# 片式固体电解质钽电容器 规格书

立创编码: C140378

新云型号: CA45-A-6. 3V-22 μ F-M



### 1. 产品特点

该产品为模压封装、片式引出,具有密封性好、重量轻、电性能优良、稳定可靠等特点。适用于移动通讯、摄像机、程控交换机、计算机、汽车电子等各种电子设备的表面贴装直流或脉动电路。

### 2. 产品型号及编码说明



### 3. 产品外形及尺寸: 见图 1 及表 1



表 1 电容器的外形尺寸

单位: mm

| 外壳代号                 | 外 形 尺 寸 |         |         |           |                |  |
|----------------------|---------|---------|---------|-----------|----------------|--|
| 71761 \ <del>5</del> | L       | W       | Н       | С         | $\mathbf{W}_1$ |  |
| A                    | 3.2±0.2 | 1.6±0.2 | 1.6±0.2 | 0.65 ±0.2 | 1.2±0.2        |  |

### 4. 电性能参数

4.1 工作温度范围: -55℃~125℃; 85℃以上施加降额电压。



- 4.2 标称电容量允许偏差 (25℃, 100Hz): M:±20%;
- 4.3 主要电性能参数: 见表 2

表 2 电性能参数表

| 额定      | 标称<br>电容     | 壳 | 容量   | ESR<br>Ω               | 降额          | 直流》  | 扇电流(<br>μ A | max)  | 电容量多        |      | 损耗角  | 自正切值<br>% | (max)       |
|---------|--------------|---|------|------------------------|-------------|------|-------------|-------|-------------|------|------|-----------|-------------|
| 电压<br>V | 里<br>量<br>µF | 号 | 単偏 差 | (max)<br>100KHz<br>25℃ | 电<br>压<br>V | 25℃  | 85℃         | 125℃  | -55℃<br>85℃ | 125℃ | -55℃ | 25℃       | 85℃<br>125℃ |
| 6. 3    | 22           | A | M    | 6. 0                   | 4. 0        | 1. 4 | 13. 9       | 17. 3 | ±10         | ±15  | 8    | 6         | 8           |

### 5. 标志

### 5.1 标志内容

- (1) 商标及正极标识
- (2) 标称电容量
- (3) 额定工作电压
- 5.2 标志说明:见图2(举例)。



图 2

### 6. 产品外观质量

- 6.1 产品本体应无针眼、缺角、缺块、发黑、漏封、裂纹、引出片断裂等现象。
- 6.2 产品标志: 应清晰、完整、正确; 无重影、漏打等现象。

#### 7. 包装

- 7.1 产品编带的尺寸及卷绕方向: 见图 3、图 4、表 4、表 5。
  - 注:用户未要求时,编带卷绕方向通常按左旋卷绕方向。
- 7.2 包装数量: 见表 3

表 3 包装数量

| 壳号 | 每小盘数量(只) | 每小盒盘数 (盘) | 每小盒数量(只) |
|----|----------|-----------|----------|
| A  | 2000     | 5         | 10000    |

7.3 产品内外包装盒应无破损,料盘、小盒及外包装箱上应有相应物料标识单,标识应清楚、准确。7.4 每批产品应附产品合格证,内容包括产品型号、规格、壳号、容量级别、数量、生产批号及执行标准等。



图 3 编带尺寸





图 4

表 4 编带尺寸

单位: mm

| 壳号 | A±0.1 | B±0.1 | C±0.1 | E±0.1 | F±0.1 | W±0.1 |
|----|-------|-------|-------|-------|-------|-------|
| A  | 1.9   | 3.5   | 4.0   | 1.75  | 3.5   | 8.0   |

表 5 卷盘尺寸和数量

| 壳号 | W±1.5 (mm) | 数量/盘 (只) |
|----|------------|----------|
| A  | 10.0       | 2000     |



