TP 4 – Analyse des réseaux biologiques

R3.17- Calcul Scientifique 2 – Octobre 2024

Notions couvertes

- Introduction aux réseaux d'interaction protéine-protéine (PPI) et aux réseaux métaboliques
- Utilisation de NetworkX pour la modélisation des réseaux biologiques
- Visualisation des réseaux biologiques et interprétation des résultats
- Exercices pratiques : Création d'un réseau de protéines à partir de données biologiques et analyse des interactions

Références du cours

- Le protéome
 - o Composition et structure d'une protéine : Structure quaternaires
- Le métabolisme cellulaire
 - o Réseaux métaboliques de la respiration

Se référer au fichier R3.17 CalculsScientifiques TP4.pdf

Contenu de ce TP

- Présentation des structures protéiques et interactions protéine-protéine
- <u>UniProt</u>: Base de données des protéines
- STING: Base de données d'interaction protéine-protéine
- Présentation du métabolisme cellulaire
- **KEGG** : Carte métabolique
- Python: Création d'un réseau de protéines à partir de données biologiques et analyse des interactions

Présentation des structures protéiques et interactions protéines-protéines

Se référer au fichier R3.17_CalculsScientifiques_TP4.pdf

Présentation de UniRef

Aller sur le site en ligne UniProt

Présentation de STRING

Aller sur le site en ligne STING

Présentation du métabolisme cellulaire

Se référer au fichier R3.17 CalculsScientifiques TP4.pdf

Présentation de KEGG

Aller sur le site en ligne KEGG

Exercice pratique

Aller sur le site en ligne NetworkX

Installer NetworkX

A partir du G6PC_interaction, créer le réseau d'interaction protéine-protéine qui implique G6PC.

Habillez votre graphique avec des couleurs, marqueurs de distance