Python Programming	Descriptive Analytics	Introduction to Data Science using Python	Predictive Analytics	Machine Learning	Big Data Analytics	Prescriptive Analytics
20 H	20H	20H	20H	30H	30H	20H
w1	W2-W3	W2-W3	W4-W5	W5-W8	W4 -W8	W7 – W8
Introduction to Python	Introduction to Data	Introduction to data science	Introduction Predictive	Introduction to machine	Introduction to Big data	Monte Carlo Simulation and
programming for beginners.	Analytics	illustrated	Analytics	learning: Taxonomy of	analytics	Risk Analysis
Orientation, Expressions,	,	astratea	Dimensionality Reduction	machine learning		indicating of
Variables, Functions,	Descriptive Statistical	Discover the power and	Principal Component Analysis	Supervised Learning	Characteristics of Big Data	Linear Optimization Models
Modules and Scripts,	Measures	flexibility of NumPy, Scipy	Independent Component	Supervised learning:	The Process of Data Analysis	Maximization Problem
Function Definitions,	Populations and Samples	and Matplotlib	Analysis (ICA)	Regression and Classification	,	Minimization Problem
Conditionals, Lists, Loops,	Measures of location,		Singular Value	Generative vs. discriminative	Big Data Modeling and	Sensitivity Analysis
Arrays, Tuples, Dictionaries,	variability and association	advanced module features in	Decomposition (SVD)	learning	Management	, ,
Objects, Nested-Lists,	Analyzing Distributions	probability, statistical testing,	Introduction to Regression,	Naïve Bayes		Integer Linear
Classes, Files.	Data Cleansing, missing data,		Classification, Clustering	Logistic regression	Processing Big Data Data	Optimization Models
	outliers	signal processing,	Supervised Techniques	Support vector machines	Exploration	
		interpolation, fast Fourier	Introduction Forecasting	Decision Tress	•	Nonlinear Optimization
	Data Manipulation	transform,	Introduction Classification	Ensemble methods: Bagging,	Hadoop, Map-Reduce and	Models
	Slicing and Extracting Data		Regression methods –	boosting.	Spark	
	Variable Conversion	financial	Forecasting numeric data	_		Decision Analysis
	Variable Information	forecasting and other	Simple linear regression	Deep learning	Supervised learning for Big	Decision Analysis without
	Understand Variables	applications.	Ordinary least squares	Neural networks.	Data	Probabilities
	Importance		estimation	Backpropagation algorithm.		Decision Analysis with
	Feature Vectors	Mathematical operations	Correlations	Autoencoders.	Unsupervised learning for	Probabilities
	Feature Selection	with array data structures,	Linear Regression		big data	Decision Analysis with
		optimization.	Data exploration	Reinforcement learning		Sample Information
	Data Cleaning		Data Preparation	Markov decision processes		Computing Branch
	Data Wrangling	Perform exploratory data	Building a model	(MDPs).		Probabilities with Bayes'
	Data Visualization	analysis and create data	Evaluation	Bellman equations.		Theorem
		visualizations. Understand	Improve model performance	Value iteration and policy		Utility Theory
	Probability: An Introduction	critical statistical concepts	Classification: Lazy Learning	iteration.		
	to Modeling Uncertainty	such as hypothesis testing	Classification using Nearest	Q-learning algorithm.		
		(A/B testing) and inference.	Neighbor	Value function		
	Statistical Inference	Histogram.	Classification using nearest	approximation.		
	Sampling Distributions		neighbors' philosophy	Policy search. Reinforce.		
	Interval Estimation		The kNN algorithm			
	Hypothesis Testing		Calculating distance			
			Choosing an appropriate k			
			Preparing data for use with			
			kNN. Why is the kNN			
			algorithm lazy?			
			Predictive Diagnostics			
			Un-Supervised Algorithms			
			Clustering			