

Large-Scale Optimization Problem in Energy Systems: Applications of Decomposition Techniques

Lecture 9: Applications of Benders Decomposition to Stochastic Programming

Lesia Mitridati

January 15th, 2018

DTU Electrical Engineering

Department of Electrical Engineering

Learning Objectives

- At the end of this session the students should be able to:
- Recognize the decomposable structure of a stochastic optimization problem (number of complicating variables and subproblems)
- Write a Benders decomposition algorithm for a general stochastic optimization problem
- Write and solve a Benders decomposition algorithm for a simple example of stochastic market clearing

Example: Stochastic Market Clearing

- considers demand, wind power, etc. as a potential "scenario" in the balancing market
- determines day-ahead dispatch according to all scenarios

Here-and-now decision: Day-ahead dispatch

Minimizing DA + expected RT cost

Accounting for all scenarios in RT (constraints)

Problem: As the number of scenarios increases the complexity of stochastic problems increases!

We can use decomposition techniques to regain tractability

Example: Stochastic linear optimization problem

$$\min_{x, y_{s_1}, \dots, y_{s_N}} Ax + \pi_{s_1} A_{s_1} y_{s_1} + \dots + \pi_{s_N} A_{s_N} y_{s_N}$$

s.t.
$$B^0 x = d^0$$

 $C^0 x \leq e^0$
 $B^{s_1} x + F^s_1 y_{s_1} = d^{s_1}$
 $C^{s_1} x + G^s_1 y_{s_1} \leq e^{s_1}$

• • •

. . .

$$B^{s_N} x + F^s_N y_{s_N} = d^{s_N}$$

$$C^{s_N} x + G^s_N y_{s_N} \le e^{s_N}$$

Example: Stochastic linear optimization problem

$$\min_{x,y_{s_1},...,y_{s_N}} A_x + \pi_{s_1} A_{s_1} y_{s_1} + ... + \pi_{s_N} A_{s_N} y_{s_N}$$

s.t.
$$B^0 x$$
 = d^0
 $C^0 x$ $\leq e^0$
 $B^{s_1} x + F^s_1 y_{s_1}$ = d^{s_1}
 $C^{s_1} x + G^s_1 y_{s_1}$ $\leq e^{s_1}$

x "here-and-now" variables

. . .

$$B^{s_N} x + F^s_N y_{s_N} = d^{s_N}$$

$$C^{s_N} x + G^s_N y_{s_N} \le e^{s_N}$$

Example: Stochastic linear optimization problem

$$\min_{\substack{x,y_{s_1},...,y_{s_N}}} A_x + \pi_{s_1} A_{s_1} y_{s_1} + ... + \pi_{s_N} A_{s_N} y_{s_N}$$

s.t.
$$B^{0}x$$
 = d^{0}
 $C^{0}x$ $\leq e^{0}$
 $B^{s_{1}}x + F^{s_{1}}y_{s_{1}}$ = $d^{s_{1}}$
 $C^{s_{1}}x + G^{s_{1}}y_{s_{1}}$ $\leq e^{s_{1}}$

y "wait-and-see"
variables for scenario

x "here-and-now" variables

S₁,...,**S**_N

$$B^{s_N} x + F^s_N y_{s_N} = d^{s_N}$$

$$C^{s_N} x + G^s_N y_{s_N} < e^{s_N}$$

Example: Stochastic linear optimization problem

$$\min_{x,y_{s_1},...,y_{s_N}} Ax + \pi_{s_1}A_{s_1}y_{s_1} + ... + \pi_{s_N}A_{s_N}y_{s_N}$$

Expected cost (weighted sum)

s.t.
$$B^{0}x$$
 $= d^{0}$
 $C^{0}x$ $\leq e^{0}$
 $B^{s_{1}}x + F^{s_{1}}y_{s_{1}}$ $= d^{s_{1}}$
 $C^{s_{1}}x + G^{s_{1}}y_{s_{1}}$ $\leq e^{s_{1}}$

x "here-and-now" variables

y "wait-and-see" variables for scenario $s_1,...,s_N$

$$B^{s_N}x + F^s_N y_{s_N} = d^{s_N}$$

$$C^{s_N}x + G^s_N y_{s_N} \le e^{s_N}$$

Example: Stochastic linear optimization problem

$$\min_{x,y_{s_1},...,y_{s_N}} Ax + \pi_{s_1}A_{s_1}y_{s_1} + ... + \pi_{s_N}A_{s_N}y_{s_N}$$

Expected cost (weighted sum)

s.t.
$$B^0 x = d^0$$

 $C^0 x \le e^0$
 $B^{s_1} x + F^{s_1} y_{s_1} = d^{s_1}$
 $C^{s_1} x + G^{s_1} y_{s_1} \le e^{s_1}$

x "here-and-now" variables

y "wait-and-see" variables for scenario $s_1,...,s_N$

. . .

