

Automatic first aid in case of cardiac arrest with autonomous driving vehicle

Yang, Heetak (11059972)

TABLE OF CONTENTS

1

INTRODUCTION

Introduce project with background and solution

3

PROTOTYPING

Develop prototype, demonstration and evaluation

2

DESIGN

Create architecture design before prototyping

CONCLUSION

Summary and organise the project

INTRODUCTION

Introduce project with background and solution

ABSTRACT

- An automatically emergency report in case of cardiac arrest
- Autonomous vehicles protect drivers and people around them
- Increase driver chances of survival

17 GOALS OF UNITED NATIONS

GOOD HEALTH AND WELL-BEING

- 3.6 By 2020, halve the number of global deaths and injuries from road traffic accidents.
- 3.8 Achieve universal health coverage, including financial risk protection, access to quality essential health-care services and access to safe effective, quality and affordable essential medicines and vaccines for all.

PROBLEMS

Driver cardiac arrest while driving

Can be a big accident

Increase in the elderly
Insufficient sleep
Work stress

Late emergency report

High probability of death

SOLUTION

Cardiac arrest or loss of consciousness

Become a secondary accident

Automatically emergency report with driver's status and location

Automatically change autonomous driving and stop a safe place

PRODUCTS

Car (ECU)

- Autonomous driving algorithm
- Camera
- Lidar sensor

Collecting server

- Get IoT value
- Automatic emergency report
- Action according to the situation

Heart rate monitor

- Heart rate measurement
- Ask if low heart rate

LEVEL 3 AUTONOMOUS VEHICLE

Mercedes-Benz has become the first automotive company in the world to meet the necessary requirements for approval of the Level 3 autonomous driving system. The approval has been granted by UN-R157 which is a United Nation regulation body that sets the standard of Level 3 autonomous driving technology in vehicles.

2

DESIGN

Create architecture design before prototyping

DESIGN LIST

Use Cases

Overall system scenario

Flowchart

Check application workflow and routine

Architecture Diagram

Check required products and system

USE CEASES

FLOWCHART

ARCITECTURE DIAGRAM

PROTOTYPING

Develop prototype, demonstration and evaluation

DEVELOPMENT

LIST OF FILES

Automatically setup settings and install requirements

Send heart rate and

Send location and driver status

Heart rate simulator

🛵 helper.py

LICENSE

[locationhrarrest.py

🐌 locationhrlow.py

ち locationhrtoolow.py

👍 main.py

README.md

🥬 requirements.txt

DEMOSTRATION

There're 4 simulation options

- 1. Normal heart rate
- 2. Low heart rate
- 3. Too low hear rate
- 4. Hear arrest

EVALUATION

Successful simulation operation according to each situation

CONS

A more realistic simulation failed

LACK PART

- 1. The full automation of the simulation failed
- 2. Simulation environment integrated
- 3. Missing the function to find nearby hospital

4

CONCLUSION

Summary and organise the project

CONCLUSION

Can create an opportunity to save more people

Used PaaS effectively with IoT

THANK YOU

The end of presentation

Do you have any question?