

NUCL 511 Nuclear Reactor Theory and Kinetics

Lecture Note 4

Prof. Won Sik Yang

Purdue University
School of Nuclear Engineering

Weakness of Intuitive and One-Group Point Kinetics

No distinction between prompt and delayed neutron spectra after integration

$$\int_0^\infty \chi_p(E) dE = 1, \quad \int_0^\infty \chi_{dk}(E) dE = 1$$

- Spatial and energy distributions of neutrons are neglected
 - Regardless of the birth position and energy, all the source neutrons have the same effect

$$\hat{\psi} = \int_{V} \int_{0}^{\infty} \psi(r, E) dE dV, \quad \hat{S}(t) = \int_{V} \int_{0}^{\infty} S(r, E, t) dE dV$$

- For example, however, the neutrons born at the core center would have higher contributions to the neutron multiplication than those born at the core periphery
- Need to differentiate the neuron importance depending on the birth position and energy
 - This can be done employing adjoint functions

Linear Space and Operator

- Operators express certain mathematical operations or prescriptions to be carried out with a function or a vector
 - Applying an operator to a function (vector) yields another function (vector)

$$\mathbf{D}f(t) = \frac{d}{dt} f(t) \Rightarrow f'(t)$$
 (differntial operator)

$$\mathbf{K}f(\mathbf{E}) = \int_0^\infty d\mathbf{E}' K(\mathbf{E}' \to \mathbf{E}) f(\mathbf{E}') \Rightarrow g(\mathbf{E})$$
 (integral operator)

 $\mathbf{A}\vec{\mathbf{u}} \Rightarrow \vec{\mathbf{v}}$ (matrix operator)

Mapping from a vector (linear) space to another vector (linear) space

$$\mathbf{D}f(t) = \frac{d}{dt}f(t) = g(t)$$

$$\mathbf{K}\phi(E) = \int_{E}^{E/\alpha} \frac{\phi(E')}{(1-\alpha)E'} dE'$$

Inner Product

Space of n-dimensional real vectors

$$\vec{u} = (u_1, u_2, \dots, u_n)^T, \quad \vec{v} = (v_1, v_2, \dots, v_n)^T, \quad (\vec{u}, \vec{v}) = \vec{u}^T \vec{v} = \sum_{i=1}^n u_i v_i$$

$$\|\vec{u}\| = (\vec{u}, \vec{u}), \quad \|\vec{v}\| = (\vec{v}, \vec{v}), \quad (\vec{u}, \vec{v}) = \|\vec{u}\| \|\vec{v}\| \cos \theta$$

Space of n-dimensional complex vectors

$$\langle \vec{u}, \vec{v} \rangle = \vec{u}^H \vec{v} = (\overline{\vec{u}})^T \vec{v}, \quad \vec{u}^H = (\overline{\vec{u}})^T = (\overline{u}_1, \overline{u}_2, \dots, \overline{u}_n)$$
 (conjugate transpose)

Space of real functions

$$< f, g > = \int_{a}^{b} f(x)g(x)dx$$

 $||f|| = < f, f > = \int_{a}^{b} [f(x)]^{2} dx, \quad ||g|| = < g, g > = \int_{a}^{b} [g(x)]^{2} dx$
 $\cos \theta = \frac{< f, g >}{||f|| ||g||}$

Space of complex functions

$$\langle f, g \rangle = \int_a^b \overline{f(x)} g(x) dx$$

Adjoint Operators

Adjoint operator

$$\langle g, \mathbf{K}f \rangle = \langle \mathbf{K}^*g, f \rangle, \quad \forall f \in X, \quad \forall g \in Y, \quad \mathbf{K} : X \to Y, \quad \mathbf{K}^* : Y \to X$$

$$< p, f > = ||p|| ||f|| \cos \vartheta$$
 $< g, h > = ||g|| ||h|| \cos \theta$

- Matrix operator
 - Real space

$$\langle \vec{u}, \mathbf{A}\vec{v} \rangle = \vec{u}^T \mathbf{A}\vec{v} = (\mathbf{A}\vec{v})^T \vec{u} = \vec{v}^T \mathbf{A}^T \vec{u} = \langle \mathbf{A}^T \vec{u}, \vec{v} \rangle \implies \mathbf{A}^* = \mathbf{A}^T$$

If $\mathbf{A} = \mathbf{A}^T$ (symmetric), then $\mathbf{A} = \mathbf{A}^*$ (self-adjoint)

