Applied Cryptography

Symmetric Cryptography, Assignment 2, Monday, February 19, 2024

Remarks:

- Hand in your answers through Brightspace.
- Hand in format: PDF. Either hand-written and scanned in PDF, or typeset and converted to PDF. Please, **do not** submit photos, Word files, LaTeX source files, or similar. Also submit code used for your assignments (as separate files).
- Assure that the name of **each** group member is **in** the document (not just in the file name).

Deadline: Sunday, March 3, 23.59

Goals: After completing these exercises you should have understanding in arguing security of message authentication and authenticated encryption.

1. (10 points) Consider a tweakable block cipher $\widetilde{E}: \{0,1\}^k \times \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$, a tweakable block cipher taking a k-bit key, k-bit tweak and n-bit data, built from an n-bit block cipher $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ as follows:

It is possible to recover the secret key K with high probability, by making $2^{k/2}$ evaluations of \widetilde{E}_K and $2^{k/2}$ offline evaluations of E. Explain how. Here, you may assume that $k \ll n$, i.e., that k is much smaller than n.

Hint: Can you find some kind of collision?

- 2. (20 points)¹ Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher, and consider the following variant of the OCB2 mode of operation, which we call $\overline{\mathsf{OCB2}}$. For simplicity, we assume that associated data is always empty, hence it will be omitted from this exercise. $\overline{\mathsf{OCB2}}$ now operates as follows:
 - Firstly, $\overline{\mathsf{OCB2}}$ takes a k-bit key K, n-bit nonce N, and arbitrary length message M. The message is split into blocks M_1, M_2, \ldots, M_d , where M_1, \ldots, M_{d-1} are all of size n bits, and M_d is of size between 1 and n bits. A subkey $L = E_K(N)$ is computed.
 - \bullet Secondly, $\overline{\mathsf{OCB2}}$ proceeds as in the picture:

¹This exercise is based on an attack against OCB2 of Inoue et al.: https://eprint.iacr.org/2019/311.pdf.

Here, $\operatorname{len}(X)$ denotes the length of a bit string X, $\langle n \rangle$ is the binary representation of n, and \longrightarrow msb_l denotes the truncation to the l most significant bits, i.e., the dropping of the right n-l bits.

- Thirdly, it outputs ciphertext $C = C_1 ||C_2|| \cdots ||C_d|$ and tag T.
- (a) Describe how the verification function of $\overline{\mathsf{OCB2}}$ works. I.e., given a k-bit key K, n-bit nonce N, arbitrary length ciphertext C, and an n-bit tag T, describe:
 - i. How to determine if the tag is valid.
 - ii. How to recover the plaintext M, if (N, A, C, T) is a correct authenticated ciphertext.
- (b) It turns out that this version of $\overline{\mathsf{OCB2}}$ is, in fact, not secure. Consider an adversary that does the following:
 - Let N be an arbitrary nonce, and let $M=M_1\|M_2$ be a 2n-bit message with $M_1=\langle n\rangle$ and M_2 any n-bit string.
 - The adversary calls the encryption oracle with input $(N, M_1 || M_2)$, and obtains $(C_1 || C_2, T)$.
 - The adversary takes a ciphertext $C' = C_1 \oplus \langle n \rangle$ of length n bits, and tag $T' = M_2 \oplus C_2$.
 - The adversary outputs forgery (N, C', T').

Show that this forgery is valid. In order to do this, we recommend to proceed as follows:

- i. Compute M', the plaintext corresponding to C'.
- ii. Compute $\overline{\mathsf{OCB2}}(N, M')$. **Hint**: Here, you need to use that in a binary field we have $2 \cdot 3 \oplus 2 = 2^2$.
- 3. (10 points) Consider a block cipher $E: \{0,1\}^k \times \{0,1\}^{1024} \to \{0,1\}^{1024}$ and consider the following authenticated encryption scheme

$$\begin{split} \mathsf{AE} \colon \{0,1\}^k \times \{0,1\}^{128} \times \{0,1\}^{896} &\to \{0,1\}^{896} \times \{0,1\}^{128} \,, \\ (K,N,M) &\mapsto (C,T) \,, \end{split}$$

defined as follows:

We will consider the nonce-misuse-resistance of this scheme. In other words, we consider the security of this construction in the model of lecture 3 slide 4, $\mathbf{Adv}_{\mathsf{AE}}^{\mathrm{ae}}(q_e, q_v)$, with the difference that \mathcal{D} may repeat nonces. Here, q_e and q_v denote the total number of encryption and decryption queries, respectively.

- (a) Describe how the authenticated decryption function AE_K^{-1} operates.
- (b) The first step in the security proof of AE will be to replace the keyed block cipher E_K by a random permutation p. Apply the triangle inequality to do so, with explicitly mentioning the loss incurred by this triangle inequality:

$$\Delta_{\mathcal{D}}\left(\mathsf{AE}_K, \mathsf{AE}_K^{-1}; \$, \bot\right) \leq \Delta_{\mathcal{D}}\left(\mathsf{AE}[p], \mathsf{AE}[p]^{-1}; \$, \bot\right) + \dots$$

Explain your answer in words.

(c) We are left with the task of bounding $\Delta_{\mathcal{D}}(\mathsf{AE}[p], \mathsf{AE}[p]^{-1}; \$, \bot)$. We will perform another triangle inequality:

$$\Delta_{\mathcal{D}}\left(\mathsf{AE}[p],\mathsf{AE}[p]^{-1}\;;\;\$,\bot\right) \leq \Delta_{\mathcal{D}}\left(\mathsf{AE}[p],\mathsf{AE}[p]^{-1}\;;\;\mathsf{AE}[p],\bot\right) + \Delta_{\mathcal{D}}\left(\mathsf{AE}[p],\bot\;;\;\$,\bot\right). \tag{1}$$

The first distance of (1) is a bit peculiar and will be ignored in this assignment. Derive a bound on the second distance of (1), $\Delta_{\mathcal{D}}(\mathsf{AE}[p], \bot; \$, \bot)$.

4. (10 points) We will cover the Merkle-Damgård and other sequential hashing modes in lecture 4, and this question is an introductory teaser towards this lecture. An alternative to sequential hashing is tree-based hashing. Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a compression function, and consider the following hash function $\mathcal{H}: \{0,1\}^{4n} \to \{0,1\}^n$:

Argue (informally) that \mathcal{H} is collision resistant if F is collision resistant.