STATISTICS

Week 3: Data Reduction and Method of Moments

Etienne Wijler

Econometrics and Data Science Econometrics and Operations Research Bachelor Program

SCHOOL OF BUSINESS AND ECONOMICS

Course overview: Data Reduction

P4: Estimation

- Week 1 Probability Recap
- Week 2 Statistical Models
- Week 3 Data Reduction and MME
- Week 4 MLE and Evaluation
- Week 5 Estimator Optimality
- Week 6 Consistency

P5: Inference

- Week 7 Hypothesis testing
- Week 8 Mean and Variance testing
- Week 9 Finding test statistics
- Week 10 Evaluating tests
- Week 11 Interval estimation
- Week 12 Asymptotic tests

Statistics 1/21

Dimensionality Reduction

Problem: Datasets that are collected are typically large files containing many measurements that do not seem very informative when observed as a whole.

Idea: Perform data reduction or aggregation to extract meaningful information from the data by calculating statistics.

Definition

A statistic T is any function of the data X.

Statistics 2 / 21

The objective of dimensionality reduction

Goal: When reducing the dimension of the data, we typically aim to:

- ▶ discard information that is irrelevant to the parameter of interest,
- ▶ retain information that is relevant to this parameter.

Example (Consumer preference)

You are examining consumer preference for different sugar contents in a new soft-drink. You offer participants in your study a high and low sugar version of the drink and record which version they prefer. What would be:

- 1. research question, random variable, and statistical model,
- 2. the parameter of interest,
- 3. a logical statistic.

Statistics 3 / 21

Sufficient statistics

Sufficiency: A sufficient statistic "contains all relevant information about the parameter of interest".

Definition (6.2.1, sufficient statistics)

Let X be generated by a distribution from the statistical model $\{f(x \mid \theta) \mid \theta \in \Theta\}$. A statistic T(X) is a sufficient statistic for θ , if the conditional distribution of the sample X given the value of T(X) does not depend on θ .

Equivalently: T(X) is a sufficient statistic if

$$f_{\boldsymbol{X}}(\boldsymbol{x} \mid T(\boldsymbol{X}), \theta_1) = f_{\boldsymbol{X}}(\boldsymbol{x} \mid T(\boldsymbol{X}), \theta_2), \quad \forall \ \theta_1, \theta_2 \in \Theta.$$

Otherwise: $f_{\boldsymbol{X}}(\boldsymbol{x} \mid T(\boldsymbol{X}))$ would depend on θ and one could learn additional information about the parameter from observing \boldsymbol{x} instead of $T(\boldsymbol{x})$!

Statistics 4 / 21

Sufficiency: intuition

Suppose that $f(x|\theta)$ is a pmf and let T(X) be a sufficient statistic for θ .

Then, we can rewrite

$$f(\boldsymbol{x} \mid \boldsymbol{\theta}) = \mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{X} = \boldsymbol{x}) = \mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{X} = \boldsymbol{x}; T(\boldsymbol{X}) = T(\boldsymbol{x}))$$
$$= \mathbb{P}(\boldsymbol{X} = \boldsymbol{x} \mid T(\boldsymbol{X}) = T(\boldsymbol{x}))\mathbb{P}_{\boldsymbol{\theta}}(T(\boldsymbol{X}) = T(\boldsymbol{x})),$$

Conclusion: all information concerning θ is contained in $\mathbb{P}_{\theta}(T(\boldsymbol{X}) = T(\boldsymbol{x}))!$

Implication: if x and y are two different samples such that T(x) = T(y), then the inference about θ is the same whether X = x or X = y is observed.

Reduction: We can compute $T(\boldsymbol{x})$ and discard \boldsymbol{x} without losing information on θ .

STATISTICS 5 / 21

Consumer preference (continued)

Example (Consumer preference continued)

We continue investigating consumer preference for a new soft-drink. Let $X_i \stackrel{iid}{\sim} \text{Bernoulli}(p)$ represent the binary variable indication whether a consumer chooses the low sugar version $(X_i = 1)$. The statistic we calculate is $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$. Is this indeed a sufficient statistic for p?

Hint: recall Bayes theorem $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$.

In practice, we rarely verify sufficiency by direct derivation of $f_{\mathbf{X}}(\mathbf{x} \mid T(\mathbf{x}))$. However, it helps to build intuition!

