Probeklausur

Hinweise zur Klausur:

- Klausurtermin: 19.2.2016 um 9 Uhr (Einlass) in RUD26 0'110 und 0'115.
- Nachklausurtermin: 22. 3. 2016 um 9 Uhr (Einlass) in RUD26 0'115 (die Nachklausur kann auch ohne Teilnahme an der ersten Klausur mitgeschrieben werden).
- Anmeldung in Agnes nur mit Übungsschein (d.h. "bestanden" im Studienblatt bzw. 1190 Punkte in Goya) bis 12.2.2016 (Klausur) bzw. 15.3.2016 (Nachklausur).
- Die Bearbeitungszeit wird 120 Minuten betragen.
- Bitte bringen Sie Ihren Studenten- und einen Lichtbildausweis (Personalausweis, Reisepass oder Führerschein) mit.
- Als Hilfsmittel sind eigene Notizen (auch gedruckt) und Skript erlaubt. Bücher und elektronische Geräte (Taschenrechner, Handy etc.) sind **nicht** zugelassen.
- Am 15.2.2016 ab 10 Uhr findet eine Fragestunde statt.
- Zusätzlich gibt es am 14.2.2016 (Sonntag) von 11-17 Uhr die Gelegenheit zum betreuten Üben mit Michael Robert Jung im Raum 3.101, RUD 25.

Aufgabe 1 Betrachten Sie den nebenstehenden NFA N.

30 Punkte

|a|

4

a

 \overline{b}

a

a

 \overline{b}

a

- (a) Welche der Wörter ε , ba, aab und aabb sind in L(N)?
- (b) Wandeln Sie N mit der Potenzmengenkonstruktion in einen äquivalenten DFA M um.
- (c) Minimieren Sie M mit dem Verfahren aus der VL.
- (d) Geben Sie für jedes Paar $x, y \in \{\varepsilon, ba, aabb, aaab, aaabb\}$ an, ob xR_Ly gilt oder nicht. Begründen Sie.
- (e) Geben Sie ein Repräsentantensystem für R_L an.
- (f) Geben Sie einen möglichst kurzen regulären Ausdruck für L(N) an.

Aufgabe 2 Für
$$\Sigma = \{\langle, \rangle, [,]\}$$
 sei $G = (\{S\}, \Sigma, P, S)$ 10 Punkte mit $P : S \to \langle S \rangle, [S], SS, \varepsilon$ $[\langle \to \langle [$

Zeigen Sie, dass L(G) kontextsensitiv, aber nicht kontextfrei ist.

Aufgabe 3 Sei $A = \{a^nb^m \mid n, m \ge 0, m = \left\lfloor \frac{n}{2} \right\rfloor \}$. **10 Punkte** Geben Sie eine DTM M mit L(M) = A an und kommentieren Sie die Funktionsweise.

Aufgabe 4 Seien $A, B \subseteq \Sigma^*$ zwei beliebige Sprachen. *12 Punkte* Für diese sei embed $(A, B) = \{xwy \in \Sigma^* \mid w \in A \land xy \in B\}$. Zeigen Sie:

- (a) Gilt $B \in CFL$, so ist auch embed($\{\#\}, B$) kontextfrei.
- (b) Wenn $A, B \in \mathsf{CFL}$, so gilt auch embed $(A, B) \in \mathsf{CFL}$. (*Hinweis:* Benutzen Sie (a).)

Gelten folgende Aussagen jeweils? Begründen Sie kurz.

- (a) $(B \in \mathsf{CFL} \text{ und } A \leq^p B) \Rightarrow A \in \mathsf{NP}.$
- (b) $(A \leq^p B \text{ und } A \leq^p C) \Rightarrow A \leq^p B \cap C.$
- (c) Gibt es eine Funktion f in FP, die A auf B und A auf C reduziert, so gilt $A \leq^p B \cap C$.
- (d) $P = NP \Rightarrow SAT \leq^p \{a\}$

Aufgabe 6 Zeigen Sie, dass folgendes Problem NP-vollständig ist. 10 Punkte QUADRATCLIQUE: Gegeben: Ein Graph G und $k \in \mathbb{N}$.

Gefragt: Enthält G eine Clique der Größe $k^2 + k$?

Aufgabe 7

15 Punkte

- (a) Beweisen Sie, dass co-RE unter ≤ abgeschlossen ist.
- (b) Für $w \in \{0,1\}^*$ sei f_w die durch die DTM M_w berechnete partielle Funktion. Sei \tilde{f}_w die einstellige numerische Repräsentation von f_w , d.h. falls eine Funktion $g: \mathbb{N}^1 \to \mathbb{N} \cup \{\uparrow\}$ existiert, sodass $f_w = \hat{g}$, ist $\tilde{f}_w = g$, sonst ist \tilde{f}_w die konstante Nullfunktion.

Bestimmen Sie welche der folgenden Sprachen entscheidbar sind. Begründen Sie.

- (1) $L_1 = \{ w \in \{0,1\}^* \mid \tilde{f}_w \text{ ist WHILE-berechenbar} \}$
- (2) $L_2 = \{w \in \{0,1\}^* \mid \tilde{f}_w \text{ ist LOOP-berechenbar}\}$
- (3) $L_3 = \{w \in \{0,1\}^* \mid \text{Bei jeder Eingabe besucht } M_w \text{ seinen Startzustand erneut.} \}$
- (4) $L_4 = \{ w \in \{0,1\}^* \mid \exists w', w'' \in \{0,1\}^* : w = w'w'' \text{ und } L(M_{w'}) = L(M_{w'w''}) \}$

Aufgabe 8 Sei G der nebenstehende Graph.

21 Punkte

- (a) Bestimmen Sie folgende Parameter und begründen Sie.
 - (1) $\beta(G) = \min\{\|U\| \mid U \text{ ist eine Kantenüberdeckung in } G\},$
 - (2) $\chi(G) = \min \{ k \ge 1 \mid G \text{ ist } k\text{-färbbar} \},$
 - (3) $\mu(G) = \max \{ ||M|| \mid M \text{ ist ein Matching in } G \},$
 - (4) $\omega(G) = \max \{ \|C\| \mid C \text{ ist eine Clique in } G \},$
 - (5) $\alpha(G) = \max \{ ||S|| \mid S \text{ ist stabil in } G \}.$

- (b) Besitzt G eine Eulertour/einen Hamiltonkreis? Geben Sie eine/einen an, oder begründen Sie falls keine/keiner existiert.
- (c) Geben Sie einen Subgraphen von G an, der zu folgendem Graphen isomorph ist.

