

MATEMÁTICAS

OPTIMIZACIÓN DE RECURSOS EN SISTEMAS DE INFORMACIÓN

OPTIMIZACIÓN DE RECURSOS EN SISTEMAS DE INFORMACIÓN

Problema. Un departamento de TI necesita optimizar la asignación de recursos para un proyecto de implementación de **software** empresarial.

Contexto

- Proyecto requiere desarrollo de software.
- Tres tipos de profesionales: desarrolladores, analistas y diseñadores.
- Restricciones presupuestarias y de tiempo.

Datos iniciales

- Presupuesto Total: \$100,000
- Tiempo total del proyecto: 6 meses.
- Costos por profesional:
 - o Desarrollador senior: \$6,000/mes.
 - o Analista: \$4,500/mes.
 - o Diseñador: \$3,500/mes.

Restricciones

- Mínimo 4 desarrolladores.
- Mínimo 3 analistas.
- Al menos 2 diseñadores.
- Balance entre roles.

Modelo algebraico

Se definen variables:

- x: número de desarrolladores seniors.
- y: número de analistas.
- z: número de diseñadores.

Función objetivo. Maximizar la eficiencia del proyecto.

Ecuaciones de restricción:

1. Restricción presupuestaria:

 $0.6,000x + 4,500y + 3,500z \le 100,000$

2. Restricción de desarrolladores:

 $ox \ge 4$

3. Restricción de analistas:

o y ≥ 3

4. Restricción de diseñadores:

o $z \ge 2$

Solución paso a paso

1. Calcular distribución inicial.

o Desarrolladores: 4 (mínimo requerido).

• Costo: 4 × \$6,000 = \$24,000

o Analistas: 3 (mínimo requerido).

• Costo: $3 \times $4,500 = $13,500$

o Diseñadores: 2 (mínimo requerido)

• Costo: 2 × \$3,500 = \$7,000

2. Verificar restricción presupuestaria.

o Costo total inicial: \$24,000 + \$13,500 + \$7,000 = \$44,500

o Presupuesto disponible: \$100,000 - \$44,500 = \$55,500

3. Optimización de recursos.

o Incrementar desarrolladores: 2 adicionales

• Costo adicional: $2 \times \$6,000 = \$12,000$

o Incrementar analistas: 1 adicional.

• Costo adicional: $1 \times $4,500 = $4,500$

o Incrementar diseñadores: 1 adicional.

• Costo adicional: $1 \times \$3,500 = \$3,500$

4. Configuración final.

o Desarrolladores: 6

o Analistas: 4

o Diseñadores: 3

o Costo Total: \$24,000 + \$18,000 + \$10,500 = \$52,500

Análisis de resultados

1. Distribución Inicial.

o 4 desarrolladores.

o 3 analistas.

o 2 diseñadores.

2. Distribución optimizada.

o 6 desarrolladores (+2).

o 4 analistas (+1).

o 3 diseñadores (+1).

3. Beneficios

- o Mayor capacidad de desarrollo.
- o Mejor balance de recursos.
- o Aprovechamiento de presupuesto.
- o Reducción de cuellos de botella.

Consideraciones adicionales

- Flexibilidad en asignación.
- Posibilidad de ajustes, según avance del proyecto.
- Evaluación continua de rendimiento.

Este ejercicio demuestra cómo el álgebra permite:

- Modelar problemas complejos.
- Optimizar la asignación de recursos.
- Tomar decisiones estratégicas en sistemas de información.

La aplicación de ecuaciones y restricciones, facilita encontrar la configuración más eficiente de un equipo de trabajo.

