The Role of the Transport Layer in Delivering an Assured Elastic Service

Chris Christou (Booz Allen Hamilton/GIG EWSE)
ICCRG
12 February 2007

Outline

- Overview of the GIG
- Goals of today's talk
- Explanation of the GIG networking environment
- GIG Converged Services and the Assured Elastic Service
- Mechanisms to Support Precedence for Inelastic Traffic
- Behavioral Model and Functional Allocation for the Assured Elastic Service
- Summary and Suggestions

Background: Global Information Grid (GIG)

- The U.S. Department of Defense (DoD) is pursuing a transformation in communication infrastructure to enable any-to-any communication and improved information sharing across all GIG users and networks
- The vision is for the GIG to provide an Internet-like capability that meets the operational needs of multiple US Government agencies
 - Interconnects with civilian infrastructure at federal, state, and local levels
 - Interfaces with international networks, including NATO and coalition partners
- Component networks of the GIG include both:
 - Fixed & Mobile Assets
 - Ground, Air & Space Assets
- The GIG technical community is working on designing an interoperable architecture and protocols across all of these disparate networks

Goals of Today's Talk

- It is our aim to adopt existing open standards while encouraging development of standards and technology to support our infrastructure requirements
- Today's talk is aimed at introducing the GIG problem space as it relates to Congestion Control as well as describing our current technical approach
- In doing so, we solicit your feedback on the following questions as they relate to the transport layer and congestion control:
 - What congestion control mechanisms can satisfy the elastic application performance requirements over a wide range of networking environments?
 - How can the transport layer contribute to delivery of the Preferred Elastic service? What is the functional allocation between network nodes and end hosts in providing this service?
 - What is the role of congestion control, and the transport layer in particular, in satisfying the precedence requirements for elastic traffic?
 - What distinguishes Preferred Elastic from the Default Service? Specifically, are there distinctions with regard to congestion control and other mechanisms at the transport layer?

GIG Cipher Text (CT) Core / Plain Text (PT) Edge Networks

- The GIG includes the GIG CT Core surrounded by PT Edge Networks
- The GIG IP topology is divided into sections based on the nature of the user traffic carried in that part of the network
 - Plain-text (PT) network user traffic is not IP encrypted
 - Cipher-text (CT) network user traffic is IP encrypted
- A PT network is connected to a CT network via IPsec (tunnel mode) gateway(s)
- PT networks are grouped into different Communities of Interests (COIs); PT-PT communication is permitted within a COI
- This PT/CT separation separates the GIG address space and limits data, control and management plane information exchange across the PT-CT interface

GIG Network Types

- This GIG is composed of several networks exhibiting a range of capabilities characterized in terms of
 - Bandwidth, Size, Weight and Power (SWaP), node mobility, and link reliability
 - Networks operating in the fixed environment share many properties of today's Internet
 - Most networks will be stationary or will remain within a single hop of the fixed infrastructure
 - Over-provisioning of subscriber links
- Networks operating in the tactical environment are subject to node mobility and challenging link characteristics
 - Ad-hoc connectivity
 - RF-based, high-latency links
 - SWaP constraints
 - Subject to topology changes over time
 - Reachability to/from fixed infrastructure may be intermittent

GIG Fixed Networks

- Fixed or stationary nodes/Stable network topology
- IP-capable/Highly reliable links/high bandwidth
- Not severely constrained by SWaP
- High level of physical security protection

GIG Advantaged Tactical Networks

- Mostly stationary nodes
- Reliable links, approaching "highly reliable"
- IP-capable/mostly stable network topology
- Moderate bandwidth/Not severely constrained by SWaP
- Moderate level of physical security protection

GIG Disadvantaged Tactical Networks

- All or mostly mobile nodes/Least reliable links
- High latency communications
- Not all end-hosts and networks are IP-capable
- Least stable network topology (highly dynamic)
- Bandwidth constrained, constrained by SWaP
- Low level of physical security protection

GIG Converged Services and Precedence

- The GIG will support and control the usage of multiple traffic types over the same infrastructure
 - Inelastic/Real-Time Traffic
 - Elastic
- Precedence is defined as the user designated importance of an application session
 - Long been defined for circuit switched voice
 - Policy is being revised and extended to address IP voice, other real-time traffic, and (eventually) elastic traffic
- The second half of this briefing focuses on implementing the Assured Elastic Service

Categories	Service Class
Network Control	Network Control
Real-Time	Telephony
	Signaling
	MM Conferencing
	Real-Time Interactive
	Broadcast Video
Assured Elastic	MM Streaming
	Low-Latency Data
	OAM
	High Throughput Data
Default Elastic	Elastic

Mechanisms to Support QoS

- The GIG has adopted data plane, control plane, and application layer control mechanisms in providing QoS to end hosts
 - Data Plane- Implementation of Per Hop Behavior (PHBs): a description of the externally observable forwarding behavior of a node
 - Control Plane- Network Admission Control allows applications to request resources from the network. The network responds by explicitly admitting/rejecting QoS requests.
 - Application Layer Signaling- application layer control protocols that can establish, modify, and terminate multimedia sessions (conferences) such as Internet telephony calls
 - Management Plane: management systems play a role in planning, configuring, monitoring, and auditing this service

Precedence Support for Assured Inelastic Service

- Real-time inelastic applications such as voice and video have welldefined mechanisms and protocols available (e.g., EF PHB, RSVP, SIP)
 - Can ensure resources and mechanisms within the network will adequately support application requirements
 - Can help meet the precedence requirements through control plane, application layer, and management plane mechanisms
- Are similar approaches applicable in providing a Assured Elastic Service?

