

Theory of Computation Week 7

Much of the material on this slides comes from the recommended textbook by Elaine Rich

Detailed content

Weekly program

- ✓ Week 1 Background knowledge revision: logic, sets, proof techniques
- ✓ Week 2 Languages and strings. Hierarchies. Computation. Closure properties
- ✓ Week 3 Finite State Machines: non-determinism vs. determinism
- ✓ Week 4 Regular languages: expressions and grammars
- ✓ Week 5 Non regular languages: pumping lemma. Closure
- ✓ Week 6 Context-free languages: grammars and parse trees

Week 7 - Pushdown automata

- ☐ Week 8 Non context-free languages: pumping lemma and decidability. Closure
- Week 9 Decidable languages: Turing Machines
- Week 10 Church-Turing thesis and the unsolvability of the Halting Problem
- Week 11 Decidable, semi-decidable and undecidable languages (and proofs)
- Week 12 Revision of the hierarchy. Safety-critical systems
- Week 13 Extra revision (if needed)

CONTEXT-FREE GRAMMARS

A context-free grammar G is a quadruple, (V, Σ, R, S) , where:

- V is the rule alphabet, which contains nonterminals and terminals.
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite subset of $(V \Sigma) \times V^*$,
- S (the start symbol) is an element of $V \Sigma$.

A language *L* is *context-free* if and only if it is generated by some context-free grammar *G*.

PARSE TREES

A parse tree, derived by a grammar $G = (V, \Sigma, R, S)$, is a rooted, ordered tree in which:

- Every leaf node is labeled with an element of $\Sigma \cup \{\epsilon\}$,
- The root node is labeled S,
- Every other node is labeled with some element of: $V-\Sigma$, and
- If m is a nonleaf node labeled X and the children of m are labeled $x_1, x_2, ..., x_n$, then R contains the rule $X \rightarrow x_1, x_2, ..., x_n$.

Ambiguity

$$E \rightarrow E + E$$

 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow id$

Week 07 Videos

You already know

- What is Push Down Automata (PDA)
 - ☐ Formal and informal definition
 - Difference between PDA and FSM
 - ☐ How PDA operates with its stack
 - When PDA accepts/rejects
 - □ Deterministic/Nondeterministic PDA

Videos to watch before lecture

Additional videos to watch for this week

Week 07 Lecture

Ambiguity, Normal Forms

- Normal Forms
- ☐ Conversion to Chomsky Normal Form
- ☐ Pushdown Automata (PDA)
 - Definition
 - Computation
 - □ Accepting/Rejecting
- Examples of PDA
- Nondeterminism in PDA

- A normal form F for a set C of data objects is a form, i.e., a set of syntactically valid objects, with the following two properties:
- For every element c of C, except possibly a finite set of special cases, there exists some element f of F such that f is equivalent to c with respect to some set of tasks.
- *F* is simpler than the original form in which the elements of *C* are written. By "simpler" we mean that at least some tasks are easier to perform on elements of *F* than they would be on elements of *C*.

If you want to design algorithms, it is often useful to have a limited number of input forms that you have to deal with.

Normal forms are designed to do just that. Various ones have been developed for various purposes.

Examples:

- Clause form for logical expressions to be used in resolution theorem proving
- Disjunctive normal form for database queries so that they can be entered in a query by example grid.
- Various normal forms for grammars to support specific parsing techniques.

Chomsky Normal Form, in which all rules are of one of the following two forms:

- $X \rightarrow a$, where $a \in \Sigma$, or
- $X \rightarrow BC$, where B and C are elements of $V \Sigma$.

Advantages:

- Parsers can use binary trees.
- Exact length of derivations is known:

Theorem: Given a CFG G, there exists an equivalent Chomsky normal form grammar G_C such that:

$$L(G_C) = L(G) - \{\varepsilon\}.$$

Proof: The proof is by construction.

