信息安全引论 第一次实验

实验环境

学生自备计算机进行实验操作 具体实验环境如下:

Python 3.8

安装 PyCryptodome 库: pip install pycryptodome

有余力同学可以按照说明自行安装 WSL 或 VirtualBox+Ubuntu 配置实验环境

实验内容

1.密钥加解密实验

1.1 使用不同加密算法进行加密

使用 Python 调用附件中的 Encrypt.py, 对不同加解密算法进行体验。

1.2 学习 ECB 与 CBC 的区别

使用 **Python** 调用附件中的 **EncryptPic.py**,使用不同方式对附件中的 **pic_original.bmp** 进行加密,并观察 ECB 加密的结果与 CBC 加密的结果的区别,说明原因。

1.3 损坏的密文

分别使用 ECB 模式和 CBC 模式对 sample.txt 进行加密,随后修改其密文的第 30 个字节的内容。请对修改后的密文进行解密,观察解密结果并给出相应的分析。

1.4 密文的填充

分别使用 ECB 模式和 CBC 模式对 16 个字节内的不同文本加密,观察密文的长度,分析加密方法是否使用了填充。

2.单向哈希函数与 MAC 实验

2.1 生成消息摘要和 MAC

使用 **Python** 调用附件中的 **Hash.py**,使用三种不同的哈希函数将 **hello.txt** 中的文本转化为固定长度的哈希值

2.2 Keyed Hash 和 HMAC

使用 **Python** 调用附件中的 HMAC.py, 使用三种不同的 HMAC 完成对 hello.txt 的 签名

2.3 单向哈希函数的随机性

使用 **Python** 调用附件中的 Random **.** py, 输入种子, 观察随机数低 3 位的概率分布 **2.4** 单向特性

使用 **Python** 调用附件中的 **Collision.py**, 对哈希函数输出的前导零数量进行碰撞, 观察输出结果

提交要求

信息安全引论》第一次课程实验报告

- ▶ 姓名:
- ▶ 学号:
- ▶ 日期:
- > 实验内容: 截图并回答实验内容中描述的问题
- ▶ 提交作业的文件名采用"学号+姓名+第几次实验作业"