Subscribe to DeepL Pro to translate larger documents. Visit www.DeepL.com/pro for more information.

Introduction to CUDA Programming

Oguz Kaya

Maître de Conferences Universit'e Paris-Saclay and the LRI ParSys team, Orsay, France

universite PARIS-SACLAY

Objectives

- Get to know the architecture of a GPU (vs. CPU) Understand the
- execution model of a CUDA program Use multiple blocks and
- threads in a CUDA kernel Learn the basic syntax for a CUDA
- program
- Maîtriser l'allocation et le transfert de données entre CPU et GPU
- Haborer ces concepts sur un exemple (multiplication d'un tableau)

- GPU vs. CPU architecture
- Running a CUDA program CUDA
- syntax
- Memory allocation and data transfer Example
- 5

- GPU vs. CPU architecture Running
- 2 a CUDA program CUDA syntax
- Memory allocation and data transfer Example
- 5

CPU vs GPU architecture

A comparison of the CPU and GPU architecture

- L1 cache potentially usable explicitly (shared memory)
- L2 cache exists
- No L3 cache
- Few complex control circuits, including
 - Ex'ecution out-of-order
 - Branch prediction
 - Instruction level parallelism (ILP)
 - Complex instruction decoder
- 10x (or more) more computing power for a m^eme circuit area

CPU-GPU Overview

An overview of a CPU with a GPU

- The CPU uses the GPU as a scientific coprocessor for some calculations adapted to the SIMD paradigm.
- The CPU and GPU are both multicore and vector with a particular memory hierarchy.
- The data transfer is done on the PCI express bus (32GB/s of ebit each direction for PCIe4).
- They do not have direct access (!) to each other's RAM.

Focus on the GPU architecture

A GPU a set of N independent SIMD processors sharing a global memory

- N multiprocessor streaming (SM)
- Each SM is a SIMD processor with k
 - synchronized processors (k = 32), in other words, GPU cores
 - 1 shared instruction ecoder
 - 3 types of memories shared between all k processors.
 - 32k 128K distributed registers between the processors (63-255 for each thread) To be able to
 - exploit each SM, it is necessary to launch at least 32 threads (per block)

Some figures for the GPU architecture

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
SMs	15	24	56	80
TPCs	15	24	28	40
FP32 Cores / SM	192	128	64	64
FP32 Cores / GPU	2880	3072	3584	5120
FP64 Cores / SM	64	4	32	32
FP64 Cores / GPU	960	96	1792	2560
Tensor Cores / SM	NA	NA	NA	8
Tensor Cores / GPU	NA	NA	NA	640
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
Peak FP32 TFLOPS ¹	5	6.8	10.6	15.7
Peak FP64 TFLOPS ¹	1.7	.21	5.3	7.8
Peak Tensor TFLOPS ¹	NA	NA	NA	125

Certaines capacités de calculs n'évoluent pas de manière monotone

- GPU vs. CPU architecture Running
- 2 a CUDA program CUDA syntax
- Memory allocation and data transfer Example
- 5

Principle **f**xecution

The program runs mainly on the CPU with GPU function calls.

- Before/after launching a kernel, it is necessary to transfer the data
- Minimize data transfers for efficiency
- Each kernel call is non-blocking (i.e., CPU continues execution), but it can be made blocking if you want

Execution of a grid of thread blocks

The CPU launches the execution of a kernel with a set of GPU threads.

- Threads identiques (run the same code) Threads
- organized in blocks (of size 32-1024) Each
- identic block runs on a SM.
- Blocks organized in grids and distributed on all the SMs
- It is necessary to launch enough blocks and threads so that the whole iteration domain of problem is covered.

Execution of a grid of thread blocks (cont.)

The CPU launches the execution of a kernel with a set of GPU threads.

- The block scheduler distributes the blocks to the different SMs with dynamic scheduling.
- GPUs with different architectures will be able to execute the same grid of thread blocks without any problem (with a distribution specific ts architecture, managed by the scheduler).

Granularity of the grid and blocks

Create blocks with an integer number of warps The CPU starts the execution of a kernel with a set of GPU threads.

- One instruction encoder drives 32 hardware threads (32 GPU cores)
- Each group of 32 consecutive threads in a block is called a warp
- The scheduler executes each warp of an active block in a SM

Granularity of the grid and blocks (cont.)

