SOC Design Lab3 Report

311511022 邱政岡

1. Architecture Design

1.1 Block diagram

1.1.1 System overview

1.1.2 FIR engine

1.1.3

1.2 Control signal

1.2.1 State diagram

Initial: reset data ram Run: run FIR engine

Load: wait for stream-in data Wait: wait for stream-out data

2. Verification and Synthesis

2.1 Simulation waveform

2.1.1 Coefficient program and read back

2.1.2 Data-in stream in

2.1.3 Data-out stream out

2.1.4 Bram access control

2.2 Synthesis

2.2.1 Timing report summary

osition		Period (ns)	Rise At (ns)	Fall At (ns	A	Clock	Source Objects	Source	1.11
L	axis_clk	10.000	0.000	5.00	0 [[get_ports axis_clk]	constr	aints.xd
esign Timir	ng Summary								
				Pulse Width					
Setup			lold			Pulse	e Width		
Setup Worst Ne	egative Slack (WNS):		Hold Worst Hold Slack	k (WHS):	0.137 ns		e Width orst Pulse Width Slack (WPWS	S):	4.500 ns
Worst Ne	egative Slack (WNS): gative Slack (TNS):				0.137 ns 0.000 ns	Wo		-,-	4.500 ns 0.000 ns
Worst Ne		3.558 ns 0.000 ns	Worst Hold Slack	(THS):	0.000 ns	Wo	orst Pulse Width Slack (WPWS	-,-	

2.2.2 Critical path

Summary	
Name	1 Path 1
Slack	3.558ns
Source	len_reg[4]/C (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@5.000ns period=10.000ns})
Destination	cur_state_reg[2]/D (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@5.000ns period=10.000ns})
Path Group	axis_clk
Path Type	Setup (Max at Slow Process Corner)
Requirement	10.000ns (axis_clk rise@10.000ns - axis_clk rise@0.000ns)
Data Path Delay	6.306ns (logic 3.319ns (52.632%) route 2.987ns (47.368%))
Logic Levels	12 (CARRY4=8 LUT1=1 LUT5=1 LUT6=2)
Clock Path Skew	-0.145ns
Clock Unrtainty	0.035ns