STREAM-FLOW MEASUREMENTS AT SELECTED GAGING STATIONS IN THE IOWA AND DES MOINES RIVER BASINS AND DEVELOPMENT OF STAGE-DISCHARGE RELATIONSHIPS Sampling Period: 3 September 2002 - 18 April 2003

by Tatsuaki Nakato

Submitted to
U.S. Army Corps of Engineers
Rock Island District
Clock Tower Building
Rock Island, Illinois 61204

IIHR Technical Report No. 431

IIHR – Hydroscience & Engineering College of Engineering The University of Iowa Iowa City, Iowa 52242-1585

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments a arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington				
1. REPORT DATE JUL 2003		2. REPORT TYPE		3. DATES COVE 00-00-2003	RED 3 to 00-00-2003				
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER				
Des Moines River	surements at Selecte Basins and Developi	nent of Stage-Discha	arge	5b. GRANT NUM	1BER				
Relationships. Sam	pling Period: 2 Sep	tember 2002 - 18 Ap	oril 2003	5c. PROGRAM E	LEMENT NUMBER				
6. AUTHOR(S)			5d. PROJECT NU	JMBER					
				5e. TASK NUMB	ER				
				5f. WORK UNIT	NUMBER				
The University of 1	ZATION NAME(S) AND AE fowa, College of Engi City, IA, 52242-1585	` /	lroscience &	8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)				
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited							
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	mages.							
14. ABSTRACT									
15. SUBJECT TERMS									
16. SECURITY CLASSIFIC	CATION OF:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON					
a. REPORT unclassified	b. ABSTRACT unclassified	a. REPORT b. ABSTRACT c. THIS PAGE							

Report Documentation Page

Form Approved OMB No. 0704-0188

ABSTRACT

Field velocity measurements were taken four times at fifteen stream gaging sites within the Iowa River and Des Moines River basins during 3 September 2002 and 18 April 2003. Using the historical data available and the data collected in this study, log-linear stage-discharge relationships, as well as a rating table, were developed for each station.

ACKNOWLEDGMENTS

The field investigation reported herein was conducted for and sponsored by the U.S. Army Corps of Engineers, Rock Island District (USACE-MVR) through Missman Stanley & Associates, P.C. (MSAPC). The author thanks James Stiman and Thomas Knox of the USACE-MVR and Mike McCaw of MSAPC for their unfailing cooperation throughout the course of this study. The author is also indebted to Doug Houser and Troy Lyon of the IIHR – Hydroscience & Engineering, and Justin Krohn and Kenny Bodeen of MSAPC for collecting the field data.

TABLE OF CONTENTS

I.	INTRODUCTION	<u>Page</u> 1
II.	DEVELOPMENT OF STAGE-DISCHARGE RELATIONSHIPS	7
III.	DESCRIPTION OF INDIVIDUAL STREAM-GAGING STATIONS AND PRESENTATION OF PROPOSED RATING TABLES	12
	 East Forks Des Moines River near Algona, IA (AGNI4) Iowa River near Belle Plaine, IA (BLPI4) Iowa River near Columbus Junction, IA (CJTI4) Des Moines River near Eddyville, IA (EDYI4) West Fork Des Moines River near Emmetsburg, IA (EMTI4) West Fork Des Moines River near Estherville, IA (ESVI4) Boone River near Golfield, IA (GLDI4) North Raccoon River near Lanesboro, IA (LKCI4) North Fork English River near Parnell, IA (NEPI4) North Raccoon River near Perry, IA (PROI4) Iowa River near Steamboat Rock, IA (STBI4) Iowa River near Tama, IA (TAMI4) Deer Creek near Toledo, IA (TOLI4) West Fork Des Moines River near Windom, MN (WDOM5) Beaver Creek near Woodward, IA (WWDI4) 	12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
APPE	NDIX I ANALYSIS OF FEILD VELOCITY DATA FOR FIFTEEN GAGING STATIONS	57
	LIST OF TABLES	Do so
Table	Sample spreadsheet developed for analyzing raw data to obtain discharge	Page
Table	2(a) Summary of field data collected at Stations AGNI4, BPLI4, CJTI4, EDYI4, and EMTI4 in the Iowa River and the Des Moines River Basins between September 2002 and April 2003	4
Table		5
Table	2(c) Summary of field data collected at Stations STBI4, TAMI4, TOLI4, WDOM5, and WWDI4 in the Iowa River and the Des Moines River Basins between September 2002 and	
Table	April 2003 3(a) Stage-discharge relationships developed for Station Nos. 1 through 10	6 10
Table		11

Table 4	Rating table developed for AGNI4	14
Table 5	Rating table developed for BLPI4	17
Table 6	Rating table developed for CJTI4	20
Table 7	Rating table developed for EDYI4	23
Table 8	Rating table developed for EMTI4	26
Table 9	Rating table developed for ESVI4	29
Table 10	Rating table developed for GLDI4	32
Table 11	Rating table developed for LKCI4	35
Table 12	Rating table developed for NEPI4	38
Table 13	Rating table developed for PROI4	41
Table 14	Rating table developed for STBI4	44
Table 15	Rating table developed for TAMI4	47
Table 16	Rating table developed for TOLI4	50
Table 17	Rating table developed for WDOM5	53
Table 18	Rating table developed for WWDI4	56

LIST OF FIGURES

		<u>Page</u>
Figure 1	Location map identifying fifteen stream-flow gaging stations	
	(Note: MLII2 on the Rock River in Illinois was not included)	2
Figure 2	Comparison of two log-linear stage-discharge relationships	
	developed for two different sets of data for AGNI4	8
Figure 3	Outliers found in log-linear stage-discharge plots at STBI4	9
Figure 4	Log-linear stage-discharge relationships developed for AGNI4	
	(Note: the data for 1991-1993 were excluded)	13
Figure 5	Log-linear stage-discharge relationships developed for BPLI4	16
Figure 6	Log-linear stage-discharge relationships developed for CJTI4	19
Figure 7	Log-linear stage-discharge relationships developed for EDYI4	22
Figure 8	Log-linear stage-discharge relationships developed for EMTI4	25
Figure 9	Log-linear stage-discharge relationships developed for ESVI4	28
Figure 10	Log-linear stage-discharge relationships developed for GLDI4	31
Figure 11	Log-linear stage-discharge relationships developed for LKCI4	34
Figure 12	Log-linear stage-discharge relationships developed for NEPI4	37
Figure 13	Log-linear stage-discharge relationships developed for PROI4	40
Figure 14	Log-linear stage-discharge relationships developed for STBI4	43
Figure 15	Log-linear stage-discharge relationships developed for TAMI4	46
Figure 16	Log-linear stage-discharge relationships developed for TOLI4	49
Figure 17	Log-linear stage-discharge relationships developed for WDOM5	52
Figure 18	Log-linear stage-discharge relationships developed for WWDI4	55

STREAM-FLOW MEASUREMENTS AT SELECTED GAGING STATIONS IN THE IOWA AND DES MOINES RIVER BASINS AND DEVELOPMENT OF STAGE-DISCHARGE RELATIONSHIPS Sampling Period: 3 September 2002 - 18 April 2003

I. INTRODUCTION

Establishment of field-data based, reliable, stage-discharge relationships for any stream is indispensable in predicting discharges at different river stages. The U.S. Army Corps of Engineers, Rock Island District (USACE-MVR) maintains and operates many stream-gaging stations along the Iowa River and Des Moines River basins and routinely collects stream-stage information through the GEOS satellite system. IIHR – Hydroscience & Engineering, The University of Iowa, received a subcontract from the USACE-MVR through Missman Stanley & Associates, P.C., in Rock Island, IL to collect four sets of velocity data at fifteen different gaging stations and to establish the best stage-discharge relationship for each station.

The field stream-flow measurements were conducted at six gaging stations for the Iowa River basin and nine stations for the Des Moines River basin, including the following stations:

Iowa River basin:

- 1. Iowa River at Steamboat Rock, Iowa (STBI4);
- 2. Deer Creek Near Toledo, Iowa (TOLI4);
- 3. Iowa River at Tama, Iowa (TAMI4);
- 4. Iowa River near Belle Plaine, Iowa (BPLI4);
- 5. North Fork English River near Parnell, Iowa (NEPI4); and
- 6. Iowa River at Columbus Junction, Iowa (CJTI4)

Des Moines River basin:

- 1. West Fork Des Moines River near Windom, Minnesota (WDOM5);
- 2. Des Moines River at Estherville, Iowa (ESVI4);
- 3. Des Moines River at Emmetsburg, Iowa (EMTI4);
- 4. East Fork Des Moines River at Algona, Iowa (AGNI4);
- 5. Boone River near Goldfield, Iowa (GLDI4);
- 6. Beaver Creek near Woodward, Iowa (WWDI4);
- 7. North Raccoon River near Lanesboro, Iowa (LKCI4);

- 8. North Raccoon River near Perry, Iowa (PROI4); and
- 9. Des Moines River near Eddyville, Iowa (EDYI4)

Each gaging station is identified with the station ID and their locations are shown in figure 1. In order to make the index search easier, station descriptions are given in alphabetical order of the station ID in this report instead of the river basins. At each station, four separate measurements were taken during the period from 3 September 2002 to 18 April 2003.

Figure 1 Location map identifying fifteen stream-flow gaging stations (Note: MLII2 on the Rock River in Illinois was not included)

All the raw velocity data collected were stored in the spreadsheet and total discharges were computed using MS Excel 2000, as exemplified in table 1. Appendix I lists all the spreadsheets generated for each velocity measurement campaign. Tables 2(a) through 2(c) list the date and the time of measurements, information on gage height (GH), the width of the stream flow, the total flow area, and the calculated discharge (Q).

	from IP	(,	d (ft)	% depth	Kev	Time (sec)	V (ft/s)	Vc (ft/s)	a (sq ft)	q (cfs)	Flow Dir (deg)	Corr Flow Dir (deg)
	0.0											
1.000	7.4	7.4	0.40	0.6	1	21.0	0.08	0.08	2.96	0.23	360	-270
1.000	14.8	7.4	0.30	0.6	4	24.0	0.19	0.19	2.22	0.42	360	-270
1.000	22.2	7.4	0.35	0.6	20	30.3	0.66	0.66	2.59	1.72	360	-270
1.000	29.6	7.4	0.70	0.6	20	22.8	0.87	0.87	5.18	4.52	360	-270
1.000	37.0	7.4	0.90	0.6	20	20.8	0.95	0.95	6.66	6.35	360	-270
1.000	44.4	7.4	0.85	0.6	20	19.3	1.03	1.03	6.29	6.45	360	-270
1.000	51.8	7.4	0.80	0.6	20	23.0	0.87	0.87	5.92	5.13	360	-270
1.000	59.2	7.4	0.65	0.6	20	22.3	0.89	0.89	4.81	4.29	360	-270
1.000	66.6	7.4	0.70	0.6	20	20.9	0.95	0.95	5.18	4.92	360	-270
1.000	74.0	7.4	0.35	0.6	20	24.3	0.82	0.82	2.59	2.13	360	-270
0.707	81.4	7.4	0.20	0.6	20	19.6	1.01	1.01	1.48	1.06	45	45
1.000	88.8	7.4	2.10	0.6	20	33.5	1.33	1.33	15.54	20.74	360	-270
1.000	96.2	7.4	2.90	0.6	20	21.2	2.10	2.10	21.46	45.03	360	-270
0.985	103.6	7.4	3.40	0.8	20	21.6	2.06	2.24	25.16	55.43	350	-260
0.985	103.6	0.0	3.40	0.2	20	18.4	2.41	0.00	0.00	0.00	350	-260
1.000	111.0	7.4	3.20	0.8	20	23.6	1.89	2.09	23.68	49.61	360	-270
1.000	111.0	0.0	3.20	0.2	20	19.3	2.30	0.00	0.00	0.00	360	-270
1.000	118.4	7.4	3.10	0.8	20	23.5	1.89	2.13	22.94	48.84	360	-270
1.000	118.4	0.0	3.10	0.2	20	18.8	2.36	0.00	0.00	0.00	360	-270
1.000	125.8	7.4	3.60	0.8	20	22.6	1.97	2.09	26.64	55.55	360	-270
0.985	125.8	0.0	3.60	0.2	20	20.2	2.20	0.00	0.00	0.00	350	-260
0.985	133.2	7.4	3.90	0.8	20	25.7	1.73	2.02	28.86	57.54	350	-260
0.985	133.2	0.0	3.90	0.2	20	19.2	2.31	0.00	0.00	0.00	350	-260
0.985	140.6	7.4	4.10	0.8	20	24.4	1.83	2.13	30.34	63.54	350	-260
0.985	140.6	0.0	4.10	0.2	20	18.3	2.43	0.00	0.00	0.00	350	-260
0.985	148.0	7.4	4.30	0.8	20	21.1	2.11	2.18	31.82	68.39	350	-260
0.985	148.0	0.0	4.30	0.2	20	19.7	2.26	0.00	0.00	0.00	350	-260
1.000	155.4	7.4	4.00	0.8	20	26.3	1.69	1.52	29.60	45.07	360	-270
1.000	155.4	0.0	4.00	0.2	20	33.1	1.35	0.00	0.00	0.00	360	-270
0.906	162.8	7.4	4.00	0.8	20	65.2	0.69	0.54	29.60	14.48	25	65
0.906	162.8	0.0	4.00	0.2	14	84.0	0.39	0.00	0.00	0.00	25	65
-0.766	170.2	7.4	4.20	0.8	4	80.0	0.13	0.10	31.08	-2.33	140	-50
-0.766	170.2	0.0	4.20	0.2	1	44.5	0.07	0.00	0.00	0.00	140	-50
-1.000	177.6 184.0	7.4	2.30	0.6	20	85.6	0.53	0.53	17.02	-9.07	180	-90

Table 1 Sample spreadsheet developed for analyzing raw data to obtain discharge

		Date	Time	Inside	Outside	Corr	Width	Area	Discharge
				Gage (ft)	Gage (ft)	(ft)	(ft)	(sq ft)	(cfs)
Station ID	AGNI4			(11)	(10)				
Location	Algona,IA								
River	E. Fork/DMR								
Trip No.	IIHR1	9/5/02	12:00	7.26	7.38	0.12	115.0	339.0	126.0
-	IIHR2	9/26/02	10:00	6.95	7.00	0.05	113.0	316.3	32.6
	IIHR3	10/30/02	13:00	7.54	7.61	0.07	116.0	362.0	210.0
5" Ice	IIHR4	12/12/02	15:00	7.21	7.21	0.00	120.0	394.6	100.4
Station ID	BPLI4								
Location	Belle Plaine, IA								
River	Iowa River								
Trip No.	IIHR1	9/3/02	16:15	7.00	6.81	-0.19	180.0	547.2	869.2
	IIHR2	9/24/02	14:45	6.61	6.55	-0.06	205.0	544.5	758.4
	IIHR3	11/1/02	12:00	6.86	6.88	0.02	207.0	622.4	
	IIHR4	12/6/02	13:00	6.27	6.38	0.11	174.0	398.3	342.5
Station ID	CJTI4								
Location	Columbus Jct, IA								
River	Iowa River								
Trip No.	IIHR1	9/12/02	19:00	9.63			913.0	2072.3	3060.1
	IIHR2	10/9/02	16:30	11.21			993.0	3739.5	7291.9
	IIHR3	11/7/02	15:50	10.19			925.0	2271.8	4076.7
	IIHR4	12/18/02	16:00	9.89			920.0	2119.3	3753.8
Station ID	EDYI4								
Location	Eddyville, IA								
River	Des Moines River	0/40/00	40.45	40.4=			400.0	40040	4000.4
Trip No.	IIHR1	9/12/02	13:15	48.17			460.0	1064.6	1086.4
	IIHR2	10/14/02	11:20	51.39			532.0	2718.3	5782.3
	IIHR3	11/7/02	11:00	49.87			515.0	1801.6	3369.1
Otation ID	IIHR4	12/5/02	11:00	49.78			480.0	1658.4	3261.6
Station ID	EMTI4			7.07.4		- 1::-	/Ota : ala	CI I-	
Location	Emmetsburg, IA	7.67 ft was added to Inside/Outside GHs							
River	Des Moines River	0/5/02	15:20	0.20	9.13	0.07	1120	102.2	101 2
Trip No.	IIHR1 IIHR2	9/5/02 9/26/02	15:30 13:15	9.20	9.13 8.44	-0.07 -0.07	113.0 34.0	192.2 34.8	181.3 55.0
	IIHR2 IIHR3	10/30/02	10:30	8.51 9.49	9.30	-0.07 -0.19	34.0 116.0	34.8 199.8	212.3
	IIHR3 IIHR4	4/17/03	16:00	9.49	9.30	-0.19	132.0	199.6	343.9
	шпк4	4/17/03	10.00	9.77	9.74	-0.03	132.0	193.7	343.9

Table 2(a) Summary of field data collected at Stations AGNI4, BPLI4, CJTI4, EDYI4, and EMTI4 in the Iowa River and the Des Moines River Basins between September 2002 and April 2003

-		Date	Time	Inside	Outside	Corr	Width	Area	Discharge
				Gage	Gage	(ft)	(ft)	(sq ft)	(cfs)
Station ID	ESVI4			(ft)	(ft)				
Location	Estherville, IA								
River	Des Moines River								
Trip No.	IIHR1	9/5/02	18:00	2.15			40.0	36.3	70.6
mp No.	IIHR2	9/26/02	15:00	2.15			53.0	48.9	51.8
	IIHR3	10/30/02	9:00	2.67			66.0	72.1	202.1
	IIHR4	12/11/02	14:00	2.27			40.3	40.3	93.0
Station ID	GLDI4	12/11/02	17.00	2.21			+0.5	+0.5	33.0
Location	Goldfield, IA								
River	Boone River								
Trip No.	IIHR1	9/5/02	9:00	7.80	7.70	-0.10	79.5	64.4	42.0
•	IIHR2	9/25/02	17:00	7.17	7.33	0.16	49.0	21.9	15.2
	IIHR3	12/12/02	16:00	8.05	8.38	0.33	83.0	90.2	66.0
	IIHR4	4/18/03	10:00	9.50	9.48	-0.02	87.0	211.7	244.9
Station ID	LKCI4								
Location	Lanesboro, IA								
River	N Raccoon River								
Trip No.	IIHR1	9/11/02	14:00	8.22	8.12	-0.10	97.0	119.3	126.9
	IIHR2	10/9/02	9:50	9.50	9.46	-0.04	202.0	327.4	595.1
	IIHR3	10/31/02	10:00	8.90	8.89	-0.01	169.0	261.5	424.7
	IIHR4	11/14/02	16:30	8.51			84.0	173.0	259.9
Station ID	NEPI4								
Location	Parnell, IA								
River	N.F. English River								
Trip No.	IIHR1	9/3/02	12:00	14.08	14.10	0.02	60.5	48.8	28.4
	IIHR2	9/24/02	12:30	14.22	14.20	-0.02	60.0	54.4	36.6
	IIHR3	11/1/02	14:30	14.71	14.77	0.06	92.0	95.8	114.0
	IIHR4	12/13/02	15:30	14.61	14.66	0.05	92.0	85.3	52.8
Station ID	PROI4								
Location	Perry, IA								
River	N. Raccoon River	- 11 1 1 c =							
Trip No.	IIHR1	9/11/02	17:00	4.57	4.30	-0.27	139.0	234.6	259.4
	IIHR2	10/8/02	15:15	7.79	7.71	-0.08	206.0	841.5	2036.3
	IIHR3	10/31/02	12:20	5.63	5.67	0.04	199.0	472.0	865.6
	IIHR4	11/14/02	14:00	5.10	5.04	-0.06	160.0	382.3	512.1

Table 2(b) Summary of field data collected at Stations ESVI4, GLDI4, LKCI4, NEPI4, and PROI4 in the Iowa River and the Des Moines River Basins between September 2002 and April 2003

		Date	Time	Inside	Outside	Corr	Width	Area	Discharge
				Gage	Gage	(ft)	(ft)	(sq ft)	(cfs)
				(ft)	(ft)				
Station ID	STBI4								
Location	Steamboat Rock, IA								
River	Iowa River								
Trip No.	IIHR1	9/4/02	15:45	5.64	5.62	-0.02	140.0	204.4	366.8
	IIHR2	9/25/02	15:00	5.58	5.58	0.00	90.0	99.2	227.7
	IIHR3	10/31/02	17:00	5.91	5.87	-0.04	110.0	196.3	411.1
	IIHR4	12/10/02	13:00	5.50			87.0	83.9	193.9
Station ID	TAMI4								
Location	Tama, IA								
River	Iowa River								
Trip No.	IIHR1	9/4/02	9:00	9.23	9.11	-0.12	183.0	381.1	616.8
	IIHR2	9/25/02	8:15	8.91	8.92	0.01	184.0	379.6	550.0
	IIHR3	11/1/02	10:25	9.54	9.53	-0.01	189.0	486.8	830.9
	IIHR4	11/15/02	14:00	9.07	9.08	0.01	185.0	410.9	625.8
Station ID	TOLI4								
Location	Toledo, IA								
River	Deer Creek								
Trip No.	IIHR1	9/4/02	11:00	4.17			45.2	16.3	11.3
	IIHR2	9/25/02	11:00	4.39	4.41	0.02	48.0	25.5	8.6
	IIHR3	4/17/03	10:15	4.22	4.21	-0.01	47.0	17.5	11.0
	IIHR4	4/18/03	15:00	4.21	4.22	0.01	38.0	13.2	10.2
Station ID	WDOM5								
Location	Windom, MN								
River	Des Moines River								
Trip No.	IIHR1	9/6/02	9:30	11.78	11.75	-0.03	75.0	526.8	98.6
	IIHR2	9/27/02	11:30	11.29	11.26	-0.03	74.0	472.5	13.2
	IIHR3	10/29/02	17:15	12.32	12.25	-0.07	75.0	550.5	219.2
8" Ice	IIHR4	12/12/02	10:15	11.90	11.90	0.00	110.0	260.2	94.1
Station ID	WWDI4								
Location	Woodward, IA								
River	Beaver Creek								
Trip No.	IIHR1	9/12/02	9:00	10.62	10.61	-0.01	22.0	4.1	0.9
	IIHR2	10/8/02	12:30	11.89	11.56	-0.33	59.0	57.9	71.7
	IIHR3	10/31/02	14:00	11.29	11.23	-0.06	53.0	38.3	37.1
	IIHR4	11/14/02	12:00	11.13	11.05	-0.08	51.0	28.9	22.2

Table 2(c) Summary of field data collected at Stations STBI4, TAMI4, TOLI4, WDOM5, and WWDI4 in the Iowa River and the Des Moines River Basins between September 2002 and April 2003

II. DEVELOPMENT OF STAGE-DISCHARGE RELATIONSHIPS

In order to establish the best stage-discharge relationships for each gaging station, historical data provided by the USACE-MVR, as well as four new data sets collected in this study, were first plotted on a log-log graph using ORIGIN graphics software (Origin Pro Version 7). Segment-wise log-linear relationships (power-law relationships) were then sought. An intersecting boundary value between two log-linear lines was first determined by manually reviewing the plot. The best-fit lines were then determined by correlation coefficients. The correlation coefficient of the log-linear regression equation, r, for each data set was determined using the following relationship:

$$r = \frac{n\sum[\{\log(GH)\}^*\{\log(Q)\}] - \{\sum\log(GH)\}^*\{\sum\log(Q)\}\}}{\sqrt{\left[n\sum\{\log(GH)\}^2 - \{\sum\log(GH)\}^2\right]^* - \left[n\sum\{\log(Q)\}^2 - \{\sum\log(Q)\}^2\right]}}$$
(1)

where n = number of data points; GH = gage height (ft); and Q = discharge (cfs). For each station, correlation coefficients were carefully reviewed to further improve the stage-discharge relationships. For example, at AGNI4, the entire data set available was plotted, as shown in figure 2(a). The correlation coefficients for the lower and upper gage heights were found to be 0.8283 and 0.9153, respectively. In order to find the effect of the Great Flood of '93, the existing data from 1991 to 1993 were isolated and excluded in the analysis, as shown in figure 2(b). The correlation coefficients were significantly improved to 0.9791 and 0.9828 from 0.8283 and 0.9153. As can be seen in figure 2(b), the discharge data for approximately GH = 9 ft ~15 ft for the period between 1991 and 1993 can clearly be isolated in improving the correlation coefficients. A similar investigation on the Great Flood of '93 was conducted for the other stations. However, no such effects were found in any other stations.

(b) Data for 1991-1993 isolated

Figure 2 Comparison of two log-linear stage-discharge relationships developed for two different sets of data for AGNI4

During the regression analysis, apparent outliers were identified and excluded from the analysis. Outliers were found at three stations (BPLI4, GLDI4, and STBI4). In particular, at STBI4 a significant number of the data that were collected from 1992 to 1995 was found to be outliers, as can be seen in figure 3. All the outliers identified in the present study were marked in red in the spreadsheets so that they would not be used in the future analyses. It should be noted that all the spreadsheets generated for the historical raw data, discharges calculated, and the rating table were submitted to the USACE-MVR.

The best-fit power-law relationships that were developed for each station in the present study are shown in tables 3(a) and 3(b). Correlation coefficients in these tables are seen to be very high, ranging from r = 0.8628 at NEPI4 for the lower flow regime in which GH < 14.66 ft to r = 0.9976 for the higher flow regime in which GH ≥ 12.39 ft.

Figure 3 Outliers found in log-linear stage-discharge plots at STBI4

No	Station ID Location River	Data Period	Range of Gage Height (GH)	Regression Equations	Correla- tion Coeff
1	AGNI4	1991-2002	GH<7.58 ft	Q=10 ^{-20.077} *GH ^{25.409}	0.8283
	Algona,IA		GH≥7.58 ft	Q=10 ^{-1.049} *GH ^{3.775}	0.9791
	E. Fork/DMR			Do not use these eqns!	
1A	AGNI4	1994-2002	GH<7.69 ft	Q=10 ^{-17.936} *GH ^{22.903}	0.9153
	Algona,IA		GH≥7.69 ft	Q=10 ^{-0.913} *GH ^{3.690}	0.9828
	E. Fork/DMR			Use these eqns!	
2	BPLI4	1987-2002	GH<6.81 ft	Q=10 ^{-1.433} *GH ^{5.210}	0.9723
	Belle Plaine, IA		6.81 ft≤GH<15.66 ft	Q=10 ^{0.757} *GH ^{2.582}	0.9938
	Iowa River		GH≥15.66 ft	Q=10 ^{-6.623} *GH ^{8.759}	0.9507
3	CJTI4	1995-2002	GH<12.39 ft	Q=10 ^{-1.299} *GH ^{4.851}	0.9821
	Columbus Jct, IA		GH≥12.39 ft	Q=10 ^{0.935} *GH ^{2.807}	0.9976
	Iowa River				
4	EDYI4	1990-2002	GH<50.57 ft	Q=10 ^{-53.762} *GH ^{33.667}	0.9234
	Eddyville, IA		50.57 ft≤GH<55.08 ft	Q=10 ^{-20.493} *GH ^{14.142}	0.9627
	Des Moines River		GH≥55.08 ft	Q=10 ^{-8.903} *GH ^{7.485}	0.9763
5	EMTI4	1995-2003	GH<10.56 ft	Q=10 ^{-7.426} *GH ^{10.148}	0.9536
	Emmetsburg, IA		GH≥10.56 ft	Q=10 ^{-0.316} *GH ^{3.201}	0.9920
	Des Moines River				
6	ESVI4	1996-2002	GH<2.45 ft	Q=10 ^{-0.483} *GH ^{6.946}	0.9916
	Estherville, IA		2.45 ft≤GH<4.74 ft	Q=10 ^{1.028} *GH ^{3.072}	0.9930
	Des Moines River		GH≥4.74 ft	Q=10 ^{2.093} *GH ^{1.496}	0.9967
7	GLDI4	1995-2003	GH<9.35 ft	Q=10 ^{-10.439} *GH ^{13.278}	0.9229
	Goldfield, IA		GH≥9.35 ft	Q=10 ^{-1.037} *GH ^{3.592}	0.9941
	Boone River				
8	LKCI4	1995-2001	GH<8.85 ft	Q=10 ^{-12.647} *GH ^{16.079}	0.9154
	Lanesboro, IA		8.85 ft≤GH<11.48 ft	Q=10 ^{-2.964} *GH ^{5.852}	0.9651
	N Raccoon River		GH≥11.48 ft	Q=10 ^{-0.503} *GH ^{3.530}	0.9961
9	NEPI4	1995-2002	GH<14.66 ft	Q=10 ^{-35.041} *GH ^{31.818}	0.8628
	Parnell, IA		14.66 ft≤GH<16.19 ft	Q=10 ^{-17.075} *GH ^{16.411}	0.9876
	N.F. English River		GH≥16.19 ft	Q=10 ^{-3.622} *GH ^{5.286}	0.9860
10	PROI4	1995-2002	GH<5.65 ft	Q=10 ^{-0.508} *GH ^{4.660}	0.9759
	Perry, IA		GH≥5.65 ft	Q=10 ^{1.235} *GH ^{2.342}	0.9938
	N. Raccoon River				

 $Table\ 3 (a)\ Stage-discharge\ relationships\ developed\ for\ Station\ Nos.\ 1\ through\ 10$

No	Station ID Location River	Data Period	Range of Gage Height (GH)	Regression Equations	Correla- tion Coeff
11	STBI4	1992-2002	GH<5.99 ft	Q=10 ^{-7.408} *GH ^{13.078}	0.9459
	Steamboat Rock, IA		GH≥5.99 ft	Q=10 ^{0.135} *GH ^{3.376}	0.9961
	Iowa River				
12	TAMI4	1993-2002	GH<9.68 ft	Q=10 ^{-3.397} *GH ^{6.389}	0.8983
	Tama, IA		9.68 ft≤GH<17.62 ft	Q=10 ^{-0.480} *GH ^{3.430}	0.9875
	Iowa River		GH≥17.62 ft	Q=10 ^{-2.304} *GH ^{4.894}	0.9229
13	TOLI4	1997-2003	GH<4.90 ft	Q=10 ^{-7.785} *GH ^{14.073}	0.9062
	Toledo, IA		GH≥4.90 ft	Q=10 ^{-0.805} *GH ^{3.961}	0.9761
	Deer Creek				
14	WDOM5	1995-2002	GH<12.01 ft	Q=10 ^{-45.910} *GH ^{44.505}	0.9217
	Windom, MN		12.01 ft≤GH<14.44 ft	Q=10 ^{-7.457} *GH ^{8.886}	0.9579
	Des Moines River		GH≥14.44 ft	Q=10 ^{-3.001} *GH ^{5.043}	0.9885
15	WWDI4	1995-2002	GH<11.52 ft	Q=10 ^{-61.171} *GH ^{59.393}	0.8745
	Woodward, IA		11.52 ft≤GH<14.42 ft	Q=10 ^{-9.125} *GH ^{10.356}	0.9495
	Beaver Creek		GH≥14.42 ft	Q=10 ^{-1.747} *GH ^{3.990}	0.9984

Table 3(b) Stage-discharge relationships developed for Station Nos. 11 through 15

III. DESCRIPTION OF INDIVIDUAL STREAM-GAGING STATIONS AND PRESENTATION OF PROPOSED RATING TABLES

In this chapter, a general description of each station that was downloaded from the USACE-MVR web site (http://www.mvr.usace.army.mil/), a few site photos, the stage-discharge plot, and the rating table developed are presented for each gaging station.

1. EAST FORK DES MOINES RIVER NEAR ALGONA, IA (AGNI4)

- Gage Description AGNI4 E. Des Moines River near Algona, IA
- Stream = East Fork Des Moines River
- Gage Zero = 1098.74 feet NGVD (1929)
- Flood Stage = 14.00 feet
- Record Stage = 22.65 feet date 04-01-93
- Lat 43°04'44" Long 94°14'10"
- Drainage Area = 884.0 sq. mi.
- River Mile = 374.4
- Location of Gage = on left bank at downstream side of bridge on US Highway 169, at north edge of Algona, and 5.5 miles downstream from Black Cat Creek.

