Giving Baker's Theory a Modular Helping Hand

- joint work with Bugeaud & Mignotte (Strasbourg) Cremona (Nottingham)

Baker's Theory: lower bounds for linear forms in logs

=> effective (astronomical bounds to solutions of some equations

Baker+RRR: can solve De Weger

(1) Thre equations

3 S-unit equations

3 Integral points on curves

etc.

Baker+RRR can't solve 2 $x^2 + 7 = y^p$ (Suggested) by Cohn Baker & Wüsthulz => P < 6.6x10 Resage Matreev => P < 6.81 × 10 try modular approach (minic proof of FLT) Cremona/Siksek Can assume 2/4, P=11 Frey curve: $E_x: Y^2 = X^3 + xX^2 + (x^2 + 7)X$ $\triangle_{min} = -\frac{7}{2^{12}}y^{2P}$ N=14 | Te lly, 1+2,7 Ribets Level-Rowering Thm => Galvis representation on Ex[P] arises from a newform of level 14

 $E: Y^2 + XY + Y = X^3 + 4X - 6$ 14A1 [Diverged from proof of FLT] 'arises from' => (i) $a_{\ell}(E_{2\ell}) = a_{\ell}(E) \mod p$ 1414y (ii) $\ell+1 = \pm a_{\ell}(E) \mod p$ $\ell \mid y \mid U \mid A$

Apply an idea of Kraus:

[solved a3 + b3 = c7 11 < p < 104]

Fix p, choose prime l s.t. $l-1=np & P + (l+1 \pm a_{L}(E))$

Let 5, ..., 5n be the nth roots of unity in #2*

If $3c^2+7=y^p$ then $x^2 + 7 = 5, \dots, 5n \mod l$

Solve for x =>

 $x = x_1, ..., x_E \mod l$ (4) If $a_1(E_{2i}) \neq a_1(E) \mod p$ ($\forall i$) We get a contradiction.

Thm (Cremona / Siksek)

has no solutions for $11 \le p \le 10^8$

Bugeaud, Mingotte & Siksek

Gave new lower bound for linear forms in 3 logs

For $x^2 + 7 = y^p$, $y \ge 22$

Baker & Wiistholz Matueev BMS P ≤ 6.6 x 10¹⁵
P ≤ 6.81 x 10¹²
P ≤ 1.11 x 10⁹

We can suppose y + 2" let 1 1 1 1 1 2 1 2,7 $\implies l+1 \equiv \pm a_1(E) \mod p$ > + (+1 ± a, (E) ⇒ p ≤ l+1+2√ > 1>(\p-1)2 > y > (F-1)2 > 99992 "Modular lower Bound for y" + Modular Lower bound for y => P < 1.81 × 108 Thm Only solns to x2+7=ym m 3 3 4 5 5 $\frac{3}{7}$ 15 $\frac{15}{11}$ ± 181 ± 181 ± 181 ± 181 ± 181 y 2 32 ±2 2 8 2

We also solved

22+D=ym, m=3, 1<D<100

using

(i) BMS Rower Bound for linear forms in

3 logs

(ii) modular lower bound for y

(iii) 3 modular methods

(iv) 206 days of computations on many machines.

Fibonacci Perfect Powers (BMS)

 $F_0 = 0$, $F_1 = 1$, ---- $F_{n+2} = F_n + F_{n+1}$

Conjecture (Cohn 1964) The only perfect powers in Fibonacci sequence are $F_0 = 0$, $F_1 = 1$, $F_2 = 1$, $F_6 = 8$, $F_{12} = 144$.

i.e. solve $F_n = y^p$ (always has soln) (n,y,p) = (1,1,p)

Solved for p=2 by [Cohn (indep) & Wyler 1964

Solved for P=3 by Condon&Finkelstien 1969

Fn = yP -> Thue eqn of degree p

Can be solved by Baker + LRL

Resolved for p=3 Pethó (1983)

P=5,7,11,13,17 Mc Raughlin (2000)

Pethó (indep) $\sqrt{3}$ If $p \ge 3$, $n \ge 72$ $F_n = y^p$ $A = Robbins 1983 <math>\sqrt{3} \Rightarrow 3 = \sqrt{3} + \sqrt{3}$

Reduce to

$$F_n = y^p$$
 (n, p prime)

Recall $F_n = \frac{\omega^n - \overline{\omega}^n}{\sqrt{5}}$ $\omega = \frac{1+\sqrt{5}}{2}$

Let
$$x = \left[\begin{array}{cc} \omega^n + \overline{\omega}^n & n \equiv 1 \pmod{6} \\ -(\omega^n + \overline{\omega}^n) & n \equiv 5 \pmod{6} \end{array} \right]$$

Then $x^2+4=5F_n^2$

$$\Rightarrow x^2 + 4 = 5y^2$$

Frey curve Ex: Y2 = X3+xX2-X Level lowering E: Y=X3+X2-X $\Rightarrow \begin{cases} a_{\ell}(E_{\chi}) \equiv a_{\ell}(E) \pmod{p} & l \nmid 10y \\ l+1 \equiv \pm a_{\ell}(E) \pmod{p} & l \mid y, l \mid 10y \end{cases}$ Example $p=7 \implies n=1$. p=7 > n < 2.639 × 10⁴⁶

Using a refinement of Bugeaud & Győry

1996 bounds for Thre equations. Choose prime $\ell \neq 2,5$ s.t. $(\frac{5}{4})=1$ (l-1) $2^{5} \times 3^{3} \times 5^{2} \times --- \times 109$ Write down x (mod l) s.t. (*) is satisfied X= x1, ----, xk (mod l) $n \equiv n_1, -\dots, n_t \mod lcm(6, l-1)$

Do this for many primes I and Chinese-Remainder

Using about 130 primes l \Rightarrow $n \equiv 1, a, b, c \mod M$ $a \approx 1.007 \times 10^{47}$, b, c > a. $M \approx 2 \times 10^{47}$ But $n \le 2.639 \times 10^{46} \implies n = 1$. Using 6262 primes 1 we solve $F_n = y^{\ddagger}$ for $7 \le p \le 733$ (for p = 733 we get $n \le 10^{8733}$) What bound can be proved for p? $F_n = \frac{\omega^n - \overline{\omega}^n}{\sqrt{5}} = y^{\ddagger}$ $\Rightarrow \left| \frac{\omega''}{15 \, y^p} - 1 \right| = \frac{1}{15 \, \omega'' \, y^p}$ Baker's idea Krlogp

Theorem (BMS) The only perfect powers in Fibonacci sequence are $f_0=0$, $f_1=1$, $f_2=1$, $f_6=8$, $f_{12}=144$ Only perfect powers in Lucas sequence are $l_1=1$, $l_3=4$ ($l_0=2$, $l_1=1$, $l_3=4$ $l_{n+2}=l_n+l_{n+1}$)