Constraint Satisfaction Problems

Qualche esempio dell'uso di vincoli

Cercheremo ancora soluzioni a problemi. Ora però gli stati assumono una struttura e contengono informazione che viene utilizzata nella ricerca di una soluzione. Si introduce la nozione di vincolo e si vede come alcuni metodi di ricerca già studiati possono essere applicati con successo. Si introducono anche nuovi metodi di ricerca, specifici.

Design di oggetti:

la specifica della struttura di un oggetto deve rispettare dei vincoli funzionali e fisici

Allocazione di risorse:

occorre tener conto di quantità, priorità, tempi di utilizzo, tempi per entrare nella disponibilità, politiche d'uso

• Progettazione di circuiti: date un' occhiata a ftp://ftp.cs.brown.edu/pub/techreports/96/cs96-34.pdf

• Pianificazione percorsi robotici: tutti i movimenti fisici sono sottoposti a vincoli (pensate alle manovre per parcheggiare)

Cristina Baroglio

https://www.flickr.com/photos/ pio1976/3130250099

Cristina Baroglio

1

Quali tipi di problemi?

Stato del problema e assegnamento

- Un constraint satisfaction problem (CSP) è definito da:
 - Un insieme di variabili X1, ..., Xn
 - Un insieme di vincoli C1, ..., Cm
 - Opzionale: in alcuni casi è richiesta la massimizzazione di una funzione obiettivo

- Gli stati di un CSP sono dati da tutti gli assegnamenti possibili per le variabili del CSP
- Un assegnamento $\{X_{i1} = V_{i1}, X_{i2} = V_{i2}, ...\}$ è un' attribuzione di valori a un sottoinsieme delle variabili del CSP
- Un assegnamento è detto:
 - Completo: se assegna valori a tutte le variabili del CSP
 - Consistente: se non viola alcun vincolo del CSP
 - Soluzione: se è completo e consistente
- Quando esiste una soluzione per un vincolo si dice anche che esiste un mondo possibile che soddisfa il vincolo

2

4

Cristina Baroglio 3 Cristina Baroglio

Esempio: coloratura di mappe

Colorare la mappa di rosso, verde e blu evitando che territori confinanti siano dello stesso colore

Cristina Baroglio

5

Esempio: coloratura di mappe

7 variabili, una per territorio, i cui domini sono tutti uguali {R, G, B}

 $WA \in \{R, G, B\}$ $NT \in \{R, G, B\}$ $SA \in \{R, G, B\}$ $Q \in \{R, G, B\}$ $NSW \in \{R, G, B\}$ $V \in \{R, G, B\}$ $T \in \{R, G, B\}$

Cristina Baroglio

6

Esempio: un possibile assegnamento

7 variabili, una per territorio, i cui domini sono tutti uguali {R, G, B}

Esempio: assegnamento consistente

7 variabili, una per territorio, i cui domini sono tutti uguali {R, G, B}

Esempio: una possibile soluzione

7 variabili, una per territorio, i cui domini sono tutti uguali {R, G, B}

Cristina Baroglio

Esempio: vincoli

I vincoli riguardano coppie di territori confinanti. Supponendo che il linguaggio di rappresentazione contenga l'operatore ≠ (diverso) avremo quindi:

Tasmania è un'isola

Cristina Baroglio

1 0

Grafo di vincoli

I vincoli binari (fra due variabili) possono essere rappresentati come archi di un grafo i cui nodi sono le variabili del CSP

CSP e problemi di ricerca

- È possibile formulare i CSP come <u>problemi di ricerca</u> in uno spazio degli stati:
 - Stato iniziale = { } assegnamento vuoto
 - Successore = assegnamento di un valore a una delle variabili che non ce l'hanno facendo attenzione che non sorgano conflitti
 - Test obiettivo = assegnamento completo
 - Costo = ogni passo ha costo costante (ad esempio 1)

Cristina Baroglio II |||| Cristina Baroglio I

9

Caratterizzazione

Profondità massima

Poiché ogni passo valorizza una variabile senza valore, i cammini saranno al più lunghi quanto il numero delle variabili del CSP. Sia n questo valore.

Cristina Baroglio

1 3

Cristina Baroglio

Stati dell'albero di ricerca

Stati dell'albero di ricerca

- Uno <u>stato</u> è un assegnamento di valori: {X1 = v1, X2, = v2, ..., Xn = vn}
- L' <u>ordine</u> (il cammino) con cui i valori vengono assegnati alle variabili è irrilevante sul risultato, ad esempio:

$$\{X1 = ?, X2 = v2, X3 = ?\}$$
 $\{X1 = v1, X2 = ?, X3 = ?\}$
 $\{X1 = v1, X2 = v2, X3 = ?\}$
 $\{X1 = v1, X2 = v2, X3 = v3\}$
 $\{X1 = v1, X2 = v2, X3 = v3\}$
 $\{X1 = v1, X2 = v2, X3 = v3\}$
Stesso risultato

- Uno <u>stato</u> è un assegnamento di valori: {X1 = v1, X2, = v2, ..., Xn = vn}
- L' <u>ordine</u> (il cammino) con cui i valori vengono assegnati alle variabili è irrilevante sul risultato
- È possibile applicare metodi di ricerca già visti (esempio: blind)

