Understanding Simple Regression Models

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Set up the regression problem and describe its solution

Introduce simple regression models that have a single explanatory variable

Use simple regression models

- to explain variance
- to make forecasts

Understand the assumptions underlying regression

Setting Up The Regression Problem

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

Cause

Explanatory variable

Effect

Dependent variable

Linear Regression involves finding the "best fit" line

Let's compare two lines, Line 1 and Line 2

The first line has y-intercept A₁

In the first line, if x increases by 1 unit, y decreases by B₁ units

The second line has y-intercept A₂

In the second line, if x increases by 1 unit, y decreases by B₂ units

Minimising Least Square Error Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

Drop vertical lines from each point to the lines A and B

Minimising Least Square Error Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

Drop vertical lines from each point to the lines A and B

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

The "best fit" line is called the regression line

Residuals of a regression are the difference between actual and fitted values of the dependent variable

Regression Line: y = A + BxX

Ideally, residuals should

- have zero mean
- common variance
- be independent of each other
- be independent of x
- be normally distributed

Solving the Regression Problem

Three Estimation Methods

Method of moments

Method of least squares

Maximum likelihood estimation

Cookie cutter techniques to determine the values of A and B (regression coefficients)

The "best fit" line is called the regression line

The term A in the equation of the line is the y-intercept

The term B is the slope, and gives the sensitivity of y to a change of 1 unit in x

Represent all n points as (x_i,y_i) , where i = 1 to n

The "best fit" line is called the regression line

Minimising Least Square Error $x = [x_1, x_2, x_3...x_n]$ (X_3, Y_3) A Regression Line: y = A + Bx (x_n, y_n)

x in the regression line refers to the vector of all x coordinates

Minimising Least Square Error X_1, Y_1 $x = [x_1, x_2, x_3...x_n]$ $y = [y_1, y_2, y_3...y_n]$ (X_3, y_3) A Regression Line: y = A + Bx (x_n, y_n)

y in the regression line refers to the vector of all y coordinates

Each point (x_i,y_i) has a corresponding point (x_i,y_i) on the regression line

Find all such points (x_i,y'_i) on the regression line

Minimising Least Square Error $y = [y_1, y_2, y_3...y_n]$ $y' = [y'_1, y'_2, y'_3...y'_n]$ (x_2, y'_2) A Regression Line: (x_n, y'_n) y = A + Bx

Find all such points (x_i,y'_i) on the regression line

The corresponding values of y'i are called the fitted values

For each point, the difference between y_i and y_i' is called e_i , the residual or the error

Minimising Least Square Error $y = [y_1, y_2, y_3...y_n]$ (x_i, y_i) $y' = [y'_1, y'_2, y'_3...y'_n]$ $e_i = y_i - y_i$ $e = [e_1, e_2, e_3...e_n]$ (x_i, y_i) A Regression Line: y = A + Bx

Residuals of a regression are the difference between actual and fitted values of the dependent variable

For each point, the difference between y_i and y_i' is called e_i , the residual or the error

Regressing y on x - minimise sum of square of vertical errors

Regressing y on x - minimise sum of square of vertical errors

Demo

Perform a simple regression in Excel

Simple and Multiple Regression

Simple Regression

Data in 2 dimensions

Simple and Multiple Regression

Simple Regression

One independent variable

Multiple independent variables

Three Estimation Methods

Method of moments

Method of least squares

Maximum likelihood estimation

Cookie cutter techniques to determine the values of A and B (regression coefficients)

"Best Linear Unbiased Estimator" (BLUE)

"Best"

Coefficients have minimum variance, i.e. are estimated with relatively high certainty

"Unbiased"

Residuals have zero mean, are uncorrelated to each other and have equal variance

Solving the regression problem with the method of least squares gives a **BLUE** solution

Explaining Variance Using Simple Regression

Two Common Applications of Regression

Explaining Variance

How much variation in one data series is caused by another?

Making Predictions

How much does a move in one series impact another?

Rising Stock: Alpha or Beta?

Company X's Stock Is Rising

The stock has risen 10% this year; the market is up 8% in the same period

Financial Analysts are Divided

How much of the increase is explained by the market rise?

Rising Stock: Alpha or Beta?

Explanation #1: Beta

Price rise driven by beta, i.e. explained by market rise

Explanation #2: Alpha

Price rise can not be explained by market rise - company really has done something right

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

Cause

Explanatory variable

Effect

Dependent variable

The "best fit" line is called the regression line

The term A in the equation of the line is the y-intercept

The term B is the slope, and gives the sensitivity of y to a change of 1 unit in x

Minimising Least Square Error $y = [y_1, y_2, y_3...y_n]$ (x_i, y_i) $y' = [y'_1, y'_2, y'_3...y'_n]$ $e_i = y_i - y_i$ $e = [e_1, e_2, e_3...e_n]$ (x_i, y_i) A Regression Line: y = A + Bx

Residuals of a regression are the difference between actual and fitted values of the dependent variable

Post Hoc Fallacy

New Roommate Moves In

Weather Turns Gloomy

Just because X happened before Y, it does not mean that X caused Y

Correlation Is Not Causation

Economy is Booming

Banks are Lending Freely

Not even Nobel Prize-winning economists can agree on this one!

