

The computer

- a computer system is made up of various elements
- each of these elements affects the interaction
 - input devices text entry and pointing
 - output devices screen (small&large), digital paper
 - virtual reality special interaction and display devices
 - physical interaction e.g. sound, haptic, bio-sensing
 - paper as output (print) and input (scan)
 - memory RAM & permanent media, capacity & access
 - processing speed of processing, networks

Interacting with computers

to understand human-computer interaction

... need to understand computers!

A 'typical' computer system

- screen, or monitor, on which there are windows
- keyboard
- mouse/trackpad
- variations
 - desktop
 - laptop
 - PDA

the devices dictate the styles of interaction that the system supports

For different devices, then the interface will support a different style of interaction

How many ...

```
computers in your house?
hands up, ...
... none, 1, 2, 3, more!!
```

computers in your pockets?

are you thinking ... PC, laptop, PDA ??

How many computers ...

in your house?

- PC
- TV, VCR, DVD, HiFi, cable/satellite TV
- microwave, cooker, washing machine
- central heating
- security system

can you think of more?

in your pockets?

- PDA
- phone, camera
- smart card, card with magnetic strip?
- electronic car key
- USB memory

try your pockets and bags

text entry devices

keyboards (QWERTY et al.)
chord keyboards, phone pads
handwriting, speech

Keyboards

- Most common text input device
- Allows rapid entry of text by experienced users
- Keypress closes connection, causing a character code to be sent
- Usually connected by cable, but can be wireless

layout – QWERTY

- Standardised layout but ...
 - non-alphanumeric keys are placed differently
 - accented symbols needed for different scripts
 - minor differences between UK and USA keyboards
- QWERTY arrangement not optimal for typing
 - layout to prevent typewriters jamming!
- Alternative designs allow faster typing but large social base of QWERTY typists produces reluctance to change.

Lay out QWERTY

QWERTY (ctd)

alternative keyboard layouts

Alphabetic

- keys arranged in alphabetic order
- not faster for trained typists
- not faster for beginners either!

Dvorak

- common letters under dominant fingers
- biased towards right hand
- common combinations of letters alternate between hands
- 10-15% improvement in speed and reduction in fatigue
- But large social base of QWERTY typists produce market pressures not to change

special keyboards

- designs to reduce fatigue for RSI (Repetitive Strain Injury)
- for one handed use
 - e.g. the Maltron left-handed keyboard

Chord keyboards

only a few keys - four or 5 letters typed as combination of keypresses compact size

- ideal for portable applications
 short learning time
- keypresses reflect letter shape fast
 - once you have trained

BUT - social resistance, plus fatigue after extended use

NEW – niche market for some wearables

phone pad and T9 entry

 use numeric keys with multiple presses

> 2 – a b c 6 - m n o 3 - d e f 7 - p q r s

4-ghi 8-tuv 5-jkl 9-wxyz

hello = 4433555[pause]555666 surprisingly fast!

- T9 predictive entry
 - type as if single key for each lett
 - use dictionary to 'guess' the right word
 - hello = 43556 ...
 - but 26 -> menu 'am' or 'an'

Handwriting recognition

- Text can be input into the computer, using a pen and a digesting tablet
 - natural interaction
- Technical problems:
 - capturing all useful information stroke path, pressure,
 etc. in a natural manner
 - segmenting joined up writing into individual letters
 - interpreting individual letters
 - coping with different styles of handwriting
- Used in PDAs, and tablet computers ...
 ... leave the keyboard on the desk!

Speech recognition

- Improving rapidly
- Most successful when:
 - single user initial training and learns peculiarities
 - limited vocabulary systems
- Problems with
 - external noise interfering
 - imprecision of pronunciation
 - large vocabularies
 - different speakers

Numeric keypads

- for entering numbers quickly:
 - calculator, PC keyboard
- for telephones

not the same!!

ATM like phone

calculator

positioning, pointing and drawing

mouse, touchpad trackballs, joysticks etc. touch screens, tablets eyegaze, cursors

the Mouse

- Handheld pointing device
 - very common
 - easy to use
- Two characteristics
 - planar movement
 - buttons

(usually from 1 to 3 buttons on top, used for making a selection, indicating an option, or to initiate drawing etc.)

the mouse (ctd)

Mouse located on desktop

- requires physical space
- no arm fatigue

Relative movement only is detectable.

Movement of mouse moves screen cursor

Screen cursor oriented in (x, y) plane,

mouse movement in (x, z) plane ...

... an *indirect* manipulation device.

- device itself doesn't obscure screen, is accurate and fast.
- hand-eye coordination problems for novice users

How does it work?

