Algebra Lineare e Geometria Analitica Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

Capitolo 1	Spazi affini	Pagina 4
1.1	$A_n(K)$, spazio affine di dimensione n	4
1.2	Proprietà di punti, rette e piani	7
1.3	Geometria analitica in $A_n(\mathbb{R})$	8
1.4	Rappresentazioni analitiche	11

Capitolo 1

Spazi affini

1.1 $A_n(K)$, spazio affine di dimensione n

Definizione 1.1.1: Spazio affine

Si dice spazio affine di dimensione n sul campo K, e si indica $\mathring{A}_n(K)$, la struttura costituita da

- 1. un insieme non vuoto A, detto insieme dei punti
- 2. uno spazio vettoriale $V_n(K)$
- 3. un'applicazione

$$f: A \times A \to V_n(K)$$

con le seguenti proprietà

(a)
$$\forall P \in A \ e \ \forall v \in V \quad \exists ! \ Q \in A : \quad f(P,Q) = \overrightarrow{PQ} = v$$

(b)
$$\vec{PQ} + \vec{QR} = \vec{PR} \quad \forall P, Q, R \in A$$

Proposizione 1.1.1

In $A_n(K)$, per ogni $P, Q \in R \in A$

1. il vettore
$$\vec{RR} = \underline{0}$$

2.
$$\vec{PQ} = \vec{PR} \iff Q = R$$

3.
$$\vec{PQ} = \underline{0} \iff P = Q$$

3.
$$\vec{PQ} = \underline{0} \iff P = Q$$

4. $v = \vec{PQ} \implies -v = \vec{QP}$

5.
$$\forall P_1, P_2, Q_1, Q_2 \in A$$
 risulta $\vec{P_1P_2} = \vec{Q_1Q_2} \iff \vec{P_1Q_1} = \vec{P_2Q_2}$

Dimostrazione: Dimostriamo ogni punto separatamente

1.
$$\vec{RR} + \vec{RR} = \vec{RR}$$
 perciò $2\vec{RR} = \vec{RR} \iff \vec{RR} = 0$

2. posto
$$\vec{v} = \vec{PQ}$$
 allora $\vec{v} = \vec{PR}$, ma $\exists ! \ Q : \ \vec{PQ} = \vec{v} \implies \vec{R} = \vec{Q}$

3. per la proprietà 1
$$\vec{RR} = \underline{0} \implies$$
 per l'unicità di $Q: \vec{PQ} = \underline{0} \implies Q = P$

4.
$$\vec{PQ} + \vec{QP} = \vec{PP} = 0 \implies \vec{PQ} = -\vec{QP}$$

5. ovvio, essendo
$$\vec{P_1P_2} + \vec{P_2Q_2} = \vec{P_1Q_2} = \vec{P_1Q_1} + \vec{Q_1Q_2}$$

⊜

Definizione 1.1.2: Sottospazio affine

Sia $A_n(K)$ uno spazio affine. Si dice sottospazio affine di dimensione $m \le n$ una struttura data da

- 1. $\emptyset \neq A' \subseteq A$, detto sostegno del sottospazio affine
- 2. $V_m(K)$ sottospazio di $V_n(K)$
- 3. la restrizione dell'applicazione f ad $A' \times A'$ troncata a $V_m(K)$, purché questa sia ancora un'applicazione che gode delle proprietà elencate nella definizione di spazio affine

Definizione 1.1.3: Traslazione

Fissato un vettore $v \in V_n(K)$ si dice **traslazione**, individuata da v, la corrispondenza

$$t_v: A \to A \quad e \quad P \to Q$$

che associa a un punto $P \in A$ il punto Q traslato di P mediante il vettore v.

Osservazione: $\forall v \in V_n(K)$ la mappa t_v è una biiezione di A, insieme di punti di $(A, V_n(K), f)$. E l'inversa di t_v è t_{-v} .

