CENTRO UNIVERSITÁRIO DE PINHAIS – FAPI CURSO DE GRADUAÇÃO EM MEDICINA

JAIR FRAGA JÚNIOR LUIZE ZANCANARO MILENA CANATTO

TRABALHO DE BIOQUÍMICA

PINHAIS 2025

CENTRO UNIVERSITÁRIO DE PINHAIS – FAPI CURSO DE GRADUAÇÃO EM MEDICINA

JAIR FRAGA JÚNIOR LUIZE ZANCANARO MILENA CANATTO

TRABALHO DE BIOQUÍMICA

Projeto de extensão apresentado como requisito parcial para aprovação semestral na disciplina de Bioquímica do curso de Medicina do Centro Universitário de Pinhais - FAPI.

Orientador: Prof Karlo Alvez da Silva

PINHAIS 2025

SUMÁRIO

1 Introdução	2
2 Mecanismos de Degradação	2
2.1 Decomposição de Açúcares	2
2.2 Degradação das Proteínas	3
2.3 Processamento de Lipídios	3
3 Mecanismos Bioquímicos de Absorção de Aminoácidos no Trato Gastr	ointestinal .4
4 Mecanismos Bioquímicos de Absorção de Lipídeos no Trato Gastrointe	estinal5
4.1 Emulsificação	5
4.2 Digestão enzimática	5
4.3 Formação de micelas	5
4.4 Absorção pelas células intestinais	5
4.5 Reesterificação e formação de quilomícrons	6
4.6 Transporte linfático	6
5 Mecanismos Bioquímicos de Absorção de Carboidratos no Trato Gastr	ointestinal .6
5.1 Digestão de Carboidratos	6
5.2 Absorção Intestinal	7
5.3 Considerações Fisiológicas	7
6 Conclusão	7
7 Referências	8

1 Introdução

A ingestão de alimentos é o ponto inicial para a obtenção de energia. Entretanto, para que o corpo possa utilizar os nutrientes presentes nos alimentos, moléculas complexas como proteínas, lipídios e carboidratos precisam ser quebradas em unidades menores para serem absorvidas. Esse processo ocorre no trato gastrointestinal (TGI) através de uma série de mecanismos bioquímicos. Desde a boca até o intestino grosso, enzimas digestivas especializadas e processos de transporte específicos atuam em conjunto para garantir que os nutrientes sejam eficientemente extraídos e disponibilizados para as funções metabólicas do organismo, como produção de energia, síntese de biomoléculas e manutenção celular.

A degradação bioquímica no trato gastrointestinal (TGI) é um processo fundamental para que o corpo humano possa retirar e utilizar os nutrientes presentes nos alimentos ingeridos. Essa degradação transforma grandes e complexas moléculas de carboidratos, proteínas e lipídios em moléculas menores e mais simples, isso é realizado por uma série de reações hidrolíticas, onde a água é utilizada para quebrar as ligações químicas, e essas reações são catalisadas por enzimas altamente específicas.

2 Mecanismos de Degradação

Cada macronutriente passa por um caminho específico para se degradar que envolve diferentes enzimas e condições ideais de pH e localização.

Esses processos bioquímicos de degradação são meticulosamente coordenados, assegurando que os nutrientes sejam adequadamente decompostos para que o organismo possa absorvê-los e usá-los em suas várias funções vitais.

2.1 Decomposição de Açúcares

O percurso começa na boca, através da amilase salivar (ptialina) que dá início à decomposição de amido e glicogênio em dextrinas e açúcares de menor tamanho. Apesar de seu efeito ser curto devido à acidez do estômago, a digestão dos carboidratos se intensifica no intestino delgado. No pâncreas, a amilase prossegue na hidrólise do amido e do glicogênio.

