Ficha de exercícios IV

Rachid Muleia

- 1. Suponha que disponha de uma amostra retirada em dois pontos (1,0) e (2,0) e deseja estimar o valor da variável regionalizada em um ponto arbitrário (x_0, y_0) . Considere um semivariograma efeito pepita puro, com patamar/soleira igual à 1 $(\gamma(h) = 1 \quad se \quad h > 1; \gamma(h) = 0 \quad se \quad h = 0)$. Calcule os pesos para a krigagem ordinária e a variância da estimativa. Qual seria o valor dos pesos se tivéssemos N amostras.
- 2. Novamente, considere a amostra do exercício 1 para os pontos (1,0) e (2,0), onde deseja-se estimar o ponto (x_0,y_0) . Considere um semivariograma esférico com patamar de 2.0 e amplitude de 0.75. Mostre que os pesos resultantes da krigagem ordinária para o ponto (x_0,y_0) são iguais à: $\lambda_1 = \frac{1}{2} + \frac{\gamma_{20} \gamma_{10}}{2\gamma_{12}}$ e $\lambda_2 = \frac{1}{2} + \frac{\gamma_{10} \gamma_{20}}{2\gamma_{12}}$
- 3. Em um problema 1D, o ponto x0 é estimado usando os pontos x_1 e x_2 . A tabela a seguir fornece as coordenadas destes pontos:

Ponto	Coordenadas
хо	0
x1	-6
x2	4

Considere um modelo de covariância gaussiano

$$C(h) = \delta(h) + \exp{-h^2/a0^2} \quad (\delta(h) = 1 \quad \text{se} \quad h = 0 \quad ; \ 0 \quad caso \quad contrario)$$

- a) Construa o sistema de krigagem simples correspondente e encontre os pesos.
- b) Qual é o valor estimado e a variância da krigagem se a média conhecida for m=3 e $Z_1=4$ e $Z_2=5$?
- c) Construa o sistema de krigagem ordinária correspondente e encontre os pesos.
- 4. Se todos os valores de covariância forem multiplicados por "t" na questão 3, o que acontece com os pesos e variância de krigagem para krigagem simples e krigagem ordinária?
- 5. Um depósito de ouro 2D mostra um variograma esférico com anisotropia geométrica. A direção (azimute) de melhor continuidade espacial é 30°. Os parâmetros do modelo são $C_0 = 10ppm^2$, $C = 20ppm^2$, $a_{30} = 50m$, $a_{120} = 25m$. A krigagem do conteúdo no ponto com

coordenadas (100, 100) é desejada. Nas imediações deste ponto, encontramos os dados fornecidos na seguinte tabela:

Observação	X (m)	Y (m)	Teor (ppm)
1	80	90	10
2	95	105	4
3	103	104	7
4	107	92	3

Considere igualmente, o seguinte sitema de krigagem

$$\begin{bmatrix} 30 & A & 2.43 & 0.09 & 1 \\ B & C & 11.17 & 2.68 & 1 \\ 2.43 & 11.17 & 30 & 8.29 & 1 \\ 0.09 & 2.68 & 8.29 & 30 & 1 \\ 1 & 1 & 1 & D & E \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \\ \mu \end{bmatrix} = \begin{bmatrix} 13.82 \\ 11.94 \\ 16.95 \\ 8.43 \\ 1 \end{bmatrix}$$

- a) Encontre os valores em falta para A à E.
- b) Que relação existiriam entre a estimativa e a variância da krigagem obtida com o modelo anterior e aquelas obtidas com o seguinte modelo: esférico com $C_0=12ppm^2$, $C=24ppm^2$, $a_{30}=50m$, $a_{120}=25m$?
- 6. Indique se cada uma das afirmações na tabela abaixo é verdadeira ou falsa.

	V	F
O variograma experimental é um estimador não-tendencioso do variograma teórico		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
$\ \ \ $ Se Z (x) é estacionário, sua média m (x) não é constante		
Se Z (x) é estacionário, sua média é constante		
Se Z (x) é intrínseco-estacionário, sua média m (x) não é constante		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
Se Z (x) é intrínseco-estacionário, sua variância é infinita		
Se Z (x) é estacionário, seu variograma não tem patamar		