Linear Algebra Manual

Chapter 1: Linear Equations in Linear Algebra

Systems of Linear Equations

A system of linear equations has:

- 1. no solution, or
- 2. exactly one solution, or
- 3. infinitely many solutions

Elementary row operations:

- 1. Replace one row by the sum of itself and a multiple of another row.
- 2. Interchange two rows.
- 3. Multiply all entries in a row by a nonzero constant.

If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

Two fundamental questions about a linear system

- 1. Is the system consistent; that is, does at least one solution exist?
- 2. If a solution exists, is it the only one; that is, is the solution unique?

Row Reduction and Echelon Forms

A rectangular matrix is in **echelon form** (or **row echelon form**) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

If a matrix in echelon from satisfies the following additional conditions, then it is in **reduced echelon form** (or **reduced row echelon form**):

- 1. The leading entry in each nonzero row is 1.
- 2. Each leading 1 is the only nonzero entry in its column.

A **pivot position** in a matrix *A* is a location in A that corresponds to a leading 1 in the reduced echelon form of *A*. A **pivot column** is a column of *A* that contains a pivot position.

The row Reduction Algorithm

- 1. Begin with the leftmost nonzero column. this is a pivot column. The pivot position is at the top.
- 2. Select a nonzero entry in the pivot columns as a pivot. If necessary, interchange rows to move this entry into the pivot position.
- 3. Use row replacement operations to create zeros in all positions below the pivot.
- 4. Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1-3 to the sub-matrix that remains. Repeat the process until there are no more nonzero rows to modify.
- 5. Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by scaling operations.

Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column, that is, if and only if an echelon form of the augmented matrix has no row of the form.

$$\begin{bmatrix} 0 & \cdots & 0 & b \end{bmatrix}$$
 with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique solution, when there are no free variables, or (ii) infinitely many solutions, when there is at least one free variable.

Using Row Reduction to Solve A Linear System

- 1. Write the augmented matrix of the system.
- 2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decided whether the system is consistent. If there is no solution, stop; otherwise, go to the next step.
- 3. Continue row reduction to obtain the reduced echelon form.
- 4. Write the system of equations corresponding to the matrix obtains in step 3.
- 5. Rewrite each nonzero equations from step 4 so that its one basic variable is expressed in terms of any free variables appearing in the equation.

Vector Equations

Parallelogram Rule for Addition

If \mathbf{u} and \mathbf{v} are in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are \mathbf{u} , $\mathbf{0}$, and \mathbf{v} .

Algebraic Properties of \mathbb{R}^n

For all \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n and all scalars c and d:

```
1. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}

2. (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})

3. \mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}

4. \mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0} where -\mathbf{u} denotes (-1)\mathbf{u}

5. c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}

6. (c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}

7. c(d\mathbf{u}) = (cd)\mathbf{u}
```

A vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

has the same solution set as the linear system whose augmented matrix is

$$A = [a_1 \quad a_2 \quad \cdots \quad a_n \quad b]$$

In particular, **b** can be generated by a linear combination of $\{a_1, \ldots, a_n\}$ if and only if there exists a solution to the linear system corresponding to the matrix A.

If v_1, \ldots, v_p are in \mathbb{R}^n , then the set of all linear combinations of v_1, \ldots, v_p is denoted by $\mathrm{Span}\{v_1, \ldots, v_p\}$ and is called the **subset of** \mathbb{R}^n **spanned** (or **generated**) by v_1, \ldots, v_p . That is, $\mathrm{Span}\{v_1, \ldots, v_p\}$ is the collection of all vectors that can be written in the form

$$c_1v_1+c_2v_2+\cdots+c_pv_p$$

with c_1, \ldots, c_p scalars.

The Matrix Equation Ax = b

If A is an $m \times n$ matrix, with columns a_1, \ldots, a_n and if \mathbf{x} is in \mathbb{R}^n , then the **product of** A **and** \mathbf{x} , denoted by $A\mathbf{x}$, is **the linear combination of the columns of** A using the corresponding entries in \mathbf{x} as weights; that is,

$$Ax = \left[egin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array}
ight] \left[egin{array}{c} x_1 \ dots \ x_n \end{array}
ight] = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

If *A* is an *m x n* matrix, with columns a_1, \ldots, a_n , and if **b** is in \mathbb{R}^m , the matrix equation

$$Ax = b$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix}$$

The equation A**x** = **b** has a solution if and only if **b** is a linear combination of the columns of A.

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

- 1. For each **b** in \mathbb{R}^m , the equation A**x** = **b** has a solution
- 2. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- 3. The columns of *A* span \mathbb{R}^m .
- 4. *A* has a pivot position in every row.

