弗兰克-赫兹实验实验报告

2*000***** 姓名 某组 n 号 2023 年 10 月 31 日

1 数据处理

1.1 Hg 管

 $U_1 = 1.5 \,\mathrm{V} \ U_3 = 2.0 \,\mathrm{V} \ T = 176 \,\mathrm{^{\circ}C}$

表 1: Hg 管 $U_{G_2K} - U_{out}$ 的数据表

U_{G_2K} /V	U_{out} /V						
0.0	0.002	8.3	0.039	15.7	0.087	23.7	0.395
0.3	0.002	8.6	0.054	15.9	0.063	23.9	0.411
0.6	0.002	8.9	0.075	16.2	0.044	24.1	0.453
0.9	0.003	9.1	0.090	16.5	0.029	24.3	0.491
1.2	0.003	9.3	0.114	16.8	0.029	24.5	0.503
1.5	0.003	9.5	0.125	17.1	0.039	24.7	0.457
1.8	0.004	9.7	0.151	17.4	0.063	24.9	0.401
2.1	0.005	9.9	0.159	17.7	0.094	25.1	0.301
2.4	0.005	10.1	0.161	18.0	0.133	25.3	0.261
2.7	0.006	10.3	0.123	18.3	0.185	25.6	0.179
3.0	0.007	10.5	0.087	18.6	0.227	25.9	0.140
3.3	0.008	10.7	0.059	18.8	0.272	26.2	0.094
3.6	0.011	10.9	0.044	19.0	0.325	26.5	0.073
3.9	0.015	11.2	0.032	19.2	0.354	26.8	0.077
4.2	0.020	11.5	0.024	19.4	0.388	27.1	0.095
4.4	0.030	11.8	0.019	19.6	0.402	27.4	0.142
4.6	0.038	12.1	0.021	19.8	0.356	27.7	0.197
4.8	0.048	12.4	0.030	20.0	0.296	28.0	0.271
5.0	0.055	12.7	0.044	20.2	0.247	28.3	0.344
5.2	0.058	13.0	0.066	20.4	0.181	28.5	0.387
5.4	0.055	13.3	0.097	20.6	0.147	28.7	0.448
5.6	0.046	13.6	0.137	20.9	0.094	28.9	0.520
5.8	0.039	13.9	0.180	21.2	0.063	29.1	0.554
6.0	0.030	14.1	0.214	21.5	0.045	29.3	0.579

表1(续)

U_{G_2K} /V	U_{out} /V						
6.2	0.026	14.3	0.241	21.8	0.047	29.5	0.573
6.5	0.018	14.5	0.271	22.1	0.059	29.7	0.532
6.8	0.016	14.7	0.285	22.4	0.096	29.9	0.480
7.1	0.013	14.9	0.269	22.7	0.135	30.1	0.421
7.4	0.014	15.1	0.235	23.0	0.199	30.3	0.372
7.7	0.018	15.3	0.176	23.3	0.260		
8.0	0.029	15.5	0.115	23.5	0.294		

图 1: $U_{out} - U_{G_2K}$ 关系图

表 2: Hg 管各峰扫描电压

峰序	1	2	3	4	5	6
U_{G_2K}/V	5.2	10.1	14.7	19.6	24.5	29.5

根据表 2 计算第一激发电位及其不确定度:

用最小二乘法对 U_{G_2K} n 作线性拟合:

$$U_{G_2K} = nU_1 + U_0 (1)$$

$$U_{G_2K} = n \times 4.8 + 0.3 \tag{2}$$

$$r = 0.9999309397 \tag{3}$$

计算 U_1 的不确定度:

$$\sigma_{U_1} = U_1 \sqrt{\frac{\frac{1}{r^2} - 1}{n - 2}} = 0.0 \,\text{V}$$
 (4)

综上: $U_1 = (4.8 \pm 0.0)$ V

1.2 Ar 管

 $V_{HH} = 2.4 \,\mathrm{V} \ V_{G_2 A} = 6.5 \,\mathrm{V} \ V_{G_1 K} = 2.0 \,\mathrm{V}$

