《芯片设计自动化与智能优化》 Static Timing Analysis

The slides are partly based on the lecture notes of Prof. David Z. Pan at UT Austin and Prof. Tsung-Wei Huang at UW Madison.

Yibo Lin

Peking University

How Fast A Chip Can Run?

Technology: 5nm

Max. CPU clock: 3.2GHz

L2 cache: 12MB

Transistors: 16 billion

Technology: 32nm

Max. CPU clock: 3.3GHz (3.9GHz w. Turbo)

L2 cache: 15MB

Maximum Clock Frequency

Timing Arc

Timing Arc and Timing Graph

■ Timing arc can be categorized to cell arc or net arc

Timing Arc and Timing Graph

Timing Graph

- Timing graph consists of pins and timing arcs
- Given the delay of each timing arc, we can derive the path delays

Net Delay

- Ignoring interconnects
- Lumped capacitance model
- RC tree model
- RLC tree model
- Transmission line models (RC, LC, RLC)
- RC/RLC network

Interconnect Models as a Capacitor

Ignoring interconnects

Lumped capacitance model

$$V_{\text{OUT}}$$
 V_{OUT}
 $V_{$

$$T = Rd (C_{output} + C_1 + C_2 + C_3)$$
or
$$T = Rd (C_{output} + C_1 + C_2 + C_3 + C_{wire})$$

$$V_{out}^{-1}(0.5V_{DD}) = (ln \ 2) \ T = 0.693 \ T$$

 $V_{out}(T) = 0.632 \ V_{DD}$

Analysis of Simple RC Circuit

- $R \cdot i(t) + v(t) = v_T(t)$
- $i(t) = \frac{d(Cv(t))}{dt} = C \frac{dv(t)}{dt}$

First-order linear differential equation with constant coefficients

Analysis of Simple RC Circuit

Zero-input response (natural response)

$$-RC\frac{dv(t)}{dt} + v(t) = 0 \implies v(t) = Ke^{-\frac{t}{RC}}$$

Step-input response

$$-RC\frac{dv(t)}{dt} + v(t) = v_0 u(t) \rightarrow v(t) = Ke^{-\frac{t}{RC}} + v_0 u(t)$$

- Match initial state
- $-v(0) = 0 \rightarrow K + v_0 u(t) = 0$
- Output response for step-input

$$-v(t) = v_0 \left(1 - e^{-\frac{t}{RC}}\right) u(t)$$

- You can get same result by Laplace Transform
 - Try google it ("RC circuit Laplace Transform")

Delays of Simple RC Circuit

- $v(t) = v_0(1 e^{-t/RC})$
 - Waveform under step input $v_0u(t)$
- $v(t) = 0.5v_0 \rightarrow t = 0.7RC$
 - i.e., delay = 0.7RC (50% delay)
- $v(t) = 0.1v_0 \rightarrow t = 0.1RC$
- $v(t) = 0.9v_0 \rightarrow t = 2.3RC$
 - i.e., $rise\ time = 2.2RC$ (if defined as time from 10% to 90% of Vdd)
- Commonly used metric
 - $-T_D = RC$ (Elmore delay)

Interconnect Models as a Tree

- RC tree
- RLC tree
- Transmission line models (RC, LC, RLC)

Interconnect Models as a Tree

- RC tree
- RLC tree
- Transmission line models (RC, LC, RLC)

Determining Which Model to Use

- Some rule-of-thumbs
- Need to consider C
 - if interconnect C is comparable to C of gates driven
- Need to consider *R*
 - if interconnect R is comparable to R of driver
- Need to consider L
 - if ωL is comparable to R of interconnect

More Interconnects as RC Trees

- Each wire maybe segmented into several edges
- lacktriangle Each edge E modeled as a π -type or L-type circuit
- $ightharpoonup r_E = unit res. imes length(E)$
- $ightharpoonup c_E = unit cap. \times length(E)$

