2023/01 Lista de Exercícios #3

Economia Matemática II

1 Derivadas: Aplicações

1.1 Diferenciação Implícita

- 1. Encontre y' pela diferenciação implícita de $3x^2 + 2y = 5$. Cheque resolvendo a equação para y e então diferenciando.
- 2. Para a equação $x^2y = 1$, encontre dy/dx e d^2y/dx^2 pela diferenciação implícita.
- 3. Encontre dy/dx e d^2/dx^2 por diferenciação implícita quando:
 - (a) x y + 3xy = 2
 - (b) $y^5 = x^6$
- 4. Suponha que y seja uma função diferenciável de x que satisfaz a equação $2x^2 + 6xy + y^2 = 18$. Encontre y' e y'' no ponto (x,y) = (1,2).
- 5. Para cada equação a seguir, responda: se y = f(x) é uma função diferenciável que satisfaz a equação, qual é y'. Assuma a uma constante positiva.
 - (a) $x^2 + y^2 = a^2$
 - (b) $\sqrt{x} + \sqrt{y} = \sqrt{a}$
 - (c) $x^4 y^4 = x^2y^3$
 - (d) $e^{xy} x^2y = 1$

1.2 Exemplos Econômicos

- 1. De acordo com um estudo, a quantidade demandada Q de manteiga em Estocolmo durante o período de 1925 a 1937 estava relacionada ao preço pela equação $Q \cdot P^{1/2} = 38$. Encontre dQ/dP por diferenciação implícita. Cheque a resposta usando um método diferente para calcular a derivada.
- 2. Considere uma firma maximizadora de lucros produzindo um produto único. Se a firma obtem um preço fixo p por unidade vendida, seu lucro vendendo q unidades é $\pi(q) = pq c(q)$, em que c(q) é a função de custo. Assuma que c'(q) > 0 e c''(q) > 0. Assuma que $q = q^* > 0$ maximiza os lucros com respeito a q desde que $p = c'(q^*)$. Assim, no ponto ótimo, o custo marginal deve ser igual ao preço.
 - (a) Por diferenciação implícita de $p = c'(q^*)$, encontre uma expressão para dq^*/dp .
 - (b) Comente sobre o sinal de dq*/dp.
- 3. Considere a equação $Ap^{-\alpha}r^{-\beta} = S$ em que A, α , β e S são constantes positivas. O lado esquerdo da equação expressa a demanda por um produto como uma função decrescente do preço p e da taxa de juros r. Em equilíbrio, esta demadna deve igual uma quantidade ofertada fixa S.
 - (a) Tome o logarítmo natural de ambos os lados e encontre dp/dr por diferenciação implícita.
 - (b) Como o preço de equilíbrio reage a um aumento na taxa de juros?

Obs.: 1

2023/01 Lista de Exercícios #3

1.3 Diferenciando a Inversa

1. A função definida para todo x por $f(x) = e^{2x-2}$ tem uma inversa g. Encontre x tal que f(x) = 1. Então, encontre g'(1). Cheque o resultado encontrando uma fórmula para g.

- 2. Seja f definida por $f(x) = \ln(2 + e^{x-3})$, para todo x.
 - (a) Mostre que f é estritamente crescente e encontre a imagem de f.
 - (b) Encontre uma expressão para a função inversa g de f. Onde g é definida?
 - (c) Verifique que f'(3) = 1/g'(f(3)).

1.4 Aproximações Lineares

- 1. Encontre a aproximação linear para $F(K) = AK^{\alpha}$ em torno de K = 1.
- 2. Encontre a aproximação linear para as seguintes funções em torno de x = 0:
 - (a) $f(x) = (1+x)^{-1}$
 - (b) $f(x) = (1+x)^5$
 - (c) $f(x) = (1-x)^{1/4}$
- 3. Se um montante K é devido para o cartão de crédito em que a taxa de juros anual é de p%, então, ao menos que algum pagamento seja feito antes, depois de t anos o saldo devedor será $K_t = K(1+p/100)^t$ (desconsiderando multas). Usando a aproximação $\ln(1+p/100) \approx p/100$, prove que $\ln K_t \approx \ln K = pt/100$. Encontre a taxa de juros percentual p na qual o saldo devedor dobra depois de t anos.
- 4. Considere a função $g(x) = A(1 + \mu)^{a/(1+b)} 1$ em que A, a e b são constantes positivas. Encontre a aproximação linear em torno do ponto $\mu = 0$.

1.5 Aproximação Polinomial

- 1. Encontre aproximações quadráticas para as seguintes funções
 - (a) $f(x) = (1+x)^5$ em torno de x = 0
 - (b) $F(K) = AK^{\alpha}$ em torno de K = 1
 - (c) $H(x) = (1-x)^{-1}$ em torno de x = 0
- 2. Encontre a aproximação de Taylor de quinta ordem para $f(x) = \ln(1+x)$ em torno de x=0.
- 3. Encontre a aproximação de Taylor de segunda ordem para $f(x) = 5(\ln(1+x) \sqrt{1+x})$ em torno de x=0.
- 4. Um estudo de atitude em relação ao risco é baseado na seguinte aproximação:

$$U(y+m) \approx U(y) + U'(y)m + \frac{1}{2}U''(y)m^2$$

para uma função utilidade, onde y é a renda inicial do consumidor, e m á prêmio aleatório. Explique como derivar esta aproximação.