STATISTICS 6 / 21

Factorization Theorem

Problem: The definition of sufficiency is inconvenient, as it requires us to

- \blacktriangleright use intuition to find the statistic T(X), and then
- calculate difficult conditional probabilities to prove sufficiency.

Solution: the Factorization Theorem provides a much easier approach.

Theorem (6.2.6, Factorization Theorem)

A statistic $T(\mathbf{X})$ is sufficient for θ if and only if there exist functions $g(x \mid \theta)$ and $h(\mathbf{x})$ such that, for all $\mathbf{x} \in \mathbb{R}^n$,

$$f(\boldsymbol{x} \mid \theta) = g(T(\boldsymbol{x}) \mid \theta)h(\boldsymbol{x}).$$

STATISTICS 7 / 21

Factorization Theorem: proof

Proof of the Factorization Theorem (only if direction).

We prove the theorem only for discrete pdfs. We start with the only if direction. By sufficiency we have

$$f(\boldsymbol{x} \mid \boldsymbol{\theta}) = \mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{X} = \boldsymbol{x}) = \mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{X} = \boldsymbol{x}, T(\boldsymbol{X}) = T(\boldsymbol{x}))$$

$$= \underbrace{\mathbb{P}_{\boldsymbol{\theta}}(T(\boldsymbol{X}) = T(\boldsymbol{x}))}_{g(T(\boldsymbol{x})|\boldsymbol{\theta})} \underbrace{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} \mid T(\boldsymbol{X}) = T(\boldsymbol{x}))}_{h(\boldsymbol{x})}$$

$$= g(T(\boldsymbol{x}) \mid \boldsymbol{\theta})h(\boldsymbol{x}).$$

Hence, the factorization always exists if $T(\mathbf{X})$ is sufficient.

STATISTICS 8 / 21

Proof of the Factorization Theorem (if direction).

To show the if direction, define $A_{T(x)} = \{ y : T(y) = T(x) \}$, such that

$$\mathbb{P}_{\theta}(T(\boldsymbol{X}) = T(\boldsymbol{x})) = \mathbb{P}_{\theta}(\boldsymbol{X} \in A_{T(\boldsymbol{x})}) = \sum_{\boldsymbol{y} \in A_{T(\boldsymbol{x})}} \mathbb{P}_{\theta}(\boldsymbol{X} = \boldsymbol{y}).$$

Then, assuming that the factorization exists, we have

$$\mathbb{P}_{\theta}\left(\boldsymbol{X} = \boldsymbol{x} \mid T(\boldsymbol{X}) = T(\boldsymbol{x})\right) = \frac{\mathbb{P}_{\theta}(\boldsymbol{X} = \boldsymbol{x})}{\mathbb{P}_{\theta}(T(\boldsymbol{X}) = T(\boldsymbol{x}))} = \frac{\mathbb{P}_{\theta}(\boldsymbol{X} = \boldsymbol{x})}{\sum_{\boldsymbol{y} \in A_{T(\boldsymbol{x})}} \mathbb{P}_{\theta}(\boldsymbol{X} = \boldsymbol{y})} \\
= \frac{g(T(\boldsymbol{x}) \mid \theta)h(\boldsymbol{x})}{\sum_{\boldsymbol{y} \in A_{T(\boldsymbol{x})}} g(T(\boldsymbol{y}) \mid \theta)h(\boldsymbol{y})} = \frac{g(T(\boldsymbol{x}) \mid \theta)h(\boldsymbol{x})}{g(T(\boldsymbol{x}) \mid \theta)\sum_{\boldsymbol{y} \in A_{T(\boldsymbol{x})}} h(\boldsymbol{y})} \\
= \frac{h(\boldsymbol{x})}{\sum_{\boldsymbol{y} \in A_{T(\boldsymbol{x})}} h(\boldsymbol{y})},$$

which does not depend on the parameter.

Factorization Theorem: examples

Example (Uniform $(0,\theta)$)

Consider a random sample X_1, \ldots, X_n drawn from a population with pdf

$$g(x \mid \theta) = \frac{1}{\theta}, \quad 0 \le x \le \theta.$$

Find the sufficient statistic for θ .

Example (Normal(μ, σ^2))

Consider a random sample X_1, \ldots, X_n drawn from a population with pdf

$$g(x \mid \boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Find the sufficient statistic for $\boldsymbol{\theta} = \mu$, i.e. assuming σ^2 is known, and for $\boldsymbol{\theta} = (\mu, \sigma^2)$.

