備註:附件的 Excel 檔案會自動產生隨機變數·故每次執行結果會有差異·但回歸表不會自動更新。以下報告是選許其中一組隨機變數的結果來撰寫。

1.

(a) 透過加入 error 項 $\epsilon_t \sim N(0,0.3^2)$ 來製造 disturbance,將 series 表示成下式:

$$Y_t = 5\cos(t) - 0.8t + 50 + \epsilon_t \text{ for } t = 1, 2, ..., 24$$

(b) 由圖中可見在 24 期中,共有 4 個 season 存在,故每季(season)的期數為 6 期 (periods)。接著進行 de-seasonalize.將各期的 demand 每 6 期計算一個平均 值,得到 $\bar{D}_{3.5} \setminus \bar{D}_{4.5} \setminus \bar{D}_{5.5} ... \bar{D}_{21.5}$,再將 $\bar{D}_{3.5} \cap \bar{D}_{4.5}$ 取平均得 \bar{D}_4 ,依此類推,計算 $\bar{D}_4 \setminus \bar{D}_5 ... \bar{D}_{21}$,結果如下表。

D_1	D_2	D_3	D_4	D_5	D_6	D_7	D_8	D_9	D_{10}	D_{11}	D ₁₂	•••
		Ī.	$ar{D}_{3.5}$ $ar{D}_{4}$	$ar{D}_{4.5}$ $ar{D}_{5}$	5.5	•••						

Period, t	Demand D_t	De-seasonalized \overline{D}_t
1	51.97	
2	46.26	
3	43.01	
4	43.66	46.81
5	47.76	46.21
6	50.06	45.54

7	48.19	44.63				
8	42.89	43.54				
9	38.34	42.47				
10	37.45	41.63				
11	40.81	41.00				
12	44.26	40.34				
13	43.90	39.55				
14	39.59	38.63				
15	33.79	37.68				
16	32.46	36.90				
17	34.79	36.26				
18	38.84	35.67				
19	39.97	34.97				
20	35.81	34.07				
21	30.45	33.06				
22	27.49					
23	28.88					
24	32.63					

接著利用 de-seasonalized series 與期數 t 建立回歸模型 $\bar{D}_t = L + T_t$

摘要輸出								
迴歸	統計							
R的倍數	0.9988868							
R 平方	0.9977748							
調整的R平	0.9976357							
標準誤	0.210261							
觀察值個數	18							
ANOVA								
	自由度	SS	MS	F	顯著值			
迴歸	1	317.172425	317.1724253	7174.273	1.18E-22			
殘差	16	0.70735515	0.044209697					
總和	17	317.87978						
	係數	標準誤	t 統計	P-值	下限 95%	上限 95%	下限 95.0%	上限 95.0%
L	50.055304	0.12928112	387.1818649	3.3E-33	49.78124	50.3293681	49.78124	50.32937
T	-0.809097	0.00955239	-84.70107889	1.18E-22	-0.82935	-0.7888473	-0.82935	-0.78885

得回歸模型 $\widehat{D_t} = 50.06 - 0.81t$

(c) 利用 $S_t = \frac{D_t}{\widehat{D_t}}$ 以計算 seasonality factors

Period, t	Demand, D_t	Deseasonalized \overline{D}_t	Deseasonalized (regression) $\widehat{\overline{D}_t}$	Seasonality S_t
1	51.97		49.25	1.06
2	46.26		48.44	0.95

3	43.01		47.63	0.90
4	43.66	46.81	46.82	0.93
5	47.76	46.21	46.01	1.04
6	50.06	45.54	45.20	1.11
7	48.19	44.63	44.39	1.09
8	42.89	43.54	43.58	0.98
9	38.34	42.47	42.77	0.90
10	37.45	41.63	41.96	0.89
11	40.81	41.00	41.16	0.99
12	44.26	40.34	40.35	1.10
13	43.90	39.55	39.54	1.11
14	39.59	38.63	38.73	1.02
15	33.79	37.68	37.92	0.89
16	32.46	36.90	37.11	0.87
17	34.79	36.26	36.30	0.96
18	38.84	35.67	35.49	1.09
19	39.97	34.97	34.68	1.15
20	35.81	34.07	33.87	1.06
21	30.45	33.06	33.06	0.92
22	27.49		32.26	0.85
23	28.88		31.45	0.92
24	32.63		30.64	1.07

