## A. <u>Etudier le signe d'une fonction, méthode générale.</u>

#### Méthode. Pour étudier le signe d'une fonction A(x)

- On résout l'inéquation  $A(x) \ge 0$  d'inconnue x.
- Dans l'ensemble solution, la fonction A est positive
- Ailleurs, la fonction A est négative.
- On fait un tableau de signes résumant ces informations.

**Exemple**. Etudier le signe de A(x) = -2x - 6.

$$A(x) \ge 0 \Leftrightarrow -2x - 6 \ge 0 \Leftrightarrow -2x \ge 6 \Leftrightarrow x \le \frac{6}{-2} \Leftrightarrow x \le -3$$

$$Sur ] - \infty; -3] A(x) \ge 0$$

Sur ]-3; 
$$+\infty$$
[  $A(x) < 0$ 

Donc A(x) est positif à gauche de -3, et négatif à droite.

| х    | $-\infty$ |   | -3 |   | +∞ |
|------|-----------|---|----|---|----|
| A(x) |           | + | ф  | _ |    |

#### **Exercice A1.** Etudier le signe des fonctions suivantes :

$$A(x) = 2x + 4$$

$$B(x) = 8x - 5$$

$$C(x) = -3x + 12$$

$$D(x) = -7x$$

### B. <u>Décrire les variations d'une fonction affine.</u>

**Définition**. Une fonction **affine** est de la forme f(x) = ax + b.

(où a et b sont des constantes).

#### Propriétés.

- La courbe d'une fonction affine est une droite.
- Si a > 0 alors f est croissante sur  $\mathbb{R}$ .
- Si a < 0 alors f est décroissante sur  $\mathbb{R}$ .
- Si a=0 alors f est constante sur  $\mathbb{R}$ .



**Exemple.** Déterminer le sens de variations de la fonction f(x) = 4x - 3.

f est une fonction affine avec a = 4 > 0. Donc f est croissante.

#### **Exercice B1.** Donner les variations des fonctions suivantes :

$$A(x) = 2x + 4$$

$$B(x) = 8x - 5$$

$$C(x) = -3x + 12$$

$$D(x) = -7x$$

#### C. <u>Dresser le tableau de signes d'une fonction affine.</u>

#### Méthode 1. Pour étudier le signe d'une fonction affine

• On peut faire une étude de signe générale comme en A.

#### Méthode 2. Pour étudier le signe d'une fonction affine

- On calcule la valeur où A(x) = 0 avec la formule  $-\frac{b}{a}$
- On dresse le tableau de signes :

En 1<sup>ère</sup> ligne on a 
$$|x| - \infty - \frac{b}{a} + \infty$$

En 2<sup>ème</sup> ligne : • Si 
$$a > 0$$
 les signes sont  $|-0 + |$ 

• Si 
$$a < 0$$
 les signes sont  $|+ 0 - |$ 

(Pour se rappeler des signes penser aux variations )

**Exemple**. Etudier le signe de A(x) = -2x - 6.

$$A(x)$$
 s'annule en  $-\frac{b}{a} = -\frac{-6}{-2} = -3$ 



(La pente  $\alpha$  est négative, donc la droite descend en allant vers la droite, donc + d'abord, et - ensuite.)

**Exercice C1.** Etudier le signe des fonctions suivantes :

$$A(x) = -3x + 9$$

$$B(x) = 5x - 15$$

$$C(x) = -10x - 30$$

$$D(x) = \frac{1}{2}x + 4$$

## D. <u>Dresser le tableau de signes d'un produit de fonctions.</u>

Méthode. Pour déterminer le tableau de signes d'une fonction produit :

- On commence par faire la première ligne pour les valeurs de x
- On détermine le tableau de signes de chaque facteur du produit, dans une nouvelle ligne à chaque fois.
- Les valeurs limites pour x sont toutes écrites sur la première ligne, dans l'ordre croissant.
- On prolonge toutes les séparations verticalement avec des pointillés.
- On ajoute une dernière ligne pour représenter la fonction produit.
- On obtient les signes de cette dernière ligne en appliquant la règle des signes aux lignes des facteurs.

**Exemple**. Etudier le signe de h(x) = (3x + 4)(-2x + 6).

| x                | - ∞ |   | $-\frac{4}{3}$ |   | 3 |   | +∞ |
|------------------|-----|---|----------------|---|---|---|----|
| 3 <i>x</i> + 4   |     | - | :<br>0<br>:    | + |   | + |    |
| - 2 <i>x</i> + 6 |     | + |                | + | 0 | _ |    |
| h(x)             |     | _ | 0              | + | 0 | - |    |

**Exercice D1.** Etudier le signe des fonctions suivantes

$$A(x) = (-2x + 4)(-3x - 9)$$

$$B(x) = (2x + 14)(6x - 24)$$

$$C(x) = (5x - 65)(7 - 2x)$$

$$D(x) = (-3x - 72)(-4x - 96)$$

# E. <u>Dresser le tableau de signes d'un quotient de fonctions.</u>

Méthode. Pour déterminer le tableau de signes d'une fonction quotient :

- ullet On commence par faire la première ligne pour les valeurs de x
- On détermine le tableau de signes du numérateur et du dénominateur, dans une nouvelle ligne à chaque fois.
- Les valeurs limites pour x sont toutes écrites sur la première ligne, dans l'ordre croissant.
- On prolonge toutes les séparations verticalement avec des pointillés.
- On ajoute une dernière ligne pour représenter la fonction quotient.
- On obtient les signes de cette dernière ligne en appliquant la règle des signes.

**Exemple.** Etudier le signe de  $k(x) = \frac{3x-5}{2x+7}$ 

| x              | - ∞ | $-\frac{7}{2}$ |   | $\frac{5}{3}$ |   | +∞ |
|----------------|-----|----------------|---|---------------|---|----|
| 3 <i>x</i> – 5 | _   |                | - | 0             | + |    |
| 2 <i>x</i> + 7 | -   | 0              | + |               | + |    |
| k(x)           | +   |                | - | 0             | + |    |

**Exercice E1.** Etudier le signe des fonctions suivantes

$$A(x) = \frac{x+2}{-x}$$

$$B(x) = \frac{2x+3}{6x-4}$$

$$C(x) = \frac{-3x-9}{-2x+7}$$

$$D(x) = \frac{x}{6-3x}$$

## F. Résoudre une inéquation à partir d'un tableau de signes

**Méthode**. Pour résoudre une inéquation dont un côté est zéro, par exemple C(x) > 0

- ullet On établit le tableau de signes de  $\mathcal{C}(x)$
- On se sert des signes de la dernière ligne, pour déterminer le(s) intervalle(s) solutions sur la première ligne.

**Exercice F1.** Résoudre les inéquations suivantes :

$$(A): (9x-1)(4-x) \le 0$$

$$(B): (3x+2)(4x-8) > 0$$

### Etudes de signe - 4

**Méthode**. Pour résoudre une inéquation générale, par exemple A(x) > B(x)

- On commence par poser C(x) = A(x) B(x) de sorte que l'inéquation se ramène au cas C(x) > 0.
- On simplifie C(x) si nécessaire.
- On établit le tableau de signes de  $\mathcal{C}(x)$
- On se sert des signes de la dernière ligne, pour déterminer le(s) intervalle(s) solutions sur la première ligne.

**Exercice F2.** Résoudre les inéquations suivantes :

$$(A): \frac{1}{x} < 3$$

$$(B): \frac{x}{x+2} > 1$$