Floating Point Numbers

Philipp Koehn

7 November 2016

Numbers

- So far, we only dealt with integers
- But there are other types of numbers
- ullet Rational numbers (from ratio \simeq fraction)

$$-3/4 = 0.75$$

$$-10/3 = 3.33333333...$$

• Real numbers

$$-\pi = 3.14159265...$$

$$- e = 2.71828182...$$

Very Large Numbers

• Distance of sun and earth

• Scientific notation

$$1.5 \times 10^{11}$$
 meters

• Another example: number of atoms in 12 gram of carbon-12 (1 mol)

$$6.022140857 \times 10^{23}$$

Binary Numbers in Scientific Notation

• Example binary number (π again)

11.0010010001

• Scientific notation

 $1.10010010001 \times 2^{1}$

• General form

$$1.x \times 2^y$$

Representation

• IEEE 754 floating point standard

• Uses 4 bytes

31	30	29	28	27	26	25	24	23	22	21	20		2	1	0
S				expo	nent						fra	ction			
1 b	it			8 b	its						23	bits			

• Exponent is offset with a bias of 127

e.g.
$$2^{-6} \rightarrow \text{exponent} = -6 + 127 = 121$$

Conversion into Binary

- \bullet $\pi = 3.14159265$
- Number before period: $3_{10} = 11_2$
- Conversion of fraction .14159265

Digit	Calculation	Digit	Calculation
	$0.14159265 \times 2 \downarrow$	1	0.9817472 × 2 ↓
0	$0.2831853 \times 2 \downarrow$	1	$0.9634944 \times 2 \downarrow$
0	0.5663706 \times 2 \downarrow	1	$0.9269888 \times 2 \downarrow$
1	$0.1327412 \times 2 \downarrow$	1	$0.8539776 \times 2 \downarrow$
0	$0.2654824 \times 2 \downarrow$	1	$0.7079552 \times 2 \downarrow$
0	$0.5309648 \times 2 \downarrow$	1	$0.4159104 \times 2 \downarrow$
1	$0.0619296 \times 2 \downarrow$	0	$0.8318208 \times 2 \downarrow$
0	$0.1238592 \times 2 \downarrow$	1	$0.6636416 \times 2 \downarrow$
0	$0.2477184 \times 2 \downarrow$	1	$0.3272832 \times 2 \downarrow$
0	$0.4954368 \times 2 \downarrow$	0	$0.6545664 \times 2 \downarrow$
0	$0.9908736 \times 2 \rightarrow$	1	0.3091328×2

• Binary: 11.0010010000111111101101

Encoding into Representation

 \bullet π

$$1.1001001000011111101101 \times 2^{1}$$

• Encoding

Sign	Exponent	Fraction
0	10000000	1001001000011111101101

• Note: leading 1 in fraction is omitted

Special Cases

- Zero
- Infinity (1/0)
- Negative infinity (-1/0)
- Not a number (0/0 or $\infty \infty$)

Encoding

Exponent	Fraction	Object
0	0	zero
0	>0	denormalized number
1-254	anything	floating point number
255	0	infinity
255	>0	NaN (not a number)

(denormalized number: $0.x \times 2^{-126}$)

Double Precision

- Single precision = 4 bytes
- Double precision = 8 bytes

Sign	Exponent	Fraction			
1 bit	8 bits	23 bits			
1 bit	11 bits	52 bits			

addition

Addition with Scientific Notation

- Decimal example, with 4 significant digits in encoding
- Example

$$0.1610 + 99.99$$

• In scientific notation

$$1.610 \times 10^{-1} + 9.999 \times 10^{1}$$

• Bring lower number on same exponent as higher number

$$0.01610 \times 10^1 + 9.999 \times 10^1$$

Addition with Scientific Notation

• Round to 4 significant digits

$$0.016 \times 10^1 + 9.999 \times 10^1$$

• Add fractions

$$0.016 + 9.999 = 10.015$$

• Adjust exponent

$$10.015 \times 10^1 = 1.0015 \times 10^2$$

• Round to 4 significant digits

$$1.002 \times 10^{2}$$

Binary Floating Point Addition

• Numbers

$$0.5_{10} = \frac{1}{2_{10}} = \frac{1}{2_{10}} = 0.1_2 = 1.000_2 \times 2^{-1}$$

$$-0.4375_{10} = -\frac{7}{1610} = -\frac{7}{2^410} = 0.0111_2 = -1.110_2 \times 2^{-2}$$

• Bring lower number on same exponent as higher number

$$-1.110 \times 2^{-2} = -0.111 \times 2^{-1}$$

• Add the fractions

$$1.000_2 \times 2^{-1} + (-0.111 \times 2^{-1}) = 0.001 \times 2^{-1}$$

• Adjust exponent

$$0.001 \times 2^{-1} = 1.000 \times 2^{-4}$$

Flowchart

multiplication

Multiplication with Scientific Notation 16

• Example: multiply 1.110×10^{10} and 9.200×10^{-5}

$$1.110 \times 10^{10} \times 9.200 \times 10^{-5}$$
 $1.110 \times 9.200 \times 10^{-5} \times 10^{10}$
 $1.110 \times 9.200 \times 10^{-5+10}$

Add exponents

$$-5 + 10 = 5$$

• Multiply fractions

$$1.110 \times 9.200 = 10.212$$

• Adjust exponent

$$10.212 \times 10^5 = 1.0212 \times 10^6$$

Binary Floating Point Multiplication

• Example

$$1.000 \times 2^{-1} \times -1.110 \times 2^{-2}$$

• Add exponents

$$-1 + (-2) = -3$$

• Multiply fractions

$$1.000 imes -1.110 = -1.110$$
 $1000 imes 1110 = 1110000$
 -1.110000

• Adjust exponent (not needed)

$$-1.110 \times 2^{-3}$$

Flowchart

mips instructions

Instructions

- Both single precision (s) and double precision (d)
- Addition (add.s / add.d)
- Subtraction (sub.s / sub.d)
- Multiplication (mul.s / mul.d)
- Division (div.s / div.d)
- Comparison (c.x.s / c.x.d)
 - equality (x = eq), inequality (x = neq)
 - less than (x = lt), less than or equal (x = le)
 - greater than (x = gt), greater than or equal (x = ge)
- Floating point branch on true (bclt) or fals (bclf)

Floating Point Registers

- MIPS has a separate set of registers for floating point numbers
- Little overhead, since used for different instructions
 - no need to specify in add, subtract, etc. instruction codes
 - different wiring for floating point / integer registers
 - much more limited use for floating point registers (e.g., never an address)
- Double precision = 2 registers used

Example

- Conversion Fahrenheit to Celsius $(5.0/9.0 \times (x 32.0))$
- Input value x stored in register \$f12, constant in offsets to \$gp
- Code

```
lwcl $f16, const5($gp) ; load 5.0
lwcl $f18, const9($gp) ; load 9.0
div.s $f16, $f16, $f18 ; $f16 = 5.0/9.0
lwcl $f18, const32($gp) ; load 32.0
sub.s $f18, $f12, $f18 ; $f18 = x-32.0
mul.s $f0, $f16, $f18 ; $f0 = result
```