Complex space

$$\langle \vec{u}, \mathbf{A}\vec{v} \rangle = (\overline{\vec{u}})^T \mathbf{A}\vec{v} = (\mathbf{A}\vec{v})^T \overline{\vec{u}} = \vec{v}^T \mathbf{A}^T \overline{\vec{u}} = \langle \overline{\mathbf{A}}^T \vec{u}, \vec{v} \rangle \implies \mathbf{A}^* = \overline{\mathbf{A}}^T = \mathbf{A}^H$$

If $\mathbf{A} = \mathbf{A}^H$ (Hermitian), then $\mathbf{A} = \mathbf{A}^*$ (self-adjoint)

Adjoint Operators

- Differential operator
 - Real space

$$\left\langle f, \frac{d}{dt} g \right\rangle = \int_{a}^{b} f \frac{dg}{dt} dt = fg \Big|_{a}^{b} + \int_{a}^{b} \left(-\frac{df}{dt} \right) g dt = \left\langle -\frac{d}{dt} f, g \right\rangle \implies \left(\frac{d}{dt} \right)^{*} = -\frac{d}{dt}$$
if $fg \Big|_{a}^{b} = f(b)g(b) - f(a)g(a) = 0$ (bilinear concomitant)

- The function spaces for a differential operator are defined with the boundary conditions that make the bilinear concomitant vanish
- Integral operators
 - Real space

$$\mathbf{K}g(E) = \int dE'K(E' \to E)g(E')$$

$$< f, \mathbf{K}g > = \int dx f(x) \int dx' K(x' \to x) g(x') = \int dx \int dx' f(x) K(x' \to x) g(x')$$

$$= \int dx' \int dx f(x') K(x \to x') g(x) = \int dx g(x) \int dx' K(x \to x') f(x') = < \mathbf{K}^* f, g >$$

$$\Rightarrow \mathbf{K}^* f(E) = \int dE' K(E \to E') f(E')$$

Adjoint Diffusion Equation

Continuous-energy neutron diffusion equation

$$\mathbf{M}\phi(r,E) = \lambda \mathbf{F}\phi(r,E)$$

$$\mathbf{M}\phi(r,E) = -\nabla \cdot D(r,E)\nabla\phi(r,E) + \Sigma_{t}(r,E)\phi(r,E) - \int_{0}^{\infty} \Sigma_{s}(r,E'\to E)\phi(r,E')dE'$$

$$\mathbf{F}\phi(r,E) = \chi(E) \int_0^\infty v \Sigma_f(r,E') \phi(r,E') dE'$$

 $a\mathbf{n} \cdot D(r, E) \nabla \phi(r, E) + b\phi(r, E) = 0, \quad r \in \partial V$

Multi-group diffusion equation

$$\mathbf{M}\vec{\phi}(r) = \lambda \mathbf{F}\vec{\phi}(r)$$

$$\vec{\phi}(r) = \begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_G \end{bmatrix}$$

$$\mathbf{M}\vec{\phi}(r) = \lambda \mathbf{F}\vec{\phi}(r)$$

$$\mathbf{M} = \begin{bmatrix} \phi_{1} \\ \phi_{2} \\ \vdots \\ \phi_{G} \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} -\nabla \cdot D_{1}\nabla + \Sigma_{r1} & -\Sigma_{s21} & \cdots & -\Sigma_{sG1} \\ -\Sigma_{s12} & -\nabla \cdot D_{2}\nabla + \Sigma_{r2} & \cdots & -\Sigma_{sG2} \\ \vdots & \vdots & \ddots & \vdots \\ -\Sigma_{s1G} & -\Sigma_{s2G} & \cdots & -\nabla \cdot D_{G}\nabla + \Sigma_{rG} \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} \chi_{1}V\Sigma_{f1} & \chi_{1}V\Sigma_{f2} & \cdots & \chi_{1}V\Sigma_{fG} \\ \chi_{2}V\Sigma_{f1} & \chi_{2}V\Sigma_{f2} & \cdots & \chi_{2}V\Sigma_{fG} \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{G}V\Sigma_{f1} & \chi_{G}V\Sigma_{f2} & \cdots & \chi_{G}V\Sigma_{fG} \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} \chi_1 v \Sigma_{f1} & \chi_1 v \Sigma_{f2} & \cdots & \chi_1 v \Sigma_{fG} \\ \chi_2 v \Sigma_{f1} & \chi_2 v \Sigma_{f2} & \cdots & \chi_2 v \Sigma_{fG} \\ \vdots & \vdots & \ddots & \vdots \\ \chi_G v \Sigma_{f1} & \chi_G v \Sigma_{f2} & \cdots & \chi_G v \Sigma_{fG} \end{bmatrix}$$

