MATH5210 ANALYSIS

Assignment 4 Monotone Convergence Theorem Philip Nelson

1

Let $\{a_n\}$ be a sequence of non-negative real numbers. Show that the partial sums for the infinite series $\sum_{n=0}^{\infty} a_n$ form a monotone series.

Proof: Let us review the definition of a monotone increasing series. Let b_m be a series, b_m is monotone increasing iff $b_m \leq b_{m+1}$ for all m > 0. Let b_m be the

partial sums of
$$\sum_{n=1}^{\infty} a_n$$
 such that $b_1 = a_1$, $b_2 = b_1 + a_2$, and $b_{m+1} = b_m + a_n$.

From the definition of the problem, $\{a_n\}$ is a sequence of non-negative real numbers so $a_n \ge 0 \Rightarrow b_m + a_n \ge b_m \Rightarrow b_{m+1} \ge b_m$. Therefore b_m is a monotone series.

$\mathbf{2}$

What is the approximation property for the infimum of a set A? If $m = \inf(\mathbf{A})$, prove that there is a sequence $a_n \in \mathbf{A}$ with $\lim a_n = m$.

The approximation property for the infimum of a set A states Suppose that $m = \inf(\mathbf{A})$

Then for any $\epsilon > 0, \exists x \in \mathbf{A} \text{ s.t. } m \leq x \leq m + \epsilon$

Since $m = \inf(\mathbf{A})$, $\{a_n\}$ is bounded below and has a greatest upper bound (gub) s.t. $\operatorname{gub}(\{a_n\})=m$. We will prove will prove that $\lim_{n\to\infty}a_n=m$. Let $\epsilon>0$ be given. We have to find N s.t. $|a_n-m|<\epsilon$ and a_n-m is always

positive because $a_n > m$. So $a_n - m < \epsilon$ for all n > N.

Then by the approximation property of the infimum of **A**, there exists an $x \in$ $\{a_n\}$ s.t. $m \le x < m + \epsilon$ where $x = a_N$. So

$$a_N \le m + \epsilon \tag{1}$$

Finally if n > N, then because of monotone decreasing

$$a_N < a_n \tag{2}$$

Combining 1 and 2 gives us $m + \epsilon > a_N > a_n$. Thus $a_n - m < \epsilon$ for all n > N.

3

Give a detailed proof of the MCT in the case of a monotone decreasing sequence which is bounded below. Follow the proof given in class.

4

If 0 < r < 1, show that $\lim_{n \to \infty} r^n = 0$. Note that with $a_n = r^n$, $a_{n+1} = ra_n$. What happens if $0 \le r \le 1$?

Lemma 3.1: $r^n > 0$ for all n > 0 and 0 < r < 1.

Let us observe $a_1 = r^1$ is positive because 0 < r < 1 and $a_2 = r^2 = r \cdot r$ is positive because a positive number times a positive number is positive. Assume $a_n > 0$, then $a_{n+1} = r \cdot a_n$ which is positive because as previously stated, a positive number times a positive number is positive. Therefore $r^n > 0$ for all n > 0 and 0 < r < 1.

Lemma 3.2: a_n is monotone decreasing.

From the bounds of r we know that r < 1. By lemma 3.1 we know that $r^n > 0$ so we can multiply both sides by r^n while preserving inequality so $r \cdot r^n < r^n$. Then we can use the definition $a_n = r^n$ so we have $r \cdot a_n < a_n$. Then we can use the definition $a_{n+1} = r \cdot r^n$ so we have $a_{n+1} < a_n$. Therefore the sequence is monotone decreasing.

Claim: $\lim_{n \to \infty} r^n = 0$ for 0 < r < 1.

Proof: Through lemma 3.1 and 3.2, we know that a_n is bounded below by zero and monotone decreasing so by the Monotone Convergence Theorem we know that the limit of a_n exists. Let $A = \lim_{n \to \infty} r^n$. Then starting with $a_{n+1} = r \cdot a_n$ we take the limit of both sides giving us $\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} r \cdot r^n$. By the subsequence property of limits we have $A = \lim_{n \to \infty} r \cdot r^n$. Then by the scalar product property of limits, we have $A = r \cdot A$ which is $r \cdot A - A = 0$ and so A(r-1) = 0. This can be satisfied by only A = 0 therefore $\lim_{n \to \infty} r^n = 0$.

Let $a_1 \in (-1,0)$ Prove that $a_{n+1} = \sqrt{a_n + 1} - 1$ is a increasing sequence which converges to 0. What happens if $a_0 = 0$, if $a_0 = -1$?

