Time Series: A First Course with Bootstrap Starter

Contents

Lesson 4-1: Vector Space Geometry			2
Example 4.1.1. Angle Between Two Vectors			2
Inner Product			3
Theorem 4.1.7. Cauchy-Schwarz Inequality			3
Lesson 4-2: The L2 Space			3
The Space \mathbb{L}_2			3
Cauchy-Schwarz			3
Angle Between Random Variables			3
Paradigm 4.2.5. Projection			4
Lesson 4-4: Projection in Hilbert Space			Ę
Projection on a Linear Space			Ę
Projection in \mathbb{L}_2			F
Fact 4.4.2. Orthogonality Principle			
Normal Equations			6
Example of Linear Projection in \mathbb{L}_2			(
Example of Emour 110 Journal in Eq	• •	•	
Lesson 4-5: Time Series Prediction			7
Paradigm 4.5.1. The Conditional Expectation			7
Example 4.5.6. Order One Autoregression			7
One-step ahead prediction			7
Two-step ahead prediction			8
Lesson 4-6: Linear Prediction			ę
Paradigm 4.6.1. Linear Prediction and the Yule-Walker Equations			Ć
One-step Ahead Forecasting			
Example 4.6.4. Order One Moving Average			
		•	1(
Lesson 4-7: Orthonormal Sets			12
Orthonormal Set			12
Examples			12
Closed Linear Span			12
Infinite Projection			12
Example 4.7.8. Order Two Autoregression			12
Linear Prediction of AR(p) Processes			14
Lesson 4-8: Projection of Signals			15
Latent Processes			15
Signal and Noise			15
Example 4.8.3. Latent AR(1) with White Noise			15
Paradigm 4.8.7. Signal Extraction			18
Case of White Noise			18
Example 4.8.8. Extracting AR(1) Signal from White Noise			18
Paradigm 4.8.9. Time Series Interpolation.			19

Lesson 4-1: Vector Space Geometry

- Euclidean geometry and linear algebra are tools for analyzing n-dimensional space.
- We can adapt these tools to studying time series random vectors.

Example 4.1.1. Angle Between Two Vectors

- Let $\underline{x} = [1, \sqrt{3}]$ and y = [1, 1]
- Let θ be the angle between them.
- Their angles with the x-axis are $\pi/3$ and $\pi/4$ respectively. So $\theta = \pi/12$.

```
x <- c(1,1)
y <- c(1,sqrt(3))

par(mar=c(4,4,2,2)+0.1,cex.lab=.8)
plot(NA,xlim=c(-.2,2),ylim=c(-.2,2),xlab="x-axis",ylab="y-axis",yaxt="n",xaxt="n")
axis(1,cex.axis=.5)
axis(2,cex.axis=.5)
x0 <- c(0,0,1,sqrt(3))
y0 <- c(0,0,1,1)
arrows(x0[1],x0[2],x0[3],x0[4],col=1,lwd=2)
arrows(y0[1],y0[2],y0[3],y0[4],col=1,lwd=2)
text(1.1,sqrt(3)-.05,"x",cex=1.5)
text(1.1,.95,"y",cex=1.5)</pre>
```


Inner Product

- Measure a degree of similarity of two vectors via the inner product.
- For vectors $\underline{x}, \underline{y} \in \mathbb{R}^n$, their inner product is

$$\langle \underline{x}, \underline{y} \rangle = \sum_{i=1}^{n} x_i y_i.$$

- Also, $\|\underline{x}\| = \sqrt{\langle \underline{x}, \underline{x} \rangle}$ is the norm of \underline{x} .
- The angle θ between these two vectors satisfies

$$\cos(\theta) = \frac{\langle \underline{x}, \underline{y} \rangle}{\|\underline{x}\| \|\underline{y}\|}.$$

Theorem 4.1.7. Cauchy-Schwarz Inequality

• For \underline{x}, y in a vector space with inner product,

$$|\langle \underline{x}, \underline{y} \rangle| \le ||\underline{x}|| ||\underline{y}||.$$

• Equality occurs if and only if the vectors are a scalar multiple of one another.

Lesson 4-2: The L2 Space

- We use *Hilbert Spaces* to think about time series prediction (i.e., forecasting).
- A Hilbert Space is a vector space with inner product, where Cauchy sequences converge.

