Klasnja and Titiunik (2017)	Brazilian mayoral elections, 1996-2012	Probability of winning: -15 percentage points		

Female exposure effect: Literature review

Table 2: Female exposure effect: Summary of the literature

Study	Context	Findings		
Beaman et al. (2009)	Indian village councils, 2008	Positive female exposure effect		
Baskaran and Hessami (2018)	German local councils, 2001-2016	Positive female exposure effect		
Bhalotra, Clots- Figueras and lyer (2017)	Indian state legislative assemblies, 1980-2007	Decrease or no effect in entry of new fema candidates		
Ferreira and Gyourko (2014)	US mayoral elections, 1950-2005	Female mayors are more likely to be reelected but no spillover effects to other women		
Brollo and Troiano (2016)	Brazilian mayoral elections, 2001-2005	Female mayors are less likely to be reelected		
Lippmann (2019)	French municipal elections (in small towns), 2014	Female candidates less likely to be elected after a female incumbent (who cannot run again)		

Incumbency advantage: Mechanism

Table 3: Incumbency advantage - Mechanism: Personal incumbency advantage (vote share)

	(1)	(2)	(3)	(4)
Incumbent party	5.74*	1.02	-0.08	0.12
	(2.96)	(3.39)	(3.37)	(3.47)
Margin of victory (MOV)	0.47	0.19	0.04	-0.11
	(0.70)	(0.68)	(0.70)	(0.70)
Repeat candidate		7.13***	7.57***	7.75***
		(2.04)	(2.03)	(2.00)
Victory in 2001			0.01	-0.43
			(2.20)	(2.21)
Vote share in 2001			0.16*	0.18**
			(0.09)	(80.0)
Incumbent party × MOV	-0.95	-0.53	-0.23	-0.21
	(1.04)	(0.99)	(1.05)	(1.07)
Incumbent party × Repeat candi	date	4.98	5.59*	6.12*
		(3.18)	(3.11)	(3.27)
Constant	31.12***	28.14***	21.29***	22.85
	(2.02)	(2.17)	(4.21)	(31.56)
Town controls	No	No	No	Yes
Bandwidth	5.00	5.00	5.00	5.00
Observations	275	275	275	275
R^2	0.04	0.17	0.20	0.26

Female exposure effect: Mechanism

Table 4: Female exposure effect - Mechanism: Personal incumbency advantage (vote share)

(1)	(2)	(3)	(4)
20.58***	18.14**	14.09	15.28
(7.92)	(8.79)	(9.81)	(11.21)
-0.41	-0.89	-0.38	-0.59
(2.05)	(1.51)	(1.71)	(2.04)
	31.74***	31.12***	30.75***
	(3.37)	(3.61)	(4.83)
-1.01	0.18	0.13	-0.09
(2.79)	(2.41)	(2.53)	(3.15)
late	-11.02	-10.11	-11.13
	(6.80)	(7.09)	(8.66)
16.28***	4.97	3.55	-5.73
(5.98)	(4.76)	(9.09)	(84.15)
No	No	Yes	Yes
No	No	No	Yes
5.00	5.00	5.00	5.00
89	89	89	89
0.15	0.49	0.51	0.54
	20.58*** (7.92) -0.41 (2.05) -1.01 (2.79) late 16.28*** (5.98) No No 5.00	20.58*** 18.14** (7.92) (8.79) -0.41 -0.89 (2.05) (1.51) 31.74*** (3.37) -1.01 0.18 (2.79) (2.41) late -11.02 (6.80) 16.28*** 4.97 (5.98) (4.76) No No No S.00 5.00 89 89	20.58*** 18.14** 14.09 (7.92) (8.79) (9.81) -0.41 -0.89 -0.38 (2.05) (1.51) (1.71) 31.74*** 31.12*** (3.37) (3.61) -1.01 0.18 0.13 (2.79) (2.41) (2.53) late -11.02 -10.11 (6.80) (7.09) 16.28*** 4.97 3.55 (5.98) (4.76) (9.09) No No No Yes No No No No 5.00 5.00 5.00

Appendix B: Figures

Incumbency advantage: McCrary density plot

Incumbency advantage - McCrary density plot

Figure 5: Incumbency advantage: McCrary density plot

Female exposure effect: McCrary density plot

Female exposure effect - McCrary density plot

Figure 6: Female exposure effect: McCrary density plot

Female exposure effect: McCrary density plot (donut)

Female exposure effect – McCrary density plot (donut design)

Figure 7: Female exposure effect: McCrary density plot (donut)

Appendix C: Mathematical appendix

• General nonparametric estimator:

 $\hat{m}_h(x) = \sum_{i=1}^n w_{ni}(x) y_i$

Nadaraya-Watson estimator:
$$w_{ni} = \frac{K(\frac{x_i - x}{h})}{\sum_{i=1}^{n} K(\frac{x_i - x}{h})}$$

Nadaraya-Watson minimizes

$$\sum_{i=1}^{n} [y_i - b_0(x)]^2 K\left(\frac{x_i - x}{h}\right)$$

• K is a kernel function (triangular, uniform, etc.)

Local polynomial regressions

Local linear regression minimizes

$$\sum_{i=1}^{n} [y_i - b_0(x) - b_1(x)(x_i - x)]^2 K\left(\frac{x_i - x}{h}\right)$$

Local polynomial regression minimizes

$$\sum_{i=1}^{n} [y_i - b_0(x) - b_1(x)(x_i - x) - \dots - b_p(x_i - x)^p]^2 K\left(\frac{x_i - x}{h}\right)$$

• K is a kernel function (triangular, uniform, etc.)

Optimal bandwidth selection

- Selection procedure by Calonico, Cattaneo and Titiunik (2014)
- Trade-off between variance and bias
- Bandwidth choice to minimize mean square error (MSE)
- Allows for the inclusion of covariates.

Appendix A: Tables

Appendix D: Additional information

Incumbency advantage: Validity tests

- Difference in pre-treatment characteristics: Use h = 5%
- McCrary (2008) density plot: No sign of manipulation at the threshold (see fig 5)
- **9** Probability of winning (close) elections by incumbency status: Use h = 5%
- Placebo regressions
 - Estimate the "effect" of a victory in 2014 on 2008 vote shares
 - Insignificant coefficient ⇒ RD approach not invalid

Female exposure effect: Validity tests

- **①** Difference in pre-treatment characteristics: Use $h \le 20\%$
- McCrary (2008) density plot: Bunching at the threshold, but evidence of chance effect (see fig 6)
- **③** Probability of winning (close) elections by incumbency status: Use $h \le 10\%$
- Placebo regressions
 - Estimate the "effect" of a female victory in 2014 on 2008 vote shares
 - Insignificant coefficient ⇒ RD approach not invalid

Related literature: Abramowitz et al. (2006)

- Declining competition in US House of Representatives (based on incumbent reelection rates and percentage of close race)
- Substantial increase in the number of house districts that are safe for one party (but not caused by redistricting)
- Even in the remaining marginal districts, most challengers lack the financial resources needed to wag competitive campaigns

Why is there an effect for the Left and not the Right?

- The 2008 election was a victory for the Left, but the 2014 election was a defeat for them
- Incumbency advantage only in loss domain?

Figure 8: Top parties in large municipalities