PH 712 Probability and Statistical Inference

Part I: Random Variable

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2025/10/08 14:31:43

Probability (HMC Sec. 1.1–1.3)

- Sample space (denoted by Ω): the set of all the possible outcomes, e.g.,
 - $-\Omega = \mathbb{R}^+$ if investigating survival times of cancer patients
 - $-\Omega = \{yes, no\}$ if investigating whether a treatment is effective
- Event (denoted by capital Roman letters, e.g., A): a subset of the sample space, e.g., corresponding to the previous two examples of sample spaces,
 - -A = (0, 10]: the survival time ≤ 10
 - $-B = {\text{yes}}$: the treatment is effective
- An event A occurs \Leftrightarrow the outcome belongs to A, e.g.,
 - The survival time is 11: A does happens
 - The treatment outcome is "yes": B happens
- Probability (denoted by Pr): a function quantifying the occurrence likelihood of an event
 - E.g.,
 - * Pr(A): the probability (occurrence likelihood) of event A
 - * $Pr(A^c)$: the probability that event A does NOT occur $(A^c = \Omega \setminus A \text{ denoting the complement set of } A)$
 - * $Pr(A \cup B)$: the probability of either A or B
 - * $Pr(A \cap B)$: the probability of both A and B
 - Input: an event
 - Output: a real number (the occurrence probability of the input event)
 - Requirements (definition in math):
 - * $Pr(A) \ge 0$ for any event A
 - * $Pr(\Omega) = 1$ (i.e., the sample space as a special event always occurs)
 - * (The probability of the union of mutually exclusive countably events is the sum of the probability of each event) If $\{A_n\}_{n=1}^{\infty}$ is a sequence of events with $A_{n_1} \cap A_{n_2} = \emptyset$ for all $n_1 \neq n_2$, then $\Pr(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \Pr(A_n)$
 - More properties (deduced from the above requirements):
 - * $Pr(A) = 1 Pr(A^c)$
 - * $\Pr(\emptyset) = 0$
 - * Pr(A) < Pr(B) if $A \subset B$
 - * $0 < \Pr(A) < 1$ for each A
 - * $\Pr(A \bigcup B) = \Pr(A) + \Pr(B) \Pr(A \cap B)$ for any events A and B regardless if they are disjoint or not
 - * $\Pr(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \Pr(A_n)$ for arbitrary sequence $\{A_n\}_{n=1}^{\infty}$

Conditional probability and independence (HMC Sec. 1.4)

• Motivating example

- A: the event that a given person recovers from a disease
- B: the event that a given person has received a certain treatment
- $-\operatorname{Pr}(A)$: the probability that a given person recovers from the disease
- $-\Pr(A \mid B)$: the probability that a given person recovers from the disease, given that the person has received the treatment
- If $Pr(A \mid B) = Pr(A)$, then the treatment is NOT effective for the disease
- Conditional probability of B given A (with Pr(A) > 0): $Pr(B \mid A) = Pr(A \cap B) / Pr(A)$
 - Interpretation: the occurrence probability of B, given that A has already occurred.
 - Properties:
 - * $Pr(B \mid A) \geq 0$
 - * $Pr(A \mid A) = 1$

 - * $\Pr(\bigcup_{n=1}^{\infty} B_n \mid A) = \sum_{n=1}^{\infty} \Pr(B_n \mid A)$ if $\{B_n\}_{n=1}^{\infty}$ are mutually exclusive * (Law of total probability) $\Pr(B) = \sum_{n=1}^{N} \Pr(A_n) \Pr(B \mid A_n)$ if $\{A_n\}_{n=1}^{N}$ form a partition of Ω (i.e., $\{A_n\}_{n=1}^N$ are mutually exclusive and $\Omega = \bigcup_{n=1}^N A_n$)

 * (Bayes' theorem) $\Pr(A_i \mid B) = \Pr(A_i) \Pr(B \mid A_i) / \sum_{n=1}^N \Pr(A_n) \Pr(B \mid A_n)$ if $\{A_n\}_{n=1}^N$ form
 - a decomposition/partition of Ω
- Independence between two events B and A (i.e., $B \perp A$): $\Pr(B \cap A) = \Pr(A) \Pr(B)$
 - $\Leftrightarrow B \perp A^c$
 - $\Leftrightarrow \Pr(B \mid A) = \Pr(B) \text{ (if } \Pr(A) \neq 0)$
 - $\Leftrightarrow \Pr(A \mid B) = \Pr(A) \text{ (if } \Pr(B) \neq 0)$
- Mutual independence among N events A_1, \ldots, A_N : for arbitrary subset of $\{A_1, \ldots, A_N\}$, say $\{A_{n_1}, \ldots, A_{n_K}\}\$ with $2 \le K \le N$, $\Pr(\bigcap_{k=1}^K A_{n_k}) = \prod_{k=1}^K \Pr(A_{n_k})$

