Introduction to machine learning

DeepMind

Healthcare Medical images analysis

Luc Lesoil

Presentation

- I. General
- II. Supervised learning

Break – A video to introduce DiverSE

- III. Unsupervised learning
- IV. Reinforcement learning

General introduction

High-level presentation

Non-exhaustive list

Concrete cases

https://github.com/llesoil/ML example

Supervised learning: basics

X : images of numbers

y : numbers

357 40 1

X : Explaining variables

y: Variable to predict, labels known

Train Test the model the model

Learn X → y

Predict ŷ, estimations of y Compare with real y values

Supervised learning = Use X to predict y

Loss function

Compare quality of predictions?

Loss function

Minimize the loss function

=

better predictions

Tux

https://towardsdatascience.com/common-loss-functions-in-mac hine-learning-46af0ffc4d23

https://algorithmia.com/blog/introduction-to-loss-functions

Examples

MAE MAPE

Hinge

Minkowski

MSE

Cross-entropy

Type of Supervised learning

Classification

→ Group or category

Regression

→ Value

Linear regression

Simple

Complex dataset

Linear relationship

Fit the scatterplot with the red line

 \star is the prediction of x = \bullet

Decision Tree (CART)

Extract rules

Simple to parameter

Learning unit for many algorithms

Classification Regression

Random Forest

• Bagging → robustness

Metrics

Good compromise

Boosting tree

Complex dataset

Many hyperparameters

 XGBoost: the algorithm that wins every competition

Update the trees based on previous results

AdaBoost

XGBoost

Classification Regression

Neural networks

Simple dataset

Many hyperparameters

Black box

Feedforward neural network

Classification Regression

Others

 Quantile/Polynomial/Piecewise regression, Ridge, ElasticNet, LASSO to select explaining variables

Support Vector Machine: SVC or SVR

Time series predictions: (S)AR(I)MA, RNN

Break - Video

- Demos
- Photos
- Some ideas?

Unsupervised learning

Clustering

Association

Anomaly detection

Kmeans

Simple clustering

Fast

Few parameters

Gaussian Mixture Model

Gaussian distribution

Estimation of K

Scale well - fast

K-Nearest neighbors

 Used in recommendation systems

Supervised

 "You are the average of the five people you spend the most time with"

1 is the nearest neighbor of 3 0 is the second nearest

Hierarchical clustering

Quadratic O(n²)

Not designed for big dataset

Full description of relationships

Hierarchical clustering (2)

Quadratic O(n²)

Not designed for big dataset

Full description of relationships

Others

Hidden Markov Model, Bayesian classifier/networks

Factorial analysis, other transforms (Fourier)

Semi-supervised

Reinforcement Learning

Reinforcement learning What's behind

Notions

- State S
- Action A
- Reward R
- Policy Pi
- •
- •

Reinforcement learning

Reinforcement learning

References

- Mnist dataset
- •
- •
- https://www.slideshare.net/cprakash2011/reinforcement-learning-40052403/5
- https://brilliant.org/wiki/gaussian-mixture-model/
- MARIQ: https://www.youtube.com/watch?v=CacRZmjDIr4