

Dense Captioning on 3D Scenes with Sparse Convolutions and Reinforcement Learning

Daniel-Jordi Regenbrecht, Yifeng Dong

(Submanifold) Sparse Convolution

- Challenge: 3D feature extraction is difficult
- Regular convolutions too inefficient!
- But: 3D data naturally sparse → Sparse Convolution
- Submanifold Sparse Convolution preserves sparsity

Reinforcement Learning for NLP

- Before: Train with Cross-Entropy to predict next word given previous ground truth word
- But: Actually interested in NLP metrics!
- Solution: Use RL with CIDEr + SPICE as reward
- Loss = Reward * log probabilities

Task: 3D Dense Captioning

- Input: RGB-D Point cloud.
- Output: List of objects + caption for each object

Methodology

 First train end-to-end using typical cross-entropy loss for captions. Then fix pipeline and finetune only captioning module.

Results

- Trained 3 Variants: No RL, Warm Start, Cold Start
- Metrics: NLP Metrics thresholded by 0.5 IoU

Model	CIDEr	BLEU-4	ROUGE	Meteor
Baseline (Scan2Cap ¹)	39.08	23.32	44.78	21.97
Ours (NoRL)	39.85	24.24	46.25	22.05
Ours (WS)	45.76	26.72	46.01	22.51
Ours (CS)	0.01	0.00	20.65	10.45

Conclusions

- Submanifold Sparse Convolutions improve object detection accuracy and overall captioning performance
- → SSCs can extract adequate features for captioning
- Reinforcement Learning is feasible for visual captioning and leads to significantly better performance
- It can be sufficient to **finetune** using RL