Capstone Project: Heart Attack

Hio Wa Mak 11/02/2024

Problem Identification

- Heart disease remains the leading cause of death in the United States (CDC, 2021)
- Someone experiencing a heart attack every 40 seconds
- In the US, approximately 805,000 people have a heart attack each year
- Heart disease costs a huge burden of \$239.9 billion annually

The Big Question

How can the Centers for Disease Control and Prevention (CDC) develop an algorithm to accurately classify whether individuals have had heart attack(s) with over 80% sensitivity by year-end, using data on demographic characteristics, medical histories, and a range of health and lifestyle factors?

Data

- Data originates from the CDC's 2022 Behavioral Risk Factor Surveillance System (BRFSS)
- It was sourced from Kaggle
- The dataset was refined to 40 variables deemed relevant to heart attack risk, with data processing and selection documented by Kamil Pytlak on a <u>GitHub repository</u>
- The BRFSS conducts annual telephone surveys with over 400,000 U.S. adults, gathering information on their health status and behaviors
- Goal: Use supervised machine learning techniques to classify individuals with a history of heart attack

Exploratory Data Analysis

- Age and sex appeared to be important demographic predictors
- Other related variables are

"HadAngina" (r = .44)	"DifficultyWalking" (r = .17)		
"HadStroke" (r = .19)	"RemovedTeeth" (r = .17)		
"HadCOPD" (r = .14)	"ChestScan" (r = .17)		
"HadKidneyDisease" (r =.12)	"GeneralHealth" (r =19)		
"HadArthritis" (r = .12)	"PhysicalHealthDays" (r .14)		
"HadDiabetes" (r = .15)	"AgeCategory" (r = .18)		
"DeafOrHardOfHearing" (r = .10)			

Modeling Steps

- 1. Run multiple models (Logistic Regression, Random Forest, XGBoost, and Naive Bayes) and use cross-validation to fine-tune hyperparameters.
- Evaluate the models using metrics such as accuracy, precision, recall, and F1-score.
- 3. Select the best model based on recall (sensitivity), prioritizing the minimization of false negatives the risk of incorrectly identifying a person as not having had a heart attack when they actually have.
- 4. Analyze the feature importance of the final model.
- 5. Assess the model's performance on the test set.
- 6. Refit the best model using the entire dataset.
- 7. Save the final model for future use

Model Performance Comparison on Training Data

	Logistic Regression	Random Forest	XGBoost	Naïve Bayes
For Class 1				
Sensitivity/Recall	0.76	0.78	0.84	0.71
Precision	0.22	0.20	0.17	0.19
F1-Score	0.34	0.32	0.28	0.30
Macro Average				
Sensitivity/Recall	0.80	0.80	0.80	0.76
Precision	0.69	0.59	0.58	0.58
F1-Score	0.62	0.60	0.57	0.60
Accuracy	0.83	0.81	0.75	0.81

Best Model

- XGBoost is the best classifier
- Model performance on testing data
 - Sensitivity/Recall: 0.85
 - Precision: 0.17
 - F1-Score: 0.28
 - Accuracy:0.75

Top 20 Feature Importances from the XGBoost Model HadAngina ChestScan AgeCategory LastCheckupTime HadStroke DifficultyWalking RemovedTeeth HadArthritis Female Feature HadDiabetes HadCOPD DeafOrHardOfHearing SmokerStatus BlindOrVisionDifficulty -HadKidneyDisease -DifficultyErrands -PhysicalActivities PhysicalHealthDays GeneralHealth SleepHours 0.2 0.5 0.7 0.6 0.1 0.3 0.4 0.0 0.8 Feature Importance

The top 10 most important features

- Comorbidities:
 - HadAngina
 - HadStroke
 - Had Arthritis
 - HadDiabetes
- Demographic Characteristics:
 - Age
 - Female
- Health-Related Factors:
 - ChestScan
 - LastCheckUpTime (recent)
 - RemovedTeeth
- Impairment of Daily Living:
 - DifficultyWalking

Recommendations for CDC

- Identify high-risk individuals and provide targeted interventions
 - Individuals with a history of heart attack: secondary prevention
 - Medication adherence, regular follow-ups, cardiac rehabilitation programs, and diet and lifestyle coaching
 - Individuals without a history of heart attack: primary prevention
 - Those flagged by the model as false positives (high-risk individuals)
 - Heart disease and lifestyle education, management of risk factors (e.g., high blood pressure), preventive health screenings, physical activity programs, dietary counseling, and stress reduction workshops

Recommendations for CDC

- Enhancing predictive power and development of risk assessment tool
 - Refine model using future annual survey data to improve utility and reliability
 - Heart attack risk assessment tool
- Trends in emerging risk factors
 - Monitor changes in importance of risk factors over time
 - Revise preventive strategies

Summary and Conclusion

- The XGBoost model offers the most effective classification for determining whether individuals have had heart attack(s)
- Identified important comorbidities, demographic characteristics, health-related factors, and impairment of daily living related to heart attacks
- Limitation: data imbalance, low precision and f-1 score
- Public health impact
 - CDC or other public health organizations can proactively identify risk groups and allocate resources accordingly to improve health at the population level
 - Develop risk assessment tool
 - Track changes in risk factors over time