CONVEX HULLS Chan's optimal output sensitive

Chan's optimal output sensitive algorithms for convex hulls

Alberto Parravicini

Université libre de Bruxelles

December 15, 2016

What's on the menu?

- Basic notions
- → Algorithms for convex hulls
- → Optimal 2D algorithm
- → Optimal 3D algorithm

Crash course on convex hulls

A *convex set S* is a set in which, $\forall x, y \in S$, the segment $xy \subseteq S$.

Given a set of points *P* in *d* dimensions, the **Convex Hull CH(P)** of *P* is:

- \rightarrow the *minimal convex set* containing *P*.
- → the union of all convex combinations of points in P, i.e. the points CH(P) are s.t.

$$\sum_{i=1}^{|P|} w_i \cdot x_i, \ \forall x_i \in P, \ \forall w_i : \ w_i \ge 0 \ and \ \sum_{i=1}^{|P|} w_i = 1$$

Output sensitive algorithm

The complexity of an *output-sensitive* algorithm is a function of both the *input size* and the *output size*.

Jarvis's march

→ Core idea: given an edge pq of the convex hull, the next edge qr to be added will maximize the angle ∠pqr

- \rightarrow At each step we scan all the *n* points.
- \rightarrow How many steps? h, size of the hull.
- \rightarrow Complexity: O(nh)

One step, visually

Figure: A step of the Jarvis March. The red line is the next segment that will be added to the hull.

Jarvis's march

Algorithm 1: Jarvis March

```
Input: a list S of bidimensional points.
Output: the convex hull of the set, sorted counterclockwise.
hull = []
x_0 = the leftmost point.
hull.push(x_0)
Loop hull.last() != hull.first()
   candidate = S.first()
   foreach p in S do
       if p != hull.last() and p is on the right of the segment
        "hull.last(), candidate" then
          candidate = p
   if candidate != hull.first then hull.push(candidate) else break
return hull
```

Graham's scan

- → Sort the points in clockwise order around the leftmost point - Cost: O(n log n)
- \rightarrow Keep the current hull in a stack $H = \{h_0, \ldots, h_{curr}\}$.
- \rightarrow Inspect each point p in order **Cost:** O(n)
 - \rightarrow While $h_{curr-1}h_{curr}p$ is a right turn, pop h_{curr} .
 - \rightarrow Push *p* to *H*.
- → Overall complexity: $O(n \log n)$

Graham's scan

Algorithm 2: Graham Scan

Input: a list *S* of bidimensional points.

Output: the convex hull of the set, sorted counterclockwise.

hull =[]

 x_0 = the leftmost point.

Put x_0 as the first element of S.

Sort the remaining points in counter-clockwise order, with respect to x_0 .

Add the first 3 points in *S* to the hull.

forall the remaining points in S do

while hull.second_to_last(), hull.last(), p form a right turn do

hull.pop()

_ hull.push(p)

return hull

Can we do better?

So far:

- \rightarrow Jarvis's march: O(nh)
- \rightarrow Graham's scan: $O(n \log n)$

- → How do we compare their complexity?
- → We would like to do even better!

Can we get to $O(n \log h)$?

Chan's 2D algorithm

- → Idea: Some points will never be in the hull! Discard them to speed up Jarvis's march.
- → Combine *Jarvis's march* and *Graham's scan*.
- → Algorithm (Chan 2D):
 - → Split the *n* points in groups of size m ($\lceil n/m \rceil$ groups).
 - → Compute the hull H_i of each group Cost: $O((n/m) \cdot (m \log m)) = O(n \log m)$
 - → Until the hull is complete, repeat:
 - → Given the current hull $H_{tot} = \{h_0, \ldots, h_{curr}\}$, find for each H_i the point right tangent to h_{curr} (binary search, $O(\log m) \lceil n/m \rceil$).
 - \rightarrow Pick the tangent point p that maximizes $\angle h_{curr-1}h_{curr}p$.

One step, visually

Figure: A step of Chan's algorithm. In blue, the existing hull, in orange, the tangents, in red, the new edge that will be added.

Chan's 2D algorithm, part 2

Complexity: $O(n \log m + (h(n/m) \log m))$

What about *m*? Let's pretend the size *h* of the final hull is known a-priori.

If we put m = h, we get complexity $O(n \log h + (h(n/h)\log h)) = O(n \log h)$

But h is not known!

- ightarrow Reiterate the algorithm multiple times, with $m=2^{2^i}$
- → Iteration cost: $O(n \log H) = O(n2^i)$
- $\rightarrow O\left(\sum_{i=1}^{\lceil \log \log h \rceil} n2^{i}\right) = O(n2^{\lceil \log \log h \rceil + 1}) = O(n \log h)$

Chan's 2D pseudo-code

Algorithm 3: ChanHullStep, a step of Chan's algorithm

```
Input: a list S of bidimensional points, the parameters m, H
Output: the convex hull of the set, sorted counterclockwise, or an empty list, if H
           is < h
Partition S into subsets S_1, \ldots, S_{\lceil n/m \rceil}.
for i = 1, \ldots, \lceil n/m \rceil do
    Compute the convex hull of S<sub>i</sub> by using Graham Scan, store the output in a
      counter-clockwise sorted list.
p_0 = (0, -\infty)
p_1 = the leftmost point of S.
for k = 1, \ldots, H do
    for i = 1, \ldots, \lceil n/m \rceil do
          Compute the points q_i \in S that maximizes \angle p_{k-1}p_kq_i, with q_i \neq p_k, by
           performing binary search on the vertices of the partial hull S_i.
    p_{k+1} = the point q \in \{q_1, \ldots, q_{\lceil n/m \rceil}\}.
    if p_{k+1} = p_t then return \{p_1, \ldots, p_k\}
return incomplete
```

Chan's 2D pseudo-code, reprise

Algorithm 4: Chan's algorithm

Chan's 2D - Empirical analysis

Is a real implementation $O(n \log h)$?

Test 1: fixed hull size (1000), increasing number of points.

Chan's 2D - Empirical analysis

Is a real implementation $O(n \log h)$?

Test 2: fixed number of points (40000), increasing hull size.

THANK YOU!