密码分析——ZUC 算法(祖冲之序列密码算法)

一、S盒

32 比特 S 盒 S 由 4 个小的 8×8 的 S 盒并置而成,即 $S = (S_0, S_1, S_2, S_3)$,其中 $S_0 = S_2$, $S_1 = S_3$ 。 S_0 和 S_1 的定义分别见表 1 和表 2。设 S_0 (或 S_1)的 8 比 特 输 入 为 S_1 为 S_2 ,将 S_3 视作两个 16 进制数的连接,即 S_3 和 S_4 和 S_4 和 S_5 和 S_5 和 S_5 的元素即为 S_5 (或 S_5)的输出 S_5 (或 S_5)的输出 S_5 (或 S_5) 。

设S盒S的 32 比特输入X和 32 比特输出Y分别为:

$$X = x_0 ||x_1|| x_2 ||x_3|$$

$$Y = y_0 ||y_1|| y_2 ||y_3|$$

其中 x_i 和 y_i 均为8比特字节,i=0,1,2,3,则有 $y_i=S_i(x_i)$,i=0,1,2,3。

表 $1S_0$ 盒

4	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р
1	3E	72	5B	47	CA	E0	00	33	04	D1	54	98	09	B9	6D	CB
2	7B	1B	F9	32	AF	9D	6A	A5	B8	2D	FC	1D	08	53	03	90
3	4D	4E	84	99	E4	CE	D9	91	DD	B6	85	48	8B	29	6E	AC
4	CD	C1	F8	1E	73	43	69	C6	B5	BD	FD	39	63	20	D4	38
5	76	7D	B2	A7	CF	ED	57	C5	F3	2C	BB	14	21	06	55	9B
6	E3	EF	5E	31	4F	7F	5A	A4	0D	82	51	49	5F	BA	58	1C
7	4A	16	D5	17	A8	92	24	1F	8C	FF	D8	AE	2E	01	D3	AD
8	3B	4B	DA	46	EB	C9	DE	9A	8F	87	D7	3A	80	6F	2F	C8
9	B1	B4	37	F7	0A	22	13	28	7C	CC	3C	89	C7	C3	96	56
10	07	BF	7E	F0	0B	2B	97	52	35	41	79	61	A6	4C	10	FE
11	BC	26	95	88	8A	B ₀	A3	FB	C0	18	94	F2	E1	E5	E9	5D
12	D0	DC	11	66	64	5C	EC	59	42	75	12	F5	74	9C	AA	23
13	0E	86	AB	BE	2A	02	E7	67	E6	44	A2	6C	C2	93	9F	F1
14	F6	FA	36	D2	50	68	9E	62	71	15	3D	D6	40	C4	E2	0F
15	8E	83	77	6B	25	05	3F	0C	30	EA	70	B7	A1	E8	A9	65
16	8D	27	1A	DB	81	B3	A0	F4	45	7A	19	DF	EE	78	34	60

表 2 S₁ 盒

d	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P
1	55	C2	63	71	3B	C8	47	86	9F	3C	DA	5B	29	AA	FD	77
2	8C	C5	94	0C	A6	1A	13	00	E3	A8	16	72	40	F9	F8	42
3	44	26	68	96	81	D9	45	3E	10	76	C6	A7	8B	39	43	E1
4	3A	B5	56	2A	C0	6D	B3	05	22	66	BF	DC	0B	FA	62	48
5	DD	20	11	06	36	C9	C1	CF	F6	27	52	BB	69	F5	D4	87
6	7F	84	4C	D2	9C	57	A4	BC	4F	9A	DF	FE	D6	8D	7A	EB
7	2B	53	D8	5C	A1	14	17	FB	23	D5	7D	30	67	73	08	09
8	EE	B7	70	3F	61	B2	19	8E	4E	E5	4B	93	8F	5D	DB	A9
9	AD	F1	AE	2E	CB	0D	FC	F4	2D	46	6E	1D	97	E8	D1	E9
10	4D	37	A5	75	5E	83	9E	AB	82	9D	B9	1C	E0	CD	49	89
11	01	B6	BD	58	24	A2	5F	38	78	99	15	90	50	B8	95	E4
12	D0	91	C7	CE	ED	0F	B4	6F	A0	CC	F0	02	4A	79	C3	DE
13	A3	EF	EA	51	E6	6B	18	EC	1B	2C	80	F7	74	E7	FF	21
14	5A	6A	54	1E	41	31	92	35	C4	33	07	0A	BA	7E	0E	34
15	88	B1	98	7C	F3	3D	60	6C	7B	CA	D3	1F	32	65	04	28
16	64	BE	85	9B	2F	59	8A	D7	B0	25	AC	AF	12	03	E2	F2

