# Generalization and Learning Theory for Deep Learning

### Jacob Seidman

University of Pennsylvania seidj@sas.upenn.edu

October 11, 2018

### Outline

- Classical Learning Theory Bounds
- Expressiveness of Neural Networks
- Norms, Margins, and Sharpness
- PAC-Bayes results
- Compression
- Some unanswered questions

## Standard Generalization Bound

- What does a generalization guarantee look like?
- (Binary Classification) Let P be the true distribution over  $\mathcal{X} \times \{\pm 1\}$  and  $\hat{P}_n$  the empirical distribution from n samples of P,  $\{(X_1,Y_1),\ldots,(X_n,Y_n)\}$ .
- ullet  $f:\mathcal{X} \to \{\pm 1\}$  coming from a class F. With high probability over the sample,

$$P(Y \neq f(X)) \leq \hat{P}_n(Y \neq f(X)) + \frac{c}{\sqrt{n}} \mathsf{complexity}(F)$$

 $\bullet$  For a fixed  $f \in {\cal F}$  , have a concentration inequality

$$\mathbb{P}(\text{difference of empirical and real loss} \leq \epsilon) \leq 1 - e^{-\epsilon^2 m}.$$

- ullet Do a "union bound" over all possible  $f \in F$ .
- What measure of complexity should we use for our "union bounding"?



## **VC-dimension**

- ullet A function class F shatters a set of k points  $(x_1,\ldots,x_n)$  if for any assignment of labels  $\{\pm 1\}$  to the  $x_i$ , there exists  $f\in F$  such that f gives the desired assignment of labels.
- ullet The VC-dimension of a class of functions F is the cardinality of the largest set of points that can be shattered by F.
- ullet The VCdim is agnostic to any structure of the distribution P we sample from.



## **VC-dimension**

#### **Theorem**

(Vapnik, Chernovenkis, 1971) Let  $\{(X_1,Y_1),\ldots,(X_n,Y_n)\}$  be a sample drawn i.i.d from P and  $\delta>0$ . Then there exists a constant C such that for any n and all  $f\in F$ , with probability  $1-\delta$ ,

$$P(Y \neq f(X)) \le \hat{P}_n(Y \neq f(X)) + c\sqrt{\frac{VCdim(F)}{n}}$$

 $\bullet$  A d-layer ReLU activated neural network has up to logarithmic factors VC-dim  $\tilde{O}(d\cdot(\#\text{ of parameters})).$ 

# Distributionally Dependent Complexities

• Given a distribution  $\mu$  over  $\mathcal{X}$ , i.i.d samples  $X_1, \ldots, X_n$ , and a class of functions F from  $\mathcal{X}$  to  $\mathbb{R}$ :

#### Definition

The maximum discrepancy of F is the random variable

$$\hat{D}_n(F) = \sup_{f \in F} \left( \frac{2}{n} \sum_{i=1}^{n/2} f(X_i) - \frac{2}{n} \sum_{i=n/2+1}^n f(X_i) \right),$$

the expected maximum discrepancy is

$$D_n(F) = \mathbb{E}_{\mu}[\hat{D}_n(F)]$$

# Distributionally Dependent Complexities

### Definition

Let  $\sigma_1, \ldots, \sigma_n$  be independent Bernoulli(1/2) random variables. Define

$$\hat{R}_n(F) = \mathbb{E}_{\sigma} \left[ \sup_{f \in F} \left| \frac{2}{n} \sum_{i=1}^n \sigma_i f(X_i) \right| \mid X_1, \dots, X_n \right].$$

The Rademacher complexity is

$$R_n(F) := \mathbb{E}_{\mu}[\hat{R}_n(F)].$$

#### Definition

Let  $g_1, \ldots, g_n$  be independent Gaussian(0,1) random variables. Define

$$\hat{G}_n(F) = \mathbb{E}_g \left[ \sup_{f \in F} \left| \frac{2}{n} \sum_{i=1}^n \sigma_i f(X_i) \right| \mid X_1, \dots, X_n \right].$$

The Gaussian complexity is

$$G_n(F) := \mathbb{E}_{\mu}[\hat{G}_n(F)].$$



ullet We have the following relations for some constants c and C,

$$cR_n(F) \le G_n(F) \le C \log nR_n(F),$$

and if F is a class of functions mapping into  $\left[-1,1\right]$ ,

$$\frac{R_n(F)}{2} - 2\sqrt{\frac{2}{n}} \le D_n(F) \le R_n(F) + 4\sqrt{\frac{2}{n}}.$$

- Rademacher and Gaussian complexities take the data generating distribution into account.
  - Quantify how much a function from f can be correlated with a noise sequence of length n.

