Analysis of Algorithms

Chapter 3

CPTR 318

Algorithm

- An algorithm is a clearly specified set of instructions a computer follows to solve a problem
 - □ The number of instructions is finite
 - Each instruction must be executable in a finite amount of time
 - Each instruction must be unambigous

2

Algorithm Analysis: Technique #1

- Performance could be analyzed by using:
 - Actual Space requirements
 - Instruction and Data space

Algorithm Analysis: Technique #2

- Actual Time requirements
 - The above method depends on the particular compiler as well as the specific computer on which the program is run

Algorithm Analysis: Technique #3

- One way to analyze algorithms is to count all the instructions or steps in the algorithm
- Generally we discuss the algorithm's efficiency as a function of the number of elements to be processed. The general format that we will use is

f(n) = efficiency

Counting Steps

- If the algorithm does not have loops that depend on the number of elements to be processed then the number of steps is a constant.
 - ${\color{red}\textbf{_}} \ f(n) = c$
 - c is a constant

Counting Steps

- A primitive execution consists of assignment, arithmetic, comparison, array access, function call, function return, etc.
- One C++ statement may contain several primitive executable steps

```
x = a + 3;  // Two steps
x = a[i] + 3;  // Three steps
return x > 3;  // Two steps
```

- ++, --, +=, etc. count as two (arithmetic and assignment)
- We will not count non-executable statements, such as declarations

```
counting Steps: Example #1

int f(int x) {
   int c, result;
   c = x + 5;
   if (c > 10)
       result = c;
   or 1

else
   result = x;
   return result;
}
```

Counting Steps

- If the algorithm has only sequential instructions and simple counting loops and at least one loop depends on the number of elements to be processed then
 - f(n) = an + b, where a and b are constants
 - Example: Sequential search

```
Counting Steps: Example #2

int f(int n) {
  int i = 1,
    s = 0;
  while (i <= n) {
    n+1
    n+1
```

Counting Steps

- If the algorithm contains in addition to the previous slide a nested counting loop where both loops depend on the number of elements to be processed then
 - $f(n) = an^2 + bn + c$
 - □ Example: Selection Sort
- In general a polynomial efficiency depends on the number of nested loops present:

```
 f(n) = a_m n^m + a_{m-1} n^{m-1} + a_{m-2} n^{m-2} + \dots + a_1 n + a_0
```

11

Counting Steps

- Logarithmic loops.
 - These are algorithms whose efficiency contain the log function

```
Example: Binary Search
while ( n > 0 ) {
   Application code ...
   n = n / 2
}
- f(n) = a log<sub>2</sub> n + c
```

Best, Worst, Average

- When counting the steps for the efficiency function we have sometimes to consider the best, worst and average cases
 - Example: Sequential search

```
// Returns the index of seek within vec
// Returns -1 if seek is not an element of vec
int find(const vector<int>6 vec, int seek) {
  int n = vec.size();
  for (int i = 0; i < n; i++)
    if (vec[i] == seek)
      return i;
  return -1; // Not found
}</pre>
```

Algorithm Analysis: Technique #4

- Big-O notation gives a general order of magnitude to compare algorithms.
 - It capture the most dominant term in a function
- It gives us an upper limit to compare the algorithms
- Classify algorithms as belonging to a family of algorithms

4

Growth Rates

n	$f(n) = n^2$	$f(n) = n^2 + 4n + 20$		
10	100	160		
100	10,000	10,420		
10,000	100,000,000	100,040,020		

Big-O Definition

f(n) = O(g(n)) iff positive constants c and n_0 exist such that:

 $f(n) \le cg(n)$ for all $n \ge n_0$

6

Big-O Definition

f(n) = O(g(n)) iff positive constants c and n_0 exist such that:

 $f(n) \le cg(n)$ for all $n \ge n_0$

f grows at about the rate as g

Big-O Definition

f(n) = O(g(n)) iff positive constants c and n_0 exist such that:

 $f(n) \le cg(n)$ for all $n \ge n_0$

f grows at about the rate as g

O bounds from above

Examples

Consider f(n) = 3n + 2.

Examples

Consider f(n) = 3n + 2.

f(n)

20

Examples

Consider f(n) = 3n + 2.

f(n) = 3n + 2

Examples

Consider f(n) = 3n + 2.

$$f(n) = 3n + 2 \le 3n + 2n$$

22

Examples

Consider f(n) = 3n + 2.

 $f(n) = 3n + 2 \le 3n + 2n = 5n$, for all $n \ge 1$.

Examples

Consider f(n) = 3n + 2.

 $f(n) = 3n + 2 \le 3n + 2n = 5n$, for all $n \ge 1$.