Adjoint Diffusion Operator

Diffusion term

$$\nabla \cdot (f\vec{g}) = \nabla f \cdot \vec{g} + f \nabla \cdot \vec{g} \implies$$

$$\phi^* \nabla \cdot (D\nabla \phi) = \nabla \cdot (\phi^* D\nabla \phi) - \nabla \phi^* \cdot (D\nabla \phi)$$

$$\phi \nabla \cdot (D\nabla \phi^*) = \nabla \cdot (\phi D\nabla \phi^*) - \nabla \phi \cdot (D\nabla \phi^*)$$

Subtracting the second equation from the first one yields (for simplicity, integration over energy is omitted)

$$\int_{V} \phi^{*} \nabla \cdot (\mathbf{D} \nabla \phi) dV = \int_{V} \phi \nabla \cdot (\mathbf{D} \nabla \phi^{*}) dV + \int_{V} \nabla \cdot (\phi^{*} \mathbf{D} \nabla \phi - \phi \mathbf{D} \nabla \phi^{*}) dV
= \int_{V} \phi \nabla \cdot (\mathbf{D} \nabla \phi^{*}) dV + (\phi^{*} \mathbf{n} \cdot \mathbf{D} \nabla \phi - \phi \mathbf{n} \cdot \mathbf{D} \nabla \phi^{*})_{\partial V}$$

If the boundary condition for the adjoint flux is defined as

$$a\mathbf{n} \cdot D(r, E) \nabla \phi^*(r, E) + b\phi^*(r, E) = 0, \quad r \in \partial V$$

Adjoint diffusion operator can be obtained as

$$\int_{V} \phi^{*} \nabla \cdot (\mathbf{D} \nabla \phi) dV = \int_{V} \phi \nabla \cdot (\mathbf{D} \nabla \phi^{*}) dV \implies$$

$$\{-\nabla \cdot [D\nabla(\bullet)]\}^* = -\nabla \cdot [D\nabla(\bullet)]$$
 (self-adjoint)

Boundary Conditions and Bilinear Concomitant

Forward equation

$$a\mathbf{n} \cdot D(r, E) \nabla \phi(r, E) + b\phi(r, E) = 0, \quad r \in \partial V$$

 $a = 0 \implies \phi(r_b, E) = 0 \quad \text{(zero flux)}$
 $b = 0 \implies \mathbf{n} \cdot D(r_b, E) \nabla \phi(r_b, E) = J_n(r_b, E) = 0$
(zero current)
 $b = 1, \quad a = 2.133 \implies \phi(r_b + 0.711\lambda_{tr}, E) = 0$
(extrapolated bc)

Adjoint boundary condition

$$a\mathbf{n} \cdot D(r, E)\nabla \phi^*(r, E) + b\phi^*(r, E) = 0, \quad r \in \partial V$$

Bilinear concomitant

$$\phi^*(a\mathbf{n} \cdot D\nabla\phi + b\phi) - \phi(a\mathbf{n} \cdot D\nabla\phi^* + b\phi^*) = 0 \implies a(\phi^*\mathbf{n} \cdot D\nabla\phi - \phi\mathbf{n} \cdot D\nabla\phi^*) = 0$$

$$a \neq 0 \implies (\phi^*\mathbf{n} \cdot D\nabla\phi - \phi\mathbf{n} \cdot D\nabla\phi^*) = 0$$

$$a = 0 \implies \phi(r_b, E) = \phi^*(r_b, E) = 0 \implies (\phi^*\mathbf{n} \cdot D\nabla\phi - \phi\mathbf{n} \cdot D\nabla\phi^*) = 0$$

 Bilinear concomitant vanishes if the forward and adjoint fluxes satisfy the these boundary conditions

Adjoint Reaction Operators

Total reaction term

$$\int_{V} \int_{0}^{\infty} \phi^{*}(\Sigma_{t}\phi) dE dV = \int_{V} \int_{0}^{\infty} \phi(\Sigma_{t}\phi^{*}) dE dV \implies (\Sigma_{t})^{*} = \Sigma_{t} \quad (\text{self-adjoint})$$

Total number of reactions per unit time $\Rightarrow \phi^*$ is a dimensionless weighting function