CONVERSION TO CHOMSKY NORMAL FORM

- 1. Remove all ε -rules (e.g $X \to \varepsilon$), using the algorithm removeEps.
- 2. Remove all unit productions (rules of the form $A \rightarrow B$).
- 3. Remove all rules whose right hand sides have length greater than 1 and include a terminal:

(e.g.,
$$A \rightarrow aB$$
 or $A \rightarrow BaC$ or $A \rightarrow ab$)

4. Remove all rules whose right hand sides have length greater than 2:

(e.g.,
$$A \rightarrow BCDE$$
)

CONVERTING TO A NORMAL FORM

- 1. Apply some transformation to *G* to get rid of undesirable property 1. Show that the language generated by *G* is unchanged.
- 2. Apply another transformation to *G* to get rid of undesirable property 2. Show that the language generated by *G* is unchanged *and* that undesirable property 1 has not been reintroduced.
- 3. Continue until the grammar is in the desired form.

NORMAL FORMS Rule Substitution

$$X \rightarrow a Yc$$

 $Y \rightarrow b$
 $Y \rightarrow ZZ$

We can replace the *X* rule with the rules:

$$X \rightarrow abc$$

 $X \rightarrow aZZc$

$$X \Rightarrow a Yc \Rightarrow aZZc$$

NORMAL FORMS Rule Substitution

Theorem: Let G contain the rules:

$$X \rightarrow \alpha Y\beta$$
 and $Y \rightarrow \gamma_1 | \gamma_2 | \dots | \gamma_n$,

Replace $X \rightarrow \alpha Y\beta$ by:

$$X \to \alpha \gamma_1 \beta$$
, $X \to \alpha \gamma_2 \beta$, ..., $X \to \alpha \gamma_n \beta$.

The new grammar G' will be equivalent to G.

NORMAL FORMS Rule Substitution

Proof:

Every string in L(G) is also in L(G):

Suppose w is in L(G). We show that w is also in L(G').

If $X \to \alpha Y\beta$ is not used, then use same derivation.

If it is used, then one derivation is:

In G:
$$S \Rightarrow ... \Rightarrow \delta X \phi \Rightarrow \delta \alpha Y \beta \phi \Rightarrow \delta \alpha \gamma_k \beta \phi \Rightarrow ... \Rightarrow w$$

$$X \to \alpha Y\beta$$
$$Y \to \gamma_k$$

Use this one instead:

In G':
$$S \Rightarrow ... \Rightarrow \delta X \phi \Rightarrow$$

$$\delta \alpha \gamma_k \beta \phi \Rightarrow ... \Rightarrow W$$

$$X \to \alpha \gamma_k \beta$$

Every string in L(G) is also in L(G): Every new rule $(X \to \alpha \gamma_k \beta)$ can be simulated by two old rules $X \to \alpha Y \beta$ and $Y \to \gamma_k$.

THE PRICE OF NORMAL FORMS

- CNF version of a grammar may be longer than the original grammar
- Conversion time: Suppose n be the length of the grammar
 - If run in order Step 1, 2, 3, 4 then Total: O(2ⁿ)
 - If run in order Step 4, 1, 2, 3 then Total: O(n²)
- Step 1 (removeEps) can take O(2ⁿ) time as we need to rewrite a single rule $X \rightarrow A_1 A_2 ... A_k$ into 2^k-1 rules
- But if we apply Step 4 (*removeLong*) first then all rules are of length 2 at most. And none of them will be rewritten with 3 rules. So *removeEps* runs in linear time.
- Step 2 (removeUnits) runs in O(n²) time
- Step 3 (removeMixed) runs in linear time
- Step 4 (removeLong) runs in linear time
- Conversion doesn't change weak generative capacity but it may change strong generative capacity.

RECOGNIZING CONTEXT-FREE LANGUAGES

We need a device similar to an FSM except that it needs more power.

The insight: Precisely what it needs is a stack, which gives it an unlimited amount of memory with a restricted structure.