The Space \mathbb{L}_2

- For a given probability space, let L₂ denote all random variables with finite second moment.
- Define an inner product on \mathbb{L}_2 as follows:

$$\langle X, Y \rangle = \mathbb{E}[XY]$$

for $X, Y \in \mathbb{L}_2$.

- The norm is $||X|| = \sqrt{\langle X, X \rangle}$.
- \mathbb{L}_2 is a Hilbert Space.

Cauchy-Schwarz

• The Cauchy-Schwarz inequality holds. If the random variables are mean zero, it says that

$$|\mathrm{Cov}[X,Y]| \leq \sqrt{\mathrm{Var}[X]\mathrm{Var}[Y]}.$$

• This is equivalent to $|\operatorname{Corr}[X,Y]| \leq 1$.

Angle Between Random Variables

• Heuristically we can think of θ as the angle between $X, Y \in \mathbb{L}_2$, with

$$\cos(\theta) = \frac{\langle X, Y \rangle}{\|X\| \|Y\|}.$$

- Hence the inner product is zero if $\theta = \pi/2$, i.e., the random variables are orthogonal.
- So when mean zero random variables have zero covariance (or correlation), they are orthogonal. We say they are *collinear* if their correlation is ± 1 .

Paradigm 4.2.5. Projection

- We can project Y onto X by finding a scalar a such that X is orthogonal to Y aX.
- So $0 = \langle X, Y aX \rangle$, or $\langle X, Y \rangle = a ||X||^2$, yielding

$$a = \frac{\langle X, Y \rangle}{\|X\|^2}.$$

• In summary, the projection of Y onto X is

$$\widehat{Y} = \frac{\langle X, Y \rangle}{\|X\|^2} X.$$

• If the random variables are mean zero, this is

$$\widehat{Y} = \frac{\operatorname{Cov}[X, Y]}{\operatorname{Var}[X]} X.$$

```
par(mar=c(4,4,2,2)+0.1,cex.lab=.8)
plot(NA, xlim=c(-.2,2), ylim=c(-.2,2),xlab="x-axis",ylab="y-axis",yaxt="n",xaxt="n")
axis(1,cex.axis=.5)
axis(2,cex.axis=.5)
x0 \leftarrow c(0,0,1,sqrt(3))
y0 \leftarrow c(0,0,1,1)
arrows(x0[1],x0[2],x0[3],x0[4],col=1,lwd=2)
arrows(y0[1],y0[2],y0[3],y0[4],col=1,lwd=2)
text(1.1,sqrt(3)-.05,"x",cex=1.5)
text(1.1, .95, "y", cex=1.5)
x \leftarrow c(1, sqrt(3))
y < -c(1,1)
dot \leftarrow sum(x*y)
proj \leftarrow (dot/sum(x^2))*x
z0 <- c(0,0,proj[1],proj[2])
#arrows(z0[1],z0[2],z0[3],z0[4],col=1,lwd=2)
w0 <- c(1,1,proj[1],proj[2])
arrows(w0[1],w0[2],w0[3],w0[4],lwd=2,lty=2)
text(.35,.45,expression(theta),cex=1.2,col=1)
```


Lesson 4-4: Projection in Hilbert Space

• We further examine projections in Hilbert Spaces.

Projection on a Linear Space

- We can project one vector onto a linear space spanned by many vectors.
- Let $\mathcal{M} = \operatorname{span}\{\underline{x}_1, \dots, \underline{x}_p\}$, which is all linear combinations of the p spanning vectors.
- To project y onto \mathcal{M} , we seek a linear combination \hat{y} of the p spanning vectors, such that $y \hat{y}$ is orthogonal to \mathcal{M} , i.e., to each \underline{x}_i .

Projection in \mathbb{L}_2

- Suppose we want to project $Y \in \mathbb{L}_2$ onto a subspace $\mathcal{M} \subset \mathbb{L}_2$.
- Suppose the subspace is the span of random variables X₁,..., X_p.
 Let Ŷ ∈ M be the projection. Then Y − Ŷ is orthogonal to each X_i.

Fact 4.4.2. Orthogonality Principle

- Consider projection in \mathbb{L}_2 . The distance to the projection \widehat{Y} is $||Y \widehat{Y}||$.
- The orthogonality principle states that the distance is minimized if and only if $Y \hat{Y}$ is orthogonal to all elements of \mathcal{M} .
- So the projection onto a subspace actually minimizes the norm distance to that space.

