EAIiIB	Aleksander Lis	iecki	Rok	Grupa	Zespół
Informatyka	Natalia Materek		II	2	6
Pracownia	Temat:				Nr ćwiczenia:
FIZYCZNA					
WFiIS AGH	Współczynnik załamania ciał stałych				51
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
16.01.2017	18.01.2017				

Ćwiczenie nr 51: Współczynnik załamania ciał stałych

1 Cel ćwiczenia

Wyznaczenie współczynnika załamania światła dla ciał stałych metodą mikroskopu. Zbadanie zależności współczynnika załamania od długości fali.

2 Wstęp

Załamanie światła na granicy dwóch ośrodków przeźroczystych. Promień padający biegnący w pierwszym ośrodku pada na granicę ośrodków po czym zmienia kierunek, i jako promień złamany biegnie w ośrodku drugim. Wiązka światła ulega załamaniu, gdy przechodzi z jednego ośrodka do drugiego o innych własnościach optycznych.

$$\frac{\sin \alpha}{\sin \beta} = \frac{V_1}{V_2} \tag{1}$$

gdzie

 α kat padania

 β kat załamania

 V_1 prędkość światła w ośrodku pierwszym $\left[\frac{m}{s}\right]$

 $V_2\,$ prędkość światła w ośrodku drugim $\left[\frac{m}{s}\right]$

Stosunek sinusa kąta padania do sinusa kąta załamania, zwany współczynnikiem załamania n ośrodka 2 względem ośrodka 1, jest równy stosunkowi prędkości rozchodzenia się fali w ośrodku 1 do prędkości rozchodzenia się fali w ośrodku 2. W obu ośrodkach promień fali padającej, promień fali załamanej i prosta prostopadła do granicy ośrodków leżą w jednej płaszczyźnie. Prawo załamania zostało sformułowane przez Snelliusa w XVII wieku.

$$n = \frac{\sin \alpha}{\sin \beta} = \frac{V_1}{V_2} = \frac{n_2}{n_1} \tag{2}$$

gdzie

n względny współczynnik załamania światła ośrodka 2 względem ośrodka 1

 $n_1\,$ bezwzględny współczynnik załamania światła dla ośrodka 1 wynoszący $n_1=\frac{c}{v_1}$

 n_2 bezwzględny współczynnik załamania światła dla ośrodka 2 wynoszący $n_2 = \frac{c}{v_2}$

 $c \;$ prędkość światła w próżni $\left[\frac{m}{s}\right]$

W płytce równoległościennej zachodzi:

$$n = \frac{\sin \alpha}{\sin \beta} = \frac{d}{h} \tag{3}$$

gdzie

d grubość rzeczywista płytki równoległościennej [mm]

h grubość pozorna płytki równoległościennej [mm]

Rysunek 1: Powstanie pozornego obrazu O_1 punktu O leżącego na dolnej powierzchni płytki płaskorównoległej.

W skutek załamania wiązki światła odległości przedmiotów umieszczonych w środowisku optycznie gęstszym obserwowane z powietrza wydają się mniejsze. Przykładami mogą być szyba, która wydaję się być cieńsza niż w rzeczywistości lub choćby nawet przedmioty w wodzie, które wydają się być bliżej tafli. Widać to wyraźnie na przykładzie płytki płaskorównoległej: Promień OB tworzy z prostopadłą wewnątrz szkła kąt β , a w powietrzu kąt α (wskutek załamania $\alpha > \beta$). Obserwowane promienie, które wychodzą z płytki są rozbieżne, a ich przedłużenia przecinają się w punkcie O_1 tworząc obraz pozorny. Rzeczywista grubość płytki to: d=AO, natomiast $h=AO_1$ stanowi pozorną grubość płytki płaskorównoległej.

3 Układ pomiarowy

- 1. Mikroskop wyposażony w czujnik mikrometryczny i nasadkę krzyżową.
- 2. Śruba mikrometryczna.
- 3. Płytka szklana i z pleksiglasu.

4 Przebieg doświadczenia

1. Odczytanie położenia a_g z wskazówki czujnika mikrometrycznego po uzyskaniu ostrego obrazu śladu na górnej powierzchni płytki (przez przesunięcie stolika mikroskopu).

