DEVOIR MAISON Nº 7

À rendre le lundi 13 janvier

Vous attacherez la plus grande importance à la clarté, à la précision et à la concision de la rédaction. L'usage d'une calculatrice est interdit.

Approximation numérique d'intégrales

Liminaire : Polynômes

On appelle polynôme toute fonction P de $\mathbb R$ dans $\mathbb R$ telle qu'il existe $n\in\mathbb N$ et $a_0,\ldots,a_n\in\mathbb R$ tels que :

$$\forall x \in \mathbb{R} \quad P(x) = \sum_{k=0}^{n} a_k x^k$$

1. Soit P un polynôme et $a_0, \ldots, a_n \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R} \quad P(x) = \sum_{k=0}^{n} a_k x^k$$

On suppose dans cette question que le polynôme P est nul, c'est-à-dire que pour tout $x \in \mathbb{R}$, P(x) = 0. En considérant la limite de $P(x)/x^n$ lorsque x tend vers $+\infty$, montrer que $a_n = 0$. Montrer de même que $a_0 = \cdots = a_{n-1} = 0$.

2. Soit P un polynôme non nul. Montrer qu'il existe un unique $n \in \mathbb{N}$ et un unique $(a_0,\ldots,a_n) \in \mathbb{R}^{n+1}$ tels que

$$a_n \neq 0$$
 et $\forall x \in \mathbb{R}$ $P(x) = \sum_{k=0}^{n} a_k x^k$

Cet entier n est appelé degré de P et noté deg P. Par convention, on dira que le polynôme nul a un degré égal à $-\infty$.

3. En utilisant le théorème de Rolle, montrer par récurrence que tout polynôme de degré n admet au plus n racines distinctes.

Dans la suite du problème, On pourra utiliser librement les résultats suivants :

- Si P et Q sont de degrés inférieur ou égal à n et $\lambda, \mu \in \mathbb{R}$, $\lambda P + \mu Q$ est de degré inférieur ou égal à n.
- Si P et Q sont deux polynômes non nuls, alors $\deg(PQ) = \deg P + \deg Q$.
- Si A et B sont deux polynômes et que B est non nul, alors il existe deux polynômes Q et R tels que A = QB + R et deg $R < \deg B$. On dit que Q et R sont respectivement le quotient et le reste de la division euclidienne de A par B.

Dans tout le problème, on désigne par n un entier naturel donné supérieur ou égal à 2 et par f une application de classe C^{2n} du segment [-1,1] dans \mathbb{R} . On se propose d'établir une méthode de calcul approché de l'intégrale

$$\mathcal{I}\left(f\right) = \int_{-1}^{1} f\left(t\right) \, \mathrm{d}t$$

Dans la partie I, on étudie le polynôme P_n défini par

$$\forall x \in \mathbb{R} \quad P_n(x) = \left(x^2 - 1\right)^n$$

ses dérivées successives $P_n^{(j)}$ et notamment sa dérivée n-ième : $P_n^{(n)}$. La partie II propose l'étude de deux procédés d'interpolation polynomiale de la fonction f. Le premier permet de définir la méthode utilisée pour le calcul d'une valeur approchée de $\mathcal{I}(f)$, le second de majorer l'erreur commise.

Partie I

- 1. Étude des racines de P_n et de ses dérivées.
 - (a) Établir l'existence, pour tout entier naturel j inférieur ou égal à n, d'un polynôme Q_j tel que, pour tout nombre réel x:

$$\begin{cases} P_n^{(j)}(x) = (x^2 - 1)^{n-j} Q_j(x) \\ Q_j(-1) \neq 0 \text{ et } Q_j(1) \neq 0 \end{cases}$$

On pourra raisonner par récurrence sur l'entier j et on précisera l'expression de Q_{j+1} en fonction de Q_j pour $0 \le j \le n-1$.

En déduire les valeurs en -1 et 1 de P_n et de ses dérivées d'ordre j strictement inférieur à n.

- (b) Énoncer avec précision le théorème de Rolle. Établir que le polynôme P'_n admet au moins une racine dans l'intervalle]-1,1[puis que le polynôme P''_n admet au moins deux racines distinctes dans l'intervalle]-1,1[.
 - Démontrer que, pour tout entier naturel j compris entre 1 et n, le polynôme $P_n^{(j)}$ admet au moins j racines distinctes dans l'intervalle]-1,1[.
- (c) En déduire que le polynôme $P_n^{(n)}$ admet exactement n racines réelles distinctes et que celles-ci appartiennent à l'intervalle]-1,1[.

Dans toute la suite du problème, ces racines seront notées r_1, r_2, \ldots, r_n avec $-1 < r_1 < r_2 < \cdots < r_n < 1$.

