Дисперсионный анализ, часть 2

Линейные модели...

Марина Варфоломеева, Вадим Хайтов

Кафедра Зоологии беспозвоночных, Биологический факультет, СПбГУ

Многофакторный дисперсионный анализ

- Модель многофакторного дисперсионного анализа
- Взаимодействие факторов
- Несбалансированные данные, типы сумм квадратов
- Многофакторный дисперсионный анализ в R
- ▶ Дисперсионный анализ в матричном виде

Вы сможете

 Проводить многофакторный дисперсионный анализ и интерпретировать его результаты с учетом взаимодействия факторов

Данные

Пример: Удобрение и беспозвоночные

Влияет ли добавление азотных и фосфорных удобрений на беспозвоночных?

Небольшие искуственные субстраты экспонировали в течение разного времени в верхней части сублиторали (Hall et al., 2000).

Зависимая переменная:

▶ richness — Число видов

Факторы:

- ▶ time срок экспозиции (2, 4 и 6 месяцев)
- ▶ treat удобрения (добавляли или нет)

Планировали сделать 5 повторностей для каждого сочетания факторов

Знакомимся с данными

```
fert <- read.csv(file="data/hall.csv")</pre>
str(fert)
 'data.frame': 29 obs. of 3 variables:
  $ TREAT : Factor w/ 2 levels "control","nutrient": 1 1 1 1 1 1 1 1 1 1 1 .
  $ TIME : int 2 2 2 2 2 4 4 4 4 4 ...
   $ RICHNESS: int 5 7 5 7 5 20 18 20 18 17 ...
# Для удобства названия переменных маленькими буквами
colnames(fert) <- tolower(colnames(fert))</pre>
# Время делаем фактором
fert$time <- factor(fert$time)</pre>
levels(fert$time)
```


Пропущенные значения

```
sum(is.na(fert))

# [1] 0

sapply(fert, function(x)sum(is.na(x)))

# treat time richness
```

Нет пропущенных значений

0

Объемы выборок в группах

```
table(fert$time, fert$treat)
```

```
# control nutrient
# 2 5 5
# 4 5 5
# 6 4 5
```

Группы разного размера

Посмотрим на боксплот

```
library(ggplot2)
theme_set(theme_bw(base_size = 18) + theme(legend.key = element_blank()))
gg_rich <- ggplot(data = fert, aes(x = time, y = richness, colour = treat)) +
    geom_boxplot()
gg_rich</pre>
```


Вполне возможно, здесь есть гетерогенность дисперсий.

Преобразовываем данные

На боксплоте видна гетерогенность дисперсий. И это неспроста!

Зависимая переменная richness — это счетная величина. Она подчиняется распределению Пуассона (и чем больше ее среднее значение, тем больше дисперсия).

Правильно было бы воспользоваться обобщенными линейными моделями с Пуассоновским распределением ошибок вместо нормального. Но пока что мы попробуем преобразовать зависимую переменную, чтобы ее распределение стало больше походить на нормальное. Это может помочь, а может и нет.

```
fert$log_rich <- log10(fert$richness + 1)
```


Модель многофакторного дисперсионного анализа

Линейные модели с разным числом дискретных предикторов

Два фактора А и В, двухфакторное взаимодействие

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

▶ Три фактора А, В и С, двухфакторные взаимодействия, трехфакторное взаимодействия

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$

Линейные модели с разным числом дискретных предикторов

Два фактора А и В, двухфакторное взаимодействие

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk}$$

 Три фактора А, В и С, двухфакторные взаимодействия, трехфакторное взаимодействия

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$
 α , β и γ — это группы коэффициентов, кодирующие соответствующие факторы.

Что такое взаимодействие дискретных предикторов

Взаимодействие факторов - когда эффект фактора В разный в зависимости от уровней фактора A и наоборот

На каких рисунках есть взаимодействие факторов?

