الحساب المثلثي – الجزء 2-

الدورة الثانية

الدرس الأول

عدد الساعات: 15

القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على الدائرة المثلثية

I- <u>المعادلات المثلثية</u>

 $\cos x = a$ المعادلة -1

$$x \in \mathbb{R}$$
 $\cos x = \frac{1}{2}$ حل $\frac{\mathbf{1}}{2}$

لدينا المستقيم $x=rac{1}{2}$ يقطع الدائرة المثلثية في نقطتين M و ' M أفصوليهما المنحنيين الرئيسيين على التوالي هما $rac{\pi}{3}$ و $rac{\pi}{3}$.

M بما أن $2k\pi$ بحيث $2k\pi$ بحيث $k\in\mathbb{Z}$ بحيث $k\in\mathbb{Z}$ بعن الأفاصيل المنحنية للنقطة $k\in\mathbb{Z}$ بحيث $k\in\mathbb{Z}$ بحيث $k\in\mathbb{Z}$ بحيث $k\in\mathbb{Z}$ بحيث بحيث $k\in\mathbb{Z}$ هي الأفاصيل المنحنية للنقطة ب

$$k\in\mathbb{Z}$$
 فإننا نستنتج أن $x=rac{\pi}{3}+2k\pi$ تكافئ $\cos x=rac{1}{2}$ أو $\cos x=rac{1}{2}$ حيث $S=\left\{rac{\pi}{3}+2k\,\pi/k\,\in\mathbb{Z}
ight\}\cup\left\{-rac{\pi}{3}+2k\,\pi/k\,\in\mathbb{Z}
ight\}$ إذن

$$x \in \left[-2\pi; 2\pi\right]$$
 $\cos x = \frac{1}{2}$ حل $\frac{2}{2}$

نتبع نفس الخطوات السابقة فنحصل على

$$k \in \mathbb{Z}$$
 تكافئ $x = -\frac{\pi}{3} + 2k\pi$ أو $x = \frac{\pi}{3} + 2k\pi$ تكافئ $\cos x = \frac{1}{2}$

 $\left[-2\pi; 2\pi\right]$ وحيث أننا نحل المعادلة في المجال

$$-2\pi \le -\frac{\pi}{3} + 2k \; \pi \le 2\pi$$
 فان $-2\pi \le \frac{\pi}{3} + 2k \; \pi \le 2\pi$ فان

$$k=0$$
 او $k=-1$ کافئ $k=-1$ تکافئ $-\frac{7}{6} \le k \le \frac{5}{6}$ تکافئ $-2\pi \le \frac{\pi}{3} + 2k\pi \le 2\pi$ لدينا

$$x = -\frac{5\pi}{3}$$
 ومنه $x = \frac{\pi}{3}$

$$k=0$$
 او $k=1$ أو $-\frac{5}{6} \le k \le \frac{7}{6}$ تكافئ $-2\pi \le -\frac{\pi}{3} + 2k\pi \le 2\pi$ لدينا

$$x = \frac{5\pi}{3}$$
 ومنه $x = -\frac{\pi}{3}$

$$S = \left\{ \frac{-5\pi}{3}; \frac{-\pi}{3}; \frac{\pi}{3}; \frac{5\pi}{3} \right\}$$
 إذن

$$a \prec -1 \lor a \succ 1$$
 لا تقبل حلا إذا كان * $\cos x = a$

$$k \in \mathbb{Z}$$
 / $x = 2k\pi$ إذا وفقط إذا كان $x \in \mathbb{R}$ $\cos x = 1$

$$k \in \mathbb{Z}$$
 / $x = \pi + 2k\pi$ إذا وفقط إذا كان $x \in \mathbb{R}$ $\cos x = -1$

$$\cos \alpha = a$$
 حیث]0; π [حیث α من $-1 \prec \alpha \prec 1$ خان *

$$k\in\mathbb{Z}$$
 و بالتالي حلول المعادلة $x=-lpha+2k\pi$ في \mathbb{R} هي $\cos x=a$ أو $\cos x=a$ و بالتالي حلول المعادلة $S=\left\{lpha+2k\,\pi\,/\,k\in\mathbb{Z}\right\}\cup\left\{-lpha+2k\,\pi/\,k\in\mathbb{Z}\right\}$

