Supplementary Material for "Task Allocation and On-the-job Training"

Mariagiovanna Baccara

SangMok Lee

Leeat Yariv

29th September 2020

Abstract

We illustrate the comparative statics pertaining to the perfect-monitoring setting studied in the paper.

1 Comparative Statics with Perfect Monitoring

Proposition 3 in the main text characterizes the equilibrium policy (q_P^e, μ_P^e) and the optimal policy (q_P^*, μ_P^*) in the discretionary and centralized settings, respectively, when monitoring is perfect. We now consider the impact of changes in θ , λ , and the training technology on these outcomes. By and large, comparative statics are similar to those observed with limited monitoring. For exposition simplicity, we restrict attention to a linear training technology, f(x) = ax for some a > 0.

As θ grows, either through an increase in the relative benefit h-l of service by seniors, or through a decrease in waiting costs c, queueing for senior service becomes relatively more attractive. Clients then seek more senior service when choosing on their own or when directed by a planner. As in the limited-monitoring case, this translates into higher average quality and lower training. It also increases the average wait times in the senior queue.¹

As clients' arrival rate λ or training efficacy a increase, the feasibility constraint is affected, making the analysis more subtle. While the indifference condition in (9) of the main text does not change, the first-order condition in (10) does change with λ . As we show, increases in λ and a yield increased equilibrium thresholds and more training.

¹For our discretionary setting, these conclusions hold for general production technologies.

Figure 1: Comparative Statics for Discretionary Settings with Perfect Monitoring for Training Technology f(x) = ag(x)

Proposition A1 (Perfect Monitoring – Comparative Statics) The following comparative statics hold:

- 1. As h-l increases, or c decreases, q_P^e and q_P^* increase, while the induced masses of seniors, μ_P^e and μ_P^* , decrease.
- 2. As λ increases, k_P^e , μ_P^e , q_P^* , and μ_P^* increase.
- 3. As a increases, k_P^e , q_p^e , μ_P^e , and μ_P^* increase.

While changes in h-l or c have similar impacts as those observed in the limited-monitoring case, we see different patterns when it comes to arrival rates and technology efficacy. Consider first the discretionary setting with training technology of the form f(x) = ag(x), with a > 0. When λ or a increase, in the space of (q, μ) , the graph corresponding to the indifference condition for each λ , $G_1 = \{(q, \mu) : k(q, \mu; \lambda) = \mu\theta + 1\}$ shifts up as λ increases and does not change with changes in a, see Figure 1. The graph $G_2 = \{(q, \mu) : \mu = ag((1 - q)\lambda))\}$, corresponding to the training constraint, shifts up with increases in both λ and a, also depicted in Figure 1. Consequently, with increases in a, we have that k_P^e , q_P^e , and μ_P^e increase. However, with increases in λ , while k_P^e and μ_P^e increase, q_P^e may go up or down. Which way q_P^e shifts depends on the details of the training technology, which affects how G_2 moves relative to G_1 as λ increases, and thereby determines their intersection.

For the centralized allocation, as θ increases, the training constraint remains constant, while the first, linear term of the planner's objective increases. It follows from the proof of Proposition 3 that the optimal q_P^* increases, while μ_P^* decreases.

Understanding the impact of λ and a on the planner's solution requires somewhat different techniques. Consider the graphs of the training constraint and the planner's first-order condition, which links $\phi \equiv \lambda/\mu$ and q. As Proposition 3 suggests, at the optimal allocation policy, the training constraint and the planner's objective are tangent to one another. The arrival rate λ has no (explicit) impact on the training constraint that, when f(x) = ax, can simply be written as $\phi = 1/a(1-q)$. Increases in λ , however, alter the planner's objective so as to generate the result. Intuitively, small increases in q raise the planner's objective more as λ increases, yielding the increase in q_p^* . The training constraint then suggests that the level of ϕ at the optimal allocation increases with q as well. In fact, since the training constraint, put in terms of ϕ and q, is convex, small changes in q have more than a linear impact on the resulting levels of $\phi = \lambda/\mu$. In fact, we show that the increase in ϕ is greater than the increase in λ that generated it. It follows that μ_p^* increases with λ . A similar intuition holds when considering changes in a. An increase in a impacts the training constraint, attenuating the marginal effects of increases in q on ϕ . Such changes do not have a direct effect on the planner's objective. This can be shown to decrease the value of ϕ at the point of tangency, leading to an increase in μ_p^* .

