Lista de Exercícios 3 de Cálculo II Professor: Luiz Otávio

Leia atentamente antes de iniciar as atividades.

- Esta lista deverá ser resolvida e entregue individualmente.
- · Coloque o seu nome em TODAS as páginas entregues. Se não colocar, a nota máxima será 1.
- As resoluções deverão ser entregues no Canvas, em Tarefas.
- As resoluções deverão estar completas. Questões com apenas a resposta final serão anuladas.
- A entrega deverá ser feita em um **arquivo ÚNICO no formato pdf**. **ATENÇÃO**: Caso não seja entregue desta forma, o trabalho não será corrigido e a nota será o.
- Resolva a lista e utilize um aplicativo que simula Scanner para gerar o pdf.
- · Confira antes de enviar. Se o trabalho não abrir, a nota será o e não poderá ser enviado posteriormente.
- Prazo de entrega: 21/06/2025 (até 23h59).
- Não serão aceitos trabalhos fora do prazo em nenhuma hipótese. Mensagens enviadas solicitando envio em data posterior não serão consideradas. Por isso, envie com antecedência.
- Valor da Atividade: 5 pontos.

1) Se
$$z = 2x + 6y + xy$$
, com $x = 2$ e $y = -t^2$, calcule $\frac{dz}{dt}$.

2) Considere
$$z = xy^2 + y + 3x$$
, onde $x = 2t + t^2$ e $y = \cos(t)$. Encontre $\frac{dz}{dt}$.

3) A concentração de um poluente em um lago é modelada pela função

$$f(x, y) = 4x + xy^2 + 3y + 10,$$

em que x e y representam coordenadas em quilômetros a partir de um ponto de referência no lago, e f(x, y) fornece a concentração de poluente em partes por milhão (ppm) naquele ponto.

- a) Calcule as derivadas parciais $f_x(x, y)$ e $f_y(x, y)$. Essas derivadas representam as taxas de variação da concentração de poluente ao longo das direções x e y, respectivamente.
- b) Escreva o vetor gradiente de f(x, y) aplicado no ponto P(2, 5). O vetor gradiente aponta na direção de maior aumento da concentração de poluente a partir desse ponto e pode ser útil para entender como o poluente se dispersa no lago.
- c) Calcule a derivada direcional da função f no ponto P(2,5) na direção e sentido do vetor $\overrightarrow{v}=(-6,8)$. Esse valor representa a taxa de variação da concentração de poluente na direção específica indicada por \overrightarrow{v} .
- d) Determine o menor valor possível para a derivada direcional no ponto (5, 3). Esse menor valor indicaria a direção na qual a concentração de poluente diminui mais rapidamente a partir desse ponto.
- 4) Encontre e o(s) ponto(s) crítico(s) da função $f(x, y) = 2x^3 6xy^2 + 5$ e aplique o Teste da segunda derivada.

- **5)** Para a função $f(x, y) = 2y + x^2 y^2$, encontre os pontos o(s) ponto(s) crítico(s) e aplique o Teste da segunda derivada.
 - **6)** Determine os valores extremos da função $f(x, y) = x^2 + y^2$, considerando o domínio $x^2 + y^2 \le 4$.
- **7)** Determine os valores máximos e mínimos da função f(x, y) = xy no triângulo delimitado pelos pontos (0,0), (1,0) e (0,1).
- **8)** Determine os pontos de mínimo de de máximo absolutos da função $f(x, y) = x^2 2x y^2 + 4y$ na região $[0, 3] \times [0, 5]$.
- **9)** Deseja-se construir uma estrutura no formato de uma caixa retangular, sem tampa. O material a ser utilizado na base tem o custo de R\$ 1,00 a cada metro quadrado e material que deve ser utilizado nas faces laterais tem como preço R\$ 6,00 por metro quadrado. Determine as dimensões (comprimento, largura e altura) para que o custo total da construção dessa estrutura seja o menor possível, considerando que seu volume deve ser 16 m³.