

Begriffe

 $a = \ \mathsf{Grundkante} \ ; h = \ \mathsf{H\"{o}he} \ ; r = \ \mathsf{Radius}$

Nr.	Buchstabe	Bezeichnung	V	S
1.			$\frac{1}{3}r^2\pi \cdot h$	$r\pi \cdot (r + \sqrt{h^2 + r^2})$
2.			$\frac{3}{2} \cdot \sqrt{3} \cdot a^2 \cdot h$	$3a \cdot \left(\sqrt{3} \cdot a + 2h\right)$
3.			$\frac{\sqrt{3}}{4}a^2 \cdot h$	$a \cdot \left(\frac{\sqrt{3}}{2}a + 3h\right)$
4.			$\frac{4}{3}\pi r^3$	$4 \cdot \pi \cdot r^2$
5.			a^3	$6 \cdot a^2$
6.			$r^2\pi \cdot h$	$2r\pi(r+h)$
7.			$\frac{1}{3}a^2 \cdot h$	$a \cdot \left(a + 2 \cdot \sqrt{\frac{1}{4}a^2 + h^2}\right)$
8.			$\frac{\sqrt{2}}{12}a^3$	$\sqrt{3} \cdot a^2$
9.			$\frac{\sqrt{3}}{2} \cdot a^2 \cdot h$	$3a \cdot \left(\frac{\sqrt{3}}{2} \cdot a + \sqrt{\frac{3a^2}{4} + h^2}\right)$