Example: Bal (the balanced parentheses language)

(((()))

DEFINITION OF A PUSHDOWN AUTOMATON

A **pushdown automaton** is a 6-tuple $M = (K, \Sigma, \Gamma, \Delta, s, A)$, where:

- K is a finite set of states
- Σ is the input alphabet
- Γ is the stack alphabet
- $s \in K$ is the initial state
- $A \subseteq K$ is the set of accepting states, and
- Δ is the transition <u>relation</u>.

DEFINITION OF A PUSHDOWN AUTOMATON

 Δ , the transition relation, is a finite subset of

DEFINITION OF A PUSHDOWN AUTOMATON

A configuration of M is an element of $K \times \Sigma^* \times \Gamma^*$.

The initial configuration of M is (s, w, ε) .

MANIPULATING THE STACK

If $c_1c_2...c_n$ (right to left) is pushed onto the stack: $c_1c_2...c_n$ cab

YIELDS

Let c be any element of $\Sigma \cup \{\epsilon\}$, Let γ_1 , γ_2 and γ be any elements of Γ^* , and Let w be any element of Σ^* .

Then:

$$(q_1, cw, \gamma_1 \gamma) \mid -_M (q_2, w, \gamma_2 \gamma) \text{ iff } ((q_1, c, \gamma_1), (q_2, \gamma_2)) \in \Delta.$$

Let $|-M^*|$ be the reflexive, transitive closure of $|-M^*|$

 C_1 **yields** configuration C_2 iff $C_1 \mid -M^* \mid C_2$

COMPUTATIONS

A *computation* by M is a finite sequence of configurations $C_0, C_1, ..., C_n$ for some $n \ge 0$ such that:

- C_0 is an initial configuration,
- C_n is of the form (q, ε, γ) , for some state $q \in K$ and some string γ in Γ^* , and
- $C_0 \mid -_M C_1 \mid -_M C_2 \mid -_M \dots \mid -_M C_n$.

NONDETERMINISM

If *M* is in some configuration (q_1, s, γ) it is possible that:

- Δ contains exactly one transition that matches.
- Δ contains more than one transition that matches.
- ∆ contains no transition that matches.
- Δ is a <u>relation not function</u>.

ACCEPTING

A computation C of M is an **accepting computation** iff:

- $C = (s, w, \varepsilon) \mid -M^* (q, \varepsilon, \varepsilon)$, and
- $q \in A$.

M accepts a string *w* iff at least one of its computations accepts.

ACCEPTING

Other paths may:

- Read all the input and halt in a nonaccepting state,
- Read all the input and halt in an accepting state with the stack not empty,
- Loop forever and never finish reading the input, or
- Reach a dead end where no more input can be read.

The *language accepted by M*, denoted L(M), is the set of all strings accepted by M.

REJECTING

A computation *C* of *M* is a *rejecting computation* iff:

- $C = (s, w, \varepsilon) | -_{M}^{*} (q, w', \alpha),$
- C is not an accepting computation, and
- M has no moves that it can make from (q, w', α) .

M rejects a string w iff all of its computations reject.

So note that it is possible that, on input w, M neither accepts nor rejects.

A PDA for $A^nB^n = \{a^nb^n: n \ge 0\}$

A PDA for $A^nB^n = \{a^nb^n: n \ge 0\}$

A PDA FOR BALANCED PARENTHESES

A PDA FOR BALANCED PARENTHESES

$$M = (K, \Sigma, \Gamma, \Delta, s, A)$$
, where:
 $K = \{s\}$ the states
 $\Sigma = \{(,)\}$ the input alphabet
 $\Gamma = \{(\}$ the stack alphabet
 $A = \{s\}$
 Δ contains:
 $((s, (, \varepsilon^{**}), (s, ()))$
 $((s,), (), (s, \varepsilon))$