Elmore Delay for RC Tree

Definition

- -H(t) = step response
- -h(t) = impulse response = rate of change of H(t)
- $-T_{50\%}$ = median of h(t)
- Elmore delay [Elmore, 1948]
 - $-T_D = mean \ of \ h(t) = \int_0^\infty h(t) \cdot t \cdot dt$
 - Approximates the median of h(t) by mean
- Computation: $T_D(s_o, s_i) = \sum_{\substack{node \ k \ in \\ src-to-sink \ path}} R_k \cdot Cap(k)$
 - [Rubinstein et al, TCAD 1983]

Basic Input Waveform

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

unit impulse function

$$\delta(t): P_T(t) \quad \text{when } T \to 0$$

$$\delta(t) = \begin{cases} 0 & \text{for } t \neq 0 \\ \text{singular} & \text{for } t = 0 \end{cases}$$

$$\text{s.t. } \forall \zeta > 0, \int_{-\zeta}^{\zeta} \delta(t) dt = 1$$

Elmore Delay for Monotonic Responses

- [Elmore, J. App. Phy. 1948]
- Assumptions
 - Unit step input
 - Monotone output response
 - -v(t): output response (monotone)
 - -v'(t): rate of change of v(t)
- Basic idea
 - Use mean of v'(t) to approximate median of v'(t)

Elmore Delay for Monotonic Responses

- $ightharpoonup T_{50\%}$: median of v'(t), since
 - $-\int_0^{T_{50\%}} v'(t)dt = \int_{T_{50\%}}^{+\infty} v'(t)dt$
 - Half of final value of v(t)
- lacktriangle Elmore delay $T_D = \text{mean of } v'(t)$

$$-T_D = \int_0^\infty t v'(t) dt$$

Elmore Delay for Monotonic Responses

Definition

- -h(t) = impulse response
- $-T_D = \text{mean of } h(t) = \int_0^\infty h(t) \cdot t \cdot dt$

Interpretation

- -H(t) = output of response (step response)
- -h(t) = rate of change of H(t)
- $-T_{50\%}$ = median of h(t)
- Elmore delay approximates the median of h(t) by the mean of h(t)

Elmore Delay of a RC Tree [Rubinstein et al, TCAD'83]

Elmore Delay of a RC Tree [Rubinstein et al, TCAD'83]

We can show that $\lim_{T\to\infty} (1-v_i(T)) \cdot T = 0$

i.e. 1- $v_i(T)$ goes to 0 at a much faster rate than 1/T when $T\rightarrow \infty$

Let
$$f_i(t) = \int_0^t [1 - v_i(x)] dx$$

$$f_{i}(t) = \int_{0}^{t} \sum_{k} R_{ki} C_{k} \frac{dv_{k}(x)}{dx} dx$$

$$= \sum_{k} R_{ki} C_{k} v_{k}(t)$$

$$= \sum_{k} R_{ki} C_{k} - \sum_{k} R_{ki} C_{k} [1 - v_{k}(t)] \qquad (1)$$

$$f_{i}(\infty) = \sum_{k} R_{ki} C_{k}$$

$$T_{D_i} = \lim_{T \to \infty} (1 - v_i(T))T + \int_0^\infty [1 - v_i(t)]dt$$
$$= f_i(\infty) = \sum_k R_{ki} C_k$$

Elmore delay model

$$-R_{S\to A} = R_1(C_1 + C_2 + \dots + C_6) + R_2C_2$$

$$-R_{S\to B} = R_1(C_1 + C_2 + \dots + C_6) + R_3(C_3 + C_4 + C_5 + C_6) + R_4C_4$$

$$-R_{S\to C} = R_1(C_1 + C_2 + \dots + C_6) + R_3(C_3 + C_4 + C_5 + C_6) + R_5(C_5 + C_6) + R_6C_6$$

– Essentially dynamic programming!

