Welcome to Week 16!

You made it!!

A quicky review!

Emphasis on Final will be material listed here & in todays lecture.

Hypothesis Testing Framework (Ch. 4-6)

The general outline of the process:

1. Set the hypotheses.

For a single proportion this will look like:

H₀: p = null value

H_A: p < or > or ≠ null value

- 2. Check assumptions and conditions
- 3. Calculate a test statistic and a p-value
- 4. Make a decision, and interpret it in context
- If p-value < α, reject H₀,
 there is sufficient evidence for [H_A]
- If p-value > α, do not reject H₀,
 there is not sufficient for evidence for [H₄]

English

Provides a rigorous way to determine the answer with a specific level of confidence.

English

Hypothesis Testing Framework (Ch. 4-6)

```
The general outline of the process:
                                                         (a) normal, large sample
                                                         (b) normal?, small sample
  1. Set the hypotheses.
       For a single proportion this will look like. (c) observations & theory
           H₀: p = null value
           H_A: p < or > or \neq null value
                                                             Test Statistics
2. Check assumptions and conditions
                                                            (a) Z-score -> P(Z)
3. Calculate a test statistic and a p-value
                                                            (b) T-Score -> P(T)
 4. Make a decision, and interpret it in context
                                                            (c) \chi^2 -> P(\chi^2)
     If p-value < \alpha, reject H_0,
                      there is sufficient evidence for [H<sub>A</sub>]
```

If p-value > α, do not reject H₀,
 there is not sufficient for evidence for [H_A]

Anatomy of a test statistic

Only tricks are:

The general form of a test statistic is (1) picking what the point and null values are based on our hypotheses

point estimate – null value SE of point estimate

(2) what the form of the standard errors is based on what our underlying distribution looks like (normal, tdistribution, $\chi^{2)}$

This construction is based on

- identifying the difference between a point estimate and an expected value if the null hypothesis was true, and
- standardizing that difference using the standard error of the point estimate.

These two ideas will help in the construction of an appropriate test statistic for count data.

Decision errors (cont.)

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we make a decision about which might be true, but our choice might be incorrect.

		Decision	
		fail to reject H_0	reject H_0
Truth	H_0 true	✓	Type 1 Error
	H_A true	Type 2 Error	✓

A Type 1 Error is rejecting the null hypothesis when H_0 is true. A Type 2 Error is failing to reject the null hypothesis when H_A is true.

We (almost) never know if H_0 or H_A is true, but we need to consider all possibilities.

Residuals

Residuals are the leftovers from the model fit: Data = Fit + Residual

Aka a residual is the difference between the observed (y_i) and predicted \hat{y}_i .

$$e_i = y_i - \hat{y}_i$$

Here is a depiction of the residuals - how far each point is from our fitted line.

p-values for Linear Regression

What's really going on here? Just the same calculations we've been doing the past few weeks!

p-value > 0.05 so we fail to reject H₀

```
> summary(myLine)
Call:
lm(formula = BAC \sim Beers, data = BB)
Residuals:
     Min
                      Median
                10
-0.027118 -0.017350 0.001773 0.008623 0.041027
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.012701 0.012638 -1.005
                                           0 332
            0.017964 0.002402
Beers
                                  7.48% 2.97e-06
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.02044 on 14 degrees of freedom
Multiple R-squared: 0.7998, Adjusted R-squared: 0.7855
F-statistic: 55.94 on 1 and 14 DF, p-value: 2.969e-06
```

H₀: There is no relation between Beers and BAC - slope = 0 H_A: There is a relationship between Beers and BAC - slope != 0

Conditions to use MLR

- 1. Independence of observations of responses
- 2. Linearity of *all* variables linear relationship between response variable and each of the explanatory variables
- 3. Multicollinearity checked for does not mean we cannot use MLR, but we should be aware of how predictor/explanatory variables are related when quoting our results
- 4. Constant variance
- 5. Normality of Residuals
- 6. No influential points (outliers with strong leverage)

Logistic Regression: A Morbid Example

Logistic regression is a GLM used to model a binary categorical variable using numerical and categorical predictors.