• • •

$$B^{s_N} x + F^s_N y_{s_N} = d^{s_N}$$

$$C^{s_N} x + G^s_N y_{s_N} \le e^{s_N}$$

Question:

Is this Problem decomposable?

Example: Stochastic linear optimization problem

$$\min_{x,y_{s_1},...,y_{s_N}} Ax + \left[\pi_{s_1}A_{s_1}y_{s_1} + ... + \pi_{s_N}A_{s_N}y_{s_N}\right]$$

Expected cost (weighted sum)

s.t.
$$B^0 x$$
 $= d^0$
 $C^0 x$ $\leq e^0$
 $B^{s_1} x + F^s_1 y_{s_1}$ $= d^{s_1}$
 $C^{s_1} x + G^s_1 y_{s_1}$ $\leq e^{s_1}$
...
 $B^{s_N} x$ $+ F^s_N y_{s_N} = d^{s_N}$
 $C^{s_N} x$ $+ G^s_N y_{s_N} \leq e^{s_N}$

x "here-and-now" variables

y "wait-and-see" variables for scenario $s_1,...,s_N$

x ("here-and-now" variables) is the set of complicating variables

min	A^T	$A_{s_1}^T$	 $A_{s_N}^T$				
	s.t.			-			
	L^{0}				x		K^0
	L^{s_1}	M^{s_1}			y_{s_1}		K^{s_1}
				X		≤	
	L^{s_N}		M^{s_N}		y_{s_N}		K^{SN}

min	A^T	$A_{s_1}^T$		$A_{s_N}^T$		– Compl	licatin	α variah	les	
	s.t.				Complicating variables					
	L^0					x		K^0		
	L^{s_1}	M^{s_1}			V	y_{s_1}	,	K^{S_1}		
					X		≤			
	L^{s_N}			M^{s_N}		y_{s_N}		K^{s_N}		

Question: How many subproblems (at least) are there?

Question: How many subproblems (at least) are there?

min	A^T	$A_{s_1}^T$		$A_{s_N}^T$		Comp	licatin	g variab	les	
	s.t.				fixed					
	L^0				\ _>	x*		K^0		
	L^{s_1}	M^{s_1}			V	y_{s_1}	_	K^{S_1}		
					X		≤			
	L^{s_N}			M^{s_N}		y_{s_N}		K^{s_N}		

One subproblem per scenario (at least)!

One subproblem per scenario (at least)!

One subproblem per scenario (at least)!

This formulation of a stochastic optimization problem:

$$\min_{x,y_{s_1},...,y_{s_N}} \mathbb{E}f(x,y_{s_1},...y_{s_N})$$
s.t. $h(x) = 0$

$$g(x) \le 0$$

$$h^s(x,y_s) = 0, \quad s = \{s_1,...,s_N\}$$

$$g^s(x,y_s) \le 0, \quad s = \{s_1,...,s_N\}$$

Can be reformulated as follows:

Can be reformulated as follows:

$$\min_{\substack{x_{s_1},...,x_{s_N} \\ y_{s_1},...,y_{s_N} }} \mathbb{E} f(x_{s_1},...,x_{s_N},y_{s_1},...y_{s_N})$$
 1 variable per scenario
$$s.t. \ h(x_s) = 0, \quad s = \{s_1,...,s_N\}$$

$$g(x_s) \leq 0, \quad s = \{s_1,...,s_N\}$$

$$h^s(x_s,y_s) = 0, \quad s = \{s_1,...,s_N\}$$

$$g^s(x_s,y_s) \leq 0, \quad s = \{s_1,...,s_N\}$$
 Non-anticipativity constraints
$$x_s = x_{s'}, \quad s,s' = \{s_1,...,s_N\}$$

Question: Advantage of using complicating variables Vs. Complicating constraints for stochastic optimization problems?

