Intelie by Viasat Data Science Challenge

Project goal

Extract insights to help in the development of Slip to Slip connection time KPI.

Workflow

Exploratory data analysis

Analyse time series-related properties in the features

Pre-processing

Prepare data to modeling

Machine learning

• Identify when slip is on or off

Conclusion

Analyse the pros and cons

Exploratory Data Analysis

Features description

Feature	Description	Stationary	Granger test	Outliers
BDEP	Bit depth	Yes	All features	0.7 %
TPO	Fluid flow	No	HL, WOB	3.0 %
HL	Hook load	No	BHT	0.3 %
ВНТ	Block position	No	HL, WOB	0.5 %
WOB	Weight on bit	No	ВНТ	0.3 %

Note: RPM, TOR and DEPT were removed due to null/constant value.

Story behind the data

Trip out operation

- Constant values for RPM, TOR and DEPT features.
- HL and WOB have an antagonistic behaviour.
- BHT quickly decreases when on_slips
- and slowly increases when off_slips.
- BDEP has a downward trend.
- **TPO** correlates with a change in seasonality.

Seasonality

Average window time:

- on_slips = 2 minutes
- off_slips = 4 minutes

Outlier pattern from 02:12 to 02:28

Precedes peak values of TPO

Time series pattern

Normalized time series - 03:00:00 to 03:12:00

Time series pattern

Normalized time series - 02:12:00 to 02:28:00

Preprocessing

Missing data

Removed due to low percentage, 0.27%

Signal noise

Smoothed with moving average

Empty values for Annotation

Filled forward and then backwards

Preprocessing

Feature engineering

Rolling mean, std and lag features

Split values for time series

K-fold method for cross validation

Normalize values

Standard scaling

Modeling

Random Forest

XGBoost

LSTM neural network

Baseline model

Random Forest Classifier with default params to use as a benchmark.

Cross validation score: 0.9907

F1-score for **Train** dataset: 1.0

F1-score for **Test** dataset: 0.99

XGBoost evaluation

Confusion matrix

Model overfitting

Solutions to avoid overfitting:

- Use cross-validation ✓
- Apply regularization
- Collect more data

Model overfitting

Using regularization on Random Forest had no impact.

Adding noise to the **Test data** lowered the F1-score to 0.87 for **off_slips** and 0.53 for **on_slips**.

XGBoost Classifier

Early stop at 62º epoch

High score on both datasets: 0.97

- 2 high importance features:
 - WOB ≅ 0.8
 - HL ≅ 0.16

XGBoost Classifier

Predicting future variables with similar datasets produces good predictions.

When adding noise, the model complete fails to predict **on_slips** labels.

LSTM model

This model can handle long-term dependencies

Ability to capture seasonality and trends

Additional regularization techniques

LSTM model

Performance slight less overfitted if compared to XGBoost

Still unable to predict label **on_slips** with noise dataset.

LSTM evaluation

Confusion matrix

Conclusions

Both XGBoost and LSTM were good at predicting labels for time series with the same distribution.

It had no impact if the time between on/off slips changed. Just if heavy noises were introduced, or different patterns occurs.

Next steps

Try more robust regularization methods, or even increase layers for *LSTM*.

Collect more data in order to understand different patterns.

Thank you!

João Francisco Baiochi

Github: @Baiochi

E-mail: joao.Baiochi@outlook.com.br

Code in <u>Jupyter notebook</u>