We assume a binomial distribution produced the outcome variable and we therefore want to model *p* the probability of success for a given set of predictors.

To finish specifying the Logistic model we just need to establish a reasonable link function that connects η to p. There are a variety of options but the most commonly used is the logit function.

$$logit(p) = log\left(\frac{p}{1-p}\right), \text{ for } 0 \le p \le 1$$

Logistic Regression: A Morbid Example

Ok, so what does the totality of our model look like?

$$y_i \sim \mathsf{Binom}(p_i)$$

$$\eta = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

$$\mathsf{logit}(p) = \eta$$

From which we back out the probability of survival based on parameters 1-n, for the *i*th observation:

$$p_{i} = \frac{\exp(\beta_{0} + \beta_{1}x_{1,i} + \dots + \beta_{n}x_{n,i})}{1 + \exp(\beta_{0} + \beta_{1}x_{1,i} + \dots + \beta_{n}x_{n,i})}$$

So far...

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_n x_n$$

So far we've been saying:
"I have a basic idea of what the functional form of y looks like (a line or a logit) - computer go find the parameters of that functional form.

This is nice because we have some hope of gaining intuition from our models.

Now we classify...

"I want to know where thing #1 and thing #2 live in some 2D space - computer, go figure out the boundary between these two things and let me know"

This is nice because we don't have to assume some model beforehand.

Bias-Variance Trade-Off (First Glance)

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon)$$

mean square error if we kept estimating response variable y by our fitted function of our explanatory variables, f(x) with different sample datasets at point x₀

Inherent error in our measurements

Inherent error (bias) in the fact that any model is only an approximation to reality

how much our function, f, changes if we use a different random sample (variance)

Fit model to data with a choice of parameters (e.g. degree of polynomial)

Calculate the mean square error (MSE) of subset data and model

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Repeat for a bunch of subsets of data

Repeat for different model parameters

Bootstrapping

Distribution of means, proportions, etc

Bias-Variance Trade-Off (First Glance)

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon).$$

- Actual underlying function y
 o Simulated data with added error (€)
 Linear fit
 Low "flexibility" smooth spline
 - Low "flexibility" smooth spline
 High "flexibility" smooth spline

fits data well, but underlying model badly

So far...

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_n x_n$$

So far we've been saying:
"I have a basic idea of what the functional form of y looks like (a line or a logit) - computer go find the parameters of that functional form.

This is nice because we have some hope of gaining intuition from our models.

Now we classify...

"I want to know where thing #1 and thing #2 live in some 2D space - computer, go figure out the boundary between these two things and let me know"

This is nice because we don't have to assume some model beforehand.

Best KNN k is about here

Best KNN k is about here

Best KNN k is about here

Best KNN k is about here

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon$$

Linear models are great! (Interpretability & predictive performance)

But we can enhance them by modifying the process of choosing parameters - alternatives to least squares fitting

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon$$

Linear models are great! (Interpretability & predictive performance)

But we can enhance them by modifying the process of choosing parameters - alternatives to least squares fitting

Prediction Accuracy: especially when p > n, to control the variance.

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon$$

Linear models are great! (Interpretability & predictive performance)

But we can enhance them by modifying the process of choosing parameters - alternatives to least squares fitting

Prediction Accuracy: especially when p > n, to control the variance.

Model Interpretability: By removing irrelevant features — that is, by setting the corresponding coefficient estimates to zero — we can obtain a model that is more easily interpreted. We will present some approaches for automatically performing feature selection.

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon$$

Linear models are great! (Interpretability & predictive performance)

But we can enhance them by modifying the process of choosing parameters - alternatives to least squares fitting

Subset selection

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon$$

Linear models are great! (Interpretability & predictive performance)

But we can enhance them by modifying the process of choosing parameters - alternatives to least squares fitting

Subset selection

... we actually essentially already covered this!

