COMP30026 Models of Computation Assignment dicate Reject anticaxam Help

https://eduassistpro.github.

Lecture Week 4 Part 1 (Zo

Add Wechatoedu_assist_pr

This Lecture is Being Recorded

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Reading Materials

Remember, if you need textbook support, check out the resources that griph adminer publications are made in the property of the excession of of the

O'Donn includin https://eduassistpro.github.use of a styl

(not covered by us, and not examinable).

A rather different introduction to predicate logic is assist processing Chapter 9.

The book by Jenkyns also looks good.

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exam Help

That denttps://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exam Help

That denttps://eduassistpro.github.

It is Alse if D We Chat edu_assist_pr

Assignment Project Exam Help

That dehttps://eduassistpro.github.l

- It is also if the usual du_assist_property is the usual du_assist_property in the usual du_assist_property is the usual du_assist_property in the usual du_assist_property is the usual du_assist_property in the usual du_assist_property is the usual du_ass

Assignment Project Exam Help

That dehttps://eduassistpro.gfthub.

- It is also if the usual du_assist_property is the property in the property in the property is the property in the property in the property is the property in the property in
- 1 It is true if $D = \mathbb{R}$ and < is the usual "smaller than".

Assignment Project Exam Help

That dehttps://eduassistpro.github.

- **3** It is true if $D = \mathbb{R}$ and < is the usual "smaller than".
- **1** It is true if $D = \{0\}$.

The Meaning of a Formula

Assignment Project Exam Help predicate (and function) names denote, and of what sort of things the varia

For exam https://eduassistpro.github.what (it is valid).

Similarly Ax (10) A We (is not unassistand) for (the formula is unsatisfiable).

Interpretations (or Structures)

Assignment Project Exam Help

- A no
- o An https://eduassistpro.githաթ.
- An assignment, to each n-ary functi functored We Chat edu_assist_properties of the constant a

Free Variables and Valuations

Assignment Project Exam Help

we need https://eduassistpro.github.

- A valuation $\sigma : var \rightarrow D$ for free vari
- An iAndri Wetchardedu_assist_pr

Connectives are always given their usual meaning.

Terms and Valuations

We just said that a valuation is a function $\sigma : var \rightarrow D$.

Assignmention Projection English Telepterms automatically, by natural extension:

https://eduassistpro.github.

where d is the element of D that \mathcal{I} ass

The function that \mathcal{I} with the function that \mathcal{I} with the function that \mathcal{I} with the function \mathcal{I} and \mathcal{I} with the function \mathcal{I} and \mathcal{I} with \mathcal{I} and \mathcal{I} a

Example: Consider term t = f(y, g(x, y)) (with domain \mathbb{Z}) assign to a the value 3, to f the multiplication function, and to g addition. If $\sigma(x) = 9$ and $\sigma(y) = 5$ then $\sigma(t) = 60$.

Truth of a Formula

The tritle of a cheefform Projected Exam givelelp

The only r riables (and her https://eduassistpro.github.

 $\overset{\textbf{Notation:}}{\textbf{Add}} \underset{\sigma(y)}{\textbf{We}} \overset{\textbf{Chat}}{\textbf{Chat}} \underset{\text{oth}}{\textbf{edu_assist_pr}}$

Read this as "the map σ , updated to map x to d."

Making a Formula True

Assignment Project Exam Help σ makes $P(t_1, \ldots, t_n)$ true iff $\mathbf{p}(\sigma(t_1), \ldots, \sigma(t_n)) = \mathbf{t}$,

- wh
- $\int_{\sigma}^{\sigma} \frac{d\sigma}{ds}$ https://eduassistpro.github.
- σ makes $\forall x \ F$ true iff $\sigma_{x \mapsto d}$ make

If we now define WeChat edu_assist_pr

$$\exists x \ F \equiv \neg \forall x \ \neg F$$

then the meaning of every other formula follows from this.

