Идеалы колец $\mathbb{Z}_4[x]/(x^n-1)$ для $n=2^e$

На основе статьи

Cyclic codes of length 2^e over \mathbb{Z}_4

https://core.ac.uk/download/pdf/82251738.pdf

Авторы: Taher Abualrub, Robert Oehmke

Идеалы в кольце $\mathbb{Z}_2[x]/(x^n-1)$

Главные, порождены делителями $x^n - 1$.

Разложим
$$x^n - 1$$
: $x^{2^e} - 1 = (x^{2^{e-1}} - 1)^2 = (x - 1)^n$.

Идеалы в кольце $\mathbb{Z}_2[x]/(x^n-1)$

Главные, порождены делителями x^n-1 .

Разложим
$$x^n - 1$$
: $x^{2^e} - 1 = (x^{2^{e-1}} - 1)^2 = (x - 1)^n$.

НОД всех делителей — x-1. На другом языке сумма всех идеалов равна (x-1).

Следовательно, (x-1) — единственный максимальный идеал. Он нильпотентен степени n. Следовательно, это кольцо Галуа.

40148143131300

Идеалы при сюръективном отображении

Пусть $\phi:A\to B$ — сюръективное отображение. По теореме об изоморфизме $A/\ker\phi\cong B$

Следовательно, (максимальные) идеалы A, содержащие $\ker \phi$, биективны (максимальным) идеалам B.

Редукция по модулю p

- **2** $\ker \phi = (2)$
- Это единственный максимальный идеал, нильпотентный.
- Является ли он главным?

Характеризация пересечения максимальных идеалов

Утверждение (курс коммутативной алгебры)

Элемент x принадлежит пересечению J максимальных идеалов коммутативного кольца A тогда и только тогда, когда 1-xy обратим для любого $y\in A$

Характеризация пересечения максимальных идеалов

Утверждение (курс коммутативной алгебры)

Элемент x принадлежит пересечению J максимальных идеалов коммутативного кольца A тогда и только тогда, когда 1-xy обратим для любого $y\in A$

Если элемент $a=1-xy_0$ необратим, он содержится в максимальном идеале m. По предположению $x\in m$. Тогда $xy_0\in m$ и $1\in m$. Противоречие, доказали, что все элементы J удовлетворяют этому свойству.

Характеризация пересечения максимальных идеалов

Утверждение (курс коммутативной алгебры)

Элемент x принадлежит пересечению J максимальных идеалов коммутативного кольца A тогда и только тогда, когда 1-xy обратим для любого $y\in A$

Если элемент $a=1-xy_0$ необратим, он содержится в максимальном идеале m. По предположению $x\in m$. Тогда $xy_0\in m$ и $1\in m$. Противоречие, доказали, что все элементы J удовлетворяют этому свойству.

В другую сторону. Пусть m — какой-то максимальный идеал и $x\not\in m$. Тогда (x)+m=A, в частности для каких-то $w\in m$ и y_0 $w+xy_0=1$. Следовательно, $1-xy_0\in m$, а значит, необратим.

Максимальный идеал в локальном кольце

Утверждение

Пусть (A,m) — локальное кольцо и m=(a). Пусть $m=(a_1,\dots,a_n)$. Тогда $m=(a_i)$ для какого-то $i\in 1,\dots,n$.

Максимальный идеал в локальном кольце

Утверждение

Пусть (A,m) — локальное кольцо и m=(a). Пусть $m=(a_1,\dots,a_n)$. Тогда $m=(a_i)$ для какого-то $i\in 1,\dots,n$.

Для n=1 утверждение тавтологично. Пусть оно верно для n=k, рассмотрим k+1.

Верно, что $a_1=ra$ (1). Если r обратим, $m=(a_1)$. Иначе $r=\sum_1^{k+1}\alpha_ia_i$. Подставим в (1): $a_1(1-\alpha_1a)=\sum_2^{k+1}a\alpha_ia_i$. Множитель при a_1 обратим, поскольку максимальный идеал единственен, значит, $m=(a_2,\dots,a_{k+1})$

Максимальный идеал в локальном кольце

Утверждение

Пусть (A,m) — локальное кольцо и m=(a). Пусть $m=(a_1,\dots,a_n)$. Тогда $m=(a_i)$ для какого-то $i\in 1,\dots,n$.

