Introduction

1.1 Sample Space

- 相同条件
- 实验结果不止一个 (可以事先确定所有的可能结果)
- 进行一次实验之前不确定结果

样本空间的子集为事件. 样本空间的元素为样本点. S(样本空间) 必然发生, 为必然事件. \varnothing (空集) 不包含任何样本点, 为不可能事件.

1.2 公式

1.2.1 加法

$$P(A \cup B) = P(A) + P(B) - P(A \cdot B) = P(A \cdot \bar{B}) + P(\bar{A} \cdot B) + P(A \cdot B)$$

1.2.2 减法

$$P(A - B) = P(A\bar{B}) = P(A) - P(A \cdot B)$$

1.2.3 乘法

若 P(A) > 0, 则

$$P(A \cap B) = P(A \cdot B)$$

$$= P(B \mid A) \cdot P(A)$$

$$= P(A \mid B) \cdot P(B)$$

必须考虑 A 和 B 是否独立, 若不独立不可以概率直接相乘得到积概率.

1.2.4 取反

$$P(\overline{A}) = 1 - P(A)$$
$$P(\overline{AB}) = 1 - P(AB)$$

1.2.5 全概率

设有一样本空间 S, 其中 A 为随机事件 $B_1, B_2, B_3 \dots B_n$ 的划分, 且 $P(B_i) > 0$, 则

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) \cdot P(B_i)$$

划分 \mathbb{B} 并起来等于 S, 且两两互不相交.

1.2.6 贝叶斯

$$P(B_j \mid A) = \frac{P(A \mid B_j) \cdot P(B_j)}{\sum_{i=1}^{n} P(A \mid B_i) \cdot P(B_i)}$$

1.3 条件概率

条件概率本质就是压缩样本空间

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

$$= \frac{P(A \mid B) \cdot P(B)}{P(A)}$$

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

$$= \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

设 S 为样本空间

$$P(B) = \frac{P(B \cdot S)}{P(S)}$$
$$P(S) = 1$$

1.4 完备事件组

若事件 $B_1, B_2, B_3 \dots B_n$ 两两互斥,且 $B_1 \cup B_2 \cup B_3 \dots \cup B_n = S(S)$ 为样本空间),则称 $B_1, B_2, B_3 \dots B_n$ 为一个完备事件组.

1.5 独立事件

若事件 A, B 相互独立, 则.

$$\begin{cases} P(A \mid B) = P(A) \\ P(B \mid A) = P(B) \end{cases}$$
$$P(A \cdot B) = P(A) \cdot P(B)$$

1.6 应用题

- 1. 甲乙独立对同一目标射击一次, 命中率分别为 0.6 和 0.5, 求两人中至少一人射中的概率.
- 2. 从甲乙任选一人同一目标射击一次, 命中率分别为 0.6 和 0.5, 求目标被射中的概率.
- 3. 甲乙独立对同一目标射击一次, 命中率分别为 0.6 和 0.5, 已知目标命中, 求是甲射中的概率.
- 4. 从甲乙任选一人同一目标射击一次, 命中率分别为 0.6 和 0.5, 已知目标命中, 求是甲射中的概率.

1.7 总结

- 积事件的概率和条件概率
- 独立的积事件和不独立的
- 正面做和反面做 (至多,至少)
- 样本空间的划分

重点

- 随机事件的概念
- 古典概型的概率计算方法
- 概率的加法公式
- 条件概率和乘法公式的应用
- 全概率公式和贝叶斯公式的应用

一维随机变量

2.1 Possibility Distribution Functions

2.1.1 PDF

Possibility Density Function. 概率密度函数.

$$f(x) \ge 0$$

被称为非负性

$$\int_{-\infty}^{+\infty} f(x) \ dx = 1$$

被称为归一性

$$P\{a < X \le b\} = \int_a^b f(x) \ dx$$

哪里求变量哪里求积分

2.1.2 PMF

Possibility Mass Function. 又被称为分布率. 离散型的 PDF

2.1.3 CDF

Cumulative Distribution Function. 累积分布函数.

$$F(x) = P\{X \le x\}$$

$$F(-\infty) = 0$$

$$F(+\infty) = 1$$

CDF 单调递增 (累积, 不会减少)

$$P{X = k} = P{X \le k} - P{X < k}$$

= $F(k)|_{x \ge k$ 的那部分函数 $- F(k)|_{x < k}$ 的那部分函数

若 k 在边界.

