Fast Coalgebraic Bisimilarity Minimization

Jules Jacobs Radboud University Thorsten Wißmann

Radboud University

 \rightarrow

Friedrich-Alexander-Universität Erlangen-Nürnberg

The Automaton Zoo

Deterministic finite automata, tree automata, (labeled) transition systems, weighted and probabilistic automata, Markov decision processes, ...

The Automaton Zoo

Deterministic finite automata, tree automata, (labeled) transition systems, weighted and probabilistic automata, Markov decision processes, ...

Automaton Minimization

Find and merge behaviorally equivalent states

The Automaton Zoo

Deterministic finite automata, tree automata, (labeled) transition systems, weighted and probabilistic automata, Markov decision processes, ...

Automaton Minimization

Find and merge behaviorally equivalent states

Coalgebraic Bisimilarity Minimization

Algorithms that work for a general class of *F*-automata

Our contribution

a fast and general algorithm for minimizing automata

Our contribution

a fast and general algorithm for minimizing automata

- ► *General*: works for any computable coalgebra
- ▶ *Decent asymptotic complexity:* $O(\phi_F \cdot m \log n)$
- ► *Fast in practice*: no penalty for generality
- ► Low memory usage: important for large automata

Examples of Coalgebraic Automata

Automaton type	Equivalence	Functor $F(X)$	
DFA	Language Equivalence	$2 \times A^X$	
Transition Systems	Strong Bisimilarity	$\mathfrak{P}(\boldsymbol{X})$	
LTS	Strong Bisimilarity	$\mathcal{P}(\mathbf{A} \times \mathbf{X})$	
Weighted Systems	Weighted Bisimilarity	$M^{(X)}$	
Markov Chain	Probabilistic Bisimilarity	$A \times \mathcal{D}(X)$	
MDP	Probabilistic Bisimilarity	$\mathcal{P}(\mathcal{D}(\boldsymbol{X}))$	
Weighted Tree Automata	Backwards Bisimilarity	$M^{(\Sigma X)}$	
Monotone Neigh. Frames	Monotone Bisimilarity	$\mathcal{N}(\boldsymbol{X})$	
:	:	:	

Automaton types compose: $F \circ G$, F + G, $F \times G$, . . .

DFA	Transition system	Markov chain
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$F(X) = \{F, T\} \times X \times X$	$F(X) = \mathcal{P}_{f}(X)$	$F(X) = \{F, T\} \times \mathcal{D}(X)$
$egin{aligned} {f 1} &\mapsto ({\sf F},{f 2},{f 3}) \ {f 2} &\mapsto ({\sf F},{f 4},{f 3}) \ {f 3} &\mapsto ({\sf F},{f 5},{f 3}) \ {f 4} &\mapsto ({\sf T},{f 5},{f 4}) \ {f 5} &\mapsto ({\sf T},{f 4},{f 4}) \end{aligned}$	$1 \mapsto \{2, 3, 4\}$ $2 \mapsto \{1, 4\}$ $3 \mapsto \{3, 4, 5\}$ $4 \mapsto \{4, 5\}$ $5 \mapsto \{\ \}$	

DFA	Transition system	Markov chain
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$F(X) = \{F, T\} \times X \times X$	$F(X) = \mathcal{P}_{f}(X)$	$F(X) = \{F, T\} \times \mathcal{D}(X)$
$ \begin{array}{c} 1 \mapsto (F, 2, 3) \\ 2 \mapsto (F, 4, 3) \\ 3 \mapsto (F, 5, 3) \\ 4 \mapsto (T, 5, 4) \\ 5 \mapsto (T, 4, 4) \end{array} $	$ \begin{array}{c} 1 \mapsto \{2, 3, 4\} \\ 2 \mapsto \{1, 4\} \\ 3 \mapsto \{3, 4, 5\} \\ 4 \mapsto \{4, 5\} \\ 5 \mapsto \{\} \end{array} $	$ \begin{array}{l} \textbf{1} \mapsto (F, \{2 \colon \frac{1}{3}, 3 \colon \frac{2}{3}\}) \\ \textbf{2} \mapsto (F, \{2 \colon \frac{1}{2}, 4 \colon \frac{1}{2}\}) \\ \textbf{3} \mapsto (F, \{2 \colon \frac{1}{4}, 4 \colon \frac{1}{2}, 5 \colon \frac{1}{4}\}) \\ \textbf{4} \mapsto (T, \{4 \colon 1\}) \\ \textbf{5} \mapsto (F, \{3 \colon \frac{1}{2}, 4 \colon \frac{1}{2}\}) \end{array} $
2 ≡ 3, 4 ≡ 5	1 ≡ 2, 3 ≡ 4	2 ≡ 3 ≡ 5

What is coalgebraic bisimilarity minimization?

The input:

- ightharpoonup a functor F(X) describes automaton type
- ▶ a coalgebra $t : C \rightarrow F(C)$ the automaton

What is coalgebraic bisimilarity minimization?

