

### TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN ĐIỆN TỬ - VIỄN THÔNG

### BỘ MÔN ĐIỆN TỬ HÀNG KHÔNG VŨ TRỤ

Môn học:

# LÝ THUYẾT MẬT MÃ CRYPTOGRAPHY THEORY ET3310

Giảng viên: PGS.TS. Đỗ Trọng Tuấn

Email: dotrongtuan@gmail.com

2/4/2020 1



# Mục tiêu học phần

Cung cấp kiến thức cơ bản về mật mã đảm bảo an toàn và bảo mật thông tin:

- ✓ Các phương pháp mật mã khóa đối xứng; Phương pháp mật mã khóa công khai;
- ✓ Các hệ mật dòng và vấn đề tạo dãy giả ngẫu nhiên;
- ✓ Lược đồ chữ ký số Elgamal và chuẩn chữ ký số ECDSA;
- ✓ Độ phức tạp xử lý và độ phức tạp dữ liệu của một tấn công cụ thể vào hệ thống mật mã;
- ✓ Đặc trưng an toàn của phương thức mã hóa;
- ✓ Thám mã tuyến tính, thám mã vi sai và các vấn đề về xây dựng hệ mã bảo mật cho các ứng dụng.



# Nội Dung

- 1. Chương 1. Tổng quan
- 2. Chương 2. Mật mã khóa đối xứng
- 3. Chương 3. Hệ mật DES
- 4. Chương 4. Hàm băm và chữ ký số
- 5. Chương 5. Dãy giả ngẫu nhiên và hệ mật dòng
- 6. Chương 6. Kỹ thuật quản lý khóa

2/4/2020



# Tài liệu tham khảo

- 1. A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, *Handbook of applied cryptography*, CRC Press 1998.
- 2. B. Schneier, Applied Cryptography. John Wiley Press 1996.
- 3. M. R. A. Huth, *Secure Communicating Systems*, Cambridge University Press 2001.
- 4. W. Stallings, Network Security Essentials, Applications and Standards, Prentice Hall. 2000.

4



# Nhiệm vụ của Sinh viên

- 1. Chấp hành nội quy lớp học
- 2. Thực hiện đầy đủ bài tập
- 3. Nắm vững ngôn ngữ lập trình Matlab





# Chương 3. Hệ mật DES

- 3.1. Giới thiệu sơ lược hệ mật DES
- 3.2. Cấu trúc hệ mật DES
- 3.3. Thám mã hệ mật DES





### 3.1. Sơ lược hệ mật DES

The Data Encryption Standard (DES) is a symmetric-key block cipher published by the National Institute of Standards and Technology (NIST).

In 1973, NIST published a request for proposals for a national symmetric-key cryptosystem. A proposal from IBM, a modification of a project called Lucifer, was accepted as DES. DES was published in the Federal Register in March 1975 as a draft of the Federal Information Processing Standard (FIPS).



### 3.1. Sơ lược hệ mật DES

- □ Published by NIST in 1977
- □ A variation of IBM's Lucifer algorithm developed by Horst Feistel
- □ For commercial and *unclassified* government applications
- 8 octet (64 bit) key. Each octet with 1 odd parity bit  $\Rightarrow$  56-bit key
- □ Efficient hardware implementation
- Used in most financial transactions
- Computing power goes up 1 bit every 2 years
- □ 56-bit was secure in 1977 but is not secure today
- $\square$  Now we use DES three times  $\Rightarrow$  Triple DES = 3DES



#### DES is a block cipher





The encryption process is made of two permutations (P-boxes), which we call initial and final permutations, and sixteen Feistel rounds.





#### Initial and final permutation steps in DES





#### Initial and final permutation steps in DES

| Initial Permutation     | Final Permutation       |
|-------------------------|-------------------------|
| 58 50 42 34 26 18 10 02 | 40 08 48 16 56 24 64 32 |
| 60 52 44 36 28 20 12 04 | 39 07 47 15 55 23 63 31 |
| 62 54 46 38 30 22 14 06 | 38 06 46 14 54 22 62 30 |
| 64 56 48 40 32 24 16 08 | 37 05 45 13 53 21 61 29 |
| 57 49 41 33 25 17 09 01 | 36 04 44 12 52 20 60 28 |
| 59 51 43 35 27 19 11 03 | 35 03 43 11 51 19 59 27 |
| 61 53 45 37 29 21 13 05 | 34 02 42 10 50 18 58 26 |
| 63 55 47 39 31 23 15 07 | 33 01 41 09 49 17 57 25 |



## Ví dụ

Find the output of the final permutation box when the input is given in hexadecimal as:

0x0000 0080 0000 0002



The initial and final permutations are straight P-boxes that are inverses of each other.

