GUÍA N°3 DE LABORATORIO DE ELECTROMAGNETISMO: "CAPACITORES"

I.- OBJETIVOS. -

- Determinar la capacitancia del condensador de placas paralelas, mediante la gráfica de energía almacenada en el capacitor en función del potencial al cuadrado aplicado a dicho dispositivo.
- 2) Estudiar el comportamiento de los condensadores con y sin dieléctricos.
- 3) Deducir el comportamiento de la carga eléctrica y el voltaje para la conexión de condensadores serie y paralelo.

II.- MATERIALES.-

Completará el laboratorio virtual utilizando el Capacitor Lab de Phet, el software de análisis de datos (Excel) y este documento.

III.- PROCEDIMIENTO. -

En esta experiencia se procederá en seis partes. A continuación, cada una de ellas:

Primera parte

Energía almacenada en el condensador versus Voltaje

- 1.- Abra el (https://phet.colorado.edu/en/simulation/capacitor-lab)
- 2.- Ajuste las placas al área máxima (400,0 [mm²]), separación mínima (5,0 [mm]).

- **3.-** Usando los medidores provistos (carga, energía, campo eléctrico E y voltímetro) en la simulación complete la siguiente tabla de datos
- **4.-** Calcule la capacitancia utilizando $C_0=rac{arepsilon_0 A}{d}$, este el valor real.
 - R) $7,08x10^{-13}$ [F]
- **5.-** Aumentar la tensión (el voltaje) de la batería y registrar los valores de la tensión a través del condensador (V), cargo en la placa (Q), y la energía almacenada (U)

Separación d = 0,005 [m], Área placa A= 0,0004 [m²], Capacitancia $C_{\circ} = \frac{\mathcal{E}_{\circ} A}{d}$ 7,08x10^(-13) [F]

Ensayo	Diferencia de potencial V [V]	Carga Q [C]	Energía Almacena da U [J]	Campo eléctrico entre las placas E [V/m]	V² [volt]²	Q² [C²]	E ² [V/m] ²	Densidad de Energía almacenada $u[J/m^3]$ $u = \frac{U}{Ad}$
1	0,294	2,08E-13	3,10E-14	59	0,086436	4,33E-26	3481	1,55E-08
2	0,425	3,01E-13	6,40E-14	85	0,180625	9,06E-26	7225	3,20E-08
3	0,686	4,86E-13	1,67E-13	137	0,470596	2,36E-25	18769	8,35E-08
4	0,947	6,71E-13	3,18E-13	189	0,896809	4,50E-25	35721	1,59E-07
5	1,5	1,06E-12	7,97E-13	300	2,25	1,13E-24	90000	3,99E-07
6	-0,394	2,70E-13	5,50E-14	79	0,155236	7,29E-26	6241	2,75E-08
7	-0,754	5,34E-13	2,01E-13	151	0,568516	2,85E-25	22801	1,01E-07
8	-1,015	7,19E-13	3,65E-13	203	1,030225	5,17E-25	41209	1,83E-07
9	-1,243	8,81E-13	5,48E-13	249	1,545049	7,76E-25	62001	2,74E-07
10	-1,5	1,06E-12	7,97E-13	300	2,25	1,13E-24	90000	3,99E-07

- **6.-** Use Excel para trazar la relación entre (V^2, U) , usando V^2 como variable independiente en la planilla Excel.
- 7.- Use la ecuación $U = \frac{1}{2}CV^2$ para determinar C_0 usando la pendiente de la gráfica.

$$U = \frac{1}{2}C_0V^2 \to Y = (4 \cdot 10^{-13}X), Y = U, M = \frac{1}{2}C_0, X = V^2$$

$$M = 4 \cdot 10^{-13} \Rightarrow \frac{1}{2} C_0 = 4 \cdot 10^{-13} \Rightarrow C_0 = 8 \cdot 10^{-13} [F]$$

8.- Compare este valor de C_{θ} con el C_{θ} en la tabla. Calcule el porcentaje de error.

$$E = \left| \frac{C_T - C_P}{C_T} \right| \cdot 100 = 12,99 \%, C_P = 8 \cdot 10^{-13} [F], C_T = 7,08 \cdot 10^{-13} [F]$$

9.- Adjunte el gráfico a su informe de datos.

Use Excel para trazar la relación entre $(Q^2,\,U)$, usando Q^2 como variable independiente en Excel.

