1. Find the first and second derivatives of y = f(x) at x = 1.5 from the following data. Also find f'(x) at x = 3.5

` /						
X	1.5	2	2.5	3	3.5	4
У	3.375	7.0	13.625	24	38.875	59

Sol: The value x = 1.5 is beginning value of the table. So use Newton's forward difference formula to get the derivatives

X	y	Δy	Δ^2 y	Δ^3 y	Δ^4 y	Δ^5 y
1.5	3.375	·	·	·	•	•
		3.625				
2	7.0		3.000			
		6.625		0.75		
2.5	13.625		3.75		0.0	
		10.375		0.75		0.0
3	24		4.50		0.0	0.0
		14.875		0.75		
3.5	38.875		5.25			
	5 0	20.125				
4	59					

 $x_0 = 1.5$. Hence u = 0.

$$\left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left[\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \dots \right]$$

$$= \frac{1}{0.5} \left[3.625 - \frac{3}{2} + \frac{0.75}{3} \right] = 4.75$$

$$\left(\frac{d^2y}{dx^2}\right)_{x=x_0} = \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 - \dots \right]$$

$$= \frac{1}{(0.5)^2} [3.00 - 0.75] = 9$$

x = 3.5 is nearer to the end value of the table. So, use Newton's Backward difference formula to get the derivative.

$$\frac{dy}{dx} = \frac{1}{h} \left[\nabla y_n + \frac{2\nu + 1}{2!} \nabla^2 y_n + \frac{3\nu^2 + 6\nu + 2}{3!} \nabla^3 y_n + \dots \right]$$

$$v = \frac{x - x_n}{h} = \frac{3.5 - 4}{0.5} = -1$$

$$= \frac{1}{0.5} \left[20.125 + \frac{2(-1)+1}{2!} (5.25) + \frac{3(-1)^2 + 6(-1)+2}{3!} (0.75) \right] = 34.75$$

2. Find the values of cos30° and cos60° from the following table

x°	35	40	45	50	55
tanx°	0.7002	0.8391	1	1.1918	1.4281

Sol: 30° is nearer to the beginning value of the table

x°	$y = tanx^{\circ}$	Δy	Δ^2 y	Δ^3 y	Δ^4 y
35	0.7002				
		0.1389			
40	0.8391		0.0220		
		0.1609		0.0089	
45	1		0.0309		0.0227
		0.1918		0.0316	0.0227
50	1.1918		0.0445		
		0.2363			
55	1.4281				

$$\therefore \frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 + \frac{2u - 1}{2!} \Delta^2 y_0 + \frac{3u^2 - 6u + 2}{3!} \Delta^3 y_0 + \frac{4u^3 - 18u^2 + 22u - 6}{4!} \Delta^4 y_0 + \dots \right]$$

$$\frac{dy}{dx} = \frac{d}{dx} \tan x = \sec^2 x;$$
 $u = \frac{x - x_0}{h} = \frac{30 - 35}{5} = -1$

$$\sec^2 30 = \frac{1}{5^{\circ}} \left[\frac{0.1389 + \frac{2(-1) - 1}{2!} (0.0220) + \frac{3(-1)^2 - 6(-1) + 2}{3!} (0.0089) + \frac{4(-1)^3 - 18(-1)^2 + 22(-1) - 6}{4!} (0.0227) \right] = 1.2883$$

Wkt
$$\sec^2 30^\circ = \frac{1}{\cos^2 30}$$
. This implies $\cos^2 30^\circ = 0.7762$

Hence $\cos 30^{\circ} = 0.8810$.

The value 60 is outside the given interval which is nearer to the end value of the table. Therefore use Newton's backward difference interpolation formula,

$$\frac{dy}{dx} = \frac{1}{h} \left[\nabla y_n + \frac{2v+1}{2!} \nabla^2 y_n + \frac{3v^2 + 6v + 2}{3!} \nabla^3 y_n + \frac{4v^3 + 18v^2 + 22v + 6}{4!} \nabla^4 y_n + \dots \right]$$

$$\frac{dy}{dx} = \frac{d}{dx} \tan x = \sec^2 x;$$
 $v = \frac{x - x_n}{h} = \frac{60 - 55}{5} = 1$

$$\sec^2 60 = \frac{1}{5} \left[0.2363 + \frac{3}{2} (0.0445) + \frac{11}{6} (0.0316) + \frac{50}{24} (0.0227) \right] = 3.8706$$

This implies $\cos^2 60^\circ = 0.258358$. Hence $\cos 60^\circ = 0.5083$. In this problem $h = 5^\circ$, convert in to radians. $5^\circ = 5 * (\pi/180)$ radians.

