

Experimental and Theoretical Studies of Carbon Nanotube Hierarchical Structures in Multifunctional Hybrid Composites

Mrinal C. Saha

M. Cengiz Altan, D. Resasco, B. P. Grady, D. Papavassiliou, K. Mullen, A. Striolo

University of Oklahoma, Norman, OK

AFOSR Grant # FA9550-10-1-0031 (DEPSCoR'09)
Program Manager: Dr. Joycelyn Harrison

AFOSR Mechanics of Multifunctional Materials & Microsystems Program Review August 2, 2012, Washington, DC

Public reporting burden for the coll maintaining the data needed, and co- including suggestions for reducing VA 22202-4302. Respondents shot does not display a currently valid Co	ompleting and reviewing the collect this burden, to Washington Headqu ald be aware that notwithstanding a	tion of information. Send commen uarters Services, Directorate for Inf	ts regarding this burden estimate formation Operations and Reports	or any other aspect of to s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 02 AUG 2012		2. REPORT TYPE		3. DATES COVERED 00-00-2012 to 00-00-2012		
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER			
Experimental and	be Hierarchical	5b. GRANT NUMBER				
Structures in Multifunctional Hybrid Composites				5c. PROGRAM ELEMENT NUMB		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
			5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Oklahoma,660 Parrington Oval,Norman,OK,73019-0.				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/M NUMBER(S)	IONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for public		ion unlimited				
13. SUPPLEMENTARY NO Presented at the 2n Grantees'/Contract Microsystems Held ONR, and ARL. U.	d Multifunctional Material Meeting for A 30 July - 3 August	FOSR Program on 2012 in Arlington,	Mechanics of Mu VA. Sponsored by	ltifunctional		
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	31	RESI ONSIBLE FERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Introduction

Nanoscale reinforcement is locally segregated at the microscopic scale with controlled orientation

Objectives and Approaches

- Synthesis and investigate of the growth morphology of CNF and CNT nanostructures on CF
- Investigate the process parameters affecting nanostructure morphology
- Investigate the growth on mechanical properties and thermal conductivity
- Investigate heat transport behavior using multi-scale modeling approach

Synthesis of CNF on CF Using CVD

The LINIVERSITY of OKLAHOMA

Quartz reactor

Three zone oven with ceramic heating elements

Catalyst impregnated CFF

Preheat section of quartz granules to ensure even heating of gasses

Gas Flow Direction

2.5" x 6" CF

Oct In Co.

CFF with (top) 0, 30% and (bottom) 80% growth

- Precursors: Cu(NO₃)₂, Ni(NO₃)₂
- Cu:Ni= 1:9
- Deposition: Ion exchange vs. Spray
- Calcination: 300°C for 1 hr in Air
- Reduction: 500°C for 30 min in Hydrogen
- *Reaction*: 750°C for 30 minutes in Ethylene

SEM showing CNF growth

TEM confirms CNF

Catalyst Loading on CNF Growth

0.1 wt% catalyst

0.3 wt% catalyst

3.0 wt% catalyst

Reaction Time on CNF Growth

2.5, minutes

15 kV 500X 20 jum

5 minutes

20 minutes

30minutes

Hydrogen Dilution on CNF Growth

SEM image of growth from pure Ethylene

SEM image of growth from Ethylene/ Hydrogen mix

CVD of CNT Growth on CFs

SEM images at different stages of the growth process

- Precursors: Fe(NO₃)₃,
 (NH₄)₂MO₂O₇
- Fe:MO= 2:1
- Hand Spray
- Calcination: 300°C for 1 hr in Air
- Reduction: 500°C for 30 min in Hydrogen
- Reaction: 750°C for 30 minutes in Ethylene

Before calcination

After calcination

After growth

After reduction

CVD of CNT Growth on CFs

CNT growth performed at 750°C

SEM images showing CNTs growth at different magnification

TEM images confirm CNTs structure with tip growth

P

CVD of CNT Growth on CFs

The UNIVERSITY of OKLAHOMA

Comparison of two methods of catalyst deposition Spray

750°C Ultrasonic Atomizer

780°C

800°C

750°C

780°C

800°C

Effect of CNTs on Tensile Properties of Carbon Fiber The UNIVERSITY of OKLAHOMA

Bonded ends of the steel frame

DMA Q800

Steel shim frames used for mounting the fibers

Illustration of fiber surface flaws/irregularities filled with catalyst metals and/or CNTs

Effect of POSS Coating

CNT Characterization using TGA

Temperature (°C)

700

900

Universal V4.5A TA Instrument

TGA Q50 ceramic pan (500µL)
Sample: 18-20mg
Heated up to 100°C and
maintained at this set point for 30
min.

