Übung "Grundbegriffe der Informatik"

2.11.2012 Willkommen zur dritten Übung zur Vorlesung Grundbegriffe der Informatik

Matthias Janke email: matthias.janke ät kit.edu

Ansage

- Die Anmeldung für Übungsschein und Klausur ist eröffnet!
- Anmeldung läuft online über studium.kit.edu
- ► Klausur-Abmeldung bis zum **5.3.2013** möglich

Überblick

Mengen

Konkatenationsabschluss

formale Spracher

Mengen 3/

- $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
- ▶ Allgemein: $A \circ B = \{a \circ b \mid a \in A \land b \in B\}$
- ▶ Endliche Mengen $A, B: |A \circ B| \le |A| \cdot |B|$

Mengen 4/55

- $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
- ▶ Allgemein: $A \circ B = \{a \circ b \mid a \in A \land b \in B\}$
- ▶ Endliche Mengen $A, B: |A \circ B| \le |A| \cdot |B|$

Mengen 4/55

- $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
- ▶ Allgemein: $A \circ B = \{a \circ b \mid a \in A \land b \in B\}$
- ▶ Endliche Mengen $A, B: |A \circ B| \le |A| \cdot |B|$

Mengen 4/55

Beispiel Multiplikation: $\{1, 2, 3, 4, 5\} \cdot \{1, 2, 3, 4, 5\}$:

Mengen 5/55

Beispiel Multiplikation:

Mengen 6/55

Beispiel Multiplikation:

 $\{1,2,3,4,5,6,8,9,10,12,15,16,20,25\}$ 25 Einträge, 14 verschiedene Elemente

Mengen 7/55

Es seien L_1, L_2 beliebige formale Sprachen, mit $L_1, L_2 \subseteq \{a, b\}^*$.

- a) Geben Sie ein Beispiel für L_1 und L_2 an, so dass $|L_1|=|L_2|=3$ und $|L_1 \cdot L_2|=|L_1|\cdot |L_2|$ gilt. Geben Sie zudem alle Elemente von $L_1 \cdot L_2$ an.
- b) Es sei $n \in \mathbb{N}_0$ beliebig aber fest. Geben Sie zwei formale Sprachen L_1 und L_2 mit $|L_1| = |L_2| = n$ an, so dass $|L_1 \cdot L_2| = n^2$.
- c) Es sei $n \in \mathbb{N}_0$ beliebig aber fest. Geben Sie zwei formale Sprachen L_1 und L_2 mit $|L_1|=|L_2|=n$ an, so dass $|L_1 \cdot L_2| \leq 2n$.

Mengen 8/55

- a) Geben Sie ein Beispiel für L_1 und L_2 an, so dass $|L_1|=|L_2|=3$ und $|L_1\cdot L_2|=|L_1|\cdot |L_2|$ gilt. Geben Sie zudem alle Elemente von $L_1\cdot L_2$ an.
- b) Geben Sie zwei formale Sprachen L_1 und L_2 mit $|L_1| = |L_2| = n$ an, so dass $|L_1 \cdot L_2| = n^2$.
- c) Geben Sie zwei formale Sprachen L_1 und L_2 mit $|L_1| = |L_2| = n$ an, so dass $|L_1 \cdot L_2| \le 2n$.
 - $L_1 = \{a, aa, aaa\}$ und $L_2 = \{b, bb, bbb\}$ $L_1 \cdot L_2 = \{ab, abb, abbb, aab, aabb, aabbb, aaab, aaabb, aaabbb}$
 - ▶ $L_1 = \{a^i \mid 1 \le i \le n\}$ und $L_2 = \{b^i \mid 1 \le i \le n\}$
 - ▶ $L_1 = \{a^i \mid 1 \le i \le n\}$ und $L_2 = \{a^i \mid 1 \le i \le n\}$ Es ist dann $L_1 \cdot L_2 = \{a^i \mid 2 \le i \le 2n\}$

