Problem Set 1

Due: April 26, 2021 (in class; subject to change if COVID restrictions apply)

Problem 1

Suppose you have n i.i.d. observations from the nonlinear regression

$$y_i = (x_i + eta)^2 + \epsilon_i \quad \epsilon_i | x_i \sim \mathcal{N}(0, 1)$$

- 1. Find the asymptotic distribution of the nonlinear least squares estimator of β .
- 2. Find the asymptotic distribution of the maximum likelihood estimator of β . Compare the two asymptotic distributions.

Hint: For NLS
$$m(x_i;\beta)=-[y_i-(x_i+\beta)^2]^2$$
. For MLE $m(x_i;\beta)=\log f(y|x;\beta)=\log(1)-\log(\sqrt{2\pi})-\frac{1}{2}[y-(x+\beta)^2]^2$

Problem 2

Hint:

- Read Hayashi Chapter 7.3, Example 7,10
- Read Hayashi Chapter 1

Consider the linear regression model with normal errors, whose conditional density for observation \emph{i} is

$$\log f(y_i|\mathbf{x_i};\beta,\sigma^2) = -\frac{1}{2}\log(2\pi) - \frac{1}{2}\log(\sigma^2) - \frac{\left(\mathbf{y_i} - \mathbf{x_i'}\beta\right)^2}{2\sigma^2}$$

Let $(\hat{\beta}, \hat{\sigma}^2)$ be the unrestricted ML estimate of $\theta = (\beta, \sigma^2)$ and let $(\tilde{\beta}, \tilde{\sigma}^2)$ be the restricted ML estimate subject to the constraint $\mathbf{R}\beta = \mathbf{c}$ where \mathbf{R} is an $r \times X$ matrix of known constraints. Assume that $\Theta = \mathbb{R}^K \times \mathbb{R}_+ +$ and that $\mathbb{E}[x_i x_i']$ is nonsingular. Also, let

$$\hat{\Sigma} = egin{bmatrix} rac{1}{\hat{\sigma^2}} rac{1}{n} \sum_1^n x_i x_i' & 0 \ 0 & rac{1}{2(\hat{\sigma^2})^2} \end{bmatrix}$$

$$ilde{\Sigma} = egin{bmatrix} rac{1}{ ilde{\sigma}^2} rac{1}{n} \sum_1^n x_i x_i' & 0 \ 0 & rac{1}{2(ilde{\sigma}^2)^2} \end{bmatrix}$$

• (a) Verify that $\hat{\beta}$ minimizes the sum of squared residuals. So it is the OLS estimator. Verify that $\tilde{\beta}$ minimizes the sum of squared residuals subject to the constraint $\mathbf{R}\beta = \mathbf{c}$. so it is the restricted least squares estimator. **Hint**: to set up a problem, please refer to Restrictions section from

EE.pdf notes. You can replace the term $\sum (y_i - \mathbf{x}_i' \beta)^2$ with the sum of squaredresidual: i.e., $SSR(\beta) \equiv \sum (y_i - \mathbf{x}_i' \beta)^2$.

• (b) Let $Q_n(\theta) = \log f(y_i|\mathbf{x_i}; \beta, \sigma^2)$. Show that

$$Q_n(\hat{ heta}) = -rac{1}{2} \mathrm{log}(2\pi) - rac{1}{2} - rac{1}{2} \mathrm{log}\left(rac{SSR_U}{n}
ight)$$

$$Q_n(ilde{ heta}) = -rac{1}{2} \mathrm{log}(2\pi) - rac{1}{2} - rac{1}{2} \mathrm{log}\left(rac{SSR_R}{n}
ight)$$

where $SSR_U \equiv \sum (y_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}})^2$ is the unrestricted sum of squared residuals and $SSR_R \equiv \sum (y_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}})^2$ is the restricted sum of squared residuals.

- (c) Verify that the $\hat{\Sigma}$ given here, although not the same as $-\frac{1}{n}\sum_{1}^{n}\mathbf{H}(\mathbf{w_i};\hat{\theta})$, is consistent for $\mathbb{E}[\mathbf{w_i};\theta_0]$. Verify that the $\tilde{\Sigma}$ given here, although not the same as $-\frac{1}{n}\sum_{1}^{n}\mathbf{H}(\mathbf{w_i};\tilde{\theta})$, is consistent for $\mathbb{E}[\mathbf{w_i};\theta_0]$.
- (d) Show that the Wald, LM, and LR statistics using $\hat{\Sigma}$ and $\tilde{\Sigma}$ given here can be written as

$$W = n \cdot \frac{(\mathbf{R}\hat{\beta} - \mathbf{c})'[\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1}(\mathbf{R}\hat{\beta} - \mathbf{c})}{SSR_U}$$
(1)

$$LM = n \cdot \frac{(y - \mathbf{X}\tilde{\beta})'\mathbf{P}(\mathbf{y} - \mathbf{X}\tilde{\beta})}{SSR_R}$$
 (2)

$$LR = n \cdot \left[\log \left(\frac{SSR_R}{n} \right) - \log \left(\frac{SSR_U}{n} \right) \right] \tag{3}$$

where y is a vector with dimension $(n \times 1)$ and \mathbf{X} is a matrix with dimension $(n \times K)$.

• (e) Show that the three statistics can also be written as

$$W = n \cdot \frac{SSR_R - SSR_U}{SSR_U} \tag{4}$$

$$LM = n \cdot \frac{SSR_R - SSR_U}{SSR_R} \tag{5}$$

$$LR = n \cdot \log \left(\frac{SSR_R}{SSR_U} \right) \tag{6}$$

Hint: Refer to Analytical Exercise 1, Chapter 1 of Hayashi.

$$SSR_R - SSR_U = (\hat{\beta} - \tilde{\beta})'(X'X)(\hat{\beta} - \tilde{\beta}) \tag{7}$$

$$= (R\hat{\beta} - c)'[R(X'X)^{-1}R'](R\hat{\beta} - c)$$
 (8)

$$= (y - X\tilde{\beta})'P()(y - X\tilde{\beta}) \tag{9}$$

where $P = X(X'X)^{-1}X'$

• (f) Show that $W \geq LR \geq LM$. These inequality do not always hold in nonlinear regression models.