Elmore delay model

Compute load for each node

-
$$L_A = C_2$$
, $L_B = C_4$, $L_C = C_6$

$$-L_{M_3} = C_5 + L_C$$

$$-L_{M_2} = C_3 + L_{M_3} + L_B$$

$$-\ L_{M_1} = C_1 + L_{M_2} + L_A$$

Compute delay

$$- D_{S \to M_1} = R_1 L_{M_1}$$

$$- D_{S \to A} = D_{S \to M_1} + D_{M_1 \to A}$$

$$- D_{S \to B} = D_{S \to M_2} + D_{M_2 \to B} = D_{S \to M_1} + D_{M_1 \to M_2} + D_{M_2 \to B} = D_{S \to M_1} + R_3 L_{M_2} + D_{M_2 \to B}$$

$$- D_{S \to C} = D_{S \to M_3} + D_{M_3 \to C} = D_{S \to M_2} + D_{M_2 \to M_3} + D_{M_3 \to C} = D_{S \to M_2} + R_5 L_{M_3} + D_{M_3 \to C}$$

Tree Representation

Top-down traversal

Elmore delay model

– Compute β for each node

-
$$\beta_{M_1} = R_1(C_1d_1 + C_2d_2 + C_3d_3 + C_4d_4 + C_5d_5 + C_6d_6)$$

$$- \beta_A = \beta_{M_1} + R_2 C_2 d_2$$

$$-\beta_{M_2} = \beta_{M_1} + R_3(C_3d_3 + C_4d_4 + C_5d_5 + C_6d_6)$$

$$- \beta_B = \beta_{M_2} + R_4 C_4 d_4$$

Compute output slew

$$- s_A \approx \sqrt{s_S^2 + \hat{s}_A^2} = \sqrt{s_S^2 + 2\beta_A^2 + d_A^2}$$

$$- (\hat{s}_A \approx \sqrt{2\beta_A - d_A^2})$$

Tree Representation

Properties of Elmore Delay

Advantages

- Simple closed-form expression
 - Useful for interconnect optimization
- Upper bound of 50% delay [Gupta et al, 97]
 - Actual delay asymptotically approaches Elmore delay as input signal rise time increases
- High fidelity [Boese et al., 93],[Cong-He,96]
 - Good solutions under Elmore delay are good solutions under actual (SPICE) delay

Disadvantages

- Low accuracy, no waveform information
- Inherently cannot handle inductance effect

Insights on Elmore Delay

- Why Elmore delay is an upper bound of 50% signal delay for RC tree?
 - What is an upper bound
 - Analyze one R and C network
- When is the mean equal to the median

More Accurate Delay Models with Higher Order Moments

- Applicable to general RLC networks
- Used for waveform approximation (e.g. Asymptotic Waveform Evaluation (AWE))
- More accurate than Elmore delay
- Much more computational intensive than Elmore delay model too!

Transfer Function of Interconnect Network

- Each RC/RLC network transforms the input signal into an output signal
- This transformation is characterized by a "transfer function"
- Transfer function of RLC network can be written as a proper
- rational function (i.e., m<n) in frequency domain (recall Laplace?):

$$H(s) = \frac{B_m s^m + B_{m-1} s^{m-1} + \ldots + B_1 s + B_0}{A_n s^n + A_{n-1} s^{n-1} + \ldots + A_1 s + A_0}$$

- Benefit?
 - Once such H(S) is computed, getting output is very easy find INP(s),
 - find H(s) * INP(s), take inverse Laplace transform = output waveform
- Thus, serves like "signature" of an interconnect network

Moments of Impulse Response h(t)

