全景智行智能车载辅助系统 - 需求规格说明书

文档版本: v1.0 创建日期: 2025年7月 更新日期: 2025年7月 作者: 宝宝巴士

目录

- 1. 引言
- 2. 范围
- 3. 术语定义
- 4. 产品概述
- 5. 功能需求
- 6. 接口需求
- 7. 性能需求
- 8. 设计约束
- 9. 系统属性

1. 引言

1.1 目的

本文档详细描述了全景智行智能车载辅助系统的软件需求。本文档面向系统开发人员、测试人员、项目管理人员以及相关利益相关者,为系统设计、开发、测试和验收提供依据。

1.2 文档约定

- 功能需求编号格式: F001、F002等
- 非功能需求编号格式: NF001、NF002等
- 优先级分为:高、中、低三个等级
- 必须实现的需求标记为"应当",可选需求标记为"可以"

1.3 预期读者

- 软件开发工程师
- 系统架构师
- 测试工程师
- 项目经理
- 产品经理
- 客户代表

2. 范围

2.1 产品范围

全景智行智能车载辅助系统是一款基于Android平台开发的智能车载应用系统,旨在为驾驶员提供全方位的视觉辅助和智能感知功能。

2.2 主要功能范围

核心功能:

- 多摄像头管理和360度全景显示
- 基于传感器的智能方向预测和辅助线显示
- 实时仪表盘和车辆状态监控
- 触控交互和手势识别

扩展功能:

- AI人脸检测和疲劳监测
- 路况检测和车道线识别
- 应用管理和快速启动

2.3 系统边界

包含的功能:

- 车载Android应用软件
- 摄像头视频流处理
- 传感器数据采集和处理
- AI模型推理和结果展示
- 用户界面和交互逻辑

不包含的功能:

- 硬件驱动程序开发
- 操作系统修改
- 车辆CAN总线通信
- 网络服务端开发

3. 术语定义

	术语	定义	
	全景视图	通过多个摄像头采集的图像经过算法处理后形成的360度环视图像	
•	辅助线	在摄像头画面上叠加显示的引导线条,用于辅助驾驶员判断行驶轨迹	
	梯形拼接	将多个摄像头的视频流通过几何变换拼接成完整全景图的技术	
	传感器融合	综合多种传感器数据以提供更准确状态信息的技术	
	MJPEG	Motion JPEG,一种视频压缩格式	
	AI推理	使用训练好的机器学习模型对输入数据进行预测或分类的过程	

4. 产品概述

4.1 产品视角

全景智行智能车载辅助系统是一个独立的Android应用软件,运行在车载Android设备上。系统通过USB接口连接多个摄像头,利用设备内置的传感器,为驾驶员提供智能化的驾驶辅助功能。

4.2 产品功能概述

4.2.1 主要功能

1. 多视角监控:支持前、后、左、右四个方向的实时视频监控

2. 360度全景:提供鸟瞰视角的全景拼接画面

3. **智能辅助线**:根据行驶方向动态显示轨迹预测线 4. **状态监控**:实时显示车辆模拟状态和传感器数据

5. AI检测:集成人脸检测和路况识别功能

4.2.2 核心特性

实时性:摄像头画面延迟小于100ms智能化:基于传感器数据的智能预测

交互性:支持触控和手势操作可靠性:异常情况自动恢复

• 扩展性:模块化设计,便于功能扩展

4.3 用户特征

4.3.1 主要用户群体

用户类型	用户特征	使用场景	技术水平
私家车主	日常通勤驾驶・注重安全性和便利性	城市道路、高速公路、停车场	基础到中等
商用车司机	职业驾驶·长时间使用·注重效率	货运、客运、物流配送	基础到中等

用户类型	用户特征	使用场景	技术水平
驾培教练	教学使用・需要详细的状态反馈	驾校训练场、考试路线	中等到高级
技术爱好者		各种驾驶场景	中等到高级

4.3.2 用户使用环境

• 物理环境:车内驾驶舱,光线条件变化大

• 使用时间:主要在驾驶过程中使用,需要快速响应

• 注意力分配:用户主要注意力在驾驶上,系统需要简洁直观

• 操作方式:主要通过触控,偶尔语音控制

4.3.3 用户能力要求

• 基本Android操作能力:能够启动应用、基本触控操作

驾驶经验:具备基本的驾驶技能和交通规则知识学习能力:能够在短时间内掌握系统的基本功能

5. 功能需求

5.1 摄像头管理系统 (F001)

