α

, WHAT IS CLAIMED IS

for the/ Oligonucleotide identification of Staphylococci species having a nucleotide 350 base pairs, sequence comprising between 15 and preferably between 17 and 250 base pairs, and which presents less than 50% homology with the "consensus" femA nucleotide sequence (CNS) of Fig. 3,

2. Oligonucleotide according to claim 1 for the specific identification of staphylococci species having a nucleotide sequence comprising between 15 and 350 base pairs, preferably between 1/2 and 250 base pairs, and which 15 presents less than 40% homology with the "consensus" femA nucleotide sequence (CNS) of Fig. 3.

3. Oligonucleotide according to claim 1 or 2 for the specific identification of Staphylococci species having a nucleotide sequence comprising/between 15 and 350 base pairs, preferably between 17 and 250 base pairs, and which presents less than 30% homology with the "consensus" femA nucleotide sequence (CNS) of gig. 3,

4. Oligonucleotide according to any of the the specific identification of for 3 to claims sequence nucleotide having a species 25 Staphylococci comprising between 15 and 350 base pairs, preferably between 17 and 250 base pairs, and which presents less than 20% homology with the "consensus" femA nucleotide sequence (CNS) of Fig. 3.

Oligonucleotide /according to claim 1, 5. being a primer which nucleotide sequence has between 15 and 45 base pairs, preferably between 17 and 25 base pairs.

6. Oligonucleoxide according to claim 5, selected from the group consisting of the is following nucleotide sequences :

AMENDED SHEET

30

9 # 999+16662 68 67+ ^^^692567+6 78 53604462 # 9

- ACAGCAGATGACATCATT
- TAATGAAAGAAATGTGCTTA
- ACACAACTTCAATTAGAAC
- **AGTATTAGCAAATGCGG**
- ATGCATATTTTCCGTAA
 - CAGCAGATGACATCATT
 - CATCTAAAGATATATTAAATGGA
 - AGTATTAGCAAATGCGGGTCAC
 - CAACACAACTTCAATTAGAA

oligonucleotides of Couple 7. specific amplification of Staphylococci species consisting of two different nucleotide sequences having between 15 and 45 base pairs, preferably between 17 and 25 base pairs, and which present more than 60% homology with the "consensus" 15 femA nucleotide sequence (CNS)/ of Fig. 3 or consisting of one nucleotide sequence having between 15 and 45 base pairs, preferably between 1/2 and 25 base pairs, and which presents more than 60% homology with the "consensus" femA nucleotide sequence (CNS) of Fig. 3 and the oligonucleotide of claim 6.

8. Couple of oligonucleotides according to claim 7 for the specific amplification of Staphylococci species, consisting of two different nucleotide sequences having between 15 and 45 base pairs, preferably between 17 25 and 25 base pairs, /and which present more than 70% homology with the "consensus" femA nucleotide sequence (CNS) of Fig. 3 or consisting of one nucleotide sequence having between 15 and /45 base pairs, preferably between 17 and 25 base pairs, and which presents more than 70% homology with the "consensus" femA nucleotide sequence (CNS) of Fig. 3 and the oligonucleotide of claim 6.

9. Couple of oligonucleotides according to amplification of the specific for claim different consisting of two Staphylogocci species,

AMENDED SHEET

ĻſĮ

10

20

nucleotide sequences having between 15 and 45 base pairs, preferably between 17 and 25 base pairs, and/which present more than 80% homology with the "consensus" $equal em = \frac{1}{2} em =$ sequence (CNS) of Fig. 3 or consisting of/one nucleotide 5 sequence having between 15 and 45 base pairs, preferably between 17 and 25 base pairs, and which presents more than 80% homology with the "consensus" femA nucleotide sequence (CNS) of Fig. 3 and the oligonucleotide of claim 6.

