

SAR EVALUATION REPORT

For

BEYOND RADIO TECHNOLOGY LIMITED

Room 11, 20/F, Grandtech Centre No.8 On Ping Street Shatin, NT, Hong Kong

FCC ID: 2AFV9FX100SERIES

Report Type: **Product Type:** Original Report NFC Device Terry Kiathou **Test Engineer:** Terry XiaHou **Report Number:** RSZ150901007-20 **Report Date:** 2015-10-10 BeilHu Bell Hu Reviewed By: SAR Engineer Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

	A1	testation of Test Results			
	Company Name	BEYOND RADIO TECHNOLOGY LIMITED			
	EUT Description	NFC Device			
EUT	FCC ID	2AFV9FX100SERIES			
Information		Tested Model: FX 100			
	Model Number	Multiple Model: FX 100 Series			
	Test Date	2015-09-29			
Frequency]	Max. SAR Level(s) Reported	Limit(W/Kg)		
GSM 850		0.806 W/kg 1g Faceup SAR 1.352 W/kg 1g Body SAR			
PCS 1900		0.440 W/kg 1g Faceup SAR 0.909 W/kg 1g Body SAR			
WCDMA850		0.760 W/kg 1g Faceup SAR 1.165 W/kg 1g Body SAR	1.6		
WCDMA1900	0.420 W/kg 1g Faceup SAR 0.962 W/kg 1g Body SAR				
Simultaneous	1.724	0.992 W/kg 1g Faceup SAR 1.724 W/kg 1g Body SAR(SPLSR=0.0284)			
Hotspot	1.724 \	W/kg 1g Body SAR(SPLSR=0.0284)			
	Electromagnetic File ANSI / IEEE C95.3 IEEE Recommended	afety Levels with Respect to Human Exposure to Rads, 3 kHz to 300 GHz.	dio Frequency		
Applicable Standards	IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques				
	KDB 648474 D04 H KDB 865664 D01 SA KDB 865664 D02 R	AR measurement 100 MHz to 6 GHz v01r03 F Exposure Reporting v01r01 G SAR Procedures v03			

Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Standards and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.

The results and statements contained in this report pertain only to the device(s) evaluated.

SAR Evaluation Report 2 of 93

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	5
REFERENCE, STANDARDS, AND GUILDELINES	6
SAR LIMITS	7
FACILITIES	8
DESCRIPTION OF TEST SYSTEM	9
EQUIPMENT LIST AND CALIBRATION	16
EQUIPMENTS LIST & CALIBRATION INFORMATION	
SAR MEASUREMENT SYSTEM VERIFICATION	17
LIQUID VERIFICATION	
EUT TEST STRATEGY AND METHODOLOGY	29
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE TEST POSITION TEST METHODOLOGY	29
CONDUCTED OUTPUT POWER MEASUREMENT	31
PROVISION APPLICABLE	31
TEST PROCEDURE	31
TEST RESULTS:	
SAR MEASUREMENT RESULTS	40
SAR TEST DATA	40
SAR SIMULTANEOUS TRANSMISSION DESCRIPTION	44
SAR PLOTS (SUMMARY OF THE HIGHEST SAR VALUES)	48
APPENDIX A MEASUREMENT UNCERTAINTY	56
APPENDIX B – PROBE CALIBRATION CERTIFICATES	58
APPENDIX C DIPOLE CALIBRATION CERTIFICATES	68
APPENDIX D EUT TEST POSITION PHOTOS	86
Liquid depth ≥ 15cm	
FACEUP SETUP PHOTOBODY-WORN BACK SETUP PHOTO	
BODY-WORN LEFT SETUP PHOTO	
BODY-WORN RIGHT SETUP PHOTO	88
BODY-WORN BOTTOM SETUP PHOTO	
APPENDIX E EUT PHOTOS	
EUT – Front View EUT – Back View	
EUT – LEFT SIDE VIEW	90
EUT - RIGHT SIDE VIEW	
EUT – TOP VIEW EUT – BOTTOM VIEW	
EUT – Uncovered View	
APPENDIX F INFORMATIVE REFERENCES	93

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	RSZ150901007-20	Original Report	2015-10-10	

Report No: RSZ150901007-20

SAR Evaluation Report 4 of 93

EUT DESCRIPTION

This report has been prepared on behalf of BEYOND RADIO TECHNOLOGY LIMITED and their product, FCC ID: 2AFV9FX100SERIES , Model: FX 100 or the EUT (Equipment under Test) as referred to in the rest of this report.

Report No: RSZ150901007-20

*Note:

- 1. This series products model: FX 100 and FX 100 Series, we select model: FX 100 to test, there is no electrical change has been made to the equipment, please refer to the product similarity letter.
- 2. The device is capable of personal hotspot mode. Wi-Fi Hotspot mode permits the device to share its cellular data connection with other 2.4 GHz Wi-Fi enabled devices (channels 1 13).

Technical Specification

Product Type	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Body-Worn Accessories:	Headset
Face-Head Accessories:	None
Multi-slot Class:	Class12
Operation Mode:	GSM Voice, GPRS/EDGE Data, WCDMA, Bluetooth and Wi-Fi
	GSM 850 : 824-849 MHz(TX) ; 869-894 MHz(RX)
	PCS 1900: 1850-1910 MHz(TX); 1930-1990 MHz(RX)
	WCDMA850: 824-849 MHz(TX) ; 869-894 MHz(RX)
Frequency Band:	WCDMA1900: 1850-1910 MHz(TX) ; 1930-1990 MHz(RX)
	Wi-Fi(802.11b/g/n20): 2412MHz-2472MHz
	Wi-Fi(n40): 2422MHz-2462MHz
	Bluetooth:2402-2480MHz
	GSM 850 :32.16 dBm
	PCS 1900:29.55 dBm
	WCDMA 850:22.76 dBm
Conducted RF Power:	WCDMA 1900:22.17 dBm
Conducted RF Power:	Wi-Fi(802.11b/g/n20): 9.41 dBm
	Wi-Fi(802.11n40):8.28 dBm
	Bluetooth3.0: 2.36 dBm
	BLE: -5.37 dBm
Dimensions (L*W*H):	103 mm (L) × 63 mm (W) × 14 mm (H)
Power Source:	3.7 V _{DC} Rechargeable Battery
Normal Operation:	Faceup and Body-worn

SAR Evaluation Report 5 of 93

REFERENCE, STANDARDS, AND GUILDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

Report No: RSZ150901007-20

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Evaluation Report 6 of 93

SAR Limits

FCC Limit (1g Tissue)

Report No: RSZ150901007-20

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

CE Limit (10g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 10 g of tissue)	2.0	10		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

SAR Evaluation Report 7 of 93

FACILITIES

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 6/F, the 3rd Phase of WanLi Industrial Building, Shi Hua Road, Fu Tian Free Trade Zone, Shenzhen, Guangdong, P.R. of China

Report No: RSZ150901007-20

SAR Evaluation Report 8 of 93

DESCRIPTION OF TEST SYSTEM

These measurements were performed with ALSAS 10 Universal Integrated SAR Measurement system from APREL Laboratories.

ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. ALSAS-10U uses the latest methodologies. And FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm2 step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

SAR Evaluation Report 9 of 93

ALSAS-10U Interpolation and Extrapolation Uncertainty

The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

SAR Evaluation Report 10 of 93

Calibration Method Frequency Dependent Below 1 GHz Calibration in air performed in a TEM Cel Above 1 GHz Calibration in air performed in waveguide		
Sensitivity	$0.70 \ \mu V/(V/m)^2$ to $0.85 \ \mu V/(V/m)^2$	
Dynamic Range	0.0005 W/kg to 100 W/kg	
Isotropic Response	Better than 0.1 dB	
Diode Compression Point (DCP)	Calibration for Specific Frequency	
Probe Tip Diameter	< 2.9 mm	
Sensor Offset	1.56 (+/- 0.02 mm)	
Probe Length	289 mm	
Video Bandwidth	@ 500 Hz: 1 dB @ 1.02 kHz: 3 dB	
Boundary Effect	Less than 2.1% for distance greater than 0.58 mm	
Spatial Resolution	The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe	

Report No: RSZ150901007-20

Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from $5\mu V$ to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit
Amplifier Range	20 mV to 200 mV and 150 mV to 800 mV
Field Integration	Local Co-Processor utilizing proprietary integration algorithms
Number of Input Channels	4 in total 3 dedicated and 1 spare
Communication	Packet data via RS232

SAR Evaluation Report 11 of 93

Axis Articulated Robot

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Robot/Controller Manufacturer	Thermo CRS	
Number of Axis	Six independently controlled axis	
Positioning Repeatability	0.05 mm	
Controller Type	Single phase Pentium based C500C	
Robot Reach	710 mm	
Communication	RS232 and LAN compatible	

ALSAS Universal Workstation

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

Universal Device Positioner

The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.

SAR Evaluation Report 12 of 93

Report No: RSZ150901007-20

Phantom Types

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

APREL SAM Phantoms

The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.

SAR Evaluation Report 13 of 93

APREL Laboratories Universal Phantom

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software.

The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

SAR Evaluation Report 14 of 93

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Ingredients	Frequency (MHz)									
(% by weight)	45	0	83	35	91	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Recommended Tissue Dielectric Parameters for Head and Body

Frequency	Head	Tissue	Body Tissue		
(MHz)	Er	O (S/m)	£r	O'(S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

SAR Evaluation Report 15 of 93

EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	Calibration Date	Calibration Due Date	S/N
CRS F3 robot	ALS-F3	N/A	N/A	RAF0805352
CRS F3 Software	ALS-F3-SW	N/A	N/A	N/A
CRS C500C controller	ALS-C500	N/A	N/A	RCF0805379
Probe mounting device & Boundary Detection Sensor System	ALS-PMDPS-3	N/A	N/A	120-00270
Universal Work Station	ALS-UWS	N/A	N/A	100-00157
Data Acquisition Package	ALS-DAQ-PAQ-3	2014-10-14	2015-10-14	110-00212
Miniature E-Field Probe	ALS-E-020	2014-10-14	2015-10-14	500-00283
Dipole, 835MHz	ALS-D-835-S-2	2014-10-08	2017-10-08	180-00558
Dipole, 1900MHz	ALS-D-1900-S-2	2014-10-09	2017-10-09	210-00710
Dipole Spacer	ALS-DS-U	N/A	N/A	250-00907
Device holder/Positioner	ALS-H-E-SET-2	N/A	N/A	170-00510
UniPhantom	ALS-P-UP-1	N/A	N/A	150-00413
Simulated Tissue 835 MHz Head	ALS-TS-835-H	Each Time	Each Time	270-01002
Simulated Tissue 835 MHz Body	ALS-TS-835-B	Each Time	Each Time	270-02101
Simulated Tissue 1900 MHz Head	ALS-TS-1900-H	Each Time	Each Time	295-01103
Simulated Tissue 1900 MHz Body	ALS-TS-1900-B	Each Time	Each Time	295-02102
Directional couple	DC6180A	N/A	N/A	0325849
Power Amplifier	5S1G4	N/A	N/A	71377
Dielectric probe kit	HP85070B	2015-06-13	2016-06-13	US33020324
Attenuator	3dB	2015-05-08	2016-05-08	5402
Network analyzer	8752C	2015-06-03	2016-06-03	3410A02356
Synthesized Sweeper	HP 8341B	2015-06-03	2016-06-03	2624A00116
UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	2014-11-23	2015-11-23	106891
EMI Test Receiver	ESCI	2015-06-13	2016-06-13	101746

Report No: RSZ150901007-20

SAR Evaluation Report 16 of 93

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	Liquid	Liquid Parameter		Target Value		Delta (%)		Tolerance
	Type	ε _r	O'(S/m)	ε _r	O'(S/m)	$\Delta \epsilon_{ m r}$	ΔΟ (S/m)	(%)
924.2	Head	41.06	0.90	41.50	0.90	-1.060	0.000	±5
824.2	Body	53.83	0.95	55.20	0.97	-2.482	-2.062	±5
926.4	Head	41.02	0.90	41.50	0.90	-1.157	0.000	±5
826.4	Body	53.84	0.95	55.20	0.97	-2.464	-2.062	±5
836.6	Head	41.06	0.92	41.50	0.90	-1.060	2.222	±5
830.0	Body	53.86	0.96	55.20	0.97	-2.428	-1.031	±5
946.6	Head	41.09	0.91	41.50	0.90	-0.988	1.111	±5
846.6	Body	53.78	0.97	55.20	0.97	-2.572	0.000	±5
040.0	Head	41.05	0.92	41.50	0.90	-1.084	2.222	±5
848.8	Body	53.78	0.98	55.20	0.97	-2.572	1.031	±5
1050.2	Head	39.59	1.38	40.00	1.40	-1.025	-1.429	±5
1850.2	Body	51.83	1.48	53.30	1.52	-2.758	-2.632	±5
1052.4	Head	39.67	1.37	40.00	1.40	-0.825	-2.143	±5
1852.4	Body	52.02	1.50	53.30	1.52	-2.402	-1.316	±5
1000.0	Head	39.55	1.39	40.00	1.40	-1.125	-0.714	±5
1880.0	Body	51.95	1.51	53.30	1.52	-2.533	-0.658	±5
1007.6	Head	39.62	1.42	40.00	1.40	-0.950	1.429	±5
1907.6	Body	51.80	1.54	53.30	1.52	-2.814	1.316	±5
1000.9	Head	39.55	1.41	40.00	1.40	-1.125	0.714	±5
1909.8	Body	51.76	1.53	53.30	1.52	-2.889	0.658	±5

^{*}Liquid Verification was performed on 2015-09-29.

SAR Evaluation Report 17 of 93

Please refer to the following tables.

