

WPISUJE ZDAJĄCY

owiązkowe
leksja
Ń 2016
racy: inut
ınktów
nia: 50
]

W zadaniach od 1. do 23. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba 60 jest przybliżeniem z niedomiarem liczby x. Błąd względny tego przybliżenia to 4%. Liczba x jest równa

- **A.** 57,69
- **B.** 57,6
- **C.** 60,04
- **D.** 62,5

Zadanie 2. (0-1)

Dla liczb $a=2\sqrt{2}$ i $b=\sqrt{2-\sqrt{2}}$ wyrażenie $\frac{a}{b^2}$ jest równe

- **A.** $2\sqrt{2} 2$
- **B.** 2

- C. $2(\sqrt{2}+1)$
- **D.** $4(2+\sqrt{2})$

Zadanie 3. (0-1)

Cenę towaru podwyższono o 20%. O ile procent należy obniżyć nową cenę towaru, aby po obniżce stanowiła ona 90% ceny przed zmianami?

- **A.** o 10%
- **B.** o 15%
- **C.** o 25%
- **D.** o 30%

Zadanie 4. (0-1)

Ciąg (a_n) jest określony wzorem $a_n = \log(n+1)$ dla $n \ge 1$. Liczba $\frac{3a_3 - a_7}{a_1}$ jest równa

- **A.** log 4
- **B.** log 6
- **C.** 2

D. 3

Zadanie 5. (0-1)

Iloraz liczby $8^{10}-4^{14}$ przez liczbę $6\sqrt[3]{4}\cdot \sqrt[6]{4}$ jest równy

A. $\frac{1}{3}$

B. $\frac{1}{6}$

- $C. 2^{26}$
- **D.** 2^{30}

Zadanie 6. (0-1)

Równanie $\frac{8-2x^2}{x+2} = x+2$ ma dokładnie

A. dwa rozwiązania: $x_1 = \frac{2}{\sqrt{3}}$, $x_2 = -\frac{2}{\sqrt{3}}$.

B. dwa rozwiązania: $x = \frac{2}{3}$, x = -2.

C. jedno rozwiązanie: x = 2.

D. jedno rozwiązanie: $x = \frac{2}{3}$.

Zadanie 7. (0-1)

Liczba 4 spełnia nierówność $a^2x-16 \le 0$ z niewiadomą x wtedy i tylko wtedy, gdy

- **A.** $a \in (-2, 2)$
- **B.** $a \in (-\infty, -2) \cup (2, \infty)$
- **C.** $a \in \{-2, 2\}$
- D. $a \in (-\infty, 2)$

Zadanie 8. (0-1)

Funkcja f przyporządkowuje każdej liczbie naturalnej n największy wspólny dzielnik liczb n oraz n+10. Największa wartość funkcji f jest równa

A. 2

B. 5

C. 10

D. 20

Zadanie 9. (0-1)

Funkcja liniowa f(x) = -2x + b przyjmuje wartości dodatnie dla wszystkich x < 2 i tylko dla takich. Wynika stąd, że współczynnik *b* jest równy

A. 4

B. 2

C. 0

D. −4

Zadanie 10. (0-1)

Prostą o równaniu $y = \frac{1}{2}x + 1$ przesunięto wzdłuż osi Ox o cztery jednostki w prawo. Otrzymano prosta o równaniu

A.
$$y = \frac{1}{2}x - 3$$

B.
$$y = \frac{1}{2}x - 1$$

A.
$$y = \frac{1}{2}x - 3$$
 B. $y = \frac{1}{2}x - 1$ **C.** $y = \frac{1}{2}x + 3$ **D.** $y = \frac{1}{2}x + 5$

D.
$$y = \frac{1}{2}x + 5$$

Zadanie 11. (0-1)

Wykres funkcji kwadratowej $f(x) = -(x+1)^2 + 5$ przekształcono symetrycznie względem osi Oy i otrzymano wykres funkcji g. Wskaż równanie prostej, która jest osią symetrii wykresu funkcji g.

A.
$$x = 1$$

B.
$$x = -1$$

C.
$$y = 5$$

D.
$$y = 1$$

Zadanie 12. (0-1)

Pan Krzysztof pokonuje trasę Warszawa–Kraków w czasie t ze średnią prędkością v. Aby skrócić czas podróży o 20%, pan Krzysztof musi średnią prędkość

- A. zwiększyć o 25%.
- B. zwiększyć o 20%.
- C. zmniejszyć o 20%.
- D. zmniejszyć o 25%.

