Задача №2

В двух прочных запаянных ампулах находится по 1,000 г веществ K, L. Каждую из них выдерживали в течении нескольких часов при 600°С. При этой температуре в ампулах присутствовали только газы. После охлаждения ампул до 55°С, в каждой их ампул было замечено образование капель жидкости. В таблице ниже представлены некоторые данные по проведённым экспериментам:

		600°C		55°C			
		D _{H2} (смеси)	Число газов в смеси	D _{H2} (смеси)	Число газов в смеси	т(жид-ти), г	ρ(жид-ти), г/мл
	K	10,667	2	14	1	0,5625	1,00
	L	40,575	3	20,667	2	0,6185	13,54

- 1) Определите вещества **K**, **L**. Ответ подтвердите расчётом. (При расчётах молярные массы атомов необходимо округлять до целых).
- 2) Напишите уравнения реакций разложения исследуемых веществ.

Решение:

1) Вывод вещества К:

Так как $\rho(жид-ти) = 1,00$ г/мл, сл-но – эта жидкость представляет собой воду.

После охлаждения ампулы оставшийся газ представляет собой индивидуальное соединение:

 $M(r) = 14 \times 2 = 28$ г/моль, что может соответствовать азоту или угарный газ.

 $\nu(H_2O) = 0.5625/18 = 0.03125$ моль; $\nu(\Gamma) = (1-0.5625)/28 = 0.015625$ моль

 $v(H_2O): v(\Gamma) = 2:1$, тогда

 $K \to 2H_2O + \Gamma$, если газ – N_2 , то соединение $K - NH_4NO_2$ (нитрит аммония)

Уравнение реакции: $NH_4NO_2 \rightarrow N_2 + 2H_2O$

Вывод о том что жидкость – вода	2 балла
Расчёт М(газа)	2 балла
Вывод соли К	4 балла
Уравнение реакции	2 балла
(без правильных коэффициентов)	(1 балл)
Итого за вывод соли К	10 баллов

2) Вывод вещества L:

 $M(\text{смеси}, 600^{\circ}\text{C}) = 40,575 \times 2 = 81,15 \text{ г/моль}$

 $M(\text{смеси}, \text{комн. т-ра}) = 20,667 \times 2 = 41,334 \ \text{г/моль}$

Резкое уменьшение плотности газовой смеси и высокая плотность жидкости позволяет сделать вывод, что жидкость — это ртуть, следовательно, произошло разложение соли ртути. Тогда один из газов скорее всего кислород.

Схема реакции:

 $Hg... \rightarrow Hg$

Тогда, $M(cоли) = 1,000 \times M(Hg)/m(Hg) = 1 \times 201/0,6185 = 325 г/моль$

M(кисл. остатка) = 325 - 201 = 124 г/моль.

Разлагается с образованием только смеси газов – оксалат, нитрат или карбонат.

Тогда, $L - Hg(NO_3)_2$ (нитрат ртуги (II)).

Уравнение реакции: $Hg(NO_3)_2 \rightarrow Hg + 2NO_2 + O_2$

Вывод о том что жидкость – ртуть	4 балла
Вывод соли L	4 балла
(за расчёт М(соли))	(2 балла)
Уравнение реакции	2 балла
(без правильных коэффициентов)	(1 балл)
Итого за вывод соли L	10 баллов

<u>Итого 20 баллов</u>