Reference Sheet for CO145 Mathematical Methods

Autumn 2016

Part I

Analysis

1 Sets

For a set S of real numbers:

1. u is an upper bound if $u \ge s \,\forall s \in S$. If such a u exists, S is bounded above.

2. l is an lower bound if $l \leq s \, \forall \, s \in S$. If such a l exists, S is bounded below.

Every set, S has a supremum and infimum:

1. $\sup(S)$ is the least upper bound of S.

2. $\inf(S)$ is the greatest lower bound of S.

Proving the Convergence of a Bounded Sequence. Every *increasing* sequence of real numbers that is *bounded above* must converge (this is especially useful when combined with proof by induction).

2 Sequences

2.1 Given Results

2.1.1 Absolute Values

1. $|xy| = |x| \times |y|$

 $2. \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

2.1.2 Converging Sequences

1. $\lim_{n\to\infty} \frac{1}{n^c} = 0$ for all c > 0

2. $\lim_{n\to\infty} \frac{1}{c^n} = 0$ for all |c| > 0

3. $\lim_{n\to\infty} \frac{1}{n!} = 0$

4. $\lim_{n\to\infty} \frac{1}{\log n} = 0$ for n>1

2.1.3 Combinations of Sequences

1. $\lim_{n\to\infty} (\lambda a_n) = \lambda \lim_{n\to\infty} a_n$

2. $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$

3. $\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$

4. $\lim_{n\to\infty} (a_n \times b_n) = \lim_{n\to\infty} a_n \times \lim_{n\to\infty} b_n$

5. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$

2.2 Proving Convergence

2.2.1 Direct Proof

1. Apply the definition of convergence:

Suppose a_n converges to L. Then there must exist an $N(\epsilon) \in \mathbb{R}$ such that for all $n \geq N(\epsilon)$ and for all $\epsilon > 0$, * holds:

$$|a_n - L| < \epsilon *$$

2. Rearrange * such that n is the subject, ensuring that you show implications in the correct direction.

3. Propose an $N(\epsilon)$ such that * holds (the ceiling function applied to the previous result is sufficient).

4. Check that this result is sensible.

2.2.2 Sandwich Theorem

- 1. Show that $\lim_{n\to\infty} l_n = L$.
- 2. Show that $\lim_{n\to\infty} u_n = L$.
- 3. Show that $l_n \leq a_n$ and $u_n \geq a_n$ for all $n \geq N$ for some $N \in \mathbb{R}$.
- 4. Apply the sandwich theorem to show that $\lim_{n\to\infty} a_n = L$.

2.2.3 Ratio Test

- 1. Determine the value of $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$.
- 2. Conclude appropriately.
 - (a) If r < 1 then a_n converges to 0.
 - (b) If r > 1 then a_n diverges.

Proving the convergence of a sequence b_n to $L \neq 0$ Consider the ratio of the modified sequence $a_n = b_n - L$.

3 Series

3.1 Given Results

3.1.1 Converging Series

- 1. $\sum_{n=1}^{\infty} x^n$ converges to $\frac{x}{1-x}$ for |x| < 1. [Geometric Series]
- 2. $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges to $\frac{\pi}{6}$. [Inverse Square Series]
- 3. $\sum_{n=1}^{\infty} \frac{1}{n^c}$ converges for c > 1.

3.1.2 Diverging Series

- 1. $\sum_{n=1}^{\infty} x^n$ diverges for |x| > 1. [Geometric Series]
- 2. $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. [Harmonic Series]
- 3. $\sum_{p:\text{prime }\frac{1}{p}}$ diverges. [Harmonic Primes]

3.2 Proving Convergence

3.2.1 Using Partial Sums

- 1. Construct the partial sum, $S_n = \sum_{i=1}^n a_i$.
- 2. Prove the convergence or divergence of the partial sum.

3.2.2 Comparison Test

Standard Comparison Test

- 1. Show that $\sum_{i=1}^{\infty} c_i$ converges or that $\sum_{i=1}^{\infty} d_i$ diverges.
- 2. Make a comparison and conclude appropriately.
 - (a) Show that $a_i \leq \lambda c_i$ for some $\lambda > 0$ and for all $i > N \in \mathbb{R}$ and conclude $\sum_{n=1}^{\infty} a_i$ converges.
 - (b) Show that $a_i \geq \lambda d_i$ for some $\lambda > 0$ and for all $i > N \in \mathbb{R}$ and conclude $\sum_{n=1}^{\infty} a_i$ diverges.

