研究生培养环节导师抽检情况汇总表

学生类别 □学术学位硕士生 □专业学位硕士生 抽查学期 2025—2026 学年第 1 学期 □第 9 周 □第 16 周 学术活动抽查记录 学术报告题目 学术报告时间 1 心血管影像管理系统的现状与未来展望 2025.9.15 2 金属矿地球物理勘探及地质资源与地质工程学科建设 2025.10.18 序号 研讨主题 研讨时间	学与	<u>=</u>	号 2024200245 姓名		胡仕超	学院	机械工程学院	
□学术学位博士生 □专业学位型博士生 抽查学期 2025——2026 学年第 1 学期 □第 9 周 □第 16 周 学术活动抽查记录 序号 学术报告题目 学术报告时间 1 心血管影像管理系统的现状与未来展望 2025.9.15 2 金属矿地球物理勘探及地质资源与地质工程学科建设 2025.10.18 课题组研讨活动抽查记录	学生类别							
学术活动抽查记录 序号 学术报告题目 学术报告时间 1 心血管影像管理系统的现状与未来展望 2025.9.15 2 金属矿地球物理勘探及地质资源与地质工程学科建设 2025.10.18 课题组研讨活动抽查记录					与业学位型博士生			
序号 学术报告题目 学术报告时间 1 心血管影像管理系统的现状与未来展望 2025.9.15 2 金属矿地球物理勘探及地质资源与地质工程学科建设 2025.10.18 课题组研讨活动抽查记录	抽查学	查学期 20 <u>25</u> ——20 <u>26</u> 学年第 <u>1</u> 学期 ☑第 9 周 □第 16 周						
1 心血管影像管理系统的现状与未来展望 2025.9.15 2 金属矿地球物理勘探及地质资源与地质工程学科建设 2025.10.18 课题组研讨活动抽查记录				学	术活动抽查记录			
2 金属矿地球物理勘探及地质资源与地质工程学科建设 2025.10.18 课题组研讨活动抽查记录	序号			学术排	3 告题目		学术报告时间	
课题组研讨活动抽查记录	1		心血管影像	象管理系	统的现状与未来展望		2025.9.15	
	2	金属矿地球物理勘探及地质资源与地质工程学科建设 2025.10.18					2025.10.18	
序号 研讨主题 研讨时间		课题组研讨活动抽查记录						
	序号	研讨主题 研讨时间						
1 桥外施工机器人 2025.8.21	1	桥外施工机器人 2025.8.21						
2 桥外施工机器人 2025.9.25	2	桥外施工机器人 2025.9.25						
文献阅读与评述抽查记录								
序号	序号	文献题目						
	1	Cross-modality (CT-MRI) prior augmented deep learning for robust lung						
1 tumor segmentation from small MR datasets	'	tumor segmentation from small MR datasets						
A Study on the Performance of U-Net Modifications in Retroperitonea	2	A S	tudy on the Pe	erforma	nce of U-Net Modific	ations ir	n Retroperitoneal	
2 Tumor Segmentation		Tumor Segmentation						

2	MedDINOv3: How to adapt vision foundation models for medical image					
3	segmentation?					
4	IAM: Enhancing RGB-D Instance Segmentation with New Benchmarks					
5	Remote Sensing Image Segmentation Using Vision Mamba and					
5	Multi-Scale Multi-Frequency Feature Fusion					
本人承	本人承诺:上述内容为本人根据导师抽查评阅情况如实填写。					
	研究生本人签字:					
	年月日					

学术报告记录

学 号	2024200245	姓 名 胡仕超			
第_8_次	学术报告题目	心血管影像管理系统的现状与未来展望			
主讲人	吴小朋	时间	2025年9月15日	地点	工业中心C座103 会议室

小结报告

随着心血管疾病的高发,医疗影像在心血管疾病诊断和治疗中的作用日益重要。心血管 影像管理系统(CIMS)作为一项重要的医疗技术,致力于通过高效的影像数据管理与分析, 提高诊疗效率和准确性。

