Mainboard D3118

Congratulations, you have decided to buy an innovative Fujitsu product.

The latest information about our products, useful tips, updates etc. is available from our website: "http://ts.fujitsu.com"

For automatic driver updates, go to: "http://support.ts.fujitsu.com/support/index.html"

Should you have any technical questions, please contact:

- our Hotline/Service Desk (see the Service Desk list or visit: "http://ts.fujitsu.com/support/servicedesk.html")
- your sales partner
- your sales outlet

We hope you really enjoy using your new Fujitsu system.

Copyright

Fujitsu Technology Solutions 2012/03

Published by

Fujitsu Technology Solutions GmbH Mies-van-der-Rohe-Straße 8 80807 München, Germany

Contact

http://ts.fujisu.com/support

All rights reserved, including intellectual property rights. Technical data subject to modifications and delivery subject to availability. Any liability that the data and illustrations are complete, actual or correct is excluded. Designations may be trademarks and/or copyrights of the respective manufacturer, the use of which by third parties for their own purposes may infringe the rights of such owner. For further information see "http://ts.fujitsu.com/terms_of_use.html"

Order No. Fujitsu Technology Solutions: A26361-D3118-Z320-1-7419, Edition 1

Mainboard D3118

Technical Description

Deutsch	1
English	39

Windows 7, Windows Vista and Windows XP are registered trademarks of Microsoft Corporation.

All other trademarks used in this document are trademarks or registered trademarks of their respective owners and are recognised as being protected.

Copyright © Fujitsu Technology Solutions GmbH 2012

All rights, including rights of translation, reproduction by printing, copying or similar methods, of the whole document or parts thereof, are reserved.

Offenders will be liable to prosecution and payment of damages.

All rights reserved, including rights created by patent grant or registration of a utility model or design.

Delivery subject to availability. We reserve the right to make technical modifications to the product.

Inhalt

Übersicht über das Mainboard D3118	2
Mainboard D3118	4
Handbuchkonventionen	4
Wichtige Hinweise	
Allgemeine Informationen im Zusammenhang mit Boards	
Hardware-Spezifikationen	
Blockdiagramm	
Systemsicherheitsfunktionen	
Grundlegende Sicherheitsfunktionen	
Trusted Platform Module (TPM)	
Silial Case Dyllallicosb	1 1
Auswahl der korrekten Teile für das System	13
Betrachtungen zur CPU (Central Processor Unit)	
Systemspeicherschnittstelle	
BIOS POST-Codes (Port 80-Statusanzeigen)	
Betrachtungen zur Stromversorgung	21
Installation des Boards	22
Intrusion-Anschluss (intern)	22
PC2009 PSU-Anschluss (PC2009)	22
Frontblendenanschluss (intern)	
Kommunikationsanschlüsse	
Anschlüsse für Systemüberwachung und -verwaltung	
Konfigurations-Jumper innerhalb der Frontblende	
COM1 Ports	
TPM-JumperSpeicherinstallation	
Vorgehen bei der Speicherinstallation	
Installation von Prozessor und Kühlkörper	
Prozessorinstallation	
Montage des Kühlkörpers	
Installation von Add-In-Karten	
Anschließen von externen Geräten	
Externe Ports	34
Austauschen der Lithium-Batterie	35
BIOS-Update	
Wann sollte ein BIOS-Update durchgeführt werden?	
Wie funktioniert ein BIOS-Update?	
BIOS Recovery	36
Classer	27

Übersicht über das Mainboard D3118

A26361-D3118-Z320-1-7419

Risk of Explosion if battery is replaced by an incorrect type.

Dispose of used batteries according to the instructions.

Il y a risque d'explosion si la batterie est remplacée par une batterie de type incorrect. Mettre au rebut les batteries usagées conformément aux instructions.

Explosionsgefahr, wenn die Batterie mit einem inkorrekten Batterietyp ersetzt wird. Alte Batterien gemäß Gebrauchsanweisung entsorgen.

Mainboard D3118

Basierend auf dem Intel® C600 Chipsatz zeichnet sich das D3118 durch eine Reihe hochmoderner Technologien aus. Dazu zählen: Support für die Intel Xeon® Prozessor-Serien bis zu 8 Kernen (Cores) im LGA 2011 Sockel, multiple PCI-Express Busse, Quad Channel DDR3 Speicherdesign, Onboard PCI-Express Gigabit Ethernet, SATA-Ports, SAS-Ports, multiple USB 2.0 / 3.0- (Universal Serial Bus) und eSATA-Ports.

Zum Öffnen der Handbücher muss das Programm *Acrobat Reader* installiert sein. Das Programm ist auf der CD-ROM in folgendem Verzeichnis abgelegt: utls/acrobat.

Weitere Einzelheiten entnehmen Sie bitte den entsprechenden "readme.txt"-Dateien.

Handbuchkonventionen

Bedeutung der in diesem Handbuch verwendeten Symbole und Schriftarten:

kennzeichnet Hinweise, deren Nichtbeachtung die Gesundheit gefährdet oder zu Sachschäden führt.

kennzeichnet zusätzliche Informationen und Tipps für den sachgerechten Umgang mit dem System.

► Mit diesem Symbol folgenden Texten werden Aktivitäten beschrieben, die in der aufgelisteten Reihenfolge durchgeführt werden müssen.

□ Dieses Symbol signalisiert, dass die Eingabetaste gedrückt werden muss.

Text in dieser Schriftart kennzeichnet Bildschirmausgaben.

Text in dieser Fettschrift steht für Eingaben, die über die Tastatur erfolgen.

Text in Kursivschrift kennzeichnet Befehle oder Menüpunkte.

Mit "Anführungszeichen" werden Kapitelnamen oder Begriffe gekennzeichnet.

Wichtige Hinweise

Zum Zugriff auf das installierte Mainboard muss das System geöffnet werden. Wie das System auseinandergebaut und wieder zusammengesetzt wird, ist im begleitenden Bedienerhandbuch beschrieben.

Zur Vermeidung von Interferenzen müssen die Verbindungskabel für die Peripherie entsprechend abgeschirmt sein.

Bitte beachten Sie die Sicherheitshinweise aus dem Bedienerhandbuch zu Ihrem System.

Ein unsachgemäßer Austausch der Lithium-Batterie birgt ein Explosionsrisiko.

Die Komponenten können während des Betriebs sehr heiß werden. Vermeiden Sie bei Erweiterungen des Mainboards eine Berührung der Komponenten. Es besteht Verbrennungsgefahr!

Das Board ist bei Auslieferung mit folgenden EG-Richtlinien konform: 2004/108/EG "Richtlinie des Europäischen Parlaments und des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit" und 2006/95/EG "Richtlinie des Europäischen Parlaments und des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten betreffend elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen".

Die Konformität wurde in einer typischen PC-Konfiguration getestet und nachgewiesen.

Beachten Sie bei der Installation des Boards die spezifischen Anweisungen aus dem Handbuch für das Empfangsgerät.

Bei Schäden am System durch unsachgemäßes Vorgehen bei der Installation oder beim Austauschen von Erweiterungen verliert die Garantie ihre Gültigkeit. Informationen zu zulässigen Erweiterungen erhalten Sie über Ihre Verkaufsniederlassung oder über das Kundenservicezentrum.

Allgemeine Informationen im Zusammenhang mit Boards

Zur Vermeidung von Schäden am Mainboard und der darauf installierten Komponenten und Leiterplatten ist beim Einfügen und Entfernen von Boards äußerste Sorgfalt angebracht. Achten Sie besonders darauf, dass Erweiterungs-Boards gerade in die Steckplätze eingesetzt werden, damit Komponenten oder Leiterplatten auf dem Mainboard und auch andere Komponenten (wie z. B. EMI-Federkontakte) nicht beschädigt werden.

Ziehen Sie den Stecker aus der Hauptsteckdose, so dass System und Mainboard vollständig von der Hauptstromversorgung getrennt sind.

Achten Sie beim Austausch des Mainboards oder darauf installierter Komponenten (z. B. Speichermodule oder Prozessoren) besonders auf die Verriegelungsmechanismen (Arretierungen, Zentrierungsstifte).

Verwenden Sie zum Aushebeln niemals scharfkantige Objekte (Schraubendreher).

Boards mit elektrostatisch empfindlichen Geräten (Electrostatic Sensitive Devices (ESD)) sind durch ein Etikett entsprechend gekennzeichnet.

Bitte beachten Sie beim Umgang mit Boards, auf denen sich solche ESDs befinden, unbedingt Folgendes:

- Vor der Arbeit müssen Sie immer für eine statische Entladung (z. B. durch Berühren eines geerdeten Objekts) sorgen.
- Die verwendeten Geräte und Werkzeuge dürfen nicht statisch aufgeladen sein.
- Ziehen Sie den Stecker aus der Stromhauptversorgung, bevor Sie Boards, die ESDs enthalten, einfügen oder entfernen.
- Fassen Sie Boards mit ESDs stets an den Rändern an.
- Vermeiden Sie bei mit ESDs ausgestatteten Boards unbedingt die Berührung von Kontakten und Leitern.

Hinweis für die USA

Compliance Information Statement (Declaration of Conformity Procedure) DoC FCC Part 15: Dieses Gerät erfüllt die Anforderungen des Abschnitts 15 der FCC-Bestimmungen.

Das Gerät darf nur unter den folgenden Bedingungen betrieben werden:

- 1) Das Gerät darf keine Störungen verursachen.
- 2) Dieses Gerät muss sämtliche empfangene Störungen aufnehmen, einschließlich solcher, die einen unerwünschten Betrieb verursachen. Durch Ein- oder Ausschalten des Geräts kann getestet werden, ob es zu Störungen des Rundfunk- oder Fernsehempfangs kommt. Derartige Störungen lassen sich durch eine oder mehrere der nachfolgend aufgeführten Maßnahmen beheben:
 - Die Empfangsantenne neu ausrichten oder an einem anderen Ort aufstellen.
 - Die Distanz zwischen dem Gerät und dem Receiver vergrößern.
 - Das Equipment an einem vom Receiver unabhängigen Stromkreislauf anschließen.
 - Den Händler oder einen Rundfunk-/Fernsehmechaniker zu Rate ziehen.

Hinweis für Kanada

Dieses Gerät entspricht den Grenzwerten für Geräte der "Klasse B" wie in den Vorschriften der Norm des Canadian Department of Communications Radio Interference Regulations für Störung verursachende Geräte festgelegt. (Cet appareil est conforme aux norms de Classe B d'interference radio tel que specifie par le Ministere Canadien des Communications dans les reglements d'ineteference radio.)

Hinweis für Europa (CE-Symbol)

Dieses Produkt entspricht folgenden Richtlinien des Europäischen Parlaments und des Rates: 2004/108/EG und 2006/95/EG.

VORSICHT: Dieses Gerät wird mit einer Lithium-Batterie geliefert. Unter keinen Umständen darf die Batterie durchstochen, mechanisch manipuliert oder Feuer ausgesetzt werden. Bei unsachgemäßem Austausch der Batterie besteht Explosionsgefahr. Ein Austausch darf nur mit dem gleichen oder mit einem durch den Hersteller empfohlenen gleichartigen Typ erfolgen. Die gebrauchte Batterie gemäß den Anweisungen des Herstellers und in Übereinstimmung mit den lokalen Bestimmungen entsorgen.

