Tutorial Sheet 6

Week 6

Polymer (Abbreviation)	Repeat Unit Structure	Carbon Atoms	Hydrogen Atoms	Fluorine Atoms	Chlorine Atoms	Molar mass (g/mol)
Polyethylene (PE)		2	4	0	0	28.052
Polytetrafluoroe thylene (PTFE)	$\left\{ \begin{array}{c} F & F \\ C & C \end{array} \right\}_n$	2	0	4	0	100.02
Poly(vinyl chloride) (PVC)	- CI H	2	3	0	1	62.494
Polypropylene (PP)	H-6-H H-	3	6	0	0	42.078
Polystyrene (PS)	[- <u>-</u> <u>-</u> <u>-</u>]	8	8	0	0	104.144

Question 2

Analysis of a sample of polypropylene showed the molecular weight distribution given in following table. From this information determine:

- a) The number-average molecular mass, $\overline{M} n$
- b) The weight-average molecular mass, $\overline{M}w$
- c) The number-average degree of polymerization, DP n
- d) The weight-average degree of polymerization, DP w

Molecular Weight Range (g/mol)	Number Fraction x _i	Weight Fraction W _i
8,000 - 16,000	0.05	0.02
16,000 -24,000	0.16	0.10
24,000 - 32,000	0.24	0.20
32,000 - 40,000	0.28	0.30
40,000 - 48,000	0.20	0.27
48,000 – 56,000	0.07	0.11

Polypropylene (from previous, molecular mass of repeat unit $\bar{m} = 42.078 \ g/mol$)

a)
$$\overline{M}_{n} = \frac{\sum_{i} Ni Mi}{Ni}$$

b) $\overline{M}_{w} = \frac{\sum_{i} Wi Mi}{Wi}$
c) $DP_{n} = \frac{\overline{M} n}{\overline{m}}$
d) $DP_{w} = \frac{\overline{M} w}{\overline{m}}$

b)
$$\overline{\mathbf{M}}_{w} = \frac{\sum_{i} W_{i} M_{i}}{W_{i}}$$

c) DP_n =
$$\frac{\overline{M} \, n}{\overline{m}}$$

d) DP_w =
$$\frac{M w}{m\bar{n}}$$

Molecular Weight Range (g/mol)	Mean	Number Fraction x _i	Weight Fraction W _i	
8,000 - 16,000	$\frac{8000 + 16000}{2} = 12,000$	0.05	0.02	
16,000 -24,000	20,000	0.16	0.10	
24,000 - 32,000	28,000	0.24	0.20	
32,000 - 40,000	36,000	0.28	0.30	
40,000 - 48,000	44,000	0.20	0.27	
48,000 – 56,000	52,000	0.07	0.11	

Molecular Weight Range		Number Fraction		Weight Fraction	
(g/mol)	mean M _i	Xi	x_iM_i	Wi	w_iM_i
8,000 - 16,000	12,000	0.05	600	0.02	240
16,000 -24,000	20,000	0.16	3200	0.1	2000
24,000 - 32,000	28,000	0.24	6720	0.2	5600
32,000 - 40,000	36,000	0.28	10080	0.3	10800
40,000 - 48,000	44,000	0.2	8800	0.27	11880
48,000 – 56,000	52,000	0.07	3640	0.11	5720
		Sum	33040		36240

$$\overline{M}_n = \sum x_i M_i = 33,040 \text{ g/mol}$$

$$\overline{M}_w = \sum w_i M_i = 36,240 \text{ g/mol}$$

Polypropylene:

- Repeat unit contains 3 carbon atoms
- (prop = 3)
- One carbon atom sits as a side group with 3 of its own hydrogen atoms
- Molar mass = $3 \times 12.01 + 6 \times 1.008 \frac{g}{mol} = 42.078 \frac{g}{mol}$

$$DP = \frac{\overline{M}_n}{m} = \frac{33,040 \text{ g/mol}}{42.08 \text{ g/mol}} = 785$$

Question 5

For a linear polymer molecule, the total chain length L can be determined from the bond length between chain atoms d, the total number of bonds in the molecule N, and the angle between adjacent chain atoms θ , as follows:

$$L = Nd \sin\left(\frac{\theta}{2}\right)$$

Additionally, the average end-to-end distance r for a polymer molecule can be calculated using:

$$r = d\sqrt{N}$$

A linear polyethylene has a number average molecular weight o 300,000 g/mol. Determine:

- a) the number-average degree of polymerisation, DP_n
- b) the average total chain length, L
- c) the average end-to-end distance, r/

Question 3

a) Calculate the average of **total chain length**, L, for a linear polyethylene polymer with a average molecular weight (M_n) of 300,000 g/mol?

$$L = nd.\sin(\frac{\theta}{2})$$

$$\mathbf{n} = \begin{bmatrix} \mathbf{D}P = \overline{M}_n \\ \underline{m}_a \end{bmatrix}$$

$$m_{a(PE)} = 12*2(C)+1*4(H) = 28 g/mol$$

$$DP = \frac{M_n}{m} = \frac{300,000}{28} = \mathbf{10,714}$$

The number of repeating units along the chain

Two C – C in each monomer, there will be a total of (2*10,714 = 21,428) chain bonds in the molecule n.

Given in question C - C = 0.154 nm, $\theta = 109^{\circ}$ for PE

$$L = nd.\sin(\frac{\theta}{2})$$

$$\begin{pmatrix}
H & H \\
-C - C \\
H & H
\end{pmatrix}_{n}$$

$$L = 10,714 * 2 * 0.154. \sin(\frac{109}{2})$$

$$L = 2686 \ nm$$

 b) The average end-to-end distance for a series of polymer molecules r is equal to

$$r = d\sqrt{n}$$

$$r = 0.15 \ 4(nm)\sqrt{21,428} = 22.5 \ nm$$