Definizione 1.1.4: Sottospazio lineare

Sia $A_n(K)$ uno spazio affine. Si dice **sottospazio lineare** l'insieme dei traslati di un punto P, detto **origine**, mediante i vettori $v \in V_h(K) \le V_n(K)$, con h detta dimensione del sottospazio lineare. Inoltre si denota con $S_h = [P, V_h(K)]$ il sottospazio lineare dato dal punto P e dallo spazio di traslazione V_h .

Definizione 1.1.5: Punti, rette, piani e iperpiani

Sia $A_n(K)$ uno spazio affine. Si dicono

• punti i sottospazi lineari di dimensione 0

$$S_0 = [P, \{0\}] = \{P\}$$

• rette i sottospazi lineari di dimensione 1

$$S_1 = [P, \mathcal{L}(v)] \quad \text{con } v \neq 0 \quad e \quad v \in V_n(K)$$

• piani i sottospazi lineari di dimensione 2

$$S_2 = [P, \mathcal{L}(v_1, v_2)] \quad \text{con } v_1, v_2 \neq 0 \quad e \quad v_1, v_2 \in V_n(K)$$

• iperpiani sono i sottospazi di dimensione n-1

Proposizione 1.1.2

Sia $S_h = [P, V_h(K)]$ un sottospazio lineare di dimensione h sottospazio di $A_n(K)$.

☺

☺

- 1. siano $Q, R \in S_h \implies \overrightarrow{QR} \in V_h(K)$ 2. se $Q \in S_h$ e $v \in V_h$, allora $R = t_v(Q) \in S_h$

Dimostrazione: Dimostriamo entrambi i punti separatamente

1. Per ipotesi $Q \in S_h$, quindi $Q = t_v(P)$ con $v \in V_h(K)$. $v = PQ \in V_h$ e analogamente $PR \in V_h$. Ma allora $\vec{OR} = \vec{OP} + \vec{PR} = -\vec{PQ} + \vec{PR} \in V_h$.

2. Poiché $Q \in S_h$, $\vec{PQ} \in V_h$. Allora $\vec{PR} + \vec{QR} = \vec{PQ} + \vec{v} \in V_h \implies \vec{PR} \in V_h$. Posto $\vec{w} = \vec{PR}$, $t_w(P) = R$ con $w \in V_h \implies R \in S_h$.

Proposizione 1.1.3

Sia $S_h = [P, V_h(K)]$ un sottospazio lineare di $A_n(K)$. Ogni punto di S_h può essere scelto come origine di $S_h.$ Cioè dato $Q\in S_h$ abbiamo che $[Q,V_h(K)]=S_h.$

Dimostrazione: Sia $R \in S_h$. Allora $\vec{PR} \in V_n$ e $\vec{PQ} \in V_n$. Quindi $\vec{QR} = \vec{QP} + \vec{PR} = -\vec{PQ} + \vec{PR} \in V_h \implies$ $QR \in V_h$.

Detto $w = \overrightarrow{QR}$ abbiamo che $R = t_v(Q)$. R è traslato di Q tramite il vettore $w \in V_h \implies R \in [Q, V_h]$, quindi

$$S_h\subseteq [Q,V_h]$$

con lo stesso ragionamento scambiamo P e Q si dimostra che

$$[Q, V_h] \subseteq [P, V_h] = S_h$$

e ciò vale solo se $S_h = [Q, V_h]$.

Proposizione 1.1.4

Siano S_h e S_k due sottospazi lineari di $A_n(K)$. Allora $S_h \subseteq S_k \iff S_h \cap S_k \neq \emptyset$ e $V_h \leq V_k$.

Dimostrazione: " ⇒ " Ovviamente $S_h \cap S_k \neq \emptyset$ e sia $P \in S_h \cap S_k$. Potremo scrivere $S_h = [P, V_h]$ e $S_k = [P, V_k]$. Sia $v \in V_h$ e sia $Q = t_v(P) \in S_h \subseteq S_k \implies Q \in S_k$ e sia $Q = t_v(P)$ ovvero $\overrightarrow{PQ} = v \in V_k \implies V_h \le V_k$. " \Leftarrow " Sia $P \in S_h \implies [P, V_h] \subseteq [P, V_k]$ (poiché per ipotesi $V_h \subseteq V_k$) $[P, V_h] = S_h$ e $[P, V_k] = S_k \implies S_h \subseteq S_h$ S_k .