	835 MHz Head	i		835 MHz Body	7
Frequency (MHz)	e'	e''	Frequency (MHz)	e'	e''
824.0	41.0593	19.6763	824.0	53.8278	20.6746
824.5	41.0113	19.7322	824.5	53.7830	20.6421
825.0	41.0731	19.7423	825.0	53.8490	20.6554
825.5	41.0910	19.7644	825.5	53.7721	20.6927
826.0	41.0567	19.7581	826.0	53.7754	20.6330
826.5	41.0200	19.6846	826.5	53.8446	20.6333
827.0	41.1040	19.6913	827.0	53.7993	20.6455
827.5	41.0582	19.6907	827.5	53.8070	20.6271
828.0	41.0484	19.6714	828.0	53.8655	20.6692
828.5	41.0320	19.6682	828.5	53.8646	20.6875
829.0	41.0441	19.7316	829.0	53.8107	20.6740
829.5	41.0577	19.6730	829.5	53.8494	20.6754
830.0	41.0310	19.6877	830.0	53.7949	20.7024
830.5	41.0271	19.6970	830.5	53.8704	20.6930
831.0	40.9995	19.6634	831.0	53.8072	20.6713
831.5	41.0662	19.7011	831.5	53.7672	20.6854
832.0	41.0220	19.6921	832.0	53.7724	20.6697
832.5	41.0361	19.7706	832.5	53.8191	20.6522
833.0	41.0849	19.6774	833.0	53.8316	20.6750
833.5	41.0664	19.6718	833.5	53.8515	20.6364
834.0	41.0196	19.7489	834.0	53.8613	20.6701
834.5	41.0402	19.7704	834.5	53.8346	20.6799
835.0	41.0793	19.6818	835.0	53.8338	20.6828
835.5	41.0605	19.7265	835.5	53.8593	20.6244
836.0	41.0799	19.6691	836.0	53.8413	20.7049
836.5	41.0740	19.6991	836.5	53.8144	20.6716
837.0	41.1020	19.7664	837.0	53.7679	20.7031
837.5	41.0779	19.7393	837.5	53.8247	20.6202
838.0	41.0798	19.7410	838.0	53.7948	20.6575
838.5	41.0935	19.7032	838.5	53.7986	20.6737
839.0	41.1013	19.7691	839.0	53.8580	20.6934
839.5	41.0941	19.6961	839.5	53.8276	20.7042
840.0	41.0792	19.4113	840.0	53.7849	20.6200
840.5	41.0279	19.4046	840.5	53.8437	20.6872
841.0	41.0360	19.4636	841.0	53.7942	20.6730
841.5	41.0688	19.4612	841.5	53.8115	20.7031
842.0	41.0313	19.4288	842.0	53.8580	20.6822
842.5	41.0178	19.3685	842.5	53.8132	20.7094
843.0	41.0900	19.3971	843.0	53.7715	20.6591
843.5	41.0165	19.4515	843.5	53.8235	20.6483
844.0	41.0609	19.4736	844.0	53.7722	20.6159
844.5	41.0707	19.4655	844.5	53.8052	20.6656
845.0	41.0197	19.3712	845.0	53.7826	20.6472
845.5	41.0345	19.3790	845.5	53.7801	20.6911
846.0	41.0860	19.3648	846.0	53.8023	20.6602
846.5	41.0908	19.3736	846.5	53.7813	20.6124
847.0	41.0591	19.3995	847.0	53.8577	20.6996
847.5	41.0142	19.4640	847.5	53.8667	20.6571
848.0	41.0530	19.3832	848.0	53.7835	20.6938
848.5	41.0276	19.4478	848.5	53.8207	20.6265
849.0	41.0508	19.4285	849.0	53.7773	20.6915

SAR Evaluation Report 18 of 93

	1900 MHz Head	I]	1900 MHz Body			
Frequency (MHz)	e'	e''	Frequency (MHz)	e'	e''		
1850.0	39.5851	13.3800	1850.0	51.8287	14.4137		
1851.2	39.5840	13.4082	1851.2	52.0308	14.4957		
1852.4	39.6655	13.2671	1852.4	52.0242	14.5720		
1853.6	39.6465	13.2799	1853.6	51.8808	14.4604		
1854.8	39.6008	13.3247	1854.8	51.9324	14.4525		
1856.0	39.6112	13.3333	1856.0	51.8127	14.5581		
1857.2	39.7332	13.2662	1857.2	51.9309	14.5443		
1858.4	39.6537	13.2995	1858.4	51.8114	14.4381		
1859.6	39.6309	13.3410	1859.6	51.9750	14.5095		
1860.8	39.5970	13.3782	1860.8	51.9052	14.4367		
1862.0	39.5516	13.2787	1862.0	51.8797	14.4393		
1863.2	39.5625	13.2903	1863.2	51.7682	14.5597		
1864.4	39.6173	13.2501	1864.4	51.8769	14.4671		
1865.6	39.6918	13.2614	1865.6	51.9351	14.5527		
1866.8	39.6292	13.2991	1866.8	52.0081	14.5663		
1868.0	39.5438	13.2880	1868.0	52.0301	14.4600		
1869.2	39.6802	13.4302	1869.2	52.0722	14.5451		
1870.4	39.7389	13.3166	1870.4	51.9276	14.4482		
1871.6	39.6784	13.4166	1871.6	51.7994	14.4435		
1872.8	39.6380	13.3296	1872.8	51.9770	14.5008		
1874.0	39.7058	13.2959	1874.0	52.0658	14.5791		
1875.2	39.7159	13.4222	1875.2	51.9997	14.5112		
1876.4	39.6823	13.4240	1876.4	52.0120	14.4355		
1877.6	39.7235	13.3631	1877.6	51.9757	14.4890		
1878.8	39.6046	13.3119	1878.8	51.7528	14.4384		
1880.0	39.5451	13.2884	1880.0	51.9464	14.4520		
1881.2	39.5733	13.2533	1881.2	52.0284	14.5666		
1882.4	39.6888	13.2645	1882.4	51.9419	14.4345		
1883.6	39.7358	13.3302	1883.6	51.8799	14.5232		
1884.8	39.6597	13.3358	1884.8	51.9409	14.4449		
1886.0	39.6450	13.3502	1886.0	51.8827	14.4983		
1887.2	39.7091	13.2759	1887.2	51.9870	14.4412		
1888.4	39.5735	13.4242	1888.4	51.8999	14.5020		
1889.6	39.5530	13.2971	1889.6	51.9719	14.4537		
1890.8	39.6865	13.2847	1890.8	51.9938	14.5444		
1892.0	39.7230	13.3733	1892.0	51.8567	14.5718		
1893.2	39.6890	13.2665	1893.2	51.8811	14.4199		
1894.4	39.5449	13.4138	1894.4	52.0118	14.4976		
1895.6	39.6429	13.3969	1895.6	51.9656	14.4640		
1896.8	39.5700	13.4188	1896.8	51.7890	14.5067		
1898.0	39.5516	13.3855	1898.0	51.9613	14.5199		
1899.2	39.5765	13.3689	1899.2	52.0542	14.4192		
1900.4	39.5498	13.4342	1900.4	51.8935	14.5259		
1901.6	39.7336	13.3131	1901.6	51.7699	14.5240		
1902.8	39.5900	13.3156	1902.8	51.9799	14.5731		
1904.0	39.6796	13.3570	1904.0	52.0104	14.4597		
1905.2	39.7298	13.4012	1905.2	51.8509	14.5439		
1906.4	39.6725	13.3034	1906.4	52.0773	14.5240		
1907.6	39.6225	13.3549	1907.6	51.8014	14.4961		
1908.8	39.6966	13.4275	1908.8	52.0054	14.5589		
1910.0	39.5464	13.2533	1910.0	51.7615	14.4279		