Row-Vector Rule for Computing Ax

If the product A**x** is defined, then the ith entry of A**x** is the sum of the products of corresponding entries from row i of A and from the vector **x**.

Properties of the Matrix-Vector Product Ax

If *A* is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and *c* is a scalar, then:

- $1. A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$
- $2. A(c\mathbf{u}) = c(A\mathbf{u})$

Solution Sets of Linear Systems

Homogeneous Linear Systems

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v_h}$, where $\mathbf{v_h}$ is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Writing a Solution Set In Parametric Vector Form

- 1. Row reduce the augmented matrix to reduced echelon form.
- 2. Express each basic variable in terms of any free variables appearing in an equation.
- 3. Write a typical solution \mathbf{x} as a vector whose entries depend on the free variables, if any.
- 4. Decompose **x** into a linear combination of vectors (with numeric entries) using the free variables as parameters.

Linear Independence

An indexed set of vectors $\{v_1,\ldots,v_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0$$

has only the trivial solution. The set $\{v_1, \ldots, v_p\}$ is said to be **linearly dependent** if there exist weights c_1, \ldots, c_p , not all zero, such that

$$c_1v_1+c_2v_2+\cdots+c_pv_p=0$$

Linear Independence of matrix Columns

The columns of matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has *only* the trivial solution.

Sets of One or Two Vectors

A set of two vectors $\{v_1, v_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.

Sets of Two or More Vectors

An index set $S = \{v_1, \dots, v_p\}$ of two ore more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $v_1 \neq 0$, then some v_j (with j > 1) is a linear combination of the preceding vectors, v_1, \dots, v_{j-1} .

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{v_1,\ldots,v_p\}$ in \mathbb{R}^n is linearly dependent if p>n.

If a set $S = \{v_1, \dots, v_n\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

Introduction to Linear Transformations

A transformation (or mapping) *T* is **linear** if:

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in the domain of T
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T

If *T* is a linear transformation, then

$$T(0) = 0$$

and

$$T(cu + dv) = cT(u) + dT(v)$$

for all vectors \mathbf{u} , \mathbf{v} in the domain of T and all scalars c, d.

The Matrix of a Linear Transformation

Let $T:\mathbb{R}^n o \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(x) = Ax$$
 for all x in \mathbb{R}^n

In fact, *A* is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_i)$ is the jth column of the identity matrix in \mathbb{R}^n :

$$A = [T(e_1) \quad \cdots \quad T(e_n)]$$

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of *at least one* **x** in \mathbb{R}^n .

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of *at most one* **x** in \mathbb{R}^n .

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then:

- 1. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m
- 2. T is one-to-one if and only if the columns of A are linearly independent.

Chapter 2: Matrix Algebra

Matrix Operations

Let *A*, *B*, and *C* be matrices of the same size, and let *r* and *s* be scalars.

$$1. A + B = B + A$$

2.
$$(A + B) + C = A + (B + C)$$

$$3. A + 0 = A$$

$$4. r(A+B) = rA + rB$$

$$5. (r + s)A = rA + sA$$

6.
$$r(sA) = (rs)A$$

If *A* is an $m \times n$ matrix, and if *B* is an $n \times p$ matrix with columns b_1, \ldots, b_p , then the product *AB* is the $m \times p$ matrix whose columns are Ab_1, \ldots, Ab_p . That is,

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_p \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$$

Each column *AB* is a linear combination of the columns of *A* using weights from the corresponding column of *B*.

Row-Column Rule for Computing AB

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i for A and column j of B. If $(AB)_{ij}$ denotes the (i, j)-entry in AB, and if A is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

Properties of Matrix Multiplication

Let *A* be an *m* x *n* matrix, and let *B* and *C* have sizes for which the indicated sums and products are defined.

$$1. A(BC) = (AB)C$$

$$2. A(B+C) = AB + AC$$

3.
$$(B + C)A = BA + CA$$

$$4. \ r(AB) = (rA)B = A(rB)$$

5.
$$I_m A = A = *AI_m$$

Warnings:

- 1. In general, $AB \neq BA$
- 2. The cancellation laws do *not* hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C.
- 3. If a product AB is the zero matrix, you *cannot* conclude in general that either A = 0 or B = 0.

The Transpose of a Matrix

Let *A* and *B* denote matrices whose sizes are appropriate for the following sums and products.

