Principal Component Analysis (PCA)

- Principal Component Analysis (PCA) is a dimensionality reduction technique widely used in data analysis and machine learning.
- It transforms a dataset into a new coordinate system where the most significant variance is captured in the first few principal components.
- Principal Component Analysis (PCA) transforms a dataset into a new coordinate system where the axes (principal components) are aligned with the directions of **maximum variance** in the data.
- The first few principal components capture the most significant variations, while later components represent diminishing amounts of variance.

- Variance in data refers to the spread or dispersion of data points around the mean.
- In PCA, the goal is to **maximize variance** along new axes (principal components) so that the most important patterns in the data are preserved.
- Each **principal component (PC)** is a linear combination of the original features and captures a specific amount of variance.
- The first principal component (PC1) captures the highest variance, the second principal component (PC2) captures the second highest variance, and so on.

• Mathematically, if X is a centered dataset (zero mean), and C is its covariance matrix:

$$C = \frac{1}{M-1} X^T X$$

The **eigenvalues** $\lambda_1, \lambda_2, ..., \lambda_n$ of C represent the amount of variance captured by each principal component.

- The first principal component (PC1) has the highest eigenvalue λ_1 , meaning it captures the most variance.
- The **second principal component (PC2)** has the second highest eigenvalue λ_2 , and so on.
- The total variance in the data is:

$$\sum_{i=1}^{N} \lambda_i$$

Why does PCA Capture Most Variance in the First Few Components?

Maximizing Variance

- PCA finds new directions (principal components) such that the projected data retains maximum variance.
- Since variance corresponds to information, retaining variance means retaining key patterns in the data.

Decorrelation of Features

- PCA removes correlations between original features, making principal components uncorrelated.
- Since correlated variables contain redundant information, PCA merges them into fewer components.

Dimensionality Reduction Without Much Information Loss

- In high-dimensional data, many features may have small contributions to overall variance.
- The first few principal components capture most of the variance, allowing us to reduce dimensions while preserving essential information.

PCA - Steps

- Standardize the Data Since PCA is affected by scale, it is common to standardize the dataset before applying it.
- Compute the Covariance Matrix of the dataset to understand the relationships between features.
- Find Eigenvalues and Eigenvectors of the covariance matrix The eigenvalues represent the variance captured by each principal component, while eigenvectors define their direction.
- Sort Eigenvalues in Descending Order and select the top k eigenvectors By selecting the top k principal components (those with the highest eigenvalues), PCA reduces the number of features while retaining most of the dataset's variability.
- Project the Original Data onto the new feature space.

• Let's assume we have a dataset with m observations and n features, represented as an $m \times n$ matrix:

$$X = egin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \ x_{21} & x_{22} & \dots & x_{2n} \ dots & dots & \ddots & dots \ x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}$$

where each row represents an **observation**, and each column represents a **feature**.

PCA - Standardization (Mean Centering and Scaling)

- Since PCA is affected by scale, standardize the dataset by centering the features around the mean and normalizing their variance.
- For each feature j, compute:
 - The mean:

$$\mu_{j} = \frac{1}{M} \sum_{i=1}^{m} x_{ij}$$

• The standard deviation:

$$\sigma_j = \sqrt{\frac{1}{m} \sum_{i=1}^n (x_{ij} - \mu_j)^2}$$

• Now, transform each feature as:

• Mean centering ensures that each feature has a mean of **zero**, which is important for PCA because it relies on the **covariance matrix**, which is computed around zero.

• scale each feature so that all variables have a variance of 1.

 $X'_{ij} = rac{x_{ij} - \mu_j}{\sigma_j}$

- Subtracting the mean from each value will center each feature around zero.
- This ensures that each feature has zero mean and unit variance.
- This transformation ensures that all features contribute equally to the PCA analysis.

PCA - Compute the Covariance Matrix

• The covariance matrix captures the relationships between features:

$$C = \frac{1}{m-1} X^T X$$

where C is an n×n symmetric matrix. The element C_{ij} represents the covariance between the ith and jth features.

• For two features X_i and X_j , the covariance is:

$$C_{ij} = rac{1}{m-1} \sum_{k=1}^m (X_{ki} - ar{X}_i) (X_{kj} - ar{X}_j)$$

If C_{ij} >0, the features are positively correlated. If C_{ij} <0, the features are negatively correlated. If C_{ij} =0, the features are uncorrelated.

PCA - Compute Eigenvalues and Eigen vectors

• PCA finds **principal components** by solving the eigenvalue problem:

$$Cv = \lambda v$$

where v is an eigenvector (direction of the principal component),

λ is the corresponding **eigenvalue** (amount of variance captured).

- To solve for v and λ , we solve: $\frac{\det \mathbb{R}(C-\lambda I)=0}{\det \mathbb{R}(C-\lambda I)=0}$ where I is the identity matrix.
- Each eigenvector represents a **principal component**, and its corresponding eigenvalue quantifies how much variance it captures.