2.1.4 PDF 到 CDF

若有 PDF

$$f(x) = \begin{cases} f_1(x), & a \le x < b \\ f_2(x), & b \le x < c \\ f_3(x), & c \le x < d \\ 0, & \text{elsewhere.} \end{cases}$$

则有 CDF

$$F(x) = \begin{cases} 0, & x < a \\ \int_a^x f_1(x) \, dx, & a \le x < b \\ \int_a^b f_1(x) \, dx + \int_b^x f_2(x) \, dx, & b \le x < c \\ \int_a^b f_1(x) \, dx + \int_b^c f_2(x) \, dx + \int_c^x f_3(x) \, dx, & c \le x < d \\ 1, & x > c \end{cases}$$

2.2 连续性随机变量的函数

若 Y = g(X)

2.3 Y = g(X) 单调可导

- 求 Y = g(X) 的值域
- $Y = g(X) \Rightarrow$ 关于 X 的函数 (反函数) x = h(y)
- $f_Y(y) = f_X[h(y)] \cdot \left| \frac{dh(y)}{dy} \right|$

2.4 Y = g(X) 非单调可导

$$f_X(x) \xrightarrow{\text{find } P\{g(X) \le y\}} F_Y(y) \xrightarrow{\frac{d}{dy}} f_Y(y)$$

Figure 2.1: 步骤图

先求 Y 的 CDF (F_Y) 然后求导得到 f_Y 还是得求 Y = g(X) 的值域

$$\begin{split} F_Y(y) &= P\{Y \leq y\} \\ &= P\{g(X) \leq y\} \\ &= P\{X \leq h(y)\} \\ &= F_X[h(y)] \\ f_Y(y) &= F_Y'(y) \\ &= \frac{d}{d[h(y)]} F_X[h(y)] \cdot \frac{d[h(y)]}{dy} \\ &= f_X[h(y)] \cdot \frac{d[h(y)]}{dy} \end{split}$$

例子 下面是很麻烦的例子,不用看了. 直接套用上面的方法就好了,没必要分类讨论.

$$f_X(x) = \begin{cases} 2x, & 0 < x \le 1\\ 0, & \text{elsewhere} \end{cases}$$

求 $Y = e^{-X}$ 的 PDF.

假解 根据
$$P\{a < X \le b\} = \int_b^a f(x) dx = F(b) - F(a)$$
 易知
$$F_Y(y) = P\{Y \le y\}$$

$$= P\{e^{-X} \le y\}$$

开始分类讨论

开始分类的化
$$y \le 0$$
 时, $P\{e^{-X} \le y\} = 0$ (因为 e^{-X} 值域大于 0) $y > 0$ 时, $P\{e^{-X} \le y\} = P\{X \ge -\ln(y)\}$ 就可以转换为 $P\{X \le b\} = \int_b^{+\infty} f(x) dx$ 的情况. 积分区间就为 $[-\ln(y), +\infty)$ 与 $(0,1)$ 的交集. 所以可以根据 $(0,1)$ 确定 $-\ln(y)$ 的取值.

