# SCMX

## TITLE 1

## What is a Supply Chain?



## What is Supply Chain Management?

SCM Activities

Product-Process Matrix/Cube

**Customer Order Decoupling Point** 

## Flows

### **Materials Flow**

Subsubtitle 2

# Inventory: Concepts & Methods

## **Inventory**

Accouting PoV vs. Logistics/SCM PoV

Why hold inventory?

- Cover process time - Decouple process

Inventory decisions

## **Inventory Costs**

#### Total Cost & Total Relevant Cost

Purchase cost

Ordering/Setup cost

Stockout cost: Can be modeled using stockout event or units short

Total Inventory Cost & Total Relevant Cost

TC = Purchase Cost + Ordering Cost + Holding Cost + Shortage Cost

$$TC = cD + c_t \frac{D}{Q} + c_e \frac{Q}{2} + c_s \, E[\text{Units Short}] \label{eq:TC}$$

Procurement activities have influence on the Purchase Cost, while Inventory Management activities have influence on the other costs.

# Inventory: Deterministic Models

#### **EOQ**

## EOQ plot

 $\overline{Q}$  units of inventory each T units of time. Sendlar (annotate) la demanda como ratio/pendiente, el nivel  $\overline{Q}$  y  $\overline{Q}/2$ , etc -> 0neNote 4.2. EQQ



Some text here

#### EOQ formula derivation

Since demand is deterministic, we can get rid of the Stockout Cost concept for now. So,

$$TRC(Q) = c_t \frac{D}{Q} + c_e \frac{Q}{2}$$

From the first-order optimal condition (first derivative equals zero), we have

$$0 = \frac{d}{dQ} \left( \frac{c_t D}{Q} \right) + \frac{d}{dQ} \left( \frac{c_c Q}{2} \right)$$
$$0 = -\frac{c_t D}{Q^2} + \frac{c_c}{2}$$
$$Q^* = \sqrt{\frac{2c_t D}{Q^2}}$$

The  $E\,O\,Q$  or  $\,Q^{\,ullet}\,$  gives the minimum Total Relevant Cost under deterministic conditions.



#### EOQ formula derivation

EOQ formula:

$$Q^* = \sqrt{\frac{ABC}{D}}$$

# Appendix 1

## **Mathematical Functions**

#### Linear Functions

$$f(x) = mx + b$$

**Cost functions:** f(Level of Activity) = Fixed Cost + Variable Cost(Level of Activity)





Linear Regressions

# Quadratic Functions

$$f(x) = ax^2 + bx + c$$

#### Profit:



$$\begin{split} V(p) &= 20,000 - 80p \\ R(p) &= (20,000 - 80p)p \\ C(p) &= 500,000 + 75(20,000 - 80p) \\ P(p) &= R(p) - C(p) \end{split}$$

pri

#### Parcel trucking



 $f(w) = 33 + 0.067w - 0.00005w^2$ 