Definition of moments

$$h(t) \xrightarrow{L} H(s)$$

$$e^{x} = \sum_{i=0}^{\infty} \frac{1}{i!} x^{i}$$

$$H(s) = \int_0^\infty h(t)e^{-st}dt = \int_0^\infty h(t)\left(\sum_{i=0}^\infty \frac{1}{i!}(-st)^i\right)dt$$
$$= \sum_{i=0}^\infty s^i \left(\frac{(-1)^i}{i!} \int_0^\infty h(t) t^i dt\right) = \sum_{i=0}^\infty s^i m_i$$

i-th moment:
$$m_i = \frac{(-1)^i}{i!} \int_0^\infty h(t) t^i dt$$

• Note that $-m_1$ gives Elmore delay when h(t) is positive voltage response of impulse input

From previous slides:

Elmore Delay [Elmore, 1948]

•
$$T_D = \text{mean of } h(t) = \int h(t) \cdot t \, dt$$

Significance of Moments?

- Elmore delay is the first "moment" of transfer function.
- ightharpoonup k-th moment is the expression which gets multiplied by s^k (where s is frequency, in Laplace).
- Each moment has information about transfer function.
- For current technology nodes (< 32nm) important to consider m1, m2, m3, and even more!</p>
- Some microprocessor companies use as many as 20 moments.
 - Using infinite moments would give exact waveform.
 - But would spend too much CPU time

Distributed vs Lumped RC Lines: Analysis

Assume Vin is a rising step signal

$$V_{\text{out}}(t) \xrightarrow{R} V_{\text{out}}(t) \xrightarrow{Laplace} V_{\text{out}}(s) \qquad V_{\text{out}}(t) = 1 - e^{-t/RC} \qquad V_{\text{out}}(t) = 1 - e^{-t/0.5RC}$$

$$V_{\text{out}}(s) = \frac{1}{s \cosh \sqrt{sRC}}$$
where $\cosh(x) = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \approx \begin{cases} e^x/2 & x >> 1 \\ 1 + \frac{x^2}{2!} + \frac{x^4}{4!} & x << 1 \end{cases}$

$$V_{\text{out}}(t) = \begin{cases} erfc \sqrt{\frac{RC}{4t}} & t << RC \\ 1 - 1.366e^{-2.5359t/RC} + 0.366e^{-9.4641t/RC} & t >> RC \end{cases}$$

Gauss Error Function

$$\operatorname{erf} z = rac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} \ dt.$$

Distributed vs Lumped RC Lines: Waveform

Distributed vs Lumped RC Lines: Delay

Output potential range	Time elapsed (RC tranmission Line Model)	Time elapsed (L-type RC Network)	Time elapsed (π-type RC Network)
0 to 90%	1.0 RC	2.3 RC	1.15 RC
10% to 90% (rise time)	0.9 RC	2.2 RC	1.1 RC
0 to 63%	0.5 RC	1.0 RC	0.5 RC
0 to 50% (delay)	0.4 RC	0.693 RC	0.347 RC
0 to 10%	0.1 <i>RC</i>	0.105 RC	0.105 RC

Cell Delay

- Transition delay
 - Slew fall/rise
 - Typical Vth1/Vth2: 10%/90%

Cell Delay

- Cell/gate delay
 - Delay fall/rise
 - Typical Vth: 50%

Simple Cell Model

- Want to model a gate by a simple RC circuit.
- Together with RC (or similar) model of interconnects, signal analysis can be done easily.

Effective Resistance

- Model the driver by an effective linear resistance
 - Select an appropriate load C_L
 - Simulate and get 50% delay
 - Match the delay by that of an equivalent RC circuit ($R_{eff}C_L$)

Effective resistance may depend on input slope

Driver Characterization

- Table lookup model
 - Pre-characterize driver delay and transition by
 - input transition time t_t
 - total load capacitance C_L
 - typical entry: $\{t_t, C_L, (t_{delay}, t_{rise/fall})\}$
- Table lookup and interpolation to obtain delay and transition time
- Can be very accurate
- Costly to create and store a multi-dimensional table

