Koneru Lakshmaiah Education Foundation

(Deemed to be University estd. u/s. 3 of UGC Act, 1956)

Off Campus: R.V.S NAGAR, Moinabad Road, Near TS Police Academy, Aziz Nagar (PO), Hyderabad, Telangana - 500075.

DATA ANALYTICS AND VISUALIZATION

Lab Manual

Course Title	DATA ANALYTICS AND VISUALIZATION
Course Code	23SDAO1E
L-T-P-S Structure	0-0-6-4
Credits	4

Name: Dhruv Nair

Roll No.: 2310080001

Index

S. No.	List of Experiments	СО	Page No.
1	Plotting different python modules	CO6	
2	Initial data exploration using python	CO6	
3	Identifying and imputing missing values in the dataset	CO6	
4	Detection and smoothening of outliers in the dataset	CO6	
5	Implementing data transformations on temperature dataset	CO6	
6	Building Part to Whole Charts using Tableau	CO6	
7	Building Correlation Charts using python and Tableau.	CO6	
8	Measuring Data Similarity and Dissimilarity using both tools	CO6	
9	Measures of Central Tendency, Measures of Variance, Moments.	CO6	
10	Data classification (4 classifications) Logistic Regression using python modules	CO6	

1. Plotting different Python modules and reading data of different formats

Aim: To explore and visualize data using different Python libraries and to read data from various formats.

Objective: To utilize Python modules like pandas, matplotlib, and seaborn for data visualization and handling different file formats.

Code:

Colab Notebook Link: CGraphs.ipynb

Output:

Result:

Different data formats were successfully read and visualized using Python libraries.

2. Initial data exploration using Python

Aim: To explore the structure of a dataset through initial data analysis.

Objective: Understand basic statistics, distribution, and structure of a dataset using Python.

Code: co

```
import pandas as pd

df = pd.read_csv('insurance_data.csv')

print(df.head())
print(df.describe())
print(df.info())
```

Output:

```
age bought_insurance
8
   22
   25
                      0
2
                      1
3 52
                     0
4 46
            age bought_insurance
count 27.000000 27.000000
mean 39.666667
                       0.518519
     15.745573
                       0.509175
std
     18.000000
                       0.000000
min
                       0.000000
      25.000000
                       1.000000
50%
     45.000000
     54.500000 1.000000
62.000000 1.000000
75%
max
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27 entries, 0 to 26
Data columns (total 2 columns):
            Non-Null Count Dtype
    Column
    age 27 non-null
bought_insurance 27 non-null
0
                                     int64
                                     int64
dtypes: int64(2)
memory usage: 560.0 bytes
None
```

Result: Different data formats were successfully read and visualized using Python libraries.

3. Identifying and imputing missing values in the dataset

Aim: To identify and impute missing values in a dataset.

Objective: Learn how to detect missing values and fill them using appropriate imputation techniques.

Code:

Colab Notebook Link: ODAV.ipynb

```
import pandas as pd

df = pd.read_csv('insurance_data.csv')

missing = df.isnull().sum()

df.fillna(df.mean(), inplace=True)

print(df)
```

Output:

```
age bought_insurance

0 22 0

1 25 0

2 47 1

3 52 0

4 46 1

5 56 1

6 55 0

7 60 1

8 62 1

9 61 1

10 18 0

11 28 0

11 28 0

12 27 0

13 29 0

14 49 1

15 55 1

16 25 1

17 58 1

18 19 0

19 18 0

20 21 0

21 26 0

22 40 1

23 45 1

24 50 1

25 54 1

26 23 0
```

Result:

Missing values were identified and imputed successfully using various techniques.

4. Detection and smoothening of outliers in the dataset

Aim: To detect and handle outliers in a dataset.

Objective: Identify outliers using Z-scores or the IQR method and smooth them.

Code:

Colab Notebook Link: ODAV.ipynb

```
import pandas as pd
import numpy as np

df = pd.read_csv('insurance_data.csv')

Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1

outliers = (df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))
df[outliers] = np.nan
df.fillna(df.mean(), inplace=True)
print(df)
```

Output:

```
age bought_insurance

0 22 0

1 25 0

2 47 1

3 52 0

4 46 1

5 56 1

6 55 0

7 60 1

8 62 1

9 61 1

10 18 0

11 28 0

11 28 0

12 27 0

13 29 0

14 49 1

15 55 1

16 25 1

17 58 1

18 19 0

19 18 0

20 21 0

21 26 0

22 40 1

23 45 1

24 50 1

25 54 1

26 23 0
```

Result:

Outliers were successfully identified and smoothed using the appropriate methods

.