10. Couple of oligonucleotides according to 10 any one of the claims 7 to 9 for the specific amplification of Staphylococci species, consisting of two different nucleotide sequences having between 15 and 45 base pairs, preferably between 17 and 25 base pairs, and which present more than 90% homology with the "consensus" femA nucleotide sequence (CNS) of Fig. 3 or consisting of one nucleotide 15 sequence having between 15 and 45 base pairs, preferably between 17 and 25 base pairs, and which presents more than 90% homology with the "consensus" femA nucleotide sequence (CNS) of Fig. 3 and the oligonucleotide of claim 6.

11. Couple of/ cligonucleotide according to any one of the claims 7 to 10, wherein the oligonucleotides having between 15 and 45 base pairs, preferably between 17 and 25 base pairs, and which present more than 60, 70, 80 or 90% homology with /the "consensus" femA nucleotide 25 sequence (CNS) of Fig. 3 are selected from the group consisting of the following nucleotide sequences:

ANAATGAANTTTACNAATTTNACNGCNANAGANTT TAATGAAGTTTACAAAATTT particularly more and TAATGAAGTTTACNAAATTT

ATGNCNNANAGNCAT/TTNACNCANA 30 and more particularly TGCCATATAGTCATTTACGC

- TAGTNGGNATNAANAANAANNATAANGANGTNATTGC
- GTNCCNGTNATGAAANTNTTNAANTANTTTTATTC
- AATGCNGGNNANGATTGG

AMENDED SHEET

THE THE STATE OF STAT F. 11 4.71

20

Sub	

- GNAANNGNAANACNAAAAAGTNNANAANAATGGNGTNAAAGT
and more particularly AAAAAGTICAAAAAATGG and
AAAAAGTACAAAAAATGG

- AAGANGANNTNCCNATNTTNNGNTCATTNATGGANGATAC

5 - TATATNNANTTTGATGANTA

AANGANATNGANAAANGNCCNGANAANAAAAA
and more particularly AAAGATATTGAAAAACGA,
AAAGATATTGAAAAGAGACC, AAAGATATCGAGAAAGAC and
AAAGACATCGACAAGCGT.

10 - ANCATGGNAANGAATTACCNAT

and more particularly CARCATGGTAATGAATTAC

AATCCNTNTGAAGTNGTNTANTANGCNGGTGG

AGNTATGCNNTNCAATGGNNNAZGATTAANTATGC

- TTTANNGANGANGCNGAAGATGNNGGNGTNNTNAANTTNAAAAA

15 and more particularly TTTACTGAAGATGCTGAAGA

- GTIGGNGANTINNINAAACC

and more particularly GTTGGTGACTTTATTAAACC

- ATGAAATTTACAGAGTTAA

12. Oligonucleotide having between 15 and 45
20 base pairs, preferably between 17 and 25 base pairs,
which is selected from the group consisting of the
following nucleotide sequences.

