Resampling

STK473 – Praktikum 7

Simulasi Monte Carlo

• Simulasi yang memanfaatkan informasi mengenai sebaran data yang diketahui (dihipotesiskan, dianggap tahu) dengan pasti.

Pendugaan Peluang

$$P(Y > a) \ atau \ P(Y < a)$$
 dengan $Y = g(x), \ X \sim f(x)$

- Menghitung peluang dari suatu peubah acak
- Pengujian hipotesis

Simulasi Monte Carlo

- Pengujian Hipotesis

Pada kasus contoh acak yang diambil berasal dari populasi yang menyebar normal, nilai statistik uji t akan menyebar $t_{db=(n-1)}$, sementara untuk populasi dengan sebaran lainnya, perlu dikaji ulang sebaran dari nilai statistik uji t

$$t = \frac{\overline{x} - \mu_0}{\sqrt[S]{\sqrt{n}}}$$

Simulasi dilakukan untuk melihat hasil dari sebaran hipotetik populasi ketika menghitung nilai statistik uji t

Misal $X^N(0,1)$, jika diketahui Y=2X, berapa P(Y>2)?

Algoritme:

- 1. Bangkitkan $X^{\sim}N(0,1)$
- 2. Hitung *Y*=2*X*
- 3. Ulangi langkah 1 dan 2 sebanyak 100000 kali
- 4. Hitung presentasi nilai Y>2

Simulasi

```
n<-100000
x<-rnorm(n)
y<-2*x
y1<-ifelse(y>2,1,0)
mean(y1) #P(Y>2) secara empirik
```

$$X \sim N(0,1)$$
; $Y = 2X$
 $E(Y) = 2E(X) = 0$; $V(Y) = 2^2V(X) = 4$
 $Y \sim N(0,4)$

pnorm(2,0,2,lower.tail=F) #P(Y>2) dari sebaran hipotetik

• Misal peubah acak $X \sim \exp(\lambda)$, kita ingin menguji hipotesis

$$H_0: \lambda = 2$$

 $H_1: \lambda = 4$

Jika kita menolak H_0 ketika x > 1.

Hitung α dan kuasa ujinya !

Jawaban

•
$$\alpha = P(tolak H_0 | H_0 benar)$$

= $P(x > 1 | \lambda = 2)$
= $\int_{1}^{\infty} \frac{1}{2} e^{-x/2} dx = 0.135$

• Kuasa uji
$$= 1 - \beta$$

$$= P(tolak H_0|H_0 salah)$$

$$= P(x > 1|\lambda = 4)$$

$$= \int_1^\infty \frac{1}{4}e^{-x/4} dx = 0.018$$

Simulasi

```
lambda<-2
N < -100000
k < -1
x<-rexp(N, lambda)
y < -ifelse(x > k, 1, 0)
hasil<-mean(y) #alpha
lambda<-4
N < -100000
k < -1
x<-rexp(N,lambda)
y < -ifelse(x > k, 1, 0)
hasil<-mean(y) #kuasa uji
```

• Berikut tersedia data dari sebaran eksponensial:

1.68760	0.03120
0.03037	0.61068
0.91673	0.63169
1.34939	2.99986
0.08164	2.70955

- H_0 : $\lambda = 1$
- Apa kesimpulan yang bisa diambil?

• Algoritme :

1. Hitung
$$t_{data} = \left| \frac{\bar{x} - \mu_0}{s_{/\sqrt{n}}} \right|$$
 dari data

- 2. Bangkitkan 10 contoh acak $\exp(\lambda = 1)$
- 3. Hitung $t_{dist} = \left| \frac{\bar{x} \mu_0}{s / \sqrt{n}} \right|$ dari sebaran hipotetik
- 4. Ulangi langkah 2 dan 3 sebanyak 10000 kali
- 5. Hitung nilai-p= $P(t_{dist}>t_{data})$

