

COMP 4 – 2 (RC)

S.E. (Computer) (Semester – IV) (Revised Course) Examination, May/June 2016 DATA STRUCTURES

Duration: 3 Hours Total Marks: 100 Instructions: 1) Answer any five full questions by selecting atleast one from each Module. 2) Make suitable assumptions wherever required. Clearly state any such assumptions made. MODULE-I 1. a) Write C programs for the following with respect to 1-D arrays and functions. 8 Passing individual array elements to a function. ii) Passing whole 1-D array to a function. b) Write a C program to copy the contents of File A to File B. 8 c) Define and explain the following: i) Macros ii) Strings

ii omiigo

2. a) Write functions for:

6

Coarabing in a single linked list

i) Searching in a singly linked list.ii) Reversing a singly linked list.

b) Write a program in C to delete a node in a doubly linked list.

c) Explain the following with the help of a diagram and C functions:

i) Deleting the first node of a circular linked list,

ii) Deleting last node of a circular linked list and

iii) Deleting a node from a specified position of a circular linked list.

MODULE-II

3. a) Write a C program for implementation of queue using array.b) Given the initial state of a stack as shown below:8

(a) Empty stack

top = -1

COMP 4-2 (RC)

										18		30		
		Show the sta (b) Push 5 (f) Push 25 (j) Push 30 Write the cor sequence of	(c) (g) (k) nditions	Push 10 Pop Pop for stac)	(d) (h) (l)	Pus Pop Pop	h 15	(e) Pu (i) Po	sh 20 o	the ab	ove.	
÷	c)	Explain the p	oriority o	queues v	vith s	uitabl	e illu	stratio	ons.					6
4.	a)	Construct the	e binary	/ search	tree	for the	e follo	owing	inpu	t:				8
	44, 18, 20, 33, 85, 50, 89, 90											38		
		Show how the tree would look after the deletion of node 85 and node 3 respectively.											33	ت
	b)) Construct the one-way threaded binary tree for the binary tree specified by the in-order and pre-order traversal shown below.												
	29	In-order	D I	ВЕ	Ā	J	F	I	С	G				
**		Pre-order	Α	B D	E	С	F	J	1	G		20	8	6
	c)	Explain the a	array re	presenta		and li		repre	esent	ation (of bina	ry tree	S.	6
5.	a)	Explain the	sequent	tial and li	nked	repre	esent	ation	s of a	graph	١,			4
	b)) Explain Depth First Search and Breadth First Search traversals of a graph												
	~)	with suitable examples.												8
*	G)	 i) Explain the following terms: i) Tree ii) Spanning Tree iii) Minimum Spanning Tree Explain the two methods for computing a minimum spanning tree. 												
6.	a)	a) What is dynamic memory management and why is it required?										4		
	220000	b) Explain the best fit, first fit and worst fit methods.										89	8	
	c)	Write short					,	(8)						8
		i) Referen	ce Cou	nting										

ii) Mark and Sweep Garbage collection.

MODULE-IV

7.	a)	Show the steps to convert the following infix expression to postfix form using a stack: $A + (B*C - (D/E \land F)*E)*H$	7
	b)	Explain how a linked list can be used to add two polynomials if: i) The two polynomials are defined on the same variable and ii) The two polynomials are defined on more than one variable.	6
	c)	Explain the Huffman algorithm with an example.	7
8.	a)	Sort the following elements using insertion sort: 5, 12, 87, 25, 9, 65, 98, 34.	8
	b)	Explain binary search method and trace it for the following data. 1, 3, 5, 17, 18, 31, 33 Key = 18.	4
	c)	List and explain the different Hash functions.	8