CLAIMS

1	1. A circuit comprising:
2	a reference signal;
3	a frequency synthesizer, receiving a dithered signal and the reference signal,
4	generating a constant frequency output; and
5	configuration registers transceiving data and control signals with the frequency
6	synthesizer.
1	2. A circuit, as defined in claim 1, further comprising a modulated analog phase
2	lock loop, receiving the reference signal, generating the dithered signal.
1	3. A circuit, as defined in claim 1, the frequency synthesizer comprising:
2	a predictor and corrector that receive the dithered signal and the reference signal,
3	generating a "remove pulse" signal; and
4	an output generator, receiving the dithered signal, reference signal, and "remove
5	pulse" signal, generating a "clear pulse" signal and the constant frequency output.
1	4. A circuit, as defined in claim 1, the frequency synthesizer comprising:
2	a predictor, generating a first output signal indicative of the average number of
3	dithered periods to remove per dithered period;
4	a corrector receiving the first output signal, generating a second output signal
5	indicative of the fractional number of dithered periods to remove each dithered period;
6	and
7	an accumulator receiving the second output signal, operative to count the
8	fractional number of dithered periods, removing a dithered period when an integer has
9	been reached.
1	5. A circuit, as defined in claim 4, the predictor comprising:
2	means for measuring the average number of dithered periods for the sample of the
3	reference signal;

4	a comparator, receiving the first output signal and a desired number of dithereds
5	periods per sample of the reference signal, generating a difference indicative of the
6	average number of dithered periods to remove per sample of the reference signal; and
7	a multiplier, receiving the difference, operative to scale the difference according
8	to a scale factor register value.
1	6. A circuit, as defined in claim 4, the corrector comprising:
2	means for measuring error from the last sample;
3	means for determining a scale to fractional error; and
4	an adder, receiving the scale to fractional error and the average number of
5	dithered periods to remove per dithered period, generating the difference.
1	7. A circuit, as defined in claim 1, the frequency synthesizer including:
2	a first synchronizer, receiving the system clock as reference input and the PLL
3	output, generating a first output;
4	an edge detector, receiving the first output and the PLL output, generating an edge
5	signal;
6	a second synchronizer, receives an enable signal and the system clock, generating
7	a second output;
8	an adder, receiving reference count signals, generating adder output signals;
9	an Expected Count Latch, receiving the second output as a clear input, the system
10	clock as a clock input, the adder output signals as data, and the edge signal as a load
11	signal, generating a latch output;
12	wherein the adder further receives the latch output;
13	an Edge Counter, receiving the system clock and the second output as a clear
14	signal, generating a counter output;
15	a comparator, receiving the counter output and the latch output, generating a
16	rollover output, an A>B+1 signal, and an A>B signal.
1	8. A method for frequency synthesis comprising:
2	receiving a dithered signal and a reference signal;

3	selecting a desired number of periods in the dithered signal to receive during a
4	sample period of the reference signal;
5	counting the actual number of periods in the dithered signal during the sample
6	period;
7	comparing the desired number to the actual number;
8	generating a constant frequency signal based on the comparison.
1	9. A method for frequency synthesis comprising:
2	receiving a dithered signal and a reference signal;
3	determining an average fractional number of dithered periods of the dithered
4	signal to remove each dithered period;
5	determining a fractional error of dithered periods for each dithered period based
6	on a period of the reference signal; and
7	combining the average fractional number and the fractional error generating a
8	fractional number of dithered periods to remove each dithered period; and
9	generating a constant frequency signal based on the combination.
1	10. A method for frequency synthesis, as claimed in 9, determining an average
2	fractional number of dithered periods comprising:
3	measuring an average number of dithered periods for a sample of the reference
4	signal;
5	generating a difference from the average number of dithered periods and a desired
6	number of dithered periods per sample of the reference signal, the difference indicative of
7	the average number of dithered periods to remove per sample of the reference signal; and
8	scaling the difference according to a scale factor register value.
1	11. A method for frequency synthesis, as defined in claim 9, determining a
2	fractional error of dithered periods for each dithered period comprising:
3	measuring error in a number of dithered periods corresponding to a given sample
4	of the reference signal;
5	determining a scale to fractional error; and
6	scaling the scale to fractional error to generate the fractional error.

1	12. A method for frequency synthesis, as defined in claim 11, wherein
2	determining a scale to fractional error comprises referring to a look-up table.
1	13. An apparatus for frequency synthesis comprising:
2	a predictor operative to estimate an average amount of correction per sample;
3	a corrector operative to measure actual error in a previous sample;
4	an accumulator, connected to the predictor and corrector, generating an
5	accumulator output signal indicative of the sum of the average amount of correction and
6	the actural error;
7	an output generator, receiving the accumulator output signal, generating an output
8	signal having constant frequency.