Mengen 9/55

- a) Geben Sie ein Beispiel für L_1 und L_2 an, so dass $|L_1|=|L_2|=3$ und $|L_1\cdot L_2|=|L_1|\cdot |L_2|$ gilt. Geben Sie zudem alle Elemente von $L_1\cdot L_2$ an.
- b) Geben Sie zwei formale Sprachen L_1 und L_2 mit $|L_1| = |L_2| = n$ an, so dass $|L_1 \cdot L_2| = n^2$.
- c) Geben Sie zwei formale Sprachen L_1 und L_2 mit $|L_1| = |L_2| = n$ an, so dass $|L_1 \cdot L_2| \le 2n$.
 - ▶ $L_1 = \{a, aa, aaa\}$ und $L_2 = \{b, bb, bbb\}$ $L_1 \cdot L_2 = \{ab, abb, abbb, aab, aabb, aabbb, aaab, aaabb, aaabbb}$
 - ▶ $L_1 = \{a^i \mid 1 \le i \le n\}$ und $L_2 = \{b^i \mid 1 \le i \le n\}$
 - ▶ $L_1 = \{a^i \mid 1 \le i \le n\}$ und $L_2 = \{a^i \mid 1 \le i \le n\}$ Es ist dann $L_1 \cdot L_2 = \{a^i \mid 2 \le i \le 2n\}$

Mengen 9/55

- a) Geben Sie ein Beispiel für L_1 und L_2 an, so dass $|L_1|=|L_2|=3$ und $|L_1\cdot L_2|=|L_1|\cdot |L_2|$ gilt. Geben Sie zudem alle Elemente von $L_1\cdot L_2$ an.
- b) Geben Sie zwei formale Sprachen L_1 und L_2 mit $|L_1| = |L_2| = n$ an, so dass $|L_1 \cdot L_2| = n^2$.
- c) Geben Sie zwei formale Sprachen L_1 und L_2 mit $|L_1| = |L_2| = n$ an, so dass $|L_1 \cdot L_2| \le 2n$.
 - ▶ $L_1 = \{a, aa, aaa\}$ und $L_2 = \{b, bb, bbb\}$ $L_1 \cdot L_2 = \{ab, abb, abbb, aab, aabb, aabbb, aaab, aaabb, aaabbb}$
 - ▶ $L_1 = \{a^i \mid 1 \le i \le n\}$ und $L_2 = \{b^i \mid 1 \le i \le n\}$
 - ▶ $L_1 = \{a^i \mid 1 \le i \le n\}$ und $L_2 = \{a^i \mid 1 \le i \le n\}$ Es ist dann $L_1 \cdot L_2 = \{a^i \mid 2 \le i \le 2n\}$

Mengen 9/55

Menge M abgeschlossen bezüglich Operation \circ :

 $\blacktriangleright \ \forall x \in M : \forall y \in M : x \circ y \in M$

Mengen 10/55

Menge M abgeschlossen bezüglich Operation \circ :

- $\forall x \in M : \forall y \in M : x \circ y \in M$
- ▶ Kürzer: $\forall x, y \in M : x \circ y \in M$

Mengen 11/55

Menge M abgeschlossen bezüglich Operation \circ :

- $\forall x \in M : \forall y \in M : x \circ y \in M$
- ▶ Kürzer: $\forall x, y \in M : x \circ y \in M$
- ▶ Noch kürzer: $M \circ M \subseteq M$

Mengen 12/55

Menge M abgeschlossen bezüglich Operation \circ :

- $\forall x \in M : \forall y \in M : x \circ y \in M$
- ▶ Kürzer: $\forall x, y \in M : x \circ y \in M$
- ▶ Noch kürzer: $M \circ M \subseteq M$
- ▶ Ganz arg kurz: $M^2 \subseteq M$.

Mengen 13/55

Überblick

Mengen

Konkatenationsabschluss

formale Spracher

Behauptung: $(L^+)^+ = L^+$

Behauptung: $(L^+)^+ = L^+$

Nachweis der Gleichheit von zwei Mengen:

- Zeige, dass linke Menge Teilmenge von rechter Menge ist.
- ▶ Zeige, dass rechte Menge Teilmenge von linker Menge ist.

