《数字信号处理原理与应用》(第1版)勘误表

原书 页码、行序、 图表号	原书错误说明	更正结果	备注
11 页,公式(2.16)	x(t)	x(nT)	公式 (2.16)
14 页,12 行 16 页,4 行	比较容易表征,分析 读者要特别注意在推导体会中	比较容易表征、分析 读者要特别注意在推导中体会	标点 文字顺序
20 页,16 行表达式	$y(n) = \begin{cases} n+1 \\ 7-n & 0 \le n \le 3 \\ 0 \end{cases}$	$y(n) = \begin{cases} n+1 \\ 7-n & 4 \le n \le 6 \\ 0 \end{cases}$	354,004
20 页,表 2-1	第 8 行,最后 1 列: y(4)=2 第 9 行,最后 1 列: y(5)=1	y(5)=2 Y(6)=1	
25 页,图 2.11(b)		$ \begin{array}{c} \longrightarrow x_a(nT) \\ \uparrow x_a(t) \end{array} $	字母标注错
26 页,图 2.12	右下图纵坐标未标注	纵坐标箭头右下方标注 1/T	
27 页,图 2.13	横坐标未标注	横坐标箭头右标注Ω	
27页,图 2.14	(c) (d) 图纵坐标未标注	纵坐标箭头右下方标注 1/T	
40 页,表 3.2 第 9 行	$X(e^{j\omega})$	$X(e^{j\theta})$	符号错
48 页,13 行	则 $X(a^{-1}z)$ 在处 $z = az_1$	则 $X(a^{-1}z)$ 在 $z = az_1$ 处	文字顺序
48 页,16 行	$\frac{dX(z)}{dz} = \frac{1}{z}Z[x(n)]$	$-\frac{dX(z)}{dz} = \frac{1}{z}Z[nx(n)]$	
50 页,公式 (3.46)	$X(v) * Y^*(\frac{1}{v^*})$	$X(v)Y^*(\frac{1}{v^*})$	
50 页,最后 一行式子	$X(v) * Y^* (\frac{z^*}{v^*})$	$X(v)Y^*(\frac{z^*}{v^*})$	
51 页,第 5 行式子	$X(v) * Y^*(\frac{1}{v^*})$	$X(v)Y^*(\frac{1}{v^*})$	
51 页,表 3.3, 序号 7	$X(v) * Y(\frac{z}{v})$	$X(v)Y(\frac{z}{v})$	
55 页,第三 组公式下第 2 行文字	D_{k} , $oldsymbol{eta}_{k}$	$\alpha_{_k}$, $\beta_{_k}$	
56 页,第 2 行公式	$ H(e^{j\omega}) = z^{-1}$	$ H(e^{j\omega}) =1$	
56 页,图 3.8	左图中: $C_r = 0$	$C_r = 1$	

57 页,图 3.9(a)	$C_r = 0$ $D_k = \alpha$	删掉	
58 页,图 3.10(c)	ax(n-1)	x(n-1)	
60 页,图 3.15	$b_{\scriptscriptstyle m}$	$b_{\scriptscriptstyle M}$	
61 页,图 3.16	$b_{\scriptscriptstyle m}$	$b_{\scriptscriptstyle M}$	
61 页,图 3.16 图题	图 3.16 IIR 直接 II 型网络结构级联图	图 3.16 IIR 直接 II 型网络结构图	多字
61 页,图 3.17 图题	IIR 系统的级联型信号流图	IIR 系统的级联型信号流图(N=6)	
62 页,文字 第 1 行	是运算速度最快的一种网络结构优点,	是运算速度最快的一种网络结构,	
62 页,公式 (3.68)下第 一行文字	H(z)有 N 个零点,通过 N 个零点	H(z)有 N-1 个零点, 通过 N-1 个零点	
63 页,公式 (3.70)	$m{eta}_{0r} - m{eta}_{1r} z^{-1} - m{eta}_{2r} z^{-2}$	$m{eta}_{0r} + m{eta}_{1r} z^{-1} + m{eta}_{2r} z^{-2}$	
75页,4.1节, 第8行文字	$e_k(n) = e^{-j\frac{2\pi}{n}kn}$	$e_k(n) = e^{-j\frac{2\pi}{N}kn}$	字母大小 写
75 页,4.1 节, 第 9 行文字	在"复指数序列 $e_k(n)$ "文字前增加一段文字	令 $W_N = e^{-j\frac{2\pi}{N}}$,称为 W 因子。	补充文字
77 页,第 10 行	次谐波、N-1 次谐波	次谐波、、N-1 次谐波	加省略号
77 页,第 17 行公式	$\widetilde{\widetilde{x}}(n)$	$\widetilde{x}(n)$	
78 页,公式 (4.20)	$W^{-mk}\widetilde{X}(k)$	$W_{_{N}}^{-mk}\widetilde{X}(k)$	漏下标 N
78 页,倒数 第 6 行文字	也称为循环卷积或圆固卷积	也称为循环卷积或圆周卷积	错字
80 页,第 20 行	(2) DFT 只适用于有限序列	(2) DFT 只适用于有限长序列	漏字
81 页,第 6 行文字	其中,a,b 均为常数,	其中, a,b 均为常数,若两个序列长度 不同,	漏掉文字
81 页,公式(4.31)	$f(n) = x(n+m)R_N(n)$	$f(n) = x((n+m))_N R_N(n)$ 或: $f(n) = \widetilde{x}(n+m)R_N(n)$	
81 页,图 4.1(a)	第 2 图纵坐标标注: x(n+2)	$\widetilde{x}(n+2)$	