Hardware-Spezifikationen

CPU - LGA2011 Sockel

- Bis zu zwei CPU-Sockel
- Intel® Xeon Prozessoren im LGA2011-Paket
- Intel® QuickPath Architektur zwischen CPUs
- Integrierter Speicher-Controller

Hauptspeicher

- Vierkanal DDR3-Speicherarchitektur
- Sechzehn DDR3-Speicher-Sockel
- Support f
 ür gepufferte ECC-Speichermodule
- Support für ungepufferte Non-ECC- und ECC-Speichermodule
- Unterstützung für DDR3 800- / 1066 -/ 1333-/ 1600-Speicherschnittstellen
- Maximaler Speicher bis zu 512 GB
- DIMMS, die nicht dem JEDEC-Standard entsprechen, werden nicht unterstützt

Chips auf dem Board

- Intel® C600 Chipsatz
- SMSC SCH5636 Super I/O
- Conexant Audio CX20642
- Intel 82579LM Lewisville LAN
- Intel 82574I Hartwell I AN
- TI TUSB7320 USB SuperSpeed

LAN - 10/100/1000 Ethernet Controller

- WakeOnLAN durch interessante Pakete und Magic-Packet™
- PXE-Support
- Support f
 ür Jumbo-Frames

Storage-Geräte

- 2 serielle ATA-Ports
- 8 SAS/SATA-Ports

BIOS-Merkmale

- System- und BIOS-Kennwort
- Festplattenkennwort
- Support f
 ür die Wiederherstellung des BIOS (Recovery BIOS)
- Bootsequenzkontrolle für jedes Floppyund Festplattenlaufwerk
- Serieller Zugriffsschutz
- Bootsektor-Viruswarnung
- Schreibgeschützter Flash-Speicher zum Schutz vor Viren
- Schreibgeschütztes SPD EEPROM zum Schutz vor Viren

Erweiterte Sicherheitsmerkmale

- Trusted Platform Module 1.2
- USB Dynamic Security auf allen externen Ports

Basissystemüberwachung und -verwaltung

- Wake on LAN
- USB-Kurzschlusserkennung
- Advanced Fan Control

Audio

- Conexant CX20642 "Carson"
- Host-basiertes Audio mit 2-Kanal HD Audio
- Stereokopfhörerausgang (ca. 50 mW bei 32 Ω)
- Sound über interne Systemlautsprecher
- Interner Anschluss: Frontblende
- Externe Anschlüsse: Stereomikrofoneingang, Stereoleitungseinund -ausgang

Kommunikation

- Interner Anschluss: 2x USB 3.0, 6x USB 2.0, 1x USB 2.0 Standardanschluss (für Memorystick)
- Externer Anschluss (I/O Shield)
 6x USB 2.0, Rückseite
- Interner COM1-Anschluss
- Externer eSATA-Anschluss

Erweiterte Systemüberwachung und - verwaltung

- Fujitsu Technolgy Solutions System Management
- Fujitsu Technolgy Solutions Thermal Management
- Automatic System Reset (ASR, automatisches Zurücksetzen des Systems)
- Bestandserkennung
- Support f
 ür ASF2.0

Energieverwaltung

Support f
ür ACPI (Speichern im RAM / auf Disk)

Umweltschutz

Gesockelte Batterie (recyclingfähig)

Formfaktor, Steckplätze, Kompatibilitätsliste

- Formfaktor: EATX
- Steckplätze: 6 Steckplätze (Details dem Blockdiagramm entnehmen)
- Kompatibel mit ACPI, BBS DMI, IAPC, PCI 2.3. WfM. ASF2.0. DASH1.1

Blockdiagramm

Die oben gezeigte Abbildung dient rein repräsentativen Zwecken. Bedingt durch technische Aktualisierungen und neue Boardversionen können sich bestimmte Komponenten ändern oder an anderen Positionen befinden. Das gezeigte Bild kann daher Abweichungen zum gelieferten Board enthalten oder ihm exakt entsprechen. Auf der folgenden Seite werden Details zu den maßgeblichen Komponenten dieses Motherboards beschrieben.

Systemsicherheitsfunktionen

Grundlegende Sicherheitsfunktionen

Eine vollständige Beschreibung der grundlegenden Sicherheitsfunktionen ist in der BIOS-Spezifikation zu finden.

Trusted Platform Module (TPM)

Bei Trusted Platform Modules handelt es sich um eine Sicherheitslösung der Trusted Computing Group (TCG) zur Steigerung der Systemsicherheit. Das TPM befindet sich auf dem Motherboard und nutzt zur Kommunikation mit dem Rest der Plattform den LPC-Bus.

Chip-Anbieter und -Typ: Infineon SLB 9635 TT1.2

Merkmal: TPM 1.2 kompatibles Trusted Platform Module

Jumper für die Aktivierung/Deaktivierung der TPM-Funktionalität

SmartCase DynamicUSB

Dies ist ein Hardware-Sicherheitsschaltkreis, durch den der USB-Port beim Entfernen eines USB-Geräts deaktiviert wird, so dass keine anderen USB-Geräte angeschlossen werden können. Auf diese Weise wird der Datendiebstahl durch Anschließen etwa eines USB-Sticks verhindert. Diese Funktion wird komplett über Hardware und BIOS realisiert. Daher arbeitet sie unabhängig von jedweder BS- oder Software-Interaktion.

Diese Funktion muss über das BIOS-Setup aktiviert werden. Während der Boot-Phase akzeptiert das BIOS spezielle angeschlossene USB-Geräte (nicht zugelassene Geräte funktionieren nicht). Ports, an denen kein Gerät angeschlossen ist, werden automatisch durch das BIOS deaktiviert. Bei Entfernung eines USB-Geräts muss das System aus- und wieder eingeschaltet werden (S4- oder S5-Status), bevor ein anderes USB-Gerät wieder an diesem Port erkannt wird. Zudem beginnt bei Entfernung eines USB-Geräts während der Laufzeit die USB-Beleuchtung zu blinken, um ein SmartCase DynamicUSB-Ereignis anzuzeigen.

Alle externen USB 2.0 Ports (I/O Bereich und Front) bieten Unterstützung für SmartCase DynamicUSB. Die USB 3.0 Ports werden bei SmartCase DynamicUSB deaktiviert.

Folgende Geräteklassen werden innerhalb der USB-Spezifikation angegeben: *Fett/kursiv* dargestellte Klassen sind keine zulässigen USB-Geräte (wenn die Option SmartCase DynamicUSB aktiviert ist) – Ports, an denen während der BIOS-Nachphase solche Geräte angeschlossen sind, werden durch das BIOS deaktiviert

- Hub-Klasse (nicht zugelassen)
- Human Interface Device (Eingabegeräte)
- Monitor-Control
 - Direct Line Control Model
 - Datenschnittstellenklasse (nicht zugelassen)
 - Abstract Control Model
 - Telephone Control Model
- Power Device
- Audio-Gerät
 - Audio-Kontrolle
 - Audio-Streaming
 - MIDI-Streaming
- Drucker
- Kommunikationsgerät (nicht zugelassen)
- Massenspeichergerät (nicht zugelassen)
 - Gen. Massenspeicher (nicht zugelassen)
 - CD/DVD Rom/RW (nicht zugelassen)
 - a. Massenspeicher (nicht zugelassen)
 - b. Audio-Schnittstelle
 - c. Audio & Video
 - Band (nicht zulässig)
 - Solid State (nicht zulässig)
- USB IrDA Bridge Definition (nicht zulässig)
- Image Device Class (nicht zugelassen)

Auswahl der korrekten Teile für das System

Vor der Installation dieses Motherboards in ein System müssen Sie sicherstellen, dass die maßgeblichen Systemteile folgenden Basisrichtlinien und -anforderungen entsprechen:

Betrachtungen zur CPU (Central Processor Unit)

Einzel-/Dualprozessorsystem

Das D3118 unterstützt bis zu zwei Intel® Xeon® Prozessoren bis zu 8 Kernen (Cores) in einem LGA2011 Sockel.

Einzelprozessorsystem:

Wenn nur ein Prozessor auf dem D3118 eingesetzt wird, muss dieser im Sockel CPU0 installiert werden.

Dualprozessorsystem:

Das D3118 unterstützt nur solche dualen Prozessorkonfigurationen, in denen beide Prozessoren mit der gleichen QPI-Frequenz, Core-Frequenz, operieren und über eine gleiche interne Cache-Größe verfügen. Das Mischen von Prozessoren, die nicht mit der gleichen QPI-Frequenz, Core-Frequenz, operieren, kann zum Versagen des Systembetriebs oder zu Schäden an den Prozessoren und/oder dem Motherboard führen.

Quick Path Interconnect (QPI)

Der Host-Bus des Prozessors, auch als Quick Path Interconnect (QPI) bezeichnet, arbeitet selbstständig mit einer Frequenz von bis zu 8 GT/s.

Systemspeicherschnittstelle

Technologie

Ungepufferte Single-Rank oder Dual-Rank DDR3 1066/1333/1666-DIMM-Module mit oder ohne ECC. Jede Kombination aus x8 UDIMMs mit einer DRAM-Dichte von 1, 2 oder 4 Gb.

Registrierte Single-Rank oder Dual-Rank 800/1066/1333/1600 DIMM-Module mit ECC.

Registrierte Quad-Rank DDR3 800/1066 DIMM-Module mit ECC.

Anschluss

240-polig, 1,5 V, 64/72 Bit

BIOS POST-Codes (Port 80-Statusanzeigen)

BIOS-POST-Codes werden auf dem LCD-Display (angeschlossen an den LCD-Anschluss) oder onboard über 8 gelbe LEDs (L0 - L7, L0 ist niedrigste Bit, L7 das höchste) angezeigt.

Kontrollpunktbereiche

Bereich der Statuscodes	Beschreibung
0x01 – 0x0B	SEC-Ausführung
0x0C - 0x0F	SEC-Fehler
0x10 – 0x2F	PEI-Ausführung bis und inklusive Speichererkennung
0x30 – 0x4F	PEI-Ausführung nach Speichererkennung
0x50 – 0x5F	PEI-Fehler
0x60 – 0x8F	DXE-Ausführung bis BDS
0x90 - 0xCF	BDS-Ausführung
0xD0 – 0xDF	DXE-Fehler
0xE0 - 0xE8	S3 Resume (PEI)
0xE9 - 0xEF	Fehler bei S3 Resume (PEI)
0xF0 - 0xF8	Recovery / Wiederherstellung (PEI)
0xF9 – 0xFF	Fehler bei Recovery / Wiederherstellung (PEI)

Standardkontrollpunkte

SEC-Phase

Statuscode	Beschreibung		
0x00	Nicht verwendet		
Progress-Codes	Progress-Codes		
0x01	Power on. Typermittlung zurücksetzen (soft/hard).		
0x02	AP-Initialisierung vor dem Laden des Microcodes		
0x03	North-Bridge-Initialisierung vor dem Laden des Microcodes		
0x04	South-Bridge-Initialisierung vor dem Laden des Microcodes		
0x05	OEM-Initialisierung vor dem Laden des Microcodes		
0x06	Laden des Microcodes		
0x07	AP-Initialisierung nach dem Laden des Microcodes		
0x08	North-Bridge-Initialisierung nach dem Laden des Microcodes		
0x09	South-Bridge-Initialisierung nach dem Laden des Microcodes		

0x0A	OEM-Initialisierung nach dem Laden des Microcodes	
0x0B	Cache-Initialisierung	
SEC-Fehlercodes		
0x0C - 0x0D	Reserviert für zukünftige AMI-SEC-Fehlercodes	
0x0E	Microcode nicht gefunden	
0x0F	Microcode nicht geladen	

