

TELNET Basics

BUPT/QMUL 2019-04-15

Refer to Chapter 24, Textbook

- A brief introduction to TELNET
- Concept of remote/virtual terminal
- TELNET operations
- TELNET protocol
- TELNET options negotiation
- Other remote access technologies

A Brief Introduction to TELNET

Brief Introduction To TELNET

- Use of TELNET: BBS
- What is TELNET?
- History

- A computer system running software that allows users to connect and log in to the system using a terminal program.
- Once logged in, a user can perform functions such as
 - uploading and downloading software and data;
 - reading news and bulletins;
 - and exchanging messages with other users, either through Email or in public message boards.

Traditional BBS example:

```
Monochrome (1.101,j 20-Bec-03) (Last on Mon Jun 21 20:50)
Scanning makes it easy to find files that have been added to since
   you last read them. Simply press [SPACE] in a menu to find the next
   updated file. For more information, press [?][C][M] from this screen.
                            [ESC] = Utilities (inc. Talker & EXIT)
                      Menu.
                       Menu
                            [I] = Help and Information on Monochrome
     Helcome to
                       Menu
                              [N] = News and Media
        the new
                              [T] = Science, Technology and Medicine
                       Menu
                       Menu
                              [E] = Entertainment
     version of
                              [C] = Society and Culture
    Monochrone!
                       Menu
 (version 1,101j)
                       Menu
                              [R] = Recreation
                             [M] = Monochrome Users
                    Hello '<u>Guest User</u>'. (guest2:2)
    << 5 other users at Tue Jun 22 03:36 GMT (You have new messages) >>
```

Example of BBS Today(1)

all rights reserved

Example of BBS Today(2)

□ 全部讨论区

本站站务

+ 北邮校园

サポ科技

由信息社会

十 人文艺术

生活时尚

① 休闲娱乐

+ 体育健身

→ 游戏对战

我的收藏夹

控制面板

● 北邮人论坛微博

● 优秀版主评选

● 投票系统

● 竞猜系统

● 积分系统

● 手机客户端

● 手机版

● 北邮人设计

● 精华区

● Telnet登录

● 搜索讨论区

[家庭生活] 【公告】个人转租房子(地点:回龙观龙锦苑东二区)

[学为人师,行为世范] 【只招男生】推销与购买的脑机制【50分钟50-70元】

[飞跃重洋] 【Ph.D. Position】 犹他大学秋季博士招生

[安居乐业] 【求合租】西二旗金域华府一期两居室、2500出租次卧

[创业交流] 承接网站、小程序开发、SEO搜索优化

[信息产业] 【实习/社招】广告算法和推荐算法工程师!!!

🔺 🔝 近期热点活动

【公告】我校组织寒假留校学生共度新春,一起来参加吧!

Momenta北部站火热来袭~~听大牛给你讲CNN网络SENet的那些事情

思科公司《我的SDN之路》讲座北邮站来啦~

北京邮电大学第二届研究生创新创业成果展参观邀请函

第五期后勤服务学生座谈会要开始啦~

爱邮, 你今天表白了么?

【公告】2018考研经验交流会来啦

这一世 你是我唯一的心事

【招新】北邮人团队六大组系欢迎你的加入

【公告】2018考研经验交流会——政策性问题征集

▲ 北邮校园

热门话题

版面列表

分区暂不存在热门话题

▲ 生活时尚

热门话题

版面列表

[情感的天空] 176

[谈天说地] 如何委婉地告诉室友 味道确实很重?

[缘来如此] 五一放假第一天征个人去看五月天天津演唱会, 不收票钱

[美容护肤] [求问] 化妆品的淘宝旗舰店水深吗?

[秀色可餐] 老三的烤鸡饭了解一下~

欢迎2019级保研生选择FNL实验室(31)

4.18日晚学校超市购买茶叶,有很多小黑虫,如何维权? (28)

林俊杰北京演唱会,有没有组队抢票的啊(22)

邀请大家加入"北邮易飞榜"! (18)

晚安前小唱《追光者》(15)

▲ 学术科技

热门话题

版面列表

[机器学习与数据挖掘] 大数据实习

[笔记本电脑] 8k内游戏本求推荐~

[Python] 【求助】: pycharm的社区版不能debug 是设置的问题吗?

