MEM6810 Engineering Systems Modeling and Simulation 工程系统建模与仿真

Theory Analysis

Lecture 7: Output Analysis I: Single Model

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

shenhaihui.github.io/teaching/mem6810f

shenhaihui@sjtu.edu.cn

Spring 2024 (full-time)

Contents

- 1 Introduction
 - ► Types of Simulations
- 2 Point and Interval Estimations
 - ▶ Basics
 - ► Specified Precision
 - ► Example
- 3 Terminating Simulation
 - ▶ Discrete Outputs
 - ► Continuous Outputs
- 4 Steady-State Simulation
 - ▶ Initialization Bias
 - ▶ Intelligent Initialization
 - ► Warm-up Period Deletion
 - ► Estimation with Multiple Replications
 - ▶ Estimation with Single Replication

- 1 Introduction
 - ► Types of Simulations
- 2 Point and Interval Estimations
 - ▶ Basics
 - ► Specified Precision
 - **▶** Example
- Terminating Simulation
 - **▶** Discrete Outputs
 - ► Continuous Outputs
- 4 Steady-State Simulation
 - ▶ Initialization Bias
 - ▶ Intelligent Initialization
 - ► Warm-up Period Deletion
 - ► Estimation with Multiple Replications
 - ► Estimation with Single Replication

- Output analysis is the examination of data generated by a simulation.
- Output analysis is needed because the output data from a stochastic simulation exhibits random variability.

- Output analysis is the examination of data generated by a simulation.
- Output analysis is needed because the output data from a stochastic simulation exhibits random variability.
- Suppose the true performance of the *simulated system* is θ .
 - The result from a set of simulation runs will be an estimator $\widehat{\theta}$.
 - The precision of the estimator $\widehat{\theta}$ can be measured by the standard error of $\widehat{\theta}$ (i.e., estimator's standard deviation) or the width of a confidence interval for θ .

- Output analysis is the examination of data generated by a simulation.
- Output analysis is needed because the output data from a stochastic simulation exhibits random variability.
- Suppose the true performance of the *simulated system* is θ .
 - The result from a set of simulation runs will be an estimator $\widehat{\theta}$.
 - The precision of the estimator $\widehat{\theta}$ can be measured by the **standard error** of $\widehat{\theta}$ (i.e., estimator's standard deviation) or the width of a confidence interval for θ .
- The purpose of the statistical analysis:
 - Estimate the true performance θ .
 - Control the estimation precision.

- Output analysis is the examination of data generated by a simulation.
- Output analysis is needed because the output data from a stochastic simulation exhibits random variability.
- Suppose the true performance of the *simulated system* is θ .
 - The result from a set of simulation runs will be an estimator $\widehat{\theta}$.
 - The precision of the estimator $\widehat{\theta}$ can be measured by the standard error of $\widehat{\theta}$ (i.e., estimator's standard deviation) or the width of a confidence interval for θ .
- The purpose of the statistical analysis:
 - Estimate the true performance θ .
 - Control the estimation precision.
- Types of simulation with regard to output analysis:
 - terminating vs. nonterminating.

- A terminating simulation is one that runs for some well-defined time duration T_E .
 - E is a specified event (or set of events) that stops each simulation run (replication).
 - Simulation starts at time 0 under well-specified initial conditions, and ends at the stopping time T_E .
 - T_E can be either a deterministic or random variable.

- A terminating simulation is one that runs for some well-defined time duration T_E .
 - E is a specified event (or set of events) that stops each simulation run (replication).
 - Simulation starts at time 0 under well-specified initial conditions, and ends at the stopping time T_E .
 - T_E can be either a deterministic or random variable.
- Example: A bank opens at 9 AM (time 0) with no customers present and 8 of the 11 tellers working (initial conditions), and closes at 5 PM (time $T_E = 8$ hours).
 - $E = \{8 \text{ hours of simulated time have elapsed}\}.$

- A terminating simulation is one that runs for some well-defined time duration T_E .
 - E is a specified event (or set of events) that stops each simulation run (replication).
 - Simulation starts at time 0 under well-specified initial conditions, and ends at the stopping time T_E .
 - T_E can be either a deterministic or random variable.
- Example: A bank opens at 9 AM (time 0) with no customers present and 8 of the 11 tellers working (initial conditions), and closes at 5 PM (time $T_E = 8$ hours).
 - $E = \{8 \text{ hours of simulated time have elapsed}\}.$
- It actually stops service when the last customer who entered before 5 PM has been served.
 - $E = \{ \text{at least 8 hours of simulated time have elapsed and the system is empty} \} \Longrightarrow T_E \text{ is a random variable.}$

- A nonterminating simulation is one that runs continuously and without a natural event E to stop the simulation run.
 - Initial conditions are defined by the analyst, but its effect fades away as simulation time increases.
 - Stopping time is conceptually infinite, and in practice it is determined by the analyst with certain statistical precision.

- A nonterminating simulation is one that runs continuously and without a natural event E to stop the simulation run.
 - Initial conditions are defined by the analyst, but its effect *fades* away as simulation time increases.
 - Stopping time is conceptually infinite, and in practice it is determined by the analyst with certain statistical precision.
- Examples: Production line that runs 24/7, hospital emergency rooms, continuously operating computer networks, etc.

- A nonterminating simulation is one that runs continuously and without a natural event E to stop the simulation run.
 - Initial conditions are defined by the analyst, but its effect *fades* away as simulation time increases.
 - Stopping time is conceptually infinite, and in practice it is determined by the analyst with certain statistical precision.
- Examples: Production line that runs 24/7, hospital emergency rooms, continuously operating computer networks, etc.
- For a simulation model that is run in a nonterminating way and has a steady-state (stationary) distribution:
 - The objective is often to study the long-run, or steady-state, behavior of a system, which is not influenced by the initial conditions.
 - Such nonterminating simulation is also called steady-state simulation.

- Introduction
 - ► Types of Simulations
- 2 Point and Interval Estimations
 - ▶ Basics
 - ► Specified Precision
 - ► Example
- 3 Terminating Simulation
 - ▶ Discrete Outputs
 - ► Continuous Outputs
- 4 Steady-State Simulation
 - ▶ Initialization Bias
 - ▶ Intelligent Initialization
 - ► Warm-up Period Deletion
 - ► Estimation with Multiple Replications
 - ► Estimation with Single Replication

• Suppose we want to estimate $\theta = \mathbb{E}[X]$ based on the iid sample $\{X_1, \dots, X_n\}$.

- Suppose we want to estimate $\theta = \mathbb{E}[X]$ based on the iid sample $\{X_1, \ldots, X_n\}$.
- The point estimator (a single random variable) is

$$\widehat{\theta} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- Suppose we want to estimate $\theta = \mathbb{E}[X]$ based on the iid sample $\{X_1, \ldots, X_n\}$.
- The point estimator (a single random variable) is

$$\widehat{\theta} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- How good is this estimator?
 - Unbiased: $\mathbb{E}[\widehat{\theta}] = \theta$.
 - Consistent: $\hat{\theta} \xrightarrow{a.s.} \theta$, as $n \to \infty$.

- Suppose we want to estimate $\theta = \mathbb{E}[X]$ based on the iid sample $\{X_1, \ldots, X_n\}$.
- The point estimator (a single random variable) is

$$\widehat{\theta} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- How good is this estimator?
 - Unbiased: $\mathbb{E}[\widehat{\theta}] = \theta$.
 - Consistent: $\widehat{\theta} \xrightarrow{a.s.} \theta$, as $n \to \infty$.
- Point estimator says nothing about the estimation error for finite sample size n.
 - Small estimation error means high estimation precision.

• If $X \sim \mathcal{N}(\theta, \sigma^2)$, then

$$\sqrt{n} \left(\frac{\widehat{\theta} - \theta}{\sigma} \right) \sim \mathcal{N}(0, 1).$$

• If $X \sim \mathcal{N}(\theta, \sigma^2)$, then

$$\sqrt{n} \left(\frac{\widehat{\theta} - \theta}{\sigma} \right) \sim \mathcal{N}(0, 1).$$

• If X follows arbitrary distribution and $\sigma^2 = \operatorname{Var}(X) \in (0, \infty)$, then by Central Limit Theorem,

$$\sqrt{n} \left(\frac{\widehat{\theta} - \theta}{\sigma} \right) \xrightarrow{d} \mathcal{N}(0, 1), \text{ as } n \to \infty.$$
(1)

• If $X \sim \mathcal{N}(\theta, \sigma^2)$, then

$$\sqrt{n} \left(\frac{\widehat{\theta} - \theta}{\sigma} \right) \sim \mathcal{N}(0, 1).$$

• If X follows arbitrary distribution and $\sigma^2 = \operatorname{Var}(X) \in (0, \infty)$, then by Central Limit Theorem,

$$\sqrt{n}\left(\frac{\widehat{\theta}-\theta}{\sigma}\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,1), \text{ as } n \to \infty.$$
(1)

• $\sqrt{n}(\frac{\hat{\theta}-\theta}{\sigma}) \sim \mathcal{N}(0,1)$ approximately when n is large.

$$\sqrt{n} \left(\frac{\widehat{\theta} - \theta}{\sigma} \right) \sim \mathcal{N}(0, 1).$$

• If X follows arbitrary distribution and $\sigma^2 = \operatorname{Var}(X) \in (0, \infty)$, then by Central Limit Theorem,

$$\sqrt{n} \left(\frac{\widehat{\theta} - \theta}{\sigma} \right) \xrightarrow{d} \mathcal{N}(0, 1), \text{ as } n \to \infty.$$
(1)

- $\sqrt{n}(\frac{\widehat{\theta}-\theta}{\sigma}) \sim \mathcal{N}(0,1)$ approximately when n is large.
- σ^2 is typically unknown, and we substitute it by the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

• If $X \sim \mathcal{N}(\theta, \sigma^2)$, then

$$\sqrt{n}\left(\frac{\widehat{\theta}-\theta}{S}\right) \sim t_{n-1},$$
(2)

where t_p denotes t distribution with p degrees of freedom.

$$\sqrt{n} \left(\frac{\widehat{\theta} - \theta}{S} \right) \sim t_{n-1},$$
(2)

where t_p denotes t distribution with p degrees of freedom.