- 2. Odczytanie położenia a_d z wskazówki czujnika mikrometrycznego po uzyskaniu ostrego obrazu śladu na dolnej powierzchni płytki(przez przesunięcie stolika mikroskopu).
- 3. Policzenie grubości pozornej $h=a_d-a_g$
- 4. Powtórzenie kroków 1 i 3 dziesięciokrotnie dla każdej płytki oraz dla płytki z filtrem czerwonym/ niebieskim.
- 5. Obliczenie średniej grubości pozornej ze wzoru:

$$h_{\text{\'sr}} = \frac{\sum_{i=1}^{10} h_i}{10} \tag{4}$$

gdzie h_i to kolejne pomiary h

- 6. Obliczenie względnego współczynnika załamania światła korzystając ze wzoru 3.
- 7. Obliczenie niepewności pomiarowych.

5 Wyniki pomiarów

Materiał: szkło Grubość rzeczywista: $d=2,73 \ [\mathrm{mm}]$				
niepewność $u(d) = 0,0058$ [mm]				
	W	Grubość		
Lp.	**	pozorna		
	a_d	a_g	$h = a_d - a_g$	
	[mm]	[mm]	[mm]	
1.	6,03	4,19	1,84	
2.	6,11	4,03	2,08	
3.	6,07	4,03	2,04	
4.	6,02	4,23	1,79	
5.	6,02	4,23	1,79	
6.	5,85	4,00	1,85	
7.	5,82	3,98	1,84	
8.	5,87	4,02	1,85	
9.	5,87	4,01	1,86	
10.	5,86	4,03	1,83	
	W	Wartość	1,88	
		średnia h śr $[mm]$		
		Niepewność $u(h)$ [mm]		

Materiał: pleksiglas Grubość rzeczywista: $d=1,50~\mathrm{[mm]}$				
niepewność $u(d) = 0,0058$ [mm]				
	W	Grubość		
Lp.	Wskazanie czujnika		pozorna	
	a_d	a_g	$h = a_d - a_g$	
	[mm]	[mm]	[mm]	
1.	1,09	0,00	1,09	
2.	1,08	0,00	1,08	
3.	1,10	0,00	1,10	
4.	1,05	0,00	1,05	
5.	1,07	0,00	1,07	
6.	1,13	0,00	1,13	
7.	1,11	0,00	1,11	
8.	1,09	0,00	1,09	
9.	1,07	0,00	1,07	
10.	1,10	0,00	1,10	
		Wartość	1,09	
		średnia hśr [mm]	1,09	

Niepewność u(h) [mm]

Materiał: szkło, filtr czerwony Grubość rzeczywista: d = 2,73 [mm] niepewność u(d) = 0,0058 [mm] Grubość Wskazanie czujnika pozorna Lp. $h = a_d - a_g$ a_d a_g [mm] [mm] [mm] 1. 5,77 4,04 1,73 2. 5,90 3,98 1,92 3. 5,95 3,95 2,00 4. 5,73 3,98 1,75 5. 5,76 4,00 1,76 6. 5,85 4,01 1,84 7. 5,90 3,98 1,92 5,98 4,03 8. 1,95 9. 6,01 4,05 1,98 10. 6,03 4,09 1,94 Wartość 1,80 średnia hśr [mm]Niepewność u(h) [mm] ...

Materiał: pleksiglas, filtr niebieski Grubość rzeczywista: $d=1,50~\mathrm{[mm]}$				
niepewność $u(d) = 0,0058$ [mm]				
	V	Vskazanie czujnika	Grubość	
	w skazame ezujinka		pozorna	
	a_d	a_g	$h = a_d - a_g$	
	[mm]	[mm]	[mm]	
1.	1,07	0,00	1,07	
2.	1,06	0,00	1,06	
3.	1,08	0,00	1,08	
4.	1,00	0,00	1,00	
5.	1,02	0,00	1,02	
6.	1,05	0,00	1,05	
7.	1,04	0,00	1,04	
8.	1,05	0,00	1,05	
9.	1,06	0,00	1,06	
10.	1,01	0,00	1,01	
		Wartość	1.01	
		średnia hśr [mm]	1,01	
		Niepewność $u(h)$ [mm]		

6 Obliczenia

6.1 Obliczenie wartości współczynnika n

Aby obliczyć współczynnik załamania n dla każdej próbki korzystamy ze wzoru 3.

