FSPL – Assignment 4

冯诗伟 161220039

3.1

1.
$$y = x^2$$

2.
$$y = z \wedge x = w$$

- 3. $a \le b \land y = ax$
- 4. *true*
- 5. false

3.2

The program P is c := a; d := b; while (d > 0) do (r := c rem d; c := d; d := r).

The loop invariant is $d \ge 0 \land gcd(c, d) = gcd(a, b)$.

Proof:

1.
$$[a \ge 0 \land b \ge 0 \land \gcd(a,b) = \gcd(a,b)]$$
 $c := a$ $[a \ge 0 \land b \ge 0 \land \gcd(c,b) = \gcd(a,b)]$ AS

2.
$$[a \ge 0 \land b \ge 0 \land gcd(c,b) = gcd(a,b)]$$
 $d := b$ $[d \ge 0 \land gcd(c,d) = gcd(a,b)]$ AS

3.
$$[a \ge 0 \land b \ge 0 \land gcd(a,b) = gcd(a,b)]c := a; d := b; [d \ge 0 \land gcd(c,d) = gcd(a,b)]$$
 SC,1,2

$$4. \ [d \geq 0 \land gcd(c,d) = gcd(a,b) \land d > 0 \land d = z]r := c \ \textit{rem} \ d[d \geq 0 \land gcd(d,r) = gcd(a,b) \land d > 0 \land d = z] \ AS$$

5.
$$[d \ge 0 \land gcd(d,r) = gcd(a,b) \land d > 0 \land d = z]$$
 $c := d$ $[d \ge 0 \land gcd(c,r) = gcd(a,b) \land d > 0 \land d = z]$ AS

6.
$$[d \ge 0 \land gcd(c, r) = gcd(a, b) \land d > 0 \land d = z]$$
 $d := r$ $[d \ge 0 \land gcd(c, d) = gcd(a, b) \land d > 0 \land d < z]$ AS

7.
$$[d \ge 0 \land gcd(c, d) = gcd(a, b) \land d > 0 \land d = z]$$

 $r := c \text{ rem } d; c := d$
 $[d \ge 0 \land gcd(c, r) = gcd(a, b) \land d > 0 \land d = z]$
SC,4,5

8.
$$[d \ge 0 \land gcd(c, d) = gcd(a, b) \land d > 0 \land d = z]$$

 $r := c \text{ rem } d; c := d; d := r$
 $[d \ge 0 \land gcd(c, d) = gcd(a, b) \land d > 0 \land d < z]$
SC,7,6

9.
$$d \ge 0 \land gcd(c,d) = gcd(a,b) \land d > 0 \Rightarrow d \ge 0$$

10.
$$[d \ge 0 \land gcd(c, d) = gcd(a, b)]$$

while $(d > 0)$ **do** $(r := c \text{ rem } d; c := d; d := r)$
 $[d \le 0 \land d \ge 0 \land gcd(c, d) = gcd(a, b)]$ WHT,8,9

11.
$$[a \ge 0 \land b \ge 0 \land gcd(a,b) = gcd(a,b)]$$

 $c := a; d := b; \text{ while } (d > 0) \text{ do } (r := c \text{ rem } d; c := d; d := r)$
 $[d \le 0 \land d \ge 0 \land gcd(c,d) = gcd(a,b)]$
SC 3,10

12.
$$[d \le 0 \land d \ge 0 \land gcd(c,d) = gcd(a,b)] \Rightarrow [gcd(c,0) = gcd(a,b)]$$

13.
$$[a \ge 0 \land b \ge 0 \land gcd(a,b) = gcd(a,b)]$$

 $c := a; d := b; \text{ while } (d > 0) \text{ do } (r := c \text{ rem } d; c := d; d := r)$
 $[gcd(c,0) = gcd(a,b)]$
WC,11,12

14.
$$gcd(c, 0) = gcd(a, b) \Rightarrow c = gcd(a, b)$$

15.
$$[a \ge 0 \land b \ge 0 \land gcd(a,b) = gcd(a,b)]$$

 $c := a; d := b; \text{ while } (d > 0) \text{ do } (r := c \text{ rem } d; c := d; d := r)$
 $[c = gcd(a,b)]$
WC,13,14

16.
$$a \ge 0 \land b \ge 0 \Rightarrow a \ge 0 \land b \ge 0 \land gcd(a,b) = gcd(a,b)$$

17.
$$[a \ge 0 \land b \ge 0]$$

 $c := a; d := b; \text{ while } (d > 0) \text{ do } (r := c \text{ rem } d; c := d; d := r)$
 $[c = gcd(a, b)]$
SP,15,16

3.4

The loop invariant is $x \ge 0 \land y = y_0 + \frac{(x_0 - x)(x_0 + x - 1)}{2}$.

1.
$$[x \ge 0 \land y = y_0 + \frac{(x_0 - x)(x_0 + x - 1)}{2} \land x \ne 0 \land x = z]x := x - 1[x \ge 0 \land y = y_0 + \frac{(x_0 - x - 1)(x_0 + x)}{2} \land x < z]$$
 AS

2.
$$[x \ge 0 \land y = y_0 + \frac{(x_0 - x - 1)(x_0 + x)}{2} \land x < z] \quad y := y + x \quad [x \ge 0 \land y = y_0 + \frac{(x_0 + x - 1)(x_0 - x)}{2} \land x < z]$$
 AS

3.
$$[x \ge 0 \land y = y_0 + \frac{(x_0 - x)(x_0 + x - 1)}{2} \land x \ne 0 \land x = z]$$

 $x := x - 1; y := y - x;$
 $[x \ge 0 \land y = y_0 + \frac{(x_0 - x)(x_0 + x - 1)}{2} \land x < z]$ SC,1,2

4.
$$x \ge 0 \land y = y_0 + \frac{(x_0 - x)(x_0 + x - 1)}{2} \land x \ne 0 \Rightarrow x \ge 0$$

5.
$$[x \ge 0 \land y = y_0 + \frac{(x_0 - x)(x_0 + x - 1)}{2}]$$

while $x \ne 0$ do $(x := x - 1; y := y - x)$
 $[x \ge 0 \land y = y_0 + \frac{(x_0 - x)(x_0 + x - 1)}{2} \land x = 0]$ WHT,3,4

6.
$$x \ge 0 \land x = x_0 \land y = y_0 \Rightarrow x \ge 0 \land y = y_0 + \frac{(x_0 - x)(x_0 + x - 1)}{2}$$

7.
$$[x \ge 0 \land x = x_0 \land y = y_0]$$

while $x \ne 0$ do $(x := x - 1; y := y - x)$
 $[x \ge 0 \land y = y_0 + \frac{(x_0 - x)(x_0 + x - 1)}{2} \land x = 0]$ SP,5,6

8.
$$x \ge 0 \land y = y_0 + \frac{(x_0 - x)(x_0 + x - 1)}{2} \land x = 0 \Rightarrow y = y_0 + \frac{x_0(x_0 - 1)}{2}$$

9.
$$[x \ge 0 \land x = x_0 \land y = y_0]$$
 while $x \ne 0$ do $(x := x - 1; y := y - x)$ $[y = y_0 + \frac{x_0(x_0 - 1)}{2}]$ WC,7,8