# Module 1: A Gentle Introduction to AI and ML

LLMOps: Foundations, Deployment, and Responsible Operations of Large Language Models

© Pextra Academy<sup>™</sup> Slide 1 of 175

## Module 1: Learning Objectives

- Define Artificial Intelligence (AI) and its core capabilities, including perception, reasoning, learning, language processing, and decision-making.
- Trace the historical evolution of AI, from symbolic systems to modern deep learning and foundation models.
- Differentiate AI paradigms (symbolic, statistical, neuro-symbolic) and types (narrow, general, superintelligence).
- Understand the socio-technical implications of AI, such as bias, privacy, environmental impact, and economic effects.
- Explore Al applications across industries like healthcare, finance, and education, and identify future challenges including explainability and governance.
- Grasp machine learning fundamentals, including paradigms (supervised, unsupervised, reinforcement), workflows, tools, and emerging trends like MLOps and responsible AI.

© Pextra Academy™ Slide 2 of 175

#### Al Domains

- AI (Artificial Intelligence): encompasses all intelligent systems (largest scope).
- ML (Machine Learning): a core subset of AI focusing on data-driven learning algorithms.
- NLP (Natural Language Processing): a further subset of ML specializing in human language.
- **LLMs** (Large Language Models): the most specialized subset—massive transformer models for language tasks.

© Pextra Academy™ Slide 3 of 175

## AI, ML, and NLP



© Pextra Academy™ Slide 4 of 175

## Overview of Artificial Intelligence

- Define Al and its core capabilities
- Trace Al's historical evolution
- Contrast Al paradigms and types
- Explore socio-technical considerations
- Survey modern applications and future directions

© Pextra Academy™ Slide 5 of 175

## What Is Artificial Intelligence?

- Al: multidisciplinary field building systems that mimic human intelligence—learning, reasoning, perception, language, decision-making
- Core capabilities:
  - Perception: sensing & interpreting data
  - Reasoning: drawing logical inferences
  - Learning: improving from experience
  - Language: processing & generating human language
  - Decision-making: selecting actions by goals/context

© Pextra Academy™ Slide 6 of 175

## Types of AI by Capability

- ANI (Artificial Narrow Intelligence) Systems specialized to perform a single task or a narrow range of tasks (e.g., image classifiers, chess engines, voice assistants).
- AGI (Artificial General Intelligence) Hypothetical systems with the ability to understand, learn, and apply knowledge across a wide variety of domains at human-level proficiency.
- ASI (Artificial Superintelligence) Speculative future systems that would outperform the best human experts in virtually every cognitive task, including creativity, social skills, and scientific reasoning.

© Pextra Academy™ Slide 7 of 175

#### Paradigms of AI: Symbolic AI

#### Symbolic AI (GOFAI)

- Rule-based systems using predicate logic
- Transparent reasoning chains
- Inflexible: struggles with unanticipated inputs or edge cases

Note: GOFAI stands for Good Old-Fashioned Artificial Intelligence.

© Pextra Academy™ Slide 8 of 175

## Paradigms of AI: Statistical AI

#### Statistical Al

- Data-driven learning (ML, neural networks)
- Adaptable to large, diverse datasets
- Opaque ("black-box") decision processes

© Pextra Academy™ Slide 9 of 175

#### Paradigms of AI: Neuro-Symbolic Hybrids

#### Neuro-Symbolic Hybrids

Integrate explicit symbolic reasoning (rules, logic, knowledge graphs) with neural/statistical learning (embeddings, pattern discovery) to combine interpretability, domain knowledge, and data-driven flexibility.

© Pextra Academy™ Slide 10 of 175

#### Historical Waves of Al

- Origins (Antiquity–1950s)
  - Aristotle's syllogistic logic
  - Al-Khwarizmi's algorithmic methods
- Symbolic Era (1956-1980s)
  - 1956 Dartmouth Conference: birth of Al
  - GOFAI systems (Logic Theorist, expert systems)
- Statistical Era & Al Winters (1970s–1990s)
  - Decline of early symbolic approaches ("Al winters")
  - Resurgence via probabilistic models & expert systems
- Deep Learning & Foundation Models (2000s-present)
  - Breakthroughs in backpropagation, CNNs, RNNs
  - Emergence of transformers & large-scale pretrained models

© Pextra Academy™ Slide 11 of 175

## Al Timeline & Key Milestones

- 1956: Dartmouth Conference
- 1965: Logic Theorist & ELIZA demonstrate early reasoning & dialogue
- 1970s-80s: Al winters; rise of expert systems (MYCIN, PROLOG)
- 1986: Revitalization via backpropagation (Rumelhart et al.)
- 2012: ImageNet breakthrough with deep CNNs (AlexNet)
- 2017: "Attention Is All You Need" introduces transformers
- 2020–2023: Foundation models (BERT, GPT-3 & GPT-4) & multimodal AI

