Information Retrieval (CSD510)

Vector Space Model

February 1, 2024

Lecture outline

1 tf - idf scoring

2 Vector space model

tf – *idf* scoring

Ranked retrieval

- For Boolean queries, documents either match or don't match.
 - Not possible to judge the degree of relevance of a document with respect to a query.
 - Good for expert users with precise understanding of their needs and the collection
 - Not good for the majority of users as they are incapable of writing Boolean queries
- Thus, Boolean retrieval not suitable for web search
- Boolean queries often result in either too few (=0) or too many (1000s) results.
 - "standard user dlink 650" \rightarrow 200,000 hits
 - ullet "standard user dlink 650 no card found" o 0 hits
 - AND gives too few; OR gives too many results

Ranked retrieval models

- Boolean retrieval: Returns set of documents satisfying a query expression
- Ranked retrieval: The system returns an ordering over the (top) documents in the collection for a query
- When a system produces a ranked result set
 - the size of the result set is not an issue
 - The top k most relevant (highest ranking) documents can be returned
 - Don't overwhelm the user

Ranked retrieval models

- Return the documents in an order most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
 - Assign a score to each document which estimates how well the document "matches" the query
 - The score may be in the range [0, 1]

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- For a given one-term query
 - IF (query term not in document): score = 0
 - The more frequent the query term in the document, the higher the score
- The rest of the discussion is based on this idea and we explore several alternatives and extensions

Query-document matching scores

- **Term frequency** (*tf*): The number of times a term occurs in the document.
 - Rare terms in a collection are more informative than frequent terms.
 - The documents themselves may vary in length
 - We need a more sophisticated way of normalizing the length of document

Term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in 0, 1^{|\mathcal{V}|}$

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Considers a document or a query as a multi-set set of terms
- Does not take the order of the words in the document into account
- In the vector space representation also the ordering is not maintained
- John runs faster than Mary and Mary runs faster than John have the same vector representation
- Step back from positional indexing

	John	runs	faster	than	Mary
John runs faster than Mary	1	1	1	1	1
Mary runs faster					
than John	1	1	1	1	1

Term frequency - tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use *t* when computing query-document match scores.
- Using raw term frequency has some disadvantages
 - Relevance is not directly proportional to the term frequency
 - A document with 10 occurrences of a term may be more relevant than a document containing the term once but not 10 times more relevant

Term frequency - tf

- A normalization scheme is the log frequency weight of term \mathbf{t} in \mathbf{d} is $w_{t,d} = \left\{ \begin{array}{ll} 1 + log_{10}tf_{t,d} & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{array} \right.$
- $tf_{td} \to w_{td}$: $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4$
- Score for a document-query pair: sum over terms t in both q and d: $tf_matching_score(q, d) = \sum_{t \in q \cap d} (1 + logtf_{t,d})$
- The score is 0 if none of the query terms is present in the document.

Document Frequency

- **Document frequency** (df_t) : Number of documents in the collection in which term t occurs.
- Use the frequency of the term in the collection for weighting and ranking.
- Rare terms are more informative than frequent terms
- Consider a term in the query that is rare in the collection e.g. arachnocentric
- A document containing this term is very likely to be relevant.
- We want high weights for rare terms like arachnocentric

Document Frequency

- Frequent terms are less informative than rare terms.
- Consider a term in the query that is frequent in the collection (e.g., good, increase, line).
- A document containing this term is more likely to be relevant than a document that doesn't.
 - These frequent terms are not sure indicators of relevance.
 - For these frequent terms we want positive weights, but lower weights than the rare terms
- Need high weights for rare terms
- We can use the document frequency to factor this phenomenon into computing the matching score.

Inverse document frequency (idf) score

- \bullet df_t is an inverse measure of the informativeness of term t
- **Inverse document frequency:** Is a measure of the informativeness of term *t*.
- We define the idf weight of term t as follows

```
idf_t = log(N/df_t)
```

(N is the number of documents in the collection.)

• *idf_t* is a measure of the informativeness of the term.

