Fundamentos matemáticos y aplicaciones prácticas de las Redes Generativas Antagónicas (GANs)

Nicolás Vives Vicente

Universidad de Alicante

Curso 2024/2025

Índice

- Preliminares
- 2 Redes Generativas Antagónicas
 - Modelaje, estructura y entrenamiento
 - Limitaciones y problemas en la práctica
 - DCGAN
- 3 Desarrollo en python de una GAN
- 4 Conclusiones

Preliminares

Neurona artificial

Regresión Lineal

$$\hat{y} = \omega_1 x_1 + \omega_2 x_2 + \dots + \omega_p x_p + b$$

Neurona artificial

A raíz del modelo de regresión lineal, se define una neurona artificial como

$$\hat{y} = f(\omega_1 x_1 + \omega_2 x_2 + \dots + \omega_p x_p + b) = f(\omega \cdot x + b)$$

f es la función de activación para romper la linealidad.

Redes Neuronales

Figura: Estructura de una red neuronal artificial.

Redes Generativas Antagónicas

Modelaje

- Datos originales con distribución p_{data}
- $lue{}$ Muestras z provenientes de una variable de con distribución p_z

Generador

G red neuronal con parámetros $\theta_g \in \Theta_G$ que produce $G(z; \theta_g)$

lacksquare G genera una distribución ho_g

Discriminador

D red neuronal con parametros $\theta_d \in \Theta_D$ produce $D(x, \theta_d) \in [0, 1]$

Estructura de una GAN

Función de pérdida

$$\mathcal{L}(D,G) = -\mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] - \mathbb{E}_{z \sim p_z(z)} \left[\log \left(1 - D(G(z)) \right) \right]$$

Objetivos del discriminador:

- Si x proviene de p_{data} : se busca $D(x) \rightarrow 1$, equivalente a minimizar $-\log(D(x))$.
- Si x = G(z) proviene de p_g : se busca $D(x) = D(G(z)) \rightarrow 0$, equivalente a minimizar $-\log(1 D(G(z)))$.

Objetivos del generador:

■ Si x = G(z) proviene de p_g : se busca $D(x) = D(G(z)) \rightarrow 1$ equivalente a maximizar $-\log(1 - D(G(z)))$.

Problema minimax

Problema minimax

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[\log (1 - D(G(z))) \right]$$

Discriminador óptimo

Para G fijo, el discriminador D óptimo es:

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

$$\begin{split} C(G) &= \max_{D} V(G, D) \\ &= \mathbb{E}_{x \sim p_{data}}[\log D_G^*(x)] + \mathbb{E}_{z \sim p_z}[\log(1 - D_G^*(G(z)))] \\ &= \mathbb{E}_{x \sim p_{data}}[\log D_G^*(x)] + \mathbb{E}_{x \sim p_g}[\log(1 - D_G^*(x))] \\ &= \mathbb{E}_{x \sim p_{data}}\left[\log \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}\right] + \mathbb{E}_{x \sim p_g}\left[\log \frac{p_g(x)}{p_{data}(x) + p_g(x)}\right] \end{split}$$

Mínimo de C(G)

El mínimo global de C(G) se alcanza si y solo si $p_g = p_{data}$. En ese punto, C(G) toma el valor $-\log 4$.

En la teoría, el modelo se formula como un problema de optimización sobre las funciones G y D. Sin embargo, en la práctica:

- No exploramos todas las posibles funciones G y D para encontrar el óptimo del problema.
- La distribución p_g solo se conoce de manera implícita a través del generador.

Como $G = G(z; \theta_g)$ y $D = D(x; \theta_g)$ son redes neuronales, la optimización se lleva a cabo ajustando los parámetros $\theta_g \in \Theta_G$ y $\theta_d \in \Theta_D$.

Convergencia del Algoritmo

Decimos que un modelo tiene suficiente capacidad cuando es capaz de representar cualquier función.

Convergencia del Algoritmo

Supongamos que se cumplen las hipótesis:

- a) Los modelos de G y D tienen suficiente capacidad.
- b) En cada paso del Algoritmo, el discriminador es capaz de alcanzar su valor óptimo dado cualquier G.
- c) La distribución p_g se actualiza con el fin de minimizar la expresión

$$\mathbb{E}_{x \sim p_{data}}[\log D_G^*(x)] + \mathbb{E}_{x \sim p_g}[\log(1 - D_G^*(x))]$$

Entonces, p_g converge a p_{data} , tomando así la distribución generada la forma de la distribución de los datos.

Limitaciones y problemas en la práctica

Desvanecimiento de gradientes (Vanishing gradients)

■ **Problema**: Cuando *D* es mucho mejor que *G* se tiene que

$$\left\|\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(1 - D(G(z^{(i)})))\right\| \to 0$$

- Consecuencias:
 - Actualizaciones de θ_g insignificantes
 - G y D no consiguen mejorar
- Posibles soluciones:
 - Maximizar log(D(G(z))) en lugar de minimizar log(1 D(G(z)))
 - Ajustar el hiperparámetro k y las learning rates
- Conclusiones:
 - *D* debe ser bueno pero no perfecto
 - No es un problema fácil de solucionar y continúa apareciendo en modelos de GANs actuales.

Colapso de modo (Mode Collapse)

Colapso de modo (Mode Collapse)

■ **Problema**: *G* transforma cualquier vector de ruido *z* en elementos prácticamente idénticos del espacio de datos.

