На правах рукописи

letz

Назаров Антон Андреевич

Правила ветвления аффинных алгебр Ли и приложения в моделях конформной теории поля

01.04.02 – Теоретическая физика

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Санкт-Петербургском государственном университете. Научный руководитель: доктор физико-математических наук, $npo\phi eccop$, Ляховский Владимир Дмитриевич Кулиш Петр Петрович Официальные оппоненты: доктор физико-математических наук, $npo\phi eccop$, Санкт-Петербургское отделение Математического института им. В.А. Стеклова РАН, главный научный сотрудник, заведующий лаборатории математических проблем физики; Мудров Андрей Игоревич кандидат физико-математических наук, Университет Лестера (Великобритания), преподаватель Ведущая организация: Объединенный институт ядерных исследований Защита состоится «____» _____ 2012 г. в ____ часов на заседании диссертационного совета \mathcal{I} 212.232.24 при $\mathit{Cahkm-Hemephypickom}$ государственном университете по адресу: 199004, Санкт-Петербург, Средний пр. B.O., ∂ . 41/43, ay ∂ . 304 С диссертацией можно ознакомиться в библиотеке Санкт-Петербургского государственного университета. Автореферат разослан «_____» _____ 2012 г. Ученый секретарь

диссертационного совета,

Аксенова Е.В.

Общая характеристика работы

Актуальность работы. Последние тридцать лет конформная теория поля в двух измерениях привлекает большое внимание исследователей. Конформная теория поля используется для описания критического поведения в двумерных статистических системах и обладает большой практической ценностью — с ее использованием было получено значительное количество результатов и численных предсказаний. Методы двумерной конформной теории поля с успехом применяются также при изучении эффекта Кондо и дробного квантового эффекта Холла. Благодаря наличию бесконечномерной алгебры симметрии двумерная конформная теория поля может быть сформулирована аксиоматически.

Поиски строгого математического доказательства для предсказаний двумерной конформной теории поля в последние годы привели к большому количеству новых идей и результатов в дискретном комплексном анализе [1].

Теория представлений бесконечномерных алгебр Ли является важным инструментом изучения моделей конформной теории поля. Помимо алгебры Вирасоро, наличие которой обязательно в двумерной конформной теории поля, большую роль играют аффинные алгебры Ли. Изучение аффинных алгебр Ли было начато Виктором Кацем и Робертом Муди в 1960-х годах с попытки обобщения классификации простых конечномерных алгебр Ли на бесконечномерный случай [2, 3]. Интерес к этим алгебрам был связан с модулярными свойствами характеров их модулей. После возникновения двумерной конформной теории поля были предложены модели Весса-Зумино-Новикова-Виттена (ВЗНВ), а затем и соset-модели, в которых теория представлений аффинных алгебр Ли играет определяющую роль.

ВЗНВ-моделям, coset-моделям и теории представлений аффинных алгебр Ли посвящены тысячи работ. Однако многие проблемы по-прежнему не

имеют простых решений. Так, задача вычисления коэффициентов ветвления для представлений алгебр Ли стоит уже многие десятилетия. Она актуальна для физических приложений в coset-моделях конформной теории поля. Для вычисления коэффициентов ветвления, в отличие от проблемы нахождения кратностей весов, не существовало особенно эффективных алгоритмов.

Научная новизна и практическая значимость. В диссертации впервые решены следующие задачи:

- Получено эффективное рекуррентное соотношение для коэффициентов ветвления модулей аффинных и конечномерных алгебр Ли на модули не максимальных подалгебр. Алгоритм вычисления коэффициентов ветвления реализован в пакете **Affine.m** для популярной системы компьютерной алгебры *Mathematica*.
- Установлена прямая связь инъективного сплинта и ветвлений. Доказано, что при определенных условиях кратности весов вспомогательного модуля инъективного сплинта совпадают с коэффициентами ветвления в редукции на вложенную подалгебру. Наличие расщепления приводит к существенному упрощению при вычислении коэффициентов ветвления.
- Исследована связь процедуры редукции с обобщенной резольвентой Бернштейна-Гельфанда-Гельфанда (БГГ). Показано, что разложение сингулярного элемента определяет как коэффициенты ветвления, так и обобщенную БГГ-резольвенту, так как действие веера вложения на компоненты разложения порождает обобщенные модули Верма, которые образуют точную последовательность.
- Построена модель обобщенного стохастического процесса Шрамма-Лёвнера для систем с калибровочной инвариантностью, соответствующих coset-моделям конформной теории поля.

Отметим, что пакет **Affine.m** может быть использован для решения задач

теории представлений конечномерных и аффинных алгебр Ли, возникающих в различных областях физики, начиная от изучения атомных и молекулярных спектров и заканчивая конформной теорией поля и интегрируемыми системами.

