Design of a high-performance tensor-matrix multiplication with BLAS

Cem Savaş Başsoy^{a,*}

^a Hamburg University of Technology, Schwarzenbergstrasse 95, 21071, Hamburg, Germany

Abstract

The tensor-matrix multiplication is a basic tensor operation required by various tensor methods such as the HOSVD. This paper presents flexible high-performance algorithms that compute the tensor-matrix product according to the Loops-over-GEMM (LoG) approach. Our algorithms are able to process dense tensors with any linear tensor layout, arbitrary tensor order and dimensions all of which can be runtime variable. We discuss two slicing methods with orthogonal parallelization strategies and propose four algorithms that call BLAS with subtensors or tensor slices. We provide a simple heuristic which selects one of the four proposed algorithms at runtime. All algorithms have been evaluated on a large set of tensors with various tensor shapes and linear tensor layouts. In case of large tensor slices, our best-performing algorithm achieves a median performance of 2.47 TFLOPS on an Intel Xeon Gold 5318Y and 2.93 TFLOPS an AMD EPYC 9354. Furthermore, it outperforms batched GEMM implementation of Intel MKL by a factor of 2.57 with large tensor slices. Our runtime tests show that TLIB'S function <combined> is, in median, between 15.38% and 257.58% faster than most state-of-the-art approaches, including actively developed libraries like Libtorch and Eigen. It is on par with TBLIS for many tensor shapes which uses optimized kernels for the TTM computation. This work is an extended version of the article "Fast and Layout-Oblivious Tensor-Matrix Multiplication with BLAS" (Bassoy, 2024)[1].

1 1. Introduction

Tensor computations are found in many scientific fields such as computational neuroscience, pattern recognition, signal processing and data mining [2, 3, 4, 5, 6]. These computations use basic tensor operations as building blocks for decomposing and analyzing multidimensional data which are represented by tensors [7, 8]. Tensor contractions are an important subset of basic operations that need to be fast for efficiently solving tensor methods.

There are three main approaches for implementing ten-11 sor contractions. The Transpose Transpose GEMM Trans-12 pose (TGGT) approach reorganizes tensors in order to 13 perform a tensor contraction using optimized implemen-14 tations of the general matrix multiplication (GEMM) [9, 15 10. GEMM-like Tensor-Tensor multiplication (GETT) 16 method implement macro-kernels that are similar to the 17 ones used in fast GEMM implementations [11, 12]. The 18 third method is the Loops-over-GEMM (LoG) or the BLAS-19 based approach in which Basic Linear Algebra Subpro-20 grams (BLAS) are utilized with multiple tensor slices or 21 subtensors if possible [13, 14, 15, 16]. The BLAS are 22 considered the de facto standard for writing efficient and 23 portable linear algebra software, which is why nearly all ²⁴ processor vendors provide highly optimized BLAS imple-25 mentations. Implementations of the LoG and TTGT ap-26 proaches are in general easier to maintain and faster to 27 port than GETT implementations which might need to

²⁸ adapt vector instructions or blocking parameters accord-²⁹ ing to a processor's microarchitecture.

In this work, we present high-performance algorithms 31 for the tensor-matrix multiplication (TTM) which is used 32 in important numerical methods such as the higher-order 33 singular value decomposition and higher-order orthogonal 34 iteration [17, 8, 7]. TTM is a compute-bound tensor op-35 eration and has the same arithmetic intensity as a matrix-36 matrix multiplication which can almost reach the practical 37 peak performance of a computing machine. To our best 38 knowledge, we are the first to combine the LoG-approach 39 described in [16, 18] for tensor-vector multiplications with 40 the findings on tensor slicing for the tensor-matrix mul-41 tiplication in [14]. Our algorithms support dense tensors 42 with any order, dimensions and any linear tensor layout 43 including the first- and the last-order storage formats for 44 any contraction mode all of which can be runtime variable. 45 Supporting arbitrary tensor layouts enables other frame-46 works non-column-major storage formats to easily inte-47 grate our library without tensor reformatting and unneces-48 sary copy operations¹. Our implementation compute the 49 tensor-matrix product in parallel using efficient GEMM 50 without transposing or flattening tensors. In addition to 51 their high performance, all algorithms are layout-oblivious 52 and provide a sustained performance independent of the 53 tensor layout and without tuning. We provide a single al-54 gorithm that selects one of the proposed algorithms based 55 on a simple heuristic.

^{*}Corresponding author

Email address: cem.bassoy@gmail.com (Cem Savaş Başsoy)

¹For example, Tensorly [24] requires tensors to be stored in the last-order storage format (row-major).

₅₇ less than 150 lines of C++ code where the algorithmic ₁₁₀ plication. Algorithm design and methods for slicing and 58 complexity is reduced by the BLAS implementation and 111 parallel execution are discussed in Section 4. Section 5 59 the corresponding selection of subtensors or tensor slices. 112 describes the test setup. Benchmark results are presented 60 We have provided an open-source C++ implementation of 113 in Section 6. Conclusions are drawn in Section 8. 61 all algorithms and a python interface for convenience.

The analysis in this work quantifies the impact of the 63 tensor layout, the tensor slicing method and parallel exe-64 cution of slice-matrix multiplications with varying contrac-65 tion modes. The runtime measurements of our implemen-66 tations are compared with state-of-the-art approaches dis-67 cussed in [11, 12, 19] including Libtorch and Eigen. While 68 our implementation have been benchmarked with the In-69 tel MKL and AMD AOCL libraries, the user choose other 70 BLAS libraries. In summary, the main findings of our work 71 are:

Given a row-major or column-major input matrix, the tensor-matrix multiplication with tensors of any linear tensor layout can be implemented by an inplace algorithm with 1 GEMV and 7 GEMM instances, supporting all combinations of contraction mode, tensor order and tensor dimensions.

72

73

74

75

76

77

78

79

80

84

85

86

87

88

89

90

- The proposed algorithms show a similar performance characteristic across different tensor layouts, provided that the contraction conditions remain the same.
- A simple heuristic is sufficient to select one of the 81 proposed algorithms at runtime, providing a near-82 optimal performance for a wide range of tensor shapes. 136 83
 - Our best-performing algorithm is a factor of 2.57 faster than Intel's batched GEMM implementation for large tensor slices.
 - Our best-performing algorithm has a median performance speedup between 15.38% and 257.58% compared to other state-of-the art library implementations, including LibTorch and Eigen.

This work is an extended version of the article "Fast 92 and Layout-Oblivious Tensor-Matrix Multiplication with 93 BLAS" [1]. Compared to our previous publication, we have 94 made several significant additions. We conducted runtime 95 tests on a more recent Intel Xeon Gold 5318Y CPU and 96 expanded our study to include AMD's AOCL, running ad-97 ditional benchmarks on an AMD EPYC 9354 CPU. We in-98 corporated a newer version of TBLIS while also testing the 99 TuckerMPI TTM implementation. Furthermore, we ex-100 tended our implementations to support the column-major 101 matrix storage format and benchmarked our algorithms for 102 both row-major and column-major layouts, analyzing the 103 runtime results in detail. Lastly, we introduced a heuristic 104 that enables the use of a single TTM algorithm, ensuring 105 efficiency across different storage formats and a wide range 106 of tensor shapes.

The remainder of the paper is organized as follows. 108 Section 2 presents related work. Section 3 introduces some

Every proposed algorithm can be implemented with 109 notation on tensors and defines the tensor-matrix multi-

114 2. Related Work

Springer et al. [11] present a tensor-contraction gen-116 erator TCCG and the GETT approach for dense tensor 117 contractions that is inspired from the design of a high-118 performance GEMM. Their unified code generator selects 119 implementations from generated GETT, LoG and TTGT 120 candidates. Their findings show that among 48 different 121 contractions 15% of LoG-based implementations are the 122 fastest.

Matthews [12] presents a runtime flexible tensor con-124 traction library that uses GETT approach as well. He de-125 scribes block-scatter-matrix algorithm which uses a special 126 layout for the tensor contraction. The proposed algorithm 127 yields results that feature a similar runtime behavior to 128 those presented in [11].

Li et al. [14] introduce InTensLi, a framework that 130 generates in-place tensor-matrix multiplication according 131 to the LoG approach. The authors discusses optimization 132 and tuning techniques for slicing and parallelizing the op-133 eration. With optimized tuning parameters, they report 134 a speedup of up to 4x over the TTGT-based MATLAB 135 tensor toolbox library discussed in [9].

Bassoy [16] presents LoG-based algorithms that com-137 pute the tensor-vector product. They support dense ten-138 sors with linear tensor layouts, arbitrary dimensions and 139 tensor order. The presented approach contains eight cases 140 calling GEMV and DOT. He reports average speedups of 141 6.1x and 4.0x compared to implementations that use the 142 TTGT and GETT approach, respectively.

Pawlowski et al. [18] propose morton-ordered blocked 144 layout for a mode-oblivious performance of the tensor-145 vector multiplication. Their algorithm iterate over blocked 146 tensors and perform tensor-vector multiplications on blocked 147 tensors. They are able to achieve high performance and 148 mode-oblivious computations.

In [22] the authors present a C++ software package 150 (TuckerMPI) for large-scale data compression using ten-151 sor tucker decomposition. The library provides a parallel 152 C++ function of the latter containing distributed func-153 tions with MPI for the Gram computation and tensor-154 matrix multiplication. Th latter invokes a local version 155 that contains a multi-threaded gemm computing the tensor-156 matrix product with submatrices according to the LoG 157 approach. The presented local TTM corresponds to our 158 <par-gemm, subtensor> version.