They have no cryptography significance in DES.





#### DES uses 16 rounds. Each round of DES is a Feistel cipher.





#### **DES Function**

The heart of DES is the DES function. The DES function applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output.





Since  $R_{I-1}$  is a 32-bit input and  $K_I$  is a 48-bit key.



It needs to expand  $R_{I-1}$  to 48 bits.

### Expansion P-box









DES uses this table to define this P-box

| 32 | 01 | 02 | 03 | 04 | 05 |
|----|----|----|----|----|----|
| 04 | 05 | 06 | 07 | 08 | 09 |
| 08 | 09 | 10 | 11 | 12 | 13 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 16 | 17 | 18 | 19 | 20 | 21 |
| 20 | 21 | 22 | 23 | 24 | 25 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 28 | 29 | 31 | 31 | 32 | 01 |





#### Whitener (XOR)

After the expansion permutation, DES uses the XOR operation on the expanded right section and the round key.

- Note that:
  - Both the right section and the key are 48-bits in length.
  - The round key is used only in this operation.



S-Boxes

The S-boxes do the real mixing (confusion). DES uses 8 S-boxes, each with a 6-bit input and a 4-bit output.









#### S-box 1

|   | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0 | 14 | 04 | 13 | 01 | 02 | 15 | 11 | 08 | 03 | 10 | 06 | 12 | 05 | 09 | 00 | 07 |
| 1 | 00 | 15 | 07 | 04 | 14 | 02 | 13 | 10 | 03 | 06 | 12 | 11 | 09 | 05 | 03 | 08 |
| 2 | 04 | 01 | 14 | 08 | 13 | 06 | 02 | 11 | 15 | 12 | 09 | 07 | 03 | 10 | 05 | 00 |
| 3 | 15 | 12 | 08 | 02 | 04 | 09 | 01 | 07 | 05 | 11 | 03 | 14 | 10 | 00 | 06 | 13 |

#### S-box 2

|   | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8   | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|---|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|
| 0 | 15 | 01 | 08 | 14 | 06 | 11 | 03 | 04 | 09  | 07 | 02 | 13 | 12 | 00 | 05 | 10 |
| 1 | 03 | 13 | 04 | 07 | 15 | 02 | 08 | 14 | 12  | 00 | 01 | 10 | 06 | 09 | 11 | 05 |
| 2 | 00 | 14 | 07 | 11 | 10 | 04 | 13 | 01 | 0.5 | 08 | 12 | 06 | 09 | 03 | 02 | 15 |
| 3 | 13 | 08 | 10 | 01 | 03 | 15 | 04 | 02 | 11  | 06 | 07 | 12 | 00 | 05 | 14 | 09 |



#### S-box 3

|   | 0  | 1  | 2  | 3  | 4 - | 5  | 6. | 7  | 8  | 9  | 10  | 11 | 12  | 13 | 14 | 15 |
|---|----|----|----|----|-----|----|----|----|----|----|-----|----|-----|----|----|----|
| 0 | 10 | 00 | 09 | 14 | 06  | 03 | 15 | 05 | 01 | 13 | 12  | 07 | -11 | 04 | 02 | 08 |
| 1 | 13 | 07 | 00 | 09 | 03  | 04 | 06 | 10 | 02 | 08 | 0.5 | 14 | 12  | 11 | 15 | 01 |
| 2 | 13 | 06 | 04 | 09 | 08  | 15 | 03 | 00 | 11 | 01 | 02  | 12 | 05  | 10 | 14 | 07 |
| 3 | 01 | 10 | 13 | 00 | 06  | 09 | 08 | 07 | 04 | 15 | 14  | 03 | -11 | 05 | 02 | 12 |