Limit Comparison Test

- 1. Show that $\sum_{i=1}^{\infty} c_i$ converges or that $\sum_{i=1}^{\infty} d_i$ diverges.
- 2. State the appropriate limit and conclusion.
 - (a) Show that $\lim_{i\to\infty}\frac{a_i}{c_i}$ exists and conclude $\sum_{n=1}^{\infty}a_i$ converges.
 - (b) Show that $\lim_{i\to\infty} \frac{d_i}{a_i}$ exists and conclude $\sum_{n=1}^{\infty} a_i$ diverges.

3.2.3 Ratio Test

2

- 1. Determine $\lim_{n\to\infty} \frac{a_{i+1}}{a_i}$.
- 2. Conclude appropriately.
 - (a) If $\lim_{n\to\infty} \frac{a_{i+1}}{a_i} < 1$ then $\sum_{i=1}^{\infty} a_i$ converges.
 - (b) If $\lim_{n\to\infty} \frac{a_{i+1}}{a_i} > 1$ then $\sum_{i=1}^{\infty} a_i$ diverges.

3.2.4 Integral Test

Where $f(n) = a_n$ is a continuous, positive, and decreasing function:

- 1. Determine $\int_{N}^{\infty} f(x) dx$.
- 2. Conclude appropriately.
 - (a) If $\int_{N}^{\infty} f(x) dx$ converges, so does $\sum_{n=N}^{\infty} a_n$.
 - (b) If $\int_{N}^{\infty} f(x) dx$ diverges, so does $\sum_{n=N}^{\infty} a_n$.

4 Power Series

4.1 Given Results

- 1. $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^r}{r!} + \dots$ for all x
- 2. $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \dots + (-1)^{r+1} \frac{x^r}{r} + \dots$ for $-1 < x \le 1$
- 3. $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots$ for all x
- 4. $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots + (-1)^r \frac{x^{2r}}{(2r)!} + \dots$ for all x

Combinations of Functions Note that you can add, subtract, multiply, divide, differentiate and integrate power series term-wise.

4.2 Determining a Maclaurin Series

- 1. Repeatedly differentiate f(x) and set x to 0. Use these results to propose a value for $f^{(n)}$ 0.
- 2. The Maclaurin series expansion for f(x) is then given by $\sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^n}{n!}$.

4.3 Determining a Taylor Series

- 1. Repeatedly differentiate f(x) and set x to a. Use these results to propose a value for $f^{(n)}a$.
- 2. The Taylor series expansion at a for f(x) is then given by $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$

4.4 Finding the Radius of Convergence

Radius of Convergence: Size of x set for which a power series converges.

- 1. Apply a ratio test using absolute values.
- 2. Set |r| < 1 to show the region of convergence.
- 3. If the series converges for |x a| < R, the series has a radius of convergence of R (about a).

4.5 Error Terms

Where c is a constant that lies between x and a:

4.5.1 Lagrange Error Term

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$= \sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!} (x - a)^n + \underbrace{\frac{f^{(k+1)}(c)}{(k+1)!} (x - a)^{k+1}}_{\text{Lagrange Error Term}}$$

This result follows from the mean value theorem.

4.5.2 Cauchy Error Term

$$f(x) = \sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!} (x-a)^{n} + \underbrace{\frac{f^{(k+1)}(c)}{k!} (x-c)^{k} (x-a)}_{\text{Cauchy Error Term}}$$

4.6 Using Power Series to Solve ODEs

Example: Given the differential equation, $\frac{dy}{dx} = ky$:

- 1. Express y as the power series, $\sum_{i=0}^{\infty} a_i x^i$.
- 2. Differentiate y to give $\frac{dy}{dx} = \sum_{i=0}^{\infty} i a_i x^{i-1}$.
- 3. Compare coefficients to give $a_i = \frac{k}{i}a_{i-1}$.
- 4. Deduce that $a_i = \frac{k^i}{i!} a_0$. Hence $y = a_0 e^{kx}$ (where a_0 is the value of x at y = 0).