SEC-Beep-Codes

Keine

SEC-Phase

Statuscode	Beschreibung
Progress-Codes	3
0x10	PEI-Core wurde gestartet
0x11	Pre-Memory-CPU-Initialisierung wurde gestartet
0x12	Pre-Memory-CPU-Initialisierung (CPU-Modul-spezifisch)
0x13	Pre-Memory-CPU-Initialisierung (CPU-Modul-spezifisch)
0x14	Pre-Memory-CPU-Initialisierung (CPU-Modul-spezifisch)
0x15	Pre-Memory-North-Bridge-Initialisierung wurde gestartet
0x16	Pre-Memory-North-Bridge-Initialisierung (North-Bridge-Modul-spezifisch)
0x17	Pre-Memory-North-Bridge-Initialisierung (North-Bridge-Modul-spezifisch)
0x18	Pre-Memory-North-Bridge-Initialisierung (North-Bridge-Modul-spezifisch)
0x19	Pre-Memory-South-Bridge-Initialisierung wurde gestartet
0x1A	Pre-Memory-South-Bridge-Initialisierung (South-Bridge-Modul-spezifisch)
0x1B	Pre-Memory-South-Bridge-Initialisierung (South-Bridge-Modul-spezifisch)
0x1C	Pre-Memory-South-Bridge-Initialisierung (South-Bridge-Modul-spezifisch)
0x1D - 0x2A	OEM-Pre-Memory-Initialisierungscodes
0x2B	Speicherinitialisierung. Lesen der Serial Presence Detect (SPD) Daten
0x2C	Speicherinitialisierung. Ermittlung der Speicherpräsenz
0x2D	Speicherinitialisierung. Speicher-Timing-Informationen werden programmiert
0x2E	Speicherinitialisierung. Speicher wird konfiguriert
0x2F	Speicherinitialisierung (andere).
0x30	Reserviert für ASL (siehe Abschnitt "ASL Statuscodes")
0x31	Speicher installiert
0x32	CPU-Post-Memory-Initialisierung wurde gestartet
0x33	CPU-Post-Memory-Initialisierung. Cache-Initialisierung
0x34	CPU-Post-Memory-Initialisierung. Initialisierung der Applikationsprozessor(en) (AP)

0x35	CPU-Post-Memory-Initialisierung. Auswahl des Boot-Strap-Prozessors (BSP) selection		
0x36	CPU-Post-Memory-Initialisierung. Initialisierung des System-Management-Modus (SMM)		
0x37	Post-Memory-North-Bridge-Initialisierung wurde gestartet		
0x38	Post-Memory-North-Bridge-Initialisierung (North-Bridge-Modul-spezifisch)		
0x39	Post-Memory-North-Bridge-Initialisierung (North-Bridge-Modul-spezifisch)		
0x3A	Post-Memory-North-Bridge-Initialisierung (North-Bridge-Modul-spezifisch)		
0x3B	Post-Memory-South-Bridge-Initialisierung wurde gestartet		
0x3C	Post-Memory-South-Bridge-Initialisierung (South-Bridge-Modul-spezifisch)		
0x3D	Post-Memory-South-Bridge-Initialisierung (South-Bridge-Modul-spezifisch)		
0x3E	Post-Memory-South-Bridge-Initialisierung (South-Bridge-Modul-spezifisch)		
0x3F-0x4E	OEM-Post-Memory-Initialisierungscodes		
0x4F	DXE IPL wurde gestartet		
PEI-Fehlercodes	S		
0x50	Fehler bei der Speicherinitialisierung. Ungültiger Speichertyp oder inkompatible Speichergeschwindigkeit		
0x51	Fehler bei der Speicherinitialisierung. SPD Lesen fehlgeschlagen		
0x52	Fehler bei der Speicherinitialisierung. Ungültige Speichergröße oder nicht passende Speichermodule.		
0x53	Fehler bei der Speicherinitialisierung. Kein verwendbarer Speicher identifiziert.		
0x54	Nicht spezifizierter Fehler bei der Speicherinitialisierung.		
0x55	Speicher nicht installiert		
0x56	Ungültige/r CPU-Typ oder -Geschwindigkeit		
0x57	CPU-Diskrepanz		
0x58	CPU-Selbsttest fehlgeschlagen oder möglicher CPU-Cache-Fehler		
0x59	CPU-Microcode nicht gefunden oder Microcode-Update fehlgeschlagen		
0x5A	Interner CPU-Fehler		
0x5B	Reset PPI nicht verfügbar		
0x5C-0x5F	Reserviert für zukünftige AMI-Fehlercodes		
S3 Resume-Pro	S3 Resume-Progress-Codes		
0xE0	S3 Resume wurde gestartet (S3 Resume PPI wurde vom DXE IPL aufgerufen)		
0xE1	Ausführung S3 Boot Script		
0xE2	Video-Repost		
0xE3	OS S3 Wake Vector Call		
0xE4-0xE7	Reserviert für zukünftige AMI-Progresscodes		

S3 Resume-Fehlercodes		
0xE8	S3 Resume fehlgeschlagen	
0xE9	S3 Resume PPI nicht gefunden	
0xEA	Fehler S3 Resume Boot Script	
0xEB	Fehler S3 OS Wake	
0xEC-0xEF	Reserviert für zukünftige AMI-Fehlercodes	
Recovery-Progress-Codes		
0xF0	Wiederherstellbedingung von Firmware ausgelöst (Auto recovery)	
0xF1	Wiederherstellbedingung vom Anwender ausgelöst (Forced recovery)	
0xF2	Wiederherstellungsprozess wurde gestartet	
0xF3	Wiederherstellungs-Firmware-Image wurde gefunden	
0xF4	Wiederherstellungs-Firmware-Image wurde geladen	
0xF5-0xF7	Reserviert für zukünftige AMI-Progresscodes	
Recovery-Fehlercodes		
0xF8	Recovery PPI ist nicht verfügbar	
0xF9	Recovery Capsule wurde nicht gefunden	
0xFA	Ungültige Recovery Capsule	
0xFB – 0xFF	Reserviert für zukünftige AMI-Fehlercodes	

PEI-Beep-Codes

Wiederholungen der akkustischen Signale (Beep- Code)	Beschreibung
1	Speicher nicht installiert
1	Speicher wurde zwei Mal installiert (Routine InstallPeiMemory im PEI Core wurde zwei Mal aufgerufen)
2	Wiederherstellung wurde gestartet
3	DXEIPL wurde nicht gefunden
3	DXE Core Firmware Volume wurde nicht gefunden
4	Wiederherstellung fehlgeschlagen
4	S3 Resume fehlgeschlagen
7	Reset PPI nicht verfügbar

DXE-Phase

Statuscode	Beschreibung
0x60	DXE Core wurde gestartet
0x61	NVRAM-Initialisierung
0x62	Installation der South Bridge Runtime Services
0x63	CPU-DXE-Initialisierung wurde gestartet
0x64	CPU-DXE-Initialisierung (CPU-Modul-spezifisch)
0x65	CPU-DXE-Initialisierung (CPU-Modul-spezifisch)
0x66	CPU-DXE-Initialisierung (CPU-Modul-spezifisch)
0x67	CPU-DXE-Initialisierung (CPU-Modul-spezifisch)
0x68	PCI-Host-Bridge-Initialisierung
0x69	North-Bridge-DXE-Initialisierung wurde gestartet
0x6A	North-Bridge-DXE-SMM-Initialisierung wurde gestartet
0x6B	North-Bridge-DXE-Initialisierung (North-Bridge-Modul-spezifisch)
0x6C	North-Bridge-DXE-Initialisierung (North-Bridge-Modul-spezifisch)
0x6D	North-Bridge-DXE-Initialisierung (North-Bridge-Modul-spezifisch)
0x6E	North-Bridge-DXE-Initialisierung (North-Bridge-Modul-spezifisch)
0x6F	North-Bridge-DXE-Initialisierung (North-Bridge-Modul-spezifisch)
0x70	South-Bridge-DXE-Initialisierung wurde gestartet
0x71	South-Bridge-DXE-SMM-Initialisierung wurde gestartet
0x72	South-Bridge-Geräte-Initialisierung
0x73	South-Bridge-DXE-Initialisierung (South-Bridge-Modul-spezifisch)
0x74	South-Bridge-DXE-Initialisierung (South-Bridge-Modul-spezifisch)
0x75	South-Bridge-DXE-Initialisierung (South-Bridge-Modul-spezifisch)
0x76	South-Bridge-DXE-Initialisierung (South-Bridge-Modul-spezifisch)
0x77	South-Bridge-DXE-Initialisierung (South-Bridge-Modul-spezifisch)
0x78	ACPI-Modul-Initialisierung
0x79	CSM-Initialisierung
0x7A – 0x7F	Reserviert für zukünftige AMI-DXE-Fehlercodes
0x80 – 0x8F	OEM-DXE-Initialisierungscodes
0x90	Phase Boot Device Selection (BDS) wurde gestartet
0x91	Treiberanschluss wurde gestartet
0x92	PCI-Bus-Initialisierung wurde gestartet
0x93	PCI-Bus-Hot-Plug-Controller-Initialisierung
0x94	PCI Bus Enumeration
0x95	PCI Bus Request Resources

0x96	PCI Bus Assign Resources
0x97	Console Output Devices Connect
0x98	Console Input Devices Connect
0x99	Super-IO-Initialisierung
0x9A	USB-Initialisierung wurde gestartet
0x9B	USB Reset
0x9C	USB Detect
0x9D	USB Enable
0x9E - 0x9F	Reserviert für zukünftige AMI-Fehlercodes
0xA0	IDE-Initialisierung wurde gestartet
0xA1	IDE Reset
0xA2	IDE Detect
0xA3	IDE Enable
0xA4	SCSI-Initialisierung wurde gestartet
0xA5	SCSI Reset
0xA6	SCSI Detect
0xA7	SCSI Enable
0xA8	Setup Verifying Password
0xA9	Setup Start
0xAA	Reserviert für ASL (siehe Abschnitt "ASL Statuscodes")
0xAB	Setup Input Wait
0xAC	Reserviert für ASL (siehe Abschnitt "ASL Statuscodes")
0xAD	Ready To Boot Event
0xAE	Legacy Boot Event
0xAF	Exit Boot Services Event
0xB0	Runtime Set Virtual Address MAP Begin
0xB1	Runtime Set Virtual Address MAP End
0xB2	Legacy Option ROM Initialization
0xB3	System Reset
0xB4	USB Hot Plug
0xB5	PCI Bus Hot Plug
0xB6	NVRAM Clean-up
0xB7	Configuration Reset (Reset der NVRAM-Einstellungen)
0xB8 – 0xBF	Reserviert für zukünftige AMI-Codes
0xC0 - 0xCF	OEM-BDS-Initialisierungscodes

DXE-Fehlercodes	
0xD0	CPU-Initialisierungsfehler
0xD1	North-Bridge-Initialisierungsfehler
0xD2	South-Bridge-Initialisierungsfehler
0xD3	Einige Architekturprotokolle sind nicht verfügbar
0xD4	Fehler bei der PCI-Resource-Zuordnung. Keine verfügbaren Resourcen
0xD5	Kein Speicherplatz für Legacy Option ROM
0xD6	Console Output Devices nicht gefunden
0xD7	Console Input Devices nicht gefunden
0xD8	Ungültiges Passwort
0xD9	Fehler beim Laden der Boot Option (LoadImage hat Fehler zurückgegeben)
0xDA	Boot Option fehlgeschlagen (StartImage hat Fehler zurückgegeben)
0xDB	Flash-Update fehlgeschlagen
0xDC	Reset-Protokol nicht verfügbar

DXE-Beep-Codes

Wiederholungen der akkustischen Signale (Beep- Code)	Beschreibung
1	Ungültiges Passwort
4	Einige Architekturprotokolle sind nicht verfügbar
5	Console Output Devices nicht gefunden
5	Console Input Devices nicht gefunden
6	Flash-Update fehlgeschlagen
7	Reset-Protokol nicht verfügbar
8	Platform-PCI-Resourcenanforderungen nicht erfüllt
1	Ungültiges Passwort

ACPI/ASL-Kontrollpunkte

Statuscode	Beschreibung
0x01	System wechselt in S1-Schlafmodus
0x02	System wechselt in S2-Schlafmodus
0x03	System wechselt in S3-Schlafmodus
0x04	System wechselt in S4-Schlafmodus
0x05	System wechselt in S5-Schlafmodus
0x10	System-Wake-Up aus dem S1-Schlafmodus

0x20	System-Wake-Up aus dem S2-Schlafmodus
0x30	System-Wake-Up aus dem S3-Schlafmodus
0x40	System-Wake-Up aus dem S4-Schlafmodus
0xAC	Wechsel in ACPI-Modus. Interrupt-Controller befindet sich im PIC-Modus.
0xAA	Wechsel in ACPI-Modus. Interrupt-Controller befindet sich im APIC-Modus.

