计算方法 作业 4

刘彦铭 ID: 122033910081

Last Edited: 2022 年 11 月 14 日

李庆杨等, 数值分析, 第 5 版, 华中科大, P.217, 1,2,3,4,5(1),7,8,9,11,12,13,14,15,16,18,19

1. 习题 1

$$A = \begin{bmatrix} 5 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & -3 & 10 \end{bmatrix}, b = \begin{bmatrix} -12, 20, 3 \end{bmatrix}^{\top}, Ax = b. \text{ Jacobi 选代: } x \leftarrow Bx + f, 其中$$

$$B = D^{-1}(L + U) = \begin{bmatrix} 0 & -0.4 & -0.2 \\ 0.25 & 0 & -0.5 \\ -0.2 & 0.3 & 0 \end{bmatrix}, f = D^{-1}b = \begin{bmatrix} -2.4 \\ 5 \\ 0.3 \end{bmatrix}.$$

$$B = D^{-1}(L+U) = \begin{bmatrix} 0 & -0.4 & -0.2 \\ 0.25 & 0 & -0.5 \\ -0.2 & 0.3 & 0 \end{bmatrix}, f = D^{-1}b = \begin{bmatrix} -2.4 \\ 5 \\ 0.3 \end{bmatrix}.$$

Gauss-Seidel 迭代: $x \leftarrow Gx + g$, 其中

$$G = (D - L)^{-1}U = \begin{bmatrix} 0 & -0.4 & -0.2 \\ 0 & -0.1 & -0.55 \\ 0 & 0.05 & -0.125 \end{bmatrix}, g = (D - L)^{-1}b = \begin{bmatrix} -2.4 \\ 4.4 \\ 2.1 \end{bmatrix}.$$

(1) 计算得到 $\rho(B) = 0.506 < 1$, $\rho(G) = 0.200 < 1$, 所以 Jacobi 迭代和 Gauss-Seidel 迭代在本例中都是 收敛的。

(2) 两种迭代方法都能得到
$$x = \begin{bmatrix} -4.0000 \\ 3.0000 \\ 2.0000 \end{bmatrix}$$
 的解

2. 习题 2

习题 2
$$A = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix}$$
 是幂零矩阵, $A^k = 0, \forall k \geq 2$. 所以 $\forall k \geq 2, I + A + A^2 + \dots + A^k = I + A$, 该级数收敛

3. 习题 3

不妨设 A 为 n 阶方阵, $m = \max_{ij} |A_{ij}|$, 下用数学归纳法证明: $\max_{ij} |(A^k)_{ij}| \le n^{k-1} m^k$.

(1) k = 1 时显然成立;

(2)
$$\forall 1 \le i, j \le n, |(A^{k+1})_{ij}| = |\sum_{k} (A^k)_{ik} A_{kj}| \le n \cdot (n^{k-1} m^k \cdot m) = n^k m^{k+1}$$

所以存在常数
$$N = \lceil 2nm \rceil$$
, 当 $k > N$ 时, $\max_{ij} |(A^k/k!)_{ij}| \leq \frac{n^{N-1}m^N}{N!} \cdot \left(\frac{1}{2}\right)^{k-N}$, 从而有

 $\lim_{k\to\infty} \max_{ij} |(A^k/k!)_{ij}| = 0$. 由于 $|P|_{\infty} \leq n \cdot \max_{ij} |P_{ij}|, \forall P \in \mathbb{R}^{n\times n}$, 所以 $\lim_{k\to\infty} |A^k/k!|_{\infty} = 0$, 即该 序列收敛于零。

4. 习题 4

写作矩阵形式
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} -a_{12}/a_{11} \\ -a_{21}/a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1/a_{11} \\ b_2/a_{22} \end{bmatrix} = Bx + f$$

收敛当且仅当 $\rho(B) < 1$. 考虑到 $\det(xI - B) = x^2 - (a_{12}a_{21})/(a_{11}a_{22})$,故 $\rho(B) = \sqrt{|a_{12}a_{21}|/|a_{11}a_{22}|}$. 由此得收敛的充要条件是 $\left|\frac{a_{12}a_{21}}{a_{11}a_{22}}\right| < 1$.

5. 习题 5(1)

Jacobi 迭代:
$$D^{-1}(L+U) = \begin{bmatrix} 0 & -0.4 & -0.4 \\ -0.4 & 0 & -0.8 \\ -0.4 & -0.8 & 0 \end{bmatrix}$$
, $\rho(D^{-1}(L+U)) = 1.093 > 1$, 故不收敛;

$$\begin{bmatrix} -0.4 & -0.8 & 0 \end{bmatrix}$$
 Gauss-Seidel 迭代: $(D-L)^{-1}U = \begin{bmatrix} 0 & -0.4 & -0.4 \\ 0 & 0.16 & -0.64 \\ 0 & 0.032 & 0.672 \end{bmatrix}$, $\rho((D-L)^{-1}U) = 0.628 < 1$, 故收敛.