$$x \in \mathbb{R} \qquad \cos\left(x + \frac{\pi}{3}\right) = \cos(2x) \qquad x \in \left]-\pi; 3\pi\right] \quad \cos\left(2x - \frac{3\pi}{4}\right) = -\frac{\sqrt{3}}{2}$$
$$x \in \left[\pi; 2\pi\right[\qquad 2\cos^2 x + 3\cos x + 1 = 0$$

$$k \in \mathbb{Z} \text{ ind} \quad x \in \mathbb{R} \qquad \cos\left(x + \frac{\pi}{3}\right) = \cos(2x) \text{ ind} \quad x$$

$$k \in \mathbb{Z} \text{ ind} \quad 2x = -x - \frac{\pi}{3} + 2k\pi \text{ if} \quad 2x = x + \frac{\pi}{3} + 2k\pi \text{ iddic} \quad \cos\left(x + \frac{\pi}{3}\right) = \cos(2x)$$

$$k \in \mathbb{Z} \text{ ind} \quad 3x = -\frac{\pi}{3} + 2k\pi \text{ if} \quad 3 + 2k\pi \text{ iddic} \quad \cos\left(x + \frac{\pi}{3}\right) = \cos(2x)$$

$$k \in \mathbb{Z} \text{ ind} \quad x = -\frac{\pi}{9} + \frac{2}{3}k\pi \text{ if} \quad x = \frac{\pi}{3} + 2k\pi \text{ iddic}$$

$$S = \left\{\frac{\pi}{3} + 2k\pi / k \in \mathbb{Z}\right\} \cup \left\{-\frac{\pi}{9} + \frac{2}{3}k\pi / k \in \mathbb{Z}\right\} \quad \text{id}$$

$$x \in]-\pi; 3\pi] \quad \cos\left(2x - \frac{3\pi}{4}\right) = -\frac{\sqrt{3}}{2} \text{ idd}$$

$$x \in]-\pi; 3\pi] \quad \cos\left(2x - \frac{3\pi}{4}\right) = -\frac{\sqrt{3}}{2} \text{ idd}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{2}{3}k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{2}{3}k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + \frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \cos\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \sin\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \sin\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \sin\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \sin\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \sin\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \sin\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \sin\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \sin\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \sin\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad \sin\left(\frac{\pi}{9} + 2k\pi / k \in \mathbb{Z}\right) \quad \text{id}$$

$$x \in [-\pi, \pi] \quad$$

 $2X^2 + 3X + 1 = 0$ نضع $\cos x = X$ المعادلة تصبح

$$\Delta = 3^2 - 4 \times 2 \times 1 = 1$$
 ومنه $X = \frac{-3 - 1}{4} = -1$ أو $X = \frac{-3 + 1}{4} = -\frac{1}{2}$ و بالتالي $\cos x = -1$ أو $\cos x = -\frac{1}{2}$

 $k \in \mathbb{Z}$ / $x = \pi + 2k\pi$ تكافئ $\cos x = -1$ لدينا

 $x=\pi$ ومنه $0 \leq k \prec \frac{1}{2}$ أي $\pi \leq \pi + 2k\pi \prec 2\pi$ فان $x \in \left[\pi; 2\pi\right[$

$$\cos x = \cos \frac{2\pi}{3}$$
 لدينا
$$\cos x = -\frac{1}{2}$$

$$k \in \mathbb{Z}$$
 حیث $x = -\frac{2\pi}{3} + 2k\pi$ ومنه $x = \frac{2\pi}{3} + 2k\pi$

و حیث $x \in [\pi; 2\pi[$ فان

$$k=1$$
 من أجل $x=-rac{5}{6} \leq k \prec rac{4}{3}$ أي $\pi \leq -rac{2\pi}{3} + 2k\pi \prec 2\pi$ ومنه $x=-rac{2\pi}{3} + 2k\pi$

$$x = -\frac{2\pi}{3} + 2\pi = \frac{4\pi}{3}$$
 إذن

من أجل
$$x=\frac{2\pi}{3}+2k\pi$$
 لا يوجد عدد صحيح نسبي $x=\frac{2\pi}{3}+2k\pi$ من أجل

