Elements of Set Theory

Herbert B. Enderton

Contents

\mathbf{R}	Reference					
	R.1	¶ Empty Set Axiom	3			
	R.2	¶ Extensionality Axiom	3			
	R.3	¶ Ordered Pair	3			
	R.4	¶ Pair Set	4			
	R.5	¶ Pairing Axiom	4			
	R.6		4			
	R.7	¶ Power Set Axiom	4			
	R.8	¶ Subset Axioms	5			
	R.9	\P Symmetric Difference	5			
			5			
	R.11	¶ Union Axiom, Preliminary Form	5			
1	Introduction 6					
	1.1	Baby Set Theory	6			
			6			
		1.1.2	7			
		1.1.3	8			
			8			
	1.2		8			
		1.2.1 A Exercise 2.1	8			
		1.2.2 A Exercise 2.2	9			
		1.2.3 Exercise 2.3	0			
2	Axi	oms and Operations 1	1			
	2.1	Axioms	1			
		2.1.1 ? Theorem 2A	1			
		2.1.2 ? Theorem 2B	1			
	2.2	Exercises 3	2			
		2.2.1	2			
		2.2.2	2			
		2.2.3	2			
		2.2.4	3			
		2.2.5	3			

		2.2.6	Exercise 3.6a
		2.2.7	⊘ Exercise 3.6b
		2.2.8	⊘ Exercise 3.7a
		2.2.9	⊘ Exercise 3.7b
		2.2.10	ℰ Exercise 3.8
		2.2.11	⊘ Exercise 3.9
		2.2.12	⊘ Exercise 3.10
	2.3	Algebr	a of Sets
		2.3.1	♥ Commutative Laws
		2.3.2	⊘ Associative Laws
		2.3.3	Obstributive Laws
		2.3.4	⊘ De Morgan's Laws
		2.3.5	\bigcirc Identities Involving \varnothing
		2.3.6	⊘ Monotonicity
		2.3.7	✓ Anti-monotonicity
		2.3.8	Ø General Distributive Laws
		2.3.9	Ø General De Morgan's Laws
		2.3.10	$\bigcirc \cap$ /— Associativity
		2.3.11	✓ Nonmembership of Symmetric Difference 26
	2.4	Exercis	ses 4
		2.4.1	⊘ Exercise 4.11
		2.4.2	⊘ Exercise 4.12
		2.4.3	⊘ Exercise 4.13
		2.4.4	⊘ Exercise 4.14
		2.4.5	⊘ Exercise 4.15a
		2.4.6	⊘ Exercise 4.15b
		2.4.7	♥ Exercise 4.16
		2.4.8	⊘ Exercise 4.17
		2.4.9	ℰ Exercise 4.18
		2.4.10	⊘ Exercise 4.19
		2.4.11	⊘ Exercise 4.20
		2.4.12	⊘ Exercise 4.21
		2.4.13	⊘ Exercise 4.22
		2.4.14	ℰ Exercise 4.23
		2.4.15	⊘ Exercise 4.24a
		2.4.16	⊘ Exercise 4.24b
		2.4.17	♥ Exercise 4.25
3	Rela	ations a	and Functions 38
	3.1		ed Pairs
		3.1.1	⊘ Theorem 3A

Chapter R

Reference

R.1 ¶ Empty Set Axiom

There is a set having no members:

$$\exists B, \forall x, x \notin B.$$

Axiom. \exists – Set.emptyCollection

R.2 ¶ Extensionality Axiom

If two sets have exactly the same members, then they are equal:

$$\forall A, \forall B, [\forall x, (x \in A \iff x \in B) \Rightarrow A = B].$$

Axiom. \exists - Set.ext

R.3 ¶ Ordered Pair

For any sets u and v, the **ordered pair** $\langle u, v \rangle$ is the set $\{\{u\}, \{u, v\}\}.$

Definition. \exists - OrderedPair

R.4 ¶ Pair Set

For any sets u and v, the **pair set** $\{u, v\}$ is the set whose only members are u and v.

Definition.

- \exists Set.insert
- \exists Set.singleton

R.5 ¶ Pairing Axiom

For any sets u and v, there is a set having as members just u and v:

$$\forall u, \forall v, \exists B, \forall x, (x \in B \iff x = u \text{ or } x = v).$$

Axiom.

- \exists Set.insert
- \exists Set.singleton

R.6 ¶ Power Set

For any set a, the **power set** $\mathscr{P}a$ is the set whose members are exactly the subsets of a.

Definition. \exists – Set.powerset

R.7 ¶ Power Set Axiom

For any set a, there is a set whose members are exactly the subsets of a:

$$\forall a, \exists B, \forall x, (x \in B \iff x \subseteq a).$$

Axiom. \exists – Set.powerset

R.8 ¶ Subset Axioms

For each formula ϕ not containing B, the following is an axiom:

$$\forall t_1, \dots \forall t_k, \forall c, \exists B, \forall x, (x \in B \iff x \in c \land \phi).$$

Axiom. \exists - Set.Subset

R.9 ¶ Symmetric Difference

The **symmetric difference** A+B of sets A and B is the set $(A-B)\cup(B-A)$.

Definition. $\exists - symmDiff_def$

R.10 ¶ Union Axiom

For any set A, there exists a set B whose elements are exactly the members of the members of A:

$$\forall A, \exists B, \forall x [x \in B \iff (\exists b \in A) x \in b]$$

Axiom. $\exists - \text{Set.sUnion}$

R.11 ¶ Union Axiom, Preliminary Form

For any sets a and b, there is a set whose members are those sets belonging either to a or to b (or both):

$$\forall a, \forall b, \exists B, \forall x, (x \in B \iff x \in a \text{ or } x \in b).$$

Axiom. \exists – Set.union

Chapter 1

Introduction

1.1 Baby Set Theory

Which of the following become true when " \in " is inserted in place of the blank? Which become true when " \subseteq " is inserted?

⊘ Exercise 1.1a

 $\{\emptyset\}$ ____ $\{\emptyset, \{\emptyset\}\}$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1a

Because the *object* $\{\emptyset\}$ is a member of the right-hand set, the statement is **true** in the case of " \in ".

Because the *members* of $\{\emptyset\}$ are all members of the right-hand set, the statement is also **true** in the case of " \subseteq ".

Exercise 1.1b

 $\{\varnothing\}_{---}\{\varnothing,\{\{\varnothing\}\}\}.$

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1b

Because the *object* $\{\emptyset\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\emptyset\}$ are all members of the right-hand set, the statement is **true** in the case of " \subseteq ".

⊘ Exercise 1.1c

 $\{\{\emptyset\}\}_{---}\{\emptyset,\{\emptyset\}\}.$

Proof. ∃ − Enderton.Set.Chapter_1.exercise_1_1c

Because the *object* $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\{\emptyset\}\}$ are all members of the right-hand set, the statement is **true** in the case of " \subseteq ".

♥ Exercise 1.1d

 $\{\{\varnothing\}\}....\{\varnothing,\{\{\varnothing\}\}\}.$

Proof. ∃ – Enderton.Set.Chapter_1.exercise_1_1d

Because the *object* $\{\{\emptyset\}\}\$ is a member of the right-hand set, the statement is **true** in the case of " \in ".

Because the *members* of $\{\{\varnothing\}\}$ are not all members of the right-hand set, the statement is **false** in the case of " \subseteq ".

Exercise 1.1e

 $\{\{\emptyset\}\}_{--}\{\emptyset,\{\emptyset,\{\emptyset\}\}\}\}.$

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_1e

Because the *object* $\{\{\emptyset\}\}$ is not a member of the right-hand set, the statement is **false** in the case of " \in ".

Because the *members* of $\{\{\emptyset\}\}$ are not all members of the right-hand set, the statement is **false** in the case of " \subseteq ".

Show that no two of the three sets \emptyset , $\{\emptyset\}$, and $\{\{\emptyset\}\}$ are equal to each other.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_2

By the \P Extensionality Axiom, \varnothing is only equal to \varnothing . This immediately shows it is not equal to the other two. Now consider object \varnothing . This object is a

member of $\{\emptyset\}$ but is not a member of $\{\{\emptyset\}\}$. Again, by the \P Extensionality Axiom, these two sets must be different.

Show that if $B \subseteq C$, then $\mathscr{P}B \subseteq \mathscr{P}C$.

