INF01209 - Fundamentos de Tolerância a Falhas

Você acessou como João Luiz Grave Gross (Sair)

Você está aqui

- Moodle do INF
- / ► <u>FTF 2012/2</u>
 - / ▶ Questionários
- ✓ Detecção e recuperação em processadores multicore
- / ► Revisão da tentativa 1

Detecção e recuperação em processadores multicore

Revisão da tentativa 1

Terminar revisão

	Terrimal revisao
Iniciado em	quinta, 25 outubro 2012, 10:35
Completado em	quinta, 25 outubro 2012, 12:05
Tempo empregado	1 hora 29 minutos

Notas 27.67/28

Nota 98.81 de um máximo de 100(99%)

Question1

Notas: 1

No artigo:

D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. S. Hari, D. Sorin, A. Meixner, A. Biswas, e X. Vera, "Architectures for online error detection and recovery in multicore processors", in Design, Automation Test in Europe Conference Exhibition (DATE), 2011, 2011, p. 1 -6. a motivação dos autores está relacionada ao fato de que "o enorme investimento no projeto e na produção de processadores multicore pode ser posta em risco por causa das emergentes tecnologias de fabricação altamente miniaturizadas mas não confiáveis". Essas tecnologias podem impor barreiras significativas para a operação confiável ao longo da vida de microprocessadores multicore.

Segundo os autores, microprocessadores fabricados com essas tecnologias serão mais vulneráveis a:

Escolher uma resposta.

0

a. cortes no orçamento que prejudicam a verificação exaustiva dos chips após a produção; defeitos no processo de fabricação que aceleram o envelhecimento e desgaste que podem produzir erros permanentes; e sobreaquecimento, devido a enorme quantidade de componentes miniaturizados, que reduz o tempo de vida útil. *

C	b. cortes no orçamento que prejudicam a verificação exaustiva dos chips após a produção; defeitos de fabricação latentes, assim como fenômenos de envelhecimento e desgaste que produzem erros permanentes; e interferência eletromagnética cruzada entre os vários núcleos operando em paralelo. *
0	c. stress mecânico e termodinâmico devido a enorme quantidade de componentes miniaturizados dentro do chip; interferência eletromagnética cruzada entre os vários núcleos operando em paralelo; e distúrbios ambientais que produzem erros transitórios. ✗
•	d. distúrbios ambientais que produzem erros transitórios; defeitos de fabricação latentes, assim como fenômenos de envelhecimento e desgaste que produzem erros permanentes; e ineficiência na verificação que permite que importantes erros de concepção permaneçam no sistema. ✓

Notas relativas a este envio: 1/1.

Question2

Notas: 1

O foco do artigo de Gizopoulos e demais autores está relacionado a:

0	a. controle da miniaturização durante o processo de fabricação para evitar a vulnerabilidade a falhas externas e de projeto. 🔻
C	b. estratégias de verificação e teste de arquiteturas multicore para evitar falhas de projeto e concepção dos circuitos. ✗
C	c. arquiteturas de detecção de erros com alta cobertura de detecção para permitir que o microprocessador multicore tenha todos os núcleos em um estado seguro em caso de falha

	ativada. 🗶	
•	d. arquiteturas confiáveis para processadores multicore que integram soluções para detecção online de erros, diagnóstico, recuperação e reparo durante a fase de operação. ✓	

Notas relativas a este envio: 1/1.

Question3

Notas: 1

Avanços na fabricação de semicondutores têm sustentado a validade da lei de Moore por várias décadas. Recentemente se chegou a conclusão que a única maneira de manter a taxa de aumento de desempenho é:

Escolher uma resposta.

0	a. melhorar os processos de fabricação 🗡
•	b. construir processadores com vários núcleos (multicore) e explorar o paralelismo. ✓
0	c. desenvolver microprocessadores tolerantes a falha 🗡
0	d. aumentar o orçamento e melhorar as técnicas de miniaturização 🗡

Correto

Notas relativas a este envio: 1/1.

Question4

Notas: 1

Gizopoulos afirma que existe um grande desafio na área de computação que agora é muito mais importante do que já foi anteriormente e se refere a:

Escolher uma resposta.