يحقق المتفاوتة الأخيرة

$$S = \left\{\pi; \frac{4\pi}{3}\right\}$$
 إذن

 $\sin x = a$ المعادلة -2

$$x \in \mathbb{R}$$
 $\sin x = \frac{\sqrt{3}}{2}$ حل $\frac{1}{2}$

 $x \in \mathbb{R}$ $\sin x = \frac{1000}{2}$ لدينا المستقيم $\Delta: y = \frac{\sqrt{3}}{2}$ يقطع الدائرة المثلثية

في نقطتين M و ' M أفصوليهما المنحنيين الرئيسيين على التوالي هما $\frac{\pi}{3}$ و $\frac{\pi}{3}$ و $\frac{\pi}{3}$

للنقطة M و $2k\pi$ + $2k\pi$ بحيث $k\in\mathbb{Z}$ بحيث بحيث M

المنحنية للنقطة ' M فإننا نستنتج أن

$$k\in\mathbb{Z}$$
 تكافئ $x=rac{2\pi}{3}+2k\pi$ أو $x=rac{\pi}{3}+2k\pi$ حيث $\sin x=rac{\sqrt{3}}{2}$ $S=\left\{rac{\pi}{3}+2k\,\pi\,/\,k\,\in\mathbb{Z}
ight\}\cup\left\{rac{2\pi}{3}+2k\,\pi\,/\,k\,\in\mathbb{Z}
ight\}$ إذن

$$x \in [-2\pi; 3\pi]$$
 $\sin x = \frac{\sqrt{3}}{2}$ حل $\frac{2}{3}$

نتبع نفس الخطوات السابقة فنحصل على

$$k \in \mathbb{Z}$$
 تكافئ $x = \frac{2\pi}{3} + 2k\pi$ أو $x = \frac{\pi}{3} + 2k\pi$ تكافئ $\sin x = \frac{\sqrt{3}}{2}$

 $\left[-2\pi;3\pi\right]$ وحيث أننا نحل المعادلة في المجال

$$-2\pi \leq \frac{2\pi}{3} + 2k \, \pi \leq 3\pi \quad \text{if} \quad -2\pi \leq \frac{\pi}{3} + 2k \, \pi \leq 3\pi \quad \text{id}$$

$$-\frac{7}{6} \leq k \leq \frac{8}{6} \quad \text{id} \quad -2\pi \leq \frac{\pi}{3} + 2k\pi \leq 3\pi \quad \text{le}$$

$$k = 1 \quad \text{if} \quad k = 0 \quad \text{if} \quad k = -1 \quad \text{id} \quad x = \frac{\pi}{3} \quad \text{if} \quad x = \frac{7\pi}{3} \quad \text{if} \quad x = \frac{7\pi}{3} \quad \text{if} \quad x = \frac{7\pi}{3} \quad \text{if} \quad x = \frac{8\pi}{3} \quad \text{if} \quad x = \frac{8\pi}{$$

 $a \prec -1 \quad \lor \quad a \succ 1$ لا تقبل حلا إذا كان x = a

$$k \in \mathbb{Z}/$$
 $x = \frac{\pi}{2} + 2k \pi \Leftrightarrow x \in \mathbb{R} \quad \sin x = 1$

$$k \in \mathbb{Z}$$
 / $x = -\frac{\pi}{2} + 2k \pi \Leftrightarrow x \in \mathbb{R} \quad \sin x = -1$

$$\sin \alpha = a$$
 حيث $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ من $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ حيث $a < 1$ خان يوجد عنصر

 $k\in\mathbb{Z}$ حيث $x=\pi-\alpha+2k\pi$ أو $x=\alpha+2k\pi$ حيث $\sin x=a$ حلول المعادلة $S=\left\{\alpha+2k\pi\,/\,k\in\mathbb{Z}\right\}\cup\left\{\pi-\alpha+2k\pi\,/\,k\in\mathbb{Z}\right\}$ مجموعة حلول المعادلة

$$x \in \mathbb{R}$$
 $\sin\left(2x + \frac{\pi}{3}\right) = \cos(3x)$ تمرين حل المعادلات $x \in \left]-\pi; 2\pi\right]$ $\sin\left(2x - \frac{\pi}{4}\right) = -\frac{1}{2}$