Proof. \exists - Enderton.Set.Chapter_1.exercise_1_3

Let $x \in \mathscr{P}B$. By definition of the \P Power Set, x is a subset of B. By hypothesis, $B \subseteq C$. Then $x \subseteq C$. Again by definition of the \P Power Set, it follows $x \in \mathscr{P}C$.

Assume that x and y are members of a set B. Show that $\{\{x\}, \{x,y\}\} \in \mathscr{PP}B$.

Proof. \exists – Enderton.Set.Chapter_1.exercise_1_4

Let x and y be members of set B. Then $\{x\}$ and $\{x,y\}$ are subsets of B. By definition of the \P Power Set, $\{x\}$ and $\{x,y\}$ are members of $\mathscr{P}B$. Then $\{\{x\},\{x,y\}\}$ is a subset of $\mathscr{P}B$. By definition of the \P Power Set, $\{\{x\},\{x,y\}\}$ is a member of $\mathscr{P}B$.

1.2 Sets - An Informal View

1.2.1 **Exercise** 2.1

Define the rank of a set c to be the least α such that $c \subseteq V_{\alpha}$. Compute the rank of $\{\{\emptyset\}\}\$. Compute the rank of $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$.

Proof. We first compute the values of V_n for $0 \le n \le 3$ under the assumption the set of atoms A at the bottom of the hierarchy is empty.

$$\begin{split} V_0 &= \varnothing \\ V_1 &= V_0 \cup \mathscr{P} V_0 \\ &= \varnothing \cup \{\varnothing\} \\ &= \{\varnothing\} \\ V_2 &= V_1 \cup \mathscr{P} V_1 \\ &= \{\varnothing\} \cup \mathscr{P} \{\varnothing\} \\ &= \{\varnothing\} \cup \{\varnothing, \{\varnothing\}\} \\ &= \{\varnothing, \{\varnothing\}\} \\ V_3 &= V_2 \cup \mathscr{P} V_2 \\ &= \{\varnothing, \{\varnothing\}\} \cup \mathscr{P} \{\varnothing, \{\varnothing\}\}, \{\varnothing\}, \{\varnothing\}\} \} \\ &= \{\varnothing, \{\varnothing\}\} \cup \{\varnothing, \{\varnothing\}\}, \{\varnothing\}\} \} \end{split}$$

It then immediately follows $\{\{\varnothing\}\}\$ has rank 2 and $\{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\$ has rank 3.

We have stated that $V_{\alpha+1} = A \cup \mathscr{P}V_{\alpha}$. Prove this at least for $\alpha < 3$.

Proof. Let A be the set of atoms in our set hierarchy. Let P(n) be the predicate, " $V_{n+1} = A \cup \mathscr{P}V_n$." We prove P(n) holds true for all natural numbers $n \geq 1$ via induction.

Base Case Let n=1. By definition, $V_1=V_0\cup \mathscr{P}V_0$. By definition, $V_0=A$. Therefore $V_1=A\cup \mathscr{P}V_0$. This proves P(1) holds true.

Induction Step Suppose P(n) holds true for some $n \geq 1$. Consider V_{n+1} . By definition, $V_{n+1} = V_n \cup \mathcal{P}V_n$. Therefore, by the induction hypothesis,

$$\begin{aligned} V_{n+1} &= V_n \cup \mathscr{P}V_n \\ &= (A \cup \mathscr{P}V_{n-1}) \cup \mathscr{P}V_n \\ &= A \cup (\mathscr{P}V_{n-1} \cup \mathscr{P}V_n) \end{aligned} \tag{1.1}$$

But V_{n-1} is a subset of V_n . \bigcirc Exercise 1.3 then implies $\mathscr{P}V_{n-1} \subseteq \mathscr{P}V_n$. This means (1.1) can be simplified to

$$V_{n+1} = A \cup \mathscr{P}V_n$$

proving P(n+1) holds true.

Conclusion By mathematical induction, it follows for all $n \ge 1$, P(n) is true.

1.2.3 **Exercise** 2.3

List all the members of V_3 . List all the members of V_4 . (It is to be assumed here that there are no atoms.)

Proof. As seen in the proof of PExercise 2.1,

$$V_3 = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}.$$

By \mathscr{F} Exercise 2.2, $V_4 = \mathscr{P}V_3$ (since it is assumed there are no atoms). Thus

```
V_4 = \{
             Ø,
             \{\varnothing\},
             \{\{\emptyset\}\},
             \{\{\{\emptyset\}\}\},
             \{\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}\},
             \{\varnothing, \{\{\varnothing\}\}\},\
             \{\varnothing, \{\varnothing, \{\varnothing\}\}\},\
             \{\{\varnothing\},\{\{\varnothing\}\}\},
             \{\{\varnothing\},\{\varnothing,\{\varnothing\}\}\},
             \{\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing,\{\varnothing\},\{\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\},\
             \{\varnothing, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}
             \{\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\},
             \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}
}.
```

10

Chapter 2

Axioms and Operations

2.1 Axioms

2.1.1 ****** Theorem 2A

Theorem 2A. There is no set to which every set belongs.

Note: This was revisited after reading Enderton's proof prior.

Proof. Let A be an arbitrary set. Define $B = \{x \in A \mid x \notin x\}$. By the \P Subset Axioms, B is a set. Then

$$B \in B \iff B \in A \land B \notin B$$
.

If $B \in A$, then $B \in B \iff B \notin B$, a contradiction. Thus $B \notin A$. Since this process holds for any set A, there must exist no set to which every set belongs.

2.1.2 **?** Theorem 2B

Theorem 2B. For any nonempty set A, there exists a unique set B such that for any x,

 $x \in B \iff x \text{ belongs to every member of } A.$

Proof. Suppose A is a nonempty set. This ensures the statement we are trying to prove does not vacuously hold for all sets x (which would yield a contradiction due to \mathcal{F} Theorem 2B). By the \P Union Axiom, $\bigcup A$ is a set. Define

$$B = \{x \in \bigcup A \mid (\forall b \in A), x \in b\}.$$

By the \P Subset Axioms, B is indeed a set. By construction,

 $\forall x, x \in B \iff x \text{ belongs to every member of } A.$

By the \P Extensionality Axiom, B is unique.

2.2 Exercises 3

Assume that A is the set of integers divisible by 4. Similarly assume that B and C are the sets of integers divisible by 9 and 10, respectively. What is in $A \cap B \cap C$?

Answer. \exists - Enderton.Set.Chapter_2.exercise_3_1

The set of integers divisible by 4, 9, and 10.

Give an example of sets A and B for which $\bigcup A = \bigcup B$ but $A \neq B$.

Answer. \exists - Enderton.Set.Chapter_2.exercise_3_2

Let
$$A = \{\{1\}, \{2\}\}$$
 and $B = \{\{1, 2\}\}.$

Show that every member of a set A is a subset of $\bigcup A$. (This was stated as an example in this section.)

Proof. \exists – Enderton.Set.Chapter_2.exercise_3_3

Let $x \in A$. By definition,

$$\bigcup A = \{ y \mid (\exists b \in A) y \in b \}.$$

Then $\{y \mid y \in x\} \subseteq \bigcup A$. But $\{y \mid y \in x\} = x$. Thus $x \subseteq \bigcup A$.

Show that if $A \subseteq B$, then $\bigcup A \subseteq \bigcup B$.

Proof. \exists - Enderton.Set.Chapter_2.exercise_3_4

Let A and B be sets such that $A \subseteq B$. Let $x \in \bigcup A$. By definition of the union, there exists some $b \in A$ such that $x \in b$. By definition of the subset, $b \in B$. This immediately implies $x \in \bigcup B$. Since this holds for all $x \in \bigcup A$, it follows $\bigcup A \subseteq \bigcup B$.

Assume that every member of \mathscr{A} is a subset of B. Show that $\bigcup \mathscr{A} \subseteq B$.

Proof. \exists - Enderton.Set.Chapter_2.exercise_3_5

Let $x \in \bigcup \mathscr{A}$. By definition,

$$\bigcup \mathscr{A} = \{ y \mid (\exists b \in A) y \in b \}.$$

Then there exists some $b \in A$ such that $x \in b$. By hypothesis, $b \subseteq B$. Thus x must also be a member of B. Since this holds for all $x \in \bigcup \mathscr{A}$, it follows $\bigcup \mathscr{A} \subseteq B$.