5.1.1 功能描述

管理和显示多个摄像头的视频流、提供实时监控和全景拼接功能。

5.1.2 具体需求

F001-01: 多摄像头支持

- 系统应当支持前、后、左、右四个方向的USB摄像头
- 系统应当自动检测摄像头连接状态
- 系统应当支持摄像头热插拔
- 优先级:高

F001-02: 视频流显示

- 系统应当实时显示各摄像头的视频流
- 系统应当支持MJPEG格式的视频流
- 视频显示延迟应当小于100ms
- 优先级:高

F001-03: 全景拼接

- 系统应当提供360度全景鸟瞰视图
- 系统应当通过梯形变换实现视频拼接
- 系统可以支持拼接参数调整
- 优先级:高

F001-04: 状态监控

- 系统应当显示各摄像头的连接状态
- 系统应当在摄像头断开时提供视觉提示
- 系统应当记录摄像头故障信息
- 优先级:中

F001-05: 显示模式

- 系统应当支持分屏显示模式
- 系统应当支持全屏显示模式
- 系统应当支持摄像头视角快速切换
- 优先级:中

5.2 智能辅助线系统 (F002)

5.2.1 功能描述

基于传感器数据和用户操作,智能显示行驶轨迹预测线和倒车辅助线。

5.2.2 具体需求

F002-01: 方向预测

- 系统应当根据陀螺仪数据预测转向方向
- 系统应当显示前进、左转、右转辅助线
- 辅助线应当随传感器数据实时更新
- 优先级:高

F002-02: 倒车辅助

- 系统应当在倒车模式下显示透视梯形辅助线
- 系统应当提供距离参考线
- 系统可以根据车辆尺寸调整辅助线
- 优先级:高

F002-03: 颜色反馈

- 系统应当根据加速度数据改变辅助线颜色
- 绿色表示安全状态,红色表示高速状态
- 颜色变化应当平滑渐变
- 优先级:中

F002-04: 手动控制

- 系统应当支持通过触控操作显示辅助线
- 系统应当支持长按踏板控制辅助线
- 系统可以支持手势控制
- 优先级:中

5.3 实时仪表盘系统 (F003)

5.3.1 功能描述

显示车辆模拟状态、传感器数据和系统信息。

5.3.2 具体需求

F003-01: 速度显示

- 系统应当基于加速度传感器计算模拟时速
- 速度显示范围为0-200 km/h
- 速度更新频率应当不低于20Hz
- 优先级:中

F003-02: 电量模拟

- 系统应当根据踏板操作模拟电量消耗
- 电量消耗速率为2秒消耗1%
- 松开踏板后电量应当保持当前值
- 优先级:中

F003-03: 时间显示

- 系统应当显示当前时间和日期
- 时间格式应当支持24小时制
- 系统可以支持时区设置
- 优先级:低

F003-04: 状态同步

- 系统应当在多个界面间同步仪表盘数据
- 踏板状态变化应当实时反映在所有界面
- 系统应当处理传感器数据异常情况
- 优先级:中

5.4 交互控制系统 (F004)

5.4.1 功能描述

处理用户触控操作、手势识别和系统控制。

5.4.2 具体需求

F004-01: 触控操作

- 系统应当支持单击、长按、滑动手势
- 系统应当提供触觉反馈
- 操作响应时间应当小于200ms
- 优先级:高

F004-02: 手势识别

- 系统应当支持左右滑动切换摄像头
- 系统应当支持上下滑动调整显示模式
- 手势识别准确率应当大干95%
- 优先级:中

5.5 AI检测系统 (F005)

5.5.1 功能描述

使用深度学习模型进行人脸检测和路况识别。

5.5.2 具体需求

F005-01: 人脸检测

- 系统应当使用BlazeFace模型检测驾驶员面部
- 检测准确率应当大于90%
- 检测延迟应当小于200ms
- 优先级:中

F005-02: 疲劳监测

- 系统可以检测驾驶员疲劳状态
- 系统可以在检测到疲劳时发出警告
- 警告方式包括声音和视觉提示
- 优先级:低

F005-03: 路况检测

- 系统可以检测道路和车道线
- 系统可以识别交通标识
- 检测结果可以叠加显示在视频上
- 优先级:低

5.6 应用管理系统 (F006)