Sufficient statistics and the exponential family

Note: Finding sufficient statistics is further simplified when dealing with members of the exponential family.

Theorem (6.2.10)

Let X_1, \ldots, X_n be a random sample from a population belonging to the exponential family

$$g(x \mid \theta) = h(x)c(\theta)e^{\sum_{j=1}^{m} w_j(\theta)t_j(x)}.$$

Then
$$T(\mathbf{X}) = (\sum_{i=1}^n t_1(X_i), \dots, \sum_{i=1}^n t_m(X_i)$$
 is a sufficient statistic for θ .

Proof: tutorial exercise!

STATISTICS

11 / 21

Non-uniqueness of sufficient statistics

Important: Sufficient statistics are only unique up to an invertible transformation.

Lemma

Let T(X) be a sufficient statistic for θ and let ϕ be an invertible function. Then $\phi(T(X))$ is also a sufficient statistic for θ .

Proof.

This follows directly from the factorization theorem since

$$f(\boldsymbol{x}\mid\boldsymbol{\theta}) = g(T(\boldsymbol{x})\mid\boldsymbol{\theta})h(\boldsymbol{x}) = g\left(\phi^{-1}\left(\phi\left(T(\boldsymbol{x})\right)\right)\mid\boldsymbol{\theta}\right)h(\boldsymbol{x}) = \tilde{g}\left(\tilde{T}(\boldsymbol{x})\mid\boldsymbol{\theta}\right)h(\boldsymbol{x}),$$

where
$$\tilde{g}(x) = g(\phi^{-1}(x))$$
 and $\tilde{T}(x) = \phi(T(x))$, the new sufficient statistic.

12 / 21

Course overview: MME

P4: Estimation

- Week 1 Probability Recap
- Week 2 Statistical Models
- Week 3 Data Reduction and MME
- Week 4 MLE and Evaluation
- Week 5 Estimator Optimality
- Week 6 Consistency

P5: Inference

- Week 7 Hypothesis testing
- Week 8 Mean and Variance testing
- Week 9 Finding test statistics
- Week 10 Evaluating tests
- Week 11 Interval estimation
- Week 12 Asymptotic tests

STATISTICS 13/21

Parameter estimation

From here on, we are going to focus on parameter estimation.

Note: We will always assume

- We have data $\boldsymbol{x} = (x_1, \dots, x_n)$ that is a realization from the iid random vector $\boldsymbol{X} = (X_1, \dots, X_n)$ with population $g(x \mid \theta_0)$.
- ▶ We are given a statistical model: $\{g(x \mid \theta) \mid \theta \in \Theta\}$.
- ▶ The model is correctly specified, i.e. $\theta_0 \in \Theta$.

Goal: find the correct value $\theta_0 \in \Theta$. Equivalently: estimate the DGP $g(x \mid \theta_0)$.

STATISTICS 14 / 21

Estimates and estimators

Definition (7.1.1)

An estimate for θ_0 in a statistical model is any function $W(\boldsymbol{x})$ of the data. The corresponding estimator is the stochastic variable $W(\boldsymbol{X})$ obtained by plugging in the random vector.

Notation: Statisticians often write $\hat{\theta}$ for W(X), when it's clear what estimator we are talking about. We will also adopt this convention.

Note: While by definition any function of the data is an estimator, in practise the term is only used when W(x) serves to approximate a quantity of interest (e.g. $h(\theta_0)$).

STATISTICS 15 / 21

Finding estimators

Intuition: In some instances, we can find natural estimators by intuition:

Example (Coin wager)

Recall the coin wager example. The statistical model for the coin wager is given by $\{\text{Bernoulli}(p) \mid p \in [0,1]\}$. What would be an intuitive estimator of p_0 ?

However, often times intuition fails us of finding the estimators we need:

Example (Milk sales)

Recall the milk store example, where we had the statistical model $\{\text{Binomial}(k,p) \mid k \in \mathbb{N}, p \in [0,1]\}.$

- \blacktriangleright Assume k_0 is known: what would be an intuitive estimator of p_0 ?
- \blacktriangleright Assume k_0 is unknown: what would be an intuitive estimator of (k_0, p_0) ?

