Online Resource 2

Datasets, Performance Comparisons, Visualizations, and Evaluation Metrics for the Nova Optimizer

Ali Zeydi Abdian¹, Mohammad Masoud Javidi² and Najme Mansouri³

Corresponding author: alizeydiabdian@math.uk.ac.ir

Journal Name: Signal, Image and Video Processing

Contents

1	Tim	e and Space Complexity of Common First-Order Optimizers	2		
2	Datasets				
3 Evaluating the Pewith Nova		luating the Performance of Various Optimizers on Some Well-Known Networks: A Compa n Nova	riso 2		
4	Con	fusion Matrix	-		
5	Res	ults	-		
	5.1	Comparison of Performance Metrics of Nova with Other Optimizers	7		
		Learning Curves and Bar Plots			
	5.3	Confusion Matrices of datasets of CIFAR-10, MNIST, Noisy MNIST and SST-2	12		
	5.4	ROC and AUC	16		

¹Department of Computer Science, Shahid Bahonar University of Kerman, Kerman, Iran, E-mail: ali.zeydi.abdian@ut.ac.ir, alizeydiabdian@math.uk.ac.ir (Corresponding Author)

² Professor, Faculty of Shahid Bahonar University of Kerman, Kerman, Iran, Email: javidi@uk.ac.ir

³ Associate Professor, Faculty of Shahid Bahonar University of Kerman, Kerman, Iran, Email: n.mansouri@uk.ac.ir, najme.mansouri@gmail.com, Box No. 76135-133, Fax: 03412111865

Introduction of Online Resource 2

Online Resource 2 (ESM_2.pdf) contains all experimental results and benchmarking data supporting this study. Section 1 evaluates the time and space complexity of first-order optimizers, demonstrating Nova's superior computational efficiency. Section 2 details the datasets used for evaluation, while Section 3 presents a systematic performance comparison of Nova against other optimizers across well-known neural architectures. Section 4 provides confusion matrices for model predictions, and Section 5 consolidates quantitative results: performance metrics (Subsection 5.1), learning curves and bar plots (Subsection 5.2), task-specific confusion matrices for CIFAR-10, MNIST, Noisy MNIST, and SST-2 (Subsection 5.3), and ROC-AUC analysis (Subsection 5.4). Together, these sections offer transparent, reproducible evidence of Nova's efficacy, with visualizations and statistical metrics tailored for in-depth scrutiny.

1 Time and Space Complexity of Common First-Order Optimizers

Table 1. Comparison of time and space complexity for popular gradient-based optimizers. Here P is the number of model parameters; "Memory overhead" counts only the auxiliary state beyond parameters and gradients.

Optimizer	Time per update	Memory overhead	State vectors per parameter
SGD	$\mathcal{O}(\mathrm{P})$	$\mathcal{O}(0 \cdot P)$	None
SGD + Momentum	$\mathcal{O}(\mathrm{P})$	$\mathcal{O}(1 \cdot P)$	1 (velocity)
RMSprop	$\mathcal{O}(\mathrm{P})$	$\mathcal{O}(1 \cdot P)$	1 (running $\mathbb{E}[\mathrm{g}^2]$)
Adam / AdamW	$\mathcal{O}(\mathrm{P})$	$\mathcal{O}(2 \cdot P)$	2 (first and second moments: m, v)
NAdam	$\mathcal{O}(\mathrm{P})$	$\mathcal{O}(2 \cdot P)$	2 (as in Adam)
Nova (AMSGrad-style)	$\mathcal{O}(\mathrm{P})$	$\mathcal{O}(3 \cdot P)$	$3 \text{ (m, v, and } \max(v))$

2 Datasets

Fig 1. Visualization of CIFAR-10 and MNIST datasets.

