1.- Estudiar el límite de las siguientes sucesiones

(a)
$$\left\{\frac{n^2}{n+2}\right\}$$

(b)
$$\left\{ \frac{n^3}{n^3 + 2n + 1} \right\}$$

(c)
$$\left\{\frac{n}{n^2-n-4}\right\}$$

(d)
$$\left\{\frac{\sqrt{2n^2-1}}{n+2}\right\}$$

(e)
$$\left\{\frac{\sqrt{n^3+2n}+n}{n^2+2}\right\}$$

(f)
$$\left\{\frac{\sqrt{n+1}+n^2}{\sqrt{n+2}}\right\}$$

(g)
$$\left\{\frac{(-1)^n n^2}{n^2 + 2}\right\}$$

$$(h) \quad \left\{\frac{n+(-1)^n}{n}\right\}$$

(i)
$$\left\{ \left(\frac{2}{3}\right)^n \right\}$$

$$(j) \quad \left\{ \left(\frac{5}{3}\right)^n \right.$$

$$(k) \quad \left\{ \frac{2^n}{4^n+1} \right\}$$

(a)
$$\left\{\frac{n^2}{n+2}\right\}$$
 (b) $\left\{\frac{n^3}{n^3+2n+1}\right\}$ (c) $\left\{\frac{n}{n^2-n-4}\right\}$ (d) $\left\{\frac{\sqrt{2n^2-1}}{n+2}\right\}$ (e) $\left\{\frac{\sqrt{n^3+2n}+n}{n^2+2}\right\}$ (f) $\left\{\frac{\sqrt{n+1}+n^2}{\sqrt{n+2}}\right\}$ (g) $\left\{\frac{(-1)^n n^2}{n^2+2}\right\}$ (h) $\left\{\frac{n+(-1)^n}{n}\right\}$ (i) $\left\{\left(\frac{2}{3}\right)^n\right\}$ (j) $\left\{\left(\frac{5}{3}\right)^n\right\}$ (k) $\left\{\frac{2^n}{4^n+1}\right\}$ (l) $\left\{\frac{3^n+(-2)^n}{3^{n+1}+(-2)^{n+1}}\right\}$ (m) $\left\{\frac{n}{n+1}-\frac{n+1}{n}\right\}$ (n) $\left\{\sqrt{n+1}-\sqrt{n}\right\}$ (ñ) $\left\{\frac{1}{n^2}+\frac{2}{n^2}+\ldots+\frac{n+1}{n}\right\}$

$$(m) \quad \left\{ \frac{n}{n+1} - \frac{n+1}{n} \right\}$$

(n)
$$\left\{\sqrt{n+1}-\sqrt{n}\right\}$$

$$(\tilde{n})$$
 $\left\{\frac{1}{n^2} + \frac{2}{n^2} + \ldots + \frac{n}{n^2}\right\}$

2.-

- (a) Utilizar la igualdad $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$ para simplificar la expresión $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.
- (b) Como aplicación calcular el límite de la sucesión

$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n \cdot (n+1)}.$$

3.- (*) Calcular

$$\lim_{n \to \infty} \left(\frac{n+1}{n^2 + 1} + \frac{n+2}{n^2 + 2} + \ldots + \frac{n+n}{n^2 + n} \right).$$

- **4.-** Sea a>1. Se define por recurrencia la sucesión $\{a_n\}$ por la relación $a_n=\sqrt{a\cdot a_{n-1}}$, $a_1 = \sqrt{a}$. Probar que la sucesión es monótona creciente y acotada. Hallar su límite.
- **5.-** Sea $\{a_n\}$ una sucesión de números reales definida por $a_{n+1} = \sqrt{2a_n+3}$, sabiendo que a_1 es un número mayor que $-\frac{3}{2}$. Demostrar que la sucesión converge y calcular su límite. Indicación: distinguir el caso $a_1 \ge 3$ y $a_1 < 3$.
- **6.-** Sea $a_1 = 1$. Definimos las siguientes sucesiones por recurrencia:

(a)
$$a_{n+1} = \frac{1}{4}a_n$$
, (b) $a_{n+1} = \frac{1}{n+1}a_n$, (c) $a_{n+1} = \frac{n}{n+1}a_n$, (d) $a_{n+1} = 1 + \frac{1}{2}a_n$

Probar que cada una de ellas es acotada y monótona. Hallar el límite.

7.- Se define recurrentemente la sucesión $a_1 = a > 0$ y $a_n = a_{n-1} + \frac{1}{a_{n-1}}$. ¿Es convergente la sucesión?

1

8.- Demostrar que si $A \subset \mathbb{R}$ está acotado superiormente, existe una sucesión $\{a_n\}$ con $a_n \in A$ y tal que $\lim_{n\to\infty} a_n = \sup A$.

9.-

a) (*) Demostrar que la sucesión

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

es monótona creciente y está acotada superiormente. Por consiguiente, tiene un límite, que denotamos por e. Indicación: Puede ser útil tener en cuenta la fórmula del binomio de Newton, $(n+1)^n = \sum_{k=0}^n \binom{n}{k} n^k$, donde $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, y 0! = 1.

b) (**) Demostrar que si $a_n \to \infty$ cuando $n \to \infty$, entonces

$$\lim_{n\to\infty}\left(1+\frac{1}{a_n}\right)^{a_n}=e,\qquad \lim_{n\to\infty}\left(1-\frac{1}{a_n}\right)^{a_n}=\frac{1}{e}.$$

10.- Calcular, si existen, los límites de las sucesiones que tienen como término general

$$a_n = \left(\frac{n^2+1}{n^2}\right)^{2n^2-3}, \quad b_n = \left(\frac{n^2-1}{n^2}\right)^{2n^2+3}, \quad c_n = a_n + \frac{1}{b_n}.$$

11.- (*)

(a) Probar por inducción que para $n = 1, 2, \dots$ se tienen las desigualdades

$$2^{n-1}n! < n^n < e^{n-1}n!$$

Indicación: Tener en cuenta la fórmula del binomio de Newton.

(b) Como aplicación probar las siguientes afirmaciones

$$\lim_{n\to\infty}\frac{n!}{n^n}=0,\qquad \lim_{n\to\infty}(n!)^{\frac{1}{n}}=\infty.$$

12.- Hallar los siguientes límites

- a) $\lim_{n\to\infty} (n^3 1)^{\frac{1}{3n}}$
- b) $\lim_{n\to\infty} n\left((n+1)^{\frac{1}{2}}-n^{\frac{1}{2}}\right)$.
- c)(*) $\lim_{n\to\infty} n((n+1)^{\frac{1}{3}} n^{\frac{1}{3}}).$
- d) (**) $\lim_{n\to\infty} n\left((n+1)^{\frac{1}{n}} n^{\frac{1}{n}}\right)$

13.- Interpretar las expresiones siguientes como el límite de una sucesión definida de forma recurrente:

(a)
$$\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}$$
 (b) (*) $1+\frac{1}{1+\frac{1}{1+\dots}}$, (c) (*) $2+\frac{1}{2+\frac{1}{2+\dots}}$.

Probar que esos límites existen y calcular su valor numérico.

14.- La sucesión de término general $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ cumple que, dado $\varepsilon > 0$, existe n_0 tal que $|a_{n+1} - a_n| < \varepsilon$ para $n > n_0$. Demostrar que, sin embargo, la sucesión no es de Cauchy.

2