Аргумент от точности определения среднего вертикального оффсета

26 сентября 2019 г.

Целью данного теста является проверка возможности определения вертикального разделения замкнутых орбит пучков на уровне 10^{-12} м, если:

- в ускорителе длины $L_{acc}=150~{\rm M}$ равномерно распределены $N_{BPM}=25~{\rm BPM};$
- $\bullet\,$ точность измерения вертикальной координаты пучка ВРМ'
ом $\sigma_{SQUID}\,=\,10^{-12}$ м;
- ullet амплитуда бетатронных колебаний в вертикальной плоскости $a_{eta} = 10^{-6} \, \mathrm{m}.$

В нижеследующих тестах мы предполагали oduh проход пучка через кольцо ускорителя $(N_{turn} = 1)$, так что на каждом триале мы имели по N_{BPM} измерений положения пучка, на основании которых определялись вертикальные сдвиги замкнутых орбит пучков.

$0.1 \quad \text{Tect} \ \# \ 1$

Были сгенерированы две серии данных:

$$\begin{cases} y_1^n(s) &= a_{\beta} \sin(f_1 \cdot s + \phi_1) + \Delta_1 + \epsilon_1^n, \\ y_2^n(s) &= a_{\beta} \sin(f_2 \cdot s + \phi_2) + \Delta_2 + \epsilon_2^n; \\ \epsilon_1^n, \epsilon_2^n &\sim N(0, \sigma_{SQUID}), \\ s &\in \{j \cdot \frac{L_{acc}}{N_{BPM} - 1} | j \in 25\}. \end{cases}$$
(1)

с параметрами из Таблицы 1. n – номер теста ($n \in 100$).

Замечание 1. $\forall n \in 100$ данные отличаются только $\epsilon_1^n, \epsilon_2^n$; все остальные параметры оставались неизменными. Это значит, что на каждом триале пучок приходит на каждый BPM в одной и той же точке, а вариация вертикальной координаты на данном BPM связана только с ошибкой измерения (σ_{SQUID}).

Tаким образом, $\sigma[\hat{\Delta}]$ есть статистическая погрешность определения с δ вига замкнутой орбиты.

Данные (1) были фитированы функцией

$$f(x) = a \cdot \sin(f \cdot x + \phi) + \Delta; \tag{2}$$

оценивались все 4 параметра: \hat{a}^n , \hat{f}^n , $\hat{\phi}^n$, $\hat{\Delta}^n$.

Результаты симуляции представлены на Рисунке 1.

Вывод 1.
$$\sigma[\hat{\Delta}] = \sigma_{SQUID}/\sqrt{N_{BPM} \cdot N_{turn}}$$
.

Таблица 1: Параметры симуляции

Параметр	Значение
f_1	30.000
f_2	30.074
ϕ_1	0
ϕ_2	$\pi/16$
Δ_1	10^{-12}
Δ_2	10^{-12}

0.2 Tect # 2

Добавляется вариация начальной фазы:

$$\phi_1^n, \phi_2^n \sim N(0, \pi)$$
.

Результаты симуляции представлены на Рисунке 2.

Вывод 2. Ничего не поменялось.

0.3 Tect # 3

Добавляем случайные отклонения частот:

$$f_1^n, f_2^n \sim N(f_1, 10^{-3}), N(f_2, 10^{-3}).$$

Замечание 2. Стандартные отклонения распределений частот не превышают 10^{-3} потому что иначе фиттер требует более близкие начальные оценки \hat{f} , а мне было лень писать умную функцию для этого.

Результаты симуляции представлены на Рисунке 3.

Вывод 3. Снова никакой разницы.

0.4 Заключение

По крайней мере, если мы можем определить остальные параметры вертикальных бетатронных колебаний (чтобы иметь возможность фитировать данные BPM'ов), мы должны быть в состоянии определить относительный вертикальный сдвиг замкнутых орбит пучков друг от друга с точностью локального измерения BPM.

Рис. 1: Гистограммы распределений оценок $\hat{\Delta}^n$ в случае, когда варьируются только ошибки $\epsilon_1^n, \epsilon_2^n.$

Также, неправильно говорить, что если

Рис. 2: Гистограммы распределений оценок $\hat{\Delta}^n$ в случае, когда варьируются и ошибки $\epsilon_1^n,\epsilon_2^n,$ и начальные фазы ϕ_1^n,ϕ_2^n бетатронных колебаний.

Рис. 3: Гистограммы распределений оценок $\hat{\Delta}^n$ в случае, когда варьируются ошибки $\epsilon_1^n, \epsilon_2^n,$ начальные фазы $\phi_1^n, \phi_2^n,$ и частоты f_1^n, f_2^n бетатронных колебаний.