

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T \mathcal{Y} \text{ им. H. Э. Баумана})$

ФАКУЛЬТЕТ _	Фундаментальные науки
⁻ КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Кручение стержня прямоугольного сечения

Студент	ФН2-51Б		В. Г. Пиневич
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководитель курсовой работы			A. D. Wamanyu
			А.В. Котович
		(Подпись, дата)	(И. О. Фамилия)

Оглавление 2

Оглавление

Вв	ведение	3	
1.	Постановка задачи	3	
	1.1. Кручение	3	
	1.2. Положительные и положительно определенные операторы	4	
2.	Энергетический метод	4	
3.	Метод Ритца	5	
4.	Решение задачи о кручении стержня энергетическим методом	6	
5 .	Решение задачи о кручении стержня методом Ритца	9	
6.	Сравнение решений энергетическим методом и методом Ритца	12	
	6.1. Сравнение функций кручения	12	
	6.2. Сравнение крутящего момента	13	
За	ключение	14	
Ст	Список использованных источников		

Введение 3

Введение

Проблема решения задачи о скручивании балки возникает во многих задачах, в частности в строительной механике. Существует большое количество различных методов решения таких задач. Данная работа посвящена изучению двух численных методов решения таких задач, оценке их точности.

1. Постановка задачи

Задача данной работы — сравнить два решения задачи о кручении стержня прямоугольного сечения, полученных энергетическим методом и методом Ритца. Кроме того, требуется выяснить зависимости точности решения в обоих случаях от числа членов ряда и сравнить полученные результаты.

1.1. Кручение

Кручением называется такой вид нагружения стержня, при котором из всех шести внутренних силовых факторов в его поперечных сечениях не равен нулю только крутящий момент $M_{\rm kp}$.

Рассмотрим стержень прямоугольного сечения. Такой стержень при закручивании подвержен депланациям («выходят из плоскости»). Другими словами депланация означает, что точки сечения перемещаются вдоль оси стержня в различных направлениях.

Рис. 1. Кручение стержня прямоугольного сечения

Будем решать задачу о его кручении двумя способами: энергетическим методом (в виде ряда по ортогональной системе функций) и методом Ритца (в виде ряда по степенным функциям).

Совместим ось z с осью кручения, оси x и y расположим произвольно в плоскости поперечного сечения. Задача кручения сходится к поиску функции ψ (1) [2]. Эта

функция должна быть постоянна вдоль границы поперечного сечения, константу можно выбирать произвольно. Мы будем принимать ее равной нулю.

$$\Delta \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -2G\theta,\tag{1}$$

где G — модуль сдвига, θ — угол закручивания на единицу времени.

1.2. Положительные и положительно определенные операторы

Рассмотрим некоторый симметричный оператор A гильбертова пространства.

• Оператор A называется положительным, если для любого элемента u из области определения оператора выполняется неравенство

$$(Au, u) \geqslant 0$$
,

причем знак равенства имеет место только тогда, когда u=0.

• Оператор A называется положительно определенным, если существует такая положительная постоянная γ^2 , что для любого элемента u из области определения оператора A справедливо неравенство

$$(Au, u) \geqslant \gamma^2 ||u||^2$$

Физический смысл понятия положительно определенного операторов заключается в том, что невозможно сообщить системе смещение, не затратив на это некоторой энергии [3]. Если же оператор положительный, но не положительно определенный, то, системе можно придать сколь угодно большое смещение, затратив на это сколь угодно малую энергию

2. Энергетический метод

Рассмотрим положительно определенный оператор A в гильбертовом пространстве H. Требуется решить уравнение

$$Au = f, f \in H. \tag{2}$$

Пусть A — положительный оператор в гильбетровом протестантстве. Тогда энергетическим произведение назовем

$$[u, v] = (Au, v),$$

где u и v элементы из области определения D оператора A.

Множество D(A) является гильбертовом пространством, навезем его энергетическим пространством H_A . Оно также является сепарабельным.

Тогда мы можем свести решение краевой задачи к задаче о поиске минимума функционала.

Если A — положительный оператор, уравнение (2) можно свести к поиску минимума функционала

$$F(u) = (Au, u) - 2(u, f). (3)$$

Такой метод решения краевой задачи и называют энергетическим.

Чтобы решение задачи (3) существовало расширим функционал F(u) на все пространство H_A и будем искать минимум u_0 на нем. Пространство H_A сепарабельно, то в нем найдется полная ортонормированная система ω_n и решение u_0 можно представить в виде

$$u_0 = \sum_{n=1}^{\infty} (f, \omega_n) \omega_n. \tag{4}$$

3. Метод Ритца

Пусть A — положительно определенный оператор в гильбертовом пространстве H. Задача построения обобщенного решения уравнения (2), как показано выше, равносильна задаче нахождения элемента энергетического пространства, который реализует минимум функционала (3) в энергетическом пространстве.

