Uniformization results and Feldman-Moore Theorem in generalized descriptive set theory

Luca Motto Ros

Department of Mathematics "G. Peano"
University of Turin, Italy
luca.mottoros@unito.it
https://sites.google.com/site/lucamottoros/

Workshop "Generalised Baire Space and Large Cardinals" Bristol, February 8–10, 2024

Uniformization theorems

Given $P \subseteq X \times Y$, a **uniformization** of P is a subset $P^* \subseteq P$ such that for all $x \in X$

$$\exists y P(x,y) \iff \exists ! y P^*(x,y).$$

Equivalently, P^* is the graph of a function f (called **uniformizing** function) with domain $\operatorname{proj}_X(P)$ such that $f(x) \in P_x$ for every $x \in A$.

Borel uniformizations

Fact

Let X, Y be standard Borel spaces. A set $P \subseteq X \times Y$ has a Borel uniformization if and only if $\operatorname{proj}_X(P)$ is Borel and there is a Borel uniformizing function $f \colon \operatorname{proj}_X(P) \to Y$ for P.

Borel uniformizations

Fact

Let X,Y be standard Borel spaces. A set $P\subseteq X\times Y$ has a Borel uniformization if and only if $\operatorname{proj}_X(P)$ is Borel and there is a Borel uniformizing function $f\colon \operatorname{proj}_X(P)\to Y$ for P.

It is easy to show that there are Borel sets without Borel uniformizations.

General theme

Suppose that X,Y are Polish or standard Borel spaces, and that $P \subseteq X \times Y$ is Borel. Under which conditions there is a Borel uniformization of P?

Borel uniformizations

Fact

Let X,Y be standard Borel spaces. A set $P\subseteq X\times Y$ has a Borel uniformization if and only if $\operatorname{proj}_X(P)$ is Borel and there is a Borel uniformizing function $f\colon \operatorname{proj}_X(P)\to Y$ for P.

It is easy to show that there are Borel sets without Borel uniformizations.

General theme

Suppose that X,Y are Polish or standard Borel spaces, and that $P \subseteq X \times Y$ is Borel. Under which conditions there is a Borel uniformization of P?

Today we are interested in "small section" uniformization results: if all the vertical sections of P are sufficiently small, then there is a Borel uniformization of P.

Theorem (Lusin-Novikov)

Let X,Y be standard Borel spaces, and $P\subseteq X\times Y$ a Borel set with countable vertical sections. Then P has a Borel uniformization.

Theorem (Lusin-Novikov)

Let X,Y be standard Borel spaces, and $P\subseteq X\times Y$ a Borel set with countable vertical sections. Then P has a Borel uniformization. Moreover, $P=\bigcup_{n\in\omega}P_n$ with each P_n a Borel set with vertical sections of size 1.

Theorem (Lusin-Novikov)

Let X,Y be standard Borel spaces, and $P\subseteq X\times Y$ a Borel set with countable vertical sections. Then P has a Borel uniformization. Moreover, $P=\bigcup_{n\in\omega}P_n$ with each P_n a Borel set with vertical sections of size 1.

Theorem (???)

Let X be a standard Borel space, Y a Polish space, and $P \subseteq X \times Y$ a Borel set with compact vertical sections P_x . Then the map $x \mapsto P_x$ from X to K(Y) (endowed with the Vietoris topology) is Borel.

Theorem (Lusin-Novikov)

Let X,Y be standard Borel spaces, and $P\subseteq X\times Y$ a Borel set with countable vertical sections. Then P has a Borel uniformization. Moreover, $P=\bigcup_{n\in\omega}P_n$ with each P_n a Borel set with vertical sections of size 1.

Theorem (???)

Let X be a standard Borel space, Y a Polish space, and $P \subseteq X \times Y$ a Borel set with compact vertical sections P_x . Then the map $x \mapsto P_x$ from X to K(Y) (endowed with the Vietoris topology) is Borel. Therefore P has a Borel uniformization.

Theorem (Lusin-Novikov)

Let X,Y be standard Borel spaces, and $P\subseteq X\times Y$ a Borel set with countable vertical sections. Then P has a Borel uniformization. Moreover, $P=\bigcup_{n\in\omega}P_n$ with each P_n a Borel set with vertical sections of size 1.

Theorem (???)

Let X be a standard Borel space, Y a Polish space, and $P \subseteq X \times Y$ a Borel set with compact vertical sections P_x . Then the map $x \mapsto P_x$ from X to K(Y) (endowed with the Vietoris topology) is Borel. Therefore P has a Borel uniformization.