The input:

- ightharpoonup a functor F(X) describes automaton type
- ▶ a coalgebra $t : C \rightarrow F(C)$ the automaton

The output:

- ▶ a partition $p: C \rightarrow C'$
 - the equivalence classes of bisimilar states
- ightharpoonup s.t. $p(x) = p(y) \implies Fp(t(x)) = Fp(t(y))$
- ightharpoonup |C'| as small as possible

Sketch of our algorithm

- Assume all states are equivalent
- ► Pick an equivalence class
- ► Split equivalence class by *signature* (*normalised* outgoing transitions)
- ► Iterate until convergence

Key points

- ▶ Only recompute signatures of *changed* states
- ▶ Do not loop over *unchanged* states

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - ► Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ▶ Set all the state numbers to 1.
- ► Pick equivalence class
 - ► Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - ► Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - ► Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - ► Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - ► Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - ► Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - ► Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

- ► Set all the state numbers to 1.
- ► Pick equivalence class
 - ► Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- ► Iterate until all states have a signature.

Caveat

The previous examples are over-simplified, but the real algorithm is not complicated.

- ► The only complex part is not looping over the unchanged states
- ► See our paper for details

- ► Ability to (re)compute signatures
- ► Ability to determine predecessors

- Ability to (re)compute signatures
- ► Ability to determine predecessors

- Ability to (re)compute signatures
- ► Ability to determine predecessors

Complexity: $O(m \log n)$ signature computations

► How many times does a state's number change?

- Ability to (re)compute signatures
- Ability to determine predecessors

- ► How many times does a state's number change?
 - ► At most $O(\log n)$ times, if we re-use the old state number for the largest new equivalence class ("Hopcroft's trick")

- Ability to (re)compute signatures
- Ability to determine predecessors

- ► How many times does a state's number change?
 - ► At most $O(\log n)$ times, if we re-use the old state number for the largest new equivalence class ("Hopcroft's trick")
- ▶ How many times does a signature get computed?

- ► Ability to (re)compute signatures
- ► Ability to determine predecessors

- ► How many times does a state's number change?
 - ► At most $O(\log n)$ times, if we re-use the old state number for the largest new equivalence class ("Hopcroft's trick")
- ▶ How many times does a signature get computed?
 - At most $O(\log n)$ times per edge

- ► Ability to (re)compute signatures
- ► Ability to determine predecessors

- ► How many times does a state's number change?
 - ► At most $O(\log n)$ times, if we re-use the old state number for the largest new equivalence class ("Hopcroft's trick")
- ▶ How many times does a signature get computed?
 - At most $O(\log n)$ times per edge
- At most $O(m \log n)$ signature computations

- ► Ability to (re)compute signatures
- ► Ability to determine predecessors

- ► How many times does a state's number change?
 - ► At most $O(\log n)$ times, if we re-use the old state number for the largest new equivalence class ("Hopcroft's trick")
- ▶ How many times does a signature get computed?
 - ightharpoonup At most $O(\log n)$ times per edge
- At most $O(m \log n)$ signature computations
 - ► Total complexity: usually $O(km \log n)$

- ► Ability to (re)compute signatures
- Ability to determine predecessors

- ► How many times does a state's number change?
 - ► At most $O(\log n)$ times, if we re-use the old state number for the largest new equivalence class ("Hopcroft's trick")
- How many times does a signature get computed?
 - At most $O(\log n)$ times per edge
- At most $O(m \log n)$ signature computations
 - ▶ Total complexity: usually $O(km \log n)$
- What about the complexity of bookkeeping?
 - ► See paper for n-way partition refinement data structure
 - ► This is the only complex part of the algorithm

Comparison

	CoPaR	DCPR	mCRL2	Boa
Complexity	$O(m \log n)$	$O(\phi_F n^2)$	$O(m \log n)$	$O(\phi_F m \log n)$
Generality	Zippable	Coalg	LTS+	Coalg
Language	Haskell	Haskell	C++	Rust

beno	hmark		time (s) memory		y (MB)	
type	n	CoPaR	DCPR	Boa	DCPR	Boa
£	1639440	232	84	1.12	514×32	196
fms	4459455	_	406	4.47	$1690^{\times 32}$	582
rulan	607727	105	855	0.28	147×32	42
wlan	1632799	_	2960	0.79	379×32	93
Tarto (147)	152107	566	79	0.74	642×32	83
wta(W)	944250	_	675	11.96	6786×32	1228
wta(Z)	156913	438	82	0.48	677×32	92
Wla(L)	1007990	_	645	16.75	5644×32	1325
wta(2)	154863	449	160	0.81	621×32	79
	1300000	_	1377	23.35	7092×32	1647

What is the cost of generality?

be	benchmark		time (s)		/ (MB)
type	n	mCRL2	Boa	mCRL2	Boa
	2416632	13.9	1.4	1780	249
cwi	7838608	214.2	15.8	5777	814
	33949609	282.2	31.5	16615	2776
	6020550	33.8	3.1	2124	520
vasy	11026932	51.6	6.1	2768	619
	12323703	56.9	7.0	3103	734

For *mCRL2*, we pick its best algorithm and self-reported time. For *Boa*, we report wall-clock time.

Conclusion

Minimization can be generic and fast

Conclusion

Minimization can be generic and fast

Future

Other notions of equivalence (*e.g.*, branching). Specialization by monomorphisation. Integration into Storm (with Sebastian Junges).

(P.S., I'm looking for a postdoc position)