

What Is Claimed Is:

1. A sheet computer, in which electronic circuits are fabricated on a substratum, wherein the electronic circuits constitute an asynchronous system without global clocking.
2. A sheet computer, in which a display circuit and peripheral circuits connected to the display circuit are fabricated on the same substratum, wherein the peripheral circuits constitute an asynchronous system without global clocking.
3. The sheet computer according to claim 1, wherein:
 - the peripheral circuits comprise a plurality of circuits that have ports, which are connected together by channels; and
 - the ports that actively request data transfers and ports that passively accept data transfer requests have different attributes respectively.
4. The sheet computer according to claim 1, wherein the substratum is flexible.
5. The sheet computer according to claim 1, wherein the electronic circuit is stacked in multiple layers on the substratum.
6. A wearable computer, in which electronic circuits are fabricated for wearability's sake, wherein the electronic circuits constitute an asynchronous system without global clocking.

7. The wearable computer according to claim 6, wherein
the peripheral circuits comprise a plurality of circuits, that have ports, which
are connected together by channels; and
5 the ports that actively request data transfers and ports that passively
accept data transfer requests have different attributes respectively.

8. The wearable computer according to claim 6, wherein the wearable
computer is formed on a flexible substratum.

10 9. The wearable computer according to claim 8, wherein the electronic circuits
are stacked in multiple layers on the flexible substrata.

15 10. A display device, in which a display circuit and peripheral circuits
connected to the display circuit are fabricated on the same substratum, wherein the
peripheral circuits are constitute an asynchronous system without global clocking.

20 11. A display device, in which a liquid crystal display circuit and peripheral
circuits connected to the liquid crystal display circuit are fabricated on a substratum,
wherein the peripheral circuits constitute an asynchronous system without global
clocking.

25 12. The display device according to claim 10, wherein the peripheral circuits
comprises a plurality of circuits that have ports, which are connected together by
channels; and

the ports that actively request data transfers and ports that passively accept data transfer requests have different attributes respectively.

13. An electronic device constituted comprising the display device according to
5 claim 10.

14. A sheet computer fabrication method, comprising the steps of:
10 fabricating circuit chips comprising asynchronous circuits without global
clocking on an original substratum;
transferring the circuit chips thus formed to a final substratum; and
separating the circuit chips thus transferred to the final substratum from the
original substratum.

15. The sheet computer fabrication method according to claim 14, wherein the
15 substratum is flexible.

16. The sheet computer fabrication method according to claim 14, further
comprising the step of:
stacking the circuit chips in multiple layers on the flexible substrata.

20
17. A wearable computer fabrication method, comprising the steps of:
fabricating circuit chips comprising asynchronous circuits without global
clocking on an original substratum;
transferring the circuit chips to a final substratum; and
25 separating the circuit chips thus transferred to the final substratum from the

original substratum.

18. The wearable computer fabrication method according to claim 17, wherein the final substratum is flexible.

5

19. The wearable computer fabrication method according to claim 17, further comprising the step of:

stacking the circuit chips in multiple layers on the flexible substratum.

10 **20. A display device fabrication method, comprising the steps of:**

fabricating circuit chips comprising asynchronous circuits without global clocking on an original substratum;

transferring the circuit chips to a final substratum; and

separating the circuit chips thus transferred to the final substratum from the

15 **original substratum.**

21. The display device fabrication method according to claim 20, wherein the final substratum is flexible.

20 **22. The display device fabrication method according to claim 20, further comprising the step of:**

stacking the circuit chips in multiple layers on the flexible substratum.