Für OEM reservierte Kontrollpunktbereiche

Statuscode	Beschreibung
0x05	OEM-SEC-Initialisierung vor dem Laden des Microcodes
0x0A	OEM-SEC-Initialisierung nach dem Laden des Microcodes
0x1D - 0x2A	OEM-Pre-Memory-Initialisierungscodes
0x3F - 0x4E	OEM-PEI-Post-Memory-Initialisierungscodes
0x80 – 0x8F	OEM-DXE-Initialisierungscodes
0xC0 - 0xCF	OEM-BDS-Initialisierungscodes

Betrachtungen zur Stromversorgung

Netzstecker

Das D3118 wird mit einem 12 V Netzteil betrieben.

Installation des Boards

Pin 1	Pin1: GND
	Pin2: +12V Power
Pin 4	Pin3: FAN Sense
۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	Pin4: Fan PWM

Dieser 4-polige Lüfteranschluss unterstützt die Geschwindigkeitsüberwachung

Auf dem D3118 sind sechs 4-polige Lüfteranschlüsse implementiert. Über diese Anschlüsse können Lüfter zur Kühlung von Gehäuse und Prozessor mit dem Motherboard verbunden werden. Kühlende Lüfter tragen zur Systemstabilität und -zuverlässigkeit während der Lebensdauer des Produkts bei.

Intrusion-Anschluss (intern)

Pin 1 ←▶•	PIN	Signal
rm 1 🝑	1	GND
النا	2	open
	3	Intrusion switch present

PC2009 PSU-Anschluss (PC2009)

Frontblendenanschluss (intern)

In der Regel verfügt ein Gehäuse über einige Kontroll- oder Signalkabel, die an ein Motherboard für die Festplatten-LED, Netz-LED, den Betriebsschalter und die Reset-Taste angeschlossen werden können.

Für solche Zwecke wurde der Frontblendenanschluss auf dem D3118 implementiert.

	POL	Signal	POL	Signal
	1	HD-LED +	2	Power LED +
	3	HD-LED -	4	Power LED -
Pin 1 Pin 2	5	GND	6	Power-Button
PIII 1	7	RST L	8	GND
• •	9	Chassis Detect WS L	10	Key
• •	11	Chassis Detect Baku L	12	GND
• •	13	LED1 +	14	LED1 -
::	15	LED2 +	16	LED2 -
• •	17	Speaker +	18	Password Skip
• •	19	GND	20	GND (0,1K)
	21	Key	22	GND (0,1K)
	23	Speaker -	24	Recover BIOS

Kommunikationsanschlüsse

USB 2.0-Port (intern)				
	POL	Signal		
Pin 1	1	VCC AUX (abgesichert)		
	2	Data negative		
	3	Data positive		
	4	GND		

USB 3.0-Port (intern) – Intern/Vorderseite				
Pin 1	POL	Signal	POL	Signal
Pin 19	1	VBus	20	Key
• •	2	USB 3.0 Port 2 RX Neg	19	VBus
	3	USB 3.0 Port 2 RX Pos	18	USB 3.0 Port 1 RX Neg
Pin 10 Pin 11	4	GND	17	USB 3.0 Port 1 RX Pos
	5	USB 3.0 Port 2 TX Neg	16	GND
	6	USB 3.0 Port 2 TX Pos	15	USB 3.0 Port 1 TX Neg
	7	GND	14	USB 3.0 Port 1 TX Pos
	8	USB 2.0 Port 2 Data Neg	13	GND
	9	USB 2.0 Port 2 Data Pos	12	USB 2.0 Port 1 Data Neg
	10	Überstrom	11	USB 2.0 Port 1 Data Pos

High Definition Audio Frontblendenanschluss (intern)				
Pin 1	POL	Signal	POL	Signal
	1	HDA Port 1 Left	2	Analog GND
:.	3	HDA Port 1 Right	4	FP Presence Detect
	5	HDA Port 2 Left	6	Jack Sense Port 1
	7	Jack Sense common	8	Key
	9	HDA Port 2 Right	10	Jack Sense Port 1

Anschlüsse für Systemüberwachung und -verwaltung

SCSI LED-Anschluss (Intern)			
Pin 1	POL	Signal	
	1	Nicht angeschlossen	
	2	SCSI-ON LED (Low Aktiv)	
	3	SCSI-ON LED (Low Aktiv)	
	4	Nicht angeschlossen	

Konfigurations-Jumper innerhalb der Frontblende

COM1 Ports

Pin 1	PIN	Signal	PIN	Signal
	1	DCD 1	2	DSR 1
	3	SIN 1	4	RTS 1
	5	SOUT 1	6	CTS 1
	7	DTR 1	8	RI 1
	9	GND		

TPM-Jumper

POL	Signal
1	RST_PCI_TPM_L
2	TPM_RESET_L

Standardmäßig ist der TPM-Jumper gesetzt. Das Entfernen des Jumpers führt zur Deaktivierung der TPM-Funktionalität.

Speicherinstallation

Vor der Installation muss sichergestellt werden, dass der einzusetzende Speicher kompatibel mit dem Motherboard und dem Prozessor ist. Das D3118-Board unterstützt bis zu zwölf 240-polige, 1.5 V. 800/1066/1333/1600 MHz DDR3-Module.

Hier einige Kernpunkte, die Sie vor der Speicherinstallation auf dem D3118 beachten müssen:

- Folgende Speichermodule werden unterstützt: 512 MB, 1 GB, 2 GB, 4 GB und 8 GB unbuffered ECC und Non-ECC Speichermodule. 2 GB, 4 GB, 8 GB, 16 GB und 32 GB registered ECC Module.
- Alle installierten Speichermodule werden automatisch erkannt eine Jumper-Einstellung ist nicht erforderlich.
- Das D3118 unterstützt bis zu 512 GB an Speicher.
- Module mit unterschiedlichen Timing-Parametern k\u00f6nnen im gleichen Kanal in unterschiedlichen Steckpl\u00e4tzen installiert werden, jedoch wird nur das Timing, das das langsamste Modul unterst\u00fctzt, auf alle anderen angewendet.

Zum Erzielen der maximalen Leistung die Module in nachstehender Reihenfolge einsetzen:

Der gleichzeitige Betrieb verschiedener Speichertechnologien unbuffered non-ECC, unbuffered ECC und registered Modulen ist nicht möglich.

Wenn zwei Speichermodule mit unterschiedlicher Rank-Anzahl im selben Kanal installiert werden, muss das Modul mit der höheren Rank-Anzahl im am weitesten von der CPU liegenden Speichersteckplatz installiert werden.

Wird ein Systemupgrade durchgeführt und dabei ein zusätzliches Speichermodul zu einem Kanal mit einem vorhandenen Modul hinzugefügt, müssen die Module dabei möglicherweise getauscht werden, damit das Speichermodul mit der höheren Rank-Anzahl in diesem Speicherkanal außen (weiter weg von der CPU) liegt.

Vorgehen bei der Speicherinstallation

Bei der Installation von Speichermodulen müssen Sie darauf achten, dass die Module korrekt am Speichersockel ausgerichtet sind. Auf den Speichermodulen sollten sich kleine Kerben befinden, die zu den Kerben im Speichersockel passen. DDR-Module verfügen nur über eine Kerbe, die sich unmittelbar neben dem Mittelpunkt des Moduls/Sockels befindet. Die Installationsmethode für Speichermodule wird detailliert in den folgenden Diagrammen illustriert.

Installieren eines Speichermoduls

- ▶ Drücken Sie die Halterungen auf beiden Seiten des Speichersteckplatzes nach außen.
- Das Speichermodul in Position (1) einfügen.
- Gleichzeitig die Seitenhalterungen nach oben schnippen, bis das Speichermodul in der Position (2) einrastet.

Entfernen eines Speichermoduls

- ▶ Die Klammern rechts und links am Speichersteckplatz nach außen drücken (1).
- ▶ Das Speichermodul aus dem Speichersteckplatz (2) ziehen.

Mitunter kann schwierig sein, ein Modul in die korrekte Position zu bringen. Dies ist jedoch nur äußerst selten der Fall. Setzen Sie das Motherboard auf seine antistatische Schutzhülle und auf eine ebene Oberfläche, um Schäden und Verbiegungen vorzubeugen. Fahren Sie dann mit der Speicherinstallation fort.

Zur Vermeidung von Schäden an Motherboard oder Erweiterungsgerät vor der Durchführung von Systemänderungen das Motherboard stets von der Stromversorgung trennen.

Installation von Prozessor und Kühlkörper

Prozessorinstallation

Der Prozessorsockel ist zum Schutz der Federkontakte mit einer Schutzkappe versehen.

In einem Garantiefall kann das Mainboard von Fujitsu Technology Solutions nur mit angebrachter Schutzkappe zurückgenommen werden!

Niemals die Unterseite des Prozessors berühren. Selbst kleinste Verschmutzungen durch Hautfette können den Prozessorbetrieb beeinträchtigen oder zur Zerstörung des Prozessors führen.

Den Prozessor mit äußerster Behutsamkeit in den Sockel setzen, da die Federkontakte des Sockels sehr empfindlich sind und nicht verbogen werden dürfen.

► Entfernen Sie den Kühlkörper.

- Den Hebel (1) herunterdrücken und enthaken (2).
- Den Rahmen aufklappen.

Den alten Prozessor (3) aus dem Sockel entfernen.

Mainboard D3118 Deutsch - 31

Den neuen Prozessor zwischen Daumen und Zeigefinger halten und in den Sockel (b) einsetzen, so dass die Markierung auf dem Prozessor mit der Markierung auf dem Sockel (b) abschließt.

- ▶ Den Rahmen nach unten klappen (1).
- ► Den Hebel nach unten drücken (2), bis dieser wieder einhakt.
- Die Schutzkappe (3) entfernen und aufbewahren.

32 – Deutsch Mainboard D3118

Montage des Kühlkörpers

Verwenden Sie nur den zum Lieferumfang zählenden Kühlkörper!

Sorgen Sie dafür, dass zwischen Prozessor und Kühlkörper wärmeleitendes Material verwendet wird. Wenn am Kühlkörper bereits ein wärmeleitendes Polster (gummiartige Folie) angebracht ist, nutzen Sie dieses. Andernfalls muss eine sehr dünne Schicht wärmeleitender Paste aufgetragen werden.

Wärmeleitende Polster können nur einmal verwendet werden. Wenn der Kühlkörper entfernt wird, muss vor der erneuten Montage neue Paste angebracht werden.

- Je nach Konfigurationsvariante müssen Sie eine Schutzfolie vom Kühlkörper abziehen oder den Kühlkörper vor dem Anbringen mit wärmeleitender Paste beschichten.
- Den Kühlkörper je nach Modell mit vier Schrauben sichern oder in die Montagehalterung drücken.

