3. Problem 3

Algorithm findElementEqualToItsIndex (A, start, end)	Count of operations
Input: sorted array A, starting position start, ending position end	
Output: true if element $A[m] = m$ is found, false otherwise	
mid = (start + end) / 2	3
if $(A[mid] = mid)$ then	3
return true	1
if (A[mid] < mid and start != end) then	3
return $findElementEqualToItsIndex$ (A, mid + 1, end)	3 + T(n/2)
if (A[mid] > mid and start != end) then	3
return findElementEqualToItsIndex (A, start, mid)	$\frac{2+T(n/2)}{l}$
return false	1
(7 if n = 1	
$T(n) = \begin{cases} 7 & \text{if } n = 1\\ T\left(\frac{n}{2}\right) + 10 & \text{otherwise} \end{cases}$	
a = 1, $b = 2$, $c = 10$, $d = 7$, $k = 0$	
$a=1=b^k=2^0=1 o from \ the \ master \ formula: T(n) \ is \ \Theta(n^k \log n)$)
$T(n)$ is $O(\log n)$, since all $\log n$ functions are $O(n)$.	