### 8. 典型试验要求: 见表 6

表 6 典型试验要求

| 项目       |    | 性能           | 要求          |                 | 试验条件  |       |  |
|----------|----|--------------|-------------|-----------------|-------|-------|--|
|          | 步骤 |              | 性能要求        | 注: 直流漏电流、损耗角正切  |       |       |  |
|          |    | 直流漏电流        | ≤初始规定值      | 、容量应按第一步的初始值测量。 |       |       |  |
|          | 1  | 损耗角正切        | ≤初始规定值      |                 |       |       |  |
|          |    | 电容量          | ±20%        |                 |       |       |  |
|          |    | 容量变化         | 相对于第一步的值而言, |                 |       |       |  |
|          | 2  | 山里大山         | 在±10%以内     |                 |       |       |  |
|          |    | 损耗角正切        | ≤-55℃规定值    | 步骤              | 温度    |       |  |
|          |    | 容量变化         | 相对于第一步的值而言, |                 | (°C)  | 时间    |  |
|          | 3  | 山里大山         | 在±5%以内      | 1               | 25±2  | _     |  |
| )        |    | 损耗角正切        | ≤初始规定值      | 2               | -55±3 | 30min |  |
| (1)高低温特性 |    | 漏电流          | ≤初始规定值      | 3               | 25±2  | 30min |  |
|          | 4  | 容量变化         | ≤85℃规定值     | 4               | 85±2  | 30min |  |
|          |    | 损耗角正切        | ≪85℃规定值     | 5               | 125±2 | 30min |  |
|          |    | 漏电流          | ≤85℃规定值     | 6               | 25±2  | _     |  |
|          | 5  | 容量变化         | ≤125℃规定值    |                 |       |       |  |
|          |    | 损耗角正切        | ≤125℃规定值    |                 |       |       |  |
|          |    | 漏电流          | ≤125℃规定值    |                 |       |       |  |
|          |    | <b>☆昙本</b> ル | 相对于第一步的值而言, |                 |       |       |  |
|          | 6  | 容量变化         | 在±5%以内      |                 |       |       |  |
|          |    | 损耗角正切        | ≤初始规定值      |                 |       |       |  |
|          |    | 漏电流 ≤初始规定值   |             |                 |       |       |  |



### 表6(续)

| 项目      |                 | 性能要求           | 试验条件                    |  |  |
|---------|-----------------|----------------|-------------------------|--|--|
|         | 电容量变化           | 相对于试验前的值而言,在生  | 温度: 85℃; 125℃           |  |  |
|         | <b>电台里文化</b>    | 10%范围以内。       | 保护串联电阻 (充电电阻):          |  |  |
|         | 损耗角正切           | ≤初始规定值         | (1000±100) Ω            |  |  |
| (2)浪涌试验 | 直流漏电流           | ≤初始规定值         | 循环次数: 1000 次。           |  |  |
|         |                 |                | 充电时间: 30s               |  |  |
|         | 外形              | 不应有引出端损伤之类的机械  | 放电时间: 5min 30s          |  |  |
|         | 7170            | 损伤。            | 测量电压: 额定工作电压            |  |  |
|         |                 |                | 浪涌电压: 见表 2              |  |  |
|         | 电容量变化           | 相对于试验前的值而言,在土  |                         |  |  |
|         | 3 1 11/4 10     | 5%范围以内。        | 焊接温度: (260±5)℃          |  |  |
| (3)耐焊接热 | 损耗角正切           | ≤初始规定值         | 浸渍时间: (5±0.5) s         |  |  |
|         | 外形              | 无可见损伤,端面镀层的溶解不 | 恢复时间: (24±2) h          |  |  |
|         |                 | 超过该边长的 25%。    |                         |  |  |
| (4)可焊性  | 外形              | 无可见损伤。两端面和接触区应 | 焊接温度: (235±5)℃          |  |  |
| (4)切片注  | 9176            | 覆盖上一层光滑明亮的锡层。  | 浸渍时间: (2±0.5)s          |  |  |
|         | 电容量变化           | 相对于试验前的值而言,在土  | 试验温度: 40±2℃             |  |  |
|         | <b>七</b> 苷里文化   | 10%范围以内。       | 湿度: 90~95%R.H           |  |  |
| (5)湿热   | <br>  损耗角正切<br> | ≤初始规定值的 1.2 倍  | 试验时间: 21 天              |  |  |
|         | 直流漏电流           | ≤初始规定值         | 不施加电压                   |  |  |
|         | 外形              | 无可见损伤。         | 恢复: 1 至 2h              |  |  |
|         |                 |                | 电容器安装在印制板上,在加力面的中心位置的   |  |  |
| (6) 附着力 | 外形              | 无可见损伤。         | 垂直方向施加 5N 的力,该力逐渐地无冲击地施 |  |  |
|         |                 |                | 加在片式电容器本体上并保持 10±1s。    |  |  |



#### 表6(续)

| 项目        |       | 性能要求          | 试验条件                       |  |
|-----------|-------|---------------|----------------------------|--|
|           | 山家县亦仏 | 相对于试验前的值而言,   | 电容器安装在印制板上后,按照使片式电容器朝      |  |
| (7) 端面镀层结 | 电容量变化 | 在土3%范围以内。     | 下的方式将印制板置于弯曲夹具中,然后,该板      |  |
| 合强度       | 外形    | 无可见损伤。        | 在 1mm/s 地弯曲速率下弯曲 1mm,并在弯曲状 |  |
|           | 9176  | 九 9           | 态下进行测量。                    |  |
|           | 电容量变化 | 相对于试验前的值而言,在土 | 试验温度: (85±2)℃              |  |
|           |       | 10%范围以内。      | 试验时间: 2000 小时              |  |
| (8)耐久性    | 损耗角正切 | ≤初始规定值 150 %  | 电压:额定电压                    |  |
|           | 直流漏电流 | ≤初始规定值 200%   | 试验温度: (125±2) ℃            |  |
|           |       |               | 试验时间: 2000 小时              |  |
|           | 外形    | 无可见损伤、标志清晰    | 电压:降额电压                    |  |
|           |       |               | 恢复: 1 至 2h                 |  |

