WIRTSCHAFTSSTATISTIK MODUL 5: STREUUNGSPARAMETER

WS 2023/24

DR. E. MERINS

EINLEITUNG

Problem der Lageparameter:

Die Lageparameter schweigen sich aus über die Streuung der Daten. Das arithmetische Mittel (der Durchschnitt) und auch der Median verdecken oft eine große Ungleichheit.

Statistiker-Witz (frei nach Franz Josef Strauß):

Zwei Männer sitzen im Wirtshaus.

Der eine verdrückt eine ganze Kalbshaxe, der andere trinkt zwei Maß Bier.

Statistisch (im Mittelwert) gesehen ist das für jeden eine Maß Bier und eine halbe Haxe.

Aber in Wirklichkeit der eine hat sich überfressen, und der andere ist besoffen.

- → die Berechnung des Durchschnitts ist nicht immer sinnvoll
- → der Durchschnitt kann offensichtlich nicht immer alles beschreiben

STREUUNG UM DEN MITTELWERT

Beispiel:

In der folgenden Häufigkeitstabelle und den darauf folgenden Säulendiagrammen ist die Notenverteilung zweier Schülergruppen (Mädchen und Jungen) dargestellt, deren Mittelwert gleich ist.

Schüler Nr.	1	2	3	4	5	6	7	8	9	10	
Note Mädchen	3,2	3,5	2,9	3,3	3,4	2,5	2,7	2,8	3,1	2,6	≅=3,0
Note Jungs	1,0	1,0	2,0	2,5	3,2	2,8	3,5	2,0	6,0	6,0	≅=3,0

$$\overline{x}_{\text{Mädchen}} = 1/10*(3,2+3,5+2,9+3,3+3,4+2,5+2,7+2,8+3,1+2,6)=3,0$$

$$\overline{x}_{\text{Jungs}} = 1/10*(1,0+1,0+2,0+2,5+3,2+2,8+3,5+2,0+6,0+6,0)=3,0$$

STREUUNG UM DEN MITTELWERT

Beispiel:

Notenverteilung Mädchen:

Die Noten liegen alle sehr nahe am Mittelwert

→ Sie streuen wenig um den Mittelwert

Notenverteilung <u>Jungen</u>:

Die Abweichungen vom Mittelwert sind groß

→ Sie streuen stark um den Mittelwert

Die Statistik bietet Möglichkeiten, die **Streuung** näher zu untersuchen und mit Hilfe der **Streuungsparametern** die Streuung zu beschreiben.

STREUUNGSPARAMETER

Forderungen/Eigenschaften einer "guten" Kennzahl zur Messung der Streuung:

- Bezugspunkt, um den die Werte streuen (→ Lageparameter)
- alle Beobachtungswerte werden berücksichtigt
- Streuung = 0 (alle Werte sind gleich) → Streuungsparameter = 0
- je größer die Streuung, umso größer der Streuungsparameter
- der Streuungsparameter ist unabhängig von der Anzahl der Beobachtungswerte n

QUARTILSABSTAND

Zwischen dem 1. und 3. Quartil liegen 50% aller Beobachtungswerte.

Dieser Bereich wird auch Quartilsabstand genannt.

Der (Inter-)**Quartilsabstand** (engl.: interquartile range, IQR) bezeichnet die Differenz zwischen dem oberen und dem unteren Quartil $\mathbf{Q_3}$ - $\mathbf{Q_1}$ und umfasst daher 50% der Verteilung.

Der Quartilsabstand wird als Streuungsmaß verwendet.

QUARTILSABSTAND

Beispiel:

Die Liste enthält von 13 Schülern die Körpergröße.

Die Merkmalsausprägungen (Beobachtungswerte) wurden nach der Größe geordnet.

