

Signal conditioning IC for directly driven ultrasonic sensors

E524.05 / E524.06

PRODUCTION DATA - Apr 27, 2015

Features

- · Transformerless direct transducer driver
- Programmable transducer frequencies between 38kHz and 72kHz
- Bi-directional interface in 2-wire & 3-wire variants
- · Supply voltage independent performance
- Optimized short & long range performance by:
 - active and passive damping mechanisms
 - sensitivity time control
 - · optional automatic threshold generation
- Fully integrated digital signal conditioning
- Programmable transducer voltage & burst length
- Programmable receiver amplifier gain
- Digital envelope and threshold readout via test mode
- Transducer diagnosis information
- Embedded EEPROM for calibration data
- · Chip ID for traceability

Applications

- Ultrasonic park assist systems (USPA, PAS,...)
- Industrial distance measuring
- Robotics

Ordering Information

Product ID	Temp. Range	Interface	Package
E524.05	-40°C to +105°C	2-wire	QFN20L4
E524.06	-40°C to +105°C	3-wire	QFN20L4

General Description

The device builds the core for a robust and easy-to-handle distance measurement system, while offering flexibility for customer applications.

A driver unit stimulates the direct connected ultrasonic transducer. Driver frequency, transducer voltage, burst length, amplifier gain and other parameters are user configurable. Active and passive damping mechanisms combined with STC (Sensitivity Time Control) optimize short and long range performance.

The received echo signal is amplified, converted and digitally processed. Customized obstacle interpretation is feasible by a variable detection threshold. In SEND Mode the circuit triggers the ultrasonic transducer while in RECEIVE ONLY Mode only indirect echo signals are detected.

Application relevant settings can be stored in EEPROM during an End-Of-Line calibration by the customer. For evaluation and debugging purposes, envelope and threshold data can be read out via test mode.

Communication with the control unit is possible via 2-wire or 3-wire configuration. The E524.05 supports a bi-directional communication via data modulation on the supply line. The E524.06 supports a dedicated IO-line for data transfer.

Typical Application Circuit

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Elmos Semiconductor AG QM-No.: 25DS0112E.02

Pin Configuration

Pin Description

No	Name	Туре	Description
1	DRV2	HV_A_IO	Driver output 2, has to be connected to transducer-GND
2	DRV1	HV_A_IO	Driver output 1
3	GNDIN	S	Analog ground for optimized EMC performance
4	AINS	A_I	Positive signal input
5	AING	A_I	Negative signal input
6	TMEN	D_I	Test mode enable
7	TMS	D_I	JTAG test mode select
8	nc		not connected to device, should be connected to PCB-GND
9	nc		not connected to device, should be connected to PCB-GND
10	TDI	D_I	JTAG data input
11	TCK	D_I	JTAG clock
12	TDO	D_O	JTAG data output
13	VDDD	A_O	Internal digital supply voltage
14	GNDD	S	Digital ground
15	VSUP	S	Supply voltage
16	10	HV_A_IO	Bidirectional interface
17	GNDP	S	Power ground
18	VDRV	S	Transducer driver output voltage
19	VDDA	A_0	Internal analog supply voltage
20	GNDA	S	Analog ground
21	EDP		Exposed die pad, has to be connected to PCB-GND

Explanation of Types:

A = Analog, D = Digital, S = Supply, I = Input, O = Output, B = Bidirectional, HV = High Voltage

1 Block Diagram

2 Absolute Maximum Ratings

Stresses beyond these absolute maximum ratings listed below may cause permanent damage to the device. **These are stress ratings only; operation of the device at these or any other conditions beyond those listed in the operational sections of this document is not implied.** Exposure to absolute maximum rated conditions for extended periods may affect device reliability. All voltages referred to GNDP. Currents flowing into terminals are positive, those drawn out of a terminal are negative.

No.	Description	Condition	Symbol	Min	Max	Unit
1	Supply Voltage		VSUP	-0.3	36	٧
2	Supply Voltage	t < 500 ms	VSUP	-0.3	40	V
3	Voltage at pin IO		V _{IO}	-0.3	36	V
4	Voltage at pin IO	t < 500 ms	V _{IO}	-0.3	40	V
5	Voltage at digital pins (TCK, TDO, TDI, TMS, TMEN)		V _D	-0.3	3.6	V
6	Voltage at analog pins (AINS, AING)		V _A	-0.8	0.8	V
7	Internal digital supply voltage		VDDD	-0.3	3.6	V
8	Internal analog supply voltage		VDDA	-0.3	3.6	V
9	Voltage at pins DRV1, DRV2 and VDRV		V _{DRV1} , V _{DRV2} , VDRV	-0.3	16	V
10	Ambient temperature		T _{AMB}	-40	105	°C
11	Junction Temperature		Tı	-40	125	°C
12	Storage Temperature		T _{STG}	-40	125	°C

3 ESD and Latchup

3.1 ESD Protection

No.	Description	Condition	Symbol	Min	Max	Unit
1	ESD HBM at pin VSUP, IO ¹⁾		HBM _{VSUP, IO}	+/- 4		kV
2	ESD HBM at all other pins ¹⁾		HBM_{PINS_OTHER}	+/- 2		kV
	ESD CDM at pins near corners (Pins 1,5,6,10,11,15,16,20) ²⁾		CDM_{PINS_EDGE}	+/- 0.75		kV
4	ESD CDM at all other pins ²⁾		CDM _{PINS_OTHER}	+/- 0.5		kV

¹⁾ According to AEC-Q100-002 (HBM) chip level test

3.2 Latch-up

Latch-up performance is validated according JEDEC standard JESD 78 in its valid revision.

²⁾ According to AEC-Q100-011 (CDM) chip level test

4 Recommended Operating Conditions

- Parameters are guaranteed within the range of recommended operating conditions unless otherwise specified.
- The first electrical potential connected to the ASSP must be GND.
- In the operating range from VSUP_{POR} ... 7V and 18V ... 36V function is guaranteed with limited parameters.

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Supply Voltage		VSUP	7	-	18	V
2	Programming voltage for EEPROM at pin IO		V _{IO}	23	25	27	V
3	DC Input Voltage		AINS/AING	-0.8	-	0.8	V
4	Input Current		AINS/AING	-20	-	20	mA
5	Operating Temperature Range		T_{OPR}	-40	-	105	°C

5 Electrical Characteristics

- $V_{VSUP} = +7V \text{ to } +18V$
- T_{OPR} =-40°C to + 105°C, unless otherwise noted.
- Typical values are at V_{VSUP}=12.0V and T_{amb}=+25°C.
- Positive currents flow into the device pins.

5.1 Supply and Power-On-Reset

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Current consumption at VSUP	$\begin{split} & F_DRV_ADJ = & f_{DRV,ADJ}, \\ & VDRV_CFG = & '1000', \\ & t > & t_{D_nom} \end{split}$	I _{VSUP}	1	4	-	mA
2	Worst case current consumption at VSUP	F_DRV_ADJ='11111 111', VDRV_CFG='1111', t>t _{D_nom}	Ivsup_wc	-	-	7	mA
3	Internal generated analog supply	external C _{VDDA} con- nected	VDDA	3.0	3.3	3.6	V
4	Current out of VDDA in case of short to GND		$I_{VDDA,SHORT}$	-30	-	-	mA
5	Internal generated digital supply	external C _{VDDD} connected	VDDD	3.0	3.3	3.6	V
6	Current out of VDDD in case of short to GND		I _{VDDD,SHORT}	-85	-	-	mA
7	Level at VSUP: threshold from operation mode to reset state	I _{VDDD} =-10mA	$VSUP_{POR}$	-	-	4.5	V
8	Start-up time at VDRV for typical settings ¹⁾	$\begin{array}{l} \text{VDRV_CFG='1000',} \\ \text{V}_{\text{DRV_OK}='1',} \\ \text{C}_{\text{DRV}}=2.2\mu\text{F} \end{array}$	\mathbf{t}_{D_nom}	10	15	25	ms
9	Start-up time at VDRV for VSUP=7V 18V and VDRV_CFG=any $^{1)}$	VDRV_CFG=any, $V_{DRV_OK}='1', \\ C_{DRV}=2.2\mu F$	t _{D_7V}	-	-	45	ms
10	Start-up time until communication via IO is possible*)		t _{D_IO}	-	60	450	μs

^{*)} Not tested in production

5.1.1 Transducer driver output voltage

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Driver supply voltage for typical setting	VDRV_CFG='1000'	VDRV	10.5	11	11.5	V
2	Driver supply voltage step size		VDRV _{STEP}	0.3	0.5	0.7	V
3	Minimum driver supply voltage	VDRV_CFG='0010'	$VDRV_{MIN}$	7.5	8	8.5	V
4	Maximum driver supply voltage	VDRV_CFG='1111'	VDRV _{MAX}	13.9	14.5	15.1	V
5	Number of steps		N_{VDRV}	-	13	-	
6	Driver supply voltage ok level, high	VDRV_CFG='1000'	$V_{DRV_OK_H}$	0.85	0.9	0.96	VDRV
7	Driver supply voltage ok level, low	VDRV_CFG='1000'	$V_{DRV_OK_L}$	0.75	0.8	0.85	VDRV
8	Short circuit current		I _{VDRV_SHORT}	-	-	12	mA

 $\pmb{\textit{ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to \textit{permit improvements in the design of its products.}}\\$

Elmos Semiconductor AG QM-No.: 25DS0112E.02

 $^{^{1)}}$ Load conditions different for production test. Doubling C_{DRV} results in doubling the start-up time.