6. 习题 7

Ax = b, 其中 A 对称正定。Jacobi 迭代有 $x^{(k+1)} = Bx^{(k)} + f$ 其中 $B = D^{-1}(L+U) = I - D^{-1}A$. 若 λ 是 $D^{-1}A$ 的特征值,那么 $1 - \lambda$ 是 $B = I - D^{-1}A$ 的特征值。就 5(1) 中的例子而言,A 是对称正定矩阵, $D^{-1}A$ 的一个特征值为 2.093,故 -1.093 是 B 的一个特征值,从而 $\rho(B) \ge 1.093 > 1$,迭代不收敛。

7. 习题 8

$$Ax = b, A = \begin{bmatrix} 1 & 0 & -0.25 & -0.25 \\ 0 & 1 & -0.25 & -0.25 \\ -0.25 & -0.25 & 1 & 0 \\ -0.25 & -0.25 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{bmatrix},$$

(1) Jacobi 迭代:
$$x \leftarrow B_0 x + f$$
, $B_0 = \begin{bmatrix} 0 & 0 & 0.25 & 0.25 \\ 0 & 0 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0 & 0 \\ 0.25 & 0.25 & 0 & 0 \end{bmatrix}$, $f = \begin{bmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{bmatrix}$. 计算得到 $\det(xI - B_0) = x^2(x^2 - 1/4)$ 故 $o(B_0) = 1/2 < 1$

(2) Gauss-Seidel 迭代:
$$B_0 = (D-L)^{-1}U$$
, $B_0 = \begin{bmatrix} 0 & 0 & 0.25 & 0.25 \\ 0 & 0 & 0.25 & 0.25 \\ 0 & 0 & 0.125 & 0.125 \\ 0 & 0 & 0.125 & 0.125 \end{bmatrix}$. 计算得到 $\det(xI - B_0) = x^3(x-1/4)$, 故 $\rho(B_0) = 1/4 < 1$.

(3) 由 (1) (2) 知, 改方程组的 Jacobi 迭代与 Gauss-Seidel 迭代都收敛.

8. 习题 9

矩阵形式的迭代公式 $x \leftarrow (D - \omega L)^{-1}((1 - \omega)D + \omega U)x + \omega(D - \omega L)^{-1}b$.

取 $x_0 = [0,0,0]^{\mathsf{T}}$,编程计算可得:解为 x = [0.50000, 1.00000, -0.50000].当 ω 取 1.03, 1, 1.1 时,达到题 设精度要求的迭代次数分别为 5, 6, 6 次。

9. 习题 11

整理得到迭代公式 $x \leftarrow (I - \omega A)x + \omega b$, 迭代收敛当且仅当 $\rho(I - \omega A) < 1$.

由于 A 对称正定,故存在正交矩阵 Q 使得 $A = Q\Lambda Q^{\top}$,其中 $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, λ_i 是矩阵 A 的特征值,且均为正实数。故 $I - \omega A = QQ^{\top} - \omega Q\Lambda Q^{\top} = Q(I - \omega \Lambda)Q^{\top}$. 所以对于 $I - \omega A$ 的任意特征值 γ ,存在 A 的特征值 λ ,使得 $\gamma = 1 - \omega \lambda$. 当 $0 < \omega < 2/\beta$, $0 < \alpha \leq \lambda(A) \leq \beta$ 时有 $-1 < 1 - \omega \beta \leq \gamma = 1 - \omega \lambda \leq 1 - \alpha \omega < 1$,此时 $\rho(I - \omega A) < 1$.