•	a. dependabilidade ✓
0	b. correção ⊀
0	c. segurança 🗶
0	d. desempenho 🗡
0	e. controle do orçamento 🗡
Corroto	

Notas relativas a este envio: 1/1.

Question5

Notas: 1

As 3 fontes mais importantes de operação não confiável do hardware que podem conduzir a defeitos do sistema, de acordo com Gizopoulos. são:

Escolha pelo menos uma resposta.

✓	a. a variabilidade do processo que faz com que a operação e componentes idênticos no mesmo chip seja diferente (heterogênea) ✓	
▽	b. sensibilidade a erros transientes dos circuitos submicron atuais muito profundos ✓	

	c. esgotamento da tecnologia de silício que não opera de forma determinística em altas velocidades 🗶
	d. imperfeições na implementação de estratégias de tolerância a falhas nos circuitos eletrônicos 🗡
V	e. envelhecimento acelerado e/ou desgaste de dispositivos, devido às suas condições de operação extremas ✓

Notas relativas a este envio: 1/1.

Question6

Notas: 1

Segundo Gizopoulos, além dos problemas causados por erros de hardware que podem afetar gravemente o funcionamento correto de microprocessadores multicore, há outra grande ameaça à operação confiável de dispositivos de hardware. Essa ameça vem piorando continuamente. Qual é essa ameaça?

0	a. carência de pessoal compentente 🗶
0	b. miniaturização dos componentes ×
0	c. cortes de orçamento 🗶
•	d. erros e bugs de projeto ✓
0	e. obsolescência acelerada 🗡

Notas relativas a este envio: 1/1.

Question7

Notas: 1

Segundo Gizopoulos, erros de projeto são devidos principalmente a dois fatores:

Escolher uma resposta.

0	a. ausência de estratégias para verificação antes da produção e validação pós-produção 🗡
•	b. grande complexidade e pressão para diminuir o tempo até a comercialização ✓
0	c. falta de domínio dos recursos tecnológicos e indiferença do mercado quanto à qualidade dos dispositivos eletrônicos 🗶
0	d. limitação de orçamento e tempo reduzido até a comercialização dos componentes 🗡

Correto

Notas relativas a este envio: 1/1.

Question8

Notas: 1

Arquiteturas de processadores multicore incorporam vários núcleos de CPU, memórias (caches, registradores), a lógica de controle de memória e a lógica de interconexão. Memórias ocupam uma grande parte da área do processador, mas podem ser protegidas com sucesso usando técnicas bem conhecidas de redundância como por exemplo:

Escolher uma resposta.

0	a. bit de paridade ×
0	b. memória estepe [✗]
0	c. redundância modular tripla (TMR) 🕺
0	d. dupliação e comparação 🗶
•	e. códigos de correção de erros (ECC) ✓
Correto	

Notas relativas a este envio: 1/1.

Question9

Notas: 1

Uma vez que a memória é considerada suficientemente protegida, a principal função da detecção de erros é a de proteger o restante do processador: os núcleos, a lógica de controle das memórias e a lógica de interligação.

Várias abordagens para detecção online de erros foram recentemente propostas. Segundo os autores, estas abordagens podem ser classificados em quatro categorias principais.

Assinale a categoria que **não** faz parte das categorias mencionadas pelos autores:

0	a. abordagens de detecção de anomalias. 🗡
0	b. aplicação de auto-teste periódico (BIST) durante a operação usando mecanismos de teste embutidos (built-in). [★]
0	c. abordagens dinâmicas de verificação. 🗡
•	d. injeção dinâmica de falhas para ativar os mecanismos de detecção de erros. ✓
0	e. execução redundante que explora a replicação inerente de núcleos e threads do processador. 🗡

Notas relativas a este envio: 1/1.

Question10

Notas: 1

Numa abordagem de execução redundante duas threads (linhas de execução) independentes executam cópias do mesmo programa e os resultados são comparados. Segundo os autores, as duas formas dominantes de execução redundante em microprocessadores são:

0	a. lockstep relaxado e sem lockstep 🗡
•	b. configuração lockstep e multithreading redundante (RMT) ✓
0	c. simultaneous multithreading (SMT) e multicore (chip multiprocessor) ×

d. DMR e TMR X

e. multithreading redundante (RMT) e TMR X

Correto

Notas relativas a este envio: 1/1.