• If X follows arbitrary distribution and $\sigma^2 = \operatorname{Var}(X) \in (0, \infty)$, then by Equation (1) and the fact that $\frac{\sigma}{S} \xrightarrow{a.s.} 1$ as $n \to \infty$,

$$\sqrt{n}\left(\frac{\widehat{\theta}-\theta}{S}\right) \xrightarrow{d} \mathcal{N}(0,1), \text{ as } n \to \infty.$$
(3)

$$\sqrt{n} \left(\frac{\widehat{\theta} - \theta}{S} \right) \sim t_{n-1},$$
(2)

where t_p denotes t distribution with p degrees of freedom.

• If X follows arbitrary distribution and $\sigma^2 = \operatorname{Var}(X) \in (0, \infty)$, then by Equation (1) and the fact that $\frac{\sigma}{S} \xrightarrow{a.s.} 1$ as $n \to \infty$,

$$\sqrt{n}\left(\frac{\widehat{\theta}-\theta}{S}\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,1), \text{ as } n \to \infty.$$
(3)

• $\sqrt{n}(\frac{\widehat{\theta}-\theta}{S})\sim \mathcal{N}(0,1)$ approximately when n is large.

$$\sqrt{n} \left(\frac{\widehat{\theta} - \theta}{S} \right) \sim t_{n-1},$$
(2)

where t_p denotes t distribution with p degrees of freedom.

• If X follows arbitrary distribution and $\sigma^2 = \operatorname{Var}(X) \in (0, \infty)$, then by Equation (1) and the fact that $\frac{\sigma}{S} \xrightarrow{a.s.} 1$ as $n \to \infty$,

$$\sqrt{n}\left(\frac{\widehat{\theta}-\theta}{S}\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,1), \text{ as } n \to \infty.$$
(3)

- $\sqrt{n}(\frac{\widehat{\theta}-\theta}{S})\sim\mathcal{N}(0,1)$ approximately when n is large.
- Results (2) and (3) are the basis of the confidence interval estimation for θ .

• If $X \sim \mathcal{N}(\theta, \sigma^2)$, where θ and σ are unknown, then a $1 - \alpha$ confidence interval (CI) for θ is

$$\left[\widehat{\theta} - t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}\right], \tag{4}$$

where $t_{n-1, 1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of t_{n-1} distribution.

• If $X \sim \mathcal{N}(\theta, \sigma^2)$, where θ and σ are unknown, then a $1 - \alpha$ confidence interval (CI) for θ is

$$\left[\widehat{\theta} - t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}\right], \tag{4}$$

where $t_{n-1,\,1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of t_{n-1} distribution.

$$\mathbb{P}\left\{\theta \in \left[\widehat{\theta} - t_{n-1,\,1-\alpha/2}S/\sqrt{n},\ \widehat{\theta} + t_{n-1,\,1-\alpha/2}S/\sqrt{n}\right]\right\}$$

• If $X \sim \mathcal{N}(\theta, \sigma^2)$, where θ and σ are unknown, then a $1 - \alpha$ confidence interval (CI) for θ is

$$\left[\widehat{\theta} - t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}\right], \tag{4}$$

where $t_{n-1,\,1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of t_{n-1} distribution.

$$\begin{split} & \mathbb{P}\left\{\theta \in \left[\widehat{\theta} - t_{n-1, 1-\alpha/2} S / \sqrt{n}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} S / \sqrt{n}\right]\right\} \\ = & \mathbb{P}\left\{|\theta - \widehat{\theta}| \leq t_{n-1, 1-\alpha/2} S / \sqrt{n}\right\} \end{split}$$

• If $X \sim \mathcal{N}(\theta, \sigma^2)$, where θ and σ are unknown, then a $1 - \alpha$ confidence interval (CI) for θ is

$$\left[\widehat{\theta} - t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}\right], \tag{4}$$

where $t_{n-1,\,1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of t_{n-1} distribution.

$$\begin{split} & \mathbb{P}\left\{\theta \in \left[\widehat{\theta} - t_{n-1, 1-\alpha/2} S / \sqrt{n}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} S / \sqrt{n}\right]\right\} \\ & = \mathbb{P}\left\{|\theta - \widehat{\theta}| \le t_{n-1, 1-\alpha/2} S / \sqrt{n}\right\} \\ & = \mathbb{P}\left\{\left|\frac{\theta - \widehat{\theta}}{S / \sqrt{n}}\right| \le t_{n-1, 1-\alpha/2}\right\} \end{split}$$

• If $X \sim \mathcal{N}(\theta, \sigma^2)$, where θ and σ are unknown, then a $1 - \alpha$ confidence interval (CI) for θ is

$$\left[\widehat{\theta} - t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}\right], \tag{4}$$

where $t_{n-1,\,1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of t_{n-1} distribution.

$$\mathbb{P}\left\{\theta \in \left[\widehat{\theta} - t_{n-1, 1-\alpha/2} S / \sqrt{n}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} S / \sqrt{n}\right]\right\}$$

$$= \mathbb{P}\left\{|\theta - \widehat{\theta}| \le t_{n-1, 1-\alpha/2} S / \sqrt{n}\right\}$$

$$= \mathbb{P}\left\{\left|\frac{\theta - \widehat{\theta}}{S / \sqrt{n}}\right| \le t_{n-1, 1-\alpha/2}\right\} = 1 - \alpha,$$

• If $X \sim \mathcal{N}(\theta, \sigma^2)$, where θ and σ are unknown, then a $1 - \alpha$ confidence interval (CI) for θ is

$$\left[\widehat{\theta} - t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}\right], \tag{4}$$

where $t_{n-1,1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of t_{n-1} distribution.

Proof.

$$\begin{split} & \mathbb{P}\left\{\theta \in \left[\widehat{\theta} - t_{n-1, 1-\alpha/2} S / \sqrt{n}, \ \widehat{\theta} + t_{n-1, 1-\alpha/2} S / \sqrt{n}\right]\right\} \\ & = \mathbb{P}\left\{|\theta - \widehat{\theta}| \le t_{n-1, 1-\alpha/2} S / \sqrt{n}\right\} \\ & = \mathbb{P}\left\{\left|\frac{\theta - \widehat{\theta}}{S / \sqrt{n}}\right| \le t_{n-1, 1-\alpha/2}\right\} = 1 - \alpha, \end{split}$$

where the last equality is due to (2) and the symmetry of t distribution.

- The interpretation of CI:
 - If one constructs a very large number of independent $1-\alpha$ Cls, each based on n observations, the proportion of Cls that actually contain (cover) θ should be $1-\alpha$.

- The interpretation of CI:
 - If one constructs a very large number of independent $1-\alpha$ Cls, each based on n observations, the proportion of Cls that actually contain (cover) θ should be $1-\alpha$.

- The interpretation of CI:
 - If one constructs a very large number of independent $1-\alpha$ Cls, each based on n observations, the proportion of Cls that actually contain (cover) θ should be $1-\alpha$.

• Caution: There is nothing probabilistic about a single CI after the data have been observed and the interval's endpoints have been given numerical values, e.g., [1.1, 2.4].

- The interpretation of CI:
 - If one constructs a very large number of independent $1-\alpha$ Cls, each based on n observations, the proportion of Cls that actually contain (cover) θ should be $1-\alpha$.

- Caution: There is nothing probabilistic about a single CI after the data have been observed and the interval's endpoints have been given numerical values, e.g., [1.1, 2.4].
- Try it out! http://www.rossmanchance.com/applets/ConfSim.html

• If X follows arbitrary distribution, θ and $\sigma^2 = \mathrm{Var}(X)$ are unknown, and $0 < \sigma^2 < \infty$, then an approximate $1 - \alpha$ CI for θ with large n is

$$\left[\widehat{\theta} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\tag{5}$$

• If X follows arbitrary distribution, θ and $\sigma^2 = \mathrm{Var}(X)$ are unknown, and $0 < \sigma^2 < \infty$, then an approximate $1 - \alpha$ CI for θ with large n is

$$\left[\widehat{\theta} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\tag{5}$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of $\mathcal{N}(0,1)$.