На защиту выносятся следующие результаты и положения:

- Получены новые рекуррентные соотношения на коэффициенты ветвления представлений аффинных алгебр Ли на представления произвольных редуктивных подалгебр, с использованием разложения сингулярных элементов
- Установлено, что разложение сингулярного элемента определяет как коэффициенты ветвления, так и обобщенную БГГ-резольвенту, так как действие веера вложения на компоненты разложения порождает обобщенные модули Верма, которые образуют точную последовательность
- Доказано, что при определенных условиях кратности весов вспомогательного модуля инъективного сплинта совпадают с коэффициентами ветвления в редукции на вложенную подалгебру. Наличие расщепления приводит к существенному упрощению при вычислении коэффициентов ветвления.
- Показано, что условие для мартингала, определяющее классификацию операторов изменения граничных условий в наблюдаемых стохастического процесса Шрамма-Лёвнера, задает ограничения на структуру сингулярных элементов представлений аффинной алгебры Ли, порожденных граничными состояниями. Изучение структуры сингулярных элементов существенно упрощает поиск операторов смены граничных условий. Построена модель обобщеннного стохастического процесса Шрамма-Лёвнера для систем с калибровочной инвариантностью, соответствующих соset-моделям конформной теории поля и показано, что такое обобщение совместно с соset-реализацией минимальных моделей.

• Разработан пакет программ **Affine.m**, реализующий различные алгоритмы для вычислений в теории представлений конечномерных и аффинных алгебр Ли

Апробация работы Материалы диссертации докладывались на трех международных конференциях, а также на семинарах кафедры физики высоких энергий и элементарных частиц СПбГУ, на семинарах в лаборатории имени П.Л. Чебышева математико-механического факультета СПбГУ, на семинаре лаборатории теоретической физики ОИЯИ (Дубна).

Публикации. Материалы диссертации опубликованы в 10 печатных работах, из них 5 статей в рецензируемых журналах [A1, A2, A3, A4, A5], 5 статей в сборниках тезисов и трудов конференций [A6, A7, A8, A9, A10].

Личный вклад автора. Все основные результаты и выносимые на защиту положения получены автором самостоятельно. Личный вклад автора в работы с соавтором составляет 50 процетнов, в работы без соавторов – 100 процентов.

Структура и объем диссертации Диссертация состоит из введения и шести глав, содержит 160 страниц и 30 рисунков. Список литературы включает 151 наименование.

Содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследований, показана практическая значимость полученных результатов, представлены выносимые на защиту научные положения.

Глава 1 носит обзорный характер. В ней приводится аксиоматическая формулировка конформной теории поля, описываются ВЗНВ-модели и coset-модели. Затем демонстрируется роль аффинных алгебр в описании этих моделей и вводятся основные понятия теории представлений, использующиеся

в диссертации. Мы указываем на то, что основные свойства интегрируемых модулей старшего веса определяются структурой сингулярного элемента, что выражается в формуле Вейля-Каца для формальных характеров. Мы обсуждаем конформную теорию поля на области с границей, так как она оказывается связана со стохастическим описанием решеточных моделей.

В главе 2 выводится основное рекуррентное соотношение на коэффициенты ветвления. Сначала доказывается лемма о разложении сингулярного элемента. Структура сингулярного элемента определяет свойства модуля алгебры Ли, поэтому разложение определяет правила ветвления и позволяет сформулировать рекуррентную процедуру редукции. Основные результаты данной главы опубликованы в работе [A1].

Формула Вейля-Каца для формальных характеров интегрируемых модулей старшего веса конечномерных и аффинных алгебр Ли имеет вид $\mathrm{ch} V^{(\mu)} = \frac{\Psi^{(\mu)}}{R}$, где $\Psi^{(\mu)}$ – сингулярный элемент модуля, а $R = \prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})^{\mathrm{mult}(\alpha)}$ – знаменатель Вейля. Здесь Δ^+ – множество положительных корней алгебры, а ρ – вектор Вейля. Сингулярный элемент определяется набором сингулярных весов модуля и имеет разный вид для разных типов модулей старшего веса. Например, $\Psi^{(\mu)} = \sum_{w \in W} \epsilon(w) e^{w(\mu+\rho)-\rho}$ для неприводимых модулей (W – группа Вейля). Знаменатель Вейля R является универсальным объектом, характеризующим корневую систему алгебры Ли, а свойства модуля определяются сингулярным элементом.

Процедура редукции состоит в разложении модуля алгебры Ли $\mathfrak g$ в сумму модулей некоторой подалгебры $\mathfrak a$: $L^\mu_{\mathfrak g\downarrow\mathfrak a}=\bigoplus_{\nu\in P^+_{\mathfrak a}}b^{(\mu)}_{\nu}L^\nu_{\mathfrak a}.$

Используя оператор проекции $\pi_{\mathfrak{a}}$ (на весовое пространство $\mathfrak{h}_{\mathfrak{a}}^*$), перепишем это разложение для формальных характеров:

$$\pi_{\mathfrak{a}} \circ ch\left(L^{\mu}\right) = \sum_{\nu \in P_{\mathfrak{a}}^{+}} b_{\nu}^{(\mu)} ch\left(L_{\mathfrak{a}}^{\nu}\right). \tag{1}$$

Нас интересуют коэффициенты ветвления $b_{\nu}^{(\mu)}$.