Lemma 5.1 $a_{n+1} = \sqrt{a_n + 1} - 1 < 0$ for $a_1 \in (-1, 0)$

From the problem statement we know that $-1 < a_n < 0$. Then if $-1 < a_n < 0$ then $0 < a_n + 1 < 1$. Since the square root is an increasing function, we can apply it whilst preserving inequality so $0 < \sqrt{a_n + 1} < 1$ then $-1 < \sqrt{a_n + 1} - 1 < 0$ which is $-1 < a_{n+1} < 0$. Therefore $a_{n+1} = \sqrt{a_n + 1} - 1 < 0$ for $a_1 \in (-1,0)$.

Lemma 5.2 $a_{n+1} = \sqrt{a_n + 1} - 1$ is monotone increasing for $a_1 \in (-1,0)$. If $a_1 = -0.5$ then $a_{n+1} = \sqrt{-0.5 + 1} - 1 \approx -0.29$ therefore $a_1 < a_2$. If $a_n < a_{n+1}$ then $a_n + 1 < a_{n+1} + 1$. Since the square root function is an increasing function, we can apply it whilst preserving inequality so $\sqrt{a_n + 1} < \sqrt{a_{n+1} + 1}$ then $\sqrt{a_n + 1} - 1 < \sqrt{a_{n+1} + 1} - 1$ which is $a_{n+1} < a_{n+2}$. Therefore $a_{n+1} = \sqrt{a_n + 1} - 1$ is monotone increasing for $a_1 \in (-1,0)$.

Claim: $\lim_{n\to\infty} a_n = 0$ for $a_1 \in (-1.0)$

Proof: Through lemma 5.1 and 5.2 we know that a_n is bounded above by 0 and is an increasing sequence. Therefore we know by the Monotone Convergence Theorem that $\lim_{n\to\infty} a_n$ exists. Let $A=\lim_{n\to\infty} a_n$. Then starting with the definition $a_{n+1}=\sqrt{a_n+1}-1$ we take the limit of both sides so $\lim_{n\to\infty} a_{n+1}=\lim_{n\to\infty} \sqrt{a_n+1}-1$. Let $b_n=1$ and remark that $\sqrt{a_n+1}-1=\sqrt{a_n+b_n}-b_n$. Let $c_n=\sqrt{a_n-b_n}$. Now see that $\lim_{n\to\infty} b_n=\lim_{n\to\infty} 1=1$ since b_n is a constant sequence and $\lim_{n\to\infty} a_n=A$ as previously stated. Then because the limit exists we see that $\lim_{n\to\infty} a_n+1=A+1$ by the summation property. So by the summation property and square root property we can express the original limit as $\lim_{n\to\infty} a_{n+1}=\sqrt{\lim_{n\to\infty} a_n+\lim_{n\to\infty} 1}-\lim_{n\to\infty} 1$. Then by the subsequence property and evaluation of limits as previously discussed $A=\sqrt{A+1}-1$. Then $A+1=\sqrt{A+1}$ and then $A^2+2A+1=A+1$ and then $A^2+A=0$ so A=-1,0. Returning to the bounds set on a_1 we know that $a_n=0$ for $a_n=0$.

Claim: $\lim_{n\to\infty} a_n = 0$ for $a_1 = 0$

Proof: If $a_1 = 0$ then $a_2 = \sqrt{1} - 1 = 0$, therefore $a_1 = a_2$. If $a_n = a_{n+1}$ then $a_n + 1 = a_{n+1} + 1$ Since the square root is an increasing function we can apply whilst preserving inequality so $\sqrt{a_n + 1} = \sqrt{a_{n+1} + 1}$ then $\sqrt{a_n + 1} - 1 = \sqrt{a_{n+1} + 1} - 1$ which is $a_{n+1} = a_{n+2}$. Therefore $\lim_{n \to \infty} a_n = 0$ for $a_1 = 0$.

Claim: $\lim_{n\to\infty} a_n = 1$ for $a_1 = 1$

Proof: If $a_1 = -1$ then $a_2 = \sqrt{0} - 1 = -1$, therefore $a_1 = a_2$. If $a_n = a_{n+1}$ then $a_n + 1 = a_{n+1} + 1$ Since the square root is an increasing function we can

apply whilst preserving inequality so $\sqrt{a_n+1} = \sqrt{a_{n+1}+1}$ then $\sqrt{a_n+1}-1 = \sqrt{a_{n+1}+1}-1$ which is $a_{n+1}=a_{n+2}$. Therefore $\lim_{n\to\infty} a_n=-1$ for $a_1=0$.