Normal Equations

- The condition for projection says that $0 = \langle Y \hat{Y}, X_i \rangle$ for $1 \le i \le p$.
- These p equations are called the normal equations, because they ensure that the error vector $\epsilon = Y \widehat{Y}$ is orthogonal (i.e., normal) to the subspace.
- So we have to solve $\langle Y, X_i \rangle = \langle \widehat{Y}, X_i \rangle$ for $1 \leq i \leq p$.
- The distance from Y to the subspace is $\|\epsilon\|$.
- In \mathbb{L}_2 , $\|\epsilon\|^2 = \mathbb{E}[(Y \widehat{Y})^2]$ is the Mean Squared Error (MSE).

Example of Linear Projection in \mathbb{L}_2

- We simulate bivariate Gaussian random variables with correlation ρ and variance 1.
- We can do this by using

$$\left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ \rho & \sqrt{1-\rho^2} \end{array}\right] \left[\begin{array}{cc} 1 & \rho \\ 0 & \sqrt{1-\rho^2} \end{array}\right].$$

- From prior results, the projection of the second variable onto the first is ρ times the first random variable.
- We compute the projection, and plot.

```
rho <- .9
mat <- matrix(c(1,rho,0,sqrt(1-rho^2)),2,2)
z <- rnorm(2000)
x <- mat %*% matrix(z,2,1000)
plot(x=x[1,],y=x[2,],xlab="x-axis",ylab="y-axis",axes=TRUE,lwd=2)
proj <- rho*x[1,]
points(x=x[1,],y=proj,col=2)</pre>
```


- The projection MSE is $||X_2 \rho X_1||^2 = 1 \rho^2$.
- We compute the sample variance of the projection errors, and compare to the projection MSE.

```
print(var(proj-x[2,]))
```

```
## [1] 0.1817236
print(1 - rho^2)
```

[1] 0.19

Lesson 4-5: Time Series Prediction

• We apply projection techniques to predict (or forecast) time series.

Paradigm 4.5.1. The Conditional Expectation

- Let $\{X_t\}$ be a weakly stationary time series in \mathbb{L}_2 .
- Suppose for some t > n we wish to predict X_t from X_1, \ldots, X_n . The predictor is denoted \widehat{X}_t .
- We want the prediction error to have minimal mean square:

$$\mathbb{E}[(\widehat{X}_t - X_t)^2]$$

is the Mean Squared Error (MSE).

• Theorem 4.5.2. The minimal MSE predictor is the conditional expectation:

$$\widehat{X}_t = \mathbb{E}[X_t | X_1, \dots, X_n].$$

Example 4.5.6. Order One Autoregression

- Let $\{X_t\}$ be an AR(1), i.e., $X_t = \phi X_{t-1} + Z_t$ with $\{Z_t\}$ i.i.d. $(0, \sigma^2)$.
- Assume Z_t is independent of X_s for all s < t.

One-step ahead prediction

- Consider predicting one-step ahead: we want \widehat{X}_{n+1} , given X_1, \ldots, X_n .
- We calculate the conditional expectation:

$$\mathbf{E}[X_{n+1}|X_1,...,X_n] = \mathbf{E}[\phi X_n + Z_{n+1}|X_1,...,X_n]$$

= $\phi \mathbf{E}[X_n|X_1,...,X_n] + \mathbf{E}[Z_{n+1}|X_1,...,X_n]$
= $\phi X_n + 0$.

This uses linearity of conditional expectation, and independence of Z_{n+1} from X_1, \ldots, X_n .

