

Machine Learning and AI in Risk Management

Course
Applied Mathematical Modeling in Banking

Typical tasks

AI - ML - DS

Linear Regression

$$Y' = bX + a$$

Logistic Regression

Logistic regression predicts whether something is *True* or *False*, instead of predicting something continuous like *size*.

$$h(x) = \, rac{1}{1 + e^{\,-f(x)}}$$

Parameter optimization

Neural Network Perceptron

Multi layer Perceptron (MLP)

Self-Organizing Maps

Regression Model Accuracy

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Classification Model Accuracy

Confusion Matrix for Binary Classification

TP - correctly predicts the positive class as positive

TN - correctly predicts the negative class as negative

FP - incorrectly predicts the negative class as positive

FN - incorrectly predicts the positive class as negative

ROC curve

Percentile distribution

Classification efficiency

OVERDRAFT

Nº	Probability range	Bad clients	Good clients
1	0-10%	7 %	63%
2	10-20%	4%	4%
3	20-30%	2%	4%
4	30-40%	7 %	7%
5	40-50%	0%	2%
6	50-60%	0%	0%
7	60-70%	7 %	2%
8	70-80%	7 %	0%
9	80-90%	11%	7%
10	90-100%	57%	9%

COMPLIANCE

Nº	Probability range	Denied			Approved	
1	0-10%			3%		33%
2	10-20%			11%		17%
3	20-30%			3%		0%
4	30-40%			6%		11%
5	40-50%			6%		8%
6	50-60%			11%		14%
7	60-70%			17%		3%
8	70-80%			11%		8%
9	80-90%			14%		6%
10	90-100%			19%		0%