MATH 265 HW5

Hanzhang Yin

Sep/26/2024

Question 1

(a)

We can analysis this question by the parity of $n \in \mathbb{Z}_+$.

1. When n is odd, $(-1)^n = -1$. Hence the term becomes:

$$-\left(1 - \frac{1}{n}\right) = -1 + \frac{1}{n}$$

When $n \to \infty$:

$$\frac{1}{n} \to 0 \Rightarrow -1 + \frac{1}{n} \to -1$$

Hence, for all odd n, $-1 + \frac{1}{n} < -1$

2. When n is even, $(-1)^n = 1$. Hence the term becomes:

$$\left(1 - \frac{1}{n}\right) = 1 - \frac{1}{n}$$

When $n \to \infty$:

$$\frac{1}{n} \to 0 \Rightarrow 1 - \frac{1}{n} \to 1$$

Hence, for all odd n, $1 - \frac{1}{n} \le 1$

Since every element $s \in S$, $s \le 1$. By definition, 1 is an upper bound of S.

(b)

Proof. If M is an upper bound for S, then $M \ge s$, for every element $s \in S$. By our analysis in (a), it is sufficient to only consider the case when n is even. Suppose M < 1 and M is an upper bound of S.

$$n \to \infty \Rightarrow 1 - \frac{1}{n} \to 1$$

. In this case, there exists a $s \in S$ s.t. $1 - \frac{1}{n} > M$ for some $n \in \mathbb{Z}_+$. This derived a contradiction, hence $M \geq 1$.

(c)

Proof. From part (a), 1 is am upper bound of S, and from part (b), no number less then 1 can be an upper bound. Thus by definition, the supremum of S is 1 (i.e. $\sup S = 1$).

Quesiton 2

Noting that by definition $A + B = \{a + b | a \in A, b \in B\}$

Proof. First we need to show that $\sup(A+B) \leq \sup A + \sup B$: let $a \in A$ and $b \in B$. By definition of supremum, we have $a \leq \sup A$ and $b \leq \sup B$.

Therefore, for any $a \in A$ and $b \in B$:

$$a + b \le \sup A + \sup B$$

Since $A+B=\{a+b|a\in A,b\in B\}$, every element in A+B is less than or equal to $\sup A+\sup B$. Therefore, $\sup \sup (A+B)\leq \sup A+\sup B$ Then we need to show $\sup (A+B)\geq \sup A+\sup B$: Let $\epsilon>0$, by definition of supremum, for set A and B:

- $\exists a_{\epsilon} \in A : \sup A \epsilon < a_{\epsilon} < \sup A$
- $\exists b_{\epsilon} \in B : \sup B \epsilon < b_{\epsilon} < \sup B$

Now consider $a_{\epsilon} + b_{\epsilon} \in A + B$. Then:

$$(\sup A - \epsilon) + (\sup B - \epsilon) < a_{\epsilon} + b_{\epsilon} \le \sup A + \sup B$$

$$\Rightarrow \sup A + \sup B - 2\epsilon < a_{\epsilon} + b_{\epsilon} \leq \sup A + \sup B$$

Noting that ϵ is arbitrary, as $\epsilon \to 0$:

$$\Rightarrow \sup A + \sup B < a_{\epsilon} + b_{\epsilon} \leq \sup A + \sup B$$

Indicating $a_{\epsilon} + b_{\epsilon} \to \sup A + \sup B$ Thus, $\sup A + \sup B$ is the supremum of A + B by squeeze theorem. Therefore,

$$\sup A + \sup B < \sup (A + B)$$

By combining two steps, we have $\sup A + \sup B = \sup(A + B)$

Question 3

Proof. Let x > 1 and consider the set $S = \{x^n : n \in \mathbb{Z}_+\}$. For any $M \in \mathbb{R}$, we want to show that there exists $n \in \mathbb{Z}_+$ such that $x^n > M$ Taking natural logarithm on both sides of the inequality $x^n > M$, we get:

$$n \cdot \ln(x) > \ln(M)$$

Since ln(x) > 0, noting x > 1, we can solve for n:

$$n > \frac{\ln(M)}{\ln(x)}$$

Note that RHS is a constant, let $N = \lceil \frac{\ln(M)}{\ln(x)} \rceil + 1$, Hence, for n = N, we have:

$$x^n > M$$

For any $M \in \mathbb{R}$, we can found $n \in \mathbb{Z}_+$ s.t. $x^n > M$. Thus, the set is not bounded from above.

Question 4

For example:

$$I_n = \left[1 + \frac{1}{n}, 4 - \frac{1}{n}\right)$$

For each positive integer n. Property verification:

Proof. Part 1: We show that $\bigcup_{n=1}^{\infty} I_n = (1,4)$.

(i) $\bigcup_{n=1}^{\infty} I_n \subseteq (1,4)$: Let $x \in \bigcup_{n=1}^{\infty} I_n$. Then $x \in I_n$ for some n, i.e., $1 + \frac{1}{n} \le x < 4 - \frac{1}{n}$. Since $\frac{1}{n} > 0$, it follows that 1 < x < 4. Thus, $x \in (1,4)$, and hence $\bigcup_{n=1}^{\infty} I_n \subseteq (1,4)$.

 $O_{n=1}^{-1}I_n \subseteq (1, 4)$. (ii) $(1, 4) \subseteq \bigcup_{n=1}^{\infty}I_n$: Let $x \in (1, 4)$. Define $\epsilon = \min\{x - 1, 4 - x\} > 0$. Choose $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$. Then, for all $n \ge N$, we have $1 + \frac{1}{n} < x < 4 - \frac{1}{n}$, so $x \in I_n$. Thus, $x \in \bigcup_{n=1}^{\infty}I_n$, and hence $(1, 4) \subseteq \bigcup_{n=1}^{\infty}I_n$. Combining (i) and (ii), we obtain $\bigcup_{n=1}^{\infty}I_n = (1, 4)$.

Part 2: We show that $\bigcap_{n=1}^{\infty} I_n = [2,3].$

(i) $[2,3] \subseteq \bigcap_{n=1}^{\infty} I_n$: Let $x \in [2,3]$. For any $n \in \mathbb{N}$, $1 + \frac{1}{n} \le 2 \le x \le 3 \le 4 - \frac{1}{n}$. Thus, $x \in I_n$ for all n, implying $x \in \bigcap_{n=1}^{\infty} I_n$. Therefore, $[2,3] \subseteq \bigcap_{n=1}^{\infty} I_n$. (ii) $\bigcap_{n=1}^{\infty} I_n \subseteq [2,3]$: Let $x \in \bigcap_{n=1}^{\infty} I_n$. Then $x \in I_n$ for all n, i.e., $1 + \frac{1}{n} \le x < 4 - \frac{1}{n}$ for all n. As $n \to \infty$, $1 + \frac{1}{n} \to 1$ and $4 - \frac{1}{n} \to 4$. Thus, $x \ge 2$ (since x cannot be less than 2 for all large n) and $x \le 3$ (since x cannot be greater than 3 for all large n). Hence, $x \in [2,3]$.

Combining (i) and (ii), we obtain $\bigcap_{n=1}^{\infty} I_n = [2, 3]$.