5.2 Transducer Driver

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	High-side driver On-Resistance at DRV1*)	common functional test of diode and $R_{\text{ON_HS_DRV1}}$	R _{ON_HS_DRV1}	-	25	-	Ω
2	High-side driver On-Resistance at DRV2		$R_{ON_HS_DRV2}$	10	25	50	Ω
3	Low-side driver On-Resistance at DRV1*)	common functional test of diode and $R_{\text{ON_LS_DRV1}}$	R _{ON_LS_DRV1}	-	50	-	Ω
4	Low-side driver On-Resistance at DRV2		R _{ON_LS_DRV2}	15	50	100	Ω
5	Damping resistance		R _D	1.8	2.2	2.6	kΩ

^{*)} Not tested in production

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Driver output frequency adjustment range	to be adjusted by F_DRV_ADJ @ 25°C	f_{DRV}	38	-	72	kHz
2	Step width of frequency adjustment	Temperature=25°C	LSB_{f_DRV}	200	300	400	Hz
3	Temp coefficient of driver output frequency*)		$TC_{f_DRV_L}$	-	-300	-	ppm/K
4	Factory adjusted driver output frequency	Temperature=25°C	$f_{DRV,ADJ}$	57.00	58.00	59.00	kHz

^{*)} Not tested in production

5.3 Receiving path

5.3.1 Analog Amplifier

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Minimum gain	@ f _{DRV} =58 kHz	G _{MIN}	56	60	64	dB
2	Maximum gain	@ f _{DRV} =58 kHz	G _{MAX}	79	83	87	dB
3	Step size ¹⁾	@ f _{DRV} =58 kHz, (3)	ΔGc	0.25	0.742	1.25	dB
4	Number of steps		N _G	-	31	-	
5	Input Impedance AINS to GNDA AING to GNDA	Temperature=25°C	R _{IN}	75	100	125	kΩ
6	Noise Level*)	@ f _{DRV} =58 kHz	e _N	-	6.9	-	$\sqrt{\frac{nV/}{HZ}}$

^{*)} Not tested in production

5.3.2 Digital Filter

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Center frequency		$f_{c,filt}$	-	1	-	f_{DRV}
2	-3dB-Bandwidth	N_PULSES=any	BW,DFILT	-	0.052	-	f_{DRV}

 $^{^{^{1)}}}$ monotony guaranteed by design

5.3.3 Sensitivity Time Control (STC)

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Sum of digital STC gain, when off	STC_CFG='0'	$S_{G_STC_OFF}$	-	0	-	dB
2	Sum of digital STC gain	STC_CFG='1'	S_{G_STC}	-	12	-	dB
3	Number of STC gain steps	STC_CFG='1'	$N_{\text{STEP_STC}}$	-	16	-	
4	Step durations		T _{STEP_STC}	-	17	-	1/f _{DRV}
5	Start of digital gain steps ¹⁾		T _{START_STC}	-	120	-	1/f _{DRV}

¹⁾ Example: For f_{DRV}=58kHz: T_{START_STC}=120*1/f_{DRV}=2.069ms

5.3.4 Threshold comparator

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Time, the comparator output is masked	COMP_MASK='1'	T_{CMASK}	1	16	-	1/f _{DRV}

5.4 IO Interface

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Voltage threshold for pin IO to detect low input signal		V_{IO_IL}	0.29	0.33	0.36	VSUP
2	Voltage threshold for pin IO to detect high input signal		V_{IO_IH}	0.62	0.67	0.70	VSUP
3	Voltage at pin IO to output low level at high current load	I _{OUT} = 16mA [only 524.05]	$V_{IO_OL,16}$	-	-	0.8	V
4	Voltage at pin IO to output low level	I _{OUT} = 4mA	V _{IO_OL,4}	-	-	0.5	V
5	Current limitation for pin IO	V _{OUT} < 18V	I _{IO_LIMIT}	-	-	60	mA

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Slew Rate		SR _{VIO}	1.0	1.7	3.0	V/µs
2	Input debouncer		T _{DEB}	0	-	1	1/f _{DRV}
3	IO high phase after T _{CMD}		T _D	1.08	3	4.42	1/f _{DRV}
4	IO low phase for send request		T_{SND}	4.5	6	8.92	1/f _{DRV}
5	IO low phase for receive request		T _{REC}	9	12	14.92	1/f _{DRV}
6	IO low phase to enter command mode		T _{CMD}	15	20	24.92	1/f _{DRV}
7	Setup time for V _{PROG}		T_{VPROG}	-	-	265	1/f _{DRV}
8	Programming time		T_{PROG}	1000	1100	-	1/f _{DRV}
9	Bit length, ECU to sensor module		T _{BIT_WR}	9	12	14.92	1/f _{DRV}
10	IO low phase for a logical '0', ECU to sensor module		T _{BITO_WR}	4.5	6	8.92	1/f _{DRV}
11	IO low phase for a logical '1', ECU to sensor module		T _{BIT1_WR}	1.08	3	4.42	1/f _{DRV}
12	Bit length, sensor module to ECU		T _{BIT}	-	12	-	1/f _{DRV}
13	IO low phase for a logical '0', sensor module to ECU		Твіто	-	6	-	1/f _{DRV}

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Elmos Semiconductor AG QM-No.: 25DS0112E.02

Signal conditioning IC for directly driven ultrasonic sensors

PRODUCTION DATA – Apr 27, 2015

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
14	IO low phase for a logical '1', sensor module to ECU ¹⁾		T _{BIT1}	-	3	-	1/f _{DRV}
15	Devouncing of echo signal		T _{DEB_ECHO}	-	4	-	1/f _{DRV}
16	Pulse width echo event in 2 wire mode	[only 524.05]	T _{ECHO2WIRE}	-	3	-	1/f _{DRV}
17	Pulse width low frequency calibration pulse		T _{CAL}	-	288	-	1/f _{DRV}
18	Pulse width of calibration pulses		T _{CALS}	-	6	-	1/f _{DRV}

¹⁾ Example: For f_{DRV}=58kHz, T_{BIT1}=3*1/f_{DRV}=51.72us

5.4.1 EEPROM Programming

5.4.1.1 EEPROM delivery state

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Amplifier gain adjustment		AMP_GAIN	16		16	
2	Transducer driver output voltage configuration		VDRV_CFG	8		8	
3	Driver frequency	calibrated to	F_DRV_ADJ	0		191	
		$f_{DRV} = f_{DRV,ADJ}$					
4	Number of burst pulses		N_PULSES	1		1	
5	Electronic damping setting		EL_DAMP	0		0	
6	Damping resistor		RD_CFG	1		1	
7	Comparator masking on IO line		COMP_MASK	0		0	
8	Automatic threshold generation		ATG_CFG	0		0	
9	Noise strategy		NOISE_CFG	3		3	
10	Free configurable by customer		CUSTOMER BITS	0		0	

6 Typical Operating Characteristics

7 Functional Description

7.1 Overview

The principle of ultrasonic distance measuring is based on transmitting a pulse and measuring the reflection time of the received pulse as shown in Figure 7.1-1. The relationship between the distance from the transducer to the object L and the time T it takes to receive the echo is L = C * T/2, where C is the velocity of sound. The IC requires only one transducer, which acts as a transmitter and receives the reflected pulse with a time delay. The time delay is proportional to the distance to measure.

Figure 7.1-1: Ultrasonic distance measuring

A measurement is started by a 'SEND' or 'RECEIVE' request by the control unit (ECU). Internal logic generates a burst for the transducer first. Incoming reflected pulses are digitally filtered and compared to programmed threshold levels or to the automatically generated threshold. If the echo pulse exceeds the set threshold level, the comparator is triggered. In SEND / RECEIVE mode, the comparator output drives the single IO pin. The time elapsed from sending out a burst signal to receiving an echo signal from an object is proportional to the distance of the object.

E524.05

The E524.05 requires only two wires for the communication of ultrasonic module and ECU: Ground (GND) and the supply wire (VSUP_DATA). As illustrated in Figure 8.1-1, bidirectional data travels between ultrasonic module and ECU by modulating voltage on the supply wire.

E524.06

The E524.06 requires three wires to communicate from the ultrasonic module with the ECU. As shown in Figure 8.3-1, the three wires are ground (GND), supply (VSUP) and one signal line (DATA).

7.2 Supply and Power-On-Reset

The IC uses two internal regulators (VDDA and VDDD) as supplies for the internal circuits. An additional regulator generates a stable driver voltage (VDRV) over the complete supply voltage range (VSUP). The relationship of the power supplies is shown in Figure 7.2-1.

For recommended values of the used capacitors see chapter 8.2 or 8.4.

Figure 7.2-1: Supply block

7.2.1 Analog supply

The analog supply VDDA requires an external blocking capacitor C_{VDDA} . It is recommended to place the external capacitor as close as possible to the related pins VDDA and GNDA. VDDA is not intended to supply any external components. In case VDDA is shorted to GND, the output current will be limited to $I_{VDDA,SHORT}$.

An additional analog ground GNDIN is for an improved application EMC behavior. It is internally connected to the GNDA.

7.2.2 Digital supply

The digital supply VDDD requires an external blocking capacitor C_{VDDD} . It is recommended to place the external capacitor as close as possible to the related pins VDDD and GNDD. In case VDDD is shorted to GND, the output current will be limited to $I_{VDDD,SHORT}$.

VDDD is not intended to supply any external components.

7.2.3 Driver supply

The driver supply VDRV requires an external buffer capacitor C_{DRV} . It is recommended to place the external capacitor as close as possible to the related pins VDRV and GNDP. This capacitor stores the energy needed during an ultrasonic burst. VDRV is not intended to supply any external components except the transducer.

7.2.4 Power up sequence

The IC begins to power up once an external voltage is supplied to the pin VSUP. A power-up diagram is shown in Figure 7.2.4-1. The sequence can be described as follows:

- 1. An external supply voltage is supplied to pin VSUP.
- 2. After the Power-on-reset (POR) signal to the digital part is released, the digital part is running and communication via the interface is possible. The receiver path is enabled to receive signals.
- 3. READ_STATUS bit6 of the VDRV regulator goes high and the transducer driver can be switched on. The start-up time t_{D_nom} depends on the supply voltage VSUP, the VDRV regulator output voltage (set by VDRV_CFG) and on the external capacitor C_{DRV} . Doubling C_{DRV} results in doubling the start-up time.

Figure 7.2.4-1: Power up sequence

For typical and maximum C_{DRV} (2.2 μ F and 4.7 μ F) as well as typical and worst case V_{VSUP} (12V,18V and 7V) the following figure shows the start-up time over VDRV:

Figure 7.2.4-2: Typical start-up time over VRDV

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Elmos Semiconductor AG QM-No.: 25DS0112E.02

7.2.5 Limited performance between VSUP_{min} and VSUP_{POR}

The digital part is running, when the power-on-reset is high. When the power-on-reset goes from high to low state, the digital part is in reset state. This results in full functionality down to VSUP_{min} and a still working digital part down to VSUP_{POR}. Between VSUP_{min} and VSUP_{POR} the performance is limited, but communication with the control unit is still possible.