真解 易得

$$\begin{split} F_Y(y) &= P\{Y \le y\} \\ &= P\{e^{-X} \le y\} \\ &= P\{X \le -\ln(y)\} \\ &= F_X[-\ln(y)] \\ f_Y(y) &= F_Y'(y) \\ &= \frac{d}{d[-\ln(y)]} F_X[-\ln(y)] \cdot \frac{d[-\ln(y)]}{dy} \\ &= f_X[-\ln(y)] \cdot \frac{d[-\ln(y)]}{dy} \\ &= 2 \cdot (-\ln y) \cdot \frac{-1}{y} \\ &= \frac{2 \ln y}{y} \end{split}$$

与正确答案差一个负号, 可能是因为定义域映射到值域反转了一下?

二维随机变量

Table 3.1: 联合分布和边缘分布的例子

$P \setminus Y$	100	90	70	$X_{ m marginal}$
100	0.01	0.02	0.07	0.1
80	0.02	0.04	0.14	0.2
40	0.07	0.14	0.49	0.7
$Y_{\rm marginal}$	0.1	0.2	0.7	1

其中 P 代表 $P\{X=i,Y=j\}$ 的概率 (联合分布). $X_{\text{marginal}} = P\{X=x_i\}, Y_{\text{marginal}} = P\{Y=y_j\}$

3.1 Union Distribution

离散型

Table 3.2: 联合分布

$P \setminus Y$	100	90	70
100	0.01	0.02	0.07
80	0.02	0.04	0.14
40	0.07	0.14	0.49

其中 P 代表 $P\{X = i, Y = j\}$ 的概率 (联合分布).

连续型

有着类似的非负性和归一性.

$$f(x,y) \ge 0$$
$$\int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} f(x,y) \ dy = 1$$

哪里求概率哪里求积分

$$P\{(X,Y) \in D\} = \iint_D f(x,y) \ dx \ dy$$

CDF

$$F(x,y) = P\{X \le x, Y \le y\}$$

3.2 Marginal Distribution

离散型

$$P\{X = x_i\} = \sum_{i=1}^{\infty} P\{X = x_i, Y = y_j\}$$

可以列出 X 和 Y 的边缘 PMF, 以 $P\{X = 100\}$ 为例.

$$P{X = 100}$$

= $P{X = 100, Y = 100} + P{X = 100, Y = 90} + P{X = 100, Y = 70}$

Table 3.3: *X* 的边缘分布

$$\begin{array}{c|cccc} X & 100 & 80 & 40 \\ \hline P\{X = x_i\} & 0.1 & 0.2 & 0.7 \end{array}$$

Table 3.4: *Y* 的边缘分布

$$\begin{array}{c|cccc} Y & 100 & 90 & 70 \\ \hline P\{Y = y_i\} & 0.1 & 0.2 & 0.7 \end{array}$$

连续型

通过对 y 的积分来求 X 的概率密度, 竖着切通过对 x 的积分来求 Y 的概率密度, 横着切

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \ dy$$
 最后的结果只有 x , 积分上下限关于 x
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) \ dx$$
 最后的结果只有 y , 积分上下限关于 y

CDF

$$F_X(x) = \lim_{x \to +\infty} F(x, y)$$
$$F_Y(y) = \lim_{y \to +\infty} F(x, y)$$

3.3 Conditional Distribution

条件概率联合分布比边缘分布.

条件 =
$$\frac{$$
联合} 边缘

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$
 是一个关于 x 的函数 (不含有 y) $f_Y(y) \neq 0$

3.4 连续型随机变量的函数的概率分布

3.4.1 Z = X + Y

谁在函数中的表达式较为简单就换谁 (在此以 Y = Z - X 为例)

$$f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

积分上下限必定有 z

相当于求关于 z 的边缘概率密度, 故不用求 CDF.

关键是确定 x(被积变量) 的积分区域. 根据题目的变量不等式来列出被积变量的不等式, 一般会有

- 中间是被积变量 x, 两边为关于 z 的不等式.
- 中间是被积变量 x, 两边为常数 (或者只有单边) 的不等式
- 其他限制条件(不等式)

$$\begin{cases} a < x < b \\ z - a < x < z + b \end{cases}$$

取 z 关于被积变量的交集, 可以得到 z 的范围.

