数学实验:第三次作业

计算机系 计 73 2017011620 李家昊 2020 年 3 月 23 日

1 实验目的

- 学会用 MATLAB 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;
- 通过实例学习用线性代数方程组解决简化的实际问题。

2 问题求解

2.1 Chap5-Ex1 误差(计算题)

2.1.1 算法设计

由题意,需要解下列方程,

$$\boldsymbol{A}_1 \boldsymbol{x}_1 = \boldsymbol{b}_1, \quad \boldsymbol{A}_2 \boldsymbol{x}_2 = \boldsymbol{b}_2 \tag{1}$$

其中 A 为 Vandermonde 矩阵,

$$\mathbf{A}_{1} = \begin{pmatrix} 1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n-1} \\ 1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n-1} \end{pmatrix}, \quad x_{k} = 1 + 0.1k, \quad k = 0, 1, \dots, n-1 \quad (2)$$

 A_2 为 Hilbert 矩阵,

$$\mathbf{A}_{2} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \ddots & \ddots & \vdots \\ \frac{1}{3} & \ddots & \ddots & \ddots & \frac{1}{2n-3} \\ \vdots & \ddots & \ddots & \frac{1}{2n-3} & \frac{1}{2n-2} \\ \frac{1}{n} & \cdots & \frac{1}{2n-3} & \frac{1}{2n-2} & \frac{1}{2n-1} \end{pmatrix}$$

$$(3)$$

表 1: 不同 n 值下矩阵 A_1, A_2 的条件数

n	5	7	9	
$Cond(\boldsymbol{A}_1)$	3.5740×10^{5}	8.7385×10^{7}	2.2739×10^{10}	
$Cond(\boldsymbol{A}_2)$	4.7661×10^5	4.7537×10^{8}	4.9315×10^{11}	

并且 b_1 为 A_1 的行和, b_2 为 A_2 的行和。

显然,方程(1)的解为,

$$x_1 = x_2 = (1, 1, \dots, 1)^T$$
 (4)

对于 x 的数值解,用 Matlab 的左除命令求解即可。对于误差分析,可根据 如下结论求出相对误差限。

当 \boldsymbol{A} 受扰动而 \boldsymbol{b} 不变时,若 $||\boldsymbol{A}^{-1}|| \cdot ||\delta \boldsymbol{A}|| < 1$,则 \boldsymbol{x} 的相对误差限为,

$$\frac{||\delta \boldsymbol{x}||}{||\boldsymbol{x}||} \le \frac{Cond(\boldsymbol{A})}{1 - Cond(\boldsymbol{A}) \cdot \frac{||\delta \boldsymbol{A}||}{||\boldsymbol{A}||}} \cdot \frac{||\delta \boldsymbol{A}||}{||\boldsymbol{A}||}$$
(5)

当 b 受扰动而 A 不变时, x 的相对误差限为,

$$\frac{||\delta \boldsymbol{x}||}{||\boldsymbol{x}||} \le Cond(\boldsymbol{A}) \cdot \frac{||\delta \boldsymbol{b}||}{||\boldsymbol{b}||}$$
(6)

2.1.2 Matlab 程序

请参见附录4.1。

2.1.3 计算结果

方程求解 当 n=5 时,求解方程 (1) 得,

$$\mathbf{x}_1 = \mathbf{x}_2 = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000)^T$$
 (7)

与预期结果相符。

条件数计算 当 n = 5,7,9 时,计算 A_1 和 A_2 的条件数如表 1所示,可以看出,随着 n 的增大, A_1 , A_2 的条件数随之增大,病态严重。此外,在相同的 n 下, A_2 的条件数比 A_1 更大,因此 A_2 的病态更严重。

扰动 A_1, A_2 后的计算结果及误差 令 n = 5, 7, 9, b_1 和 b_2 不变,在 $A_1(n, n)$ 和 $A_2(n, n)$ 上分别加上扰动 $\varepsilon = 10^{-10}, 10^{-8}, 10^{-6}$,限于篇幅,详细的计算结果请参见附录5.1中的表 10及表 11。经扰动得到的解记作 \tilde{x} ,则相对误差为 $\frac{||\tilde{x} - x||}{||x||}$, x_1, x_2 的相对误差计算结果分别如表 2,表 3所示,其中相对误差限的计算省略了 $||A^{-1}|| \cdot ||\delta A|| \ge 1$ 的情形。