Proof of Proposition A1: First, consider the discretionary setting. The equilibrium (q_P^e, μ_P^e) is identified as the intersection of two graphs:

$$G_1 = \{(q, \mu) : \mu = a \cdot g((1 - q)\lambda)\}$$
 and $G_2 = \{(q, \mu) : k(q, \mu; \lambda) = \mu\theta + 1\}.$

In the proof of Proposition 3, we have shown that G_1 is downward sloped and G_2 is upward sloped. The graph G_1 shifts right if either λ or a increase and is unchanged if θ increases. The threshold $k(q, \mu, \lambda)$ is strictly decreasing in μ and strictly increasing in q and λ . Hence, the graph G_2 shifts to the left with an increase in λ , shifts to the right with an increase in θ , and remains unchanged with an increase in a.

The impacts of changes in θ , and therefore those of changes in h-l or c, follow immediately. If λ increases, the equilibrium μ_P^e increases, which implies that k_P^e increases by the indifference condition, but q_P^e may go up or down. Last, if a increases, q_P^e and μ_P^e increase, and by the

²The challenge in signing q_P^* arises since, intuitively, increases in a and the resulting μ_P^* impact q_P^* in different ways. Namely, the training constraint requires that $q = 1 - \phi/a$ and signing the impact of increases in a on ϕ^*/a are difficult to identify.

indifference condition, k_P^e increases.

Second, consider the centralized setting with a linear training technology f(x) = ax, with a > 0. It is useful to consider the space of (q, ϕ) , where $\phi \equiv \frac{\lambda}{\mu} = \frac{1}{a(1-q)}$ does not depend on λ . From the proof of Proposition 3, recall that $\mathbf{E}[Q]$ in [P'] is continuously differentiable at $\phi = 1$, and ϕ is restricted to be in $[\underline{\phi}, 1+1/a)$. It is straightforward to show that the first-order condition of an interior optimal solution is $\frac{d\mathbf{E}[Q]}{d\phi} = \frac{\lambda \theta}{a\phi^2}$.

If either λ or θ increase, ϕ_P^* has to increase, since $\mathbf{E}[Q]$ is a convex function of ϕ , which implies that the derivative $\frac{d\mathbf{E}[Q]}{d\phi}$ increases in ϕ . If θ increases, $\mu_P^* = \lambda/\phi_P^*$ decreases. On the other hand, suppose that λ increases. We can rewrite the first-order condition above as $\left(\frac{d\mathbf{E}[Q]}{d\phi}\right)\phi = \frac{\lambda\theta}{a\phi} = \frac{\mu\theta}{a}$. Since ϕ_P^* increases, the left-hand side of the equality increases, which implies that μ_P^* increases, and q_P^* increases as well because of the training constraint $\phi_P^* = \frac{1}{a(1-q_P^*)}$.

Last, we show that ϕ_P^* decreases in a, implying that μ_P^* increases in a. Consider any a such that $\phi_P^* \neq 1$ is an interior solution. The optimal ϕ_P^* satisfies the first-order condition:

$$\frac{\lambda\theta}{a\phi^2} - \frac{\phi(2-\phi)}{(1-\phi)^2} - \frac{\log(a(1-\phi)+1))(-\log\phi + (1/\phi) - 1)}{a(1-\phi)^2(\log\phi)^2} = 0 \qquad (1)$$

$$\iff w(\phi; a) \equiv \frac{\lambda\theta}{\phi^2} - \frac{a\phi(2-\phi)}{(1-\phi)^2} - \frac{\log(a(1-\phi)+1))(-\log\phi + (1/\phi) - 1)}{(1-\phi)^2(\log\phi)^2} = 0.$$

By the Implicit Function Theorem $\frac{d\phi}{da} = -\frac{dw/da}{dw/d\phi}$. Also, we showed in the proof of Proposition 3 that the objective function of [P'] is strictly concave in ϕ . That is, $\frac{dw(\phi,a)}{d\phi} < 0$ at every $\phi \in (\underline{\phi},1) \cup (1,1+1/a)$. Hence, the following claim is sufficient to conclude the proof of Proposition A1.