Therefore f(n) = O(n)

Examples

Consider
$$f(n) = 3n + 2$$
.
 $c = 5$
 $f(n) = 3n + 2 \le 3n + 2n = 5n$, for all $n \ge 1$.
Therefore $f(n) = O(n)$

25

Inductive Proof

Show $3n + 2 \le 5n$, for all $n \ge 1$

27

Inductive Proof

Show $3n + 2 \le 5n$, for all $n \ge 1$ Basis: n = 1

Inductive Proof

Show $3n + 2 \le 5n$, for all $n \ge 1$ Basis: n = 13(1) + 2

29

Inductive Proof

Show $3n + 2 \le 5n$, for all $n \ge 1$ Basis: n = 13(1) + 2 = 5

30

Inductive Proof

Show $3n+2 \le 5n$, for all $n \ge 1$ Basis: n=1 $3(1)+2=5 \le 5$

Show $3n + 2 \le 5n$, for all $n \ge 1$ Basis: n = 1 $3(1) + 2 = 5 \le 5 = 5(1)$ **Inductive Proof**

Show $3n+2 \le 5n$, for all $n \ge 1$ Basis: n = 1 $3(1) + 2 = 5 \le 5 = 5(1)$

22

Inductive Proof

Show $3n+2 \le 5n$, for all $n \ge 1$ Basis: n = 1

 $3(1) + 2 = 5 \le 5 = 5(1)$

Inductive Proof

Show $3n + 2 \le 5n$, for all $n \ge 1$

Basis: n = 1 $3(1) + 2 = 5 \le 5 = 5(1)$

Induction: Show $P(k) \rightarrow P(k+1)$

35

Inductive Proof

Show $3n + 2 \le 5n$, for all $n \ge 1$

Basis: n = 1

 $3(1) + 2 = 5 \le 5 = 5(1)$

Induction: Show $P(k) \rightarrow P(k+1)$

3(n+1) + 2

Inductive Proof

Show $3n + 2 \le 5n$, for all $n \ge 1$

Basis: n = 1

 $3(1) + 2 = 5 \le 5 = 5(1)$

Induction: Show $P(k) \rightarrow P(k+1)$

3(n+1)+2=(3n+3)+2 (distributive property)

3(n+1) + 2 = (3n+3) + 2

Show $3n+2 \le 5n$, for all $n \ge 1$ Basis: n=1 $3(1)+2=5 \le 5=5(1)$ Induction: Show $P(k) \to P(k+1)$

3.8

Inductive Proof

Show $3n+2 \le 5n$, for all $n \ge 1$ Basis: n=1 $3(1)+2=5 \le 5=5(1)$ Induction: Show $P(k) \to P(k+1)$ 3(n+1)+2=(3n+3)+2=3n+2+3 (commutative property)

Inductive Proof

Show $3n + 2 \le 5n$, for all $n \ge 1$ Basis: n = 1 $3(1) + 2 = 5 \le 5 = 5(1)$ Induction: Show $P(k) \rightarrow P(k+1)$ 3(n+1) + 2 = (3n+3) + 2= 3n+2+3

40

Inductive Proof

Show $3n+2 \le 5n$, for all $n \ge 1$ Basis: n=1 $3(1)+2=5 \le 5=5(1)$ Induction: Show $P(k) \to P(k+1)$ 3(n+1)+2=(3n+3)+2=3n+2+3

Inductive Proof

Show $3n+2 \le 5n$ for all $n \ge 1$ Basis: n=1 $3(1)+2=5 \le 5=5(1)$ Induction: Show $P(k) \to P(k+1)$ 3(n+1)+2=(3n+3)+2=3n+2+3 $\le 5n+3$ (inductive hypothesis)

42

Inductive Proof

Show $3n + 2 \le 5n$, for all $n \ge 1$ Basis: n = 1 $3(1) + 2 = 5 \le 5 = 5(1)$ Induction: Show $P(k) \to P(k+1)$ 3(n+1) + 2 = (3n+3) + 2= 3n+2+3 $\le 5n+3$

```
Show 3n + 2 \le 5n, for all n \ge 1
Basis: n = 1
3(1) + 2 = 5 \le 5 = 5(1)
Induction: Show P(k) \to P(k+1)
3(n+1) + 2 = (3n+3) + 2
= 3n + 2 + 3
\le 5n + 3
\le 5n + 5 (3 \le 5)
```

Inductive Proof

```
Show 3n + 2 \le 5n, for all n \ge 1
Basis: n = 1
3(1) + 2 = 5 \le 5 = 5(1)
Induction: Show P(k) \to P(k+1)
3(n+1) + 2 = (3n+3) + 2
= 3n+2+3
\le 5n+3
\le 5n+5
```

Inductive Proof

```
Show 3n + 2 \le 5n, for all n \ge 1
Basis: n = 1
3(1) + 2 = 5 \le 5 = 5(1)
Induction: Show P(k) \to P(k+1)
3(n+1) + 2 = (3n+3) + 2
= 3n+2+3
\le 5n+3
\le 5n+5
= 5(n+1) (distributive property)
```

Inductive Proof

```
Show 3n + 2 \le 5n, for all n \ge 1
Basis: n = 1
3(1) + 2 = 5 \le 5 = 5(1)
Induction: Show P(k) \rightarrow P(k+1)
3(n+1) + 2 = (3n+3) + 2
= 3n + 2 + 3
\le 5n + 3
\le 5n + 5
= 5(n+1)
```

