I claim:

A soft tissue coagulation device, comprising: a shaft defining a distal end and including an outer structure col formed/from material that is relatively high in thermally conductivity and substantially electrically nonconductive; at least one energy transmission device supported on the outer structure in spaced relation to the distal end of the shaft; and at least one fluid lumen defined by the outer structure and 8 located such that a portion thereof is aligned with the at least one energy 9 transmission device. 2. 1 A device as claimed in claim 1, wherein the shaft is relatively 2 short 1 3. A device as claimed in claim 1, wherein at least a portion of the shaft |s relatively stiff. 2 1 A device as claimed in claim 3, wherein the shaft includes a 2 mandrel and the outer structure is mounted on the malleable 3 mandrel. 1 A device as claimed in claim 3, wherein the shaft includes a tubular member defining a distal end and the outer structure extends distally 2 3 from the distal end of the tubular member. 6. 1 A device as claimed in claim 1, wherein the shaft include a 2 proximal portion and a distal portion, the device further comprising: 3 steering apparatus that deflects the distal portion relative to 4 the proximal portion. 1 7. A dévice as claimed in claim 1, wherein the shaft includes a pre-2 bent portion. 25

1	8. A device as claimed in claim 1, wherein the at least one fluid			
2	lumen comprises an inlet lumen and an outlet lumen.			
1	9. A device as claimed in claim 8, wherein the inlet lumen and the			
2	outlet lumen define respective distal ends, the device further comprising:			
3	a non-conductive tip member defining a lumen that connects the			
4	distal ends of the inlet lumen and outlet lumen.			
1	10. A device as claimed in claim 1, wherein the at least one fluid			
2	lumen includes inner and outer lumen surfaces defining a distance			
3	therebetween, the outer structure includes a wall defining a wall thickness			
4	between the at least one energy transmission device and the at least one fluid			
5	lumen, and the distance between the inner and outer lumen surfaces is			
6	greater than the wall thickness.			
1	11. A device as claimed in claim 1, wherein the at least one energy			
2	transmission device comprises a plurality of longitudinally spaced energy			
3	transmission devices. $5 \mathcal{U}$			
1	12. A device as claimed in claim 1, wherein the at least one energy			
2	transmission device comprises an electrode.			
1	13. A surgical probe as claimed in claim 1, wherein outer structure			
2	defines a perimeter, the at least one energy transmission device extends			
3	around less than the entire perimeter, the at least one fluid lumen comprises			
4	inlet and outlet lumens, and the inlet lumen is between a substantial portion of			
5	at least one the energy transmission device and the outlet lumen.			
4				
1	(14.) A surgical probe as claimed in claim 13, wherein the outlet			
2	lumen includes thermal insulation.			
1	15. A soft tissue coagulation device, comprising:			
2	a shaft defining a distal end and including an outer structure			
3	formed from material that is substantially electrically nonconductive;			

4	at least one energy transmission device supported on the oute			
5	structure in spaced relation to the distal end of the shaft; and			
6	at least one fluid lumen defined by the outer structure such that			
7	a wall having a wall thickness is between the at least one fluid lumen and the			
8	at least one energy transmission device, located such that a portion thereof is			
9	aligned with the at least one energy transmission device and including inner			
10	and outer lumen surfaces defining a distance therebetween that is greater			
11	than the wall thickness.			
1	16. A device as claimed in claim 15/wherein the shaft is relatively			
2	short.			
1	17. A device as claimed in claim $\int 5$, wherein at least a portion of the			
2	shaft is relatively stiff.			
1	18. A device as claimed in claim 15, wherein the shaft includes a			
2	malleable mandrel and the outer structure is mounted on the malleable			
3	mandrel.			
1	19. A device as claimed in claim 15, wherein the shaft includes a			
2	tubular member defining a distal end and the outer structure extends distally			
3	from the distal end of the tubular member.			
1	20. A device as claimed in claim 15, wherein the shaft include a			
2	proximal portion and a distal portion, the device further comprising:			
3	a steering apparatus that deflects the distal portion relative to			
4	the proximal portion.			
1	21. A device as claimed in claim 15, wherein the shaft includes a			
2	pre-bent portion.			
1	22. A device as claimed in claim 15, wherein the at least one fluid			
2	lumen comprises an inlet l∳men and an outlet lumen.			

1	23.	A device as claimed in claim 22, wherein the inlet umen and the			
2	outlet lumen define respective distal ends, the device further comprising:				
3		a non-conductive tip member defining a lumen that connects the			
4	distal ends o	of the inlet lumen and outlet lumen.			
1					
1	24.	A device as claimed in claim 15, wherein the at least one energy			
2	transmission device comprises a plurality of longity dinally spaced energy				
3	transmissior	devices.			
1	25.	A device as claimed in claim 15, wherein the at least one energy			
2	transmission	device comprises an electrode.			
4	26.	A surgical probe as plaimed in claim 15, wherein outer structure			
1		A surgical probe as claimed in claim 15, wherein outer structure			
2	·	defines a perimeter, the at least one energy transmission device extends			
3		around less than the entire perimeter, the at least one fluid lumen comprises			
4	inlet and outlet lumens, and the inlet lumen is between a substantial portion of				
5	at least one	the energy transmission device and the outlet lumen.			
1	.27.	A surgical probe as claimed in claim 26, wherein the outlet			
2	lumen includ	es thermal insulation.			
1	28.	A surgical probe as/claimed in claim 15, wherein the distance			
2	between the	inner and outer lumen surfaces is at least two times greater than			
3	the wall thick	kness.			
1	29.	A method of coagulating soft tissue with an apparatus including			
2	an elongate	energy transmission device and an inner lumen, comprising the			
3	steps of:				
4	•	positioning the elongate energy transmission device in electrical			
5	contact with	tissue;			
6		transmitting energy to the tissue with the energy transmission			
7	device; and				
8		passing fluid through the inner lumen such that heat is			
9	transferred for	rom the energy transmission device to the fluid.			

1

3

1 2

3

- 30. A method as claimed in claim 29, wherein the step of positioning the elongate energy transmission device comprises positioning a plurality of spaced electrodes in electrical contact with tissue.
 - 31. A method as claimed in claim 29, wherein the step of passing fluid through the inner lumen comprises passing fluid through an inlet lumen and an outlet lumen.