Chapitre 10

Structures algébriques

10 Structures algébriques	1
10.3 Exemple	2
10.6 Exemple	2

10.3 Exemple

Exemple

Soit E=]-1;1[. Pour $(x,y)\in E^2,$ on pose : $x\star y=\frac{x+y}{1+xy}.$ Montrer que l'on définit ainsi une lci dans E.

On fixe $y \in E$. On note $\varphi : [-1;1] \to \mathbb{R}; x \mapsto x \star y = \frac{x+y}{1+xy}$. $\varphi \in \mathcal{D}^1([-1;1],\mathbb{R})$ et :

$$\forall x \in E, \varphi'(x) = \frac{1 + xy - y(x+y)}{(1+xy)^2}$$
$$= \frac{1-y^2}{(1+xy)^2}$$
$$> 0$$

Comme E est un intervalle : φ est strictement croissante sur E et :

$$\forall x \in E, -1 = \varphi(-1) < \varphi(x) < \varphi(1) = 1$$

Donc:

$$\forall (x,y) \in E^2, x \star y \in E$$

10.6 Exemple

Exemple

Soit E =]-1;1[. Pour $(x,y) \in E^2$, on pose $x \star y = \frac{x+y}{1+xy}$. Montrer que \star est associative et commutative.

- -- <u>Commutativité</u> : RAF
- -- <u>Associativité</u> :

Soit $(x, y, z) \in E^3$. On a:

$$x \star (y \star z) = x \star \left(\frac{y+z}{1+yz}\right)$$

$$= \frac{x + \frac{y+z}{1+yz}}{1 + x\frac{y+z}{1+yz}}$$

$$= \frac{x(1+yz) + y + z}{1 + yz + xy + xz}$$

$$= \frac{x + y + z + xyz}{1 + yz + xy + xz}$$

C'est une expression symétrique en x, y et z donc :

$$x \star (y \star z) = (x \star y) \star z$$