Nama : Al Fitra Nur Ramadhani

NIM : 202210370311264

Mata Kuliah: Pemodelan dan Simulasi Data B

Laporan Tugas 1

Concert Ticket Booking System Simulation

A. Deskripsi Proyek

Proyek ini bertujuan untuk mensimulasikan sistem antrean dalam platform pemesanan tiket konser menggunakan **SimPy**, sebuah pustaka Python untuk simulasi berbasis proses. Simulasi ini menganalisis kinerja sistem berdasarkan variasi jumlah server dan fase penjualan.

B. Parameter Simulasi

- Jumlah Server : 2, 4, 6, dan 8 server

- Durasi Simulasi: 480 menit (8 jam).

- Fase Penjualan: Presale, Peak, Normal.

- Metrik Kinerja :

Total Pelanggan	Rata-rata Waktu Layanan (menit)			
Pelanggan Dilayani (%)	Rata-rata Waktu dalam Sistem (menit)			
Pelanggan Batal (%)	Rata-rata Panjang Antrian (pelanggan)			
Rata-rata Waktu Tunggu (menit)	Utilisasi Server (%)			

C. Ringkasan Hasil Simulasi

Simulation Results and Analysis Overview Analysis of customer service performance metrics									
Number of Servers	Total Customers	Customers Served (%)	Customers Canceled (%)	Avg. Wait Time (min)	Avg. Service Time (min)	Avg. Time in System (min)	Avg. Queue Length (customers)	Server Utilization (%)	
2 Servers	1171	366 (31.3%)	788 (67.3%)	11.31	2.61	13.94	26,26	99.69	
4 Servers	1122	683 (60.9%)	435 (38.8%)	4.87	2.62	7.50	17.73	93.27	
6 Servers	1134	857 (75.6%)	272 (24.0%)	3.54	2.64	6.20	14.78	78.68	
8 Servers	1143	949 (83.0%)	191 (16.7%)	2.27	2.72	4.99	9.89	67.12	

D. Analisis Hasil Simulasi

1. Pengaruh Jumlah Server

• 2 Server:

- Utilisasi server hampir 100%, menunjukkan beban kerja maksimum.
- Tingkat pembatalan tinggi (67.3%) dan waktu tunggu rata-rata 11.31 menit, mengindikasikan antrean tidak efisien.

• 4 Server:

- Utilisasi turun menjadi 93.27%, dengan peningkatan pelanggan dilayani menjadi 60.9%.
- Waktu tunggu turun signifikan (4.87 menit), tetapi antrean masih relatif panjang (17.73 pelanggan).

• 6 Server:

- Pembatalan berkurang drastis (24.0%) dengan waktu tunggu 3.54 menit.
- Utilisasi server 78.68%, menunjukkan efisiensi yang lebih seimbang.

8 Server:

- Pelanggan dilayani mencapai 83.0% dengan waktu tunggu hanya 2.27 menit.
- Utilisasi server 67.12%, mengindikasikan kapasitas berlebih jika permintaan tidak stabil.

2. Tren Utama

• Peningkatan Jumlah Server:

- Mengurangi waktu tunggu, panjang antrian, dan tingkat pembatalan secara signifikan.
- Menurunkan utilisasi server, tetapi meningkatkan kepuasan pelanggan.

• Fase Peak:

• Transisi ke fase "peak" terjadi sekitar menit ke-60 di semua skenario, menunjukkan pola kedatangan yang konsisten.

• Efisiensi Optimal:

• Pada 6 server, sistem mencapai keseimbangan antara utilisasi (78.68%) dan pelayanan (75.6% pelanggan dilayani).

E. Kesimpulan

- 1. **2 Server tidak cukup** untuk menangani permintaan tinggi, menyebabkan antrean panjang dan pembatalan masif.
- 2. **4-6 Server** merupakan konfigurasi optimal untuk menyeimbangkan utilisasi dan kualitas layanan.
- 3. **8 Server** mungkin berlebihan untuk permintaan stabil, tetapi berguna jika terjadi lonjakan tak terduga.
- 4. **Penambahan server** secara linear meningkatkan kapasitas sistem, tetapi perlu dipertimbangkan biaya vs. manfaat.
- 5. **Fase peak** memerlukan alokasi sumber daya ekstra untuk meminimalkan pembatalan dan antrean.

F. Rekomendasi

1. Jumlah Server yang Direkomendasikan

- **Baseline**: 4 server sebagai konfigurasi dasar untuk fase normal dan presale.
- **Fase Puncak**: Tambahkan server hingga 6 selama fase puncak untuk mengurangi pembatalan hingga 24.0% dan memangkas waktu tunggu ke 3.54 menit.
- **Fase Normal**: Kembalikan ke 4 server setelah puncak untuk optimasi biaya dan utilisasi (93.27%).

2. Strategi Pengelolaan Beban

- **Server Dinamis**: Implementasikan sistem yang menyesuaikan jumlah server otomatis berdasarkan trafik (misal: 6 server saat peak, 4 server saat normal).
- **Virtual Waiting Room**: Batasi akses pelanggan selama peak untuk menghindari lonjakan tiba-tiba. Contoh: 100 pelanggan/menit di fase peak.
- **Estimasi Waktu Tunggu**: Tampilkan perkiraan waktu tunggu di antarmuka pelanggan untuk mengurangi kecemasan dan pembatalan.

3. Optimasi Waktu Layanan

- **Sederhanakan Proses Pemesanan**: Kurangi langkah pemilihan kursi dengan opsi "random seat" untuk kategori ekonomi.
- **Quick Checkout**: Aktifkan fitur "1-click checkout" untuk pelanggan yang sudah terdaftar.
- **Pre-load Data**: Simpan informasi pelanggan sebelumnya (alamat, metode pembayaran) untuk mempercepat transaksi.

4. Mekanisme Antrian Khusus

- **Antrian Prioritas VIP**: Alokasikan 1-2 server khusus untuk pelanggan VIP agar waktu tunggu mereka <2 menit.
- **Batasi Pembelian per Transaksi**: Maksimal 4 tiket/transaksi selama fase peak untuk mencegah pembelian massal.
- Waiting List: Buka pendaftaran waiting list setelah tiket habis, lalu notifikasi pelanggan jika ada tiket batal.

5. Persiapan Infrastruktur

- Scalable Cloud Server: Gunakan layanan cloud yang dapat menambah kapasitas server secara instan selama peak (misal: AWS Auto Scaling).
- **Uji Beban Berkala**: Lakukan simulasi rutin untuk memastikan sistem siap menghadapi lonjakan 2x lipat dari prediksi.
- **Backup Database**: Pastikan replikasi database real-time untuk menghindari kegagalan sistem saat traffic tinggi.

 $\label{link GitHub: DATA-MINING/THEORY/ConcertTicketBookingSystem at main \cdot alfitranurr/DATA-MINING \\$