Для любой алгебры \mathfrak{g} и подалгебры $\mathfrak{a} \subset \mathfrak{g}$ можно построить подалгебру \mathfrak{a}_{\perp} такую, что $\Delta_{\mathfrak{a}_{\perp}} = \{\beta \in \Delta_{\mathfrak{g}} | \forall h \in \mathfrak{h}_{\mathfrak{a}}; \beta\left(h\right) = 0\}.$

Обозначим через $W_{\mathfrak{a}_{\perp}}$ подгруппу группы Вейля W, порожденную отражениями w_{β} , соответствующими корням $\beta \in \Delta_{\mathfrak{a}_{\perp}}^{+}$. Подсистема $\Delta_{\mathfrak{a}_{\perp}}$ определяет подалгебру \mathfrak{a}_{\perp} с подалгеброй Картана $\mathfrak{h}_{\mathfrak{a}_{\perp}}$. Пусть $\mathfrak{h}_{\perp}^{*} := \{ \eta \in \mathfrak{h}_{\perp \mathfrak{a}}^{*} | \forall h \in \mathfrak{h}_{\mathfrak{a} \oplus \mathfrak{a}_{\perp}}; \eta (h) = 0 \}$, тогда имеет место разложение подалгебры Картана $\mathfrak{h} = \mathfrak{h}_{\mathfrak{a}} \oplus \mathfrak{h}_{\mathfrak{a}_{\perp}} \oplus \mathfrak{h}_{\perp}$.

Для подалгебр из ортогональной пары $(\mathfrak{a},\mathfrak{a}_{\perp})$ рассмотрим соответствующие векторы Вейля $\rho_{\mathfrak{a}}$ и $\rho_{\mathfrak{a}_{\perp}}$, и образуем так называемые "дефекты" вложения $\mathcal{D}_{\mathfrak{a}} := \rho_{\mathfrak{a}} - \pi_{\mathfrak{a}} \rho, \, \mathcal{D}_{\mathfrak{a}_{\perp}} := \rho_{\mathfrak{a}_{\perp}} - \pi_{\mathfrak{a}_{\perp}} \rho.$

Рассмотрим сингулярные веса $\{(w(\mu+\rho)-\rho)\,|w\in W\}$ модуля старшего веса $L^\mu_{\mathfrak{g}}$ и их проекции на $h^*_{\widetilde{\mathfrak{a}_\perp}}$ (дополнительно сдвинутые на дефект $-\mathcal{D}_{\mathfrak{a}_\perp}$):

$$\mu_{\widetilde{\mathfrak{a}_{\perp}}}(w) := \pi_{\widetilde{\mathfrak{a}_{\perp}}} \circ [w(\mu + \rho) - \rho] - \mathcal{D}_{\mathfrak{a}_{\perp}}, \quad w \in W.$$

Среди весов $\{\mu_{\widetilde{\mathfrak{a}_{\perp}}}(w) | w \in W\}$ выберем находящиеся в главной камере Вейля $\overline{C_{\widetilde{\mathfrak{a}_{\perp}}}}$. Множество $U := \{u \in W | \mu_{\widetilde{\mathfrak{a}_{\perp}}}(u) \in \overline{C_{\widetilde{\mathfrak{a}_{\perp}}}}\}$ состоит из элементов группы Вейля, переводящих старший вес в главную камеру Вейля подалгебры $\widetilde{\mathfrak{a}_{\perp}}$ (с учетом сдвига на ρ и на дефект). Элементы U являются представителями классов смежности $W/W_{\mathfrak{a}_{\perp}}$. Каждому элементу U поставим в соответствие вес $\mu_{\mathfrak{a}}(u) := \pi_{\mathfrak{a}} \circ [u(\mu + \rho) - \rho] + \mathcal{D}_{\mathfrak{a}_{\perp}}$. Аналогичным образом определим $\mu_{\widetilde{\mathfrak{a}}}(u) := \pi_{\widetilde{\mathfrak{a}}} [u(\mu + \rho) - \rho] + \mathcal{D}_{\mathfrak{a}_{\perp}}$ и $\mu_{\mathfrak{a}_{\perp}}(u) := \pi_{\mathfrak{a}_{\perp}} [u(\mu + \rho) - \rho] + \mathcal{D}_{\mathfrak{a}_{\perp}}$. Мы доказываем следующую лемму о разложении сингулярного элемента:

