

Midcurve by Neural Networks

Yogesh Kulkarni

MidcurveNN: Encoder-Decoder Neural Network for Computing Midcurve of a Thin Polygon

INTRODUCTION

Strength Analysis by CAE

Aerospace

Machinery

Consumer

Energy

Construction

Industrial

Can we use shapes directly?

- CAD : Designing Shapes
- CAE: Engineering Analysis
- CAD->CAE: Simplification for quicker results.

CAD-CAE

For Shapes like Sheet Metal...

	Solid mesh	Shell+Solid mesh	Difference (%)
Element number	344,330	143,063	-58%
Node Number	694,516	75,941	-89%
Total Degrees of freedom	2,083,548	455,646	-78%
Maximum Von. Mises Stress	418.4 MPa	430 MPa	+3%
Meshing + Solving time	Out of memory	22 mins	N/A (4G RAM)
Meshing + Solving time	30 mins	17 mins	-43% (12G RAM)

Half the computation time, but similar accuracy

Midsurface is?

- Widely used for CAE of Thin-Walled parts
- Computation is challenging and still unsolved

Getting Midsurface

- Going on for decades...
- Manually by offsetting and stitching, initially
- Many CAD-CAE packages give automatic option, but...

Look at the output

Can't tolerate gaps

- We have thickness sampling,
- To recreate/represent the original shape
- Input and output difference not desirable

For a simple model like

You get

For a far simpler shape

Current Quality

- Errors take weeks to correct for complex parts.
- But still preferred, due to vast savings time
- From Days to hours...

Midsurface Computation

- Midsurface of a Patch is Midcurve of its profile extruded.
- So, it boils down to computing 1D midcurve of a 2D profile

What is a Midcurve?

- Midsurface: From 3D thin Solid to 2D Surface
- Midcurve: From 2D Profile to 1D Curve

Many Approaches

- More than 6 decades of research...
- Most CAD-CAE packages...
- Rule-based!! Heuristic!! Case-by-case basis!!

When-What

1994 2013 2002 2005 2012 Dabke 1996 1996 1999 2007 Woo 1967 Stolt Deng Russ **Feature** Armstro Rezayat Fischer Robinsn Decomp, FBD Blum Pocket FBD s for ng MAT MA Param Sketch per MAT Simplific Pad defeatu feature Idealizat for CAE SDRC Midcrv Mids Mids ation ring mids ion

2017: My PhD Work: Rule-based

Limitations

- Fully rule-based
- Need to adjust for new shapes
- So, not scalable

Can Neural Networks "learn" the dimension reduction transformation?

How?

- Supply lots of training data of profiles and their corresponding midcurves and train.
- Then given an unseen profile, can Neural Network compute a midcurve, mimicking the original profile shape?

Midcurve by Neural network

Midcurve: The Problem

- Goal: Given a 2D closed shape (closed polygon) find its midcurve (polyline, closed or open)
- Input: set of points or set of connected lines, non-intersecting, simple, convex, closed polygon
- Output: another set of points or set of connected lines, open/branched polygons possible

Midcurve == Dimension Reduction

- Like PCA (Principal Component Analysis), wish to find Principal curve
- That 'represents' the original profile shape

Midcurve == Translation

- Left side (input): 2D Sketch Profile
- Right Side (output): 1D Midcurve
- Sequence 2 Sequence problem

Midcurve != Auto-Encoder Decoder

- Its not Auto-Encoder as Input and Output are different
- Its not fixed size i/o as Input and Output sizes are different

Variable Size Encoder Decoder

- Batches need fixed lengths
- Made fixed size by Padding.

Friendly	against	Scotland	at	Murray	-63
Nadim	Ladki	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>
AL-AIN	United	Arab	Emirates	<pad></pad>	<pad></pad>
ROME	1996-12	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>
Two	goals	in	the	last	minutes

Variable Size Encoder Decoder

- OK for NLP, say Machine Translations, where padding values like "-1" can be added along with other words (vectors or indices)
- But in Geometry, its not OK.
- Because any value can represent a Valid Input, even though we don't want it to be the input.

A Twist to the problem

- Till we get good variable size encoder decoder network for geometry...
- Decided to convert this Sequence 2 Sequence problem as Image 2 Image problem.