$$\overline{S}_{1} = \frac{1.06 + 1.09 + 1.11 + 1.15}{4} \approx 1.10$$

$$\overline{S}_{2} = \frac{0.95 + 0.98 + 1.02 + 1.06}{4} \approx 1.00$$

$$\overline{S}_{3} = \frac{0.90 + 0.90 + 0.89 + 0.92}{4} \approx 0.90$$

$$\overline{S}_{4} = \frac{0.93 + 0.89 + 0.87 + 0.85}{4} \approx 0.89$$

$$\overline{S}_{5} = \frac{1.04 + 0.99 + 0.96 + 0.92}{4} \approx 0.98$$

$$\overline{S}_{6} = \frac{1.11 + 1.10 + 1.09 + 1.07}{4} \approx 1.09$$

(d) Final model: $F_{t+k} = [50.06 - (t+k) \times 0.81] \times S_{t+k}$

t	D_t	$\overline{D_t}$	$\widehat{ar{D}_t}$	S_t	F_t	E_t	MSEt	MAPEt
1	51.97		49.25	1.06	54.22	2.25	5.05	4.32

2	46.26		48.44	0.95	48.66	2.40	5.41	4.76
3	43.01		47.63	0.90	43.00	-0.01	3.61	3.18
4	43.66	46.81	46.82	0.93	41.57	-2.09	3.80	3.58
5	47.76	46.21	46.01	1.04	44.93	-2.83	4.64	4.05
6	50.06	45.54	45.20	1.11	49.31	-0.75	3.96	3.62
7	48.19	44.63	44.39	1.09	48.87	0.68	3.46	3.31
8	42.89	43.54	43.58	0.98	43.78	0.89	3.13	3.16
9	38.34	42.47	42.77	0.90	38.62	0.28	2.79	2.89
10	37.45	41.63	41.96	0.89	37.26	-0.18	2.51	2.65
11	40.81	41.00	41.16	0.99	40.19	-0.61	2.32	2.54
12	44.26	40.34	40.35	1.10	44.02	-0.24	2.13	2.38
13	43.90	39.55	39.54	1.11	43.53	-0.37	1.98	2.26
14	39.59	38.63	38.73	1.02	38.91	-0.68	1.87	2.22
15	33.79	37.68	37.92	0.89	34.24	0.45	1.76	2.16
16	32.46	36.90	37.11	0.87	32.95	0.49	1.66	2.12
17	34.79	36.26	36.30	0.96	35.45	0.66	1.59	2.11
18	38.84	35.67	35.49	1.09	38.72	-0.12	1.50	2.01
19	39.97	34.97	34.68	1.15	38.18	-1.79	1.59	2.14
20	35.81	34.07	33.87	1.06	34.03	-1.78	1.67	2.28
21	30.45	33.06	33.06	0.92	29.85	-0.60	1.61	2.26
22	27.49		32.26	0.85	28.64	1.15	1.60	2.35
23	28.88		31.45	0.92	30.71	1.83	1.67	2.52
24	32.63		30.64	1.07	33.42	0.79	1.63	2.52
25	34.77		29.83		32.84	-1.94	1.71	2.64
26	32.26		29.02		29.15	-3.11	2.02	2.91
27	27.30		28.21		25.47	-1.83	2.07	3.05
28	22.95		27.40		24.33	1.38	2.06	3.16
29	23.35		26.59		25.97	2.62	2.23	3.43
30	26.78		25.78		28.13	1.35	2.21	3.49

Note: t 為期數 \cdot D_t 為第 t 期的實際需求 \cdot $\overline{D_t}$ 為 de-seasonalized demand \cdot $\widehat{D_t}$ 為 L 與 T 回歸模型的預測值 \cdot S_t 為 seasonality \cdot F_t 為需求預測值 \cdot E_t 為誤差項 \cdot 而 MSE $_t$ 與 MAPE $_t$ 則為評估標準 \circ