Zadanie 13. (0-1)

Ciąg (a_n) jest określony wzorem $a_n = \frac{3}{4}n^2 - 24n + 90$ dla $n \ge 1$. Najmniejszy wyraz ciągu (a_n) jest równy

A. 90

B. $66\frac{3}{4}$

C. −102

D. -124

Zadanie 14. (0-1)

Dla pewnego kąta ostrego α trzywyrazowy ciąg $(2\sin^2\alpha, \sqrt{3} \lg \alpha, 2\cos^2\alpha)$ jest arytmetyczny. Miara kąta α jest równa

A. 75°

B. 60°

C. 45°

D. 30°

Zadanie 15. (0-1)

Kąt α jest kątem ostrym w trójkącie prostokątnym przedstawionym na rysunku.

Liczba $4^{\sin\alpha}$ jest równa

 $\textbf{A.}\,\sqrt{2^{\sqrt{7}}}$

B. $2\sqrt{2}$

C. $4^{\frac{3}{\sqrt{7}}}$

D. $4\sqrt[3]{4}$

Zadanie 16. (0-1)

Prosta o równaniu y = -2x tworzy z osią Ox kąt rozwarty α (zobacz rysunek poniżej).

Cosinus kąta α jest równy

A. −2

B. $-\frac{1}{2}$

C. $\frac{2\sqrt{5}}{5}$

D. $-\frac{\sqrt{5}}{5}$

Zadanie 17. (0-1)

W okrąg o środku S wpisano deltoid ABCD (zobacz rysunek poniżej). Krótsza przekątna deltoidu ma długość 4, a jego najmniejszy kąt wewnętrzny ma miarę 45° .

Pole deltoidu jest równe

- **A.** $16\sqrt{2}$
- **B.** 16

C. 12

D. $8\sqrt{2}$

Zadanie 18. (0-1)

Dwa okręgi: pierwszy o środku $O_1=(-2,4)$ i promieniu $r_1=4$ oraz drugi o środku $O_2=(6,0)$, są styczne zewnętrznie. Promień drugiego okręgu jest równy

- **A.** 4
- **B.** $4(\sqrt{5}-1)$
- **C.** $2\sqrt{5}$
- **D.** 5

Zadanie 19. (0-1)

Rysunek przedstawia ostrosłup prawidłowy trójkątny.

Kąt między ścianą boczną a płaszczyzną podstawy ostrosłupa to

- **A.** $\triangleleft DES$
- **B.** *∢DCE*
- $\mathbf{C}. \triangleleft DCS$
- **D.** *∢DEB*

Zadanie 20. (0-1)

Pole powierzchni bocznej walca jest 5 razy większe od sumy pól jego podstaw. Miara kąta nachylenia przekątnej przekroju osiowego tego walca do podstawy jest w przybliżeniu równa

- **A.** 79°
- **B.** 68°
- **C.** 51°
- D. 22°

Zadanie 21. (0-1)

Laura ma pięć płyt z muzyką taneczną i trzy z muzyką poważną. Na ile sposobów Laura może tak ustawić poszczególne płyty na półce, aby wszystkie płyty tego samego gatunku znalazły się obok siebie? Wskaż poprawny sposób obliczeń.

B.
$$5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 + 3 \cdot 2 \cdot 1$$

C.
$$2 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1$$

D.
$$2 \cdot 5^5 \cdot 3^3$$

Zadanie 22. (0-1)

W tabeli podano oceny z matematyki czterech uczniów pewnej klasy.

Uczeń	Oceny
Ada	4, 4, 4, 5, 5
Basia	3, 3, 3, 4, 4
Czarek	1, 1, 2, 2, 2
Darek	1, 1, 5, 5, 5

Oceny którego ucznia wykazują największe odchylenie standardowe?

- A. Ady
- B. Basi
- C. Czarka
- D. Darka

Zadanie 23. (0-1)

W urnie jest o 10 kul białych więcej niż czarnych. Z urny losujemy jedną kulę. Prawdopodobieństwo wylosowania kuli białej jest równe $\frac{3}{4}$. Ile wszystkich kul jest w urnie?

- **A.** 15
- **B** 20

C. 30

D. 40

Zadanie 24. (0-2)

Wyznacz zbiór wszystkich argumentów x, dla których funkcja kwadratowa $f(x) = \frac{1}{2}x^2 + 2x + 2$ przyjmuje większe wartości niż funkcja liniowa g(x) = -x + 2.

Zadanie 25. (0-2)

Dla jakich wartości m równanie $x(3x-6)(x^3+27)(x+m)=0$ z niewiadomą x ma trzy różne rozwiązania?

Wypełnia sprawdzający

	Nr zadania	24	25
	Maks. liczba pkt	2	2
İ	Uzyskana liczba pkt		

Zadanie 26. (0-2)

Ustalono, że w pewnym jeziorze populacja zagrożonego gatunku ryb maleje każdego roku o 30%, a na początku badań wynosiła 50 tys. sztuk. Podaj wzór funkcji wyrażającej liczebność tej populacji po upływie t lat i oblicz, ile ryb zagrożonego gatunku było w jeziorze po trzech latach od chwili rozpoczęcia badań.