Simulasi

```
lambda < -1
k<-10000
data1<-c(1.6876,0.03037,0.91673,1.34939,0.08164,
          0.0312, 0.61068, 0.63169, 2.99986, 2.70955)
n<-length (data1)
m<-mean(data1)
s<-sd(data1)
tdata<-abs((m-1/lambda)/(s/sqrt(n)))
data2<-matrix(rexp(n*k,lambda),k)
m1<-apply(data2,1,mean)</pre>
s1 < -apply(data2, 1, sd)
tdist < -abs((m1-1/lambda)/(s1/sqrt(n)))
y<-ifelse(tdist>tdata,1,0)
pvalue<-mean(y)</pre>
kesimpulan<-ifelse(pvalue<0.05, "Tolak H0", "Tak Tolak H0")
pvalue; kesimpulan
```

Simulasi

 Cara lain menghitung nilai-p. Ulangi 9999 kali. Gabungkan nilai t dari data asli dengan nilai t dari simulasi. Urutkan nilai t, dan perhatikan pada persentil keberapa nilai t hitung yang kita miliki.

 Bagaimana jika contoh acak tersebut diasumsikan berasal dari sebaran normal, lalu hipotesis yang ingin diuji adalah:

•
$$H_0$$
: $\mu = 2$

- Kesimpulan apa yang bisa diambil? Dari program sebelumnya, apa saja yang perlu diubah?
- Hint: untuk kesederhanaan gunakan $\sigma^2=1$

Case

Suppose we interest to estimate the ratio of Y/X, or Y/(X+Y), etc

So we decide to take a sample of X and Y

The question is "What is the estimated value of the ratio" and also "How we can estimate the SE of estimated ratio"?

Case

The sample

$$X = \{x_1, x_2,, x_n\}$$

 $Y = \{y_1, y_2,, y_n\}$

Ratio Y/X

Estimated by : $r = \frac{\bar{y}}{\bar{x}}$

Estimated SE: $\sqrt{\hat{V}(r)} = \left(1 - \frac{n}{N}\right) \left(\frac{1}{\mu_X^2}\right) \frac{s_r^2}{n}$

Ratio Y/(X+Y)

Case

Ratio Y/(X+Y)

Estimator :
$$r = \frac{\bar{y}}{\bar{x} + \bar{y}}$$

Estimator of SE?

Jackknife

- We have a sample $y = (y_1, ..., y_n)$ to estimate θ with the estimator $\hat{\theta} = f(y)$
- Target : estimate standard error of $\hat{ heta}$
- The leave-one-out observation samples

$$y_{(i)} = (y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_n)$$

for i = 1, ..., n are called **jacknife samples**

Jacknife statistics are $\hat{\theta}_{(i)} = f(y_{(i)})$

$$\hat{\theta}_{jack} = n\hat{\theta} - (n-1)\hat{\theta}_{(.)}$$
 $\hat{\theta}_{(.)} = \frac{1}{n}\sum \hat{\theta}_{(i)}$

$$\hat{\theta}_{(.)} = \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{(i)}$$

$$V_{jack}(\hat{\theta}) = \frac{n-1}{n} \sum_{i=1}^{n} (\hat{\theta}_{(i)} - \hat{\theta}_{(.)})^2$$

Example 1

Data

Branch	Income	
store	Item1	Item2
А	1363	1087
В	670	571
С	761	518
D	746	612
E	991	770
F	798	655
·	·	

Estimate the ratio of Item1/total item using jacknife!

Simulation

Algorithm:

- 1. Compute $\hat{\theta} = r = \frac{\bar{y}}{\bar{x} + \bar{y}}$
- 2. Take jacknife sample $x_{(i)} \& y_{(i)}$; i = 1, ..., n
- 3. Compute jacknife estimator

$$\hat{\theta}_{jack} = n\hat{\theta} - (n-1)\hat{\theta}_{(.)} = n\frac{\bar{y}}{\bar{x} + \bar{y}} - \frac{(n-1)}{n} \sum_{i=1}^{n} \frac{\bar{y}_{(i)}}{\bar{x}_{(i)} + \bar{y}_{(i)}}$$

$$V_{jack}(\hat{\theta}) = \frac{n-1}{n} \sum_{i=1}^{n} \left(\frac{\bar{y}_{(i)}}{\bar{x}_{(i)} + \bar{y}_{(i)}} - \frac{1}{n} \sum_{i=1}^{n} \frac{\bar{y}_{(i)}}{\bar{x}_{(i)} + \bar{y}_{(i)}} \right)^{2}$$