Scattering source term (for simplicity, integration over space is omitted)

$$\int_{0}^{\infty} \phi^{*}(r,E) \left[\int_{0}^{\infty} \Sigma_{s}(r,E' \to E) \phi(r,E') dE' \right] dE$$

$$= \int_{0}^{\infty} \phi(r,E') \left[\int_{0}^{\infty} \Sigma_{s}(r,E' \to E) \phi^{*}(r,E) dE \right] dE' \Rightarrow \left[\int_{0}^{\infty} \Sigma_{s}(r,E' \to E,t) \phi(r,E') dE' \right]^{*}$$

$$= \int_{0}^{\infty} \phi(r,E) \left[\int_{0}^{\infty} \Sigma_{s}(r,E \to E') \phi^{*}(r,E') dE' \right] dE$$

Fission source term (for simplicity, integration over space is omitted)

$$\int_{0}^{\infty} \phi^{*}(r,E) \left[\chi(E) \int_{0}^{\infty} v \Sigma_{f}(r,E') \phi(r,E') dE' \right] dE$$

$$= \int_{0}^{\infty} \phi(r,E') \left[v \Sigma_{f}(r,E') \int_{0}^{\infty} \chi(E) \phi^{*}(r,E) dE \right] dE' \Rightarrow \left[\chi(E) \int_{0}^{\infty} v \Sigma_{f}(r,E') \phi(r,E') dE' \right]^{*}$$

$$= \int_{0}^{\infty} \phi(r,E) \left[v \Sigma_{f}(r,E) \int_{0}^{\infty} \chi(E') \phi^{*}(r,E') dE' \right] dE$$

$$= v \Sigma_{f}(r,E) \int_{0}^{\infty} \chi(E') \phi^{*}(r,E') dE'$$

Adjoint Diffusion Equation

Adjoint continuous energy neutron diffusion equation

$$\mathbf{M}^* \boldsymbol{\phi}^*(r, E) = \lambda \mathbf{F}^* \boldsymbol{\phi}^*(r, E)$$

$$\mathbf{M}^*\phi^*(r,E) = -\nabla \cdot D(r,E)\nabla \phi^*(r,E) + \Sigma_t(r,E)\phi^*(r,E) - \int_0^\infty \Sigma_s(r,E \to E')\phi^*(r,E')dE'$$

$$\mathbf{F}^*\phi^*(r,E) = \lambda \nu \Sigma_f(r,E) \int_0^\infty \chi(E')\phi^*(r,E') dE'$$

$$a\mathbf{n} \cdot D(r, E) \nabla \phi^*(r, E) + b\phi^*(r, E) = 0, \quad r \in \partial V$$

Adjoint multi-group diffusion equation

$$\mathbf{M}^* \vec{\boldsymbol{\phi}}^*(r) = \lambda \mathbf{F}^* \vec{\boldsymbol{\phi}}^*(r)$$

$$\vec{\phi}^*(r) = \begin{bmatrix} \phi_1^* \\ \phi_2^* \\ \vdots \\ \phi_G^* \end{bmatrix}$$

$$\mathbf{M}^* \vec{\phi}^*(r) = \lambda \mathbf{F}^* \vec{\phi}^*(r)$$

$$\mathbf{M}^* \vec{\phi}^*(r) = \lambda \mathbf{F}^* \vec{\phi}^*(r)$$

$$\mathbf{M}^* = \begin{bmatrix} -\nabla \cdot D_1 \nabla + \Sigma_{r1} & -\Sigma_{s12} & \cdots & -\Sigma_{s1G} \\ -\Sigma_{s21} & -\nabla \cdot D_2 \nabla + \Sigma_{r2} & \cdots & -\Sigma_{s2G} \\ \vdots & \vdots & \ddots & \vdots \\ -\Sigma_{sG1} & -\Sigma_{sG2} & \cdots & -\nabla \cdot D_G \nabla + \Sigma_{rG} \end{bmatrix}$$

$$\mathbf{F}^* = \begin{bmatrix} v \Sigma_{f1} \chi_1 & v \Sigma_{f1} \chi_2 & \cdots & v \Sigma_{f1} \chi_G \\ v \Sigma_{f2} \chi_1 & v \Sigma_{f2} \chi_2 & \cdots & v \Sigma_{f2} \chi_G \\ \vdots & \vdots & \ddots & \vdots \\ v \Sigma_{fG} \chi_1 & v \Sigma_{fG} \chi_2 & \cdots & v \Sigma_{fG} \chi_G \end{bmatrix}$$

$$\mathbf{F}^* = \begin{bmatrix} \nu \Sigma_{f1} \chi_1 & \nu \Sigma_{f1} \chi_2 & \cdots & \nu \Sigma_{f1} \chi_G \\ \nu \Sigma_{f2} \chi_1 & \nu \Sigma_{f2} \chi_2 & \cdots & \nu \Sigma_{f2} \chi_G \\ \vdots & \vdots & \ddots & \vdots \\ \nu \Sigma_{fG} \chi_1 & \nu \Sigma_{fG} \chi_2 & \cdots & \nu \Sigma_{fG} \chi_G \end{bmatrix}$$

