	INDEX THY. 04/
	Let's compute some commutators. Recall
	[a,bc] = [a,b]c ± b[a,c] Assuming Q is nondegenerate
	$[a, [b,c]] = [[a,b],c] \pm [b,[a,c]].$
	Now if ei is an ONB and ci is Clifford mult. by ei,
	[cicj, ck] = ci[cj, ck] - [ci, ck]cj = -28jkei + 28ikcj
	Consider the basis Eij-Eji of socu); we see
	(Eij-Eji) ex= Sjk ei - Sikej.
	Hence get a homomorphism geren part
	DO(N) -> Lie algebra associated to C+(R")
	$E_{ij}-E_{ji} \longrightarrow -\frac{1}{2}c_{i}c_{j}$
,	natural thing to do: exponentiate. On the left,
	$\exp(t(E_{ij}-E_{ji})) = I$ for $t \in 2\pi \mathbb{Z}$.
-	On the right, we get the Spin group, Spin(n),
	$\exp(t(-\frac{1}{2}\operatorname{cic}_{i})) = \exp(-\frac{1}{2}t\operatorname{cic}_{i})$
	$\left \left(C \cdot C \cdot \right)^2 - C \cdot C \cdot C \cdot C \cdot C \cdot C \right = - C \cdot C \cdot C \cdot C \cdot C \cdot C = -1$
	$= \cos(-\frac{1}{2}t) \cdot 1 + \sin(-\frac{1}{2}t) \cdot \operatorname{cicj}_{\cdot} = \begin{cases} +1 & t \in 4\pi\mathbb{Z} \\ +1 & t \in 4\pi\mathbb{Z} \end{cases}$
	The center of the group obtained, the Spincer) gp, is precisely 9±1%.
irection of map	
opology?	Recall 74 (SU(M) = C2 if 1973, so Spin(m) is simply-connected if 1973.
	Also:
,	Spin con = real span of cic; and J-I
-	The exponential of this subalgebra sopmon of iR
	Spin cu) < C+(V) = Spm(n) x == 1224. U(1)
	1243
	Spinor representations.
	Taken u even and an orientation on Rh.
	$C(V) = C^+(V) \oplus C^-(V)$

C(VOW) = C(V) O C(W) (tensor product of superalappras). Here the product is (a, ⊗ b,)(a2 ⊗ b2) = ± a, a2 ⊗ b, b2. C -1 if az and by one both odd. If we decompose $\mathbb{R}^n = \mathbb{R}^2 \oplus \cdots \oplus \mathbb{R}^2$ $\mathbb{C}(\mathbb{R}^n) = \mathbb{C}(\mathbb{R}^2) \oplus \cdots \oplus \mathbb{C}(\mathbb{R}^2).$ What does CCR?) look like? $C_1 = \begin{bmatrix} 0 & -1 \\ 1 & 6 \end{bmatrix}$ $C_2 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$. Satisfying $C_1^* = C_1$ $1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad C_1C_2 = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}$ Notice that Str(1) = Str(c1) = Str(c2) =0 Str (c1c2) = -2i. We know CCR2) = END (ODTIC) SO C(RZ) & N/2 = End((C & TIC) n/2). This defines the spinors, $S = (\mathbb{C} \oplus \Pi \mathbb{C})^{\otimes n/2} \cong \mathbb{C}^{2^{n/2-1}} \oplus \Pi \mathbb{C}^{2^{n/2-1}}$ $\dim \mathbb{C}(V) = 2^n \qquad ^{r} S_+ \qquad ^{r} S_-$ (n>0) $dim S = 2^{n/2}$ Clearly Spin(n) < C+(Rn) × G S+ We can now define, using this action Str: C(IRM) -> C n even, uses orientation = Trls+ - Trls_ $Str(Ci_1...Ci_k) = \begin{cases} 0 & kn < n \end{cases}$ i.e. $Str(Ci_1...cn) = (-2i)^{n/2}$.

