SPRINTS

Rate-Monotonic Scheduling Task

Submitted by:

Mahmoud Hamdy

- Contents:

- Problem Statement.
- Breaking down tasks.
- Test1: Rate-Monotonic Utilization Bound.
- Test2: Time Demand Analysis.
- Modeling the system on simso and verifying schedulability.
- Final comments.

- Problem Statement:

- Task: Schedule the following task set using rate-monotonic:
 T1 {P: 5, E: 2.5, D: 5}, T2 {P: 15, E: 4.5, D: 15}, T3 {P: 20, E: 3.5, D: 20}
 - · Calculate the Urm.
 - · Calculate the time-demand analysis.
 - · Model the task set using Simso.
 - Provide a report with the above points using screenshots and comments on your results and analysis.

- Breaking down tasks:

Rate - monotonic Scheduling

Given task set:
$$T1 \ (P=5, E=2.5, D=5)$$
 $T2 \ (P=15, E=4.5, D=15)$
 $T3 \ (P=20, E=3.5, D=20)$

- Test1: Rate-Monotonic Utilization Bound

Test 1: Rate-Monotonic utilization bound
$$(n=3) \rightarrow no.of tasks$$
 $U_{rm} = n(2^{\frac{1}{n}}-1) = 3(2^{\frac{1}{3}}-1) \approx 0.77976$
 $U = \frac{3}{1} = \frac{Ci}{Pi} = \frac{2.5}{5} + \frac{4.5}{15} + \frac{3.5}{20} = 0.5 + 0.3 + 0.175 = 0.975$
 $U = \frac{3}{1} = \frac{Ci}{Pi} = \frac{2.5}{5} + \frac{4.5}{15} + \frac{3.5}{20} = 0.5 + 0.3 + 0.175 = 0.975$
 $U = \frac{3}{1} = \frac{Ci}{Pi} = \frac{2.5}{5} + \frac{4.5}{15} + \frac{3.5}{20} = 0.5 + 0.3 + 0.175 = 0.975$
 $U = \frac{3}{1} = \frac{Ci}{Pi} = \frac{2.5}{5} + \frac{4.5}{15} + \frac{3.5}{20} = 0.5 + 0.3 + 0.175 = 0.975$
 $U = \frac{3}{1} = \frac{Ci}{Pi} = \frac{2.5}{5} + \frac{4.5}{15} + \frac{3.5}{20} = 0.5 + 0.3 + 0.175 = 0.975$

- Test2: Time Demand Analysis:

Test 2: Time. Demand Analysis
$$\longrightarrow W_1(t) = e_1 + \frac{1}{k_{-1}} \left\lceil \frac{t}{f_{1k}} \right\rceil e_{1k}$$

1) Tosks order in critical instant (from high Priority to low Priority):

T1, T2, T3

2) Time demand for T1: $W_1(5) = e_1 + 0 = 2.5 + 0 = 2.5$
 $W_1 < D_1 \longrightarrow Task 1$ is schedulable

Time demand for T2: $W_2(15) = e_2 + \left\lceil \frac{15}{f_1} \right\rceil e_1 = \frac{2}{4}.5 + \frac{15}{5} \times 2.5$
 $= 4.5 + 7.5 = 12$
 $W_2 < D_2 \longrightarrow Task 2$ is schedulable

3) Time demand for T3: $W_3(20) = e_3 + \left\lceil \frac{20}{f_1} \right\rceil e_1 + \left\lceil \frac{20}{f_2} \right\rceil e_2$
 $= 3.5 + \left\lceil \frac{20}{5} \right\rceil 2.5 + \left\lceil \frac{20}{15} \right\rceil 4.5$
 $= 3.5 + 4 \times 2.5 + 2 \times 4.5 = 3.5 + 10 + 9$
 $= 22.5$
 $W_3 > D_3 \longrightarrow Task 3$ is not schedulable (Test 2 failed)

 $System$ is not schedulable (Test 2 failed)

- Modeling the system on simso and verifying schedulability:

System:

Result:

Gantt:

- Final comments:

System is not schedulable both analytically and graphically using simso and both results match:

- CPU load on simso (0.985) > Urm (0.779) which is proven in Test 1
- Task 3 on simso misses its deadline which is proven in Test 2