HMC Ex. 1.4.31

- A French writer, Chevalier de Méré, had asked a famous mathematician, Pascal, to explain why the following two probabilities were different (the difference had been noted from playing the game many times): (1) at least one six in four independent casts of a six-sided die; (2) at least a pair of sixes in 24 independent casts of a pair of dice. From proportions it seemed to Mr. de Méré that the two probabilities should be the same. Compute the probabilities of (1) and (2).
 - Hint: Pr(no six in one cast of a die) = 5/6, Pr(no six in one cast of a pair of dice) = $(5/6)^2$, and Pr(only one six in one cast of a pair of dice) = $2 \times (1/6) \times (5/6)$.

RV and events

- RV: an encoder (function) mapping entries of sample space to real numbers,
 - Input: an element of sample space
 - Output: a real number
- Example of RVs: Severity of a patient's cold symptoms
 - Sample space $\Omega = \{\text{no reaction, mild, moderate, severe}\}$
 - RV X: X(no reaction) = 0, X(mild) = 1, X(moderate) = 2, X(severe) = 3
- Using values of an RV to define events
 - For the above example, $\{X \leq .7\} = \{\text{no reaction}\}, \{X \leq 2.3\} = \{\text{no reaction, mild, moderate}\}$
 - What is $\{1.1 \le X < 2\}$? How about $\{1.1 \le X < 2.1\}$?

Distribution of an RV (HMC Chp. 1.5–1.7)

• The cumulative distribution function (cdf) of RV X, say F_X , is defined as

$$F_X(t) = \Pr(X \le t), \quad t \in \mathbb{R}.$$

- $-F_X$ satisfies following three properties:
 - * (Right continuous) $\lim_{x \to t^+} F_X(x) = F_X(t)$ (p.s., $\lim_{x \to t^-} F_X(x) = \Pr(X < t)$);
 - * (Non-decreasing) $F_X(t_1) \leq F_X(t_2)$ for $t_1 \leq t_2$;

- * (Ranging from 0 to 1) $F_X(-\infty) = 0$ and $F_X(\infty) = 1$.
- Reversely, a function satisfying the three above properties must be a cdf for certain RV.
 - * Indicating an one-to-one correspondence between the set of all the RVs and the set of all the cdfs
- Knowing the cdf of an RV \Leftrightarrow knowing its distribution

• Given $p \in (0,1)$, suppose

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where $\lfloor x \rfloor$ represents the integer part of real x.

- Plot the curve of F_X .

• Given $\lambda > 0$, suppose

$$F_X(x) = \begin{cases} 1 - \exp(-x/\lambda), & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

- Plot the curve of F_X .

Distribution of an RV (con'd)

- Discrete RV
 - RV X merely takes countably different values
 - Probability mass function (pmf): $p_X(t) = Pr(X = t)$
 - * $F_X(t) = \sum_{x \le t} p_X(x)$
 - * $p_X(t) = F_X(\overline{t}) \Pr(X < t)$
 - Knowing the pmf of a discrete RV ⇔ knowing its distribution
 - Examples:
 - * Uniform (the discrete version): each outcome in a finite set has an equal probability.
 - · E.g., the outcome of rolling a fair dice is following the uniform distribution.
 - · https://en.wikipedia.org/wiki/Discrete_uniform_distribution
 - * Bernoulli: a discrete RV with two possible outcomes, typically coded as 0 (failure) and 1 (success).
 - · https://en.wikipedia.org/wiki/Bernoulli_distribution
 - * Binomial (denoted by B(n,p)): the number of successes in n independent Bernoulli trials.
 - · E.g., after flipping a coin 10 times, the number of heads is following the binomial distribution
 - · https://en.wikipedia.org/wiki/Binomial_distribution
 - * Geometric: the number of trials until the first success in a series of independent Bernoulli trials.