Driver Characterization

 \blacktriangleright k-factor equations for delay and output transition [Ousterhout, 1984]

$$-t_{delay} = (k_1 + k_2 \cdot C_L) \cdot t_t + k_3 \cdot C_L^3 + k_4 \cdot C_L + k_5$$

$$-t_{fall} = (k'_1 + k'_2 \cdot C_L) \cdot t_t + k'_3 \cdot C_L^3 + k'_4 \cdot C_L + k'_5$$

- lacktriangle Determine coefficients $k_i \& k'_i$
 - SPICE simulations for different combinations of input transition and load
 - Curve fitting by linear regression of least square fits

Cell Delay

- Typical delay model: nonlinear delay model (NLDM)
 - Delay = f(input slew, output load)
 - Slew = g(input slew, output load)
 - f and g are nonlinear functions, usually a look-up table

Put Cells and Nets Together

- Stage delay = delay from driver input A to loading gate C
- Two cases
 - When interconnect resistance = 0
 - When interconnect = distributed RC

When Interconnect Resistance = 0

- $ightharpoonup C_L = \text{total interconnect capacitance} + \text{sink capacitances}$
- Effective resistance model
 - Stage delay = $R_{eff}C_L$
- Pre-characterized driver model
 - Compute stage delay from table lookup or k-factor equations

When Interconnect = Distributed RC

- Effective resistance model
 - Augment the RC network with the effective driver resistance

Compute stage delay using RC delay models

Distributed RC with Pre-characterized Driver Model

- Compute driver delay and interconnect delay separately
- Compute the effective capacitance seen by driver
 - Difficulty: must capture shielding effect of interconnect resistance
- Solution:
 - Transform interconnect circuit into a π -model
 - Compute effective capacitance from π -model
- TIP: Important! Not many people know how this is done.
 Must know this at least conceptually!

Construction of π -Model

- [O'Brian-Savarino, 89]
- lacktriangle Bottom-up computation of first three moments of driving point admittance y_1, y_2, y_3
 - i.e., moments of response current under voltage impulse at input

$$-C_1 = \frac{y_2^2}{y_3}$$
, $C_2 = y_1 - C_1$, $R = -\frac{y_3^2}{y_2^3}$

Construction of π -Model

- [O'Brian-Savarino, 89]
- For an unbranched uniform distributed RC segment

$$-C_1 = \frac{5C_w}{6}$$
$$-C_2 = \frac{C_w}{6}$$

$$-R = \frac{12R_W}{25}$$

Effective Capacitance Computation

- [Qian-Pullela-Pileggi, 94]
- lacktriangle Transform π -model to effective capacitance model
- Iterative computation of effective cap., $t_{delay} \& t_{rise/fall}$
 - Start with C_{eff} = total interconnect + sink capacitances
 - Get tdelay & trise/fall from pre-characterized driver model

$$-C_{eff} = f(R, C_1, C_2, t_{delay}, t_{rise/fall})$$

Open Problems for Delay Modeling

How to model cell/net delay accurately and efficiently

- If we are given routing of nets
 - Require RC extraction to get accurate RC networks
 - Require SPICE simulation to get accurate delay
 - Timing-consuming, e.g., current source model

- What if we are NOT given the routing
 - Pin locations only
 - E.g., in placement

Now, we have gate and wire delay

- Then what?
 - Need to be tied together to "time" the entire circuit design
- **■** Timing:
 - Static timing analysis (no input vector involved)
 - Dynamic timing very time consuming as you need to worry about input vectors/transitions, false paths, ...

Setup Time

- A setup constraint specifies how much time is necessary for data to be available at the input of a sequential device before the clock edge that captures the data in the device
- This constraint enforces a **maximum** delay on the data path relative to the clock path

CLK

D

How to fix a setup time violation?

Hold Time

- A hold constraint specifies how much time is necessary for data to be stable at the input of a sequential device after the clock edge that captures the data in the device
- This constraint enforces a minimum delay on the data path relative to the clock path

Data path

FF2

Combinational Logic

Clock path

How to fix a hold time violation?