SAR Evaluation Report 19 of 93

System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

Report No: RSZ150901007-20

System Verification Setup Block Diagram

Probe and dipole antenna List and Detail

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
APREL	Probe	ALS-E-020	500-00283	2014-10-14	2015-10-13
APREL	Dipole antenna(835MHz)	ALS-D-835-S-2	180-00558	2014-10-08	2017-10-07
APREL	Dipole antenna(1900MHz)	ALS-D-1900-S-2	210-00710	2014-10-09	2017-10-08

System Accuracy Check Results

Date	Frequency Band	Liquid Type	Measured SAR (W/Kg)		Target Value (W/Kg)	Delta (%)	Tolerance (%)
	025	Head	1g	9.522	9.773	-2.568	±10
2015-09-29	835	Body	1g	9.420	9.736	-3.246	±10
2013-09-29	1900	Head	1g	40.706	39.481	3.103	±10
	1900	Body	1g	41.759	39.715	5.147	±10

^{*}All SAR values are normalized to 1 Watt forward power.

SAR Evaluation Report 20 of 93

SAR SYSTEM VALIDATION DATA

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Report No: RSZ150901007-20

System Performance Check 835 MHz Head Liquid

Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558

Product Data

Device Name : Dipole 835 MHz Serial No. : 180-00558 Type : Dipole

Model : ALS-D-835-S-2

Frequency Band : 835

Max. Transmit Pwr
Drift Time : 3 min(s)
Power Drift-Start : 9.823 W/kg
Power Drift-Finish
Power Drift (%) : -3.839

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Serial No. : System Default

Location : Center Description : Default

Phantom Data

Tissue Data

: Head Type Serial No. : 270-01002 Frequency : 835.0 MHz Last Calib. Date : 29-Sep-2015 : 20.00°C Temperature Ambient Temp. : 21.00 °C Humidity : 56.00 RH% : 41.08 F/m Epsilon Sigma : 0.91 S/m Density : 1000.00 kg/cu. m

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 14-Oct-2014

Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 21.00 °C Ambient Temp. : 21.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 21 of 93

1 gram SAR value : 9.522 W/kg 10 gram SAR value : 6.456 W/kg Area Scan Peak SAR : 9.857 W/kg Zoom Scan Peak SAR : 14.680 W/kg

835 MHz System Validation with Head Tissue

SAR Evaluation Report 22 of 93

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

System Performance Check 835 MHz Body Liquid

Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558

Product Data

Device Name : Dipole 835 MHz Serial No. : 180-00558 Type : Dipole

Model : ALS-D-835-S-2

Frequency Band : 835

Max. Transmit Pwr
Drift Time : 3 min(s)
Power Drift-Start : 9.315 W/kg
Power Drift-Finish
Power Drift (%) : -2.037

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Serial No. : System Default

Location : Center Description : Default

Phantom Data

Tissue Data

Type : Body 270-02101 Serial No. : 835.0 MHz Frequency Last Calib. Date : 29-Sep-2015 : 20.00°C Temperature : 21.00 °C Ambient Temp. : 56.00 RH% Humidity : 53.83 F/m Epsilon Sigma : 0.96 S/m

Density : 1000.00 kg/cu. m

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 14-Oct-2014

Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 21.00 °C Ambient Temp. : 21.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 23 of 93

1 gram SAR value : 9.420 W/kg 10 gram SAR value : 6.588 W/kg Area Scan Peak SAR : 9.465 W/kg Zoom Scan Peak SAR : 14.628 W/kg

835 MHz System Validation with Body Tissue

SAR Evaluation Report 24 of 93

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Report No: RSZ150901007-20

System Performance Check 1900 MHz Head Liquid

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

Product Data

Device Name : Dipole 1900MHz Serial No. : 210-00710 Type : Dipole

Model : ALS-D-1900-S-2

Frequency Band : 1900

Max. Transmit Pwr : 1 W

Drift Time : 3 min(s)

Power Drift-Start : 44.620 W/kg

Power Drift-Finish : 44.106 W/kg

Power Drift (%) : -1.063

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Serial No. : System Default

Location : Center Description : Default

Tissue Data

: Head Type 295-01103 Serial No. : 1900.00 MHz Frequency Last Calib. Date : 29-Sep-2015 Temperature : 20.00°C : 21.00 °C Ambient Temp. : 56.00 RH% Humidity : 39.55 F/m Epsilon Sigma : 1.41 S/m Density : 1000.00 kg/cu. M

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 14-Oct-2014

Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 20.00 °C Ambient Temp. : 20.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 25 of 93

1 gram SAR value : 40.706 W/kg 10 gram SAR value : 20.118 W/kg Area Scan Peak SAR : 45.816 W/kg Zoom Scan Peak SAR : 69.375 W/kg

1900 MHz System Validation with Head Tissue

SAR Evaluation Report 26 of 93

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Report No: RSZ150901007-20

System Performance Check 1900 MHz Body Liquid

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

: 1.093

Product Data

Device Name : Dipole 1900MHz Serial No. : 210-00710 Type : Dipole

Model : ALS-D-1900-S-2

Frequency Band : 1900
Max. Transmit Pwr
Drift Time : 3 min(s)
Power Drift-Start : 45.403 W/kg
Power Drift-Finish : 45.912 W/kg

Power Drift (%)
Phantom Data

Name : APREL-Uni Type : Uni-Phantom Serial No. : System Default

Location : Center Description : Default

Tissue Data

Type : Body 295-02102 Serial No. : 1900.00 MHz Frequency Last Calib. Date : 29-Sep-2015 Temperature : 20.00°C : 21.00 °C Ambient Temp. : 56.00 RH% Humidity : 51.92 F/m Epsilon Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 14-Oct-2014

Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 4.5

Probe Sensitivity : 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 20.00 °C Ambient Temp. : 21.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 27 of 93

1 gram SAR value : 41.759 W/kg 10 gram SAR value : 21.260 W/kg Area Scan Peak SAR : 48.833 W/kg Zoom Scan Peak SAR : 69.336 W/kg

1900 MHz System Validation with Body Tissue

SAR Evaluation Report 28 of 93

EUT TEST STRATEGY AND METHODOLOGY

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

Figure 5 - Test positions for body-worn devices

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 35 mm x 35 mm x 35 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10)

SAR Evaluation Report 29 of 93

were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Report No: RSZ150901007-20

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

Test Position

According to KDB 447498 D01: Support the body-worn accessory test configurations. Devices that are designed to operate on the body of user using lanyards and straps, or without requiring additional body-worn accessories must be tested for SAR compliance using a conservative minimum test separation distance ≤5mm to support compliance.

Since the EUT has no voice receiver so the head mode cannot to be considered as the intended use we select Faceup mode(test separation distance 10mm) instead of the head mode.

Test methodology

KDB 447498 D01 General RF Exposure Guidance v05r02.

KDB 648474 D04 Handset SAR v01r02.

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03

KDB 865664 D02 RF Exposure Reporting v01r01 KDB 941225 D01 3G SAR Procedures v03

KDB 941225 D06 Hotspot Mode v02

SAR Evaluation Report 30 of 93

CONDUCTED OUTPUT POWER MEASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

The RF output of the transmitter was connected to the input of the EMI Test Receiver through sufficient attenuation.