Physical Interpretation of Adjoint Flux

- Consider a system characterized by the operators M and F
 - The fundamental mode adjoint flux is determined by the following eigenvalue problem

$$(\mathbf{M}^* - \lambda \mathbf{F}^*) \phi^*(r, E) = 0$$

 If a unit source of energy E₀ is introduced at position r₀, the corresponding flux is determined by the following source problem

$$(\mathbf{M} - \mathbf{F})\phi(r, E) = \delta(r - r_0)\delta(E - E_0)$$

Taking an inner product with the adjoint flux, we have

$$\langle \phi^*, (\mathbf{M} - \mathbf{F}) \phi \rangle = \langle \phi^*, \delta(r - r_0) \delta(E - E_0) \rangle$$

$$\langle \phi^*, \delta(r - r_0) \delta(E - E_0) \rangle = \int_V \int_0^\infty \phi^*(r, E) \delta(r - r_0) \delta(E - E_0) dE dV = \phi^*(r_0, E_0)$$

$$\langle \phi^*, (\mathbf{M} - \mathbf{F}) \phi \rangle = \langle \mathbf{M}^* \phi^*, \phi \rangle - \langle \phi^*, \mathbf{F} \phi \rangle = \langle \lambda \mathbf{F}^* \phi^*, \phi \rangle - \langle \phi^*, \mathbf{F} \phi \rangle = (\lambda - 1) \langle \phi^*, \mathbf{F} \phi \rangle$$

$$\phi^*(r_0, E_0) = (\lambda - 1) \langle \phi^*, \mathbf{F} \phi \rangle$$

 Thus the adjoint flux represents the relative contribution to the fission source by the unit source introduced in the specified position and energy

Adjoint Flux for Detector Response

Fixed source problem

$$\mathbf{M}\phi = \mathbf{F}\phi + S$$
 or $(\mathbf{M} - \mathbf{F})\phi = S$ (neutrons/cm³s)

Corresponding adjoint source problem for the detector response

$$(\mathbf{M}^* - \mathbf{F}^*)\phi^* = S^*$$
 (1/cm \Rightarrow unit of macroscopic cross section)

$$S^* = \Sigma_D$$
 (detector cross section)

- Consider a source located at r_s and a detector located at r_D
 - The source problem is then specified as $(\mathbf{M} \mathbf{F})\phi = S\delta(r r_s)$

The corresponding adjoint problem can be specified as

$$(\mathbf{M}^* - \mathbf{F}^*)\phi^* = \Sigma_D \delta(r - r_D)$$

$$0 = \langle \phi^*, (\mathbf{M} - \mathbf{F})\phi \rangle - \langle \phi, (\mathbf{M}^* - \mathbf{F}^*)\phi^* \rangle = \langle \phi^*, S\delta(r - r_S) \rangle - \langle \phi, \Sigma_D \delta(r - r_D) \rangle$$

$$\Rightarrow \phi^*(r_S)S = \phi(r_D)\Sigma_D \Rightarrow \phi^*(r_S) = \frac{\phi(r_D)\Sigma_D}{S}$$

Detector response (i.e. reaction rate at the detector) per unit source at r_s

Adjoint Flux in PWR Pin Cell

$$-\nabla \cdot D(r, E) \nabla \phi^*(r, E) + \Sigma_t(r, E) \phi^*(r, E)$$
$$-\int_0^\infty \Sigma_s(r, E \to E') \phi^*(r, E') dE'$$
$$= \lambda \nu \Sigma_f(r, E) \int_0^\infty \chi(E') \phi^*(r, E') dE'$$

Two-Group Real and Adjoint Fluxes in Slab Reactor

Group	D	Σ_{a}	Σ_{aF}	$ u \Sigma_{f}$	χ	$\Sigma_{\sf s12}$
1	1.44	0.01	0.01	0.008	1.0	0.017
2	0.366	0.125	0.09	0.169	0.0	

