

Figure 1: Error rates after binarization, opening and closing. The x-axes display the standard deviation σ and the y-axes the error rate. For each pixel type 1000 different noises were randomly generated ($\alpha = 0.05, \varphi = 3$).

Figure 2: Error rates after binarization, opening and closing. The x-axes display the standard deviation σ and the y-axes the error rate. For each pixel type 1000 different noises were randomly generated ($\alpha = 0.05, \varphi = 5$).

Figure 3: Error rates after binarization, opening and closing. The x-axes display the standard deviation σ and the y-axes the error rate. For each pixel type 1000 different noises were randomly generated ($\alpha = 0.05, \varphi = 7$).

Figure 4: Error rates after binarization, opening and closing. The x-axes display the standard deviation σ and the y-axes the error rate. For each pixel type 1000 different noises were randomly generated ($\alpha = 0.05, \varphi = 99$).

Figure 5: Error rates after binarization, opening and closing. The x-axes display the standard deviation σ and the y-axes the error rate. For each pixel type 1000 different noises were randomly generated ($\alpha = 0.01, \varphi = 3$).

Figure 6: Error rates after binarization, opening and closing. The x-axes display the standard deviation σ and the y-axes the error rate. For each pixel type 1000 different noises were randomly generated ($\alpha = 0.01, \varphi = 5$).

Figure 7: Error rates after binarization, opening and closing. The x-axes display the standard deviation σ and the y-axes the error rate. For each pixel type 1000 different noises were randomly generated ($\alpha = 0.01, \varphi = 7$).

Figure 8: Error rates after binarization, opening and closing. The x-axes display the standard deviation σ and the y-axes the error rate. For each pixel type 1000 different noises were randomly generated ($\alpha = 0.01, \varphi = 99$).