Proposizione 1.1.5

Siano S_h e S_k sottospazi lineari di $A_n(K)$. Sia $S_h \cap S_k \neq \emptyset$ e sia $P \in S_h \cap S_k$. Allora

$$S_h \cap S_k = [P, V_h \cap V_k]$$

Dimostrazione: Sia $Q \in S_h \cap S_k$. Osserviamo che $S_h = [P, V_h]$ e $S_k = [P, V_k]$. $Q = t_v(P)$ con $v \in V_h$ (perché $Q \in S_h$). Ma $Q = t_v(P)$ con $v \in V_k$ (perché $Q \in S_k$). Quindi $Q \in [P, V_h \cap V_k]$ perché $v \in V_h \cap V_k$, cioè

$$S_h \cap S_k \subseteq [P, V_h \cap V_k]$$

Viceversa dato $Q = t_v(P)$ con $v \in V_h \cap V_k \implies Q$ appartiene sia a S_h che ad S_k , quindi $Q \in S_h \cap S_k$, ovvero

$$[P, V_h \cap V_k] \subseteq S_h \cap S_k$$

$$\implies [P, V_h \cap V_k] = S_h \cap S_k$$

⊜

Definizione 1.1.6: Parallelismo tra sottospazi

Due sottospazi lineari, $S_p = [P, V_p]$ ed $S_q = [Q, V_q]$, di $A_n(K)$ si dicono **paralleli**, e si scrive $S_p||S_q$, se i rispettivi spazi di traslazione sono confrontabili, ovvero quando $V_p \subseteq V_q$, oppure $V_q \subseteq V_p$.

Osservazione 1: La relazione di parallelismo non è transitiva. E' invece riflessiva e simmetrica. Non è quindi una relazione d'equivalenza.

Osservazione 2: Due sottospazi lineari della stessa dimensione sono paralleli se, e soltanto se, hanno lo stesso spazio di traslazione. Quindi la relazione di parallelismo considerata tra spazi della stessa dimensione è una relazione d'equivalenza.

Proposizione 1.1.6

Due sottospazi lineari paralleli e di uguale dimensione o coincidono oppure hanno intersezione vuota.

Definizione 1.1.7

- Sia $S = [P, V_1]$ una retta. Lo spazio V_1 si dice **direzione** della retta S. Quindi due rette sono parallele se, e soltanto se, hanno la stessa direzione
- Sia $\pi = [P, V_2] \subseteq A_n(K)$ con $n \ge 2$. Lo spazio V_2 è detto **giacitura** di π . Quindi due piani sono paralleli se, e soltanto se, hanno la stessa giacitura.
- Tre o più punti si dicono allineati se esiste una retta che li contiene tutti.
- Due o più rette si dicono **complanari** se esiste un piano che le contiene tutte.

1.2 Proprietà di punti, rette e piani

Proposizione 1.2.1

In $A_n(k)$, con $n \ge 2$

- 1. per ogni due punti distinti passa un'unica retta
- 2. per due rette distinte, parallele o incidenti, passa un unico piano
- 3. due rette complanari, aventi intersezione vuota, sono parallele
- 4. per un punto passa un'unica retta parallela a una retta data (V Postulato di Euclide)

- 5. per un punto passa un unico piano, parallelo ad un piano dato
- 6. per tre punti, non allineati, passa un unico piano
- 7. una retta, avente due punti distinti in un piano, giace nel piano
- 8. per un punto passano almeno due rette distinte

Proposizione 1.2.2

In $A_3(K)$,

- 1. una retta e un piano, aventi intersezione vuota, sono paralleli
- 2. due piani, aventi intersezione vuota, sono paralleli
- 3. due piani distinti, aventi in comune un punto, hanno in comune una retta per quel punto
- 4. per una retta passano almeno due piani distinti

Definizione 1.2.1: Rette sghembe

In $A_n(K)$, con $n \ge 3$, due rette non complanari si dicono **sghembe**.