其中
$$F_{t+k} = [50.06 - (t+k) \times 0.81] \times S_{t+k}$$
 · 如 $F_1 = [50.06 - 1 \times 0.81] \times \overline{S_1} \approx 54.22$; $E_t = F_t - D_t$ · 如 $E_1 = F_1 - D_1 = 54.22 - 51.97 = 2.25$; $MSE_t = \frac{1}{t} \sum_{i=1}^{t} (E_i)^2$ · 故 $MSE_1 = \frac{1}{1} \times (2.25)^2 \approx 5.05$; $MAPE_t = \frac{100\%}{t} \sum_{i=1}^{t} \frac{|E_i|}{|D_i|}$

為評估預測模型的表現,計算 MSE_{24} 與 $MAPE_{24}$ 。詳細操作請見 excel file。

$$MSE_{24} = \frac{1}{24} \times [(2.25)^2 + (2.40)^2 + \dots + (0.79)^2] = 1.63$$

$$MAPE_{24} = \frac{100\%}{24} \times \left[\frac{|2.25|}{|51.97|} + \frac{|2.40|}{|46.26|} + \dots + \frac{|0.79|}{|32.63|} \right] = 2.52\%$$

(e)

預測第 25~30 期的需求如下:

$$F_{25} = (L + 25T)\overline{S_1} = (50.06 - 0.81 \times 25) \times 1.10 \approx 32.84$$

 $F_{26} = (L + 26T)\overline{S_1} = (50.06 - 0.81 \times 26) \times 1.00 \approx 29.15$
 $F_{27} = (L + 27T)\overline{S_1} = (50.06 - 0.81 \times 27) \times 0.90 \approx 25.47$
 $F_{28} = (L + 28T)\overline{S_1} = (50.06 - 0.81 \times 28) \times 0.89 \approx 24.33$
 $F_{29} = (L + 29T)\overline{S_1} = (50.06 - 0.81 \times 29) \times 0.98 \approx 25.97$
 $F_{30} = (L + 30T)\overline{S_1} = (50.06 - 0.81 \times 30) \times 1.09 \approx 28.13$

利用從第一期開始的 error 來計算 MSE 與 MAPE · 得 $MSE_{30} = 2.21 \cdot MAPE_{30} = 3.39\%$

t	D_t	$\overline{D_t}$	$\widehat{ar{D}_t}$	S_t	F_t	E_t	MSEt	MAPEt
1	51.97		49.25	1.06	54.22	2.25	5.05	4.32
•••	•••	•••	•••	•••	•••	•••	•••	•••
25	34.77		29.83		32.84	-1.94	1.71	2.64
26	32.26		29.02		29.15	-3.11	2.02	2.91
27	27.30		28.21		25.47	-1.83	2.07	3.05
28	22.95		27.40		24.33	1.38	2.06	3.16
29	23.35		26.59		25.97	2.62	2.23	3.43
30	26.78		25.78		28.13	1.35	2.21	3.49

(f)

將 disturbance 的分佈改為 $\epsilon_t \sim N(0,1^2)$,讓 series 的 noise 變大。

首先,先做 de-seasonalized,每六期 demand 計算一個平均值,接著求得 \bar{D}_4 、

 $ar{D}_5...ar{D}_{21}$,並進一步得 Level 和 Trend 的回歸線 $ar{D}_t=L+T_t=49.86-0.81t$ 。之後利用公式 $S_t=rac{D_t}{\widehat{D}_t}$ 計算 seasonality 與 seasonality factors。