Выберем последовательность элементов

$$\varphi_1, \varphi_2, \varphi_3, \dots, \tag{5}$$

удовлетворяющих условиям:

- 1. $\varphi_n \in H_A$, для всех n;
- 2. при любом n элементы $\varphi_1, \varphi_2, \dots, \varphi_n$, линейно независимы;
- 3. последовательность (5) полна в H_A .

Такие элементы будем называть координатные, а последовательность назовем координатной системой.

Построим линейную комбинацию первых n координатных элементов вида

$$u_n = \sum_{i=1}^n a_i \, \varphi_i, \tag{6}$$

с некоторыми a_i . Подставим u_n вместо u в (3), тогда F(u) можно рассматривать как функцию независимых переменных a_1, a_2, \ldots, a_n

$$F(u_n) = \left[\sum_{i=1}^n a_i \, A\varphi_i, \sum_{k=1}^n a_k \, A\varphi_k\right] - 2\left(\sum_{k=1}^n a_k \, \varphi_k, f\right) = \tag{7}$$

$$= \sum_{i,k=1}^{n} [\varphi_i, \varphi_k] a_i a_k - 2 \sum_{k=1}^{n} (\varphi_k, f) a_k$$

Выберем коэффициенты a_i так, чтобы минимизировать функцию (7). Она достигает минимума при тех значениях независимых переменных, которые обращают в нуль ее первые производные. В общем случае эти условия не достаточные, а необходимые условия минимума. Однако, используя положительность оператора A, можно доказать, что они в данном случае действительно реализуют минимум $F(u_n)$:

$$\frac{\partial F(u_n)}{\partial a_i} = 0, \qquad i = 1, 2, \dots, n.$$
(8)

Поскольку

$$\frac{\partial F(u_n)}{\partial a_i} = 2\sum_{k=1}^n [\varphi_k, \varphi_i] a_k - 2(f, \varphi_i),$$

то приравняв эти производные нулю, получим систему линейных алгебраических уравнений Ритца:

$$\sum_{k=1}^{n} [\varphi_k, \varphi_i] a_k = (f, \varphi_i) \qquad i = 1, 2, \dots, n.$$
(9)

Определитель системы (9) есть определитель Грама линейно независимых элементов $\varphi_1, \varphi_2, \ldots, \varphi_n$ и потому отличен от нуля. Следовательно, система уравнений Ритца всегда однозначно разрешима, если оператор A положительный.

Найдя из (9) коэффициенты a_1, a_2, \ldots, a_n и подставив их в (6), получим приближенное решение уравнения (2) по Ритцу.

Приближенное решение задачи о минимуме функционала энергии, получаемое методом Ритца, совпадает с n-ой частной суммой ряда (4), представляющего точное решение [1].

4. Решение задачи о кручении

стержня энергетическим методом

Рассмотрим задачу [1] о кручении стержня, основание которого представляет собой прямоугольник $0 \leqslant x \leqslant a, \ 0 \leqslant y \leqslant b$. Функция кручения $\psi(x,y)$ удовлетворяет условию $-\Delta \psi = 2G\theta$ (1).

Функция $\psi(x,y)$ обращается в нуль на сторонах прямоугольника $x=0,\,x=a,$ $y=0,\,y=b.$

Энергетическое произведение функций u(x,y), v(x,y) выражается формулой

$$[u, v] = -\int_{0}^{a} \int_{0}^{b} (v(x, y)\Delta u(x, y)) dxdy,$$
 (10)

энергетическая норма

$$||u||^{2} = -\int_{0}^{a} \int_{0}^{b} (u(x,y)\Delta u(x,y)) dxdy,$$
(11)

Функции

$$\varphi_{mn}(x,y) = \sin\frac{m\pi x}{a} \sin\frac{n\pi y}{b}, \quad m,n = 1,2,\dots$$
 (12)

- непрерывно дифференцируемы сколько угодно раз и обращаются в нуль на контуре прямоугольника и потому входят в область определения оператора данной задачи;
- ортогональны по энергии;
- не нормированы.

