_	1	2	3	4	5	Calificación

Nombre y apellido:	 	
N° de libreta:	 	

Cálculo Avanzado

Primer parcial - 17/05/13

- 1) Decimos que una sucesión de números racionales (a_n) es eventualmente aritmética si existen $n_0 \in \mathbb{N}$ y $d \in \mathbb{Q}$ tales que $a_{n+1} a_n = d$ para todo $n \geq n_0$. Calcular el cardinal del conjunto $\{(a_n) \subseteq \mathbb{Q} : (a_n) \text{ es eventualmente aritmética}\}$.
- 2) Consideremos el conjunto $X = \{f \in \mathcal{C}([0,1]) : f(1) = 0\}$ y la función $d: X \times X \to \mathbb{R}$ definida como

$$d(f,g) = \inf\{x \in [0,1] : f(y) = g(y) \text{ para todo } y \in [x,1]\}.$$

- a) Probar que (X, d) es un espacio métrico.
- b) Si d_{∞} es la métrica dada por $d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) g(x)|$, probar que ninguna de las funciones identidad $id_1: (X,d) \to (X,d_{\infty})$ e $id_2: (X,d_{\infty}) \to (X,d)$ es continua.
- 3) Sean X un espacio métrico y $x \in X$. Probar que la componente conexa de x está contenida en la intersección de todos los subconjuntos de X que contienen a x y son a la vez abiertos y cerrados. ¿Vale la igualdad?
- 4) Sea $g:[0,1] \to \mathbb{R}$ una función continua tal que g(1)=0. Consideremos la sucesión de funciones (f_n) definida por $f_n(x)=x^ng(x)$. Probar que (f_n) converge uniformemente en [0,1].
- 5) Sean d y d' métricas en un conjunto X no vacío. Supongamos que existen $c_1, c_2 > 0$ tales que $c_1d(x,y) \le d'(x,y) \le c_2d(x,y)$ para todos $x,y \in X$. Probar que (X,d) es completo si y sólo si (X,d') es completo. ¿Se puede concluir lo mismo si solamente pedimos que las métricas d y d' sean topológicamente equivalentes?

Justifique todas las respuestas