迴歸絲												
	· 言十											
R 的倍數 R 平方 調整的 R 平	0.9958221 0.9916617											
ANOVA	5.1.2					D7 ++ /+						
迴歸		SS 18.290952			F 1902.846	顯著值 4.61E-18						
殘差 總和		.67633576 20.967288	0.167270	J985								
	<u>係數</u>	標準誤	t 統計		P-值	下限 95%				5.0%上限 95.0%		
	19.857626 0. -0.810523 0.		-43.621			49.32453 -0.84991				453 50.39072 991 -0.77113	-	
t	D_t		\overline{D}_t		$\widehat{\overline{D}}_t$	S_t		F_t		E_t	MSEt	MAPEt
1	53.02	2		4	9.05	1.08		54.3	32	1.30	1.69	2.45
2	47.0	7		4	8.24	0.98		49.4	12	2.35	3.60	3.72
3	44.83	3		4	7.43	0.95		42.9	96	-1.88	3.58	3.88
4	44.22	2 4	7.23	4	6.62	0.95		41.4	18	-2.74	4.56	4.46
5	48.74	4 40	6.40	4.	5.81	1.06		44.27		-4.47	7.63	5.40
6	48.3	7 4:	5.41	4.	4.99	1.07		49.8	32	1.45	6.71	5.00
7	47.34	4 4	4.21	4	4.18	1.07		48.9	93	1.60	6.12	4.76
8	42.78	8 42	2.84	4	3.37	0.99		44.4	13	1.65	5.69	4.65
9	37.18	8 4	1.69	4	2.56	0.87		38.5	55	1.37	5.27	4.54
10	37.54	4 4	1.13	4	1.75	0.90		37.1	.5	-0.39	4.76	4.19
11	38.94	4 40	0.64	4	0.94	0.95		39.5	57	0.63	4.36	3.96
12	44.34	4 40	0.18	4	0.13	1.10		44.4	13	0.09	4.00	3.65
13	44.60	0 39	9.42	3	9.32	1.13		43.5	55	-1.05	3.78	3.55
14	39.74	4 38	8.48	3	8.51	1.03		39.4	15	-0.29	3.51	3.35
15	34.63	3 3	7.61	3	7.70	0.92		34.1	.5	-0.49	3.29	3.22
16	31.00	0 30	6.71	3	6.89	0.84		32.8	32	1.83	3.30	3.39
17	34.1	7 30	6.06	3	6.08	0.95		34.8	37	0.70	3.13	3.31
18	38.73	3 3	5.38	3.	5.27	1.10		39.0)5	0.32	2.96	3.17
19	39.40	0 34	4.66	3	4.46	1.14		38.1	6	-1.24	2.89	3.17
20	37.14	4 33	3.91	3	3.65	1.10		34.4	7	-2.67	3.10	3.37
21	29.0	7 33	3.10	3	2.84	0.89		29.7	4	0.67	2.97	3.32
22	27.90	0		3	2.03	0.87		28.5	0	0.59	2.85	3.26
23	28.2	1		3	1.22	0.90		30.1	7	1.96	2.90	3.42
24	34.99	9		3	0.41	1.15		33.6	66	-1.33	2.85	3.44

Seasonality factor 計算如下:

$$\bar{S}_1 = \frac{1.08 + 1.07 + 1.13 + 1.14}{4} \approx 1.11$$

$$\overline{S}_{2} = \frac{0.98 + 0.99 + 1.03 + 1.10}{4} \approx 1.02$$

$$\overline{S}_{3} = \frac{0.95 + 0.87 + 0.82 + 0.89}{4} \approx 0.91$$

$$\overline{S}_{4} = \frac{0.95 + 0.90 + 0.84 + 0.87}{4} \approx 0.89$$

$$\overline{S}_{5} = \frac{1.06 + 0.95 + 0.95 + 0.90}{4} \approx 0.97$$

$$\overline{S}_{6} = \frac{1.07 + 1.10 + 1.10 + 1.15}{4} \approx 1.11$$
Final model: $F_{t+k} = [49.86 - (t+k) \times 0.81] \times S_{t+k}$

$$MSE_{24} = \frac{1}{24} \times [(1.30)^{2} + (2.35)^{2} + \dots + (-1.33)^{2}] = 2.85$$

$$MAPE_{24} = \frac{100\%}{24} \times \left[\frac{|1.30|}{|53.02|} + \frac{|2.35|}{|47.07|} + \dots + \frac{|-1.33|}{|34.99|} \right] = 3.44\%$$

與(d)中的 MSE_{24} 和 $MAPE_{24}$ 比較,可見當 disturbance 越大時,會讓 series 的起伏幅度變大,造成需求較難精準預測,使 MSE 與 MAPE 的值較高。

