МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО» ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Кафедра інформатики та програмної інженерії

Звіт

3 лабораторної роботи № 1 з дисципліни «Мікропроцесорні технології інтернету речей»

«Ознайомлення з програмою Proteus. Бібліотека HAL Налаштування периферії за допомогою Cube MX. Апаратний ШІМ»

Виконав(ла)	ІП-13 Бабіч Денис	
	(шифр, прізвище, ім'я, по батькові)	
Перевірив(ла)	Стельмах О. П.	
	(посада, прізвище, ім'я, по батькові)	

ОСНОВНА ЧАСТИНА

Мета роботи: Симуляція роботи мікропроцесора в програмі Proteus. Генерація коду за допомогою програми Cube MX. Реалізація ШІМ. Створення і компіляція робочої програми на мові програмування C++.

Завдання:

$$N = 3$$

 $N1 = N - 1 = 3 - 1 = 2$
 $T1 = T / 10 = 3 / 10 = 0.3$

Щоб отримати 60

- 1. Налаштувати тактову частоту мікроконтроллера (HCLK) на N mhz
- 2. Підключити 10 світлодіодів та 2 кнопки до будь яких вільних пінів.
- 3. Якщо перша кнопка натиснута, то «активні» перші 5 світлодіодів, якщо ні то з 6-10

Щоб отримати 85

- 1. Виконати всі завдання з «Щоб отримати 60»
- 2. Змінювати сигнали з 0 на 1 та з 1 на 0 на «активних» світлодіодах, за допомогою будь якого таймеру з швидкістю Т1 разів за секунду

Щоб отримати 100

- 1. Виконати всі завдання з «Щоб отримати 85»
- 2. Підключити віртуальний осцилограф та перевірити правильність виконання попереднього завдання
- 3. Налаштувати апаратний ШІМ на будь якому таймері та каналі використовуючи звичайний та комплементарний виводи

Виконання:

Рисунок 1.1 – Налаштування тактової частоти (HCLK) мікроконтролера у відповідності до варіанту

Рисунок 1.2 – Результат налаштування мікроконтролера

Для кнопки використовується GPIO_EXTI (External Interrupt) з метою реалізації механізму зовнішнього переривання при зміні стану піну, що дозволяє контролеру ефективно працювати у звичайному режимі та переходити до обробки вводу від користувача тільки у випадку необхідності.

Рисунок 1.3 – Приклад конфігурації піну зі світлодіодом

PA12 Configuration : —		
GPIO mode	External Interrupt Mode with Rising edge trigger detection	~
GPIO Pull-up/Pull-down	No pull-up and no pull-down	~
User Label	GPIO_EXTI12 (BUTTON_1)	

Рисунок 1.4 – Приклад конфігурації піну з кнопкою

Для реалізації перемикання світлодіодів з частотою 0.3 Hz за секунду розраховується частота та період таймеру:

$$T_{toggle} = \frac{1}{f_{target}} = \frac{1}{0.3} \approx 3.3 \, \mathrm{c}$$

$$f_{timer} = \frac{f_{HCLK}}{PSC \, (prescaler) + 1} = \frac{3 \cdot 10^6}{2999 + 1} = 1 \cdot 10^3 \, Hz$$

$$ARR \, (Auto \, Reload \, Registry) = f_{timer} \cdot T_{toggle} - 1 = 3299$$

TIM2 Mode and Configuration

	Mode
Slave Mode Disable	~
Trigger Source Disable	~
Clock Source Internal Clock	~
Channel1 Disable	~
Channel2 Disable	~
Channel3 Disable	~
Channel4 Disable	
Combined Channels Disable	
	~
Use ETR as Clearing Source	
☐ XOR activation	
☐ One Pulse Mode	
	Configuration
	Configuration
Reset Configuration	
	nts
Configure the below parameters :	<u> </u>
Q Search (Ctrl+F) (3)	•
∨ Counter Settings	
Prescaler (PSC - 16 bits value)	2999
Counter Mode	Up
Counter Period (AutoReload Registe	
Internal Clock Division (CKD)	No Division
auto-reload preload	Disable
▼ Trigger Output (TRGO) Parameters	
Master/Slave Mode (MSM bit)	Disable (Trigger input effect not delayed)
Trigger Event Selection	Reset (UG bit from TIMx_EGR)
Рисунок 1.5 –	- Конфігурація таймеру ТІМ2
	nts NVIC Settings DMA Settings
NVIC Interrupt Table	Enabled Preemption Priority Sub Priority
ΠM2 global interrupt	☑ 0

Рисунок 1.6 – Конфігурація керуючого блоку переривань для таймеру TIM2

Для реалізації PWM (широтно-імпульсної модуляції) з робочим циклом у 50% величини розраховуються наступним чином:

$$f_{timer} = \frac{f_{HCLK}}{PSC + 1} = \frac{3 \cdot 10^{6}}{2 + 1} = 1 \cdot 10^{6} Hz$$

$$ARR = \frac{f_{timer}}{f_{PWM}} = \frac{1 \cdot 10^{6}}{1 \cdot 10^{3}} - 1 = 999$$

$$Pulse = Arr \cdot \frac{Duty}{100} = 999 \cdot \frac{50}{100} = 500$$

TIM1 Mode and Configuration

Рисунок 1.7 – Конфігурація таймеру TIM1

Рисунок 1.8 – Отримана схема в Proteus

Рисунок 1.9 – Демонстрація роботи схеми

Рисунок 1.10 – Демонстрація роботи таймеру ТІМ2 на каналі А

Рисунок 1.11 – Демонстрація роботи ТІМ1 PWM на каналах C та D

висновки

У цій лабораторній роботі було реалізовано налаштування мікроконтролера для управління світлодіодами та кнопками, а також реалізація функцій, пов'язаних із таймерами та широтно-імпульсною модуляцією (ШІМ). Спочатку було налаштовано тактову частоту мікроконтролера, що дозволило забезпечити потрібні умови для роботи системи.

У першій частині роботи за допомогою переривань було реалізовано функціонування двох кнопок, що дозволяють змінювати активність групи світлодіодів. При натисканні першої кнопки активуються світлодіоди 1-5, а при відсутності натискання — світлодіоди 6-10.

У другій частині роботи було реалізовано зміну стану світлодіодів з частотою 0,3 Гц, використовуючи таймер. Розрахунки періоду та частоти таймера, а також налаштування параметрів дозволили отримати потрібний результат.

У фінальній частині роботи була налаштована широтно-імпульсна модуляція (ШІМ) для управління яскравістю світлодіодів, із робочим циклом 50%. Була проведена конфігурація таймерів для роботи з ШІМ, що дозволило досягти стабільного результату.

Робота була реалізована у середовищі Proteus, що дозволило візуалізувати схему та продемонструвати роботу системи в реальному часі. В результаті виконання роботи були отримані практичні навички в налаштуванні мікроконтролерів, роботі з таймерами, перериваннями та ШІМ, що ϵ важливими для подальшого освоєння програмування вбудованих систем.