Отчет по лабораторной работе №2 Эффект Зеемана

Выполнили студенты 430 группы Сарафанов Ф.Г., Понур К.А., Карусевич А.А., Шиков А.П., Есюнин Д.,Есюнин М., Сидоров Д.А.

Содержание

1	Теоретическая часть		2
	1.1	Введение	2
	1.2	Феноменологический расчет зеемановского расщепления	3
	1.3	Квантовая векторная модель атома в приближении $[L-S]$ -связи	3
	1.4	Интенсивность зеемановских линий	3
	1.5	Классическая модель Зеемана	3
2	Пра	актическая часть	3
	2.1	Экспериментальная установка	3
	2.2	Ход эксперимента	3

1. Теоретическая часть

1.1. Введение

Согласно квантовой теории излучения энергия атома может принимать лишь дискретные строго определенные значения. Совокупность таких разрешенных значений (уровней энергии) называют энергетическим спектром атома. Энергетический спектр атома может быть задан с помощью вполне определенного набора внутренних характеристик атома - его квантовых чисел. Наиболее точный смысл каждого квантового числа выясняется при решении уравнения Шредингера, в котором квантовые числа определяют спектр собственных значений. Мы же введем лишь названия и обозначения, а там, где это возможно, дадим краткую, более или менее наглядную и нс слишком строгую, характеристику квантовых чисел атома:

- n **главное квантовое число**, определяющее среднее расстояние электронного облака от ядра;
- L **орбитальное квантовое число**, характеризующее сумму моментов импульса электронов $\overrightarrow{P_L}$, связанных с их вращением вокруг ядра;
- S **спиновое квантовое число**, описывающее сумму собственных моментов импульса электронов $\overrightarrow{P_S}$, не связанных с их вращением вокруг ядра¹;
- J азимутальное квантовое число, которому ставится в соответствие полный механический момент электронов в атоме:

$$\overrightarrow{P_J} = \overrightarrow{P_L} + \overrightarrow{P_S} \tag{1}$$

 M_J – магнитное квантовое число, название которого связано с тем, что энергия атома зависит от M_J лишь при наличии внешнего магнитного поля: $E(n,J,L,S,M_J)$. В отсутствии магнитного поля для всех допустимых значений M_J энергия атома имеет одно и то же значение $E(n,J,L,S,M_J)$ – в этом случае говорят, что имеет место вырождение (неоднозначность) состояния атома по квантовому числу M_J . Из элементарной физики известно, что в магнитном поле могут изменить свою энергию лишь системы, имеющие (или приобретающие) магнитный момент μ , причем изменение энергии равно:

$$\delta E = -(\overrightarrow{\mu} \overrightarrow{H}) = -\mu_H H. \tag{2}$$

¹Наличие собственною механического момента (спина) и магнитного момента у покоящегося электрона не имеет удовлетворительного наглядного толкования и должно восприниматься как факт, однозначно следующий из результатов многочисленных экспериментов.

Из сказанного ясно, что квантовое число M_J характеризует проекцию магнитного момента атома μ на направление внешнего магнитного поля \overrightarrow{H} .

При переходе атома с более высокого энергетического уровня E_2 на более низкий E_1 , излучается квант электромагнитной энергии (??) с частотой

$$\omega_{1,2} = \frac{E_2 - E_1}{\hbar} \tag{3}$$

где $\hbar = 1.054 * 10^{-27}$ эрг·с – постоянная Планка. Поскольку при наложении внешнего магнитного поля вырождение энергетических состояний E_2 и E_1 по квантовому числу M_J снимается (т.е. происходит расщепление каждого энергетического уровня на несколько подуровней), в спектре излучения мы вместо одной наблюдаем несколько частот (линий) излучения (??). Этот эффект расщепления спектральных линий атомов в магнитном поле и называется эффектом Зеемана.

- 1.2. Феноменологический расчет зеемановского расщепления
- 1.3. Квантовая векторная модель атома в приближении [L-S]- связи
- 1.4. Интенсивность зеемановских линий
- 1.5. Классическая модель Зеемана
- 2. Практическая часть
- 2.1. Экспериментальная установка
- 2.2. Ход эксперимента