Relational Algebra Assignment

Batuhan Aktan

February 2023

1 Relations

```
Actor(<u>id</u>, fname, lname, gender)
director(<u>id</u>, fname, lname)
movie(<u>id</u>, title, year, time, lang, dt rel, rel country)
reviewer(<u>id</u>, name)
genres(<u>id</u>, title)
movie direction(<u>id</u>, <u>mov id</u>)
movie cast(<u>id</u>, <u>mov id</u>, role)
movie genres(<u>mov id</u>, gen id)
rating(<u>mov id</u>, rev id, rev starts, num of ratings)
```

2 Queries

```
1. movid \leftarrow \Pi_{mov\_id}(\sigma_{mov\_title="A\ Man\ Called\ Otto"}(movie))

actid \leftarrow (movid \bowtie movie\_cast)

result \leftarrow \Pi_{act\_fname,act\_lname}(actid \bowtie actor)
```

- 2. $directed \leftarrow_{dir_id} \mathscr{F}_{count(mov_id)} \ as \ count} \ (movie_direction)$ $result \leftarrow \sigma_{count>0} (directed)$
- 3. $movies \leftarrow \Pi_{mov_id,mov_title}(movie)$ $genids \leftarrow (movies \bowtie movie_genres)$ $result \leftarrow \Pi_{gen_title,mov_title}(genids \bowtie genres)$
- 4. $reviews \leftarrow \Pi_{rev_id}(\sigma_{rev_name="Dwight Schrute"}(reviewer))$ $starreviews \leftarrow \sigma_{rev_stars=4}(reviews \bowtie rating)$ $result \leftarrow \Pi_{mov_title}(starreviews \bowtie movie)$
- 5. $moviesin2016 \leftarrow \Pi mov_id, mov_title(\sigma_{mov_year=2016}(movie))$ $moviedirectors \leftarrow \Pi mov_id, mov_title, dir_fname, dir_lname(moviesin2016 \bowtie movie_direction \bowtie director)$ $actors \leftarrow_{mov_id} \mathscr{F}_{count(act_id)} \ _{as\ count}(moviesin2016 \bowtie act_id)$ $result \leftarrow moviesin2016 \bowtie moviedirectors \bowtie actors$
- 6. $englishmovies \leftarrow \Pi_{mov_id,rev_id}(\sigma_{mov_lang} = \text{``EN''}(movie \bowtie rating))$ $reviews \leftarrow_{mov_id} \mathscr{F}_{count(rev_id)} \text{ as } count(englishmovies)$ $result \leftarrow \Pi_{mov_id,count}(englishmovies \bowtie reviews)$
- 7. $movies \leftarrow (actor \bowtie movie_{c}ast \bowtie movie)$ $moviesw36 \leftarrow \Pi mov_id, mov_title(\sigma_{count} = 3 \text{ or } count = 6(mov_id \mathscr{F}_{count(act_id)} \text{ as } count(movies))$ $averagerate \leftarrow_{mov_id} \mathscr{F}_{avg(rev_stars)} \text{ as } count(moviesw36 \bowtie rating)$ $result \leftarrow moviesw36 \bowtie averagerate$

- 8. $selena \leftarrow \Pi_{act_id}(\sigma_{act_fname="Selena""and\ act_lname="Gomez""}(actor))$ $selenamovies \leftarrow \Pi mov_id(selena \bowtie movie_cast)$ $smovietitles \leftarrow \Pi mov_id, mov_title(selenamovies \bowtie movie)$ $woody \leftarrow \Pi_{dir_id}(\sigma_{dir_fname="Woody""and\ dir_lname="Allen""}(director))$ $woodymovies \leftarrow \Pi mov_id(woody \bowtie movie_direction)$ $wmovietitles \leftarrow \Pi mov_id, mov_title(woodymovies \bowtie movie)$ $result \leftarrow \Pi mov_title(smovietitles - wmovietitles)$
- 9. $comedy \leftarrow \Pi_{mov_id}(\sigma_{gen_title} = \text{``Comedy''}(movie_genres \bowtie genres))$ $ratings \leftarrow_{mov_id} \mathscr{F}_{avg(rev_stars)} \text{ as } avg(comedy \bowtie rating)$ $actors \leftarrow_{mov_id} \mathscr{F}_{count(act_id)} \text{ as } count(comedy \bowtie movie_cast)$ $result \leftarrow comedy \bowtie ratings \bowtie actors$
- $10. \ ratings \leftarrow_{mov_id} \ \mathscr{F}_{max(rev_stars)}(movie \bowtie rating) \\ result \leftarrow \Pi_{mov_title}(ratings \bowtie movies)$