This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INT

Exp Mail EV335608188US USAN 10/601,080

пом

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K 39/385, 39/116, C07K 14/33,
G01N 33/569, 33/53

(11) International Publication Number: WO 99/42130

(43) International Publication Date: 26 August 1999 (26.08.99)

(21) International Application Number: PCT/CA99/00157

(22) International Filing Date: 23 February 1999 (23.02.99)

(30) Priority Data: 09/027,956 23 February 1998 (23.02.98) US

(71) Applicant (for all designated States except US): CONNAUGHT LABORATORIES LIMITED [CA/CA]; 1755 Steeles Avenue West, North York, Ontario M2R 3T4 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHONG, Pele [CA/CA]; 32 Estoril Street, Richmond Hill, Ontario L4C 0B6 (CA). LINDBERG, Alf [SE/FR]; 33, quai Saint Antoine, F-69002 Lyon (FR). KLEIN, Michel, H. [CA/CA]; 16 Munro Boulevard, Willowdale, Ontario M2P 1B9 (CA).

(74) Agent: STEWART, Michael, I.; Sim & McBurney, 6th floor, 330 University Avenue, Toronto, Ontario M5G 1R7 (CA). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: MULTI-OLIGOSACCHARIDE GLYCOCONJUGATE BACTERIAL MENINGITIS VACCINES

RANDOM CONJUGATION OF PERIODATED S. PNEUMOCOCCALOLIGOSACCHARIDES TO TT

- 3. DIALYSIS
- 4. GEL-FILTRATION CHROMATOGRAPHY
- 5. PROTEIN ANALYSIS and CHO ANALYSIS

(57) Abstract

Multivalent immunogenic molecules comprise a carrier molecule containing at least one functional T-cell epitope and multiple different carbonhydrate fragments each linked to the carrier molecule and each containing at least one functional B-cell epitope. The carrier molecule inparts enhanced immunogenicity to the multiple carbohydrate fragments. The carbohydrate fragments may be capsular oligosaccharide fragments from Streptococcus pneumoniae which may be serotypes (1, 4, 5, 6B, 9V, 14, 18C, 19F or 23F), or Neisseria meningitidis, which may be serotype (A, B, C) W-135 or Y. Such oligosaccharide fragments may be sized from about 2 to about 5 kDa. Alternatively, the carbohydrate fragments may be fragments of carbohydrate-based tumor antigens, such as Globo H, LeY or STn. The multivalent molecules may be produced by random conjugation or site-directed conjugation of the carbohydrate fragments to the carrier molecule. The multivalent molecules may be employed in vaccines or in the generation of antibodies for diagnostic applications.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ALL Albania AM Armenia AM Armenia FI Finland AM Armenia FI Finland LT Lithuania SK Slovakia AU Australia GA Gabon LV Luxembourg SN Senegal AZ Azerbaijan GB United Kingdom MC Monaco TD Chad BB Barbados GH Ghana MG Madagascar FR France GE Georgia MD Republic of Moldova TG Togo TD Chad BB Barbados GH Ghana MG Madagascar TJ Tajikistan Turkensistan BF Burkina Faso GR Greece Republic of Macedonia MK The former Yugoslav Republic of Macedonia TR Turkey MI Mali TT Trinidad and Tobago BB BR	1							Transitio didor dic 1 C1,
	AM AT AU AZ BA BB BE BF BG BJ BR CF CG CH CM CN CU CZ DE DK	Armenia Austria Australia Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark	FI FR GA GB GE GH GN GR HU IE IL IS FT JP KE KG KP LC LL LK	Finland Prance Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Republic of Korea Kazakstan Saint Lucia Licelttenstein Sri Lanka	LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE	Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Portugal Romania Russian Federation Sudan Sweden	SK SN SZ TD TG TJ TM TR TT UA UG US US VN YU	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Yugoslavia

PCT/CA99/00157 WO 99/42130

TITLE OF INVENTION

MULTI-OLIGOSACCHARIDE GLYCOCONJUGATE BACTERIAL MENINGITIS VACCINES

5

15

20

25

30

FIELD OF INVENTION

The present invention is related to the field of vaccines and is particularly related to the development of novel glycoconjugation technologies which can be to prepare glycoconjugates in which multioligosaccharides are covalently linked to the same 10 carrier protein.

BACKGROUND OF THE INVENTION

Haemophilus influenzae type b (Hib), Neisseria meningitidis and Streptococcus pneumoniae are major causes of bacterial meningitis in children under five years of age. All these bacteria are protected from phagocytosis by a polysaccharidic capsule. Antibodies induced against the capsular polysaccharide (CPs) of the organism are protective in most cases. Effective Hib conjugate vaccines in which Hib CPs, PRP, is linked to different carrier proteins, such as diphtheria toxoid (PRP-D), tetanus toxoid (PRP-T), CRM 197 (HbOC) and the outer membrane proteins of N. meningitidis (PRP-OMP), have been developed. Four Hib conjugate now commercially available. vaccines are glycoconjugate vaccines against N. meningitidis and S. pneumoniae are highly recommended by the American College of Physicians.

of The development multivalent pneumococcal vaccines for the prevention of both systemic and noninvasive pneumococcal diseases in infants, elderly and immune-compromised individuals has gained increasing importance over the last decade. For more detailed reviews of pneumococcal disease, epidemiology, or the polysaccharide vaccine, numerous review articles are available (ref. 1, various references are referred to in parenthesis to more fully describe the state of the art to which this invention pertains. Full bibliographic information for each citation is found at the end of the specification, immediately preceding the claims. The disclosure of these references are hereby incorporated by reference into the present disclosure).

5

10 Streptococcus pneumoniae is a capsulated, grampositive bacterium that is present as normal flora in the human upper respiratory tract. It is a frequent and major cause of pneumonia, meningitis, bacteremia and noninvasive bacterial otitis media. Disease incidence is highest in infants and the elderly. 15 In the United States alone, the overall incidence of systemic pneumococcal infections is estimated to be 50/100,000 in the geriatric population and 160/100,000 in children less than 2 years old (refs. 2, 3). Case fatalities can be as high as 40,000/year, especially in the geriatric 20 population. Many serotypes of S. pneumoniae developing resistance to conventional antibiotic treatments. The incidence of otitis media in children approaches 90% by the age of 5 and the peak incidence occurs at 6 to 15 months of age. It was estimated that 25 over 1.2 million cases of otitis media occur annually. Recent studies on the epidemiology of pneumococcal disease (ref. 4) have shown that five serotypes (6B, 14, 19F, 23F and 18C) of the 85 known serotypes account for 70 to 80% of pneumococcal disease in infants and 30 that in the United States, types 9V and 4 are ranked sixth and seventh. In Europe and developing countries, types 1 and 5 are more prevalent than types 4 and 9V. Thus, a pneumococcal conjugate vaccine for the United 35 States should contain at least seven serotypes (4, 6B,

3

9V, 14, 18C, 19F, and 23F) to achieve a 75 to 85% coverage. Conjugate vaccine formulations for Europe and elsewhere should include serotypes 1, 5, 6B, 14, 18C, 19F and 23F. A broad-spectrum multivalent pneumococcal conjugate vaccine should then contain CPs from nine serotypes 1, 4, 5, 6B, 9V, 14, 18C, 19F, and 23F.

5

10

15

20

25

30

35

N. meningitidis is a gram-negative bacterium that has been serologically classified into groups A, B, C, 29e, W135, X, Y and Z. Additional groups (H, I, and K) were isolated in China and group L was isolated in The grouping system is based on the capsular polysaccharides of the organism. In contrast to the of the vaccine, the composition pneumococcal meningococcal polysaccharide vaccine has been greatly simplified by the fact that fewer polysaccharides are In fact groups A, B, and C are responsible required. approximately 90% of cases of meningococcal meningitis. Prevention of group A and C meningococcal meningitis can be achieved by vaccination with a bivalent polysaccharide vaccine. This commercial vaccine has been used successfully in adults during the last decade to prevent major meningitis epidemics in many parts of the world. However, there is a need to improve this vaccine because a significant proportion of cases of meningococcal meningitis are serotypes other than A and C. Group B N. meningitidis is of particular epidemiologic importance, but groups Y and W135 are also significant. Although a tetravalent groups Α, C, W135, vaccine comprising polysaccharides is the current meningococcal meningitis vaccine, it is not very effective in young infants, since maturation of the immune response capsular polysaccharides in infants occurs around the age of 2 years.

The Group B meningococcal polysaccharide is poorly immunogenic in man. Two major reasons have been proposed to account for this phenomenon. One is that the α -(2 \rightarrow 8)-linked sialic acid homopolymer is rapidly depolymerized in human tissue by neuraminidase. The other one is that Group B capsular polysaccharide is a polymer of N-acetylneuraminic acid (α 2->8 NeuNAc), and that the α 2->8 NeuNAc moiety is found as a monomer and dimer on several glycoproteins and gangliosides in adults and as a polymer of at least eight repeating units in rat fetal and newborn tissues. Thus, this structure is recognized as a "self" antigen by the human immune system. As a result, the production of antibody is suppressed or because of this molecular mimicry, a vaccine based on native Group B CPs might induce auto-antibodies directed against the α 2-8 $\,$ NeuNAc moiety, and thus cause autoimmune diseases.

5

10

15

20

25

30

Since the Group B meningococcal CPs immunogenic in humans, approaches have been pursued to increase its immunogenicity. One approach uses non covalent complexes of Group B CPs and outer membrane protein (OMPs). Such complexes are formed hydrophobic interaction between the hydrophobic regions of the OMPs and the diacyl glycerol group at the reducing end of the CPs. Human volunteers were given two doses of the complex at 0 and 5 weeks. individuals responded with an increase in antibodies to group B CPs. However, the second dose resulted in little or no increase in antibody titres which subsequently declined over a period of 14 weeks. antibodies with group B polysaccharide specificity were limited to the IgM class and directed determinants present only on high molecular weight polysaccharides.

PCT/CA99/00157 WO 99/42130

5

10

20

5

To improve the immunogenicity of Group B CPs, Jennings (ref. 5) prepared a Group B meningococcaltoxoid conjugate (GBMP-TT) by covalently tetanus linking the CPs to tetanus toxoid (TT) through its terminal non-reducing sialic acid using periodate This procedure, however, did not result oxidized CPs. in any significant enhancement in CPs immunogenicity. The antibody response elicited in animals was found to be primarily directed against the linkage point between the CPs and the protein (GBMP-TT). Further improvement of the immunogenicity of group B CPs involved its chemical modification. Jennings (Ref. 6) reported that the N-acetyl groups of group B CPs could be selectively removed by the action of a strong base at elevated temperature. The acetyl groups were then replaced with 15 N-propionyl groups by propionic anhydride treatment to produce N-propionylneuraminic acid (α (2->8) NeuPro) The N-propionylated CPs was first periodate polymers. oxidized with sodium periodate, and then coupled to TT in the presence of sodium cyanoborohydride to yield the chemically modified GBMP-TT conjugate. Mice immunized with this conjugate formulated in Freund's complete adjuvant (FCA), generated high levels of cross-reactive IgG antibody against native group B CPs. Murine antisera were found to be bactericidal for all group B 25 However, further studies revealed strains. existence of two populations of antibodies One population reacted with different specificity. purified group B CPs whereas the other one did not. 30 Antibodies that did not react with native group B CPs appeared to be responsible for bactericidal activity. These antibodies may recognize an epitope expressed by cell-associated CPs that is not present on Alternative conjugates comprising the capsular 35 polysaccharide of N. meningitidis group CPs

conjugated to a carrier protein as immunogenic compositions, including vaccines, and their use as and for the generation of diagnostic reagents, had been described by Kandil et al. (US Patent No. 5,780,606, assigned to the Assignee hereof and the disclosure of which is incorporated herein by reference, EP 0747063). In particular, the capsular polysaccharides of N. meningitidis contain multiple sialic derivatives that can be modified and used to attach carrier molecules.

5

10

15

20

25

30

35

The dramatic reduction in Haemophilus influenzae type b disease observed in countries that have licensed and used Hib CPs-protein conjugate vaccines, demonstrated that CPs-protein conjugates can prevent systemic bacterial diseases. It is reasonable to expect meningococcal and pneumococcal CPs-protein conjugates will also be efficacious. The possibility of preventing noninvasive diseases, such as otitis media, by systemic immunization with conjugate vaccines needs to be explored. Whether high titers of serotypespecific antibodies are sufficient to prevent either nasopharyngeal colonization and/or otitis media remains an open question. The development of an otitis media vaccine requires a multiple pneumococcal CPs-protein conjugates to elicit high anti-CPs antibody titers early in life.