River-Stage Gaging Station

Downstream View

Figure 4 Log-linear stage-discharge relationships developed for AGNI4 (Note: the data for 1991-1993 were excluded)

DATE: 4/4/2003

AGNI4 - EAST FORK DES MOINES RIVER NEAR ALGONA, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH < 7.58 FT Q=10^{-20.077}*GH^{25.409}

EQUATION 2: GH > 7.58 FT Q=10^{-1.049}*GH^{3.775}

GAGE HEIGHT, GH (FEET)			DISCH	ARGE, Q	, IN CUB	IC FEET	PER SE	COND			DIFF. IN DISCHARGE PER FOOT
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
6	0.5	0.8	1.1	1.7	2.6	3.8	5.6	8.2	11.9	17.3	
7	24.9	35.7	50.9	72.3	102	144	201	198	208	219	204
8	229	240	252	263	276	288	301	315	328	343	128
9	357	373	388	405	421	438	456	474	493	512	175
10	532	552	573	595	617	640	663	687	711	737	230
11	763	789	816	844	873	902	932	963	994	1026	297
12	1059	1093	1127	1162	1199	1235	1273	1312	1351	1391	374
13	1433	1475	1518	1561	1606	1652	1699	1746	1795	1845	462
14	1895	1947	1999	2053	2108	2164	2220	2278	2337	2398	564
15	2459	2521	2585	2650	2716	2783	2851	2921	2992	3064	678
16	3137	3212	3288	3365	3444	3524	3605	3688	3772	3857	807
17	3944	4032	4122	4213	4306	4400	4496	4593	4692	4792	950
18	4894	4997	5102	5209	5317	5427	5539	5652	5767	5884	1108
19	6002	6122	6244	6368	6493	6620	6749	6880	7013	7148	1282
20	7284	7423	7563	7705	7850	7996	8144	8294	8447	8601	1473
21	8757	8916	9076	9239	9404	9571	9740	9911	10085	10261	1681
22	10439	10619	10801	10986	11173	11363	11555	11749	11945	12144	1907
23	12346	12550	12756	12965	13176	13390	13606	13825	14047	14271	2152
24	14498	14727	14959	15194	15431	15671	15914	16160	16408	16659	2415
25	16913	17170	17430	17692	17958	18226	18497	18771	19049	19329	2699
26	19612	19898	20188	20480	20776	21074	21376	21681	21989	22301	3003
27	22615	22933	23254	23578	23906	24237	24572	24909	25250	25595	3328
28	25943										

Table 4 Rating table developed for AGNI4

2. IOWA RIVER NEAR BELLE PLAINE, IA (BPLI4)

- Gage Description BPLI4 Iowa River near Belle Plaine, IA
- Stream = Iowa River
- Gage Zero = 749.82 feet NGVD (1929)
- Flood Stage = 14.50 feet
- Record Stage = 18.74 feet Date 07-11-93
- Lat 41°51'20" Long 92°14'20"
- Drainage Area = 2,455 sq. mi.
- River Mile = 154.0
- Location of Gage = on right bank 5 ft upstream from bridge on State Highway 21, 1.0 mi downstream from Salt Creek, 1.1 mi downstream from Walnut Creek, 2.7 mi south of Belle Plaine, and at mile 159.0.

River-Stage Gaging Station

Downstream View

Figure 5 Log-linear stage-discharge relationships developed for BPLI4

DATE: 5/5/2003

BPLI4 - IOWA RIVER NEAR BELLE PLAINE, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH< 6.81 FT Q=10^{-1.433}*GH^{5.210}

EQUATION 2: 6.81 FT<GH<15.66 FT Q=10^{0.757}*GH^{2.582}

EQUATION 3: GH>15.66 FT Q=10^{-6.623}*GH^{8.759}

GAGE HEIGHT, GH (FEET)			DISCH	ARGE, Q	, IN CUB	IC FEET	PER SE	COND			DIFF. IN DISCHARGE PER FOOT
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
4	50.6	57.5	65.2	73.7	83.1	93.4	105	117	131	146	
5	162	179	198	219	241	266	292	320	350	383	256
6	418	456	496	539	585	634	687	743	802	837	451
7	869	902	935	969	1003	1039	1075	1112	1149	1188	358
8	1227	1267	1308	1349	1392	1435	1479	1524	1569	1616	436
9	1663	1711	1760	1810	1860	1912	1964	2018	2072	2127	520
10	2183	2240	2297	2356	2415	2476	2537	2599	2663	2727	609
11	2792	2858	2925	2993	3062	3131	3202	3274	3347	3420	703
12	3495	3571	3647	3725	3804	3884	3964	4046	4129	4213	802
13	4297	4383	4470	4558	4647	4737	4828	4921	5014	5108	906
14	5204	5300	5398	5496	5596	5697	5799	5902	6006	6112	1015
15	6218	6326	6435	6545	6656	6768	6881	7110	7517	7944	2174
16	8392	8863	9357	9875	10419	10989	11586	12212	12867	13554	5880
17	14273	15025	15812	16636	17497	18398	19340	20324	21352	22425	9274
18	23547	24718	25940	27215	28546	29934	31381	32890	34463	36102	14263
19	37810	39589	41442	43371	45379	47469	49645	51908	54261	56709	21445
20	59255	61901	64651	67508	70478	73562	76765	80091	83544	87129	31594
21	90849			•			•				

Table 5 Rating table developed for BPLI4

3. IOWA RIVER NEAR COLUMBUS JUNCTION, IA (CJT14)

- Gage Description CJTI4 Iowa River near Columbus Junction, IA
- Stream = Iowa River
- Gage Zero = N/A
- Flood Stage = N/A
- Record Stage = N/A
- Lat 41°16'45" Long 91°20'44"
- Drainage Area = 12,261 sq. mi.
- River Mile = 28.6
- Location of Gage = on right bank 15 feet downstream from bridge on State Highway 92, 0.5 mile downstream Cedar River, and 0.4 mile east of Columbus Junction, IA.

River-Stage Gaging Station

Bridge over the Iowa River

Figure 6 Log-linear stage-discharge relationships developed for CJTI4

DATE: 4/20/2003

CJTI4 - IOWA RIVER AT COLUMBUS JUNCTION, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH < 12.39 FT Q=10^{-1.299}*GH^{4.851}

EQUATION 2: GH > 12.39 FT Q=10^{0.935}*GH^{2.807}

GAGE HEIGHT.											DIFF. IN
GH	DISCHARGE, Q, IN CUBIC FEET PER SECOND										DISCHARGE
(FEET)											PER FOOT
(FEE1)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
6	299	324	351	379	409	441	475	511	549	589	
7	632	677	724	774	827	883	942	1003	1068	1136	576
8	1208	1283	1361	1444	1530	1620	1715	1814	1917	2025	931
9	2138	2256	2379	2507	2640	2779	2924	3075	3232	3395	1426
10	3565	3741	3924	4114	4312	4516	4729	4949	5178	5415	2095
11	5660	5914	6177	6449	6731	7022	7323	7634	7956	8289	2972
12	8632	8987	9353	9730	10098	10328	10562	10799	11039	11283	2898
13	11530	11781	12035	12293	12554	12819	13087	13359	13635	13914	2666
14	14197	14483	14773	15067	15365	15666	15971	16280	16593	16910	3034
15	17230	17555	17883	18215	18551	18891	19236	19584	19936	20292	3422
16	20652	21017	21385	21758	22135	22515	22901	23290	23684	24081	3831
17	24483	24890	25301	25716	26135	26559	26987	27420	27857	28298	4261
18	28744	29195	29650	30109	30574	31042	31516	31994	32476	32963	4711
19	33455	33952	34453	34959	35470	35986	36506	37031	37561	38096	5181
20	38636	39181	39731	40285	40845	41409	41979	42553	43133	43717	5671
21	44307	44902	45502	46107	46717	47332	47953	48579	49210	49846	6180
22	50487	51134	51786	52444	53107	53775	54448	55127	55812	56502	6710
23	57197	57898	58604	59316	60033	60756	61485	62219	62959	63704	7258
24	64455	65212	65974	66742	67516	68296	69081	69872	70669	71472	7825
25	72280			•	•	•		•			

Table 6 Rating table developed for CJTI4

4. DES MOINES RIVER NEAR EDDYVILLE, IA (EDYI4)

- Gage Description EDYI4 Des Moines River near Eddyville, IA
- Stream = Des Moines River
- Gage Zero = 600.00 feet NGVD (1929)
- Flood Stage = N/A
- Record Stage = N/A
- Lat 41°08'59" Long 92°38'04"
- Drainage Area = 13,130 sq. mi.
- River Mile =
- Location of Gage = on downstream guard rail of bridge on State Highway 137, at south edge of Eddyville, 0.35 mi upstream from Miller Creek, and 1.5 mi downstream from Grays Creek.

River-Stage Gaging Station

Downstream View

Figure 7 Log-linear stage-discharge relationships developed for EDYI4

DATE: 5/5/2003

EDYI4 - DES MOINES RIVER NEAR EDDYVILLE, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH< 50.57 FT Q=10^{-53.762}*GH^{33.667}

EQUATION 2: 50.57 FT<GH<55.08 FT Q=10^{-20.493}*GH^{14.142}

EQUATION 3: GH>55.08 FT Q=10^{-8.903}*GH^{7.485}

GAGE											DIFF. IN
HEIGHT, GH			DISCH	ARGE, C	, IN CUE	BIC FEE	T PER S	ECOND			DISCHARGE
(FEET)											PER FOOT
(1 LL1)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
46	165	178		206	221	238	256	275	295	317	
47	341	366		422	453	487	522	561	602	645	352
48	692	743	796	854	916	981	1052	1127	1208	1294	694
49	1386	1485	1590	1703	1823	1951	2088	2235	2391	2558	1351
50	2737	2927	3130	3347	3579	3826	4047	4161	4279	4400	1787
51	4523	4650	4781	4915	5052	5193	5337	5485	5637	5793	1430
52	5953	6117	6285	6457	6634	6815	7001	7192	7387	7588	1840
53	7793	8004	8219	8441	8667	8900	9138	9382	9632	9889	2358
54	10151	10420	10696	10978	11268	11564	11868	12179	12498	12824	3008
55	13159	13475	13659	13845	14034	14224	14417	14613	14810	15010	2053
56	15212	15417	15623	15833	16044	16259	16475	16694	16916	17140	2155
57	17367	17596	17828	18063	18300	18540	18783	19028	19277	19528	2415
58	19782	20038	20298	20560	20826	21094	21366	21640	21917	22198	2700
59	22482	22768	23058	23352	23648	23948	24250	24557	24866	25179	3014
60	25495	25815	26138	26465	26796	27129	27467	27808	28153	28501	3358
61	28853	29209	29569	29932	30300	30671	31046	31426	31809	32196	3734
62	32588	32983	33383	33787	34195	34607	35023	35444	35870	36300	4146
63	36734	37172	37616	38063	38516	38973	39435	39901	40372	40848	4596
64	41329	41815	42306	42802	43302	43808	44319	44835	45356	45883	5086
65	46415	46952	47495	48043	48596	49155	49719	50289	50865	51447	5619
66	52034	52627	53226	53831	54441	55058	55681	56310	56945	57586	6199
67	58233	58887	59547	60213	60886	61566	62252	62944	63644	64350	6829
68	65062	65782	66508	67242	67982	68730	69484	70246	71015	71791	7512
69	72575	73366	74164	74970	75784	76605	77434	78270	79115	79967	8253
70	80827	81696	82572	83457	84349	85250	86160	87077	88003	88938	9054
71	89881	90833	91794	92763	93741	94729	95725	96730	97744	98768	9920
72	99801	100843	101895	102956	104026	105107	106197	107296	108406	109526	10854
73	110655	111795	112945	114105	115275	116456	117647	118849	120061	121284	11863
74	122518				·	·	·	·	·		

Table 7 Rating table developed for EDYI4

5. WEST FORK DES MOINES RIVER NEAR EMMETSBURG, IA (EMTI4)

- Gage Description EMTI4 W. Des Moines River near Emmetsburg, IA
- Stream = West Fork Des Moines River
- Gage Zero = 1196.00 feet NGVD (1929)
- Flood Stage = 10.00 feet
- Record Stage = 20.75 feet Date 04-12-69
- Lat 43°07'35" Long 94°42'24"
- Drainage Area = 1672.0 sq. mi.
- River mile = 380.6
- Location of Gage = on left bank 15 ft downstream from bridge on US Highway 18, 3.0 miles downstream from Jack Creek, and 0.5 mile northwest of Emmetsburg, IA.

River-Stage Gaging Station

Downstream View

Figure 8 Log-linear stage-discharge relationships developed for EMTI4

DATE: 5/5/2003

EMTI4 - WEST FORK DES MOINES RIVER NEAR EMMETSBURG, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH < 10.56 FT Q=10^{-7.426}*GH^{10.148}

EQUATION 2: GH > 10.56 FT Q=10^{-0.316}*GH^{3.201}

GAGE												
HEIGHT,												
GH		DISCHARGE, Q, IN CUBIC FEET PER SECOND DISC										
(FEET)											PER FOOT	
(1 LL1)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
7	14.1	16.3	18.8	21.6	24.8	28.5	32.5	37.2	42.4	48.2		
8	54.8	62.1	70.4	79.6	89.9	101	114	128	144	162	126	
9	181	203	226	252	281	313	348	387	430	476	346	
10	527	583	645	712	785	865	925	953	982	1011	514	
11	1041	1072	1103	1135	1167	1200	1234	1268	1303	1339	334	
12	1376	1413	1450	1489	1528	1568	1608	1649	1691	1734	402	
13	1777	1821	1866	1912	1958	2005	2053	2102	2152	2202	476	
14	2253	2305	2358	2411	2466	2521	2577	2634	2692	2750	557	
15	2810	2870	2931	2994	3057	3121	3186	3251	3318	3386	645	
16	3455	3524	3595	3666	3739	3812	3887	3962	4039	4116	740	
17	4194	4274	4354	4436	4519	4602	4687	4773	4860	4948	842	
18	5037	5127	5218	5310	5404	5498	5594	5691	5789	5888	952	
19	5988	6090	6192	6296	6401	6507	6615	6723	6833	6944	1069	
20	7057	7170	7285	7401	7518	7637	7757	7878	8001	8124	1193	
21	8249	8376	8504	8633	8763	8895	9028	9162	9298	9435	1325	
22	9574	9714	9855	9998	10143	10288	10435	10584	10734	10885	1464	
23	11038	11192	11348	11506	11664	11825	11987	12150	12315	12481	1611	
24	12649											

Table 8 Rating table developed for EMTI4

6. WEST FORK DES MOINES RIVER NEAR ESTHERVILLE, IA (ESVI4)

- Gage Description ESVI4 W. Des Moines River near Estherville, IA
- Stream = West Fork Des Moines River
- Gage Zero = 1,247.55 feet NGVD (1929)
- Flood Stage = 7.00 feet
- Record Stage = 17.68 feet Date 04-12-69
- Lat 43°23'51" Long 94°50'38"
- Drainage Area = 1,372 sq. mi.
- River Mile = 404.2
- Location of Gage = Emmet County, city park in Estherville, IA; right bank; 1200 ft. downstream of State highway 9 bridge; 0.1 mi. upstream from School Creek, 2.3 mi. upstream from Brown Creek. at mile 404.2.

River-Stage Gaging Station

Downstream View

Figure 9 Log-linear stage-discharge relationships developed for ESVI4

DATE: 5/5/2003

ESVI4 - WEST FORK DES MOINES RIVER NEAR ESTHERVILLE, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH< 2.45 FT Q=10^{-0.483}*GH^{6.946}

EQUATION 2: 2.45 FT<GH<4.74 FT Q=10^{1.028}*GH^{3.072}

EQUATION 3: GH>4.74 FT Q=10^{2.093}*GH^{1.496}

GAGE HEIGHT, GH (FEET)	DISCHARGE, Q, IN CUBIC FEET PER SECOND									DIFF. IN DISCHARGE PER FOOT	
, ,	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
1	0.3	0.6	1.2	2.0	3.4	5.5	8.6	13.1	19.5	28.4	
2	40.5	56.9	78.6	107	144	178	201	226	252	281	271
3	312	345	380	418	458	501	546	594	644	698	443
4	754	814	876	942	1011	1083	1159	1238	1295	1335	622
5	1376	1418	1459	1502	1544	1587	1630	1674	1718	1763	432
6	1808	1853	1899	1945	1991	2038	2085	2132	2180	2228	469
7	2277	2325	2375	2424	2474	2524	2575	2625	2677	2728	503
8	2780	2832	2885	2937	2990	3044	3098	3152	3206	3261	536
9	3316	3371	3426	3482	3538	3595	3652	3709	3766	3824	566
10	3882	3940	3998	4057	4116	4175	4235	4295	4355	4416	595
11	4476	4537	4599	4660	4722	4784	4847	4909	4972	5035	622
12	5099	5162	5226	5291	5355	5420	5485	5550	5616	5681	649
13	5747	5814	5880	5947	6014	6081	6149	6216	6284	6353	674
14	6421										_

Table 9 Rating table developed for ESVI4

7. BOONE RIVER NEAR GOLDFIELD, IA (GLDI4)

- Gage Description GLDI4 Boone River near Goldfield, IA
- Stream = Boone River
- Gage Zero = N/A feet NGVD (1929)
- Flood Stage = N/A
- Record Stage = N/A
- Lat 42°43'34" Long 93°58'02"
- Drainage Area = 418 sq. mi.
- River Mile = N/A
- Location of Gage = on left bank 15 ft downstream from bridge on county
- highway, 1 mile upstream from ditch #9, and 1.5 miles south of Goldfield, IA.

River-Stage Gaging Station

Downstream View

Figure 10 Log-linear stage-discharge relationships developed for GLDI4

GLDI4 - BOONE RIVER NEAR GOLDFIELD, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH < 9.35 FT Q=10^{-10.439}*GH^{13.278}

EQUATION 2: GH > 9.35 FT Q=10^{-1.037}*GH^{3.592}

GAGE HEIGHT, GH (FEET)		DISCHARGE, Q, IN CUBIC FEET PER SECOND 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8												
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9				
7	6.1	7.3	8.8	10.6	12.7	15.1	18.0	21.5	25.5	30.2				
8	35.7	42.1	49.5	58.1	68.2	79.8	93.2	109	126	147	135			
9	170	197	228	263	287	299	310	322	334	346	189			
10	359	372	385	399	413	428	443	458	473	489	147			
11	506	522	539	557	575	593	612	631	650	670	185			
12	691	712	733	755	777	800	823	847	871	896	230			
13	921	947	973	1000	1027	1055	1083	1112	1141	1171	281			
14	1202	1233	1265	1297	1330	1363	1398	1432	1468	1503	338			
15	1540	1577	1615	1654	1693	1733	1773	1814	1856	1899	402			
16	1942	1986	2030	2076	2122	2169	2216	2265	2314	2364	472			
17	2414	2466	2518	2571	2625	2679	2735	2791	2848	2906	550			
18	2964	3024	3084	3146	3208	3271	3335	3400	3466	3532	635			
19	3600	3668	3738	3808	3880	3952	4025	4099	4175	4251	728			
20	4328	4406	4486	4566	4647	4730	4813	4897	4983	5070	829			
21	5157													

Table 10 Rating table developed for GLDI4

8. NORTH RACCOON RIVER NEAR LANESBORO, IA (LKCI4)

- Gage Description LKCI4 N. Raccoon River near Lanesboro, IA
- Stream = North Raccoon River
- Gage Zero = N/A
- Flood Stage = N/A
- Record Stage = N/A
- Lat 42°10'08" Long 94°43'34"
- Drainage Area = 1238 sq. mi.
- River Mile = N/A
- Location of Gage = on left bank 15 ft downstream from bridge on State Highway 286, 1.5 miles downstream from Elk Run, and 1.5 miles southwest of Lanesboro, IA.

River-Stage Gaging Station

Downstream View

Figure 11 Log-linear stage-discharge relationships developed for LKCI4

LKCI4 - NORTH RACCOON RIVER NEAR LANESBORO, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH< 8.85 FT Q=10^{-12.647}*GH^{16.079}

EQUATION 2: 8.85 FT<GH<11.48 FT Q=10^{-2.964}*GH^{5.852}

EQUATION 3: GH>11.48 FT Q=10^{-0.503}*GH^{3.530}

GAGE HEIGHT, GH (FEET)			DISCH	ARGE, Q	, IN CUB	IC FEET	PER SE	COND			DIFF. IN DISCHARGE PER FOOT
(, ,	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
7	8.7	11	13.7	17.2	21.3	26.5	32.8	40.4	49.8	61.1	
8	74.8	91.3	111	135	164	198	239	288	346	391	342
9	417	445	474	505	538	572	609	647	687	729	356
10	773	819	868	919	972	1028	1087	1148	1212	1279	577
11	1350	1423	1500	1580	1663	1743	1797	1852	1909	1966	676
12	2025	2086	2147	2210	2274	2339	2406	2474	2544	2615	661
13	2687	2760	2836	2912	2990	3070	3151	3233	3317	3403	803
14	3490	3579	3669	3761	3855	3950	4047	4146	4246	4349	962
15	4453	4558	4666	4775	4886	4999	5114	5230	5349	5469	1139
16	5592	5716	5842	5971	6101	6233	6368	6504	6643	6783	1334
17	6926	7071	7218	7367	7519	7672	7828	7986	8147	8309	1549
18	8475	8642	8812	8984	9158	9335	9514	9696	9881	10067	1782
19	10257	10448	10643	10840	11039	11241	11446	11654	11864	12077	2036
20	12292	12511	12732	12956	13182	13412	13644	13880	14118	14359	2310
21	14603	14850	15100	15353	15609	15868	16130	16395	16663	16934	2606
22	17209										

Table 11 Rating table developed for LKCI4

9. NORTH FORK ENGILISH RIVER NEAR PARNELL, IA (NEPI4)

- Gage Description NEPI4 N. Fork English River near Parnell, IA
- Stream = North Fork English River
- Gage Zero = N/A
- Flood Stage = N/A
- Record Stage = N/A
- Lat 41°33'45" Long 92°04'15"
- Drainage Area = 302 sq. mi.
- River Mile = 3.5
- Location of Gage = 15 ft downstream from bridge on County Highway F67, 3.5 miles upstream from South English River, and 4.0 miles south of Parnell, IA.

River-Stage Gaging Station

Downstream View

Figure 12 Log-linear stage-discharge relationships developed for NEPI4

NEPI4 - NORTH FORK ENGLISH RIVER NEAR PARNELL, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH< 14.66 FT Q=10^{-35.041}*GH^{31.818}

EQUATION 2: 14.66 FT<GH<16.19 FT Q=10^{-17.075}*GH^{16.411}

EQUATION 3: GH>16.19 FT Q=10^{-3.622}*GH^{5.286}

GAGE HEIGHT, GH (FEET)			DISCH	ARGE, Q	, IN CUB	IC FEET	PER SE	COND			DIFF. IN DISCHARGE PER FOOT
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
13	2.5	3.2	4.1	5.2	6.6	8.4	10.6	13.4	16.9	21.3	
14	26.7	33.5	41.9	52.4	65.4	81.5	102	121	135	151	142
15	168	188	209	233	259	288	320	356	395	438	317
16	485	537	591	610	631	651	672	694	716	739	277
17	762	786	811	836	862	889	916	944	972	1001	269
18	1031	1062	1093	1125	1158	1192	1226	1262	1298	1335	341
19	1372	1411	1451	1491	1532	1574	1618	1662	1707	1753	428
20	1800	1848	1897	1947	1999	2051	2104	2159	2215	2271	530
21	2329	2389	2449	2511	2574	2638	2704	2770	2838	2908	649
22	2979	3051	3125	3200	3277	3355	3434	3515	3598	3682	789
23	3768	3855	3944	4035	4127	4222	4317	4415	4514	4615	951
24	4718	4823	4930	5039	5149	5262	5376	5493	5611	5732	1136
25	5855	5980	6107	6236	6367	6501	6637	6775	6916	7058	1349
26	7204	7351	7501	7654	7809	7967	8127	8290	8455	8623	1590
27	8794	8968	9144	9323	9505	9690	9878	10068	10262	10458	1864
28	10658	10861	11067	11276	11488	11703	11922	12144	12369	12598	2172
29	12830	13066	13305	13548	13794	14044	14297	14554	14815	15080	2518
30	15348										_

Table 12 Rating table developed for NEPI4

10. NORTH RACCOON RIVER NEAR PERRY, IA (PROI4)

- Gage Description PROI4 N. Raccoon River near Perry, IA
- Stream = North Raccoon River
- Gage Zero = N/A
- Flood Stage = 13.00 feet
- Record Stage = N/A
- Lat 41°50'10" Long 94°07'34"
- Drainage Area = 2167 sq. mi.
- River Mile = N/A
- Location of Gage = On left bank 15 ft downstream from bridge on State Highway 141, 1.5 miles upstream from Frog Creek, and 1.5 miles west of Perry, IA.

River-Stage Gaging Station

Downstream View

Figure 13 Log-linear stage-discharge relationships developed for PROI4

PROI4 - NORTH RACCOON RIVER NEAR PERRY, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH < 5.65 FT Q=10^{-0.508}*GH^{4.660}

EQUATION 2: GH > 5.65 FT Q=10^{1.235}*GH^{2.342}

GAGE HEIGHT, GH (FEET)				DIFF. IN DISCHARGE PER FOOT							
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
2	7.8	9.9	12.2	15.1	18.4	22.2	26.7	31.8	37.6	44.3	
3	51.9	60.5	70.1	81.0	93.0	107	121	138	156	176	147
4	198	223	249	278	309	344	381	421	464	511	363
5	561	616	674	736	803	875	952	1012	1054	1097	580
6	1141	1186	1233	1280	1328	1377	1427	1478	1530	1583	496
7	1638	1693	1749	1807	1865	1925	1986	2047	2110	2174	601
8	2239	2305	2372	2441	2510	2581	2652	2725	2799	2874	711
9	2950	3027	3106	3186	3266	3348	3432	3516	3601	3688	826
10	3776	3865	3955	4046	4139	4233	4328	4424	4522	4620	944
11	4720	4821	4923	5027	5132	5238	5345	5454	5564	5675	1067
12	5787	5900	6015	6131	6249	6367	6487	6609	6731	6855	1193
13	6980	7106	7234	7363	7493	7625	7758	7892	8028	8165	1323
14	8303	8443	8583	8726	8869	9014	9160	9308	9457	9607	1456
15	9759	9912	10067	10222	10379	10538	10698	10859	11022	11186	1592
16	11351	11518	11687	11856	12027	12200	12374	12549	12726	12904	1732
17	13083	13264	13447	13630	13816	14002	14190	14380	14571	14763	1874
18	14957	15153	15349	15548	15747	15948	16151	16355	16561	16768	2019
19	16976	17186	17398	17611	17825	18041	18258	18477	18698	18920	2167
20	19143	19368	19594	19822	20052	20283	20515	20749	20985	21222	2317
21	21460										

Table 13 Rating table developed for PROI4

11. IOWA RIVER NEAR STEAMBOAT ROCK, IA (STBI4)

- Gage Description STBI4 Iowa River near Steamboat Rock, IA
- Stream = Iowa River
- Gage Zero = 951.46 feet NGVD (1929)
- Flood Stage = N/A
- Record Stage = 16.42 feet Date 03/08/65
- Lat 42° 24'26" Long 93°04'19"
- Drainage Area = 735.0 sq. mi.
- River Mile = 258.1
- Location of Gage = Hardin County, Streamboat Rock, IA; on right bank 400 ft upstream from bridge on county highway D35 in Steamboat Rock, and at mile 258.1.

River-Stage Gaging Station

Downstream View

Figure 14 Log-linear stage-discharge relationships developed for STBI4

STBI4 - IOWA RIVER AT STEAMBOAT ROCK, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH < 5.99 FT Q=10^{-7.408}*GH^{13.078}

EQUATION 2: GH > 5.99 FT Q=10^{0.135}*GH^{3.376}

GAGE HEIGHT, GH (FEET)			DISCH	ARGE, Q	, IN CUB	IC FEET	PER SE	COND			DIFF. IN DISCHARGE PER FOOT
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
4	2.9	4.0	5.5	7.5	10.2	13.6	18.2	24.1	31.7	41.5	
5	54.1	70.1	90.3	116	148	188	238	300	377	471	524
6	578	611	646	682	719	758	798	839	882	927	395
7	973	1021	1070	1121	1174	1228	1284	1342	1402	1464	554
8	1527	1592	1660	1729	1800	1874	1949	2027	2107	2189	746
9	2273	2359	2448	2539	2632	2728	2826	2927	3030	3135	971
10	3243	3354	3468	3584	3703	3824	3949	4076	4206	4339	1231
11	4475	4613	4755	4900	5048	5199	5353	5511	5671	5835	1528
12	6002	6173	6347	6524	6705	6889	7077	7268	7464	7662	1862
13	7865	8071	8281	8494	8712	8933	9159	9388	9621	9859	2236
14	10100	10346	10596	10850	11108	11371	11637	11909	12184	12465	2649
15	12749	13039	13332	13631	13934	14242	14554	14872	15194	15521	3104
16	15853	•	•		•	•			•		

Table 14 Rating table developed for STBI4

12. IOWA RIVER NEAR TAMA, IA (TAMI4)

- Gage Description TAMI4 Iowa River near Tama, IA
- Stream = Iowa River
- Gage Zero = 794.34 feet NGVD (1929)
- Flood Stage = 13.00 feet
- Record Stage = 21.60 feet Date 05-23-93
- Lat 41°37'11" Long 92°34'36"
- Drainage Area = 1,984 sq. mi.
- River Mile = 188.5
- Location of Gage = on right bank at downstream side of bridge on State Highway 63 south side of Tama, 0.45 miles downstream from Deer Creek, and at mile 188.5.

Wire Gage on the Bridge

Downstream View

Figure 15 Log-linear stage-discharge relationships developed for TAMI4

TAMI4 - IOWA RIVER NEAR TAMA, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH< 9.68 FT Q=10^{-3.397}*GH^{6.389}

EQUATION 2: 9.68 FT<GH<17.62 FT Q=10^{-0.480}*GH^{3.430}

EQUATION 3: GH>17.62 FT Q=10^{-2.304}*GH^{4.894}

GAGE HEIGHT,			DISCHA	ARGE, Q	. IN CUB	IC FEET	PER SE	COND			DIFF. IN DISCHARGE
GH				- ,	,						PER FOOT
(FEET)	0	0.4	0.0	0.0	0.4	0.5	0.0	0.7	0.0	0.0	
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	
7	101	110	120	132	143	156	170	185	201	218	
8	236	256	276	299	322	348	375	403	434	466	265
9	501	537	576	618	661	707	756	803	832	861	391
10	891	922	954	986	1020	1054	1088	1124	1161	1198	345
11	1236	1275	1315	1355	1397	1439	1483	1527	1572	1619	430
12	1666	1714	1763	1813	1864	1916	1969	2023	2078	2135	526
13	2192	2250	2310	2370	2432	2495	2559	2624	2690	2758	634
14	2826	2896	2967	3040	3113	3188	3264	3341	3420	3500	755
15	3581	3664	3747	3833	3919	4007	4097	4187	4280	4373	887
16	4468	4565	4663	4762	4863	4966	5070	5175	5282	5391	1033
17	5501	5613	5726	5841	5958	6076	6196	6362	6540	6721	1406
18	6907	7097	7291	7489	7692	7898	8110	8325	8545	8770	2092
19	9000	9234	9473	9717	9966	10220	10479	10743	11012	11287	2568
20	11568	11853	12145	12442	12745	13053	13368	13689	14015	14348	3120
21	14687	15033	15385	15743	16108	16480	16858	17244	17636	18036	3755
22	18442	18856	19278	19706	20143	20586	21038	21498	21965	22441	4482
23	22924	23416	23917	24425	24943	25469	26004	26547	27100	27662	5309
24	28233	28813	29403	30003	30612	31231	31859	32498	33147	33807	6243
25	34476										

Table 15 Rating table developed for TAMI4

13. DEER CREEK NEAR TOLEDO, IA (TOLI4)

- Gage Description TOLI4 Deer Creek near Toledo, IA
- Stream = Deer Creek
- Gage Zero = N/A
- Flood Stage = N/A
- Record Stage = N/A
- Lat 42°00'00" Long 92°35'10"
- Drainage Area = 76.4 sq. mi.
- River Mile = N/A
- Location of Gage = on right bank 15 ft downstream from bridge on County Highway E43, 1.0 mile south of mouth of Jordan Creek, and 1.0 mile north of Toledo, IA.

River-Stage Gaging Station

Downstream View

Figure 16 Log-linear stage-discharge relationships developed for TOLI4

TOLI4 - DEER CREEK NEAR TOLEDO, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH < 4.90 FT Q=10^{-7.785}*GH^{14.073}

EQUATION 2: GH > 4.90 FT Q=10^{-0.805}*GH^{3.961}

GAGE HEIGHT, GH (FEET)		DISCHARGE, Q, IN CUBIC FEET PER SECOND 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8												
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9				
3	0.1	0.1	0.2	0.3	0.5	0.7	1.1	1.6	2.4	3.4				
4	4.9	6.9	9.7	13.5	18.6	25.6	34.8	47.1	63.4	84.9	87			
5	92.0	100	107	116	125	134	144	155	166	177	97			
6	189	202	216	230	245	260	276	293	311	329	159			
7	349	369	390	412	435	458	483	509	535	563	243			
8	592	622	653	685	718	752	788	825	863	903	352			
9	944	986	1029	1074	1121	1169	1218	1269	1322	1376	489			
10	1432	1490	1549	1610	1673	1738	1804	1872	1943	2015	657			
11	2089	2165	2244	2324	2407	2491	2578	2667	2759	2853	860			
12	2949	3047	3148	3252	3358	3466	3577	3691	3808	3927	1100			
13	4049	4174	4301	4432	4565	4702	4841	4984	5129	5278	1381			
14	5430	5585	5744	5906	6071	6240	6412	6588	6767	6950	1707			
15	7137	7327	7521	7719	7921	8127	8336	8550	8768	8990	2079			
16	9216													

Table 16 Rating table developed for TOLI4

14. WEST FORK DES MOINES RIVER NEAR WINDOM, MN (WDOM5)

- Gage Description WDOM5 W. Des Moines River near Windom, MN
- Stream = West Fork Des Moines River
- Gage Zero = N/A
- Flood Stage = 17.00 feet
- Record Stage = N/A
- Lat 43°53'26" Long 95°09'35"
- Drainage Area = N/A
- River Mile = 450.8
- Location of Gage = North Side of City of Windom, MN Golf Course.

