Computação Evolucionária 🧬

Prof. Me. Alexandre Henrick

Sistemas de Informação - 8º P

Computação Evolucionária

- Linha de pesquisa da I.A que propõe um paradigma para desenvolvimento de soluções baseando-se na evolução por seleção natural (Darwin, 1859).
- Assim como outras áreas da IA, se inspira na natureza para construção de algoritmos.

Diagrama de Venn - Computação Evolucionária

Pequeno Histórico da Computação Evolucionária

- Métodos inspirados na evolução de Darwin começam a ser propostos em 1958
- Anos 60: Algoritmos Genéticos
- 1992: Programação Genética
- Anos 90 essas técnicas foram combinadas formando a área de Computação Evolucionária

Onde usamos CE?

- Engenharia;
- Design de circuitos;
- Modelos financeiros;
- Jogos;
- Bioinformática;
- Modelagem

Seleção Natural

No cenário
 apresentado, dizemos
 que os besouros
 morrons são mais
 "aptos"

As 3 características da Seleção Natural

Variabilidade Genética

- Introduz novas características que podem, ou não, serem vantajosas no ambiente que o indivíduo vive
- Aumenta a possibilidade de indivíduos mais "aptos"
- Mutação é um dos principais mecanismos

Reprodução Diferencial

- Os indivíduos menos aptos (besouros verdes) reproduzem menos
- Besouros marrons, por serem a maioria devido a sua aptidão, passam a reproduzir mais

Hereditariedade

- Os besouros marrons passam suas características para gerações futuras
- Espécies mais aptas passam a existir
- A principal característica, a cor marrom, passa a ser bastante presente nas próximas gerações

Representação visual da Evolução

visão geral do espaço de busca

geração atual

escolha dos indivíduos que irão se reproduzir e aqueles que irão ser substituídos

próxima geração

A lacuna na teoria de Darwin

- Teoria não explicou como as mutações ocorriam e eram transmitidas. Onde eram "armazenadas"?
- Gregor Mendel (1865), conseguiu prever a probabilidade de um "elemento celular" ser preservado em gerações futuras

Genética Mendeliana

- Esse elemento é o que hoje chamamos de Gene, a unidade de hereditariedade do DNA (ácido desoxirribonucleico)
- Ou seja, essa unidade contribui para a formação em nível celular das características de qualquer espécie

- John Henry Holland
 1929 2015
- Através de experiências com RNAs, percebeu elo entre Biologia e Computação

- Criou modelo
 matemático do
 processo evolutivo
- Livro: Adaptation in Natural and Artificial Systems -1975

- David E. Goldberg 1953 -
- Orientado por John Henry Holland.
 Estendeu seus trabalhos sobre AGs
- Livro: Genetic
 Algorithms in
 Search, Optimization
 and Machine
 Learning 1989

- Algoritmos de busca não determinista inspirados na Evolução
- Busca e otimização
- Ao longo dos anos aplicado em diferentes tipos de problemas. Ex: classificação (Machine Learning)

- Preferencialmente utilizados em problemas onde o espaço de busca é muito grande
- Não necessariamente (quase nunca) queremos chegar na solução ótima, mas sim naquela mais próxima da ótima (melhor possível)

- Os elementos principais são:
 - População de indivíduos (codificados para representarem as possíveis soluções);
 - o Avaliação dos indivíduos (Aptidão ou Fitness);
 - Seleção (Quem irá propagar os genes?);
 - Recombinação (crossover);
 - Mutação

- A aplicação desses operadores genéticos promove uma competição entre os indivíduos
- Sobrevivência dos mais aptos

Cromossomo - AGs

- Assim como na biologia, em AGs codificamos informação
- Em AGs, os termos cromossomos e indivíduos são intercambiáveis
- Representam **possíveis soluções**
- Forma mais básica é o string de bits

