

Année académique 2020-2021

Exercices de mathématiques Exercices de révision en vue de l'interrogation du 6/11/2020

Problèmes élémentaires

- 1. Quand l'eau se transforme en glace, son volume augmente de 1/15. Quelle quantité d'eau, exprimée en litres, faut-il pour obtenir 4,96 m³ de glace?
- 2. Lors d'une interrogation, un étudiant doit répondre à 100 questions d'un QCM. Pour toute réponse correcte, il obtient un point. S'il ne répond pas, il a 0 point et pour toute réponse incorrecte, on lui retire 0, 25 point. Sachant qu'il ne répond pas à 8 questions et qu'il obtient 48,25 comme cote finale, quel est le nombre de réponses correctes fournies?
- 3. Un tonneau rempli aux trois cinquièmes d'eau pèse 215 kg. Rempli aux trois quarts d'eau, il pèse 248 kg. Quelle est la capacité en hectolitres de ce tonneau?

Manipulations de réels

Résoudre les équations et inéquations suivantes (x est une inconnue réelle)

1.
$$|x^2 - 4| = 3x$$

2.
$$|x^2 - 4| = |3x|$$

3.
$$x^2 - 9 \le 3x |x - 3|$$

4.
$$x < 27x^4$$

5.
$$|x-4| \ge |x+4|$$

6.
$$(4-x)^2 < x-4$$

7.
$$x|x^2 - 16| \le 3|x - 4|$$

$$8. \ \frac{9|4-x|}{x^2-16} \le |x-4|$$

9.
$$|x^2 - 16| > 9$$

10.
$$\frac{1}{|5x+2|} > 7$$

Calcul vectoriel et droites

1. Dans un repère orthonormé, on donne les droites d_1 , d_2 et d_3 dont les équations cartésiennes sont

$$d_1: 2x - y + 4 = 0$$
 $d_2: 3x + 2y - 15 = 0$ $d_3: x - 2y + 4 = 0$.

- (a) Représenter ces 3 droites.
- (b) Les droites d_1 et d_2 se coupent au point A. Déterminer l'équation cartésienne de la droite d passant par A et orthogonale à d_3 .
- (c) Donner des équations paramétriques de d_3 .
- (d) Déterminer les coordonnées du point B d'intersection de la droite d_2 avec l'axe des abscisses.
- (e) Le point C de coordonnées (3,4) appartient-il à d_1 ? à d_2 ? à d_3 ?
- (f) Déterminer le produit scalaire $\overrightarrow{AC} \bullet \overrightarrow{BC}$.
- (g) Déterminer les composantes de la projection orthogonale de \overrightarrow{AB} sur d_1 .
- 2. Dans un repère orthonormé, on donne les points A, B et C dont les coordonnées cartésiennes sont respectivement

$$(1,-1,0)$$
 $(-2,1,3)$ $(0,4,2)$.

Déterminer les composantes du produit vectoriel $\overrightarrow{BC} \wedge 2\overrightarrow{AB}$

Trigonométrie

1. Si α désigne un réel de l'intervalle $\left| \pi, \frac{3\pi}{2} \right|$ et si $\cot g(\alpha) = \frac{\sqrt{3}}{2}$, que valent les nombres $tg(\alpha)$, $\sin(\alpha)$, $\cos(\alpha)$?

2

2. Simplifier $\frac{\sin(\frac{4\pi}{3})}{\cos^2(\frac{5\pi}{3})}$.

- 3. Résoudre dans $[\pi/2, \pi]$ (x est une inconnue réelle)
 - (a) $\sin(3x)\cos(3x) = -\sqrt{3}$
 - (b) $4\sin(3x)\cos(3x) = -\sqrt{3}$
 - (c) $\cos(2x) = \cos(6x)$
 - (d) $4\sin^2(2x) = 1$
 - (e) $1 2\sin^2(2x) = \cos^2(4x)$
 - (f) $\sin(2x)\cos(4x) = \cos(2x)\sin(4x) + \frac{\sqrt{2}}{2}$

Coniques

On se place dans un repère orthonormé. Représenter le graphique des coniques suivantes, données par leur équation cartésienne. Comment s'appellent ces coniques? Quelles sont les coordonnées de leur(s) foyer(s)? Quelle est leur excentricité? Quelle est l'équation des éventuelles asymptotes?

- 1. $x^2 + y = 9$
- 2. $y^2 = x 1$
- 3. $x^2 + y^2 + 4y = 0$
- 4. $x^2 = 4y^2 1$
- 5. $x^2 + 5y^2 = 20$

Nombres complexes

- 1. On donne le complexe $z = -\sqrt{3} + i$.
 - (a) En déterminer le module et une forme trigonométrique. Le représenter dans le plan muni d'un repère orthonormé (X = "axe réel" et Y = "axe imaginaire")
 - (b) Que vaut la partie réelle du complexe z^2 ?
 - (c) La partie imaginaire du carré d'un complexe est-elle toujours égale au carré de la partie imaginaire du complexe ? Pourquoi ?
- 2. Déterminer
 - (a) le module du complexe $z = \cos(3) i\sin(3)$
 - (b) les parties réelle et imaginaire des complexes $z_1 = \frac{1}{1+3i}, z_2 = \frac{i^{19}}{1-i}, z_3 = \frac{-i^2}{1+i^3}$.
- 3. Résoudre dans \mathbb{C}

(a)
$$z^2 + z + 1 = 0$$

(b)
$$z^2 + 36 = 0$$

Fonctions élémentaires

Si elles sont définies, simplifier au maximum les expressions suivantes

- 1. $arcos \left(cos\left(\frac{-3\pi}{5}\right)\right)$
- 2. $\sin\left(\arccos\left(\frac{7}{8}\right)\right)$
- 3. $\ln\left(e^2\sin(\frac{-2\pi}{3})\right) + \ln\left(\sqrt{(-3)^2}\right)$
- 4. $e^{-i\pi/3}$
- 5. $\operatorname{arcotg}\left(\operatorname{cotg}\left(\frac{6\pi}{5}\right)\right)$
- 6. $\exp\left(\ln(\pi^2) + \ln(1/2)\right)$