Fig 2. MNIST and noisy MNIST

3 Evaluating the Performance of Various Optimizers on Some Well-Known Networks: A Comparison with Nova

Table 2. ResNet-18 architecture details

Layer / Block	Operation	Output / Notes
Input	RGB Image	224×224×3
Conv1	7×7 Convolution, 64 filters, stride 2, padding 3	112×112×64
BN + ReLU	_	_
MaxPool	3×3 Max Pooling, stride 2	$56 \times 56 \times 64$
Residual Blocks (each b	lock: 2 conv layers, BN, ReLU)	
Layer 1 (conv2_x)	2 blocks with 64 filters (stride 1)	$56 \times 56 \times 64$
Layer 2 (conv3_x)	2 blocks with 128 filters; first block uses stride 2	$28 \times 28 \times 128$
Layer 3 (conv4_x)	2 blocks with 256 filters; first block uses stride 2	$14 \times 14 \times 256$
Layer 4 (conv5_x)	2 blocks with 512 filters; first block uses stride 2	$7 \times 7 \times 512$
Global Average Pooling	Pooling over 7×7 spatial dimensions	$1 \times 1 \times 512$
FC Layer	Fully Connected, e.g. 1000 classes for ImageNet	1000 (or as specified)

Table 3. LeNet-5 architecture details

Layer	Operation	Output / Notes
Input	Grayscale image	$32\times32\times1$
C1	Convolution (5×5 kernel), 6 filters, activation tanh	28×28×6
S2	Average pooling (subsampling)	$14 \times 14 \times 6$
C3	Convolution (5×5 kernel), 16 filters, tanh	$10\times10\times16$
S4	Average pooling (subsampling)	$5\times5\times16$
C5	Convolution (fully-connected), kernel size matching input, tanh	$1\times1\times120$
F6	Fully connected	84 units
Output	Fully connected	10 units (for digit classification)

Table 4. Comparison of ResNet-18 and LeNet-5

Attribute	ResNet-18	LeNet-5
Year developed	2015	1998
Depth (Layers)	18	7
Key Innovation	Residual (skip) connections	Convolution + pooling
Original application	Large-scale image recognition	Handwritten digit recognition
Training techniques	Batch normalization, deeper architecture	Simpler activations (e.g., tanh)
Network complexity	High (designed for complex datasets)	Low (optimized for limited variability)

Table 5. Used architeture CIFAR-10 ResNet-18 in the paper

Layer/Block	Modification	Parameters/Notes	
Input	CIFAR-10 Image	32×32×3	
Conv1	3×3 Conv, stride 1	Original: 7×7 stride 2	
MaxPool	Removed	Identity operation	
Residual Blocks	Added Spatial Dropout	Layer1: 0.05, Layer2: 0.1	
		Layer3: 0.15, Layer4: 0.2	
Classifier	Modified FC Layers	$512 \rightarrow 256 \rightarrow 10$	
	Added Dropout	FC dropout: 0.3	

Table 6. Used architeture MNIST LeNet-5 in the paper

Layer	Operation	Parameters	
Input	MNIST Image	28×28×1	
Conv1	5×5 Conv, 6 filters	Output: 24×24×6	
MaxPool	2×2	Output: 12×12×6	
Conv2	5×5 Conv, 16 filters	Output: 8×8×16	
MaxPool	2×2	Output: 4×4×16	
FC1	Linear Layer	256 → 120	
FC2	Linear Layer	$120 \rightarrow 84$	
FC3	Linear Layer	84 → 10	
Regularization	Dropout	p=0.25 after FC1	

Table 7. Training configuration

Category	Parameter	Value
Training	Epochs	30
	Batch Size	128
	LR Scheduler	StepLR (gamma=0.9)
Optimizers	Base LR	0.001
	Weight Decay	0.01
	Nova	betas=(0.9, 0.999), eps=1e-8
	SGD	momentum=0.9
Data Augmentation	CIFAR-10	RandomCrop(32,4)+Flip
	MNIST	None
Normalization	CIFAR-10	Mean=[0.4914, 0.4822, 0.4465]
		Std=[0.2023, 0.1994, 0.2010]
	MNIST	Mean=0.1307, Std=0.3081

Table 8. Training configuration for SST-2

Category	Parameter	Value
Training	Epochs	10
	Batch Size	64
	LR Scheduler	StepLR (gamma=0.9)
Optimizers	Base LR	0.001
	Weight Decay	0.0
	Nova	betas=(0.9, 0.999), eps=1e-8
	Adam	Default parameters
Data Augmentation	SST-2	None
Normalization Preprocessing		Lowercase conversion, tokenization, and padding
	Vocabulary Construction	Count-based, with ' <unk>' and '<pad>' tokens</pad></unk>

