

JAHANGIRNAGAR UNIVERSITY

Department of Computer Science and Engineering

PMSCS Term Final Examination, Fall - 2023 Course ID: PMSCS 686 (Introduction to Data Science) Time: 3 Hours Full Marks: 60

Answer any SIX questions.

3 + 7

- What is big data? Is there any relation between big data and data science?
- Write down the name of components of the below value chain and describe them accordingly.

3 + 3 + 4

2 + 3 + 5

- Why does 50% of analytical projects fail? How the failure can be avoided?
- Define the terms "Outlier" and "missing value" and their possible solutions.
- c) Though an increased number of feature in data set is very important, we try to reduce the number of features. Why?

- a) Why hypothesis testing is used for?
- b) What criteria the null and alternate hypothesis must possess?
- c) Convert the following word hypothesis into statistical hypothesis "People who eat breakfast will run a race faster or slower than those who do not eat breakfast".

4.

3 + 7

What do you understand by variable transformation? Why do we use variable transformation in linear regression analysis?

b) For the weekly advertising expenditure and weekly sales table as given below. The managementeam of a company is interested in testing whether or not there is a linear association between advertising expenditure and weekly sales, using a linear regression model. Use $\alpha = .05$. [T-distribution table is attested at Appendix-A].

Expenditure (x)	Weekly sales (y)
41 '	1250
54	1380
63	1425
54	1425
48	1450
46	1300
62	1400
61	1510
64	1575
71	1650

a) Suppose for a set of patients, if the probability of response for treatment group, Pr(response | trt) = 0.4 and the probability of response for placebo group, Pr(response | placebo) = 0.2. What will be the *ODD Ratio* between two groups?

b) For an Assisted Reproduction Technology (ART) clinics, one of the main outcomes is clinical pregnancy. There is much empirical evidence that the candidate mother's age is a significant factor that affects the chances of pregnancy success. A recent study examined the effect of the mother's age, along with clinical characteristics, on the odds of pregnancy success on the first ART attempt. The logistic regression model is represented as

$$\ln\left(\frac{\Pr(pregnancy)}{1 - \Pr(pregnancy)}\right) = 2.5 - 1.15 * Age$$

(i) What is the effect of Age on Pregnancy?

(ii) What is the predicted probability of a 27-year-old having pregnancy success with first ART attempt?

Why k-Nearest Neighbor (k-NN) classifier is termed as lazy classifier? Write down the problems that are encountered in Euclidean distance measure.

b) Write down the kd-tree construction algorithm. Hence, show that a kd-tree has a depth in the order of $O(log_2n)$; where n is the number of records.

7.

a) Write down the working principle of a Support Vector Machine (SVM). How does the SVM absorb the noise components?

5 + 5

b) Applying Naïve Bayes theorem, determine whether the below test animal is Mammal or Not.

Test animal:	Give Birth	Can Fly	Live in Water	Have Legs	Class
	yes	no	Marie or mark that he was a second	no	?

Data Set is given as below:

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	по	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

8:

a) For the below test cases, which classification is the best? Justify your statement.

3 + 7

CO: 0

C1: 1

b) From the table below, select the first one among four attributes for constructing a decision the on the basis of information gain of each attributes.

Age	Has_Job	Own House	Credit_Rating	Class	
			fair	No	
young		false	good	No	
young	false	false	good	Yes	
young	true	true	fair	Yes	
young	false	false	fair	No	
middle	false	false	fair	No	
middle	false	false	good	No	
middle	true	true	good '	Yes	
middle	false	true -	excellent	Yes	
middle	false	true	excellent	Yes	
old	false	true	excellent	Yes	
old	false	true	good	Yes	
old	true	false	good	Yes	
old	true	false	excellent	Yes	
old	false	false	fair	No	

Appendix-A: Table for T-distribution

4 Table											
t Table					t.90	t.95	t .975	t .99	t.995	t .999	t ,9995
cum. prob	1.50	1.75	f.80	1,85	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
one-tail	0.50	0.25	0.20	0.15			0.05	0.02	0.01	0.002	0.001
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02			
df	Take Inches				0.070	6.314	12.71	31.82	63.66	318.31	636.62
1	0.000	1.000	1.376	1.963	3.078	2.920	4.303	6.965	9.925	22.327	31.599
2	0.000	0.816	1.061	1.386	1.886	2.353	3.182	4.541	5.841	10.215	12.924
3	0.000	0.765	0.978	1.250	1.638	2.132	2.776	3.747	4.604	7.173	8.610
4	0.000	0.741	0.941	1.190	1.533	2.015	2.571	3.365	4.032	5.893	6.869
5	0.000	0.727	0.920	1.156	1.476	1.943	2.447	3.143	3.707	5.208	5.959
6	0.000	0.718	0.906	1.134	1,415	1.895	2.365	2.998	3,499	4.785	5.408
7	0.000	0.711	0.896	1.119	1.397	1.860	2.306	2.896	3.355	4.501	5.041
8	0.000	0.706	0.889	1.108	1.383	1.833	2.262	2.821	3.250	4.297	4.781
9	0.000	0.703	0.883	1.100	1.372	1.812	2.228	2.764	3.169	4.144	4.587
10	0.000	0.700	0.879	1.093	1.363	1.796	2.201	2.718	3.106	4.025	4.437
11	0.000	0.697	0.876	1.088	1.356	1.782	2.179	2.681	3.055	3.930	4.318
12	0.000	0.695	0.873	1.083	1.350	1.771	2.160	2.650	3.012	3.852	4.221
13	0.000	0.694	0.870	1.079	1.345	1.761	2.145	2.624	2.977	3.787	4.140
14	0.000	0.692	0.868	1.076	1.341	1.753	2.131	2.602	2.947	3.733	4.073
15	0.000	0.691	0.866	1.074	1.337	1.746	2.120	2.583	2.921	3.686	4.015
16	0.000	0.690	0.865	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
17	0.000	0.689	0.863	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
18	0.000	0.688	0.862	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
19	0.000	0.688	0.861	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
20	0.000	0.687	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
21	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
22	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
23	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
24	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
25	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
26 27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.457	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2,457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
-30804	070	0070	0070	1070		dence L		0070	3370	00.070	00.070
					Conti	dence r	.evei				12 10 1