Φροντιστήριο Μέσης Εκπαίδευσης

🗣 : Βροκίνη Λαυρεντίου 2 (Πλατεία Γεωργάκη) | 📞 : 26610 40414

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΘΕΩΡΙΑ, ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 15 Σεπτεμβρίου 2017

ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΣΠΥΡΟΣ ΦΡΟΝΙΜΟΣ

Γ΄ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Όρια - Συνέχεια

OPIO ΣΥΝΑΡΤΉΣΗΣ ΣΤΟ x_0

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ

Όριο μιας συνάρτησης $f:D_f\to\mathbb{R}$ σε ένα σημείο $x_0\in D_f$ ονομάζεται η προσέγγιση των τιμών της μεταβλητής f(x) σε μια τιμή L καθώς το x πλησιάζει την τιμή x_0 . Συμβολίζεται με

$$\lim_{x \to x_0} f(x) = L$$

ΟΡΙΣΜΟΣ 2: ΠΛΕΥΡΙΚΑ ΟΡΙΑ

Έστω μια συνάρτηση $f:D_f\to\mathbb{R}$ και $x_0\in D_f$ ένα σημείο του πεδίου ορισμού της. Αν η συνάρτηση ορίζεται σε ένα διάστημα της μορφής $(a,x_0)\cup(x_0,\beta)$ τότε τα πλευρικά όρια της f στο x_0 ορίζονται ως εξής:

1. Αριστερό όριο:

Όταν το x τείνει στο x_0 με $x \in (a, x_0)$ τότε το όριο από αριστερά του x_0 συμβολίζεται: $\lim_{x \to x_0^-} f(x)$.

2. Δεξί όριο:

Όταν το x τείνει στο x_0 με $x \in (x_0, \beta)$ τότε το όριο από δεξιά του x_0 συμβολίζεται: $\lim_{x \to x_0^+} f(x)$.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ

Έστω μια συνάρτηση $f:D_f\to\mathbb{R}$ και $x_0\in D_f$. Αν το όριο της f όταν $x\to x_0$ είναι L τότε από τον ορισμό του ορίου προκύπτουν οι παρακάτω προτάσεις:

i.
$$\lim_{x\to x_0} f(x) = L \Leftrightarrow \lim_{x\to x_0} (f(x) - L) = 0$$

ii.
$$\lim_{x\to x_0} f(x) = L \Leftrightarrow \lim_{h\to 0} f(x_0 + h) = L$$

ΘΕΩΡΗΜΑ 2: ΠΛΕΥΡΙΚΑ ΟΡΙΑ

Έστω μια συνάρτηση $f:D_f\to\mathbb{R}$ και $x_0\in D_f$ ένα σημείο του πεδίου ορισμού της. Αν η συνάρτηση ορίζεται σε μια περιοχή του x_0 της μορφής $(a,x_0)\cup (x_0,\beta)$ τότε θα ισχύει:

$$\lim_{x\to x_0} f(x) = L \Leftrightarrow \lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) = L$$

- i. Αν η f ορίζεται μόνο στο διάστημα (a, x_0) τότε: $\lim_{x\to x_0} f(x) = \lim_{x\to x_0^-} f(x)$.
- ii. Αν η f ορίζεται μόνο στο διάστημα (x_0, β) τότε: $\lim_{x\to x_0} f(x) = \lim_{x\to x_0^+} f(x)$.

ΘΕΩΡΗΜΑ 3: ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΟΥ

Για τα όρια των βασικών συναρτήσεων σε ένα σημείο x_0 του πεδίου ορισμού τους ισχύουν οι παρακάτω σχέσεις.

