1. What is an Agent?

An agent is an autonomous entity (software or robotic) that:

- perceives its environment through sensors,
- reasons or plans based on those perceptions,
- and acts upon the environment using actuators or tools
 all to achieve a goal.

Formally:

Agent = $\langle P, A, \pi \rangle$ where

P = Perceptions, A = Actions, π = Policy (mapping from perception to action).

2. Single-Agent System (SAS)

A Single-Agent System is one in which only one autonomous agent interacts with its environment to achieve its goal.

Key Idea:

There is no other intelligent entity influencing the environment — only the environment and the agent.

Architecture of a Single-Agent System

+----+
Agent
Perception
Reasoning
Planning
Acting
+----+
Act (Effectors)
v
+-----+

Examples:

- Chess-playing AI (vs static board rules no other learning agent).
- 2. Autonomous vacuum cleaner (Roomba) interacts with furniture and walls, not other agents.
- 3. Single chatbot assistant helping a user.
- 4. Self-driving car simulator (solo) no interaction with other Aldriven cars.

Characteristics:

Aspect Description

Control Centralized — one agent decides everything.

Decision

Space

Limited to the agent's own goals and perceptions.

Coordination Not needed.

Complexity Easier to design, train, and debug.

Performance Depends entirely on agent's internal intelligence.

GPT-based chatbot, recommender system, single Examples

trading bot.

3. Multi-Agent System (MAS)

A Multi-Agent System (MAS) consists of two or more interacting intelligent agents that can be:

- Cooperative (working together towards a shared goal)
- Competitive (working against each other, like in games)
- or Hybrid (some cooperation + some competition)

Each agent has partial information, limited capabilities, and must coordinate or compete.

Architecture of a Multi-Agent System

Examples:

Domain Example

Al Agents

AutoGPT team of agents (Researcher, Writer,

Coder).

Games Multi-player Al bots (like in StarCraft, Dota2).

Robotics Swarm of drones coordinating a delivery.

Traffic

systems

Multiple autonomous vehicles communicating.

Finance Multiple trading bots reacting to each other.

Manufacturing Distributed robots on an assembly line.

4. Comparison: Single-Agent vs Multi-Agent

Feature	Single-Agent	Multi-Agent
Number of Agents	One	Two or more
Environment	Static / Predictable	Dynamic (agents affect each other)

Feature	Single-Agent	Multi-Agent
Decision Making	Centralized	Distributed (each agent has autonomy)
Goal Type	Individual	Shared or conflicting
Coordination	Not required	Required (communication / negotiation)
Learning	Individual reinforcement learning	Multi-agent RL (MARL) needed
Examples	Chatbot, vacuum robot	AutoGPT team, swarm drones, trading agents
Complexity	Easier	Higher (due to interactions)
Communication	None	Required among agents
Emergent Behavior	Absent	Possible (unexpected group intelligence)

5. How Multi-Agent Systems Work (Core Concepts)

1. Communication Protocols

- Agents use standardized messages (e.g., FIPA-ACL, JSON schemas, natural language)
- Communication includes:
 - Inform (sharing knowledge)
 - Request (asking another agent)
 - Confirm / Reject

2. Coordination Mechanisms

- Centralized coordinator or decentralized peer-to-peer.
- Examples: task allocation, leader election, consensus algorithms (like Paxos, Raft).

3. Negotiation

 Agents negotiate resources or goals (game-theory-based, contract-net protocol).

4. Collaboration

 Shared task decomposition (e.g., one agent researches, one executes).

5. Competition

 Agents compete for resources, information, or rewards (used in simulations or games).

6. Multi-Agent Learning

MARL (Multi-Agent Reinforcement Learning) is the key learning paradigm here:

- Each agent learns its policy π_i based on local observations and joint environment rewards.
- Challenges include:
 - Non-stationarity (environment changes as others learn),
 - Credit assignment (who caused success/failure),
 - Communication overhead.

Example algorithms:

- MADDPG (Multi-Agent Deep Deterministic Policy Gradient)
- QMIX
- VDN (Value Decomposition Networks)

7. Real-World Applications

Domain	Single-Agent Example	Multi-Agent Example
Chat Al	ChatGPT personal assistant	CrewAl team of specialized GPT agents
Finance	One trading bot	Competing trading bots on an exchange
Robotics	A solo warehouse robot	Swarm robots coordinating delivery
Healthcare	Diagnosis chatbot	Multi-agent care system (diagnosis, scheduling, medication)
Game Al	Chess engine	Multi-player strategy Al (like Dota2)

8. Advantages and Disadvantages

✓ Single-Agent:

- Easier to build and debug.
- Predictable.
- No communication overhead.

X Single-Agent:

- Limited scalability.
- Cannot handle distributed tasks.

✓ Multi-Agent:

- Scalable and flexible.
- Can model complex, dynamic environments.
- Emergent intelligence (collective problem-solving).

X Multi-Agent:

• High complexity.

- Requires communication and synchronization.
- Harder to debug and ensure safety.

9. Example Analogy

Analogy	Single-Agent	Multi-Agent
Human analogy	A single person doing research alone.	A team of specialists collaborating on a research project.
Software analogy	One chatbot managing everything.	A team of GPT agents (planner, researcher, summarizer, coder) working together through a coordinator.

Single-Agent vs Multi-Agent Architectures