River-Stage Gaging Station

Downstream View

Figure 17 Log-linear stage-discharge relationships developed for WDOM5

WDOM5 - WEST FORK DES MOINES RIVER NEAR WINDOM, MINNESOTA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH< 12.01 FT Q=10^{-45.910}*GH^{44.505}

EQUATION 2: 12.01 FT<GH<14.44 FT Q=10^{-7.457}*GH^{8.886}

EQUATION 3: GH>14.44 FT Q=10^{-3.001}*GH^{5.043}

GAGE HEIGHT, GH (FEET)				DIFF. IN DISCHARGE PER FOOT							
(== : ,	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
10	0.0	0.1	0.1	0.1	0.2	0.3	0.5	0.8	1.2	1.8	
11	2.7	4.1	6.1	9.1	13.4	19.8	29.1	42.6	62.2	90.6	129
12	132	146	157	169	182	195	209	225	241	258	145
13	276	296	317	339	362	387	413	441	470	501	258
14	534	569	606	645	686	717	743	769	796	823	317
15	851	880	910	941	972	1004	1037	1071	1106	1142	327
16	1179	1216	1255	1294	1335	1377	1419	1463	1507	1553	422
17	1600	1648	1697	1748	1799	1852	1906	1961	2018	2076	535
18	2135	2195	2257	2320	2385	2451	2519	2588	2658	2730	669
19	2804	2879	2956	3034	3115	3196	3280	3365	3452	3541	828
20	3632	3724	3818	3915	4013	4113	4215	4320	4426	4534	1013
21	4645	4757	4872	4989	5108	5230	5354	5480	5608	5739	1228
22	5873	6009	6147	6288	6431	6577	6726	6878	7032	7189	1476
23	7348	7511	7676	7845	8016	8190	8368	8548	8731	8918	1759
24	9108	9301	9497	9696	9899	10106	10315	10529	10745	10966	2082
25	11190	11417	11648	11883	12122	12365	12611	12862	13116	13374	2447
26	13637	13903	14174	14449	14728	15012	15300	15592	15889	16190	2859
27	16496	16806	17121	17441	17765	18095	18429	18768	19113	19462	3321
28	19816										

Table 17 Rating table developed for WDOM5

15. BEAVER CREEK NEAR WOODWARD, IA (WWDI4)

- Gage Description WWDI4 Beaver Creek near Woodward, IA
- Stream = Beaver Creek
- Gage Zero = N/A feet NGVD (1929)
- Flood Stage = N/A
- Record Stage = N/A
- Lat 41°47'31" Long 93°57'20"
- Drainage Area = 280 sq. mi.
- River Mile = N/A
- Location of Gage = 15 ft downstream from bridge on county highway, 3.5 miles downstream from Little Beaver Creek, and 3.5 miles south of Woodward, IA.

River-Stage Gaging Station

Downstream View

Figure 18 Log-linear stage-discharge relationships developed for WWDI4

WWDI4 - BEAVER CREEK NEAR WOODWARD, IOWA

RATING TABLE: LACMRERS, IIHR - HYDROSCIENCE & ENGINEERING

EQUATION 1: GH< 11.52 FT Q=10^{-61.171}*GH^{59.393}

EQUATION 2: 11.52 FT<GH<14.42 FT Q=10^{-9.125}*GH^{10.356}

EQUATION 3: GH>14.42 FT Q=10^{-1.747}*GH^{3.990}

GAGE HEIGHT, GH (FEET)			DISCHA	RGE, Q,	IN CUBI	C FEET	PER SE(COND			DIFF. IN DISCHARGE PER FOOT
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
10	0	0	0.1	0.1	0.2	0.3	0.5	0.9	1.6	2.8	
11	4.8	8.2	14	23.7	40	67.1	79.2	86.5	94.5	103	108
12	113	123	134	145	158	172	186	202	219	238	145
13	258	279	302	326	353	381	411	444	478	515	297
14	555	598	643	691	743	771	792	814	836	859	327
15	882	906	930	955	980	1006	1032	1058	1086	1113	259
16	1141	1170	1199	1229	1260	1291	1322	1354	1387	1420	312
17	1454	1488	1523	1559	1595	1632	1670	1708	1747	1786	372
18	1826	1867	1909	1951	1994	2037	2081	2126	2172	2219	440
19	2266	2314	2363	2412	2462	2513	2565	2618	2671	2725	515
20	2780	2836	2893	2951	3009	3068	3129	3190	3251	3314	598
21	3378	3443	3508	3575	3642	3711	3780	3850	3921	3994	689
22	4067	4141	4217	4293	4370	4448	4528	4608	4690	4773	789
23	4856	4941	5027	5114	5202	5291	5382	5473	5566	5660	899
24	5755	5851	5949	6047	6147	6249	6351	6455	6559	6666	1018
25	6773	6882	6992	7103	7216	7330	7445	7562	7680	7800	1147
26	7920										

Table 18 Rating table developed for WWDI4

APPENDIX I

ANALYSIS OF FEILD VELOCITY DATA FOR FIFTEEN GAGING STATIONS

AGNI4_9-5-02 (TRIP 1)

AGNI4 9-5-02 (TRIP 1) Gage = 7.26' at 12:00W = 115'С Dist w (ft) d (ft) Rev Time V ۷c a (sq ft) q (cfs) Flow Dir Corr (ft/s) depth factor from (sec) (ft/s) (deg) Flow Dir ΙP (deg) 0.0 1.000 4.6 4.6 1.3 0.6 5 53 0.23 0.23 5.98 1.35 360 -270 1.000 9.2 4.6 1.8 0.6 5 40 0.29 0.29 8.28 2.43 360 -270 1.000 13.8 4.6 2.1 0.6 5 28 0.41 0.41 9.66 3.98 360 -270 1.000 18.4 4.6 2.4 0.6 10 47 0.49 0.49 11.04 5.38 360 -270 1.000 23.0 4.6 2.4 0.6 10 48 0.48 0.48 11.04 5.27 360 -270 1.000 27.6 4.6 2.6 0.6 10 0.37 0.37 11.96 4.47 360 -270 62 1.000 32.2 4.6 2.9 0.6 10 46 0.50 0.50 13.34 6.63 360 -270 1.000 36.8 4.6 3.0 8.0 10 46 0.50 0.54 13.80 7.46 360 -270 1.000 36.8 0.0 3.0 0.2 10 39 0.58 0.00 0.00 0.00 360 -270 1.000 41.4 4.6 3.8 8.0 9 42 0.49 0.56 17.48 9.86 360 -270 1.000 0.0 3.8 0.2 9 32 0.64 0.00 0.00 0.00 360 -270 41.4 9 18.86 9.79 360 -270 1.000 46.0 4.6 4.1 0.8 44 0.47 0.52 1.000 10 0.57 0.00 0.00 0.00 360 -270 46.0 0.0 4.1 0.2 40 1.000 4.1 8 18.86 9.79 360 -270 50.6 4.6 0.8 40 0.46 0.52 1.000 50.6 0.0 4.1 0.2 14 55 0.58 0.00 0.00 0.00 360 -270 1.000 55.2 4.6 4.3 0.8 6 35 0.40 0.48 19.78 9.41 360 -270 0.00 360 -270 1.000 55.2 0.0 4.3 0.2 10 41 0.56 0.00 0.00 19.32 360 -270 1.000 59.8 4.6 4.2 0.8 10 55 0.42 0.47 9.17 0.00 0.00 360 -270 1.000 59.8 0.0 4.2 0.2 10 43 0.53 0.00 -270 1.000 64.4 4.6 4.3 8.0 5 42 0.28 0.37 19.78 7.41 360 1.000 64.4 0.0 4.3 0.2 9 44 0.47 0.00 0.00 0.00 360 -270 360 -270 1.000 69.0 4.6 4.4 8.0 5 34 0.34 0.39 20.24 7.80 1.000 69.0 0.0 4.4 0.2 8 43 0.43 0.00 0.00 0.00 360 -270 1.000 73.6 4.6 4.1 0.8 5 39 0.30 0.34 18.86 6.47 360 -270 1.000 73.6 0.0 4.1 0.2 7 42 0.39 0.00 0.00 0.00 360 -270 1.000 78.2 4.6 4.0 8.0 6 56 0.25 0.30 18.40 5.49 360 -270 1.000 78.2 0.0 4.0 0.2 5 34 0.34 0.00 0.00 0.00 360 -270 1.000 82.8 4.6 3.7 8.0 2 32 0.16 0.22 17.02 3.82 360 -270 1.000 82.8 0.0 3.7 0.2 3 24 0.29 0.00 0.00 0.00 360 -270 1.000 0.22 87.4 4.6 3.4 0.8 3 40 0.18 15.64 3.49 360 -270 0.00 1.000 3.4 0.26 0.00 360 -270 87.4 0.0 0.2 3 27 0.00 1.000 92.0 4.6 2 2.66 360 -270 3.0 0.8 28 0.18 0.19 13.80 0.00 1.000 92.0 0.0 3.0 0.2 4 46 0.21 0.00 0.00 360 -270 360 -270 1.000 96.6 4.6 2.7 0.6 4 36 0.26 0.26 12.42 3.27 0.6 -270 1.000 101.2 4.6 2.0 0.06 0.06 9.20 0.53 360 1 55 270 -180 0.000 105.8 2 8.28 0.00 4.6 1.8 0.6 47 0.11 0.11 0 0.00 235 -145 -0.574110.4 4.6 1.3 0.6 0 0.00 5.98 0.00 115.0

339.02

125.95

AGNI4_9-26-02 (TRIP 2)

AGNI4_9-26-02 (TRIP 2) Gage = 6.95' at 10:00

	Dist	w (ft)	d (ft)	%	Rev	Time		Vc	a (sq ft)	q (cfs)	Flow Dir	
	from IP			depth		(sec)	(ft/s)	(ft/s)			(deg)	Flow Dir (deg)
	0.0											
0.000	3.6	3.6	1.1	0.6	3		0.10		3.96			-180
0.000	8.2	4.6	1.6	0.6	3	65.5	0.12		7.36			-180
0.766	12.8	4.6	1.9	0.6	4		0.15		8.74			-230
0.766	17.4	4.6	2.0	0.6	3		0.14		9.20			-230
0.000	22.0	4.6	2.3		3		0.13		10.58			0
0.940	26.6	4.6	2.3		2		0.09				340	
0.940	31.2	4.6	2.6		3		0.14		11.96			-250
0.940	35.8	4.6	3.2		3		0.17		14.72			
0.940	35.8	0.0	3.2		3		0.20		0.00			
0.940	40.4	4.6	3.6		3		0.17		16.56			-250
0.940	40.4	0.0	3.6		3		0.18		0.00			-250
0.940	45.0	4.6	3.8	0.8	3		0.16		17.48		340	
0.940	45.0	0.0	3.8	0.2	3		0.18		0.00			-250
0.940	49.6	4.6	4.1	0.8	3		0.16		18.86			
0.940	49.6	0.0	4.1	0.2	3		0.17		0.00			
0.940	54.2	4.6	4.1	0.8	3		0.14		18.86		340	-250
0.940	54.2	0.0	4.1	0.2	3		0.17		0.00			-250
0.940	58.8	4.6	4.0		3		0.13		18.40			
0.940	58.8	0.0	4.0	0.2			0.17		0.00			-250
0.940	63.4	4.6	4.0	0.8	3		0.12		18.40			
0.940	63.4	0.0	4.0	0.2			0.16		0.00			-250
0.766	68.0	4.6	4.1	0.8	3		0.10		18.86			-230
0.766	68.0	0.0	4.1	0.2	3 2		0.16		0.00			
0.940 0.940	72.6 72.6	4.6	3.9	0.8 0.2			0.09 0.18	0.13 0.00	17.94			
0.940	77.2	0.0 4.6	3.9	0.2	3		0.16		0.00 17.48			
0.940	77.2	0.0	3.8 3.8	0.8			0.13		0.00			
0.940	81.8	4.6	3.2		3		0.14		14.72			-250 -250
0.940	81.8	0.0	3.2	0.8	3	64.4	0.08		0.00			-250 -250
0.940	86.4	4.6	3.1	0.2			0.12		14.26			-250
0.940	86.4	0.0	3.1	0.8	2	34.2	0.00		0.00			-250
1.000	91.0	4.6	2.8	0.2	0	0.0	0.13		12.88			
0.000	95.6	4.6	2.8	0.6	1	58.0	0.06		12.88			-180
0.866	100.2	4.6	1.8	0.6	2		0.00		8.28			60
1.000	100.2	4.6	1.7			0.0	0.00		7.82			-270
1.000	104.8	4.6	1.2				0.00		5.52			-270
1.000	113.0	4.0	1.2	0.0	J	0.0	0.00	0.00	3.32	0.00	300	-210
	110.0								316.30	32.55		

AGNI4_10-30-02 (TRIP 3)

AGNI4_			P 3)									
Gage = W = 116		13:00										
C factor	Dist from IP	w (ft)	d (ft)	% depth	Rev	Time (sec)		Vc (ft/s)	a (sq ft)	q (cfs)	Flow Dir (deg)	Corr Flow Dir (deg)
	0.0											
1.000	4.6	4.6	1.5	0.6	30		0.37		6.90	2.59	360	-270
1.000 1.000	9.2 13.8	4.6 4.6	2.0 2.3	0.6 0.6	10 10	49.1 44.2	0.47 0.52		9.20 10.58	4.30 5.47	360 360	-270 -270
1.000	18.4	4.6	2.6	0.6	10	32.5	0.32		11.96	8.33		-270
0.940	23.0	4.6	2.6	0.6	10	30.8	0.70		11.96	8.25	340	-250
0.985	27.6	4.6	2.8	0.6	10	34.2	0.66		12.88	8.41	350	-260
0.985	32.2	4.6	3.0	0.6	10	27.5	0.82		13.80	11.14	350	-260
0.985	36.8	4.6	3.4	0.8	10	30.7	0.74	0.79	15.64	12.12		-260
0.985	36.8	0.0	3.4	0.2	10	26.9	0.84	0.00	0.00	0.00	350	-260
0.985	41.4	4.6	4.1	0.8	10	29.9	0.76		18.86	15.37		-260
0.985	41.4	0.0	4.1	0.2	10	25.0	0.90		0.00	0.00	350	-260
0.966	46.0	4.6	4.1	0.8	10	29.2	0.77		18.86	15.51	345	-255
0.966	46.0	0.0	4.1	0.2	10	24.2	0.93		0.00	0.00		-255
0.985	50.6	4.6	4.2	0.8	10	29.1	0.78		19.32	15.65	350	-260
0.985 0.985	50.6 55.2	0.0 4.6	4.2 4.4	0.2	10 10	25.9 32.4	0.87 0.70		0.00 20.24	0.00 15.13		-260 -260
0.985	55.2	0.0	4.4 4.4	0.8 0.2	10	32.4 27.5	0.70		0.00	0.00	350 350	-260
0.985	59.8	4.6	4.4	0.2	10	29.1	0.02		20.24	16.20	350	-260
0.985	59.8	0.0	4.4	0.2	10	26.5	0.85		0.00	0.00	350	-260
0.985	64.4	4.6	4.6	0.8	10	36.1	0.63		21.16	14.89	350	-260
0.985	64.4	0.0	4.6	0.2	10	28.2	0.80		0.00	0.00	350	-260
0.985	69.0	4.6	4.7	0.8	10	40.1	0.57	0.62	21.62	13.29	350	-260
0.985	69.0	0.0	4.7	0.2	10	33.3	0.68	0.00	0.00	0.00	350	-260
0.985	73.6	4.6	4.5	8.0	10	45.2	0.51		20.70	11.87	350	-260
0.985	73.6	0.0	4.5	0.2	10	34.4	0.66		0.00	0.00	350	-260
0.985	78.2	4.6	4.3	0.8	10	50.3	0.46		19.78	9.67	350	-260
0.985	78.2	0.0	4.3	0.2	10	42.5	0.54		0.00	0.00	350	-260
0.966	82.8	4.6	3.9	0.8	5 5	28.0	0.41		17.94	7.84		-255 -255
0.966 0.966	82.8 87.4	0.0 4.6	3.9 3.5	0.2 0.8	5 5	23.2 48.8	0.49 0.24		0.00 16.10	0.00 5.17	345 345	-255 -255
0.966	87.4	0.0	3.5	0.6	5 5	40.0 27.4			0.00	0.00	345 345	-255 -255
0.966	92.0	4.6	3.2	0.2	5	42.2	0.42		14.72	4.44	345	-255
0.966	92.0	0.0	3.2	0.2	5	33.7	0.25		0.00	0.00		-255
0.966	96.6	4.6	2.9	0.6	2		0.17		13.34	2.16	345	-255
0.643	101.6	5.0	2.2	0.6	3	32.9	0.22		11.00	1.55	310	-220
0.643	106.2	4.6	1.9	0.6	2	43.0	0.12		8.74	0.68	310	-220
-0.174	110.8	4.6	1.4	0.6	1	57.0	0.06	0.06	6.44	-0.06	260	-170
	116.0											
									361.98	209.96		

AGNI4_12-12-02 (TRIP 4)

	_12-12-0 _7.21' at 		P 4)									
C factor	Dist from IP	w (ft)	d (ft)	% depth	Rev	Time (sec)		Vc (ft/s)	a (sq ft)	q (cfs)	Flow Dir (deg)	Corr Flow Dir (deg)
												(459)
	0.0					<u></u>			<u></u>		<u></u>	
1.000								0.16	5.00		360	-270
1.000			1.53		6		0.20	0.20	7.65		360	-270
1.000					10			0.20	9.45		360	-270
1.000					10		-	0.24	11.50		360	
1.000					10			0.25	14.45		360	
1.000								0.23	17.00		360	
1.000								0.31	19.30		360	
1.000		5.0	4.42	0.6	10	37.5		0.29	22.10		360	
1.000								0.36	23.90		360	
1.000					10		0.32	0.32	24.00		360	-270
1.000					10		0.37	0.37	24.25	8.98	360	-270
1.000	60.0				10		0.36	0.36	25.25	9.11	360	-270
1.000	65.0	5.0	5.15	0.6	10	32.8	0.32	0.32	25.75	8.33	360	
1.000							0.32	0.32	26.00		360	
1.000					10		0.26	0.26	25.50		360	
1.000			4.87		10		0.27	0.27	24.35		360	
1.000					10		0.20	0.20	22.75		360	
1.000					2		0.13	0.13	20.00		360	
1.000			3.15		6	54.8	0.14	0.14	15.75	2.14	360	-270
1.000			2.35		0	0.0	0.00	0.00	11.75		360	-270
1.000	105.0	5.0	1.62	0.6	0	0.0	0.00	0.00	8.10	0.00	360	-270
1.000	110.0	5.0	1.30	0.6	0	0.0	0.00	0.00	6.50	0.00	360	-270
1.000			0.85	0.6	0	0.0	0.00	0.00	4.25	0.00	360	-270
	120.0											
									394.55	100.39		

BPLI4_9-3-02 (TRIP 1)

BPLI4 9-3-02 (TRIP 1) Gage = 7.00' at 16:15W = 180'С ۷c Dist w (ft) d (ft) % Rev Time V a (sq ft) q (cfs) Flow Dir Corr (ft/s) depth factor from (sec) (ft/s) (deg) Flow Dir ΙP (deg) 0.0 1.000 7.2 7.2 1.30 0.6 20 43 1.04 1.04 9.36 9.77 360 -270 1.000 14.4 7.2 1.40 0.6 20 38.1 1.18 1.18 10.08 11.85 360 -270 1.000 21.6 7.2 1.30 0.6 20 43 1.04 1.04 9.36 9.77 360 -270 1.000 28.8 7.2 1.40 0.6 25 46 1.22 1.22 10.08 12.26 360 -270 1.000 36.0 7.2 0.90 0.6 20 36 1.24 1.24 6.48 8.05 360 -270 1.000 43.2 7.2 1.90 0.6 25 37 1.51 1.51 13.68 20.63 360 -270 1.000 50.4 7.2 2.20 0.6 20 34 1.32 1.32 15.84 20.83 360 -270 1.000 57.6 7.2 2.00 0.6 20 27 1.65 1.65 14.40 23.78 360 -270 1.000 64.8 7.2 1.80 0.6 25 31 1.80 1.80 12.96 23.28 360 -270 1.000 72.0 7.2 2.10 0.6 20 28 1.59 1.59 15.12 24.09 360 -270 1.000 79.2 7.2 2.10 0.6 20 28 1.59 1.59 15.12 24.09 360 -270 1.000 7.2 20 1.78 17.28 30.79 360 -270 86.4 2.40 0.6 25 1.78 1.000 93.6 2.90 30 1.67 20.88 34.91 360 -270 7.2 0.6 40 1.67 1.000 100.8 3.60 30 1.96 25.92 44.73 360 -270 7.2 0.8 34 1.73 1.000 100.8 0.0 3.60 0.2 20 30 1.49 0.00 0.00 0.00 360 -270 1.000 108.0 7.2 3.90 0.8 30 31 2.15 1.87 28.08 52.58 360 -270 360 -270 1.000 108.0 0.0 3.90 0.2 25 35 1.59 0.00 0.00 0.00 32.40 59.35 360 -270 1.000 115.2 7.2 4.50 0.8 25 25 2.22 1.83 1.44 360 -270 1.000 115.2 0.0 4.50 0.2 20 31 0.00 0.00 0.00 -270 1.000 122.4 7.2 4.60 8.0 30 30 2.22 1.83 33.12 60.67 360 1.000 122.4 0.0 4.60 0.2 20 31 1.44 0.00 0.00 0.00 360 -270 1.000 129.6 7.2 4.30 0.8 25 25 2.22 2.04 30.96 63.14 360 -270 1.000 129.6 0.0 4.30 0.2 25 30 1.86 0.00 0.00 0.00 360 -270 1.000 136.8 7.2 6.30 0.8 25 26 2.14 1.78 45.36 80.73 360 -270 1.000 136.8 0.0 6.30 0.2 35 55 1.42 0.00 0.00 0.00 360 -270 1.000 144.0 7.2 7.00 8.0 45 45 2.22 2.04 50.40 102.78 360 -270 1.000 144.0 0.0 7.00 0.2 25 30 1.86 0.00 0.00 0.00 360 -270 1.89 1.000 151.2 7.2 6.50 8.0 25 28 1.99 46.80 88.52 360 -270 1.000 151.2 0.0 6.50 0.2 25 31 1.80 0.00 0.00 0.00 360 -270 38.16 1.000 158.4 7.2 5.30 0.8 15 36 0.94 1.13 42.96 360 -270 1.32 1.000 5.30 20 0.00 360 -270 158.4 0.0 0.2 34 0.00 0.00 1.000 4.00 10 0.40 28.80 360 -270 165.6 7.2 0.8 57 0.68 19.70 0.707 165.6 4.00 0.2 0.96 0.00 0.00 0.00 45 45 0.0 15 35 0.000 172.8 7.2 2.30 0.6 10 35 0.65 0.65 16.56 0.00 90 0 180.0 547.20 869.24

BPLI4_9-24-02 (TRIP 2)

BPLI4_9-24-02 (TRIP 2) Gage = 6.61' at 14:45

W = 205'												
C factor	Dist from	w (ft)	d (ft)	% depth	Rev	Time (sec)		Vc (ft/s)	a (sq ft)	q (cfs)	Flow Dir (deg)	Corr Flow Dir
140101	IP			doptii		(300)	(1.1.0)	(14,0)			(uog)	(deg)
	0.0											
1.000	8.2	8.2	1.00	0.6	20	45.9	0.98	0.98	8.20	8.03	360	-270
1.000	16.4	8.2	1.00	0.6	20	36.7	1.22	1.22	8.20	10.00	360	-270
1.000	24.6	8.2	1.20	0.6	20	33.4	1.34	1.34	9.84	13.17	360	-270
1.000	32.8	8.2	1.00	0.6	20	35.2	1.27	1.27	8.20	10.42	360	-270
1.000	41.0	8.2	1.20	0.6	20	34.1	1.31	1.31	9.84	12.90	360	-270
1.000	49.2	8.2	1.30	0.6	20	28.1	1.59	1.59	10.66	16.92	360	-270
1.000	57.4	8.2	1.80	0.6	20	28.3	1.58			23.27	360	-270
1.000	65.6	8.2	1.70	0.6	20	24.8	1.80	1.80	13.94	25.04	360	-270
1.000	73.8	8.2	1.70	0.6	20	25.4	1.75	1.75	13.94	24.45	360	-270
1.000	82.0	8.2	1.90	0.6	20	26.4	1.69	1.69	15.58	26.31	360	-270
1.000	90.2	8.2	2.10	0.6	20	25.8	1.73	1.73	17.22	29.74	360	-270
1.000	98.4	8.2	2.50	0.6	20	27.1	1.65	1.65	20.50	33.73	360	-270
1.000	106.6	8.2	3.50	0.8	20	30.8	1.45	1.68	28.70	48.11	360	-270
1.000	106.6	0.0	3.50	0.2	20	23.4	1.90	0.00	0.00	0.00	360	-270
1.000	114.8	8.2	4.00	0.8	20	25.0	1.78	1.94	32.80	63.64	360	-270
1.000	114.8	0.0	4.00	0.2	20	21.2	2.10	0.00	0.00	0.00	360	-270
1.000	123.0	8.2	4.20	0.8	20	26.9	1.66	1.97	34.44	67.79	360	-270
1.000	123.0	0.0	4.20	0.2	20	19.5	2.28	0.00	0.00	0.00	360	-270
1.000	131.2	8.2	4.30	0.8	10	14.5	1.54	1.85	35.26	65.19	360	-270
1.000	131.2	0.0	4.30	0.2	20	20.6	2.16	0.00	0.00	0.00	360	-270
1.000	139.4	8.2	6.60	0.8	20	23.9	1.86	1.90	54.12	102.56	360	-270
1.000	139.4	0.0	6.60	0.2	20	23.1	1.93	0.00	0.00	0.00	360	-270
1.000	147.6	8.2	6.70	0.8	20	22.8	1.95	1.99	54.94	109.19	360	-270
1.000	147.6	0.0	6.70	0.2	20	22.0	2.02	0.00	0.00	0.00	360	-270
1.000	155.8	8.2	4.40	0.8	20	32.3	1.38	1.39	36.08	50.06	360	-270
1.000	155.8	0.0	4.40	0.2	20	32.1	1.39	0.00	0.00	0.00	360	-270
0.707	164.0	8.2	3.70	0.8	10	26.2	0.86	0.88	30.34	18.78	45	45
0.707	164.0	0.0	3.70	0.2	20	50.5	0.89	0.00	0.00	0.00	45	45
1.000	172.2	8.2		0.6	12	49.0	0.56	0.56	17.22	9.61	360	-270
-0.423	180.4	8.2	0.80	0.6	20	52.0	0.87	0.87	6.56	-2.40	115	-25
-0.940	188.6	8.2	2.90	0.6	5	56.0	0.21	0.21	23.78	-4.80	160	-70
-0.985	196.8	8.2	4.80	0.8	0	0.0	0.00	0.09	39.36	-3.30	170	-80
-0.985	196.8	0.0	4.80	0.2	4	58.0	0.17	0.00	0.00	0.00	170	-80
	205.0											
									544.48	758.41		

BPLI4_11-1-02 (TRIP 3)

W = 207	7'											
C factor	Dist from IP	w (ft)	d (ft)	% depth	Rev	Time (sec)	V (ft/s)	Vc (ft/s)	a (sq ft)	q (cfs)	Flow Dir (deg)	Corr Flow Dir (deg)
4 000	0.0		4.00	0.0	20	20.4	4 4 7	4 4 7	40.40	40.40	0	00
1.000	8.0 16.0		1.30 1.70	0.6 0.6	20 20	38.4 39.3			10.40 13.60	12.13 15.51	0	90 90
0.996	24.0		1.50	0.6	20	44.2			12.00	12.14		85
0.996	32.0		1.30	0.6	20	37.6		1.19	10.40	12.14		85
0.996	40.0		1.30	0.6	20	36.5			10.40	12.70		85
1.000	48.0		1.80	0.6	20	40.3		1.11	14.40	16.02		90
1.000	56.0	8.0	2.30	0.6	20	34.0	1.32	1.32	18.40	24.20		90
0.996	64.0	8.0	2.20	0.6	20	28.7	1.55	1.55	17.60	27.26		85
1.000	72.0		2.40	0.6	20	29.3			19.20	29.24		90
1.000	80.0		2.50	0.6	20	28.9	_	_	20.00	30.88	_	90
1.000	88.0			0.6	20	23.3		1.91	21.60	41.27		90
0.996	96.0		3.10	0.8	20	28.2		1.68	24.80	41.47	5	85
0.996 0.996	96.0 104.0		3.10 3.80	0.2 0.8	20 20	25.1 34.6	1.77 1.29	0.00 1.55	0.00 30.40	0.00 46.88	5 5	85 85
0.996	104.0		3.80	0.6	20			0.00	0.00	0.00		85
1.000	112.0		4.50	0.2	20	29.8		1.82	36.00	65.63		90
1.000	112.0		4.50	0.2	20	20.7		0.00	0.00	0.00	0	90
1.000	120.0		4.70	0.8	20	24.4			37.60	75.70	0	90
1.000	120.0	0.0	4.70	0.2	20	20.2	2.20	0.00	0.00	0.00	0	90
1.000	128.0	8.0	4.50	0.8	20	25.5	1.75	2.08	36.00	74.92	0	90
1.000	128.0		4.50	0.2	20	18.4		0.00	0.00	0.00	_	90
1.000	136.0		4.80	0.8	20	34.2		1.84	38.40	70.49	0	90
1.000	136.0		4.80	0.2	20	18.8		0.00	0.00	0.00		90
1.000	144.0		5.80	8.0	20	21.9			46.40	107.04		90
1.000 0.996	144.0		5.80	0.2	20	17.2 19.7		0.00	0.00	0.00		90
0.996	152.0 152.0		5.20 5.20	0.8 0.2	20 20	18.0	_	2.36 0.00	41.60 0.00	97.90 0.00	5 5	85 85
0.966	160.0		4.30	0.2	20	30.8		1.44	34.40	47.72		75
0.966	160.0		4.30	0.2		31.4			0.00	0.00	15	75 75
0.966	168.0		3.50	0.8	20	62.2		0.73	28.00	19.76	15	75
0.966	168.0		3.50	0.2	15	46.2			0.00	0.00	15	75
0.000	176.0	8.0	2.70	0.6	10	42.7	0.53	0.59	21.60	0.00	90	0
0.000	184.0	8.0	1.10	0.6	10	34.8	0.65	0.00	8.80	0.00	90	0
-0.087	192.0		3.80	8.0	2	37.8			30.40	-0.57	95	-5
-0.087	192.0		3.80	0.2	5	39.7		0.00	0.00	0.00	95	-5
-1.000	200.0		5.00	0.8	2	50.6		0.16	40.00	-6.31	180	-90
-1.000	200.0		5.00	0.2	5	57.3	0.21	0.00	0.00	0.00	180	-90
	207.0											

BPLI4_12-6-02 (TRIP 4)

