

Full

TEST REPORT

No. I16D00249-RFB

For

Client: Hisense International Co., Ltd

Production: Smartphone

Model Name: Hisense F102

FCC ID: 2ADOBF102

Hardware Version: V1.00

Software Version: L1307.6.01.05.MX06

Issued date: 2017-01-24

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

Revision Version

Report No.: I16D00249-RFB

Report Number	Revision	Date	Memo
I16D00249-RFB	00	2017-01-05	Initial creation of test report
I16D00249-RFB	01	2017-01-17	Second creation of test report
I16D00249-RFB	02	2017-01-24	Third creation of test report

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 2of 71 Report Issued Date : Jan.24.2017

Report No.: I16D00249-RFB

Page Number: 3of 71 Report Issued Date : Jan.24.2017

CONTENTS

1.	TEST LABORATORY	5
1.1.	TESTING LOCATION	5
1.2.	TESTING ENVIRONMENT	5
1.3.	PROJECT DATA	5
1.4.	SIGNATURE	5
2.	CLIENT INFORMATION	6
2.1.	APPLICANT INFORMATION	6
2.2.	MANUFACTURER INFORMATION	6
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1.	ABOUT EUT	7
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	7
4.	REFERENCE DOCUMENTS	8
4.1.	REFERENCE DOCUMENTS FOR TESTING	8
5.	SUMMARY OF TEST RESULTS	9
5.1.	NOTES	10
5.2.	STATEMENTS	10
6.	TEST RESULT	11
6.1.	PEAK OUTPUT POWER-CONDUCTED	11
6.2.	FREQUENCY BAND EDGES-CONDUCTED	16
6.3.	CONDUCTED EMISSION	23
6.4.	RADIATED EMISSION	34
6.5.	TIME OF OCCUPANCY (DWELL TIME)	43
6.6.	20DB BANDWIDTH	53
6.7.	CARRIER FREQUENCY SEPARATION	59

ECI	г	RF Test Report	Report No.: I16D00249-RFB
6.8.	NUME	BER OF HOPPING CHANNELS	61
6.9.	AC P	OWERLINE CONDUCTED EMISSION	65
7.	TEST	EQUIPMENTS AND ANCILLARIES USED FO	R TESTS68
8.	TEST	ENVIRONMENT	69
ANNEX	A.	DEVIATIONS FROM PRESCRIBED TEST ME	THODS70
ANNEX	B.	ACCREDITATION CERTIFICATE	71

Page Number: 4of 71 Report Issued Date : Jan.24.2017

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications	
Address:	7-8F, G Area, No. 668, Beijing East Road, Huangpu District,	
	Shanghai, P. R. China	
Postal Code:	200001	
Telephone:	(+86)-021-63843300	
Fax:	(+86)-021-63843301	

1.2. Testing Environment

Normal Temperature:	15-35℃
Extreme Temperature:	-10/+55℃
Relative Humidity:	20-75%

1.3. Project data

Project Leader:	Yu Anlu
Testing Start Date:	2016-12-08
Testing End Date:	2017-1-24

1.4. Signature

Zhang Shiyu

(Prepared this test report)

Report No.: I16D00249-RFB

(Reviewed this test report)

Zheng Zhongbin Director of the laboratory (Approved this test report)

East China Institute of Telecommunications Page Number: 5of 71 TEL: +86 21 63843300 FAX: +86 21 63843301

Address:

RF Test Report

2. Client Information

2.1. Applicant Information

Company Name: Hisense International Co., Ltd

Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071,

Report No.: I16D00249-RFB

China

Postcode: 266010

Email: zhangkelin@hisense.com

2.2. Manufacturer Information

Company Name: Hisense Communications Co., Ltd.