Masking of the memory access time of warps

- The GPU switches from one warp b another very quickly (because they physically coexist in the SM)
- The GPU masks the latency of memory accesses by multithreading.
- So dont hesitate bcreate a large number of small GPU threads per block and a large number of blocks (e, few works by each thread

CUDA Syntax

"eger").

GPU vs. CPU architecture

UNIVERSIT<mark>e</mark> PARIS-SACLAY ベロトイプトイミト ミ・クスで

The choice of the number of blocks and threads

How many blocks/grid and threads/block?

- The thread scheduler wants to have a lot of thread warps in reserve to cover the memory access time
- The block scheduler wants to have a lot of blocks that are not too big to
 - have blocks in reserve to use all the SMs
 - recovery of memory access times between blocks (a SM can host several blocks depending on the availability of resources (register, shared memory, etc.)
- In general, 128-256 threads/block works well (min=1, max=1024).
- Choice by experimentation or a tool from Nvidia

Running a kernel with a number of threads and blocks

```
int threadsByBloc = 256;
int numBlocs = N / threadsByBloc;
kernelGPU<< numBlocks, threadsByBlock>> (arg1, arg2, ...)
```


- GPU vs. CPU architecture Running
- a CUDA program CUDA syntax
- 3 Memory allocation and data transfer Example
- 5

"CUDA Qualifiers

GPU vs. CPU architecture

A qualifier is a keyword that differentiates the CPU/GPU functions and variables in a CUDA program.

Fonctionnement des « qualifiers » de CUDA :

	device	<u>host</u> (default)	global
Fonctions	Appel sur GPU Exec sur GPU	Appel sur CPU Exec sur CPU	Appel sur CPU Exec sur GPU
Variables	device	constant	_shared
	Mémoire globale <u>GPU</u>	Mémoire constante GPU	Mémoire partagée d'un multiprocesseur
	Durée de vie de l'application	Durée de vie de l'application	Durée de vie du <i>block</i> de threads
	Accessible par les codes GPU et CPU	Ecrit par code CPU, lu par code GPU	Accessible par le code GPU, sert à <i>cacher</i> la mémoire globale GPU

- GPU vs. CPU architecture Running
- a CUDA program CUDA syntax
- Memory allocation and data transfer Example
- 5

Allocation of an array on GPU

```
# define N 1024

// Static array on the CPU float TabCPU [
N];

// Global static table on the GPU
--device-- float TabGPU [N];

// Dynamic table on the CPU
float * T a b C P U = (float * ) malloc(N * sizeof(float));

// Dynamic array on the GPU float
* T a b G P U;
c u d a Errort c u Stat;
```

- The prefix_device__ differs from the declaration of a static GPU and CPU array.
- The GPU static array must ^etre d'eclare outside the functions (as global variables)
- Dynamic array on GPU is

c u St a t = cuda Malloc ((wid **) &TabGPU, N * sizeof(float)); alle using the function cudaMalloc.

Copy a static array between CPU and GPU

Copy a dynamic array between CPU and GPU

```
// Transfer of a dynamic array between CPU and GPU float
* T a b C P U ;
float * T a b G P U ;
float * T a b G P U ;
TabCPU = (float * ) m a l l o c (N * sizeof (float));
c u d a Err.ortc u St a t;
c u St a t = cuda Malloc ((wid * * )&TabGPU, N * sizeof (float));
// Copy a dynamic CPU array into a dynamic GPU array
c u d a Sta t = cudaMemcpy (TabGPU, TabCPU, sizeof (float)*N,
cudaMemcpyHostToDevice);

// Copy a dynamic GPU array into a dynamic CPU array
c u d a Sta t = cudaMemcpy (TabCPU, TabGPU, sizeof (float)*N,
cudaMemcpyDeviceToHost);
```


- GPU vs. CPU architecture Running
- 2 a CUDA program CUDA syntax
- Memory allocation and data transfer Example
- 5