Для n=1 утверждение тавтологично. Пусть оно верно для n=k, рассмотрим k+1.

Верно, что $a_1=ra$ (1). Если r обратим, $m=(a_1)$. Иначе $r=\sum_1^{k+1}\alpha_ia_i$. Подставим в (1): $a_1(1-\alpha_1a)=\sum_2^{k+1}a\alpha_ia_i$. Множитель при a_1 обратим, поскольку максимальный идеал единственен, значит, $m=(a_2,\dots,a_{k+1})$

Заключаем, что идеал $(2, x-1) \subset R$ не является главным.

Мы зафиксировали, что R не является кольцом главных идеалов.

Пусть I — идеал и $g \in I$ — элемент минимальной степени.

Мы зафиксировали, что $\it R$ не является кольцом главных идеалов.

Пусть I — идеал и $g \in I$ — элемент минимальной степени.

Пусть g — унитарный многочлен. Тогда на него можно делить с остатком в $\mathbb{Z}_4[x]$, получая остаток меньшей степени.

Поделив все элементы I, представленные собой в $Z_4[x]$, получили, что I=(g). Нулевой элемент можно представить как x^n-1 , значит, $g\mid x^n-1$.

Это рассуждение дословно повторяет общее рассуждение, классифицирующее идеалы $\mathbb{Z}_2[x]/(x^n-1)$, на которое мы ссылались в начале.

Отступление: разложение x^n-1 на множители

$$x^{4} - 1 = (x^{2} + 1)(x - 1)(x + 1) = (x^{2} + 2x - 1)(x - 1)(x - 1) = (x^{2} + 2x - 1)(x + 1)(x + 1)$$

В R есть неглавные идеалы. Как минимум их элементы минимальной степени не унитарны.

Пусть g не унитарен. То есть старший коэффициент – двойка. Если $2g \neq 0$, степень 2g меньше степени g, значит, g = 2q для какого-то многочлена q с единичными коэффициентами.

Пусть в I нет унитарных многочленов.

Рассмотрим множество элементов I, которые не делятся на g. Если оно не пусто, в нём есть элемент r минимальной степени u. Отметим, что $u \geq s = \deg(g)$. Рассмотрим $w = r - 2qx^{u-s}$.

Он имеет степень, меньшую r, следовательно, делится на 2q (или нулевой, что подходит). Тогда и r делится на 2q. Противоречие.

Следовательно, в этом случае I=(2q). Мы также получили утверждение, что все неглавные идеалы содержат унитарный многочлен.

Пусть I содержит унитарный многочлен.

Множество унитарных многочленов содержит элемент f минимальной степени t. Множество многочленов степени меньше t попадает в условия предыдущего случая и все его элементы делятся на 2q.

Пусть I содержит унитарный многочлен.

Множество унитарных многочленов содержит элемент f минимальной степени t. Множество многочленов степени меньше t попадает в условия предыдущего случая и все его элементы делятся на 2q.

Пусть $a\in I$ — многочлен степени не меньше t. Поделим его с остатком на f: a=a'f+r=af+2qr'.

Таким образом I = (f) + (2q) = (f, 2q)

Теорема

Итого имеем идеалы следующих видов:

- **1** (*g*), где *g* делитель $x^n 1$
- ② (2q), где q имеет единичные коэффициенты

Условие на $f=f_1+2f_2$ можно усилить. Вычитая множители вида $2qx^k$, можно добиться того, чтобы степень f_2 была меньше s.

Образ идеала при сюръективном отображении — идеал, а образующая отображается в образующую. Отсюда можно заключить также, что $\phi(f_1)\mid x^n-1$, $\phi(q)\mid x^n-1$ и в силу неравенства на степени $\phi(q)\mid \phi(f_1)$.

Чего заключить нельзя:

Нельзя пользоваться подъёмом Гензеля и поднимать им разложение x^n-1 . К тому же их несколько.

Но даже если бы было можно, это бы не помогло описать все идеалы.

Example

Главный идеал $(x^3+x^2-x-1)\subset \mathbb{Z}_4[x]/(x^4-1)$ не порождается делителем x^4-1 .

Достаточно поделить: $x^4 - 1 = (x - 1)(x^3 + x^2 - x - 1) + 2(x^2 + 1)$.

May 16, 202