**Important: This does not mean that the stack is empty

A PDA for $\{wcw^R: w \in \{a, b\}^*\}$

A PDA for $\{wcw^R: w \in \{a, b\}^*\}$

$$M = (K, \Sigma, \Gamma, \Delta, s, A)$$
, where:
 $K = \{s, f\}$ the states
 $\Sigma = \{a, b, c\}$ the input alphabet
 $\Gamma = \{a, b\}$ the stack alphabet
 $A = \{f\}$ the accepting states
 Δ contains: $((s, a, \epsilon), (s, a))$
 $((s, b, \epsilon), (s, b))$
 $((s, c, \epsilon), (f, \epsilon))$
 $((f, a, a), (f, \epsilon))$
 $((f, b, b), (f, \epsilon))$

A PDA for $\{a^nb^{2n}: n \geq 0\}$

A PDA for $\{a^nb^{2n}: n \geq 0\}$

A PDA *M* is **deterministic** iff:

- Δ_M contains no pairs of transitions that compete with each other, and
- Whenever M is in an accepting configuration it is never forced to choose between accepting and continuing. i.e. no transition $((q, \varepsilon, \varepsilon), (p,a))$ where q is an accepting state.

But many useful PDAs are not deterministic.

A PDA for PalEven = $\{ww^R: w \in \{a, b\}^*\}$

$$S \rightarrow \varepsilon$$

 $S \rightarrow aSa$
 $S \rightarrow bSb$

A PDA:

A PDA for PalEven = $\{ww^R: w \in \{a, b\}^*\}$

$$S \rightarrow \varepsilon$$
 $S \rightarrow aSa$
 $S \rightarrow bSb$

A PDA:

A PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$

A PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

Start with the case where n = m:

$$L = \{a^m b^n : m \neq n; m, n > 0\}$$

Start with the case where n = m:

If stack and input are empty, halt and reject.

If input is empty but stack is not (m > n) (accept):

If stack is empty but input is not (m < n) (accept):

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

If input is empty but stack is not (m > n) (accept):

April 6, 2020

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

If stack is empty but input is not (m < n) (accept):

PUTTING IT TOGETHER

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

Jumping to the input clearing state 4: Need to detect bottom of stack.

Jumping to the stack clearing state 3: Need to detect end of input.

Consider $A^nB^nC^n = \{a^nb^nc^n: n \ge 0\}.$

PDA for it?

Consider $A^nB^nC^n = \{a^nb^nc^n: n \ge 0\}.$

Now consider $L = \neg A^nB^nC^n$. L is the union of two languages:

- 1. $\{w \in \{a, b, c\}^* : \text{the letters are out of order}\}$, and
- 2. $\{a^ib^jc^k: i, j, k \ge 0 \text{ and } (i \ne j \text{ or } j \ne k)\}$ (in other words, unequal numbers of a's, b's, and c's).

A PDA for $L = \neg A^n B^n C^n$

ARE THE CONTEXT-FREE LANGUAGES CLOSED UNDER COMPLEMENT?

 $\neg A^n B^n C^n$ is context free.

If the CF languages were closed under complement, then

$$\neg \neg A^n B^n C^n = A^n B^n C^n$$

would also be context-free.

But we will prove that it is not.

$L = \{a^m b^m c^p : n, m, p \ge 0 \text{ and } n \ne m \text{ or } m \ne p\}$

```
S \rightarrow NC
                              /* n \neq m, then arbitrary c's
S \rightarrow QP
                              /* arbitrary a's, then p \neq m
                           /* more a's than b's
N \rightarrow A
N \rightarrow B
                            /* more b's than a's
A \rightarrow a
A \rightarrow aA
A \rightarrow aAb
B \rightarrow b
B \rightarrow Bb
B \rightarrow aBb
C \rightarrow \varepsilon \mid cC
                          /* add any number of c's
                           /* more b's than c's
P \rightarrow B'
P \rightarrow C'
                              /* more c's than b's
B' \rightarrow b
B' \rightarrow bB'
B' \rightarrow bB'c
C' \rightarrow c \mid C'c
C' \rightarrow C'
C' \rightarrow bC'c
                              /* prefix with any number of a's
Q \rightarrow \varepsilon \mid aQ
```


REDUCING NONDETERMINISM

Jumping to the input clearing state 4:

Need to detect bottom of stack, so push # onto the stack before we start.

