28. The method of claim 20 wherein the annealing comprises thermal processing at temperature of less than 1100°C for a time of at least 3 seconds.

A method of forming a transistor, comprising:

forming a gate oxide layer over a semiconductive substrate, the gate oxide layer comprising silicon dioxide; the gate oxide layer having an upper surface and a lower surface;

exposing the gate oxide layer to activated nitrogen species from a nitrogen-containing plasma to introduce nitrogen into the gate oxide layer and form a nitrogen-enriched region, the nitrogen enriched region being only in an upper half of the gate oxide layer;

thermally annealing the nitrogen within the nitrogen-enriched region to bond at least a majority of the nitrogen to silicon proximate the nitrogen; the nitrogen-enriched region remaining confined to the upper half of the silicon-oxide-containing layer during the annealing;

forming at least one conductive layer over the gate oxide layer; and

forming source/drain regions within the semiconductive substrate; the source/drain regions being gatedly connected to one another by the conductive layer.

N

The method of claim 29 wherein the nitrogen-enriched region is formed only in the upper third of the silicon-oxide layer by the exposing and remains confined to the upper third of the silicon-oxide containing layer during the annealing.

32. The method of claim 29 wherein the layer is maintained at a temperature of less than 400°C during the exposing.

33. The method of claim 29 wherein the plasma is maintained with a power of from about 500 watts to about 5000 watts during the exposing.

The method of claim 29 wherein the exposing occurs within a reactor, and wherein a pressure within the reactor is from about 5 mTorr to about 10 mTorr during the exposing.

35. The method of claim 29 wherein the exposing occurs for a time of less than or equal to about 1 minute.

36. The method of claim 29 wherein the annealing comprises
thermal processing at temperature of less than 1100°C for a time of a
least 3 seconds.
7. The method of claim 29 wherein the conductive layer is
formed on the gate oxide.
10
1 ,38. The method of claim 29 wherein the conductive layer is
formed after the annealing.
The method of claim 29 wherein the source/drain regions are
formed after the annealing.
į
46. The method of claim 29 wherein the conductive layer and
source/drain regions are formed after the annealing.

CLAIMS:

2

3

5

6

7

9

10

11

14

15

16

17

18

19

20

21

22

23

A method of incorporating nitrogen into a silicon-oxide-1. containing layer, comprising:

exposing the silicon-oxide-containing layer to activated nitrogen species from a nitrogen-containing plasma to introduce nitrogen into the layer; the layer being maintained at less than or equal to 400°C during the exposing; and

thermally annealing the nitrogen within the layer to bond at least some of the nitrogen to silicon proximate the nitrogen.

- The method of claim 1 wherein the layer is maintained at a temperature of from 50°C/to 400°C during the exposing.
- The method of claim 1 wherein the plasma is maintained 3. with a power of from about 500 watts during the exposing.
- The method of claim 1 wherein the plasma is maintained with a power of/ from about 500 watts to about 3000 watts during the exposing.

HOOSOB+7 OHHSOB

	5.	The	method	of	claim	1	wherein	the	exposing/	occurs	withir
a	reactor,	and	wherein	a	pressu	re	within	the	reactor i	s from	abou
5	mTorr to	abo	ut 10 m7	Cori	durin	g	the expo	sing.			

- 6. The method of claim 1 wherein the exposing occurs for a time of less than or equal to about 1 minute.
- 7. The method of claim 1 wherein the exposing occurs for a time of from about 3 seconds to about 1 minute.
- 8. The method of claim 1 wherein the exposing occurs for a time of from about 10 seconds to about 15 seconds.
- 9. The method of claim 1 wherein the annealing comprises rapid thermal processing at a ramp rate of at least about 50°C/sec to a temperature of less than 1000°C, with such temperature being maintained for at least about 30 seconds.
- 10. The method of claim 1 wherein the annealing comprises thermal processing at temperature of less than 1100°C for a time of at least 3 seconds.

