2. međuispit iz Baza podataka

15. svibnja 2007.

- 1. (1 bod) Navedite definiciju tranzitivne funkcijske zavisnosti.
- X, Y i Z su skupovi atributa na relacijskoj shemi R. Skup atributa Z je tranzitivno ovisan o X ako vrijedi:
 - $X \rightarrow Y, Y \not\rightarrow X i Y \rightarrow Z$
 - Z ⊄ XY
- 2. (1 bod) Napišite definiciju stranog ključa.

Zadane su relacije r(R) s primarnim ključem PK_R i s(S) s primarnim ključem PK_S . Skup atributa FK, $FK \subseteq R$, je strani ključ u relaciji r(R) koji se poziva na relaciju s(S) ukoliko vrijedi:

- atributi u skupu FK imaju domene jednake domenama odgovarajućih atributa u skupu PKS
- za svaku n-torku t₁∈ r(R)
 - postoji n-torka t₂∈ s(S) takva da je t₂[PK_S] = t₁[FK]

ili

barem jedna vrijednost atributa iz t₁[FK] je NULL vrijednost

Zadatak 3 se odnosi na relacije opisane na **slici 1**. Na slici **nisu** prikazane sve n-torke koje su sadržane u relacijama.

				– Slika	1. ——					
stud							nast			
mbrStud	prezS	imeS	sifNa	astSem	sifNastProj		sifNast	prezN	imeN	
101	Turk	Ivan	1001		1002		1001	Ribić	Matko	
102	Anić	Josip		1001	1003		1002	Anić	Alen	
103	Ban	Ana	1003		1002		1003	Oreb	Iva	
104	Bašić	Tea		1001	1003		•••			
		••	•							
pred				ispit						
sifPred	nazPre	nd		mbrStud	d sifPred	datlspit	sifNas	t ocje	na	
10	Kemija			101	1 10	15.1.200	6 100	3	1	
11	Mehani			101	1 10	15.1.200	7 100	12	4	
12		ika		102	2 10	15.1.200	7 100	1	3	
				102	2 11	15.1.200	6 100	2	5	
• •	•		'							

- **3.** (4 *boda*) Relacija **stud** opisuje studente: atribut *sifNastSem* je šifra nastavnika koji je studentov mentor na seminarskom radu; atribut *sifNastProj* je šifra nastavnika koji je studentov mentor na projektu. Relacija **nast** opisuje nastavnike. Relacija **pred** opisuje predmete. Relacija **ispit** opisuje ispite: studenta *mbrStud* je na ispitu iz predmeta *sifPred* na datum *datIspit* nastavnik *sifNast* ocijenio ocjenom *ocjena*. Napisati po jednu SQL naredbu kojom će se obaviti sljedeće:
 - a) Za svaki predmet ispisati šifru predmeta, broj položenih ispita iz tog predmeta (ocjena > 1) i broj nepoloženih ispita iz tog predmeta (ocjena = 1).
 - b) Ispisati matični broj, ime i prezime za sve studente koji nisu položili niti jedan ispit. Studente poredati po abecedi od A do Ž (prvo po prezimenu, a zatim po imenu).
 - c) Studentima kojima je mentor na seminaru nastavnik Ivo Ivić za mentora na seminaru postaviti nastavnika Peru Perića. Može se pretpostaviti da u relaciji nast postoji točno jedan nastavnik Ivo Ivić i točno jedan nastavnik Pero Perić.
 - d) Ispisati podatke o nastavnicima koji su ocijenili barem 100 ispita. Ispisati šifru, prezime i ime nastavnika, te broj ocijenjenih ispita. Zadatak riješiti bez upotrebe podupita.

```
a)
SELECT sifPred
     , (SELECT COUNT(*) FROM ispit
         WHERE ispit.sifPred = pred.sifPred
           AND ocjena > 1)
     , (SELECT COUNT(*) FROM ispit
         WHERE ispit.sifPred = pred.sifPred
           AND ocjena = 1)
FROM pred
b)
SELECT mbrStud, imeS, prezS
  FROM stud
 WHERE NOT EXISTS (SELECT * FROM ispit
                    WHERE ispit.mbrStud = stud.mbrStud
                      AND ocjena > 1)
 ORDER BY prezS, imeS
Može se riješiti sa NOT IN
SELECT mbrStud, imeS, prezS
  FROM stud
 WHERE mbrStud NOT IN (SELECT DISTINCT mbrStud FROM ispit
                        WHERE ocjena > 1)
 ORDER BY prezS, imeS
c)
UPDATE stud SET sifNastSem =
     (SELECT sifNast FROM nast WHERE imeN = 'Pero' AND prezN = 'Perić')
 WHERE sifNastSem =
     (SELECT sifNast FROM nast WHERE imeN = 'Ivo' AND prezN = 'Ivić')
SELECT sifNast, prezN, imeN, COUNT(*) AS brojIspita
 FROM nast, ispit
 WHERE nast.sifNast = ispit.sifNast
 GROUP BY sifNast, imeN, prezN
 HAVING COUNT(*) >= 100
```