Лемма 1. Пусть $(\mathfrak{a}, \mathfrak{a}_{\perp})$ – ортогональная пара редуктивных подалгебр \mathfrak{g} и $\widetilde{\mathfrak{a}_{\perp}} = \mathfrak{a}_{\perp} \oplus \mathfrak{h}_{\perp}$, $\widetilde{\mathfrak{a}} = \mathfrak{a} \oplus \mathfrak{h}_{\perp}$, L^{μ} – модуль старшего веса с сингулярным элементом $\Psi^{(\mu)}$, $R_{\mathfrak{a}_{\perp}}$ – знаменатель Вейля для подалгебры \mathfrak{a}_{\perp} . Тогда элемент $\Psi^{(\mu)}_{(\mathfrak{a},\mathfrak{a}_{\perp})} = \pi_{\mathfrak{a}} \left(\frac{\Psi^{\mu}_{\mathfrak{g}}}{R_{\mathfrak{a}_{\perp}}} \right)$ можно разложить в сумму по $u \in U$ сингулярных весов $e^{\mu_{\mathfrak{a}}(u)}$ с коэффициентами $\epsilon(u) \dim \left(L^{\mu_{\widetilde{\mathfrak{a}_{\perp}}}(u)}_{\widetilde{\mathfrak{a}_{\perp}}} \right)$:

$$\Psi_{(\mathfrak{a},\mathfrak{a}_{\perp})}^{(\mu)} = \pi_{\mathfrak{a}}\left(\frac{\Psi^{\mu}}{R_{\mathfrak{a}_{\perp}}}\right) = \sum_{u \in U} \epsilon(u) \dim\left(L_{\widetilde{\mathfrak{a}_{\perp}}}^{\mu_{\widetilde{\mathfrak{a}_{\perp}}}(u)}\right) e^{\mu_{\mathfrak{a}}(u)}. \tag{2}$$

Введем "веер вложения", который необходим для формулировки рекуррентных соотношений:

Определение 1. Рассмотрим произведение

$$\prod_{\alpha \in \Delta^{+} \setminus \Delta_{\mathfrak{a}_{+}}^{+}} \left(1 - e^{-\pi_{\mathfrak{a}} \alpha} \right)^{\operatorname{mult}(\alpha) - \operatorname{mult}_{\mathfrak{a}}(\pi_{\mathfrak{a}} \alpha)} = -\sum_{\gamma \in P_{\mathfrak{a}}} s(\gamma) e^{-\gamma}$$
(3)

и носитель $\Phi_{\mathfrak{a}\subset\mathfrak{g}}\subset P_{\mathfrak{a}}$ функции $s(\gamma)=\det{(\gamma)}: \quad \Phi_{\mathfrak{a}\subset\mathfrak{g}}=\{\gamma\in P_{\mathfrak{a}}|s(\gamma)\neq 0\}$ Упорядочение корней в $\overset{\circ}{\Delta_{\mathfrak{a}}}$ индуцирует естественное упорядочение весов в $P_{\mathfrak{a}}$. Обозначим через γ_0 наименьший вектор $\Phi_{\mathfrak{a}\subset\mathfrak{g}}$.

Множество $\Gamma_{\mathfrak{a}\to\mathfrak{g}}=\{\xi-\gamma_0|\xi\in\Phi_{\mathfrak{a}\subset\mathfrak{g}}\}\setminus\{0\}$ называется веером вложения.

Веер вложения универсален и зависит только от вложения $\mathfrak{a} \to \mathfrak{g}$ и не зависит от модуля $L^{(\mu)}.$

Введем сингулярные коэффициенты ветвления следующим образом:

$$k_{\xi}^{(\mu)}=b_{\xi}^{(\mu)}$$
 если $\xi\in \bar{C}_{\mathfrak{a}}$ $k_{\xi}^{(\mu)}=\epsilon(w)b_{w(\xi+
ho_{af})-
ho_{\mathfrak{a}}}^{(\mu)}$ где $w\in W_{\mathfrak{a}}:w(\xi+
ho_{\mathfrak{a}})-
ho_{\mathfrak{a}}\in \bar{C}_{\mathfrak{a}}.$

Теперь можно сформулировать основную теорему, которая позволяет рекуррентно вычислять коэффициенты ветвления.

Теорема 1. Для сингулярных коэффициентов ветвления $k_{\nu}^{(\mu)}$ выполняется соотношение

$$k_{\xi}^{(\mu)} = -\frac{1}{s(\gamma_0)} \left(\sum_{u \in U} \epsilon(u) \operatorname{dim} \left(L_{\widetilde{\mathfrak{a}_{\perp}}}^{\mu_{\widetilde{\mathfrak{a}_{\perp}}}(u)} \right) \delta_{\xi - \gamma_0, \pi_{\mathfrak{a}}(u(\mu + \rho) - \rho)} + \right.$$

$$\left. + \sum_{\gamma \in \Gamma_{\mathfrak{a} \to \mathfrak{g}}} s(\gamma + \gamma_0) k_{\xi + \gamma}^{(\mu)} \right).$$

$$(4)$$

Далее мы анализируем пары $(\mathfrak{a}, \mathfrak{a}_{\perp})$ для простых алгебр Ли. Оказывается, что для "ортогональной пары" $(\mathfrak{a}, \mathfrak{a}_{\perp})$, вообще говоря, $\mathfrak{a} \oplus \mathfrak{a}_{\perp} \not\subset \mathfrak{g}$. В частности, для серии простых конечномерных алгебр B_n существуют "ортогональные пары" подалгебр (B_k, B_{n-k}) .

На основании рекуррентного соотношения (4) сформулирован алгоритм вычисления коэффициентов ветвления. Остальные разделы главы 2 содержат примеры вычислений с использованием предложенного алгоритма, а также

описание роли функций ветвления в формулировке конформной теории поля на торе и в coset-моделях конформной теории поля.