159 3. Background

160 3.1. Tensor Notation

An order-p tensor is a p-dimensional array where ten-162 sor elements are contiguously stored in memory[20, 7]. 163 We write a, \mathbf{a} , \mathbf{A} and $\underline{\mathbf{A}}$ in order to denote scalars, vec-165 we assume $\underline{\mathbf{A}}$ to have order p>2. The p-tuple $\mathbf{n}=$ (n_1, n_2, \ldots, n_p) will be referred to as the shape or dimen-167 sion tuple of a tensor where $n_r > 1$. We will use round brackets $\underline{\mathbf{A}}(i_1, i_2, \dots, i_p)$ or $\underline{\mathbf{A}}(\mathbf{i})$ to denote a tensor element where $\mathbf{i}=(i_1,i_2,\ldots,i_p)$ is a multi-index. For con-170 venience, we will also use square brackets to concatenate 171 index tuples such that $[\mathbf{i}, \mathbf{j}] = (i_1, i_2, \dots, i_r, j_1, j_2, \dots, j_q)$ where **i** and **j** are multi-indices of length r and q, respec-173 tively.

174 3.2. Tensor-Matrix Multiplication (TTM)

176 ([$\mathbf{n}_1, n_q, \mathbf{n}_2$]) and $\mathbf{n}_c = ([\mathbf{n}_1, m, \mathbf{n}_2])$ where $\mathbf{n}_1 = (n_1, n_2, n_2)$ 177 ..., n_{q-1}) and $\mathbf{n}_2 = (n_{q+1}, n_{q+2}, \dots, n_p)$. Let **B** be a ma-178 trix of shape $\mathbf{n}_b=(m,n_q)$. A q-mode tensor-matrix prod-228 fined as $\hat{q}=\pi^{-1}(q)$. Given a layout tuple π with p

$$\underline{\mathbf{C}}([\mathbf{i}_1, j, \mathbf{i}_2]) = \sum_{i_n=1}^{n_q} \underline{\mathbf{A}}([\mathbf{i}_1, i_q, \mathbf{i}_2]) \cdot \mathbf{B}(j, i_q)$$
(1)

with $\mathbf{i}_1 = (i_1, \dots, i_{q-1})$, $\mathbf{i}_2 = (i_{q+1}, \dots, i_p)$ where $1 \leq i_r \leq n_r$ and $1 \leq j \leq m$ [14, 8]. The mode q is called the 183 contraction mode with $1 \leq q \leq p$. TTM generalizes the $_{184}$ computational aspect of the two-dimensional case $\mathbf{C} =$ 185 $\mathbf{B} \cdot \mathbf{A}$ if p = 2 and q = 1. Its arithmetic intensity is $_{186}$ equal to that of a matrix-matrix multiplication which is 187 compute-bound for large dense matrices.

In the following, we assume that the tensors A and C 189 have the same tensor layout π . Elements of matrix **B** can 190 be stored either in the column-major or row-major format. 191 With i_q iterating over the second mode of **B**, TTM is also $_{192}$ referred to as the q-mode product which is a building block 193 for tensor methods such as the higher-order orthogonal 194 iteration or the higher-order singular value decomposition 195 [8]. Please note that the following method can be applied, 196 if indices j and i_q of matrix **B** are swapped.

197 3.3. Subtensors

A subtensor references elements of a tensor \mathbf{A} and is 199 denoted by \mathbf{A}' . It is specified by a selection grid that con- $_{200}$ sists of p index ranges. In this work, an index range of a $_{201}$ given mode r shall either contain all indices of the mode 202 r or a single index i_r of that mode where $1 \leq r \leq p$. Sub- $_{\rm 203}$ tensor dimensions n_r' are either n_r if the full index range $_{\rm 204}$ or 1 if a a single index for mode r is used. Subtensors are 205 annotated by their non-unit modes such as $\underline{\mathbf{A}}'_{u,v,w}$ where $n_u > 1, n_v > 1 \text{ and } n_w > 1 \text{ for } 1 \le u \ne v \ne w \le p.$ The 207 remaining single indices of a selection grid can be inferred

208 by the loop induction variables of an algorithm. The num-209 ber of non-unit modes determine the order p' of subtensor where $1 \leq p' < p$. In the above example, the subten- $\underline{\mathbf{A}}'_{u,v,w}$ has three non-unit modes and is thus of order 212 3. For convenience, we might also use an dimension tuple 213 **m** of length p' with $\mathbf{m} = (m_1, m_2, \dots, m_{p'})$ to specify a 164 tors, matrices and tensors. If not otherwise mentioned, 214 mode-p' subtensor $\underline{\mathbf{A}}'_{\mathbf{m}}$. An order-2 subtensor of $\underline{\mathbf{A}}'$ is a 215 tensor slice $\mathbf{A}'_{u,v}$ and an order-1 subtensor of $\underline{\mathbf{A}}'$ is a fiber

217 3.4. Linear Tensor Layouts

We use a layout tuple $\pi \in \mathbb{N}^p$ to encode all linear 219 tensor layouts including the first-order or last-order lay-220 out. They contain permuted tensor modes whose priority $_{221}$ is given by their index. For instance, the general k-order $_{222}$ tensor layout for an order-p tensor is given by the layout 223 tuple $\boldsymbol{\pi}$ with $\pi_r = k - r + 1$ for $1 < r \le k$ and r for $224 k < r \le p$. The first- and last-order storage formats are Let $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ be order-p tensors with shapes $\mathbf{n}_a = 225$ given by $\boldsymbol{\pi}_F = (1, 2, \dots, p)$ and $\boldsymbol{\pi}_L = (p, p-1, \dots, 1)$. 226 An inverse layout tuple π^{-1} is defined by $\pi^{-1}(\pi(k)) = k$. 227 Given the contraction mode q with $1 \leq q \leq p$, \hat{q} is deuct is denoted by $\underline{\mathbf{C}} = \underline{\mathbf{A}} \times_q \mathbf{B}$. An element of $\underline{\mathbf{C}}$ is defined 229 modes, the π_r -th element of a stride tuple \mathbf{w} is given by 180 by 230 $w_{\pi_r} = \prod_{k=1}^{r-1} n_{\pi_k}$ for $1 < r \le p$ and $w_{\pi_1} = 1$. Tensor elements of the π_1 -th mode are contiguously stored in mem-232 ory. Their location is given by the layout function $\lambda_{\mathbf{w}}$ ²³³ which maps a multi-index **i** to a scalar index such that ²³⁴ $\lambda_{\mathbf{w}}(\mathbf{i}) = \sum_{r=1}^{p} w_r(i_r - 1)$ [21].

235 3.5. Reshaping

The reshape operation defines a non-modifying refor-237 matting transformation of dense tensors with contiguously 238 stored elements and linear tensor layouts. It transforms 239 an order-p tensor $\underline{\mathbf{A}}$ with a shape \mathbf{n} and layout $\boldsymbol{\pi}$ tu-₂₄₀ ple to an order-p' view $\underline{\mathbf{B}}$ with a shape \mathbf{m} and layout ₂₄₁ $\boldsymbol{\tau}$ tuple of length p' with p' = p - v + u and $1 \leq u < v$ $v \leq p$. Given a layout tuple π of $\underline{\mathbf{A}}$ and contiguous 243 modes $\hat{\boldsymbol{\pi}} = (\pi_u, \pi_{u+1}, \dots, \pi_v)$ of $\boldsymbol{\pi}$, reshape function $\varphi_{u,v}$ 244 is defined as follows. With $j_k=0$ if $k\leq u$ and $j_k=0$ $_{245}v - u$ if k > u where $1 \le k \le p'$, the resulting lay-²⁴⁶ out tuple $oldsymbol{ au}=(au_1,\ldots, au_{p'})$ of $oldsymbol{\mathbf{B}}$ is then given by $au_u=$ $au_{u,v}$ and $au_k = \pi_{k+j_k} - s_k$ for $k \neq u$ with $s_k = \pi_{u,v}$ $_{248} |\{\pi_i \mid \pi_{k+j_k} > \pi_i \wedge \pi_i \neq \min(\hat{\boldsymbol{\pi}}) \wedge u \leq i \leq p\}|.$ Elements of ₂₄₉ the shape tuple **m** are defined by $m_{\tau_u} = \prod_{k=u}^v n_{\pi_k}$ and ₂₅₀ $m_{\tau_k} = n_{\pi_{k+j}}$ for $k \neq u$. Note that reshaping is not related 251 to tensor unfolding or the flattening operations which re-²⁵² arrange tensors by copying tensor elements [8, p.459].

253 4. Algorithm Design

254 4.1. Baseline Algorithm with Contiguous Memory Access The tensor-matrix multiplication (TTM) in equation 256 1 can be implemented with a single algorithm that uses 257 nested recursion. Similar the algorithm design presented 258 in [21], it consists of if statements with recursive calls and 259 an else branch which is the base case of the algorithm.

```
\mathtt{ttm}(\underline{\mathbf{A}},\mathbf{B},\underline{\mathbf{C}},\mathbf{n},\boldsymbol{\pi},\mathbf{i},m,q,\hat{q},r)
 1
 2
               if r = \hat{a} then
                      \mathsf{ttm}(\underline{\mathbf{A}}, \mathbf{B}, \underline{\mathbf{C}}, \mathbf{n}, \boldsymbol{\pi}, \mathbf{i}, m, q, \hat{q}, r-1)
 3
               else if r > 1 then
 4
                       for i_{\pi_r} \leftarrow 1 to n_{\pi_r} do
 5
                               ttm(\underline{\mathbf{A}}, \mathbf{B}, \underline{\mathbf{C}}, \mathbf{n}, \boldsymbol{\pi}, \mathbf{i}, m, q, \hat{q}, r-1)
 6
                       for j \leftarrow 1 to m do
 8
                                for i_q \leftarrow 1 to n_q do
 9
10
                                         for i_{\pi_1} \leftarrow 1 to n_{\pi_1} do
```

Algorithm 1: Modified baseline algorithm for TTM with contiguous memory access. The tensor order p must be greater than 1 and the contraction mode q must satisfy $1 \le q \le p$ and $\pi_1 \ne q$. The initial call must happen with r = p where **n** is the shape tuple of $\underline{\mathbf{A}}$ and m is the q-th dimension of $\underline{\mathbf{C}}$. Iteration along mode q with $\hat{q} = \pi_q^{-1}$ is moved into the inner-most recursion

260 A naive implementation recursively selects fibers of the 261 input and output tensor for the base case that computes 262 a fiber-matrix product. The outer loop iterates over the 263 dimension m and selects an element of $\underline{\mathbf{C}}$'s fiber and a row $_{264}$ of **B**. The inner loop then iterates over dimension n_q and 265 computes the inner product of a fiber of $\underline{\mathbf{A}}$ and the row $_{266}$ B. In this case, elements of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are accessed non-267 contiguously whenever $\pi_1 \neq q$ and matrix **B** is accessed $_{268}$ only with unit strides if it elements are stored contiguously 269 along its rows.