Show that for any set A, $\bigcup \mathscr{P}A = A$.

Proof. ∃ − Enderton.Set.Chapter_2.exercise_3_6a

We prove that (i) $\bigcup \mathscr{P}A \subseteq A$ and (ii) $A \subseteq \bigcup \mathscr{P}A$.

- (i) By definition, the \P Power Set of A is the set of all subsets of A. In other words, every member of $\mathscr{P}A$ is a subset of A. By \lozenge Exercise 3.5, $\bigcup \mathscr{P}A \subseteq A$.
- (ii) Let $x \in A$. By definition of the power set of A, $\{x\} \in \mathscr{P}A$. By definition of the union,

$$\bigcup \mathscr{P}A = \{y \mid (\exists b \in \mathscr{P}A), y \in b\}.$$

Since $x \in \{x\}$ and $\{x\} \in \mathscr{P}A$, it follows $x \in \bigcup \mathscr{P}A$. Thus $A \subseteq \bigcup \mathscr{P}A$.

Conclusion By (i) and (ii), $\bigcup \mathscr{P}A = A$.

Show that $A \subseteq \mathcal{P} \bigcup A$. Under what conditions does equality hold?

Proof. \exists - Enderton.Set.Chapter_2.exercise_3_6b

Let $x \in A$. By \bigcirc Exercise 3.3, x is a subset of $\bigcup A$. By the definition of the \P Power Set,

$$\mathscr{P}\bigcup A = \{y \mid y \subseteq \bigcup A\}.$$

Therefore $x \in \mathcal{P} \bigcup A$. Since this holds for all $x \in A$, $A \subseteq \mathcal{P} \bigcup A$.

We show equality holds if and only if there exists some set B such that $A=\mathscr{P}B.$

- (\Rightarrow) Suppose $A = \mathcal{P} \bigcup A$. Then our statement immediately follows by settings $B = \bigcup A$.
- (\Leftarrow) Suppose there exists some set B such that $A = \mathcal{P}B$. Therefore

Conclusion By (\Rightarrow) and (\Leftarrow) , $A = \mathcal{P} \bigcup A$ if and only if there exists some set B such that $A = \mathcal{P}B$.

Show that for any sets A and B,

$$\mathscr{P}A \cap \mathscr{P}B = \mathscr{P}(A \cap B).$$

Proof. \exists – Enderton.Set.Chapter_2.exercise_3_7a

Let A and B be arbitrary sets. We show that $\mathscr{P}A\cap\mathscr{P}B\subseteq\mathscr{P}(A\cap B)$ and then show that $\mathscr{P}A\cap\mathscr{P}B\supseteq\mathscr{P}(A\cap B)$.

(\subseteq) Let $x \in \mathscr{P}A \cap \mathscr{P}B$. That is, $x \in \mathscr{P}A$ and $x \in \mathscr{P}B$. By the definition of the \P Power Set,

$$\mathscr{P}A = \{y \mid y \subseteq A\}$$

$$\mathscr{P}B = \{ y \mid y \subseteq B \}$$

Thus $x \subseteq A$ and $x \subseteq B$, meaning $x \subseteq A \cap B$. But then $x \in \mathscr{P}(A \cap B)$, the set of all subsets of $A \cap B$. Since this holds for all $x \in \mathscr{P}A \cap \mathscr{P}B$, it follows

$$\mathscr{P}A\cap\mathscr{P}B\subseteq\mathscr{P}(A\cap B).$$

 (\supseteq) Let $x \in \mathcal{P}(A \cap B)$. By the definition of the \P Power Set,

$$\mathscr{P}(A \cap B) = \{ y \mid y \subseteq A \cap B \}.$$

Thus $x \subseteq A \cap B$, meaning $x \subseteq A$ and $x \subseteq B$. But this implies $x \in \mathscr{P}A$, the set of all subsets of A. Likewise $x \in \mathscr{P}B$, the set of all subsets of B. Thus $x \in \mathscr{P}A \cap \mathscr{P}B$. Since this holds for all $x \in \mathscr{P}(A \cap B)$, it follows

$$\mathscr{P}(A \cap B) \subseteq \mathscr{P}A \cap \mathscr{P}B.$$

Conclusion Since each side of our identity is a subset of the other,

$$\mathscr{P}(A \cap B) = \mathscr{P}A \cap \mathscr{P}B.$$

Show that $\mathscr{P}A \cup \mathscr{P}B \subseteq \mathscr{P}(A \cup B)$. Under what conditions does equality hold?

Proof.

∃ - Enderton.Set.Chapter_2.exercise_3_7b_i

∃ – Enderton.Set.Chapter_2.exercise_3_7b_ii

Let $x \in \mathscr{P}A \cup \mathscr{P}B$. By definition, $x \in \mathscr{P}A$ or $x \in \mathscr{P}B$ (or both). By the definition of the \P Power Set,

$$\mathscr{P}A = \{ y \mid y \subseteq A \}$$

$$\mathscr{P}B = \{ y \mid y \subseteq B \}.$$

Thus $x \subseteq A$ or $x \subseteq B$. Therefore $x \subseteq A \cup B$. But then $x \in \mathscr{P}(A \cup B)$, the set of all subsets of $A \cup B$.

We show equality holds if and only if one of A or B is a subset of the other.

$$(\Rightarrow)$$
 Suppose

$$\mathscr{P}A \cup \mathscr{P}B = \mathscr{P}(A \cup B). \tag{2.1}$$

By the definition of the \P Power Set, $A \cup B \in \mathcal{P}(A \cup B)$. Then (2.1) implies $A \cup B \in \mathcal{P}A \cup \mathcal{P}B$. That is, $A \cup B \in \mathcal{P}A$ or $A \cup B \in \mathcal{P}B$ (or both).

For the sake of contradiction, suppose $A \not\subseteq B$ and $B \not\subseteq A$. Then there exists an element $x \in A$ such that $x \notin B$ and there exists an element $y \in B$ such that $y \notin A$. But then $A \cup B \notin \mathscr{P}A$ since y cannot be a member of a member of $\mathscr{P}A$. Likewise, $A \cup B \notin \mathscr{P}B$ since x cannot be a member of a member of $\mathscr{P}B$. Therefore our assumption is incorrect. In other words, $A \subseteq B$ or $B \subseteq A$.

(⇐) WLOG, suppose $A \subseteq B$. Then, by \bigcirc Exercise 1.3, $\mathscr{P}A \subseteq \mathscr{P}B$. Thus

$$\mathscr{P}A \cup \mathscr{P}B = \mathscr{P}B$$

= $\mathscr{P}A \cup B$.

Conclusion By (\Rightarrow) and (\Leftarrow) , it follows $\mathscr{P}A \cup \mathscr{P}B \subseteq \mathscr{P}(A \cup B)$ if and only if $A \subseteq B$ or $B \subseteq A$.

Show that there is no set to which every singleton (that is, every set of the form $\{x\}$) belongs. [Suggestion: Show that from such a set, we could construct a set to which every set belonged.]

Proof. We proceed by contradiction. Suppose there existed a set A consisting of every singleton. Then the \P Union Axiom suggests $\bigcup A$ is a set. But this set is precisely the class of all sets, which is *not* a set. Thus our original assumption was incorrect. That is, there is no set to which every singleton belongs.

Give an example of sets a and B for which $a \in B$ but $\mathscr{P}a \notin \mathscr{P}B$.

Answer. \exists - Enderton.Set.Chapter_2.exercise_3_9

Let
$$a = \{1\}$$
 and $B = \{\{1\}\}$. Then

$$\mathcal{P}a = \{\emptyset, \{1\}\}\$$

$$\mathcal{P}B = \{\emptyset, \{\{1\}\}\}.$$

It immediately follows that $\mathscr{P}a \notin \mathscr{P}B$.

Show that if $a \in B$, then $\mathscr{P}a \in \mathscr{PP} \bigcup B$. [Suggestion: If you need help, look in the Appendix.]

Proof. \exists - Enderton.Set.Chapter_2.exercise_3_10

Suppose $a \in B$. By \bigcirc Exercise 3.3, $a \subseteq \bigcup B$. By \bigcirc Exercise 1.3, $\mathscr{P}a \subseteq \mathscr{P} \bigcup B$. By the definition of the \P Power Set,

$$\mathscr{P}\mathscr{P}\bigcup B=\{y\mid y\subseteq\mathscr{P}\bigcup B\}.$$

Therefore $\mathscr{P}a \in \mathscr{PP} \bigcup B$.

