СОДЕРЖАНИЕ

Введение	3
1 Аналитический раздел	4
2 Конструкторский раздел	6
2.1 Схемы алгоритмов	6
3 Технологический раздел	10
3.1 Средства реализации	10
3.2 Листинг кода	10
3.3 Оценка затрат памяти	12
3.4 Проведение тестирования:	14
4 Исследовательский раздел	16
Заключение	19
Список использованных источников	20

ВВЕДЕНИЕ

Расстояние Левенштейна – это минимальное количество редакторских операций, которые необходимы для превращения одной строки в другую. Оно может применяться для решения следующих задач:

- исправления ошибок в слове;
- предложение вариантов поиска в поисковой строке;
- в биоинформатике для сравнения белков.

Целью данной лабораторной работы является реализация и сравнение алгоритмов поиска расстояний Левенштейна и Дамерау-Левенштейна. При выполнении лабораторной работы поставлены такие задачи:

- 1) дать математическое описание расстояния Левенштейна;
- 2) описать алгоритм поиска редакторского расстояния;
- 3) оценить затраты памяти на выполнение алгоритмов;
- 4) провести замеры процессорного времени работы на серии экспериментов;
 - 5) провести сравнительный анализ алгоритмов.

1 Аналитический раздел

В данном разделе будет рассмотрено описание алгоритмов поиска расстояния Левенштейна и Дамерау-Левенштейна [1].

Допустимы следующие редакторские операции:

- М совпадение, штраф 0;
- I вставка, штраф 1;
- R замена, штраф 1;
- D удаление, штраф 1;

Пусть S_1 и S_2 – строки длиной M и N соответственно над некоторым алфавитом, тогда расстояние Левенштейна можно подсчитать по рекуррентной формуле [2]:

$$D(i,j) = \begin{cases} j, & i = 0 \\ i, & j = 0, i > 0 \\ min = (\\ D(i,j-1) + 1, \\ D(i-1,j) + 1, \\ D(i-1,j-1) + m(S_1[i], S_2[j]) \\) \end{cases}$$
(1.1)

где $m(S_1[i],S_2[j])$ равно нулю, если $S_1[i]=S_2[j]$ и единице в противном случае.

При поиске расстояние Дамерау-Левенштейна добавлена операция транспозиции, штраф которой равен 1, в связи с чем оно может быть вычислено

по формуле:

$$D(i,j) = \begin{cases} j, & i = 0 \\ i, & j = 0, i > 0 \end{cases}$$

$$min \begin{cases} D(i,j-1)+1, & \text{, если } i,j > 0 \\ D(i-1,j)+1, & \text{и } S_1[i] = S_2[j-1] \\ D(i-1,j-1)+m(S_1[i],S_2[i]), & \text{и } S_1[i-1] = S_2[j] \end{cases}$$

$$D(i,j-1)+1, & \text{и } S_1[i-1] = S_2[j] \end{cases}$$

$$D(i,j-1)+1, & \text{и } S_1[i-1] = S_2[j]$$

$$D(i,j-1)+1, & \text{и } S_1[i-1] = S_2[j]$$

$$D(i,j-1)+1, & \text{и } S_1[i-1] = S_2[j]$$

Вывод: были рассмотрены алгоритмы поиска расстояний Левенштейна и Дамерау-Левенштейна.

2 Конструкторский раздел

Требования к вводу:

- 1) на вход подаются 2 строки;
- 2) прописные и строчные буквы считаются разными символами.

Требования к программе: две пустые строки являются корректным вводом.

2.1 Схемы алгоритмов

На рисунках 2.1-2.4 представлены схемы алгоритмов поиска расстояния Левенштейна и Дамерау-Левенштейна.

Рисунок $2.1-\mathrm{Cxema}$ матричного алгоритма поиска расстояния Левенштейна

Рисунок 2.2—Схема рекурсивного алгоритма поиска расстояния Левенштейна

Отличием матрично-рекурсивного алгоритма поиска расстояния Левенштейна от рекурсивного является сохранение результатов в матрицу, благодаря чему нет необходимости повторно пересчитывать значения функций.