Что такое взаимодействие дискретных предикторов

Взаимодействие факторов - когда эффект фактора В разный в зависимости от уровней фактора A и наоборот

На каких рисунках есть взаимодействие факторов?

- b, с нет взаимодействия (эффект фактора В одинаковый для групп по фактору А, линии для разных групп по фактору В на графиках расположены параллельно)
- а, d есть взаимодействие (эффект фактора В разный для групп по фактору А, на графиках линии для разных групп по фактору В расположены под наклоном).

- взаимодействие достоверно, и не маскирует главные эффекты
- фактор А влияет
- фактор В влияет

- взаимодействие достоверно и мешает интерпретировать влияние факторов отдельно:
 - для В2 зависимая переменная возрастает с изменением уровня А
 - для В1 зависимая переменная возрастает только на А2, но не различается на А1 и А3
- если смотреть на главные эффекты, можно сделать неправильные выводы:
 - фактор А влияет, группы А2 и А3 не отличаются
 - ▶ фактор В влияет, в группе В2 зависимая переменная больше, чем в В1

- взаимодействие достоверно и мешает интерпретировать влияние факторов отдельно:
 - A1B2, A3B2 и A2B1 не различаются, значение зависимой переменной в этих группах выше, чем в остальных
 - A1B1, A3B1 и A2B2 не различаются
- если смотреть на главные эффекты, можно сделать неправильные выводы:
 - факторы А и В не влияют

Взаимодействие факторов может маскировать главные эффекты

Если есть значимое взаимодействие

- главные эффекты обсуждать не имеет смысла
- пост хок тесты проводятся только для ваимодействия

Двухфакторный дисперсионный анализ в матричном виде

Двухфакторный дисперсионный анализ в матричном виде (contr.treatment)

Уравнение линейной модели для этого примера (в параметризации фиктивных переменных, contr.treatment):

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_5 x_{5i} + \varepsilon_i$$

- ightharpoonup Здесь i=1,...,n, т.е. порядковый номер наблюдения,
- ▶ $x_{1i}, ..., x_{5i}$ переменные-болванки
- ightharpoonup eta_0 видовое богатство в контроле (при экспозиции 2)
- β_1 изменение видового богатства при добавлении удобрений (при экспозиции 2)
- ho_2 и eta_3 изменение видового богатства в контроле при экспозиции 4 и 6 соответственно
- ho_4 и eta_5 изменение видового богатства при добавлении удобрений при экспозиции 4 и 6 соответственно

Остальное все так же как в предыдущем примере с однофакторным анализом.

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Для параметризации эффектов (contr.sum) дискретные предикторы кодируются иначе

В модели эффектов (contr.sum) переменные-болванки будут закодированы при помощи -1, 0 и 1, так, чтобы сумма кодов для возможных состояний одной переменной была равна нулю.

Уровни фактора "удобрения" закодированы с помощью одной переменной:

```
contr.sum(levels(fert$treat))
```

```
# [,1]
# control 1
# nutrient -1
```

Уровни фактора "время экспозиции" — с помощью двух переменных:

```
contr.sum(levels(fert$time))
```

Модельная матрица целиком

```
X_sum <- model.matrix(~ treat*time, fert,
  contrasts = list(treat = "contr.sum", time = "contr.sum"))</pre>
```


Двухфакторный дисперсионный анализ в матричном виде (contr.sum)

Уравнение линейной модели для этого примера (в параметризации фиктивных переменных, contr.sum):

$$y_i = \beta_0 + \beta_1 x_{1i} + \cdots + \beta_5 x_{5i} + \varepsilon_i$$

- ightharpoonup Здесь i=1,...,n, т.е. порядковый номер наблюдения,
- $> x_{1i}, ..., x_{5i}$ переменные-болванки
- lacktriangleright eta_0 средний уровень видового богатства во всех пробах
- eta_1 фактор "тритмент", отклонение тритментов от общего среднего (в модельной матрице опыт закодирован как +1, удобрения -1, (сумма кодов 0))
- $eta_2 + eta_3$ фактор "время", отклонение видового богатства при разной экспозиции от общего среднего
- $m{eta}_4 + eta_5$ взаимодействие, отклонение видового богатства в тритментах при разных экспозициях от общего среднего