Part II

Linear Algebra

5 Introduction

- $1.\ \mathit{Vectors}$ can be added together or multiplied by scalars to produce another vector.
- 2. Examples of vector objects: Geometric vectors, polynomials, \mathbb{R}^n , audio signals.

6 Groups

For (G, \cdot) to be called a group, it must have the properties:

- 1. Closure: $\forall x, y \in G, x \cdot y \in G$
- 2. Associativity: $\forall x, y, z \in G, (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- 3. **Identity:** $\exists e \in G \text{ s.t. } \forall x \in G, x \cdot e = e \cdot x = x$
- 4. Inverse: $\forall x \in G \exists x^{-1} \in G \text{ s.t. } x \cdot x^{-1} = x^{x-1} \cdot x = e$

For the group to be *abelian* it must also have the additional property:

1. Commutativity: $\forall x, y \in G, x \cdot y = y \cdot x$

7 Methods on Matrices

7.1 Multiplication by a Scalar

Has the properties:

- 1. Associativity
- 2. Distributivity
- 3. $(\lambda \mathbf{C})^{\top} = \lambda \mathbf{C}^{\top}$

7.2 Matrix Multiplication

Matrix multiplication is defined for $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$, giving the product, $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times p}$. It has the properties:

- 1. Associativity
- 2. Distributivity
- 3. $\forall \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{I}_m \mathbf{A} = \mathbf{A} \mathbf{I}_n = \mathbf{A}.$
- 4. Note that $AB \neq BA$.

7.3 Inverse and Transpose

7.3.1 Further Properties of Matrix Arithmetic

- 1. $AA^{-1} = A^{-1}A = I$
- 2. Note $(\mathbf{A} + \mathbf{B})^{-1} \neq \mathbf{A}^{-1} + \mathbf{B}^{-1}$
- 3. $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
- $4. \ \left(\mathbf{A}^{\top}\right)^{\top} = \mathbf{A}$

4

- 5. $(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}$
- 6. $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$
- 7. $\left(\mathbf{A}^{-1}\right)^{\top} = \left(\mathbf{A}^{\top}\right)^{-1}$

7.3.2 Determining the Inverse of a Matrix

- 1. Recall that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$. We therefore wish to solve $\mathbf{A}\mathbf{X} = \mathbf{I}$.
- 2. Starting with $[\mathbf{A}|\mathbf{I}_n]$, use Gaussian elimination to reach reduced row echelon form.
- 3. \mathbf{A}^{-1} can be read off from the result $[\mathbf{I}_n|\mathbf{A}^{-1}]$.

7.4 Gaussian Elimination

7.4.1 Elementary Transformations

We are allowed to:

- 1. Swap two rows.
- 2. Multiply a row by a constant $\lambda \neq 0$.
- 3. Add a row to another row.

We use these transformations to reach (reduced) row echelon form.

7.4.2 Row Echelon Form

- 1. The pivot of a non-zero row is strictly to the right of a pivot of the row above it.
- 2. Any rows containing only zeros are at the bottom of the matrix.

Columns with pivots define basic variables, other columns give free variables.

7.4.3 Reduced Row Echelon Form

- 1. The system is in row echelon form.
- 2. Every pivot is 1.
- 3. The pivot is the only non-zero entry in its column.

7.5 Rank and Determinant

7.5.1 Finding the Rank of a Matrix

Rank: number of linearly independant columns of a matrix.

- 1. Apply Gaussian elimination to reach RREF.
- 2. The rank is given by the number of pivots (linearly independent cols / rows).

Points to Note

- 1. Column rank is equal to row rank.
- 2. **A** is regular (invertible) \iff rk (**A**) = n.
- 3. A matrix has full rank if its rank is equal to the lesser of the number of rows and columns, or is rank-deficient otherwise.

7.5.2 Finding the Determinant of a Matrix

- 1. By the given transformations, bring the matrix into triangular form (all 0 above or below the leading diagonal) or into a 2×2 form.
- 2. The determinant is given the product of the leading diagonal of a triangular matrix, or the product of the leading diagonal minus the product of the other elements in a 2×2 matrix.

Transformations

- 1. Adding and subtracting multiples of cols or rows does not change the determinant.
- 2. Multiplying a col or row by by a constant scales the determinant by that constant.
- 3. Swapping rows or cols changes the sign.
- 4. **Laplace expansion** can be used to reduce no. of rows and cols by one. Best used when there is a row or col with only one non-zero entry.