2.3 Algebra of Sets

2.3.1 • Commutative Laws

For any sets A and B,

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Proof.

 \exists - Set.union_comm

 \exists - Set.inter_comm

Let A and B be sets. We prove that

- (i) $A \cup B = B \cup A$
- (ii) $A \cap B = B \cap A$.
- (i) By the definition of the union of sets,

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$
$$= \{x \mid x \in B \lor x \in A\}$$
$$= B \cup A.$$

(ii) By the definition of the intersection of sets,

$$A \cap B = \{x \mid x \in A \land x \in B\}$$
$$= \{x \mid x \in B \land x \in A\}$$
$$= B \land A.$$

2.3.2 Associative Laws

For any sets A, B and C,

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Proof.

 \exists - Set.union_assoc

 \exists - Set.inter_assoc

Let A, B, and C be sets. We prove that

(i)
$$A \cup (B \cup C) = (A \cup B) \cup C$$

(ii)
$$A \cap (B \cap C) = (A \cap B) \cap C$$

(i) By the definition of the union of sets,

$$\begin{split} A \cup (B \cup C) &= \{x \mid x \in A \lor x \in (B \cup C)\} \\ &= \{x \mid x \in A \lor x \in \{y \mid y \in B \lor C\}\} \\ &= \{x \mid x \in A \lor (x \in B \lor x \in C)\} \\ &= \{x \mid (x \in A \lor x \in B) \lor x \in C\} \\ &= \{x \mid x \in \{y \mid y \in A \lor y \in B\} \lor x \in C\} \\ &= \{x \mid x \in (A \cup B) \lor x \in C\} \\ &= (A \cup B) \cup C. \end{split}$$

(ii) By the definition of the intersection of sets,

$$\begin{split} A \cap (B \cap C) &= \{x \mid x \in A \land x \in (B \cap C)\} \\ &= \{x \mid x \in A \land x \in \{y \mid y \in B \land y \in C\}\} \\ &= \{x \mid x \in A \land (x \in B \land x \in C)\} \\ &= \{x \mid (x \in A \land x \in B) \land x \in C\} \\ &= \{x \mid x \in \{y \mid y \in A \land y \in B\} \land x \in C\} \\ &= \{x \mid x \in (A \cap B) \land x \in C\} \\ &= (A \cap B) \cap C. \end{split}$$

2.3.3 Distributive Laws

For any sets A, B, and C,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proof.

 \exists — Set.inter_distrib_left

 \exists - Set.union_distrib_left

Let A, B, and C be sets. We prove that

(i)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(ii)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(i) By the definition of the union and intersection of sets,

$$\begin{split} A \cap (B \cup C) &= \{x \mid x \in A \land x \in B \cup C\} \\ &= \{x \mid x \in A \land x \in \{y \mid y \in B \lor y \in C\}\} \\ &= \{x \mid x \in A \land (x \in B \lor x \in C)\} \\ &= \{x \mid (x \in A \land x \in B) \lor (x \in A \land x \in C)\} \\ &= \{x \mid x \in A \cap B \lor x \in A \cap C\} \\ &= (A \cap B) \cup (A \cap C). \end{split}$$

(ii) By the definition of the union and intersection of sets,

$$\begin{split} A \cup (B \cap C) &= \{x \mid x \in A \vee x \in B \cap C\} \\ &= \{x \mid x \in A \vee x \in \{y \mid y \in B \wedge y \in C\}\} \\ &= \{x \mid x \in A \vee (x \in B \wedge x \in C)\} \\ &= \{x \mid (x \in A \vee x \in B) \wedge (x \in A \vee x \in C)\} \\ &= \{x \mid x \in A \cup B \wedge x \in A \cup C\} \\ &= (A \cup B) \cap (A \cup C). \end{split}$$

For any sets A, B, and C,

$$C - (A \cup B) = (C - A) \cap (C - B)$$
$$C - (A \cap B) = (C - A) \cup (C - B)$$

Proof.

 \exists - Set.diff_inter_diff

 \exists - Set.diff_inter

Let A, B, and C be sets. We prove that

(i)
$$C - (A \cup B) = (C - A) \cap (C - B)$$

(ii)
$$C - (A \cap B) = (C - A) \cup (C - B)$$

(i) By definition of the union, intersection, and relative complements of sets,

$$C - (A \cup B) = \{x \mid x \in C \land x \notin A \cup B\}$$

$$= \{x \mid x \in C \land x \notin \{y \mid y \in A \lor y \in B\}\}$$

$$= \{x \mid x \in C \land \neg (x \in A \lor x \in B)\}$$

$$= \{x \mid x \in C \land (x \notin A \land x \notin B)\}$$

$$= \{x \mid (x \in C \land x \notin A) \land (x \in C \land x \notin B)\}$$

$$= \{x \mid x \in (C - A) \land x \in (C - B)\}$$

$$= (C - A) \cap (C - B).$$

(ii) By definition of the union, intersection, and relative complements of sets,

$$\begin{split} C - (A \cap B) &= \{x \mid x \in C \land x \not\in A \cap B\} \\ &= \{x \mid x \in C \land x \not\in \{y \mid y \in A \land y \in B\}\} \\ &= \{x \mid x \in C \land \neg (x \in A \land x \in B)\} \\ &= \{x \mid x \in C \land (x \not\in A \lor x \not\in B)\} \\ &= \{x \mid (x \in C \land x \not\in A) \lor (x \in C \land x \not\in B)\} \\ &= \{x \mid x \in (C - A) \lor x \in (C - B)\} \\ &= (C - A) \cup (C - B). \end{split}$$

2.3.5 \bigcirc Identities Involving \varnothing

For any set A,

$$A \cup \varnothing = A$$

$$A \cap \varnothing = \varnothing$$

$$A \cap (C - A) = \varnothing$$

Proof.

 \exists - Set.union_empty

 \exists - Set.inter_empty

 \exists - Set.inter_diff_self

Let A be an arbitrary set. We prove that

(i)
$$A \cup \emptyset = A$$

(ii)
$$A \cap \emptyset = \emptyset$$

(iii)
$$A \cap (C - A) = \emptyset$$

(i) By definition of the emptyset and union of sets,

$$\begin{split} A \cup \varnothing &= \{x \mid x \in A \vee x \in \varnothing\} \\ &= \{x \mid x \in A \vee F\} \\ &= \{x \mid x \in A\} \\ &= A. \end{split}$$

(ii) By definition of the emptyset and intersection of sets,

$$\begin{split} A \cap \varnothing &= \{x \mid x \in A \land x \in \varnothing\} \\ &= \{x \mid x \in A \land F\} \\ &= \{x \mid F\} \\ &= \{x \mid x \neq x\} \\ &= \varnothing. \end{split}$$

(iii) By definition of the emptyset, and the intersection and relative complement of sets,

$$\begin{split} A \cap (C-A) &= \{x \mid x \in A \land x \in C-A\} \\ &= \{x \mid x \in A \land x \in \{y \mid y \in C \land y \not\in A\}\} \\ &= \{x \mid x \in A \land (x \in C \land x \not\in A)\} \\ &= \{x \mid x \in C \land F\} \\ &= \{x \mid F\} \\ &= \{x \mid x \neq x\} \\ &= \varnothing. \end{split}$$

2.3.6 • Monotonicity

For any sets A, B, and C,

$$A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$$
$$A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$$
$$A \subseteq B \Rightarrow \bigcup A \subseteq \bigcup B$$

Proof.

 \exists - Set.union_subset_union_left

 \exists - Set.inter_subset_inter_left

∃ - Set.sUnion_mono

Let A, B, and C be arbitrary sets. We prove that

(i)
$$A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$$

(ii)
$$A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$$

(iii)
$$A \subseteq B \Rightarrow \bigcup A \subseteq \bigcup B$$

(i) Suppose $A \subseteq B$. Let $x \in A \cup C$. There are two cases to consider.

Case 1 Suppose $x \in A$. Then, by definition of the subset, $x \in B$. Therefore $x \in B \cup C$.

Case 2 Suppose $x \in C$. Then x is trivially a member of $B \cup C$.

