La política ¿qué es?

Schmitter-Blecher y Dahl

13-8-2025

Outline

- 1 Para delimitar el objeto
- 2 La fasceta del poder
- 3 La dimensión distributiva
- 4 Para alcanzar acuerdos
- 5 El concepto del poder (Dahl 1957)

Guía

- 1 Para delimitar el objeto
- 2 La fasceta del poder
- 3 La dimensión distributiva
- 4 Para alcanzar acuerdos
- 5 El concepto del poder (Dahl 1957)

Algunas definiciones

Schmitter-Blecher Es el ejercicio del poder Lasswell Quién obtiene qué, cuándo y cómo

Jacobson-Kernell Proceso mediante el cual las personas y grupos alcanzan acuerdos para actuar colectivamente, aun cuando subsisten desacuerdos sobre sus objetivos

Mapa de ruta

- 1 Delimitaremos nuestro objeto de estudio
- 2 Esbozaremos obstáculos de la ciencia social
- 3 Ilustraremos con algunos ejemplos

Guía

- 1 Para delimitar el objeto
- 2 La fasceta del poder
- 3 La dimensión distributiva
- 4 Para alcanzar acuerdos
- 5 El concepto del poder (Dahl 1957)

El poder

Recursos de poder:

- violencia
- persuación
- manipulación
- dinero
- **.** . . .

Formalizaremos esto la próxima clase

Tres "caras" del poder

Primera La coerción directa

Segunda La anticipación de la coerción

Tercera La ideología, adoptas los valores dominantes como si fueran propios

Guía

- 1 Para delimitar el objeto
- 2 La fasceta del poder
- 3 La dimensión distributiva
- 4 Para alcanzar acuerdos
- 5 El concepto del poder (Dahl 1957)

La inevitabilidad del conflicto

Escasez + diversidad de gustos \rightarrow conflicto

- Economía lidia con escasez en contexto individual
- Política lidia con este conflicto colectivo

Los subóptimos de Pareto son excepcionales, siempre habrá ganadores y perdedores

La inevitabilidad del conflicto

Escasez + diversidad de gustos \rightarrow conflicto

- Economía lidia con escasez en contexto individual
- Política lidia con este conflicto colectivo

Los subóptimos de Pareto son excepcionales, siempre habrá ganadores y perdedores

Sujetos, no partículas

- Un obstáculo formidable para hacer ciencia social
- No son simples actores, sino agentes con capacidad para incidir en su entorno
 - Los insatisfechos buscan cambiar el status quo
 - Los satisfechos invierten sus ganancias para defenderlo
 - "Progresistas" vs "conservadores"
- El orden político, un equilibrio siempre endeble

Corn Laws (1815–1846)

- Arancel y restricciones a la importación de grano importado
- Frontera cerrada si precio <£4 (que sólo se alcanzó en 1828)
- Ese año se adoptó un arancel variable: p.ej. £1.7 si precio <£2.6 (impuesto de 65 %)</p>
- Librecambistas tardarían 30 años en derogarlas (Gran Hambruna)

Análisis: ¿qué estaba en juego?

Corn Laws (1815–1846)

- Arancel y restricciones a la importación de grano importado
- Frontera cerrada si precio <£4 (que sólo se alcanzó en 1828)
- Ese año se adoptó un arancel variable: p.ej. £1.7 si precio <£2.6 (impuesto de 65 %)</p>
- Librecambistas tardarían 30 años en derogarlas (Gran Hambruna)

Análisis: ¿qué estaba en juego?

