

Control of Sulfur Oxides

1. Introduction

Contents

- 2. Overview of Control Strategies
- 3. Fuel Desulfurization
- 4、Flue Gas Desulfurization
- 5. Process Chemistry and Operational Factors

15.1 Introduction

- ◆ Sulfur Oxides (SO_x) : SO₂ and SO₃
- **◆** Serious effects of emissions of SO_x to the atmosphere:
 - Respiratory illnesses
 - Loss of chlorophyll in green plants
 - Acidic deposition
- **Emission sources in the U.S.**
 - Coal-fired power Plants
 - Industrial fuel combustion (petroleum refining)
 - Industrial processes (H₂SO₄ manufacturing, and smelting of nonferrous metals)

15.1 Introduction

♦ Reductions in SO_x emissions

Trend in USA Emissions of SO₂ (1970-2023)

Source Category	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
FUEL COMB. ELEC. UTIL.	4,636	3,412	3,297	3,253	2,304	1,562	1,382	1,310	1,015	836	990	903
FUEL COMB. INDUSTRIAL	682	658	614	520	441	433	376	357	331	248	247	236
FUEL COMB. OTHER	219	210	196	120	112	52	44	43	44	28	29	29
CHEMICAL & ALLIED PRODUCT MFG	126	126	122	123	113	111	111	106	96	82	81	72
METALS PROCESSING	144	144	114	105	99	85	85	74	64	50	51	53
PETROLEUM & RELATED INDUSTRIES	122	120	94	86	84	101	86	95	91	189	195	194
OTHER INDUSTRIAL PROCESSES	188	188	186	167	153	139	146	145	136	125	131	127
SOLVENT UTILIZATION	0	0	0	0	0	0	0	0	0	0	0	0
STORAGE & TRANSPORT	9	9	7	3	1	4	1	1	1	1	1	1
WASTE DISPOSAL & RECYCLING	25	25	25	25	25	24	25	25	25	36	36	35
HIGHWAY VEHICLES	27	28	27	28	27	26	24	23	17	10	9	10
OFF-HIGHWAY	119	83	83	84	26	24	27	27	27	15	18	18
MISCELLANEOUS	130	112	85	85	117	135	201	205	118	224	281	176
										•		
Total	6,428	5,117	4,850	4,598	3,502	2,696	2,508	2,411	1,965	1,845	2,068	1,853
Wildfires	45	44	21	24	66	72	102	104	26	141	174	67
Total without wildfires	6,383	5,073	4,830	4,575	3,437	2,624	2,407	2,307	1,939	1,704	1,894	1,786
Miscellaneous without wildfires	85	67	64	61	52	63	100	101	92	83	107	109

Source: Air Pollutant Emissions Trends Data | US EPA

Trend in CHN Emissions of SO₂ (2011-2022)

Source: https://www.ceicdata.com.cn/zh-hans/china/industrial-waste-air-emission/cn-sulphur-dioxide-emission

15.2 Overview of Control Strategies

◆ Two basic approaches to controlling SO_x emissions

(1) Remove sulfur from fuel before it is burned

(2) Remove SO₂ from the exhaust gases

Main Option	Suboption	Examples of Processes
Do not create SO ₂	Switch to a low-sulfur fuel Desulfurize the fuel	Convert to natural gas Oil desulfurization Coal cleaning
SO ₂ scrubbing:		o can ercanning
Throwaway	Wet scrubbing	Lime Limestone Forced oxidation Inhibited oxidation Dual alkali Magnesium Enhanced Lime (MEL)
	Dry scrubbing	Seawater Lime spray drying Lime injection Trona
Regenerative	Wet processes	Nahcolite Circulating fluidized bed
Regenerative	Wet processes	Absorption with water (smelters) Wellman-Lord MgO Citrate Carbonate Sulfite Forced oxidation (with
	Dry processes	gypsum sales) Activated carbon adsorptio Copper oxide adsorption

15.2.1 Fuel Desulfurization

- ◆ Oil desulfurization: diesel and gasoline for motor vehicle fuels (1-3% S)
- **Desulfurization units:** remove organic sulfur from oil via a catalytic reaction with hydrogen

$$R-S + H_2 \to H_2S + R$$
 (15.1)

where R represents any organic group.