Arrival Time, Required Arrival Time & Slack

- Arrival time (AT)
 - Each node is updated with its parents

Traversal with topological order

$$AT_D = \max(AT_A + 10, AT_B + 15) = 15$$

$$AT_E = AT_D + 5 = 20$$

$$AT_F = AT_E + 10 = 30$$

$$AT_G = AT_F + 5 = 35$$

$$AT_H = AT_C + 10 = 10$$

$$AT_I = \max(AT_G + 10, AT_H + 15) = 45$$

Arrival Time, Required Arrival Time & Slack

- Required arrival time (RAT)
 - Each node is updated by its children

Traversal with topological order

$$RAT_G = RAT_I - 10 = 40$$

 $RAT_H = RAT_I - 15 = 35$
 $RAT_F = RAT_G - 5 = 35$
 $RAT_E = RAT_F - 10 = 25$
 $RAT_D = RAT_E - 5 = 20$
 $RAT_A = RAT_D - 10 = 10$
 $RAT_B = RAT_D - 15 = 5$
 $RAT_C = RAT_H - 10 = 25$

Arrival Time, Required Arrival Time & Slack

Slack

- $-Slack_i = RAT_i AT_i$
- Critical path: $B \rightarrow D \rightarrow E \rightarrow F \rightarrow G \rightarrow I$
- Negative slack means timing violation!

Slack_A =
$$10 - 0 = 10$$

Slack_B = $5 - 0 = 5$
Slack_C = $25 - 0 = 25$
Slack_D = $20 - 15 = 5$
Slack_E = $25 - 20 = 5$
Slack_F = $35 - 30 = 5$
Slack_G = $40 - 35 = 5$
Slack_H = $35 - 10 = 25$
Slack_I = $50 - 45 = 5$

How Does STA Determine the Frequency

- Given delay of timing arcs and setup/hold time of FFs
- Can you compute the maximum clock frequency?

Early/Late Modes

■ In practice, the delay of a timing arc is within range

5ns

Q

>Clk \overline{Q}

0ns/10ns

0ns/5ns

- [early, late] or [min, max]
- Setup analysis w. late mode & hold analysis w. early mode (exception?)

8ns/12ns

5ns/15ns

10ns/20ns

5ns

10ns

5ns

8ns/12ns

8ns/12ns

5ns

Early/Late Modes

- In practice, the delay of a timing arc is within range
 - [early, late] or [min, max]
 - Setup analysis w. late mode & hold analysis w. early mode (exception?)

Early/Late Modes

In practice, the delay of a timing arc is within range

Setup tests

$$AT_{D}^{late} = d_{CLK:P1}^{late} + d_{Clk \to Q} + d_{comb}^{late}$$

$$RAT_{setup} = RAT_{D}^{late} = T + d_{CLK:P2}^{early} - t_{setup}$$

Hold tests

$$AT_{D}^{early} = d_{CLK:P1}^{early} + d_{Clk \to Q} + d_{comb}^{early}$$

$$RAT_{hold} = RAT_{D}^{early} = d_{CLK:P2}^{late} + t_{hold}$$

Graph-based Analysis

Path-based Analysis

- Given the results of graph-based analysis
- Extract top-K critical paths
- Considering common path pessimism removal (CPPR), noise, aging, ...
- Timing-consuming when K is large
 - $-1^{\sim}100000$

- Graph-based analysis is too pessimistic
 - In hold analysis, use P1 as early and P2 as late
 - P1 CANNOT be early and late at the same time

- Remove the pessimism on P1
 - Hold tests: $credit_{test}^{hold} = slack_{post-CPPR}^{hold} slack_{pre-CPPR}^{hold}$
 - $-\operatorname{Setup} \ \operatorname{tests:} \ \operatorname{credit}_{test}^{setup} = \operatorname{slack}_{post-CPPR}^{setup} \operatorname{slack}_{pre-CPPR}^{setup}$