Cause and Effect

X happens before Y

Accompanies

X and Y happen together

Causes

X causes Y

Cause and Effect

Genuine Causation

X actually causes Y; we can use regression to quantify causation

 $X = [X_1, X_2, X_3...X_n]$

Independent Variable

If X causes Y, then values of x form a vector, called the independent variable or explanatory variable

Independent Variable $x = [x_1, x_2, x_3...x_n]$ (X₁, y₁) (X_3, Y_3) A Regression Line: y = A + Bx (x_n, y_n)

x in the regression line refers to the vector of all x coordinates $y = [y_1, y_2, y_3...y_n]$

Dependent Variable

If X causes Y, then values of y form a vector, called the dependent variable or explained variable

y in the regression line refers to the vector of all y coordinates

$$y = A + Bx$$

Regression Line

The "best fit" line which minimises the sum of the squares of the errors

Regression Line Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

$$y' = [y'_1, y'_2, y'_3...y'_n] = A + Bx$$

Fitted Values of Dependent Variable

The fitted line y = A + Bx will yield a different set of values, called the fitted values

Each point (x_i,y_i) has a corresponding point (x_i,y_i) on the regression line

Fitted Values $y = [y_1, y_2, y_3...y_n]$ (x_1, y'_1) $y' = [y'_1, y'_2, y'_3...y'_n]$ (x_2, y'_2) A Regression Line: (x_n, y'_n) y = A + Bx

The corresponding values of y'i are called the fitted values

e = y - y'

Residuals

The residuals, or errors, are the differences between the actual and fitted values of the dependent variable

Residuals $y = [y_1, y_2, y_3...y_n]$ (x_i, y_i) $y' = [y'_1, y'_2, y'_3...y'_n]$ $e_i = y_i - y'_i$ $e = [e_1, e_2, e_3...e_n]$ (x_i, y_i) A Regression Line: y = A + Bx

Residuals of a regression are the difference between actual and fitted values of the dependent variable

Residuals of a regression are the difference between actual and fitted values of the dependent variable

```
e = y - y'
=> y = y' + e
=> Variance(y) = Variance(y' + e)
=> Variance(y) = Variance(y') + Variance(e) + Covariance(y',e)
```

A Not-Very-Important Intermediate Step

Variance of the dependent variable can be decomposed into variance of the regression fitted values, and that of the residuals

```
e = y' - y
=> y = y' + e
=> Variance(y) = Variance(y' + e)

=> Variance(y) = Variance(y') + Variance(e) + Covariance(y',e)
```

Covariance: Only a Passing Mention

This is the only time in the course we will allude to covariance

Variance(y) = Variance(y') + Variance(e)

Variance Explained

Variance of the dependent variable can be decomposed into variance of the regression fitted values, and that of the residuals

Variance(y) = Variance(y') + Variance(e)

Total Variance (TSS)

A measure of how volatile the dependent variable is, and of much it moves around

Explained Variance (ESS)

A measure of how volatile the fitted values are - these come from the regression line

TSS = Variance(y)

Residual Variance (RSS)

This the variance in the dependent variable that can not be explained by the regression

TSS = Variance(y) ESS = Variance(y')

TSS = ESS + RSS

Variance Explained

Variance of the dependent variable can be decomposed into variance of the regression fitted values, and that of the residuals

TSS = Variance(y) ESS = Variance(y) RSS = Variance(e)

 $R^2 = ESS / TSS$

 \mathbb{R}^2

The percentage of total variance explained by the regression. Usually, the higher the R², the better the quality of the regression (upper bound is 100%)

TSS = Variance(y) ESS = Variance(y') RSS = Variance(e)

Rising Stock: Alpha or Beta?

Company X's Stock Is Rising

The stock has risen 10% this year; the market is up 8% in the same period

Financial Analysts are Divided

How much of the increase is explained by the market rise?

Rising Stock: Alpha or Beta?

Explanation #1: Beta

Price rise driven by beta, i.e. explained by market rise

Explanation #2: Alpha

Price rise can not be explained by market rise - company really has done something right

Prediction Using Simple Regression

Two Common Applications of Regression

Explaining Variance

How much variation in one data series is caused by another?

Making Predictions

How much does a move in one series impact another?

Connect sets of dots

Express relationships between data series

Avoid jumping to conclusions

Measure how strong those relationships are

Predict where new dots will be

Make forecasts, recommendations

Input Data Series

Two columns, x and y

From underlying database

Find Model Parameters

Find values of A and B

Excel, R and most tools

Predict

Given new x, what is y?

Answer using y = A + Bx

Specify Functional Form

y = A + Bx

Values of A and B yet to be determined

Check Model Quality

Residuals, R²

Also in Excel, R...

Act

Forewarned is forearmed

Based on possible outcomes

Regression Models in Commodity Trading

Interest Rates are Rising

US government bond yields are now at 2.56%, but could go to 3%

Commodity Traders are Worried

Oil is currently trading at \$50/ barrel - buy or sell?

Today, 10-year yield = 2.56%, oil price = \$50 Tomorrow, if 10-year yield at 3%, oil price = ?

Today, 10-year yield = 2.56%, oil price = \$50 Tomorrow, if 10-year yield at 3%, oil price = ?

Today, 10-year yield = 2.56%, oil price = \$50 Tomorrow, if 10-year yield at 3%, oil price = ?

Find the regression line - the line with the "best fit"

Given a new value of x, use the line to predict the corresponding value of y

Regression also allows to specify prediction intervals (similar to confidence intervals) around this point estimate

This error is least at $x = \overline{x}$

The less the variance of the residuals, the more precise the prediction

Summary

Set up the regression problem

Understood the least-squares estimator and its BLUE property

Applied regression to forecasting and explaining variance

Discussed the assumptions about residuals that underpin regression