Conclusion Since these cases are exhaustive and both imply $x \in B \cup C$, it follows $A \cup C \subseteq B \cup C$.

- (ii) Suppose $A \subseteq B$. Let $x \in A \cap C$. Then, by definition of the intersection of sets, $x \in A$ and $x \in C$. By definition of the subset, $x \in A$ implies $x \in B$. Therefore $x \in B$ and $x \in C$. That is, $x \in B \cap C$. Since this holds for arbitrary $x \in A \cap C$, it follows $A \cap C \subseteq B \cap C$.
- (iii) Suppose $A \subseteq B$. Let $x \in \bigcup A$. Then, by definition of the union of sets, there exists some $b \in A$ such that $x \in b$. By definition of the subset, $b \in B$ as well. Another application of the definition of the union of sets immediately implies that x is a member of $\bigcup B$.

2.3.7 Anti-monotonicity

For any sets A, B, and C,

$$A \subseteq B \Rightarrow C - B \subseteq C - A$$

$$\emptyset \neq A \subseteq B \Rightarrow \bigcap B \subseteq \bigcap A.$$

Proof.

 \exists - Set.diff_subset_diff_right

 \exists - Set.sInter_subset_sInter

Let A, B, and C be arbitrary sets. We prove that

(i)
$$A \subseteq B \Rightarrow C - B \subseteq C - A$$

(ii)
$$\emptyset \neq A \subseteq B \Rightarrow \bigcap B \subseteq \bigcap A$$

- (i) Suppose $A \subseteq B$. Let $x \in C B$. By definition of the relative complement, $x \in C$ and $x \notin B$. Then x cannot be a member of A, since otherwise this would contradict our subset hypothesis. That is, $x \in C$ and $x \notin A$. Therefore $x \in C A$. Since this holds for arbitrary $x \in C B$, it follows that $C B \subseteq C A$.
- (ii) Suppose $A \neq \emptyset$ and $A \subseteq B$. Then $B \neq \emptyset$. Let $x \in \bigcap B$. By definition of the intersection of sets, for all $b \in B$, $x \in b$. But then, by definition of the subset, for all $a \in A$, $x \in a$. Therefore $x \in \bigcap A$. Since this holds for arbitrary $x \in \bigcap B$, it follows that $\bigcap B \subseteq \bigcap A$.

2.3.8 General Distributive Laws

For any sets A and \mathscr{B} ,

$$A \cup \bigcap \mathscr{B} = \bigcap \left\{ A \cup X \mid X \in \mathscr{B} \right\} \quad \text{for} \quad \mathscr{B} \neq \varnothing$$
$$A \cap \bigcup \mathscr{B} = \bigcup \left\{ A \cap X \mid X \in \mathscr{B} \right\}$$

Proof. Let A and \mathcal{B} be sets. We prove that

- (i) For $\mathscr{B} \neq \varnothing$, $A \cup \bigcap \mathscr{B} = \bigcap \{A \cup X \mid X \in \mathscr{B}\}.$
- (ii) $A \cap \bigcup \mathcal{B} = \bigcup \{A \cap X \mid X \in \mathcal{B}\}\$
- (i) Suppose \mathcal{B} is nonempty. Then $\bigcap \mathcal{B}$ is defined. By definition of the union and intersection of sets,

$$\begin{split} A \cup \bigcap \mathscr{B} &= \{x \mid x \in A \lor x \in \bigcap \mathscr{B}\} \\ &= \{x \mid x \in A \lor x \in \{y \mid (\forall b \in \mathscr{B}), y \in b\}\} \\ &= \{x \mid x \in A \lor (\forall b \in \mathscr{B}), x \in b\} \\ &= \{x \mid \forall b \in \mathscr{B}, x \in A \lor x \in b\} \\ &= \{x \mid \forall b \in \mathscr{B}, x \in A \cup b\} \\ &= \{x \mid x \in \bigcap \{A \cup X \mid X \in \mathscr{B}\}\} \\ &= \bigcap \{A \cup X \mid X \in \mathscr{B}\}. \end{split}$$

(ii) By definition of the intersection and union of sets,

$$\begin{split} A \cap \bigcup \mathscr{B} &= \{x \mid x \in A \land x \in \bigcup \mathscr{B}\} \\ &= \{x \mid x \in A \land x \in \{y \mid (\exists b \in \mathscr{B}), y \in b\}\} \\ &= \{x \mid x \in A \land (\exists b \in \mathscr{B}), x \in b\} \\ &= \{x \mid \exists b \in \mathscr{B}, x \in A \land x \in b\} \\ &= \{x \mid \exists b \in \mathscr{B}x \in A \cap b\} \\ &= \{x \mid x \in \bigcup \{A \cap X \mid X \in \mathscr{B}\}\} \\ &= \bigcup \{A \cap X \mid X \in \mathscr{B}\}. \end{split}$$

2.3.9 🕜 General De Morgan's Laws

For any set C and $\mathscr{A} \neq \varnothing$,

$$C - \bigcup \mathscr{A} = \bigcap \{C - X \mid X \in \mathscr{A}\}\$$
$$C - \bigcap \mathscr{A} = \bigcup \{C - X \mid X \in \mathscr{A}\}\$$

Proof. Let C and \mathscr{A} be sets such that $\mathscr{A} \neq \varnothing$. We prove that

(i)
$$C - \bigcup \mathscr{A} = \bigcap \{C - X \mid X \in \mathscr{A}\}$$

(ii)
$$C - \bigcap \mathscr{A} = \bigcup \{C - X \mid X \in \mathscr{A}\}\$$

(i) By definition of the relative complement, union, and intersection of sets,

$$C - \bigcup \mathscr{A} = \{x \mid x \in C \land x \notin \bigcup \mathscr{A}\}$$

$$= \{x \mid x \in C \land x \notin \{y \mid (\exists b \in \mathscr{A})y \in b\}\}$$

$$= \{x \mid x \in C \land \neg (\exists b \in \mathscr{A}, x \in b)\}$$

$$= \{x \mid x \in C \land (\forall b \in \mathscr{A}, x \notin b)\}$$

$$= \{x \mid \forall b \in \mathscr{A}, x \in C \land x \notin b\}$$

$$= \{x \mid \forall b \in \mathscr{A}, x \in C \land x \notin b\}$$

$$= \{x \mid \forall b \in \mathscr{A}, x \in C - b\}$$

$$= \{x \mid x \in \bigcap \{C - X \mid X \in \mathscr{A}\}.$$

(ii) By definition of the relative complement, union, and intersection of sets,

$$\begin{split} C - \bigcap \mathscr{A} &= \{x \mid x \in C \land x \not\in \bigcap \mathscr{A}\} \\ &= \{x \mid x \in C \land x \not\in \{y \mid (\forall b \in \mathscr{A})y \in b\}\} \\ &= \{x \mid x \in C \land \neg (\forall b \in \mathscr{A}, x \in b)\} \\ &= \{x \mid x \in C \land \exists b \in \mathscr{A}, x \not\in b\} \\ &= \{x \mid \exists b \in \mathscr{A}, x \in C \land x \not\in b\} \\ &= \{x \mid \exists b \in \mathscr{A}, x \in C \land x \not\in b\} \\ &= \{x \mid \exists b \in \mathscr{A}, x \in C - b\} \\ &= \{x \mid x \in \bigcup \{C - X \mid X \in \mathscr{A}\}\} \\ &= \bigcup \{C - X \mid X \in \mathscr{A}\}. \end{split}$$

2.3.10 \bigcirc $\cap/-$ Associativity

Let A, B, and C be sets. Then $A \cap (B - C) = (A \cap B) - C$.

Proof. \exists - Set.inter_diff_assoc

Let A, B, and C be sets. By definition of the intersection and relative complement of sets,

$$\begin{split} A \cap (B-C) &= \{x \mid x \in A \land x \in B-C\} \\ &= \{x \mid x \in A \land (x \in B \land x \not\in C)\} \\ &= \{x \mid (x \in A \land x \in B) \land x \not\in C\} \\ &= \{x \mid x \in A \cap B \land x \not\in C\} \\ &= (A \cap B) - C. \end{split}$$

2.3.11 • Nonmembership of Symmetric Difference

Let A and B be sets. $x \notin A + B$ if and only if either $x \in A \cap B$ or $x \notin A \cup B$.