Рисунок 2.3 — Схема матрично-рекурсивного алгоритма поиска расстояния Левенштейна

Рисунок 2.4 — Схема матричного алгоритма поиска расстояния Дамерау-Левенштейна

3 Технологический раздел

В данном разделе будут рассмотрены требования к программному обеспечению, средства реализации, представлен листинг кода.

3.1 Средства реализации

В данной работе используется язык программирования Python, в связи с тем, что имею большой опыт работы с ним. Среда разработки Visual Studio Code.

Для замера процессорного времени используется функция procees_time() из библиотеки time.

3.2 Листинг кода

В листингах 3.1-3.4 приведены алгоритмы поиска расстояния Левенштейна и Дамерау-Левенштейна.

Листинг 3.1—Матричный алгоритм поиска расстояния Левенштейна

```
def levenstein m(origin, target):
2
        l1 = len(origin) + 1
        12 = len(target) + 1
        matr = [[0 \text{ for i in } range(12)] \text{ for i in } range(11)]
4
5
        for i in range (1, 11):
6
            matr[i][0] = i
8
        for i in range (1, 12):
9
            matr[0][i] = i
10
        for i in range(1, 11):
11
12
            for j in range(1, 12):
13
                matr[i][j] = min(matr[i - 1][j] + 1,
14
                                 matr[i][j-1] + 1,
                                  matr[i-1][j-1] + (origin[i-1] != target[j]
15
16
17
        return matr[11 - 1][12 - 1]
```

Листинг 3.2-Рекурсивный алгоритм поиска расстояния Левенштейна

```
1 def _rec(origin , l1 , target , l2):
```

```
if not 11:
3
            return 12
4
        elif not 12:
5
            return 11
6
7
        a1 = rec(origin, 11-1, target, 12) + 1
        a2 = rec(origin, 11, target, 12-1) + 1
8
9
        a3 = rec(origin, 11-1, target, 12-1) + 
10
                (\text{origin}[11 - 1] != \text{target}[12 - 1])
11
12
        return min(a1, a2, a3)
13
   def levenstein_r(origin , target):
15
        l1 = len(origin)
16
        12 = len(target)
17
18
        return rec(origin, 11, target, 12)
```

Листинг 3.3—Матрично-рекурсивный алгоритм поиска расстояния Левенштейна

```
def _{rec}(s1, s2, matr, i, j):
 2
         if not i:
 3
              matr[i][j] = j
 4
         elif not j:
 5
              matr[i][j] = i
 6
 7
         elif matr[i][j] = -1:
 8
              matr[i][j] = min(rec(s1, s2, matr, i - 1, j) + 1,
 9
                                  rec(s1, s2, matr, i, j - 1) + 1,
10
                                  {
m rec}\,({
m s1}\,,~{
m s2}\,,~{
m matr}\,,~{
m i}\,-\,1\,,~{
m j}\,-\,1)\,+\,{
m int}\,({
m s1}\,[{
m i}\,-\,1]\,\,!=
                                     s2[j - 1])
11
12
         return matr[i][j]
13
14
15
    def levenstein rm (origin, target):
16
         l1 = len(origin) + 1
         12 = len(target) + 1
17
18
         matr = [[-1 \text{ for i in } range(12)] \text{ for i in } range(11)]
19
20
         rec(origin, target, matr, l1 - 1, l2 - 1)
21
         return matr[11 - 1][12 - 1]
```

