

# Matemática Discreta

# Lista de Exercícios

# Parte 1. Conjuntos e Relações e Funções

| .1 Conjuntos, representações e operações básicas; conjunto das partes; cardinalidade.<br>.2 Relações binárias: equivalências e ordens parciais.<br>.3 Funções: bijecções; inversão e composição. |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Parte 2. Indução                                                                                                                                                                                 | 17 |
| Parte 3. Grafos e Aplicações                                                                                                                                                                     | 21 |

# 1.1 Conjuntos, relações binárias e aplicações

- 1. Apenas uma das operações " $\cap$ ", " $\cup$ ", " $\setminus$ ", não é comutativa. Diga qual e ilustre a não comutatividade com um exemplo.
- 2. Dado um conjunto S, sejam A, B e C subconjuntos de S. Mostre que:
  - (a)  $A \cup A = A$ ;
  - (b)  $A \cap A = A$ ;
  - (c)  $A \cap (B \cap C) = (A \cap B) \cap C$ ;
  - (d)  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ .
- 3. Mostre que dados A e B subconjuntos de um conjunto S se tem

$$(A \cup B)' = A' \cap B'$$
 e  $(A \cap B)' = A' \cup B'$ .

- 4. Sejam  $A = \{1, 2, 3, 4\}$ ,  $B = \{1, 2, 4\}$  e  $C = \{2, 3, 4\}$ . Indique os elementos de:
  - (a)  $A \times B$ ;
  - (b)  $B \times A$ ;
  - (c)  $(A \cap B) \times C$ ;
- 5. Sejam  $X = \{\{\emptyset\}\}\}$  e  $Y = \{\emptyset, \{\emptyset\}\}\}$ . Determine os elementos de  $X \times Y$ .
- 6. Seja  $X = \{\emptyset\}$ . Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
  - (a)  $X = \emptyset$ ;
  - (b)  $\emptyset$  é simultaneamente elemento e subconjunto de X;
  - (c)  $\mathcal{P}(\emptyset) = X$ .
- 7. Indique todos os subconjuntos de  $\{\emptyset, \{\emptyset\}\}\$ .
- 8. Seja  $A = \{x \in \mathbb{N} \mid x \text{ \'e um quadrado perfeito menor que } 10\}.$ 
  - (a) Justifique que se  $X = \{4,9\}$  e  $Y = \{-1,1\}$  então  $X \in \mathcal{P}(A)$  e  $Y \notin \mathcal{P}(A)$ ;
  - (b) Defina  $\mathfrak{P}(A)$  em extensão;
  - (c) Justifique que se  $B = \{x^2 \mid x \in \mathbb{N}\}$  então  $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ .
- 9. Sejam A e B dois conjuntos. Mostre que  $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$ .
- 10. Sejam A e B dois conjuntos. Prove que  $\mathfrak{P}(A) \cup \mathfrak{P}(B) \subseteq \mathfrak{P}(A \cup B)$ . Mostre, com um exemplo, que a igualdade  $\mathfrak{P}(A) \cup \mathfrak{P}(B) = \mathfrak{P}(A \cup B)$  não é verdadeira (em geral).
- 11. Encontre conjuntos tais que  $A \setminus B = A \oplus B$ .

**Hint**: A qualquer;  $B = \emptyset$ .

12. Prove que  $\mathcal{P}(\{1,\ldots,n\})$  tem  $2^n$  elementos.

**Hint:** Um subconjunto  $B \subseteq \{1, \ldots, n\}$  pode ser representado por uma palavra de zeros e uns:  $b_1b_2 \ldots b_n$ , onde  $b_i = 1$  se e só se  $i \in B$ . Portanto, o vazio é representado por  $0000 \ldots 0$  e B é representado por  $1111 \ldots 1$ . Assim o problema original é equivalente a perguntar quantas palavras de zeros e uns de comprimento n existem.

13. Para atravessar um rio há dois barcos. Diga de quantas formas diferentes n pessoas se podem distribuir por esses dois barcos (a posição dentro de cada barco não conta).

**Hint:** Igual ao anterior. Se um barco tem o número 1 e o outro tem o número 2, a pergunta é equivalente a: quantas palavras de uns e dois e com comprimento n se podem escrever; a Hint é  $2^n$ .

14. Para atravessar um rio há k barcos. Diga de quantas formas diferentes n pessoas se podem distribuir pelos barcos.

**Hint:** Igual ao anterior. Se um barco tem o número 1 e o outro tem o número 2, ..., k barcos a pergunta é equivalente a: quantas palavras de 1,2,..., k e com comprimento n se podem escrever; a Hint é  $k^n$ .

15. Diga quantos conjuntos de tamanho par existem em  $\mathcal{P}(\{1,\ldots,n\})$ .

**Hint:** Seja  $P = \{A \subseteq \{1, \dots, n\} \mid |A| = 2k\}$ . Provar que  $f : P \to \mathcal{P}(\{1, \dots, n-1\})$ , com  $f(A) = A \cap \{1, \dots, n-1\}$ , é uma bijeção. Concluir que há  $2^{n-1}$ .

16. Prove que em  $\mathcal{P}(\{1,\ldots,n\})$  há tantos elementos com cardinalidade par como ímpar.

**Hint:** Já vimos que os de cardinalidade par são  $2^{n-1}$  e no total há  $2^n$ . Logo de ordem ímpar há x sendo que  $2^{n-1}+x=2^n$ ; daqui sai que  $x=2^{n-1}$ . Os alunos devem fazer a anterior; a solução mais elegante parece-me esta: provar que  $f(A)=A\oplus\{1\}$  é uma bijeção dos subconjuntos de ordem ímpar para os de ordem par.

17. Diga quanto subconjuntos de k elementos tem um conjunto de n > k elementos.

Hint: C(n,k).

A forma mais fácil de resolver os 3 exercícios anteriores é por ordem inversa.

**Permutações** Vamos supor que temos n elementos diferentes  $\{a_1,a_2,\ldots,a_n\}$ ; quantos n-uplos ordenados diferentes conseguimos fazer com eles? Temos  $(a_1,a_2,\ldots,a_n)$ ,  $(a_2,a_1,a_3,\ldots,a_n)$ ,  $(a_n,a_1,a_3,\ldots,a_n)$ , etc. Como se determina o número exatamente? Vemos quanta liberdade temos para preencher cada uma das posições:

- (a) Para preencher a primeira posição temos n possibilidades (qualquer valor pode aparecer na primeira):  $(n, \ldots)$ .
- (b) Para preencher a segunda posição temos n-1 possibilidades (qualquer valor pode aparecer na segunda, menos o valor que já está a ocupar a primeira):  $(n, n-1, \ldots)$ .
- (c) Para preencher a terceira posição temos n-2 possibilidades (qualquer valor pode aparecer na terceira, excepto os dois que já estão a ocupar a primeira e segunda): (n, n-1, n-2, ...).
- (d) Assim sucessivamente até à última posição em que já só sobra um elemento.

Em suma: as possibilidades de preenchimento em cada posição são  $(n, n-1, n-2, n-3, \ldots, 2, 1)$ . Consequentemente, o número total de n-uplos diferentes com os elementos  $a_1$ ,  $a_2$ , ...,  $a_n$  será  $n(n-1)(n-2)\ldots 1$  que por definição é n!. Está respondida a pergunta.

Por exemplo, queremos saber de quantas formas diferentes podemos sentar a Ana, a Beatriz e o Carlos num banco de jardim com três lugares. Pode ser (Ana, Beatriz, Carlos) ou (Beatriz, Ana, Carlos), ou etc. Pela fórmula sabemos que é 3!, ou seja,  $3\times 2=6$ .

**Arranjos** Vamos supor que temos n elementos diferentes  $\{a_1, a_2, \ldots, a_n\}$  e seja  $k \leq n$ ; quantos k-uplos ordenados diferentes conseguimos fazer com eles? Temos  $(a_1, a_2, \ldots, a_k)$ ,  $(a_2, a_1, a_3, \ldots, a_k)$ ,  $(a_n, a_2, \ldots, a_5)$ , etc. Como se determina o número exatamente? Vemos quanta liberdade temos para preencher cada uma das posições:

- (a) Para preencher a primeira posição temos n possibilidades (qualquer valor pode aparecer na primeira):  $(n, \ldots)$ .
- (b) Para preencher a segunda posição temos n-1 possibilidades (qualquer valor pode aparecer na segunda, menos o valor que já está a ocupar a primeira):  $(n, n-1, \ldots)$ .
- (c) Para preencher a terceira posição temos n-2 possibilidades (qualquer valor pode aparecer na terceira, excepto os dois que já estão a ocupar a primeira e segunda): (n, n-1, n-2, ...).
- (d) Assim sucessivamente até à posição n-k+1.

Em suma: as possibilidades de preenchimento em cada posição são  $(n, n-1, n-2, \ldots, n-k+1)$ . Consequentemente, o número total de k-uplos diferentes com os elementos  $a_1, a_2, \ldots, a_n$  será

$$n(n-1)(n-2)\dots(n-k+1)\left(=\frac{n!}{(n-k)!}\right).$$

Por exemplo, de quantas formas diferentes podemos sentar a Ana, a Beatriz e o Carlos num banco que só leva duas pessoas? Podemos ter (A,B), (B,A), (A,C), (C,A), (B,C), (C,B). Pela fórmula temos n(n-k+1)=3(3-2+1)=6. Pela fórmula alternativa entre parêntesis temos

$$\frac{3!}{(3-2)!} = 3! = 6.$$

**Combinações** Vamos supor que temos n elementos diferentes  $A := \{a_1, a_2, \dots, a_n\}$  e seja  $k \le n$ ; quantos conjuntos com k elementos conseguimos fazer com os elementos  $a_1, a_2, \dots, a_n$ ? Dito de outra forma, quantos subconjuntos com k elementos tem o conjunto A?