The development of both multivalent pneumococcal and meningococcal CPs-protein conjugate vaccines to prevent systemic and noninvasive diseases presents many challenges to carbohydrate chemists, immunologists, clinicians and vaccine manufacturers. The amount of carbohydrate, the choice of carrier, the method of vaccine delivery, and the use of immuno stimulants or adjuvants are known to influence on the host immune responses. Immunogenic glycoconjugates can be formed between multifunctionalized CPs and proteins if the

7

conditions are controlled very carefully. Most of the conjugates are today synthesized by coupling either CPs or oligosaccharides activated through the reducing end to a protein or peptide with or without a linker group.

5

10

15

20

25

30

35

A general glycoconjugation method involves random activation of the capsular polysaccharide or fragments of the polysaccharide by periodate treatment. reaction leads to a random oxidative cleavage of vicinal hydroxyl groups of the carbohydrates with the formation of reactive aldehyde groups. Coupling to a protein carrier is by direct amination to the lysyl groups. A spacer group, such as aminocaproic acid, can be reacted with the aldehydes by reductive amination and then coupled to the protein lysyl groups by water carbodiimide condensation (ref. 7). soluble oligosaccharide-peptide conjugate reported by Paradiso (ref. 8) was prepared similarly except that a peptide presenting a T-cell epitope of CRM197 was used instead of the native protein. Other conjugation approaches that have been disclosed by Gordon in US Patent No. 4,496,538, assigned to Connaught Laboratories Inc., and by Schneerson et al. (ref. 9), involve directly derivatizing the CPs with adipic acid dihydrazide (ADH) following CNBr activation, and then conjugating the derivatized CPs directly to a carrier protein (D or T) carbodiimide condensation. Marburg demonstrated that protein-dimeric CPs (EP#534764A1) conjugate immunogens may be produced by coupling the first CPs to a protein carrier and then linking the second CPs to the first CPs via a bifunctional crosslinker.

Methods for inducing immunity against disease are constantly improving. Research has focused on the structure-function relationship of carbohydrate protein conjugates with the hope of discovering the mechanisms

of B- and T-cell interactions with conjugates that could lead to vaccines with improved immunogenicity and to the development of adjuvants and delivery systems. Chong et al. (US Patent No. 5,679,352, assigned to the assignee hereof and the disclosure of which incorporated herein by reference) showed that several factors affect the immunogenicity of carbohydrates. The minimum requirements for the synthesis immunogenic glycoprotein conjugate are that the B-cell epitope(s) of the CPs and the T-cell epitope(s) of the carrier should be functional after covalent linkage. magnitude of the anti-CPs antibody response markedly depends on the spatial orientation of CPs relative to the T-cell epitopes. Anti-CPs antibody responses are enhanced when multiple antigenic peptides (MAPs) are used as carriers.

5

10

15

20

25

30

35

A single-dose polyvalent vaccine is listed as the first priority in the WHO vaccine development programme. Α single-dose polyvalent CPs-protein conjugate vaccine (15 different CPs-protein conjugates: 1 Hib conjugate, five N. meningitidis conjugates and nine pneumoniae conjugates) S: against bacterial meningitis. presents а potential risk of hyperimmunization against classical carrier proteins, such as diptheria and tetanus toxoids. It is documented that non-epitope-specific suppression of the antibody response to Hib conjugate vaccines resulted from preimmunization with carrier proteins (ref. 11). Thus, appropriate approaches are required to solve this vaccine formulation problem. Some of the problems can be circumvented by incorporating conserved, crossprotective, non-capsular antigens from Hib. meningitidis and S. pneumoniae. Although several outer membrane proteins have been proposed as vaccine candidates, none of them has been tested in clinical

10

15

trials. A multiple CPs-carrier conjugate delivery system thus represents a novel generic approach and in glycoconjugate vaccine important will be the present invention Therefore, development. directed towards novel glyconjugation technologies which can be used to prepare vaccines containing multiple oligosaccharides from different bacteria covalently linked to the same carrier protein or polypeptide.

SUMMARY OF THE INVENTION

In accordance with one aspect of the present invention, there is provided a multivalent immunogenic molecule, comprising a carrier molecule containing at least one functional T-cell epitope, and multiple different carbohydrate fragments each linked to the carrier molecule and each containing at least one functional B-cell epitope, wherein said carrier molecule imparts enhanced immunogenicity to said multiple carbohydrate fragments.

20 In one embodiment of the invention, the carbohydrate · fragments are bacterial capsular oligosaccharide fragments. Such capsular polysaccharide oligosaccharide fragments mav be fragments Streptococcus pneumoniae, including fragments derived from at least two capsular polysaccharides of 25 pneumoniae serotypes 1, 4, 5, 6B, 9V, 14, 18C, 19F and 23F. The carrier molecule may be a T-cell epitopeor protein fragment S. containing protein pneumoniae.

The capsular polysaccharide fragments may be oligosaccharide fragments of *Neisseria meningitidis*, including fragments derived from at least two capsular polysaccharides of *N. meningitidis* Groups A, B, C, W-135 and Y. The carrier molecule may be a T-cell

10

epitope-containing protein or protein fragment of N. meningitidis.

The capsular polysaccharides employed in this aspect of the invention may be oligosaccharide fragments sized from about 1 to about 5 kDa. Such fragments may be provided by acid hydrolysis of the respective capsular polysaccharide. The oligosaccharide fragments may be chemically modified for coupling to the carrier molecule.

The carrier molecule may be an oligopeptide containing at least one functional T-cell epitope or a carrier protein, such as tetanus toxoid.

5

15

20

25

In another embodiment of the invention, the carbohydrate fragments are fragments of carbohydrate-based tumor antigens. Such carbohydrate-based tumor antigens may be Globo H, Le^{γ} or STn.

In accordance with another aspect of the invention, there is provided a method of forming a multivalent immunogenic molecule, comprising treating at least two different carbohydrate molecules to obtain carbohydrate fragments thereof, and conjugating each of the carbohydrate fragments to a carrier molecule.

In one embodiment, the carbohydrate molecule is a capsular polysaccharide of a bacteria and oligosaccharide fragments of the capsular polysaccharide are selected sized from 2 to 5 kDa. Such oligosaccharide fragments generally are derived from at least two different serotypes of the same bacteria, including S. pneumoniae and N. meningitidis.

In this embodiment of the present invention, such multivalent immunogenic molecules may be provided by glycoconjugation of three or more chemically-activated capsular polysaccharides or their derivations simultaneously to a single carrier molecule, providing

11

a random conjugation. This procedure is illustrated in Figure 1.

In this embodiment of the invention, rational design of lysine-branched peptide systems may be employed for site-directed glycoconjugation. Using different side-chain protecting groups for lysine and cysteine residues during peptide synthesis, activated oligosaccharides may be selectively and sequentially linked to the same carrier molecule through such residues. This procedure is illustrated in Figure 2.

5

10

15.

20

25

30

35

method of site-directed conjugation may comprise first forming a multiple antigen peptide as the carrier molecule and anchored to a polymeric anchor wherein at least two carrier peptide segments have different terminal protecting groups. One of the protecting groups then is selectively removed and a first one of the oligosaccharide fragments is coupled to the unprotected carrier peptide segment. Another of the protecting groups is selectively removed and a second one of the oligosaccharide fragments to the unprotected carrier peptide segment. This procedure may be repeated for as many carrier peptides and oligosaccharide fragments as is provided and in respect of which coupling is desired. The resulting molecule is cleaved from the polymeric anchor.

In accordance with a further aspect of the invention, there is provided an immunogenic composition for protection against meningitis, comprising (1) a multiple pneumococcal glycoconjugate according to claim 3, (2) a multiple meningococcal glycoconjugate according to claim 6, and (3) an immunogenic synthetic PRP-peptide conjugate.

The multiple pneumococcal glycoconjugate may be derived from at least two capsular polysaccharides of S. pneumoniae serotypes 1, 4, 5, 6B, 9V, 14, 18C, 19F

10

15

20

25

30

and 23F. The multiple meningococcal glycoconjugate may be derived from at least two capsular polysaccharides of *N. meningitidis* Groups A, B, C, W-135 and Y.

Such universal meningitis immunogenic composition may be combined with at least one other antigen, such as DTP-polio, to provide a polyvalent vaccine.

The present invention further includes a method of generating an immune response in а host administering to the host an immunoeffective amount of an immunogenic composition of the present invention. The invention extends to the immunogenic composition claimed herein when used as a medicament against meningitidis as well as the use of the individual component of the immunogenic composition in manufacture of a medicament against meningitidis.

The present invention further includes diagnostic procedures and kits using the multivalent immunogenic molecules provided herein. Accordingly, in an additional aspect of the invention, there is provided a method of determining the presence of antibodies specifically reactive with a multivalent immunogenic molecule as provided herein, which comprises:

- (a) contacting the sample with said multivalent immunogenic molecule to produce complexes comprising the molecule and any said antibodies present in the sample specifically reactive therewith; and
 - (b) determining production of the complexes.

In a further aspect of the invention, there is provided A diagnostic kit for determining the presence of a multivalent immunogenic molecule as provided herein, comprising:

- (a) the multivalent immunogenic molecule;
- (b) means for contacting the multivalent moleculewith the sample to produce complexes comprising

PCT/CA99/00157 WO 99/42130

5

10

15

. 20

25

13

the multivalent molecule and any said antibodies present in the sample; and

for determining production means complexes.

therefore, invention, The present glycopeptide conjugates to be used in a pneumococcal diagnostic immunoassay procedure or kit to detect the anti-pneumococcal protein and presence of antibodies, for example, anti-CPs 1, 4, 5, 6B, 9V, 14, 18C, 19F and 23F and anti-pneumococcal surface protein A antibodies, or anti-meningococcal protein and CPs antibodies, for example, anti-CPs A, B, C, Y and W-135 and anti-meningococcal OMP class 1 antibodies.

In an additional aspect of the present invention, there is provided a method of determining the presence multivalent immunogenic conjugate molecule in a sample, comprising the steps of:

- immunizing a subject with an immunogenic conjugate molecule as provided herein to produce antibodies specific for the carbohydrate fragments;
- isolating the carbohydrate fragment specific (b) antibodies;
- (c) contacting the sample with the antibodies to produce complexes comprising any said multivalent immunogenic molecules present in the sample and said isolated carbohydrate fragment specific antibodies; and
- (d) determining production of the complexes.

A further aspect of the present invention provides 30 a diagnostic kit for determining the presence of a multivalent immunogenic molecule as provided herein in a sample, comprising:

- (a) the multivalent immunogenic molecule;
- 35 (b) means for contacting the multivalent molecule with the sample to produce complexes comprising

15

20

25

30

the multivalent molecule and any said antibodies present in the sample; and

- (c) means for determining production of the complexes.
- A further aspect of the present invention provides a diagnostic kit for determining the presence of a multivalent immunogenic molecule in a sample, comprising:
 - (a) antibodies specific for carbohydrate fragments of the multivalent immunogenic molecule;
 - (b) means for contacting the antibodies with the sample to produce complexes comprising multivalent immunogenic molecules and the antibodies; and
 - (c) means for determining the production of the complex.

The present invention also extends to the use of a mixture of anti-PRP, anti-pneumococcal CPs and anti-meningococcal CPs antibodies as a component in a diagnostic immunoassay kit to detect the presence of Hib, S. pneumoniae and N. meningitidis in biological specimens, such as serum samples.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be further understood from the following descriptions and specific Examples with reference to the accompanying drawings in which:

Figure 1 shows a schematic diagram of several pneumococcal CPs randomly conjugated to a carrier protein, such as TT, and the procedure employed.

Figure 2 shows a schematic diagram of the sequential cross-linking of chemically activated pneumococcal oligosaccharides to a lysine-branched peptide containing several functional T-cell epitopes from pneumococcal proteins.

Figure 3 shows the elution profile obtained during purification of acid-hydrolysed oligosaccharides of S.

PCT/CA99/00157

WO 99/42130

15

pneumonaie 14 using gel permeation chromatography on a Sephadex®-G100 column.

Figure 4 shows the elution profile obtained during purification of the acid-hydrolysed oligosaccharides of N. meningitidis Group B using a Sephadex®-G100 gel permeation chromatography.

5

15

30

Figure 5 shows an elution profile obtained during of multivalent s. pneumoniae purification oligosaccharides-TT conjugates.

Figure 6 shows rabbit antibody responses 10 pneumoniae oligosaccharides-TT multivalent s. conjugates formulated in FCA.

shows rabbit antibody responses multivalent s. pneumoniae oligosaccharides-TT conjugates formulated in alum.