3. Find the gradient of the road at the middle point of the elevation above a datum line of seven points of road which are given below

X	0	300	600	900	1200	1500	1800
У	135	149	157	183	201	205	193

Sol: Forward difference table

X	у	Δy	Δ^2 y	Δ^3 y	Δ^4 y	Δ^5 y	Δ^6 y
0	135y ₋₃						
		14					
300	149 _{y-2}		-6				
		8		24			
600	157y ₋₁		18		-50		
		26		-26		70	
900	$183y_0$		-8		20		-86
		18		-6		-16	00
1200	$201y_1$		-14	_	4		
		4		-2			
1500	205y ₂		-16				
1000	102	-12					
1800	193 y ₃						

Here $x_0 = 900$. We are using forward difference table. The upper most diagonal values are forward differences of y_{-3} . Stirling's central difference formula to get the derivative for equal intervals is used.

$$\left(\frac{dy}{dx}\right)_{x=x_0}^{1} = \frac{1}{h} \left[\frac{1}{2} (\Delta y_0 - \Delta y_{-1}) - \frac{1}{12} (\Delta^3 y_{-1} + \Delta^3 y_{-2}) + \frac{1}{60} (\Delta^5 y_{-2} + \Delta^5 y_{-3}) \right]$$

$$h = 300$$

Gradient =
$$\frac{1}{300} \left[\frac{1}{2} (18 - 26) - \frac{1}{12} (-6 - 26) + \frac{1}{60} (-16 + 70) \right] = 0.085222$$

4. The table given below reveals the velocity 'v' of a body during the time 't' specified. Find its acceleration at t = 1.1.

t	1.0	1.1	1.2	1.3	1.4
V	43.1	47.7	52.1	56.4	60.8

Sol:Here t = 1.1 is nearer to the beginning value of the table . So use Newton's forward difference formula for equal intervals to get the derivative is used. h = 0.1

t	V	Δv	$\Delta^2 v$	$\Delta^3 v$	$\Delta^4 { m v}$
1.0 t ₀	43.1 v ₀				
	45.5	4.6	0.0		
1.1	47.7	4.4	-0.2	0.1	
1.2	52.1	4.4	-0.1	0.1	0.1
1.2	32.1	4.3	-0.1	0.2	0.1
1.3	56.4		0.1	٠. <u>=</u>	
		4.4			
1.4	60.8				

Here the upper most diagonal values are forward differences of v₀. Wkt, rate of change of velocity is acceleration. So find the first derivative of v. By using Newton's forward difference formula for equal intervals,

$$A = \frac{dv}{dt} = \frac{1}{h} \left[\Delta v_0 + \frac{2u - 1}{2!} \Delta^2 v_0 + \frac{3u^2 - 6u + 2}{3!} \Delta^3 v_0 + \dots \right] \text{ where } u = \frac{t - t_0}{h} = \frac{1.1 - 1.0}{0.1} = 1$$

$$= \frac{1}{0.1} \left[4.6 + \frac{1}{2!} (-0.2) + \frac{3 - 6 + 2}{3!} (0.1) + \frac{4 - 18 + 22 - 6}{4!} (0.1) \right] = 44.917$$

5. A rod is rotating in a plane. The following table gives the angle θ (in radians) through which the rod has turned for various values of time t(sec) . Calculate the angular velocity and angular acceleration of the rod at t = 0.6 sec.

t	0	0.2	0.4	0.6	0.8	1.0
θ	0	0.12	0.49	1.12	2.02	3.20

Sol:

	t	θ	Δθ	$\Delta^2 \Theta$	$\Delta^3 \Theta$	$\Delta^4 \Theta$
-3	0	0	0.12			
				0.25		
-2	0.2	0.12	0.37		0.01	
				0.26		0
-1	0.4	0.49	0.63		0.01	
				0.27		0
0	0.6	1.12	0.90		0.01	
				0.28		
1	0.8	2.02	1.18			

2	1.0	3.20		

Here 0.6 is nearer to the middle value, so we use Stirling's central difference formula Let $t_0 = 0.6$

$$\left(\frac{d\theta}{dt}\right)_{t=t_0} = \frac{1}{h} \left[\left[\frac{\Delta \theta_0 + \Delta \theta_{-1}}{2} \right] - \frac{1}{6} \left[\frac{\Delta^3 \theta_{-1} + \Delta^3 \theta_{-2}}{2} \right] + \frac{1}{30} \frac{\Delta^5 \theta_{-2} + \Delta^5 \theta_{-3}}{2} - \dots \right]$$

Angular velocity =
$$\frac{1}{0.2} \left[\frac{0.90 + 0.63}{2} - \frac{1}{6} \frac{0.01 + 0.01}{2} \right] = 3.8167$$

$$\left(\frac{d^2\theta}{dt^2}\right)_{t=t_0} = \frac{1}{h^2} \left[\Delta^2 \theta_{-1} - \frac{1}{12} \Delta^4 \theta_{-2} + \frac{1}{90} \Delta^6 \theta_{-4} - \dots \right]$$

Angular acceleration =
$$\frac{1}{(0.2)^2}$$
 [0.27] = 6.75

This problem, we can apply Newton's backward difference interpolation formula for equal intervals.