Two methods for detecting motion

Mechanical

- Ball on underside of mouse turns as mouse is moved
- Rotates orthogonal potentiometers
- Can be used on almost any flat surface

Optical

- light emitting diode on underside of mouse
- may use special grid-like pad or just on desk
- less susceptible to dust and dirt
- detects fluctuating alterations in reflected light intensity to calculate relative motion in (x, z) plane

Even by foot ...

- some experiments with the footmouse
 - controlling mouse movement with feet ...
 - not very common :-)
- but foot controls are common elsewhere:
 - car pedals
 - sewing machine speed control
 - organ and piano pedals

Touchpad

- small touch sensitive tablets
- 'stroke' to move mouse pointer
- used mainly in laptop computers
- good 'acceleration' settings important
 - fast stroke
 - lots of pixels per inch moved
 - initial movement to the target
 - slow stroke
 - less pixels per inch
 - for accurate positioning

Trackball and thumbwheels

Trackball

- ball is rotated inside static housing
 - like an upsdie down mouse!
- relative motion moves cursor
- indirect device, fairly accurate
- separate buttons for picking
- very fast for gaming
- used in some portable and notebook computers.

Thumbwheels ...

- for accurate CAD two dials for X-Y cursor position
- for fast scrolling single dial on mouse

Joystick and keyboard nipple

Joystick

- indirect pressure of stick = <u>velocity</u> of movement
- buttons for selection
 on top or on front like a trigger
- often used for computer games aircraft controls and 3D navigation

Keyboard nipple

- for laptop computers
- miniature joystick in the middle of the keyboard

Touch-sensitive screen

- Detect the presence of finger or stylus on the screen.
 - works by interrupting matrix of light beams, capacitance changes or ultrasonic reflections
 - direct pointing device
- Advantages:
 - fast, and requires no specialised pointer
 - good for menu selection
 - suitable for use in hostile environment: clean and safe from damage.
- Disadvantages:
 - finger can mark screen
 - imprecise (finger is a fairly blunt instrument!)
 - difficult to select small regions or perform accurate drawing
 - lifting arm can be tiring

Stylus and light pen

Stylus

- small pen-like pointer to draw directly on screen
- may use touch sensitive surface or magnetic detection
- used in PDA, tablets PCs and drawing tables

Light Pen

- now rarely used
- uses light from screen to detect location

BOTH ...

- very direct and obvious to use
- but can obscure screen

Digitizing tablet

- Mouse like-device with cross hairs
- used on special surface
 - rather like stylus
- very accurate
 - used for digitizing maps

Eyegaze

- control interface by eye gaze direction
 - e.g. look at a menu item to select it
- uses laser beam reflected off retina
 - … a very low power laser!
- mainly used for evaluation (ch x)
- potential for hands-free control
- high accuracy requires headset
- cheaper and lower accuracy devices available sit under the screen like a small webcam

Cursor keys

- Four keys (up, down, left, right) on keyboard.
- Very, very cheap, but slow.
- Useful for not much more than basic motion for text-editing tasks.
- No standardised layout, but inverted "T", most common

Discrete positioning controls

- in phones, TV controls etc.
 - cursor pads or mini-joysticks
 - discrete left-right, up-down
 - mainly for menu selection

display devices

bitmap screens (CRT & LCD)
large & situated displays
digital paper

resolution and colour depth

- Resolution ... used (inconsistently) for
 - number of pixels on screen (width x height)
 - e.g. SVGA 1024 x 768, PDA perhaps 240x400
 - density of pixels (in pixels or dots per inch dpi)
 - typically between 72 and 96 dpi
- Aspect ratio
 - ration between width and height
 - 4:3 for most screens, 16:9 for wide-screen TV
- Colour depth:
 - how many different colours for each pixel?
 - black/white or greys only
 - 256 from a pallete
 - 8 bits each for red/green/blue = millions of colours

anti-aliasing

Jaggies

 diagonal lines that have discontinuities in due to horizontal raster scan process.

Anti-aliasing

- softens edges by using shades of line colour
- also used for text

Cathode ray tube

- Stream of electrons emitted from electron gun, focused and directed by magnetic fields, hit phosphor-coated screen which glows
- used in TVs and computer monitors

Health hazards of CRT!

- X-rays: largely absorbed by screen (but not at rear!)
- UV- and IR-radiation from phosphors: insignificant levels
- Radio frequency emissions, plus ultrasound (~16kHz)
- Electrostatic field leaks out through tube to user. Intensity dependant on distance and humidity. Can cause rashes.
- Electromagnetic fields (50Hz-0.5MHz). Create induction currents in conductive materials, including the human body. Two types of effects attributed to this: visual system - high incidence of cataracts in VDU operators, and concern over reproductive disorders (miscarriages and birth defects).