Theorem (Arsenin-Kunugui)

Let X be a standard Borel space, Y a Polish space, and $P\subseteq X\times Y$ a Borel set whose vertical sections P_x are σ -compact (= countable unions of compact sets). Then P has a Borel uniformization.

Feldman-Moore Theorem

An equivalence relation E on a standard Borel space X is a **countable Borel equivalence relation** (CBER) if it is Borel as a subset of X^2 , and all its equivalence classes are countable.

Feldman-Moore Theorem

An equivalence relation E on a standard Borel space X is a **countable** Borel equivalence relation (CBER) if it is Borel as a subset of X^2 , and all its equivalence classes are countable.

Feldman-Moore Theorem

Let E be an equivalence relation on a standard Borel space X. Then E is a CBER if and only if it is the orbit equivalence relation induced by a Borel action of a countable (discrete) group G on X.

Equivalently: E is CBER if and only if there is a countable group G acting on X by Borel isomorphisms (in fact, involutions) which generates E.

Feldman-Moore Theorem

An equivalence relation E on a standard Borel space X is a **countable Borel equivalence relation** (CBER) if it is Borel as a subset of X^2 , and all its equivalence classes are countable.

Feldman-Moore Theorem

Let E be an equivalence relation on a standard Borel space X. Then E is a CBER if and only if it is the orbit equivalence relation induced by a Borel action of a countable (discrete) group G on X.

Equivalently: E is CBER if and only if there is a countable group G acting on X by Borel isomorphisms (in fact, involutions) which generates E.

The importance of this theorem in descriptive set theory cannot be underestimated!

[Study of CBERs, Borel combinatorics, definable paradoxical decompositions, ...]

A CBER E is **hyperfinite** if it can be written as a countable increasing union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

A CBER E is **hyperfinite** if it can be written as a countable increasing union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

Any CBER that admits a Borel transversal is hyperfinite.
 [Easy application of the Feldman-Moore Theorem.]

A CBER E is **hyperfinite** if it can be written as a countable increasing union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

- Any CBER that admits a Borel transversal is hyperfinite.
 [Easy application of the Feldman-Moore Theorem.]
- Every CBER on a Polish space is hyperfinite on a comeager set.

A CBER E is **hyperfinite** if it can be written as a countable increasing union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

- Any CBER that admits a Borel transversal is hyperfinite.
 [Easy application of the Feldman-Moore Theorem.]
- Every CBER on a Polish space is hyperfinite on a comeager set.
- There are CBERs which are not hyperfinite. [Consider e.g. the shift-action of \mathbb{F}_2 on $2^{\mathbb{F}_2}$. More generally, every non-amenable countable group admits a Borel action on a standard Borel space which induces a non-hyperfinite CBER.]

A CBER E is **hyperfinite** if it can be written as a countable increasing union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

- Any CBER that admits a Borel transversal is hyperfinite.
 [Easy application of the Feldman-Moore Theorem.]
- Every CBER on a Polish space is hyperfinite on a comeager set.
- There are CBERs which are not hyperfinite. [Consider e.g. the shift-action of \mathbb{F}_2 on $2^{\mathbb{F}_2}$. More generally, every non-amenable countable group admits a Borel action on a standard Borel space which induces a non-hyperfinite CBER.]

Weiss' conjecture

Any Borel action of a countable amenable group on a standard Borel space induces a hyperfinite CBER.

Let κ be an uncountable cardinal such that $2^{<\kappa} = \kappa$.

Let κ be an uncountable cardinal such that $2^{<\kappa} = \kappa$.

In all definitions, ω must be replaced by κ of $cof(\kappa)$:

Let κ be an uncountable cardinal such that $2^{<\kappa} = \kappa$.

In all definitions, ω must be replaced by κ of $cof(\kappa)$:

```
Cantor space ^{\omega}2 \longrightarrow generalized Cantor space ^{\kappa}2
Baire space ^{\omega}\omega \longrightarrow generalized Baire space ^{\cot(\kappa)}\kappa
```

Borel $\rightsquigarrow \kappa^+$ -Borel

Let κ be an uncountable cardinal such that $2^{<\kappa} = \kappa$.

