MATA54 - Estruturas de Dados e Algoritmos II Hashing Linear

Flávio Assis Versão gerada a partir de slides do Prof. George Lima

IC - Instituto de Computação

Salvador, agosto de 2021

Motivação

E se em tabelas hashing de tamanho *m* fixo $\alpha \rightarrow 1$?

- lacktriangle Cadeias de sondagem tendem a ficar maiores ightarrow desempenho cai
- ▶ Necessidade de construir nova tabela hashing com maior valor de m

E se o valor de m for muito maior que n?

- Uso desnecessário de espaço
- Conveniente diminuir o tamanho de m

Abordagem:

Alterar dinamicamente a tabela hashing para se adaptar ao número de chaves: o espaço de espalhamento cresce ou diminui em função do número de chaves

Dois Enfoques de Hashing Dinâmico

- Hashing extensível [Fagin, R; Nievergelt, J.; Pippenger, N; Strong, H. R. "Extendible Hashing-A Fast Access Method for Dynamic Files". ACM TODS, 4(3):315-344, 1979.]
- ► Hashing linear [Litwin, W. "Linear hashing: A new tool for file and table addressing". 6th Conference on Very Large Databases. pp 212–223, 1980.]

Hashing Linear

Ideia básica

Multiplas funções hashing e alocação linear de espaço

$$h_\ell(k)$$
, $\ell=0,1,2,\ldots$, mapeam chaves a listas de páginas

$$h_{\ell}(k) = k \mod 2^{\ell} m$$

em que *m* é um número inicial de páginas

Nível	Número de Páginas
0	m
1	2 <i>m</i>
2	4 <i>m</i>
3	8 <i>m</i>

Hashing linear

Características

- Não precisa de armazenar índices ou diretórios
- ▶ Resolução de colisões ⇒ listas encadeadas de páginas
- Número de listas é função do fator de carga
- ► Tamanho da lista L_i é função das colisões em L_i
- Ao criar nova lista para nível $\ell+1$, registros de uma lista no nível ℓ são redistribuídos

Informação necessária

- ► Nível ℓ
- Limites toleráveis para fator de carga: α^{min} , α^{max}
- Número inicial de listas m
- Marcador N para a próxima lista a sofrer redistribuição
 - ▶ Se $h_{\ell}(k) < N$, usar $h_{\ell+1}(k)$; caso contrário, usar $h_{\ell}(k)$

Exemplo

Inserir chaves 8, 11, 10, 15, 17, 25, 44 e 12. Considerar tamanho de página igual a 2, $\alpha^{\max} = 0.8$ e m = 2.

 $\ell = 0$ N = 0

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

$$\alpha = \frac{1}{4} = 0.25$$
 $\alpha \le \alpha^{max}$ Ok

Exemplo

Inserir chaves 8,11,10,15,17,25,44 e 12. Considerar tamanho de página igual a 2, $\alpha^{\rm max}=0.8$ e m=2.

 $\ell = 0$ N = 0

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

 $h_0(11) = 11 \mod 2^0 \cdot 2 = 1$

$$\alpha = \frac{2}{4} = 0.50$$
 $\alpha \le \alpha^{max}$ Ok

Exemplo

Inserir chaves 8,11,10,15,17,25,44 e 12. Considerar tamanho de página igual a 2, $\alpha^{\max}=0.8$ e m=2.

$$\ell = 0$$
 $N = 0$

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

 $h_0(11) = 11 \mod 2^0 \cdot 2 = 1$
 $h_0(10) = 10 \mod 2^0 \cdot 2 = 0$

$$\begin{array}{ccc}
N \\
\downarrow \\
L_0 \\
\hline
8 \\
10
\end{array}$$

$$\alpha = \frac{3}{4} = 0.75$$
 $\alpha \le \alpha^{max}$ Ok

Exemplo

Inserir chaves 8,11,10,15,17,25,44 e 12. Considerar tamanho de página igual a 2, $\alpha^{\rm max}=0.8$ e m=2.

Inserção da chave 15

$$\begin{array}{ccc}
N \\
\downarrow \\
L_0 \\
\hline
8 \\
10
\end{array}$$
 $\begin{array}{ccc}
L_1 \\
15
\end{array}$

Quebra de página!

