

Correcting unwanted variation in RNA sequencing data derived from a multi-centre study of leukemia

Anna Quaglieri PhD Student

RSS 2018 International Conference 2018

CBF-AML

Diagnosis

Chemotherapy

60%Long term remission

40% Relapse

Diagnosis

Long Remission (LR)

Relapse (R)

Diagnosis

Long Remission (LR)

♦ Gene expression

Relapse (R)

What genes are associated with different outcomes?

Diagnosis

Long Remission (LR)

Relapse (R)

♦ Gene expression

Compare group means

Our initial CBF-AML Long term Relapse cohort remission @annaquagli

3 I **79** Combined CBF-AML Long term Relapse cohort remission @annaquagli Used so far...

45
Long term
remission

20 Relapse

Larger sample can give more power to detect signal

Larger sample also increases unwanted heterogeneity

Higher burden of Leukemia

That's why we needed RUV! Removing Unwanted Variation

JA. Gagnon-Bartsch, L. Jacob, T. Speed

$$Y_{mxn} = X_{mxp}\beta_{pxn} + W_{mxk}\alpha_{kxn} + \epsilon_{mxn}$$

Log2 gene expression matrix m samples n genes

Model estimated with RUV-4

Gene-wise comparison of Relapse vs Long Remission patients

$$Y_{mxn} = X_{mxp}\beta_{pxn} + W_{mxk}\alpha_{kxn} + \epsilon_{mxn}$$

Model estimated with RUV-4

Matrix with Unwanted Variation

$$Y_{mxn} = X_{mxp}\beta_{pxn} + W_{mxk}\alpha_{kxn} + \epsilon_{mxn}$$

Model estimated with RUV-4

Estimated using Negative Control genes

$$Y_{mxn} = X_{mxp}\beta_{pxn} + W_{mxk}\alpha_{kxn} + \epsilon_{mxn}$$

$$Y = X = X = \beta + W = \alpha + \epsilon$$

$$\beta_{NC} = 0$$

Consistent with published results!

• We could remove unwanted variations even where information was not available

Found consistency with recently published results

- High expression of **DOCKI** confers poor prognosis in AML (Lee Sh (2017))
- •"...This suggests that **PIDI** may contribute to responsiveness to chemotherapy." Xu J (2017), Scientific Reports

Looking to clean your data?

Check the RUV tutorial that we gave at useR! 2018

<u>Looking to clean your data? Learn how to Remove Unwanted Variation with R - Part 1 Looking to clean your data? Learn how to Remove Unwanted Variation with R - Part 2 </u>

Thanks to...

Terry Speed

Ian Majewski

Edward Chew