Address: 218 Qianwangang Road, Economic & Technological Development

Zone, Qingdao, Shandong Province, P.R. China

Postcode: 266510

Email: Xuxin2@hisense.com

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

Report Issued Date : Jan.24.2017

Page Number: 6of 71

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

Report No.: I16D00249-RFB

3.1. About EUT

EUT Description	Smartphone
Model name	Hisense F102
UMTS Frequency Band	WCDMA Band 2/4/5
GSM Frequency Band	GSM850/900/1800/1900
E-UTRA Frequency Band	FDD 2/4/5/7
WLAN Frequency	2412MHz-2472MHz
WLAN Channel	Channel1-Channel13
WLAN type of modulation	802.11b:DSSS
	802.11g/n: OFDM
Extreme Temperature	-10/+55℃
Nominal Voltage	3.8V
Extreme High Voltage	4.35V
Extreme Low Voltage	3.5 V

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N05	002101541366930	V1.00	L1307.6.01.05.MX06	2016-12-05

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	RF cable	
AE2		

Page Number: 7of 71

Report Issued Date : Jan.24.2017

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C: 15.205 Restricted bands of operation; 15.209 Radiated emission limits, general requirements; 15.247 Operation within the bands 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.	Jun,2016 Edition
ANSI C63.10	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	2013

Report No.: I16D00249-RFB

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 8of 71

5. Summary of Test Results

A brief summary of the tests carried out is shown as following.

Measurement Items	Sub-clause of Part15C	Sub-claus e of IC	Verdict
Maximum Peak Output Power	15.247(b)	/	Р
Peak Power Spectral Density	15.247(d)	/	N/A
20dB Occupied Bandwidth	15.247(a)	/	Р
Band Edges Compliance	15.247(b)	/	Р
Transmitter Spurious Emission-Conducted	15.247	/	Р
Transmitter Spurious Emission-Radiated	15.247,15.209,	/	Р
AC Powerline Conducted Emission	15.107,15.207	/	Р

Report No.: I16D00249-RFB

Please refer to part 5 for detail.

The measurements are according to and ANSI C63.10.

Terms used in Verdict column

Р	Pass, the EUT complies with the essential requirements in the standard.	
NP	Not Perform, the test was not performed by ECIT.	
NA	Not Applicable, the test was not applicable.	
F	Fail, the EUT does not comply with the essential requirements in the standard.	

Test Conditions

Tnom	Normal Temperature
Tmin	Low Temperature
Tmax	High Temperature
Vnom	Normal Voltage
Vmin	Low Voltage
Vmax	High Voltage
Hnom	Norm Humidity
Anom	Norm Air Pressure

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 9of 71

For this report, all the test case listed above are tested under Normal Temperature and Normal Voltage, and also under norm humidity, the specific conditions as following:

Report No.: I16D00249-RFB

Temperature	Tnom	22 °C
Voltage	Vnom	3.7V
Humidity	Hnom	32%
Air Pressure	Anom	1010hPa

Note:

- a. All the test data for each data were verified, but only the worst case was reported.
- b.The GFSK, $\pi/4$ DQPSK and 8DPSK were set in DH1 for GFSK, 2-DH1 for $\pi/4$ DQPSK, 3-DH1 for 8DPSK.
- c.The DC and low frequency voltages' measurement uncertainty is ±2%.

5.1. Notes

All reported tests were carried out on a sample equipment to demonstrate limited compliance with section 3.

The test results of this test report relate exclusively to the item(s) tested as specified in section 5.

The following deviation from, additions to, or exclusions from the test specifications have been made. See section 3.

5.2. Statements

The product name Hisense F102, supporting GSM/GPRS/EDGE/WCDMA/HSDPA/HSUPA/HSPA+/LTE/WLAN/BT/BLE, manufactured by Hisense International Co., Ltd. is a new product for testing.

ECIT has verified that the compliance of the tested device specified in section 5 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 5 of this test report.

TEL: +86 21 63843300 FAX: +86 21 63843301

Page Number: 10of 71

6. Test result

6.1. **Peak Output Power-Conducted**

6.1.1 Measurement Limit

Standard	Limit (dBm)
FCC Part 15.247(b)(1)	< 30

Report No.: I16D00249-RFB

6.1.2 Test Condition:

Hopping Mode	RBW	VBW	Span	Sweeptime
Hopping OFF	3MHz	10MHz	9MHz	Auto

6.1.3 Test procedure

The measurement is according to ANSI C63.10 clause 7.8.5.