Quantifier Order

Assignment Project Exam Help The order of different quantifiers is important.

```
The form ttps://eduassistpro.github.

there's an individual y that satisfies P(

But \forall x \to Action A
```

Quantified Formulas as a Two-Person Game

The truth or falsehood of a quantified formula can be expressed as a question of winning strategies for a two-person game. Say I make a laim (the quantified statement) and you try to dispresent. You get to supply values for the universally quantified variables.

- If I cla an https://eduassistpro.github.
- If I claim $\exists y \forall x \ P(x,y)$, then you can che to provide the Wahrbiten project control of assisting P(x,y), knowing the y
- If I claim $\exists x \exists y \ P(x, y)$, then I have to find both x and y, so it doesn't matter what order they appear.
- If I claim $\forall y \forall x \ P(x,y)$, then you get to pick both x and y, so again their order does not matter.

Rules of Passage for the Quantifiers

We cannot in general "push quantifiers in".

Accessingly, there is not impediate simplification to be a form
$$\exists x \not\in P(x) \land Q(x)$$
.

Howeve

https://eduassistpro.github.

$$Add_{x} \overset{\forall x \ (\neg F_{1})}{\bigvee} = \neg \exists x \ F$$

$$Add_{x} \overset{\forall x \ (\neg F_{1})}{\bigvee} = \neg \exists x \ F$$

$$edu_assist_pr$$

It follows that

$$\exists x \ (F_1 \Rightarrow F_2) \equiv (\forall x \ F_1) \Rightarrow (\exists x \ F_2)$$

More Rules of Passage for Quantifiers

Assignment Project Exam Help

https://eduassistpro.github.

Add \(\frac{\forall x \left(F \Rightarrow G)}{\forall e} \) = (\text{edu_assist_pr} \)

no matter what F is. In particular F may have free occurrences of x.

Models and Validity of Formulas

A wff F is true in interpretation \mathcal{I} iff every valuation makes F true Afor \mathcal{F} is \mathcal{F} in the property \mathcal{F} in \mathcal{F} is an interpretation \mathcal{I} such that F is true in \mathcal{I} .

We write

A wff F https://eduassistpro.github. In that case we write $\models F$.

 F_2 is a least tedu_assist_property we write $F_1 \models F_2$.

 F_1 and F_2 are logically equivalent iff $F_1 \models F_2$ and $F_2 \models F_1$. We write $F_1 \equiv F_2$.

Summarising: Satisfiability and Validity

- val
- un https://eduassistpro.github.

As in the Archaelio Wee Welhart edu_assist_pr

- F is valid iff $\neg F$ is unsatisfiable:
- F is non-valid iff $\neg F$ is satisfiable.

Example of Non-Validity

Assignment Project Exam Help $(\forall y \exists x \ P(x, y)) \Rightarrow (\exists x \forall y \ P(x, y))$

https://eduassistpro.github. For exam P meaning "less than".

or, let Add WeChatqedu_assist_pr

The formula is satisfiable, as it is true, for example, in the interpretation where $D=\{0,1\}$ and P means "less than or equal".

Example of Validity

```
 \underset{\text{If we negate } F \text{ (and rewrite it) we get}}{Assignment} \underset{\text{(and rewrite it) we get}}{Project} Exam Help
```

https://eduassistpro.github.
The right c
which $\mathbf{p}(d_0, d)$ is false for all $d \in D$.

But the Add nct Wq & Chat dedu_assist_prod.

Since F's negation is unsatisfiable, F is valid.

Another Example of Validity

Assignment Project Exam Help

F is valid

To see this ttps://eduassistpro.github.

Add WeChat edu_assist_properties.

The term t denotes some element of the domain not be satisfied.

Puzzle for the Break

Deckard is a blade runner—his job is to identify replicants who look exactly like humans but when actually been created in the last statement of the last

Deckar cants are progra https://eduassistpro.github.

Deckard deals with: some are always truthful, and the rest always lie.

One day, Asymptotic in the conclude the suspect is a lying replicant.

What statement would do that?

After the break: Clausal form for first-order predicate logic.