- When the H₂S was burned as part of the fuel gas, it produced SO₂
 - Recovery units (Claus process): part of the H_2S is burned to SO_2 , and then the two compounds are combined over a catalyst to simultaneously oxidize and reduce each other.

$$H_2S + \frac{3}{2}O_2 \to H_2O + SO_2$$
 (15.2)

$$2H_2S + SO_2 \rightarrow 2H_2O + 3S$$
 (15.3)

- Also for Natural gas (before the gas is admitted to pipelines)
- The elemental sulfur is separated in the molten state and sold as a by-product, and the emissions of either H_2S or SO_2 from a refinery are reduced substantially.

15.2.1 Fuel Desulfurization

- **◆ Coal cleaning** (2%+ S)
- Sulfur in mineral form (pyrites (FeS₂) or mineral sulfates):
 removed relatively easily by washing or other physical cleaning processes

• Organic sulfur: Coal gasification and liquefaction processes

15.2.2 SO₂ Removal Techniques

(1) Remove sulfur from fuel before it is burned -

(2) Remove SO₂ from the exhaust gases

Flue Gas Desulfurization

A stream of gas that is dilute in SO_2 (about 0.2% or 2000 ppm SO_2).

Absorption of smelter off-gases:

Oxidize the SO_2 to SO_3 gas, and then absorb the SO_3 in water to make H_2SO_4 , which can be sold as a by-product.

A concentrated stream of SO₂ (about 10% or 100,000 ppm SO₂)

Main Option	Suboption	Examples of Processes
Do not create SO ₂	Switch to a low-sulfur fuel Desulfurize the fuel	Convert to natural gas Oil desulfurization Coal cleaning
SO ₂ scrubbing:		Odar dicarning
Throwaway	Wet scrubbing	Lime Limestone Forced oxidation Inhibited oxidation
		Dual alkali Magnesium Enhanced Lime (MEL) Seawater
	Dry scrubbing	Lime spray drying Lime injection Trona Nahcolite Circulating fluidized bed
Regenerative	Wet processes	Absorption with water (smelters) Wellman-Lord MgO Citrate Carbonate Sulfite Forced oxidation (with gypsum sales)
	Dry processes	Activated carbon adsorp Copper oxide adsorption

15.2.2 Flue Gas Desulfurization

The phase in which the main reactions occur

wet

dry

- Limestone scrubbing
- Lime scrubbing
- Forced oxidation/inhibited oxidation
- Dual alkali

- Lime-spray drying
- Dry injection

♦ Throwaway Processes

The sulfur removed from the exhaust gas is discarded.

♦ Regenerative Processes

The sulfur is recovered in a usable form.

15.2.2 Flue Gas Desulfurization (wet)

◆ Limestone/lime Scrubbing

 Principle: a limestone/lime slurry is contacted with the flue gas in a spray tower. The sulfur dioxide is absorbed, neutralized, and partially oxidized to calcium sulfite and calcium sulfate.

$$CaCO_3(s) + H_2O + 2SO_2 \rightarrow Ca^{+2} + 2HSO_3^- + CO_2(g)$$
 (15.4)

$$CaCO_3(s) + 2HSO_3^- + Ca^{+2} \rightarrow 2CaSO_3 + CO_2 + H_2O$$
 (15.5)

$$CaO + H2O \rightarrow Ca(OH)2$$
 (15.6)

$$SO_2 + H_2O \rightleftharpoons H_2SO_3$$
 (15.7)

$$H_2SO_3 + Ca(OH)_2 \rightarrow CaSO_3 + 2H_2O$$
 (15.8)

$$CaSO_3 + \frac{1}{2}O_2 \rightarrow CaSO_4$$
 (15.9)

■ Absorbent is abundant and inexpensive.

*lime is a much more reactive reagent than limestone

Better utilization of the reagent and more flexibility in operations.

High cost of lime relative to limestone.

Now, both lime and limestone systems can achieve efficiencies of 98-99%.

