Übungsblatt-2 Lineare Algebra (Mengen)-Kapitel 2-Lösungen

Aufgabe 1 : Geben Sie die Elemente der folgenden Mengen an

- a) $\{x | x \in \mathbb{N}, 2.5 < x < 12, x \text{ ist durch 2 und durch 3 teilbar}\}$
- b) $\{x | x \in \mathbb{Z}, -15 \le x \le 43, x \text{ ist durch } 13 \text{ teilbar}\}$

Lösung Aufgabe 1:

- a) $\{x | x \in \mathbb{N}, 2.5 < x < 12, x \text{ ist durch 2 und durch 3 teilbar}\} = \{6\}$
- b) $\{x | x \in \mathbb{Z}, -15 \le x \le 43, x \text{ ist durch } 13 \text{ teilbar}\} = \{-13, 0, 13, 26, 39\}$

Aufgabe 2 : Gegeben sind die Mengen $A = \{1, 2, 3\}, B = \{1, 3, 5\}, C = \{2, 4, 5\}.$

- a) Geben Sie die Potenzmengen der folgenden Mengen an : $A, A \cap B, (A \cup C) \cap B$
- b) Geben Sie das kartesische Produkt $(A \cap B) \times C$ an.

Lösung Aufgabe 2:

a) Zunächst gilt : $A \cap B = \{1, 3\}, A \cup C = \{1, 2, 3, 4, 5\}, (A \cup C) \cap B = \{1, 3, 5\}.$

Für die Potenzmengen ergibt sich :

$$P(A) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}$$

$$P(A \cap B) = \{\{\}, \{1\}, \{3\}, \{1, 3\}\}\}$$

$$P((A \cup C) \cap B) = \{\{\}, \{1\}, \{3\}, \{5\}, \{1, 3\}, \{1, 5\}, \{3, 5\}, \{1, 3, 5\}\}\}$$

b)
$$(A \cap B) \times C = \{(1, 2), (1, 4), (1, 5), (3, 2), (3, 4), (3, 5)\}$$

Aufgabe 3: Beweisen Sie für Mengen $A,B,C\subseteq M$ mittels Benutzung von Wahrheitstafeln

a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

b) $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$

c) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Lösung Aufgabe 3:

Aufgabe 3a)

x∈A	x∈B	x∈C	x∈B∩C	x ∈ A U (B ∩ C)	x e A U B	x e A U C	x ∈ (A U B) ∩ (A U C)
W	W	W	W	W	W	W	W
W	W	F	F	W	W	W	W
W	F	W	F	W	W	W	W
W	F	F	F	W	W	W	W
F	W	W	W	W	W	W	W
F	W	F	F	F	W	F	F
F	F	W	F	F	F	W	F
F	F	F	F	F	F	F	F

Aufgabe 3 b)

x∈A	x e B	x e A U B	$x \in (A \ UB)^{C}$	$x \in A^{-C}$	<i>x</i> ∈ <i>B</i> ^C	$x \in (A^{c} \cap B^{c})$
W	W	W	F	F	F	F
W	F	W	F	F	W	F
F	W	W	F	W	F	F
F	F	F	W	W	W	W

Aufgabe 3c)

x є A	x∈B	x∈C	x∈B∩C	x∈A\B∩C	x ∈ A \ B	x∈A∖C	x ∈ (A \ B) U (A \ C)
W	W	W	W	F	F	F	F
W	W	F	F	W	F	W	W
W	F	W	F	W	W	F	W
W	F	F	F	W	W	W	W
F	W	W	W	F	F	F	F
F	W	F	F	F	F	F	F
F	F	W	F	F	F	F	F
F	F	F	F	F	F	F	F

Aufgabe 4 : Beweisen Sie für die Mengen $A,B,C\subseteq M$ folgende Mengengleichungen mittels der Regeln / Gesetze der Mengenalgebra

a)
$$A \cap (B \cup \bar{A}) = A \cap B$$
 b) $(A \cap B) \cup (\bar{A} \cap B) = B$ c) $A \triangle (A \cup B) = B \setminus A$

d)
$$A\triangle(A\cap B)=A\setminus B$$
 e) $(A\cap B)\cup (B\cap C)\cup (C\cap \overline{A})=(A\cap B)\cup (C\cap \overline{A})$

f)
$$(A \cup \overline{B} \cup \overline{C}) \cap (A \cup (B \cap C)) = A$$

Lösung zu Aufgabe 4:

Lösung zu a) :
$$A \cap (B \cup \bar{A}) = (A \cap B) \cup (A \cap \bar{A}) = A \cap B$$

Lösung zu b) :
$$(A \cap B) \cup (\bar{A} \cap B) = (A \cup \bar{A}) \cap B = B$$

Lösung zu c):
$$A\triangle(A\cup B)=(A\setminus (A\cup B))\cup((A\cup B)\setminus A)=(A\cap (\overline{A\cup B}))\cup((A\cup B)\cap \overline{A})=(A\cup B)\cup((A\cup B))\cup((A\cup B)$$

$$(A \cap (\bar{A} \cap \bar{B})) \cup ((A \cup B) \cap \bar{A}) = ((A \cap \bar{A}) \cap \bar{B}) \cup ((A \cup B) \cap \bar{A}) = (A \cup B) \cap \bar{A} = (A \cup B)$$

$$(A \cap \bar{A}) \cup (B \cap \bar{A}) = B \cap \bar{A} = B \setminus A$$

Lösung zu d):
$$A\triangle(A\cap B) = (A\setminus (A\cap B)) \cup ((A\cap B)\setminus A) = (A\cap (\overline{A\cap B})) \cup ((A\cap B)\cap \overline{A}) = (A\cap (\overline{A\cap B})) \cup ((A\cap A)\cap \overline{A}) = (A\cap (\overline{A\cap B})) \cup ((A\cap A)\cap \overline{A}) = (A\cap (\overline{A\cap A})) \cup (($$

$$(A \cap (\overline{A \cap B})) \cup ((B \cap A) \cap \overline{A}) = (A \cap (\overline{A \cap B})) \cup (B \cap (A \cap \overline{A})) =$$

$$A\cap (\overline{A\cap B})=A\cap (\bar{A}\cup \bar{B})=(A\cap \bar{A})\cup (A\cap \bar{B})=A\cap \bar{B}=A\setminus B$$