Health hints ...

- do not sit too close to the screen
- do not use very small fonts
- do not look at the screen for long periods without a break
- do not place the screen directly in front of a bright window
- work in well-lit surroundings
- ★ Take extra care if pregnant. but also posture, ergonomics, stress

Liquid crystal displays

- Smaller, lighter, and ... no radiation problems.
- Found on PDAs, portables and notebooks,
 ... and increasingly on desktop and even for home TV
- also used in dedicted displays: digital watches, mobile phones, HiFi controls
- How it works ...
 - Top plate transparent and polarised, bottom plate reflecting.
 - Light passes through top plate and crystal, and reflects back to eye.
 - Voltage applied to crystal changes polarisation and hence colour
 - N.B. light reflected not emitted => less eye strain

special displays

Random Scan (Directed-beam refresh, vector display)

- draw the lines to be displayed directly
- no jaggies
- lines need to be constantly redrawn
- rarely used except in special instruments

Direct view storage tube (DVST)

- Similar to random scan but persistent => no flicker
- Can be incrementally updated but not selectively erased
- Used in analogue storage oscilloscopes

large displays

- used for meetings, lectures, etc.
- technology

```
    plasma – usually wide screen
    video walls – lots of small screens together
    projected – RGB lights or LCD projector
```

- hand/body obscures screen
- may be solved by 2 projectors + clever software back-projected
 - frosted glass + projector behind

situated displays

- displays in 'public' places
 - large or small
 - very public or for small group
- display only
 - for information relevant to location
- or interactive
 - use stylus, touch sensitive screem
- in all cases ... the location matters
 - meaning of information or interaction is related to the location

small displays beside office doors

Digital paper

• what?

- thin flexible sheets
- updated electronically
- but retain display

appearance

cross section

• how?

- small spheres turned
- or channels with coloured liquid and contrasting spheres
- rapidly developing area

virtual reality and 3D interaction

positioning in 3D space moving and grasping seeing 3D (helmets and caves)

positioning in 3D space

- cockpit and virtual controls
 - steering wheels, knobs and dials ... just like real!
- the 3D mouse
 - six-degrees of movement: x, y, z + roll, pitch, yaw
- data glove
 - fibre optics used to detect finger position
- VR helmets
 - detect head motion and possibly eye gaze
- whole body tracking
 - accelerometers strapped to limbs or reflective dots and video processing

Touchpad

- small touch sensitive tablets
- 'stroke' to move mouse pointer
- used mainly in laptop computers
- good 'acceleration' settings important
 - fast stroke
 - lots of pixels per inch moved
 - initial movement to the target
 - slow stroke
 - less pixels per inch
 - for accurate positioning

Trackball and thumbwheels

Trackball

- ball is rotated inside static housing
 - like an upside down mouse!
- relative motion moves cursor
- indirect device, fairly accurate
- separate buttons for picking
- very fast for gaming
- used in some portable and notebook computers.

Thumbwheels ...

- for accurate CAD two dials for X-Y cursor position
- for fast scrolling single dial on mouse

Joystick and keyboard nipple

Joystick

- indirectpressure of stick = <u>velocity</u> of movement
- buttons for selection
 on top or on front like a trigger
- often used for computer games aircraft controls and 3D navigation

Keyboard nipple

- for laptop computers
- miniature joystick in the middle of the keyboard

Touch-sensitive screen

- Detect the presence of finger or stylus on the screen.
 - works by interrupting matrix of light beams, capacitance changes or ultrasonic reflections
 - direct pointing device

Advantages:

- fast, and requires no specialised pointer
- good for menu selection
- suitable for use in hostile environment: clean and safe from damage.

Disadvantages:

- finger can mark screen
- imprecise (finger is a fairly blunt instrument!)
 - difficult to select small regions or perform accurate drawing
- lifting arm can be tiring

Stylus and light pen

Stylus

- small pen-like pointer to draw directly on screen
- may use touch sensitive surface or magnetic detection
- used in PDA, tablets PCs and drawing tables

Light Pen

now rarely used

 uses light from screen to detect location

BOTH ...