BPLI4_12-6-02 (TRIP 4) Gage = 6.27' at 13:00

W = 17	4'											
С	Dist	w (ft)	d (ft)		Rev	Time		Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from			depth		(sec)	(ft/s)	(ft/s)			(deg)	Flow Dir
	IP											(deg)
	0.0				_						_	
1.000	7.0	7.0			5	44.8	0.26	0.26	4.90	1.29	0	90
1.000	14.0	7.0			0	0		0.00		0.00	0	90
1.000	21.0	7.0			0	0		0.00		0.00	0	90
1.000		7.0			0	0		0.00		0.00	0	90
1.000	35.0	7.0			5	36.8		0.32		1.56	0	90
1.000	42.0	7.0			10			0.41	7.00	2.84	0	90
1.000	49.0	7.0			10			0.45		4.46	0	90
1.000	56.0	7.0			10			0.41	11.20	4.61	0	90
1.000	63.0	7.0			10			0.59	11.90	6.98	0	90
1.000	70.0	7.0			10			0.69		7.73	0	90
0.996		7.0			15	37.8		0.89		11.83	5	85
0.996		7.0			15			0.83		11.63	5	85
0.996		7.0			15			0.00		0.00	5	85
1.000		7.0			15			0.84		17.70	0	90
0.996		0.0			20			0.00		0.00	5	85
1.000	105.0	7.0			20			0.97		25.93	0	90
1.000		0.0			20					0.00	0	90
1.000	112.0	7.0			20			1.11	30.10	33.39	0	90
1.000	112.0	0.0			20			0.00		0.00	0	90
1.000	119.0	7.0	4.00		20	47.5	0.95	1.15	28.00	32.10	0	90
1.000	119.0	0.0			20			0.00		0.00	0	90
1.000	126.0	7.0			20	48.4		1.10		31.47	0	90
1.000	126.0	0.0			20		1.26	0.00		0.00	0	90
1.000	133.0	7.0	5.20		20	44.8	1.00	1.10		39.92	0	90
0.996	133.0	0.0	5.20		20	37.6	1.19	0.00	0.00	0.00	5	85
1.000	140.0	7.0			20			1.28		44.85	0	90
1.000	140.0	0.0	5.00		20	31.4	1.42	0.00	0.00	0.00	0	90
1.000	147.0	7.0	4.50		20	43.2	1.04	1.22	31.50	38.28	0	90
0.996	147.0	0.0	4.50		20		1.39	0.00	0.00	0.00	5	85
1.000	154.0	7.0			20	57.5	0.78	0.80		19.69	0	90
0.966	154.0	0.0	3.50		20	54.8	0.82	0.00	0.00	0.00	15	75
0.940	161.0	7.0	2.60		10	63.9	0.36	0.36		6.21	20	70
1.000	168.0	7.0	1.50	0.6	0	0.0	0.00	0.00	10.50	0.00	0	90
	174.0											
	<u> </u>								398.30	342.47		

CJTI4 9-12-02 (TRIP 1)

CJTI4 9-12-02 (TRIP 1) Gage = 9.63' at 19:00W = 913'С Dist w (ft) d (ft) Time V ۷c a (sq ft) q (cfs) Flow Dir Corr factor from depth (sec) (ft/s) (ft/s) (deg) Flow Dir IΡ (deg) 913.0 0.9397 876.0 37.0 4.00 8.0 20 33.3 1.34 1.66 148.00 231.49 340 430 0.9397 876.0 0.0 0.2 20 22.4 1.99 0.00 0.00 0.00 340 430 839.5 36.5 1.80 0.6 20 122 0.38 0.38 65.70 24.87 360 450 0.9397 803.0 36.5 3.60 0.8 20 34.3 1.30 1.52 131.40 187.54 340 430 0.9397 803.0 0.0 0.2 20 25.7 1.73 0.00 0.00 0.00 340 430 0.9397 766.5 36.5 3.10 0.8 20 31.6 1.41 1.58 113.15 168.41 340 430 0.9397 766.5 0.0 0.2 20 25.4 1.75 0.00 0.00 0.00 340 430 0.9397 730.0 36.5 2.30 0.6 20 46.3 0.97 0.97 83.95 76.56 340 430 0.9659 693.5 36.5 3.00 20 29.3 1.52 1.72 109.50 181.60 345 435 0.8 0.9659 693.5 0.0 0.2 20 23.3 1.91 0.00 0.00 0.00 345 435 657.0 2.20 32.3 1.38 1.38 80.30 107.30 345 435 0.9659 36.5 0.6 20 28.3 80.30 122.26 345 435 0.9659 620.5 36.5 2.20 0.6 20 1.58 1.58 24.1 1.85 69.35 340 430 0.9397 584.0 36.5 1.90 0.6 20 1.85 120.42 547.5 24.2 1.84 73.00 340 430 0.9397 36.5 2.00 0.6 20 1.84 126.24 0.9397 511.0 36.5 2.10 0.6 20 22.3 2.00 2.00 76.65 143.74 340 430 0.9397 474.5 36.5 2.40 0.6 20 24.1 1.85 1.85 87.60 152.11 340 430 340 0.9397 438.0 36.5 2.20 0.6 20 20.3 2.19 2.19 80.30 165.28 430 25.9 340 430 0.9397 401.5 36.5 3.20 0.8 20 1.72 2.09 116.80 229.87 0.9397 401.5 0.0 0.2 20 18 2.47 0.00 0.00 0.00 340 430 0.9063 365.0 36.5 2.70 0.6 20 22.4 1.99 1.99 98.55 177.45 335 425 0.9063 328.5 36.5 1.50 0.6 20 20.4 2.18 2.18 54.75 108.16 335 425 0.766 292.0 36.5 1.90 0.6 20 22.4 1.99 1.99 69.35 105.55 320 410 0.7071 255.5 36.5 1.60 0.6 20 23 1.94 1.94 58.40 79.92 315 405 0.7071 219.0 36.5 2.00 0.6 20 30.2 1.48 1.48 73.00 76.31 315 405 0.9063 182.5 36.5 2.60 0.6 20 23 1.94 1.94 94.90 166.46 335 425 143.0 39.5 20 0.54 0.54 63.20 33.03 345 435 0.9659 1.60 0.6 84.3 0.9848 109.5 33.5 2.30 0.6 20 63.8 0.71 0.71 77.05 53.82 350 440 36.5 1.70 20 37 1.21 1.21 62.05 75.07 360 450 73.0 0.6 1 60.0 13.0 1.00 20 24.2 1.84 1.84 13.00 23.92 360 450 1 0.6 20.0 40.0 2.30 20 33.5 1.33 1.33 92.00 122.77 360 450 1 0.6

2072.25

3060.14

0.0

CJTI4_10-9-02 (TRIP 2)

CJTI4 10-9-02 (TRIP 2) Gage = 11.21' at 16:30 W = 993'w (ft) d (ft) ۷c С a (sq ft) Flow Dir Corr Dist Rev Time q (cfs) depth (ft/s) (ft/s) factor from (sec) (deg) Flow Dir ΙP (deg) 0.00 0.9848 39.75 39.8 2.20 0.6 30 36.2 1.85 1.85 87.45 158.92 350 440 0.9659 79.50 39.8 2.90 0.6 30 53.6 1.25 1.25 115.28 139.42 345 435 162.98 355 0.9962 119.25 39.8 4.10 0.8 30 62.9 1.07 1.05 170.91 445 4.10 355 445 0.9962 119.25 0.0 0.2 30 65.0 1.04 0.00 0.00 0.00 0.9848 159.00 2.20 30 350 440 39.8 0.6 35.6 1.88 1.88 87.45 161.58 41.2 1.62 435 0.9659 198.50 39.5 3.40 0.8 30 1.89 134.30 244.88 345 0.9659 198.50 3.40 30 2.15 0.00 345 435 0.0 0.2 31.0 0.00 0.00 0.9397 238.50 40.0 3.30 30 42.0 1.59 1.76 132.00 218.49 340 430 0.8 0.9397 238.50 0.0 3.30 0.2 30 34.6 1.93 0.00 0.00 0.00 340 430 0.9397 278.75 40.3 3.70 30 46.2 1.45 148.93 240.46 340 430 8.0 1.72 0.9397 278.75 0.0 3.70 0.2 30 33.6 1.99 0.00 0.00 0.00 340 430 0.9397 318.50 39.8 3.70 8.0 30 47.2 1.42 1.66 147.08 229.57 340 430 30 1.90 340 0.9397 318.50 0.0 3.70 0.2 35.1 0.00 0.00 0.00 430 0.9397 358.25 39.8 3.30 0.8 30 45.7 1.47 1.80 131.18 221.68 340 430 2.13 30 0.00 340 0.9397 358.25 0.0 3.30 0.2 31.3 0.00 0.00 430 0.9397 398.00 39.8 4.80 0.8 30 30.4 2.19 2.40 190.80 429.94 340 430 0.9397 398.00 0.0 4.80 0.2 30 25.6 2.60 0.00 0.00 0.00 340 430 0.9659 437.75 39.8 4.60 0.8 30 26.9 2.48 2.70 182.85 476.56 345 435 0.9659 437.75 0.0 4.60 0.2 30 22.8 2.92 0.00 0.00 0.00 345 435 505.77 0.9659 477.50 39.8 5.30 0.8 30 29.6 2.25 2.49 210.68 345 435 0.9659 477.50 0.0 5.30 0.2 30 24.5 2.72 0.00 0.00 0.00 345 435 0.9659 517.25 39.8 4.90 8.0 30 32.4 2.06 2.44 194.78 459.12 345 435 0.9659 517.25 23.6 0.00 345 0.0 4.90 0.2 30 2.82 0.00 0.00 435 0.9659 557.00 30 28.6 2.33 2.50 345 435 39.8 3.40 0.8 135.15 326.72 0.9659 557.00 30 2.67 0.00 345 435 0.0 3.40 0.2 24.9 0.00 0.00 350 0.9848 596.75 3.90 30 29.8 2.24 2.52 155.03 385.26 440 39.8 0.8 0.9848 596.75 3.90 0.2 30 23.7 2.81 0.00 0.00 350 440 0.0 0.00 0.9848 636.00 39.3 3.80 0.8 30 31.3 2.13 2.42 149.15 355.34 350 440 0.9848 636.00 0.0 3.80 0.2 30 24.6 2.71 0.00 0.00 0.00 350 440 1.95 143.10 350 440 0.9848 675.75 39.8 3.60 8.0 30 34.2 2.24 316.06 0.9848 675.75 0.0 3.60 0.2 30 26.3 2.53 0.00 0.00 0.00 350 440 0.9848 715.50 39.8 3.80 0.8 30 31.8 2.10 2.34 151.05 348.10 350 440 0.9848 715.50 0.0 3.80 0.2 30 25.8 2.58 0.00 0.00 0.00 350 440 355 445 0.9962 755.25 39.8 3.30 0.8 30 75.4 0.90 1.04 131.18 136.04 30 0.00 0.00 355 445 0.9962 755.25 0.0 3.30 0.2 56.6 1.19 0.00 39.8 30 355 445 0.9962 795.00 4.90 0.8 43.5 1.54 2.02 194 78 391.39 0.00 0.9962 795.00 0.0 4.90 0.2 30 26.7 2.50 0.00 0.00 355 445 0.9962 834.75 39.8 5.90 0.8 30 33.3 2.00 2.28 234.53 532.33 355 445 355 0.9962 834.75 0.0 5.90 0.2 30 26.1 2.55 0.00 0.00 0.00 445 0.9962 874.50 39.8 7.10 8.0 30 31.0 2.15 2.39 282.23 671.14 355 445 0.9962 874.50 0.0 7.10 30 25.4 0.00 0.00 0.00 355 445 0.2 2.62 0.9962 914.25 39.8 5.00 8.0 30 109.2 0.62 0.79 198.75 156.55 355 445 0.9962 914.25 0.0 5.00 0.2 30 70.4 0.96 0.00 0.00 0.00 355 445 1 954.00 39.8 0.00 30 0.00 0.00 981.75 27.8 30 171.2 360 450 1 1.40 0.6 0.40 0.40 38.85 15.71 993.00 3739.50 7291.92

CJTI4 11-7-02 (TRIP 3)

CJTI4 11-7-02 (TRIP 3) Gage = 10.19' at 15:50W = 925'С w (ft) d (ft) ۷c q (cfs) Flow Dir Corr Dist Rev Time a (sq ft) factor from depth (ft/s) (ft/s) (deg) Flow Dir (sec) ΙP (deg) 0 37 37 1.30 0.6 20 19.8 2.25 2.25 48.10 108.00 360 450 0.9397 37.00 340 430 74 37 1.00 0.6 20 24.4 1.83 1.83 63.47 20 24.1 37.00 64.25 340 430 0.9397 111 37 1.00 0.6 1.85 1.85 20 23.9 51.80 340 430 0.9397 148 37 1.40 0.6 1.86 1.86 90.69 330 0.866 185 37 1.80 0.6 20 21.8 2.04 2.04 66.60 117.72 420 0.9397 222 37 1.60 20 19.1 2.33 2.33 59.20 129.44 340 430 0.6 40.70 52.21 340 430 0.9397 259 37 1.10 0.6 30 49.1 1.37 1.37 0.9962 296 30 2.05 2.05 59.20 120.73 355 445 37 1.60 0.6 32.6 333 37 2.00 0.6 30 31.2 2.14 2.14 74.00 158.23 360 450 355 0.9962 370 37 2.70 0.6 30 34.4 1.94 1.94 99.90 193.16 445 0.9962 407 37 4.70 30 35.7 1.87 2.17 173.90 376.62 355 445 8.0 0.9962 407 0 0.2 30 26.9 2.48 0 0.00 0.00 355 445 0.9962 444 37 2.90 0.6 30 27.2 2.45 2.45 107.30 261.88 355 445 0.9848 481 37 3.60 0.8 30 37.6 1.78 2.08 133.20 272.70 350 440 0.00 0.9848 481 0 0.2 30 28.0 2.38 0 0.00 350 440 37 3.40 518 0.8 30 41.7 1.60 1.99 125.80 241.59 345 435 0.9659 30 0.00 0.9659 518 0 0.2 28.1 2.37 0 0.00 345 435 1.56 37 30 42.9 435 0.9659 555 2.60 0.6 1.56 96.20 144.95 345 0.9659 592 37 3.60 0.8 30 37.1 1.80 2.25 133.20 289.30 345 435 0.9659 592 0 0.2 30 24.7 2.70 0 0.00 0.00 345 435 629 37 30 350 440 0.9848 3.60 0.8 33.1 2.02 2.22 133.20 291.21 0.9848 629 0 0.2 30 27.5 2.42 0 0.00 0.00 350 440 0.9962 666 37 2.80 0.6 30 27.9 2.39 2.39 103.60 246.56 355 445 0.9962 703 37 3.10 0.8 30 39.1 1.71 2.08 114.70 237.15 355 445 0.9962 703 0 0.2 30 27.3 2.44 0 0.00 0.00 355 445 2.00 1.19 74.00 350 440 0.9848 740 37 0.6 30 56.6 1.19 86.48 355 777 2.50 30 0.92 0.92 92.50 445 0.9962 37 0.6 73.5 84.59 0.9962 814 3.70 30 55.9 1.20 1.29 136.90 175.96 355 445 37 0.8 355 445 0.9962 814 0 0.2 30 48.6 1.38 0 0.00 0.00 851 37 3.20 0.8 3 72.8 0.11 0.14 118.40 16.33 360 450 851 0 0.2 6 88.88 0.17 0 0.00 0.00 360 450 0.9848 4.20 350 440 888 37 0.8 30 72.4 0.93 1.66 155.40 253.45 0.9848 888 0 0.2 30 28.0 2.38 0 0.00 0.00 350 440 925 2271.80 4076.68

CJTI4 12-18-02 (TRIP 4)

CJTI4_12-18-02 (TRIP 4) Gage = 9.89' at 16:00W = 920'С w (ft) d (ft) Rev ۷c Flow Dir Corr Dist % Time a (sq ft) q (cfs) depth (ft/s) (ft/s) factor from (sec) (deg) Flow Dir IΡ (deg) 0 1 26 26 1.90 0.6 20 28.9 1.54 1.54 49.40 76.27 360 450 37 11 0.00 0 0.00 0.00 0.00 0.00 360 450 1 58 21 1.50 0.6 20 28.9 1.54 1.54 31.50 48.63 360 450 0.9397 74 16 1.60 0.6 20 32.2 1.39 1.39 25.60 33.38 340 430 0.9848 111 37 1.00 0.6 20 29.3 1.52 1.52 37.00 55.50 350 440 350 0.9848 148 37 1.90 0.6 30 31.8 2.10 2.10 70.30 145.26 440 185 66.60 350 440 0.9848 37 1.80 0.6 30 34.3 1.95 1.95 127.67 34.2 1.95 350 440 0.9848 222 37 2.40 0.6 30 1.95 88.80 170.72 259 0.90 30 1.31 33.30 43.54 355 445 0.9962 37 0.6 51.1 1.31 121.47 0.9962 296 37 1.60 0.6 30 32.4 2.06 2.06 59.20 355 445 0.9848 333 37 0.90 30 1.39 1.39 33.30 45.60 350 440 0.6 48.2 0.9848 370 37 2.20 30 39.9 1.68 1.68 81.40 134.35 350 440 0.6 0.9848 407 37 4.60 0.8 30 45.7 1.47 1.63 170.20 273.35 350 440 407 4.60 1.80 350 440 0.9848 0 0.2 30 37.2 0.00 0.00 0.00 0.9848 444 37 2.70 30 1.66 99.90 163.66 350 440 0.6 40.2 1.66 0.9848 481 37 3.70 8.0 30 43.6 1.54 1.89 136.90 254.34 350 440 0.9848 481 0 3.70 0.2 30 29.8 2.24 0.00 0.00 0.00 350 440 0.9848 518 37 4.00 8.0 30 30.1 2.22 2.43 148.00 354.84 350 440 4.00 350 0.9848 518 0 0.2 30 25.1 2.65 0.00 0.00 0.00 440 555 37 3.40 30 1.70 221.33 350 440 0.9848 8.0 39.4 1.79 125.80 555 0 3.40 30 35.6 1.88 0.00 350 440 0.9848 0.2 0.00 0.00 37 362.61 0.9848 592 4.10 8.0 30 30.6 2.18 2.43 151.70 350 440 592 4.10 30 350 440 0.9848 0 0.2 24.9 2.67 0.00 0.00 0.00 0.9848 629 37 3.70 0.8 30 32.3 2.07 2.17 136.90 292.67 350 440 0.9848 629 0 3.70 0.2 30 29.3 2.28 0.00 0.00 0.00 350 440 0.9848 666 37 2.90 0.6 30 33.7 1.98 1.98 107.30 209.32 350 440 0.9848 703 37 2.40 30 37.1 1.80 88.80 350 440 0.6 1.80 157.50 0.9848 740 37 1.00 30 50.4 1.33 1.33 37.00 48.48 350 440 0.6 0.9848 777 37 2.00 0.6 30 55.0 1.22 1.22 74.00 88.96 350 440 0.9848 814 37 1.40 0.6 20 36.2 1.24 1.24 51.80 63.06 350 440 0.9848 851 37 2.90 0.6 5 38.6 0.30 0.30 107.30 32.08 350 440 350 0.9848 888 37 2.90 0.6 20 20.5 2.17 2.17 107.30 229.22 440 920 2119.30 3753.83

EDYI4_9-12-02 (TRIP 1)

EDYI4_9												
Gage =		t 13:15										
W = 460					_							_
С	Dist	w (ft)	d (ft)	%	Rev	Time	٧ ,	Vc	a (sq ft)	q (cfs)	Flow Dir	
factor	from IP			depth		(sec)	(ft/s)	(ft/s)			(deg)	Flow Dir
												(deg)
	0											
1	15.0		2.7	0.6	2	57.0	0.10	0.10	40.50	3.86	360	-270
1	34.5		3.0	0.6	13	49.0	0.60		58.50	35.28	360	-270
1	34.5		3.0	0.6	10	29.0	0.78		0.00	0.00		-270
1	53.0		3.4	0.8	20	38.0	1.18		62.90	85.62		-270
1	53.0		3.4	0.2	20	28.9	1.54		0.00	0.00	360	-270
1	71.5		2.6	0.6	20	35.7	1.25		48.10	60.28	360	-270
1	90.0		1.9	0.6	20	35.4	1.26		35.15	44.42	360	-270
1	108.5		1.8	0.6	20	31.8	1.40		33.30	46.78	360	-270
1	127.0		2.2	0.6	20	31.6	1.41	1.41	40.70	57.53	360	-270
1	145.5		2.7	0.6	20	30.6	1.46		49.95	72.89	360	-270
1	160.0		3.1	0.8	20	56.2	0.80		44.95	29.36		-270
1	160.0		3.1	0.2	12	54.5	0.50		0.00	0.00		-270
1	182.5		0.6	0.6	0	0.0	0.00		13.50	0.00	360	-270
1	201.0		1.7	0.6	20	41.2	1.09		31.45	34.23	360	-270
1	219.5		1.8	0.6	20	45.4	0.99		33.30	32.95	360	-270
1	238.0		1.9	0.6	20	42.9	1.05		35.15	36.77	360	-270
1	256.5		2.0	0.6	20	41.4	1.08		37.00	40.08	360	-270
1	275.0		1.8	0.6	20	42.0	1.07		33.30	35.56	360	-270
1	293.5		2.2	0.6	20	39.9	1.12		40.70	45.72	360	-270
1	305.0		2.5	0.6	20	36.8	1.22		28.75	34.97	360	-270
1	330.5	_	1.8	0.6	20	62.1	0.73		45.90	33.42	360	-270
1	349.0		2.7	0.6	20	33.6	1.33		49.95	66.46	360	-270
1	367.5		2.9	0.6	20	32.7	1.37		53.65	73.32	360	-270
1	386.0		2.8	0.6	20	28.4	1.57		51.80	81.37	360	-270
1	404.5		3.6	0.8	20	36.3	1.23		66.60	90.77	360	-270
1	404.5		3.6	0.2	20	29.9	1.49		0.00	0.00	360	-270
1	423.0		4.5	0.8	10	38.4	0.59		83.25	44.72		-270
1	423.0		4.5	0.2	12	57.0	0.48		0.00	0.00	360	-270
1	441.5		2.5	0.6	0	0.0	0.00		46.25	0.00	360	-270
	460.0			0	ŭ	2.0	2.30			2.00		_, •
									1064.60	1086.35		

EDYI4_10-14-02 (TRIP 2)

EDYI4 10-14-02 (TRIP 2) Gage = 51.39' at 11:20 W = 532'w (ft) d (ft) ۷c Flow Dir Corr Dist Rev Time a (sq ft) q (cfs) from IP depth (ft/s) (ft/s) Flow Dir factor (sec) (deg) (deg) 0.0 1 21.3 21.3 3.1 0.8 20 48.0 0.94 0.95 66.03 63.04 360 -270 -270 1 21.3 0.0 3.1 0.2 20 46.2 0.97 0.00 0.00 0.00 360 21.3 20 104.2 127.80 -270 1 42.6 6.0 0.8 0.44 0.63 79.91 360 -270 1 42.6 0.0 6.0 0.2 15 41.8 0.81 0.00 0.00 0.00 360 21.3 -270 1 63.9 6.5 0.8 20 27.3 1.63 1.96 138.45 271.68 360 63.9 0.0 6.5 20 19.4 2.29 0.00 0.00 0.00 360 -270 1 0.2 21.3 1 85.2 6.3 0.8 20 17.6 2.52 3.02 134.19 405.37 360 -270 85.2 0.0 20 12.6 3.52 0.00 0.00 360 -270 1 6.3 0.2 0.00 1 106.5 21.3 5.7 0.8 30 26.9 2.48 2.85 121.41 345.46 360 -270 1 106.5 0.0 5.7 0.2 30 20.7 3.21 0.00 0.00 0.00 360 -270 127.8 21.3 30 2.12 2.65 360 -270 1 5.6 8.0 31.5 119.28 316.16 127.8 0.0 5.6 0.2 30 20.9 3.18 0.00 0.00 360 -270 1 0.00 21.3 1 149.1 5.2 0.8 30 29.0 2.30 2.70 110.76 298.71 360 -270 1 149.1 0.0 5.2 0.2 30 21.5 3.09 0.00 0.00 0.00 360 -270 21.3 2.07 330.44 1 170.4 6.2 8.0 30 32.2 2.50 132.06 360 -270 170.4 1 0.0 6.2 0.2 30 22.7 2.93 0.00 360 -270 0.00 0.00 1 191.7 21.3 5.6 0.8 30 34.4 1.94 1.97 119.28 234.60 360 -270 30 33.5 0.00 360 191.7 0.0 5.6 0.2 1.99 0.00 0.00 -270 1 1 213.0 21.3 3.8 0.8 30 27.2 2.45 2.40 80.94 194.48 360 -270 1 213.0 0.0 3.8 0.2 30 28.3 2.36 0.00 0.00 0.00 360 -270 104.37 360 -270 1 234.3 21.3 4.9 0.8 30 29.9 2.23 2.54 264.85 1 234.3 0.0 4.9 0.2 30 23.4 2.84 0.00 0.00 0.00 360 -270 1 255.6 21.3 5.2 0.8 30 30.8 2.17 2.48 110.76 274.86 360 -270 1 255.6 0.0 5.2 0.2 30 23.8 2.80 0.00 0.00 0.00 360 -270 1 276.9 21.3 5.0 0.8 30 33.0 2.02 2.38 106.50 253.02 360 -270 360 -270 1 276.9 0.0 5.0 0.2 30 24.4 2.73 0.00 0.00 0.00 21.3 30 360 -270 298.2 5.1 0.8 31.7 2.10 2.41 108.63 261.35 1 298.2 0.0 30 24.6 2.71 0.00 0.00 360 -270 5.1 0.2 0.00 1 2.21 360 -270 1 319.5 21.3 5.7 0.8 30 30.2 2.44 121.41 296.42 319.5 0.0 5.7 0.2 30 24.9 2.67 0.00 0.00 0.00 360 -270 1 1 340.8 21.3 4.0 0.8 30 49.3 1.36 1.64 85.20 140.14 360 -270 -270 1 340.8 0.0 4.0 0.2 30 34.6 1.93 0.00 0.00 0.00 360 1 362.1 21.3 5.5 0.8 30 31.3 2.13 2.52 117.15 295.10 360 -270 362.1 0.0 5.5 0.2 30 22.9 2.91 0.00 0.00 0.00 360 -270 1 383.4 21.3 6.3 0.8 30 30.9 2.16 2.47 134.19 330.98 360 -270 1 1 383.4 0.0 6.3 0.2 30 24.0 2.77 0.00 0.00 0.00 360 -270 1 404.7 21.3 6.6 0.8 30 31.2 2.14 2.49 140.58 350.26 360 -270 404.7 0.0 6.6 30 23.4 2.84 0.00 0.00 0.00 360 -270 1 0.2 2.60 426.0 21.3 6.4 0.8 30 31.2 2.14 136.32 353.79 360 -270 1 426.0 0.2 30 3.05 0.00 0.00 360 -270 1 0.0 6.4 21.8 0.00 1 447.3 21.3 6.9 0.8 30 36.4 1.84 2.42 146.97 355.16 360 -270 1 447.3 0.0 6.9 0.2 30 22.2 3.00 0.00 0.00 0.00 360 -270 1 468.6 21.3 5.7 0.8 5 74.5 0.17 0.37 121.41 45.43 360 -270 468.6 5.7 0.2 15 58.6 0.00 0.00 0.00 360 -270 1 0.0 0.58 489.9 21.3 2.7 0.6 5 72.9 0.17 0.17 57.51 9.73 360 -270 0.9659 510.2 20.3 3.8 0.8 3 83.5 0.09 0.15 77.14 11.34 345 -255 1 510.2 0.0 3.8 0.2 5 60.5 0.20 0.00 0.00 0.00 360 -270 532.0 2718.34 5782.28

EDYI4_11-7-02 (TRIP 3)

EDYI4_	11-7-02	(TRIP:	3)									
Gage =			,									
W = 515	5'											
С	Dist	w (ft)	d (ft)	%	Rev	Time	٧	Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from IP		` ,	depth			(ft/s)	(ft/s)	` . ,	,	(deg)	Flow Dir
				•		` ,	` ,	` ,			ν σ,	(deg)
												(3)
	0.0											
0.9962	20.5	20.5	4.0	0.8	15	45.0	0.75	0.58	82.00	47.69	5	85
0.9962	20.5	0.0	4.0	0.2	10	55.6	0.41	0.00	0.00	0.00	5	85
1	41.0	20.5	4.6	0.8	5	35.0	0.33	0.39	94.30	36.49	360	-270
1	41.0	0.0	4.6	0.2	7	36.5	0.44	0.00	0.00	0.00	360	-270
1	61.5	20.5	5.3	0.8	10	8.8	2.52	2.86	108.65	310.43	360	-270
1	61.5	0.0	5.3	0.2	20	13.9	3.19	0.00	0.00	0.00	360	-270
1	82.0	20.5	4.4	0.8	30	26.4	2.52	2.73	90.20	246.06	360	-270
1	82.0		4.4	0.2	30	22.7	2.93	0.00	0.00		360	-270
0.9848	102.5	20.5	3.5	0.8	30	25.8	2.54	2.66	71.75	190.88	10	80
0.9848	102.5		3.5	0.2	30	23.6	2.78	0.00	0.00		10	80
0.9962	123.0		3.5	0.8	30	32.4	2.05	2.32	71.75		5	85
0.9962	123.0		3.5	0.2	30	25.7	2.58	0.00	0.00		5	85
1	143.5		3.7		30	35.0	1.91	2.24	75.85		360	-270
1	143.5		3.7		20	17.2	2.58	0.00	0.00		360	-270
1	164.0		5.2		20	21.6	2.06		106.60		360	-270
1	164.0		5.2		20	20.0	2.22		0.00		360	
1	184.5		2.5	0.6	20	52.1	0.86		51.25		360	-270
1	205.0		2.5	0.6	20	18.9	2.35		51.25		360	
1	225.5		3.2		20	24.4	1.83		65.60		360	-270
1	225.5		3.2		20	19.6	2.27	0.00	0.00		360	
1	246.0		2.9	0.6	20	20.5	2.17	2.17	59.45		360	-270
0.9848	266.5		2.8	0.6	20	22.2	1.97		57.40		10	
1	287.0		3.0	0.8	20	24.4	1.83	2.09	61.50		360	-270
1	287.0		3.0	0.2	20	18.9	2.35	0.00	0.00		360	-270
1	307.5		3.5	0.8	20	24.4	1.83		71.75		360	
1	307.5		3.5	0.2	20	19.5	2.28		0.00		360	-270
1	330.0		1.9	0.6	20	42.7	1.05	1.05	42.75		360	
1	348.5		4.3	0.8	20	28.0	1.59	1.95	79.55		360	-270
1	348.5		4.3		20	19.3	2.30	0.00	0.00		360	
1	369.0		4.8	0.8	20	23.2	1.92		98.40		360	-270
1	369.0		4.8	0.0	20	19.4	2.29	0.00	0.00		360	
1	389.5		4.7		20	21.6	2.06		96.35		360	
1	389.5		4.7		20	18.7		0.00	0.00		360	-270
	410.0		5.2		20	21.0	2.12		106.60		360	-270
	410.0		5.2	0.8	20	18.4	2.41	0.00	0.00		360	-270
	430.5		5.7			26.0	1.71	2.13	116.85		360	
	430.5		5.7			17.4	2.55		0.00		360	
	451.0		4.1	0.2	6	54.0	0.26		84.05		360	
	451.0		4.1	0.8		39.8	0.26		0.00		360	
1	467.5		3.5	0.2	9	39.6 86.0	0.35		57.75		360	
1	467.5		3.5	0.8		36.0	0.23		0.00		360	
	492.0		0.0	0.2	0		0.00	0.00	0.00		360	
	515.0		0.0	U	U	0.0	0.00	0.00	0.00	0.00	300	-210
	515.0								1801.60	3369.06		
									1001.00	3303.00		

EDYI4_12-5-02 (TRIP 4)

EDYI4	12-5-02	(TRIP	4)									
	49.78' a											
W = 480												
С	Dist	w (ft)	d (ft)	%	Rev	Time	V	Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from IP		۵ (۱۰)	depth				(ft/s)	٠ (٥٩ ٠٠)	4 (0.0)	(deg)	Flow Dir
luoto.				aoptii		(555)	(,	(1.1.0)			(uog)	(deg)
												(ucg)
	0.0											
1	19.2		3.4	0.2	10	43.8	0.52	0.58	65.28	37.67	360	-270
0.9962	19.2		3.4	0.8	15	53.6	0.63	0.00	0.00	0.00	5	85
1	38.4		4.5	0.8	5	65.0	0.19		86.40	46.83	360	-270
1	38.4		4.5	0.2	20	50.2	0.90		0.00	0.00	360	-270
0.9962	57.6		4.8	0.8	20	21.1	2.10		92.16	199.89	5	85
1	57.6		4.8	0.2	30	29.8	2.24		0.00	0.00	360	-270
0.9962	76.8		4.4	0.8	30	26.6			84.48		5	
1	76.8		4.4	0.2	30	22.2			0.00	0.00	360	-270
0.9962	96.0		3.6	0.8	30	27.8	2.39		69.12		5	85
1	96.0		3.6	0.2	30	22.2			0.00	0.00	360	-270
1	115.2		3.2	0.8	30	29.2			61.44		360	
1	115.2		3.2	0.2	30	22.7	2.93		0.00	0.00	360	-270
0.9962	134.4		3.7	0.8	30	31.7	2.10	2.32	71.04		5	85
1	134.4		3.7	0.2	30	26.1	2.55		0.00	0.00	360	-270
0.9962	153.6		4.0	0.8	30	34.5			76.80	164.17	5	85
1	153.6		4.0	0.2	30	28.4	2.35		0.00	0.00	360	-270
1	172.8		3.5	0.8	30	46.8	1.43		67.20	97.66	360	-270
1	172.8		3.5	0.2		45.4	1.48		0.00	0.00	360	-270
0.9962	192.0		1.0	0.6	20	44.8	1.00	1.00	19.20	19.17	5	85
0.9962	211.2		2.4	0.6	30	27.5	2.41	2.41	46.08	111.25	5	85
0.9962	230.4		2.5	0.6	30	30.8	2.16		48.00	103.56	5	85
0.9962	249.6		2.4	0.6	30	31.4	2.12		46.08	97.53	5	85
0.9962	268.8		2.5	0.6	30	22.6	2.93		48.00	140.82	5	85
0.9962	288.0		2.4	0.6	30	30.8	2.16		46.08	99.42	5	85
0.9962	307.2		2.3	0.6	30	33.0	2.01	2.01	44.16	88.98		85
0.9962	320.4		4.0	0.8	30	45.8	1.46		52.80	97.15	5	85
1	320.4		4.0	0.2	30	30.0	2.22		0.00	0.00	360	-270
0.9962	345.6		3.6	0.8	30	39.4	1.69		90.72	164.98	5	85
1	345.6		3.6	0.2	30	34.3	1.95		0.00	0.00	360	-270
0.9962	364.8		5.0	0.8	30	37.7			96.00	199.43	5	85
1	364.8		5.0	0.2	30	27.9	2.39	0.00	0.00	0.00	360	-270
1	384.0		4.8	0.8	30	31.6	2.11	2.37	92.16	218.13	360	-270
1	384.0		4.8	0.2		25.4	2.62		0.00	0.00	360	-270
0.9986	403.2		4.9	0.8	30	35.9	1.86		94.08	211.24	3	
1	403.2		4.9	0.2	30	25.3			0.00		360	-270
1	422.4		5.6	0.8		29.1	2.29				360	
1	422.4			0.2					0.00		360	
0.9962	441.6		4.6	0.8		58.4	1.15		88.32		355	-265
1	441.6		4.6	0.0		40.9	1.64		0.00		360	
0.9659	460.8			0.8					65.28		345	
1	460.8			0.0			0.32		0.00	0.00	360	
'	480.0		5.4	0.2	10	, 5.4	0.01	0.00	0.00	0.00	300	210
	-30.0								1658.40	3261.56		
									1000.70	0201.00		

