Automate Kubernetes Workloads with Ansible

Michael Hrivnak
Principal Software Engineer
January, 2019

1. What is Kubernetes

```
apiVersion: v1
kind: Pod
metadata:
  name: example-app
  labels:
    app: example-app
spec:
  containers:
  - name: example
    image: companyname/example:v1.2.0
    ports:
    - containerPort: 8000
```

```
apiVersion: v1
kind: Service
metadata:
  name: example-service
spec:
  selector:
    app: example-app
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8000
```

2. Ansible k8s module

K8s YAML

Ansible Task

```
apiVersion: v1
kind: ConfigMap
metadata:
   name: foo
   namespace: default
data:
   color: red
```

```
---
- name: create foo configmap
k8s:
    definition:
        apiVersion: v1
        kind: ConfigMap
        metadata:
        name: foo
        namespace: default
        data:
        color: "{{ color }}"
```

Ansible Template

```
---
- name: create foo configmap
    k8s:
    definition: "{{ lookup('template', '/foo.yml') | from_yaml }}"
```

Ansible Role

- Packages related Ansible code for re-use
- Create a Role that deploys and manages your application
- Ansible Galaxy: central location to share Roles with the world

3. Ansible Playbook Bundle (APB)

Provisioning

- Create a full stack of cluster resources
 - o DB
 - API Service
 - Frontend
- Integrate with external services
 - Legacy applications
 - Traditional DB cluster
 - Appliances
- Post-install bootstrapping
 - Initialize a DB
 - Restore from backup
 - Create resources in the application

Requirements for Provisioning

Container

- Cluster assets
 - Manifest (YAML)
- External service assets
 - Location
 - Credentials
- Application assets
 - Seed data
 - Configuration
- Runtime tooling
 - Template engine
 - Config management
 - Application clients

Ansible Playbook Bundle

- Bundles everything you need at provision time
- Runs to completion as a pod in your cluster
- Testable and reproducible
 - Suitable for a full CI lifecycle

4. Service Catalog

Service Catalog

- Provides composable services to applications
- Actions
 - Provision / Deprovision
 - Bind / Unbind
- Self-service provisioning

Pivotal.

5. Automation Broker

Automation Broker

Service Bundles (APBs)

- Are Catalog entries
- Run to completion for each operation
- Run in a secure sandbox
- Remove need to make your own broker

\$ apb init lisa

apb.yml

```
version: 1.0
name: lisa
description: This is a sample application generated by apb init
bindable: False
async: optional
metadata:
  displayName: lisa
plans:
  - name: default
    description: This default plan deploys lisa
    free: True
    metadata: {}
    parameters: []
```

Ansible Playbook Bundle (APB) Definition

- Is a Service Bundle
- Ansible runtime
- Playbook per action
- Developer tooling available for simple, guided approach to APB creation
- Easily modified or extended
- Several example APB's available for popular RHSCL services

Kubernetes UX

\$ svcat get classes

mysql-persistent	MySQL database service, with persistent storage. For more information	f1a201f3-2365-11e8-aa33-68f72877eaca
	about using this template, including OpenShift considerations, see	
	https://github.com/sclorg/mysql-container/blob/master/5.7/root/usr/share/container-scripts/mysql/README.md.	
	NOTE: Scaling to more than one replica is not supported. You must have persistent volumes available in	
	your cluster to use this template.	
django-psql-persistent	An example Django application with a PostgreSQL database. For more information about using this template,	f1a7745e-2365-11e8-aa33-68f72877eaca
	including OpenShift considerations, see https://github.com/openshift/django-ex/blob/master/README.md.	
nodejs-mongo-persistent	An example Node.js application with a MongoDB database. For more information about using this template,	f1ab7d00-2365-11e8-aa33-68f72877eaca
	including OpenShift considerations, see https://github.com/openshift/nodejs-ex/blob/master/README.md.	
jenkins-pipeline-example	This example showcases the new Jenkins Pipeline integration in OpenShift, which performs continuous	f1ae9a44-2365-11e8-aa33-68f72877eaca
	integration and deployment right on the platform. The template contains a Jenkinsfile - a definition of	
	a multi-stage CI/CD process - that leverages the underlying OpenShift platform for dynamic and scalable	

Kubeapps

Charts

OpenShift UX

Status

- Great path for automated and self-service provisioning that works today.
- Off-cluster integration is the best use case.
- Lacks Day-2 management.
- Operators will take over as the preferred solution.
- Service Catalog will remain part of Kubernetes, and of course OpenShift, for the long term.

6. Operators

What is an Operator?

- Kubernetes Controller
- Deploys and manages an application
- Human operation knowledge in code

Extending the Kubernetes API

- You can define Custom Resources
- Choose what fields a user can "specify"

```
apiVersion: cache.example.com/v1alpha1
kind: Memcached
metadata:
   name: example-memcached
spec:
   size: 3
```

Spec To Parameters

Properly formatted custom resource

Ansible Operator

Spec values will be translated to Ansible extra vars.

Status will be a generic status defined by the operator. This will use ansible runner output to generate meaningful output for the user.

watches.yaml

Maps a Group Version Kind (GVK) to a role or playbook.

```
# watches.yaml
---

- version: v1alpha1
   group: cache.example.com
   kind: Memcached
   playbook: /path/to/playbook
```


- Helps you create an operator
- Write using Go, Ansible, or Helm
- https://github.com/operator-framework/operator-sdk/

Anatomy of Operator Image

From a base Ansible Operator image:

- Add watches.yaml, which is a mapping of Group-Version-Kinds to a playbook or role.
- Add one or more Ansible roles.

Using Ansible Operator

Use a base Ansible Operator image

- A user will need to add a config file, which is a mapping of Group-Version-Kinds to a playbook or role.
- Ansible operator will manage the watching and reconciliation of the resources by calling roles or playbooks.

Ansible Operator Image

Ansible code and config

Ansible Developer Experience
What does an Ansible Developer need to worry about

- Ansible Code
- Mapping File
- Custom Resource Definition

https://learn.openshift.com/operatorframework/

Questions?

http://automationbroker.io/ @autom8broker https://learn.openshift.com/operatorframework/

Michael Hrivnak

@michael_hrivnak

