

• General Description

The AGM420MAP combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS}(\text{ON})}$.

This device is ideal for load switch and battery protection applications.

Features

- Advance high cell density Trench technology
- Low R_{DS(ON)} to minimize conductive loss
- ■Low Gate Charge for fast switching
- ■Low Thermal resistance
- ■100% Avalanche tested
- ■100% DVDS tested

Application

- ■MB/VGA Vcore
- ■SMPS 2nd Synchronous Rectifier
- ■POL application
- ■BLDC Motor driver

Product Summary

BVDSS	RDSON	ID
40V	16mΩ	13.5A
-40V	42mΩ	-10.8A

PDFN3.3*3.3 Pin Configuration

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
AGM420MAP	AGM420MAP	PDFN3.3*3.3	330mm	12mm	5000

Table 1. Absolute Maximum Ratings (TA=25°C)

		Rating			
Symbol	Parameter	N-Ch	P-Ch	Units	
V_{DS}	Drain-Source Voltage (V _{GS} =0V)	40	-40	V	
V_{GS}	Gate-Source Voltage (V _{DS=} 0V)	±20	±20	V	
	Drain Current-Continuous(Tc=25℃) (Note 1)	13.5	-10.8	А	
I_D	Drain Current-Continuous(Tc=100°C)	9.3	-9.2	А	
IDM (pluse)	Drain Current-Pulsed (Note 2)	54	-43.2	А	
	Total Power Dissipation(Tc=25℃)	25	25	W	
P_D	Total Power Dissipation(Tc=100°C)	10	10	W	
EAS	Avalanche energy (Note 3)	49	64	mJ	
TJ,TSTG	Operating Junction and Storage Temperature Range	-55 To 150	-55 To 150	°C	

Table 2. Thermal Characteristic

Symbol	Parameter	Тур	Max	Unit
R _{0JA}	Thermal Resistance Junction-ambient (Steady State) ¹		50	°C/W
R _{eJC}	Thermal Resistance Junction-Case ¹		5.0	°C/W

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off State	es					
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=250µA	40			V
IDSS	Zero Gate Voltage Drain Current	VDS=40V,VGS=0V			1	μΑ
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=250µA	1.2	1.7	2.2	V
gFS	Forward Transconductance	VDS=5V,ID=4A		7		S
RDS(on)	Drain-Source On-State Resistance	VGS=10V, ID=5A		16	19	mΩ
1.05(611)		VGS=4.5V, ID=4A		21	28	mΩ
Dynamic C	Characteristics					
Ciss	Input Capacitance			516		pF
Coss	Output Capacitance	VDS=20V,VGS=0V,		82		pF
Crss	Reverse Transfer Capacitance	F=1MHZ		43		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz				Ω
Switching	Times					
td(on)	Turn-on Delay Time			4.5		nS
tr	Turn-on Rise Time	VGS=10V,VDS=15V,		2.5		nS
td(off)	Turn-Off Delay Time	RL= 2.5Ω ,RGEN= 3Ω		14.5		nS
tf	Turn-Off Fall Time			3.5		nS
Qg	Total Gate Charge			8.9		nC
Qgs	Gate-Source Charge	VGS=10V, VDS=20V, ID=6A		2.4		nC
Qgd	Gate-Drain Charge	_ ID-0A		1.4		nC
Source-Dr	ain Diode Characteristics					
ISD	Source-Drain Current(Body Diode)				13.5	А
VSD	Forward on Voltage	VGS=0V,IS=5A		0.8	1.2	V
trr	Reverse Recovery Time	IF=5A , dI/dt=100A/μs ,				ns
Qrr	Reverse Recovery Charge	TJ=25℃				nc

Notes 1.The maximum current rating is package limited.

Notes 2. Repetitive Rating: Pulse width limited by maximum junction temperature

Notes 3.EAS condition: TJ=25 $^{\circ}$ C,VDD=25V,Vgs=10V,ID=14A,L=0.5mH,RG=25ohm

Table 3. P-Channel Electrical Characteristics (TJ=25℃unless otherwisenoted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off Sta	ites					
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=-250μA	-40			V
IDSS	Zero Gate Voltage Drain Current	VDS=-40V,VGS=0V			-1	μA
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=-250μA	-1.2	-1.6	-2.2	V
gFS	Forward Transconductance	VDS=-5V,ID=-3A		6		S
RDS(on)	Drain-Source On-State Resistance	VGS=-10V, ID=-4A		42	50	mΩ
20(01.)		VGS=-4.5V, ID=-3A		52	64	mΩ
Dynamic (Characteristics					
Ciss	Input Capacitance			750		pF
Coss	Output Capacitance	VDS=-20V,VGS=0V, F=1MHZ		105		pF
Crss	Reverse Transfer Capacitance	- F-11VII 12		64		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz				Ω
Switching	Times					
td(on)	Turn-on Delay Time			7.2		nS
tr	Turn-on Rise Time	VGS=-10V,VDS=-20V,		14		nS
td(off)	Turn-Off Delay Time	ID=-10A,RGEN=6.8Ω		21		nS
tf	Turn-Off Fall Time			8.1		nS
Qg	Total Gate Charge			20		nC
Qgs	Gate-Source Charge	VGS=-10V, VDS=-25V, ID=-6A		8.0		nC
Qgd	Gate-Drain Charge	VBG 25V, IB 6/1		11		nC
Source-Dr	ain Diode Characteristics					
ISD	Source-Drain Current(Body Diode)				-10.8	Α
VSD	Forward on Voltage	VGS=0V,IS=-4A			-1.2	V
trr	Reverse Recovery Time	IF=-4A , dl/dt=100A/μs ,				ns
Qrr	Reverse Recovery Charge	TJ=25℃				nc