© Pextra Academy™ Slide 12 of 175

#### Socio-Technical Implications

- Bias & Fairness: data reflects societal prejudices
- Privacy & Governance: data rights vs. model power
- Environmental Impact: energy cost of training
- Labor & Economy: automation, upskilling, policy

© Pextra Academy™ Slide 13 of 175

#### Applications Across Industries

- Healthcare: imaging, diagnostics, personalized medicine
- Finance: fraud detection, risk modeling, robo-advisors
- Education: adaptive learning, automated assessment
- Environment: climate modeling, resource optimization
- Creative: generative art, music, design prototypes
- Multimodal & foundation-model services

© Pextra Academy<sup>TM</sup> Slide 14 of 175

## Future Directions & Challenges

- Explainability & Trust: interpretable models
- Common-Sense Reasoning: contextual understanding
- Path to AGI: unknown timeline & technical hurdles
- Interdisciplinary Integration: ethics, cognitive science
- Governance & Regulation: safe, equitable deployment

© Pextra Academy™ Slide 15 of 175

#### Wrap up - Al

- Al spans from symbolic rules to deep foundation models
- Paradigms differ in transparency, flexibility, scope
- Socio-technical issues demand ethical, policy responses
- Applications are vast; research frontiers remain open

© Pextra Academy™ Slide 16 of 175

#### Overview: Machine Learning Fundamentals

- Historical trajectory and key eras
- Mathematical & statistical foundations
- Taxonomy of learning paradigms
- End-to-end ML workflow
- Tools, technologies & roles
- Emerging trends and reflections

© Pextra Academy™ Slide 17 of 175

# Machine Learning Fundamentals

Formalization and overview

#### What Is Machine Learning?

- Study of algorithms that improve automatically through experience
- Powers modern AI: automates processes, enhances decisions, generates insights, enables new products
- Requires integration of statistics, CS & engineering

© Pextra Academy™ Slide 19 of 175

# Key Eras in Machine Learning

| Era          | Milestone                                                            | Key Contributors                  |
|--------------|----------------------------------------------------------------------|-----------------------------------|
| 1940–1959    | Cybernetics, Hebbian learning, early artificial neurons              | McCulloch & Pitts; Donald Hebb    |
| 1960–1979    | Perceptrons, statistical classifiers, pattern recognition            | Rosenblatt; Minsky & Papert       |
| 1980–1999    | Backpropagation revival, statistical learning theory, expert systems | Rumelhart; LeCun; Vapnik; Quinlan |
| 2000–2012    | Kernel methods, ensemble learning,<br>Big Data era                   | Schölkopf; Breiman; Friedman      |
| 2012-present | Deep learning boom, self-supervision, transformers                   | Hinton; Bengio; Radford; Vaswani  |

© Pextra Academy™ Slide 20 of 175

#### Mathematical & Statistical Foundations

- Probability Theory: modeling uncertainty, Bayes' theorem
- Linear Algebra: vectors, matrices, tensors, decompositions
- Optimization & Calculus: gradient descent, convex programming
- Information Theory: entropy, KL divergence for representation learning
- Statistical Learning Theory: generalization bounds, VC-dimension

© Pextra Academy™ Slide 21 of 175

# Taxonomy of Learning Paradigms

| Paradigm        | Supervision              | Use Cases                                     |
|-----------------|--------------------------|-----------------------------------------------|
| Supervised      | Fully labeled data       | Classification, regression                    |
| Unsupervised    | No labels                | Clustering, dimensionality reduction          |
| Semi-supervised | Few labels $+$ unlabeled | Web content classification                    |
| Reinforcement   | Reward signals           | Robotics, game playing                        |
| Self-supervised | Proxy tasks              | Language modeling, representation pretraining |
| Federated       | Decentralized data       | Privacy-preserving mobile & edge AI           |

© Pextra Academy™ Slide 22 of 175

# Other Machine Learning Paradigms

- Meta-Learning / Few-Shot Learning Models that "learn to learn," adapting quickly from few examples.
- **Active Learning** Algorithms that query an oracle (e.g., human annotator) for labels on the most informative samples.
- Transfer Learning Reusing pretrained models or representations on new but related tasks.
- Online / Continual Learning Incrementally updating models from streaming or non-stationary data without forgetting.
- Multi-Task Learning Jointly training on multiple related tasks to improve generalization via shared representations.
- Ensemble Learning Combining multiple models (e.g., bagging, boosting, stacking) to reduce variance and bias.
- Graph-Based Learning Techniques (e.g., GNNs) that operate on graph-structured data to capture relational inductive biases.

© Pextra Academy™ Slide 23 of 175

# Supervised Learning

Formalization and overview

# What Is Supervised Learning?

#### Core Idea

Supervised learning is the process of learning a mapping from inputs to outputs by leveraging labeled examples, where each training instance provides both the observed data and the corresponding ground-truth label.