Points to Note

- 1. $\det(\mathbf{AB}) = \det(\mathbf{A}) \times \det(\mathbf{B})$
- 2. $\det(\mathbf{A}) = 0 \iff \mathbf{A} \text{ is singular}$
- 3. $\det(\mathbf{A}) = \det(\mathbf{A}^{\top})$
- 4. $\det\left(\mathbf{A}^{-1}\right) = 1/\det\left(\mathbf{A}\right)$
- 5. Similar matrices have the same determinant.

8 Linear Equation Systems

8.1 Solving Inhomogeneous Linear Equation Systems

For $\mathbf{A}\mathbf{x} = \mathbf{b}$:

- 1. Build an augmented matrix from the system of equations.
- 2. Use elementary transformations to reach row echelon form (you *must* justify every step).

- 3. By reading from the resulting rows and setting free variables =0, find a particular solution.
- 4. Solve the homogeneous linear equation system $\mathbf{A}\mathbf{x} = \mathbf{0}$, using the row echelon form derived in 2.
- 5. Combine the solutions from 3 and 4 to form the general solution.

8.2 Solving Homogeneous Linear Equation Systems

For Ax = 0:

- 1. Use elementary transformations to reach row echelon form as before.
- 2. For each free variable (non-pivot col), equate it to a sum of basic variables (pivot cols).
- 3. Rearrange the equations formed in 1 so that they are of the form something = 0.
- 4. The solutions are given by the column vector of the coefficients of the variables, multiplied by any real scalar value.

8.2.1 The Minus-1 Trick

- 1. Use Guassian elimination to reach reduced row echelon form.
- 2. Extend the matrix from 1 by adding rows of the form $[0 \dots 0 1 \ 0 \dots 0]$ such that the leading diagonal is made up entirely of 1 (pivots) or -1 (from the introduced rows).
- 3. The columns containing -1 in the diagonal form the solutions.

9 Vector Spaces

9.1 Defining Vector Spaces

9.1.1 Vector Spaces

A vector space is a set V with two operations:

- 1. $V + V \rightarrow V$ (inner operation)
- 2. $\mathbb{R} \cdot V \to V$ (outer operation)

where:

- 1. (V, +) is an Abelian group and has the distributivity property.
- 2. The outer operation has distributivity and associativity properties and has a neutral element of 1.

9.1.2 Vector Subspaces and Generating Sets

For a vector space, V:

- 1. If every vector in V can be expressed as a linear combination of $A\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$, then A is a generating set for V.
- 2. For $U \subset V$ and $U \neq \emptyset$, U is a vector subspace of V if U is a vector space.

Proving a Set is a Vector Subspace For a vector subspace U, we need to show:

- 1. $U \neq \emptyset$. Equivalently, $0 \in U$.
- 2. Closure of U with respect to the inner operation: $\forall \mathbf{x}, \mathbf{y} \in U (\mathbf{x} + \mathbf{y} \in U)$.
- 3. Closure of U with respect to the outer operation: $\forall \lambda \in \mathbb{R} \forall \mathbf{x} \in U \ (\lambda \mathbf{x} \in U)$.

9.2 Determining Linear Dependence or Independence

Linear Dependence: For a vector space $\mathbf{x}_1, \dots, \dot{\mathbf{x}}_k$ here is a non-trivial linear combination such that $\mathbf{0} = \sum_{i=1}^k \lambda_i \mathbf{x}_i$.

To prove $\mathbf{x}_1,\dots,\mathbf{x}_k$ are linearly independent:

- 1. Write the vectors as columns of a matrix.
- 2. Apply Gaussian elimination to reach RREF.
- 3. Conclude appropriately:
 - (a) Pivot columns are linearly independent of the previous vectors.
 - (b) Non-pivot columns can be expressed as linear combinations of previous pivot columns.

Points to Note

- 1. If at least one of the vectors is **0** or at least two of the vectors are identical then they are linearly dependent.
- 2. The set of vectors, $\mathbf{x}_1 = \sum_{i=1}^k \lambda_{i1} \mathbf{b}_i, \dots, \mathbf{x}_m = \sum_{i=1}^k \lambda_{im} \mathbf{b}_i$ (where $\mathbf{b}_1, \dots, \mathbf{b}_k$ are linearly independent if and only if $\lambda_1, \dots, \lambda_m$ are linearly independent.

