

Temario IPS Subnetting

Temario: Redes de Computadoras y Subnetting

1. Introducción a las Redes de Computadoras

1.1. Conceptos Básicos

- **Definición**: Una red de computadoras es un conjunto de dispositivos interconectados que pueden comunicarse y compartir recursos. Los dispositivos en una red pueden incluir computadoras, impresoras, teléfonos y otros equipos electrónicos.
- Propósito: Las redes permiten la transferencia de datos, compartir recursos (como impresoras y archivos), y
 ofrecer servicios como correo electrónico y acceso a internet.

1.2. Tipos de Redes

- LAN (Local Area Network): Una red que cubre un área geográfica limitada, como una casa, oficina o edificio. Es ideal para conectar dispositivos cercanos.
- WAN (Wide Area Network): Una red que cubre un área geográfica amplia, como una ciudad, país o incluso a nivel mundial. Internet es el ejemplo más grande de una WAN.
- MAN (Metropolitan Area Network): Una red que cubre un área geográfica más amplia que una LAN pero menor que una WAN, como una ciudad o campus universitario.

1.3. Componentes de una Red

- **Routers**: Dispositivos que encaminan paquetes de datos entre diferentes redes, permitiendo la interconexión de múltiples redes.
- **Switches**: Dispositivos que conectan múltiples dispositivos dentro de la misma red local, gestionando el tráfico de datos para mejorar la eficiencia de la red.
- **Servidores**: Computadoras que proporcionan servicios y recursos a otros dispositivos en la red, como almacenamiento de datos, aplicaciones y servicios web.
- **Dispositivos finales**: Equipos que se conectan a la red para utilizar los recursos compartidos, como computadoras, impresoras, teléfonos y otros dispositivos inteligentes.

2. Direcciones IP

2.1. Definición y Estructura

- **IPv4**: Una dirección IP versión 4 consta de 32 bits, divididos en cuatro octetos, y se representa en formato decimal (ej. 192.168.1.1).
- **IPv6**: Una dirección IP versión 6 consta de 128 bits, divididos en ocho grupos de cuatro caracteres hexadecimales. Fue desarrollada para superar la limitación de direcciones IPv4.

2.2. Clases de Direcciones IP

- Clase A: Direcciones desde 1.0.0.0 hasta 126.0.0.0, con una gran cantidad de direcciones para hosts. Usada en redes muy grandes.
- Clase B: Direcciones desde 128.0.0.0 hasta 191.255.0.0, con un balance entre direcciones de red y hosts. Usada en redes medianas a grandes.
- Clase C: Direcciones desde 192.0.0.0 hasta 223.255.255.0, comúnmente usadas en redes pequeñas.
- Clase D y E: Clases D utilizadas para multicast y Clase E reservada para uso futuro o investigación.

2.3. Direcciones IP Públicas vs Privadas

- **Públicas**: Direcciones únicas en internet asignadas por organizaciones de registro de internet, necesarias para dispositivos que se comunican a través de internet.
- Privadas: Direcciones utilizadas dentro de redes locales, no enrutables en internet. Ejemplos:
 - o 10.0.0.0 10.255.255.255
 - o 172.16.0.0 172.31.255.255
 - o 192.168.0.0 192.168.255.255

2.4. Direcciones Especiales

- Loopback: Dirección 127.0.0.1, utilizada para pruebas internas de la red en un dispositivo.
- APIPA: Rango 169.254.x.x, asignado automáticamente cuando un dispositivo no puede obtener una dirección IP de un servidor DHCP.

3. Máscara de Subred (Subnet Mask)

3.1. Definición y Propósito

• La máscara de subred determina qué parte de una dirección IP corresponde a la red y cuál al host, permitiendo la creación de subredes dentro de una red mayor.

3.2. Cálculo de Subredes

• **Ejemplo**: Dividir una red en subredes más pequeñas utilizando una máscara de subred adecuada. Por ejemplo, la máscara 255.255.255.0 divide una red en 256 subredes.

3.3. Máscara de Subred de Longitud Variable (VLSM)

 VLSM permite crear subredes de diferentes tamaños dentro de la misma red, optimizando el uso de direcciones IP disponibles.

4. Subnetting

4.1. Conceptos Básicos

 Subnetting es el proceso de dividir una red IP en subredes más pequeñas para mejorar la gestión, seguridad y eficiencia de la red.