Schüler Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13
Größe in m	1,60	1,67	1,67	1,68	1,68	1,70	1,70	1,72	1,73	1,75	1,76	1,78	1,84
	25%				25%			25%			25%		
	1. Quartil Q			ırtil Q₁		2.	Quarti	I Q ₂		3. Q	uartil (\mathbf{Q}_3	

50%	
Quartilsabstand	

QUARTILSABSTAND

Beispiel:

Schüler Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13
Größe in m	1,60	1,67	1,67	1,68	1,68	1,70	1,70	1,72	1,73	1,75	1,76	1,78	1,84
	25%		25%				25%			25%			

1. Quartil Q₁

2. Quartil Q₂

3. Quartil Q₃

Quartilsabstand 50%

$$\overline{x}_Z = Q_2 = x_{\underline{n+1}} = x_{\underline{13+1}} = x_7 = 1,70$$

1. Quartil:
$$Q_1 = \frac{1}{2}(x_3 + x_4) = \frac{1}{2}(1,67 + 1,68) = 1,675$$

3. Quartil:
$$Q_3 = \frac{1}{2}(x_{10} + x_{11}) = \frac{1}{2}(1,75+1,76) = 1,755$$

$$Q_A = IQR = Q_3 - Q_1 = 1,755 - 1,675 = 0,08$$

SPANNWEITE

Spannweite (oder Variationsbreite) w: Ausdehnung der Werte (Maß für die Breite des Streubereichs einer Häufigkeitsverteilung)

Für ordinale und metrische Merkmale gilt:

$$W = X_{max} - X_{min}$$

Fall 1:
$$w = 33 - 27 = 6$$

Fall 2: w = 40 - 20 = 20

SPANNWEITE

$$w = x_{max} - x_{min}$$

Beispiel:

Schüler Nr.	1	2	3	4	5	6	7	8	9	10
Note Mädchen	3,2	3,5	2,9	3,3	3,4	2,5	2,7	2,8	3,1	2,6
Note Jungs	1,0	1,0	2,0	2,5	3,2	2,8	3,5	2,0	6,0	6,0

$$W_{M\ddot{a}dchen} = 3, 5 - 2, 5 = 1$$

$$w_{Jungs} = 6, 0 - 1, 0 = 5, 0$$

QUARTILSABSTAND VS. SPANNWEITE

Vergleich zwischen Quartilsabstand und Spannweite:

Qu	artil	SCI	hst	and	4
<u>QU</u>	<u>ui iii</u>	<u> </u>	<u> </u>	<u>uii</u>	_

Von Ausreißern unabhängig

Gibt die Breite des mittleren Bereichs an, in dem ca. 50% aller Werte liegen

<u>Spannweite</u>

Vom kleinsten und größten Wert abhängig

Gibt die Gesamtbreite an, in dem alle Werte liegen

BOXPLOT

Die grafische Darstellung der 5-Punkte-Zusammenfassung heißt

Box-and-Whisker-Plot

Die 5-Punkte-Zusammenfassung besteht aus:

Minimum, Q1, Median, Q3, Maximum

BOXPLOT

Aus einem **Boxplot** lassen sich Informationen über die:

- Lokalisation (Lage des Median)
- Streuungsmaße:
 - Spannweite \rightarrow Ausdehnung eines Boxplots (Differenz $w = x_{max} x_{min}$)
 - Quartilsabstand → Ausdehnung der Box (Differenz IQR = Q₃ Q₁)
- Schiefe (Vergleich der beiden Hälften der Box oder der Längen der Whisker)
 eines Datensatzes sowie über den evtl. vorliegenden Ausreißer gewinnen.

Eine der Definitionen der Whisker besteht darin, die Länge der Whisker auf maximal das 1,5-Fache des Interquartilsabstands (1,5×IQR) zu beschränken. Der Whisker endet nicht genau nach dieser Länge, sondern bei dem Wert aus den Daten, der noch innerhalb dieser Grenze liegt. Die Länge der Whisker wird also durch die Datenwerte und nicht allein durch den IQR bestimmt. Dies ist auch der Grund, warum die Whisker nicht auf beiden Seiten gleich lang sein müssen. Gibt es keine Werte außerhalb der Grenze von 1,5×IQR, wird die Länge des Whiskers durch den maximalen und minimalen Wert festgelegt. Andernfalls werden die Werte außerhalb der Whisker separat in das Diagramm eingetragen.