9.3 Determining Bases and Dimensions

9.3.1 Determining a Basis and Dimension

Basis: Minimal (linearly independent) generating set for V. It can be determined as follows:

- 1. Write the spanning vectors as columns of a matrix.
- 2. Apply Gaussian elimination to reach RREF.
- 3. The original values of the pivot columns form a basis.
- 4. The dimension is the number of basis vectors.

9.3.2 Determining a Simple Basis

- 1. Write the spanning vectors as rows of a matrix.
- 2. Apply Gaussian elimination to reach RREF.
- 3. The rows with leading ones form a simple basis.

9.3.3 Determining a Basis of the Intersection of Subspaces

For $U_1 = [\mathbf{b}_1, ..., \mathbf{b}_k]$ and $U_2 = [\mathbf{c}_1, ..., \mathbf{c}_l]$:

- 1. Find the respective bases of U_1 and U_2 .
- 2. We want to solve $\sum_{i=1}^k \lambda_i \mathbf{b}_i = \sum_{j=1}^l \mu_j \mathbf{c}_j$, i.e. $\sum_{i=1}^k \lambda_i \mathbf{b}_i \sum_{j=1}^l \mu_j \mathbf{c}_j = \mathbf{0}$.
- 3. This can be solved by the method for homogeneous linear equations, where $\mathbf{b}_1, \dots, \mathbf{b}_k, -\mathbf{c}_1, \dots, -\mathbf{c}_l$ form the columns of the augmented matrix.
- 4. Solve for either $\lambda_1, \ldots, \lambda_k$ or μ_1, \ldots, μ_l and determine the basis accordingly.

The *linear hull* is the intersection of a set of subspaces.

9.4 Affine Spaces

9.4.1 Defining Affine Spaces

Affine spaces can be defined as:

- 1. $L = \mathbf{x}_0 + U$
- 2. Parametric Equation: $\exists \lambda_1 \dots \lambda_k \forall \mathbf{x} \in L \text{ such that } \mathbf{x} = \mathbf{x}_0 + \lambda_1 \mathbf{b}_1 + \dots + \lambda_k \mathbf{b}_k$

9.4.2 Finding the Intersection of Affine Spaces

- 1. Recall that for $\mathbf{x} \in L_1$ and $\mathbf{x} \in L_2$, $\mathbf{x}_1 + \sum_{i=1}^k \lambda_i \mathbf{b}_i = \mathbf{x} = \mathbf{x}_2 + \sum_{j=1}^l \mu_j \mathbf{c}_j$. Hence $\sum_{i=1}^k \lambda_i \mathbf{b}_i \sum_{j=1}^l \mu_j \mathbf{c}_j = \mathbf{x}_2 \mathbf{x}_1$. This can be solved by the method for inhomogeneous linear equations, where the basis vectors $\mathbf{b}_1, \ldots, \mathbf{b}_k, -\mathbf{c}_1, \ldots, -\mathbf{c}_l$ form the columns of the augmented matrix.
- 2. Determine the basis vectors.
- 3. Solve the resulting inhomogeneous LEQS
- 4. Use the solution to determine a value for \mathbf{x} using one of the original equations.
- 5. You can check your answer with the other equation.

9.4.3 Determining Parallelism

For $L_1 = \mathbf{x}_1 + U_1$ and $L_2 = \mathbf{x}_2 + U_2$, $L_1 || L_2$ if $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$.

10 Linear Mappings

10.1 Defining Linear Mappings

To prove a mapping Φ is linear (a homomorphism), we must show that:

- 1. $\Phi(\mathbf{x} + \mathbf{y}) = \Phi(\mathbf{x}) + \Phi(\mathbf{y})$
- 2. $\Phi(\lambda \mathbf{y}) = \lambda \Phi(\mathbf{x})$

Special Cases

- 1. **Isomorphism:** also bijective.
- 2. **Endomorphism:** also maps from V to V.
- 3. Automorphism: also maps from V to V and bijective.

Points to Note

7

- 1. For linear mappings $\Phi: V \to W$ and $\Psi: W \to X$, the mapping $\Psi \circ \Phi: V \to X$ is also linear.
- 2. If Φ is an isomorphism, then so is Φ^{-1} .
- 3. If Φ and Ψ are linear, then so are $\Phi + \Psi$ and $\lambda \Phi$.

