Estimación Puntual

Consistencia de un estimador

Sean $\{X_n\}_{n\in\mathbb{N}}$ iid con distribución F_{θ} donde θ es un parámetro. Se considera la familia $\{T_n(X_1,\ldots,X_n)\}_{n\in\mathbb{N}}$ donde T_n es una función de los n datos (que cumple ciertas hipótesis). $T_n(X_1,\ldots,X_n)$ se llama un estimador de θ . Un estimador se dice consistente si $T_n(X_1,\ldots,X_n) \xrightarrow[n]{c.s} \theta$.

Eiercicio 1

Sean $(X_n)_{n\in\mathbb{N}}$ iid tales que $\mathbf{E}(X_1) = \mu$ y $\mathbf{Var}(X_1) = \sigma^2 < \infty$ $(\sigma > 0)$.

- 1. Demostrar que \overline{X}_n es un estimador consistente de μ , esto es que $\overline{X}_n \xrightarrow[n]{c.s.} \mu$.
- 2. Demostrar que si $\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$ y $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X}_n)^2$ entonces $\sigma_n^2 \xrightarrow[n]{c.s.} \sigma^2 \qquad s_n^2 \xrightarrow[n]{c.s.} \sigma^2 \qquad \sigma_n \xrightarrow[n]{c.s.} \sigma \qquad s_n \xrightarrow[n]{c.s.} \sigma$

Sugerencia:
$$\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}-\overline{X}_{n}\right)^{2}=\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}\right)^{2}-\left(\overline{X}_{n}\right)^{2}\text{ y usar los siguientes resultados:}$$

Si
$$X_n \xrightarrow[n]{c.s} X$$
 y $g : \mathbb{R} \to \mathbb{R}$ es continua entonces $g\left(X_n\right) \xrightarrow[n]{c.s} g\left(X\right)$

Si
$$X_n \xrightarrow[n]{c.s.} X$$
 e $Y_n \xrightarrow[n]{c.s.} Y$ y $g: \mathbb{R}^2 \to \mathbb{R}$ es continua entonces $g\left(X_n, Y_n\right) \xrightarrow[n]{c.s.} g\left(X, Y\right)$

Ejercicio 2

Sean $X_1, X_2, \dots X_n iid \sim F$ Encontrar estimadores para los siguientes parámetros por el método de los momentos:

- 1. p si la distribución es Ber(p)
- 2. λ si la distribución es $\mathcal{P}(\lambda)$
- 3. p si la distribución es Geo(p)
- 4. $\mu \text{ y } \sigma^2 \text{ si la distribución es } N(\mu, \sigma^2)$
- 5. a y b si la distribución es $\mathcal{U}[a, b]$.

Ejercicio 3

Una pieza de una máquina se verifica al final de cada hora de producción y se cambia por una nueva en caso de encontrarse rota. El tiempo de vida en horas de la pieza se puede modelar con una variable aleatoria T con distribución exponencial de parámetro λ ($T \sim \exp(\lambda)$), por lo tanto el tiempo en horas que transcurre hasta el recambio de la pieza se puede modelar con una variable aleatoria X = [T] + 1, donde [T] es la parte entera de T (esto es, X = n si y sólo si $n - 1 \le T < n$).

- 1. Hallar la función de probabilidad de la variable aleatoria X y probar que tiene distribución geométrica de parámetro $1 e^{-\lambda}$ $(X \sim \text{Geo}(1 e^{-\lambda}))$.
- 2. A partir de los tiempos en los que se realiza el recambio de las piezas se desea estimar el parámetro λ del tiempo de vida de dichas piezas.
 - a) Calcular λ en función de μ siendo $\mu = \mathbf{E}(X)$.

- b) ¿Cómo estimaría μ a partir de las observaciones X_1, X_2, \dots, X_n de los tiempos de recambio de las piezas?
- c) Construir un estimador consistente para λ en función de las observaciones X_1, X_2, \dots, X_n de los tiempos de recambio de las piezas.

Ejercicio 4

Sea una sucesión de variables aletorias $X_1, X_2, \dots X_n$, iid tal que $P\{X_1 = 1\} = P\{X_1 = -1\} = a$ y $P\{X_1 = 0\} = 1 - 2a$ donde 0 < a < 1/2. Dar por el método de los momentos un estimador consi8stente del parámetro a.

Estimación por máxima verosimilitud

Ejercicio 5

Sean $X_1, X_2, ... X_n iid \sim F$ Encontrar los estimadores de máxima verosimilitud para los siguientes parámetros y compararlos con los respectivos estimadores por el método de los momentos:

- 1. p si la distribución es Ber(p)
- 2. λ si la distribución es $\mathcal{P}(\lambda)$
- 3. p si la distribución es Geo(p)
- 4. μ y σ^2 si la distribución es $N(\mu, \sigma^2)$
- 5. a y b si la distribución es $\mathcal{U}[a, b]$.

Sesgo de un estimador

Sean $\{X_n : n \in \mathbb{N}\}\ iid$ con distribución F_{θ} . Se define el sesgo de un estimador de θ , $T_n = T_n(X_1, \ldots, X_n)$ como $\mathbf{E}(T_n - \theta)$. Un estimador T_n se dice insesgado si su sesgo es cero, es decir $\mathbf{E}(T_n) = 0 \ \forall \ n \in \mathbb{N}$. Decimos que es asintóticamente insesgado si $\mathbf{E}(T_n - \theta) \to 0$.

Ejercicio 6

Sean $(X_n)_{n\in\mathbb{N}}$ iid tales que $\mathbf{E}(X_1) = \mu$ y $\mathbf{Var}(X_1) = \sigma^2 < \infty \ (\sigma > 0)$.

Mostrar que \overline{X}_n es insesgado como estimador de μ , que σ_n^2 no es insesgado como estimador de σ^2 y que s_n^2 es insesgado para σ^2 .

Ejercicio 7

Se considera una muestra $X_1, X_2, ..., X_n$ iid con media $\mathbf{E}(X) = \mu$ y varianza $\mathbf{Var}(X) = \sigma^2$. Se considera el estimador $\widehat{\mu} = \sum_{i=1}^n a_i X_i$ (una combinación lineal de las observaciones).

- 1. Hallar la relación que tienen que cumplir los coeficientes a_i para que $\hat{\mu}$ sea un estimador insesgado de la media μ .
- 2. Entre todos los estimadores lineales e insesgados de la media μ hallar el de varianza mínima. Sugerencia: usar la desigualdad de Cauchy-Schwarz para vectores en \mathbb{R}^n .

Ejercicio 8

Sean X_1, \ldots, X_n iid $\sim \mathcal{P}(\lambda)$.

- 1. Estimar λ por el método de los momentos. Observar que es insesgado.
- 2. Probar que s_n^2 también es un estimador insesgado para λ .
- 3. Encontrar el estimador de máxima verosimilitud para λ y observar que coincide con el estimador obtenido por el método de los momentos.

Eiercicio 9

Sean X_1, \ldots, X_n iid $\sim \mathcal{U}[0, \theta]$. Interesa estimar el valor de θ .

- 1. Hallar el estimador de θ por el método de los momentos.
- 2. Estudiar su sesgo, varianza y error cuadrático medio.
- 3. Demostrar que el estimador de máxima verosimilitud de θ es X_n^* , el máximo de los valores muestrales.