5.6.1 功能描述

管理和启动其他Android应用程序。

5.6.2 具体需求

F006-01: 应用列表

- 系统应当显示已安装的应用程序列表
- 系统应当提供应用图标和名称显示
- 系统可以支持应用分类和搜索
- 优先级:低

F006-02: 快速启动

- 系统应当支持应用快速启动
- 启动时间应当小于3秒
- 系统应当处理启动失败情况
- 优先级:低

6. 接口需求

6.1 用户界面需求

6.1.1 界面设计原则

• 简洁性:界面布局简洁,信息层次清晰

• 一致性:遵循Android Material Design设计规范

• 可用性:适合驾驶环境下的快速操作

• 可访问性:支持不同视力条件的用户使用

6.1.2 界面布局要求

- 主要信息应当在用户视线范围内
- 操作按钮应当足够大,便于触控
- 重要信息应当突出显示
- 界面应当支持横屏显示

6.1.3 颜色和字体

- 使用高对比度颜色方案
- 字体大小应当适合车内阅读
- 危险状态使用红色,安全状态使用绿色
- 支持夜间模式

6.2 硬件接口需求

6.2.1 摄像头接口

• 接口类型: USB 2.0/3.0

• 协议支持: USB Video Class (UVC)

视频格式: MJPEG, H.264分辨率: 支持720p、1080p

• **帧率**:不低于30fps

• 连接数量:同时支持4个摄像头

6.2.2 传感器接口

• 陀螺仪:3轴角速度传感器

• 加速度计:3轴线性加速度传感器

• **采样频率**:不低于50Hz

• 精度要求:角速度±2000°/s·加速度±16g

• 接口协议: Android Sensor Framework

6.2.3 显示接口

• 分辨率:支持1920x1080及以上

触控支持:多点触控响应时间:小于16ms

克度调节:自动/手动克度调节**连接数量**:同时支持三个显示器

6.3 软件接口需求

6.3.1 操作系统接口

• Android版本: 7.0+ (API Level 24+)

权限要求:摄像头、传感器、存储访问权限 系统服务: SensorManager, CameraManager

• JNI调用:支持本地代码调用

6.3.2 第三方库接口

• OpenCV 4.x:图像处理和计算机视觉

NCNN:深度学习模型推理MJPEG库:视频流解码显示

6.3.3 数据格式

• 配置文件:JSON格式

• 模型文件:.bin/.param格式

• 日志文件:标准Android Log格式

6.4 通信接口需求

6.4.1 内部通信

• 线程间通信: Handler/Message机制

组件间通信:接口回调机制数据传递:Intent和Bundle

6.4.2 外部通信

• 文件系统:配置文件读写

系统设置: SharedPreferences广播接收: 系统状态变化通知

7. 性能需求

7.1 响应时间需求

7.1.1 实时性需求

功能模块	响应时间要求	测量方法
摄像头画面显示	≤ 100ms	从数据接收到屏幕显示的延迟
传感器数据处理	≤ 50ms	从传感器读取到UI更新
触控操作响应	≤ 200ms	从触摸事件到界面反馈
AI模型推理	≤ 200ms	单次推理完整时间
辅助线绘制	≤ 16ms	60fps刷新率要求

