Databases

The Conceptual approach in DB Design

References

Further study required

- "Fundamentals of Database Systems", Elmasri & Navathe, 6th Edition, Adison Wesley, 2011:
 - Chapter 7: Data Modeling Using the Entity-Relationship (ER) Model
 - Chapter 8: The Enhanced Entity-Relationship (EER)
 Model
 - Chapter 9: Relational Database Design by ER- and EER-to-Relational Mapping

Databases: macro view

Relational DB Project: goals

A well modelled relational database should:

- 1. Answer only to end-users' needs
- 2. Avoid information redundancy
- 3. Avoid empty cells on tables, specially FKs
- 4. Avoid disk space waste
- 5. Simplify *update*, *insert* and *delete* operations on data

DB design using Normalization

(Previously on "Chapter 4")

DB design using a Conceptual approach

(and now)

Importance of the Conceptual design (in general)

Truth #1

A data model allows engineers to <u>share</u> a standardized view of data relationships.

Truth #2

A Conceptual Model, in particular, defines data relationships in a more *natural* language than Normalization

Approach comparison

Programming languages

Assembly ----- SQL

DB Design

Normalization ----- Conceptual

Why Conceptual Design (vs normalization)?

- Nearer to Human reasoning
- Easier to scale
- Easier to read

1st, Requirements Analysis

- 1.1 Define main business processes (BP)
 - What is the company all about?
- 1.2 Define business rules for the BP
 - •How does the real system works?
- 1.3 Understand information needs regarding the BP
 - •Which questions need an answer?
 - Distinguish operational from analytical information

2nd, Entity-Relationship Diagram (ERD)

(Diagrama de Entidade-Relationamento)

2.1 Define entities

- Events
- Active actors
- Passive actors
- Types/categories

2.2 Document:

- Entities and Relationships
- Attributes
- Domains

3rd, Logical Model

3.1 Transform the ERD --> Logical Model (specific rules apply, see *Moodle*)

3.2 Validate the ERD

- Test information retrieval
- Apply the Normalization Technique

4th, Physical Model

4.1 Define

- Datatypes
- Domains
- Candidate keys/Uniqueness rules

4.2 Document extra data integrity rules

Data relationships (ex: col1>=col2, birth date<system date)</pre>

Consider the following tasks:

- 1-Gather requirements 2-Do Physical Model
- 3-Do Logical Model 4-Do Conceptual Model

Which of the following sequences correctly describes the design of an operational database?

- a) 1-2-4-3
- **b)** 1-3-4-2
- c) 1-4-3-2
- **d)** 4-1-3-2

Example

Case study

World's most visited institution: a Retail Sales Company

Exercise

- Analyze given information requirements
- Build conceptual model
- Build logical model (tables)

Example

1st step, Requirements Analysis

R E A L I

CONTINENTS	=		
Modelo Continente Hipermercado Av Dr Mendes Silva 211 St Antonio 3000- Coimbra Matriculada CRC Porto NIPO: PT50 C.S:179.360.000,00 EUR SIRPEEE: F MCH Coimbra Shopping Tel: 239700100 Fax:239402305 Original Fatura Simplificada Nro: FS AAF221/056282	Olivais 2011475		
Mercearia Salgad: 23% 5197130 ACUCAR STICKS C 1,72 23% 2005801 ACUC RR AM 1KG 0,99			
Mercearia Doce: 23% 4161997 CEREAIS ESTRELI SUPER PRECO	2,57 -0,90		
23% 4345510 CHOC CULI.200G 6 x 0,74	4,44		
Bebidas: 6% 2050360 NECTAR COMPAL P 6% 2050361 NECTAR COMPAL P 6% 4387651 NECTAR COMPAL A 6% 5418852 NECTAR COMPAL M	0,99 0,99 0,99 1,49		

Example, 1st step: Requirement Analysis

- Main business process: sales
- Business rules:
 - Clients can participate in several sales;
 - Each sale requires one client;
 - Some clients never buy products, but they are clients anyway;
- Information needs:
 - Each client's full name;
 - Which clients bought products and when;
 - In how many sales did a client participate;
 - Which clients were never involved in a sale.
 - How much time does a customer waste buying products.