#### 9 应用指南

#### 9.1 室温电性能的测量

- 9.1.1 电容量(C)和损耗角正切(tgδ)的测量
  - ●施加电压: 直流偏压: U-=2.2% V; 交流偏压(有效值)的范围: U~=1.0% v
  - ●测量时,确保电容器正、负极的接法正确,否则读数会产生较大的偏差。
- 9.1.2 漏电流(I)的测量
- ●施加电压:额定电压测量时,应串联 1000Ω的保护电阻。施加额定电压后 3 至 5 分钟,漏电流指针稳定后读数。
- ●测量漏电流时,严禁将产品的正、负极接反,如不慎接反,该只电容器应报废,即使电性能仍合格,也不能再使用。
- ●产品测量完毕后,应对电容器进行完全放电,放电可采用下列方法进行:通过 1KΩ 电阻放电 5 秒后再通过导线短路放电 30 秒。
- 9.1.3 等效串联电阻(ESR)的测量
  - ●测量频率: 100KHz 直流偏压 U-=2.2%,V,交流偏压(有效值)U~=1.0%.V.
- ●等效串联电阻值的测量受导线的影响较大,为了测量的正确性,一方面应采用专用的夹具进 行测量,另一方面在测量前应对仪表进行校正。



#### 9.2 电路设计应考虑的问题

#### 9.2.1 关于反向电压

- ●片式钽电解质电容器为极性电容器,不允许施加反向电压,并且不可在纯交流电路中使用。 9.2.2 工作电压/降额电压
- ●大约 90%以上片式钽电容器失效表现为短路或漏电流增大模式,为了提高可靠性,在设计电路中充分考虑降额是必要的。 特别是在低阻抗电路中,建议降额至 1/3 额定电压或更低使用,一般电路建议降额至 2/3 额定电压或更低使用。(注:低阻抗电路是指瞬间充电电流大于 300mA 或电压瞬时上升时间小于 1ms 的电路。)
- ●在有开关或瞬时充放电的电路中,建议使用串联电阻,其值为  $3\Omega$  /V,以限制电流在 300mA 以下,太低的阻抗会导致失效率的增加,如电路不允许插入电阻,应降额至 1/3 的额定电压或更低使用,低于  $0.1\Omega$  /V 的电路阻抗,应考虑电路保护问题。

#### 9.3 电容器的焊接安装

#### 9.3.1 产品的焊接和清洗

- ●采用烙铁焊接时,使用烙铁应在 30W 以下,烙铁的尖端温度小于 260°,使用时间小于 4 秒。
- ●采用再流焊或波峰焊时,最高预热温度 150°C,时间 5 分钟。推荐的焊接条件为 235°C, 10秒。
  - ●片式钽电容推荐的焊接曲线图见图 9。



图 9 再流焊焊接曲线

●无论是手工焊还是再流焊,都应避免采用活性高,酸性强的助焊剂,以免清洗不干净后渗透、腐蚀和扩散,进而影响其可靠性。建议用免清洗助焊剂,需要时建议使用异丙醇清洗,时间超过 5分钟;建议不采用超声波清洗。



●在安装时不要施加过大的外力,以免电容器本体或引出焊片的电镀层脱落或受伤;已安装过一次的电容请勿再使用。

### 9.3.2 可选用的焊接方法

(1) 气相再流焊; (2) 远红外再流焊; (3) 波峰焊; (4) 热板再流焊; (5) 手工焊。

### 9.4 使用中的注意事项

- ●钽电容器在使用过程中,原则上禁止使用三用表电阻档对有钽电容的电路或电容器本身进行 不分极性的测试。
- ●通电后,如出现臭味或冒烟,立即切断电源,产品燃烧时,请勿将脸和手等接近。在整个使用过程中,如不慎对电容器施加不恰当的电压(如超压或反向),或外力(机械应力或热应力)该产品,应被剔除,即使性能合格也不能再使用。

#### 9.5 电容器的储存

电容器应在不拆除包装的状态下储存,勿暴露在直射阳光或尘埃中,一般应在常温(5~35℃)、(相对湿度75%以下)的环境下保存。如长期置于高温、高湿的环境中,不仅将使引出焊片的可焊性变差,而且将使电容器的性能变差。在原则上,保存期限为2年,对超过保存期限的产品请重新检验,确认无异常后再使用。