温馨提示

(1) 视频中提到的附件可在**售后群的群文件**中下载。

包括讲义、代码、优秀的作业、我视频中推荐的资料等。

- (2) 关注我的微信公众号《数学建模学习交流》,后台发送"软件"两个字,可获得常见的建模软件下载方法;发送"数据"两个字,可获得建模数据的获取方法;发送"画图"两个字,可获得数学建模中常见的画图方法。另外,也可以看看公众号的历史文章,里面发布的都是对大家有帮助的技巧。
- (3) 购买更多优质精选的数学建模资料,可关注我的微信公众号《数学建模学习交流》, 在后台发送"买"这个字即可进入店铺进行购买。

本节可配合第十一讲观看

ARCH和GARCH模型

ARCH模型 (Autoregressive conditional heteroskedasticity model)

全称"自回归条件异方差模型",在现代高频金融时间序列中,数据经常出现波动性聚集的特点,但从长期来看数据是平稳的,即长期方差(无条件方差)是定值,但从短期来看方差是不稳定的,我们称这种异方差为条件异方差。传统的时间序列模型如ARMA模型识别不出来这一特征。

ARCH模型由美国加州大学恩格尔(Engle)教授1982年在《计量经济学》杂志(Econometrica)的一篇论文中首次提出,此后在计量经济领域中得到迅速发展,恩格尔教授也于2003年获诺贝尔经济学奖。

本节我们将介绍AHCH模型和GARCH(拓展/广义的ARCH)模型, 这里面涉及到的理论知识较难,大家可以把重点放在最后的应用上。

为什么引入ARCH模型?

图:上证指数增长率的时间序列

数据呈现波动聚集性(volatility clustering) 长期来看时间序列平稳,短期来看不平稳,存在异方差

条件异方差

数据显现版计程聚集的转点、但从长期来看,数据显字线的,即长期方差(元等件方差)是定值,但从发期来看,存在着异方差,我们称这种异族为条件异方差(conditional heteroskedastic)(本期方差大,下期的方差有很大可能也大)ARMA 校理: $y_{\epsilon} = a_{o} + \sum_{i=1}^{n} a_{i} y_{\epsilon-i} + \xi_{\epsilon} + \sum_{i=1}^{n} b_{i} \xi_{\epsilon-i}$ 是 (ξ_{i}) 为了引入条件异方差与一转点, $(\xi_{i}) = (\xi_{i}) + \xi_{i}$ 和 $(\xi_{i}) = (\xi_{i})$ 和 (ξ_{i}) 和 (ξ_{i}) 和 (ξ_{i}) 和 $(\xi_{i}) = (\xi_{i})$ 和 (ξ_{i}) 和 (ξ_{i}) 和 (ξ_{i}) 和 (ξ_{i}) 和 (

因为加法条件异方差的性质不容易探究,因此我们所说的ARCH模型均是下面的乘法条件异方差模型。另外,大家可以看出,实际上ARCH模型是在ARMA模型的基础上提出来的,两者的区别在于扰动项的设置不同,在ARMA模型中扰动项是最简单的白噪声序列。

更加详细的推导内容看手写讲义: ARCH类模型.pdf

M数学建模学习交流

ARCH(1)模型和ARCH(q)模型

 $y_t = a_0 + x_t + \varepsilon_t$, 其中 $\varepsilon_t = v_t \sqrt{\alpha_0 + \alpha_1 \varepsilon_{t-1}^2}$, x_t 中包含了 y_t 和 ε_t 的滯后项,且满足:

- (1) $\alpha_0 > 0$, $0 \le \alpha_1 < 1$ (保证了 ε_t 的方差为正数,且 ε_t 平稳)
- (2) v_t 和 ε_{t-i} ($i \ge 1$)独立,且 $E(v_t) = 0$, $var(v_t) = 1$, v_t 是独立同分布的。