Example, 2nd step: the ERD

(type of the participation)

$$N = many$$

$$1 = just one$$

(cardinality of the relationship)

Example, 2nd step: the ERD

The ERD (clean version):

Example, 3rd step: Logical Model

- 3.1 Transform Conceptual Model --> Logical Model (see *Moodle*)
 - Transform relationships one by one into logical tables

clients

<u>id</u>	name	
1	António Freitas	
2	Rita Marujo	
3	Carlos da Silva	
	•••	

OR

clients (<u>id</u> , name)
clients
sales(<u>id</u> , startDate, endDate, idClient)

sales

<u>id</u>	startDate	endDate	idClient
625	05-07-2013 10:50	05-07-2013 10:54	1
626	04-08-2013 10:50	04-08-2013 10:50	1
627	07-08-2013 9:20	07-08-2013 9:20	3
		•••	

Bold = primary key
Italic = foreign key

Example (refinement 1), 1st step

- (new) Business rules:
 - A client can buy the same product several times;
 - A product can be sold many times, until the stock runs out;
- (new) Information needs:
 - What is the name and the current price of the products that each client bought;

Example (refinement 1), 2nd step

Example (refinement 1), 3rd step

OR

Logical Model

sale id

625 625

626

626

product id sa

400

401

401 402

sales			
<u>id</u>	startDate	endDate	idClient
	•••	***	
625	05-07-2013 10:50	05-07-2013 10:54	1
626	04-08-2013 10:50	04-08-2013 10:50	1
627	07-08-2013 9:20	07-08-2013 9:20	3

clients (<u>id</u>, name)

products (<u>id</u>, name, curr_price, stock)

products sales

product id, sale id)

clients

sales(<u>id</u>, startDate, endDate, idClient)

Bold = primary key

Italic = foreign key

Consider the following ER diagram:

- A. How many tables will the logical model have?
- B. Which statements are true considering the ERD? (choose all that apply)
 - a) Each student has several email addresses.
 - b) Each student has, at least, one project.
 - c) Each student will allways have one course
 - d) Each teacher can guide several projects.
 - e) Teachers and students can have the same email.
 - f) Each teacher may guide projects of diferent courses.

C. Which of the following diagrams represents the develop relationship?

Example (refinement 2), 1st step

(new) Business rules:

 Some products have specific storage conditions, like juices, frozen products, fresh vegetables, fresh meat, etc.

(new) Information needs:

- What is the minimum and maximum temperature of frozen products?
- What is the storage capacity (in liters) of each juice package?

Example (refinement 2), 2nd and 3rd steps

Example (refinement 2), 2nd and 3rd steps

ERD Solution = Hierarchy

Each product can be a frozen product or a juice, but not both

products

<u>id</u>	name	curr_price	stock
400	Frozen shrimp 60/80	12.99	450
401	Harry Potter (4)	14.99	100
402	Christmas socks - XXXL	3.49	200
403	Plum Nectar	1.49	250
404	Beer 7%	5.00	1000
405	Frozen shrimp 40/60	10.49	1000

products_juices

<u>product_id</u>	capacity
403	1
404	0.33

products_frozen

product_id	temp_min	temp_max
400	-18	-12
405	-18	-12

Example (refinement 3), 1st step

(new) Business rules:

- Foreigner clients will be asked for their residence country name and country-specific documentation at the time of the first payment.
- Clients (domestic and foreigner) can be considered premium and, in such cases they will have a lifetime discount in every sale.

(new) Information needs:

- Which clients live in another country?
- How many domestic and foreign clients are premium?
- How many domestic and foreign clients are not premium?
- What is the ratio of clients per country?
- What is the average lifetime discount of premium clients?
- What is the average lifetime discount of premium clients per country?