الحل------

$$x\in\mathbb{R}$$
 $\sin\left(2x+\frac{\pi}{3}\right)=\cos(3x)$ نحل $\sin\left(2x+\frac{\pi}{3}\right)=\sin\left(\frac{\pi}{2}-3x\right)$ تكافئ $\sin\left(2x+\frac{\pi}{3}\right)=\sin\left(\frac{\pi}{2}-3x\right)$ تكافئ $\sin\left(2x+\frac{\pi}{3}\right)=\cos(3x)$ ثحل $x\in\mathbb{Z}$ تكافئ $\sin\left(2x+\frac{\pi}{3}\right)=\cos(3x)$ أو $2x+\frac{\pi}{3}=\pi-\frac{\pi}{2}+3x+2k\pi$ حيث $\sin\left(2x+\frac{\pi}{3}\right)=\cos(3x)$ ثخل $x\in\mathbb{Z}$ تكافئ $x=\frac{\pi}{6}+2k\pi$ أو $x=\frac{\pi}{6}+2k\pi$ حيث $x=\frac{\pi}{6}+2k\pi$ أو $x=\frac{\pi}{6}+2k\pi$ أو $x\in\mathbb{Z}$ $x=\frac{\pi}{6}+2(-k)\pi/k\in\mathbb{Z}$ أو $x\in\mathbb{Z}$ أو $x\in\mathbb{Z}$ حيث $x\in\mathbb{Z}$ حيث $x\in\mathbb{Z}$ أو $x\in\mathbb{Z}$ أو $x\in\mathbb{Z}$ حيث $x\in\mathbb{Z}$ حيث $x\in\mathbb{Z}$ أو $x\in\mathbb{Z}$ أو $x\in\mathbb{Z}$ حيث $x\in\mathbb{Z}$ حيث $x\in\mathbb{Z}$

$$k\in\mathbb{Z}$$
 تكافئ $2x=rac{17\pi}{12}+2k\pi$ أو $2x=rac{\pi}{12}+2k\pi$ حيث $k\in\mathbb{Z}$ حيث $x=rac{17\pi}{24}+k\pi$ تكافئ $x=rac{\pi}{24}+k\pi$ أو

و حيث أن $x \in]-\pi; 2\pi$ فان

$$k=1$$
 من أجل $x=0$ أو $k=0$ أو $x=0$ أو $x=0$ أو $x=0$ من أجل $x=0$ لدينا $x=0$ أو $x=0$ أو

$$x = \frac{\pi}{24} + \pi = \frac{25\pi}{24}$$
 وأ $x = \frac{\pi}{24} - \pi = -\frac{23\pi}{24}$ إذن

$$k=1$$
 أو $k=0$ أو $k=-1$ أو $k=-1$ من أجل لدينا $k=-1$ ومنه $k=-1$ ومنه $k=-1$ ومنه $k=-1$ أو $k=-1$

$$x = \frac{17\pi}{24} + \pi = \frac{41\pi}{24}$$
 او $x = \frac{17\pi}{24} + \pi = \frac{41\pi}{24}$ او $x = \frac{17\pi}{24} - \pi = -\frac{7\pi}{24}$

$$S = \left\{ -\frac{23\pi}{24}; -\frac{7\pi}{24}; \frac{\pi}{24}; \frac{17\pi}{24}; \frac{25\pi}{24}; \frac{41\pi}{24} \right\}$$
 ease

 $x \in \mathbb{R}$ tan x = -1 حل المعادلة

، I المماس الدائرة المثلثية (C) في أصلها Δ نأخد النقطة T من Δ حيث -1 أفصول المحور T

$$M$$
 و بالتالي $rac{\pi}{4}$ أفصول منحني للنقطة

$$x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$$
ويما أن $\tan(x + k\pi) = \tan x$ ويما

$$x = \frac{-\pi}{4} + k\pi / k \in \mathbb{Z}$$
 فان حلول المعادلة هي

$$S = \left\{ \frac{-\pi}{4} + k \, \pi \, / \, k \, \in \mathbb{Z} \right\}$$
 اذن

$$\left|-\frac{\pi}{2};\frac{\pi}{2}\right|$$
 في $\tan x=a$ خيث α حل للمعادلة $\tan x=a\Leftrightarrow x=\alpha+k$ في $a\leftrightarrow x=\alpha+k$