[算法与程序设计竞赛] 【问题】百度笔试、排队问题

[科研与论文] 【讨论】有偿请同学"指导"一篇在职研究生软件工具类论文

[电子电路] 有没有人用过ioio开发板? 网上买不到了

[软件开发] 承接网站、小程序开发、SEO搜索优化

[信息安全] 【问题】信安专业英语的学习用书?

[电脑硬件与维修] 研究生想在宿舍攒个主机,求建议

▲ 人文艺术

热门话题

版面列表

[英语吧] 如何提高雅思口语???

[音乐交流区] 生气的时候听什么歌

[吉他] 在哪里可以练吉他? 坐标沙河

[摄影] 就是想分享一下......随拍

▲ 休闲娱乐

热门话题

版面列表

[海天游踪] 有人想夜爬泰山吗

[电视剧] 《夫妻那些事》简直毁三观啊

[宠物家园] 好久没来了, 晒猫

telnet BBS of BYR

You can also type in: telnet bbs.byr.cn

- A protocol used to establish a dumb terminal session to another computer on the Internet
- An important Internet application for remote access

What Is TELNET? (2)

- Definition in RFC854
 - The purpose of the TELNET Protocol is to provide a general, bi-directional, byte oriented communications facility.
 - Its primary goal is to allow a standard method of interfacing terminal devices and terminal-oriented processes to each other.
 - It is envisioned that the protocol may also be used for terminal-terminal communication ("linking") and process-process communication (distributed computation).

- TELNET is a protocol that provides "a general, bi-directional, eight-bit byte oriented communications facility"
- telnet is a program that supports the TELNET protocol over TCP
- Many application protocols are built upon the TELNET protocol

- Telnet is simple
 - Total pages of RFC 854 is 15
 - HTTP (we will see later) is 176 pages
- The idea of option negotiation was a very good design feature
 - Enables telnet to evolve to meet new demands without endless new versions of basic protocol
- Currently over 100 RFCs on telnet and its options

Concept Of Remote / Virtual Terminal

Remote Terminal Access

- Early motivation for networks was remote access to interactive systems
- Dumb terminals (see <u>figure</u> on the next slide)
 - Keyboard and screen with primitive communication hardware
 - Local host computer establish connection to remote host
- The challenge is that terminals and host systems were not standardized
 - local terminal was not speaking the same language as the remote host

Telnet Operation Environment On Early Internet

 Lack of common language between the terminal and the remote host

Client System format

Server System format

Network Virtual Terminal

- Transform local characteristics into standardized form
 - Network virtual terminal (NVT)
- Imaginary device
 - Well defined set of characteristics
- Both sides generate data and control signals in native language but translates them to NVT form
 - The sending side translates native data and control signals into NVT form before sending out
 - The receiving side gets the NVT data and signals and translates into its native form

Network Virtual Terminal

NVT Operation

Accommodating heterogeneity

Client System formatServer System formatNVT format

TELNET client and server convert between native format and NVT format

TELNET Operations

TELNET Operations

- Connection management
 - Connection request, establish and terminate
 - Telnet uses TCP (port 23) by default
- Negotiation
 - To determine mutually agreeable set of characteristics and options
- Exchange of control information (e.g. end of line), commands and transfer of data between two correspondents
- A typical telnet session is to exchange of data between terminal and host
 - Multiple rounds
 - Not only for accessing remote accounts; was also used for interactive system
 - Try "telnet bbs.byr.cn"

TELNET Protocol

- Basic protocol
 - RFC854: Telnet Protocol Specification
- Options
 - RFC855: Telnet Option Specifications
 - RFC856: Telnet Binary Transmission
 - RFC857: Telnet Echo Option
 - RFC858: Telnet Suppress Go Ahead Option
 - RFC859: Telnet Status Option
 - ...