目前, CIMS 的主要功能包括影像数据的存储、管理、传输和共享。随着影像技术的进 步,尤其是CT、MRI、超声等影像设备的广泛应用,系统需要处理和存储海量的影像数据。 传统的影像管理方式面临存储容量有限、数据共享困难、以及医疗资源分配不均等问题。因 此, CIMS 的设计逐渐向云计算和人工智能(AI)方向发展,以解决数据存储和处理能力的 问题。

报告指出,当前的 CIMS 还存在一些挑战。首先,数据标准化问题依然困扰着影像数据 的共享与互操作性。不同医院和影像设备使用的格式、标准不同,使得跨院数据共享和分析 变得困难。其次, CIMS 的智能分析功能尚未达到全面应用的水平, 人工智能技术在心血管 影像中的应用仍处于发展阶段,尽管已有一定进展,但仍面临算法精准性和临床适应性的问

未来, CIMS 的展望主要集中在以下几个方面。首先是系统智能化,利用深度学习、机 器学习等 AI 技术实现自动化的影像分析与诊断支持,帮助医生更快速地识别病变和制定治 疗方案。其次, CIMS 将更加注重数据的互联互通,推动国际标准化,促进全球医疗资源共 享,提高全球范围内的心血管健康管理水平。最后,随着5G技术的发展,影像数据的传输 速度和处理效率将得到大幅提升, CIMS 的实时远程诊断功能也将得到加强, 进一步提升心 血管疾病的诊治效率。

总体而言,心血管影像管理系统正朝着更智能、高效、互联互通的方向发展。未来,随 着人工智能和信息技术的不断进步, CIMS 将在提升诊断精准度、优化医疗资源配置以及推 动全球健康管理中发挥更加重要的作用。

导师评阅意见:

报告内容全面,分析深入,展望前瞻。建议增加具体案例分析和 AI 算法挑战的细节, 进一步增强实用性和深度。

导师签字: 2025年10月28日

学术报告记录

学 号	2024200245	姓 名 胡仕超			
第_9_次	学术报告题目	金属矿地球物理勘探及地质资源与地质工程学科建设			
主讲人	周永兵	时间	2025年10月18日	地点	犀浦校区四教 X4243

小结报告

通过学习关于金属矿地球物理勘探及地质资源与地质工程学科建设的内容,我对这一学科的前沿发展和应用有了更加深刻的理解。金属矿地球物理勘探技术已经在矿产资源勘查中取得了显著的进展,尤其是在提高勘查精度和效率方面。地球物理方法,如地震波、电磁波、重力场和磁场探测等,已成为现代矿产勘探中不可或缺的工具。这些方法通过对地下介质的反射、折射、吸收等性质进行分析,帮助我们准确地探测地下矿体的分布、形态和深度,尤其是在三维成像技术的应用下,可以提供矿体的详细结构图像,大大提升了勘探的精度和可靠性。

尤其值得注意的是,随着数据处理技术的发展,地球物理勘探方法在金属矿资源评估中的应用越来越广泛。通过高精度的三维成像技术,可以获得地下资源的详细信息,不仅有助于确定矿体的规模、形态,还能预测矿体的开采可行性。此外,先进的数值模拟和反演技术也使得地下勘探信息的解析更加精准,能够为矿业公司提供更加可靠的数据支持,从而减少盲目开采的风险,提升资源利用率。

未来,随着计算机技术、人工智能(AI)、大数据等新兴技术的不断进步,地球物理 勘探方法将变得更加精准高效。人工智能可以帮助处理大量勘探数据,利用深度学习算法 实现地下资源的自动识别和分析,提高勘探效率。大数据技术的应用也能优化勘探过程中 的数据存储和处理,提高数据分析的速度和准确性。此外,地质工程学科的建设将愈加注 重可持续发展和环境保护问题,推动绿色矿业的发展。

总的来说,金属矿地球物理勘探及地质资源与地质工程学科的建设为现代矿业的发展 提供了强有力的技术支持。随着新技术的不断应用与发展,未来的矿产勘探将更加高效、 精准、环保,推动矿产资源的可持续利用,为全球资源安全和环境保护做出积极贡献。

导师评阅意见:

