L2 STUE : Mathématiques 4

TD.5

Exercice 1 (Aire d'un graphe). Soit $U \subset \mathbb{R}^2$ et $f: U \to \mathbb{R}$ une fonction. Le graphe de f est la surface S paramétrée par $\varphi(x,y) = (x,y,f(x,y))$.

- 1. Calculer les dérivées partielles de φ et en déduire que la paramétrisation φ de S est régulière.
- 2. Trouver un champ de vecteurs normal à S et montrer que

$$\operatorname{aire}(S) = \iint_{U} \sqrt{1 + \left(\frac{\partial f}{\partial x}(x, y)\right)^{2} + \left(\frac{\partial f}{\partial y}(x, y)\right)^{2}} \, dx \, dy.$$

3. Calculer cette aire lorsque $f(x,y) = x^2 + y^2$ et U est le disque unité.

Exercice 2. Soit T la surface paramétrée par $\psi: (0,2\pi) \times (1,+\infty) \to \mathbb{R}^3$ définie par

$$\psi(\theta, z) = \left(\frac{\cos(\theta)}{z}, \frac{\sin(\theta)}{z}, z\right).$$

- 1. Représenter graphiquement T.
- 2. Calculer l'aire de la surface de T.
- 3. Déterminer le volume emprisonné par T, c'est-à-dire le volume de l'ensemble

$$C := \{(x, y, z) \in \mathbb{R}^3 \mid z \ge 1, \sqrt{x^2 + y^2} \le 1/z\}.$$

Exercice 3. Soit S la surface paramétrée par $\varphi \colon [0,1] \times [-1,1] \to \mathbb{R}^3$ où $\varphi(x,y) = (x,y,x^2+y)$. Calculer

 $\iint_{S} x.$

Exercice 4. Calculer l'intégrale

$$\iint_{S} x^2 y^2 z,$$

 $où S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2, 0 \le z \le 1\}.$

Exercice 5. Soit $\psi: U = (0, 2\pi) \times (-\pi/2, \pi/2) \to \mathbb{R}^3$ l'application définie par

$$\psi(s,t) = (\cos(s), \sin(s), \sin(t)).$$

1. Montrer que l'image de ψ est le cylindre

$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, -1 \le z \le 1\}.$$

2. Vérifier que ψ est injective.

On note à présent $\varphi \colon U \to \mathbb{R}^3$ définie par

$$\varphi(s,t) = (\cos(t)\cos(s), \sin(t)\cos(s), \sin(t)).$$

- 3. Montrer que l'image de φ est égale à la sphère unité.
- 4. Montrer que φ est injective.

Finalement, calculer $||n_{\psi}(s,t)||$ et $||n_{\varphi}(s,t)||$. En déduire l'aire de sphère unité et du cylindre C.

Exercice 6. Calculer l'aire d'un hélicoïde paramétré par

$$\varphi(r,\theta) = (r\cos(\theta), r\sin(\theta), \theta),$$

$$o\grave{u}\ (r,\theta)\in (0,1)\times (0,2\pi).$$

Exercice 7. Calculer l'aire d'un tore paramétré par

$$\varphi(u,v) = \big((R + \cos(u))\cos(v), (R + \cos(u))\sin(v), \sin(u) \big)$$

où $(u,v)\in(0,2\pi)\times(0,2\pi)$ et R>0 est un paramètre fixé.