# srijan:

Machine Learning 101 and path to career in data science



## About Me

## **Mayank Kumar**

Data Scientist - II

Experience Across
Machine Learning, Deep Learning,
MLOps, Cloud, Algorithms, Optimization







# srijan:

Part 1: Machine Learning 101



## Things to cover

- 1. Introduction to Machine Learning
- 2. Basic Machine Learning Terminologies
- 3. Machine Learning Approaches
- 4. Process of Bootstrapping a Machine Learning Project



#### **Introduction to Machine Learning**

## srijan:

#### What is Machine Learning?

- "Learning is any process by which a system improves performance from experience." - Herbert Simon
- Definition by Tom Mitchell (1998): Machine Learning is the study of algorithms that
  - Improve their performance P
  - At some task T
  - With experience E.

A well-defined learning task is given by <P, T, E>



#### **Introduction to Machine Learning**

srijan

What is Machine Learning?

#### **Traditional Programming**



#### **Machine Learning**







srijan

#### What is Machine Learning?

- Some examples where Machine Learning can be used :
  - Humans can't explain their expertise (speech recognition)





- Some examples where Learning isn't always useful:
  - There is no need to "learn with experience" when calculating a number is prime number or not

#### **Introduction to Machine Learning**

## srijan:

#### What is Machine Learning?

- Some more examples of tasks that are best solved by using a learning algorithm:
  - Recognizing patterns :
    - Facial identities or facial expressions
    - Handwritten or spoken words Recognition
    - Medical images (ex: detecting brain Tumors)
  - Recognizing anomalies :
    - Unusual credit card transactions
    - Unusual patterns of sensor readings in a nuclear power plant
  - Prediction :
    - Future stock prices or currency exchange rates







- Most commonly used simple terminologies are:
  - Dataset: A set of data examples, that contain features important to solving the problem.

|   | name  | age | score |
|---|-------|-----|-------|
| 0 | Jhon  | 28  | 3.75  |
| 1 | David | 55  | 9.50  |
| 2 | Adam  | 19  | 5.70  |
| 3 | Sara  | 46  | 7.60  |



srijan:

- Most commonly used simple terminologies are:
  - Features: An individual measurable property or characteristic of a phenomenon being observed.

|   | name  | age | score |
|---|-------|-----|-------|
| 0 | Jhon  | 28  | 3.75  |
| 1 | David | 55  | 9.50  |
| 2 | Adam  | 19  | 5.70  |
| 3 | Sara  | 46  | 7.60  |



For example, in above dataset, name, age can be called as features for determining scores.

srijan

- Most commonly used simple terminologies are:
  - Target: A known value for a given phenomenon being observed.

|   | name  | age | score |
|---|-------|-----|-------|
| 0 | Jhon  | 28  | 3.75  |
| 1 | David | 55  | 9.50  |
| 2 | Adam  | 19  | 5.70  |
| 3 | Sara  | 46  | 7.60  |



For example, in above dataset, score can be called as target

- Most commonly used simple terminologies are:
  - Model: A mathematical representation of a real-world process





- Most commonly used simple terminologies are:
  - Training: Process of learning a mathematical function say f(x) from the given dataset.





- Following are the various types of Machine Learning problems:
  - Supervised learning Given:training data + desired outputs (labels)
    - Classification Problem
    - Regression Problem
  - Unsupervised learning Given: training data (without desired outputs)
  - Reinforcement learning Rewards from sequence of actions



- Supervised learning Regression Problem
  - Regression models are used to predict a continuous value.
  - o Example:
    - Predicting prices of a house given the features of house like size, area etc.
    - Predicting the score of students in an exam





- Supervised learning Classification Problem
  - Classification models are used to predict a categorical values or classes for any event.
  - Example:
    - Predicting an email is spam or legitimate.





- Supervised learning Classification Problem
  - Classification models are used to predict a categorical values or classes for any event.
  - Example:
    - Handwritten digit recognition





- Unsupervised learning
  - No targets/labels are provided in the data
  - Used for finding structures and interesting patterns in data
  - Example:
    - Cluster Analysis:
      - Used to group or categorize the data into some useful patterns
      - Find commonalities in data on the basis of which the grouping is performed.