1. Πολυωνυμικές

Έστω $P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0}$ με $a_{\nu} \neq 0$ ένα πολυώνυμο ν -οστού βαθμού. Θα ισχύει

$$\lim_{x \to x_0} P(x) = a_{\nu} x_0^{\nu} + a_{\nu-1} x_0^{\nu-1} + \ldots + a_1 x_0 + a_0 = P(x_0)$$

2. Ρητές

Έστω $P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0}$ με $a_{\nu} \neq 0$ ένα πολυώνυμο ν -οστού βαθμού και $Q(x) = \beta_{\mu}x^{\mu} + \beta_{\mu-1}x^{\mu-1} + \ldots + \beta_{1}x + \beta_{0}$ με $\beta_{\mu} \neq 0$ ένα πολυώνυμο μ -οστού βαθμού. Θα ισχύει

$$\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{a_{\nu} x_0^{\nu} + a_{\nu-1} x_0^{\nu-1} + \dots + a_1 x_0 + a_0}{\beta_{\nu} x_0^{\nu} + \beta_{\mu-1} x_0^{\mu-1} + \dots + \beta_1 x_0 + \beta_0} = \frac{P(x_0)}{Q(x_0)}$$

3. Άρρητες

Έστω $f(x) = \sqrt{A(x)}$ με $A(x) \ge 0$ μια άρρητη συνάρτηση και x_0 ένα σημείο του πεδίου ορισμού της. Το όριο της f όταν $x \to x_0$ θα είναι :

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \sqrt{A(x)} = \sqrt{A(x_0)}$$

4. Τριγωνομετρικές

Για τα όρια των βασικών τριγωνομετρικών συναρτήσεων ισχύουν οι παρακάτω σχέσεις:

i.
$$\lim_{x \to x_0} \eta \mu x = \eta \mu x_0$$

iii.
$$\lim_{x \to x_0} \varepsilon \varphi x = \varepsilon \varphi x_0$$

ii.
$$\lim_{x \to x_0} \sigma v v x = \sigma v v x_0$$

iv.
$$\lim_{x \to x_0} \sigma \varphi x = \sigma \varphi x_0$$

5. Λογαριθμικές και εκθετικές

Έστω $f(x) = \log_a x$ και $g(x) = a^x$ μια λογαριθμική και εκθετική συνάρτηση αντίστοιχα με $0 < a \ne 1$ και x_0 ένα σημείο του πεδίου ορισμού τους. Θα ισχύει:

$$\lim_{x \to x_0} \log x = \log x_0$$
 kai $\lim_{x \to x_0} a^x = a^{x_0}$

6. Ταυτοτική και σταθερές

Για την ταυτοτική συνάρτηση f(x) = x και τις σταθερές συναρτήσεις f(x) = c όπου $c \in \mathbb{R}$ ισχύει αντίστοιχα ότι:

$$\lim_{x \to x_0} x = x_0 \text{ kal } \lim_{x \to x_0} c = c$$

ΘΕΩΡΗΜΑ 4: ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ 1

Έστω μια συνάρτηση f με πεδίο ορισμού ένα σύνολο A και x_0 ένα σημείο τέτοιο ώστε να ορίζεται η f σε μια περιοχή του. Το πρόσημο του ορίου της f στο x_0 ισούται με το πρόσημο των τιμών της κοντά στο x_0 :

2

- i. Αν $\lim_{x \to x_0} f(x) > 0$ τότε f(x) > 0 σε μια περιοχή του x_0 .
- ii. Αν $\lim_{x\to x_0} f(x) < 0$ τότε f(x) < 0 σε μια περιοχή του x_0 .

ΘΕΩΡΗΜΑ 5: ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ 2

Έστω συναρτήσεις f,g με πεδία ορισμού τα σύνολα A,B αντίστοιχα και x_0 ένα σημείο τέτοιο ώστε να ορίζονται οι f,g σε μια περιοχή του στο σύνολο $\in A\cap B$. Θα ισχύει ότι:

- i. Αν $\lim_{x \to x_0} f(x) > \lim_{x \to x_0} g(x)$ τότε f(x) > g(x) σε μια περιοχή του x_0 .
- ii. Αν $\lim_{x \to x_0} f(x) < \lim_{x \to x_0} g(x)$ τότε f(x) < g(x) σε μια περιοχή του x_0 .

ΘΕΩΡΗΜΑ 6: ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ 3

Έστω μια συνάρτηση $f:A\to\mathbb{R}$ και $x_0\in A$ ένα σημείο του πεδίου ορισμού της. Ισχύει ότι:

- i. Αν f(x) > 0 σε μια περιοχή του x_0 τότε $\lim_{x \to x_0} f(x) \ge 0$.
- ii. Αν f(x) < 0 σε μια περιοχή του x_0 τότε $\lim_{x \to x_0} f(x) \le 0$.