Proof. \exists - Set.not_mem_symm_diff_inter_or_not_union

By definition of the \P Symmetric Difference,

$$x \notin A + B = \neg(x \in A + B)$$

$$= \neg[x \in (A - B) \cup (B - A)]$$

$$= \neg[x \in (A - B) \vee x \in (B - A)]$$

$$= \neg[(x \in A \wedge x \notin B) \vee (x \in B \wedge x \notin A)]$$

$$= \neg(x \in A \wedge x \notin B) \wedge \neg(x \in B \wedge x \notin A)$$

$$= (x \notin A \vee x \in B) \wedge (x \notin B \vee x \in A)$$

$$= ((x \notin A \vee x \in B) \wedge x \notin B) \vee ((x \notin A \vee x \in B) \wedge x \in A)$$

$$= (x \notin A \wedge x \notin B) \vee (x \in B \wedge x \in A)$$

$$= (x \notin A \wedge x \notin B) \vee (x \in B \wedge x \in A)$$

$$= \neg(x \in A \vee x \in B) \vee (x \in B \wedge x \in A)$$

$$= x \notin A \cup B \text{ or } x \in A \cap B.$$

2.4 Exercises 4

Show that for any sets A and B,

$$A = (A \cap B) \cup (A - B)$$
 and $A \cup (B - A) = A \cup B$.

Proof.

∃ − Enderton.Set.Chapter_2.exercise_4_11_ii ∃ − Enderton.Set.Chapter_2.exercise_4_11_iii

Let A and B be sets. We prove that

- (i) $A = (A \cap B) \cup (A B)$
- (ii) $A \cup (B A) = A \cup B$
- (i) By definition of the intersection, union, and relative complements of sets,

$$(A \cap B) \cup (A - B) = \{x \mid x \in A \cap B \lor x \in A - B\}$$

$$= \{x \mid x \in \{y \mid y \in A \land y \in B\} \lor x \in A - B\}$$

$$= \{x \mid (x \in A \land x \in B) \lor x \in A - B\}$$

$$= \{x \mid (x \in A \land x \in B) \lor x \in \{y \mid y \in A \land y \notin B\}\}$$

$$= \{x \mid (x \in A \land x \in B) \lor (x \in A \land x \notin B)\}$$

$$= \{x \mid (x \in A \land x \in B) \lor (x \in A \land x \notin B)\}$$

$$= \{x \mid x \in A \lor (x \in B \land x \notin B)\}$$

$$= \{x \mid x \in A \lor F\}$$

$$= \{x \mid x \in A\}$$

$$= A.$$

(ii) By definition of the union and relative complements of sets,

$$\begin{split} A \cup (B - A) &= \{x \mid x \in A \lor x \in B - A\} \\ &= \{x \mid x \in A \lor x \in \{y \mid y \in B \land y \not\in A\}\} \\ &= \{x \mid x \in A \lor (x \in B \land x \not\in A)\} \\ &= \{x \mid (x \in A \lor x \in B) \land (x \in A \lor x \not\in A)\} \\ &= \{x \mid (x \in A \lor x \in B) \land T\} \\ &= \{x \mid x \in A \lor x \in B\} \\ &= \{x \mid x \in A \cup B\} \\ &= A \cup B. \end{split}$$

Verify the following identity (one of De Morgan's laws):

$$C - (A \cap B) = (C - A) \cup (C - B).$$

Proof. Refer to ♥ De Morgan's Laws.

Show that if $A \subseteq B$, then $C - B \subseteq C - A$.

Proof. Refer to ✓ Anti-monotonicity.

Show by example that for some sets A, B, and C, the set A-(B-C) is different from (A-B)-C.

Proof. \exists - Enderton.Set.Chapter_2.exercise_4_14

Let
$$A = \{1, 2, 3\}, B = \{2, 3, 4\}, \text{ and } C = \{3, 4, 5\}.$$
 Then

$$A - (B - C) = \{1, 2, 3\} - (\{2, 3, 4\} - \{3, 4, 5\})$$
$$= \{1, 2, 3\} - \{2\}$$
$$= \{1, 3\}$$

but

$$(A - B) - C = (\{1, 2, 3\} - \{2, 3, 4\}) - \{3, 4, 5\}$$
$$= \{1\} - \{3, 4, 5\}$$
$$= \{1\}.$$

Show that $A \cap (B + C) = (A \cap B) + (A \cap C)$.

 $\textit{Proof.} \quad \exists - \text{Set.inter_symmDiff_distrib_left}$

By definition of the intersection, ¶ Symmetric Difference, and relative com-

plement of sets,

$$(A \cap B) + (A \cap C)$$

$$= [(A \cap B) - (A \cap C)] \cup [(A \cap C) - (A \cap B)]$$

$$= [(A \cap B) - A]$$

$$\cup [(A \cap B) - C]$$

$$\cup [(A \cap C) - A]$$

$$\cup [(A \cap C) - B]$$

$$= [A \cap (B - A)]$$

$$\cup [A \cap (B - C)]$$

$$\cup [A \cap (C - A)]$$

$$\cup [A \cap (C - B)]$$

$$= \emptyset$$

$$\cup [A \cap (B - C)]$$

$$\cup \emptyset$$

$$\cup [A \cap (C - B)]$$

$$= [A \cap (B - C)] \cup [A \cap (C - B)]$$

$$= [A \cap (B - C)] \cup [A \cap (C - B)]$$

$$= A \cap [(B - C) \cup (C - B)]$$

$$= A \cap (B + C).$$
Distributive Laws
$$= A \cap (B + C).$$

Show that A + (B + C) = (A + B) + C.

Proof. \exists – Set.symmDiff_assoc

Let A, B, and C be sets. We prove that

(i)
$$A + (B + C) \subseteq (A + B) + C$$

(ii)
$$(A + B) + C \subseteq A + (B + C)$$

(i) Let $x \in A + (B + C)$. Then x is in A or in B + C, but not both. There are two cases to consider:

Case 1 Suppose $x \in A$ and $x \notin B + C$. Then, by Nonmembership of Symmetric Difference, (a) $x \in B \cap C$ or (b) $x \notin B \cup C$. Suppose (a) was true. That is, $x \in B$ and $x \in C$. Since x is a member of A and B, $x \notin (A + B)$. Since x is not a member of A + B but is a member of C, $x \in (A + B) + C$. Now suppose (b) was true. That is, $x \notin B$ and $x \notin C$. Since x is a member of A but not A0. Since A1 is a member of A2 but not A2 but not A3. Since A3 is a member of A4 but not A4.

Case 2 Suppose $x \in B+C$ and $x \notin A$. Then (a) $x \in B$ or (b) $x \in C$ but not both. Suppose (a) was true. That is, $x \in B$ and $x \notin C$. Since x is not a member of A and is a member of B, $x \in A+B$. Since x is a member of A+B but not C, $x \in (A+B)+C$. Now suppose (b) was true. That is, $x \notin B$ and $x \in C$. Since x is not a member of A nor a member of B, $x \notin A+B$. Since x is not a member of A+B but is a member of C, C and C and C are C are C and C are C are C and C are C and C are C are C and C are C are C and C are C and C are C and C are C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C are C and C are C are C are C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C are C are C and C are C and C are C are C are C and C are C and C are C and C are C are C are C and C are C and C are C are C are C are C are C and C are C are C and C are C are C and C are C and C are C are C are C are C are C and C are C are C are C and C are C and C are C are C and C are C are C and C are C are C are C are C and C are C are C are C are C and C

(ii) Let $x \in (A+B) + C$. Then x is in A+B or in C, but not both. There are two cases to consider:

Case 1 Suppose $x \in A + B$ and $x \notin C$. Then (a) $x \in A$ or (b) $x \in B$ but not both. Suppose (a) was true. That is, $x \in A$ and $x \notin B$. Since x is not a member of B nor C, $x \notin B + C$. Since x is not a member of B + C but is a member of A, $x \in A + (B + C)$. Now Suppose (b) was true. That is, $x \notin A$ and $x \in B$. Since x is a member of B and not of C, then $x \in B + C$. Since x is a member of B + C and not of A, $x \in A + (B + C)$.

Conclusion In both (i) and (ii), the subcases are exhaustive and prove the desired subset relation. Therefore A + (B + C) = (A + B) + C.