建议进一步探讨在金属矿地球物理勘探过程中,如何结合实际工程案例,验证新技术的应用效果和实用性。此外,对于学科建设的内容,可以进一步强调跨学科融合的具体实施路径,尤其是在技术创新和实践应用中的挑战与机遇。

导师签字: 2025 年 10 月 28 日

西南交通大学博(硕)研究生课题组研讨活动记录表

学号	2024200245]	 姓 名	胡仕超			
研讨会场次	第 <u>12</u> 次						
研讨主题	轨道运维机器人						
研讨时间	2025年8月19	2025 年 8 月 19 日 地点 机械馆 2338					
参与人员				息帅 江海峰 土超 杜虹岑			
研讨内容	1. 2. 3.	进度汇 细节讨 后续安	论。				
研究思路的 启发与收获	1.运维模式是采用单轨还是双轨问题,经过讨论,初步按照双轨模式进行设计,再考虑重量、体积、干涉以及效率等因素,最终决定是采用单轨还是双轨模式。 2.对于识别定位的问题,现有的数据集的数据丰富性还不足,讨论了相机的实际工作高度以及环境,应该以实际情况进行数据集补充。对于准确定位到螺母中心点问题,由于解决工程问题需要具备准确性、稳定性和实用性,可采取视觉和激光配合的方案。 3.对于系统总体控制方案,考虑了实现核心功能的方案,也要考虑辅助功能的实现。 控制组的传感器、PLC、控制柜等信息与设计组进行沟通完善设计、视觉组实现识别定位返回三维坐标的方案与控制组进行沟通。						
导师/研讨会 负责人意见	按照讨论	签字	: 小组进行下 : 2025 年 10 月				

西南交通大学博(硕)研究生课题组研讨活动记录表

学 号	2024200245	女	生名		胡仕超		
研讨会场次	第13次						
研讨主题	轨道运维机器人						
研讨时间	2024年 10 月 22 日 地点 机械馆 2338						
参与人员							
研讨内容	1. 进度汇报。 2. 细节讨论。 3. 后续安排。						
研究思路的 启发与收获	1.在进行末端抓取设计时,明确螺母、垫片、弹条、挡板和尼龙底座用几类夹爪,初步结果为:螺母、垫片、弹条用套筒和夹爪的复合夹具进行整体取放;挡板用磁吸、尼龙底座用夹爪配合取放。2.在进行设计时明确考虑夹爪切换空间受限问题,并尽量减少取放距离,用于提高效率。 3.考虑到风沙凝结、石块等实际工况,新增多级震动模块用于松动垫片、弹条、挡板、尼龙底座和扫除乱石模块,再加上除锈、喷油等众多模块。 4.考虑到小车重量,为了便于人工搬运至工作现场,设计时要进行模块化设计和轻量化设计,能在工作现场进行快速组装,小车也要分为多段式,一是便于搬运,二是用绝缘材料防止双轨电路导通。						
导师/研讨会 负责人意见	针对不足之处,继续改进,抓紧时间,解决问题。 签字: 2025年10月28日						