- 1. The output power of EUT was connected to the spectrum analyzer and CBT32 by cable and divide. The path loss was compensated to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.
- 3. Measure the conducted output power and record the results it.

6.1.4 Measurement Results:

For GFSK

Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz	Conclusion
Peak Conducted	4.35	4.95	4.24	Р
Output Power (dBm)	Fig.1	Fig.2	Fig.3	F

For π/4 DQPSK

Channel	Ch0 2402 MHz	Ch39 2441 MHz	CH78 2480 MHz	Conclusion
Peak Conducted	3.32	3.98	3.20	P
Output Power (dBm)	Fig.4	Fig.5	Fig.6	Г

For 8DPSK

Channal	Ch0 2402	Ch39 2441	CH78 2480	Conclusion
Channel	MHz	MHz	MHz	Conclusion

TEL: +86 21 63843300 FAX: +86 21 63843301

Page Number: 11of 71

			•	
Peak	3.32	3.97	3.21	
Conducted	0.02	5.91	5.21	D
Output Power	Eig 7	Eig 0	Fig 0	'
(dBm)	Fig.7	Fig.8	Fig.9	

Report No.: I16D00249-RFB

Conclusion: PASS
Test graphs an below

Date: 8.DEC.2016 19:17:05

Fig.1 Peak Conducted Output Power CH0, DH1

Date: 8.DEC.2016 19:17:21

Fig.2 Peak Conducted Output Power CH39, DH1

Page Number: 12of 71

Date: 8.DEC.2016 19:17:36

Fig.3 Peak Conducted Output Power CH78, DH1

Date: 8.DEC.2016 19:17:51

Fig.4 Peak Conducted Output Power CH0, 2DH1

Page Number: 13of 71

Date: 8.DEC.2016 19:18:05

Fig.5 Peak Conducted Output Power CH39, 2DH1

Date: 8.DEC.2016 19:18:21

Fig.6 Peak Conducted Output Power CH78, 2DH1

Page Number: 14of 71

Date: 8.DEC.2016 19:18:36

Fig.7 Peak Conducted Output Power CH0, 3DH1

Date: 8.DEC.2016 19:18:51

Fig.8 Peak Conducted Output Power CH39, 3DH1

Page Number: 15of 71

Date: 8.DEC.2016 19:19:06

Fig.9 Peak Conducted Output Power CH78, 3DH1

6.2. Frequency Band Edges-Conducted

6.2.1 Measurement Limit:

Standard	Limited(dBc)
FCC 47 CFR Part 15.247(d)	>20

6.2.2 Test procedure

The measurement is according to ANSI C63.10 clause 7.8.6.

- 1. Connect the EUT to spectrum analyzer.
- 2. Set RBW=100KHz, VBW=300KHz, span more than 1.5 times channel bandwidth (2MHz).
- 3. Detector =peak, sweep time=auto couple, trace mode=max hold.
- 4. Allow sweep to continue until the trace stabilizes.

6.2.3 Measurement results

For GFSK

Channel	Hopping	Band Edge Power (dBc)	Conclusion
0	Hopping OFF	Fig.10	Р
0	Hopping ON	Fig.11	Р
78	Hopping OFF	Fig.12	Р

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 16of 71

_	· · · · · · · · · · · · · · · · · · ·	
Hopping ON	Fig.13	Р

Report No.: I16D00249-RFB

For π/4 DQPSK

Channel	Hopping	Band Edge Power (dBc)	Conclusion
0	Hopping OFF	Fig.14	Р
0	Hopping ON	Fig.15	Р
70	Hopping OFF	Fig.16	Р
78	Hopping ON	Fig.17	Р

For 8DPSK

Channel	Hopping	Band Edge Power (dBc)	Conclusion
0	Hopping OFF	Fig.18	Р
U	Hopping ON	Fig.19	Р
70	Hopping OFF	Fig.20	Р
78	Hopping ON	Fig.21	Р

