Cryptographic Hash Functions & Message Authentication Codes CS 411/507 - Cryptography

Erkay Savaş & Atıl Utku Ay

Faculty of Engineering and Natural Sciences Sabancı University

November 6, 2023

Outline

- Cryptographic Hash functions
- Message Authentication Codes (MAC)

Hash Functions

- One-way hash functions do not use secret key.
- A hash function accepts an arbitrary length message M and
 - produces a fixed-length output, referred as <u>hash code</u>, or shortly <u>hash</u>, $h={\tt H}(M)$;
 - message digest and <u>hash value</u> are also used.
- A message representative
 - A change to any bit (or bits) in the message results in a (big) change to the hash value.
- Hash functions are widely used in message authentication and digital signatures

Basic Use of Hash functions

• Both encryption and message authentication

Basic Use of Hash functions

Message authentication only

Requirements for a Hash Function

- One-way property
 - \bullet H(x) is relatively easy to compute for any given x,
 - making both hardware and software implementations practical
 - ① For any given value h, it is computationally infeasible to find x such that $\mathrm{H}(x)=h$
- Weak collision resistance
 - For any given message x, it is computationally infeasible to find $y \neq x$ such that $\mathtt{H}(x) = \mathtt{H}(y)$
- Strong collision resistance
 - It is computationally infeasible to find any pair (x,y) with $x \neq y$ such that $\mathrm{H}(x) = \mathrm{H}(y)$

How Hard to Find Collision?

- Depends on the hash length, n-bit
- Ideally,
 - (Weak collusion) Given the message x, finding another message y with the same hash value, you need 2^n trials, on average
 - (Strong collusion) After $2^{n/2}$ trials it is likely to find collisions due to "birthday attacks"

Birthday Paradox

- Probability results are sometimes counterintuitive.
- In birthday paradox, we are looking for the smallest value of k such that $P(365,k) \ge 0.5$.
 - probability that at least two people in a group of k people have the same birthday is greater than 0.5. (Ignore the leap year)
- The problem statement:
 - $P(n,k) = \Pr(a_i = a_j)$ where a_1, a_2, \dots, a_k and $1 \le a_i, a_j \le n$ and $i \ne j$
 - Assume n > k.
 - each item is able to take one of n values equally likely
 - at least one duplicate in k items
 - What is the minimum value of k such that the $Pr(a_i=a_j) \geq 0.5$

Birthday Paradox

- The total number of possibilities is 365^k .
- \bullet Consider the number of different ways, N, that we can have k values with no duplicates.

$$- N = 365 \times 364 \times 363 \times \ldots \times (365 - k + 1) = \frac{365!}{(365 - k)!}$$

Then the probability

$$P(365, k) = 1 - \frac{365!}{(365 - k)!365^k}$$

• When the probabilities are calculated P(365, 23) = 0.5073

Birthday Paradox

- If there are 23 people in a room, the probability of two people having the same birthday is greater than 0.5.
 - The probability is 89% that there is a match among 40 people.
- A useful inequality:

$$P(n,k) > 1 - e^{-k^2/2n} \qquad \qquad P(n,k) = 1 - \frac{n!}{(n-k)!n^k}$$
 if n is large enough

- In cryptography,
 - n: the number of all hash values,
 - k: the number of messages uses to find collusions

Collusion in Hash Functions

- Assume a hash function H with m-bit output
- Then, $0 \le H(x) < 2^m$ for the message x.
- If we have k messages (x_1, x_2, \ldots, x_k) , then the collision probability is

$$P(2^n, k) > 1 - e^{-k^2/2^{m+1}}$$

- If m = 256, $k = 2^{128}$ - $P(2^{256}, 2^{128}) = 0.39$
- If m = 128, $k = 2^{64}$ - $P(2^{128}, 2^{64}) = 0.39$

Birthday Paradox in Cryptography

- Two rooms with k people each.
 - Probability of a pair of people with the same birthday, elements of pairs from a different room:
 - $-\approx 1-e^{-k^2/n}$.
 - Example:
 - $k = 19 \rightarrow \approx 63\%, 19 \cong 365^{1/2}$
 - $k = 30 \rightarrow 91.5\%$
- Application to hash functions
 - Two sets of messages with $k=2^{m/2}$ messages each.
 - Messages choose one of the hash values of m-bit $(n=2^m)$ at random.