Ao calcular os k-uplos de um conjunto com n elementos, o que fazemos é escolher os subconjuntos de k-elementos e depois fazer todas as permutações desse conjunto de k elementos. Por exemplo, no caso da Ana, Beatriz e Carlos, escolhemos os dois que se iam sentar  $\{A,B\}$ ,  $\{B,C\}$ ,  $\{A,C\}$ , e cada um destes conjuntos desdobrou-se em tantos pares quantas permutações eram possíveis:  $\{A,B\}$  deu origem a (A,B) e (B,A);  $\{A,C\}$  deu origem a (A,C) e (C,A); etc.

Isto significa que nos arranjos, cada subconjunto com k elementos é contado k! vezes. Portanto, o número de subconjuntos com k elementos de um conjunto com n elementos é

$$\frac{\frac{n!}{(n-k)!}}{k!} = \frac{n!}{k!(n-k)!}$$

As combinações, ie, o número de subconjuntos com k elementos de um conjunto com n elementos, são habitualmente representadas por  $\binom{n}{k}$  pelo que temos

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Isto resolve o exercício 17.

O exercício 12 pergunta quantos subconjuntos tem um conjunto com n elementos. Tendo em conta a resposta ao exercício 17, a pergunta é

$$\sum_{k=0}^{n} \binom{n}{k} = ?$$

O Binómio de Newton diz que

$$(x+a)^n = \sum_{k=0}^n x^{n-k} a^k \binom{n}{k}$$

Logo,

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} 1^{n-k} 1^k \binom{n}{k} = (1+1)^n = 2^n.$$

Uma resolução alternativa para o exercício 12.

O mesmo Binómio de Newton diz que (para n > 0) temos

$$0 = 0^{n} = (1 + (-1))^{n} = \sum_{k=0}^{n} 1^{n-k} (-1)^{k} \binom{n}{k} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k}.$$

Ou seja, como  $(-1)^{2p} = 1$  e  $(-1)^{2p+1} = -1$ ,

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots - \binom{n}{1} - \binom{n}{3} - \binom{n}{5} - \dots = 0.$$

Por palavras: o número de subconjuntos de cardinal par é igual ao número de subconjuntos de cardinal ímpar. Em bom português, num conjunto com n>0 elementos, há tantos subconjuntos de cardinal par como há de cardinal ímpar. Isto resolve o exercício 16.

Quantos subconjuntos há de cardinal par num conjunto com n elementos? Como o total de subconjuntos é  $2^n$ , e metade deles têm cardinal par, então há  $\frac{2^n}{2}=2^{n-1}$  subconjuntos de cardinal par. Isto resolve o exercício 15.

18. Diga quantas palavras de 8 letras de zeros e uns existem com exatamente 3 zeros.

**Hint:** Temos de escolher a posição dos zeros.

**Resolução** Vamos começar por escolher as posições dos zeros. A palavra tem 8 letras pelo que há 8 posições e dessas podemos escolher 3; ou seja, temos de saber quantos subconjuntos com 3 elementos há num conjunto com 8 elementos; a resposta é  $\binom{8}{3} = 56$ . E está resolvido o problema pois depois de fixar a posição dos zeros, a palavra fica totalmente determinada.

19. Diga quantas palavras de 10 letras de zeros, uns e dois existem com exatamente 3 zeros.

**Hint:** Temos de escolher a posição dos zeros: Combinações de 10, 3 a 3. Depois temos de preencher as restantes posições com 1 e 2, ou seja,  $2^7$ . No total temos  $\binom{10}{3} \times 2^7$ .

**Resolução** Temos de escolher a posição dos zeros:  $\binom{10}{3}$ . Agora, para preencher as restantes 7 posições há duas possibilidades para cada, ou seja,  $2^7$ . O resultado final é  $\binom{10}{3}2^7=15360$ .

### 1.2 Relações Binárias

- 20. Indique os domínios e as imagens das seguintes relações sobre os conjuntos indicados:
  - (a)  $R_1 = \{(1,1), (2,2), (1,5), (1,3), (2,3)\}$  de  $X = \{1,2,3,4\}$  em  $Y = \{1,2,3,4,5\}$ ;
  - (b)  $R_3 = \{(1,1), (2,2), (1,5), (1,3), (2,3)\}$  de  $X = \{1,2\}$  em  $Y = \{1,2,3,5\}$ ;
  - (c)  $R_4 = \{(1,1), (2,2), (3,3), (4,4), (5,1), (1,3), (3,1)\}$  de  $X = \{1,2,3,4,5\}$  em X;
  - (d)  $R_5 = \{(1,1),(2,2),(3,3),(4,4),(5,5),(1,5),(5,1),(5,1),(1,3),(3,1)\}$  de  $X = \{1,2,3,4,5\}$  em X;
- 21. Considere as relações  $R_4$  e  $R_5$  do exercício anterior.
  - (a) Represente cada uma das relações por meio de um diagrama.
  - (b) Represente cada uma das relações por meio de uma matriz de adjacências.
- 22. Determine os domínios e imagens das seguintes relações binárias sobre R:
  - (a)  $R = \{(x, y) \in \mathbb{R}^2 \mid y > x^2\};$
  - (b)  $S = \{(x, y) \in \mathbb{R}^2 \mid y^2 = 1 \frac{2}{x^2 + 1}\}.$
- 23. Dê um exemplo de uma relação binária definida sobre o conjunto  $\{1, 2, 3, 4\}$  que seja (fazer com demonstração automática de teoremas):
  - (a) Reflexiva, não simétrica e não transitiva;
  - (b) Reflexiva, simétrica e não transitiva;
  - (c) Reflexiva, anti-simétrica e não transitiva;
  - (d) Reflexiva, não simétrica e transitiva;
  - (e) Irreflexiva, não simétrica, não anti-simétrica e transitiva;
  - (f) Irreflexiva, simétrica e transitiva;
  - (g) Irreflexiva, não simétrica e não transitiva;
  - (h) Irreflexiva, simétrica e não transitiva;
  - (i) Irreflexiva, anti-simétrica e não transitiva;
  - (j) Irreflexiva, não simétrica e transitiva;
  - (k) Reflexiva, não simétrica, não anti-simétrica e transitiva;
  - (I) Reflexiva, simétrica e transitiva;
  - (m) Não irreflexiva, não reflexiva, não simétrica, não anti-simétrica e transitiva;
  - (n) Não irreflexiva, não reflexiva, simétrica e transitiva.
- 24. Classifique quanto à reflexividade, irreflexividade, simetria, anti-simetria e transitividade as seguintes relações R definidas no conjunto  $\mathbb Z$  dos números inteiros:
  - (a)  $(x,y) \in R$  se e só se  $x = y^2$ ;
  - (b)  $(x, y) \in R$  se e só se  $x \ge y$ ;
  - (c)  $(x,y) \in R$  se e só se x divide y;
  - (d)  $(x,y) \in R$  se e só se 3 divide x-y.

- 25. Sejam R e S duas relações binárias definidas sobre um conjunto X. Mostre que:
  - (a) Se R e S são reflexivas então  $R \cap S$  e  $R \cup S$  são reflexivas;
  - (b) Se R e S são irreflexivas então  $R \cap S$  e  $R \cup S$  são irreflexivas;
  - (c) Se R e S são simétricas então  $R \cap S$  e  $R \cup S$  são simétricas;
  - (d) Se R e S são transitivas então  $R \cap S$  é transitiva; (O que pode afirmar acerca da relação  $R \cup S$ ?)
  - (e) Se R e S são anti-simétricas então  $R\cap S$  é anti-simétrica. (O que pode afirmar acerca da relação  $R\cup S$ ?)
- 26. Seja R uma relação binária definida sobre um conjunto X. Mostre que:
  - (a) Se R é reflexiva então  $R^{-1}$  é reflexiva;
  - (b) Se R é irreflexiva então  $R^{-1}$  é irreflexiva;
  - (c) Se R é simétrica então  $R^{-1}$  é simétrica;
  - (d) Se R é transitiva então  $R^{-1}$  é transitiva;
  - (e) Se R é anti-simétrica então  $R^{-1}$  é anti-simétrica.
- 27. Sejam R e S duas relações binárias definidas sobre um conjunto X.
  - (a) Mostre que se R e S são relações reflexivas então  $R \circ S$  é reflexiva.
  - (b) Indique relações binárias R e S tais que:
    - i. R e S são simétricas e  $R \circ S$  não é simétrica;
    - ii. R e S são anti-simétricas e  $R \circ S$  não é anti-simétrica;
    - iii. R e S são transitivas e  $R \circ S$  não é transitiva.
- 28. Sejam R uma relação de A em B e S uma relação de B em C.
  - (a) Mostre que  $Dom(R \circ S) \subseteq Dom(R)$ ;
  - (b) Prove que, se  $\operatorname{Im}(R) \subset \operatorname{Dom}(S)$  então  $\operatorname{Dom}(R \circ S) = \operatorname{Dom}(R)$ ;
- 29. Sejam R e S duas relações binárias simétricas sobre um conjunto A. Mostre que  $R \circ S$  é simétrica se e só se  $R \circ S = S \circ R$ .
- 30. Sejam R e S duas relações binárias transitivas sobre um conjunto A. Prove que, se  $R \circ S \subseteq S \circ R$  então  $S \circ R$  é transitiva.
- 31. Indique se cada uma das relações binárias sobre o conjunto  $X = \{1, 2, 3, 4, 5\}$  a seguir apresentadas é uma relação de equivalência e, em caso afirmativo, determine as respectivas classes de equivalência:
  - (a)  $\{(1,1),(2,2),(3,3),(4,4),(5,5),(1,3),(3,1)\};$
  - (b)  $\{(1,1),(2,2),(3,3),(4,4),(5,5),(1,3),(3,1),(3,4),(4,3)\};$
  - (c)  $\{(1,1),(2,2),(3,3),(4,4)\};$
- 32. Determine a relação de equivalência R definida sobre o conjunto  $X = \{1, 2, 3, 4\}$  tal que:
  - (a)  $X/R = \{\{1,2\}, \{3,4\}\};$ Resposta  $R = (\{1,2\} \times \{1,2\}) \cup J(\{3,4\} \times \{3,4\}).$
  - (b)  $X/R = \{\{1\}, \{2\}, \{3, 4\}\};$

33. Prove que toda a relação de equivalência em X (não vazio) induz uma partição de X.

**Resolução** Seja  $x \in X$ ; defina-se  $R[x] := \{y \in X \mid xRy\}$ . Seja  $P := \{R[x] \mid x \in X\}$ . Vamos provar que P é uma partição de X. Seja  $x \in X$ ; como R é relação de equivalência temos que xRx e bem assim,  $x \in R[x]$ . Logo  $X \subseteq \bigcup_{x \in X} R[x] \subseteq X$  pelo que  $X = \bigcup_{x \in X} R[x]$ . Está provado que a união dos elementos de P é o conjunto X todo.

