Special Square Matrices

A diagonal matrix has all non-diagonal elements zero.

$$a_{ij} = 0$$
, if $i \neq j$.

Example:

$$\mathbf{D} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Special Square Matrices (cont)

A **scalar matrix** is a diagonal matrix with all diagonal elements equal to each other.

$$a_{ij} = 0$$
, if $i \neq j$. $a_{ii} = \alpha$, where α is a scalar .

Example:

$$\mathbf{S} = \begin{bmatrix} \alpha & 0 & \cdots & 0 \\ 0 & \alpha & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha \end{bmatrix}$$

Special Square Matrices (cont)

A unit matrix or an identity matrix is a scalar matrix with all diagonal elements equal to 1. $a_{ij} = 0$, if $i \neq j$. $a_{ii} = 1$.

Or: $a_{ij} = \delta_{ij}$, using the Kronecker² Delta.

$$I_{\{nn\}} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

²Leopold Kronecker (1823–1891), German mathematician. *God made the integers, all else is the work of man.*

Homework

Given a square matrix A, a scalar matrix S with each element equal to α , and an identity matrix I, all of the same size, show that

- $ightharpoonup \mathbf{S} = \alpha \mathbf{I}$
- ightharpoonup $\mathbf{S}\mathbf{A} = \mathbf{A}\mathbf{S} = \alpha\mathbf{A}$
- ightharpoonup AI = IA = A

Special Square Matrices (cont)

If all the elements of a square matrix *above* its diagonal are zero, then it is known as an **lower-triangular matrix**.

$$a_{ij} = 0$$
, if $i < j$.

Example:

$$\mathbf{L} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Special Square Matrices (cont)

If all the elements of a square matrix *below* its diagonal are zero, then it is known as an **upper-triangular matrix**.

$$a_{ij} = 0$$
, if $i > j$.

Example:

$$\mathbf{U} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

MATRICES – 2

Linear Algebraic Equations

DETERMINANTS

It is expected that students are comfortable with determinants and their properties.

Kreyszig, 10th Ed., Sec. 7.7.

Watch a Video

Watch the first lecture by Prof. Strang on Linear Algebra. https://www.youtube.com/watch?v=ZK3O402wf1c In particular, from 01:00 to 16:00.

Standard Form of LAEs

We have n equations for n unknowns.

Matrix Form

$$\mathbf{A} \underbrace{\mathbf{x}}_{(n \times n)} = \underbrace{\mathbf{b}}_{(n \times 1)}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$\mathbf{coefficient \ matrix}$$

$$\mathbf{coefficient \ matrix}$$
vector of unknowns RHS vector

The Augmented Matrix

$$\tilde{\mathbf{A}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_m \end{bmatrix} = [\mathbf{A}|\mathbf{b}]$$
augmented matrix

The augmented matrix completely defines the system of equations.

Classification

- ▶ If b = 0, then the system is called a homogeneous system.
- ▶ If $b \neq 0$, then the system is called a non-homogeneous system.

For a homogeneous system of equations:

- $ightharpoonup b_i = 0$ for each i.
- ightharpoonup Hence, $\mathbf{x} = \mathbf{0}$ satisfies each equation.
- ightharpoonup Hence, $\mathbf{x} = \mathbf{0}$ is a solution of the system.

Crossing lines. A unique solution exists.

Overlapping lines. Many (infinitely many) solutions exist.

Parallel, non-intersecting lines. No solution exists.

Homogeneous system, intersecting lines. The trivial solution is the unique solution.

Homogeneous system, overlapping lines. The trivial solution is one of infinitely many solutions.

Gauss Elimination

Motivation:

If the coefficient matrix is upper-triangular, then the solution can be obtained simply by back-substitution.

Gauss Elimination:

A process of conversion of the system of LAEs to an equivalent one with an upper-triangular coefficient matrix.

Gauss Elimination (cont)

This is done using one or more of the following operations, as many times as needed:

- interchange of two rows (Why do we not interchange columns?)
- **▶** addition of one row to another
- multiplication of a row by a nonzero constant

Such modified LAE systems are called **row-equivalent**.

Row-equivalent systems have the same solution (or set of solutions).

Some Definitions

A LAE system is **overdetermined** if the number of equations is greater than the number of unknowns: $n_{\rm equ} > n_{\rm unk}$, and **underdetermined** if $n_{\rm equ} < n_{\rm unk}$.

A system is **consistent** if it has at least one solution, **inconsistent** if it has no solution.

Row-Echelon Form

After Gauss Elimination, the augmented matrix will be in row-echelon form, in which the coefficient matrix part is upper-triangular. So, all elements below the diagonal will be zero.

But the diagonal elements may or may not be zero.

Also, there could be a number of rows at the bottom of the modified coefficient matrix which will all be zero.

Row-Echelon Form (cont)

The original augmented matrix is

$$\tilde{\mathbf{A}} = [\mathbf{A}|\mathbf{b}]$$

The reduced augmented matrix, in row-echelon form is $\tilde{\mathbf{R}} = [\mathbf{R}|\mathbf{f}]$

The two matrices are equivalent, and have the same set of solution(s).

They also have the same rank.