В главе 3 мы используем разложение сингулярного элемента, чтобы показать связь ветвления с (обобщенной) БГГ-резольвентой. Данные результаты опубликованы в работах [A2, A7].

Для полупростой конечномерной алгебры \mathfrak{g} и полупростой конечномерной подалгебры \mathfrak{a} алгебра \mathfrak{a}_{\perp} является регулярной. Отношение знаменателей Вейля порождает параболические модули Верма. Сингулярный элемент $\Psi^{(\mu)}$ может быть разложен в сумму по $u \in U$ сингулярных элементов $\Psi^{\mu_{\mathfrak{a}_{\perp}}(u)}_{\mathfrak{a}_{\perp}}$ с коэффициентами $\epsilon(u)e^{\mu_{\widetilde{\mathfrak{a}}}(u)}$:

$$\Psi^{(\mu)} = \sum_{u \in U} \epsilon(u) e^{\mu_{\tilde{\mathfrak{a}}}(u)} \Psi_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)}. \tag{5}$$

Мы доказываем следующее утверждение, демонстрирующее, что разложение сингулярного элемента связано с разложением характера неприводимого модуля в комбинацию характеров обобщенных модулей Верма

Утверждение 1. Для ортогональной подалгебры \mathfrak{a}_{\perp} в \mathfrak{g} (являющейся ортогональным партнером редуктивной подалгебры $\mathfrak{a} \hookrightarrow \mathfrak{g}$) характер интегрируемого модуля старшего веса L^{μ} может быть представлен в виде комбинации (с целочисленными коэффициентами) характеров параболических модулей Верма, распределенных по множеству весов $\mu_{\widetilde{\mathfrak{a}}}$ (и):

$$\operatorname{ch}(L^{\mu}) = \sum_{u \in U} \epsilon(u) e^{\mu_{\tilde{\mathfrak{a}}}(u)} \operatorname{ch} M_{I}^{\mu_{\mathfrak{a}_{\perp}}(u)}, \tag{6}$$

где $U:=\left\{u\in W|\quad \mu_{\mathfrak{a}_{\perp}}\left(u\right)\in\overline{C_{\mathfrak{a}_{\perp}}}\right\}$ и I – такое подмножество в S, что Δ_{I}^{+} эквивалентно $\Delta_{\mathfrak{a}_{\perp}}^{+}$.

Связь редукции и (обобщенной) резольвенты БГГ дается следующим утверждением:

Утверждение 2. Пусть L^{μ} – \mathfrak{g} -модуль со старшим весом $\mu \in P^+$, и пусть регулярная подалгебра $\mathfrak{a}_{\perp} \hookrightarrow \mathfrak{g}$ является ортогональным партнером редук-

тивной подалгебры $\mathfrak{a} \hookrightarrow \mathfrak{g}$. Тогда разложение (5) определяет как обобщенную резольвенту L^{μ} по отношению к \mathfrak{a}_{\perp} , так и правила ветвления L^{μ} по отношению к \mathfrak{a}_{\perp} , так и правила ветвления L^{μ} по отношению к \mathfrak{a} .

Глава 4 посвящена сплинтам – расщеплением корневой системы алгебры Ли в объединение образов корневых систем двух алгебр, не обязательно являющихся подалгебрами данной алгебры. Если одна из алгебр является подалгеброй, то сплинт приводит к резкому упрощению в вычислении коэффициентов ветвления – они совпадают с кратностями весов в модуле другой алгебры. Основная часть главы посвящена доказательству этого факта. Кроме того, сплинт корневой системы простой конечномерной алгебры Ли приводит к возникновению новых соотношений на струнные функции и функции ветвления соответствующего аффинного расширения. Эти соотношения обсуждаются в разделе 4.4. Данные результаты опубликованы в статьях [А3, А10].

Определение 2. Пусть Δ_0 и Δ – корневые системы с соответствующими весовыми решетками P_0 и P. Отображение $\phi: \{\Delta_0 \hookrightarrow \Delta, P_0 \hookrightarrow P\}$ называется "вложением", если ϕ вкладывает Δ_0 в Δ и действует гомоморфно по отношению к группам сложения векторов в P_0 и P: $\phi(\gamma) = \phi(\alpha) + \phi(\beta)$ для любой тройки $\alpha, \beta, \gamma \in P_0$, такой, что $\gamma = \alpha + \beta$.

Вложение ϕ индуцирует вложение формальных алгебр: $\mathcal{E}_0 \hookrightarrow \mathcal{E}$ и для образа $\mathcal{E}_i = \operatorname{Im}_{\phi}(\mathcal{E}_0)$ можно рассмотреть обратное отображение $\phi^{-1}: \mathcal{E}_i \longrightarrow \mathcal{E}_0$. Нужно различать два класса вложений: "метрические", если скалярное произведение (заданное формой Киллинга) в корневом пространстве P_0 инвариантно по отношению к ϕ и "неметрические", если оно не ϕ -инвариантно.