Resta provar que dados  $x,y\in X$ , temos  $R[x]\cap R[y]=\emptyset$  ou R[x]=R[y]. Vamos supor que  $u\in R[x]\cap R[y]$  e  $v\in R[y]$ . Então,  $xRu,\,yRu$  e yRv, o que por simetria dá  $xRu,\,uRy$  e yRv, ie xRuRyRv o que por transitividade dá xRv, ou seja,  $v\in R[x]$ . Como v era genérico em R[y], fica provado que  $R[y]\subseteq R[x]$ . Por simetria conclui-se que  $R[x]\subseteq R[y]$ . Está provado que R[x]=R[y], como se queria.

34. Prove que toda a partição de X (não vazio) induz uma relação de equivalência em X.

**Resolução** Seja  $P = \{P_1, P_2, \dots, P_n\}$  uma partição de X. Consideremos a relação

$$R := \bigcup_{i=1}^{n} (P_i \times P_i).$$

Vamos provar que R é uma relação de equivalência. Seja  $x \in X$ . Como P é partição de X, então  $X = \bigcup_{i=1}^n P_i$ ; logo existe  $P_i \in P$  tal que  $x \in P_i$ . Portanto  $(x,x) \in P_i \times P_i \subseteq R$ . Está provado que para todo o  $x \in X$  temos xRx e assim a relação é reflexiva.

Vamos provar que a relação é simétrica. Se  $(x,y) \in R = \bigcup_{i=1}^n P_i \times P_i$ , então existe  $P_i \times P_i$  tal que  $(x,y) \in P_i \times P_i$ , ou seja,  $x,y \in P_i$  e portanto  $(y,x) \in P_i \times P_i$ . A relação é simétrica.

Finalmente, vamos provar que é transitiva. Se  $(x,y),(y,z)\in R$ , então existem  $P_i$  e  $P_j$  tais que  $x,y\in P_i$  e  $y,z\in P_j$ . Daqui resulta que  $y\in P_i\cap P_j$ ; como duas partes de uma partição ou são disjuntas ou iguais, temos que  $P_i=P_j$  e bem assim  $x,y,z\in P_i$ . Consequentemente,  $(x,z)\in P_i\times P_i\subseteq R$ . Está provado que R é uma relação de equivalência.

35. Considere a relação binária R definida sobre o conjunto dos pares ordenados de números inteiros,  $\mathbb{Z} \times \mathbb{Z}$ , do seguinte modo: para quaisquer  $a, b, c, d \in \mathbb{Z}$ ,

$$(a,b) R(c,d)$$
 se e só se  $a+d=b+c$ .

Mostre que R é uma relação de equivalência.

- 36. Seja R uma relação binária reflexiva e transitiva definida sobre um conjunto X. Prove que  $R \cap R^{-1}$  é uma relação de equivalência sobre X.
- 37. Sejam R e S duas relações de equivalência definidas sobre um conjunto X. Justifique que  $R \cap S$  é uma relação de equivalência sobre X (cf. Exercício 25) e relacione as classes de equivalência de  $R \cap S$  com as de R e de S.
- 38. Averigúe se a relação binária R definida sobre  $\mathbb Z$  por

$$mRn$$
 se e só se  $m-n$  é par,

para quaisquer  $m, n \in \mathbb{Z}$ , é uma relação de equivalência.

39. Considere a relação R definida sobre o conjunto  $X=\{1,2,3,4\}$  representada pelo diagrama seguinte:



- (a) Determine a matriz das adjacências da relação R.
- (b) Indique, justificando, se R é reflexiva, simétrica ou transitiva.
- 40. Seja R a relação definida sobre o conjunto  $X=\{1,2,3,4\}$  cuja matriz das adjacências é

$$\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{array}\right].$$

- (a) Represente a relação R por meio de um diagrama.
- (b) Indique, justificando, se R é reflexiva, simétrica ou transitiva.
- 41. Considere a relação R definida sobre o conjunto  $\mathbb Z$  dos números inteiros do modo seguinte: dados  $a,b\in\mathbb Z$ ,

 $a\,R\,b$  se e só se existe  $c\in\mathbb{Z}$  tal que ac=b.

Verifique se:

- (a) R é uma relação de equivalência sobre  $\mathbb{Z}$ ;
- (b) R é uma relação de ordem parcial sobre  $\mathbb{Z}$ .
- 42. Considere em N a seguinte relação binária:

$$a \mid b$$
 (lê-se  $a$  divide  $b$ )  $\iff$   $(\exists c \in \mathbb{N}) ac = b$ ,

para quaisquer  $a, b \in \mathbb{N}$ . Mostre que  $(\mathbb{N}, ||)$  é um conjunto parcialmente ordenado.

- 43. Seja  $X = \{1, 2, 3, 4\}$ . Construa o diagrama de Hasse do c.p.o.  $(\mathcal{P}(X), \subseteq)$ .
- 44. No conjunto  $X = \{1, 2, 3, 4\}$ , considere a seguinte relação binária

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (4,4)\}.$$

- (a) Mostre que R é uma r.o.p..
- (b) Verifique se R é uma r.o.t..
- (c) Represente R por meio de um diagrama.
- (d) Represente R por meio de um diagrama de Hasse.

Sendo  $B = \{2, 3, 4\}$ , determine, se existirem, o mínimo, o máximo, os elementos minimais, os elementos maximais, o ínfimo e o supremo de B.

45. Considere o conjunto  $X=\{a,b,\dots,o,p\}$  e a relação de ordem parcial  $\leq$  sobre X definida pelo seguinte diagrama de Hasse:



Indique, se existirem, os elementos mínimo, máximo, minimais, maximais, minorantes, majorantes, ínfimo e supremo do subconjunto  $A=\{a,b,c,d,e,f\}$  (pontos a verde) do conjunto parcialmente ordenado  $(X,\leq)$ .

46. Considere o conjunto  $X=\{a,b,\ldots,x,z\}$  e a relação de odem parcial  $\leq$  sobre X definida pelo seguinte diagrama de Hasse:



Indique, se existirem, os elementos minorantes, majorantes, ínfimo, supremo, mínimo, máximo, minimais e maximais do subconjunto  $A=\{c,d,f,h,k,l,m,o,q,r,s,u,v,z\}$  do conjunto parcialmente ordenado  $(X,\leq)$ .

47. Mostre que uma relação R sobre um conjunto X é simultaneamente simétrica e anti-simétrica se e só se  $R \subseteq \mathrm{id}_X$ .

# 1.3 Funções

Nota: Nesta secção assumimos que todos os conjuntos são não vazios.

- 48. Indique todas as aplicações do conjunto  $X=\{1,2\}$  no conjunto  $Y=\{a,b\}$ .
- 49. Determine todas as aplicações do conjunto  $X = \{1, 2, 3\}$  no conjunto  $Y = \{a, b\}$ . Indique as que são injectivas e as que são sobrejectivas.
- 50. Determine todas as aplicações do conjunto  $X=\{1,2\}$  no conjunto  $Y=\{a,b,c\}$ . Indique as que são injectivas e as que são sobrejectivas.
- 51. Determine todas as aplicações bijectivas do conjunto  $X = \{1, 2, 3\}$  no conjunto  $Y = \{a, b, c\}$ .
- 52. Determine três aplicações invertíveis do conjunto  $\{1,2,3,4\}$  no conjunto  $\{1,2,3,4\}$  e indique as respectivas aplicações inversas. Diga quantas bijeções existem neste conjunto.
- 53. Considere as seguintes aplicações:

- (a)  $f: \mathbb{R} \longrightarrow \mathbb{R}$  definida por  $f(x) = \sin(x)$ , para todo o  $x \in \mathbb{R}$ ;
- (b)  $g: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}$  definida por  $g(x) = \sin(x)$ , para todo o  $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ ;
- (c)  $h: \mathbb{R} \longrightarrow [-1, 1]$  definida por  $h(x) = \sin(x)$ , para todo o  $x \in \mathbb{R}$ ;
- (d)  $k: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \left[-1, 1\right]$  definida por  $k(x) = \sin(x)$ , para todo o  $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ .

Estude f, g, h e k quanto à sobrejectividade e injectividade.

54. Considere as funções  $f: \mathbb{R} \longrightarrow \mathbb{R}$  e  $g: \mathbb{R} \longrightarrow \mathbb{R}$  definidas por

$$f(x) = \left\{ \begin{array}{ll} x^2 & \text{se } x \geq 0 \\ x-1 & \text{se } x < 0 \end{array} \right. \quad \text{e} \quad g(x) = \left\{ \begin{array}{ll} x+1 & \text{se } x \geq 0 \\ 2x & \text{se } x < 0 \end{array} \right. .$$

Determine  $g \circ f$  e  $f \circ g$ .