- TCP connection: directed toward port 23 of the server being asked to perform a service
- Data and control multiplexed over the same connection
- NVT representation of a generic terminal
- Negotiated options Enabling Telnet to evolve to meet new demands without endless new versions of basic protocol
- A symmetric view of terminals and processes

TELNET Protocol

- Transmission of data
- Standard representation of control functions

Transmission Of Data (1)

Data path from the user's keyboard to the remote system

- Underlying TCP full duplex
 - The underlying network is intrinsically full duplex
- Data sent half duplex
 - The communication between terminal and process is one direction at a time.
- Data sent as stream of 8-bit bytes
 - No other formatting
- Control signals and other non-data information sent as Telnet commands
 - Byte strings embedded in data stream
 - User control signals, commands between Telnet processes as part of protocol and option negotiation and subnegotiation

Control Functions (1)

- TELNET includes support for a series of control functions commonly supported by servers
- This provides a uniform mechanism for communication of (the supported) control functions
- You can imagine them as some extra virtual keys in the NVT keyboard

Control Functions (2)

- Interrupt Process (IP)
 - suspend/interrupt/abort/terminate process
- Abort Output (AO)
 - allow a process, which is generating output, to run to completion but without sending the output to the user's terminal
- Are You There (AYT)
 - check to see if system is still running
- Erase Character (EC)
 - delete last character sent
 - typically used to edit keyboard input
- Erase Line (EL)
 - delete all input in current line
 - typically used to edit keyboard input

Control Functions (3) – delivery

Command	Decimal Codes	Description
IAC	255	Interpret next octet as command
DONT	254	Denial of request to perform specific option
DO	253	Approval to allow specific option
WONT	252	Refusal to perform specific option
WILL	251	Agreement to perform specific option
SB	250	Start of option subnegotiation
GA	249	Go ahead
EL	248	Erase line
EC	247	Erase character
AYT	246	Are you there
AO	245	Abort output
IP	244	Interrupt process
BRK	243	Break
DMARK	242	Data mark
NOP	241	No operation
SE	240	End of subnegotiation
EOR	239	End of record

- TELNET command structure
 - at least a two byte sequence: the IAC (Interpret as Command) escape character followed by the code for the command
- The IAC code is 255
 - If a 255 is sent as data it must be followed by another 255
- Looking for a command
 - Each receiver must look at each byte that arrives and look for an IAC
 - If IAC is found and the next byte is "IAC" a single data byte (value 255) is presented to the application/ terminal
 - If IAC is followed by any other code the TELNET layer interprets this as a command

- Used for options negotiation
- Examples

Sender	Receiver	Meaning
WILL →	← DO	Sender wants to active a option, and receiver agrees
WILL →	← DON'T	Sender wants to active a option, and receiver refuses
DO →	← WILL	Sender wants receiver to active a option, and receiver agrees
DO →	← WONT	Sender wants receiver to active a option, and receiver refuses

TELNET Options Negotiation

Motivations

- All NVTs support a minimal set of capabilities
- Some terminals have more capabilities than the minimal set
- The two endpoints negotiate a set of mutually acceptable options (character set, echo mode, etc.)
- The set of options is not part of the TELNET protocol, so that new terminal features can be incorporated without changing the TELNET protocol

- echo modes
 - Keyboard input be echoed on the terminal side or not
- Line mode vs. character mode
 - One line or one character per transmission
- character set (EBCDIC vs. ASCII)
 - EBCDIC Extended Binary-Coded Decimal Interchange Code
 - ASCII American Standard Code for Information Interchange

- Each option is assigned a byte value
- The DO, DONT, WILL, and WONT commands are used to negotiate options
- Options negotiation is symmetric
- Steps must be taken to avoid option processing loops
- Subnegotiations are used when more information is needed, such as when negotiating terminal type, window size, etc

Example: Negotiation of Echo Option

TELNET Options List (1)

Options	Name	References
0	Binary Transmission	[RFC856]
	Echo	[RFC857]
2	Reconnection	[NIC50005]
3	Suppress Go Ahead	[RFC858]
4	Approx Message Size Negotiation	[ETHERNET]
5	Status	[RFC859]
6	Timing Mark	[RFC860]
7	Remote Controlled Trans and Echo	[RFC726]
8	Output Line Width	[NIC50005]
9	Output Page Size	[NIC50005]
10	Output Carriage-Return Disposition	[RFC652]
11	Output Horizontal Tab Stops	[RFC653]
12	Output Horizontal Tab Disposition	[RFC654]
13	Output Formfeed Disposition	[RFC655]
14	Output Vertical Tabstops	[RFC656]
15	Output Vertical Tab Disposition	[RFC657]
16	Output Linefeed Disposition	[RFC657]
17	Extended ASCII	[RFC698]
18	Logout	[RFC727]
19	Byte Macro	[RFC735]

