集積回路設計 (INTEGRATED CIRCUIT DESIGN) 第13回

故障診断(6章)

故障モデル

故障の原因

- 縮退故障 (stuck-at-0/1)
- ブリッジ(短絡)故障
- 開放(オープン)故障
- 遅延故障

故障の数

- ■単一故障
- 複数故障

Y=0に固定

Y=1に固定

テストベクタ

- □ 例) f(A,B)=AB
 - $f_{l_2/0}(A,B) = A$
 - 配線/₂が0縮退故障 (stuck-at-0) の場合の論理関数
 - /₂=0と/₃=1は等価
 - □ fとf_{l₂/0}の違いが分かる入力=テストベクタ (検査パタン) → (A,B)=(1,1)
- □ 目標:なるべく少ないテストベクタでなるべく 多くの故障検出A B | f f_{b/0}

A
$$I_{1}$$
 I_{4} I_{2} I_{3} I_{4} I_{1} I_{2} I_{3} I_{4} I_{1} I_{2} I_{3} I_{4} I_{1} I_{2} I_{3} I_{4} I_{1} I_{2} I_{3} I_{2} I_{3} I_{2} I_{3} I_{3} I_{2} I_{3} I_{3} I_{2} I_{3} I_{3} I_{4} I_{2} I_{3} I_{2} I_{3} I_{3} I_{4} I_{2} I_{3} I_{4} $I_$

A
B
f
$$f_{l_2/0}$$

0
0
0

0
1
0
0

1
0
1
1

1
1
0
1

故障関数と故障差関数

- □ 正しい論理関数:*f*
- □故障論理関数
 - □ f_{//0}: 配線/が0縮退故障した場合の論理関数
 - □ f_{//1}: 配線/が1縮退故障した場合の論理関数
- □故障差関数
 - **□ d**_{I/0}=**f** ⊕ **f**_{I/0}: 論理関数**f**, **f**_{I/0}の差分
 - **□ d**_{//1}=**f** ⊕ **f**_{//1}: 論理関数**f**, **f**_{//1}の差分

回路の中は見られない→ 出力で観測 どんな入力で、出力で故障を観測できるか?

故障関数と故障差関数

- □ 例) f(A,B)=AB
 - $f_{l_2/0}(A,B) = A$
 - ■配線/₂が0縮退故障 (stuck-at-0) の場合の論理関数
 - ■fとf_{/2/0}の違いが分かる入力 → (A,B)=(1,1)
 - $f_{1/2/1}(A,B) = 0$
 - ■配線/₂が1縮退故障 (stuck-at-1) の場合の論理関数
 - ■fとf_{/2/1}の違いが分かる入力 → (A,B)=(1,0)

$\begin{array}{c c} A & I_1 \\ \hline B & I_2 \end{array}$	$\int \frac{I_4}{I_4} f(A,B) = A\overline{B}$
12 13	$d_{l_2/0}(A,B)=A\overline{B}\oplus A=AB$
	$d_{l_2/1}(A,B)=A\overline{B}\oplus 0=A\overline{B}$

Α	В	f	$f_{l_2/0}$	d _{12/0}	$f_{l_2/1}$	$d_{l_{2}/1}$
0	0	0	0	0	0	0
	1	0	0	0	0	0
1	0	1	1	0	0	1
1	1	0	1	1	0	0

を見られない

等価故障

- □ 出力で判断=どこの故障か区別できない場合が ある
 - 例)f(A,B)=ABでは故障全8パタンは4つの故障関数に分類

$$f_{11/0} = f_{12/1} = f_{13/0} = f_{14/0} = 0$$

$$\bullet$$
 $f_{11/1} = \overline{B}$

$$f_{12/0} = f_{13/1} = A$$

$$f_{|4/1} = 1$$

$$A \xrightarrow{I_1} I_2 f(A,B) = A\overline{B}$$

- □区別できない故障=等価故障
 - ■この例の場合4つを区別できれば良い

故障関数・故障検出パタン (例題)

- 下図に示す論理回路について、 以下をそれぞれ示せ
 - 1. 出力論理関数f(A,B)
 - 2. 信号線/が1縮退故障した場合 の故障論理関数f_{//1}(A,B)
 - 3. 故障差論理関数d_{//1}(A,B)
 - 4. 信号線Iの1縮退故障を検出す る故障検出パタン

