Digital Image Processing

Color Image Processing

Dr. Muhammad Sajjad

R.A: M. Abbas

Overview

- > Introduction to Color Image Processing
- > Color Fundamentals
- > Color Models
- > RGB Color Model
- > CMY and CMYK Color Model
- > HSI Color Model
- > Pseudocolor Image Processing
- > Basics of Full-Color Image Processing

Introduction to Color Image Processing

The process of analyzing and modifying color information in digital images.

Motivation for Color Image Processing

- Color is a powerful descriptor that simplifies object identification and extraction.
- Humans can distinguish thousands of color, but only about two dozen shades of gray.

Two Areas of Color Image Processing

1. Full-Color Processing:

- Uses images captured by full-color devices (e.g., cameras, scanners).
- · Operates on all color components like RGB.

2. Pseudo color Processing:

- Assigns colors to grayscale images for better visualization.
- Common in medical imaging and satellite imagery.

MONOCHROME IMAGING

COLOR IMAGING

CHEMICAL COLOR IMAGIN

Color Fundamentals

Primary Colors of Light (RGB):

- · Red (R), Green (G), and Blue (B)
- Mixing RGB produces **secondary colors**:
 - Magenta (Red + Blue)
 - Cyan (Green + Blue)
 - Yellow (Red + Green)
- Combining all three primaries or a secondary with its opposite primary creates white light.

Primary Colors of Pigments (CMY):

- · Cyan (C), Magenta (M), and Yellow (Y)
- Mixing CMY produces secondary colors:
 - **Red** (Magenta + Yellow)
 - Green (Cyan + Yellow)
 - Blue (Cyan + Magenta)
- Combining all three pigment primaries or a secondary with its opposite primary produces black.

Color Fundamentals

Additive Color Model: Used in displays, combines light (e.g., RGB in screens).

Subtractive Color Model: Used in printing, combines pigments (e.g., CMY in printers).

Human vision is trichromatic, perceiving colors through **cone cells** sensitive to red, green, and blue wavelengths.

White light splits into colors through a prism, showcasing the visible spectrum.

Color spectrum seen by passing white light through a prism.

Absorption of light by the red, green, and blue cones in the human eye as a function of wavelength.

Color Fundamentals

Light Reflection and Dispersion Across Colored Surfaces

Purpose of Color Models:

- A color model (or color space/system) standardizes the specification of color.
- It defines:
 - 1. A coordinates system.
 - 2. A subspace where each color corresponds to a unique point.

Types of Color Models:

1. Hardware-Oriented Models:

- · RGB: Used in color monitors and Video Cameras.
- CMY/CMYK: Used in color printing.

2. Application Oriented Models

• HIS: Matches human perception of color.

Color Space Conversion

RGB Color Model

- Represents color as a combination of three primary colors: Red (R), Green (G), and Blue (B).
- Based on a Cartesian coordinates system with a cube representing the color space.

Primary Colors: Red, Green, and Blue at three corners of the cube.

Secondary Colors: Cyan, Magenta, and Yellow at three other corners.

Pixels Depth:

- Each pixel is represented by three 8-bit values (R, G, B).
- Pixel Depth: 24 bits (8bits x 3 channels).
- Total Colors: $2^{24} = 16,777,216$

RGB Color Model

CMY and CMYK color Models

Secondary Colors of Light

- Cyan, magenta, and yellow are secondary colors and primary pigment colors.
- Printing devices use CMY data or convert RGB to CMY.

Limitations of CMY

• Equal CMY amounts should create black but result in muddy brown due to pigment impurities.

CMYK Color Model

Why Black (K)?

- Added to produce true black in printing.
- Widely used in four-color printing: Cyan, Magenta, Yellow, Black.

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$R' = R/255$$

 $G' = G/255$
 $B' = B/255$

$$\mathbf{K} = 1 - \max(R', G', B')$$

$$\mathbf{C} = (1 - R' - \mathbf{K})/(1 - \mathbf{K})$$

$$\mathbf{M} = (1 - G' - \mathbf{K})/(1 - \mathbf{K})$$

$$Y = (1 - B' - K)/(1 - K)$$

CMY and CMYK color Models

A full-color image and its CMYK component images

Full color

Yellow

The HSI Color Model

• Decouples intensity from color information for natural and intuitive color representation.

Components:

- **Hue (H)**: Describes the pure color (e.g., red, yellow, blue).
- Saturation (S): Measures color purity (dilution with white light).
- Intensity (I): Represents brightness (achromatic notion).

Why Use HSI?

- Matches human color perception (hue, saturation, brightness).
- Simplifies processing by separating intensity from color information.

The HSI Color Model

Representation in HSI Space:

- **Hue**: Measured in degrees (0° = red, 120° = green, 240° = blue).
- **Saturation**: Length of vector from the origin to the color point.
- Intensity: Grayscale axis value.

Hexagonal Shape:

- Primary colors separated by 120°.
- Secondary colors 60° apart.
- Other representations include triangles or circles.

The HSI Color Model

Hue

A full-color image and its HSI component images

Pseudocolor Image Processing

Definition: Converts grayscale images into color images by assigning colors to specific intensity ranges.

Purpose: Enhances human visualization and interpretation of grayscale images.

Key Techniques

1. Intensity Slicing:

- Divides the grayscale intensity range into intervals using threshold planes.
- Assigns a specific color to each interval.

if
$$f(x,y) \in l_k$$
, let $f(x,y) = c_k$

2. Color Mapping (Color Coding)

 Maps grayscale value to colors based on predefined or dynamic color scales.

Pseudocolor Image Processing

Intensity Slicing:

Grayscale image of the Picker Thyroid Phantom.

Result of intensity slicing using eight colors.

Pseudocolor Image Processing

Example: Color Coding in Weld X-rays

Problem: Cracks saturate sensors, producing an intensity value of 255 in an 8-bit image, indicating defects.

X-ray of a weld shows cracks and porosities as bright streaks.

Color coding highlights defects at level 255 for better visibility.

Basics of Full-Color Image Processing

Full-color processing methods:

- Process each color channel separately, then combine.
- Process color pixels directly.

Color Transformation

$$g(x,y) = T[f(x,y)]$$

$$s_i = T_i(r_1, r_2, ..., r_n)$$
 $i = 1, 2, 3, ..., n$

Modifying the intensity of color image in RGB color space

$$s_i = 0.7(r_i)$$
 $i = 1,2,3$

Original Image

Original Image

Thank You