Будем говорить, что корневая система Δ "расщепляется" на (Δ_1, Δ_2) , если существует два вложения $\phi_1: \Delta_1 \hookrightarrow \Delta$ и $\phi_2: \Delta_2 \hookrightarrow \Delta$, где (a) Δ – несвязное объединение образов ϕ_1 и ϕ_2 , и (b) ни ранг Δ_1 , ни ранг Δ_2 не превосходит ранга Δ . Можно сказать, что (Δ_1, Δ_2) – "сплинт" (расщепление) Δ и мы можем обозначить его через $\Delta \approx (\Delta_1, \Delta_2)$. Каждая из компонент Δ_1

и Δ_2 называется "стеблем" сплинта (Δ_1, Δ_2) .

Покажем связь веера вложения и "инъективного" сплинта, когда один из стеблей $\Delta_1 = \Delta_{\mathfrak{a}}$ является подсистемой корневой системы, соответствующей регулярной редуктивной подалгебре $\mathfrak{a} \hookrightarrow \mathfrak{g}$. В этом случае знаменатель Вейля, соотвествующий второму стебелю $\Delta_{\mathfrak{s}} := \Delta_2 = \Delta \setminus \Delta_{\mathfrak{a}}$, может быть переписан в виде произведения (аналогично формуле (3)) и определяет веер вложения $\Gamma_{\mathfrak{a} \hookrightarrow \mathfrak{g}}$. Обозначим через $\Delta_{\mathfrak{s}0}$ кообраз второго вложения $\phi : \Delta_{\mathfrak{s}0} \to \Delta_{\mathfrak{g}}$. Верно следующее утверждение.

Утверждение 3. Каждый интективный сплинт $\Delta \approx (\Delta_{\mathfrak{a}}, \Delta_{\mathfrak{s}})$ определяет веер вложения с носителем $\{\xi\}_{\mathfrak{a} \to \mathfrak{g}}$, задающимся произведением $\prod_{\beta \in \Delta_{\mathfrak{s}}^+} \left(1 - e^{-\beta}\right) = -\sum_{\gamma \in P} s(\gamma) e^{-\gamma}$

В случае инъективного сплинта можно сказать, что подалгебра $\mathfrak{a} \hookrightarrow \mathfrak{g}$ расщепляет Δ . Сплинты были классифицированы в работе [4] (см. Приложение в конце главы) и первые три класса сплинтов в этой классификации инъективны. Если выполнено техническое требование на структуру сингулярного элемента, то верно следующее свойство:

Свойство 1. Любой вес с ненулевой кратностью, входящий в правую часть равенства:

$$\frac{e^{\rho_{\mathfrak{g}}}}{\prod_{\beta \in \Delta_{\mathfrak{s}}^{+}} (1 - e^{-\beta})} \left(\Psi^{\widetilde{\mu} + \rho_{\mathfrak{s}}} \right) = \sum_{\widetilde{\nu} \in \mathcal{N}_{\mathfrak{s}}^{\widetilde{\mu}}} M_{(\mathfrak{s})\widetilde{\nu}}^{\widetilde{\mu}} e^{(\mu - \phi(\widetilde{\mu} - \widetilde{\nu}))} = \sum_{\nu \in P_{\mathfrak{a}}^{++}} b_{\nu}^{(\mu)} e^{\nu},$$

равен одному из старших весов в разложении. Кратность $M^{\widetilde{\mu}}_{(\mathfrak{s})\widetilde{\nu}}$ веса $\widetilde{\nu} \in \mathcal{N}^{\widetilde{\mu}}_{\mathfrak{s}}$ определяет коэффициент ветвления $b^{(\mu)}_{\nu}$ для старшего веса $\nu = (\mu - \phi \, (\widetilde{\mu} - \widetilde{\nu}))$:

$$b^{(\mu)}_{(\mu-\phi(\widetilde{\mu}-\widetilde{\nu}))}=M^{\widetilde{\mu}}_{(\mathfrak{s})\widetilde{\nu}}.$$

Заключительная **глава 5** посвящена практическим приложениям результатов диссертации. В разделе 5.1 мы описываем применение алгебраических

методов к проблеме поиска соответствия между квантовополевым и решеточным описанием критического поведения. Эти результаты были опубликованы в работах [A4, A6].

Стохастический процесс, который удовлетворяет уравнению $\frac{\partial g_t(z)}{\partial t} = \frac{2}{g_t(z) - \sqrt{\kappa} \xi_t}$, называется эволюцией Шрамма-Левнера (SLE) на верхней полуплоскости $\mathbb H$. Здесь ξ_t – Броуновское движение, κ – параметр процесса. Динамика конца z_t критической кривой γ_t (конец следа эволюции Шрамма-Левнера) описывается уравнением $z_t = g_t^{-1}(\sqrt{\kappa}\xi_t)$. Нам удобнее использовать отображение $w_t(z) = g_t(z) - \sqrt{\kappa}\xi_t$.