### A PAC Theorem

#### Theorem

(Bartlett, Mendelson 2002) F is a set of  $\{\pm 1\}$  valued functions defined on  $\mathcal{X}$ .  $\{(X_1,Y_1),\ldots,(X_n,Y_n)\}$  is a sequence of i.i.d samples from P. With probability at least  $1-\delta$ , for every  $f\in F$ ,

$$P(Y \neq f(X)) \le \hat{P}_n(Y \neq f(X)) + \hat{D}_n(F) + \sqrt{\frac{9\log(1/\delta)}{2n}}$$

and

$$P(Y \neq f(X)) \le \hat{P}_n(Y \neq f(X)) + \frac{R_n(F)}{2} + \sqrt{\frac{\log(1/\delta)}{2n}}$$

## An Experiment

- Are these bounds useful?
- We can get a sense of the Rademacher complexity for neural networks in a classification problem by trying to fit random data.
- (Zhang et. al. ICLR 2017) did this: Trained neural networks (Inception V3, Alexnet, MLP) on versions of CIFAR10 and ImageNet with
  - ► True labels
  - Partially corrupted labels (with probability p each label is changed to a uniformly random label)
  - Random labels
  - Randomly permuted pixels (same permutation across all images)
  - Independently chosen random permutation for each image
  - Gaussian pixels instead of each image

# An Experiment (Zhang et. al. ICLR 2017)



# Finite Sample Expressivity of Neural Networks

#### **Theorem**

(Zhang et. al. ICLR 2017) There exists a two-layer neural network with ReLU activations and 2n+d parameters that can represent any function on a sample of n points in d dimensions.

- Proof by expressing fitting problem as a full rank linear system.
- ullet Can be extended to depth k network with width O(n/k).

### Generalization in a Linear Model

- Consider fitting a linear model to  $\{x_i,y_i\}_{i=1}^n$ ,  $x_i\in\mathbb{R}^d$  feature vectors,  $y_i\in\mathbb{R},\ d>n$
- ullet Let X be the data matrix such that the ith row of X is  $x_i^{\top}$ . Fitting the linear model is solving the system Xw=y.
  - If rank(X) = n then there are infinitely many solutions.
  - ► Which one generalizes best?

### Generalization in a Linear Model with SGD

- Use some convex loss  $\ell(x_i, y_i)$  and train with classic SGD (sample one point to compute gradient at each iterate).
- If initial iterate is  $w_0 = 0$ :
  - ▶ SGD converges to some  $w \in \text{span}\{x_1, \ldots, x_n\}$ ; for some  $\alpha \in \mathbb{R}^n$ ,  $w = X^\top \alpha$ .
  - ▶ If the training error is 0, then Xw = y
- Previous two points imply that  $XX^{\top}\alpha = y$ . This linear system has a unique solution!
  - This also turns out to be the minimum norm solution of the original problem.
- $\bullet$  This model actually works on CIFAR and MNIST with some preprocessing and enough memory

## Recap

- So far:
  - ▶ VC-dimension, Rademacher/Gaussian Complexity are not useful capacity/complexity measures for explaining generalization.
  - Norms seem to be somewhat useful but don't explain the whole story.
  - Choices of what kind of norms to use.
- Can we characterize generalization ability by the nature of what local minimum we converge to?
- $\bullet$  If U is a neighborhood of a minimum x, define the sharpness of a local minimum as

$$\frac{\max_{y \in U} \quad f(y) - f(x)}{f(x) + 1}.$$

# An Experiment (Keskar et. al. ICML 2017)



### Batch sizes and Noise

• Continuous limit of SGD can be written as (Li et. al. ICML 2017)

$$d\mathbf{w}(t) = -\nabla_{\mathbf{w}} \hat{L}(f_{\mathbf{w}}) dt + \sqrt{2\beta^{-1}D(\mathbf{w})} dW(t),$$

where  $\beta^{-1} \propto (\text{step size})/(\text{batch size})$ 

• Interpretation: A proper amount of noise in the dynamics makes it more likely for the algorithm to stay away from sharp minima.