6

Suppose $a_1 \ge 2$ and $a_{n+1} = 2 + \sqrt{a_n - 2}$. Show that a_n converges to 2 or 3. How does the limit depend upon the value of a_1

Lemma 6.1: a_n is bounded above by 3 for all n>0 and $2 < a_n < 3$. Assuming $2 < a_n < 3$ then $0 < a_n - 2 < 1$. Since the square root function is an increasing function, we can apply it whilst preserving inequality so $0 < \sqrt{a_n - 2} < 1$ then $2 < \sqrt{a_n - 2} + 2 < 3$. Since $a_{n+1} = 2 + \sqrt{a_n - 2}$ we can see $2 < a_{n+1} < 3$. Therefore a_n is bounded above by 3 for all n > 0 and $2 < a_n < 3$.

Lemma 6.2: $a_{n+1} = 2 + \sqrt{a_n - 2}$ is monotone increasing for $2 < a_n < 3$. Observe $a_1 = 2.1$ then $a_2 \approx 2.3$ therefore $a_1 < a_2$. If $a_n < a_{n+1}$ then $a_n - 2 < a_{n+1} - 2$. Since the square root is a positive function, we can apply it to both sides and maintain inequality. So $\sqrt{a_n - 2} < \sqrt{a_{n+1} - 2}$. Then $2 + \sqrt{a_n - 2} < 2 + \sqrt{a_{n+1} - 2}$ which means that $a_{n+1} < a_{n+2}$. Therefore $a_{n+1} = 2 + \sqrt{a_n - 2}$ is monotone increasing for $2 < a_n < 3$.

Lemma 6.3: $\lim_{n \to \infty} a_n = 3$ for $2 < a_n < 3$

By lemma 6.1 and 6.2 we know that a_n is bounded above by 3 and is monotone increasing for $2 < a_n < 3$ so by the Monotone Convergence Theorem we know $\lim_{n \to \infty} a_n$ exists on these bounds. Let $A = \lim_{n \to \infty} a_n$. Starting with $a_{n+1} = 2 + \sqrt{a_n - 2}$ we take the limit of both sides so $\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} 2 + \sqrt{a_n - 2}$. Let $b_n = 2$ and remark that $2 + \sqrt{a_n - 2} = b_n + \sqrt{a_n - b_n}$. Let $c_n = \sqrt{a_n - b_n}$. Now see that $\lim_{n \to \infty} b_n = \lim_{n \to \infty} 2 = 2$ since b_n is a constant sequence and $\lim_{n \to \infty} a_n = A$ as previously stated. Then because the limit exists we see that $\lim_{n \to \infty} a_n - 2 = A - 2$ by the summation property. So by the summation property and the square root property we can express the original limit as $\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} 2 + \sqrt{a_n - 2}$.

 $\sqrt{\lim_{n\to\infty} a_n - \lim_{n\to\infty} 2}$. Then by the subsequence property of limits and evaluation of limits as previously discussed $A = 2 + \sqrt{A-2}$ Then $A-2 = \sqrt{A-2}$ and then $A^2 - 4A + 2 = A - 2$ and then $A^2 - 5A + 6 = 0$ and then (A-3)(A-2) = 0 so A = 2, 3 are fixed points. Returning to our bounds on a_1 we know that $A \neq 2$ since $2 < a_1 < 3$ and a_n is monotone increasing for $2 < a_n < 3$. Therefore $\lim_{n\to\infty} a_n = 3$ for $2 < a_n < 3$.

Lemma 6.4 a_n is bounded below by 3 for all n > 0 and $a_n > 3$ Assuming $a_n > 3$ then $a_n - 2 > 1$. Since the square root function is an increasing, we can apply it whilst preserving inequality so $\sqrt{a_n - 2} > 1$. Then it follows that $2 + \sqrt{a_n - 2} > 3$. Therefore a_n is bounded below by 3 for all n > 0 and $a_n > 3$

Lemma 6.5: $a_{n+1} = 2 + \sqrt{a_n - 2}$ is monotone decreasing for $a_n > 3$.

Observe $a_1=4$ then $a_2\approx 3.4$ therefore $a_1>a_2$. If $a_n>a_{n+1}$ then $a_n-2>a_{n+1}-2$. Since the square root is a positive function, we can apply it to both sides and maintain inequality. So $\sqrt{a_n-2}>\sqrt{a_{n+1}-2}$. Then $2+\sqrt{a_n-2}>2+\sqrt{a_{n+1}-2}$ which means that $a_{n+1}>a_{n+2}$. Therefore $a_{n+1}=2+\sqrt{a_n-2}$ is monotone decreasing for $a_n>3$.