Simplify:

 $[(A \cup B \cup C) \cap (A \cup B)] - [(A \cup (B - C)) \cap A].$

Proof. \exists – Enderton.Set.Chapter_2.exercise_4_16

Let A, B, and C be arbitrary sets. Then

$$\begin{split} [(A \cup B \cup C) \cap (A \cup B)] - [(A \cup (B - C)) \cap A] \\ &= [A \cup B] - [A] \\ &= \{x \mid x \in (A \cup B) \land x \not\in A\} \\ &= \{x \mid x \in \{y \mid y \in A \lor y \in B\} \land x \not\in A\} \\ &= \{x \mid (x \in A \lor x \in B) \land x \not\in A\} \\ &= \{x \mid (x \in A \land x \not\in A) \lor (x \in B \land x \not\in A)\} \\ &= \{x \mid F \lor (X \in B \land x \not\in A)\} \\ &= \{x \mid x \in B \land x \not\in A\} \\ &= B - A. \end{split}$$

Show that the following four conditions are equivalent.

- (a) $A \subseteq B$,
- (b) $A B = \emptyset$,
- (c) $A \cup B = B$,
- (d) $A \cap B = A$.

Proof.

- ∃ Enderton.Set.Chapter_2.exercise_4_17_i
- ∃ Enderton.Set.Chapter_2.exercise_4_17_ii
- \exists Enderton.Set.Chapter_2.exercise_4_17_iii
- \exists Enderton.Set.Chapter_2.exercise_4_17_iv

Let A and B be arbitrary sets. We show that (i) $(a) \Rightarrow (b)$, (ii) $(b) \Rightarrow (c)$, (iii) $(c) \Rightarrow (d)$, and (iv) $(d) \Rightarrow (a)$.

- (i) Suppose $A \subseteq B$. That is, $\forall t, t \in A \Rightarrow t \in B$. Then there is no element such that $t \in A$ and $t \notin B$. By definition of the relative complement, this immediately implies $A B = \emptyset$.
- (ii) Suppose $A B = \emptyset$. By definition of the relative complement,

$$A - B = \emptyset = \{x \mid x \in A \land x \notin B\}.$$

Then, for all t, $\neg(t \in A \land t \notin B) = t \notin A \lor t \in B$. This implies, by definition of the subset, that $A \subseteq B$. It then immediately follows that $A \cup B = B$.

- (iii) Suppose $A \cup B = B$. Then there is no member of A that is not a member of B. In other words, $A \subseteq B$. This immediately implies $A \cap B = A$.
- (iv) Suppose $A \cap B = A$. Then every member of A is a member of B. This immediately implies $A \subseteq B$.

2.4.9 **Exercise** 4.18

Assume that A and B are subsets of S. List all of the different sets that can be made from these three by use of the binary operations \cup , \cap , and -.

Proof. We can reason about this diagrammatically:

In the above diagram, we assume the left circle corresponds to set A and the right circle corresponds to B. The the possible sets we can make via the specified operators are:

- A B, the left circle excluding the overlapping region.
- $A \cap B$, the overlapping region.
- B-A, the right circle excluding the overlapping region.
- $(A \cup B) \cap A$, the left circle.
- $(A \cup B) \cap B$, the right circle.
- $(A-B) \cup (B-A)$, the symmetric difference.
- $A \cup B$, the entire diagram.

Is $\mathscr{P}(A-B)$ always equal to $\mathscr{P}A-\mathscr{P}B$? Is it ever equal to $\mathscr{P}A-\mathscr{P}B$?

Proof. ∃ − Enderton.Set.Chapter_2.exercise_4_19

Let A and B be arbitrary sets. We show (i) that $\varnothing \in \mathscr{P}(A-B)$ and (ii) $\varnothing \notin \mathscr{P}A - \mathscr{P}B$.

(i) By definition of the ¶ Power Set,

$$\mathscr{P}(A-B) = \{x \mid x \subseteq A-B\}.$$

But \varnothing is a subset of every set. Thus $\varnothing \in \mathscr{P}(A-B)$.

(ii) By the same reasoning found in (i), $\varnothing \in \mathscr{P}A$ and $\varnothing \in \mathscr{P}B$. But then, by definition of the relative complement, $\varnothing \notin \mathscr{P}A - \mathscr{P}B$.

Conclusion By the ¶ Extensionality Axiom, the two sets are never equal.

Let A, B, and C be sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Show that B = C.

Proof. \exists - Enderton.Set.Chapter_2.exercise_4_20

Let A, B, and C be arbitrary sets. By the \P Extensionality Axiom, B = C if and only if for all sets x, $x \in B \iff x \in C$. We prove both directions of this biconditional.

 (\Rightarrow) Suppose $x \in B$. Then there are two cases to consider:

Case 1 Assume $x \in A$. Then $x \in A \cap B$. By hypothesis, $A \cap B = A \cap C$. Thus $x \in A \cap C$ immediately implying $x \in C$.

Case 2 Assume $x \notin A$. Then $x \in A \cup B$. By hypothesis, $A \cup B = A \cup C$. Thus $x \in A \cup C$. Since $x \notin A$, it follows $x \in C$.

 (\Leftarrow) Suppose $x \in C$. Then there are two cases to consider:

Case 1 Assume $x \in A$. Then $x \in A \cap C$. By hypothesis, $A \cap B = A \cap C$. Thus $x \in A \cap B$, immediately implying $x \in B$.

Case 2 Assume $x \notin A$. Then $x \in A \cup C$. By hypothesis, $A \cup B = A \cup C$. Thus $x \in A \cup B$. Since $x \notin A$, it follows $x \in B$.

Show that $\bigcup (A \cup B) = \bigcup A \cup \bigcup B$.

Proof. \exists – Enderton.Set.Chapter_2.exercise_4_21

Let A and B be arbitrary sets. By the \P Extensionality Axiom, the specified equality holds if and only if for all sets x,

$$x \in \bigcup (A \cup B) \iff x \in \bigcup A \cup \bigcup B.$$

We prove both directions of this biconditional.

- (⇒) Suppose $x \in \bigcup (A \cup B)$. By definition of the union of sets, there exists some $b \in A \cup B$ such that $x \in b$. If $b \in A$, then $x \in \bigcup A$ and $x \in \bigcup A \cup \bigcup B$. Alternatively, if $b \in B$, then $x \in \bigcup B$ and $x \in \bigcup A \cup \bigcup B$. Regardless, x is in the target set.
- (\Leftarrow) Suppose $x \in \bigcup A \cup \bigcup B$. Then $x \in \bigcup A$ or $x \in \bigcup B$. WLOG, suppose $x \in \bigcup A$. By definition of the union of sets, there exists some $b \in A$ such that $x \in b$. But then $b \in A \cup B$ meaning x is also a member of $\bigcup (A \cup B)$.

Show that if A and B are nonempty sets, then $\bigcap (A \cup B) = \bigcap A \cap \bigcap B$.

Proof. \exists - Enderton.Set.Chapter_2.exercise_4_22

Let A and B be arbitrary, nonempty sets. By the \P Extensionality Axiom, the specified equality holds if and only if for all sets x,

$$x\in\bigcap(A\cup B)\iff x\in\bigcap A\cap\bigcap B. \tag{2.2}$$

We prove both directions of this biconditional.

(⇒) Suppose $x \in \bigcap (A \cup B)$. Then for all $b \in A \cup B$, $x \in B$. In other words, for every member b_1 of A and every member b_2 of B, x is a member of both b_1 and b_2 . But that implies $x \in \bigcap A$ and $x \in \bigcap B$.

(\Leftarrow) Suppose $x \in \bigcap A \cap \bigcap B$. That is, $x \in \bigcap A$ and $x \in \bigcap B$. By definition of the intersection of sets, for all sets b, if $b \in A$, then $x \in b$. Likewise, if $b \in B$, then $x \in b$. In other words, if b is a member of either A or B, $x \in b$. That immediately implies $x \in \bigcap (A \cup B)$.

2.4.14 Exercise 4.23

Show that if \mathscr{B} is nonempty, then $A \cup \bigcap \mathscr{B} = \bigcap \{A \cup X \mid X \in \mathscr{B}\}.$

Proof. Refer to General Distributive Laws.