Exemplo

Inserir chaves 8, 11, 10, 15, 17, 25, 44 e 12. Considerar tamanho de página igual a 2, $\alpha^{\max} = 0.8$ e m=2.

$$\ell = 0$$
 $N = 1$

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

 $h_0(11) = 11 \mod 2^0 \cdot 2 = 1$
 $h_0(10) = 10 \mod 2^0 \cdot 2 = 0$
 $h_0(15) = 15 \mod 2^0 \cdot 2 = 1$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$

- Distribuição das chaves das páginas apontadas por N com base em h_{l+1}
- ► Avanço de *N*
- $\alpha = \frac{4}{6} = 0.67$ Ok!

Exemplo

Inserir chaves 8, 11, 10, 15, 17, 25, 44 e 12. Considerar tamanho de página igual a 2, $\alpha^{\text{max}} = 0.8$ e m = 2.

$$\ell = 0$$
 $N = 1$

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

 $h_0(11) = 11 \mod 2^0 \cdot 2 = 1$
 $h_0(10) = 10 \mod 2^0 \cdot 2 = 0$
 $h_0(15) = 15 \mod 2^0 \cdot 2 = 1$
 $h_0(17) = 17 \mod 2^0 \cdot 2 = 1$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$

- ► $h_0(17) \ge N$: Ok!
- ► Encadeamento de páginas
- $\alpha = \frac{5}{6} = 0.63$ $\alpha \le \alpha^{max}$: Ok!

Exemplo

Inserir chaves 8, 11, 10, 15, 17, 25, 44 e 12. Considerar tamanho de página igual a 2, $\alpha^{\text{max}} = 0.8$ e m = 2.

$$\ell = 0$$

 $N = 1$

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

 $h_0(11) = 11 \mod 2^0 \cdot 2 = 1$
 $h_0(10) = 10 \mod 2^0 \cdot 2 = 0$
 $h_0(15) = 15 \mod 2^0 \cdot 2 = 1$
 $h_0(17) = 17 \mod 2^0 \cdot 2 = 1$
 $h_0(25) = 25 \mod 2^0 \cdot 2 = 1$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$

- ▶ $h_0(25) \ge N$: Ok!
- $\sim \alpha = \frac{6}{8} = 0.75$ $\alpha \leq \alpha^{max}$: Ok!

Exemplo

Inserir chaves 8, 11, 10, 15, 17, 25, 44 e 12. Considerar tamanho de página igual a 2, $\alpha^{\max} = 0.8$ e m = 2.

$$\begin{array}{c} \ell = 0 \\ \textit{N} = 1 \end{array}$$

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

 $h_0(11) = 11 \mod 2^0 \cdot 2 = 1$
 $h_0(10) = 10 \mod 2^0 \cdot 2 = 0$
 $h_0(15) = 15 \mod 2^0 \cdot 2 = 1$
 $h_0(17) = 17 \mod 2^0 \cdot 2 = 1$
 $h_0(25) = 25 \mod 2^0 \cdot 2 = 1$
 $h_0(44) = 44 \mod 2^0 \cdot 2 = 0$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$
 $h_1(44) = 44 \mod 2^1 \cdot 2 = 0$

- ▶ $h_0(44) < N$: calcula-se h_1 (próximo nível)
- $\sim \alpha = \frac{7}{8} = 0.88 \quad \alpha > \alpha^{max}$ Quebra!

Exemplo

Inserir chaves 8,11,10,15,17,25,44 e 12. Considerar tamanho de página igual a 2, $\alpha^{\rm max}=0.8$ e m=2.

$$\begin{array}{c} \ell = 1 \\ N = 0 \end{array}$$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$
 $h_1(44) = 44 \mod 2^1 \cdot 2 = 0$
 $h_1(11) = 11 \mod 2^1 \cdot 2 = 3$
 $h_1(15) = 15 \mod 2^1 \cdot 2 = 3$
 $h_1(17) = 17 \mod 2^1 \cdot 2 = 1$
 $h_1(25) = 25 \mod 2^1 \cdot 2 = 1$

- Incrementa-se o nível
- $\sim \alpha = \frac{7}{8} = 0.88 \quad \alpha > \alpha^{max}$ Nova quebra!