• The proof is similar as before by using (3), instead of (2).

• If X follows arbitrary distribution, θ and $\sigma^2 = \mathrm{Var}(X)$ are unknown, and $0 < \sigma^2 < \infty$, then an approximate $1 - \alpha$ CI for θ with large n is

$$\left[\widehat{\theta} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\tag{5}$$

- The proof is similar as before by using (3), instead of (2).
- The interpretation is the same as before.

• If X follows arbitrary distribution, θ and $\sigma^2 = \mathrm{Var}(X)$ are unknown, and $0 < \sigma^2 < \infty$, then an approximate $1 - \alpha$ CI for θ with large n is

$$\left[\widehat{\theta} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\tag{5}$$

- The proof is similar as before by using (3), instead of (2).
- The interpretation is the same as before.
- In practice, people may also use (4) as approximate CI even when X does not follow a normal distribution.

• If X follows arbitrary distribution, θ and $\sigma^2 = \mathrm{Var}(X)$ are unknown, and $0 < \sigma^2 < \infty$, then an approximate $1 - \alpha$ CI for θ with large n is

$$\left[\widehat{\theta} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\tag{5}$$

- The proof is similar as before by using (3), instead of (2).
- The interpretation is the same as before.
- In practice, people may also use (4) as approximate CI even when X does not follow a normal distribution.
 - Both (4) and (5) are approximation for finite n when X is non-normal.

• If X follows arbitrary distribution, θ and $\sigma^2 = \mathrm{Var}(X)$ are unknown, and $0 < \sigma^2 < \infty$, then an approximate $1 - \alpha$ CI for θ with large n is

$$\left[\widehat{\theta} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\tag{5}$$

- The proof is similar as before by using (3), instead of (2).
- The interpretation is the same as before.
- In practice, people may also use (4) as approximate CI even when X does not follow a normal distribution.
 - Both (4) and (5) are approximation for finite n when X is non-normal.
 - $t_{n-1,\,1-\alpha/2}>z_{1-\alpha/2}$, so CI (4) will be wider than CI (5).

• If X follows arbitrary distribution, θ and $\sigma^2 = \mathrm{Var}(X)$ are unknown, and $0 < \sigma^2 < \infty$, then an approximate $1 - \alpha$ CI for θ with large n is

$$\left[\widehat{\theta} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\tag{5}$$

- The proof is similar as before by using (3), instead of (2).
- The interpretation is the same as before.
- In practice, people may also use (4) as approximate CI even when X does not follow a normal distribution.
 - Both (4) and (5) are approximation for finite n when X is non-normal.
 - $t_{n-1, 1-\alpha/2} > z_{1-\alpha/2}$, so CI (4) will be wider than CI (5).
 - Cl (4) generally has coverage closer to the desired level $1-\alpha$.

• If X follows arbitrary distribution, θ and $\sigma^2 = \mathrm{Var}(X)$ are unknown, and $0 < \sigma^2 < \infty$, then an approximate $1 - \alpha$ CI for θ with large n is

$$\left[\widehat{\theta} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \ \widehat{\theta} + z_{1-\alpha/2} \frac{S}{\sqrt{n}}\right],\tag{5}$$

- The proof is similar as before by using (3), instead of (2).
- The interpretation is the same as before.
- In practice, people may also use (4) as approximate CI even when X does not follow a normal distribution.
 - Both (4) and (5) are approximation for finite n when X is non-normal
 - $t_{n-1, 1-\alpha/2} > z_{1-\alpha/2}$, so CI (4) will be wider than CI (5).
 - CI (4) generally has coverage closer to the desired level 1α .
 - $t_{n-1,1-\alpha/2} \to z_{1-\alpha/2}$ as $n \to \infty$.

$$H = t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}.$$

$$H = t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}.$$

• For CI (5), the half-length under $1-\alpha$ confidence level is

$$H = z_{1-\alpha/2} \frac{S}{\sqrt{n}}.$$

$$H = t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}.$$

• For CI (5), the half-length under $1-\alpha$ confidence level is

$$H = z_{1-\alpha/2} \frac{S}{\sqrt{n}}.$$

• Half-length H presents the precision (or error) of the estimation for θ .

$$H = t_{n-1, 1-\alpha/2} \frac{S}{\sqrt{n}}.$$

• For CI (5), the half-length under $1-\alpha$ confidence level is

$$H = z_{1-\alpha/2} \frac{S}{\sqrt{n}}.$$

- Half-length H presents the precision (or error) of the estimation for θ .
- We want H to be small enough for our decision making, say, $H \leq \epsilon$, under $1-\alpha$ confidence level.

- Usually we take an initial sample of size n_0 to get an estimate of σ^2 , say S_0^2 .
 - Assume that the estimate of σ^2 will not change (appreciably) from S_0^2 as the sample size increases.

- Usually we take an initial sample of size n_0 to get an estimate of σ^2 , say S_0^2 .
 - Assume that the estimate of σ^2 will not change (appreciably) from S_0^2 as the sample size increases.
- For Cl (4), an approximate expression for the total sample size required to make $H \leq \epsilon$ is given by

$$n^* = \min \left\{ \frac{n}{n} \ge n_0 : t_{n-1, 1-\alpha/2} \frac{S_0}{\sqrt{n}} \le \epsilon \right\}.$$

- Usually we take an initial sample of size n_0 to get an estimate of σ^2 , say S_0^2 .
 - Assume that the estimate of σ^2 will not change (appreciably) from S_0^2 as the sample size increases.
- For CI (4), an approximate expression for the total sample size required to make $H \le \epsilon$ is given by

$$n^* = \min \left\{ \frac{n}{n} \geq n_0 : \ t_{n-1, 1-\alpha/2} \frac{S_0}{\sqrt{n}} \leq \epsilon \right\}.$$

• For CI (5), an approximate expression is given by

$$n^* = \min\left\{\frac{n}{\epsilon} \ge n_0: \ z_{1-\alpha/2} \frac{S_0}{\sqrt{n}} \le \epsilon\right\} = \left\lceil \left(\frac{z_{1-\alpha/2} S_0}{\epsilon}\right)^2 \right\rceil. \tag{6}$$

- Usually we take an initial sample of size n_0 to get an estimate of σ^2 , say S_0^2 .
 - Assume that the estimate of σ^2 will not change (appreciably) from S_0^2 as the sample size increases.
- For Cl (4), an approximate expression for the total sample size required to make $H \leq \epsilon$ is given by

$$n^* = \min \left\{ \frac{n}{n} \geq n_0 : \ t_{n-1, 1-\alpha/2} \frac{S_0}{\sqrt{n}} \leq \epsilon \right\}.$$

• For CI (5), an approximate expression is given by

$$n^* = \min\left\{\frac{n}{\epsilon} \ge n_0: \ z_{1-\alpha/2} \frac{S_0}{\sqrt{n}} \le \epsilon\right\} = \left\lceil \left(\frac{z_{1-\alpha/2} S_0}{\epsilon}\right)^2 \right\rceil. \tag{6}$$

• For simplicity, people sometimes use (6), regardless of the distribution of X.

- Usually we take an initial sample of size n_0 to get an estimate of σ^2 , say S_0^2 .
 - Assume that the estimate of σ^2 will not change (appreciably) from S_0^2 as the sample size increases.
- For CI (4), an approximate expression for the total sample size required to make $H \le \epsilon$ is given by

$$n^* = \min \left\{ \frac{n}{n} \ge n_0 : \ t_{n-1, 1-\alpha/2} \frac{S_0}{\sqrt{n}} \le \epsilon \right\}.$$

• For CI (5), an approximate expression is given by

$$n^* = \min\left\{\frac{n}{\epsilon} \ge n_0: \ z_{1-\alpha/2} \frac{S_0}{\sqrt{n}} \le \epsilon\right\} = \left\lceil \left(\frac{z_{1-\alpha/2} S_0}{\epsilon}\right)^2 \right\rceil. \tag{6}$$

- For simplicity, people sometimes use (6), regardless of the distribution of X.
- Take $n^* n_0$ additional sample points, or start over and take a sample of size n^* , to form the 1α CI (with new S).