2. Calcul d'une intégrale auxiliaire.

On pose, pour tout couple (p,q) d'entiers naturels :

$$W(p,q) = \int_{-1}^{1} (t-1)^p (t+1)^q dt$$

(a) À l'aide d'une intégration par parties, établir une relation entre W(p+1, q-1) et W(p,q) lorsque $q \ge 1$.

(b) En déduire que

$$W(n,n) = (-1)^n \frac{2^{2^{n+1}} (n!)^2}{(2n+1)!}$$

3. Calcul d'intégrales associées au polynôme P_n et à ses dérivées.

Dans cette question, on désigne par Q un polynôme à coefficients réels.

(a) Établir rigoureusement l'égalité suivante :

$$\int_{-1}^{1} Q(t) P_n^{(n)}(t) dt = (-1)^n \int_{-1}^{1} Q^{(n)}(t) P_n(t) dt$$

(b) Quelle est la valeur de l'intégrale

$$\int_{-1}^{1} Q(t) P_n^{(n)}(t) dt$$

lorsque Q est de degré strictement inférieur à n?

(c) Expliciter $P_n^{(2n)}$ puis exprimer

$$\int_{-1}^{1} \left(P_n^{(n)} \left(t \right) \right)^2 \, \mathrm{d}t$$

en fonction de W(n,n) et obtenir ainsi sa valeur.

Partie II

1. Polynôme d'interpolation de Lagrange de f.

On pose désormais, pour tout entier j entre 1 et n et pour tout nombre réel x:

$$L_{j}(x) = \prod_{\substack{i=1\\i\neq j}}^{n} \frac{x - r_{i}}{r_{j} - r_{i}} \qquad \lambda_{j} = \int_{-1}^{1} L_{j}(t) dt$$

- (a) Calculer $L_{j}(r_{k})$ en distinguant suivant que k est, ou non, égal à j.
- (b) Montrer qu'il existe un un unique polynôme A_n de degré strictement inférieur à n tel que

$$\forall j \in [1, n] \quad A_n(r_j) = f(r_j)$$

(c) Établir l'égalité :

$$\int_{-1}^{1} A_n(t) dt = \sum_{j=1}^{n} \lambda_j f(r_j)$$

On se propose désormais de prendre pour valeur approchée de l'intégrale

$$\mathcal{I}(f) = \int_{-1}^{1} f(t) dt$$

l'intégrale

$$\mathcal{I}(A_n) = \int_{-1}^{1} A_n(t) dt$$

que l'on notera $\mathcal{I}_n(f)$ dans toute la suite du problème. En d'autres termes, on prend pour valeur approchée de l'intégrale $\mathcal{I}(f)$ le nombre réel :

$$\mathcal{I}_{n}\left(f\right) = \sum_{j=1}^{n} \lambda_{j} f\left(r_{j}\right)$$

2. Comparaison de $\mathcal{I}(P)$ et $\mathcal{I}_n(P)$ lorsque P est un polynôme.

Dans cette question, on suppose que P est un polynôme dont le degré est noté deg P. Par convention le degré du polynôme nul sera posé égal à $-\infty$.

- (a) On suppose que deg P < n. Comparer $\mathcal{I}(P)$ et $\mathcal{I}_n(P)$.
- (b) On suppose que $\deg P < 2n$.
 - i. Justifier l'existence d'un couple (Q, R) de polynômes tel que l'on ait :

$$P = QP_n^{(n)} + R$$
 et $\deg R < n$

- ii. Montrer que $\deg Q < n$.
- iii. Déduire des résultats de la partie I que $\mathcal{I}(P) = \mathcal{I}(R)$.
- iv. Comparer $\mathcal{I}(P)$ et $\mathcal{I}_n(P)$.
- 3. Polynôme d'interpolation de Hermite de f.

On pose désormais, pour tout entier j entre 1 et n et pour tout nombre réel x:

$$H_{j}(x) = \prod_{\substack{i=1\\i\neq j}}^{n} \left(\frac{x-r_{i}}{r_{j}-r_{i}}\right)^{2}$$

- (a) Calculer $H_j(r_k)$ et $H'_j(r_k)$ en distinguant suivant que k est, ou non, égal à j
- (b) Montrer qu'un polynôme de degré strictement inférieur ou égal à 2n admettant n racines distinctes en lesquelles sa dérivée est nulle, est nul.
- (c) En déduire qu'il existe un unique polynôme B_n de degré strictement inférieur à 2n tel que $B_n(r_j) = f(r_j)$ et $B'_n(r_j) = f'(r_j)$ pour tout entier j compris entre 1 et n.
- (d) Déduire des résultats précédents que $\mathcal{I}(B_n) = \mathcal{I}_n(f)$.
- 4. Majoration de $|\mathcal{I}(f) \mathcal{I}_n(f)|$