A better approach is illustrated in algorithm 1 where $_{271}$ the loop order is adjusted to the tensor layout π and mem-₂₇₂ ory is accessed contiguously for $\pi_1 \neq q$ and p > 1. The ₃₂₇ major order, parameter CBLAS_ORDER of function gemm is 273 algorithm takes the input order-p tensor A, input matrix 328 set to CblasRowMajor (rm) and CblasColMajor (cm) other- \mathbf{B} , order-p output tensor \mathbf{C} , the shape tuple \mathbf{n} of \mathbf{A} , the $_{275}$ layout tuple π of both tensors, an index tuple π of length $_{276}$ p, the first dimension m of **B**, the contraction mode q 277 with $1 \leq q \leq p$ and $\hat{q} = \pi^{-1}(q)$. The algorithm is initially 278 called with $\mathbf{i} = \mathbf{0}$ and r = p. With increasing recursion $_{279}$ level and decreasing r, the algorithm increments indices with smaller strides as $w_{\pi_r} \leq w_{\pi_{r+1}}$. This is accomplished 335 by a matrix-matrix multiplication where the input tensor 281 in line 5 which uses the layout tuple π to select a multi-282 index element i_{π_r} and to increment it with the correspond-283 ing stride w_{π_r} . The two if statements in line number 2 284 and 4 allow the loops over modes q and π_1 to be placed 285 into the base case in which a slice-matrix multiplication 286 is performed. The inner-most loop of the base case in-₂₈₇ crements i_{π_1} with a unit stride and contiguously accesses 288 tensor elements of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$. The second loop increments 289 i_q with which elements of **B** are contiguously accessed if $_{290}$ B is stored in the row-major format. The third loop in-291 crements j and could be placed as the second loop if **B** is 292 stored in the column-major format.

While spatial data locality is improved by adjusting ²⁹⁴ the loop ordering, slices $\underline{\mathbf{A}}'_{\pi_1,q}$, fibers $\underline{\mathbf{C}}'_{\pi_1}$ and elements $\underline{\mathbf{B}}(j,i_q)$ are accessed $m,\ n_q$ and n_{π_1} times, respectively. ²⁹⁶ The specified fiber of $\underline{\mathbf{C}}$ might fit into first or second level

297 cache, slice elements of $\underline{\mathbf{A}}$ are unlikely to fit in the local 298 caches if the slice size $n_{\pi_1} \times n_q$ is large, leading to higher 299 cache misses and suboptimal performance. Instead of at-300 tempting to improve the temporal data locality, we make 301 use of existing high-performance BLAS implementations 302 for the base case. The following subsection explains this 303 approach.

304 4.2. BLAS-based Algorithms with Tensor Slices

The following approach utilizes the CBLAS gemm func-306 tion in the base case of Algorithm 1 in order to perform 307 fast slice-matrix multiplications². Function gemm denotes 308 a general matrix-matrix multiplication which is defined as 309 C:=a*op(A)*op(B)+b*C where a and b are scalars, A, B and 310 C are matrices, op(A) is an M-by-K matrix, op(B) is a K-by-N 311 matrix and C is an N-by-N matrix. Function op(x) either 312 transposes the corresponding matrix x such that op(x)=x, 313 or not op(x)=x. The CBLAS interface also allows users to 314 specify matrix's leading dimension by providing the LDA, 315 LDB and LDC parameters. A leading dimension specifies 316 the number of elements that is required for iterating over 317 the non-contiguous matrix dimension. The leading dimen-318 sion can be used to perform a matrix multiplication with 319 submatrices or even fibers within submatrices. The lead-320 ing dimension parameter is necessary for the BLAS-based 321 TTM.

The eighth TTM case in Table 1 contains all argu-323 ments that are necessary to perform a CBLAS gemm in 324 the base case of Algorithm 1. The arguments of gemm are set according to the tensor order p, tensor layout π and $_{326}$ contraction mode q. If the input matrix **B** has the row-329 wise. The eighth case will be denoted as the general case 330 in which function gemm is called multiple times with dif-331 ferent tensor slices. Next to the eighth TTM case, there 332 are seven corner cases where a single gemv or gemm call suf-333 fices to compute the tensor-matrix product. For instance 334 if $\pi_1 = q$, the tensor-matrix product can be computed 336 A can be reshaped and interpreted as a matrix without 337 any copy operation. Note that Table 1 supports all linear $_{338}$ tensor layouts of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ with no limitations on tensor 339 order and contraction mode. The following subsection de- $_{340}$ scribes all eight TTM cases when the input matrix ${f B}$ has 341 the row-major ordering.

342 4.2.1. Row-Major Matrix Multiplication

The following paragraphs introduce all TTM cases that 344 are listed in Table 1.

Case 1: If p = 1, The tensor-vector product $\mathbf{A} \times_1 \mathbf{B}$ can $_{346}$ be computed with a gemv operation where **A** is an order-1 347 tensor **a** of length n_1 such that $\mathbf{a}^T \cdot \mathbf{B}$.

²CBLAS denotes the C interface to the BLAS.

Case	Order p	Layout $\pi_{\underline{\mathbf{A}},\underline{\mathbf{C}}}$	Layout $\pi_{\mathbf{B}}$	$\mathrm{Mode}\; q$	Routine	Т	М	N	K	A	LDA	В	LDB	LDC
1	1	-	rm/cm	1	gemv	-	m	n_1	-	В	n_1	<u>A</u>	-	-
2	2	cm	rm	1	gemm	В	n_2	m	n_1	<u>A</u>	n_1	В	n_1	\overline{m}
	2	cm	cm	1	gemm	-	m	n_2	n_1	\mathbf{B}	m	$\underline{\mathbf{A}}$	n_1	m
3	2	cm	rm	2	gemm	-	m	n_1	n_2	\mathbf{B}	n_2	$\underline{\mathbf{A}}$	n_1	n_1
	2	cm	cm	2	gemm	\mathbf{B}	n_1	m	n_2	$\underline{\mathbf{A}}$	n_1	\mathbf{B}	m	n_1
4	2	rm	rm	1	gemm	-	m	n_2	n_1	\mathbf{B}	n_1	$\underline{\mathbf{A}}$	n_2	n_2
	2	rm	cm	1	gemm	\mathbf{B}	n_2	m	n_1	$\underline{\mathbf{A}}$	n_2	$\overline{\mathbf{B}}$	m	n_2
5	2	rm	rm	2	gemm	\mathbf{B}	n_1	m	n_2	$\overline{\mathbf{A}}$	n_2	\mathbf{B}	n_2	m
	2	rm	cm	2	gemm	-	m	n_1	n_2	$\overline{\mathbf{B}}$	m	$\underline{\mathbf{A}}$	n_2	m
6	> 2	any	rm	π_1	gemm	В	\bar{n}_q	\overline{m}	n_q	<u>A</u>	n_q	В	n_q	\overline{m}
	> 2	any	cm	π_1	gemm	-	m	\bar{n}_q	n_q	\mathbf{B}	m	$\underline{\mathbf{A}}$	n_q	m
7	> 2	any	rm	π_p	gemm	-	m	\bar{n}_q	n_q	\mathbf{B}	n_q	$\underline{\mathbf{A}}$	\bar{n}_q	\bar{n}_q
	> 2	any	cm	π_p	gemm	\mathbf{B}	\bar{n}_q	m	n_q	$\underline{\mathbf{A}}$	\bar{n}_q	$\overline{\mathbf{B}}$	m	\bar{n}_q
8	> 2	any	rm	$\pi_2,, \pi_{p-1}$	gemm*	-	m	n_{π_1}	n_q	В	n_q	<u>A</u>	w_q	w_q
	> 2	any	cm	$\pi_2,, \pi_{p-1}$	gemm*	\mathbf{B}	n_{π_1}	m	n_q	<u>A</u>	w_q	\mathbf{B}	m	w_q

Table 1: Eight TTM cases implementing the mode-q TTM with the gemm and gemv CBLAS functions. Arguments of gemv and gemm (T, M, N, dots) are chosen with respect to the tensor order p, layout π of $\underline{\mathbf{A}}$, $\underline{\mathbf{B}}$, $\underline{\mathbf{C}}$ and contraction mode q where T specifies if $\underline{\mathbf{B}}$ is transposed. Function gemm* with a star denotes multiple gemm calls with different tensor slices. Argument \bar{n}_q for case 6 and 7 is defined as $\bar{n}_q = (\prod_r^p n_r)/n_q$. Input matrix **B** is either stored in the column-major or row-major format. The storage format flag set for gemm and gemv is determined by the element ordering of B.