Figure 7.2.5-1: Power-on-reset functionality

7.3 Transducer Driver

When the transducer driver is activated by the 'SEND', 'SEND4', 'SEND8', 'SEND12', 'SEND24' or 'SEND_WO_DAMP' command, the pins DRV1 and DRV2 are tied towards ground and V_{DRV} respectively by internal switches alternately with the driver output frequency f_{DRV} .

Transducer-GND has to be connected to DRV2.

Figure 7.3-1: Simplified transducer excitation

The driver can be adjusted to the transducer by performing the following steps.

- 1. Adjust the driver frequency (F_DRV_ADJ)
- 2. Select the number of burst pulses (N PULSES)
- 3. Adjust the transducer voltage (VDRV_CFG)
- 4. Adjust the electronic damping (EL_DAMP)

For further details of EEPROM programming functions refer to Table 7.5.10-1.

During receiving DRV2 is directly tied to GND and DRV1 is tied to GND via two antiparallel diodes.

Figure 7.3-2: Transducer full bridge

Signal conditioning IC for directly driven ultrasonic sensors

PRODUCTION DATA - Apr 27, 2015

An internal damping resistor is used to decrease the ringing time, which results in an optimized short distance. The damping resistor is switched on during ringing, but switched off during sending the burst and echo detection. The value depends on the electrical parameters of the transducer and is set to a typical value.

If the damping resistor is not used at all (e.g. when using an application with an inductance) it can be switched off by RD_CFG.

7.3.1 Transducer driver frequency

The frequency f_{DRV} can be adjusted by the EEPROM bits F_DRV_ADJ. The guaranteed adjustment range is defined by $f_{DRV,MIN}$ and $f_{DRV,MAX}$. The typical step width is defined as $LSB_{f_DRV,typ}$. The frequency is strictly monotonic increasing with increasing value of F_DRV_ADJ. Before delivery the frequency is adjusted to $f_{DRV,ADJ}$. The setting F_DRV_ADJ=0 corresponds to the minimum frequency that might be much lower than $f_{DRV,MIN}$.

The frequency can be measured with the 'CAL_PULSES' command.

The procedure for adjusting the frequency should be as following:

- 1. Read the actual value of F_DRV_ADJ
- 2. Measure the actual frequency
- 3. Calculate the difference f_{DIFF}=target frequency-actual frequency
- 4. Calculate the rough number n of steps corresponding to f_{DIFF} by n=f_{DIFF}/LSB_{f DRV,typ}
- 5. Adjust F_DRV_ADJ by n
- 6. Repeat until the target frequency is reached
- 7. Store the setting for F_DRV_ADJ by EE-Programming command ('EE_WRITE' impacts only the output of the Driver Frequency Calibration command, for all other frequency related functions (e.g. driver output frequency, communication timing), the new setting of F_DRV_ADJ will be activated after EE_PROGRAM command only)

Remark: The timing for communication is based on f_{DRV} , thus activating another f_{DRV} by 'EE_PROGRAM' changes the timing for communication.

Figure 7.3.1-1: Flow chart of frequency adjustment

7.3.2 Number of burst pulses

higher frequencies (58kHz) it is recommended to use 16 pulses.

The number of burst pulses is defined by the EEPROM setting N_PULSES. In general a burst with 10 pulses has a better performance in the short range while a burst with 16 pulses has a better performance in the long range. For most transducers with low driving frequencies (40-48kHz) it is recommended to use 10 pulses and for transducer with

Additional commands 'SEND4', 'SEND8', 'SEND12', 'SEND24' can be used to send a burst with different number of pulses other than programmed with N_PULSES.

7.3.3 Transducer voltage

The voltage over the transducer is defined by the regulator output voltage VDRV and can be adjusted from VDRV_{MIN} to VDRV_{MAX} in VDRV_{STEP} steps by configuring VDRV_CFG. This configuration can be used to adjust the sound pressure level of the transducer.

Table 7.3.3-1: VDRV for different VDRV_CFG

VDRV_CFG	Driver voltage VDRV
0000, 0001, 0010	8.0V
0011	8.5V
0100	9.0V
0101	9.5V
0110	10.0V
0111	10.5V
1000	11.0V
1001	11.5V
1010	12.0V
1011	12.5V
1100	13.0V
1101	13.5V
1110	14.0V
1111	14.5V

The start-up time of VDRV mainly depends on VSUP, VDRV_CFG and the external capacitor CDRV.

Figure 7.3.3-1 shows a typical start-up behavior at different VDRV_CFG settings and a discharging with 16 pulses at 30ms. The VDRV_OK_H and VDRV_OK_L thresholds are also depicted for the three voltages.

The 'READ_STATUS' command can be used to check if the VDRV voltage is working properly.

Figure 7.3.3-1: Example of charging CDRV=2.2μF and discharging with 16 pulses @ VSUP=12V

7.3.4 Electronic damping

An electronic damping algorithm after the burst pulses reduces the ringing time of the transducer. The optimum setting depends on the transducer characteristics and the EEPROM bits EL_DAMP.

The procedure for adjusting the electronic damping can be done as follows:

- 1. Measure ringing time with EL DAMP = 0 and 'SEND' command
- 2. Increase EL DAMP
- 3. Measure ringing time with 'SEND' command
- 4. Increase EL_DAMP as long as ringing time becomes lower using the 'SEND' command for measurement

If EL_DAMP=0, then no additional damping pulses are sent.

During calibration of EL_DAMP no close obstacle should be in front of the transducer.

7.4 Receiving path

Figure 7.4-1 shows the receiver block diagram. The echo signal is picked up from the transducer at pins AINS and AING. The signal goes through a programmable gain stage first. After digitization, the signal is further processed by a digital filter. This reduces the sensitivity to unwanted signals outside the frequency band of the transducer.

The receiver starts to work after t_{D IO}.

Finally, the filter output goes through a register programmable comparator stage before the evaluated data is sent via pin IO to the control unit.

Figure 7.4-1: Block diagram of receiving path

7.4.1 Analog Amplifier

Transducer output signal levels vary by type and application. The differential input of the amplifier minimizes pickup of unwanted signals. AINS input is typically used as signal input while AING input has to be connected to transducer GND.

The low incoming analog echo signal has to be amplified before it is converted by an ADC. The amplifier gain is programmable with a range between G_{MIN} and G_{MAX} with ΔG_{C} resolution to ensure an optimum amplifier output voltage range. Gain settings are programmed with AMP_GAIN and stored in EEPROM. The gain can be calculated using the following formula:

$$Gain = G_{MIN} + \Delta GC \cdot AMP_GAIN$$

The amplifier output is internally connected to an ADC.

7.4.2 Analog to Digital Conversion (ADC)

The analog to digital converter (ADC) converts the analog signal into a digital signal and all further steps are processed digitally.

7.4.3 Digital Filter

After an analog to digital conversion the signal is processed by a digital filter.

Since the clock of the transducer driver and the ADC / filter clock are synchronized, the digital filter follows the sending frequency. The output of the digital matched filter (DMF) represents the envelope of the echo signal.

The driver frequency and the frequency of the digital filter together with the timing of the threshold depend on the oscillator frequency. The center frequency of the filter is shifted with the driver frequency temperature dependency. The bandwidth is scaled with frequency.

7.4.3.1 Filter characteristics

Figure 7.4.3.1-1: Filter frequency response at 48kHz

Figure 7.4.3.1-2: Filter frequency response at 58kHz

7.4.4 Sensitivity Time Control (STC)

Sensitivity time control (STC) increases a digital gain over time, starting at T_{START_STC} with an increment of ΔG_STC for N_{STEP_STC} steps every T_{STEP_STC} time steps. The maximum gain value is fix and results in the final sum of all steps S_{G_STC} (see Figure 7.4.4-1). The STC can be activated by STC_CFG.

STC combined with a proper threshold setup is useful in:

- Reduction of ground echoes at short range and increased amplitude at long range.
- No overdrive at short range.

Remark: The configuration of STC_CFG is written in volatile memory.

Figure 7.4.4-1: Sensitivity time control

After a measurement the STC is switched off (0dB). So that the noise measurement is done without STC.

Table 7.4.4-1: STC calculation table

stc_step	0	1	2	3	4	5	6	7	8	9
factor	1,00	1,125	1,250	1,375	1,500	1,625	1,750	1,875	2,00	2,25
dB	0,000	1,023	1,938	2,766	3,522	4,217	4,861	5,460	6,021	7,044
dB / step		1,023	0,915	0,828	0,756	0,695	0,644	0,599	0,561	1,023
stc_step	10	11	12	13	14	15	16			
factor	2,500	2,750	3,000	3,250	3,500	3,750	4,000			
dB	7,959	8,787	9,542	10,238	10,881	11,481	12,041			
dB / step	0,915	0,828	0,756	0,695	0,644	0,599	0,561			

7.4.5 Threshold comparator

The signal processing and data evaluation is done by comparing the echo envelope signal of the digital filter output with a threshold value. In case of the static threshold generation (ATG_CFG='0') the programmed values are used. In case of the automatic threshold generation (ATG_CFG='1') the combination of static and dynamic threshold generation is used.

The result of the comparator output appears at pin IO in SEND / RECEIVE mode. If the current envelope of the echo signal goes above the threshold for a time $t > t_{DEB\ ECHO}$, pin IO is pulled to GND.

7.4.6 Threshold generation

The IC offers two different possibilities of threshold generation, which can be selected by the EEPROM bit ATG_CFG:

- · static threshold generation
- automatic threshold generation

In both cases during SEND and RECEIVE mode, a filter output signal exceeding the comparator threshold, indicates a received echo. The threshold passed to the comparator is a function of time.

In case of the static threshold generation, the IC offers several opportunities for individual configuration of the threshold function. This function is defined by:

- Selected transducer frequency
- Up to 14 threshold values which are connected by linear interpolation
- · An additional offset value
- A scaling factor (only receive mode)
- Initial threshold (only receive mode)

In case of automatic threshold generation, the IC offers the individual configuration parameters described in chapter 7.4.6.3.

With the example for static threshold generation in Figure 7.4.6-1 the notation of the following chapters is introduced.