Mainboard D3118 Deutsch - 33

Installation von Add-In-Karten

Prüfen Sie vor der Installation von Add-In-Karten, ob diese vollständig kompatibel mit dem Motherboard sind.

PCIe x4 Gen 3 (CPU 0)

PCIe x4 Gen 3 (CPU 0)

PCIe x16 Gen 3 (CPU 1)

PCIe x16 Gen 3 (CPU 0)

PCIe x16 Gen 3 (CPU 1)

PCIe x16 Gen 3 (CPU 1)

Einfach den passenden Steckplatz für die Add-In-Karte suchen und die Karte fest einfügen. Wenn sich Add-In-Karten (oder andere Komponenten) nicht ordnungsgemäß in einen Steckplatz einsetzen lassen, niemals Gewalt anwenden. Es ist besser, Sie wählen einen anderen Steckplatz aus oder tauschen die fehlerhafte Karte um, als das Motherboard und die Add-In-Karte zu beschädigen.

Es hat sich als gute Praxis erwiesen, wenn Add-In-Karten statt direkt nebeneinander in gestaffelter Form installiert werden. Auf diese Weise herrscht innerhalb des Gehäuses eine bessere Luftzirkulation, die sich positiv auf die Kühlung aller installierten Geräte auswirkt.

Zur Vermeidung von Schäden am Motherboard oder dem Erweiterungsgerät müssen sie das Motherboard vor der Durchführung von Systemänderungen stets von der Stromversorgung trennen.

34 – Deutsch Mainboard D3118

Anschließen von externen Geräten

Das Anschließen von externen Geräten an das Motherboard ist eine einfache Aufgabe. Zu den Standardkomponenten, die üblicherweise an das Motherboard angeschlossen werden, zählen Tastatur-, Maus- und Druckerkabel. In nachstehendem Diagramm wird der ATX-Port-Stack für folgendes Board im Detail illustriert:

Externe Ports

Die Positionen der externen Anschlüsse am Motherboard wurden am Anfang des Handbuchs angegeben.

Der LAN RJ45-Anschluss verfügt über zwei LEDs (Light Emitting Diodes).

Linke LED	Rechte LED
Grün: Verbindung eingerichtet	Aus: 10 Mbit/s
Grün blinkend: Aktive LAN-Verbindung	Grün: 100 Mbit/s
	Gelb: 1000 Mbit/s

Die Ports wurden so konzipiert, dass sie Anschlüsse nur in eine Richtung zulassen. Dennoch sollten Sie beim Anschließen mit Vorsicht vorgehen. Beim fehlerhaften Anschließen können die Pole unter Umständen durch Verbiegen oder Brechen beschädigt werden.

Mainboard D3118 Deutsch - 35

Austauschen der Lithium-Batterie

Die installierte Lithium-Batterie versorgt den CMOS-Speicher mit Strom, damit die Systeminformationen permanent gespeichert bleiben. Wenn die Batterie leer oder fast leer ist, wird dem Benutzer eine entsprechende Fehlermeldung angezeigt. Die Lithium-Batterie muss dann ausgetauscht werden.

Ein unsachgemäßer Austausch der Lithium-Batterie birgt ein Explosionsrisiko!

Die Lithium-Batterie darf nur durch eine identische Batterie oder durch einen vom Hersteller empfohlenen Typ ausgetauscht werden.

Gebrauchte Lithium-Batterien niemals in den normalen Hausmüll geben. Sie müssen in Übereinstimmung mit den lokalen Vorschriften für Sondermüll entsorgt werden.

Stellen Sie sicher, dass Sie die Batterie korrekt einsetzen. Der Pluspol muss nach oben weisen!

Die Halterung für die Lithium-Batterie ist in verschiedenen Ausführungen zu finden, die aber auf gleiche Weise funktionieren.

▶ Die Klammer in Pfeilrichtung (1) drücken.

Die Batterie springt leicht aus der Halterung.

- Die Batterie entfernen (2).
- ▶ Die neue Lithium-Batterie (identischen Typs) in die Halterung (3) schieben und nach unten drücken, bis sie einrastet (4).

36 – Deutsch Mainboard D3118

BIOS-Update

Wann sollte ein BIOS-Update durchgeführt werden?

Fujitsu Technology Solutions stellt neue BIOS-Versionen zur Verfügung, um die Kompatibilität zu neuen Betriebssystemen, zu neuer Software oder zu neuer Hardware zu gewährleisten. Außerdem können neue BIOS-Funktionen integriert werden.

Ein BIOS-Update sollte auch immer dann durchgeführt werden, wenn ein Problem besteht, das sich durch neue Treiber oder neue Software nicht beheben lässt.

Wie funktioniert ein BIOS-Update?

BIOS-Update unter Windows mit dem Utility DeskFlash

Ein BIOS-Update kann mit dem Utility *DeskFlash* auch direkt unter Windows durchgeführt werden. *DeskFlash* befindet sich auf der CD "Drivers & Utilities" (unter*DeskUpdate*).

BIOS Recovery

Alle BIOS-Einstellungen werden auf die Standardwerte zurückgesetzt.

- Das Gehäuse wie im Bedienerhandbuch beschrieben öffnen.
- Den Recovery BIOS-Jumper schließen (siehe Seite 25).
- ▶ Das Gehäuse wie im Bedienerhandbuch beschrieben schließen.
- ▶ Eine BIOS Recovery Disk einfügen und den PC starten.
- Auf die Signale des Summers oder Lautsprechers achten. Das BIOS wurde erfolgreich wiederhergestellt, wenn durchgehend schnell wiederholte Signaltöne zu hören sind.
- Schalten Sie das System aus.
- ▶ Das Gehäuse wie im Bedienerhandbuch beschrieben öffnen.
- Den Recovery BIOS-Jumper entfernen.
- Das Gehäuse wie im Bedienerhandbuch beschrieben schließen.
- Die Floppy-Disk aus dem Laufwerk entfernen.
- Den PC starten und das BIOS Setup aufrufen.
- Im Menü "Advanced" die Option "Reset Configuration" w\u00e4hlen und die Einstellung auf "Yes" setzen.
- Die Änderungen speichern und das Setup beenden.

Die Wiederherstellung des BIOS ist damit abgeschlossen. Das System führt einen Neustart aus.

Mainboard D3118 Deutsch - 37

Glossar

Die nachfolgend aufgelisteten Begriffe und Abkürzungen stellen nur eine Auswahl der kompletten Liste mit allgemeinen technischen Begriffen und Abkürzungen dar. Nicht alle hier aufgelisteten technischen Begriffe und Abkürzungen beziehen sich auf das hier beschriebene Motherboard.

	T
AC'97	Audio Codec '97
ACPI	Advanced Configuration and Power
	Interface
ADD	Advanced Digital Display
AMT	Active Management Technology
AoL	Alert on LAN
7102	THE CONTENT
ASF	Alert Specification Forum
ATA	Advanced Technology Attachment
BIOS	Basic Input Output System
BMC	Baseboard Management Controller
CCR	Chip Card Reader
OOK	
CPU	Central Processing Unit
CSA	Communications Streaming
	Architecture
DASH	Desktop and Mobile Architecture for
	System Hardware
DDR	Double Data Rate
DIMM	Dual Inline Memory Module
	•
DMI	Direct Media Interface
DVO	Digital Video Out
ECC	Error Correcting Code
EEPR	Electrical Eraseable Programmable
ОМ	Read Only Memory
FDC	Floppy Disc Controller
FIFO	First-In First-Out
FSB	Front Side Bus
FWH	Firmware Hub
GMCH	Graphics and MemoryController Hub
GIVICH	Graphics and MemoryController Hub
GPA	Graphics Performance Accelerator
HDA	High Definition Audio
IAPC	Instantly Available Power Managed
	Desktop PC Design
ICH	I/O Controller Hub
IDE	Intelligent Drive Electronics
IPSec	Internet Protocol Security
ISA	-Bus Industrial Standard Architecture
ISA	- Bus
LAN	Local Area Network
LSA	LAN Desk Service Agent
LOA	LATE DOOK OUT VICE AGUIT

MCH	Memory Controller Hub
MMX	MultiMedia eXtension
NCQ	Native Command Qeueing
NIC	Networking Interface Card
PCI-Bus	Peripheral Component
	Interconnect Bus
PECI	Peripheral Environmental Control Interface
PSC	Permanent Server Control
PXE	Preboot eXecution Environment
QPI	QuickPath Interconnect
RAID	Redundant Array of
KAID	Inexpensive/Independent Disks
DAM	Random Access Memory
RAM	Random Access Memory
RAMDAC	RAM Digital Analog Converter
RD RAM	RAMBUS Dynamic RAM
RIMM	RAMBUS Inline Memory Module
RSB	Remote Server Management Board
RTC	Real Time Clock
SAS	Serial Attached SCSI
SATA	Serial ATA
SB	SoundBlaster
SCSI	Small Computer System Interface
SD RAM	Synchronous Dynamic RAM
SDVO	Serial Digital Video Out
SG RAM	Synchronous Graphic RAM
SM & TM	System Monitoring & Thermal
	Management
SMBus	System Management Bus
SG RAM	Synchronous Graphic RAM
SPI	Serial Peripheral Interface
SVGA	Super VGA
TPM	Trusted Platform Module
TCG	Trusted Computing Group
USB	Universal Serial Bus
VGA	Video Graphics Adapter
WOL	Wake on LAN

38 – Deutsch Mainboard D3118

Content

Overview Mainboard D3118	2
Mainboard D3118	4
Notational conventions	4
Important notes	5
Information about boards	5
Hardware Specifications	7
Block Diagram	9
System security features	
Basic security features	
Trusted Platform Module (TPM)	
SmartCase DynamicUSB	11
Choose Proper Parts for Your System	12
Central Processor Unit (CPU) Considerations	
System Memory Interface	
BIOS POST-Codes (Port 80 status indicators)	
Power Supply Considerations	20
Board Installation	21
Fan Connector (internal)	
Intrusion connector (internal)	
PC2009 PSU Connector (PC2009)	
Frontpanel Connector (internal)	22
Communication connectors	22
System monitoring and management connectors	24
Configuration jumper inside front panel	
COM1 Ports	25
TPM jumper	
Installing the Memory	
Memory Installation Procedure	
Installing the Processor and Heatsink	
Mounting heat sink	
Installing Add-In Cards	
Connecting External Devices	
External ports	
Replacing lithium battery	
BIOS update	
When should a BIOS update be carried out?	
How does a BIOS update work?	
BIOS Recovery	
Glossary	36

Overview Mainboard D3118

A26361-D3118-Z320-1-7419

Risk of Explosion if battery is replaced by an incorrect type.

Dispose of used batteries according to the instructions.

Il y a risque d'explosion si la batterie est remplacée par une batterie de type incorrect. Mettre au rebut les batteries usagées conformément aux instructions.

Explosionsgefahr, wenn die Batterie mit einem inkorrekten Batterietyp ersetzt wird. Alte Batterien gemäß Gebrauchsanweisung entsorgen.

Mainboard D3118

Based on the Intel® C600 chipset, the D3118 is characterised by a range of ultra-modern technologies. These include: Support for the Intel Xeon® processor series with up to 8 cores in the LGA 2011 socket, multiple PCI-Express buses, Quad Channel DDR3 memory design, Onboard PCI-Express Gigabit Ethernet, SATA ports, SAS ports, multiple USB 2.0 / 3.0 (Universal Serial Bus) and eSATA ports.

The programme *Acrobat Reader* must be installed to be able to open the manuals. You will find the programme on the CD-ROM directory: utls/acrobat.

For more details please read the according readme.txt files.

