Bordism Homology and Cohomology

Paul Jin Robaschik

Geboren am 25. Juni 2004 in Köln

1. Mai 2025

Bachelorarbeit Mathematik

Betreuer: Prof. Dr. Markus Hausmann

Zweitgutachterin: Dr. Elizabeth Tatum

MATHEMATISCHES INSTITUT

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT DER RHEINISCHEN FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

Contents

0	Introduction	2
1		2

Introduction 0

1

Definition 1.1. If X, Y are spaces with base points x_0, y_0 , we denote by [X, Y] the set of homotopy. This is the beginning of classes of maps $(X, x_0) \rightarrow (Y, y_0)$. We have the suspension sequence

$$[X,Y] \to [SX,SY] \to \cdots \to [S^nX,S^nY] \to \cdots$$

the first definition in Atiyah, I don't understand it yet... Let's look in Bröcker now.

in which all terms after the first two are abelian groups, the maps being then group homomorphisms. Moreover we have an isomorphism

$$[S^n X, S^n Y] \to [S^{n+1} X, S^{n+1} Y]$$

if $n + 2(connectivity \ of \ Y) > \dim X$...

[1, p.1]

Definition 1.2 (Manifold). When we talk about a manifold M^n , we will mean an n-dimensional, Beginning of Bröcker, paracompact, smooth manifold (with or without boundary). Its boundary ∂M^n of M^n is a manifold chapter 1, Difftopo. From without boundary and has dimension n-1. A map $f: M \to \overline{N}$ between two manifolds will always here, many things are be, unless specified otherwise, smooth.

known from AnaGeo

[2, p.1]

Definition 1.3 (Tangent space). The tangent vectors of a manifold Mⁿ form an n-dimensional smooth vector bundle $\pi:TM^n\to M^n$, the tangent bundle of M^n . The fibre T_xM of TM over $x \in M$ is isomorphism to \mathbb{R}^n .

[2, p.1]

Definition 1.4 (Differential). A map on manifolds $F: M \to N$ induces a smooth linear map Bröcker writes Tf, but df:TM o TN on tangent bundles, the differential of f. So the tangent bundle is a functor I'll stick to $C\^{o}t\acute{e}$'s between the categories Man^{∞} and $\mathrm{vectbun}\overline{\mathrm{d}}$

notation.

[2, p.1]

Definition 1.5 (Immersion). A map $f: M \to N$ is called an <u>immersion</u>, if df is injective on every fibre, i.e. $T_p f$ is injective for every $p \in M$. If an immersion is a homeomorphism onto its image, it is called an embedding.

[2, p.1]

We know by Whitney, that a manifold of dimension n can be embedded in $\mathbb{R}^{\geq 2n+1}$. Precisely:

Theorem 1.6 (Weak Whitney's embedding theorem). Let $\varepsilon: M^n \to \mathbb{R}$ be a strictly positive map, g is an ε -approximation and $f: M^n \to \mathbb{R}^p$ a map for p > 2n, which is an embedding in a neighbourhood of a closed subset of f, if the distance of $A \subset M^n$. Then there is a ε -approximation g of f, with $g_{|_A} = f_{|_A}$, which is an embedding. In f(x) and g(x) is smaller particular, there is an embedding $g: M^n \to \mathbb{R}^p$, such that $g(M^n)$ is closed in \mathbb{R}^p

than $\varepsilon(x)$ (given a metric). f only needs to be continuous

[2, p.1]

Proof. Unclear, if we need a proof here, we could copy one from AnaGeo...

□ Still needed

Theorem 1.7. Let $f: M \to N$ continuous, and on a closed subset $A \subset M$ smooth. Let $\varepsilon: M \to \mathbb{R}$ be strictly positive and N given a metric. Then there is a smooth ε -approximation $g:M\to N$ of $f, with g_{|_{A}} = f_{|_{A}}.$

[2, p.2]

Proof. To be proven.

☐ Still needed

Definition 1.8 (Normal bundle). Let now $f: M \to \mathbb{R}^p$ be an embedding. For f, there is a E is the normal space, we <u>normal bundle</u> $\nu_f : E(\nu_f) \to M$ of f.

Considering M as a subset of \mathbb{R}^p by f, the fibre of ν_f over $x \in M$ consists of the vectors $v \in \mathbb{R}^p$, probably suffices to be a Riemannian manifold which (w.r.t. the standard scalar product on \mathbb{R}^p), that are in x orthogonal to M.

need f for the scalar product on \mathbb{R}^p . It

The Whitney sum $\nu_f \oplus \pi$ of ν_f and the tangent bundle is trivial of dimension p over M, as Definition needed! it is the restriction of the trivial bundle $T\mathbb{R}$ on M^n ,

 $\nu_f \oplus \pi_M \cong \operatorname{pr}_1 : M^n \times \mathbb{R}^p \to M^n$

Theorem 1.9. The inclusion

$$(\nu_f: E(\nu_f) \to M) \to (\operatorname{pr}_1: M \times \mathbb{R}^p \to M)$$

 $is\ a\ linear\ embedding\ of\ smooth\ vector\ bundles.$

[2, p.2]

Proof. missing.

References

- [1] M. F. Atiyah. "Bordism and Cobordism". In: 200 (1960).
- [2] Theodor Bröcker and Tammo tom Dieck. *Kobordismentheorie*. Ed. by A. Dold and B. Eckmann. Springer, 1970.