Behauptung: $(L^+)^+ = L^+$

(i) $(L^+)^+ \subseteq L^+$:

Sei $w \in (L^+)^+$ beliebig, aber fest gewählt.

Behauptung: $(L^+)^+ = L^+$ (i) $(L^+)^+ \subseteq L^+$: Sei $w \in (L^+)^+$ beliebig, aber fest gewählt. $\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n \subseteq L^+$

```
Behauptung: (L^+)^+ = L^+

(i) (L^+)^+ \subseteq L^+:

Sei w \in (L^+)^+ beliebig, aber fest gewählt.

\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n \subseteq L^+

\Rightarrow w \in L^+
```

```
Behauptung: (L^+)^+ = L^+

(i) (L^+)^+ \subseteq L^+:

Sei w \in (L^+)^+ beliebig, aber fest gewählt.

\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n \subseteq L^+

\Rightarrow w \in L^+

Daraus folgt (L^+)^+ \subseteq L^+.
```

Behauptung:
$$(L^+)^+ = L^+$$

(ii)
$$L^+ \subseteq (L^+)^+$$
:

Sei $w \in L^+$ beliebig, aber fest gewählt.

```
Behauptung: (L^+)^+ = L^+
(ii) L^+ \subseteq (L^+)^+:
Sei w \in L^+ beliebig, aber fest gewählt.
\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n (nämlich n = 1)
```

```
Behauptung: (L^+)^+ = L^+

(ii) L^+ \subseteq (L^+)^+:

Sei w \in L^+ beliebig, aber fest gewählt.

\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n (nämlich n = 1)

\Rightarrow w \in (L^+)^+
```

```
Behauptung: (L^+)^+ = L^+

(ii) L^+ \subseteq (L^+)^+:

Sei w \in L^+ beliebig, aber fest gewählt.

\Rightarrow \exists n \in \mathbb{N}_+ : w \in (L^+)^n (nämlich n = 1)

\Rightarrow w \in (L^+)^+

Daraus folgt L^+ \subseteq (L^+)^+.
```

Behauptung: $(L^+)^+ = L^+$ Aus (i) und (ii) folgt $(L^+)^+ = L^+$

Überblick

Menger

Konkatenationsabschluss

formale Sprachen

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.$

 $A = \{a, b, c\}$ $L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.$ Beispiele: $abacbccbc, abc, bbabbcbb \in L$ Gegenbeispiele: $abacaba, ca, cbbba \notin L$

```
A = \{a, b, c\}

L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.

Beispiele: abacbccbc, abc, bbabbcbb \in L

Gegenbeispiele: abacaba, ca, cbbba \notin L

aabaa \in L?
```

```
A = \{a, b, c\}

L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.

Beispiele: abacbccbc, abc, bbabbcbb \in L

Gegenbeispiele: abacaba, ca, cbbba \notin L

aabaa \in L? Unklar!
```

Wenn etwas unklar ist: Tutoren fragen, Übungsleiter fragen, Annahmen treffen.

```
A = \{a, b, c\}

L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.

Beispiele: abacbccbc, abc, bbabbcbb \in L

Gegenbeispiele: abacaba, ca, cbbba \notin L

aabaa \in L!
```

 $A = \{a,b,c\}$ $L = \{w \in A^* \mid \text{nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.$ Struktur: Erst beliebig viele a und b, dann ein c, danach keine a mehr

oder: Nur a und b

```
A = \{a, b, c\}

L = \{w \in A^* \mid \text{ nach dem ersten } c \text{ kommt kein } a \text{ mehr vor } \}.

Struktur: Erst beliebig viele a und b, dann ein c, danach keine a mehr

\{a, b\}^*\{c\}\{b, c\}^*

oder: Nur a und b

\cup \{a, b\}^*
```

$$A = \{a, b, c\}$$

 $L = \{w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.$

```
A = \{a, b, c\}

L = \{w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.

Beispiele: aaacbbbbaaaca, acacbac \in L
```