- very direct and obvious to use
- but can obscure screen

Digitizing tablet

- Mouse like-device with cross hairs
- used on special surface
 - rather like stylus
- very accurate

 used for
 digitizing maps

Eyegaze

- control interface by eye gaze direction
 - e.g. look at a menu item to select it
- uses laser beam reflected off retina
 - ... a very low power laser!
- mainly used for evaluation (ch x)
- potential for hands-free control
- high accuracy requires headset
- cheaper and lower accuracy devices available
 - sit under the screen like a small webcam

Cursor keys

- Four keys (up, down, left, right) on keyboard.
- Very, very cheap, but slow.
- Useful for not much more than basic motion for text-editing tasks.
- No standardised layout, but inverted "T", most common

Discrete positioning controls

- in phones, TV controls etc.
 - cursor pads or mini-joysticks
 - discrete left-right, up-down
 - mainly for menu selection

display devices

bitmap screens (CRT & LCD)
large & situated displays
digital paper

resolution and colour depth

- Resolution ... used (inconsistently) for
 - number of pixels on screen (width x height)
 - e.g. SVGA 1024 x 768, PDA perhaps 240x400
 - density of pixels (in pixels or dots per inch dpi)
 - typically between 72 and 96 dpi
- Aspect ratio
 - ration between width and height
 - 4:3 for most screens, 16:9 for wide-screen TV
- Colour depth:
 - how many different colours for each pixel?
 - black/white or greys only
 - 256 from a pallete
 - 8 bits each for red/green/blue = millions of colours

anti-aliasing

Jaggies

 diagonal lines that have discontinuities in due to horizontal raster scan process.

Anti-aliasing

- softens edges by using shades of line colour
- also used for text

Cathode ray tube

- Stream of electrons emitted from electron gun, focused and directed by magnetic fields, hit phosphor-coated screen which glows
- used in TVs and computer monitors

Health hazards of CRT!

- X-rays: largely absorbed by screen (but not at rear!)
- UV- and IR-radiation from phosphors: insignificant levels
- Radio frequency emissions, plus ultrasound (~16kHz)
- Electrostatic field leaks out through tube to user. Intensity dependant on distance and humidity. Can cause rashes.
- Electromagnetic fields (50Hz-0.5MHz). Create induction currents in conductive materials, including the human body. Two types of effects attributed to this: visual system - high incidence of cataracts in VDU operators, and concern over reproductive disorders (miscarriages and birth defects).

Health hints ...

- do not sit too close to the screen
- do not use very small fonts
- do not look at the screen for long periods without a break
- do not place the screen directly in front of a bright window
- work in well-lit surroundings
- ★ Take extra care if pregnant. but also posture, ergonomics, stress

Liquid crystal displays

- Smaller, lighter, and ... no radiation problems.
- Found on PDAs, portables and notebooks,
 ... and increasingly on desktop and even for home TV
- also used in dedicted displays: digital watches, mobile phones, HiFi controls
- How it works ...
 - Top plate transparent and polarised, bottom plate reflecting.
 - Light passes through top plate and crystal, and reflects back to eye.
 - Voltage applied to crystal changes polarisation and hence colour
 - N.B. light reflected not emitted => less eye strain

special displays

Random Scan (Directed-beam refresh, vector display)

- draw the lines to be displayed directly
- no jaggies
- lines need to be constantly redrawn
- rarely used except in special instruments

Direct view storage tube (DVST)

- Similar to random scan but persistent => no flicker
- Can be incrementally updated but not selectively erased
- Used in analogue storage oscilloscopes

large displays

- used for meetings, lectures, etc.
- technology

```
    plasma – usually wide screen
    video walls – lots of small screens together
    projected – RGB lights or LCD projector
```

- hand/body obscures screen
- may be solved by 2 projectors + clever software back-projected
 - frosted glass + projector behind

situated displays

- displays in 'public' places
 - large or small
 - very public or for small group
- display only
 - for information relevant to location
- or interactive
 - use stylus, touch sensitive screem
- in all cases ... the location matters
 - meaning of information or interaction is related to the location

small displays beside office doors

Digital paper

• what?

- thin flexible sheets
- updated electronically
- but retain display

appearance

cross section

• how?

- small spheres turned
- or channels with coloured liquid and contrasting spheres
- rapidly developing area

virtual reality and 3D interaction

positioning in 3D space moving and grasping seeing 3D (helmets and caves)

positioning in 3D space

- cockpit and virtual controls
 - steering wheels, knobs and dials ... just like real!
- the 3D mouse
 - six-degrees of movement: x, y, z + roll, pitch, yaw
- data glove
 - fibre optics used to detect finger position
- VR helmets
 - detect head motion and possibly eye gaze
- whole body tracking
 - accelerometers strapped to limbs or reflective dots and video processing