- (a) Calcule as imagens de f e de  $f \circ g$ .
- (b) A aplicação g é injectiva? E a aplicação  $f \circ g$ ?
- 55. Sejam  $f: X \longrightarrow Y$  e  $g: Y \longrightarrow Z$  duas aplicações. Mostre que:
  - (a) Se f e g são sobrejectivas então  $f \circ g$  é sobrejectiva;
  - (b) Se f e g são injectivas então  $f \circ g$  é injectiva;
  - (c) Se f e g são bijectivas então  $f\circ g$  é bijectiva e  $(f\circ g)^{-1}=g^{-1}\circ f^{-1}.$
- 56. Seja  $f: X \longrightarrow Y$  uma aplicação. Mostre que:
  - (a) f é injectiva se e só se existe uma aplicação  $g: Y \longrightarrow X$  tal que  $f \circ g = \mathrm{id}_X$ ;
  - (b) f é sobrejectiva se e só se existe uma aplicação  $g: Y \longrightarrow X$  tal que  $g \circ f = \mathrm{id}_Y$ ;
  - (c) f é bijectiva se e só se existe uma aplicação  $g: Y \longrightarrow X$  tal que  $f \circ g = \mathrm{id}_X$  e  $g \circ f = \mathrm{id}_Y$ .
- 57. Dê um exemplo de aplicações f e g tais que:
  - (a)  $f \circ g$  é injectiva e g não é injectiva;
  - (b)  $f \circ q$  não é injectiva e q é injectiva.
- 58. Dê um exemplo de aplicações  $f: X \longrightarrow Y$ ,  $g: Y \longrightarrow X$  e  $h: Y \longrightarrow X$  tais que:
  - (a)  $f \circ g = f \circ h \in g \neq h$ ;
  - (b)  $q \circ f = h \circ f \in q \neq h$ .
- 59. Uma aplicação  $f: X \longrightarrow X$  diz-se idempotente se  $f = f \circ f$ . Seja  $f: X \longrightarrow X$  uma aplicação,  $\mathrm{Im} f$  a imagem de f e  $\mathrm{Fix} f$  o conjunto dos pontos fixos de f (i.e.  $\mathrm{Fix} f = \{x \in X \mid xf = x\}$ ). Mostre que:
  - (a) f é idempotente se e só se Im f = Fix f;
  - (b) Se f é idempotente e sobrejectiva então f é a aplicação identidade.
- 60. Sejam  $f: X \longrightarrow Y$  uma aplicação e  $R_f$  o *núcleo* de f, i.e. a relação binária sobre X definida do seguinte modo:

$$R_f = \{(x, y) | x, y \in X \text{ e } xf = yf\}.$$

Prove que:

- (a)  $R_f$  é uma relação de equivalência sobre X;
- (b) Para qualquer  $x \in X$ ,  $[x]_{R_f} = \{xf\}f^{-1}$ ;
- (c) f é injectiva se e só se  $R_f$  é a relação de identidade sobre X.

#### 1.4 Cardinais Transfinitos

- 61. (a) Mostre que  $|\mathbb{N}| = |\mathbb{N} \setminus \{1, \dots, 1000\}|$ .
- 62. Mostre que  $|\mathbb{N}| = |3\mathbb{N}|$ .
- 63. (a) Seja k um número natural; mostre que  $|\mathbb{N}| = |k\mathbb{N}|$ .
- 64. Mostre que  $|3\mathbb{N}| = |3\mathbb{N} \setminus \{1, \dots, 1000\}|$ .
- 65. Mostre que  $|\mathbb{N}| \leq |\mathbb{Z}|$ .
- 66. Mostre que  $|\mathbb{Z}| \leq |\mathbb{N}|$ . Conclua que  $|\mathbb{Z}| = |\mathbb{N}|$ .

**Hint 1** mostre que a seguinte aplicação é injetiva: para  $n \in \mathbb{Z}$ ,

$$nf = \begin{cases} 2(n+1) & n \ge 0 \\ -2n-1 & n < 0 \end{cases}$$

**Hint 2** mostre que a seguinte aplicação é injetiva: para  $n \in \mathbb{Z}$ ,

$$nf = \begin{cases} 2^n & n \ge 0\\ 3^{-n} & n < 0 \end{cases}$$

67. (a) Sejam A e B dois conjuntos disjuntos tais que  $|A| = |B| = |\mathbb{N}|$ . Mostre que  $|A \cup B| \le |\mathbb{N}|$ . Conclua que  $|A \cup B| = |\mathbb{N}|$ .

**Hint** Sejam  $f: A \to \mathbb{N}$  e  $g: B \to \mathbb{N}$  bijeções. Então existem bijeções  $f_1: A \to \{2^n \mid n \in \mathbb{N}\}$  e  $f_2: A \to \{3^n \mid n \in \mathbb{N}\}$ .

68. (a) Seja  $(A_i)_{i\in\mathbb{N}}$  uma família infinita de conjuntos disjuntos tais que  $|A_i|=|\mathbb{N}|$ , para todo o  $i\in\mathbb{N}$ . Mostre que  $|\cup_{i\in\mathbb{N}}A_i|\leq |\mathbb{N}|$ . Conclua que  $|\cup_{i\in\mathbb{N}}A_i|=|\mathbb{N}|$ .

**Hint** Pense no exercício anterior e em  $f_i: A_i \to \{p_i^n \mid n \in \mathbb{N}\}$ , onde  $p_i$  é o *i*-ésimo primo.

69. (a) Mostre que  $|\mathbb{N} \times \mathbb{N}| \leq |\mathbb{N}|$ .

**Hint** Mostre que a aplicação  $(x,y)f = 2^{x-1}(2y-1)$  é injetiva.

Alternativa: mostre que  $q: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ , definida por  $(n, m) f = 2^n 3^m$  é injetiva.

Conclua que  $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$ .

70. Mostre que  $|\mathbb{Z} \times \mathbb{Z}| \leq |\mathbb{N}|$ .

**Hint** Já vimos que há uma aplicação injetiva  $f:\mathbb{Z}\to\mathbb{N}$ . Logo existe uma aplicação injetiva  $F:\mathbb{Z}\times\mathbb{Z}\to\mathbb{N}\times\mathbb{N}$  definida por (x,y)F=(xf,yf). Vimos também que há uma aplicação injetiva  $g:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ .

- 71. Mostre que  $|\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}| \leq |\mathbb{N}|$ .
- 72. Mostre que  $|\mathbb{Z}^n| \leq |\mathbb{N}|$ .
- 73. Sejam A e B conjuntos não vazios. Mostre que se existe uma aplicação injetiva  $f:A\to B$ , então existe uma sobrejetiva  $g:B\to A$ .
- 74. Sejam A e B conjuntos não vazios. Mostre que se existe uma aplicação sobrejtiva  $f:A\to B$ , então existe uma injetiva  $g:B\to A$ .

**Hint** Para cada  $b \in B$ , tome um único  $bg \in bf^{-1}$ . (Ilustrar isto com dois diagramas de Venn). Conclua que se  $|A| \neq \emptyset$ , então  $|A| \leq |B|$  se e só se existe  $f: B \to A$  sobrejetiva.

- 75. Mostre que existe uma aplicação sobrejetiva  $f: \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \to \mathbb{Q}$ . **Hint** Considere (x,y)f = x/y e recorde que  $\mathbb{Q}$  é conjunto de quocientes de números inteiros.
- 76. Mostre que  $|\mathbb{Z} \setminus \{0\}| = |\mathbb{Z}|$ .
- 77. Mostre que  $|\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})| = |\mathbb{Z} \times \mathbb{Z}|$ .
- 78. Mostre que  $|\mathbb{Q}| \leq |\mathbb{N}|$ .
- 79. Mostre que  $|\mathbb{Q}| = |\mathbb{N}|$ .
- 80. Mostre que  $|\mathbb{Q}^n| \leq |\mathbb{N}|$ .
- 81. Mostre que  $|\mathbb{Q}^n| = |\mathbb{N}|$ .
- 82. Mostre que se |X| = |Y|, então  $|\mathcal{P}(X)| = |\mathcal{P}(Y)|$ .
- 83. Mostre que  $|\mathbb{R}| \leq |\mathcal{P}(\mathbb{Q})|$ .

**Hint** Para todo o  $r \in \mathbb{R}$  define  $rf = \{q \in \mathbb{Q} \mid q < r\}$ .

- 84. Seja Seq(0,1) o conjunto das sequências infinitas de 0 e 1. Mostre que  $|Seq(0,1)| \le |[0,1]|$ . **Hint** Considere a função  $(a_1,a_2,\ldots)f=0,a_1a_2\ldots$  (onde  $a_i\in\{0,1\}$ ).
- 85. Mostre que  $|\mathcal{P}(\mathbb{N})| \leq |Seq(0,1)|$ .
- 86. Mostre que  $|\mathcal{P}(\mathbb{N})| \leq |\mathbb{R}|$ . Conclua que  $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$ .
- 87. Mostre que  $|\mathbb{R}| = |]\frac{-\pi}{2}, \frac{\pi}{2}[|]$ . **Hint** Pense na tangente.
- 88. Mostre que  $|]\frac{-\pi}{2}, \frac{\pi}{2}[|=|]0, 1[|.$
- 89. Mostre que  $|]0,1[] \ge |[0,1[].$

Hint A identidade é injetiva.

90. Mostre que  $|[0,1[|\leq|]0,1[|.$ 

**Hint** Defina  $f:[0,1[\rightarrow]0,1[$  tal que 0f=1/2 e  $f:]0,1[\rightarrow]\frac{1}{2},1[$  é bijetiva (usando a mesma técnica do Exercício 88).

Conclua que |[0,1[|=|]0,1[|.

# Indução

- 91. Defina indutivamente os seguintes conjuntos e escreva as respectivas regras de inferência.
  - (a)  $\mathbb{N}_{\geq 2} = \{ n \in \mathbb{N} : n \geq 2 \};$

Hint

$$\frac{x \in \mathbb{N}_{\geq 2}}{suc(x) \in \mathbb{N}_{\geq 2}}$$

(b) MULT3- conjunto dos números naturais múltiplos de 3; Hint

$$\frac{x \in \text{MULT3}}{3 \in \text{MULT3}} \frac{x \in \text{MULT3}}{suc(suc(suc(x))) \in \text{MULT3}}$$

- (c)  $\mathbb{N}_0 \times \mathbb{N}_0$ ;
- (d)  $\mathbb{W}_1$  conjunto das palavras sobre o alfabeto  $\Sigma = \{1\}$ ;
- (e) O conjunto das palavras sobre o alfabeto  $\Sigma = \{0, 1\}$  cujo comprimento é ímpar.

