Дмитриев М.Г., Макаров Д.А.

«Методы классического и интеллектуального управления динамическими системами»

Лабораторная работа №1

Пример. Перевернутый маятник на тележке¹

M – масса тележки, 0.5 кг;

m – масса маятника, 0.2 кг;

b – коэффициент трения тележки, 0.1 H/M/c;

l — расстояние до центра масс маятника, 0.3 м;

I — момент инерции маятника, 0.006 $kg*m^2$;

F – сила, приложенная к тележке, H;

x – координата тележки, м;

 θ — угол отклонения маятника от вертикальной полуоси, направленной вниз, рад.

¹ Пример и программа взяты из «Control Tutorials for MATLAB and Simulink» by Prof. Bill Messner at Carnegie Mellon and Prof. Dawn Tilbury at the University of Michigan. http://ctms.engin.umich.edu/CTMS/index.php?aux=Home ₂

Уравнения движения

Нелинейная модель:

$$(M+m)\ddot{x}+b\dot{x}+ml\ddot{\theta}\cos\theta-ml\dot{\theta}^{2}\sin\theta=F$$
 $(I+ml^{2})\ddot{\theta}+mgl\sin\theta=-ml\ddot{x}\cos\theta$ Положим, что $\theta=\pi+\phi$, где ϕ – угол

отклонения от вертикали. Тогда при малом ϕ

$$\cos \theta = \cos(\pi + \phi) \approx -1$$

 $\sin \theta = \sin(\pi + \phi) \approx -\phi$

$$(M + m)\ddot{x} + b\dot{x} - ml\ddot{\phi} = u$$

 $(I + ml^2)\ddot{\phi} - mgl\phi = ml\ddot{x}$

где u = F.

friction

 $= b\dot{x}$

Линеаризация и выходные величины

Поскольку полученные выше уравнения являются линейными, то их можно представить в виде системы ОДУ первого порядка, которую можно представить в виде

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \dot{\phi} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & \frac{-(I+ml^2)b}{I(M+m)+Mml^2} & \frac{m^2gl^2}{I(M+m)+Mml^2} & 0 \\ 0 & 0 & 1 \\ 0 & \frac{-mlb}{I(M+m)+Mml^2} & \frac{mgl(M+m)}{I(M+m)+Mml^2} & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \phi \\ \dot{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{I+ml^2}{I(M+m)+Mml^2} \\ 0 \\ \frac{ml}{I(M+m)+Mml^2} \end{bmatrix} u$$

Введем вектор наблюдений у

$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ \phi \\ \dot{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$$

Упражнения в MATLAB

- Проверка устойчивости разомкнутой системы (без управления) с помощью функции **eig.**
- Проверка управляемости системы с помощью функции rank.
- Синтез стабилизирующего в нуле линейно-квадратичного регулятора по состоянию с помощью функций care или lqr.
- Проверка наблюдаемости системы с помощью rank.
- Построение наблюдателя и стабилизирующего в нуле линейно-квадратичного динамического регулятора.

Уравнения замкнутой системы вдоль регулятора с наблюдателем полного порядка

С учетом построенного наблюдателя

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

для системы $\dot{x} = Ax + Bu$, y = Cx для ошибки наблюдения $e = x - \hat{x}$ имеем

$$\dot{\mathbf{e}} = \dot{x} - \dot{\hat{x}} = (Ax + Bu) - (A\hat{x} + Bu + L(y - C\hat{x})) = A(x - \hat{x}) - LC(x - \hat{x}) = (A - LC)e$$
. Тогда уравнения **расширенной** замкнутой системы вдоль $u = -K\hat{x} = -K(x - e)$ имеют вид

Определение коэффициентов матрицы наблюдателя

Heoбxoдимо, чтобы собственные значения матрицы A-LC лежали в левой полуплоскости для устойчивости ошибки наблюдения. Формально, определение матриц коэффициентов усилений регулятора и наблюдателя $(K \ u \ L)$ — две Hesasucumse задачи. Однако, желательно, чтобы действительные части собственных чисел матрицы A-LC по модулю были значительно (на порядок) больше действительных частей собственных значений (A-BK).

Команда **place**(A, B, poles) находит K, при которой A - BK имеет вектор собственных чисел равный заданному параметру poles. Т.к. собственные значения не меняются при транспонировании, то используем L^T = place(A^T , C^T , poles).