Data, Math and Methods Week 11, Vectors & Matrices

Today

Vectors and matrices – Linear Algebra

- Vector operations in math and programming
- Matrix operations and their uses in Computer Sciences

Practical session

Vector manipulation in Python

Vectors

Vectors

(x, y) vector

- Vector, is without a fixed location
- Point, is with a fixed location

Vectors

(x, y) vector

- Vector, is without a fixed location
- Point, is with a fixed location

- The same in **higher dimensions**:
 - (x,y,z, ...) or in general $(x_1, x_2, x_3, ..., x_n)$ -> dimensionality = n
- In programming we have a similar structure:
 - array = $[x_1, x_2, x_3, ..., x_n]$ or in python numpy: np.asarray($[x_1, x_2, x_3, ..., x_n]$)

Operations with Vectors

What can we do with vectors?

•
$$\vec{v} = (v_1, v_2)$$

• Multiplication by a real number:

$$\vec{u} = a * \vec{v}$$

$$\vec{u} = (a * v_1, a * v_2)$$

$$a \in \mathbb{R}$$

Operations with Vectors

Given two vectors of the same dimensionality ...

•
$$\vec{v} = (v_1, v_2)$$

•
$$\vec{u} = (u_1, u_2)$$

Addition / Subtraction

Operations with Vectors

Normalization:

Length of the vector:

$$|\vec{v}| = \sqrt{v_1^2 + v_2^2}$$

Normalization:

normalized vector
$$\frac{\vec{v}}{|\vec{v}|}$$

The result is called unit vector and has a length of $\hat{1}$

Linear combination of vectors

• Method of combining vectors together ...

Linear combination of vectors

- Method of combining vectors together ...
- Let's say we want to mix two vectors and interpolate between them
 - Useful in **animation** (if the vectors represented our graphics), ...
 - Useful when going in between the data points!

$$\vec{m} = 0.5 * \vec{u} + 0.5 * \vec{v}$$

$$0.5 + 0.5 = 1$$

Linear combination of vectors

- Method of combining vectors together ...
- Let's say we want to mix two vectors and interpolate between them
 - Useful in animation (if the vectors represented our graphics), ...
 - Useful when going in between the data points!

$$\vec{m} = 0.5 * \vec{u} + 0.5 * \vec{v}$$

$$0.5 + 0.5 = 1$$

Demo: geogebra.org/calculator/mqz6d4zw

Angles between vectors

Dot product = per element multiplication

$$\vec{u} \times \vec{v} = (u_1 * v_1, u_2 * v_2)$$

Angle between two vectors – cosine metric:

$$\cos\theta = \frac{\vec{u} \times \vec{v}}{|\vec{u}| * |\vec{v}|}$$

Angles between vectors

• Dot product = per element multiplication

$$\vec{u} \times \vec{v} = (u_1 * v_1, u_2 * v_2)$$

Angle between two vectors – cosine metric:

$$\cos \theta = \frac{\vec{u} \times \vec{v}}{|\vec{u}| * |\vec{v}|} = \frac{(u_1 * v_1, u_2 * v_2)}{|\vec{u}| * |\vec{v}|}$$

Cosine vs Euclidian distance

- Metrics of distance describe for us some kind of similarity between vectors ...
 - Small distance -> very similar vectors
 - Large distance -> very different vectors
- PS: There are many types of metrics!
- Cosine similarity / distance:

$$d_1 = \cos \theta = \frac{\vec{u} \times \vec{v}}{|\vec{u}| * |\vec{v}|}$$

Euclidian similarity / distance:

$$d_2 = \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2}$$

Vectors practically

- We may have some data saved in these vectors
 - \vec{v} = sample 1, \vec{u} = sample 2
- Quite often we want to interpolate between samples

$$\vec{w} = a * \vec{u} + (1 - a) * \vec{v}$$

Vectors practically

- We may have some data saved in these vectors
 - \vec{v} = sample 1, \vec{u} = sample 2
- Quite often we want to interpolate between samples

$$\vec{w} = a * \vec{u} + (1 - a) * \vec{v}$$

plesLinear combination of vectors

Vectors practically

- We may have some data saved in these vectors
 - \vec{v} = sample 1, \vec{u} = sample 2
- Linear combination of vectors Quite often we want to interpolate between samples

$$\vec{w} = a * \vec{u} + (1 - a) * \vec{v}$$

• Ps: This is a special case where the vectors are used to generate images (we will get back to it in a demo at the end of class)

Interpolation

• We also may want to interpolate between data points on a plot.

