

CNX82A.W, CNX83A.W, SL5582.W & SL5583.W

### **DESCRIPTION**

The CNX82A.W, CNX83A.W, SL5582.W AND SL5583.W, consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a 6-pin dual in-line package.

6

#### **FEATURES**

- Input/Output pin distance 10.16 mm
- UL recognized (File # E90700)

#### **APPLICATIONS**

- Power supply regulators
- Digital logic inputs
- Microprocessor inputs





| Parameter                                              | Symbol              | Value          | Units |  |
|--------------------------------------------------------|---------------------|----------------|-------|--|
| TOTAL DEVICE                                           | _                   | 55. 450        | 20    |  |
| Storage Temperature                                    | T <sub>STG</sub>    | -55 to +150    | °C    |  |
| Operating Temperature                                  | T <sub>OPR</sub>    | -55 to +100    | °C    |  |
| Lead Solder Temperature                                | T <sub>SOL</sub>    | 260 for 10 sec | °C    |  |
| Junction Temperature                                   | TJ                  | 125            | °C    |  |
| Total Device Power Dissipation @ T <sub>A</sub> = 25°C | P <sub>D</sub>      | 250            | mW    |  |
| EMITTER                                                | ,                   | 400            | A     |  |
| DC/Average Forward Input Current                       | l <sub>F</sub>      | 100            | mA    |  |
| Reverse Input Voltage                                  | V <sub>R</sub>      | 5.0            | V     |  |
| Forward Current - Peak (1µs pulse, 300pps)             | I <sub>F</sub> (pk) | 3.0            | Α     |  |
| LED Power Dissipation @ T <sub>A</sub> = 25°C          | Ъ                   | 140            | mW    |  |
| Derate above 25°C                                      | $P_{D}$             | 1.33           | mW/°C |  |
| DETECTOR                                               | V                   | 50             | V     |  |
| Collector-Emitter Voltage                              | V <sub>CEO</sub>    | 50             | V     |  |
| Collector-Base Voltage (CNX83A)                        | V <sub>CBO</sub>    | 70             | V     |  |
| Emitter-Collector Voltage                              | V <sub>ECO</sub>    | 7              | V     |  |
| Continuous Collector Current                           | I <sub>C</sub>      | 100            | mA    |  |
| Detector Power Dissipation @ T <sub>A</sub> = 25°C     | Ь                   | 150            | mW    |  |
| Derate above 25°C                                      | P <sub>D</sub>      | 2.0            | mW/°C |  |



## CNX82A.W, CNX83A.W, SL5582.W & SL5583.W

## **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C Unless otherwise specified.)

| INDIVIDUAL COMPONENT CHARACTERISTICS |                                                                    |                   |          |     |       |       |      |
|--------------------------------------|--------------------------------------------------------------------|-------------------|----------|-----|-------|-------|------|
| Parameter                            | Test Conditions                                                    | Symbol            | Device   | Min | Typ** | Max   | Unit |
| EMITTER                              | () 40 ()                                                           |                   | A1.1     |     | 4.0   | 4.50  | V    |
| Input Forward Voltage                | $(I_F = 10 \text{ mA})$                                            | V <sub>F</sub>    | ALL      |     | 1.2   | 1.50  | V    |
| Reverse Leakage Current              | $(V_R = 5.0 V)$                                                    | I <sub>R</sub>    | ALL      |     | 0.001 | 10    | μA   |
| DETECTOR                             | (1 40 1 0)                                                         | D)/               | A. I.    | 50  | 100   |       | V    |
| Collector-Emitter Breakdown Voltage  | $(I_C = 1.0 \text{ mA}, I_F = 0)$                                  | BV <sub>CEO</sub> | ALL      |     |       |       |      |
| Collector-Base Breakdown Voltage     | $(I_C = 100 \mu A, I_F = 0)$                                       | BV <sub>CBO</sub> | CNX83A.W | 70  | 120   |       | V    |
|                                      |                                                                    |                   | SL5583.W | 70  |       |       |      |
| Emitter-Collector Breakdown Voltage  | $(I_E = 100 \mu A, I_F = 0)$                                       | BV <sub>ECO</sub> | ALL      | 7   | 10    |       | V    |
|                                      | $(V_{CE} = 10 \text{ V}, I_F = 0)$                                 | I <sub>CEO</sub>  | ALL      |     | 0.001 | 0.050 | μΑ   |
|                                      | $(V_{CE} = 10 \text{ V}, I_F = 0)$<br>$(T_A = 70^{\circ}\text{C})$ |                   | CNX82A.W |     | 0.5   | 10    |      |
|                                      |                                                                    |                   | CNX83A.W |     |       |       |      |
| Collector-Emitter Dark Current       |                                                                    |                   | SL5582.W |     |       | 0.5   |      |
|                                      |                                                                    |                   | SL5583.W |     |       | 0.5   |      |
|                                      | $(V_{CE} = 10 \text{ V}, I_F = 0)$                                 |                   | SL5582.W |     |       | 50    |      |
|                                      | $(T_A = 100^{\circ}C)$                                             |                   | SL5583.W |     |       | 50    |      |
| Callastar Basa Bark Current          | (V <sub>CB</sub> = 10 V)                                           | I <sub>CBO</sub>  | CNX83A.W |     |       | 20    | nA   |
| Collector-Base Dark Current          |                                                                    |                   | SL5583.W |     |       |       |      |
| Capacitance                          | $(V_{CE} = 0 \text{ V}, f = 1 \text{ MHz})$                        | C <sub>CE</sub>   | ALL      |     | 8     |       | pF   |