西南交通大学博(硕)研究生文献阅读与评述记录

学 号	2024200245	姓 名	胡仕超
第 16 篇	文献题目	Cross-mod	ality (CT-MRI) prior augmented deep learning
另 IO 偏	文	for robust lu	ng tumor segmentation from small MR datasets
	Jiang J, Hu Y C, 7	Гуаді N, et al.	Cross - modality (CT - MRI) prior augmented
文献引用	'	•	mor segmentation from small MR datasets[J].
			cs, 2019, 46(10): 4392-4404.
文献检索类型	外文期刊	文献作者	
			的深度学习方法,结合了 CT 和 MRI 影像的跨
			RI 数据集上肺部肿瘤分割的鲁棒性。肺部肿
			关重要,但在小型 MRI 数据集上训练深度学
			足和过拟合的问题。为了克服这一挑战,本
			融合的深度学习框架。
			用CT图像提供的结构性强、纹理清晰的先验
文献主要内容	, , , , , , , , , , , , , ,		瘤分割效果。具体方法包括将 CT 图像与 MRI
			模型进行联合训练。通过这种方式,CT图像
	的解剖信息可以を 鲁棒性和泛化能力		图像的局限性,提高小样本数据集上模型的
		•	 法在肺部肿瘤分割中的有效性,结果表明。
			宏任师部所獨力割中的有效性,結果表例, 型相比于仅使用 MRI 图像的模型,在准确性
			其在小型 MRI 数据集上,结合 CT 图像的先验
			较少的情况下,仍然表现出较高的分割精度。
			小样本医学影像数据集上的泛化能力提供了
			融合,不仅克服了单一模态数据的不足,还
			习效果。这一方法的核心启示在于,医学影
			,利用不同模态间的关联性可以弥补数据稀
A 1 A 10 E 11 + 1			像处理任务(如病灶检测、分割、预测等)
个人启发与思考	提供了可借鉴的思	思路。	
	此外,这篇文	文章还指出了:	如何利用现有的大型数据集(如 CT 数据集)
	和小型数据集(如	ロMRI 数据集) 之间的关系进行模型训练, 避免了对大量
	MRI 数据的依赖,	这对资源有限	的医院或实验室来说,具有重要的现实意义。
			增强深度学习方法,在解决小样本 MRI 数据
			得了显著的成果。通过结合 CT 图像提供的先
			的鲁棒性和泛化能力,展示了跨模态信息融
导师评阅意见	合的巨大潜力。\$ 	(章结构清晰,	实验结果具有说服力,且方法创新性较强。
			3
			签字:
			金子: 2025 年 10 月 28 日
			2020 十 10 月 20 日

学 号	2024200245	姓 名	胡仕超				
第 17 篇	文献题目 A Study on the Performance of U-Net Modifications in Retroperitoneal Tumor Segmentation						
文献引用	Heidari M, Aghdam E K, Manzella A, et al. A study on the performance of U-Net modifications in retroperitoneal tumor segmentation[C]//Medical Imaging 2025: Computer-Aided Diagnosis. SPIE, 2025, 13407: 382-391.						
文献检索类型	外文期刊 文献作者 Heidari M, Aghdam E K, Manzella A, et al						
文献主要内容	应用进行了系统统因结构简洁、易于存在精度不足、选注意力机制、深度的关注和细节捕捉Deep Supervisio优于标准 U-Net,还指出,这些改造	分析,并探讨 于训练而广泛是 过拟合及对形态 度监督和金字与 是能力。实验结 n U-Net)在经 尤其在肿瘤边 性不仅提升了标	后肿瘤(retroperitoneal tumor)分割中的了多种改进方法对模型性能的影响。U-Net用于医学图像分割,但在复杂肿瘤任务中仍态变化敏感等问题。为此,论文研究了引入搭池化等改进策略,以增强模型对肿瘤区域果显示,改进版 U-Net(如 Attention U-Net、分割准确率、IoU 和 Dice 系数等指标上均界模糊或形态复杂的情况下表现更佳。研究模型精度与鲁棒性,也减轻了过拟合风险,像条件下需进行任务定制化优化。				
个人启发与思考	该研究为 U-Net 的优化提供了宝贵的经验,特别是在面对复杂肿瘤分割任务时,如何通过引入注意力机制、深度监督等方法,增强网络对关键信息的捕捉能力,解决 U-Net 在标准任务中容易出现的性能瓶颈。实验结果提示我们,对于具有不规则形态、模糊边界的肿瘤,改进的 U-Net 模型能够有效提高分割精度。 这一研究的启示不仅对 retroperitoneal 肿瘤分割有重要意义,也为其他复杂结构的医学影像分割提供了参考。例如,脑部肿瘤、心脏病变等具有类似挑战的任务,可以借鉴这些改进方法来提升网络性能。 此外,改进后的 U-Net 模型的鲁棒性提高,表明在小样本或数据不充分的情况下,借助这些优化技术仍然可以获得较好的分割结果,具有较高的临床应用潜力,尤其是对于一些影像质量较差的病例。						
导师评阅意见	可以加入与其他分割网络(如 FCN、Mask R-CNN等)的对比分析,这一步验证改进方法的优势。 总体来说,报告展示了 U-Net 优化在医学图像分割中的巨大潜力,身有较高的学术和实践价值。 签字: 2025 年 10 月 28 日						

