Flex Sensor

Ιωάννης Στεφανίδης ΑΕΜ: 9587

ΑΠΘ

1. Αισθητήρας

Ο flex sensor είναι απλά μια αντίσταση που όσο περισσότερο τον λυγίσουμε τόσο μεγαλύτερη τιμή αντίστασης παίρνουμε. Έχει δηλαδή την ίδια λειτουργία με ένα ποτενσιόμετρο.

2. Κυκλώματα

10 Κύκλωμα

2° Κύκλωμα

3. Επιλογή αντίστασης

Όπως φαίνεται στο 1° κύκλωμα πρέπει να χρησιμοποιήσουμε μια αντίσταση R_{c} η οποία όμως θα είναι σταθερή. Εφόσον η Rf παίρνει τιμές από 30K έως 100K (οι τιμές αυτές βγήκαν από το πολύμετρό μου). Μέσω του τύπου διαιρέτη τάσης:

$$V_{A0} = Vin(\frac{R_c}{R_f + R_c})$$

μπορούμε να υπολογίσουμε για ποια τιμή της R_c θα έχουμε μεγαλύτερη ευαισθησία (δηλαδή το V_{A0} να μπορεί να πάρει περισσότερες τιμές). Επίσης ανάλογα την εφαρμογή που θέλουμε να χρησιμοποιήσουμε τον flex sensor αν δηλαδή θα τον λυγίζουμε πολύ ή λίγο, η καλύτερη αντίσταση R_c είναι διαφορετική.

Παρόλο που βρήκαμε ότι για μια εφαρμογή που θα λυγίζαμε τον αισθητήρα στο 50% η καλύτερη αντίσταση είναι 36K και αντίστοιχα για 100% 51K, εγώ θα χρησιμοποιήσω μια αντίσταση 10K με την οποία στο Arduio παίρνω τιμές από 85 έως 245.

4. Κώδικας

Για 1º Κύκλωμα

Παρακάτω φαίνεται ένας απλός κώδικας για να δούμε την αλλαγή στην τιμή τάσης στο pin A0.

Για 20 Κύκλωμα

Για το δεύτερο κύκλωμα θέλουμε όταν ο αισθητήρας είναι καθόλου ή λίγο λυγισμένος να ανάβει το πράσινο led. Αν τον λυγίσουμε παραπάνω (περίπου $90^{\rm o}$) να ανάψει το κόκκινο led και στην περίπτωση που τον λυγίσουμε περισσότερο να χτυπήσει και το buzzer.