Front matter

title: "Отчет по лабораторной работе № 8" subtitle: "Модель конкуренции двух фирм" author: "Лебедева Ольга Андреевна"

Generic otions

lang: ru-RU toc-title: "Содержание"

Bibliography

bibliography: bib/cite.bib csl: pandoc/csl/gost-r-7-0-5-2008-numeric.csl

Pdf output format

toc: true # Table of contents toc-depth: 2 lof: true # List of figures #lot: true # List of tables fontsize: 12pt linestretch: 1.5 papersize: a4 documentclass: scrreprt

I18n polyglossia

polyglossia-lang: name: russian options: - spelling=modern - babelshorthands=true polyglossia-otherlangs: name: english

I18n babel

babel-lang: russian babel-otherlangs: english

Fonts

mainfont: PT Serif romanfont: PT Serif sansfont: PT Sans monofont: PT Mono mainfontoptions: Ligatures=TeX romanfontoptions: Ligatures=TeX sansfontoptions: Ligatures=TeX,Scale=MatchLowercase monofontoptions: Scale=MatchLowercase,Scale=0.9

Biblatex

biblatex: true biblio-style: "gost-numeric" biblatexoptions:

- parentracker=true
- backend=biber
- hyperref=auto
- language=auto
- autolang=other*
- citestyle=gost-numeric

Pandoc-crossref LaTeX customization

figureTitle: "Рис." tableTitle: "Таблица" listingTitle: "Листинг" lofTitle: "Список иллюстраций" lotTitle: "Список таблиц" lolTitle: "Листинги"

Misc options

indent: true header-includes:

- \usepackage{indentfirst}
- \usepackage{float} # keep figures where there are in the text
- \floatplacement{figure}{H} # keep figures where there are in the text

Цель работы

Изучить модель конкуренции двух фирм[1]. Написать код на языках Julia[2] и OpenModelica[3] и построить графики для двух различных случаев.

Теоретическое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют. Обозначим:

N - число потребителей производимого продукта.

S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

M – оборотные средства предприятия

au - длительность производственного цикла

р - рыночная цена товара

 \widetilde{p} - себестоимость продукта, то есть переменные издержки на производство единицы продукции

 δ - доля оборотных средств, идущая на покрытие переменных издержек

k - постоянные издержки, которые не зависят от количества выпускаемой продукции

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k\frac{p}{S} = q(1 - \frac{p}{p_{cr}})$$

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k — мера эластичности функции спроса по цене.

Таким образом, функция спроса является пороговой (то есть, Q(S/p) = 0 при $p \ge p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - k$$

Уравнение для рыночной цены *р* представим в виде:

$$\frac{dp}{dt} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + Nq(1 - \frac{p}{p_{cr}})\right)$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член — спросу. Параметр у зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном М уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0$$

равновесное значение цены p равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p}Nq})$$

Тогда уравнения динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} (\frac{p}{p_{cr}} - 1) - M^2 (\frac{\delta}{\tau \tilde{p}})^2 \frac{p_{cr}}{Nq} - k$$

Это уравнение имеет два стационарных решения, соответствующих условию dM/dt=0

$$\widetilde{M_{1,2}} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}}\tilde{p}\frac{\tau}{\delta}), b = kNq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

Получается, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b << a^2$) и играют роль, только в случае, когда оборотные средства малы.

При b << a стационарные значения M равны

$$\widetilde{M_{+}} = Nq \frac{\tau}{\delta} (1 - \frac{\widetilde{p}}{p_{cr}}) \widetilde{p}, \widetilde{M_{-}} = k\widetilde{p} \frac{\tau}{\delta(p_{cr} - \widetilde{p})}$$

Первое состояние $\widetilde{M_+}$ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \widetilde{M_{-}} неустойчиво, так, что при $M < \widetilde{M_-}$ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу $\widetilde{M_-}$ соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

Задание

Вариант 17

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}$$

$$a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}$$

$$b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}$$

$$c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}$$

$$c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}$$

также введена нормировка $t=c_1\Theta$

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - (\frac{b}{c_1} + 0.0008)M_1M_2 - \frac{a_1}{c_1}M_1^2$$
$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами

$$M_0^1 = 4.3 M_0^2 = 3.9$$

$$p_{cr} = 10 N = 27 q = 1$$
 $\tau_1 = 15 \tau_2 = 24$
 $\tilde{p}_1 = 7 \, \tilde{p}_2 = 4.9$

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Выполнение лабораторной работы

Julia

Напишем код на Jilia для случая 1:

```
using Plots
using DifferentialEquations
kr = 10
t1 = 15
p1 = 7
t2 = 24
p2 = 4.9
N = 27
q = 1
a1 = kr / (t1 * t1 * p1 * p1 * N * q)
a2 = kr / (t2 * t2 * p2 * p2 * N *q)
b = kr / (t1 * t1 * t2 * t2 * p1 * p1 * p2 * p2 * N * q)
c1 = (kr - p1) / (t1 * p1)
c2 = (kr - p2) / (t2 * p2)
function ode_fn(du, u, p, t)
    M1, M2 = u
    du[1] = u[1] - b / c1*u[1] * u[2] - a1 / c1*u[1] * u[1]
    du[2] = c2 / c1*u[2] - b / c1*u[1] * u[2] - a2 / c1*u[2] * u[2]
end
v0 = [4.2, 3.9]
tspan = (0.0, 30.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
M1 = [u[1] \text{ for } u \text{ in sol.} u]
```

```
M2 = [u[2] for u in sol.u]
T = [t for t in sol.t]

plt = plot(
dpi = 600,
legend = true)

plot!(plt, T, M1, label = "Оборотные средства фирмы #1", color = :green)

plot!(plt, T, M2, label = "Оборотные средства фирмы #2", color = :red)

savefig(plt, "lab08_1.png")
```

Запустим код при помощи командной строки и получим изображение с изменением оборотных средств двух фирм: См. рис. 1

{ #fig:001 width=70% }

По графику видно, что рост оборотных средств предприятий идет независимо друг от друга.

Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

Напишем код на Jilia для случая 2:

```
using Plots
using DifferentialEquations
kr = 10
t1 = 15
p1 = 7
t2 = 24
p2 = 4.9
N = 27
q = 1
a1 = kr / (t1 * t1 * p1 * p1 * N * q)
a2 = kr / (t2 * t2 * p2 * p2 * N *q)
b = kr / (t1 * t1 * t2 * t2 * p1 * p1 * p2 * p2 * N * q)
c1 = (kr - p1) / (t1 * p1)
c2 = (kr - p2) / (t2 * p2)
function ode_fn(du, u, p, t)
    M1, M2 = u
    du[1] = u[1] - (b / c1 + 0.0008)*u[1] * u[2] - a1 / c1*u[1] * u[1]
    du[2] = c2 / c1*u[2] - b / c1*u[1] * u[2] - a2 / c1*u[2] * u[2]
end
v0 = [4.2, 3.9]
tspan = (0.0, 30.0)
prob = ODEProblem(ode_fn, v0, tspan)
sol = solve(prob, dtmax = 0.05)
M1 = [u[1] \text{ for } u \text{ in sol.} u]
M2 = [u[2] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
plt = plot(
dpi = 600,
legend = :topright)
plot!(plt, T, M1, label = "Оборотные средства фирмы #1", color = :green)
plot!(plt, T, M2, label = "Оборотные средства фирмы #2", color = :red)
savefig(plt, "lab08_2.png")
```

Запустим код при помощи командной строки и получим изображение: См. рис. 2

{ #fig:002 width=70% }

По графику видно, что вторая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объемов оборотных средств первой фирмы остается без изменения: достигнув максимального значения, остается на этом уровне.

OpenModelica

Напишем код на OpenModelica для случая 1:

```
model lab08_1
Real kr = 10;
Real t1 = 15;
Real p1 = 7;
Real t2 = 24;
Real p2 = 4.9;
Real N = 27;
Real q = 1;

Real a1 = kr / (t1 * t1 * p1 * p1 * N * q);
Real a2 = kr / (t2 * t2 * p2 * p2 * N * q);
Real b = kr / (t1 * t1 * t2 * t2 * p1 * p1 * p2 * p2 * N * q);
```

```
Real c1 = (kr - p1) / (t1 * p1);
Real c2 = (kr - p2) / (t2 * p2);

Real M1;
Real M2;
initial equation
M1 = 4.3;
M2 = 3.9;
equation
der(M1) = M1 - b / c1 * M1 * M2 - a1 / c1 * M1 * M1;
der(M2) = c2 / c1 * M2 - b / c1 * M1 * M2 - a2 / c1 * M2 * M2;
end lab08_1;
```

Запустим код при помощи кнопок "проверить модель" -> "симулировать". Не забываем в настройках указать заданные нам начальные условия (время). См. рис. 3

{ #fig:003 width=70% }

Напишем код для случая 2:

```
model lab08_2
Real kr = 10;
Real t1 = 15;
Real p1 = 7;
Real t2 = 24;
Real p2 = 4.9;
Real N = 27;
```

```
Real q = 1;

Real a1 = kr / (t1 * t1 * p1 * p1 * N * q);

Real a2 = kr / (t2 * t2 * p2 * p2 * N * q);

Real b = kr / (t1 * t1 * t2 * t2 * p1 * p1 * p2 * p2 * N * q);

Real c1 = (kr - p1) / (t1 * p1);

Real c2 = (kr - p2) / (t2 * p2);

Real M1;

Real M2;

initial equation

M1 = 4.3;

M2 = 3.9;

equation

der(M1) = M1 - (b / c1 + 0.0008) * M1 * M2 - a1 / c1 * M1 * M1;

der(M2) = c2 / c1 * M2 - b / c1 * M1 * M2 - a2 / c1 * M2 * M2;

end lab08_2;
```

Запустим код: См. рис. 4

{ #fig:004 width=70% }

Заключение

Анализ результатов

В итоге проделанной работы на языках Julia и OpenModelica мы построили графики изменения оборотных средств для двух фирм для случаев, когда конкурентная борьба ведётся только рыночными методами и когда, помимо экономического фактора влияния, используются еще и социальнопсихологические факторы.

Построение модели конкуренции двух фирм на языке OpenModelica более ёмкое, чем аналогичное построение на Julia.

Вывод

В ходе выполнения лабораторной работы была изучена модель конкуренции двух фирм и построена на языках Julia и Open Modelica.

Библиографическая справка

[1] Математические модели конкурентной среды: https://dspace.spbu.ru/bitstream/11701/12019/1/Gorynya_2018.pdf

[2] Документация по Julia: https://docs.julialang.org/en/v1/

[3] Документация по OpenModelica: https://openmodelica.org/