Álgebra Lineal - Clase 23

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Variedades lineales: nociones básicas.
- Intersección y suma de variedades lineales.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 9 (Secciones 9.1 y 9.2).

Variedades lineales

Definición.

Sea V un K-espacio vectorial. Una variedad lineal $M\subseteq V$ es un conjunto de la forma $M=S+p=\{s+p\mid s\in S\},$ donde S es un subespacio de V y $p\in V$.

Ejemplos.

- Subespacios de un K-e.v. V: $S = S + \vec{0}$.
- Conjuntos formados por un punto de un K-e.v.: $\{p\} = \{0\} + p$.
- ▶ Rectas en \mathbb{R}^2 y \mathbb{R}^3 , planos en \mathbb{R}^3 .
- Conjuntos de soluciones de sistemas lineales compatibles.

$$A \in K^{m \times n}$$
 y $b \in K^{m \times 1} \Rightarrow \{x \in K^n \mid A.x = b\} = S_0 + p$, donde $S_0 = \{x \in K^n \mid A.x = 0\}$ y p es una solución particular de $A.x = b$.

ightharpoonup En $\mathcal{C}^{\infty}(\mathbb{R})$.

- $M = \{P \in K[X] / P(0) = 1\}$

 - $= \{P \in K[X] / P = \sum_{i=1}^{n} a_i X^i + 1\}$

 - $= \{P \in K[X] / P(0) = 0\} + 1.$

 $M = \{ f \in \mathcal{C}^{\infty}(\mathbb{R}) / f'' = \operatorname{sen}(x) \}$

 $f \in M \iff f + \operatorname{sen}(x) \in S$.

- es una variedad lineal.

 $= \{f \in \mathcal{C}^{\infty}(\mathbb{R}) / (f + \operatorname{sen}(x))'' = 0\}.$

 $\Rightarrow M = S + (-\operatorname{sen}(x))$ es una variedad lineal.

 $S = \{g \in \mathcal{C}^{\infty}(\mathbb{R}) \mid g'' = 0\}$ es un subespacio de $\mathcal{C}^{\infty}(\mathbb{R})$,

Proposición.

Sea V un K-e.v. y sea $M \subseteq V$ una variedad lineal. Si $p, p' \in V$ y S, S' son subespacios de V tales que M = S + p y M = S' + p', entonces S = S' y $p - p' \in S$.

Demostración.

- $p' \in M = S + p \Rightarrow p' p \in S:$ $\exists s_0 \in S \text{ tal que } p' = s_0 + p \Rightarrow p' p = s_0 \in S.$
- ► $S' \subseteq S$: $s' \in S' \Rightarrow s' + p' \in M = S' + p' = S + p$ $\Rightarrow \exists s \in S \text{ tal que } s' + p' = s + p.$ $\Rightarrow s' = s + (p - p') = s - s_0 \in S. \text{ Así, } S' \subseteq S.$

Análogamente se prueba que $S \subseteq S'$. Luego, S = S'.

Definición.

Si $M \subseteq V$ es una variedad lineal, M = S + p con S subespacio de V y $p \in V$, S se llama el subespacio asociado a M. Si S es de dimensión finita, se define la dimensión de M como $\dim(M) = \dim(S)$.

Observación.

$$M = S + p \subseteq V$$
 variedad lineal y $p' \in M \Rightarrow M = S + p'$.

$$p' \in M = S + p \Rightarrow p' = s' + p \text{ con } s' \in S.$$

- (\subseteq) Sea $s + p \in M$, con $s \in S$. $s + p = s + p - p' + p' = s + (p - p') + p' = (s - s') + p' \in S + p'$.
- (\supseteq) Sea $s + p' \in S + p'$. $s + p' = s + (s' + p) = (s + s') + p \in S + p = M$.

Algunas variedades lineales particulares

Sea V un K-espacio vectorial.

Definición.

- Una recta en V es una variedad lineal de dimensión 1: $L = \langle v \rangle + p$, con $v, p \in V$, $v \neq \vec{0}$.
- ► Un plano en V es una variedad lineal de dimensión 2: $\Pi = \langle v, w \rangle + p$, con $\{v, w\} \subset V$ I.i.
- Si dim V = n, un hiperplano de V es una variedad lineal de dimensión n 1.

Observación.

- 1. Dados $p \neq q \in V$, existe una única recta $L \subseteq V$ tal que $p \in L$ y $q \in L$.
- 2. Dados $x,y,z\in V$ no alineados (es decir, que no pertenecen a una misma recta), existe un único plano $\Pi\subseteq V$ tal que $x,y,z\in\Pi$.

