ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU!

Miejsce na naklejkę

MMA-R1 1P-082

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

Czas pracy 180 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 18 stron (zadania 1 12). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Życzymy powodzenia!

MAJ ROK 2008

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

Wypełnia zdający przed rozpoczęciem pracy										
PESEL ZDAJĄCEGO										

KOD ZDAJĄCEGO

Zadanie 1. (4 pkt)

Wielomian f, którego fragment wykresu przedstawiono na poniższym rysunku spełnia warunek f(0) = 90. Wielomian g dany jest wzorem $g(x) = x^3 - 14x^2 + 63x - 90$. Wykaż, że g(x) = -f(-x) dla $x \in R$.

	Nr zadania	1.1	1.2	1.3	1.4
agzaminator!	Maks. liczba pkt	1	1	1	1
	Uzyskana liczba pkt				

Zadanie 2. (4 pkt)

Rozwiąż nierówność |x-2|+|3x-6|<|x|.

	Nr zadania	2.1	2.2	2.3	2.4
agzaminatori	Maks. liczba pkt	1	1	1	1
	Uzyskana liczba pkt				

Zadanie 3. (5 pkt)

Liczby $x_1 = 5 + \sqrt{23}$ i $x_2 = 5 - \sqrt{23}$ są rozwiązaniami równania $x^2 - (p^2 + q^2)x + (p + q) = 0$ z niewiadomą x. Oblicz wartości p i q.

	Nr zadania	3.1	3.2	3.3	3.4	3.5
Wypełnia egzaminator!	Maks. liczba pkt	1	1	1	1	1
	Uzyskana liczba pkt					

Zadanie 4. (4 pkt)

Rozwiąż równanie $4\cos^2 x = 4\sin x + 1$ w przedziale $\langle 0, 2\pi \rangle$.

	Nr zadania	4.1	4.2	4.3	4.4
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 5. (5 pkt)

Dane jest równanie $\left|\frac{2}{x}+3\right|=p$ z niewiadomą x. Wyznacz liczbę rozwiązań tego równania w zależności od parametru p.

	Nr zadania	5.1	5.2	5.3	5.4	5.5
	Maks. liczba pkt	1	1	1	1	1
egzaminator!	Uzyskana liczba pkt					

Zadanie 6. (3 pkt)

Udowodnij, że jeżeli ciąg (a,b,c) jest jednocześnie arytmetyczny i geometryczny, to a=b=c.

	Nr zadania	6.1	6.2	6.3
Wypełnia	Maks. liczba pkt	1	1	1
egzaminator!	Uzyskana liczba pkt			

Zadanie 7. (4 pkt)

Uzasadnij, że każdy punkt paraboli o równaniu $y = \frac{1}{4}x^2 + 1$ jest równoodległy od osi Ox i od punktu F = (0, 2).

	Nr zadania	7.1	7.2	7.3	7.4
Wypełnia	Maks. liczba pkt	1	1	1	1
egzaminator!	Uzyskana liczba pkt				

Zadanie 8. (4 pkt) Wyznacz współrzędne środka jednokładności, w której obrazem okręgu o równaniu $(x-16)^2 + y^2 = 4$ jest okrąg o równaniu $(x-6)^2 + (y-4)^2 = 16$, a skala tej jednokładności jest liczbą ujemną.

egzaminator!	Nr zadania	8.1	8.2	8.3	8.4
	Maks. liczba pkt	1	1	1	1
	Uzyskana liczba pkt				

Zadanie 9. *(4 pkt)*

Wyznacz dziedzinę i najmniejszą wartość funkcji
$$f(x) = \log_{\frac{\sqrt{2}}{2}} (8x - x^2)$$
.

	Nr zadania	9.1	9.2	9.3	9.4
Wypełnia egzaminator!	Maks. liczba pkt	1	1	1	1
	Uzyskana liczba pkt				

Zadanie 10. *(4 pkt)*

Z pewnej grupy osób, w której jest dwa razy więcej mężczyzn niż kobiet, wybrano losowo dwuosobową delegację. Prawdopodobieństwo tego, że w delegacji znajdą się tylko kobiety jest równe 0,1. Oblicz, ile kobiet i ilu mężczyzn jest w tej grupie.

		Nr zadania	10.1	10.2	10.3	10.4
Wypełnia egzaminator!	Maks. liczba pkt	1	1	1	1	
	Uzyskana liczba pkt					

Zadanie 11. *(5 pkt)*

W ostrosłupie prawidłowym czworokątnym dane są: H – wysokość ostrosłupa oraz α – miara kąta utworzonego przez krawędź boczną i krawędź podstawy ($45^{\circ} < \alpha < 90^{\circ}$).

- a) Wykaż, że objętość V tego ostrosłupa jest równa $\frac{4}{3} \cdot \frac{H^3}{\operatorname{tg}^2 \alpha 1}$.
- b) Oblicz miarę kąta α , dla której objętość V danego ostrosłupa jest równa $\frac{2}{9}H^3$. Wynik podaj w zaokrągleniu do całkowitej liczby stopni.

	Nr zadania	11.1	11.2	11.3	11.4	11.5
Wypełnia egzaminator!	Maks. liczba pkt	1	1	1	1	1
	Uzyskana liczba pkt					

Zadanie 12. (4 pkt)

W trójkącie prostokątnym ABC przyprostokątne mają długości: |BC| = 9, |CA| = 12. Na boku AB wybrano punkt D tak, że odcinki BC i CD mają równe długości. Oblicz długość odcinka AD.

Wypełnia egzaminator!	Nr zadania	12.1	12.2	12.3	12.4
	Maks. liczba pkt	1	1	1	1
	Uzyskana liczba pkt				

BRUDNOPIS