Behavioral Model for an Assured Elastic Service

- For inelastic traffic, a behavioral model to provide "Assured Inelastic Service" is fairly well understood
- For the assured elastic service, the behavioral model described in RFC 1633 and elsewhere will need to be extended
 - Service Model for different elastic application types allows for different delays for interactive burst, interactive bulk, and asynchronous bulk applications
 - The behavioral model for Assured Elastic will need to allow for improved throughput for higher precedence traffic
 - For example, low precedence application sessions will experience lower average throughput than higher precedence
 - However, this raises several questions, such as is there the equivalent of a "call blocking probability" for elastic application sessions? If there is a relative service for Assured Elastic, how "relative" should it be?
 - We anticipate an expanded role for planning and management in offering the Assured Elastic Service
- Given its relative immaturity, this technical area remains a work in progress

Current Approach to the Assured Elastic Service

- The GIG technical community has focused on the requirements of the network in providing the Assured Elastic Service
 - We have not described the role of the Transport Layer in providing this service
- The current baseline has defined separate service classes for high precedence traffic and low precedence traffic
- For higher precedence traffic, our current architecture suggests the use of differential drop probabilities with the intention of providing further granularity
- However, debate continues; the use of differential drop probabilities may not provide the service that is required

Implementing the Assured Elastic Service

- Requirements for the Assured Elastic Service and the work to date raise several questions
- How is this Assured Elastic Service differentiated from a Default Service at end hosts? In the network?
- What are the responsibilities of the transport layer in satisfying our Precedence requirements?
- How does the transport layer interface with the application to provide Assured Elastic Services? With the Network?

The Role of the Transport Layer: Performance Challenges

- The GIG's reliance on long-delay, satellite networks will constrain the performance of transport layer protocols; Our networks also employ links and topologies that introduce additional challenges
 - Intermittent Links with varying BW
 - Mobile/Dynamic Topologies with asymmetric and variable paths
- PEPs/middleboxes have been deployed to improve TCP performance over satellite links and may suffice as a short-term solution
 - Difficult to implement in a shared, CT based infrastructure
 - Not traditionally used in networks with dynamic topologies
- In the research community, much work has been conducted in enhancing transport layer performance for each of these environments
- We require a solution that can control congestion over an infrastructure incorporating <u>all</u> of these environments while providing preferential treatment of higher precedence traffic

The Role of the Transport Layer: Precedence

Different categories of Congestion Control mechanisms have been proposed to improve performance

Performance Enhancement Approach	Examples
End-Host Upgrade	 TCP NewReno F-RTO Recovery Increasing TCPs Initial Window Selective Acknowledgement (SACK) High-Speed TCP (HS-TCP)
End-Host and Network Upgrade	 Quickstart for TCP eXplicit Congestion Protocol (XCP) Explicit Congestion Notification (ECN)

 Should these or other Transport Layer mechanisms be extended to support Precedence?

Functional Allocation to Support Precedence

- Various models could be proposed to support a Precedence Based Assured Elastic Service, for example:
 - Transport Layer is precedence aware: The Network treats all elastic traffic similarly. Higher Precedence sessions react differently to congestion than lower precedence sessions
 - Transport Layer is not precedence aware/network differentiates: The network forwards the Assured Elastic traffic in one Service Class; the Elastic Traffic in another
 - Transport Layer and Network are precedence aware while incorporating a direct interface between the Transport Layer and the Network : The transport layer and the network directly communicate regarding the precedence level of the sessions as well as the availability of resources
 - Additionally, what is the role of the control plane in providing an Assured Elastic Service?
- What is the right functional allocation? Perhaps the WG could help shed light on this discussion?

15

Summary and Suggestions

- DoD intends to implement the RFC 4594 service classes in the GIG, including Assured Elastic
 - DoD may require differentiation of elastic traffic according to military precedence
 - In either case, it remains an important goal and design objective to (be able to) leverage new commercial technology as it emerges and becomes standardized
- We seek a broad view of Assured Elastic implementation that enables the transport layer and congestion control to play a major role
- We are interested in contributing to the ICCRG Problem Statement drafts
- We also seek feedback on how to avoid limiting or inhibiting the use of future congestion control mechanisms in the course of implementing the Assured Elastic service