Row-Echelon Form Case 1

If all diagonal elements are non-zero, we have:

$$\tilde{\mathbf{R}} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & \cdots & r_{1n} & | & f_1 \\ 0 & r_{22} & r_{23} & \cdots & r_{2n} & | & f_2 \\ 0 & 0 & r_{33} & \cdots & r_{3n} & | & f_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & | & \vdots \\ 0 & 0 & 0 & \cdots & r_{nn} & | & f_n \end{bmatrix}$$

where each $r_{ii} \neq 0$.

In this case,

- (1) a unique solution exists,
- (2) it can be obtained by back-substitution, and
- (c) the rank of A is n, or A is of full rank.

Row-Echelon Form Case 2

In this case, diagonal elements upto row r are non-zero, and all rows below that have zeros in the modified coefficient matrix:

$$\tilde{\mathbf{R}} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1r} & r_{1r+1} & \cdots & r_{1n} & | & f_1 \\ 0 & r_{22} & \cdots & r_{2r} & r_{2r+1} & \cdots & r_{2n} & | & f_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & | & \vdots \\ 0 & 0 & \cdots & r_{rr} & r_{rr+1} & \cdots & r_{rn} & | & f_r \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & | & f_{r+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & | & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & | & f_n \end{bmatrix}$$

Row-Echelon Form Case 2 (cont)

Look at the values of f_{r+1}, \cdots, f_n .

- 2A If at least one of these is nonzero, then there is no solution, the system is inconsistent.
- 2B If all of them are zero, then we have a consistent system with infinitely many solutions. For any assumed set of values for x_{r+1}, \dots, x_n , there is a corresponding solution.

Row-Echelon Form - Comments

- ► The leading non-zero coefficient may have any value. However, if we reduce it to 1, it helps (at least with hand calculations).
- ► Rectangular matrices may also be reduced to row-echelon form.

Row-Echelon Form – An Example

Consider the LAE system:
$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 11 \\ 9 \\ 11 \end{bmatrix}.$$

The augmented matrix is:
$$\begin{bmatrix} 1 & 2 & 2 & | & 11 \\ 2 & 2 & 1 & | & 9 \\ 3 & 1 & 2 & | & 11 \end{bmatrix} .$$

Elimination of the first column of rows 2 and 3 gives:

$$\begin{bmatrix} 1 & 2 & 2 & | & 11 \\ 0 & -2 & -3 & | & -13 \\ 0 & -5 & -4 & | & -22 \end{bmatrix}.$$

We may multiply rows 2 and 3 by -1 to get rid of the minus

signs:
$$\begin{bmatrix} 1 & 2 & 2 & | & 11 \\ 0 & 2 & 3 & | & 13 \\ 0 & 5 & 4 & | & 22 \end{bmatrix}.$$

Elimination of the second column of row 3 leads to:

$$\begin{bmatrix} 1 & 2 & 2 & | & 11 \\ 0 & 2 & 3 & | & 13 \\ 0 & 0 & -3.5 & | & -10.5 \end{bmatrix}.$$

Or, multiplying the last row by
$$-1$$
: $\begin{vmatrix} 1 & 2 & 2 & | & 11 \\ 0 & 2 & 3 & | & 13 \\ 0 & 0 & 3.5 & | & 10.5 \end{vmatrix}$.

This is the row-echelon form.

The solution is obtained by back-substitution:

$$x_3 = 3$$
, $x_2 = 2$, $x_1 = 1$.

Note:

- ► All diagonal elements in the row-echelon form are non-zero, so we have a unique solution.
- The product of the diagonal elements in the form is 7, while the determinant of the coefficient matrix is -7. Why?

If the system is:
$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 11 \\ 9 \\ 20 \end{bmatrix}.$$

The augmented matrix is:
$$\begin{bmatrix} 1 & 2 & 2 & | & 11 \\ 2 & 2 & 1 & | & 9 \\ 3 & 4 & 3 & | & 20 \end{bmatrix} .$$

The row-echelon form then turns out to be:

$$\begin{bmatrix} 1 & 2 & 2 & | & 11 \\ 0 & 2 & 3 & | & 13 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

This is a consistent system, with infinitely many solutions.

The determinant of the coefficient matrix is zero.

The solution is:

$$x_3 = \text{any arbitrary value},$$

 $x_2 = (13 - 3x_3)/2,$
 $x_1 = x_3 - 2.$

Since x_3 may have any value, there are infinitely many solutions.

If the system is:
$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 11 \\ 9 \\ \mathbf{21} \end{bmatrix}.$$

The augmented matrix is:
$$\begin{bmatrix} 1 & 2 & 2 & | & 11 \\ 2 & 2 & 1 & | & 9 \\ 3 & 4 & 3 & | & 21 \end{bmatrix}$$
.

The row-echelon form then turns out to be:

$$\begin{bmatrix} 1 & 2 & 2 & | & 11 \\ 0 & 2 & 3 & | & 13 \\ 0 & 0 & 0 & | & \mathbf{1} \end{bmatrix}.$$

This is an inconsistent system, it has no solution.

Row-echelon Form: Homework

What are the remaining cases, if any, of the row-echelon form?

