Waveform transformations

Mike Boyle

May 19, 2015

Outline

- Motivation
 - Problems in the waveforms
 - Center-of-mass drifts
 - Cleaning up waveforms
- Asymptotic symmetries (BMS group)
 - Definition (with Penrose diagrams)
 - Requirements
 - Interpolation
 - Spin-weighted functions
- Conclusions

Motivation

A waveform mystery

SXS:BBH:0004

The center of mass

SXS:BBH:0004

Correcting the center of mass

$$\min_{oldsymbol{x}_0,oldsymbol{v}_0}\int_{t_i}^{t_f}ig|oldsymbol{x}_{\mathsf{CoM}}(t)-ig(oldsymbol{x}_0+oldsymbol{v}_0\,tig)ig|^2\,dt$$

Correcting the center of mass

$$\min_{\boldsymbol{x}_0, \boldsymbol{v}_0} \int_{t_i}^{t_f} \left| \boldsymbol{x}_{\mathsf{CoM}}(t) - (\boldsymbol{x}_0 + \boldsymbol{v}_0 t) \right|^2 dt$$

$$m{x}_0 = rac{4(t_f^2 + t_f t_i + t_i^2) \int m{x}_{ ext{CoM}}(t) \, dt - 6(t_f + t_i) \, \int m{x}_{ ext{CoM}}(t) \, t \, dt}{(t_f - t_i)^3}$$

$$\mathbf{v}_0 = \frac{12 \int \mathbf{x}_{CoM}(t) t dt - 6 \int \mathbf{x}_{CoM}(t) dt}{(t_f - t_i)^3}$$

Corrected waveform

SXS:BBH:0004'

Correcting the catalog

Correcting the initial data

Ask Sergei!

Asymptotic symmetries

- ▶ Time translation
- ▶ Phase rotation

- ▶ Time translation
- ► Phase rotation
- General rotation

- ▶ Time translation
- Space translation
- ▶ Phase rotation
- General rotation

- ▶ Time translation
- Space translation
- Phase rotation
- General rotation
- ► Boost

- Time translation
- Space translation
- Phase rotation
- General rotation
- ► Boost

Poincaré group?

- Time translation
- Space translation
- Phase rotation
- General rotation
- ► Boost

Poincaré group? Diffeomorphism group?!

Isolated system

Asymptotic flatness

- Radial coordinate r
- "Regularity" of manifold as $r \to \infty$

Bondi coordinates

- Null coordinate u
- Angular coordinates $x^A = (\theta, \phi)$
- Metric:

$$ds^2 = \frac{V}{r}e^{2\beta}du^2 - 2e^{2\beta}dudr$$

 $+ r^2h_{AB}(dx^A - U^Adu)(dx^B - U^Bdu)$

General symmetry group

- ► Boost
- General rotation
- Supertranslation

Bondi-Metzner-Sachs (BMS) group

Penrose diagram

Two observers

Local time \rightarrow retarded time

u = t - r

Equiangular sphere in \mathcal{O}'

Those points rotated w.r.t. \mathcal{O}

Those points boosted w.r.t. \mathcal{O}

Coordinates on 9+

Local time \rightarrow retarded time

u = t - r

Time translation

$$t \mapsto t + \delta t$$
$$u \mapsto u + \delta t$$

Space translation

$$\mathbf{X} \mapsto \mathbf{X} + \delta \mathbf{X}$$

$$u \mapsto u - \delta \mathbf{x} \cdot \hat{\mathbf{r}}$$

Spacetime translation

Supertranslation

Supertranslation

BMS transformations

$$\theta \mapsto \theta'$$

$$\phi \mapsto \phi'$$

$$u \mapsto K(\theta', \phi') [u - \alpha(\theta', \phi')]$$

BMS transformations

$$\theta \mapsto \theta'$$

$$\phi \mapsto \phi'$$

$$u \mapsto K(\theta', \phi') [u - \alpha(\theta', \phi')]$$

$$u' \approx \gamma \left[u + u \, \boldsymbol{v} \cdot \boldsymbol{n} - \alpha(\theta', \phi') \right]$$

Waveform transformations

$$rh \mapsto \frac{e^{-2i\lambda}}{K^2} \left[rh - \bar{\eth}^2 \alpha \right]$$

$$r^2 \sigma \mapsto \frac{e^{2i\lambda}}{K^3} \left[r^2 \sigma - \bar{\eth}^2 \alpha \right]$$

$$c \mapsto \frac{e^{2i\lambda}}{K} \left[c - \bar{\eth}^2 \alpha \right]$$
News $\sim \frac{\partial c}{\partial u} \mapsto \frac{e^{2i\lambda}}{K^2} \left[\frac{\partial c}{\partial u} \right]$

$$r \Psi_4 \mapsto \frac{e^{-2i\lambda}}{K^4} \left[r \Psi_4' \right]$$

BMS transformations

$$rh \mapsto \frac{e^{-2i\lambda}}{K^2} \left[rh - \bar{\eth}^2 \alpha \right]$$

BMS transformations

$$rh(u,\theta,\phi) \mapsto \frac{e^{-2i\lambda(\theta',\phi')}}{K^2(\theta',\phi')} \left[rh(u',\theta',\phi') - \bar{\eth}^2\alpha(\theta',\phi') \right]$$

Spin-weighted functions

Weighted functions are contractions between tensors and tetrad elements, as functions of position on the sphere.

Weighted functions are *not* just functions on the sphere; you need to specify a position on the sphere, as well as a choice of the tetrad.

For spin-weighted functions, this is just an alignment of the vectors in the tangent space — equivalent to choice of unit vector at each point.

But SW functions are not functions from $S^2 \times S^1$. We can choose a section of that bundle. But the Hairy-ball theorem forbids continuous choice of such a thing for our purposes. Instead, it's the Hopf bundle

Rotor of a boost

$$\Theta' = \arccos\left[\hat{\pmb{v}} \cdot \hat{\pmb{r}}\right]$$

$$\Theta = 2 \arctan \left[\sqrt{\frac{1-\beta}{1+\beta}} \tan \frac{\Theta'}{2} \right]$$

$$R_B = \exp\left[\frac{\Theta - \Theta'}{2} \frac{\mathbf{r} \times \mathbf{v}}{|\mathbf{r} \times \mathbf{v}|}\right]$$

Conclusions

- No such thing as invariant waveform
- No preferred reference frame
- When comparing waveforms, frames must agree