Survival Analysis Project

Project outline:

- Introduction
- Prepare data
- Short EDA
- Perform analysis with multiple methods (4-5-6)
- Chose 2-3
- Chose what to keep (maximum 9 pages)
 - What code do we keep? Should we show all the code?
 - How much of the EDA is finally important?
 - Which methods with which plots are we keeping?

Introduction

In terms of survival analysis, the objective of this project is to determine the "risk" that pets in an animal shelter have of being adopted, based on different characteristics that are available in the dataset. It is worth mentioning that the data contain different outcomes for the animals: adoption, transfer, or no outcome. However, in our case we will only use a dichotomous output indicating whether it was adopted or not.

We will also analyze how the following variables, when possible to include them, may influence the adoption or non-adoption of the animals.

Data dictionary:

- id: unique id for each animal
- age_upon_outcome: age of the animal when the outcome was determined
- animal_type: cat, dog, or ... something else
- breed: breed of the animal
- color: color of the animal
- date of birth: date of birth of the animal
- datetime: date and time when the outcome was determined

- name: name of the animal
- outcome_type: there are three possible outcomes: adoption, transfer, no outcome (euthanized, died)
- sex: sex of the animal
- spay neuter: whether the animal was spayed or neutered: intact or fixed

Data preparation

Load necessary libraries

```
# Packages for data preparation
library(dplyr)
library(readr)
library(skimr)
library(gt)

# Packages for analyzing survival data
library(survival)
library(survminer)

raw_data <- read_csv("data/train.csv")</pre>
```

EDA

```
raw_data |> summary()
```

id animal_type breed age_upon_outcome Min. : 1 Length: 54408 Length: 54408 Length: 54408 1st Qu.:19483 Class : character Class : character Class : character Median :38851 Mode :character Mode :character Mode :character

Mean :38845 3rd Qu.:58277 Max. :77725

color date_of_birth datetime

Length: 54408 Min. :1994-01-25 Min. :2013-10-01 09:31:00.0 Class :character 1st Qu.:2012-08-15 1st Qu.:2014-10-18 16:20:30.0 Mode :character Median :2014-05-12 Median :2015-11-07 16:14:00.0

Mean :2013-08-24 Mean :2015-11-23 14:39:07.2

3rd Qu.:2015-09-17 3rd Qu.:2016-12-13 16:24:00.0

Max. :2017-12-25 Max. :2018-02-01 18:40:00.0

outcome_type sex spay_neuter

Langth:54408 Langth:54408

Length:54408 Length:54408 Length:54408 Length:54408 Class:character Class:character Class:character Mode:character Mode:charac

skim(raw_data)

name

Table 1: Data summary

Name	raw_data
Number of rows	54408
Number of columns	11
Column type frequency:	
character	8
Date	1
numeric	1
POSIXct	1
Group variables	None

Variable type: character

skim_variable i	n_missing	complete_rate	min	max	empty	n_unique	whitespace
age_upon_outcome	0	1.0	4	9	0	46	0
animal_type	0	1.0	3	9	0	5	0
breed	0	1.0	3	54	0	1812	0
color	0	1.0	3	27	0	475	0
name	16433	0.7	1	12	0	11826	0
$outcome_type$	0	1.0	8	10	0	3	0
sex	0	1.0	4	7	0	3	0
spay_neuter	0	1.0	5	7	0	3	0

Variable type: Date

skim_variable	n_missing	$complete_rate$	min	max	median	n_unique
date_of_birth	0	1	1994-01-25	2017-12-25	2014-05-12	5504

Variable type: numeric

skim_	_variabhe_missingomple	te_	ratmean	sd	p0	p25	p50	p75	p100	hist
id	0	1	38845.0	322415.88	3 1	19482.75	38850.5	58277.2	577725	

Variable type: POSIXct

$skim_variab \\ \textbf{le}_missing complete_rate \\ in$				max	median	n_unique
datetime	0	1	2013-10-01	2018-02-01	2015-11-07	46757
			09:31:00	18:40:00	16:14:00	

The variables breed and color have too many different combinations, so we remove them from our data, as they will not be useful for our models.

Let's see more details on the animal_type, sex and spay_neuter.

```
raw_data |>
  count(animal_type) |>
  gt()
```

animal_type	n
Bird	212
Cat	20561
Dog	30830
Livestock	5
Other	2800

```
raw_data |>
  count(sex) |>
  gt()
```

sex	n
Female	23931

```
Male 26045
Unknown 4432
```

```
raw_data |>
  count(spay_neuter) |>
  gt()
```

spay_neuter	n
Fixed	37013
Intact	12963
Unknown	4432

We keep these variables.

