INDEX

23CP307P-Artificial Intelligence Lab

Exp. No.	Experiment Title	Date	Signature
1	WAP to implement DFS and BFS for traversing a graph from source no (S) to goal node (G), where source node and goal node is given by the us as an input.		
2	Design water jug problem solver.	17-01-24	
	You are given two jugs with m litres and a n litre capacity. Both the jugare initially empty. The jugs don't have markings to allow measuring smaller quantities. You have to use the jugs to measure d litres of wat where d is less than n. You are given two jugs with m litres and a n lit capacity. Both the jugs are initially empty. The jugs don't have marking to allow measuring smaller quantities. You have to use the jugs to measure d litres of water where d is less than n.	ng eer re gs	
3	Solve 8 puzzle problem using A* algorithm where initial state and Goal state will be given by the users.	24-01-24	
4	Implement using C/C++, the Fixed Increment Perceptron Learning algorithm as presented in the attachment. The training set for a 2-classification problem is also attached. Iterate th perceptron through the training set and obtain the weights.	31-01-24	
5	Given a C++ code bnp, identify the algorithm implemented through the code. Also document the code.	07-02-24	
6a	Understand the project available on following link Project Link: https://github.com/aharley/nn_vis Project by: https://adamharley.com/ Reference in case needed: https://www.youtube.com/watch?v=pj9-rr1wDhM	14-02-24	
6b	Part 2 Populate the table below to summarize your understanding of the project mentioned in part 1 Layer Task Rationale	21-02-24 t	
	How does the following hyper-parameters affect network performance?		
	Hyper- Parameter Stride Dilation Rate Type of pooling layer Kernel size		
	padding		

	References:		
	An Intuitive Explanation of Convolutional Neural Networks – the data science blog (ujjwalkarn.me)		
	Gentle Dive into Math Behind Convolutional Neural Networks by Piotr Skalski Towards Data Science		
	Intuitively Understanding Convolutions for Deep Learning by Irhum Shafkat Towards Data Science		
	An Introduction to different Types of Convolutions in Deep Learning by Paul-Louis Pröve Towards Data Science		
7	Prepare your version of CNN following the steps in the link shared here.	06-03-24	
	https://towardsdatascience.com/build-your-own-convolution-neural-network-in-5-mins-4217c2cf964f		
8	Design the Neural Network model for the project title submitted by you. Demonstrate "Over-fitting" and solve the same using "Dropout technique".	13-03-24	
	Rubrics: Model Justification with respect to project domain - 5 marks Demonstration of over fitting and dropout technique - 5 marks		
9	For your project definition demonstrate applicable task out of prediction and classification.	20-03-24	
	Explain the entire work flow of your project through a single diagram		
10	 For your project demonstrate the following: need of optimizer - 5 marks significance of your choice of optimizer - 5 marks comparison of outcomes with and without optimization - 5 marks Project Report including minimum (abstract, domain intro, data set description, implementation methodology with brief justification, results and discussion, future scope) - 10 marks 	27-03-24	
11a	Understanding the basics and IDE for Prolog Programming	03-04-24	
11b	Implement any two of the following using Prolog: - Medical diagnosis of common cold and flu using symptom inputs Demonstrating list in prolog Monkey banana problem Find the factorial of a given number	10-04-24	
12	WAP to design Tic Tac Toe games from O (Opponent) and X (Player) by using minimax algorithm.	24-04-24	