A Twist to the problem

- Input: Black & White Image of 2D profile
- Output: Black & White Image of 1D midcurve

Solves ...

Problems of Geometric sequences

- Variable input/output sizes
- Loops need to be crossed
- Branches

Reuse Image Encoder Decoder

For Dimension Reduction

For Deep Learning

- Need lots of data
- Had just few input output image pairs
- How to augment/populate large variations...

DATA PREPARATION

Data

 Original input and output are in the form of polylines, meaning a list of points, each having x,y coordinates

Profile Data	Profile Picture	Midcurve Data		Midcurve Picture
5.05.010.05.010.030.035.030.035.035.05.035.0	L 40 35 30 27 28 29 30 30 30 30 30 30 30 30 30 30	7.5 3 35.0 3	5.0 82.5 82.5 82.5	L Midcurve 25 22 23 20 35 30 35 40 5 10 35 20 25 30 35 40

Data

Profile Data	Profile	Midcurve	Midcurve
	Picture	Data	Picture
025.025.025.025.020.015.020.015.0010.0010.020.0020.0	Chart Title 30 25 30 30 30 30 30 30 30 30 30 3	12.5 0 12.5 22.5 25.0 22.5 0 22.5	Chart Title 23 20 31 30 30 31 30 31 30 31 31 3

- For each shape, we have this pair of input and output. That's it.
- We need to start with these few samples only

Augmentation

- Such few profile shapes, are just not enough for Neural Networks to train.
- Need more with as much diversity as possible.
- Will need to artificially augment data with transformations, like pan, rotate, mirror, etc.
- All needs to be automatically, programmatically

Geometry to Image

- Raw input data is in the Vector format
- Converted it to fixed size (100x100) image by rasterization of drawSVG library.

ADALAB

Vector format

.svg

6KB

Raster format

.jpeg .gif .png

12KB

Variations

- Inputs: I, L, Plus, T
- Operations:
 - Translated
 - Rotated
 - Mirrored
 - Mirrored Translated
 - Mirrored Rotated
- Total: 896 images (still less, but not bad)

Training Data Samples

MIDCURVE BY NEURAL NETWORK

Options For Architectures

- Simple Encoder Decoder (one layer each)
- Dense Encoder Decoder
- Convolutional Encoder Decoder
- Pix2Pix

• ...

SIMPLE ENCODER DECODER

Simple Encoder Decoder

Keras Implementation

```
input_img = Input(shape=(input_dim,))
encoded = Dense(encoding_dim,
activation='relu',activity_regularizer=regularizers.l1(10e-5))(input_img)
decoded = Dense(input_dim, activation='sigmoid')(encoded)
autoencoder = Model(input_img, decoded)
encoder = Model(input_img, encoded)
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
decoder = Model(encoded_input, decoder_layer(encoded_input))
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
```

Results

Results

- Not very perfect but encouraging
- NN is correct with
 - The location (bounding box)
 - Dimension Reduction is seen
- But, still some stray points and misses

What can be done?

- For the noise, use bounding boxes
- Feedback into error term: differencing with the known output expected
- Classify single pixel image as the skeleton, and rest as noise.

What Next?

- Add denoiser network after the current one
- More Network Architectures
- Sequence-to-Sequence based approaches, taking closed thin polygon as input and polyline as output
- Extending to 3D, ie Midsurface

END NOTES

Summary

- Various applications need lower dimensional representation of shapes.
- Midcurve is one- dimensional(1D) representation of a twodimensional (2D) planar shape.
- Used in animation, shape matching, retrieval, finite element analysis, etc.

Summary

- Approaches: Thinning, Medial Axis Transform (MAT), Chordal Axis Transform (CAT), Straight Skeletons, etc., all of which are rule-based.
- Proposing a novel method called MidcurveNN which uses Encoder-Decoder neural network for computing midcurve from images of 2D thin polygons in supervised learning manner.

Summary

- This dimension reduction transformation from input 2D thin polygon image to output 1D midcurve image is learnt by the neural network,
- Which can then be used to compute midcurve of an unseen 2D thin polygonal shape.

Thank you

yogeshkulkarni@yahoo.com