Lösung zu e):

$$(A\cap B)\cup (B\cap C)\cup (C\cap \overline{A})=(A\cap B)\cup \left[(B\cap C)\cap (A\cup \overline{A})\right]\cup (C\cap \overline{A})=$$

$$(A \cap B) \cup (B \cap C \cap A) \cup (B \cap C \cap \overline{A}) \cup (C \cap \overline{A}) = (A \cap B) \cup (C \cap \overline{A}).$$

Lösung zu f):

$$(A \cup \overline{B} \cup \overline{C}) \cap (A \cup (B \cap C)) = (A \cup (\overline{B} \cup \overline{C})) \cap (A \cup (B \cap C)) =$$

$$A \cup ((\overline{B} \cup \overline{C}) \cap (B \cap C)) = A \cup ((\overline{B \cap C}) \cap (B \cap C)) = A \cup \emptyset = A$$

Aufgabe 5 (*): Von den als Mitglied eingetragenen Personen eines Sportvereins ist folgendes bekannt

- 1. Keine Person spielt zugleich Handball- und Fussball
- 2. Alle eislaufenden Personen spielen auch Fußball
- 3. Jede Person ist Eisläufer oder Skifahrer

Begründen Sie, dass aus diesen Angaben folgt, dass jede handballspielende Person auch Ski fährt.

Lösung zu Aufgabe 5 (*): Seien

- V die Menge der Personen, die Mitglied in dem Sportverein sind
- H die Menge der Personen, die Handball spielen
- F die Menge der Personen, die Fußball spielen
- E die Menge der Personen, die Eisläufer sind
- S die Menge der Personen, die Skifahrer sind

Dann gilt, die 3 Vorgaben aus der Aufgabe in die formale Sprache der Mengenlehre übersetzt

- 1. Keine Person spielt zugleich Handball- und Fussball : $H \cap F = \emptyset$.
- 2. Alle eislaufenden Personen spielen auch Fußball : $E \subseteq F$.
- 3. Jede Person ist Eisläufer oder Skifahrer : $E \cup S = V$.

Nehme eine beliebige handballspielende Person, genannt p, her - dann gilt

- $p \in H \Rightarrow p \notin F$, we en $H \cap F = \emptyset$
- $p \notin E$, weil andernfalls gelten würde $p \in E \subset F \Rightarrow p \in F$, was ja gerade nicht der Fall ist
- Wenn $p \notin E$ und nach 3. gilt $E \cup S = V$, muss $p \in S$ gelten

Aufgabe 6 (*): Bei einem psychologischen Experiment werden 50 Mäuse in ein Labyrinth geschickt. Man konstatiert folgendes :

25 Mäuse waren männlich; 25 Mäuse waren vorher abgerichtet davon 10 Männchen; 20 Mäuse liefen am ersten Abzweigpunkt nach links, davon 4 Männchen. Von den vorher abgerichteten Mäusen gingen 15 nach links, davon waren 3 männlich. Bestimmen Sie die Anzahl der weiblichen Mäuse, die vorher nicht abgerichtet waren und die am ersten Abzweigpunkt nicht nach links liefen.

Lösung zu Aufgabe 6 (*): Seien

- M die Menge der männlichen Mäuse
- A die Menge der Mäuse, die vorher abgerichtet wurden
- L die Menge der Mäuse, die am ersten Abzweigpunkt nach links laufen

Dann gilt nach den in der Aufgabe genannten Konstatierungen

- 25 Mäuse waren männlich : |M| = 25
- 25 Mäuse waren vorher abgerichtet, davon 10 Männchen : $|A| = 25, |A \cap M| = 10$
- 20 Mäuse liefen am ersten Abzweigpunkt nach links, davon 4 Männchen : $|L| = 20, |L \cap M| = 4$
- Von den vorher abgerichteten Mäusen gingen 15 nach links, davon waren 3 männlich: $|L \cap A| = 15, |L \cap A \cap M| = 3$

Gesucht ist $|\overline{M} \cap \overline{A} \cap \overline{L}|$.

Nun gilt $\overline{M} \cap \overline{A} \cap \overline{L} = \overline{M \cup A \cup L}$.

Nach der Siebformel für 3 Mengen gilt :

$$|M\cup A\cup L|=|M|+|A|+|L|-|M\cap A|-|M\cap L|-|A\cap L|+|M\cap A\cap L|$$

Einsetzen der o.g. Zahlen ergibt sofort

$$|M \cup A \cup L| = |M| + |A| + |L| - |M \cap A| - |M \cap L| - |A \cap L| + |M \cap A \cap L| = |M| + |M| +$$

25+25+20-10-4-15+3=44, was impliziert, dass das Komplement der Menge $M\cup A\cup L$ die Mächtigkeit 50-44=6, so dass die Antwort lautet :

Die Anzahl der weiblichen Mäuse, die vorher nicht abgerichtet waren und die am ersten Abzweigpunkt nicht nach links liefen, beträgt 6.