Forecasting Diabetes

Introduction to Problem & Data

```
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import HTML

# Load dataset for further analysis
df = pd.read_csv('https://raw.githubusercontent.com/Annieee-Fang/Xianchen-s-Data-Bootcamp-Stuff/refs/heads/main/NHANE

# The url of the source
source_url = 'https://archive.ics.uci.edu/dataset/887/national+health+and+nutrition+health+survey+2013-2014+(nhanes)+
```

Preprocessing of the Dataset

```
# Extract the description of important variables from the webpage of the source
variables_table = pd.read_html(source_url)
df2 = variables_table[0]
df2
```

$\overline{\Rightarrow}$	١	Variable Name	Role	Туре	Demographic	Description	Units	Missing Values
	0	SEQN	ID	Continuous	NaN	Respondent Sequence Number	NaN	no
	1	age_group	Target	Categorical	Age	Respondent's Age Group (senior/non-senior)	NaN	no
	2	RIDAGEYR	Other	Continuous	Age	Respondent's Age	NaN	no
	3	RIAGENDR	Feature	Continuous	Gender	Respondent's Gender	NaN	no
	4	PAQ605	Feature	Continuous	NaN	If the respondent engages in moderate or vigor	NaN	no
	5	BMXBMI	Feature	Continuous	NaN	Respondent's Body Mass Index	NaN	no
	6	LBXGLU	Feature	Continuous	NaN	Respondent's Blood Glucose after fasting	NaN	no
	7	DIQ010	Feature	Continuous	NaN	If the Respondent is diabetic	NaN	no
	8	LBXGLT	Feature	Continuous	NaN	Respondent's Oral	NaN	no
	9	LBXIN	Feature	Continuous	NaN	Respondent's Blood Insulin Levels	NaN	no

```
# Create a dictionary of descriptions that are readable and short enough
new_descriptions = {
    "SEQN": "ID",
    "age_group": "Age_Group",
    "RIDAGEYR": "Age",
    "RIAGENDR": "Gender",
    "PAQ605": "Physical_Activity",
    "BMXBMI": "BMI",
    "LBXGLU": "Fasting_Glucose",
    "DIQ010": "Diabetes",
    "LBXGLT": "Oral",
    "LBXIN": "Insulin"
}

df = df.rename(columns=new_descriptions)
df
```

•	_	_
-	→	4
	*	_

	ID	Age_Group	Age	Gender	Physical_Activity	BMI	Fasting_Glucose	Diabetes	0ral	Insulin
0	73564.0	Adult	61.0	2.0	2.0	35.7	110.0	2.0	150.0	14.91
1	73568.0	Adult	26.0	2.0	2.0	20.3	89.0	2.0	80.0	3.85
2	73576.0	Adult	16.0	1.0	2.0	23.2	89.0	2.0	68.0	6.14
3	73577.0	Adult	32.0	1.0	2.0	28.9	104.0	2.0	84.0	16.15
4	73580.0	Adult	38.0	2.0	1.0	35.9	103.0	2.0	81.0	10.92
2273	83711.0	Adult	38.0	2.0	2.0	33.5	100.0	2.0	73.0	6.53
2274	83712.0	Adult	61.0	1.0	2.0	30.0	93.0	2.0	208.0	13.02
2275	83713.0	Adult	34.0	1.0	2.0	23.7	103.0	2.0	124.0	21.41
2276	83718.0	Adult	60.0	2.0	2.0	27.4	90.0	2.0	108.0	4.99
2277	83727.0	Adult	26.0	1.0	2.0	24.5	108.0	2.0	108.0	3.76

2278 rows × 10 columns

df2['Description'].str.strip()

Display the Original Variable Name, Descriptions that we are using, and the original Detailed Description
df2=df2.rename({'Variable Name': 'Original Variable Name', 'Description': 'Detailed Description'}, axis = 1)
df2['Description'] = df2['Original Variable Name'].map(new_descriptions)
pd.concat((df2['Description'], df2['Detailed Description']), axis = 1)

		Description	Detailed Description					
	0	ID	Respondent Sequence Number					
	1	Age_Group	Respondent's Age Group (senior/non-senior)					
	2	Age	Respondent's Age					
	3	Gender	Respondent's Gender					
	4	Physical_Activity	If the respondent engages in moderate or vigor					
	5	BMI	Respondent's Body Mass Index					
	6	Fasting_Glucose	Respondent's Blood Glucose after fasting					
	7	Diabetes	If the Respondent is diabetic					
	8	Oral	Respondent's Oral					
	9	Insulin	Respondent's Blood Insulin Levels					