- Learning from experience: the model adjusts its parameters based on many examples.
- Anchored by **ground truth**: each example  $(x_i, y_i)$  tells the model the correct answer.
- Tasks include classification (discrete y) and regression (continuous y).

© Pextra Academy™ Slide 25 of 175

# Formalizing Supervised Learning

- Given dataset  $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ , where:
  - $x_i \in \mathcal{X}$  are input features (experience).
  - $y_i \in \mathcal{Y}$  are ground-truth labels.
- Goal: learn predictor  $f_{\theta}: \mathcal{X} \to \mathcal{Y}$  minimizing loss on  $\mathcal{D}$ .
- Empirical risk minimization:

$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f_{\theta}(x_i), y_i).$$

 The more diverse and representative the experience-label pairs, the better the model generalizes.

Note:  $\mathcal{L}$  is the loss function.

© Pextra Academy<sup>TM</sup> Slide 26 of 175

#### Loss Functions

#### Definition

A loss function  $\mathcal{L}(f_{\theta}(x), y)$  quantifies the error of a single prediction  $f_{\theta}(x)$  against its ground-truth label y.

- Squared Error (Regression)  $\mathcal{L}(f, y) = (y f)^2$  penalizes large deviations symmetrically.
- Cross-Entropy (Binary Classification)  $\mathcal{L}(p,y) = -\big[y\log p + (1-y)\log(1-p)\big] \text{ encourages accurate probability estimates.}$
- Hinge Loss (SVM)  $\mathcal{L}(f, y) = \max(0, 1 yf), y \in \{-1, +1\}$  enforces a margin of at least 1 for correct classifications.

© Pextra Academy™ Slide 27 of 175

# Empirical Risk Minimization (ERM)

#### Framework

ERM aggregates individual losses over the dataset and finds parameters  $\theta$ that minimize their average.

$$\hat{R}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f_{\theta}(x_i), y_i), \quad \theta^* = \arg\min_{\theta} \hat{R}(\theta).$$

- $\mathcal{L} = \text{per-example error}$ ;  $\hat{R} = \text{average error (risk)}$ .
- Training adjusts  $\theta$  via gradient-based optimizers (SGD, Adam) on  $\hat{R}$ .
- ullet Choice of  ${\cal L}$  tailors the model to regression, classification, margin objectives, etc.

© Pextra Academy™ Slide 28 of 175

#### Regression Loss Functions

- Squared Error (L2)  $\mathcal{L}(f, y) = (y f)^2 \rightarrow$  penalizes large deviations, convex, closed-form solution for linear models.
- Absolute Error (L1)  $\mathcal{L}(f, y) = |y f| \rightarrow \text{robust to outliers,}$  nondifferentiable at zero (use subgradients).
- Huber Loss

$$\mathcal{L}_{\delta}(\mathit{f},\mathit{y}) = \begin{cases} \frac{1}{2}(\mathit{y}-\mathit{f})^2, & |\mathit{y}-\mathit{f}| \leq \delta, \\ \delta\big(|\mathit{y}-\mathit{f}| - \frac{1}{2}\delta\big), & \text{otherwise}. \end{cases}$$

 $\rightarrow$  combines L2 (small errors) and L1 (large errors), smooth transition.

© Pextra Academy<sup>TM</sup> Slide 29 of 175

#### Classification Loss Functions

- Binary Cross-Entropy  $\mathcal{L}(p,y) = -\big[y\log p + (1-y)\log(1-p)\big] \to$  measures log-probability of true class, encourages confident correct predictions.
- Multi-class Cross-Entropy  $\mathcal{L}(\mathbf{p}, k) = -\log p_k$  where  $p_k = \frac{e^{z_k}}{\sum_j e^{z_j}}$  from logits z.
- Hinge Loss (SVM)  $\mathcal{L}(f,y) = \max(0, 1-yf)$  for  $y \in \{-1,+1\}$ .  $\rightarrow$  enforces margin: correct examples must lie beyond a unit-wide "safe zone."
- Focal Loss  $\mathcal{L}(p,y) = -(1-p)^{\gamma} \big[ y \log p + (1-y) \log (1-p) \big] \to$  down-weights well-classified examples to focus learning on hard cases.