Exemplo

Inserir chaves 8,11,10,15,17,25,44 e 12. Considerar tamanho de página igual a $2,~\alpha^{\rm max}=0.8$ e m=2.

$$\ell=1$$
 $N=1$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$
 $h_1(44) = 44 \mod 2^1 \cdot 2 = 0$
 $h_1(11) = 11 \mod 2^1 \cdot 2 = 3$
 $h_1(15) = 15 \mod 2^1 \cdot 2 = 3$
 $h_1(17) = 17 \mod 2^1 \cdot 2 = 1$
 $h_1(25) = 25 \mod 2^1 \cdot 2 = 1$

$$h_2(8) = 8 \mod 2^2 \cdot 2 = 0$$

 $h_2(44) = 44 \mod 2^2 \cdot 2 = 4$

Exemplo

Inserir chaves 8,11,10,15,17,25,44 e 12. Considerar tamanho de página igual a 2, $\alpha^{\max}=0.8$ e m=2.

$$\begin{array}{c} \ell = 1 \\ \textit{N} = 1 \end{array}$$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$
 $h_1(44) = 44 \mod 2^1 \cdot 2 = 0$
 $h_1(11) = 11 \mod 2^1 \cdot 2 = 3$
 $h_1(15) = 15 \mod 2^1 \cdot 2 = 3$
 $h_1(17) = 17 \mod 2^1 \cdot 2 = 1$
 $h_1(25) = 25 \mod 2^1 \cdot 2 = 1$
 $h_1(12) = 12 \mod 2^1 \cdot 2 = 0$

$$h_2(8) = 8 \mod 2^2 \cdot 2 = 0$$

 $h_2(44) = 44 \mod 2^2 \cdot 2 = 4$
 $h_2(12) = 12 \mod 2^2 \cdot 2 = 4$

- $h_1(12) < N$: calcula-se $h_2(12)$ (próximo nível)
- $\sim \alpha = \frac{8}{10} = 0.80$ $\alpha \leq \alpha^{max}$ Ok

Realocação de Registros - Inserção

Quando há quebra de páginas, os registros na página foram distribuídos entre apenas duas páginas: a página atual e a nova página criada.

Realocação de Registros - Inserção

Quando há quebra de páginas, os registros na página foram distribuídos entre apenas duas páginas: a página atual e a nova página criada.

Isto é sempre verdade? Por quê?

Realocação de Registros - Inserção

Quando há quebra de páginas, os registros na página foram distribuídos entre apenas duas páginas: a página atual e a nova página criada.

Isto é sempre verdade? Por quê?

Quando há a quebra de página de índice *i*, para quais páginas os registros que estão nesta página podem ser realocados?

Procedimento de Inserção

Inserir registro com chave k

Considere que k não existe em nenhuma das listas

- 1. $i \leftarrow h_{\ell}(k)$
- 2. Se i < N, então registros em L_i foram redistribuídos. Neste caso, considerar $i \leftarrow h_{\ell+1}(k)$
- 3. Inserir k na lista L_i
- 4. Se $\alpha > \alpha^{max}$, então limite do fator de carga foi violado
 - 4.1 Criar lista $L_{N+2\ell_m}$
 - 4.2 Redistribur todos os registros com chaves k^* em L_N entre L_N e $L_{N+2^\ell m}$. Se $h_{\ell+1}(k^*) \neq N$, k^* pertence à lista $L_{N+2^\ell m}$. Caso contrário, k^* permanece a L_N
 - 4.3 $N \leftarrow N+1$
 - 4.4 Se $N \geq 2^{\ell} m$, então todas as listas pertencem ao nível $\ell+1$
 - 4.4.1 $N \leftarrow 0$
 - 4.4.2 $\ell \leftarrow \ell + 1$

Procedimento de Busca

Buscar registro com chave k

- 1. $i \leftarrow h_{\ell}(k)$
- 2. Se i < N, então registros em L_i foram redistribuídos. Neste caso, considerar $i \leftarrow h_{\ell+1}(k)$
- 3. Pesquisar k na lista L_i

Exemplo

Considere o arquivo após a inserção das chaves 8,11,10,15 e 22, com tamanho de página igual a 2, $\alpha^{\max}=0.85$, $\alpha^{\min}=0.40$ e m=2.

$$\ell = 0$$

 $N = 1$

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

 $h_0(11) = 11 \mod 2^0 \cdot 2 = 1$
 $h_0(10) = 10 \mod 2^0 \cdot 2 = 0$
 $h_0(15) = 15 \mod 2^0 \cdot 2 = 1$
 $h_0(22) = 22 \mod 2^0 \cdot 2 = 0$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$
 $h_1(22) = 22 \mod 2^1 \cdot 2 = 2$

$$\alpha = \frac{5}{6} = 0.83$$

Exemplo

Considere o arquivo após a inserção das chaves 8,11,10,15 e 22, com tamanho de página igual a 2, $\alpha^{\max}=$ 0.85, $\alpha^{\min}=$ 0.40 e m= 2.

$$\ell = 0$$
 $N = 1$

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

 $h_0(11) = 11 \mod 2^0 \cdot 2 = 1$
 $h_0(10) = 10 \mod 2^0 \cdot 2 = 0$
 $h_0(15) = 15 \mod 2^0 \cdot 2 = 1$
 $h_0(22) = 22 \mod 2^0 \cdot 2 = 0$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$
 $h_1(22) = 22 \mod 2^1 \cdot 2 = 2$

Remoção das chaves 10 e 15:

$$ho$$
 $\alpha = \frac{3}{6} = 0.50$ $\alpha \ge \alpha^{min}$ Ok!

