ASSIGNMENT 1: Fourier Spectrum of Coherent Wavefield

Due: Tuesday, January 26

Name:

Objective: The main objective of this homework assignment is to visualize the spectral distribution of 2-D coherent wavefield patterns. This leads you to

- (i) the generation of the coherent wavefield,
- (ii) observations of the spectral distribution of coherent wavefield,
- (iii) understanding of the phase-only concept, and
- (iv) observations of changes due to the variation of wavelength, sample spacing, and aperture size.
- (1) Consider a point source at the origin, $(x_0, y_0) = (0, 0)$. This centered point source produces a 2-D coherent wavefield pattern in the form of

$$h(x,y) = (j\lambda_o r)^{-1/2} \exp(j2\pi r/\lambda_o)$$

where $r = (x^2 + y^2)^{1/2}$ and λ_o is the operating wavelength. Generate the resultant 2-D wave-field pattern for a region within the radius of $30\lambda_o$. For simplicity, sample the 2-D wave-field uniformly, in both directions, with the sample spacing

$$\Delta x = \Delta y = \lambda_o /4$$
.

Evaluate the 2-D Fourier spectrum of the coherent wave-field with a 512×512 FFT, and plot the amplitude of the 2-D spectrum. (Remember to zero out the data points around r = 0.)

(2) Repeat Part (1) with 6 active point sources, located at (x_n, y_n) , n = 1, 2, ... 6.

	scatters	scatter locations
1	(x_1, y_1)	$(0, +10 \lambda_o)$
2	(x_2, y_2)	$(+10 \lambda_o, 0)$
3	(x_3, y_3)	$(0, -10 \lambda_o)$
4	(x4, y4)	$(-10 \lambda_o, 0)$
5	(x_5, y_5)	$(-8 \lambda_o, -6 \lambda_o)$
6	(x_6, y_6)	$(+8 \lambda_o, -6 \lambda_o)$

The resultant wavefield pattern over the aperture region is the superposition of 6 coherent waveform patterns.

(3) Now consider a different case that each of these 6 active sources is a generating independent coherent wavefield pattern, with a different operating wavelength λ_n , where

$$\lambda_n = n \lambda_0$$

	scatters	scatter locations	wavelength
1	(x_1, y_1)	$(0, +10 \lambda_o)$	λο
2	(x_2, y_2)	$(+10 \lambda_o, 0)$	2 λο
3	(x_3, y_3)	$(0, -10 \lambda_o)$	$3 \lambda_o$
4	(x_4, y_4)	$(-10 \lambda_o, 0)$	4 λο
5	(x_5, y_5)	$(-8\lambda_o, -6\lambda_o)$	5 λο
6	(x_6, y_6)	$(+8 \lambda_o, -6 \lambda_o)$	6 λο

Again, the overall wavefield pattern over the aperture is the superposition of 6 waveform patterns. Sample the composite waveform in both directions, with the same sample spacing $\Delta x = \Delta y = \lambda_0/4$. Evaluate the 2-D Fourier spectrum of the composite waveform with a 512 x 512 FFT, and plot the amplitude of the spectrum.

(4) Repeat the exercise by using a modified version of the Green's function

$$h'(x,y) = A \exp(j2\pi r/\lambda)$$

(This is to replace the amplitude portion of the Green's function with a constant *A*, which is known as the *phase-only* version.)

- (5) The sample spacing was set to $\lambda_0/4$ for simplicity. Examine the change of the spectral distribution as you vary the sample spacing of the array.
- (6) The radius of the circular aperture was set to $30\lambda_0$ for simplicity. Examine the change of the spectral distribution as you vary the aperture size.

Report format:

- 1. Cover page
- 2. Figures
- 3. Summary: (comments based on your observations)
- 4. Appendix: (computer code)