Gegenbeispiele: ab, $acabbcba \notin L$

```
A = \{a, b, c\}

L = \{w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.

Struktur: Vor erstem b in einem Block steht ein c
```

```
A = \{a, b, c\}
L = \{w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.
Struktur: Vor erstem b in einem Block steht ein c
\{a, c\}^* \{c\} \{b\}^+
```

```
A = \{a, b, c\}
L = \{w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.
Struktur: Vor erstem b in einem Block steht ein c
\{a, c\}^* \{c\} \{b\}^+, \text{ wenn nur ein } b\text{-Block vorhanden.}
```

```
A = \{a, b, c\}
L = \{w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.
Struktur: Vor erstem b in einem Block steht ein c
(\{a, c\}^*\{c\}\{b\}^+)^* \text{ für beliebig viele } b\text{-Bl\"ocke}.
```

```
A = \{a, b, c\}

L = \{w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.

Struktur: Vor erstem b in einem Block steht ein c

außer, wenn das erste Zeichen ein b ist!

(\{a, c\}^*\{c\}\{b\}^+)^* \cup \{b\}^+(\{a, c\}^*\{c\}\{b\}^+)^*
```

```
A = \{a, b, c\}
L = \{w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.
Struktur: Vor erstem b in einem Block steht ein c
außer, wenn das erste Zeichen ein b ist!
(\{a, c\}^*\{c\}\{b\}^+)^* \cup \{b\}^+(\{a, c\}^*\{c\}\{b\}^+)^*
Ausklammern: (\{b\}^+ \cup \{\epsilon\})(\{a, c\}^*\{c\}\{b\}^+)^*
```

 $L = \{ w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.$ $(\{a,c\}^*\{c\}\{b\}^+)^* \cup \{b\}^+(\{a,c\}^*\{c\}\{b\}^+)^*$ Ausklammern: $(\{b\}^+ \cup \{\epsilon\})(\{a,c\}^*\{c\}\{b\}^+)^*$ Erinnern: $\{b\}^*(\{a,c\}^*\{c\}\{b\}^+)^*$

 $L = \{ w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.$

$${b}^*({a,c}^*{c}{b}^+)^*$$

Obligatorischer "Mist, ich habe was vergessen"-Moment: Wörter aus der angegebenen Sprache enden mit b, falls ein b vorkommt.

 $L = \{ w \in A^* \mid \text{direkt vor einem } b \text{ steht nie ein } a \}.$

$${b}^*({a,c}^*{c}_{b}^+)^*$$

Obligatorischer "Mist, ich habe was vergessen"-Moment: Wörter aus der angegebenen Sprache enden mit b, falls ein b vorkommt.

$${b}^*({a,c}^*{c}{b}^+)^*{a,c}^*$$

Noch etwas zu Wörtern: Teilwörter

Weitere Begriffe, die im Laufe des Studiums auftauchen werden

Wir betrachten dabei Wörter p, s und w über dem Alphabet A.

- ▶ Präfix p: Ein Teilwort, das am Anfang des Wortes w auftritt.
- ▶ Suffix s: Ein Teilwort, das am Ende des Wortes w auftritt.

Klingt recht schwammig?!?

Weiteres zu Wörtern: Teilwörter

Weitere Begriffe, die im Laufe des Studiums auftauchen werden

Wir betrachten dabei Wörter p, s und w über dem Alphabet A.

- ▶ Präfix p von w: $\exists w' \in A^* : p \cdot w' = w$
- ▶ Suffix s von w: $\exists w' \in A^* : w' \cdot s = w$

- Für ein Wort w und ein Symbol x bezeichne $N_x(w)$ die Anzahl der Vorkommnisse von x in w.
- ▶ Für $k \ge 1$ sei die Sprache L_k definiert als die Menge aller Wörter w über dem Alphabet $\{a,b\}$, für die gilt:
 - $N_{a}(w) = N_{b}(w).$
 - Für alle Präfixe v von w gilt: $N_{\rm a}(v) \geq N_{\rm b}(v)$ und $N_{\rm a}(v) N_{\rm b}(v) \leq k$.