92. Considere o conjunto  $A = \{(2n, \pi) : n \in \mathbb{N}_0\}$ . Defina indutivamente o conjunto A. **Hint** 

$$\frac{(n,\pi) \in A}{(o,\pi) \in A} \qquad \frac{(suc(suc(n)),\pi) \in A}{(suc(suc(n)),\pi) \in A}$$

- 93. Mostre que:
  - (a)  $4 \in \mathbb{N}_{\geq 2}$ , onde 4 abrevia suc(suc(2));
  - (b)  $6 \in MULT3$ , onde 6 abrevia suc(suc(suc(3)));
  - (c)  $(1,2) \in \mathbb{N}_0 \times \mathbb{N}_0$ , onde (1,2) abrevia (suc(0), suc(suc(0)));
  - (d)  $11 \in \mathbb{W}_1$ , onde 11 abrevia  $conc_1(conc_1(\epsilon))$ .

94. Considere o conjunto A definido indutivamente pelas regras:

$$(1,0) \in A$$
  
 $(m,n) \in A \Rightarrow (suc(suc(m)), n) \in A) \quad \forall m, n \in \mathbb{N}_0$ 

(Onde suc(m) representa o sucessor de m na cadeia  $\mathbb{N}_0$ )

- (a) Represente, em compreensão, o conjunto A.
- (b) Prove, usando as regras dadas, que  $(3,0) \in A$ .
- 95. Seja  $\mathbb{N}_{\geq 3}$  o conjunto dos números naturais maiores ou iguais a 3.
  - (a) Defina  $\mathbb{N}_{\geq 3}$  indutivamente e escreva as respectivas regras de inferência.
  - (b) Prove que  $5^n-1$  é divisível por 4, para qualquer  $n \in \mathbb{N}_{\geq 3}$ . **Hint**  $5^3-1$  é divisível por 4.  $4|5^n-1$  implica  $5^n-1=4k$  implica  $5^n=4k+1$ . Logo  $5^{n+1}-1=5\times 5^n-1=5(4k+1)-1=5\times 4k+5-1=4(5k+1)$
- 96. Demonstre por indução que:
  - (a)  $\forall n \in \mathbb{N}_0 \quad 4|(n^4 n^2);$
  - (b)  $\Sigma_{k=0}^n k = \frac{n(n+1)}{2}$  para todo o número natural n;
  - (c)  $\forall n \in \mathbb{N}_{\geq 2} \quad n^2 > n$ .
- 97. Considere o polinómio  $p(x) = \frac{1}{3}x^3 \frac{1}{2}x^2 + \frac{1}{6}x$ . Mostre que  $\forall n \in \mathbb{N} \quad p(n) \in \mathbb{N}_0$ .
- 98. Seja  $f: \mathbb{N}_0 \longrightarrow \mathbb{Q}$  a função definida por:

$$f(0) = 2$$
$$f(n+1) = \frac{2}{f(n)}$$

- (a) Determine  $f(0), f(1) \in f(2)$ ; **Hint** f(0) = 2, f(1) = 1, f(2) = 2.
- (b) Determine a imagem de f. Prove a afirmação por indução. f(n)=2 então f(n+1)=1?
- 99. Seja  $f: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$  a função definida recursivamente por:

$$f(0) = 1$$
  
$$f(n+1) = 2f(n).$$

- (a) Determine  $f(0), f(1) \in f(2)$ ;
- (b) Mostre que  $\forall n \in \mathbb{N}_0 \quad f(n) = 2^n$ .

**Hint**  $S := \{n \in \mathbb{N}_0 \mid f(n) = 2^n\}$ . Vamos provar que  $S = \mathbb{N}_0$ .

$$\frac{\overline{0 \in S}?}{suc(n) \in S}?$$

Como a resposta às duas perguntas é sim, concluímos que...

100. Mostre que as seguintes equações definem uma função,  $+: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$  (adição):

$$+(m,0) = m$$
  
  $+(m,suc(n)) = suc(+(m,n)).$ 

**Hint** Seja m natural e  $S_m := \{n \in \mathbb{N} \mid m+n \text{ is defined } \}$ . Queremos provar que  $S_m = \mathbb{N}$ .

Como m+0=m temos que  $0\in S_m$ . Por hipótese de indução vamos imaginar que m+n está definido. Então m+s(n)=s(m+n) pelo que m+s(n) tb está definido, logo  $s(n)\in S_m$ . Por indução concluímos que  $S_m=\mathbb{N}.$  m+n está definido em todos os naturais.

101. Seja + a função definida no exercício anterior. considerando a notação infix,( isto é, m+n em vez de +(m,n)) e 1 como abreviatura de suc(0), mostre por indução que

$$\forall n \in \mathbb{N}_0 \quad 1+n=n+1.$$

**Hint** n + 1 = n + s(0) = s(n + 0) = s(n).

 $n=0 \Rightarrow 1+n=1+0=1=s(0)=s(n).$  Vamos supor que 1+n=s(n). Então 1+s(n)=s(1+n)=s(s(n)).

- 102. Em cada um dos seguintes casos, dê uma definição recursiva da sucessão  $(u_n)$  e mostre, por indução, que a definição dada está correcta.
  - (a)  $u_n = 6n$ ;

Hint 
$$u_0 = 0$$
;  $u_n = 6 + u_{n-1}$ .

(b)  $u_n = 1 + (-1)^n$ ;

Hint 
$$u_0 = 2$$
;  $u_1 = 0$ ;  $u_n = u_{n-2}$  ( $n \ge 2$ );

(c)  $u_n = n(n+1)$ .

**Hint** 
$$u_0 = 0$$
;  $u_{n+1} = u_n + 2(n+1)$ .

103. Mostre que as seguintes equações definem uma função,  $lh: \mathbb{W} \longrightarrow \mathbb{N}_0$ :

$$lh(\epsilon) = 0$$
  

$$lh(conc_0(x)) = 1 + lh(x)$$
  

$$lh(conc_1(x)) = 1 + lh(x).$$

(Nota: lh(x) é o comprimento de x, isto é, o número de bits)

Hint 
$$\frac{w \in W}{conc_0(w) \in W}$$
;  $\frac{w \in W}{conc_1(w) \in W}$ ;

$$S := \{ w \in W \mid lh(w) \text{ is defined } \}.$$

 $\epsilon \in S$ . If  $w \in S$ , então  $lh(conc_0(w)) = 1 + lh(w)$  pelo que  $conc_0(w) \in s$ . O mesmo para  $conc_1$ . Por indução estrutural S = W.

104. Mostre que as seguintes equações definem uma função,  $\oplus: \mathbb{W} \times \mathbb{W} \longrightarrow \mathbb{W}$  (concatenação de palavras):

$$\bigoplus (x, \epsilon) = x 
\bigoplus (x, conc_0(y)) = conc_0(\bigoplus(x, y)) 
\bigoplus (x, conc_1(y)) = conc_1(\bigoplus(x, y))$$

105. Sendo lh e  $\oplus$  as funções definidas nos exercícios anteriores, prove por indução que

$$\forall x, y \in \mathbb{W} \quad lh(\oplus(x, y)) = lh(x) + lh(y).$$

106. Mostre que as seguintes equações definem uma função,  $\#_1: \mathbb{T} \longrightarrow \mathbb{N}_0$ :

$$\#_1(0) = 0$$
  
 $\#_1(1) = 1$   
 $\#_1(nodo(t_1, t_2)) = \#_1(t_1) + \#_1(t_2).$ 

(Nota:  $\#_1(t)$  é o número de ocorrências de "1" em t)

- 107. Escreva equações que definam recursivamente a função  $\#_0: \mathbb{T} \longrightarrow \mathbb{N}_0$  que conta o número de 0 (zeros) dos elementos de  $\mathbb{T}$ .
- 108. Seja S o conjunto das palavras sobre o alfabeto  $\Sigma = \{a,b\}$  de comprimento maior ou igual a 1 definido indutivamente da seguinte forma:

$$\frac{a \in S}{a \in S} \qquad \frac{w \in S \land x \in \Sigma}{conc_x(w) \in S}.$$

(Onde  $conc_x(w)$  corresponde a justapor x à direita de w.)

(a) Escreva as equações que definem recursivamente  $f: S \longrightarrow \mathbb{N}_0$  onde f(w) é, para cada  $w \in S$ , o número de símbolos a existentes na palavra w.

**Hint** 
$$f(a) = 1$$
;  $f(b) = 1$ ;  $f(conc_x(w)) = 1 + f(w)$ .

(b) Prove que as equações obtidas na alínea anterior definem uma função.

**Hint** Seja  $T := \{ w \in S \mid f(w) \text{ está definida} \}.$ 

$$\frac{\overline{a \in T} \qquad \overline{b \in T}?}{w \in T \land x \in \Sigma}?$$
$$\frac{w \in T \land x \in \Sigma}{conc_x(w) \in T}?$$

#### Generalidades de Grafos

109. Seja G=(X,U) um grafo com n vértices e m arcos. Sejam ainda  $\delta(G)=\min_{x\in X}d_G(x)$  e  $\Delta(G)=\max_{x\in X}d_G(x)$ . Justifique que  $\delta(G)\leq \frac{2m}{n}\leq \Delta(G)$ .

**Hint** Seja x um vértice. Então  $\Gamma^+(x) = \{(x,x_i)|i\in I_{x,1}\} \cup \{(x,x_i)|i\in I_{x,2}\}$ , com  $I_{x,1}\cap I_{x,2}=\emptyset$  e  $|I_{x,1}|=\delta(G)$ . Logo  $2m=\sum_{x\in X}|\Gamma^+(x)|\geq \sum_{x\in X}|\{(x,x_i)|i\in I_{x,1}\}|=\sum_{x\in X}\delta(G)=n\delta(G)$ .

110. Seja G um grafo com n vértices, t dos quais têm grau k e os restantes têm grau k+1. Justifique que, sendo m o número de arcos de G, se tem t=(k+1)n-2m.

**Hint** Basta escrever o que está lá dito: tk + (n-t)(k+1) = 2m. Agora basta simplificar para ter o resultado.

111. Seja G um grafo com n vértices e m arcos  $(n, m \ge 1)$ . Seja k o menor inteiro positivo tal que  $k \ge \frac{2m}{n}$ . Justifique que G tem pelo menos um vértice com grau superior ou igual a k.