Figure shows mouse antibody responses multivalent s. pneumoniae oligosaccharides-TT conjugates formulated in FCA.

Figure 9 shows rabbit antibody responses oligosaccharides-TT 20 multivalent N. meningitidis conjugates formulated in FCA.

Figure 10 shows rabbit antibody responses to multivalent S. glycopeptide conjugates pneumoniae formulated in FCA.

25 Figure 11 shows rabbit antibody responses to muĺtivalent S. pneumoniae oligosaccharides-MAP conjugates formulated in FCA.

GENERAL DESCRIPTION OF INVENTION

discussed above, the present invention related to novel glycoconjugation technologies that can be used covalently to link either multiple oligosaccharides from bacteria, such as H. influenzae, N. meningitidis, S. pneumoniae, E. coli, and Group B Streptococcus, or carbohydrate-based tumor antigens, to

16

the same carrier protein or polypeptide(s) and to the multivalent molecules produced thereby.

The development of strong and long-lasting humoral immunity requires the recognition of foreign antigens by at least two separate subsets of lymphocytes. B-lymphocytes (B-cells, lymphocytes derived from bone marrows), are the precursors of antibody-forming cells, and T-lymphocytes (T-cells, lymphocytes derived from thymus) modulate the function of B-cells.

5

20

25

30

35

Most CPs are T-cell independent antigens and are capable of directly stimulating B-cells to produce antibodies. In general, CPs induce B-cells to terminally differentiate into antibody-secreting cells (plasma cells), but antibody responses are short-lived and limited by the number of responsive B-cells.

Proteins and peptides are T-cell dependent antigens, and contain epitope(s) that can form peptide:MHC class II complexes on a B-cell and trigger armed helper T-cells to synthesize both cell-bound and secreted cytokines (effector molecules) that synergize in B-cell activation and clonal expansion.

CPs can be converted into T-dependent antigens by coupling to a carrier protein or T-cell epitope(s) (ref. 9; US Patent No. 4,496,538). By repeated immunization with CPs-protein conjugates, the B-cell population in the vaccinees enters not only antibody production, but also proliferation and maturation. As a result, there are more B-cell making anti-CPs antibodies and higher antibody titers as booster responses.

Rationale for using oligosaccharides as antigens

The minimum requirements for producing immunogenic glycoprotein conjugates are that the B-cell epitope(s) of the CPs and the T-cell epitope(s) of the carrier are functional after covalent attachment. To

17

randomly conjugate two or more CPs to the same carrier epitope(s), the size of T-cell carbohydrate is reduced to about 2 kDa to about 5 kDa to prevent steric hindrance effects. At least two different approaches can used to covalently link multiple oligosaccharides to a carrier protein. The first approach is to activate or derivatize oligosaccharides using the same chemistry, their conjugation to the carrier can be achieved simultaneously (Figure 1). The second approach uses for lysine-branched peptide systems site-directed glycoconjugation. Using different side-chain protecting groups for lysine and cysteine residues during peptide synthesis, the activated oligosaccharides selectively and sequentially coupled to the same carrier protein via these residues (Figure 2).

Preparation of oligosaccharides

5

10

15.

20

25

30

As described in detail in the Examples below, acid hydrolysis of various serotypes of Streptococcus pneumoniae capsular polysaccharides (>50 kDa) may be carried out to form oligosaccharides with a molecular weights ranging from about 2 to about 5 kDa. This process may comprise three steps: (1) acid hydrolysis of CPs in sealed vial under argon or other convenient inert gas, (2) lyophilization and (3) purification of oligosaccharides by gel-filtration chromatography. The protocol for acid hydrolysis of CPs from S. pneumoniae serotypes 1, 4, 5, 9V and 14 has been optimized.

Typically, CPs (2 mg/mL) are incubated in 0.5 M trifluoroacetic acid (TFA) at about 50° to about 90°C for about 5 to about 10 hours. Since CPs from serotypes 6B and 19F contain labile phosphodiester bonds, their hydrolysis is performed under mild acid conditions (about 10 to about 50 mM acetic acid) at about 50° to

about 100°C for about 30 to about 48 hours. The CPs of serotype 23F can be partially hydrolyzed by either incubating in about 0.1 to about 0.5 M trifloroacetic acid (TFA) at about 70°C for about 2 to about 4 hours or in about 1 to about 50 mM acetic acid at about 80° to about 110°C for about 40 to about 60 hours.

5

At the end of each hydrolysis, the reaction solutions are diluted 5-fold with water, then lyophilized. The purification the crude oligosaccharides can be accomplished using Sephadex ${}^\circledR$ 10 G-100 gel filtration chromatography (about 2 \times about 210 cm column) or other convenient gel filtration column. Typical chromatographic results are illustrated in Figure 3. The fractions are assayed for the presence of carbohydrate using the resorcinol/sulfuric acid 15 assay (Ref. 12). The elution profile is plotted, and the chromatographically purified oligosaccharides with a mean mass of about 2 to about 5 kDa are pooled. Molecular weight markers used to calibrate the column 20 are: dextran standards (39,100 and 8,800 Da), synthetic PRP hexamer (2,340 Da), sucrose (342 Da) and glucose (180 Da). Sized oligosaccharides of about 2 to about 5kDa contain about 4 to about 8 repeating units in general and are expected to contain at least one B-cell epitope. The yields of such oligosaccharides are about 25 70 to about 90%. These chromatographically purifed oligosaccharides are then used to prepare glycoconjugates comprised of multiple-oligosaccharides covalently linked to a carrier protein or a multiple 30antigen peptide system (MAP) containing T-cell epitopes from S. pneumococcal proteins.

As described in detail in the Examples below, acid hydrolysis of various serotypes of N. meningitidis capsular polysaccharides (> 10 kDa) may be carried out

10

15

20

25

30

to form oligosaccharides with a mean molecular weight of about 2 to about 5 kDa. In common with the acid hydrolysis of pneumococcal CPs, the process comprises acid hydrolysis, lyophilization and purification using gel-filtration chromatography.

The conditions for acid hydrolysis of CPs from N. meningitidis Groups C, W-135 and Y have been optimized. Typically, CPs (10 mg/mL) are mixed with about 20 to about 80 mM sodium acetate, pH about 4.5 to about 5.5, in sealed vials under argon or other suitable inert gas at about 65° to about 100°C for about 8 to about 12 hours. Since Group B CPs can undergo intramolecular esterification under acidic conditions, the conditions used for CPs Group C hydrolysis are employed, but the incubation time is limited to about 1 hr and the pH of the reaction is immediately adjusted to pH 7 with about 0.1 M NaOH to reverse the esterification process. Group A CPs contain labile phosphodiester bonds, thus they are hydrolyzed under mild acidic condition (such as about 10 to about 20 mM acetic acid) and incubated at about 50° to about 100°C for about 30 to about 48 hours. At the end of each hydrolysis, the reaction solutions are diluted 5-fold with water and then lyophilized. The crude oligosaccharides are fractioned by Sephadex® G-100 gel filtration chromatography (about 2 x about 210 cm column, see above). Typical chromatographic results are illustrated in Figure 4.

The fractions are assayed for the presence of sialic acid using the resorcinol/sulfuric acid assay (ref. 12). The elution profile is plotted and chromatographically purified oligosaccharides of about 2 to about 5 kDa are pooled. Sized oligosaccharides of about 2 to about 5 kDa typically contain about 6 to about 15 repeating units and are expected to contain at

15

20

25

30

35

least one B-cell epitope. The yields of such oligosaccharides are about 40 to about 80%. These chromatographically-purifed oligosaccharides are to prepare glycoconjugates comprised of oligosaccharides covalently linked to a carrier protein or a multiple antigen peptide system (MAP) containing T-cell epitopes from meningococcal proteins.

Similar procedure may be used for capsular polysaccharides of other bacteria.

10 Carrier selection.

Although several pneumococcal and meningococcal membrane proteins, such as pneumolysin (ref. pneumococcal surface protein A (PspA) (ref. 14), S. pneumoniae 37 kDa protein (SP37) (ref. 15), meningococcal transferrin-binding protein 2 (ref. 16), meningococcal pilin (ref. 17), and class 1 proteins (ref. 18), have been identified as potential protective antigens, none of them so far has been tested in clinical trials. These proteins contain potential T-cell epitopes which have been identified using conventional algorithms. Therefore, a panel of potential peptide carriers may be selected conjugation with the meningococcal and pneumococcal oligosaccharides to form the multivalent immunogenic molecules herein.

In the present invention, peptides (Table I; SEQ ID NOS: 1 to 8) to be coupled to oligosaccharides were chosen on the basis of either their potential T-helper cell stimulatory properties or their potential protective ability or the conservation of sequences that would be important to recall T-cell memory. NMTBP2 (SEQ ID NO: 1) is a peptide fragment of N. meningitidis Tbp2 protein and had previously been identified to contain both functional T-cell epitope(s) strain-specific protective B-cell epitope recognized by

10

15

25

30

a Tbp2-specific MAb (US Patent No. 5,708,149, assigned to the assignee hereof and the disclosure of which is incorporated herein be reference; WO95/13370). Peptides NMC-1 and -2 (SEQ ID NOS: 2 and 3) were identified to contain the immunodominant human T-cell epitopes of N. meningitidis class 1 protein (ref. 19). NMPi-1 (SEO ID NO: 4) was derived from N. meningitidis pilin protein and shown to contain sequences involved in adhesion (ref. 17). Peptides PN(123-140; SEQ ID NO: PN(263-281; SEQ ID NO: 6) derived from S. pneumoniae both pneumolysin, contain with funtional T-cell epitopes (ref. 20). SP37 (SEQ ID NO: 7) is the Nterminal fragment of from S. pneumoniae 37 kDa protein shown to be highly immunogenic in immunogenicity studies. PSP-AA (SEQ ID NO: 8) is the Nterminal fragment of from S. pneumoniae PspA protein and shown to be capable of eliciting protective immune responses in mice against live pneumococcal bacterial challenge (ref. 14).

Immunogenicity of multi-oligosaccharide-carrier conjugates in animal models.

A. Random conjugation approach (Figure 1)

In the present invention, acids have been used to hydrolyze bacterial capsular polysaccharides to lowmolecular-weight oligosaccharide fragments. The oligosaccharides can be purified and reacted with either ammonia or diaminoethane to generate a free terminal amino group at their reducing ends. The amino then are reacted with an excess disuccinimidyl ester of adipic acid to introduce an active succinimidyl ester group to the oligosaccharides. The activated oligosaccharides then reacted with the amino groups of carrier proteins peptides to form covalent amide bonds. The

glycoconjugates comprise at least two oligosaccharides coupled per protein/peptide molecule.

5

10

15

To avoid anti-linker antibody responses, oligosaccharides be directly coupled can carriers using the reductive amination procedure described by Jennings and Lugowsky (ref. 6). Advantages of this latter procedure are that linker molecules are unnecessary, thus eliminating the formation of potential neoantigen groups, and that a very stable secondary amine, or in some cases a tertiary amine linkage, is formed between the oligosaccharide and the protein. In addition, treatment of most meningococcal pneumococcal capsular polysaccharides with periodate does not cause a reduction in molecular weight of the polysaccharide or fragment oxidation takes place either on branch side chains or on cyclic sugar residues of the main chain. case, the main chain is not cleaved and the molecular size remains intact.

20 To evaluate the potential use of the multivalent molecules of the present invention, oligosaccharides from S. pneumoniae serotypes 6B, 14, 19F and 23F were randomly and covalently linked to TT, as shown in Figure 1. The resulting multiantigenic glycoconjugate 25 (MAG) was purified by the gel-filtration chromatography (Fig. 5). Protein and carbohydrate analyses revealed that the carbohydrate to protein molar ratio was 7.1: 1. Four individual conjugates (6-TT, 14-TT, 19F-TT and 23F-TT) were prepared from fragments of the four 30 respective serotypes with the same method comparative studies. The multiple antigenic glycoconjugate (MAG) was formulated either Freund's complete adjuvant (FCA) or alum. Results from rabbit and mouse (BALB/c) immunogenicity studies 35 indicated that:

a. Strong antibody responses to all four serotype CPs were observed in rabbits when FCA was used as adjuvant (Fig. 6). Titers were comparable to those obtained with individual conjugates.

23

5 b. When alum was used as adjuvant in rabbits, only anti-14, -19F and -23F antibody responses were observed and no anti- 6B was found (Fig. 7).

10

15.