تمرين حل المعادلتين

$$x \in [0; 3\pi] \quad \tan 2x = \sqrt{3}$$

$$x \in \mathbb{R} \quad \tan\left(2x - \frac{\pi}{3}\right) = -\tan x$$

II<u>- المتراجحات المثلثية</u> <u>مثال1</u>

$$x \in]-\pi;\pi]$$
 $\cos x \ge \frac{1}{2}$

$$x \in \left] -\pi; \pi\right]$$
 $\cos x = \frac{1}{2}$ نحل أولا المعادلة

بإتباع خطوات حل المعادلات نحصل على

$$x=-rac{\pi}{3}$$
 أ $x=rac{\pi}{3}$ تكافئ $x\in \left]-\pi;\pi
ight]$ $\cos x=rac{1}{2}$ لتكن $M\left(rac{\pi}{3}
ight)$ و $M\left(rac{\pi}{3}
ight)$ سقطتين من الدائرة المثلثية مجموعة حلول المتراجحة هي مجموعة الأفاصيل $\left[-\pi;\pi
ight]$ في $\left[\widehat{M'M'}
ight]$ في $S=\left[rac{\pi}{3};rac{\pi}{3}
ight]$ وهذه المجموعة هي $S=\left[rac{\pi}{3};rac{\pi}{3}
ight]$

$$x\in \left[0;3\pi\right[$$
 حل $\frac{2}{2}$ حل $\frac{2}{2}$ حل $x\in \left[0;3\pi\right[$ حل $x\in \left[0;3\pi\right]$ حد أولا المعادلة $x=\frac{1}{2}$ أو $x=\frac{5\pi}{3}$ أو $x=\frac{7\pi}{3}$ أو $x=\frac{\pi}{3}$

،
$$M$$
 أفصولين منحنيين لنفس النقطة $\frac{7\pi}{3}$ و $\frac{\pi}{3}$ نعتبر $\frac{5\pi}{3}$ أفصول منحني للنقطة '

 $(C\,)$ مجموعة حلول المتراجحة هي مجموعة الأفاصيل المنحنية للنقط

$$[0;3\pi[$$
 التي تنتمي الى القوس الى القوس $S=\left[0;\frac{\pi}{3}\right]\cup\left[\frac{5\pi}{3};\frac{7\pi}{3}\right]$ وهذه المجموعة هي

مثال3

$$x \in [0; 2\pi]$$
 $\tan x \ge \sqrt{3}$ حل $x \in [0; 2\pi]$ $\tan x = \sqrt{3}$ نحل المعادلة $x = \frac{4\pi}{3}$ أو $x = \frac{\pi}{3}$ تكافئ $x = \sqrt{3}$

A نعتبر $\frac{\pi}{3}$ أفصول منحني للنقطة

$$B$$
 و أفصول منحني للنقطة $\frac{4\pi}{3}$

مجموعة حلول المتراجحة هي مجموعة الأفاصيل المنحنية $\left[\widehat{BJ'}\right]$ و $\left[\widehat{AJ}\right]$ و النقط $\left[0;2\pi\right]$ في $\left[0;2\pi\right]$

$$S = \left[\frac{\pi}{3}; \frac{\pi}{2}\right] \cup \left[\frac{4\pi}{3}; \frac{3\pi}{2}\right]$$
 وهذه المجموعة هي

$$x \in]-\pi;\pi]$$
 $\sin x \succ \frac{-1}{2}$ حل $x \in]0;4\pi]$ $\sin x \succ \frac{-1}{2}$ $x \in [0;2\pi]$ $\tan x \prec 1$