Case 2-5: If p=2, $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are order-2 tensors with 382 4.2.2. Column-Major Matrix Multiplication $_{349}$ dimensions n_1 and n_2 . In this case the tensor-matrix prod- $_{383}$ $_{350}$ uct can be computed with a single gemm. If ${\bf A}$ and ${\bf C}$ have $_{384}$ column-major version of gemm when the input matrix ${\bf B}$ is $_{351}$ the column-major format with $\pi=(1,2),$ gemm either ex- $_{385}$ stored in column-major order. Although the number of 352 ecutes $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}^T$ for q = 1 or $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ for q = 2. 386 gemm cases remains the same, the gemm arguments must be $_{353}$ Both matrices can be interpreted C and A as matrices in $_{387}$ rearranged. The argument arrangement for the column-354 row-major format although both are stored column-wise. 388 major version can be derived from the row-major version 355 If A and C have the row-major format with $\pi = (2,1)$, 389 that is provided in table 1. 356 gemm either executes $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ for q = 1 or $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}^T$ for 390 $_{357}$ q=2. The transposition of ${f B}$ is necessary for the TTM $_{391}$ swapped and the transposition flag for matrix ${f B}$ is toggled. 358 cases 2 and 5 which is independent of the chosen layout. 360 gemm with the corresponding arguments executes $\mathbf{C} = \mathbf{A} \cdot \,\,_{394}$ dimension of B. ₃₆₁ \mathbf{B}^T and computes a tensor-matrix product $\mathbf{C} = \mathbf{A} \times_{\pi_1} \mathbf{B}$. ₃₉₅ ₃₆₂ Tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are reshaped with $\varphi_{2,p}$ to row-major ₃₉₆ in Table 1 where tensor $\underline{\mathbf{A}}$ and matrix \mathbf{B} are passed to matrices **A** and **C**. Matrix **A** has $\bar{n}_{\pi_1} = \bar{n}/n_{\pi_1}$ rows and $\bar{n}_{\pi_1} = \bar{n}/n_{\pi_1}$ $_{364}$ n_{π_1} columns while matrix ${f C}$ has the same number of rows $_{398}$ tained when tensor ${f A}$ and matrix ${f B}$ are passed to ${f A}$ and and m columns. If $\pi_p = q$ (case 7), $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are reshaped 399 B where the transpose flag for \mathbf{B} is set and the remaining 366 with $\varphi_{1,p-1}$ to column-major matrices **A** and **C**. Matrix

371 copy operations, see subsection 3.5. Case 8 (p > 2): If the tensor order is greater than 2 373 with $\pi_1 \neq q$ and $\pi_p \neq q$, the modified baseline algorithm $_{\mbox{\scriptsize 374}}$ 1 is used to successively call $\bar{n}/(n_q\cdot n_{\pi_1})$ times gemm with $_{375}$ different tensor slices of $\underline{\mathbf{C}}$ and $\underline{\mathbf{A}}.$ Each gemm computes one slice $\underline{\mathbf{C}}'_{\pi_1,q}$ of the tensor-matrix product $\underline{\mathbf{C}}$ using the $_{379}$ preting both tensor slices as row-major matrices ${\bf A}$ and ${\bf C}$ 380 which have the dimensions (n_q, n_{π_1}) and (m, n_{π_1}) , respec-381 tively.

367 **A** has n_{π_p} rows and $\bar{n}_{\pi_p} = \bar{n}/n_{\pi_p}$ columns while **C** has $_{368}\;m$ rows and the same number of columns. In this case, a

369 single gemm executes $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ and computes $\mathbf{C} = \mathbf{A} \times_{\pi_n} \mathbf{B}$.

370 Noticeably, the desired contraction are performed without

The tensor-matrix multiplication is performed with the

The CBLAS arguments of M and N, as well as A and B is 392 Also, the leading dimension argument of A is adjusted to Case 6-7: If p > 2 and if $q = \pi_1(\text{case } 6)$, a single 393 LDB or LDA. The only new argument is the new leading

> Given case 4 with the row-major matrix multiplication 400 dimensions are adjusted accordingly.

401 4.2.3. Matrix Multiplication Variations

The column-major and row-major versions of gemm can 403 be used interchangeably by adapting the storage format. 404 This means that a gemm operation for column-major ma-405 trices can compute the same matrix product as one for 406 row-major matrices, provided that the arguments are re-407 arranged accordingly. While the argument rearrangement $_{408}$ is similar, the arguments associated with the matrices A 409 and B must be interchanged. Specifically, LDA and LDB as orresponding tensor slices $\underline{\mathbf{A}}'_{\pi_1,q}$ and the matrix \mathbf{B} . The understand the matrix \mathbf{B} and \mathbf{M} are swapped along with the corresponding matrix-matrix product $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ is performed by inter-understanding must 412 be set for A or B in the new format if B or A is transposed 413 in the original version.

> For instance, the column-major matrix multiplication 415 in case 4 of table 1 requires the arguments of A and B to

 $_{416}$ be tensor $\underline{\mathbf{A}}$ and matrix \mathbf{B} with \mathbf{B} being transposed. The $_{417}$ arguments of an equivalent row-major multiplication for \mathbf{A} , $_{418}$ B, M, N, LDA, LDB and T are then initialized with \mathbf{B} , $\underline{\mathbf{A}}$, m, $_{419}$ n_2 , m, n_2 and \mathbf{B} .

Another possible matrix multiplication variant with $_{421}$ the same product is computed when, instead of $\bf B$, ten- $_{422}$ sors $\bf \underline{A}$ and $\bf \underline{C}$ with adjusted arguments are transposed. We assume that such reformulations of the matrix multi- $_{424}$ plication do not outperform the variants shown in Table $_{425}$ 1, as we expect BLAS libraries to have optimal blocking $_{426}$ and multiplication strategies.

427 4.3. Matrix Multiplication with Subtensors

Algorithm 1 can be slightly modified in order to call gemm with reshaped order- \hat{q} subtensors that correspond to larger tensor slices. Given the contraction mode q with 1 < q < p, the maximum number of additionally fusible modes is $\hat{q} - 1$ with $\hat{q} = \pi^{-1}(q)$ where π^{-1} is the inverse layout tuple. The corresponding fusible modes are there-

The non-base case of the modified algorithm only iterada ates over dimensions that have indices larger than \hat{q} and thus omitting the first \hat{q} modes. The conditions in line 2 and 4 are changed to $1 < r \le \hat{q}$ and $\hat{q} < r$, respectable 1 tively. Thus, loop indices belonging to the outer π_r -th 40 loop with $\hat{q}+1 \le r \le p$ define the order- \hat{q} subtensors $\underline{\mathbf{A}}'_{\pi'}$ and $\underline{\mathbf{C}}'_{\pi'}$ of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ with $\pi' = (\pi_1, \dots, \pi_{\hat{q}-1}, q)$. Reshaping the subtensors $\underline{\mathbf{A}}'_{\pi'}$ and $\underline{\mathbf{C}}'_{\pi'}$ with $\varphi_{1,\hat{q}-1}$ for the modes 443 $\pi_1, \dots, \pi_{\hat{q}-1}$ yields two tensor slices with dimension n_q or 444 m with the fused dimension $\bar{n}_q = \prod_{r=1}^{\hat{q}-1} n_{\pi_r}$ and $\bar{n}_q = w_q$. 445 Both tensor slices can be interpreted either as row-major 446 or column-major matrices with shapes (n_q, \bar{n}_q) or (w_q, \bar{n}_q) 447 in case of $\underline{\mathbf{A}}$ and (m, \bar{n}_q) or (\bar{n}_q, m) in case of $\underline{\mathbf{C}}$, respectable 1 tively.

The gemm function in the base case is called with al- most identical arguments except for the parameter M or N which is set to \bar{n}_q for a column-major or row-major multiplication, respectively. Note that neither the selection of the subtensor nor the reshaping operation copy tensor elements. This description supports all linear tensor layouts and generalizes lemma 4.2 in [14] without copying tensor elements, see section 3.5. The division in large subtensors has also been described in [22] for tensors with a first-order layout.

459 4.4. Parallel BLAS-based Algorithms

Most BLAS libraries provide an option to change the humber of threads. Hence, functions such as gemm and gemv can be run either using a single or multiple threads. The TTM cases one to seven contain a single BLAS call which why we set the number of threads to the number of available cores. The following subsections discuss parallel versions for the eighth case in which the outer loops of algorithm 1 and the gemm function inside the base case can be run in parallel. Note that the parallelization strategies can be combined with the aforementioned slicing methods.

Algorithm 2: Function ttm<par-loop<slice> is an optimized version of Algorithm 1. The reshape function transforms the order-p tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ with layout tuple π and their respective dimension tuples \mathbf{n} and \mathbf{m} into order-4 tensors $\underline{\mathbf{A}}'$ and $\underline{\mathbf{C}}'$ with layout tuple π' and their respective dimension tuples \mathbf{n}' and \mathbf{m}' where $\mathbf{n}' = (n_{\pi_1}, \hat{n}_{\pi_2}, n_q, \hat{n}_{\pi_4})$ and $m_3' = m$ and $n_k' = m_k'$ for $k \neq 3$. Each thread calls multiple single-threaded gemm functions each of which executes a slice-matrix multiplication with the order-2 tensor slices $\underline{\mathbf{A}}'_{ij}$ and $\underline{\mathbf{C}}'_{ij}$. Matrix $\underline{\mathbf{B}}$ has the row-major storage format.

470 4.4.1. Sequential Loops and Parallel Matrix Multiplication Algorithm 1 is run for the eighth case and does not 472 need to be modified except for enabling gemm to run multi-473 threaded in the base case. This type of parallelization 474 strategy might be beneficial with order- \hat{q} subtensors where 475 the contraction mode satisfies $q = \pi_{p-1}$, the inner dimen-476 sions $n_{\pi_1},\ldots,n_{\hat{q}}$ are large and the outer-most dimension 477 n_{π_p} is smaller than the available processor cores. For 478 instance, given a first-order storage format and the con-479 traction mode q with q=p-1 and $n_p=2$, the di-480 mensions of reshaped order-q subtensors are $\prod_{r=1}^{p-2} n_r$ and 481 n_{p-1} . This allows gemm to perform with large dimensions 482 using multiple threads increasing the likelihood to reach 483 a high throughput. However, if the above conditions are 484 not met, a multi-threaded gemm operates on small tensor 485 slices which might lead to an suboptimal utilization of the 486 available cores. This algorithm version will be referred to 487 as <par-gemm>. Depending on the subtensor shape, we will 488 either add <slice> for order-2 subtensors or <subtensor> 489 for order- \hat{q} subtensors with $\hat{q} = \pi_q^{-1}$.

⁴⁹⁰ 4.4.2. Parallel Loops and Sequential Matrix Multiplication
⁴⁹¹ Instead of sequentially calling multi-threaded gemm, it is
⁴⁹² also possible to call single-threaded gemms in parallel. Sim⁴⁹³ ilar to the previous approach, the matrix multiplication
⁴⁹⁴ can be performed with tensor slices or order-q̂ subtensors.