## Sharpness?

- Is sharpness the kind of measure we are looking for?
- (Dinh et. al. ICML 2017) Show that by reparameterizing the function arbitrarily sharp minima can be created that have the same generalization ability.
- (Neyshabur et. al. NIPS 2017)



• Sharpness alone is not enough to explain generalization.

## A PAC Bayes Framework

- Denote a d-layer feedforward neural network with parameter vector  $\mathbf{w} \in \Omega$  as  $f_{\mathbf{w}}(x) = W_d \phi(W_{d-1} \phi(\dots \phi(W_1 x)))$ , where  $\phi$  is a nonlinear activation.
- ullet Let  $L(f_{\mathbf{w}})$  and  $\hat{L}(f_{\mathbf{w}})$  be the true loss and emprical loss, respectively, for the neural network  $f_{\mathbf{w}}$ .

#### **Theorem**

(McAllester 2003) Given a prior distribution over the parameter space  $Q_0$ , independent of the training data, for any  $\delta \in (0,1)$  and any random variable  $\nu$ , the following holds with probability  $1-\delta$ ,

$$\mathbb{E}_{\boldsymbol{\nu}}[L(f_{\mathbf{w}+\boldsymbol{\nu}})] \leq \mathbb{E}_{\boldsymbol{\nu}}[\hat{L}(f_{\mathbf{w}+\boldsymbol{\nu}})] + 4\sqrt{\frac{1}{n}\left(\mathsf{KL}(\mathbf{w}+\boldsymbol{\nu}||Q_0) + \log\frac{2n}{\delta}\right)}.$$

## Sharpness, Norms, and PAC-Bayes

ullet If we take  $m{
u}$  such that  $\mathbb{E}[m{
u}]=0$  and  $m{
u}$  is concentrated in some small neighborhood of 0, then from the previous theorem

$$\mathbb{E}_{\nu}[L(f_{\mathbf{w}+\nu})] \leq \hat{L}(f_{\mathbf{w}}) + \underbrace{\mathbb{E}_{\nu}[\hat{L}(f_{\mathbf{w}+\nu})] - \hat{L}(f_{\mathbf{w}})}_{\text{expected sharpness}} + 4\sqrt{\frac{1}{n}\left(\mathsf{KL}(\mathbf{w}+\nu||Q_0) + \log\frac{2n}{\delta}\right)}.$$

• Generalization controlled by sharpness and distance away from prior.

## Sharpness, Norms, and PAC-Bayes

To give a more specific example:

• Let P and  $\nu$  be independent 0 mean isotropic gaussians with variance  $\sigma^2$ .

$$\mathbb{E}_{\nu}[L(f_{\mathbf{w}+\nu})] \leq \hat{L}(f_{\mathbf{w}}) + \underbrace{\mathbb{E}_{\nu}[\hat{L}(f_{\mathbf{w}+\nu})] - \hat{L}(f_{\mathbf{w}})}_{\text{expected sharpness}} + 4\sqrt{\frac{1}{n}\left(\frac{\|\mathbf{w}\|_{2}^{2}}{2\sigma^{2}} + \log\frac{2n}{\delta}\right)}.$$

Can we do something similar with another kind of norm?

# Margin Loss

ullet For a distribution  ${\mathcal D}$  and classifier f define the margin loss as

$$L_{\gamma}(f_{\mathbf{w}}) = \mathbb{P}_{(\mathbf{x},y) \sim \mathcal{D}} \left[ f_{\mathbf{w}}(x)[y] \leq \gamma + \max_{j \neq y} f_{\mathbf{w}}(x)[j] \right]$$

- ullet Let  $\hat{L}_{\gamma}(f_{\mathbf{w}})$  be the empirical margin loss.
- Note:  $L_0(f_{\mathbf{w}}) = L(f_{\mathbf{w}})$  and  $\hat{L}_0(f_{\mathbf{w}}) = L(f_{\mathbf{w}})$ .

