Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Carthage Ecole Nationale d'Ingénieurs de Carthage

وزارة التعليم العالي، و البحث العلمي جامعة قرطلج المدرسة الوطنية الممندسين، بقرطلج

Correction Devoir Surveillé Matière : Intelligence Artificielle

Enseignant(es) Filière / Classe Barème indicatif Nbre. de pages	e : 2ère Ingénieur Informatique Durée tif : 2.5-1.5-11-5 Documents		: 14/03/2019 : 1h30 : aut. / non aut. : aut. / nonaut.		
Nom :	F	Prénom :		. Salle :	
	Faux (2.5 points) ou par faux. Vous avez 0.25	5 par bonne répo			onse.
	ne réponse		VRA	I FAUX	
	vaise réponse				
	Recuit Simulé choisit le pur ceux qui ont choisi			X	
problème. Ce h n	(n)=0 est toujours admissive surestime jamais le contégatif, on doit prendre les	ût réel. Mais s			
Une exploration	à coût uniforme ne général foration avec A*. <i>UCS es</i>	rera jamais plu		X	
complète même si	, la recherche en largeur l'espace d'états est infini.		X		
solution qu'une re	ative en profondeur retour cherche en largeur d'abord œud sont ordonnés de la n	si b est fini et l			
	our une recherche en lar olution et non le coût de ce		st la x		
temps.	RBFS est moins couteux of		L	X	
Une exploration en	n profondeur d'abord est to	oujours complète	e	X	
L'exploration à co	ût uniforme procède au tes	t du but une fois	que		
	pour exploration afin de ga			X	
	e dans un espace d'états e fait au fur et à mesure de		le la	X	
chacune des questio	on à choix multiples (1.5 pons suivantes, choisir la ou es sont correctes, mais vou	les bonnes répo	nses. Vous ave	ez 0.25 pt par bo	
1. Si h_1 et h_2 so a. h_1+h_2 b. h_1xh_3 c. max	ont admissibles, alors: a_2 est admissible a_2 est admissible a_3 est admissible a_4 est admissible a_4 est admissible a_4 est admissible a_4 est admissible	<u>s avez -0.23 pt f</u>	oai mauvaise le	<u> ропъс.</u>	

X

- 2. L'algorithme trouve une solution optimale :
 - a. A*

- x
- b. Meilleurs d'abord
- c. Largeur d'abord
- X
- Si coût unitaire
- d. Profondeur d'abord
- e. RBFS

- X
- f. Coût uniforme
- g. Hill climbing

Exercice 3: Recherche dans un espace d'états 11.5 points)

La figure 1 suivante représente l'espace d'état d'un problème. Le but est l'état S_6 . Le tableau 1 donne les valeurs heuristiques h_1 et h_2 .

Etat	h_1	h_2
S_0	9	10
S_1	8	9
S_2	5	6
S_3	3	10
S ₄	7	10
S_5	7	6
S_6	0	0

Tableau 1 : Heuristiques h_1 et h_2

Figure 1 : Espace d'états

1. Dire si h_1 et h_2 sont admissibles. Expliquer. (*1pt pour le tableau et 0.5 pt pour l'explication admissible non admissible (0.25 pt par fonction*))

	S_0	S_1	S_2	S_3	S_4	S_5	S_6
h^*	10	9	5	4	7	7	0
h_1	9	8	5	3	7	7	0
h_2	10	9	6	10	10	6	0

 $\forall i \ h^*(S_i) \ge h_1 \text{ donc } h_1 \text{ est admissible.}$

 $h*(S_3) < h_2(S_3)$ donc h_2 est non admissible.

2. Pour chacune des méthodes de recherche suivantes indiquer quel but est atteint. Donner à chaque étape les nœuds sur la frontière ainsi que le nœud choisi pour développement. En cas d'égalité entre les nœuds, choisir les nœuds en priorité dans l'ordre numérique : S_0 , S_1 , S_2 ,

a. Coût uniforme avec une exploration en graphe. (1.75pt pour le tableau : 0.25pt/ligne et 0.25pt pour la séquence)

Nœuds sur la frontière	Nœud choisi pour être développé
$(S_0,0)$	$(S_0,0)$
$(S_1,1), (S_3,8)$	(S ₁ ,1)
$(S_4,3), (S_3,8)$	(S ₄ ,3)
$(S_2,5), (S_5,6), (S_3,8)$	(S ₂ ,5)
$(S_3,6), (S_5,6)$	(S ₃ ,6)
$(S_5,6), (S_6,10)$	(S ₅ ,6)
(S ₆ ,10)	(S ₆ ,10) arrêt

Séquence choisie pour être exécutée :

 $S_0\text{--}\ S_1\text{--}\ S_4\text{--}\ S_2\text{--}\ S_3\text{--}\ S_6$

b. <u>Largeur d'abord en graphe</u>. (0.75pt pour le tableau : 0.25pt/ligne et 0.25pt pour la séquence)

Nœuds sur la frontière	Nœud choisi pour être développé
S_0	S_0
S_1, S_3	S_1
S_3, S_4	S_3 arrêt le fils S_6 de S_3 est but

Séquence choisie pour être exécutée :

S₀- S₃- S₆

c. A* en graphe. (1.5 pour le tableau : 0.25pt/ligne et 0.25pt pour la séquence)

Nœud choisi pour être développé
$(S_0,9)$
(S ₁ ,9)
(S ₄ ,10)
(S ₂ ,10)
(S ₃ ,9)
(S ₆ ,10) arrêt

Séquence exécutée :

S₀- S₁- S₄- S₂- S₃- S₆

d. Gloutonne par le meilleur d'abord avec une exploration en graphe. (0.75pt pour le tableau : 0.25pt/ligne et 0.25pt pour la séquence)

Nœuds sur la frontière	Nœud choisi pour être développé
$(S_0,9)$	$(S_0,9)$
$(S_3,3), (S_1,8)$	$(S_3,3)$
$(S_6,0),(S_1,8)$	(S ₆ ,0) <mark>arrêt</mark>

Séquence exécutée :

 S_0 - S_3 - S_6

e. IDA* en graphe. Donner pour chaque itération l'arbre d'exploration (contenant les nœuds développés ainsi que la frontière), la valeur de f limite, ainsi que les nœuds développés.