Table 9. Detailed architecture of SST-2 text classification model

Component	Description		
Model Type	Feedforward Neural Network (Embedding + Linear Classifier)		
Embedding Layer	• Input dimension: vocab_size (determined from training data)		
	• Output dimension (embed_dim): 100 (configurable)		
	• Special tokens: <unk>=0, <pad>=1 (for OOV words and padding)</pad></unk>		
	• Trainable parameters: vocab_size × embed_dim		
Pooling	Operation: Mean pooling across sequence length (dim=1)		
	• Reduces variable-length sequences to fixed-size embedding		
Classifier Layer	• Single Linear layer (embed_dim → num_class)		
	• Output size: 2 (binary classification: Negative/Positive)		
	• No explicit activation (CrossEntropyLoss includes LogSoftmax)		
	• Trainable parameters: embed_dim × num_class + bias		
Forward Pass	 Tokenize text → convert to vocab indices 		
	2. Embedding layer: maps indices to dense vectors		
	3. Mean pooling: aggregates sequence embeddings		
	4. Linear layer: produces logits for classification		
Training Hyperparameters	• Batch size: 64		
	• Loss: CrossEntropyLoss (combines LogSoftmax + NLLLoss)		
	• Optimizer: Configurable (e.g., Adam, SGD)		
	• Learning rate scheduler: StepLR (step_size=1, gamma=0.9)		
Data Pipeline	Dataset: SST-2 (Stanford Sentiment Treebank v2)		
	• Splits: 90% train / 10% val (from original train), test=validation set		
	• Preprocessing: Lowercase + NLTK word_tokenize		
	 Vocabulary: Built from training set, with <unk> and <pad></pad></unk> 		
	• Padding: Dynamic per batch (to max length in batch)		

4 Confusion Matrix

Table 10. Confusion matrix and evaluation metrics

Predicted class

		Positive	Negative
Actual class	Positive	True Positive (TP)	False Negative (FN)
Actual class	Negative	False Positive (FP)	True Negative (TN)
		$Precision = \frac{TP}{TP + FP}$	$Recall = \frac{TP}{TP + FN}$
		$Accuracy = \frac{TN + TP}{TP + TN + FP + FN}$	$F1 \text{ score} = \frac{2TP}{2TP+FP+FN}$

5 Results

5.1 Comparison of Performance Metrics of Nova with Other Optimizers

Table 11. Performance metrics on CIFAR-10

Optimizer	Train Loss	Train Acc (%)	Val Loss	Val Acc (%)	Test Loss	Test Acc (%)	Epoch Time (s)
Nova	0.1550	94.70	0.3180	89.42	0.3345	90.01	41.95
Adam	0.4788	84.94	0.5094	83.08	0.5069	83.14	39.99
RMSprop	1.1128	59.39	1.0714	60.36	1.0597	61.01	38.50
SGD	1.2252	55.11	1.1721	57.88	1.1325	58.57	39.87
Nadam	0.5583	82.09	0.5642	81.20	0.5718	80.85	40.21

Table 12. Classification metrics on CIFAR-10

Optimizer	Precision (%)	Recall (%)	F1-score (%)
Nova	89.98	90.01	89.99
Adam	83.21	83.14	83.00
RMSprop	61.01	61.01	59.77
SGD	58.89	58.57	58.18
Nadam	80.93	80.85	80.82

Table 13. Performance metrics on MNIST

Optimizer	Train Loss	Train Acc (%)	Val Loss	Val Acc (%)	Test Loss	Test Acc (%)	Epoch Time (s)
Nova	0.0204	99.33	0.0370	98.86	0.0295	98.95	12.01
Adam	0.0673	98.20	0.0578	98.10	0.0504	98.58	11.22
RMSprop	0.0699	98.08	0.0631	97.94	0.0514	98.50	11.21
SGD	0.1240	96.45	0.0960	97.12	0.0855	97.51	11.16
Nadam	0.0661	98.21	0.0582	98.16	0.0484	98.66	11.34

