

一、前言

位运算和进制转换都是非常热门的题目。在 CCF CSP-J/S ,GESP 初赛的时候有选择题,其中大规模的就是位运算和进制转换。根据近 10 年的调查情况,有接近 10% 的题目考察位运算,有接近 30% 的题目考察进制转换。

二、位运算

1. 按位与 &

例题: $(1101101)_2 & (101001)_2 = (0101001)_2$

2. x 进制转十进制的方法

数字1	1	1	0	1	1	0	1
数字2	0	1	0	1	0	0	1
结果	0	1	0	1	0	0	1

技巧: 全1则1, 一0则0

2. 按位或 |

例题: $(1101101)_2 | (101001)_2 = (1101101)_2$

数字2	0	1	0	1	0	0	1
结果	1	1	0	1	1	0	1

技巧: 全0则0, 一1则1

3. 按位异或 ^

例题: $(1101101)_2 \land (101001)_2 = (1000100)_2$

数字1	1	1	0	1	1	0	1
数字2	0	1	0	1	0	0	1
结果	1	0	0	0	1	0	0

技巧: -1则1, 否则为0

4. 按位取反 ~

例题: $(1101101)_2 = (0010010)_2$

3	数字	1	1	0	1	1	0	1
	洁果	0	0	1	0	0	1	0

技巧: 1则0, 否则为1

5. 按位左移 <<

例题: $(1101101)_2 << (2)_{10} = (110110100)_2$

技巧: 左移 n 位就添 n 个 0

6. 按位右移 >>

例题: $(1101101)_2 >> (2)_{10}$ \$ 技巧:右移n位就取前n位

三、进制转换

1. 二进制数计算

例 1: $(101)_2 + (11)_2 = (1000)_2$

【解析】

1+1=2,满2进1,进1写0

0+1+1=2,满2进1,进1写0

1+1=2,满2进1,进1写0

例 2: $(101)_2 - (11)_2 = (10)_2$

【解析】

1-1=0, 写 0

0-1不够减,向前借1当2,2-1=1,写1

2011- CSP-J: 在二进制下,1010110+x=1100011,求x。

【解析】

1 - 0 = 1, 写 1

1-1=0, 写 0

0-1 不够减,向前借 1 当 2 , 2-1=1 , 写 1

再往前,全部都是0。

目录

位运算、进制转换

会员中心 🞁 消息

一、前言

二、位运算

1. 按位与 &

2. 按位或 |

3. 按位异或 ^

4. 按位取反~

5. 按位左移 <<

6. 按位右移 >>

三、进制转换

1. 二进制数计算

2. 十进制转 x 进制

2.1 十进制转二进制

2.2 十进制转八进制

2.3 十进制转十六进制

3. x 进制转十进制

3.1 二进制转十进制

3.2 八进制转十进制

3.2 十六进制转十进制

会员中心 🞁 消息

2.1 十进制转二进制

例 1: $(12)_{10} = (??)_2$

【方法】 不断地用数字除以 2, 将余数逆序输出

【解析】

操作	结果	余数
$12 \div 2$	6	0
6 ÷ 2	3	0
$3 \div 2$	1	1
$1 \div 2$	0	1

所以 $(12)_{10} = (1100)_2$

例 2: $(0.125)_{10} = (??)_2$

【方法】 不断用得到的数字乘 2,结果超 0,那么整数部分变成 0,顺序输出

【解析】

操作	结果	取整
0.125 imes 2	0.25	0
0.25 imes 2	0.5	0
0.25 imes 2	1	1

所以 $(0.125)_{10} = (0.001)_2$

目录

位运算、进制转换

一、前言

二、位运算

1. 按位与 &

2. 按位或 |

3. 按位异或 ^

4. 按位取反~

5. 按位左移 <<

6. 按位右移 >>

三、进制转换

1. 二进制数计算

2. 十进制转 x 进制

2.1 十进制转二进制

2.2 十进制转八进制 2.3 十进制转十六进制

3. x 进制转十进制

3.1 二进制转十进制

3.2 八进制转十进制

3.2 十六进制转十进制

2.2 十进制转八进制

例 1: $(15)_{10} = (??)_8$

【方法】 不断地用数字乘 8, 将余数逆序输出

【解析】

操作	结果	余数
15 ÷ 8	1	7
1 ÷ 8	1	1

所以 $(15)_{10} = (17)_8$

例 2: $(0.625)_{10} = (??)_8$

【方法】 不断地用数字除以 8, 结果超 0, 那么整数部分变成 0, 顺序输出

【解析】

操作	结果	取整
0.625 imes 8	5.0	5

所以 $(0.625)_{10} = (??)_8$

2.3 十进制转十六进制

例题:保留两位小数: $(257.12)_{10} = (??)_{16}$

【方法】分开算

【解析】

257 ÷ 16	16	1
16 ÷ 16	1	0
$1 \div 16$	0	1
==	==	==
0.12 imes 16	1.92	1
0.92 imes 16	14.72	14即 D

3. x 进制转十进制

【方法】 位权展开求和

【解释】 按照每个数位 所处的位置所对应的数值乘当前选中的一个数字, 求这些结果的和

3.1 二进制转十进制

例题: (1011.01)2

$$\begin{array}{l} (1011.01)_2 = (1\times 2^3 + 0\times 2^2 + 1\times 2^1 + 1\times 2^0 + 0\times 2^{-1} + 1\times 2^{-2})_{10} \\ = (8+0+2+1+0+0.25)_{10} \\ = (11.25)_{10} \end{array}$$

