LVDT Sensor with Nucleo

LVDT signal conditioning using only STM32G474 and external audio amplifier

20.05.2024

Patrik Drozdík

....

Problem and Theory

Linear Variable Differential Transformer (LVDT)

- Non-contact position sensing device
- Based on electromagnetic induction
- One primary coil and two secondary coils
- Ferrite core movement affects mutual inductance
- Output: Voltages from secondary coils proportional to core position
- $x_{\text{core position}} = k \cdot \frac{U_{\text{SEC1}} U_{\text{SEC2}}}{U_{\text{SEC1}} + U_{\text{SEC2}}}$

Figure 1: LVDT Operating Principle

000

Solution Design

System Components:

- STM32G474 Nucleo board for signal generation and processing
- LM4889 External audio amplifier
 - Powers primary coil 10kHz AC
- ADC **120kSa/s** sampling of secondary coil outputs
- Digital signal processing for displacement calculation
 - Goertzel algorithm

Figure 2: System Block Diagram

Implementation

Hardware Implementation:

- Nucleo board connections:
 - DAC output to audio amplifier
 - ADC inputs from secondary coils
- Signal conditioning circuit for secondary outputs
 - Resistor divider
 - Protection diodes

Figure 3: Homemade LVDT Sensor

Figure 4: Complete Circuit Setup

Figure 5: Sampling

Results and Performance

Measurement Results:

• Linear range: ±27.5 mm

Signal processing approach:

- Goertzel algorithm for FT at 10 kHz
- Adjustable sample averaging

Figure 6: Processed Signals

Figure 7: Raw Signals