Inductive Proof

```
Show 3n+2 \le 5n, for all n \ge 1
Basis: n = 1
3(1) + 2 = 5 \le 5 = 5(1)
Induction: Show P(k) \to P(k+1)
3(n+1) + 2 = (3n+3) + 2
= 3n+2+3
\le 5n+3
\le 5n+5
= 5(n+1)
```

Inductive Proof

```
Show 3n+2 \le 5n for all n \ge 1
Basis: n = 1
3(1) + 2 = 5 \le 5 = 5(1)
Induction: Show P(k) \to P(k+1)
3(n+1)+2 = (3n+3)+2
= 3n+2+3
\le 5n+3
\le 5n+5
= 5(n+1)
```

Show $3n + 2 \le 5n$, for all $n \ge 1$

Basis: n = 1

$$3(1) + 2 = 5 \le 5 = 5(1)$$

Induction: Show $P(k) \rightarrow P(k+1)$

$$3(n+1) + 2 = (3n+3) + 2$$

$$=3n+2+3$$

 $\leq 5n + 3$

 $\leq 5n + 5$

=5(n+1)

Examples

• Example 2: Is $2^{n+2} = O(2^n)$?

• Example 3: Is $3n + 2 = O(n^2)$?

1

Examples

Prove that $10n^2 + 4n + 2 \neq O(n)$.

52

Examples

Prove that $10n^2 + 4n + 2 \neq O(n)$. Suppose $10n^2 + 4n + 2 = O(n)$ then there exists a positive c and a n_0 such that $10n^2 + 4n + 2 \leq cn$, for all $n \geq n_0$.

53

Examples

Prove that $10n^2 + 4n + 2 \neq O(n)$.

Suppose $10n^2+4n+2=\mathrm{O}(n)$ then there exists a positive c and a n_0 such that $10n^2+4n+2\leq cn$, for all $n\geq n_0$. Dividing both sides by n we get $10n+4+2/n\leq c$ for all $n\geq n_0$ This is a false statement because as $n\to\infty$, $10n+4+2/n\to\infty$ which cannot be less than c. Therefore $10n^2+4n+2\neq \mathrm{O}(n)$.

54

Helpful Theorems

Theorem1: if $f(n) = a_m n^m + ... a_1 n + a_0$ and $a_m > 0$ then $f(n) = O(n^m)$

Theorem2 (Big O ratio theorem): Let f(n) and g(n) be such that $\lim_{n\to\infty} f(n)/g(n)$ exists. f(n) = O(g(n)) iff $\lim_{n\to\infty} f(n)/g(n) \le c$ for some finite positive constant c.

Example

- Example 1: 3n + 2 = O(n) because as $n \to \infty$ $(3n + 2)/n \to 3$.
- Example 2: $3n^2 + 5 \neq O(n)$ because as $n \rightarrow \infty$ $(3n^2 + 5)/n \rightarrow \infty$.

Big-Omega Definition

 $f(n) = \Omega(g(n))$ iff positive constants c and n_0 exist such that:

 $cg(n) \le f(n)$ for all $n \ge n_0$.

57

Big-Omega Definition

 $f(n) = \Omega(g(n))$ iff positive constants c and n_0 exist such that:

 $cg(n) \le f(n)$ for all $n \ge n_0$. g grows at about the rate as f

58

Big-Omega Definition

 $f(n) = \Omega(g(n))$ iff positive constants c and n_0 exist such that:

 $cg(n) \le f(n)$ for all $n \ge n_0$. g grows at about the rate as f

Big Theta Definition

 $f(n) = \Theta(g(n))$ iff positive constants c_1 , c_2 , and n_0 exist such that:

 $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_0$.

Big Theta Definition

 $f(n) = \Theta(g(n))$ iff positive constants c_1 , c_2 , and n_0 exist such that:

 $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_0$.

Big Theta Definition

 $f(n) = \Theta(g(n))$ iff positive constants c_1 , c_2 , and n_0 exist such that:

$$c_1g(n) \le f(n) \le c_2g(n)$$
 for all $n \ge n_0$.

Big Theta Definition

 $f(n) = \Theta(g(n))$ iff positive constants c_1 , c_2 , and n_0 exist such that:

$$c_1g(n) \le f(n) \le c_2g(n) \text{ for all } n \ge n_0.$$

Θ Example

$$n^2 + 4n + 20 = \Theta(?)$$

Θ Example

$$n^2 + 4n + 20 = \Theta(?)$$

$$1n^2 \le n^2 + 4n + 20 \le 25n^2$$
 for all $n \ge 1$

Θ Example

$$n^2 + 4n + 20 = \Theta(?)$$

$$1n^2 \le n^2 + 4n + 20 \le 25n^2$$
 for all $n \ge 1$

$$1n^2 \le n^2 + 4n + 20 \le n^2 + 4n^2 + 20n^2 = 25n^2$$

Θ Example

$$n^2 + 4n + 20 = \Theta(?)$$

$$1n^2 \le n^2 + 4n + 20 \le 25n^2$$
 for all $n \ge 1$

Θ Example

$$n^2 + 4n + 20 = \Theta(?)$$
 c_1
 $1n^2 \le n^2 + 4n + 20 \le 25n^2$ for all $n \ge 1$
 $c_1 = 1$