10. 习题 12

- (1) 根据 Gauss-Seidel 迭代的公式有: $x_i^{(k+1)} = \frac{1}{a_{ii}} \cdot \left(-\sum_{j < i} a_{ij} x_j^{(k+1)} \sum_{j > i} a_{ij} x_j^{(k)} + b_i \right)$, 所以 $x_i^{(k+1)} = \frac{1}{a_{ii}} \cdot \left(-\sum_{j < i} a_{ij} x_j^{(k+1)} \sum_{j \geq i} a_{ij} x_j^{(k)} + a_{ii} x_i^{(k)} + b_i \right) = x_i^{(k)} + r_i^{(k+1)} / a_{ii}.$
- (2) 根据题中定义有 $r_i^{(k+1)} = b_i \sum_{j < i} a_{ij} x_j^{(k+1)} \sum_{j \ge i} a_{ij} x_j^{(k)} = \sum_j a_{ij} x_j^* \sum_{j < i} a_{ij} x_j^{(k+1)} \sum_{j \ge i} a_{ij} x_j^{(k)} = \sum_j a_{ij} x_j^* \sum_{j < i} a_{ij} x_j^{(k+1)} \sum_{j \ge i} a_{ij} x_j^{(k)} = \sum_{j < i} a_{ij} x_j^{(k)} + \sum_{j \ge i} a_{ij} \epsilon_j^{(k)}$,其中 $\epsilon^{(k)} := x^* x^{(k)}$. (题目中定义的符号应该反了)。由(1)有 $\epsilon_i^{(k+1)} = x_i^* x_i^{(k+1)} = x_i^* x_i^{(k)} r_i^{(k+1)} / a_{ii} = \epsilon_i^{(k)} r_i^{(k+1)} / a_{ii}.$
- (3) 为避免繁琐的上标,这里用 r 表示 $r^{(k+1)}$,用 ϵ, ϵ' 分别表示 $\epsilon^{(k)}, \epsilon^{(k+1)}$. 由于 A 对称,故而 $A = D L U = D L L^{\top}$. 将 (2) 中结论写作向量形式,有 $\begin{cases} \epsilon' = \epsilon D^{-1}r \\ r = -L\epsilon' + D\epsilon L^{\top}\epsilon \end{cases}$,消去 ϵ' 整理 得到 $A\epsilon = (I LD^{-1})r = (D L)D^{-1}r$. 于是有

$$\begin{split} Q(\epsilon') - Q(\epsilon) &= (\epsilon - D^{-1}r)^\top A (\epsilon - D^{-1}r) - \epsilon^\top A \epsilon \\ &= -2r^\top D^{-1} A \epsilon + r^\top D^{-1} A D^{-1} r \\ &= -2r^\top D^{-1} (D - L) D^{-1} r + r^\top D^{-1} (D - L - L^\top) D^{-1} r \\ &= r^\top D^{-1} (-D + L - L^\top) D^{-1} r \\ &= -r^\top D^{-1} r + r^\top D^{-1} L D^{-1} r - r^\top D^{-1} L^\top D^{-1} r \end{split}$$

注意到 $r^{\top}D^{-1}LD^{-1}r \in \mathbb{R}^{1\times 1}$,所以 $r^{\top}D^{-1}LD^{-1}r = (r^{\top}D^{-1}LD^{-1}r)^{\top} = r^{\top}D^{-1}L^{\top}D^{-1}r$. 所以有 $Q(\epsilon') - Q(\epsilon) = -r^{\top}D^{-1}r = -\sum_{j=1}^{n} \frac{\left(r_{j}^{(k+1)}\right)^{2}}{a_{jj}}.$

(4) (或许应当限定 A 是对称矩阵?)

根据 (3) 有 $\forall k, Q(\epsilon^{(k+1)}) \leq Q(\epsilon^{(k)})$, 所以 $\forall k, Q(\epsilon^{(0)}) \geq Q(\epsilon^{(k)})$.

对于任意的 $y \in \mathbb{R}^{n \times 1}$, 取 $x_0 = y$ 为初始值, 利用 Gauss-Seidel 迭代解方程 Ax = 0. 由于 A 非奇异, 所以有理论上的唯一解 $x^* = 0$. 由于对于任意初始值都收敛,所以当取定 $x_0 = y$ 时,迭代收敛于 $x^* = 0$. 所以 $y^{\mathsf{T}}Ay = (x_0 - x^*)^{\mathsf{T}}A(x_0 - x^*) = Q(\epsilon^{(0)}) \ge \lim_{k \to \infty} Q(\epsilon^{(k)}) = 0$. 可以验证当且仅当 $x_0 = y = 0$ 时取得等号,所以 A 正定。

