PREDICTION OF AIRBNB BOOKING DESTINATION

AMEYA S THOMBRE, VARUN SRIVASTAVA, ISHAN DHAWAN

TEAM DELTA FORCE

Introduction & Background

- This project involves prediction of new user booking destination using Machine Learning Algorithms on the Airbnb dataset.
- This will enable Airbnb to pay specific attention to the most important factors in order to bolster their bookings.
- Accurate predictions can also prove to be useful in helping Airbnb optimize their strategies to expand their user base and maximize their profits.

DATA SECTION

- Data available from 2012-2014 for users in USA.
- Available Parameters

Input Variable	Description					
Date Account Created	Date on which the User created the account					
Date First Booking	Date on which the User booked for the first time					
Gender	Gender of the user					
Age	Age of the User					
Language	The language of the Website which the Customer used					
Affiliate Channel	Kind of Paid marketing strategy which led the customer to sign up					
Affiliate Provider	The kind of Marketing firm which served as the Affiliate channel					
Signup App	Type of App used to Sign Up					
First Device Type	Type of Device used to Sign up for the first time					
First Browser	Type of Browser used to Sign up for the first time					
Secs Elapsed	Amount of time spent on the website, taken from the sessions dataset.					
Destination Distance	The distance of the destination country from the US.					
	Taken from the Countries dataset.					

Output Variable

Categorical Output Variable (Destination Country)

Sr. No	Destination Country
1.	Australia (AU)
2.	Canada (CA)
3.	Germany(DE)
4.	Spain (ES)
5.	France (FR)
6.	Great Britain (GB)
7.	Italy (IT)
8.	NDF (Did not book)
9.	Netherlands (NL)
10.	other
11.	Portugal (PT)
12.	United States (US)

EXPLORATORY DATA ANALYSIS

Number of bookings (Country-wise)

Mapping number of bookings by destination country on the complete dataset.

 Mapping number of bookings by destination country after removing users whose destination was US.

 Data distribution is skewed because maximum users are not booking

FEATURE SELECTION

Effect of Age on Bookings

Effect of Gender on Bookings

Effect of Web Browser on Bookings

UNIVERSITY

DATA EXPLORATION

Extracted Feature-Number of days taken to book

METHODOLOGY AND MODEL BUILDING

Intuition

- Binary Classification: 90% of the target variable consisted of NDF and US, hence binary classification was implemented.
- Multiclass Classification: Removing the NDF's, multiclass classification to predict the destination country.

Models implemented for Binary Classification:

- Logistic Regression
- Random Forest
- CART
- KNN (K-Nearest Neighbors)
- SVM
- Neural Net
- Naive Bayes

Models implemented for Multiclass Classification:

- KNN (K-Nearest Neighbors)
- Random Forest
- XGBoost

Results of Binary Classification

	Logistic Regression	Random Forest	CART	KNN	SVM	Neural Net	Naive Bayes
Accuracy	0.5559	0.5622	0.5403	0.9834	0.5761	0.5609	0.5488
Sensitivity	0.3913	0.4231	0.1761	0.9827	0.1569	0.4642	0.3361
Kappa value	0.1005	0.1148	0.0543	0.9668	0.1344	0.1132	0.0821
AUC	0.5497	0.5569	0.5264	0.9834	0.5677	0.5876	0.5407

Logistic Regression

Naive Bayes

Random Forest

Problems faced in Multiclass Classification:

- Class imbalance.
- Class dominance (US comprising 90% observations).
- Lack of distinguishable features.
- Lack of optimal weight assignment to minority classes.
- Techniques such as SMOTE, Undersampling, and Oversampling were not effective after cross validation.

Confusion Matrix and Statistics

```
Reference
Prediction AU CA DE ES FR GB IT NL PT US
AU 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CA 0 0 0 0 0 0 0 0 0 0 0 0 0
DE 0 0 0 0 0 0 0 0 0 0 0 0 0
ES 0 0 0 0 0 0 0 0 0 0 0 0 0
FR 0 0 0 0 0 0 0 0 0 0 0 0 0
GB 0 0 0 0 0 0 0 0 0 0 0 0 0
IT 0 0 0 0 0 0 0 0 0 0 0 0
NL 0 0 0 0 0 0 0 0 0 0 0 0
NL 0 0 0 0 0 0 0 0 0 0 0 0
US 6 28 17 22 54 28 38 8 3 825
```

Overall Statistics

Accuracy : 0.8017

95% CI : (0.7761, 0.8257)

No Information Rate : 0.8017 P-Value [Acc > NIR] : 0.5187

Kappa: 0

Results of KNN for Multiclass Classification

Confusion Matrix and Statistics

Re	eferen	ce								
Prediction	1	2	3	4	5	6	7	8	9	10
1	59	33	5	2	2	0	0	0	0	0
2	123	283	55	14	6	1	0	0	0	1
3	14	86	82	29	18	0	0	0	0	0
4	17	56	165	363	152	19	1	0	0	0
5	31	62	110	448	1429	367	61	0	0	0
6	3	16	8	30	132	316	177	0	0	0
7	3	4	3	13	65	126	586	75	0	1
8	0	0	0	1	2	3	29	36	0	0
9	0	0	0	0	0	0	0	0	0	0
10	8	29	18	50	164	138	275	227	93 2	7551

Overall Statistics

Accuracy: 0.8958

95% CI: (0.8925, 0.899)

No Information Rate : 0.8039 P-Value [Acc > NIR] : < 2.2e-16

карра : 0.6782

AUC=0.8668

1 : Australia

2 : Canada

■ 3 : Spain

■ 3 : France

■ 5 : Germany

■ 6:UK

■ 7: Italy

■ 8: Netherlands

9: Portugal

■ 10: US

CONCLUSION

- Increasing variation in the data by adding continuous variables improves model performance.
- Synthetic sampling techniques may give good in sample performance, however they have poor predictive power.
- Although computationally expensive, K-Nearest Neighbors is the best model.
- KNN performs well when majority of the predictors are categorical.
- This is because KNN captures similarity between categorical features of different target classes.