Estrutura de um Cromossomo - AGs

Problema da mochila - Cromossomo

- Clássico da otimização combinatória
- Enunciado simples mas solução complexa
- ullet Encher uma mochila de peso X com n itens, maximizando o valor total desses itens
- Restrição: Peso da mochila não deve ser excedido

Problema da mochila - Cromossomo

- Número de combinações pode crescer exponencialmente conforme o número de itens
- ullet Para 5 itens temos $2^5=32$ combinações possíveis
- ullet Para 12 itens $2^{12}=4.096$ combinações possíveis
- Quanto tempo levaria para encontrar a melhor solução?
- Computacionalmente pode ser custoso comparar tantas combinações

Como representar soluções desse problema em AGs?

Como codificar nossos indivíduos?

0 = Levar 1 = Não levar

Problema da mochila - Cromossomo

- Usamos string de bits
- Cada gene (posição na string) representa um item
- Esses itens possuem suas propriedades
- Para a aptidão (fitness) podemos usar o valor total dos itens que vamos levar (maximizar valor)

Em AGs precisamos definir um critério de parada

No exemplo da mochila, qual poderia ser nosso critério de parada?

Problema da mochila - Cromossomo

- Para o prblema da mochila, onde temos um número de combinações muito grande, o valor máximo pode ser desconhecido
- Portanto, não conseguimos usar esse valor como critério de parada (Não sabemos a resposta)
- Por esse motivo, podemos usar o número de gerações
- Obs: Passamos a ter um parâmetro extra

Parâmetros dos AGs

- Alguns parâmetros que precisamos testar com os AGs:
 - \circ TP = Tamanho da População
 - \circ Pmut = Probabilidade de mutação
 - \circ Pcross = Probabilidade de crossover
 - Número de gerações (iterações)

Operador de Seleção

- Simula a sobrevivência do mais apto
- Baseado no fitness, seleciona quem vai reproduzir e perpetuar seus genes
- De maneira geral seleciona os mais aptos com mais frequência
- Mas não descarte os menos aptos

Operador de Seleção - Roleta

- Simula uma roleta
- Cada indivíduo possui uma "porção" da roleta
- Tamanho da porção depende do fitness
- Menos aptos também pode ser selecionados

$$p_i = \frac{f_i}{\sum_{i=1}^N f_i}$$

Operador de Seleção - Roleta

Operador de Crossover

- Indivíduos escolhidos pelo operador de seleção são conhecidos como pais
- São neles que o Crossover será aplicado e novos filhos será gerados para a próxima geração
- Simula a reprodução sexuada para a troca de informação genética

Operador de Crossover - 1 ponto

Pai 1							Filho 1					
1	1	0	1	0	0		1	1	0	1	1	1
Pai 2						\rightarrow	Filho	2				
0	1	0	1	1	1		0	1	0	1	0	0

Operador de Crossover - 2 pontos

Pai 1				Filho 1								
0	1	1	1	0	1		0	1	0	0	0	1
Pai 2					\rightarrow	Filho	2					
1	1	0	0	0	1		1	1	1	1	0	1
						•						

Operador de Mutação

- O elitismo pode prejudicar a capacidade de busca dos AGs
- Ao longo das gerações podemos ter indivíduos muito parecidos
- Fenômeno dos mínimos locais/ótimos locais
- Precisamos introduzir variabilidade genética
- Isso é feito pela seleção, mas principalmente por mutação

Operador de Mutação

- Selecionamos randomicamente os valores de um ou mais genes de um indivíduo para modificar
- ullet A seleção é feita baseada no parâmetro Pmut (probabilidade de mutação)
- Para codificação binária de string de bits, basta utilizar um bit swap

Operador de Mutação

Reinserção

- Como será selecionados os indivíduos para a próxima geração?
- É a última etapa
- Reinserção pura: Apenas os filhos passam para a próxima geração
- ullet Melhores pais e filhos: Os Tp da população corrente passam para a próxima geração
- Elitismo: Os n melhores da geração anterior passam para a próximo. O melhor da próxima geração é pelo menos igual ao da anterior