Quantum Monte Carlo calculations of energy gaps from first-principles

Ryan J. Hunt (sup. Neil Drummond)

Department of Physics, Lancaster University

We'd like to be able to predictively model the (opto)electronic behaviour of materials. Because this could be *useful*.

- ► Specifically, Δ_{Ex} , Δ_{QP} , and E_B^X in semiconductors.
- Don't define "material heaven", but are a start.
- ► (The blue LED is blue for a reason.)

¹ R. J. Hunt et al., Phys. Rev. B 98 (2018)

The quasiparticle gap, Δ_{QP} , is defined as the difference between the CBM and the VBM:

$$\begin{split} &\Delta_{\text{QP}}(\mathbf{k}_{\text{f}}, \mathbf{k}_{\text{t}}) = \mathcal{E}_{\text{CBM}}(\mathbf{k}_{\text{t}}) - \mathcal{E}_{\text{VBM}}(\mathbf{k}_{\text{f}}) \\ &= \left[E_{\text{N+1}}(\mathbf{k}_{\text{t}}) - E_{\text{N}}(\mathbf{k}_{\text{t}}) \right] - \left[E_{\text{N}}(\mathbf{k}_{\text{f}}) - E_{\text{N-1}}(\mathbf{k}_{\text{f}}) \right] \\ &= E_{\text{N+1}}(\mathbf{k}_{\text{t}}) + E_{\text{N-1}}(\mathbf{k}_{\text{f}}) - E_{\text{N}}(\mathbf{k}_{\text{t}}) - E_{\text{N}}(\mathbf{k}_{\text{f}}), \end{split} \tag{1}$$

The **excitonic gap**, Δ_{Ex} , is defined as the energy difference between an **excited** N-electron state and the ground N-electron state:

$$\Delta_{\mathsf{Ex.}}(\mathbf{k}_{\mathsf{f}}, \mathbf{k}_{\mathsf{t}}) = E_{\mathsf{N}}^{+}(\mathbf{k}_{\mathsf{f}}, \mathbf{k}_{\mathsf{t}}) - E_{\mathsf{N}},\tag{2}$$

Their difference is the **exciton binding** ($\Delta_{QP} \geq \Delta_{Ex.}$, in TD limit).²

 $^{^2}$ The interaction energy of a quasielectron at ${f k}_t$ and a quasihole at ${f k}_f$. Many-body Bloch conditions restrict us!

Variational Principles

Excitonic gaps:

- ▶ In VMC, if $\psi_T(\mathbf{R}; \{\alpha\})$ has some symmetry $\forall \{\alpha\}$, have VP w.r.t. lowest energy state of given symmetry.
- ► In FN-DMC, such symmetry may be **broken** (nodes are not enough!).³

Implications: the practical upshot

- $ightharpoonup \Delta_{QP}$: all ground states. **Effective VP** on QP gap.
- Δ_{Ex.}: vulnerable to variational collapse unless symmetry constraint met. Beware.⁴

³ W. M. C. Foulkes et al., Phys. Rev. B **60** (1999).

⁴ Safe if one constructs determinantal expansion with target symmetry class.

Semiconductors

► Single-particle FS negligible, Coulomb or many-body FS dominant.

Gaps

- $ightharpoonup \Delta_{QP}$: a difference in QP energies...
 - Leading-order FS error in each calc. $\sim v_M$ assoc. with the *quasiparticles* in their host *environment*.⁵
 - Remainder negligible in solids, but appears systematic (charge-quadrupole) in 2D materials (expect from Makov-Payne...⁶).
- $ightharpoonup \Delta_{Ex.}$: energy needed to create exciton

If cell big enough

 \implies FSE \sim lattice of image-excitons.

Else

 \implies FSE \sim uncorrelated QPs (exciton *squeezed*).

⁵ Not the "bare" v_M which goes into the Ewald interaction...

⁶ G. Makov and M. C. Payne, Phys. Rev. B **51** (1995).

