

AmM-Ordinario-16-w.pdf

Fibonacci_

Ampliación de Matemáticas

3º Grado en Ingeniería Aeroespacial

Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio Universidad Politécnica de Madrid

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416 arts esce ues2016juny.pdf

Top de tu gi

Rocio

pony

Asignatura:	Curso:	Grupo:

Ampliación de Matemáticas (Versión 1),

25-01-2017)

A. Sea $F = F(\omega)$ la transformada de Fourier del producto de convolución (f*f), donde f=f(x) es la funcion característica del intervalo [-1,1]:

$$f(x) = 1$$
, en $-1 \le x \le 1$; $f(x) = 0$, en $x < -1$ y $x > 1$.

La funcion F cumple:

(1)
$$F(\omega) = \frac{(\sin \omega)^2}{2\omega^2}$$
.

(2)
$$F(\omega) = \frac{\sin(2\omega)}{\omega}$$
.

$$F(0) = 4.$$

33 == 34 — 35 — 36 <u>____</u> 37 <u>____</u>

38 ==

43 <u>—</u>

45 46 47

48 **—**

50 **—**

52 — 53 — 54 —

55 🖂

57 CC 58 CC

63 ==

(4)
$$F(\pi/2) = 0$$
.

B. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d} t^2}(t) + 2 \frac{\mathrm{d} w}{\mathrm{d} t}(t) + 2 w(t) = g(t) \ \text{en }]0, + \infty[, \ w(0) = 0, \ \frac{\mathrm{d} w}{\mathrm{d} t}(0) = 1,$$

donde $g:[0,+\infty[\to\mathbb{R}$ es la función definida por $g(t)=t^2-t$ si $t\in[0,1[$ y g(t)=0 si $t\in [1,+\infty[.$ Sobre la función w se puede afirmar que:

- (5) Su transformada de Laplace es tal que $\mathcal{L}(w(t))(2) = \frac{3 \exp(-2)}{2}$
- (6) Su transformada de Laplace es tal que $\mathcal{L}(w(t))(2) = \frac{3 + \exp(-2)}{20}$
- (7) Su transformada de Laplace es tal que $\mathcal{L}(w(t))(2) = \frac{2 \exp(-2)}{2}$
- (8) No es cierta ninguna de las otras tres respuestas.
- C. Considérese el problema de Cauchy definido por

$$\frac{\mathrm{d}^2 w}{\mathrm{d} z^2} - (z + z^4) w = 0 \ \text{en} \ \mathbb{C}, \, w(0) = 0, \, \, \frac{\mathrm{d} w}{\mathrm{d} z}(0) = 1.$$

La solución del problema anterior es una función entera, cuyo desarrollo en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. Sobre la función w y los coeficientes c_k de su desarrollo se puede afirmar que:

- (9) Los coeficientes c_{3j+1} , para todo $j \in \mathbb{N}$, son no nulos y la restricción de w al eje real es una función que toma valores reales que es impar.
- Los coeficientes c_{3j+2} , para todo $j \in \mathbb{N}$, son nulos y la restricción de w al eje real es una función que toma valores reales que no es
- (11) Los coeficientes $c_{3j+2},$ para todo $j\in\mathbb{N},$ son nulos y la restricción de w al eje real es una función que toma valores reales que es impar.
- (12) No es cierta ninguna de las otras tres respuestas.

Fecha

2 2	2	٥	۵	0
급급	1	1	_	4
2 2				
3 3				
44				
5 5				
6 6				
4 4		_	_	_
å å				
å å	Ď	Ó	Ď	
(Curs	0		
	3		5	

Auxiliar							
1	å	Ь	<u>c</u>	₫	е		
2	-	0	6	4	-		
3	å	6	6	4	e		
4	8	8	6	4	-		
5	å	a	6	4	_0		
6	-	0	-	4	e		
7	å	۵	£	₫	e		
8	<u>a</u>	8	<u>c</u>	4	0		
9	å	b	<u>_</u>	₫	e		
10	-	0	8	4	e		

Ampliación de Matemáticas (Versión 1)

- D. Sea $w:\mathbb{C} \to \mathbb{C}$ la solución del problema de Cauchy definido en el ejercicio C. Sobre la función w puede afirmarse que:
 - (13) La restricción de w al intervalo real]1,+∞[es una función que toma valores reales y tiene extremos relativos.
 - (14) La restricción de w al intervalo real]1,+∞[es una función que toma valores reales, carece de extremos relativos y presenta un punto de inflexión.
 - (15) La restricción de w al intervalo real $]1,+\infty[$ es una función que toma valores reales y su gráfica carece de puntos de inflexión.
 - (16) No es cierta ninguna de las otras tres respuestas.