Report No: RSZ150901007-20

SAR Evaluation Report 31 of 93

Maximum Output Power among production units

	Max Targe	et Power for Product	ion Unit (dBm)	
Mod	e/Band		Channel	
Mode	e/ Danu	Low	Middle	High
GM	S 850	32.20	32.20	32.20
GPRS8	GPRS850 1 slot		32.30	32.30
GPRS8	50 2 slots	31.60	31.60	31.60
GPRS8	50 3 slots	29.90	29.90	29.90
GPRS8	50 4 slots	28.80	28.80	28.80
EGPRS	850 1 slot	28.00	28.00	28.00
EGPRS8	350 2 slots	26.60	26.60	26.60
EGPRS8	350 3 slots	24.20	24.20	24.20
EGPRS8	350 4 slots	23.00	23.00	23.00
GPRS19	900 1 slot	29.60	29.60	29.60
PCS	1900	29.60	29.60	29.60
GPRS19	900 2 slots	28.90	28.90	28.90
GPRS19	900 3 slots	27.10	27.10	27.10
GPRS19	900 4 slots	26.10	26.10	26.10
EGPRS1	900 1 slot	27.30	27.30	27.30
EGPRS1	900 2 slots	26.10	26.10	26.10
EGPRS1	900 3 slots	23.90	23.90	23.90
EGPRS1	900 4 slots	22.60	22.60	22.60
	RMC	22.80	22.80	22.80
	HSDPA	21.80	21.80	21.80
WCDMA850	HSUPA	21.60	21.60	21.60
	DC-HSDPA	21.10	21.10	21.10
	HSPA+	21.00	21.00	21.00
	RMC	22.20	22.20	21.00
	HSDPA	21.20	21.20	21.20
WCDMA1900	HSUPA	21.00	21.00	21.00
	DC-HSDPA	20.90	20.90	20.90
HSPA+		20.80	20.80	20.80
Wi-Fi(802	2.11b/g/n20)	9.50	9.50	9.50
Wi-Fi(8	02.11n40)	8.30	8.30	8.30
Bluet	ooth3.0	2.40	2.40	2.40
В	LE	-5.30	-5.30	-5.30

SAR Evaluation Report 32 of 93

GSM:

Test Results:

D J	Frequency	Conducted Output Power				
Band	(MHz)	Meas. Power (dBm)	Meas. Power (W)			
	824.2	32.13	1.633			
GSM 850	836.6	32.16	1.644			
	848.8	32.14	1.637			
	1850.2	29.53	0.897			
PCS 1900	1880.0	29.55	0.902			
	1909.8	29.44	0.879			

Report No: RSZ150901007-20

GPRS:

Band	Channel No.	Channel Frequency		RF Output Power (dBm)				
		(MHz)	1 slot	2 slot	3 slots	4 slots		
	128	824.2	32.19	31.55	29.81	28.74		
GSM 850	190	836.6	32.23	31.54	29.80	28.72		
	251	848.8	32.20	31.50	29.74	28.68		
	512	1850.2	29.55	28.80	27.04	26.02		
PCS 1900	661	1880.0	29.52	28.75	27.03	25.99		
	810	1909.8	29.45	28.72	26.99	25.96		

EDGE:

Band	Channel No.	Channel Frequency		RF Output Power (dBm)				
Danu		(MHz)	1 slot	2 slot	3 slots	4 slots		
	128	824.2	27.93	26.57	24.18	22.98		
GSM 850	190	836.6	27.73	26.35	23.97	22.76		
	251	848.8	27.53	26.16	23.69	22.52		
	512	1850.2	27.22	26.07	23.88	22.53		
PCS 1900	661	1880.0	27.09	25.89	23.67	22.31		
	810	1909.8	26.84	25.73	23.46	22.15		

For SAR, the time based average power is relevant, the difference in between depends on the duty cycle of the TDMA signal.

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB	-4.25 dB	-3 dB
Crest Factor	8	4	2.66	2

SAR Evaluation Report 33 of 93

The time based average power for GPRS

Band	Channel No.	Channel Frequency		Time based average Power (dBm)				
		(MHz)	1 slot	2 slot	3 slots	4 slots		
	128	824.2	23.19	25.55	25.56	25.74		
GSM 850	190	836.6	23.23	25.54	25.55	25.72		
	251	848.8	23.20	25.50	25.49	25.68		
	512	1850.2	20.55	22.80	22.79	23.02		
PCS 1900	661	1880.0	20.52	22.75	22.78	22.99		
	810	1909.8	20.45	22.72	22.74	22.96		

The time based average power for EDGE

Band	Channel	Frequency	Time based average Power (dBm)				
	No.	(MHz)	1 slot	2 slot	3 slots	4 slots	
	128	824.2	18.93	20.57	19.93	19.98	
GSM 850	190	836.6	18.73	20.35	19.72	19.76	
	251	848.8	18.53	20.16	19.44	19.52	
	512	1850.2	18.22	20.07	19.63	19.53	
PCS 1900	661	1880.0	18.09	19.89	19.42	19.31	
	810	1909.8	17.84	19.73	19.21	19.15	

Note:

- 1. Rohde & Schwarz Radio Communication Tester (CMU200) was used for the measurement of GSM peak and average output power for active timeslots.
- 2. For GSM voice, 1 timeslot has been activated with power level 5 (850 MHz band) and 0 (1900 MHz band).
- 3. For GPRS, 1, 2, 3 and 4 timeslots has been activated separately with power level 3(850 MHz band) and 3(1900 MHz band).
- 4. For E-GRPS, 1, 2, 3 and 4 timeslots has been activated separately with power control level 6(850 MHz band) and 5(1900 MHz band).

WCDMA-Release 99:

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

WCDMA General Settings	Loopback Mode	Test Mode 1
	Rel99 RMC	12.2kbps RMC
	Power Control Algorithm	Algorithm2
	βс /βd	8/15

SAR Evaluation Report 34 of 93

WCDMA HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

Report No: RSZ150901007-20

	Mode	HSDPA	HSDPA	HSDPA	HSDPA				
	Subset	1	2	3	4				
WCDMA General Settings	Loopback Mode	Test Mode 1							
	Rel99 RMC	12.2kbps RMC							
	HSDPA FRC	H-Set1							
	Power Control Algorithm	Algorithm2							
	βc	2/15	12/15	15/15	15/15				
	β d	15/15	15/15	8/15	4/15				
	βd (SF)	64							
	$\beta c/\beta d$	2/15	12/15	15/8	15/4				
	βhs	4/15	24/15	30/15	30/15				
	MPR(dB)	0	0	0.5	0.5				
	D_{ACK}	8							
HSDPA Specific Settings	D_{NAK}	8							
	$\mathrm{D}_{\mathrm{CQI}}$	8							
	Ack-Nack repetition factor	3							
	CQI Feedback	4ms							
	CQI Repetition Factor	2							
	Ahs= β hs/ β c	30/15							

