Model Answers CHM 113M End Sem Exam

1. (A) Determine the nature of the following spinel structure in NiFe₂O₄ in the context of CFSE. Show your calculation. (4 Marks)

Ans. The CFSE for Ni²⁺ in octahedral sites $(t_{2g}{}^6e_g{}^2)$ is $[6 \times (-0.4) + 2 (0.6)]\Delta o = -$ **1.2** Δo while for tetrahedral sites the CFSE $(e^4t_2{}^4)$ is $[4 \times (-0.6) + 4 (0.4)]\Delta_t = -0.8$ $\Delta t = -$ **0.36** Δo CFSE for Fe³⁺ (d⁵) in a tetrahedral void, $e^2t_2{}^3$; **CFSE** = **0**

In an octahedral void, $t_{2g}^3 e_g^2$; CFSE = **0**, thus Fe³⁺ (d⁵) has no site preference

So, Ni²⁺ would go to the octahedral sites, while one of the Fe³⁺ would go to the tetrahedral site, thus NiFe₂O₄ (Fe^{III}_{Tet}(Ni^{II}Fe^{III})_{Oct}O₄ is an inverse spinel.

d-orbital splitting of Ni(II) in octahedral environment d-orbital splitting of Ni(II) in tetrahedral environment

(B) Calculate valence shell electron counts in the following compounds using an ionic method. (6 Marks)

Compound	Valence shell electron counts (show calculations)
(i) [(η ⁵ -Cp)Re(η ⁶ -C ₆ H ₆)]	η5-Cp
	Total= 18 e ⁻
(ii) Mn ₂ (CO) ₁₀	Mn(0) → 7 e ⁻ 5 C≡O → 10 e ⁻ Mn-Mn → 1 e-
	Total= 18 e ⁻
(iii) CH ₃ R ₃ P _{m, CO} Re PR ₃ CO	Re(I) \rightarrow 6 e ⁻¹ 2PR ₃ \rightarrow 4 e ⁻¹ 2C=O \rightarrow 4 e ⁻¹ CH ₃ -1 \rightarrow 2 e ⁻¹ CH ₂ =CH ₂ \rightarrow 2 e ⁻¹ Total= 18 e ⁻¹

2. (A) Draw the crystal field splitting diagram for $[Ti(H_2O)_6]^{3+}$ with appropriate labeling. Show the possible electronic transitions and sketch an absorption spectrum of the complex. (4 Marks)

Answer: $[Ti(H_2O)_6]^{3^+}$ is a d^1 electronic system which is unsymmetrically filled, $t_{2g}^{\ 1}$, thus undergoing J-T distortion which is Z-in or compressed distortion. As a result, it would show two electronic transitions, d_{xy} to $d_{x^2-y}^{\ 2}$, and d_{xy} to dz^2 . It shows two signals in electronic absorption spectrum.

(B) Calculate the crystal field stabilization energy (CFSE) and spin-only magnetic moment for both compounds. (4 Marks)

	Compound	CFSE	Spin only magnetic moment
(i)	NaFeCl ₄	$2 \times -0.6 + 3 \times 0.4 = 0$	5.92 B.M.
(ii)	$K_4[Fe(CN)_6]$	6 ×-0.4 = - 2.4 Δο	0 B.M.

(C) Considering the FT-IR spectrum given below, assign the carbonyl stretching frequency, $v_{C\equiv O}$ of the iron-carbonyl compound. Write your answer in the boxes. (2 Marks)

3. (A) Fill out the table with the correct information. (4 Marks)

Complex	No. of unpaired electron(s) in	Comments on the magnetic property
	the iron center	of the complex
(i) Deoxyhemoglobin	4 No.	Paramagnetic, Spin-only magnetic moment = 4.89 B.M.
(ii) Oxyhemoglobin	1 No.	Diamagnetic due to anti- ferromagnetic between Fe ³⁺ and superoxide radical anion

(B) Fill out the boxes with the correct information considering the following catalytic cycle. (6 Marks)

4. (A) The major product 'X' with the correct stereochemistry in the following reaction is:

(2 Marks)

Answer:
$$X = \bigcup_{Br}$$

(B) The observed optical rotation of a solution containing 10 g of (R)-2-methyl-1-butanol in the 25 mL solvent is $+5.4^{\circ}$ at 25 °C. For this measurement, the D line of the sodium lamp and 10 cm polarimeter tube are used. What is the specific rotation of (S)-2-methyl-1-butanol? What is the % of the R isomer in the solution if a sample of 2-methyl-1-butanol shows a specific rotation of 6.75 deg·mL·g⁻¹·dm⁻¹? Give your answer to 2 decimal places. (3+2=5 marks)

Answer: The specific rotation of (S)-2-methyl-1-butanol is

R isomer content is

(C) Write the major product 'Y' which contains a keto group in the following reaction. (3 Marks)

5. (A) The 'A' value of a monosubstituted cyclohexane derivative is 10 kJ/mol. Determine the % of the equatorial conformer at 25° C. Give your answer to 2 decimal places. $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$.

(3 Marks)

Answer: The equatorial content is

(B) The energy profile diagram of 2,3-dimethylbutane (by rotation along the C2-C3 bond) is given below. Calculate the energy of the conformers 'A' and 'B' (write in the box) using the interaction energy values provided. Give your answer to one decimal place.

kJ/mol (4 Marks)

Interaction	Energy cost (kJ/mol)
H-H eclipsed	4
H-CH ₃ eclipsed	6
CH ₃ -CH ₃ eclipsed	11
CH ₃ -CH ₃ Gauche	3.8

(C) Write the product(s) in the following reactions.

$$\frac{\text{NaNO}_2/\text{HCl}}{\text{CHO}}$$

$$\frac{\text{NaNO}_2/\text{HCl}}{\text{CHO}}$$

$$\frac{\text{NaNO}_2/\text{HCl}}{\text{CHO}}$$

6. (A) Write the major product formed in the following elimination reactions.

(Enantiopure)

NaOEt H_3C H_3C H_3C H_3C H_3C (Enantiopure) H_3C H_3C

(B) Identify the relationship between the compounds given in the following pairs as enantiomers, diastereomers, and the same molecule. Write in the box. (2+2 =4 Marks)

(C) Find out the absolute configuration of the chiral center in the following molecule.

(2 Marks)

$$\Theta_{\mathsf{O}_2\mathsf{C}} \overset{\mathsf{NH}_2}{\longleftarrow} \overset{\mathsf{+}}{\underset{\mathsf{CO}_2\mathsf{H}}{\longleftarrow}}$$

Answer: The absolute configuration is S