Projet 7: Implémentez un modèle de scoring

Parcours Data Scientist – OpenClassrooms

Soutenance

Sommaire

I – Présentation

II – Modélisation

III – Pipeline de déploiement

IV – Data Drift

V – Dashboard

I - Présentation

Problématique

- société financière "Prêt à dépenser"
- outil de "scoring crédit"

Missions:

- Construire un modèle de scoring
- Construire un dashboard interactif à destination des gestionnaires de la relation client
- Mettre en production le modèle de scoring de prédiction à l'aide d'une API, ainsi que le dashboard interactif

Dataset

Traitement des données

II - Modélisation

Métriques

Score métier:

		Classe réelle	
		-	+
Classe prédite	-	True Negatives (vrais négatifs)	False Negatives (faux négatifs)
	+	False Positives (faux positifs)	True Positives (vrais positifs)

$$gain = \frac{TP * TP_{coeff} + TN * TN_{coeff} + FP * FP_{coeff} + FN * FN_{coeff}}{(TN + FP + FN + TP)}$$

Accuracy =
$$\frac{Vrai\ positif + Vrai\ négatif}{Total}$$

$$Precision(i) = \frac{nb \ d'individus \ correctement \ attribués \ à la \ classe \ i}{nb \ d'individus \ attribués \ à la \ classe \ i}$$

$$Recall(i) = \frac{nb \ d'individus \ correctement \ attribués \ \grave{a} \ la \ classe \ i}{nb \ d'individus \ appartenant \ \grave{a} \ la \ classe \ i}$$

$$F1 \, Score = 2 \times \frac{recall \times precision}{recall + precision}$$

$$F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{(\beta^2 \cdot precision) + recall}$$

Déséquilibre des classes

- Aucun rééquilibrage
- Class_weight
- SMOTE
- Tomek link
- SMOTETomek
- RandomUnderSampler

Processus de modélisation

Modèles

- Dummy Classifier (baseline): renvoie l'étiquette de classe la plus fréquente.
- Logistic Regression : relation mathématique entre les variables d'entrée et la variable de sortie.
- SVC: trouve un hyperplan optimal qui sépare les données d'entraînement en différentes classes. L'hyperplan est déterminé de manière à maximiser la marge entre les points de données de chaque classe.
- Decision Tree: prend un ensemble de données en entrée et construit un modèle prédictif sous forme d'arbre hiérarchique. Chaque nœud de l'arbre représente une caractéristique de l'ensemble de données, chaque branche représente une règle de décision basée sur cette caractéristique, et chaque feuille représente une classe ou une valeur prédite.
- Random Forest : combine plusieurs arbres de décision pour effectuer des prédictions ; classe prédite déterminée par un vote majoritaire.
- XG Boost: utilise un ensemble de modèles d'arbres de décision pour effectuer des prédictions; itérations successives pour minimiser une fonction de perte.
- Light GBM: algorithme d'apprentissage automatique basé sur le gradient boosting; technique d'échantillonnage basée sur le gradient.

Modèle final

Light GBM

Score métier: 0.42
Accuracy score: 0.74
Precision score: 0.19
Recall score: 0.66
F1 score: 0.30
Fbeta score: 0.44
ROC AUC score: 0.71

Run Name:	pip final	pip jeu test
Start Time:	2023-06-26 19:38:03	2023-06-26 19:49:23
End Time:	2023-06-26 19:38:26	2023-06-26 19:49:24
Duration:	22.7s	434ms
val_accuracy	0.745	0.742
val_f1_score	0.295	0.293
val_fbeta_score	0.443	0.44
val_precision	0.19	0.188
val_recall	0.663	0.663
val_rocauc	0.707	0.706
val_score_métier	0.419	0.416

III – Pipeline de déploiement


```
(venv) (base) macbook-pro:GitHub oceaneyouyoutte$ pytest test_api.py
platform darwin -- Python 3.9.6, pytest-7.4.0, pluggy-1.2.0
rootdir: /Users/oceaneyouyoutte/Desktop/Data Science/OCR/Projet 7/GitHub
plugins: anyio-3.7.0
collected 4 items
                                                                                [100%]
test_api.py ....
 (venv) (base) macbook-pro:GitHub oceaneyouyoutte$ pytest test_dashboard.py
platform darwin -- Python 3.9.6, pytest-7.4.0, pluggy-1.2.0
rootdir: /Users/oceaneyouyoutte/Desktop/Data Science/OCR/Projet 7/GitHub
plugins: anyio-3.7.0
collected 2 items
test_dashboard.py ...
```

Lien GitHub: https://github.com/OceaneYYT/P7-OCR

Lien API: https://p7-ocr-fastapi-95768180a01f.herokuapp.com/

Lien Dashboard: https://p7-ocr-dashboard-a790d1a0f622.herokuapp.com/

IV - Data Drift

Dataset Drift

Dataset Drift is NOT detected. Dataset drift detection threshold is 0.5

121	10	0.0826
Columns	Drifted Columns	Share of Drifted Columns

Drift is detected for 8.264% of columns (10 out of 121). Q Search Column Type Reference Distribution **Current Distribution** Data Drift Stat Test **Drift Score** Wasserstein SK_ID_CURR 9.18745 Detected distance (normed) AMT_REQ_CREDIT_BUREAU_QRT num 0.47302 AMT_REQ_CREDIT_BUREAU_MON 0.280117 distance (normed) Wasserstein AMT_GOODS_PRICE 0.212161 distance (normed) Wasserstein AMT_CREDIT num 0.209213 distance (normed) AMT_ANNUITY 0.160231 distance (normed) Wasserstein AMT_REQ_CREDIT_BUREAU_WEEK 0.152966 num distance (normed) Jensen-Shannon NAME_CONTRACT_TYPE Detected 0.14678 distance Wasserstein DAYS_LAST_PHONE_CHANGE Detected 0.137271 distance (normed) Jensen-Shannon FLAG_EMAIL 0.123534 num distance

V - Dashboard

 \equiv