- Für ein Wort w und ein Symbol x bezeichne $N_x(w)$ die Anzahl der Vorkommnisse von x in w.
- ▶ Für $k \ge 1$ sei die Sprache L_k definiert als die Menge aller Wörter w über dem Alphabet $\{a,b\}$, für die gilt:
 - $N_{a}(w) = N_{b}(w).$
 - Für alle Präfixe v von w gilt: $N_{\rm a}(v) \geq N_{\rm b}(v)$ und $N_{\rm a}(v) N_{\rm b}(v) \leq k$.

Beispielwörter:

- ▶ abab $\in L_1$, aabb $\notin L_1$
- ightharpoonup aababb $\in L_2$, aaa $otin L_1$

Menge der Wörter aus L_1, L_2 ?

- Für ein Wort w und ein Symbol x bezeichne $N_x(w)$ die Anzahl der Vorkommnisse von x in w.
- ▶ Für $k \ge 1$ sei die Sprache L_k definiert als die Menge aller Wörter w über dem Alphabet $\{a,b\}$, für die gilt:
 - $N_{a}(w) = N_{b}(w).$
 - Für alle Präfixe v von w gilt: $N_{\rm a}(v) \geq N_{\rm b}(v)$ und $N_{\rm a}(v) N_{\rm b}(v) \leq k$.

Beispielwörter:

- ▶ abab $\in L_1$, aabb $\notin L_1$
- ▶ aababb $\in L_2$, aaa $\notin L_1$

Menge der Wörter aus L_1, L_2 ?

- ▶ ({a}{b})*
- ► ({a}({a}{b})*{b})*

Es sei $A = \{a, b\}$. Die Sprache $L \subseteq A^*$ sei definiert durch $L = (\{a\}^*\{b\}\{a\}^*)^*$.

Zeigen Sie, dass jedes Wort w aus $\{a,b\}^*$, das mindestens einmal das Zeichen b enthält, in L liegt.

Es sei $A = \{a, b\}$. Die Sprache $L \subseteq A^*$ sei definiert durch $L = (\{a\}^*\{b\}\{a\}^*)^*$.

Zeigen Sie, dass jedes Wort w aus $\{a,b\}^*$, das mindestens einmal das Zeichen b enthält, in L liegt.

▶ Wir führen eine Induktion über die Anzahl der Vorkommen des Zeichens b in w durch.)

- Sei k die Anzahl der Vorkommen von b in einem Wort w ∈ {a, b}*.
- ▶ Induktionsanfang: k = 1:
 - für k = 1 lässt sich das Wort w aufteilen in $w = w_1 \cdot b \cdot w_2$, wobei w_1 und w_2 keine b enthalten und somit in $\{a\}^*$ liegen.
 - ▶ Damit gilt $w \in \{a\}^*\{b\}\{a\}^*$
 - und somit auch $w \in (\{a\}^*\{b\}\{a\}^*)^* = L$.

- Sei k die Anzahl der Vorkommen von b in einem Wort w ∈ {a,b}*.
- ▶ Induktionsanfang: k = 1:
 - für k = 1 lässt sich das Wort w aufteilen in $w = w_1 \cdot b \cdot w_2$, wobei w_1 und w_2 keine b enthalten und somit in $\{a\}^*$ liegen.
 - ▶ Damit gilt $w \in \{a\}^*\{b\}\{a\}^*$
 - ▶ und somit auch $w \in (\{a\}^*\{b\}\{a\}^*)^* = L$

- Sei k die Anzahl der Vorkommen von b in einem Wort w ∈ {a, b}*.
- ▶ Induktionsanfang: k = 1:
 - für k = 1 lässt sich das Wort w aufteilen in $w = w_1 \cdot b \cdot w_2$, wobei w_1 und w_2 keine b enthalten und somit in $\{a\}^*$ liegen.
 - ▶ Damit gilt $w \in \{a\}^*\{b\}\{a\}^*$
 - und somit auch $w \in (\{a\}^*\{b\}\{a\}^*)^* = L$.