In all definitions, ω must be replaced by κ of $cof(\kappa)$:

```
Cantor space ^\omega 2 \quad \leadsto \quad \text{generalized Cantor space} \quad ^\kappa 2
Baire space ^\omega \omega \quad \leadsto \quad \text{generalized Baire space} \quad ^{\cot(\kappa)} \kappa
Borel \quad \leadsto \quad \kappa^+\text{-Borel}
countable \quad \leadsto \quad \text{of size} \leq \kappa? \quad \text{or} \leq \cot(\kappa)?
finite \quad \leadsto \quad \text{of size} < \kappa \quad \text{(i.e. "$\kappa$-small")? or } < \cot(\kappa)?
compact \quad \leadsto \quad \kappa\text{-Lindel\"of?} \quad \text{or} \quad \cot(\kappa)\text{-Lindel\"of?}
```

...and so on.

Let κ be an uncountable cardinal such that $2^{<\kappa} = \kappa$.

In all definitions, ω must be replaced by κ of $cof(\kappa)$:

```
Cantor space ^{\omega}2 \longrightarrow generalized Cantor space ^{\kappa}2

Baire space ^{\omega}\omega \longrightarrow generalized Baire space ^{\cot(\kappa)}\kappa

Borel \longrightarrow \kappa^+-Borel

countable \longrightarrow of size \le \kappa? or \le \cot(\kappa)?

finite \longrightarrow of size < \kappa (i.e. "\kappa-small")? or < \cot(\kappa)?

compact \longrightarrow \kappa-Lindelöf? or \cot(\kappa)-Lindelöf?
```

...and so on.

Can we have "small section" uniformization results and/or an analogue of the Feldman-Moore theorem in GDST?

Assume that $\kappa > \omega$ is regular.

Assume that $\kappa > \omega$ is regular.

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

If E is an orbit equivalence relation on κ^2 induced by a κ^+ -Borel action of a (discrete) group of size at most κ , then $E \leq_B^\kappa E_0^\kappa$, where E_0^κ is defined on 2^κ by $x E_0^\kappa y \iff \exists \alpha < \kappa \, \forall \beta \geq \alpha \, (x(\beta) = y(\beta))$.

Assume that $\kappa > \omega$ is regular.

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

If E is an orbit equivalence relation on ${}^{\kappa}2$ induced by a ${\kappa}^+$ -Borel action of a (discrete) group of size at most ${\kappa}$, then $E \leq_B^{\kappa} E_0^{\kappa}$, where E_0^{κ} is defined on 2^{κ} by $x E_0^{\kappa} y \iff \exists \alpha < \kappa \, \forall \beta \geq \alpha \, (x(\beta) = y(\beta))$.

In particular, if κ is inaccessible, then every orbit equivalence relation induced by a $\leq \kappa$ -sized discrete group is **hyper**- κ -small, i.e. it can be written as an increasing union of size κ of κ^+ -Borel equivalence relation which are κ -small (= all their classes have size $< \kappa$).

Assume that $\kappa > \omega$ is regular.

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

If E is an orbit equivalence relation on $^\kappa 2$ induced by a κ^+ -Borel action of a (discrete) group of size at most κ , then $E \leq_B^\kappa E_0^\kappa$, where E_0^κ is defined on 2^κ by $x E_0^\kappa y \iff \exists \alpha < \kappa \, \forall \beta \geq \alpha \, (x(\beta) = y(\beta)).$

In particular, if κ is inaccessible, then every orbit equivalence relation induced by a $\leq \kappa$ -sized discrete group is **hyper**- κ -small, i.e. it can be written as an increasing union of size κ of κ^+ -Borel equivalence relation which are κ -small (= all their classes have size $< \kappa$). However:

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

Assume V = L. Then there is a κ^+ -Borel equivalence relation E whose classes have size 2 which is not induced by a κ^+ -Borel action of a (discrete) group of size $\leq \kappa$.

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

Fact

There is a function $f \colon {}^{\kappa}2 \to {}^{\kappa}2$ whose graph $P \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ is κ^+ -Borel, yet f is not κ^+ -Borel itself.

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

Fact

There is a function $f \colon {}^{\kappa}2 \to {}^{\kappa}2$ whose graph $P \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ is κ^+ -Borel, yet f is not κ^+ -Borel itself.

Open problems (?)

Let $\kappa > \omega$ be regular and such that $2^{<\kappa} = \kappa$.

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

Fact

There is a function $f \colon {}^{\kappa}2 \to {}^{\kappa}2$ whose graph $P \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ is κ^+ -Borel, yet f is not κ^+ -Borel itself.

Open problems (?)

Let $\kappa > \omega$ be regular and such that $2^{<\kappa} = \kappa$.

• Is it consistent that the generalized Feldman-Moore Theorem holds for equivalence relations on κ 2?

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

Fact

There is a function $f \colon {}^{\kappa}2 \to {}^{\kappa}2$ whose graph $P \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ is κ^+ -Borel, yet f is not κ^+ -Borel itself.

