

- La noción de límite es una idea central en la matemática actual y es base de otras ideas fundamentales como la derivada o la integral.
- Su gestación a lo largo de la historia fue lenta y complicada. Hasta principios del siglo XIX los matemáticos trabajaban con los límites sin tener muy claro su verdadero significado.

Para la función f(x)
 = x+5, tabularemos los valores cercanos a 2.

Cuando x se acerca a 2, la función "tiende" a 7

X	F(x)	X	F(x)
1,0	6	3,0	8
1,5	6,5	2,5	7,5
1,9	6,9	2,15	7,15
1,95	6,95	2,1	7,1
1,99	6,99	2,05	7,05
1,995	6,995	2,01	7,01
1,999	6,999	2,001	7,001

Para la función f(x)
 = (x-1)/(x²-1),
 tabularemos los valores cercanos a 1.

Cuando x se acerca a 1, la función "tiende" al valor 0,5

X	F(x)	X	F(x)
0,5	0,667	2,0	0,333
0,9	0,526	1,5	0,400
0,95	0,513	1,15	0,465
0,98	0,505	1,1	0,476
0,99	0,503	1,05	0,488
0,995	0,501	1,01	0,498
0,999	0,500	1,001	0,499

Para la función f(x)
 = (senx)/x , tabularemos los valores cercanos a 0.

Cuando x se acerca a 0, la función "tiende" al valor 1

X	F(x)	X	F(x)
-1	0,842	1	0,842
-0,5	0,958	0,5	0,958
-0,3	0,985	0,3	0,985
-0,2	0,993	0,2	0,993
-0,1	0,998	0,1	0,998
-0,05	0,999	0,05	0,999
-0,01	0,999	0,01	0,999

- •El límite de una función cuando su variable independiente se acerca a un valor dado es el valor al cual tiende la función en este acercamiento.
- •NOTACIÓN:

$$\lim_{x \to a} f(x) = L$$

De los ejemplos anteriores tenemos:

$$\lim_{x\to 2} (x+5) = 7$$

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0,5$$

$$\lim_{x\to 0}\frac{senx}{x}=1$$

CÁLCULO DE LÍMITES GRAFICAMENTS

• En la gráfica determinar:

CÁLCULO DE LÍMITES GRAFICAME

En la gráfica determinar:

CÁLCULO DE LÍMITES GRAFICAMEN

En la gráfica determinar:

CÁLCULO DE LÍMITES GRAFICAMEN

En la gráfica determinar:

CÁLCULO DE LÍMITES GRAFICAMEN

• En la gráfica determinar:

$$\lim_{x \to -4} f(x) \qquad \lim_{x \to 0} f(x)$$

 $\lim_{x\to 2} f(x)$

EXISTENCIA DEL LÍMITE

• El límite de una función f(x) cuando su variable tiende a un valor "a" existe sólo si el acercamiento que se realiza por ambos lados (derecha e izquierda), la función tiende a un único valor.

$$\exists \lim_{x \to a} f(x) = L \iff$$

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = L$$

CÁLCULO ANALÍTICO DE LÍMITES

$$\lim_{x \to 4} (x^{2} - 3x + 1) \lim_{x \to 5} \sqrt{6 - x} \lim_{x \to -1} \sqrt{\frac{3x^{2} - 2x + 3}{x^{5} + 2}}$$

$$\lim_{x \to 3} \frac{x^{2} + 5}{x^{2} - 9} \lim_{x \to 0} \frac{x^{2} - 10x - 6}{x^{2} - 3x} \lim_{x \to 3} \frac{5 - x}{x + 1}$$

CÁLCULO ANALÍTICO DE LÍMITES

 Cuando el valor es una indeterminación, se factoriza y se elimina la indeterminación.

$$Lim_{x\to 2} \frac{x^{2} - 4}{x - 2}$$

$$Lim_{x\to a} \frac{x^{2} - (a - 1)x - a}{x^{2} - (a - 2)x - 2a}$$

$$Lim_{x\to a} \frac{x^{2} - (a - 2)x - 2a}{x^{2} - (a - 2)x - 2a}$$

$$Lim_{x\to 3} \frac{2x^{3} - 5x^{2} - 2x - 3}{4x^{3} - 13x^{2} + 4x - 3}$$

$$Lim_{x\to 3} \frac{x^{3} + 6x^{2} + 9x}{x^{3} + 5x^{2} + 3x - 9}$$

$$Lim_{x\to a} \frac{x^{2} - a^{2}}{2x^{2} - ax - a^{2}}$$

CÁLCULO ANALÍTICO DE LÍMITES

 En el caso de existir radicales, primero se racionaliza, luego se factoriza y finalmente se simplifica.

$$\lim_{x\to 2} \frac{3x-6}{1-\sqrt{4x-7}}$$

$$\lim_{x \to 4} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 - x}}$$

CÁLCULO ANALÍTICO DE LÍMITES

 Cuando el limite es al infinito, se divide numerador y denominador entre la variable elevada al mayor grado entre numerador y denominador.

$$\lim_{x \to \infty} \frac{x^3 - 3x^2 + 6}{x^2 + 5}$$

$$\lim_{x \to \infty} \frac{x^6 - 5x^3 + 6}{3x^6 - 3x^4 - 2x}$$

$$\lim_{x \to \infty} \frac{x^3 - 3x^2 + 6}{x^2 + 5} \qquad \lim_{x \to \infty} \frac{x^6 - 5x^3 + 6}{3x^6 - 3x^4 - 2x} \qquad \lim_{x \to \infty} \frac{x^3 - 5x + 4}{x^7 - 2x^5 + 1}$$

¿Podemos generalizar estos resultados?

EJERCICIOS

Calcular los siguientes límites:

$$f(x) = \begin{cases} x+2 & x < -2 \\ x^2 - 4 & x \ge -2 \end{cases} \qquad \lim_{x \to -2} f(x)$$

$$g(x) = \begin{cases} x-5 & x < -3 \\ 1-x^2 & -3 \le x < 2 \\ 3-2^x & x \ge 2 \end{cases}$$

$$\underset{x \to -3}{Lim} g(x) \qquad \underset{x \to 2}{Lim} g(x)$$

PROF ALBERTO POOL

EJERCICIOS

Sea la función:
$$f(x) = \frac{x^2 - mx + 3x - 3m}{x - m}$$

Hallar m para que
$$\lim_{x\to m} f(x) = m^2 - 17$$

ASÍNTOTAS

• Asíntota Vertical: La recta x=a es una asíntota vertical de la curva f(x), si:

$$\lim_{x \to a} f(x) = \pm \infty$$

ASÍNTOTAS

 Asíntota horizontal: La recta y=k es una asíntota horizontal de la curva y=f(x) si:

PROF ALBERTO POOL

EJERCICIOS

• Determinar las asíntotas de cada función y esbozar su gráfica respectiva:

$$f(x) = \frac{x^2 + 9}{(x - 3)^2}$$

$$f(x) = \frac{1 - x^2}{x^2 - 4}$$

$$f: x \to \frac{x-5}{x^2 - 7x + 10}$$

$$f: x \to \frac{x^2 + 2x - 1}{x}$$

PROF ALBERTO POOL

PRÁCTICA AUTOEVALUACIÓN

