Universidad Monteávila Algebra Lineal

Ingenierías Ciencia de Datos, Mecatrónica y Telemática Ejercicios de Geometría Analítica

- (1) Encontrar la ecuación de la recta que satisface las condiciones dadas.
 - (a) Pasa por (2,3) y (6,-5).
 - (b) Pasa por (5, -6) y (4, 0).
 - (c) Pasa por (-2,4) y es paralela a la recta de ecuación 3x + y 5 = 0.
 - (d) Pasa por (5, -7) y es paralela al eje y.
 - (e) Pasa por el origen y es paralela a la recta que pasa por (1,0) y (-2,6).
 - (f) Pasa por (2,3) y es perpendicular a x-4y+1=0.
 - (g) Pasa por (0, -2) y es perpendicular a 3x + 4y + 5 = 0.
 - (h) Pasa por (-5, -4) y es perpendicular a la recta que pasa por (1, 1) y (3, 11).
 - (i) Pasa por el origen y es perpendicular a todas las rectas con pendiente 2.
- (2) ¿Cómo demostraría o refutaría de manera analítica que el cuadrilátero con vértices (0,4), (-1,3), (-2,8) y (-3,7) es un paralelogramo?
- (3) Halle la ecuación de la mitad superior de la circunferencia $x^2 + (y-3)^2 = 4$. Repita lo anterior con respecto a la mitad derecha de la circunferencia.
- (4) Halle la ecuación de la mitad inferior de la circunferencia $(x-5)^2 + (y-1)^2 = 9$. Repita lo anterior con respecto a la mitad izquierda de la circunferencia.
- (5) Trazar el conjunto de puntos en el plano xy, cuyas coordenadas satisfagan la desigualdad dada.
 - (a) $x^2 + y^2 \ge 9$ (b) $(x 1)^2 + (y + 5)^2 \le 25$ (c) $1 \le x^2 + y^2 \le 4$ (d) $x^2 + y^2 > 2y$
- (6) Representar gráficamente el conjunto de los puntos del plano xy que satisfacen cada una de las siguientes condiciones.
 - (a) y = -3x (b) y 2x = 0 (c) -x + 2y = 1 (d) 2x + 3y = 6 (e) $x = y^2$ (f) $y = x^3$ (g) $y = x^2 4$ (h) $x = 2y^2 4$ (i) $y = x^2 2x 2$. (j) $y^2 = 16(x + 4)$ (k) $y = x(x^2 3)$ (l) $y = (x 2)^2(x + 2)^2$ (m) $x = -\sqrt{y^2 16}$ (n) $y^3 4x^2 + 8 = 0$ (o) $(x 1)^2 + y^2 = 0$ (p) $y = \sqrt{x 3}$

 - (q) $y = 2 \sqrt{x+5}$ (r) y = |x-9| (s) x = |y| 4 (t) |x| + |y| = 4
- (7) Identificar el tipo de curva que corresponde con cada una de las siguientes ecuaciones, encontrar sus características especiales, graficarla a mano y comprobar el resultado con un programa informático.
 - (a) $\frac{(x-5)^2}{4} \frac{(y+1)^2}{49} = 1$ (b) $\frac{(x-1)^2}{49} + \frac{(y-3)^2}{36} = 1$ (c) $\frac{(x+1)^2}{25} + \frac{(y-2)^2}{36} = 1$ (d) $x^2 2x 4y + 17 = 0$ (e) $\frac{(y-4)^2}{36} x^2 = 1$ (f) $\frac{(y-\frac{1}{4})^2}{4} \frac{(x+3)^2}{9} = 1$ (g) $y^2 8y + 2x + 10 = 0$ (h) $y^2 4y 4x + 3 = 0$

 - (i) $(x+5)^2 + \frac{(y+2)^2}{16} = 1$ (k) $4x^2 = 2y$ (j) $x^2 + 5x - \frac{1}{4}y + 6 = 0$ (l) $4x^2 - 16y^2 = 64$
 - (a) $y^2 5x^2 = 20$ (b) $\frac{(x+2)^2}{10} \frac{(y+4)^2}{25} = 1$ (m) $5x^2 - 5y^2 = 25$ (o) $9x^2 - 16y^2 + 144 = 0$
- (8) Deducir la ecuación de la hipérbola que satisface cada una de las siguientes condiciones (a) Vértices en $(\pm 2,0)$, pasa por $(2\sqrt{3},4)$.

- (b) Vértices en $(0, \pm 3)$, pasa por $(\frac{5}{5}, 5)$.
- (c) Centro en (-1,3), un vértice en (-1,4), pasa por $(-5,3+\sqrt{5})$.
- (d) Centro en (3, -5), un vértice en (3, -2), pasa por (1, -1).
- (9) Deducir la ecuación de la elipse que satisface cada una de las siguientes condiciones
 - (a) Vértices en $(0, \pm 3)$, extremos del eje menor en $(\pm 1, 0)$.
 - (b) Vértices en $(\pm 4,0)$, extremos del eje menor en $(0,\pm 2)$.
 - (c) Vértices en (-3, -3), (5, -3), extremos del eje menor en (1, -1), (1, -5).
 - (d) Vértices en (1, -6), (1, 2), extremos del eje menor en (-2, -2), (4, -2).
- (10) Deducir la ecuación de una parábola que satisface cada una de las siguientes condiciones
 - (a) Vértice en (0,0), pasa por (-2,8), eje a lo largo del eje y
 - (b) Vértice en (0,0), pasa por $(1,\frac{1}{4})$, eje a lo largo del eje x
- (11) Ingresos Un fabricante encuentra que el ingreso generado por vender x unidades de cierta mercancía está dado por la función $R(x) = 80x 0.4x^2$, donde el ingreso R(x) se mide en dólares. ¿Cuál es el ingreso máximo, y cuántas unidades deben fabricarse para obtener este máximo?
- (12) Ventas Un vendedor de bebidas gaseosas en una conocida playa analiza sus registros de ventas y encuentra que, si vende x latas de gaseosa en un día, su utilidad (en dólares) está dada por

$$P(x) = -0.001x^2 + 3x - 1800$$

¿Cuál es su utilidad máxima por día, y cuántas latas debe vender para obtener una utilidad máxima?

(13) **Publicidad** La efectividad de un anuncio comercial por televisión depende de cuántas veces lo ve una persona. Después de algunos experimentos, una agencia de publicidad encontró que, si la efectividad E se mide en una escala de 0 a 10, entonces

$$E(n) = \frac{1}{n} - \frac{1}{20}n^2$$

donde n es el número de veces que una persona ve un anuncio comercial determinado. Para que un anuncio tenga máxima efectividad, ¿cuántas veces debe verlo una persona?

- (14) **Productos farmacéuticos** Cuando cierto medicamento se toma oralmente, la concentración del medicamento en el flujo sanguíneo del paciente después de t minutos está dada por $C(t) = 0.06t 0.0002t^2$, donde $0 \le t \le 240$ y la concentración se mide en mg/L. ¿Cuándo se alcanza la máxima concentración de suero, y cuál es esa máxima concentración?
- (15) **Agricultura** El número de manzanas producidas por cada árbol en una huerta de manzanos depende de la densidad con la que estén plantados los árboles. Si n árboles se plantan en un acre de terreno, entonces cada árbol produce 900 9n manzanas. Por tanto, el número de manzanas producidas por acres

$$A(n) = n(900 - 9n)$$

¿Cuántos árboles deben plantarse por acre para obtener la máxima producción de manzanas?