Interpolation demos

- Bilinear, Trilinear interpolation interpolating between more than just two vectors
 - Bilinear demo: geogebra.org/m/CTn3QkH9 interpolations in a rectangle

Interpolation demos

- Barycentric coordinates interpolations in a triangle (remember color gamuts?)
 - Barycentric demo: geogebra.org/m/rFQK2EH3#material/c8DwbVTP

- Simulating gravitational forces, adding forces together, ...
- Checking vision cones (cosine metric to get an angle), rotations ...

In-game simulation of gravity (so that he falls eventually)

(so that he falls eventually)

Pause 1

$$M \in \mathbb{R}^{m*n}$$

$$m=3$$
 $m_{1,1}$
 $m_{1,2}$
 $m_{1,3}$
 $m=3$
 $m=3$
 $m=3$
 $m=3$

$$M \in \mathbb{R}^{m*n}$$

We can also consider loaded images as matrices:

• We can also consider loaded images as matrices:

Indexing as if we flattened it

$$M \in \mathbb{R}^{m*n}$$

• We can also consider loaded images as matrices:

m=3

Multiplication by a real number

- $M \in \mathbb{R}^{m*n}$ (matrix)
- $a \in \mathbb{R}$ (a float number)

$a*m_1$	$a*m_2$	$a*m_3$
	•••	$a*m_9$

n=3

Having two matrices of the same dimensionality:

Addition

M + N

n=3

$m_1 + n_1$	$m_2 + n_2$	$m_3 + n_3$
	•••	$m_9 + n_9$

m=3

• <u>Transpose</u> M^T

• <u>Transpose</u>

 M^{T}

L Just rotated and flipped

n=2

$$M^{T} = \begin{bmatrix} m_1 & m_4 \\ m_2 & m_5 \end{bmatrix}$$

Matrix-matrix multiply

- Corresponds to a transformation
- Dimensions must match:

Matrix-matrix multiply

- Corresponds to a transformation
- Dimensions must match:

$$A = \begin{bmatrix} - & \operatorname{row} & 1 & \rightarrow \\ - & \operatorname{row} & 2 & \rightarrow \\ & \dots & \\ - & \operatorname{row} & m & \rightarrow \end{bmatrix} = \begin{bmatrix} - & \mathbf{r}_1 & \rightarrow \\ - & \mathbf{r}_2 & \rightarrow \\ & \dots & \\ - & \mathbf{r}_m & \rightarrow \end{bmatrix}$$

$$B = \begin{bmatrix} | & | & | & | \\ \operatorname{col} & 1 & \operatorname{col} & 2 & \vdots & \operatorname{col} & p \\ \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \mathbf{c}_1 & \mathbf{c}_2 & \vdots & \mathbf{c}_p \\ \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix}$$

< We look at separated rows and columns ...

BTW: these are vectors!

Pause 2

Programming task

Vector manipulation in Python

- Starter code:
 - TBD

Bonus!

- Let's explore a Project ArtBreeder (GAN Breeder)
 - Behind it, there is a machine learning model, which can generate an image if you give it a vector of 512 numbers
 - $\vec{v} = (v_1, v_2, ..., v_{512})$ -> Generate an image #1
 - $\vec{u} = (u_1, u_2, ..., u_{512})$ -> Generate an image #2
 - Using linear interpolation between vectors, they can mix them and generate images somewhere in between!

Project ArtBreeder – artbreeder.com/

Additional readings?

- About Vectors:
 - On Khan Academy with some interactive demos: <u>khanacademy.org/computing/computer-programming/programming-natural-simulations/programming-vectors/a/intro-to-vectors</u>
 - More on the math side: <u>math10.com/en/geometry/vectors-operations/vectors-operations.html</u>
- About Matrices: <u>cliffsnotes.com/study-guides/algebra/linear-algebra/matrix-algebra/operations-with-matrices</u>
- Bonus: in Nature of Code <u>natureofcode.com/book/chapter-1-vectors/</u>

The End