HW1 Econometrics 3

Matthew Aaron Looney
9/11/2017

The Model:

$$y_t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon_t \tag{1}$$

where,

 ε_t is normally and independently distributed with $E[\varepsilon_t] = 0$, $E[\varepsilon_t^2] = \sigma_t^2$ and $\sigma_t^2 = \exp(\alpha_0 + \alpha_1 x_1)$.

The parameter values used are $\beta_0 = 10$, $\beta_1 = \beta_2 = 1$, $\alpha_0 = -2$, and $\alpha_1 = 0.25$.

The design matrix X is given in a csv file.

Problem 1

The following questions are based on Monte Carlo experimental data. Generate 100 samples of y, each of size 20, using the model given in equation 1 (above).

(a)

Estiamte the parameters using the least squares principle and provide their covariance matrix. Compare your results with the true parameters. What can you conclude?

Table 1: Summary Statistics: Problem 1, part (a) and (b)

Statistic	N	Mean	St. Dev.	Min	Max
beta_0_ols	100	9.590	9.716	-13.569	35.337
beta_1_ols	100	0.971	0.520	-0.481	2.243
$beta_2_ols$	100	1.050	0.386	0.344	1.896
var_b0_ols	100	70.313	35.817	17.030	193.850
var_b1_ols	100	0.203	0.103	0.049	0.559
var_b2_ols	100	0.145	0.074	0.035	0.399
se_b0_ols	100	8.139	2.029	4.127	13.923
se_b1_ols	100	0.437	0.109	0.222	0.748
se_b2_ols	100	0.369	0.092	0.187	0.632
$t_val_b0_ols$	100	1.262	1.271	-1.565	5.098
$t_val_b1_ols$	100	2.335	1.219	-0.644	5.307
$t_val_b2_ols$	100	3.038	1.401	0.665	7.349
BP_testStat_ols	100	6.292	4.894	0.061	20.898
$\overline{\text{GV}}_{\text{HET}}_{\text{Test_ols}}$	100	4.797	3.828	0.001	16.076

BP testStat ols = Breusch Pagan test against heteroskedasticity

 $GV ext{ HET Test ols} = General ext{ test for LM assumptions}$

Chi Squared Crit df:2 at alpha:0.05 = 5.99

The results displayed in table 1 (above) show the summary for the 100 sample experiments preformed on the data using OLS. The means of the 100 samples are reported for various statistics. The average t-values for

the beta paramaters show the constant is insignificant while β_1 and β_2 are significant. To better understand the distribution of the paramaters over the 100 experiments see density plots below.

(b)

Test for the presence of heteroskedasticity? What do you conclude?

I have run the Breusch Pagan (BP) test for heteroskedasticity for the 100 samples and averaged over the experiments. The BP test staistic is distributed as Chi-Squared with k-1 degrees of freedom, where k is the total number of papamaters in the model.

The null hypothesis of the Breusch-Pagan test is,

$$\sigma_i^2 = \sigma^2(\alpha_0 + \alpha' z_i)$$

where,

 $H_0: \alpha = 0$

 σ_i^2 is the error variance for the ith observation and α_0 and α are regression coefficients.

The test statistic for the Breusch-Pagan test is

$$bp = \frac{1}{v}(u - \bar{u}i)'Z(Z'Z)^{-1}Z'(u - \bar{u}i)$$

where $u = (e_1^2, e_2^2, ..., e_n^2)$, i is a nx1 vector of ones, and

$$v = \frac{1}{n} \sum_{i=1}^{n} \left(e_i^2 - \frac{e'e}{n} \right)^2$$

This is a modified version of the Breusch-Pagan test, which is less sensitive to the assumption of normality than the original test (Greene 2012, 7th Ed.; p. 276).

\mathbf{FGLS} Estimate the model using FGLS techniques Assume multiplicative hetero. . .

Table 2: Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Max
$beta_0_ols$	100	9.590	9.716	-13.569	35.337
$beta_1_ols$	100	0.971	0.520	-0.481	2.243
$beta_2_ols$	100	1.050	0.386	0.344	1.896
var_b0_ols	100	70.313	35.817	17.030	193.850
var_b1_ols	100	0.203	0.103	0.049	0.559
var_b2_ols	100	0.145	0.074	0.035	0.399
se_b0_ols	100	8.139	2.029	4.127	13.923
se_b1_ols	100	0.437	0.109	0.222	0.748
se_b2_ols	100	0.369	0.092	0.187	0.632
$t_val_b0_ols$	100	1.262	1.271	-1.565	5.098
$t_val_b1_ols$	100	2.335	1.219	-0.644	5.307
$t_val_b2_ols$	100	3.038	1.401	0.665	7.349
$beta_0_fgls$	100	9.836	7.165	-6.479	29.558
$beta_1_fgls$	100	0.965	0.385	-0.008	1.857
$beta_2_{fgls}$	100	1.044	0.369	0.022	1.865
$alpha_0_fgls$	100	-2.100	2.320	-7.556	3.861
$alpha_1_fgls$	100	0.192	0.113	-0.157	0.452
var_b0_fgls	100	21.369	20.497	4.819	100.744
var_b1_fgls	100	0.052	0.046	0.013	0.225
var_b2_fgls	100	0.022	0.013	0.008	0.096
se_b0_fgls	100	4.272	1.774	2.195	10.037
se_b1_fgls	100	0.214	0.082	0.115	0.474
se_b2_fgls	100	0.142	0.038	0.088	0.309
$t_val_b0_fgls$	100	2.573	2.236	-2.263	10.344
$t_val_b1_fgls$	100	4.911	2.391	-0.045	12.458
$t_val_b2_fgls$	100	7.864	3.571	0.168	18.313
$var_b0_HCCM_0$	100	73.048	62.861	8.697	357.686
$var_b1_HCCM_0$	100	0.233	0.196	0.031	1.094
$var_b2_HCCM_0$	100	0.085	0.049	0.024	0.280
$var_b0_HCCM_3$	100	126.622	115.448	12.261	645.598
$var_b1_HCCM_3$	100	0.395	0.358	0.048	2.010
$\underline{\text{var_b2_HCCM_3}}$	100	0.164	0.123	0.038	0.704