表 2: 扰动 $A_1(n,n)$ 后 x_1 的实际相对误差及相对误差限

	5		7	7	9		
$\varepsilon \backslash n$	Actual	Limit	Actual	Limit	Actual	Limit	
10^{-10}	0.0000	0.0000	0.0000	0.0003	0.0000	0.0134	
10^{-8}	0.0000	0.0004	0.0003	0.0300	0.0033	/	
10^{-6}	0.0021	0.0444	0.0319	/	0.3295	/	

表 3: 扰动 $A_2(n,n)$ 后 x_2 的实际相对误差及相对误差限

a\	5		7	7	9		
$\varepsilon \backslash n$	Actual	Limit	Actual	Limit	Actual	Limit	
10^{-10}	0.0000	0.0000	0.0021	0.0295	0.7280	/	
			0.1893	,	3.1999	/	
10^{-6}	0.0490	0.4371	1.7383	/	3.3124	/	

扰动 b_1, b_2 后的计算结果及误差 令 n = 5, 7, 9, A_1 和 A_2 不变,在 $b_1(n)$ 和 $b_2(n)$ 上分别加上扰动 $\varepsilon = 10^{-10}, 10^{-8}, 10^{-6}$,限于篇幅,详细的计算结果请参见 附录5.1中的表 12及表 13。 x_1, x_2 的相对误差计算结果分别如表 4,表 5所示。

2.1.4 结果分析

根据表 2,表 3,表 4,表 5中的实际相对误差及相对误差限的计算结果,可以验证相对误差不超过其相对误差限。总体来看,实际相对误差的值主要集中在相对误差限的 1% 到 10% 的区间内,因此,利用相对误差限来估算大致的实际相对误差是可行的。

Vandermonde 矩阵和 Hilbert 矩阵都是病态程度非常严重的矩阵,若矩阵或右端项稍有扰动,方程的解就会千差万别,例如,当规模 n=9,扰动大小 $\varepsilon=10^{-6}$ 时,解的相对误差竟达到将近 10^4 级别,这样的结果在实际应用中是没

表 4: 扰动 $b_1(n)$ 后 x_1 的实际相对误差及相对误差限

$\varepsilon \backslash n$ 5 Actual Limit		7	7	9		
ε \π	Actual	Limit	Actual	Limit	Actual	Limit
10^{-10}	0.0000	0.0000	0.0000	0.0001	0.0000	0.0068
10^{-8}	0.0000	0.0002	0.0003	0.0137	0.0033	0.6808
10^{-6}	0.0021	0.0200	0.0319	1.3690	0.3303	68.0786

表 5:	扰动 b 。	(n) 后:	;2 的实际相对误差及相对误	差限
, ,	4/0/4 - 2	() / 🗀 .		

c) m		,)		7		9
$\varepsilon \backslash n$	Actual	Limit	Actual	Limit	Actual	Limit
10^{-10}	0.0000	0.0000	0.0021	0.0124	0.9330	11.1158
			0.2103			1111.5847
10^{-6}	0.0512	0.1519	21.0324	123.8889	9330.4374	111158.4664

有任何意义的。此外,当扰动 ε 越大,方程的解的相对误差限就越大,其实际相对误差在一般情况下也越大。当 n 越大,则两个矩阵的条件数越大,病态越严重,方程越不稳定,对扰动越敏感,从而越难获得精确的解。在相同的 n 值下,Hilbert 矩阵的条件数比 Vandermonde 矩阵的条件数更大,病态更严重,在相同的扰动下,解的相对误差更大。

2.1.5 结论

矩阵的条件数越大,病态越严重,方程越不稳定,对扰动越敏感,从而越难获得精确的解; Vandermonde 矩阵和 Hilbert 矩阵都是病态矩阵,在相同规模下,Hilbert 矩阵的病态程度比 Vandermonde 矩阵更严重; 在实际应用中,例如在神经网络的矩阵运算中,应当尽可能避免病态矩阵所带来的不稳定性,从而增强系统的鲁棒性。

