Integradores e Diferenciadores

José Humberto de Araújo¹

¹DFTE-UFRN

7 de abril de 2022

Sumário

Introdução

Integradores

Diferenciadores

Introdução

 Um integrador é um circuito capaz de integrar um sinal elétrico, assim como um diferenciador obtém a derivada de um sinal elétrico.

3/7

Introdução

- Um integrador é um circuito capaz de integrar um sinal elétrico, assim como um diferenciador obtém a derivada de um sinal elétrico.
- Neste aula mostra-se que em certos limites e configurações, um circuito RC pode se comportar como um dispositivo integrador ou diferenciador.

Introdução

- Um integrador é um circuito capaz de integrar um sinal elétrico, assim como um diferenciador obtém a derivada de um sinal elétrico.
- Neste aula mostra-se que em certos limites e configurações, um circuito RC pode se comportar como um dispositivo integrador ou diferenciador.
- Apresenta-se um roteiro para simular e montar um circuito RC para integrar e diferenciar um sinal periódico simples.

 A configuração para um circuito RC trabalhar como integrador é a mesma da figura 1 com V_i sendo um sinal AC, observando-se o limite quando T ≪ RC e tomando a saida no capacitor.

Figura 1: Circuito RC

 A configuração para um circuito RC trabalhar como integrador é a mesma da figura 1 com V_i sendo um sinal AC, observando-se o limite quando T ≪ RC e tomando a saida no capacitor.

Figura 1: Circuito RC

 No caso de uma onda quadrada, por exemplo, este limite garante que a curva de carga e descaga permaneçam sempre no intervalo linear da curva, que corresponde a fase inicial de carga e descarga, respectivamente.

7 de abril de 2022

 Uma análise quantitativa desta aproximação também pode ser realizada. Na aproximação acima o produto RC ≫ T, isto implica que V_i ≫ V e assim a equação para a corrente fica

$$C\frac{dV}{dt} = \frac{V_i}{R} \Rightarrow dV = \frac{1}{RC}V_i$$

$$V(t) = \frac{1}{RC} \int_{-\infty}^{t} V_i(t)dt + C$$
(1)

• Uma análise quantitativa desta aproximação também pode ser realizada. Na aproximação acima o produto RC \gg T, isto implica que $V_i \gg V$ e assim a equação para a corrente fica

$$C\frac{dV}{dt} = \frac{V_i}{R} \Rightarrow dV = \frac{1}{RC}V_i$$

$$V(t) = \frac{1}{RC} \int_{-\infty}^{t} V_i(t)dt + C$$
(1)

5/7

 Assim, o sinal de saida é proporcional a integral do sinal de entrada. Deste modo, para um sinal de entrada na forma de uma onda quadrada, obtem-se como saida um sinal do tipo triangular.

Figura 2: Circuito RC como integrador

 A montágem para o circuito RC trabalhar como diferenciador é semelhante a da figura 1, com V_i sendo um sinal AC e observando-se o limite quando T ≫ RC e a saida tomada no resistor

6/7

- A montágem para o circuito RC trabalhar como diferenciador é semelhante a da figura 1, com V_i sendo um sinal AC e observando-se o limite quando T >> RC e a saida tomada no resistor
- Neste caso, o produto RC é muito pequeno i.é. RC ≪ T e a voltágem no capacitor será V_i - V, de modo que, igualado-se a corrente no capacitor com a do resistor temos

$$I = C\frac{d}{dt}(V_i - V) = \frac{V}{R}$$
 (2)

- A montágem para o circuito RC trabalhar como diferenciador é semelhante a da figura 1, com V_i sendo um sinal AC e observando-se o limite quando T » RC e a saida tomada no resistor
- Neste caso, o produto RC é muito pequeno i.é. RC ≪ T e a voltágem no capacitor será V_i - V, de modo que, igualado-se a corrente no capacitor com a do resistor temos

$$I = C\frac{d}{dt}(V_i - V) = \frac{V}{R}$$
 (2)

ullet Para RC pequeno $rac{dV}{dt} \ll rac{dV_i}{dt}$, então

$$C rac{dV_i}{dt} \simeq rac{V}{R}$$
 $V(t) = RC rac{d}{dt} V_i(t)$ (3)

Portanto, o sinal de saida é proporcional a derivada do sinal de entrada. Para um sinal do tipo onda quadrada, a saida tem a forma de uma função delta.

Figura 3: Circuito RC como diferenciador