- Remove the pessimism on P1
 - Hold tests: $credit^{hold} = AT_{cp}^{late} AT_{cp}^{early}$
 - Setup tests: $credit^{setup} = \sum_{p \in CP} (d_p^{late} d_p^{early}), CP = \{w_1, B_1, w_2, B_2, w_3\}$

- Remove the pessimism on P1

 - Hold tests: $credit^{hold} = AT_{cp}^{late} AT_{cp}^{early}$ w.o. credit for clock root

 Setup tests: $credit^{setup} = \sum_{p \in CP} (d_p^{late} d_p^{early})$, $CP = \{w_1, B_1, w_2, B_2, w_3\}$

What's the difference? Why different?

w. credit for clock root

Early/late delay of clock root CANCELLED OUT

Exercise

Pre-CPPR Slack

 $slack_{FF3:D}^{late}|_{DP1} \ slack_{FF3:D}^{late}|_{DP2}$

Post-CPPR Slack

 $credit_{setup|DP1}$ $credit_{setup|DP2}$ $slack_{FF3:D}^{late}|_{DP1}^{Post-CPPR}$ $slack_{FF3:D}^{late}|_{DP2}^{Post-CPPR}$

Exercise

$$slack_{FF3:D}^{late} = RAT_{FF3:D}^{late} - AT_{FF3:D}^{late} = T_{CLK} + AT_{FF3:CK}^{early} - t_{FF3}^{setup} - AT_{FF3:D}^{late}$$

$$slack_{FF3:D}^{late}|_{DP1} = T_{CLK} + \left(d_{B1}^{early} + d_{B3}^{early} + d_{B4}^{early}\right) - t_{setup} - \left(d_{OR2:A \to OR2:Y}^{late} + d_{FF1:CK \to FF1:Q}^{late} + d_{B1}^{late} + d_{B2}^{late}\right)$$

$$= 120 + (20 + 10 + 10) - 30 - (50 + 40 + 30 + 25) = -15$$

$$slack_{FF3:D}^{late}|_{DP2} = T_{CLK} + \left(d_{B1}^{early} + d_{B3}^{early} + d_{B4}^{early}\right) - t_{setup} - \left(d_{OR2:B \to OR2:Y}^{late} + d_{FF2:CK \to FF2:Q}^{late} + d_{B1}^{late} + d_{B3}^{late}\right)$$

$$= 120 + (20 + 10 + 10) - 30 - (50 + 40 + 45 + 25) = -30$$

$$credit_{setup}|_{DP1} = (d_{B1}^{late} - d_{B1}^{early}) = (25 - 20) = 5$$

 $credit_{setup}|_{DP2} = (d_{B1}^{late} - d_{B1}^{early}) + (d_{B3}^{late} - d_{B3}^{early})$
 $= (25 - 20) + (45 - 10) = 40$

$$\begin{split} slack_{FF3:D}^{late}|_{DP1}^{Post-CPPR} &= slack_{FF3:D}^{late}|_{DP1} + credit_{setup}|_{DP1} \\ &= (-15+5) = -10 \\ slack_{FF3:D}^{late}|_{DP2}^{Post-CPPR} &= slack_{FF3:D}^{late}|_{DP2} + credit_{setup}|_{DP2} \\ &= (-30+40) = 10 \end{split}$$

Basic Idea in CPPR Algorithms

- Enumerate paths
 - Pairs of launching and capturing FFs
- Compute lowest common ancestor (LCA) for each pair
- Naïve method
 - Find a path from root to FF1:Clk and store it in a vector
 - Find a path from root to FF2:Clk and store it in a vector
 - Traverse both paths till the values in the vectors are the same
 - Time complexity O(n), where n is #nodes in the clock tree
 - Better algorithms exist
- Generate top-k paths