2.2 Chap5-Ex3 迭代法(计算题)

2.2.1 算法设计

题目需要用 Jacobi 迭代法和 Gauss-Seidel 迭代法求解方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$,其中 $\mathbf{A} \in \mathbb{R}^{n \times n}$,这里 n = 20,定义为,

$$\mathbf{A} = \begin{pmatrix} 3 & -1/2 & -1/4 \\ -1/2 & 3 & \ddots & \ddots \\ -1/4 & \ddots & \ddots & \ddots & -1/4 \\ & \ddots & \ddots & 3 & -1/2 \\ & & -1/4 & -1/2 & 3 \end{pmatrix}$$
(8)

首先将 A 分解为 D-L-U 的形式, 其中 $D=\operatorname{diag}(a_{11},a_{22},\cdots,a_{nn})$,

$$\mathbf{L} = -\begin{pmatrix} 0 & & & \\ a_{21} & 0 & & \\ \vdots & \ddots & \ddots & \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{pmatrix}, \quad \mathbf{U} = -\begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & \ddots & \vdots \\ & & \ddots & a_{n-1,n} \\ & & & 0 \end{pmatrix}$$
(9)

表 6: 不同的初始向量 $x^{(0)}$ 和右端项 b 的选取

采用迭代法求解时,记迭代总数为m,在第k次迭代时,有状态方程,

$$\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{f}, \quad k = 0, 1, 2, \cdots, m-1$$
 (10)

采用 Jacobi 迭代法时,

$$B = D^{-1}(L + U), \quad f = D^{-1}b$$
 (11)

采用 Gauss-Seidel 迭代法时,

$$B = (D - L)^{-1}U, \quad f = (D - L)^{-1}b$$
 (12)

如此,就可以利用迭代法求解线性方程组 Ax = b 了。对于迭代矩阵 B 的 谱半径,可通过 $\max(abs(eig(B)))$ 命令计算。

2.2.2 Matlab 程序

请参见附录4.2。

2.2.3 计算结果

这里设置迭代误差限为 $\varepsilon=10^{-5}$,当迭代误差 $||\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}||_{\infty}<\varepsilon$ 时,算法结束,输出此时的迭代次数。

不同的初始向量和右端项 选取不同的初始向量 $x^{(0)}$ 和右端项 b 如表 6所示。其中包括了常量向量,顺序递增向量,以及周期向量。在不同的初始向量和右端项下,采用 Jacobi 迭代法和 Gauss-Seidel 迭代法求解的迭代次数如表 7所示。

成倍增长 A 的主对角线 取定初始向量和右端项为,

$$\mathbf{x}^{(0)} = (1, 1, ..., 1)^T, \quad \mathbf{b} = (1, 1, ..., 1)^T$$
 (13)

将 A 的主对角线元素增长为原来的 k 倍,用 Jacobi 迭代法计算,迭代次数及迭代矩阵的谱半径如表 8所示。

表 7: 在不同的初始向量 $x^{(0)}$ 和右端项 b 下,给定迭代误差为 10^{-5} 时,Jacobi (J) 和 Gauss-Seidel (G-S) 迭代法的迭代次数。

$oldsymbol{b}ackslash oldsymbol{x}^{(0)}$	$oxed{egin{array}{c c} oldsymbol{x}_1^{(0)} \end{array}}$		a	$\mathbf{c}_{2}^{(0)}$	$oldsymbol{x}_3^{(0)}$		
$oldsymbol{o}ackslash oldsymbol{x}^{(\circ)}$	J	G-S	J	G-S	J	G-S	
$oldsymbol{b}_1$	15	11 14 12	20	14	16	11 14	
\boldsymbol{b}_2	20	14	19	13	20	14	
$oldsymbol{b}_3$	17	12	20	14	10	9	