1.
$$(A^T)^T = A$$

2.
$$(A + B)^T = A^T + B^T$$

3. For any scalar
$$r$$
, $(rA)^T = rA^T$

4.
$$(AB)^T = B^T A^T$$

The transpose of a product of matrices equals the product of their transposes in the reverse order.

The Inverse of a Matrix

$$A^{-1}A = I \text{ and } AA^{-1} = I$$

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = rac{1}{ad-bc}egin{bmatrix} d & -b \ -c & a \end{bmatrix}$$

if ad - bc = 0, then *A* is not invertible.

If *A* is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

- 1. If *A* is an invertible matrix, then A^{-1} is invertible and $(A^{-1})^{-1} = A$
- 2. If *A* and *B* are *n* x n invertible matrices, then so is *AB*, and the inverse of *AB* is the product of the inverse of *A* and *B* in the reverse order. That is, $(AB)^{-1} = B^{-1}A^{-1}$
- 3. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is, $(A^T)^{-1} = (A^{-1})^T$

The product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order.

If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operations on I_m .

Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into E.

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .

Algorithm for Finding A^{-1}

Row reduce the augmented matrix $[A \ I]$. If A is row equivalent to I, then $[A \ I]$ is row equivalent to $[I \ A^{-1}]$. Otherwise, A does not have an inverse.

Characterizations of Invertible Matrices

The Invertible Matrix Theorem

Let *A* be a square *n* x *n* matrix. Then the following statements are equivalent. That is, for a given *A*, the statements are either all true or all false.

- 1. *A* is an invertible matrix.
- 2. A is row equivalent to the $n \times n$ identity matrix.
- 3. *A* has *n* pivot positions.
- 4. The equation Ax = 0 has only the trivial solution.
- 5. The columns of *A* form a linearly independent set.
- 6. The linear transformation $x \to Ax$ is one-to-one.
- 7. The equation Ax = b has at least one solution for **b** in \mathbb{R}^n .
- 8. The columns of *A* span \mathbb{R}^n .

- 9. The linear transformation $x \to Ax$ maps \mathbb{R}^n onto \mathbb{R}^n .
- 10. There is an $n \times n$ matrix C such that CA = I.
- 11. There is an $n \times n$ matrix D such that AD = I.
- 12. A^T is an invertible matrix.

Let *A* and *B* be square matrices. If AB = I, then *A* and *B* are both invertible, with $B = A^{-1}$ and $A = B^{-1}$.

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(x) = A^{-1}x$ is the unique function satisfying equations S(T(x)) = x and T(S(x)) = x.

Partitioned Matrices

Column-Row Expansion of *AB*

If A is $m \times n$ and B is $n \times p$, then

$$AB = [\, col_1(A) \quad col_2(A) \quad \cdots \quad col_n(A) \,] egin{bmatrix} row_1(B) \ row_2(B) \ dots \ row_n(B) \ \end{bmatrix} \ = col_1(A)row_1(B) + \cdots + col_n(A)row_n(B)$$

Matrix Factorizations

Algorithm for an LU Factorization

- 1. Reduce *A* to an echelon form *U* by a sequence of row replacement operations, if possible.
- 2. Place entries in *L* such that the same sequence of row operations reduces *L* to *I*.

Subspaces of \mathbb{R}^n

A **subspace** of \mathbb{R}^n in any set H in \mathbb{R}^n that has three properties:

- 1. the zero vector is in *H*.
- 2. For each **u** and **v** in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
- 3. For each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.

The **column space** of a matrix *A* is the set Col *A* of all linear combinations of the columns of *A*.

The **null space** of a matrix *A* is the set Nul *A* of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions of a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations n unknowns is a subspace of \mathbb{R}^n .

A **basis** for a subspace H of \mathbb{R}^n is a linearly independent set of H that spans H.

The pivot columns of a matrix *A* from the basis for the column space of *A*.

Dimension and Rank

Coordinate Systems

Suppose the set $\beta = \{b_1, \dots, b_p\}$ is a basis for a subspace H. For each \mathbf{x} in H, the **coordinates of \mathbf{x} relative to the basis** β are the weights c_1, \dots, c_p such that $x = c_1b_1 + \dots + c_pb_p$, and the vector in \mathbb{R}^p

$$[x]_eta = egin{bmatrix} c_1 \ dots \ c_p \end{bmatrix}$$

is called the **coordinate vector of x** (relative to β) or the β -coordinate vector of x.

The **dimension** of a nonzero subspace H, denoted by dim H, is the number of vectors in any basis for H. The dimension of the zero subspace $\{0\}$ is defined to be zero.

The **rank** of a matrix *A*, denoted by rank *A*, is the dimension of the columns space of *A*.

