ECE4904 Lecture 7

pn junction (5.2)

Zero bias electrostatics review

Operating regions: Reverse bias Zero bias Forward bias Ideal Diode Equation (Ch. 6)

BJT Preview

Handouts Ideal Diode Equation Derivation Diode Current Component 1-Minute Quiz

4904 BZ018 7-3

$$\frac{D}{M} = \frac{kT}{2} \quad D = M \frac{kT}{2}$$

ECE4904 IDEAL DIODE EQUATION DERIVATION (p. 2)

Current density equation

$$J_N = qD_N \frac{d\Delta n_p}{dx}$$

$$J_P = -qD_P \frac{d\Delta p_n}{dx}$$

ECE4904 p-n Junction Diode Current Component "One Minute Quiz"

Arrows in the diagram below indicate carrier motion

	HOLE	e ·
DRIFT	✓	✓
DIFF	✓	/

- a) Does this represent forward bias, zero bias (equilibrium), or reverse bias? DIFFUSION ARROW TOTAL # 0 DRIFT DOMINATES
- b) For each arrow, identify whether it corresponds to hole or e⁻ motion
- c) For each arrow, identify whether it corresponds to drift or diffusion
- d) Find at least 3 characteristics that indicate $N_A >> N_D$ (1) WIDTH OF DEPLETION REGION X, > Xp 3 HOLE COMPONENTS BIGGER

e) In the space below indicate the current density components corresponding to each carrier motion arrow

Arrows in the diagram below indicate carrier motion

a) Does this represent forward bias, zero bias (equilibrium), or reverse bias?

- b) For each arrow, identify whether it corresponds to hole or e⁻ motion
- c) For each arrow, identify whether it corresponds to drift or diffusion

d) In the space below indicate the current density components corresponding to each carrier motion arrow