Table 14. Classification metrics on MNIST

Optimizer	Precision (%)	Recall (%)	F1-score (%)
Nova	98.95	98.94	98.94
Adam	98.58	98.57	98.57
RMSprop	98.50	98.48	98.49
SGD	97.52	97.49	97.50
Nadam	98.67	98.65	98.66

Table 15. Performance metrics for SST-2

Optimizer	Test Loss	Test Acc (%)	Precision (%)	Recall (%)	F1-score (%)	Epoch Time (s)
Nova	0.5125	82.00	82.00	82.01	81.99	15.48
Adam	0.6397	66.28	68.71	65.94	64.85	15.31
AdamW	0.5804	81.65	81.69	81.62	81.63	15.28
RMS	0.6422	65.94	69.05	65.55	64.15	15.23
SGD	0.6810	54.47	56.64	53.88	48.85	15.08
Nadam	0.6399	66.17	68.84	65.81	64.61	15.36

Table 16. Classification metrics on SST-2

Optimizer	Precision (%)	Recall (%)	F1-score (%)
Nova	82.11	82.12	82.11
Adam	69.56	66.38	65.19
AdamW	80.93	80.39	80.39
RMS	68.10	65.48	64.41
SGD	59.31	53.28	44.63
Nadam	69.62	66.13	64.81

Table 17. Performance metrics for noisy MNIST

Optimizer	Test Loss	Test Acc (%)	Precision (%)	Recall (%)	F1-score (%)	Epoch Time (s)
Nova	0.1065	96.58	96.56	96.56	96.56	8.47
AdamW	0.1112	96.14	96.14	96.11	96.12	7.85
Adam	0.1156	96.17	96.16	96.15	96.14	7.77
RMS	0.1072	96.53	96.52	96.50	96.50	7.75
SGD	0.2727	91.32	91.24	91.21	91.20	7.70
Nadam	0.1052	96.43	96.42	96.39	96.40	7.63

Table 18. Performance of Nova optimizer hyperparameter combinations on MNIST

Combination	LR	β_1	β_2	WD	Test Acc (%)	Precision (%)	Recall (%)	F1-score (%)
Comb1	0.001	0.9	0.999	0.01	99.21	99.21	99.20	99.20
Comb2	0.001	0.9	0.99	0.01	99.17	99.16	99.16	99.16
Comb3	0.001	0.95	0.999	0.001	99.11	99.11	99.10	99.11
Comb4	0.001	0.95	0.99	0.001	98.94	98.94	98.93	98.93
Comb5	0.01	0.9	0.999	0.01	99.14	99.14	99.13	99.13
Comb6	0.01	0.9	0.99	0.01	99.01	99.01	98.99	99.00
Comb7	0.01	0.95	0.999	0.001	98.44	98.44	98.42	98.43
Comb8	0.01	0.95	0.99	0.001	99.00	99.00	98.99	98.99

5.2 Learning Curves and Bar Plots

Fig 3. Learning curve CIFAR-10 with different optimizers

Fig 4. Learning curve MNIST with different optimizers

Fig 5. Learning curve SST-2 with different optimizers

Fig 6. Learning curve Noisy MNIST with different optimizers

Fig 7. Bar plot for comparisoning accuracy of Nova with other optimizers (CIFAR-10 and MNIST)

- (a) Bar plot for comparisoning accuracy of Nova with other optimizers (SST-2)
- (b) Bar plot for comparisoning accuracy of Nova with other optimizers (noisy MNIST)

Fig 8. Bar plot for comparisoning accuracy of Nova with other optimizers

5.3 Confusion Matrices of datasets of CIFAR-10, MNIST, Noisy MNIST and SST-2

Fig 10. Confusion matrix for dataset with respect to different optimizers

Fig 11. Confusion matrix for dataset with respect to different optimizers

Fig 12. Confusion matrix for dataset with respect to different optimizers

5.4 ROC and AUC

Fig 13. ROC curves for CIFAR-10 dataset with respect to different optimizers

Fig 14. ROC curves for MNIST dataset with respect to different optimizers

Fig 15. ROC curves for SST-2 dataset with respect to different optimizers