Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica – Canale 1

Simulazione d'esame n. 2

COGNOME: NOME: MATRICOLA:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Scrivere cognome e nome su questo testo sui fogli protocollo
- 2) Bisogna consegnare entrambi il testo del compito anche in caso di ritiro
- 3) Le risposte sbagliate <u>saranno penalizzate</u>
- 4) Saranno considerate solo le risposte riportate nella tabella soprastante (Scrivere in maniera chiara e ordinata)
- 5) Il tempo a disposizione è di 35 minuti
- 1) Quale dei seguenti drogaggi porta a un semiconduttore con n = 10¹⁵ elettroni?
 - a) 10¹⁵ atomi accettori
 - b) 5·10¹⁵ atomi accettori e 4·10¹⁵ atomi donatori
 - c) 5·10¹⁵ atomi donatori e 4·10¹⁵ atomi accettori
- 2) In un Silicio intrinseco a temperature ambiente (300K), se si rompe un legame covalente
 - a) Si crea una coppia elettrone/lacuna
 - b) Si crea un elettrone libero e non si creano lacune libere
 - c) Si crea una lacuna libera e non si creano elettroni liberi
- 3) La lacuna nei semiconduttori
 - a) E' una particella reale con massa e carica positiva.
 - b) E' una particella fittizia, e serve per meglio rappresentare il movimento delle cariche
 - c) Ha una massa equivalente uguale a quella agli elettroni;
- 4) Una Giunzione pn, con regioni "p"e "n" pesantemente drogate, rispetto ad una con regioni poco drogate:
 - a) Ha un campo elettrico massimo (in modulo) maggiore;
 - b) Ha un campo elettrico massimo (in modulo) minore
 - c) Ha un campo elettrico massimo uguale;
- 5) Quando si realizza una giunzione pn si forma una regione di carica spaziale costituita da:
 - a) drogante ionizzato con carica positiva nel lato p e drogante ionizzato con carica negativa nel lato n
 - b) drogante ionizzato con carica negativa nel lato p e drogante ionizzato con carica positiva nel lato n
 - c) elettroni in eccesso nel lato n e lacune in eccesso nel lato p.
- 6) In una giunzione pn fortemente polarizzata in inversa:
 - a) Il breakdown è sempre distruttivo
 - b) Il breakdown può essere distruttivo o no a seconda dei meccanismi che lo provocano (valanga o zener)
 - c) La corrente è sempre nulla.
- 7) In un nMOSFET la corrente di Gate:
 - a) Aumenta per V_{GS}>V_{TH}
 - b) Aumenta per V_{GS}>0
 - c) E' sempre uguale a zero (a meno di una piccola corrente di perdita)
- 8) In un nMOSFET all'aumentare della tensione V_{GS}, con V_{GS}>V_{TN} la corrente di drain:
 - a) Aumenta

Simulazione d'esame n.2

- b) Diminuisce
- c) Aumenta per V_{DS}<0, diminuisce per V_{DS}>0
- 9) Che differenza c'è tra un nMOSFET a svuotamento e ad arricchimento?
 - a) Un nMOSFET ad arricchimento si accende per $V_{GS} < V_{TN}$ e quello a svuotamento per $V_{GS} > V_{TN}$.
 - b) Un nMOSFET ad arricchimento si accende per $V_{GS} > V_{TN}$ e quello a svuotamento per $V_{GS} < V_{TN}$.
 - c) Un nMOSFET ad arricchimento ha $V_{TN} > 0$ e quello a svuotamento ha $V_{TN} < 0$.
 - 10) Dato il circuito in figura in cui il diodo ha tensione di accensione V_{ON} = 0.7V. La corrente I vale:
 - a) 0.7mA
 - b) 0A
 - c) -7mA

- 11) Dato il circuito in figura in cui il MOSFET ha tensione di soglia 4V. In che regione di funzionamento lavora il MOSFET?
 - a) interdizione
 - b) lineare
 - c) saturazione

- 12) Dato il circuito in figura con $V_s=10V$, $R_1=2k\Omega$, $R_2=2k\Omega$, $V_{ON}=1V$ e una tensione zener $V_Z=4V$. Quanto vale la tensione V_O ?
 - a) 4V
 - b) 4V
 - c) 10 V

- 13) Dato il MOSFET in figura quale delle seguenti affermazioni è vera
 - a) Il MOSFET, se acceso, funziona sicuramente in zona lineare
 - b) Il MOSFET è sicuramente spento
 - c) Il MOSFET, se acceso, funziona sicuramente in zona di saturazione

- 14) Dato il circuito in figura con V_S = 9V, R=1k Ω , V_{ON} = 1V e una tensione V_Z = 4V. Quale è lo stato del diodo
 - a) ON
 - b) OFF
 - c) Breakdown Zener

- 15) Dato il circuito in figura con i_s = 1mA, R₁ =1k Ω , , R₂ =1k Ω , g_m=1mS. Quale vale I₂?
 - a) 1mA
 - b) -1mA
 - c) -2mA

