- Создать проект lab7_z3
- Микросхема: **xc7a100tcsg324-2**
- Создать на языке C++ функцию (N=128, din_type **double**, dout_type **double**) исходный код аналогичен lab7_z3
- Создать тест lab7_z3_test.cpp исходный код аналогичен lab7_z1

Исследование:

- Solution1
 - clock period 10; clock_uncertainty =1
 - Выключите конвейеризацию для цикла Mult
 - Для переменной temp_mult задайте директиву BIND_OP

- о осуществите синтез.
- о Посмотрите на отчет он должен быть похож на приведенный ниже

Сколько модулей умножения (DSP) требуется для реализации?

Какой период тактового сигнала (оцениваемый)?

о Посмотрите на Schedule Viewer – должен быть похож на приведенный ниже

Сколько тактов занимает выполнение операции умножения?

- Solution1_1; 1_2; 1_3; 1_4
 - о Создайте 4 решения с разными значениями параметра impl директивы BIND_OP

- Сравните эти решения и решение Solution1. Выберите то, которое имеет наименьшее, отличное от 0, значение использованных модулейDSP.
- Solution 2 (на основе решения выбранного на предыдущем шаге)
 - clock period 10; clock_uncertainty =1
 - Задайте максимально возможный Unroll Factor цикла MULT (чтобы использовались только DSP)
 - Используйте Array Partition (или Array Reshape) нужного типа и фактора, обеспечивающего балансировку производительности умножителей и чтения/записи данных (использование одно портовой или двух портовой памяти – на ваш выбор).
 - о **Включите** конвейеризацию для цикла Mult
 - Для переменной temp_mult задайте директиву BIND_OP параметр решения, выбранного на предыдущем шаге.
 - о осуществите синтез.
 - о Посмотрите на отчет

Сколько модулей умножения (DSP) требуется для реализации?

Какой период тактового сигнала (оцениваемый)?

Сколько тактов занимает выполнение операции умножения?

o Посмотрите на Schedule Viewer

Сколько операций считывания данных осуществляется параллельно?

Сколько операций умножения осуществляется параллельно?

Сколько операций записи данных осуществляется параллельно?

Осуществляется ли конвейеризация? Какой II?

- Запустите CoSimulation,
 - Посмотрите и зафиксируйте Wave Viewer подготовьтесь дать пояснения.

Измерение времени выполнения на ПК

- Используются исходные коды функции lab7 z3.cpp (**solution 2**)
- На базе теста lab7_z3_test.cpp следует создать отдельный, модернизированный, тест lab7_z3_testSW.cpp (сохранить в папке C:\Xilinx_trn\HLS2023\lab7_z3\source) для проверки времени выполнения функции lab7_z3 на ПК. Исходные данные входных массивов должны быть псевдослучайными из всего диапазона double
- Следует осуществить компиляцию модернизированного теста и запускать его как отдельное приложение
 - Следует сделать две реализации кода
 - Для одного ядра (потока) базовая реализация
 - Для N ядер/потоков (где N число ядер/потоков в вашем ПК) например так: https://stackoverflow.com/questions/414714/compiling-with-g-using-multiple-cores
- Следует провести измерение времени выполнения синтезируемой функции на Вашем ПК **для каждого** из случаев
 - Для одного ядра
 - N = 8192
 - N = 16384
 - N = 32768
 - N = 65 536
 - Для N ядер
 - N = 8192
 - N = 16384
 - N = 32768
 - N = 65 536

C

• среди 32 запусков (каждого варианта) необходимо найти и зафиксировать медиану значения времени выполнения.

Измерение времени выполнения на аппаратной реализации

- Используются исходные коды функции lab7_z3.cpp (solution2)
- следует осуществить синтез для случаев
 - o N = 8192
 - o N = 16384
 - o N = 32768
 - o N = 65 536

и для каждого случая зафиксировать: II, Estimated period, время выполнения = II * Estimated period

Сравнительный анализ

- Составить xls таблицу и построить графики
 - о по оси X случаи
 - N = 8192
 - N = 16384
 - N = 32768
 - N = 65 536
 - о по У время выполнения функции на ПК (медиана времени выполнения) для двух вариантов реализации и аппаратной реализации

Отчет, должен включать

- о Задание
- Раздел с описанием исходного кода функции
- о Раздел с описанием теста
- о Раздел с описание созданного командного файла
- о Раздел с описанием результатов сравнения решений (со снимками экрана)
- Раздел с анализом результатов
 - Анализ и выбор оптимального (критерий максимальная производительность) решения
- о Раздел с описанием модернизированного теста
 - Следует указать компилятор, используемый для компиляции.
- o Результаты измерения **времени выполнения на ПК**
 - Следует указать: тип процессора, базовую частоту работы, максимальную частоту работы, объем ОЗУ.
- о Результаты измерения времени выполнения на аппаратной реализации
- Раздел с анализом результатов
- о Выводы

Архив должен включать всю рабочую папку проекта (включая модернизированный тест, xls таблицу и **скомпилированные приложения – папка ..\source**), отчет