The Beauty and Joy of Computing

Lecture #19 Limits of Computing

Algorithms Determine "Character"

A new startup called "Upstart" is making a name by trying to use algorithms to determine "character" traits about who is mostly likely to pay a loan back. They try to give loans to people who are less likely to qualify using metrics like college graduation or SAT scores.

http://mobile.nytimes.com/blogs/bits/2015/07/26/using-algorithms-to-determine-character/

Admin Notes

- Schedule (see website)
- Next Week Lots of guests!
- HKN Surveys
 - Please come, bonus points!

Introduction to Complexity Theory

Computer Science ... A UCB view

CS research areas:

- Artificial Intelligence
- Biosystems & Computational Biology
- Database Management Systems
- **Graphics**
- **Human-Computer Interaction**
- Networking
- **Programming Systems**
- Scientific Computing
- Security
- **Systems**
- Theory
 - Complexity theory

Let's revisit algorithm complexity

- Problems that...
 - are tractable with efficient solutions in reasonable time
 - are intractable
 - are solvable approximately, not optimally
 - have no known efficient solution
 - are not solvable

Tractable with efficient sols in reas time

- Recall our algorithm complexity lecture we've got several common orders d growth
 - Constant
 - Logarithmic
 - Linear
 - Quadratic
 - Cubic
 - Exponential

- Order of growth is polynomial in the size of the problem
- E.g.,
 - Searching for an item in a collection
 - Sorting a collection
 - Finding if two numbers in a collection are same
- These problems are called being "in P" (for polynomial)

Intractable problems

- Problems that can be solved, but not solved fast enough
- This includes exponential problems
 - $^{-}$ E.g., $f(n) = 2^{n}$
 - as in the image to the right
- This also includes polytime algorithm with a huge exponent
 - $\overline{}$ E.g, $f(n) = n^{10}$
 - Only solve for small n

Imagine a program that calculated something important at each of the bottom circles. This tree has height n, but there are 2ⁿ bottom circles!

(Cal) Peer Instruction

What's the most you can put in your knapsack?

- a) \$10
- b) \$15
- c) \$33
- d) \$36
- e) \$40

Knapsack Problem

You have a backpack with a weight limit (here 15kg), which boxes (with weights and values) should be taken to maximize value?

(any # of each box is available)

Heuristics, NP, NP-Hard, NP-Complete

Solvable approximately, not optimally in reas time

- A problem might have an optimal solution that cannot be solved in reasonable time
 - E.g., optimization problems such as "find the best/smallest"
- BUT if you don't need to know the perfect solution, there might exist "approximation" algorithms which could give pretty good answers in reasonable time
- Heuristic: a technique that may allow us to find an approximate solution (e.g., valuable stuff first!)
- Some problems cannot be solved using any algorithm. (e.g., finding a robot path to a blocked-off area)

Knapsack Problem

You have a backpack with a weight limit (here 15kg), which boxes (with weights and values) should be taken to maximize value?

Have no known efficient solution

- Solving one of them would solve an entire class of them!
 - We can transform one to another, i.e., reduce
 - A problem P is "hard" for a class C if every element of C can be "reduced" to P
- If you're "in NP" and "NP-hard", then you're "NP-complete"

Subset Sum Problem

Are there a handful of these numbers (at least 1) that add together to get 0?

- If you guess an answer, can I verify it in polynomial time?
 - Called being "in NP"
 - Non-deterministic (the "guess" part) **Polynomial**

en.wikipedia.org/wiki/P %3D NP problem

$\frac{bc}{c}$ The fundamental question. Is P = NP?

- This is THE major unsolved problem in Computer Science!
 - One of 7 "millennium prizes" w/a \$1M reward
- All it would take is solving ONE problem in the NP-complete set in polynomial time!!
 - Huge ramifications for cryptography, others

If P ≠NP, then

- Other NP-Complete
 - Traveling salesman who needs most efficient route to visit all cities and return home

XKCD #287, NP-Complete

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Ball

XKCD #399, Travelling Salesman

Decidability

Problems NOT solvable

- Decision problems answer YES or NO for an infinite # of inputs
 - E.g., is N prime?
 - E.g., is sentence S grammatically correct?
- An algorithm is a solution if it correctly answers YES/NO in a finite amount of time
- A problem is <u>decidable</u> if it has a solution

Alan Turing He asked: "Are all problems decidable?" (people used to believe this was true) Turing proved it wasn't for CS!

Review: Proof by Contradiction

- **Infinitely Many Primes?**
- Assume the contrary, then prove that it's impossible
 - Only a finite set of primes, numbered $p_1, p_2, ..., p_n$
 - Consider $q = (p_1 \bullet p_2 \bullet \dots \bullet p_n) + 1$
 - Dividing q by p_i has remainder 1
 - q either prime or composite
 - If prime, q is not in the set
 - If composite, since no p_i divides q, there must be another p that does that is not in the set.
 - So there's infinitely many primes

Euclid

www.hisschemoller.com/wp-content/uploads/2011/01/euclides.jpg

Turing's proof: The Halting Problem

- Given a program and some input, will that program eventually stop? (or will it loop)
- Assume we could write it, then let's prove a contradiction
 - 1. write Stops on Self?
 - 2. Write Weird
 - 3. Call Weird on itself

bic Conclusion

- Complexity theory important part of CS
- If given a hard problem, rather than try to solve it yourself, see if others have tried similar problems
- If you don't need an exact solution, many approximation algorithms help

P=NP question even made its way into popular culture, here shown in the Simpsons 3D episode!