• The prediction error is then

$$X_{n+1} - \widehat{X}_{n+1} = X_{n+1} - \phi X_n = Z_{n+1},$$

so that the MSE is $\mathbb{E}[Z_{n+1}^2] = \sigma^2$.

```
set.seed(123)
n <- 100
z <- rnorm(n)
x <- rep(0,n)
xhat <- rep(0,n)
phi <- .9
x0 <- 0</pre>
```

```
x[1] <- x0 + z[1]
for(t in 2:n)
{
    x[t] <- phi*x[t-1] + z[t]
    xhat[t] <- phi*x[t-1]
}
plot(ts(x),xlab="Time",ylab="")
lines(ts(xhat),col=2)</pre>
```


Two-step ahead prediction

- Consider predicting two steps ahead: we want \widehat{X}_{n+2} , given X_1, \ldots, X_n .
- Note that by applying the AR(1) recursion twice we can write

$$X_{n+2} = \phi^2 X_n + \phi Z_{n+1} + Z_{n+2}.$$

• Hence the conditional expectation is

$$\mathbf{E}[X_{n+2}|X_1,\dots,X_n] = \mathbf{E}[\phi^2 X_n + \phi Z_{n+1} + Z_{n+2}|X_1,\dots,X_n]$$

$$= \phi^2 \mathbf{E}[X_n|X_1,\dots,X_n] + \phi \mathbf{E}[Z_{n+1}|X_1,\dots,X_n] + \mathbf{E}[Z_{n+2}|X_1,\dots,X_n]$$

$$= \phi^2 X_n + 0.$$

• The prediction error is

$$X_{n+2} - \widehat{X}_{n+2} = \phi^2 X_n + \phi Z_{n+1} + Z_{n+2} - \phi^2 X_n = \phi Z_{n+1} + Z_{n+2}.$$

Hence the prediction MSE is $(1 + \phi^2)\sigma^2$.

```
set.seed(123)
n <- 100
z <- rnorm(n)
x <- rep(0,n)
xhat <- rep(0,n)
phi <- .9
x0 <- 0
x[1] <- x0 + z[1]
x[2] <- phi*x[1] + z[2]
for(t in 3:n)
{
    x[t] <- phi*x[t-1] + z[t]
    xhat[t] <- phi^2*x[t-2]
}
plot(ts(x),xlab="Time",ylab="")
lines(ts(xhat),col=2)</pre>
```


Lesson 4-6: Linear Prediction

• Now we focus on linear prediction. This is the same as the conditional expectation when the distribution is Gaussian, or in the case of a linear process (like the AR(1)).

Paradigm 4.6.1. Linear Prediction and the Yule-Walker Equations

• Let $\{X_t\}$ be a mean zero weakly stationary time series in \mathbb{L}_2 .

- Say \mathcal{M} is the linear span of the random variables X_1, \ldots, X_n .
- Suppose we wish to predict Y from X_1, \ldots, X_n . Then the minimal MSE linear predictor \widehat{Y} is obtained by projection onto \mathcal{M} .
- The orthogonality principle says that

$$0 = \langle Y - \widehat{Y}, X_t \rangle$$

for t = 1, ..., n. These are the normal equations. They can be rewritten as

$$\langle \widehat{Y}, X_t \rangle = \langle Y, X_t \rangle.$$

One-step Ahead Forecasting

- Suppose $Y = X_{n+1}$.
- Because $\widehat{X}_{n+1} \in \mathcal{M}$, there exist constants ϕ_1, \ldots, ϕ_n such that

$$\widehat{X}_{n+1} = \phi_1 X_n + \ldots + \phi_n X_1 = \sum_{i=1}^n \phi_i X_{n+1-i}.$$

• Then the normal equations imply that for any $1 \le t \le n$,

$$\langle \widehat{X}_{n+1}, X_t \rangle = \langle X_{n+1}, X_t \rangle$$
$$\sum_{j=1}^{n} \phi_j \langle X_{n+1-j}, X_t \rangle = \langle X_{n+1}, X_t \rangle$$
$$\sum_{j=1}^{n} \phi_j \gamma(n+1-j-t) = \gamma(n+1-t).$$

• This is now linear algebra! Let $\underline{\phi}$ and $\underline{\gamma}_n$ be vectors

$$\underline{\phi} = \left[\begin{array}{c} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_n \end{array} \right] \qquad \underline{\gamma}_n = \left[\begin{array}{c} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(n) \end{array} \right].$$

And recall that Γ_n is the *n*-dimensional Toeplitz matrix of autocovariances.

• Now our normal equations are

$$\Gamma_n \phi = \gamma_n$$
.

These are called the *Yule-Walker* equations (i.e., normal equations associated with one-step ahead prediction).

