

1/29

Fig. 1



BEST AVAILABLE COPY

2/29

Fig. 1a



3/29

Fig. 1b



4/29

**Fig. 2**



Fig. 3



Fig. 4



Fig. 5



Fig. 6



Fig. 7



Fig. 7a



Fig. 8



Fig. 9





Fig. 11



Fig. 12





Fig. 14



Fig. 14a



Fig. 15



Fig. 16



Fig. 17



Fig. 18



Fig. 19



Fig. 20



25 / 29

Fig. 21



Fig. 22a



Fig. 22b



FIG. 23



FIG. 24B



FIG. 24A



FIG. 24C



**FIG. 25**  
**DRAIN ANALYSIS APD**

| [min] | Vol. [ml] | Cycle 1   |             | Cycle 2 |           | Vol.        |             | Cycle 3 |             | Vol.  |           | Cycle 4     |           | Vol.  |             | Cycle 5 |           |       |
|-------|-----------|-----------|-------------|---------|-----------|-------------|-------------|---------|-------------|-------|-----------|-------------|-----------|-------|-------------|---------|-----------|-------|
|       |           | Q [l/min] | Q [l/min]   | [ml]    | Q [l/min] | [ml]        | Q [l/min]   | [ml]    | Q [l/min]   | [ml]  | Q [l/min] | [ml]        | Q [l/min] | [ml]  | Q [l/min]   | [ml]    | Q [l/min] | [ml]  |
| 0     | 2330      |           |             | 2752    |           |             | 2503        |         |             | 2665  |           |             | 2690      |       | 0.175       |         | 2580      | 0.156 |
| 1     | 2431      | 0.199     |             | 2600    | 0.152     |             | 2294        | 0.209   |             | 2251  | 0.237     |             | 2348      |       | 0.232       |         |           |       |
| 2     | 1900      | 0.231     |             | 2375    | 0.225     |             | 2087        | 0.207   |             | 2035  | 0.218     |             | 2120      |       | 0.228       |         |           |       |
| 3     | 1681      | 0.219     |             | 2158    | 0.217     |             | 1869        | 0.227   |             | 1819  | 0.226     |             | 1892      |       | 0.228       |         |           |       |
| 4     | 1453      | 0.228     |             | 1941    | 0.217     |             | 1637        | 0.223   |             | 1585  | 0.224     |             | 1651      |       | 0.241       |         |           |       |
| 5     | 1223      | 0.220     |             | 1725    | 0.216     |             | 1420        | 0.217   |             | 1193  | 0.227     |             | 1369      | 0.216 |             | 1421    | 0.230     |       |
| 6     | 1023      | 0.210     |             | 1499    | 0.226     |             | 976         | 0.217   |             | 1143  | 0.226     |             | 1200      |       | 0.221       |         |           |       |
| 7     | 797       | 0.226     |             | 1292    | 0.207     |             | 750         | 0.226   |             | 927   | 0.216     |             | 991       |       | 0.209       |         |           |       |
| 8     | 579       | 0.218     |             | 1075    | 0.217     |             | 532         | 0.218   |             | 721   | 0.206     |             | 784       |       | 0.207       |         |           |       |
| 9     | 367       | 0.212     |             | 848     | 0.227     |             | 326         | 0.216   | threshold 1 | 512   | 0.209     | threshold 1 | 583       | 0.201 | threshold 1 |         |           |       |
| 10    | 173       | 0.194     | threshold 1 | 644     | 0.204     |             | 147         | 0.179   | threshold 2 | 433   | 0.079     |             | 404       | 0.179 |             |         |           |       |
| 11    | 72        | 0.101     | threshold 2 | 437     | 0.207     |             |             |         |             |       |           |             |           |       |             |         |           |       |
| 12    | 50        | 0.027     | Q [l/min]   | 232     | 0.205     | threshold 1 | 72          | 0.075   | Q [l/min]   | 374   | 0.059     |             | 302       | 0.102 |             |         |           |       |
| 13    | 29        | 0.021     | Q [l/min]   | 0.216   | 74        | 0.153       | threshold 2 | 0.072   | Q [l/min]   | 507   | 0.067     |             | 228       | 0.074 | threshold 2 |         |           |       |
| 14    | 20        | 0.019     | Q [l/min]   | 0.101   | 0.099     | 0.035       | 0.021       | 0.021   | Q [l/min]   | 0.075 | 0.094     | threshold 2 | 0.055     |       |             |         |           |       |
| 15    | 10        | 0.016     | Q [l/min]   | 0.017   | 0.012     | 0.021       | 0.024       | 0.024   | Q [l/min]   | 0.024 | 0.024     | Q [l/min]   | 0.2153    | 0.212 |             |         |           |       |
| 16    |           |           | Q [l/min]   |         |           | 0.158       |             |         | Q [l/min]   |       |           | Q [l/min]   |           | 0.088 |             |         |           |       |
| 17    |           |           | Q [l/min]   |         |           | 0.0185      |             |         | Q [l/min]   |       |           | Q [l/min]   |           | 0.021 |             |         |           |       |
| 18    |           |           | Q [l/min]   |         |           |             |             |         | Q [l/min]   |       |           | Q [l/min]   |           |       |             |         |           |       |
| 19    |           |           | Q [l/min]   |         |           |             |             |         | Q [l/min]   |       |           | Q [l/min]   |           |       |             |         |           |       |
| 20    |           |           | Q [l/min]   |         |           |             |             |         | Q [l/min]   |       |           | Q [l/min]   |           |       |             |         |           |       |
| 21    |           |           | Q [l/min]   |         |           |             |             |         | Q [l/min]   |       |           | Q [l/min]   |           |       |             |         |           |       |
| 22    |           |           | Q [l/min]   |         |           |             |             |         | Q [l/min]   |       |           | Q [l/min]   |           |       |             |         |           |       |
| 23    |           |           | Q [l/min]   |         |           |             |             |         | Q [l/min]   |       |           | Q [l/min]   |           |       |             |         |           |       |
| 24    |           |           | Q [l/min]   |         |           |             |             |         | Q [l/min]   |       |           | Q [l/min]   |           |       |             |         |           |       |

Patient BH

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**