Lecture 1: Linear Model and OLS in Cross Section

Jesper Riis-Vestergaard Sørensen

University of Copenhagen, Department of Economics

Plan for Panel Data Lectures

Lecture 1: Linear model + OLS in cross section (W.4)

Lecture 2: Fixed effects + First differences (W.10)

Lecture 3: Random effects + Hausman test (W.10)

Lecture 4: Predetermined variables (W.11)

Cross Section Data

1	<i>y</i> ₁	1	x_1^2	x_1^3		x_1^K
2	<i>y</i> ₂	1	x_{2}^{2}	x_{2}^{3}		x_2^K
3	<i>y</i> ₃	1	x_{3}^{2}	x_{3}^{3}		x_3^K
4	<i>y</i> ₄	1	x_{4}^{2}	x_4^3	• • •	x_4^K
5	<i>y</i> ₄ <i>y</i> ₅	1	x_{5}^{2}	x_{5}^{3}	• • •	x_5^K
:	:	:	:	:	٠	:

Sampling Scheme for (Micro) Data

In this course we will assume that:

- Cross-sectional units (i) are independent. Z ind data
- ▶ Observations *id*entically distributed.

Focus is on asymptotics as number of cross section units grows without bound

- ► Finite-sample results rarely available.
- ▶ Limits ("arrows") understood $\approx N \to \infty$.
- ▶ Implicit assumption for asymptotics to be relevant:

N is large.

Today

- ▶ Another look at linear model and OLS in cross section.
- ► In part, refresher.
- ▶ ... but also more formal approach.
 - ▶ Will argue using asymptotics.
- Useful benchmark for later (panel) lectures.
 - ▶ Will essentially transform to cross section.

Outline

Model and Identification

Estimation and Consistency

Asymptotic Normality

Variance Estimation

Testing Linear Hypotheses

Model and Identification

Identification

Equation of interest in error form

$$y = x\beta + u$$

Assuming $E(u|\mathbf{x}) = 0$, we get

$$E(y|\mathbf{x}) = \mathbf{x}\boldsymbol{\beta}$$

Identifying assumptions

OLS.1:
$$E(x'u) = 0$$

OLS.2: rank
$$E(\mathbf{x}'\mathbf{x}) = K$$

Note: $E(u|\mathbf{x}) = 0$ is stronger than OLS.1

...but not necessary for identification of β .

Identification

Premultiply y equation by \mathbf{x}' and take expectations

$$E(\mathbf{x}'\mathbf{y}) = E(\mathbf{x}'\mathbf{x})\boldsymbol{\beta} + E(\mathbf{x}'\mathbf{u}).$$

Under OLS.1.we can write

Under OLS.2
$$E(\mathbf{x}'\mathbf{x})$$
 is invertible, so
$$\boldsymbol{\beta} = [E(\mathbf{x}'\mathbf{x})]^{-1}E(\mathbf{x}'\mathbf{y})$$

 $E(\mathbf{x}'\mathbf{x})$ and $E(\mathbf{x}'y)$ features of joint distribution of y and \mathbf{x} β is identified

Estimation and Consistency

Estimation

Suppose we have cross section data

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + u_i, \quad i = 1, 2, \dots, N.$$

Analogy principle: Replace unknowns with (consistent) estimators. $\mathcal{S} = (\mathcal{E}[\times' \mathcal{X}))^{-\prime} \mathcal{E}[\times' \mathcal{Y}]$

Identification result + law of large numbers (LLN) suggest

$$\hat{\boldsymbol{\beta}} := \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{y}_{i}\right),$$

$$= \left(\mathbf{X}' \mathbf{X}\right)^{-1} \mathbf{X}' \mathbf{y},$$
(OLS)

 $(N \times K)$ and $y (N \times 1)$ stack the x_i s and y_i s, respectively.

الركان بحنكار

Consistency

yi = xips+ur

Inserting model,
$$\hat{\boldsymbol{\beta}} = \boldsymbol{\beta} + \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' u_{i}\right).$$

By random sampling + LLN,

$$\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}'_{i} u_{i} \stackrel{p}{\to} E(\mathbf{x}' u) \stackrel{\text{OLS.1}}{=} \mathbf{0}.$$

Similarly $N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i} \rightarrow_{p} E(\mathbf{x}'\mathbf{x})$ which is invertible (OLS.2).

Promotory element

Consistency

Applying Slutsky's theorem (W. Lemma 3.4),
$$\left(\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{i}'\mathbf{x}_{i}\right)^{-1}\left(\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{i}'u_{i}\right)\overset{p}{\rightarrow}\left[E\left(\mathbf{x}'\mathbf{x}\right)\right]^{-1}E\left(\mathbf{x}'u\right)$$

$$=\left[E\left(\mathbf{x}'\mathbf{x}\right)\right]^{-1}\mathbf{0}$$

$$=\mathbf{0}.$$

Conclude: $\hat{\beta} \rightarrow_{p} \beta$.

