Group Project: Design Phase

CSE 499

System Physics

Determining Robot Angle:

Using the accelerometer:

- Let
 - Accel = results from the accelerometer based on axis (x, y, z)
 - Phi = distance from -z axis angle (in degrees) (default 0)
 - o RAD2DEG = 360/pi
 - o pi = 3.14159
- accelAngle = $tan^{-1} \frac{accel Y}{accel Z}$ RAD2DEG

Using the tilt sensors:

- Let
 - Gyro = results from the tilt sensor on the x-axis
 - Psi = angle produced by gyroscope (default 0)
 - dt = change in time from last update = current time previous time (in ms)
- gyroAngle = gyro X * dt / 1000

Final Formula

- Let
 - Alpha = 0.95 so gyroscope has larger impact on system
- newAngle = $Alpha \cdot accelAngle + (1 Alpha) \cdot gyroAngle$
- newAngle = $\alpha \cdot \theta_g + (1 \alpha) \cdot \theta_a$

Inverted Pendulum: [1]

- Let
 - o (measurements are approximated until proper measurements made)
 - o M = mass of base = 0.4 kg
 - o m = mass at pendulum end = 0.3 kg
 - o l = pendulum length = 0.2 m
 - o b = coefficient of friction = 0.1 $N/(m \cdot s)$
 - \circ I = pendulum inertia = 0.006 kg \cdot m²
 - U = Force
 - Theta = pendulum angle
 - Phi = deviation from 0 degrees/radians
 - \circ g = gravitational acceleration = 9.8 m/s^2
- ODEs

$$\circ (l + ml^2)\Phi'' - mgl\Phi = mlx''$$

$$\circ (M + m)x'' + bx' - ml\Phi'' = u$$

Laplace Transforms

$$o q = (M + m)(I + ml^2) - (ml)^2$$

$$0 q = (M + m)(I + ml^{2}) - (ml)^{2}$$

$$0 \frac{\Phi(s)}{U(s)} = \frac{\frac{ml}{q}s}{s^{3} + \frac{b(I + ml^{2})}{q}s^{2} - \frac{(M + m)mgl}{q}s - \frac{bmgl}{q}}$$

Sampling

ADC Elements:

- Accelerometer Sensor
 - Helps determine the direction of the robot
 - 400 kHz max frequency
 - o Sample Period

$$T \le \frac{1}{2f_{max}} = 1.25 \, ms$$

- Tilt Sensor
 - o Helps determine the orientation of the robot
 - No sampling restrictions
- Ultrasonic Sensor
 - Help determine if the robot is about to collide with an object
 - 10 microsecond delay required
 - o distance = (long *)(duration / 15.2)

Control System Specifications

- Gain: Kp = 19, Ki = 10, Kd = 5 (trial and error from MATLAB)
- Damping Ratio: .916% (from MATLAB)
- Time Constants: 1.2824 s

$$\circ \quad \tau \leq \frac{1}{\zeta_{\omega_{11}}} = \frac{1}{.916 \cdot 1.4} = 1.2824$$

Natural Frequency: 1.4 rad/s (from MATLAB)

Citations

[1] University of Michigan, "Inverted Pendulum: System Modeling," Control Tutorials for MATLAB and Simulink - Inverted Pendulum: System Modeling. [Online]. Available: https://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=Syst emModeling. [Accessed: 13-Mar-2022].