متراجحات تؤول في حلها إلى متراجحات أساسية

<u>تمرين</u>

حل

$$x \in [-\pi, \pi] \quad \sin\left(x - \frac{\pi}{3}\right) \le \frac{1}{2}$$

$$x \in [0, \pi] \quad \tan 3x > \sqrt{3}$$

$$x \in [-\pi, \pi] \quad 4\cos^2 x - 2\left(1 + \sqrt{2}\right)\cos x + \sqrt{2} \le 0$$

$$x \in [-\pi, \pi] \quad \frac{1 + \tan x}{\sin 2x} \ge 0$$

III- الزوايا المحيطية – الرباعيات الدائرية

1- تعریف

· <u>الزاوية المركزية</u> : هي زاوية رأسها مركز الدائرة

• <u>الزاوية المحيطية</u>: هي زاوية ينتمي رأسها للدائرة وتحصر بين ضلعيها قوسا من هذه الدائرة

2-خاصيات

نشاط1

لتكن (C) دائرة مركزها O نعتبر A و B نقطتين مختلفتين من (C)غير متقابلتين قطريا

 $\left\lceil \widehat{AB}
ight
ceil$ و M نقطة من $\left(C
ight)$ بحيث $\left(\widehat{AOB}
ight.$ و $\left(\widehat{AMB}
ight.$ و

بين أن $\widehat{AOB} = 2\widehat{AMB}$ في الحالات التالية -1

A و O و M مستقیمیة M

بM و O و A غير مستقيمية

یمکن اعتبار نقطهٔ N من (C) حیث N و O و N مستقیمیه

و باستعمال أ/ مرتين بين المطلوب

عتبر (AT) المماس للدائرة (C). الزاوية \widehat{BAT} محيطية تحصر نفس القوس التي تحصره الالزاوية -2

 \widehat{AOB} المركزية

$$\widehat{AOB} = 2\widehat{TAB}$$
 بین أن

AOB = 2TAB بین ان

أM و O و A مستقيمية -1

O المثلث OBM متساوي الساقين في الرأس

$$\widehat{BOM} = \pi - 2\widehat{BMO}$$
 ومنه

و حيث $\widehat{BOM} = \pi - \widehat{AOB}$ لأن M و O و A مستقيمية

$$\widehat{AOB} = 2\widehat{BMO}$$
 فان

$$\widehat{AOB} = 2\widehat{AMB}$$
 اذن

ب/ M و O و A غير مستقيمية

من(C) حيث N و O و M مستقيمية N

$$\widehat{NOB} = 2\widehat{NMB}$$
 حسب أ/ لدينا

Oلدينا Oمثلث متساوي الساقين في الرأس الدينا

$$\widehat{AOM} = \pi - 2\widehat{AMO}$$
 e ais

$$\widehat{AOB} = \pi - \left(\widehat{NOB} + \widehat{AOM}\right)$$
 لدينا

$$\widehat{AOB} = \pi - \left(2\widehat{NMB} + \pi - 2\widehat{AMO}\right)$$
 ومنه

$$\widehat{AOB} = 2\Big(\widehat{AMO} - \widehat{NMB}\Big)$$

$$\widehat{AOB} = 2\widehat{AMB}$$
 إذن

$$\widehat{AOB} = 2\widehat{TAB}$$
 إبين أن /2

$$\widehat{OAB} = \frac{\pi}{2} - \widehat{BAT}$$
 ومنه (C) ومنه (AT)

$$\stackrel{-}{O}$$
 لدينا $\stackrel{-}{OAB}$ متساوي الساقين في الرأس $\stackrel{-}{OAB}=\pi-2\widehat{OAB}$ ومنه

$$\widehat{OAB} = \pi - 2\widehat{OAB}$$
 gain

$$\widehat{OAB} = \pi - 2\left(\frac{\pi}{2} - \widehat{BAT}\right)$$
 و بالتالي

$$\widehat{AOB} = 2\widehat{TAB}$$
 إذن

الزاوية المركزية

نشاط2

$$O$$
 لتكن A و B و C و D نقط مختلفة من دائرة C مركزها C

$$\widehat{ABC} = \widehat{ADC}$$
 او $\widehat{ABC} + \widehat{ADC} = \pi$ بين أن

و B و C ثلاث نقط من دائرة C و D و D نقط مختلفة من المستوى A

 $\widehat{ABC}=\widehat{ADC}$ أو $\widehat{ABC}+\widehat{ADC}=\pi$ تكون D من الدائرة