#exchange 2's with 3's
df['Diabetes'] = df['Diabetes'].replace({2.0: 3.0, 3.0: 2.0})
df['Diabetes'].value_counts()

count

Diabetes						
3.0	2199					
2.0	58					
1.0	21					

dtype: int64

```
df = df.drop('ID', axis=1)
```

df

→		Age_Group	Age	Gender	Physical_Activity	BMI	Fasting_Glucose	Diabetes	0ral	Insulin
	0	Adult	61.0	2.0	2.0	35.7	110.0	3.0	150.0	14.91
	1	Adult	26.0	2.0	2.0	20.3	89.0	3.0	80.0	3.85
	2	Adult	16.0	1.0	2.0	23.2	89.0	3.0	68.0	6.14
	3	Adult	32.0	1.0	2.0	28.9	104.0	3.0	84.0	16.15
	4	Adult	38.0	2.0	1.0	35.9	103.0	3.0	81.0	10.92
	2273	Adult	38.0	2.0	2.0	33.5	100.0	3.0	73.0	6.53
	2274	Adult	61.0	1.0	2.0	30.0	93.0	3.0	208.0	13.02
	2275	Adult	34.0	1.0	2.0	23.7	103.0	3.0	124.0	21.41
	2276	Adult	60.0	2.0	2.0	27.4	90.0	3.0	108.0	4.99
	2277	Adult	26.0	1.0	2.0	24.5	108.0	3.0	108.0	3.76
:	2278 rc	ows × 9 column	าร							

Preliminary Examination of the Dataset

Descriptive Statistics

df['Diabetes'].value_counts()

dtype: int64

df.info()

RangeIndex: 2278 entries, 0 to 2277 Data columns (total 9 columns): Non-Null Count Dtype Column # 0 2278 non-null object float64 float64 Age_Group Age Gender 2278 non-null 1 2278 non-null Physical_Activity 2278 non-null float64 BMÍ 2278 non-null float64 Fasting_Glucose 2278 non-null float64 Diabetes 2278 non-null float64 0ral 2278 non-null float64 8 Insulin 2278 non-null float64 dtypes: float64(8), object(1) memory usage: 160.3+ KB

df #.head(10)

→ ▼		Age_Group	Age	Gender	Physical_Activity	BMI	Fasting_Glucose	Diabetes	0ral	Insulin
	0	Adult	61.0	2.0	2.0	35.7	110.0	3.0	150.0	14.91
	1	Adult	26.0	2.0	2.0	20.3	89.0	3.0	80.0	3.85
	2	Adult	16.0	1.0	2.0	23.2	89.0	3.0	68.0	6.14
	3	Adult	32.0	1.0	2.0	28.9	104.0	3.0	84.0	16.15
	4	Adult	38.0	2.0	1.0	35.9	103.0	3.0	81.0	10.92
	2273	Adult	38.0	2.0	2.0	33.5	100.0	3.0	73.0	6.53
	2274	Adult	61.0	1.0	2.0	30.0	93.0	3.0	208.0	13.02
	2275	Adult	34.0	1.0	2.0	23.7	103.0	3.0	124.0	21.41
	2276	Adult	60.0	2.0	2.0	27.4	90.0	3.0	108.0	4.99
	2277	Adult	26.0	1.0	2.0	24.5	108.0	3.0	108.0	3.76
:	2278 rd	ows × 9 column	าร							

df['Age_Group'].value_counts()

count

Age_Group

Adult 1914

Senior 364

dtype: int64

The number of people of each ages tested
df['Age'].value_counts().sort_index(ascending=True)

```
<del>_</del>__
            count
      Age
      12.0
                58
      13.0
                49
      14.0
                60
      15.0
                48
      16.0
                70
      76.0
                13
     77.0
                 9
      78.0
                 8
      79.0
                 8
     80.0
               107
     69 rows x 1 columns
```

dtype: int64

age_sorted_data = df.sort_values(by='Age', ascending=True)[df['Age_Group'] == 'Adult']
age_sorted_data

	Age_Group	Age	Gender	Physical_Activity	BMI	Fasting_Glucose	Diabetes	0ral	Insulin
253	Adult	12.0	1.0	2.0	20.5	100.0	3.0	100.0	13.18
268	Adult	12.0	2.0	2.0	20.0	115.0	3.0	140.0	14.41
270	Adult	12.0	2.0	2.0	27.5	94.0	3.0	100.0	14.67
802	Adult	12.0	2.0	2.0	17.1	94.0	3.0	101.0	8.30
808	Adult	12.0	1.0	2.0	16.1	96.0	3.0	197.0	8.57
82	Adult	64.0	2.0	2.0	25.4	90.0	3.0	215.0	2.10
2214	Adult	64.0	2.0	2.0	23.7	110.0	2.0	82.0	9.65
403	Adult	64.0	1.0	2.0	27.5	99.0	3.0	119.0	4.47
948	Adult	64.0	2.0	2.0	41.5	91.0	3.0	149.0	15.52
1299	Adult	64.0	1.0	2.0	25.0	98.0	3.0	103.0	5.71

1914 rows × 9 columns

✓ Initial Visualizations

```
variables1 = ['Age_Group', 'Gender', 'Physical_Activity', 'Oral']
```

```
for col in variables1:
   plt.figure(figsize=(3, 5))
   sns.histplot(data=df, x=col, hue='Diabetes', kde=False, stat="percent")
   t = f'Histogram of {col} by Diabetes'
   plt.title(t)
   plt.savefig(t+'.png')
   plt.xlabel(col)
   plt.ylabel('Frequency')
   plt.grid(axis='y', linestyle='--', alpha=0.7)
   plt.show()
```