#### S-box 4

|   | 0  | 1  | 2  | 3   | 4  | 5   | 6  | 17 | 8  | 9  | 10 | n  | 12 | 13 | 14 | 15 |
|---|----|----|----|-----|----|-----|----|----|----|----|----|----|----|----|----|----|
| 0 | 07 | 13 | 14 | 03  | 00 | 6   | 09 | 10 | 1  | 02 | 08 | 05 | 11 | 12 | 04 | 15 |
| 1 | 13 | 08 | 11 | 0.5 | 06 | 15  | 00 | 03 | 04 | 07 | 02 | 12 | 01 | 10 | 14 | 09 |
| 2 | 10 | 06 | 09 | 00  | 12 | 1.1 | 07 | 13 | 15 | 01 | 03 | 14 | 05 | 02 | 08 | 04 |
| 3 | 03 | 15 | 00 | 06  | 10 | .01 | 13 | 08 | 09 | 04 | 05 | 11 | 12 | 07 | 02 | 14 |



#### *S-box 5*

|   | 0  | I  | 2   | 3  | 4  | 5  | 6   | 7  | 8  | 9  | 10 | -11 | .12 | 13 | 14 | 15  |
|---|----|----|-----|----|----|----|-----|----|----|----|----|-----|-----|----|----|-----|
| 0 | 02 | 12 | 04  | 01 | 07 | 10 | 1.1 | 06 | 08 | 05 | 03 | 15  | 13  | 00 | 14 | 09  |
| 1 | 14 | 11 | 02  | 12 | 04 | 07 | 13  | 01 | 05 | 00 | 15 | 10  | 03  | 09 | 08 | 06  |
| 2 | 04 | 02 | 01  | 11 | 10 | 13 | 07  | 08 | 15 | 09 | 12 | 05  | 06  | 03 | 00 | 14  |
| 3 | 11 | 08 | 12: | 07 | 01 | 14 | 02  | 13 | 06 | 15 | 00 | 09  | 10  | 04 | 05 | .03 |

#### S-box 6

|   | 0  | 1  | 2  | 3  | 4   | 5  | 6  | 7. | 8  | 9  | :10 | 11 | 12 | 13 | 14 | 15 |
|---|----|----|----|----|-----|----|----|----|----|----|-----|----|----|----|----|----|
| 0 | 12 | 01 | 10 | 15 | 09  | 02 | 06 | 08 | 00 | 13 | 03  | 04 | 14 | 07 | 05 | 11 |
| 1 | 10 | 15 | 04 | 02 | 07  | 12 | 09 | 05 | 06 | 01 | 13  | 14 | 00 | 11 | 03 | 08 |
| 2 | 09 | 14 | 15 | 05 | 02  | 08 | 12 | 03 | 07 | 00 | 04  | 10 | 01 | 13 | 11 | 06 |
| 3 | 04 | 03 | 02 | 12 | .09 | 05 | 15 | 10 | 11 | 14 | 01  | 07 | 10 | 00 | 08 | 13 |



*S-box* 7

|   | 0   | 1    | 2  | 3  | 4  | 5  | 6  | 7  | 18 | 9  | 10   | 11 | 12- | 13 | 14 | 15  |
|---|-----|------|----|----|----|----|----|----|----|----|------|----|-----|----|----|-----|
| 0 | 4 . | . 11 | 2  | 14 | 15 | 00 | 08 | 13 | 03 | 12 | 09 - | 07 | 05  | 10 | 06 | 01  |
| 1 | 13  | 00   | 11 | 07 | 04 | 09 | 01 | 10 | 14 | 03 | 0.5  | 12 | 02  | 15 | 08 | .06 |
| 2 | 01  | 04   | 11 | 13 | 12 | 03 | 07 | 14 | 10 | 15 | 06   | 08 | 00  | 05 | 09 | 02  |
| 3 | 06  | 11   | 13 | 08 | 01 | 04 | 10 | 07 | 09 | 05 | 00   | 15 | 14  | 02 | 03 | 12  |

*S-box* 8

|   | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7. | 8  | 9  | 10 | 11  | 12 | 13  | 14 | 15 |
|---|----|----|----|----|----|----|----|----|----|----|----|-----|----|-----|----|----|
| 0 | 13 | 02 | 08 | 04 | 06 | 15 | 11 | 10 | 10 | 09 | 03 | 14  | 05 | 00  | 12 | 07 |
| I | 01 | 15 | 13 |    |    |    |    |    |    |    |    | 11  |    |     |    | 02 |
| 2 | 07 | 11 | 04 | 01 | 09 | 12 | 14 | 02 | 00 | 06 | 10 | 10  | 15 | .03 | 05 | 08 |
| 3 | 02 | 01 | 14 | 07 | 04 | 10 | 8  | 13 | 15 | 12 | 09 | .09 | 03 | 05  | 06 | 11 |







Using mixers and swappers, we can create the cipher and reverse cipher, each having 16 rounds.

