Computabilità e Algoritmi 9 Luglio 2019

Esercizio 1

Enunciare e dimostrare il teorema di struttura dei predicati semidecidibili, ovvero dimostrare che $P(\vec{y})$ è semidecidibile se e solo se esiste un predicato decidibile $Q(x, \vec{y})$ tale che $P(\vec{y}) \equiv \exists x. Q(x, \vec{y})$.

Soluzione: Si veda il libro. \Box

Esercizio 2

Può esistere una funzione non calcolabile $f: \mathbb{N} \to \mathbb{N}$ tale che per ogni altra funzione non calcolabile $g: \mathbb{N} \to \mathbb{N}$ la funzione f+g definita da (f+g)(x) = f(x) + g(x) sia calcolabile? Motivare adeguatamente la risposta (fornendo un esempio di tale f, se esiste, oppure dimostrando che non può esistere).

Soluzione: Non può esistere, altrimenti, dato che la quantificazione per g è universale, la proprietà dovrebbe valere anche per g=f. Quindi f+f=2f calcolabile, quindi f calcolabile.

Esercizio 3

Sia \mathbb{P} l'insieme dei numeri pari. Dimostrare che indicato con $A = \{x \in \mathbb{N} : E_x = \mathbb{P}\}$, si ha che $\bar{K} \leq_m A$.

Soluzione: Per ottenere la funzione di riduzione si può considerare

$$f(x,y) = \begin{cases} 2y & \text{se } \neg H(x,x,y) \\ 1 & \text{altrimenti} \end{cases}$$

Questa è calcolabile, dato che può essere scritta come $f(x,y) = 2 y \bar{s}g(\chi_H(x,x,y)) + \chi_H(x,x,y)$.

Pertanto, per il teorema smn, esiste $s: \mathbb{N} \to \mathbb{N}$ calcolabile totale, tale che $f(x,y) = \varphi_{s(x)}(y)$ per ogni $x,y \in \mathbb{N}$, che può essere usata come funzione di riduzione per $\bar{K} \leq_m A$. Infatti:

- se $x \in \bar{K}$, allora $\chi_H(x, x, y) = 0$ per ogni y, e pertanto $\varphi_{s(x)}(y) = f(x, y) = 2y$ per ogni y. Quindi $E_{s(x)} = \mathbb{P}$, e pertanto $s(x) \in A$.
- se $x \notin \overline{K}$, ovvero $x \in K$ allora esiste y_0 tale che $\chi_H(x, x, y) = 1$ per ogni $y \geq y_0$. Quindi $\varphi_{s(x)}(y) = 1$ per $y \geq y_0$, dunque $1 \in E_{s(x)}$ e pertanto $E_{s(x)} \neq \mathbb{P}$, quindi $s(x) \notin A$.

Esercizio 4

Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : \varphi_x(y) = y^2 \text{ per infiniti } y\}$, ovvero dire se $B \in \bar{B}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione: Osserviamo che B è saturato, dato che $B = \{x \mid \varphi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \mid f(y) = y^2 \text{ per infiniti } y\}$. Si usa Rice-Shapiro per dedurre che entrambi gli insiemi non sono r.e.

- B non r.e. perchè \mathcal{B} contiene y^2 e nessuna sua sottofunzione finita (dato che non contiene nessuna funzione finita).
- \bar{B} non r.e. dato che $\emptyset \in \bar{\mathcal{B}}$ e \emptyset ammette come estensione $y^2 \notin \bar{\mathcal{B}}$.

Esercizio 5

Enunciare il secondo teorema di ricorsione ed utilizzarlo per dimostrare che, indicato con e_0 un indice della funzione sempre indefinita \emptyset e con e_1 un indice della funzione identità, la funzione $h: \mathbb{N} \to \mathbb{N}$, definita da

$$h(x) = \begin{cases} e_0 & \text{se } \varphi_x \text{ è totale} \\ e_1 & \text{altrimenti} \end{cases}$$

non è calcolabile.

Soluzione: Si osservi che h è totale. Inoltre $\varphi_x \neq \varphi_{h(x)}$ per ogni x, dato che φ_x è totale sse $\varphi_{h(x)}$ non lo è. Quindi, per il secondo teorema di ricorsione, si deduce che h non può essere calcolabile.