冗長故障

- □ 故障論理関数がもとの正しい論理関数と等しい 場合
 - □起こっても問題ない故障=冗長故障
 - □その部分回路自体不要(=冗長)
 - ■故障診断をすることで、回路の 冗長性の検出・特定にも繋がる
 - □コスト vs. 冗長性(信頼性)は トレードオフ

Α	В	f	$f_{I/1}$	$f_{I/0}$			
0	0	0	1	0			
0	1	0	1	0			
1	0	1	1	1			
1	1	1	1	1			
· 検出可 検出不可							

故障検査パタン

- なるべく少ない検査パタンで なるべく多くの故障検出した い(最小ベクトル:NP困難)
 - ■どの故障(どの故障関数)か 判断できれば、修正や設計改 良ができる
 - $f_{11/0} = f_{12/1} = f_{13/0} = f_{14/0} = 0$
 - $\bullet f_{11/1} = \overline{B}$
 - $f_{12/0} = f_{13/1} = A$
 - $f_{|4/1} = 1$
 - ■検査パタンの組み 合わせで診断

故障があっても,回路が 正しく動作しているよう に見える入力 =故障検出には無意味

	故障	表	/	
АВ	I ₁ /0	I ₁ /1	/2/0	I ₄ /1
0 0	0	$1^{\; \mathcal{V}}$	0	1
0 1	0	0	0	0
1 0	1	0	0	0
1 1	00	0_	1	1_

- (A,B)=(1,1)で出力が1
 - → /₂/0 or /₄/1 (検出できるが区別不可)
 - → 他の検査パタンを併用して区別
- (A,B)=(1,1)で出力が0
 - → I₂/0 でも I₄/1でもない
 - → 別の検査パタンで他の故障を診断

故障診断

- □ 検査パタンが2つの故障を区別するためには, 以下の両方が成立
 - 1. どちらの故障も検出(=1)する検査パタンがある
 - 2. 片方の故障は正常(=0), もう片方の故障は異常 (=1)と判定する検査パタンがある

故障検出パタン導出法

配線/の0(1)縮退故障を検査する入力検査パタン=d_{I/0}(X)(d_{I/1}(X))を1にする入力パタンX

- $f_{1/0}(X) = g(X,0), f_{1/1}(X) = g(X,1)$
- $= d_{I/0}(X) = f(X) \oplus g(X,0)$ $= H(X)g(X,1) \oplus H(X)g(X,0) \oplus g(X,0)$
 - $= H(X)(g(X,1) \oplus g(X,0))$

論理関数の微分:Xの値の変化に より、hの値が変化する条件

g(X,H) | f(X)

$$\frac{dh(X,Y,Z)}{dX} = h(X,Y,Z) \oplus h(\overline{X},Y,Z)$$
$$= h(0,Y,Z) \oplus h(1,Y,Z)$$

故障検出パタン導出法

- □例) 配線/の0縮退故障
 - $\Box f(A,B)=g(A,B,H)=AH+BH$
 - $\square H(A,B)=AB$

- $d_{1/0} = H(A,B)(g(A,B,1) \oplus g(A,B,0))$ = AB((A+B) \oplus 0) = A \oplus B
- ■配線Iの0縮退故障の検出パタン: $d_{I/0}=1$ にするパタン $\rightarrow (A,B)=(1,0)$ or (0,1)
 - ■*H*=1の時, 配線/の0縮退故障と矛盾(異なるパタン)
 - ■正常ならf=1
 - ■配線/が0縮退故障を起こ すとf_{//0}=<mark>0</mark>を出力

確かに出力も矛盾 =配線Iの故障を検出可

Dアルゴリズム

- □検査パタンを導くアルゴリズム
 - 1. エラーを発生させる入力を考える
 - 2. エラー(の伝搬)を出力で観測できるパタンを考 える
 - 3. エラー(の伝搬)に関係ない信号は適当に定める

エラー信号の発生と伝搬

- エラー信号Dの発生
 - □//0の配線/に正常な論理値1が入る入力パタン

- □//1の配線/に正常な論理値0が入る入力パタン

故障検出の可能性

- □ Dの経路上の故障は検出可
 - ■経路上の故障は等価故障 の可能性が高い

- □ 故障表 (経路別:以下の例では5経路)
 - □入力:全8パタン
 - 6パタンで故障検 査可能

入力	経路番号/縮退故障									
	R_1		(R ₂)		R_3		R_4		R_5	
	/0	/1	/0	/1	/0	/1	/0	/1	/0	/1
(101)	1						1			
(110)	1		1							
(001)		1				1				
(010)		1								1
(100)				1				1		
(011)					1				1	