3.4.2 Z = XY

$$Z = XY$$

$$X = \frac{Z}{Y}$$

$$Y = \frac{Z}{X}$$

Figure 3.1

$$f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} \cdot f(x, \frac{z}{x}) dx$$

积分上下限必定有 z注意前边有个 $\frac{1}{|x|}$.

不等式形式为: x 在中间一个, z 在中间一个.

$$\begin{cases} a < x < b \\ a < z < x \end{cases}$$

3.4.3 $Z = max\{X, Y\}$

- 先求边缘 CDF F_X, F_Y
- $F_{\text{max}} = F_X(z) \cdot F_Y(z)$
- $F_{\min}(z) = 1 [1 F_X(z)] \cdot [1 F_Y(z)]$ 取边缘 CDF 与 1 差值之积, 再取 积与 1 差值
- $f_{\max}(z) = \frac{dF_{\max}(z)}{dz}$

若 X,Y 独立同分布

- $F_{\text{max}} = [F_X(z)]^2$
- $f_{\text{max}} = F'_{\text{max}}(z)$

若有n个随机变量相互独立且具有相同分布F(x).

$$F_{\max} = [F(z)]^n$$
 $z = \max(X_1, X_2, X_3, \dots, X_n)$ 的分布函数 $F_{\min} = 1 - [1 - F(z)]^n$ $z = \min(X_1, X_2, X_3, \dots, X_n)$ 的分布函数

3.5 两个随机变量的独立性

联合等于两个边缘相乘则独立.

$$f(x,y) = f_X(x) \cdot f_Y(y) \Longleftrightarrow X 与 Y 独立 (充要条件)$$
 $f_{X|Y}(x \mid y) = f_X(x) \Longleftrightarrow X 与 Y 独立$

3.5.1 求分布律未知量

若 X,Y 相互独立

先列出边缘分布. 联合分布率等于边缘分布率相乘 (可以任意列). 也可以用归一性, (X n Y n) 边缘分布之和为 1. 当然最好算的是各行各列成比例.

3.5.2 连续型的独立性

若 X,Y 相互独立,则其联合概率密度 (PDF) 中函数值非零的区域必为方形区 域 a < x < b, c < y < b. (必要不充分)

补充: 二重积分 3.6

3.6.1 竖着切

Figure 3.2: 竖着切 (X 型区域)

往哪切哪边就是常数,提出来放到左边.

画两条竖线 x = a, x = b, 作为边缘, 当然是常数.

上下是关于 x 的函数 $y = g_1(x), y = g_2(x)$, RHS 不含 y, LHS 就是 y.

$$\int_{a}^{b} dx \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy$$
$$\int_{a}^{b} \left[\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy \right] dx$$

3.6.2 横着切

Figure 3.3: 横着切 (Y 型区域)

往哪切哪边就是常数,提出来放到左边. 画两条横线 $y=a,\,y=b,$ 作为边缘,当然是常数. 上下是关于 y 的函数 $x=h_1(y),\,x=h_2(y),\,\mathrm{RHS}$ 不含 $x,\,\mathrm{LHS}$ 就是 $x.\,\mathrm{M下到上},\,\mathrm{M左到右}.$

$$\int_{a}^{b} dy \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \ dx$$

随机变量的数字特征

4.1 常见分布

4.1.1 二项分布

 $X \sim \mathcal{B}(n,p)$

$$P\{X = k\} = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

$$E(X) = np$$

$$D(X) = np \cdot (1 - p)$$

两点分布

又被称作 0-1 分布, 就是 $X \sim \mathcal{B}(1,p)$ 的情况

$$P\{X = k\} = p^k \cdot (1 - p)^{1 - k} = \begin{cases} p & k = 1, \\ (1 - p) & k = 0. \end{cases}$$