Докажем ортогональность, для этого заметим, что

$$\Delta\varphi_{mn}(x,y) = -\pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right) \varphi_{mn}(x,y). \tag{13}$$

Тогда

$$[\varphi_{mn}, \varphi_{rs}] = -\int_0^a \int_0^b \varphi_{mn} \Delta \varphi_{rs} dx dy$$
$$[\varphi_{mn}, \varphi_{rs}] = \pi^2 \left(\frac{r^2}{a^2} + \frac{s^2}{b^2}\right) \int_0^a \sin\left(\frac{m\pi x}{a}\sin\frac{r\pi x}{a}\right) dx \int_0^a \sin\left(\frac{n\pi y}{b}\sin\frac{s\pi y}{b}\right) dy.$$

Если $m \neq r$ или $nx \neq s$, то $[\varphi_{mn}, \varphi_{rs}] = 0$. Пологая, что r = m и s = n, найдем

$$\|\varphi_{mn}\|^2 = \frac{\pi^2 \left(b^2 m^2 + a^2 n^2\right)}{4ab},$$

следовательно система функций (12) не нормированная. Поделим φ_{mn} на $\|\varphi_{mn}\|$, получим систему

$$\psi_{mn}(x,y) = \frac{2}{\pi} \sqrt{\frac{ab}{b^2 m^2 + a^2 n^2}} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}.$$
 (14)

По формуле решения в виде ряда (4) функция кручения представляется рядом

$$\psi(x,y) = \sum_{m,n=1}^{\infty} (2G\theta, \psi_{mn}) \,\psi_{mn}(x,y), \tag{15}$$

коэффициенты которого равны

$$(2G\theta, \psi_{mn}) = \frac{4G\theta}{\pi} \int_{0}^{a} \sin\left(\frac{m\pi x}{a}\right) dx \int_{0}^{b} \sin\left(\frac{n\pi y}{b}\right) dy =$$

$$=\frac{4abG\theta}{\pi^3 mn} \sqrt{\frac{ab}{b^2 m^2 + a^2 n^2}} [1 - (-1)^m] [1 - (-1)^n].$$

Заметим, что коэффициенты ряда (15) равны нулю, если хотя бы одно из чисел m или n четное. В противном случае

$$(2G\theta, \psi_{mn}) = \frac{4abG\theta}{\pi^3 mn} \sqrt{\frac{ab}{b^2 m^2 + a^2 n^2}},$$

откуда, соотношение (15) примет итоговый вид

$$\psi(x,y) = \frac{32a^2b^2G\theta}{\pi^4} \sum_{m,n=1,3,5,\dots} \frac{\sin\frac{m\pi x}{a} \sin\frac{n\pi y}{b}}{mn(b^2m^2 + a^2n^2)}.$$
 (16)

Вычислим значение функции ψ кручения в середине квадрата со сторонами a=b=1.

$$\psi\left(\frac{1}{2}, \frac{1}{2}\right) = 0.144G\theta, \text{ при } n, m = 1, 3,$$

$$\psi\left(\frac{1}{2}, \frac{1}{2}\right) = 0.147G\theta, \text{ при } n, m = 1, 3, \dots 21,$$

$$\psi\left(\frac{1}{2}, \frac{1}{2}\right) = 0.147G\theta, \text{ при } n, m = 1, 3, \dots 209.$$

$$(17)$$

Получаем, что значение функции кручения с n=21 и n=209 не отличаются по крайней мере до третьего знака, тогда как значение этой функции при n=3 отличается на 3%.

Рассмотрим график (2) и линии уровня (3) полученной функции кручения для n=21.

Рис. 2. График функции кручения, полученной энергетическим способом

Рис. 3. Линии уровня функции кручения, полученной энергетическим способом

Решение задачи о кручении стержня методом Ритца

Решение задачи кручения стержня прямоугольного сечения [1], как уже было показано выше, сводится к интегрированию уравнения Пуассона (1)

$$-\Delta \psi = 2G\theta$$
,

где G — модуль сдвига, θ — угол закручивания стержня на единицу его длины, в прямоугольнике

$$0 \leqslant x \leqslant a, 0 \leqslant y \leqslant b$$

при краевых условиях

$$\psi(0, y) = \psi(a, y) = \psi(x, 0) = \psi(x, b) = 0.$$

Полагая для упрощения $\psi = 2G\theta u$, получим задачу в виде

$$\begin{cases}
-\Delta u = 1, \\
\psi(a, y) = \psi(x, b) = 0, \\
\psi(0, y) = \psi(x, 0) = 0.
\end{cases}$$

Применим метод Ритца, взяв за координатные функции полиномы. Рассмотрим многочлен, равный нулю на контуре прямоугольника, т. е. на прямых $x=0,\,x=a$ и $y=0,\,y=b$ имеют вид

$$\psi(x,y) = x(x-a)y(y-b)\left(a_0 + a_1(x+y) + a_2(x^2 + a_3y^2) + \ldots\right).$$

Для начала ограничимся первым членом ряда. Имеем

$$\psi_1(x,y) = a_0 x(x-a) y(y-b). \tag{18}$$

Вычислим a_0 . Для этого подставим функцию $\psi_0(x,y)$ (18) в интеграл

$$F = -\int_{0}^{a} \int_{0}^{b} \left(\frac{1}{2} \left(\frac{\partial \psi}{\partial x} \right)^{2} + \frac{1}{2} \left(\frac{\partial \psi}{\partial y} \right)^{2} - 2G\theta \psi \right) dx dy. \tag{19}$$