Notational conventions

The meanings of the symbols and fonts used in this manual are as follows:

indicates information which is important for your health or for preventing physical damage.

indicates additional information which is required to use the system properly.

► Text which follows this symbol describes activities that must be performed in the order shown.

This symbol indicates that you must press the Enter key.

Text in this typeface indicates screen outputs.

Text in this bold typeface indicates the entries you make via the keyboard.

Text in italics indicates commands or menu items.

"Quotation marks" indicate names of chapters or terms.

Important notes

With the mainboard installed you must open the system to access the mainboard. How to dismantle and reassemble the system is described in the operating manual accompanying the system.

Connecting cables for peripherals must be adequately shielded to avoid interference.

Observe the safety notes in the operating manual of your system.

Incorrect replacement of the lithium battery may lead to a risk of explosion.

Components can become very hot during operation. Ensure you do not touch components when making extensions to the mainboard. There is a danger of burns!

The shipped version of this board complies with the requirements of the EEC directive 2004/108/EC "Electromagnetic compatibility" and 2006/95/EC "Low voltage directive".

Compliance was tested in a typical PC configuration.

When installing the board, refer to the specific installation information in the manual for the receiving device.

The warranty is invalidated if the system is damaged during the installation or replacement of expansions. Information on which expansions you can use is available from your sales outlet or the customer service centre.

Information about boards

To prevent damage to the mainboard, the components and conductors on it, please take great care when you insert or remove boards. Take great care to ensure that extension boards are slotted in straight, without damaging components or conductors on the mainboard, or any other components, for example EMI spring contacts.

Remove the plug from the mains outlet so that system and mainboard are totally disconnected from the mains voltage.

Be careful with the locking mechanisms (catches, centring pins etc.) when you replace the mainboard or components on it, for example memory modules or processors.

Never use sharp objects (screwdrivers) for leverage.

Boards with electrostatic sensitive devices (ESD) are identifiable by the label shown.

When you handle boards fitted with ESDs, you must, under all circumstances, observe the following:

- You must always discharge static build up (e.g. by touching a grounded object) before working.
- The equipment and tools you use must be free of static charges.
- Remove the power plug from the mains supply before inserting or removing boards containing ESDs.
- Always hold boards with ESDs by their edges.
- Never touch pins or conductors on boards fitted with ESDs.

Notice for the USA

Compliance Information Statement (Declaration of Conformity Procedure) DoC FCC Part 15: This device complies with part 15 of the FCC Rules

Operation is subject to the following conditions:

- 1) This device may not cause harmful interference, and
- 2) This device must accept any interference received including interference that may cause undesired operation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try one or more of the following measures:
 - Reorient or relocate the receiving antenna.
 - Increase the separation between the equipment and the receiver.
 - Plug the equipment into an outlet on a circuit different from that of the receiver.
 - Consult the dealer on an experienced radio/television technician for help.

Notice for Canada

This apparatus complies with the Class B limits for radio interference as specified in the Canadian Department of Communications Radio Interference Regulations. (Cet appareil est conforme aux norms de Classe B d'interference radio tel que specifie par le Ministere Canadien des Communications dans les reglements d'ineteference radio.)

Notice for Europe (CE Mark)

This product is in conformity with the Council Directive EEC directives 2004/108/EC and 2006/95/EC.

CAUTION: Lithium battery included with this board. Do not puncture, mutilate, or dispose of battery in fire. Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by manufacturer. Dispose of used battery according to manufacturer instructions and in accordance with your local regulations.

Hardware Specifications

CPU - LGA2011 socket

- Up to two CPU-sockets
- Intel® Xeon Processors in the LGA2011 package
- Intel® QuickPath architecture between CPUs
- Integrated memory controller

Main memory

- Four channel DDR3 memory architecture
- Sixteen DDR3 memory sockets
- Support for buffered ECC memory modules
- Support for unbuffered non-ECC and ECC memory modules
- Supports DDR3 800 / 1066 / 1333 / 1600 memory interface
- Up to 512 GB max. memory
- Non JEDEC standard DIMMS are not supported

Chips on board

- Intel® C600 Chipset
- SMSC SCH5636 Super I/O
- Conexant Audio CX20642
- Intel 82579LM Lewisville LAN
- Intel 82574L Hartwell LAN
- TI TUSB7320 USB SuperSpeed

LAN - 10/100/1000 Ethernet Controller

- WakeOnLAN by interesting packets and Magic-PacketTM
- PXE support
- Support for Jumbo-Frames

Storage Devices

- 2 Serial ATA ports
- 8 SAS/SATA ports

BIOS features

- System and BIOS password
- Harddisk password
- Recovery BIOS support
- Boot sequential control for each floppy and HDD drive
- Serial access protection
- Bootsector virus warning
- Flash write protection against virus
- SPD EEPROM write protection against virus

Advanced security features

- Trusted Platform Module 1.2
- USB Dynamic Security on all external ports

Basic system monitoring and management

- Wake on LAN
- USB voltage short detection
- Advanced Fan Control

Audio

- Conexant CX20642 "Carson"
- Host based Audio with 2-channel HD Audio
- Stereo Head-Phone Out (approx. 50 mW at 32 Ω)
- Sound via internal system speaker
- Internal connector: Frontpanel
- External connectors: Stereo Microphone Input, Stereo Line Input, Stereo Line Output

Communication

- Internal connector: 2x USB 3.0, 6x USB 2.0, 1x USB 2.0 standard connector (for memory stick)
- External (I/O shield) 6x USB 2.0 rear
- Internal COM1
- External eSATA

Advanced system monitoring and management

- Fujitsu Technolgy Solutions System Management
- Fujitsu Technolgy Solutions Thermal Management
- Automatic system reset (ASR)
- Inventory identification
- ASF2.0 support

Power Management

ACPI (Save to RAM / Disk) support

Environmental protection

Socketed battery (recyclable)

Form factor, slots, compatibility list

- Formfactor: EATX
- Slots: 6 slots (details see block diagram)
- Compatible to ACPI, BBS DMI, IAPC, PCI 2.3, WfM, ASF2.0, DASH1.1

Block Diagram

The above picture is purely representative. Due to engineering updates and new board revisions, certain components may change and or be repositioned. The picture above may or may not look exactly like the board you received.

The following page includes details on the vital components of this motherboard.

System security features

Basic security features

For a complete description of the basic security features have a look at the BIOS Specification.

Trusted Platform Module (TPM)

Trusted Platform Modules are a Trusted Computing Group (TCG) security solution to increase the system security. The TPM resides on the motherboard and uses the LPC bus to communicate with the rest of the platform.

Chip vendor and type: Infineon SLB 9635 TT1.2

Feature: TPM 1.2 compliant Trusted Platform Module

Jumper for Enabling/Disabling the TPM-functionlity

SmartCase DynamicUSB

This is hardware security circuit which will disable the USB-port if a USB-device is removed so no other USB-devices can be attached. Goal is that no data can be stolen by connecting i.e. a USB-stick. This function is completely realiszed in hardware and BIOS and therefore totally independent of any OS or Software interaction.

This feature needs to be enabled via BIOS-Setup. During boot phase BIOS will allow specified attached USB-devices (not allowed devices will not work). Ports where no device is connected will be disabled by BIOS automatically. If a USB device is removed system must be power-cycles (S4 or S5-state) before any other USB device can be detected on this port again. In addition, following removal of a USB device during the runtime, the USB light begins to flash in order to indicate a SmartCase DynamicUSB event.

All external USB 2.0 ports (I/O area and front) offer support for SmartCase DynamicUSB. The USB 3.0 ports are deactivated with SmartCase DynamicUSB.

The following device classes are specified within the USB specification. **Bold/cursive** written classes are not allowed USB devices (if SmartCase DynamicUSB is enabled) – ports with such devices connected during BIOS post phase will be disabled by BIOS.

- Hub Class (not allowed)
- Human Interface Device
- Monitor-Controll
 - Direct Line Control Model
 - Data Interface Class (not allowed)
 - Abstrace Control Model
 - Telephone Control Model
- Power Device
- Audio Device
 - Audio Control
 - Audio Streming
 - MIDI Streaming
- Printer Device
- Communication Device (not allowed)
- Mass Storage Device (not allowed)
 - Gen. Mass Storage (not allowed)
 - CD/DVD Rom/RW (not allowed)
 - Mass Storage (not allowed)
 - Audio Interface
 - Audio & Video
 - Tape (not allowed)
 - Solid State (not allowed)
- USB IrDA Bridge Definition (not allowed)
- Image Device Class (not allowed)

Choose Proper Parts for Your System

Before you installing a system with this motherboard, make sure your major system parts meet the following basic guidelines and requirements:

Central Processor Unit (CPU) Considerations

Single/Dual Processor System

D3118 supports up to two Intel® Xeon® processors and up to 8 cores in one LGA2011 socket.

Single Processor System:

When only installing a single processor on D3118, the processor must be installed in the CPU0 socket.

Dual Processor System:

D3118 supports dual processor configurations only in which both processors operate with the same QPI frequency, core frequency, and have the same internal cache sizes. Mixing processors operating at different QPI frequency, core frequency, or cache sizes may cause system non-operation or damages on processors and/or the motherboard.

Quick Path Interconnect (QPI)

The processor host bus, or called Quick Path Interconnect (QPI), auto-operates at a frequency up to 8 GT/s.

System Memory Interface

Technology

DDR3 1066/1333/1666 unbuffered single rank or dual rank DIMM modules with or without ECC Any combination of x8 UDIMMs, with 1Gb, 2Gb or 4Gb DRAM density supported.

DDR3 800/1066/1333/1600 registered single rank or dual rank DIMM modules with ECC.

DDR3 800/1066 registered guad rank DIMM modules with ECC.

Connector

240 Pin, 1.5 V, 64/72 Bit

BIOS POST-Codes (Port 80 status indicators)

BIOS-POST codes are visible on the LCD-display (connected to the LCD-connector) or onboard via 8 yellow LEDs (L0-L7, L0 is the lowest bit, L7 the highest).

