Алгебра

Сидоров Дмитрий

Группа БПМИ 219

April 9, 2022

№1

Докажите, что формула $m\circ n=2mn-2m-2n+3$ задаёт бинарную операцию на множестве $\mathbb{R}\setminus\{1\}$ и что $(\mathbb{R}\setminus\{1\},\circ)$ является группой.

Доказательство:

Докажем, что $m \circ n = 2mn - 2m - 2n + 3$ задаёт бинарную операцию на множестве $\mathbb{R}\setminus\{1\}$. Заметим, что $2(m-1)(n-1)+1=2(mn-n-m+1)+1=2mn-2m-2n+3=m\circ n$. Тогда $m\circ n=1\Leftrightarrow 2(m-1)(n-1)+1=1\Leftrightarrow 2(m-1)(n-1)=0\Leftrightarrow m=1$ или n=1. Тк необходимо доказать, что $m\circ n$ задаёт бинарную оперцаию на множестве $\mathbb{R}\setminus\{1\}$, то $m\neq 1, n\neq 1\Rightarrow m\circ n\neq 1 \ \forall m,n\in \mathbb{R}\setminus\{1\}$, а значит, тк по определению бинарная операция на M - это отображение $\circ: M\times M\to M, (a,b)\to a\circ b$, то $m\circ n$ - бинарная оперция, тк каждой паре элементов множества $\mathbb{R}\setminus\{1\}$ ставится в соответвие элемент из $\mathbb{R}\setminus\{1\}$.

Теперь докажем, что ($\mathbb{R}\setminus\{1\}$, \circ) является группой. По определению (M, \circ) называется группой, если выполнены следующие условия: ассоциативность, существует нейтральный элемент, существует обратный элемент.

- 1) Рассмотрим $a,b,c \in \mathbb{R} \setminus \{1\}$. $a \circ b = 2ab 2a 2b + 3 \Rightarrow (a \circ b) \circ c = 2(2ab 2a 2b + 3)c 2(2ab 2a 2b + 3) 2c + 3 = 4abc 4ac 4bc + 6c 4ab + 4a + 4b 6 2c + 3 = 2a(2bc 2c 2b + 3) 2(2bc 2b 2c + 3) 2a + 3 = a \circ (b \circ c) \Rightarrow$ ассоциативность выпоняется.
- 2) Заметим, что $\exists e = \frac{3}{2} \in \mathbb{R} \setminus \{1\} : \frac{3}{2} \circ a = 3a 3 2a + 3 = a = a \circ \frac{3}{2} \ \forall a \in \mathbb{R} \setminus \{1\} \Rightarrow$ существует нейтральный элемент.
- 3) Покажем, что существует обратный элемент. Рассмотрим произвольный элемент $a \in \mathbb{R} \setminus \{1\}$. Необходимо показать, что существует такой $b \in \mathbb{R} \setminus \{1\}$, что $a \circ b = b \circ a = e = \frac{3}{2}$. $\frac{3}{2} = a \circ b = 2ab 2a 2b + 3 = b \circ a \Rightarrow 2ab 2a 2b + \frac{3}{2} = 0 \Rightarrow 4ab 4a 4b + 3 = 0 \Rightarrow b(4a 4) = 4a 3 \Rightarrow b = \frac{4a 3}{4a 4}$, тк $a \in \mathbb{R} \setminus \{1\} \Rightarrow a \neq 1$. Значит, в $\mathbb{R} \setminus \{1\}$ существует обратный элемент.

Таким образом, условия выполняются \Rightarrow ($\mathbb{R}\setminus\{1\}$, \circ) является группой.

№2

Найдите все элементы порядка 20 в группе ($\mathbb{C}\setminus\{0\},\times$).

