检测原理

Measurement & Instrumentation)

过程参数检测部分

彭黎辉 电话: 62773623 Email:lihuipeng@mail.tsinghua.edu.cn

压力测量

- □压力定义
 - ❖垂直均匀作用于物体单位面积上的力,通常用 p表示。
- □压力单位
 - ❖帕斯卡(帕, Pa)、千帕(kPa)、兆帕(MPa)
 - ❖标准大气压、工程大气压
 - **♦**巴
 - ❖毫米水柱、毫米汞柱

压力测量

- □基本概念
 - ❖定义、单位
 - ❖压力表示方法✓

绝对压力 大气压力 表压力 真空度 差压

- □压力传感器及检测方法
 - ❖重力平衡法、机械力平衡法、弹性

压力单位换算表

4° C
状态
的水
柱高
度

0°C 状态汞高

Pa ti	bar 🖰 0.00001	kgf/cm ²	atm	at	mm H ₂ O	mmHg	Psi
	0.00001	0.00001					
		0.00001	0.00001	0.00001	0.10197	0.0075	0.00014
10000	0 1	1.01972	0.9869	1.01972	10.1972	750.062	14.504
m ² 98066	.5 0.98067	1	0.9678	- 1	10.000	735.6	14.22
汽压 10132	1.01325	1.033	1		10.332	760	14.7
汽压 9806	7 0.98067	1	0.9678	1	10.000	735.6	14.22
nm (柱	7 0.000098	0.0001	0.0000968	0.0001	1	0.07356	0.00142
lg 注柱 133.33	22 0.00133	0.00136	0.00132	0.00136	13.5951	1	0.01934
	76 0.06905	0.07031	0.06805	0.07031	703.07	51.7149	1
	度 133.32 柱	度 133.322 0.00133 柱 10.00098	発 9.8067 0.000098 0.0001	性 9.8067 0.000098 0.0001 0.0000968 g 133.322 0.00133 0.00136 0.00132	性 9.8067 0.000098 0.0001 0.0000968 0.0001 g 133.322 0.00133 0.00136 0.00132 0.00136	性 9.8067 0.00098 0.0001 0.000968 0.0001 1 g 133.322 0.00133 0.00136 0.00132 0.00136 13.5951	柱: 9.8067 0.000098 0.0001 0.0000968 0.0001 1 0.07356

压力表示方法 (一)

- □绝对压力
 - ❖被测介质作用于容器表面积的全部压力,以绝 对真空作为基准所表示的压力。
- □大气压力
 - ❖地球表面空气柱重量形成的压力,与地理位置 有关。
 - ❖标准大气压: 把0°C时,水银比重13.5951克/ 厘米³,重力加速度980.665厘米/秒²,北纬45度海 面的大气压定义为1个标准大气压。
 - ❖工程大气压: 1kgf/cm²

压力表示方法 (三) pressure 压 Gauge sistem Differential Local reference 差压 Absolute 标准 101.325 kPa abs. 4.696 psia 760 mm Hg abs. atmospheric 29.92 in Hg abs. pressure 压力 Figure 9.1 Relative pressure scales.

压力表示方法 (二)

- □表压力
 - ❖压力测量仪表中的敏感元件通常处于大气中,所测压力为绝对压力与大气压的差,称为"表压"。
- □真空度
 - ❖ 当绝对压力小于大气压时,表压为负值, 其绝对值为真空度。
- □差压
 - ❖两个压力的差简称差压。

压力测量方法 (一)

□重力平衡法

- ❖液柱式压力计:被测压力和一定高度的液体产生的重力相平衡,简单、直观、价格低廉、信号不易远传。如U型管压力计。
- ❖负荷式压力计:基于重力平衡原理,如活塞式压力计,被测压力与活塞及活塞上承载的砝码重量相平衡,精度高、常用于压力表校验。

液柱式压力计 $P_1 = P_A + \rho_1 g \Delta z_A$ $P_1' = P_{\text{atm}} + \rho_2 g h$ $P_A = P_1 - \rho_1 g \Delta z_A$ $P_A = P_{\text{atm}} + \rho_2 g h - \rho_1 g \Delta z_A$ with density $\rho_1 < \rho_2$ $\Delta p = \rho_2 g h$ "U tube" 参考点 "1"不固定