Open problems (?)

Let $\kappa > \omega$ be regular and such that $2^{<\kappa} = \kappa$.

- **1** Is it consistent that the generalized Feldman-Moore Theorem holds for equivalence relations on κ^2 ?
- ② Is there a κ^+ -Borel equivalence relation on κ^2 with classes of size at most κ which is not κ^+ -Borel reducible to E_0^{κ} ?

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

Fact

There is a function $f \colon {}^{\kappa}2 \to {}^{\kappa}2$ whose graph $P \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ is κ^+ -Borel, yet f is not κ^+ -Borel itself.

Open problems (?)

Let $\kappa > \omega$ be regular and such that $2^{<\kappa} = \kappa$.

- **1** Is it consistent that the generalized Feldman-Moore Theorem holds for equivalence relations on κ^2 ?
- ② Is there a κ^+ -Borel equivalence relation on κ^2 with classes of size at most κ which is not κ^+ -Borel reducible to E_0^{κ} ?
- **3** Can we have (at least consistently) "small section" uniformization results for κ^+ -Borel subsets of κ^2 ?

The countable cofinality case

From now on λ is an uncountable cardinal with $cof(\lambda) = \omega$ satisfying $2^{<\lambda} = \lambda$ (equivalently, λ is strong limit).

The countable cofinality case

From now on λ is an uncountable cardinal with $cof(\lambda) = \omega$ satisfying $2^{<\lambda} = \lambda$ (equivalently, λ is strong limit).

For such a λ , GDST becomes the theory of λ -Polish spaces (= completely metrizable spaces of weight $\leq \lambda$).

The countable cofinality case

From now on λ is an uncountable cardinal with $cof(\lambda) = \omega$ satisfying $2^{<\lambda} = \lambda$ (equivalently, λ is strong limit).

For such a λ , GDST becomes the theory of λ -Polish spaces (= completely metrizable spaces of weight $\leq \lambda$). The right analogue of Borel sets is given by λ^+ -Borel sets or, equivalently, λ -Borel sets. One can also develop a solid theory of standard λ -Borel spaces.

The countable cofinality case

From now on λ is an uncountable cardinal with $cof(\lambda) = \omega$ satisfying $2^{<\lambda} = \lambda$ (equivalently, λ is strong limit).

For such a λ , GDST becomes the theory of λ -Polish spaces (= completely metrizable spaces of weight $\leq \lambda$). The right analogue of Borel sets is given by λ^+ -Borel sets or, equivalently, λ -Borel sets. One can also develop a solid theory of standard λ -Borel spaces.

Recall that in GDST we must replace ω with either λ or $\operatorname{cof}(\lambda)$, so "countable" should be translated to "of size $\leq \lambda$ " or remain "of size $\leq \omega$ ". Similarly, "compact" could be replaced by " λ -Lindelöf" or stay the same.

The countable cofinality case

From now on λ is an uncountable cardinal with $cof(\lambda) = \omega$ satisfying $2^{<\lambda} = \lambda$ (equivalently, λ is strong limit).

For such a λ , GDST becomes the theory of λ -Polish spaces (= completely metrizable spaces of weight $\leq \lambda$). The right analogue of Borel sets is given by λ^+ -Borel sets or, equivalently, λ -Borel sets. One can also develop a solid theory of standard λ -Borel spaces.

Recall that in GDST we must replace ω with either λ or $\operatorname{cof}(\lambda)$, so "countable" should be translated to "of size $\leq \lambda$ " or remain "of size $\leq \omega$ ". Similarly, "compact" could be replaced by " λ -Lindelöf" or stay the same.

We first consider the second option and look at λ -Borel sets with countable vertical sections, or with compact vertical sections.

Theorem

Theorem

Let X be standard λ -Borel, Y be λ -Polish, and $P \subseteq X \times Y$ a λ -Borel set with countable vertical sections. Then:

1 There is a λ -Borel uniformization of P.

[Equivalently: $\operatorname{proj}_X(P)$ is λ -Borel and there is a λ -Borel uniformizing function $f : \operatorname{proj}_X(P) \to Y$ for P.]

Theorem

- There is a λ -Borel uniformization of P. [Equivalently: $\operatorname{proj}_X(P)$ is λ -Borel and there is a λ -Borel uniformizing function $f : \operatorname{proj}_X(P) \to Y$ for P.]
- ② The map from $\operatorname{proj}_X(P)$ to the standard λ -Borel space F(Y) sending $x \in \operatorname{proj}_X(P)$ to $\operatorname{cl}(P_x)$ is λ -Borel.