Lemma 6.6: $\lim_{n\to\infty} a_n = 3 \text{ for } a_n > 3$

By lemma 6.4 and 6.5 we know that a_n is bounded below by 3 and is monotone decreasing for $a_n > 3$ so by the Monotone Convergence Theorem we know $\lim_{n \to \infty} a_n$ exists on these bounds. Let $B = \lim_{n \to \infty} a_n$. Starting with $a_{n+1} = 2+\sqrt{a_n-2}$ we take the limit of both sides so $\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} 2+\sqrt{a_n-2}$. Let $b_n = 2$ and remark that $2+\sqrt{a_n-2} = b_n+\sqrt{a_n-b_n}$. Let $c_n = \sqrt{a_n-b_n}$. Now see that $\lim_{n \to \infty} b_n = \lim_{n \to \infty} 2 = 2$ since b_n is a constant sequence and $\lim_{n \to \infty} a_n = B$ as previously stated. Then because the limit exists we see that $\lim_{n \to \infty} a_n = 2 = B-2$ by the summation property. So by the summation property and the square root property we can express the original limit as $\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} 2 + \sqrt{\lim_{n \to \infty} a_n - \lim_{n \to \infty} 2}$. Then by the subsequence property of limits and evaluation of limits as previously discussed $B = 2 + \sqrt{B-2}$. Then $B - 2 = \sqrt{B-2}$ and then $B^2 - 4B + 2 = B - 2$ and then $B^2 - 5B + 6 = 0$ and then (B-3)(B-2) = 0 so B = 2, 3 are fixed points. Returning to our bounds on a_1 we know that $B \ne 2$ since $a_1 > 3$ and a_n is monotone decreasing for $a_n > 3$. Therefore $\lim_{n \to \infty} a_n = 3$ for $a_n > 3$.

Lemma 6.7 $\lim_{n\to\infty} a_n = 3$ for $a_1 = 3$

If $a_1=3$ then $a_2=2+\sqrt{3-2}=3$, therefore $a_1=a_2$. If $a_n=a_{n+1}$ then $a_n-2=a_{n+1}-2$. Since the square root is an increasing function we can apply whilst preserving inequality so $\sqrt{a_n-2}=\sqrt{a_{n+1}-2}$ then $2+\sqrt{a_n-2}=2+\sqrt{a_{n+1}-2}$ which is $a_{n+1}=a_{n+2}$. Therefore $\lim_{n\to\infty}a_n=3$ for $a_1=3$.

Lemma 6.8 $\lim_{n\to\infty} a_n = 2$ for $a_1 = 2$

If $a_1=2$ then $a_2=2+\sqrt{2-2}=2$, therefore $a_1=a_2$. If $a_n=a_{n+1}$ then $a_n-2=a_{n+1}-2$. Since the square root is an increasing function we can apply whilst preserving inequality so $\sqrt{a_n-2}=\sqrt{a_{n+1}-2}$ then $2+\sqrt{a_n-2}=2+\sqrt{a_{n+1}-2}$ which is $a_{n+1}=a_{n+2}$. Therefore $\lim_{n\to\infty}a_n=3$ for $a_1=2$.

Proof: For $a_1 \ge 2$ and $a_{n+1} = 2 + \sqrt{a_n - 2}$. $\lim_{n \to \infty} a_n$ converges to 2 or 3. From lemmas 6.3, 6.6, 6.7 and 6.8 we know that for $a_1 \ge 2$, $\lim_{n \to \infty} a_n$ can only converge to 2 or 3. It depends on a_1 which value $\lim_{n \to \infty} a_n$ converges to. When $a_1 = 2$, then $\lim_{n \to \infty} a_n = 2$, lemma 6.8. When $a_1 > 2$, then $\lim_{n \to \infty} a_n = 3$.

7

(Bonus) Let $0 < b_1 < a_1$ and let

$$a_{n+1} = \frac{a_n + b_n}{2}$$
 and $b_{n+1} = \sqrt{a_n b_n}$

a

Show that $0 < b_n < a_n$

 \mathbf{b}

Show that b_n is increasing and bounded above.

C

Show that a_n is decreasing and bounded below.

 \mathbf{d}

Show that $0 < a_{n+1} - b_{n+1} < (a_1 - b_1)/2^n$

 \mathbf{e}

Conclude that the sequences a_n and b_n converge to a common limit.