Note

<sup>\*\*</sup> Typical values at T<sub>A</sub> = 25°C



## CNX82A.W, CNX83A.W, SL5582.W & SL5583.W

| TRANSFER CHARACTERISTICS (T <sub>A</sub> = 25°C Unless otherwise specified.) |                                                                                |                      |                      |     |       |     |       |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------|----------------------|-----|-------|-----|-------|
| DC Characteristic                                                            | Test Conditions                                                                | Symbol               | Device               | Min | Typ** | Max | Units |
| Current Transfer Ratio,<br>Collector-Emitter                                 | $(I_F = 10 \text{ mA}, V_{CE} = 0.4 \text{ V})$                                | CTR                  | ALL                  | 40  |       |     | %     |
|                                                                              | $(I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V})$                                  |                      | CNX82A.W<br>CNX83A.W | 40  |       | 250 |       |
|                                                                              |                                                                                |                      | SL5582.W<br>SL5583.W | 40  |       | 320 |       |
|                                                                              | $(I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V})$<br>$(T_A = 100^{\circ}\text{C})$ |                      | SL5582.W<br>SL5583.W | 25  |       | 320 |       |
|                                                                              | (I <sub>F</sub> = 1 mA, V <sub>CE</sub> = 5 V)                                 |                      | CNX82A.W<br>CNX83A.W | 10  |       | 100 |       |
|                                                                              | $(I_F = 2 \text{ mA}, V_{CE} = 5 \text{ V})$                                   |                      | SL5582.W<br>SL5583.W | 20  |       |     |       |
|                                                                              | $(I_F = 2 \text{ mA}, V_{CE} = 5 \text{ V})$<br>$(T_A = 100^{\circ}\text{C})$  |                      | SL5582.W<br>SL5583.W | 15  |       |     |       |
| Saturation Voltage                                                           | $(I_F = 10 \text{ mA}, I_C = 4 \text{ mA})$                                    | V <sub>CE(sat)</sub> | ALL                  |     | 0.19  | 0.4 | V     |
|                                                                              | $(I_C = 2 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 100 \Omega)$                 | t <sub>on</sub>      | ALL                  |     | 3     |     | μs    |
| Turn-on Time                                                                 | $(I_C = 2 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 1 \text{ k}\Omega)$          |                      | ALL                  |     | 12    |     |       |
|                                                                              | $(I_F = 16 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 1 \text{ k}\Omega)$         |                      | SL5582.W<br>SL5583.W |     |       | 20  |       |
|                                                                              | $(I_C = 2 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 100 \Omega)$                 | - t <sub>off</sub>   | ALL                  |     | 3     |     |       |
| Turn off Time                                                                | $(I_C = 2 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 1 \text{ k}\Omega)$          |                      | ALL                  |     | 12    |     |       |
| Turn-off Time                                                                | $(I_F = 16 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 1 \text{ k}\Omega)$         |                      | SL5582.W<br>SL5583.W |     |       | 50  | μs    |

| ISOLATION CHARACTERISTICS         |                                    |                  |                  |       |     |          |
|-----------------------------------|------------------------------------|------------------|------------------|-------|-----|----------|
| Characteristic                    | Test Conditions                    | Symbol           | Min              | Typ** | Max | Units    |
| Input-Output Isolation Voltage    | $(I_{I-O} \le 1 \mu A, 1 min.)$    | V <sub>ISO</sub> | 5300             |       |     | Vac(rms) |
| Isolation Resistance              | $(V_{I-O} = 500 \text{ VDC})$      | R <sub>ISO</sub> | 10 <sup>11</sup> |       |     | Ω        |
| Isolation Capacitance             | $(V_{I-O} = \emptyset, f = 1 MHz)$ | C <sub>ISO</sub> |                  | 0.5   |     | pf       |
| External air gap (clearance)      |                                    |                  | 9.6              |       |     | mm       |
| External tracking path (creepage) |                                    |                  | 8.0              |       |     | mm       |
| Internal plastic gap (clearance)  |                                    |                  | 1.0              |       |     | mm       |

Note

### **ORDERING INFORMATION**

|   |     | Order<br>Entry<br>Identifier | Description |
|---|-----|------------------------------|-------------|
| 3 | 300 | .300W                        | VDE 0884    |

<sup>\*\*</sup> Typical values at  $T_A = 25$ °C



## CNX82A.W, CNX83A.W, SL5582.W & SL5583.W

#### **TYPICAL CHARACTERISTICS**



Figure 1. LED Forward Voltage versus Forward Current



Figure 2. Output Current versus Input Current



Figure 3. Collector Current versus Collector-Emitter Voltage



Figure 4. Output Current versus Ambient Temperature



Figure 5. Dark Current versus Ambient Temperature



Figure 6. Capacitance versus Voltage



### SUPER BRIGHT PLCC-2 PACKAGE SURFACE MOUNT LED LAMP SURFACE MOUNT LED LAMP

#### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation

4 of 4 12/6/00 300089B

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.