Theorem

- There is a λ -Borel uniformization of P. [Equivalently: $\operatorname{proj}_X(P)$ is λ -Borel and there is a λ -Borel uniformizing function $f : \operatorname{proj}_X(P) \to Y$ for P.]
- ② The map from $\operatorname{proj}_X(P)$ to the standard λ -Borel space F(Y) sending $x \in \operatorname{proj}_X(P)$ to $\operatorname{cl}(P_x)$ is λ -Borel.
- $\textbf{3} \ \, \text{There is a sequence} \ \, (\zeta_n^P)_{n\in\omega} \ \, \text{of} \ \, \lambda\text{-Borel functions} \ \, \zeta_n^P\colon \mathrm{proj}_X(P) \to Y \\ \, \text{such that for all} \ \, x\in \mathrm{proj}_X(P) \ \, \text{the set} \ \, \{\zeta_n^P(x)\mid n\in\omega\} \ \, \text{is dense in} \ \, P_x.$

Theorem

- There is a λ -Borel uniformization of P. [Equivalently: $\operatorname{proj}_X(P)$ is λ -Borel and there is a λ -Borel uniformizing function $f : \operatorname{proj}_X(P) \to Y$ for P.]
- ② The map from $\operatorname{proj}_X(P)$ to the standard λ -Borel space F(Y) sending $x \in \operatorname{proj}_X(P)$ to $\operatorname{cl}(P_x)$ is λ -Borel.
- **3** There is a sequence $(\zeta_n^P)_{n\in\omega}$ of λ -Borel functions $\zeta_n^P \colon \operatorname{proj}_X(P) \to Y$ such that for all $x \in \operatorname{proj}_X(P)$ the set $\{\zeta_n^P(x) \mid n \in \omega\}$ is dense in P_x .
- There is a sequence $(\varrho_n^P)_{n\in\omega}$ of λ -Borel functions $\varrho_n^P\colon \mathrm{proj}_X(P)\to Y$ such that $P_x=\{\varrho_n^P\mid n\in\omega\}$ for all $x\in \mathrm{proj}_X(P)$.

Theorem

- There is a λ -Borel uniformization of P. [Equivalently: $\operatorname{proj}_X(P)$ is λ -Borel and there is a λ -Borel uniformizing function $f : \operatorname{proj}_X(P) \to Y$ for P.]
- ② The map from $\operatorname{proj}_X(P)$ to the standard λ -Borel space F(Y) sending $x \in \operatorname{proj}_X(P)$ to $\operatorname{cl}(P_x)$ is λ -Borel.
- **3** There is a sequence $(\zeta_n^P)_{n\in\omega}$ of λ -Borel functions $\zeta_n^P \colon \operatorname{proj}_X(P) \to Y$ such that for all $x \in \operatorname{proj}_X(P)$ the set $\{\zeta_n^P(x) \mid n \in \omega\}$ is dense in P_x .
- There is a sequence $(\varrho_n^P)_{n\in\omega}$ of λ -Borel functions $\varrho_n^P\colon \mathrm{proj}_X(P)\to Y$ such that $P_x=\{\varrho_n^P\mid n\in\omega\}$ for all $x\in \mathrm{proj}_X(P)$.
- **5** The set P can be written as $P = \bigcup_{n \in \omega} P_n$ where the sets P_n are pairwise disjoint λ -Borel sets with vertical sections of size 1.

The proof is radically different from the classical one because we lack a Baire category notion matching well with that of λ -Borel sets. Instead, we use an easy uniformization theorem and a "change of topology" argument.

The proof is radically different from the classical one because we lack a Baire category notion matching well with that of λ -Borel sets. Instead, we use an easy uniformization theorem and a "change of topology" argument.

Proposition

Let X be a standard λ -Borel space, Z a λ -Polish space, and $F\subseteq X\times Z$ a λ -Borel set such that each of its nonempty vertical sections $F_x\subseteq Z$ has an isolated point. Then F has a λ -Borel uniformization.

The proof is radically different from the classical one because we lack a Baire category notion matching well with that of λ -Borel sets. Instead, we use an easy uniformization theorem and a "change of topology" argument.

Proposition

Let X be a standard λ -Borel space, Z a λ -Polish space, and $F\subseteq X\times Z$ a λ -Borel set such that each of its nonempty vertical sections $F_x\subseteq Z$ has an isolated point. Then F has a λ -Borel uniformization.

