

Übung 02a: sympy - Symbolisch rechnen mit Python

Ziel der Übung ist das Kennenlernen des Paketes sympy am Beispiel der Herleitung der Bewegungsgleichungen eines mechanischen Systems ("Euler-Lagrange-Gleichungen").

Voraussetzungen

sympy: Symbole, Funktionen, Differenzieren, Substituieren, Gleichungen lösen

Python: Schleifen, Listen und Tupel, Dictionaries

Betrachtetes System: 2D Kran mit fester Seillänge

Die Bewegungsgleichungen sind ein System von Differentialgleichungen und beschreiben (für das abgebildete mechanische System) den Zusammenhang zwischen den zeitabhängigen Größen x(t), $\dot{x}(t)$, $\ddot{x}(t)$, $\dot{\varphi}(t)$, $\dot{\varphi}(t)$ und $\ddot{\varphi}(t)$. Sie können durch Auswertung der sog. Euler-Lagrange-Gleichungen hergeleitet werden. Die dazu notwendigen Rechenschritte sollen mit sympy ausgeführt werden. Die Parameter m_1, m_2, l und g werden als konstant und bekannt angenommen.

Geometrische Hilfsgrößen:

$$x_2(t) := x(t) + l \sin \varphi(t), \ y_2(t) := -l \cos \varphi(t)$$

konstante Parameter: m_1, m_2, l, g

kin. Energie:
$$T = \frac{1}{2}m_1\dot{x}(t)^2 + \frac{1}{2}m_2\left(\dot{x}_2(t)^2 + \dot{y}_2(t)^2\right)$$

pot. Energie: $U = m_2 g y_2(t)$

Lagrange-Funktion: $L(\mathbf{q}(t), \dot{\mathbf{q}}(t)) = T - U$

Euler-Lagrange-Gleichungen:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_1} - \frac{\partial L}{\partial q_1} = Q_1 \tag{1a}$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_2} - \frac{\partial L}{\partial q_2} = Q_2 \tag{1b}$$

Äußere Kräfte u. Momente: $Q_1=F,\ Q_2=0$

Hinweise:

- Physikalisches Verständnis der Aufgabe hilfreich aber nicht zwingend notwendig.
 Die Teilaufgaben geben Lösungsweg vor.
- An vorgegebem Skript und Kommentaren orientieren.
- sys.exit() beachten und schrittweise nach unten verschieben (Der Quelltex danach ist zunächst noch unvollständig.).
- Möglichst aussagekräftige Variablennamen wählen.
- Bei Bedarf eingebette IPython-Shell zum Debuggen benutzen: from ipydex import IPS IPS()

Aufgaben

- 1. Legen Sie alle benötigten Symbole für die konstanten Parameter (m_1, \ldots) an.
- 2. Legen Sie Zeitfunktionen für x(t) und $\varphi(t)$ an.

- 3. Bilden Sie die Zeitableitungen $\dot{x}(t), \dot{\varphi}(t), \ddot{x}(t)$ und $\ddot{\varphi}(t)$.
- 4. Berechnen Sie die geometrischen Hilfsgrößen $x_2(t), y_2(t)$ (Formeln: siehe oben).
- 5. Berechnen Sie T, U und L (Formeln: siehe oben).
- 6. Erzeugen Sie die folgenden vier Hilfsterme: $\frac{\partial L}{\partial q_1(t)}$ und $\frac{\partial L}{\partial \dot{q}_1(t)}$ sowie $\frac{\partial L}{\partial q_2(t)}$ und $\frac{\partial L}{\partial \dot{q}_2(t)}$.
- 7. Berechnen Sie $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i}$ (je ein Term für i=1 und i=2).
- 8. Stellen Sie nun die beiden Bewegungs-Gleichungen

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = F \quad \text{ und } \quad \frac{d}{dt}\frac{\partial L}{\partial \dot{\varphi}} - \frac{\partial L}{\partial \varphi} = 0$$

auf.

Hinweis: Diese beiden Gleichungen bilden ein lineares algebraisches Gleichungssystem bezüglich der Beschleunigungen \ddot{x} und $\ddot{\varphi}$.

- 9. Lösen Sie mit res = sp.solve(...) das lineare Gleichungssystem nach den Beschleunigungen auf, sodass zwei Gleichungen $\ddot{x} = \ldots$ und $\ddot{\varphi} = \ldots$ resultieren (bzw. die rechten Seiten dieser Gleichungen).
- 10. Zeigen Sie den Datentyp von res und die erhaltenen Ausdrücke für \ddot{x} und $\ddot{\varphi}$ z.B. mittels sp.pprint(...) an.
- 11. Erzeugen Sie für beide Ausdrücke mittels sp.lambdify(...) eine Funktion zur Berechnung der jeweiligen Beschleunigung.

Hinweise: Substituieren Sie dafür zunächst

- die Zeitfunktionen und ihre Ableitungen durch entsprechend benannte Symbole (beginnend mit der höchsten Ableitungsordnung, siehe Kurs-Folien bzw. Beispiel-Notebook)
- die System-Parameter mit folgenden numerischen Werten: [(m1, 0.8), (m2, 0.3), (1, 0.5), (g, 9.81)].
- \to Die Ausdrücke hängen dann nur noch von folgenden fünf Symbolen ab: der Kraft F, den Koordinaten (x,φ) und den Geschwindigkeiten $(\dot x,\dot\varphi)$. Die durch lambdify erstellten Python-Funktionen werden in der nächsten Übung für die Simulation des Systems benötigt.