• Suppose an iid sample is taken and the values are as follows:

79.	.919	3.081	0.062	1.961	5.845	0.941	0.878	3.371	2.157	7.579
3.	.027	6.505	0.021	0.013	0.123	0.624	5.380	3.148	7.078	23.960
6.	769	59.899	1.192	34.760	5.009	0.590	1.928	0.300	0.002	0.543
18.	.387	0.141	43.565	24.420	0.433	7.004	31.764	1.005	1.147	0.219
144.	695	2.663	17.967	0.091	9.003	3.217	14.382	1.008	2.336	4.562

• Suppose an iid sample is taken and the values are as follows:

79.919	3.081	0.062	1.961	5.845	0.941	0.878	3.371	2.157	7.579
3.027	6.505	0.021	0.013	0.123	0.624	5.380	3.148	7.078	23.960
6.769	59.899	1.192	34.760	5.009	0.590	1.928	0.300	0.002	0.543
18.387	0.141	43.565	24.420	0.433	7.004	31.764	1.005	1.147	0.219
144.695	2.663	17.967	0.091	9.003	3.217	14.382	1.008	2.336	4.562

• Construct a 95% CI and a 99% CI for $\theta = \mathbb{E}[X]$.

• Suppose an iid sample is taken and the values are as follows:

79.919	3.081	0.062	1.961	5.845	0.941	0.878	3.371	2.157	7.579
3.027	6.505	0.021	0.013	0.123	0.624	5.380	3.148	7.078	23.960
6.769	59.899	1.192	34.760	5.009	0.590	1.928	0.300	0.002	0.543
18.387	0.141	43.565	24.420	0.433	7.004	31.764	1.005	1.147	0.219
144.695	2.663	17.967	0.091	9.003	3.217	14.382	1.008	2.336	4.562

• Construct a 95% CI and a 99% CI for $\theta = \mathbb{E}[X]$.

$$n=50, \ \widehat{\theta}=\bar{X}=11.894, \ S=24.953. \ \ \text{We use CI (4)} \ \ \text{and get}$$

$$t_{49,0.975}=2.010, \ t_{49,0.995}=2.680. \ \ \text{Then,}$$

$$95\% \ \ \text{CI:} \ 11.894\pm2.010\times\frac{24.953}{\sqrt{50}}=11.894\pm7.093=[4.801,18.987];$$

$$99\% \ \ \ \text{CI:} \ 11.894\pm2.680\times\frac{24.953}{\sqrt{50}}=11.894\pm9.457=[2.437,21.351].$$

• Suppose an iid sample is taken and the values are as follows:

79.919	3.081	0.062	1.961	5.845	0.941	0.878	3.371	2.157	7.579
3.027	6.505	0.021	0.013	0.123	0.624	5.380	3.148	7.078	23.960
6.769	59.899	1.192	34.760	5.009	0.590	1.928	0.300	0.002	0.543
18.387	0.141	43.565	24.420	0.433	7.004	31.764	1.005	1.147	0.219
144.695	2.663	17.967	0.091	9.003	3.217	14.382	1.008	2.336	4.562

• Construct a 95% CI and a 99% CI for $\theta = \mathbb{E}[X]$.

$$n=50,\ \widehat{\theta}=\bar{X}=11.894,\ S=24.953.$$
 We use CI (4) and get $t_{49,0.975}=2.010,\ t_{49,0.995}=2.680.$ Then, 95% CI: $11.894\pm2.010\times\frac{24.953}{\sqrt{50}}=11.894\pm7.093=[4.801,18.987];$ 99% CI: $11.894\pm2.680\times\frac{24.953}{\sqrt{50}}=11.894\pm9.457=[2.437,21.351].$

• Want to make half-length $H \leq 2$ under 95% confidence level.

Suppose an iid sample is taken and the values are as follows:

79.919	3.081	0.062	1.961	5.845	0.941	0.878	3.371	2.157	7.579
3.027	6.505	0.021	0.013	0.123	0.624	5.380	3.148	7.078	23.960
6.769	59.899	1.192	34.760	5.009	0.590	1.928	0.300	0.002	0.543
18.387	0.141	43.565	24.420	0.433	7.004	31.764	1.005	1.147	0.219
144.695	2.663	17.967	0.091	9.003	3.217	14.382	1.008	2.336	4.562

• Construct a 95% CI and a 99% CI for $\theta = \mathbb{E}[X]$.

$$n=50,\ \widehat{\theta}=\bar{X}=11.894,\ S=24.953.$$
 We use CI (4) and get $t_{49,0.975}=2.010,\ t_{49,0.995}=2.680.$ Then, 95% CI: $11.894\pm2.010\times\frac{24.953}{\sqrt{50}}=11.894\pm7.093=[4.801,18.987];$ 99% CI: $11.894\pm2.680\times\frac{24.953}{\sqrt{50}}=11.894\pm9.457=[2.437,21.351].$

• Want to make half-length $H \le 2$ under 95% confidence level.

We use (6) and get
$$z_{0.975}=1.960, S_0=24.953, \epsilon=2$$
. Then, $n^*=\left\lceil\left(\frac{1.960\times24.953}{2}\right)^2\right\rceil=\lceil597.995\rceil=598.$

Suppose an iid sample is taken and the values are as follows:

79.919	3.081	0.062	1.961	5.845	0.941	0.878	3.371	2.157	7.579
3.027	6.505	0.021	0.013	0.123	0.624	5.380	3.148	7.078	23.960
6.769	59.899	1.192	34.760	5.009	0.590	1.928	0.300	0.002	0.543
18.387	0.141	43.565	24.420	0.433	7.004	31.764	1.005	1.147	0.219
144.695	2.663	17.967	0.091	9.003	3.217	14.382	1.008	2.336	4.562

• Construct a 95% CI and a 99% CI for $\theta = \mathbb{E}[X]$.

$$n=50,~\widehat{\theta}=\bar{X}=11.894,~S=24.953.$$
 We use CI (4) and get $t_{49,0.975}=2.010,~t_{49,0.995}=2.680.$ Then, 95% CI: $11.894\pm2.010\times\frac{24.953}{\sqrt{50}}=11.894\pm7.093=[4.801,18.987];$

99% CI:
$$11.894 \pm 2.680 \times \frac{24.953}{\sqrt{50}} = 11.894 \pm 9.457 = [2.437, 21.351].$$

• Want to make half-length $H \leq 2$ under 95% confidence level.

We use (6) and get
$$z_{0.975}=1.960,\ S_0=24.953,\ \epsilon=2.$$
 Then, $n^*=\left\lceil\left(\frac{1.960\times 24.953}{2}\right)^2\right\rceil=\lceil 597.995\rceil=598.$

Take 598 - 50 = 548 additional sample points.

- Introduction
 - **▶** Types of Simulations
- 2 Point and Interval Estimations
 - ▶ Basics
 - ► Specified Precision
 - **▶** Example
- 3 Terminating Simulation
 - ► Discrete Outputs
 - ► Continuous Outputs
- 4 Steady-State Simulation
 - ▶ Initialization Bias
 - ▶ Intelligent Initialization
 - ► Warm-up Period Deletion
 - ► Estimation with Multiple Replications
 - ► Estimation with Single Replication

• A terminating simulation runs over the time interval $[0,T_E]$ and produce observations (outputs).

- A terminating simulation runs over the time interval $[0, T_E]$ and produce observations (outputs).
- Discrete outputs: $\{Y_1, Y_2, \ldots, Y_n\}$.
 - n may be deterministic or random depending on how T_E is specified.
 - E.g., waiting time of all customers.
 - A common goal is to estimate $\theta := \mathbb{E}[\frac{1}{n} \sum_{i=1}^{n} Y_i]$, e.g., the expectation of the average waiting time.

- A terminating simulation runs over the time interval $[0, T_E]$ and produce observations (outputs).
- Discrete outputs: $\{Y_1, Y_2, \ldots, Y_n\}$.
 - n may be deterministic or random depending on how T_E is specified.
 - E.g., waiting time of all customers.
 - A common goal is to estimate $\theta := \mathbb{E}[\frac{1}{n} \sum_{i=1}^{n} Y_i]$, e.g., the expectation of the average waiting time.
- Continuous outputs: $\{Y(t): 0 \le t \le T_E\}$.
 - T_E may be deterministic or random.
 - E.g., number of customer in the waiting line at time t, $0 \le t \le T_E$.
 - A common goal is to estimate $\theta \coloneqq \mathbb{E}\left[\frac{1}{T_E}\int_0^{T_E}Y(t)\mathrm{d}t\right]$, e.g., the *expectation* of the *average* waiting line length.

- A terminating simulation runs over the time interval $[0, T_E]$ and produce observations (outputs).
- Discrete outputs: $\{Y_1, Y_2, \ldots, Y_n\}$.
 - n may be deterministic or random depending on how T_E is specified.
 - E.g., waiting time of all customers.
 - A common goal is to estimate $\theta := \mathbb{E}[\frac{1}{n}\sum_{i=1}^n Y_i]$, e.g., the expectation of the average waiting time.
- Continuous outputs: $\{Y(t): 0 \le t \le T_E\}$.
 - T_E may be deterministic or random.
 - E.g., number of customer in the waiting line at time t, $0 \le t \le T_E$.
 - A common goal is to estimate $\theta \coloneqq \mathbb{E}\left[\frac{1}{T_E}\int_0^{T_E}Y(t)\mathrm{d}t\right]$, e.g., the *expectation* of the *average* waiting line length.
- In general, independent replications (runs) are used, each with a different random number stream.