	MSE_{24}	MAPE ₂₄
$\in_t \sim N(0, 0.3^2)$	1.63	2.52%
$\in_t \sim N(0,1^2)$	2.85	3.44%

2. Holt-Winter's model

利用以下公式建立模型,並設初始 L_0, T_0, S_0 為上述 Static Model 的值。

$$F_{t+1} = (L_t + T_t)S_{t+1}$$
 and $F_{t+k} = (L_t + T_t)S_{t+k}$

$$\bullet L_t = \alpha \left(\frac{D_t}{S_t}\right) + (1 - \alpha)(L_{t-1} + T_{t-1})$$

• $0 < \alpha < 1$: smoothing constant for LEVEL

$$T_t = \beta (L_t - L_{t-1}) + (1 - \beta) T_{t-1}$$

• $0 < \beta < 1$: smoothing constant for TREND

• $0 < \gamma < 1$: smoothing constant for SEASONALITY

t	D_t	L_t	T_t	S_t	F_t	Error	MSE	MAPE
		50.06	-0.81					
1	51.97	49.20	-0.85	1.10	53.18	1.21	1.47	2.33
2	46.26	48.30	-0.90	1.00	46.50	0.24	0.77	1.43
3	43.01	47.41	-0.89	0.90	40.26	-2.75	3.03	3.08

4	43.66	46.58	-0.83	0.89	38.48	-5.18	8.98	5.28
5	47.76	45.81	-0.77	0.98	41.13	-6.63	15.99	7.00
6	50.06	45.06	-0.75	1.09	44.22	-5.84	19.01	7.78
7	48.19	44.30	-0.76	1.10	42.88	-5.31	20.33	8.24
8	42.89	43.52	-0.77	1.00	37.33	-5.56	21.65	8.83
9	38.34	42.75	-0.78	0.90	32.17	-6.17	23.47	9.64
10	37.45	41.97	-0.78	0.89	30.46	-6.99	26.02	10.54
11	40.81	41.21	-0.77	0.98	32.13	-8.68	30.50	11.52
12	44.26	40.44	-0.76	1.09	34.12	-10.14	36.52	12.47
13	43.9	39.69	-0.76	1.10	32.84	-11.06	43.13	13.45
14	39.59	38.95	-0.74	1.00	28.56	-11.03	48.74	14.48
15	33.79	38.19	-0.76	0.90	24.16	-9.63	51.68	15.41
16	32.46	37.41	-0.78	0.89	22.22	-10.24	55.00	16.42
17	34.79	36.61	-0.80	0.98	22.50	-12.29	60.66	17.53
18	38.84	35.80	-0.81	1.09	23.19	-15.65	70.89	18.80
19	39.97	35.02	-0.78	1.10	22.28	-17.69	83.62	20.14
20	35.81	34.28	-0.74	1.00	19.43	-16.38	92.85	21.42
21	30.45	33.55	-0.74	0.90	16.28	-14.17	97.99	22.61
22	27.49	32.77	-0.78	0.89	13.92	-13.57	101.91	23.83
23	28.88	31.93	-0.83	0.98	12.48	-16.40	109.16	25.26
24	32.63	31.07	-0.86	1.09	11.36	-21.27	123.46	26.92

利用 Excel Solver 規劃求解,目標將 MSE_{24} 最小,得參數 $\alpha=0.0222,\ \beta=0.9999,\ \gamma=0.0001$ 。 $MSE_{24}=123.46,\ MAPE_{24}=26.92$ 。

總結模型表現如下表:

	MSE_{24}	MAPE ₂₄
Static Model $\in_t \sim N(0, 0.3^2)$	1.63	2.52%
Static Model $\in_t \sim N(0, 1^2)$	2.85	3.44%
Holt-Winter's model $(\alpha = 0.0222, \ \beta = 0.9999, \gamma = 0.0001)$	123.46	26.92%

由上表可見 Holt-Winter's model 的預測表現並沒有 Static model 來的好,代表越複雜的模型不一定會有較好的表現。在建立預測模型時,應盡可能的簡單化,並同時保有不差的預測表現,故在此範例中,應採用 Static model。