AWS Glue and Athena

ETL Workflow Guide using Glue Studio with S3, and Athena

What is AWS Athena?

- A query service that makes it easy to analyze data in Amazon S3
- Serverless
- Easy to Use
- Supports the following data formats
 - Parquet (Optimized Row Columnar)
 - JSON
 - Avro
 - CSV
 - ORC (Optimized Row Columnar)
- Pay per query executed

Data

- Create se bucket named: <your-name>_data_lake
- Upload the CSV file to the S3 bucket
 - https://www.stats.govt.nz/assets/Uploads/Annual-enterprise-survey/Annualenterprise-survey-2019-financial-year-provisional/Download-data/annual-enterprisesurvey-2019-financial-year-provisional-size-bands-csv.csv

What is Glue?

- A serverless, fully-managed, and cloud-optimized ETL service
- Runs on a Apache spark (https://spark.apache.org) environment
- Can be used when we need to clean, organise and format data

Glue Benefits

- Server-less
- Has crawlers which identifies your data, suggest schemas and stores into a central catalog table
- Glue ETL engine automatically generates Python/Scala code
- We can build ETL pipelines
- With the support of Glue catalog, we can directly query S3 data using Athena
- Integrated with wide range of AWS services which helps us to build eventdriven ETL pipelines
- API and AWS CLI support for all Glue operations.
- Scales resources as needed to run your jobs
- Retry tasks and handle errors automatically
- Less hassle and cost effective

Glue Architecture

Glue Components

- Crawlers
 - To populate tables in Glue Catalog
- Classifier
 - Checks if the given file is in pre-defined format or not
 - There are a couple of defined formats in Glue like: CSV, JSON, XML
 - We can also create or custom our own classifier
- Glue data catalog
 - Central repository of the metadata for our all data assets
 - Stores the table definition, location and many different attributes.
- Job authoring
 - Generates ETL code in Python and Scala
- Job execution/ Scheduler
 - Handles dependency, monitoring and alerting of the jobs

AWS Glue Use Cases

- To build data warehouse to organize, cleanse, validate and format data
- To run server-less queries against your Amazon S3 data lake
- To create event driven ETL pipelines
- To understand data assets

Crawler we will use

- There are multiple ways to connect to our data store
 - Crawler is the most popular method among ETL engineers
 - This Crawler will crawl the data from my S3, and based on available data, it will create a table schema.
- AWS Glue can be used to load a csv file from an S3 bucket into Glue, and then run SQL queries on this data in Athena.

Create an IAM role

- Create a role to give permission to different logged-in users.
- Go to <u>https://console.aws.amazon.com/ia m/</u>
- Click on "Roles"
- Click "Create Role" button
- Choose Service "Glue" and click on next.

Create an IAM role

Then give permission to Glue and S3.

- Enter a role name (eg, AWSGlueServiceRole) and give some description about the role then
- Click on the "Create role" button and that's it a new role is created.

Configure AWS Glue Operation

- We are using AWS Glue to organize, cleanse, validate, and format data that is stored in S3.
- Search for "AWS Glue" in the AWS console and click on "crawlers".

Configure AWS Glue Operation

 Click on Add Crawler and enter the crawler name (eg, dataLakeCrawler) and click on the "Next button".

- Select the data store as "S3" and give the path of the data that we have stored in our S3 bucket and click on "Next"
- Now skip adding another data store for now and click on "Next".

Configure AWS Glue Operation

Select the IAM role which we have created before and click "Next"

- Select the "Run on Demand" option and click "Next".
- Click on "Add Database" and give the name "data-lake-db" then, click on "Next".
- Review the AWS Glue crawler configuration and click on "Finish"

Running Query in Athena

- We can now
 - Go to AWS Athena
 - Select the database that we have created above (data-lake-db)
 - Execute our query using standard MySQL
 - SELECT * FROM "data-lake-db"."<your-name>_data_lake" limit 10;

Running Query in Athena

- We got an error stating that we need to provide "Output Location" before executing the query
- Now create an S3 bucket name as "athena-data-lake-output" and store the output of the query in this bucket by clicking on the "set up a query result location in Amazon S3" tab on the Athena management console

Running Query in Athena

• Finally, we can run the same query and analyze the output.

Thanks