PCA - Select the Top Principal Components

- Sort eigenvalues $\lambda 1 \ge \lambda 2 \ge \cdots \ge \lambda n$.
- Choose the top k eigenvectors corresponding to the largest k eigenvalues.
- The proportion of variance explained by the i-th principal component is:

$$\frac{\lambda_i}{\sum_{j=1}^n \lambda_j}$$

• We typically select the smallest k such that the cumulative variance exceeds a threshold (e.g., 95%).

PCA- Project Data onto the New Feature Space

• The new feature space (principal components) is:

$$Z = X'V_k$$

where:

- V_k is the matrix of the top k eigenvectors,
- Z is the transformed dataset with reduced dimensions.
- Each row of Z represents an observation in the reduced-dimensional space.

Consider a dataset with two features:

Observation	Feature 1(Age)	Feature 2 (Income)
1	25	50,000
2	30	60,000
3	35	70,000
4	40	80,000
5	45	90,000

Standardization

Compute Mean:

Mean of **Age**:

$$\mu_1 = \frac{25 + 30 + 35 + 40 + 45}{5} = 35$$

Mean of Income:

$$\mu_2 = \frac{50000 + 60000 + 70000 + 80000 + 90000}{5} = 70000$$

Compute Standard Deviation:

Standard deviation of Age:

$$\sigma_1 = \sqrt{\frac{(25 - 35)^2 + (30 - 35)^2 + (35 - 35)^2 + (40 - 35)^2 + (45 - 35)^2}{4}} = 7.91$$

Standard deviation of Income:

$$\sigma_2 = \sqrt{\frac{(50000 - 70000)^2 + (60000 - 70000)^2 + (70000 - 70000)^2 + (80000 - 70000)^2 + (90000 - 70000)^2}{4}} = 15811.39$$

Apply standardization

Standardized Age	Standardized Income
$\frac{25-35}{7.91} = -1.26$	$\frac{50000-70000}{15811.39} = -1.26$
$\frac{30-35}{7.91} = -0.63$	$\frac{60000 - 70000}{15811.39} = -0.63$
$\frac{35-35}{7.91} = 0.00$	$\frac{70000 - 70000}{15811.39} = 0.00$
$\frac{40-35}{7.91} = 0.63$	$\frac{80000 - 70000}{15811.39} = 0.63$
$\frac{45-35}{7.91} = 1.26$	$\frac{90000 - 70000}{15811.39} = 1.26$

The standardized dataset is:

-1.26	-1.26
-0.63	-0.63
0.00	0.00
0.63	0.63
1.26	1.26

Compute Covariance Matrix

• The covariance matrix measures the relationships between different features

$$C = rac{1}{m-1} X_{ ext{std}}^T X_{ ext{std}}$$

Computing Manually

$$C=egin{bmatrix} 1.58 & 1.58 \ 1.58 & 1.58 \end{bmatrix}$$

Since both features are highly correlated, there are strong covariance values.

- Compute Eigenvalues and Eigenvectors
- Eigenvalues tell us the amount of variance captured by each principal component, and eigenvectors define the directions.
- Solving $\det \mathbb{O}(\mathbb{C}-\lambda \mathbf{I})=\mathbf{0}$

$$\begin{vmatrix} 1.58 - \lambda & 1.58 \\ 1.58 & 1.58 - \lambda \end{vmatrix} = 0$$

Expanding determinant:
$$(1.58-\lambda)(1.58-\lambda)-(1.58)(1.58)=0$$
 $\lambda^2-3.16\lambda+(2.5-2.5)=0$ $\lambda^2-3.16\lambda=0$ $\lambda(\lambda-3.16)=0$

Thus, the eigenvalues are: $\lambda 1=3.16$, $\lambda 2=0$

Compute Eigenvectors

- For $\lambda_1 = 3.16$

• Solving (C-3.16I)v=0
$$\begin{bmatrix} 1.58 - 3.16 & 1.58 \\ 1.58 & 1.58 - 3.16 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} -1.58 & 1.58 \\ 1.58 & -1.58 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$$

- Solving for v_1 and v_2 , we get: $v_1=v_2$
- $\mathbf{v_1} = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ • So the first principal component (normalized) is:

• For
$$\lambda_2=0$$
: $\mathbf{v_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

- Transform the Data
- Project the standardized data onto the principal components:

$$X_{pca} = X_{std}V$$
 where

$$V = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$$

Multiplying:

$$X_{\text{pca}} = \begin{bmatrix} -1.26 & -1.26 \\ -0.63 & -0.63 \\ 0.00 & 0.00 \\ 0.63 & 0.63 \\ 1.26 & 1.26 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1.78 & 0 \\ -0.89 & 0 \\ 0.00 & 0 \\ 0.89 & 0 \\ 1.78 & 0 \end{bmatrix}$$
 • Thus, the data is now one-dimensional along PC1, meaning PCA has effectively reduced the dimensionality.

Variance Explained

• The proportion of variance explained is:

Explained Variance
$$=\frac{\lambda_i}{\sum \lambda}$$

- Standardization ensured equal feature contribution.
- PCA computed new axes (PCs) that maximize variance.
- Only **PC1** is needed for dimensionality reduction.

Since 100% variance is captured in PC1, we can discard PC2.

END