• The solution is

$$\underline{\phi} = \Gamma_n^{-1} \, \underline{\gamma}_n.$$

• The prediction MSE can be derived:

$$\|X_{n+1} - \widehat{X}_{n+1}\|^2 = \gamma(0) - \underline{\gamma}'_n \Gamma_n^{-1} \underline{\gamma}_n.$$

Example 4.6.4. Order One Moving Average

- Consider an MA(1) process $\{X_t\}$ given by $X_t = Z_t + \theta Z_{t-1}$, for a white noise $\{Z_t\}$ with variance σ^2 .
- Suppose we want to forecast one-step ahead with sample size n=2.
- The Yule-Walker equations are

$$\underline{\phi} = \left[\begin{array}{cc} (1+\theta^2)\sigma^2 & \theta\sigma^2 \\ \theta\sigma^2 & (1+\theta^2)\sigma^2 \end{array} \right]^{-1} \left[\begin{array}{c} \theta\sigma^2 \\ 0 \end{array} \right] = \left(1+\theta^2+\theta^4\right)^{-1} \left[\begin{array}{c} (1+\theta^2)\theta \\ -\theta^2 \end{array} \right].$$

• This means that the forecast is

$$\widehat{X}_3 = \frac{(1+\theta^2)\theta}{1+\theta^2+\theta^4} X_2 + \frac{-\theta^2}{1+\theta^2+\theta^4} X_1.$$

• The prediction MSE is

$$\sigma^2\frac{(1+\theta^2)(1+\theta^4)}{1+\theta^2+\theta^4}.$$

• This formula also applies if we want to predict X_{n+1} only using X_n and X_{n-1} .

Lesson 4-7: Orthonormal Sets

- We extend our discussion to sub-spaces that are linear combinations of infinitely many random variables.
- This is so we can project onto the past of a time series (for forecasting), or onto an entire time series (for imputation or signal extraction).

Orthonormal Set

• A collection $\{e_t\}$ where the index set can be \mathbb{Z} , has the property that

$$\langle e_s, e_t \rangle = \begin{cases} 1 & s = t, \\ 0 & s \neq t \end{cases}$$

Examples

- The unit vectors in Euclidean space are orthonormal.
- In \mathbb{L}_2 , a collection of i.i.d. random variables with variance 1 are orthonormal.

Closed Linear Span

- We can take the span of a countable collection of random variables, by considering linear combinations.
- If we also include the limits of sequences of such, it is called the closed linear span, denoted

$$\overline{\mathrm{sp}}\{e_t\}$$

• If the basis of the span is finite (i.e., finitely many variables generate the space), then closure is automatic.

Infinite Projection

- Now we can project onto an infinite set.
- For forecasting, we project X_{n+1} onto $\overline{sp}\{X_t, t \leq n\}$. This is the orthonormal set of random variables X_t for any $t \leq n$, and then we take the closure.
- For index generation, we project one variable Y_t onto an entire time series $\overline{sp}\{X_t, t \in \mathbb{Z}\}$.
- For imputation, where the value at time t is missing (an NA), we project X_t onto $\overline{sp}\{X_s, s \neq t\}$.
- In each case, the unknown target (either a forecast, index, missing value, etc.) is projected onto the information we do have.

Example 4.7.8. Order Two Autoregression

• Consider an order 2 autoregressive (or AR(2)) process:

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + Z_t$$

with $Z_t \sim i.i.d.(0, \sigma^2)$. Suppose the recursion is intialized such that the process is stationary.

- We see that Z_t is independent of X_s for all s < t.
- The one-step ahead forecast based on the infinite past is denoted $\widehat{X}_{n+1} = P_{\overline{\text{SD}}\{X_t, t \le n\}}[X_{n+1}]$.
- Its formula is

$$\widehat{X}_{n+1} = \phi_1 X_n + \phi_2 X_{n-1},$$

which is established by verifying the normal equations:

$$\langle \widehat{X}_{n+1} - X_{n+1}, X_t \rangle = \langle Z_{n+1}, X_t \rangle = 0$$

for $t \leq n$.