Question11

Notas: 1

A técnica em que núcleos idênticos operam fortemente acoplados "ciclo a ciclo" de clock ou "instrução a instrução" é chamada de:

Escolher uma resposta.

Correto

Notas relativas a este envio: 1/1.

Question12

Notas: 1

Vários exemplos de detecção de erros online são mostrados no artigo de Gizopoulos. Em um artigo de 2007, alguns autores propuseram configurações DMR e TMR para CMPs (*chip multiprocessor*) que fornecem detecção de erros e recuperação de erros através de confinamento de falhas e isolamento de componentes. Qual o primeiro autor do artigo?

Escolher uma resposta.

0	a. Racunas 🗶
•	b. Aggarwal ✓
0	c. Gizopoulos 🗶
0	d. LaFrieda 🗡
0	e. Mukherjee 🗶
Correto	

Notas relativas a este envio: 1/1.

Question13

Notas: 1

Alguns autores propuseram, em um artigo de 2007, configurações DMR e TMR para CMPs que fornecem detecção de erros e recuperação de erros através de confinamento de falhas e isolamento de componentes. A técnica proposta necessita de uma pequena quantidade de área adicional para apoiar o mecanismo de reconfiguração. De quanto aproximadamente é essa área adicional?

0	a. aproximadamente 10% em um processador comercial ×
•	b. menos de 1% em um processador comercial ✓
c	c. proporcional ao número de núcleos disponíveis no processador 🗡
0	d. aproximadamente 5% em um processador comercial [⋆]

Notas relativas a este envio: 1/1.

Question14

Notas: 1

Considere as técnicas de detecção online de erros propostas por Mukherjee (CRT), por Gomaa (CRTR) e por Smolens (Reunion). Associe a descrição ao nome da técnica ou técnicas que a emprega(m):

Uma thread mestre em um núcleo é verificada por uma thread escrava em outro núcleo encaminhando seus resultados através de um barramento dedicado.

Opera com deteção de falhas transientes.

CRT

▼

Relaxa a replicação de entradas e reduz a largura da banda de comparação comprimindo resultados.

Reunion

Parcialmente correta

Notas relativas a este envio: 0.67/1.

Question15

Notas: 1

Uma alternativa à redundância de hardware é a redundância baseada em software. Segundo os autores, essa alternativa oferece como vantagem:

Escolher uma resposta.

Notas relativas a este envio: 1/1.

Question16

Notas: 1

Os autores citam dois sistemas que aplicam redundância baseada em software: EDDI e SWIFT. Assinale com X as características que se aplicam aos dois sistemas segundo o artigo.

Assumem que as memórias são protegidas por ECC e por essa razão ficam de fora da esfera de replicação.	-	•
Todas as instruções são duplicadas e um mecanismo é introduzido para verificar o resultado.	Х	•

São abordagens single-thread mas que servem para processadores com um ou mais núcleos.

X

São abordagens que servem apenas para processadores com apenas um núcleo.

Correto

Notas relativas a este envio: 1/1.

Question17

Notas: 1

Outra categoria de abordagens para detecção de erros aproveita o uso de mecanismos de auto-teste embutidos no chip (BIST), tanto em software ou hardware. Este mecanismos são tradicionalmente utilizados para testes de fabricação, mas nessa abordagem eles são ativados durante a fase de operação para detecção de erros.

Abordagens para detecção de erros online baseadas em BIST executam detecção de erro não concorrente. O que significa detecção de erro não concorrente neste contexto?

C	a. As sessões de auto-teste são executadas apenas durante o período de inicialização do sistema operacional. 🗡
С	b. As sessões de auto-teste são executadas apenas quando disparadas por uma aplicação no nível do usuário. 🗡
•	c. As sessões de auto-teste são executadas periodicamente ou durante intervalos de tempo ociosos. ✓

d. As sessões de auto-teste são executadas apenas durante a fase de mortalidade infantil. *

Correto

Notas relativas a este envio: 1/1.

Question18

Notas: 1

Auto-teste baseado em software (SBST) vem mostrando aceitação crescente para teste de microprocessadores nos últimos anos e, atualmente, forma uma parte integrante dos testes durante o processo de fabricação. A idéia-chave do SBST é:

Escolher uma resposta.