4.1.2 泊松分布

 $X \sim \pi(\lambda)$

$$P\{x = k\} = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

$$E(X) = \lambda$$
$$D(X) = \lambda$$

4.1.3 正态分布

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{(x-\mu)^2}{2 \cdot \sigma^2}}$$

$$\begin{split} E(X) &= \mu \\ D(X) &= \sigma^2 \end{split}$$

标准正态分布

服从 $\mu=0,\;\sigma=1$ 的正态分布 若 $X\sim\mathcal{N}(\mu,\sigma^2)$

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

性质 标准正态分布具有如下性质

- $\mu = 0, \, \Phi(0) = \frac{1}{2}$
- $\Phi(-x) = 1 \Phi(x)$

若 $X \sim \mathcal{N}(\mu, \sigma^2)$

- $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$
- $P\{X < a\} = \Phi(\frac{a-\mu}{\sigma})$
- $P\{a < X < b\} = \Phi(\frac{b-\mu}{\sigma}) \Phi(\frac{a-\mu}{\sigma})$

正态分布的线性组合

若 $X \sim \mathcal{N}(\mu_1, \sigma_1^2) Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ 且 X 与 Y 相互独立则

$$X \pm Y \sim \mathcal{N}(\mu_1 \pm \mu_2, \sigma_1^2 + \sigma_2^2)$$

若
$$U \sim \mathcal{N}(\mu, \sigma^2), V = aU + b$$

$$V \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$$

4.1.4 指数分布

$$f(x) = \begin{cases} \frac{1}{\lambda} \cdot e^{-\frac{1}{\lambda} \cdot x} & x > 0, \\ 0 & \text{elsewhere.} \end{cases}$$

$$E(X) = \lambda$$
$$D(X) = \lambda^2$$

4.1.5 均匀分布

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b, \\ 0 & \text{elsewhere.} \end{cases}$$

$$E(X) = \frac{a+b}{2}$$

$$D(X) = \frac{(b-a)^2}{12}$$

4.2 期望值

本质为加权平均.

$$E(X) = \sum_{i=1}^{+\infty} X_i \cdot P\{X = X_i\}$$
$$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) \, dx$$

参数为一维函数情况.

$$E[g(x)] = \sum_{i=1}^{+\infty} g(x_i) \cdot P\{X = x_i\}$$

$$E[g(x)] = \int_{-\infty}^{+\infty} g(x) \cdot f(x) dx$$

$$E(x^2) = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx$$
注意 $f(x)$ 的参数仍然是 x

参数为二维函数情况 (积事件, 联合分布率)

$$\begin{split} E(x) &= \int_{-\infty}^{+\infty} \ dx \int_{-\infty}^{+\infty} x \cdot f(x,y) \ dy \\ E(y) &= \int_{-\infty}^{+\infty} \ dx \int_{-\infty}^{+\infty} y \cdot f(x,y) \ dy \\ E[g(x,y)] &= \int_{-\infty}^{+\infty} \ dx \int_{-\infty}^{+\infty} g(x,y) \cdot f(x,y) \ dy \end{split}$$

4.3 方差

平方的期望减去期望的平方

$$D(X) = E(X^2) - E^2(X)$$

4.4 期望值与方差的线性组合

4.4.1 期望值

- E(const) = const
- $E(\text{const} \cdot x) = \text{const} \cdot x$
- $E(aX \pm bY) = a \cdot E(X) \pm b \cdot E(Y)$

4.4.2 方差

- D(const) = 0
- $D(\text{const} \cdot x) = \text{const}^2 \cdot x$
- $D(aX \pm bY) = a^2 \cdot D(X) + b^2 \cdot D(Y)$

4.5 协方差

协方差 (covariance), 乘积的期望减去期望的乘积.

$$cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

4.6 相关系数

协方差比方差开根号之积.

$$\begin{split} \rho_(XY) &= \frac{cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}} \\ &= \frac{E(X \cdot Y) - E(X) \cdot E(Y)}{\sqrt{E(X^2) - E^2(X)} \cdot \sqrt{E(Y^2) - E^2(Y)}} \end{split}$$

