

MC 613

IC/Unicamp 2018s1 Prof Guido Araújo Prof Sandro Rigo

Circuitos combinacionais

Tópicos

- Conceitos básicos de projeto de circuitos combinacionais
 - Tabela verdade
 - Soma de produtos
 - Álgebra Booleana
 - Mintermos e implicantes principais
 - Mapa de Karnaugh e minimização

Tipos de Circuitos Lógicos

- Combinacional
 - -Sem memória
 - As saídas são determinadas pelos valores correntes das entradas
- Sequencial
 - -Tem memória
 - As saídas são determinadas pelos valores anteriores e correntes das entradas

Forma Soma-de-Produtos (SOP)

- Toda equação booleana pode ser descrita na forma SOP
- Cada linha da tabela verdade é associada a um mintermo
- Um mintermo é um produto (AND) de literais
- Cada mintermo é TRUE (1) para uma dada linha (e somente para essa linha)
- A função é formada pelo OR dos mintermos para os quais a saída é TRUE (1)
- Assim, a função é a soma (OR) de produtos (termos AND)

A	В	Y	minterm
0	0	0	$\overline{A} \ \overline{B}$
0	1	1	A B
1	0	0	$\overline{A} \ \overline{B}$
1	1	1	АВ

$$Y = F(A, B, C) = \overline{AB} + AB$$

Terminologia

- Literal Uma variável complementada ou não em um termo produto (ou termo soma)
- Implicante Um termo produto que implementa um ou mais 1´s da função. Exemplo: um míntermo é um implicante; um produto gerado pela simplificação de uma váriável de dois míntermos é um implicante.
- Implicante Principal Um implicante que não pode ser simplificado em outro implicante com menos literais.
- Implicante Essencial Implicante Principal que é imprescindivel na realização da função (existe pelo menos um "1" que só é coberto por ele).
- Cobertura Uma coleção de implicantes que implementam a função (implementam todos os 1's da função).
- Custo número de portas + número de entradas de todas as portas (assumiremos que as entrads primárias estão disponíveis tanto na forma verdadeira quanto complementada).

Forma Produto-de-Somas (POS)

- Toda equação booleana pode ser descrita na forma POS
- Cada linha da tabela verdade é associada a um maxtermo
- Um maxtermo é uma soma (OR) de literais
- cada maxtermo é FALSE (0) para uma dada linha (e somente para essa linha)
- A função é formada pelo AND dos maxtermos para os quais a saída é False (0)
- Assim, a função é um produto (AND) de soma (termos OR)

Α	В	Y	maxterm
0	0	0	A + B
0	1	1	$A + \overline{B}$
1	0	0	$\overline{A} + B$
1	1	1	$\overline{A} + \overline{B}$

$$Y = F(A, B, C) = (A + B)(A + B)$$

Álgebra Booleana

- Conjunto de Axiomas e Teoremas: usados para simplificar equações Booleanas
- Similar à algebra regular, porém mais simples em muitos casos já que as variáveis só podem ter dois valores (1 ou 0)
- Axiomas e Teoremas obedecem aos principios da dualidade:
 - -Trocando-se ANDs por Ors (e vice-versa) e 0's por 1's (e vice-versa)

Axiomas e Teoremas

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR
	Theorem		Dual	Name
T1	$B \bullet 1 = B$	Γ1′	B + 0 = B	Identity
Т2	R • 0 = 0	F2'	R ± 1 - 1	Null Flement

	Theorem		Dual	1 tallie
T1	$B \bullet 1 = B$	T1′	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Teoremas

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T 7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$	Consensus
	$= B \bullet C + B \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$B_0 \bullet B_1 \bullet B_2 \dots$	T12′	$B_0 + B_1 + B_2$	De Morgan's
	$= (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots)$		$= (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	Theorem

Técnica Bubble Pushing

 $Y = \overline{A} \overline{B} C + \overline{D}$

Tabela verdade

- AND e OR de 3 entradas
 - 2³ combinações ou mintermos

x_1	x_2	x_3	$x_1 \cdot x_2 \cdot x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	$1 \mid$	0	1
0	1	0	0	1
0	1	$1 \mid$	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1		1

Tabela verdade, mintermos

Tabela verdade

x_1	x_2	$f(x_1, x_2)$
0 0 1 1	0 1 0	1 1 0 1

Soma de produtos canônica

$$f = \Sigma (0, 1, 3)$$

Implementação direta dos mintermos

Implementação de custo mínimo

Tabela verdade e Mapa de Karnaugh

x_1	x_2	
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

(a) Truth table

(b) Karnaugh map

Procedimento para minimização

- Tabela verdade → mintermos
- Mapa de Karnaugh
- Identificar os implicantes principais para cobertura de todos os mintermos
- Identificar quais são essenciais e selecionálos
- Verificar quais mintermos não foram cobertos pelos implicantes essenciais
- Selecionar implicantes principais para cobrir esses mintermos não cobertos