И из условия (8) получим

$$a_0 = \frac{5G\theta}{2(a^2 + b^2)}.$$

Вычислим значение функции ψ_1 кручения в середине квадрата со сторонами a=b=1

$$\psi_1\left(\frac{1}{2}, \frac{1}{2}\right) \approx 0.156G\theta.$$

В качестве второго приближения рассмотрим функцию

$$\psi_2(x,y) = x(x-a)y(y-b)\left(a_0 + a_1(x+y) + a_2(x^2 + a_3y^2)\right). \tag{20}$$

Вычислим значение функции ψ_2 кручения в середине квадрата, предварительно аналогично первому приближения получив значения a_0, a_1, a_2 .

$$\psi_2\left(\frac{1}{2}, \frac{1}{2}\right) \approx 0.146G\theta.$$

Получаем, что значение функции кручения второго приближения отличается от значения функции кручения первого приближения в той же точки на 7%.

Рассмотрим график (6) и линии уровня (5) полученной функции кручения для первого приближения.

Рис. 4. График функции кручения, полученной методом Ритца

Рис. 5. Линии уровня функции кручения, полученной методом Ритца

6. Сравнение решений энергетическим методом и методом Ритца

Сравним два рассматриваемых метода, сопоставив результаты полученных функций кручения, а так же их крутящих моментов.

6.1. Сравнение функций кручения

Мы получили значение $\psi\left(\frac{1}{2},\frac{1}{2}\right)=0.147G\theta$ для энергетического метода и $\psi\left(\frac{1}{2},\frac{1}{2}\right)=0.146G\theta$ для метода Ритца, они отличаются на 1%. При этом при малой точности вычисления данные методы дают результат $0.144G\theta$ и $0.156G\theta$ соответственно. Точным решением является $\psi\left(\frac{1}{2},\frac{1}{2}\right)=0.147G\theta$ [2], из чего мы можем сделать вывод, что метод энергий более точный в рассматриваемом случае.

Рис. 6. Сравнение функций кручения, полученных энергетическим методом и методом Ритца

6.2. Сравнение крутящего момента

Крутящий момент определяется формулой

$$M = 2 \int_{-a}^{a} \int_{-b}^{b} \varphi dx dy. \tag{21}$$

Для метода энергий, интегрируя ряд (16), получим

$$M_1 = \frac{256G\theta a^4 b^4}{\pi^6} \sum_{m,n=1,3,5,\dots} \frac{1}{(b^2 m^2 + a^2 n^2)m^2 n^2}.$$
 (22)

Преобразуем ряд (22), получим

$$M_1 = \frac{1}{3} G\theta a^3 b \left(1 - \frac{192a}{\pi^5 b} \sum_{n=1,3,5,\dots} \frac{1}{n^5} \operatorname{th} \frac{n\pi b}{2a} \right). \tag{23}$$

Приняв, что прямоугольник достаточно узкий можем положить th $\frac{n\pi b}{2a}=1$ и представить выражение (23) в виде

$$M_1 = \frac{1}{3} \left(1 - 0.630 \frac{a}{b} \right).$$

Для квадрата получим

$$M_1 = 0.140G\theta a^4$$
.

С другой стороны, для метода Ритца первого приближения получаем

$$M_2 = 0.139G\theta a^4$$
,

а для второго приближения

$$M_2 = 0.140G\theta a^4$$
.

Таким образом, при рассмотрении достаточно узкого прямоугольника крутящий момент, полученный энергетическим методом можно считать за точный, а метод Ритца будет совпадать с точным решением до третьего знака при расчете во втором приближении.

Заключение 14

Заключение

В ходе выполнения курсовой были изучены энергетический метод и метод Ритца нахождения кручения стержня прямоугольного сечения. С помощью этих методов была решена задача, их результаты оказались идентичны с точностью до двух знаков. Оба метода позволяют вычислить крутящий момент с точностью до третьего знака. Энергетический метод позволяет получить ответ несколько точнее и быстрее, но каждый раз требует вычисления тригонометрического ряда. Метод Ритца дает возможность получить функцию кручения в виде многочлена и получать ответ с другими параметрами задачи с меньшим количеством вычислений, что может быть полезно при большом объеме вычислений.

Список использованных источников

- 1. С. Г. Михлин. Вариационные методы в математической физике, М.: Изд-во Наука, $1970.-512~\mathrm{c}$.
- 2. С. П. Тимошенко, Дж. Гудьер. Теория упругости, М.: Изд-во Наука, 1975. 576 с.
- 3. С. Г. Михлин, Х.Л. Смолицкий Приближенные методы решения дифференциальных и интегральных уравнений. М.: Изд-во Наука, 1965. 384 с.