

Learning Objectives

- Understand how data is read from the storage engine
- Read data from Cassandra

How does the read path flow among nodes?

 Cassandra returns the most recent record among the nodes read for a given request

Consistency Level

 sets how many nodes will be read for a given request

may vary by request

What are eager retries?

 If a node is slow responding to a request, the coordinator forwards it to another holding a replica of the requested partition

New feature in 2.0+

Only relevant if RF > I

Client

What are the key components of the read path?

- Each node implements in-memory structures for each CQL table
 - MemTable in-memory table serves data as part of the merge process
 - Row Cache in-memory cache stores recently read rows (optional)
 - Bloom Filters reports if a partition key may be in its corresponding SSTable
 - Key Caches maps recently read partition keys to specific SSTable offsets
 - Partition Summaries Sampling from partition index
- Each node implements these on disk for each CQL table
 - Partition Indexes Sorted partition keys mapped to their SSTable offsets
 - SSTables static files periodically flushed from a MemTable
- Merge unless served from the row cache, a read uses a partition key to locate, merge, and return values from a MemTable and any related SSTable storing values for that key

How does the read path flow on each node?

How does the read path flow on each node?

How does the read path flow on each node?

How is a MemTable and its SSTables used during a read?

- Both a MemTable and its recent SSTables are checked when reading for a partition key
 - the most current column values are combined to form the result

SSTables (e.g., player)

What is a Bloom filter and how does it optimize a read?

- A probabilistic data structure testing if a key may be in a SSTable
 - each SSTable has a Bloom filter on disk, used from off-heap memory
 - false positives are possible, false negatives are not
 - larger tables have a higher possibility of false positives
 - Igb to 2gb per billion partitions in a SSTable
- Eliminates seeking a partition key in any SSTable without it

What is the bloom_filter_fp_chance table setting?

- Controls the percentage chance of false positive results from the Bloom filters for SSTables flushed for a specified table
- Values range from 0.0 to 1.0
 - 0.0 no false positives, greatest memory use
 - 0.1 maximum recommended setting, diminishing returns if higher
 - I.0 Bloom filtering disabled for this table
- Default setting depends on compaction strategy
 - 0.01 Size-tiered compaction (STC)
 - 0.1 Leveled compaction (LCS)

```
ALTER TABLE player
WITH bloom_filter_fp_chance = 0.1;
```


What is the row cache and how is it configured?

- The merged row(s) for a partition key is saved in off-heap memory
- Row caching is enabled in CQL with the caching and

rows_per_partition properties

- ALL cache all rows for a partition key
- n cache the first n rows for a partition key
- NONE (default) disable row caching for this table

```
CREATE TABLE player (
   first text PRIMARY KEY,
   last text,
   level text
)
WITH caching = {'keys': 'ALL',
   'rows_per_partition': '1'};
```


What is the row cache and how is it configured?

- Caches can periodically save to disk improving node restart speed
- Row cache size and save period are set globally for all tables on a node in cassandra.yaml
 - row_cache_size_in_mb maximum row cache size, set to 0 to disable
 - row_cache_save_period periodicity in seconds at which row cache should be saved to the saved_caches_directory, improves cache usage following a node restart, set to 0 to disable row cache saving
 - row_cache_keys_to_save max number of cached rows to save each period,
 if disabled all cached rows are saved
 - saved_caches_directory location to save row, key, and counter caches
 - default: /var/lib/cassandra/saved caches

What is the key cache and how is it configured?

- Key caching saves a partition key and its offset position(s) in the SSTable(s) for a MemTable
 - one key cache entry for each SSTable holding a replica of this partition
 - reduces a read to a single seek per recent replica
- Key caching is enabled in CQL with the caching and keys properties
 - ALL (default) enable key caching for this table
 - NONE disable key caching for this table

What is the key cache and how is it configured?

- Caches can periodically save to disk, to improve node restart speed
- Key cache size and save period are set globally for all tables on a node in cassandra.yaml
 - key_cache_size_in_mb maximum key cache size, set to 0 to disable
 - default: 5% of available heap or 100mb, whichever is smaller
 - key_cache_save_period periodicity in seconds at which key cache should be saved to the saved_caches_directory, improves cache usage following a node restart, set to 0 to disable key cache saving
 - key_cache_keys_to_save max number of cached keys to save each period, if disabled all cached keys are saved
 - saved_caches_directory location to save row, key, and counter caches
 - default: /var/lib/cassandra/saved_caches
- Enabling key caching is commonly termed "pre-heating"

What is the counter cache and how is it configured?

