Finding roots 1

We love linear functions and trigonometric functions. So I made a new function

$$f(x) = Ax + B\sin x + C\cos x$$

where A, B, C are fixed **non-negative** integer constants that are given to you.

We also love obtuse triangles, so $A^2 > B^2 + C^2$ is always true.

With these conditions, it is guaranteed that for all $D \in \mathbb{R}$, there exists exactly one x_0 such that $f(x_0) = D$. In other words, there exists exactly one root of the equation f(x) = D.

Given A, B, C and D, please write a program that finds the root of the equation f(x) = D. To make x non-negative, it is guaranteed that $D \ge C$.

Input

Your input consists of an arbitrary number of lines, but no more than 1,000.

For each input line, four space-separated integers A, B, C, D ($0 \le A, B, C \le 100$, $C \le D \le 10{,}000$, $A^2 > B^2 + C^2$) are given.

The end of input is indicated by a line containing only the value -1.

Output

For each input line, print the root of the equation f(x) = D. The root should be truncated to a multiple of 0.001, and formatted to three digits after the decimal period. The order of output should be the same as the input.

Notes

You can calculate f(x) using the code below:

```
#include <math.h>
double f (double x) {
    return A * x + B * sin(x) + C * cos(x);
}
```

Example

Standard input	Standard output
3 0 0 100	33.333
1 1 0 100	100.263
2 1 1 1	0.000
2 1 1 7	4.183
-1	

Time Limit

1 second.