 $L = \langle p - q \rangle + q$ es la única recta tal que $p \in L$ y $q \in L$.

$$L$$
 es una recta: $p \neq q \Rightarrow \dim(\langle p - q \rangle) = 1$. $q = 0 + q \in L \checkmark y p = (p - q) + q \in L \checkmark$.

Sea $L' \subset V$ una recta tal que $p \in L'$ y $q \in L'$. $\exists S \subset V$ subespacio dim S = 1 tal que L' = S + p y L' = S + q $\Rightarrow p - q \in S, \ p - q \neq 0$ y dim $S = 1 \Rightarrow S = \langle p - q \rangle$. Luego L' = L.

 $\Pi = \langle y - x, z - x \rangle + x$ es el único plano tal que $x, y, z \in \Pi$

$$x = 0 + x \in \Pi$$
, $y = (y - x) + x \in \Pi$ y $z = (z - x) + x \in \Pi$.

Π es un plano:

$$x, y, z$$
 no alineados $\Rightarrow \dim(\langle y - x, z - x \rangle) = 2$

Sea $\Pi' = S + p$ es un plano con $x, y, z \in \Pi'$.

$$\Pi' = S + x$$
, $\Pi' = S + y$, $\Pi' = S + z \Rightarrow y - x \in S$ y $z - x \in S$.

$$\Rightarrow S = \langle y - x, z - x \rangle$$
.

Luego, $\Pi' = \Pi$.

Definición.

Dados $a_0, a_1, \ldots, a_n \in V$, se llama variedad lineal generada por a_0, \ldots, a_n a la variedad lineal $M \subseteq V$ más chica (en el sentido de la inclusión) tal que $a_i \in M \ \forall 0 \leq i \leq n$ (es decir, $M' \subset V$ variedad lineal con $a_i \in M' \ \forall 0 \leq i \leq n \Rightarrow M \subset M'$).

Proposición.

La variedad lineal generada por $a_0, a_1, \ldots, a_n \in V$ es

$$M = \langle a_1 - a_0, \dots, a_n - a_0 \rangle + a_0.$$

Observar que $\dim(M) \leq n$.

Demostración.

$$a_0 = 0 + a_0 \in M$$
 y $a_i = (a_i - a_0) + a_0 \in M \ \forall 1 \le i \le n$.
Sea $M' = S + a_0$ tal que $a_i \in M' \ \forall 0 \le i \le n$.
 $a_0, a_i \in M' \Rightarrow a_i - a_0 \in S \ \forall 1 \le i \le n$
 $\Rightarrow \langle a_1 - a_0, a_2 - a_0, \dots, a_n - a_0 \rangle \subseteq S$
 $\Rightarrow M = \langle a_1 - a_0, a_2 - a_0, \dots, a_n - a_0 \rangle + p \subseteq S + p = M'$.

Intersección de variedades lineales

Proposición.

Sean M_1 y M_2 variedades lineales en un K-e.v. V. Entonces $M_1 \cap M_2 = \emptyset$ o $M_1 \cap M_2$ es una variedad lineal.

Demostración.

Supongamos que $M_1\cap M_2\neq\emptyset$ y sea $p\in M_1\cap M_2$. $\Rightarrow M_1=S_1+p$ y $M_2=S_2+p$ con S_1 y S_2 subespacios de V. Veamos que $M_1\cap M_2=(S_1\cap S_2)+p$:

- (⊇) Si $q = s + p \text{ con } s \in S_1 \cap S_2$ ⇒ $q \in M_1 = S_1 + p \text{ y } q \in M_2 = S_2 + p$; luego $q \in M_1 \cap M_2$.

Variedades lineales paralelas y alabeadas

Definición.

Sean $M_1=S_1+p_1$ y $M_2=S_2+p_2$ variedades lineales en un K-e.v. V. Se dice que M_1 y M_2 son paralelas, y se nota $M_1\parallel M_2$, si $S_1\subseteq S_2$ o $S_2\subseteq S_1$.

En particular, si $M_1 = S_1 + p_1$ y $M_2 = S_2 + p_2$ son variedades lineales de la misma dimensión, $M_1 \parallel M_2 \iff S_1 = S_2$.

Ejemplos.

