Algebraic Number Theory

Exercise sheet 3

Solutions should be submitted online before 11.05.20 via the Moodle page of the course: https://moodle.hu-berlin.de/course/view.php?id=95156

Exercise 3.1. (2 + 2 points) Compute discriminants of the following fields (you may use results of Exercise 2.3 from the previous exercise sheet):

- 1. $\mathbb{Q}(\sqrt{7})$
- 2. $\mathbb{Q}(\sqrt{-11})$

Exercise 3.2. (3+2 points) Let $R \subset S$ be an integral ring extension.

- 1. Assume that the ring S is an integral domain. Prove the R is a field if and only is S is a field.
- 2. Let $\mathfrak{p} \subset S$ be a prime ideal. Deduce from the first part of the exercise that \mathfrak{p} is maximal if and only if $R \cap \mathfrak{p}$ is maximal.

Exercise 3.3. (4+3+2 points) Consider the ring $\mathbb{Z}[\sqrt{-5}]$ and two ideals $\mathfrak{p}=(2,1+\sqrt{-5})$ and $\mathfrak{q}=(3,1+\sqrt{-5})$ in it. Denote by $\overline{\mathfrak{p}}$ and $\overline{\mathfrak{q}}$ the ideals obtained by taking complex conjugates of the elements of \mathfrak{p} and \mathfrak{q} .

- 1. Prove that \mathfrak{p} and \mathfrak{q} are prime but not principal. Prove that $\mathfrak{p} = \overline{\mathfrak{p}}$.
- 2. Prove that $\mathfrak{pq} = (1 + \sqrt{-5})$ and $\mathfrak{pq} = (1 \sqrt{-5})$
- 3. Prove that $(6) = \mathfrak{p}^2 \mathfrak{q} \overline{\mathfrak{q}}$