Współczynnik załamania dla szkła bez filtra:

$$n = \frac{2,73}{1,88} \approx \dots$$

Współczynnik załamania dla szkła z czerwonym filtrem:

$$n = \frac{2,73}{1,80} \approx \dots$$

Współczynnik załamania dla pleksiglasu bez filtru:

$$n=\frac{1,50}{1,09}\approx\dots$$

Współczynnik załamania dla pleksiglasu z niebieskim filtrem:

$$n = \frac{1,50}{1,04} \approx \dots$$

6.2 Niepewność wyznaczenia grubości płytki

Niedokładność pomiaru śrubą mikrometryczną wynosi 0,01mm gdyż jest to najmniejsza możliwa do odczytania wartość na śrubie mikrometrycznej.

Więc niepewność pomiaru grubości płytki typu B przyjmujemy:

$$u(d) = \frac{0.01}{\sqrt{3}} \approx 0.0058[mm]$$

6.3 Niepewność wyznaczenia grubości pozornej

Do obliczenia niepewności typu A dla grubości pozornej h korzystamy ze wzoru:

$$u(h) = \sqrt{\frac{\sum (h_i - \overline{h})^2}{n(n-1)}}$$

gdzie

u(h) niepewność wyznaczenia średniej grubości pozornej [mm]

n liczba pomiarów

 h_i grubość pozorna wyznaczona w i - tym pomiarze [mm]

Dla szkła bez filtru:

$$u(h) = \sqrt{\frac{(1,84-1,88)^2 + \dots + (1,83-1,88)^2}{10(10-1)}} \ mm = \dots mm$$

Dla szkła z czerwonym filtrem:

$$u(h) = \sqrt{\frac{(1,73-1,80)^2 + \dots + (1,94-1,80)^2}{10(10-1)}} \ mm = \dots mm$$

Dla pleksiglasu bez filtru:

$$u(h) = \sqrt{\frac{(1,09-1,09)^2 + \dots + (1,11-1,09)^2}{10(10-1)}} \ mm = \dots mm$$

Dla pleksiglasu z niebieskim filtrem:

$$u(h) = \sqrt{\frac{(1,07-1,04)^2 + \dots + (1,01-1,04)^2}{10(10-1)}} \ mm = \dots mm$$

6.4 Niepewność wyznaczenia współczynnika załamania

Następnie wyznaczamy niepewność obliczonego współczynnika załamania światła z prawa przenoszenia niepewności:

$$u(n) = \sqrt{\left(\frac{\partial n}{\partial d}u(d)\right)^2 + \left(\frac{\partial n}{\partial h}u(h)\right)^2} = \sqrt{\left(\frac{1}{h}u(d)\right)^2 + \left(\frac{-d}{h^2}u(h)\right)^2}$$

gdzie

u(n)

u(d)

u(h)

Dla szkła bez filtru:

$$u(n) = \sqrt{\left(\frac{1}{\dots} \cdot 0,0058\right)^2 + \left(\frac{\dots}{\dots^2} \cdot \dots\right)^2} = \dots$$

Dla szkła z czerwonym filtrem:

$$u(n) = \sqrt{\left(\frac{1}{\dots} \cdot 0,0058\right)^2 + \left(\frac{\dots}{\dots^2} \cdot \dots\right)^2} = \dots$$

Dla pleksiglasu bez filtru:

$$u(n) = \sqrt{\left(\frac{1}{\dots} \cdot 0,0058\right)^2 + \left(\frac{\dots}{\dots^2} \cdot \dots\right)^2} = \dots$$

Dla pleksiglasu z niebieskim filtrem:

$$u(n) = \sqrt{\left(\frac{1}{\dots} \cdot 0,0058\right)^2 + \left(\frac{\dots}{\dots^2} \cdot \dots\right)^2} = \dots$$

7 Porównanie z wartościami tabelarycznymi

rodzaj materiału	n zmierzone	n tablicowe
szkło (bez filtru)		
szkło (filtr czerwony)		
pleksiglas (bez filtru)		
pleksiglas (filtr niebieski)		

8 Wnioski

1. cos tam