EMTI4_9-5-02 (TRIP 1)

EMTI4_9-5-02 (TRIP 1) Gage = 1.53' at 15:30W = 113'۷c С w (ft) d (ft) Rev Time V Flow Dir Corr Dist a (sq ft) q (cfs) factor from depth (sec) (ft/s) (ft/s) (deg) Flow Dir ΙP (deg) 0.0 0.95 -270 1.000 4.4 4.4 0.6 25 33.0 0.76 0.76 4.18 3.17 360 1.000 25 8.8 4.4 1.08 0.6 35.0 0.72 0.72 4.75 3.41 360 -270 1.000 30 0.96 360 -270 13.2 4.4 1.22 0.6 31.0 0.96 5.37 5.15 1.000 17.6 4.4 1.42 0.6 35 31.0 1.11 1.11 6.25 6.97 360 -270 1.000 1.53 25 1.07 7.23 360 -270 22.0 4.4 0.6 23.0 1.07 6.73 25 1.000 4.4 1.64 20.0 1.23 1.23 7.22 360 -270 26.4 0.6 8.88 1.000 4.4 1.46 35 27.0 1.28 1.28 6.42 8.19 360 -270 30.8 0.6 1.42 30 1.28 6.25 8.02 360 -270 1.000 35.2 4.4 0.6 23.0 1.28 1.000 39.6 4.4 1.33 0.6 45 34.0 1.30 1.30 5.85 7.62 360 -270 30 1.34 7.55 360 -270 1.000 44.0 4.4 1.28 0.6 22.0 1.34 5.63 40 1.45 320 -230 0.766 48.6 4.6 1.33 0.6 27.0 1.45 6.12 6.81 1.000 35 25.0 1.38 1.38 6.58 9.04 360 -270 53.2 4.6 1.43 0.6 1.000 4.6 1.55 35 26.0 1.32 1.32 9.44 360 -270 57.8 0.6 7.13 1.000 62.4 4.6 1.48 0.6 25 21.0 1.17 1.17 6.81 7.99 360 -270 1.000 67.0 4.6 1.58 0.6 25 24.0 1.03 1.03 7.27 7.49 360 -270 25 360 -270 1.000 71.6 4.6 1.80 0.6 21.0 1.17 1.17 8.28 9.72 2.10 30 1.02 1.02 9.66 360 -270 1.000 76.2 4.6 0.6 29.0 9.89 1.000 4.6 2.05 35 1.08 9.43 360 -270 8.08 0.6 32.0 1.08 10.19 1.000 4.6 2.00 25 1.03 1.03 9.20 9.49 360 -270 85.4 0.6 24.0 1.000 90.0 4.6 2.35 0.6 30 29.0 1.02 1.02 10.81 11.07 360 -270 25 360 1.000 94.6 4.6 2.65 0.6 32.0 0.78 0.78 12.19 9.52 -270 20 360 1.000 99.2 4.6 2.92 0.6 35.0 0.58 0.58 13.43 7.78 -270 1.000 13 36.0 0.38 0.40 15.64 360 -270 103.8 4.6 3.40 8.0 6.24 15 0.00 360 -270 1.000 103.8 0.0 3.4 0.2 37.0 0.42 0.00 0.00 1.000 108.4 4.6 2.4 0.6 1 82.0 0.04 0.04 11.04 0.47 360 -270

192.24

181.34

113.0

EMTI4_9-26-02 (TRIP 2)

$\frac{W = 34}{C}$	Dist	w (ft)	d (ft)	%	Rev	Time		Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from			depth		(sec)	(ft/s)	(ft/s)			(deg)	Flow Dir
	IP											(deg)
	0.0											
1.000	1.4	1.4	0.42	0.6	20	26.0	0.77	0.77	0.59	0.45	360	-270
1.000	2.8	1.4	0.57	0.6	20	14.6	1.35	1.35	0.80	1.07	360	-270
1.000	4.2	1.4	0.88	0.6	50	32.5	1.51	1.51	1.23	1.86	360	-270
1.000	5.6	1.4	1.06	0.6	50	26.5	1.84	1.84	1.48	2.73	360	-270
1.000	7.0	1.4	1.13	0.6	50	24.5	1.99	1.99	1.58	3.15	360	-270
1.000	8.4	1.4	1.20	0.6	50	25.9	1.88	1.88	1.68	3.17	360	-270
1.000	9.8	1.4	1.38	0.6	50	22.3	2.18	2.18	1.93	4.22	360	-270
1.000	11.2	1.4	1.40	0.6	50	22.3	2.18	2.18	1.96	4.28		-270
1.000	12.6	1.4	1.53	0.6	50	22.9	2.13	2.13	2.14	4.56	360	-270
1.000	14.0	1.4	1.65	0.6	50	24.1	2.02	2.02	2.31	4.67	360	-270
1.000	15.4	1.4	1.78	0.6	50	25.4	1.92	1.92	2.49	4.79	360	-270
1.000	16.8	1.4	1.73	0.6	50	25.5	1.91	1.91	2.42	4.63		-270
1.000	18.2	1.4	1.72	0.6	50	28.1	1.74	1.74	2.41	4.19	360	-270
1.000	19.6	1.4	1.60	0.6	50	32.0	1.53	1.53	2.24	3.43	360	-270
1.000			1.45	0.6	50	33.9	1.45		2.03	2.94		-270
1.000	22.4	1.4	1.30	0.6	50	42.3	1.17	1.17	1.82	2.12	360	-270
1.000	23.8	1.4	1.11	0.6	30	34.1	0.88	0.88	1.55	1.36	360	-270
1.000			0.98	0.6		45.8	0.66	0.66	1.37	0.91	360	-270
1.000				0.6		36.8	0.29	0.29	1.16	0.34		-270
1.000	28.0	1.4	0.63	0.6	5	39.8	0.15	0.15	0.88	0.13	360	-270
1.000	29.4	1.4	0.53	0	0	0.0	0.00	0.00	0.74	0.00	360	-270
1.000	30.8	1.4	0.00	0	0	0.0	0.00	0.00	0.00	0.00	360	-270
1.000	32.2	1.4	0.00	0	0	0.0	0.00	0.00	0.00	0.00	360	-270
	34.0											
									34.83	54.99		

EMTI4_10-30-02 (TRIP 3)

EMTI4_10-30-02 (TRIP 3) Gage = 1.82' at 10:30W = 116'۷c С w (ft) d (ft) Rev Time V Flow Dir Corr Dist a (sq ft) q (cfs) factor from depth (sec) (ft/s) (ft/s) (deg) Flow Dir ΙP (deg) 0.0 1.000 4.6 4.6 0.95 0.6 20 37.6 0.54 0.54 4.37 2.37 360 -270 1.000 9.2 4.6 1.34 0.6 30 38.9 0.77 0.77 6.16 4.75 360 -270 1.000 30 1.02 360 -270 13.8 4.6 1.55 0.6 29.1 1.02 7.13 7.28 1.000 18.4 4.6 1.75 0.6 30 28.9 1.03 1.03 8.05 8.27 360 -270 1.000 30 1.19 360 -270 23.0 4.6 1.92 0.6 24.8 1.19 8.83 10.53 360 1.000 27.6 4.6 1.84 0.6 30 23.8 1.24 1.24 8.46 10.50 -270 360 1.000 32.2 4.6 1.90 0.6 30 23.4 1.26 1.26 8.74 11.03 -270 360 1.000 36.8 4.6 1.70 0.6 30 19.4 1.52 1.52 7.82 11.85 -270 1.000 41.4 4.6 1.66 0.6 30 20.1 1.46 1.46 7.64 11.18 360 -270 30 1.40 1.40 9.50 360 -270 1.000 46.0 4.6 1.48 0.6 21.1 6.81 1.000 50.6 30 1.40 1.40 360 -270 4.6 1.44 0.6 21.0 6.62 9.29 1.000 1.55 30 20.4 1.44 1.44 10.29 360 -270 55.2 4.6 0.6 7.13 1.000 4.6 30 23.1 1.28 1.28 7.27 9.29 360 -270 59.8 1.58 0.6 1.000 64.4 4.6 1.50 0.6 30 21.7 1.36 1.36 6.90 9.37 360 -270 1.000 69.0 4.6 1.52 0.6 30 22.4 1.32 1.32 6.99 9.21 360 -270 30 23.3 360 -270 1.000 73.6 4.6 1.68 0.6 1.27 1.27 7.73 9.79 1.000 30 23.5 1.26 1.26 360 -270 78.2 4.6 1.89 0.6 8.69 10.92 1.000 4.6 30 25.0 8.88 10.50 360 -270 82.8 1.93 0.6 1.18 1.18 1.000 4.6 30 9.15 360 -270 87.4 1.99 0.6 24.9 1.19 1.19 10.87 1.000 92.0 4.6 2.35 0.6 30 29.8 1.00 1.00 10.81 10.78 360 -270 1.000 2.35 30 0.98 0.98 360 -270 96.6 4.6 0.6 30.2 10.81 10.64 2.43 20 360

1.000

1.000

1.000

101.2

105.8

110.4

116.0

4.6

4.6

4.6

2.78

2.35

0.6

0.6

0.6

20

10

41.2

43.6

48.8

0.50

0.47

0.23

0.50

0.47

0.23

11.18

12.79

10.81

199.78

5.56

6.03

2.46

212.27

-270

-270

-270

360

360

EMTI4_4-17-03 (TRIP 4)

	4-17-03 2.10' at	•	4)									
W = 13	2' Dist	\u/ (f4\	d (ft)	%	Pov	Time	V	Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from	w (IL)	u (11)	depth	Kev	(sec)		(ft/s)	a (Sq II)	q (cis)	(deg)	Flow Dir
	IP					(,	()	(,-)			(==5)	(deg)
	0.0	ı										
1.000			1.53	0.6	50	40.5	1.22	1.22	8.11	9.86		
1.000	10.6	5.3	2.00	0.6	56	40.1	1.37	1.37	10.60	14.54		
1.000	15.9	5.3	2.28	0.6	68	40.4	1.65	1.65	12.08	19.90		
1.000	21.2	5.3	2.60	0.6	84	40.1	2.04	2.04	13.78	28.14		
1.000	26.5	5.3	2.42	0.6	88	40.3	2.13	2.13	12.83	27.28		
1.000	31.8	5.3	2.42	0.6	94	40.2	2.28	2.28	12.83	29.19		
1.000	37.1	5.3	2.17	0.6	97	40.1	2.35	2.35	11.50	27.06		
1.000	42.4	5.3	1.70	0.6	96	40.3	2.32	2.32	9.01	20.88		
0.990	47.7				91	40.4	2.19	2.19	7.95			
0.980	53.0	5.3	1.50	0.6	85	40.4	2.05	2.05	7.95	15.98		
0.980	58.3	5.3	1.22	0.6	86	40.0	2.10	2.10	6.47	13.28		
0.960	63.6	5.3	1.15	0.6	79	40.3	1.91	1.91	6.10	11.19		
0.960	68.9	5.3	1.06	0.6	81	40.0	1.98	1.98	5.62	10.65		
0.940	74.2	5.3	1.00		74	40.0			5.30			
0.940	79.5	5.3	1.30	0.6	56	40.6	1.36	1.36	6.89	8.78		
0.960	84.8	5.3	1.32		62	40.5	1.50	1.50	7.00	10.08		
0.980	90.1	5.3	1.18	0.6	61	40.4	1.48	1.48	6.25	9.07		
1.000	95.4	5.3	1.06	0.6	69	40.4	1.67	1.67	5.62	9.39		
1.000	100.7				66	40.1	1.61	1.61	5.57	8.97		
1.000	106.0	5.3	1.30	0.6	65	40.2	1.58	1.58	6.89	10.91		
1.000					56	40.0			7.10	9.77		
1.000	116.6	5.3	1.23	0.6	55	40.4	1.34	1.34	6.52	8.72		
1.000	121.9	5.3	1.11	0.6	50	40.3	1.22	1.22	5.88	7.19		
1.000			1.10	0.6	48	40.4	1.17	1.17	5.83			
	132.0								193.66	343.92		
Correct	ion facto	ors wer	e dete	rmined i	using	a USG	S data :	sheet.				

ESVI4_9-5-02 (TRIP 1)

ESVI4_9-5-02 (TRIP 1) Gage = 2.15' at 18:00

W = 40.	.0'									
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0		0.00							
1	1.6	1.6	0.38	0.6	30	25	1.18	1.18	0.61	0.72
1	3.2	1.6	0.65	0.6	40	26	1.51	1.51	1.04	1.57
1	4.8	1.6	0.85	0.6	30	22	1.34	1.34	1.36	1.82
1	6.4	1.6	1.00	0.6	35	17	2.01	2.01	1.60	3.21
1	8.0	1.6	1.10	0.6	45	24	1.83	1.83	1.76	3.22
1	9.6	1.6	1.10	0.6	30	13	2.25	2.25	1.76	3.95
1	11.2	1.6	1.20	0.6	31	13		2.32	1.92	4.45
1	12.8	1.6	1.30	0.6	40	16	2.43	2.43	2.08	5.06
1	14.4	1.6	1.40	0.6	35	15	2.27	2.27	2.24	5.09
1	16.0	1.6	1.30	0.6	60	26	2.25	2.25	2.08	4.67
1	17.6	1.6	1.30	0.6	52	19	2.66	2.66	2.08	5.53
1	19.2	1.6	1.20	0.6	55	30	1.79	1.79	1.92	3.44
1	20.8	1.6	1.30	0.6	60	34	1.73	1.73	2.08	3.59
1	22.4	1.6	1.40	0.6	59	26	2.21	2.21	2.24	4.95
1	24.0	1.6	1.20	0.6	75	33	2.21	2.21	1.92	4.25
1	25.6	1.6	1.10	0.6	50	26	1.88	1.88	1.76	3.30
1	27.2	1.6	1.00	0.6	65	33	1.92	1.92	1.60	3.08
1	28.8	1.6	0.90	0.6	65	34	1.87	1.87	1.44	2.69
1	30.4	1.6	0.70	0.6	40	22	1.78	1.78	1.12	1.99
1	32.0	1.6	0.70	0.6	36	21	1.68	1.68	1.12	1.88
1	33.6	1.6	0.60	0.6	27	19	1.40	1.40	0.96	1.34
1	35.2	1.6	0.50	0.6	30	32	0.93	0.93	0.80	0.74
1	36.8	1.6	0.30	0.6	1	80	0.04	0.04	0.48	0.02
1	38.4	1.6	0.22		0		0.00	0.00	0.35	0.00
	40.0									
									36.32	70.56

ESVI4_9-26-02 (TRIP 2)

ESVI4_9-26-02 (TRIP 2) Gage = 2.05' at 15:00

W = 53.	0'									
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0		0.00							
1	2.1	2.1	1.45	0.6	0	60	0.00	0.00	3.05	0.00
1	4.2	2.1	0.90	0.6	2	26	0.10	0.10	1.89	0.20
1	6.3	2.1	1.05	0.6	10	27	0.39	0.39	2.21	0.85
1	8.4	2.1	1.05	0.6	20	31	0.65	0.65	2.21	1.43
1	10.6	2.2	1.05	0.6	30	32	0.93	0.93	2.31	2.15
1	12.7	2.1	1.20	0.6	50	45.1	1.10	1.10	2.52	2.76
1	14.8	2.1	1.25	0.6	50	41.9	1.18	1.18	2.63	3.09
1	16.9	2.1	1.35	0.6	50	41	1.20	1.20	2.84	3.41
1	19.0	2.1	1.30	0.6	50	45.2	1.09	1.09	2.73	2.98
1	21.1	2.1	1.20	0.6	30	20.7	1.42	1.42	2.52	3.58
1	23.2	2.1	1.20	0.6	30	22.5	1.31	1.31	2.52	3.30
1	25.3	2.1	1.15	0.6	30	27.4	1.08	1.08	2.42	2.61
1	27.4	2.1	1.15	0.6	30	28	1.06	1.06	2.42	2.56
1	29.5	2.1	1.20	0.6	30	22.2	1.33	1.33	2.52	3.35
1	31.6	2.1	1.10	0.6	30	18.6		1.58	2.31	3.65
1	33.7	2.1	1.05	0.6	30	17.6	1.67	1.67	2.21	3.68
1	35.8	2.1	1.00	0.6	30	18.1	1.62	1.62	2.10	3.41
1	37.9	2.1	0.85	0.6	30	19.6	1.50	1.50	1.79	2.68
1	40.0	2.1	0.75	0.6	30	22.3	1.32	1.32	1.58	2.08
1	42.1	2.1	0.68	0.6	30	24.6	1.20	1.20	1.43	1.72
1	44.2	2.1	0.50	0.6	30	27.5	1.08	1.08	1.05	1.13
1	46.3	2.1	0.35	0.6	20	21.6	0.92	0.92	0.73	0.68
1	48.4	2.1	0.26	0.6	10	16.6	0.61	0.61	0.55	0.33
1	50.5	2.1	0.19	0.6	6	16.6	0.38	0.38	0.40	0.15
	53.0									
									48.89	51.78

ESVI4_10-30-02 (TRIP 3)

ESVI4_10-30-02 (TRIP 3) Gage = 2.67' at 9:00

W = 66.										
С	Dist from	w (ft)	d (ft)	%depth	Rev		V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	<u>IP</u>					(sec)		(ft/s)		
	0.0		0.00							
1	2.6	2.6	1.06	0.6	50	47.4	1.04	1.04	2.76	2.88
1	5.2	2.6	1.17	0.6	50	23.0	2.12	2.12	3.04	6.44
1	7.8	2.6	1.25	0.6	50	21.3		2.28		7.42
1	10.4	2.6	1.15	0.6	50	23.5	2.07	2.07	2.99	6.20
1	13.0	2.6	1.15	0.6	50	22.3		2.18		6.53
1	15.6	2.6	1.00	0.6	50	18.8		2.58	2.60	6.72
1	18.2	2.6	1.00	0.6	50	15.6		3.11	2.60	8.08
1	20.8	2.6	1.05	0.6	50	15.4	3.15	3.15	2.73	8.59
1	23.4	2.6	1.15	0.6	50	14.5		3.34		9.99
1	26.0	2.6	1.22	0.6	50	14.7		3.30		10.46
1	28.6	2.6	1.30	0.6	50	16.8	2.89	2.89	3.38	9.76
1	31.2	2.6	1.40	0.6	50	13.8	3.51	3.51	3.64	12.77
1	33.8	2.6	1.45	0.6	50	14.3		3.39	3.77	12.77
1	36.4	2.6	1.58	0.6	50	13.4		3.61	4.11	14.84
1	39.0	2.6	1.63	0.6	50	13.8		3.51	4.24	14.87
1	41.6	2.6	1.55	0.6	50	16.4	2.96	2.96	4.03	11.92
1	44.2	2.6	1.53	0.6	50	15.2	3.19	3.19	3.98	12.69
1	46.8	2.6	1.43	0.6	50	16.3		2.98	3.72	11.06
1	49.4	2.6	1.20	0.6	50	17.3		2.81	3.12	8.75
1	52.0	2.6	1.10	0.6	50	19.3	2.52	2.52	2.86	7.20
1	54.6	2.6	0.83	0.6	50	22.4		2.17	_	4.69
1	57.2	2.6	0.55	0.6	50	23.3	2.09	2.09	1.43	2.99
1	59.8	2.6	0.57	0.6	50	27.4	1.78	1.78	1.48	2.64
1	62.4	2.6	0.42	0.6	50	30.2	1.62	1.62	1.09	1.77
	66.0									
									72.12	202.05

ESVI4_12-11-02 (TRIP 4)

ESVI4_12-11-02 (TRIP 4) Gage = 2.27' at 14:00

W = 56.										
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	1.0		0.00							
1	4.2	3.2	0.60	0.6	5	24.9	0.22	0.22	1.92	0.43
1	6.4	2.2	0.72	0.6	20	9.8	1.99	1.99	1.58	3.15
1	8.6	2.2	0.74	0.6	40	19.1	2.04	2.04	1.63	3.32
1	10.8	2.2	0.70	0.6	40	31.6	1.25	1.25	1.54	1.92
1	13.0	2.2	0.62	0.6	40	29.0	1.36	1.36	1.36	1.85
1	15.2	2.2	0.54	0.6	40	30.3	1.30	1.30	1.19	1.54
1	17.4	2.2	0.45	0.6	40	20.8	1.88	1.88	0.99	1.86
1	19.6	2.2	0.51	0.6	40	17.2	2.26	2.26	1.12	2.54
1	21.8	2.2	0.50	0.6	40	15.4	2.52	2.52	1.10	2.78
1	24.0	2.2	0.57	0.6	40	16.3	2.39	2.39	1.25	2.99
1	26.2	2.2	0.62	0.6	40	16.0	2.43	2.43	1.36	3.32
1	28.4	2.2	0.70	0.6	40	15.1	2.57	2.57	1.54	3.96
1	30.6	2.2	0.80	0.6	40	15.6	2.49	2.49	1.76	4.39
1	32.8	2.2	0.85	0.6	40	15.6	2.49	2.49	1.87	4.66
1	35.0	2.2	0.95	0.6	40	14.7	2.64	2.64	2.09	5.52
1	37.2	2.2	1.04	0.6	40	13.9	2.79	2.79	2.29	6.39
1	39.4	2.2	1.09	0.6	40	13.8	2.81	2.81	2.40	6.75
1	41.6	2.2	1.10	0.6	40	12.5	3.10	3.10	2.42	7.51
1	43.8	2.2	1.06	0.6	40	14.4	2.70	2.70	2.33	6.29
1	46.0	2.2	0.99	0.6	40	14.7	2.64	2.64	2.18	5.76
1	48.2	2.2	0.97	0.6	40	14.0	2.77	2.77	2.13	5.92
1	50.4	2.2	0.74	0.6	40	15.2	2.56	2.56	1.63	4.16
1	52.6	2.2	0.66	0.6	40	15.6	2.49	2.49	1.45	3.62
1	54.8	2.2	0.52	0.6	40	18.7	2.08	2.08	1.14	2.38
	56.0									
									40.29	93.02

GLDI4_9-5-02 (TRIP 1)

GLDI4_9-5-02 (TRIP 1) Gage = 7.80' at 9:00

W = 79.	.50'									
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	79.5		0.00							
1	76.2	3.3	1.10	0.6	0		0.00	0.00	3.63	0.00
1	73.0	3.2	1.43	0.6	0		0.00	0.00	4.58	0.00
1	69.8	3.2	1.24	0.6	10	38	0.28	0.28	3.97	1.13
1	66.6	3.2	1.38	0.6	15	37	0.42	0.42	4.42	1.86
1	63.4	3.2	1.16	0.6	20	28	0.72	0.72	3.71	2.66
1	60.2	3.2	0.71	0.6	30	33		0.90	2.27	2.05
1	57.2	3.0	0.80	0.6	35	34	1.02	1.02	2.40	2.45
1	54.0	3.2	0.87	0.6	30	26		1.14	2.78	3.17
1	50.8	3.2	0.90	0.6	40	39	1.02	1.02	2.88	2.92
1	47.6	3.2	0.90	0.6	30	29	1.02	1.02	2.88	2.95
1	44.4	3.2	0.90	0.6	30	31	0.96	0.96	2.88	2.76
1	41.2	3.2	0.80	0.6	35	30	1.15	1.15	2.56	2.95
1	38.0	3.2	0.80	0.6	30	27	1.10	1.10	2.56	2.81
1	34.8	3.2	0.80	0.6	30	32		0.93	2.56	2.38
1	31.6	3.2	0.58	0.6	30	32	0.93	0.93	1.86	1.73
1	28.4	3.2	0.67	0.6	25	31	0.81	0.81	2.14	1.73
1	25.2	3.2	0.61	0.6	25	31	0.81	0.81	1.95	1.57
1	22.0	3.2	0.62	0.6	25	44	0.58	0.58	1.98	1.14
1	18.8	3.2	0.60	0.6	25	39	0.65	0.65	1.92	1.24
1	15.6	3.2	0.62	0.6	20	37	0.55	0.55	1.98	1.09
1	12.4	3.2	0.63	0.6	20	36	0.56	0.56	2.02	1.14
1	9.2	3.2	0.70	0.6	15	26	0.58	0.58	2.24	1.31
1	6.0	3.2	0.88	0.6	11	36	0.32	0.32	2.82	0.91
1	2.8	3.2	0.45	0.6	1	40	0.06	0.06	1.44	0.08
	0.0									
	-								64.43	42.03

GLDI4_9-25-02 (TRIP 2)

GLDI4_9-25-02 (TRIP 2) Gage = 7.17' at 17:00

W = 49.0												
C factor	Dist from IP	w (ft)	d (ft)	% depth	Rev	Time (sec)	V (ft/s)	Vc (ft/s)	a (sq ft)	q (cfs)	Flow Dir (deg)	Corr Flow Dir (deg)
	0.0		0.00									
1.000	2.0	2.0	0.35	0.6	20	52.9	0.39	0.39	0.70	0.28	0	90
0.985	4.0	2.0	0.48	0.6	20	34.1	0.59	0.59	0.96	0.56	350	440
0.985	6.0	2.0	0.48	0.6	20	38.1	0.53	0.53	0.96	0.51	350	440
0.985	8.0	2.0	0.48	0.6	20	35.8	0.57	0.57	0.96	0.54	350	440
0.940	10.0	2.0	0.57	0.6	20	27.5	0.73	0.73	1.14	0.78	340	430
0.940	12.0	2.0	0.65	0.6	20	26.2	0.76	0.76	1.30	0.93	340	430
0.940	14.0	2.0	0.72	0.6	20	27.8	0.72	0.72	1.44	0.98	340	430
0.940	16.0	2.0	0.64	0.6	20	23.4	0.85	0.85	1.28	1.02	340	430
0.940	18.0	2.0	0.47	0.6	20	20.1	0.99	0.99	0.94	0.87	340	430
0.940	20.0	2.0	0.53	0.6	20	19.4	1.02	1.02	1.06	1.02	340	430
0.940	22.0	2.0	0.48	0.6	20	21.7	0.92	0.92	0.96	0.83	340	430
0.940	24.0	2.0	0.56	0.6	20	22.6	0.88	0.88	1.12	0.93	340	430
0.940	26.0	2.0	0.58	0.6	20	20.6	0.96	0.96	1.16	1.05	340	430
0.985	28.0	2.0	0.49	0.6	20	25.5	0.78	0.78	0.98	0.76	350	440
0.985	30.0	2.0	0.40	0.6	20	27	0.74	0.74	0.80	0.58	350	440
0.985	32.0	2.0	0.33	0.6	20	24.3	0.82	0.82	0.66	0.53	350	440
1.000	34.0	2.0	0.37	0.6	20	31.9	0.63	0.63	0.74	0.47	0	90
1.000	36.0	2.0	0.32	0.6	20	33.8	0.60	0.60	0.64	0.38	0	90
1.000	38.0	2.0	0.34	0.6	20	40.2	0.51	0.51	0.68	0.35	0	90
1.000	40.0	2.0	0.36	0.6	20	35.2	0.58	0.58	0.72	0.42	0	90
1.000	42.0	2.0	0.40	0.6	20	27.5	0.73	0.73	0.80	0.58	0	90
1.000	44.0	2.0	0.65	0.6	20	43.2	0.48	0.48	1.30	0.62	0	90
1.000	46.0	2.0	0.28	0.6	20	49.7	0.42	0.42	0.56	0.23	0	90
	48.0											
									21.86	15.21	-	

GLDI4_12-12-02 (TRIP 3)

GLDI4_12-12-02 (TRIP 3) Gage = 8.05' at 16:00

W = 83.	.0'									
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0		0.00							
1	3.5	3.5	1.00	0.6	0	0	0.00	0.00	3.50	0.00
1	7.0	3.5	0.65	0.6	2	22.4	0.12	0.12	2.28	0.27
1	10.5	3.5	0.94	0.6	10	14.0	0.72	0.72	3.29	2.36
1	14.0	3.5	1.00	0.6	20	29.1	0.69	0.69	3.50	2.42
1	17.5	3.5	1.10	0.6	20	30.5	0.66	0.66	3.85	2.54
1	21.0	3.5	1.16	0.6	20	25.1	0.80	0.80	4.06	3.23
1	24.5	3.5	1.06	0.6	20	18.6	1.06	1.06	3.71	3.94
1	28.0	3.5	1.33	0.6	20	19.8	1.00	1.00	4.66	4.66
1	31.5	3.5	1.48	0.6	20	19.7	1.01	1.01	5.18	5.21
1	35.0	3.5	1.50	0.6	20	22.0	0.90	0.90	5.25	4.74
1	38.5	3.5	1.37	0.6	20	25.8	0.78	0.78	4.80	3.72
1	42.0	3.5	1.29	0.6	20	22.9	0.87	0.87	4.52	3.93
1	45.5	3.5	1.24	0.6	20	23.8	0.84	0.84	4.34	3.64
1	49.0	3.5	1.25	0.6	20	20.4	0.97	0.97	4.38	4.25
1	52.5	3.5	1.24	0.6	20	21.6	0.92	0.92	4.34	3.99
1	56.0	3.5	1.20	0.6	20	22.8	0.87	0.87	4.20	3.67
1	59.5	3.5	1.18	0.6	20	22.6	0.88	0.88	4.13	3.64
1	63.0	3.5	1.20	0.6	20	30.6	0.66	0.66	4.20	2.77
1	66.5	3.5	0.97	0.6	20	43.2	0.48	0.48	3.40	1.61
1	70.0	3.5	1.00	0.6	20	39.6	0.52	0.52	3.50	1.81
1	73.5	3.5	1.03	0.6	20	32.7	0.62	0.62	3.61	2.23
1	77.0	3.5	1.18	0.6	15	45.8	0.35	0.35	4.13	1.43
1	80.5	3.5	0.39	0.6	0		0.00	0.00	1.37	0.00
	83.0									
									90.16	66.04

GLDI4_4-18-03 (TRIP 4)

GLDI4_4-18-03 (TRIP 4) Gage = 9.50' at 10:00 W = 87.0'