• We look at an example with $\phi_1 = .7$ and $\phi_2 = .2$, and $\sigma^2 = 1$.

```
set.seed(123)
n <- 100
phi <-c(.7,.2)
sigma <- 1
Phi <- rbind(phi,c(1,0))
Sigma <- rbind(c(sigma^2,0),c(0,0))</pre>
Gam.0 <- solve(diag(4) - Phi %x% Phi,matrix(Sigma,ncol=1))</pre>
Gam.0 <- matrix(Gam.0,nrow=2)</pre>
Gam.half <- t(chol(Gam.0))</pre>
x0 <- Gam.half %*% rnorm(2)</pre>
z <- rnorm(n)
xvec <- matrix(0,nrow=2,ncol=n)</pre>
xhat \leftarrow rep(0,n)
xvec[,1] \leftarrow x0
for(t in 2:n)
{
  xvec[,t] \leftarrow Phi %*% xvec[,t-1] + c(z[t],0)
  xhat[t] <- sum(phi*xvec[,t-1])</pre>
plot(ts(xvec[1,]),xlab="Time",ylab="")
lines(ts(xhat),col=2)
```


Linear Prediction of AR(p) Processes

• The AR(p) process has the equation

$$X_t = \sum_{j=1}^{p} \phi_j X_{t-j} + Z_t,$$

with $Z_t \sim i.i.d.(0, \sigma^2)$. Suppose the recursion is initialized such that the process is stationary.

- The one-step ahead forecast based on the infinite past is denoted $\widehat{X}_{n+1} = P_{\overline{SD}\{X_t, t \leq n\}}[X_{n+1}]$.
- Its formula is

$$\widehat{X}_{n+1} = \sum_{j=1}^{p} \phi_j X_{t-j},$$

which is established by verifying the normal equations:

$$\langle \widehat{X}_{n+1} - X_{n+1}, X_t \rangle = \langle Z_{n+1}, X_t \rangle = 0$$

for $t \leq n$.

• We look at a p=3 example with $\phi_1=.7, \phi_2=.2$, and $\phi_3=-.2$, and $\sigma^2=1$.

```
set.seed(123)
n <- 100
phi <- c(.7,.2,-.2)
sigma <- 1
Phi <- rbind(phi,c(1,0,0),c(0,1,0))
Mod(eigen(Phi)$values)</pre>
```

[1] 0.6324555 0.6324555 0.5000000

```
Sigma <- rbind(c(sigma^2,0,0),c(0,0,0),c(0,0,0))
Gam.0 <- solve(diag(9) - Phi %x% Phi,matrix(Sigma,ncol=1))
Gam.0 <- matrix(Gam.0,nrow=3)
Gam.half <- t(chol(Gam.0))
x0 <- Gam.half %*% rnorm(3)
z <- rnorm(n)
xvec <- matrix(0,nrow=3,ncol=n)
xhat <- rep(0,n)
xvec[,1] <- x0
for(t in 2:n)
{
    xvec[,t] <- Phi %*% xvec[,t-1] + c(z[t],0,0)
    xhat[t] <- sum(phi*xvec[,t-1])
}
plot(ts(xvec[1,]),xlab="Time",ylab="")
lines(ts(xhat),col=2)</pre>
```


Lesson 4-8: Projection of Signals

• We investigate signal extraction through the device of *latent processes*.

Latent Processes

- Suppose $\{W_t\}$ and $\{Z_t\}$ are independent of each other.
- Suppose $X_t = W_t + Z_t$. They are both called latent processes of $\{X_t\}$.

Signal and Noise

- The dynamics of $\{X_t\}$ are a combination of those of the latent processes.
- The autocovariance functions sum up, due to independence:

$$\gamma_X = \gamma_W + \gamma_Z.$$

• Perhaps we are interested in $\{Z_t\}$, and $\{W_t\}$ is viewed as irrelevant. Then Z_t is signal and W_t is noise.

Example 4.8.3. Latent AR(1) with White Noise

- Suppose $\{Z_t\}$ is an AR(1) and $\{W_t\}$ is white noise of variance σ^2 .
- We suppose the autoregressive parameter is ϕ and the error variance is $q\sigma^2$, for some q>0.
- Recall that $\gamma_Z(h) = \phi^{|h|} (1 \phi^2)^{-1} q \sigma^2$.
- Then

$$\gamma_X(0) = (1 - \phi^2)^{-1} q \sigma^2 + \sigma^2$$
$$\gamma_X(h) = \phi^{|h|} (1 - \phi^2)^{-1} q \sigma^2 \quad h \neq 0.$$

