

Project realized by Santiago Sanchez and Marc Vidal

Resistance sensor based on graphite strain gauge

Main features

- Bluetooth connected to any android smartphone
- Small size
- Low power consumption
- Low cost
- Easy-to-use
- Interchangeable sensor paper
- Premade drawing pattern
- Does not generate potentially negative environmental impact during and after fabrication

General description

This resistance sensor based on graphite was developed as a part of an INSA Toulouse applied physics- sensors major project. The sensing element is made of a sheet of paper with a premade drawing pattern filled with graphite form a type B pencil. When the sensor is under mechanical stress the linear atomic links from the graphite pattern exhibits reversible resistance changes. Compression or depression of the graphite particle network show variations on the sensor's resistance. Behind the sensor lies an ARDUINO UNO powered shield with a transimpedance amplifier (LTC1050), a Bluetooth module, OLED screen and a

rotational encoder to respectively, amplify, transport and communicate the measured resistance. This sensor has high sensibility and selectivity which can be adjusted through the app on any android smartphone.

Pin description

Pin number	Function	
10/11/GND/	Bluetooth module (RX, TX, power)	
	LTC-1050 Operational Amplifier	
A5/A6/+5V	OLED screen (SDA, SCK, VCC, GND)	
4/5/6/7	Rotatory encoder (CLK, DATA,	
	SWITCH, VC, GND)	

Specifications

Туре	Strain gauge resistance sensor		
Sensing principle	Electron transport		
Materials	Graphite		
	Paper sheet		
Power supply requirement	Active sensor		
Nature of output signal	Analog		
Nature of measurands	Resistance		
Shield length	68 mm		
Shield width	59 mm		
Sensor length	47 mm		
Sensor width	18 mm		
Graphite sensor pattern length	39 mm		
Graphite sensor pattern width	11 mm		
Pin diameter	<0.6 mm		
Mounting	Soldering		
Detectable strains	Compressive deflectionTensile deflection		
Typical detection range	0-5 V		
Typical response time	500ms		
Typical recuperation time	150ms		
Service resistance range	1e7-1e10 Ω		
Typical applications	Noncritical angle measurements		

Warning

This sensor must not be in contact with water because of injury risk in case of malfunctioning.

The graphite pattern wears off after a few uses so make sure that the one you are testing is not constantly at 0.

Calibration may be needed with a rotational encoder to have the most accurate results.

Standard use condition

	Unit	Typical Value
Temperature	°C	20±5
Humidity	%	60±5
Air Quality	%N2/O2	80/20

Electrical characteristics

	Unit	Min value	Typical value	Maximum value
Graphite sensor resistance	°MΩ	1	37	1000

Resistance sensor characteristics

Current sensor as a function of the stain angle

	B try 1	B try 2	2B
Linear fit coefficient	4.08e-3	2.51e-3	4.71e-3
Resistance range	16.36ΜΩ– 23.78ΜΩ	33.47ΜΩ – 48.93ΜΩ	15.06ΜΩ – 20.48ΜΩ

Dimensions

Resistance sensor

11mm

34mm

Typical applications

Above is the typical application for the resistance strain sensor in an analogic circuit. The sensor is connected in parallel with the operational amplifier which will convert and amplify a current proportional to the resistance of the graphite strain sensor (here Rsensor) to a voltage signal which will be read by the Arduino. In the diagram above "ADC "is the reference for the Arduino input.