BSM206 Mantiksal Devre Tasarımı

6. Hafta – Kombinezonal Lojik, Toplama ve Çıkarma Devreleri

Dr. Öğr. Üyesi Onur ÇAKIRGÖZ onurcakirgoz@bartin.edu.tr

ANAHAT

- Kombinezonal Lojik
- Yarı Toplayıcı (Half Adder)
- Tam Toplayıcı (Full Adder)
- İkili Toplayıcı (Binary Adder)
- İkili Paralel Toplayıcı
- Eldenin Yayılması (Carry Propagation)
- Elde Öngörü (Carry Lookahead Logic)
- İkili Çıkarıcı (Binary Subtractor)

Kombinezonal Lojik - Giriş

- Sayısal sistemlerdeki lojik devreler kombinezonal veya ardışıl olabilir.
- Bir kombinezonal devrede çıkışlar, devreye uygulanan o anki girişlere bağlı lojik kapılardan oluşmuştur.
- Ardışıl devrelerde lojik kapılara ek olarak bellek elemanları kullanılır.
- Ardışıl devrelerde çıkışlar, giriş ve bellek eleman durumlarının bir fonksiyonudur. Bellek elemanlarının durumları ise önceki girişlerin bir fonksiyonudur.
- Yani, ardışıl devre çıkışları hem mevcut girişlere hem de geçmiş girişlere bağlıdır.

Kombinezonal Lojik - Giriş

- Kombinezonal devre; giriş değişkenleri, lojik kapılar ve çıkış değişkenlerinden oluşur.
- Kombinezonal bir devrenin blok diyagramı aşağıda verilmiştir.
- n adet giriş değişkeni için, 2ⁿ olası ikili değer kombinasyonu vardır.
- Kombinezonal devreler her biri bir çıkış değişkenine karşı düşen m adet Boole fonksiyonuyla tanımlanabilir.

Kombinezonal Lojik – Tasarım Yöntemi

- Tasarım yöntemi aşağıdaki adımlardan oluşur:
 - Problem sözle ifade edilir.
 - Mevcut giriş ve çıkış değişkenlerinin sayısı belirlenir.
 - Giriş ve çıkış değişkenlerine harf sembolleri atanır.
 - 4. Giriş ile çıkış arasındaki ilişkileri tanımlayan doğruluk tablosu oluşturulur.
 - 5. Her çıkış için basitleştirilmiş Boole fonksiyonu elde edilir.
 - Lojik devre çizilir.
- Kombinezonal bir devrenin doğruluk tablosu giriş ve çıkış sütunlarından oluşur.

Kombinezonal Lojik – Tasarım Yöntemi

- Bazen bir çıkış için birden fazla basitleştirilmiş ifade bulunabilir. Hangisinin seçilmesi gerektiğini ortaya konulan kısıtlama ve kriterler belirler. Kısıtlama ve kriterler:
 - Minimum kapı sayısı
 - 2. Kapıların minimum giriş sayısı
 - 3. Devre boyunca işaretin minimum yayılma süresi
 - 4. Minimum ara bağlantı sayısı
 - 5. Her bir kapının sürme yeteneği

Toplayıcılar

- Sayısal bilgisayarların gerçekleştirdiği en temel aritmetik işlemlerden biri, toplama dır.
- İki ikili hanenin toplanması:
 - 0 + 0 = 0
 - 0+1=1
 - 1 + 0 = 1 ve
 - 1 + 1 = 10

şeklindeki dört olası işlemden oluşur.

- Hem toplanan hem toplayan 1'e eşit olduğunda ikili toplam iki haneden oluşur.
- Bu toplamın yüksek anlamlı bitine elde (carry) denir.
- İki bitin toplamını gerçekleştiren kombinezonal devreye yarı toplayıcı, üç bitin (iki anlamlı bit ve önceden gelen elde) toplamını gerçekleştiren kombinezonal devreye ise tam toplayıcı denir.

Yarı Toplayıcı (Half Adder)

- Devre için iki ikili giriş ve iki ikili çıkış gerekmektedir.
- Giriş değişkenleri toplanan ve toplayan bitlerini belirler; çıkış değişkenleri ise toplam (Sum) ve eldeyi (Carry) üretir.
- Sonuç iki ikili haneden oluşabileceği için iki çıkış değişkeni olmalıdır.
- Girişlere keyfi olarak x ve y, çıkışlara ise S (toplam) ve C (elde) sembolleri atanır.
- Bunlar belirlendikten sonra, doğruluk tablosu hazırlanır:

X	y	C	S			
0	0	0	0			
0	1	0	1			
1	0	0	1			
1	1	1	0			

Yarı Toplayıcı (Half Adder)

- S (toplam) çıkışı, toplamın en az anlamlı bitini temsil eder.
- İki çıkışa ilişkin basitleştirilmiş Boole fonksiyonları doğruluk tablosundan elde edilir:

$$S = x'y + xy'$$

 $C = xy$

 Yarı toplayıcının çarpımların toplamı şeklinde gerçeklenen lojik devre şeması (a) şıkkında gösterilmiştir. (b) şıkkında ise devrenin S (toplam) çıkışı Özel-VEYA kapısıyla gerçeklenmiştir:

Alttaki gösterim ileride kullanılacaktır!