W = 87.										
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0		0.00							
1	3.5	3.5	2.15	0.6	19	40.8	0.48	0.48	7.53	3.60
1	7.0	3.5	3.00	0.6	34	41.1	0.83	0.83	10.50	8.66
1	10.5	3.5	2.73	0.6	7	8.4	0.83	0.83	9.56	7.94
1	14.0	3.5	2.35	0.6	26	40.7	0.64	0.64	8.23	5.30
1	17.5	3.5	2.60	0.6	44	40.4	1.08	1.08	9.10	9.80
1	21.0	3.5	2.68	0.6	15	12.2	1.21	1.21	9.38	11.36
1	24.5	3.5	2.91	0.6	5	4.1	1.20	1.20	10.19	12.24
1	28.0	3.5	2.74	0.6	46	40.3	1.13	1.13	9.59	10.81
1	31.5	3.5	2.70	0.6	58	40.5	1.41	1.41	9.45	13.28
1	35.0	3.5	2.60	0.6	30	19.9	1.48	1.48	9.10	13.45
1	38.5	3.5	2.53	0.6	30	22.7	1.30	1.30	8.86	11.51
1	42.0	3.5	2.52	0.6	30	23.1	1.28	1.28	8.82	11.27
1	45.5	3.5	2.70	0.6	30	21.6	1.36	1.36	9.45	12.89
1	49.0	3.5	2.88	0.6	30	27.3	1.09	1.09	10.08	10.95
1	52.5	3.5	2.39	0.6	30	20.6	1.43	1.43	8.37	11.95
1	56.0	3.5	2.60	0.6	30	20.8	1.42	1.42	9.10	12.88
1	59.5	3.5	2.70	0.6	30	24.3	1.22	1.22	9.45	11.49
1	63.0	3.5	2.55	0.6	30	22.2	1.33	1.33	8.93	11.86
1	66.5	3.5	2.60	0.6	30	21	1.40	1.40	9.10	12.76
1	70.0	3.5	2.50	0.6	30	26.9	1.10	1.10	8.75	9.64
1	73.5	3.5	2.37	0.6	30	21.7	1.36	1.36	8.30	11.27
1	77.0	3.5	2.10	0.6	30	24.4	1.21	1.21	7.35	8.90
1	80.5	3.5	2.12	0.6	30	25.7	1.15	1.15	7.42	8.55
1	84.0	3.5	1.45	0.6	30	62.4	0.49	0.49	5.08	2.50
	87.0									
									211.65	244.86

LKCI4_9-11-02 (TRIP 1)

LKCI4_9-11-02 (TRIP 1) Gage = 8.22' at 14:00

W = 97'	· · · · · · · · · · · · · · · · · · ·									
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0		0.00							
1	3.9	3.9	0.30		0		0.00			
1	6.8	2.9	0.40		0		0.00			
1	10.7	3.9	0.70		0		0.00			
1	14.6	3.9	1.28	0.6	15	40	0.39		4.99	1.95
1	18.5	3.9	1.52	0.6	35	40	0.87		5.93	5.16
1	22.4	3.9	1.58	0.6	42	40	1.04		6.16	6.40
1	26.3	3.9	1.62	0.6	49	40	1.21		6.32	7.63
1	30.2	3.9	1.90	0.6	53	40	1.30		7.41	9.66
1	34.1	3.9	1.98	0.6	51	40	1.26		7.72	9.69
1	38.0	3.9	2.05	0.6	47	40	1.16		8.00	9.27
1	41.9	3.9	2.34	0.6	48	40	1.18		9.13	10.80
1	45.8	3.9	2.45	0.6	40	40	0.99		9.56	9.47
1	49.7	3.9	2.59	0.6	50	40	1.23		10.10	12.43
1	53.6	3.9	2.91	0.6	45	40	1.11		11.35	12.61
1	57.5	3.9	2.99	0.6	40	40	0.99		11.66	11.56
1	61.4	3.9	3.89	0.6	45.5	40	1.12		15.17	17.04
1	64.3	2.9	2.00	0.6	22	40	0.56		5.80	3.24
	67.0									
				_	•				119.29	126.90

LKCI4_10-9-02 (TRIP 2)

LKCI4_10-9-02 (TRIP 2) Gage = 9.50' at 9:50 W = 202'

W = 20										
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	14.0		0.00							
1	22.0	8	1.40	0.6	30	31.4	0.95	0.95	11.20	10.62
1	30.0	8	1.06	0.6	30	22.4	1.32	1.32	8.48	11.17
1	38.0	8	0.90	0.6	30	19.9	1.48	1.48	7.20	10.64
1	46.0	8	1.03	0.6	30	14.2	2.06	2.06	8.24	16.97
1	54.0	8	1.09	0.6	30	15.5	1.89	1.89	8.72	16.47
1	62.0	8	1.09	0.6	30	14.6	2.00	2.00	8.72	17.47
1	70.0	8	1.22	0.6	30	13.8	2.12	2.12	9.76	20.67
1	78.0	8	1.62	0.6	30	15.0	1.95	1.95	12.96	25.28
1	86.0	8	1.13	0.6	30	13.4	2.18	2.18	9.04	19.71
1	94.0	8	2.45	0.6	30	10.9	2.67	2.67	19.60	52.39
1	102.0	8	2.65	0.6	50	21.2	2.30	2.30	21.20	48.66
1	110.0	8	2.53	0.6	50	22.7	2.15	2.15	20.24	43.43
1	118.0	8	2.46	0.6	50	24.3	2.01	2.01	19.68	39.48
1	126.0	8	2.53	0.6	50	23.7	2.06	2.06	20.24	41.62
1	134.0	8	2.29	0.6	50	24.4	2.00	2.00	18.32	36.61
1	142.0	8	2.14	0.6	50	24.3	2.01	2.01	17.12	34.35
1	150.0	8	1.87	0.6	50	31.0	1.58	1.58	14.96	23.63
1	158.0	8	1.89	0.6	50	28.6	1.71	1.71	15.12	25.84
1	166.0	8	1.76	0.6	50	34.4	1.43	1.43	14.08	20.08
1	174.0	8	1.44	0.6	30	22.0	1.34	1.34	11.52	15.44
1	182.0	8	1.18	0.6	30	17.0	1.73	1.73	9.44	16.29
1	190.0	8	1.81	0.6	30	19.0	1.55	1.55	14.48	22.40
1	198.0	8	1.58	0.6	30	20.1	1.46	1.46	12.64	18.50
1	206.0	8	1.80	0.6	30	60.1	0.51	0.51	14.40	7.35
	216.0									
	-								327.36	595.07

LKCI4_10-31-02 (TRIP 3)

LKCI4_10-31-02 (TRIP 3) Gage = 8.90' at 10:00

$\frac{W = 169}{C}$	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)	/	(ft/s)		
,	0.0		0.00							
1	6.8	6.8	2.80	0.6	10	17.5		0.58	19.04	11.04
1	13.6	6.8	3.30	0.8	30	17.0	1.73	2.09	22.44	46.86
	13.6	0		0.2	30	11.9	2.45	0		
1	20.4	6.8	3.45	0.8	30	15.4	1.90	2.15	23.46	50.35
	20.4	0		0.2	30	12.2	2.39	0		
1	27.2	6.8	3.60	0.8	30	12.5		1.98	24.48	48.38
	27.2	0		0.2	20	12.1	1.62	0		
1	34.0	6.8	3.30	0.8	30	13.9		2.29	22.44	51.33
	34.0	0		0.2	30	11.8		0		
1	40.8	6.8	3.15	0.8	30	16.3		1.96	21.42	41.94
	40.8	0		0.2	30	13.8		0		
1	47.6	6.8	2.85	0.6	25	15.3		1.60	19.38	31.00
1	54.4	6.8	1.90	0.6	30	18.4		1.60	12.92	20.62
1	61.2	6.8	1.62	0.6	30	18.0		1.63	11.02	17.97
1	68.0	6.8	1.65	0.6	30	19.2		1.53	11.22	17.18
1	74.8	6.8	1.60	0.6	30	21.2		1.39	10.88	15.12
1	81.6	6.8	1.55	0.6	30	17.1	1.72	1.72	10.54	18.08
1	88.4	6.8	1.30	0.6	30	18.4		1.60	8.84	14.11
1	95.2	6.8	1.09	0.6	30	23.1	1.28	1.28	7.41	9.47
1	102.0	6.8	0.70	0.6	30	24.9		1.19	4.76	5.65
1	108.8	6.8	0.50	0.6	30	36.4		0.82	3.40	2.80
1	115.6	6.8	0.37	0.6	20	14.4		1.36	2.52	3.43
1	122.4	6.8	0.49	0.6	20	14.0		1.40	3.33	4.67
1	129.2	6.8	0.60	0.6	20	15.3		1.29	4.08	5.25
1	136.0	6.8	0.30	0.6	14	44.3		0.33	2.04	0.68
1	142.8	6.8	0.40	0.6	20	25.3		0.79	2.72	2.15
1	149.6	6.8	0.45	0.6	20	29.0		0.69	3.06	2.12
1	156.4	6.8	0.70	0.6	20	25.3		0.79	4.76	3.76
1	163.2	6.8	0.78	0.6	2	18.0	0.14	0.14	5.30	0.73
	169.0									
									261.46	424.68

LKCI4_11-14-02 (TRIP 4)

LKCI4_11-14-02 (TRIP 4) Gage = 8.51' at 16:30

W = 84'										
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0		0.00							
1	3.4	3.4	0.35	0.6	20	31.9	0.63	0.63	1.19	0.75
1	6.8	3.4	0.80	0.6	20	37.7	0.54	0.54	2.72	1.47
1	10.2	3.4	0.90	0.6	20	23.4	0.85	0.85	3.06	2.61
1	13.6	3.4	1.00	0.6	20	23.5	0.85	0.85	3.40	2.88
1	17.0	3.4	1.08	0.6	20	20.3		0.98	3.67	3.59
1	20.4	3.4	1.04	0.6	20	16.5		1.19	3.54	4.22
1	23.8	3.4	1.28	0.6	30	26.2		1.13	4.35	4.92
1	27.2	3.4	1.41	0.6	30	19.5		1.51	4.79	7.23
1	30.6	3.4	1.60	0.6	30	20.5		1.44	5.44	7.81
1	34.0	3.4	1.85	0.6	30	22.5		1.31	6.29	8.25
1	37.4	3.4	2.00	0.6	30	19.5		1.51	6.80	10.25
1	40.8	3.4	2.30	0.6	30	17.9		1.64	7.82	12.82
1	44.2	3.4	2.60	0.6	40	25.2	1.55	1.55	8.84	13.74
1	47.6	3.4	2.70	0.6	40	21.1	1.85	1.85	9.18	16.99
1	51.0	3.4	2.65	0.6	40	21.1	1.85	1.85	9.01	16.68
1	54.4	3.4	2.80	0.6	40	19.3	2.02	2.02	9.52	19.24
1	57.8	3.4	2.98	0.6	40	21.3		1.83	10.13	18.58
1	61.2	3.4	2.85	0.6	40	25.7		1.53	9.69	14.78
1	64.6	3.4	2.99	0.6	30	14.3	2.04	2.04	10.17	20.79
1	68.0	3.4	3.30	0.8	30	19.4	1.52	1.52	11.22	17.00
		0		0.2	30	14.4	2.03	2.03		
1	71.4	3.4	3.40	8.0	30	21.6		1.36	11.56	15.77
		0		0.2	30	13.9	2.10	2.10		
1	74.8	3.4	3.30	8.0	30	19.9	1.48	1.48	11.22	16.59
		0		0.2	30	15.6		1.88		
1	78.2	3.4	3.70	8.0	30	23.9		1.24	12.58	15.55
		0		0.2	30	13.3		2.20		
1	81.6	3.4	2.00	0.6	30	27.2	1.09	1.09	6.80	7.41
	84.0									
									172.99	259.93

NEPI4_9-3-02 (TRIP 1)

NEPI4_9-3-02 (TRIP 1) Gage = 14.08' at 12:00

W=60.5		\u_ (f4)	4 (tt)	0/ donth	Pov	Time	\/ (ft/c\	\ <u>'</u> 0	2 (20 ft)	a (ofc)
	Dist from IP	w (It)	d (ft)	%depth	Rev		V (ft/s)	Vc (ft/s)	a (sq ft)	q (cfs)
factor	0.0					(sec)		(11/5)		
	2.4		0.15							
1	4.8	4.8	0.13	0.6	15	45.3	0.35	0.35	1.92	0.67
1	7.3	2.5	0.70	0.6	15	45	0.35	0.35	1.75	0.61
1	9.7	2.4	0.90	0.6	15	30.2	0.51	0.51	2.16	1.10
1	12.1	2.4	0.65	0.6	20	31.8	0.63	0.63	1.56	0.99
1	14.5	2.4	0.03	0.6	20	30.4	0.66	0.66	1.85	1.22
1	16.9	2.4	1.00	0.6	20	32	0.63	0.63	2.40	1.51
1	19.4	2.5	0.90	0.6	25	30.2		0.83	2.25	1.86
1	21.7	2.3	1.00	0.6	30	39.9	0.75	0.75	2.30	1.73
1	24.2	2.5	1.10	0.6	25	36.5	0.69	0.69	2.75	1.89
1	26.6	2.4	1.10	0.6	25	40.1	0.63	0.63	2.64	1.66
1	29.0	2.4	1.00	0.6	25	41.4	0.61	0.61	2.40	1.47
1	31.5	2.5	1.10	0.6	20	33.7	0.60	0.60	2.75	1.65
1	33.9	2.4	1.10	0.6	25	39.4	0.64	0.64	2.64	1.69
1	36.3	2.4	1.10	0.6	20	37.2		0.55	2.64	1.44
1	38.7	2.4	1.10	0.6	20	43.5	0.47	0.47	2.64	1.25
1	41.1	2.4	1.10	0.6	20	32.4	0.62	0.62	2.64	1.65
1	43.6	2.5	0.90	0.6	20	39.4		0.52	2.25	1.17
1	46.0	2.4	0.80	0.6	20	32.5		0.62	1.92	1.19
1	48.4	2.4	0.70	0.6	20	35.7	0.57	0.57	1.68	0.96
1	50.8	2.4	0.60	0.6	20	35.2		0.58	1.44	0.83
1	53.2	2.4	0.65	0.6	20	39.4	0.52	0.52	1.56	0.81
0.97	55.7	2.5	0.50	0.6	20	39.5	0.52	0.50	1.25	0.63
0.97	58.0	2.3	0.60	0.6	10	39.4	0.27	0.27	1.38	0.37
	60.5									
					•			•	48.77	28.35

NEPI4_9-24-02 (TRIP 2)

NEPI4_9-24-02 (TRIP 2) Gage = 14.22' at 12:30

С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP			•		(sec)		(ft/s)	,	
	0.0									
1	2.4	2.4	0.38	0.6	0		0			
1	4.8	2.4	0.75	0.6	10	50	0.22	0.22	1.80	0.40
1	7.2	2.4	0.88	0.6	10	33.3	0.32	0.32	2.11	0.67
1	9.6	2.4	0.83	0.6	10	25.9	0.40	0.40	1.99	0.80
1	12.0	2.4	0.87	0.6	10	17.2	0.59	0.59	2.09	1.23
1	14.4	2.4	0.98	0.6	10	13.9	0.72	0.72	2.35	1.70
1	16.8	2.4	1.10	0.6	10	14.1	0.71	0.71	2.64	1.88
1	19.2	2.4	1.11	0.6	10	12.8	0.78	0.78	2.66	2.08
1	21.6	2.4	1.13	0.6	10	13.9	0.72	0.72	2.71	1.96
1	24.0	2.4	1.22	0.6	10	11.2	0.89	0.89	2.93	2.60
1	26.4	2.4	1.17	0.6	10	12.8	0.78	0.78	2.81	2.19
1	28.8	2.4	1.16	0.6	10	11.4	0.87	0.87	2.78	2.43
1	31.2	2.4	1.15	0.6	10	12.8	0.78	0.78	2.76	2.16
1	33.6	2.4	1.20	0.6	10	15.8	0.64	0.64	2.88	1.84
1	36.0	2.4	1.17	0.6	10	15.3	0.66	0.66	2.81	1.85
1	38.4	2.4	1.12	0.6	10	12.8	0.78	0.78	2.69	2.10
1	40.8	2.4	1.12	0.6	10	13.7	0.73	0.73	2.69	1.97
1	43.2	2.4	1.03	0.6	10	11.2	0.89	0.89	2.47	2.20
1	45.6	2.4	0.89	0.6	20	26.8	0.75	0.75	2.14	1.60
1	48.0	2.4	0.90	0.6	20	36.3	0.56	0.56	2.16	1.21
1	50.4	2.4	0.88	0.6	20	31.3	0.64	0.64	2.11	1.36
1	52.8	2.4	0.68	0.6	20	35.8	0.57	0.57	1.63	0.93
1	55.2	2.4	0.64	0.6	20	40.8	0.50	0.50	1.54	0.77
1	57.6	2.4	0.7	0.6	20	53.6	0.39	0.39	1.68	0.65
ı	60.0									
									54.43	36.57

NEPI4_11-1-02 (TRIP 3)

NEPI4_11-1-02 (TRIP 3) Gage = 14.71' at 14:30

W=92.0) '									
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0									
1	3.7	3.7	0.90	0.6	20	22.7	0.88	0.88	3.33	2.92
1	7.4	3.7	0.80	0.6	20	21.0	0.95	0.95	2.96	2.80
1	11.1	3.7	0.81	0.6	20	24.2	0.82	0.82	3.00	2.47
1	14.8	3.7	0.79	0.6	20	20.7	0.96	0.96	2.92	2.80
1	18.5	3.7	0.95	0.6	20	20.6	0.96	0.96	3.52	3.39
1	22.2	3.7	0.85	0.6	20	19.8	1.00	1.00	3.15	3.15
1	25.9	3.7	1.08	0.6	20	18.4	1.07	1.07	4.00	4.29
1	29.6	3.7	1.19	0.6	20	19.5	1.02	1.02	4.40	4.47
1	33.3	3.7	0.99	0.6	20	18.9	1.05	1.05	3.66	3.83
1	37.0	3.7	0.95	0.6	20	15.2	1.29	1.29	3.52	4.55
1	40.7	3.7	0.99	0.6	20	13.5	1.45	1.45	3.66	5.32
1	44.4	3.7	0.90	0.6	30	21.0	1.40	1.40	3.33	4.67
1	48.1	3.7	0.75	0.6	30	23.7	1.25	1.25	2.78	3.46
1	51.8	3.7	0.85	0.6	30	28.1	1.06	1.06	3.15	3.32
1	55.5	3.7	1.02	0.6	30	25.9	1.14	1.14	3.77	4.31
1	59.2	3.7	1.34	0.6	30	22.3	1.32	1.32	4.96	6.56
1	62.9	3.7	1.34	0.6	30	24.3	1.22	1.22	4.96	6.03
1	66.6	3.7	1.45	0.6	30	19.5	1.51	1.51	5.36	8.09
1	70.3	3.7	1.45	0.6	30	23.1	1.28	1.28	5.37	6.86
1	74.0	3.7	1.37	0.6	30	18.2	1.61	1.61	5.07	8.18
1	77.7	3.7	1.38	0.6	30	20.4	1.44	1.44	5.11	7.37
1	81.4	3.7	1.30	0.6	30	21.4	1.38	1.38	4.81	6.62
1	85.1	3.7	1.20	0.6	30	25.9	1.14	1.14	4.44	5.07
1	88.8	3.7	1.25	0.6	10	13.2	0.76	0.76	4.63	3.51
	92.0									
			·				·	·	95.83	114.04

NEPI4_12-13-02 (TRIP 4)

NEPI4_12-13-02 (TRIP 4) Gage = 14.61' at 15:30

W = 92.0)1									
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0									
1	3.5	3.5	0.60	0.6	8	45.0	0.20	0.20	2.10	0.42
1	7.0	3.5	0.65	0.6	10	37.8	0.28	0.28	2.28	0.65
1	10.5	3.5	0.64	0.6	10	30.0	0.35	0.35	2.24	0.79
1	14.0	3.5	0.66	0.6	10	30.6	0.34	0.34	2.31	0.80
1	17.5	3.5	0.70	0.6	10	31.1	0.34	0.34	2.45	0.83
1	21.0	3.5	0.91	0.6	10	21.6	0.48	0.48	3.19	1.51
1	24.5	3.5	0.94	0.6	10	21.9	0.47	0.47	3.29	1.54
1	28.0	3.5	0.94	0.6	10	19.8	0.52	0.52	3.29	1.70
1	31.5	3.5	0.86	0.6	10	16.8	0.60	0.60	3.01	1.81
1	35.0	3.5	0.70	0.6	10	20.3	0.50	0.50	2.45	1.23
1	38.5	3.5	0.81	0.6	10	20.5	0.50	0.50	2.84	1.42
1	42.0	3.5	0.89	0.6	10	16.3	0.62	0.62	3.12	1.93
1	45.5	3.5	0.81	0.6	10	18.4	0.55	0.55	2.84	1.57
1	49.0	3.5	0.78	0.6	10	18.4	0.55	0.55	2.73	1.51
1	52.5	3.5	0.73	0.6	10	23.3	0.44	0.44	2.56	1.13
1	56.0	3.5	0.72	0.6	10	21.7	0.47	0.47	2.52	1.19
1	59.5	3.5	0.83	0.6	10	19.0	0.54	0.54	2.91	1.56
1	63.0	3.5	1.26	0.6	10	16.7	0.61	0.61	4.41	2.67
1	66.5	3.5	1.44	0.6	10	14.2	0.71	0.71	5.04	3.56
1	70.0	3.5	1.49	0.6	10	9.7	1.02	1.02	5.22	5.32
1	73.5	3.5	1.58	0.6	10	10.8	0.92	0.92	5.53	5.09
1	77.0	3.5	1.49	0.6	10	7.6	1.29	1.29	5.22	6.75
1	80.5	3.5	1.30	0.6	10	10.6	0.94	0.94	4.55	4.26
1	84.0	3.5	1.26	0.6	10	16.4	0.62	0.62	4.41	2.72
1	87.5	3.5	1.38	0.6	10	31.8	0.33	0.33	4.83	0.83
	92.0									
									85.30	52.80

PROI4_9-11-02 (TRIP 1)

PROI4_9-11-02 (TRIP 1) Gage = 4.57' at 17:00

С	Dist	w (ft)	d (ft)	%	Rev		V (ft/s)	Vc	a (sq ft)	q (cfs)	Flow	Corr
factor	from IP			depth		(sec)		(ft/s)			Dir	Flow Dir
	0.0										(deg)	(deg)
1	5.5	5.5	0.65	0.6	11	40	0.30	0.30	3.58	1.05	0	90
1	11.0	5.5	0.85	0.6	16	40	0.42	0.42	4.68	1.94	0	90
1	16.5	5.5	0.94	0.6	20	40	0.51	0.51	5.17	2.64	0	90
1	22.0	5.5	1.15	0.6	25	40	0.63	0.63	6.33	3.99	0	90
1	27.5	5.5	1.35	0.6	34	40	0.85	0.85	7.43	6.29	0	90
1	33.0	5.5	1.58	0.6	47	40	1.16	1.16	8.69	10.07	0	90
1	38.5	5.5	2.00	0.6	51	40	1.26	1.26	11.00	13.80	0	90
1	44.0	5.5	2.15	0.6	57	40	1.40	1.40	11.83	16.54	0	90
1	49.5	5.5	2.20	0.6	66	40	1.62	1.62	12.10	19.54	0	90
1	55.0	5.5	2.30	0.6	68	40	1.66	1.66	12.65	21.04	0	90
1	60.5	5.5	2.40	0.6	59	40	1.45	1.45	13.20	19.10	0	90
1	66.0	5.5	2.20	0.6	60	40	1.47	1.47	12.10	17.80	0	90
1	71.5	5.5	1.91	0.6	64	40	1.57	1.57	10.51	16.46	0	90
1	77.0	5.5	1.80	0.6	59	40	1.45	1.45	9.90	14.33	0	90
1	82.5	5.5	2.05	0.6	50	40	1.23	1.23	11.28	13.88	0	90
1	88.0	5.5	1.91	0.6	56	40	1.38	1.38	10.51	14.44	0	90
1	93.5	5.5	1.85	0.6	52	40	1.28	1.28	10.18	13.01	0	90
1	99.0	5.5	1.80	0.6	53	40	1.30	1.30	9.90	12.90	0	90
1	104.5	5.5	1.91	0.6	43	40	1.06	1.06	10.51	11.17	0	90
1	110.0	5.5	1.90	0.6	44	40	1.09	1.09	10.45	11.36	0	90
1	115.5	5.5	1.90	0.6	33	40	0.82	0.82	10.45	8.60	0	90
1	121.0	5.5	1.90	0.6	27	40	0.68	0.68	10.45	7.10	0	90
0.866		5.5	2.30	0.6	12	40	0.32	0.32	12.65	3.49	30	60
-0.866		5.5	1.65	0.6	5	40	0.15	0.15	9.08	-1.19	150	-60
	139.0											
									234.58	259.37		

PROI4_10-8-02 (TRIP 2)

PROI4_10-8-02 (TRIP 2)
Gage = 7.79' at 15:15

C factor		w (ft)	d (ft)	0/								
factor	fram ID		u (11)	%	Rev		V (ft/s)	Vc	a (sq ft)	q (cfs)	Flow	Corr
	IIOIII IF			depth		(sec)		(ft/s)			Dir	Flow Dir
	0.00		0.00								(deg)	(deg)
0.9848	8.25	8.25	3.10	0.8	30	50.3	1.33	1.63	25.58	40.95	350	440
0.9848	8.25	0.00	3.10	0.8	30	34.8	1.92	0.00	0.00	0.00	350	440
0.9848	16.50	8.25	2.80	0.2	30	33.8	1.98	1.98	23.10	44.93	350	440
0.9848	24.75	8.25	4.20	0.8	30	36.5	1.83	1.87	34.65	63.78	350	440
0.9848	24.75	0.00	4.20	0.0	30	35.0	1.91	0.00	0.00	0.00	350	440
0.9848	33.00	8.25	4.00	0.2	30	26.4	2.52	2.59	33.00	84.30	350	440
0.9848	33.00	0.00	4.00	0.0	30	25.0	2.66	0.00	0.00	0.00	350	440
0.9848	41.25	8.25	4.30	0.2	30	31.4	2.12	2.51	35.48	87.67	350	440
0.9848	41.25	0.00	4.30	0.2	30	23.0	2.89	0.00	0.00	0.00	350	440
0.9848	49.50	8.25	3.10	0.8	30	30.0	2.22	2.74	25.58	69.06	350	440
0.9848	49.50	0.00	3.10	0.2	30	20.4	3.26	0.00	0.00	0.00	350	440
0.9848	57.75	8.25	2.70	0.6	30	21.1	3.15	3.15	22.28	69.17	350	440
1	66.00	8.25	3.50	0.8	30	47.2	1.42	2.32	28.88	67.11	360	450
1	66.00	0.00	3.50	0.2	30	20.6	3.23	0.00	0.00	0.00	360	450
1	74.25	8.25	3.90	0.8	30	32.4	2.06	2.33	32.18	74.83	360	450
1	74.25	0.00	3.90	0.2	30	25.7	2.59	0.00	0.00	0.00	360	450
1	82.50	8.25	4.00	0.8	30	28.5	2.34	2.80	33.00	92.40	360	450
1	82.50	0.00	4.00	0.2	30	20.4	3.26	0.00	0.00	0.00	360	450
1	90.75	8.25	3.80	0.8	30	26.4	2.52	2.86	31.35	89.69	360	450
1	90.75	0.00	3.80	0.2	30	20.8	3.20	0.00	0.00	0.00	360	450
1	99.00	8.25	4.90	0.8	30	31.0	2.15	2.73	40.43	110.38	360	450
1	99.00	0.00	4.90	0.2	30	20.1	3.31	0.00	0.00	0.00	360	450
1	107.25	8.25	4.40	0.8	30	28.6	2.33	2.78	36.30	100.92	360	450
1	107.25	0.00	4.40	0.2	30	20.6	3.23	0.00	0.00	0.00	360	450
1	115.50	8.25	4.40	0.8	30	31.1	2.15	2.56	36.30	93.10	360	450
1	115.50	0.00	4.40	0.2	30	22.3	2.98	0.00	0.00	0.00	360	450
1	123.75	8.25	4.00	0.8	30	26.5	2.51	2.58	33.00	85.09	360	450
1	123.75	0.00	4.00	0.2	30	25.2	2.64	0.00	0.00	0.00	360	450
1	132.00	8.25	4.80	0.8	30	24.3	2.74	2.87	39.60	113.61	360	450
1	132.00	0.00	4.80	0.2	30	22.2	3.00	0.00	0.00	0.00	360	450
1	140.25	8.25	4.70	0.8	30	26.8	2.49	2.72	38.78	105.55	360	450
1	140.25	0.00	4.70	0.2	30	22.5	2.96	0.00	0.00	0.00	360	450
1	148.50	8.25	5.60	0.8	30	30.7	2.17	2.49	46.20	115.08	360	450
1	148.50	0.00	5.60	0.2	30	23.7	2.81	0.00	0.00	0.00	360	450
1	156.75	8.25	5.80	0.8	30	31.9	2.09	2.59	47.85	124.08	360	450
1	156.75	0.00	5.80	0.2	30	21.5	3.09	0.00	0.00	0.00	360	450
1	165.00	8.25	5.30	0.8	30	31.9	2.09	2.45	43.73	107.14	360	450
1	165.00	0.00	5.30	0.2	30	23.7	2.81	0.00	0.00	0.00	360	450
1	173.25	8.25	5.50	0.8	30	41.9	1.60	2.23	45.38	101.32	360	450
1	173.25	0.00	5.50	0.2	30	23.2	2.87	0.00	0.00	0.00	360	450
1	181.50	8.25	4.40	0.8	30	37.4	1.79	1.78	36.30	64.60	360	450
1	181.50	0.00	4.40	0.2	30	37.7	1.77	0.00	0.00	0.00	360	450
1	189.75	8.25	5.30	0.8	30	35.6	1.88	2.05	43.73	89.46	360	450
1	189.75	0.00	5.30	0.2	30	30.1	2.22	0.00	0.00	0.00	360	450
1	198.00	8.25	3.50	0.8	30	49.3	1.36	1.46	28.88	42.05	360	450
1	198.00	0.00	3.50	0.2	30	43.1	1.55	0.00	0.00	0.00	360	450
	206.00											
									841.50	2036.28		

PROI4_10-31-02 (TRIP 3)

PROI4_10-31-02 (TRIP 3) Gage = 5.63' at 12:20

W = 199)'											
С	Dist	w (ft)	d (ft)	%	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)	Flow	Corr
factor	from IP			depth		(sec)		(ft/s)			Dir	Flow Dir
											(deg)	(deg)
	0.0		0.00									
1	8.0	8.00	0.70	0.6	20	0.0	0.00	0.00	5.60	0.00	360	450
1	16.0	8.00	1.20	0.6	20	47.0	0.96	0.96	9.60	9.18	360	450
0.9848	24.0	8.00	2.10	0.6	20	28.4	1.57	1.57	16.80	25.99	350	440
0.9848	32.0	8.00	2.20	0.6	20	24.4	1.83	1.83	17.60	31.64	350	440
0.9962	40.0	8.00	1.70	0.6	20	20.3	2.19	2.19	13.60	29.68	355	445
0.9962	48.0	8.00	1.30	0.6	20	19.9	2.23	2.23	10.40	23.15	355	445
0.9962	56.0	8.00	1.40	0.6	20	18.6	2.39	2.39	11.20	26.65	355	445
0.9962	64.0	8.00	1.90	0.6	20	17.9	2.48	2.48	15.20	37.58	355	445
0.9962	72.0	8.00	2.40	0.6	20	20.1	2.21	2.21	19.20	42.31	355	445
0.9962	80.0	8.00	2.60	0.6	20	19.7	2.26	2.26	20.80	46.76	355	445
0.9962	88.0	8.00	2.80	0.6	20	21.0	2.12	2.12		47.26	355	445
1	96.0	8.00	2.50	0.6	20	18.6	2.39	2.39	20.00	47.78	360	450
1	104.0	8.00	2.80	0.6	20	19.4	2.29	2.29	22.40	51.32	360	450
1	112.0	8.00	2.60	0.6	20	22.2	2.00	2.00	20.80	41.69	360	450
1	120.0	8.00	2.60	0.6	20	22.9	1.94	1.94	20.80	40.43	360	450
1	128.0	8.00	3.00	0.8	20	27.0	1.65	1.95	24.00	46.89	360	450
1	128.0	0.00	3.00	0.2	20	19.7	2.26	0.00	0.00	0.00	360	450
1	136.0	8.00	2.80	0.6	20	19.2	2.31	2.31	22.40	51.85	360	450
1	144.0	8.00	3.20	0.8	20	23.2	1.92	2.16	25.60	55.30	360	450
1	144.0	0.00	3.20	0.2	20	18.5	2.40	0.00	0.00	0.00	360	450
1	152.0	8.00	3.20	0.8	20	22.7	1.96	2.17	25.60	55.51	360	450
1	152.0	0.00	3.20	0.2	20	18.7	2.38	0.00	0.00	0.00	360	450
1	160.0	8.00	3.60	0.8	20	29.8	1.50	1.82	28.80	52.51	360	450
1	160.0	0.00	3.60	0.2	20	20.7	2.15	0.00	0.00	0.00	360	450
1	168.0	8.00	4.00	0.8	20	28.2	1.58	1.76	32.00	56.41	360	450
1	168.0	0.00	4.00	0.2	20	22.9	1.94	0.00	0.00	0.00	360	450
1	176.0	8.00	2.80	0.6	10	56.9	0.41	0.41	22.40	9.08	360	450
1	184.0	8.00	3.60	0.8	15	45.3	0.75	0.66	28.80	18.93	360	450
1	184.0	0.00	3.60	0.2	10	40.2	0.57	0.00	0.00	0.00	360	450
1	192.0	8.00	2.00	0.6	20	40.5	1.11	1.11	16.00	17.71	360	450
	199.0											
									472.00	865.63		