Claim A1: For any (ϕ, a) such that $\phi \in (\underline{\phi}, 1) \cup (1, 1 + 1/a)$, $\frac{dw(\phi, a)}{da} < 0$. Proof of Claim A1: Observe that

$$\phi \ge \underline{\phi} = \frac{1 + \sqrt{1 + 4a}}{2a} \iff (2a\phi - 1)^2 \ge 1 + 4a \iff a \ge \frac{1 + \phi}{\phi^2}.$$

From (1), we get

$$\frac{dw(\phi, a)}{da} = -\frac{\phi(2 - \phi)}{(1 - \phi)^2} + \frac{1}{(1 - \phi)(\log \phi)(a(1 - \phi) + 1)}$$

$$-\frac{a}{(\log \phi)(a(1 - \phi) + 1)^2} + \frac{-(\log \phi) + (1/\phi) - 1}{(1 - \phi)^2(\log \phi)^2} \frac{1 - \phi}{a(1 - \phi) + 1}$$

$$= -\frac{\phi(2 - \phi)}{(1 - \phi)^2} - \frac{a}{(\log \phi)(a(1 - \phi) + 1)^2} + \frac{1}{\phi(\log \phi)^2(a(1 - \phi) + 1)}.$$

To show that $\frac{dw(\phi,a)}{da} < 0$, we distinguish between three cases. First, if $\phi \ge 2$, we multiply $\frac{dw(\phi,a)}{da}$ by $-(1-\phi)(\log\phi)(a(1-\phi)+1) > 0$, and obtain

$$-(1-\phi)(\log \phi)(a(1-\phi)+1)\frac{dw}{da}$$

$$= a\phi(2-\phi)(\log \phi) + \frac{\phi(2-\phi)(\log \phi)}{1-\phi} + \frac{a(1-\phi)}{a(1-\phi)+1} - \frac{1-\phi}{\phi(\log \phi)},$$

which is strictly decreasing in a. Hence, we obtain an upper bound of the above expression by substituting a with its lower bound $\frac{1+\phi}{\phi^2}$. The upper bound, which is a function of ϕ only, is less than -2.278 for every $\phi \geq 2$.

If $1 < \phi < 2$, we have

$$(a(1-\phi)+1)^2 \frac{dw}{da} = -\frac{\phi(2-\phi)(a(1-\phi)+1)^2}{(1-\phi)^2} - \frac{a}{\log \phi} + \frac{a(1-\phi)+1}{\phi(\log \phi)^2}$$

$$= \left(-a^2\phi(2-\phi) - \frac{2a\phi(2-\phi)}{1-\phi} - \frac{\phi(2-\phi)}{(1-\phi)^2}\right) - \frac{a}{\log \phi} + \left(\frac{a(1-\phi)}{\phi(\log \phi)^2} + \frac{1}{\phi(\log \phi)^2}\right)$$

$$= -a^2\phi(2-\phi) - a\left(\frac{2\phi(1-\phi)}{1-\phi} + \frac{1}{\log \phi} - \frac{1-\phi}{\phi(\log \phi)^2}\right) - \frac{\phi(2-\phi)}{(1-\phi)^2} + \frac{1}{\phi(\log \phi)^2}.$$

For any $1 < \phi < 2$, $\frac{2\phi(1-\phi)}{1-\phi} + \frac{1}{\log\phi} - \frac{1-\phi}{\phi(\log\phi)^2} > 2.435$, so the above expression is strictly decreasing in a. Substituting a with its lower bound $\frac{1+\phi}{\phi^2}$ results in an upper bound that is a function of ϕ only, and is lower than -0.82.

Finally, if $\phi < 1$, we have

$$\frac{(a(1-\phi)+1)^2}{a}\frac{dw}{da} = -\frac{\phi(2-\phi)}{(1-\phi)^2}\left(a(1-\phi)^2 + 2(1-\phi) + \frac{1}{a}\right) - \frac{1}{\log\phi} + \frac{1}{\phi(\log\phi)^2}\left(1-\phi + \frac{1}{a}\right)$$
$$= -a\phi(2-\phi) + \frac{1}{a}\left(\frac{1}{\phi(\log\phi)^2} - \frac{\phi(2-\phi)}{(1-\phi)^2}\right) - \frac{2\phi(2-\phi)}{1-\phi} - \frac{1}{\log\phi} + \frac{1-\phi}{\phi(\log\phi)^2}.$$

For any $\phi < 1$, $\frac{1}{\phi(\log \phi)^2} - \frac{\phi(2-\phi)}{(1-\phi)^2} > \frac{13}{12}$, so the above expression is strictly decreasing in a. Substituting a with its lower bound $\frac{1+\phi}{\phi^2}$ results in an upper bound that is a function of ϕ , and less than $-\frac{47}{24}$. This concludes the proof of Claim A1 and Proposition A1.