0	a. evitar o uso acidental do hardware embutido que forma o BIST por parte dos programadores de aplicativos. ✗
0	b. permitir o uso concorrente dos mecanismos de hardware que formam o BIST. 🗡
0	c. aumentar a cobertura das técnicas de detecção de erros providas pelo BIST. ✗
•	d. explorar recursos programáveis internos ao chip para executar programas normais que testam o processador. \checkmark

Correto

Notas relativas a este envio: 1/1.

Question19

Notas: 1

Considere as afirmações dos autores a respeito de auto-teste baseado (SBST) em software e assinale Verdadeiro ou Falso:

Com SBST, padrões de testes funcionais são gerados e aplicados pelo processador utilizando o seu conjunto de instruções nativas.

SBST virtualmente elimina a necessidade de hardware de teste específico adicional.

No SBST o teste é aplicado reduzindo a frequência de funcionamento efetiva do processador.

Falso

Verdadeiro

Verdadeiro

Verdadeiro

Pode consumir entre 5% e 25% do tempo do sistema uma vez que o tempo do teste periódico pode consumir entre 5% e 25% do tempo do sistema.

Devido a problemas de sincronização, não é possível aplicar SBST a processadores multithread.

Correto

Notas relativas a este envio: 1/1.

Question20

Notas: 1

Outra categoria de abordagens para detecção de erro que, assim como auto teste, não usa execução redundante é a verificação dinâmica. Essas abordagens de verificação dinâmica funcionam em tempo de execução e usam verificadores de hardware dedicados. Para que servem esses verificadores?

C	a. para verificar a integridade de votadores, comparadores e detectores de erros implementados em hardware. 🗶
0	b. para comparar o resultado de duas threads simultâneas. 🗶
0	c. para detectar anomalias semânticas no software em execução. 🗶
•	d. para verificar a validade de invariantes específicos assumidos verdadeiros durante operação normal sem erros. ✓
0	e. para detectar anomalias nos dados através de bits de paridade. 🗶

Notas relativas a este envio: 1/1.

Question21

Notas: 1

A abordagem de verificação dinâmica usada para detecção online de erros tem um ponto chave. Segundo os autores, esse ponto chave consiste em:

0	a. definir a complexidade e a área ocupada pelo verificador 🗡
0	b. definir um conjunto abrangente de padrões de teste 🗡
0	c. determinar a cobertura de erros da técnica de detecção empregada 🗶
•	d. definir um conjunto compreensivo de invariantes ✓

Notas relativas a este envio: 1/1.

Question22

Notas: 1

Gizopoulos, Psarakis e Vera apresentam dois exemplos de propostas de aplicação de verificação dinâmica: DIVA e Argus. Considerando esses dois sistemas no contexto de verificação dinâmica para detecção online de erros, assinale verdadeiro ou falso:

Infelizmente DIVA impõe um custo muito alto em termos de desperdício de área para um núcleo superescalar complexo.

Para processadores simples usualmente usados em arquiteturas multicore, a complexidade do verificador é comparável ao do núcleo, o que aumenta significativamente o custo.

Argus usa um número grande de invariantes, tipicamente mais que 17, para alcançar uma cobertura de falhas da ordem de 98%.

DIVA usa um núcleo verificador simples para detectar erros em um núcleo superescalar especulativo.

Verdadeiro -

Verdadeiro

Falso

Correto

Notas relativas a este envio: 1/1.

Question23

Notas: 1

A quarta categoria de detectores de erros online é formada por abordagens de detecção de anomalias. De que forma essa abordagem detecta erros?

Escolher uma resposta.

0	a. monitorando o hardware procurando sinais elétricos instáveis e variação na frequência de clock 🗡
0	b. monitorando o sistema quanto a variações bruscas de temperatura que provocam anomalias nos valores transmitidos entre as unidades funcionais internas ×
•	c. monitorando o software procurando por comportamentos anômalos, também chamados de sintomas \checkmark
0	d. monitorando os barramentos de hardware procurando por indicação de erro de paridade 🗶

Correto

Notas relativas a este envio: 1/1.