Figure 7.4.6-1: Intervals of static threshold generation in SEND or RECEIVE mode and related threshold values

7.4.6.1 Intervals of static threshold generation

The intervals linearly depend on the selected transducer frequency f_{DRV} . The programmable threshold values THRES1 - THRES14 are reached at the end of the corresponding interval. During the interval the threshold is evaluated by a linear interpolation. Only the first interval THRES1 is constant during the complete interval 1. Table 7.4.6.1-1 shows the intervals for two different frequencies and gives the corresponding register THRESn to program the exponent of the threshold value.

Table 7.4.6.1-1: Intervals depending on f_{DRV}

Interval name	threshold exponent	Interval [ms]	Interval [ms]
		f _{DRV} =48kHz	f _{DRV} =58kHz
1	THRES1	0 - 2.0	0 - 1.66
2	THRES2	2.0 -3.0	1.66 - 2.48
3	THRES3	3.0 - 4.0	2.48 - 3.31
4	THRES4	4.0 - 5.0	3.31 - 4.14
5	THRES5	5.0 - 6.0	4.14 - 4.97
6	THRES6	6.0 - 7.0	4.97 - 5.79
7	THRES7	7.0 - 8.0	5.79 - 6.62
8	THRES8	8.0 - 9.0	6.62 - 7.45
9	THRES9	9.0 - 10.0	7.45 - 8.28
10	THRES10	10.0 - 11.0	8.28 - 9.10
11	THRES11	11.0 - 12.0	9.10 - 9.93
12	THRES12	12.0 - 13.0	9.93 - 10.76
13	THRES13	13.0 - 17.0	10.76 - 14.07
14	THRES14	17.0 - 21.0	14.07 - 17.38

A measurement cycle ('SEND', 'SENDx', 'RECEIVE', 'SEND_WO_DAMP') will be finished between THRES6 and THRES14 depending on the programmed threshold values. The measurement cycle stops, when the value of the current threshold is set to the maximum threshold value and higher than the previous one. If this combination does not occur the measurement cycle stops after the last time interval.

For example at f_{DRV}=58kHz the shortest measurement duration of 4.97ms is achieved, when THRES6=31 and THRES5<31.

7.4.6.2 Values of static threshold generation

In SEND mode the threshold value used for the interpolation algorithm is calculated as follows:

threshold_value_n =
$$\left(62 \cdot 10^{\frac{THRESndez}{31}} - 62\right) + 62$$

In RECEIVE mode the threshold values can be decreased by a scaling factor. All threshold values are multiplied with this scaling factor. The scaling factor is set by bits THRES_SCALE[1:0] according to Table 7.4.6.2-1 and the threshold value in RECEIVE mode is calculated as follows:

threshold_value_n =
$$(62 \cdot 10^{\frac{THRESndez}{31}} - 62) \cdot SCALING_FACTOR + 62$$

The additional offset is always 62, independent from SEND or RECEIVE mode. Table 7.4.6.2-2 shows the resulting threshold values depending on the threshold component and the scaling factor.

Table 7.4.6.2-1: Scaling for Receive Threshold

THRES_SCALE[1]	THRES_SCALE[0]	SCALING_FACTOR
0	0	0.25
0	1	0.5
1	0	0.75
1	1	1.0

Table 7.4.6.2-2: Threshold values resulting from exponent and scaling factor

Threshold exponent	Threshold value with scaling 1.0	Threshold value with scaling 0.75	Threshold value with scaling 0.5	Threshold value with scaling 0.25
0	62	62	62	62
1	67	65	64	63
2	72	69	67	64
3	77	73	69	65
4	83	77	72	67
5	90	83	76	69
6	97	88	79	70
7	104	93	83	72
8	112	99	87	74
9	121	106	91	76
10	130	113	96	79
11	140	120	101	81
12	151	128	106	84
13	163	137	112	87
14	175	146	118	90
15	189	157	125	93
16	203	167	132	97
17	219	179	140	101
18	236	192	149	105
19	254	206	158	110
20	274	221	168	115
21	295	236	178	120
22	318	254	190	126
23	342	272	202	132
24	369	292	215	138
25	397	313	229	145
26	428	336	245	153
27	461	361	261	161
28	496	387	279	170
29	534	416	298	180
30	576	447	319	190
31	620	480	341	201

Remark: The SCALING_FACTOR in SEND mode cannot be modified, SCALING_FACTOR is always 1.0.

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

Elmos Semiconductor AG QM-No.: 25DS0112E.02

7.4.6.3 Automatic threshold generation

The automatic threshold generation (ATG) can be activated by ATG_CFG.

An activation means a combination of static and dynamic threshold, which is depicted in Figure 7.4.6.3-1.

Figure 7.4.6.3-1: Threshold generation using ATG_CFG

When ATG_CFG='1' the maximum of the static threshold value and the dynamic calculated value is compared to the envelope function with a comparator.

The dynamic threshold is continuoulsy calculated and depends on the start value (ATG_START), the time constant (ATG_TAU) and the multiplier (ATG_ALPHA).

As soon as the envelope of the echo signal is above the dynamic threshold, the dynamic threshold stays constant.

If ATG_CFG='1' the dynamic threshold parameters can be programmed with the 'THRESHOLD' command within the volatile memory. See chapter 7.5.6 for more details.

The starting value of the dynamic threshold can be set by ATG_START:

Table 7.4.6.3-1: ATG_START[1:0]

ATG_START[1]	ATG_START[0]	value
0	0	256
0	1	384
1	0	512
1	1	640

The figures Figure 7.4.6.3-2 and Figure 7.4.6.3-3 show samples of the dynamic threshold set-up in receive mode.

Figure 7.4.6.3-2: Dynamic threshold @ f_DRV=48kHz for ATG_TAU=0, ATG_ALPHA=any and ATG_START varied

The time constant defines the fall time and can be set by ATG_TAU:

Table 7.4.6.3-2: ATG_TAU[2:0]

ATG_TAU[2]	ATG_TAU[1]	ATG_TAU[0]	falltime
0	0	0	slow
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	fast

Figure 7.4.6.3-3: Dynamic threshold @ f_{DRV} =48kHz for ATG_TAU=varied, ATG_ALPHA=any and ATG_START=3

The multiplier sets the signal-to-noise ratio between the envelope function and the used threshold. It can be defined by ATG_APLHA:

Table 7.4.6.3-3: ATG_ALPHA[1:0]

ATG_ALPHA[1]	ATG_ALPHA[0]	value
0	0	2.5
0	1	3.0
1	0	3.5
1	1	4.0

Figure 7.4.6.3-4: Dynamic threshold for ATG_TAU=3, ATG_ALPHA=varied and ATG_START=2

A zoom of Figure 7.4.6.3-4 shows the behavior during echo reception:

Figure 7.4.6.3-5: Dynamic threshold behavior during echo

When ATG_CFG='1':

- As static threshold value for THRES13 and THRES14 the value of THRES12 is used.
- For the threshold exponent = 0 the threshold value can go down to 3 (instead of 62) for every scaling.
- All other threshold values are as depicted in Table 7.4.6.2-2.

To finish a measurement cycle while ATG_CFG=1 after THRES12 or THRES13 the THRES_END option can be used:

Table 7.4.6.3-4: THRES_END[2:0]

THRES_END[2]	THRES_END[1]	THRES_END[0]	Meaning
0	0	0	Measurement cycle finished after THRES14
0	0	1	Measurement cycle finished after THRES13
0	1	0	Measurement cycle finished after THRES12

7.4.6.4 Initial threshold in receive mode

The initial threshold exponent during RECEIVE mode is defined by bit THRES_INI according to Table 7.4.6.4-1. If this bit is set to '0' THRES1 is valid for the first interval and if this bit is set to '1' THRES2 is valid for the first interval.

Table 7.4.6.4-1: Function of bit THRES_INI

THRES_INI	Function in receive mode	
0	initial threshold exponent=THRES1	
1	initial threshold exponent=THRES2	

7.4.6.5 Noise measurement during SEND and RECEIVE command

As increased ambient noise might disturb the measurement in SEND or RECEIVE mode, the IC measures the ambient supersonic noise directly before entering SEND or RECEIVE mode. The ambient noise measurement is performed during the low phase of the 'SEND' or 'RECEIVE' command (T_{SND} / T_{REC}). The output of the digital filter is compared to a threshold value which can be selected by bits NOISE_CFG[1:0] according to Table 7.4.6.5-1.

The result of the noise measurement is stored each 'SEND' or 'RECEIVE' command and can be read out with the IO command "READ_STATUS" from the status register.

Table 7.4.6.5-1: Threshold value for noise measurement depending of bits NOISE_CFG[1:0]

NOISE_CFG[1]	NOISE_CFG[0]	Threshold value
0	0	ATG_CFG=0: THRES14 (of the previous measurement) and SCALING_FACTOR fixed to 1.0 ATG_CFG=1: THRES12 (of the previous measurement) and SCALING_FACTOR fixed to 1.0
0	1	62
1	0	124
1	1	620

Remark: The threshold value for the first noise measurement after 'power on' is at maximum value of 620.

7.4.6.6 Masking of comparator output

For threshold values < 255 the comparator output can be masked for the time T_{CMASK} after the output signal of the digital filter drops below the comparator threshold. This functionality might be useful if the IC is operated with high gain and low comparator threshold. In this combination even low noise coupling from the IO line to the analog input circuitry can cause an additional echo signal.

The masking can be enabled with bit COMP_MASK according to Table 7.4.6.6-1.

Table 7.4.6.6-1: Comparator masking

COMP_MASK	Function
0	Comparator masking not active
1	Comparator masking active

Masking of the comparator output is not necessary (COMP_MASK=0), if a clean decoupling between IO-line and receiving part is guaranteed.

7.5 IO Interface

The IO interface is used to communicate between the E524.05 or E524.06 and the hosting ECU. A 'SEND' or 'RECEIVE' command is initiated by an ECU pulling pin IO low for T_{SND} or T_{REC} . For all other commands, the ECU pulls IO low for T_{CMD} and issues a 4 bit command sequence. A logic '0' is signalized with pulling the line low for T_{BITO} and a logic '1' with T_{BITO} as shown in Figure 7.5-1. The bit length and all other timing parameters are proportional to the programmed driver frequency f_{DRV} .

