- 1. Use examples to see FOSD and SOSD.
 - (a) p is a lottery of winning 2 and 3 dollars with probability $\frac{1}{4}$, respectively and winning 5 dollars with probability $\frac{1}{2}$; q is an even randomization between 1 and 4 dollars. Show that p FOSD q.
 - (b) p is an even randomization between 2 and 3 dollars; q is a lottery of winning 1, 2, 3, and 4 dollars with probability $\frac{1}{4}$, respectively. Show that p SOSD q.

P FOSD 9

P SOSD P

FOSD: P FOSD ?
$$\iff$$
 $F_p(x) \leq F_q(x) \forall x$
 $SOSD: P SOSD ? \iff $\int_X^r F_p(x) dx \leq \int_X^r F_q(x) dx \forall r$$

- 2. The definition of first-order stochastic dominance is that p FOSD q if every expectedutility maximizer with nondecreasing u weakly prefers p to q, i.e., $\forall u$ s.t. $u'(x) \geq 0$, $\int_{x}^{\bar{x}} u(x) dF_{p}(x) \geq \int_{x}^{\bar{x}} u(x) dF_{q}(x)$.
 - (a) Show that $F_p(x) \leq F_q(x)$ for $\forall x$ is an equivalent definition of FOSD.
 - (b) Show that if p FOSD q, then the mean of x under p is larger than or equal to that under q. [Hint: Use the definition of FOSD]
 - (c) Show that the converse of (b) is not true, i.e., provide an example where the mean of x under p is larger than or equal to that under q, but p does not FOSD q.

(a)
$$pf: p \text{ fosd } q \iff f_{p(x)} \in f_{q(x)}, \forall x$$

$$= \frac{1}{x} \text{ Accume } F_{p(x)} \leq f_{q(x)} \text{ for } \forall x$$

$$\int_{x}^{x} u(x) dF_{p(x)} = \int_{x}^{x} -u(x) d(1-f_{p(x)})$$

$$= -u(x) (1-f_{p(x)}) \Big|_{x}^{x} + \int_{x}^{x} (-f_{p(x)}) du(x)$$

$$= \int_{x}^{x} (-f_{p(x)}) du(x) \text{ by normalizing } u(x) = 0$$

Thus,
$$\int_{x}^{x} u(x) dF_{p(x)} - \int_{x}^{x} u(x) df_{q(x)}$$

$$= \int_{x}^{x} ((1-f_{p(x)}) - (1-f_{q(x)})) du(x)$$

$$= \int_{x}^{x} (f_{q(x)} - f_{p(x)}) u'(x) dx \geq 0$$

Since by assumption,
$$f_{q(x)} = f_{p(x)} \text{ and } u(x) \geq 0, \forall x$$

$$\Rightarrow \int_{x}^{x} u(x) dF_{p(x)} \approx \int_{x}^{x} u(x) df_{q(x)}$$

By definition, $p \in f_{q(x)} = f_{q(x)}$

Suppose for contradiction,
$$\exists y \in A_{\epsilon}$$
, $f_{\epsilon}(y) = f_{\epsilon}(y)$

Consider the non-decreasing u defined as:

 $u(x) = 1 \le x \ge y = \le 0$, if $x \le y$
 $u(x) = 1 \le x \ge y = \le 0$, if $x \le y$
 $v(x) = 1 \le x \ge y = \le 0$, if $x \ge y$
 $v(x) = 0 \times P_{\epsilon}(x \le y) + 1 \times P_{\epsilon}(x > y)$
 $v(x) = P_{\epsilon}(x \ge y)$
 $v(x) = 1 - P_{\epsilon}(x \le y)$
 $v(x) = 1 - P_{\epsilon}(x \ge y)$