Мы обобщаем анализ соответствия между эволюцией Шрамма-Левнера и конформной теорией поля на случай coset-моделей. Такие модели задаются алгеброй Ли $\mathfrak g$ и ее подалгеброй $\mathfrak a$. G/A-coset модель конформной теории поля может быть реализована как ВЗНВ-модель (с калибровочной группой G), взаимодействующая с чисто калибровочными полями, с калибровочной группой $A \subset G$. Действие записывается через поля $\gamma: \mathbb C \to G$ и $\alpha, \bar \alpha: \mathbb C \to A$:

$$S = -\frac{k}{4\pi} \left[\frac{1}{2} \int_{S^2} d^2 x \, \mathcal{K}(\gamma^{-1} \partial^{\mu} \gamma, \gamma^{-1} \partial_{\mu} \gamma) - \frac{1}{6} \int_{B} \epsilon_{ijk} \mathcal{K} \left(\tilde{\gamma}^{-1} \frac{\partial \tilde{\gamma}}{\partial y^i}, \left[\tilde{\gamma}^{-1} \frac{\partial \tilde{\gamma}}{\partial y^j} \tilde{\gamma}^{-1} \frac{\partial \tilde{\gamma}}{\partial y^k} \right] \right) d^3 y + \int_{S^2} d^2 z \left(\mathcal{K}(\alpha, \gamma^{-1} \bar{\partial} \gamma) - \mathcal{K}(\bar{\alpha}, (\partial \gamma) \gamma^{-1}) + \mathcal{K}(\alpha, \gamma^{-1} \bar{\alpha} \gamma) - \mathcal{K}(\alpha, \bar{\alpha}) \right) \right]. \quad (7)$$

Через \mathcal{K} обозначена форма Киллинга в алгебре Ли \mathfrak{g} , соответствующей группе Ли G. После фиксации A-калибровки останется G/A калибровочная инвариантность. Поэтому надо добавить случайные калибровочные преобразования к эволюции Шрамма-Левнера. Обозначим через t_i^a (\tilde{t}_i^b) генераторы представления алгебры \mathfrak{g} (соответственно, представления \mathfrak{a}), соответствующего примарному полю φ_i .

Рассмотрим наблюдаемые в присутствии следа эволюции Шрамма-Левнера. Математическое ожидание решеточной наблюдаемой $\mathcal O$ на верхней по-

луплоскости можно вычислить как сумму ожиданий этой наблюдаемой в присутствии (конечной части) траектории эволюции Шрамма-Левнера γ_t вплоть до некоторого времени t, умноженных на вероятность этой траектории:

$$\prec \mathcal{O} \succ_{\mathbb{H}} = \mathbb{E} \left[\prec \mathcal{O} \succ_{\gamma_t} \right] = \sum_{\gamma_t} P \left[C_{\gamma_t} \right] \prec \mathcal{O} \succ_{\gamma_t}$$

Решеточная наблюдаемая $\prec \mathcal{O} \succ_{\mathbb{H}}$ не зависит от t, следовательно $\prec \mathcal{O} \succ_{\gamma_t}$ – мартингал. Это должно выполняться и для ее непрерывного предела, дающегося комбинацией корреляционных функций в конформной теории поля: $\prec \mathcal{O} \succ_{\mathbb{H}_t} \to \mathcal{F}(\{z_i\})_{\mathbb{H}_t} = \frac{\left\langle \mathcal{O}(\{z_i\})\phi(z_t)\phi^{\dagger}(\infty)\right\rangle_{\mathbb{H}_t}}{\left\langle \phi(z_t)\phi^{\dagger}(\infty)\right\rangle_{\mathbb{H}_t}}$. Мы предполагаем, что \mathcal{F} содержит некоторый набор примарных полей φ_i с конформными весами h_i . Так как мы рассматриваем конформную теорию с границей, необходимо добавить объемные поля в сопряженных точках \bar{z}_i . Операторы смены граничного условия ϕ находятся на конце следа эволюции Шрамма-Левнера и на бесконечности.

Исследуем, что происходит с наблюдаемыми при эволюции следа SLE γ_t с момента t до t+dt. Пусть \mathcal{G}_i – генераторы инфинитезимальных преобразований примарных полей $\varphi_i:d\varphi_i(w_i)=\mathcal{G}_i\varphi_i(w_i)$. Нормируем дополнительное (dim \mathfrak{g})-мерное Броуновское движение следующим образом: $\mathbb{E}\left[d\theta^a\ d\theta^b\right]=\mathcal{K}(t^a,t^b)dt$. Генератор преобразования поля равен $\mathcal{G}_i=\left(\frac{2dt}{w_i}-\sqrt{\kappa}d\xi_t\right)\partial_{w_i}+\frac{\sqrt{\tau}}{w_i}\left(\sum_{a:\mathcal{K}(t^a,\tilde{t}^b)=0}\left(d\theta^at_i^a\right)\right)$. Мы фиксировали A-калибровку, разрешив случайное блуждание только в направлении, ортогональном подалгебре \mathfrak{a} .