学 号	2024200245	 姓 名	胡仕超			
			v3: How to adapt vision foundation models for			
第 18 篇	文献题目	又				
	Li Y, Wu Y, Lai	Y, et al. M	ledDINOv3: How to adapt vision foundation			
文献引用	models for medical image segmentation?[J]. arXiv preprint arXiv:2509.02					
) +b14 + 32 mi	379, 2025.	\ \\				
文献检索类型	外文期刊	文献作者	Li Y, Wu Y, Lai Y, et al			
文献主要内容	学图像分割方法。 任务中表现优秀, 挑战。MedDINOv3 文中,MedDIN 学数据预训练增强 医学图像的局部与 型在噪声数据中的 实验结果显示	虽然 VFM(但医学图像 通过调整 VF IOv3 结合了自 展模型的泛化 5全局信息。 5)鲁棒性。	3,一种基于视觉基础模型(VFM)改进的医如 ViT 和 Swin Transformer)在计算机视觉分割面临小样本学习、数据不平衡和噪声等M 架构,提升了在医学图像中的应用效果。由监督学习和迁移学习策略,通过大规模非医能力,并设计了多尺度特征提取机制来捕捉司时,MedDINOv3 加入了去噪模块,提高了模在多个医学图像分割数据集上表现优越,尤,性能明显优于传统的 VFM 和 CNN 模型。			
个人启发与思考	MedDINOv3展示了如何将VFM有效应用于医学图像分割,特别是在小样本和噪声问题上。通过迁移学习和自监督学习,MedDINOv3能够有效利用非医学数据,提升模型的泛化能力。此外,其多尺度特征提取和去噪设计,尤其在处理复杂病灶时,展示了显著优势。这一方法启示我们,在医学图像处理中,不仅要关注模型架构的创新,还应结合具体任务特性进行优化。未来,随着跨领域学习和去噪技术的发展,医学图像分割的解决方案将更为高效和精准。					
导师评阅意见	本篇文献提出的MedDINOv3模型在医学图像分割中展现了良好的效果结合了自监督学习、迁移学习等技术,有效提高了分割性能。实验结果等持了模型的创新性和实用性。 建议进一步研究 MedDINOv3 在不同医学图像任务中的应用,特别是不处理更复杂的病灶区域时的效果。此外,去噪模块的优化可提升模型的特棒性和适应性。 总体而言,报告为医学图像分割任务提供了新的思路,并具有较高的学术和实践价值。					

<u> </u>	2024200245	44. 万	÷□ <i>t</i> 1. +π		
学号	2024200245	姓名	胡仕超		
第 19 篇	文献题目	IAM: Enhan	cing RGB-D Instance Segmentation with New Benchmarks		
文献引用			IAM: Enhancing RGB-D Instance Segment arXiv preprint arXiv:2501.01685, 2025.		
 文献检索类型	外文期刊	文献作者			
大帆位が大宝	77. 文积 [1]	大脉1F4	Julig A, Choi S, Willi J, et al		
文献主要内容	Masking),旨在 复杂或遮挡严重的 常受噪声影响。IA 融合:在标准实例 特征生成更精确的 物体边界识别,不	是升复杂环境 内场景中易出 M的核心思想 引分割中引入 的实例掩膜。 有效减少模糊 函盖高密度遮	-D 实例分割方法——IAM(Instance-aware 下多物体分割的性能。传统 RGB 图像在结构 现误分割,而深度图虽能提供空间信息,却是通过实例感知的掩膜机制强化 RGB-D 信息基于深度信息的掩膜分配,结合 RGB 的语义该方法不仅提升了空间感知能力,还改善了和误分割问题。论文同时构建了新的 RGB-D 档与复杂背景场景,为后续算法的性能评估用性的测试平台。		
个人启发与思考	IAM 提出的实例感知掩膜机制在解决 RGB-D 实例分割问题上提供了一个创新的解决思路,尤其是在多物体环境中的应用,能够有效地融合 RGB 和深度信息,减少传统方法中常见的误分割问题。通过基准测试平台的引入,不仅让这个领域的研究有了更标准化的评估方式,还促使了对 RGB-D 数据融合方法的进一步研究。 这一方法的启示在于,处理 RGB-D 数据时,不仅要关注如何利用深度 图像提供空间信息,还要重视如何通过新的机制来增强不同数据模态之间 的互补性。未来,结合深度学习中的掩膜机制,能够更加高效地进行物体 实例的分割,并且将该方法拓展到其他实际应用场景,如机器人感知、增强现实等。 此外,本文中的基准测试为后续的研究提供了有价值的参考,使得不同方法的比较更加公正和直观,也为改进现有的 RGB-D 实例分割算法提供				
导师评阅意见	(水对文献的理论相比分析。		概括,建议加入该文献与其他相似研究的对 签字: 2025年10月28日		