Notes 1. The maximum current rating is package limited.

 $Notes 2. Repetitive \, Rating: Pulse \, width \, limited \, by \, maximum \, junction \, temperature \, Notes \, and \, continuous \, an$

3.EAS condition: TJ=25 $^{\circ}\text{C}$,VDD=-25V,Vgs=-10V,ID=-16A,L=0.5mH,RG=25ohm

N- Channel Typical Electrical and Thermal Characteristics (Curves)

Figure 1:Switching Test Circuit

Vds Drain-Source Voltage (V)

Figure 3 Output Characteristics

Figure 5 Drain-Source On-Resistance

Figure 2:Switching Waveforms

Figure 4 Transfer Characteristics

Figure 6 Drain-Source On-Resistance

Figure7 Rdson vs Vgs

Figure 9 Gate Charge

Figure 11 Capacitance vs Vds

 T_J -Junction Temperature($^{\circ}$ C)

Figure 8 Power Dissipation

Vds Drain-Source Voltage (V)

Figure 10 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)
Figure 12 Safe Operation Area

Figure 13 Normalized Maximum Transient Thermal Impedance

Fig.1 Power Dissipation Derating Curve

Fig.2 Typical output Characteristics

Fig.3 Threshold Voltage V.S Junction Temperature Fig.4 Re

Fig.4 Resistance V.S Drain Current

Fig.5 On-Resistance VS Gate Source Voltage

Fig.6 On-Resistance V.S Junction Temperature

Fig.7 Switching Time Measurement Circuit

Fig.8 Gate Charge Waveform

Fig.9 Switching Time Measurement Circuit

Fig.10 Gate Charge Waveform

Fig.11 Avalanche Measurement Circuit

Fig.12 Avalanche Waveform

•Dimensions (PDFN3.3*3.3)

		9	_
A2			
1		:	Al

CAMBOI	MILLI	METER	
SYMBOL	MIN	MAX	
A	0.700	0.900	
A1	0.152REF.		
A2	0~0.05		
D	3.000	3. 200	
D1	0.935	1. 135	
D2	0.280	0.480	
Е	2.900	3. 100	
E1	3. 150	3. 450	
E2	1.535	1. 935	
b	0.200	0.400	
е	0.550	0.750	
L	0.300	0.500	
L1	0.180	0.480	
L2	0~0.100		
L3	0~0.100		
Н	0.315	0.515	
θ	8°	12°	

Cremb o 1 a	Millimeters		
Symbols	MIN.	NOM.	MAX.
A	0.65	0.75	0.85
b	0.25	0.30	0.35
С	0.15	0.20	0.25
D	3.00	3. 10	3. 20
D1	2.40	2.50	2.60
D2/D3	1.00	1.05	1.10
d	0.30	0.40	0.50
Е	3. 20	3.30	3.40
E1	3.00	3. 10	3. 20
E2	1.72	1.82	1.92
е	0.	. 65 BSC	J.
H1	0.21	0.31	0.41
Н2	0.30	0.40	0.50
K	0.67	0.77	0.87
L1/L2	0.	. 10 REF	٦.
θ	11°	12°	13°
N	0	_	0.15
0	0.2 REF.		

PDFN3.3*3.3 Marking Instructions:

Disclaimer:

The information provided in this document is believed to be accurate and reliable. however, Shenzhen Core Control Electronics Technology Co., Ltd. does not assume any responsibility for the following consequences. Do not consider the use of such information or use beyond its scope.

The information mentioned in this document may be changed at any time without notice.

The products and information provided in this document do not infringe patents. Shenzhen Core Control Electronics Technology Co., Ltd. assumes no responsibility for any infringement of any other rights of third parties. The result of using such products and information.

This document is the sixth version issued on March 10th, 2024. This document replaces all previously provided information.

It is a registered trademark of Shenzhen Core Control Electronics Technology Co., Ltd.

Copyright © 2017 Shenzhen Core Control Electronics Technology Co., Ltd. all rights reserved.