15.2.2 Limestone/lime Scrubbing

> Net reaction

$$CaCO_3 + SO_2 + 0.5H_2O \rightarrow CaSO_3 \cdot 0.5H_2O + CO_2 \uparrow$$

$$CaO + SO_2 + 0.5H_2O \rightarrow CaSO_3 \cdot 0.5H_2O$$

1. Dissolution of SO₂ (slow)

$$SO_2(气) + H_2O \rightarrow SO_2(液) + H_2O$$

 $SO_2(液) + H_2O \rightarrow H_2SO_3$
 $H_2SO_3 \rightarrow H^+ + HSO_3^- \rightarrow 2H^+ + SO_3^{2-}$

2. Dissociation of limestone/lime (key)

$$H^+ + CaCO_3 \rightarrow Ca^{2+} + HCO_3^-$$

 $H^+ + HCO_3^- \rightarrow H_2CO_3$ Influenced by $H_2CO_3 \rightarrow CO_2 + H_2O$ pH (5.8-6.2)

$$CaO + H_2O \rightarrow Ca(OH)_2$$

$$Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^-$$

$$H^+ + OH^- \rightarrow H_2O$$
Lime dissociates more easily, regardless of pH

3. Absorption

$$Ca^{2+} + SO_3^{2-} + 0.5H_2O \rightarrow CaSO_3 \cdot 0.5H_2O$$

 $Ca^{2+} + HSO_3^{-} + 2H_2O \rightarrow CaSO_3 \cdot 2H_2O + H^+$

4. Partially oxidization (Excess oxygen)

$$CaSO_3 \cdot 0.5H_2O + O_2 + 3H_2O \rightarrow CaSO_4 \cdot 2H_2O$$

15.2.2 Limestone Scrubbing (wet)

Widely accepted by the coal-fired power industry: lower cost and simpler to operate

15.3 Process Chemistry

♦ Maximize SO₂ removal

Figure 15.1Schematic process flow diagram for a limestone-based SO₂ scrubbing system.
(Adapted from Henzel et al., 1981.)

> Avoid scaling

Providing two separate working areas within the same vessel:
 the scrubber and the effluent hold tank

$$CaCO_3 + 2SO_2 + H_2O \rightarrow Ca^{+2} + 2HSO_3^- + CO_2$$
 (15.21a)

If an excessive amount of $CaCO_3$ is input, the bisulfite ion will not be stable, and $CaSO_3$ will precipitate inside the scrubber (forming scale). If the pH is too low (less than about 4.5), SO_2 absorption will be adversely affected.

$$CaCO_3 + 2HSO_3^- + Ca^{+2} \rightarrow 2CaSO_3 + CO_2 + H_2O$$
 (15.21b)

Maximize the utilization of the limestone

- Proper pH control
- Using finely ground limestone
- A sufficiently high liquid/gas ratio

Excess oxygen results in CaSO₄ (gypsum). Maintain a high liquid/gas ratio can prevent Gypsum precipitation in the scrubber

15.2.2 Flue Gas Desulfurization (wet)

◆ Dual Alkali System (wet)

Use two reagents and two process loops to eliminate scaling and plugging inside the scrubbing tower encountered with limestone/lime scrubbing

Principle:

1. A solution of sodium sulfite $(Na_2SO_3)/sodium$ hydroxide (NaOH) provides the absorption/neutralization of SO_2 inside the tower.

$$NaOH + SO_2 \rightarrow Na_2SO_3 + H_2O$$

Both sodium sulfite (Na₂SO₃) and sodium sulfate (Na₂SO₄) are soluble in water, no precipitation occurs inside the scrubber.

Reduce scaling and plugging and lower maintenance costs.

Figure 15.2 Schematic process flow diagram for a dual alkali FGD system.

15.2.2 Dual Alkali System (wet)

Disposal of large volumes of Na₂SO₃/Na₂SO₄ solution would pose a water pollution problem.

2. Lime or limestone is added to the scrubber effluent to simultaneously precipitates the sulfite/sulfate ions and regenerates the sodium hydroxide in a separate vessel.

$$\begin{aligned} \text{Ca(OH)}_2 + 2\text{HSO}_3^- &\to \text{SO}_3^{2-} + \text{CaSO}_3 \cdot 2\text{H}_2\text{O} \\ \text{Ca(OH)}_2 + \text{SO}_3^{2-} + 2\text{H}_2\text{O} &\to 2\text{OH}^- + \text{CaSO}_3 \cdot 2\text{H}_2\text{O} \\ \text{Ca(OH)}_2 + \text{SO}_4^{2-} + 2\text{H}_2\text{O} &\to \text{CaSO}_4 \cdot 2\text{H}_2\text{O} + 2\text{OH}^- \\ \text{CaCO}_3 + 2\text{HSO}_3^- + 2\text{H}_2\text{O} &\to \text{SO}_3^{2-} + \text{CaSO}_3 \cdot 2\text{H}_2\text{O}^- + \text{CO}_2 \\ (x+y)\text{CaCO}_3 + x\text{SO}_4^{2-} + (x+y)\text{HSO}_3^- + 2\text{H}_2\text{O} &\to \\ (x+y)\text{HCO}_3^- + x\text{CaSO}_4 \cdot y\text{CaSO}_3 \cdot 2\text{H}_2\text{O}^- + x\text{SO}_3^{2-} \end{aligned}$$

PI Need an elaborate treatment or disposal system for the soluble sodium salts; great sodium consumption.