Листинг 3.4- Матричный алгоритм поиска расстояния Дамерау-Левенштейна

```
1 def dl_matrix(origin, target):
```

```
l1 = len(origin) + 1
3
        12 = len(target) + 1
        matrix = [[0 for i in range(12)] for i in range(11)]
4
5
6
        for i in range (1, 11):
7
            matrix[i][0] = i
8
        for i in range(1, 12):
9
            matrix[0][i] = i
10
        for i in range(1, 11):
11
12
            for j in range (1, 12):
                if (i > 1 \text{ and } j > 1) and (\text{origin}[i - 2] = \text{target}[j - 1] and
13
                    origin[i - 1] = target[j - 2]):
                    switch = matrix[i - 2][j - 2] + 1
14
15
                    matrix[i][j] = min(matrix[i-1][j] + 1,
16
                                      matrix[i][j-1] + 1,
17
                                      matrix[i - 1][j - 1] + (origin[i - 1] !=
                                         target[j-1]),
18
                                      switch)
19
                else:
20
                    matrix[i][j] = min(matrix[i-1][j] + 1,
21
                                      matrix[i][j-1] + 1,
22
                                      matrix[i - 1][j - 1] + (origin[i - 1] !=
                                         target [j - 1]))
23
24
        return matrix [11 - 1][12 - 1]
```

3.3 Оценка затрат памяти

В таблице 3.1 приведены объёмы памяти, затрачиваемые различными типами данных в языке Python.

Таблица 3.1—Память, потребляемая разными типами данных в Python

Структура данных	Занимаемая память(байт)
Целое число	14
Пустой список	36
Список с 1 элементом	40
Пустая строка	25
Строка длиной 4	29

В таблицах 3.2-3.4 приведены оценки памяти, затрачиваемой на работу алгоритмов поиска расстояния Левенштейна.

Таблица $3.2 - \Pi$ амять, потребляемая в матричном алгоритме поиска расстояния Левенштейна

Структура данных	Занимаемая память(байт)	
Матрица	36 + (len(s1) + 1)*(36 + 4*(len(s2) + 1)) +	
матрица	(len(s1)+1)*(len(s2)+1)*14	
2 вспомогательные	28	
переменные(int)	20	
2 счётчика(int)	28	
передача параметров	2*(25+len(s))	

В матричном алгоритме Дамерау-Левенштейна используется аналогичное количество памяти, однако на 1 вспомогательную переменную больше.

Для рекурсивного и матрично-рекурсивного алгоритмов поиска расстояния Левенштейна также будет оцениваться память при максимальной глубине рекурсивного вызова n равной длине большего слова.

Таблица $3.3 - \Pi$ амять, потребляемая в рекурсивном алгоритме поиска расстояния Левенштейна

Структура данных	Занимаемая память(байт)
3 переменные(int)	52
передача параметров	2*(25+len(s))+2*14
максимальная	n*(52+2*(25+len(s))+2*14)

Таблица 3.4—Память, потребляемая в матрично-рекурсивном алгоритме поиска расстояния Левенштейна

Структура данных	Занимаемая память(байт)	
Marrania	36 + (len(s1)+1)*(36+4*(len(s2)+1))+	
матрица	(len(s1)+1)*(len(s2)+1)*14	
породана нарамотрор	2*(25+len(s))+2*14+	
передача параметров	36 + (len(s1) + 1)*4	
маканма п пад	n*(28+28+36+(len(s1)+1)*(36+4*(len(s2)+1))+	
максимальная	(len(s1)+1)*(len(s2)+1)*14)	

Используя таблицы 3.2-3.4 можно оценить память, затрачиваемую на вычисление расстояния между двумя словами, длиной 10 символов.

Таблица $3.5 - \Pi$ амять, потребляемая алгоритмами вычисления редакторского расстояния для двух строк длиной 10 символов

Алгоритм	Затрачиваемая память (байт)	
Матричный Левенштейна	2736	
Рекурсивный Левенштейна	1500	
Матрично-рекурсивный	26660	
Левенштейна	20000	
Матричный	2750	
Дамерау-Левенштейна		

Из таблицы 3.5 видно, что рекурсивный алгоритм потребляет наименьшее количество памяти для поиска расстояния между словами длиной 10 символов

3.4 Проведение тестирования:

Проведём тестирование программы по методу чёрного ящика. В столбцах "Ожидаемый результат" и "Полученный результат" находится 4 числа, соответствующие матричному, рекурсивному, матрично-рекурсивному алго-

ритмам поиска расстояния Левенштейна и матричному алгоритму поиска расстояния Дамерау-Левенштейна.

