Residual diagnostics

Fitted Values

Each observation in a time series can be forecast using all previous observations. We call these **fitted values** and they are denoted by $\hat{y}_{t|t-1}$, meaning the forecast of y_t based on observations y_1,\ldots,y_{t-1} . We use these so often, we sometimes drop part of the subscript and just write \hat{y}_t instead of $\hat{y}_{t|t-1}$. Fitted values always involve one-step forecasts.

Actually, fitted values are often not true forecasts because any parameters involved in the forecasting method are estimated using all available observations in the time series, including future observations. For example, if we use the average method, the fitted values are given by

$$\hat{y}_t = \hat{c}$$

where \hat{c} is the average computed over all available observations, including those at times *after* t. Similarly, for the drift method, the drift parameter is estimated using all available observations. In this case, the fitted values are given by

$$\hat{y}_t = y_{t-1} + \hat{c}$$

Fitted Values

where $\hat{c} = (y_T - y_1)/(T - 1)$. In both cases, there is a parameter to be estimated from the data. The "hat" above the c reminds us that this is an estimate. When the estimate of c involves observations after time t, the fitted values are not true forecasts. On the other hand, naïve or seasonal naïve forecasts do not involve any parameters, and so fitted values are true forecasts in such cases.

Residuals

The "residuals" in a time series model are what is left over after fitting a model. For many (but not all) time series models, the residuals are equal to the difference between the observations and the corresponding fitted values:

$$e_t = y_t - \hat{y}_t.$$

Residuals are useful in checking whether a model has adequately captured the information in the data. A good forecasting method will yield residuals with the following properties:

- 1. The residuals are uncorrelated. If there are correlations between residuals, then there is information left in the residuals which should be used in computing forecasts.
- 2. The residuals have zero mean. If the residuals have a mean other than zero, then the forecasts are biased.

Residuals

Any forecasting method that does not satisfy these properties can be improved. However, that does not mean that forecasting methods that satisfy these properties cannot be improved. It is possible to have several different forecasting methods for the same data set, all of which satisfy these properties. Checking these properties is important in order to see whether a method is using all of the available information, but it is not a good way to select a forecasting method.

If either of these properties is not satisfied, then the forecasting method can be modified to give better forecasts. Adjusting for bias is easy: if the residuals have mean m, then simply add m to all forecasts and the bias problem is solved.

Residuals

In addition to these essential properties, it is useful (but not necessary) for the residuals to also have the following two properties.

- 3. The residuals have constant variance.
- 4. The residuals are normally distributed.

These two properties make the calculation of prediction intervals easier . However, a forecasting method that does not satisfy these properties cannot necessarily be improved. Sometimes applying a Box-Cox transformation may assist with these properties, but otherwise there is usually little that you can do to ensure that your residuals have constant variance and a normal distribution. Instead, an alternative approach to obtaining prediction intervals is necessary.