Soit $M_{2n}(f)$ le maximum de $|f^{2n}(t)|$ lorsque t décrit le segment [-1,1]. Dans cette question, on désigne par x un nombre réel donné appartenant au segment [-1,1] et distinct des nombres r_1, r_2, \ldots, r_n . On considère alors l'application g_x définie sur [-1,1] par :

$$g_x(t) = f(t) - B_n(t) - \alpha \left(P_n^{(n)}(t)\right)^2$$

où α est le nombre réel (dont on justifiera l'existence) tel que $g_x(x) = 0$.

- (a) En appliquant le théorème de Rolle à l'application g_x sur des intervalles à préciser, prouver que g'_x s'annule en au moins n points de]-1,1[distincts de $r_1,r_2,\ldots,r_n.$
- (b) Calculer $g'_x(r_1), g'_x(r_2), \dots, g'_x(r_n)$. Établir que $g_x^{(2n)}$ s'annule en au moins un point c appartenant au segment [-1, 1].

- (c) Expliciter $g_{x}^{(2n)}\left(t\right)$ et en déduire une expression de α en fonction de $f^{(2n)}\left(c\right)$ et de n.
- (d) À l'aide de l'égalité $g_x(x) = 0$, établir que :

$$f(x) - B_n(x) = \frac{(n!)^2}{((2n)!)^3} f^{(2n)}(c) \left(P_n^{(n)}(x)\right)^2$$

(e) Prouver que, pour tout réel x de [-1, 1]:

$$|f(x) - B_n(x)| \le \frac{(n!)^2}{((2n)!)^3} M_{2n}(f) (P_n^n(x))^2$$

On distinguera deux cas suivant que x est, ou non égal à l'un des nombres réels r_1, r_2, \ldots, r_n .

Déduire alors des résultats des partie I et II que :

$$|\mathcal{I}(f) - \mathcal{I}_n(f)| \le \frac{M_{2n}(f)}{\binom{2n}{n}^2} \frac{2^{2n+1}}{(2n+1)!}$$

(f) On considère dans cette question une application g à valeurs dans \mathbb{R} définie et de classe \mathcal{C}^{2n} sur un segment [a,b]. On désigne par $M_{2n}(g)$ le maximum de $|g^{(2n)}(u)|$ lorsque u décrit le segment [a,b].

En envisageant l'application f définie sur [-1,1] par

$$f(t) = g\left(\frac{a+b}{2} + t\frac{b-a}{2}\right)$$

donner en fonction de a, b n et $M_{2n}\left(g\right)$ un majorant de l'expression suivante :

$$\left| \int_{a}^{b} g(u) \, du - \frac{b-a}{2} \sum_{j=1}^{n} \lambda_{j} g\left(\frac{a+b}{2} + r_{j} \frac{b-a}{2}\right) \right|$$

5. Étude d'un cas particulier.

Dans cette question, on suppose que n=2.

- (a) Déterminer le polynôme P_2'' , ses racines r_1 et r_2 , les polynômes L_1 , L_2 ainsi que les intégrales $\lambda_1 = \mathcal{I}(L_1)$ et $\lambda_2 = \mathcal{I}(L_2)$.
- (b) En appliquant la majoration obtenue au III.4.c., montrer que :

$$\left| \int_a^b g\left(u \right) \, \mathrm{d}u - \frac{b-a}{2} \left(g\left(\frac{a+b}{2} - \frac{b-a}{2\sqrt{3}} \right) + g\left(\frac{a+b}{2} + \frac{b-a}{2\sqrt{3}} \right) \right) \right|$$

$$\leqslant \frac{M_4\left(g\right)\left(b-a\right)^5}{4320}$$

(c) On considère un entier $p \ge 1$ et on subdivise le segment [a, b] en p sous-segments de même longueur, dont on note les milieux c_1, c_2, \ldots, c_p . En appliquant l'inégalité précédente à chacun de ces p sous-segments, majorer en fonction de p et de $M_4(q)$ l'expression suivante :

$$\left| \int_{a}^{b} g(u) du - \frac{b-a}{2p} \sum_{k=1}^{p} \left(g\left(c_{k} - \frac{b-a}{2p\sqrt{3}}\right) + g\left(c_{k} + \frac{b-a}{2p\sqrt{3}}\right) \right) \right|$$

(d) Écrire en Python un algorithme de calcul de la somme précédente, les réels a et b, la fonction g ainsi que l'entier p étant supposés donnés.