Checkpoint Ranges

Status Code Range	Description
0x01 – 0x0B	SEC execution
0x0C - 0x0F	SEC errors
0x10 - 0x2F	PEI execution up to and including memory detection
0x30 - 0x4F	PEI execution after memory detection
0x50 – 0x5F	PEI errors
0x60 – 0x8F	DXE execution up to BDS
0x90 - 0xCF	BDS execution
0xD0 – 0xDF	DXE errors
0xE0 - 0xE8	S3 Resume (PEI)
0xE9 - 0xEF	S3 Resume errors (PEI)
0xF0 - 0xF8	Recovery (PEI)
0xF9 – 0xFF	Recovery errors (PEI)

Standard Checkpoints

SEC Phase

Status Code	Description		
0x00	Not used		
Progress Codes	Progress Codes		
0x01	Power on. Reset type detection (soft/hard).		
0x02	AP initialization before microcode loading		
0x03	North Bridge initialization before microcode loading		
0x04	South Bridge initialization before microcode loading		
0x05	OEM initialization before microcode loading		
0x06	Microcode loading		
0x07	AP initialization after microcode loading		
0x08	North Bridge initialization after microcode loading		
0x09	South Bridge initialization after microcode loading		

0x0A	OEM initialization after microcode loading	
0x0B	Cache initialization	
SEC Error Codes		
0x0C - 0x0D	Reserved for future AMI SEC error codes	
0x0E	Microcode not found	
0x0F	Microcode not loaded	

SEC Beep Codes

None

SEC Phase

Status Code	Description	
Progress Codes	Progress Codes	
0x10	PEI Core is started	
0x11	Pre-memory CPU initialization is started	
0x12	Pre-memory CPU initialization (CPU module specific)	
0x13	Pre-memory CPU initialization (CPU module specific)	
0x14	Pre-memory CPU initialization (CPU module specific)	
0x15	Pre-memory North Bridge initialization is started	
0x16	Pre-Memory North Bridge initialization (North Bridge module specific)	
0x17	Pre-Memory North Bridge initialization (North Bridge module specific)	
0x18	Pre-Memory North Bridge initialization (North Bridge module specific)	
0x19	Pre-memory South Bridge initialization is started	
0x1A	Pre-memory South Bridge initialization (South Bridge module specific)	
0x1B	Pre-memory South Bridge initialization (South Bridge module specific)	
0x1C	Pre-memory South Bridge initialization (South Bridge module specific)	
0x1D - 0x2A	OEM pre-memory initialization codes	
0x2B	Memory initialization. Serial Presence Detect (SPD) data reading	
0x2C	Memory initialization. Memory presence detection	
0x2D	Memory initialization. Programming memory timing information	
0x2E	Memory initialization. Configuring memory	
0x2F	Memory initialization (other).	
0x30	Reserved for ASL (see ASL Status Codes section below)	
0x31	Memory Installed	
0x32	CPU post-memory initialization is started	
0x33	CPU post-memory initialization. Cache initialization	
0x34	CPU post-memory initialization. Application Processor(s) (AP) initialization	

0x35	CPU post-memory initialization. Boot Strap Processor (BSP) selection
0x36	CPU post-memory initialization. System Management Mode (SMM) initialization
0x37	Post-Memory North Bridge initialization is started
0x38	Post-Memory North Bridge initialization (North Bridge module specific)
0x39	Post-Memory North Bridge initialization (North Bridge module specific)
0x3A	Post-Memory North Bridge initialization (North Bridge module specific)
0x3B	Post-Memory South Bridge initialization is started
0x3C	Post-Memory South Bridge initialization (South Bridge module specific)
0x3D	Post-Memory South Bridge initialization (South Bridge module specific)
0x3E	Post-Memory South Bridge initialization (South Bridge module specific)
0x3F-0x4E	OEM post memory initialization codes
0x4F	DXE IPL is started
PEI Error Code	es
0x50	Memory initialization error. Invalid memory type or incompatible memory speed
0x51	Memory initialization error. SPD reading has failed
0x52	Memory initialization error. Invalid memory size or memory modules do not match.
0x53	Memory initialization error. No usable memory detected
0x54	Unspecified memory initialization error.
0x55	Memory not installed
0x56	Invalid CPU type or Speed
0x57	CPU mismatch
0x58	CPU self test failed or possible CPU cache error
0x59	CPU micro-code is not found or micro-code update is failed
0x5A	Internal CPU error
0x5B	reset PPI is not available
0x5C-0x5F	Reserved for future AMI error codes
S3 Resume Pro	ogress Codes
0xE0	S3 Resume is stared (S3 Resume PPI is called by the DXE IPL)
0xE1	S3 Boot Script execution
0xE2	Video repost
0xE3	OS S3 wake vector call
0xE4-0xE7	Reserved for future AMI progress codes
S3 Resume Err	ror Codes
0xE8	S3 Resume Failed
0xE9	S3 Resume PPI not Found

0xEA	S3 Resume Boot Script Error		
0xEB	S3 OS Wake Error		
0xEC-0xEF	Reserved for future AMI error codes		
Recovery Progres	Recovery Progress Codes		
0xF0	Recovery condition triggered by firmware (Auto recovery)		
0xF1	Recovery condition triggered by user (Forced recovery)		
0xF2	Recovery process started		
0xF3	Recovery firmware image is found		
0xF4	Recovery firmware image is loaded		
0xF5-0xF7	Reserved for future AMI progress codes		
Recovery Error Codes			
0xF8	Recovery PPI is not available		
0xF9	Recovery capsule is not found		
0xFA	Invalid recovery capsule		
0xFB – 0xFF	Reserved for future AMI error codes		

PEI Beep Codes

# of Beeps	Description
1	Memory not Installed
1	Memory was installed twice (InstallPeiMemory routine in PEI Core called twice)
2	Recovery started
3	DXEIPL was not found
3	DXE Core Firmware Volume was not found
4	Recovery failed
4	S3 Resume failed
7	Reset PPI is not available

DXE Phase

Status Code	Description
0x60	DXE Core is started
0x61	NVRAM initialization
0x62	Installation of the South Bridge Runtime Services
0x63	CPU DXE initialization is started
0x64	CPU DXE initialization (CPU module specific)
0x65	CPU DXE initialization (CPU module specific)
0x66	CPU DXE initialization (CPU module specific)
0x67	CPU DXE initialization (CPU module specific)

0x68	PCI host bridge initialization
0x69	North Bridge DXE initialization is started
0x6A	North Bridge DXE SMM initialization is started
0x6B	North Bridge DXE initialization (North Bridge module specific)
0x6C	North Bridge DXE initialization (North Bridge module specific)
0x6D	North Bridge DXE initialization (North Bridge module specific)
0x6E	North Bridge DXE initialization (North Bridge module specific)
0x6F	North Bridge DXE initialization (North Bridge module specific)
0x70	South Bridge DXE initialization is started
0x71	South Bridge DXE SMM initialization is started
0x72	South Bridge devices initialization
0x73	South Bridge DXE Initialization (South Bridge module specific)
0x74	South Bridge DXE Initialization (South Bridge module specific)
0x75	South Bridge DXE Initialization (South Bridge module specific)
0x76	South Bridge DXE Initialization (South Bridge module specific)
0x77	South Bridge DXE Initialization (South Bridge module specific)
0x78	ACPI module initialization
0x79	CSM initialization
0x7A – 0x7F	Reserved for future AMI DXE codes
0x80 – 0x8F	OEM DXE initialization codes
0x90	Boot Device Selection (BDS) phase is started
0x91	Driver connecting is started
0x92	PCI Bus initialization is started
0x93	PCI Bus Hot Plug Controller Initialization
0x94	PCI Bus Enumeration
0x95	PCI Bus Request Resources
0x96	PCI Bus Assign Resources
0x97	Console Output devices connect
0x98	Console input devices connect
0x99	Super IO Initialization
0x9A	USB initialization is started
0x9B	USB Reset
0x9C	USB Detect
0x9D	USB Enable
0x9E – 0x9F	Reserved for future AMI codes
0xA0	IDE initialization is started
0xA1	IDE Reset

0xA2	IDE Detect
0xA3	IDE Enable
0xA4	SCSI initialization is started
0xA5	SCSI Reset
0xA6	SCSI Detect
0xA7	SCSI Enable
0xA8	Setup Verifying Password
0xA9	Start of Setup
0xAA	Reserved for ASL (see ASL Status Codes section below)
0xAB	Setup Input Wait
0xAC	Reserved for ASL (see ASL Status Codes section below)
0xAD	Ready To Boot event
0xAE	Legacy Boot event
0xAF	Exit Boot Services event
0xB0	Runtime Set Virtual Address MAP Begin
0xB1	Runtime Set Virtual Address MAP End
0xB2	Legacy Option ROM Initialization
0xB3	System Reset
0xB4	USB hot plug
0xB5	PCI bus hot plug
0xB6	Clean-up of NVRAM
0xB7	Configuration Reset (reset of NVRAM settings)
0xB8 – 0xBF	Reserved for future AMI codes
0xC0 - 0xCF	OEM BDS initialization codes
DXE Error Codes	
0xD0	CPU initialization error
0xD1	North Bridge initialization error
0xD2	South Bridge initialization error
0xD3	Some of the Architectural Protocols are not available
0xD4	PCI resource allocation error. Out of Resources
0xD5	No Space for Legacy Option ROM
0xD6	No Console Output Devices are found
0xD7	No Console Input Devices are found
0xD8	Invalid password
0xD9	Error loading Boot Option (LoadImage returned error)
0xDA	Boot Option is failed (StartImage returned error)

0xDB	Flash update is failed
0xDC	Reset protocol is not available

DXE Beep Codes

# of Beeps	Description
1	Invalid password
4	Some of the Architectural Protocols are not available
5	No Console Output Devices are found
5	No Console Input Devices are found
6	Flash update is failed
7	Reset protocol is not available
8	Platform PCI resource requirements cannot be met
1	Invalid password

ACPI/ASL Checkpoints

Status Code	Description
0x01	System is entering S1 sleep state
0x02	System is entering S2 sleep state
0x03	System is entering S3 sleep state
0x04	System is entering S4 sleep state
0x05	System is entering S5 sleep state
0x10	System is waking up from the S1 sleep state
0x20	System is waking up from the S2 sleep state
0x30	System is waking up from the S3 sleep state
0x40	System is waking up from the S4 sleep state
0xAC	System has transitioned into ACPI mode. Interrupt controller is in PIC mode.
0xAA	System has transitioned into ACPI mode. Interrupt controller is in APIC mode.

OEM-Reserved Checkpoint Ranges

Status Code	Description
0x05	OEM SEC initialization before microcode loading
0x0A	OEM SEC initialization after microcode loading
0x1D - 0x2A	OEM pre-memory initialization codes
0x3F - 0x4E	OEM PEI post memory initialization codes
0x80 – 0x8F	OEM DXE initialization codes
0xC0 - 0xCF	OEM BDS initialization codes

Power Supply Considerations

Power Connectors

Das D3118 wird mit einem 12 V Netzteil betrieben.

12 V Power Connectors	
	O O GND
	O O GND
	GND
	O O GND
	© O GND
16-pin baseboard power connector	12-Pin CPU power connector

Board Installation

Fan Connector (internal)

This 4-pin fan connector supports tachometer monitoring.

There are six 4-pin fan connectors on D3118. Use these connectors to connect chassis and processor cooling fans to your motherboard. Cooling fans can keep the system stable and reliable for its product's life.

Intrusion connector (internal)

Pin 1 ←▶•	PIN	Signal
	1	GND
	2	open
	3	Intrusion switch present

PC2009 PSU Connector (PC2009)

Frontpanel Connector (internal)

Normally, a chassis has some control or signal wires can be connected onto a motherboard for hard drive LED, Power LED, power button, and reset button; The front panel connector has been implemented on D3118 for such purposes.

