Practice Midterm 1 Answer Key

Practice Midterm 1a

- 1. i. $\forall k \in \mathbb{Z} : \exists \ell \in \mathbb{N} : \ell < k$
 - ii. $\exists k \in \mathbb{Z} : \forall \ell \in \mathbb{N} : \ell > k$
 - iii. false
 - iv. Let k = -1 and choose $\ell \in \mathbb{N}$. We have $\ell > k$.
- 2. i. $\forall x \in \mathbb{R} : \exists y \in \mathbb{R} : (x < y \implies \exists z \in \mathbb{R} : x < z < y)$
 - ii. $\exists x \in \mathbb{R} : \forall y \in \mathbb{R} : (x < y \land \forall z \in \mathbb{R} : (x \ge z \lor z \ge y))$
 - iii. true
 - iv. Let $x \in \mathbb{R}$ and let y = x 1. This completes the proof as it is not the case that x < y.
- 3. i. \forall sets $A, B, C : A \cap B \subseteq C \implies (A \subseteq C \vee B \subseteq C)$
 - ii. \exists sets $A, B, C : A \cap B \subseteq C \land A \not\subseteq C \land B \not\subseteq C$
 - iii. false
 - iv. Let $A = \{1\}$, $B = \{2\}$, and $C = \{3\}$. It follows that $A \cap B = \emptyset \subseteq C$, while $A, B \not\subseteq C$.
- 4. i. \forall nonsurjections $f: A \rightarrow B, g: B \rightarrow C: g \circ f$ nonsurjective
 - ii. \exists nonsurjections $f: A \to B$, $g: B \to C: g \circ f$ surjective
 - iii true
 - iv. Choose $c \in C$ so that $g(b) \neq c$ for all $b \in B$ and observe that $g(f(a)) \neq c$ for all $a \in A$.
- 5. i. \forall bijections $f: A \to B: \exists$ function $g: B \to A: g \circ f = \mathrm{id}_A \land f \circ g = \mathrm{id}_B$
 - ii. \exists bijection $f: A \to B: \forall$ functions $g: B \to A: g \circ f \neq \mathrm{id}_A \vee f \circ g \neq \mathrm{id}_B$
 - iii. true
 - iv. For each $b \in B$, the surjectivity of f provides an element $g(b) \in A$ with f(g(b)) = b, while the injectivity of f ensures this value is unique. In particular, for $a \in A$, we have f(g(f(a))) = f(a), from which follows g(f(a)) = a by the injectivity of f.
- 6. Fix $\varepsilon > 0$, choose $\delta = \sqrt{\varepsilon}$, and let $x \in \mathbb{R}$ with $|x| < \delta$. It follows that $|x^2| < \delta^2 = \varepsilon$.

Practice Midterm 1b

- 1. i. $\forall m, n \in \mathbb{Z} : m \le n \implies m^2 \le n^2$
 - ii. $\exists m, n \in \mathbb{Z} : m \le n \land m^2 > n^2$
 - iii. false
 - iv. If m = -1 and n = 0, then $m^2 = 1 > 0 = n^2$.