表 8: 将 \boldsymbol{A} 的主对角线元素增长为原来的 k 倍后,给定迭代误差 10^{-5} 时,Jacobi 迭代法的迭代次数 m 及迭代矩阵 \boldsymbol{B} 的谱半径 $\rho(\boldsymbol{B})$ 。

k	1	2	4	8	16	32	64	128	256	512
m	15	9	7	6	5	4	4	4	3	3
$ ho(m{B})$	0.489	0.245	0.122	0.061	0.031	0.015	0.008	0.004	0.002	3 0.001

2.2.4 结果分析

在不同的初始向量和右端项下,Jacobi 和 Gauss-Seidel 迭代法产生的迭代向量序列均收敛,相比于 Jacobi 迭代法,Gauss-Seidel 迭代法的迭代次数更少,收敛速度更快。这是由迭代矩阵 \boldsymbol{B} 的谱半径决定的,通过计算得出,Jacobi 的迭代矩阵 \boldsymbol{B} 的谱半径 $\rho(\boldsymbol{B})=0.4893$,Gauss-Seidel 的迭代矩阵 \boldsymbol{B} 的谱半径 $\rho(\boldsymbol{B})=0.2523$,它们都小于 1,因此两种迭代法均收敛,由于 Gauss-Seidel 的迭代矩阵 \boldsymbol{B} 的谱半径小于 Jacobi 的迭代矩阵,因此 Gauss-Seidel 迭代法的收敛速度更快。从另一个角度来看,由于 \boldsymbol{A} 是严格对角占优的,因此也可以判断出两种迭代法均收敛。

随着 A 主对角线元素的成倍增长,Jacobi 迭代法的迭代次数越来越少,收敛速度越来越快。这是因为当 A 的主对角线元素增长时,A 的对角线更占优,从表 8可以看出,其对应的迭代矩阵 B 的谱半径更小,因此收敛速度更快。

2.2.5 结论

若线性方程组的系数矩阵是严格对角占优的,则 Jacobi 和 Gauss-Seidel 两种迭代法的迭代序列均收敛,一般来说,Gauss-Seidel 迭代法比 Jacobi 迭代法的收敛速度更快。

2.3 Chap5-Ex9 种群(计算题)

2.3.1 算法设计

根据题意,种群年龄为 k = 1, 2, ..., n,当年年龄 k 的种群数量记作 x_k ,繁殖率记作 b_k ,自然存活率记作 s_k ,收获量记作 h_k ,来年年龄 k 的种群数量为 \tilde{x}_k ,稳定种群内,有 $\tilde{x}_k = x_k$ 。

矩阵模型 已知 b_k, s_k, h_k 时, 在稳定种群内 $\tilde{x}_k = x_k$, 因此有,

$$x_1 = \sum_{k=1}^{n} b_k x_k, \quad x_{k+1} = s_k x_k - h_k, \quad k = 1, 2, ..., n-1$$
 (14)

记 $\mathbf{x} = (x_1, x_2, ..., x_n)^T$, $\mathbf{h} = (0, h_1, h_2, ..., h_{n-1})^T$, 记 Leslie 矩阵为,

$$\boldsymbol{L} = \begin{pmatrix} b_1 & b_2 & \cdots & \cdots & b_n \\ s_1 & 0 & \cdots & \cdots & 0 \\ 0 & s_2 & \ddots & & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & s_{n-1} & 0 \end{pmatrix}$$
 (15)

则可将方程(14)表示为矩阵形式,

$$x = Lx - h \tag{16}$$

化简得,

$$(\boldsymbol{L} - \boldsymbol{I})\boldsymbol{x} = \boldsymbol{h} \tag{17}$$

即为稳定种群数量的矩阵模型。

数值求解 利用 Matlab 自带的左除法,即可求出方程 (17) 的数值解。

2.3.2 Matlab 程序

请参见附录4.3。

2.3.3 计算结果

由题目数据,可确定 Leslie 矩阵,

$$\boldsymbol{L} = \begin{pmatrix} 0 & 0 & 5 & 3 & 0 \\ 0.4 & 0 & 0 & 0 & 0 \\ 0 & 0.6 & 0 & 0 & 0 \\ 0 & 0 & 0.6 & 0 & 0 \\ 0 & 0 & 0 & 0.4 & 0 \end{pmatrix} \tag{18}$$

