

Example

Measurements of degredation of heme with different concentrations of hydrogen peroxide (H_2O_2), for different species of heme.

Example

Degradation

Back to the Sullivan data

David Sullivan was actually interested in the percent degradation (that is, the slopes when one re-scales the y-axis so that the y-intercept is at 1).

$$y = \beta_0 + \beta_1 x + \epsilon$$
 becomes $y/\beta_0 = 1 + (\beta_1/\beta_0)x + \epsilon'$

So we're really interested in β_1/β_0 .

 \longrightarrow We'd estimate that by $\hat{\beta}_1/\hat{\beta}_0$, but what about its standard error?

Percent degradation

First-order Taylor expansion

Consider f(x, y) = x/y.

A first-order Taylor expansion to approximate the function would be

$$f(x,y) \approx f(x_0, y_0) + (x - x_0) \left. \frac{\partial f}{\partial x} \right|_{(x_0, y_0)} + (y - y_0) \left. \frac{\partial f}{\partial y} \right|_{(x_0, y_0)}$$

Since $\partial f/\partial x = 1/y$ and $\partial f/\partial y = -x/y^2$, we obtain the following:

$$x/y \approx x_0/y_0 + (x - x_0)/y_0 - (y - y_0)x_0/y_0^2$$
$$= (x_0/y_0)[1 + (x - x_0)/x_0 + (y - y_0)/y_0]$$

How do we use this?

We use the first-order Taylor expansion of $\hat{\beta}_1/\hat{\beta}_0$ around β_1 and β_0 .

Variance of a ratio

Remember that β_1 and β_0 are fixed, while $\hat{\beta}_1$ and $\hat{\beta}_0$ are random.

Add the fact that var(X+Y) = var(X) + var(Y) + 2 cov(X,Y)

$$\operatorname{var}\{\hat{\beta}_{1}/\hat{\beta}_{0}\} \approx \operatorname{var}\{(\beta_{1}/\beta_{0})[1 + (\hat{\beta}_{1} - \beta_{1})/\beta_{1} + (\hat{\beta}_{0} - \beta_{0})/\beta_{0}]\}
= (\beta_{1}/\beta_{0})^{2} \{\operatorname{var}(\hat{\beta}_{1})/\beta_{1}^{2} + \operatorname{var}(\hat{\beta}_{0})/\beta_{0}^{2} + 2\operatorname{cov}(\hat{\beta}_{1}, \hat{\beta}_{0})/(\beta_{1}\beta_{0})\}$$

We then replace β_1 and β_0 in this formula with our estimates of them, $\hat{\beta}_1$ and $\hat{\beta}_0$. Further, we replace the variances and covariance with our estimates.

$$\hat{\text{var}}\{\hat{\beta}_{1}/\hat{\beta}_{0}\} = (\hat{\beta}_{1}/\hat{\beta}_{0})^{2}\{\hat{\text{var}}(\hat{\beta}_{1})/\hat{\beta}_{1}^{2} + \hat{\text{var}}(\hat{\beta}_{0})/\hat{\beta}_{0}^{2} + 2\hat{\text{cov}}(\hat{\beta}_{1},\hat{\beta}_{0})/(\hat{\beta}_{1}\hat{\beta}_{0})\}$$

The estimated SE is then

$$\hat{\mathsf{SE}}\{\hat{\beta}_{1}/\hat{\beta}_{0}\} = |\hat{\beta}_{1}/\hat{\beta}_{0}|\sqrt{[\hat{\mathsf{SE}}(\hat{\beta}_{1})/\hat{\beta}_{1}]^{2} + [\hat{\mathsf{SE}}(\hat{\beta}_{0})/\hat{\beta}_{0}]^{2} + 2\operatorname{cov}(\hat{\beta}_{1},\hat{\beta}_{0})/(\hat{\beta}_{1}\hat{\beta}_{0})}$$

Results

pf3d7:

$$\hat{\beta}_0 = 0.353 \ (0.005)$$
 $\hat{\beta}_1 = -0.0039 \ (0.0002)$ $\hat{\cos}(\hat{\beta}_1, \hat{\beta}_0) = -6.6 \times 10^7$ $\hat{\beta}_1/\hat{\beta}_0 \times 100 = -1.10 \ (SE = 0.07).$

	estimate	SE
bhem	-2.04	0.32
pgalnoel	-2.02	0.35
pgal	-1.88	0.17
pyoelii	-1.33	0.09
pf3d7	-1.10	0.07
pviv	-0.86	0.26
pknow	-0.79	0.14
pov	-0.70	0.07
pbr	-0.67	0.08
pfhz	-0.31	0.17