则我们就说时间序列 $\{y_t\}$ 具有ARCH(1)效应。

举个例子: 假设 $x_t = a_1 y_{t-1}$, 那么我们就说 $\{y_t\}$ 是带有ARCH(1)误差的AR(1)序列。

如果进一步地假设
$$\varepsilon_t = v_t \sqrt{\alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2} = v_t \sqrt{\alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2 + \dots + \alpha_q \varepsilon_{t-q}^2}$$

且满足 $(1)\alpha_0 > 0, \alpha_i \ge 0$ $(i = 1, 2, \dots, q), \alpha_1 + \alpha_2 + \dots + \alpha_q < 1$ (2)和之前一样则我们称时间序列 $\{y_t\}$ 具有ARCH(q)效应。

注意,从上面的定义可以看出,ARCH模型实质上是在对 $\{\varepsilon_t\}$ 建模。

GARCH(p,q)模型

$$y_t = a_0 + x_t + \varepsilon_t$$
, 其中 $\varepsilon_t = v_t \sqrt{\alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2}$, x_t 中包含了 y_t 和 ε_t 的滞后项,且满足:

- $(1) \ \ \alpha_0 \! > \! 0, \ \ 0 \! \leq \! \alpha_i \! < \! 1 (i \! = \! 1, 2, \cdots, q), \ \alpha_1 \! + \! \alpha_2 \! + \! \cdots \! + \! \alpha_q \! < \! 1$
- (2) v_t 和 ε_{t-i} ($i \ge 1$)独立,且 $E(v_t) = 0$, $var(v_t) = 1$, v_t 是独立同分布的。则我们称时间序列 $\{y_t\}$ 具有ARCH(q)效应。

Bollerslev于1986年拓展了ARCH模型,提出了GARCH模型(Generalized ARCH):

$$y_t = a_0 + x_t + \varepsilon_t$$
, 其中 $\varepsilon_t = v_t \sqrt{h_t}$, x_t 中包含了 y_t 和 ε_t 的滯后项,且满足:

(1)
$$h_t = \alpha_0 + \sum_{j=1}^p \beta_i h_{t-j} + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2$$
 (看起来有点类似ARMA模型的形式)

$$(2)\sum_{i=1}^{q}lpha_{i}+\sum_{j=1}^{p}eta_{j}<\!1,\;lpha_{0}\!>\!0,lpha_{i}\!\geq\!0(i\!=\!1,2,\cdots,q),eta_{i}\!\geq\!0(i\!=\!1,2,\cdots,p)$$

(3) v_t 和 ε_{t-i} ($i \ge 1$)独立,且 $E(v_t) = 0$, $var(v_t) = 1$, v_t 是独立同分布的则我们称时间序列{ y_t }具有GARCH(p,q)效应。

检验GARCH效应

Detecting ARCH/GARCH Effects

The key feature of ARCH/GARCH models is that conditional variance of the disturbance (innovation) of the $\{y_t\}$ sequence acts like an AR/ARMA process. Hence we expect that the residuals from a fitted ARMA model (conditional mean model) should display thus characteristic pattern.

More specifically, after fitting ARMA model for $\{y_t\}$ sequence, if the residuals are white noise process (Box-Ljung test, ACF, PACF), then the conditional mean model is adequate. If there is further conditional heteroskedasticity, we expect to find serial correlation in the *squared* residuals.

在ARMA世銀張湖完后, D 对 Q 检验 , 考为自要 声,则均值模型化计定 全3、否则更换 ARMA 重新估计。

②检验 完² 足形的 噪声,若足划元 GARCH 效应,否则存在GARCH 效应

检验GARCH效应: LM检验

Detecting ARCH/GARCH Effects

A more formal procedure Lagrange multiplier test for ARCH effect by Engle (1982).

