Tutorial 02 – The class NP (Group 3)

Exercise 1. Boolean circuits

Let $f_n: \{0,1\}^n \to \{0,1\}$ be the function defined as

$$f_n(x_1,\ldots,x_n) := \begin{cases} 1 & \text{if } x_1+\cdots+x_n \text{ is odd,} \\ 0 & \text{otherwise.} \end{cases}$$

- **1.** Draw a boolean circuit that computes f_0 , f_1 , f_2 . What can you say about f_2 ?
- **2.** Show that f_n can be computed by a circuit of size and depth O(n).

Exercise 2. Decision vs Search

If P = NP, show that there exists a polynomial time algorithm that returns an affectation of the variables satisfying a boolean formula $\phi(x_1, ..., x_n)$.

Exercise 3. NP-Completeness

Show that the following languages are NP-complete.

1. NDTM-T: given $\langle \alpha, x, 1^t \rangle$, does the nondeterministic Turing machine M_{α} accept on input x in time $\leq t$?

Hint: You can admit that there exists a universal nondeterministic Turing Machine.

- **2.** K-COLORING: given $\langle G, k \rangle$, can we color the vertices of G using exactly $k \geq 1$ colors in such a way that there is no edge between any two vertices of the same color? *Hint: This problem is* NP-complete even if we fix k = 3.
- 3. Schedule: given $\langle C, (s_i)_{1 \leqslant i \leqslant C}, k \rangle \in \mathbb{N} \times \mathcal{P}(\llbracket 1, S \rrbracket)^C \times \mathbb{N}$, where C is the number of courses and s_i the list of students in course i. Is it possible to fit all the courses in k slots such that each student can go to every course he enrolled in?

Example of Schedule with entry $\langle 3, ([1,2], [1], [2,3]), 2 \rangle$.

Hint: Reduce from the k-coloring problem.

4. o/1 INTEGER PROGRAMMING: Given a list of m linear inequalities with rational coefficients over n variables $u_1, ..., u_n$, find out if there is an assignments of 0s and 1 satisfying all the inequalities.

Exercise 4. Tally Language (Berman's Theorem, 1974) A language is said to be *tally* (or unary), if it is included in a unary alphabet $\{a\}^*$ for a fixed symbol a.

Definition (SUBSET-SUM). Given n numbers $v_1, \ldots, v_n \in \mathbb{Z}$, and a *target* number $T \in \mathbb{Z}$, we need to decide whether there exists a nonempty subset $S \subseteq [\![1,n]\!]$ such that $\sum_{i \in S} v_i = T$. The problem size is $|T|_2 + \sum_{i=1}^n |v_i|_2$.

- **1.** Prove that Subset-Sum is NP-complete.
- **2.** Let Unary-Subset-Sum be the tally variant of Subset-Sum where all numbers are represented by their unary representation. Show that Unary-Subset-Sum is in P.
- 3. Show that if there exists an NP-hard tally language, then P = NP.