2.2 Degradação das Proteínas

O processo de digestão das proteínas começa no estômago, devido à sua natureza ácida, crucial para o processo. A secreção de ácido clorídrico (HCI) desnatura as proteínas, desdobrando suas estruturas e facilitando a ação das enzimas. O HCI também transforma o pepsinogênio em pepsina, uma enzima que inicia a fragmentação das proteínas em polipeptídeos de menor tamanho. No intestino delgado, ocorre uma digestão mais vigorosa de proteínas. O pâncreas produz próenzimas, tais como tripsinogênio e quimotripsinogênio, os quais são ativados pela enzima enteroquinase e pela própria tripsina. Tripsina, quimotripsina e elastase são endopeptidases que prosseguem na fragmentação de polipeptídeos em partes cada vez menores. Além disso, as carboxipeptidases atuam na remoção de aminoácidos das extremidades. A degradação é finalizada na borda em escova e no citosol dos enterócitos por aminopeptidases, dipeptidases е tripeptidases, resultando principalmente em aminoácidos livres, prontos para absorção.

2.3 Processamento de Lipídios

A digestão de lipídios apresenta maior dificuldade devido à sua insolubilidade em água. Apesar das lipases da língua e do estômago terem um papel pequeno, a maior parte acontece no intestino delgado. Um passo fundamental é a emulsificação, processo em que os sais biliares, produzidos no fígado e expelidos pela vesícula biliar, decompõem grandes grânulos de gordura em pequenas partículas. Isso amplia consideravelmente a superfície para a atividade da lipase pancreática, a enzima predominante. A lipase pancreática, auxiliada pela colipase, transforma os triglicerídeos em ácidos graxos livres e monoglicerídeos, que são os compostos que o organismo consegue absorver. Outras enzimas, tais como a fosfolipase A2 e a colesterol esterase, têm ação sobre outros tipos de lipídio.

3 Mecanismos Bioquímicos de Absorção de Aminoácidos no Trato Gastrointestinal

A digestão e absorção de proteínas alimentares são etapas fundamentais para a manutenção do metabolismo humano, onde ocorre principalmente no intestino delgado. As proteínas absorvidas são primeiramente hidrolisadas em peptídeos e aminoácidos livres por enzimas digestivas como a pepsina e as proteases pancreáticas no intestino delgado.

A ingestão de aminoácidos pelos enterócitos da mucosa intestinal ocorre através de mecanismos de transporte ativo e facilitado, localizados principalmente na membrana apical e na membrana basolateral. Os importantes mecanismos envolvem cotransportadores de aminoácidos e sódio (Na⁺), sendo este transporte dependente do gradiente eletroquímico mantido pela bomba de Na⁺/K⁺- ATPase. Além disso, peptídeos menores, como dipeptídeos e tripeptídeos, são absorvidos por meio do transportador PEPT1, que utiliza o gradiente de prótons (H⁺) como força de movimento.

Uma vez dentro do enterócito, esses peptídeos são hidrolisados por peptidases citoplasmáticas, liberando aminoácidos livres que serão transportados para a corrente sanguínea. Cada classe de aminoácido utiliza transportadores específicos. Esses transportadores apresentam seletividade e podem disputar entre si, influenciando uma melhor da absorção. Na membrana basolateral, o transporte de aminoácidos para o sangue ocorre por difusão facilitada ou por sistemas de transporte ativos independentes de Na⁺, no qual garante a distribuição adequada dos aminoácidos ingeridos para o metabolismo corporal. Esses mecanismos são regulados por agentes como o estado nutricional, a presença de hormônios intestinais, e a composição da dieta.

A compreensão dos processos bioquímicos envolvidos na absorção de aminoácidos é fundamental para o desenvolvimento de terapias nutricionais, principalmente em condições clínicas que afetam a digestão e absorção de nutrientes.

4 Mecanismos Bioquímicos de Absorção de Lipídeos no Trato Gastrointestinal

A ingestão de lipídeos no trato gastrointestinal é um processo bioquímico que se mostra fundamental para o metabolismo energético e estrutural dos organismos. O mesmo, envolve etapas que compreendem a emulsificação, digestão enzimática, formação de micelas, absorção pelas células intestinais, reesterificação e transporte via quilomícrons.

