ZhdanovDS 20122024-155533

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 0.8 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 19 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 10.5 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

- 1) 5.9 дБ 2) 6.5 дБ 3) 7.1 дБ 4) 7.7 дБ 5) 8.3 дБ 6) 8.9 дБ 7) 9.5 дБ 8) 10.1 дБ
- 9) 10.7 дБ

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 825 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 13 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 227 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 4 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 2790 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 965 МГц до 1051 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -93 дБм 2) -96 дБм 3) -99 дБм 4) -102 дБм 5) -105 дБм 6) -108 дБм 7) -111 дБм 8) -114 дБм 9) -117 дБм

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 4?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

- 1) $\{10; -29\}$ 2) $\{10; -13\}$ 3) $\{17; 19\}$ 4) $\{31; -45\}$ 5) $\{38; -109\}$ 6) $\{31; -141\}$
- 7) $\{38; -109\}$ 8) $\{31; -13\}$ 9) $\{24; 35\}$

Для выделения только **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 10 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна $55~\mathrm{M}\Gamma\mathrm{_H}?$

Варианты ОТВЕТА:

1) 142.5 нГн 2) 146.9 нГн 3) 122.9 нГн 4) 172.4 нГн

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = -0.45975 - 0.43014i, \ s_{31} = -0.43628 + 0.46631i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

- 1) -39 дБн 2) -41 дБн 3) -43 дБн 4) -45 дБн 5) -47 дБн 6) -49 дБн 7) -51 дБн
- 8) -53 дБн 9) 0 дБн

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 399 МГц, частота ПЧ 31 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 461 MΓ_{II}
- 2) 399 MΓ_{II}
- 3) 430 МГц
- 4) 1166 МГц.