Home Network Interference Detection with Passive Measurements

Spring 2023 Petter Juterud Barhaugen

Presentation Structure

- Introduction and motivation
- The NETHINT tool
- Passive measurement
- Statistical metrics

- Tests and results
- Live demo
- Conclusion and Future Work

Introduction and Motivation 1/2

- Home offices are here to stay
- Local interference vs. remote bottleneck
- Who is to blame?

Introduction and Motivation 2/2

- Problems with diagnosing network issues:
 - Requires knowledge
 - Issues need to persist
 - Transfers are often short or bursty
 - Single-device statistics
- Solution: Long-term measurements and statistics

Presenting: NETHINT (1/2)

(NETwork Home INTerference)

- A tool for collecting and parsing metrics
- User-friendly(er)
- Passive measurement
- Multi-device
- Operating modes

Presenting: NETHINT (2/2)

- Disregards intra-network latency
- Expandable
- Portable
- Export options

NETHINT is placed close to the hosts on the WLAN

Passive Measurement

Pros:

- No additional processing time
- No traffic discrimination
- Enables long-term statistics

Cons:

- We have to rely on present header data
- This information is disappearing

Statistical Metrics

- Latency/delay (vs. capacity/bandwidth)
- Packet loss (transport-layer retransmissions)
 - Informs congestion control
 - Kind of rare
- Wireless signal quality

Measuring Latency Reliably

- TCP
 - Incoming or outgoing data
 - SEQ/ACK-based pairing
 - Timestamp-based pairing
 - Connection establishment/termination
 Packets
- QUIC
 - Initial
 - Spin bit

Primary reliable delay source:
Pairing incoming ACKs with their
corresponding data packets

Outgoing Data: Retransmission RTT Deviation

SEQ/ACK-based pairing

- Incorrect for retransmitted data
- Potential solution: filter lost packets

Timestamp-based pairing

Correct for retransmitted data

Retransmission RTT deviation

Outgoing Data: Delayed ACK RTT Deviation

SEQ/ACK-based pairing

Correct measurement of delayed ACKs

Timestamp-based pairing

Overestimates RTTs for delayed ACKs

Outgoing Data: Combining Pairing Methods

	SEQ/ACK	TCP Timestamps	NETHINT
Retransmitted data	×	✓	✓
More samples on lossy links	×	V	✓
Delayed ACKs	V	×	✓

Incoming Packets: One-Way Delay

Relative OWD decreases: Indication of congestion

One-Way Delay: EWMA

x = 40%

 $\alpha = 0.83e^{-0.06x}$

where

x = smoothness percentage adjustable by user

Wireless: Added Challenges

- Capacity
- Interference and collisions
- 802.11 performance anomaly
 - Sending rates
 - Airtime Fairness Queuing

Tests and Results

- Emulated
 - o BDP
 - Bottleneck situations
- Local wireless

Emulation topology

Emulated Tests: Situation 1

- Local portion is the bottleneck
- Flows do share delay characteristics to some degree

Emulated Tests: Situation 2a

- Remote portion is the bottleneck
- Difficult to tell flows apart

Emulated Tests: Situation 2b

Limited by capacity

Limited by delay

Local Wireless Test

RBPi = Raspberry Pi. MBP = Macbook Pro.

Two senders each sending 50MB to one server. The OWD "smoothness" is set to 100%, or EWMA $\alpha \approx 0.0075$

Live demo

Conclusion and Future Work

Conclusion

- NETHINT and its capabilities
- Reliable metric sources
- The state of the art

Future work

- 802.11 decryption
- Wireless data rates
- Bottleneck metric
 - Latency over time
 - Low start RTT increase
 - Combining metrics

Thank you!