10.2 Image and Kernel (Null Space)

For a mapping $\Phi : \mathbf{x} \in V \to \mathbf{A}\mathbf{x} \in W$:

Determining the Image Image: $\{\mathbf{w} \in W | \exists \mathbf{v} \in V : \Phi(\mathbf{v}) = \mathbf{w}\}$: Set of vectors in W that can be reached by Φ from any vector in V.

Return the column space of **A** (find its basis).

Determining the Kernel *Kernel*: $\{\mathbf{v} \in V | \Phi(\mathbf{v}) = \mathbf{0}_W\}$: Set of vectors in V that Φ maps onto the neutral element in W. *Note*: If kernel is $\{\mathbf{0}\}$, Φ is injective. Return the solution to the LEQS $\mathbf{A}\mathbf{x} = \mathbf{0}$.

Rank-Nullity Theorem For $\Phi:V\to W, \dim(\operatorname{Im}(\Phi))=\dim(V)-\dim(\ker(\Phi)).$

10.3 Matrix Representation

For the mapping $\Phi: V \to W$, and ordered bases $B \subseteq V$ and $C \subseteq W$, the transformation matrix \mathbf{A}_{Φ} is defined such that for the coordinates $\hat{\mathbf{x}}$ of $\mathbf{x} \in V$ with respect to B and $\hat{\mathbf{y}}$ of $\Phi(\mathbf{x}) \in W$ with respect to $C: \hat{\mathbf{y}} = \mathbf{A}_{\Phi}\hat{\mathbf{x}}$.

10.4 Basis Change

Given an \mathbf{A}_{Φ} with respect to bases B and C, we want an $\tilde{\mathbf{A}}_{\Phi}$ w.r.t. \tilde{B} and \tilde{C} :

- 1. Write the vectors of \tilde{B} as a linear combination of the vectors of B. These form the columns of the matrix S.
- 2. Write the vectors of \tilde{C} as a linear combination of the vectors of C. These form the columns of the matrix T.
- 3. $\tilde{\mathbf{A}}_{\Phi}$ can be calculated by $\tilde{\mathbf{A}}_{\Phi} = \mathbf{T}^{-1} \mathbf{A}_{\Phi} \mathbf{S}$.

This can be derived by considering the composition of the required linear mappings.

Points to Note

- 1. **A** and $\tilde{\mathbf{A}}$ are *equivalent* if $\tilde{\mathbf{A}}$ can be expressed as $\tilde{\mathbf{A}} = \mathbf{T}^{-1}\mathbf{AS}$.
- 2. **A** and $\tilde{\mathbf{A}}$ are *similar* if $\tilde{\mathbf{A}}$ can be expressed as $\tilde{\mathbf{A}} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$.

10.5 Eigenvalues

For an endomorphism $\Phi: V \to V$, λ is an *eigenvalue* if there exists an $\mathbf{x} \in V \setminus \{\mathbf{0}\}$ s.t. $\Phi(\mathbf{x}) = \lambda \mathbf{x}$. \mathbf{x} is the corresponding eigenvector.

For a transformation matrix **A**:

10.5.1 Determining the Spectrum (Eigenvalues)

- 1. Calculate the determinant, $|\mathbf{A} \lambda \mathbf{I}|$.
- 2. Solve (equal to 0) the result (the *characteristic polynomial*) for λ .
- 3. The eigenvalues of **A** are given by the solutions.

10.5.2 Determining the Corresponding Eigenspaces

1. For each eigenvalue λ , find the solutions to the LEQS $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0}$.

10.5.3 Applications

- 1. Used in principal component analysis (principle components have largest eigenvalues) for dimensionality reduction in machine learning applications.
- 2. Used to determine the theoretical limit to how much information can be transferred through a communication medium by calculating eigenvalues and eigenvectors of communication channel.
- 3. Used in the PageRank algorithm to determine the rank of a page for a search (based on maximal eigenvalue).
- 4. Determine numerical stability, e.g. when inverting matrices, by looking at condition numbers (ratio of biggest to smallest eigenvalue).

10.6 Diagonalization

10.6.1 Determining Diagonalizability

- 1. The characteristic polynomial must decompose into linear factors (and the sign must be correct).
- 2. The dimension of each eigenspace must be equal to the power (algebraic multiplicity) of its respective factor in the characteristic polynomial.