# (Neyshabur et. al. ICLR 2018)

ullet Fix prior P independent of the data,  $\gamma$  and take a perturbation  $oldsymbol{
u}$  such that

$$\mathbb{P}_{\nu}\left[\max_{x\in\mathcal{X}}|f_{\mathbf{w}+\nu}(x)-f_{\mathbf{w}}(x)|_{\infty}<\frac{\gamma}{4}\right]\geq 1/2.$$

Then

$$L_0(f_{\mathbf{w}}) \le \hat{L}_{\gamma}(f_{\mathbf{w}}) + 4\sqrt{\frac{\mathsf{KL}(w + \boldsymbol{\nu}||P) + \log\frac{6n}{\delta}}{n-1}}.$$

# (Neyshabur et. al. ICLR 2018)

• Let  $\mathcal{X}_{B,m}$  be the ball of radius B centered at the origin in  $\mathbb{R}^m$ . For any  $\mathbf{w} \in \mathcal{X}_{B,m}$  and any perturbation vector  $\boldsymbol{\nu} = \text{vec}(\{U_i\}_{i=1}^d)$  such that  $\|U_i\|_2 \leq \frac{1}{d}\|W_i\|_2$ ,

$$|f_{\mathbf{w}+\boldsymbol{\nu}}(x) - f_{\mathbf{w}}(x)|_2 \le eB\left(\prod_{i=1}^d ||W_i||_2\right) \sum_{i=1}^d \frac{||U_i||_2}{||W_i||_2}.$$

• This bounds a measure of the sharpness in terms of the spectral norms of the layers.

# (Neyshabur et. al. ICLR 2018)

 $\bullet$  A generalization bound: For any  $\delta,\gamma>0,$  with probability at least  $1-\delta$  we have

$$L_0(f_{\mathbf{w}}) \leq \hat{L}_{\gamma}(f_{\mathbf{w}}) + \mathcal{O}\left(\sqrt{\frac{d^2hB^2\log(dh)\prod_{i=1}^d \|W_i\|_2^2 \sum_{i=1}^d \frac{\|W_i\|_F^2}{\|W_i\|_2^2} + \log\frac{dm}{\delta}}{\gamma^2 m}}\right).$$

• The right hand side is interesting but too large.

# **Toward Compression**



- Gaussian noise injected with input into trained NN (CIFAR-10). Error ratio is relative difference in activations for each layer.
- $\bullet$  Suggests we can compress the network.

# A notion of Compressibility

• Let f be a classifier and  $G_{\mathcal{A}}=\{g_A\mid A\in\mathcal{A}\}$  be a set of classifiers. f is  $(\gamma,S)$ -compressible via  $G_{\mathcal{A}}$  if there exists  $A\in\mathcal{A}$  such that for any  $x\in S$ , we have for all y,

$$|f(x)[y] - g_A(x)[y]| \le \gamma.$$

• Let  $G_{\mathcal{A},s}=\{g_{\mathcal{A},s}\mid A\in\mathcal{A}\}$  be a set of classifiers indexed by a helper strings s. f is  $(\gamma,S)$  compressible with respect to  $G_{\mathcal{A},s}$  using helper string s if there exists  $A\in\mathcal{A}$  such that for any  $x\in S$ , we have for all y,

$$|f(x)[y] - g_{A,s}(x)[y]| \le \gamma.$$

# A Generalization Theorem from Compression

#### **Theorem**

(Arora et. al. ICML 2018) Let  $G_{\mathcal{A},s}=\{g_{\mathcal{A},s}\mid A\in\mathcal{A}\}$  be a set of classifiers, where A is a set of q parameters, each of which can take at most r values and s is a helper string. If f is  $(\gamma,S)$  compressible via  $G_{\mathcal{A},s}$ , with S being a training sample of n examples, then there exists  $A\in\mathcal{A}$  such that with high probability

$$L_0(g_{A,s}) \le \hat{L}_{\gamma}(f) + O\left(\sqrt{\frac{q \log r}{m}}\right).$$

This can recover the theorem from Neyshabur et. al. ICLR 2018.