- Tam toplayıcı, üç giriş bitinin aritmetik toplamını oluşturan bir kombinezonal devredir. (Üç giriş ve iki çıkıştan oluşur.)
- x ve y ile gösterilen iki giriş, toplanması gereken iki anlamlı biti, z girişi ise düşük anlamlı hanelerden gelen elde (carry) bitini temsil eder.
- Üç bitin aritmetik toplamı 0 ila 3 arasında değişir.

2 ve 3 desimal sayıları ikili sayı sisteminde iki haneyle temsil

edildiğinden, iki çıkışa gerek vardır.

- Yine aynı şekilde, toplam için S, elde için C sembolü kullanılır.
- S değişkeni, toplamın en düşük anlamlı bitini, C değişkeni ise çıkış eldesini verir.
- Doğruluk tablosu yanda verilmiştir:

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- Tam toplayıcı devre iki Boole fonksiyonu şeklinde ifade edilir.
- Her bir Boole fonksiyonunun basitleştirme işlemi için ayrı bir diyagram gerekir.
- Her çıkış, üç giriş değişkeninin fonksiyonu olduğundan,
 3-değişkenli iki ayrı diyagram kullanılır.

$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$C = xy + xz + yz$$

 Çarpımların toplamı şeklinde gerçeklenen tam toplayıcının lojik devre şeması aşağıda gösterilmiştir.

$$S = x'y'z + x'yz' + xy'z' + xyz$$

$$C = xy + xz + yz$$

 Tam toplayıcılar iki yarı toplayıcı ve bir VEYA kapısıyla gerçekleştirilebilir.

10

$$S = z \oplus (x \oplus y)$$

$$C = z(xy' + x'y) + xy = xy'z + x'yz + xy =>$$

 İkinci yarı toplayıcının S çıkışı, z'nin ve birinci yarı toplayıcı çıkışının bir Özel-VEYA fonksiyonu olup

$$S = z \bigoplus (x \bigoplus y)$$
= z'(xy' + x'y) + z(xy' + x'y)'
= z'(xy' + x'y) + z(xy + x'y')
= xy'z' + x'yz' + xyz + x'y'z

Sonucunu verir ve elde çıkışı

$$C = z(xy' + x'y) + xy = xy'z + x'yz + xy$$

Biçiminde bulunur.

 Not: S'nin hesaplanmasında; ÖZELVEYA ve eşdeğerlik fonksiyonlarının birbirinin tümleyeni olması durumu kullanılmıştır!

İkili Toplayıcı (Binary Adder)

- İkili toplayıcı, iki ikili (binary) sayının aritmetik toplamını üreten dijital bir devredir.
- Tam toplayıcılar yardımıyla n bitlik ikili sayılar toplanabilir.
- İkili sayının bir çift biti bir tam toplayıcıyla toplandığında ortaya çıkan elde (carry), daha yüksek konumdaki bitlerin toplanmasında kullanılır.
- Örneğin, A = 1011 ve B = 0011 ikili sayılarının toplama işlemi
- Subscript: İndis
- Input carry: Giriş eldesi
- Augend: Toplanacak sayı (toplatılan)
- Addend: Toplanan
- Sum: Toplam
- Output carry: Çıkış eldesi

Subscript <i>i</i> :	3	2	1	0	
Input carry Augend Addend	0 1 0	1 0 0	1 1 1	0 1 1	$C_i \\ A_i \\ B_i$
Sum Output carry	1 0	1 0	1 1	0 1	S_i C_{i+1}

İkili Toplayıcı (Binary Adder)

- Tam toplayıcı kullanılarak yapılan toplama işlemine en düşük anlamlı konumdan (0 numaralı indis) başlanır.
- En düşük konumda yer alan C₀ eldesi 0'a eşit olmalıdır.
- C_{i+1}, tam toplayıcının herhangi bir konumdaki çıkış eldesidir.
- Bu değer, daha yüksek anlamlı tam toplayıcıya giriş eldesi olarak gönderilir.
- Altta ikili paralel toplayıcının dijital devresi gözükmektedir:

İkili Toplayıcı (Binary Adder)

