UFRJ / COPPE / Programa de Engenharia Elétrica – Primeiro Período de 2007 CPE-723 – Otimização Natural (Parte II - Simulated Annealing)

Prova Parcial - 27 de Abril de 2007

Todos os itens da prova têm o mesmo valor: 1.0 ponto cada (total de 12.0 pontos). Tempo de prova: 1h40min.

- 1. Método de Monte Carlo:
 - a) Efetue as três primeiras iterações do cálculo de $\int_0^1 x^3 dx$, usando os três números aleatórios a seguir, que foram sorteados de uma distribuição uniforme no intervalo [0,1]:

$$0.9501, 0.2311, 0.6068, \dots$$

b) Efetue as três primeiras iterações do cálculo de $\int_0^1 x^2 e^{-x} dx$, usando os quatro números aleatórios a seguir, que foram sorteados de uma distribuição exponencial $f_X(x) = e^{-x}$ no intervalo $[0, +\infty]$:

$$0.0512, 1.4647, 0.4995, 0.7216, \dots$$

- 2. (Algoritmo de Metropolis) Considere uma variável aleatória $X \in \{1, 2, 3, 4, 5\}$ e uma função custo $J(x) = (x-3)^2$. Considere T=1.
 - a) Calcule os fatores de Boltzmann $\exp(-J(x)/T)$, para x=1,2,3,4,5.
 - b) Proponha um algoritmo para gerar uma distribuição de Boltzmann/Gibbs para a variável aleatória X, conforme os custos J(x).
 - c) Execute as três primeiras iterações do algoritmo que você propôs no item (b).
- 3. (Algoritmo de Metropolis) Considere um vetor aleatório X com duas dimensões: $X = [X_1; X_2]$, sendo que $X_1 \in \{0,1\}$ e $X_2 \in \{0,1\}$. A função custo é $J(\mathbf{x}) = 2x_1 + x_2$.
 - a) A aplicação do algoritmo de Metropolis ao vetor \mathbf{x} , alterando uma componente $(x_1$ ou $x_2)$ de cada vez, define um processo de Markov com duas matrizes de transição: \mathbf{M}_1 e \mathbf{M}_2 . Calcule estas matrizes de transição. Considere T=1.0. Note que o número de estados possíveis é 4.
 - b) Calcule, para temperatura T = 1.0, a distribuição de Boltzmann/Gibbs do vetor aleatório X. Mostre que este vetor de probabilidades é um vetor invariante para ambas as matrizes de transição do item (a).
 - c) Qual é a distribuição de Boltzmann/Gibbs obtida com T=0.5?
- 4. (Deterministic Annealing) Seja X um conjunto de dados contendo 4 vetores equiprováveis: $\mathbf{x}_1 = [1.0; 0.0]$, $\mathbf{x}_2 = [0.0; 1.0]$, $\mathbf{x}_3 = [-1.0; 0.0]$, e $\mathbf{x}_4 = [0.0; -1.0]$. Considere um conjunto de centróides, Y, com dois elementos: \mathbf{y}_1 e \mathbf{y}_2 . Estes dois centróides assumem valores iniciais $\mathbf{y}_1 = [0.5; 0.5]$ e $\mathbf{y}_2 = [-0.5; -0.5]$. A medida de distorção entre dois vetores é $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||^2$.
 - a) Considerando a execução do D.A. básico, calcule as probabilidades $p(\mathbf{y}|\mathbf{x})$ de associação de cada vetor \mathbf{x}_j a cada centróide \mathbf{y}_i . Para a temperatura T, escolha qualquer valor fixo de sua preferência.
 - b) Usando a matriz $p(\mathbf{y}|\mathbf{x})$ do item (a), calcule $D = \sum_{\mathbf{x}} p(\mathbf{x}) \sum_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) ||\mathbf{x} \mathbf{y}||^2$.
 - c) Usando a matriz $p(\mathbf{y}|\mathbf{x})$ do item (a), calcule valores atualizados para os centróides \mathbf{y}_1 e \mathbf{y}_2 .
- 5. (Simulated Annealing) Descreva de forma breve o algoritmo S.A. básico aplicado à minimização de uma função $J(\mathbf{x})$, onde \mathbf{x} é um vetor com N dimensões. Na sua descrição, leve em consideração os seguintes parâmetros: temperatura inicial T_0 , temperatura mínima T_{min} , e número K de iterações executadas em temperatura fixa. Para as perturbações de \mathbf{x} , escolha qualquer esquema $\bar{\mathbf{x}}_k := f(\mathbf{x}_{k-1}, \epsilon)$ de sua preferência, sendo ϵ um número aleatório.