First Order Perturbation Theory

Eigensystem of the adjoint operator

$$\mathbf{A}\phi_{i} = \lambda_{i}\phi_{i}
\mathbf{A}^{*}\phi_{j}^{*} = \lambda_{j}^{*}\phi_{j}^{*}$$

$$\Rightarrow \langle \phi_{j}^{*}, \mathbf{A}\phi_{i} \rangle = \langle \phi_{j}^{*}, \lambda_{i}\phi_{i} \rangle = \lambda_{i}^{*} \langle \phi_{j}^{*}, \phi_{i} \rangle \Rightarrow \langle \mathbf{A}^{*}\phi_{j}^{*}, \phi_{i} \rangle = \langle \lambda_{j}^{*}\phi_{j}^{*}, \phi_{i} \rangle = \overline{\lambda}_{i}^{*} \langle \phi_{j}^{*}, \phi_{i} \rangle \Rightarrow \langle \lambda_{i}^{*} = \overline{\lambda}_{i}^{*} \text{ or } \langle \phi_{j}^{*}, \phi_{i} \rangle = 0$$

– If the eigenfunctions are labeled in such a way that the eigenvalues associated with ϕ_i are the complex conjugates of the eigenvalues associated with ϕ_i^*

$$\langle \phi_i^*, \phi_i \rangle = 0$$
, $i \neq j$ (i.e., biorthogonal)

- The aim of the first order perturbation theory is to evaluate the eigenvalue perturbation without solving the perturbed equation
 - A perturbation introduced in the operator changes the eigenvalue and eigenfunction to satisfy the perturbed equation

$$\mathbf{A}'\phi' = \lambda'\phi' \implies (\mathbf{A} + \Delta\mathbf{A})(\phi + \Delta\phi) = (\lambda + \Delta\lambda)(\phi + \Delta\phi)$$
$$\mathbf{A}\phi = \lambda\phi \implies \mathbf{A}\Delta\phi + \Delta\mathbf{A}\phi + \Delta\mathbf{A}\Delta\phi = \lambda\Delta\phi + \Delta\lambda\phi + \Delta\lambda\Delta\phi$$

Neglecting the second order terms yields

$$A\Delta\phi + \Delta A\phi = \lambda\Delta\phi + \Delta\lambda\phi$$

First Order Perturbation Theory

First order estimation of eigenvalue perturbation

$$\mathbf{A}\Delta\phi + \Delta\mathbf{A}\phi = \lambda\Delta\phi + \Delta\lambda\phi$$
 (first order equation)

Inner product with the adjoint function

$$\langle \phi^*, \mathbf{A} \Delta \phi \rangle + \langle \phi^*, \Delta \mathbf{A} \phi \rangle = \langle \phi^*, \lambda \Delta \phi \rangle + \langle \phi^*, \Delta \lambda \phi \rangle \implies \Delta \lambda = \frac{\langle \phi^*, \Delta \mathbf{A} \phi \rangle}{\langle \phi^*, \Delta \phi \rangle}$$

$$\langle \phi^*, \mathbf{A} \Delta \phi \rangle = \langle \mathbf{A}^* \phi^*, \Delta \phi \rangle = \langle \overline{\lambda} \phi^*, \Delta \phi \rangle = \lambda \langle \phi^*, \Delta \phi \rangle$$

$$\langle \phi^*, \lambda \Delta \phi \rangle = \lambda \langle \phi^*, \Delta \phi \rangle$$

- Eigenvalue perturbation can be evaluated only with the operator change (without knowing the eigenfunction perturbation)
- Forward and adjoint neutron balance equations

$$\mathbf{M}\phi = \lambda \mathbf{F}\phi, \quad \mathbf{M}^*\phi^* = \lambda \mathbf{F}^*\phi^*$$

First order estimation of eigenvalue perturbation

$$\mathbf{M}'\phi' = \lambda'\mathbf{F}'\phi' \implies (\mathbf{M} + \Delta\mathbf{M})(\phi + \Delta\phi) = (\lambda + \Delta\lambda)(\mathbf{F} + \Delta\mathbf{F})(\phi + \Delta\phi)$$

$$\mathbf{M}\phi = \lambda\mathbf{F}\phi \implies \mathbf{M}\Delta\phi + \Delta\mathbf{M}\phi = \lambda\mathbf{F}\Delta\phi + \lambda\Delta\mathbf{F}\phi + \Delta\lambda\mathbf{F}\phi \quad \text{(first order equation)}$$

$$\mathbf{M}^*\phi^* = \lambda\mathbf{F}^*\phi^* \implies \langle\phi^*, \mathbf{M}\Delta\phi\rangle + \langle\phi^*, \Delta\mathbf{M}\phi\rangle$$

$$= \lambda \langle\phi^*, \mathbf{F}\Delta\phi\rangle + \lambda \langle\phi^*, \Delta\mathbf{F}\phi\rangle + \Delta\lambda \langle\phi^*, \mathbf{F}\phi\rangle$$

