Consider the following circuit:

Integration (think averaging!)

- "Integration is the summation of area." (Bell p.50)
- There is not enough time for the capacitor to fully charge or discharge.
 - 1. PW or PS is less than 5τ .
 - 2. "An integrating circuit is an RC circuit with the output taken across the capacitor and $RC \ge (10 \times PW)^n$ (Bell p.53)
 - 3. The standard formulas for designing an Integrating RC circuit is:
 - $RC = \tau$
 - 50% *DC*, PW = PS
 - $PW = Time\ to\ charge, PS = Time\ to\ discharge$
 - $RC \ge (10 \times PW)$ (Integration in terms of τ)
 - $Time = \frac{1}{10}\tau$ (Integration formula in terms of Time, not enough Time to charge or discharge)
 - 4. Additional formulas (derived previously):
 - #of cycles? = $\frac{5\tau}{Period}$ (cycles)(stabilization) $Vmax = \frac{Vgen_+}{1+e^{\frac{-t}{RC}}}$

 - $Vmin = Vgen_{+} Vmax$

See Image:

- a) Is **not** an Integrator, the capacitor is fully charging and discharging.
- b) Is **not** an Integrator, $\tau = PW$. 63% charge and discharge
- c) Is an **Integrator**, Vmax and Vmin will alternate minimally equal distance above and below the average input generator voltage.

