The Limit Definition of Derivative

Suppose the distance a train has traveled is a function of time y = f(x).

average velocity over
$$[x,x+h]$$
 = $\begin{cases} \text{average rate of change over } \\ \text{over } \\ [x,x+h] \end{cases}$ = $\begin{cases} \text{slope of secant between } \\ \text{secant } \\ \text{stant } \\ \text{stant}$

velocity at
$$x$$
 = $\frac{\text{rate of change}}{\text{at } x}$ = $\frac{\text{slope of tangent}}{\text{at } x}$ = $\lim_{h \to \infty}$ = definition of derivative $f'(x)$

The Limit Definition of Derivative

Suppose the distance a train has traveled is a function of time y = f(x).

average velocity over
$$[x, x+h]$$
 = $\begin{cases} \text{average rate of change over } \\ \text{over } \\ [x, x+h] \end{cases}$ = $\begin{cases} \text{slope of secant over } \\ \text{secant } \\ \text{secant over } \\ \text{supposed over } \\ \text{suppo$

velocity at
$$x$$
 = $\frac{\text{rate of change}}{\text{at } x}$ = $\frac{\text{slope of tangent}}{\text{at } x}$ = $\lim_{h \to \infty}$ = definition of derivative $f'(x)$