- · E.g., the number of coin flips needed until the first head appears is following the geometric distribution.
- · https://en.wikipedia.org/wiki/Geometric distribution
- * Poisson: the number of events that occur in a fixed interval of time or space, where events happen independently.
 - · E.g., the number of emails you receive in an hour.
 - · https://en.wikipedia.org/wiki/Poisson distribution
- Continuous RV
 - RV X is continuous \Leftrightarrow there exists f_X such that

$$F_X(t) = \int_{-\infty}^t f_X(x) dx, \quad \forall t \in \mathbb{R}.$$

- * Probability density function (pdf): $f_X(t) = dF_X(t)/dt$ (nonnegative for all t).
 - $\int_{-\infty}^{\infty} f_X(x) dx = F_X(\infty) = 1$
- * $\Pr(X = x_0) = 0$ for all $x_0 \in \mathbb{R}$ · Because $\Pr(X = x_0) = \Pr(X \le x_0) \Pr(X < x_0) = F_X(x_0) \lim_{x \to x_0^-} F_X(x) = 0$ (The proof is not required.)
- Knowing the pdf of a continuous RV ⇔ knowing its distribution
- Examples:
 - * Uniform (the continuous version): all outcomes in a continuous range are equally likely.
 - · https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
 - * Normal/Gaussian (denoted by $\mathcal{N}(\mu, \sigma^2)$): the most important and widely used distributions, where data is symmetrically distributed around the mean.
 - · https://en.wikipedia.org/wiki/Normal distribution
 - * Exponential: often used to describe waiting times.
 - · https://en.wikipedia.org/wiki/Exponential distribution

• Given $p \in (0,1)$, suppose

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where |x| represents the integer part of x.

- What is the pmf/pdf of X?
- Given $\lambda > 0$, suppose

$$F_X(x) = \begin{cases} 1 - \exp(-x/\lambda), & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

- What is the pmf/pdf of X?

Support of RV (HMC pp. 46)

- For discrete RV X with pmf p_X
 - $\text{ supp}(X) = \{ x \in \mathbb{R} : p_X(x) > 0 \}$
 - E.g., support of B(n, p) is $\{0, \ldots, n\}$
- $-\sum_{x \in \text{supp}(X)} p_X(x) = 1$ For continuous RV X with pdf f_X
 - $\text{ supp}(X) = \{ x \in \mathbb{R} : f_X(x) > 0 \}$
 - E.g., support of $\mathcal{N}(0,1)$ is \mathbb{R}
 - $-\int_{\operatorname{supp}(X)} f_X(x) \mathrm{d}x = 1$

• Given $p \in (0,1)$, suppose

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where $\lfloor x \rfloor$ represents the integer part of x.

- What is the support of X?
- Given $\lambda > 0$, suppose

$$F_X(x) = \begin{cases} 1 - \exp(-x/\lambda), & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

- What is the support of X?

Indicator function

Given a set A, the indicator function of A is

$$\mathbf{1}_{A}(x) = \begin{cases} 1, & x \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Example Lec1.4

• Given $p \in (0,1)$, suppose

$$F_X(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

where $\lfloor x \rfloor$ represents the integer part of x.

- Please reformulate F_X with the indicator function of $A = \{x : x \ge 1\}$.

• Given $\lambda > 0$, suppose

$$F_X(x) = \begin{cases} 1 - \exp(-x/\lambda), & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

– Please reformulate F_X with the indicator function of $A = \{x : x > 0\}$.

Indicating the support when writing pmf and pdf

- $\bullet \ \ Bernoulli: \ https://en.wikipedia.org/wiki/Bernoulli_distribution$
- Binomial (denoted by B(n,p)): https://en.wikipedia.org/wiki/Binomial_distribution

$$- p_X(k) = \binom{n}{k} p^k (1-p)^{n-k} \cdot \mathbf{1}_{\{0,1,\dots,n\}}(k)$$
* OR $\binom{n}{k} p^k (1-p)^{n-k}, k \in \{0,1,\dots,n\}$

• Geometric: https://en.wikipedia.org/wiki/Geometric_distribution

$$- p_X(k) = (1-p)^{k-1}p \cdot \mathbf{1}_{\mathbb{Z}^+}(k)$$
* OR $(1-p)^{k-1}p, k \in \mathbb{Z}^+$