Conclusion: PASS
Test graphs an below

Fig.10 Frequency Band Edge: GFSK, Ch0, Hopping OFF

Page Number: 17of 71

Report Issued Date : Jan.24.2017

Date: 8.DEC.2016 19:20:19

Date: 8.DEC.2016 19:22:26

Fig.11 Frequency Band Edge: GFSK, Ch0, Hopping ON

Date: 8.DEC.2016 19:23:03

Fig.12 Frequency Band Edge: GFSK, Ch78, Hopping OFF

Page Number: 18of 71

Date: 8.DEC.2016 19:25:10

Fig.13 Frequency Band Edge: GFSK, Ch78, Hopping ON

Date: 8.DEC.2016 19:25:47

Fig.14 Frequency Band Edge: $\pi/4$ DQPSK, Ch0, Hopping OFF

Page Number: 19of 71

Date: 8.DEC.2016 19:27:55

Fig.15 Frequency Band Edge: π/4 DQPSK, Ch0, Hopping ON

Date: 8.DEC.2016 19:28:33

Fig.16 Frequency Band Edge: $\pi/4$ DQPSK, Ch78, Hopping OFF

Page Number: 20of 71

Date: 8.DEC.2016 19:30:41

Fig.17 Frequency Band Edge: π/4 DQPSK, Ch78, Hopping ON

Date: 8.DEC.2016 19:31:19

Fig.18 Frequency Band Edge: 8DPSK, Ch0, Hopping OFF

Page Number: 21of 71

Date: 8.DEC.2016 19:33:26

Fig.19 Frequency Band Edge: 8DPSK, Ch0, Hopping ON

Date: 8.DEC.2016 19:34:03

Fig.20 Frequency Band Edge: 8DPSK, Ch78, Hopping OFF

Page Number: 22of 71

Date: 8.DEC.2016 19:36:11

Fig.21 Frequency Band Edge: 8DPSK, Ch78, Hopping ON

6.3. Conducted Emission

6.3.1 Measurement Limit:

Standard	Limit	
FCC 47 CFR Part15.247 (d)	20dB below peak output power in 100KHz	
1 00 47 01 KT ait13.247 (d)	bandwidth	

6.3.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.8.

- 1. Connect the EUT to spectrum analyzer.
- 2. Set RBW=100KHz, VBW=300KHz.
- 3. Detector =peak, sweep time=auto couple, trace mode=max hold.

6.3.3 Measurement Results:

For GFSK

Channel	Frequency Range	Test Results	Conclusion
Ch0 2402MHz	Center Freq.	Fig.22	Р
Chu 2402MH2	30MHz~26GHz	Fig.23	Р
Ch20 2444MU=	Center Freq.	Fig.24	Р
Ch39 2441MHz	30MHz~26GHz	Fig.25	Р
Ch78 2480MHz	Center Freq.	Fig.26	Р

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 23of 71

Report Issued Date : Jan.24.2017

Report No.: I16D00249-RFB

30MHz~26GHz	Fig.27	Р

Report No.: I16D00249-RFB

Page Number: 24of 71 Report Issued Date : Jan.24.2017

For $\pi/4$ DQPSK

Channel	Frequency Range	Test Results	Conclusion
Ch0 2402MHz	Center Freq.	Fig.28	Р
CHO 2402IVITIZ	30MHz~26GHz	Fig.29	Р
Ch39 2441MHz	Center Freq.	Fig.30	Р
C1139 244 HVIIII2	30MHz~26GHz	Fig.31	Р
Ch70 2400MU-	Center Freq.	Fig.32	Р
Ch78 2480MHz	30MHz~26GHz	Fig.33	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
Ch0 2402MHz	Center Freq.	Fig.34	Р
C110 2402IVITI2	30MHz~26GHz	Fig.35	Р
Ch39 2441MHz	Center Freq.	Fig.36	Р
Ch39 244 HVIH2	30MHz~26GHz	Fig.37	Р
Ch70 2400MU-	Center Freq.	Fig.38	Р
Ch78 2480MHz	30MHz~26GHz	Fig.39	Р