► "Excited state QMC" isn't just gaps. Lifetimes, dip. mom., etc.⁷

► Won't say anything about "intraband" excitations. Excitations in metals (HEG, parameterising FLT) studied elsewhere.⁸

M. Danovich et al., Phys. Rev. B 97 (2018), R. N. Barnett et al., Int. J. Quantum Chem. 42 (1992).

⁸ Y. Kwon et al., Phys. Rev. B **50** (1994), N. D. Drummond and R. J. Needs, Phys. Rev. B **87** (2013),

N. D. Drummond and R. J. Needs, Phys. Rev. B 88 (2013).

Neon

Is single-determinant only inherently bad? 1st . . . 8th IP of Ne (MAE):

$$\underbrace{0.83\%}_{\text{SJ-VMC}} \rightarrow \underbrace{0.67\%}_{\text{SJB-VMC}} \rightarrow \underbrace{0.38\%}_{\text{SJ-DMC}} \rightarrow \underbrace{0.34\%}_{\text{SJB-DMC}}$$
(3)

no real trend amongst the individual IPs, save for larger-than-typical error on 7th IP $(3-e^{-1})$.

O₂ dimer

Electronic ground state triplet: $({}^{3}\Sigma_{g}^{-})$. Singlet-triplet splitting around 0.9773 eV.

- ► SD SJ-DMC: 1.62(2) eV, MD-∆ SJ-DMC: 0.20(3) eV.
- Other little tests;
 - \triangleright PP ($\mathcal{O}(0.3 \text{ eV})$ in IP).
 - ▶ Geometry (O(0.5 eV) in IP).

H₂ dimer

► Full-quantum electron/proton DMC calculation. See paper. More to come...?

Silicon

Previous studies looked at Si. SD SJ calculations, claimed good agreement with expt.⁹

- ► Revisit suggests FS effects hinder prior study (O(0.2 eV)).
- Inclusion of backflow $(\mathcal{O}(0.1 \text{ eV}))$ (& re-opt. further $\mathcal{O}(0.1 \text{eV})$) crucial for good QP energies.

Figure 1: Uncorrected SJ-DMC gaps in Si.

▶ $\Delta_{Ex.}$ studied before, **but** cannot directly study $\Gamma \rightarrow 0.85X$ excitation.

⁹ A. J. Williamson et al., Phys. Rev. B 57 (1998)

- FS treatment: Keldysh-screened v_M necessary for QP.
 Keldysh-exponent charge-quadrupole necessary for Ex. ¹⁰
- Backflow doesn't lower gaps (QP or Ex.) by statistically significant amt.
- ▶ Prelim. vibrational corrections: ZP (\geq)-0.07 eV, 300K -0.17 eV.

NB another QMC study on phosphorene exists. Authors there also considered HW BCs (make dominant FS error kinetic, $\mathcal{O}(L^{-2})$). ¹¹ Generally, need to be careful doing this. ¹²

L. V. Keldysh, J. Exp. Theor. Phys. 29 (1979)

¹¹ T. Frank et al., Phys. Rev. X 9 (2019).

¹² N. D. Drummond et al., Phys. Rev. Lett. **95** (2005).

A few of you know of these calculations, Neil (Drummond) performed years ago.

- ► FS treatment: as in phosphorene.
- ▶ Vibrations: ZP correction -0.54 eV (-0.73 eV @ 300K) (similar for $K \to K$ or Γ).

- Systematic 1/N FS effect recovered after subtraction of \tilde{v}_M from Δ_{QP} . Δ_{Ex} , and corrected Δ_{QP} same systematic FS.
- $ightharpoonup E_{\rm B}^{\rm X}({
 m K}
 ightarrow \Gamma) = 1.9(4) {
 m eV}$
- ► $E_{\rm B}^{\rm X}({\rm K} \to {\rm K})$ =1.8(4) eV
- ► (Wirtz et al. GW-BSE: 2.1 eV)

Conclusions \(\lambda \text{11 of 12} \rangle

QMC Specifics

- Non-negligible comp. savings possible: time step bias in a gap is almost imperceptible (definitely is at $\mathcal{O}(0.1 \text{ eV})$). 13
- ► FS effects accuracy limiting.
- ▶ Best possible QP energies (safely) rely on best possible individual wfns.
- ► FN error from excitonic gaps cannot be too high: all else accounted for, we've never done too badly. We have been **super-conservative**.

Gap Generalities

▶ Vibrations: for gaps, an electronic theory alone is not enough.

¹³ Potential further savings are in localization of low-lying states.

Lancaster:

- Neil Drummond
- Marcin Szyniszewski

Manchester:

- ► Vladimir I. Fal'ko
- Viktor Zólyomi

Japan (JAIST):

- Ryo Maezono
- Genki Prayogo

Cambridge:

► Tomeu Monserrat

Thanks for your attention!