- Estimate a 'best fitting' ARMA model for the $\{y_t\}$ sequence and obtain the residual sequence $\{\widehat{\varepsilon}_t\}$ sequence.
- ② Regress the squared residuals on a constant and q lags of the values $\widehat{\varepsilon}_{t-1}^2, \cdots, \widehat{\varepsilon}_{t-q}^2$, i.e.,

$$\widehat{\varepsilon}_t^2 = \alpha_0 + \sum_{j=1}^q \alpha_j \widehat{\varepsilon}_{t-j}^2 + \eta_t$$

If there are no ARCH/GARCH effects (under the null), the estimated values for α_i , $i=1,\cdots,q$ should be close to zero such that the coefficient of determinant (R^2) should be close to 0. The test statistics $L=TR^2$ has an asymptotic χ^2 distribution with q degrees of freedom under the null.

教材中的总结

22.5 何时使用 ARCH 或 GARCH 模型

只有在扰动项存在条件异方差时,才需要使用 ARCH 或 GARCH 模型。那么,如何判断扰动项是否存在条件异方差呢?初步的方法可以画时间序列图,看看是否存在"波动性集聚"。

严格的统计检验包括以下三种方法。

方法一 首先,用 OLS 估计原方程" $y_i = x_i^l \beta + \varepsilon_i$ ",得到残差序列 $\{e_i\}$ 。其次,用 OLS 估计辅助回归, $e_i^2 = \alpha_0 + \alpha_1 e_{i-1}^2 + \cdots + \alpha_p e_{i-p}^2 + error_i$,并检验原假设" H_0 : $\alpha_1 = \alpha_2 = \cdots = \alpha_p = 0$ "(不存在条件异方差)。Engle (1982)提出进行 LM 检验,其检验统计量为 $TR^2 \xrightarrow{d} \chi^2(p)$,其中 T 为样本容量, R^2 为上述辅助回归的可决系数。如果拒绝 H_0 ,则认为应使用 ARCH 或 GARCH 模型。

在 Stata 中,此 LM 检验可通过命令 reg 的"后估计命令"(postestimation command)estat archlm 来实现。

方法二 可以对残差平方序列 $\{e_i^2\}$ 进行 Q 检验,检验其序列相关性。如果 $\{e_i^2\}$ 存在自相关,则认为 ε_i 存在条件异方差。

方法三 最为直接的方法是,在估计 ARCH 或 GARCH 模型之后,看条件方差方程中的系数 (即所有 α 与 γ)是否显著。

关于ARCH和GARCH模型的更多介绍,可参考陈强:高级计量经济学第二版

下载股票或指数历史数据

股票软件或金融软件

例如同花顺、万德Wind、东方财富通、通信达等

深成B指时间序列的预测建模

摘要

深证成份股指数是深圳证券交易所编制的一种成 份股指数,是从上市的所有股票中抽取具有市场代 表性的40家上市公司的股票作为计算对象,并以流 通股为权数计算得出的加权股价指数,综合反映深 交所上市 A、B股的股价走势。成份B股指数变更为 包含深圳市场10只B股的B股总收益指数。我们将时 间区间选取为2014年1月至2018年5月, 共计1064个 交易日的收盘价数据,在下文中,分别建立了ARMA 模型和GARCH模型对其收益率进行了预测,得到了良 好的结果。 (代号: 399003)

原始数据时间序列图

根据2014年1月至2018年5月共计1064个交易日的收盘价数据, 我们做出了B股指数的时序图从图中可以看出, 指数序列非平稳, 尤其是2015年到2016年之间波动十分剧烈。

date,index

2014-1-2,5694.021

2014-1-3,5696.93

2014-1-6,5573.04

2014-1-7,5567.03

2014-1-8,5634.815

2014-1-9,5633.998

2014-1-10,5529.37

2014-1-13,5482.934

2014-1-14,5565.357

2014 4 45 5520 043

2014-1-15,5520.017

2014-1-16,5513.515

2014-1-17,5499.617

2014-1-20,5488.603

2014-1-21,5469.61

2014-1-22,5606.267

2014-1-23,5547.738

收益率序列图

因此, 我们对原始数据进行处理, 计算其收益率, 所用公式如下:

$$r_{\scriptscriptstyle t} = rac{index_{\scriptscriptstyle t} - index_{\scriptscriptstyle t-1}}{index_{\scriptscriptstyle t-1}} \! imes \! 100 \, \%$$