Figure 7.5-1: IO Pin bit encoding

E524.05

Data is sent between the E524.05 and ECU by modulating voltage on the supply wire VSUP_DATA. The application diagram in Figure 8.1-1 and Table 8.2-1 show the location and size of the external components to ensure secure bidirectional communication. During communication, tank capacitors C_{SUP3} supply the E524.05 at pin VSUP.

To send data to the E524.05, the supply line voltage has to be modulated by the ECU. A voltage at the pin IO below V_{IO_IL} will be detected as a low level, a voltage above V_{IO_IH} as a high level. A debouncing circuit suppresses interference shorter than T_{DEB} .

Data is transmitted from the E524.05 to the ECU by modulating pull-down current I_{PD_IO} into pin IO. I_{PD_IO} increases the supply current coming from the ECU via VSUP_DATA. Increasing I_{PD_IO} will increase the voltage drop over Ri and decrease the voltage at VI_ECU which is recognized as a low level by the ECU. Consider plug and wire resistances for VSUP_DATA and GND connecting ultrasonic module and ECU to establish proper voltage levels at pin IO.

E524.06

Data is sent between the E524.06 and ECU by pulling the single line DATA low for defined periods of time. The application diagram in Figure 8.3-1 and Table 8.4-1 show the location and size of the external components to ensure secure communication via DATA.

Incoming data to the E524.06 is recognized as a low if V_{IO} is below $V_{\text{IO_IL}}$ of the voltage at VSUP. A debouncing circuit suppresses interference shorter than T_{DEB} . Outgoing data transmission to the ECU is accomplished by pulling pin IO low overcoming pull-up resistor $R_{\text{IO_PU_ECU}}$. To reduce EMI, the slew rate pulling low is limited to SR_{VIO} . The slew rate of the rising edge is defined by external circuitry.

7.5.1 Exchange of commands

The E524.05 and E524.06 support following commands from the hosting ECU.

Table 7.5.1-1: Command structure summary

Command	Coding	Command Description
SEND	T_{SND}	Initiates a burst signal via the internal drivers followed by a measurement sequence.
RECEIVE	T _{REC}	Initiates a measurement sequence without preceding burst, useful for triangulation in systems with multiple transducers.
SEND_WO_DAMP	T _{CMD} + 1010	Initiates a burst signal without electronic damping, useful for analyzing the ringing time without damping and the frequency deviation between driver frequency and transducer resonance frequency.
SEND4	T _{CMD} + 1011	Initiates a burst signal with 4 pulses via the internal drivers followed by a measurement sequence.
SEND8	T _{CMD} + 1100	Initiates a burst signal with 8 pulses via the internal drivers followed by a measurement sequence.
SEND12	T _{CMD} + 1101	Initiates a burst signal with 12 pulses via the internal drivers followed by a measurement sequence.
SEND24	T _{CMD} + 1110	Initiates a burst signal with 24 pulses via the internal drivers followed by a measurement sequence.
THRESHOLD	T _{CMD} + 0001	Writes individual threshold values for up to 14 timing intervals and scaling factors into the device.
READ_STATUS	T _{CMD} + 0010	Verifies previous transmission of threshold values, reads current noise status, reads frequency deviation between driver and resonance frequency and reads VDRV status.
CAL_PULSES	T _{CMD} + 0011	Returns 2 pulses with a defined interval of T _{CAL} to the ECU for transducer driver frequency calibration purposes.
READ_ECHO	T _{CMD} + 0111	Returns 8 bit value as information of the echo height of the first detected echo.
EE_READ	T _{CMD} + 0100	Reads the EEPROM contents with three read voltage levels to verify successful programming.
EE_WRITE	T _{CMD} + 0101	Allows to pre-load settings for the driver frequency, amplifier gain, number of pulses, noise strategy, electronic damping, comparator masking, RD and ATG activation into the device.
EE_PROGRAM	T _{CMD} + 0110	Programs settings pre-loaded with EE_WRITE into the internal EEPROM.
EE_READ_SHADOW	T _{CMD} + 1000	Reads the EEPROM shadow registers to verify EE_WRITE.
READ_ID	T _{CMD} + 1001	A 24 bit chip ID is transferred on the IO line.

7.5.2 'SEND' command

The 'SEND' command initiates a burst followed by a measurement sequence. The SEND mode is requested from the ECU by holding Pin IO low for T_{SND} and is entered with the rising edge of the corresponding command. A filter output signal exceeding the comparator threshold indicates a received echo.

As long as the E524.05 and E524.06 operate in SEND mode, no instructions coming over the IO-Interface are accepted. The interface is ready to receive new instructions when a high level remains at pin IO for at least T_{DEB} to debounce after SEND mode has ended.

The E524.05 and E524.06 can diagnose the proper operation of the transducer. After the 'SEND' command, the transducer driver is activated and sends out a burst for the length T_{TX} . This also causes high signal levels at the receiving amplifier and triggers the comparator.

E524.05

For the E524.05 Figure 7.5.2-1 illustrates the 'SEND' command timing with an example of correct operation.

Figure 7.5.2-1: E524.05 'SEND' command timing

In the example above the threshold is held at maximum and then programmed to decline slowly.

The example above shows the three different possibilities when the IO line is pulled down.

The first low pulse is reported during burst, the second low pulse indicates the end of ringing time and can be used to verify correct operation and the third pulse in this example is triggered due to a detected echo.

E524.06

For the E524.06, the duration of the low phase after T_{Tx} can be used for diagnosis puposes. Figure 7.5.2-2 illustrates the 'SEND' command timing for the E524.06 with an example of correct operation.

Figure 7.5.2-2: E524.06 'SEND' command timing

In the example above, the threshold is held at maximum during and shortly after the burst and then programmed to decline slowly. An echo is detected, when the signal line crosses the threshold line, which means that the comparator is triggered.

E524.05

The figure below shows that a crossing between threshold line and envelope will only be recognised on the IO_line if a debounce time of $T_{\text{DEB_ECHO}}$ is maintained.

Figure 7.5.2-3: E524.05 'SEND' command timing with T_{DEB ECHO}

E524.06

The figure below shows that a crossing between threshold line and envelope will only be recognised on the IO_line if a debounce time of $T_{\text{DEB_ECHO}}$ is maintained.

Figure 7.5.2-4: E524.06 'SEND' command timing with T_{DEB ECHO}

7.5.3 'RECEIVE' command

A 'RECEIVE' command is identical to the 'SEND' command but skips the burst. The initial threshold value in RECEIVE is defined by bit THRES_INI. The RECEIVE mode is requested from the ECU by holding Pin I/O low for T_{REC} and is entered with the rising edge of the corresponding command. A filter output signal exceeding the comparator threshold indicates a received echo. In RECEIVE mode the threshold sensitivity can be increased by a scaling factor THRES_SCALE.

As long as the E524.05 and E524.06 operate in RECEIVE mode, no instructions coming over the IO-Interface are accepted. The interface is ready to receive new instructions when a high level remains at pin IO for at least T_{DEB} to debounce after RECEIVE mode has ended.

E524.05

Figure 7.5.3-1 shows the timing for a E524.05 'RECEIVE' command.

Figure 7.5.3-1: E524.05 'RECEIVE' command timing

The E524.05 operates purely in receiving mode for the entire sequence. In the example, two echoes are received and pull Pin IO low for $T_{\text{ECHO2WIRE}}$. The thresholds are scalable with the selected scaling factor THRES_SCALE, part of the 'THRESHOLD' command.

E524.06

Figure 7.5.3-2 shows the timing for a E524.06 'RECEIVE' command.

Figure 7.5.3-2: E524.06 RECEIVE' command timing

The E524.06 operates purely in receiving mode for the entire sequence. In the example, two echoes are received and pull Pin IO low. The thresholds are scalable with the selected scaling factor THRES_SCALE, part of the 'THRESHOLD' command.

7.5.4 'SEND_WO_DAMP' command

The command 'SEND_WO_DAMP' (send request without damping) is functional identical with the 'SEND' command with one exception: after the burst pulses the electronic damping is inactive during this measurement (if enabled in EEPROM) are generated. Without damping the frequency deviation between the driver frequency and transducer resonance frequency can be analyzed. The result is valid after the 'SEND_WO_DAMP' command is finished and is read out with the command 'READ_STATUS'. This command can also be used to check the efficiency of the damping.

7.5.5 'SEND4', 'SEND8', 'SEND12', 'SEND24' commands

The commands 'SEND4' (send request with 4 pulses), 'SEND8' (send request with 8 pulses), 'SEND12' (send request with 12 pulses) and 'SEND24' (send request with 24 pulses) are functional identical with the 'SEND' command with one exception: Independent from the EEPORM setting N_PULSES, all 4 commands use their number of pulses.

These commands can be used to send a burst with different number of pulses for an enhanced short or long range performance without programming of the EEPROM.

7.5.6 'THRESHOLD' command

In case of ATG_CFG='0' the 'THRESHOLD' command writes the threshold values of the 14 intervals and several control bits for threshold scaling, noise strategy and the sensitivity time control into the device.

In case of ATG_CFG='1' the 'THRESHOLD' command writes the threshold values of the 12 intervals and several control bits for automatic threshold generation, threshold scaling, noise strategy and the sensitivity time control into the device.

In both cases the programming is secured with parity bits. The successful programming can be verified with the 'READ_STATUS' command.

Remark: Threshold data is stored in a volatile memory. Therefore the ECU has to write the threshold data every start up. After power on the default values are active.

Static Thresholds (ATG_CFG='0')

MS	SB											LS	SB				\neg
78 77 76 75 74	73 72 71 70 69	68		19 1	8 17 16	15 14	13 12	11	10 9	8 7	6	5	4	3	2	1	0
THRES1	THRES2		THRES3 THRES12		THRE	S13	ТН	RES	514	THRES_SCALE	THRES_INI	STC_CFG	PARITY0	PARITY1	PARITY2	PARITY3	PARITY4
Automatic Thresholds (ATG_CFG='1') MSB LSB																	
		00		14014	0147140	145144	10 10	1441	10 0	8 7	_		_	0	0	4 1	_
78 77 76 75 74	/3 /2 /1 /0 69	68		19 1	8 17 16	15 14	13 12	11	10 9		6	5	4	3	2	1	0
THRES1	THRES2		THRES3 THRES12		THRES_END	ATG_TAU		AIG_ALPHA	ATG_START	THRES_SCALE	THRES_INI	STC_CFG	PARITYO	PARITY1	PARITY2	PARITY3	PARITY4
Parity calculation																	
MS												_	SB				\dashv
78	69 68	53	52	3	36			21	20			5	4	3	2	1	0
Calculate even parity bit					6	Calcula even par				Calculaten parity			PARITYO	PARITY1	PARITY2	PARITY3	PARITY4
											\geq	_	1	A			

Figure 7.5.6-1: Threshold organisation

The 'THRESHOLD' command timing diagram is shown in Figure 7.5.6-2. The first bit transmitted on the IO line is the MSB of THRES1 and the last bit is the parity bit PARITY4.