**Hint** Se todos os vértices tivessem grau  $t_i$  menor que k, seja t o maior dos  $t_i$ . Então  $nt/2 \ge m$ , ou seja,  $nt \ge 2m$ , o que contradiz a hipótese de k ser o menor que satisfaz a propriedade.

112. Seja G um multigrafo com n vértices e n-1 arcos. Conclua que G tem pelo menos um vértice com grau 1 ou um vértice isolado.

**Hint** Se todos os vértices têm grau pelo menos 2, então o número de arestas é maior que 2n/2 = n. Logo há um vértice com grau menor que 2 (que pode ser 1 ou 0).

- 113. Quantos vértices tem um grafo simples G com:
  - (a) 12 arcos e com todos os vértices de grau 2? **Hint** 2n/2 = 12; logo n = 12.
  - (b) 15 arcos, 3 vértices de grau 4 e todos os outros com grau 3? **Hint** Basta escrever o que está lá escrito:

$$\frac{3 \times 4}{2} + \frac{(n-3)3}{2} = 15 \Rightarrow n = 9.$$

114. Seja A um conjunto finito de números ímpares. Mostre que se a soma de todos os números de A é um número par, então |A| é par.

**Hint** Some números da forma  $2x_i + 1$ .

115. **Teorema dos apertos de mão** Mostre que num grafo é sempre par o número de vértices de grau ímpar.

**Hint** Pelo lema dos apertos de mão, a soma dos graus de um grafo é um número par. A soma dos graus dos vértices de grau par (por ser a soma de números pares) é um número par. Logo, a soma dos graus dos vértices de grau ímpar tem de ser um número par.

- 116. Prove o Teorema dos apertos de mão usando indução.
- 117. É possível ter um grupo de 7 pessoas em que cada uma delas conhece exactamente 3 pessoas do grupo?

Hint Não. Teorema dos apertos de mão.

118. Sete estudantes vão de férias e cada um deles decide enviar um postal a três dos outros. É possível cada estudante receber postais exactamente das três pessoas para quem enviou?

17

- 119. Indicando primeiro uma formulação em termos de grafos, responda às seguintes questões:
  - (a) O número de pessoas que, numa festa, não conhecem um número ímpar das outras pessoas da festa é sempre um número par?
    - **Hint** Seja G o grafo em que os vértices são as pessoas e temos A-B sse A e B não se conhecem. O número de vértices com grau impar tem de ser par.
  - (b) O número de pessoas nascidas até hoje que tiveram ou têm um número ímpar de irmãos é um número par?

**Hint** Estamos a assumir que uma pessoa não é irmã de si própria. Portanto, se uma pessoa tem um número ímpar de irmãos, é porque há um número par de filhos na família. A soma desses números pares todos dá um número par.

120. Justifique que não existe nenhum grafo simples com 12 vértices, 28 arcos e em que o grau de cada vértice é 3 ou 4.

**Hint** Vértices de grau 3 têm de ser um número par, seja 2k. Logo temos  $\frac{2k\times 3+(12-2k)\times 4}{2}=28$ . Equação impossível.

121. Qual é o maior número possível de vértices num grafo com 19 arcos em que todos os vértices tem grau superior ou igual a 3?

**Hint** Qual é o maior n tal que  $3n/2 \le 19$ ; logo n=12. Será que há algum grafo com 12 vértices e 19 arcos? Sim. Basta fazer um circulo de 12 pontos e depois fazer arestas entre pontos opostos do grafo, e acrescentar mais um arco.

122. Um digrafo G=(X,U) diz-se um *isografo* se, para todo o  $x\in X$   $d^+(x)=d^-(x)$ . Indique um isografo em que nem todos os vértices têm o mesmo grau.

**Hint** Considere um digrafo desconexo em que uma parte tem apenas um vértice e a outra parte tem dois vértices unidos por duas setas.

- 123. (a) Justifique que em qualquer grafo simples existem pelo menos dois vértices com o mesmo grau. **Hint** G ou é conexo ou não. Se é conexo nenhum vértice tem grau zero. Logo n vértices terão de escolher um de n-1 graus diferentes. Se for desconexo, então nenhum vértice pode ter grau n-1. Logo n vértices terão de escolher um valor do conjunto  $\{0,\ldots,n-2\}$ .
  - (b) Indique um grafo que ilustre que é falsa a afirmação que se obtém de (a) retirando a hipótese do grafo ser simples.

**Hint** Três vértices: A, B, C. A e B estão unidos por duas arestas; B e C por uma. A tem grau 2, B 3 e C 1.

124. Justifique que a sequência com n elementos  $(n-1,n-1,1,\ldots,1)$  (n>3) não é uma sequência gráfica.

**Hint** A primeira iteração dá  $(n-2,0,\ldots,0)$  o que responde à questão.

- 125. Indique, se existir, um multigrafo com a sequência de graus (5, 5, 5, 5, 3, 3). (que abreviamos como  $(5^4, 3^2)$ ). Existe algum grafo simples com a sequência de graus indicada?
- 126. Determine se cada uma das sequências seguintes é gráfica e, em caso afirmativo, indique um grafo simples que a admita como sequência de graus:
  - (a)  $(7, 6, 5, 4, 3, 2, 1^3)$ ;
  - (b)  $(9,7,5,3^5,2^2,1^3)$ ;
  - (c)  $4^6$ ;

- (d)  $4^7$ ;
- (e)  $5^6$ ;
- (f)  $5^8$ ;
- (g)  $(3^2, 2^9)$ ;
- (h)  $(4^2, 2^4)$ .
- 127. Considere as sequências, não crescentes
  - (a) (5,4,4,3,k,1,1) e
  - (b) (8, k, 7, 6, 6, 5, 4, 3, 3, 1, 1, 1).

Determine se existem valores de k para os quais as sequências são gráficas.

**Hint** No primeiro caso  $k \in \{3, 2, 1\}$ . Só o 2 é possível. No segundo caso  $k \in \{8, 7\}$ . Depois aplica-se o algoritmo.

128. Justifique que existe um grafo simples com 7 vértices, 12 arcos, contendo vértices de grau 2, 3 e 4 e não contendo vértices com outros graus.

Sugestão: Mostre que (4,4,4,4,3,3,2) é sequência gráfica e depois construa um grafo com estes graus.

**Hint** Desenha-se um pentágono  $A_1,A_2,A_3,A_4,A_5$ . Em cima desenha-se um vértice  $A_6$  ligado a  $A_2,A_3,A_4$ . Por fim desenha-se um novo vértice  $A_7$  ligado a  $A_6,A_2,A_3$  e  $A_1$ .

129. Justifique que  $(k, 3^k)$  é uma sequência gráfica, para todo o inteiro k, com  $k \ge 3$ .

**Hint** Basta desenhar o k-ogono e acrescentar um vértice ligado a todos.

- 130. Por indução, mostre que, para todo o número inteiro positivo n, a sequência com 2n elementos  $(n, n, n-1, n-1, \ldots, 2, 2, 1, 1)$  é uma sequência gráfica.
- 131. Indique, caso existam, três grafos simples não isomorfos, com a sequência de graus  $(3^2, 2^2, 1^2)$ . Hint Usar o www.proverx.com
- 132. Justifique que os seguintes grafos têm a mesma sequência de graus, mas não são isomorfos:



Hint Um deles tem ciclos de tamanho 3 e o outro não.

133. Sejam  $G_1, G_2$  e  $G_3$  três grafos simples com 4 vértices e dois arcos. Justifique que pelo menos dois desses grafos são isomorfos.

Hint Só existem duas possibilidades: ou arestas paralelas ou a intersetarem-se em um ponto.

134. Considere os grafos não isomorfos (mas com a mesma sequência de graus):



Existe algum grafo com a mesma sequência de graus dos anteriores e que não seja isomorfo a nenhum deles?

Hint Sim: um triângulo e um pentágono!

135. Indique dois digrafos, não isomorfos, com 4 vértices e 6 arcos.

**Hint** Um quadrado com setas sempre na mesma direção e diagonais; um quadrado com setas nas duas direções e duas setas só numa direção. O segundo tem poços, enquanto o primeiro não pelo que não podem ser isomorfos.

136. Qual o número mínimo de vértices necessário para construir um grafo completo com pelo menos, 1000 arcos?

Hint  $\frac{n!}{2!(n-2)!} \ge 1000$ .

137. Seja G um grafo simples r-regular, com r ímpar. Justifique que r divide o número de arcos de G.

**Hint**  $2m = \sum_{x \in X} d(x) = |X|r$ . Pelo lema dos apertos de mão, |X| = 2k. Logo 2kr = 2m e assim kr = m.

138. (a) Justifique que um grafo bipartido de ordem 10 tem, no máximo, 25 arcos.

**Hint** 5 de um lado e 5 de outro.

(b) Determine o número máximo de arcos de um grafo bipartido de ordem n, com  $n \ge 2$ .

**Hint** x(n-x) é máximo. Ou seja, (x(n-x))'=0, logo x=n/2 (se n par). Ver o caso n ímpar.

139. Determine quais dos seguintes grafos são bipartidos e, para esses, apresente uma representação geométrica que torne evidente a correspondente partição do conjunto dos vértices.



**Hint**  $G_1$  e  $G_2$  não têm ciclos de comprimento ímpar. E para mostrar que são bipartidos basta colorir alternadamente com branco e preto que funciona.

140. Seja G um grafo simples com pelo menos dois vértices e  $\overline{G}$  o seu grafo complementar. Se G e  $\overline{G}$  são ambos bipartidos o que pode concluir sobre G ?

**Hint** Se tiver 3 vértices com a mesma cor, então o complementar tem um triângulo. Ou seja, o grafo só pode ter 4 vértices no máximo. É preciso testar todas as possibilidades de subgrafos do completo  $K_{2,2}$ ,  $K_{2,1}$ ,  $K_{1,1}$ .

#### 3.2 Conexidade

141. Seja  $G = (X, \mathcal{U})$  um grafo e R a relação binária, definida em X, por

 $x_i R x_j$  se, e só se, existe em G uma cadeia  $x_i - x_j$ .

Mostre que R é relação de equivalência.