The Rank Theorem

If a matrix A has n columns, then rank A + dim Nul A = n.

The Basis Theorem

Let H be a p-dimensional subspace of \mathbb{R}^n . Any linearly independent set of exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that spans H is automatically a basis for H.

The Invertible Matrix Theorem (continued)

- 1. The columns of *A* from a basis of \mathbb{R}^n .
- 2. Col $A = \mathbb{R}^n$
- 3. $\dim \operatorname{Col} A = n$
- 4. $\operatorname{rank} A = n$
- 5. Nul $A = \{0\}$
- 6. dim Nul $A = \{0\}$

Chapter 3: Determinants

Introduction to Determinants

For $n \ge 2$, the **determinant** of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of n terms of the form $\pm a_{ij} \det A_{1j}$, with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{1n}$ are from the first row of A. In symbols,

$$egin{align} det A &= a_{11} det A_{11} - a_{12} det A_{12} + \dots + (-1)^{1+n} a_{1n} det A_{1n} \ &= \sum_{j=1}^n {(-1)^{1+j} a_{1j} det A_{1j}} \ \end{gathered}$$

The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column. The expansion across the ith row using the cofactors in $C_{ij} = (-1)^{i+j} det A_{ij}$ is

$$det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$$

The cofactor expansion down the *j*th column is

$$det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$

If A is a triangular matrix, then det A is the product of the entires on the main diagonal of A.

Properties of Determinants

Row Operations

Let *A* be a square matrix.

- 1. If a multiple of one row of A is added to another row to produce matrix B, then det B = det A
- 2. If two rows of *A* are interchanged to produce *B*, then B = -det A
- 3. If own row of *A* is multiplied by *k* to produce *B*, then $B = k \cdot det A$

A square matrix *A* is invertible if and only if $det A \neq 0$.

If *A* is an $n \times m$ matrix, then $det A^T = det A$.

Multiplicative Property

If *A* and *B* are $n \times n$ matrices, then detAB = (detA)(detB).

Cramer's Rule, Volume, and Linear Transformations

Cramer's Rule

Let *A* be an invertible $n \times n$ matrix. For any **b** in \mathbb{R}^n , the unique solution **x** of A**x** = **b** has entries given by

$$x_i = rac{det A_i(B)}{det A}, i = 1, 2, \ldots, n$$

An Inverse Formula

Let A be an invertible $n \times n$ matrix. Then

$$A^{-1} = rac{1}{det A} adj A$$

Determinants as Area of Volume

If *A* is a 2 \times 2 matrix, the area of the parallelogram determined by the columns of *A* is |det A|. If *A* is a 3 \times 3 matrix, the volume of the parallelepiped determined by the columns of *A* is |det A|.

Let a_1 and a_2 be nonzero vectors. Then for any scalar c, the area of the parallelogram determined by a_1 and a_2 equals the area of the parallelogram determined by a_1 and $a_2 + ca_1$.

Linear Transformations

let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then

$$\{\text{area of } T(S)\} = |det A| \cdot \{\text{area of } S\}$$

If *T* is determined by a 3 \times 3 matrix *A*, and if *S* is a parallelepiped in \mathbb{R}^3 , then

$$\{\text{volume of } T(S)\} = |det A| \cdot \{\text{volume of } S\}$$

Chapter 4: Vector Spaces

Vector Spaces and Subspaces

A **vector space** is a nonempty set V of objects, called *vectors*, on which are defined two operations, called *addition* and *multiplication by scalars* (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars c and d.

- 1. The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V
- 2. u + v = v + u
- 3. (u + v) + w = u + (v + w)
- **4.** There is a **zero** vector **0** in *V* such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. For each ${\bf u}$ in V, there is a vector ${\bf u}$ in V such that ${\bf u}$ + $({\bf u})$ = ${\bf 0}$
- 6. The scalar multiple of \mathbf{u} by c, donated by $c\mathbf{u}$, is in V
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1u = u

Subspaces

A **subspace** of a vector space V is a subspace H of V that has three properties:

- 1. the zero vector of V is in H
- 2. *H* is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v} in *H*, the sum $\mathbf{u} + \mathbf{v}$ is in *H*
- 3. H is closed under multiplication by scalars. That is, for each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H

If v_1, \ldots, v_p are in a vector space V, then $\mathrm{Span}\{v_1, \ldots, v_p\}$ is a subspace of V.

Null Spaces, Column Spaces, and Linear Transformations

The **null space** of an $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

$$NulA = \{x : x \text{ is in } \mathbb{R}^n \text{ and } Ax = 0\}$$

the null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations n unknowns is a subspace of \mathbb{R}^n .

