

ACIT4830 – Special Robotics and Control Subject Topic3 – Classification using Decision Trees and Rules

Evi Zouganeli OsloMet – Oslo Metropolitan University (evizou@oslomet.no)

Content

(Chapter 5 Decision Trees)

- Decision Tree Classification
- Choosing the best split
- Making some mistakes cost more than others
- Classification rules

C5.0 algorithm

Strengths

- An all-purpose classifier that does well on most problems
- Highly-automatic learning process can handle numeric or nominal features, missing data
- Uses only the most important features
- Can be used on data with relatively few training examples or a very large number
- Results in a model that can be interpreted without a mathematical background (for relatively small trees)
- More efficient than other complex models

Weaknesses

- Decision tree models are often biased toward splits on features having a large number of levels
- It is easy to overfit or underfit the model
- Can have trouble modeling some relationships due to reliance on axisparallel splits
- Small changes in training data can result in large changes to decision logic
- Large trees can be difficult to interpret and the decisions they make may seem counterintuitive

Entropy – a measure of randomness, disorder

Entropy
$$(S) = \sum_{i=1}^{c} -p_i \log_2(p_i)$$

InfoGain (F) = Entropy (S_1) - Entropy (S_2)

= change of Entropy before and after the split of data in segments

Boosting with C5.0

Making some mistakes cost more than others

```
> error_cost
[,1] [,2]
[1,] 0 4
[2,] 1 0
```

OneR algorithm

Strengths		Weaknesses	
•	Generates a single, easy-to-understand, human-readable rule-of-thumb Often performs surprisingly well	•	Uses only a single feature Probably overly simplistic
•	Can serve as a benchmark for more complex algorithms		

OneR algorithm

Animal	Travels By	Has Fur	Mammal
Bats	Air	Yes	Yes
Bears	Land	Yes	Yes
Birds	Air	No	No
Cats	Land	Yes	Yes
Dogs	Land	Yes	Yes
Eels	Sea	No	No
Elephants	Land	No	Yes
Γish	Sea	No	No
Frogs	Land	No	No
Insects	Air	No	No
Pigs	Land	No	Yes
Rabbits	Land	Yes	Yes
Rats	Land	Yes	Yes
Rhinos	Land	No	Yes
Sharks	Sea	No	No

rels By	Predicted	Actual	
Air	No	Yes	
Air	No	No	Ü
Air	No	No	
and	Yes	Yes	
and	Yes	Yes	Ī
and	Yes	Yes	
and	Yes	Yes	i
and	Yes	No	ì
and	Vas	Yor	Ī
and	Yes	Yes	
and	Yes	Yes	
and	Yes	Yes	
Sea	No	No	
Sea .	No	No	
Sea	No	No	ì

Rule for Travels By: Errors = 2 / 15

las Fur	Predicted	Actual	j
No	No	No	1
No	No	No]
No	No	Vas	
No	No	No	
No	No	No	
No	No	No	
No	No	Yes	
No	No	Yes	-
No	No	No	
Yes	Yes	Yes	

Rule for Has Fur: Errors = 3 / 15

Rules from feature Travels by

- If the animal travels by air, it is not a mammal
- If the animal travels by land, it is a mammal
- If the animal travels by sea, it is not a mammal

RIPPER rule-learning algorithm

Strengths	Weaknesses	
Generates easy-to-understand, human-readable rules	May result in rules that seem to defy common sense or expert	
Efficient on large and noisy datasets	knowledge	
Generally produces a simpler model than a comparable	 Not ideal for working with numeric data 	
decision tree	 Might not perform as well as more complex models 	

RIPPER rule-learning algorithm – mushrooms

```
JRIP rules:
=========
(odor = foul) => type=poisonous (2160.0/0.0)
(gill size = narrow) and (gill color = buff) => type=poisonous
(1152.0/0.0)
(gill size = narrow) and (odor = pungent) => type=poisonous (256.0/0.0)
(odor = creosote) => type=poisonous (192.0/0.0)
(spore print color = green) => type=poisonous (72.0/0.0)
(stalk surface below ring = scaly) and (stalk surface above ring = silky)
=> type=poisonous (68.0/0.0)
(habitat = leaves) and (cap color = white) => type=poisonous (8.0/0.0)
(stalk color above ring = yellow) => type=poisonous (8.0/0.0)
 => type=edible (4208.0/0.0)
Number of Rules: 9
```

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Algorithms in hands-on:

- C5.0
- OneR
- RIPPER

Also including:

- Boosting
- Weighting errors