

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY JANUARY/FEBRUARY 2013 EXAMINATION

CODE: MTH 305 TIME: 3 HOURS

TITLE: COMPLEX ANALYSIS II TOTAL: 70 MARKS

CREDIT UNIT 3

INSTRUCTION: ANSWER ANY 5 QUESTIONS

- (1) Show that $u(x,y)=x^3y-y^3x$ is an harmonic function and find the function v(x,y) that ensures that f(z)=u(x,y)+jv(x,y) is analytic
- (2) Evaluate the integral $\int\limits_c^{\int} f(z)dz$ where $f(z)=(z-j)^2$ and c is the straight line joining A(z=0) to B(z=1+j2) .

 $\int (z^2 + 1) dz$

- (3) Verify Cauchy's theorem by evaluating the integral
 - (a) along the arc from A to B
 - (b) along BO and OA
- (4) (i) Consider the mapping of the circle |z|=1 under the transformation $w=z+\frac{4}{z}$ onto the w-plane
 - (ii) Evaluate $\int_{-\infty}^{\infty} \frac{\cos kx}{a^2+z^2} dx$ where a>0 and k>0 .
- (5) Determine the image in the w-plane of the circle |z|=2 in the z-plane

 $w = \frac{z+j}{z-j}$ under the transformation and show the region in the w-plane onto which the region within the circle is mapped.

(6) Consider the integral $\int_c^b f(z)dz$ where $\int_z^b f(z)=\frac{1}{z}$, evaluated round a closed contour in the z-plane

(7) Expand $f(z) = \frac{1}{z+1}$ in a Taylor series about the point z=1 and find the values of z for which the expansion is valid.