Conclusion: PASS Test graphs as below

Date: 9.DEC.2016 07:20:54

Fig.22 Conducted spurious emission: GFSK, Ch0, 2402MHz

Date: 9.DEC.2016 07:21:20

Fig.23 Conducted spurious emission: GFSK, Ch0, 30MHz~26GHz

Page Number: 25of 71

Date: 9.DEC.2016 07:21:47

Fig.24 Conducted spurious emission: GFSK, Ch39, 2441MHz

Date: 9.DEC.2016 07:22:12

Fig.25 Conducted spurious emission: GFSK, Ch39, 30MHz~26GHz

Page Number: 26of 71

Date: 9.DEC.2016 07:22:39

Fig.26 Conducted spurious emission: GFSK, Ch78, 2480MHz

Date: 9.DEC.2016 07:23:05

Fig.27 Conducted spurious emission: GFSK, Ch78, 30MHz~26GHz

Page Number: 27of 71

Date: 9.DEC.2016 07:23:33

Fig.28 Conducted spurious emission: π/4 DQPSK, Ch0, 2402MHz

Date: 9.DEC.2016 07:23:59

Fig.29 Conducted spurious emission: $\pi/4$ DQPSK, Ch0, 30MHz~26GHz

Page Number: 28of 71

Date: 9.DEC.2016 07:24:26

Fig.30 Conducted spurious emission: π/4 DQPSK, Ch39, 2441MHz

Date: 9.DEC.2016 07:24:52

Fig.31 Conducted spurious emission: $\pi/4$ DQPSK, Ch39, 30MHz~26GHz

Page Number: 29of 71

Date: 9.DEC.2016 07:25:19

Fig.32 Conducted spurious emission: π/4 DQPSK, Ch78, 2480MHz

Date: 9.DEC.2016 07:25:45

Fig.33 Conducted spurious emission: $\pi/4$ DQPSK, Ch78, 30MHz~26GHz

Page Number: 30of 71

Report No.: I16D00249-RFB

Date: 9.DEC.2016 07:26:13

Center 2.402 GHz

Fig.34 Conducted spurious emission: 8DPSK, Ch0, 2402MHz

Date: 9.DEC.2016 07:26:38

Fig.35 Conducted spurious emission: 8DPSK, Ch0, 30MHz~26GHz

Page Number: 31of 71

Date: 9.DEC.2016 07:27:06

10 Offset

Fig.36 Conducted spurious emission: 8DPSK, Ch39, 2441MHz

Date: 9.DEC.2016 07:27:31

Fig.37 Conducted spurious emission: 8DPSK, Ch39, 30MHz~26GHz

Page Number: 32of 71

Date: 9.DEC.2016 07:27:59

Fig.38 Conducted spurious emission: 8DPSK, Ch78, 2480MHz

Date: 9.DEC.2016 07:28:24

Fig.39 Conducted spurious emission: 8DPSK, Ch78, 30MHz~26GHz

Page Number: 33of 71

6.4. Radiated Emission

6.4.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

Report No.: I16D00249-RFB

In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength (uV/m)	Field strength (dBuV/m)
30~88	100	40
88~216	150	43.5
216~960	200	46
Above 960	500	54

6.4.2 Test Method

Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a non-conducting platform, the top of which is 80 cm above the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, but it may be larger or smaller to accommodate various sized EUTs. For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also ANSI C63.10-2009 section 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time (s)
30~1000	100KHz/300KHz	5
1000~4000	1MHz/1MHz	15
4000~18000	1MHz/1MHz	40

East China Institute of Telecommunications

TEL: +86 21 63843300 FAX: +86 21 63843301

Page Number: 34of 71

18000~26500 1MHz/1MHz 20	18000~26500	1MHz/1MHz	20
--------------------------	-------------	-----------	----

