CENTRE FOR ENHANCED FOREST MANAGEMENT

ADVANCES IN FORESTRY RESEARCH

DEPARTMENT OF RENEWABLE RESOURCES EFM RESEARCH NOTE 06/2004

Early dynamics of tended mixedwood stands

PHIL COMEAU, MIKE BOKALO, AND STEPHEN TITUS

The Western Boreal Growth and Yield Association (WESBOGY) is a regional cooperative including members from the four western provinces and the Northwest Territories. The WESBOGY long term study was initiated in 1990 to advance our understanding of the dynamics of mixedwood stands following tending.

In the Long-Term Study white spruce were planted in recently clearcut areas where aspen regeneration had already been established. For the first 5 years vegetation was controlled by clipping or using plastic mulch mats within a 40 to 50 cm radius of the spruce. After 5 years, both the spruce and aspen were thinned to desired treatment densities. Three spruce densities (0, 500 and 1000 sph) and six aspen densities (0, 200, 500, 1500, 4000, and natural) have been created (Table 1).

Sw\Aw density (stems/ha)	0	200	500	1500	4000	Natural
1000	1	2	3	4	5	6
500	7	8	9	10	11	12
0	X	X	X	13	14	15

Table 1: Treatment densities associated with the 15 combinations of aspen and spruce.

The study uses a randomized block design with each agency establishing one or more blocks. Each block consists of two installations of the above matrix, one on a superior site and one on a medium site.

Agency	Province/Territory	Year spruce planted	
Weyerhaeuser Company, Prince Albert - PA	Saskatchewan	1990	
Weyerhaeuser Company, Grande Prairie	Alberta	1991	
Weldwood of Canada Ltd.	Alberta	1992	
Weyerhaeuser Company, Prince Albert - BR	Saskatchewan	1992	
Alberta Sustainable Resource Development	Alberta	1992	
Daishowa-Marubeni International Ltd.	Alberta	1992	
Northwest Territories - Resources, Wildlife and	Northwest Territories	1993	
Economic Development			
Alberta-Pacific Forest Industries Inc.	Alberta	1995	
Louisianna-Pacific Canada Ltd Swan River	Manitoba	1998	
Canadian Forest Products Ltd Fox Creek	Alberta	2000	
Louisiana-Pacific Canada Ltd Dawson Creek	British Columbia	2001	
Manning Diversified Forest Products	Alberta	No installations to date	
Saskatchewan Environment and Resource	Saskatchewan	No installations to date	
Management			

Table 2: WESBOGY members and year of establishment of Long-Term Study Installations.

Self-thinning of aspen

Aspen densities converged to 20-30 thousand stem/ha by 11 years (Fig. 1), regardless of initial establishment

densities. The steepest declines in density were in stands with the highest starting densities.

Figure 1: Trends in aspen density for un-thinned plots by age for four blocks

Spruce growth following spacing of aspen

Effect of aspen density on spruce growth was assessed three to four years after spacing (Table 3). White spruce height growth was unaffected by aspen density. Spruce RCD was significantly lower in the un-spaced treatment compared to the spaced plots. However, spruce RCD did not differ significantly among the four densities created by spacing. HDR of white spruce was sensitive to aspen density with data indicating 4 groups: 1) a low aspen density group (0, 200 and 500), 2) a 500 and 1500 stems/ha group, 3) a 4000 stems/ha group, and 4) a natural density group.

Aspen Density (sph)	0	200	500	1500	4000	Unspaced
Height (m)	1.02	1.01	1.02	1.05	1.05	0.99
Root Collar Diameter (cm)	2.16a	2.13a	2.08a	2.03a	1.89a	1.57b
Height:Diameter Ratio	0.47a	0.48a	0.50ab	0.52b	0.57c	0.64d

Table 3: Effects of aspen density on white spruce 9 years after planting (overall means for the four locations 3 or 4 years after spacing of aspen). Letters indicate where significant (P<0.05) differences occur between aspen densities.

Re-measurement of all installations is continuing and further results will be presented.

Further Information:

Dr. Phil Comeau, Chair – Western Boreal Growth and Yield Association, Dept. Renewable Resources, University of Alberta, 4-42 Earth Sciences Building, Edmonton, Alberta Canada T6G 2E3

http://www.wesbogy.rr.ualberta.ca/ Phil.Comeau@ualberta.ca

"Fundamental and applied research to enhance the productivity of Alberta's northern forests"