Jumping to the stack clearing state 3:

Need to detect end of input. Add to *L* a termination character (e.g., \$)

REDUCING NONDETERMINISM

Jumping to the input clearing state 4:

April 6, 2020

REDUCING NONDETERMINISM

Jumping to the stack clearing state 3:

MORE ON PDAs

A PDA for $\{ww^R : w \in \{a, b\}^*\}$:

What about a PDA to accept $\{ww : w \in \{a, b\}^*\}$?

PDAs AND CONTEXT-FREE GRAMMARS

Theorem: The class of languages accepted by PDAs is exactly the class of context-free languages.

Recall: context-free languages are languages that can be defined with context-free grammars.

Restate theorem:

Can be described with context-free grammar

Can be accepted by PDA

PDAs AND CONTEXT-FREE GRAMMARS From CFG to PDA

Lemma: Each context-free language is accepted by some PDA.

Proof (by construction):

The idea: Let the stack do the work.

Two approaches:

- Top down
- Bottom up

PDAs AND CONTEXT-FREE GRAMMARS From CFG to PDA - Top Down

The idea: Let the stack keep track of expectations.

Example: Arithmetic expressions :: $\Sigma = \{ id, +, *, (,) \}$

$$E \rightarrow E + T$$

 $E \rightarrow T$
 $T \rightarrow T * F$
 $T \rightarrow F$
 $F \rightarrow (E)$
 $F \rightarrow id$

- (1) $(q, \varepsilon, E), (q, E+T)$
- (2) $(q, \varepsilon, E), (q, T)$
- (3) $(q, \epsilon, T), (q, T^*F)$
- (4) $(q, \epsilon, T), (q, F)$
- (5) $(q, \varepsilon, F), (q, (E))$
- (6) $(q, \varepsilon, F), (q, id)$

- (7) $(q, id, id), (q, \varepsilon)$
- (8) $(q, (, (), (q, \varepsilon))$
- (9) $(q,),), (q, \varepsilon)$
- (10) $(q, +, +), (q, \varepsilon)$
- (11) $(q, *, *), (q, \varepsilon)$

PDAs AND CONTEXT-FREE GRAMMARS From CFG to PDA - Top Down

The outline of *M* is:

 $M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\}), \text{ where } \Delta \text{ contains:}$

- The start-up transition $((p, \varepsilon, \varepsilon), (q, S))$.
- For each rule $X \to s_1 s_2 ... s_n$. in R, the transition: $((q, \varepsilon, X), (q, s_1 s_2 ... s_n))$.
- For each character $c \in \Sigma$, the transition: $((q, c, c), (q, \varepsilon))$.

PDAs AND CONTEXT-FREE GRAMMARS Example of the construction

$$L = \{a^nb^*a^n\}$$

- (1) $S \rightarrow \epsilon$
- $(2) S \rightarrow B$
- $(3)S \rightarrow aSa$
- $(4) B \rightarrow \epsilon$
- $(5) B \rightarrow bB$

- 0. (p, ϵ, ϵ) , (q, S)
- 1. $(q, \varepsilon, S), (q, \varepsilon)$
- 2. $(q, \epsilon, S), (q, B)$
- 3. (q, ε, S), (q, aSa)
- 4. $(q, \epsilon, B), (q, \epsilon)$
- 5. (q, ε, B), (q, bB)
- 6. $(q, a, a), (q, \epsilon)$
- 7. $(q, b, b), (q, \epsilon)$

PDAs AND CONTEXT-FREE GRAMMARS Example of the construction

$$L = \{a^nb^*a^n\}$$

input = a a b b a a

Trans	state	unread input	stack
	р	aabbaa	3
0	q	aabbaa	S
3	q	aabbaa	a S a
6	q	abbaa	S a
3	q	abbaa	a S aa
6	q	b b a a	S aa
2	q	b b a a	B aa
5	q	b b a a	b B aa
7	q	b a a	B aa
5	q	b a a	b B aa
7	q	a a	B aa
4	q	a a	aa
6	q	a	a
6	q	3	3

