光電實驗五預報

組別:第八組 系級:電機三 學號:B07901042 姓名:趙少緯

1. 實驗名稱

發光二極體量測

2. 實驗目的

了解發光二極體的電流電壓特性,和電激發光頻譜。

3. 實驗原理

當在 PN 二極體上,施加順向偏壓時,電子和電洞會在 PN 結合處產生光。

4. 實驗架構

5. 實驗步驟

- A. 繪出藍光 LED 的 I-V Curve
- B. 記録藍光 LED 的起始電壓,是否與材料 Band Gap 相近
- C. 用量測的曲線預估藍光 LED 的串聯電阻和理想值
- D. 量測藍光 LED 的電激發光頻譜
- E. 繪製 EQE-I Curve
- F. 觀察是否有藍移或紅移的現象

6. 預報問題

A. RGB LED 可用哪些材料系統製作

紅光:用 VPE 生長 GaAsP 在 GaAs 上

綠光:生長在 GaP 上

藍光:生長在 GaN 上

B. 以 GaN-based LED 為例,試描述 LED 晶粒的基本結構

在 PN 的 GaN 半導體中,有很多層 $In_xGa_{1-x}N/GaN$ 量子井,提供電子電洞結合的能隙,並在 P 端設有 $Al_vGa_{1-v}N$ 電子阻擋層。

C. 推導 P22 的式子

$$I = I_S e^{\frac{e(V - IR_S)}{nKT}} - I_S$$

$$V = \frac{nKT}{e} \ln\left(\frac{I + I_S}{I_S}\right) + IR_S$$

$$\frac{dV}{dI} = R_S + \frac{nKT}{e(I + I_S)} \cong R_S + \frac{nKT}{eI}$$

$$I\frac{dV}{dI} = R_S I + \frac{nKT}{e}$$

D. 描述 P30 各種 Efficiency 的定義

Injection efficiency (IE)

is the ratio of electrons passing through the device to that are injected into the active region.

Internal quantum efficiency (IQE)

is the ratio of all electron-hole recombinations in the active region to that are producing photons.

Extraction efficiency (EE)

is the ratio of photons extracted out from LED to the all the photons born inside.

External quantum efficiency (EQE)

is the ratio of the number of photons emitted from the LED to the number of electrons passing through the device.

E. 查詢白光 LED 的做法

白光 LED 可藉由 RGB 三種 LED 組合而成,或時利用高能 LED (如紫外線或藍光)激發螢光物質。