Θ Example

$$n^2 + 4n + 20 = \Theta(?)$$
 C_1
 C_2
 $1n^2 \le n^2 + 4n + 20 \le 25n^2$ for all $n \ge 1$
 $c_1 = 1$
 $c_2 = 25$

Θ Example

$$n^{2} + 4n + 20 = \Theta(?)$$

$$C_{1} \qquad C_{2} \qquad n_{0}$$

$$1n^{2} \leq n^{2} + 4n + 20 \leq 25n^{2} \quad \text{for all } n \geq 1$$

$$c_{1} = 1$$

$$c_{2} = 25$$

$$n_{0} = 1$$

Θ Example

$$n^2 + 4n + 20 = \Theta(?)$$
 c_1
 c_2
 $1n^2 \le n^2 + 4n + 20 \le 25n^2$ for all $n \ge 1$
 $c_1 = 1$
 $c_2 = 25$
 $n_0 = 1$

Θ Example

$$n^2 + 4n + 20 = \Theta(?)$$

$$1n^2 \le n^2 + 4n + 20 \le 25n^2 \quad \text{for all } n \ge 1$$

$$c_1 = 1$$

$$c_2 = 25$$

$$n_0 = 1$$

Θ Example

$$1n^2 \le n^2 + 4n + 20 \le 25n^2$$
 for all $n \ge 1$
$$c_1 = 1$$

$$c_2 = 25$$

$$n_0 = 1$$

 $n^2 + 4n + 20 = \Theta(n^2)$

$$\Theta$$
 Example

$$n^2 + 4n + 20 = \Theta(n^2)$$

$$1n^2 \le n^2 + 4n + 20 \le 25n^2 \quad \text{for all } n \ge 1$$

$$c_1 = 1$$

$$c_2 = 25$$

$$n_0 = 1$$

Θ Example, revisited

$$n^2 + 4n + 20 = \Theta(n^2)$$

$$1n^2 \le n^2 + 4n + 20 \le 25n^2$$
 for all $n \ge 1$
 $c_1 = 1$ $c_2 = 25$ $n_0 = 1$

$$1n^2 \le n^2 + 4n + 20 \le 1.1n^2$$
 for all $n \ge 44.5$
 $c_1 = 1$ $c_2 = 1.1$ $n_0 = 44.5$

Θ Example, revisited

$$n^2 + 4n + 20 = \Theta(n^2)$$

$$c_1 = 1$$
 $c_2 = 25$ $n_0 = 1$

$$c_1 = 1$$
 $c_2 = 1.1$ $n_0 = 44.5$

$$c_1 = 1$$
 $c_2 = 1.0001$ $n_0 = 40,005$

Example

- Example 1: Prove that $f(n) = 3n + 2 = \Theta(n)$ We have already shown that f(n) = O(n).
- We just need to prove that f(n) is $\Omega(n)$. That is to show that $cg(n) \le f(n)$ $n \ge n_0$.
- This is easy because $n \le 3n + 2$ for all $n \ge 0$
- Example 2: Prove that $3n + 3 \neq \Theta(n^2)$

95

More Helpful Theorems

Theorem: if $f(n) = a_m n^m + ... a_1 n + a_0$ and $a_m > 0$ then $f(n) = \Theta(n^m)$

Theorem (Ratio for Θ): Let f(n) and g(n) be such that $\lim_{n\to\infty} f(n)/g(n)$ and $\lim_{n\to\infty} g(n)/f(n)$ exist then $f(n)=\Theta\left(g(n)\right)$ iff $\lim_{n\to\infty} f(n)/g(n) \le c$ and $\lim_{n\to\infty} g(n)/f(n) \le c$ for some finite positive constant c.

96

Polynomial Functions and Θ

Theorem:

If
$$f(n) = a_m n^m + ... a_1 n + a_0$$
 and $a_m > 0$,
then $f(n) = \Theta(n^m)$.

Ratio Theorem for O

Let

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$$

where c is a constant or ∞ .

- If $0 \le c < \infty$, then f(n) = O(g(n))
- If $0 < c \le \infty$, then $f(n) = \Omega(g(n))$
- If $0 < c < \infty$, then $f(n) = \Theta(g(n))$

Example

■ $3n + 2 = \Theta(n)$ because as $n \to \infty$ (3n + 2)/n = 3and as $n \to \infty$ $n/(3n + 2) = 1/3 \le 3$.

