ECDNN 2025Summer Assignment 1

Due: 23:59, July. 13, 2025

- Q1 We provide a sinlge-layer neural network (NN), as shown in Figure 1. There are three learnable weights w_1 , w_2 , and w_3 in this NN and the activation function is sigmoid function.
 - (a) Given an input $x = (x_1, x_2, x_3)$, give the explicit expression of the output y.
 - (b) Suppose the ground truth is t and we use an L_2 loss ($loss = (y t)^2$) to train this network. Derive the gradient of w_1 , w_2 and w_3 .
 - (c) Based on previous results, can you tell what problem would happen if we train a deep neural network with sigmoid activation? Can you give any suggestions to avoid this problem?

Figure 1: A simple single-layer neural network

- **Q2 Regularization**. In this question, you are going to solve a toy problem. Consider a function $J(x) = (x-2)^2, x \in \mathbb{R}$.
 - (a) Find the global minimum of function $J(x) + 4x^2$. Justify your answer.
 - (b) Find the global minimum of function J(x) + 4|x|. Justify your answer.
 - (c) Consider the following optimization problem.

$$\min_{x \in \mathbb{R}} J(\alpha; x) = (x - 2)^2 + \alpha |x|.$$

How should we determine α so that the minimizer is at x = 0?

(d) How do you get inspired from the above questions about ℓ_1 , ℓ_2 and sparsity? Please explain *briefly*.

- Q3 Convolution is the most important operation in CNN. As shown in Figure 2, the input activation tensor is $\mathcal{X} \in \mathbb{R}^{H \times W \times C}$. Weight tensor is $\mathcal{W} \in \mathbb{R}^{R \times S \times C \times K}$. The output activation tensor is $\mathcal{Y} \in \mathbb{R}^{P \times Q \times K}$. Here we set H = W = 5, C = 8, R = S = 3, K = 4. Besides, the stride number is 1 and the padding number is 0.
 - (a) What are the height and width of the output feature map (P and Q)?
 - (b) Write down direct convolution by C++ language style.
 - (c) The loop unrolling is one of loop optimization techniques to make full use of the hardware on-chip storage resources. Write down the loop unrolling at input channel level and output channel level, respectively, by C++ language style.

Figure 2: Convolution.

- **Q4** Suppose we have a feature map (Figure 3) of size $5 \times 5 \times 3$, where P_1 , P_2 , and P_3 have pixel value of 1 in 3 channels, i.e. $P_1 = P_2 = P_3 = [1, 1, 1]$. Consider the case: Conv2D($kernel_size = 3$, $out_channels = 2$, stride=1, padding=0). Please make use of what you learnt in the Lecture to solve the following questions:
 - (a) Build the input hash tables for P_1 , P_2 , and P_3 to store the input feature map.
 - (b) Build the output hash table.
 - (c) Build the rulebook for sparse convolution.
 - (d) What will happen during the calculation of the sparse convolution result when two rows of the rulebook have the same out index? Give an example to show this.

Figure 3: Feature map.