- 2. i. $\exists k \in \mathbb{Z} : \forall x \in \mathbb{R} : kx \notin \mathbb{Z}$
 - ii. $\forall k \in \mathbb{Z} : \exists x \in \mathbb{R} : kx \in \mathbb{Z}$
 - iii. false
 - iv. Let $k \in \mathbb{Z}$ and x = 0. We have $kx = 0 \in \mathbb{Z}$.
- 3. i. \forall sets $A, B, C : A \subseteq B \subseteq C \implies (A \cap C \neq \emptyset \implies A \cap B \neq \emptyset)$
 - ii. \exists sets $A, B, C : A \subseteq B \subseteq C \land A \cap C \neq \emptyset \land A \cap B = \emptyset$
 - iii. true
 - iv. Choose $x \in A \cap C$. It follows that $x \in A$ and, as $A \subseteq B$, that $x \in B$. Thus, $x \in A \cap B$.
- 4. i. \forall noninjections $f: A \rightarrow B, g: B \rightarrow C: g \circ f$ noninjective
 - ii. \exists noninjections $f: A \to B, g: B \to C: g \circ f$ injective
 - iii. true
 - iv. Choose distinct $a, a' \in A$ with f(a) = f(a') and observe that g(f(a)) = g(f(a')).
- 5. i. \forall functions $f: A \to B$, $g: B \to C: (g \circ f = \mathrm{id}_A \land f \circ g = \mathrm{id}_A) \Longrightarrow (f \text{ bijective } \land g \text{ bijective})$
 - ii. \exists functions $f: A \to B$, $g: B \to C: (g \circ f = \mathrm{id}_A \land f \circ g = \mathrm{id}_A) \land (f \text{ nonbijective})$
 - iii. true
 - iv. Let $a, a' \in A$ with f(a) = f(a'). From a = g(f(a)) = g(f(a')) = a', we deduce that f is injective. Surjectivity follows as f(g(b)) = b for all $b \in B$. The proof for g is analogous.
- 6. Fix $\varepsilon > 0$ and choose N > 0 so that $f(y) > \frac{1}{\varepsilon}$ for all y > N. Thus, x > N implies $\frac{1}{f(x)} < \varepsilon$.

Practice Midterm 1c

- 1. i. $\forall m, n \in \mathbb{Z} : m < n \implies m^2 < n^2$
 - ii. $\exists m, n \in \mathbb{Z} : m \le n \land m^2 > n^2$
 - iii. false
 - iv. If m = -1 and n = 0, then $m^2 = 1 > 0 = n^2$.
- 2. i. $\forall m, n \in \mathbb{Z} : (m < n \implies \exists x \in \mathbb{R} : xm > n)$
 - ii. $\exists m, n \in \mathbb{Z} : (m < n \land \forall x \in \mathbb{R} : xm < n)$
 - iii. false
 - iv. If m = 0 and n = 1, then $xm = 0 \le n$ for all $x \in \mathbb{R}$.
- 3. i. \forall sets $A, B : (\exists x \in A \cup B) \implies (A \neq \emptyset \lor B \neq \emptyset)$
 - ii. \exists sets $A, B : (\exists x \in A \cup B) \land A = \emptyset \land B = \emptyset$
 - iii. true
 - iv. By the definition of union, we have $x \in A$ or $x \in B$. In the first case, $A \neq \emptyset$; in the second, $B \neq \emptyset$.
- 4. i. \forall sets $A_1, \ldots, A_n : (A_1 \cap \cdots \cap A_n = \emptyset) \implies (\exists i, j \in [0, n] : A_i \cap A_j = \emptyset)$
 - ii. \exists sets $A_1, \ldots, A_n : (A_1 \cap \cdots \cap A_n = \emptyset) \land (\forall i, j \in [0, n] : A_i \cap A_j \neq \emptyset)$
 - iii. false
 - iv. Let $A_1 = \{1, 2\}$, $A_2 = \{2, 3\}$, and $A_3 = \{1, 3\}$. It follows that $A_1 \cap A_2 \cap A_3 = \emptyset$ while $A_1 \cap A_2$, $A_2 \cap A_3$, and $A_1 \cap A_3$ are each nonempty.

- 5. i. \forall surjections $f: A \to B: \forall S \subseteq A: \forall b \in B: \exists s \in S: f(s) = b$
 - ii. \exists surjection $f:A \to B: \exists S \subseteq A: \exists b \in B: \forall s \in S: f(s) \neq b$
 - iii. false
 - iv. Let $f:\{1\} \to \{1\}$ be the identity function, let $S=\varnothing$, and let b=1. It is vacuously true that $f(s) \neq 1$ for all $s \in \varnothing$.
- 6. Fix M>0, choose $\delta=\frac{1}{\sqrt{M}}$, and let $x\in\mathbb{R}$ with $|x|<\delta$. From $|x|<\frac{1}{\sqrt{M}}$ we conclude that $\frac{1}{x^2}=\frac{1}{|x|^2}>M$.