Improved CPPR Algorithms

- Tsung-Wei Huang, P.-C. Wu, and Martin Wong, "<u>UI-Timer: An ultra-fast clock network pessimism removal algorithm</u>", in Proc. ICCAD, pp. 596-599, 2014.
- P.-Y. Lee, I. H.-R. Jiang, C.-R. Li, W.-L. Chiu, and Y.-M. Yang, "iTimerC 2.0: Fast incremental timing and cppr analysis," in Proc. ICCAD. IEEE, 2015, pp. 890–894.
- B. Jin, G. Luo, and W. Zhang, "A fast and accurate approach for common path pessimism removal in static timing analysis," in Proc. ISCAS. IEEE, 2016, pp. 2623–2626.
- C. Peddawad, A. Goel, B. Dheeraj, and N. Chandrachoodan, "<u>iitrace: A memory efficient engine for fast incremental timing analysis and clock pessimism removal</u>," in Proc. ICCAD, 2015, pp. 903–909.
- T. Chung-Hao and M. Wai-Kei, "A fast parallel approach for common path pessimism removal," in Proc. ASPDAC, 2015, pp. 372–377.
- Z. Guo, M. Yang, T. Huang, and Y. Lin, "A Provably Good and Practically Efficient Algorithm for Common Path Pessimism Removal in Large Designs", in IEEE TCAD, 2021

CPPR with FF enumeration [Huang, ICCAD'14]

- Fix a launching FF and enumerate all capturing FFs (or, fix a capturing FF and enum. all launching FFs)
- Construct a Pessimism-Free Graph
 - Offset the arrival time by the CPPR credits in advance

CPPR with FF enumeration [Huang, ICCAD'14]

- Example
- Fix FF3 as capturing FF
- Compute credits:
 - FF1, FF3: 5ps
 - FF2, FF3: 40ps
- Add credits to arrival time
 - FF1.CK: 25 + 30 5 = 50ps
 - FF2.CK: 25 + 45 40 = 30ps
- Propagate the arrival time=> Pessimism-Free Graph

Compute all paths that arrive at FF3, ignoring other destinations; Repeat the process for other capturing FFs.

- #FFs > 10,000. FF enumeration is very slow, but clock tree depth D < 100.
- Solution: identify FF pairs with lowest common ancestors (LCA) of depth d=0,1,...,D-1, and process these FF pairs in a single propagation.
- The clock edges above the fixed depth *d* are recognized as common paths.
- Computation repeated for different d, instead of different launching FFs/capturing FFs. => 1000x fewer iters!

- A depth d fixed. How to find all FF pairs with such LCA depth?
- Solution: Group the FFs by their depth-d+1 ancestors.
- If launching FF and capturing FF come from the same group, they have unhandled pessimism (red tree edge below)

Group Constraint:

Launching FF and capturing FF must come from different groups.

- How to enforce the group constraint when we propagate the arrival times?
- Solution: propagate the arrival time with a tag on its launching FF's group index.

- Example
- Fix depth d=1
 - Only B1 on common path.
 - Arrival Times:FF1.CK: 50ps, FF2.CK: 65ps,FF3.CK:
- Groups
 - Group 1: {FF1}
 - Group 2: {FF2, FF3}
- Data path 1 valid,path 2 invalid (same group)

Generate Top-1 Critical Path

- Working on DAG
 - Setup check: longest path
 - Hold check: shortest path

Generate Top-K Critical Paths

- OpenTimer adopts implicit path representation
 - Each path is represented using O(1) space and time
 - Each path is ranked through a prefix tree & a suffix tree

Summary

- Net delay
 - Elmore delay
- Cell delay
 - Lookup table
- Graph-based analysis
 - Setup time, hold time
 - Arrival time, required arrival time, slack
- Path-based analysis
 - CPPR

Other Topics

- Incremental timing analysis (TAU <u>2015</u> contest)
- Timing macros (TAU <u>2016</u>-<u>2017</u> contest)
- Timing reports (TAU <u>2018</u> contest)
- Timing-driven design optimization (TAU <u>2019</u> contest)
- Current source delay models (TAU <u>2020</u> contest)