TELNET Options List (2)

20	Data Entry Terminal	[RFC1043, RFC732]
21	SUPDUP	[RFC736, RFC734]
22	SUPDUP Output	[RFC749]
23	Send Location	[RFC779]
24	Terminal Type	[RFC1091]
25	End of Record	[RFC885]
26	TACACS User Identification	[RFC927]
27	Output Marking	[RFC933]
28	Terminal Location Number	[RFC946]
29	Telnet 3270 Regime	[RFC1041]
30	X. 3 PAD	[RFC1053]
31	Negotiate About Window Size	[RFC1073, DW183]
32	Terminal Speed	[RFC1079]
33	Remote Flow Control	[RFC1372]
\sim 34	Linemode	[RFC1184]
35	X Display Location	[RFC1096]
36	Environment Option	[RFC1408]
37	Authentication Option	[RFC1416]
38	Encryption Option	[Borman]
39	New Environment Option	[RFC1572]
40	TN3270E	[RFC1647]
41	XAUTH	[Earhart]
255	Extended-Options-List	[RFC861]

A Telnet Session Example (1)

```
C:\Documents and Settings\Administrator> telnet 192.168.1.253
Red Hat Enterprise Linux AS release 4 <Nahant Update 1>
Kernel 2.6.9-11.Elsmp on an i686
Login: shivan
Password:
Last login: Sun Nov 11 17:48:30 from 192.168.1.168
[shiyan@localhost ~]$
```

Using wireshark to know what are sent and received

- Wireshark: A network protocol analyzer (packet sniffer)
- Renamed from Ethereal in 2006
- Able to capture packets transferred on the network and display packet fields and their meanings
- Used for network troubleshooting, analysis, software and communications protocol development, and education.

Summary (1) – usages of telnet

- Use Internet accounts you may have on remote computers
 - you need an account (login ID) and password on the remote computer to permit access
- Use free services accessible with telnet, e.g.
 - library catalogues
 - databases
 - BBS (Bulletin Board System)
 - Router/switch configuration

Summary (2) – Disadvantages of telnet

- Poor user interface
 - Based on dumb terminal
 - Text-only display
 - Monochrome
 - One color for text, one for background
 - Have to type command-line commands
 - Often have complex syntax
 - Not very secure, SSH made enhancement
 - TELNET does not encrypt any data sent over the connection (including passwords)

Other Remote Access Technologies

Other Remote Access Technologies

- Remote login in text-based system
 - telnet
 - SSH
 - Rlogin
- Remote desktop in windowing system
 - VNC (Virtual Network Computing)
 - RDP (Remote Desktop Protocol)

SSH (1) – brief information

- Secure Shell
- Command line terminal connection tool
- All traffic encrypted
- Both ends authenticate themselves to the other end
- Ability to carry and encrypt non-terminal traffic
- Private key kept on client, public key stored on server
- Now, it is an IETF standard
 - RFC4251, The Secure Shell (SSH) Protocol Architecture

SSH (2) – two enhancements of telnet

- Providing secure communications
- Providing users with the ability to perform additional, independent data transfer over the same connection that is used for remote login

SSH (3) – three major mechanisms

- A transport layer protocol that provides sever authentication, data confidentiality, and data integrity with perfect forward secrecy
- A user authentication protocol that authenticates the user to the server
- A connection protocol that multiplexes multiple logical communications channels over a single underlying SSH connection

SSH(4) - tools

Xshell5

Helpful URLs

- RFCs
 - http://www.ietf.org/
- Useful utilities
 - http://winfiles.search.com/search?cat=316&tag=ex.sa.fd.srch.wf&q =TELNET
- About telnet
 - http://en.wikipedia.org/wiki/Telnet
 - http://baike.baidu.com/item/Telnet
- About SSH
 - http://www.ssh.com
- About realVNC
 - http://www.realvnc.com/