First Order Perturbation Theory

First order estimation of eigenvalue perturbation

$$\Delta \lambda = \frac{\langle \phi^*, [\Delta \mathbf{M} - \lambda \Delta \mathbf{F}] \phi \rangle}{\langle \phi^*, \mathbf{F} \phi \rangle}$$

$$\Delta \lambda = \frac{\langle \phi^*, [\Delta \mathbf{M} - \lambda \Delta \mathbf{F}] \phi \rangle}{\langle \phi^*, \mathbf{F} \phi \rangle} = \frac{\langle \phi^*, [(\mathbf{M} + \Delta \mathbf{M}) - \lambda (\mathbf{F} + \Delta \mathbf{F})] \phi \rangle}{\langle \phi^*, \mathbf{F} \phi \rangle} = \frac{\langle \phi^*, [\mathbf{M}' - \lambda \mathbf{F}'] \phi \rangle}{\langle \phi^*, \mathbf{F} \phi \rangle}$$

First order estimation of reactivity change

$$\rho = 1 - \frac{1}{k} = 1 - \lambda$$
 (static reactivity)

$$\Delta \rho = -\Delta \lambda = \frac{\langle \phi^*, [\lambda \Delta \mathbf{F} - \Delta \mathbf{M}] \phi \rangle}{\langle \phi^*, \mathbf{F} \phi \rangle} = \frac{\langle \phi^*, [\lambda \mathbf{F'} - \mathbf{M'}] \phi \rangle}{\langle \phi^*, \mathbf{F} \phi \rangle}$$

Simple one-group point model

$$\Sigma_{a}\phi = \lambda \nu \Sigma_{f}\phi, \quad \lambda = \frac{\Sigma_{a}}{\nu \Sigma_{f}} \quad \Rightarrow \quad \Delta \rho = \frac{\lambda \Delta(\nu \Sigma_{f}) - \Delta \Sigma_{a}}{\nu \Sigma_{f}} = \frac{\Sigma_{a}\Delta(\nu \Sigma_{f}) - \nu \Sigma_{f}\Delta \Sigma_{a}}{(\nu \Sigma_{f})^{2}}$$
 (FOP)

Exact difference:
$$\Delta \rho = \frac{\Sigma_a}{\nu \Sigma_f} - \frac{\Sigma_a'}{(\nu \Sigma_f)'} = \frac{(\nu \Sigma_f)' \Sigma_a - \nu \Sigma_f \Sigma_a'}{\nu \Sigma_f (\nu \Sigma_f)'} = \frac{\Delta(\nu \Sigma_f) \Sigma_a - \nu \Sigma_f \Delta \Sigma_a}{\nu \Sigma_f [\nu \Sigma_f + \Delta(\nu \Sigma_f)]}$$

One-Dimensional, One-Group Problem

- Increased absorption XS at the core center by $\Delta \Sigma_a$ for $-p \le x \le p$
- 1-D, 1-G diffusion equation

$$-D\frac{d^2\phi}{dx^2} + \Sigma_a \phi = \lambda v \Sigma_f \phi, \quad \phi(\pm a) = 0$$

$$\frac{d^2\phi}{dx^2} + \frac{\lambda v \Sigma_f - \Sigma_a}{D} \phi = 0, \quad B^2 = \frac{\lambda v \Sigma_f - \Sigma_a}{D}$$

$$\frac{d^2\phi}{dx^2} + B^2\phi = 0 \quad \Rightarrow \quad \phi(x) = A\cos(Bx) \quad (\because \text{ symmetric})$$

$$\phi(\pm a) = 0 \implies A\cos(Ba) = 0 \implies B = \frac{\pi}{2a} \qquad \phi(0) = \phi_0 \implies \phi(x) = \phi(0)\cos(Bx)$$

$$\phi(0) = \phi_0 \implies \phi(x) = \phi(0)\cos(Bx)$$

$$\lambda = \frac{DB^2 + \Sigma_a}{v\Sigma_f}, \quad \rho = 1 - \lambda = \frac{v\Sigma_f - (DB^2 + \Sigma_a)}{v\Sigma_f}$$

Adjoint equation

$$-D\frac{d^2\phi^*}{dx^2} + \Sigma_a \phi^* = \lambda \nu \Sigma_f \phi^*, \quad \phi^*(\pm a) = 0 \quad \text{(self-adjoint)}$$
$$\phi^*(x) = \phi_0^* \cos(Bx)$$