What type of solution(s) to they lead to?

Linear Independence of Vectors

Let $\mathbf{a}_{(1)}, \mathbf{a}_{(2)}, \cdots, \mathbf{a}_{(m)}$ be m vectors of the same length.

Let c_1, c_2, \cdots, c_m be a set of m scalars.

The expression

$$c_1\mathbf{a}_{(1)} + c_2\mathbf{a}_{(2)} + \cdots + c_m\mathbf{a}_{(m)}$$

is a linear combination of the vectors.

Linear Independence of Vectors (cont)

Consider the equation

$$c_1\mathbf{a}_{(1)} + c_2\mathbf{a}_{(2)} + \cdots + c_m\mathbf{a}_{(m)} = \mathbf{0}.$$

One possibility is:

$$c_1 = c_2 = \cdots = c_m = 0$$
, that is, **c** is a zero vector.

If that is the only possibility, then we say that the set of vectors $(\mathbf{a}_{(1)}, \mathbf{a}_{(2)}, \cdots, \mathbf{a}_{(m)})$ is **linearly independent**.

Linear Independence of Vectors (cont)

If a solution exists other than c = 0, *i.e.* at least one of $(c_1, c_2, \dots, c_m) \neq 0$, then we say that the set of vectors is **linearly dependent**.

Suppose, if $c_k \neq 0$, then

$$\mathbf{a}_{(k)} = -\frac{1}{c_k} \underbrace{\left(c_1 \mathbf{a}_{(1)} + c_2 \mathbf{a}_{(2)} + \dots + c_m \mathbf{a}_{(m)}\right)}_{\text{does not include } c_k \mathbf{a}_{(k)}}$$

that is, $\mathbf{a}_{(k)}$ can be expressed as a linear combination of the other vectors in the set.

Rank of a Matrix

The rank of r of a matrix \mathbf{A} is the maximum number of linearly independent row vectors of \mathbf{a} .

If A is of size $m \times n$, then r = 0 iff A = 0.

Definition

Two matrices A_1 and A_2 are **row-equivalent** if A_2 can be obtained from A_1 by elementary row operations on A_1 (and vice-versa).

Rank of a Matrix (cont)

Theorem 1

Row-equivalent matrices have the same rank.

 \implies Elementary row operations on a matrix does not change its rank.

An Example

let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \leftarrow \mathbf{a}_{(1)} \leftarrow \mathbf{a}_{(2)}.$$

since $(\mathbf{a}_{(3)} - \mathbf{a}_{(2)}) = (\mathbf{a}_{(2)} - \mathbf{a}_{(1)})$, we have $\mathbf{a}_{(1)} - 2\mathbf{a}_{(2)} + \mathbf{a}_{(3)} = 0$. $\Rightarrow \mathbf{a}_{(1)}, \mathbf{a}_{(2)}, \text{ and } \mathbf{a}_{(3)} \text{ are linearly dependent,}$ and rank $(\mathbf{A}) < 3$.

but $c_1\mathbf{a}_{(1)}+c_2\mathbf{a}_{(2)}=0$ has only one solution: $c_1=c_2=0$. $\Rightarrow \mathbf{a}_{(1)}$ and $\mathbf{a}_{(2)}$ are **linearly independent**, and hence, $\operatorname{rank}(\mathbf{A})=2$.

Determination of Rank of a Matrix

Use row operations to reduce it to lower-echelon form. The number of non-zero rows is the rank.

For example, let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
.

Eliminating the first elements of the second and third rows, we

get:
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & 12 \end{bmatrix}$$
, that is, $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$.

Determination of Rank of a Matrix (cont)

Now, eliminating element (3,2), we get: $\begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{vmatrix}$.

Since only two rows are non-zero in the reduced (row-echelon) form, $rank(\mathbf{A}) = 2$.

Rank and Linear Independence

Theorem 2^3

Let there be m vectors with n components each. Let ${\bf A}$ be the matrix (size $m\times n$) formed by these vectors as rows.

The m vectors are linearly independent if $rank(\mathbf{A}(m \times n)) = m$.

The m vectors are linearly dependent if $\operatorname{rank}(\mathbf{A}(m \times n)) < m$.

³Study the proof in Kreyszig.

Rank and Linear Independence (cont)

Theorem 3⁴

The rank of a matrix A equals the number of linearly independent column vectors of A.

Hence, $rank(\mathbf{A}) = rank(\mathbf{A}^T)$

⁴Study the proof in Kreyszig.

An Example

If A is the matrix in the previous example, then

$$\mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \to \begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix} \to \begin{bmatrix} 1 & 4 & 7 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 4 & 7 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 4 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

Hence, $rank(\mathbf{A}^T) = 2 = rank\mathbf{A}$.

Rank and Linear Independence (cont)

Theorem 4⁵

Consider m vectors of n components each. If m > n, then these vectors are **linearly dependent**.

 \implies If **A** is of size $m \times n$, then rank $(\mathbf{A}) \leq \min(m, n)$.

⁵Study the proof in Kreyszig.

Determinants

Students are expected to be knowledgeable about determinants, their properties, and also about Cramer's rule.