Таблица 3.6 — Тестирование программы

Входные данные	Ожидаемый результат	Полученный результат
,	0 0 0 0	0 0 0 0
, abcd	4 4 4 4	4 4 4 4
abcd,	4 4 4 4	4 4 4 4
telo, stolb	3 3 3 3	3 3 3 3
abcd, cbef	3 3 3 3	3 3 3 3
abcd, bacd	2 2 2 1	2 2 2 1
1234, 5678	4 4 4 4	4 4 4 4

Все тесты пройдены успешно.

4 Исследовательский раздел

Постановка эксперимента В рамках проекта были проведены эксперименты, описанные ниже.

- 1. Сравнение матричного, матрично-рекурсивного алгоритмов Левенштейна и матричного алгоритма Дамерау-Левенштейна проводилось на словах длиной от 1 до 500, с шагом 50, для каждой длины было представлено 20 слов.
- 2. Для сравнения матричного, рекурсивного матрично-рекурсивного алгоритмов Левенштейна и матричного алгоритма Дамерау-Левенштейна использовались слова длиной от 1 до 8 с шагом 1, аналогично по 20 слов каждой длины.

Слова случайно генерировались и состояли их цифр от 1 до 9.

Сравнительный анализ на материале экспериментальных данных На рисунках представлены 4.1 и 4.2 представлены графики зависимости времени работы алгоритмов поиска редакционного расстояния от длины слов.

Рисунок 4.1—График зависимости времени работы матричного, матрично-рекурсивного алгоритмов Левенштейна и матричного алгоритма Дамерау-Левенштейна от длины слов (ось абсцисс-время работы в секундах, ось ординат-длина слов)

По графику видно, что наиболее быстрым является матричный алгоритм поиска расстояния Левенштейна, несколько медленнее - матричный алгоритм поиска расстояния Дамерау-Левенштейна, что связано с более сложной логикой второго, и наиболее медленный - матрично-рекурсивный алгоритм, в связи с количеством дополнительных вызовов функции.

Рисунок 4.2—График зависимости времени работы матричного, рекурсивного, матрично-рекурсивного алгоритмов Левенштейна и матричного алгоритма Дамерау-Левенштейна от длины слов (ось абсцисс-время работы в секундах, ось ординат-длина слов)

Время выполнения рекурсивного алгоритма увеличивается экспоненциально, в связи с чем итеративные или матрично-рекурсивные алгоритмы выполняются значительно быстрее.

Таким образом, самым быстрым алгоритмом оказался матричный алгоритм поиска расстояния Левенштейна, а самым медленным- рекурсивный. Можно сделать вывод, что матричный алгоритм эффективен для поиска редакционного расстояния для всех слов, но в случаях, когда ограничены ресурсы памяти и длина слов мала, лучше будет использовать рекурсивный алгоритм.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы все цели достигнуты: реализованы алгоритмы поиска расстояний Левенштейна и Дамерау-Левенштейна, проведён их сравнительный анализ. Все задачи были выполнены: дано математическое описание расстояния Левенштейна, описаны алгоритмы поиска редакторского расстояния, оценены затраты памяти на выполнение алгоритмов, проведены замеры процессорного времени.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. sic. Вычисление редакционного расстояния[Электронный ресурс]. 2011. Режим доступа: https://habr.com/ru/post/117063/ (дата обращения: 20.09.2020).
- 2. В.И. Левенштейн. Двоичные коды с исправлением выпадений, вставок и замещений символов // Докл. АН СССР. 1965.