One-Dimensional, One-Group Problem

Reactivity change by FOP

$$\Delta \rho = \frac{\langle \phi^*, [\lambda \Delta \mathbf{F} - \Delta \mathbf{M}] \phi \rangle}{\langle \phi^*, F \phi \rangle} = -\frac{\int_{-p}^{p} \Delta \Sigma_a \cos^2(Bx) dx}{\int_{-a}^{a} v \Sigma_f \cos^2(Bx) dx}$$

$$\int_{-a}^{a} v \Sigma_f \cos^2(Bx) dx = 2v \Sigma_f \int_{0}^{a} \frac{1 + \cos(2Bx)}{2} dx \cong v \Sigma_f a$$

$$\int_{-p}^{p} \Delta \Sigma_a \cos^2(Bx) dx = 2\Delta \Sigma_a \int_{0}^{p} \frac{1 + \cos(2Bx)}{2} dx \cong \Delta \Sigma_a (2p) \iff \cos(2Bx) \cong 1 \text{ near } x = 0$$

$$\Delta \rho = -\frac{2p}{a} \frac{\Delta \Sigma_a}{v \Sigma_f}$$

Reactivity change by reaction rates without using adjoint flux

$$\Delta \rho = \frac{\text{change in net production rate}}{\text{production rate}} = \frac{-\int_{-p}^{p} \Delta \Sigma_{a} \cos Bx dx}{\int_{-a}^{a} v \Sigma_{f} \cos Bx dx}$$

$$\approx -\frac{p \Delta \Sigma_{a}}{v \Sigma_{f} / B} = -\frac{\pi}{2} \frac{p}{a} \frac{\Delta \Sigma_{a}}{v \Sigma_{f}} \approx -\frac{1.7 p}{a} \frac{\Delta \Sigma_{a}}{v \Sigma_{f}}$$

Exact Perturbation Theory

Exact perturbation theory expresses the exact eigenvalue differences in a form similar to FOP formula using the solution to the perturbed problem

$$\mathbf{M}'\phi' = \lambda'\mathbf{F}'\phi', \quad \mathbf{M}^*\phi^* = \lambda\mathbf{F}^*\phi^*$$

$$<\phi^*, \mathbf{M}'\phi' > = \lambda' < \phi^*, \mathbf{F}'\phi' > \Rightarrow <\phi^*, \mathbf{M}'\phi' > + <\phi^*, \Delta\mathbf{M}\phi' >$$

$$\Delta\lambda = \frac{<\phi^*, [\Delta\mathbf{M} - \lambda\Delta\mathbf{F}]\phi' >}{<\phi^*, \mathbf{F}'\phi' >} = \lambda <\phi^*, \mathbf{F}'\phi' > + \Delta\lambda <\phi^*, \mathbf{F}'\phi' >$$

$$= \lambda <\phi^*, \mathbf{F}'\phi' > + \lambda\lambda <\phi^*, \Delta\mathbf{F}\phi' > + \Delta\lambda <\phi^*, \mathbf{F}'\phi' >$$

$$\lambda = 1 \quad \Rightarrow \quad \rho^{st} = 1 - \lambda = \frac{<\phi^*, [\Delta\mathbf{F} - \Delta\mathbf{M}]\phi' >}{<\phi^*, \mathbf{F}'\phi' >} = \frac{<\phi^*, [\mathbf{F}' - \mathbf{M}']\phi >}{<\phi^*, \mathbf{F}'\phi' >} \quad \text{(static reactivity)}$$

Alternative formula based on the perturbed adjoint flux

$$\mathbf{M}\phi = \lambda \mathbf{F}\phi, \quad \mathbf{M'}^*\phi'^* = \lambda' \mathbf{F'}^*\phi'^*$$

$$<\phi, \mathbf{M'}^*\phi'^* > = \lambda' < \phi, \mathbf{F'}^*\phi'^* > \Rightarrow <\phi, \mathbf{M'}^*\phi'^* > + <\phi, \Delta \mathbf{M}^*\phi'^* >$$

$$= \lambda <\phi, \mathbf{F'}^*\phi'^* > + \Delta \lambda <\phi, \mathbf{F'}^*\phi'^* > = \lambda <\phi, \mathbf{F'}^*\phi'^* > + \lambda <\phi, \Delta \mathbf{F}^*\phi'^* > + \Delta \lambda <\phi, \mathbf{F'}^*\phi'^* >$$

$$\Delta \lambda = \frac{<\phi, [\Delta \mathbf{M}^* - \lambda \Delta \mathbf{F}^*]\phi'^* >}{<\phi, \mathbf{F'}^*\phi'^* >} = \frac{<\phi'^*, [\Delta \mathbf{M} - \lambda \Delta \mathbf{F}]\phi >}{<\phi'^*, \mathbf{F'}\phi >}$$