20

25

30

35

c. Only anti-14 and 19F antibodies were elicited in BALB/c mice (Fig. 8).

biological activity of The anti-pneumococcal antibodies can be assayed by two different methods: in vitro opsonophagocytic assays and in vivo animal protection studies using either active or passive immunization. Previous studies (refs. 21 and 22) have shown that anti-S. pneumococcal CPs antibodies were biologically active and protective. There was a direct correlation between the total Iq antibody ELISA titers and opsonization titers. Therefore, the pneumococcal which can elicit anti-S. MAG candidate vaccine pneumoniae CPs antibody responses in animal models, will be useful for human immunization.

An N. meningitidis glycoconjugate containing group C, W and Y oligosaccharides was prepared as described above following the procedure shown schematically in Figure 1. The multiple antigenic glycoconjugate was purified by gel-filtration chromatography. The molar ratio of carbohydrate to protein was found to be 6.6: Rabbit immunogenicity studies revealed meningococcal MAG could elicit antibody responses against all three polysaccharides (groups C, W and Y) in carbohydrate-specific ELISAs (Fig. 9), and that the antisera had no reactivity against S. pneumoniae 6B PC negative control. The reactivities of used as antibodies against groups W and Y were very similar (geometric mean titer (GMT) about 3000). Group C was

less immunogenic in this multivalent glycoconjugate, with a GMT about 500.

B. Multiple antigenic peptide (MAP) approach (Figure 2).

In this invention, we provide methods to design and synthesize novel lysine-branching peptides containing different T-helper cell epitopes (multiple antigenic peptide, MAP) to which several different oligosaccharides can be selectively and sequentially coupled. To test this concept, resin-bound MAP was synthesized and characterized as shown below.

A Fmoc-Lys(t-Boc)-TGA resin (500 mg, purchased from BACHEM) with a substitution level of 180 µmol/g was used to prepare the MAP. A standard Fmoc chemistry coupling protocol was used (4-fold excess of Fmoc-

10

15

20

25.

30

amino acids, O-benzotriazoyl-N, N, N', N'protected tetramethyluronium hexafluorophosphate (HBTU) and Nhydroxybenzotriazole(HOBT)/diisopropylethylamine (DIEA) for 1hr (Example 6)). In order to facilitate the conjugation of oligosaccharides, the substitution level of MAP was reduced to about 50 µmol/g when the first Fmoc-Gly residue was coupled. When the synthesis was completed, a small portion of MAP-resin was cleaved with 95% trifluroacetic acid (TFA) in the presence of ethane dithiol (EDT) and thioanisol. Amino acid analysis revealed that the cleaved MAP had the correct amino acid compositions.

MAP (150 mg) was treated with dithioanisol (DTT) in dimethyl formamide (DMF) to remove the trityl group from cysteine residues to conjugate oligosaccharides derivatized with SH-directed functional groups, such as m-maleimidobenzoyl-N-hydroxysuccinimide (MBS). After reduction, the resulting MAP resins were then assayed for amino groups and sulfhydryl groups. From Ellam's assay, the SH substitution level was found to be 64 μ mol per g of MAP resin, and the degree of substitution of amino groups was found to be 71 μ mol/g from the ninhydrin assay. These results indicated that trityl and Fmoc protecting groups could be quantitatively removed.

(PRP)₆-MBS which was prepared from a synthetic hexamer $3-\beta-D-ribose-(1-1)-D-ribitol-5-phosphate$ derivatized with MBS (ref. 23), was dissolved in DMF/PBS solution and then coupled to the deprotected and reduced MAP under degassed conditions. After coupling, the MAP-(PRP) was subjected to the Ellman's test for sulfhydryl group determination. level of SH substitution was reduced to 6.85 µmol per g of resin. The coupling of PRP was independently

26

confirmed by the ribose assay and was found to be 18 μg of $(PRP)_6/mg$ resin.

5

10

15

25

The resulting MAP-(PRP)6 was mixed with periodate oxidized S. pneumoniae serotype 19F (1 methanol/phosphate buffer (pH 7.8) in the presence of NaCNBH3 at 38°C for 6 days. After conjugation, the amino group substitution determined by the ninhydrin assay was found to be 16 μ mol per g of resin. sugar content was again found to be 16.1 mg/g resin. A small portion of 19F-(PRP)6 -MAP glycoconjugate-resin was cleaved with 95% TFA in the presence of ethane dithiol (EDT) and thioanisol. After the work-up, the MAP-glycoconjugate was found to have the correct amino acid composition and carbohydrate content. These results strongly suggest that different oligosaccharides can be selectively and sequentially conjugated to MAP resin.

Before synthesizing а MAP resin containing different T-cell epitopes, periodate-oxidized pneumococcal oligosaccharides from serotypes 6B, 14 and 20 23F were tested for coupling efficiently to resin-bound linear peptides corresponding either to PN(123-140)(SEQ ID NO: 5) or PN(263-281)(SEQ ID NO: 6), which are Tcell epitopes derived from S. pneumoniae membrane protein pneumolysin. Linear glycopeptides 6B-PN(123-140), 14-PN(263-281) and 23F-PN(123-140) were prepared using reductive amination. The coupling efficiency of oligosaccharide to resin-bound peptide was found to be to judged by the free amino 30% as group 30 determination using the ninhydrin assay. The glycopeptides were cleaved from the resin using 95% TFA, then semi-purified by RP-HPLC. Rabbit immunogenicity studies were performed "equimolar" combination of these linear glycopeptides

27

formulated in FCA/IFA. The results indicated that the glycopeptide conjugates were immunogenic and elicited anti-6B, anti-14 and anti-23F polysaccharide antibody responses (Fig. 10). In addition, rabbit antisera reacted with the peptides as judged by peptide-specific ELISAs (Table 2).

5

10

15

20

25

30

A MAP resin containing three T-cell epitopes different S. pneumococcal membrane derived from proteins was synthesized using a Fmoc-Gly-Lys-TGA resin with a substitution level of $50 \mu mol/g$, as shown in the Figure 2. The whole synthesis was carried out manually using the optimized Fmoc chemistry coupling protocol described above. When the synthesis completed, a small portion of MAP-resin was cleaved with 95% TFA in the presence of EDT and thioanisol, the cleaved MAP was found to have the correct amino acid compositions by amino acid analysis. The MAP resin was reduced by DTT to remove the t-butylthio protecting from the cysteine residues. After excess washing, the MAP resin was resuspended in a DMF/PBS 4-fold mixed with а solution, then sulfosuccinimidyl (4-iodoacetyl amino benzoate (sulfo-SIAB) activated oligosaccharides from S. pneumoniae serotype 14 (Os14). After overnight mixing at room temperature, the MAP resin was collected by filtration and washed with PBS, DMF and then methanol.

The MAP-Os14 resin was subjected to Ellman's test and sulfhydryl group determination. The level of SH substitution was found to be half of the starting value. Recoupling did not increase the amount of Os14 conjugated to the MAP resin. The presence of N-acetylgalactosamine (GlcNAc) in the glyco-MAP resin, a carbohydrate found in Os14, was independently confirmed by carbohydrate analysis.

MAP-Os14 was first treated with 1% TFA to remove Mtt (a lysine-protecting group) from Mtt-lysine residues, then neutralized with a mild base, 1% diisopropylethylamine (DIEA)/DMF. The presence of free amino groups was assayed by the ninhydrine test which indicated that over 90% of Mtt groups had been removed.

5

10

15

The MAP-Os14 resin was resuspended in PBS, and then mixed with four equivalents of periodate-oxidized S. pneumoniae serotype 6B oligosaccharides (Os6B) in DMF/phosphate buffer (pH 7.8) in the presence NaCNBH3 at 38°C for 6 days. After conjugation, the substitution of amino groups was determined by the ninhydrin assay was found to be 80 to 90% of the original value. Again a double and triple coupling did not improve the conjugation of Os6B to the MAP-Os14 Although the coupling efficiency was poor resin. (about 15%), the presence of ribitol in the MAP conjugate, a carbohydrate found in Os6B, was confirmed by carbohydrate analysis.

The MAP-Os14-Os6B conjugate was treated with 20% 20 piperidine in DMF to remove the Fmoc protecting group from Fmoc-lysine residues. After washing, the MAP-Os14-Os6B resin were mixed with a 4-fold excess of periodate oxidized S. pneumoniae serotype 19F oligosaccharides 25 (Os19F) DMF/phosphate buffer (pH 7.8) in presence of NaCNBH3 at 38°C for 6 days. After conjugation, the degree of amino group substitution measured by the ninhydrin assay was found to be about 90%. The coupling reaction was repeated and its efficiency was determined to be about 15%. However, the 30 presence of N-acetylmannose (ManNAc), a sugar found in 'Os19F, was detected by carbohydrate analysis. A small portion of MAP glycoconjugate-resin was cleaved with 95% TFA in the presence of EDT and thioanisol. After

10

15.

20

25

30

the work-up, the MAP-glycoconjugate was assayed for amino acid composition and carbohydrate content, and found to have a correct amino acid composition and a correct carbohydrate content.

Although the overall yield was very low (about these results nevertheless demonstrate that 5%), different oligosaccharides can be selectively sequentially conjugated to a MAP resin. Furthermore, rabbit immunogenicity studies indicated that this MAP glycopeptide conjugate was immunogenic and elicited strong antibody responses against polysaccharides 19F and 14 (GMT about 3000), but very weak anti-6B IgG responses (Fig. 11). The antibody titers against 19F and 14 polysaccharides were significant lower than those obtained in rabbits immunized with multivalent oligosaccharides conjugated to TT (Fig. 7), but we still expect that the pneumococcal multivalent MAP conjugate candidate vaccine will be useful for human immunization. In addition, the rabbit antisera reacted strongly with the T-cell peptides in peptide-specific ELISAs (Table 3).

Utility of Synthetic Glycopeptide Conjugation Technology.

In preferred embodiments of the present invention, the glycoconjugate technology can be generally utilized to prepare conjugate vaccines against pathogenic the glycoconjugate encapsulated bacteria. Thus, technology of the present invention may be applied to vaccinations to confer protection against infection with any bacteria expressing potential protective polysaccharide antigens, including Haemophilus influenzae, Streptococcus pneumoniae, Escherichia coli, Neisseria meningitidis, Salmonella typhi, Streptococcus

10

15

20

25

30

.35

mutans, Cryptococcus neoformans, Klebsiella, Staphylococcus aureus and Pseudomonas aerogenosa.

In particular embodiments, the synthetic glycoconjugate technology can be applied to produce vaccines eliciting antibodies against proteins and oligosaccharides, including fragments of carbohydrate-based tumor antigens, such as Globo H, Le^Y and STn. Such vaccines may be used, for example, to induce immunity against tumor cells, or to produce anti-tumor antibodies that can be conjugated to chemotherapeutic or bioactive agents.

It is also understood that within the scope of the invention are any variants or functionally equivalent variants of the above specific peptides. The terms "variant" or "functionally equivalent variant" as used above, mean that, if the peptide is modified by addition, deletion or derivatization of one or more of the amino acid residues, in any respect, and yet acts in a manner similar to the specific peptides described herein, then such modified peptide falls within the scope of the invention. Given the amino acid sequence of these peptides (Table 1) and any similar peptide, these are easily synthesized employing commercially available peptide synthesizers, such as the Applied Biosystems Model 430A, or may be produced recombinant DNA technology.

It is clearly apparent to one skilled in the art that the various embodiments of the present invention have many applications in the fields of vaccination, diagnosis and treatment of infection and the generation of immunological reagents. A further non-limiting discussion of such uses is further presented below. Vaccine preparation and use

As indicated above, the present invention, in one embodiment, provides multivalent immunogenic conjugates

31

useful for formulating immunogenic compositions, suitable to be used as, for example, vaccines. The immunogenic composition elicits an immune response by the host to which it is administered including the production of antibodies by the host.

5

10

15

20

25

30

35

The immunogenic compositions may be prepared as as liquid solutions or emulsions. injectables, antigens and immunogenic compositions may be mixed with physiologically acceptable carriers which are compatible These may include water, saline, dextrose, glycerol, ethanol and combinations thereof. The vaccine may further contain auxiliary substances, such as wetting or emulsifying agents or pH buffering agents, to further enhance their effectiveness. Vaccines may be administered by injection subcutaneously orintramuscularly.

Alternatively, the immunogenic compositions formed according to the present invention, may be formulated and delivered in a manner to evoke an immune response at Thus, the immunogenic composition may mucosal surfaces. be administered to mucosal surfaces by, for example, the nasal or oral (intragastric) routes. Alternatively, other modes of administration including suppositories may be desirable. For suppositories, binders and carriers may include, for example, polyalkylene glycols and triglycerides. Oral formulations may normally employed incipients, such as pharmaceutical grades of saccharine, cellulose and magnesium carbonate.

These compositions may take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 1 to 95% of the immunogenic compositions of the present invention.