495 Matrix Multiplication with Tensor Slices. Algorithm 2 with 496 function ttm<par-loop><slice> executes a single-threaded 497 gemm with tensor slices in parallel using all modes except 498 π_1 and $\pi_{\hat{q}}$. The first statement of the algorithm calls 499 the reshape function which transforms tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ 500 without copying elements by calling the reshaping oper-501 ation $\varphi_{\pi_{\hat{q}+1},\pi_p}$ and $\varphi_{\pi_2,\pi_{\hat{q}-1}}$. The resulting tensors $\underline{\mathbf{A}}'$ 502 and $\underline{\mathbf{C}}'$ are of order 4. Tensor $\underline{\mathbf{A}}'$ has the shape $\mathbf{n}' = 503 (n_{\pi_1}, \hat{n}_{\pi_2}, n_q, \hat{n}_{\pi_4})$ with the dimensions $\hat{n}_{\pi_2} = \prod_{r=2}^{\hat{q}-1} n_{\pi_r}$ 504 and $\hat{n}_{\pi_4} = \prod_{r=\hat{q}+1}^p n_{\pi_r}$. Tensor $\underline{\mathbf{C}}'$ has the same shape as 505 $\underline{\mathbf{A}}'$ with dimensions $m'_r = n'_r$ except for the third dimensons sion which is given by $m_3 = m$.

The following two parallel for loops iterate over all free modes. The outer loop iterates over $n_4' = \hat{n}_{\pi_4}$ while

511 B has the row-major format which is why both tensor 566 of cpar-loop and cpar-gemm> functions. 512 slices are also treated as row-major matrices. Notice that 513 gemm in Algorithm 2 will be called with exact same argu- $_{514}$ ments as displayed in the eighth case in Table 1 where 515 $n'_1 = n_{\pi_1}$, $n'_3 = n_q$ and $w_q = w'_3$. For the sake of simplic-516 ity, we omitted the first three arguments of gemm which are 517 set to CblasRowMajor and CblasNoTrans for A and B. With 518 the help of the reshaping operation, the tree-recursion has 519 been transformed into two loops which iterate over all free 520 indices.

521 Matrix Multiplication with Subtensors. An alternative al-₅₂₂ gorithm is given by combining Algorithm 2 with order- \hat{q} $_{523}$ subtensors that have been discussed in 4.3. With order- \hat{q} 524 subtensors, only the outer modes $\pi_{\hat{q}+1},\dots,\pi_p$ are free for 525 parallel execution while the inner modes $\pi_1, \ldots, \pi_{\hat{q}-1}, q$ are $_{526}$ used for the slice-matrix multiplication. Therefore, both 527 tensors are reshaped twice using $\varphi_{\pi_1,\pi_{\hat{q}-1}}$ and $\varphi_{\pi_{\hat{q}+1},\pi_p}$. 528 Note that in contrast to tensor slices, the first reshaping ₅₂₉ also contains the dimension n_{π_1} . The reshaped tensors are 530 of order 3 where $\underline{\mathbf{A}}'$ has the shape $\mathbf{n}' = (\hat{n}_{\pi_1}, n_q, \hat{n}_{\pi_3})$ with $\hat{n}_{\pi_1}=\prod_{r=1}^{\hat{q}-1}n_{\pi_r}$ and $\hat{n}_{\pi_3}=\prod_{r=\hat{q}+1}^pn_{\pi_r}$. Tensor $\underline{\mathbf{C}}'$ has 532 the same dimensions as $\underline{\mathbf{A}}'$ except for $m_2=m$.

Algorithm 2 needs a minor modification for support- $_{534}$ ing order- \hat{q} subtensors. Instead of two loops, the modified 535 algorithm consists of a single loop which iterates over di- $_{\rm 536}$ mension $\hat{n}_{\pi_{\rm 3}}$ calling a single-threaded gemm with subtensors $_{537}$ \mathbf{A}' and \mathbf{C}' . The shape and strides of both subtensors as 538 well as the function arguments of gemm have already been $_{539}$ provided by the previous subsection 4.3. This ttm version 540 will referred to as <par-loop><subtensor>.

Note that functions <par-gemm> and <par-loop> imple-542 ment opposing versions of the ttm where either gemm or the 543 fused loop is performed in parallel. Version <par-loop-gemm 544 executes available loops in parallel where each loop thread $_{545}$ executes a multi-threaded gemm with either subtensors or 546 tensor slices.

547 4.4.3. Combined Matrix Multiplication

The combined matrix multiplication calls one of the 549 previously discussed functions depending on the number 550 of available cores. The heuristic assumes that function 551 cpar-gemm> is not able to efficiently utilize the processor 552 cores if subtensors or tensor slices are too small. The 553 corresponding algorithm switches between <par-loop> and 554 <par-gemm> with subtensors by first calculating the par-555 allel and combined loop count $\hat{n} = \prod_{r=1}^{\hat{q}-1} n_{\pi_r}$ and $\hat{n}' =$ $\prod_{r=1}^{p} n_{\pi_r}/n_q$, respectively. Given the number of physical 557 processor cores as ncores, the algorithm executes <par-loop> 610 been used for the three BLAS functions gemv, gemm and 558 with <subtensor> if ncores is greater than or equal to \hat{n} 559 and call <par-loop> with <slice> if ncores is greater than $_{560}$ or equal to \hat{n}' . Otherwise, the algorithm will default to 561 <par-gemm> with <subtensor>. Function par-gemm with ten-562 sor slices is not used here. The presented strategy is differ-563 ent to the one presented in [14] that maximizes the number

509 the inner one loops over $n_2'=\hat{n}_{\pi_2}$ calling gemm with ten- 564 of modes involved in the matrix multiply. We will refer to 510 sor slices $\underline{\mathbf{A}}'_{2,4}$ and $\underline{\mathbf{C}}'_{2,4}$. Here, we assume that matrix 565 this version as **<combined>** to denote a selected combination

567 4.4.4. Multithreaded Batched Matrix Multiplication

The multithreaded batched matrix multiplication ver-569 sion calls in the eighth case a single gemm batch function 570 that is provided by Intel MKL's BLAS-like extension. With 571 an interface that is similar to the one of cblas_gemm, func-572 tion gemm batch performs a series of matrix-matrix op-573 erations with general matrices. All parameters except 574 CBLAS_LAYOUT requires an array as an argument which is 575 why different subtensors of the same corresponding ten-576 sors are passed to gemm_batch. The subtensor dimensions 577 and remaining gemm arguments are replicated within the 578 corresponding arrays. Note that the MKL is responsible 579 of how subtensor-matrix multiplications are executed and 580 whether subtensors are further divided into smaller sub-581 tensors or tensor slices. This algorithm will be referred to 582 as <batched-gemm>.

583 5. Experimental Setup

584 5.1. Computing System

The experiments have been carried out on a dual socket 586 Intel Xeon Gold 5318Y CPU with an Ice Lake architec-587 ture and a dual socket AMD EPYC 9354 CPU with a 588 Zen4 architecture. With two NUMA domains, the Intel 589 CPU consists of 2×24 cores which run at a base fre-590 quency of 2.1 GHz. Assuming a peak AVX-512 Turbo 591 frequency of 2.5 GHz, the CPU is able to process 3.84 592 TFLOPS in double precision. We measured a peak double-593 precision floating-point performance of 3.8043 TFLOPS 594 (79.25 GFLOPS/core) and a peak memory throughput 595 of 288.68 GB/s using the Likwid performance tool. The 596 AMD EPYC 9354 CPU consists of 2 × 32 cores running at 597 a base frequency of 3.25 GHz. Assuming an all-core boost 598 frequency of 3.75 GHz, the CPU is theoretically capable 599 of performing 3.84 TFLOPS in double precision. We mea-600 sured a peak double-precision floating-point performance 601 of 3.87 TFLOPS (60.5 GFLOPS/core) and a peak memory 602 throughput of 788.71 GB/s.

We have used the GNU compiler v11.2.0 with the high-604 est optimization level -03 together with the -fopenmp and 605 -std=c++17 flags. Loops within the eighth case have been 606 parallelized using GCC's OpenMP v4.5 implementation. 607 In case of the Intel CPU, the 2022 Intel Math Kernel Li-608 brary (MKL) and its threading library mkl_intel_thread 609 together with the threading runtime library libiomp5 has 611 gemm_batch. For the AMD CPU, we have compiled AMD 612 AOCL v4.2.0 together with set the zen4 architecture con-613 figuration option and enabled OpenMP threading.

614 5.2. OpenMP Parallelization

The loops in the par-loop algorithms have been par-616 allelized using the OpenMP directive omp parallel for to-618 proc_bind(spread) clauses. In case of tensor-slices, the 619 collapse(2) clause has been added for transforming both 620 loops into one loop which has an iteration space of the $_{621}$ first loop times the second one. We also had to enable 622 nested parallelism using omp_set_nested to toggle between $_{623}$ single- and multi-threaded gemm calls for different TTM cases when using AMD AOCL.

The num_threads(ncores) clause specifies the number of threads within a team where ncores is equal to the 627 number of processor cores. Hence, each OpenMP thread $_{628}$ is responsible for computing \bar{n}'/ncores independent slice-₆₂₉ matrix products where $\bar{n}' = n_2' \cdot n_4'$ for tensor slices and 630 $\bar{n}' = n'_4$ for mode- \hat{q} subtensors.

The schedule(static) instructs the OpenMP runtime $_{632}$ to divide the iteration space into almost equally sized chunks $_{685}$ and $_{685}$ and $_{685}$ and $_{685}$ and $_{685}$ and $_{685}$ 633 Each thread sequentially computes \bar{n}'/ncores slice-matrix 634 products. We have decided to use this scheduling kind 635 as all slice-matrix multiplications exhibit the same num-636 ber of floating-point operations with a regular workload 637 where one can assume negligible load imbalance. More-638 over, we wanted to prevent scheduling overheads for small 639 slice-matrix products were data locality can be an important factor for achieving higher throughput.

