Problem 1

Discriminant analysis:

```
lda(CC ~ SSPG + IR + RW, data = diabetes)
Prior probabilities of groups:
       1
               2
0.2275862 0.2482759 0.5241379
Group means:
                IR
     SSPG
1 318.8788 106.0000 0.9839394
2 208.9722 288.0000 1.0558333
3 114.0000 172.6447 0.9372368
Coefficients of linear discriminants:
            LD1
SSPG -0.016193147 -0.002202638
                                                > classification.table.prob1;
ΙR
     0.004058614 -0.007450127
                                                    predict.lda.prob1
     2.393055796 -3.831511854
RW
                                                   1 26 4 3
Proportion of trace:
                                                   2 0 22 14
  LD1
       LD2
0.8238 0.1762
                                                   3 2 4 70
```

The number of miss classifications is 27. The misclassification rate is 0.1862.

Multinomial logistic regression: (Result from HW7 Prob4)

```
mlogit(formula = CC ~ 0 | IR + SSPG + RW, data = diab, reflevel = "3",
   method = "nr", print.level = 0)
Frequencies of alternatives:
        1
0.52414 0.22759 0.24828
nr method
7 iterations, 0h:0m:0s
g'(-H)^-1g = 0.00028
successive function values within tolerance limits
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
1:(intercept) -1.8446132 3.4634601 -0.5326 0.594316
2:(intercept) -7.6154166 2.3356317 -3.2605 0.001112 **
                                                                  > ctable;
          -0.0133537 0.0050193 -2.6605 0.007804 **
2:IR
            0.0035868 0.0023492 1.5268 0.126803
                                                                        Y.hat
            0.0455039 0.0092415 4.9239 8.486e-07 ***
1:SSPG
                                                                           1
                                                                                    3 Sum
2:SSPG
            0.0164141 0.0049819 3.2948 0.000985 ***
                                                                    1
                                                                          27
                                                                               3 3 33
            -5.8674627 3.8665785 -1.5175 0.129145
1:RW
                                                                    2
                                                                           0
                                                                               24 12 36
2:RW
             3.4727694 2.4461624 1.4197 0.155701
                                                                    3
                                                                           2
                                                                              5 69 76
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                    Sum 29 32 84 145
                                                                  > sum(diag(ctable)[-4])/diag(ctable)[4]
Log-Likelihood: -68.415
                                                                         Sum
McFadden R^2: 0.53805
Likelihood ratio test : chisq = 159.37 (p.value = < 2.22e-16)
                                                                  0.8275862
```

The number of miss classifications is 25. The misclassification rate is 0.1724.

Result of multinomial logistic regression is **slightly better** than result of discriminant analysis since the misclassification rate is lower for multinomial logistic regression.

Problem2

(a)

Based on the labeled scatter plot, they can be well-separated by a straight line.

```
(b)
Call:
lda(Completed.task ~ Training + Experience, data = systemAdmin)
Prior probabilities of groups:
No Yes
0.8 0.2

Group means:
    Training Experience
No 4.500000 6.013333
Yes 5.066667 9.946667

Coefficients of linear discriminants:
    LD1
Training 0.06009381
Experience 0.60173656
```

Result of discriminant analysis is above. Discriminant function scores and predicted probabilities to classify the 75 observations are shown at next page.