81 页,最后 一段公式证 明	$F(k) = \sum_{n=0}^{N-1} f(n)$	$F(k) = \sum_{n=0}^{N-1} f(n) W_N^{nk}$	
	$= \sum_{n=0}^{N-1} x[(n+m)]_N W_N^{nk}$	$=\sum_{n=0}^{N-1}\widetilde{x}(n+m)W_N^{nk}$	
81 页,最后 一段公式证	$\sum_{n=-m}^{N-1-m} \widetilde{x}(n) W_N^{(n-m)k} =$	$\sum_{n=m}^{N-1+m} \widetilde{x}(n) W_N^{(n-m)k} =$	
明	$\{W_N^{-mk}\sum_{n=-m}^{N-1-m}\widetilde{x}(n)W_N^{nk}\}R_N(k)$	$\{W_N^{-mk}\sum_{n=m}^{N-1+m}\widetilde{x}(n)W_N^{nk}\}R_N(k)$	
83 页,公式(4.39)	x(n)⊗y(n)	x(n)⊕y(n)	
84 页,表 4.1, 第 5 行,第 1 列	$x(n) \otimes y(n) = \sum_{n=0}^{N-1} x(m) y(n-m) R_N(n)$	$x(n) \circledast y(n) =$ $\sum_{n=0}^{N-1} x(m) y((n-m))_N R_N(n)$	
84 页,表 4.1, 第 5 行,第 2 列	$\frac{1}{N}\sum_{n=0}^{N-1}X(l)Y(k-l)R_{N}(k)$	X(k)Y(k)	
84 页,表 4.1, 第 6 行,第 1 列	x(n)*y(n)	x(n)y(n)	
84页,表 4.1, 第 6 行,第 2 列	X(k)Y(k)	$\frac{1}{N} \sum_{n=0}^{N-1} X(l) Y((k-l))_N R_N(k)$	
85 页,公式(4.43)	$L_1 - L \le L - 1$	$L_1 - L \le n \le L - 1$	
89 页,第 2 行文字	假定序列 x(n)是由两个单一频率	假定序列 x(n)是由一个单一频率	
89 页,第 3 行文字	频率分别为 ω_1 , ω_2 ,	频率为 $oldsymbol{\omega}_{\!\scriptscriptstyle 0}$,	
92 页,公式(5.1)	$X(k) = \sum_{n=0}^{N-1} x(n) W_n^{nk}$	$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$	大小写
93 页,第一 组公式第 2 行第 2 项	$+\sum_{r=0,1}^{\frac{N}{2}-1} x(2r+1)W_N^{(2rk+1)k} +$	$+\sum_{r=0,1}^{\frac{N}{2}-1} x(2r+1)W_N^{(2r+1)k} +$	
94 页,图 5.1	图 5.1 蝶形运算符号	图 5.1 蝶形运算流图	
94 页,第 3 段文字第 1 行	计算量为 2(N/2)² =	复乘计算量为 2(N/2) ² + N/2 =	
94 页,公式	$X_1(k) = X_3(k) + W_{N/2}^k x_4(k)$	$X_1(k) = X_3(k) + W_{N/2}^k X_4(k)$	
(5.5)	$x_1(k+N/4) = x_3(k) - W_{N/2}^k x_4(k)$	$X_1(k+N/4) = X_3(k) - W_{N/2}^k X_4(k)$	
•	•		