• Poisson: https://en.wikipedia.org/wiki/Poisson_distribution

$$- p_X(k) = \lambda^k \exp(-\lambda)/k! \cdot \mathbf{1}_{\{0,1,2,\dots\}}(k)$$
* OR $\lambda^k \exp(-\lambda)/k!, k \in \{0,1,2,\dots\}$

• Uniform (the discrete version; denoted by U([a,b]) with integers a < b): https://en.wikipedia.org/wiki/ Discrete_uniform_distribution

$$- p_X(k) = 1/(b-a+1) \cdot \mathbf{1}_{\{a,a+1,\dots,b-1,b\}}(k)$$
* OR $1/(b-a+1)$, $k \in \{a, a+1,\dots,b-1,b\}$

• Uniform (the continuous version): https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

5

• Exponential: https://en.wikipedia.org/wiki/Exponential distribution

$$- f_X(x) = \lambda \exp(-\lambda x) \cdot \mathbf{1}_{[0,\infty)}(x)$$
* OR $\lambda \exp(-\lambda x)$, $x \ge 0$

- Normal/Gaussian (denoted by $\mathcal{N}(\mu, \sigma^2)$): https://en.wikipedia.org/wiki/Normal_distribution
 - Don't have to specify the support for normal RVs because it is $\mathbb R$

For thave to specify the support for normal two sectate it is in
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

* OR $\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
- Specifically, if $\mu = 0$ and $\sigma = 1$, then it is called the standard normal (denoted by $\mathcal{N}(0,1)$):

*
$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

· OR $\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$

Expectation (HMC Sec. 1.8-1.9)

• Definition: given RV X and function g, the expectation of g(X) is

$$E\{g(X)\} = \begin{cases} \sum_{x \in \text{supp}(X)} g(x) p_X(x) & \text{for discrete } X \\ \int_{x \in \text{supp}(X)} g(x) f_X(x) dx & \text{for continuous } X \end{cases}$$

- $E\{g(X)\}\$ is a average of values of g(X) weighted by the distribution of X
- $E\{g(X)\}$ is a fixed real number
- Special cases with different $g(\cdot)$
 - If g(X) = X, then $E\{g(X)\}$ becomes the expectation/mean of X (a.k.a. the 1st raw moment/moment about 0 of X):

$$E(X) = \begin{cases} \sum_{x \in \text{supp}(X)} x p_X(x) & \text{for discrete } X \\ \int_{x \in \text{supp}(X)} x f_X(x) dx & \text{for continuous } X \end{cases}$$

- If $g(X) = X^k$ with positive integer k, then $E\{g(X)\}$ becomes the kth raw moment/moment about 0 of X:

$$E(X^k) = \begin{cases} \sum_{x \in \text{supp}(X)} x^k p_X(x) & \text{for discrete } X \\ \int_{x \in \text{supp}(X)} x^k f_X(x) dx & \text{for continuous } X \end{cases}$$

- If $g(X) = \{X - E(X)\}^2$, then $E\{g(X)\}$ becomes the variance of X (a.k.a. the 2nd central moment of X):

$$\operatorname{Var}(X) = \operatorname{E}[\{X - \operatorname{E}(X)\}^2] = \begin{cases} \sum_{x \in \operatorname{supp}(X)} \{x - \operatorname{E}(X)\}^2 p_X(x) & \text{for discrete } X \\ \int_{x \in \operatorname{supp}(X)} \{x - \operatorname{E}(X)\}^2 f_X(x) \mathrm{d}x & \text{for continuous } X \end{cases}$$

- * Measuring how spread out the data are if they are independently generated following F_X
- * $\operatorname{sd}(X) = \sqrt{\operatorname{Var}(X)}$: the standard deviation of X
- If $g(X) = \mathbf{1}_A(X)$, then $\mathbb{E}\{g(X)\}$ becomes the probability that X belongs to event A:

$$E\{\mathbf{1}_A(X)\} = \Pr(X \in A)$$

– If g(X) = c for certain constant c, then $E\{g(X)\}$ remains c:

$$E(c) = c$$
.