Little o Definition

$$f(n) = o(g(n))$$
 iff $f(n) = O(g(n))$ and
$$f(n) \neq \Theta(g(n))$$

100

Little o Definition

$$f(n) = o(g(n))$$
 iff $f(n) = O(g(n))$ and $f(n) \neq \Theta(g(n))$

$$n^2 + 4n + 20 = O(n^2)$$
 and $n^2 + 4n + 20 = \Theta(n^2)$, so $n^2 + 4n + 20 \neq o(n^2)$

Little o Definition

$$f(n) = o(g(n))$$
 iff $f(n) = O(g(n))$ and $f(n) \neq \Theta(g(n))$

$$5n + 3 = O(n^2)$$
 but $5n + 3 \neq O(n^2)$, so $5n + 3 = o(n^2)$

102

Meaning of the various growth functions

Mathematical Expression	Relative Rates of Growth		
$f(n) = \mathcal{O}(g(n))$	$f(n) \le g(n)$		
$f(n) = \Omega(g(n))$	$f(n) \ge g(n)$		
$f(n) = \Theta(g(n))$	f(n) = g(n)		
f(n) = o(g(n))	f(n) < g(n)		

Common asymptotic functions

- In order of magnitude
 - 1.
 - log n
 - 3. **I**
 - 4. $n \log n$
 - 5. n²
 - 7. 2^n
 - 8. n!

Common asymptotic functions

In order of magnitude

- 1. Array or vector access
- log n
- 3. n
- 4. $n \log n$
- 5. n²
- 6. n³
- 7. 2^n
- 8. n!

106

Common asymptotic functions

In order of magnitude

- Array or vector access
- 2. $\log n$ Binary search
- 3. n
- 4. $n \log n$
- 5. n^2
- 6 n
- 7. 2ⁿ
- 8. n!

407

Common asymptotic functions

In order of magnitude

- 1. Array or vector access
- 2. $\log n$ Binary search
- 3. n Sequential search, verifying ordering
- 4. $n \log n$
- 5. n^2
- 6. n^3
- 7. 2^n
- 8. n!

Common asymptotic functions

In order of magnitude

- 1. Array or vector access
- 2. $\log n$ Binary search
- 3. n Sequential search, verifying ordering
- 4. $n \log n$ Fast sorting
- 5. n^2
- 6. *n*³
- 7. 2^n
- 8. n!

109

Common asymptotic functions

In order of magnitude

- 1. 1 Array or vector access
- 2. $\log n$ Binary search
- n Sequential search, verifying ordering
- 4. $n \log n$ Fast sorting
- 5. n^2 Simple sorting, shortest path
- 6. n^3
- 7. 2^n
- 8. n!

Common asymptotic functions

In order of magnitude

- 1. Array or vector access
- 2. $\log n$ Binary search
- 3. n Sequential search, verifying ordering
- 4. $n \log n$ Fast sorting
- 5. n^2 Simple sorting, shortest path
- 6. n^3 Matrix multiplication
- 7. 2^n
- 8. n!

Common asymptotic functions

In order of magnitude

- Array or vector access
- log n Binary search
- Sequential search, verifying ordering
- 4. $n \log n$ Fast sorting
- 5. n^2 Simple sorting, shortest path
- 6. n³ Matrix multiplication
- 7. 2ⁿ Hamiltonian circuit, longest path

Common asymptotic functions

In order of magnitude

- 1. Array or vector access
- log n Binary search
- Sequential search, verifying ordering
- 4. $n \log n$ Fast sorting
- n² Simple sorting, shortest path
- 6. n^3 Matrix multiplication
- 7. 2^n Hamiltonian circuit, longest path
- n! List permutations

Common asymptotic functions

In order of magnitude

- 1. 1
- $\log n$
- 3. n
- 4. $n \log n$
- 5. n^2
- 6. n^3
- 2^n
- 8. n!

Common asymptotic functions

In order of magnitude

- log n
- 3. **n**
- 4. $n \log n$
- 5. n^2
- n^3
- 8. n!

Common asymptotic functions

Tractable

In order of magnitude

- log n
- 3. **n**
- 4. $n \log n$
- 5. **n**²
- 6. *n*³
- 7. 2^n
- 8. n!

Common asymptotic functions

In order of magnitude

- log n
- 3. **n**
- 4. $n \log n$
- 5. **n**²
- n^3 2^n
- 8. **n**!
- Intractable

Tractable

Graph of Asymptotic functions

Example

Consider $f(n) = 6 \cdot 2^n + n^2$.

119

Example

Consider $f(n) = 6 \cdot 2^n + n^2$.

 $f(n) = 6 \cdot 2^n + n^2 \le 6 \cdot 2^n + 2^n = 7 \cdot 2^n$, for all $n \ge 4$ therefore $f(n) = O(2^n)$

120

Example

Consider $f(n) = 6 \cdot 2^n + n^2$.

 $f(n) = 6 \cdot 2^n + n^2 \le 6 \cdot 2^n + 2^n = 7 \cdot 2^n$, for all $n \ge 4$ therefore $f(n) = O(2^n)$

 $1 \cdot 2^n \le 6 \cdot 2^n + n^2 \le 6 \cdot 2^n + 2^n = 7 \cdot 2^n$, for all $n \ge 4$ therefore $f(n) = \Theta(2^n)$

21

Example

Consider $f(n) = 3n^2 + 5n + 10$.