Let $P\subseteq X\times Y$ be λ -Borel and with countable vertical sections. Pick a closed set $F\subseteq X\times {}^\omega\lambda$ and a λ -Borel isomorphism $f\colon F\to P$ such that $\mathrm{proj}_X(w)=\mathrm{proj}_X(f(w))$ for all $w\in F$.

The proof is radically different from the classical one because we lack a Baire category notion matching well with that of λ -Borel sets. Instead, we use an easy uniformization theorem and a "change of topology" argument.

Proposition

Let X be a standard λ -Borel space, Z a λ -Polish space, and $F\subseteq X\times Z$ a λ -Borel set such that each of its nonempty vertical sections $F_x\subseteq Z$ has an isolated point. Then F has a λ -Borel uniformization.

Let $P\subseteq X\times Y$ be λ -Borel and with countable vertical sections. Pick a closed set $F\subseteq X\times {}^\omega\lambda$ and a λ -Borel isomorphism $f\colon F\to P$ such that $\mathrm{proj}_X(w)=\mathrm{proj}_X(f(w))$ for all $w\in F$. All nonempty vertical sections F_x of F are closed and countable, hence Polish (in the classical sense!).

The proof is radically different from the classical one because we lack a Baire category notion matching well with that of λ -Borel sets. Instead, we use an easy uniformization theorem and a "change of topology" argument.

Proposition

Let X be a standard λ -Borel space, Z a λ -Polish space, and $F\subseteq X\times Z$ a λ -Borel set such that each of its nonempty vertical sections $F_x\subseteq Z$ has an isolated point. Then F has a λ -Borel uniformization.

Let $P\subseteq X\times Y$ be λ -Borel and with countable vertical sections. Pick a closed set $F\subseteq X\times {}^\omega\lambda$ and a λ -Borel isomorphism $f\colon F\to P$ such that $\mathrm{proj}_X(w)=\mathrm{proj}_X(f(w))$ for all $w\in F$. All nonempty vertical sections F_x of F are closed and countable, hence Polish (in the classical sense!). By countability, each F_x has an isolated point, hence we can apply the proposition.

The proof is radically different from the classical one because we lack a Baire category notion matching well with that of λ -Borel sets. Instead, we use an easy uniformization theorem and a "change of topology" argument.

Proposition

Let X be a standard λ -Borel space, Z a λ -Polish space, and $F\subseteq X\times Z$ a λ -Borel set such that each of its nonempty vertical sections $F_x\subseteq Z$ has an isolated point. Then F has a λ -Borel uniformization.

Let $P\subseteq X\times Y$ be λ -Borel and with countable vertical sections. Pick a closed set $F\subseteq X\times {}^\omega\lambda$ and a λ -Borel isomorphism $f\colon F\to P$ such that $\operatorname{proj}_X(w)=\operatorname{proj}_X(f(w))$ for all $w\in F$. All nonempty vertical sections F_x of F are closed and countable, hence Polish (in the classical sense!). By countability, each F_x has an isolated point, hence we can apply the proposition. Let F^* be a λ -Borel uniformization of F: then $P^*=f(F^*)$ is a λ -Borel uniformization of P.

Proposition

Let E be an equivalence relation on a standard λ -Borel space X that can be written as $E=\bigcup_{\alpha<\mu}P_{\mu}$ with $\omega\leq\mu\leq\lambda$ and each P_{μ} a λ -Borel set with vertical sections of size 1. Then there is a (discrete) group G of size $\leq\mu$ acting on X by λ -Borel isomorphisms (in fact, involutions) which generates E. If moreover $\mu>\omega$, then E is hyper- μ -small.

Proposition

Let E be an equivalence relation on a standard λ -Borel space X that can be written as $E=\bigcup_{\alpha<\mu}P_{\mu}$ with $\omega\leq\mu\leq\lambda$ and each P_{μ} a λ -Borel set with vertical sections of size 1. Then there is a (discrete) group G of size $\leq\mu$ acting on X by λ -Borel isomorphisms (in fact, involutions) which generates E. If moreover $\mu>\omega$, then E is hyper- μ -small.

Generalized Feldman-Moore Theorem

Let X be a standard λ -Borel space. Then E is a countable λ -Borel equivalence relation on X if and only if it is the orbit equivalence relation induced by a λ -Borel action of a countable (discrete) group G on X.

Theorem

Theorem

Let X be a standard λ -Borel space, Y a λ -Polish space, and $P \subseteq X \times Y$ a λ -Borel set with compact vertical sections. Then:

1 There is a λ -Borel uniformization of P.

Theorem

- **1** There is a λ -Borel uniformization of P.
- ② The map from $\operatorname{proj}_X(P)$ to $K(Y) \subseteq F(Y)$ sending $x \in \operatorname{proj}_X(P)$ to P_x is λ -Borel.