La Gran Hambruna irlandesa

- **1845–1849**
- Enfermedad de la papa
- ~1M murieron, ~1M emigraron
- pob1845=8.5M pob1901=4.4M
- Phytophtora infestans

La tragedia contribuyó a inclinar la balanza hacia el librecambismo

Phytophtora infestans

Otro obstáculo para cs

- El lenguaje con que debatimos la política es ambiguo
- Los agentes buscan explotar esto intencionalmente
- "La comunicación política puede corromperse, lo que ocurre con más frecuencia al mudarse al internet" ¿Cierto? ¿falso?
- El uso estratégico de la retórica: en política nunca interpretas literalmente los enunciados

Fake news victorianos

Fake news victorianos

Los derogadores afirman "la Corn Law

- es un impuesto al pan
- es una ley que aventaja a los pocos
- es un acto cruel de opresión" etc.

Lejos de ser este el caso, se trata de un impuesto

- no sobre, sino para el pan
- no en contra, sino a favor de los pobres
- no para encarecer el pan, sino abaratarlo virtualmente

garatizándole al pobre empleo y una remuneración justa por su trabajo. No es una ley para pocos sino para la ventaja de TODOS.

Fake news victorianos

Premisas tácitas que sostienen la conclusión

- La quiebra de los agroproductores ingleses generaría pobreza entre sus campesinos
- La pobreza urbana es inexistente
- La salud de los agroproductores ingleses es universalmente benéfica

Guía

- 1 Para delimitar el objeto
- 2 La fasceta del poder
- 3 La dimensión distributiva
- 4 Para alcanzar acuerdos
- 5 El concepto del poder (Dahl 1957)

Acuerdo para actuar en comunidad

- El acto social (Durkheim)
- Interdependencia: lograr acción colectiva a menudo exige cooperación
- Dista de ser espontánea, más adelante estudiaremos su fasceta estratégica

Los Homo neanderthalensis

- Bifurcación 600kA.C.: sapiens en Africa, neand. mudó a Asia y Europa
- Paleobiólogía: guerra sistemática, común entre depredadores alfa con sobrepoblación (chimpancés)
- Neand. + grandes y fuertes, huesos y dientes + sólidos
- 40kA.C. se extinguieron ¿por qué?

Hipótesis del diferencial de cooperación

hordas más numerosas, mejor alimentadas, mejor equipadas

Los Homo neanderthalensis

- Bifurcación 600kA.C.: sapiens en Africa, neand. mudó a Asia y Europa
- Paleobiólogía: guerra sistemática, común entre depredadores alfa con sobrepoblación (chimpancés)
- Neand. + grandes y fuertes, huesos y dientes + sólidos
- 40kA.C. se extinguieron ¿por qué?

Hipótesis del diferencial de cooperación:

hordas más numerosas, mejor alimentadas, mejor equipadas

La memoria colectiva

- Neanderthal es recordatorio de las atrocidades que podemos cometer los humanos colectivamente
- Generan memorias persistentes que pueden explotarse políticamente
- Esto perpetúa el desacuerdo a pesar de posibles condiciones para resolverlo
 - p.ej. conflicto en Medio Oriente, la Conquista

Más obstáculos para una ciencia social

Ceteris paribus, "causa y efectos no varían en dirección ni magnitud en ciencias físicas; en ciencias sociales, sí varían"

- diferentes condiciones → mismo desenlace
- $\mathbf{2}$ mismas condiciones \rightarrow desenlaces diferentes
- casi nunca puedes controlar todos los factores que intervienen

Planteamiento alternativo

Efecto total = efecto sistemático + error (señal y ruido)

Guía

- 1 Para delimitar el objeto
- 2 La fasceta del poder
- 3 La dimensión distributiva
- 4 Para alcanzar acuerdos
- 5 El concepto del poder (Dahl 1957)

Poder

Todos tenemos una noción intuitiva de lo que es, pero falta una formalización del concepto de poder.

En la cultura popular

Dahl la plantea en términos de una relación entre personas

- énfasis en su mensurabilidad
- noción de poder relativo de dos o más personas

Poder, influencia, control son sinónimos para Dahl

Poder

Todos tenemos una noción intuitiva de lo que es, pero falta una formalización del concepto de poder.