BOXPLOT

Beispiel:

Quartilsabstand: 484 - 345 = 139

Spannweite: 621 - 154 = 467

Quartilsabstand: 484 - 345 = 139

Spannweite: 924 – 154 = 770

Häufig werden Ausreißer, die zwischen 1,5×IQR und 3×IQR liegen, als "milde" Ausreißer bezeichnet und Werte, die über 3×IQR liegen, als "extreme" Ausreißer.

In der beschreibenden Statistik nennt man das arithmetische Mittel der Abweichungsquadrate die **Varianz**.

Eigenschaften:

- wichtiger Streuungsparameter
- Voraussetzung: metrisches Merkmal
- Ausgangswert für weitere folgende Streuungsparameter:
 - Standardabweichung
 - Variationskoeffizient
- → Mittelwert und Varianz bzw. Standardabweichung hängen eng zusammen.

Konstruktion der Varianz:

Bezugspunkt: \overline{x}

Einzelstreuung/Einzelabweichung: $(x_i - \overline{x})$

Summe der Einzelabweichungen: $\sum_{i=1}^{n} (x_i - \overline{x})$

Summe der quadratischen Abweichungen: $\sum_{i=1}^{n} (x_i - \overline{x})^2$

<u>Varianz</u>: $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$

$$s^{2} = \frac{1}{n} \left((x_{1} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = (\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}) - \overline{x}^{2}$$
Formel (1) Formel (2)

Konstruktion der Varianz:

Bemerkung:

Handelt es sich bei den zu untersuchenden Daten um die

Grundgesamtheit (Population), dann wird mit 1/n gewichtet:

Beispiel:

$$\mathbf{x}_1 = \mathbf{5}$$
 $\mathbf{x}_2 = \mathbf{2}$ $\mathbf{x}_3 = \mathbf{8}$ $\mathbf{x}_4 = \mathbf{3}$
 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$
 $\overline{\mathbf{x}} = \frac{1}{4} \cdot (5 + 2 + 8 + 3) = \frac{18}{4} = 4,5$

Berechnung der Varianz

$$s^{2} = \frac{1}{4} \cdot ((5-4,5)^{2} + (2-4,5)^{2} + (8-4,5)^{2} + (3-4,5)^{2}) =$$

$$\frac{1}{4} \cdot (0,25+6,25+12,25+2,25) = \frac{21}{4} = 5,25$$

Formel (1):

$$s^{2} = \frac{1}{n} \sum_{i=1}^{j} (x_{i} - \overline{x})^{2} * h(x_{i}) = \sum_{i=1}^{j} (x_{i} - \overline{x})^{2} * f(x_{i})$$

Formel (2):

$$s^{2} = \left(\frac{1}{n} \sum_{i=1}^{j} x_{i}^{2} * h(x_{i})\right) - \overline{x}^{2} = \left(\sum_{i=1}^{j} x_{i}^{2} * f(x_{i})\right) - \overline{x}^{2}$$

$$x_1, \dots, x_i$$
 Merkmalsausprägungen

$$h(x_1), ..., h(x_i)$$
 absolute Häufigkeiten

$$f(x_1), ..., f(x_i)$$
 relative Häufigkeiten

Anzahl der Merkmalsausprägungen x_i

Berechnung der Varianz aus einer Häufigkeitstabelle nach Formel (1):

Fall 1: Absolute Häufigkeit hi

$$n = \sum_{i=1}^{j} h_i = h_1 + h_2 + \cdots + h_j$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{j} (x_{i} - \overline{x})^{2} * h_{i} = \frac{1}{n} * ((x_{1} - \overline{x})^{2} h_{1} + (x_{2} - \overline{x})^{2} h_{2} + \dots + (x_{j} - \overline{x})^{2} h_{j})$$

