Parametric Representation and Basics in Plane

1. x = p + tv, p and v is a three dimensional vector(平面的情况)

2.
$$x = p + c_1 \cdot v_1 + c_2 \cdot v_2$$

3. if $x_1 + x_2 + x_3 = 1$, find parametric representation

Answer
$$:(x_1-1)+x_2+x_3=0$$
 ,the start point, $\mathrm{p=}\begin{pmatrix}1\\0\\0\end{pmatrix}$, $v_{vertical}\cdot\begin{pmatrix}1\\1\\1\end{pmatrix}=0$,all we have to do is to find two orthogonal vectors. (只要找到是与 $\begin{pmatrix}1\\1\\1\end{pmatrix}$ 垂直的两个向量)

$$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
和 $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$,确保是正交

4. **Projection**: to find the projection of vector a on vector $b \setminus a$

The
$$Proj_v = rac{b \cdot a}{a \cdot a} \cdot a$$

5. The distance:

The distance of a dot from a plane can be described as

$$\mathrm{The}D=|\overrightarrow{\overrightarrow{n}\cdot\overrightarrow{P_0P_1}}|=|\overrightarrow{\overrightarrow{n}\cdot\overrightarrow{OP_0}-\overrightarrow{n}\cdot\overrightarrow{OP_1}}|=\frac{|(ax_1+by_1+cz_1)-(ax_0+by_0+cz_0)|}{\sqrt{a^2+b^2+c^2}}$$

6. 若
$$\mathsf{ax_0} + \mathsf{by_0} + \mathsf{cz_0} + \mathsf{d} = \mathsf{0}$$
. $ax_0 + by_0 + cz_0 + d = 0$, $D = |\frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}}|$

Cylindrical surfaces(圆柱面)

- 1. **The definition**: cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line and pass through a given plane curve. 数条平行的直线围绕着一个曲线 进行移动的曲面, 称为cylinder
- 2. Expression: $f(x, y, z) = Ax^2 + By^2 + Cz^2 + Dx + Ey + Gz + H = 0$,

3. parabolic cylinder(抛物柱):

Quadric surfaces(二次曲面)

1. **Definition and Expression**: A quadric surface is the graph of a second-degree equation in three variables x, y, and z. The most general such equation is $Ax^2+By^2+Cz^2+Dxy+Eyz+Fxz+Gx+HY+Iz+J=0$

$$Ax^2+By^2+Cz^2+Dxy+Eyz+Fxz+Gx+HY+Iz+J=0$$

- 2. By rotation and transition,it can be sth. like $Ax^2+By^2+Cz^2+I=0$ or $Ax^2 + By^2 + I = 0$
- 3. Classical Quadrics:

Non-degenerate real quadric surfaces $rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = 1$ Ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0$ Elliptic paraboloid $rac{x^2}{a^2} - rac{y^2}{b^2} - z = 0$ Hyperbolic paraboloid Hyperboloid of one sheet $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Hyperbolic hyperboloid Hyperboloid of two sheets $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$ or Elliptic hyperboloid

Supplementary

Lines:

$$t = \frac{x - x_0}{a} \quad t = \frac{y - y_0}{b} \quad t = \frac{z - z_0}{c}$$

Planes:

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

The point that is passed by the planes or the lines is (x_0,y_0,z_0)

For the plane , the $\overrightarrow{n}=(a,b,c)$

Distance between skew lines:

$$D = \frac{|(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{u_1} \times \mathbf{u_2})|}{|\mathbf{u_1} \times \mathbf{u_2}|}$$
.

First line: $\mathbf{r_1} = \mathbf{a} + \lambda_1 \mathbf{u_1}$

Second line: $\mathbf{r_2} = \mathbf{b} + \lambda_2 \mathbf{u_2}$

其中:

- **a** and **b** is a position that is known;
- $\mathbf{u_1}$ and $\mathbf{u_2}$ are two direction vectors ;
- λ_1 and λ_2 are parameters
- ${\bf u_1} \times {\bf u_2}$ the cross product can be understood as the \overrightarrow{n} that is perpendicular to the given plane
- $(\mathbf{b} \mathbf{a}) \cdot (\mathbf{u_1} \times \mathbf{u_2})$ is the projection