Reinforcement Learning

Q learning

What is Reinforcement Learning?

- → It is a way for a machine to learn how to optimally behave in its environment constrained by its own goals
- → Markov Decision Process: Framework for modeling decision in a non/semi stochastic environment

Why Reinforcement Learning

- → Learning beyond data
 - ◆ Supervised/Unsupervised are only as good as the data they are fed
- → Learning beyond humans
 - ◆ Machine can never be better than human
- → Learning complex optimal policies
 - ◆ Replacing human intuition and rule based policies
- → Complex applications
 - ◆ Robotics, Autonomous vehicles, Games

Current Applications

Autonomous Vehicles

Robotics

Games

How does it work?

- → Environment
 - ◆ Agents world with physical and non physical components
- → State
 - ◆ Snapshot of the environments (Physical/Non-Physical) at a given moment
- → Action
 - ◆ Agent interaction with the environment
- → Rewards
 - ◆ Feedback from the environment
- → Q Table
 - Values we want to learn

Our game

- → Environment: Agents, walls, fixtures, etc
- → States: (Position) * (Mouse, Cheese, Trap, Cat)
 - Number of states
- → Actions: Left, Right, Up, Down
- → Rewards: (Cheese = 1) (Cat/Trap = -1)
- → Parameters: Q[(state, action)] = Val
 - Number of values

Learning

- → Optimized Policy: Mapping between actions and states
- → Q-Learning (Based on Bellman equation for optimal policy)

- → Discount Factor: Allow us to reduce the importance of early steps
- → Epsilon: Exploration vs Exploitation

Learning

Challenges

- → Data complexity
- → Curiosity mode: When to explore
- → Sparse rewards: No continuous feedback
- → Locomotion: Controlling body and reaching goals