- Linearity of expectation: $\mathbb{E}\{a_1g_1(X) + a_2g_2(X)\} = a_1\mathbb{E}\{g_1(X)\} + a_2\mathbb{E}\{g_2(X)\}\$ for constants a_1 and a_2 , implying that
 - E(aX + b) = aE(X) + b for constants a and b
 - $\operatorname{Var}(X) = E(X^2) \{E(X)\}^2$
 - $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$

• Find the mean and variance of the following RV

\overline{x}	0	2.4	3
$p_X(x)$	0.2	0.5	0.3

Answer:

$$\begin{split} & \mathrm{E}(X) = 0 \times 0.2 + 2.4 \times 0.5 + 3 \times 0.3 = 2.55; \\ & \mathrm{E}(X^2) = 0^2 \times 0.2 + 2.4^2 \times 0.5 + 3^2 \times 0.3 = 7.05; \\ & \mathrm{Var}(X) = \mathrm{E}(X^2) - \{\mathrm{E}(X)\}^2 = 7.05 - 2.55^2 = 0.4275. \end{split}$$

• RV X follows a uniform distribution over the interval [0, 2], i.e., $f_X(x) = .5 \times \mathbf{1}_{[0,2]}(x)$. Find the mean and variance of X.

Answer:

 $E(X) = \int_0^2 x \times .5 dx = 1$ is given below:

```
integrand = function(x){
   .5*x
}
integrate(integrand, lower = 0, upper = 2)$value
```

 $E(X^2) = \int_0^2 x^2 \times .5 dx = 4/3$ is given below:

```
integrand = function(x){
   .5*x^2
}
integrate(integrand, lower = 0, upper = 2)$value
```

$$Var(X) = E(X^2) - {E(X)}^2 = 4/3 - 1^2 = 1/3.$$

• A continuous RV X has an exponential distribution with pdf $f_X(x) = 2\exp(-2x) \cdot \mathbf{1}_{[0,\infty)}(x)$. Find the mean and variance of X.

Answer: $E(X) = \int_0^\infty x \times 2 \exp(-2x) dx = .5$ is given below:

```
integrand = function(x){
    x*2*exp(-2*x)
}
integrate(integrand, lower = 0, upper = Inf)$value
```

 $E(X^2) = \int_0^\infty x^2 \times 2 \exp(-2x) dx = .5$ is given below:

```
integrand = function(x){
  x^2 *2*exp(-2*x)
}
integrate(integrand, lower = 0, upper = Inf)$value
```

$$Var(X) = E(X^2) - {E(X)}^2 = .25.$$

• Find the mean and variance of $X \sim \mathcal{N}(0,1)$, i.e., $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$.

Answer: $E(X) = \int_0^\infty x \times \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = 0$ is given below:

```
integrand = function(x){
  x * 1/sqrt(2*pi)*exp(-x^2/2)
}
integrate(integrand, lower = -Inf, upper = Inf)$value
```

$$\mathrm{E}(X^2) = \int_0^\infty x^2 \times \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \mathrm{d}x = 1$$
 is given below:

```
integrand = function(x){
  x * 1/sqrt(2*pi)*exp(-x^2/2)
}
integrate(integrand, lower = -Inf, upper = Inf)$value
```

$$Var(X) = E(X^2) - {E(X)}^2 = 1.$$

• Find the mean and variance of $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, i.e., $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$.

Identity on normal RVs:

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$ for a > 0.
 - -aX + b is an affine transformation of X.
 - After an affine transformation, a normal RV remains normal.
 - Specifically, $X \sim \mathcal{N}(\mu, \sigma^2) \Leftrightarrow (X \mu)/\sigma \sim \mathcal{N}(0, 1)$

Answer:

According to the identities above, $(X - \mu)/\sigma \sim \mathcal{N}(0, 1)$, i.e., $E((X - \mu)/\sigma) = 0$ and $Var((X - \mu)/\sigma) = 1$. It follows that $(E(X) - \mu)/\sigma = 0$, i.e., $E(X) = \mu$. Similarly, $Var(X)/\sigma^2 = 1$, i.e., $Var(X) = \sigma^2$.

• Find the mean and variance of Cauchy distribution, i.e., $f_X(x) = {\pi(1+x^2)}^{-1}, x \in \mathbb{R}$.

Answer:

No well-defined mean or variance, because

$$\int_{1}^{\infty}\frac{x^{2}}{\pi\left(1+x^{2}\right)}\mathrm{d}x\geq\int_{1}^{\infty}\frac{x}{\pi\left(1+x^{2}\right)}\mathrm{d}x=\infty.$$