Table 7.5.6-1: Write threshold (ATG_CFG='0')

Bit	No. of bits	Function	Name	Default (dec)
78:74	5	1st threshold value	THRES1	31
73:69	5	2nd threshold value	THRES2	31
68:64	5	3rd threshold value	THRES3	31
63:59	5	4th threshold value	THRES4	30
58:54	5	5th threshold value	THRES5	29
53:49	5	6th threshold value	THRES6	28
48:44	5	7th threshold value	THRES7	27
43:39	5	8th threshold value	THRES8	25
39:34	5	9th threshold value	THRES9	22
33:29	5	10th threshold value	THRES10	14
28:24	5	11th threshold value	THRES11	10
23:19	5	12th threshold value	THRES12	6
18:14	5	13th threshold value	THRES13	0
13:9	5	14th threshold value	THRES14	0
8:7	2	Scaling for receive operation	THRES_SCALE[1:0]	2
6	1	Initial threshold value	THRES_INI	0
5	1	Sensitivity time control configuration '0': off '1': on	STC_CFG	1
4	1	Even parity bit for bit 20-5	PARITYO	-
3	1	Even parity bit for bit 36-21	PARITY1	-
2	1	Even parity bit for bit 52-37	PARITY2	-
1	1	Even parity bit for bit 68-53	PARITY3	-
0	1	Even parity bit for bit 78-69	PARITY4	-

Table 7.5.6-2: Write threshold (ATG_CFG='1')

Bit	No. of bits	Function	Name	Default (dec)
78:74	5	1st threshold value	THRES1	31
73:69	5	2nd threshold value	THRES2	31
68:64	5	3rd threshold value	THRES3	31
63:59	5	4th threshold value	THRES4	30
58:54	5	5th threshold value	THRES5	29
53:49	5	6th threshold value	THRES6	28
48:44	5	7th threshold value	THRES7	27
43:39	5	8th threshold value	THRES8	25
39:34	5	9th threshold value	THRES9	22
33:29	5	10th threshold value	THRES10	14
28:24	5	11th threshold value	THRES11	10
23:19	5	12th threshold value	THRES12	6
18:16	3	Finish measurement cycle option	THRES_END	0
15:13	3	Time constant of ATG	ATG_TAU	0
12:11	2	Multiplier of ATG	ATG_ALPHA	0
10:9	2	Start value of ATG	ATG_START	0
8:7	2	Scaling for receive operation	THRES_SCALE[1:0]	2
6	1	Initial threshold value	THRES_INI	0
5	1	Sensitivity time control configuration '0': off '1': on	STC_CFG	1
4	1	Even parity bit for bit 20-5	PARITYO	-
3	1	Even parity bit for bit 36-21	PARITY1	-
2	1	Even parity bit for bit 52-37	PARITY2	-
1	1	Even parity bit for bit 68-53	PARITY3	-
0	1	Even parity bit for bit 78-69	PARITY4	-

The default threshold values for ATG_CFG=0 and ATG_CFG=1 are the same.

7.5.7 'READ_STATUS' command

The command 'READ_STATUS' can be used to verify the last transmission of the threshold values and control bits and to get information about the noise level of the latest send/receive request. The noise level is analyzed during the low phase on the IO line of the send/receive request command.

The frequency deviation measurement of the latest 'SEND_WO_DAMP' measurement or 'SEND' with EL_DAMP=0 is transmitted as well as the status signal of the transducer driver output voltage. The data of Bit0-5 should be evaluated before another 'SEND' with EL_DAMP>0. The meaning of these bits is as follows:

Table 7.5.7-1: Read Status: Bits 0-4

Bit 4:0	Meaning							
01111	+11.7% frequency deviation between the transducer driver and its resonance frequency							
01110	+10.92% frequency deviation between the transducer driver and its resonance frequency							
00001	+0.78% frequency deviation between the transducer driver and its resonance frequency							
00000	0.0% frequency deviation between the transducer driver and its resonance frequency							
11111	-0.78% frequency deviation between the transducer driver and its resonance frequency							
10001	-11.7% frequency deviation between the transducer driver and its resonance frequency							
10000	.2.48% frequency deviation between the transducer driver and its resonance frequency							

The frequency deviation between driver frequency and transducer resonance frequency is transmitted as a complement on two. Each digit equals 0.78% frequency deviation. The value is valid after the 'SEND_WO_DAMP' command as well as after the 'SEND' command with EL_DAMP=0 has been executed.

Table 7.5.7-2: Read Status: Bit 5

Bit 5	Meaning
0	Result of frequency measurement is invalid
1	Result of frequency measurement is valid

Table 7.5.7-3: Read Status: Bit 6

Bit 6	Meaning
0	Transducer driver output voltage not above V _{DRV_OK_H}
1	Transducer driver output voltage above V _{DRV_OK_H}

Table 7.5.7-4: Read Status: Bit 7

Bit 7	Meaning
0	Reset state or last threshold data reception incorrect, default data active
1	Last threshold data reception successful, transmitted threshold data active

Table 7.5.7-5: Read Status: Bit 8

Bit 8	Meaning
0	No noise detected during last measurement cycle
1	Noise detected during last measurement cycle

The 'READ_STATUS' command timing diagram is shown in Figure 7.5.7-1. The transmission starts with bit 8.

Figure 7.5.7-1: READ STATUS command

7.5.8 'CAL_PULSES' command

To calibrate the internal oscillator to the required frequency two pulses with a defined interval of T_{CAL} can be driven on the IO line. The interval starts and stops with a pulse of the width T_{CALS} . Due to the controlled slew rate, the ECU should observe the falling edge of the pulses. The following diagram shows the flow:

Figure 7.5.8-1: Oscillator Calibration Pulse

7.5.9 'READ_ECHO' command

The 'READ_ECHO' command returns an 8 bit value of the echo height of the first detected echo. The returned value is the maximum of the region when the signal line is above the threshold.

The returned value is the evaluation of the last 'SENDxx' or 'RECEIVE' command.

No echo results in a value of 0. Maximum echo amplitude results in a value of 255.

The command is depicted in Figure 7.5.9-1:

Figure 7.5.9-1: 'READ_ECHO' command

Two examples for echo height detection are depicted in the following figures:

E524.05

Figure 7.5.9-2 illustrates an example for the detection of the maximum echo for the E524.05. Besides the depicted 'SEND' command, with 'RECEIVE' or any other 'SEND' command the maximum of the first echo will be returned by the 'READ ECHO' command.

Figure 7.5.9-2: E524.05 Echo height detection

E524.06

Figure 7.5.9-3 illustrates an example for the detection of the maximum echo for the E524.06. Besides the depicted 'SEND' command, with 'RECEIVE' or any other 'SEND' command the maximum of the first echo will be returned by the 'READ_ECHO' command.

Figure 7.5.9-3: E524.06 Echo height detection

7.5.10 EEPROM Programming

The internal 32 bit EEPROM holds values for driver frequency, amplifier gain, noise analysis thresholds, electronic damping settings, driver supply voltage, number of pulses, comparator masking, RD and ATG activation. The programming and verification via the single IO pin is done in three steps. 'EE_WRITE' allows to pre-load initial settings. After calibration, 'EE_PRO-GRAM' stores the final settings in EEPROM. To verify successful programming, 'EE_READ' reads the register content back. To achieve a valid programming, an 'EE_WRITE' must be sent before an 'EE_PROGRAM'.

Both E524.05 and E524.06 are shipped with factory default settings. After assembly with a transducer, the optimum values for driver frequency, amplifier gain, electronic damping, number of pulses and driver supply voltage are found in functional testing and calibration in the application of the customer. The EEPROM configuration is depicted in the following figure and table. The delivery state can be found in chapter 5.

ſ	М	SE	3																												LS	В
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	(CU	STO BIT		3	SEC ESION) -	ATG_CFG	COMP_MASK	PD_CFG	E	EL_D)AM		N_PULSES	•	•	F_	DR	V_A	۸DJ				030 7007	ָ כ כ			AMF	P_G	AIN	

Figure 7.5.10-1: EEPROM organisation

Table 7.5.10-1: EEPROM Bits

Bit	No. Bits	Function	Description
27:31	5	CUSTOMER BITS	free configurable
26:25	2	NOISE_CFG	Noise strategy: '00': THRES14 and THRES_SCALE=3 fixed '01': 62 fixed '10': 124 fixed '11': 620 fixed
24	1	ATG_CFG	Automatic threshold generation: '0': off '1': on
23	1	COMP_MASK	Comparator masking on IO line: '0': not active '1': active
22	1	RD_CFG	Damping resistor during ringing: '0': off '1': on
21:18	4	EL_DAMP	Electronic damping setting (nonlinear increment)
17	1	N_PULSES	Number of burst pulses: '0': 10 pulses '1': 16 pulses
16:9	8	F_DRV_ADJ	Driver frequency
8:5	4	VDRV_CFG	Transducer driver output voltage configuration
4:0	5	AMP_GAIN	Amplifier gain adjustment

7.5.10.1 'EE_WRITE' Command

As shown in Figure 7.5.10.1-1 in 'EE_WRITE', data bits follow directly after the command bits. The transmitted data bits overwrite previous EEPROM data, the new settings are valid for all functionality execpt the oscillator frequency. A new setting for the oscillator frequency impinge only on the command 'CAL_PULSES' before the command 'EE_PROGRAM' is executed. The first bit transmitted on the IO line is bit 31 (MSB of CUSTOMER BITS) and the last bit is bit 0 (LSB of AMP GAIN).