0	(p,	ε,	ε),	(q,	S)
1	(q,	ε,	S),	(q,	ε)
2	(q,	ε,	S),	(q,	B)
3	(q,	ε,	S),	(q,	aSa)
4	(q,	ε,	В),	(q,	ε)
5	(q,	ε,	В),	(q,	b B)
6	(q,	a,	a),	(q,	ε)
7	(q,	b,	b),	(q,	(3

PDAs AND CONTEXT-FREE GRAMMARS Another example of the construction

 $L = \{a^n b^m c^p d^q : m + n = p + q\}$

PDAs AND CONTEXT-FREE GRAMMARS Another example of the construction

$$L = \{a^n b^m c^p d^q : m + n = p + q\}$$

- (1) $S \rightarrow aSd$
- $(2) S \rightarrow T$
- $(3) S \rightarrow U$
- (4) $T \rightarrow aTc$
- $(5) T \rightarrow V$
- $(6) U \rightarrow bUd$
- $(7) U \rightarrow V$
- (8) $V \rightarrow bV_C$
- (9) $V \rightarrow \varepsilon$

input = a a b c d d

PDAs AND CONTEXT-FREE GRAMMARS Another example of the construction

$$L = \{a^n b^m c^p d^q : m + n = p + q\}$$

(1)
$$S \rightarrow aSd$$

$$(2) S \rightarrow T$$

$$(3) S \rightarrow U$$

(4)
$$T \rightarrow aTc$$

$$(5) T \rightarrow V$$

$$(6) U \rightarrow bUd$$

$$(7) U \rightarrow V$$

(8)
$$V \rightarrow bV_C$$

(9)
$$V \rightarrow \varepsilon$$

- 0. $(p, \varepsilon, \varepsilon), (q, S)$
- 1. $(q, \epsilon, S), (q, aSd)$
- 2. $(q, \epsilon, S), (q, T)$
- 3. $(q, \epsilon, S), (q, U)$
- 4. $(q, \epsilon, T), (q, aTc)$
- 5. $(q, \epsilon, T), (q, V)$
- 6. $(q, \epsilon, U), (q, bUd)$
- 7. $(q, \varepsilon, U), (q, V)$
- 8. $(q, \epsilon, V), (q, bV_{C})$
- 9. $(q, \varepsilon, V), (q, \varepsilon)$
- **10.** (*q*, a, a), (*q*, ε)
- 11. $(q, b, b), (q, \varepsilon)$
- 12. $(q, c, c), (q, \varepsilon)$
- **13.** (q, d, d), (q, ε)

THE OTHER WAY TO BUILD A PDA - DIRECTLY

$$L = \{a^n b^m c^p d^q : m + n = p + q\}$$

(1)
$$S \rightarrow aSd$$

(2)
$$S \rightarrow T$$

(3)
$$S \rightarrow U$$

(4)
$$T \rightarrow aTc$$

(5)
$$T \rightarrow V$$

(6)
$$U \rightarrow bUd$$

$$(7) U \rightarrow V$$

(8)
$$V \rightarrow bV_C$$

(9)
$$V \rightarrow \varepsilon$$

THE OTHER WAY TO BUILD A PDA - DIRECTLY

$$L = \{a^n b^m c^p d^q : m + n = p + q\}$$

(1)
$$S \rightarrow aSd$$

- (2) $S \rightarrow T$
- (3) $S \rightarrow U$
- (4) $T \rightarrow aTC$
- (5) $T \rightarrow V$

- (6) $U \rightarrow bUd$
- $(7) U \rightarrow V$
- (8) $V \rightarrow bV_C$
- (9) $V \rightarrow \varepsilon$

input = a a b c d d

Machines constructed with the algorithm are often nondeterministic, even when they needn't be. This happens even with trivial languages.