10.6.2 Diagonalization

- 1. Determine the eigenspaces of the given matrix **A**.
- 2. Collect the eigenvectors in a single matrix S.
- 3. The diagonalization of **A** is given by $\mathbf{D} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$. This corresponds to a matrix with the eigenvalues of **A** along the diagonal.

10.6.3 Applications

- 1. Diagonal matrices are easily raised to a power.
- 2. Decouple variables uses in probability theory to interpret random variables.
- 3. Easier to analyse properties of differential equations.

10.7 Projections

A linear mapping π is a projection if $\pi^2 = \pi \circ \pi = \pi$.

10.7.1 Projection onto a Line

An arbitrary point \mathbf{x} onto a line with basis vector \mathbf{b} is projected onto the point \mathbf{p} :

- 1. Find a λ such that $\mathbf{p} = \lambda \mathbf{b}$ and $\mathbf{x} \mathbf{p} \perp \mathbf{b}$. Hence $(\mathbf{x} \lambda \mathbf{b}) \cdot \mathbf{b} = 0 \iff \mathbf{x} \cdot \mathbf{b} \lambda \mathbf{b} \cdot \mathbf{b} = 0 \iff \begin{bmatrix} \lambda = \frac{\mathbf{x} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \end{bmatrix}$.
- 2. Find the projection point, $\boxed{\mathbf{p} = \lambda \mathbf{b}} = \mathbf{b} \frac{\mathbf{x} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} = \mathbf{b} \frac{\mathbf{b}^{\top} \mathbf{x}}{\mathbf{b}^{\top} \mathbf{b}}$.
- 3. Conclude that the projection matrix $\mathbf{P}_{\pi} = \frac{\mathbf{b}\mathbf{b}^{\top}}{\mathbf{b}^{\top}\mathbf{b}}$.

10.7.2 Projection onto a Subspace

An arbitrary point \mathbf{x} onto a subspace with ordered basis $\mathbf{B} = (\mathbf{b}_1 | \dots | \mathbf{b}_n)$ is projected onto the point \mathbf{p} :

1. Find a λ such that $\mathbf{p} = \sum_{i=1}^{n} \lambda_i \mathbf{b}_i = \mathbf{B}\lambda$ and $\mathbf{x} - \mathbf{p} \perp \mathbf{b}_i$. Hence $(\mathbf{x} - \mathbf{B}\lambda) \cdot \mathbf{b}_i = 0 \iff \mathbf{B}^{\top}(\mathbf{x} - \mathbf{B}\lambda) = \mathbf{0} \iff \mathbf{B}^{\top}\mathbf{B}\lambda = \mathbf{B}^{\top}\mathbf{x}$. Hence λ can be found by $\lambda = (\mathbf{B}^{\top}\mathbf{B})^{-1}\mathbf{B}^{\top}\mathbf{x}$.

- 2. Find the projection point, $\boxed{\mathbf{p} = \mathbf{B}\lambda} = \mathbf{B} \left(\mathbf{B}^{\top}\mathbf{B}\right)^{-1}\mathbf{B}^{\top}\mathbf{x}$.
- 3. Conclude that the projection matrix $\mathbf{P}_{\pi} = \mathbf{B} (\mathbf{B}^{\top} \mathbf{B})^{-1} \mathbf{B}^{\top}$
- 4. To check your answer, ensure that:
 - (a) $\mathbf{p} \mathbf{x} \perp \mathbf{b}$ for each \mathbf{b} in \mathbf{B} .
 - (b) $\mathbf{P}_{\pi} = \mathbf{P}_{\pi}^{2}$.

10.7.3 Projection Error

 $d(\mathbf{x}, U)$ for a point \mathbf{x} projected onto the basis U.

1. Calculate the value $\|\mathbf{x} - \mathbf{p}\|$.

10.7.4 Applications

- 1. In graphics, e.g. to generate shadows.
- 2. Optimisation: orthogonal projections used to iteratively minimise residual errors.
- 3. Project high dimensional data into a lower dimensional feature space, e.g. for ML.

