Physical Constants

Quantity	Symbol, equation	Value
Speed of light	$\frac{c}{c}$	$2.9979 \times 10^8 \mathrm{ms^{-1}}$
Electron charge	e	$1.602 \times 10^{-19} \mathrm{C}$
Planck constant	h	$6.626 \times 10^{-34} \mathrm{Js}$
Planck constant, reduced	$\hbar = h/2\pi$	$1.055 \times 10^{-34} \mathrm{Js}$
Conversion constant	$\hbar c$	$197.327\mathrm{MeVfm} = 197.327\mathrm{eVnm}$
Electron mass	m_e	$9.109 \times 10^{-31} \mathrm{kg} = 0.511 \mathrm{MeV/c^2}$
Proton mass	m_p	$1.673 \times 10^{-27} \mathrm{kg} = 938.272 \mathrm{MeV/c^2}$
Neutron mass	m_n	$1.675 \times 10^{-27} \mathrm{kg} = 939.566 \mathrm{MeV/c^2}$
Fine structure constant	$\alpha = e^2/\hbar c$	1/137.036
Classical electron radius	$r_e = e^2/m_e c^2$	$2.818 \times 10^{-15} \mathrm{m}$
Electron Compton wavelength	$\lambda = h/m_e c = r_e/\alpha$	$2.426 \times 10^{-12} \mathrm{m}$
Proton Compton wavelength	$\lambda = h/m_p c$	$1.321 \times 10^{-15} \mathrm{m}$
Bohr radius	$a_0 = r_e/\alpha^2$	$0.529 \times 10^{-10} \mathrm{m}$
Rydberg energy	$\mathcal{R} = m_e c^2 \alpha^2 / 2$	$13.606\mathrm{eV}$
Bohr magneton	$\mu_B = e\hbar/2m_e$	$5.788 \times 10^{-11} \mathrm{MeV} \mathrm{T}^{-1}$
Nuclear magneton	$\mu_N = e\hbar/2m_p$	$3.152 \times 10^{-14} \mathrm{MeV} \mathrm{T}^{-1}$
Avogadro number	N_A	$6.022 \times 10^{23} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.381 \times 10^{-23} \mathrm{JK^{-1}}$
		$= 8.617 \times 10^{-5} \mathrm{eV} \mathrm{K}^{-1}$
Gas constant	$R = N_A k$	$8.31\mathrm{Jmol^{-1}K^{-1}}$
Gravitational constant	G	$6.673 \times 10^{-11} \mathrm{m^3kg^{-1}s^{-2}}$
Permittivity of free space	$\epsilon_0 = 1/\mu_0 c^2$	$8.854 \times 10^{-12} \mathrm{F}\mathrm{m}^{-1}$
Permeability of free space	μ_0	$4\pi \times 10^{-7} \mathrm{NA^{-2}}$

Conversion of units

```
\begin{array}{ll} 1\,\mathrm{fm} = 10^{-15}\,\mathrm{m}, & 1\,\mathrm{barn} = 10^{-28}\,\mathrm{m}^2 = 100\,\mathrm{fm}^2, & 1\,\mathrm{G} = 10^{-4}\,\mathrm{T} \\ 1\,\mathrm{atmosphere} = 101\,325\,\mathrm{Pa}, & \mathrm{Thermal\,energy\,at}\;T = 300\,\mathrm{K}; & kT = [38.682]^{-1}\,\mathrm{eV} \\ 0\,^\circ\mathrm{C} = 273.15\,\mathrm{K}, & 1\,\mathrm{eV} = 1.602\times10^{-19}\,\mathrm{J}, & 1\,\mathrm{eV/c^2} = 1.783\times10^{-36}\,\mathrm{kg} \end{array}
```