The immunogenic compositions are administered in a manner compatible with the dosage formulation, and in such amount as to be therapeutically effective, protective and immunogenic. The quantity to be administered depends on the subject to the immunized,

including, for example, the capacity of the subject's immune system to synthesize antibodies, and if needed, to produce a cell-mediated immune response. amounts of antigen and immunogenic composition to be administered depend on the judgement of the practitioner. However, suitable dosage ranges readily determinable by those skilled in the art and may be of the order of micrograms to milligrams. regimes for initial administration and booster doses are also variable, but may include an initial administration followed by subsequent administrations. The dosage of vaccine may also depend on the route administration and will vary according to the size of the host.

5

10

25

30

35

The concentration of antigen in an immunogenic composition according to the invention is in general about 1 to 95%. A vaccine which contains antigenic material of only one pathogen is a monovalent vaccine. Vaccines which contain antigenic material of several pathogens are combined vaccines and also belong to the present invention. Such combined vaccines contain, for example, material from various pathogens or from various strains of the same pathogen, or from combinations of various pathogens.

Immunogenicity can be significantly improved if the antigens are co-administered with adjuvants, commonly used as 0.005 to 0.5 percent solution in phosphate buffered saline. Adjuvants enhance the immunogenicity of an antigen but are not necessarily immunogenic themselves. Adjuvants may act by retaining the antigen locally near the site of administration to produce a depot effect facilitating a slow, sustained release of antigen to cells of the immune system: Adjuvants can also attract cells of the immune system to an antigen stimulate such cells to elicit immune depot and response.

10

15

20

25

30

35

Immunostimulatory agents or adjuvants have been used for many years to improve the host immune responses to, for example, vaccines. Intrinsic adjuvants, such as lipopolysaccharides, normally are the components be the or bacteria used as vaccines. killed attenuated Extrinsic adjuvants are immunomodulators which typically noncovalently linked to antigens and are formulated to enhance the host immune responses. adjuvants have been identified that enhance the immune response to antigens delivered parenterally. these adjuvants are toxic, however, and can cause undesirable side effects, making them unsuitable for use in humans and many animals. Indeed, only aluminum hydroxide and aluminum phosphate (collectively commonly referred to as alum) are routinely used as adjuvants in human and veterinary vaccines. The efficacy of alum in increasing antibody responses to diphtheria and tetanus toxoids is well established and, more recently, a HBsAg vaccine has been adjuvanted with alum. While the usefulness of alum is well established for applications, it has limitations. For example, alum is ineffective for influenza vaccination and inconsistently elicits a cell mediated immune response. The antibodies elicited by alum-adjuvanted antigens are mainly of the IqGl isotype in the mouse, which may not be optimal for protection by some vaccinal agents.

A wide range of extrinsic adjuvants can provoke potent immune responses to antigens. These include saponins complexed to membrane protein antigens (immune stimulating complexes), pluronic polymers with mineral oil, killed mycobacteria in mineral oil, Freund's complete adjuvant, bacterial products, such as muramyl dipeptide (MDP) and lipopolysaccharide (LPS), as well as lipid A, and liposomes.

To efficiently induce humoral immune responses (HIR) and cell-mediated immunity (CMI), immunogens are often emulsified in adjuvants. Many adjuvants are

toxic, inducing granulomas, acute and chronic inflammations (Freund's complete adjuvant, FCA), cytolysis (saponins and Pluronic polymers) pyrogenicity, arthritis and anterior uveitis (LPS and MDP). Although FCA is an excellent adjuvant and widely used in research, it is not licensed for use in human or veterinary vaccines because of its toxicity.

Desirable characteristics of ideal adjuvants include:

- 10 (1) lack of toxicity;
 - (2) ability to stimulate a long-lasting immune response;
 - (3) simplicity of manufacture and stability in long-term storage;
- (4) ability to elicit both CMI and HIR to antigens administered by various routes;
 - (5) synergy with other adjuvants;
 - (6) capability of selectively interacting with populations of antigen presenting cells (APC);
- 20 (7) ability to specifically elicit appropriate T.1 or TH2 cell-specific immune responses; and
 - (8) ability to selectively increase appropriate antibody isotype levels (for example, IgA) against antigens.
- 25 U.S. Patent No. 4,855,283 granted to Lockhoff et al on August 8, 1989 which is incorporated herein by reference thereto teaches glycolipid analogues including N-glycosylamides, N-glycosylureas glycosylcarbamates, each of which is substituted in the 30 sugar residue by an amino acid, as immune-modulators or adjuvants. Thus, Lockhoff et al. (U.S. Patent No. 4,855,283 and ref. 29) reported that N-glycolipid analogs displaying structural similarities the naturallyoccurring glycolipids, such as glycosphingolipids and glycoglycerolipids, are capable 35 of eliciting strong immune responses in both herpes simplex virus vaccine and pseudorabies virus vaccine.

35

Some glycolipids have beensynthesized from long chain alkylamines and fatty acids that are linked directly with the sugars through the anomeric carbon atom, to mimic the functions of the naturally occurring lipid residues.

4,258,029 granted to Moloney, U.S. Patent No. assigned to the assignee hereof and incorporated herein by reference thereto, teaches that octadecyl tyrosine hydrochloride (OTH) functions as an adjuvant complexed with tetanus toxoid and formalin inactivated and III poliomyelitis virus vaccine. I, II Also, Nixon-George et al. (ref. 30), reported that octodecyl esters of aromatic amino acids complexed with a recombinant hepatitis B surface antigen, enhanced the host immune responses against hepatitis B virus.

Immunoassays

5

10

15

20

25

30

35

In one embodiment, the conjugates of the present invention are useful for the production of immunogenic compositions that can be used to generate antigenspecific antibodies that are useful in the specific identification of that antigen in an immunoassay according to a diagnostic embodiment. Such immunoassays include enzyme-linked immunosorbent assays (ELISA), RIAs and other non-enzyme linked antibody binding assays or procedures known in the art. In ELISA assays, the antigen-specific antibodies are immobilized onto selected surface; for example, the wells polystyrene microtiter plate. After washing to remove incompletely adsorbed antibodies, a nonspecific protein, such as a solution of bovine serum albumin (BSA) or casein, that is known to be antigenically neutral with regard to the test sample may be bound to the selected surface. This allows for blocking of nonspecific adsorption sites on the immobilizing surface and thus reduces the background caused by nonspecific bindings of antigens onto the surface. The immobilizing surface is then contacted with a sample, such as clinical or

36

biological materials, to be tested in a manner conducive to immune complex (antigen/antibody) formation. may include diluting the sample with diluents, such as BSA, bovine gamma globulin (BGG) and/or phosphate buffered saline (PBS)/Tween. The sample is then allowed to incubate for from about 2 to 4 hours, at temperatures such as of the order of about 25° to 37°C. incubation, the sample-contacted surface is washed to nonimmunocomplexed remove material. The procedure may include washing with a solution, such as PBS/Tween or a borate buffer.

5

10

15

20

25

30

Following formation of specific immunocomplexes between the antigen in the test sample and the bound antigen-specific antibodies, and subsequent washing, the occurrence, and even amount, of immunocomplex formation may be determined by subjecting the immunocomplex to a second antibody having specificity for the antigen. provide detecting means, the second antibody may have an associated activity, such as an enzymatic activity, that will generate, for example, a colour development upon incubating with an appropriate chromogenic substrate. Quantification may then achieved by measuring the degree of colour generation using, for example, a visible spectra spectrophotometer. In an additional embodiment, the present invention includes a diagnostic comprising antigen-specific antibodies generated immunization of a host with immunogenic compositions produced according to the present invention.

It is understood that the application of the methology of the present invention is within the capabilities of those having ordinary skills in the art. Examples of the products of the present invention and processes for their preparation and use appear in the following examples.

10

20

37

EXAMPLES

above disclosure generally describes the present invention. A more complete understanding can be by reference to the following specific These Examples are described solely for Examples. purposes of illustration and are not intended to limit the scope of the invention. Changes in form and substitution of equivalents are contemplated circumstances may suggest or render expedient. Although specific terms have been employed herein, such terms are intended in a descriptive sense and not for purposes of limitations. Immunological methods may not be explicitly described in this disclosure but are well within the scope of those skilled in the art.

15 Example 1

This Example shows the preparation of acidhydrolyzed group B meningococcal (GBM) oligosaccharides.

This Example describes a method for preparing GBM oligoscharides (M. wt. 3000 to 4500 Da) from the commercially available GBM polysaccharides (M. wt >10 KDa).

Reagents required:

1-GBM polysaccharides from Sigma cat # C-5762.

25 2-Sodium acetate (50 mM) buffer pH 5.00, prepared by mixing one volume of 0.5 M sodium acetate with one volume of 0.23M acetic acid.

3-Reaction vial and a magnetic stirring bar.

4-Sephadex G-25 gel column

30 5-Ammonium bicarbonate (20 mM)

Procedure:

The GBM polysaccharide (200 mg) was dissolved in $15~\mathrm{mL}$ of degassed 50 mM sodium acetate buffer, pH 5.0 and the mixture was then stirred at 80°C for 1hr. The reaction

mixture was then immediately cooled with ice and neutralized to pH 7.0 by dropwise addition of 0.1M NaOH. The total mixture was then lyophilized to yield a crude product (460 mg, containing sodium acetate).

About 100 mg acid treated GBM were first dissolved in 3 mL of 20 mM ammonium bicarbonate and then loaded into a Sephadex G-25 gel column equilibrated with 20 mM ammonium bicarbonate solution using the following conditions:

Column: (10 x 1000 mm), calibrated with dextran 8800, β -cyclodextran and sucrose standards.

Flow rate: 0.6 mL/min.

Buffer: 20 mM ammonium bicarbonate.

Fraction collected at 4.5 min/tube.

The fractions were assayed for the presence of sialic acid using the resorcinol/sulfuric acid assay (ref. 12). The elution profile was then plotted and sialic acid-containing fractions with an average molecular weight of 4 kDa were pooled and lyophilized.

The final yield of the acid hydrolyzed GBM was obtained.

Example 2

This Example shows chemical modification of acid-hydrolyzed GBM oligosaccharides.

25 N-propionylated, acid-hydrolyzed GBMoligosaccharides were prepared according to the method previously described by H. Jennings et al. (ref. 6) with some modifications. The N-propionylated GBM oligosaccharides ultimately were coupled to a backbone containing other oligosaccharide to produce 30 multivalent multiple carbohydrate vaccines, as described below.

Reagents required:

1-Acid-hydrolyzed GBM oligosaccharides.

15

20

25

30

- 2-Sodium hydroxide (2 M solution).
- 3-Propionic anhydride (Aldrich).
- 4-Ammonium bicarbonate (10 mM)
- 5-Aqueous oxalic acid (50 %)
- 5 6-Sodium borohydride (Sigma)

Procedure:

N-deacetylated acid-hydrolyzed group B meningococcal polysaccharides were prepared according to the method described by Jenning et al., with three modifications;

1-The reaction was performed at ca 110° to 120°C.

2-The dialysis was performed using molecular porous membrane (1000 mol. wt. cut off).

3-The neutralization of sodium hydroxide was accomplished using 50% aqueous oxalic acid in the cold and last over 1 hr.

The polysaccharide (100 mg) was dissolved in 5 mL of degassed 2M sodium hydroxide containing sodium borohydride (10 mg). The resulting mixture was then heated for 6 to 8 hours at about 100° to 120°C and the was by а combination isolated product neutralization in an ice bath using oxalic acid 50%, followed by dialysis (four changes of 10 mM ammonium bicarbonate, 4°C) and lyophilization to provide a product (65.2 mg). This de-acetylation resulted in complete determined by de-acetylation, as 100% disappearance of the acetyl signal in the $^{
m 1}$ H NMR spectrum.

The N-deacetylated GBM oligosaccharide prepared from the previous step (55 mg) was dissolved in saturated sodium bicarbonate (12 mL) and three aliquots of propionic anhydride (0.250 mL) were added over 30 minutes period. The total mixture was then stirred overnight at room temperature. Ninhydrine test was

10

15

performed and found to be negative indicating complete conversion of free amino groups to propionamido groups. The mixture was then dialyzed against distilled water $(3 \times 4L)$ and lyophilized to afford the acid-hydrolyzed propionylated GBM oligosaccharide (43.2 mg).

Example 3

This Example shows the preparation of Oligosaccharides from Streptococcus Pneumoniae

This Example describes the general methods using acid hydrolysis of *Streptococcus pneumoniae* capsular polysaccharides (CP) (M. wt approximately 50 kDa) to produce oligosaccharides with a molecular mass ranging from 2.5 to 5.0 kDa. The resulting oligosaccharides can be subjected to a novel glycoconjugation technology to prepare glycoconjugates containing multiple-oligosaccharides covalently linked to a carrier protein or a multiple antigen peptide system (MAP).