4.1 Emulsificação

Os lipídeos dietéticos, principalmente triacilgliceróis, são previamente insolúveis em água. Para que possam ser digeridos, é necessário que eles sejam emulsificados no lúmen intestinal. Este processo ocorre principalmente no duodeno, com a ação dos **sais biliares**, reduzidos no fígado a partir do colesterol e armazenados na vesícula biliar. Os sais biliares reduzem a tensão superficial das gotículas lipídicas, quebrando-as em partículas menores, o que aumenta o local de ação das enzimas digestivas.

4.2 Digestão enzimática

A digestão dos lipídeos ocorre inicialmente no intestino delgado por meio da lipase pancreática, que hidrolisa os triacilgliceróis em dois ácidos graxos livres e um monoacilglicerol. A colipase é essencial para a ligação eficiente da lipase à interface lipídica. Outras enzimas, como a fosfolipase A2 e a colesterol esterase, hidrolisam fosfolipídios e ésteres de colesterol, respectivamente, resultando em produtos mais simples, como lisofosfolipídios, ácidos graxos e colesterol livre.

4.3 Formação de micelas

Os produtos da digestão lipídica são formados em **micelas mistas**, que são solúveis compostos por sais biliares, ácidos graxos, monoacilgliceróis, colesterol livre, lisofosfolipídios e vitaminas lipossolúveis (A, D, E e K). As micelas levam esses compostos até a borda em escova dos enterócitos, auxiliando sua absorção.

4.4 Absorção pelas células intestinais

Na membrana apical dos enterócitos, os lipídeos se desagregam das micelas e são absorvidos especialmente por difusão passiva, mesmo que as proteínas

transportadoras também possam estar envolvidas. Os sais biliares não são ingeridos nesse momento; eles permanecem no lúmen intestinal e são reabsorvidos consequentemente no íleo terminal, voltando ao fígado pela circulação enterohepática.

4.5 Reesterificação e formação de quilomícrons

Dentro dos enterócitos, os ácidos graxos e monoacilgliceróis são restaurados para formar triacilgliceróis, fosfolipídios e ésteres de colesterol. Esses lipídeos são integrados em partículas lipoproteicas chamadas **quilomícrons**, que apresentam uma camada superficial de fosfolipídios e apolipoproteínas, principalmente a **ApoB-48**.

4.6 Transporte linfático

Os quilomícrons são exocitados para o espaço extracelular e se locomovem até vasos linfáticos presentes nas vilosidades intestinais. A linfa leva essas partículas até o ducto torácico, que as libera na circulação venosa sistêmica, fazendo a distribuição dos lipídeos aos tecidos periféricos. Os ácidos graxos de cadeia curta e média são uma exceção: são absorvidos diretamente pela veia porta hepática e transportados ao fígado.

5 Mecanismos Bioquímicos de Absorção de Carboidratos no Trato Gastrointestinal

Os carboidratos são as principais fontes de energia humana. A digestão e absorção destes nutrientes ocorrem ao longo do trato gastrointestinal por meio de mecanismos bioquímicos específicos, que envolvem ações enzimáticas e transporte ativo ou ajudando as células intestinais.

5.1 Digestão de Carboidratos

A digestão dos carboidratos começa na cavidade oral, onde a amilase salivar, produzida pelas glândulas salivares, inicia a quebra de polissacarídeos, como o amido, em oligossacarídeos menores. No estômago, o pH ácido paralisa a amilase salivar, interrompendo temporariamente a digestão dos carboidratos. O processo de digestão continua no intestino delgado, onde a amilase pancreática atua de forma mais eficiente, tornando o amido e outros polissacarídeos em dissacarídeos como maltose, isomaltose e oligossacarídeos.

As enzimas da borda em escova dos enterócitos (células intestinais) finalizam a digestão:

- Maltase: quebra maltose em duas moléculas de glicose.
- Lactase: hidrolisa a lactose em glicose e galactose.
- Sacarase: converte sacarose em glicose e frutose.
- Isomaltase: quebra ligações α-1,6 de isomaltose.