 $f(n) = 3n^2 + 5n + 10 \le 3 \cdot 2^n + 5 \cdot 2^n + 10 \cdot 2^n = 18 \cdot 2^n$, for all $n \ge 4$, therefore $f(n) = O(2^n)$

Suppose $f(n) = \Theta(2^n)$. Then there exists positive constant c such that

$$c \cdot 2^n \le 3n^2 + 5n + 10$$
, for all $n \ge n_0$

So $c \cdot 2^n - 3n^2 - 5n \le 10$

Execution Time Comparison

 A particular algorithm can solve a problem of input size 1,000 in 20 milliseconds. Estimate the size of the problem the algorithm can solve in 1 minute if the algorithm's asymptotic complexity is

□ Θ(n)

 \Box $\Theta(n^2)$

■ Input size 1,000 → 20 msec

■ 1 minute = 60,000 msec

■ Θ(*n*):

$$\frac{1,000}{20} = \frac{n}{60,000}$$

Input size 1,000 → 20 msec

■ 1 minute = 60,000 msec

■ Θ(*n*):

$$\frac{1,000}{20} = \frac{n}{60,000} \to 20n = 60,000,000$$

■ Input size 1,000 → 20 msec

■ 1 minute = 60,000 msec

 \bullet $\Theta(n)$:

$$\frac{1,000}{20} = \frac{n}{60,000} \to 20n = 60,000,000$$
$$\to n = 3,000,000$$

■ Input size 1,000 → 20 msec

■ 1 minute = 60,000 msec

■ $\Theta(n)$:

$$\frac{1,000}{20} = \frac{n}{60,000} \to 20n = 60,000,000$$
$$\to n = 3,000,000$$

 \bullet $\Theta(n^2)$:

$$\frac{1,000^2}{20} = \frac{n^2}{60,000}$$

■ Input size 1,000 → 20 msec

■ 1 minute = 60,000 msec

■ Θ(*n*):

$$\frac{1,000}{20} = \frac{n}{60,000} \rightarrow 20n = 60,000,000$$
$$\rightarrow n = 3,000,000$$

 \bullet $\Theta(n^2)$:

$$\frac{1,000^2}{20} = \frac{n^2}{60,000} \to 20n^2 = 60,000,000,000$$

■ Input size 1,000 → 20 msec

■ 1 minute = 60,000 msec

■ Θ(*n*):

$$\frac{1,000}{20} = \frac{n}{60,000} \rightarrow 20n = 60,000,000$$
$$\rightarrow n = 3,000,000$$

 \bullet $\Theta(n^2)$:

$$\frac{1,000^2}{20} = \frac{n^2}{60,000} \to 20n^2 = 60,000,000,000$$
$$\to n^2 = 3,000,000,000$$

- Input size 1,000 → 20 msec
- 1 minute = 60,000 msec
- \bullet $\Theta(n)$:

$$\frac{1,000}{20} = \frac{n}{60,000} \rightarrow 20n = 60,000,000$$
$$\rightarrow n = 3,000,000$$

 \bullet $\Theta(n^2)$:

$$\frac{1,000^2}{20} = \frac{n^2}{60,000} \to 20n^2 = 60,000,000,000$$

$$\to n^2 = 3,000,000,000$$

$$\to n = \sqrt{3,000,000,000}$$

- Input size 1,000 → 20 msec
- 1 minute = 60,000 msec
- $\Theta(n)$: $\frac{1,000}{20} = \frac{n}{60,000} \xrightarrow{\text{Over 50 times larger}} 20n = 60,000,000$

 \bullet $\Theta(n^2)$:

2):

$$\frac{1,000^{2}}{20} = \frac{n^{2}}{60,000} \rightarrow 20n^{2} = 60,000,000,000$$

$$\rightarrow n^{2} = 3,000,000,000$$

$$\rightarrow n = \sqrt{3,000,000,000}$$

$$\rightarrow n \approx 54,772$$

 $\rightarrow n = 3,000,000$

Execution Time Comparison

- A particular algorithm can solve a problem of input size 1,000 in 20 milliseconds. Estimate the size of the problem the algorithm can solve in 1 minute if the algorithm's asymptotic complexity is
 - $\Theta(n)$ 3,000,000
 - $\Theta(n^2)$ 54,772
 - $\Theta(\log_2 n)$

- Input size 1,000 → 20 msec
- 1 minute = 60,000 msec
- \bullet $\Theta(\log_2 n)$:

$$\frac{\log_2^2 1,000}{20} = \frac{\log_2 n}{60,000} \to 20 \log_2 n \approx 597,947$$

$$\to \log_2 n \approx 29,897$$

$$\to n \approx 2^{29,897} \approx 7.8 \times 10^{8,999}$$

Execution Time Comparison

- A particular algorithm can solve a problem of input size 1,000 in 20 milliseconds. Estimate the size of the problem the algorithm can solve in 1 minute if the algorithm's asymptotic complexity is
 - $\Theta(n)$ 3,000,000
 - $\Theta(n^2)$ 54,772
 - $\Theta(\log_2 n)$ 7.8 × 108,999