11. A method of forming a nitrogen-enriched region within a silicon-oxide-containing layer, comprising:

providing the silicon-oxide-containing layer over a substrate; the layer having an upper surface above the substrate and a lower surface on the substrate;

exposing the layer to activated nitrogen species from a nitrogen-containing plasma to introduce nitrogen into the layer and form a nitrogen-enriched region, the nitrogen enriched region being only in an upper half of the silicon oxide-containing layer; and

thermally annealing the nitrogen within the nitrogen-enriched region to bond at least some of the nitrogen to silicon proximate the nitrogen; the nitrogen-enriched region remaining confined to the upper half of the silicon-oxide-containing layer during the annealing; the thermal annealing comprising either (1) thermal processing at a temperature of less than 1100°C for a time of at least 3 seconds, or (2) rapid thermal processing at a ramp rate of at least about 50°C/sec to a process temperature of less than 1000°C, with the process temperature being maintained for at least about 30 seconds.

The method of claim 11 wherein the nitrogen-enriched region is formed only in the upper third of the silicon-oxide layer by the exposing.

13. The method of claim 11 wherein the nitrogen enriched region is formed only in the upper third of the silicon-oxide layer by the exposing and remains confined to the upper third of the silicon-oxide containing layer during the annealing.

- 14. The method of claim 11 wherein the nitrogen-enriched region is formed only in the upper fourth of the silicon-oxide layer by the exposing and remains confined to the upper fourth of the silicon-oxide containing layer during the annealing.
- 15. The method of claim 11 wherein the nitrogen-enriched region is formed only in the upper fifth of the silicon-oxide layer by the exposing and remains confined to the upper fifth of the silicon-oxide containing layer during the annealing.
- a temperature of less than 400°C during the exposing.
- with a power of from about 500 watts to about 5000 watts during the exposing.

18. The method of claim 11 wherein the exposing occurs within
a reactor, and wherein a pressure within the reactor is from about
5 mTorr to about 10 mTorr during the exposing.
19. The method of claim 11 wherein the exposing occurs for a
time of less than or equal to about 1 minute.
•
20. A method of forming a transistor, comprising:
forming a gate oxide layer over a semiconductive substrate, the
gate oxide layer comprising silicon dioxide;
exposing the gate oxide layer to activated nitrogen species from a
nitrogen-containing plasma to introduce nitrogen into the layer, the layer
being maintained at less than of equal to 400°C during the exposing;
thermally annealing the trogen within the layer to bond at least
a majority of the nitrogen to sill con proximate the nitrogen;
forming at least one conductive layer over the gate oxide; and
forming source/drain regions within the semiconductive substrate;
the source/drain regions being gatedly connected to one another by the
conductive layer.
21. The method of claim 20 wherein the conductive layer is
formed on the gate evide

	• • • •
,	22. The method of claim 20 wherein the conductive layer is
2	formed after the annealing.
3	
4	23. The method of claim 20 wherein the source/drain regions are
5	formed after the annealing.
6	
7	24. The method of claim 20 wherein the conductive layer and
8	source/drain regions are formed after the annealing.
9	
o	25. The method of claim 20 wherein the plasma is maintained
1	with a power of from about 300 watts to about 5000 watts during the
2	exposing.
3	
4	26. The method of claim 20 wherein the exposing occurs within
5	a reactor, and wherein a pressure within the reactor is from about
6	5 mTorr to about 10 mTorr during the exposing.
7	
8.	27. The method of claim 20 wherein the exposing occurs for a
9	time of less than or equal to about 1 minute.
20	1
?1	
,,	

a gate oxide layer over a semiconductive substrate, the gate oxide layer comprising silicon dioxide; the gate oxide layer having a nitrogen-enriched region which is only in an upper half of the gate oxide layer;

at least one conductive layer over the gate oxide layer; and source/drain regions within the semiconductive substrate; the source/drain regions being gatedly connected to one another by the conductive layer.

- 42. The structure of claim 41 wherein the conductive layer comprises conductively-doped silicon.
- 43. The structure of claim 41 wherein the conductive layer comprises p-type conductively-doped silicon.
- 44. The structure of claim 41 wherein the nitrogen-enriched region is only in the upper third of the gate oxide layer.
- 45. The structure of claim 41 wherein the nitrogen-enriched region is only in the upper fourth of the gate oxide layer.

- 46. The structure of claim 41 wherein the nitrogen-enriched region is only in the upper fifth of the gate oxide layer.
- 47. The structure of faim 41 wherein the gate oxide layer is at least about 5Å thick, and wherein the nitrogen-enriched region is only in the upper 50% of the gate oxide layer.