CS 4920/5920 Applied Cryptography Spring 2018 <u>Assignment 3 – Solution</u>

Problem 1 -

4. First, pass the 64 bit input through PC - 1 to produce a 56 bit result. Then perform a left circular shift separately on the two 28 bit halves. Finally, pass the 56 bit result through PC - 2 to produce the 48 bit K_1 .:

in binary notation: 0000 1011 0000 0010 0110 0111

1001 1011 0100 1001 1010 0101

In hexadecimal notation: 0 B 0 2 6 7 9 B 4 9 A 5

b) L₀, R₀ are derived by passing the 64 – plaintext through IP:

$$L_0 = 1100 \ 1100 \ 0000 \ 0000 \ 1100 \ 1100 \ 1111 \ 1111 \qquad R_0 = 1111 \ 0000$$

1010 1010 1111 0000 1010 1010

c) The E table expands R_0 to 48 bits:

 $E(R_0) = 01110 100001 010101 010101 011110 100001 010101 010101$

d) A = 011100 010001 011100 110010 111000 010101 110011 110000

e)
$$s_1^{00}$$
 (1110) = s_1^{0} (14) = 0 (base 10) = 0000 (base 2) s_2^{01} (1000) = s_2^{1} (8) = 12 (base 10) = 1100 (base 2)

$$s_3^{00}$$
 (1110) = s_3^{0} (14) = 2 (base 10) = 0010 (base 2) s_4^{10} (1001) = s_4^{2} (9) = 1 (base 10) = 0001 (base 2)

$$s_5^{10}$$
 (1100) = s_5^{2} (12) = 6 (base 10) = 0110 (base 2)

$$s_6^{01}$$
 (1010) = s_6^{1} (10) = 13 (base 10) = 1101 (base 2)

$$s_7^{11}$$
 (1001) = s_7^{3} (9) = 5 (base 10) = 0101 (base 2) s_8^{10} (1000) =

 $s_8^2(8) = 0$ (base 10) = 0000 (base 2)

- g) Using table 4.2d, P(B) = 1001 0010 0001 1100 0010 0000 1001 1100

- h) $R_1 = 0101 1110 0001 1100 1110 1100 0110 0011$
- i) $L_1 = R_0$. The ciphertext is the concatenation of L_1 and R_1 .

Problem 2 -

a.)
$$4321 = 1234(3) + 619$$
 $1234 = 619(1) + 615$
 $619 = 615(1) + 4$
 $615 = 4(153) + 3$
 $4 = 3(1) + 13 = 1(3) + 0$

gcd(4321 , 1234) = 1

Thus, multiplicative inverse does exist

 $1 = 4 - 3(1)$
 $1 = 4 - (615 - 4*153)$
 $1 = 4*154 - 615$
 $1 = (619 - 615)*154 - 615$
 $1 = 619(154) - 615(155)$
 $1 = 619(154) - (1234 - 619*1)155$
 $1 = 619(154) - 1234(155) + 619(155)$
 $1 = 619(309) - 1234(155)$
 $1 = (4321 - 1234*3)(309 - 1234*155)$
 $1 = 4321(309) - 1234(927) - 1234(155)$
 $1 = 4321(309) + 1234(-1082)$
 $1 = 4321(309) + 1234(-1082)$
 $1 = 4321 - 1082$
 $= 4321 - 1082$
 $= 3239$

b.) $gcd(40902, 550) = 34 \neq 1$, so there is no multiplicative inverse.

Problem 3 –

(a)

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

X	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

w	-W	w-1
0	0	-
1	4	1
2	3	3
3	2	2
4	1	4
1		

(b)

Power Representation	Polynomial Representation	Binary Representation	Decimal (Hex) Representation
0	0	0000	0
g ⁰ (= g ¹⁵)	1	0001	1
g1	g	0010	2
g ²	g2	0100	4
g ³	g3	1000	8
g ⁴	g + 1	0011	3
g ⁵	$g^2 + g$	0110	6
g ⁶	g3 + g2	1100	12
g ⁷	$g^3 + g + 1$	1011	11
g ⁸	g ² + 1	0101	5
g ⁹	$g^3 + g$	1010	10
g10	$g^2 + g + 1$	0111	7
g11	$g^3 + g^2 + g$	1110	14
g12	$g^3 + g^2 + g + 1$	1111	15
g13	$g^3 + g^2 + 1$	1101	13
g14	g ³ + 1	1001	9

Problem 4 -

a)
$$\begin{bmatrix} x^3 + 1 & x \\ x & x^3 + 1 \end{bmatrix} \begin{bmatrix} 1 & x^2 \\ x^2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

To get the above result, observe that $(x^5 + x^2 + x) \mod (x^4 + x + 1) = 0$

b) It is easy to see that $x^4 \mod (x^4 + 1) = 1$. This is so because we can write:

$$x^4 = [1 \times (x^4 + 1)] + 1$$

Recall that the addition operation is XOR. Then, $x^8 \mod (x^4 + 1) =$

$$[x^4 \mod (x^4 + 1)] \times [x^4 \mod (x^4 + 1)]$$

$$= 1 \times 1$$

So, for any positive integer a, $x^{4a} \mod (x^4 + 1) = 1$. Now consider any integer i of the form $i = 4a + (i \mod 4)$. Then, $x^i \mod (x^4 + 1) = [(x^{4a})_x(x^{i \mod 4})] \mod (x^4 + 1)$ $= [x^{4a} \mod (x^4 + 1)]_x[x^{i \mod 4} \mod (x^4 + 1)]$ $= x^{i \mod 4}$

The same result can be demonstrated using long division.

Problem 5 -

5. a.

00	04	08	0C
01	05	09	0D
02	06	0A	0E
03	07	OB	OF

b.

~.			
01	05	09	0D
00	04	08	0C
03	07	OB	OF
02	06	0A	0E

c.

7C	6B	01	D7
63	F2	30	FE
7B	C5	2B	76
77	6F	67	AB

d.

7C	6B	01	D7
F2	30	FE	63
2B	76	7B	C5
AB	77	6F	67

e.

75	87	0F	B2
55	E6	04	22
3E	2E	B8	8C
10	15	58	0A