- Counter caching saves the clock and count of a counter in memory
 - helps reduce lock contention for the read-before-write counter updates
 - only the local tuple for node is saved in the counter cache
- Counter cache size and save period are set globally for all counter tables on a node in cassandra.yaml
 - counter_cache_size_in_mb maximum counter cache size, set to 0 to disable
 - default: 2.5% of available heap or 50mb, whichever is smaller
 - counter_cache_save_period periodicity in seconds at which the counter cache should be saved to the saved_caches_directory, improves cache usage following a node restart, set to 0 to disable counter cache saving
 - counter_cache_keys_to_save max number of cached keys to save each period, if disabled all cached keys are saved
 - saved_caches_directory location to save row, key, and counter caches
 - default: /var/lib/cassandra/saved_caches

What are partition summaries and how are they used?

- If a partition key's location is <u>not</u> in the *key cache*, the read must seek the requested partition on disk
- The partition summary in an in-memory sampling from a partition index, used to locate a key's approximate location in the full index
 - default sample ratio is I per I28 partition keys in the index
 - configured with the table property min_index_interval (default: I 28) and max_index_interval (default: 2048)
 - held in off-heap memory

What are partition summaries and how are they used?

- If a partition key's location is <u>not</u> in the *key cache*, the read must seek the requested partition on disk
- The partition summary in an in-memory sampling from a partition index, used to locate a key's approximate location in the full index
 - default sample ratio is I per 128 partition keys in the index
 - configured with the table property min_index_interval (default: 128) and max_index_interval (default: 2048)

held in off-heap memory


```
CREATE TABLE player (
  first text PRIMARY KEY,
  last text,
  level text
)
WITH min_index_interval = 256
AND max_index_interval = 2048;
```


What are partition indexes and how are they used?

- The partition index of each SSTable provides the physical offset locations for each of its partitions, sorted by partition key
- Starting with the approximate location from the partition summary, the partition index is read to find the physical position of a partition
 - Once found, the location of this partition key is added to the key cache

Learning Objectives

- Understand how data is read from the storage engine
- Read data from Cassandra

How do you execute CQL queries in cqlsh?

As learned earlier, cqlsh enables command line CQL execution

```
dstraining@DST: /home/cassandra
dstraining@DST: /home/cassandra
dstraining@DST:/home/cassandra$ bin/cqlsh
Connected to Test Cluster at localhost:9160.
[cqlsh 4.1.1 | Cassandra 2.0.5 | CQL spec 3.1.1 | Thrift protocol 19.39.0]
Use HELP for help.
cglsh> DESCRIBE KEYSPACES;
system music system traces demo
cqlsh> USE music;
cqlsh:music> SELECT *
        ... FROM performer
         ... LIMIT 5;
                                      born | country | died | founded | style
 name
                                                                                          type
                                             United States
                                                                      null
                                                                                     Rock
                        Sheryl Crow
                                      1962 I
                                                            null
                                                                                            artist
                                                                            Pipe and Drum
Black Bottle Scotch Whisky Pipe Band
                                     null
                                                 Scotland I
                                                            null
                                                                      1989
                                                                                              band
                          Bellefire
                                     null
                                                  Ireland | null
                                                                      null
                                                                                  Unknown
                                                                                              band
                     Dia DiCristino I
                                            United States |
                                                                      null
                                     null
                                                           null
                                                                                  Unknown
                                                                                            artist
                                                                      null I
                           Pat Green | null |
                                            United States | null |
                                                                                  Unknown
                                                                                            artist
(5 rows)
cqlsh:music>
```

Note, calsh and CQL are taught in detail in Module 4 – Introducing the Cassandra Data Model and CQL

How do you examine data storage using CLI?

- The cassandra-cli utility is
 - useful for examining and learning the internal storage engine structure
 - deprecated and less functional than CQL and cqlsh, which are fully backwardscompatible with column families and data created using Thrift

use	create	set	get	list
limit	help	assume	quit	

How is CQL tracing enabled and used?