Figure 7.5.10.1-1: EE WRITE command

7.5.10.2 'EE_PROGRAM' Command

With the 'EE_PROGRAM' command, the EEPROM cells are programmed with the current register contents. After sending out the command, the voltage at the IO pin has to be raised to V_{PROG} within T_{VPROG} . As shown in Figure 7.5.10.2-1, the programming time at pin IO is T_{PROG} .

Figure 7.5.10.2-1: EE PROGRAM command

7.5.10.3 'EE_READ' Command

To verify successful programming, the 'EE_READ' command loads EEPROM data into registers and transmits the data at the IO pin, see Figure 7.5.10.3-1. The EEPROM data is read with a nominal, low and high read voltage and presented sequentially at the output IO indicating data integrity. Additionally, one VPROG_Status bit is appended to the end of the 31 EEPROM bits being read each time. The VPROG_Status contains the output of a comparator observing the programming voltage during programming. A high level shows the programming voltage has been within limits, a low levels indicates that the programming was not correct.

After power-on the VPROG_Status bit is '0'.

The first bit transmitted on the IO line is bit 31 (MSB of CUSTOMER BITS), the last bit is bit 0 (LSB of AMP_GAIN) and an additional bit 32 (VPROG_Status) with a nominal read voltage. The sequence is repeated with a low and a high read voltage. All in all 3 times (32+1) bit are transferred.

Figure 7.5.10.3-1: EE_READ command

7.5.10.4 'EE_READ_SHADOW' command

To verify the data that has been written to the EEPROM shadow registers the 'EE_READ_SHADOW' command can be used. It transfers the contents of the shadow registers on the IO line.

Figure 7.5.10.4-1: EE_READ_SHADOW command

7.5.11 'READ_ID' command

A 24 bit chip ID is transferred on the IO line with the command 'READ_ID'. The MSB of the ID is transmitted first.

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

8 Typical Applications

8.1 Typical Application Circuit E524.05

The E524.05 supports a wide range of ultrasound transducers. Circuit diagrams may contain components not manufactured by Elmos Semiconductor AG, which are included as means of illustrating a typical application. Elmos Semiconductor does not endorse or warrant performance specifications beyond the Electrical Characteristics for the E524.05. Please contact Elmos Semiconductor for further assistance and application notes.

Figure 8.1-1 and Table 8.2-1 show the typical operating circuit and external components for the E524.05. The ECU and transducer assembly are connected with two wires VSUP_DATA and GND. Data is exchanged via shared supply line VSUP_DATA.

Figure 8.1-1: Application Circuit E524.05

8.2 External Components E524.05

Table 8.2-1: Device values E524.05

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Serial resistor in supply line		RSUP	90	100	110	Ω
2	Reverse polarity protection diode	BAS321 general purpose diode or equivalent	DSUP	200			V _{Reverse}
3	Blocking capacitor for supply line		CSUP1		2.2		nF
4	Blocking capacitor for supply line		CSUP2		220		nF
5	Storage capacitor for supply line		CSUP3		10		μF
6	Storage capacitor for transducer driver		CDRV		2.2	4.7	μF
7	Serial resistor for IO line	5%, 1/8W	RIO_S	135	150	165	Ω
8	Capacitor for IO line	10%	CIO	3.2	4.7	6.2	nF
9	Blocking capacitor for analog supply	10%, 50V, ESR < 0.2Ω at 1MHz	CVDDA	70	100	130	nF
10	Blocking capacitor for digital supply	10%, 50V, ESR < 0.2Ω at 1MHz	CVDDD	70	100	130	nF
11	AC coupling capacitor for trans- ducer signal		C1		470		pF
12	AC coupling capacitor for trans- ducer signal		C2		470		pF
13	Filter resistor for improved EMC	depends on PCB layout	RAING		47		Ω
14	Filter resistor for improved EMC	depends on PCB layout	RAINS		47		Ω
15	Filter capacitor for improved EMC	depends on PCB layout	CAING		-		pF
16	Filter capacitor for improved EMC	depends on PCB layout	CAINS		-		pF
17	Filter capacitor for improved EMC	depends on PCB layout	CDRV1		-		pF
18	Filter capacitor for improved EMC	depends on PCB layout	CDRV2		220		pF
19	Filter capacitor for improved EMC	depends on PCB layout	CDRV12		220		pF
20	Filter resistor for improved EMC	depends on PCB layout	RDRV1		100		Ω
21	Filter resistor for improved EMC	depends on PCB layout	RDRV2		0		Ω
22	Transducer	e.g. Murata	Ultrasonic transducer		58		kHz

8.3 Typical Application Circuit E524.06

The E524.06 supports a wide range of ultrasound transducers. Circuit diagrams may contain components not manufactured by Elmos Semiconductor AG, which are included as means of illustrating a typical application. Elmos Semiconductor does not endorse or warrant performance specifications beyond the Electrical Characteristics for the E524.06. Please contact Elmos Semiconductor for further assistance and application notes.

The typical operational circuit for the E524.06 is shown in Figure 8.3-1, Table 8.4-1 lists external components. Three wires (GND, VSUP and DATA) connect ECU and ultrasonic module.

Figure 8.3-1: Application Circuit E524.06

8.4 External Components E524.06

Table 8.4-1: Device values E524.06

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Serial resistor in supply line		RSUP	90	100	110	Ω
2	Reverse polarity protection diode	BAS321 general purpose diode or equivalent	DSUP	200			V _{Reverse}
3	Blocking capacitor for supply line		CSUP1		2.2		nF
4	Blocking capacitor for supply line		CSUP2		220		nF
5	Storage capacitor for transducer driver		CDRV		2.2	4.7	μF
6	Serial resistor for IO line	5%, 1/8W	RIO_S	0.9	1	1.1	kΩ
7	Capacitor for IO line	5%	CIO1	230	330	430	pF
8	Capacitor for IO line	10%	CIO2	1.5	2.2	2.9	nF
9	Blocking capacitor for analog supply	10%, 50V, ESR < 0.2Ω at 1MHz	CVDDA	70	100	130	nF
10	Blocking capacitor for digital supply	10%, 50V, ESR < 0.2Ω at 1MHz	CVDDD	70	100	130	nF
11	AC coupling capacitor for trans- ducer signal		C1		470		pF
12	AC coupling capacitor for trans- ducer signal		C2		470		pF
13	Pull up resistor	1)	RPU		5		kΩ
14	Filter resistor for improved EMC	depends on PCB layout	RAING		47		Ω
15	Filter resistor for improved EMC	depends on PCB layout	RAINS		47		Ω
16	Filter capacitor for improved EMC	depends on PCB layout	CAING		-		pF
17	Filter capacitor for improved EMC	depends on PCB layout	CAINS		-		pF
18	Filter capacitor for improved EMC	depends on PCB layout	CDRV1		-		pF
19	Filter capacitor for improved EMC	depends on PCB layout	CDRV2		220		pF
20	Filter capacitor for improved EMC	depends on PCB layout	CDRV12		220		pF
21	Filter resistor for improved EMC	depends on PCB layout	RDRV1		100		Ω
22	Filter resistor for improved EMC	depends on PCB layout	RDRV2		0		Ω
23	Transducer	e.g. Murata	Ultrasonic transducer		58		kHz

 $^{^{1)}}$ RPU must be chosen with respect to RPU_IO_ECU (e.g. $10k\Omega$ // $10k\Omega$). The external elements should be chosen to set the rising edge and the falling edge of the communication via IO to the same slope.

9 Package Reference

The IC is available in a Pb free, RoHs compliant, QFN20L4 plastic package. Package outline and dimensions are according to JEDEC MO-220 K, variant VGGD-5.

Figure 9-1: Package Outline

Note 1: Typical thermal resistance junction to ambient Rth,ja is 45 °C/W, based on JEDEC standard JESD-51-2 (still air), JESD-51-5 (exposed pad soldered to PCB with thermal via's) and JESD-51-7 (4-layer PCB).

Note 2: Contact factory for specific location and type of pin 1 identification.

Table 9-1: Package Dimensions

Description	Symbol		mm			inch	
		min	typ	max	min	typ	max
Package height	А	0.80	0.90	1.00	0.031	0.035	0.039
Stand off	A1	0.00	0.02	0.05	0.000	0.00079	0.002
Thickness of terminal leads, including lead finish	А3		0.20 REF			0.0079 REF	
Width of terminal leads	b	0.18	0.25	0.30	0.0071	0.0098	0.012
Package length / width	D/E		4.00 BSC			0.157 BSC	
Length /width of exposed pad	D2 / E2	2.50	2.65	2.80	0.098	0.104	0.110
Lead pitch	е		0.5 BSC			0.020 BSC	
Length of terminal for soldering to substrate	L	0.35	0.40	0.45	0.013	0.016	0.018
Number of terminal positions	N		20			20	

Note: The mm values are valid, the inch values contain rounding errors.

10 Marking

10.1 Top Side

Table 10.1-1: Top Side

Elmos (optional)
52405A or 52406A (optional)
XXXXU
YWW*#

Table 10.1-2: Marking of the Devices

Signature	Explanation
52405 or 52406	Elmos project number
A	Elmos project revision number
XXXX	Production lot number
U	Assembler Code
YWW	Year and week of assembly
*	Mask revision code
#	Elmos internal code

10.2 Bottom Side

No marking

11 Reliability

11.1 Eeprom Data Retention

The data retention for the Eeprom within the given profile shown in Table 11.1-1 is statistically ensured according to AEC Q-100.

Table 11.1-1: Eeprom mission profile

Junction Temperature in [°C]	Operation Life Time in [h]	Storage Time in [a]	Comment
-40	480		Operation mission profile
23	1600		
40	5200		
80	640		
95	80		
105	50		
23		10	In production standby
85		5	
23		10	After market storage
95		5	
	8000	30	Sum

12 Storage, Handling, Packing and Shipping

12.1 Storage

Storage conditions should not exceed those given in Chapter 2 Absolute Maximum Ratings. The Moisture Sensitivity Level is specified according to MSL3 (JEDEC J-STD-020X in its valid revision).

12.2 Handling

Devices are sensitive to damage by Electrostatic Discharge (ESD) and should only be handled at an ESD protected workstation.

Handling conditions should not exceed those given in Chapter 2 Absolute Maximum Ratings.