 $^{{\}rm good}\ 1 = {\rm meats}$

good 2 = dairy

good 3 = beans

MLE

$$\ln L = -0.5n \log(2\pi) - 0.5 \sum_{\alpha} (\sigma^2) - 0.5 \sum_{\beta} \left[\frac{(y - X'\beta)^2}{\sigma^2} \right]$$
 (2)

where,

 $\sigma^2 \simeq \exp(\alpha_0 + \alpha_1 x_1)$

Table 3: Summary Statistics

N	Mean	St. Dev.	Min	Max
100	11.225	9.000	-10.431	37.272
100	0.930	0.398	-0.089	1.898
100	1.006	0.408	-0.213	1.884
100	-2.151	2.604	-8.134	5.598
100	0.245	0.122	-0.174	0.523
100	27.698	297.664	-2,815.444	593.279
100	0.094	0.515	-4.842	0.871
100	0.092	0.051	0.026	0.426
100	5.972	6.287	-37.549	37.848
100	0.013	0.011	-0.059	0.055
	100 100 100 100 100 100 100 100	100 11.225 100 0.930 100 1.006 100 -2.151 100 0.245 100 27.698 100 0.094 100 0.092 100 5.972	100 11.225 9.000 100 0.930 0.398 100 1.006 0.408 100 -2.151 2.604 100 0.245 0.122 100 27.698 297.664 100 0.094 0.515 100 0.092 0.051 100 5.972 6.287	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 ${\rm good}\ 1={\rm meats}$

good 2 = dairy

 ${\rm good}\ 3={\rm beans}$

Table 4: Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Max
beta_0_ols	100	9.530	2.594	3.907	16.808
$beta_1_ols$	100	0.990	0.192	0.477	1.481
$beta_2_ols$	100	1.032	0.175	0.550	1.489
var_b0_ols	100	36.308	24.120	7.328	148.470
var_b1_ols	100	0.105	0.070	0.021	0.428
var_b2_ols	100	0.075	0.050	0.015	0.306
se_b0_ols	100	5.767	1.754	2.707	12.185
se_b1_ols	100	0.310	0.094	0.145	0.654
se_b2_ols	100	0.262	0.080	0.123	0.553
$t_val_b0_ols$	100	1.803	0.711	0.462	3.630
$t_val_b1_ols$	100	3.479	1.272	1.367	7.728
$t_val_b2_ols$	100	4.290	1.449	1.426	9.489
DW_Test	100	3.290	0.357	2.252	3.871
rho_fgls	100	0.755	0.159	0.257	0.971
$sigma2_fgls$	100	6.055	2.114	2.008	12.177
$beta_0_fgls$	100	8.951	21.059	-66.922	64.418
$beta_1_fgls$	100	0.987	1.097	-1.709	4.750
$beta_2_{fgls}$	100	1.057	0.339	-0.083	1.801
var_b0_fgls	100	8.444	12.104	1.360	81.390
var_b1_fgls	100	0.057	0.090	0.005	0.604
var_b2_fgls	100	0.106	0.177	0.004	1.188
se_b0_fgls	100	2.497	1.494	1.166	9.022
se_b1_fgls	100	0.197	0.135	0.068	0.777
se_b2_fgls	100	0.262	0.194	0.065	1.090
$t_val_b0_fgls$	100	4.674	6.749	-14.133	17.114
$t_val_b1_fgls$	100	6.831	5.535	-4.868	17.325
$t_val_b2_fgls$	100	5.880	3.585	-0.165	16.919
$var_b0_HCCM_0$	100	27.372	15.930	4.489	81.518
$var_b1_HCCM_0$	100	0.079	0.046	0.010	0.262
$var_b2_HCCM_0$	100	0.056	0.057	0.007	0.413
$var_b0_HCCM_3$	100	43.248	25.773	6.306	143.734
$var_b1_HCCM_3$	100	0.121	0.071	0.015	0.418
var_b2_HCCM_3	100	0.108	0.118	0.012	0.851

 ${\rm good}\ 1 = {\rm meats}$

good 2 = dairygood 3 = beans