

Simple Linear Regression: Model

Our goal is to find the best line that describes a linear relationship; that is, find (β_0, β_1) where

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

Equivalently, estimating:

- 1. β_0 Intercept
- 2. β_1 Slope

ε is the deviance of the data from the linear model

Georgia Tech

3

Simple Linear Regression: Model

Our goal is to find the line that describes a linear relationship; that is, find (β_0, β_1) where

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

Georgia Tech

1

Simple Linear Regression: Model

Data: $\{(x_1,y_1),...,(x_n,y_n)\}$

Model: $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i i = 1,...,n$

Assumptions:

- Linearity/Mean Zero Assumption: $E(\varepsilon_i) = 0$
- Constant Variance Assumption: $Var(\varepsilon_i) = \sigma^2$
- Independence Assumption $\{\varepsilon_1,...,\varepsilon_n\}$ are independent random variables
- (Later we assume $\varepsilon_i \sim Normal$)

Georgia Tech

The model parameters are:

 Unknown regardless how much data are observed

Estimated based on data

 Estimated given the model assumptions

 β_0 , β_1 , σ^2

5

Simple Linear Regression: Model

Data: $\{(x_1,y_1),...,(x_n,y_n)\}$

Model: $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i i = 1,...,n$

Assumptions:

- Linearity/Mean Zero Assumption: $E(\varepsilon_i) = 0$
- Constant Variance Assumption: $Var(\varepsilon_i) = \sigma^2$
- Independence Assumption $\{\varepsilon_1,...,\varepsilon_n\}$ are independent random variables
- (Later we assume ε_i ~ Normal)

Georgia Tech

Model Estimation: Approach

To estimate (β_0, β_1) , we find values that minimize sum of squared errors:

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2 \longrightarrow$$

Georgia Tech

Model Estimation: Approach

To estimate (β_0, β_1) , we find values that minimize squared error:

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2 \qquad \qquad \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{yy}} \equiv \frac{\sum_{i=1}^{n} y_i (xi - \overline{x})}{\sum_{i=1}^{n} (xi - \overline{x})^2}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \equiv \frac{\sum_{i=1}^n y_i(xi - \overline{x})}{\sum_{i=1}^n (xi - \overline{x})^2}$$

Model Estimation: Approach

Begin with the minimization problem:

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_i \right) \right)^2$$

To solve, take the first order derivatives of the function to be minimized and equate to 0:

$$\frac{\partial}{\partial \beta_0} \sum_{i=1}^{n} \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2 = 0$$

$$\frac{\partial}{\partial \beta_1} \sum_{i=1}^{n} \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2 = 0$$

- $\hbox{$\succ$ } \hbox{ Result into a system of linear} \\ \hbox{ equation in β_0 and β_1 } \\$
- Solve using linear algebra
- Solutions to the system are $\hat{\beta}_0$ and $\hat{\beta}_1$

$$\hat{\beta}_0 = \bar{\mathbf{y}} - \hat{\beta}_1 \bar{\mathbf{x}}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \equiv \frac{\sum_{i=1}^n y_i (\mathbf{x}_i - \bar{\mathbf{x}})}{\sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})^2}$$

Georgia Tech

a

Fitted Values and Residuals

Given the estimates of b₀ and b₁, we define:

- Fitted values: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- Residuals: $r_i = \hat{\epsilon}_i = y_i \hat{y}_i$
- Mean squared error: Estimator for σ^2

$$MSE = \frac{\sum_{i=1}^{n} r_i^2}{n-2} = \frac{SSE}{n-2}$$

Georgia Tech

Variance Sampling Distribution

$$\hat{\sigma}^2 = \frac{\sum \hat{\epsilon}_i^2}{n-2} \sim \chi_{n-2}^2$$

(chi-squared distribution with n-2 degrees of freedom)

Assuming $\hat{\epsilon}_i \sim \epsilon_i \sim N(0, \sigma^2)$

Estimating σ^2 —— Sample variance

Georgia Tech

11

Variance Sampling Distribution (cont'd)

What is the sample variance estimation?

Basic statistic concept:

Consider $Z_1,...,Z_n \sim N(\mu,\,\sigma^2)$ with μ and σ^2 unknown

The sample variance estimator:

$$S^{2} = \frac{\sum (Z_{i} - \overline{Z})^{2}}{n-1} \rightarrow \frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$$

Why n-1?

We lose a degree of freedom because we replace $\mu \leftarrow \bar{Z}$

Now, going back to $\hat{\sigma}^2 = \frac{\sum \hat{\epsilon_i}^2}{n-2} \sim \chi_{n-2}^2$

This looks like the sample variance estimates except we use n-2 degrees of freedom. Why?

Georgia Tech

Variance Sampling Distribution (cont'd)

Recall that
$$\epsilon_i = \left(y_i - (\beta_0 + \beta_1 x_i)\right)$$
Replaced by $\hat{\epsilon}_i = \left(y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)\right)$
We lose two degrees of freedom because $\beta_0 \leftarrow \hat{\beta}_0$
 $\beta_1 \leftarrow \hat{\beta}_1$

Thus, assuming that $\varepsilon_i \sim \text{N}\left(0,\sigma^2\right)$

$$\rightarrow$$
 $\hat{\sigma}^2 = MSE \sim \chi_{n-2}^2$

(This is called the sampling distribution of $\hat{\sigma}^2$)

Georgia Tech

13

Model Parameter Interpretation

Commonly interested in the behavior of β_1

- A positive value of β₁ is consistent with a direct relationship between x and y; e.g., higher values of height are associated with higher values of weight, or lower values of revenue are associated with lower values of profit;
- A negative value of β₁ is consistent with an inverse relationship between x and y; e.g., higher price of a product is associated with lower demand, or a lower inflation rate is associated with a higher savings rate;
- A close-to-zero value of β_1 means that there is not a significant association between x and y.

Model Estimate Interpretation

The Least Squares estimated coefficients have specific interpretations:

- $\hat{\beta}_1$ is the estimated expected change in the response variable associated with one unit of change in the predicting variable;
- $\hat{\beta}_0$ is the estimated expected value of the response variable when the predicting variable equals zero.

Georgia Tech

15

16