СВТ. Отчет по заданию 2.1.

Чаплыгин Андрей

1 Вариант задания

Рассматривается стационарное уравнение диффузии

$$-\nabla D\nabla C = f$$

в области $\Omega \in R^2$ с границей $\partial \Omega$. C — концентрация вещества, f = f(x,y) — функция источников или стоков. Граница $\partial \Omega$ состоит из двух частей: $\partial \Omega = G_D \bigcup G_N$, на G_D заданы граничные условия типа Дирихле, а на G_N — граничные условия типа Неймана, $D = diag(1, \varepsilon)$ - тензор диффузии.

Вариант 3, МКР.

3. $C = cos(\pi x)cos(\pi y), \Omega = (0; 1) \times (0; 1)$. Граничные условия:

2 Результаты

Метод решения линейной системы - метод сопряженных градиентов SLPCG (Ani2d). Аппроксимация граничных условий типа Неймана вторым порядком точности: $\varepsilon=1$

h	C_h	L_h	Число итераций
-1/32	1.0975E-003	9.3731E-004	47
-1/64	2.7436E-004	2.3436E-004	71
1/128	6.8531E-005	5.8583E-005	137

 $\varepsilon = 10$

h	C_h	L_h	Число итераций
-1/32	1.3421E-003	8.9681E-004	40
-1/64	3.3530E-004	2.2412E-004	77
1/128	8.3818E-005	5.6025E-005	149

 $\varepsilon = 100$

\overline{h}	C_h	L_h	Число итераций
-1/32	1.5693E-003	8.8734E-004	27
-1/64	3.9255E-004	2.2163E-004	52
1/128	9.8921E-005	5.5346E-005	97

Аппроксимация граничных условий типа Неймана первым порядком точности: $\varepsilon=100$

h	C_h	L_h	Число итераций
-1/32	0.1552	5.4932E-002	26
-1/64	7.7700E- 002	2.7543E-002	51
1/128	3.8868E-002	1.3783 E-002	96

На рисунках решение аналитическое, на сетке с $N{=}128$, на сетке с $N{=}64$ соответственно.