6. Find f'(0) from the following data

	X	-1	0	2	3
ſ	у	-2	-1	1	4

Sol: Here the values of x are not equally spaced. Hence use Lagrange's interpolation formula Let $x_0 = -1$; $x_1 = 0$; $x_2 = 2$ and $x_3 = 3$. The corresponding values of y are $y_0 = -2$; $y_1 = -1$; $y_2 = 1$ and $y_3 = 4$.

$$y(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3$$

$$y(x) = \frac{(x-0)(x-2)(x-3)}{(-1-0)(-1-2)(-1-3)}(-2) + \frac{(x+1)(x-2)(x-3)}{(0+1)(0-2)(0-3)}(-1) + \frac{(x+1)(x-0)(x-3)}{(2+1)(2-0)(2-3)}1 + \frac{(x+1)(x-0)(x-2)}{(3+1)(3-0)(3-2)}4$$

$$y(x) = \frac{x(x^2 - 5x + 6)}{-12}(-2) + \frac{(x+1)(x^2 - 5x + 6)}{6}(-1) + \frac{x(x^2 - 2x - 3)}{-6} + \frac{x(x^2 - x - 2)}{12}4$$

$$x^3 - 5x^2 + 6x - x^3 + 4x^2 - x - 6 - x^3 + 2x^2 + 3x - 2x^3 - 2x^2 - 4x$$

$$y(x) = \frac{x^3 - 5x^2 + 6x}{6} + \frac{-x^3 + 4x^2 - x - 6}{6} + \frac{-x^3 + 2x^2 + 3x}{6} + \frac{2x^3 - 2x^2 - 4x}{6}$$

$$y(x) = f(x) = \frac{1}{6} (x^3 - x^2 + 4x - 6)$$

$$f'(x) = \frac{1}{6} (3x^2 - 2x + 4)$$
$$f'(0) = \frac{4}{6} = \frac{2}{3}.$$

7. Find f'(5) from the following data

X	0	1	3	4
У	-12	0	6	12

Sol: Here the values of x are not equally spaced. Hence use Lagrange's interpolation formula Let $x_0 = 0$; $x_1 = 1$; $x_2 = 3$ and $x_3 = 4$. The corresponding values of y are $y_0 = -12$; $y_1 = 0$; $y_2 = 6$ and $y_3 = 12$.

$$y(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3$$

$$y(x) = \frac{(x-1)(x-3)(x-4)}{(0-1)(0-3)(0-4)}(-12) + \frac{(x-0)(x-3)(x-4)}{(1-0)(1-3)(1-4)}(0) + \frac{(x-0)(x-1)(x-4)}{(3-0)(3-1)(3-4)}6 + \frac{(x-0)(x-1)(x-3)}{(4-0)(4-1)(4-3)}12$$

$$y(x) = \frac{(x-1)(x^2-7x+12)}{-12}(-12) + 0 + \frac{x(x^2-5x+4)}{-6}6 + \frac{x(x^2-4x+3)}{12}12$$

$$y(x) = x^3 - 8x^2 + 19x - 12 - x^3 + 5x^2 - 4x + x^3 - 4x^2 + 3x$$

$$y(x) = f(x) = x^3 - 7x^2 + 18x - 12$$

Hence $f'(x) = 3x^2 - 14x + 18$
Therefore $f'(5) = 3*25 - 14*5 + 18 = 33$

8. Find the maximum and minimum values of f(x) from the following data

X	0	1	3	4
y = f(x)	-4	1	29	52

Sol: Here the values of x are not equally spaced. Hence use Lagrange's interpolation formula Let $x_0 = 0$; $x_1 = 1$; $x_2 = 3$ and $x_3 = 4$. The corresponding values of y are $y_0 = -4$; $y_1 = 1$; $y_2 = 29$ and $y_3 = 52$.

$$y(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3$$

$$y(x) = \frac{(x-1)(x-3)(x-4)}{(0-1)(0-3)(0-4)}(-4) + \frac{(x-0)(x-3)(x-4)}{(1-0)(1-3)(1-4)}(1) + \frac{(x-0)(x-1)(x-4)}{(3-0)(3-1)(3-4)}29 + \frac{(x-0)(x-1)(x-3)}{(4-0)(4-1)(4-3)}52$$

$$y(x) = \frac{(x-1)(x^2 - 7x + 12)}{-12}(-4) + \frac{x(x^2 - 7x + 12)}{6} + \frac{x(x^2 - 5x + 4)}{-6}29 + \frac{x(x^2 - 4x + 3)}{12}52$$

$$y(x) = \frac{x^3 - 8x^2 + 19x - 12}{3} + \frac{x^3 - 7x^2 + 12x}{6} + \frac{-29x^3 + 145x^2 - 116x}{6} + \frac{13x^3 - 52x^2 + 39x}{3}$$

$$y(x) = \frac{2x^3 - 16x^2 + 38x - 24 + x^3 - 7x^2 + 12x - 29x^3 + 145x^2 - 116x + 26x^3 - 104x^2 + 78x}{6}$$

$$y(x) = f(x) = 3x^2 + 2x - 4$$

$$f'(x) = 6x + 2$$

$$f''(x) = 6$$

For maximum or minimum, f'(x) = 0. This implies that x = -1/3

f''(x) > 0. Hence the function is minimum at x = -1/3.

Minimum value = $3(-1/3)^2 + 2(-1/3) - 4 = -4.33333$