05/18/2017

Hasibul Islam

Physics 208-CC3

Lab 6- Electrical Resonance

PROCEDURE:

In this Lab we will study the behavior of the R-L-C circuit and characterize of the sinusoidal signal, Resonance occurs in electrical circuit also, which we can simulate using the sinusoidal

Apparatus:

- R-L-C Circuit board
- Signal generator
 Oscilloscope Tektronix
 TDS1002 with two sets of leads

signal. And set up the R-L-C circuit with sinusoidal signal and oscilloscope; make sure all setting is correct.

Data/Calculations/Questions:

❖ Formula: L-R-C Circuit

$$\begin{split} V_{s} &= V_{c} + V_{L} + V_{R} \\ V_{s} &= V_{0} sinwt \\ V_{R} &= I_{0} R sin(wt - \emptyset), \quad tan\emptyset \\ &= \frac{\omega L - \frac{1}{\omega C}}{R} \\ I_{o} Z &= V_{o}, \quad Z &= \sqrt{R^{2} + (\omega L - \frac{1}{\omega C})^{2}} \end{split}$$

F	V0	Vr	K-Vr/V0
2	1.08	0.118	0.10925926
3	1.06	0.192	0.18113208
4	1.04	0.32	0.30769231
5	1.02	0.48	0.47058824
5.2	1.02	0.52	0.50980392
5.4	1.02	0.56	0.54901961
5.6	1	0.608	0.608
5.8	0.98	0.656	0.66938776
6	0.98	0.696	0.71020408
6.2	0.98	0.736	0.75102041
6.4	0.98	0.76	0.7755102
6.6	0.98	0.784	0.8
6.8	0.96	0.792	0.825
7	0.96	0.784	0.81666667
7.2	0.96	0.768	0.8
7.4	0.94	0.752	0.8
7.6	0.94	0.72	0.76595745
7.8	0.94	0.688	0.73191489
8	0.94	0.656	0.69787234
9	0.92	0.52	0.56521739
10	0.9	0.416	0.46222222

When,

$$\omega L - \frac{1}{\omega C} = 0 \Rightarrow \omega = \frac{f}{2\pi} = \sqrt{LC}$$

$$Z=R-> mm \Rightarrow I_a \rightarrow max$$

$$V_R \rightarrow max$$

$$\Rightarrow \frac{V_R}{\Box_0} \rightarrow max, \ \emptyset \rightarrow 0$$

Analysis

- 1. Frequency of Resonance $f_0 = ?k = ?$
 - > R-L-C series circuit

$$\rightarrow$$
 f₀ $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.31 \times 0.25 \times 10^{-6}}} = 35921.06 \text{ rad/s}$

$$ightharpoonup f_0 = \frac{\omega_0}{2\pi rad} = 5717.01 = 5.7 \text{kHz}$$

- **2. Window** $f_2 f_1 = ?$
 - ➤ Window f2-f1= 0.3 kHz
- 3. Quality factor: $Q = \frac{f_0}{f_2 f_1} = ?$

$$ightharpoonup Z = \sqrt{R^2 + \left(wL - \frac{1}{WC}\right)^2}$$

$$ightharpoonup$$
 Q= 2.41

> z from formula 1087ohm

$$> z = V_0 / I_0 = 990.56$$

$$\geq \frac{1.05}{1.06x10^{-3}} = 990.56 \text{ ohm}$$

Discussion

Experiment of this lab, investigated resonance phenomena of the electrical circuit in the system of RLC and as know Z=R(wL-1/wC=0). And concept of resonance and understand the phase shifts between the current and voltages in a RLC circuit and the electrical resonance phenomena. And be able to calculate the current flow, voltage, and phase difference using the data through mathematical equation.