© Pextra Academy<sup>TM</sup> Slide 30 of 175

## Common Supervised Learning Methods

- Linear Models Linear Regression, Logistic Regression
- Margin-Based Support Vector Machines (SVM)
- Tree-Based Decision Trees, Random Forests (Bagging), Gradient Boosting (XGBoost, LightGBM)
- Instance-Based k-Nearest Neighbors (k-NN)
- Probabilistic Naive Bayes (Gaussian, Multinomial)
- Neural Networks Multi-layer Perceptrons (MLP), Convolutional & Recurrent architectures

© Pextra Academy™ Slide 31 of 175

#### Linear Models: Linear Regression

#### Objective

Fit a line  $y = w^{T}x + b$  by minimizing the sum of squared errors:

$$\min_{w,b} \sum_{i=1}^{N} (y_i - w^{\top} x_i - b)^2.$$

- Closed-form solution:  $w^* = (X^T X)^{-1} X^T y$
- Use cases: forecasting, trend analysis, simple predictive modeling
- Assumptions: linear relationship, homoscedasticity, Gaussian errors

#### Note

A closed-form solution computes  $w^* = (X^\top X)^{-1} X^\top y$  directly via matrix operations—no iterative optimization required.

© Pextra Academy<sup>TM</sup> Slide 32 of 175

# Linear Regression Example



© Pextra Academy™ Slide 33 of 175

#### Linear Models: Logistic Regression

#### Objective

Model the probability of the positive class via the sigmoid function(e.g.,  $\sigma(z) = \frac{1}{1+e^{-z}}$ ),

$$p(y=1 \mid x) = \sigma(w^{\top}x + b),$$

and fit parameters by minimizing the log-loss:

$$\min_{w,b} - \sum_{i=1}^{N} [y_i \log p_i + (1 - y_i) \log(1 - p_i)].$$

- **Decision rule:** predict 1 if  $p(y = 1 \mid x) \ge 0.5$
- Use cases: binary classification (e.g., spam detection).
- Properties: convex optimization, interpretable feature weights

© Pextra Academy<sup>TM</sup> Slide 34 of 175

#### Logistic Regression Illustration



- The blue curve shows the sigmoid  $\sigma(w^{\top}x + b)$  mapping x to probability.
- We classify as positive when  $p \ge 0.5$ , i.e.  $\mathbf{w}^{\top} \mathbf{x} + \mathbf{b} \ge 0$  (vertical line).
- Blue circles (negative class) lie mostly left of the boundary; red squares (positive) lie right.

© Pextra Academy™ Slide 35 of 175

## Margin-Based Method: SVM

#### Support Vector Machine

Find hyperplane  $\mathbf{w}^{\top}\mathbf{x} + \mathbf{b} = 0$  that maximizes margin:

$$\min_{w,b} \frac{1}{2} ||w||^2$$
 s.t.  $y_i(w^\top x_i + b) \ge 1$ .

Effective for high-dimensional, well-separated data.



© Pextra Academy™ Slide 36 of 175

#### Introduction to Decision Trees

#### What Is a Decision Tree?

A hierarchical, tree-structured model that makes predictions by recursively partitioning the feature space with simple tests.

- Root node: entire dataset; select a feature and threshold to split
- **Internal nodes:** tests of the form  $x_i \le t$
- Branches: outcomes of those tests (e.g., "yes" / "no")
- Leaf nodes: final predictions (class label or regression value)
- Interpretability: easy to visualize and explain decision paths
- Limitations: prone to overfitting; sensitive to small changes in data

© Pextra Academy™ Slide 37 of 175

# Splitting Criterion: Entropy & Information Gain

#### Entropy

For a dataset S with class proportions  $p_c$ , entropy measures impurity:

$$H(S) = -\sum_{c} p_{c} \log_{2} p_{c}, \quad p_{c} = \frac{|\{(x, y) \in S : y = c\}|}{|S|}.$$

H(S) = 0 when S is pure; maximum when classes are evenly mixed.

#### Information Gain

The reduction in entropy achieved by splitting S on feature A (threshold t):

$$\operatorname{Gain}(S,A,t) = H(S) - \sum_{v \in \{ \le t, >t \}} \frac{|S_v|}{|S|} H(S_v),$$

where  $S_v$  is the subset of S satisfying the split condition A(x) v t.

© Pextra Academy™ Slide 38 of 175

### Decision Tree Structure



© Pextra Academy™ Slide 39 of 175

#### Instance-Based Methods

### k-Nearest Neighbors (k-NN)

Predict the label of x by majority vote among its k closest neighbors in feature space:

$$\hat{y} = \{y_j : j \in \mathcal{N}_k(x)\},\$$

where  $\mathcal{N}_k(x)$  denotes the indices of the k nearest neighbors of x.

- Simple, non-parametric method
- No explicit training phase; inference cost depends on dataset size
- Sensitive to distance metric and feature scaling

© Pextra Academy™ Slide 40 of 175

# Visual Illustration: k-Nearest Neighbors (k-NN)



- Dashed circle shows radius containing the k nearest neighbors
- Predict the label for the query based on majority vote within the neighborhood
- Decision depends on chosen distance metric and k

© Pextra Academy<sup>TM</sup> Slide 41 of 175

# Probabilistic Methods: Naive Bayes Classifier

#### Key Idea

Predict class using Bayes' rule with the assumption of conditional independence:

$$P(y \mid x) = \frac{P(y) \prod_{j} P(x_{j} \mid y)}{P(x)} \quad \propto \quad P(y) \prod_{j} P(x_{j} \mid y).$$

Fast, interpretable, effective for high-dimensional or sparse data (e.g., text).