4. (3 *boda*) Napisati SQL naredbe koje će kreirati relacije osoba i mjesto prema relacijskim shemama: OSOBA={ mbr, ime, prez, pbrstan } i MJESTO={ pbr, naziv }.

Smisleno odaberite tipove podataka. Prilikom kreiranja relacija atribut mbr postaviti kao primarni ključ u relaciji osoba i osigurati da se:

- za vrijednost atributa pbrstan u relaciji osoba ne može unijeti NULL
- za vrijednost atributa pbrstan u relaciji osoba mogu unijeti samo mjesta koja postoje u relaciji mjesto
- prilikom brisanja zapisa iz relacije mjesto obrišu i svi zapisi u relaciji osoba koji se odnose na obrisano mjesto
- za vrijednost atributa pbr u relaciji mjesto mora unijeti broj u intervalu [10000, 99999]
- u relaciji mjesto za niti jedan atribut ne može unijeti NULL
- u relaciju mjesto ne mogu unijeti dva mjesta istog naziva

```
CREATE TABLE mjesto(
   pbr INTEGER
, naziv CHAR(30) NOT NULL
, PRIMARY KEY (pbr)
, UNIQUE (naziv)
, CHECK (pbr BETWEEN 10000 AND 99999)
```

```
CREATE TABLE osoba(
   mbr INTEGER
, ime CHAR(30)
, prezime CHAR(30)
, pbrstan INTEGER NOT NULL
, PRIMARY KEY (mbr)
, FOREIGN KEY (pbrstan) REFERENCES mjesto(pbr)
   ON DELETE CASCADE
)
```

5. (2 *bod*) Zadano je B+ stablo reda 30 u koje je zapisano 25 000 zapisa. Koliko će biti potrebno obaviti UI operacija prilikom traženja jednog zapisa u **najboljem** i **najgorem** slučaju (uračunati i jednu UI operaciju koja je potrebna za dohvat bloka s podacima)? Objasniti kako ste došli do rezultata.

```
Najbolji slučaj – maksimalno popunjeno stablo: 30*30*29 = 26 100
3 razine + 1 operacija za čitanje bloka s podacima = 4 operacije
Najgori slučaj:
2*15*15*15 = 6750
2*15*15*15*15 = 101250
4 razine + 1 operacija za čitanje bloka s podacima = 5 operacija
```

6. (2 boda) Zadana je relacija nastavnik (JMBG, ime, prezime, postbr, siforgjed). Napisati SQL naredbe koje će kreirati najmanji mogući broj indeksa koji će omogućiti efikasno obavljanje (pomoću B+ stabla) svih dolje navedenih upita.

```
SELECT * FROM nastavnik ORDER BY prezime, ime;

SELECT * FROM nastavnik WHERE prezime = 'Horvat';

SELECT * FROM nastavnik ORDER BY prezime, ime DESC;

SELECT * FROM nastavnik ORDER BY prezime, ime, JMBG

SELECT * FROM nastavnik WHERE postbr = 10000 AND siforgjed = 36;

SELECT * FROM nastavnik WHERE siforgjed > 36 ORDER BY siforgjed;
```