表 9: 各年龄种群数量计算结果的绝对误差

绝对误差 (×10 ⁻¹²)	e_1	e_2	e_3	e_4	e_5
结果19	-1.023	0.455	0.227	0.000	-0.028
结果20	-1.023	0.455	0.000	-0.114	0.000
结果21	-1.023	0.455	0.000	-0.114	0.000
结果22	0.000	-1.819	0.000	0.000	0.000

当 $\mathbf{h} = (0,500,400,200,100)^T$ 时,计算得出,

$$\boldsymbol{x} = (8481, 2892, 1335, 601, 141)^T \tag{19}$$

当 $\mathbf{h} = (0,500,500,500,500)^T$ 时, 计算得出,

$$\boldsymbol{x} = (10981, 3892, 1835, 601, -259)^T \tag{20}$$

然而,种群数量 x_k 不可能为负数。产生负数的原因可能是收获量过大,供不应求,打破了种群的平衡状态。因此,为了能达到给定的收获量,需要采取相应的措施来维持生态平衡。

一种可能的措施是通过改善种群的生活条件,提高种群的存活率。考虑到 x_5 出现负数,应当尽可能提高 x_4 的存活率 s_4 从而增加 x_5 的数量,如果将 s_4 提高 到 0.9,则计算得出,

$$\boldsymbol{x} = (10981, 3892, 1835, 601, 41)^T \tag{21}$$

达到了种群数量的平衡。

另一种可能的措施是通过增加种群规模,调节种群的繁殖率,从而提高种群的稳定性。如果将 b_3 调节为 3,则计算得出,

$$\boldsymbol{x} = (35132, 13553, 7632, 4079, 1132)^T \tag{22}$$

也达到了种群数量的平衡,此时种群规模更大,平衡性更强。

当然,两种方式可结合使用,使种群更稳定,满足收获量的需求。

2.3.4 结果分析

误差分析 记种群数量的计算值为 x^* ,收获量的真实值为 h,则绝对误差为 $e = (L - I)x^* - h$,通过计算得出各结果的绝对误差,如表 9所示,其中 e_i 为 e 的第 i 个分量。可以看出,所有计算结果的绝对误差均控制在 10^{-11} 以内,结果有效。

稳定性分析 通过计算得出,由方程 (18) 确定的矩阵 L - I 的条件数为 87.19,病态程度一般,模型的稳定性一般。

2.3.5 结论

若要求种群内年龄为 $1 \sim 5$ 的收获量分别为 500,400,200,100,100,则稳定种群内年龄为 $1 \sim 5$ 的个体数量分别为 8481,2892,1335,601,141。要使种群各年龄收获量均为 500,则可以通过提高存活率,调节繁殖率以达到目的。

3 收获与建议

在本次实验中,我通过使用 Matlab, 掌握了数值求解线性代数方程组的方法,对迭代法的收敛性和解的稳定性有了更深的理解,用线性代数方程组解决了简化的实际问题,在解决实际问题的过程中,我对数学方法的原理和应用有了更深刻的理解。

