Analízis IV

2. gyakorlat

Szabó Krisztián

Tartalom

1	\mathbf{Em}	lékeztető	2
	1.1	Feltételes szélsőérték	2
	1.2	Elsőrendű szükséges feltétel	2
	1.3	Másodrendű elégséges feltétel	3

1 Emlékeztető

1.1 Feltételes szélsőérték

Definíció. Legyen $1 \leq n, m \in \mathbb{N}, \emptyset \neq U \subset \mathbb{R}^n$, és

$$f: U \to \mathbb{R}, g = (g_1, \ldots, g_m): U \to \mathbb{R}^m.$$

Azt mondjuk, hogy az f függvénynek a g=0 feltételre vonatkozóan feltételes lokális maximuma (minimuma) van a

$$c \in \{g = 0\} := \{\xi \in U : g(\xi) = 0\}$$

pontban, ha az

$$\cap f(\xi) := f(\xi) \quad (\xi \in \{g = 0\})$$

függvénynek a c-ben lokális maximuma (minimuma) van. Feltesszük, hogy

$${g=0} \neq \emptyset.$$

Használjuk az f(c)-re a feltételes lokális maximum (minimum), ill. szélsőérték, továbbá c-re a feltételes lokális maximumhely (minimumhely), ill. szélsőértékhely elnevezést is.

1.2 Elsőrendű szükséges feltétel

Tétel. Tegyük fel, hogy $1 \le n, m \in \mathbb{N}, m < n, \emptyset \ne U \subset \mathbb{R}^n$ nyílt halmaz, és $f: U \to \mathbb{R}, g: U \to \mathbb{R}^m$. Ha $f \in D, g \in C^1$, az f-nek a $c \in \{g = 0\}$ helyen feltételes lokális szélsőértéke van a g = 0 feltételre vonatkozóan, továbbá a g'(c) Jacobi-mátrix rangja megegyezik m-mel, akkor létezik olyan $\lambda \in \mathbb{R}^m$ vektor, hogy

grad
$$(f + \lambda g)(c) = 0$$
.

A tételben szereplő λg függvényen a következőt értjük:

$$(\lambda g)(\xi) := \langle \lambda, g(\xi) \rangle \quad (\xi \in U).$$

Más szóval a $\lambda = (\lambda_1, \ldots, \lambda_m), g = (g_1, \ldots, g_m)$ koordinátázással

$$(\lambda g)(\xi) = \sum_{i=1}^{m} \lambda_i g_i(\xi) \quad (\xi \in U).$$

Ez tehát ugyanolyan jellegű, mint a feltétel nélküli esetben, csak a szóban forgó f függvény helyett (egy alkalmas $\lambda \in \mathbb{R}^m$ vektorral) az $F := f + \lambda g$ függvényre vonatkozóan.

Ez az analógia megmarad a másodrendű feltételeket illetően is. Ezek megfogalmazásához vezessük be a következő definíciót. Legyen adott a

$$Q: \mathbb{R}^n \to \mathbb{R}$$

kvadratikus alak, a $B \in \mathbb{R}^{m \times n}$ mátrix, és tekintsük az alábbi halmazt:

$$\mathcal{A}_B := \{ x \in \mathbb{R}^n : B \cdot x = 0 \}.$$

Feltesszük, hogy m < n, és a B mátrix rangja m. Ekkor azt mondjuk, hogy a Q kvadratikus alak a B-re nézve

- 1. feltételesen pozitív definit, ha $Q(x) > 0 \quad (0 \neq x \in A_B);$
- 2. feltételesen negatív definit, ha $Q(x) < 0 \quad (0 \neq x \in A_B);$
- 3. feltételesen pozitív szemidefinit, ha $Q(x) \geq 0 \quad (x \in \mathcal{A}_B);$
- 4. feltételesen negatív szemidefinit, ha $Q(x) \leq 0 \quad (x \in A_B);$

1.3 Másodrendű elégséges feltétel

Tétel. Az $1 \leq n, m \in \mathbb{N}, m < n$ paraméterek mellett legyen adott az $\emptyset \neq U \subset \mathbb{R}^n$ nyílt halmaz, és tekintsük az $f: U \to \mathbb{R}, g: U \to \mathbb{R}^m$ függvényeket. Feltesszük, hogy $f, g \in D^2, c \in \{g = 0\}$, a g'(c) mátrix rangja m, továbbá valamilyen $\lambda \in \mathbb{R}^m$ vektorral az $F := f + \lambda g$ függvényre

- 1. grad F(c) = 0;
- 2. a Q_c^F kvadratikus alak a g'(c) mátrixra nézve feltételesen pozitív (negatív) definit.

Ekkor az f-nek a c-ben a g=0 feltételre vonatkozóan feltételes lokális minimuma (maximuma) van.