### First Approach

To achieve this goal, one approach is to make the last round (round 16) different from the others; it has only a mixer and no swapper.

In the first approach, there is no swapper in the last round.



Using mixers and swappers, we can create the cipher and reverse cipher, each having 16 rounds.





#### **Key Generation**

The round-key generator creates sixteen 48-bit keys out of a 56-bit cipher key.





|    |    |    |    |    |    |    |    |                     | Key with parity bits                                                          |
|----|----|----|----|----|----|----|----|---------------------|-------------------------------------------------------------------------------|
| 57 | 49 | 41 | 33 | 25 | 17 | 09 | 01 |                     | ↓ (64 bits)  Parity drop                                                      |
| 58 | 50 | 42 | 34 | 26 | 18 | 10 | 02 |                     | Cipher key (56 bits)                                                          |
| 59 | 51 | 43 | 35 | 27 | 19 | 11 | 03 |                     |                                                                               |
| 60 | 52 | 44 | 36 | 63 | 55 | 47 | 39 |                     | 28 bits 28 bits Shift left Shift left                                         |
| 31 | 23 | 15 | 07 | 62 | 54 | 46 | 38 |                     |                                                                               |
| 30 | 22 | 14 | 06 | 61 | 53 | 45 | 37 |                     | Compression                                                                   |
| 29 | 21 | 13 | 05 | 28 | 20 | 12 | 04 | Round key 1 48 bits | P-box                                                                         |
|    |    |    |    |    |    |    |    | Round key 2 48 bits | Shift left  28 bits  Compression P-box  Shift left  28 bits  28 bits  28 bits |

Compression

cound key 16 48 bits



| 57 | 49 | 41 | 33 | 25 | 17 | 09 | 01 |
|----|----|----|----|----|----|----|----|
| 58 | 50 | 42 | 34 | 26 | 18 | 10 | 02 |
| 59 | 51 | 43 | 35 | 27 | 19 | 11 | 03 |
| 60 | 52 | 44 | 36 | 63 | 55 | 47 | 39 |
| 31 | 23 | 15 | 07 | 62 | 54 | 46 | 38 |
| 30 | 22 | 14 | 06 | 61 | 53 | 45 | 37 |
| 29 | 21 | 13 | 05 | 28 | 20 | 12 | 04 |

| Round      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| Bit shifts | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2  | 2  | 2  | 2  | 2  | 2  | 1  |







## Ví dụ

We choose a random plaintext block and a random key, and determine what the ciphertext block would be (all in hexadecimal):

Plaintext: 123456ABCD132536 Key: AABB09182736CCDD

CipherText: C0B7A8D05F3A829C



Plaintext: 123456ABCD132536 Key: AABB09182736CCDD

CipherText: C0B7A8D05F3A829C

Plaintext: 123456ABCD132536

After initial permutation:14A7D67818CA18AD

After splitting:  $L_0=14A7D678$   $R_0=18CA18AD$ 

| Round   | Left     | Right    | Round Key    |
|---------|----------|----------|--------------|
| Round 1 | 18CA18AD | 5A78E394 | 194CD072DE8C |
| Round 2 | 5A78E394 | 4A1210F6 | 4568581ABCCE |
| Round 3 | 4A1210F6 | В8089591 | 06EDA4ACF5B5 |
| Round 4 | В8089591 | 236779C2 | DA2D032B6EE3 |



