Proposition (4.3). Let $E \in \mathfrak{M}$, and let $f : E \to \mathbb{R}$ with $m(E) < \infty$ be a bounded, measurable function. Let ϕ, ψ be simple functions. Then

$$\inf \left\{ \int \psi : \psi \ge f \right\} = \sup \left\{ \int \phi : \phi \le f \right\}.$$

if and only if f is measurable.

Proof. ¹ We will need to show two implications.

 (\Leftarrow) First, suppose that f is measurable. Fix any $n \in \mathbb{N}$ and define the set

$$E_k = \left\{ x : \frac{k-1}{n} M < f(x) \le \frac{kM}{n} \right\}$$

with $k \in [-n, n]$ and |f(x)| < M. Note that because f is measurable, each E_k is a measurable set and also we have that $\bigcup_{k=-n}^{n} E_K = E$. Define the upper and lower sequence of simple functions, $\{\psi_n\}$ and $\{\phi_n\}$, respectively, as

$$\psi_n(x) = \sum_{k=-n}^n \frac{M}{n} \cdot k \cdot \chi_{E_k}(x)$$
 and $\phi_n = \sum_{k=-n}^n \frac{M}{n} \cdot (k-1) \cdot \chi_{E_k}(x)$.

So for any $x \in E$, $\phi(x) \le f(x) \le \psi(x)$. Thus,

$$\inf_{\psi \ge f} \int_E \psi \le \int_E \psi = \frac{M}{n} \sum_{k=-n}^n k \cdot m(E_k)$$

and

$$\sup_{\phi \le f} \int_E \phi \ge \int_E \phi = \frac{M}{n} \sum_{k=-n}^n (k-1) \cdot m(E_k).$$

Putting these two inequalities together, we can show that

$$\inf_{\psi \ge f} \int_{E} \psi - \sup_{\phi \le f} \int_{E} \phi \le \int_{E} \psi - \phi$$

$$= \sum_{k=-n}^{n} (\psi_{n} - \phi_{n}) m(E_{k})$$

$$= \frac{M}{n} m(E).$$

Since $n \in \mathbb{N}$ is fixed, this quantity is zero. Thus

$$\inf_{\psi \geq f} \int_E \psi - \sup_{\phi \leq f} \int_E \phi = 0 \Rightarrow \inf_{\psi \geq f} \int_E \psi = \sup_{\phi \leq f} \int_E \phi$$

completing this direction.

¹Proof is on pages 79-80.

 (\Rightarrow) Conversely, suppose that

$$\inf_{\psi \ge f} \int_E \psi = \sup_{\phi \le f} \int_E \phi.$$

By definition of the infimum and supremum, there exists sequences of simple functions $\{\phi_n\}$ and $\{\psi_n\}$ such that $\phi_n \leq f \leq \psi_n$ for all $n \in \mathbb{N}$ with

$$\int_{E} \phi_n - \psi_n < \frac{1}{n}.$$

Define $\phi^* = \sup_n \phi_n$ and $\psi^* = \inf_n \psi(n)$. Since simple functions are measurable functions, by Proposition 3.20, ϕ^* and ψ^* are measurable as well and $\phi_n \leq f \leq \psi_n$.

We claim that $f = \phi^*$ a.e. Consider the set

$$\Delta = \{x : \phi^*(x) < \psi^*(x)\}.$$

Let $\nu \in \mathbb{N}$ and let

$$\Delta_{\nu} = \left\{ x : \phi^*(x) < \psi^*(x) - \frac{1}{\nu} \right\}$$

which means that

$$\Delta = \bigcup_{\nu \in \mathbb{N}} \Delta_{\nu}.$$

For any $n \in \mathbb{N}$,

$$\Delta_{\nu} \subset \left\{ x : \phi(x) < \psi(x) - \frac{1}{\nu} \right\}.$$

Thus, we have that, for any $n \in \mathbb{N}$,

$$m(\Delta_{\nu}) = \int \chi_{\Delta_{\nu}} = \nu \int \frac{1}{\nu} \cdot \chi_{\Delta_{\nu}}$$

$$\leq \nu \int_{\Delta_{\nu}} (\psi_{n} - \phi_{n})$$

$$< \mu \int_{E} \frac{1}{n}$$

$$= \frac{\nu}{n} m(E).$$

Because ν is fixed and n is arbitrary, $m(\Delta_{\nu}) = 0$ which implies that $m(\Delta) = 0$. So then $\phi^* = \psi^*$ except on a set of measure zero, and $\phi^* = f$ except on a set of measure zero i.e., $f = \phi^*$ a.e. implying that f is measurable by Proposition 3.21.

Having completed both directions, this completes the proof and shows the well-definedness of Lebesgue integration. \Box

Proposition (4.4). Let f be a bounded function defined on [a, b]. If f is Riemann integrable, then it is measurable and

$$R \int_a^b f(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x.$$

Proof. This proof is on page 82 of Royden (very simple proof, in fact).

Proposition (4.5). If f and g are bounded measurable functions defined on a set E of finite measure, then:

i. For any $a, b \in \mathbb{R}$,

$$\int_{E} (af + bg) = a \int_{E} f + b \int_{E} g.$$

ii. If f = q a.e., then

$$\int_{E} f = \int_{E} g.$$

iii. If $f \leq g$ almost everywhere. then

$$\int_{E} f \le \int_{E} g.$$

Hence

$$\left| \int_{E} f \right| \le \int_{E} |f| \, .$$

iv. If $A \leq f(x) \leq B$, then

$$Am(E) \le \int_E f \le Bm(E).$$

v. If A and B are disjoint measurable sets of finite measure

Proposition (4.6, Bounded Convergence Theorem). Let $\{f_n\}$ be a sequence of measurable functions defined over a measurable set E of finite measure. Suppose there is $M \in \mathbb{R}$ such that $|f_n(x)| \leq M$ for all $x \in E$ and for all $n \in \mathbb{N}$. If $f_n(x) \to f(x)$ pointwise (i.e., $\lim_{n \to \infty} f_n = f(x)$), then

$$\int_{E} f_{n} \to \int_{E} f \Leftrightarrow \lim_{n \to \infty} \int_{E} f_{n}(x) = \int_{E} f.$$

Proof. Let $\varepsilon > 0$ be chosen. By Proposition 3.23 (Weak Ergoroff's Theorem), there exists $N \in \mathbb{N}$ and $A \subset E$ with

$$m(A) = \tilde{\delta} < \frac{\varepsilon}{4M}$$

such that for all $x \in E \setminus A$ and for all n > N,

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2 \cdot m(E)} = \tilde{\varepsilon}.$$

Thus, we can show the following:

$$\left| \int_{E} f_{n} - \int_{E} f \right| = \left| \int_{E} f_{n} - f \right| \le \int_{E} |f_{n} - f|$$

$$= \int_{A} |f_{n} - f| + \int_{E \setminus A} |f_{n} - f|$$

$$\le 2M \cdot m(A) + \int_{E \setminus A} |f_{n} - f|$$

$$\le 2M \cdot m(A) + \frac{\varepsilon \cdot m(E \setminus A)}{2 \cdot m(E)}$$

$$< 2M \cdot \frac{\varepsilon}{4M} + \frac{\varepsilon \cdot m(E \setminus A)}{2 \cdot m(E)}$$

$$\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

and so we are done!!

Proposition (4.7). Let f be bounded on [a, b]. Then f is Riemann integrable if and only the set of discontinuities has measure zero.