WHAT IS CLAIMED IS:

1	1. An electrode composition comprising:
2	a current conducting material; and
3	a heteroaryl-metal complex in contact with said current conducting material,
4	wherein said heteroaryl-metal complex is of the formula:
5	$[M-(L)_a]_mY_n$
6	wherein
7	a is an integer from 1 to 6;
8	m and n are absolute value of oxidation state of Y or [M-(L)a], respectively; or
9	if [M-(L)a] is not charged Y is not present and said heteroaryl-metal
10	complex is of the formula M-(L) _a ;
11	M is a metal;
12	Y is a counterion; and
13	each L is independently a heteroaryl moiety containing one or more
14	coordinating heteroatoms.
1	2. The electrode composition of Claim 1 having work function of about
2	3.5 eV or less.
1	3. The electrode composition of Claim 1, wherein said heteroaryl-metal
2	complex is of the formula M-(L) _a .
1	4. The electrode composition of Claim 3, wherein a is an integer of 2 or
2	3.
1	5. The electrode composition of Claim 4, wherein M is a transition metal.
1	6. The electrode composition of Claim 5, wherein M is selected from the
2	group consisting of Ru, Cr, Fe, Zn, Co, Mn, Cu, Os, Rh, and Ni.
1	7. The electrode composition of Claim 6, wherein M is selected from the
2	group consisting of Ru and Cr.
1	8. The electrode composition of Claim 5, wherein L is a polypyridyl or
2	phenanthroline moiety

l	9. The electrode composition of Claim 8, wherein L is selected from the
2	group consisting of optionally substituted 2,2'-bipyridyl, optionally substituted 1,10-
3	phenanthroline, optionally substituted 2,2',6',2"-terpyridyl and a derivative thereof.
,	10 The closered communities of Claim 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	10. The electrode composition of Claim 8, wherein L is a polypyridyl
2	moiety.
1	11. The electrode composition of Claim 10, wherein L is selected from the
2	group consisting of 4,4',5,5'-tetramethyl-2,2'-bipyridyl; 2,2'-bipyridyl; and 2,2',6',2"-
3	terpyridyl.
1	12. The electrode composition of Claim 1, wherein said current conducting
2	material is a metal or a metal alloy.
1	13. The electrode composition of Claim 12, wherein said current
2	conducting material comprises silver, gold or a mixture thereof.
1	14. A light emitting device comprising
2	an anode;
3	a cathode comprising a current conducting material in contact with a
4	heteroaryl-metal coordination complex; and
5	an organic light emissive material located inbetween said anode and said
5	heteroaryl-metal coordination complex.
ı	15. The light emitting device of Claim 14, wherein the work function of
2	
2	said heteroaryl-metal coordination complex is 3.5 eV or less.
Ì	16. The light emitting device of Claim 15 further comprising an organic
2	hole transport material located inbetween said light emissive material and said anode.
ı	17. The light emitting device of Claim 16, wherein said heteroaryl-metal
)	<i></i>
٤	coordination complex is thermally evaporated to form a conducting thin film.
1	18. An electronic device comprising an electrode of Claim 1.

1	19. A composition comprising a metal or a metal alloy in contact with a
2	heteroaryl-metal coordination complex, wherein said heteroaryl-metal coordination complex
3	is of the formula:
4	M - $(L)_a$
5	wherein
6	a is an integer from 1 to 6;
7	M is a metal;
8	Y is a counterion; and
9	each L is independently a heteroaryl moiety containing one or more
10	coordinating heteroatoms.
1.	20. A method for producing a light emitting device, said method
2	comprising:
3	forming a thin film of heteroaryl-metal coordination complex on a first
4	•
5	electrode; and attaching a second electrode to the heteroaryl-metal coordination complex
	film, wherein one of the first or the second electrodes comprises a thin film of light emissive
6	material and one of the first or the second electrode is an anode and the other is a cathode.
1	21. The method of Claim 20, wherein the heteroaryl-metal coordination
2	complex is vacuum vapor deposited onto the first electrode.
_	
1	22. The method of Claim 21, wherein the first electrode comprises a metal
2	oxide coated with a thin film of a conducting polymer.
1	23. The method of Claim 20, wherein the second electrode is vacuum
2	vapor deposited onto the heteroaryl-metal coordination complex.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	24. The method of Claim 20, wherein the first electrode comprises a
2	patterned substrate.