Example (refinement 3), 2nd and 3rd steps

Example (refinement 3), 2nd and 3rd steps

ERD Solution = Hierarchy

Overlap =
Each client can be a <u>foreign client</u>, a

<u>premium client</u> or <u>both</u>

clients

<u>id</u>	name	
1	António Freitas	
2	Rita Marujo	
3	Carlos da Silva	
4	Rita Marujo	
5	Mary Popkins	

foreign_clients

<u>client_id</u>	country
3	FR
4	FR
5	EN

premium_clients

<u>client_id</u>	lifetime_disc
1	0.10
4	0.12
5	0.20

Example (refinement 4), 1st step

(new) Business rules:

- The company allows sales to be payed in two, three or six parcels.
- In such authorized cases, the client will choose the number of parcels and the day in which the first parcel will be charged from its account.

(new) Information needs:

- Which clients regularly use the parcel-option in their payments?
- What is the most chosen type of payment? (full or in two/three/six parcels)
- When will each client pay all its debts?

Example (refinement 4), 2nd and 3rd steps

Example (refinement 4), 2nd and 3rd steps

ERD Solution = Hierarchy

sales

<u>id</u>	startDate	endDate
	•••	•••
625	05-07-2013 10:50	05-07-2013 10:54
626	04-08-2013 10:50	04-08-2013 10:50
627	07-08-2013 9:20	07-08-2013 9:20
		•••

sales_in_parcels

_		
sale_id	#parcels	first_day_payment
	•••	•••
625	6	05-10-2013

ERD (after refinement 4)

Consider the following ER diagram:

A. Which of the following options shows the corresponding logical model (choose one):

a)	Α (<u>a1</u> , a2)	b) A (<u>a1</u> , a2, z1)
	A1 (<u>a1</u> , z1)	
	C (<u>c2</u> , c1)	C (<u>c2</u> , c1)
	A_C (a1, <u>c2</u> , m)	A_C (a1, <u>c2</u> , m)
c)	A (a1 , a2) ∡ A	d) None of the previous.
	A1 (<u>a1</u> , z1)	
	C (<u>c2</u> , c1, m, a1)	

B. Choose the answers which are correct from reading the ERD (choose all that apply):

- a) Entity A represents a subset of entity A1.
- b) The elements of A1 can be the same elements of A.
- c) Each element of C can relate to several elements of A.
- d) Each element of A1 can relate to several elements of A.
- e) For each element of C there is at least one element of A.

Logical Model (after refinement 4)

Example (refinement 5), 1st step

- (new) Business rules:
 - Each client can have multiple telephone numbers
 - Clients can share telephone numbers
- (new) Information needs:
 - The first and last name of each client
 - The telephone number(s) of each client
 - The age of each client

Example (refinement 5), 2nd and 3rd steps

ERD Solution = new types of attributes

clients

<u>id</u>	birthDate	firstName	lastName
1		Anónimo	
100298847	21-10-1998	Rui	Oliveira
100298848	02-09-1987	Rita	Marujo
100298849	31-01-1975	João	Andrade

phoneNumbers

<u>idClient</u>	<u>phoneNr</u>
100298847	244000001
100298848	244000022
100298849	244000001
100298849	960004444
	100298847 100298848 100298849

Types of attributes

ERD representation	Type of attribute
attribute1)	Derived (in PT, calculado/derivado)
attribute3 attribute4 attribute2	Composite (in PT, composto)
attribute	Simple (in PT, simples)
attribute5	Multivalued (in PT, <i>multivalor</i>)

Consider the following ER diagram:

A. Which of the following diagrams is the most similar to the previous ERD?

- B. How/where would you represent the total number of students coming from each university?
- C. How/where would you represent the total number of Erasmus students?

Check the following ERD for representation errors.

The end (for now).