Theorem

- **1** There is a λ -Borel uniformization of P.
- ② The map from $\operatorname{proj}_X(P)$ to $K(Y) \subseteq F(Y)$ sending $x \in \operatorname{proj}_X(P)$ to P_x is λ -Borel.
- $\textbf{3} \ \, \text{There is a sequence} \ \, (\zeta_n^P)_{n\in\omega} \ \, \text{of} \ \, \lambda\text{-Borel functions} \ \, \zeta_n^P\colon \mathrm{proj}_X(P) \to Y \\ \, \text{such that for all} \ \, x\in \mathrm{proj}_X(P) \ \, \text{the set} \ \, \{\zeta_n^P(x)\mid n\in\omega\} \ \, \text{is dense in} \ \, P_x.$

Theorem

Let X be a standard λ -Borel space, Y a λ -Polish space, and $P \subseteq X \times Y$ a λ -Borel set with compact vertical sections. Then:

- **1** There is a λ -Borel uniformization of P.
- ② The map from $\operatorname{proj}_X(P)$ to $K(Y) \subseteq F(Y)$ sending $x \in \operatorname{proj}_X(P)$ to P_x is λ -Borel.
- **3** There is a sequence $(\zeta_n^P)_{n \in \omega}$ of λ-Borel functions $\zeta_n^P : \operatorname{proj}_X(P) \to Y$ such that for all $x \in \operatorname{proj}_X(P)$ the set $\{\zeta_n^P(x) \mid n \in \omega\}$ is dense in P_x .
- $\textbf{ There is a sequence } (\varrho^P_\alpha)_{\alpha<2^{\aleph_0}} \text{ of } \lambda\text{-Borel maps } \varrho^P_\alpha\colon \mathrm{proj}_X(P) \to Y \\ \text{ such that } P_x = \{\varrho^P_\alpha \mid \alpha<2^{\aleph_0}\} \text{ for all } x \in \mathrm{proj}_X(P).$

[Recall that $\omega < 2^{\aleph_0} < \lambda$ by choice of λ .]

Theorem

Let X be a standard λ -Borel space, Y a λ -Polish space, and $P \subseteq X \times Y$ a λ -Borel set with compact vertical sections. Then:

- **1** There is a λ -Borel uniformization of P.
- ② The map from $\mathrm{proj}_X(P)$ to $K(Y) \subseteq F(Y)$ sending $x \in \mathrm{proj}_X(P)$ to P_x is λ -Borel.
- There is a sequence (ζ^P_n)_{n∈ω} of λ-Borel functions ζ^P_n: proj_X(P) → Y such that for all x ∈ proj_X(P) the set {ζ^P_n(x) | n ∈ ω} is dense in P_x.
- There is a sequence $(\varrho_{\alpha}^{P})_{\alpha<2^{\aleph_{0}}}$ of λ -Borel maps $\varrho_{\alpha}^{P} \colon \operatorname{proj}_{X}(P) \to Y$ such that $P_{x} = \{\varrho_{\alpha}^{P} \mid \alpha < 2^{\aleph_{0}}\}$ for all $x \in \operatorname{proj}_{X}(P)$.

[Recall that $\omega < 2^{\aleph_0} < \lambda$ by choice of λ .]

5 The set P can be written as $P = \bigcup_{\alpha < 2^{\aleph_0}} P_{\alpha}$ where the sets P_{α} are pairwise disjoint λ -Borel sets with vertical sections of size 1.

The classical proof uses compactification, which is out of reach here because our spaces are not separable. So we had to develop a quite different machinery.

The classical proof uses compactification, which is out of reach here because our spaces are not separable. So we had to develop a quite different machinery.

Corollary

If E is a λ -Borel equivalence relation on a λ -Polish space X and all its classes are compact, then E is λ -smooth (= λ -Borel reducible to identity on a λ -Polish space).

The classical proof uses compactification, which is out of reach here because our spaces are not separable. So we had to develop a quite different machinery.

Corollary

If E is a λ -Borel equivalence relation on a λ -Polish space X and all its classes are compact, then E is λ -smooth (= λ -Borel reducible to identity on a λ -Polish space).

Recall that $\omega < 2^{\aleph_0} < \lambda$.