000 0000000 00 000 **0000 0000**

Multiplying an array by blocks in CUDA

Multiply each element of an array A[N] by a scalar c.

```
#include < c std io >
# include" cuda . h"
# define N 1024
float A [ N 1 :
float c = 2.0;
__d e v i c e_float dA [ N ];
__qloba_LwidmultiplyArray(intn,floatc)
  intelemParBlock = n / grid Dim.x:
  int begin = blockIdx.x * elem Par Block:
  if (blockIdx.x < qrid Dim.x-1) {
    end = (blockidx.x+1) * elemParBlock:
  3 else (
    end = n;
  for ( int i = b e q i n; i < end; i ++) { dA [i] * = c; }
int main (int argc, char * * argv)
  for (int i = 0 : i < N : i + +) { A [i] = i : }
  // Copy the table to the GPU
  cudaMemcpyToSymbol (dA, A, N * sizeof (float), 0,
       cuda Memcpy HostTo Device );
  multiplyArray <<< 4, 1>>> (N, c):
  // Copy the aray multiplies to the CPU
  cudaMemcpyFromSymbol (A, dA, N * sizeof (float), 0,
       cuda Memcov Device To Host ) :
  printf("%lf\ n", A[21):
  return 0 :
```

- **device** defini the table on the GPU.
- function on the GPU.
 - This allows you to use blockldx.x and gridDim.x for example
- We have to copy the data in the GPU before and after the calculation with cudaMemcpy... (to come).
- Each block always executes the m^eme code.
- The execution is differentiated by the blockldx.x.
- With P blocks, each block runs through N/P 'cons'ecutive elements of the array A[N].
- Be careful with the last block if P does not divide N.

Multiplying an array by blocks in CUDA (ameliore)

Multiply each element of an array A[N] by a scalar c.

```
#include < c std io >
# include" cuda - b'
# define N 1024
float A [ N ];
float c = 2 \cdot 0:
__d e v i c e_float dA [ N ];
__qloba_l_widmultiplyArray(intn,floatc)
  inti = blockldx.x:
  dA[i] * = c:
int main (int arg c, char * * a r g v)
  // Initialization
  for (int i = 0 \cdot i < N \cdot i + +) \langle A[i] = i \cdot 3
  // Copy the table to the GPU
  cudaMemcpyToSymbol (dA, A, N * sizeof (float), 0,
       cuda Memcpy HostTo Device );
  multiplyArray <<< N, 1>>> (n, c);
  // Copy the aray multiplies to the CPU
  cudaMemcpyFromSymbol (A, dA, N * sizeof (float), 0,
       cuda Memcpy Device To Host );
  printf("%lf\ n", A[2]):
  return 0:
```

- function on the GPU.
 - This allows to use blockldx.x
- Each block always executes the m^eeme code.
- Each block performs 1 operation, so you have to run *N* blocks to cover the whole table/area of the calculation.
- The execution is differentiated by the blockldx.x.

Multiplying an array by blocks and threads in CUDA

Multiply each element of an array A[N] by a scalar c.

```
#include < c std io >
# include" cuda h'
# define N 1024
float A [ N 1 :
float c = 2.0;
__d e v i c e_float dA [ N ];
__qloba_l_widmultiplyArray(intn,floatc)
  inti = threadIdx.x + blockIdx.x * blockDim.x:
  if(i < n) dA
[i] * = c:
int main (int argc, char * * argv)
  // Initialization for (int i = 0; i < N; i ++) { A[i] = i; }
  // Copy the table to the GPU
  cudaMemcpyToSymbol (dA, A, N * sizeof (float), 0,
       cuda Memcpy HostTo Device );
  int block Size = 128:
  introdum Blacks = No/philonomike Shirks = +
  multiply Array <<< (num Blocks, block Size >>> (n, c
  // Copy the array multiplies to the CPU
  cudaMemcpyFromSymbol (A, dA, N * sizeof (float), 0,
       cuda Memcpy Device To Host );
  printf("%lf\ n", A[2]);
  return 0:
```

- function on the GPU.
 - This allows to use blockldx.x, blockDim.x and threadldx.x
- Each thread and block always executes the m^eme code.
- We use blockSize threads per block.
- Each thread performs 1 operation, so you have to launch N / blockSize blocks to cover the entire table/calculation area.
- The execution is differentiated by the blockldx.x and threadldx.x.
- Beware of overflowing the array (if N is not divisible by blockSize)

Contact

Oguz Kaya Universite Paris-Saclay and LRI, Paris, France oguz.kaya@lri.com www.oguzkaya.com