Lecture 14: Numerical Time-domain Solutions of Transmission Lines: FDTD

Yan-zhao XIE

Xi'an Jiaotong University 2020.10.13

Finite-Difference, Time-Domain (FDTD)

FDTD (finite-difference, time-domain) is a numerical method which can approximately determine the time-domain solution. The derivatives in the telegrapher's equations are discretized and approximated with various finite differences.

In this method, the position variable z is discretized as Δz and the time variable t is discretized as Δt .

Recall: telegrapher's equations

■ Telegrapher's Equations in time domain (for lossless TLs)

$$\frac{\partial V(z,t)}{\partial z} = -L' \frac{\partial I(z,t)}{\partial t}$$
$$\frac{\partial I(z,t)}{\partial z} = -C' \frac{\partial V(z,t)}{\partial t}$$

$$V(z,t) = V^{+}\left(t - \frac{z}{v}\right) + V^{-}\left(t + \frac{z}{v}\right)$$

$$I(z,t) = I^{+} \left(t - \frac{z}{v} \right) + I^{-} \left(t + \frac{z}{v} \right)$$
$$= \frac{1}{Z_{C}} V^{+} \left(t - \frac{z}{v} \right) - \frac{1}{Z_{C}} V^{-} \left(t + \frac{z}{v} \right)$$

■ (金) 西安文道大学 ■

FDTD method

In order to ensure stability of the discretization and to ensure second-order accuracy.

Divide the line into NDZ sections and divide total solution time into NDT sections. Voltage points and current points are interlaced with distance interval of $\Delta z/2$ and time interval of $\Delta t/2$.

$$V_k^n \stackrel{\text{def}}{=} V((k-1)\Delta z, n\Delta t)$$
 $I_k^n \stackrel{\text{def}}{=} I\left((k-\frac{1}{2})\Delta z, n\Delta t\right)$

$$I_k^n \stackrel{\text{def}}{=} I\left((k-\frac{1}{2})\Delta z, n\Delta t\right)$$

Incorporation of terminal conditions

FDTD voltages and currents at each end of the line, V_1 , I_1 , and V_{NDZ-1} , I_{NDZ-1} , are not collocated in space or time, whereas the terminal conditions relate the voltage and current at the same position and at the same time.

???

Incorporation of terminal conditions

Discretize the transmission line equation at the source by averaging the source current I_S and at the load by averaging the load current I_L , respectively.

$$\frac{1}{\Delta z/2} \left(I_1^{n+1/2} - \frac{I_S^{n+1} + I_S^n}{2} \right) + \frac{C'}{\Delta t} \left(V_1^{n+1} - V_1^n \right) = 0$$

$$\frac{1}{\Delta z/2} \left(\frac{I_L^{n+1} + I_L^n}{2} - I_{NDZ}^{n+1/2} \right) + \frac{C'}{\Delta t} \left(V_{NDZ+1}^{n+1} - V_{NDZ+1}^n \right) = 0$$

$$\frac{\partial V(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -C' \frac{\partial V(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -C' \frac{\partial V(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{\partial I(z, t)}{\partial t}$$

$$\frac{\partial I(z, t)}{\partial z} = -L' \frac{$$

The recursion relations are:

$$V_1^{n+1} = V_1^n - \frac{2\Delta t}{\Delta z} \frac{1}{C'} I_1^{n+\frac{1}{2}} + \frac{\Delta t}{\Delta z} \frac{1}{C'} (I_S^{n+1} + I_S^n) = 0$$

$$V_{NDZ+1}^{n+1} = V_{NDZ+1}^{n} + \frac{2\Delta t}{\Delta z} \frac{1}{C'} I_{NDZ+1}^{n+\frac{1}{2}} - \frac{\Delta t}{\Delta z} \frac{1}{C'} (I_L^{n+1} + I_L^n) = 0$$

● (金) お考え色大学 ■

By Thevenin equivalent relations, we have

$$V_1 = V_S - Z_S I_S$$

$$V_{NDZ+1} = V_L + Z_L I_L$$

By substituting, the recursion relations of terminal points are given

$$V_1^{n+1} = \left(\frac{\Delta z}{\Delta t} Z_S C' + 1\right)^{-1} \left[\left(\frac{\Delta z}{\Delta t} Z_S C' - 1\right) V_1^n - 2Z_S I_1^{n+\frac{1}{2}} + \left(V_S^{n+1} + V_S^n\right) \right]$$
 (a)

$$V_{NDZ+1}^{n+1} = \left(\frac{\Delta z}{\Delta t} Z_L C' + 1\right)^{-1} \left[\left(\frac{\Delta z}{\Delta t} Z_L C' - 1\right) V_{NDZ+1}^n + 2Z_L I_{NDZ}^{n+\frac{1}{2}} + (V_L^{n+1} + V_L^n) \right]$$
 (b)

Recall: the recursion relations of interior points

$$\begin{split} V_k^{n+1} &= V_k^n - \frac{\Delta t}{\Delta z} \frac{1}{C'} \Big(I_k^{n+1/2} - I_{k-1}^{n+1/2} \Big) \quad \text{(c)} \quad I_k^{n+3/2} &= I_k^{n+1/2} - \frac{\Delta t}{\Delta z} \frac{1}{L'} \big(V_{k+1}^{n+1} - V_k^{n+1} \big) \quad \text{(d)} \\ k &= 2, 3, \dots, NDZ \end{split}$$

■ 🍘 西安克通大学 🗕

For stability of the solution, the position and time discretizations must satisfy the Courant condition

$$\Delta t \le \frac{\Delta z}{v}$$

The Courant condition provides that for stability of the solution the time step must be greater than the propagation time over each cell.

Thank you again!

● (金) お歩気道大学 ●