Report No.: I16D00249-RFB

6.4.3 Measurement Results:

A "reference path loss" is established and A_{Rpi} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

The measurement results are obtained as described below:

A_{Rpi} = Cable loss + Antenna Gain-Preamplifier gain

Result=P_{Mea} + A_{Rpi}

For GFSK

Channel	Frequency Range	Test Results	Conclusion
	30MH~1GHz	Fig.40	Р
Ch0 2402MHz	1GHz~3GHz	Fig.41	Р
	3GHz~18GHz	Fig.42	Р

For π/4 DQPSK

Channel	Frequency Range	Test Results	Conclusion
	30MH~1GHz	Fig.43	Р
Ch0 2402MHz	1GHz~3GHz	Fig.44	Р
	3GHz~18GHz	Fig.45	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
	30MH~1GHz	Fig.46	Р
Ch0 2402MHz	1GHz~3GHz	Fig.47	Р
	3GHz~18GHz	Fig.48	Р

GFSK Ch0 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
34.458864	20.88	-25.9	46.78	V
35.081164	14.65	-25.9	40.55	V
53.211288	8.12	-25	33.12	Н
103.976232	6.5	-24	30.5	Н
220.904148	14.27	-23.8	38.07	V

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 35of 71

442.979728 12.83 -16 28.83 H

Report No.: I16D00249-RFB

GFSK Ch0 1GHz-3GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2594.257115	52.82	9.3	43.52	V
2670.043462	53.42	10	43.42	Н
2735.550192	52.72	10.1	42.62	Н
2830.634423	53.58	10.7	42.88	V
2894.785	54.75	11.3	43.45	V

GFSK Ch0 3GHz-18GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
9615.8648	45.42	8.4	37.02	Н
11520.61073	51.82	14.6	37.22	Н
13201.7972	52.96	17.2	35.76	Н
14890.72993	56.86	22	34.86	Н
16498.74733	59.68	26.9	32.78	V
17660.7234	61.94	28.9	33.04	V

π/4 DQPSK Ch0 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
34.33002	19.57	-25.9	45.47	V
34.621852	18.44	-25.9	44.34	V
220.88682	13.22	-23.8	37.02	V
254.894184	8.28	-21.9	30.18	Н
752.894692	18.32	-10.7	29.02	V
891.328704	21.4	-7.6	29	V

π/4 DQPSK Ch0 1GHz-3GHz

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 36of 71

			•	
Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2704.504808	52.96	10.1	42.86	Н
2749.385384	53.1	10.1	43	Н
2825.745962	54.36	10.7	43.66	Н
2898.49	54.54	11.3	43.24	V
2945.374231	54.29	11.2	43.09	V
2990.770962	55.03	11.7	43.33	Н

Report No.: I16D00249-RFB

π/4 DQPSK Ch0 3GHz-18GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14304.87853	55.3	20.7	34.6	Н
14883.8088	57.73	21.9	35.83	V
15995.42333	59.26	25.3	33.96	Н
16930.57093	62.94	27.1	35.84	V
17333.71867	61.16	28.4	32.76	V
17583.65107	62.48	29.5	32.98	V

8DPSK 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
34.156096	20.24	-25.9	46.14	V
40.59884	9.81	-24.9	34.71	Н
220.921872	14.2	-23.8	38	V
711.617064	18.02	-11.3	29.32	V
867.005896	20.85	-8.2	29.05	V
901.002852	21.61	-7.3	28.91	Н

Page Number: 37of 71 Report Issued Date : Jan.24.2017

8DPSK 1GHz-3GHz

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

-				
Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2712.523846	52.55	10.1	42.45	V
2849.471346	54.15	10.9	43.25	V
2872.169231	54.31	11.1	43.21	Н
2901.31	54.14	11.3	42.84	Н
2908.219616	53.52	11.3	42.22	V
2947.695385	54.47	11.2	43.27	Н

Report No.: I16D00249-RFB

Page Number: 38of 71 Report Issued Date : Jan.24.2017

8DPSK 3GHz-18GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14902.1108	56.03	22.2	33.83	Н
15443.10007	57.22	23.3	33.92	V
16269.6362	58.02	25.3	32.72	Н
16484.79467	59.35	26.7	32.65	Н
16933.47073	62.11	27.1	35.01	V
17587.98667	62.41	29.5	32.91	Н

Note: all the test data shown was peak detected.