5.2 Absorção Intestinal

Os monossacarídeos resultantes da digestão (glicose, galactose e frutose) são absorvidos pelos enterócitos por meio de proteínas transportadoras específicas na qual estão na membrana apical:

- Glicose e galactose: são absorvidas por transporte ativo secundário controlado pelo SGLT-1 (Sodium-Glucose Linked Transporter 1), dependente do gradiente de sódio mantido pela Na⁺/K⁺-ATPase.
- Frutose: é absorvida por difusão facilitada por meio do transportador GLUT5.
- Após entrarem nos enterócitos, todos os monossacarídeos saem pela membrana basolateral através do transportador GLUT2, alcançando o capilar sanguíneo da vilosidade intestinal e sendo transportados até o fígado pela veia porta hepática.

5.3 Considerações Fisiológicas

A funcionalidade desses processos permite a rápida disponibilidade de glicose para os tecidos. mudança na expressão ou função das enzimas da borda em escova ou dos transportadores podem levar a distúrbios de absorção, como a intolerância à lactose ou síndromes de má absorção.

6 Conclusão

A digestão e absorção de nutrientes são processos bioquímicos intrincados e altamente coordenados que garantem a obtenção de energia e a manutenção das funções vitais do organismo. Desde a quebra inicial de carboidratos na boca pela

amilase salivar, passando pela potente digestão proteica no estômago com a pepsina e a desnaturação pelo HCI, até a complexa emulsificação e hidrólise lipídica no intestino delgado mediada pelos sais biliares e lipase pancreática, cada etapa é crucial. A absorção subsequente de monossacarídeos, aminoácidos e produtos da digestão lipídica pelos enterócitos — através de mecanismos de transporte ativo, difusão facilitada e formação de micelas e quilomícrons — é um testemunho da sofisticação fisiológica do corpo humano. A glicose e galactose utilizam transportadores SGLT-1 e GLUT2, a frutose o GLUT5, enquanto os aminoácidos dependem de cotransportadores de sódio e o transportador PEPT1 para peptídeos menores. Já os lipídios, após reesterificação, são empacotados em quilomícrons para transporte linfático, garantindo sua distribuição sistêmica. A compreensão aprofundada desses mecanismos é essencial, não apenas para entender a base do metabolismo, mas também para o desenvolvimento de intervenções nutricionais e terapêuticas eficazes em casos de distúrbios digestivos e de má absorção, sublinhando a importância da harmonia bioquímica no trato gastrointestinal para a saúde geral.

7 Referências

BARRETT, Kim E. et al. Ganong: fisiologia médica. 26. ed. Porto Alegre: AMGH, 2019.

BROER, Stefan. Amino acid transport across mammalian intestinal and renal epithelia. Physiological Reviews, v. 88, n. 1, p. 249–286, jan. 2008. DOI: 10.1152/physrev.00018.2006.

DANIEL, Hannelore. Molecular and integrative physiology of intestinal peptide transport. Annual Review of Physiology, v. 66, p. 361–384, 2004. DOI: 10.1146/annurev.physiol.66.032102.115650.

FERRIER, Denise R. Bioquímica ilustrada de Harper. 31. ed. Porto Alegre: AMGH, 2021. GUYTON, Arthur C.;

GUYTON, Arthur C.; HALL, John E. Tratado de fisiologia médica. 14. ed. Rio de Janeiro: Elsevier, 2021.

HALL, John E. Tratado de fisiologia médica. 14. ed. Rio de Janeiro: Elsevier, 2020.

HALL, John E. Tratado de fisiologia médica. 14. ed. Rio de Janeiro: Elsevier, 2021.

MURRAY, Robert K. et al. Bioquímica de Harper e Ilustrada. 32. ed. Porto Alegre: AMGH, 2022.

NELSON, David L.; COX, Michael M. Lehninger: princípios de bioquímica. 8. ed. Porto Alegre: Artmed, 2021.

UNIVERSIDADE DE SÃO PAULO (USP). **Fisiologia: volume 2, semana 4**. Material didático do programa Redefor. São Paulo: ATP-USP, 2011-2012. Disponível em: https://midia.atp.usp.br/impressos/redefor/EnsinoBiologia/Fisio_2011_2012/Fisiologia_v2_semana04.pdf. Acesso em: [26] [maio]. [2025].