Exemplo

Considere o arquivo após a inserção das chaves 8,11,10,15 e 22, com tamanho de página igual a 2, $\alpha^{\max}=$ 0.85, $\alpha^{\min}=$ 0.40 e m= 2.

$$\ell = 0$$
 $N = 1$

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

 $h_0(11) = 11 \mod 2^0 \cdot 2 = 1$
 $h_0(10) = 10 \mod 2^0 \cdot 2 = 0$
 $h_0(15) = 15 \mod 2^0 \cdot 2 = 1$
 $h_0(22) = 22 \mod 2^0 \cdot 2 = 0$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$
 $h_1(22) = 22 \mod 2^1 \cdot 2 = 2$

Remoção da chave 8:

Eliminar página!

Exemplo

Considere o arquivo após a inserção das chaves 8, 11, 10, 15 e 22, com tamanho de página igual a 2, $\alpha^{\text{max}} = 0.85$, $\alpha^{\text{min}} = 0.40$ e m = 2.

$$\begin{array}{l} \ell = 0 \\ \textit{N} = 0 \end{array}$$

$$h_0(8) = 8 \mod 2^0 \cdot 2 = 0$$

 $h_0(11) = 11 \mod 2^0 \cdot 2 = 1$
 $h_0(10) = 10 \mod 2^0 \cdot 2 = 0$
 $h_0(15) = 15 \mod 2^0 \cdot 2 = 1$
 $h_0(22) = 22 \mod 2^0 \cdot 2 = 0$

$$h_1(8) = 8 \mod 2^1 \cdot 2 = 0$$

 $h_1(10) = 10 \mod 2^1 \cdot 2 = 2$
 $h_2(22) = 22 \mod 2^1 \cdot 2 = 2$

$$h_1(10) = 10 \text{ mod } 2 \cdot 2 = 2$$

 $h_1(22) = 22 \text{ mod } 2^1 \cdot 2 = 2$

Remoção da chave 8:

- ► Realocam-se as chaves que estão em L₂ (página de maior índice)
- ► Atualiza-se N
- $\alpha = \frac{2}{4} = 0.50 \ \alpha \geq \alpha^{min} \ Ok!$

Realocação de Registros - Remoção

Quando há eliminação de um página, os registros foram realocados **em uma mesma página**.

Realocação de Registros - Remoção

Quando há eliminação de um página, os registros foram realocados **em uma mesma página**.

Isto é sempre verdade? Por quê?

Realocação de Registros - Remoção

Quando há eliminação de um página, os registros foram realocados **em uma mesma página**.

Isto é sempre verdade? Por quê?

Quando há a eliminação de uma página de índice *i*, para qual página os registros que estão nesta página serão realocados?

Procedimento de Remoção

Remover registro com chave k

Considere que k existe em alguma das listas

- 1. $i \leftarrow h_{\ell}(k)$
- 2. Se i < N, então registros em L_i foram redistribuídos. Neste caso, considerar $i \leftarrow h_{\ell+1}(k)$
- 3. Remover k da lista L_i
- 4. Se $\alpha < \alpha^{min}$, então limite do fator de carga foi violado
 - 4.1 $N \leftarrow N-1$
 - 4.2 Se ${\it N}<0$, então todas as listas pertencem ao nível ℓ . É necessário retornar ao nível anterior
 - 4.2.1 $\ell \leftarrow \ell 1$ 4.2.2 $N \leftarrow 2^{\ell} - 1$
 - 4.3 Transferir registros da lista $L_{N+2\ell_m}$ para a lista L_N usando h_ℓ
 - 4.4 Remover lista $L_{N+2^{\ell}m}$

Exercício

A partir do estado abaixo, mostre o estado final do arquivo após a inserção das chaves 22, 37, 30 e 21.

Tamanho de página igual a 2, $\alpha^{max} = 0.80$ e m = 2.

Exercício

Resposta:

$$\alpha = \frac{12}{16} = 0.75$$