SAR Evaluation Report 35 of 93

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

Report No: RSZ150901007-20

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA		
	Subset	1	2	3	4	5		
	Loopback Mode	Test Mode 1						
WCDMA General Settings	Rel99 RMC	12.2kbps RMC						
	HSDPA FRC	H-Set1						
	HSUPA Test	HSUPA Loopback						
	Power Control Algorithm	Algorithm2						
	βc	11/15	6/15	15/15	2/15	15/15		
	βd	15/15	15/15	9/15	15/15	0		
	βœ	209/225	12/15	30/15	2/15	5/15		
	βc/βd	11/15	6/15	15/9	2/15	-		
	βhs	22/15	12/15	30/15	4/15	5/15		
	CM(dB)	1.0	3.0	2.0	3.0	1.0		
	MPR(dB)	0	2	1	2	0		
	DACK	8						
	DNAK	8						
HSDPA	DCQI	8						
Specific Settings	Ack-Nack repetition factor 3							
	CQI Feedback 4ms							
	CQI Repetition Factor 2							
	Ahs=βhs/βc	30/15						
HSUPA Specific Settings	DE-DPCCH	6	8	8	5	7		
	DHARQ	0	0	0	0	0		
	AG Index	20	12	15	17	21		
	ETFCI	75	67	92	71	81		
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9		
	E-T E-T		E-TFCI 11 E E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO23 E-TFCI 75 E-TFCI PO26 E-TFCI 81 E-TFCI PO 27		E-TFCI 11 E E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO23 E-TFCI 75 E-TFCI PO26 E-TFCI 81 E-TFCI PO 27			

SAR Evaluation Report 36 of 93

HSPA+

The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34.121-1

Report No: RSZ150901007-20

Sub- test	β _c (Note3)	β _d	β _{HS} (Note1)	β _{ec}	β _{ed} (2xSF2) (Note 4)	β _{ed} (2xSF4) (Note 4)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	E-TFCI (Note 5)	E-TFCI (boost)
1	1	0	30/15	30/15	β _{ed} 1: 30/15 β _{ed} 2: 30/15	β _{ed} 3: 24/15 β _{ed} 4: 24/15	3.5	2.5	14	105	105

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_{c}$.

Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0).

Note 3: DPDCH is not configured, therefore the β_c is set to 1 and $\beta_d = 0$ by default.

Note 4: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm.

DC-HSDPA

The following tests were conducted according to the test requirements in Table Table C.8.1.12 of 3GPP TS 34 121-1

Table C.8.1.12: Fixed Reference Channel H-Set 12

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	60
Inter-TTI Distance	TTI's	1
Number of HARQ Processes	Proces	6
	ses	U
Information Bit Payload (N_{INF})	Bits	120
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	960
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	3200
Coding Rate		0.15
Number of Physical Channel Codes	Codes	1
Modulation		QPSK
lare a Transparie in the lare	0.01100	

Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical

parameters as listed in the table.

Note 2: Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and

constellation version 0 shall be used.

SAR Evaluation Report 37 of 93

Results (12.2kbps RMC)

WCDMA 850

	Test Mode	3GPP Sub	Av	eraged Mean Po (dBm)	ower
	Test Wiode	Test	Low Frequency	Mid Frequency	High Frequency
	RMC1	2.2k	22.68	22.76	22.61
		1	21.69	21.73	21.62
	Rel 6 HSDPA	2	21.58	21.69	21.51
	Kei o HSDFA	3	21.58	21.64	21.56
		4	21.61	21.68	21.50
Test	Rel 6 HSUPA	1	21.52	21.55	21.43
Condition		2	21.40	21.45	21.34
		3	21.41	21.48	21.31
	1150171	4	21.49	21.45	21.38
		5	21.48	21.48	21.35
		1	21.05	21.06	20.95
	DC-	2	21.01	20.98	20.90
	HSDPA	3	20.95	20.94	20.88
		4	20.95	20.98	20.85
	HSPA+	1	20.91	20.93	20.82

WCDMA 1900

	Test	3GPP Sub	Av	veraged Mean Po (dBm)	ower
	Mode	Test	Low Frequency	Mid Frequency	High Frequency
	RMO	C12.2k	21.65	22.17	20.89
		1	21.13	21.15	21.02
	Rel 6	2	21.02	21.05	20.91
	HSDPA	3	21.07	21.09	20.97
		4	21.07	21.12	20.93
Test	Rel 6 HSUPA	1	20.95	20.99	20.88
Condition		2	20.87	20.90	20.81
		3	20.87	20.96	20.81
	1150171	4	20.84	20.92	20.77
		5	20.83	20.93	20.78
		1	20.82	20.85	20.78
	DC-	2	20.73	20.76	20.68
	HSDPA	3	20.75	20.78	20.72
		4	20.71	20.74	20.68
	HSPA+	1	20.69	20.72	20.63

Note:

1. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model 1.

SAR Evaluation Report 38 of 93

2. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA/HSPA+/DC-HSDPA when the maximum average output of each RF channel is less than $\frac{1}{4}$ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is <75% of SAR limit.

Bluetooth

Mada	Channel	Channel frequency	Conducte	ed Output Power
Mode	No.	(MHz)	(dBm)	(dBm)
	0	2402	2.36	1.722
BDR(GFSK)	39	2441	2.30	1.698
	78	2480	2.24	1.675
	0	2402	1.98	1.578
EDR(4-DQPSK)	39	2441	1.91	1.552
	78	2480	1.97	1.574
	0	2402	2.36	1.722
EDR(8-DPSK)	39	2441	2.24	1.675
	78	2480	2.29	1.694
	0	2402	-5.37	0.290
Bluetooth LE	19	2440	-5.38	0.290
	39	2480	-5.50	0.282

Wi-Fi

Dand	Channel	Channel frequency	Conducte	d Output Power
Band	No.	(MHz)	(dBm)	(mw)
	1	2412	9.38	8.670
802.11b	7	2442	9.14	8.204
	13	2472	9.41	8.730
	1	2412	8.38	6.887
802.11g	7	2442	8.33	6.808
	13	2472	8.64	7.311
	1	2412	8.41	6.934
802.11n HT20	7	2442	8.23	6.653
	13	2472	8.29	6.745
	1	2422	8.26	6.699
802.11n HT40	5	2442	8.23	6.653
	9	2462	8.28	6.730

Note:

 $1.\ The\ output\ power\ was\ tested\ under\ data\ rate\ 1Mbps\ for\ 802.11b,\ 6Mbps\ for\ 802.11g,\ 6.5Mbps\ for\ 802.11n\ HT40.$

SAR Evaluation Report 39 of 93

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	21-24 °C
Relative Humidity:	50-53 %
ATM Pressure:	1001-1002 mbar

Testing was performed by Terry XiaHou on 2015-09-29

The DUT is capable of functioning as a Wi-Fi to Cellular Mobile hotspot. Additional SAR testing was performed according to KDB 941225 D06. Testing was performed with a separation of 1cm between the DUT and the flat phantom. The DUT was positioned for SAR tests with the front and back surfaces facing the phantom, and also with the edges facing the phantom in which the transmitting antenna is <2.5 cm from the edge. Each transmit band was utilized for SAR testing. The tested mode has been selected within each band that exhibits the highest time average output power.