表 3: Ar 管 $U_{G_2K}-I_p$ 的数据表

U_{G_2K} /V	I_p /nA						
0.0	-0.3	23.0	3.1	44.0	8.2	65.8	25.8
0.5	-0.2	23.5	3.2	44.5	6.7	66.1	25.3
1.0	-0.2	24.0	3.6	45.0	5.2	66.4	24.8
1.5	-0.2	24.5	4.4	45.5	4.3	66.7	24.0
2.0	-0.1	25.0	5.4	46.0	3.9	67.0	23.0
2.5	-0.1	25.5	6.2	46.5	4.3	67.5	21.3
3.0	-0.1	26.0	7.3	47.0	5.7	68.0	19.3
3.5	-0.1	26.5	8.0	47.5	7.6	68.5	17.1
4.0	-0.1	27.0	8.6	48.0	10.1	69.0	15.4
4.5	-0.1	27.5	9.1	48.5	12.4	69.5	13.8
5.0	-0.1	28.0	9.5	49.0	14.3	70.0	13.2
5.5	-0.1	28.3	9.7	49.5	16.2	70.5	13.5
6.0	-0.1	28.6	9.8	50.0	17.7	71.0	14.4
6.5	-0.1	28.9	9.9	50.5	19.0	71.5	16.1
7.0	-0.1	29.2	9.9	51.0	19.6	72.0	18.2
7.5	-0.1	29.5	9.9	51.3	20.2	72.5	20.0
8.0	0.0	29.8	9.7	51.6	20.5	73.0	21.8
8.5	0.3	30.1	9.6	51.9	20.6	73.5	23.8
9.0	0.8	30.4	9.3	52.2	20.8	74.0	25.8
9.5	1.6	30.7	9.0	52.5	20.7	74.5	27.3
10.0	2.5	31.0	8.4	52.8	20.7	75.0	28.8
10.5	3.4	31.5	7.4	53.1	20.5	75.5	30.2
11.0	4.2	32.0	6.3	53.4	20.1	76.0	31.1
11.5	4.7	32.5	5.5	53.7	19.9	76.5	31.9
12.0	5.1	33.0	4.4	54.0	19.2	77.0	32.4
12.5	5.4	33.5	3.7	54.5	17.8	77.3	32.6
13.0	5.7	34.0	3.0	55.0	16.3	77.6	32.6
13.5	6.0	34.5	2.9	55.5	15.3	77.9	32.6
14.0	6.1	35.0	3.3	56.0	12.4	78.2	32.3
14.5	6.2	35.5	4.3	56.5	10.5	78.5	32.0
15.0	6.5	36.0	6.0	57.0	8.9	78.8	31.5
15.5	6.5	36.5	7.9	57.5	7.6	79.1	31.1
16.0	6.7	37.0	9.5	58.0	7.4	79.4	30.3
16.5	6.8	37.5	10.8	58.5	7.8	79.7	29.5
17.0	6.8	38.0	12.4	59.0	9.8	80.0	28.5

表 3 (续)

U_{G_2K} /V	I_p /nA						
17.3	6.8	38.5	13.4	59.5	11.7	80.5	26.8
17.6	6.6	39.0	14.2	60.0	14.1	81.0	24.6
17.9	6.6	39.3	14.3	60.5	16.1	81.5	23.4
18.2	6.5	39.6	14.6	61.0	18.7	82.0	22.4
18.5	6.4	39.9	14.8	61.5	20.6	82.5	22.0
18.8	6.1	40.2	14.9	62.0	22.0	83.0	22.3
19.1	6.0	40.5	15.0	62.5	23.6	83.5	22.9
19.4	5.8	40.8	15.0	63.0	24.8	84.0	24.0
19.7	5.5	41.1	14.8	63.5	25.6	84.5	25.3
20.0	5.3	41.4	14.6	64.0	26.1	85.0	27.1
20.5	4.9	41.7	14.3	64.3	26.3		
21.0	4.4	42.0	13.8	64.6	26.6		
21.5	4.0	42.5	12.8	64.9	26.5		
22.0	3.5	43.0	11.7	65.2	26.4		
22.5	3.3	43.5	9.9	65.5	26.4		

图 2: $I_P - U_{G_2K}$ 关系图

表 4: Ar 管各峰扫描电压

峰序	1	2	3	4	5	6
U_{G_2K}/V	17.0	29.2	40.5	52.2	64.6	77.6

根据表 4 计算第一激发电位及其不确定度:

用最小二乘法对 U_{G_2K} n 作线性拟合:

$$U_{G_2K} = nU_1 + U_0 (5)$$

$$U_{G_2K} = n \times 12.0 + 4.8 \tag{6}$$

$$r = 0.9997425875 \tag{7}$$

计算 U_1 的不确定度:

$$\sigma_{U_1} = U_1 \sqrt{\frac{\frac{1}{r^2} - 1}{n - 2}} = 0.1 \,\text{V} \tag{8}$$

综上: $(U_1 = 12.0 \pm 0.1)$ V

2 思考题

答:

1. 实验中 U_{G_2P} 增大,损失动能的电子难以克服反向电压 U_{G_2P} 阻滞到达极板 P, 电流 I_P 下降,曲线向下移动;反之电流 I_P 上升,曲线向上移动。

3 分析与讨论

分析测量第一激发电位时误差的主要来源: 热电子溢出灯丝表面需要做一定的溢出功, 所以第一峰的位置会有一定的偏差,金属的溢出功是测量第一激发电位时误差的主要来源。

4 收获与感想

本次实验的一大特征就是数据点数量大,我在实验中收集了三百多组数据,码实验报告需要手打六百多组数据,令我更加深刻地认识到了物理学实验工作的细致与能够在大量数据中找到与验证物理规律的艰深。希望我能够在今后的实验中,学习和体会前辈物理学家进行物理实验的精神与思想,能够真切益于我的物理学学习甚至生活之中。