• Within-replication data vs. across-replication data:

Replication	Within-Rep Data (each row)	Across-Rep Data
1	$Y_{11}, Y_{12}, \ldots, Y_{1n_1}$	$\bar{Y}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} Y_{1i}$
2	$Y_{21}, Y_{22}, \ldots, Y_{2n_2}$	$\bar{Y}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_{2i}$
:	<u>:</u>	:
R	$Y_{R1}, Y_{R2}, \ldots, Y_{Rn_R}$	$\bar{Y}_R = \frac{1}{n_R} \sum_{i=1}^{n_R} Y_{Ri}$

• Within-replication data vs. across-replication data:

Replication	Within-Rep Data (each row)	Across-Rep Data
1	$Y_{11}, Y_{12}, \ldots, Y_{1n_1}$	$\bar{Y}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} Y_{1i}$
2	$Y_{21}, Y_{22}, \ldots, Y_{2n_2}$	$\bar{Y}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_{2i}$
:	<u>:</u>	:
R	$Y_{R1}, Y_{R2}, \ldots, Y_{Rn_R}$	$\bar{Y}_R = \frac{1}{n_R} \sum_{i=1}^{n_R} Y_{Ri}$

 Across-rep data are independent and identically distributed, when same initial conditions and different random number streams are used.

• Within-replication data vs. across-replication data:

Replication	Within-Rep Data (each row)	Across-Rep Data
1	$Y_{11}, Y_{12}, \ldots, Y_{1n_1}$	$\bar{Y}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} Y_{1i}$
2	$Y_{21}, Y_{22}, \ldots, Y_{2n_2}$	$\bar{Y}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_{2i}$
:	<u>:</u>	:
R	$Y_{R1}, Y_{R2}, \ldots, Y_{Rn_R}$	$\bar{Y}_R = \frac{1}{n_R} \sum_{i=1}^{n_R} Y_{Ri}$

- Across-rep data are independent and identically distributed, when same initial conditions and different random number streams are used.
- Within-rep data are typically neither independent nor identically distributed:
 - waiting times of successive customers are heavily correlated;
 - waiting times during the peak hours are longer than off-peak hours, so they're not identically distributed.

• Within-replication data vs. across-replication data:

Replication	Within-Rep Data (each row)	Across-Rep Data
1	$Y_{11}, Y_{12}, \ldots, Y_{1n_1}$	$\bar{Y}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} Y_{1i}$
2	$Y_{21}, Y_{22}, \ldots, Y_{2n_2}$	$\bar{Y}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_{2i}$
:	:	<u>:</u>
R	$Y_{R1}, Y_{R2}, \ldots, Y_{Rn_R}$	$\bar{Y}_R = \frac{1}{n_R} \sum_{i=1}^{n_R} Y_{Ri}$

- Across-rep data are independent and identically distributed, when same initial conditions and different random number streams are used.
- Within-rep data are typically neither independent nor identically distributed:
 - · waiting times of successive customers are heavily correlated;
 - waiting times during the peak hours are longer than off-peak hours, so they're not identically distributed.
- Use across-rep data to do point/interval estimation!

- Example: What is the expectation of average waiting time for customers during $[0, T_E]$?
 - Use $\{\bar{Y}_1, \dots, \bar{Y}_R\}$ as an iid sample of size R.

- Example: What is the expectation of average waiting time for customers during $[0, T_E]$?
 - Use $\{\bar{Y}_1, \dots, \bar{Y}_R\}$ as an iid sample of size R.
- Point estimator:

$$\bar{Y} = \frac{1}{R} \sum_{r=1}^{R} \bar{Y}_r.$$

- Example: What is the expectation of average waiting time for customers during $[0, T_E]$?
 - Use $\{\bar{Y}_1, \ldots, \bar{Y}_R\}$ as an iid sample of size R.
- Point estimator:

$$\bar{Y} = \frac{1}{R} \sum_{r=1}^{R} \bar{Y}_r.$$

• $1 - \alpha$ CI using (4):

$$\left[\bar{Y}-t_{R-1,\,1-\alpha/2}\frac{S}{\sqrt{R}},\ \bar{Y}+t_{R-1,\,1-\alpha/2}\frac{S}{\sqrt{R}}\right],$$

where $S^2 = \frac{1}{R-1} \sum_{r=1}^{R} (\bar{Y}_r - \bar{Y})^2$.

- Example: What is the expectation of average waiting time for customers during $[0, T_E]$?
 - Use $\{\bar{Y}_1, \ldots, \bar{Y}_R\}$ as an iid sample of size R.
- Point estimator:

$$\bar{Y} = \frac{1}{R} \sum_{r=1}^{R} \bar{Y}_r.$$

• $1 - \alpha$ Cl using (4):

$$\left[\bar{Y}-t_{R-1,\,1-\alpha/2}\frac{S}{\sqrt{R}},\ \bar{Y}+t_{R-1,\,1-\alpha/2}\frac{S}{\sqrt{R}}\right],$$

where
$$S^2 = \frac{1}{R-1} \sum_{r=1}^{R} (\bar{Y}_r - \bar{Y})^2$$
.

• Necessary number of replications for specified precision $H \leq \epsilon$ under $1 - \alpha$ confidence level, can be computed using (6).

• Within-replication data vs. across-replication data:

Replication	Within-Rep Data	Across-Rep Data
1	$\{Y_1(t): 0 \le t \le T_{E_1}\}$	$\tilde{Y}_1 = \frac{1}{T_{E_1}} \int_0^{T_{E_1}} Y_1(t) dt$
2	$\{Y_2(t): 0 \le t \le T_{E_2}\}$	$\tilde{Y}_2 = \frac{1}{T_{E_2}} \int_0^{T_{E_2}} Y_2(t) dt$
:	<u>:</u>	
R	$\{Y_R(t): \ 0 \le t \le T_{E_R}\}$	$\tilde{Y}_R = \frac{1}{T_{E_R}} \int_0^{T_{E_R}} Y_R(t) dt$

• Within-replication data vs. across-replication data:

Replication	Within-Rep Data	Across-Rep Data
1	${Y_1(t): 0 \le t \le T_{E_1}}$	$\tilde{Y}_1 = \frac{1}{T_{E_1}} \int_0^{T_{E_1}} Y_1(t) dt$
2	$\{Y_2(t): 0 \le t \le T_{E_2}\}$	$\tilde{Y}_2 = \frac{1}{T_{E_2}} \int_0^{T_{E_2}} Y_2(t) dt$
:	<u>:</u>	<u>:</u>
R	$\{Y_R(t): \ 0 \le t \le T_{E_R}\}$	$\tilde{Y}_R = \frac{1}{T_{E_R}} \int_0^{T_{E_R}} Y_R(t) dt$

 Across-rep data are independent and identically distributed, when same initial conditions and different random number streams are used.

• Within-replication data vs. across-replication data:

Replication	Within-Rep Data	Across-Rep Data
1	$\{Y_1(t): 0 \le t \le T_{E_1}\}$	$\tilde{Y}_1 = \frac{1}{T_{E_1}} \int_0^{T_{E_1}} Y_1(t) dt$
2	$\{Y_2(t): 0 \le t \le T_{E_2}\}$	$\tilde{Y}_2 = \frac{1}{T_{E_2}} \int_0^{T_{E_2}} Y_2(t) dt$
<u>:</u>	:	:
R	$\{Y_R(t): \ 0 \le t \le T_{E_R}\}$	$\tilde{Y}_R = \frac{1}{T_{E_R}} \int_0^{T_{E_R}} Y_R(t) dt$

- Across-rep data are independent and identically distributed, when same initial conditions and different random number streams are used.
- Example: What is the expectation of the average waiting line length during $[0,T_E]$?
 - Use $\{\tilde{Y}_1, \dots, \tilde{Y}_R\}$ as an iid sample of size R, and the rest is similar as before.

- Introduction
 - ► Types of Simulations
- 2 Point and Interval Estimations
 - ▶ Basics
 - ▶ Specified Precision
 - ▶ Example
- Terminating Simulation
 - **▶** Discrete Outputs
 - ► Continuous Outputs
- 4 Steady-State Simulation
 - ▶ Initialization Bias
 - ▶ Intelligent Initialization
 - ► Warm-up Period Deletion
 - ► Estimation with Multiple Replications
 - ► Estimation with Single Replication

- Consider a single run of a simulation model whose purpose is to estimate a steady-state, or long-run, performance measure of the system.
 - Theoretically speaking, such steady-state performance measure has nothing to do with initial conditions.

- Consider a single run of a simulation model whose purpose is to estimate a steady-state, or long-run, performance measure of the system.
 - Theoretically speaking, such steady-state performance measure has nothing to do with initial conditions.
- Discrete outputs: $\{Y_1, Y_2, \ldots\}$.
 - A common goal is to estimate $\phi := \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i$.