Corollary ("half" Feldman-Moore Theorem)

Let E be a λ -Borel equivalence relation on a λ -Polish space X such that all its classes are compact. Then E is the orbit equivalence relation induced by a λ -Borel action on X of a (discrete) group G of size 2^{\aleph_0} .

The classical proof uses compactification, which is out of reach here because our spaces are not separable. So we had to develop a quite different machinery.

Corollary

If E is a λ -Borel equivalence relation on a λ -Polish space X and all its classes are compact, then E is λ -smooth (= λ -Borel reducible to identity on a λ -Polish space).

Recall that $\omega < 2^{\aleph_0} < \lambda$.

Corollary ("half" Feldman-Moore Theorem)

Let E be a λ -Borel equivalence relation on a λ -Polish space X such that all its classes are compact. Then E is the orbit equivalence relation induced by a λ -Borel action on X of a (discrete) group G of size 2^{\aleph_0} .

Moreover, E is hyper- 2^{\aleph_0} -small.

There are other "smallness conditions" that could be considered here:

 $oldsymbol{0}$ σ -compact

- $oldsymbol{0}$ σ -compact
- $oldsymbol{o}$ size $\leq \lambda$

- $oldsymbol{0}$ σ -compact
- \odot closed λ -Lindelöf

- $oldsymbol{0}$ σ -compact
- \odot closed λ -Lindelöf
- $oldsymbol{0}$ λ -sized union of compact sets

- $oldsymbol{0}$ σ -compact
- \bigcirc size $\leq \lambda$
- \odot closed λ -Lindelöf
- \bullet λ -sized union of compact sets
- **5** λ -sized union of closed λ -Lindelöf sets

There are other "smallness conditions" that could be considered here:

- $oldsymbol{0}$ σ -compact
- \circ size $\leq \lambda$
- \odot closed λ -Lindelöf
- \bullet λ -sized union of compact sets
- **5** λ -sized union of closed λ -Lindelöf sets

In the classical setting, the most general result is provided by the σ -compact case. Here instead we have:

There are other "smallness conditions" that could be considered here:

- $oldsymbol{0}$ σ -compact
- \odot closed λ -Lindelöf
- \bullet λ -sized union of compact sets
- **5** λ -sized union of closed λ -Lindelöf sets

In the classical setting, the most general result is provided by the σ -compact case. Here instead we have:

Proposition

If a λ -Polish space X is λ -Lindelöf, then X is well-orderable and $|X| \leq \lambda$.

There are other "smallness conditions" that could be considered here:

- $oldsymbol{0}$ σ -compact
- \bigcirc size $\leq \lambda$
- \odot closed λ -Lindelöf
- \bullet λ -sized union of compact sets
- **5** λ -sized union of closed λ -Lindelöf sets

In the classical setting, the most general result is provided by the σ -compact case. Here instead we have:

Proposition

If a λ -Polish space X is λ -Lindelöf, then X is well-orderable and $|X| \leq \lambda$.

Hence the more general case is given by ② (which is equivalent to ③ and ⑤).

There are other "smallness conditions" that could be considered here:

- $oldsymbol{0}$ σ -compact
- \circ size $\leq \lambda$
- \odot closed λ -Lindelöf
- \bullet λ -sized union of compact sets
- **5** λ -sized union of closed λ -Lindelöf sets

In the classical setting, the most general result is provided by the σ -compact case. Here instead we have:

Proposition

If a λ -Polish space X is λ -Lindelöf, then X is well-orderable and $|X| \leq \lambda$.

Hence the more general case is given by ② (which is equivalent to ③ and ⑤). This is still work in progress...

...more on the blackboard!!

Open problems

Let $\lambda > \omega$ be singular and such that $2^{<\lambda} = \lambda$.

Open problems

Let $\lambda > \omega$ be singular and such that $2^{<\lambda} = \lambda$.

Can we have "large section" uniformization results, too?

[Meta-problem: Are there interesting λ -ideals to play with?]

Open problems

Let $\lambda > \omega$ be singular and such that $2^{<\lambda} = \lambda$.

- Can we have "large section" uniformization results, too? [Meta-problem: Are there interesting λ -ideals to play with?]
- ② What about cardinals λ with uncountable cofinality? [This case seems to be much closer to the regular one, so we mostly expect negative results.]

Open problems

Let $\lambda > \omega$ be singular and such that $2^{<\lambda} = \lambda$.

- Can we have "large section" uniformization results, too? [Meta-problem: Are there interesting λ -ideals to play with?]
- ② What about cardinals λ with uncountable cofinality? [This case seems to be much closer to the regular one, so we mostly expect negative results.]

Thank you for your attention!