学号	2024200245	姓名	胡仕超			
 	2024200243	-	sing Image Segmentation Using Vision Mamba			
第 20 篇	文献题目		ulti-Scale Multi-Frequency Feature Fusion			
	Cao Y Liu C W		Remote sensing image segmentation using vi			
文献引用			nulti-frequency feature fusion[J]. Remote Sen			
\(\int \) \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1}{3} \) \(\frac{1}{3} \) \(\frac{1} \) \(\frac{1}{3} \) \(sing, 2025, 17(8):		inin iroquono, romaro rasione, i romoto con			
	外文期刊	文献作者	Cao Y, Liu C, Wu Z, et al			
J (100/12/3/22			图像分割方法,结合了"Vision Mamba"模			
			术,旨在提高遥感图像的分割精度,特别是			
			别中。遥感图像因其复杂的地形、气候变化			
			像分割方法提出很大的挑战,尤其是在处理			
			征时,容易出现误分割或低精度问题。			
	在方法方面,	作者引入了	"Vision Mamba"这一模型架构,通过借鉴			
	│ │视觉 Transformer	和卷积神经	网络(CNN)结合的思想,利用 Transformer			
文献主要内容	 的全局特征建模能	b力与 CNN 的	局部特征提取能力,从而在处理遥感图像时,			
	 既能保留细节信息	息,又能抓住	全局语义。该方法的核心创新点在于多尺度			
	 多频率特征的融台	à ,具体通过	不同尺度和频率的特征信息进行交叉融合,			
	 提升了对复杂物位	体 (如不同大	小的建筑物、道路和植被等)的识别精度。			
	实验结果表明,提出的方法在多个遥感图像分割数据集上的表现显著					
	优于传统的分割方法,特别是在复杂地物类型的识别和低对比度区域的分					
	割上,具有显著的优势。					
	该研究为遥感图像分割提供了一个新的思路,即通过结合 Vision					
	Mamba 模型和多尺	度多频率特征	证融合技术,提升了对复杂环境下物体的分割			
	能力。这一研究的启示在于,在遥感图像分割中,除了传统的像素级分类					
	外,还应考虑如何更好地融合来自不同尺度、频率的信息,尤其在处理复					
	杂物体或背景时,	如何更精确	地分离不同物体。这为遥感图像的自动化分			
人工力业上田本	析提供了新的技术		在需要高精度地图生成、土地利用分类等任			
个人启发与思考	务中具有广泛的应	2用前景。				
	此外,模型中	中引入的自适	应注意力机制对于增强图像分割过程中的重			
	要区域识别有很力	大帮助,为其	他图像处理任务提供了创新的思路。未来,			
	随着深度学习技术	ド的发展,结	合多模态数据(如雷达、红外等)进行遥感			
	图像的融合分析,	可能成为一	个更加有效的研究方向。			
导师评阅意见	在文献的技术	ド细节上,你	有较为细致的描述,并且提到了该技术的优			
(17年4) 149 高力6	缺点。也可以考虑	是提出一些潜	在的改进方法。			
			_			
			签字:			
			2025 年 10 月 28 日			