

Teoría Computacional

Proyecto Máquina de Turing (MT)

Descripción de la práctica

 Realización de un programa que simule la ejecución de una Máquina de Turing (MT).

Definición formal de Máquina de Turing

- Una *Máquina de Turing* es una tupla $T = (Q, \Sigma, \Gamma, q_0, \delta, B, F)$
 - Q es un conjunto finito de estados en el que no está incluido los estados de paro h_a y h_r .
 - Σ es el alfabeto de entrada con el que se forman las cadenas a procesar.
 - Γ es el alfabeto de la cinta que contiene a Σ pero no al espacio en blanco (#).
 - q_0 es el estado inicial y pertenece a Q.
 - La función de transición δ : $Q \times (\Gamma \cup \{\#\}) \rightarrow Q \cup \{h_a, h_r\} \times (\Gamma \cup \{\#\}) \{\#\}) \times \{R, L, S\}$ $\delta(q, X) = (r, Y, R)$ significa que si la máquina se encuentra en el estado q y leyendo el símbolo X en la cinta, entonces la máquina reemplaza X por Y, se mueve al estado r y mueve la cabeza lectora en la dirección R.
 - B es el símbolo blanco o espacio en blanco.
 - F es el conjunto de estados finales.

Notación gráfica

• $\delta(q, X) = (r, Y, R)$ se puede representar gráficamente de la siguiente manera

Configuración inicial

Descripción de la práctica

- MT que acepta el lenguaje: $\{0^n1^n \mid n \geq 1\}$
- La especificación formal de la máquina de Turing M es:

$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

• donde δ se especifica en la tabla:

Estado	0	1	Símbolo X	Y	В
q_0	(q_1,X,R)	_	_	(q_3, Y, R)	_
q_1	$(q_1, 0, R)$	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	$(q_2, 0, L)$	_	(q_0,X,R)	(q_2, Y, L)	_
q_3	_	_	_	(q_3, Y, R)	(q_4,B,R)
q_4	_	_	_	_	_

Ejemplo de una cadena aceptada

- He aquí un ejemplo de un cálculo de aceptación de M.
- Su entrada es 0011.
- Inicialmente, M se encuentra en el estado q0, señalando al primer 0, es decir, la configuración inicial de M es q00011. La secuencia completa de movimientos de M es:

$$q_00011 \vdash Xq_1011 \vdash X0q_111 \vdash Xq_20Y1 \vdash q_2X0Y1 \vdash$$

 $Xq_00Y1 \vdash XXq_1Y1 \vdash XXYq_11 \vdash XXq_2YY \vdash Xq_2XYY \vdash$
 $XXq_0YY \vdash XXYq_3Y \vdash XXYYq_3B \vdash XXYYBq_4B$

Ejemplo de cadena rechazada

- Veamos otro ejemplo.
- Consideremos lo que hace M para la entrada 0010, que no pertenece al lenguaje aceptado.

$$q_00010 \vdash Xq_1010 \vdash X0q_110 \vdash Xq_20Y0 \vdash q_2X0Y0 \vdash Xq_00Y0 \vdash XXq_1Y0 \vdash XXYq_10 \vdash XXY0q_1B$$

• El comportamiento de M para 0010 se parece al comportamiento para 0011, hasta que llega a la configuración XXYq10 M y señala al 0 final por primera vez. M tiene que moverse hacia la derecha permaneciendo en el estado q1, lo que corresponde a la configuración XXY0q1B. Sin embargo, en el estado q1, M no realiza ningún movimiento si el símbolo de la entrada al que señala es B; por tanto, M deja de funcionar y no acepta su entrada.

Descripción de la práctica

- El programa simulará el funcionamiento de una máquina de Turing (puede ser cualquier lenguaje).
- Se programará la tupla completa con las transiciones correspondientes.
- Se deberá leer una cadena de entrada para validarla.
- Imprimir el comportamiento de la cinta con sus movimientos con cada símbolo leído de la cadena hasta que se detenga la MT.
- Al finalizar deberá indicar si la cadena fue aceptada o rechazada.

Requisitos

- El programa deberá estar escrito en cualquier lenguaje de programación (De preferencia C).
- Se programará por equipos de 4 personas o de forma individual (Puede ser cualquier variante de MT).
- El código deberá estar documentado.
- Se compilará y ejecutará el código en el laboratorio de cómputo con 3 avances hasta la entrega final. Deberá estar todo el equipo completo para ser evaluado.
- Una vez que se dio el VoBo se deberá mandar el reporte del proyecto al correo <u>luz sg@hotmail.com</u> con las características de la rúbrica de reporte.
- Nota: Verificar en el dropbox la rúbrica para la entrega de reporte y las fechas para la entrega de la Máquina de Turing.