Experiment No: 4 – Time-Domain Windowing Techniques

- 1. The input signal is given by $x_a(t) = 0.1 \sin(30\pi t) + \cos(36\pi t) + 0.5 \sin(14\pi t)$. Assuming sampling frequency of 100 samples/sec $t = 0: \frac{1}{100}: 10$, say, calculate the DFT in the following cases and plot it with respect to continuous frequency (Hz):
 - (a) For 100 samples of the sequence (i.e., fft(x(1:100)))
 - (b) For 210 samples of the sequence (i.e., fft(x(1:210)))

What do you observe in both cases? Are they giving the same results in the frequency domain?

- 2. Consider the case of 1 (b) from the question above and perform time-domain windowing operation (element wise multiplication, using Hamming window for 210 samples, $x_w = x(1:210) \cdot *hamming(210)$).
 - (a) Plot the windowed sequences x_w .
 - (b) Plot the frequency spectrum for the two windowed sequences. Do you observe any difference with the respect to 1(b)? Comment on the same.
- 3. Estimation of the frequency components using time-domain windowing technique: Load the file "Exp4Data.txt". Given Fs = 114 samples/sec.
 - (a) Perform frequency analysis and identify the components. Use varying data sizes of 100 and 1000 samples and see how the frequency spectrum evolves just by using the rectangular window.
 - (b) Include time-domain windowing operation using Hamming window and see the difference. Estimate the frequency components from these results. Are they different from 3. (a)?