Variabili

Tipi di domini

- Possono essere:
 - A valori discreti
 - Booleani (NP-completa)
 - A domini finiti
 - A domini infiniti
 - A valori continui

Cristina Baroglio

1 7

Cristina Baroglio

1 8

Arità dei vincoli

Vincoli unari coinvolgono una variabile e un valore, esempio T ≠ G il colore della Tasmania deve essere diverso da verde

- Vincoli binari coinvolgono due variabili e possono essere rappresentati come archi di un grafo, esempio WA ≠ NT
- Vincoli a tre o più variabili
 coinvolgono un numero qualsiasi di variabili, possono essere rappresentati
 da ipergraf (grafi con archi che connettono più di due nodi)i, esempio
 diverse(WA, NT, SA). A volte possono essere scomposti in vincoli binari

Domini finiti:

è possibile enumerare i vincoli mettendo in relazione i diversi valori (es. Australia)

Domini infiniti:

non è possibile enumerare i vincoli, si usano linguaggi di specifica, esempio per dire che Lavoro2 deve iniziare almeno 5 giorni dopo Lavoro1 si potrebbe scrivere: Lavoro1 + 5 < Lavoro2

Domini continui

la programmazione lineare permette di risolvere CSP in cui i vincoli sono disuguaglianze lineari che specificano una regione convessa

Vincoli a 3 e più variabili, esempio

• Criptoaritmetica: gioco in cui a ogni lettera corrisponde una cifra diversa, bisogna trovare la sostituzione corretta

Vincoli a 3 e più variabili, esempio

Vincoli a 3 e più variabili, esempio

• Criptoaritmetica: gioco in cui a ogni lettera corrisponde una cifra diversa, bisogna trovare la sostituzione corretta

```
S E N D
+ M O R E
M O N E Y
```

```
Dominio di S e M: [1,2,3,4,5,6,7,8,9]
Dominio di E,N,D,O,R,Y:
[0,1,2,3,4,5,6,7,8,9]
```

Vincoli: a lettere diverse valori diversi

• Criptoaritmetica: gioco in cui a ogni lettera corrisponde una cifra diversa, bisogna trovare la sostituzione corretta

```
S E N D
+ M O R E
M O N E Y
```

questo vincolo coinvolge tutte le variabili (non è binario):

```
(1000*S+100*E+10*N+D+
1000*M+100*O+10*R+E) = (10000*M+1000*O+100*N+10*E+Y)
```

Cristina Baroglio

വെ

Cristina Baroglio

2 1

Vincoli e criteri di preferenza

Esempio, criterio di preferenza

- · I vincoli possono essere più o meno rigidi
- Distinguiamo fra vincoli veri e propri e criteri di preferenza
- Vincoli e criteri di preferenza si differenziano sul <u>modo in</u> <u>cui la loro violazione impatta sulla soluzione</u>:
 - Una soluzione deve soddisfare tutti i vincoli
 - Una soluzione può violare uno o più criteri di preferenza
 - Il soddisfacimento dei criteri di preferenza permette di ordinare le soluzioni identificando quelle preferibili e quelle meno preferibili

- Nella definizione dell'orario di lezione io, come docente, posso dire di preferire le lezioni del mattino
- Questo mio "vincolo" va composto con quelli degli altri docenti
- Risultato: l'orario prevede che io faccia lezione sempre al pomeriggio 😕

Cristina Baroglio

Generate-and-test

- Si può adottare una rappresentazione a stato completo, cioè utilizzare solo assegnamenti completi, che possono o meno essere consistenti
- Generate-and-test, metodo per la risoluzione di CSP molto semplice (ma costoso) e consiste nei seguenti passi:
 - Finché non hai una soluzione o non hai alternative:
 - 1) Genera un assegnamento completo
 - 2) Controlla se è consistente
 - 3) Se sì è una soluzione, esci dal ciclo
 - 4) Se no torna al passo 1
 - Se hai una soluzione restituiscila
 - Altrimenti fallimento
- Può richiedere l'esplorazione dell'intero spazio degli assegnamenti!

Cristina Baroglio

Esempio: problema delle 8 regine

- Posizionare 8 regine su una scacchiera 8x8 in modo tale che nessuna risulti sotto attacco di un'altra
- Il problema ha 92 soluzioni distinte (12 se si considerano solo quelle non ottenibili da altre per simmetria)

SOLUZIONE

Cristina Baroglio

1) Usiamo la sola informazione di stato

Modi alternativi di rappresentare lo stato influiscono sul tempo della ricerca

Generate-and-test: 8 regine

Q Q

NB: le scacchiere sono 4x4 per rendere l'idea del procedimento senza occupare troppo spazio

Quanto tempo ci vorrà?

