S. V. National Institute of Technology, Surat

Applied Mathematics and Humanities Department

B.Tech-I

Sem-1

Branch-All

Subject-Mathematics-I (MA 101 S1)

Tutorial - 2: Power series, Taylor's series and Maclaurin's series

1. Define Power Series. State and prove Taylor's series theorem.

2. Prove that
$$\sqrt{1+\sin x} = 1 + \frac{x}{2} - \frac{x^2}{2} - \frac{x^3}{48} + \frac{x^4}{384} + \cdots$$

3. Prove that
$$e^{x \sec x} = 1 + x + \frac{1}{2}x^2 + \frac{2}{3}x^3 + \cdots$$

4. Find the three terms in the expansion of $\frac{e^x}{e^x+1}$ in powers of x by Maclaurin's theorem.

Ans :
$$\frac{1}{2} + \frac{x}{4} - \frac{1}{8} \frac{x^3}{3!} + \cdots$$

5. Prove that $\cos^{-1}[\tanh(\log x)] = \pi - 2\left(x - \frac{x^3}{3} + \frac{x^5}{5} + \cdots\right)$.

6. Prove that
$$\log \frac{\sin x}{x} = -\left(\frac{x^2}{6} + \frac{x^4}{180} + \frac{x^6}{2835} + \cdots\right)$$

7. Expand $e^{a \sin^{-1} x}$ by Maclaurin's theorem. Hence show that

$$e^{\theta} = 1 + \sin \theta + \frac{\sin^2 \theta}{2!} + \frac{2}{3!} \sin^3 \theta + \dots$$

8. Use Taylor's theorem to express the polynomial $2x^3 + 7x^2 + x - 6$ in powers of (x - 2).

9. Prove that
$$\frac{1}{x+h} = \frac{1}{x} - \frac{h}{x^2} + \frac{h^2}{x^3} - \frac{h^3}{x^4} + \cdots$$

16. Find value using Taylor's series of

- (i) $\sqrt{25.15}$. **Ans** : 5.32261
- (ii) $\log_{10} 404$, given $\log_{10} 4 = 0.6021$. **Ans** : 2.6121

11 Expand $\tan\left(x+\frac{\pi}{4}\right)$ as far as the term x^4 and evaluate $\tan 44^\circ$ to four significant digits. **Ans**: 0.9657

12. Expand $\sin(a+h)$ as a series of powers of h and hence evaluate $\sin 62^{\circ}$ correct to four decimal places. **Ans**: 0.88295

13. Prove that
$$f\left(\frac{x^2}{1+x}\right) = f(x) - \frac{x}{1+x}f'(x) + \frac{x^2}{(1+x)^2}f''(x) + \cdots$$

14. Expand $\tan^{-1} x$ in powers of $\left(x - \frac{\pi}{4}\right)$.

Ans:
$$\tan^{-1}\frac{\pi}{4} + \left(x - \frac{\pi}{4}\right)\frac{16}{16 + \pi^2} - \frac{\pi}{4}\left(x - \frac{\pi}{4}\right)^2\frac{16^2}{(16 + \pi^2)^2} + \cdots$$

15. Prove that
$$\frac{\sin^{-1} x}{\sqrt{1-x^2}} = x + \frac{2}{3}x^3 + \frac{8}{15}x^5 + \cdots$$