discriminant discriminant		predicted probabilities	predicted probabilities	
	function scores	No Yes	No Yes	
LD1	LD1	1 0.061849281 0.9381507186	41 0.990517290 0.0094827101	
1 2.43026237	41 -0.63859410	2 0.218486079 0.7815139215	42 0.985447705 0.0145522953	
2 1.82852581	42 -0.45807313	3 0.092337951 0.9076620489	43 0.991785537 0.0082144629	
3 2.24958171	43 -0.69892745	4 0.000864128 0.9991358720	44 0.999179476 0.0008205242	
	44 -1.66154626	5 0.244295124 0.7557048762	45 0.997400293 0.0025997068	
4 4.23531237 5 1.76803277	45 -1.18047639	6 0.007493041 0.9925069593	46 0.853129264 0.1468707360	
		7 0.790233222 0.2097667778	47 0.948588724 0.0514112760	
	46 0.56487903	8 0.542444802 0.4575551975	48 0.998904892 0.0010951082	
7 0.74524030	47 0.08348978	9 0.119573312 0.8804266885	49 0.985447705 0.0145522953	
8 1.22678925	48 -1.54119894	10 0.031021561 0.9689784387	50 0.997398304 0.0026016959	
9 2.12923440	49 -0.45807313	11 0.646479188 0.3535208122	51 0.955194657 0.0448053432	
10 2.73113065	50 -1.18015701	12 0.434572072 0.5654279281	52 0.995992519 0.0040074811	
11 1.04626828	51 0.02331612	13 0.011520012 0.9884799879	53 0.960986690 0.0390133098	
12 1.40731022	52 -0.99963604	14 0.885775540 0.1142244600	54 0.990517290 0.0094827101	
13 3.15202686	53 -0.03685754	15 0.948588724 0.0514112760	55 0.998311789 0.0016882105	
14 0.44453171	54 -0.63859410	16 0.997398304 0.0026016959	56 0.932527460 0.0674725395	
15 0.08348978	55 -1.36067798	17 0.922876783 0.0771232171	57 0.995992519 0.0040074811	
16 -1.18015701	56 0.20383709	18 0.996995145 0.0030048545	58 0.996529731 0.0034702692	
17 0.26385105	57 -0.99963604	19 0.997747494 0.0022525065	59 0.434572072 0.5654279281	
18 -1.11998335	58 -1.05980969	20 0.998734898 0.0012651023	60 0.998049908 0.0019500923	
19 -1.24033066	59 1.40731022	21 0.999052065 0.0009479349	61 0.985453202 0.0145467981	
20 -1.48102529		22 0.980666772 0.0193332283	62 0.813120962 0.1868790382	
	61 -0.45823282	23 0.998049908 0.0019500923	63 0.999289774 0.0007102265	
	62 0.68522634	24 0.995992519 0.0040074811	64 0.980666772 0.0193332283	
	63 -1.72171991	25 0.542444802 0.4575551975	65 0.970487871 0.0295121286	
	64 -0.33772582	26 0.991785537 0.0082144629	66 0.974356011 0.0256439895	
25 1.22678925	65 -0.15720485	27 0.994657140 0.0053428603	67 0.853225319 0.1467746807	
	66 -0.21737851	28 0.991782413 0.0082175871	68 0.974356011 0.0256439895	
27 -0.87928873		29 0.870324186 0.1296758142	69 0.765213526 0.2347864737	
28 - 0.69876776		30 0.999891356 0.0001086440	70 0.989059546 0.0109404543	
	69 0.80557365	31 0.966056588 0.0339434115	71 0.992879964 0.0071200355	
	70 -0.57842044	32 0.977737137 0.0222628633	72 0.980681305 0.0193186953	
	71 -0.75894141	33 0.961001062 0.0389989379	73 0.970498851 0.0295011494	
	72 -0.33804521	34 0.999601377 0.0003986229	74 0.999467905 0.0005320951	
	73 -0.15736454 74 -1.84206723		75 0.995372531 0.0046274695	
		36 0.994657140 0.0053428603		
	75 -0.93946238	37 0.899632823 0.1003671773		
36 -0.87928873		38 0.885775540 0.1142244600		
37 0.38419836		39 0.578115515 0.4218844846		
38 0.44453171				

```
> classification.table.prob2;
     predict.lda.prob2
     No Yes
 No 58
          2
 Yes 5 10
> classification.rate.prob2 = sum(diag(classification.table.prob2)[1:2])/n;
> classification.rate.prob2
[1] 0.9066667
> misclassification.rate.overall = 1-classification.rate.prob2;
> misclassification.rate.overall
[1] 0.09333333
> mislcassification.rate.YES = 5/n
> mislcassification.rate.YES
[1] 0.06666667
> mislcassification.rate.NO = 2/n
> mislcassification.rate.NO
[1] 0.02666667
```

Following table gives misclassification rate for over and each group.

	Overall	Group YES	Group No
Misclassification rate	0.09333333	0.333	0.0333

The systems administrator will not complete tasks. It is classified to group Completed_tasks = No

(d)

Prior probabilities of group: No: 60/75; Yes: 0.2. Under the prior probabilities, we got a classification table, which is in (b):

```
predict.lda.prob2.d
No Yes
No 58 2
Yes 5 10
```

The posterior probability is conditional probability density function for x being a member of group j. **Posterior probability of group: No: 63/75; Yes: 12/75.**

```
Call:
lda(Completed.task ~ Training + Experience, data = systemAdmin,
   prior = c(63/75, 12/75))
Prior probabilities of groups:
 No Yes
0.84 0.16
Group means:
   Training Experience
No 4.500000 6.013333
Yes 5.066667 9.946667
                                                                      predict.lda.prob2.d
Coefficients of linear discriminants:
                                                                       No Yes
                 LD1
                                                                      59
Training 0.06009381
                                                                             1
Experience 0.60173656
                                                                  Yes 6
```

I got a new classification table. The overall misclassification rate is 0.0933, which is same to (b). So, **overall misclassification rate does not change**.

