Relations 2

N Geetha AM & CS PSG Tech

- •We already know different ways of representing relations. We will now take a closer look at two ways of representation: **Zero-one matrices** and **directed graphs**.
- •If R is a relation from A = $\{a_1, a_2, ..., a_m\}$ to B = $\{b_1, b_2, ..., b_n\}$, then R can be represented by the zero-one matrix $M_R = [m_{ii}]$ with
- • $m_{ij} = 1$, if $(a_i, b_j) \in R$, and
- • $m_{ij} = 0$, if $(a_i, b_j) \notin R$.
- •Note that for creating this matrix we first need to list the elements in A and B in a particular, but arbitrary order.

•Example: How can we represent the relation $R = \{(2, 1), (3, 1), (3, 2)\}$ as a zero-one matrix?

•Solution: The matrix M_R is given by

$$M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

- •What do we know about the matrices representing a relation on a set (a relation from A to A)?
- They are square matrices.
- •What do we know about matrices representing reflexive relations?
- •All the elements on the diagonal of such matrices M_{ref} must be 1s.

- What do we know about the matrices representing symmetric relations?
- •These matrices are symmetric, that is, $M_R = (M_R)^t$.

$$\boldsymbol{M}_{R} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \qquad \boldsymbol{M}_{R} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$m{M}_R = egin{bmatrix} 1 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 \end{bmatrix}$$

symmetric matrix, symmetric relation.

non-symmetric matrix, non-symmetric relation.

- •The Boolean operations join and meet can be used to determine the matrices representing the union and the intersection of two relations, respectively.
- •To obtain the **join** of two zero-one matrices, we apply the Boolean "or" function to all corresponding elements in the matrices.
- •To obtain the **meet** of two zero-one matrices, we apply the Boolean "and" function to all corresponding elements in the matrices.

•Example: Let the relations R and S be represented by the matrices

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad M_{S} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$M_{S} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

What are the matrices representing $R \cup S$ and $R \cap S$? Solution: These matrices are given by

$$M_{R \cup S} = M_R \vee M_S = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad M_{R \cap S} = M_R \wedge M_S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M_{R \cap S} = M_R \wedge M_S = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

•Example: How can we represent the relation $R = \{(2, 1), (3, 1), (3, 2)\}$ as a zero-one matrix?

•Solution: The matrix M_R is given by

$$\boldsymbol{M}_R = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ 1 & \mathbf{0} \\ 1 & 1 \end{bmatrix}$$

•Example: Let the relations R and S be represented by the matrices

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad M_S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$m{M}_S = egin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

What are the matrices representing $R \cup S$ and $R \cap S$? Solution: These matrices are given by

$$M_{R \cup S} = M_R \vee M_S = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad M_{R \cap S} = M_R \wedge M_S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M_{R \cap S} = M_R \wedge M_S = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

Do you remember the **Boolean product** of two zeroone matrices?

Let $A = [a_{ij}]$ be an m×k zero-one matrix and $B = [b_{ij}]$ be a k×n zero-one matrix.

Then the Boolean product of A and B, denoted by AoB, is the m×n matrix with (i, j)th entry $[c_{ij}]$, where $c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2i}) \vee ... \vee (a_{ik} \wedge b_{kj})$.

 $c_{ij} = 1$ if and only if at least one of the terms $(a_{in} \wedge b_{ni}) = 1$ for some n; otherwise $c_{ii} = 0$.

Let us now assume that the zero-one matrices $M_A = [a_{ij}]$, $M_B = [b_{ij}]$ and $M_C = [c_{ij}]$ represent relations A, B, and C, respectively.

Remember: For $M_C = M_A o M_B$ we have: $c_{ij} = 1$ if and only if at least one of the terms $(a_{in} \wedge b_{nj}) = 1$ for some n; otherwise $c_{ij} = 0$.

In terms of the relations, this means that C contains a pair (x_i, z_j) if and only if there is an element y_n such that (x_i, y_n) is in relation A and (y_n, z_i) is in relation B.

Therefore, $C = B^{\circ}A$ (composite of A and B).

This gives us the following rule:

$$M_{B^{\circ}A} = M_A \circ M_B$$

In other words, the matrix representing the composite of relations A and B is the Boolean product of the matrices representing A and B.

Analogously, we can find matrices representing the powers of relations:

$$M_R^n = M_R^{[n]}$$
 (n-th Boolean power).

•Example: Find the matrix representing R², where the matrix representing R is given by

$$M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Solution: The matrix for R² is given by

$$M_{R^2} = M_R^{[2]} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Representing Relations Using Digraphs

- •Definition: A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs).
- •The vertex a is called the **initial vertex** of the edge (a, b), and the vertex b is called the **terminal vertex** of this edge.

•We can use arrows to display graphs.

Representing Relations Using Digraphs

•Example: Display the digraph with V = {a, b, c, d}, E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

An edge of the form (b, b) is called a loop.

Representing Relations Using Digraphs

- •Obviously, we can represent any relation R on a set A by the digraph with A as its vertices and all pairs $(a, b) \in R$ as its edges.
- •Vice versa, any digraph with vertices V and edges E can be represented by a relation on V containing all the pairs in E.
- •This one-to-one correspondence between relations and digraphs means that any statement about relations also applies to digraphs, and vice versa.