15.2.2 Flue Gas Desulfurization (wet)

♦ Forced Oxidation (external) System

- **Principle:** Conventional limestone + $CaSO_3/SO_4$ waste slurry is oxidized (via excess air contact in a separate tank) to a gypsum sludge.
- The oxidized waste is more easily de-watered and is more stable in sludge disposal ponds.
- high pumping costs and is prone to plugging and scaling.

◆ Inhibited Oxidation System

- **Principle:** Adding a fine water emulsion of elemental sulfur/a small amount of EDTA to inhibit the oxidation of SO₂ to sulfate.
- Prevents scaling, requires less operating power/maintenance, and uses less fresh water than forced oxidation.

15.3 Operational Factors

> Chemical Parameters

$$\frac{N}{A} = K_g \left(\bar{P}_{SO_2} - H_{SO_2} C_{SO_2} \right)$$
 (15.26)

where $K_g =$ overall gas phase transfer coefficient

In Eq. (15.26), K_g is given by

$$\frac{1}{K_g} = \frac{1}{k_g} + \frac{H_{SO_2}}{\phi k_l}$$
 (15.27)

 $\frac{N}{A}$ = flux of SO₂, mol/s-cm²

 $k_g = \text{local mass transfer coefficient, mol/(s-cm}^2\text{-atm})$

 \bar{P}_{SO_2} = partial pressure of SO_2 in the bulk gas, atm

 $H_{\rm SO_2}$ = Henry's law constant, atm/(mol/L)

 $k_l = \text{local mass transfer coefficient, mol/(s-cm}^2\text{-mol/L})$

 C_{SO_2} = concentration of SO_2 in the bulk liquid, mol/L

 ϕ = an enhancement factor to account for chemical reactions that permit SO_2 to diffuse through the liquid film as bisulfite or sulfite species as well as SO_2

$$SO_2 + H_2O \rightleftharpoons H^+ + HSO_3^-$$
 (15.28)

$$SO_2 + SO_3^{-2} + H_2O \rightleftharpoons 2HSO_3^{-}$$
 (15.29)

Table 15.4 SO_2 Scrubber Chemical Parameters and Their Effects on the Enhancement Factor, ϕ

the Enhancement Factor, φ					
Parameter	Effect on 				
Gas composition	 φ decreases as SO₂ concentration increases; for example, at pH 5.8, 				
	\overline{P}_{SO_2} , ppm ϕ				
	500 10				
	1000 7.5				
	2000 5.8				
Bulk liquid sulfite and bisulfite concentrations	 φ increases as C_{SO3}⁻² increases; φ decreases as C_{HSO3}⁻ increases 				
pH	 φ increases as pH increases. (Note: because the solution tends to be in equilibrium with CaSO₃ solids, C_{HSO₃}- decreases as pH increases thus, the effect of pH is essentially that of C_{HSO₃}-) 				
Alkali additives	φ increases as alkali species increase				
Buffer additives (organic acids)	 φ increases as buffer additives increase (φ values of 20–30 are achieved with as little as 10–15 milli- mol/L of adipic acid) 				

15.3 Operational Factors

> Physical Factors

- **liquid/gas ratio (L/G):** the greater the L/G ratio, the greater the SO₂ absorption efficiency. (40 to 100 gal/1000 acf)
- Proper gas and liquid flow distribution: prevent scaling and promote good gas—liquid contact.
- Finely ground limestone (90% passing a 325-mesh screen)
- Gas velocity: mass transfer increases as gas velocity increasers. But too high a flow rate will cause a decrease in contact time and incomplete absorption
- •

15.2.2 Flue Gas Desulfurization

Limestone scrubbing wet Lime scrubbing Forced oxidation/inhibited oxidation Dual alkali **♦ Throwaway Processes Lime-spray drying Dry injection** dry

♦ Regenerative Processes

15.2.2 Flue Gas Desulfurization (wet/dry)

♦ Lime-Spray Drying

Principle:

- A lime slurry is sprayed into the absorption tower, and SO_2 is absorbed by the slurry, forming $CaSO_3/CaSO_4$.
- The water evaporates before the droplets reach the bottom of the tower.
- The dry solids are carried out with the gas and collected in a baghouse with the fly ash.