Variable	Obs	Mean	Std. Dev.	Min	Max
r	1,063	.0149447	1.312131	-8.680958	5.869578

单位根检验

下面,我们进一步检验收益率序列有无单位根,利用Stata做ADF检验,得到的结果如下表所示:

. dfuller r

Dickey-Fuller test for unit root Number of obs = 1062 ------ Interpolated Dickey-Fuller ------Test 1% Critical 5% Critical 10% Critical Value Value Statistic Value Z(t) -30.218-3.430-2.860-2.570MacKinnon approximate p-value for Z(t) = 0.0000

ADF检验的原假设:数据是单位根序列,备择假设:数据是平稳序列注意:平稳数据建模用ARMA模型(或者ARIMA(p,0,q)),单位根数据建模用ARIMA模型。

上表结果显示p值为0, 在99%的置信水平下拒绝原假设, 故序列平稳。

ACF和PACF图

由ACF图和PACF图, 3阶和8阶相关系数较为显著, 8阶之后的显著可能由于误差导致, 不予考虑。

因此,为保证模型选取的准确性,我们拟合了四个模型并从中选取最优的模型。其中Model1: ARMA(3,3); Model2: ARMA(8,8);

Model3: ARMA (3,8); Model4: ARMA (8,3).

AIC和BIC选择模型

太多的滞后项会增加预测的误差,太少的滞后项又会遗失部分相关信息。经验和理论知识通常是用来决定滞后项阶数的最好方式,然而,依然存在着一些准则帮助我们确定滞后的阶数。为了确定哪个模型拟合效果最好,我们分别估计出了这四种模型,并给出了对应的AIC和BIC值,我们认为AIC与BIC值较小,模型拟合效果较好。

	AIC	BIC
Model1: ARMA (3,3)	3575.152	3614.903
Model2: ARMA (8,8)	3567.476	3656.915
Model3: ARMA (3,8)	3576.663	3641.258
Model4: ARMA (8,3)	3575.397	3639.992

我们根据AIC和BIC准则可知,这四个模型中应选取Model1,即ARMA(3,3)模型。此时,AIC值和BIC值的平均值最小。

ARMA (3,3) 模型的估计结果

	r	Coef.	OPG Std. Err.	Z	P> z	[95% Conf.	Interval]
r	_cons	.0139756	.0415896	0.34	0.737	0675386	.0954899
ARMA							
	ar						
	L1.	.3873789	.0648327	5.98	0.000	.2603092	.5144486
	L2.	.1183369	.0814793	1.45	0.146	0413596	.2780335
	L3.	8709415	.0645667	-13.49	0.000	9974899	7443931
	ma						
	L1.	3723355	.0577969	-6.44	0.000	4856153	2590557
	L2.	1776409	.0729809	-2.43	0.015	3206809	0346009
	L3.	.9114067	.0566235	16.10	0.000	.8004267	1.022387
	/sigma	1.288226	.0167192	77.05	0.000	1.255456	1.320995

$$r_{t} = 0.0140 + 0.388r_{t-1} + 0.118r_{t-2} - 0.871r_{t-3} +$$

$$\varepsilon_{t} - 0.372\varepsilon_{t-1} - 0.178\varepsilon_{t-2} + 0.911\varepsilon_{t-3}$$

残差序列的分布直方图

检验残差是否为白噪声

接着,我们使用Ljung-Box Q检验,来检验ARMA模型的有效性, 检验结果为下表所示:

Portmanteau test for white noise

Portmanteau (Q) statistic =
$$20.3104$$

Prob > chi2(12) = 0.0614

滞后12项的检验值的P值大于0.05,在5%的显著性水平下并不能拒绝原假设。故可以认为通过白噪声检验,即我们认为回归得到的残差不存在较明显的相关性,因此模型有效性较好。

对残差的平方进行LM检验

我们也可以使用LM统计量来检验是否存在GARCH误差,我们记符号 $\hat{\varepsilon}_t^2$ 表示残差的平方,由于一周有五个工作日,那么我们构造下面形式的回归方程:

$$\hat{\varepsilon}_t^2 = a_0 + a_1 \hat{\varepsilon}_{t-1}^2 + a_2 \hat{\varepsilon}_{t-2}^2 + a_3 \hat{\varepsilon}_{t-3}^2 + a_4 \hat{\varepsilon}_{t-4}^2 + a_5 \hat{\varepsilon}_{t-5}^2 + u_t$$

来检验 $H_0: a_1 = a_2 = a_3 = a_4 = a_5 = 0$.