Mapa de Karnaugh e 3 variáveis

x_1	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

(b) Karnaugh map

(a) Truth table

Exemplos de funções de 3 variáveis

Função da Fig. 2.18

Função da Fig. 4.1

Karnaugh: 4 variáveis

Exemplos de M.K. de 4 variáveis

Mapa de Karnaugh de 5 variáveis

Implicante principal essencial

- Implicante principal é essencial se for o único a cobrir algum mintermo
- Exemplo: $f = \Sigma m(2, 3, 5, 6, 7, 10, 11, 13, 14)$
 - 5 implicantes principais
 - somente 3 são essenciais*
 - x̄₂x₃ devido a m11
 - x₃ x̄₄ devido a m14
 - $x_2\overline{x}_3$ x_4 devido a m13
 - faltou somente cobrir m7, e há 2 impl princ → escolher menor custo
 - $f = \overline{x}_2 x_3 + x_3 \overline{x}_4 + x_2 \overline{x}_3 x_4 + \overline{x}_1 x_3$

Uso de don't care

(a) SOP implementation

(b) POS implementation

 $f = \Sigma m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)$

Timing

- Delay: atraso entre a mudança na entrada e na saída
- Um dos maiores desafios em projeto de circuitos: tornar o circuito mais rápido

Delay: Propagação e Contaminação

- Propagation delay: $t_{pd} = \max$ delay da entrada à saída
- Contamination delay: t_{cd} = min delay da entrada à saída

Delay: Propagação e Contaminação

- Os atrasos são causados por
 - Capacitância e
 - Resistências no circuito

- Razões porque t_{pd} and t_{cd} podem ser diferentes:
 - Diferentes tempos de subida (rising) e de descida (falling)
 - Múltiplas entradas e saídas, algumas podem ser mais rápidas do que as outras
 - Circuito mais lento quando quente e mais rápido quando frio

Caminhos: Críticos e Curtos

Critical (Long) Path: $t_{pd} = 2t_{pd_AND} + t_{pd_OR}$

Short Path: $t_{cd} = t_{cd_AND}$

MC613 - 2012 25

IC-UNICAMP

Glitches

 Um glitch ocorre quando uma mudança em uma entrada causa múltiplas mudanças na saída

 Glitches não causam problemas se seguirmos as convenções de projetos síncronos

 É importante reconhecer um glitch quando se vê um em uma simulação ou em um osciloscópio

MC613 - 2012 26

Exemplo de Glitch

 $Y = \overline{AB} + BC$

Exemplo de Glitch (cont.)

Exemplo de Glitch (cont.)

Exemplo de Glitch (cont.)

VHDL: introdução

- Linguagem de descrição de hardware: suporte para simulação e síntese (padrão IEEE)
- Como representar circuito combinacional simples?

Modelo completo de um circuito

```
Library IEEE;
use IEEE.std logic 1164.all;
Entity exemplo IS
   Port (a, b, c : IN std logic;
          f : OUT std logic);
End exemplo;
Architecture estrutural OF exemplo IS
  signal d, e : std logic;
Begin
   f \le d \text{ or } e;
   d \le a \text{ and not(b)};
   e \le b and c;
End estrutural
```

32

Principais blocos

```
Library IEEE;
use IEEE.std_logic_1164.all;
```

Cabeçalho:

bibliotecas em uso

```
Entity exemplo IS
    Port (a, b, c : IN std_logic;
        f : OUT std_logic);
End exemplo;
```

Entity:

- Define o nome
- Define as interfaces
- Ports Inputs/Outputs
- Tipos de sinal

```
Architecture estrutural OF exemplo IS
signal d, e : std_logic;
Begin
f <= d or e;
d <= a and (not b);
e <= b and c;
End estrutural
```

Architecture:

- Descreve conteúdo funcional do componente
- Possívei mais de uma
- Definição de sinais internos
- Atribuição de sinais
- Ordem importa??

IC-UNICAMP

Conceitos básicos

- Sinais (no exemplo são os sinais: a, b, c, d, e, f)
 - Representam os "fios" do circuito
- Alguns tipos dos sinais

-- inicia um comentário

```
type bit is ('0', '1');
type std logic is (
          'U', -- não iniciado (unitialized)
          'X', -- desconhecido (unknow) forte
          '0', -- zero forte
          `1', -- um forte
          `Z', -- alta impedância (tri-state)
          'W', -- desconhecido fraco
          'L', -- zero fraco
          'H', -- um fraco
          '-'); -- indiferente (don't care)
```

MC613 - 2012 34

Construções de VHDL vistas nesta aula

- Cabeçalho e bibliotecas
- Entity: significado, ports, tipo de sinais
- Architecture
- Definição de sinais internos (não fazem parte da interface)
- Atribuição de sinais
- Alguns operadores booleanos
- Comandos concorrentes
- Tipos de sinal: bit e std_logic
- Convenção para comentário (--)