Proposizione 1.2.3

In $A_n(K)$, con $n \ge 3$, esistono due rette r_1 e r_2 sghembe tra loro. Inoltre due rette sghembe r_1 e r_2 , sono contenute su due piani π_1 e π_2 paralleli tra loro e distinti.

Dimostrazione: Per ipotesi, $A_n(K)$ ha dimensione almeno 3, quindi esistono nello spazio vettoriale $V_n(K)$ almeno 3 vettori linearmente indipendenti. Siano essi u, v, w. Siano inoltre, P un punto di A e Q il traslato di P mediante il vettore u ($Q = t_u(P)$). Dimostriamo che le rette $r = [P, \mathcal{L}(v)]$ ed $s = [Q, \mathcal{L}(w)]$ sono sghembe. Se infatti, esistesse un piano $\pi = [P, V_2]$ che le contiene entrambe, lo spazio di traslazione di π conterrebbe 3 vettori linearmente indipendenti, cioè v, w e $u = \overrightarrow{PQ}$ e ciò è un **assurdo!** Siano ora $t = [T, \mathcal{L}(v)]$ e $t' = [T', \mathcal{L}(v')]$ due

rette sghembe. I vettori v e v' generano uno spazio vettoriale V_2 di dimensione 2. Pertanto, i piani $\pi = [T, V_2]$ e $\pi' = [T', V_2]$, che risultano paralleli, sono distinti e contengono, rispettivamente le rette t e t'.

1.3 Geometria analitica in $A_n(\mathbb{R})$

Definizione 1.3.1: Riferimento affine

Si dice **riferimento affine** di $A_n(\mathbb{R})$ una coppia RA = [O, B] costituita da un punto O fissato, detto origine, e da una base B dello spazio vettoriale $V_n(\mathbb{R})$.

Definizione 1.3.2: Coordinate

Fissato, in $A_n(\mathbb{R})$, un riferimento affine RA = [O, B], si dicono **coordinate** del punto P in RA le componenti, in B, del vettore \overrightarrow{OP} e si scrive $P = (x_i)_{i \in I_n}$.

1. In $A_1(\mathbb{R})$, un riferimento affine è una coppia RA = [O, B], ove O è un punto fissato e $B = (e_1)$ è una base di $V_1(\mathbb{R})$. Se $\vec{OP} = xe_1$, si scrive P = (x) e si dice che x è l'ascissa del punto P in RA.

2. In $A_2(\mathbb{R})$, un riferimento affine è una coppia RA = [O, B], ove O è un punto fissato e $B = (e_1, e_2)$ è una base di $V_2(\mathbb{R})$. La retta $[O, \mathcal{L}(e_1)]$ è detta asse delle ascisse e la retta $[O, \mathcal{L}(e_2)]$ è detta asse delle ordinate. Se $\overrightarrow{OP} = xe_1 + ye_2$, si scrive P = (x, y) e si dice che (x, y) è la coppia delle coordinate di P in RA, dette rispettivamente ascissa e ordinata del punto P.

3. In $A_3(\mathbb{R})$, un riferimento affine è una coppia RA = [O, B], ove O è un punto fissato e $B = (e_1, e_2, e_3)$ è una base di $V_3(\mathbb{R})$. La retta $[O, \mathcal{L}(e_1)]$ è detta asse delle ascisse, la retta $[O, \mathcal{L}(e_2)]$ è detta asse delle ordinate e la retta $[O, \mathcal{L}(e_3)]$ è detta asse delle quote. Sono detti piani coordinati i piani $xy = [O, \mathcal{L}(e_1, e_2)], xz = [O, \mathcal{L}(e_1, e_3)]$ e $yz = [O, \mathcal{L}(e_2, e_3)]$. Inoltre, se $\overrightarrow{OP} = xe_1 + ye_2 + ze_3$, si scrive P = (x, y, z) e si dice che (x, y, z) è la terna delle coordinate di P in RA, dette rispettivamente ascissa, ordinata e quota del punto P.

