Презиме	
Име	Тоот бъ 1
Бр. на индекс	Тест бр.1
Студ. програма	

ВТОР КОЛОКВИУМ ПО КАЛКУЛУС 2 16.05.2016

Задача 1. (20 поени) Да се определат третите комплексни корени на

$$z = \frac{1+4i}{5+3i}.$$

Задача 2. (15 поени) Со помош на дефиницијата на граница на низа реални броеви да се покаже дека

$$\lim_{n\to\infty}\frac{3n+4}{9n-7}=\frac{1}{3}.$$

Задача 3. (**15 поени**) Со помош на интегралниот критериум да се испита конвергенцијата на бројниот ред

$$\sum_{n=1}^{\infty} \frac{1}{\left(5n-2\right)^3} \, .$$

Задача 4. (20 поени) Да се определи радиусот на конвергенција, интервалот на конвергенција и испита конвергенцијата во крајните граници на интервалот на степенскиот ред

$$\frac{3x-8}{11} + \frac{(3x-8)^2}{19} + \frac{(3x-8)^3}{27} + \dots = \sum_{n=1}^{\infty} \frac{(3x-8)^n}{8n+3}.$$

Задача 5. (30 поени) По *сопствен избор* да се решат *само две* од следните диференцијални равенки:

- a) $y'(\sin x + 3) = (y 2)\cos x$,
- 6) $(x+5)y'-y=x^2-25$,
- B) $(7x^6 + 5xy^2)dx + (5x^2y + 9y^8)dy = 0$.

Време за работа 90 минути.

Испитниот лист да се предаде заедно со испитната тетратка.

Презиме	
Име	Toom on 2
Бр. на индекс	Тест бр.2
Студ. програма	

ВТОР КОЛОКВИУМ ПО КАЛКУЛУС 2 16.05.2016

Задача 1. (20 поени) Да се определат третите комплексни корени на

$$z = \frac{5+2i}{3+7i}.$$

Задача 2. (15 поени) Со помош на дефиницијата на граница на низа реални броеви да се покаже дека

$$\lim_{n\to\infty}\frac{2n-9}{8n+7}=\frac{1}{4}.$$

Задача 3. (**15 поени**) Со помош на интегралниот критериум да се испита конвергенцијата на бројниот ред

$$\sum_{n=1}^{\infty} \frac{1}{(7n-1)^5}.$$

Задача 4. (20 поени) Да се определи радиусот на конвергенција, интервалот на конвергенција и испита конвергенцијата во крајните граници на интервалот на степенскиот ред

$$\frac{4x-7}{11} + \frac{(4x-7)^2}{18} + \frac{(4x-7)^3}{25} + \dots = \sum_{n=1}^{\infty} \frac{(4x-7)^n}{7n+4}.$$

Задача 5. (30 поени) По *сопствен избор* да се решат *само две* од следните диференцијални равенки:

a)
$$y'(\cos x - 2) = -(y + 5)\sin x$$
,

6)
$$(x-2)y'-y=x^2-4$$
,

B)
$$(4x^3 + 2xy^2)dx + (2x^2y + 9y^8)dy = 0$$

Време за работа 90 минути.

Испитниот лист да се предаде заедно со испитната тетратка.

Презиме	
Име	Toom on 3
Бр. на индекс	Тест бр.3
Студ, програма	

ВТОР КОЛОКВИУМ ПО КАЛКУЛУС 2 16.05.2016

Задача 1. (20 поени) Да се определат третите комплексни корени на

$$z = \frac{1+6i}{7+5i}.$$

Задача 2. (15 поени) Со помош на дефиницијата на граница на низа реални броеви да се покаже дека

$$\lim_{n\to\infty}\frac{2n+5}{6n-1}=\frac{1}{3}.$$

Задача 3. (**15 поени**) Со помош на интегралниот критериум да се испита конвергенцијата на бројниот ред

$$\sum_{n=1}^{\infty} \frac{1}{\left(6n-5\right)^5} \, .$$

Задача 4. (20 поени) Да се определи радиусот на конвергенција, интервалот на конвергенција и испита конвергенцијата во крајните граници на интервалот на степенскиот ред

$$\frac{5x-2}{7} + \frac{(5x-2)^2}{9} + \frac{(5x-2)^3}{11} + \dots = \sum_{n=1}^{\infty} \frac{(5x-2)^n}{2n+5}.$$

Задача 5. (30 поени) По *сопствен избор* да се решат *само две* од следните диференцијални равенки:

- a) $y'(\sin x 2) = (y + 4)\cos x$,
- 6) $(x-7)y'-y=x^2-49$,
- B) $(5x^4 + 3xy^2)dx + (3x^2y + 6y^5)dy = 0$.

Време за работа 90 минути.

Испитниот лист да се предаде заедно со испитната тетратка.

Презиме	
Име	Тоот бъ 4
Бр. на индекс	Тест бр.4
Студ. програма	

ВТОР КОЛОКВИУМ ПО КАЛКУЛУС 2 16.05.2016

Задача 1. (20 поени) Да се определат третите комплексни корени на

$$z = \frac{4+i}{3+5i}.$$

Задача 2. (15 поени) Со помош на дефиницијата на граница на низа реални броеви да се покаже дека

$$\lim_{n\to\infty} \frac{4n-3}{8n+7} = \frac{1}{2}$$
.

Задача 3. (**15 поени**) Со помош на интегралниот критериум да се испита конвергенцијата на бројниот ред

$$\sum_{n=1}^{\infty} \frac{1}{(3n-1)^4}.$$

Задача 4. (20 поени) Да се определи радиусот на конвергенција, интервалот на конвергенција и испита конвергенцијата во крајните граници на интервалот на степенскиот ред

$$\frac{6x-5}{11} + \frac{(6x-5)^2}{16} + \frac{(6x-5)^3}{21} + \dots = \sum_{n=1}^{\infty} \frac{(6x-5)^n}{5n+6}.$$

Задача 5. (30 поени) По *сопствен избор* да се решат *само две* од следните диференцијални равенки:

a)
$$y'(\cos x + 1) = -(y - 4)\sin x$$
,

6)
$$(x+4)y'-y=x^2-16$$
,

B)
$$(9x^8 + 4xy^2)dx + (4x^2y + 3y^2)dy = 0$$
.

Време за работа 90 минути.

Испитниот лист да се предаде заедно со испитната тетратка.