Started on	Monday, 25 September 2023, 7:56 AM
State	Finished
Completed on	Monday, 25 September 2023, 8:24 AM
Time taken	28 mins 38 secs
Marks	12.00/15.00
Grade	8.00 out of 10.00 (80%)
Feedback	Great work!
Question 1	
Complete	
Mark 1.00 out of 1.00	
Find	
	$(101001 \wedge 110011) \oplus 011011$
Answer: 111010	
Question 2	
Complete	
Mark 0.00 out of 1.00	

Find truth values of $p,\ q$ so that the following proposition is True?

$$(p \lor q) \land (p \lor \lnot q) \land (\lnot p \lor q) \land (\lnot p \lor \lnot q)$$

Select one:

- \bigcirc a. p = True, q = False
- \bigcirc b. p = False, <math>q = True
- oc. None of the other choices is correct
- \bigcirc d. p = False, q = False
- \bigcirc e. p = True, q = True

Question 3 Complete		
Mark 1.00 out of 1.00		
Find the negation of		
$\exists x \forall y (\exists z T(x,y,z) \wedge \neg Q(x,y)).$		
Select one:		
$igcirc$ a. $orall x\exists y(orall z eg T(x,y,z) \wedge eg Q(x,y))$ $igcirc$ b. $orall x\exists y(orall z eg T(x,y,z) ee Q(x,y))$		
\odot c. $orall x orall y (orall z eg (x,y,z) eg (x,y,y)$		
\odot d. $orall x\exists y(orall zT(x,y,z)ee Q(x,y))$		
Question 4		
Complete		
Mark 1.00 out of 1.00		
Compute $\sum\limits_{i=0}^5 (2\cdot 3^i + 3\cdot 2^i)$.		
Answer: 917		
Question 5		
Complete		
Mark 0.00 out of 1.00		
Given the argument:		
"If Jack is a soccer player then Jack is rich. Jack only plays pingpong. Therefore, Jack is not rich."		
Choose correct statement:		
Select one:		
a. This argument is a fallacy		
b. This valid argument is based on disjunctive syllogism		
c. This valid argument is based on modus ponens		
d. This valid argument is based on hypothetical syllogism		
 e. This valid argument is based on modus tollens 		

Question 6
Complete
Mark 1.00 out of 1.00
Which of the following statements is true?
Select one:
\bigcirc a. $\emptyset \in \{x\}$
$lacksymbol{lack}$ b. $\{x\}\subseteq\{x\}$
\circ c. $\{x\}\subset\{x\}$
\bigcirc d. $\{x\} \in \{x\}$
Question 7
Question # Complete
Mark 1.00 out of 1.00
Let $f: \mathbb{Z} o \mathbb{N}$ be the function defined as follows
$f(n)=\left\{egin{array}{l} -2n,\ n\leq 0\ 2n-1,\ n>0 \end{array} ight.$
(2n-1,n>0)
Choose the correct answer.
Colort and
Select one: $igcup$ a. f is neither one-to-one nor onto.
igcup b. f is one-to-one but not onto.
\circ c. f is onto but not one-to-one.
lacksquare d. f is a bijection.
Question 8
Complete
Mark 1.00 out of 1.00
Find the cardinality of the set $\{a,\{a\},\{a,\{a\}\}\}$.
Answer: 3
Allswell. 3
Question 9
Complete
Mark 0.00 out of 1.00
_ 3 [_ 5]
Compute $\left\lfloor \frac{3}{2} - \left\lceil 3 + \frac{5}{4} \right\rceil \right\rfloor$.

Answer: -3

Mark 1.00 out of 1.00
Let
P(x) = " x goes to class regularly"
Q(x) = " x reads books"
R(x) = " x passed the exam"
Translate the sentence into logical expression, domain is the set of all students in class.
"Any student who goes to class regularly or reads books passed the exam".
Select one:
$igcup$ a. $orall x((P(x)ee Q(x))\wedge R(x))$
 b. None of the other choices is correct
leftilde c. $orall x((P(x)ee Q(x)) o R(x))$
\bigcirc d. $orall x((P(x) \wedge Q(x)) ee R(x))$
$igcup$ e. $orall x((P(x) \wedge Q(x)) o R(x))$
Question 11
Complete
Mark 1.00 out of 1.00
Given the sequence 1, 3, 3, 3, 5, 5, 5, 5,
constructed by including the integer $2k+1$ exactly $2k+1$ times.
Find the 200^{th} term.
Select one:
a. None of the other choices is correct
○ b. 27
o. 30
O d. 29
O d. 29
O d. 29
 □ d. 29 ■ e. 28 Question 12 Complete
○ d. 29○ e. 28 Question 12
 □ d. 29 ■ e. 28 Question 12 Complete
 □ d. 29 ■ e. 28 Question 12 Complete

Question 10

d. 25e. 20

Question 13		
Complete		
Mark 1.00 out of 1.00		
Let p,q be the propositions		
p= "She is out of work."		
q= "She spends less on clothes."		
Translate the sentence into a logic expression		
"Although she is out of work, she doesn't spend less on clothes."		
Select one:		
\bigcirc a. $p ightarrow eg q$		
$\ igotimes$ b. $p \wedge eg q$		
\bigcirc c. $p \lor \lnot q$		
\bigcirc d. $p \leftrightarrow eg q$		
\bigcirc e. $ eg q o p$		
Question 14		
Complete		
Mark 1.00 out of 1.00		
TRUE or FALSE? For all integer n ,		
$\lfloor n/2 floor \lceil n/2 ceil = \lceil n^2/4 ceil.$		
Select one:		
○ True		
False		
Question 15		
Complete		
Mark 1.00 out of 1.00		
The premises:		
"I am able to speak English or German",		
"If I can speak German, I will study for a master's degree in Germany",		
"I do not study a master's degree in German". Which conclusion can be drawn?		
Select one:		
a. I can speak English but cannot speak German		
○ b. No conclusion can be drawn		
c. I can speak German but cannot speak English		
○ d. I can speak both English and German		