© Pextra Academy<sup>TM</sup> Slide 42 of 175

# Perceptron: Linear Classifier

#### Concept

The Perceptron is one of the earliest linear classifiers. It predicts labels based on a weighted sum of inputs:

$$f(x) = \operatorname{sign}(w^{\top}x + b)$$

where w are the learned weights, b is the bias term, and sign $(\cdot)$  outputs -1 or +1.

Learning Rule: Iteratively update weights for misclassified examples:

$$w \leftarrow w + \eta y_i x_i, \quad b \leftarrow b + \eta y_i$$

where  $\eta$  is the learning rate,  $y_i \in \{-1, +1\}$ .

- Properties:
  - Simple, fast, online algorithm
  - Converges if data are linearly separable
  - Cannot solve non-linear problems without transformation

© Pextra Academy™ Slide 43 of 175

# Perceptron: Model Diagram



- Weighted sum:  $z = w^{T}x + b$
- Activation: f(x) = sign(z)
- Outputs binary class prediction -1 or +1

© Pextra Academy™ Slide 44 of 175

# Neural Network Methods: Multi-Layer Perceptron (MLP)

#### Key Idea

An MLP stacks layers of neurons with learnable weights and nonlinear activations:

$$h^{(l+1)} = \sigma(W^{(l)}h^{(l)} + b^{(l)}),$$

where:

- $h^{(0)} = x$  is the input vector
- $h^{(L)}$  is the output (logits or probabilities)
- $\bullet$   $\sigma(\cdot)$  applies nonlinearities (e.g., ReLU, sigmoid)

Parameters  $W^{(l)}$  and  $b^{(l)}$  are optimized end-to-end via backpropagation.

© Pextra Academy™ Slide 45 of 175

# MLP Architecture: Highlighting the Input Layer



Input Layer Hidden Layer Output

© Pextra Academy™ Slide 46 of 175

#### Kernel Methods: RBF Kernel SVM

#### Non-Linear Classification via Kernel Trick

 The RBF (Radial Basis Function) kernel implicitly maps data into a higher-dimensional space:

$$K(x, x') = \exp(-\gamma ||x - x'||^2)$$

- Enables SVMs to learn non-linear boundaries without explicitly transforming the data.
- Particularly effective when data are not linearly separable in input space.

© Pextra Academy™ Slide 47 of 175

# Kernel Methods: Radial Basis Function (RBF) Kernel

#### Non-Linear Separation via RBF Kernel

Defines similarity based on Euclidean distance:

$$K(x, x') = \exp\left(-\gamma \|x - x'\|^2\right)$$

- $\gamma > 0$  controls the locality higher  $\gamma$  creates tighter decision boundaries
- Implicitly maps data into an infinite-dimensional space (via kernel trick)
- Enables SVMs to learn flexible, non-linear decision boundaries without explicit feature engineering

© Pextra Academy™ Slide 48 of 175

# RBF Kernel SVM: Non-Linear Boundary Example



- Circular boundary separates two classes
- Achieved via the RBF kernel without explicit feature engineering
- Effective for non-linearly separable problems

© Pextra Academy<sup>TM</sup> Slide 49 of 175

# Supervised Learning: Evaluation

#### Why Evaluation?

- Ensures models generalize to unseen data
- Quantifies performance for model selection
- Guides tuning of hyperparameters and features

#### Common Evaluation Dimensions

- Classification Tasks: Accuracy, Precision, Recall, F1 Score, ROC AUC, Confusion Matrix
- Regression Tasks: Mean Squared Error (MSE), Root Mean Squared Error (RMSE),  $R^2$  (coefficient of determination)
- Model Robustness: Performance on noisy or imbalanced datasets

Interpretability & Fairness: Understandable decisions, bias mitigation

© Pextra Academy™ Slide 50 of 175

# Confusion Matrix (Binary)

**Ground Truth** 

#### **Prediction**



© Pextra Academy<sup>TM</sup> Slide 51 of 175

# Supervised Learning: Core Evaluation Metrics

#### Confusion Matrix Terms

- TP = True Positives
- TN = True Negatives
- FP = False Positives
- FN = False Negatives

#### Common Metrics

$$\begin{split} \mathsf{Accuracy} &= \frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}}, \quad \mathsf{Precision} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FP}} \\ \mathsf{Recall} &= \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}, \quad \mathit{F}_1 = \frac{2 \times \mathsf{Precision} \times \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}} \end{split}$$

© Pextra Academy™ Slide 52 of 175

# ROC Curve & AUC: Evaluating Classifier Performance

#### **ROC Curve**

Plots the trade-off between True Positive Rate (TPR) and False Positive Rate (FPR) at various thresholds.