Zadanie 27. (0-2)

Udowodnij, że różnica kwadratów dowolnej liczby pierwszej p > 2 i liczby o dwa od niej mniejszej jest podzielna przez 8.

	Nr zadania	26	27
Wypełnia sprawdzający	Maks. liczba pkt	2	2
1	Uzyskana liczba pkt		

Zadanie 28. (0-2)

W trapezie prostokątnym ABCD, w którym AB||CD i |AB|=2|CD|, poprowadzono przekątne AC i BD, przecinające się w punkcie S. Udowodnij, że odległość punktu S od ramienia AD, prostopadłego do podstaw, jest trzy razy mniejsza niż długość podstawy AB.

Zadanie 29. (0-2)

Punkty $A=(-2\sqrt{3},0), B=(0,0), C=(\sqrt{3},3)$ są kolejnymi wierzchołkami sześciokąta foremnego *ABCDEF*. Wyznacz równanie prostej zawierającej przekątną *AD* tego sześciokąta.

	Nr zadania	28	29
Wypełnia sprawdzający	Maks. liczba pkt	2	2
1	Uzyskana liczba pkt		

Zadanie 30. (0-2)

Na rysunku pokazano ciąg kwadratów. Każdy następny kwadrat ma z poprzednim wspólny tylko jeden wierzchołek i dwa razy większą niż on długość boku. Wiedząc, że czwarty kwadrat ma bok długości 8, oblicz długość łamanej narysowanej pogrubioną linią, ograniczającą kwadraty od pierwszego do dziesiątego.

Zadanie 31. (0-4)

W koszyku jest pięć kul o numerach 1, 2, 3, 6, 9. Losujemy kolejno bez zwracania trzy kule i zapisujemy ich numery, tworząc liczbę trzycyfrową: numer pierwszej wylosowanej kuli jest cyfrą setek, drugiej – cyfrą dziesiątek, a trzeciej – cyfrą jedności zapisanej liczby. Oblicz prawdopodobieństwo, że otrzymamy liczbę podzielną przez 3. Wynik podaj w postaci ułamka nieskracalnego.

	Nr zadania	30	31
Wypełnia sprawdzający	Maks. liczba pkt	2	4
or	Uzyskana liczba pkt		

Zadanie 32. (0-4)

W trójkącie prostokątnym ABC punkty A=(-4,1) i B=(7,-2) są końcami przeciwprostokątnej. Prosta o równaniu $y=\frac{1}{3}x+\frac{7}{3}$ zawiera jedną z przyprostokątnych tego trójkąta. Oblicz długość środkowej BS w trójkącie ABC.

	Nr zadania	32
Wypełnia sprawdzający	Maks. liczba pkt	4
or - w. suyqey	Uzyskana liczba pkt	

Zadanie 33. (0-5)

W graniastosłupie prawidłowym czworokątnym (zobacz rysunek poniżej) punkt O jest punktem przecięcia przekątnych podstawy dolnej, a odcinek OC' jest o 4 dłuższy od przekątnej podstawy. Graniastosłup ten przecięto płaszczyzną przechodzącą przez przekątną BD podstawy dolnej i wierzchołek C' podstawy górnej. Pole figury otrzymanej w wyniku przekroju jest równe 48. Zaznacz tę figurę na rysunku poniżej i oblicz objętość graniastosłupa.

	Nr zadania	33
Wypełnia sprawdzający	Maks. liczba pkt	5
	Uzyskana liczba pkt	

WPISUJE ZDAJĄCY

KOD	IMIĘ I NAZ	ZWISKO *
		* nieobowiązkowe

KARTA ODPOWIEDZI

Nr zad.		Odpo	wiedzi	
1	A	В	С	D
2	A	В	С	D
3	A	В	С	D
4	A	В	С	D
5	A	В	С	D
6	A	В	С	D
7	A	В	С	С
8	A	В	С	D
9	A	В	С	D
10	A	В	С	D
11	A	В	С	D
12	A	В	С	D
13	A	В	С	D
14	A	В	С	D
15	A	В	С	D
16	A	В	С	D
17	A	В	С	D
18	A	В	С	D
19	A	В	С	D
20	A	В	С	D
21	A	В	С	D
22	A	В	С	D

WYPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia ucznia do:

dostosowania kryteriów oceniania. nieprzenoszenia zaznaczeń na kartę.

Punkty Nr zad. 0 1 2 3 4 5 24 25 26 27 28 29 30 31 32

33

WYPEŁNIA SPRAWDZAJĄCY

23