Metric Entropy

Tianwei Gao

January 18, 2025

1 Metric Entropy

In this section, we discuss about metric entropy.

1.1 Covering and Packing

Definition 1.1. Throughout the definition, we fix a metric space (X, ρ) and suppose we are given a $\delta > 0$,

- 1. A δ -cover of (X, ρ) is a subset U of X, s.t., for each $x \in X$, $\exists y \in U$, $\rho(x, y) \leq \delta$
- 2. The covering number $N(X, \rho, \delta)$ is smallest cardinality of a δ -cover.
- 3. A δ -packing of (X, ρ) is a subset T of X, such that for each pair of points $x, y \in U$, $x \neq y$ implies $\rho(x, y) > \delta$.
- 4. The δ -packing number $M(X, \rho, \delta)$ is the largest cardinality of a δ -packing.

Remark 1.1. We have the following observations:

- 1. A maximal δ -packing is a δ -covering, so that $M(X, \rho, \delta) \geq N(X, \rho, \delta)$.
- 2. Suppose $N(X, \rho, \delta) < \infty$, then $M(X, \rho, 2\delta) \le N(X, \rho, \delta)$, otherwise, assume U is a minimal δ -covering, for each $u \in U$, denote by $B(u, \delta)$ is δ -neighborhood, for a set T with |T| > |U|, there exists two distinct points of T lies in one $B(u, \delta)$, these two points' distance is smaller that 2δ , thus T cannot be a 2δ -packing.

Here we present some examples of estimation of covering number and packing number.

Example 1.1. Consider the boolean hypercube $\mathbb{H}^d := \{0,1\}^d$ equipped with scaled hamming metric, i.e.

$$\rho(x,y) := \frac{1}{d} \sum_{i=1}^{d} \mathbb{I}(x_i \neq y_i).$$

Now we bound its packing number $M(X, \rho, \delta)$ for given $\delta > 0$. The idea is, δ -packing implies the $\frac{\delta}{2}$ -neighborhood of each points are disjoint, thus we have

$$Vol(B(0, \frac{\delta}{2})) \times \#(\delta \text{-packing}) \leq Vol(X).$$

For each $x \in \mathbb{H}^d$, the cardinality of $B(x, \frac{\delta}{2})$ is

$$|B(x,\frac{\delta}{2})| = 2^d P(Z_d \le \frac{\delta}{2}d)$$

where $Z_d := \sum_{i=1}^d X_i$ and X_i are i.i.d random variables satisfying $X_1 \sim B(\frac{1}{2})$. Note that, for a δ -packing T, the δ -neighborhood of the points of T are mutually disjoint, i.e., they are disjoint subsets of \mathbb{H}^d , which implies:

$$|T| \times |B(0, \frac{\delta}{2})| \le |\mathbb{H}^d| = 2^d.$$

This shows

$$|T| \le (P(Z_d \le \frac{\delta}{2}d))^{-1}.$$

Exploiting the result of following lemma, we have

$$\log |T| \leq d\mathbb{D}(\frac{\delta}{2}||\frac{1}{2}) + \log(d+1)$$

Lemma 1.1 (Lower tail bound for binomial sums). Suppose X_i are i.i.d following binomial distribution with $p \in (0, \frac{1}{2}]$, for $1 \le i \le n$,

$$Z_n := \sum_{i=1}^n X_i,$$

then

$$P(Z_n \le \delta n) \ge \frac{1}{n+1} \exp(-n\mathbb{D}(\delta||p)).$$

Example 1.2 (Ball).

Claim 1. Consider a pair of norms in \mathbb{R}^d , $\|\cdot\|$ and $\|\cdot\|'$, \mathbb{B} , \mathbb{B}' the corresponding unit ball of the norm, then for $\delta > 0$, we have

$$\left(\frac{1}{\delta}\right)^{d} \frac{vol(B)}{vol(B')} \le N(B, \|\cdot\|, \delta) \le \frac{vol\left(\frac{2}{\delta}B + B'\right)}{vol(B')}.$$

With this claim, consider the special case where the two norm are identical, then we have for each norm $\|\cdot\|$,

$$(\frac{1}{\delta})^d \le N(B(0,1), \|\cdot\|, \delta) \le (1 + \frac{2}{\delta})^d$$

Now we discuss metric entropy in infinite dimensional space(function space),

Example 1.3. Consider the space X all the 1-Lipschitz function defined on [0,1], such that f(0) = 0, we want to approximate its covering number.