- ightharpoonup Un punto en V es paralelo a cualquier variedad lineal en V.
- ► $L = \langle (-1,2,1) \rangle + (0,1,0)$ es paralela al plano $\Pi = \{ x \in \mathbb{R}^3 \mid x_1 + x_2 - x_3 = 4 \}$: $S_L = \langle (-1,2,1) \rangle$ y $S_\Pi = \{ x_1 + x_2 - x_3 = 0 \} \Rightarrow S_L \subset S_\Pi$
- ▶ $L_1 = \langle (-1,2,1) \rangle + (0,1,0)$ y $L_2 = \{x \in \mathbb{R}^3 \mid 2x_1 + x_2 = 1, x_1 + x_3 = 4\}$ son paralelas: $S_{L_1} = \langle (-1,2,1) \rangle$, $S_{L_2} = \{x \in \mathbb{R}^3 \mid 2x_1 + x_2 = 0, x_1 + x_3 = 0\} \Rightarrow S_{L_1} = S_{L_2}$.

Proposición.

Sean L_1 y L_2 rectas en un K-e.v. V. Son equivalentes:

- i) Existe $\Pi \subseteq V$ plano tal que $L_1 \subseteq \Pi$ y $L_2 \subseteq \Pi$.
- ii) $L_1 \cap L_2 \neq \emptyset$ o $L_1 \parallel L_2$.

Demostración.

$$ii) \Rightarrow i$$

▶ Si $L_1 \cap L_2 \neq \emptyset$: $p \in L_1 \cap L_2 \Rightarrow L_1 = \langle v_1 \rangle + p$ y $L_2 = \langle v_2 \rangle + p$, con $v_1, v_2 \in V$ no nulos.

Si v_1 y v_2 son l.i., $\Pi = \langle v_1, v_2 \rangle + p$ es un plano que contiene a L_1 y a L_2 .

Si v_1 y v_2 son l.d., sea $w \in V$ tal que $\{v_1, w\}$ es l.i. $\Rightarrow \Pi = \langle v_1, w \rangle + p$ es un plano que contiene a $L_1 = L_2$.

▶ Si $L_1 \cap L_2 = \emptyset$ y $L_1 \parallel L_2$: $\exists v \in V, v \neq 0$, tal que $L_1 = \langle v \rangle + p_1$ y $L_2 = \langle v \rangle + p_2$.

Sea
$$\Pi = \langle v, p_1 - p_2 \rangle + p_2$$
.
 $p_1 - p_2 = \lambda . v \Rightarrow$
 $p_1 = \lambda . v + p_2 \in L_1 \cap L_2$. Abs!

$$\Rightarrow \dim(\langle v, p_1 - p_2 \rangle) = 2$$

$$\Rightarrow \Pi$$
 es un plano.

$$i) \Rightarrow ii$$

Sean Π plano con $L_1 \subseteq \Pi$ y $L_2 \subseteq \Pi$ y S el subespacio asociado a Π . $L_1 = \langle v_1 \rangle + p_1$ y $L_2 = \langle v_2 \rangle + p_2$, con $v_1, v_2 \in V$ no nulos y $p_1, p_2 \in V$.

$$\triangleright$$
 $v_1 + p_1 \in L_1 \subset \Pi$, $p_1 \in \Pi \Rightarrow v_1 \in S$

$$ightharpoonup p_1 \in L_1 \subset \Pi, p_2 \in L_2 \subset \Pi \Rightarrow p_2 - p_1 \in S$$

 $dim(S) = 2 \Rightarrow \exists a, b, c \text{ no todos nulos tales que}$

$$a v_1 + b (p_2 - p_1) + c v_2 = 0.$$

$$b = 0 \Rightarrow \langle v_1 \rangle = \langle v_2 \rangle \Rightarrow L_1 \parallel L_2.$$

$$b \neq 0 \Rightarrow \frac{c}{b}v_2 + p_2 = -\frac{a}{b}v_1 + p_1 \Rightarrow L_1 \cap L_2 \neq \emptyset.$$

Definición.

Dos variedades lineales M_1 y M_2 de un K-e.v. V se dicen alabeadas si $M_1 \cap M_2 = \emptyset$ y $M_1 \not\parallel M_2$.

Ejemplos.

- L₁ = < (1,0,0) > + (0,0,1) y L₂ = < (0,1,0) > + (0,0,2) son dos rectas alabeadas en \mathbb{R}^3 .
- ► Los planos definidos en \mathbb{R}^4 por $\Pi_1 = \{x \in \mathbb{R}^4 : x_1 = 1, x_2 = 1\}$ y $\Pi_2 = \{x \in \mathbb{R}^4 : x_1 = 2, x_3 = 3\}$ son alabeados.