3- علاقات الحيث في مثلث

ABC مثلثا و R شعاع الدائرة المحيطة بالمثلث ABC

بين أن
$$\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{B}} = \frac{AB}{\sin \hat{C}} = 2R$$
 في الحالات التالية

A قائم الزاوية في ABC أ

ب/ جميع زوايا المثلث ABC حادة

ABC منفرجة إحدى زوايا المثلث

A قائم الزاوية في ABC أ

$$\frac{BC}{\sin \hat{A}} = BC = 2R$$
 ومنه $\sin \hat{A} = \sin \frac{\pi}{2} = 1$

$$\frac{AC}{\sin \hat{R}} = 2R$$
 ومنه $\sin \hat{B} = \frac{AC}{BC} = \frac{BC}{2R}$

$$\frac{AB}{\sin \hat{C}} = 2R$$
 ومنه $\sin \hat{C} = \frac{AB}{BC} = \frac{AB}{2R}$

$$\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{B}} = \frac{AB}{\sin \hat{C}} = 2R$$
 إذن

ب/ جميع زوايا المثلث ABC حادة

C نقطة مقابلة قطريا مع D

B قائم الزاوية في DBC

لدينا
$$\widehat{D} \equiv \widehat{A}$$
 زاويتان محيطيتان تحصران نفس القوس $\widehat{D} \equiv \widehat{A}$ الدينا $\frac{BC}{\sin \widehat{A}} = 2R$ ومنه $\sin \widehat{D} = \frac{BC}{DC} = \frac{BC}{2R}$

A قائم الزاوية في DAC

و
$$\widehat{CDA} \equiv \widehat{R}$$
 زاویتان محیطیتان تحصران نفس القوس

و
$$\widehat{CDA} \equiv \widehat{B}$$
 زاویتان محیطیتان تحصران نفس القوس $\widehat{CDA} \equiv \widehat{B}$ و $\frac{AC}{\sin \widehat{B}} = 2R$ زاویتان محیطیتان تحصران نفس $\sin \widehat{CDA} = \frac{AC}{DC} = \frac{AC}{2R}$

$$\frac{AB}{\sin \hat{C}} = 2R$$
 بالمثل نعتبر نقطة مقابلة قطريا مع A و نبين

$$\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{B}} = \frac{AB}{\sin \hat{C}} = 2R$$
 إذن

لنفترض أن \widehat{A} منفرجة C نقطة مقابلة قطريا مع D

$$\sin \widehat{D} = \sin \widehat{A}$$
 و \hat{D} متكاملتان ومن $\hat{D} = \sin \widehat{A}$ و $\hat{D} = \frac{BC}{\sin \widehat{A}} = 2R$ و منه $\sin \widehat{D} = \frac{BC}{DC} = \frac{BC}{2R}$

الزاوىتان \hat{C} و \hat{B} حادتان

$$\frac{AC}{\sin \hat{B}} = 2R$$
 و $\frac{AB}{\sin \hat{C}} = 2R$ حسب ب/ نحصل علی

$$\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{B}} = \frac{AB}{\sin \hat{C}} = 2R$$
 إذن

خاصیة
$$ABC$$
 لیکن ABC مثلثا و R شعاع الدائرة المحیطة به BC مر BC حمد BC

$$\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{B}} = \frac{AB}{\sin \hat{C}} = 2R$$
4- علاقات في المثلث (المساحة - المحيط)

ليكن ABC مثلثا و H المسقط العمودي لـ A على ABC و A

$$S = \frac{1}{2} \Big(BC \times AC \times \sin \hat{C} \Big)$$
 بین أن -1

و O مركزها ABC و ABC و O مركزها الدائرة المحاطة بالمثلث AC و AC بدلالة AC الحسب مساحة AC

$$ABC$$
 برا بين أن $S = \frac{1}{2}p \times r$ حيث p حيث $S = \frac{1}{2}p \times r$

pمحیطه S مثلثا و p شعاع الدائرة المحاطة به و S مساحته p محیطه ABC

$$S = \frac{1}{2} \left(BC \times AC \times \sin \widehat{C} \right)$$
$$S = \frac{1}{2} p \times r$$