Al Assignment-03 Report

Coding Assignment

Problem: 01

Task: 1

Edge Relation is found best on the basis of logical relations between each and every pair possible, also maintaining the basic property of the graph that it should follow, which is a

Directed Acyclic Graph.

Edges:

Start_Stop_ID -> Distance
End_Stop_ID -> Distance
Start_Stop_ID -> Zones_Crossed
End_Stop_ID -> Zones_Crossed
Start_Stop_ID -> Route_Type
End_Stop_ID -> Route_Type
Start_Stop_ID -> Fare_Category
End_Stop_ID -> Fare_Category
Distance->Fare -> Category
Zones_Crossed -> Fare_Category
Route_Type -> Fare_Category

Got 100% accuracy

Total Test Cases: 350

Total Correct Predictions: 350 out of 350

Model accuracy on filtered test cases: 100.00%

Task: 2 Edges:

Start_Stop_ID -> End_Stop_ID Start_Stop_ID -> Fare_Category Distance -> Fare_Category Zones_Crossed -> Fare_Category Route_Type -> Fare_Category Distance -> Zones_Crossed

Edge Pruning Reasoning:

Applying Random pruning to simplify the Bayesian Network by removing a subset of edges randomly was irrespective of the contribution of edges to the target variable, whether it was direct or indirect. This reduced the complexity of the model and brought faster training times and runtime efficiency. Although random pruning did not take into consideration the significance of the edges, the number of conditional dependencies was notably decreased in contrast, and the CPTs became simpler with low memory usage. This trade-off offered a fair accuracy of prediction while improving computational performance.

Took much less time the base model, where it took 868s it only took 22s. Got same results 100% accuracy

Model saved pruned_model.pkl
Time of Execution to pruned: 22.021241426467896

Total Test Cases: 350

Total Correct Predictions: 350 out of 350

Model accuracy on filtered test cases: 100.00%

Task: 3 Edges:

Fare_Category -> End_Stop_ID
Distance -> Fare_Category
Distance -> Start_Stop_ID
Fare Category -> Zones Crossed

Took even less time to execute. Got accuracy of 100%

Model saved optimized_model.pkl
Time of Execution to optimized: 13.634575366973877

Total Test Cases: 350
Total Correct Predictions: 350 out of 350
Model accuracy on filtered test cases: 100.00%

Problem 03

The best result in terms of accuracy I found for the Straight Until Obstacle policy, On average, this policy has given a better accuracy from the Random Walk Policy

Seed Values: [235, 42, 100, 30], For all screenshots of results attached from the next page


```
For seed 30

Environment setup complete with a grid of size 10x10.

Simulating Roomba movement for policy: random_walk

Simulating Movement: 100%| 50/50 [00:00<00:00, 48377.21it/s]

Simulating Movement: 100%| 50/50 [00:00<?, ?it/s]

Simulating Roomba movement for policy: straight_until_obstacle

Processing policy: random_walk

Tracking accuracy for random walk policy: 38.00%

Processing policy: straight_until_obstacle

Tracking accuracy for straight until obstacle policy: 74.00%
```


Estimates Paths.csv

	Seed ♡ ÷	Policy ♥ ÷	Estimated Path ${\mathbb 7}$	\$
1	235	random_walk	[((5, 4), 'N'), ((5, 3), 'N'),	((
2	235	straight_until_obstacle	[((5, 6), 'S'), ((5, 7), 'S'),	((
3	100	random_walk	[((4, 5), 'W'), ((4, 5), 'N'),	((
4	100	straight_until_obstacle	[((5, 4), 'N'), ((5, 3), 'N'),	((
5	42	random_walk	[((5, 4), 'N'), ((5, 4), 'E'),	((
6	42	straight_until_obstacle	[((5, 6), 'S'), ((5, 7), 'S'),	((
7	30	random_walk	[((5, 4), 'N'), ((5, 4), 'S'),	((
8	30	straight_until_obstacle	[((4, 5), 'W'), ((3, 5), 'W'),	((