Question24

Notas: 1

As abordagens de detecção de anomalias pode ser classificados em três categorias de acordo com o nível dos sintomas que elas detectam. As 3 categorias de detecção de anomalias são:

•	a. as que detectam anomalias no valor dos dados; as que detectam anomalias de comportamento da microarquitetura; e as que detectam anomalias de comportamento do software. ✓
0	b. as que detectam anomalias na memória cache interna; as que detectam dados duplicados ou ausentes; e as que detectam anomalias de comportamento dos componentes do sistema operacional

	como o escalonador de processos e o gerente de memória virtual. X
0	c. as que detectam anomalias no endereçamento dos dados na memória; as que detectam anomalias no tratamento de exceções; e as que detectam anomalias de comportamento do kernel do sistema operacional. *

Notas relativas a este envio: 1/1.

Question25

Notas: 1

Abordagens eficientes para tomada de pontos de verificação (checkpointing) e para recuperação têm sido propostas para arquiteturas multicore. Essas abordagens são classificadas em 3 categorias:

Escolher uma resposta.

0	a. periodicidade dos checkpoints, localização relativa dos checkpoints; e esfera da recuperação 🗶
0	b. periodicidade dos checkpoints, localização relativa dos checkpoints; e velocidade da recuperação 🗶
•	c. esfera de recuperação; localização relativa dos checkpoints; e separação entre dados e checkpoints ✓
0	d. recuperação por avanço; recuperação por retorno; e mascaramento de falhas 🗶

Correto

Notas relativas a este envio: 1/1.

Question26

Notas: 1

Os autores citam duas propostas que implementam recuperação por retorno em processadores multicore: SafetyNet e Revive. Associe a característica ao sistema:

pode tolerar latência de detecção de falhas de até 1 ms	SafetyNet	•
combina o ponto de verificação local e o registro incremental de dados e armazena as atualizações em buffers especiais	SafetyNet	_
pode tolerar latência de detecção de falhas de até 100 ms	Revive	
usa pontos de verificação globais, libera linhas sujas (alteradas) de cache para a memória principal e usa um controlador especial para registrar as atualizações de memória na memória	Revive	-

Correto

Notas relativas a este envio: 1/1.

Question27

Notas: 1

Técnicas de reparo tipicamente aplicam redundância (espacial ou temporal) para desativar e isolar o componente defeituoso. Arquiteturas de processadores superescalares complexas possuem redundância inerente com a finalidade original de fornecer maior desempenho e execução especulativa. Assim, os componentes redundantes e não essenciais podem ser desativados em caso de falha permitindo degradação suave do desempenho (graceful degradation). Essa solução entretanto não é geralmente útil para arquiteturas muticore. Qual a razão?

Escolher uma resposta.

0	a. arquiteturas multicore visam alto desempenho e não é permitido degradar desempenho para garantir confiabilidade 🗡
0	b. multiprocessadores multicore são usados em aplicações convencionais que não necessitam confiabilidade 🗡
0	c. multiprocessadores multicore são construídos de forma a não apresentar defeito em seus componentes internos e, portanto, técnicas de isolamento e reparo são desnecessárias 🗶
•	d. os núcleos de uma arquitetura multicore são geralmente muito simples e não apresentam grau suficiente de redundância inerente necessário para desativar componentes e continuar operando ✓

Correto

Notas relativas a este envio: 1/1.

Question28

Notas: 1

Várias abordagens foram propostas para reparo em em sistemas multicore. Associe a breve descrição à proposta:

O software é modificado de modo a preservar a sua funcionalidade mas a não utilizar os componentes defeituosos.	Detouring	•
Permite a canibalização dos núcleos em peças de reposição, onde essas peças podem ser estágios de pipeline.	Core Cannibalization	•
Arquitetura concebida como uma rede reconfigurável de estágios de pipeline, em vez de núcleos isolados. Os estágios de pipeline atuam como elementos de processamento e são compartilhados entre	StageNet	•

os núcleos fornecendo redundância de grão fino.

Correto

Notas relativas a este envio: 1/1.

Terminar revi<u>s</u>ão

Você acessou como <u>João Luiz Grave Gross</u> (<u>Sair</u>) <u>FTF 2012/2</u>