47.2 The Duality Theorem in Linear Programming

Let (P) be the linear program

maximize
$$cx$$

subject to $Ax \leq b$ and $x \geq 0$,

with A a $m \times n$ matrix, and assume that (P) has a feasible solution and is bounded above. Since by hypothesis the objective function $x \mapsto cx$ is bounded on $\mathcal{P}(A, b)$, it might be useful to deduce an *upper bound* for cx from the inequalities $Ax \leq b$, for any $x \in \mathcal{P}(A, b)$. We can do this as follows: for every inequality

$$a_i x \leq b_i \quad 1 \leq i \leq m,$$

pick a nonnegative scalar y_i , multiply both sides of the above inequality by y_i obtaining

$$y_i a_i x < y_i b_i \quad 1 < i < m$$

(the direction of the inequality is preserved since $y_i \ge 0$), and then add up these m equations, which yields

$$(y_1a_1 + \dots + y_ma_m)x \le y_1b_1 + \dots + y_mb_m.$$

If we can pick the $y_i \geq 0$ such that

$$c \le y_1 a_1 + \dots + y_m a_m,$$

then since $x_i \geq 0$, we have

$$cx < (y_1a_1 + \dots + y_ma_m)x < y_1b_1 + \dots + y_mb_m$$

namely we found an upper bound of the value cx of the objective function of (P) for any feasible solution $x \in \mathcal{P}(A, b)$. If we let y be the linear form $y = (y_1, \dots, y_m)$, then since

$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix}$$

 $y_1a_1 + \cdots + y_ma_m = yA$, and $y_1b_1 + \cdots + y_mb_m = yb$, what we did was to look for some $y \in (\mathbb{R}^m)^*$ such that

$$c \le yA, \quad y \ge 0,$$

so that we have

$$cx \le yb$$
 for all $x \in \mathcal{P}(A, b)$. (*)

Then it is natural to look for a "best" value of yb, namely a minimum value, which leads to the definition of the dual of the linear program (P), a notion due to John von Neumann.