Reagents required:

1-CP serotypes 6B, 14, 19F and 23F (ATTC)

20 2-Acetic acid

3-Trifloroacetic acid

4-Gel chromatography column (Sephadex G-100, 10 x 1000 mm)

5-Round bottom flask (250 mL)

25 6-Magnetic stirring bar

7-Oil bath

Procedure:

In a round bottom flask, the CPs (see Table 4 below) was dissolved in warm degassed water (62.5 mL) followed by the addition of the required amount of degassed acid (see Table 4 below). The total mixture was degassed for an additional 10 minutes then heated using an oil bath for the required time (see Table 4 below). At the end of the hydrolysis time, the total

mixture was diluted 5-fold with water and then lyophilized to produce the crude product.

A gel permeation column (10 x 1000 mm, Sephadex® -G100) was calibrated with the following molecular weight standards: Dextran standards (M. wt 8800, 39100, 503,000), glucose (180), sucrose (342)synthetic PRP hexamer (2340). The purification of oligosaccharides was accomplished using Sephadex® G-100 gel column and oligosaccharides were eluted with Milli-Q water at flow rate of 0.9 mL/min. The fractions were collected every 3 minutes and assayed for the presence of carbohydrates using phenol/sulfuric acid. fractions oligosaccharides The containing with molecular weight 2.5 to 5 kDa were pooled and lyophilized.

Example 4

5

10

15

20

25

30

This Example describes the preparation of Oliqosaccharides of N. meningiditis

As in the case of the acid hydrolysis of pneumococcal CPs, the process as applied to N. meningitidis involves acid hydrolysis, lyophilization and purification using gel-filtration chromatography. The conditions for acid hydrolysis of CPs from N. meningococcal groups C, W-135 and Y were also optimized.

Typically, CPs (10 mg/mL) are mixed with 20 to 80 mM sodium acetate, pH 4.5 to 5.5, in sealed vials under argon at 65° to 100°C for 8 to 12 hours. Since group B CPs can undergo intramolecular esterification under acidic conditions, hydrolysis was effected under conditions used for CPs group C hydrolysis, but the incubation time was limited to 1 hr and the pH of the reaction was immediately adjusted to pH 7 with 0.1 M NaOH to reverse the esterification process (for

10

15

20

25

30

details, see Example 1). Group A CPs contain labile phosphodiester bonds, thus they were hydrolyzed under mild acidic condition (such as 10 to 20 mM acetic acid) and incubated at 50° to 100°C for 30 to 48 hours. At the end of each hydrolysis, the reaction solutions were diluted 5-fold with water and then lyophilized. The crude oligosaccharides were fractioned by Sephadex® G-100 gel filtration chromatography (2 x 210 cm, see above). Typical chromatographic results are illustrated in Figure 4. The fractions were assayed for the presence of sialic acid using the resorcinol/sulfuric acid assay (ref. 12). The elution profile was plotted, and chromatographically purified oligosaccharides of 2 to 5 kDa were pooled. Sized oligosaccharides typically contained 6 to 15 repeating units. The yields were 40 to 80%.

Example 5

This Example describes the preparation of multivalent oligosaccharides conjugated randomly to a carrier protein.

To illustrate a potential use of the present invention, S. pneumoniae serotypes 6B, 14, 19F and 23F oligosaccharides were randomly and covalently linked to TT as shown in Figure 1. To a TT solution (8 mg/l.2 mL of PBS), a 4 molar excess of periodate-oxidized 6B (0.5 mg/0.1 mL PBS), 14 (1.4 mg/0.2 mL), 19F (0.65 mg/0.12mL) and 23F (1 mg/0.2mL) oligosaccharides were added. The pH of the mixture was adjusted to 7.4 with a few drops of 0.1 M NaOH, and the reaction was stirred for 4 days at 37°C. At day 5, a 10-fold excess (100 μ L) of NaCNBH3 (5 mg/mL) was added to the mixtures and stirred for another 3 days at 37°C. The reaction mixture was then dialysed against excess PBS to remove unreacted oligosaccharides and NaCNBH3 for 3 days at

43

The glycoconjugate was purified by the gel-4°C. filtration chromatography on a Sephedex G100 column $(1.6 \times 100 \text{ cm})$. The elution profile is illustrated in Figure 5. The glycoconjugate was collected. Protein and carbohydrates analyses were performed and the molar ratio of carbohydrate to protein was found to be 7.1 : 1. The multiple antigenic glycoconjugate (MAG) used as an immunogen formulated either with complete Rabbit and adjuvant or alum. Freund's immunogenicity studies were performed. The results are described below.

Example 6

5

10

15

20

25

30

This Example describes peptide synthesis.

Peptides (Table 1) were synthesized using an ABI 430A peptide synthesizer and optimized t-Boc chemistry as described by the manufacturer, then cleaved from the resin by hydrofluoric acid (HF). The peptides were purified by reverse-phase high performance liquid chromatography (RP-HPLC) on a Vydac C4 semi-preparative column (1 \times 30 cm) using a 15 to 55% acetonitrile gradient in 0.1% trifluoryl acetic acid (TFA) developed over 40 minutes at a flow rate of 2 mL/min. A11 biochemical synthetic peptides used in immunological studies were >95% pure as judged by Amino acid composition analyses analytical HPLC. performed on a Waters Pico-Tag system were in good agreement with the theoretical compositions.

A synthetic MAP was manually prepared using Fmoc solid-phase peptide synthesis chemistry according to a modified method previously described by Tam (ref. 24). A Fmoc-Lys(t-Boc)-TGA resin (500 mg, purchased from BACHEM) with a substitution level of 180 μ mol/g was normally used to prepare MAP. As a general coupling protocol, a 4-fold excess of Fmoc-protected amino acids

activated with an equal amount of HBTU and HOBT/DIEA for 1 hr, was used. In order to facilitate the conjugation with oligosaccharides, the substitution level of MAP was reduced to about 50 µmol/g when the first Fmoc-Gly residue was coupled. When the synthesis was completed according to Figure 2, a small portion of MAP-resin was cleaved with 95% TFA in the presence of ethane dithiol (EDT) and thioanisol, and amino acid analysis of the cleaved MAP was performed to confirm the amino acid composition.

Example 7

5

10

This Example describes preparation of oligosaccharides with cross-linking bifunctional groups.

15 To a periodate-oxidized oligosaccharide solution mg/mL of PBS), a 20 molar excess of diaminobutane (10.5 mg) was added. The pH of the mixture was adjusted to 7.4, and then the reaction was stirred for 4 day at 37°C. At day 5, an excess (500 μL) of $NaCNBH_3$ (20 mg/mL) was added to the mixture which 20 stirred for 3 more days at 37℃. The oligosaccharide derivatized with a functional amino group, was purified by gel-filtration chromatography on a Sephedex® G-50 column (1.6 \times 100 cm).

25 m-Maleimidobenzoyl-N-hydroxysuccinimide (MBS. Pierce) (20 mg; 63.6 mmol) in tetrahydrofuran (1 mL) added to a solution of amino-derivatized oligosaccharides (4.3 mmol) in 0.1 M phosphate buffer (1 mL), pH 7.5. The reaction mixture was stirred for 30 min at room temperature under argon, then extracted 30 with ether (4 x 5 mL) to remove excess MBS. resulting aqueous layer was applied to a Sephadex G-25 column (20 x 300 mm) equilibrated with 20 mM ammonium bicarbonate buffer, pH 7.2 and eluted with the same

Elution was monitored by absorbance at 280 nm, and the eluted peak was pooled and lyophilized to produce the desired MBS activated oilogsaccharides. The of maleimide groups incorporated into the number 2adding excess determined by oligomers was mercaptoethanol to the activated oligosaccaharide-MBS and back-titrating the excess using a modified Ellman's method (ref. 25).

Example 8

5

10

15

20

25

30

This Example describes the preparation of linear glycopeptide conjugates.

A Fmoc-Gly-Lys(t-Boc)-TGA resin (500 mg) with a substitution level of $50 \mu mol/g$ was used to prepare linear peptides containing a T-cell epitope derived from either S. pneumoniae or N. meningiditis proteins as shown in Table 1. A standard Fmoc chemistry coupling protocol was used (see Example 6). When the synthesis was completed, a small portion of resin was cleaved with 95% TFA in the presence of EDT and thioanisol to determine the quality of synthesis. The rest of the peptide-resin was first deprotected at the N-terminal using piperidine, and then washed with dichloromethane, methanol, water, and The PN(123-140) peptide-resin was mixed with PBS. periodate-oxidized S. pneumoniae serotype 14 oligosaccharides (1 eq.) in methanol/phosphate buffer (pH 7.8) in the presence of NaCNBH3 at 38°C for 6 days. degree of amino conjugation, the was determined by the ninhydrine assay substitution and the total sugar content was assayed using the orcinol test. The linear glycopeptide-resin was cleaved with 95% TFA in the presence of EDT and thioanisol. After the work-up, the glycopeptide was assayed for amino acid composition and carbohydrate content.

10

15

20

25

30

35

Example 9

This Example describes the preparation of multivalent MAP glycopeptide conjugates.

A MAP resin containing three different T-cell epitopes [PN(123-140), PN(263-281) and SP37, Table 1] derived from S. pneumoniae membrane proteins was synthesized using a Fmoc-Gly-Lys-TGA resin with a substitution level of 50 mmol/g as shown in Figure 2. The whole synthesis was carried out manually using an optimized Fmoc chemistry coupling protocol described above (Example 6). When the synthesis was completed, a small portion of MAP-resin was cleaved with 95% TFA in the presence of EDT and thioanisol. The cleaved MAP was found to have the correct amino acid composition by amino acid analysis. The MAP resin was reduced with DTT to remove the t-butylthio protecting groups from the cysteine residues.

excess washing, After the MAP resin was resuspended in a DMF/PBS solution, then mixed with a 4fold excess of sulfo-SIAB activated oligosaccharides from S. pneumoniae serotype 14 (Os14). After overnight mixing at room temperature, the MAP resin was collected by filtration and washed with PBS, DMF and then methanol. The MAP-Os14 resin was subjected to Ellman's test and sulfhydryl group determination. The level of SH substitution was found to be half of the starting value. Recoupling did not increase the amount of Os14 conjugated to the MAP resin. The presence of acetylgalactosamine (GlcNAc) in the glyco-MAP resin, a carbohydrate found in Os14, was independently confirmed by carbohydrate analysis.

MAP-Os14 was first treated with 1% TFA to remove Mtt (a lysine-protecting group) from Mtt-lysine residues, then neutralized with a mild base, 1% diisopropylethylamine (DIEA)/DMF. The presence of free

47

amino groups was assayed by the ninhydrine test which indicated that >90% of Mtt groups had been removed. The MAP-Os14 resin were resuspended in PBS, and then mixed with 4 equivalent of periodate-oxidized S. pneumoniae serotype 6B oligosaccharides (Os6B) in DMF/phosphate buffer (pH 7.8) in the presence of NaCNBH3 at 38°C for 6 days.

5

10

15

20.

25

30

After conjugation, the substitution of amino groups was determined by the ninhydrin assay was found to be 80 to 90% of the original value. Again a double and triple coupling did not improve the conjugation of Os6B to the MAP-Os14 resin. Although the coupling efficiency was poor (about 15%), the presence of ribitol in the MAP conjugate, a carbohydrate found in Os6B, was confirmed by carbohydrate analysis.

The MAP-Os14-Os6B conjugate was treated with 20% piperidine in DMF to remove the Fmoc protecting group from Fmoc-lysine residues. After washing, the MAP-Os14resin were mixed with a 4-fold excess Os-6B s. pneumoniae serotype 19F. periodate oxidized DMF/ phosphate buffer (pH oligosaccharides (Os19F) in 7.8) in the presence of NaCNBH3 at 38°C for 6 days. degree of amino group After conjugation, the substitution measured by the ninhydrin assay was found The coupling reaction was repeated to be about 90%. and its efficiency was determined to be about 15%. However, the presence of N-acetylmannose (ManNAc), a carbohydrate sugar found in Os19F, was detected by analysis.

A small portion of MAP glycoconjugate-resin was cleaved with 95% TFA in the presence of EDT and thioanisol. After the work-up, the MAP-glycoconjugate was assayed for amino acid composition and carbohydrate content, and found to have a correct amino acid

composition and a correct carbohydrate content. Although the overall yield was very low (about 5%), these results nevertheless demonstrate that different oligosaccharides can be selectively and sequentially conjugated to a MAP resin.