Решение:

По определению порядок элемента g - это такое минимальное положительное число m, что $g^m = e$ (g - элемент группы). Для группы ($\mathbb{C}\setminus\{0\},\times$) e=1. Значит необходимо найти все корни 20-ой степени из 1 такие, что ни в какой степени меньше 20 эти корни не равны 1. По формуле Эйлера корни 20-ой степени из комплексного числа имеют

вид $e^{\frac{2\pi k \cdot i}{20}} = e^{\frac{\pi k \cdot i}{10}}$, $k = 0, 1, \dots, 19$. Покажем, что если $\text{HOД}(k, 20) \neq 1$, то $e^{\frac{\pi k \cdot i}{10}}$ не является элементом порядка 20 в группе ($\mathbb{C}\setminus\{0\}$, \times). Пусть HOД(k, 20) = d, тогда $(e^{\frac{\pi k \cdot i}{10}})^{\frac{20}{d}} = e^{\frac{2\pi k \cdot i}{d}} = e^{2\pi n \cdot i} (n \in \mathbb{Z}) = \cos(2\pi n) + i \cdot \sin(2\pi n) = 1 \Rightarrow \frac{20}{d}$ порядок элемента $e^{\frac{\pi k \cdot i}{10}}$ и тк $d \neq 1$, то $\frac{20}{d} < 20 \Rightarrow e^{\frac{\pi k \cdot i}{10}}$ не является элементом порядка 20 в группе ($\mathbb{C}\setminus\{0\}$, \times). Таким образом, нам удовлетворяют только такие k, для которых HOД(k, 20) = 1, т.е. 1, 3, 7, 9, 11, 13, 17, 19.

Ответ: $e^{\frac{\pi k \cdot i}{10}}$, k = 1, 3, 7, 9, 11, 13, 17, 19

$N_{\overline{2}}3$

Найдите все левые и все правые смежные классы группы A_4 по подгруппе $\langle \sigma \rangle$, где $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$

Решение:

Пусть H - подгруппа группы G, тогда по определению $gH=\{gh|h\in H\}$ - левый смежный класс, а $Hg=\{hg|h\in H\}$ - правый смежный класс. По условию $G=A_4,H=\langle\sigma\rangle$. Группа состоит из $\frac{4!}{2}=12$ элементов: id,(123),(124),(134),(132),(142),(143),(234),(243),(12)(34),(13)(24),(14)(23). Тк подгруппа порождена циклом (124), то $H=\{id,(124),(142)\}$. Найдём левые смежные классы: $idH=\{id,(124),(142)\},(143)H=\{(143),(231),(13)(24)\},(134)H=\{(134),(12)(34),(234)\},(132)H=\{(132),(243),(14)(23)\}$. Найдём правые смежные классы: $Hid=\{id,(124),(142)\},H(123)=\{(123),(14)(23),(234)\},H(134)=\{(134),(13)(24),(132)\},H(143)=\{(143),(243),(12)(34)\}$.

Ответ: Левые смежные классы: $\{id, (124), (142)\}, \{(143), (231), (13)(24)\}, \{(134), (12)(34), (234)\}, \{(132), (243), (14)(23)\}.$ Правые смежные классы: $\{id, (124), (142)\}, \{(123), (14)(23), (234)\}, \{(134), (13)(24), (132)\}, \{(143), (243), (12)(34)\}.$

N_{24}

Докажите, что всякая подгруппа циклической группы является циклической.

Доказательство:

Пусть G - циклическая группа, H - подгруппа G. Тк G - циклическая группа, то, если g - образующий элемент, все элементы в G представимы в виде g^n , $n \in \mathbb{Z}$. Заметим, что если H состоит из одного элемента, то теорема выполняется, поэтому будем считать, что в H более одного элемента. Рассмотрим элемент $g^a \in H$, где a - наименьшая положительная степень (такой элемент точно есть, тк если H содержит элемент g^{-a} , то H содержит элемент g^a , тк по определению подгруппы, если $x \in H$, то $x^{-1} \in H$). Теперь рассмотрим произвольный элемент $g^b \in H$. Для a,b выполняется $b = q \cdot a + r$, $0 \le r < a$, $q \in Z$. $g^r = g^{b-q \cdot a} = g^b \cdot g^{-q \cdot a} = g^b \cdot (g^a)^{-q} \in H$, тк $g^b \in H$, $g^a \in H$. Тк a - наименьшая положительная степень элемента из H, то $r = 0 \Rightarrow b = q \cdot a \Rightarrow g^b = (g^a)^q \Rightarrow H$ состоит из степеней g^a , а значит H является циклической группой (g^a - её образующий элемент).