CLAS12 Pre-shower

- R&D: Test measurements
- Prototype

H. Voskanyan (YerPhI)

CLAS Collaboration, CLAS12 TWG Meeting February 28, 2007, JLAB

R&D: Test of the readout components and the prototype

G. Asryan, H. Voskanyan, Hall B engineering

Tests include:

- measurements of the relative light yield for several different scintillator-fiber-PMT combinations
- study of the multiple fiber readout
- study the light attenuation and the time characteristics for the scintillator-fiber-PMT combinations with the highest light yield

The final combination of scintillator-fiber-PMT will be selected based on performance and the price

Build a prototype to check the design of individual elements, to test assembly procedures, and the pre-shower performance

Pre-shower components for test

PMT	Type	Photocathode	# stages	Price
HAMAMATSU	R7899	25mm	10	\$305
	R1450	19mm	10	\$180
	R6095	28mm	11	\$175
Electron Tubes	9124B	30mm	11	\$350
PHOTONIS	XP2802	19mm	10	\$257
Fibers	Type	Diameter	Clouding	Price
Kuraray	Y-11	1mm	Single	\$1.9/m
	Y-11	2mm	Single	\$7.6/m
	Y-11	1mm	Multi	\$2.56/m
Bicron	BC-91A	1mm	Single	\$2/m
	BC-92	1mm	Single	\$2/m
Scintillator	Type	Cross section	# grooves	Price
ELJEN Technology	EJ-204.	3x1cm2	4	\$350/m
	EJ-204.	3x1cm2	No groves	\$90/m
Kharkov		2.63x1.06cm2	2	\$20/m
		2.63x1.06cm2	3	\$20/m
Fermi Lab	MINOS	4x1cm2	1	\$30/m

Test setup (in the EEL)

4 m long dark box with moving cart and support fixtures (Hall B engineering)

Simple DAQ (CODA) – FASTBUS with LeCroy ADC

Rad. Sources:

⁹⁰Sr and ²⁰⁷Bi

Cosmic muons with second trigger PMT

Measurements technique

- For each PMT, a single photo-electron peak position and the width, at given HV, was determined using two Gaussian fit to the ADC distributions of attenuated light
- For each combination, the average number of photo-electrons was extracted as a function trigger PMT ADC value, the fit function:

$$ADC_{T} = c_{1} \sum_{i} P_{i}(n_{pe}) \times C_{i}(n_{ch}) + c_{2}e^{-\frac{(x-x_{p}^{0})^{2}}{2\sigma_{p}^{2}}}$$

$$P_{i}(n_{pe}) = \frac{(n_{pe})^{i}e^{-n_{pe}}}{i!}$$

$$C_{i}(n_{ch}) = \frac{1}{\sigma_{1}\sqrt{i}}e^{-\frac{(n_{ch}-c_{3}a_{1})^{2}}{\sigma_{1}\sqrt{2i}}}$$

Fit parameters: c_1 , c_2 , c_3 , and n_{pe}

Fits to ADC distributions from 90Sr

 $\Delta E \approx 2 MeV$

Hamamatsu R7899EG, Green sensitive photocathode

FNAL scintillator with one groove, Kuraray Y-11 single-clad fiber

Hamamatsu R6095, 15% QE at 500nA

Fit to the ADC distributions from 90Sr for R6095 PMT of different HV

Fit to slices of trigger PMT ADC distribution

FNAL scintillator with 1 grove Kuraray 1mm, single-clad WSF PMT Hamamatsu R6095

- 800 V
- 850 V
- 900 V

Fit to the ADC distributions from 90Sr for different PMT

Fit to slices of trigger PMT ADC distribution

FNAL scintillator with 1 groove Kuraray 1mm, single-clad WSF

- R7899 9.1 pe
- R6095 6.9 pe
- XP2802 6.7 pe
- R1450 5.8 pe

Fit to the ADC distributions from 90Sr for R6095 PMT at different scintillators

Fit to slices of trigger PMT ADC distribution

Kuraray 1mm, single-clad WSF PMT Hamamatsu R6095

- ELJEN 2.2 pe
- FNAL 6.9 pe
- Kharkov 6.1 pe

Fit to the ADC distributions from 90Sr for different positions of source

Fit to the ADC distributions from 90Sr for R6095 PMT of different positions source

Fit to the ADC distributions from 90Sr

Scintillator strips with 3-grooves, Kharkov. ADC distributions of R6095 for one, two, and three fiber readout

$$n_{pe}(3 fibers) \approx 3 \times n_{pe}(1 fibers)$$

Absolute light yield with cosmic muons

FNAL scintillator, 1 cm thick, with 1mm single-clad WS fiber, Kuraray Y-11, PMT Hamamatsu R6095 7-8 photoelectrons Delay 2200 2000 1800 1600 ADC Trigger 1000 1000 1000 2 MeV 1000 F N A L Scintilator 800 Second trigger counter 600 400 2000 500 900 600 700 800 100 ADC_{Fiber}

Summary of test measurements

- By performance, the best PMT is the HAMAMATSU R7899EG, \$280/each. Photoelectron yield of the HAMAMATSU R6095, selected with QE>16% at 500nA, for the same scintillator and fiber, is lower only by 25%. Price for R6095 is \$180(\$160). All other PMTs, yet with green sensitive photocathode, did not perform better than R7899EG and are expensive, >\$250
- Multi-clad fiber produces 20% more light than a single-clad fiber, but 30% more expensive
- FNAL extruded scintillator with Y-11 fiber has the best light yield, mostly due to good reflective cover. It is also reasonable in price, \$20-\$25/meter. Scintillators from Kharkov are close, but will need some R&D to match the performance of the FNAL scintillators
- The best combination by the light yield and price is: FNAL scintillator Kurary Y11 single clad HAMAMATSU R6095. Light yield ~11p.e./MeV for 3 fibers is expected (light yield for FEC readout ~7p.e./MeV)

Pre-shower Prototype (Side View)

Pre-shower prototype (Top View)

Preshower prototype