# Getting Compressibility Guarantees for Neural Networks

- We will need some definitions to get our compressibility and therefore generalization guarantee for neural networks.
- ullet If  $M:\mathbb{R}^d o \mathbb{R}^\ell$  and  $\mathcal N$  is some noise distribution, then the *noise sensitivity* of M at x with respect to  $\mathcal N$  is

$$\psi_{\mathcal{N}}(M,x) = \mathbb{E}_{\eta \sim \mathcal{N}} \left[ \frac{\|M(x+\eta\|x\|) - M(x)\|^2}{\|M(x)\|^2} \right].$$

ullet If  ${\mathcal N}$  is a mean 0 unit Gaussian distribution then

$$\psi_{\mathcal{N}}(M,x) = \frac{\|M\|_F^2 \|x\|^2}{\|Mx\|^2}.$$

### More definitions

ullet The layer cushion of layer i is the largest number  $\mu_i$  such that for all  $x \in S$ ,

$$\mu_i \|W_i\|_F \|\phi(x^{i-1})\| \le \|W_i\phi(x^{i-1})\|.$$

- $\bullet {\rm Let}\ M^{i,j}$  be the operator from the  $i{\rm th}$  layer of the network to the  $j{\rm th},$  and  $J^{i,j}$  its Jacobian.
- ullet For  $i \leq j$ , the interlayer cushion  $\mu_{i,j}$  is the largest number such that for any  $x \in S$ ,

$$\mu_{i,j} \|J_x^{i,j}\|_f \|x\| \le \|J_x^{i,j}x\|$$

For a layer i the minimal interlayer cushion is

$$\mu_{i o} := \min_{i \le j \le d} \mu_{i,j}.$$

 $\bullet$  The activation contraction is the smallest number c such that for any layer i and any  $x \in S$  ,

$$\|\phi(x)\| \ge \frac{\|x\|}{c}.$$



# Noise sensitivity measures

• How do these measures of noise sensitivity change over training?



## A Compression Generalization Theorem

#### **Theorem**

(Arora et. al. ICML 2018) (Informal) If for a fully connected network  $f_W$ ,  $(W=\{W_1,\ldots,W_d\})$  we can project the weight matrices onto a random set of sensing matrices such that the effective noise introduced is passed nearly linearly through the layers, then for any  $\delta \in (0,1)$  we have that with probability  $1-\delta$ , for any  $\gamma>0$ , the compressed version of  $f_W$  with weight matrices  $\tilde{W}$  satisfies.

$$L_0(f_{\tilde{W}}) \leq \hat{L}_{\gamma}(f_{\tilde{W}}) + \tilde{O}\left(\sqrt{\frac{c^2d^2 \max_{x \in S} \|f_A(x)\|_2^2 \sum_{i=1}^d \frac{1}{\mu_i^2 \mu_{i \to}^2}}{\gamma^2 m}}\right).$$

## The Algorithm

### **Algorithm 1** Matrix-Project $(A, \varepsilon, \eta)$

Require: Layer matrix  $A \in \mathbb{R}^{h_1 \times h_2}$ , error parameter  $\varepsilon$ ,  $\eta$ . Ensure: Returns  $\hat{A}$  s.t.  $\forall$  fixed vectors u, v,

$$\Pr[|u^{\top} \hat{A} v - u^{\top} A v|| \ge \varepsilon ||A||_F ||u|| ||v||] \le \eta.$$

Sample  $k = \log(1/\eta)/\varepsilon^2$  random matrices  $M_1, \ldots, M_k$  with entries i.i.d.  $\pm 1$  ("helper string") for k' = 1 to k do

Let  $Z_{k'} = \langle A, M_{k'} \rangle M_{k'}$ .

end for

Let  $\hat{A} = \frac{1}{k} \sum_{k'=1}^k Z_{k'}$ 

## Performance

• So did Arora et. al. (2018) finally find a useful bound?



• Closer.

## **Further Questions**

- Proof of compressibility properties of neural networks
- Dependence on structure of training data?
- How to define structure of training data?
- Implicit/explicit regularization from training methods
  - Are we actually being pushed toward a smaller/less complex function space?
- Structure of (implicit/surrogate) loss landscape

Thank you!