# TP N°2 Perceptrón SIMPLE 9 MULTICAPA

#### Grupo Nº6

Luciana Diaz Kralj Gonzalo Nicolás Rossin João Nuno Diegues Vasconcelos Mafalda Colaço Parente Morais Da Costa







## Perceptrón SIMPLe

Activación de escalón

## **Problemas a solucionar:**

Clasificación binaria.

#### **AND:**

| -1 | -1 | -1 |
|----|----|----|
| -1 | 1  | 1  |
| 1  | -1 | 1  |
| 1  | 1  | 1  |

#### XOR:

| -1 | -1 | -1 |
|----|----|----|
| -1 | 1  | 1  |
| 1  | -1 | 1  |
| 1  | 1  | -1 |

## **AND**



100% training set

 $\eta = 0.01$ 

100 épocas

## **XOR**



#### 100% training set

 $\eta = 0.001$ 

550 épocas

## Conclusión

Se concluye que no es posible utilizar el perceptrón simple para problemas no separables linealmente, como es el caso del operador XOR.



# E2 Perceptrón simple Lineal y no lineal

## Separación de conjuntos de entrenamiento y testeo

Algunas consideraciones tenidas en cuenta:

- Fuentes externas sugieren las siguientes proporciones:
  - o 70% entrenamiento 30% testeo
  - o 80% entrenamiento 20% testeo
- Importante evitar overfitting

## Separación entrenamiento/testeo

#### Algunos problemas encontrados:

 Debido a la cantidad total de líneas del csv, la separación con porcentajes grandes para entrenamiento deja un conjunto de testeo chico. Por ejemplo:

80% entrenamiento = 23 líneas y 20% testeo = 5 líneas

 Para evitar sesgos, se decidió hacer un shuffle del input previamente a la separación entre entrenamiento y testeo.

## Separación de conjuntos de entrenamiento y testeo

 $\eta = 0.0001$ 

3.000 épocas

 $\beta = 1$ 





## Separación de conjuntos de entrenamiento y testeo

- Como conclusión, podemos decir:
  - La capacidad de generalización del modelo inferido es mayor con cuando el porcentaje de entrenamiento es del 80% ya que el error cuadrático medio en los dos conjuntos es mínimo para ese porcentaje.
  - Si bien para un 10% de entrenamiento, el error en el conjunto de entrenamiento es menor que para 80%, esto no se traduce en una buena generalización ya que el error en el conjunto de testeo es mucho mayor.
  - Utilizar un porcentaje de entrenamiento alto permite que el modelo inferido sea menos susceptible al ruido ya que la capacidad de generalización es más grande siempre y cuando se entrene el perceptrón con valores adecuados de etha, beta e iteraciones.

### Error cuadrático medio durante entrenamiento (Tanh)

 $\eta = 0.0001$ 

10.000 épocas

Training set 80%

 $\beta = 1$ 



Error mínimo promedio = 56.2077

## **ECM durante entrenamiento (Logística)**

 $\eta = 0.0001$ 

10.000 épocas

Training set 80%

 $\beta = 1$ 



Error mínimo promedio = 543.3495

## **ECM durante entrenamiento (Logística)**

 $\eta = 0.0001$ 

30.000 épocas

Training set 80%

 $\beta = 1$ 



Error mínimo promedio = 81.8543

### Error cuadrático medio durante entrenamiento (Linear)

 $\eta = 0.0001$ 

10.000 épocas

Training set 80%



Error mínimo promedio = 1003.7464

## Evolución del vector W durante el entrenamiento por épocas e incremental(aleatorio)

• Resultados esperados:



Resultados obtenidos:



 $\eta = 0.0001$ 

15.000 épocas

Training set 80%

Tanh

 $\beta = 1$ 

## Evolución del vector W durante el entrenamiento por épocas e incremental(aleatorio)

• Resultados esperados:



• Evolución:



 $\eta = 0.0001$ 

20.000 épocas

Training set 80%

Tanh

 $\beta = 1$ 

### **Conclusiones**

#### Como conclusión podemos decir que:

- Para los inputs utilizados, si bien la función de activación lineal converge más rápido que las sigmoideas (tanh y logística), no necesariamente eso implica que obtenga un buen resultado. De hecho, para los mismos parámetros, la activación lineal fue la que obtuvo el error mínimo más grande entre las tres.
- Entre las funciones sigmoideas, tanh fue la que obtuvo mejores resultados con menor cantidad de épocas ya que para obtener un error mínimo promedio similar a tanh, la activación logística requirió tres veces la cantidad de épocas que tanh.
- El entrenamiento incremental (batch de 1 seleccionado aleatoriamente)
   puede obtener resultados similares a entrenamiento por épocas pero se requiere de una cantidad mucho mayor de iteraciones para lograrlo.





