

Self-supervised deep learning to improve quantification of blood-brain barrier permeability from MRI data

Friday 22nd March 2024
Photo adapted from D koi on Unsplash[1]

- Blood-brain barrier (BBB)
 - Selectively permeable barrier ¹ [2]
 - Maintains homeostasis in brain and CNS [3]

- Blood-brain barrier (BBB)
 - Selectively permeable barrier ¹ [2]
 - Maintains homeostasis in brain and CNS [3]
- Dysfunction: Pathogens and toxins leak from blood to brain [2]
 - Stroke
 - Multiple sclerosis
 - Tumours
 - Can occur early in disease
- Biomarker

Figure: Adapted from [4]

- FEXI (Filtered exchange imaging) dMRI (Diffusion MRI) technique
 - Originally used to track water exchange across cell membranes
 - Can be used to track water exchange across the BBB

Figure: Adapted from [4]

- FEXI (Filtered exchange imaging) dMRI (Diffusion MRI) technique
 - Originally used to track water exchange across cell membranes
 - Can be used to track water exchange across the BBB
- Existing method: Non-linear least squares fit (NLLS)
 - Suffers from bias and noise.

Figure: Adapted from [4]

- FEXI (Filtered exchange imaging) dMRI (Diffusion MRI) technique
 - Originally used to track water exchange across cell membranes
 - Can be used to track water exchange across the BBB
- Existing method: Non-linear least squares fit (NLLS)
 - Suffers from bias and noise.
- New method: Neural networks (NN) show promise in other dMRI methods
 - ssVERDICT A model of Prostate tumours
 - Reduced bias compared to existing NLLS method [5]
 - Side effect: Slow to train but quicker once implemented
 - 10s of minutes for NLLS
 - Fractions of a second

Aims and objectives

Aims:

• Reduce bias in FEXI parameter estimations

Aims and objectives

Aims:

Reduce bias in FEXI parameter estimations

Objectives:

Simulate the MRI signal in Python using NumPy.

Aims:

Reduce bias in FEXI parameter estimations

Objectives:

- Simulate the MRI signal in Python using NumPy.
- Implement a baseline Non-linear least squares (NLLS) estimation to FEXI.
 - Previously made in MATLAB

Aims:

Reduce bias in FEXI parameter estimations

Objectives:

- Simulate the MRI signal in Python using NumPy.
- Implement a baseline Non-linear least squares (NLLS) estimation to FEXI.
 - Previously made in MATLAB
- Create a self supervised deep learning model in PyTorch to estimate FEXI parameters.

Figure: A FEXI voxel, extra-vascular compartment in blue and intra-vascular compartment in red.

- FEXI assumes a 2 compartment model in every voxel (Volume Element)
- FEXI tracks the water in each compartment. (Blood-water in the intra-vascular compartment)
- The main parameter of interest is the apparent exchange rate
 AXR = k_{ie} + k_{ei} between the compartments.

Figure: A FEXI voxel, extra-vascular compartment in blue and intra-vascular compartment in red.

- FEXI assumes a 2 compartment model in every voxel (Volume Element)
- FEXI tracks the water in each compartment. (Blood-water in the intra-vascular compartment)
- The main parameter of interest is the apparent exchange rate
 AXR = k_{ie} + k_{ei} between the compartments.
- Other estimated parameters:
 - Apparent diffusion coefficient ADC
 - Filter efficiency σ

Figure: Exchange of water between intraand extra-vascular compartments during mixing time

- The FEXI MRI sequence contains a mixing time
- There is water exchange between the 2 compartments during this time
- This is what AXR measures

Figure: Exchange of water between intraand extra-vascular compartments during mixing time

- The FEXI MRI sequence contains a mixing time
- There is water exchange between the 2 compartments during this time
- This is what AXR measures

Figure: Exchange of water between intraand extra-vascular compartments during mixing time

- The FEXI MRI sequence contains a mixing time
- There is water exchange between the 2 compartments during this time
- This is what AXR measures

Figure: Exchange of water between intraand extra-vascular compartments during mixing time

- The FEXI MRI sequence contains a mixing time
- There is water exchange between the 2 compartments during this time
- This is what AXR measures

Figure: Exchange of water between intraand extra-vascular compartments during mixing time

- The FEXI MRI sequence contains a mixing time
- There is water exchange between the 2 compartments during this time
- This is what AXR measures

Figure: Exchange of water between intraand extra-vascular compartments during mixing time

- The FEXI MRI sequence contains a mixing time
- There is water exchange between the 2 compartments during this time
- This is what AXR measures

Figure: Exchange of water between intraand extra-vascular compartments during mixing time

- The FEXI MRI sequence contains a mixing time
- There is water exchange between the 2 compartments during this time
- This is what AXR measures

Figure: Exchange of water between intraand extra-vascular compartments during mixing time

- The FEXI MRI sequence contains a mixing time
- There is water exchange between the 2 compartments during this time
- This is what AXR measures

Figure: Exchange of water between intraand extra-vascular compartments during mixing time

- The FEXI MRI sequence contains a mixing time
- There is water exchange between the 2 compartments during this time
- This is what AXR measures

Simulations

- Simulate 10.000 voxels
 - Random distribution of underlying model parameters ADC, σ and AXR
- Calculate the signal produced by each voxel
- Add rician noise² (SNR=50) to the signals
 - The ground truth

Simulations

- Simulate 10,000 voxels
 - Random distribution of underlying model parameters ADC, σ and AXR
- Calculate the signal produced by each voxel
- Add rician noise² (SNR=50) to the signals
 - The ground truth

NLLS and Neural network

- Input noisy MRI signal
- Estimate underlying model parameters ADC, σ and AXR
- Calculate the mean squared error between the estimated signal and the ground truth (with noise added).
- Iterate

^{2&}quot;Rician is the thermal noise found in MRI due to the thermal agitation of electrons."[6]

Non-linear Least squares theory

- The scipy.optimize.minimize() function [7] within Python was used to make the estimations.
 - Minimising the sum of squares error between the estimated signal and the noisy ground truth signal.