- Consider a single run of a simulation model whose purpose is to estimate a steady-state, or long-run, performance measure of the system.
 - Theoretically speaking, such steady-state performance measure has nothing to do with initial conditions.
- Discrete outputs: $\{Y_1, Y_2, \ldots\}$.
 - A common goal is to estimate $\phi \coloneqq \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n Y_i$.
- Continuous outputs: $\{Y(t): t \geq 0\}$.
 - A common goal is to estimate $\phi \coloneqq \lim_{T_E \to \infty} \frac{1}{T_E} \int_0^{T_E} Y(t) dt$.

- Consider a single run of a simulation model whose purpose is to estimate a steady-state, or long-run, performance measure of the system.
 - Theoretically speaking, such steady-state performance measure has nothing to do with initial conditions.
- Discrete outputs: $\{Y_1, Y_2, \ldots\}$.
 - A common goal is to estimate $\phi \coloneqq \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n Y_i$.
- Continuous outputs: $\{Y(t): t \geq 0\}$.
 - A common goal is to estimate $\phi \coloneqq \lim_{T_E \to \infty} \frac{1}{T_E} \int_0^{T_E} Y(t) dt$.
- However, we cannot simulate a system "to infinity" but must stop somewhere.
 - The simulation run length $(n \text{ or } T_E)$ is a design choice instead of inherently determined by the nature of the problem.

- The run length in steady-state simulation needs to be *carefully chosen*, with several considerations:
 - bias that is due to artificial or arbitrary initial conditions;
 - can be severe if run length is too short
 - generally decreases as run length increases

- The run length in steady-state simulation needs to be *carefully chosen*, with several considerations:
 - bias that is due to artificial or arbitrary initial conditions;
 - can be severe if run length is too short
 - generally decreases as run length increases
 - the desired precision of the point estimator;
 - measured by the standard error (i.e., estimator's standard deviation) or confidence interval half-width

- The run length in steady-state simulation needs to be *carefully chosen*, with several considerations:
 - bias that is due to artificial or arbitrary initial conditions;
 - can be severe if run length is too short
 - generally decreases as run length increases
 - the desired precision of the point estimator;
 - measured by the standard error (i.e., estimator's standard deviation) or confidence interval half-width
 - budget constraints on the time available to execute the simulation.

- The effect of the initial condition is persistent and typically does not vanish after a *finite* time.
 - Unless the initial condition is specified as the "stationary distribution" of the system, which is unknown in general.

- The effect of the initial condition is persistent and typically does not vanish after a *finite* time.
 - Unless the initial condition is specified as the "stationary distribution" of the system, which is unknown in general.
- Fact 1: Estimators based on a finite-time simulation (finite n or T_E) are biased:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right] \neq \phi, \quad \mathbb{E}\left[\frac{1}{T_{E}}\int_{0}^{T_{E}}Y(t)dt\right] \neq \phi.$$

- The effect of the initial condition is persistent and typically does not vanish after a *finite* time.
 - Unless the initial condition is specified as the "stationary distribution" of the system, which is unknown in general.
- Fact 1: Estimators based on a finite-time simulation (finite n or T_E) are biased:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right] \neq \phi, \quad \mathbb{E}\left[\frac{1}{T_{E}}\int_{0}^{T_{E}}Y(t)dt\right] \neq \phi.$$

• Fact 2: The bias cannot be replicated away:

$$\lim_{R \to \infty} \frac{1}{R} \sum_{r=1}^{R} \bar{Y}_r \neq \phi, \quad \lim_{R \to \infty} \frac{1}{R} \sum_{r=1}^{R} \tilde{Y}_r \neq \phi.$$

- The effect of the initial condition is persistent and typically does not vanish after a *finite* time.
 - Unless the initial condition is specified as the "stationary distribution" of the system, which is unknown in general.
- Fact 1: Estimators based on a finite-time simulation (finite n or T_E) are biased:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right] \neq \phi, \quad \mathbb{E}\left[\frac{1}{T_{E}}\int_{0}^{T_{E}}Y(t)dt\right] \neq \phi.$$

Fact 2: The bias cannot be replicated away:

$$\lim_{R \to \infty} \frac{1}{R} \sum_{r=1}^{R} \bar{Y}_r \neq \phi, \quad \lim_{R \to \infty} \frac{1}{R} \sum_{r=1}^{R} \tilde{Y}_r \neq \phi.$$

- With more replications, we get a more "precise" estimate of an incorrect value.
 - The confidence interval is narrower but it is centered at an incorrect position.

SHEN Haihui

- Example of M/M/1 queue: https://xiaoweiz.shinyapps.io/MM1queue
 - If $\lambda < \mu$, the system is stable and the **steady-state expectation** (or **long-run average**) of waiting time is

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{\lambda/\mu}{\mu - \lambda}.$$

- Example of M/M/1 queue: https://xiaoweiz.shinyapps.io/MM1queue
 - If $\lambda < \mu$, the system is stable and the **steady-state expectation** (or **long-run average**) of waiting time is

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{\lambda/\mu}{\mu - \lambda}.$$

 Choosing different initial conditions (in this example, number of customers in station, also known as initial state) gives different looks of sample paths (over finite time period).

- Example of M/M/1 queue: https://xiaoweiz.shinyapps.io/MM1queue
 - If $\lambda < \mu$, the system is stable and the **steady-state expectation** (or **long-run average**) of waiting time is

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{\lambda/\mu}{\mu - \lambda}.$$

- Choosing different initial conditions (in this example, number of customers in station, also known as initial state) gives different looks of sample paths (over finite time period).
- Methods to reduce initialization bias:
 - intelligent initialization;
 - warm-up period deletion;
 - low-bias estimator (advanced topic).

► Intelligent Initialization

• Initialize the simulation in a state that is more representative of long-run conditions.

- Initialize the simulation in a state that is more representative of long-run conditions.
- If the system exists, collect data on it and use these data to specify more nearly typical initial conditions:
 - fit a probability distribution to describe the initial state;
 - or, simply use the sample mean as a representative.

- Initialize the simulation in a state that is more representative of long-run conditions.
- If the system exists, collect data on it and use these data to specify more nearly typical initial conditions:
 - fit a probability distribution to describe the initial state;
 - or, simply use the sample mean as a representative.
- If the system can be simplified enough to make it analytically solvable, e.g. queueing models, use the theoretical solution to initialize the simulation.
 - Solve the simplified model to find the stationary distribution or most likely conditions (e.g., the expected number of customers in a station).
 - This is another important value of those analytically solvable queueing models.

• The impact of the initial condition gradually vanishes as the run length increases.

- The impact of the initial condition gradually vanishes as the run length increases.
- So we divide a simulation run into two periods:
 - warm-up period: from time 0 to time T_0 ;
 - data-collection period: from time T_0 to T_E .

- The impact of the initial condition gradually vanishes as the run length increases.
- So we divide a simulation run into two periods:
 - warm-up period: from time 0 to time T_0 ;
 - data-collection period: from time T_0 to T_E .

Figure: Warm-up Period Deletion (from Banks et al. (2010))

- The impact of the initial condition gradually vanishes as the run length increases.
- So we divide a simulation run into two periods:
 - warm-up period: from time 0 to time T_0 ;
 - data-collection period: from time T_0 to T_E .

Figure: Warm-up Period Deletion (from Banks et al. (2010))

• T_0 should be sufficiently large so that at time T_0 the impact of the initial condition is very weak and the system behaves approximately as in the steady state.

- To determine T_0
 - There are no widely accepted and proven techniques.
 - Plots are often used.
- The raw output data plot from a single simulation run is usually too fluctuating to detect the trend. – not helpful
- Instead of directly plotting raw output data, we usually use some smoother plots to see when the curve "stabilizes":
 - cumulative average (累积均值); OK
 - ensemble average (总体均值). recommended

Figure: Raw Output of Waiting Time of Each Customer in M/M/1 Queue with $\lambda=0.962$ and $\mu=1$ (from ZHANG Xiaowei)

- Cumulative average (累积均值): For one replication, say, replication 1, plot the average from time 0 up to now.
 - Discrete outputs: Plot $\bar{Y}_1(n) = \frac{1}{n} \sum_{i=1}^n Y_{1i}$ with respect to n;
 - Continuous outputs: Plot $\tilde{Y}_1(T) = \frac{1}{T} \int_0^T Y_1(t) dt$ with respect to T.

- Cumulative average (累积均值): For one replication, say, replication 1, plot the average from time 0 up to now.
 - Discrete outputs: Plot $\bar{Y}_1(n) = \frac{1}{n} \sum_{i=1}^n Y_{1i}$ with respect to n;
 - Continuous outputs: Plot $\tilde{Y}_1(T) = \frac{1}{T} \int_0^T Y_1(t) dt$ with respect to T.
- It can be plotted for each replication, so we usually detect different warm-up period durations from different replications.

- Cumulative average (累积均值): For one replication, say, replication 1, plot the average from time 0 up to now.
 - Discrete outputs: Plot $\bar{Y}_1(n) = \frac{1}{n} \sum_{i=1}^n Y_{1i}$ with respect to n;
 - Continuous outputs: Plot $\tilde{Y}_1(T) = \frac{1}{T} \int_0^T Y_1(t) dt$ with respect to T.
- It can be plotted for each replication, so we usually detect different warm-up period durations from different replications.
- The cumulative plot is usually conservative, i.e., the warm-up period it detects is longer than necessary.
 - It retains all of the data including the warm-up period, so the bias needs more time to diminish.

