

Fig. 2.

Fig. 3

FIG 8

FIG 9

FIG 10

FIG 11

FIG. 12 . . . j1202.

Fig. 13

Fig. 14

Fig. 15⁶⁸

3/25/00

Fig. 16

Fig. 16
3/25/00

Fig. 17

BOTTOM METAL CONTACT MAY BE USED TO TIE TOGETHER ENTIRE ARRAY

5/3/00

Fig. 18

Fig. 19

Fig. 20

Fig. 21

DEVICE QUANTUM EFFICIENCY

Fig 26

Fig. 27

Fig. 28

Fig. 29

3006

3005

3003

3001

10⁶

Fig. 30

3006

TOP METAL

 μc (high cond.) μc or α -SiGe (high absorpt.)

300f

2

i

n/p

 μc or poly c (high cond.)

~ BOTTOM METAL

SUBSTRATE

3001

3002

DETECTOR APERTURE

10⁵10⁶10⁵

Fig 33 106

NOTE: ALTERNATIVE CONFIGURATION
HAS 3 TOP CONTACTS (NO COMMON);
MAY BE PREFERABLE FOR HIGH-SPD.
SWITCHING.
(PERHAPS EVEN FORM HOLE THROUGH
PIN SUBSTRATE & BOND LAYER TO
VCSEL TOP CONTACT).

Fig. 37

3/28/00

COLLAPSE LAYERS TO PROVIDE SHORTEST
VCSEL \rightarrow FIBER PATH (no optics!)

Fig. 38

.. SUCH A PACKAGE WOULD ALLOW LOW-COST, DIRECT COUPLING
IN A FIBER CONNECTOR (VCSEL APERTURE $< 25 \mu\text{m}$, AND MULTIMODE
FIBER CORE $\approx 50-62.5 \mu\text{m}$; VCSEL BEAM DIVERGENCE $\approx 20^\circ$, AND
PIN LAYER IS THIN).

Fig 39

3/28/00

Fig. 40

Fig. 41

Fig. 42