Execution Time Comparison

- A particular algorithm can solve a problem of input size 1,000 in 20 milliseconds. Estimate the size of the problem the algorithm can solve in 1 minute if the algorithm's asymptotic complexity is
 - $\Theta(n)$ 3,000,000
- $\Theta(n^2)$ 54,772
- $\Theta(\log_2 n)$ 7.8 × 10^{8,999}
- Estimated number of atoms in the observable universe: 10⁷⁸ to 10⁸²

Graph of Asymptotic functions

Logarithms

- All logarithms are asymptotically equivalent
 - $\log_{10} n = \Theta(\log_2 n)$
 - $\log_2 n = \Theta(\log_{10} n)$

$$\log_2 1024 = 10$$

$$\log_{10} 1024 \approx 3.01$$

Logarithms

- All logarithms are asymptotically equivalent
 - $\log_{10} n = \Theta(\log_2 n)$
 - $\log_2 n = \Theta(\log_{10} n)$

$$\log_2 1024 = 10$$

 $\log_{10} 1024 \approx 3.01$

 $\log_{10} x \le \log_2 x$

Logarithms

- All logarithms are asymptotically equivalent
 - $\log_{10} n = \Theta(\log_2 n)$
 - $\log_2 n = \Theta(\log_{10} n)$

$$c_1 \cdot \log_{10} n \le \log_2 n \le c_2 \cdot \log_{10} n$$
 for all $n \ge 2$

Logarithms

- All logarithms are asymptotically equivalent
 - $\log_{10} n = \Theta(\log_2 n)$
 - $\square \log_2 n = \Theta(\log_{10} n)$

 $c_1 \cdot \log_{10} n \le \log_2 n \le c_2 \cdot \log_{10} n$ for all $n \ge 2$

$$c_1 = 1$$

 $c_2 = ?$

Logarithms

All logarithms are asymptotically equivalent

$$1 \cdot \log_{10} n \le \log_2 n \le c_2 \cdot \log_{10} n$$
 for all $n \ge 2$

Logarithms

All logarithms are asymptotically equivalent

$$1 \cdot \log_{10} n \le \log_2 n \le c_2 \cdot \log_{10} n$$
 for all $n \ge 2$

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Logarithms

All logarithms are asymptotically equivalent

$$1 \cdot \log_{10} n \le \log_2 n \le c_2 \cdot \log_{10} n$$
 for all $n \ge 2$

$$\log_b x = \frac{\log_a x}{\log_a b}$$

$$\log_{\mathbf{b}} x = \frac{1}{\log_a b} \log_a x$$

Logarithms

All logarithms are asymptotically equivalent

$$1 \cdot \log_{10} n \le \log_2 n \le c_2 \cdot \log_{10} n$$
 for all $n \ge 2$

$$\Box \log_b x = \frac{\log_a x}{\log_a b} \quad \text{a constant factor}$$

$$\log_b x = \underbrace{\frac{1}{\log_a b}} \log_a x$$

Logarithms

All logarithms are asymptotically equivalent

$$1 \cdot \log_{10} n \le \log_2 n \le c_2 \cdot \log_{10} n$$
 for all $n \ge 2$

$$\log_b x = \frac{\log_a x}{\log_a b}$$
 a constant factor
$$\log_b x = \frac{1}{\log_a b} \log_a x$$

$$c_2 = \frac{1}{\log_{10} 2}$$

Logarithms

All logarithms are asymptotically equivalent

$$1 \cdot \log_{10} n \le \log_2 n \le c_2 \cdot \log_{10} n$$
 for all $n \ge 2$

$$\Box \log_b x = \frac{\log_a x}{\log_a b} \quad \text{a constant factor}$$

$$\log_{\mathbf{b}} x = \boxed{\frac{1}{\log_a b} \log_a x}$$

$$c_2 = \frac{1}{\log_{10} 2}$$

$$\approx 0.301$$

Execution on a computer that executes 1 billion instructions per second

n	f(n) = n	$f(n) = \log_2 n$	$f(n) = n \log_2 n$	$f(n)=n^2$	$f(n)=2^n$
10	0.01 µs	0.003 µs	0.033 µs	0.1 µs	1 µs
50	0.05 µs	0.006 µs	0.282 µs	2.5 µs	13 days
100	0.10 µs	0.007 µs	0.664 µs	10 µs	4 ×10 ¹³ years

Binary Search

Example from book

```
Sec. 3.5 Calculating the Running Time for a Program

// Return the position of an element in sorted array "A" of

// size "n" with value "K". If "K" is not in "A", return

// the value "n".

int binary(int A[], int n, int K) {

int l = -1;

int r = n;  // 1 and r are beyond array bounds

while (l+1 != x) { // Stop when 1 and r meet

int i = (l+r)/2; // Check middle of remaining subarray

if (K = A[i]) r = 1;  // In left half

if (K = A[i]) return i; // Found it

if (K > A[i]) l = 1;  // In right half

}

return n; // Search value not in A
```