- We can view the impact of q on the autocovariance, with $\phi = .7$ and $\sigma = 1$
- First we examine the case with q = 1. Second, we decrease to q = .1, which makes the noise relatively stronger, thus dampening the serial correlation.

```
snr <- 1
phi <- .7
gamma \leftarrow snr*phi^{seq(0,20)}/(1-phi^2)
gamma[1] <- gamma[1] + 1
par(oma=c(2,0,0,0), mar=c(2,4,2,2)+0.1, mfrow=c(2,1), cex.lab=.8)
plot(ts(gamma),xlab="",ylab="Acf",yaxt="n",xaxt="n",type="h")
axis(1,cex.axis=.5)
axis(2,cex.axis=.5)
snr <- .1
phi <- .7
gamma <- snr*phi^{seq(0,20)}/(1-phi^2)
gamma[1] <- gamma[1] + 1
plot(ts(gamma),xlab="",ylab="Acf",yaxt="n",xaxt="n",type="h")
axis(1,cex.axis=.5)
axis(2,cex.axis=.5)
mtext(text="Time", side=1, line=1, outer=TRUE)
```


- We also examine a sample path, first with q = 1 and second with q = .1.
- We see that the second simulation has less structure, and more resembles white noise.

```
snr <- 1
w <- rnorm(100)
e <- rnorm(100,sd=sqrt(snr))</pre>
```

```
z \leftarrow rep(0,100)
phi <- .7
z0 <- rnorm(1,sd=sqrt(snr))/sqrt(1-phi^2)</pre>
z[1] \leftarrow phi*z0 + e[1]
for(t in 2:100) { z[t] <- phi*z[t-1] + e[t] }</pre>
x <- z + w
par(oma=c(2,0,0,0), mar=c(2,4,2,2)+0.1, mfrow=c(2,1), cex.lab=.8)
plot(ts(x),xlab="",ylab="",yaxt="n",xaxt="n")
axis(1,cex.axis=.5)
axis(2,cex.axis=.5)
snr <- .1
w <- rnorm(100)
e <- rnorm(100,sd=sqrt(snr))
z \leftarrow rep(0,100)
phi <- .7
z0 <- rnorm(1,sd=sqrt(snr))/sqrt(1-phi^2)</pre>
z[1] \leftarrow phi*z0 + e[1]
for(t in 2:100) { z[t] <- phi*z[t-1] + e[t] }</pre>
x <- z + w
plot(ts(x),xlab="",ylab="",yaxt="n",xaxt="n")
axis(1,cex.axis=.5)
axis(2,cex.axis=.5)
mtext(text="Time",side=1,line=1,outer=TRUE)
```


Time

Paradigm 4.8.7. Signal Extraction

- Suppose we wish to know the signal, and get rid of the noise. This topic is called *signal extraction*.
- We can approach this as a projection problem: we project Z_t (for any time t) onto $\{X_t\}$. So we seek $\widehat{Z}_t = P_{\overline{\mathrm{SD}}\{X_t\}}[Z_t]$.
- This \hat{Z}_t is a linear combination of the $\{X_t\}$ variables, and can be written as a linear filter of $\{X_t\}$.
- The finite-sample signal extraction problem is to find $\widehat{Z}_t = P_{\overline{\text{SD}}\{X_1,...,X_n\}}[Z_t]$, for any $1 \leq t \leq n$.

Case of White Noise

- Suppose that $\{W_t\}$ is white noise (with variance σ^2), and that the signal $\{Z_t\}$ is stationary.
- Then the normal equations yield

$$\widehat{W}_t = P_{\overline{\mathrm{sp}}\{X_1,\dots,X_n\}}[W_t] = \sigma^2 \underline{e}_t' \Gamma_n^{-1} \underline{X},$$

where \underline{e}_t is the tth unit vector and Γ_n is the Toeplitz covariance matrix of $\underline{X} = [X_1, \dots, X_n]'$.

• Then we find

$$\widehat{Z}_t = X_t - \widehat{W}_t,$$

which follows from $\widehat{Z}_t + \widehat{W}_t = X_t$ (by the linearity of the projection).

