

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

EE531 (Laboratório de Eletrônica Básica I)

Prof. Fabiano Fruett

Nome do Aluno:	R.A	Turma:	_ Grupo:			
Data da realização do experimento:/_	/					
OBS: Este roteiro (individual) deve ser preenchido e entregue ao professor no final da aula.						
Reservado às anotações do professor:						

Experimento I – Familiarização com os instrumentos de bancada e Redes com Constante de Tempo Simples

1 Objetivo:

Neste experimento você se familiarizará com os diversos instrumentos utilizados no curso. Cada bancada possui uma fonte de alimentação dual, um gerador de funções e um osciloscópio digital. No final você deve analisar os diagramas de Bode de dois filtros CTS obtidos com simulação e montagem experimental (incluindo efeitos parasitas de acoplamento cruzado).

2 Recomendações importantes:

- 2.1 As montagens deste curso serão realizadas em placas de circuito impresso padrão. Cada grupo terá direito a duas placas durante todo o semestre, realizando um total de sete experimentos.
- 2.2 Antes do início de cada aula, um representante do grupo deve se dirigir ao almoxarifado para retirar além dos componentes, um ferro de soldar, estanho, um sugador, e alicates.
- 2.3 Ao final do experimento, cada grupo deve organizar a bancada e desligar o disjuntor.
- 2.4 Cada grupo realizará um relatório, que deve ser entregue antes do início da aula seguinte.
- 2.5 Na elaboração do relatório, não se aconselha cortar e colar figuras, tabelas, equações ou mesmo qualquer texto deste roteiro.
- 2.6 Apesar do experimento ser realizado em grupo, as notas serão individuais e levarão em conta a participação do aluno.

3 Componentes:

- 1 placa de circuito impresso padrão
- 2 resistores de $100 \text{ k}\Omega$
- 2 capacitores de 100 pF

4 Parte Experimental:

4.1 Conecte a saída do gerador de funções ao canal 1 do osciloscópio. Ajuste o gerador para produzir um sinal de tensão com as seguintes características:

Forma de onda: Triangular

Amplitude: 10Vpp

Offset: 0V

Frequência: 10kHz

OBS: Monitore este sinal com o osciloscópio. Atente para o fator de atenuação da ponta de prova.

- 4.1.1 Meça, utilizando o recurso *cursor*, a amplitude de pico-a-pico, período, tempo de subida (t_r) e tempo de descida (t_f) . Observe a diferença entre configurar o canal para medida c.a. e medida c.c.. Varie a tensão de offset durante a sua observação. Retorne offset para 0 V antes de partir para o próximo item.
- 4.1.2 Agora com o recurso *measure*, meça o valor médio, valor RMS, amplitude de pico-a-pico, período, tempo de subida (t_r) e de descida (t_f) deste sinal.
- 4.1.3 Compare os valores obtidos através do recurso *cursor* com os obtidos com o recurso *measure*.
- 4.2 Um filtro Passa-baixas com Constante de Tempo Simples (CTS) é mostrado na Figura 1a. Já a Figura 1b mostra o Passa-altas. Calcule a frequência de corte para cada filtro.

Figura 1: Filtros CTS a) passa-baixas e b) passa-altas.

4.3 Monte os circuitos mostrados na Figura 1 usando uma placa universal.

4.3.1	Substitua a onda triangular por uma senoidal com as seguintes caracte Amplitude: 1 Vpp, <i>offset</i> : 0 V e frequência: 16 kHz.							cterísticas	
4.3.2	Conecte a fonte de sinais ao Passa-baixas. Com os cabos apropriados, conecte a saída deste circuito ao osciloscópio. Efetue as medidas preenchendo a Tabela 1.								
			Tabela 1:	: Medidas dos	filtros CTS				
	nó			V_i	V_o Passa-ba	ixas Vo Pa	issa-altas		
	amplitu	amplitude (pico a pico)							
	defasag	defasagem com relação a V_i							
	valor m	valor médio							
	valor m	áximo							
	valor m	ínimo							
4.3.3	amplitude e a fase do sinal de saída do filtro passa altas.								
nó	Frequência	100 Hz	1 kHz	10 kHz	16 kHz	50 kHz	100 kHz	1 MHz	
V_i	Amplitude (pico a pico)								
V _o PB	Amplitude (pico a pico) Atenuação em dB Fase relativa a V _i								
V _o PA	Amplitude (pico a pico) Ganho em dB Fase relativa								
	1	1	ı	1	I	I	1	i	

4.3.5 Construa o diagrama de Bode para o módulo e fase dos dois filtros usando um gráfico mono-log. Compare os valores obtidos com a teoria e com a simulação. \Box

5 Dicas:

- 5.1 Na simulação dos circuitos da Figura 1 use o Pspice. Faça uma análise transiente e uma varredura AC. Para visualizar o ganho em dB e a fase relativa utilize os comandos DB(# do nó) e P((# do nó), respectivamente. Estes comandos estão dentro do Add Trace.
- 5.2 Meça também a resposta dos seus filtros usando a varredura em frequência do *setup* otimizado apresentado na bancada 1. Exporte o resultado e compare com o obtido usando a instrumentação da sua bancada.
- 5.3 Na realização do relatório siga as instruções que estão na página do curso.

6 Bibliografia

- 6.1 A. S. Sedra, K.C.Smith, Microeletrônica, Makron Books Ltda
- 6.2 R. Boylestad e L. Nashelsky, Dispositivos Eletrônicos e Teoria de Circuitos, Prentice-Hall.

Reservado ao aluno para comentarios sobre diriculdades e sugestoes:				