Spectral Theorem Preliminaries

Instructor: Thomas R. Cameron

Let V be an inner product space over the field \mathbb{F} . We will make use of the following results.

Theorem 1. Let W be a finite-dimensional subspace of V and let $y \in V$. Then there exists a unique $u \in W$ and $z \in W^{\perp}$ such that y = u + z. Furthermore, if $\{v_1, \ldots, v_k\}$ is a basis for W, then

$$u = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$

Proof. See [1, Theorem 6.6].

This in fact holds for any closed subspace W. Hence, we can write $V=W\oplus W^\perp$ for any closed subspace W of V.

Theorem 2. If V is finite-dimensional and $\mathbb{F} = \mathbb{C}$. Then $T \in \mathcal{L}(V)$ is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

Proof. See [1, Theorem 6.16].

Theorem 3. If V is finite-dimensional and $\mathbb{F} = \mathbb{R}$. Then $T \in \mathcal{L}(V)$ is self-adjoint if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

Proof. See [1, Theorem 6.17].

References

[1] S.H. Friedberg, A.H. Insel, and L.E. Spence. *Linear Algebra*. Pearson Education, Upper Saddle River, NJ, 4th edition, 2003.