(b) In Eline p FosD q, by definition,
$$\int_{X}^{\overline{X}} u(x) dF_{p}(x) = \int_{X}^{\overline{X}} u(x) dF_{q}(x)$$
for throw-decreasing $u(\cdot)$
Take $u(x) = x$, $u'(x) = 1 > 0$

$$\Rightarrow \int_{X}^{\overline{X}} x dF_{p}(x) = \int_{X}^{\overline{X}} x dF_{q}(x)$$

$$E_{p}[x] \Rightarrow E_{q}[x]$$

(c) A counter-example:

$$F_{p(x)} = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \le x < 1 \end{cases} \quad \overline{t_{p}[x]} = \frac{0+1}{2} = \frac{1}{2}$$

$$F_{q(x)} = \begin{cases} 0, & x < \frac{1}{4} \\ 1, & x \ge \frac{1}{4} \end{cases} \quad \overline{t_{q}[x]} = \frac{1}{4}$$

$$\Rightarrow \overline{t_{p}[x]} = \overline{t_{q}[x]}$$

However

$$F_{p}(x) > F_{q}(x) \text{ for } x < \frac{1}{2}$$

$$\Rightarrow p \text{ does not } Fo < D = q$$

- 3. (Optional) The definition of second-order stochastic dominance is that p SOSD q if every expected-utility maximizer with nondecreasing and concave u weakly prefers p to q, i.e., $\forall u \ s.t. \ u'(x) \geq 0$ and $u''(x) \leq 0$, $\int_{\bar{x}}^{\bar{x}} u(x) \mathrm{d}F_p(x) \geq \int_{\bar{x}}^{\bar{x}} u(x) \mathrm{d}F_q(x)$. Rothschild and Stiglitz (1970) showed that there are two alternative definitions of SOSD, as displayed in the lecture note, and proved the equivalence of the three definitions. Assume $E_p = E_q$, i.e., p and q have the same expected value.
 - (a) Show that $\int_x^r F_p(x) dx \le \int_x^r F_q(x) dx$ for $\forall r \ge 0$ is an equivalent definition of SOSD.
 - (b) Show that mean-preserving spread implies SOSD. We say F_q is a mean-preserving spread of F_p if $x_q \stackrel{d}{=} x_p + \epsilon$ for some $x_p \sim F_p$, $x_q \sim F_q$ and ϵ such that $E[\epsilon|x_p] = 0$ for every x_p . (The other direction is omitted and you may refer to the paper Increasing risk: I. A definition for details)

(a) pf:
$$P \leq 0 \leq D$$
 $I \leq \int_{X}^{\infty} F_{p}(x) dx \leq \int_{X}^{\infty} F_{q}(x) dx$, for $In z(a)$, we already showed that $\int_{X}^{\overline{X}} u(x) dF_{p}(x) - \int_{X}^{\overline{X}} u(x) dF_{q}(x)$

$$= \int_{X}^{\overline{X}} \left(F_{q}(x) - F_{p}(x) \right) u'(x) dx$$
Since u is thice differentiable, we have
$$u'(x) = u'(\overline{x}) - \int_{X}^{\overline{X}} u''(s) ds$$

$$\Rightarrow \int_{X}^{\overline{X}} u(x) dF_{p}(x) - \int_{X}^{\overline{X}} u(x) dF_{q}(x)$$

$$= \int_{X}^{\overline{X}} \left(F_{q}(x) - F_{p}(x) \right) \left(u'(\overline{x}) - \int_{X}^{\overline{X}} u''(s) ds \right) dx$$

$$= u'(\overline{x}) \int_{X}^{\overline{X}} \left(f_{q}(x) - F_{p}(x) \right) dx$$

$$+ \int_{X}^{\overline{X}} \left(F_{q}(x) - F_{p}(x) \right) \left(\int_{X}^{\overline{X}} \left(-u''(s) \right) ds \right) dx$$
Since we assume $E_{p} = E_{q}$, $\int_{X}^{\overline{X}} x dF_{p}(x) = \int_{X}^{\overline{X}} x dF_{q}(x)$,

(b)
$$ff: Assume \ fg \ is a MPS of \ fp$$

$$= \int_{X}^{X} u(x) d \ fg(x) = E[u(xg)]$$

$$= E[E[u(xg)|xp]]$$

$$= \int_{X}^{X} E[u(xg)|x] d \ fg(x)$$

$$\leq \int_{X}^{X} E[u(x+s)|x] d \ fg(x)$$

$$= \int_{X}^{X} u(E[x+s|x]) d \ fg(x)$$
by Jonsen's inequality since u is concare
$$= \int_{X}^{X} u(x) d \ fg(x)$$
since $E[x|xp] = 0$

$$\Rightarrow \text{ By definition}, p \text{ SOSD } q$$
#