

Termica de Componentes Informacion de calculos termicos Daniel Vilas (Draft vo.1)

Esta obra está bajo una licencia Creative Commons "Reconocimiento-CompartirIgual 4.0 Internacional".

1×1

1 Introduccion

Los modulos "DCC DiY Tools" son una serie de "Herramientas DCC Hazlo tu Mismo", pensadas para la gente con conocimiento de las placas Arduino y similares puedan desarrollar sus porpios modulos sin tener que preocuparse de las complejidades y de los problemas comunes.

Este documento es el manifiesto de intenciones de los modulos que estan bajo el paraguas del concepto "DCC DiY Tools". Veremos la definicion asi como las licencias y garantias generales que se pueden esperar de estos modulos.

Hoy por hoy, la electronica DiY¹ ha sufrido una explosion de posibilidades gracias en parte a la plataforma Arduino y al abaratamiento de los componentes. Asi mismo su programacion se ha democratizado gracias a la citada plataforma Arduino y la pletora de librerias, modulos y ejemplos existentes.

Esto crea el caldo de cultivo ideal para un sector como es el modelismo ferroviario. Una aficcion ya de por si muy hecha a hacer cosas por cada aficionado. Puediendo hacerse complejos sistemas electronicos, automatismos y efectos. Y, que gracias a esta democratizacion, a la mano de cualquiera, sin tener ser experto en la materia.

¹Do It Yourself: Haztelo Tu Mismo

1×1

2 Calculos generales

La forma de modelar/estimar que temperatura alcanzara el silicio en un chip es considerar la potencia que disipa como una fuente de corriente y el camino que tiene hasta el aire como una resistencia modelo simplificado(a)1:

Figura 1: Circuito Equivalente

En la realidad se puede modelar como dos resistencias, una R_{thJC} : Junction ala case 3 y R_{thCA} de la carcasa al ambiente, tal y como se representa en el caso (b) 1. En este modelo es importante mantener la temperatura del silicio T_j por debajo de 125 °C lo que se corresponde con $T_c=100$ °C en la carcasa. En la realidad, el modelo es más complejo, con resistencias en paralelo segun el dispador que se ponga, pero se simplifica por la diferencia valores y se puede ignorar R_{thCA} por R_{thHS} del disipador 4 .

²El silicio

³Carcasa

⁴HeatSink

Figura 2: Diseño más complejo

and 71.4 $^{\rm o}$ K ${\rm mm}^{-2}$

3 Indice

Índice

1	Intr	roduccion	3	
2	Calo	culos generales	4	
3	Indi	ice	6	
Ír	Índice de figuras			
	1	Circuito Equivalente	4	
	2	Diseño más complejo	5	

Índice de cuadros