12.3 Packing

Material shall be packed for shipment as follows:

- Tape-on-Reel
- Drybag for MPC samples
- Every reel respectively drybag will be packed in a packing carton. Each packing carton will be marked and sealed by using the standard label for packings.

12.4 Shipping

Each delivery shall be accompanied by the following:

- Certificate of conformance to the specification
- · Delivery note

13 Contents

Table of Content

Features	1
Applications	1
Ordering Information	
General Description	
Pin Configuration	
Pin Description	
1 Block Diagram	3
2 Absolute Maximum Ratings	
3 ESD and Latchup	5
3.1 ESD Protection	5
3.2 Latch-up	5
4 Recommended Operating Conditions	6
5 Electrical Characteristics	
5.1 Supply and Power-On-Reset	7
5.1.1 Transducer driver output voltage	7
5.2 Transducer Driver	8
5.3 Receiving path	
5.3.1 Analog Amplifier	8
5.3.2 Digital Filter	8
5.3.3 Sensitivity Time Control (STC)	9
5.3.4 Threshold comparator	
5.4 IO Interface	9
5.4.1 EEPROM Programming	
5.4.1.1 EEPROM delivery state	10
6 Typical Operating Characteristics	11
7 Functional Description	12
7.1 Overview	12
7.2 Supply and Power-On-Reset	13
7.2.1 Analog supply	13
7.2.2 Digital supply	13
7.2.3 Driver supply	13
7.2.4 Power up sequence	14
7.2.5 Limited performance between VSUPmin and VSUPPOR	15
7.3 Transducer Driver	16
7.3.1 Transducer driver frequency	17
7.3.2 Number of burst pulses	18
7.3.3 Transducer voltage	19
7.3.4 Electronic damping	20
7.4 Receiving path	21
7.4.1 Analog Amplifier	21
7.4.2 Analog to Digital Conversion (ADC)	21
7.4.3 Digital Filter	22
7.4.3.1 Filter characteristics	
7.4.4 Sensitivity Time Control (STC)	22
7.4.5 Threshold comparator	24
7.4.6 Threshold generation	24
7.4.6.1 Intervals of static threshold generation	26
7.4.6.2 Values of static threshold generation	26

Signal conditioning IC for directly driven ultrasonic sensors

PRODUCTION DATA – Apr 27, 2015

7.4.6.3 Automatic threshold generation	28
7.4.6.4 Initial threshold in receive mode	33
7.4.6.5 Noise measurement during SEND and RECEIVE command	33
7.4.6.6 Masking of comparator output	33
7.5 IO Interface	34
7.5.1 Exchange of commands	35
7.5.2 'SEND' command	36
7.5.3 'RECEIVE' command	38
7.5.4 'SEND_WO_DAMP' command	38
7.5.5 'SEND4', 'SEND8', 'SEND12', 'SEND24' commands	39
7.5.6 'THRESHOLD' command	39
7.5.7 'READ_STATUS' command	43
7.5.8 'CAL_PULSES' command	44
7.5.9 'READ_ECHO' command	44
7.5.10 EEPROM Programming	46
7.5.10.1 'EE_WRITE' Command	47
7.5.10.2 'EE_PROGRAM' Command	47
7.5.10.3 'EE_READ' Command	47
7.5.10.4 'EE_READ_SHADOW' command	48
7.5.11 'READ_ID' command	48
8 Typical Applications	
8.1 Typical Application Circuit E524.05	
8.2 External Components E524.05	
8.3 Typical Application Circuit E524.06	
8.4 External Components E524.06	
9 Package Reference	
10 Marking	
10.1 Top Side	
10.2 Bottom Side	
11 Reliability	
11.1 Eeprom Data Retention	
12 Storage, Handling, Packing and Shipping	
12.1 Storage	
12.2 Handling	
12.3 Packing	
12.4 Shipping	
13 Contents	
14 General	
14.1 WARNING - Life Support Applications Policy	
14.2 General Disclaimer	
14.3 Application Disclaimer	
14.4 Contact Info	61

Signal conditioning IC for directly driven ultrasonic sensors

PRODUCTION DATA – Apr 27, 2015

Illustration Index

Figure 7.1-1: Ultrasonic distance measuring	12
Figure 7.2-1: Supply block	13
Figure 7.2.4-1: Power up sequence	14
Figure 7.2.4-2: Typical start-up time over VRDV	14
Figure 7.2.5-1: Power-on-reset functionality	
Figure 7.3-1: Simplified transducer excitation	16
Figure 7.3-2: Transducer full bridge	16
Figure 7.3.1-1: Flow chart of frequency adjustment	
Figure 7.3.3-1: Example of charging CDRV=2.2μF and discharging with 16 pulses @ VSUP=12V	
Figure 7.4-1: Block diagram of receiving path	
Figure 7.4.3.1-1: Filter frequency response at 48kHz	
Figure 7.4.3.1-2: Filter frequency response at 58kHz	
Figure 7.4.4-1: Sensitivity time control	
Figure 7.4.6-1: Intervals of static threshold generation in SEND or RECEIVE mode and related threshold values	
Figure 7.4.6.3-1: Threshold generation using ATG_CFG	
Figure 7.4.6.3-2: Dynamic threshold @ fDRV=48kHz for ATG_TAU=0, ATG_ALPHA=any and ATG_START varied	
Figure 7.4.6.3-3: Dynamic threshold @ fDRV=48kHz for ATG_TAU=varied, ATG_ALPHA=any and ATG_START=3	
Figure 7.4.6.3-4: Dynamic threshold for ATG_TAU=3, ATG_ALPHA=varied and ATG_START=2	
Figure 7.4.6.3-5: Dynamic threshold behavior during echo	
Figure 7.5-1: IO Pin bit encoding	
Figure 7.5.2-1: E524.05 'SEND' command timing	
Figure 7.5.2-2: E524.06 'SEND' command timing	
Figure 7.5.2-3: E524.05 'SEND' command timing with TDEB_ECHO	
Figure 7.5.2-4: E524.06 'SEND' command timing with TDEB_ECHO	
Figure 7.5.3-1: E524.05 'RECEIVE' command timing	
Figure 7.5.3-2: E524.06 RECEIVE' command timing	
Figure 7.5.4-1: E524.05 Send without damping timing	
Figure 7.5.4-2: E524.06 Send without damping timing	
Figure 7.5.6-1: Threshold organisation	
Figure 7.5.6-2: Write threshold command	
Figure 7.5.7-1: READ_STATUS command	
Figure 7.5.8-1: Oscillator Calibration Pulse	
Figure 7.5.9-1: 'READ_ECHO' command	
Figure 7.5.9-2: E524.05 Echo height detection	
Figure 7.5.9-3: E524.06 Echo height detection	
Figure 7.5.10-1: EEPROM organisation	
Figure 7.5.10.1-1: EE_WRITE command	
Figure 7.5.10.2-1: EE_PROGRAM command	
Figure 7.5.10.3-1: EE_READ command	
Figure 7.5.10.4-1: EE_READ_SHADOW command	
Figure 7.5.11-1: 'READ_ID' command	
Figure 8.1-1: Application Circuit E524.05	
Figure 8.3-1: Application Circuit E524.06	
Figure 9-1: Package Outline	53

14 General

14.1 WARNING - Life Support Applications Policy

Elmos Semiconductor AG is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Elmos Semiconductor AG products, to observe standards of safety, and to avoid situations in which malfunction or failure of an Elmos Semiconductor AG Product could cause loss of human life, body injury or damage to property. In development your designs, please ensure that Elmos Semiconductor AG products are used within specified operating ranges as set forth in the most recent product specifications.

14.2 General Disclaimer

Information furnished by Elmos Semiconductor AG is believed to be accurate and reliable. However, no responsibility is assumed by Elmos Semiconductor AG for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Elmos Semiconductor AG. Elmos Semiconductor AG reserves the right to make changes to this document or the products contained therein without prior notice, to improve performance, reliability, or manufacturability.

14.3 Application Disclaimer

Circuit diagrams may contain components not manufactured by Elmos Semiconductor AG, which are included as means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. The information in the application examples has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Elmos Semiconductor AG or others.

14.4 Contact Info

Table 14.4-1: Contact Information

Headquarters	Phone: +49 (0) 231 / 75 49-100		
Elmos Semiconductor AG	Fax: +49 (0) 231 / 75 49-149 sales-germany@elmos.com		
Heinrich-Hertz-Str. 1,			
D-44227 Dortmund (Germany)			
www.elmos.com			
Sales and Application Support Office North America	Phone: +1 (0) 248 / 8 65 32 00		
Elmos NA. Inc.	Fax: +1 (0) 248 / 8 65 32 03		
32255 Northwestern Highway, Suite 220	sales-usa@elmos.com		
Farmington Hills, MI 48334 (USA)			
Sales and Application Support Office Korea	Phone: +82 (0) 31 / 7 14 11 31		
Elmos Korea	sales-korea@elmos.com		
B-1007, U-Space 2, #670 Daewangpangyo-ro,			
Sampyoung-dong, Bunddang-gu, Sungnam-si			
Kyounggi-do 463-400 Korea			
Sales and Application Support Office Japan	Phone: +81 3 / 3451-7101		
Elmos Japan K.K.	Fax: +81 3 / 3451-7104		
BR Shibaura N Bldg. 7F	sales-japan@elmos.com		
3-20-9 Shibaura, Minato-ku, Tokyo 108-0023 Japan			
Sales and Application Support Office China	Phone: +86 (0) 21 / 6210 0908		
Elmos Semiconductor Technology (Shanghai) Co., Ltd.	Fax: +86 (0) 21 / 6219 7502		
Unit 16B, 16F Zhao Feng World Trade Building,	sales-china@elmos.com		
No. 369 Jiang Su Road,			
Chang Ning District, Shanghai, PR China, 200050			
Sales and Application Support Office Singapore	Phone: +65 (0) 690 / 8 12 61		
Elmos Semiconductor Singapore Pte Ltd.	Fax: +65 (0) 6570 / 5906		
3A International Business Park,	sales-singapore@elmos.com		
#09-13 ICON@IBP, Singapore 609935			

© Elmos Semiconductor AG, 2015.

Reproduction, in part or whole, without the prior written consent of Elmos Semiconductor AG, is prohibited.