Q

8 regine come CSP

8 regine come CSP, versione 2

- La risposta dipende da come abbiamo rappresentato il problema
- Primo modo (esempio):
 - Variabili: Q1, Q2, ..., Q8 ognuna rappresenta la posizione di una regina
 - Domini: le posizioni sono numerate in modo crescente 1, 2,3, ..., 16, 17, 18, ..., 64
 - La soluzione riportata prima corrisponde all' assegnamento:
 Q 1 = 1, Q2 = 15, Q3 = 21, Q4 = 32, Q5 = 34, Q6 = 44, Q7 = 54, Q8 = 59
 - Problema:
 - se ci sono n variabili ognuna delle quali può assumere d valori, si hanno d
 possibili assegnamenti
 - Nell'esempio ben oltre 281.000.000.000 possibili assegnamenti

 Proviamo un' alternativa: ogni regina deve per forza occupare una diversa colonna quindi assegnamo ciascuna regina alla colonna di numero uguale (esempio: Q1 sta nella colonna 1)

- Variabili: Q1, ..., Q8
- **Dominio**: 1, ... 8 il numero di riga che completa le coordinate della regina
- La soluzione di prima sarà quindi rappresentata come:
 Q1 = 1, Q2 = 5, Q3 = 8, Q4 = 6, Q5 = 3, Q6 = 7, Q7 = 2, Q8 = 4
- **Va molto meglio**: abbiamo "solo" 88 = 16,777,216 assegnamenti alternativi ma sono ancora tanti ...

Cristina Baroglio

2 9

Cristina Baroglio

20

Generate-and-test: 8 regine

- E se volessimo scalare a un numero maggiore di regine?
- In generale per N regine si hanno N^N configurazioni
- Se avessimo 16 regine le configurazioni sarebbero 18,446,744,073,709,551,616 (~ 1200 anni di computazione)

2) Usiamo più conoscenza: introduciamo i vincoli

Per passi, a partire da una semplice ricerca in profondità con backtracking, vedremo come si può rendere più efficiente la ricerca usando più e meglio l'informazione a disposizione

Generate-and-test: 8 regine

Ricerca di una soluzione in profondità

- Fino ad ora <u>non</u> abbiamo rappresentato i **vincoli**:
 - Date due qualsiasi regine Qi e Qj queste devono essere posizionate in modo che nessuna delle due sia attaccata dall'altra
 - Due regine si attaccano quando:
 - Occupano la stessa colonna (impossibile nel nostro caso)
 - Occupano la stessa riga (aggiungiamo il vincolo Qi ≠ Qj)
 - Occupano la stessa diagonale
 (aggiungiamo il vincolo |i j| ≠ |Qi Qj|)

 Esploriamo lo spazio degli stati (dei possibili assegnamenti) utilizzando una ricerca depth-first con backtracking

- <u>Ricerca non informata</u> + <u>vincoli</u> per decidere quando potare un cammino
- La limitatezza dei cammini rende ragionevole la scelta della <u>ricerca</u> <u>in profondità</u>, tuttavia spesso <u>branching factor elevato</u>

Cristina Baroglio

3 3

Cristina Baroglio

Ricerca di una soluzione con backtracking

• Siano:

- n = numero delle variabili
- d = numero medio dei valori possibili per ciascuna variabile
- Uno qualsiasi dei valori può essere assegnato a una qualsiasi delle variabili
- Il branching factor sarà n*d al primo livello, (n-1)*d al secondo (perché una variabile è stata fissata), eccetera
 - l'albero avrà n! * d₁ foglie

Esempio Australia

I CSP sono commutativi

$\{X1 = ?, ..., Xn = ?\}$ X_1 X_2 X_3 X_1 X_1 X_1 X_1 X_2 X_2 X_1 X_2 X_1 X_2 X_2 X_1 X_2 X_1 X_2 X_2 X_3 X_1 X_1 X_2 X_1

La stessa soluzione è ottenibile tramite più cammini, permutando l'ordine con cui le variabili vengono assegnate. La soluzione è sempre la stessa e l'ordine è ininfluente sulla bontà della soluzione.

Gli algoritmi quindi prima scelgono una variabile e poi un valore per questa variabile

Cristina Baroglio

3

Esempio, Australia

Con questa restrizione il numero di foglie si riduce a dⁿ, nel nostro esempio a 2.187 (un bel risparmio rispetto a 11.022.480)

Cristina Baroglio

3 8

Ricerca con backtracking: algoritmo

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
 return RECURSIVE-BACKTRACKING({ }, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure

if assignment is complete then return assignment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)$

 $\mathbf{for}\;\mathbf{each}\;value\;\mathbf{in}\;\mathsf{ORDER\text{-}DOMAIN\text{-}}\mathsf{VALUES}(var, assignment, csp)\;\mathbf{do}$

if value is consistent with assignment according to CONSTRAINTS[csp] then add {var = value} to assignment

result \leftarrow RECURSIVE-BACKTRACKING(assignment, csp)

if $result \neq failure$ then return result

remove $\{var = value\}$ from assignment

return failure

Figure 5.3 A simple backtracking algorithm for constraint satisfaction problems. The algorithm is modeled on the recursive depth-first search of Chapter 3. The functions SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES can be used to implement the general-purpose heuristics discussed in the text.

Questo algoritmo è riportato nella II edizione del libro ma non nella III

Ricerca con backtracking: algoritmo