- h_i absolute Häufigkeit der Merkmalsausprägung x_i
- n Summe der absoluten Häufigkeiten
- j Anzahl der Merkmalsausprägungen x_i

Berechnung der Varianz aus einer Häufigkeitstabelle nach Formel (1):

Fall 2: Relative Häufigkeit f_i

$$s^{2} = \sum_{i=1}^{j} (x_{i} - \overline{x})^{2} * f_{i} = ((x_{1} - \overline{x})^{2} f_{1} + (x_{2} - \overline{x})^{2} f_{2} + \dots + (x_{j} - \overline{x})^{2} f_{j})$$

- f_i relative Häufigkeit der Merkmalsausprägung \mathbf{x}_i
- n Summe der absoluten Häufigkeiten
- j Anzahl der Merkmalsausprägungen x_i

Beispiel:

Häufigkeitstabelle

Note x _i	1	2	3	4	5	6
Anzahl Schüler h _i	5	8	14	16	5	2
Relative Häufigkeit f _i =h _i /n	0,1	0,16	0,28	0,32	0,1	0,04

Schüler insgesamt:

$$n = \sum_{i=1}^{6} h_i = 5 + 8 + 14 + 16 + 5 + 2 = 50$$

Beispiel:

Berechnung der Varianz über die absolute Häufigkeit:

i	x_i	h_i	$x_i h_i$	$\overline{\mathcal{X}}$	$x_i - \overline{x}$	$(x_i - \overline{x})^2 h_i$
1	1	5	5	3,28	-2,28	25,992
2	2	8	16	3,28	-1,28	13,107
3	3	14	42	3,28	-0,28	1,098
4	4	16	64	3,28	0,72	8,294
5	5	5	25	3,28	1,72	14,792
6	6	2	12	3,28	2,72	14,797
Σ		50	164	\bar{x} =164/50=3,28		78,08

$$s^{2} = \frac{1}{50} \sum_{i=1}^{6} (x_{i} - \overline{x})^{2} * h_{i} = \frac{78,08}{50} = 1,562$$

Beispiel:

Berechnung der Varianz über die <u>relative</u> Häufigkeit:

i	x_i	h_i	f_i	$x_i f_i$	\overline{x}	$x_i - \overline{x}$	$(x_i - \overline{x})^2 f_i$
1	1	5	0,1	0,1	3,28	-2,28	0,520
2	2	8	0,16	0,32	3,28	-1,28	0,262
3	3	14	0,28	0,84	3,28	-0,28	0,022
4	4	16	0,32	1,28	3,28	0,72	0,166
5	5	5	0,1	0,50	3,28	1,72	0,296
6	6	2	0,04	0,24	3,28	2,72	0,296
Σ		50	1	\bar{x} =3,28			<i>s</i> ² =1,562

$$s^{2} = \sum_{i=1}^{6} (x_{i} - \overline{x})^{2} * f_{i} = 1,562$$

Berechnung der Varianz aus einer klassierten Häufigkeitstabelle nach Formel (1):

Fall 1: Absolute Häufigkeit hi

$$n = \sum_{i=1}^{k} h_i = h_1 + h_2 + \cdots + h_k$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{k} (m_{i} - \overline{x})^{2} * h_{i} = \frac{1}{n} * ((m_{1} - \overline{x})^{2} h_{1} + (m_{2} - \overline{x})^{2} h_{2} + \dots + (m_{k} - \overline{x})^{2} h_{k})$$

h_i absolute Häufigkeit der i-ten Klasse

n Summe der absoluten Häufigkeiten

k Anzahl der Klassen

m; Klassenmitte der i-ten Klasse

Berechnung der Varianz aus einer klassierten Häufigkeitstabelle nach Formel (1):