- Few maintenance problems, low energy usage, and low capital and operating costs.
- The potential to blind the fabric if the temperature of the flue gas approaches the dew point.

15.2.2 Flue Gas Desulfurization (dry)

Dry Injection

Principle:

- The pulverized lime or limestone is injected into the flue gas.
- Dry sorption occurs and the solid particles are collected in a baghouse.
- Further SO₂ removal occurs as the flue gas flows through the filter cake on the bags.
- Low capital costs and low maintenance requirements, can collect mercury emissions.
- High reagent costs and possible waste disposal problems.

15.2.3 Flue Gas Desulfurization

wet

dry

- **♦** Throwaway Processes
- **♦** Regenerative Processes

- Wellman-lord (W-L) process
- Magnesium oxide
- Citrate scrubbing

- Activated carbon adsorption
- Copper oxide adsorption

15.2.3 Flue Gas Desulfurization (wet)

♦ Wellman-Lord (W-L) process

(1) Flue gas pretreatment

- remove most of the remaining particles as well as any existing SO_3 and HCl
- cool and humidifies the flue gas

(2) SO₂ absorption

 The flue gas is contacted with aqueous sodium sulfite and the SO₂ is absorbed and reacted to form sodium bisulfite.

$$Na_2SO_3 + SO_2 + H_2O \rightarrow 2NaHSO_3$$
 (15.10)

(3) Purge treatment

- Some of the sulfite is oxidized to sulfate by oxygen.
- SO₃ that passes through the prescrubber results in aqueous sulfate.

$$Na_2SO_3 + 1/2 O_2 \rightarrow Na_2SO_4$$
 (15.11)
 $2Na_2SO_3 + SO_3 + H_2O \rightarrow Na_2SO_4 + 2NaHSO_3$ (15.12)

The sodium sulfate does not contribute to further SO₂ absorption and must be removed.

15.2.3 Wellman-Lord (W-L) process

• The stream from the bottom of the absorber is rich in bisulfite and is routed for further processing.

Chiller-crystallizer

11 Air dryer
12 Heater
13 Cyclone

(4) Sodium sulfite regeneration

- The slurry is centrifuged: the solids are dried and discarded, the centrifugate (rich in bisulfite) is returned to the process.
- SO₂ is liberated and sodium sulfite crystals are regenerated.

$$2NaHSO_3 \xrightarrow{\text{heat}} Na_2SO_3 + SO_2 + H_2O$$
 (15.13)

 The water vapor is condensed and recovered, producing a concentrated stream of SO₂ gas.

Sodium sulfite/sulfate cake

15.2.3 Wellman-Lord (W-L) process

(5) Processing to a marketable product

• The concentrated stream of SO₂ gas can be reduced to elemental sulfur or oxidized to sulfuric acid either on-site or at a nearby chemical plant.

*Make-up: some of the sodium is removed from the process via the sodium sulfate purge, soda ash (Na₂CO₃) is added to provide make-up sodium.

$$Na_{2}CO_{3} + SO_{2} \rightarrow Na_{2}SO_{3} + CO_{2}$$
 (15.14)

15.2.3 Flue Gas Desulfurization (wet)

◆ Magnesium Oxide (MgO) Process

- **Principle:** a slurry of $Mg(OH)_2$ produces $MgSO_3/MgSO_4$ solids. The solids are then calcined, generating SO_2 and regenerating MgO.
- Little solid waste, Flue gas pretreatment,
- **■■** A high-temperature calciner is needed.

15.2.3 Flue Gas Desulfurization (wet)

♦ Citrate-Scrubbing Processes

Principle:

• The citrate ions in solution increase the effective solubility of SO_2 by binding some of the hydronium ions created when SO_2 absorbs into water.

$$SO_{2}(g) + H_{2}O \rightleftharpoons H_{2}SO_{3}$$

$$H_{2}SO_{3} \rightleftharpoons H^{+} + HSO_{3}^{-}$$

$$Ci^{-3} + H^{+} \rightleftharpoons HCi^{-2}$$

$$HCi^{-2} + H^{+} \rightleftharpoons H_{2}Ci^{-}$$

$$(15.15)$$

$$(15.16)$$

$$(15.17)$$

 As the citrate ions react with and remove hydronium ions in solution, the equilibria of Reactions are shifted to the right, promoting further SO₂ absorption.