Napišite barem jednu SELECT naredbu nad relacijom nastavnik koji se ne može efikasno obaviti kreiranim indeksima.

```
CREATE INDEX i1 ON nastavnik (prezime, ime, JMBG);
CREATE INDEX i2 ON nastavnik (prezime, ime DESC);
CREATE INDEX i3 ON nastavnik (siforgjed, postbr);

SELECT * FROM nastavnik;

SELECT * FROM nastavnik
WHERE prezime = 'Horvat' AND siforgjed = 36;
```

7. (3 *boda*) Zadana je relacijska shema **R = ABCDEFGHI** i skup funkcijskih zavisnosti koji na njoj vrijede:

F={AC→D, F→GH, E→I, ABC→EF}. Domene atributa sadrže samo jednostavne vrijednosti, vrijednost svakog atributa je samo jedna vrijednost iz domene tog atributa.

- a) Ako se za primarni ključ relacije odabere **K={ABC}**, je li zadana relacijska shema u 1NF. Ako nije objasnite zašto i predložite novi ključ tako da zadana relacijska shema bude u 1NF.
- b) Normalizirajte zadanu relacijsku shemu na 2NF
- c) Normalizirajte zadanu relacijsku shemu na 3NF

```
a) Relacijska shema je u 1NF R = ABCDEFGHI, K<sub>R</sub> = ABC
b)
R1 = ABCEFGHI, K<sub>R1</sub> = ABC
R2 = ACD, K<sub>R2</sub> = AC
c)
R1 = ABCEF, K<sub>R1</sub> = ABC
R2 = ACD, K<sub>R2</sub> = AC
R3 = FGH, K<sub>R3</sub> = F
R4= EI, K<sub>R4</sub> = E
```

- **8.** (4 *boda*) U bazu podataka spremaju se podaci o šahistima i njihovom uspjehu na šahovskim turnirima. Relacijska shema SAH sastoji se od slijedećih atributa:
 - mbr matični broj igrača
 - ime ime igrača
 - prez prezime igrača
 - oznKlub oznaka šahovskog kluba
 - nazKlub naziv šahovskog kluba
 - sifTur šifra turnira
- godTur godina u kojoj se turnir održava (pretpostavlja se da se u pravilu isti turnir održava svake godine)
 - nazTur nazivTurnira
 - pozicija mjesto koje je igrač osvojio na turniru (npr. 3. mjesto)
 - bodovi rating bodovi koje je igrač za turniru dobio ili izgubio (može biti pozitivno ili negativno)

Vrijede slijedeća pravila:

- Jedan igrač je član samo jednog kluba
- Turniri se održavaju redovito, ali se isti turnir može održati najviše jednom godišnje
- Igrač jedne godine može nastupiti na više turnira
- Igrač može na istom turniru nastupiti više puta, u više različitih godina

Odaberite ključ relacijske sheme SAH tako da ona bude u 1NF. Postupno normalizirajte relacijsku shemu SAH u 2NF i 3NF.

```
1NF
K = {mbr, sifTur, godTur}

2NF
IGRAC = {mbr, ime, prez, oznKlub, nazKlub}
TURNIR = {sifTur, nazTur}
REZULTAT = {mbr, sifTur, godTur, pozicija, bodovi}

3NF
IGRAC = {mbr, ime, prez, oznKlub}
KLUB = {oznKlub, nazKlub}
TURNIR = {sifTur, nazTur}
REZULTAT = {mbr, sifTur, godTur, pozicija, bodovi}
```

Ako je netko pretpostavio da pozicija određuje bodove onda je 3NF

3NF
IGRAC = {mbr, ime, prez, oznKlub}
KLUB = {oznKlub, nazKlub}
TURNIR = {sifTur, nazTur }
REZULTAT = {mbr, sifTur, godTur, pozicija}
BODOVI = {pozicija, bodovi}