Несбалансированные данные, типы сумм квадратов

Несбалансированные данные - когда численности в группах по факторам различаются

Например так,

	A1	A2	A 3
B1	5	5	5
B2	5	4	5

или так,

	A1	A2	Д
B1	3	8	4
B2	4	7	4

Проблемы несбалансированных дизайнов

- Оценки средних в разных группах с разным уровнем точности (Underwood 1997)
- ANOVA менее устойчив к отклонениям от условий применимости (особенно от гомогенности дисперсий) при разных размерах групп (Quinn Keough 2002, section 8.3)
- ▶ Проблемы с рассчетом мощности. Если $\sigma_{\epsilon}^2>0$ и размеры выборок разные, то $\frac{MS_{factor}}{MS_{residuals}}$ не следует F-распределению (Searle et al. 1992).

Проблемы несбалансированных дизайнов

- Оценки средних в разных группах с разным уровнем точности (Underwood 1997)
- ANOVA менее устойчив к отклонениям от условий применимости (особенно от гомогенности дисперсий) при разных размерах групп (Quinn Keough 2002, section 8.3)
- ▶ Проблемы с рассчетом мощности. Если $\sigma_{\epsilon}^2 > 0$ и размеры выборок разные, то $\frac{MS_{factor}}{MS_{residuals}}$ не следует F-распределению (Searle et al. 1992).

- Старайтесь планировать группы равной численности!
- Но если не получилось не страшно:
 - \blacktriangleright Для фикс. эффектов неравные размеры проблема только если значения доверительной вероятности p близки к выбранному критическому уровню значимости α

Если несбалансированные данные, выберите правильный тип сумм квадратов

- SSe и SSab также как в сбалансированных
- ▶ SSa, SSb три способа расчета
- Для сбалансированных дизайнов результаты одинаковы
- Для несбалансированных дизайнов рекомендуют суммы квадратов III типа если есть взаимодействие факторов (Maxwell & Delaney 1990, Milliken, Johnson 1984, Searle 1993, Yandell 1997)

Порядок тестирования гипотез в дисперсионном анализе

"Типы сумм квадратов"	I тип	II тип	III тип
Название	Последовательная	Без учета взаимодействий высоких порядков	Иерархическая
SS	SS(A) SS(B A) SS(AB B, A)	SS(A B) SS(B A) SS(AB B, A)	SS(A B, AB) SS(B A, AB) SS(AB B, A)
Величина эффекта зависит от выборки в группе	Да	Да	Нет
Результат зависит от порядка включения факторов в модель	Да	Нет	Нет
Команда R	aov()	Anova() (пакет car)	Anova() (пакет car)

Многофакторный дисперсионный анализ в R

Дисперсионный анализ со II типом сумм квадратов

fmod2 <- lm(log rich ~ treat * time, data = fert)</pre>

library(car)

Сначала тестируем взаимодействие, затем тестируем факторы в модели без взаимодействия

Задание

Проверьте условия применимости дисперсионного анализа

Решение

```
library(car)
op <- par(mfrow = c(1, 3))
plot(fmod2, which = 4)
plot(fmod2, which = 1)
qqPlot(fmod2)
par(op)</pre>
```


- Выбросов нет
- Дисперсии почти одинаковые. Может быть, в одной из групп больше
- Остатки нормально распределены

Графики остатков от переменных в модели

residualPlots(fmod2)

 По-видимому, с увеличением продолжительности экспозиции дисперсия остатков уменьшается.