Show that if \mathscr{A} is nonempty, then $\mathscr{P} \cap \mathscr{A} = \bigcap \{ \mathscr{P}X \mid X \in \mathscr{A} \}.$

Proof. ∃ – Enderton.Set.Chapter_2.exercise_4_24a

Suppose \mathscr{A} is a nonempty set. Then $\bigcap \mathscr{A}$ is well-defined. Therefore

$$\begin{split} \mathscr{P} \bigcap \mathscr{A} &= \{x \mid x \subseteq \bigcap \mathscr{A}\} \\ &= \{x \mid x \subseteq \{y \mid \forall X \in \mathscr{A}, y \in X\}\} \\ &= \{x \mid \forall t \in x, t \in \{y \mid \forall X \in \mathscr{A}, y \in X\}\} \\ &= \{x \mid \forall t \in x, (\forall X \in \mathscr{A}, t \in X)\} \\ &= \{x \mid \forall X \in \mathscr{A}, (\forall t \in x, t \in X)\} \\ &= \{x \mid \forall X \in \mathscr{A}, x \subseteq X\} \\ &= \{x \mid \forall X \in \mathscr{A}, x \in \mathscr{P}X\} \\ &= \{x \mid \forall t \in \{\mathscr{P}X \mid X \in \mathscr{A}\}, x \in t\} \\ &= \bigcap \{\mathscr{P}X \mid X \in \mathscr{A}\}. \end{split} \qquad \P \text{ Power Set Axiom}$$

Show that

$$\bigcup \{ \mathscr{P}X \mid X \in \mathscr{A} \} \subseteq \mathscr{P} \bigcup \mathscr{A}. \tag{2.3}$$

Under what conditions does equality hold?

Proof. ∃ − Enderton.Set.Chapter_2.exercise_4_24b

We first prove (2.3). Let $x \in \bigcup \{ \mathscr{P}X \mid X \in \mathscr{A} \}$. By definition of the union of sets, $(\exists X \in \mathscr{A}), x \in \mathscr{P}X$. By definition of the \P Power Set, $x \subseteq X$. By \bigcirc Exercise 3.3, $X \subseteq \bigcup \mathscr{A}$. Therefore $x \subseteq \bigcup \mathscr{A}$, proving $x \in \mathscr{P}\mathscr{A}$ as expected.

We show $\mathscr{P} \bigcup A \subseteq \bigcup \{\mathscr{P}X \mid X \in \mathscr{A}\}\$ if and only if $\bigcup \mathscr{A} \in \mathscr{A}$.

- (⇒) Suppose $\mathscr{P} \bigcup \mathscr{A} \subseteq \bigcup \{\mathscr{P}X \mid X \in \mathscr{A}\}$. By definition of the ¶ Power Set, $\bigcup \mathscr{A} \in \mathscr{P} \bigcup \mathscr{A}$. By hypothesis, $\bigcup \mathscr{A} \in \bigcup \{\mathscr{P}X \mid X \in \mathscr{A}\}$. By definition of the union of sets, there exists some $X \in \mathscr{A}$ such that $\bigcup \mathscr{A} \in \mathscr{P}X$. That is, $\bigcup \mathscr{A} \subseteq X$. But $\bigcup \mathscr{A}$ cannot be a proper subset of X since $X \in \mathscr{A}$. Thus $\bigcup \mathscr{A} = X$. This proves $\bigcup \mathscr{A} \in \bigcup \{\mathscr{P}X \mid X \in \mathscr{A}\}$.
- (\Leftarrow) Suppose $\bigcup \mathscr{A} \in A$. Let $x \in \mathscr{P} \bigcup \mathscr{A}$. Since $\bigcup \mathscr{A} \in \mathscr{A}$, it immediately follows that $x \in \{\mathscr{P}X \mid X \in \mathscr{A}\}$.

Conclusion Equality follows immediately from this fact in conjunction with the proof of (2.3).

Is $A \cup \bigcup \mathscr{B}$ always the same as $\bigcup \{A \cup X \mid X \in \mathscr{B}\}$? If not, then under what conditions does equality hold?

Proof. \exists - Enderton.Set.Chapter_2.exercise_4_25

We prove that

$$A \cup \bigcup \mathscr{B} = \bigcup \left\{ A \cup X \mid X \in \mathscr{B} \right\} \tag{2.4}$$

if and only if $A = \emptyset$ or $\mathscr{B} \neq \emptyset$. We prove both directions of this biconditional.

 (\Rightarrow) Suppose (2.4) holds true. There are two cases to consider:

Case 1 Suppose $B \neq \emptyset$. Then $A = \emptyset \vee \mathscr{B} \neq \emptyset$ holds trivially.

Case 2 Suppose $B = \emptyset$. Then

$$A \cup \bigcup \mathscr{B} = A \cup \bigcup \varnothing = A$$

and

$$\bigcup \{A \cup X \mid X \in \mathcal{B}\} = \bigcup \emptyset = \emptyset.$$

Then by hypothesis (2.4), $A = \emptyset$. Then $A = \emptyset \vee \mathscr{B} \neq \emptyset$ holds trivially.

(\Leftarrow) Suppose $A = \emptyset$ or $\mathscr{B} \neq \emptyset$. There are two cases to consider:

Case 1 Suppose $A=\varnothing.$ Then $A\cup\bigcup\mathscr{B}=\bigcup\mathscr{B}.$ Likewise,

$$\bigcup\{A\cup X\mid X\in\mathscr{B}\}=\bigcup\{X\mid X\in\mathscr{B}\}=\bigcup\mathscr{B}.$$

Therefore (2.4) holds.

Case 2 Suppose $B \neq \emptyset$. Then

$$A \cup \bigcup \mathcal{B} = \{x \mid x \in A \lor x \in \bigcup \mathcal{B}\}$$

$$= \{x \mid x \in A \lor (\exists b \in \mathcal{B})x \in b\}$$

$$= \{x \mid (\exists b \in \mathcal{B})x \in A \lor x \in b\}$$

$$= \{x \mid (\exists b \in \mathcal{B})x \in A \cup b\}$$

$$= \{x \mid x \in \bigcup \{A \cup X \mid X \in \mathcal{B}\}$$

$$= \bigcup \{A \cup X \mid X \in \mathcal{B}\}.$$

Therefore (2.4) holds.

Chapter 3

Relations and Functions

3.1 Ordered Pairs

Theorem 3. For any sets x, y, u, and v,

$$\langle u, v \rangle = \langle x, y \rangle \iff u = x \land v = y.$$
 (3.1)

Proof. \exists - Set.OrderedPair.ext_iff

Let x, y, u, and v be arbitrary sets.

- (\Leftarrow) This follows trivially.
- (\Rightarrow) Suppose $\langle u, v \rangle = \langle x, y \rangle$. Then, by definition of an \P Ordered Pair,

$$\{\{u\},\{u,v\}\} = \{\{x\},\{x,y\}\}. \tag{3.2}$$

By the \P Extensionality Axiom, it follows $\{u\} \in \{\{x\}, \{x,y\}\}$ and $\{u,v\} \in \{\{x\}, \{x,y\}\}$. That is,

$$\{u\} = \{x\} \quad \text{or} \quad \{u\} = \{x, y\}$$

and

$$\{u,v\} = \{x\}$$
 or $\{u,v\} = \{x,y\}$.

There are 4 cases to consider:

Case 1 Suppose $\{u\} = \{x\}$ and $\{u, v\} = \{x\}$. The former identity implies u = x. The latter identity implies u = v = x. Then (3.2) simplifies to

$$\{\{u\}\} = \{\{x\}, \{x, y\}\},\$$

meaning x = y. Thus v = y as well.

Case 2 Suppose $\{u\} = \{x\}$ and $\{u, v\} = \{x, y\}$. The former identity implies u = x. Substituting into the latter identity yields $\{u, v\} = \{u, y\}$. This holds if and only if v = y.

Case 3 Suppose $\{u\} = \{x,y\}$ and $\{u,v\} = \{x\}$. The former identity implies x = y = u. Substituting into the latter yields $\{u,v\} = \{u\}$. Thus u = v which in turn implies v = y.

Case 4 Suppose $\{u\} = \{x, y\}$ and $\{u, v\} = \{x, y\}$. The former identity implies x = y = u. Substituting into the latter yields $\{u, v\} = \{u\}$. This implies v = u which in turn implies v = y.

Conclusion These cases are exhaustive and each implies that u = x and v = y.