Reticulados e Aplicações em Criptografia

Fábio Meneghetti Orientadora: Sueli I. R. Costa IMECC – UNICAMP

Introdução

Neste trabalho, apresentamos uma análise do parâmetro de suavização de reticulados, e alguns resultados obtidos através de simulações computacionais. Além disso, comentamos algumas aplicações deste parâmetro à criptografia baseada em reticulados, importante subárea da chamada criptografia pós-quântica.

Definição (Reticulado)

Dado um conjunto $\beta = \{b_1, \dots, b_n\}$ de vetores linearmente independentes em \mathbb{R}^n , o **reticulado gerado** por β é o conjunto de todas as combinações lineares inteiras de β :

$$\Lambda(\beta) = \langle b_1, \ldots, b_n \rangle_{\mathbb{Z}} = \{ \alpha_1 b_1 + \cdots + \alpha_n b_n \mid \alpha_1, \ldots, \alpha_n \in \mathbb{Z} \}.$$

- Trabalhamos aqui apenas com reticulados de posto completo. Exemplos: \mathbb{Z}^2 , $\langle (1,0), (1/2, \sqrt{3}/2) \rangle_{\mathbb{Z}}$ (hexagonal).
- A distância mínima de Λ é $\lambda(\Lambda) = \min \{ ||v|| : v \in \Lambda \setminus \{0\} \}$.
- A densidade de $\Lambda = \Lambda(\{b_1, \ldots, b_n\})$ é

$$\Delta(\Lambda) = rac{\operatorname{Vol} B_n(\lambda/2)}{|\det[b_1 \dots b_n]|}.$$

Definição (Reticulado Dual)

Dado um reticulado $\Lambda \subset \mathbb{R}^n$, definimos seu dual como

$$\Lambda^* = \left\{ x \in \mathbb{R}^n \mid \langle x, y \rangle \in \mathbb{Z}, \, \forall y \in \Lambda \right\}.$$

■ Se B é matriz geradora de Λ , então $(B^{-1})^{\top}$ é matriz geradora de Λ^* .

Parâmetro de suavização

- A função Gaussiana de parâmetro s>0 em \mathbb{R}^n é dada por $ho_s(x):=e^{-\pi\|x\|^2/s^2}.$
- A função Gaussiana definida acima não é distribuição de probabilidade, mas podemos transformá-la em uma distribuição de probabilidade D_s dividindo por $s^n = \int_{\mathbb{R}^n} \rho_s(x) dx$.

Definição

Dado um reticulado Λ e $\varepsilon > 0$, definimos o **parâmetro de suavização** $\eta_{\varepsilon}(\Lambda)$ como o menor s > 0 tal que

$$\sum_{\mathbf{v}\in\Lambda^*\setminus\{0\}}\rho_{1/s}(\mathbf{v})\leq\epsilon.$$

- η_{ε} é invariante por transformações ortogonais e $\eta_{\varepsilon}(k\Lambda) = k\eta_{\varepsilon}(\Lambda)$.
- O que torna esta definição interessante é o seguinte teorema:

Teorema

Sejam Λ reticulado, $c \in \mathbb{R}^n$, $\varepsilon > 0$, $s \ge \eta_{\varepsilon}(\Lambda)$. Então $s^n \det(\Lambda^*) \cdot (1 - \varepsilon) < \sum_{x \in \Lambda} \rho_s(x + c) < s^n \det(\Lambda^*) \cdot (1 + \varepsilon)$.

Se definirmos $\mathbb{R}^n/\Lambda := \{c + \Lambda \mid c \in \mathbb{R}^n\}$, então podemos induzir uma distribuição $P_s \colon \mathbb{R}^n/\Lambda \to \mathbb{R}$ dada por

$$P_s(c+\Lambda) := rac{1}{s^n} \sum_{v \in \Lambda}
ho_s(v+c).$$

• O teorema nos diz que o parâmetro de suavização é o menor s>0 que torna a distribuição P_s aproximadamente uniforme em \mathbb{R}^n/Λ . Formalmente, podemos dizer a distância estatística entre P_s e a distribuição uniforme em \mathbb{R}^n/Λ é no máximo ε .

Simulações

■ Para construir exemplos, escrevemos um programa na linguagem Julia para calcular o parâmetro de suavização. Seguem alguns exemplos.

Reticulado	$\eta_{0.25}$	$\eta_{0.5}$	η_1	η_{10}
\mathbb{Z}^2	0.94914	0.83442	0.70988	0.30151
Hexagonal	0.87128	0.77136	0.65947	0.28059
$\langle (1,0),(0,5)\rangle$	4.06978	3.33915	2.50002	0.67488

- Observamos que reticulados que são melhores em aspectos diferentes, como o hexagonal (melhor em densidade e kissing number) em geral têm parâmetros de suavização menores.
- Porém, é possível que para ε diferentes tenhamos diferentes reticulados "melhores". Considerando, por exemplo,

$$eta_1 = \left\langle (1,0,0), (0,1,\frac{1}{10}), (0,0,20) \right\rangle,$$
 $eta_2 = \left\langle (1,0,0), (0,\frac{1}{10},3), (0,0,25) \right\rangle,$

obtemos o seguinte gráfico de η_{ε} por ε :

Figura: Azul: $\Lambda(\beta_1)$, Laranja: $\Lambda(\beta_2)$.

Criptografia

- O parâmetro de suavização tem diversas aplicações em criptografia. Ele é utilizado, por exemplo, na demonstração de dificuldade do problema LWE. Mas uma aplicação mais direta é o problema γ -GapSPP $_{\varepsilon}$:
- γ -GapSPP $_{\varepsilon}$: é o problema de promessa que consiste em decidir, dado um reticulado Λ , qual é o caso: se $\eta_{\varepsilon}(\Lambda) \leq 1$ ou se $\eta_{\varepsilon}(\Lambda) > \gamma$ (onde é prometido que um dos dois é o caso).
- O artigo [2] estuda a dificuldade deste problema e propõe dois protocolos criptográficos baseados nele.

Agradecimentos

Agradecemos ao CNPQ (313326/2017-7 e 131290/2018-5), à FAPESP (13/25977-7), e à pós-graduação do departamento de matemática do IMECC (UNICAMP).

Referências

- C. Peikert. A Decade of Lattice Cryptography, 2016
- C. Peikert et al. *On the Lattice Smoothing Parameter Problem*, 2013 IEEE Conference on Computational Complexity, 2013, DOI: 10.1109/CCC.2013.31
- O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography, J. ACM, 2009, DOI: 10.1145/1568318.1568324