Particle spectrograph

Wave operator and propagator

Source constraints	raints	
SO(3) irreps	SO(3) irreps Fundamental fields	Multiplicities
$\sigma_{0}^{\#1} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$\sigma_{1}^{\#2\alpha} == 0$	$\sigma_1^{\#2}{}^{\alpha} == 0$ $\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	3
$\sigma_{1}^{\#2}\alpha\beta == 0$	$\sigma_{1}^{\#2}{}^{\alpha\beta} == 0 \qquad \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	3
$\sigma_2^{\#1}\alpha\beta == 0$	$\sigma_{2+}^{\#1}{}^{\alpha\beta} == 0 3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi \delta} ==$	2
	$2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi \delta}_{\chi} + 3 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha})$	
Total constra	Total constraints/gauge generators:	12

${\mathscr R}^{\sharp 1}_{0^+} \qquad {\mathscr R}^{\sharp 1}_{0^-}$	
$\mathcal{A}_{0}^{\#1} + \frac{6 k^2 (-r_1 + r_3)}{6 k^2 (-r_1 + r_3)} = 0$	
$\mathcal{A}_{0}^{\#1} + \boxed{0}$	
$\begin{array}{c c} \alpha_{1}^{\#2} \\ 0 \\ 0 \\ 0 \end{array}$	
$\sigma_{1-\alpha}^{\#1}$ $\sigma_{0+\alpha}^{\#1}$ $\sigma_{0+\alpha}^{\#1}$ $\sigma_{0+\alpha}^{\#1}$ $\sigma_{0+\alpha}^{\#1}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	σ_{2}^{+} σ_{2}^{+} σ_{2}^{-}
${\mathscr R}_{1^{+}lphaeta}^{\sharp 1} {\mathscr R}_{1^{+}lphaeta}^{\sharp 2} {\mathscr R}_{1^{-}lpha}^{\sharp 1} {\mathscr R}_{1^{-}lpha}^{\sharp 2}$	
$\mathcal{A}_{1}^{\#1} + \alpha \beta k^{2} (2r_{3} + r_{5}) = 0$ 0	
$\mathcal{A}_{1}^{\#2} + \alpha \beta$ 0 0 0	
$\mathcal{A}_{1}^{\#1} + {\alpha \choose 2} = 0 \qquad 0 \qquad k^2 \left(-r_1 + 2 r_3 + r_5\right) = 0$	
$\mathcal{A}_{1}^{\#2} + {}^{\alpha}$ 0 0 0	

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_1 < 0 \&\& (r_5 < r_1 - 2 r_3 || r_5 > -2 r_3) || r_1 > 0 \&\& -2 r_3 < r_5 < r_1 - 2 r_3$