Obs.: 2

Fórmula de Taylor 1.6

- 1. Use a aproximação $(1+x)^m \approx 1 + mx + (1/2)m(m-1)x^2$ e o fato de que $\sqrt[3]{25} = 3(1-2/27)^{1/3}$ para encontrar os valores de:
 - (a) $\sqrt[3]{25}$
 - (b) $\sqrt[5]{33}$

Cheque estas aproximações usando uma calculadora.

- 2. Escreva a fórmula de Taylor com n=2 para $f(x)=\ln(1+x)$.
- 3. Mostre que $\sqrt[3]{9} = 2(1+1/8)^{1/3}$. Use a fórmula de Taylor com n=2 para calcular $\sqrt[3]{9}$ com três casas decimais.

1.7 Elasticidades

- 1. Encontre as elasticidades das funções dadas pelas seguintes fórmulas:
 - (a) $3x^{-3}$
 - (b) $-100x^{100}$
 - (c) \sqrt{x}
- 2. Um estudo econômico sobre transportes considera a relação $T=0.4K^{1.06}$, em que K é o gasto com a construção de rodovias, e T é uma medida do volume de tráfego. Encontre a elasticidade de T com respeito a K. Neste modelo, se o gasto aumenta em 1%, qual o aumento percentual (aproximado) do volume de tráfego.
- 3. Um estudo de sistemas de transporte em 37 cidades americanas estimou o tempo médio de deslocamento para o trabalho, m em minutos, como uma função do número de habitantes, N. O estudo encontrou que $m=e^{-0.02}N^{0.19}$. Escreva esta relação na forma log-linear. Qual é o valor de m quando N = 480000.

1.8 Continuidade

1. Sejam f e g definidas para todo x por

$$f(x) = \begin{cases} x^2 - 1 & \text{para } x \le 0 \\ -x^2 & \text{para } x > 0 \end{cases}$$
$$g(x) = \begin{cases} 3x - 2 & \text{para } x \le 2 \\ -x + 6 & \text{para } x > 2 \end{cases}$$

е

$$g(x) = \begin{cases} 3x - 2 & \text{para } x \le 2\\ -x + 6 & \text{para } x > 2 \end{cases}$$

Desenhe um gráfico de cada função. f é contínua em x=0? g é contínua em x=2?

- 2. Determine os valores de x para os quais cada uma das funções definidas pelas seguintes fórmulas é contínua:
 - (a) $x^5 + 4x$
 - (b) x/(1-x)
 - (c) $1/\sqrt{2-x}$
 - (d) $x/(x^2+1)$
 - (e) $(x^8 3x^2 + 1)/(x^2 + 2x 2)$

1.9 Regra de L'Hopital

1. Use a regra de L'Hopital para encontrar

(a)
$$\lim_{x\to 3} \frac{3x^2-27}{x-3}$$

(b)
$$\lim_{x\to 0} \frac{e^x - 1 - x - (1/2)x^2}{3x^3}$$

(c)
$$\lim_{x\to 0} \frac{e^{-3x} - e^{-2x} + x}{x^2}$$

2. Encontre os limites:

(a)
$$\lim_{x \to a} \frac{x^2 - a^2}{x - a}$$

(b)
$$\lim_{x\to 0} \frac{2\sqrt{1+x}-2-x}{2\sqrt{1+x+x^2}-2-x}$$

3. Encontre o erro no seguinte raciocínio:

$$\lim_{x \to 1} \frac{x^2 + 3x - 4}{2x^2 - 2x} = \lim_{x \to 1} \frac{2x + 3}{4x - 2} = \lim_{x \to 1} \frac{2}{4} = \frac{1}{2}.$$

4. Use a regra de L'Hopital para encontrar os seguintes limites

(a)
$$\lim_{x \to 1} \frac{x-1}{x^2-1}$$

(b)
$$\lim_{x\to-2} \frac{x^3+3x^2-4}{x^3+5x^2+8x+4}$$

(b)
$$\lim_{x\to -2} \frac{x^3 + 3x^2 - 4}{x^3 + 5x^2 + 8x + 4}$$

(c) $\lim_{x\to 2} \frac{x^4 - 4x^3 + 6x^2 - 8x + 8}{x^3 - 3x^2 + 4}$
(d) $\lim_{x\to 1} \frac{\ln x - x + 1}{(x-1)^2}$

(d)
$$\lim_{x\to 1} \frac{\ln x - x + 1}{(x-1)^2}$$

(e)
$$\lim_{x\to 1} \frac{1}{x-1} \ln \left(\frac{7x+1}{4x+4} \right)$$

(f)
$$\lim_{x\to 1} \frac{x^x - x}{1 - x + \ln x}$$

5. Com $\beta > 0$ e $\gamma > 0$, encontre

$$\lim_{v\to 0^+}\frac{1-(1+v^\beta)^{-\gamma}}{v}.$$