- ANAATGAANTTTACNAATTTNACNGCNAMAGANTT

and more particularly TAATGAAGTTTACAAAATTT or

25 TAATGAAGTTTACNAAATTT

ATGNCNNANAGNCATTINACNCANA

and more particularly TGCCATATAGTCATTTACGC

- TAGTNGGNATNAANAANAANATAANGANGTNATTGC

GTNCCNGTNATGAAAYTNTTNAANTANTTTTATTC

30 - AATGCNGGNNANGA/TTGG

- GNAANNGNAANACNAAAAAGTNNANAANAATGGNGTNAAAGT
 and more particularly AAAAAGTTCAAAAAATGG and
 AAAAAGTACAAAAAATGG
- AAGANGANNINCCNAINTINNGNICATINAIGGANGATAC
- 5 TATATNNANTTTGATGANTA
 - AANGANATNGANAAANGNCCNGANAANAAAAA and more particularly AAAGATATTGAAAAACGA, AAAGATATTGAAAAAACGA, AAAGATATTGAAAAAACGA, AAAGATATTGAAAAAGACC, AAAGATATCGAGAAAGAC and AAAGACATCGACAAGCGT.
- 10 ANCATGGNAANGAATTACCNAA
 - AATCCNTNTGAAGTNGTNTANTANGCNGGTGG
 - AGNTATGCNNTNCAATGCNNNATGATTAANTATGC
 - TTTANNGANGANGCNCAAGATGNNGGNGTNNTNAANTTNAAAAA
 and more part; cularly TTTACTGAAGATGCTGAAGA
- 15 GTTGGNGANTTWNTNAAACC
 and more particularly GTTGGTGACTTTATTAAACC
 - ATGAAATTTACAGAGTTAA
 - 13. Identification and/or quantification method of a Staphylococci species, which may present resistance to antibiotics and which is present in a sample, said method comprising the steps of:
 - obtaining a nucleotide sequence from a Staphylococci species present in the sample,
- amplifying said nucleotide sequence with the couple of oligonucleotides according to any one of the claims 7 to 11, and
 - identifying and possibly quantifying the specific Staphylococci species:
- amplified the hybridi/sation of reverse ру or one with sequence nucleotide 30 oligonucleotide(s) /according to any one of the claims 1 to 6 which is (are) specific of said Staphylococci species and is (are) immobilised on a solid support or

20

- by a comparative measure of the length of the amplified nucleotide sequence.

14. Diagnostic device for the Adentification of Staphylococci species comprising the oligonucleotide or 5 the couple of oligonucleotides according to any one of the preceding claims 1 to 11 and possibly all the media necessary for the identification of an /amplified sequence of said Staphylococci species through any one of the methods selected from the group consisting of in situ 10 hybridisation, hybridisation on a solid support, solution on dot blot, Northern blot, Southern blot, probe hybridisation by the use of an isotopic or non-isotopic label, genetic amplification or a mixture thereof.

15. femA genetic sequence which presents more than 90% homology with a nucleotide or amino acid sequence selected from the group consisting of the sequence SEQ ID NO 40, SEQ ID NO 41, SEQ ID NO 42, SEQ ID NO 43, SEQ ID NO 44, SEQ ID NO 45, SEQ ID NO 46, SEQ ID NO 47, SEQ ID NO 48, SEQ ID NO 49. SEQ ID NØ 50/ SEQ ID NO 51, SEQ ID NO 52, SEQ

ID NO 53 and SEQ ID NO 54/ 16. Genetic sequence according to claim 14, being the nucleotide sequence SEQ ID NO 40.

17. Genetic sequence according to claim 14, being the amino acid/sequence SEQ ID NO 41.

18. Génetic sequence according to claim 14, 25 being the nucleotide sequence SEQ ID NO 42.

19./Genetic sequence according to claim 14, being the amino acid sequence SEQ ID NO 43.

2¢. Genetic sequence according to claim 14,

30 being the nucleotide sequence SEQ ID NO 44.

21. Genetic sequence according to claim 14, being the amino acid sequence SEQ ID NO 45.

22. Genetic sequence according to claim 14, being the fucleotide sequence SEQ ID NO 46.

23. Genetic sequence according to claim 14, being the amino acid sequence SEQ ID NO 47.

24. Genetic sequence according to claim 14, being the nucleotide sequence SEQ ID NO 48.

25. Genetic sequence according to claim 14, being the amino acid sequence SEQ ID NO 49.

26. Genetic sequence according to claim 14, being the nucleotide sequence SEQ ID NO 50.

27. Genetic sequence according to claim 14,

being the amino acid sequence SEO ID NO 51.

28. Genetic sequence according to claim 14, being the nucleotide sequence SEO ID NO 52.

29. Genetic sequence according to claim 14, being the amino acid sequence SEQ ID NO 53.

30. Genetic sequence according to claim 14, being the nucleotide sequence SEQ ID NO 54.

add US

15

H H Harm then then then the