Birthday Attacks 1/3

- Assume hash code is a 64-bit value, m=64
- Alice signs the hash ${\tt H}(M)$ of a message M.
- An opponent would need to find M' such that $\operatorname{H}(M) = \operatorname{H}(M')$ to substitute another message.
- After trying about 2^{64} different messages, we have an significant probability to find a message M' that gives the same hash as M.
- However, a different attack based on birthday paradox is much more feasible.

Birthday Attacks 2/3

- Opponent forms two sets of messages:
 - $oldsymbol{0}$ 2^{32} variations on the original message, M, all of which convey essentially the same meaning
 - $\ensuremath{ 2 }$ Prepares an equal number of messages, all of which are variations on the fake message, M', to be substituted for the original message
- These two sets of messages are compared to find a pair of messages that produces the same hash value.
 - The probability of success, by the birthday paradox, is greater than $0.5.\,$
- If no match is found, additional messages are generated for the two sets.

Birthday Attacks 3/3

- The opponent offers the valid variation to Alice to sign.
- Alice generates a hash value for this message and signs it.
- The opponent replaces the original message with the fraudulent message that generates the same hash value.
- Now, the fradulent message has a valid signature.
- Since the hash value is 64-bit, the level of effort required is only on the order of 2^{32} .

Why Birthday Attacks Work?

- Variations are obtained by adding a space at the end of a line, modifying the punctuation, changing the wording slightly, etc.
- In two sets there are $k=2^{m/2}$ messages each.
- ullet The probability that a message from the first set of k produces the same hash value as a message from the second set of k is given by a similar formula with approximation

$$1 - e^{-k^2/n}$$

Why Birthday Attacks Work?

• $n=2^m o$ Probability that there is a match between the hash values of two messages from the two sets is approximately

$$1 - e^{-k^2/n} = 1 - e^{-1} = 0.63 > 0.5$$

http://www.win.tue.nl/hashclash/

Collision in MD5

Collision Attacks on Hash Functions

- In 2004, many collisions were found for MD4, MD5, HAVAL-128, and RIPEMD
- MD5 collisions have been used to create two different and "meaningful" documents with the same hash.
- Lenstra et al. showed how to produce examples of X.509 certificates with the same hash

Important Hash Fuctions

- MD5
- SHA-1
- SHA-2
- SHA-3

Merkle-Damgård Construction

 $egin{array}{ll} IV &=& \mbox{Initial Value} \ CV_i &=& \mbox{Chaining Variable} \ Y_i &=& i^{th} \ \mbox{input block} \ \mbox{f} &=& \mbox{Compression Algorithm} \end{array}$

 $L = ext{Number of Input Blocks}$ $n = ext{Length of Hash Code}$ $b = ext{Lenght of Input Block}$

- Iterated hash function idea
 - A sequence of compressions
 - MD5, SHA-1, SHA-2 and some others are based on that idea

Message Digest 5 (MD5)

- Arbitrarily long input message
 - Block size is 512 bits
- 128-bit hash value
- Has been used extensively, but its importance is diminishing
 - Brute force attacks, 2^{64} is not considered secure complexity any more
 - Cryptanalytic attacks are reported

Secure Hash Algorithm-1 (SHA-1)

- Proposed by NIST as standard hash function for certain US federal government applications (1995).
- The block size is 512-bits.
- The hash value is 160-bits.
- Five 32-bit chaining variables are used.
- Similar to DES, the chaining variables are processed in 20 rounds.
- For more information see http://www.nist.gov and Handbook of Applied Cryptography.

Cryptanalysis of SHA-1

- In Feb. 2005, Wang, Yin, and Yu announced that their attacks can find collisions requiring fewer than 2^{69} operations.
 - A brute-force search would require about 2^{80} operations due to "birthday attacks"
- In August 2006, Wang, Yao and Yao announced that finding collisions requires 2^{63} operations.
- \bullet In 2017, Google announced the SHAttered attack, in which they generated two different PDF files with the same SHA-1 hash in roughly $2^{63.1}$ SHA-1 evaluations.