- Unsupervised learning
  - A simple example





- Unsupervised learning
  - Some real life examples can be



Organize computing clusters



- Unsupervised learning
  - Some real life examples can be



Organize computing clusters



Social network analysis



- Unsupervised learning
  - Some real life examples can be



Organize computing clusters



Market segmentation





- Reinforcement learning
  - Given a sequence of states and actions with rewards, output a policy
  - Policy is a mapping from states to actions that tells you what to do in a given state
  - Examples:
    - Credit assignment problem
    - Game playing
    - Robot in a maze
    - Balance a pole on your hand



srijan

Reinforcement learning



Agent and environment interact at discrete time steps : t = 0, 1, 2, K

Agent observes state at step t:  $s_t \in S$ 

produces action at step t:  $a_t \in A(s_t)$ 

gets resulting reward:  $r_{t+1} \in \Re$ 

and resulting next state:  $s_{t+1}$ 





srijan:

Summarizing all approaches with real life applications



## **Process of Bootstrapping a Machine Learning Project**





Source: Domino Data Lab

srijan:

# **Any Questions?**



# srijan:

Part 2: Path to career in Data Science



## Things to cover

- 1. How to get started with data science
- 2. Specialization domains
- 3. How to prepare for data science interviews



srijan:

Step 1:

Be good at coding

- Learn data structure
- Learn algorithm design (focus on why it works?)
- Start with competitive coding
- Bonus (earn some good achievements to prove, you are good at algorithm design and coding)

#### Benefits:

 It will save tons of your time for writing a production grade system and that will give you more edge over other candidates.



srijan:

Step 2:

Be good at mathematics / Academics

- Learn M1, M2, M3, M4 (focus more on why it works?)
- Implement some techniques
- Bonus (Being good at academics will add a lot of advantage)



srijan

Step 3:

Start with reading articles about data science and ML

- Make notes of all the basics
- Recommended source: Analytics vidhya, KDNuggets, Medium, Topbots
- Follow DFS approach



srijan:

Step 4:

#### Start with below courses

- Introduction to ML Andrew NG
- Probability and Stats Khan Academy
- Hands on ML in python (Do hands on practise) Sentdex
- Make notes of all the basics
- Start with sklearn documentation, explore it and learn algorithms
- Follow DFS approach



srijan:

Step 5:

#### Be practical

- Start with ML competitions on Kaggle, Hackerearth, Machine Hack, BitGrit
- Get familiar with approaches by reading others approach to a problem (source: Kaggle kernels)
- Follow DFS
- Bonus (earn some good ranks in competitions as a solo member)



#### **Specialization domains**

srijan:

Computer Vision (CV)

Way to make machines able to understand and interpret the visual world.

#### Key thing to focus

- Focus more on image processing (traditional methods)
- Learn complete history of object detection, recognition and segmentation models from traditional methods to current SOTA methods
- Focus more on scalability and simplicity
- Recommended sources: OpenCV documentation, Stanford CS231n, Coursera deep learning specialization



#### **Specialization domains**

srijan:

Natural Language Processing (NLP)

Way to make machines able to understand and interpret the textual data.

#### Key thing to focus

- Focus more on classical approaches (TF-IDF, POS, RegExp, text mining, etc)
- Learn complete history of language models from traditional methods to current SOTA methods (RNN, LSTM, Attention, Transformers, etc)
- Focus more on scalability and simplicity



#### How to prepare for data science interviews

## srijan

#### Process

- Online or offline problem statements
  - o EDA's
  - Preprocessing steps
  - Modeling techniques
  - Validation Strategies
  - Error Analysis
- Interviewer: Senior data scientist
  - Difficulty level: Medium
  - Resume briefings, solution strategies, why?
  - Understanding of ML algorithms, bagging, boosting, innerworkings, shortcomings, your selection strategy for picking any algorithm, what worked and what didn't?
- Interviewer: Hiring manager, Practise heads, Principal data scientist
  - Difficulty level: Hard
  - Advanced ML algorithms, inner workings, advantages, disadvantages related to past projects
  - Advanced statistics: Statistics linking with real life
  - o Guesstimate problems: Try to be precise rather than totally accurate
  - Case scenarios: Business problems, solutions, strategy, analytical thinking, problem formulation, assumptions



srijan:

# **Any Questions?**



## Thank You



#### **Head Offices**

2430 Highway 34 Building B, Suite 22 Manasquan, NJ 08736, USA

8D Vandana Building, Tolstoy Marg, New Delhi 110001, INDIA

email: business@srijan.net

web: srijan.net twitter: @srijan