Figure 3.5 Implementation for binary search.

```
Sec. 3.5 Calculating the Running Time for a Program

75

// Return the position of an element in sorted array "A" of

// the value "n"

int binary(int A[], int n, int K) {

int 1 = -1;

int r = n.

// 1 and r are beyond array bounds

while [1+1] != r) { // Stop when 1 and r meet

int i = (1+x) / 2; // Check middle of remaining subarray

if (K < A[i]) r = i; // In left half

if (K = A[i]) return i; // Found it

if (K > A[i]) 1 = i; // In right half

}

return n; // Search value not in A

}

Figure 3.5 Implementation for binary search.
```

Sec. 3.5 Calculating the Running Time for a Program 75 // Return the position of an element in sorted array "A" of size "n" with value "K". If "K" is not in "A", return // the value "n". int binary(int A[], int n, int K) (int l = -1; int l = -1; int l = -1; int l = +1 (// Stop when l and r meet while [H+1] |= r) (// Stop when l and r meet int [H+1] |= r) (// Check middle of remaining subarray if (K < A[i]) r = i; if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // In right half if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // Found it if (K = A[i]) return i; // In right half if (K = A[i]) return i; // Found it if (K = A[i]) return i; // In right half if (K = A[i]) return i; // Found it if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In right half if (K = A[i]) return i; // In ri

Figure 3.5 Implementation for binary search.

```
Sec. 3.5 Calculating the Running Time for a Program

75

// Return the position of an element in sorted array "A" of size "n" with value "K". If "K" is not in "A", return the value "n", int binary(int A[], int n, int K) {
   int 1 = -1;
   int r = n;
   while (1+1! = r) { // Stop when 1 and r meet
   int is (1+r)(2; // Check middle of remaining subarray if (K < A[i]) r = i; // In left half
   if (K = A[i]) return i; // Found it
   if (K = A[i]) return i; // Found it
   if (K > A[i]) 1 = i; // In left half
   }
   return n; // Search value not in A
}

Figure 3.5 Implementation for binary search.
```

```
| Spacing | Indentation | Inde
```

```
Binary Search

Spacing
Indentation
Hidden" logic
Variable name

Sec. 3.5 Calculating the Running Time for a Program

75

// Return the position of an element in sorted array "A" of size "n" with value "K". If "K" is not in "A", return the value "n".
int binary (ant A[1, int n, int K) {
int I = -1;
int I =
```

```
Binary Search

Spacing
Indentation

"Hidden" logic

Variable name

Sec. 3.5 Calculating the Running Time for a Program

Math

Math

75

// Return the position of an element in sorted array "A" of

// size "n" with value "K". If "K" is not in "A", return

// the value "n".

int binary(int A[], int n, int K) {

Int r = n;

// 1 and r are beyond array bounds

while (1+1 | x | // Stop when 1 and r meet

int i = (1+x) / // Check middle of remaining subarray

if (K < A[1]) = i; // In left half

if (K = A[1]) return i; // Found it

if (K > A[1]) 1 = i; // In right half

}

return n; // Search value not in A

}

Figure 3.5 Implementation for binary search.
```

```
Binary Search

Spacing
Indentation

"Hidden" logic
Variable name

Sec. 3.5 Calculating the Running Time for a Program

Math

75

// Return the position of an element in sorted array "A" of
// size "n" with value "K". If "K" is not in "A", return
// the value "n".
int binary (int A[I], int n, int K) {
   int 1 = -1;
   int r = n;
   // 1 and r are beyond array bounds
   while (1+1 | x - 1 | // 5 top when 1 and r meet
   int i = (1+x)/2 // Check middle of remaining subarray
   if (K = A[1]) r = 1;
   if (K > A[1]) r = 1;
   if (K > A[1]) r = 1;
   return n; // Search value not in A

Figure 3.5 Implementation for binary search.
```

```
// Return the position of an element in sorted array "A" \,
// of size "n" with value "K". If "K" is not in "A",
// return the value "n".
int binary(int A[], int n, int K) {
   int lf = -1:
    int rt = n:
                        // 1f and rt are beyond array bounds
    while (lf + 1 != rt) { // Stop when lf and rt meet
       int mid = 1f + (rt - 1f)/2; // Compute middle index
       if (K < A[mid])</pre>
           rt = mid;
                              // In left half
       if (K == A[mid])
                              // Found it
           return mid;
        if (K > A[mid])
           lf = mid;
                               // In right half
                               // Search value not in A
    return n;
```

Limitations of Asymptotic Analysis

- Its use is not appropriate for small amounts of input
 - For small amounts of input, use the simplest algorithm
- The constants involved with asymptotic analysis may be too large to be practical
- Average-case analysis is almost always much more difficult than worst-case or best analysis to compute