The OMP_PLACES environment variable has not been ex-642 plicitly set and thus defaults to the OpenMP cores setting 643 which defines an OpenMP place as a single processor core. 644 Together with the clause num_threads(ncores), the num-645 ber of OpenMP threads is equal to the number of OpenMP 646 places, i.e. to the number of processor cores. We did 647 not measure any performance improvements for a higher 648 thread count.

The proc_bind(spread) clause additionally binds each 650 OpenMP thread to one OpenMP place which lowers inter-651 node or inter-socket communication and improves local 652 memory access. Moreover, with the spread thread affin-653 ity policy, consecutive OpenMP threads are spread across 654 OpenMP places which can be beneficial if the user decides 655 to set ncores smaller than the number of processor cores.

5.3. Tensor Shapes

We evaluated the performance of our algorithms with 658 both asymmetrically and symmetrically shaped tensors to 659 account for a wide range of use cases. The dimensions of 660 these tensors are organized in two sets. The first set consists of $720 = 9 \times 8 \times 10$ dimension tuples each of which has 662 differing elements. This set covers 10 contraction modes 663 ranging from 1 to 10. For each contraction mode, the 664 tensor order increases from 2 to 10 and for a given ten-665 sor order, 8 tensor instances with increasing tensor size 719 Fig. 1. $_{666}$ are generated. Given the k-th contraction mode, the cor- $_{720}$ ₆₆₇ responding dimension array N_k consists of 9 × 8 dimen- ₇₂₁ core (1.74 TFLOPS) and achieves up to 57.91 GFLOPS/-

 $_{669}$ $c=1,2,\ldots,8$. Elements $\mathbf{n}_{r,c}^{k}(i)$ of a dimension tuple are 670 either 1024 for $i=1 \land k \neq 1$ or $i=2 \land k=1,$ or $c \cdot 2^{15-r}$ for $_{671}$ $i = \min(r+1, k)$ or 2 otherwise, where $i = 1, 2, \dots, r+1$. gether with the schedule(static), num_threads(ncores) and 672 A special feature of this test set is that the contraction 673 dimension and the leading dimension are disproportion-₆₇₄ ately large. The second set consists of $336 = 6 \times 8 \times 7$ 675 dimensions tuples where the tensor order ranges from 2 to 676 7 and has 8 dimension tuples for each order. Each tensor 677 dimension within the second set is 2^{12} , 2^8 , 2^6 , 2^5 , 2^4 and $_{678}$ 2^3 . A similar setup has been used in [16, 21].

679 6. Results and Discussion

680 6.1. Slicing Methods

This section analyzes the performance of the two pro-682 posed slicing methods <slice> and <subtensor> that have 683 been discussed in section 4.4. Fig. 1 contains eight per-684 formance contour plots of four ttm functions <par-loop> 686 matrix product with subtensors <subtensor> or tensor slices 687 <slice> on the Intel Xeon Gold 5318Y CPU. Each contour 688 level within the plots represents a mean GFLOPS/core 689 value that is averaged across tensor sizes.

Every contour plot contains all applicable TTM cases 691 listed in Table 1. The first column of performance values 692 is generated by gemm belonging to the TTM case 3, except 693 the first element which corresponds to TTM case 2. The 694 first row, excluding the first element, is generated by TTM 695 case 6 function. TTM case 7 is covered by the diagonal 696 line of performance values when q = p. Although Fig. ₆₉₇ 1 suggests that q > p is possible, our profiling program 698 ensures that q = p. TTM case 8 with multiple gemm calls 699 is represented by the triangular region which is defined by 700 1 < q < p.

Function <par-loop,slice> runs on average with 34.96 702 GFLOPS/core (1.67 TFLOPS) with asymmetrically shaped 703 tensors. With a maximum performance of 57.805 GFLOP-704 S/core (2.77 TFLOPS), it performs on average 89.64% 705 faster than <par-loop, subtensor>. The slowdown with 706 subtensors at q = p-1 or q = p-2 can be explained by the 707 small loop count of the function that are 2 and 4, respec-708 tively. While function <par-loop, slice> is affected by the 709 tensor shapes for dimensions p=3 and p=4 as well, its 710 performance improves with increasing order due to the in-711 creasing loop count. Function <par-loop, slice> achieves 712 on average 17.34 GFLOPS/core (832.42 GFLOPS) if sym-713 metrically shaped tensors are used. If subtensors are used, 714 function <par-loop, subtensor> achieves a mean through-715 put of 17.62 GFLOPS/core (846.16 GFLOPS) and is on 716 average 9.89% faster than <par-loop,slice>. The per-717 formances of both functions are monotonically decreasing 718 with increasing tensor order, see plots (1.c) and (1.d) in

Function par-gemm,slice> averages 36.42 GFLOPS/-668 sion tuples $\mathbf{n}_{r.c}^k$ of length r+1 with $r=1,2,\ldots,9$ and 722 core (2.77 TFLOPS) with asymmetrically shaped tensors.

varying tensor orders p and contraction modes q. The top row of maps (1x) depict measurements of the par-loop versions while the bottom row of maps with number (2x) contain measurements of the <par-gemm> versions. Tensors are asymmetrically shaped on the left four maps (a,b) and symmetrically shaped on the right four maps (c,d). Tensor A and C have the first-order while matrix B has the row-major ordering. All functions have been measured on an Intel Xeon Gold 5318Y.

730 730 730 737 738 739 739 737 738 737 738 < 731 <par-gemm, slice> which is hardly visible due to small per- 758 732 formance values around 5 GFLOPS/core or less whenever 759 with subtensors and tensor slices outperform their corre- $_{733}$ q < p and the dimensions are smaller than 256. The $_{760}$ sponding par-gemm> counterparts by 23.3% and 32.9%, 734 speedup of the <subtensor> version can be explained by the 735 smaller loop count and slice-matrix multiplications with 736 larger tensor slices.

738 tion method employed, subtensors are most effective with 765 causing the parallel slice-matrix multiplication to perform 739 symmetrically shaped tensors, whereas tensor slices are 766 on smaller matrices. In contrast, <par-loop> can execute 740 preferable with asymmetrically shaped tensors when both 741 the contraction mode and leading dimension are large.

742 6.2. Parallelization Methods

This subsection compares the performance results of 744 the two parallelization methods, <par-gemm> and <par-loop>, 772 <par-gemm> outperform <par-loop> with any type of slicing. 745 as introduced in Section 4.4 and illustrated in Fig. 1.

With asymmetrically shaped tensors, both cpm> 747 functions with subtensors and tensor slices compute the 774 748 tensor-matrix product on average with ca. 36 GFLOP- 775 that are generated by all applicable TTM cases of each

723 Using subtensors, function <par-gemm, subtensor> exhibits 750 average by a factor of 2.31. The speedup can be explained ₇₂₅ erage 3.42% slower than its counterpart with tensor slices. ₇₅₂ to 3.49 GFLOPS/core at q = p - 1 while both versions of 727 tensors and tensor slices achieve a mean throughput 15.98 754 727 tensors and tensor slices achieve a mean throughput 15.98 ₇₂₈ GFLOPS/core (767.31 GFLOPS) and 15.43 GFLOPS/- ₇₅₅ the previous subsection. However, it is on average 30.57% 729 core (740.67 GFLOPS), respectively. However, function 756 slower than function cpar-gemm,slice> due to the afore-

In case of symmetrically shaped tensors, <par-loop> 761 respectively. The speedup mostly occurs when 1 < q < p762 where the performance gain is a factor of 2.23. This per-763 formance behavior can be expected as the tensor slice sizes Our findings indicate that, regardless of the paralleliza- 764 decreases for the eighth case with increasing tensor order 767 small single-threaded slice-matrix multiplications in par-768 allel.

> In summary, function <par-loop, subtensor> with sym-770 metrically shaped tensors performs best. If the leading and 771 contraction dimensions are large, both versions of function

773 6.3. Loops Over Gemm

The contour plots in Fig. 1 contain performance data

Figure 2: Cumulative performance distributions in double-precision GFLOPS/core of the proposed algorithms for the eighth case. Each and <par-loop,slice> (and <par-loop, subtensor> (). The top row of maps (1x) depict measurements performed on an Intel Xeon Gold 5318Y with the MKL while the bottom row of maps with number (2x) contain measurements performed on an AMD EPYC 9354 with the AOCL. Tensors are asymmetrically shaped in (a) and (b) and symmetrically shaped in (c) and (d). Input matrix has the row-major ordering (rm) in (a) and (c) and column-major ordering (cm) in (b) and (d).

778 cases apply a single multi-threaded gemm with the same 804 throughput of 36.15 and 4.28 GFLOPS/core with asym-779 configuration. The following analysis will consider perfor- 805 metrically and symmetrically shaped tensors. Reaching 780 mance values of the eighth case in order to have a more 806 up to 46.96 and 45.68 GFLOPS/core, it is on par with 781 fine grained visualization and discussion of the loops over 782 gemm implementations. Fig. 2 contains cumulative perfor-783 mance distributions of all the proposed algorithms includ-784 ing the functions <batched-gemm> and <combined> for the 810 cally or symmetrically shaped tensors. The observable su-785 eighth TTM case only. Moreover, the experiments have 811 perior performance distribution of <combined> can be at-786 been additionally executed on the AMD EPYC processor 787 and with the column-major ordering of the input matrix 813 and cpar-gemm> depending on the inner and outer loop

The probability x of a point (x,y) of a distribution 815 790 function for a given algorithm corresponds to the number 791 of test instances for which that algorithm that achieves throughput of either y or less. For instance, function <batched-gemm> computes the tensor-matrix product with 794 asymmetrically shaped tensors in 25% of the tensor in-795 stances with equal to or less than 10 GFLOPS/core. Please 796 note that the four plots on the right, plots (c) and (d), have 797 a logarithmic y-axis for a better visualization.

6.3.1. Combined Algorithm and Batched GEMM

This subsection compares the runtime performance of 800 the functions <batched-gemm> and <combined> against those <par-loop> and <par-gemm> for the eighth TTM case.