10.-

11.- Use la ecuación $U = \frac{Q^2}{2C}$, para determinar C_0 usando la pendiente de la gráfica.

$$U = \frac{Q^2}{2C_0} \Rightarrow Y = 7 \cdot 10^{11}X + 8 \cdot 10^{-16}, Y = U, X = Q^2, M = \frac{1}{2C_0}$$

$$M = \frac{1}{2C_0} = 7 \cdot 10^{11} \Rightarrow C_0 = \frac{1}{7 \cdot 10^{11} \times 2} = 7, 14 \cdot 10^{-13} [F]$$

12.- Compare este valor de C_0 con C_0 en la tabla. Calcule el porcentaje de error.

$$E = \left| \frac{C_T - C_P}{C_T} \right| \cdot 100 = 0,8 \%, C_P = 7,14 \cdot 10^{-13} [F], C_T = 7,08 \cdot 10^{-13} [F]$$

13.- Adjunte el gráfico a su informe de datos.

14.- Use Excel para trazar la relación entre (E², U), usando E² en el eje horizontal Excel.

11... Use la ecuación $u = \frac{1}{2} \varepsilon_0 E^2$, para determinar Σ_0 usando la pendiente de la gráfica.

$$\begin{split} u &= \frac{\varepsilon_0 E^2}{2} \Rightarrow Y = 9 \cdot 10^{-18} X + 2 \cdot 10^{-16}, Y = \frac{U}{Ad}, X = E^2, M = \frac{\varepsilon_0}{2} \\ M &= \frac{1}{2} \varepsilon_0 \Rightarrow \frac{U}{Ad} = \frac{1}{2} \varepsilon_0 \wedge M = 9 \cdot 10^{-18} \Rightarrow \varepsilon_0 = \frac{9 \cdot 10^{-18} \times 2}{0,0004 \times 0,005}, A = 0,0004 \ m^2, d = 0,005 \ m \\ \varepsilon_0 &= 9 \times 10^{-12} \left[\frac{C^2}{Nm^2} \right] \end{split}$$

12.- Compare este valor de Σ_0 con $\Sigma_0=8,85x10^{-12}$ [F/m] en la tabla. Calcule el porcentaje de error.

$$E = \left| \frac{\varepsilon_T - \varepsilon_P}{\varepsilon_T} \right| \cdot 100 = 1,7 \%, \varepsilon_P = 7,14 \cdot 10^{-13} \left[\frac{C^2}{Nm^2} \right], \varepsilon_T = 7,08 \cdot 10^{-13} \left[\frac{C^2}{Nm^2} \right]$$

Segunda parte Dieléctricos y capacitancia

- **1-** Abra el (https://phet.colorado.edu/en/simulation/capacitor-lab)
- 2- Haga clic en la pestaña "Dieléctricos".
- **3-** Coloque el valor del área *A* de las placas entre (195 205 [mm²]), la separación *d* entre (7,5-8,5 [mm]), voltaje positivo de la batería máxima (1,5 [V]) y la constante dieléctrica mínima (1) con cero compensada para empezar. Ver fig. abajo.

4- Determine el valor de $C_0 = \frac{\varepsilon_0 A}{d}$ y compárelo con el valor que entrega el simulador.

5.- Inserte el material dieléctrico en el condensador y determine el valor de la capacitancia C (en F)

R)
$$2.2 \times 10^{-13}$$
 F

- **6.-** Cambie el valor de la constante dieléctrica **K** y luego complete la siguiente tabla de datos (mantenga la separación de la placa y el área constante durante todas las pruebas)
- 7.- Dibuja el mejor ajuste usando Excel entre (K, C), y encuentra la pendiente de la línea.

$$Y = 2 \times 10^{-13} \times -3 \times 10^{-15}$$

$$C = (0 \times -3 \times 10^{-15})$$

$$C = 2 \times 10^{-13}$$

8.- Adjunte el gráfico a su informe de laboratorio.

$C_0 = 2.2 \times 10^{-13}$ [F]							
Ensayo	Constante Dieléctrica K	Capacitancia [F] C					
1	1	2.2×10^{-13}					
2	1,5	3.3×10^{-13}					
3	2	4.4×10^{-13}					
4	2,5	5.5×10^{-13}					
5	3	6.6×10^{-13}					
6	3,5	7.7×10^{-13}					
7	4	8.8×10^{-13}					
8	4,5	9.9×10^{-13}					
9	5	11.1×10^{-13}					

9.- Use la ecuación $C = KC_0$, determine C_θ y compare este valor.

R)

$$c = kc_0 \Rightarrow c_0 = \frac{c}{k}$$

$$2x10^{-13}F$$

10.- Calcule el porcentaje de error en C_{θ} .

$$E = \left| \frac{C_T - C_P}{C_T} \right| \cdot 100 = 9,09 \%, C_P = 2 \cdot 10^{-13} [F], C_T = 2, 2 \cdot 10^{-13} [F]$$

<u>Nombre</u> : Brayan Maldonado Carrasco.

Felipe Pizarro Toledo.

Profesor : Javier Barahona.