4.2. Cálculo de Subredes y Hosts

- **Número de bits para hosts**: Para calcular el número de hosts en una subred, restamos el número de bits de la red al total de bits de la dirección IP (32 bits para IPv4).
 - Ejemplo: En una subred /24, los primeros 24 bits son para la red y los últimos 8 bits son para los hosts (32
 24 = 8 bits para hosts).
- **Número de hosts posibles**: 2bits de host–2. Restamos 2 porque una dirección es la dirección de red y otra es la dirección de broadcast.

2bits de host-2

• **Ejemplo**: En una subred /24, el número de hosts posibles es 28-2=256-2=254.

28-2=256-2=254

Pasos para el Cálculo de Subredes y Hosts:

- 1. Determina el número de bits asignados a la parte de la red y a la parte de los hosts en la dirección IP.
- 2. Calcula el número de subredes posibles: 2nu´mero de bits para subred.

2nu'mero de bits para subred

3. Calcula el número de hosts posibles en cada subred: 2nu mero de bits para hosts-2.

2nu'mero de bits para hosts-2

Detalle del Apartado 4.2: Cálculo de Subredes y Hosts

Pasos para el Cálculo de Subredes y Hosts:

1. Determinar el número de bits para la red y los hosts:

• En una dirección IP /24, los primeros 24 bits son para la red y los últimos 8 bits son para los hosts.

2. Calcular el número de subredes:

- Si usamos una máscara de subred adicional (por ejemplo, /26 en lugar de /24), estamos usando 2 bits adicionales para subredes.
- Número de subredes posibles: 2bits adicionales para subred=22=4.
 2bits adicionales para subred=22=4

3. Calcular el número de hosts por subred:

- Restamos los bits de red y subred al total de bits de la dirección IP.
- Número de bits para hosts: 32 26 = 6 bits.
- Número de hosts posibles por subred: 26-2=64-2=62.

26-2=64-2=62

Este proceso se puede aplicar a cualquier notación CIDR (como /25, /26, /27, etc.) para calcular el número de subredes y hosts en cada subred.

5. Network Address Translation (NAT)

5.1. Conceptos de NAT

• NAT es una técnica que permite traducir direcciones IP privadas a una dirección IP pública para acceder a internet, ocultando las direcciones IP internas de una red local.

5.2. Tipos de NAT

- NAT Estático: Asigna una dirección IP pública fija a una dirección IP privada específica.
- NAT Dinámico: Asigna una dirección IP pública temporal a una dirección IP privada desde un pool de direcciones públicas.
- PAT (Port Address Translation): Traduce tanto direcciones IP como números de puerto, permitiendo que múltiples dispositivos compartan una única dirección IP pública.

6. Protocolo DHCP (Dynamic Host Configuration Protocol)

6.1. Funcionamiento del DHCP

• DHCP permite la asignación automática de direcciones IP y otros parámetros de configuración de red (como la puerta de enlace y servidores DNS) a dispositivos en una red. Esto facilita la administración de la red y reduce errores de configuración manual.

6.2. Configuración de un Servidor DHCP

• Configura un servidor DHCP para asignar direcciones IP desde un pool predeterminado a dispositivos en la red. El servidor asigna direcciones IP basadas en un rango definido y puede reservar direcciones para dispositivos específicos.

7. Problemas y Soluciones en Redes

7.1. Problemática de las IPs

- **Escasez de direcciones IPv4**: Con el aumento de dispositivos conectados a internet, las direcciones IPv4 disponibles se han agotado.
- **IPv6 como solución**: IPv6 proporciona un espacio de direcciones mucho más amplio, permitiendo un número casi infinito de dispositivos conectados.

7.2. Técnicas de Optimización

- **Uso de NAT**: Permite que múltiples dispositivos compartan una sola dirección IP pública, conservando las direcciones IPv4.
- VLSM: Optimiza el uso de direcciones IP al permitir la creación de subredes de diferentes tamaños según las necesidades.

8. Ejemplos y Prácticas

8.1. Configuración de IPs en Dispositivos

Asignar direcciones IP estáticas y dinámicas en computadoras, routers y otros dispositivos de red.
 Configuración de parámetros como la máscara de subred, puerta de enlace y servidores DNS.

8.2. Configuraciones de Subredes

• **Ejemplo práctico**: Configuración de subredes en una red local, asignación de direcciones IP, y verificación de conectividad entre dispositivos.

8.3. Prácticas con Herramientas de Red

- Comandos básicos:
 - ping: Verifica la conectividad entre dispositivos.
 - o tracert: Muestra la ruta que sigue un paquete de datos hasta su destino.
 - o ipconfig: Muestra la configuración IP de un dispositivo y permite renovar la dirección IP.