The Column Space of a Matrix

The **column space** of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If $A = [a_1, \ldots, a_n]$, then

$$ColA = Span\{a_1, \ldots, a_n\}$$

The column space of $m \times n$ matrix A is a subspace of \mathbb{R}^m .

The column space of an $m \times n$ matrix A is all of \mathbb{R}^m if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^m .

A **linear transformation** T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} , in V
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in V and all scalars c

Linearly Independent Sets; Bases

An indexed set $\{v_1, \ldots, v_p\}$ of two or more vectors, with $v_1 \neq 0$, is linearly dependent if and only if some v_j (with j > 1) is a linear combination of the preceding vectors, v_1, \ldots, v_{j-1} .

Let *H* be a subspace of a vector space *V*. An indexed set of vectors $\beta = \{b_1, \dots, b_p\}$ in *V* is a **basis** for *H* if

- 1. β is a linearly independent set
- 2. The subspace spanned by β coincides with H; that is, $H = Span\{b_1, \dots, b_p\}$

The Spanning Set Theorem

Let $S = \{v_1, \dots, v_p\}$ be a set in V, and let $H = Span\{v_1, \dots, v_p\}$.

- 1. if one of the vectors in S, say v_k is a linear combination of the remaining vectors in S, then the set formed from S by removing v_k still spans H.
- 2. If $H \neq \{0\}$, some subset of *S* is a basis for *H*.

Bases for Nul A and Col A

The pivot columns of a matrix *A* from a basis for Col *A*

Coordinate Systems

The Unique Representation Theorem

Let $\beta = \{b_1, \dots, b_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$x = c_1 b_1 + \dots + c_n b_n$$

Suppose $\beta = \{b_1, \dots, b_n\}$ is a basis for V and \mathbf{x} is in V. the **coordinates of \mathbf{x} relative to the basis** β **(or the** β **-coordinates of \mathbf{x})** are the weights c_1, \dots, c_n such that $x = c_1b_1 + \dots + c_nb_n$

Coordinates in \mathbb{R}^n

$$P_{\beta} = [b_1 \quad b_2 \quad \cdots \quad b_n]$$

The Coordinate Mapping

Let $\beta = \{b_1, \dots, b_n\}$ be a basis for a vector space V. Then the coordinate mapping $x \to [x]_\beta$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

The Dimension of a Vector Space

If a vector space V has a basis $\beta = \{b_1, \dots, b_n\}$, then any set in V containing more than n vectors must be linearly dependent.

If a vector space *V* has a basis of *n* vectors, then every basis of *V* must consist of exactly *n* vectors.

If V is spanned by a finite set, then V is said to be **finite-dimensional**, and the **dimension** of V, written as dim V, is the number of vectors in a basis for V. The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a fine set, then V is said to be **infinite-dimensional**.

Subspaces of a Finite-Dimensional Space

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded to a basis for H. Also, H is finite-dimensional and $dimH \leq dimV$.

The Basis Theorem

Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

The Dimensions of Nul A and Col A

The dimension of Nul A is the number of free variables in the equation Ax = 0, and the dimension of Col A is the number of pivot columns in A.

Rank

The Row Space

If two matrices *A* and *B* are row equivalent, then their, row spaces are the same. If *B* is in echelon form, the nonzero rows of *B* form a basis for the row space of *A* as well as for that of *B*.

The Rank Theorem

The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation rankA + dimNulA = n

The **rank** of *A* is the dimension of the column space of *A*.

Rank and the Invertible Matrix Theorem

Let *A* be an *n* x *n* matrix. Then the following statements are each equivalent to the statement that *A* is an invertible matrix.

- 1. The columns of *A* form a basis for \mathbb{R}^n
- 2. $ColA = \mathbb{R}^n$
- 3. dimColA = n
- 4. rankA = n
- 5. $NulA = \{0\}$
- 6. dimNulA = 0

Change of Basis

Let $B = \{b_1, \dots, b_n\}$ and $C = \{c_1, \dots, c_n\}$ be bases of a vector space V. then there is a unique $n \times n$ matrix $P_{C \leftarrow B}$ such that

$$[x]_C = P_{C \leftarrow B}[x]_B$$

The columns of $P_{C \leftarrow B}$ are the *C*-coordinate vectors of the vectors in the basis *B*. That is,

$$P_{C\leftarrow B} = [\,[b_1]_c \quad [b_2]_c \quad \cdots \quad [b_n]_c\,]$$