ROC AUC = 
$$\int_0^1 \text{TPR}(FPR^{-1}(u)) du$$

- AUC = Area Under the Curve
- AUC close to 1.0 indicates strong classifier performance
- AUC = 0.5 suggests random guessing

© Pextra Academy™ Slide 53 of 175

# ROC Curve: Visual Example



© Pextra Academy™ Slide 54 of 175

# Unsupervised Learning

Formalization and overview

# Unsupervised Learning: Introduction

#### Key Idea

Unsupervised learning discovers hidden patterns or structures in unlabeled data.

- No ground-truth labels provided
- The model learns to group, structure, or summarize the data
- Enables knowledge discovery from raw datasets

#### **Common Applications:**

- Customer segmentation
- Anomaly detection
- Dimensionality reduction and visualization

© Pextra Academy™ Slide 56 of 175

# Unsupervised Learning: Formalization

#### General Setup

• Given dataset:

$$\mathcal{D} = \{x_1, x_2, \dots, x_N\}, \quad x_i \in \mathbb{R}^d$$

- No labels y<sub>i</sub> are observed
- ullet Goal: Find structure, groups, or representations of  ${\cal D}$

#### Types of Structure Learned:

- Clusters or groups of similar data points
- Lower-dimensional embeddings of data
- Detection of unusual or anomalous points

© Pextra Academy™ Slide 57 of 175

# Unsupervised Learning: Techniques Overview

- Clustering Algorithms Group data points into distinct clusters based on similarity Examples: k-Means, Hierarchical Clustering, DBSCAN
- Dimensionality Reduction Compress high-dimensional data while preserving structure Examples: Principal Component Analysis (PCA), t-SNE, UMAP
- Density Estimation & Anomaly Detection Estimate data distribution to identify rare or abnormal cases Examples: Gaussian Mixture Models (GMM), One-Class SVM

© Pextra Academy™ Slide 58 of 175

# k-Means Clustering: Concept & Objective

#### Goal

Partition N data points into K clusters to minimize within-cluster variance:

$$\min_{\{C_k\},\{\mu_k\}} \sum_{k=1}^K \sum_{x_i \in C_k} \|x_i - \mu_k\|^2$$

#### where:

- $C_k$  = set of points assigned to cluster k
- $\mu_k$  = centroid (mean) of cluster k
- Alternates between point assignment and centroid update
- Assumes spherical clusters with equal variance
- Sensitive to initialization and choice of K

© Pextra Academy™ Slide 59 of 175

# k-Means Clustering: Visual Example







- Points grouped by proximity to nearest centroid
- Centroids updated iteratively to minimize total squared distances

© Pextra Academy<sup>TM</sup> Slide 60 of 175

# Other Learning Paradigms

- Semi-supervised: leverages both labeled and unlabeled data
- Reinforcement: agents learn via rewards in environments
- Self-supervised: constructs its own labels (e.g. masked language modeling)
- Online/Continual: adapts to streaming, non-stationary data
- Meta-learning & Few-shot: learns to learn from few examples

© Pextra Academy™ Slide 61 of 175

# Semi-Supervised Learning (SSL)

#### Key Idea

Combines a small amount of labeled data with a large amount of unlabeled data to improve learning performance.

- Useful when labels are expensive but unlabeled data is abundant
- Bridges the gap between supervised and unsupervised learning
- Common techniques: self-training, pseudo-labeling, consistency regularization

© Pextra Academy™ Slide 62 of 175

# Reinforcement Learning (RL)

### Learning by Interaction

An agent learns to make decisions by interacting with an environment to maximize cumulative reward.

$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$$

- $\pi = \text{policy mapping states to actions}$
- $\gamma$  = discount factor for future rewards
- Used in robotics, games, autonomous systems

© Pextra Academy™ Slide 63 of 175

# Self-Supervised Learning (SSL)

### Learning from Pretext Tasks

Models create their own labels from raw data by solving auxiliary tasks that encourage meaningful representations.

- Predict missing data (e.g., masked language modeling)
- Contrastive learning to distinguish similar vs. dissimilar examples
- Foundation for modern language and vision models (e.g., BERT, SimCLR)

© Pextra Academy™ Slide 64 of 175

### Federated Learning

#### Decentralized Collaborative Learning

Multiple devices collaboratively train a model without sharing raw data, preserving privacy.

- Each client trains locally and shares model updates
- Aggregation (e.g., Federated Averaging) combines updates centrally

Applications: mobile devices, healthcare, IoT

© Pextra Academy™ Slide 65 of 175

# Online & Continual Learning

### Learning Over Time

Models continuously update from new data streams, aiming to avoid catastrophic forgetting.