希望助教能对每次的实验进行详细的解答,希望老师在未来的课堂上介绍 更多数学应用的前沿知识。

4 附录: Matlab 程序代码

4.1 Chap5-Ex1

```
perturb_b = 1;
3 | for n = [5,7,9]
       for eps = [1e-10, 1e-8, 1e-6]
           A1 = fliplr(vander(1 + 0.1 * (0:n-1)));
5
           A2 = hilb(n);
7
           b1 = sum(A1, 2);
           b2 = sum(A2, 2);
8
9
           % back up
           org A1 = A1;
10
           org_A2 = A2;
11
           org b1 = b1;
12
           org b2 = b2;
13
14
           % perturbation
           if perturb b
15
                b1(n) = b1(n) + eps;
16
                b2(n) = b2(n) + eps;
17
           else
18
19
                A1(n,n) = A1(n,n) + eps;
```

```
20
                A2(n,n) = A2(n,n) + eps;
            end
21
22
            % solve
23
            x1 = A1 \setminus b1;
24
            x2 = A2 \setminus b2;
            % relative error
25
            x = ones(n, 1);
26
27
            err1 = norm(x1 - x) / norm(x);
            err2 = norm(x2 - x) / norm(x);
28
29
            if perturb_b
30
                err_lim1 = cond(org_A1) * norm(b1 - org_b1) / norm(org_b1
                    );
                err_lim2 = cond(org_A2) * norm(b2 - org_b2) / norm(org_b2
31
            else
32
33
                err_A1 = norm(A1 - org_A1) / norm(A1);
                err_lim1 = cond(org_A1) / (1 - cond(org_A1) * err_A1) *
34
                    err A1;
                err_A2 = norm(A2 - org_A2) / norm(A2);
35
                err_lim2 = cond(org_A2) / (1 - cond(org_A2) * err_A2) *
36
                    err_A2;
            end
37
            % output
38
            fprintf('n: %d, cond(A1): %g, cond(A2): %g\n', n, cond(A1),
39
                cond(A2));
            fprintf('n: %d, eps: %g, err1: %.4f/%.4f, err2: %.4f/%.4f\n',
40
41
                n, eps, err1, err_lim1, err2, err_lim2);
            x1'
42
43
            x2 '
44
       end
   end
45
```

4.2 Chap5-Ex3

```
10
   x_gt = A \setminus b;
11
   % decomposition of A
13 D = diag(diag(A));
14 \mid L = -tril(A, -1);
   U = -triu(A, 1);
15
16
  % Jacobi
17
   B = D \setminus (L + U);
18
   f = D \setminus b;
19
20
   [x, cnt] = solve_iter(B, f, x0, iter_err);
   |abs_err = max(abs(x - x_gt));
21
22 | rho = max(abs(eig(B)));
   fprintf('Jacobi rho: %.3f, iter: %d, abs err: %f\n', rho, cnt,
23
       abs_err);
24
   % Gauss—Seidel
25
26
   B = (D - L) \setminus U;
   f = (D - L) \setminus b;
27
   [x, cnt] = solve_iter(B, f, x0, iter_err);
28
   abs_err = max(abs(x - x_gt));
29
   rho = max(abs(eig(B)));
30
   fprintf('Gauss-Seidel rho: %f, iter: %d, abs err: %f\n', rho, cnt,
31
       abs_err);
32
   function [x, cnt] = solve_iter(B, f, x0, err)
33
34
        cnt = 0;
35
        x = x0;
        while 1
36
37
            x_old = x;
38
            x = B * x + f;
39
            cnt = cnt + 1;
            if max(abs(x - x_old)) < err
40
                 break
41
42
            end
43
        end
   end
44
```

4.3 Chap5-Ex9

```
1 b = [0 0 5 3 0];

2 s = [0.4 0.6 0.6 0.4];

3 h = [0 500 400 200 100]';

4 n = length(b);
```

```
5
6 L = [b; diag(s) zeros(n-1, 1)];
7 I = eye(n);
8 x = (L - I) \ h
9 err = (L - I) * x - h
10 cond(L - I)
```

5 附录:详细计算结果

5.1 Chap5-Ex1

表 10: 在 $\boldsymbol{A}_1(n,n)$ 处加扰动后的 \boldsymbol{x}_1 求解结果

(n, ε)	$oxed{x_1^T}$
$(5, 10^{-10})$	1.0000, 1.0000, 1.0000, 1.0000, 1.0000
$(5, 10^{-8})$	1.0000, 1.0000, 1.0000, 1.0000
$(5, 10^{-6})$	0.9993, 1.0025, 0.9967, 1.0019, 0.9996
$(7, 10^{-10})$	1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000
$(7, 10^{-8})$	0.9999, 1.0002, 0.9995, 1.0005, 0.9997, 1.0001, 1.0000
$(7, 10^{-6})$	0.9950, 1.0245, 0.9503, 1.0536, 0.9676, 1.0104, 0.9986
$(9, 10^{-10})$	1.0000, 1.0000, 1.0000, 1.0001, 0.9999, 1.0000, 1.0000, 1.0000, 1.0000
$(9, 10^{-8})$	0.9998, 1.0015, 0.9961, 1.0060, 0.9944, 1.0034, 0.9987, 1.0003, 1.0000
$(9, 10^{-6})$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