**Hint** R é reflexiva pelas cadeias de comprimento zero. R é simétrica. R é transitiva.

- 142. Sejam G = (X, U) um grafo simples e  $x_i$  e  $x_j$  vértices de G. Justifique que:
  - (a) G possui uma cadeia  $x_i-x_j$  se, e só se, possui uma cadeia  $x_i-x_j$  elementar. **Hint** Indução.
  - (b) Se G possui duas cadeias  $x_0-x_k$  elementares distintas, com  $x_0 \neq x_k$ , então G possui um ciclo.

**Hint** Como são diferentes, começando em  $x_0$  haverá um primeiro vértice onde as cadeias seguem por arestas diferentes, digamos  $x_i$ ; e depois de  $x_i$  haverá um primeiro vértice onde elas voltam a seguir por arestas iguais, digamos  $x_j$ . As duas subcadeias  $x_i - x_j$  formam um ciclo.

- 143. Seja G um grafo com ciclos. Designa-se por contorno de G o comprimento mínimo dos ciclos de G. Determine o contorno dos seguintes grafos:
  - (a)  $K_9$

Hint 3.

(b)  $C_8$ 

Hint 8.

(c) Grafo de Petersen. Este grafo é dado por  $S = \{1 \dots 5\}$ ; os vértices de G são os subconjuntos de ordem 2; dois vértices estão unidos se e só se são disjuntos.



**Hint** 5. Pode haver um ciclo de comprimento 3? Não porque  $\{a,b\}-\{c,d\}-\{e,f\}-\{a,b\}$  implica que todos os elementos de  $\{a,b,c,d,e,f\}$  são disjuntos, o que é impossível em S. Pode haver um ciclo de ordem 4? Se  $\{a,b\}-\{c,d\}-\{e,f\}-\{g,h\}-\{a,b\}$  é um ciclo de comprimento mínimo, então  $\{c,d\}$  e  $\{g,h\}$  têm um elemento comum. Isto significa que dos 5 elementos de S só restam dois elementos livres para fazer um vértice a incidir com  $\{c,d\}$  e  $\{g,h\}$ . Ou seja, dois vértices não adjacentes têm apenas um vértice comum; se houvesse um ciclo de tamanho 4, os vértices  $\{c,d\}$  e  $\{g,h\}$  seriam não adjacentes e teriam dois vértices em comum  $\{a,b\}$  e  $\{e,f\}$ . Basta agora encontrar no Peterson graph um ciclo de comprimento 5. A estrela no meio tem comprimento 5.

(d) Grafo do dodecaedro



144. Seja G=(X,U) um grafo simples. Define-se a distância  $d(x_i,x_j)$  do vértice  $x_i$  ao vértice  $x_j$  da seguinte forma:

$$d(x_i,x_j) = \left\{ \begin{array}{ll} +\infty & \text{se } G \text{ n\~ao possui cadeias } x_i - x_j \\ \text{menor comprimento das cadeias } x_i - x_j \text{ de } G \end{array} \right.$$

Seja G um grafo simples conexo com n vértices. Justifique as afirmações:

- (a) Para quaisquer  $x_i, x_j \in X$ ,  $d(x_i, x_j) = d(x_j, x_i) \le n 1$  (se existir cadeia). **Hint** Uma linha que vá de  $x_i$  a  $x_j$ .
- (b) Para quaisquer vértices  $x_i, x_j, x_k \in X$  tem-se  $d(x_i, x_j) \leq d(x_i, x_k) + d(x_k, x_j)$ . **Hint** É igual se  $x_k$  pertencer a uma cadeia minimal entre  $x_i$  e  $x_j$ .
- (c) Se  $d(x_i, x_j) > 1$  for finito, então existe um vértice  $x_k$ , com  $x_k \neq x_i$  e  $x_k \neq x_j$ , tal que  $d(x_i, x_j) = d(x_i, x_k) + d(x_k, x_j)$ .

**Hint** Tomar um  $x_k$  da cadeia minimal.

- 145. Seja G um grafo com 15 vértices e 4 componentes conexas.
  - (a) Justifique que G tem pelo menos uma componente conexa com 4 ou mais vértices. **Hint** Se todos tivessem menos de 4, digamos 3, então haveria 12 vértices.
  - (b) Qual o número máximo de vértices que uma componente conexa de G pode ter? **Hint** 12 sobrando 3 vértices para outras 3 componentes conexas.
- 146. Seja G um grafo em que existem exactamente dois vértices  $x_i$  e  $x_j$  com grau ímpar. Mostre que  $x_i$  e  $x_j$  pertencem à mesma componente conexa e, portanto, em G, existe uma cadeia  $x_i x_j$ .

**Hint** Se  $x_i$  está numa componente diferente de  $x_j$ , então a componente conexa de  $x_i$  tem exatamente um vértice de grau impar. Impossível.

147. Seja G=(X,U) um grafo simples com  $n\geq 2$  vértices tal que  $d_G(x)\geq \frac{n-1}{2}$ , para qualquer  $x\in X$ . Mostre que G é conexo.

Sugestão: Suponha que G é desconexo. O que pode afirmar sobre o número de vértices em cada componente conexa?

**Hint** Se fosse desconexo, uma das componentes teria no máximo metade dos vértices e portanto cada vértice teria grau no máximo metade menos um.

- 148. Indique um grafo simples, com  $n \ge 3$  vértices, tal que:
  - (a) Todo o arco é uma ponte.

Hint A estrela.

(b) Nenhum arco é uma ponte.

Hint  $K_n$ .

149. Indique um digrafo fortemente conexo com dois vértices não adjacentes.

Hint Quadrado com setas sempre na mesma direção. Os vértices da diagonal não são adjacentes.

# 3.3 Árvores

150. Existe alguma árvore cuja sequência de graus seja (3, 3, 3, 2, 2, 1, 1, 1)?

**Hint** A soma dos graus é 2(n-1). Como temos 8 vértices, a soma dos graus tem de ser 14, quando é 16.

151. Seja T uma árvore que tem apenas vértices de grau 3 e vértices de grau 1. Se T tem 10 vértices de grau 3, quantos vértices tem de grau 1?

**Hint** Vamos imaginar que tem k vértices de grau 1. Então a soma dos graus é k+3(n-k). Mas a soma dos graus é 2(n-1). Logo temos

$$n + 2 = 2k.$$

Agora é fazer as contas...

- 152. Uma árvore T tem 14 vértices de grau 1 e os restantes vértices têm graus 4 ou 5 (sendo que há pelo menos um de grau 4 e outro de grau 5).
  - (a) Quantos vértices de grau 4 tem T?

**Hint** O número de vértices de grau 4 é q e de grau 5 é c. Logo 4q+5c+14=2(c+q+14-1). Fazendo as contas temos 2q+3c=12.

Por hipótese nem q nem c são zero. Neste caso,  $c \in \{2\}$  porque o número de vértices de grau impar tem de ser par.

(b) Quantos arcos tem T?

**Hint** A sequência gráfica  $(5^2, 4^3, 1^{14})$  tem 19 vértices logo tem 18 arestas.

153. A média dos graus dos vértices de uma árvore T é 1,99. Determine o tamanho de T.

Hint 
$$\frac{2(n-1)}{n} = 1.99 \log n = 200$$
.

- 154. A média dos graus dos vértices de uma árvore T é  $\frac{21}{11}$ . Supondo que T tem apenas vértices de grau 1 e vértices de grau 3, determine a sequência de graus de T.
- 155. A média dos graus dos vértices de um grafo conexo G é inferior a 2. Conclua que G é uma árvore.

**Hint** 
$$\frac{2m}{n} < 2$$
 implica  $m < n$ . Como  $n - 1 \le m$ , resulta que  $m = n - 1$  pelo que  $G$  é árvore.

156. Uma árvore T, com n vértices, tem exactamente um vértice com grau 2 e cada um dos restantes vértices tem grau 1 ou grau 3. Mostre que n é ímpar e determine, em função de n, o número de vértices de grau 1 de T.

**Hint** Seja u o número de vértices de grau 1 e t o número de vértices de grau 3. Como u+t é o número de vértices de grau ímpar, é par. Pelo que o número de vértices é u+t+1 que é ímpar.

Note-se que t=n-u-1. Logo 2(n-1)=2+3t+u=2+3(n-u-1)+u e agora é fazer as contas...

- 157. Comente a seguinte frase: Se T é uma árvore cujos vértices têm graus 1 e 3, então T tem um número ímpar de arestas.
- 158. Seja G uma árvore em que todos os vértices têm grau ímpar.
  - (a) Mostre que o número de arcos de G é também um número ímpar.

**Hint** Todos os vértices de grau ímpar implica que o número de vértices é par pelo que n-1 é ímpar.

- (b) Justifique que a afirmação anterior é falsa se G não é uma árvore. **Hint**  $K_4$ .
- 159. Seja G um grafo simples com n vértices e n+1 arcos. Mostre que G tem pelo menos dois ciclos. **Hint** Se só tivesse um ciclo, ao retirar um arco ficávamos com uma árvore de n arcos.
- 160. Justifique que toda a árvore, com  $n \ge 2$ , vértices, é um grafo bipartido.

**Hint** Escolha-se um vértice v à sorte; esse fica com a cor azul. Todos os seus vizinhos ficam amarelos. Todos os vizinhos dos amarelos ficam azuis, etc. Ou seja, vértices a distância ímpar de v são amarelos; se a distância for par são azuis. Ao longo de cada cadeia os vértices têm cores alternadas. Como dados 2 vértices existe apenas uma cadeia elementar entre eles, e em cada cadeia as cores são alternadas, está provado que não pode haver dois vértices adjacentes com a mesma cor.

161. Existem grafos bipartidos completos que são árvores?

**Hint** As estrelas. Seja G um tal grafo bipartido completo. Sejam X e Y as duas partes da partição do conjunto de vértices. Se  $X=\{a,b,\ldots\}$  e  $Y=\{c,d,\ldots\}$ , então existe o ciclo a-c-b-d-a, oque é impossível numa árvore. Está provado que ou X ou Y só têm um elemento.

Reciprocamente, se X ou Y só têm um elemento, então o grafo será uma estrela que é bipartido completo e árvore.