- The CQLTRACING command enables and disables request tracing
 - results displayed and saved to sessions and events in system_traces keyspace

```
cqlsh:musicdb> TRACING ON;
Now tracing requests.
cglsh:musicdb> SELECT * FROM performer WHERE name = 'Sheryl Crow';
              | born | country
                                    | died | founded | style | type
 Shervl Crow | 1962 | United States | null |
(1 rows)
Tracing session: 291832f0-3e13-11e4-898b-17914c10dbe5
 activity
                                                                                                   timestamp
                                                                                                                               source
                                                                                                                                           source elapsed
   Parsing SELECT * FROM performer WHERE name = 'Sheryl Crow' LIMIT 10000; [SharedPool-Worker-1]
                                                                                                  2014-09-16 19:34:34.271000
                                                                                                                               127.0.0.1
                                                       Preparing statement [SharedPool-Worker-1]
                                                                                                  2014-09-16 19:34:34.271000
                                                                                                                               127.0.0.1
                                                                                                                                                       180
                             Executing single-partition query on performer [SharedPool-Worker-2]
                                                                                                                               127.0.0.1
                                                                                                                                                       595
                                                                                                  2014-09-16 19:34:34.271000
                                              Acquiring sstable references [SharedPool-Worker-2]
                                                                                                  2014-09-16 19:34:34.271000
                                                                                                                               127.0.0.1
                                                                                                                                                       614
                                               Merging memtable tombstones [SharedPool-Worker-2]
                                                                                                  2014-09-16 19:34:34.271000
                                                                                                                               127.0.0.1
                                                                                                                                                       656
                                               Key cache hit for sstable 1 [SharedPool-Worker-2]
                                                                                                                               127.0.0.1
                                                                                                                                                       817
                                                                                                  2014-09-16 19:34:34.272000
                               Seeking to partition beginning in data file [SharedPool-Worker-2]
                                                                                                   2014-09-16 19:34:34.272000
                                                                                                                               127.0.0.1
 Skipped 0/1 non-slice-intersecting sstables, included 0 due to tombstones [SharedPool-Worker-2]
                                                                                                  2014-09-16 19:34:34.274000
                                                                                                                               127.0.0.1
                                                                                                                                                      2705
                                Merging data from memtables and 1 sstables [SharedPool-Worker-2]
                                                                                                  2014-09-16 19:34:34.274000 | 127.0.0.1
                                                                                                                                                      2729
                                        Read 1 live and 2 tombstoned cells [SharedPool-Worker-2]
                                                                                                  2014-09-16 19:34:34.274000
                                                                                                                               127.0.0.1
                                                                                                                                                      2806
                                                                                Request complete |
                                                                                                  2014-09-16 19:34:34.274413
                                                                                                                               127.0.0.1
                                                                                                                                                      3413
cqlsh:musicdb> TRACING OFF;
Disabled tracing.
```


How do you obtain performance data using cfstats?

- nodetool cfstats command provides statistics for a specified table ("column family"), including
 - read latency
 - write latency
 - SSTable count
 - space used

```
dstraining@DST:/home/cassandra$ bin/nodetool cfstats musicdb.performer
Keyspace: musicdb
        Read Count: 4
        Read Latency: 0.20725 ms.
        Write Count: 5537
        Write Latency: 0.03769297453494672 ms.
        Pending Flushes: 0
                Table: performer
                SSTable count: 1
                Space used (live), bytes: 550467
                Space used (total), bytes: 550467
                Space used by snapshots (total), bytes: 0
                SSTable Compression Ratio: 0.3156983447202369
                Memtable cell count: 0
                Memtable data size, bytes: 0
                Memtable switch count: 1
                Local read count: 4
                Local read latency: 0.208 ms
                Local write count: 5537
                Local write latency: 0.038 ms
                Pending flushes: 0
                Bloom filter false positives: 0
                Bloom filter false ratio: 0.00000
                Bloom filter space used, bytes: 6936
                 Compacted partition minimum bytes: 30
                 Compacted partition maximum bytes: 310
                 Compacted partition mean bytes: 243
                Average live cells per slice (last five minutes): 1.0
                 Average tombstones per slice (last five minutes): 2.0
```

bin/nodetool -h [host] -p [port] cfstats <keyspace>.

Summary

- If a node responds slowly to a request, the request is forwarded to another replica node
- The row cache is an optional mechanism to cache recently requested partitions
- Each SSTable has a Bloom filter, partition summary, and partition index
- A Bloom filter reduces disk seeks by ruling out SSTables which do not contain a partition
- The key cache, shared by all SSTables for a MemTable, caches the location of recently requested partition keys
- A partition summary is an evenly distributed in-memory sampling from a partition index, used to reduce index seek time
- A partition index provides the specific data file offset location for each partition key in an SSTable

Summary

- A partition key found in the partition index is added to the key cache
- Cassandra merges the most recent columns of data from a MemTable, and its SSTables, for a given request
- If row cache is in use, the merged CQL row for a partition key is updated when the requested row is returned
- Row and key caching is controlled using the caching table property
- cqlsh enables command line CQL queries and shell commands
- cassandra-cli enables command line Thrift API commands
- The nodetool cfstats command provides statistical information about a keyspace and table

Review Questions

- What benefit do Bloom filters provide to the read process?
- Is the partition summary read for partition keys in the key cache?
- What is the relationship between the partition summary and index?
- How many key caches are maintained for a MemTable?

