Blatt 0

Jean-Marco Alameddine, Johannes Kollek, Max Pernklau

Aufgabe 1

Abbildung 1: b),c) zeigen stark schwankende Abweichungen durch unzureichende Maschienengenauigkeit.

a) ist am genausten, da $(1-x)^6$ numerisch stabiler ist (eine Addition, sonst nur Multiplikationen). b) ist am schlechtesten konditioniert, da maximal oft addiert wird. c) liegt dazwischen, nahe Null treten trotzdem Probleme auf.

Aufgabe 2

a)

Nach $L'H\hat{o}pital$ ergibt sich der Grenzwert zu -1/6.

b)

Ab $< 10^{-15}$ ist die double-Genauigkeit unterschritten; die Größenordnungen von 9 und 10^{-16} im Radikanten unterscheiden sich zu stark.

Davor treten Rundungsfehler beim Wurzelziehen auf, dies erklärt den "Peak" bei 10^{-15} .

Abbildung 2: Grenzwert

Aufgabe 3

a)

Analytisch ergibt sich $f(x) = 2/3 \,\forall x$. Eine $\leq 1\%$ -ge Abweichung ergibt sich für $x \in [-4 \cdot 10^4, 4 \cdot 10^4]$. Es ist grob 0 für $|x| \geq 2 \cdot 10^5$.

Analytisch ergibt sich $g(x) = 2/3 \,\forall x$. Eine $\leq 1\%$ -ge Abweichung ergibt sich für $|x| \geq 5 \cdot 10^{-5}$. Es ist grob 0 für $|x| \leq 8 \cdot 10^{-6}$.

Aufgabe 4

a)

Nein, denn der Nenner $1-\beta^2\cos^2(\theta)$ ist für θ Vielfaches von π 0 und damit ist die Formel instabil.

b)

Der Term $1 - \beta^2 \cos^2(\theta)$ lässt sich immerhin umformen zu $1/\gamma^2 + \beta^2 \sin^2(\theta)$. Dieser sollte keine Instabilität an den gegebenen Stellen mehr aufweisen, siehe Teilaufgabe c).

c)

Abbildung 3: Methoden aus a) und b) im Vergleich. Gleiches gilt für alle Vielfachen von π .

d)

Die Ableitung ergibt

$$\frac{\alpha^2}{s} \frac{(1-3\beta^2)\sin 2\theta}{(b^2\cos\theta^2-1)^2} \ .$$

Die Konditionszahl errechnet sich nach $(f'/f)\theta$ und dementsprechend zu

$$\frac{(1-3\beta^3)\sin 2\theta}{(b^2\cos\theta^2-1)(2+\sin\theta^2)}.$$

e)

Die Konditionszahl ist in Abhängigkeit von θ hier abgebildet. Um die Bereiche 0 und 2π ergibt sich eine schlechte Konditionierung, mit schwarzen Balken in etwa gekennzeichnet. Dazwischen hat man eine gute Konditionierung.

PS

Es tut uns Leid. Das nächste mal machen wir es einheitlich, lesbar und mit einem makefile.