1. Определите истинность заданных утверждений. Считайте, что $a \neq b$ – урэлементы.

- (a) $a \in \{\{a\}, b\}$
- (h) $\emptyset \in \emptyset$

(o) $a \in 2^{\{a\}}$

- (b) $a \in \{a, \{b\}\}$
- (i) $\emptyset \subseteq \emptyset$

(p) $2^{\{a,\emptyset\}} \subset 2^{\{a,b,\emptyset\}}$

- (c) $\{a\} \in \{a, \{a\}\}$
- (j) $\emptyset \subset \emptyset$

(q) $\{a, b\} \subseteq 2^{\{a, b\}}$

- (d) $\{a\} \subset \{a, b\}$
- (k) $\emptyset \in \{\emptyset\}$

(r) $\{a, a\} \in 2^{\{a, a\}}$

- (e) $\{a\} \subseteq \{\{a\}, \{b\}\}$
- (l) $\emptyset \subseteq \{\{\emptyset\}\}$
- (s) $\{\{a\}, \emptyset\} \subseteq 2^{\{a,a\}}$

- (f) $\{\{a\}\}\subset\{\{a\},\{a,b\}\}$
- $(m) \{\emptyset, \emptyset\} \subset \{\emptyset\}$

- (g) $\{\{a\},b\}\subseteq\{a,\{a,b\},\{b\}\}$
- (n) $\{\{\emptyset\}\}\subset\{\{\emptyset\},\{\emptyset\}\}$
- (t) $\{a, \{a\}\} \subset 2^{\{a, 2^{\{a\}}\}}$ (u) $\{\{a, \{\emptyset\}\}\}\}\subseteq 2^{\{a,2^{\emptyset}\}}$

2. Дано множество-универсум $\mathfrak{U} = \{1, 2, ..., 10\}$ и его подмножества: $A = \{x \mid x - \text{чётное}\}$, $B = \{x \mid x - \text{простое}^2\}, C = \{2, 4, 7, 9\}.$ Нарисуйте диаграмму Венна для A, B, C, \mathfrak{U} и найдите:

- (a) $B \triangle (A \cap C)$
- (c) $\overline{A \cup C} \cup (C \triangle B)$
- (e) $(2^A \cap 2^C) \setminus 2^B$

- (b) $\overline{B} \setminus (A \triangle C)$
- (d) $|\{A \cup B \cup 2^{\varnothing} \cup 2^{\mathfrak{U}}\}|$
- (f) $2^{B\cap C}\setminus\{2^{|2^{\{\emptyset\}}|}, |\overline{B\cap C}|\}$

3. Даны следующие множества³:

 $* A = \{1, 2, 4\}$

 $* B = \{\Box, A\} \cup \emptyset$

- $* C = 2^{\emptyset} \setminus {\emptyset}$ * $D = \{ A, |2^{\{\emptyset,C\}}| \}$
- * $E = 2^{A \setminus D} \cap 2^{\{|B \setminus D|\}}$ * $F = 2\{\{\emptyset,\emptyset\}\setminus\{\{\emptyset\}\},\{\emptyset\}\triangle C,\{\emptyset,C\},2^\emptyset\}$

Найти:

(a) $A \triangle D$

(c) $B \times E$

(e) $D^{|C|}$

(b) $E \triangle 2^C$

(d) $E \times 2^B$

- (f) F^3
- 4. Пусть $A = \{3, |B|\}, B = \{1, |A|, |B|\}$. Найдите, чему равны множества A и B.

5. Изобразите на графиках \mathbb{R}^2 следующие множества точек:

(a) $\{1, 2, 3\} \times [1; 3]$

(d) $\{\langle x, y \rangle \in [1, 5] \times [1, 4] \mid (y > x) \lor (x \ge 4) \}$

(b) $[1;4) \times (2;4] \setminus \{\langle 2,3 \rangle\}$

- (e) $\{\langle x, y \rangle \in (1, 5]^2 \mid 4(x-2)^2 + 9(y-3)^2 \le 36\}$
- (c) $([1;6] \times (1;5]) \setminus ([4;5] \times (2;4))$
- (f) $\{\langle x, y \rangle \in \mathbb{N}^2 \mid \exists z \in \mathbb{N} : x^3 + y^3 = z^3 \}$
- 6. Подробно докажите (или опровергните) следующие утверждения:
 - (a) Если $A \subseteq B$ и $B \subseteq C$, то $A \subseteq C$.
 - (b) $|\mathcal{P}(A)| = 2^{|A|}$.
 - (c) Множество рациональных⁴ чисел ℚ счётно.
 - (d) $\mathcal{P}(\mathbb{N})$ несчётное множество.

¹ Здесь под универсумом имеется в виду множество доступных урэлементов. Считайте, что $\overline{A} = \mathfrak{U} \setminus A$.

² Считайте, что 1 не является простым числом.

³ □ – самый обыкновенный квадрат, Д – самый обыкновенный кот.

 $^{^4}$ Рациональное число можно представить в виде дроби m/n, где $m\in\mathbb{Z}-$ целое, а $n\in\mathbb{N}-$ натуральное.