OLS.1+OLS.2 imply consistency of OLS.

Inference?

Asymptotic Normality

Convergence in Distribution

Definition: A sequence $\{X_N\}_{1}^{\infty}$ of G-dimensional random variables (r.v.'s) converges in distribution to the continuous r.v. **X** if for each $\mathbf{x} \in \mathbf{R}^G$

$$F_{N}(\mathbf{x}) \rightarrow F(\mathbf{x})$$
.

- \blacktriangleright Here $F_N(\cdot) := P(X_N \leq \cdot)$ denotes the cumulative distribution function (CDF) of X_N
- ▶ ... and $F(\cdot) := P(\mathbf{X} \leq \cdot)$ is the (continuous) CDF of \mathbf{X} .

- ▶ W. also uses (~a) ("asymptotically distributed as").

Central Limit Theorem

▶ We will establish \rightarrow_d by means of a central limit theorem.

Theorem (CLT, W. Theorem 3.2)

If $\{\mathbf{w}_i\}_{1}^{\infty}$ are iid G-dimensional r.v.'s with zero mean (+ finite variance), then

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}$$

- \blacktriangleright Hence, even if distribution of \mathbf{w}_i s unknown
- ▶ ... scaled average approximately normal in large samples.

Asymptotic Normality Rewrite

$$\hat{\boldsymbol{\beta}} = \boldsymbol{\beta} + \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' u_{i}\right)$$

to get

$$\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \mathbf{x}_{i}' u_{i}\right).$$

OLS.2 implies $(N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i})^{-1} \to_{p} [E(\mathbf{x}' \mathbf{x})]^{-1}$.

OLS.2 implies
$$(N^{-1}\sum_{i=1}^{N}\mathbf{x}_{i}'\mathbf{x}_{i})^{-1} \rightarrow_{p} [E(\mathbf{x}'\mathbf{x})]^{-1}$$
.

By random sampling + CLT + OLS.1,
$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}\mathbf{x}_{i}'u_{i} \stackrel{d}{\rightarrow} \mathrm{N}\left(0, E\left(u^{2}\mathbf{x}'\mathbf{x}\right)\right). = E[u^{2}\mathbf{x}'\mathbf{x}]$$

$$\mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x}$$

Combining Modes of Convergence

Product Rule: If

- 1. $\mathbf{Y}_N \to_{\rho} \mathbf{C}$ constant (matrix), and
- $2. \ \boldsymbol{\mathsf{Z}_{\mathit{N}}} \rightarrow_{\boldsymbol{\mathsf{d}}} \boldsymbol{\mathsf{Z}},$

then $Y_N Z_N \rightarrow_d CZ$.

Implicit: TNS & 2NS are conformable

Warning: Constancy of **C** cannot be disposed of.

▶ Will use this product rule again and again...

Asymptotic Normality

It follows that

Left(x'x) - Lef

$$\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \mathbf{x}_{i}' u_{i}\right)$$

$$\stackrel{d}{\longrightarrow} [E(\mathbf{x}'\mathbf{x})]^{-1} \operatorname{N}(\mathbf{0}, E(u^2\mathbf{x}'\mathbf{x})). \quad (Product Rule)$$

Normal property:

- 1. If **C** is constant (matrix)
- 2. and $\mathbf{Z} \sim \mathrm{N}(\mathbf{0}, \mathbf{V})$,

then $\mathbb{CZ} \sim \mathbb{N}(0, \mathbb{CVC}')$.

(Normal family closed under affine transformations)

Asymptotic Normality

Conclude:

$$\sqrt{N}(\hat{\beta} - \beta) \stackrel{d}{\rightarrow} N(\mathbf{0}, \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}),$$

where $\mathbf{A} := E(\mathbf{x}'\mathbf{x}),$
 $\mathbf{B} := E(u^2\mathbf{x}'\mathbf{x}),$

Under OLS.1+OLS.2, OLS is (\sqrt{N}) -asymptotically normal.

Variance Estimation

Asymptotic Variance Estimation

Asymptotic distribution suggests approximation

$$\hat{eta} \overset{d}{pprox} \mathrm{N}\left(eta, \mathbf{A}^{-1} \mathbf{B} \mathbf{A}^{-1} / \mathcal{N}
ight).$$

treat a

(Treat "
$$\rightarrow_d$$
" as " \sim ".)

" $\stackrel{d}{\approx}$ " reads as "approximately distributed as."

Should be good approximation in "large" samples.

Asymptotic Variance Estimation

Potential source of confusion:

Limit theory implies

$$\operatorname{var}[\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})] \to \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1} = \mathbf{V}.$$

So **V** is the asymptotic variance of $\sqrt{N}(\hat{\beta} - \beta)$.