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon$$

Linear models are great! (Interpretability & predictive performance)

But we can enhance them by modifying the process of choosing parameters - alternatives to least squares fitting

Subset selection

... we actually essentially already covered this!

A few more details...

We identify a subset of the p predictors (of k possible) that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.

We identify a subset of the p predictors (of k possible) that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.

We identify a subset of the p predictors (of k possible) that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.

Brute Force Way:

1. Let M₀ denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.

We identify a subset of the p predictors (of k possible) that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.

- 1. Let M₀ denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For k = 1,2,...p:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these P models, and call it M_k . Here k best is defined as having the smallest RSS, or equivalently largest R^2 .

We identify a subset of the p predictors (of k possible) that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.

- 1. Let M₀ denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For k = 1,2,...p:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these P models, and call it M_k . Here k best is defined as having the smallest RSS, or equivalently largest R^2 .

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

We identify a subset of the p predictors (of k possible) that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.

- 1. Let M₀ denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For k = 1,2,...p:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these P models, and call it M_k . Here k best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among M_0, \ldots, M_p using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

We identify a subset of the p predictors (of k possible) that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.

Brute Force Way:

- 1. Let M₀ denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For k = 1,2,...p:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these P models, and call it M_k . Here k best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among M_0, \ldots, M_p using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Different measures of goodness of fit - accounting how many parameters are fit

We identify a subset of the p predictors (of k possible) that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.

Brute Force Way:

- 1. Let M₀ denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For k = 1,2,...p:

 (a) Fit all $\binom{p}{k}$ mode is that containing this number can get big $\sim 2^p$ p=2: 4 (including null) p=3: 8...
 - (b) Pick the best among these p=10: 1024, lk. Here k best is defined as having the smallest RSS, or equivalently largest R².
- 3. Select a single best model from among M_0, \ldots, M_p using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Different measures of goodness of fit - accounting how many parameters are fit

 For computational reasons, best subset selection cannot be applied with very large p.

- For computational reasons, best subset selection cannot be applied with very large p.
- Best subset selection may also suffer from statistical problems when p is large: larger the search space, the higher the chance of finding models that look good on the training data, even though they might not have any predictive power on future data.

- For computational reasons, best subset selection cannot be applied with very large p.
- Best subset selection may also suffer from statistical problems when p is large: larger the search space, the higher the chance of finding models that look good on the training data, even though they might not have any predictive power on future data.
- Thus an enormous search space can lead to overfitting and high variance of the coefficient estimates.

- For computational reasons, best subset selection cannot be applied with very large p.
- Best subset selection may also suffer from statistical problems when p is large: larger the search space, the higher the chance of finding models that look good on the training data, even though they might not have any predictive power on future data.
- Thus an enormous search space can lead to overfitting and high variance of the coefficient estimates.
- For both of these reasons, stepwise methods, which explore a far more restricted set of models, are attractive alternatives to best subset selection.

- For computational reasons, best subset selection cannot be applied with very large p.
- Best subset selection may also suffer from statistical problems when p is large: larger the search space, the higher the chance of finding models that look good on the training data, even though they might not have any predictive power on future data.
- Thus an enormous search space can lead to overfitting and high variance of the coefficient estimates.
- For both of these reasons, stepwise methods, which explore a far more restricted set of models, are attractive alternatives to best subset selection.

 Great news: we already covered this!

 Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model.

- Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model.
- In particular, at each step the variable that gives the greatest additional improvement to the fit is added to the model.

- Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model.
- In particular, at each step the variable that gives the greatest additional improvement to the fit is added to the model.
- Like forward stepwise selection, backward stepwise selection provides an efficient alternative to best subset selection.

- Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model.
- In particular, at each step the variable that gives the greatest additional improvement to the fit is added to the model.
- Like forward stepwise selection, backward stepwise selection provides an efficient alternative to best subset selection.
- However, unlike forward stepwise selection, it begins with the full least squares model containing all p predictors, and then iteratively removes the least useful predictor, one-at-a-time.

- Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model.
- In particular, at each step the variable that gives the greatest additional improvement to the fit is added to the model.
- Like forward stepwise selection, backward stepwise selection provides an efficient alternative to best subset selection.
- However, unlike forward stepwise selection, it begins with the full least squares model containing all p predictors, and then iteratively removes the least useful predictor, one-at-a-time.
- Neither are guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors.

- Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model.
- In particular, at each step the variable that gives the greatest additional improvement to the fit is added to the model.
- Like forward stepwise selection, backward stepwise selection provides an efficient alternative to best subset selection.
- However, unlike forward stepwise selection, it begins with the full least squares model containing all p predictors, and then iteratively removes the least useful predictor, one-at-a-time.
- Neither are guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors.
- Backward selection requires that the number of samples n is larger than the number of variables p (so that the full model can be fit). In contrast, forward stepwise can be used even when n < p, and so is the only viable subset method when p is very large.

How do we quantify how "good" each of our forward/backward selected models are?

How do we quantify how "good" each of our forward/backward selected models are?

Find models that minimize:

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right)$$

Find models that minimize:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

$$C_p = \frac{1}{n} \left(RSS + 2d\hat{\sigma}^2 \right)$$

Find models that minimize:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right)$$

d predictors, n data points

estimate from $SE^2/n = \sigma^2$ or RSE

Find models that minimize:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}_{\bullet}^2 \right)$$

d predictors, n data points $estimate from SE^2/n = \sigma^2 \text{ or RSE}$

Idea here is to get a measurement of the mean square error that accounts for # of parameters in a model

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk. - von Neumann

Find models that minimize:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}_{\bullet}^2 \right)$$

d predictors, n data points $estimate from SE^2/n = \sigma^2 \text{ or RSE}$

$$AIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + 2d\hat{\sigma}^2 \right)$$

Idea here is to get a measurement of the mean square error that accounts for # of parameters in a model

BIC =
$$\frac{1}{n\hat{\sigma}^2} \left(RSS + \log(n) d\hat{\sigma}^2 \right)$$

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

- von Neumann

Or: large values as R_{adj}²

Find models that minimize:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}_{\bullet}^2 \right)$$

d predictors, n data points $estimate from SE^2/n = \sigma^2 \text{ or RSE}$

$$AIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + 2d\hat{\sigma}^2 \right)$$

Idea here is to get a measurement of the mean square error that accounts for # of parameters in a model

BIC =
$$\frac{1}{n\hat{\sigma}^2} \left(RSS + \log(n) d\hat{\sigma}^2 \right)$$

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk. - von Neumann

Or: large values as R_{adj}²

Optional R notes.

Lets recall how we find a linear model:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 Least squares minimization (i.e. minimize RSS)

Lets recall how we find a linear model:

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 Least squares minimization (i.e. minimize RSS)

In contrast, the Ridge or Lasso regression coefficient estimates βR and βL are the values that minimize

$$\sum_{i=1}^n \left(y_i-\beta_0-\sum_{j=1}^p \beta_j x_{ij}\right)^2 + \lambda \sum_{j=1}^p \beta_j^2 = \mathrm{RSS} + \lambda \sum_{j=1}^p \beta_j^2$$
 Ridge

$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^p |\beta_j| = \text{RSS} + \lambda \sum_{j=1}^p |\beta_j|.$$
 Lasso

where $\lambda \ge 0$ is a tuning parameter, to be determined separately.

Lets recall how we find a linear model:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
 Least squares minimization (i.e. minimize RSS)

In contrast, the Ridge or Lasso regression coefficient estimates βR and βL are the values that minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$
 Ridge

Don't panic, its just a bit more math (and we'll get R to do it for us)

Lasso

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = \text{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|$$

where $\lambda \ge 0$ is a tuning parameter, to be determined separately.

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Ridge

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge

Why would we make our lives more complicated like this?

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge

Why would we make our lives more complicated like this?

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge

Why would we make our lives more complicated like this?

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

Ridge

Why would we make our lives more complicated like this?