## Perceptrón multicapa

Gradientes y optimizaciones

## **Activaciones utilizadas**

 Activación Lineal: Rectified Linear Unit (ReLU).

$$\theta(x) = \begin{cases} x & si \ x > 0 \\ 0 & si \ x \le 0 \end{cases}$$

 Activación No Lineal: Sigmoidea Logística.

$$\theta(x) = \frac{1}{1 + e^{-x}}$$

## **3A: Problema XOR**

No es linealmente separable:

- Activación ReLU en las capas ocultas.
- Activación sigmoidea logística en la capa de salida.

Al tener un dataset pequeño, entrenamos y predecimos sobre el 100% de los datos.

## **3A:** Resultados Problema XOR

| η = 0.1 | 1.000 épocas | Full batch | Capas = [2, 10, 10, 1] |
|---------|--------------|------------|------------------------|
|---------|--------------|------------|------------------------|

| ξ <sub>1</sub> | ξ <sub>2</sub> | <b>Valor Esperado</b> ζ | Valor Obtenido O |
|----------------|----------------|-------------------------|------------------|
| -1             | 1              | 1                       | 0.9683           |
| 1              | -1             | 1                       | 0.9735           |
| -1             | -1             | -1                      | -0.9699          |
| 1              | 1              | -1                      | -0.9850          |

$$(\zeta - O)_{\text{promedio}} = 0.0033$$

## **3A: Resultados Problema XOR**



## **3B: Paridad de Mapa de Bits**

- Input: Mapas de bits de 7 filas, 5 columnas.
   ⇒ Aplanamos a vectores columna de 35 elementos.
- Output: Asignamos 1 si es par, 0 si es impar.
- Activación ReLU en las capas ocultas.
- Activación Sigmoidea Logística en la capa de salida.

## 3B: Resultados Paridad Mapa de Bits

100% training set

 $\eta = 0.1$ 

1000 épocas

Full batch

Capas = [35, 10, 10, 1]

 $(\zeta - O)_{promedio} = 0,0136$ 

| ξ | Valor Esperado ζ | Valor Obtenido O |
|---|------------------|------------------|
| 0 | 1                | 0.9127           |
| 1 | 0                | 0.3809           |
| 2 | 1                | 0.8330           |
| 3 | O                | 0.1326           |
| 4 | 1                | 0.9794           |
| 5 | 0                | 0.0388           |
| 6 | 1                | 0.9507           |
| 7 | 0                | 0.0196           |
| 8 | 1                | 0.7576           |
| 9 | 0                | 0.1297           |

## **3B: Precisión Paridad Mapa de Bits**



## **3C: Identificación de Números**

- Input: Mapas de bits de 7 filas, 5 columnas.
   ⇒ Aplanamos a vectores columna de 35 elementos.
- Output: Son 10 clases, una por cada número del 0 al 9.
- Activación **ReLU** en las **capas ocultas**.
- Activación Sigmoidea Logística en la capa de salida.

## **3C:** Resultados Identificación de Números

100.000 épocas

Full batch

Capas = [35, 10, 10, 10]



## **3C:** Efecto de un mal η

η = 0.9 500 épocas Full batch Capas = [35, 10, 10, 10]



## **3C:** Efecto de Optimizadores (1)

 $\eta = 0.001$ 

50.000 épocas

Full batch

Capas = [35, 10, 10, 10]





Promedio 5 ejecuciones

## **3C:** Efecto de Optimizadores (2)

 $\eta = 0.001$ 

50.000 épocas

Full batch

Capas = [35, 10, 10]





Promedio 5 ejecuciones

## **3C:** Arquitectura y Generalización



### Conclusiones

#### Podemos decir que:

- Existen trade-offs con η:
  - Con una tasa de aprendizaje alta se converge más rápido en el mejor de los casos, o se diverge, en el peor.
  - Una tasa de aprendizaje baja tarda más en converger, pero puede alcanzar mejores resultados.
- Los métodos de optimización ayudan a escapar de los malos mínimos locales o ensilladuras.
- Entrenar más neuronas y capas ocultas implica tener un mayor poder computacional, y los resultados no siempre son mejores.

## iGRACIAS POR ESCUCHAR!

#### **Grupo N°6**

Luciana Diaz Kralj Gonzalo Nicolás Rossin João Nuno Diegues Vasconcelos Mafalda Colaço Parente Morais Da Costa