1. Lower bound For a given δ , consider a $M := \left[\frac{1}{\delta}\right]$ step symmetric random walk, $\{X_t\}_{t=1}^M$. Based on a path, we construct the following piecewise linear function by

$$f(x) = \begin{cases} 0, & \text{if } d = 0, \\ f(d\delta) + (x - d\delta) \cdot X_d, & \text{if } x \in [(d - 1)\delta, d\delta] \\ f(M\delta), & \text{otherwise,} \end{cases},$$

Note that for different path, their distance is at least 2δ . Hence the set S of all such functions form a 2δ -packing of X,

thus

$$N(X, \|\cdot\|_{L^{\infty}}, \delta) \ge M(X, \|\cdot\|_{L^{\infty}}, 2\delta) \ge 2^{M},$$

i.e.

$$\log N(X, \|\cdot\|_{L^{\infty}}, \delta) \ge \frac{1}{\delta} \log 2.$$

2. Upper bound We show that S also forms a 3δ -covering. For a general function g in x, we can construct a $f \in X$, such that

$$|f(i\delta) - q(i\delta)| < \delta$$
, for $0 < i < M$,

we can choose path $\{X_i\}_{i=1}^M$ inductively: if $g((i+1)\delta) \geq f(i\delta)$, we choose $X_{i+1} = 1$, otherwise, we choose -1. We check the construction satisfies the above condition inductively, WLOG, $X_i = 1$, then

$$g((i+1)\delta) - f((i+1)\delta) \ge f(i\delta) - f((i+1)\delta) = -\delta,$$

$$g((i+1)\delta) - f((i+1)\delta) \le g(i\delta) + \delta - f((i+1)\delta) \le \delta.$$

Note that

$$|f(i\delta) - q(i\delta)| < \delta$$
, for $0 < i < M$,

implies that

$$|f(x) - g(x)| \le 3\delta,$$

this shows S forms a 3δ -covering, hence

$$\log N(X, \|\cdot\|_{L^{\infty}}, \delta) \le \frac{3\log 2}{\delta}.$$

3. Conclusion From the above discussion, we see

$$\log N(X, \|\cdot\|_{L^{\infty}}, \delta) \simeq \frac{1}{\delta}.$$

1.2 Gaussian and Rademacher Complexity

Now we consider sets in \mathbb{R}^d and Euclidean metric exclusively.

Definition 1.2. 1. Suppose T is a set in \mathbb{R}^d , random variable $g \sim \mathcal{N}(0, I_d)$, then the Gaussian complexity $\mathcal{G}(T)$ is defined as

$$\mathcal{G}(T) = \mathbb{E}_g[\sup_{\theta \in T} \langle \theta, g \rangle].$$

2. Suppose T is a set in \mathbb{R}^d , random variable ε follows d-dimensional Rademacher distribution, then the Rademacher complexity $\mathcal{R}(T)$ is defined as

$$\mathcal{R}(T) = \mathbb{E}_{\varepsilon}[\sup_{\theta \in T} \langle \theta, \varepsilon \rangle].$$

Remark 1.2. Note that both complexity are not translation invariant.

Lemma 1.2. There exists positive constant C independent of d, such that

$$\sqrt{\frac{2}{\pi}}\mathcal{R}(T) \le \mathcal{G}(T) \le C\sqrt{2\log d}\mathcal{R}(T).$$

Proof. 1. Lower bound Define the argmax function π as follows,

$$\pi: \{-1,1\}^d \to T$$

$$\varepsilon \mapsto \arg\max_{\theta} \langle \theta, \varepsilon \rangle.$$

Then

$$\begin{split} \mathcal{G}(T) &\geq \mathbb{E}_g[\langle \pi(\mathbf{sgn}(g)), g) \rangle] \\ &= \sum_{i=1}^d \mathbb{E}_g[\pi_i(\mathbf{sgn}(g))g_i] \\ &= \sum_{i=1}^d \mathbb{E}_g[\pi_i(\mathbf{sgn}(g)) \cdot |g_i| \cdot (\mathbf{sgn}(g))_i] \\ &= \sum_{i=1}^d \mathbb{E}_{\mathbf{sgn}(g)} \bigg[\pi_i(\mathbf{sgn}(g))(\mathbf{sgn}(g))_i \mathbb{E}[|g_i| \big| \mathbf{sgn}(g)] \bigg] \\ &= \sqrt{\frac{2}{\pi}} \sum_{i=1}^d \mathbb{E}_{\mathbf{sgn}(g)} \bigg[\pi_i(\mathbf{sgn}(g))(\mathbf{sgn}(g))_i \bigg] \\ &= \sqrt{\frac{2}{\pi}} \mathbb{E}_{\mathbf{sgn}(g)}[\langle \pi(\mathbf{sgn}(g)), \mathbf{sgn}(g) \rangle] \\ &= \sqrt{\frac{2}{\pi}} \mathbb{E}_{\varepsilon}[\langle \pi(\varepsilon), \varepsilon \rangle] \\ &= \sqrt{\frac{2}{\pi}} \mathcal{R}(T). \end{split}$$

