Lecture 2:

- Model types (E1.1-1.3,E2.1-2.2)
 - State space models, transfer functions
 - Linear models, nonlinear models

Example: "Stick balancing"

Example: "Stick balancing"

$$ml^2\ddot{\theta} - mg\sin\theta = -mlu\cos\theta$$

1.3 Transfer functions

Linear time invariant model (LTI)

$$\underline{y} = \mathbf{C}\underline{x} + \mathbf{D}\underline{u}$$

Output matrix Feed-Forward matrix

Laplace notation

$$\underline{x}(s) = \mathcal{L}\{\underline{x}(t)\}$$

$$\underline{u}(s) = \mathcal{L}\{\underline{u}(t)\}$$

$$\underline{y}(s) = \mathcal{L}\{\underline{y}(t)\}$$

$$\mathcal{L}\{\underline{\dot{x}}(t)\} = s\mathcal{L}\{\underline{x}(t)\} - \underbrace{x(t=0)}_{\text{Assume}}$$

$$\mathsf{Assume} = \mathbf{0}$$

Transform LTI system

$$\underline{\dot{x}} = \mathbf{A}\underline{x} + \mathbf{B}\underline{u}$$
 $\underline{y} = \mathbf{C}\underline{x} + \mathbf{D}\underline{u}$

Rational transfer function

$$\frac{y(s)}{u(s)} = H(s)$$

Rational transfer function if it can be expressed as:

$$H(s) = K \frac{P(s)}{Q(s)}$$

$$= K \frac{(s+z_1)\dots(s+z_m)}{(s+p_1)\dots(s+p_n)}$$

m: zeros ; n: poles

Partial differential equations

- Partial differential equations (pde) lead to irrational transfer functions
- They can be approximated by rational transfer functions with infinitely order
 - → infinit dimension system
- Example: Transport equation/advection /wave equation

PDE – Example I

PDE – Example II

Lecture 3: Energy functions and passivity

Using "energy" as a concept for characterizing system behavior

- Energy functions (aka Lyapunov functions)
 - If the "internal energy" of a system decreases, the system is stable
 - "Introvert" (not concerned with surroundings)
- Passivity
 - Does a system produce "energy" to its surroundings?
 - "Extrovert" (mainly concerned with surroundings, via inputs and outputs)
- The above concepts are connected via storage functions (next time)

Book: E2.3, E2.4

Energy function

- The system: $\underline{\dot{x}} = \underline{f}(\underline{x}, \underline{u}, t)$
- Assume we have a function $V(x,t) \ge 0$, which describes the «energy» of the system
- The derivative of the energy function V(x,t) is

$$\dot{V} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} \frac{dx}{dt} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(x, u, t)$$

- If we have $\dot{V} \leq 0$
 - → Energy of the system decreases monotonically
 - → stability

Stable system

• Equilibrium point is stable if for any possible $\varepsilon > 0$ radius around the steady state point a region with the radius δ exist, such that for all initial values $|x_0 - x_e| < \delta$ the solution x(t) fullfils for all $t > t_0$ the following condition:

$$|x(t) - x_e| < \varepsilon$$

Phase diagram for system with real Eigenvalues

Stable

Phase diagram for system with real Eigenvalues

Unstable

Phase diagram for system with real Eigenvalues

Saddle → unstable

$$m\ddot{x} + d\dot{x} + kx = 0$$

Mass-spring-damper II $m\ddot{x} + d\dot{x} + kx = 0$

Mass-spring-damper III $m\ddot{x} + d\dot{x} + kx = 0$

$$\lambda_{1,2} = u \pm iv$$

unstable u > 0

$$\lambda_{1,2} = u \pm iv$$

stable

u < 0

$$\lambda_{1,2} = u \pm iv$$

centre

$$u = 0$$

$$m\ddot{x} + d\dot{x} + kx = 0$$

$$V(x) = \frac{m}{2}\dot{x}^2 + \frac{k}{2}x^2$$

Mass-spring-damper with force

$$m\ddot{x} + d\dot{x} + kx = F$$

$$x_1 = x$$
 $x_1 = x_2$
 $x_2 = \dot{x}$
 $\dot{x}_2 = \frac{F}{m} - \frac{k}{m}x_1 - \frac{d}{m}x_2$

General: Energy-based controller design

$$\dot{x} = f(x,u,t)$$
 Choose a
$$\dot{V} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(x,u,t)$$

$$\dot{V} \leq 0$$

Why learn about passivity? Preview...

- Say you have several systems (or models), and you want to interconnect them
 - For instance, a process and a controller, or a motor and a load, or two buffer tanks in series, ...
 - Will the interconnection be stable?
- Bad news: The interconnection of stable systems is not necessarily stable
- Good news: The interconnection of passive systems is passive (and therefore stable)!

Homework (recommended)

 Derive the derivative of the energy function of the mass-spring-damper system with force

$$- \dot{V} = -dx_2^2 + Fx_2$$

- Read section 2.4.1, 2.4.2, 2.4.3 in the book
 - Try to proof passivity of the transfer-function:

$$H(s) = \frac{1}{1 + Ts}$$

by first transfering the function to the time domain