- Online learning: updates with each new sample or batch
- Continual learning: maintains performance on past tasks while learning new ones
- Critical for dynamic environments and real-time applications

© Pextra Academy™ Slide 66 of 175

# Meta-Learning & Few-Shot Learning

#### Learning to Learn

Meta-learning focuses on building models that quickly adapt to new tasks with minimal data.

- Few-shot learning: Generalize from very few examples per class
- Meta-learning trains across tasks to extract transferable knowledge
- Popular approaches: Model-Agnostic Meta-Learning (MAML), Prototypical Networks

© Pextra Academy™ Slide 67 of 175

### Transfer Learning

#### Knowledge Transfer Across Tasks

Reuses knowledge from a source task or domain to improve performance on a related target task.

- Reduces need for large labeled datasets in new tasks
- Common in deep learning: fine-tuning pre-trained models (e.g., ImageNet, BERT)
- Enables faster convergence and improved generalization

© Pextra Academy™ Slide 68 of 175

# Multi-Task Learning (MTL)

#### Joint Learning Across Tasks

Simultaneously trains a model on multiple related tasks to leverage shared structure.

- Improves generalization through inductive transfer
- Example: Shared encoder with task-specific output heads
- Reduces overfitting and enhances efficiency

© Pextra Academy™ Slide 69 of 175

# Multi-Modal Learning

#### Integrating Multiple Data Modalities

Combines information from different modalities (e.g., text, images, audio) for richer understanding.

- Enables including like image captioning, video understanding, and vision-language reasoning
- Foundation for multimodal models (e.g., CLIP, DALL-E, GPT-4 Vision)
- Aligns heterogeneous data in joint representation spaces

© Pextra Academy™ Slide 70 of 175

### Active Learning

### Efficient Labeling via Selective Querying

The model iteratively selects the most informative unlabeled examples for annotation.

- Reduces labeling costs by focusing on uncertain or representative samples
- Popular strategies: uncertainty sampling, query-by-committee, diversity sampling
- Useful for domains with expensive annotations (e.g., medical imaging)

© Pextra Academy™ Slide 71 of 175

# Large Language Models (LLMs)

### Foundation Models for Language Tasks

LLMs are massive transformer-based models pre-trained on vast corpora, capable of diverse language understanding and generation.

- Pre-training with self-supervised objectives (e.g., masked tokens, next-word prediction)
- Fine-tuned for downstream tasks: QA, summarization, dialogue, code
- Examples: GPT-3/4, BERT, PaLM, LLaMA
- Serve as building blocks for modern Al applications

© Pextra Academy<sup>TM</sup> Slide 72 of 175

# MLOPs & End-to-End Machine Learning

Building Production-grade ML systems

### End-to-End Machine Learning Workflow (Visual Overview)



Iterative loops reflect real-world model improvement cycles driven by monitoring and

© Pextra Academy<sup>™</sup> Slide 74 of 175

## End-to-End Machine Learning Workflow

#### ML Lifecycle: From Data to Production

Building reliable, production-grade ML systems requires coordinated stages beyond just model development:

- Problem Definition & Requirements Analysis
- Data Acquisition and Governance
- Data Cleaning & Preprocessing
- Feature Engineering and Selection
- Model Training, Tuning, and Validation
- Model Evaluation & Explainability
- Deployment & Serving Infrastructure
- Monitoring, Feedback Loops, and Continuous Improvement

© Pextra Academy™ Slide 75 of 175

## Challenges in End-to-End ML Pipelines

#### Key Technical and Organizational Challenges

Successful deployment of ML systems at scale requires addressing multiple real-world obstacles:

- Data Drift: Evolving data distributions reduce model reliability over time
- Model Degradation: Performance decay under changing real-world conditions
- Reproducibility Gaps: Inconsistent results across environments or pipelines
- Scalability Constraints: Bottlenecks in large-scale training and serving infrastructure
- **Cross-Functional Collaboration:** Bridging gaps between data science, engineering, and operations teams
- Monitoring and Alerting: Detecting silent model failures and anomalies in production

© Pextra Academy<sup>TM</sup> Slide 76 of 175

# MLOps: Operationalizing Machine Learning

#### What is MLOps?

MLOps (Machine Learning Operations) applies DevOps principles to automate, scale, and govern the end-to-end ML lifecycle—from experimentation to reliable production deployment.