Lasso

(1) We can decrease the error of our fit by making it more flexible - i.e. increasing the number of parameters, in this case adding λ

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge

Why would we make our lives more complicated like this?

- (1) We can decrease the error of our fit by making it more flexible i.e. increasing the number of parameters, in this case adding λ
- (2) Natural way to perform variable selection

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

Ridge

Why would we make our lives more complicated like this?

Lasso

- (1) We can decrease the error of our fit by making it more flexible i.e. increasing the number of parameters, in this case adding λ
- (2) Natural way to perform variable selection "Shrinkage" of less important

"Shrinkage" of less important parameters to zero

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge

Why would we make our lives more complicated like this?

Lasso

- (1) We can decrease the error of our fit by making it more flexible i.e. increasing the number of parameters, in this case adding λ
- (2) Natural way to perform variable selection "Shrinkage" of less important

"Shrinkage" of less important parameters to zero

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge

Why would we make our lives more complicated like this?

Lasso

- (1) We can decrease the error of our fit by making it more flexible i.e. increasing the number of parameters, in this case adding λ
- Natural way to perform variable selection "Shrinkage" of less important

parameters to zero

Parameters are more likely to be zero

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge

Why would we make our lives more complicated like this?

Lasso

- (1) We can decrease the error of our fit by making it more flexible i.e. increasing the number of parameters, in this case adding λ
- Natural way to perform variable selection "Shrinkage" of less important

parameters to zero

Parameters are more likely to be zero

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge

Why would we make our lives more complicated like this?

Lasso

- (1) We can decrease the error of our fit by making it more flexible i.e. increasing the number of parameters, in this case adding λ
- (2) Natural way to perform variable selection "Shrinkage" of less important

"Shrinkage" of less important parameters to zero

Unsupervised Learning: An intro to Principle Component Analysis

Unsupervised Learning: An intro to Principle Component Analysis

... what do we do when we don't know anything

How many vectors do I need to define a 2D space?

How many vectors do I need to define a 2D space?

Minimum number of vectors to define a space in a certain number of dimensions

How many vectors do I need to define a 2D space?

Minimum number of vectors to define a space in a certain number of dimensions

Constructing orthogonal vectors

How many vectors do I need to define a 2D space?

The "dimensions" of our space is dictated by the number of parameters we have

Minimum number of vectors to define a space in a certain number of dimensions

How many vectors do I need to define a 2D space?

The "dimensions" of our space is dictated by the number of parameters we have

Minimum number of vectors to define a space in a certain number of dimensions

Aside: these are also called "eigenvectors" and are used a lot in physics - for example to express states of atoms in quantum mechanics

Constructing orthogonal vectors

Can also think about PCA in terms of variance:

Can also think about PCA in terms of variance:

 The first principal component is that (normalized) linear combination of the variables with the largest variance.

Can also think about PCA in terms of variance:

- The first principal component is that (normalized) linear combination of the variables with the largest variance.
- The second principal component has largest variance, subject to being uncorrelated with the first.
- And so on.

Can also think about PCA in terms of variance:

- The first principal component is that (normalized) linear combination of the variables with the largest variance.
- The second principal component has largest variance, subject to being uncorrelated with the first.
- And so on.
- Hence with many correlated original variables, we replace them with a small set of principal components that capture their joint variation.

Can also think about PCA in terms of variance:

- The first principal component is that (normalized) linear combination of the variables with the largest variance.
- The second principal component has largest variance, subject to being uncorrelated with the first.
- And so on.
- Hence with many correlated original variables, we replace them with a small set of principal components that capture their joint variation.

We've essentially already fitted the first PC by fitting lines!

Can also think about PCA in terms of variance:

- The first principal component is that (normalized) linear combination of the variables with the largest variance.
- The second principal component has largest variance, subject to being uncorrelated with the first.
- And so on.
- Hence with many correlated original variables, we replace them with a small set of principal components that capture their joint variation.

We've essentially already fitted the first PC by fitting lines!

Quick R example!