11. 习题 13

写作矩阵形式:
$$\left[\begin{array}{cc} A & B \\ B & A \end{array} \right] \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right] = \left[\begin{array}{c} b_1 \\ b_2 \end{array} \right]$$

$$(1) \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \leftarrow \begin{bmatrix} -A^{-1}B \\ -A^{-1}B \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} A^{-1}b_1 \\ A^{-1}b_2 \end{bmatrix}.$$
注意到 $\det \left(\begin{bmatrix} xI & -A^{-1}B \\ -A^{-1}B & xI \end{bmatrix} \right) = \det(xI + A^{-1}B) \det(xI - A^{-1}B),$ 所以收敛当且仅当 $\rho \left(\begin{bmatrix} -A^{-1}B \\ -A^{-1}B \end{bmatrix} \right) = \rho(A^{-1}B) < 1.$

$$(2) \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}^{(m+1)} = \begin{bmatrix} 0 & -A^{-1}B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}^{(m)} + \begin{bmatrix} 0 & 0 \\ -A^{-1}B & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}^{(m+1)} + \begin{bmatrix} A^{-1}b_1 \\ A^{-1}b \end{bmatrix},$$

$$\exists I \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \leftarrow \begin{bmatrix} I & 0 \\ -A^{-1}B & I \end{bmatrix} \begin{bmatrix} 0 & -A^{-1}B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} I & 0 \\ -A^{-1}B & I \end{bmatrix} \begin{bmatrix} A^{-1}b_1 \\ A^{-1}b \end{bmatrix}.$$

记作
$$z \leftarrow Gz + f$$
, $G = \begin{bmatrix} 0 & -A^{-1}B \\ 0 & A^{-1}BA^{-1}B \end{bmatrix}$, $\det(G) = x^n \cdot \det(xI - A^{-1}BA^{-1}B)$. 所以迭代收敛当 且仅当 $\rho(G) = \rho(A^{-1}BA^{-1}B) < 1$.

考虑 $A^{-1}B$ 的 Schur 标准型 $A^{-1}B = URU^*$, 有 $A^{-1}BA^{-1}B = UR^2U^*$. 其中 R 是上三角阵, R^2 也 是上三角阵且对角线元素是 R 中对应元素的平方。所以 $A^{-1}B$ 的非零特征值 λ 与 $A^{-1}BA^{-1}B$ 的非零特征值 λ^2 对应。所以迭代收敛当且仅当 $\rho(G) = \rho(A^{-1}BA^{-1}B) = \rho(A^{-1}B)^2 < 1$,即 $\rho(A^{-1}B) < 1$.

根据上述推导可知,两种迭代方法同时收敛(或者不收敛)。当收敛时,由于 $\rho(A^{-1}B)^2 < \rho(A^{-1}B) < 1$,故第二种方法的收敛速度更快.

12. 习题 14

$$\det(xI-A)=(x-1+a)^2(x-1-2a)$$
,故 A 的特征值为 $1-a,1-a,1+2a$. 所以对于 $-1/2 < a < 1$, A 的全部特征值为正实数, A 正定. Jacobi 迭代收敛,当且仅当 $\rho(D^{-1}(L+U))=\rho\begin{pmatrix} \begin{bmatrix} 0 & -a & -a \\ -a & 0 & -a \\ -a & -a & 0 \end{bmatrix} \end{pmatrix}$. 其特征值为 $-a,-a,2a$,故要保证 $\rho < 1$ 需要有 $-1/2 < a < 1/2$.

13. 习题 15

取
$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
,可以验证 PAP^{\top} 是形如 $\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$ 的矩阵。

14. 习题 16

由于 C 的特征值全部为 0, 考虑 C 的 Schur 标准型, $C = URU^*$, R 是对角线全 0 的上三角阵。容易验证: $\forall k \geq n, R^k = 0, C^k = UR^nU^* = 0$. 因为 $x^{(k)} = C^k x^{(0)} + \sum_{0 \leq i < k} C^i g$, 所以 $\forall k \geq n, x^{(k)} = \sum_{0 \leq i < n} C^i g$, 即最多迭代 n 次就收敛。

补充对 $R^n = 0$ 的证明: 下归纳证明 $(R^k)_{ij} = 0, \forall i < j+k : (1)$ 对于 k = 1 成立; (2) $(R^k)_{ij} = 0, \forall i < j+k$ $\Rightarrow (R^{k+1})_{ij} = (R^k R)_{ij} = \sum_t (R^k)_{it} R_{tj}$. 当 i < j+k+1 时, $i \ge t+k$ 与 $t \ge j+1$ 不能同时成立,故 $(R^k)_{it}$ 与 R_{tj} 中至少有一个为 0,从而推出 $(R^{k+1})_{ij} = 0, \forall i < j+(k+1)$.

对于任意 $1 \le i, j \le n$, 有 i < j + n, 于是 $(R^n)_{ij} = 0$, 所以 $R^n = 0$.