Example: $A^nB^n = \{a^nb^n: n \ge 0\}$

A grammar for AⁿBⁿ is:

A PDA
$$M$$
 for A^nB^n is:

[1]
$$S \to aSb$$

[2] $S \to \varepsilon$

(0)
$$((p, \varepsilon, \varepsilon), (q, S))$$

(1)
$$((q, \varepsilon, S), (q, aSb))$$

(2)
$$((q, \varepsilon, S), (q, \varepsilon))$$

(3)
$$((q, a, a), (q, \epsilon))$$

(4)
$$((q, b, b), (q, \epsilon))$$

But transitions 1 and 2 make M nondeterministic.

A directly constructed machine for AⁿBⁿ:

PDAs AND CONTEXT-FREE GRAMMARS From CFG to PDA - Bottom up

The idea: Let the stack keep track of what has been found.

- (1) $E \rightarrow E + T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- (4) $T \rightarrow F$
- (5) $F \rightarrow (E)$
- (6) $F \rightarrow id$

Reduce Transitions:

- (1) $(p, \varepsilon, T + E), (p, E)$
- (2) $(p, \varepsilon, T), (p, E)$
- (3) $(p, \varepsilon, F * T), (p, T)$
- (4) $(p, \varepsilon, F), (p, T)$
- (5) $(p, \varepsilon,)E(), (p, F)$
- (6) $(p, \varepsilon, id), (p, F)$

Shift Transitions

- (7) $(p, id, \epsilon), (p, id)$
- (8) $(p, (, \varepsilon), (p, ()$
- (9) $(p,), \epsilon), (p,))$
- (10) $(p, +, \varepsilon), (p, +)$
- (11) $(p, *, \epsilon), (p, *)$

 $\varepsilon/E/\varepsilon$

PDAs AND CONTEXT-FREE GRAMMARS From CFG to PDA - Bottom up

The outline of *M* is:

 $M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\}), \text{ where } \Delta \text{ contains:}$

- The shift transitions: $((p, c, \epsilon), (p, c))$, for each $c \in \Sigma$.
- The reduce transitions: $((p, \varepsilon, (s_1s_2...s_n.)^R), (p, X))$, for each rule $X \to s_1s_2...s_n$ in G.
- The finish up transition: $((p, \varepsilon, S), (q, \varepsilon))$.

PDAs AND CONTEXT-FREE GRAMMARS From PDA to CFG

Lemma: If a language is accepted by a pushdown automaton *M*, it is context-free (i.e., it can be described by a context-free grammar).

Proof (by construction):

Step 1: Convert *M* to restricted normal form:

Step 2: Convert the PDA (in restricted normal form) to a CFG.

Pages: 265~273 (have a look)

NONDETERMINISM AND HALTING

- 1. There are CFL for which no deterministic PDA exists.
- 2. There exist no algorithm to minimize a PDA.
 - It is undecidable whether a PDA is already minimal

NONDETERMINISM AND HALTING

It is possible that a PDA may

- not halt,
- not ever finish reading its input.

Let $\Sigma = \{a\}$ and consider M =

$$L(M) = \{a\}: (1, a, \epsilon) | -(2, a, a) | -(3, \epsilon, \epsilon)$$

On any other input except a:

- M will never halt.
- M will never finish reading its input unless its input is ε .

NONDETERMINISM AND HALTING

Solutions to the Problem

For NDFSMs:

- Convert to deterministic, or
- Simulate all paths in parallel.

For NDPDAs:

- Formal solutions that usually involve changing the form of the grammar.
- Practical solutions that:
 - Preserve the structure of the grammar, but
 - Only work on a subset of the CFLs.

COMPARING REGULAR AND CONTEXT-FREE LANGUAGES

Regular Languages

Regular expressions Regular grammars

recognize

= DFSMs

Context-Free Languages

Context-free grammars

parse

= NDPDAs

References

- □ Automata, Computability and Complexity. Theory and Applications
 - By Elaine Rich
- ☐ Chapter 11:
 - Page: 224-227, 232-241.
- ☐ Chapter 12:
 - Page: 249-275.