	Overall	Group YES	Group No
Misclassification rate	0.09333333	0.4	0.0166

Comparing misclassification rate for each group between (b) and (d). For group Yes, the misclassification rate goes up from 0.333 to 0.4; for group No, the misclassification rate goes down from 0.033 to 0.0166.

Problem 3

```
> summary(fit.poisson)
glm(formula = Y ~ N, family = "poisson", data = injury)
                                                            > summary(fit.lq)
Deviance Residuals:
                                                            Call:
    Min
              10
                    Median
                                  30
                                          Max
                                                            lm(formula = Y \sim N, data = injury)
-1.81894 -1.69082 0.06495 1.02407
                                       2.06811
                                                            Residuals:
Coefficients:
                                                                Min
                                                                         1Q Median
                                                                                         30
                                                                                               Max
          Estimate Std. Error z value Pr(>|z|)
                                                            -5.3351 -2.1281 0.1605 2.2670 5.6382
(Intercept) 0.8945 0.3265 2.739 0.00615 **
             8.5018
                       2.1575 3.941 8.13e-05 ***
N
                                                            Coefficients:
                                                                        Estimate Std. Error t value Pr(>|t|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                                                            (Intercept) -0.1402
                                                                                    3.1412 -0.045 0.9657
                                                                                   25.1959 2.579 0.0365 *
                                                            N
                                                                         64.9755
(Dispersion parameter for poisson family taken to be 1)
                                                            Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Null deviance: 31.859 on 8 degrees of freedom
Residual deviance: 16.291 on 7 degrees of freedom
                                                            Residual standard error: 4.201 on 7 degrees of freedom
AIC: 52.251
                                                            Multiple R-squared: 0.4872, Adjusted R-squared: 0.4139
                                                            F-statistic: 6.65 on 1 and 7 DF, p-value: 0.03654
Number of Fisher Scoring iterations: 5
```

```
> summary(fit.tlq)
Call:
lm(formula = sqrt(Y) \sim N, data = injury)
Residuals:
   Min 1Q Median
                          3Q
                                Max
-0.9690 -0.7655 0.1906 0.5874 1.0211
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.1692 0.5783 2.022 0.0829 .
                                                       > SSE.poisson
          11.8564
                    4.6382 2.556 0.0378 *
N
                                                         [1] 117.3472
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > SSE.lq
                                                          [1] 123.5302
Residual standard error: 0.7733 on 7 degrees of freedom
Multiple R-squared: 0.4828, Adjusted R-squared: 0.4089 > SSE.tlq
                                                        [1] 393.9632
F-statistic: 6.535 on 1 and 7 DF, p-value: 0.03776
```

Summary of Poisson regression, Least Squares fit (lq) and Transformed Least Squares fit (tlq) are shown above. For poisson fit, predictor N is highly significant; for lq fit and tlq fot, N is still significant in these two models. To compare these three models, I get their SSE: SSE for poisson is 117.3472 and SSE for Least Squares fit is 123.5302. Since response variable Y is a count variable, which poisson regression is good at. SSE(poisson) < SSE(lq) tells Poission models fits the data better than does the linear regression model.

After transformed Y into sqrt(Y), the response variable has a normal distribution. SSE(tlq) = 393.9632 is far larger than SSE(Poisson) = 117.3472. The SSE indicates that the poisson model still fits the data better.

Therefore, Poisson model provides the best description of the date since it has the smallest SSE.

Problem 4

$$f(y; \mu) = \frac{1}{\mu} \exp\left(-\frac{y}{\mu}\right) = \exp\left(\ln\left(\frac{1}{\mu}\right)\right) \exp\left(-y * \frac{1}{\mu}\right) = \exp\left(-\ln(\mu) - y * \frac{1}{\mu}\right)$$

So I can get: a(y) = -y, $b(\mu) = \frac{1}{\mu}$, c(y) = 0, $d(\mu) = -\ln(\mu)$. It belongs to the exponential family. Natural link function for this distribution: $g(\mu) = b(\mu) = \frac{1}{\mu}$.