ΘΕΩΡΗΜΑ 7: ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ 4

Έστω συναρτήσεις f, g με πεδία ορισμού τα σύνολα A, B αντίστοιχα και x_0 ένα σημείο τέτοιο ώστε να ορίζονται οι f, g σε μια περιοχή του στο σύνολο $\in A \cap B$. Θα ισχύει ότι:

- i. Αν f(x) > g(x) σε μια περιοχή του x_0 τότε $\lim_{x \to x_0} f(x) \ge \lim_{x \to x_0} g(x)$.
- ii. Αν f(x) < g(x) σε μια περιοχή του x_0 τότε $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

ΘΕΩΡΗΜΑ 8: ΠΡΑΞΕΙΣ ΜΕ ΟΡΙΑ

Θεωρούμε δύο συναρτήσεις f,g με πεδία ορισμού D_f,D_g αντίστοιχα και $x_0\in D_f\cap D_g$ ένα κοινό στοιχείο των δύο πεδίων ορισμού. Αν τα όρια των δύο συναρτήσεων στο x_0 υπάρχουν με $\lim_{x\to x_0}f(x)=l_1$ και $\lim_{x\to x_0}g(x)=l_2$ τότε οι πράξεις μεταξύ των ορίων ακολουθούν τους παρακάτω κανόνες :

Όριο	Κανόνας
Αθροίσματος	$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = l_1 \pm l_2$
Πολλαπλάσιου	$\lim_{x \to x_0} (k \cdot f(x)) = k \cdot \lim_{x \to x_0} f(x) = k \cdot l_1 , k \in \mathbb{R}$
Γινομένου	$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = l_1 \cdot l_2$
Πηλίκου	$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{l_1}{l_2} , l_2 \neq 0$
Απόλυτης τιμής	$\lim_{x \to x_0} f(x) = \left \lim_{x \to x_0} f(x) \right = l_1 $
Ρίζας	$\lim_{x \to x_0} \sqrt[\kappa]{f(x)} = \sqrt[\kappa]{\lim_{x \to x_0} f(x)} = \sqrt[\kappa]{l_1} , l_1 \ge 0$
Δύναμης	$\lim_{x \to x_0} f^{\nu}(x) = \left(\lim_{x \to x_0} f(x)\right)^{\nu} = l_1^{\nu}$

ΔΕΝ ισχύουν:

 $\lim_{x\to x_0} \dot{f^2}(x) = \ell \Rightarrow \lim_{x\to x_0} f(x) = \sqrt{\ell} \text{ και } \lim_{x\to x_0} |f(x)| = \ell \Rightarrow \lim_{x\to x_0} f(x) = \pm \ell \text{ διότι δεν γνωρίζουμε αν υπάρχει πάντα το } \lim_{x\to x_0} f(x).$

ΘΕΩΡΗΜΑ 9: ΚΡΙΤΗΡΙΟ ΠΑΡΕΜΒΟΛΗΣ

Θεωρούμε τις συναρτήσεις f,g,h με πεδία ορισμού D_f,D_g,D_h αντίστοιχα και x_0 ένα σημείο τέτοιο ώστε να ορίζονται οι f,g,h σε μια περιοχή του στο σύνολο $\in D_f\cap D_g\cap D_h$. Αν ισχύουν οι σχέσεις

1.
$$g(x) \le f(x) \le h(x)$$
 κοντά στο x_0 και

2.
$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = L$$

τότε $\lim_{x\to x_0} f(x) = L$.

ΒΑΣΙΚΗ ΑΝΙΣΟΤΗΤΑ

$$|\eta \mu x| \le |x|$$

Η ισότητα ισχύει για x = 0.

ΘΕΩΡΗΜΑ 10: ΒΑΣΙΚΑ ΤΡΙΓΟΝΟΜΕΤΡΙΚΑ ΟΡΙΑ

Τα παρακάτω αποτελούν βασικά τριγωνομετρικά όρια. Αποδεικνύεται ότι:

$$\lim_{x\to x_0}\frac{\eta\mu x}{x}=1\ \mathrm{kai}\ \lim_{x\to x_0}\frac{\mathrm{sun}x-1}{x}=0$$