Формула Ито дает выражение для дифференциала $d\mathcal{F}$, который равняется нулю в силу условия мартингала. Это равенство можно переписать в виде дифференциального уравнения на корреляционные функции, эквивалентное алгебраическому условию на граничное состояние $\phi(0)|0\rangle$.

$$|\psi> = \left(-2L_{-2} + \frac{1}{2}\kappa L_{-1}^2 + \frac{1}{2}\tau \left(\sum_{a=1}^{\dim\mathfrak{g}} J_{-1}^a J_{-1}^a - \sum_{b=1}^{\dim\mathfrak{g}} \tilde{J}_{-1}^b \tilde{J}_{-1}^b\right)\right) \cdot \phi(0)|0> (8)$$

является нулевым состоянием, то есть соответствуют сингулярному весу в представлении алгебры Вирасоро. Действуя повышающими операторами мы получаем соотношения, связывающие параметры стохастического процесса и coset-модели конформной теории поля:

$$(3\kappa - 8)h_{(\mu,\nu)} - c + \tau(k\dim\mathfrak{g} - x_e k\dim\mathfrak{a}) = 0$$

-12h_{(\mu,\nu)} + 2\kappa h_{(\mu,\nu)}(2h_{(\mu,\nu)} + 1) + \tau(C_\mu - \tilde{C}_\nu) = 0, (9)

здесь $C_{\mu} = (\mu, \mu + 2\rho)$ и $\tilde{C}_{\nu} = (\nu, \nu + 2\rho_{\mathfrak{a}})$ – собственные значения квадратичных операторов Казимира $\sum_a t^a t^a$ и $\sum_b \tilde{t}^b \tilde{t}^b$ алгебр Ли \mathfrak{g} и \mathfrak{a} . Из уравнения (9) мы сразу получаем значения κ, τ для каждой пары весов (μ, ν) алгебр \mathfrak{g} и \mathfrak{a} . Для соset-реализаций минимальных и парафермионных моделей эти результаты совпадают со значениями, полученными в работе [5] путем введения стохастического процесса с дискретным случайным блужданием.

Остальная часть главы представляет собой описание пакета **Affine.m**, предназначенного для вычислений в теории представлений аффинных и конечномерных алгебр Ли и реализующего предложенные в диссертации методы. Вычислительным методам посвящены работы [A5, A9, A8].

Список публикаций

- [A1] V. Lyakhovsky, A. Nazarov. Recursive algorithm and branching for nonmaximal embeddings // Journal of Physics A: Mathematical and Theoretical.— 2011. Vol. 44, no. 7. P. 075205(20).
- [A2] V. Lyakhovsky, A. Nazarov. Recursive properties of branching and BGG resolution // Theoretical and Mathematical Physics. — 2011. — Vol. 169, no. 2. — Pp. 1551–1560.
- [A3] V. Laykhovsky, A. Nazarov. Fan, splint and branching rules // Zapiski Nauchnykh Seminarov POMI. 2012. Vol. 398. Pp. 162–179.
- [A4] A. Nazarov. SLE martingales in coset conformal field theory // JETP lett.-2012.- Vol. 96, no. 2. Pp. 93–96.
- [A5] A. Nazarov. Affine.m Mathematica package for computations in repre-

- sentation theory of finite-dimensional and affine Lie algebras // Computer Physics Communications. 2012. Vol. 183. Pp. 2480–2493.
- [A6] A. Nazarov. Algebraic properties of CFT coset construction and Schramm-Loewner evolution // Journal of Physics: Conference Series. 2012. Vol. 343, no. 1. P. 012085(10).
- [A7] V. Lyakhovsky, A. Nazarov. Branching functions generated by the injection fan for Lie algebras. (The role of BGG-resolvent) // Models in Quantum Field Theory. 2010. http://hep.niif.spbu.ru/conf/mktp2010/.
- [A8] A. Nazarov. Comparison of algorithms for construction of representations of Lie algebras // Physics and Progress / SPbSU. 2008.
- [A9] A. Nazarov. Computational tools for representation theory of affine Lie algebras // second Workshop on Advanced Computer Simulation Methods for Junior scientists / EIMI. ACSM. 2009.
- [A10] V. Laykhovsky, A. Nazarov. On affine extension of splint root systems //
 Physics of Particles and Nuclei. 2012. Vol. 43, no. 5. Pp. 676–678.

Цитированная литература

- [1] S. Smirnov. Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits // Comptes Rendus de l'Académie des Sciences-Series I-Mathematics. 2001. Vol. 333, no. 3. Pp. 239–244.
- [2] V.G.~Kac. Simple irreducible graded Lie algebras of finite growth //~Mathematics of the USSR-Izvestiya.-1968.- Vol. 2. P. 1271.
- [3] $R.V.\ Moody$. A new class of Lie algebras $//\ Journal$ of algebra. 1968. Vol. 10, no. 2. Pp. 211–230.
- [4] David Richter. Splints of classical root systems // Journal of Geometry.— 2012. Vol. 103. Pp. 103–117.
- [5] R. Santachiara. SLE in self-dual critical Z (N) spin systems: CFT predictions // Nuclear Physics B. 2008. Vol. 793, no. 3. Pp. 396–424.