表 11: 在 $\boldsymbol{A}_2(n,n)$ 处加扰动后的 \boldsymbol{x}_2 求解结果

(n, ε)	$ig oldsymbol{x}_2^T$
$(5, 10^{-10})$	1.0000, 1.0000, 1.0000, 1.0000, 1.0000
$(5, 10^{-8})$	1.0000, 1.0001, 0.9994, 1.0009, 0.9996
$(5, 10^{-6})$	0.9994, 1.0121, 0.9457, 1.0845, 0.9578
$(7, 10^{-10})$	1.0000, 1.0001, 0.9995, 1.0020, 0.9962, 1.0033, 0.9989
$(7, 10^{-8})$	0.9999, 1.0045, 0.9546, 1.1816, 0.6594, 1.2997, 0.9001
$(7, 10^{-6})$	0.9990, 1.0417, 0.5830, 2.6679, -2.1273, 3.7520, 0.0827
$(9, 10^{-10})$	1.0000, 1.0012, 0.9785, 1.1577, 0.4085, 2.2304, -0.4355, 1.8789, 0.7803
$(9, 10^{-8})$	$ \left \ 0.9999, 1.0054, 0.9055, 1.6933, -1.6000, 6.4079, -5.3093, 4.8628, 0.0343 \right $
$(9, 10^{-6})$	$ \left \ 0.9999, 1.0056, 0.9021, 1.7177, -1.6914, 6.5980, -5.5310, 4.9986, 0.0004 \right \\$

表 12: 在 $\boldsymbol{b}_1(n)$ 处加扰动后的 \boldsymbol{x}_1 求解结果

(n, ε)	$ig m{x}_1^T$
$(5, 10^{-10})$	1.0000, 1.0000, 1.0000, 1.0000
$(5, 10^{-8})$	1.0000, 1.0000, 1.0000, 1.0000
$(5, 10^{-6})$	1.0007, 0.9975, 1.0033, 0.9981, 1.0004
$(7, 10^{-10})$	1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000
$(7, 10^{-8})$	1.0001, 0.9998, 1.0005, 0.9995, 1.0003, 0.9999, 1.0000
$(7, 10^{-6})$	1.0050, 0.9755, 1.0497, 0.9464, 1.0324, 0.9896, 1.0014
$(9, 10^{-10})$	1.0000, 1.0000, 1.0000, 0.9999, 1.0001, 1.0000, 1.0000, 1.0000, 1.0000
$(9, 10^{-8})$	1.0002, 0.9985, 1.0039, 0.9940, 1.0056, 0.9966, 1.0013, 0.9997, 1.0000
$(9, 10^{-6})$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

表 13: 在 $\boldsymbol{b}_2(n)$ 处加扰动后的 \boldsymbol{x}_2 求解结果

(n, ε)	$ig oldsymbol{x}_2^T$
$(5, 10^{-10})$	1.0000, 1.0000, 1.0000, 1.0000, 1.0000
$(5, 10^{-8})$	1.0000, 0.9999, 1.0006, 0.9991, 1.0004
$(5, 10^{-6})$	1.0006, 0.9874, 1.0567, 0.9118, 1.0441
$(7, 10^{-10})$	1.0000, 0.9999, 1.0005, 0.9980, 1.0038, 0.9967, 1.0011
$(7, 10^{-8})$	1.0001, 0.9950, 1.0505, 0.7982, 1.3784, 0.6670, 1.1110
$(7, 10^{-6})$	1.0120, 0.4955, 6.0450, -19.1802, 38.8378, -32.2973, 12.0991
$(9, 10^{-10})$	1.0000, 0.9984, 1.0276, 0.7978, 1.7581, -0.5768, 2.8397, -0.1263, 1.2816
$(9, 10^{-8})$	1.00, 0.84, 3.76, -19.22, 76.81, -156.69, 184.97, -111.63, 29.16
$(9, 10^{-6})$	1, -15, 277, -2021, 7582, -15768, 18398, -11262, 2817