- ▶ Sei k die Anzahl der Vorkommen von b in einem Wort $w \in \{a, b\}^*$.
- ▶ Induktionsvoraussetzung: Für ein beliebiges aber festes $k \in \mathbb{N}_+$ gilt, dass alle Wörter über $\{a,b\}^*$, die genau k mal das Zeichen b enthalten, in L liegen.

- ▶ Induktionsschritt: Wir betrachten ein Wort w, das genau k+1 mal das Zeichen b enthält.
- ▶ Dann kann man w zerlegen in $w = w_1w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k mal das Zeichen b.
- ▶ Im IA wurde gezeigt: w_1 liegt in $\{a\}^*\{b\}\{a\}^*$.
- ▶ Nach IV liegt w_2 in $({a}^*{b}{a}^*)^*$,
- $ightharpoonup
 ightarrow \exists i \in \mathbb{N}_0$, so dass $w_2 \in (\{a\}^*\{b\}\{a\}^*)^i$ gilt.
- Somit liegt $w = w_1 w_2$ in $(\{a\}^*\{b\}\{a\}^*)(\{a\}^*\{b\}\{a\}^*)^i = (\{a\}^*\{b\}\{a\}^*)^{i+1} \subseteq (\{a\}^*\{b\}\{a\}^*)^* = L$,
- und die Behauptung ist gezeigt.

- ▶ Induktionsschritt: Wir betrachten ein Wort w, das genau k + 1 mal das Zeichen b enthält.
- ▶ Dann kann man w zerlegen in $w = w_1w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k mal das Zeichen b.
- ▶ Im IA wurde gezeigt: w_1 liegt in $\{a\}^*\{b\}\{a\}^*$.
- ▶ Nach IV liegt w_2 in $({a}^*{b}{a}^*)^*$,
- $ightharpoonup
 ightharpoonup \exists i \in \mathbb{N}_0$, so dass $w_2 \in (\{a\}^*\{b\}\{a\}^*)^i$ gilt.
- ▶ Somit liegt $w = w_1 w_2$ in $(\{a\}^*\{b\}\{a\}^*)(\{a\}^*\{b\}\{a\}^*)^i = (\{a\}^*\{b\}\{a\}^*)^{i+1} \subseteq (\{a\}^*\{b\}\{a\}^*)^* = L$,
- und die Behauptung ist gezeigt.

- ▶ Induktionsschritt: Wir betrachten ein Wort w, das genau k + 1 mal das Zeichen b enthält.
- ▶ Dann kann man w zerlegen in $w = w_1w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k mal das Zeichen b.
- ▶ Im IA wurde gezeigt: w_1 liegt in $\{a\}^*\{b\}\{a\}^*$.
- ▶ Nach IV liegt w_2 in $(\{a\}^*\{b\}\{a\}^*)^*$,
- $ightharpoonup
 ightharpoonup \exists i \in \mathbb{N}_0$, so dass $w_2 \in (\{a\}^*\{b\}\{a\}^*)^i$ gilt.
- ▶ Somit liegt $w = w_1 w_2$ in $(\{a\}^*\{b\}\{a\}^*)(\{a\}^*\{b\}\{a\}^*)^i = (\{a\}^*\{b\}\{a\}^*)^{i+1} \subseteq (\{a\}^*\{b\}\{a\}^*)^* = L$,
- und die Behauptung ist gezeigt.

