LES SUITES NUMÉRIQUES E01C

Suite explicite: troisième contact (Le corrigé) EXERCICE N°6

Pour tout $n \in \mathbb{N}$, on pose $u_n = \sqrt{2n-5}$.

1) Identifier la fonction f du cours.

$$f: x \mapsto \sqrt{2x-5}$$

2) À partir de quel rang la suite u est-elle définie?

 $\sqrt{2x-5}$ existe si et seulement si $2x-5 \ge 0 = \Leftrightarrow x \ge 2,5$

On en déduit que u est définie | à partir du rang 3 | .

3) Déterminer, en fonction de n, u_{n-1} et u_{n+1} .

Ici il faut faire en sorte que le terme existe...Pour u_{n+1} pas de souci, si u_n existe alors u_{n+1} aussi (si la suite est correctement définie). Par contre, si u_n existe ,ce n'est pas forcément le cas pour u_{n-1} : Ici, par exemple, u_3 existe mais pas u_2

Pour
$$n \in \mathbb{N}$$
, $n \ge 4$

$$u_{n-1} = \sqrt{2(n-1)-5} = \sqrt{2n-2-5}$$
 d'où $u_{n-1} = \sqrt{2n-7}$

$$u_{n-1} = \sqrt{2n-7}$$

$$u_{n+1} = \sqrt{2(n+1)-5} = \sqrt{2n+2-5}$$
 d'où $u_{n+1} = \sqrt{2n-3}$

On notera bien la différence