# **PyPI** repository

The actual package can be found at <a href="https://pypi.org/project/ocpexplore/">https://pypi.org/project/ocpexplore/</a>)

## **Github**

The codes of the functions and a readme file can be found on github at <a href="https://github.com/martonberta/ocpexplore">https://github.com/martonberta/ocpexplore</a> (<a href="https://github.com/martonberta/ocpexplore">https://github.com/martonberta/ocpexplore</a> (<a href="https://github.com/martonberta/ocpexplore">https://github.com/martonberta/ocpexplore</a>)

## Possum dataset

The possum data frame consists of nine morphometric measurements on each of 104 **mountain brushtail possums**, trapped at seven sites from Southern Victoria to central Queensland.



# Load data and packages

```
In [1]:
```

```
import pandas as pd
import numpy as np
```

#### In [2]:

```
possums = pd.read_csv("https://vincentarelbundock.github.io/Rdatasets/csv/DAAG/possum.c
sv")
```

#### In [3]:

```
# create a random date feature for the sake of the presentation
import random
possums['temp'] = [random.uniform(0,1) for i in range(possums.shape[0])]

possums.loc[possums.temp <= 0.2, 'date'] = pd.to_datetime("2019-06-01")
possums.loc[(possums.temp > 0.2) & (possums.temp <= 0.4) , 'date'] = pd.to_datetime("20
19-07-01")
possums.loc[possums.temp >= 0.8, 'date'] = pd.to_datetime("2019-10-01")
possums.loc[(possums.temp >= 0.6) & (possums.temp < 0.8) , 'date'] = pd.to_datetime("20
19-09-01")
possums.loc[possums.date.isnull(), 'date'] = pd.to_datetime("2019-08-01")

# rename cols
possums = possums.rename(columns={"case": "possum_id", "site":"site_id", "Pop":"region"
})

# drop some features
todrop = ['temp', 'Unnamed: 0', 'hdlngth', 'skullw', 'taill', 'footlgth', 'earconch', 'e ye']
possums = possums.drop(todrop, axis = 1)</pre>
```

#### In [4]:

```
possums.head(10)
```

#### Out[4]:

|   | possum_id | site_id | region | sex | age | totingth | chest | belly | date       |
|---|-----------|---------|--------|-----|-----|----------|-------|-------|------------|
| 0 | 1         | 1       | Vic    | m   | 8.0 | 89.0     | 28.0  | 36.0  | 2019-06-01 |
| 1 | 2         | 1       | Vic    | f   | 6.0 | 91.5     | 28.5  | 33.0  | 2019-09-01 |
| 2 | 3         | 1       | Vic    | f   | 6.0 | 95.5     | 30.0  | 34.0  | 2019-06-01 |
| 3 | 4         | 1       | Vic    | f   | 6.0 | 92.0     | 28.0  | 34.0  | 2019-06-01 |
| 4 | 5         | 1       | Vic    | f   | 2.0 | 85.5     | 28.5  | 33.0  | 2019-09-01 |
| 5 | 6         | 1       | Vic    | f   | 1.0 | 90.5     | 30.0  | 32.0  | 2019-09-01 |
| 6 | 7         | 1       | Vic    | m   | 2.0 | 89.5     | 30.0  | 34.5  | 2019-08-01 |
| 7 | 8         | 1       | Vic    | f   | 6.0 | 91.0     | 29.0  | 34.0  | 2019-07-01 |
| 8 | 9         | 1       | Vic    | f   | 9.0 | 91.5     | 28.0  | 33.0  | 2019-07-01 |
| 9 | 10        | 1       | Vic    | f   | 6.0 | 89.5     | 27.5  | 32.0  | 2019-08-01 |

# Functions of the ocpexplore package

The library can be loaded with the following code

#### In [5]:

```
!pip install ocpexplore
import ocpexplore.ocpexplore as expl
```

```
Requirement already satisfied: ocpexplore in /home/ec2-user/anaconda3/env s/python3/lib/python3.6/site-packages (0.1.0)
Requirement already satisfied: Click>=7.0 in /home/ec2-user/anaconda3/env s/python3/lib/python3.6/site-packages (from ocpexplore) (7.1.1)
You are using pip version 10.0.1, however version 20.0.2 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
```

### Missing values

From the chart it can be seen that only the age variable has missing values. This feature has 2 missing values, which is nearly 2 % of the total number of observations.