	PIN	Signal	PIN	Signal
	1	HD-LED +	2	Power LED +
Pin 1 Pin 2	3	HD-LED -	4	Power LED -
	5	GND	6	Power Button
• •	7	RST L	8	GND
• .	9	Chassis Detect WS L	10	Key
• •	11	Chassis Detect Baku L	12	GND
• •	13	LED1 +	14	LED1 -
• •	15	LED2 +	16	LED2 -
• •	17	Speaker +	18	Password Skip
	19	GND	20	GND (0,1K)
	21	Key	22	GND (0,1K)
	23	Speaker -	24	Recover BIOS

Communication connectors

USB 2.0 port (internal) – Internal/Front				
Pin 1	PIN	Signal	PIN	Signal
	1	VCC AUX	2	VCC AUX
• •	3	Data negative Port X	4	Data negative Port Y
	5	Data positive Port X	6	Data positive Port Y
	7	GND	8	GND
	9	Key	10	NC

USB 2.0 port (internal)	USB	2.0	port	(internal)
-------------------------	------------	-----	------	------------

	PIN	Signal
Pin 1	1	VCC AUX (safe mode)
	2	Data negative
	3	Data positive
	4	GND

USB 3.0 port (internal) – Internal/Front				
Pin 1	PIN	Signal	PIN	Signal
Pin 19	1	VBus	20	Key
• •	2	USB 3.0 Port 2 RX Neg	19	VBus
	3	USB 3.0 Port 2 RX Pos	18	USB 3.0 Port 1 RX Neg
Pin 10 Pin 11	4	GND	17	USB 3.0 Port 1 RX Pos
	5	USB 3.0 Port 2 TX Neg	16	GND
	6	USB 3.0 Port 2 TX Pos	15	USB 3.0 Port 1 TX Neg
	7	GND	14	USB 3.0 Port 1 TX Pos
	8	USB 2.0 Port 2 Data Neg	13	GND
	9	USB 2.0 Port 2 Data Pos	12	USB 2.0 Port 1 Data Neg
	10	Over Current	11	USB 2.0 Port 1 Data Pos

High Definition Audio Frontpanel Connector (internal)				
Pin 1	PIN	Signal	PIN	Signal
	1	HDA Port 1 Left	2	Analog GND
• •	3	HDA Port 1 Right	4	FP Presence Detect
	5	HDA Port 2 Left	6	Jack Sense Port 1
	7	Jack Sense common	8	Key
	9	HDA Port 2 Right	10	Jack Sense Port 1

System monitoring and management connectors

SCSI LED connector (Internal)		
Pin 1	PIN	Signal
	1	Not connected
	2	SCSI-ON LED (low active)
•	3	SCSI-ON LED (low active)
	4	Not connected

Configuration jumper inside front panel

COM1 Ports

Pin 1 Pin 2	PIN	Signal	PIN	Signal
	1	DCD 1	2	DSR 1
• •	3	SIN 1	4	RTS 1
	5	SOUT 1	6	CTS 1
	7	DTR 1	8	RI 1
	9	GND		

TPM jumper

PIN	Signal
1	RST_PCI_TPM_L
2	TPM_RESET_L

Per default the TPM jumper is stuffed. Removing the jumper will disable the TPM.

Installing the Memory

Before attempting to install any memory, make sure that the memory you have is compatible with the motherboard as well as the processor. The D3118 board supports up to twelve 240-pin 1.5 V 800/1066/1333/1600 MHz DDR3 modules.

Here are a few key points to note before installing memory into your D3118:

- The following memory modules are supported: 512 MB, 1 GB, 2 GB, 4 GB and 8 GB unbuffered ECC and non-ECC memory modules. 2 GB, 4 GB, 8 GB, 16 GB and 32 GB registered ECC modules.
- All installed memory will be automatically detected no need to set any jumpers
- The D3118 supports up to 512 GB of memory
- Modules with different timing parameters can be installed on different slots within the same channel, but only timings that support the slowest Module will be applied to all.

To reach maximal performance, plugging the modules in the following sequence:

Simultaneous operation of different memory technologies, unbuffered non-ECC, unbuffered ECC and registered modules is not possible.

When two memory modules with a different number of ranks are populated in one memory channel, then the module with the higher number of ranks must be populated in the memory slot further away from the CPU.

If the system is upgraded and an additional memory module is added to a channel with an existing module, it might be necessary to swap modules so that the module with the higher number of ranks is populated on the outside (further away from the CPU) of that memory channel.

Memory Installation Procedure

When installing memory modules, make sure the modules align properly with the memory socket. There should be keys (small indents) on your memory modules that fit according to the keys in the memory socket. DDR modules and sockets have only one key, which is slightly near the center of the module/socket. The method of installing memory modules is detailed in the following diagrams.

Installing a memory module

- Push the holders on each side of the memory slot outwards.
- ▶ Insert the memory module into the location (1).
- At the same time flip the lateral holders upwards until the memory module snaps in place (2).

Removing a memory module

- ▶ Push the clips on the right and left of the memory slot outward (1).
- ▶ Pull the memory module out of the memory slot (2).

When installing memory, a module may require a considerable amount of force to seat properly, although this is very rare. To avoid bending and damaging your motherboard, place it on its anti-static bag and onto a flat surface, and then proceed with memory installation.

You must unplug the power connector to the motherboard before performing system hardware changes, to avoid damaging the board or expansion device.

Installing the Processor and Heatsink

The processor socket ist covered with a protective cap to protect the spring contacts
In a warranty case the mainboard can only be taken back by Fujitsu Technology Solutions with the protective cap secured!

Never touch the underside of the processor. Even minor soiling such as grease from the skin can impair the processor's operation or destroy the processor.

Place the processor in the socket with extreme care, as the spring contacts of the socket are very delicate and must not be bent.

Remove the heat sink.

- Press down the lever (1) and unhook it (2).
- Fold up the frame.

▶ Remove the old processor (3) from the socket.

Hold the new processor between your thumb and index finger and insert it into the socket (b) so that the marking of the processor is aligned with the marking on the socket (a).

- ► Fold down the frame (1).
- ► Press the lever downward (2) until it is hooked in again.
- ► Remove the protective cap (3) and keep it.

Mounting heat sink

Use only the heat sink supplied with your system!

Be sure to use heat conducting material between the processor and the heat sink. If a heat conducting pad (rubber-like foil) is already applied to the heat sink, then use it. Otherwise you must apply a very thin layer of heat conducting paste.

Heat conducting pads can only be used once. If you remove the heat sink, you must clean it and apply new heat conducting paste before you remount it.

- Depending on the configuration variant, you must pull a protective foil off the heat sink or coat the heat sink with heat conducting paste before fitting it.
- Secure the heat sink depending on the model - with four screws or push it into the mounts.

Installing Add-In Cards

Before installing add-in cards, please check if they are fully compatible with your motherboard.

PCle x4 Gen 2

PCIe x16 Gen 3 (CPU 0)

PCle x4 Gen 3 (CPU 0)

PCle x16 Gen 3 (CPU 1)

PCIe x16 Gen 3 (CPU 0)

PCIe x16 Gen 3 (CPU 1)

PCI 32

Simply find the appropriate slot for your add-in card and insert the card firmly. Do not force any addin cards (or anything else) into any slots if they won't seat in place. It's better to try another slot or return the faulty card rather than damaging both the motherboard and the add-in card.

It's a good practice to install add-in cards in a staggered manner, rather than directly adjacent to each other. This allows air to more easily circulate within the chassis, providing improved cooling for all installed devices.

You must unplug the power connector to the motherboard before performing system hardware changes, to avoid damaging the board or expansion device.

Connecting External Devices

Connecting external devices to the motherboard is an easy task. The standard devices you should expect to plug into the motherboard are keyboards, mouse, and printer cables. The following diagram will detail the ATX port stack for the following board:

External ports

The location of the external connections of your mainboard is specified at the beginning of the manual.

The LAN RJ45 connector has two LEDs (light emitting diodes).

Left LED	Right LED
Link established Off:	Off: 10 Mbit/s
Blinking green: LAN connection is active	Green: 100 Mbit/s
	Yellow: 1000 Mbit/s

While the ports have been created to accept connectors in only one direction, make sure to be careful when inserting connectors. At times, attaching connectors in the incorrect orientation can damage, bend and or break the pins.

Replacing lithium battery

In order to permanently save the system information, a lithium battery is installed to provide the CMOS-memory with a current. A corresponding error message notifies the user when the charge is too low or the battery is empty. The lithium battery must then be replaced.

Incorrect replacement of the lithium battery may lead to a risk of explosion!

The lithium battery may be replaced only with an identical battery or with a type recommended by the manufacturer.

Do not throw lithium batteries into the household waste. They must be disposed of in accordance with local regulations concerning special waste.

Make sure that you insert the battery the right way round. The plus pole must be on the top!

The lithium battery holder exists in different designs that function in the same way.

Press the catch in the direction of the arrow (1).

The battery jumps out of the holder slightly.

- ► Remove the battery (2).
- Push the new lithium battery of the identical type into the holder (3) and press it downward until it engages (4).

BIOS update

When should a BIOS update be carried out?

Fujitsu Technology Solutions makes new BIOS versions available to ensure compatibility to new operating systems, new software or new hardware. In addition, new BIOS functions can also be integrated.

A BIOS update should always also be carried out when a problem exists that cannot be solved with new drivers or new software.

How does a BIOS update work?

BIOS update under Windows with DeskFlash utility:

A BIOS update can also be carried out directly under Windows with the DeskFlash utility. DeskFlash is contained on the "Drivers & Utilites" CD (under *DeskUpdate*).

BIOS Recovery

Opening the casing as described in the operating manual.

- ► Close the Recovery BIOS jumper (see Page 24).
- ▶ Close the casing as described in the operating manual.
- Insert a BIOS Recovery Disk and start the PC.
- Note the signals issued from the buzzer or loudspeaker. You have successfully restored the BIOS if you hear continuously fast repeated beeps.
- Power off your system.
- Open the casing as described in the operating manual.
- Remove the Recovery BIOS jumper.
- Close the casing as described in the operating manual.
- Remove the floppy disk from the drive.
- Start the PC and invoke BIOS Setup.
- Select the menu item Reset configuration in the menu Advanced and change the setting to Yes.
- Save the change and terminate BIOS Setup.

The BIOS recovery has now been completed. The system restarts.

Glossary

The technical terms and abbreviations given below represent only a selection of the full list of common technical terms and abbreviations. Not all technical terms and abbreviations listed here are valid for the described mainboard.

AC'97	Audio Codec '97
ACPI	Advanced Configuration and Power
	Interface
ADD	Advanced Digital Display
AMT	Active Management Technology
AoL	Alert on LAN
ASF	Alert Specification Forum
ATA	Advanced Technology Attachment
BIOS	Basic Input Output System
BMC	Baseboard Management Controller
CCR	Chip Card Reader
CPU	Central Processing Unit
CSA	Communications Streaming
	Architecture
DASH	Desktop and Mobile Architecture for
	System Hardware
DDR	Double Data Rate
DIMM	Dual Inline Memory Module
DMI	Direct Media Interface
DVO	Digital Video Out
ECC	Error Correcting Code
EEPR	Electrical Eraseable Programmable
OM	Read Only Memory
FDC	Read Only Memory Floppy Disc Controller
FIFO	First-In First-Out
FSB	Front Side Bus
FWH	Firmware Hub
GMCH	Graphics and MemoryController Hub
GPA	Graphics Performance Accelerator
HDA	High Definition Audio
IAPC	Instantly Available Power Managed
	Desktop PC Design
ICH	I/O Controller Hub
IDE	Intelligent Drive Electronics
IPSec	Internet Protocol Security
ISA	-Bus Industrial Standard Architecture – Bus
LAN	Local Area Network
LSA	LAN Desk Service Agent
	E. II I DOOK OUT TOO / Igonic

MCH	Memory Controller Hub MultiMedia eXtension
MMX	MultiMedia eXtension
NCQ	Native Command Qeueing
NIC	Networking Interface Card
PCI-Bus	Peripheral Component
	Interconnect Bus
PECI	Peripheral Environmental Control Interface
PSC	Permanent Server Control
PXE	Preboot eXecution Environment
QPI	QuickPath Interconnect
RAID	Redundant Array of
	Inexpensive/Independent Disks
RAM	Random Access Memory
RAMDAC	RAM Digital Analog Converter
RD RAM	RAMBUS Dynamic RAM
RIMM	RAMBUS Inline Memory Module
RSB	Remote Server Management Board
RTC	Real Time Clock
SAS	Serial Attached SCSI
SATA	Serial ATA
SB	SoundBlaster
SCSI	Small Computer System Interface
SD RAM	Synchronous Dynamic RAM
SDVO	Serial Digital Video Out
SG RAM	Synchronous Graphic RAM
SM & TM	System Monitoring & Thermal
	Management
SMBus	System Management Bus
SG RAM	Synchronous Graphic RAM
SPI	Serial Peripheral Interface
SVGA	Super VGA
TPM	Trusted Platform Module
TCG	Trusted Computing Group
USB	Universal Serial Bus
VGA	Video Graphics Adapter
WOL	Wake on LAN