PYTHON FOR NUMERICAL GOMPUTING

R06945037 曾文緯

LET'S INSTALL PYTHON

- https://www.anaconda.com/download/
 - Choose the Python 3.6 64-bit one
- ???
- Profit!

THANKYOU

WELL, NOT YET!

ABOUT TA-01

林祐德

qwerty239qwe@gmail.com

禮拜二下午 1:30~4:30

明達705

ABOUT TA-02

- 曾文緯 (Tseng Wen-Wei)
- First grade MS student in BEBI
- Previously graduated from the department of medicine
- A nerd who wants to change himself and pursues virtue rather than merit
- Doing numerical simulations of cardiomyocytes
 - And trying to make it faster
- Writes in C++ initially; then in Python

WHY PYTHON ?

- Because 3 of my colleagues are using it!
- Because it's free and open-source
- Because it's the first class programming language for machine learning
- Development speed is much faster than in C++
 - Rich library (modules) support
 - Responsiveness and quick feedback
 - Less boilerplate code

MY REFERENCES

- https://www.python-course.eu/
- http://www.scipy-lectures.org/
- https://barbagroup.github.io/essential_skills_RRC/
- https://automatetheboringstuff.com/
- https://jakevdp.github.io/PythonDataScienceHandbook/
- https://www.machinelearningplus.com/101-numpy-exercises-python/
- There are tons of online courses about python
 - Edx, Udacity, Coursera, <u>This 10-hour one</u>

JEFFREY J. HEYS Chemical and **Biomedical Engineering** Calculations Using Python® WILEY

SOME SELF-ANSWERED QUESTIONS

- Isn't Python slower than language X?
 - Yes, thus it calls for help (eg. Numpy & Scipy: C/FORTRAN code inside)
 - You can even 'compile' Python code to other languages
- Are you going to cover some popular things in Python like web-scrapping, automation, data science, and/or machine learning?
 - Sorry, I'll focus on numerical computations only. Some important aspects may not be covered:
 - Defining a class, inheritance (OOP), doing the animal example
 - Inputs from keyboard, building a GUI, creating a game
 - Making a website, downloading from the internet, auto-pressing the like button
 - String/Voice/Image processing/classification, regular expression
 - Advanced topics such as generators, decorators, coroutines
- You're not going to be an MD, are you mad?

SOME NOTES

- Google before DIY
 - DRY (Don't repeat yourself)
- Fail early, fail fast
 - Test your code little by little
- Read the FINE manual
 - And make clear ones in your code
- Name-Reference-Object rule
 - Less surprises later if you know this

SELECTIONS OF EDITORS / IDES

- Jupyter Notebook: both of us
 - Great for demos
- If you have questions about the IDEs below,
 - Spyder (unfortunately unfunded): Wen-Wei
 - Pycharm: Yuter
 - VS Code: Wen-Wei

LET'S START CODING (I)

- Variable assignment & printing
 - Data type
- Simple arithmetic
 - Floor division (//) vs true division (/)
 - Exponential
 - Long integer
 - Logic
- If /else statements
 - Indentation

LET'S START CODING (II)

- Sequential objects
 - Tuple, string (immutable)
 - List (mutable)
 - Selecting elements: Indexing and slicing
 - Functions for them
 - Concatenate, length, is inside (in)
- Associative container: dictionary
- For loops
- While loops
- List comprehension (9*9)

LET'S START CODING (III)

- Defining functions
 - Parameters
 - Positional
 - Keyword
 - Variable
- Side effects
- Functions are also objects
- Lambda: miniature function

NUMPY INTRO(I)

- Convention: import numpy as np
- Array-based operations, element-wise
- Array properties
 - Shape
 - Data type
- Array creation
 - From existing sequence
 - Routines

NUMPY INTRO(II)

- Element selection
 - Single
 - Slices
 - Boolean array
 - Index number
- Array manipulation
 - Reshape
 - Concat
 - Transpose
 - Reduction (sum, cumsum, min, max)

NUMPY INTRO(III)

- Linear algebra
 - Dot product
 - Matrix product

SCIPY INTRO: IVP