Figure: Cumulative Average Waiting Time of Customers in M/M/1 Queue with $\lambda=0.962$ and $\mu=1$ (from ZHANG Xiaowei)

- Ensemble average (总体均值): For multiple replications $1, \ldots, R$, compute the average across replications and make the plot.
 - Discrete outputs: Plot $\bar{Y}(n) = \frac{1}{R} \sum_{r=1}^{R} Y_{nr}$ with respect to n;
 - Continuous outputs: Divide the raw data of replication r into small batches, e.g., $\{Y_r(t): (j-1)m \leq t < jm\}, \ j=1,2,\ldots;$ plot $\tilde{Y}(j)=\frac{1}{R}\sum_{r=1}^R \left[\frac{1}{m}\int_{(j-1)m}^{jm}Y_r(t)\mathrm{d}t\right]$ with respect to j.

- Ensemble average (总体均值): For multiple replications $1, \ldots, R$, compute the average across replications and make the plot.
 - Discrete outputs: Plot $\bar{Y}(n) = \frac{1}{R} \sum_{r=1}^{R} Y_{nr}$ with respect to n;
 - Continuous outputs: Divide the raw data of replication r into small batches, e.g., $\{Y_r(t): (j-1)m \leq t < jm\}, \ j=1,2,\ldots;$ plot $\tilde{Y}(j) = \frac{1}{R} \sum_{r=1}^R \left[\frac{1}{m} \int_{(j-1)m}^{jm} Y_r(t) \mathrm{d}t\right]$ with respect to j.
- We detect one warm-up period duration for multiple replications.

- Ensemble average (总体均值): For multiple replications $1, \ldots, R$, compute the average across replications and make the plot.
 - Discrete outputs: Plot $\bar{Y}(n) = \frac{1}{R} \sum_{r=1}^{R} Y_{nr}$ with respect to n;
 - Continuous outputs: Divide the raw data of replication r into small batches, e.g., $\{Y_r(t): (j-1)m \leq t < jm\}, \ j=1,2,\ldots;$ plot $\tilde{Y}(j)=\frac{1}{R}\sum_{r=1}^R \left[\frac{1}{m}\int_{(j-1)m}^{jm}Y_r(t)\mathrm{d}t\right]$ with respect to j.
- We detect one warm-up period duration for multiple replications.
- Some variations are smoothed out by averaging across multiple replications.
 - This leads to more accurate detection of warm-up period.

Figure: Ensemble Average Waiting Time of n-th Customer in M/M/1 Queue with $\lambda=0.962$ and $\mu=1$ (from ZHANG Xiaowei)

- When first starting to detect the warm-up period, a run length and number of replications will have to be guessed.
 - Increase the number of replications if the ensemble averages are not smooth enough.
 - Increase the run length if the ensemble averages do not stabilize.

- When first starting to detect the warm-up period, a run length and number of replications will have to be guessed.
 - Increase the number of replications if the ensemble averages are not smooth enough.
 - Increase the run length if the ensemble averages do not stabilize.
- Since each ensemble average is the sample mean of iid observations across R replications, a confidence interval can be placed around each point.
 - Use them to judge whether or not the plot is precise enough to decide that the bias has vanished.
 - This is the preferred method to determine a deletion point.

Figure: Ensemble Average Waiting Time and 95% Cl of n-th Customer in M/M/1 Queue with $\lambda=0.962$ and $\mu=1$ (from <code>ZHANG Xiaowei</code>)

- Cumulative averages become less variable as more data are averaged.
 - So the right side of the curve is always smoother than the left side.

- Cumulative averages become less variable as more data are averaged.
 - So the right side of the curve is always smoother than the left side.
- Cumulative averages tend to converge more slowly to long-run performance than ensemble averages do.
 - Because cumulative averages contain all observations including the most biased ones from the very beginning.
 - Cumulative averages should be used only if ensemble averages can not be computed, such as when only a single replication is possible.

- Cumulative averages become less variable as more data are averaged.
 - So the right side of the curve is always smoother than the left side.
- Cumulative averages tend to converge more slowly to long-run performance than ensemble averages do.
 - Because cumulative averages contain all observations including the most biased ones from the very beginning.
 - Cumulative averages should be used only if ensemble averages can not be computed, such as when only a single replication is possible.
- Different performance measures could approach steady state with different speed.

► Estimation with Multiple Replications

 Idea: Make multiple replications (long enough), remove warm-up period for each one, and then work as if we were in a terminating simulation.

- Idea: Make multiple replications (long enough), remove warm-up period for each one, and then work as if we were in a terminating simulation.
- Caution: Make sure that initialization bias in the point estimator has been reduced to a negligible level.
 - Otherwise the estimation can be misleading.

- Idea: Make multiple replications (long enough), remove warm-up period for each one, and then work as if we were in a terminating simulation.
- Caution: Make sure that initialization bias in the point estimator has been reduced to a negligible level.
 - Otherwise the estimation can be misleading.
- Note: Initialization bias is not affected by the number of replications.
 - It is affected by deleting more data (i.e. increasing T_0) or extending the run length (i.e. increasing T_E).
 - Increasing the number of replications could produce narrower interval around the "wrong point".

- Discrete outputs:
 - Suppose we decide to delete first d observations of the total n observations in a replication. †
 - ullet The across-replication data from R replications are

$$\bar{Y}_1 = \frac{1}{n-d} \sum_{i=d+1}^n Y_{1i}$$
, ..., $\bar{Y}_R = \frac{1}{n-d} \sum_{i=d+1}^n Y_{Ri}$.

 $^{^{\}dagger}d$ and n may vary between different replications, in which case they are replaced by d_r and n_r , respectively.

- Discrete outputs:
 - Suppose we decide to delete first d observations of the total n observations in a replication. †
 - ullet The across-replication data from R replications are

$$\bar{Y}_1 = \frac{1}{n-d} \sum_{i=d+1}^n Y_{1i}$$
, ..., $\bar{Y}_R = \frac{1}{n-d} \sum_{i=d+1}^n Y_{Ri}$.

- Continuous outputs:
 - Suppose we decide to delete data in $[0, T_0]$ period and only use those in $[T_0, T_E]$ in a replication.
 - ullet The across-replication data from R replications are

$$\tilde{Y}_1 = \frac{1}{T_E - T_0} \int_{T_0}^{T_E} Y_1(t) dt$$
, ..., $\tilde{Y}_R = \frac{1}{T_E - T_0} \int_{T_0}^{T_E} Y_R(t) dt$.

 $^{^{\}dagger}d$ and n may vary between different replications, in which case they are replaced by d_r and n_r , respectively.

- Similar as in terminating simulation, the across-replication data are iid.
 - So we can use them to compute the point estimator, CI, and necessary number of replications for specified precision, in the same way as before.

- Similar as in terminating simulation, the across-replication data are iid.
 - So we can use them to compute the point estimator, CI, and necessary number of replications for specified precision, in the same way as before.
- Unlike terminating simulation, the above mentioned estimators are biased for finite n or T_E .
 - The bias is negligible if d and n, or T_0 and T_E , are sufficiently large.

- Similar as in terminating simulation, the across-replication data are iid.
 - So we can use them to compute the point estimator, CI, and necessary number of replications for specified precision, in the same way as before.
- Unlike terminating simulation, the above mentioned estimators are biased for finite n or T_E .
 - The bias is negligible if d and n, or T_0 and T_E , are sufficiently large.
- A rough rule for relationship between d and n, or T_0 and T_E :

$$(n-d) \ge 10d$$
, $(T_E - T_0) \ge 10T_0$.

- Suppose analysis indicates that $R-R_0$ additional replications are needed after the initial number R_0 , in order to meet the desired precision.
- An alternative to increasing replications is to increase run length T_E within each replication.

- Suppose analysis indicates that $R-R_0$ additional replications are needed after the initial number R_0 , in order to meet the desired precision.
- An alternative to increasing replications is to increase run length T_E within each replication.
 - Increase run length T_E in the same proportion (R/R_0) to a new run length $(R/R_0)T_E$.
 - More data will be deleted, from time 0 to time $(R/R_0)T_0$.
 - More data will be used to compute the estimate, from time $(R/R_0)T_0$ to time $(R/R_0)T_E$.
 - The total amount of simulation effort is the same as if we had simply increased the number of replications.

Figure: Increasing Run Length to Achieve Specified Precision (from Banks et al. (2010))

Figure: Increasing Run Length to Achieve Specified Precision (from Banks et al. (2010))

 Advantage: Any residual bias in the point estimator would be further reduced.

Figure: Increasing Run Length to Achieve Specified Precision (from Banks et al. (2010))

- Advantage: Any residual bias in the point estimator would be further reduced.
- Disadvantage: It is necessary to have saved the state of the model at time T_E and to be able to continue the running.
 - Otherwise, the simulations would have to be re-run from time 0, which could be time consuming for a complex model.