4.7 中心极限定理

正态分布的普遍存在性

设 $X_1, X_2, X_3 ... X_n$ 独立同分布, 当 n 充分大时, $\sum_{i=1}^n X_i$ 近似服从正态分布. (n 越大越接近真实值)

$$X \sim \mathcal{N} (\mu, \sigma^2)$$

 μ 为随机变量的数学期望, σ^2 为随机变量的方差 特别的, 设随机变量 Y 服从二项分布时 $Y \sim \mathcal{B}(n,p)$, Y 近似服从如下正态分布.

$$Y \sim \mathcal{N} [np, np \cdot (1-p)]$$

可以看出 $\mu = np$, $\sigma^2 = np \cdot (1-p)$

4.7.1 解题步骤

- 写出期望值 E(X), 方差 D(X), 知道个数 n
- $\mu = E(X)$, $\sigma^2 = D(X)$, 记得解出标准差 σ (下面用的都是开根号的)

以下拿要比较的随机变量 $X \le 10$ 作为例子, 实际的随机变量取值不一定.

$$\begin{split} P\{X \leq 10\} &= P\{\frac{X - n \cdot \mu}{\sqrt{n} \cdot \sigma} \leq \frac{10 - n \cdot \mu}{\sqrt{n} \cdot \sigma}\} \\ &= \Phi(\frac{10 - n \cdot \mu}{\sqrt{n} \cdot \sigma}) \\ P\{X > 10\} &= 1 - P\{X \leq 10\} \\ &= P\{\frac{X - n \cdot \mu}{\sqrt{n} \cdot \sigma} > \frac{10 - n \cdot \mu}{\sqrt{n} \cdot \sigma}\} \\ &= 1 - P\{\frac{X - n \cdot \mu}{\sqrt{n} \cdot \sigma} \leq \frac{10 - n \cdot \mu}{\sqrt{n} \cdot \sigma}\} \\ &= 1 - \Phi(\frac{10 - n \cdot \mu}{\sqrt{n} \cdot \sigma}) \end{split}$$

也有可能拿两个概率进行比较来解出 X 的题型.

4.7.2 大数定理

不要求,不考 当 n 充分大时,样本的均值 $\bar{x} \underset{\text{无限接近}}{\longrightarrow} E(x)$

数理统计

5.1 抽样分布

5.1.1 样本方差 (Sample Variance)

$$S_n^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

注意和方差的不同,是 $\frac{1}{n-1}$ 而非 $\frac{1}{n}$ 此章用到的均为样本方差以及样本标准差 (样本方差开个根号)

5.1.2 Chi-Square Distribution

n 个随机变量 $X_1, X_2, X_3 \dots X_n$ 相互独立且服从标准正态分布. 则随机变量 X 的平方和

$$Z = X_1^2 + X_2^2 + X_3^2 + \dots + X_n^2 = \sum_{i=1}^n X_i^2$$

服从自由度为 n 的卡方分布, 记作 $Z \sim \chi^2(n)$

5.1.3 Student's t-Distribution

Normal distribution also called Z distribution.

T 分布是标准正态分布的一种变形, 基于样本量的大小而变化.

随机变量 X,Y 相互独立.X 服从标准正态分布, Z 服从自由度为 n 的卡方分布. 即 $X \sim \mathcal{N}(0,1), Z \sim \chi^2(n)$. 则随机变量

$$t = \frac{X}{\sqrt{\frac{Z}{n}}}$$

服从自由度为 n 的 t 分布

5.1.4 F Distribution

随机变量 U,V 相互独立. U,V 分别服从自由度为 n_1,n_2 的卡方分布, 即 $U \sim \chi^2(n_1),\ V \sim \chi^2(n_2),\$ 则随机变量

$$F = \frac{\frac{\underline{U}}{n_1}}{\frac{\underline{V}}{n_2}}$$

服从自由度为 (n_1, n_2) 的 F 分布.

