

- Noções topológicas em \mathbb{R}^n -

1. Considere as normas de \mathbb{R}^n definidas por

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$||x||_1 = |x_1| + |x_2| + \dots + |x_n|$$

$$||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

- (a) Para n=2, esboce as correspondentes bolas abertas B((0,0),1).
- (b) Considere n=3. Mostre que, para cada $x \in \mathbb{R}^3$, se tem

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le 3 ||x||_{\infty}$$

- 2. Sejam $x \in \mathbb{R}^n \setminus \{0\}$ e $y \in \mathbb{R}^n$ tais que $||x+y||_2 = ||x||_2 + ||y||_2$. Prove que existe $\alpha \ge 0$ tal que $y = \alpha x$. Mostre que isto seria falso nas normas da soma e do máximo.
- 3. Sejam $x, y, z \in \mathbb{R}^n$ tais que $||x z||_2 = ||x y||_2 + ||y z||_2$. Prove que existe $t \in [0, 1]$ tal que y = (1 t)x + tz. Mostre que isto seria falso nas normas da soma e do máximo.
- 4. Diz-se que $\|\cdot\|$ verifica a regra do paralelogramo se

$$\forall x, y \in \mathbb{R}^n \ \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

- (a) Verifique que a norma euclidiana em \mathbb{R}^2 satisfaz a regra do paralelogramo.
- (b) Mostre que uma norma associada a um produto interno verifica a regra do paralelogramo.
- 5. Considere \mathbb{R}^3 munido do produto interno usual. Determine, o ângulo formado pelos vectores de coordenadas $(3,\sqrt{2},1)$ e (1,0,0).
- 6. Seja $d_{0,1}: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $d_{0,1}(x,y) = 0$ se x = y e $d_{0,1}(x,y) = 1$ se $x \neq y$.
 - (a) Mostre que $d_{0,1}$ é uma distância em \mathbb{R}^2 .
 - (b) Esboce as correspondentes bolas abertas B((0,0),1/2), B((0,0),1) e B((0,0),2).
 - (c) Conclua que todo o conjunto $X \subset \mathbb{R}^2$ é limitado com relação à distância $d_{0,1}$.

- 7. Considere o espaço vetorial \mathbb{R}^2 munido da norma euclidiana. Diga se cada um dos seguintes conjuntos é limitado ou compacto.
 - (a) $\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$
 - (b) $\{(x,y) \in \mathbb{R}^2 : \ln(xy) \le 0\}$
 - (c) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z < 1\}$
 - (d) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, y = x\}$
- 8. Quando possível, dê exemplo de um subconjunto de \mathbb{R}^2 que:
 - (a) não seja aberto nem fechado;
 - (b) seja simultaneamente aberto e fechado;
 - (c) seja aberto e limitado;
 - (d) seja fechado não limitado;
 - (e) seja aberto e conexo;
 - (f) seja fechado e não conexo;
 - (g) tenha o interior vazio e seja não limitado;
 - (h) seja limitado mas não seja aberto nem fechado;
 - (i) não contenha o seu derivado;
 - (j) coincida com o seu derivado;
 - (k) seja fechado e tal que $\overline{\text{int } A} \neq A$;
 - (1) seja aberto e tal que int $\overline{A} \neq A$;
 - (m) tenha um único ponto de acumulação;
 - (n) tenha exactamente dois pontos de acumulação.
- 9. Diga, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:
 - (a) se $A \subset \mathbb{R}^2$ é aberto então A não é limitado;
 - (b) se $A \subset \mathbb{R}^2$ é fechado e $B \subset \mathbb{R}^2$ é aberto então $A \cup B$ não é aberto nem fechado;
 - (c) se $A \subset B \subset \mathbb{R}^2$ e B é fechado então A é fechado;
 - (d) $\mathbb{R}^2 \setminus \{(0,0)\}$ é aberto;
 - (e) $\{(x,y) \in \mathbb{R}^2 : xy > 1\}$ é aberto;
 - (f) se $A \subset \mathbb{R}^2$ não é aberto então A é fechado;
 - (g) os conjuntos $A = ([0,1] \cap \mathbb{Q}) \times [0,2]$ e $B = ([0,1] \cap (\mathbb{R} \setminus \mathbb{Q})) \times [0,2]$ são separados;
 - (h) os conjuntos $A = \{(x, \text{sen}(\frac{1}{x}) : x > 0\} \text{ e } B = \{(0, 1), (-3, 0)\}$ são separados.

- 10. Para cada um dos conjuntos, identifique o interior, a aderência, o derivado e a fronteira; diga se se trata de um conjunto aberto, fechado, limitado ou compacto:
 - (a) $\mathbb{R}^2 \setminus \{(0,0)\};$
 - (b) $\{(x,y) \in \mathbb{R}^2 : y = 1, \ 0 < x < 2\};$
 - (c) $\{(x,y) \in \mathbb{R}^2 : x \ge 3\};$
 - (d) $\{(x,y) \in \mathbb{R}^2 : x < 1\};$
 - (e) $\{(x,y) \in \mathbb{R}^2 : x+y=5\};$
 - (f) $\{(x,y) \in \mathbb{R}^2 : x+y < 7\}$;
 - (g) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 16\} = \{(x,y) \in \mathbb{R}^2 : ||(x,y)||^2 \le 16\};$
 - (h) $\{(x,y) \in \mathbb{R}^2 : \max\{|x|,|y|\} \le 1\};$
 - (i) $\{(x,y) \in \mathbb{R}^2 : |x| + |y| < 2\};$
 - (j) $\{(x,y) \in \mathbb{R}^2 : 4 \le x^2 + y^2 < 9\} = \{(x,y) \in \mathbb{R}^2 : 4 \le ||(x,y)||^2 < 9\};$
 - (k) $\{(x,y) \in \mathbb{R}^2 : xy < 1\};$
 - (l) $\{(x,y) \in \mathbb{R}^2 : xy > 1\} \cap \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 7\};$
 - (m) $\{(x,y) \in \mathbb{R}^2 : x > y^2\};$
 - (n) $\{(x,y) \in \mathbb{R}^2 : |x| \le 2\};$
 - (o) $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\};$
 - (p) $\{(x,y,z) \in \mathbb{R}^3 : (x-1)^2 + y^2 + (z+2)^2 < 4\} = B((1,0,-2),2);$
 - (q) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 9\};$
 - (r) $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \le 3, |z| < 1\};$
 - (s) $\{(x, y, z) \in \mathbb{R}^3 : 0 < z < 9, \ x^2 + y^2 = z\}.$
- 11. Diga se cada um dos seguintes conjuntos é conexo:
 - (a) $\{(2,2),(\sqrt{2},3)\};$
 - (b) $B((0,0),1) \cup]3, 5[\times[0,1[;$
 - (c) $]0,1[\times]3,5[;$
 - (d)] $-2,2[\times] -2,2[\setminus ([-1,1]\times [-1,1]);$
 - (e) $\{(0,0)\} \cup \{(x,y) \in \mathbb{R}^2 : y = \operatorname{sen}\left(\frac{1}{x}\right), x > 0\}.$