Causas:

- Capacidad insuficiente del modelo
- Sobreentreno del discriminador
- Ausencia de variedad en el dataset
- Función de pérdida y parámetros inadecuados

Soluciones:

- Aumentar la complejidad del generador
- Ajustar correctamente al discriminador
- Correcta elección de la función de pérdida e hiparámetros

DCGAN

Convolución

Llamamos Kernel de tamaño 2N+1 y Kernel no centrado de tamaño N a las matrices:

$$\begin{bmatrix} k_{-N,-N} & \cdots & k_{-N,N} \\ \vdots & \ddots & \vdots \\ k_{N,-N} & \cdots & k_{N,N} \end{bmatrix} \qquad \begin{bmatrix} k_{1,1} & \cdots & k_{1,N} \\ \vdots & \ddots & \vdots \\ k_{N,1} & \cdots & k_{N,N} \end{bmatrix}$$

$$\begin{bmatrix} k_{1,1} & \cdots & k_{1,N} \\ \vdots & \ddots & \vdots \\ k_{N,1} & \cdots & k_{N,N} \end{bmatrix}$$

Convolución entre M y K

$$Y(i,j) = \sum_{u=-N}^{N} \sum_{v=-N}^{N} M(i-u,j-v) K(u,v)$$

- M(i,j) representa la entrada en la posición (i,j) de la matriz M.
- K(s,t) es la posición (s,t) del kernel K. Centrado en $k_{0,0}$.
- Y(i,j) es la salida en la posición (i,j).

Convolución

Convolución traspuesta entre Y y K

- \blacksquare Y una matriz de tamaño $m \times n$
- Y(i,j) la entrada en la posición (i,j) de la matriz Y.
- K kernel no centrado de tamaño N
- K(u, v) la posición (u, v) del kernel K.
- *s* el valor del hiperparáemtro *stride*

Para cada Y(i,j) se define M_q de dimensión $s(m-1) + N \times s(n-1) + N$:

$$M_q(s(i-1)+u,s(j-1)+v) = \sum_{u=1}^{N} \sum_{v=1}^{N} Y(i,j)K(u,v)$$

los elementos de la matriz no definidos por esta fórmula toman el valor 0.

$$M = \sum_{q=1}^{m \times n} M_q$$

Convolución traspuesta

Kernel

Output

Output

=	0	0			1
	0	0			2

	0	0	1	4
_	0	0	2	3
_	2	8	3	12
	4	6	6	9

Estructura del Generador de una DCGAN

Desarrollo en python de una GAN

Modelo y dataset

- Modelo: DCGAN (Deep Convolutional GAN)
- Dataset: Fashion-MNIST
 - 70.000 imágenes (60k entrenamiento, 10k test)
 - Resolución: 28×28 píxeles (escala de grises, 1 canal)
 - 10 categorías: camiseta, pantalón, suéter, vestido, abrigo, sandalia, camisa, zapatilla deportiva, bolso, botín.

Estructura del generador

Tipo de capa	Dimensiones del Output	Parámetros
Dense	6272	633 472
Reshape	(7, 7, 128)	0
Batch Normalization	(7, 7, 128)	512
Traspose Convolution	(14, 14, 64)	204 864
Batch Normalization	(14, 14, 64)	256
Traspose Convolution	(28, 28, 1)	1 601

Estructura del discriminador

Tipo de capa	Dimensiones del Output	Parámetros
Convolution	(14, 14, 64)	1 664
LeakyReLU	(14, 14, 64)	0
Dropout	(14, 14, 64)	0
Convolution	(7, 7, 128)	204 928
LeakyReLU	(7, 7, 128)	0
Dropout	(7, 7, 128)	0
Flatten	6272	0
Dense	1	6 273

Datos de entrenamiento

Número de *epochs*: 20

■ Tamaño del *batch*: 32

■ Batches totales: 37 500

■ Tiempo de entrenamiento: 55 minutos

Figura: Ruido inicial e imágenes producidas por la GAN tras el primer epoch.

Figura: Imágenes generadas tras los *epochs* número 2 y 3 respectivamente.

Figura: Imágenes generadas tras los *epochs* número 5 y 10 respectivamente.

Figura: Imágenes generadas tras los epochs número 15 y 20 respectivamente.

Evolución de la loss por batch

Figura: Evolución de la función de pérdida (entropía binaria cruzada) en función del *batch* de entrenamiento.

Conclusiones

Conclusiones

- En este trabajo se ha abordado el estudio de la teoría matemática tras las Redes Generativas Antagónicas.
- Se ha visto que la estructura GAN alcanza un equilibrio de Nash cuando $p_g = p_{data}$ y $D(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$.
- Se ha entrenado una DCGAN en Python, lo que ha permitido observar cómo una GAN aprende progresivamente a transformar ruido en imágenes. Durante este proceso, se han evitado problemas comunes, como el desvanecimiento de gradientes y el colapso de modo.
- Este trabajo abre la puerta al estudio de modelos generativos más actuales, como los modelos difusivos y los transformadores, que, si bien ofrecen avances significativos en la generación de datos, también presentan sus propios desafíos e inconvenientes.

Conclusiones

- Este trabajo me ha permitido integrar conocimientos adquiridos durante el grado para acercarme más al campo de la inteligencia artificial que tanto me interesa
- La experiencia obtenida con el entrenamiento y el análisis de modelos GAN me sirve como base sólida para investigar y desarrollar otros modelos generativos más avanzados en futuros trabajos de investigación o un posible TFM.
- En definitiva, el trabajo me ha permitido profundizar en el conocimiento de los modelos generativos y me motiva a seguir investigando en esta área en el futuro.

Gracias