CLAIMS

1	1. A general purpose computer system having multiple nodes, comprising:
2	at least one processor executing method acts to promote tolerance of
3	faults in the system, the method acts comprising:
4	based at least in part on the faults, determining a set of nodes;
5	and
6	using nodes in the set of nodes only as points on routing paths of
7	messages, and not using any node in the set of nodes for sending or
8	receiving messages.
1	2. The system of Claim 1, wherein the set is a lamb set.
1	3. The system of Claim 2, wherein the act of determining undertaken by
2	the processor includes:
3	finding small sets of partitions of candidate lamb nodes, each partition
4	including a representative node.
1	4. The system of Claim 3, wherein the act of finding undertaken by the
2	processor includes:

	3	partitioning nodes in the system into maximal intervals of sequential
	4	nodes, no node in an interval being a faulty node.
	1	5. The system of Claim 4, wherein the act of finding undertaken by the
	2	processor further includes:
	3	returning at least some intervals as at least one set of partitions.
2	1	6. The system of Claim 3, wherein the act of determining undertaken by
	2	the processor includes:
	3	determining a reachability from at least one representative node to at
S SHOW .	4	least another representative node; and
	5	using the reachability to establish a solution set, such that any node in
	6	the solution set can reach any other node in the solution set in at most k
	7	rounds.
	1	7. The system of Claim 6, wherein the act of determining a reachability
	2	undertaken by the processor includes:
	3	computing at least one reachability matrix, using the solution set.

1	8. The system of Claim 7, wherein the act of determining a reachability
2	undertaken by the processor further includes:
3	computing at least one intersection matrix.
1	9. The system of Claim 8, wherein the act of determining a reachability
2	undertaken by the processor further includes:
3	returning at least one product of at least one reachability matrix and at
4	least one intersection matrix.
1	10. The system of Claim 6, wherein k equals two.
1	11. The system of Claim 6, wherein the act of determining undertaken by
2	the processor includes:
3	minimizing a solution set using at least one weighted graph G.
1	12. The system of Claim 11, wherein the weighted graph is a weighted
2	bipartite graph.
1	13. The system of Claim 11, wherein the act of minimizing undertaken by
2	the processor includes:
3	finding at least one vertex cover C of the graph G.

1	14. The system of Claim 13, wherein the act of minimizing undertaken by
2	the processor further includes:
3	using selected elements of the vertex cover C, establishing the lamb set.
1	15. The system of Claim 1, wherein membership in the set of nodes
2	depends at least partially on a number of processors in a node that are malfunctioning
3	or not functioning.
1	16. A computer program device comprising:
2	a computer program storage device readable by a digital processing
3	apparatus; and
4	a program on the program storage device and including instructions
5	executable by the digital processing apparatus for promoting fault tolerance in a multi-
6	node system, the program comprising:
7	means for designating a lamb set of nodes in the multi-node system to
8	be used for routing messages within the system.
1	17. The device of Claim 16, wherein the lamb set of nodes contains nodes
2	that are used only in messages routes.

1	18. The device of Claim 16, further comprising means for finding small set
2	of partitions of prospective lamb nodes, each partition including a representative node.
1	19. The device of Claim 18, wherein the means for finding includes:
2	means for partitioning nodes in the system into maximal intervals of
3	sequential nodes, no node in an interval being a faulty node.
1	20. The device of Claim 19, wherein the means for finding includes:
2	means for returning at least some intervals as at least one set of
3	partitions.
1	21. The device of Claim 18, wherein the means for designating includes:
2	means for determining a reachability from at least one representative
3	node to at least another representative node; and
4	means for using the reachability to establish a solution set, such that any
5	node in the solution set can reach any other node in the solution set in at most
6	k rounds.
1	22. The device of Claim 21, wherein the means for designating includes:
2	means for computing at least one reachability matrix;

means for computing at least one intersection matrix; and

4		means for returning at least one product of at least one reachability
5	matrix	and at least one intersection matrix.
1	23.	The device of Claim 21, wherein k equals two.
1	24.	The device of Claim 18, wherein the means for designating includes:
2		means for minimizing a solution set using at least one weighted graph
3	G.	
1 2	25. bipartite grap.	The device of Claim 24, wherein the weighted graph is a weighted
_	orparente grap	
1	26.	The device of Claim 24, wherein the means for minimizing includes:
2		means for finding at least one vertex cover C of the graph G.
1	27.	The device of Claim 26, further comprising:
2 .		means for using selected elements of the vertex cover C to establish the
3	lamb s	set.

1	28. The device of Claim 16, wherein membership in the lamb set of nodes
2	depends at least partially on a number of processors in a node that are malfunctioning
3	or not functioning.
1	29. A method for promoting fault tolerance in a multi-node system,
2	comprising the acts of:
3	for each of k rounds, finding multiple partitions of nodes, each partition
4	having a representative node;
5	for each representative node, determining whether the node can reach at
6	least one predetermined other representative node within a predetermined
7	criteria;
8	minimizing the number of nodes and/or partitions using a weighted
9	graph to establish a routing set of nodes; and
10	returning the routing set of nodes for use thereof in routing messages
11	through the system in the presence of one or more node and/or link faults.
1	30. The method of Claim 29, wherein the number of rounds is at most two.
1	31. The method of Claim 29, wherein the number of rounds is two and only

two.

4

1	32.	The method of Claim 29, wherein the weighted graph accounts for at
2	least one nod	le weight, the node weight being based at least on a number of operational
3	processors in	the node.
1	33.	The method of Claim 29, wherein the routing set of nodes is a lamb set
2	containing no	odes that are used only for routing messages.
1	34.	The method of Claim 29, further comprising finding small sets of
2	partitions of	prospective lamb nodes, each partition including a representative node.
1	35.	The method of Claim 34, comprising partitioning nodes in the system
2	into maximal	intervals of sequential nodes, no node in an interval being a faulty node.
1	36.	The method of Claim 35, comprising returning at least some intervals as
2	at least one s	et of partitions.
1	37.	The method of Claim 29, wherein the act of determining whether the
2	node can read	ch at least one predetermined other node comprises:
3		determining a reachability from at least one representative node to at

least another representative node; and

5	using the reachability to establish the routing set, such that any node in
6	the routing set can reach any other node in the routing set in at most k rounds.
1	38. The method of Claim 37, wherein the act of determining whether the
2	node can reach at least one predetermined other node comprises:
3	computing at least one reachability matrix;
4	computing at least one intersection matrix; and
5	returning at least one product of at least one reachability matrix and at
6	least one intersection matrix.
1	39. The method of Claim 29, wherein the act of minimizing includes:
2	finding at least one vertex cover of the weighted graph; and
3	using selected elements of the vertex cover to establish the routing set.
1	40. The method of Claim 29, wherein the weighted graph is a weighted

bipartite graph.