Example 4.8.8. Extracting AR(1) Signal from White Noise

- We apply the signal extraction formulas to Example 4.8.3.
- The signal extraction is the dotted line, and the simulation is the solid grey line. The true latent signal is red.
- The first plot has q=1, the second has q=1. The former has a more accurate signal extraction.

```
w <- rnorm(100)
e <- rnorm(100,sd=sqrt(snr))
z \leftarrow rep(0,100)
phi <- .7
z0 <- rnorm(1,sd=sqrt(snr))/sqrt(1-phi^2)</pre>
z[1] \leftarrow phi*z0 + e[1]
for(t in 2:100) { z[t] \leftarrow phi*z[t-1] + e[t] }
x \leftarrow z + w
gamma \leftarrow snr*phi^{seq(0,99)}/(1-phi^2)
gamma[1] <- gamma[1] + 1
zhat <- x - solve(toeplitz(gamma),x)</pre>
par(oma=c(2,0,0,0), mar=c(2,4,2,2)+0.1, mfrow=c(2,1), cex.lab=.8)
plot(ts(x),xlab="",ylab="",col=gray(.8),lwd=2,yaxt="n",xaxt="n")
axis(1,cex.axis=.5)
axis(2,cex.axis=.5)
lines(ts(zhat),lty=2)
lines(ts(z),col=2)
snr <- .1
w \leftarrow rnorm(100)
e <- rnorm(100,sd=sqrt(snr))
z \leftarrow rep(0,100)
phi <- .7
z0 <- rnorm(1,sd=sqrt(snr))/sqrt(1-phi^2)</pre>
z[1] \leftarrow phi*z0 + e[1]
for(t in 2:100) { z[t] \leftarrow phi*z[t-1] + e[t] }
x \leftarrow z + w
```

```
gamma <- snr*phi^{seq(0,99)}/(1-phi^2)
gamma[1] <- gamma[1] + 1
zhat <- x - solve(toeplitz(gamma),x)
plot(ts(x),xlab="",ylab="",col=gray(.8),lwd=2,yaxt="n",xaxt="n")
axis(1,cex.axis=.5)
axis(2,cex.axis=.5)
lines(ts(zhat),lty=2)
lines(ts(z),col=2)
mtext(text="Time",side=1,line=1,outer=TRUE)</pre>
```


Paradigm 4.8.9. Time Series Interpolation.

- Suppose that we have a single time series with an NA at time t.
- We can approach as a projection problem: we project X_t onto $\{X_s, s \neq t\}$. So we seek $\widehat{X}_t = P_{\overline{\mathrm{Sp}}\{X_s, s \neq t\}}[X_t]$.
- This \hat{X}_t is a linear combination of the $\{X_s, s \neq t\}$ variables, and can be written as a linear filter of them
- The finite-sample interpolation problem is to find $\hat{X}_t = P_{\overline{\text{Sp}}\{X_1,...,X_{t-1},X_{t+1},...,X_n\}}[X_t].$
- Then the normal equations yield

$$\hat{X}_t = \underline{v}' \Gamma_{n-1}^{-1} [X_1, \dots, X_{t-1}, X_{t+1}, \dots, X_n]',$$

where $\underline{v} = [\gamma(t-1), \dots, \gamma(1), \gamma(-1), \dots, \gamma(t-n)]'$ and Γ_{n-1} is the Toeplitz covariance matrix of $[X_1, \dots, X_{t-1}, X_{t+1}, \dots, X_n]'$.

• This is verified by checking the normal equations.

Example: Interpolation for an AR(1) Process.

• Consider an AR(1) process. We claim that

$$\widehat{X}_t = \frac{\phi}{1 + \phi^2} (X_{t+1} + X_{t-1}),$$

which is verified through checking the normal equations.

- We apply the missing value interpolation to an AR(1) simulation.
- The red dot is the imputation, and the green square is the true value (which we treat as missing).

```
phi <- .9
e <- rnorm(100,sd=1)
x <- rep(0,100)
x0 <- rnorm(1,sd=1)/sqrt(1-phi^2)
x[1] <- phi*x0 + e[1]
for(t in 2:100) { x[t] <- phi*x[t-1] + e[t] }
x.val <- x[50]
x[50] <- NA
xhat <- (phi/(1+phi^2))*(x[49]+x[51])
plot(ts(x),ylab="")
points(ts(c(rep(NA,49),xhat,rep(NA,50))),col=2,pch=19)
points(ts(c(rep(NA,49),x.val,rep(NA,50))),col=3,pch=22)</pre>
```