- İkili toplayıcı seri ya da paralel şekilde yapılabilir.
- Seri toplama yönteminde sadece bir tam toplayıcı ve üretilen çıkış eldesini tutmak için bir saklama aygıtı kullanılır.
- Seri toplamada, <u>her bir zaman diliminde</u> A ve B'deki bit çiftlerinden <u>sadece bir çift</u>, bir tam toplayıcıya aktarılır.
- Bir çift bitin toplamı sonucunda oluşan ve saklanan çıkış eldesi (carry) bir sonraki bit çifti için giriş eldesi olarak kullanılır.
- Paralel toplama yönteminde n adet tam toplayıcı kullanılır ve A ve B'nin tüm bitleri aynı anda uygulanır.
- Bir tam toplayıcının çıkış eldesi onun solunda yer alan tam toplayıcının giriş eldesine bağlanmıştır. (Önceki sayfada yer alan devre)

İkili Paralel Toplayıcı

- İkili paralel toplayıcı, <u>paralel olarak</u> iki ikili sayının aritmetik toplamını üreten sayısal bir devredir.
- Bu devre, zincir biçiminde bağlı tam toplayıcılardan oluşur.
- Eldeler tam toplayıcılarda bir uçtan bir uca bir zincir gibi bağlanmıştır.
- Tümdevre kılıf içinde yer alan 4-bitlik bir paralel toplayıcıda, toplanacak bitler için 4 uç, toplanan bitler için 4 uç, toplam bitleri için 4 uç, giriş ve çıkış eldeleri için de 2 uç yer alır.

İkili Paralel Toplayıcı

- n bitlik bir paralel toplayıcı için n adet tam toplayıcıya gerek vardır.
- Bu toplayıcılar birkaç tümdevre kılıfı arka arkaya bağlanark, 4 bit, 2 bit ve 1 bitlik tam toplayıcılardan oluşturulabilir.
- 9 girişi bulunan 4-bitlik paralel toplayıcının klasik yöntemler kullanılarak tasarımında 2⁹ = 512 satırlı bir doğruluk tablosu gerekir.
- Dolayısıyla, önceden bilinen fonksiyonların birbirine eklendiği bir iteratif yöntem kullanarak, basit ve iyi düzenlenmiş bir uygulamayla, doğruluk tablosu yapmadan fonksiyon gerçekleştirilebilir.
- Bir önceki devreyi düşünün!

- İki ikili sayının paralel toplamının gerçeklenebilmesi için toplanan ve eklenen tüm bitlerin aynı zamanda elde edilebilir olması gerekir.
- Devrede, çıkış işareti tüm kapılardan geçerek <u>yayıldıktan sonra</u>, doğru toplam değeri çıkış uçlarında elde edilir.
- Toplam yayılma zamanı = tipik bir kapının yayılma gecikmesi ile devredeki kapı kademe sayısı'nın çarpımı
- Bir paralel toplayıcıda en uzun yayılma gecikme süresi, eldenin tam toplayıcılar boyunca yayılması için geçen zamandır.
- Toplam çıkışındaki her bit (S_i), giriş elde değerine bağlı olduğundan, toplama sonucu S, <u>sürekli rejimdeki son değerine</u>, giriş eldesi son kademeye yayıldıktan sonra ulaşacaktır.
- C₄ C₃'ü, C₃ C₂'yi, C₂ C₁'i, C₁ de C₀'ı beklemek zorundadır.
- C₄ ve S₃, tüm kademeler arasındaki elde yayılmasından sonra, sürekli rejim değerlerine yerleşirler.

- P_i ve G_i işaretleri sürekli rejim değerlerine kendilerine ait kapılardaki yayılmadan sonra yerleşir.
- Bu iki işarete ilişkin durum tüm tam toplayıcılarda aynıdır.
- Paralel toplayıcının toplam yayılma zamanı için en uzun zincire (C₀ dan C₄ e) bakılmalıdır.

- İşaret, giriş eldesi C_i den çıkış eldesi C_{i+1} e, bir VE kapısıyla bir VEYA kapısından geçerek yayılır (iki kademe)
- En uzun zincirde 2 x 4 = 8 kapı kademesi olacaktır.
- 4-bitlik paralel toplayıcıda toplam yayılma zamanı, bir yarı toplayıcı ile
 8 kapı kademesinin yayılma zamanları toplamıdır.

- Elde yayılma zamanı, iki sayı paralel toplandığında <u>hızı</u> sınırlayan bir faktördür.
- Bir paralel toplayıcının veya herhangi bir kombinezonal devrenin içindeki kapılarda işaretlerin yayılması için <u>yeterli</u> <u>zaman oluşuncaya kadar çıkışlar doğru olmayacaktır.</u>
- Elde yayılma zamanını azaltmak için:
 - Gecikmesi az olan hızlı kapılar kullanmak -> bir miktar gecikmeyi azaltır.
 - Cihazın karmaşıklığını elde gecikmesini azaltacak şekilde artırmak.
- Elde yayılma zamanını azaltmak için en çok kullanılan yöntem elde öngörü (carry lookahead logic) prensibidir.