- CI/CD for ML: Automated pipelines for code, data, and model integration and deployment
- Version Control: Tracking of code, datasets, features, and trained models
- Testing and Validation: Automated tests for model performance, bias, and robustness
- Monitoring and Observability: Detecting data drift, performance decay, and anomalies in production
- Governance and Compliance: Ensuring auditability, explainability, and regulatory alignment

© Pextra Academy™ Slide 77 of 175

## MLOps: Core Components for Scalable ML Systems

- Data Versioning: Systematic tracking of datasets, features, and schema changes
- Model Registry: Centralized catalog for storing, versioning, and promoting trained models
- Pipeline Automation: Orchestration of reproducible workflows for training, evaluation, and deployment
- Monitoring & Observability: Real-time tracking of model performance, data drift, and system health
- Infrastructure Management: Scalable, fault-tolerant platforms for model serving and resource provisioning

#### Goal

Deliver reliable, maintainable, and auditable ML solutions that perform consistently in production environments.

© Pextra Academy™ Slide 78 of 175

# Technologies & Tools Across the ML Lifecycle

| Li      | fecycle Stage                                                                                     | Representative Tools and Technologies                                                                                                                         |
|---------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D<br>Ex | roblem Definition & Planning<br>ata Acquisition & Integration<br>xploratory Data Analysis<br>EDA) | Jupyter, Google Colab, Miro, Notion, Confluence<br>SQL, Apache Kafka, Airflow, Databricks, Snowflake<br>pandas, NumPy, matplotlib, seaborn, Tableau, Power BI |
| È       | eature Engineering & rocessing                                                                    | scikit-learn, Featuretools, TFX, PySpark, dbt                                                                                                                 |
|         | odel Selection &<br>xperimentation                                                                | scikit-learn, XGBoost, LightGBM, Optuna, Weights & Biases                                                                                                     |
|         | odel Training & Optimization                                                                      | TensorFlow, PyTorch, Keras, SageMaker, Ray<br>MLflow, TensorBoard, Fairlearn, Alibi, SHAP                                                                     |
| М       | odel Deployment & Serving onitoring & Observability                                               | Docker, Kubernetes, BentoML, Seldon Core, TorchServe Prometheus, Grafana, Evidently, Arize, Fiddler Al                                                        |
|         | overnance & Documentation                                                                         | Model Cards, Datasheets for Datasets, Git, MLflow Tracking                                                                                                    |

© Pextra Academy™ Slide 79 of 175

# Key Roles Across the ML Lifecycle

| Role             | Primary Responsibilities                                                                                                        |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Data Engineer    | Design, build, and maintain data pipelines, ingestion processes, transformations, and enforce data governance standards         |
| Data Scientist   | Define ML problems, conduct exploratory data analysis (EDA), build prototypes, perform feature engineering, and evaluate models |
| Feature Engineer | Create, manage, and ensure the quality, consistency, and reusability of features used during training and inference             |
| ML Engineer      | Productionize ML models, optimize pipelines, manage de-<br>ployments, and integrate models with application systems             |
| MLOps Engineer   | Automate CI/CD pipelines, manage serving infrastructure, implement monitoring, and ensure system reliability and compliance     |

© Pextra Academy™ Slide 80 of 175

## ML Unit Wrap-Up: Reflections & Emerging Trends

#### Key Themes to Retain

The machine learning landscape is evolving beyond core algorithms toward production-grade, responsible, and adaptable systems.

- Hybrid Modeling: Combining symbolic reasoning with neural networks; rise of multi-modal architectures
- Automated MLOps: Scalable CI/CD, drift detection, automated retraining pipelines for reliable ML in production
- Responsible AI: Focus on fairness audits, transparency, privacy by design, and energy-efficient "Green AI"
- Foundation & Self-Supervised Models: General-purpose pre-trained models accelerating downstream tasks
- Cross-Disciplinary Integration: Tighter convergence of ML with domain sciences, ethics, and socio-technical considerations

© Pextra Academy™ Slide 81 of 175

# Industry Certificates



AWS AI Cloud Practitioner



Microsoft Certified: Azure Al Engineer

© Pextra Academy<sup>™</sup> Slide 82 of 175

#### Recommended Books

- Al Engineering: Building Applications with Foundation Models
  Chip Huyen, 1st Edition, January 2025
- LLM Engineer's Handbook: Master the Art of Engineering Large Language Models from Concept to Production
   Paul lusztin et al., October 2024
- Transformers for Natural Language Processing and Computer Vision

Denis Rothman, 3rd Edition, February 2024

© Pextra Academy™ Slide 83 of 175

#### Module 1 Conclusion

- Artificial Intelligence (AI): Broad field of systems capable of perception, reasoning, learning, and decision-making
- Machine Learning (ML): Subset of Al focused on data-driven model development and prediction
- **Learning Paradigms:** Supervised, unsupervised, semi-supervised, self-supervised, reinforcement learning, and beyond
- ML Lifecycle: End-to-end workflows from problem framing to deployment, monitoring, and continuous improvement
- MLOps: Operational practices enabling scalable, reliable, and governed ML in production environments
- Emerging Trends: Neuro-symbolic AI, multi-modal systems, responsible AI, and foundation models shaping future developments

© Pextra Academy™ Slide 84 of 175