二、差分分布表

设计思路: 由于 ZUC 算法的 S 盒是并置的,输入 X 中的各部分 x_i 经过对应 S_i 盒置换变换后得到各部分输出 $y_i = S_i(x_i)$, i = 0,1,2,3。因此, 计算 S 盒的差分分布表即可。

对于每一小S盒,输入差分 Δx_i 的取值为0x00-0xff,共256种。而每一差分取值又对应256种值分别为0x00-0xff的输入 x_i ,通过异或运算得到另一输入 $x_i'=x_i\oplus \Delta x_i$ 。再分别计算两输入对应的输出 $y_i=S_i(x_i)$ 和 $y_i'=S_i'(x_i)$,以及其对应的差分值 $\Delta y_i=y_i\oplus y_i'$,统计各 Δy_i 出现的频数,记录在表中对应的 $(\Delta x_i,\Delta y_i)$ 位置。每个小S盒对应的差分分布表的大小为256*256。

运算结果如表3和表4所示。

表 4 S₁ 盒 DDT (部分)

三、线性渐进表

设计思路:与差分分析表相似,计算 ZUCs 盒的线性渐进表仅需计算各小s 盒的线性渐进表即可。

对于每一小 S 盒,输入 x_i 的组合可表示为 $c_0x_0 \oplus c_1x_1 \oplus ... \oplus c_7x_7$,其中 c_0 , c_1 ,..., c_7 的取值为 0 或 1,共对应 2^8 =256 种情况。同理,对于输出 y_i 来说,也存在着 $d_0y_0 \oplus d_1y_1 \oplus ... \oplus d_7y_7 (d_0, d_1, d_2, d_3 = 0$ 或1)共 256 种情况,统计满足每一种输入组合与输出组合相等 $c_0x_0 \oplus c_1x_1 \oplus ... \oplus c_7x_7 = d_0y_0 \oplus d_1y_1 \oplus ... \oplus d_7y_7$ 的频数,并计算其偏差值(频数-256/2),将偏差值记录在对应的表项 $(c_0c_1c_2c_3, d_0d_1d_2d_3)$ 中。每个小 S 盒对应的线性渐进表的大小为 256*256。

运算结果如表5和表6所示。

表 $5S_0$ 盒 LAT (部分)

4	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al
1	0 -	0	0	-64	0	-64	-64	-96	0	-64	-64	-96	-64	-96	-96	-112	0	-64	-64	-96	-64	-96	-96								-112		0	-64	-64
2	0	0	-64	-64	-64	-64			-64	-64	-92	-92	-96	-96	-110			-64	-98	-98	-94						-111							-64	-96
3	0	-64	0	-64	-64	-96			-64	-96	-60							-88						-114			-94								-64
4	-64	-64	-64	-64	-96	-96			-96	-96	-92						-84	-88						-111											-96
5	0	-64	-64	-100	-16	-72			-64	-96									-106					-116											-92
6	-64		-92	-96	-72	-72			-96	-96														-111										-96	-108
7	-64		-64	-96	-80	-104				-112		-112												-120									-96	-112	-96
8	-96		-96	-96	-104	-104		-100		-112														-115											-112
9	0	-64	-80	-104	-64	-96		-116		-64			-68		-94									-121			-94						-64		-104
10	-64	-64	-104	-104	-96		-116			-72				-104										-123			-113							-96	-116
11	-64		-64	-96						-96														-123										-112	-96
12	-96	-96	-96	-96			-114																											-112	-112
13	-64	-96	-108							-96		-112												-121										-112	-116
14	-96		-116																															-112	
15	-96	-112		-112																															-112
16	-112	-112			-116		-112																												-120
1/	0		-64	-96	-68	-100		-114				-113		-114										-110					-98						-96
	-64	-64	-96	-96	-98		-114 -98				-109 -92									-92				-113			-106							-96 -108	-112
19	-64		-64	-104																				-110											
20	-96	-96	-96	-96 -106	-112 -76		-112	-114										-92 -88						-113										-112	-116
21	-64 -96	-88	-96 -110				-102				-113								-92 -108								-112							-108 -112	-106
22	-96	-104		-112			-118																	-110											-116
23	-96						-102																												-116
24	-64			-112							-120			-121					-110					-109 -119					-121						-122
20	-b4						-118				-111											-104												-112	
26	-96 -96	-104					-124																	-121										-112	
27	-112	-104				-116		-124																-117											-124
28	-112	-112	-112	-112	-121	-121	-121	-123	-118	-118	-111	-112	-125	-125	-122	-122	-110	-108	-110	-108	-11/	-11/	-120	-120	-116	-116	-116	-113	-122	-122	-123	-123	-120	-120	-124

表 $4S_1$ 盒 LAT (部分)