Conclusion: PASS
Test graphs as below:

Fig.40 Radiated emission: GFSK, Ch0, 30MHz~1GHz

Fig.41 Radiated emission: GFSK, Ch0, 1GHz~3GHz

Fig.42 Radiated emission: GFSK, Ch0, 3GHz~18GHz

Fig.43 Radiated emission: π/4 DQPSK, Ch0, 30MHz~1GHz

Report No.: I16D00249-RFB

Fig.44 Radiated emission: π/4 DQPSK, Ch0, 1GHz~3GHz

Frequency in MHz

Fig.45 Radiated emission: $\pi/4$ DQPSK, Ch0, 3GHz~18GHz

Page Number: 41of 71

Fig.46 Radiated emission: 8DPSK, Ch0, 30MHz~1GHz

Fig.47 Radiated emission: 8DPSK, Ch0, 1GHz~3GHz

Report No.: I16D00249-RFB

Fig.48 Radiated emission: 8DPSK, Ch0, 3GHz~18GHz

6.5. Time Of Occupancy (Dwell Time)

6.5.1 Measurement Limit:

Standard	Limit (ms)
FCC 47CFR Part 15.247 (a) (1) (iii)	< 400

6.5.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.4

- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit maximum power.
- 3. Set the spectrum analyzer as step 4 to step 8.
- 4. Span: Zero span, centered on a hopping channel.
- 5. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 6. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to showtwo successive hops on a channel.
- 7. Detector function: Peak.
- 8. Trace: Max hold.
- 9. Use the marker-delta function, and record it.

Page Number: 43of 71

6.5.3 Measurement Result

For GFSK

Channel	Packet	Dwell Time (ms)		Conclusion
39	DH1	Fig.49	163.641	Р
		Fig.50		
	DH3	Fig.51	281.028	Р
		Fig.52		
	DH5	Fig.53	321.113	Р
		Fig.54		

Report No.: I16D00249-RFB

For $\pi/4$ DQPSK

Channel	Packet	Dwell Time (ms)		Conclusion
39	2DH1	Fig.55	163.641	Р
		Fig.56		
	2DH3	Fig.57	282.304	Р
		Fig.58		
	2DH5	Fig.59	321.113	Р
		Fig.60		

For 8DPSK

10100101				
Channel	Packet	Dwell Time (ms)		Conclusion
39	3DH1	Fig.61	165.873	Р
		Fig.62		
	3DH3	Fig.63	281.187	Р
		Fig.64		
	3DH5	Fig.65	- 320.369	Р
		Fig.66		

Note: the dwell time is Calculated of the sum of test time about 31.5 seconds.

Equation: dwell time = pusletime *(1600/N)/79*T. N is the number of timeslot; T is the time about 31.5s.

The time of DH5=3.01*(1600/6)/79*31.6=321.06ms.

Conclusion: PASS

East China Institute of Telecommunications Page Number: 44of 71

TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Jan.24.2017

Test graphs as below:

Date: 8.DEC.2016 19:45:25

Fig.49 Time of occupancy (Dwell Time): Ch39, Packet DH1

Date: 8.DEC.2016 19:45:34

Fig.50 Number of Transmissions Measurement: Ch39, Packet DH1

Page Number: 45of 71

Report No.: I16D00249-RFB

Date: 8.DEC.2016 19:45:42

Fig.51 Time of occupancy (Dwell Time): Ch39, Packet DH3

Fig.52 Number of Transmissions Measurement: Ch39, Packet DH3

Page Number: 46of 71

Report Issued Date : Jan.24.2017

Date: 8.DEC.2016 19:45:51