 Ramped to 800 °C at 2°C/min and air flow rate was maintained at 30mL/min

Measurement of Interfacial Properties

- Fiber: AR, TT, CNTB1, CNTB2, CNTB3 and CNTB4
- Resin: Araldite LY-1556/Aradur 2469 (curing agent (100:35)
- Force is ramped at 0.2N/min to 10N
- The frame window size (gauge length) was 12.70mm

Single Fiber vs. Fiber Bundle

Effect of CNTs on Interfacial Properties

Diameter and Embedded Length Measurement

Sample#1 Diameter: Method 1= 0.14793 mm Method 2= 0.15494 mm

Sample#2 Diameter: Method 1= 0.32211 mm Method 2= 0.27925 mm

SEM Micrographs showing the pullout hole and the embedded bundle fiber length: (a) AR (b) TT and (c) CNTF

Resin wall side: showing strips created by fiber surface

Resin wall side: showing pronounced strips created by fiber surface (due to the real treatment)

Resin wall side: showing irregular surface created by fiber surface

Embedded region showing resin interaction with the fiber no indication of CNTs presence

SEM Investigation of Pullout Fiber Bundle

Remains of CNTs on the fiber after the pullout

Thermal Conductivity Measurement

Lock-in-Amplifier

The UNIVERSITY of OKLAHOMA Wire-based 3ω Method

Experimental thermal impedance

$$T = QZ$$

$$Z = -\frac{4R^2bL}{V^3_{rms}} \frac{\partial R}{\partial T} V_{3\omega_rms}$$

Analytical thermal impedance

$$\hat{Z} = \int_{4\pi}^{4\pi} \frac{\sin(\chi)}{\chi^2} \frac{-b}{k_y \sqrt{\frac{k_x}{k_y} \chi^2 + \frac{i4\pi f b^2}{\alpha}}} d\chi$$

Thermal Conductivity of Composites

The UNIVERSITY of OKLAHOMA

Through-thickness direction

In-plane direction

Thermal Conductivity of Single fiber

• Lu's model (Lu *et al* 2001)

The UNIVERSITY of OKLAHOMA

	K (W/mK)		
Neat	14.4		
Heat Treated	15.5		
CNT Growth	18.1		

TC = 15.03 W/mK

TC = 21.06 W/mK

Effect of CNT Interface on TC

Functionalize the end of 1-D CNT structure with molecular chains of varying stiffness and mass density

An interface with the optimal variation of elasticity and mass as a function of position (top) transmits nearly all phonons (black line, bottom) better than either an abrupt interface (dotted line) or a linear variation (blue line)

One-layer coating

Two-layer coating

Effect of CNT Interface on TC

Amount of pristine, one-layer and two-layer of MWNTs is 0.5, 0.83 and 1.0 wt%, respectively, corresponding to 0.5wt% nanotube on nanotube basis

Amount of filler is 1.0 wt% for all three types of MWNTs on a total filler basis

Mesoscale Modeling of Thermal Conductivity (Monte-Carlo)

Worm-like CNTs in 3D

SEM of MWCNTs on ceramic filter. Lee et al., JPCC 111(51) 2007

Configuration of CNTs inside the computational box: random placement and random oriented

Modeling of Thermal Conductivity

Persistence length, L_n:

$$L_p = \frac{L^2}{(N-1)^2 \pi^2 \operatorname{var}(a_n)}$$

$$a_n \cong \sqrt{\frac{2}{L}} \sum_{k=1}^{N} \theta_k \Delta s_k \cos(\frac{n\pi}{L} s_k^{mid}), n = 1, ..., N - 1$$

Gittes F. et al., J. Cell Biology 1993, 120, 923-934

Modeling of Thermal Conductivity

L_p of pristine and 2-layer coating MWCNTs

Sample	pristine	2-layer coating
Average L _p (nm)	294.25	273.46
Stdev (nm)	174.90	195.21

 $L_{\rm p}$ MWCNTs \approx 271nm, Lee *et al., JPCC 111(51) 2007*

=> The SiO₂ coating did not alter the persistence length of MWCNTs

Modeling of Thermal Conductivity Monte-Carlo method

Average L _p (nm)	33.6	68.4	132.6	280.3	527.4
Critical angle (degree)	90	43.2	21.6	10.8	5.4

Effect of End-to-End Length

Average L _e (nm)	155	218	321	289	149
Average L _p (nm)	30	55	179	398	812
L _{contour} (nm)	750	600	450	300	150
Average $K_{ ext{eff}}/K_{ ext{m}}$	1.79	2.74	6.94	2.96	1.14
Var(K _{eff} /K _m)	0.42	0.39	1.09	0.41	0.03

 $L_{\text{end-to-end}} = f(L, L_{\text{p}})$ is the key nanotube length that affects the effective thermal conductivity (K_{eff}) .

Summary

- Uniform growth of CNFs and CNTs was achieved on large carbon fabric
- Catalyst loading, reaction time, catalyst deposition, and hydrogen dilution were found to affect the growth morphology
- Carbon fiber with CNT showed slight increase in tensile properties and thermal conductivity at both fiber and composite levels
- However, slight decrease in interfacial properties of CNT-grown fibers were due to non-uniform growth
- Step gradient interface modification of CNT showed slight improvement in thermal conductivity
- Effect of CNT wavyness seemed to affect thermal conductivity of nanocomposites

Acknowledgement

- J. Liang
- S. Adeoye
- K. Bui
- A. Fariz
- Dr. Guo
- Dr. Joycelyn Harrison
- Dr. Les Lee

Thank you!