15.2.3 Citrate-Scrubbing Processes

- > Regenerating the solution/recovering the SO₂
- ☐ U.S. Bureau of Mines process: the SO₂ is reduced with H₂S to elemental sulfur.

Figure 15.5 Simplified schematic diagram of the U.S. Bureau of Mines citrate FGD process.

Flakt-Boliden process: heating and steam-stripping the SO₂-loaded citrate solution, resulting SO₂-rich stream.

$$SO_2(g) + H_2O \rightleftharpoons H_2SO_3$$
 (15.15)

$$H_2SO_3 \rightleftharpoons H^+ + HSO_3^-$$
 (15.16)

15.2.3 Flue Gas Desulfurization

wet

dry

♦ Throwaway Processes

♦ Regenerative Processes

- Wellman-lord (W-L) process
- Magnesium oxide
- Citrate scrubbing

- Activated carbon adsorption
- Copper oxide adsorption

15.2.3 Flue Gas Desulfurization (dry)

Activated Carbon Adsorption

Principle:

• The carbon catalyzes the reaction of SO_2 to H_2SO_4 , thus preventing desorption of the SO_2 .

$$SO_2 + H_2O + 1/2 O_2 \xrightarrow{\text{Activated Carbon}} H_2SO_4$$
 (15.19)

The carbon can be regenerated by water washing, producing a dilute sulfuric acid stream that
often is neutralized and discarded.

Westvaco process:

- SO₂ is adsorbed onto carbon.
- The carbon flows to the next vessel, where the sulfuric acid is reacted with hydrogen sulfide, resulting in adsorbed elemental sulfur.

$$H_2SO_4 + 3H_2S \xrightarrow{\text{Activated Carbon}} 4S + 4H_2O$$
 (15.20)

- $\frac{1}{4}$ Sulfur is vaporized and recovered. The remainder reacted with H₂ to generate the H₂S needed by Reaction (15.20) to regenerate the carbon.
- The regenerated carbon is then recycled back to the start.

15.2.3 Flue Gas Desulfurization (dry)

◆ Copper Oxide Adsorption

Principle:

- SO_x adsorption and reaction occurs at 750 °F to form copper sulfate.
- The bed is regenerated with a reducing gas (H₂ or H₂ + CO) to form a concentrated stream of SO₂.
- The bed is reduced to copper, but is later oxidized to copper oxide when in the adsorption mode.
- One of the few processes that can control both SO_2 and NO_x .

15.4 Mercury control

- > Wet flue gas desulfurization has been shown to be able to remove some of the mercury.
- The actual removal percentage depends on the percent of the mercury that is in the oxidized state: 50 to 80% of the oxidized mercury, none of the elemental mercury.
- The total removal percentage for FGD systems: 20 to 60% as the percent of oxidized mercury at the scrubber inlet goes from 15% to about 80%

Activated carbon injected into the flue gas upstream of a baghouse achieves a higher mercury removal percentage

Cost Estimates

□ Factors have affected the costs of FGD systems

- Size of plant
- Type of FGD process
- Type of project (new or retrofit)
- Percentage of sulfur in the coal
- Degree of removal required
- Access to and costs of raw materials(e.g., trona, limestone, steel, concrete, etc.)
- ☐ An FGD scrubber represents a huge investment for a coal-fired power plant: as much as 20% of the total capital investment of the power plant.

Conclusions

- **□** Flue Desulfurization
 - Convert to natural gas
- Oil desulfurization
- Coal cleaning

□ Flue Gas Desulfurization

Wet

- Limestone scrubbing
- Lime scrubbing
- Forced oxidation /inhibited oxidation
- Dual alkali

Dry

Throwaway

Processes

- Lime-spray drying
- Dry injection

Wet

- Wellman-lord (W-L) process
- Magnesium oxide
- Citrate scrubbing

Regenerative _ Processes

Dry

- Activated carbon adsorption
- Copper oxide adsorption

Quiz

	Principle	Advantages	Disadvantages
Limestone/ lime			
Dual Alkali			
Dry Injection			
Wellman- Lord			
Activated Carbon			