Suma de variedades lineales

Definición.

Sea V un K-e.v. y sean M_1 y M_2 variedades lineales en V. Si $M_1=S_1+p_1$ y $M_2=S_2+p_2$ con S_1 y S_2 subespacios de V y $p_1,p_2\in V$, se define la variedad lineal suma de M_1 y M_2 , como

$$M_1 \vee M_2 = (S_1 + S_2 + \langle p_1 - p_2 \rangle) + p_2.$$

Observación.

▶ La definición de $M_1 \lor M_2$ no depende de las descripciones de M_1 y M_2 :

si $M_1=S_1+p_1=S_1+p_1'$ y $M_2=S_2+p_2=S_2+p_2'$, con S_i subespacio de V y $p_i,p_i'\in V$ para i=1,2, entonces

$$(S_1 + S_2 + \langle p'_1 - p'_2 \rangle) + p'_2 = (S_1 + S_2 + \langle p_1 - p_2 \rangle) + p_2.$$

 $\blacktriangleright M_1 \subseteq M_1 \vee M_2 \text{ y } M_2 \subseteq M_1 \vee M_2.$

$$ightharpoonup$$
 Si $M_1=S_1+p_1$ y $M_2=S_2+p_2$, entonces

$$p_1 - p_2 \in S_1 + S_2 \iff M_1 \cap M_2 \neq \emptyset.$$

En este caso, $M_1 \vee M_2 = (S_1 + S_2) + p_2.$

$$(\Rightarrow) p_1 - p_2 \in S_1 + S_2 \Rightarrow \exists s_1 \in S_1 \text{ y } s_2 \in S_2 \text{ tales que}$$

$$p_1 - p_2 = s_1 + s_2 \Rightarrow -s_1 + p_2 = s_2 + p_3 \in M_1 \cap M_2$$

$$(\Rightarrow) p_1 - p_2 \in S_1 + S_2 \Rightarrow \exists S_1 \in S_1 \text{ y } S_2 \in S_2 \text{ tales que}$$

$$p_1 - p_2 = s_1 + s_2 \Rightarrow -s_1 + p_1 = s_2 + p_2 \in M_1 \cap M_2.$$

$$(\Rightarrow) q \in M_1 \cap M_2 \Rightarrow \exists s_1 \in S_1 \text{ y } s_2 \in S_2 \text{ tales que}$$

$$s_1 + p_1 = q = s_2 + p_2 \Rightarrow p_1 - p_2 = -s_1 + s_2 \in S_1 + S_2.$$

Ejemplo.

Si L_1 y L_2 son dos rectas distintas en \mathbb{R}^3 , entonces:

 $ightharpoonup L_1 \lor L_2 = \mathbb{R}^3$, si $L_1 \lor L_2$ son alabeadas.

$$L_1 \vee L_2$$
 so I plano que las contiene si $L_1 \cap L_2 \neq \emptyset$ o $L_1 \parallel L_2$

▶
$$L_1 \lor L_2$$
 es el plano que las contiene, si $L_1 \cap L_2 \neq \emptyset$ o $L_1 \parallel L_2$.

Teorema de la dimensión para la suma de variedades lineales.

Sea V un K-e.v. y sean M_1 y M_2 variedades lineales de V de dimensión finita. Entonces:

- i) Si $M_1 \cap M_2 \neq \emptyset$, $\dim(M_1 \vee M_2) = \dim(M_1) + \dim(M_2) - \dim(M_1 \cap M_2).$
- ii) Si $M_1 \cap M_2 = \emptyset$, $M_1 = S_1 + p_1$ y $M_2 = S_2 + p_2$, con S_1, S_2 subespacios de V y $p_1, p_2 \in V$, dim $(M_1 \vee M_2) = \dim(M_1) + \dim(M_2) \dim(S_1 \cap S_2) + 1$.

Demostración.

Por definición, si $M_1 = S_1 + p_1$ y $M_2 = S_2 + p_2$, $\dim(M_1) = \dim(S_1)$, $\dim(M_2) = \dim(S_2)$ y $\dim(M_1 \vee M_2) = \dim(S_1 + S_2 + \langle p_1 - p_2 \rangle)$.

Se aplica el Teorema de la dimensión para subespacios, teniendo en cuenta que $p_1 - p_2 \in S_1 + S_2 \iff M_1 \cap M_2 \neq \emptyset$.