Ciphertext: C0B7A8D05F3A829C

# 3.2. Cấu trúc hệ mật DES

|                                     |          | T        |              |  |  |
|-------------------------------------|----------|----------|--------------|--|--|
| Round 5                             | 236779C2 | A15A4B87 | 69A629FEC913 |  |  |
| Round 6                             | A15A4B87 | 2E8F9C65 | C1948E87475E |  |  |
| Round 7                             | 2E8F9C65 | A9FC20A3 | 708AD2DDB3C0 |  |  |
| Round 8                             | A9FC20A3 | 308BEE97 | 34F822F0C66D |  |  |
| Round 9                             | 308BEE97 | 10AF9D37 | 84BB4473DCCC |  |  |
| Round 10                            | 10AF9D37 | 6CA6CB20 | 02765708B5BF |  |  |
| Round 11                            | 6CA6CB20 | FF3C485F | 6D5560AF7CA5 |  |  |
| Round 12                            | FF3C485F | 22A5963B | C2C1E96A4BF3 |  |  |
| Round 13                            | 22A5963B | 387CCDAA | 99C31397C91F |  |  |
| Round 14                            | 387CCDAA | BD2DD2AB | 251B8BC717D0 |  |  |
| Round 15                            | BD2DD2AB | CF26B472 | 3330C5D9A36D |  |  |
| Round 16                            | 19BA9212 | CF26B472 | 181C5D75C66D |  |  |
| After combination: 19BA9212CF26B472 |          |          |              |  |  |

35

(after final permutation)



At the destination, Bob can decipher the ciphertext received from Alice using the same key.

| Ciphertext: C0B7A8D05F3A829C                                                                    |          |          |              |  |  |  |
|-------------------------------------------------------------------------------------------------|----------|----------|--------------|--|--|--|
| After initial permutation: 19BA9212CF26B472<br>After splitting: $L_0$ =19BA9212 $R_0$ =CF26B472 |          |          |              |  |  |  |
| Round                                                                                           | Left     | Right    | Round Key    |  |  |  |
| Round 1                                                                                         | CF26B472 | BD2DD2AB | 181C5D75C66D |  |  |  |
| Round 2                                                                                         | BD2DD2AB | 387CCDAA | 3330C5D9A36D |  |  |  |
|                                                                                                 |          |          |              |  |  |  |
| Round 15                                                                                        | 5A78E394 | 18CA18AD | 4568581ABCCE |  |  |  |
| Round 16                                                                                        | 14A7D678 | 18CA18AD | 194CD072DE8C |  |  |  |
| After combination: 14A7D67818CA18AD                                                             |          |          |              |  |  |  |
| Plaintext:123456ABCD132536 (after final permutation)                                            |          |          |              |  |  |  |



Two desired properties of a block cipher are the avalanche effect and the completeness.

Ciphertext: 4789FD476E82A5F1

Plaintext: 0000000000000001

Ciphertext: 0A4ED5C15A63FEA3

Key: 22234512987ABB23

Key: 22234512987ABB23

### Completeness effect

Completeness effect means that each bit of the ciphertext needs to depend on many bits on the plaintext.



During the last few years critics have found some weaknesses in DES.

#### Weaknesses in Cipher Design

- 1. Weaknesses in S-boxes
- 2. Weaknesses in P-boxes
- 3. Weaknesses in Key



S-boxes At least three weaknesses are mentioned in the literature for S-boxes.

- In S-box 4, the last three output bits can be derived in the same way as the first output bit by complementing some of the input bits.
- 2. Two specifically chosen inputs to an S-box array can create the same output.
- It is possible to obtain the same output in a single round by changing bits in only three neighboring S-boxes.

P-boxes One mystery and one weakness were found in the design of P-boxes:

- It is not clear why the designers of DES used the initial and final permutations; these have no security benefits.
- In the expansion permutation (inside the function), the first and fourth bits of every 4-bit series are repeated.



**Key Size** Critics believe that the most serious weakness of DES is in its key size (56 bits). To do a brute-force attack on a given ciphertext block, the adversary needs to check 2<sup>56</sup> keys.

- a. With available technology, it is possible to check one million keys per second. This means that we need more than two thousand years to do brute-force attacks on DES using only a computer with one processor.
- b. If we can make a computer with one million chips (parallel processing), then we can test the whole key domain in approximately 20 hours. When DES was introduced, the cost of such a computer was over several million dollars, but the cost has dropped rapidly. A special computer was built in 1998 that found the key in 112 hours.
- c. Computer networks can simulate parallel processing. In 1977 a team of researchers used 3500 computers attached to the Internet to find a key challenged by RSA Laboratories in 120 days. The key domain was divided among all of these computers, and each computer was responsible to check the part of the domain.
- d. If 3500 networked computers can find the key in 120 days, a secret society with 42,000 members can find the key in 10 days.