Результаты дисперсионного анализа

```
Anova(fmod2, type = 2)
# Anova Table (Type II tests)
# Response: log rich
#
           Sum Sq Df F value Pr(>F)
# treat 0.091 1 28.42 0.000021 ***
# time 2.216 2 344.88 < 2e-16 ***
# treat:time 0.025 2 3.84
                               0.036 *
# Residuals 0.074 23
# Signif. codes:
     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Дисперсионный анализ с III типом сумм квадратов

На случай, если вдруг вам понадобится воспроизвести в R дисперсионный анализ с III типом сумм квадратов.

Тестируем взаимодействие, когда все другие факторы есть в модели. Затем тестируем факторы, когда все другие факторы и взаимодействие есть в модели.

Внимание: при использовании III типа сумм квадратов, нужно обязательно

указывать тип контрастов для факторов (contrasts=list(фактор_1 = contr.sum, фактор_2=contr.sum)).

```
fmod3 <- lm(log_rich ~ treat * time, data = fert, contrasts = list(treat = co
Anova(fmod3)
```

```
# Response: log_rich
# Sum Sq Df F value Pr(>F)
# treat 0.091 1 28.42 0.000021 ***
# time 2.216 2 344.88 < 2e-16 ***
# treat:time 0.025 2 3.84 0.036 *
# Residuals 0.074 23
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Anova Table (Type II tests)

Пост хок тест для взаимодействия факторов

Пост хок тесты в многофакторном дисперсионном анализе

- Поскольку взаимодействие достоверно, факторы отдельно можно не тестировать. Проведем пост хок тест по взаимодействию, чтобы выяснить, какие именно группы различаются
- Если бы взаимодействие было недостоверно, мы бы провели пост хок тест по тем факторам, влияние которых было бы достоверно. Как? См. предыдущую презентацию.

Пост хок тест для взаимодействия факторов

Пост хок тест для взаимодействия факторов делается легче всего "обходным путем"

- 1. Создаем переменную-взаимодействие
- 2. Подбираем модель без свободного члена
- 3. Делаем пост хок тест для этой модели

```
fert$treat_time <- interaction(fert$treat, fert$time)
fit_inter <- lm(log_rich ~ treat_time - 1, data = fert)
library(multcomp)
dat_tukey <- glht(fit_inter, linfct = mcp(treat_time = "Tukey"))
summary(dat_tukey)</pre>
```


Результаты пост хок теста

```
#
#
     Simultaneous Tests for General Linear Hypotheses
#
# Multiple Comparisons of Means: Tukey Contrasts
#
#
# Fit: lm(formula = log rich ~ treat time - 1, data = fert)
# Linear Hypotheses:
                               Estimate Std. Error t value Pr(>|t|)
# nutrient.2 - control.2 == 0
                                 0.0504
                                           0.0358
                                                    1.41
                                                             0.723
# control.4 - control.2 == 0
                                 0.4633
                                           0.0358
                                                    12.93
                                                            <0.001 ***
# nutrient.4 - control.2 == 0
                                 0.6519
                                           0.0358 18.19
                                                            <0.001 ***
                                                            <0.001 ***
\# control.6 - control.2 == 0
                                 0.6031
                                           0.0380
                                                    15.86
# nutrient.6 - control.2 == 0
                                                            <0.001 ***
                                 0.6997
                                           0.0358
                                                    19.52
                                                            <0.001 ***
# control.4 - nutrient.2 == 0
                                 0.4129
                                           0.0358
                                                    11.52
                                                            <0.001 ***
# nutrient.4 - nutrient.2 == 0
                                 0.6015
                                           0.0358
                                                    16.78
# control.6 - nutrient.2 == 0
                                 0.5527
                                           0.0380
                                                    14.54
                                                            <0.001 ***
                                                            <0.001 ***
# nutrient.6 - nutrient.2 == 0
                                 0.6493
                                           0.0358
                                                    18.11
                                                            <0.001 ***
# nutrient.4 - control.4 == 0
                                 0.1885
                                           0.0358 5.26
# control.6 - control.4 == 0
                                                     3.68
                                                             0.014 *
                                 0.1398
                                           0.0380
# nutrient.6 - control.4 == 0
                                                     6.59
                                 0.2364
                                           0.0358
                                                            <0.001 ***
# control.6 - nutrient.4 == 0
                                -0.0488
                                           0.0380
                                                     -1.28
                                                             0.791
# nutrient.6 - nutrient.4 == 0
                                0.0478
                                           0.0358
                                                     1.33
                                                             0.763
# nutrient.6 - control.6 == 0
                                                     2.54
                                 0.0966
                                           0.0380
                                                             0.153
# ---
```