En la cultura popular

Dahl la plantea en términos de una relación entre personas

- énfasis en su mensurabilidad
- noción de poder relativo de dos o más personas

Poder, influencia, control son sinónimos para Dahl

Poder

Todos tenemos una noción intuitiva de lo que es, pero falta una formalización del concepto de poder.

En la cultura popular

Dahl la plantea en términos de una relación entre personas

- énfasis en su mensurabilidad
- noción de poder relativo de dos o más personas

Poder, influencia, control son sinónimos para Dahl

La relación

Alguien tiene poder sobre otra persona en la medida que consigue que ésta actúe como no lo habría hecho de otro modo

La relación

Alguien tiene poder sobre otra persona en la medida que consigue que ésta actúe como no lo habría hecho de otro modo

Proposición

Definiendo

- \blacksquare A = el actor poderoso
- a = su contraparte

- $\mathbf{w} = \operatorname{acción} \operatorname{de} A$
- $\mathbf{x} = \operatorname{acción} \operatorname{de} a$

"A tiene poder sobre a si a hace x cuando A hace w"

 $^{\mathsf{y}}$ $^{\mathsf{u}}$ $^{\mathsf{u}}$ hace $ar{x}$ cuando A hace \overline{w}

La relación

Alguien tiene poder sobre otra persona en la medida que consigue que ésta actúe como no lo habría hecho de otro modo

Proposic<u>ión</u>

Definiendo

- \blacksquare A = el actor poderoso
- a = su contraparte

- $\mathbf{w} = \operatorname{acción} \operatorname{de} A$
- $\mathbf{x} = \operatorname{acción} \operatorname{de} a$

"A tiene poder sobre a si a hace x cuando A hace w" y "a hace \bar{x} cuando A hace \bar{w} "

Especificación estadística

Decir que alguien tiene poder sobre otro no basta.

Más interesante también medirlo sea posible

→ lo plantea probabilísticamente

Especificación estadística

Decir que alguien tiene poder sobre otro no basta. Más interesante también medirlo sea posible

→ lo plantea probabilísticamente

Especificación estadística

Decir que alguien tiene poder sobre otro no basta. Más interesante también medirlo sea posible

→ lo plantea probabilísticamente

Especificación estadística

La probabilidad de que a haga x dado que A hizo w es

$$P(a, x \mid A, w) = p_1$$

 $P(a, x \mid A, \overline{w}) = p_2$

Ejemplo (¿Fed reducirá la tasa? ¿Trump removerá a Powell?)

$$p_1 = P(\text{Fed tasa} \downarrow | \text{Trump amenaza}) = .4$$

 $p_2 = P(\text{Fed tasa} \downarrow | \text{Trump amenaza}) = .1$

Especificación estadística

La probabilidad de que a haga x dado que A hizo w es

$$P(a, x \mid A, w) = p_1$$

 $P(a, x \mid A, \overline{w}) = p_2$

Ejemplo (¿Fed reducirá la tasa? ¿Trump removerá a Powell?)

$$p_1 = P(\mathsf{Fed\ tasa} \downarrow \mid \mathsf{Trump\ amenaza}) = .4$$

 $p_2 = P(\mathsf{Fed\ tasa} \downarrow \mid \mathsf{Trump\ amenaza}) = .1$

Principios de la probabilidad

$$0 \le P(x) \le 1 \ \forall \ x$$

$$P(x) + P(\bar{x}) = 1$$

		Fed		
		\downarrow	no	
Trump	am	α	β	$\alpha + \beta$
	\overline{am}	γ	δ	$\gamma + \delta$
		$\alpha + \gamma$	$\beta + \delta$	1

