Modelling the impact of reserving in high inflation environments

Marcela Granados, Satraajeet Mukherjee, Tvisha Gupta

"R in Insurance" conference London, United Kingdom July 11th, 2016

Reserves Background

What are reserves? Funds set aside by insurers to pay claims for which they are liable.

- Why are they important? Largest liability on the P&C balance sheet.
- Why do you need actuaries? Due to its uncertainty, it becomes more than an accounting exercise.
 Closed Paid Claims
 Severity
 Unpaid Losses

- What packages does R have?
- Chain Ladder (Gesmann and Murphy), which calculates deterministic and stochastic reserving and Actuar package, which has many actuarial functions

Challenges in Reserving for Argentina Auto

We were hired to perform and independent reserve study for Auto Liability in Argentina. We faced the following challenges:

- 1. Higher uncertainty in reserving for long tail lines of business (common in Liability lines) due to longer reporting and settlement delays
- 2. High and changing inflation over different time period
- 3. Unreliable data to estimate inflation which is one of the most important assumptions in reserving for countries like Argentina, who was censured by the IMF for providing inaccurate data
- Challenges 1 and 2 led to failure of traditional actuarial methods (chain ladder, BF).
- Challenge 3 was the main motivation for building an inflation model

High and changing inflation in Argentina

Inflation rates are affected not only by economic factors but also by political factors.

Unreliable data to estimate inflation

Government started tampering with the data in Jan 2007. We relied on private sources like "Billion Prices Project" to obtain actual inflation rates.

Reserve and Inflation

- ▶ We used **fGarch** package to forecast inflation
- ▶ We used **Plotly** and **Dygraphs**, along with **Shiny** for the interactive graphs

30% inflation yields \$103.2 M in reserves

Leverage Effect: A 1% increase in inflation (31%) results in an increase of 3% in reserves

^{*} Scaled by a factor

Initial analysis of the time series – decomposition into seasonality and trend

Even after removing seasonality and trend, the remainder has high and changing volatility, i.e, it shows heteroscedastic behavior.

Initial analysis of the time series – determining the AR lag component

- We used ACF to measure the linear predictability of the time series at different lags. Lags 1 and 2 are significant for autocorrelation component. Hence AR(1) and AR(2) terms are considered for modelling purposes.
- We validated this by analyzing scatter plots with lowess smoothing lines.

Inflation Model Evolution

The Model – ARMA+GARCH

ARMA(m,n)+GARCH(p,q) equation is given by

$$y_t = c + \sum_{i=1}^{m} \varphi_i y_{t-i} + \sum_{j=1}^{n} \theta_j \tau_{t-j} + \tau_t$$

 σ_t follows the GARCH(p,q) model where GARCH(p,q) model is described by

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \, \varepsilon_{t-i}^2 + \sum_{j=1}^q \beta_j \, \sigma_{t-j}^2$$

is a sequence of i.i.d (0,1) random variables

Snapshot of inflation modelling tool in Shiny

Model Iterations: Performance using statistical tests

Model Execution in R

fgarch.fitted <- fGarch::garchFit($\sim arma(1,48)+garch(1,1)$, data = rate, trace = FALSE) forecast <- predict(fgarch.fitted, n.ahead = 60)

Comparison of Models

LLH	AIC	Persistence	MAPE
683.6	-11.7	0.9	6.3%
611.2	-10.3	0.9	9.4%
598.4	-10.1	0.9	6.4%
609.8	-10.3	0.9	6.8%
517.2	-8.8	0.9	7.2%
535.9	-9.1	0.9	7.3%
533.3	-9.1	0.9	7.3%
533.3	-9.1	0.9	7.3%
	683.6 611.2 598.4 609.8 517.2 535.9 533.3	683.6 -11.7 611.2 -10.3 598.4 -10.1 609.8 -10.3 517.2 -8.8 535.9 -9.1 533.3 -9.1	683.6 -11.7 0.9 611.2 -10.3 0.9 598.4 -10.1 0.9 609.8 -10.3 0.9 517.2 -8.8 0.9 535.9 -9.1 0.9 533.3 -9.1 0.9

Challenger Model
Champion model

Iterations on diff. frequencies of data – monthly, quarterly, annual, etc.

Model Specification	Original Reserves	New Reserves	% Change	Out-of-Sample Error	Walk Forward Tests
ARMA(1,48)+GARCH(1,1) - Monthly	3,100,255,266	4,170,333,320	34.5%	46.95%	Walk Forwards Okay
ARMA(1,48)+GARCH(1,1) - Quarterly	3,100,255,266	4,225,801,893	36.3%	29.38%	Good Walk Forwards

Testing the Champion Model using in sample fit

- We validated the results of the champion model by testing its performance on past data.
- We separated the data sets into build and test data sets and perform an in sample fit

Testing the Champion Model using walk forward tests

- We further validated the results of the champion model by performing walk forward tests on 1 year, 2 years and 3 years.
- Walk forward tests the stability of the model by answering the question "If we had used this model a year ago, how will this model perform?

Testing the Campion Model on real data

▶ We built the model in march 2016 so by the time we published this presentation we had 3 months of real "unseen" data to test the model.

Next Steps

Bibliography

- Reserving in Uncertain Economic Conditions
 - Alejandro Ortega, FCAS
 - Tony Milano, FCAS WCIRB
 - ▶ Marcela Granados, FCAS EY
- Time Series Analysis with Applications in R
 - Jonathan D. Cryer, University of Iowa
 - Kung-Sik Chan, University of Iowa
- Time Series Analysis and Applications
 - Robert H. Shumway, University of California
 - David S. Stoffer, University of Pittsburgh
- Parameter Estimation of ARMA models with GARCH/APARCH Errors. An R and SPlus Software Implentation
 - Diethelm Wurtz, Yohan Chalabi and Ladislav Luksan
- A Bayesian non-linear model for forecasting insurance loss payments
 - Yanwei Zhang, CNA Insurance Company, Chicago, USA
- Computational Actuarial Science with R
 - Markus Gesmann
- Online and Official Price Indexes: Measuring Argentina's Inflation
 - Alberto Cavallo, Massachusetts Institute of Technology