- TTTCCTCACTGACTATAAAAGAATAGAGAAGGAAGGGCTTCAGTGACCGGCTGCCTGGCTGACTTACAGCAGTCAGACTCTGACAGGATC
- GATGACAGTTATTGGGACCCCAATGACGAAGAGAGTATGAACAGCCCCTGCTGGCAAGTCAAGTGGCAACTCCGTCAGCTCGTTAGAAAG ValAlaValThrTyrValTyrPheThrAsnGluLeuLysGlnMetGlnAspLysTyrSerLysSerGlyIleAlaCysPheLeuLysGlu ${\tt AspAspSerTyrTrpAspProAsnAspGluGluSerMetAsnSerProCysTrpGlnValLysTrpGlnLeuArgGlnLeuValArgLys}$
- 361 ATGATTTTGAGAACCTCTGAGGAAACCATTTCTACAGTTCAAGAAAAGCAACAAAATATTTCTCCCCTAGTGAGAGAAAAGAGGTCCNCAG Met I leLeuArgThrSerGluGluThrI leSerThrValGlnGluLysGlnGln**AsnI leSe**rProLeuValArgGluArgGlyProGln
- $\tt ArgValAlaAlaHisIleThrGlyThrArgGlyArgSerAsnThrLeuSerSerProAsnSerLysAsnGluLysAlaLeuGlyArgLys$ AGAGTAGCAGCTCACATAACTGGGACCAGAGGAAGAAGCAACACATTGTCTTCTCCAAACTCCAAGAATGAAAAGGCTCTGGGCCGCAAA
- 541 Ile AsnSerTrpGluSerSerArgSerGlyHisSerPheLeuSerAsnLeuHisLeuArgAsnGlyGluLeuValIleHisGluLysGlyATAAACTCCTGGGAATCATCAAGGAGTGGGCATTCATTCCTGAGCAACTTGCACTTGAGGAATGGTGAACTGGTCATCCATGAAAAAGGG
- 181 PheTyrTyrIleTyrSerGlnThrTyrPheArgPheGlnGluGluIleLysGluAsnThrLysAsnAspLysGlnMetValGlnTyrIle
- TACAAATACACAAGTTATCCTGACCCTATATTGTTGATGAAAAGTGCTAGAAATAGTTGTTGGTCTAAAGATGCAGAATATGGACTCTAT ${ t TyrLysTyrThrSerTyrProAspProIleLeuLeuMetLysSerAlaArgAsnSerCysTrpSerLysAspAlaGluTyrGlyLeuTyr}$
- ${\sf SerIleTyrGlnGlyGlyIlePheGluLeuLysGluAsnAspArgIlePheValSerValThrAsnGluHisLeuIleAspMetAspHis}$ **TCCATCTATCAAGGGGGAATATTTGAGCTTAAGGAAAATGACAGAATTTTTTGTTTCTGTAACAAATGAGCACTTGATAGACATGGACCAT**
- 901

FIG. 1

Figure 2A

Figure 28

Crystallographic Data		1 (01 0 7)	Apc-2L(91-281) D218A
Crustal	Apc-2L(114-281)	Apo-26 (91-281) D218A	Apo-22 (41-281) D218A
Crystal Space Group Unit Cell (Å) Resolution (Å) Coverage (%) <i o(i)=""></i>	P6 ₃ a=72.5 c=140 3.9 94 (96) 5.9	R32 a=66.4 c=197.6 1.9 93 (99) 10.1	R32 a=66.4 c=197.7 1.3 100 (100) 12.4
# unique (hkl)	3589	12680	41840
redundancy R _{symm} (%)	4.9 15.4 (34)	4.3 6.2 (27)	12.1 6.4 (34)
# protomers in ASU	2	1	1
Refinement R _{cryst} (%) R _{free} (%) rmsd bonds (Å) rmsd angles (*) average B-values	33.8 27.6 0.009 1.79	20 0.015 2.0 14	0.007 1.41 14
# water molecules	0	170	

R_{symm} = $\Sigma_h \Sigma_i (I_{hi} - \langle I_h \rangle) / \Sigma_h I$ where I_h is the mean structure factor intensity of i observations of symmetry-related reflections with Bragg index h. R_{cryst}= $(\Sigma_h \Sigma_i || F_{obs}|| F_{calc}||) / \Sigma || F_{obs}||$ where F_{obs} and F_{calc} are the observed and calculated structure factor amplitudes. R_{free}= $\Sigma_{(hkl)} \in \tau || F_{obs}(hkl)| - k || F_{(hkl)} || \Sigma_{(hkl)} \in \tau || F_{obs}(hkl)||$ where the τ set of reflections is omitted from the refinement process. 10% of the data were included in the τ set for calculation of R_{free} and not included in refinement. Values in parenthesis are for the highest resolution shell.

Fig. 2C

	A		A' B'
	121 130	140 150	160 170
Apo2L	RV TGTRGRSNTLS	spnsknekalgrkinswe	•
TNF- eta	KP IGD		ANTDRAFLQDGFSLS
TNF $-\alpha$	KP VAN	PQAEGQLOWL	
CD40L	QI ISE	ASSKTTSVLQWA	
FasL	RK TGK	SNSRSMPLEWE	DTY.GIVLLSGVKYK
RANKL	QP: TIN	.ATDIPSGSHKVSLSSWY	
	В (D
	180	190 200	210
Apo2L	NG.E. HEK	YFRFQEEIKENTKNDK	QMVQYİYKYTS.YPD
$ exttt{TNF} - eta$	NN.S. PTS	VF SGKAYSPKATSSPL	
TNF $-\alpha$	DN.Q PSE	LFKGQGCPSTHV	LLTHTISRIAVSYQT
CD40L	NGKQ	TFCSNREAS	
FasL	KG.G. NET	YFRGQSCNNL	
RANKL	NG.K. NQDex	CFRHHETSGDLATEYL	QLMVYVTKTSIKIPS
	E	F	G
	220 230	240	250 260
Apo2L	PILLMKSARNSCWSKDA	EYGLYSIYQ	KENDRIFVSVTNE
TNF- β	HVPLLSSQKMVYPGLQE	PWLHSMYH	TQGDQLSTHTDGI
TNF- α	KVNLLSAIKSPCQRETP:		EKGDRLSAEINRP
CD40L	RFERILLRAANTHSSAK		QPGASVFVNVTDP
FasL	DLVMMEGKMMSYCTTGQ		TSADHLYVNVSEL
RANKL	SHTLMKGGSTKYWSGNS	EFHFYSINV (CO)	RSGEEISIEVSNP
•	Н		
	270	280	
Apo2L	HLIDMDHE. AS DESCRIPTION	VG	
$ extbf{TNF} - eta$	PHLVLSPS.TV A	ն.	
TNF $-\alpha$	DYLLFAESGQV		
CD40L	SQVSHGTG.FT		
FasL	SLVNFEES.QT		
RANKL	SLLDPDQD. ATVICE. K	VR	

Fig. 4

Fig. 6

Fig. 7

Effect of ZnSO4 Additions on Apo2L Product Accumulation

Fig. 8

Effect of ZnSO4 Additions on Apo2L Product Accumulation

Fig. 10

Effect of CoCl2 additions on Apo2L Product Accumulation

Fig. 11

ب

Fig. 12

Tig. W