Problem 1. Show that if f and \bar{f} are analytic on a domain D, then f is constant.

Proof. Assume that f = u + iv and $\bar{f} = u - iv$ are both analytic on domain D. Then we have that both satisfy the Cauchy-Riemann equations: That is

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y}, & \frac{\partial u}{\partial y} &= -\frac{\partial v}{\partial x}, \\ \frac{\partial u}{\partial x} &= -\frac{\partial v}{\partial y}, & \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial x}. \end{split}$$

Then we have $\frac{\partial u}{\partial x} = -\frac{\partial u}{\partial x} \implies \frac{\partial u}{\partial x} = 0$ using the same reasoning for the rest we get $\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} = 0$. This implies that u and v are both constant functions therefore f is constant.

Problem 2. Let a be a complex number, $a \neq 0$, and f(z) be an analytic branch of z^a on $\mathbb{C} \setminus (-\infty, 0]$. Show that f'(z) = af(z)/z.

Proof. Let $f(z)=z^a$ where $a\neq 0$, and f(z) be an analytic branch of z^a on $\mathbb{C}\setminus (-\infty,0]$. Then we have $f(z)=e^{a\mathrm{Log}z}$. Using the chain rule we get $f'(z)=ae^{a\mathrm{Log}z}\cdot\frac{1}{z}$. As $f(z)=e^{a\mathrm{Log}z}$ is the same branch we can do the substitution $f'(z)=ae^{a\mathrm{Log}z}/z=af(z)/z$ which completes the proof.