2. Upper bound Now we set π to be the argmax function for scaled G, i.e.

$$\begin{split} \pi: [-1,1]^d &\to T \\ g &\mapsto \arg\max_{\theta \in T} \langle \theta, g \rangle. \end{split}$$

Furthermore, since $\frac{x}{\|x\|_{\infty}}$ lies in the unit cube $[-1,1]^d$, which is the convex hull of $\mathbb{H}^d := \{-1,1\}^d$, we can define the following function $\{c_h\}_{h\in\mathbb{H}^d}$, satisfying the following condition:

$$c_h: [-1,1]^d \to [0,1],$$

$$\sum_{h \in \mathbb{H}^d} c_h(x) = 1,$$

$$\sum_{h \in \mathbb{H}^d} c_h(x)h = x.$$

Indeed, $c_h(x)$ are the coefficient of h when x is written in the form of a convex combination of h.

Now, denote by

$$s(g) := \frac{g}{\|g\|_{\infty}},$$

we have,

$$\begin{split} \mathcal{G}(T) &= \mathbb{E}[\sup_{\theta \in T} \langle \theta, g \rangle] \\ &= \mathbb{E}[\langle \pi(s(g)), s(g) \rangle \cdot \|g\|_{\infty}] \\ &= \mathbb{E}[\langle \pi(s(g)), \sum_{h \in \mathbb{H}^d} c_h(s(g))h \rangle \cdot \|g\|_{\infty}] \\ &= \mathbb{E}[\langle \pi(s(g)), \sum_{h \in \mathbb{H}^d} c_h(s(g))h \rangle] \mathbb{E}[\|g\|_{\infty}] \\ &= \mathbb{E}[\|g\|_{\infty}] \sum_{h \in \mathbb{H}^d} \mathbb{E}[c_h(s(g)) \langle \pi(s(g)), h \rangle] \\ &\leq \mathbb{E}[\|g\|_{\infty}] \sum_{h \in \mathbb{H}^d} \mathbb{E}[c_h(s(g)) \langle \pi(h), h \rangle] \\ &= \mathbb{E}[\|g\|_{\infty}] \sum_{h \in \mathbb{H}^d} (\langle \pi(h), h \rangle) \mathbb{E}[c_h(s(g))] \quad \left(\text{integrate on } g\right) \\ &= 2^d \mathbb{E}[\|g\|_{\infty}] \mathbb{E}[c_h(s(g))] \mathcal{R}(T) \\ &= \mathbb{E}[\|g\|_{\infty}] (\sum_{h \in \mathbb{H}^d} \mathbb{E}[c_h(s(g))]) \mathcal{R}(T) \\ &= \mathbb{E}[\|g\|_{\infty}] \mathbb{E}[\sum_{h \in \mathbb{H}^d} c_h(s(g))] \mathcal{R}(T) \quad \left(\sum_{h \in \mathbb{H}^d} c_h(s(g)) = 1\right) \\ &= \mathbb{E}[\|g\|_{\infty}] \mathcal{R}(T) \end{split}$$

Since $\mathbb{E}||g||_{\infty} \approx 2\sqrt{\log d}$, we finished the proof.

Now we see some concrete examples.

Example 1.4. 1. Complexity of $T = B_2^d$.

We have

$$\mathcal{G}(T) = \mathbb{E}||g||_2 = \frac{\sqrt{2}\Gamma(\frac{d+1}{2})}{\Gamma(\frac{d}{2})} = \sqrt{d}(1 - o(1)),$$

$$\mathcal{R}(T) = \sqrt{d}.$$

2. Complexity of $T = B_1^d$.

We have

$$\mathcal{G}(T) = \mathbb{E}||g||_{\infty} = 2\sqrt{\log d}(1 - o(1)),$$

$$\mathcal{R}(T) = 1.$$

4