وزارة التعليم العالي، و البحث العلمي، جامعة قرطلج المدرسة الوطنية المهندسين بقرطلج

3. En supposant que la mémoire est limitée à 3 nœuds, l'algorithme SMA* parviendrait-t-il à trouver une solution <u>optimale</u> à ce problème ? Expliquez brièvement. (0.75pt)

Non puisque la solution optimale suit le chemin S_0 S_1 S_4 S_2 S_3 S_6 donc il doit aller à une profondeur 5 et la mémoire est limitée à 3 nœuds.

L'étudiant n'est pas obligé de faire le développement ici-bas, la réponse ci-haut est suffisante.

Ici, l'algorithme doit abandonner un nœud, S3

L'algorithme ne peut plus développer le fils de S4 et effacera ce dernier pour générer le fils de S3, soit S6 et il va le prendre comme solution. Mais ce chemin n'est optimal.

4. Nous désirons appliquer l'algorithme par escalade (Hill Climbing) en considérant l'heuristique h_2 comme valeur de la fonction *objectif*. Dans ce cas, cet algorithme permet-il d'arriver à une solution ? Expliquer le résultat obtenu.

L'algorithme commence par développer les fils de S_0 et il va choisir le nœud S_1 . (0.5 pt)

En choisissant S1, il sera piégé dans un minimum local plat. Donc il va retourner S_1 comme solution. (0.5 pt)

5. Expliquer comment l'algorithme de recuit simulé procède-t-il pour éviter le problème rencontré dans la question 4 et dites s'il parvient à tous les coups à l'éviter. (0.75 pt)

Il utilise un schéma de température, qui, au début de l'algorithme est très élevé, et donc l'algorithme choisit n'importe quel nœud généré s'il ne dégrade pas sa fonction *objectif* ou même s'il dégrade sa fonction, il peut quand même le choisir avec une bonne probabilité (car la température est élevée). Ici, il peut choisir S_1 , ensuite S_4 et avec un peu de chance, il peut arriver à S_6 .

Exercice 4 Recherche dans un espace d'états (4.5 points)

Supposons que deux amis vivent dans différentes villes d'une carte, telle que celle de la Roumanie vue en cours. A chaque tour, nous déplaçons chacun des amis <u>simultanément</u> (en même temps) vers une ville voisine sur la carte (il faut bien sûr qu'il y ait une route entre les deux villes). Le temps nécessaire pour se déplacer d'une ville i à une ville j voisine est égal à la distance d(i,j) entre les villes. Cependant, à chaque tour, l'ami qui arrive en premier doit attendre que l'autre arrive (il doit donc appeler le premier sur son téléphone portable) avant que le tour suivant ne commence. Nous désirons que les deux amis se rencontrent dans une même ville le plus tôt possible. Nous allons donc formuler ce problème en tant qu'un problème de recherche dans un espace d'état. Il faut répondre aux questions suivantes par des <u>notations formelles</u> (en fonction de de variable telles que i, j et des fonctions que vous pouvez définir).

وزارة التعليم العالي، و البحث العلمي، جامعة قرطلج المدرسة الوطنية للمهندسيان وقرطلج

1. Quel est l'espace d'état de ce problème (on ne demande pas de le dessiner mais de le formuler) ? (0.5)

L'espace d'états du problème est constitué de paires (*i,j*) représentant les positions des deux amis. *Il est à noter que la carte n'est pas l'espace d'éta*t.

2. Quel est la fonction successeur de ce problème (elle doit définir les actions admissibles pour passer d'un état à un autre) ? (0.5)

Les successeurs de (i,j) sont toutes les paires (x,y) tel que adjacent(x,i) et adjacent(y,j).

3. Est-ce qu'il y a un seul état initial pour ce problème ? Le définir ou les définir. (0.5)

N'importe quelle configuration de i et j: (i,j).

4. Quel est l'état but de ce problème ? (0.5)

N'importe quel état : (i,i).

5. Quel est le coût de chaque action de ce problème ? (1)

Le coût pour aller de (i,j) à (x,y) est le plus long déplacement entre ceux des deux amis. Donc $\max(d(i,x),d(j,y))$ (1)

6. Trouver une fonction heuristique admissible pour ce problème. (1)

Supposons que les deux amis se retrouvent respectivement dans les villes i et j. Si on considère que DVO(i,j) est la distance à vol d'oiseau entre deux villes i et j, une heuristique admissible serait DVO(i,j)/2. En effet, dans le meilleur des cas, les deux amis se déplacent en même temps et peuvent se retrouver en allant directement de l'un vers l'autre en passant par des étapes de même cout.

Exemple, ici h=12 alors que le coût réel est 13.

7. Est-ce qu'il existe une carte pour laquelle aucune solution n'existe ? Expliquer. (0.5)

Oui. Imaginez une carte qui contient uniquement 2 villes adjacentes connectées par un seul arc.