We see that we have names for 69.8% of the animals. We can create a variable for this: has_name, a dummy variable is there is a name or not.

```
raw_data <- raw_data |>
  mutate(has_name = !is.na(name)) # If not NA, then it has a name.
```

Also, let's treat the animal_type and sex variables as integers, so they can enter the model

Lastly, we will work with <code>spay_neuter</code> as our grouping variable. We would like to verify if there are differences in adoption times if the animal is spay neutered or not. If we have an <code>Unknown</code> in the variable, we will encode it as <code>Intact</code>, as knowing for sure how the animal has been handled is important.

Now let's work with the time variable and our outcome variable.

```
raw_data |>
  count(outcome_type) |>
  gt()
```

outcome_type	n
adoption	33275
no outcome	4735
transfer	16398

We would like to model which animals were adopted, so we make a new variable outcome for which we take 1 for adoption and 0 for no adoption.

```
raw_data <- raw_data |>
mutate(outcome = if_else(outcome_type == "adoption", 1, 0))
```

For the duration data, we have the age_upon_outcome which is the difference between date_of_birth and datetime but this is not numeric, so let's create our own variable

```
raw_data <- raw_data |>
  mutate(time_to_outcome = as.Date(datetime) - date_of_birth)

raw_data |>
  filter(time_to_outcome < 0) |>
  gt()
```

id	age_upon_outcome	animal_type	breed	color	$date_of_birth$	
14749	0 years	Cat	Domestic Shorthair Mix	Orange Tabby	17102	14
9703	0 years	Cat	Domestic Shorthair Mix	Black	16676	14
41480	0 years	Cat	Domestic Shorthair Mix	Tortie	16622	14
682	0 years	Dog	Labrador Retriever Mix	Black	16584	14
52255	0 years	Cat	Domestic Shorthair Mix	Orange Tabby	17348	14

We have some negative values, which makes no sense as the date_of_birth should come before the outcome, so we remove these observations.

```
raw_data <- raw_data |>
  filter(time_to_outcome >= 0)
```

Let's look at the encoding for sex, spay_neuter and animal_type before we go on analyzing with our clean data.

```
raw_data |>
  count(integer_animal_type, animal_type) |>
  gt()
```

integer_animal_type	animal_type	n
1	Bird	212
2	Cat	20557
3	Dog	30829
4	Livestock	5
5	Other	2800

```
raw_data |>
  count(integer_sex, sex) |>
  gt()
```

integer_sex	sex	n
1	Female	23929
2	Male	26043
3	Unknown	4431

```
raw_data |>
  count(integer_spay_neuter, spay_neuter) |>
  gt()
```

integer_spay_neuter	spay_neuter	n
1	Fixed	37011
2	Intact	17392

Now we chose the variable we will use as a clean data.

We could also keep the raw character variables as was done in class

```
data <- raw_data |>
  select(id, animal_type = integer_animal_type, sex = integer_sex,
```

```
spay_neuter = integer_spay_neuter,
    has_name, outcome, time_to_outcome) |>
mutate(id = as.character(id))
```

Statistical Analysis

Example options given by instructions:

- nonparametric estimation of survival for one or more groups
- nonparametric comparison of 2 or more groups
- semi-parametric Cox regression

Multivariate Cox regression

```
cox_model <- coxph(Surv(time_to_outcome, outcome) ~ animal_type + sex + spay_neuter, data</pre>
  summary(cox_model)
Call:
coxph(formula = Surv(time_to_outcome, outcome) ~ animal_type +
   sex + spay_neuter, data = data)
 n=54403, number of events= 33273
             coef exp(coef) se(coef) z Pr(>|z|)
animal_type -0.26469  0.76744  0.01068 -24.79  < 2e-16 ***
          Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
          exp(coef) exp(-coef) lower .95 upper .95
animal_type
            0.7674
                       1.303
                              0.7515
                                       0.7837
            0.9333
                       1.071
                              0.9142
                                       0.9528
sex
            0.4749
                       2.106
                              0.4582
                                       0.4922
spay_neuter
Concordance= 0.615 (se = 0.002)
Likelihood ratio test= 3193 on 3 df,
                                  p=<2e-16
Wald test
                 = 2601 on 3 df,
                                  p=<2e-16
```

```
Score (logrank) test = 2676 on 3 df, p=<2e-16
```

Let's see our predicted survival proportion for the whole data.

```
ggsurvplot(survfit(cox_model), data = data)
```


Now, we can verify how this survival changes depending on the spay_neuter variable.

As expected, animal which were spay neutered, have shorter survival time, that means they were adopted faster