15. 习题 18

考查 $G = (D - \omega L)^{-1} ((1 - \omega)D + \omega U)$ 的特征值 λ , 有:

$$\det(\lambda I - G) = \det\left((D - \omega L)^{-1}\right) \det\left(\lambda (D - \omega L) - (1 - \omega)D - \omega U\right) = 0,$$

即 $\det(\lambda(D-\omega L)-(1-w)D-\omega U)=0$. 下面验证 $B=\lambda(D-\omega L)-(1-\omega)D-\omega U$ 在 $|\lambda|\geq 1$ 时是不可约弱对角占优矩阵:

- (1) B 显然是不可约的,因为 $P^{\mathsf{T}}BP = (\lambda 1 + \omega)P^{\mathsf{T}}DP \lambda\omega P^{\mathsf{T}}LP \omega P^{\mathsf{T}}UP$ 不可能具有分块上三角矩阵的形式,这可以由 A = D L U 的不可约性质得到。
- (2) $|B_{ii}| = |\lambda 1 + \omega||a_{ii}|$. 当 j < i 时, $|B_{ij}| = |-\lambda \omega a_{ij}| = |\lambda \omega||a_{ij}|$. 当 j > i 时, $|B_{ij}| = |w||a_{ij}|$. 故 $|B_{ii}| \sum_{j \neq i} |B_{ij}| \ge (|\lambda 1 + \omega| |\lambda \omega|) \sum_{j < i} |a_{ij}| + (|\lambda 1 + \omega| |\omega|) \sum_{j > i} |a_{ij}| \ge 0$. 由于 A 是弱 对角占优的,且 $|\lambda 1 + \omega| \ne 0$,所以至少存在一个 i 使得上述不等式的第一个不等号不取等,所以 B 是弱对角占优矩阵。

所以对于 $|\lambda| \ge 1$, B 是不可约的弱对角占优矩阵,根据定理 8.6 可知 B 非奇异,即 $\det(B) \ne 0$. 故 G 不存在模长大于等于 1 的特征值,即 $\rho(G) < 1$, SOR 迭代收敛。

这里补充对 $|\lambda| \ge 1 \Rightarrow |\lambda - 1 + \omega| \ge |\lambda \omega| \ge |\omega|$ 的证明:

$$\begin{split} |\lambda - 1 + \omega|^2 - |\lambda \omega|^2 &= (\lambda - 1 + \omega)(\bar{\lambda} - 1 + \omega) - \omega^2 \lambda \bar{\lambda} \\ &= (1 - \omega^2)\lambda \bar{\lambda} - (1 - \omega)(\lambda + \bar{\lambda}) + (1 - \omega)^2 \\ &= (1 - \omega)\left(\lambda \bar{\lambda} - \lambda - \bar{\lambda} + 1 + \omega(\lambda \bar{\lambda} - 1)\right) \\ &= (1 - \omega)\left((\lambda - 1)\overline{(\lambda - 1)} + \omega(\lambda \bar{\lambda} - 1)\right) \\ &> 0 \end{split}$$

所以 $|\lambda - 1 + \omega| \ge |\lambda \omega| = |\lambda| |\omega| \ge |\omega|$.

16. 习题 19

- (1) 对于任意 $x \in \mathbb{R}^{n \times 1}$, 有 $x^{\top} A^{\top} A x = (Ax)^{\top} (Ax) \ge 0$. 当且仅当 Ax = 0, $x = A^{-1} A x = 0$ 时取等,故 $A^{\top} A$ 是正定矩阵。其对称性显然。
- (2) 考虑 A 的奇异值分解 $A = U\Lambda V$,其中 U,V 是正交矩阵, Λ 是对角线矩阵,且由于 A 非奇异, Λ 对角线元素均非零。 $A^{\top}A = V^{\top}\Lambda U^{\top}U\Lambda V = V^{\top}\Lambda^2 V$.记 Λ^2 中的最大值,最小值分别为 λ_M, λ_m .易 知 $A^{\top}AA^{\top}A = V^{\top}\Lambda^4 V$.考虑到 $\operatorname{cond}(A)_2 = \sqrt{\frac{\lambda_{\max}(A^{\top}A)}{\lambda_{\min}(A^{\top}A)}} = \sqrt{\frac{\lambda_{\max}(\Lambda^2)}{\lambda_{\min}(\Lambda^2)}} = \sqrt{\frac{\lambda_M}{\lambda_m}}$, $\operatorname{cond}(A^{\top}A)_2 = \sqrt{\frac{\lambda_{\max}(A^{\top}AA^{\top}A)}{\lambda_{\min}(A^{\top}AA^{\top}A)}} = \sqrt{\frac{\lambda_{\max}(\Lambda^4)}{\lambda_{\min}(\Lambda^4)}} = \frac{\lambda_M}{\lambda_m}$.所以有 $\operatorname{cond}(A^{\top}A)_2 = (\operatorname{cond}(A)_2)^2$