Secure Hash Algorithm-2 (SHA-2)

- NIST proposes SHA-2 variants in 2002
 - SHA-256, SHA-384, and SHA-512.
 - SHA-224 is later added in 2008
 - For compatible security with AES
 - Structure & detail is similar to SHA-1
 - But security levels are rather higher
 - Attacks on SHA-1 have not been extended to SHA-2 variants yet.

SHA-1 & SHA-2

	SHA-1	SHA-224	SHA-256	SHA-384	SHA-512
Message	160	224	256	384	512
Digest Size					
Message Size	$< 2^{64}$	$< 2^{64}$	$< 2^{64}$	$< 2^{128}$	$< 2^{128}$
Block Size	512	512	512	1024	1024
Word Size	32	32	32	64	64
Number of	80	64	64	80	80
Steps					

Secure Hash Algorithm - 3 (SHA-3)

- The NIST hash function competition
 - an open competition held by the US NIST for a new SHA-3 function
 - NIST does not currently plan to withdraw SHA-2 or remove it from the revised Secure Hash Standard.
 - formally announced on November 2, 2007.
 - NIST selected 51 entries for the Round 1, and 14 of them advanced to Round 2.
 - Winner was announced in 2012. (Keccak)
 - http://keccak.noekeon.org/

SHA-3

- Different design principles than other SHAs
 - Sponge Construction

	SHA3-224	SHA3-256	SHA3-384	SHA3-512
Message	224	256	384	512
Digest Size				
Message Size	no maximum	no maximum	no maximum	no maximum
Block Size	1152	1088	832	576
Word Size	64	64	64	64
Number of	24	24	24	24
Rounds				

- SHAKE128 and SHAKE256 are extendable output functions (XOFs)
 - provide 128-bit and 256-bit security, respectively.
 - generate as many bits from its sponge as requested.

Merkle Hash Tree

Merkle Hash Tree

Merkle Hash Tree

Password Protection

- The password is hashed and the hash value is stored.
- The user enters his/her password for authentication
- Its hash is computed and the hashes are compared
- If comparison is passed, the user is authenticated

Password Crack

- Dictionary Attack
- Generate a dictionary of all possible passwords (or as many passwords as possible): PWD_i for i=1,2,...
- Compute the hashes of all passwords in your dictionary: $\mathtt{H}(PWD_i)$ for $i=1,2,\ldots$
- You have now pairs in your table: $[\mathtt{H}(PWD_i), PWD_i]$ for $i=1,2,\ldots$
- If you use salt, then the table size increases significantly
 - Assume 16-bit salts
 - Then, for every password candidate PWD_i , we need to have 2^{16} possible hash values such that $\mathrm{H}(PWD_i||0), \mathrm{H}(PWD_i||1), \ldots \mathrm{H}(PWD_i||65535)$

Password Crack 1/2

- Time-memory trade-off
- \mathcal{P} : set of all passwords; $p \in \mathcal{P}$
- \mathcal{H} : image of hash function H; $h \in \mathcal{H}$
- Let $R: \mathcal{H} \to \mathcal{P}$
- Generate a chain of passwords

Password Crack 2/2

• Create the following table and store only $p_{i,0}$ and $p_{i,t-1}$

- ullet Given a hash value h corresponding to a password, compute
 - $p_0 = R(h)$
 - $p_i = f(p_{i-1})$ for $i = 1, 2, \dots, t-2$
- Compare p_i for $i=0,\ldots,t-2$ with $p_{j,t-1}$ for $j=1,\ldots,m$
- For more information, search for rainbowcrack

Why It Works

• Case 1:

- $-p_0 = R(h)$ $- \text{ If } p_0 = p_{j,t-1} \text{ for } j = 1, \dots, m; \text{ then } R(h) = R(H(p_{j,t-2}))$ $- h = H(p_{j,t-2})$
- Then the password is $p_{j,t-2}$
- Compute $p_{i,0} \rightarrow p_{i,1} \rightarrow \ldots \rightarrow p_{i,t-2}$.
- t-2 hash computations in total
- -m comparisons

