EE655: Computer Vision & Deep Learning

Lecture 14

Koteswar Rao Jerripothula, PhD Department of Electrical Engineering IIT Kanpur

Outline:

- Motion History Images
- CNNs for Videos

Examples

Motion History Images

How recently the pixel has moved?

First, we need to determine whether a pixel has moved in the current frame or not.

At current frame 't', we compute MHI as follows

if moving:

$$I_{\tau}(x, y, t) = \tau$$

otherwise:

$$I_{\tau}(x, y, t) = \max(I_{\tau}(x, y, t - 1) - 1, 0)$$

Two-stream architecture

Figure 1. Two-stream architecture for video classification.

Idea behind 3D convolution

3D Convolution for videos

4 dimensional input and kernel:

2 spacial, 1 for channels, and 1 for frames

Spatiotemporal representation

The output representation of a 3D convolution is, by nature, spatiotemporal (i.e., captures both spatial information within each frame and temporal information between adjacent frames).

This added temporal dimension causes 3D CNNs to have higher computational costs and heavier data requirements for achieving acceptable training and generalization performance.

3D Conv. Kernel (2 Frames)

3D Conv. Kernel (4 Frames)

Alleviating issues with 3D Convolutions

- Only using 3D convolutions in a smaller number of networks layers, and allowing remaining layers to perform 2D convolution operations.
- Factorizing 3D convolutions into separate 2D spatial and 1D temporal convolution operations applied in sequence

Factorized 3D Convolution

It reduces the number of trainable parameters significantly. Implementation-wise, two 3D convolutions with filters of sizes $1\times3\times3\times3$ and $F\times1\times1\times1$, thus reducing the number of trainable parameters from $F\times3\times3\times3$ to $F+3\times3\times3$

3D ConvNet with Factorized Architecture

Variants of Factorization

Inflating 2D Networks (Transferring Image-based learning to video domain)

Reference

https://cameronrwolfe.substack.com/p/deep-learning-on-video-part-three-diving-deep-learning-deep-learning-deep-learning-deep-learning-deep-learning-deep-learning-deep-learning-deep-learning-deep-learning-deep-learning-deep-learning-deep-learning-deep-learning-deep-learning-deep-lear