Example 10

5

This Example describes the preparation of native polysaccharide-polylysine conjugate.

A 0.5 mL of periodate-oxidized polysaccharides (25mg in 1 mL of 0.1 M sodium phosphate buffer, pH $\,$ 10 6.0), prepared from native S. pneumoniae or meningiditis polysaccharides treated with aqueous sodium periodate, was added to polylysine (5 mg) in 2mL of 0.2 M sodium phosphate buffer, pH 8.0, followed by the addition of sodium cyanoborohydride (10 eqv. to 15 polylysine). After incubation at 37°C for 5 days, the reaction mixture was dialysed against 0.1 M phosphate buffer (4 X 1 L), pH 7.5, and the resulting solution was applied onto an analytical Superose 12 column (15 \times 20 300 mm, Pharmacia) equilibrated with 0.2 M sodium phosphate buffer, pH 7.2, and eluted with the same buffer. Fractions were monitored for absorbance at 230 nm. The major peak was pooled. The amount of protein was determined using the Bio Rad protein assay. presence of polysaccharides was confirmed by 25 orcinol test.

Example 11

30

This Example describes mouse immunogenicity studies of multivalent oligosaccharides-TT conjugates.

Five mice (BALB/c) were immunized intramuscularly (im) with multivalent oligosaccharide-TT conjugates (20 µg of oligosaccharides) emulsified in Freund's complete adjuvant (FCA), and followed by two booster doses (half amount of the same immunogen in incomplete Freund's

49

adjuvant) at 2 week intervals. Antisera were collected, inactivated at 56°C, and then stored at -20°C. The results are shown in Figure 8.

Example 12

5

10

15

20

25

30

This Example describes rabbit immunogenicity studies of multivalent oligosaccharides-TT conjugates formulated in alum.

Rabbits were immunized intramuscularly with 0.5 mL of multivalent oligosaccharides-TT conjugates (20 µg oligosaccharides equivalent) mixed with 3 mg AlPO4 per mL, followed by two booster doses (half amount of the same immunogen) at 2 week intervals. Antisera were collected every 2 weeks after the first injection, heat-inactivated at 56°C for 30 min and stored at -20°C.

Example 13

This Example describes rabbit immunogenicity studies of multivalent oligosaccharides-carriers conjugates formulated in FCA.

Rabbits were immunized intramuscularly with 0.5 mL of multivalent oligosaccharides-TT or oligosaccharides-MAP conjugates (conjugates containing 12 μ g oligosaccharides equivalent mixed with 1 mL of FCA), followed by two booster doses (half amount of the same immunogen formulated with Freund's incomplete adjuvant (IFA)) at 2 week intervals. Antisera were collected every 2 weeks after the first injection, heat-inactivated at 56°C for 30 min and stored at -20°C.

Example 14

This Example describes peptide-specific ELISAs Microtiter plate wells (Nunc-Immunoplate, Nunc, Denmark) were coated with 500 ng of individual peptides in 50 μL of coating buffer (15 mM Na₂CO₃, 35 mM NaHCO₃, pH 9.6) for 16 hr at room temperature. The plates were

then blocked with 0.1% (w/v) BSA in phosphate buffer saline (PBS) for 30 min at room temperature. Serially diluted antisera were added to the wells and incubated for 1 hr at room temperature. After removal of the antisera, the plates were washed five times with PBS 5 containing 0.1% (w/v) Tween-20 and 0.1% (w/v) BSA. F(ab')2 from goat anti-rabbit IgG antibodies conjugated to horseradish peroxidase (Jackson ImmunoResearch Labs Inc., PA) were diluted (1/8,000) with washing buffer, and added onto the microtiter plates. After 1 hr 10 incubation at room temperature, the plates were washed five times with the washing buffer. The plates were then developed using tetramethylbenzidine (TMB) in $\rm H_2O_2$ (ADI, Toronto) as substrate. The reaction was stopped with 1N ${\rm H}_2{\rm SO}_4$ and the optical density was measured at 15 450 nm using a Titretek Multiskan II (Flow Labs., Virginia). Two irrelevant pertussis toxin peptides NAD-S1 (19 residues) and S3(123-154) (32 residues) were included as negative controls in the peptide-specific ELISAs. Assays were performed in triplicates, and the 20 reactive titre of an antiserum was defined as the dilution consistently showing a two-fold increase in absorbance value over that obtained with the pre-immune serum.

25 Example 15

30

35

This Example describes anti-polysaccharide antibody measurement.

Microtiter plate wells (Nunc-Immunoplate, Nunc, Denmark) were coated with 200 ng of S. pneumoniae or N. meningiditis polysaccahrides-polylysine conjugates in 200 μ L of coating buffer (15 mM Na₂CO₃, 35 mM NaHCO₃, pH 9.6) for 16 hr at room temperature. The plates were then blocked with 0.1% (w/v) BSA in phosphate buffer saline (PBS) for 30 min at room temperature. Serially diluted antisera raised against PRP-carrier conjugates

10

15

25

30

35

were added to the wells and incubated for 1 hr at room temperature. After removal of the antisera, the plates were washed five times with PBS containing 0.1% (w/v) Tween-20 and 0.1% (w/v) BSA. F(ab')₂ from goat antirabbit IgG or anti-mouse IgG antibodies conjugated to horseradish peroxidase (Jackson ImmunoResearch Labs Inc., PA) were diluted (1/8,000) with washing buffer, and added onto the microtiter plates. After 1 hr incubation at room temperature, the plates were washed five times with the washing buffer. The plates were then developed using the substrate tetramethylbenzidine (TMB) in H₂O₂ (ADI, Toronto), the reaction was stopped with $1N\ H_2SO_4$ and the optical density was measured at 450 nm using a Titretek Multiskan II (Flow Labs., Virginia). Assays were performed in triplicates, and the reactive titre of an antiserum was defined as the dilution consistently showing a two-fold increase in O.D. value over that obtained with the pre-immune serum.

20 Example 16

This Example describes a proliferation assay for synthetic T-cell epitopes.

T-cell epitope mapping was performed by priming BALB/c mice with 5 μg of individual carrier proteins. Three spleens removed weeks later, the were and splenocytes cultured in RPMI 1640 (Flow supplemented with 10% heat-inactivated fetal calf serum (Gibco), 2 mM L-glutamine (Flow Lab), penicillin (Flow Lab), 100 μg/mL streptomycin (Flow Lab), 10 unit/mL rIL-2 and 50 μM 2-mercaptoethanol (sigma) for 5-7 days. Proliferative responses of the primed splenocytes to the panel of peptides were determined in a standard in vitro assay (ref. 26). Briefly, 10⁶ splenocytes were co-cultured in a 96-well microtiter plate with 5×10^5 irradiated (1700 Rad)

52

fresh syngeneic spleen cells used as source of antigen presenting cells (APC) in the presence of increasing molar concentrations (0.03 to 3 μM of peptide dissolved in the culture medium without IL-2). Cultures were kept for 40 hr in a humidified 5% CO2/air incubator maintained at 37°C. During the final 16 hr of culture, 0.5 μCi of [^3H]-Tdr (5 Ci/mmol, NEN) was added to each wells. The cells were then harvested onto glass fibre filters, and the incorporation of ${}^{3}\text{H-thymidine}$ into cellular DNA was measured in a scintillation β -counter (Beckman). Results are expressed as the triplicate determinations performed for each peptide concentration. The standard deviation was always <15%. Proliferative responses were considered as positive when $^3\mathrm{H-thymidine}$ incorporation was three-fold above that obtained with either irrelevant peptides or the culture medium.

5

10

15

SUMMARY OF THE DISCLOSURE

summary of this disclosure, the present 20 invention provides certain novel multivalent immunogenic oligosaccharides as well conjugation procedures in their preparation, their use as vaccines and their use in the provision antibodies for diagnostic use. Modifications are possible within the scope of this invention. 25

- POTENTIAL T-CELL EPITOPES FROM MENINGOCOCCAL AND PNEUMOCOCCAL PROTEINS TABLE 1

ŧ	SEQUENCE	COMMENTS	SEQ ID NO:
PFTISDSDSL	EGGEYGPKG	Bactericidal Epitope	1
KAKSRIRTKI	TKISDFGSFIGFKGSEDLGEGLKA	Human T-cell epitope	2
VPAONSKSAY		Human T-cell epitope	3
AEOKSAVTEY	VTEYYLNHGEWPGNNTSAGVASSSTIKGKYVKEV	Adhesion Epitopes	4
GVRGAVNDLL	/NDLLAKWHQDYGQG	Pneumolysin (123-40)	ഗ
GFEALIKGVK	IKGVKVAPQTEWKQIG	Pneumolysin (263-81)	9
GIIYA	GIIYAKNIAKQLIAKDPKNKDFYEKNG	37kDa Protein (1-30)	7
IKEID	IKEIDESESEDYAKEGFRAPLQSKIDAKKAKLSKLEELSDKIDELDAEI	Protective Epitope of PspA	ω
AKLEDOIKAA	OIKAAEENNNVEDYFKEG(C)	(193-261)	

TABLE 2. Anti-peptide antibody responses in rabbits immunized with combined linear glycopeptide conjugates [6B-PN(123-140) + 14-PN(263-281) + 23F-PN(123-140)]

	Anti-peptide anti	body titer a
Peptides titre ^b	Pre-Immune	Geometric mean
PN (123-140)	<100	12,800
PN(263-281)	<100	3,200
-		

a Total anti-peptide antibody responses were determined by peptide-specific ELISAs.

b Antisera were obtained from rabbits immunized.

TABLE 3 Anti-peptide antibody responses in rabbits immunized with a MAP glycopeptide conjugates.

Peptides titre ^b	Anti-peptide antibody titer		
	Pre-Immune	Geometric mean	
PN (123-140)	<100	633,400	
PN (263-281)	<100	12,800	
SP37	<100	51,200	

a Total anti-peptide antibody responses were determined by peptide-specific ELISAs.

b Antisera were obtained from rabbits immunized three times with the MAP glycopeptide conjugate.

TABLE 4

CPs	6B	14	19F	23F
Amount of CPs	1	250 mg	250 mg	230 mg
		in water	in water	in water
	(62.5 mL)	(62.5 mL)	(62.5 mL)	(62.5 mL)
Buffer (mL)	0.000			
Bullet (ML)	0.02M acetic acid		0.02M acetic acid	0.5M TFA
	(62.5mL, pH 3.22)	(62.5 mL)	(62.5 mL)	(62.5 mL)
Time	30h	7h	48h	3h
Temperature (°C)	100	70	50	70
Crude product	200 mg	260 mg	200 mg	25.0
(mg)			200 1119	250 mg
Pure product	160 mg	220	100	
(mg)	100 mg	230 mg	180 mg	188 mg
1.wt. of	2330	5200	2930	4640
product		2200	2930	4040

REFERENCES

- 1. MMWR, (1994) 43:23-26
- 2. MMWR (1989) 38:64-76
- Austrian R. (1981) Rev. Infect. Dis. 3 (Suppl):S1-S17
- Dagan et al., (1992) J. Am. Med. Assoc. 268:3328-3332)
- 5. H. Jennings et al, (1986), J. Immun. 127, 1011
- 6. H. Jennings et al. (J. Immunol., 1986, 137, 1708
- 7. Peeters et al., (1991) Infect. Immun. 59:3504-3510
- 8. Paradiso et al., (1993) Vaccine Res. 4:239-248
- 9. Schneerson et al. (1980) J. expt. Med. 152: 361
- 10. Barington et al. 1993, Infect. Immun. 61:432-438
- 12. Svennerholm, 1957, Biochem. Biophys. Acta. 604:24
- 13. Walker et al. (1987), Infect. Immun. 58:1184-1189
- 14. Yother and Briles (1992), J. Bacteriol. 174:601-609
- 15. Sampson et al., Infect. Immun. 62:319-324
- 16. Rokbi et al., (1995) FEMS Microbiol. Lett. 132: 277-283
- 17. Stimson et al., (1995), Mol. Microbiol. 17:1201-1214
- 18. McGuinness et al., (1990), J. Exp. Med. **171**:1871-1882
- 19. Wiertz et al., In Rivier, J and Marshall, G.R. (Ed.) Peptides: Chemistry, Structure and Biology, (Proceedings of the 11th American Peptide Symposium), ESCOM, Leiden, 1990, p.371-372
- 20. De Velasco et al., Infect. Immun. 63:961-968

- 21. McQueen et al., (1991) Pediatr. Res. 31 (part 2): Abstract 1056;
- 22. Eby et al., (1994) In Vaccine 94: Modern Approaches to Vaccines pp. 119-124. Edited by E. Norry, F. Brown, R.M. Chanock and Ginsberg, H.S. Cold Spring Harbor, N.Y. Cold Spring Harbor Press
- 23. Kandil et al., (1997) Glycoconjugate J. 14:13-17
- 24. Tam (1996, J. Immun. Meth. 196:1732)
- 25. Ridles et al., (1983) Methods Enzymol. 91: 49-60).
- 26. Sia et al, Scan. J. Immunol. 26: 683-690

CLAIMS

What we claim is:

- A multivalent immunogenic molecule, comprising:
- a carrier molecule containing at least one functional T-cell epitope, and

multiple different carbohydrate fragments each linked to the carrier molecule and each containing at least one functional B-cell epitope, wherein said carrier molecule imparts enhanced immunogenicity to said multiple carbohydrate fragments.