Probabilidades condicionales

$$P(\downarrow \mid \text{am}) = P(\downarrow \& \text{am}) \div P(\text{am})$$

= $\frac{\alpha}{\alpha + \beta}$

Principios de la probabilidad

$$0 \le P(x) \le 1 \ \forall \ x$$

$$P(x) + P(\bar{x}) = 1$$

		Fed		
		\downarrow	no	
Trump	am	α	β	$\alpha + \beta$
	\overline{am}	γ	δ	$\gamma + \delta$
		$\alpha + \gamma$	$\beta + \delta$	1

Probabilidades condicionales:

$$\begin{array}{rcl} P(\downarrow \mid \mathsf{am}) = & P(\downarrow & \& \; \mathsf{am}) \div P(\mathsf{am}) \\ = & \frac{\alpha}{\alpha + \beta} \end{array}$$

Fijo arbitrariamente
$$P(\text{tasa}\downarrow) = \frac{1}{4}$$

	\downarrow	no		
am	α	β		
am	γ	δ		
	$\frac{1}{4}$	$\frac{3}{4}$	1	

$$\begin{array}{l} P(\downarrow \mid \text{am}) = \frac{\alpha}{\alpha + \beta} = .4 \Longleftrightarrow \alpha = \frac{2}{3}\beta \\ P(\downarrow \mid \overline{\text{am}}) = \frac{\gamma}{\gamma + \delta} = .1 \Longleftrightarrow \gamma = \frac{1}{9}\delta \end{array}$$

$$\alpha + \gamma = \frac{1}{4} \qquad \beta + \delta = \frac{3}{4}$$

$$\frac{2}{3}\beta + \frac{1}{9}\delta = \frac{1}{4} \qquad \beta = \frac{3}{4} - \delta$$

$$\delta = \frac{9}{20} \qquad \beta = \frac{6}{20} \\
\alpha = \frac{4}{20} \qquad \gamma = \frac{1}{20}$$

	+	no	
am am		6 20 9 20 3 4	$\frac{\frac{1}{2}}{\frac{1}{2}}$

Fijo arbitrariamente
$$P(\mathsf{tasa}\downarrow) = \frac{1}{4}$$

	\downarrow	no		
am	α	β		
am	γ	δ		
	$\frac{1}{4}$	$\frac{3}{4}$	1	

$$\begin{array}{l} P(\downarrow \mid \mathsf{am}) = \frac{\alpha}{\alpha + \beta} = .4 \Longleftrightarrow \alpha = \frac{2}{3}\beta \\ P(\downarrow \mid \overline{\mathsf{am}}) = \frac{\gamma}{\gamma + \delta} = .1 \Longleftrightarrow \gamma = \frac{1}{9}\delta \end{array}$$

$$\alpha + \gamma = \frac{1}{4} \qquad \beta + \delta = \frac{3}{4}$$

$$\frac{2}{3}\beta + \frac{1}{9}\delta = \frac{1}{4} \qquad \beta = \frac{3}{4} - \delta$$

$$\delta = \frac{9}{20} \qquad \beta = \frac{6}{20}$$

	+	no	
am am		6 20 9 20 3 4	$\frac{\frac{1}{2}}{\frac{1}{2}}$

Fijo arbitrariamente
$$P(\mathsf{tasa}\downarrow) = \frac{1}{4}$$

	\downarrow	no		
am	α	β		
am	γ	δ		
	$\frac{1}{4}$	$\frac{3}{4}$	1	

$$\begin{array}{l} P(\downarrow \mid \mathsf{am}) = \frac{\alpha}{\alpha + \beta} = .4 \Longleftrightarrow \alpha = \frac{2}{3}\beta \\ P(\downarrow \mid \overline{\mathsf{am}}) = \frac{\gamma}{\gamma + \delta} = .1 \Longleftrightarrow \gamma = \frac{1}{9}\delta \end{array}$$

$$\alpha + \gamma = \frac{1}{4} \qquad \beta + \delta = \frac{3}{4}$$

$$\frac{2}{3}\beta + \frac{1}{9}\delta = \frac{1}{4} \qquad \beta = \frac{3}{4} - \delta$$