### In [6]:

```
expl.check_NA(possums)
```

```
variables NANs
                   ratio
  possum_id
                0
                  0.000
1
    site_id
                0
                  0.000
2
     region
                0
                  0.000
3
        sex
                0.000
4
                2 0.019
        age
5
   totlngth
                0.000
6
      chest
                0
                  0.000
7
      belly
                0.000
       date
                0.000
```



### Keys in the data

The possum\_id variable is unique in the data, while site\_id is not (as expected), with 7 unique observations

### In [7]:

```
expl.check_ID(possums[['possum_id', 'site_id']])
```

possum\_id has 104 values, and 104 of which are unique (100.0%). site\_id has 104 values, and 7 of which are unique (6.73%).

### **Object variables**

With the value\_counter function we can check the distribution of object type variables if the number of unique observations is less than 25.

### In [8]:

expl.value\_counter(possums)

| r | egion         |              |       |
|---|---------------|--------------|-------|
|   | unique_values | value_counts | ratio |
| 0 | other         | 58           | 0.558 |
| 1 | Vic           | 46           | 0.442 |



| sex   |          |              |       |
|-------|----------|--------------|-------|
| uniqu | e_values | value_counts | ratio |
| 0     | m        | 61           | 0.587 |
| 1     | f        | 43           | 0.413 |



## **Explore numeric variables**

We can check the distribution of numeric variables visually and also with a descriptives table

### In [9]:

```
expl.describe_continuous(possums[['age','totlngth','chest','belly']])
```

### Out[9]:

|   | variable | Min  | 0.01 | 0.05 | 0.1  | 0.25 | 0.5  | 0.75 | 0.9  | 0.95 | 0.99 | Max  | Mean      | NaN |
|---|----------|------|------|------|------|------|------|------|------|------|------|------|-----------|-----|
| 0 | age      | 1.0  | 1.0  | 1.0  | 2.0  | 2.0  | 3.0  | 5.0  | 6.0  | 7.0  | 9.0  | 9.0  | 3.833333  | 2   |
| 1 | totIngth | 75.0 | 76.0 | 80.5 | 81.5 | 84.0 | 88.0 | 90.0 | 92.0 | 93.5 | 96.0 | 96.5 | 87.088462 | 0   |
| 2 | chest    | 22.0 | 23.0 | 23.5 | 24.5 | 25.5 | 27.0 | 28.0 | 30.0 | 30.5 | 31.0 | 32.0 | 27.000000 | 0   |
| 3 | belly    | 25.0 | 27.0 | 28.0 | 29.0 | 31.0 | 32.5 | 34.0 | 36.0 | 36.5 | 39.0 | 40.0 | 32.586538 | 0   |

We drop (or impute) the rows with missing values, because the plot function does not handle missing values yet.

### In [10]:

```
possums = possums.dropna()
```

```
In [11]:
```

```
expl.plot_continuous(possums[['age','totlngth','chest','belly']])
```



0.04

0.02

0.00

totingth

totingth







The boxplots showed some outliers, which we can check separately with the tail\_density\_table

### In [12]:

### Out[12]:

| bucket low_extreme |         | low_outlier | non_outlier | high_outlier | high_extreme |   |
|--------------------|---------|-------------|-------------|--------------|--------------|---|
|                    | age     | 0           | 0           | 102          | 0            | 0 |
| t                  | otIngth | 0           | 1           | 101          | 0            | 0 |
|                    | chest   | 0           | 0           | 101          | 1            | 0 |
|                    | belly   | 0           | 1           | 99           | 2            | 0 |

## **Explore date variables**

We can check if a day/month/year is missing from the data with the <code>obs\_by\_date</code> function. Contrary to the rest of the functions, this takes a single column as input.

### In [13]:

```
expl.obs_by_date(possums.date, date_aggregation = 'M')
```

### Out[13]:

2019-06 15 2019-07 24 2019-08 18 2019-09 26 2019-10 19

Freq: M, Name: date, dtype: int64



Also, we can check the distribution of numeric variables over time with the values\_by\_date function

```
In [14]:
```

```
expl.values_by_date(possums[['date','age','totlngth','chest','belly']], 'date')
```









# Lifecycle configuration

Doug created a process description, which makes it possible to have any package preinstalled upon opening a notebook instance in AWS. That can also be used to install this package.