♠ CSDN 博客 下载 学习新 社区 ○知道 GitCode InsCode 会议

3.2 八进制转十进制

例题: (17.2)8

方法:

$$\begin{array}{l} (17.2)_8 = (1\times8^1+7\times8^0+2\times8^{-1})_{10} \\ = (8+7+\frac{2}{8})_{10} \\ = (15.25)_{10} \end{array}$$

3.2 十六进制转十进制

例题: (10F.8)16

方法:

方法:
$$(10F.8)_{16} = (1 \times 16^2 + 0 \times 16^1 + 15 \times 16^0 + 8 \times 16^{-1})_{10}$$

$$= (256 + 0 + 15 + \frac{8}{16})_{10}$$

$$= (271.5)_{10}$$

4. x 进制转 y 进制

4.1 八进制和二进制

熟记下表:

八进制	二进制
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

例 1: $(245.206)_8 = (??)_2$

方法:

会员中心 🞁 消息

目录

位运算、进制转换

一、前言

二、位运算

1. 按位与 &

2. 按位或 |

3. 按位异或 ^

4. 按位取反~

5. 按位左移 <<

6. 按位右移 >>

三、进制转换

1. 二进制数计算

2. 十进制转 x 进制

2.1 十进制转二进制

2.2 十进制转八进制

2.3 十进制转十六进制

3. x 进制转十进制

3.1 二进制转十进制

3.2 八进制转十进制

3.2 十六进制转十进制

博客	下载	学习 <mark>新</mark>	社区	○知道	GitCode	InsCode	会议

2	010
4	100
5	101
2	010
0	000
6	110

所以, $(245.206)_8 = (010100101.010000110)_2$

例 2: $(10100101.01000011)_2 = (??)_8$

方法:

第一步,前添零,后添零(整数部分、小数部分的长度添到 3 的倍数) 。

 $(10100101.01000011)_2 = (010100101.010000110)_2$

第二步,对表。

二进制	八进制
010	2
100	4
101	5
010	2
000	0
110	6

4.2 十六进制和二进制

熟记下表:

十六进制	二进制	十六进制	二进制
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

例 1: $(72.2)_{16} = (??)_2$

方法:

会员中心 🞁 消息

目录

位运算、进制转换

一、前言

二、位运算

1. 按位与 &

2. 按位或 |

3. 按位异或 ^

4. 按位取反 ~

5. 按位左移 <<

6. 按位右移 >>

三、进制转换

1. 二进制数计算

2. 十进制转 x 进制

2.1 十进制转二进制

2.2 十进制转八进制

2.3 十进制转十六进制

3. x 进制转十进制

3.1 二进制转十进制

3.2 八进制转十进制

3.2 十六进制转十进制

专栏目录

2 0100 2 0100

所以, $(72.2)_{16} = (1110100.0100)_2$

例 2: $(1110010.001)_2 = (??)_{16}$

方法:

第一步, 前添零, 后添零 (整数部分、小数部分的长度添到 4 的倍数)。

 $(1110010.001)_2 = (01110010.0010)_2$

第二步,对表。

二进制	十六进制
0111	7
0010	2
0010	2

所以, $(1110100.0100)_2 = (72.2)_{16}$

总结

1. 十进制转 x 进制的方法

【整数部分】

- 1. 将 10 进制数不断除以 x, 得到商和余数。
- 2. 如果除到 0 了, 那么将余数逆序输出就是结果。

例如 $(36)_{10} = (??)_4$ 。 $36 \div 4 = 9.....0$

 $9 \div 4 = 2.....1$

 $2 \div 4 = 0.....2$

所以, $(36)_{10} = (210)_4$.

【小数部分】

- 1. 将 10 进制数不断乘x, 得到积和整数部分。
- 2. 如果乘到了整数或者题目要求的精度,那么将整数部分顺序输出就是结果。

注意:

- 1. 结果有的时候要补 "0."。
- 2. 在乘的结果是有整数部分的时候,下次的一个因数就只取小数部分。

例如 $(0.36)_{10} = (??)_5$ 。

 $0.36 \times 5 = 1.8$ 取1

 $0.8 \times 5 = 4.0$ 取4

所以, $(0.36)_{10} = (0.19)_5$ 。

2. x 进制转十进制的方法

- 1. 将给定的 x 进制数从左到右逐位乘对应的位权。得到相应的 10 进制数
- 2. 将各个积求和,得到转换后的

会员中心 🎁

目录

位运算、进制转换

- 一、前言
- 二、位运算
 - 1. 按位与 &
 - 2. 按位或 |
 - 3. 按位异或 ^
 - 4. 按位取反~
 - 5. 按位左移 <<
- - 1. 二进制数计算
 - 2. 十进制转 x 进制
 - 2.1 十进制转二进制
 - 2.2 十进制转八进制
 - 2.3 十进制转十六进制
 - 3. x 进制转十进制

- - 6. 按位右移 >>
- 三、进制转换

 - - 3.1 二进制转十进制
 - 3.2 八进制转十进制
 - 3.2 十六进制转十进制