A Correction of a Lemma Talked on Nov. 6th

Xu Chenrui

11/11/2023

During the lecture on Nov. 6^{th} , Prof. Yao has mentioned and proved a generalized version of Poisson Limit Theorem, which states that:

Lemma 1 (tentative) Let $\{X_n\}_{n\geq 1}$ be a collection of independent Bernoulli r.v. with parameters $\{p_n\}_{n\geq 1}$, respectively. Suppose $\sum_{i=1}^n p_i \to \lambda$ as $n \to \infty$, where λ is a positive constant.

Then the distribution of $(X_1 + X_2 + ... + X_n)$ converge to $\mathcal{P}(\lambda)$.

However, the statement is somehow not complete. One can easily find some counterexamples: e.g. $\{p_1 = \lambda, \text{ while } p_i = 0 \text{ for all } i \geq 2\}$ or e.g. $\{p_i = \frac{1}{2^i}\lambda \text{ for all } i \}...$

The key point here is that we need some extra condition to make each p_i arbitrarily small when n is sufficiently large. We have discussed the lemma with Prof. Yao after class, and Prof. Yao modified the lemma with extra condition $\sum_{i=1}^{n} p_i^2 \to 0$ as $n \to \infty$. And the statement works very well under such condition. I will rewrite the lemma with proof below:

Lemma 1' (revised) Let $\{X_n\}_{n\geq 1}$ be a collection of independent Bernoulli r.v. with parameters $\{p_n\}_{n\geq 1}$, respectively. Suppose $\sum_{i=1}^n p_i \to \lambda$ as $n \to \infty$, where λ is a positive constant. Moreover, $\sum_{i=1}^n p_i^2 \to 0$ as $n \to \infty$.

Then the distribution of $(X_1 + X_2 + ... + X_n)$ converge to $\mathcal{P}(\lambda)$.

Proof Denote $S_n = X_1 + X_2 + ... + X_n$, $\lambda_n = p_1 + p_2 + ... + p_n$, then $\lambda_n \to \lambda$. Let $Y_n \sim \mathcal{P}(\lambda_n)$ and $Y \sim \mathcal{P}(\lambda)$. Consider the MGF of $\{X_i\}_{i=1,2,...,n}$, S_n , Y_n and Y, denoted by $\{M_{X_i}\}_{i=1,2,...,n}$, M_{S_n} , M_{Y_n} and M_{Y} , resp. We have: $M_{X_i}(t) = e^t p_i + q_i$ for i = 1, 2, ..., n, and

$$M_Y(t) = \mathbb{E}[e^{tY}] = \sum_{y=0}^{\infty} e^{-\lambda} \frac{(e^t \lambda)^y}{y!} = e^{\lambda(e^t - 1)}.$$

Therefore,

$$ln M_Y(t) = \lambda(e^t - 1).$$
(1)

Similarly,

$$\ln M_{Y_n}(t) = \lambda_n(e^t - 1) = \sum_{i=1}^n p_i(e^t - 1), \tag{2}$$

and we can easily find that $|\ln M_{Y_n}(t) - \ln M_Y(t)| \to 0$ as $n \to 0$. Since X_i 's are independent, we have

$$M_{S_n}(t) = M_{X_1 + \dots + X_n}(t) = \prod_{i=1}^n M_{X_i}(t);$$

$$= \prod_{i=1}^n \left(e^t p_i + q_i \right);$$

$$= \prod_{i=1}^n \left[p_i(e^t - 1) + 1 \right].$$

Therefore,

$$\ln M_{S_n}(t) = \sum_{i=1}^n \ln \left[p_i(e^t - 1) + 1 \right]. \tag{3}$$

By (2) and (3), we have:

$$|\ln M_{S_n}(t) - \ln M_{Y_n}(t)| = \left| \sum_{i=1}^n \ln \left[p_i(e^t - 1) + 1 \right] - p_i(e^t - 1) \right|$$

$$\leq \sum_{i=1}^n \left| \ln \left[p_i(e^t - 1) + 1 \right] - p_i(e^t - 1) \right|$$
(4)

Notice that, by the extra condition, for each i, $p_i \to 0$ as $n \to 0$. For any t fixed, consider the Taylor expansion of $\ln [p_i(e^t - 1) + 1]$ (as a function of p_i), we have

$$\ln \left[p_i(e^t - 1) + 1 \right] = p_i(e^t - 1) - \frac{1}{2} \left[p_i(e^t - 1) \right]^2 + o(p_i^2).$$

Therefore,

RHS of (4) =
$$\sum_{i=1}^{n} \left| \frac{1}{2} \left[p_i(e^t - 1) \right]^2 + o(p_i^2) \right| = \frac{(e^t - 1)^2}{2} \sum_{i=1}^{n} \left[p_i^2 + o(p_i^2) \right],$$

which converge to 0 as $n \to \infty$ by the extra condition. Therefore,

$$|\ln M_{S_n}(t) - \ln M_Y(t)| \le |\ln M_{S_n}(t) - \ln M_{Y_n}(t)| + |\ln M_{Y_n}(t) - \ln M_Y(t)|,$$

whose RHS converge to 0 as $n \to \infty$, implying when n is sufficiently large, the pmf of S_n and Y can be arbitrarily close.

Remark I also found another theorem related to these Poisson Approximation:

Theorem (Le Cam's Inequality) Let $\{X_n\}_{n\geq 1}$ be a collection of independent Bernoulli r.v. with parameters $\{p_n\}_{n\geq 1}$, respectively. Denote $S_n = \sum_{i=1}^n X_i$, $\lambda_n = \sum_{i=1}^n p_i$. Then:

$$\sum_{k=0}^{\infty} \left| \mathbb{P}(S_n = k) - \frac{\lambda_n^k e^{-\lambda_n}}{k!} \right| < 2 \sum_{i=1}^n p_i^2.$$

You can found the proof in the reference.

Notice that, the RHS of the inequality is highly consistent with the extra condition added in the above lemma, i.e. $\sum_{i=1}^n p_i^2 \to 0$ as $n \to \infty$. As we can see, if the RHS of the inequality can be arbitrarily small as n approaches ∞ , then the pmf of S_n should be arbitrarily close to the pmf of Poisson r.v. with parameter $\lambda = \lim_{n \to \infty} \lambda_n$.

Reference:

Hodges, S. L. and Le Cam, L. (1960). The Poison approximation to the binomial distribution, *Ann. Math. Statist.*, 31, 737-740.