如果原假设为真,则我们认为不存在GARCH误差,否则存在。

根据Stata回归得到的结果,我们得到 $\{\hat{\varepsilon}_t^2\}$ 滞后值的所有系数都等于零的原假设的F统计量等于36.79,而在分子自由度为5,分母自由度为1052的情况下,p值为0.0000。另外,考虑此回归的LM统计量,在Stata中求得:

$$LM = 157.44925$$
 pvalue $= 3.460e - 32$

因此,LM与F统计量均显著异于零。综合以上原因,我们有理由认为存在GARCH误差。

// LM检验: 是否存在ARCH误差
reg ressq l.ressq l2.ressq l3.ressq l4.ressq l5.ressq // 将残差平方项对其滞后项回归
gen LM_STAT=e(N)*e(r2) // 计算LM统计量
display LM_STAT // 输出LM统计量
display chiprob(e(df_m),LM_STAT) // 计算p值

利用AIC、BIC选择合适的模型

通过比较AIC和BIC,最终我们选择使用带有GARCH(1,1) 且v_t服从t分布的扰动项的ARMA(3,3)模型进行估计。

```
// 利用AIC BIC选择合适的模型进行估计
// 注意: 扰动项的分布在金融数据中常服从t分布
// (1) 正态分布下GARCH(1,1)估计
arch r, arima(3 0 3) arch(1) qarch(1)
estat ic
// (2) t分布下GARCH(1,1)估计
arch r, arima(3 0 3) arch(1) garch(1) distribution(t 3)
estat ic
// (3) 正态分布下GARCH(2,2)估计
arch r, arima(3 0 3) arch(2) qarch(2)
estat ic
// (4) t分布下GARCH(2,2)估计
arch r, arima(3 0 3) arch(2) garch(2) distribution(t 3)
estat ic
```

GARCH模型估计的结果

			223				
	r	Coef.	OPG Std. Err.	z	P> z	[95% Conf	Interval]
		COEI.	Scu. EII.			[55% COIII.	
r							
	_cons	.0974515	.0245235	3.97	0.000	.0493863	.1455167
ARMA							
	ar						
	L1.	.5258669	1.142422	0.46	0.645	-1.713239	2.764972
	L2.	0367495	1.450737	-0.03	0.980	-2.880141	2.806642
	L3.	7280032	1.120106	-0.65	0.516	-2.923371	1.467364
	ma						
	L1.	5360859	1.157196	-0.46	0.643	-2.804148	1.731976
	L2.	.0349246	1.473367	0.02	0.981	-2.852821	2.922671
	L3.	.7132867	1.124479	0.63	0.526	-1.490652	2.917225
ARCH							
	arch						
	L1.	.2378869	.0541804	4.39	0.000	.1316953	.3440784
	garch						
	L1.	.7855647	.0410771	19.12	0.000	.7050551	.8660743
	_cons	.1048251	.0346525	3.03	0.002	.0369075	.1727426

$$\begin{aligned} r_t &= 0.0975 + 0.5259 r_{t-1} - 0.0367 r_{t-2} - 0.7280 r_{t-3} + \varepsilon_t - 0.5361 \varepsilon_{t-1} \\ &\quad + 0.0349 \varepsilon_{t-2} + 0.7133 \varepsilon_{t-3} \\ h_t &= 0.1048 + 0.2379 \varepsilon_{t-1}^2 + 0.7855 h_{t-1} \end{aligned}$$

预测结果