- ▶ Induktionsschritt: Wir betrachten ein Wort w, das genau k + 1 mal das Zeichen b enthält.
- ▶ Dann kann man w zerlegen in $w = w_1w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k mal das Zeichen b.
- ▶ Im IA wurde gezeigt: w_1 liegt in $\{a\}^*\{b\}\{a\}^*$.
- ▶ Nach IV liegt w_2 in $({a}^*{b}{a}^*)^*$,
- $ightharpoonup
 ightharpoonup \exists i \in \mathbb{N}_0$, so dass $w_2 \in (\{a\}^*\{b\}\{a\}^*)^i$ gilt.
- Somit liegt $w = w_1 w_2$ in $(\{a\}^*\{b\}\{a\}^*)(\{a\}^*\{b\}\{a\}^*)^i = (\{a\}^*\{b\}\{a\}^*)^{i+1} \subseteq (\{a\}^*\{b\}\{a\}^*)^* = L$,
- und die Behauptung ist gezeigt.

- ► Induktionsschritt: Wir betrachten ein Wort w, das genau k+1 mal das Zeichen b enthält.
- ▶ Dann kann man w zerlegen in $w = w_1w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k mal das Zeichen b.
- ▶ Im IA wurde gezeigt: w_1 liegt in $\{a\}^*\{b\}\{a\}^*$.
- ▶ Nach IV liegt w_2 in $({a}^*{b}{a}^*)^*$,
- $ightharpoonup
 ightarrow \exists i \in \mathbb{N}_0$, so dass $w_2 \in (\{a\}^*\{b\}\{a\}^*)^i$ gilt.
- Somit liegt $w = w_1 w_2$ in $(\{a\}^*\{b\}\{a\}^*)(\{a\}^*\{b\}\{a\}^*)^i = (\{a\}^*\{b\}\{a\}^*)^{i+1} \subseteq (\{a\}^*\{b\}\{a\}^*)^* = L$,
- und die Behauptung ist gezeigt.

- ▶ Induktionsschritt: Wir betrachten ein Wort w, das genau k + 1 mal das Zeichen b enthält.
- ▶ Dann kann man w zerlegen in $w = w_1w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k mal das Zeichen b.
- ▶ Im IA wurde gezeigt: w_1 liegt in $\{a\}^*\{b\}\{a\}^*$.
- ▶ Nach IV liegt w_2 in $({a}^*{b}{a}^*)^*$,
- $ightharpoonup
 ightarrow \exists i \in \mathbb{N}_0$, so dass $w_2 \in (\{a\}^*\{b\}\{a\}^*)^i$ gilt.
- Somit liegt $w = w_1 w_2$ in $(\{a\}^*\{b\}\{a\}^*)(\{a\}^*\{b\}\{a\}^*)^i = (\{a\}^*\{b\}\{a\}^*)^{i+1} \subseteq (\{a\}^*\{b\}\{a\}^*)^* = L$,
- und die Behauptung ist gezeigt.

- ▶ Induktionsschritt: Wir betrachten ein Wort w, das genau k + 1 mal das Zeichen b enthält.
- ▶ Dann kann man w zerlegen in $w = w_1w_2$, wobei w_1 genau einmal das Zeichen b enthält und w_2 genau k mal das Zeichen b.
- ▶ Im IA wurde gezeigt: w_1 liegt in $\{a\}^*\{b\}\{a\}^*$.
- ▶ Nach IV liegt w_2 in $({a}^*{b}{a}^*)^*$,
- $ightharpoonup
 ightarrow \exists i \in \mathbb{N}_0$, so dass $w_2 \in (\{a\}^*\{b\}\{a\}^*)^i$ gilt.
- Somit liegt $w = w_1 w_2$ in $(\{a\}^*\{b\}\{a\}^*)(\{a\}^*\{b\}\{a\}^*)^i = (\{a\}^*\{b\}\{a\}^*)^{i+1} \subseteq (\{a\}^*\{b\}\{a\}^*)^* = L$,
- und die Behauptung ist gezeigt.

Das wars für heute...

Themen für das dritte Übungsblatt:

- formale Sprachen
 - ► Formales Beschreiben von formalen Sprachen
 - Verstehen von formalen Sprachen
 - Beweisen

Schönes Wochenende!