162. Determine uma árvore maximal de valor mínimo e uma árvore maximal de valor a máximo para cada um dos seguintes grafos ponderados, utilizando o algoritmo de Kruskal e o algoritmo de Prim:

(a)



(b)



#### 163. Considere o seguinte grafo ponderado G:



Determine uma árvore maximal de valor mínimo usando o algoritmo de Prim.

## 164. Considere o seguinte grafo ponderado G:



- (a) Determine uma árvore maximal de valor máximo utilizando o algoritmo de Prim.
- (b) Indique o valor da árvore obtida na alínea anterior.

#### 165. Considere o seguinte grafo ponderado G:



- (a) Determine uma árvore maximal de  ${\it G}$ , de valor mínimo, usando o algoritmo de Kruskal.
- (b) Indique o valor da árvore obtida na alínea anterior.

#### 166. Considere o seguinte grafo ponderado:



- (a) Aplique o Algoritmo da Cadeia mais Curta para mostrar que o valor de uma cadeia a-f mínima é igual a 10.
- (b) Determine uma cadeia b-e mínima e indique o seu valor.

#### 167. Considere o seguinte grafo ponderado:



- (a) Aplique o Algoritmo da Cadeia mais Curta para mostrar que o valor de uma cadeia A-L mínima é igual a 17. Indique uma tal cadeia.
- (b) Determine uma cadeia J-A mínima e indique o seu valor.
- (c) Determine uma cadeia  $K-B\,$  mínima e indique o seu valor.

#### 168. Considere o seguinte grafo ponderado:



(a) Utilize o algoritmo de Kruskal para calcular uma árvore maximal de valor mínimo.

- (b) Utilize o **algoritmo de Prim**, a partir do vértice C, para calcular uma árvore maximal de valor mínimo. Indique o seu valor.
- (c) Utilize o **algoritmo da Cadeia mais Curta** para determinar uma cadeia J A mínima entre os vértices J e A. Indique o seu valor.

#### 169. Considere o seguinte grafo ponderado:



- (a) Utilize o **algoritmo de Kruskal** para calcular uma árvore maximal de valor mínimo. Indique o seu valor.
- (b) Utilize o **algoritmo de Prim**, a partir do vértice x, para calcular uma árvore maximal de valor mínimo.
- (c) Utilize o **algoritmo da Cadeia mais Curta** para determinar uma cadeia x-y mínima L. Indique L e o seu valor.

## 3.4 Grafos Eulerianos

170. Classifique os seguintes grafos quanto a serem eulerianos ou semi-eulerianos.

(a)



(b)





171. Os grafos conexos a seguir apresentados designam-se por grafos platónicos. Indique quais são eulerianos ou semi-eulerianos. Relativamente aos dois primeiros determine o número mínimo de vezes que teria de levantar o lápis para os conseguir desenhar.



- 172. Sejam  $G_1$  e  $G_2$  dois grafos eulerianos conexos sem vértices em comum. Sejam x um vértice de  $G_1$  e y um vértice de  $G_2$ . Seja G o grafo que se obtém de  $G_1 \cup G_2$  acrescentando o arco  $\{x,y\}$ . O que pode afirmar sobre a existência de cadeias eulerianas em G?
- 173. Determine os valores de n para os quais:
  - (a)  $K_n$  é euleriano;
  - (b)  $K_n$  é semi-euleriano.
- 174. Indique os grafos bipartidos completos que são:
  - (a) Eulerianos;
  - (b) Semi-eulerianos
- 175. Considere o grafo simples G:



- (a) Justifique que G é semi-euleriano.
- (b) Considerando  $G' = G + \{x_1, x_3\}$ , verifique que G' é euleriano e utilize o algoritmo e de Fleury para determinar um ciclo euleriano de G'.
- (c) Utilizando o ciclo euleriano de G determinado na alínea anterior indique uma cadeia euleriana aberta de G.
- 176. Considere o grafo simples G:



(a) Justifique que G é euleriano.

(b) Seja  $(u_1,u_2,u_3,u_4,u_5,u_6,u_7)$  uma sequência de arcos obtida pela aplicação do algoritmo de Fleury ao grafo G. Justifique que  $u_8$  não pode ser escolhido no passo seguinte da aplicação deste mesmo algoritmo.

Indique a restante sequência de arcos obtida por aplicação do algoritmo.

177. Suponha que tem um tabuleiro  $3 \times 3$ . Nos cantos do topo estão dois cavalos brancos e nos cantos de baixo estão dois cavalos pretos. Diga justificando se é possível colocar os cavalos brancos nos cantos de baixo e os cavalos pretos nos cantos de cima.

**Hint** Numere as casas do tabuleiro que serão os vértices do grafo; a aresta  $\{n, k\}$  existe se passar da casa n para k é um movimento válido para o cavalo.

- 178. Invente um grafo euleriano para que algum dos seus colegas aplique o algoritmo de Fleury. (Neste exercício podem ser propostos no máximo 6 grafos diferentes por 6 pessoas diferentes).
- 179. Invente um grafo semi-euleriano para que algum dos seus colegas encontre um caminho que passe por todas as arestas, mas não passe duas vezes pela mesma. (Neste exercício podem ser propostos no máximo 6 grafos diferentes por 6 pessoas diferentes).

### 3.5 Matrizes e grafos

180. Considere o digrafo G:



Indique a matriz de adjacências de G em relação à marcação  $(x_1,x_2,x_3,x_4,x_5)$  e em relação à marcação  $(x_5,x_3,x_2,x_1,x_4)$  dos seus vértices.

- 181. Como determinar o valor do grau de um vértice de um grafo G, a partir da matriz de adjacências, se:
  - (a) G é um grafo simples?
  - (b) G é um digrafo?
- 182. Indique dois grafos simples, com n vértices não isomorfos que tenham a propriedade da matriz de adjacências não depender da marcação de vértices considerada. Indique, para cada um, a correspondente matriz de adjacências.
- 183. Um digrafo G=(X,U) diz-se simétrico se, para quaisquer  $x,y\in X$ ,  $(x,y)\in U$  se e só se  $(y,x)\in U$ . O que pode afirmar sobre a matriz de adjacências de um digrafo simétrico?
- 184. Seja G um grafo simples, com matriz de adjacências A(G). Como obter, a partir de A(G), a matriz de adjacências do seu grafo complementar  $\overline{G}$ ?

**Hint** Substituir 1 por 0 e 0 por 1.

- 185. O converso de um digrafo G=(X,U) é o digrafo  $\widetilde{G}=(X,\widetilde{U})$  em que, para quaisquer  $x,y\in X$ ,  $(x,y)\in \widetilde{U}$  se e só se  $(y,x)\in U$ .
  - (a) Dê exemplo de um digrafo isomorfo ao seu converso.

- (b) Qual a relação entre as matrizes de adjacências de G e de  $\widetilde{G}$ ?
- 186. Como obter, a partir da matriz de adjacências de um digrafo G=(X,U), o número de predecessores simultâneos de dois vértices x e y?
- 187. Seja G=(X,U) um digrafo tal que  $\Gamma^+(x)=\Gamma^-(x)$ , para qualquer  $x\in X$ . O que pode afirmar sobre a matriz de adjacências de G?
- 188. Seja A a matriz de adjacências de um grafo simples G, em relação a uma marcação  $(x_1, x_2, \dots, x_n)$  dos seus vértices.
  - (a) Justifique que, sendo  $[b_{ij}] = A^2$ , se tem  $b_{ii} = d_G(x_i)$ , para qualquer  $i \in \{1, \ldots, n\}$ .
  - (b) Com um exemplo, mostre que a propriedade (a) é falsa se A é a matriz das adjacências de um digrafo.
- 189. Seja G um grafo simples em que todo o arco tem uma extremidade num vértice de grau ímpar e a outra extremidade num vértice de grau par. Justifique que existe uma marcação dos vértices de G em relação a qual a matriz de adjacências de G tem a forma:

$$\left[\begin{array}{cc} 0 & M \\ M^T & 0 \end{array}\right].$$

190. Considere o grafo



- (a) Determine a matriz A de adjacências de G em relação à marcação  $(x_1, x_2, x_3, x_4)$ .
- (b) Indique  $A^2$  e  $A^3$ , sem efectuar multiplicação de matrizes.
- 191. Considere o grafo  $K_{r,s}$  com as classes de vértices  $X=\{x_1,\ldots,x_r\}$  e  $Y=\{y_1,\ldots,y_s\}$ .
  - (a) Determine a matriz A das adjacências de  $K_{r,s}$  em relação à marcação  $(x_1,\ldots,x_r,y_1,\ldots,y_s)$ .
  - (b) Indique  $A^2$  e  $A^3$ , sem efectuar multiplicação de matrizes.
- 192. Seja G um digrafo cuja matriz das adjacências em relação à marcação  $(x_1,x_2,x_3,x_4)$  dos seus vértices é

31

$$\left[\begin{array}{ccccc}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]$$

Justificando apenas com propriedades de matrizes, indique:

- (a) A sequência de graus exteriores de G;
- (b) Se G tem vértices isolados;
- (c) Se existem caminhos  $x_1 x_4$ ;
- (d) Se existem sucessores simultâneos de  $x_1$  e  $x_2$ .

### 193. Considere o digrafo



Indique, em relação à marcação  $(x_1,x_2,x_3,x_4,x_5)$  dos seus vértices:

- (a) A matriz de adjacências de G.
- (b) A matriz de distâncias de G.
- 194. Seja A a matriz de adjacências de um digrafo G, em relação a uma marcação  $(x_1, x_2, \dots, x_n)$  dos seus vértices. Indique como determinar a partir da matriz A, ou das suas potências, se:
  - (a) G tem fontes/poços;
  - (b) G é fortemente conexo;
  - (c) G tem circuitos eulerianos;
  - (d) G tem caminhos eulerianos abertos.
- 195. Sem efectuar multiplicação de matrizes justifique que, para todo o inteiro  $n \geq 2$ , existe um digrafo G, com n vértices, cuja matriz de adjacências A satisfaz a propriedade:  $A^k \neq 0$ , para todo o inteiro positivo k.