Given a row-major matrix ordering, the combined func-

777 methods only affect the eighth case, while all other TTM 803 tion <combined> achieves on the Intel processor a median 807 <par-gemm, subtensor> and <par-loop, slice> and outper-808 forms them for some tensor instances. Note that both 809 functions run significantly slower either with asymmetri-812 tributed to the heuristic which switches between <par-loop> 814 count as explained in section 4.4.

> Function <batched-gemm> of the BLAS-like extension li-816 brary has a performance distribution that is akin to the 817 <par-loop, subtensor>. In case of asymmetrically shaped 818 tensors, all functions except par-loop, subtensor> outper-819 form <batched-gemm> on average by a factor of 2.57 and up 820 to a factor 4 for $2 \le q \le 5$ with $q+2 \le p \le q+5$. In 821 contrast, <par-loop, subtensor> and <batched-gemm> show 822 a similar performance behavior in the plot (1c) and (1d) 823 for symmetrically shaped tensors, running on average 3.55 824 and 8.38 times faster than par-gemm> with subtensors and 825 tensor slices, respectively.

In summary, <combined> performs as fast as, or faster 827 than, <par-gemm, subtensor> and <par-loop, slice>, depend-828 ing on the tensor shape. Conversely, <batched-gemm> un-829 derperforms for asymmetrically shaped tensors with large

Figure 3: Box plots visualizing performance statics in double-precision GFLOPS/core of the function with row-major (left) or column-major matrices (right). Box plot number k denotes the k-order tensor layout of symmetrically shaped tensors with order 7.

830 contraction modes and leading dimensions.

831 6.3.2. Matrix Formats

This subsection discusses if the input matrix storage formats have any affect on the runtime performance of the proposed functions. The cumulative performance distributions in Fig. 2 suggest that the storage format of the input matrix has only a minor impact on the performance. The Euclidean distance between normalized row-major and column-major performance values is around 5 or less with a maximum dissimilarity of 11.61 or 16.97, indicating a moderate similarity between the corresponding row-major and column-major data sets. Moreover, their respective median values with their first and third quartiles differ by less than 5% with three exceptions where the difference of the median values is between 10% and 15%.

845 6.3.3. BLAS Libraries

This subsection compares the performance of functions that use Intel's Math Kernel Library (MKL) on the Intel Xeon Gold 5318Y processor with those that use the AMD Optimizing CPU Libraries (AOCL) on the AMD EPYC 9354 processor. Comparing the performance per core and limiting the runtime evaluation to the eighth case, MKL-based functions with asymmetrically shaped tensors run on average between 1.48 and 2.43 times faster than those with the AOCL. For symmetrically shaped tensors, MKL-based functions are between 1.93 and 5.21 times faster than those with the AOCL. In general, MKL-based functions

857 tions on the respective CPU achieve a speedup of at least 858 1.76 and 1.71 compared to their AOCL-based counterpart 859 when asymmetrically and symmetrically shaped tensors 860 are used.

861 6.4. Layout-Oblivious Algorithms

Fig. 3 contains four box plots summarizing the performance distribution of the <combined> function using the sea AOCL and MKL. Every k-th box plot has been computed from benchmark data with symmetrically shaped order-7 tensors that has a k-order tensor layout. The 1-order and roder-7 roder layout, for instance, are the first-order and last-sea order storage formats of an order-7 tensor.

The reduced performance of around 1 and 2 GFLOPS 870 can be attributed to the fact that contraction and lead-871 ing dimensions of symmetrically shaped subtensors are at 872 most 48 and 8, respectively. When <combined> is used 873 with MKL, the relative standard deviations (RSD) of its 874 median performances are 2.51% and 0.74%, with respect 875 to the row-major and column-major formats. The RSD 876 of its respective interquartile ranges (IQR) are 4.29% and 877 6.9%, indicating a similar performance distributions. Us-878 ing <combined> with AOCL, the RSD of its median per-879 formances for the row-major and column-major formats $_{880}$ are 25.62% and 20.66%, respectively. The RSD of its re-881 spective IQRs are 10.83% and 4.31%, indicating a similar 882 performance distributions. A similar performance behav-883 ior can be observed also for other ttm variants such as 884 <par-loop,slice>. The runtime results demonstrate that

Figure 4: Cumulative performance distributions of TTM implementations in double-precision GFLOPS/core. Each distribution corresponds to a library: **TLIB**[ours] (---), **TCL** (--), TBLIS (--), LibTorch (--). Eigen (• -), TuckerMPI (tested with asymmetrically-shaped (left plot) and symmetrically-shaped tensors (right plot).

886 independent for different k-order tensor layouts and show 916 core and are thus at least 18.09% slower than TLIB ex-887 that our proposed algorithms are not designed for a spe-917 cept for TuckerMPI. The latter reaches a median perfor-888 cific tensor layout.

6.5. Other Approaches

891 rithm with libraries that do not use the LoG approach. 922 outperforms other libraries by at least 87.52%. TBLIS and 892 TCL implements the TTGT approach with a high-perform 923 TuckerMPI compute the TTM with 9.84 and 7.91 GFLOP-₈₉₃ tensor-transpose library **HPTT** which is discussed in [11]. ₉₂₄ S/core which is only 1.38% and 6.23% slower than TLIB, **TBLIS** (v1.2.0) implements the GETT approach that is 925 respectively. 895 akin to BLIS' algorithm design for the matrix multipli- 926 distributed TTM function [22]. The local version imple-902 ments the LoG approach and computes the TTM product 905 algorithm <combined>. All of the following provided perfor-906 mance and comparison values are the median values.

908 implementation with the previously mentioned libraries. 939 TTM case which is less than 6% and 10% of TLIB's me-909 Using MKL on the Intel CPU, our implementation (TLIB) 940 dian performance with asymmetrically and symmetrically ₉₁₀ achieves a median performance of 38.21 GFLOPS/core ₉₄₁ shaped tensors, respectively. 911 (1.83 TFLOPS) and reaches a maximum performance of 942 912 51.65 GFLOPS/core (2.47 TFLOPS) with asymmetrically 943 peting libraries across all TTM cases. However, there 913 shaped tensors. It outperforms the competing libraries 944 are few exceptions. On the AMD CPU, TBLIS is about 914 for almost every tensor instance within the test set. The

885 the function performances stay within an acceptable range 915 median library performances are up to 29.85 GFLOPS/-918 mance of 35.98 GFLOPS/core (1.72 TFLOPS) reaching 919 about 92.03% of TLIB's performance. In case of symmet-920 rically shaped tensors, TLIB's median performance is 8.99 This subsection compares our best performing algo- 921 GFLOPS/core. Except for TBLIS and TuckerMPI, TLIB

On the AMD CPU, our implementation with AOCL 896 cation [12]. The tensor extension of **Eigen** (v3.4.9) is 927 computes TTM with 24.28 GFLOPS/core (1.55 TFLOPS), 897 used by the Tensorflow framework. Library LibTorch 928 reaching a maximum performance of 50.18 GFLOPS/core (v2.4.0) is the C++ distribution of PyTorch [19]. The 929 (3.21 TFLOPS) with asymmetrically shaped tensors. TB-TuckerMPI library is a parallel C++ software package 930 LIS reaches 26.81 GFLOPS/core (1.71 TFLOPS) and is for large-scale data compression which provides a local and 931 slightly faster than TLIB. However, TLIB's upper perfor-932 mance quartile with 30.82 GFLOPS/core is slightly larger. TLIB outperforms the remaining libraries by at least 58.80%. 934 In case of symmetrically shaped tensors, TLIB has a me-904 notes our library which only calls the previously presented 935 dian performance of 7.52 GFLOPS/core (481.39 GFLOPS). 936 It outperforms all other libraries by at least 15.38%. We 937 have observed that TCL and LibTorch have a median per-Fig. 2 compares the performance distribution of our 938 formance of less than 2 GFLOPS/core in the 3rd and 8th

In most instances, TLIB is able to outperform the com-

Library	Perfor	mance [GFI	Speedup [%]		
	Min	Median	Max	Median	
TLIB	9.39	38.42	57.87	-	
TCL	0.98	24.16	56.34	17.98	
TBLIS	8.33	29.85	47.28	23.96	
LibTorch	1.05	28.68	46.56	28.21	
Eigen	5.85	14.89	15.67	170.77	
TuckerMPI	8.79	35.98	53.21	6.97	
TLIB	0.14	8.99	58.14	-	
TCL	0.04	2.71	56.63	123.92	
TBLIS	1.11	9.84	45.03	1.38	
LibTorch	0.07	3.52	62.20	87.52	
Eigen	0.21	3.80	16.06	216.69	
TuckerMPI	0.12	7.91	52.57	6.23	

Library	Perfor	mance [GFI	Speedup $[\%]$		
	Min	Median	Max	Median	
TLIB	2.71	24.28	50.18	-	
TCL	0.61	8.08	41.82	257.58	
TBLIS	9.06	26.81	43.83	6.18	
LibTorch	0.63	16.04	50.84	58.84	
Eigen	4.06	11.49	35.08	83.05	
TLIB	0.02	7.52	54.16	-	
TCL	0.03	2.03	42.47	122.45	
TBLIS	0.39	6.19	41.11	15.38	
LibTorch	0.05	2.64	46.65	74.37	
Eigen	0.10	5.58	36.76	43.45	

Table 2: The table presents the minimum, median, and maximum runtime performances in GFLOPS/core alongside the median speedup of TLIB compared to other libraries. The tests were conducted on an Intel Xeon Gold 5318Y CPU (left) and an AMD EPYC 9354 CPU (right). The performance values on the upper and lower rows of one table were evaluated using asymmetrically and symmetrically shaped tensors,

945 12.63% faster than TLIB for the 8th TTM case with asym-982 show that a TTM using MKL on the Intel Xeon Gold 946 metrically shaped tensors. LibTorch performs in the 7th 983 5318Y CPU achieves higher per-core performance than a $_{947}$ TTM case 1.44% faster than TLIB with asymmetrically $_{984}$ TTM with AOCL on the AMD EPYC 9354 processor. We 948 shaped tensors. One unexpected finding is that LibTorch 985 have also demonstrated that our algorithms perform con-949 achieves 96% of TLIB's performance with asymmetrically 986 sistently well across different k-order tensor layouts, indi-950 shaped tensors and only 28% in case of symmetrically 987 cating that they are layout-oblivious and do not depend 951 shaped tensors. On the Intel CPU, LibTorch is on av- 988 on a specific tensor format. Our runtime tests show that 952 erage 12.64% faster than TLIB in the 7th TTM case. The 989 TLIB'S function <combined> is, in median, between 15.38% 953 TCL library runs on average as fast as TLIB in the 6th 990 and 257.58% faster than other competing libraries, except 954 and 7th TTM cases. The performances of TLIB and TB- 991 for TBLIS. TLIB is either on par with or slightly outper-955 LIS are in the 8th TTM case almost on par, TLIB run- 992 forms TBLIS for many tensor shapes which uses optimized 956 ning about 7.86% faster. In case of symmetrically shaped 993 kernels for the TTM computation. Table 2 contains the 957 tensors, all libraries except Eigen outperform TLIB by 994 minimum, median, and maximum runtime performances 958 about 4.34% (TCL), 38.5% (TBLIS), 67.39% (LibTorch) 959 and 4.29% (TuckerMPI) in the 7th TTM case. TBLIS 960 and TuckerMPI reach 91.78% and 96.87% of TLIB'S per-961 formance in the 8th TTM case, while other libraries only 962 reach at most 39.29% of TLIB's median performance.