Let n be even. C1... Cn · Ci; - Cik = ? * (ci, ... cik) get a sign (-1) kn + (k)+k. Smilarly, $(c_1 - c_n)^2 = (-1)^{\binom{n}{2} + n}$ If 4/n, (c1...cn)=1 n=2(4) = -1.(Generalized) Dirac operators. generalized Laplacians... Riemannian manifold X Henritian vector bundle E. △ is a generalized Laplacian (i) A is formally self-adjoint (i.e. on comp. supp. Cos - sections) (ii) in local coordinates, $\Delta = -\sum_{i=1}^{n} g^{ij}(x) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}} id + \text{first order}.$ (notice metric determined A generalized Diroc operator D is a first order differential operator on E (i) formally self-adjoint (ii) D2 is a generalized Laplacian. 1.e. 4[D,f]2 If we write D= c'd; + zeroth order D= \frac{1}{2}(cic)+cici) did; + loner order ci is a representation of the Clifford algebra, C(T*X) on Ex (ci)*=-ci. 25 Telf-adjoint.

```
Let us review de Rham opx and Laplace-Beltrami.
 How to define an inver product on IDK(M, E)? Declare, at a point,
    (ei, 1 .... 10 e; ⊗S, $; ej, 1 ... 1 ej, ⊗Sz) = Siiji --- Sixjx (S, Sz).
 Now for XIPEDC (XIE),
     (a, B) = Ix (a, B) x lein-- Nenl.
We then introduce d*: 12k+1 , it's defined by:
    (a, dt B) = (da, B) XEDE, BEDE
 In particular, for k=0, RHS= B(gred x). It turns out
      d*=-*d*, (-1)kn.
 Indeed.
    (dx, B) = I dx 1 * B = (-1) * + 1 f x 1 d(* B)
 since dan *B+(-1) * Ad(*B) = d(x 1 *B) so used Stokes. Now
            = (-1)k+1 \( \alpha, *-1d*B)
 Recall *^2 = (-1)^{k(n-k)}, so = (-1)^{k+1+k(n-k)} \int (\alpha, *d*\beta)
 In coordinates
     d = Zi zi di
  ⇒ d* = Z; (+∂i)*(εi)*
but (\partial_i)^* = -\partial_i + zeroth order via integration by part; so
    d* = - \( \xi = \tau \); + zenoth order.
Now let & D = d+d*. Then
  \Delta = D^2 = d^2 + d^*d + dd^* + (d^*)^2 = d^*d + dd^*.
                                   Laplace - Bettrani
Exercise: check D2 is a generalized Laplacian, hence D is gen. Drac.
          Edgo notice that dtd.+dd+= [d,d+]).
         (should get gridid; +--- where gri=(dxi,dx*)).
Notice that D2 commutes w/ d, d*.
```

	Notrce
4	[d+d*1f] = E(df) = E*(df) =: c(df).
	We have a covariant derivative on T*X (Levi-Civita)
	· compatible w/ metric
	· torsion-free.
	Extend \$7th to \$1000. We now obtain
	$\nabla: \Gamma(X, \Lambda^k T^*X) \longrightarrow \mathcal{B}_k \Gamma(X, T^*X \otimes \Lambda^k T^*X),$
	So if $\alpha \in \Gamma(X, \Lambda^k \in T^*X)$, $\beta \in \Omega^1_{\mathcal{C}}(X, \Lambda^k T^*X)$, can take
	$(\nabla \alpha, \beta) = (\alpha, \nabla^* \beta).$
	Locally,
	V= I; dxi & Va/axi
of the second se	$\nabla^* = -\sum (dx^i)^* \otimes \frac{\partial}{\partial x^i} + zeroth \text{ order}$
	whence V*V is generalized Laplacian - Bocker's Laplacian.
	Theorem (bochner). A-VIV is a zeroth-order operator
	Next time we'll do this via normalised coords.
-	

_

-

.