SISTEMI OPERATIVI E LAB. (A.A. 10-11) – 13 LUGLIO 2011

IMPORTANTE:

- 1) Fare il login sui sistemi in modalità Linux usando il proprio username e password.
- 2) I file prodotti devono essere collocati in un sottodirettorio della propria HOME directory che deve essere creato e avere nome ESAME13Lug11-2-1. FARE ATTENZIONE AL NOME DEL DIRETTORIO, in particolare alle maiuscole e ai trattini indicati. Verrà penalizzata l'assenza del direttorio con il nome indicato e/o l'assenza dei file nel direttorio specificato, al momento della copia automatica del direttorio e dei file. ALLA SCADENZA DEL TEMPO A DISPOSIZIONE VERRÀ INFATTI ATTIVATA UNA PROCEDURA AUTOMATICA DI COPIA, PER OGNI STUDENTE DEL TURNO, DEI FILE CONTENUTI NEL DIRETTORIO SPECIFICATO.
- 3) Il tempo a disposizione per la prova è di **120 MINUTI** per lo svolgimento di tutto il compito e di **75 minuti** per lo svolgimento della sola parte C.
- 4) Non è ammesso **nessun tipo di scambio di informazioni** né verbale né elettronico, pena la invalidazione della verifica.
- 5) L'assenza di commenti significativi verrà penalizzata.
- 6) AL TERMINE DELLA PROVA È INDISPENSABILE CONSEGNARE IL TESTO DEL COMPITO (ANCHE IN CASO CHE UNO STUDENTE SI RITIRI): IN CASO CONTRARIO, NON POTRÀ ESSERE EFFETTUATA LA CORREZIONE DEL COMPITO MANCANDO IL TESTO DI RIFERIMENTO.

Esercizio

Si realizzi un programma concorrente per UNIX che deve avere una parte in Bourne Shell e una parte in C.

La <u>parte in Shell</u> deve prevedere **3 parametri**: il primo deve essere il nome assoluto di un direttorio che identifica una gerarchia (**G**) all'interno del file system, il secondo deve essere considerato numero intero strettamente positivo (**H**), mentre il terzo deve essere considerato un singolo carattere (**C**). Il programma deve cercare nella gerarchia **G** specificata tutti i direttori che contengono *almeno* un file che abbia una lunghezza in byte minore od uguale a **H** e che contenga (nel contenuto) almeno una occorrenza del carattere **C**. Si riporti il nome assoluto di tali direttori sullo standard output. In ognuno di tali direttori trovati, si deve invocare la parte in C, passando come parametri i nomi dei file trovati (**F0, F1, ... FN-1**) che soddisfano la condizione precedente e il carattere **C**.

La <u>parte in C</u> accetta un numero variabile N + 1 di parametri che rappresentano i primi N nomi di file (**F0, F1, ... FN-1**), mentre l'ultimo rappresenta un singolo carattere (C) (da controllare).

Il processo padre deve generare 2 * N processi figli (P0 ... P2 * N-1) e i processi figli vanno considerati a coppie, ognuna delle quali è associata ad uno dei file Fi. In particolare, la prima coppia è costituita dal processo P0 e dal processo P2*N-1, la seconda dal processo P1 e dal processo P2*N-2 e così via fino alla coppia costituita dal processo PN-1 e dal processo PN: in generale una coppia è costituita dal processo Pi (con i che varia da 0 a ... N-1) e dal processo P2*N-1-i. Entrambi i processi della coppia devono cercare il carattere C nel file associato Fi sempre fino alla fine attuando una sorta di staffetta così come illustrato nel seguito. Il processo Pi deve cominciare a leggere cercando la prima occorrenza del carattere C; appena trovata deve comunicare all'altro processo della coppia P2*N-1-i la posizione del carattere trovato all'interno del file (in termini di long int); quindi il processo P2*N-1-i deve partire con la sua ricerca del carattere C dalla posizione seguente a quella ricevuta; appena trovata una nuova occorrenza di C deve comunicare all'altro processo della coppia Pi la posizione del carattere trovato all'interno del file (in termini di long int); tale staffetta deve avere termine quando il file è finito.

Al termine, ogni processo figlio deve ritornare al padre il numero di occorrenze del carattere C trovate dal singolo processo della coppia e il padre deve stampare su standard output il PID di ogni figlio e il valore ritornato.