Signif codes: 0 '***' 0 001 '**' 0 05 ' ' 0 1 ' ' 1

Данные для графика при помощи predict()

```
treat time
                  fit lwr
                             upr richness LWR
                                                 UPR
# 1
    control
              2 0.828 0.776 0.881
                                     6.73 5.97 7.60
 2 nutrient 2 0.879 0.826 0.931 7.56 6.70 8.53
# 3
    control 4 1.291 1.239 1.344 19.56 17.34 22.07
 4 nutrient 4 1.480 1.428 1.532 30.20 26.76 34.07
              6 1.431 1.373 1.490
                                    26.99 23.58 30.89
    control
              6 1.528 1.475 1.580
                                    33.71 29.88 38.04
# 6 nutrient
```


Задание:

Создайте MyData вручную:

- предсказанные значения
- стандартные ошибки
- верхнюю и нижнюю границы доверительных интервалов

Решение:

```
MyData <- expand.grid(treat = levels(fert$treat),
                       time = levels(fert$time))
X <- model.matrix(~ treat * time, data = MyData)</pre>
betas <- coef(fmod)</pre>
MyData$fit <- X %*% betas
MyData$se <- sqrt(diaq(X %*% vcov(fmod) %*% t(X)))
MyData$lwr <- MyData$fit - qnorm(0.975) * MyData$se
MyData$upr <- MyData$fit + qnorm(0.975) * MyData$se
# Обратная трансформация
MyData$richness <- 10^MyData$fit
MyData$LWR <- 10^MyData$lwr
MyData$UPR <- 10^MyData$upr
MyData
```

```
treat time fit se lwr upr richness
                                               LWR
                                                     UPR
    control 2 1.240 0.0106 1.219 1.260
                                        17.36 16.55 18.21
# 1
# 2 nutrient 2 1.184 0.0152 1.154 1.213
                                        15.26 14.25 16.35
# 3
    control 4 0.853 0.0179 0.818 0.888 7.13 6.58 7.73
# 4 nutrient
              4 0.828 0.0253 0.778 0.878
                                         6.73
                                               6.00 7.55
# 5 control 6 1.386 0.0179 1.351 1.421
                                        24.31 22.42 26.35
# 6 nutrient
              6 1.291 0.0253 1.242 1.341
                                         19.56 17.45 21.93
```


Графики для результатов: Столбчатый график

Графики для результатов: Линии с точками

Приводим понравившийся график в приличный вид

```
gg_final <- gg_linep + labs(x = "Экспозиция", y = "Число видов") + scale_colour_brewer(name = "", palette = "Dark2", labels = c("Контроль", "Эксперимент"))
gg_final
```


Take home messages

- Многофакторный дисперсионный анализ позволяет оценить взаимодействие факторов. Если оно значимо, то лучше воздержаться от интерпретации их индивидуальных эффектов
- Если численности групп равны получаются одинаковые результаты с использованием I, II, III типы сумм квадратов
- В случае, если численности групп неравны (несбалансированные данные) по разному тестируется значимость факторов (I, II, III типы сумм квадратов)

Дополнительные ресурсы

- Quinn, Keough, 2002, pp. 221-250
- Logan, 2010, pp. 313-359
- ► Sokal, Rohlf, 1995, pp. 321-362
- Zar, 2010, pp. 246-266

