

Traffic Light Experiment

Module Introduction

The traffic light module is composed of three LEDs. We can imitate the traffic lights through this module.

Purpose of the Experiment

Simulate traffic lights.

Device List

- BLE-UNO Main Board: 1
- Expansion Board of H2.0 Sensor :1
- USB Data Wire: 1
- Traffic Lights:1
- 5PIN Wire Jumper: 1

Physical Wiring Diagram

Program Code

```
#define RGB RED
                      6//Control the red light pin
#define RGB_GREEN 3//Control the green light pin
#define RGB YELLOW
                          5//Control yellow light pin
void setup()
{
    pinMode(RGB RED, OUTPUT);//Red light pin is set as output
    pinMode(RGB GREEN, OUTPUT);//The green light pin is set as output
    pinMode(RGB YELLOW, OUTPUT);//The yellow light pin is set as output
}
void loop()
{
     digitalWrite(RGB_RED, HIGH);//Red light on
     delay(1000);
     digitalWrite(RGB GREEN, HIGH);//Green light on
     delay(1000);
     digitalWrite(RGB YELLOW, HIGH);//Yellow light
     delay(1000);
```



```
digitalWrite(RGB_RED, LOW);//Red light off
delay(1000);
digitalWrite(RGB_GREEN, LOW);//Green light off
delay(1000);
digitalWrite(RGB_YELLOW, LOW);//Yellow light off
delay(1000);
}
```

MagicBlock Program

Mixly Program

Experimental Conclusion

After the device is wired, the above program is burned to BLE-UNO board, and the traffic lights will turn on and off in turn.