5.2 矩估计和最大似然检验

5.2.1 矩估计

$$E(X) = \bar{x}$$

$$E(x) = \int_{-\infty}^{+\infty} x \cdot f(x) \ dx$$

f(x) 由题目给出, 得到 $\hat{\theta} = \bar{x}$

5.2.2 最大似然估计

$$L(\theta) = \prod_{i=1}^{n} f(x_i ; \theta)$$

 $f(x_i;\theta)$ 由题目给出.

- 估计量 *X*
- 估计值 *x*
- 估计(大小写均可)
- 1. 写 $L(\theta)$ 化简 (将 θ 提出来)
- 2. 写 $ln[L(\theta)]$ 化简 (取对数, 使得连乘化为连加)
- 3. $\frac{d \ln[L(\theta)]}{d\theta} = 0$ 对 θ 求导
- 4. 由上式解出 θ , 得到 $\hat{\theta} = \theta$

5.3 区间估计和假设检验

5.3.1 区间估计

一般显著性水平 $\alpha = 0.05$ 即 "显著".

Table 5.1: 区间估计表

	待估参数	置信区间	单侧置信限
	σ^2 已知	$X \pm \frac{\sigma}{\sqrt{n}} \cdot z_{\frac{\alpha}{2}}$	$\bar{\mu} = X + \frac{\sigma}{\sqrt{n}} \cdot z_{\alpha} \underline{\mu} = X - \frac{\sigma}{\sqrt{n}} \cdot z_{\alpha}$
,	σ^2 未知	$\bar{X} \pm \frac{\sigma}{\sqrt{n}} \cdot t_{\frac{\alpha}{2}} \cdot (n-1)$	$\bar{\mu} = \bar{X} + \frac{\sigma}{\sqrt{n}} \cdot t_{\alpha} \cdot (n-1)$ $\underline{\mu} = \bar{X} - \frac{\sigma}{\sqrt{n}} \cdot t_{\alpha} \cdot (n-1)$
σ	· ² μ 未知	$\left(\frac{(n-1)\cdot S^2}{\chi^2_{\frac{\alpha}{2}}\cdot (n-1)}, \frac{(n-1)\cdot S^2}{\chi^2_{1-\frac{\alpha}{2}}\cdot (n-1)}\right)$	$ \bar{\sigma^2} = \frac{(n-1) \cdot S^2}{\chi^2_{1-\alpha} \cdot (n-1)} \underline{\sigma^2} = \frac{(n-1) \cdot S^2}{\chi^2_{\alpha} \cdot (n-1)} $

5.3.2 Confidence Interval

The mean for the population lies between (a, b), instead of equaling. Its centre is still sample mean μ .

$$P\{-\mu_{\frac{\alpha}{2}} < X < \mu_{\frac{\alpha}{2}}\} = 1 - \alpha$$
$$\Phi(z_{\alpha}) = 1 - \alpha$$

Standard Error

$$\begin{aligned} \text{Standard Error} &= \sqrt{\frac{\sigma^2}{n}} \\ &= \sqrt{\frac{\text{Deviation}}{n}} \\ &= \frac{\sigma}{\sqrt{n}} \\ &= \frac{\text{Stardard Deviation}}{\sqrt{n}} \end{aligned}$$

- Variation σ^2
- Sample Size n

Confidence Interval (deviation known)

$$\text{Confidence Interval} = \frac{\bar{X}}{\text{Sample Mean}} \pm \frac{\sigma}{\sqrt{n}} \cdot \underbrace{z_{\alpha}}_{\text{Z Score}}$$

5.3.3 What is Z score

What is Critical Value?

$$z_{0.025} = 1.96$$

 $\Phi(1.96) = 1 - 0.025 = 0.975$

大概 Z score, T score, Chi-square score 题目都会给的. Normal distribution also called Z distribution.