Fall 2: Relative Häufigkeit fi

$$s^{2} = \sum_{i=1}^{k} (m_{i} - \overline{x})^{2} * f_{i} = ((m_{1} - \overline{x})^{2} f_{1} + (m_{2} - \overline{x})^{2} f_{2} + \dots + (m_{k} - \overline{x})^{2} f_{k})$$

f; relative Häufigkeit der i-ten Klasse

n Summe der absoluten Häufigkeiten

k Anzahl der Klassen

m; Klassenmitte der i-ten Klasse

Beispiel:

klassierte Häufigkeitstabelle für die Körpergröße:

Klasse x _i	150 b. u. 160	160 b. u. 170	170 b. u. 180	180 b. u. 190
Häufigkeit h _i	9	12	7	2
Klassenmitte m _i	155	165	175	185
Relative Häufigkeit f _i =h _i /n	0,3	0,4	0,23	0,07

Schüler insgesamt:

$$n = \sum_{1}^{4} h_i = 9 + 12 + 7 + 2 = 30$$

Beispiel:

Berechnung der Varianz über die absolute Häufigkeit:

i	Klasse x _i	m_i	h_i	$m_i h_i$	\overline{x}	$m_i - \overline{x}$	$(m_i-\overline{x})^2h_i$
1	150 b. u. 160	155	9	1.392	165,67	-10,67	1.024,64
2	160 b. u. 170	165	12	1.980	165,67	-0,67	5,39
3	170 b. u. 180	175	7	1.225	165,67	9,33	609,34
4	180 b. u. 190	185	2	370	165,67	19,33	747,30
Σ			30	4.970	\bar{x} =4.970/30=165,67		2.386,67

$$s^2 = \frac{1}{30} \sum_{i=1}^{4} (m_i - \overline{x})^2 * h_i = \frac{2.386,67}{30} \approx 80$$

Beispiel:

Berechnung der Varianz über die relative Häufigkeit:

i	Klasse x _i	m_i	h_i	f_i	$m_i f_i$	\overline{x}	$m_i - \overline{x}$	$(m_i - \overline{x})^2 f_i$
1	150 b. u. 160	155	9	0,3	46,5	165,67	-10,67	34,1547
2	160 b. u. 170	165	12	0,4	66,0	165,67	-0,67	0,1796
3	170 b. u. 180	175	7	0,23	40,25	165,67	9,33	20,0212
4	180 b. u. 190	185	2	0,07	12,95	165,67	19,33	26,1554
Σ			30	1	x =165,6 7			80,51

$$s^2 = \sum_{i=1}^4 (m_i - \overline{x})^2 * f_i \approx 80$$

STANDARDABWEICHUNG

Standardabweichung:

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Die Standardabweichung ist ein Maß dafür, wie hoch die Aussagekraft des Mittelwertes ist. Eine kleine Standardabweichung bedeutet, alle Beobachtungswerte liegen nahe am Mittelwert (kleine Streuung).

Eine große Standardabweichung bedeutet, die Beobachtungswerte sind weit um den Mittelwert gestreut.

bei normalverteilten Daten liegen ca. 95% der Beobachtungswerte im Intervall $[\bar{x} - 2s, \bar{x} + 2s]$.

STREUUNGSPARAMETER

Spannweite w:

$$w = x_{max} - x_{min}$$

(Inter)Quartilsabstand:

$$Q_A = IQR = Q_3 - Q_1$$

Varianz:

$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

Standardabweichung:

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Variationskoeffizient:

$$v = \frac{s}{\overline{x}}$$

(ein relatives Streuungsmaß, dimensionslose Größe.

Es handelt es sich um das prozentuale Verhältnis der Standardabweichung zum arithmetischen Mittel)

STREUUNGSPARAMETER

Beispiel für die Anwendung:

"EINIGE STATISTIKBEGRIFFE IN ENGLISCH"

deutsch	<u>englisch</u>
Grundgesamtheit	population
Stichprobe	sample
arithmetisches Mittel	mean
Modus	mode
Spannweite	range
Varianz	variance
Standardabweichung	standard deviation
	(std dev)