Call $Avar(\widehat{\beta}) := \mathbf{V}/N$ he asymptotic variance of $\widehat{\beta}$.

"
$$\widehat{\mathbf{V}}/N$$
 consistently estimates $\operatorname{Avar}(\widehat{\boldsymbol{\beta}})$ " means " $\widehat{\mathbf{V}} \to_{p} \mathbf{V}$."

 ${\bf Convenient--but\ imprecise--shorthand}.$

SNO KBK

Asymptotic Variance Estimation A consistent estimator of $Avar(\widehat{\beta})$ is $\sum_{i} \widehat{u}_{i}^{2} \mathbf{x}_{i}' \mathbf{x}_{i} \left(\mathbf{X}' \mathbf{X} \right)^{-1}$ Just $\widehat{\mathbf{V}}/N := \widehat{\mathbf{A}}^{-1}\widehat{\mathbf{B}}\widehat{\mathbf{A}}^{-1}/N$ with $\widehat{\mathbf{A}} := \frac{1}{N} \mathbf{X}' \mathbf{X} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}'_i \mathbf{x}_i$ and $\widehat{\mathbf{B}} := \frac{1}{N} \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{x}'_i \mathbf{x}_i$. Robust to heteroskedasticity.

Efficiency

constant scalour

OLS.3:
$$E(u^2x'x) = \overset{\checkmark}{\sigma}^2 E(x'x)$$

- ▶ Implies OLS also asymptotically efficient
- ➤ Simpler variance estimator

$$\widehat{\operatorname{Avar}(\hat{\boldsymbol{\beta}})} = \hat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}, \quad \hat{\sigma}^2 := \frac{1}{N-k}$$

If OLS 3. is violated?

 $\hat{\boldsymbol{\beta}}$ not necessarily efficient.

Inconsistent $\text{Avar}(\hat{\beta}) \Rightarrow \text{rely on robust version for inference.}$

Testing Linear Hypotheses

Testing Linear Hypotheses

Interest in
$$H_0$$
: $R\beta = r$.

esting Linear Hypotheses

Interest in
$$H_0: \mathbf{R}\beta = \mathbf{r}$$
.

R: $Q \times K$ with $\operatorname{rank} \mathbf{R} = Q \leqslant K$

$$Q \times 1$$

Wald statistic:

$$(W) = (R\widehat{\beta} - r)' \left[RAvar(\widehat{\beta})R' \right]^{-1} (R\widehat{\beta} - r).$$

Under $H_0, W \to_d \chi_Q^2$

World toet:

Wald test:

Reject
$$H_0$$
 at level $\alpha \Leftrightarrow W > (1-\alpha)$ -quantile of χ_Q^2 .

Robust to heteroskedasticity if robust $\hat{\mathbf{V}}$ used.

On Wald Statistic Form

Fact: If
$$\mathbf{Z} \sim \mathrm{N}\left(\mathbf{0}_{G \times 1}, \mathbf{\Sigma}\right)$$
 then $\mathbf{Z}'\mathbf{\Sigma}^{-1}\mathbf{Z} \sim \chi_G^2$.

▶ Multivariate version of $Z \sim N(0, \sigma^2) \Rightarrow (Z/\sigma)^2 \sim \chi_1^2$.

OLS.1–2 imply
$$\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta} \approx_d N(\mathbf{0}_{K\times 1}, \mathbf{V}/N)$$
.

Linearly transform:
$$\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{R}\boldsymbol{\beta} \approx_d \mathrm{N}\left(\mathbf{0}_{Q\times 1}, \mathbf{R}\left(\mathbf{V}/N\right)\mathbf{R}'\right)$$

Conclude:

$$(\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{R}\boldsymbol{\beta})' [\mathbf{R} (\mathbf{V}/N) \mathbf{R}']^{-1} (\mathbf{R}\widehat{\boldsymbol{\beta}} - \mathbf{R}\boldsymbol{\beta}) \stackrel{d}{\approx} \chi_Q^2.$$

Under H_0 , $\mathbf{R}\boldsymbol{\beta} = \mathbf{r}$.

Wald arises from consistent $Avar(\widehat{\beta}) = \mathbf{V}/N$ estimator.

Example Hypotheses
$$(K = 3)$$

1. "
$$\beta_1 = \beta_2$$
" corresponds to $\beta_1 = \beta_2$ " and $\beta_1 = \beta_2$ " and $\beta_2 = \beta_2$ " and $\beta_1 = \beta_2$ ".

2. " $\beta_1 + \beta_2 = 1$ " corresponds to

$$R = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \text{ and } r = 1.$$
3. "\beta_1 = \beta_2 = \beta_3" corresponds to
$$R = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \text{ and } r = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \text{ about}$$

4. " $\beta_1 = \beta_2 = \beta_3 = 0$ " corresponds to

$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$