7.1.2 启动时间需求

应用冷启动:≤3秒
摄像头初始化:≤2秒
AI模型加载:≤5秒
传感器初始化:≤1秒

7.2 吞吐量需求

7.2.1 数据处理能力

• 视频流处理:4路1080p@30fps同时处理

• 传感器数据:支持100Hz采样频率

• **UI刷新率**:保持60fps

• 并发用户操作:支持多点触控

7.2.2 网络传输

• 视频流带宽:每路摄像头≤ 10Mbps

总带宽需求:≤50Mbps数据丢包率:≤0.1%

7.3 资源使用需求

7.3.1 内存使用

运行时内存: ≤ 512MB
视频缓冲区: ≤ 128MB
AI模型内存: ≤ 100MB

• 内存泄漏:24小时运行无明显内存增长

7.3.2 CPU使用

平均CPU使用率: ≤ 60%峰值CPU使用率: ≤ 80%

多核利用率:充分利用多核处理器功耗控制:合理控制CPU频率

7.3.3 存储需求

应用安装包: ≤ 250MB
运行时存储: ≤ 100MB
日志文件: ≤ 10MB
配置文件: ≤ 1MB

7.4 容量需求

7.4.1 并发处理能力

同时处理摄像头数量:4个同时处理传感器数量:不限同时显示界面元素:不限制

7.4.2 数据存储容量

视频缓存:支持5秒缓存日志存储:支持7天历史日志配置备份:支持多版本配置

7.5 可靠性需求

7.5.1 稳定性指标

• 连续运行时间:≥ 24小时无崩溃

• **平均故障间隔时间(MTBF)**:≥ 100小时

• 系统可用性:≥99.9%

7.5.2 故障恢复

摄像头断线恢复: ≤ 5秒自动重连
应用崩溃恢复: ≤ 10秒自动重启
数据损坏恢复:自动使用默认配置

7.6 兼容性需求

7.6.1 硬件兼容性

• 处理器架构: ARM64, ARMv7, x86_64

内存容量: ≥ 2GB RAM存储空间: ≥ 8GB可用空间

• 传感器支持:陀螺仪、加速度计必须

7.6.2 软件兼容性

• Android版本: 7.0 - 14.0

• 不同厂商ROM:主流厂商适配

屏幕分辨率:720p - 4K屏幕尺寸:7寸 - 15寸

8. 设计约束

8.1 技术约束

8.1.1 开发平台约束

● 开发语言:Java、C++

开发框架: Android SDK、NDK最低API级别: 24 (Android 7.0)目标API级别: 33 (Android 13)

8.1.2 第三方库约束

• OpenCV版本: 4.x系列

• NCNN版本: 20250503及以上

• **许可证兼容**: BSD、Apache 2.0许可证

8.1.3 硬件资源约束

• 最低内存要求: 2GB RAM

• 最低存储要求:8GB

• 传感器要求:必须支持陀螺仪和加速度计

• **USB接口**:至少4个USB 2.0接口

8.2 业务约束

8.2.1 时间约束

开发周期:6个月 测试周期:2个月 部署周期:1个月

8.2.2 成本约束

• 开发成本:合理控制第三方库使用

• 运行成本:优化资源使用效率

• 维护成本:采用模块化设计便于维护

8.3 法规约束

8.3.1 安全标准

- 遵循车载设备安全标准
- 符合驾驶员注意力分散相关法规
- 满足数据隐私保护要求

8.3.2 技术标准

• 遵循Android兼容性定义

- 符合USB Video Class标准
- 遵循无障碍设计标准

9. 系统属性

9.1 可用性

9.1.1 易学性

新用户学习时间:≤30分钟掌握基本功能界面直观性:符合用户习惯的操作逻辑

• 帮助文档:提供详细的用户手册

9.1.2 易用性

操作步骤:主要功能≤3步操作完成错误容忍:提供撤销和错误恢复机制

• 个性化:支持用户偏好设置

9.2 可维护性

9.2.1 模块化设计

组件独立性:各功能模块低耦合接口标准化:统一的接口设计代码复用:公共功能组件化

9.2.2 可测试性

单元测试覆盖率:≥80%集成测试:全面的功能测试性能测试:压力和稳定性测试

9.3 可扩展性

9.3.1 功能扩展

插件机制:支持功能模块热插拔配置灵活性:支持配置文件调整功能API开放性:为二次开发提供接口

9.3.2 性能扩展

• 硬件升级适配:充分利用硬件性能提升

• **算法优化**:支持算法模型升级

• 并发能力:支持更多设备同时接入

9.4 安全性

9.4.1 数据安全

• 敏感数据加密:配置和用户数据加密存储

访问控制:严格的权限管理数据备份:重要数据自动备份

9.4.2 系统安全

• 异常处理:完善的异常捕获和处理机制

资源保护:防止资源泄漏和滥用安全更新:支持安全补丁更新

附录

A. 术语表

详见 3. 术语定义

B. 缩略语表

缩略语	英文全称	中文含义	
Al	Artificial Intelligence	人工智能	
API	Application Programming Interface	应用程序编程接口	
CPU	Central Processing Unit	中央处理器	
GPU	Graphics Processing Unit	图形处理器	
HAL	Hardware Abstraction Layer	硬件抽象层	
JNI	Java Native Interface	Java本地接口	
MJPEG	Motion JPEG	动态JPEG	
NDK	Native Development Kit	原生开发工具包	
NCNN	Neural Compute Neural Network	神经计算神经网络	
OpenCV	Open Source Computer Vision Library	开源计算机视觉库	
RAM	Random Access Memory	随机存取存储器	
UI	User Interface	用户界面	
USB	Universal Serial Bus	通用串行总线	
UVC	USB Video Class	USB视频类	

C. 参考文献

- 1. Android开发者文档,Google Inc.
- 2. OpenCV 4.x 官方文档

- 3. NCNN 深度学习推理框架文档
- 4. Android兼容性定义文档(CDD)
- 5. BlazeFace: Sub-millisecond Neural Face Detection, Google Research

版本	日期	修改内容	作者
v1.0	2025-7	初始版本	宝宝巴士