		$0 \le k \le N/4 - 1$	
96 页,第 1、2 行	总复乘: $\frac{N}{2}M = \frac{N}{2}lbN$ 总复加: $NM = NlbN$	总复乘: $\frac{N}{2}M = \frac{N}{2}\log_2 N$ 总复加: $NM = N\log_2 N$	对数符号
96 页,第 1 段文字	所有的 <i>lbN</i>	$\log_2 N$	对数符号
96 页,表 5.1 第 1 行	所有的 <i>lbN</i>	$\log_2 N$	
97 页,第一 段公式第 2 行	$+\sum_{n=1}^{N/2-1} x(n+N/2)W_N^{(n+N/2)k}$	$+\sum_{n=0}^{N/2-1} x(n+N/2)W_N^{(n+N/2)k}$	求和下标
97 页,第一 段公式第 3 行	$W_N^{N/2-1} \sum_{n=0}^{\frac{N}{2}-1} x(n+N/2) W_N^{nk}$	$W_N^{\frac{N}{2}k} \sum_{n=0}^{\frac{N}{2}-1} x(n+N/2) W_N^{nk}$	
97 页,第四 段公式第 1 行	$X(2r) = \sum_{n=0}^{N/2-1} [x(n) + x(n+n/2)] W_{N/2}^{nr}$	$X(2r) = \sum_{n=0}^{N/2-1} [x(n) + x(n+N/2)] W_{N/2}^{nr}$	大小写
98页,第1 组公式	$\begin{cases} x_3(n) = x_1(n) + x(n+N/4) \\ x_4(n) = [x_1(n) - x(n+N/4)]W_{N/2}^n \\ n = 0,1,2N/2 - 1 \end{cases}$	$\begin{cases} x_3(n) = x_1(n) + x_1(n+N/4) \\ x_4(n) = [x_1(n) - x_1(n+N/4)]W_{N/2}^n \\ n = 0,1,2N/4-1 \end{cases}$	
98 页,第 4 组公式	n = 0,1,2N/2-1	n = 0,1,2N/4-1	
107 页, 图 6.3	纵坐标: $ H_a(e^{j\omega}) ^2$,横坐标: Ω/Ω_s	纵坐标: $ H_a(j\Omega) ^2$,横坐标: Ω/Ω_c	坐标轴
107 页 倒数 1-4 行	所有的 $ H_a(j\Omega) $	$ H_a(j\Omega) ^2$	
108页,第5 组公式	极点 s_k^{2N}	极点 <i>s</i> _k	
109 页,公式(6.13)	对于所有 Ω ≥ Ω_1	对于所有 $\Omega \geq \Omega_2$	
109页,公式(6.14)	$10\lg\{1/[1+(\Omega_2/\Omega_c)^{2N}]\} \ge k_2$	$10\lg\{1/[1+(\Omega_2/\Omega_c)^{2N}]\} \le k_2$	不等号
110 页,例 【6-1】 最后公式	$H_4(s)$	$H_a(s)$	
111页图6.5	右上图下标注 右下图下标注	增加: 偶数增加: 奇数	
113 页,例 【6-2】第七 步:	为满足题意截止频率 $\Omega_d=40$ $H_d(s)$	为满足题意截止频率 $\Omega_c = 40$ $H_a(s)$	

114 页,第一 行公式	$H(z) = \sum_{n=0}^{\infty} h(n)z^{-\infty} = \frac{\sum_{r=1}^{M} b_r z^{-r}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$	$H(z) = \sum_{n=0}^{\infty} h(n)z^{-n} = \frac{\sum_{r=0}^{M} b_r z^{-r}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$	两处错误
114页,图 6.6	右图标注: t 平面	右图标注: z 平面	
118 页,第 5 行文字	面单位圆上去,	面上去,	多字
120 页,第 4 行 公式分子项	$\lg[(10^{2_1}-1)/(10^{0.075_2}-1)]$	$\lg[(10^2 - 1)/(10^{0.075} - 1)]$	
120 页, 【例 6-5 】,第 2 行	在 $0.2\pi o\pi$ 阻带频率	在 $0.3\pi \to \pi$ 阻带频率	
120 页,最后 一行公式 121 页,第一 行公式	ln	lg	
133 页,最后 一行公式	$H(z) = \sum_{n=0}^{N-1} h(N-1-n)z^{-n}$	$H(z) = -\sum_{n=0}^{N-1} h(N-1-n)z^{-n}$	漏掉负号
150 页,公式 (7.44)	$H_d(N-k) = H_d(k)$	$H_d(N-k) = H_d^*(k)$	漏掉共轭 符号