GSM 850

EUT	Engguenav	Test	Power	Max. Meas.	Max. Rated		1g SAR (W	/Kg)	
Position	Frequency (MHz)	Mode	Drift (%)	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	824.2	GSM	-2.569	28.74	28.80	1.014	0.677	0.686	/
Faceup (10mm)	836.6	GSM	0.977	28.72	28.80	1.019	0.791	0.806	1#
(1011111)	848.8	GSM	0.811	28.68	28.80	1.028	0.726	0.746	/
	824.2	GPRS	2.715	28.74	28.80	1.014	0.965	0.978	/
Body-Back (5mm)	836.6	GPRS	-1.922	28.72	28.80	1.019	1.327	1.352	2#
(2)	848.8	GPRS	-3.408	28.68	28.80	1.028	1.173	1.206	/
D 1 I 0	824.2	GPRS	/	/	/	/	/	/	/
Body-Left (5mm)	836.6	GPRS	2.278	28.72	28.80	1.019	0.627	0.639	/
(311111)	848.8	GPRS	/	/	/	/	/	/	/
D 1 D' 14	824.2	GPRS	/	/	/	/	/	/	/
Body-Right (5mm)	836.6	GPRS	-0.699	28.72	28.80	1.019	0.769	0.783	/
(311111)	848.8	GPRS	/	/	/	/	/	/	/
D 1 D 4	824.2	GPRS	/	/	/	/	/	/	/
Body-Bottom (5mm)	836.6	GPRS	-2.845	28.72	28.80	1.019	0.379	0.386	/
()	848.8	GPRS	/	/	/	/	/	/	/

Note:

- 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.
- 2. The EUT is a Capability Class B mobile phone which can be attached to both GPRS and GSM services.
- 3. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+4UL is the worst case.

SAR Evaluation Report 40 of 93

- 4. The EUT transmit and receive through the same GSM antenna while testing SAR.
- 5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

PCS 1900

EUT	Frequency	Test	Power	Max. Meas.	Max. Rated		lg SAR (V	V/Kg)	
Position	(MHz)	Mode	Drift (%)	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1850.2	GSM	/	/	/	/	/	/	/
Faceup (10mm)	1880.0	GSM	-1.527	25.99	26.10	1.026	0.429	0.440	3#
	1909.8	GSM	/	/	/	/	/	/	/
	1850.2	GPRS	0.826	26.02	26.10	1.019	0.892	0.909	4#
Body-Back (5mm)	1880.0	GPRS	-2.153	25.99	26.10	1.026	0.781	0.801	/
(******)	1909.8	GPRS	3.110	25.96	26.10	1.033	0.836	0.863	/
D. 4. I. A	1850.2	GPRS	/	/	/	/	/	/	/
Body-Left (5mm)	1880.0	GPRS	1.124	25.99	26.10	1.026	0.225	0.231	/
(0)	1909.8	GPRS	/	/	/	/	/	/	/
D - 4 D:-14	1850.2	GPRS	/	/	/	/	/	/	/
Body-Right (5mm)	1880.0	GPRS	-0.954	25.99	26.10	1.026	0.316	0.324	/
(011111)	1909.8	GPRS	/	/	/	/	/	/	/
D. I., D. 4	1850.2	GPRS	/	/	/	/	/	/	/
Body-Bottom (5mm)	1880.0	GPRS	-1.181	25.99	26.10	1.026	0.673	0.690	/
(-)	1909.8	GPRS	/	/	/	/	/	/	/

Note:

- 1 .When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.
- 2. The EUT is a Capability Class B mobile phone which can be attached to both GPRS and GSM services.
- 3. The Multi-slot Classes of EUT is Class12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 1DL+4UL is the worst case.
- 4. The EUT transmit and receive through the same GSM antenna while testing SAR.
- 5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

SAR Evaluation Report 41 of 93

WCDMA850

EUT	Емодиолог		Power	Max. Meas.	Max. Rated		1g SAR (W/Kg)	
Position	Frequency (MHz)	Test Mode	Drift (%)	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	826.4	RMC							
Faceup (10mm)	836.6	RMC	-1.506	22.76	22.80	1.009	0.753	0.760	5#
(= v====)	846.6	RMC							
	826.4	RMC	-1.767	22.68	22.80	1.028	1.133	1.165	6#
Body-Back (5mm)	836.6	RMC	2.612	22.76	22.80	1.009	1.060	1.070	/
(*)	846.6	RMC	-2.642	22.61	22.80	1.045	0.957	1.000	/
D - 1 - 1 - 0	826.4	RMC	/	/	/	/	/	/	/
Body-Left (5mm)	836.6	RMC	1.965	22.76	22.80	1.009	0.622	0.628	/
(011111)	846.6	RMC	/	/	/	/	/	/	/
D - 4 D:-1.4	826.4	RMC	/	/	/	/	/	/	/
Body-Right (5mm)	836.6	RMC	2.521	22.76	22.80	1.009	0.668	0.674	/
(311111)	846.6	RMC	/	/	/	/	/	/	/
D 1 D	826.4	RMC	/	/	/	/	/	/	/
Body-Bottom (5mm)	836.6	RMC	-2.980	22.76	22.80	1.009	0.336	0.339	/
(2)	846.6	RMC	/	/	/	/	/	/	/

WCDMA1900

EUT	Eugguener		Power	Max. Meas.	Max. Rated		1g SAR (W/Kg)	
Position	Frequency (MHz)	Test Mode	Drift (%)	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1852.4	RMC							
Faceup (10mm)	1880.0	RMC	1.293	22.17	22.20	1.007	0.417	0.420	7#
(171111)	1907.6	RMC							
	1852.4	RMC	2.723	21.65	22.20	1.135	0.832	0.944	/
Body-Back (5mm)	1880.0	RMC	1.047	22.17	22.20	1.007	0.955	0.962	8#
(6 11111)	1907.6	RMC	-2.521	20.89	21.00	1.026	0.710	0.728	/
Doder LoA	1852.4	RMC	/	/	/	/	/	/	/
Body-Left (5mm)	1880.0	RMC	2.254	22.17	22.20	1.007	0.350	0.352	/
(******)	1907.6	RMC	/	/	/	/	/	/	/
Dada Diale	1852.4	RMC	/	/	/	/	/	/	/
Body-Right (5mm)	1880.0	RMC	1.941	22.17	22.20	1.007	0.382	0.385	/
(*******)	1907.6	RMC	/	/	/	/	/	/	/
Dady Dattam	1852.4	RMC	/	/	/	/	/	/	/
Body-Bottom (5mm)	1880.0	RMC	-0.735	22.17	22.20	1.007	0.762	0.767	/
()	1907.6	RMC	/	/	/	/	/	/	/

SAR Evaluation Report 42 of 93

Note:

- 1. When the 1-g SAR is ≤ 0.8 W/Kg, testing for other channels are optional.
- 2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model.