Histogram of Gender by Diabetes

Histogram of Physical_Activity by Diabetes

```
variables2 = ['Age', 'BMI', 'Fasting_Glucose', 'Insulin']
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
index=0
for i in range(2):
    for j in range(2):
        sns.boxplot(x='Diabetes', y=variables2[index], data=df, ax=axes[i][j])
        axes[i][j].set_title(f'Boxplot of {variables2[index]} by Diabetes Status')
        axes[i][j].set_xlabel('Diabetes Status')
        axes[i][j].set_ylabel(variables2[index])
        index+=1
plt.suptitle('Boxplots of Variables by Diabetes Status.png')
```


Modeling & Interpretations

```
X = df.drop(columns=['Diabetes'])
y = df['Diabetes']
```

Baseline Model

from sklearn.metrics import mean_squared_error

 $from \ sklearn.metrics \ import \ Confusion Matrix Display, \ confusion_matrix$

y.value_counts(normalize = True)

→		proportion
	Diabetes	
	3.0	0.965320
	2.0	0.025461
	1.0	0.009219

dtype: float64

```
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import make_column_transformer
ohe = OneHotEncoder(drop='first')
sscaler = StandardScaler()
transformer = make_column_transformer((ohe, ['Age_Group']), remainder=sscaler)
lr = LogisticRegression(solver='lbfgs', max_iter=200)
pipe = Pipeline([('transform', transformer), ('logreg', lr)])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
param\_grid = [{'logreg\_C': 10**np.linspace(-3, 3, 10)}]
from sklearn.metrics import make_scorer
from sklearn.metrics import precision_score #, accuracy_score, recall_score
methods score = {}
new_precision = make_scorer(precision_score, average='macro', zero_division=1) # there existed some errors while us:
metrics= ["accuracy", new_precision]
for metric in metrics:
  lr_gridsearch_accuracy = GridSearchCV(pipe, param_grid, cv=10, scoring=metric)
  lr_gridsearch_accuracy.fit(X_train, y_train)
  score_accuracy = lr_gridsearch_accuracy.best_score_
  methods_score[metric] = score_accuracy
methods_score['precision'] = methods_score[new_precision]
methods_score.pop(new_precision)
print(methods_score)
{'accuracy': 0.9648771993034287, 'precision': 0.9881092495846595}

    Decision Tree Regression Model

from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.metrics import accuracy_score
from sklearn.inspection import DecisionBoundaryDisplay
ohe = OneHotEncoder(drop='first')
sscaler = StandardScaler()
transformer = make_column_transformer((ohe, ['Age_Group']), remainder=sscaler)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train_encoded = transformer.fit_transform(X_train)
X_test_encoded = transformer.transform(X_test)
train_scores = []
test_scores = []
for d in range(1, 20):
    dtree = DecisionTreeClassifier(max_depth=d, random_state=42)
    dtree.fit(X_train_encoded, y_train)
    y_train_preds = dtree.predict(X_train_encoded)
    y_test_preds = dtree.predict(X_test_encoded)
    train_scores.append(accuracy_score(y_train, y_train_preds))
    test_scores.append(accuracy_score(y_test, y_test_preds))
plt.figure(figsize=(10, 5))
plt.plot(range(1, 20), train_scores, '--o', label='Train Accuracy')
plt.plot(range(1, 20), test_scores, '--o', label='Test Accuracy')
plt.grid()
plt.legend()
plt.xticks(range(1, 20))
```

```
plt.xlabel('Max Tree Depth')
plt.ylabel('Accuracy')
plt.title('Decision Tree Depth vs. Test/Train Accuracy')
plt.savefig('Decision Tree Depth vs. Test and Train Accuracy.png')
```



```
from sklearn.tree import DecisionTreeRegressor
#fit a decision tree model with a max depth = 1 (lowest mse test score on graph)
dtree = DecisionTreeRegressor(max_depth = 1).fit(X_train_encoded, y_train)
```

```
plt.figure(figsize=(6,6))
plot_tree(dtree, filled=True, feature_names=transformer.get_feature_names_out().tolist(), fontsize=14)
plt.savefig('Decision Process.png');
```

 $\overline{2}$


```
max(test_scores)
```

→ 0.9692982456140351

Random Forest Regression Model

from sklearn.ensemble import RandomForestClassifier

```
train_scores = []
test_scores = []
for n in range(10, 110, 10): # n is the numbers of estimators
```

rf = RandomForestClassifier(n_estimators=n, random_state=42
rf.fit(X_train_encoded, y_train)
y_train_preds = rf.predict(X_train_encoded)
y_test_preds = rf.predict(X_test_encoded)
train_scores.append(accuracy_score(y_train, y_train_preds))
test_scores.append(accuracy_score(y_test, y_test_preds))