PROI4_11-14-02 (TRIP 4)

PROI4_11-14-02 (TRIP 4) Gage = 5.10' at 14:00

W = 160)'											
С	Dist	w (ft)	d (ft)	%	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)	Flow	Corr
factor	from IP			depth		(sec)		(ft/s)			Dir	Flow Dir
											(deg)	(deg)
	40.0		0.00									
1	46.4	6.40	0.50	0.6	0	0.0	0.00	0.00	3.20	0.00	360	450
1	52.8	6.40	0.90	0.6	2	16.5	0.15	0.15	5.76	0.85	360	450
1	59.2	6.40	1.20	0.6	10	31.4	0.34	0.34	7.68	2.59	360	450
1	65.6	6.40	1.60	0.6	20	40.8	0.50	0.50	10.24	5.14	360	450
1	72.0	6.40	2.00	0.6	20	24.2	0.82	0.82		10.55	360	450
1	78.4	6.40	2.30	0.6	20	17.3	1.14	1.14	14.72	16.79	360	450
1	84.8	6.40	2.62	0.6	20	13.4	1.46	1.46	16.77	24.55	360	450
1	91.2	6.40	3.00	0.8	30	22.5	1.31	1.55	19.20	29.85	360	450
1	91.2	0.00	3.00	0.2	30	16.3	1.80	0.00	0.00	0.00	360	450
1	97.6	6.40	3.17	0.8	30	22.5	1.31	1.49	20.29	30.21	360	450
1	97.6	0.00	3.17	0.2	30	17.6	1.67	0.00	0.00	0.00	360	450
1	104.0	6.40	3.45	0.8	30	16.2	1.81	1.84	22.08	40.69	360	450
1	104.0	0.00	3.45	0.2	30	15.6	1.88	0.00	0.00	0.00	360	450
1	110.4	6.40	3.50	8.0	30	16.2	1.81	1.93	22.40	43.32	360	450
1	110.4	0.00	3.50	0.2	30	14.2	2.06	0.00	0.00	0.00	360	450
1	116.8	6.40	3.60	0.8	30	18.4	1.60	1.93	23.04	44.46	360	450
1	116.8	0.00	3.60	0.2	30	12.9	2.26	0.00	0.00	0.00	360	450
1	123.2	6.40	3.62	0.8	30	18.4	1.60	1.97	23.17	45.54	360	450
1	123.2	0.00	3.62	0.2	30	12.5	2.34	0.00	0.00	0.00	360	450
1	129.6	6.40	3.61	0.8	30	17.4	1.69	1.94		44.85	360	450
1	129.6	0.00	3.61	0.2	30	13.3	2.20	0.00	0.00	0.00	360	450
1	136.0	6.40	3.40	0.8	30	22.3	1.32	1.67	21.76	36.34	360	450
1	136.0	0.00	3.40	0.2	30	14.5	2.02	0.00	0.00	0.00	360	450
1	142.4	6.40	3.20	0.8	30	19.1	1.54	1.73	20.48	35.35	360	450
1	142.4	0.00	3.20	0.2	30	15.3	1.91	0.00	0.00	0.00	360	450
1	148.8	6.40	2.99	0.6	30	17.3	1.70	1.70	19.14	32.45	360	450
1	155.2	6.40	2.68	0.6	30	21.1	1.40	1.40	17.15	23.94	360	450
1	161.6	6.40	2.55	0.6	30	28.0	1.06	1.06	16.32	17.29	360	450
1	168.0	6.40	2.50	0.6	30	36.5	0.82	0.82		13.12	360	450
1	174.4	6.40	2.35	0.6	20	29.7	0.68	0.68	15.04	10.19	360	450
1	180.8	6.40	1.80	0.6	10	46.8	0.24	0.24		2.72	360	450
1	187.2	6.40	1.85	0.6	. 3		0.11	0.11	11.84	1.30	360	450
1	193.6	6.40	1.34	0.6			0	0.00	8.58	0.00	360	450
· ·	200.0	0.10	1.04	0.0			Ū	0.00	0.50	0.00	000	.50
	_00.0								382.27	512.09		

STBI4_9-4-02 (TRIP 1)

STBI4_9-4-02 (TRIP 1) Gage = 5.64' at 15:45 W = 140'

С	Dist	w (ft)	d (ft)	%	Rev		V (ft/s)	Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from			depth		(sec)		(ft/s)			(deg)	Flow Dir
	IP											(deg)
	0.0		0.00									
1	5.6	5.6	1.80	0.6	0	0.0	0.00	0.00	10.08	0.00		
-0.5	11.2	5.6	2.40	0.6	1	52.0	0.06	0.06	13.44	-0.41	-	
1	16.8	5.6	2.00	0.6	10	30.0	0.75	0.75	11.20	8.43		
1	22.4	5.6	1.00	0.6	10	45.0	0.51	0.51	5.60	2.84	360	-270
1	28.0	5.6	0.80	0.6	0	0.0	0.00	0.00	4.48	0.00	360	-270
1	33.6	5.6	0.80	0.6	0	0.0	0.00	0.00	4.48	0.00	360	-270
1	39.2	5.6	1.70	0.6	56	30.0	4.13	4.13	9.52	39.36	360	-270
1	44.8	5.6	1.50	0.6	60	35.0	3.80	3.80	8.40	31.90	360	-270
1	50.4	5.6	1.50	0.6	55	30.0	4.06	4.06	8.40	34.11	360	-270
1	56.0	5.6	1.40	0.6	41	31.0	2.93	2.93	7.84	23.00	360	-270
1	61.6	5.6	1.30	0.6	49	30.0	3.62	3.62	7.28	26.35	360	-270
1	67.2	5.6	1.20	0.6	47	30.0	3.47	3.47	6.72	23.34	360	-270
0.9848	72.8	5.6	0.90	0.6	41	30.0	3.03	3.03	5.04	15.05	350	-260
1	78.4	5.6	1.30	0.6	50	34.0	3.26	3.26	7.28	23.74	360	-270
1	84.0	5.6	1.30	0.6	30	30.0	2.22	2.22	7.28	16.18	360	-270
1	89.6	5.6	2.70	0.6	39	30.0	2.88	2.88	15.12	43.61	360	-270
1	95.2	5.6	2.90	0.6	29	30.0	2.15	2.15	16.24	34.91	360	-270
1	100.8	5.6	2.50	0.6	17	37.0	1.03	1.03	14.00	14.44	360	-270
1	106.4	5.6	1.50	0.6	25	39.0	1.43	1.43	8.40	12.02	360	-270
1	112.0	5.6	1.50	0.6	15	40.0	0.84	0.84	8.40	7.10	360	-270
1	117.6	5.6	1.10	0.6	11	35.0	0.71	0.71	6.16	4.38	360	-270
1	123.2	5.6	1.20	0.6	7	43.0	0.38	0.38	6.72	2.53	360	-270
1	128.8	5.6	1.10	0.6	8	33.0	0.55	0.55	6.16	3.40	360	-270
1	134.4	5.6	1.10	0.6	1	35.0	0.08	0.08	6.16	0.50	360	-270
	140.0											
									204.40	366.79		

STBI4_9-25-02 (TRIP 2)

STBI4_9-25-02 (TRIP 2) Gage = 5.58' at 15:00

С	Dist	w (ft)	d (ft)	%	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from			depth		(sec)		(ft/s)			(deg)	Flow Dir
	IP											(dea)
	0.0		0.00									
1	3.6	3.6	0.90	0.6	20	12.7		1.54	3.24	5.00		
1	7.2	3.6	1.10	0.6	50	23.4	2.08	2.08	3.96	8.25		
1	10.8	3.6	1.25	0.6	50	23.0	2.12	2.12	4.50	9.53		
1	14.4	3.6	1.25	0.6	50	18.4	2.64	2.64	4.50	11.88		
1	18.0	3.6	1.45	0.6	50	16.8	2.89	2.89	5.22	15.08		
1	21.6	3.6	1.60	0.6	50	18.6	2.61	2.61	5.76	15.04		
1	25.2	3.6	1.40	0.6	50	19.6	2.48	2.48	5.04	12.50		
1	28.8	3.6	1.30	0.6	50	21.1	2.31	2.31	4.68	10.79		
1	32.4	3.6	1.30	0.6	50	17.3	2.81	2.81	4.68	13.13		
1	36.0	3.6	1.50	0.6	50	15.7	3.09	3.09	5.40	16.68		
1	39.6	3.6	1.30	0.6	50	15.0	3.23	3.23	4.68	15.12	360	-270
1	43.2	3.6	1.50	0.6	50	13.9	3.48	3.48	5.40	18.81	360	
1	46.8	3.6	1.60	0.6	50	18.4	2.64	2.64	5.76	15.20	360	-270
1	50.4	3.6	1.60	0.6	50	20.0	2.43	2.43	5.76	14.00	360	-270
1	54.0	3.6	1.45	0.6	50	20.1	2.42	2.42	5.22	12.63	360	-270
1	57.6	3.6	1.30	0.6	50	19.8	2.46	2.46	4.68	11.49	360	-270
1	61.2	3.6	1.05	0.6	50	26.7	1.83	1.83	3.78	6.91	360	-270
1	64.8	3.6	0.90	0.6	50	34.4	1.43	1.43	3.24	4.62	360	-270
0.9659	68.4	3.6	0.85	0.6	50	54.6	0.91	0.91	3.06	2.69	15	75
0.9659	72.0	3.6	0.60	0.6	30	29.1	1.02	1.02	2.16	2.13	15	75
0.9659	75.6	3.6	0.50	0.6	30	42.0	0.72	0.72	1.80	1.25	15	75
0.9659	79.2	3.6	0.65	0.6	30	32.8	0.91	0.91	2.34	2.05	15	75
0.9659	82.8	3.6	0.65	0.6	30	36.0	0.83	0.83	2.34	1.88	15	75
1	86.4	3.6	0.55	0.6	20	41.0	0.50	0.50	1.98	0.99	360	-270
	90.0											
									99.18	227.65		

STBI4_10-31-02 (TRIP 3)

STBI4_10-31-02 (TRIP 3) Gage = 5.91' at 17:00

С	Dist	w (ft)	d (ft)	%	Rev		V (ft/s)	Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from IP			depth		(sec)		(ft/s)			(deg)	Flow Dir (deg)
	0.0		0.00									, ,
1	4.4	4.4	0.80	0.6	30	48.1	0.63	0.63	3.52	2.22	360	-270
1	8.8	4.4	1.65	0.6	30	19.5	1.51	1.51	7.26	10.95	360	
1	13.2	4.4	2.45	0.6	30	12.5	2.34	2.34	10.78	25.17	360	-270
1	17.6	4.4	2.80	0.6	50	19.2	2.53	2.53	12.32	31.18	360	-270
1	22.0	4.4	2.90	0.6	50	17.1	2.84	2.84	12.76	36.21	360	-270
1	26.4	4.4	2.99	0.6	50	18.0	2.70	2.70	13.16	35.49	360	-270
1	30.8	4.4	2.90	0.6	50	18.8	2.58	2.58	12.76	32.97	360	-270
1	35.2	4.4	2.55	0.6	50	18.6	2.61	2.61	11.22	29.30	360	-270
1	39.6	4.4	2.60	0.6	50	14.9	3.25	3.25	11.44	37.21	360	-270
1	44.0	4.4	2.65	0.6	50	17.0	2.85	2.85	11.66	33.28	360	-270
1	48.4	4.4	2.73	0.6	50	16.5	2.94	2.94	12.01	35.32	360	-270
1	52.8	4.4	2.30	0.6	50	21.5	2.26	2.26	10.12	22.91	360	-270
1	57.2	4.4	2.12	0.6	50	24.3	2.01	2.01	9.33	18.71	360	
1	61.6	4.4	1.73	0.6	50	26.0	1.88	1.88	7.61	14.29	360	-270
1	66.0	4.4	1.35	0.6	50	25.6	1.91	1.91	5.94	11.32	360	-270
1	70.4	4.4	1.33	0.6	50	28.9	1.69	1.69	5.85	9.90	360	-270
1	74.8	4.4	1.20	0.6	50	27.4	1.78	1.78	5.28	9.41	360	-270
1	79.2	4.4	1.53	0.6	50	40.9	1.20	1.20	6.73	8.11	360	-270
1	83.6	4.4	1.93	0.6	20	26.8	0.75	0.75	8.49	6.35	360	
1	88.0	4.4	2.06	0.6	6	100.0	0.09	0.09	9.06	0.80	360	-270
1	92.4	4.4	2.05	0	0	0.0	0.00	0.00	9.02	0.00		
1	96.8	4.4	0.00	0	0	0.0	0.00	0.00	0.00	0.00	360	
1	101.2	4.4	0.00	0	0	0.0	0.00	0.00	0.00	0.00	360	-270
1	105.6	4.4	0.00	0	0	0.0	0.00	0.00	0.00	0.00	360	-270
	110.0											
		·	·				·	·	196.33	411.11		

STBI4_12-10-02 (TRIP 4)

STBI4_12-10-02 (TRIP 4) Gage = 5.50' at 13:00

С	Dist	w (ft)	d (ft)	%	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from			depth		(sec)		(ft/s)			(deg)	Flow Dir
	IP											(deg)
	15.0		0.00									
1	18.5	3.5	1.00	0.6	30	16.2		1.81	3.50	6.33		
1	22.0	3.5	1.23	0.6	30	15.0	1.95	1.95	4.31	8.40		
1	25.5	3.5	1.35	0.6	40	19.0	2.05	2.05	4.73	9.70		
1	29.0	3.5	1.35	0.6	40	17.9	2.18	2.18	4.73	10.28		
1	32.5	3.5	1.25	0.6	40	22.2		1.76	4.38	7.70		
1	36.0	3.5	1.20	0.6	40	15.4		2.52	4.20	10.60		
1	39.5	3.5	0.89	0.6	40	17.0	2.29	2.29	3.12	7.13		
1	43.0	3.5	0.95	0.6	40	14.9	2.61	2.61	3.33	8.67		
1	46.5	3.5	0.95	0.6	40	13.0	2.98	2.98	3.33	9.92		
1	50.0	3.5	0.90	0.6	40	11.1	3.49	3.49	3.15	10.99	360	-270
1	53.5	3.5	1.50	0.6	40	16.7	2.33	2.33	5.25	12.23	360	-270
1	57.0	3.5	1.70	0.6	40	11.3	3.43	3.43	5.95	20.40	360	-270
1	60.5	3.5	1.70	0.6	40	11.9	3.26	3.26	5.95	19.38	360	-270
1	64.0	3.5	1.60	0.6	40	13.5	2.88	2.88	5.60	16.10	360	-270
1	67.5	3.5	1.52	0.6	40	15.0	2.59	2.59	5.32	13.78	360	-270
1	71.0	3.5	1.36	0.6	40	16.1	2.42	2.42	4.76	11.50	360	
1	74.5	3.5	1.02	0.6	20	18.4	1.07	1.07	3.57	3.84	360	-270
1	78.0	3.5	0.70	0.6	5	16.1	0.33	0.33	2.45	0.81	360	-270
1	81.5	3.5	0.35	0.6	20	23.8	0.84	0.84	1.23	1.03	360	-270
1	85.0	3.5	0.20	0.6	20	21.7	0.92	0.92	0.70	0.64	360	-270
1	88.5	3.5	0.20	0.6	15	18.9	0.79	0.79	0.70	0.56	360	-270
1	92.0	3.5	0.40	0.6	40	34.5	1.14	1.14	1.40	1.60	360	-270
1	95.5	3.5	0.40	0.6	40	33.0	1.19	1.19	1.40	1.67	360	-270
1	99.0	3.5	0.25	0.6	15	20.9	0.72	0.72	0.88	0.63	360	-270
	102.0											
									83.90	193.92		

TAMI4_9-4-02 (TRIP 1)

Gage =	_9-4-02 (_9.23' at		1)									
W = 18 C factor	Dist from IP	w (ft)	d (ft)	% depth	Rev	Time (sec)		Vc (ft/s)	a (sq ft)	q (cfs)	Flow Dir (deg)	Corr Flow Dir (deg)
	0.0											
1	_	7.3			0		0.00		4.38	0.00		-270
1		7.3	0.40		0		0.00	0.00	2.92	0.00		-270
1	_	7.3	0.60		0		0.00	0.00	4.38	0.00		-270
1		7.3	0.80		0		0.00		5.84	0.00		-270
1		7.3	0.90	0.6	25	45	1.24		6.57	8.17		-270
1		7.3	1.00		30	40	1.67	1.67	7.30	12.20		-270
1		7.3	0.90	0.6	20	31	1.44	1.44	6.57	9.46		-270
1		7.3	0.90	0.6	20	28	1.59	1.59	6.57	10.47		-270
1		7.3	1.20		20	27	1.65	1.65	8.76	14.47		-270
1		7.3	0.60		0	0	0.00	0.00	4.38	0.00		-270
1	80.3	7.3	0.60		0	0	0.00	0.00	4.38	0.00		-270
1		7.3	1.80	0.6	30	43	1.56	1.56	13.14	20.45		-270
1		7.3	2.60	0.6	30	32	2.09	2.09	18.98	39.58		-270
1	102.2	7.3	3.20	0.8	30	32	2.09	2.33	23.36	54.51	360	-270
1	-	0.0	3.20	0.2	50	43	2.58	0.00	0.00	0.00		-270
1	109.5	7.3	3.20	0.8	30	31	2.15	2.37	23.36	55.39		-270
1	109.5	0.0	3.20	0.2	35	30	2.59	0.00	0.00	0.00	360	-270
1	116.8	7.3	2.80	0.6	40	38	2.34		20.44	47.81	360	-270
1	124.1	7.3	3.70	0.8	30	41	1.63	1.99	27.01	53.86	360	-270
1	124.1	0.0	3.70	0.2	35	33	2.36	0.00	0.00	0.00	360	-270
1	131.4	7.3	3.40	0.8	30	33	2.02	2.29	24.82	56.90	360	-270
1	131.4	0.0	3.40	0.2	30	26	2.56	0.00	0.00	0.00	360	-270
1	138.7	7.3	3.80	0.8	30	34	1.96	2.32	27.74	64.40	360	-270
1	138.7	0.0	3.80	0.2	35	29	2.68	0.00	0.00	0.00	360	-270
1	146.0	7.3	4.20	0.8	30	36	1.86	2.27	30.66	69.69	360	-270
1	146.0	0.0	4.20	0.2	40	33	2.69	0.00	0.00	0.00	360	-270
1	153.3	7.3	4.00	0.8	40	41	2.17	2.10	29.20	61.20	360	-270
1	153.3	0.0	4.00	0.2	30	33	2.02	0.00	0.00	0.00	360	-270
1	160.6	7.3	4.20	0.8	20	33	1.35	1.20	30.66	36.76		-270
1	160.6	0.0	4.20	0.2	20	43	1.04	0.00	0.00	0.00	360	-270
1	167.9	7.3	4.30	0.8	2	55	0.10	0.16	31.39	5.07		-270
1		0.0	4.30		3	32	0.22		0.00	0.00		-270
-0.5		7.3		0.6	9	53	0.39	0.39	18.25	-3.58		-30
	183.0				-				- 1-			
									381.06	616.80		

TAMI4_9-25-02 (TRIP 2)

TAMI4_9-25-02 (TRIP 2) Gage = 8.91' at 08:15

С	Dist	w (ft)	d (ft)	%	Rev	Time	٧	Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from	• •	` '	depth		(sec)	(ft/s)	(ft/s)			(deg)	Flow Dir
	IP			•							, ,,	(deg)
	0.0											
1.000	7.4	7.4	0.40	0.6	1	21.0	0.08	0.08	2.96	0.23	360	-270
1.000	14.8	7. 4 7.4	0.40	0.6	4	24.0	0.00	0.00	2.22	0.23	360	-270 -270
1.000	22.2	7.4	0.35	0.6	20	30.3	0.19	0.19	2.59	1.72	360	-270 -270
1.000	29.6	7.4	0.70	0.6	20	22.8	0.87	0.87	5.18	4.52	360	-270
1.000	37.0	7.4	0.70	0.6	20	20.8	0.95	0.95	6.66	6.35	360	-270
1.000	44.4	7.4	0.85	0.6	20	19.3	1.03	1.03	6.29	6.45	360	-270
1.000	51.8	7.4	0.80	0.6	20	23.0	0.87	0.87	5.92	5.13	360	-270
1.000	59.2	7. 4 7.4	0.65	0.6	20	22.3	0.89	0.89	4.81	4.29	360	-270
1.000	66.6	7.4	0.03	0.6	20	20.9	0.05	0.03	5.18	4.23	360	-270
1.000	74.0	7.4	0.75	0.6	20	24.3	0.82	0.82	2.59	2.13	360	-270
0.707	81.4	7. 4 7.4	0.33	0.6	20	19.6	1.01	1.01	1.48	1.06	45	45
1.000	88.8	7. 4 7.4	2.10	0.6	20	33.5	1.33	1.33	15.54	20.74	360	-270
1.000	96.2	7. 4 7.4	2.10	0.6	20	21.2	2.10	2.10	21.46	45.03	360	-270 -270
0.985	103.6	7.4	3.40	0.8	20	21.6	2.06	2.10	25.16	55.43	350	-260
0.985	103.6	0.0	3.40	0.8	20	18.4	2.41	0.00	0.00	0.00	350	-260 -260
1.000	111.0	7.4	3.20	0.2	20	23.6	1.89	2.09	23.68	49.61	360	-200 -270
1.000	111.0	0.0	3.20	0.8	20	19.3	2.30	0.00	0.00	0.00	360	-270 -270
1.000	118.4	7.4	3.10	0.2	20	23.5	1.89	2.13	22.94	48.84	360	-270 -270
1.000	118.4	0.0	3.10	0.8	20	18.8	2.36	0.00	0.00	0.00	360	-270 -270
1.000	125.8	7.4	3.60	0.2	20	22.6	1.97	2.09	26.64	55.55	360	-270
0.985	125.8	0.0	3.60	0.8	20	20.2	2.20	0.00	0.00	0.00	350	-270 -260
0.985	133.2	7.4	3.90	0.2	20	25.7	1.73	2.02	28.86	57.54	350	-260 -260
0.985	133.2	0.0	3.90	0.8	20	19.2	2.31	0.00	0.00	0.00	350	-260
0.985	140.6	7.4	4.10	0.2	20	24.4	1.83	2.13	30.34	63.54	350	-260
0.985	140.6	0.0	4.10	0.8	20	18.3	2.43	0.00	0.00	0.00	350	-260
0.985	148.0	7.4	4.30	0.8	20	21.1	2.11	2.18	31.82	68.39	350	-260
0.985	148.0	0.0	4.30	0.8	20	19.7	2.26	0.00	0.00	0.00	350	-260
1.000	155.4	7.4	4.00	0.2	20	26.3	1.69	1.52	29.60	45.07	360	-200 -270
1.000	155.4	0.0	4.00	0.8	20	33.1	1.35	0.00	0.00	0.00	360	-270 -270
0.906	162.8	7.4	4.00	0.2	20	65.2	0.69	0.54	29.60	14.48	25	65
0.906	162.8	0.0	4.00	0.8	14	84.0	0.39	0.00	0.00	0.00	25 25	65
-0.766	170.2	7.4	4.20	0.2	4	80.0	0.39	0.00	31.08	-2.33	140	-50
-0.766	170.2	0.0	4.20	0.8	1	44.5	0.13	0.00	0.00	0.00	140	-50 -50
-1.000	170.2	7.4	2.30	0.2	20	85.6	0.57	0.53	17.02	-9.07	180	-90
1.000	184.0	7.↔	2.30	0.0	20	00.0	0.55	0.55	11.02	-3.07	100	-30
	104.0								379.62	550.03		

TAMI4_11-1-02 (TRIP 3)

TAMI4_	11-1-02	(TRIP	3)									
Gage =			٠,									
W = 189												
С	Dist	w (ft)	d (ft)	%	Rev	Time	٧	Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
factor	from	()	,	depth		(sec)		(ft/s)	(, ,	1 (/	(deg)	Flow Dir
	IP					(,	(/	()			(3)	(deg)
												(3)
	0.0											
0.985	7.5	7.5	1.0	0.6	10	22.1	1.02	1.02	7.50	7.50	350	-260
0.985	15.0	7.5	1.2	0.6	10	18.9	1.18	1.18	9.00	10.50	350	-260
0.985	22.5	7.5	1.4	0.6	20	42.8	1.05	1.05	10.50	10.84	350	-260
0.985	30.0	7.5	1.5	0.6	20	36.8	1.22	1.22	11.25	13.48	350	-260
0.985	37.5	7.5	1.7	0.6	20	29.9	1.49	1.49	12.75	18.75	350	-260
0.985	45.0	7.5	1.7	0.6	20	29.3	1.52	1.52	12.75	19.12	350	-260
0.985	52.5	7.5	1.8	0.6	20	30.4	1.47	1.47	13.50	19.53	350	
0.985	60.0	7.5	1.6	0.6	20	24.7	1.80	1.80	12.00		350	
0.985	67.5	7.5	1.6	0.6	20	27.9	1.60	1.60	12.00	18.89	350	-260
0.985	75.0	7.5	1.5	0.6	20	30.2	1.48	1.48	11.25	16.38	350	
0.985	82.5	7.5	1.4	0.6	20	30.9	1.45	1.45	10.50	14.94	350	-260
0.985	90.0	7.5	2.5	0.6	20	30.4	1.47	1.47	18.75	27.12	350	-260
0.985	97.5	7.5	3.0	0.6	20	21.8	2.04	2.04	22.50	45.22	350	-260
0.996	105.0	7.5	3.7	0.8	20	20.7	2.15		27.75	64.98	355	-265
0.996	105.0	0.0	3.7	0.2	20	17.4	2.55	0.00	0.00	0.00	355	-265
0.996	112.5	7.5	3.4	0.8	20	25.3	1.76	2.08	25.50	52.71	355	-265
0.996	112.5	0.0	3.4	0.2	20	18.6	2.39	0.00	0.00	0.00	355	-265
0.985	120.0	7.5	3.5	0.8	20	18.8	2.36	2.52	26.25	65.12	350	
0.985	120.0	0.0	3.5	0.2	20	16.6	2.67	0.00	0.00	0.00	350	-260
0.966	127.5	7.5	4.6	0.8	20	23.1	1.93	2.17	34.50	72.34	345	
0.966	127.5	0.0	4.6	0.2	20	18.4	2.41	0.00	0.00	0.00	345	-255
0.966	135.0	7.5	4.4	0.8	20	24.2	1.84	2.22	33.00	70.72	345	
0.966	135.0	0.0	4.4	0.2	20	17.1	2.60	0.00	0.00	0.00	345	-255
0.966	142.5	7.5	4.3	0.8	20	22.7	1.96	2.28	32.25	70.99	345	
0.966	142.5	0.0	4.3	0.2	20	17.1	2.60		0.00	0.00	345	
0.966	150.0	7.5	4.4	8.0	20	22.6	1.97		33.00	70.51	345	-255
0.966	150.0	0.0	4.4	0.2	20	18.1	2.45	0.00	0.00	0.00	345	
0.985	157.5	7.5	4.0	0.8	20	23.6	1.89	2.08	30.00	61.54	350	
0.985	157.5	0.0	4.0	0.2	20	19.5	2.28	0.00	0.00	0.00	350	
0.985	165.0	7.5	4.0	0.8	20	31.9	1.40		30.00	39.25	350	
0.985	165.0	0.0	4.0	0.2	20	35.6	1.26		0.00	0.00	350	
0.985	172.5	7.5	4.2	0.8	20	56.1	0.80		31.50	17.81	350	
0.985	172.5	0.0	4.2	0.2	5	33.8	0.34	0.00	0.00	0.00	350	-260
0.342	180.0	7.5	2.5	0.6	5	59.0	0.20	0.20	18.75	1.31	70	20
	189.0											
		-	-						486.75	830.87		

TAMI4_11-15-02 (TRIP 4)

TAMI4_ Gage =	9.07' at	•	P 4)									
W = 185 C factor	Dist from IP	w (ft)	d (ft)	% depth	Rev	Time (sec)	V (ft/s)	Vc (ft/s)	a (sq ft)	q (cfs)	Flow Dir (deg)	Corr Flow Dir (deg)
	0.0											
1.000	7.4		0.52		20	54.8			3.85	1.47	360	-270
1.000	14.8		0.52		20	47.3		-	3.85	1.68	360	-270
1.000	22.2		0.70	0.6	20	37.0			5.18	2.85	360	-270
1.000	29.6	7.4	0.81	0.6	20	34.3			5.99	3.54	360	-270
1.000	37.0		0.98		20	29.9		0.67	7.25	4.88	360	-270
1.000	44.4		1.12		20				8.29	7.87	360	-270
1.000	51.8		1.20	0.6	20	20.6			8.88	8.55	360	-270
1.000	59.2		0.90		20	16.8		1.17		7.82	360	-270
1.000	66.6			0.6	20	18.1	1.09		6.29	6.87	360	-270
1.000	74.0		0.75	0.6	20	18.2	1.09		5.55	6.03	360	-270
1.000	81.4	7.4	0.55	0.6	20	18.0	1.10	1.10	4.07	4.47	360	-270
1.000	88.8	7.4	2.20	0.6	30	68.3	0.99		16.28	16.06	360	-270
0.996	96.2	7.4	2.80		30	34.6	1.93	1.93	20.72	39.83	355	-265
0.996	103.6	7.4	3.80	0.8	30	36.4	1.84	2.04	28.12	57.05	355	-265
0.996	103.6		3.80	0.2	30				0.00	0.00	355	-265
0.996	111.0	7.4	3.80	0.8	30	37.9	1.76		28.12	56.90	355	-265
0.996	111.0	0.0	3.80	0.2	30	29.0	2.30	0.00	0.00	0.00	355	-265
0.996	118.4	7.4	3.70	0.8	30	34.8	1.92	2.12	27.38	57.74	355	-265
0.996	118.4	0.0	3.70	0.2	30	28.8	2.31	0.00	0.00	0.00	355	-265
0.985	125.8	7.4	3.80	0.8	30	35.6	1.88	2.13	28.12	58.94	350	-260
0.985	125.8	0.0	3.80	0.2	30	28.0	2.38	0.00	0.00	0.00	350	-260
0.985	133.2	7.4	3.80	0.8	30	34.2	1.95	2.25	28.12	62.37	350	-260
0.985	133.2	0.0	3.80	0.2	30	26.1	2.55	0.00	0.00	0.00	350	-260
0.985	140.6	7.4	4.10	0.8	30	32.8	2.03	2.31	30.34	69.12	350	-260
0.985	140.6	0.0	4.10	0.2	30	25.7	2.59	0.00	0.00	0.00	350	-260
0.996	148.0	7.4	4.50	0.8	30	35.0		2.16	33.30	71.56	355	-265
0.996	148.0	0.0	4.50	0.2	30	27.7		0.00	0.00	0.00	355	-265
0.996	155.4	7.4	3.90	0.8	30	35.7	1.87	1.80	28.86	51.79	355	-265
0.996	155.4	0.0	3.90	0.2	30	38.6	1.73	0.00	0.00	0.00	355	-265
0.999	162.8	7.4	3.50	0.8	20	37.1	1.21	1.09	25.90	28.20	358	-268
0.996	162.8	0.0	3.50	0.2	20	46.2	0.97	0.00	0.00	0.00	355	-265
0.985	170.2	7.4	3.90	0.8	10	64.8	0.36	0.29	28.86	8.30	350	-260
0.985	170.2	0.0	3.90	0.2	5	53.0	0.23	0.00	0.00	0.00	350	-260
-1.000	177.6			0.6	10				21.46	-8.14	180	-90
	185.0											
Note: Pi			- 81.4	and AA	type	for W	= 88.8'	- 177.6	411.44 6'	625.75		

TOLI4_9-4-02 (TRIP 1)