Why It Works

• Case 2:

- $p_0 = R(h)$ and $p_0 \neq p_{j,t-1}$ for j = 1, ..., m
- then compare $p_1 = f(p_0)$ and $p_{i,t-1}$ for $j = 1, \ldots, m$
- If $p_1 = p_{i,t-1}$ then $R(H(p_0)) = R(H(p_{i,t-2}))$
- $-H(p_0) = H(p_{j,t-2})$
- $p_0 = p_{j,t-2}$ then $R(h) = R(H(p_{j,t-3})) \to p_0 = p_{j,t-3}$
- Compute $p_{j,0} \rightarrow p_{j,1} \rightarrow \ldots \rightarrow p_{j,t-3}$.
- t-2 hash computations in total
 - One hash computation from p_0 to p_1 .
 - ullet t-3 hash computations from $p_{j,0}$ to $p_{j,t-3}$

Message Authentication

- Message authentication ensures the integrity of a message
- i.e. its content has not been changed by unauthorized parties

Authentication with Encryption

- The ciphertext of the message serves as authenticator.
 - If the ciphertext decrypts into a meaningful plaintext, then the message is authentic.
- Several scenarios in which this scheme is not suitable:
 - May be hard to distinguish a meaningful message.
 - Authentication cannot be done on selective basis.
 - One destination is interested in the authentication while the others are interested only in confidentiality
 - Separation of authentication and confidentiality may offer architectural flexibility

Message Authentication Codes

- MAC or <u>cryptographic checksum</u> is a short, fixed-length bit string derived from a message of arbitrary length using a secret key.
- This technique assumes that two communicating parties, say A and B, share a secret key K_{AB} .
- When A has a message M to send to B, it calculates the MAC as a function of the message and the key:

 MAC — Cropo (M)

$${\tt MAC} = C_{K_{AB}}(M)$$
 where C is the MAC function.

• The message and MAC are transmitted to B.

Basic Use of MAC

Message authentication without confidentiality

Properties of MAC Function

- A MAC function is similar to encryption in many ways.
- But it does not have to be reversible.
- A MAC function is a many-to-one function
- MAC algorithms can be constructed from other cryptographic primitives
 - Block Ciphers
 - Hash Functions

Cipher based MAC (CMAC)

- Standard ciphers are secure enough; no need to bother with security of Hash functions
- Ciphers are used for confidentiality, so it is implemented in the system; no need to have extra implementation for hash function

Hash based MAC (HMAC)

- It is better to have a MAC using a hash function rather than a block cipher
 - Because hash functions are generally faster
- Hash functions are not designed to work with a key
- Solution: Hash includes a key along with the message
- Original Proposal: KeyedHash = Hash(Key || Message)
 - eventually led to development of HMAC

HMAC

- Specified as Internet standard RFC2104
 - Used in several products and standards including IPSec and SSL
- HMAC = $H[(K+ \oplus \text{opad}) \mid \mid H[(K+ \oplus \text{ipad}) \mid \mid M)]]$
 - K+ is the key padded out to block size of the hash function
 - opad, ipad are some padding constants
- Any hash function (MD5, SHA-1, ...) can be used.

Authenticated Encryption with Associated Data (AEAD)

- A term used to describe encryption systems that simultaneously protect confidentiality and authenticity of communications.
- Authenticated encryption can be generically constructed by combining an encryption scheme and a message authentication code (MAC)
- There are 3 approaches:
 - Encrypt-then-MAC (EtM)
 - MAC-then-Encrypt (MtE)
 - Encrypt-and-MAC (E&M)

Encrypt-then-MAC (EtM)

Authentication is tied to ciphertext

MAC-then-Encrypt (MtE)

• Message authentication and confidentiality

Authentication code is tied to plaintext

Encrypt-and-MAC (E&M)

Message authentication and confidentiality

MAC vs Digital Signature

- Is MAC a signature?
 - No, because the receiver can also generate it
 - Non-repudiation