Statistical visualization and computation: COVID project

Matias Janvin

2021

Here, I am performing descriptive statistics on the cumulative incidences of death due to COVID 19 by different regions in Switzerland using the dataset from the federal institute of public health.

https://www.covid19.admin.ch/en/overview?time=total

Overview of cumulative incidences of death

We start by loading the data

```
df.death <- read.csv("bag_covid_19_data_csv_11_October_2021/data/COVID19Death_geoRegion.csv")
df.cases <- read.csv("bag_covid_19_data_csv_11_October_2021/data/COVID19Cases_geoRegion.csv")
df.hospital <- read.csv("bag_covid_19_data_csv_11_October_2021/data/COVID19Hosp_geoRegion.csv")</pre>
```

Next, we plot the cumulative incidences of death for the different geographic categories

Month

Month

Next, we plot the cumulative incidences of cases for the different geographic categories

Furthermore, we plot the cumulative incidences of hospitalizations for the different geographic categories

```
regions.hospital <- unique(df.hospital$geoRegion)
for (i in regions.hospital) {
    region.df.hospital <- df.hospital[df.hospital$geoRegion ==
                i, ]
    plot(as.Date(region.df.hospital$datum), region.df.hospital$sumTotal,
                "s", xaxt = "n", xlab = "Month", ylab = "Incidence of hospitalizations",
                main = i)
    axis.Date(1, at = seq(min(as.Date(region.df.hospital$datum)),
                max(as.Date(region.df.hospital$datum)) + 6, "months"),
                format = "%m-%y")
}</pre>
```


11–20

Month

02-21

05–21

08–21

08-20

0

02–20

05–20