TOLI4_9-4-02 (TRIP 1) Gage = 4.17' at 11:00

W = 45.	2'									
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0		0.00							
1	1.8	1.8	0.15		0		0.00	0.00	0.27	0.00
1	3.6	1.8	0.15	0.6	10	37	0.29	0.29	0.27	0.08
1	5.4	1.8	0.15	0.6	20	42	0.49	0.49	0.27	0.13
1	7.2	1.8	0.15	0.6	25	38	0.66	0.66	0.27	0.18
1	9.0	1.8	0.30	0.6	25	32	0.78	0.78	0.54	0.42
1	10.8	1.8	0.25	0.6	25	31	0.81	0.81	0.45	0.36
1	12.6	1.8	0.33	0.6	25	32	0.78	0.78	0.59	0.46
1	14.4	1.8	0.37	0.6	15	39	0.40	0.40	0.67	0.27
1	16.2	1.8	0.45	0.6	25	33	0.76	0.76	0.81	0.61
1	18.0	1.8	0.51	0.6	20	31	0.65	0.65	0.92	0.60
1	19.8	1.8	0.55	0.6	20	26	0.77	0.77	0.99	0.76
1	21.6	1.8	0.54	0.6	30	40	0.75	0.75	0.97	0.73
1	23.4	1.8	0.48	0.6	25	31	0.81	0.81	0.86	0.70
1	25.2	1.8	0.63	0.6	30	38	0.79	0.79	1.13	0.89
1	27.0	1.8	0.58	0.6	20	36	0.56	0.56	1.04	0.59
1	28.8	1.8	0.38	0.6	25	33	0.76	0.76	0.68	0.52
1	30.6	1.8	0.35	0.6	20	30	0.67	0.67	0.63	0.42
1	32.4	1.8	0.34	0.6	20	26	0.77	0.77	0.61	0.47
1	34.2	1.8	0.38	0.6	25	34	0.74	0.74	0.68	0.50
1	36.0	1.8	0.39	0.6	25	36	0.70	0.70	0.70	0.49
1	37.8	1.8	0.41	0.6	25	39	0.65	0.65	0.74	0.48
1	39.6	1.8	0.43	0.6	20	26	0.77	0.77	0.77	0.60
1	41.4	1.8	0.38	0.6	25	32	0.78	0.78	0.68	0.53
1	43.2	1.8	0.42	0.6	25	38	0.66	0.66	0.76	0.50
	45.2									
									16.33	11.30

TOLI4_9-25-02 (TRIP 2)

TOLI4_9-25-02 (TRIP 2) Gage = 4.39' at 11:00

W = 48.	0'									
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0		0.00							
1	2.0	2	0.22	0.6	0		0.00	0.00	0.44	0.00
1	4.0	2	0.35	0.6	0		0.00	0.00	0.70	0.00
1	6.0	2	0.37	0.6	10	58.9	0.19	0.19	0.74	0.14
1	8.0	2	0.41	0.6	20	76.9	0.28	0.28	0.82	0.23
1	10.0	2	0.43	0.6	20	68.7	0.31	0.31	0.86	0.27
1	12.0	2	0.48	0.6	20	67.7	0.31	0.31	0.96	0.30
1	14.0	2	0.53	0.6	10	35.7	0.30	0.30	1.06	0.32
1	16.0	2	0.56	0.6	10	41.1	0.26	0.26	1.12	0.30
1	18.0	2	0.48	0.6	10	36.4	0.29	0.29	0.96	0.28
1	20.0	2	0.61	0.6	10	45.7	0.24	0.24	1.22	0.29
1	22.0	2	0.62	0.6	10	48.2	0.23	0.23	1.24	0.29
1	24.0	2	0.71	0.6	10	34.0	0.31	0.31	1.42	0.44
1	26.0	2	0.70	0.6	10	31.7	0.33	0.33	1.40	0.47
1	28.0	2	0.59	0.6	10	26.8	0.39	0.39	1.18	0.46
1	30.0	2	0.65	0.6	10	25.6	0.41	0.41	1.30	0.53
1	32.0	2	0.87	0.6	10	21.4	0.48	0.48	1.74	0.83
1	34.0	2	0.53	0.6	10	18.8	0.54	0.54	1.06	0.57
1	36.0	2	0.53	0.6	10	19.6	0.52	0.52	1.06	0.55
1	38.0	2	0.51	0.6	10	20.9	0.49	0.49	1.02	0.50
1	40.0	2	0.53	0.6	10	24.2	0.43	0.43	1.06	0.45
1	42.0	2	0.60	0.6	10	30.5	0.35	0.35	1.20	0.41
1	44.0	2	0.92	0.6	10	28.9	0.36	0.36	1.84	0.67
1	46.0	2	0.57	0.6	10	56.4	0.20	0.20	1.14	0.23
	48.0									
									25.54	8.55

TOLI4_4-17-03 (TRIP 3)

TOLI4_4-17-03 (TRIP 3) Gage = 4.21' at 10:15

С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0		0.00							
1	1.9	1.9	0.23	0.6		10 sec	0.32	0.32	0.44	0.14
1	3.8	1.9	0.30	0.6	2.7'	10 sec	0.22	0.22	0.57	0.13
1	5.7	1.9	0.32	0.6	4'	7 sec	0.46	0.46	0.61	0.28
1	7.6	1.9	0.34	0.6	13	40.1	0.34	0.34	0.65	0.22
1	9.5	1.9	0.31	0.6	16	42.9	0.39	0.39	0.59	0.23
1	11.4	1.9	0.36	0.6	17	40.6	0.43	0.43	0.68	0.30
1	13.3	1.9	0.28	0.6	26	40.9	0.64	0.64	0.53	0.34
1	15.2	1.9	0.35	0.6	15	41.0	0.38	0.38	0.67	0.25
1	17.1	1.9	0.35	0.6	14	41.4	0.36	0.36	0.66	0.24
1	19.0	1.9	0.33	0.6	16	42.0	0.40	0.40	0.63	0.25
1	20.9	1.9	0.36	0.6	10	42.6	0.26	0.26	0.68	0.18
1	22.8	1.9	0.50	0.6	15	42.2	0.37	0.37	0.95	0.35
1	24.7	1.9	0.40	0.6	16	42.1	0.40	0.40	0.76	0.30
1	26.6	1.9	0.37	0.6	27	41.2	0.66	0.66	0.70	0.46
1	28.5	1.9	0.55	0.6	31	41.2	0.75	0.75	1.05	0.79
1	30.4	1.9	0.53	0.6	40	40.9	0.97	0.97	1.01	0.98
1	32.3	1.9	0.52	0.6	44	40.4	1.08	1.08	0.99	1.06
1	34.2	1.9	0.54	0.6	47	40.0	1.16	1.16	1.03	1.19
1	36.1	1.9	0.39	0.6	41	40.9	0.99	0.99	0.74	0.74
1	38.0	1.9	0.48	0.6	35	40.0	0.87	0.87	0.91	0.79
1	39.9	1.9	0.37	0.6	33	41.0	0.80	0.80	0.70	0.56
1	41.8	1.9	0.31	0.6	37	41.0	0.90	0.90	0.59	0.53
1	43.7	1.9	0.40	0.6	27	40.8	0.67	0.67	0.76	0.51
1	45.6	1.4	0.46	0.6	12	42.9	0.30	0.30	0.64	0.19
	47.0									
									17.54	11.01

TOLI4_4-18-03 (TRIP 4)

TOLI4_4-18-03 (TRIP 4) Gage = 4.21' at 15:00

W = 38	.0'									
С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc	a (sq ft)	q (cfs)
factor	IP					(sec)		(ft/s)		
	0.0		0.00							
1	1.5	1.5	0.20	0.6	2.9'	10 sec	0.23	0.23	0.30	0.07
1	3.0	1.5	0.23	0.6	4.0'	7 sec	0.46	0.46	0.35	0.16
1	4.5	1.5	0.20	0.6	20	71.1	0.30	0.30	0.30	0.09
1	6.0	1.5	0.15	0.6	20	39.4	0.52	0.52	0.23	0.12
1	7.5	1.5	0.20	0.6	20	33.9	0.60	0.60	0.30	0.18
1	9.0	1.5	0.21	0.6	20	35.7	0.57	0.57	0.32	0.18
1	10.5	1.5	0.25	0.6	20	26.6	0.75	0.75	0.38	0.28
1	12.0	1.5	0.30	0.6	20	27.3	0.73	0.73	0.45	0.33
1	13.5	1.5	0.29	0.6	20	46.7	0.44	0.44	0.44	0.19
1	15.0	1.5	0.29	0.6	20	26.9	0.74	0.74	0.44	0.32
1	16.5	1.5	0.31	0.6	20	25.7	0.78	0.78	0.47	0.36
1	18.0	1.5	0.34	0.6	20	23.3	0.86	0.86	0.51	0.44
1	19.5	1.5	0.37	0.6	20	25.4	0.79	0.79	0.56	0.44
1	21.0	1.5	0.41	0.6	20	31.8	0.63	0.63	0.62	0.39
1	22.5	1.5	0.38	0.6	20	31.0	0.65	0.65	0.57	0.37
1	24.0	1.5	0.40	0.6	20	19.0	1.04	1.04	0.60	0.62
1	25.5	1.5	0.43	0.6	20	24.8	0.81	0.81	0.65	0.52
1	27.0	1.5	0.45	0.6	20	20.8	0.95	0.95	0.68	0.64
1	28.5	1.5	0.50	0.6	20	21.0	0.95	0.95	0.75	0.71
1	30.0	1.5	0.48	0.6	20	21.9	0.91	0.91	0.72	0.65
1	31.5	1.5	0.46	0.6	20	31.4	0.64	0.64	0.69	0.44
1	33.0	1.5	0.52	0.6	20	20.0	0.99	0.99	0.78	0.77
1	34.5	1.5	0.60	0.6	20	17.7	1.12	1.12	0.90	1.00
1	36.0	2.0	0.60	0.6	20	27.2	0.74	0.74	1.20	0.88
	38.0									
									13.16	10.17

WDM5_9-6-02 (TRIP 1)

WDM5_	9-6-02	(TRIP	1)									
Gage =	11.78' a	t 9:30										
W = 75'												
С	Dist	w (ft)	d (ft)	%	Rev	Time		Vc	a (sq ft)	q (cfs)	Flow Dir	
factor	from			depth		(sec)	(ft/s)	(ft/s)			(deg)	Flow Dir
	IP											(deg)
	0.0											
0.940	3.0	3.0	1.8	0.6	3	38.0	0.19	0.19	5.40	0.97	340	-250
0.940	6.0	3.0	3.3	0.8	6	99.0	0.15		9.90	1.88	340	
0.940	6.0	0.0	3.3	0.2	5	47.0	0.25		0.00	0.00	340	-250
0.940	9.0	3.0	5.2	0.8	2	44.0	0.12		15.60	1.74	340	
0.940	9.0	0.0	5.2	0.2	3	65.0	0.12		0.00	0.00	340	
0.940	12.0	3.0	6.2	0.8	10	50.0	0.46		18.60	5.47	340	
0.940	12.0	0.0	6.2	0.2	5	74.0	0.17		0.00	0.00	340	
0.940	15.0	3.0	7.7	0.8	5	33.0	0.35	0.37	23.10	8.01	340	-250
0.940	15.0	0.0	7.7	0.2	10	60.0	0.39	0.00	0.00	0.00	340	-250
0.940	18.0	3.0	8.8	0.8	7	46.0	0.35	0.33	26.40	8.15	340	
0.940	18.0	0.0	8.8	0.2	7	54.0	0.30	0.00	0.00	0.00	340	
0.940	21.0	3.0	9.2	0.8	6	52.0	0.27		27.60	8.77	340	
0.940	21.0	0.0	9.2	0.2	7	40.0	0.40	0.00	0.00	0.00	340	-250
0.940	24.0	3.0	10.8	8.0	5	36.0	0.32	0.32	32.40	9.73	340	
0.940	24.0	0.0	10.8	0.2	7	52.0	0.31	0.00	0.00	0.00	340	
0.940	27.0	3.0	12.0	8.0	6	40.0	0.35		36.00	11.80	340	
0.940	27.0	0.0	12.0	0.2	6	40.0	0.35		0.00	0.00	340	
0.940	30.0	3.0	12.0	8.0	6	42.0	0.33		36.00	11.53	340	
0.940	30.0	0.0	12.0	0.2	6	40.0	0.35		0.00	0.00	340	
0.940	33.0	3.0	11.3	0.8	5	45.0	0.26		33.90	7.87	340	-250
0.940	33.0	0.0	11.3	0.2	6	62.0	0.23		0.00	0.00	340	
0.940	36.0	3.0	11.0	0.8	10	70.0	0.33		33.00	8.42	340	
0.940	36.0	0.0	11.0	0.2	4	46.0	0.21	0.00	0.00	0.00	340	
0.940	39.0	3.0	10.6	0.8	5	51.0	0.23		31.80	5.67	340	-250
0.940	39.0	0.0	10.6	0.2	3	52.0	0.15		0.00	0.00	340	
0.940	42.0	3.0	10.6	0.8	4.0	60.0	0.17		31.80	4.75	340	-250
0.940	42.0	0.0	10.6	0.2	3.0	49.0	0.15		0.00	0.00	340	
0.940 0.940	45.0 45.0	3.0 0.0	9.0 9.0	0.8 0.2	2.0 5.0	64.0 77.0	0.09 0.16		27.00 0.00	3.15 0.00	340 340	-250 -250
1.000	48.0	3.0	9.0	0.2	0.0	0.0	0.00		27.00	0.00	360	
1.000	48.0	0.0	9.0	0.8	0.0	0.0	0.00		0.00	0.00	360	
1.000	51.0	3.0	8.5	0.2	0.0	0.0	0.00		25.50	0.00	360	
1.000	51.0	0.0	8.5	0.2	0.0	0.0	0.00		0.00	0.00	360	
1.000	54.0	3.0	7.0	0.2	0.0	0.0	0.00		21.00	0.00	360	-270
1.000	54.0		7.0			0.0			0.00		360	
0.000	57.0		5.5		2.0	75.0			16.50	0.00	90	0
1.000		0.0	5.5	0.2		0.0			0.00		360	
0.000	60.0	3.0	4.5	0.8	2.0	60.0	0.09		13.50	0.00	90	
1.000	60.0	0.0	4.5	0.2		0.0	0.00		0.00		360	
-0.342	63.0	3.0	4.0	0.8	2.0	45.0	0.12		12.00		110	
-0.342	63.0	0.0	4.0	0.2	2.0	76.0	0.08		0.00	0.00	110	
1.000	66.0	3.0	3.5			0.0			10.50	0.60	360	
-0.707	66.0	0.0	3.5			46.0	0.11		0.00	0.00	135	
1.000	69.0	3.0	2.5		1.0	53.0	0.06	0.06	7.50	0.45	360	-270
1.000	72.0	3.0	1.6	0.6	0.0	0.0	0.00	0.00	4.80	0.00	360	
	75.0											
	·		_						526.80	98.56		

WDM5_9-27-02 (TRIP 2)

WDM5_9-27-02 (TRIP 2) Gage = 11.29' at 11:30 W = 74'

C	Dist from	w (ft)	d (ft)	% depth	Rev	Time	V (ft/s)	Vc (ft/s)	a (sq ft)	q (cfs)	Flow Dir (deg)	Corr Flow Dir
lactor	IP			deptii		(360)	(103)	(10/5)			(ueg)	(deg)
	0.0											
1.000	3.0				0	0.0						
1.000	6.0				0	0.0						
1.000	6.0				0	0.0						
1.000	9.0				0	0.0						
1.000	9.0				0	0.0						
1.000	12.0				0	0.0						
1.000	12.0					0.0						
1.000	15.0				0	0.0						
1.000	15.0					0.0						
1.000	18.0				2							
1.000	18.0					54.0						
1.000	21.0				3	94.0						
1.000	21.0						0.02					
1.000	24.0					101.0						
1.000	24.0						0.06					
1.000	27.0				3	98.0	0.09					
1.000	27.0			0.2								
1.000	30.0				3							
1.000	30.0					0.0						
1.000	33.0					122.0						
1.000	33.0					0.0						
1.000	36.0					103.0						
1.000	36.0											
1.000	39.0				3			0.05				
1.000	39.0											
1.000	42.0					118.0						
1.000	42.0					0.0						
1.000 1.000	45.0 45.0			0.8 0.2		310.0						
1.000	48.0			0.2		65.0						
1.000	48.0			0.8		0.0						
1.000	51.0			0.2		119.0	0.00					
1.000	51.0					0.0						
1.000	54.0				0.0	0.0						
1.000	54.0				0.0	0.0						
1.000	57.0					0.0						
1.000	57.0					0.0						
1.000	60.0				0.0		0.00					
1.000	60.0					0.0						
1.000	63.0											
1.000	63.0					0.0						
1.000	66.0					0.0						
1.000	69.0					0.0						
1.000	72.0											
1.000	74.0		0.9	0.0	0.0	0.0	0.00	0.00	2.70	0.00	300	210
	, 4.0								472.50	13.17		

WDM5_10-29-02 (TRIP 3)

WDM5_												
Gage = W = 75'	12.32 8	at 17:18)									
C 73	Dist	w (ft)	d (ft)	%	Rev	Time	V	Vc	a (sq ft)	q (cfs)	Flow Dir	Corr
	from	(,	a (,	depth		(sec)		(ft/s)	(04,	4 (0.0)	(deg)	Flow Dir
	IP			•		` ,	` ,	` ,			· •,	(deg)
4 000	0.0		0.4	0.0	•	47.5	0.00	0.00	40.50	4.00	000	070
1.000	5.0		2.1	0.6	8	47.5	0.39		10.50	4.09	360	-270
1.000	8.0		4.2		3	50.0	0.15		12.60	1.34	360	
1.000	8.0		4.2	0.2	2 2		0.06		0.00	0.00	360	
1.000	11.0 11.0		5.7 5.7		2	80.7	0.10 0.07		17.10 0.00	1.46 0.00	360 360	
1.000	14.0		6.8	0.2	5	30.6	0.07		20.40	4.94	360	
1.000	14.0		6.8	0.8	2		0.36	0.24	0.00	0.00	360	
1.000	17.0		8.4	0.2	5	25.1	0.11		25.20	12.97	360	
1.000	17.0		8.4	0.8	5	19.9	0.40		0.00	0.00	360	
1.000	20.0		9.3	0.2	5	18.1	0.63		27.90	18.38	360	
1.000	20.0		9.3	0.8	5	16.4	0.69		0.00	0.00	360	
1.000	23.0			0.2	5	19.6	0.58		29.70	19.66	360	
1.000	23.0		9.9	0.8	10	30.4	0.38		0.00	0.00	360	
1.000	26.0			0.2	10	37.9	0.60		33.90	24.21	360	
1.000	26.0		11.3	0.8	10	27.2	0.83		0.00	0.00	360	
1.000	29.0			0.2	10	36.6	0.62		36.60	24.83	360	
1.000	29.0				10	30.7			0.00	0.00	360	
1.000	32.0		11.4	0.2	10	39.6	0.74		34.20	22.38	360	
1.000	32.0			0.8	10	30.8	0.37		0.00	0.00	360	
1.000	35.0			0.2	5	27.8	0.73	0.00	33.30	15.94	360	
1.000	35.0			0.8	10	42.0	0.41		0.00	0.00	360	
1.000	38.0		10.7	0.2	7	43.3			32.10	14.85	360	
1.000	38.0		10.7		10	41.4	0.55		0.00	0.00	360	
1.000	41.0		10.7	0.8	10	48.8	0.33		30.00	13.85	360	
1.000	41.0		10.0	0.2	5	25.3	0.45		0.00	0.00	360	
1.000	44.0		9.5	0.8	5	28.0	0.43	0.45	28.50	12.93	360	
1.000	44.0		9.5	0.2	5	23.1	0.50		0.00	0.00	360	
1.000	47.0		9.4	0.8	5	36.7	0.32		28.20	10.16	360	
1.000	47.0		9.4	0.2	5	28.7	0.40		0.00	0.00	360	
1.000	50.0		9.1	0.8	5	41.8	0.40	0.24	27.30	6.68	360	
1.000	50.0		9.1	0.2	5	58.2	0.21	0.00	0.00	0.00	360	
1.000	53.0		9.2		2.0	71.9	0.08		27.60	2.82		
1.000	53.0		9.2		3.0	61.9	0.00		0.00	0.00	360	
1.000	56.0		7.6	0.8	3.0	39.8	0.12		22.80	3.14	360	
1.000	56.0			0.2	2.0	60.2		-	0.00	0.00	360	-270
1.000	59.0			0.8	2.0	30.8			18.30	1.71	360	
0.174	59.0			0.2	5.0	85.2			0.00	0.00	280	
1.000	62.0			0.8	5.0	43.4	0.27		14.70	0.35	360	
-0.866	62.0			0.2	5.0	45.8			0.00	0.00	210	
1.000	65.0				2.0	28.0			14.10	2.33	360	
0.940	65.0				5.0	75.3	0.15		0.00	0.00	340	
1.000	68.0			0.6	1.0	46.0	0.07		10.80	0.71	360	
0.500	68.0				1.0	35.0	0.04		0.00	0.00	300	
1.000	71.0			0.6	0.0	0.0	0.00		8.70	0.00	360	
-0.940	74.0			0.6	3.0			-0.09	6.00	-0.54	200	
2.0.0	75.0			0.0	3.3	20.0	2.00	2.00	3.30	3.31		
									550.50	219.19		

WDM5_12-12-02 (TRIP 4)

WDM5_12-12-02 (TRIP 4) Gage = 11.90' at 10:15 W = 110'С w (ft) d (ft) Time V ۷c Flow Dir Corr Dist Rev a (sq ft) q (cfs) factor from depth (sec) (ft/s) (ft/s) (deg) Flow Dir ΙP (deg) 0.0 1.000 4.5 4.5 0.75 0.6 0 0.0 0.00 0.00 3.38 0.00 360 -270 1.000 9.0 4.5 1.75 0.6 0 0.0 0.00 0.00 7.88 0.00 360 -270 51.3 0.39 0.39 9.00 360 -270 1.000 13.5 4.5 2.00 0.6 19 3.48 1.000 18.0 4.5 2.80 0.6 10 27.8 0.38 0.38 12.60 4.74 360 -270 15 360 -270 1.000 22.5 4.5 3.30 0.6 41.9 0.37 0.37 14.85 5.56 360 1.000 27.0 4.5 3.80 0.6 10 26.9 0.39 0.39 17.10 6.63 -270 360 1.000 31.5 4.5 3.90 0.6 10 26.8 0.39 0.39 17.55 6.83 -270 360 1.000 36.0 4.5 3.90 0.6 10 25.9 0.40 0.40 17.55 7.05 -270 1.000 40.5 4.5 3.80 0.6 10 26.8 0.39 0.39 17.10 6.66 360 -270 10 0.40 360 -270 1.000 45.0 4.5 3.70 0.6 26.0 0.40 16.65 6.66 1.000 10 29.6 0.36 0.36 5.60 360 -270 49.5 4.5 3.50 0.6 15.75 1.000 10 26.9 0.39 0.39 5.67 360 -270 54.0 4.5 3.25 0.6 14.63 1.000 10 25.7 0.40 0.40 5.46 360 -270 58.5 4.5 3.00 0.6 13.50 1.000 63.0 4.5 2.70 0.6 10 26.2 0.40 0.40 12.15 4.83 360 -270 1.000 67.5 4.5 2.30 0.6 10 27.1 0.39 0.39 10.35 3.99 360 -270 3.59 360 1.000 72.0 4.5 2.05 0.6 10 26.8 0.39 0.39 9.23 -270

0.40

0.37

0.38

0.38

0.34

0.30

0.26

0.18

0.40

0.37

0.38

0.38

0.34

0.30

0.26

0.18

8.10

7.65

7.47

7.20

5.85

5.76

5.18

3.69

260.15

360

360

360

360

360

360

360

360

-270

-270

-270

-270

-270

-270

-270

-270

3.21

2.84

2.82

2.76

1.98

1.73

1.36

0.65

94.11

10

10

10

10

10

10

10

5

26.3

28.2

27.7

27.2

31.2

35.7

41.4

32.9

0.6

0.6

0.6

0.6

0.6

0.6

0.6

0.6

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

76.5

81.0

85.5

90.0

94.5

99.0

103.5

108.0

110.0

4.5

4.5

4.5

4.5

4.5

4.5

4.5

4.5

1.80

1.70

1.66

1.60

1.30

1.28

1.15

0.82

WWDI4_9-12-02 (TRIP 1)

WWDI4_9-12-02 (TRIP 1) Gage = 10.62' at 9:00

С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc (ft/s)	a (sq ft)	q (cfs)
factor	IP					(sec)				
	0.0									
1	1.0	1.0	0.08	0.6	0	40	0.00	0.00	0.08	0.00
1				0.6	0	40				
1	3.0	1.0		0.6	5	40		0.15		0.02
1				0.6		40	0.20	0.20	0.15	
1			0.15	0.6	6	40		0.18	0.15	0.03
1	6.0	1.0	0.14	0.6	8	40	0.22	0.22	0.14	0.03
1	7.0	1.0	0.16	0.6	7	40	0.20	0.20	0.16	0.03
1	8.0	1.0	0.20	0.6	9	40	0.25	0.25	0.20	0.05
1	9.0	1.0	0.22	0.6	7	40	0.20	0.20	0.22	0.04
1	10.0	1.0	0.21	0.6	9	40	0.25	0.25	0.21	0.05
1	11.0	1.0	0.21	0.6	8	40	0.22	0.22	0.21	0.05
1	12.0	1.0	0.23	0.6	12	40	0.32	0.32	0.23	0.07
1	13.0	1.0	0.26	0.6	9	40	0.25	0.25	0.26	0.06
1	14.0	1.0	0.28	0.6	9	40	0.25	0.25	0.28	0.07
1	15.0	1.0	0.25	0.6	7	40	0.20	0.20	0.25	0.05
1	16.0	1.0	0.25	0.6	8	40	0.22	0.22	0.25	0.06
1	17.0	1.0	0.29	0.6	7	40	0.20	0.20	0.29	0.06
1	18.0	1.0	0.24	0.6	9	40	0.25	0.25	0.24	0.06
1	19.0	1.0	0.22	0.6	7	40	0.20	0.20	0.22	0.04
1	20.0	1.0	0.20	0.6	7	40	0.20	0.20	0.20	0.04
1	21.0	1.0	0.19	0.6	4	40	0.13	0.13	0.19	0.02
	22.0									
									4.14	0.86

WWDI4_10-8-02 (TRIP 2)

WWDI4_10-8-02 (TRIP 2) Gage = 11.89' at 12:30

С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc (ft/s)	a (sq ft)	q (cfs)
factor	IP					(sec)				
	0.0									
1	2.4	2.4	1.13	0.6	30	45.3	0.67	0.67	2.71	1.81
1	4.8	2.4	1.68	0.6	30	28.7	1.03	1.03	4.03	4.17
1			1.78	0.6	30	30.6			4.27	
1	9.6	2.4	1.59	0.6	30	23.4	1.26	1.26	3.82	4.81
1	12.0	2.4	1.44	0.6	30	19.1	1.54	1.54	3.46	5.32
1	14.4	2.4	1.62	0.6	30	20.7	1.42	1.42	3.89	5.53
1	16.8	2.4	1.78	0.6	30	18.9	1.55	1.55	4.27	6.64
1	19.2	2.4	1.83	0.6	30	18.0	1.63	1.63	4.39	7.16
1	21.6	2.4	1.55	0.6	30	22.4	1.32	1.32	3.72	4.90
1	24.0	2.4	1.41	0.6	30	21.4	1.38	1.38	3.38	4.66
1	26.4	2.4	1.20	0.6	30	20.6	1.43	1.43	2.88	4.12
1	28.8	2.4	1.35	0.6	30	27.7	1.07	1.07	3.24	3.47
1	31.2	2.4	1.08	0.6	30	23.6	1.25	1.25	2.59	3.24
1	33.6	2.4	0.70	0.6	30	23.1	1.28	1.28	1.68	2.15
1	36.0	2.4	0.54	0.6	30	23.5	1.26	1.26	1.30	1.63
1	38.4	2.4	0.40	0.6	30	21.8	1.35	1.35	0.96	1.30
1	40.8	2.4	0.36	0.6	30	23.1	1.28	1.28	0.86	1.10
1	43.2	2.4	0.37	0.6	30	24.9	1.19	1.19	0.89	1.05
1	45.6	2.4	0.41	0.6	30	28.7	1.03	1.03	0.98	1.02
1	48.0	2.4	0.40	0.6	30	31.9	0.93	0.93	0.96	0.90
1	50.4	2.4	0.41	0.6	30	37.4	0.80	0.80	0.98	0.79
0.98	52.8	2.4	0.41	0.6	30	41.0	0.73	0.72	0.98	0.69
0.98	55.2	2.4	0.45	0.6	30	40.2	0.75	0.73	1.08	0.78
0.98	57.6	2.4	0.25	0.6	15	30.8	0.50	0.49	0.60	0.29
	59.0									
									57.94	71.68

WWDI4_10-31-02 (TRIP 3)

WWDI4_10-31-02 (TRIP 3) Gage = 11.29' at 14:00

$\frac{W = 53'}{C}$	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc (ft/s)	a (sq ft)	q (cfs)
factor		` ,	` ,	•		(sec)	, ,	, ,	,	,
	0.0									
1	2.1	2.1	1.20	0.6	20	31.2	0.65	0.65	2.52	1.63
1	4.2	2.1	1.10	0.6	20	26.2	0.76	0.76	2.31	1.76
1	6.3	2.1	1.05	0.6	20	24.9	0.80	0.80	2.21	1.77
1	8.4	2.1	0.81	0.6	20	27.4	0.73	0.73	1.70	1.24
1	10.5	2.1	0.60	0.6	20	26.5	0.76	0.76	1.26	0.95
1	12.6	2.1	0.65	0.6	20	25.9	0.77	0.77	1.37	1.05
1	14.7	2.1	0.68	0.6	20	25.8	0.78	0.78	1.43	1.11
1	16.8	2.1	0.70	0.6	20	20.5	0.97	0.97	1.47	1.42
1	18.9	2.1	0.70	0.6	20	21.7	0.92	0.92	1.47	1.35
1	21.0	2.1	0.80	0.6	20	18.9	1.05	1.05	1.68	1.76
1	23.1	2.1	0.80	0.6	20	20.1	0.99	0.99	1.68	1.66
1	25.2	2.1	0.78	0.6	20	20.5	0.97	0.97	1.64	1.58
1	27.3	2.1	0.80	0.6	20	18.3	1.08	1.08	1.68	1.81
1	29.4		0.80	0.6	20	15.8	1.25	1.25	1.68	2.09
1	31.5	2.1	0.80	0.6	20	14.6	1.35	1.35	1.68	2.26
1	33.6	2.1	0.80	0.6	20	14.9	1.32	1.32	1.68	2.22
1	35.7	2.1	0.85	0.6	20	14.9	1.32	1.32	1.79	2.36
1	37.8	2.1	0.84	0.6	20	14.8	1.33	1.33	1.76	2.34
1	39.9	2.1	0.80	0.6	20	17.6	1.12	1.12	1.68	1.88
1	42.0		0.80	0.6	20	19.6		1.01	1.68	1.70
1	44.1	2.1	0.72	0.6	20	19.7	1.01	1.01	1.51	1.52
1	46.2	2.1	0.60	0.6	20	22.5	0.88	0.88	1.26	1.11
1	48.3	2.1	0.45	0.6	20	39.6	0.52	0.52	0.94	0.49
1	50.4	2.1	0.12	0.6	0	0.0	0.00	0.00	0.25	0.00
	53.0									
					·				38.33	37.08

WWDI4_11-14-02 (TRIP 4)

WWDI4_11-14-02 (TRIP 4) Gage = 11.13' at 12:00

С	Dist from	w (ft)	d (ft)	%depth	Rev	Time	V (ft/s)	Vc (ft/s)	a (sq ft)	q (cfs)
factor		` ,	` ,	•		(sec)	, ,	, ,	` ' '	,
	0.0									
1	2.0	2.0	1.14	0.6	15	33.5	0.46	0.46	2.28	1.05
1	4.0	2.0	0.98	0.6	20	39.1	0.52	0.52	1.96	1.02
1	6.0	2.0	0.75	0.6	20	31.9	0.63	0.63	1.50	0.95
1	8.0	2.0	0.48	0.6	20	24.9	0.80	0.80	0.96	0.77
1	10.0	2.0	0.49	0.6	20	34.9	0.58	0.58	0.98	0.57
1	12.0	2.0	0.47	0.6	20	30.3	0.66	0.66	0.94	0.62
1	14.0	2.0	0.49	0.6	20	23.4	0.85	0.85	0.98	0.83
1	16.0	2.0	0.57	0.6	20	33.4	0.61	0.61	1.14	0.69
1	18.0	2.0	0.52	0.6	20	27.8	0.72	0.72	1.04	0.75
1	20.0	2.0	0.60	0.6	20	26.8	0.75	0.75	1.20	0.90
1	22.0	2.0	0.65	0.6	20	24.7	0.81	0.81	1.30	1.05
1	24.0	2.0	0.58	0.6	20	22.9	0.87	0.87	1.16	
1	26.0	2.0		0.6	20					
1	28.0	2.0	0.62	0.6	20	22.3			1.24	
1	30.0	2.0		0.6	20	19.9	1.00			
1	32.0	2.0	0.59	0.6	20		0.95	0.95	1.18	
1	34.0	2.0		0.6	20		1.09			
1	36.0	2.0	0.60	0.6	20	17.8	1.11	1.11	1.20	
1	38.0	2.0		0.6	20		1.10	1.10	1.20	
1	40.0	2.0		0.6	20	21.9	0.91	0.91	1.20	1.09
1	42.0			0.6	20		0.81	0.81	1.20	
1	44.0			0.6	20		0.78			
1	46.0			0.6			0.51	0.51	0.98	
1	48.0	2.0	0.28	0.6	10	27.4	0.38	0.38	0.56	0.21
	51.0									
									28.92	22.18