Module-1: Introduction to Algorithms

Review Questions

Intr	oduction		
1	Define algorithm. Discuss the criteria's that an algorithm must satisfy with an example.	6	Jan 18, Jul 18, Jan19
2	Define best case, worst case and average case efficiency. Write the algorithm and give these efficiencies for sequential search.	8	Jan 20
3	Explain space complexity and time complexity with an example.	4	Jun17
4	Explain with an example how a new variable count introduced in a program can be used to find the number of steps needed by a program to solve a particular problem instance.	4	Jul 18
5	Consider the following algorithm. $\begin{array}{c} \text{Algorithm GUESS (A[\]\ [\])} \\ \text{for } i \leftarrow 0 \text{ to } n-1 \\ \text{for } j \leftarrow 0 \text{ to } i \\ \text{A [i] [j]} \leftarrow 0 \end{array}$		
	i) What does the algorithm compute?		
	ii) What is basic operation?		
	iii) What is the efficiency of this algorithm?		
Asy	mptotic Notations		
6	Explain asymptotic notations Big O, Big Ω and Big θ that are used to compare the order of growth of an algorithm with example.	6	Jul 17, Jul 18, Jan 19, Jul 19, Jan 20
7	Describe various basic efficiency classes.	8	Jul 19
8	Prove the following statements. d. $100n + 5 = O(n2)$ a. $n^2 + 5n + 7 = O(n^2)$ e. $n^2 + n = O(n^3)$ b. $1/2 n(n-1) = O(n^2)$ f. $1/2 n^2 + 3n = O(n^2)$ c. $1/2 n^2 + 3n = O(n^2)$ g. $1/2 n^3 + 4n^2 = O(n^2)$	6	
9	Define Little Oh. Compare the orders of growth of following functions	6	
	i) (½) n (n-1) and n^2 ii) 3n+2 and n^2		
10	Prove that If $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$, then	6	Jan 18,
-	$t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\}).$		Jan 19. Jan 20

Ma	Mathematical Analysis of Non-Recursive Algorithms					
11	Explain general plan of mathematical analysis of non-recursive algorithms with example.	8	Jul 17 Jul 19			
12	Write the algorithm to find maximum element in the given array and explain the mathematical analysis of this non-recursive algorithm.	6	Jul 18, Jul 19,			
13	Write the algorithm to check whether all the elements in the given array are distinct and explain the mathematical analysis of this non-recursive algorithm. Derive its worst-case time complexity	6	Jan 18, Jul 19			
14	Write the algorithm to perform matrix multiplication and explain the mathematical analysis of this non-recursive algorithm	6				
Mathematical Analysis of Recursive Algorithms						
15	Explain general plan of mathematical analysis of recursive algorithms with example.	8	Jan 19			
16	Illustrate mathematical analysis of recursive algorithm for Towers of Hanoi OR	8	Jul 17, Jul 19,			
	Give the recursive algorithm to solve Tower of Hanoi problem. Show that the efficiency of this algorithm is exponential	6	Jan 20			
17	Illustrate mathematical analysis of recursive algorithm to find the factorial of a given number.	6	Jan 19			
18	State the recursive algorithm to count the bits of a decimal number in its binary representation. Give its mathematical analysis.	6				
19	Write a recursive function to find and print all possible permutations of a given set of n elements	5	Jul 18			
20	Solve the recurrence relation $M(n) = 2M(n-1) + 1$ for $n>1$; $M(1)=1$	5	Jul 18			
Brute force design technique						
21						
22						
23						
24						
25						