- A disadvantage of the replication method is that the warm-up period must be deleted on each replication.
 - This can become very costly in terms of computation time especially when the model warms up very slowly.
 - E.g., M/M/1 queue with utilization close to 1.

- A disadvantage of the replication method is that the warm-up period must be deleted on each replication.
 - This can become very costly in terms of computation time especially when the model warms up very slowly.
 - E.g., M/M/1 queue with utilization close to 1.
- This suggests that we could use one single, (very) long replication for estimation, so that only one warm-up period is deleted.
- Besides, it is also possible that we are in a situation where only the data from one long replication are available.

Point estimator: Sample mean after the warm-up period deletion

$$\bar{Y} = \frac{1}{n-d} \sum_{i=d+1}^{n} Y_i, \quad \tilde{Y} = \frac{1}{T_E - T_0} \int_{T_0}^{T_E} Y(t) dt.$$

Point estimator: Sample mean after the warm-up period deletion

$$\bar{Y} = \frac{1}{n-d} \sum_{i=d+1}^{n} Y_i, \quad \tilde{Y} = \frac{1}{T_E - T_0} \int_{T_0}^{T_E} Y(t) dt.$$

- The disadvantage of the single-replication design arises when we try to estimate the variance of the above estimators, because of
 - the strong but unknown dependence among Y_1, Y_2, \ldots, Y_n ;
 - the non-identical distribution of Y_1, Y_2, \ldots, Y_n ;
 - and the integral form of \tilde{Y} .

$$S^{2} = \frac{1}{n-d-1} \sum_{i=d+1}^{n} (Y_{i} - \bar{Y})^{2},$$

and use $S^2/(n-d)$ to estimate $\mathrm{Var}(\bar{Y})$. However, such estimation will be **terrible**, since Y_1,Y_2,\ldots,Y_n are **neither** independent nor identically distributed.

$$S^{2} = \frac{1}{n-d-1} \sum_{i=d+1}^{n} (Y_{i} - \bar{Y})^{2},$$

and use $S^2/(n-d)$ to estimate $\mathrm{Var}(\bar{Y})$. However, such estimation will be **terrible**, since Y_1,Y_2,\ldots,Y_n are **neither** independent nor identically distributed.

• The CI based on $S^2/(n-d)$ would also be misleading.

$$S^{2} = \frac{1}{n-d-1} \sum_{i=d+1}^{n} (Y_{i} - \bar{Y})^{2},$$

and use $S^2/(n-d)$ to estimate $\mathrm{Var}(\bar{Y})$. However, such estimation will be **terrible**, since Y_1,Y_2,\ldots,Y_n are **neither** independent nor identically distributed.

- The CI based on $S^2/(n-d)$ would also be misleading.
- Example: Suppose Y_{d+1}, \ldots, Y_n are identically distributed but positive correlated (which is common for waiting time), then

$$\mathbb{E}[S^2/(n-d)] < \operatorname{Var}(\bar{Y}).$$

$$S^{2} = \frac{1}{n-d-1} \sum_{i=d+1}^{n} (Y_{i} - \bar{Y})^{2},$$

and use $S^2/(n-d)$ to estimate $\mathrm{Var}(\bar{Y})$. However, such estimation will be **terrible**, since Y_1,Y_2,\ldots,Y_n are **neither** independent nor identically distributed.

- The CI based on $S^2/(n-d)$ would also be misleading.
- Example: Suppose Y_{d+1}, \ldots, Y_n are identically distributed but positive correlated (which is common for waiting time), then

$$\mathbb{E}[S^2/(n-d)] < \operatorname{Var}(\bar{Y}).$$

• The constructed CI using $S^2/(n-d)$ will be narrower than the actual valid one.

- ► Estimation with Single Replication
- Batch Means (批均值) Method:
 - Divide the output data from one replication (after deleting warm-up period) into k large batches, and compute the bath means.

- Batch Means (批均值) Method:
 - Divide the output data from one replication (after deleting warm-up period) into k large batches, and compute the bath means
 - Discrete outputs: $\bar{Y}_j = \frac{1}{m} \sum_{i=(j-1)m+1}^{jm} Y_{i+d}, j=1,\ldots,k.$

$$\underbrace{Y_1,\ldots,Y_d}_{\text{deleted}},\underbrace{Y_{d+1},\ldots,Y_{d+m}}_{\text{Batch 1: }\bar{Y}_1},\underbrace{Y_{d+m+1},\ldots,Y_{d+2m}}_{\text{Batch 2: }\bar{Y}_2},\ldots,\underbrace{Y_{d+(k-1)m+1},\ldots,Y_{d+km}}_{\text{Batch }k: \;\bar{Y}_k}$$

- Batch Means (批均值) Method:
 - Divide the output data from one replication (after deleting warm-up period) into k large batches, and compute the bath means
 - Discrete outputs: $\bar{Y}_j = \frac{1}{m} \sum_{i=(j-1)m+1}^{jm} Y_{i+d}, \ j=1,\ldots,k.$

$$\underbrace{Y_1,\ldots,Y_d}_{\text{deleted}},\underbrace{Y_{d+1},\ldots,Y_{d+m}}_{\text{Batch 1: }\bar{Y}_1},\underbrace{Y_{d+m+1},\ldots,Y_{d+2m}}_{\text{Batch 2: }\bar{Y}_2},\ldots,\underbrace{Y_{d+(k-1)m+1},\ldots,Y_{d+km}}_{\text{Batch }k: \bar{Y}_k}$$

• Continuous outputs: $\tilde{Y}_j=\frac{1}{m}\int_{T_0+(j-1)m}^{T_0+jm}Y(t)\mathrm{d}t$, $j=1,\ldots,k$.

- Batch Means (批均值) Method:
 - Divide the output data from one replication (after deleting warm-up period) into k large batches, and compute the bath means.
 - Discrete outputs: $\bar{Y}_j = \frac{1}{m} \sum_{i=(j-1)m+1}^{jm} Y_{i+d}, j=1,\ldots,k.$

$$\underbrace{Y_1,\ldots,Y_d}_{\text{deleted}},\underbrace{Y_{d+1},\ldots,Y_{d+m}}_{\text{Batch 1: }\bar{Y}_1},\underbrace{Y_{d+m+1},\ldots,Y_{d+2m}}_{\text{Batch 2: }\bar{Y}_2},\ldots,\underbrace{Y_{d+(k-1)m+1},\ldots,Y_{d+km}}_{\text{Batch }k: \bar{Y}_k}$$

- Continuous outputs: $\tilde{Y}_j = \frac{1}{m} \int_{T_0 + (j-1)m}^{T_0 + jm} Y(t) dt$, $j = 1, \ldots, k$.
- Treat the means of these batches as if they were independent.

- Batch Means (批均值) Method:
 - Divide the output data from one replication (after deleting warm-up period) into k large batches, and compute the bath means.
 - Discrete outputs: $\bar{Y}_j = \frac{1}{m} \sum_{i=(j-1)m+1}^{jm} Y_{i+d}, j=1,\ldots,k.$

$$\underbrace{Y_1,\ldots,Y_d}_{\text{deleted}},\underbrace{Y_{d+1},\ldots,Y_{d+m}}_{\text{Batch 1: }\bar{Y}_1},\underbrace{Y_{d+m+1},\ldots,Y_{d+2m}}_{\text{Batch 2: }\bar{Y}_2},\ldots,\underbrace{Y_{d+(k-1)m+1},\ldots,Y_{d+km}}_{\text{Batch }k: \;\bar{Y}_k}$$

- Continuous outputs: $\tilde{Y}_j = \frac{1}{m} \int_{T_0 + (j-1)m}^{T_0 + jm} Y(t) dt$, $j = 1, \ldots, k$.
- Treat the means of these batches as if they were independent.
- Why it works?
 - The correlation between two observations decreases as they are farther apart.
 - If the batch size is sufficiently large,
 - most of the observations in a batch will be approximately independent of those in other batches;
 - only those near the end of the batches are significantly correlated.

► Estimation with Single Replication

- Strictly speaking, the batch means are not independent.
- However, if the batch size is sufficiently large, successive batch means will be approximately independent.

- Strictly speaking, the batch means are not independent.
- However, if the batch size is sufficiently large, successive batch means will be approximately independent.
- Unfortunately, there is no widely accepted and relatively simple method for choosing an acceptable batch size m (or equivalently, choosing a number of batches k).

- Strictly speaking, the batch means are not independent.
- However, if the batch size is sufficiently large, successive batch means will be approximately independent.
- Unfortunately, there is no widely accepted and relatively simple method for choosing an acceptable batch size m (or equivalently, choosing a number of batches k).
- Some general guidelines:
 - In most applications, it is suggested to let $10 \le k \le 30$, according to Schmeiser (1982).
 - If the run length is to be increased to attain a specified precision, it is suggested to allow both m and k to grow.