E. Considérese la ecuación diferencial

$$z\exp(z)\frac{\mathrm{d}^2w}{\mathrm{d}z^2}-\ln(1+z)\frac{\mathrm{d}w}{\mathrm{d}z}+\frac{(1+z)^2}{4\sin(z)}w=0.$$

Sobre las soluciones de la ecuación anterior, en $D\subset \mathbb{C},$ puede afirmarse

- (17) Existe una solución de la ecuación del enunciado, w2(z), tal que $\lim_{z\to 0}\frac{w_2(z)}{z}=1.$ (18) Existe una solución de la ecuación del enunciado, $w_2(z)$, distinta
- de la función nula, tal que $\lim_{z\to 0} \frac{w_2(z)}{\sqrt{z}} = 0$.

 (19) Existe una solución de la ecuación del enunciado, $w_2(z)$, tal que
- $\lim_{z\to 0}\frac{w_2(z)}{\sqrt{z}\ln(z)}=1.$ No es cierta ninguna de las otras tres respuestas.

F. El valor del límite

$$\lim_{x \to 0} \frac{J_3(x) + 4J_2(x) - xJ_1(x)}{\int_0^x J_2(t) dt}.$$

(22) $\frac{1}{4}$.

(24) No es cierta ninguna de las otras tres respuestas.

Examen 25/01/2017

A.
$$f(x) = 1$$
 en $-1 \le x \le 1$; $f(x) = 0$ en $x < -1 \le x \le 1$

$$F \left[f * f \right] (w) = \hat{f} (w) \cdot \hat{f} (w) = \left[\hat{f} (w) \right]^{2}$$

$$2 \oint_{-1}^{2} (w) = \int_{-1}^{1} 1 \cdot e^{-iwx} dx = -\frac{1}{iw} e^{-iwx} \right]^{1} = +\frac{1}{iw} \left[-e^{-iw} + e^{iw} \right]^{2}$$

$$F \left[f * f \right] (w) = \frac{4 \left[\sec n(w) \right]^{2}}{w^{2}} \longrightarrow \left[F(0) = \lim_{w \to 0} \frac{4 \left[\sec n(w) \right]^{2}}{w^{2}} = 4 \right]$$

B. $\int_{-1}^{1} \frac{d^{2}w}{dt^{2}} (t) + 2 \frac{dw}{dt} (t) + 2w(t) = g(t)$

$$W(0) = 0, \quad \frac{dw}{dt} (0) = 1$$

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Ver mis op

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

C. $\left| \frac{d^2 w}{dt^2} - (t + z^4) w \right| = 0$ $+\infty$ $w(t) = \sum_{k=0}^{+\infty} C_k t^k$

w(z) = 1. w(0) + z. dw (0) + 2 CK ZK = Z + 2 CK ZK

Sustitoyendo en la ecuación:

£ K (K-1) CK 2 K-2 - (z+24) (z + € CK 2 K) = 0

E K (K-1) CK Z K-2 - (Z2+ Z5) - E CK Z K+1 - E CK Z K+4 = 0

-> Buscamos casos de K para unir con al término serralado:

dw 10) = 1 thunciago

20: 2(1) C2 = 0 → Cz=0

21: 3(2) (5=0 → (3=0

(22): 4(3) C4 - 1:0 - C4 = 1/4(3)

23: 5(4) C5 - 62 =0 → C5=0

(25): 7(6) C7 - 1 - C4 - P1 = 0 -> C7 = 16)

 $Z^{n} : (n+2)(n+1)C_{n+2} - C_{n-4} - C_{n-4} = 0 \rightarrow C_{n+2} = \frac{C_{n-1} + C_{n-4}}{(n+2)(n+1)}$ $C_{3j+1} \neq 0$; $C_{3j} = 0$; $C_{3j+2} = 0$ $C_{K+6} = \frac{C_{K+3} + C_{K}}{(K+6)(K+5)}$

Al cer C1+0 y G1+0 le Junción us, que es entera, no puede

ser par ni impar.

D. Al ser todos Cx > 0 - w es estrectomente creciente y no puede presentar extremos reletivos. Además, w(7) > 0 pra todo $\overline{z} > 0$ de donde $\frac{d^2w}{d\overline{z}^2}(\overline{z}) > 0$ pare todo \overline{z} y en conservencia Le gréjice de us no presente puntos de influxión.