Report No: RSZ150901007-20

- 3. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA/HSPA+/DC-HSDPA when the maximum average output of each RF channel is less than ¼ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.
- 4. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

SAR Evaluation Report 43 of 93

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

Bluetooth & Wi-Fi and GSM&3G Antennas Location:

Left

Simultaneous Transmission:

Description of Simultane	Antonnos Distonos (mm)			
Transmitter Combination	Simultaneous?	Hotspot?	Antennas Distance (mm)	
GSM + WCDMA	×	×	0	
GSM + Bluetooth	√	×	45	
GSM + WLAN	√	$\sqrt{}$	45	
WCDMA + Bluetooth	√	×	45	
WCDMA + WLAN	√	√	45	

Standalone SAR test exclusion considerations

Mode	Frequency (GHz)	Test Position	P _{avg} (dBm)	P _{avg} (mW)	Distance (mm)	Calculated value	Threshold (1-g)	SAR Test Exclusion
Bluetooth	2.48	Faceup	2.40	1.74	10	0.3	3.0	Yes
Bluetooth	2.48	Body	2.40	1.74	5	0.5	3.0	Yes
Wi-Fi	2.472	Faceup	9.50	8.91	10	1.4	3.0	Yes
Wi-Fi	2.472	Body	9.50	8.91	5	2.8	3.0	Yes

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

SAR Evaluation Report 44 of 93

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Report No: RSZ150901007-20

Standalone SAR estimation:

Mode	Frequency (GHz)	Distance (mm)	P _{avg} (dBm)	P _{avg} (mW)	Estimated 1-g (W/kg)	
Bluetooth Faceup	2.48	10	2.40	1.74	0.036	
Bluetooth Body	2.48	5	2.40	1.74	0.073	
Wi-Fi Faceup	2.472	10	9.50	8.91	0.186	
Wi-Fi Body	2.472	5	9.50	8.91	0.372	

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion

SAR Evaluation Report 45 of 93

Simultaneous SAR test exclusion considerations:

Mode	Position	Reported S	SAR (W/kg)	ΣSAR	
(SAR1+SAR2)	Position	SAR1	SAR2	< 1.6W/kg	
	Faceup	0.806	0.036	0.842	
	Body-Back	1.352	0.073	1.425	
GSM 850 + BT	Body-Left	0.639	0.073	0.712	
	Body-Right	0.783	0.073	0.856	
	Body-Bottom	0.386	0.073	0.459	
GSM 850 + Wi-Fi	Faceup	0.806	0.186	0.992	
	Faceup	0.440	0.036	0.476	
	Body-Back	0.909	0.073	0.982	
PCS 1900 + BT	Body-Left	0.231	0.073	0.304	
	Body-Right	0.324	0.073	0.397	
	Body-Bottom	0.690	0.073	0.763	
PCS 1900 + Wi-Fi	Faceup	0.440	0.186	0.626	
	Faceup	0.760	0.036	0.796	
	Body-Back	1.165	0.073	1.238	
WCDMA 850 + BT	Body-Left	0.628	0.073	0.701	
	Body-Right	0.674	0.073	0.747	
	Body-Bottom	0.339	0.073	0.412	
WCDMA 850 + Wi-Fi	Faceup	0.760	0.186	0.946	
	Faceup	0.420	0.036	0.456	
	Body-Back	0.962	0.073	1.035	
WCDMA 1900 + BT	Body-Left	0.352	0.073	0.425	
	Body-Right	0.385	0.073	0.458	
	Body-Bottom	0.767	0.073	0.840	
WCDMA 1900 + Wi-Fi	Faceup	0.420	0.186	0.606	

Report No: RSZ150901007-20

Conclusion:

 $\Sigma SAR < 1.6 \text{ W/kg}$ therefore simultaneous transmission SAR with Volume Scans is **not** required.

SAR Evaluation Report 46 of 93

Hotspot:

Evaluations for Simultaneous SAR, Mobile Hot Spot Positions							
Test Position	Body-Back (5mm)	Body-Left (5mm)	Body-Right (5mm)	Body-Bottom (5mm)	Body-Top (5mm)		
Mode	Stand Alone 1-g SAR (W/Kg)						
GPRS 850	1.352	0.639	0.783	0.386	/		
GPRS 1900	0.909	0.231	0.324	0.690	/		
WCDMA850	1.165	0.628	0.674	0.339	/		
WCDMA 1900	0.962	0.352	0.385	0.767	/		
Wi-Fi	0.372	0.372	0.372	0.372	0.372		
	$\sum 1$ -g SAR(W/Kg)						
GPRS850 + Wi-Fi	1.724 ^(Note 1)	1.011	1.155	0.758	/		
GPRS1900 + Wi-Fi	1.281	0.603	0.696	1.062	/		
WCDMA850 + Wi-Fi	1.537	1.000	1.046	0.711	/		
WCDMA 1900 + Wi-Fi	1.334	0.724	0.757	1.139	/		

Report No: RSZ150901007-20

Note 1:

When the sum is greater than the SAR limit, the SAR to peak location separation ratio(SPLSR) was applied to determine if simultaneous transmission SAR test exclusion applies.

SPLSR:

Distance(Ri) =
$$[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]^{0.5}$$
=79.6mm
SPLSR= $(SAR1 + SAR2)^{1.5}/Ri$ = $(1.352+0.372)^{1.5}/79.6 = 0.0284 < 0.04$

Conclusion:

Sum of SAR: Σ SAR < 1.6 W/kg or SAR to peak location separation ratio:(SAR1 + SAR2)^{1.5}/Ri < 0.04, therefore simultaneous transmission SAR with Volume Scans is **not required**.

SAR Evaluation Report 47 of 93

SAR Plots (Summary of the Highest SAR Values)

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

GSM 850; Faceup (836.6 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.720 W/kg Power Drift-Finish : 0.727 W/kg Power Drift (%) : 0.977

Tissue Data

 Type
 : Head

 Frequency
 : 836.6 MHz

 Epsilon
 : 41.06 F/m

 Sigma
 : 0.92 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.791 W/kg 10 gram SAR value : 0.587 W/kg Area Scan Peak SAR : 0.806 W/kg Zoom Scan Peak SAR : 1.316 W/kg

Plot 1#

SAR Evaluation Report 48 of 93

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

GSM 850; Body-worn- Back (836.6 MHz Middle Channel)

Measurement Data

Test mode : GPRS
Crest Factor : 2
Scan Type : : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 1.285 W/kg Power Drift-Finish : 1.261W/kg Power Drift (%) : -1.922

Tissue Data

 Type
 : Body

 Frequency
 : 836.6 MHz

 Epsilon
 : 53.79 F/m

 Sigma
 : 0.96 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 2
Conversion Factor : 5.9

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 1.327 W/kg 10 gram SAR value : 0.987 W/kg Area Scan Peak SAR : 1.386 W/kg Zoom Scan Peak SAR : 2.257 W/kg

Plot 2#

SAR Evaluation Report 49 of 93

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

PCS 1900; Faceup (1880MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.335 W/kg Power Drift-Finish : 0.330 W/kg Power Drift (%) : -1.527

Tissue Data

 Type
 : Head

 Frequency
 : 1880 MHz

 Epsilon
 : 39.55 F/m

 Sigma
 : 1.39 S/m

 Density
 : 1000.00 kg/cu. M

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 8 Conversion Factor : 4.8

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.429 W/kg 10 gram SAR value : 0.264 W/kg Area Scan Peak SAR : 0.475 W/kg Zoom Scan Peak SAR : 0.733 W/kg

Plot 3#

SAR Evaluation Report 50 of 93