Consider a system with equations as follows, where we assume that $0 < \varepsilon \ll 1$:

$$\begin{array}{rcl} \dot{x} & = & f(x) - y \\ \dot{y} & = & \varepsilon (g(x) - y) \, . \end{array}$$

Consider these possibilities for the nullclines y = f(x) and y = g(x):

- (i) What can you say about stability of the steady states in each case?
- (ii) Sketch directions of movement in each figure, making sure to show where the vector field is "almost horizontal". Include arrows on all nullclines, too.
- (iii) For each of these, sketch trajectories when starting from the points labeled by the dark circle.

ANS: (i) Since trace is $f'(x_0) - \varepsilon$ and det is $\varepsilon(g'(x_0) - f(x_0))$, we have:

- (a) $f'(x_0) < 0$, $g'(x_0) > 0 \Rightarrow$ trace negative, det positive: stable
- (c) $f'(x_0) > 0$, $g'(x_0) > f'(x_0) \Rightarrow$ trace positive, det positive: repelling (unstable)

To draw all arrows, all we need are these facts, over and under the respective graphs of f and g (as discussed in notes and class):