Eldenin Yayılması (Carry Propagation) Elde Öngörü (Carry Lookahead Logic)

Alttaki tam toplayıcı devresinde iki ikili değişken şöyledir:

Elde Yayılması =
$$P_i = A_i \oplus B_i$$

Elde Üreteci = $G_i = A_iB_i$

Toplam (S_i) ve elde çıkışı (C_{i+1}) ise şöyle ifade edilebilir:

$$S_{i} = P_{i} \oplus C_{i}$$

$$C_{i+1} = G_{i} + P_{i}C_{i}$$

Eldenin Yayılması (Carry Propagation) Elde Öngörü (Carry Lookahead Logic)

- G_i elde üreteci giriş eldesini dikkate almayarak A_i ile B_i nin her ikisi birden birse bir çıkış eldesi üretir.
- Elde yayılması, eldenin C_i den C_{i+1} e yayılmasıyla bağlantılı bir terimdir.
- Her kademedeki elde çıkışı için Boole fonksiyonu yazılır ve her C_i nin önceki denklemlerdeki değeri yerine konursa:

$$C_1 = G_0 + P_0 C_0$$

 $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$
 $C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$

Her bir çıkış eldesi iki-kademeli gerçeklemeyle oluşturulur.

Eldenin Yayılması (Carry Propagation) Elde Öngörü (Carry Lookahead Logic)

- C₁ , C₂ ve C₃ eldelerini üreten elde öngörü üretecinin devresi yandadır.
- Bu devre iki-kademeli (çarpımların toplamı) gerçeklemeyle oluşturulmuştur.
- C₁, C₂ ve C₃ eldeleri <u>aynı</u> zamanda oluşur.

Elde Öngörü (Carry Propagation) Elde Öngörü (Carry Lookahead Logic)

- Elde öngörülü 4-bitlik bir paralel toplayıcı yanda gözükmektedir.
- Bir önceki sayfada açık biçimde verilen elde öngörü üreteci devresi burada kombinezonal şekilde yer almıştır.
- Her bir bit için toplam çıkışı (S_i) iki Özel-VEYA kapısı gerektirir.
- S₁ den S₃ e kadar olan çıkışlar aynı yayılma gecikmesine sahiptir.
- S₀ daha önce üretilir.

- İkili sayıların çıkarılması işlemi, tümleyenler yöntemi yardımıyla yapılabilir.
- A B çıkarma işlemi, B'nin 2'ye tümleyeninin alınıp A ile toplanmasıyla yapılabilir.
- B'nin 2'ye tümleyeni: B'nin 1'e tümleyeni alınıp 1 eklenmesi ile bulunur.

- 1'e tümleme, eviricilerle gerçekleştirilebilir ve eklenecek 1 sayısı elde giriş ucu kullanılarak ilave edilir.
- Çıkarma işleminde giriş eldesi C₀, 1'e eşit olmalıdır.
- Bu şekilde, çıkarma işlemi B'nin 1'e göre tümleyenine A ve 1 sayısının eklenmesiyle gerçekleştirilir.
- İşaretsiz sayılarda bu işlem, A ≥ B ise A B yi; A < B ise
 (B A)'nın 2'ye tümleyenini verir.
- İşaretli sayılarda bu işlem, taşma yoksa sonuç A B dir.
- Toplama ve çıkarma işlemleri bir ortak ikili toplayıcıyla bir devre içinde birleştirilmiştir.

- Tam toplayıcıların her birine bir Özel-VEYA kapısı eklenmiştir.
- M, mod girişidir ve işlemi kontrol eder. M = 0 olduğunda devre toplama, M = 1 olduğunda ise devre çıkarma işlemi yapar.
- M = 0 olduğunda B \oplus 0 = B olur ve C₀ giriş eldesi de 0'a eşit olur.
- M = 1 olduğunda B \oplus 1 = B' olur ve C_0 giriş eldesi de 1'e eşit olur.

- V çıktısını veren Özel-VEYA kapısı taşmayı (overflow) tespit etmektedir.
- İşaretli-tümleyen sistemindeki ikili sayıların toplama ve çıkarma işlemleri, işaretsiz sayılarla aynı şekildedir. (aynı kurallar geçerlidir.)
- Bu nedenle, bilgisayarların her iki tür aritmetiği gerçekleştirmek için yalnızca bir ortak donanım devresine ihtiyacı vardır.
- Burada, programcı işlemin sonucunu, sayıların işaretli veya işaretsiz olmasına bağlı olarak farklı yorumlamalıdır (ele almalıdır).
- n-basamaklı iki sayı toplandığında, toplam n+1 basamaklı ise, bir taşma oluşmuştur.
- Bu durum, ikili veya onlu, işaretli veya işaretsiz sayılar için geçerlidir.