Simulation

```
store<-LETTERS[1:6]
item1<-c(1363,670,761,746,991,798)
item2<-c(1087,571,518,612,770,655)
data1<-data.frame(store,item1,item2)
n<-nrow(data1)
teta hat<-mean(data1$item1)/
    - (mean(data1$item1)+mean(data1$item2))
v < -matrix(NA, n, n-1)
x < -matrix(NA, n, n-1)
for (i in 1:n) {
  y[i,] < -data1 $ item1[-i]
  x[i,]<-data1$item2[-i]
ybar<-apply(y,1,mean)
xbar < -apply(x, 1, mean)
teta i<-ybar/(xbar+ybar)
teta jk<-n*teta hat-(n-1) *mean(teta i)
var jk < -(n-1)/n*(sum(teta i^2) - (n*mean(teta i)^2))
se jk<-sqrt(var jk)
```

Bootstrap

- We have a sample $y = (y_1, ..., y_n)$ to estimate θ with the estimator $\hat{\theta} = f(y)$
- Steps
 - Repeatedly simulate sample of size n from $y \rightarrow y^b_{(i)}$
 - Compute statistic of interest $\hat{\theta}^{b}_{(i)} = f(y^{b}_{(i)})$
 - Study behavior of statistic over *N* repetitions

Bootstrap estimators

$$\hat{\theta}_b = \frac{1}{N} \sum_{i=1}^{N} \hat{\theta}^b{}_{(i)} \qquad V_b(\hat{\theta}) = \frac{1}{N-1} \sum_{i=1}^{N} (\hat{\theta}^b{}_{(i)} - \hat{\theta}_b)^2$$

Example 2

Data

Branch	Income	
store	Item1	Item2
Α	1363	1087
В	670	571
С	761	518
D	746	612
Е	991	770
F	798	655
·	•	<u> </u>

Estimate the ratio of Item1/total item using bootstrap!

Simulation

Algorithm:

- 1. Repeatedly simulate sample of size n from $x \to x^b_{(i)} \& y \to y^b_{(i)}$
- 2. Compute statistic $\hat{\theta}^b{}_{(i)} = \frac{\bar{y}^b{}_{(i)}}{\bar{x}^b{}_{(i)} + \bar{y}^b{}_{(i)}}$
- 3. Compute bootstrap estimator

$$\hat{\theta}_{b} = \frac{1}{N} \sum_{i=1}^{N} \hat{\theta}^{b}{}_{(i)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\bar{y}^{b}{}_{(i)}}{\bar{x}^{b}{}_{(i)} + \bar{y}^{b}{}_{(i)}}$$

$$V_{b}(\hat{\theta}) = \frac{1}{N-1} \sum_{i=1}^{N} (\hat{\theta}^{b}{}_{(i)} - \hat{\theta}_{b})^{2}$$

Simulation

```
store<-LETTERS[1:6]
item1 < -c(1363, 670, 761, 746, 991, 798)
item2 < -c(1087, 571, 518, 612, 770, 655)
data1<-data.frame(store, item1, item2)</pre>
n<-nrow(data1)
b < -1000
y<-matrix(sample(data1$item1, n*b, replace=T), b)
x<-matrix(sample(data1$item2, n*b, replace=T), b)
ybar<-apply(y,1,mean)
xbar < -apply(x, 1, mean)
teta i<-ybar/(xbar+ybar)</pre>
teta b<-mean(teta i)</pre>
var b < -(sum(teta i^2) - (b*teta b^2))/(b-1)
se b<-sqrt(var b)
```

thank you!