Statistics 16 / 21

Method of Moments

Note: By the LLN, we have the following natural approximations

$$\frac{1}{n} \sum_{i=1}^{n} X_{i} \stackrel{p}{\to} \mathbb{E}(X_{1}) \quad \Rightarrow \quad \frac{1}{n} \sum_{i=1}^{n} X_{i} \approx \mathbb{E}(X_{1})$$

$$\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \stackrel{p}{\to} \mathbb{E}(X_{1}^{2}) \quad \Rightarrow \quad \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \approx \mathbb{E}(X_{1}^{2})$$

$$\vdots$$

$$\frac{1}{n} \sum_{i=1}^{n} X_{i}^{n} \stackrel{p}{\to} \mathbb{E}(X_{1}^{n}) \quad \Rightarrow \quad \frac{1}{n} \sum_{i=1}^{n} X_{i}^{n} \approx \mathbb{E}(X_{1}^{n})$$

Idea: Since $E(X_1^k)$ typically depends on the parameters $\boldsymbol{\theta}_0$, this gives a system of equations that we can solve for $\boldsymbol{\theta}_0$!

MM: Solving this system of equation is called the method of moments (MM).

STATISTICS

17/21

Method of Moments: examples

Example (Basketball skills)

You are evaluating your basketball skills using statistics (yes, we're that nerdy). Let X_i , $i=1,\ldots,n$, denote the number of throws it took you to score the *i*-th 3-pointer. You assume that $X \sim \text{Geometric}(p_0)$, with pdf $g(x \mid p) = (1-p)^{x-1}p^x$ for $x=1,2,\ldots$ Find an estimator \hat{p} for p_0 using the MM.

Example (Vegan diet health effects)

You're interested in the effects of vegan diets on a person's health. In particular, visceral fat is one of the leading causes of health issues such as diabetes and cancer. Let X_i , i = 1, ..., n, denote the visceral fat content of a randomly selected vegan. Your statistical model is $\{\text{Normal}(\mu, \sigma^2) \mid \mu, \sigma^2 > 0\}$. Find the MME of $\theta_0 = (\mu_0, \sigma_0^2)$.

Statistics 18 / 21

Milk Sales: the solution

Example (Milk Sales)

Recall the problem of modelling the daily milk sales for inventory management purposes. Our statistical model is $\{\text{Binomial}(k,p) \mid k \in \mathbb{N}, p \in [0,1]\}$, with k being the total number of potential customers and p the probability of any individual visiting our store. The DGP is given by

$$g(x \mid \boldsymbol{\theta}_0) = {k_0 \choose x} p_0^x (1 - p_0)^{k_0 - x}, \quad x = 0, 1, \dots, k_0.$$

Letting X_i , i = 1, ..., n, denote the (unobserved) number of customers visiting your store on day i, find the MME of $\boldsymbol{\theta}_0$.

STATISTICS 19 / 21

Planning wind turbines

Example (Wind turbines)

You are involved in the planning of a new project for wind turbines. As a statistician, you are tasked with modelling the wind speeds in a certain area. Let X_i , i = 1, ..., n, denote the average wind speed on day i. The statistical model is given by {Weibull(2, θ) | θ > 0} with pdf

$$g(x \mid \theta) = \frac{2}{\theta} x e^{-x^2/\theta}, \quad 0 \le x < \infty, \ \theta > 0.$$

Note (C&B) that $\mathbb{E}_{\theta}(X_1) = \sqrt{\theta}\Gamma(3/2)$, and recall $\Gamma(1+a) = a\Gamma(a)$ and $\Gamma(1/2) = \sqrt{\pi}$. Find the MME of θ_0 .

Note: The CDF of this distribution is $G(x \mid \theta) = 1 - e^{-x^2/\theta}$. Knowing θ would thus easily allow you to calculate wind speed probabilities.

Statistics 20 / 21

Method of Moments: pros and cons

Pros: The methods of moments estimator (MME) is often

- intuitive and easy to derive,
- ▶ widely applicable,
- ▶ possible to apply without specifying the distribution.

Cons: The MME can

- be sub-optimal (does not have the lowest variance of all choices),
- ▶ provide estimates outside the parameter space $(\hat{\theta} \notin \Theta)$,
- ▶ provide many solutions that is difficult to choose from,
- ▶ not be applied when moments do not exist.

STATISTICS 21 / 21