5. Implementing data transformations on temperature dataset

Aim: To apply transformations on a temperature dataset to make it suitable for analysis.

Objective: Learn different transformation techniques such as normalization, standardization, and log transformation.

Code:

Colab Notebook Link: ODAV.ipynb

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler
import pandas as pd
import numpy as np

df = pd.read_csv('temperatures.csv')

scaler = StandardScaler()
df_standardized = scaler.fit_transform(df)

minmax_scaler = MinMaxScaler()
df_normalized = minmax_scaler.fit_transform(df)

df_log_transformed = np.log(df)
print(df_log_transformed)
```

Output:

Result:

Data transformations were successfully applied, improving the dataset's usability for further analysis

6. Building Part to Whole Charts using Tableau

Aim: To create part-to-whole visualizations using Tableau.

Objective: Learn to visualize proportions and relationships in data using pie charts, stacked bar charts, etc

Code:

Colab Notebook Link: CGraphs.ipynb

Output:

Result:

Data was successfully visualized in terms of proportions and parts-to-whole charts

7. Building Correlation Charts using Python and Tableau

Aim: To create correlation charts to visualize relationships between variables.

Objective: Understand the relationship between variables using correlation matrices.

Code:

Colab Notebook Link: ODAV.ipynb

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_csv('temperatures.csv')
correlation_matrix = df.corr()

sns.heatmap(correlation_matrix, annot=True)
plt.show()
```

Output:

Result:

Correlations between variables were effectively visualized.

8. Measuring Data Similarity and Dissimilarity using both tools

Aim: To measure data similarity and dissimilarity using Python and Tableau.

Objective:Calculate similarity and dissimilarity using metrics like Euclidean distance and Cosine similarity..

Code:

Colab Notebook Link: ODAV.ipynb

```
from scipy.spatial.distance import euclidean, cosine
import pandas as pd

df = pd.read_csv('temperatures.csv')

similarity = cosine(df.iloc[0], df.iloc[1])
dissimilarity = euclidean(df.iloc[0], df.iloc[1])
print(similarity, dissimilarity)
```

Output:

```
        dtype; float64
        YEAR
        JAN
        FEB
        MAR
        APR
        MAY
        JUN
        JUL
        AUG
        SEP
        OCT
        0
        1901
        23.57
        25.12
        27.04
        31.7
        33.23
        32.23
        30.9
        29.96
        30.65
        29.43

        1
        1902
        23.61
        25.35
        27.31
        NaN
        32.67
        NaN
        NaN
        29.55

        2
        1963
        23.91
        26.67
        27.62
        NaN
        NaN
        32.67
        NaN
        NaN
        NaN
        NaN
        30.03
        3
        1904
        NaN
        NaN
        27.78
        NaN
        NaN
        33.18
        NaN
        NaN
```

Result:

Different data formats were successfully read and visualized using Python libraries.

9. Plotting different Python modules and reading data of different formats

Aim: To compute central tendency (mean, median, mode), variance, and moments (skewness, kurtosis) for a dataset.

Objective: Summarize the dataset using statistical measures.

Code:

Colab Notebook Link: ODAV.ipynb

```
import pandas as pd

df = pd.read_csv('temperatures.csv')

mean = df.mean()

median = df.median()

mode = df.mode()

variance = df.var()

skewness = df.skew()

kurtosis = df.kurt()

print(mean, median, mode, variance, skewness, kurtosis)
```

Output:

```
YEAR 1959.000000 JAN 23.687436 | FEB 25.597863 | MAR 29.085983 | ARR 29.085897 | ARR 29.085897
```

Result:

Statistical measures provided a comprehensive summary of the dataset.

10. Data classification (4 classifications) Logistic Regression using Python modules

Aim: To classify data into four categories using Logistic Regression in Python.

Objective: Understand multi-class classification and implement Logistic Regression for classifying data.

Code:

Colab Notebook Link: ODAV.ipynb

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score, classification report
data = pd.read csv("temperatures.csv")
median temp = data['ANNUAL'].median()
data['HighTemp'] = (data['ANNUAL'] > median temp).astype(int)
X = data[['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT',
y = data['HighTemp']
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)
model = LogisticRegression(max iter=200)
model.fit(X train, y train)
y pred = model.predict(X test)
accuracy = accuracy score(y test, y pred)
report = classification report(y test, y pred)
accuracy, report
```

Output:

Result:

Different data formats were successfully read and visualized using Python libraries.