963 6.6. Summary

965 function with subtensors and tensor slices. Our findings 1001 product in-place without transposing tensors. It applies 966 indicate that, subtensors are most effective with symmet-1002 the flexible approach described in [16] and generalizes the 967 rically shaped tensors independent of the parallelization 1003 findings on tensor slicing in [14] for linear tensor layouts. 968 method. Tensor slices are preferable with asymmetrically 1004 The resulting algorithms are able to process dense ten-969 shaped tensors when both the contraction mode and lead- 1005 sors with arbitrary tensor order, dimensions and with any 970 ing dimension are large. Our runtime results show that 1006 linear tensor layout all of which can be runtime variable. 971 parallel executed single-threaded gemm performs best with 1007 981 nor impact on TTM performance, runtime measurements 1017 5318Y and an AMD EPYC 9354 CPUs.

995 including TLIB's speedups for the whole tensor test sets.

996 7. Summary

We have presented efficient layout-oblivious algorithms 998 for the compute-bound tensor-matrix multiplication that 999 is essential for many tensor methods. Our approach is We have evaluated the impact of performing the gemm 1000 based on the LOG-method and computes the tensor-matrix

The base algorithm has been divided into eight dif-972 symmetrically shaped tensors. If the leading and contrac- 1008 ferent TTM cases where seven of them perform a single 973 tion dimensions are large, functions with a multi-threaded 1009 cblas_gemm. We have presented multiple algorithm vari-974 gemm outperforms those with a single-threaded gemm for any 1010 ants for the general (eighth) TTM case which either calls 975 type of slicing. We have also shown that our <combined> 1011 a single- or multi-threaded cblas_gemm with small or large 976 performs in most cases as fast as <par-gemm, subtensor> and 1012 tensor slices in parallel or sequentially. We have applied a 977 <par-loop, slice>, depending on the tensor shape. Func- 1013 simple heuristic that selects one of the variants based on 978 tion <batched-gemm> is less efficient in case of asymmet-1014 the performance evaluation in the original work [1]. With 979 rically shaped tensors with large contraction and leading 1015 a large set of tensor instances of different shapes, we have 950 dimensions. While matrix storage formats have only a mi- 1016 evaluated the proposed variants on an Intel Xeon Gold

1018 8. Conclusion and Future Work

Our performance tests show that our algorithms are love layout-oblivious and do not need layout-specific optimizations, even for different storage ordering of the input malogorithm is able to outperform Intel's BLAS-like extension love function cblas_gemm_batch by a factor of 2.57 in case of love asymmetrically shaped tensors. Moreover, the presented love performance results show that TLIB is able to compute love [12] love most state-of-the-art implementations.

Our findings show that the LoG-based approach is a 1030 viable solution for the general tensor-matrix multiplication 1031 which can be as fast as or even outperform efficient GETT- 1032 based implementations. Hence, other actively developed 1033 libraries such as LibTorch, TuckerMPI and Eigen might 1034 benefit from implementing the proposed algorithms. Our 1035 header-only library provides C++ interfaces and a python 1036 module which allows frameworks to easily integrate our 1037 library. 1100

In the near future, we intend to incorporate our im- 1101 [16] 1039 plementations in TensorLy, a widely-used framework for 1102 1040 tensor computations [23, 24]. Using the insights provided 11041 in [14] could help to further increase the performance. Ad- 1105 1042 ditionally, we want to explore to what extend our approach 1106 1043 can be applied for the general tensor contractions.

1044 8.0.1. Source Code Availability

Project description and source code can be found at ht 1046 tps://github.com/bassoy/ttm. The sequential tensor-matrix 1047 multiplication of TLIB is part of Boost's uBLAS library.

1048 References

1052

1053

1054

1055

1066

1067

1068

- 1049 [1] C. S. Başsoy, Fast and layout-oblivious tensor-matrix multi-1050 plication with blas, in: International Conference on Compu-1051 tational Science, Springer, 2024, pp. 256–271.
 - [2] E. Karahan, P. A. Rojas-López, M. L. Bringas-Vega, P. A. 1122 Valdés-Hernández, P. A. Valdes-Sosa, Tensor analysis and fu- 1123 sion of multimodal brain images, Proceedings of the IEEE 1124 103 (9) (2015) 1531–1559.
- E. E. Papalexakis, C. Faloutsos, N. D. Sidiropoulos, Tensors for 1126
 data mining and data fusion: Models, applications, and scal- 1127 [24]
 able algorithms, ACM Transactions on Intelligent Systems and 1128
 Technology (TIST) 8 (2) (2017) 16.
- Q. Song, H. Ge, J. Caverlee, X. Hu, Tensor completion algorithms in big data analytics, ACM Transactions on Knowledge Discovery from Data (TKDD) 13 (1) (Jan. 2019).
- [5] H.-M. Rieser, F. Köster, A. P. Raulf, Tensor networks for quantum machine learning, Proceedings of the Royal Society A
 479 (2275) (2023) 20230218.
 - [6] M. Wang, D. Hong, Z. Han, J. Li, J. Yao, L. Gao, B. Zhang, J. Chanussot, Tensor decompositions for hyperspectral data processing in remote sensing: A comprehensive review, IEEE Geoscience and Remote Sensing Magazine 11 (1) (2023) 26–72.
- N. Lee, A. Cichocki, Fundamental tensor operations for large-scale data analysis using tensor network formats, Multidimensional Systems and Signal Processing 29 (3) (2018) 921–960.
- 1073 [8] T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM review 51 (3) (2009) 455–500.

[9] B. W. Bader, T. G. Kolda, Algorithm 862: Matlab tensor classes for fast algorithm prototyping, ACM Trans. Math. Softw. 32 (2006) 635–653.

1076

- [10] E. Solomonik, D. Matthews, J. Hammond, J. Demmel, Cyclops tensor framework: Reducing communication and eliminating load imbalance in massively parallel contractions, in: Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, IEEE, 2013, pp. 813–824.
- [11] P. Springer, P. Bientinesi, Design of a high-performance gemmlike tensor-tensor multiplication, ACM Transactions on Mathematical Software (TOMS) 44 (3) (2018) 28.
- [12] D. A. Matthews, High-performance tensor contraction without transposition, SIAM Journal on Scientific Computing 40 (1) (2018) C1–C24.
- [13] E. D. Napoli, D. Fabregat-Traver, G. Quintana-Ortí, P. Bientinesi, Towards an efficient use of the blas library for multilinear tensor contractions, Applied Mathematics and Computation 235 (2014) 454 468.
- [14] J. Li, C. Battaglino, I. Perros, J. Sun, R. Vuduc, An input-adaptive and in-place approach to dense tensor-times-matrix multiply, in: High Performance Computing, Networking, Storage and Analysis, 2015, IEEE, 2015, pp. 1–12.
- yr [15] Y. Shi, U. N. Niranjan, A. Anandkumar, C. Cecka, Tensor contractions with extended blas kernels on cpu and gpu, in: 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), 2016, pp. 193–202.
- 1101 [16] C. Bassoy, Design of a high-performance tensor-vector multi-1102 plication with blas, in: International Conference on Computa-1103 tional Science, Springer, 2019, pp. 32–45.
 - p4 [17] L. De Lathauwer, B. De Moor, J. Vandewalle, A multilinear singular value decomposition, SIAM Journal on Matrix Analysis and Applications 21 (4) (2000) 1253–1278.
- 1107 [18] F. Pawlowski, B. Uçar, A.-J. Yzelman, A multi-dimensional
 1108 morton-ordered block storage for mode-oblivious tensor computations, Journal of Computational Science 33 (2019) 34–44.
- [110] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
 [111] G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al.,
 [112] Pytorch: An imperative style, high-performance deep learning
 [113] library, Advances in neural information processing systems 32
 [114] (2019).
- 1115 [20] L.-H. Lim, Tensors and hypermatrices, in: L. Hogben (Ed.),
 1116 Handbook of Linear Algebra, 2nd Edition, Chapman and Hall,
 1117 2017.
 - 18 [21] C. Bassoy, V. Schatz, Fast higher-order functions for tensor calculus with tensors and subtensors, in: International Conference on Computational Science, Springer, 2018, pp. 639–652.
 - [22] G. Ballard, A. Klinvex, T. G. Kolda, Tuckermpi: A parallel c++/mpi software package for large-scale data compression via the tucker tensor decomposition, ACM Transactions on Mathematical Software 46 (2) (6 2020).
- 1125 [23] J. Cohen, C. Bassoy, L. Mitchell, Ttv in tensorly, Tensor Computations: Applications and Optimization (2022) 11.
 - [24] J. Kossaifi, Y. Panagakis, A. Anandkumar, M. Pantic, Tensorly: Tensor learning in python, Journal of Machine Learning Research 20 (26) (2019) 1–6.