CMPE 320: Probability, Statistics, and Random Processes

Lecture 14: Cumulative distribution functions

Spring 2018

Seung-Jun Kim

UMBC CMPE 320 Seung-Jun Kim

Cumulative distribution function (CDF)

 \bullet CDF "accumulates" probability "up to" the value x

• CDF can describe both discrete and continuous RVs

Discrete RV:
$$f_{x}(x) = P(X \le x) = \sum_{k \le x} P_{x}(X = k) = \sum_{k \le x} P_{x}(k)$$

Continuous RV: $f_{x}(x) = P(X \le x) = \int_{-\infty}^{x} f_{x}(t) dt$

• Any specification of probability of events $\{X \le x\}$ (be it through PMF, PDF, or CDF) is probability law of RV X

Properties of CDF

① $F_{x}(x)$ (s monotonically non-decreasing that is, if $x < y \Rightarrow F_{x}(x) \subseteq F_{x}(y)$ ② $F_{x}(-\infty) = 0$ ③ $F_{x}(-\infty) = 1$ ④ $P(x \le X \le b) = P(X \le b) - P(x \le a)$ $= F_{x}(b) - F_{x}(a)$

UMBC CMPE 320 Seung-Jun Kim

PMF or PDF from CDF

Discrete RV X

If
$$X$$
 takes integer values,
 $P_X(k) = F_X(k) - F_X(k-1)$

Continuous RV X

$$f_X(x) = \frac{d}{dx} F_X(x)$$

UMBC CMPE 320

Example 3.6. The Maximum of Several Random Variables. You are allowed to take a certain test three times, and your final score will be the maximum of the test scores. Thus,

$$X = \max\{X_1, X_2, X_3\},\$$

where X_1, X_2, X_3 are the three test scores and X is the final score. Assume that your score in each test takes one of the values from 1 to 10 with equal probability 1/10, independently of the scores in other tests. What is the PMF p_X of the final score?

First compute
$$F_{X}(x)$$
 and then $P_{X}(k) = F_{X}(k) - F_{X}(k-1)$
 $F_{X}(x) = P(X \le x) = P(\max_{x \in X} \{X_{1}, X_{2}, X_{3}\} \le x) = P(X_{1} \le x \cap X_{2} \le x \cap X_{3} \le x)$
 $= P(X_{1} \le x) P(X_{2} \le x) P(X_{3} \le x) = F_{X_{1}}(x) F_{X_{2}}(x) F_{X_{3}}(x)$
 $P_{X_{1}}(x) = \begin{cases} \frac{1}{10}, & \text{if } 1 \le x \le 10 \\ 0, & \text{otherwise} \end{cases} \Rightarrow F_{X_{1}}(x) = \begin{cases} \frac{1}{10}, & \text{if } 1 \le x \le 10 \\ 0, & \text{otherwise} \end{cases}$
 $F_{X_{1}}(x) = \begin{cases} 0, & \text{otherwise} \\ \frac{1}{10}, & \text{otherwise} \end{cases} \Rightarrow P_{X_{1}}(k) = F_{X_{1}}(k) - F_{X_{1}}(k-1) = \int_{x=1}^{k-1} \frac{1}{10} - \frac{k-1}{10} \int_{x=1}^{k-1} \frac{1}{10} e^{-k} \int_{x=1}^{k-1} \frac{1}{10} e$

UMBC CMPE 320 Seung-Jun Kim

Geometric and exponential CDFs

• Find the CDF of a geometric RV X. Repeat with an exponential RV X.

Problem 6. Calamity Jane goes to the bank to make a withdrawal, and is equally likely to find 0 or 1 customers ahead of her. The service time of the customer ahead, if present, is exponentially distributed with parameter
$$\lambda$$
. What is the CDF of Jane's waiting time?

If X is exponentially distributed with parameter λ , the continuous of the customer ahead, if present, is exponentially distributed with parameter λ . What is the CDF of Jane's waiting time?

If X is exponentially distributed with parameter λ , the continuous of the customer λ , the continuous λ is exponentially distributed with parameter λ . What is the CDF of Jane's waiting time?

If X is exponentially distributed with parameter λ , the customer λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter λ . What is the CDF of Jane's λ is exponentially distributed with parameter