液柱式压力计

- □思考题1: 试推导"U"型管式压力计及 斜管式压力计的灵敏度公式。并回答斜 管式压力计相比"U"型管式压力计有何 优点?
- □思考题2: 试定量分析"井"式"U"型管式压力计因近似认为读数参考液面保持不变所带来的测量误差。(注: 设"井"部直径为D,右侧U管直径为d)

压力测量方法 (二)

□机械力平衡法

❖将被测压力转化为一个集中力,然后用外力与 之平衡,通过测量平衡时的外力从而测得被测 压力。如力平衡式差压变送器。

压力测量方法 (三)

□弹性力平衡法

❖被测压力使得弹性元件产生形变,弹性形变产 生的弹性力与被测压力平衡,通过测量弹性元 件弹性形变的大小从而测得被测压力。在实际 中使用最为广泛。

常用弹性元件

□弹簧管

常用弹性元件

□弹簧管

常用弹性元件

□弹簧管压力计

1-弹簧管; 2-连杆;

3-扇形齿轮; 4-底座;

5-中心齿轮; 6-游丝;

7-表盘; 8-指针;

9-接头; 10-横断面;

11-灵敏度调整槽

压力测量方法 (四)

□物性法

◆采用压电、压阻、光纤等传感器,将被测压力 转换为其他物理量来测量。

压力测量方法 (四)

□物性法: 应变式和压阻式

压力测量—实例 汽车轮胎胎压监测

Tire-Pressure Monitoring (TPM) — General Info/ Introduction

- TPM systems help to avoid accidents by warning the driver about tire problems
- Fuel consumption increases by 1% every 0.2 bar the tire is under-inflated.
- 0.4 bar under-inflation \Rightarrow 2% increase in fuel consumption
- 0.6 bar under-inflation \Rightarrow 3% increase in fuel consumption
- Tire wear increases by 5% every 0.2 bar the tire is underinflated
 - 0.4 bar under-inflation \Rightarrow 10% increase in tire wear
 - 0.6 bar under-inflation \Rightarrow 15% increase in tire wear

Tire-Pressure Monitoring (TPM) — Indirect & Direct Methods

Indirect TPMS are measuring pressure indirectly, by using information from other vehicle- related sensors (e.g. ABS wheel speed sensor information) and evaluating these signals. Principles are:

- > Comparison of wheel speed signals
- ➤ Analysis of resonance frequency shifts
- ➤ Comparison of wheel speed signals with absolute speed measurements (e.g. from GPS)
- > Analysis of correlation patterns between wheel speed signals.
- ➤ Analysis of vertical accelerometer signals.....

Direct TPMS is based on a UHF receiver in the vehicle and 4 sensor modules mounted on the wheel rim / valve to sense data, to calibrate pressure vs. temperature and to organize the data transmission to the car body.

Tire-Pressure Monitoring (TPM) — **Different Phases of Direct Method**

Remote TPM

•Based on UHF unidirectional transmitter / receiver system with embedded sensor

Pressure-on-Demand POD

- •System consists of a 125 kHz built-in channel for waking up sensor
- modules in defined duty cycles, improving thus the battery life time
 •It remarkbly increases the flexibility of wheel initialization during change of the wheels by reprogramming the memory
- •The driver can adjust different modes trough the dashboard
- •125 kHz trigger base station and a low-current receiver in the sensor module are today in introduction.

Batteryless System

- •System that has no battery in the sensor module but a sensor tag inside
- •Allows to merge RFID and pressure measurement functions in the future

ATAR862 Typical Current Values in Different Power Modes Battery current Data transmission Output stage active 8.0 dBm at 315 MHz uC activates T575x Oszillator settles μC active • P / T measurement Sleep mode I < 9.5 mA I < 400 μA t = 0.4 ms Power-Down Mode I = typically 0.1 μA (Oscillator OFF; 25⁰ C)