- 2. The molecule of claim 1 wherein said carbohydrate fragments are bacterial capsular oligosaccharide fragments.
- 3. The molecule of claim 2 wherein said capsular oligosaccharide fragments are capsular oligosaccharide fragments of *Streptocococcus pneumoniae*.
 - 4. The molecule of claim 3 wherein said capsular oligosaccharide fragments are derived from at least two capsular polysaccharides of *S. pneumoniae* serotypes 1, 4, 5, 6B, 9V, 14, 18C, 19F and 23F.
 - 5. The molecule of claim 4 wherein said carrier molecule is a T-cell epitope-containing protein or protein fragment of *S. pneumoniae*.
 - 6. The molecule of claim 2 wherein said capsular polysaccharide fragments are capsular oligosaccharids fragments of *Neisseria meningitidis*.
 - 7. The molecule of claim 6 wherein said oligosaccharide fragments are derived from at least two capsular polysaccharides of N. meningitidis Group A, B, C, W-135 and Y.
 - 8. The molecule of claim 7 wherein said carrier molecule is a T-cell epitope-containing protein or protein fragment of N. meningitidis.

- 9. The multivalent immunogenic molecule of claim 2 wherein said oligosaccharide fragments are sized from about 2 to about 5 kDa.
- 10. The multivalent immunogenic molecule of claim 1 wherein said carrier molecule is an oligopeptide containing at least one functional T-cell epitope.
- 11. The multivalent immunogenic molecule of claim 1 wherein said carrier molecule is a carrier protein.
- 12. The multivalent immunogenic molecule of claim 11 wherein said carrier protein is tetanus toxoid.
- 13. The multivalent immunogenic molecule of claim 1 wherein said carbohydrate fragments are fragments of carbohydrate-based tumor antigens.
- 14. The multivalent immunogenic molecule of claim 13 wherein the tumor antigen is Globo H, Le^{γ} or STn.
- 15. The multivalent immunogenic molecule of claim 1 produced by site-directed glycoconjugation.
- 16. A method of forming a multivalent immunogenic molecule, comprising:

treating at least two different carbohydrate molecules to obtain carbohydrate fragments thereof, and

conjugating each of the carbohydrate fragments to a carrier molecule.

- 17. The method of claim 16 wherein said carbohydrate molecules are capsular polysaccharides of a bacteria and oligosaccharide fragments of said capsular polysaccharide are selected sized from about 2 to about 5 kDa.
- 18. The method of claim 17 wherein said conjugating step is effected by random conjugation of said oligosaccharide fragments to said carrier molecule.
- 19. The method of claim 17 wherein said conjugating step is effected by site-directed glycoconjugation.
- 20. The method of claim 19 wherein said site-directed glycoconjugation is effected by first forming a

multiple antigen peptide as the carrier molecule anchored to a polymeric anchor wherein at least two carrier peptide segments have different terminal protecting groups, selectively removing one of the protecting groups, coupling a first one of the oligosaccharide fragments to the unprotected carrier peptide segment, selectively removing another of the protecting groups, coupling a second one of the oligosaccharide fragments to the unprotected carrier peptide segment, and cleaving the resulting molecule from the polymeric anchor.

- 21. An immunogenic composition for protection against meningitis, comprising:
- (1) a multiple pneumococcal glycoconjugate according to claim 3,
- (2) a multiple meningococcal glycoconjugate according to claim 6, and
- (3) an immunogenic synthetic PRP-peptide conjugate.
- 22. The immunogenic composition of claim 21 further comprising at least one additional antigen.
- The immunogenic composition of claim 21 wherein said multiple pneumococcal glycoconjugate according to 3 is derived from at least two capsular claim polysaccharides of S. pneumoniae serotypes 1, 4, 5, 6B, and 23F and said 14, 18C, 19F meningococcal conjugate according to claim 6 is derived from at least two capsular polysaccharides of Neisseria meningitidis serotypes A, B, C, Y and W-135.
- 24. A method of generating an immune response, which comprises administering to a host an immunoeffective amount of an immunogenic as claimed in claim 21.
- 25. A method of determining the presence of antibodies specifically reactive with a multivalent immunogenic molecule as claimed in claim 1, which comprises:

- (a) contacting the sample with said multivalent immunogenic molecule to produce complexes comprising the molecule and any said antibodies present in the sample specifically reactive therewith; and
- (b) determining production of the complexes.
- 26. The method of claim 25 wherein said multivalent immunogenic molecule is a multiple pneumococcal glycoconjugate as claimed in claim 3.
- 27. The method of claim 26 wherein said multiple pneumococcal glycoconjugate is derived from at least two capsular polysaccharides of S. pneumoniae serotypes 1, 4, 5, 6B, 9V, 14, 18C, 19F and 23F.
- 28. The method of claim 25 wherein said multiple pneumococcal glycoconjugate is derived from meningococcal glycoconjugate as claimed in claim 6.
- 29. The method of claim 28 wherein said multiple meningococcal glycoconjugate is derived from at least two capsular polysaccharides of *N. meningitidis* serotypes A, B, C, Y and W.
- 30. A method of determining the presence of multivalent immunogenic conjugate molecule of claim 1 in a sample, comprising the steps of:
 - (a) immunizing a subject with the immunogenic conjugate molecule to produce antibodies specific for the carbohydrate fragments;
 - (b) isolating the carbohydrate fragment specific antibodies;
 - (c) contacting the sample with the isolated antibodies to produce complexes comprising any said multivalent immunogenic molecules present in the sample and said isolated carbohydrate fragment specific antibodies; and
 - (d) determining production of the complexes.

- 31. The method of claim 30 wherein said multivalent immunogenic molecule is a multiple pneumococcal glycoconjugate as claimed in claim 3.
- 32. The method of claim 31 wherein said multiple pneumococcal glycoconjugate is derived from at least two capsular polysaccharides of S. pneumoniae serotypes 1, 4, 5, 6B, 9V, 14, 18C, 19F and 23F.
- 33. The method of claim 30 wherein said multiple pneumococcal glycoconjugate is derived from meningococcal glycoconjugate as claimed in claim 6.
- 34. The method of claim 33 wherein said multiple meningococcal glycoconjugate is derived from at least two capsular polysaccharides of *N. meningitidis* serotypes A, B, C, Y and W.
- 35. A diagnostic kit for determining the presence of a multivalent immunogenic molecule of claim 1 in a sample comprising:
 - (a) the multivalent immunogenic molecule;
 - (b) means for contacting the multivalent molecule with the sample to produce complexes comprising the multivalent molecule and any said antibodies present in the sample; and
 - (c) means for determining production of the complexes.
- 36. The kit of claim 35 wherein said immunogenic conjugate molecule of claim 1 is present in the form of the immunogenic composition of claim 21.
- 37. A diagnostic kit for determining the presence of a multivalent immunogenic molecule in a sample, comprising:
 - (a) antibodies specific for carbohydrate fragments of a multivalent immunogenic molecule of claim 1;
 - (b) means for contacting the antibodies with the sample to produce complexes comprising any said

multivalent immunogenic molecule and the antibodies; and

- (c) means for determining the production of the complex.
- 38. The kit of claim 37 wherein said antibodies are antibodies to the components of the immunogenic composition of claim 21.
- 39. An immunogenic composition as claimed in claim 21 when used as a medicament against meningitidis.
- 40. The use of the individual composition of an immunogenic composition of claim 21 in the manufacture of a medicament for protection against meningitidis.

1/12

RANDOM CONJUGATION OF PERIODATED S. PNEUMOCOCCALOLIGOSACCHARIDES TO TT

- 3. DIALYSIS
- 4. GEL-FILTRATION CHROMATOGRAPHY
- 5. PROTEIN ANALYSIS and CHO ANALYSIS

FIG.1

FIG.2A

3/12

FIG.2B

SUBSTITUTE SHEET (RULE 26)

Figure 3 shows the purification of the acid-hydrolysed oligosaccharides of S. pneumoniae 14 using a Sephadex-G100 gel permeation chromatography.

FIG.3

Figure 4 shows the purification of the acid-hydrolysed oligosaccharides of N. meningitidis group B using a Sephadex-G100 gel permeation chromatography.

FIG.4 SUBSTITUTE SHEET (RULE 26)

PCT/CA99/00157

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

PCT/CA99/00157

SUBSTITUTE SHEET (RULE 26)

10/12

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Inter mai Application No PCT/CA 99/00157

CLASSIFICATION OF SUBJECT MATTER PC 6 A61K39/385 A61K A61K39/116 C07K14/33 G01N33/569 G01N33/53 IPC 6 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO 96 40225 A (ALBERTA RES COUNCIL 1-12, ;MALCOLM ANDREW J (CA)) 19 December 1996 15 - 40see page 17, line 9-23 see page 18, line 21 - page 20, line 6 see page 22, line 7-17 see examples 7-9 see claims 1,2,5,7-9,12,17,18 X BAY S ET AL: "PREPARATION OF A MULTIPLE 1,13,14, ANTIGEN GLYCOPEPTIDE (MAG) CARRYING THE TN 16 ANTIGEN" JOURNAL OF PEPTIDE RESEARCH, vol. 49, no. 6, 1 June 1997, pages 620-625, XP002070406 see abstract see page 621, left-hand column, paragraph 3 - right-hand column, paragraph 1 see figure 2 Further documents are listed in the continuation of box C. Patent family members are listed in annex. X Special categories of cited documents: T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the International search Date of mailing of the international search report 10/06/1999 27 May 1999 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Covone, M Fax: (+31-70) 340-3016

1

Intr 'onal Application No PCT/CA 99/00157

C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/CA 99/00157
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	STEINHOFF M C ET AL: "A RANDOMIZED COMPARISON OF THREE BIVALENT STREPTOCOCCUS PNEUMONIAE GLYCOPROTEIN CONJUGATE VACCINES IN YOUNG CHILDREN: EFFECT OF POLYSACCHARIDE SIZE AND LINKAGE CHARACTERISTICS" PEDIATRIC INFECTIOUS DISEASE JOURNAL, vol. 13, no. 5, 1 May 1994, pages 368-372, XP000600692 see abstract see page 369, left-hand column, paragraph 2 see page 372, left-hand column, paragraph 3	1-4, 9-11, 15-20, 25-28
A	MALCOLM A J: "IMPROVED CONJUGATE VACCINES" JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT, vol. SUPPL. 17C, no. 11, 8 February 1993, page 90 XP000600698 see the whole document	1-29
A .	PARADISO P R ET AL: "Glycoconjugate vaccines: future combinations." DEVELOPMENTS IN BIOLOGICAL STANDARDIZATION, (1996) 87 269-75. REF: 12 JOURNAL CODE: E7V. ISSN: 0301-5149., XP002103951 Switzerland see the whole document	1-29
P,X	WO 98 43677 A (CANTACUZENE DANIELE ;BAY SYLVIE (FR); LECLERC CLAUDE (FR); LO MAN) 8 October 1998 see page 4, line 21 - page 5, line 5 see page 11, line 6-27 see page 14, line 14-19 see page 21, line 25 - page 22, line 6 see example 2 see figure 1	1-40
	continuation of second sheet) (July 1992)	

1

I national application No.

PCT/CA 99/00157

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: 24 because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Although claim 24 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Claims Nos.: 24

Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy

information on patent family members

Intr Ional Application No PCT/CA 99/00157

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9640225	A	19-12-1996	CA	2153730 A	13-01-1997
			CA	2153733 A	13-01-1997
			US	5866132 A	02-02-1999
			US	5695768 A	09-12-1997
			AU	5994496 A	30-12-1996
			CZ	9703278 A	18-02-1998
			EP	0831894 A	01-04-1998
			NO	974727 A	08-12-1997
			US	5807553 A	15-09-1998
			US	5855901 A	05-01-1999
WO 9843677		08-10-1998	AU	6832398 A	22-10-1998

THIS PAGE BLANK (USPTO)