	+	no	
am	4 20		
am			$\frac{1}{2}$
			1

Fijo arbitrariamente
$$P(\text{tasa}\downarrow)=\frac{1}{4}$$

	\downarrow	no		
am	α	β		
am	γ	δ		
	$\frac{1}{4}$	$\frac{3}{4}$	1	

$$\begin{array}{l} P(\downarrow \mid \mathsf{am}) = \frac{\alpha}{\alpha + \beta} = .4 \Longleftrightarrow \alpha = \frac{2}{3}\beta \\ P(\downarrow \mid \overline{\mathsf{am}}) = \frac{\gamma}{\gamma + \delta} = .1 \Longleftrightarrow \gamma = \frac{1}{9}\delta \end{array}$$

$$\alpha + \gamma = \frac{1}{4} \qquad \beta + \delta = \frac{3}{4}$$

$$\frac{2}{3}\beta + \frac{1}{9}\delta = \frac{1}{4} \qquad \beta = \frac{3}{4} - \delta$$

$$\delta = \frac{9}{20} \qquad \beta = \frac{6}{20}$$

$$\alpha = \frac{4}{20} \qquad \gamma = \frac{1}{20}$$

	\downarrow	no	
am	4 2 0	6 20 9	$\frac{1}{2}$
am	$\frac{1}{20}$	$\frac{9}{20}$	$\frac{1}{2}$
	$\frac{1}{4}$	<u>3</u> 4	1

Consideraciones

Dos condiciones necesarias

- Rezago temporal
 - correlación vs causalidad
 - necesaria sólo para 1a cara
- 2 Tiene que haber conexión entre A y a
 - no hay poderes ocultos
 - innecesaria para la 3a cara
 - Dahl deja la conexión indeterminada

Medición del poder ("Macht")

$$M\left(\frac{A}{a}:w,x\right) = P(a,x|A,w) - P(a,x|A,\overline{w}) = p_1 - p_2$$

Consideraciones

Dos condiciones necesarias

- Rezago temporal
 - correlación vs causalidad
 - necesaria sólo para 1a cara
- 2 Tiene que haber conexión entre A y a
 - no hay poderes ocultos
 - innecesaria para la 3a cara
 - Dahl deja la conexión indeterminada

Medición del poder ("Macht")

$$M\left(\frac{A}{a}:w,x\right) = P(a,x|A,w) - P(a,x|A,\overline{w}) = p_1 - p_2$$

Propiedades

- Ausencia de relación de poder equivale a independencia estadística: $p_1 = p_2 \iff M = 0$
- Poder máximo M=1
- *M* < 0 podría ser aceptable? Poder "negativo"

Poder comparado

Posible evaluar
$$M\left(\frac{A}{a}:w,x\right)-M\left(\frac{B}{b}:y,z\right)\overset{?}{\leqslant}0$$

- la comparación universal es tentadora
- a menudo sin sentido...

■ comparabilidad exige $b \approx a$, $w \approx y$, $x \approx z$

Poder comparado

Posible evaluar
$$M\left(\frac{A}{a}:w,x\right)-M\left(\frac{B}{b}:y,z\right)\stackrel{?}{\lessgtr}0$$

- la comparación universal es tentadora
- a menudo sin sentido...

■ comparabilidad exige $b \approx a$, $w \approx y$, $x \approx z$

Obtener *pork* desde el Senado

Sen. Susana Harp vs. Sen. Lilly Téllez
Reserva al Ramo 33 FORTAMUN, subsidio adicional:

	Enmienda		
Reserva	pasa	rechazada	Suma
a favor	p_1	$1 - p_1$	1
en contra	p_2	$1 - p_2$	1
no hace nada	p_3	$1 - p_3$	1

$$M_F = p_1 - p_3$$
 $M_C = (1 - p_2) - (1 - p_3)$
= $p_3 - p_2$