10.8 Rotations

10.8.1 In Two Dimensions

$$\mathbf{R}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

(for a counter-clockwise rotation by θ)

10.8.2 In Three Dimensions

We keep one axis constant and view this axis "from the end towards the origin". A counter-clockwise rotation is then given by:

$$\mathbf{R}_{1}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$\mathbf{R}_{2}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 1 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$\mathbf{R}_{3}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

10.8.3 In n Dimensions

We keep all but two axes the same:

$$\mathbf{R}_{ij}\left(heta
ight) = \left[egin{array}{ccccc} \mathbf{I}_{i-1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \cos heta & \mathbf{0} & -\sin heta & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{I}_{j-i} & \mathbf{0} & \mathbf{0} \ \mathbf{0} & \sin heta & \mathbf{0} & \cos heta & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I}_{n-j} \end{array}
ight]$$

10.8.4 Properties

- 1. Composition of rotations is $\mathbf{R}(\phi)\mathbf{R}(\theta) = \mathbf{R}(\phi + \theta)$
- 2. Preserves lengths and distances, i.e. $\|\mathbf{x}\| = \|\mathbf{R}(\theta)\mathbf{x}\|$ and $\|\mathbf{x} \mathbf{y}\| = \|\mathbf{R}(\theta)\mathbf{x} \mathbf{R}(\theta)\mathbf{y}\|$
- 3. Not commutative (except in two dimensions)

10.9 Cayley-Hamilton Theorem

Useful for "Find an expression for A^m in terms of I, A, A^2, \dots ":

For an endomorphism with transformation matrix \mathbf{A}_{Φ} with characteristic polynomial p:

$$p\left(\mathbf{A}_{\Phi}\right) = \mathbf{0}$$

10.10 Affine Mappings

10.10.1 Definition

An affine mapping is defined as $x \to a + \Phi(x)$ where Φ is a linear mapping.

Points to Note

- 1. The composition of affine mappings is an affine mapping (same as for linear mappings).
- 2. Affine mappings preserve distances and parallelism.

11 Scalar Products

11.1 Proving a Mapping is a Scalar Product

For a mapping $\langle \mathbf{x}, \mathbf{y} \rangle : V \times V \to \mathbb{R}$:

- 1. Prove the mapping is linear in both arguments.
- 2. Prove the mapping is symmetric: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.
- 3. Prove the mapping is positive definite: $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ except for $\langle \mathbf{0}, \mathbf{0} \rangle = 0$.

The standard scalar product is $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{y}$.

11.1.1 Applications

- 1. Compute angles between vectors or distances, determine whether orthogonal.
- 2. Allows us to determine specific bases where each vector is orthogonal to others important for optimistations of numerical algorithms for solving LEQs.
- 3. Kernel methods in machine learning. Allows for non-linearisation of many ML algorithms.

11.2 Useful Geometric Properties

11.2.1 Finding the Length of a Vector

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

A norm has the properties:

- 1. $\|\mathbf{x}\| > 0$ except for $\|\mathbf{0}\| = 0$
- 2. $\|\lambda \mathbf{x}\| = |\lambda| \cdot \|\mathbf{x}\|$
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$

11.2.2 Finding the Distance between two Vectors

$$d\left(\mathbf{x}, \mathbf{y}\right) = \|\mathbf{x} - \mathbf{y}\|$$

A *metric* has the properties:

- 1. Symmetric
- 2. Positive Definite
- 3. Obeys triangle inequality: $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$

11.2.3 Showing Orthogonality

$$\mathbf{x} \perp \mathbf{y} \iff \langle \mathbf{x}, \mathbf{y} \rangle = 0$$

11.2.4 Finding the Angle between Vectors

$$\cos \omega = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

11.2.5 Properties of Euclidean Vector Spaces

- 1. Cauchy-Schwarz Inequality: $\langle \mathbf{x}, \mathbf{y} \rangle \le ||\mathbf{x}|| \, ||\mathbf{y}||$
- 2. Minkowski Inequality: $\|\mathbf{x}+\mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$
- 3. Triangle Inequality: $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$
- 4. Parallelogram Law: $\|\mathbf{x} + \mathbf{y}\| + \|\mathbf{x} \mathbf{y}\| = 2 \|\mathbf{x}\|^2 + 2 \|\mathbf{y}\|^2$
- 5. $4\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x} + \mathbf{y}\|^2 \|\mathbf{x} \mathbf{y}\|^2$
- 6. $\mathbf{x} \perp \mathbf{y} \iff \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$