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries e.g. iPhone
- idf has no effect on ranking one term queries
 - *idf* used to measure the relative importance of terms
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, *idf* weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person

Collection vs. Document frequency

• The collection frequency of *t* is the number of occurrences of *t* in the collection, counted multiple occurrences

Word	Collection	Frequency	
insurance	10440	3997	
try	10422	8760	

tf – idf weighting

 The tf – idf weight of a term is the product of its tf weight and its idf weight.

$$w_{t,d} = (1 + log \ tf_{t,d}).log \frac{N}{df_t}$$

- Best known weighting scheme in information retrieval
- Increases with the
 - number of occurrences within a document (term frequency)
 - rarity of the term in the collection (inverse document frequency)

Vector space model

tf - idf score matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in R^{|V|}$

Documents as Vectors

- Each document is now represented by a real-valued vector of tf-idf weights $\in \mathcal{R}^{|V|}$
- It is a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to web search engines
- Each vector is very sparse most entries are zero.

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- ullet proximity pprox inverse of distance

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- ullet proximity pprox inverse of distance
- How to quantify the similarity between the vectors?

Similarity using distance (difference)

The Euclidean distance between q and d_2 is large even though the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar

Use angle instead of distance

- ullet Take a document d and append it to itself. Call this document \hat{d} .
- Semantically d and \hat{d} have the same distance
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity

Use angle instead of distance

- ullet Take a document d and append it to itself. Call this document \hat{d} .
- Semantically d and \hat{d} have the same distance
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity
- Key idea: Rank documents according to angle with query

From angles to cosines

- The following two notions are equivalent
 - Rank documents in decreasing order of the angle between query and document
 - Rank documents in increasing order of cosine of the angle between query and document
- Cosine is a monotonically decreasing function for the interval $[0^{\circ}, 180^{\circ}]$
- Advantages of cosine similarity
 - Cosine score is proportional to similarity
 - Scales down the similarity score in the range [0,1]

Cosine(query, document)

Dot product

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|r|} q_i d_i}{\sqrt{\sum_{i=1}^{|r|} q_i^2} \sqrt{\sum_{i=1}^{|r|} d_i^2}}$$

q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

- $cos(\overrightarrow{q}, \overrightarrow{d})$ is the cosine of the angle between \overrightarrow{q} and \overrightarrow{d} . $cos(\overrightarrow{q}, \overrightarrow{d})$ is the **cosine similarity** of \overrightarrow{q} and \overrightarrow{d}
- If \overrightarrow{q} and \overrightarrow{d} are length normalized, then cosine similarity is the scalar (dot) product.

$$\cos(\overrightarrow{q}, \overrightarrow{d}) = \overrightarrow{q} \cdot \overrightarrow{d} = \sum_{i=1}^{|V|} q_i d_i \tag{1}$$

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length.
- For this we use the L_2 norm

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

- ullet Dividing a vector by its L_2 norm makes it a unit (length) vector
- Effect on the two documents d and \hat{d} (d appended to itself) from earlier slide: they have identical vectors after length-normalization
 - Long and short documents now have comparable weights

Cosine similarity

Cosine similarity among 3 documents

How similar are the novels?

SaS: Sense and Sensibility , PaP: Pride and Prejudice, and WH: Wuthering Heights

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Table: Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting

Cosine similarity among 3 documents

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

SaS	PaP	WH
0.789	0.832	0.524
0.515	0.555	0.465
0.335	0	0.405
0	0	0.588
	0.789 0.515	0.789 0.832 0.515 0.555

Table: Log frequency weighting

Table: After length normalization

$$\begin{split} &\cos(\mathsf{SaS},\mathsf{PaP}) \approx \\ &0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \\ \approx &0.94 \\ &\cos(\mathsf{SaS},\mathsf{WH}) \approx 0.79 \\ &\cos(\mathsf{PaP},\mathsf{WH}) \approx 0.69 \end{split}$$

Computing cosine scores

```
CosineScore(q)
    float Scores[N] = 0
   float Length[N]
    for each query term t
    do calculate w_{t,a} and fetch postings list for t
        for each pair(d, tf<sub>t,d</sub>) in postings list
        do Scores[d] + = W_{t,d} \times W_{t,a}
    Read the array Length
    for each d
    do Scores[d] = Scores[d]/Length[d]
    return Top K components of Scores[]
10
```