Non-linear Least squares theory

- The scipy.optimize.minimize() function [7] within Python was used to make the estimations. 3
 - Minimising the sum of squares error between the estimated signal and the noisy ground truth signal.
- The function requires an initial value
 - 3 equally spaced initial values for each parameter (ADC, σ and AXR) were used, producing $3^3 = 27$ initial starting points.
 - The best estimation from these 27 starting points was used
- Each parameter is bounded within the simulation range.

³Using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Bounds algorithm 🕡 📳 🗦 🛫 🛷 🤊

Neural network theory

- Input: 8 image volumes
- Passed through the weights of each layer
- 3 outputs: ADC, σ and AXR. (Known as the forward model)
- Each parameter is bounded by the same bounds as the simulation.
- Mean squared error calculated between the ground truth noisy signals and estimated signals

Figure: Neural network

Neural network theory

- The gradients of the weights are calculated.
- If error improves, then the weights in the model are updated, with gradients giving the most efficient change (Known as backpropagation)
- This process (one epoch) is repeated, and stops after 100 epochs in a row where there is no improvement to the loss.

Figure: Neural Network

Figure: NLLS estimations

Figure: NN estimations

Results continued

MSE			
Method	ADC	σ	AXR
NLLS	1.75×10^{-7}	1.03×10^{-8}	0.331
NN	2.53	0.104	56.3
Bias			
Method	ADC	σ	AXR
NLLS	$-3.02 imes 10^{-5}$	-6.70×10^{-6}	3.33×10^{-3}
NN	3.57×10^{-3}	- 3.09 ×10 ⁻³	-2.52
Variance			
Method	ADC	σ	AXR
NLLS	1.27	5.27×10^{2}	32.2
NN	1.26	5.07×10^2	23.3

Table: Comparing NLLS to NN (Best results are bolded)

$$\mathsf{MSE} = \frac{1}{N} \sum_{i=0}^{N} (O_i - E_i)^2$$

$$\mathsf{Bias} = \frac{1}{N} \sum_{i=0}^{N} (O_i - E_i)$$

$$Varience = \frac{1}{N} \sum_{i=0}^{N} (O_i - \overline{O})$$

Where *O* is ground truth parameter value, *E* is estimated value, and *N* is number of samples.

- NLLS fit outperforms NN in MSE and Bias for all parameters
- NN outperforms NLLS in variance for all parameters
- AXR is hardest parameter to estimate in both methods
 - ADC and σ have a linear relationship to the signal, but AXR has a exponential relationship.

Future work

- Use other variations hyper-parameters of NN.
- Calculate the loss on a per parameter basis.
- Physics informed network Calculate AXR from other parameters rather than estimating in NN
- · Apply to in-vivo data

- [1] Unsplash. *Photo by D koi on Unsplash*. 2022-06-29. URL: https://unsplash.com/photos/a-white-and-grey-striped-surface-GU_nNLVna_4 (visited on 2024-03-15).
- [2] Richard Daneman and Alexandre Prat. "The Blood-Brain Barrier". In: Cold Spring Harbor Perspectives in Biology 7.1 (2015-01), a020412. ISSN: 1943-0264. DOI: 10.1101/cshperspect.a020412. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292164/ (visited on 2024-03-14).
- [3] Gerard J. Tortora and Bryan H. Derrickson. *Introduction to the Human Body*. 11th ed. Wiley, 2017-12-15. ISBN: 978-1-119-39273-6. URL: https://bibliu.com/app/#/view/books/9781119392736/epub/0PS/c10. html#page_393 (visited on 2024-03-07).

- [4] Yolanda Ohene et al. "Filter exchange imaging with crusher gradient modelling detects increased blood—brain barrier water permeability in response to mild lung infection". In: Fluids and Barriers of the CNS 20.1 (2023-04-03), p. 25. ISSN: 2045-8118. DOI: 10.1186/s12987-023-00422-7. URL: https://doi.org/10.1186/s12987-023-00422-7 (visited on 2024-03-21).
- [5] Snigdha Sen et al. ssVERDICT: Self-Supervised VERDICT-MRI for Enhanced Prostate Tumour Characterisation. 2023-09-27. DOI: 10.48550/arXiv.2309.06268. arXiv: 2309.06268 [cs,eess]. URL: http://arxiv.org/abs/2309.06268 (visited on 2024-03-21).

- [6] Divya Pankaj, Govind D., and Narayanankutty K.a. "A novel method for removing Rician noise from MRI based on variational mode decomposition". In: Biomedical Signal Processing and Control 69 (2021-08-01), p. 102737. ISSN: 1746-8094. DOI: 10.1016/j.bspc.2021.102737. URL: https://www.sciencedirect.com/science/article/pii/S1746809421003347 (visited on 2024-03-22).
- [7] scipy.optimize.minimize SciPy v1.12.0 Manual. URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html (visited on 2024-03-14).

Thank you for listening

Thank you for listening! Any questions?

$$S(b_f, t_m, b) = S_0(b_f, t_m)e^{-b \cdot ADC'(t_m)}$$
(1)

where:

$$ADC'(t_m) = ADC(1 - \sigma e^{-t_m \cdot AXR})$$