Trong  $2^{56}$  trường hợp khóa K có 4 khóa có độ an toàn rất kém đó là các khóa toàn 0 hoặc 1

| Keys before parities drop (64 bits) | Actual key (56 bits) |
|-------------------------------------|----------------------|
| 0101 0101 0101 0101                 | 0000000 0000000      |
| 1F1F 1F1F 0E0E 0E0E                 | 0000000 FFFFFFF      |
| E0E0 E0E0 F1F1 F1F1                 | FFFFFF 000000        |
| FEFE FEFE FEFE                      | FFFFFFF FFFFFFF      |







Let's try the first weak key to encrypt a block two times. After two encryptions with the same key the original plaintext block is created. Note that we have used the encryption algorithm two times, not one encryption followed by another decryption.

Key: 0x0101010101010101

Plaintext: 0x1234567887654321 Ciphertext: 0x814FE938589154F7

Key: 0x0101010101010101

Plaintext: 0x814FE938589154F7 Ciphertext: 0x1234567887654321

Weak key should be avoided



#### Semi-weak keys

| First key in the pair | Second key in the pair |
|-----------------------|------------------------|
| 01FE 01FE 01FE 01FE   | FE01 FE01 FE01         |
| 1FE0 1FE0 0EF1 0EF1   | E01F E01F F10E F10E    |
| 01E0 01E1 01F1 01F1   | E001 E001 F101 F101    |
| 1FFE 1FFE OEFE OEFE   | FE1F FE1F FE0E FE0E    |
| 011F 011F 010E 010E   | 1F01 1F01 0E01 0E01    |
| EOFE EOFE F1FE F1FE   | FEEO FEEO FEF1 FEF1    |

Semi-weak Keys There are six key pairs that are called semi-weak keys. These six pairs are shown in Table (64-bit format before dropping the parity bits).



A semi-weak key creates only two different round keys and each of them is repeated eight times. In addition, the round keys created from each pair are the same

| Round key 1  | 9153E54319BD | 6EAC1ABCE642 |
|--------------|--------------|--------------|
| Round key 2  | 6EAC1ABCE642 | 9153E54319BD |
| Round key 3  | 6EAC1ABCE642 | 9153E54319BD |
| Round key 4  | 6EAC1ABCE642 | 9153E54319BD |
| Round key 5  | 6EAC1ABCE642 | 9153E54319BD |
| Round key 6  | 6EAC1ABCE642 | 9153E54319BD |
| Round key 7  | 6EAC1ABCE642 | 9153E54319BD |
| Round key 8  | 6EAC1ABCE642 | 9153E54319BD |
| Round key 9  | 9153E54319BD | 6EAC1ABCE642 |
| Round key 10 | 9153E54319BD | 6EAC1ABCE642 |
| Round key 11 | 9153E54319BD | 6EAC1ABCE642 |
| Round key 12 | 9153E54319BD | 6EAC1ABCE642 |
| Round key 13 | 9153E54319BD | 6EAC1ABCE642 |
| Round key 14 | 9153E54319BD | 6EAC1ABCE642 |
| Round key 15 | 9153E54319BD | 6EAC1ABCE642 |
| Round key 16 | 6EAC1ABCE642 | 9153E54319BD |
|              |              |              |



#### A pair of semi-weak keys in encryption and decryption





**Key Complement** In the key domain  $(2^{56})$ , definitely half of the keys are *complement* of the other half. A **key complement** can be made by inverting (changing 0 to 1 or 1 to 0) each bit in the key. Does a key complement simplify the job of the cryptanalysis? It happens that it does. Eve can use only half of the possible keys  $(2^{55})$  to perform brute-force attack. This is because

$$C = E(K, P) \rightarrow \overline{C} = E(\overline{K}, \overline{P})$$

In other words, if we encrypt the complement of plaintext with the complement of the key, we get the complement of the ciphertext. Eve does not have to test all  $2^{56}$  possible keys, she can test only half of them and then complement the result.

|            | Original         | Complement       |
|------------|------------------|------------------|
| Key        | 1234123412341234 | EDCBEDCBEDCB     |
| Plaintext  | 12345678ABCDEF12 | EDCBA987543210ED |
| Ciphertext | E112BE1DEFC7A367 | 1EED41E210385C98 |