Tutorial 9

Central Force motion

19 September 2024

P1. Find the forces for the following potential energies.

(a)
$$U = Ax^2 + By^2 + Cz^2$$

(b)
$$U = A \ln(x^2 + y^2 + z^2)$$

(c)
$$U = A\cos\theta/r^2$$

(plane polar coordinates)

P2. Determine whether each of the following forces is conservative. Find the potential energy function if it exists. A, α , β are constants.

(a)
$$\mathbf{F} = A(3\hat{\mathbf{i}} + z\hat{\mathbf{j}} + y\hat{\mathbf{k}})$$

(b)
$$\mathbf{F} = Axyz(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$$

(c)
$$F_x = A \sin(\alpha y)\cos(\beta z)$$
, $F_y = -Ax\alpha \cos(\alpha y)\cos(\beta z)$, $F_z = Ax \sin(\alpha y)\sin(\beta z)$

P3.

A particle of mass m moves in a horizontal plane along the parabola $y = x^2$. At t = 0 it is at the point (1, 1), moving in the direction shown with speed v_0 . Aside from the force of constraint holding it to the path, it is acted upon by the following external forces:

A radial force

$$\mathbf{F}_a = -Ar^3\mathbf{\hat{r}}$$

A force given by

$$\mathbf{F}_b = B(y^2 \hat{\mathbf{i}} - x^2 \hat{\mathbf{j}})$$

where A and B are positive constants.

- (a) Are these forces conservative?
- (b) What is the speed v_f of the particle when it arrives at the origin?

P4.

How much work is done around the path that is shown by the force $\mathbf{F} = A(y^2\hat{\mathbf{i}} + 2x^2\hat{\mathbf{j}})$, where A is a constant and x and y are in meters? Find the answer by evaluating the line integral, and also by using Stokes' theorem.