Teorema 1.3.1

In $A_n(K)$, con RA = [O, B], siano $P = (x'_1, x'_2, \dots, x'_n)$ e $Q = (x''_1, x''_2, \dots, x''_n)$ due punti di A. Allora le componenti di \overrightarrow{PQ} rispetto a B sono

$$(x_1'' - x_1', x_2'' - x_2', \ldots, x_n'' - x_n')$$

Dimostrazione: Posti due vettori

$$\vec{OP}$$
: $x'_1e_1 + x'_2e_2 + \ldots + x'_ne_n$

$$\vec{OQ}$$
: $x_1''e_1 + x_2''e_2 + \ldots + x_n''e_n$

Per la proprietà della definizione di spazio affine possiamo dire che

$$\vec{PQ} = \vec{PO} + \vec{OQ} = \vec{OQ} - \vec{OP} = \sum_{i \in I_n} (x_i'' - x_i') e_i$$

⊜

Posti

$$X'' = \begin{pmatrix} x_1'' \\ x_2'' \\ \vdots \\ x_n'' \end{pmatrix}, X' = \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} \in T = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{pmatrix}$$

si ottiene l'equivalente, ma spesso più agevole, forma matriciale:

$$X'' - X' = T$$

che può essere riscritta come

$$X'' = X' + T$$

Da quest'ultima equazione si vede che le coordinate del traslato del punto $P = (x'_1, x'_2, \dots, x'_n)$, attraverso il vettore v di componenti (t_1, t_2, \dots, t_n) , si ottengono sommando, ordinatamente, alle coordinate di P le componenti del vettore di traslazione. Per questo le relazioni che compaiono nell'equazione sono anche dette **equazioni della traslazione individuata da** v.

Definizione 1.3.3: Punto medio

Dato $P \in Q \in A$ (insieme dei punti di $A_n(\mathbb{R})$), definiamo il punto medio del segmento [PQ] come

$$M = t_{1/2\vec{PQ}}(P)$$

$$P \longrightarrow M \qquad R$$

Proposizione 1.3.1

Dati $P, Q \in A$ e dato un riferimento affine RA = [O, B] abbiamo che le coordinate del punto medio di P e Q sono le semisomme delle coordinate omonime di P e di Q.

Definizione 1.3.4: Punto simmetrico

In $A_n(\mathbb{R})$ dati i punti $P \in C$ diremo che S è il **punto simmetrico** di P rispetto a C se C è il punto medio di [P, S].

1.4 Rappresentazioni analitiche

Definizione 1.4.1: Equazioni parametriche di una retta in $A_n(\mathbb{R})$

Sia RA = [O, B] un riferimento fissato in $A_n(\mathbb{R})$, ove $B = (e_1, e_2, \dots, e_n)$. Sia $r = [P, V_1 = \mathcal{L}(v)]$ la retta di origine il punto $P = (x'_1, x'_2, \dots, x'_n)$ e spazio di traslazione generato da $v = (l_1, l_2, \dots, l_n)$. Il generico vettore w di $\mathcal{L}(v)$ è proporzionale al vettore v, cioè w = tv, con $t \in \mathbb{R}$, quindi, $w = (tl_1, tl_2, \dots, tl_n)$. Dato che la retta r è il luogo dei traslati di P attraverso i vettori di $\mathcal{L}(v)$, applicando le equazioni del teorema precedente si ottengono le coordinate del generico punto di r

$$\begin{cases} x_1 = x_1' + l_1 t \\ x_2 = x_2' + l_2 t \\ \dots \\ x_n = x_n' + l_n t \end{cases} \quad \text{con} \quad t \in \mathbb{R}, \quad (l_1, l_2, \dots, l_n) \neq \underline{0}$$

tali equazioni sono dette equazioni parametriche di r in $A_n(\mathbb{R})$. Al variare di $t \in \mathbb{R}$, si ottengono le coordinate di tutti i punti di una retta e, quindi, tutti i punti di una retta sono ∞^1 .

Definizione 1.4.2: Parametri direttori

Si dicono **parametri direttori** di $r = [P, V_1]$, le componenti di un qualunque vettore nullo di V_1 .