To sum up...

- Stochastic (convex) optimization problems are decomposable
- Complicating variables: first-stage (here-and-now) decision variables
- Number of subproblems: One per scenario (at-least)

Master problem

How do you express the master problem?

Subproblem (scenario s1)

How do you express the subproblems?

Subproblem (scenario sN)

How do you express the subproblems?

Master problem

How do you express the master problem?

Subproblem (scenario s1)

$$\min_{x^{(\theta)}, y_{s_1}^{(\theta)}} \hat{\pi}_{s_1} A_{s_1} y_{s_1}^{(\theta)}$$

s.t.
$$B^{s_1} x^{(\theta)} + F_1^s y_{s_1}^{(\theta)} = d^{s_1}$$
$$C^{s_1} x^{(\theta)} + G_1^s y_{s_1}^{(\theta)} \le e^{s_1}$$
$$x^{(\theta)} - x^{fixed(\theta)}$$

$$x^{(\theta)} = x^{fixed(\theta)} \qquad : \rho_{s_2}^{(\theta)}$$

Subproblem (scenario sN)

$$\min_{\boldsymbol{x}^{(\theta)}, y_{s_N}^{(\theta)}} \ \pi_{s_N} A_{s_N} y_{s_N}^{(\theta)}$$

s.t.
$$B^{s_N} x^{(\theta)} + F^s_N y^{(\theta)}_{s_N} = d^{s_N}$$
$$C^{s_N} x^{(\theta)} + G^s_N y^{(\theta)}_{s_N} \le e^{s_N}$$
$$x^{(\theta)} = x^{fixed(\theta)}$$

 $:
ho_{s_I}^{\scriptscriptstyle(0)}$

Master problem

$$\min_{x^{(\theta+1)}} \quad Ax^{(\theta+1)}$$
 s.t.
$$B^0x^{(\theta+1)} = d^0$$

$$C^0x^{(\theta+1)} \leq e^0$$

Subproblem (scenario s1)

$$\min_{x^{(\theta)}, y_{s_1}^{(\theta)}} \pi_{s_1} A_{s_1} y_{s_1}^{(\theta)}$$
s.t.
$$B^{s_1} x^{(\theta)} + F_1^s y_{s_1}^{(\theta)} = d^{s_1}$$

$$C^{s_1} x^{(\theta)} + G_1^s y_{s_1}^{(\theta)} \le e^{s_1}$$

$$x^{(\theta)} = x^{fixed(\theta)} : \rho_s^{(\theta)}$$

Subproblem (scenario sN)

$$\min_{x^{(\theta)}, y_{s_N}^{(\theta)}} \pi_{s_N} A_{s_N} y_{s_N}^{(\theta)}$$
s.t.
$$B^{s_N} x^{(\theta)} + F^s_N y_{s_N}^{(\theta)} = d^{s_N}$$

$$C^{s_N} x^{(\theta)} + G^s_N y_{s_N}^{(\theta)} \le e^{s_N}$$

$$x^{(\theta)} = x^{fixed(\theta)} \qquad :$$

Master problem

$$\min_{x^{(\theta+1)},\alpha^{(\theta+1)}} Ax^{(\theta+1)} + \boxed{\alpha^{(\theta+1)}}$$
s.t. $B^0 x^{(\theta+1)} = d^0$

 $C^0 x^{(\theta+1)} < e^0$

(Auxiliary variable, representing the objective function of subproblems)

Subproblem (scenario s1)

$$\min_{x^{(\theta)}, y_{s_1}^{(\theta)}} \pi_{s_1} A_{s_1} y_{s_1}^{(\theta)}$$
s.t.
$$B^{s_1} x^{(\theta)} + F_1^s y_{s_1}^{(\theta)} = d^{s_1}$$

$$C^{s_1} x^{(\theta)} + G_1^s y_{s_1}^{(\theta)} \le e^{s_1}$$

$$x^{(\theta)} = x^{fixed(\theta)} : \rho^{(\theta)}$$

Subproblem (scenario sN)

$$\min_{x^{(\theta)}, y_{s_N}^{(\theta)}} \pi_{s_N} A_{s_N} y_{s_N}^{(\theta)}$$
s.t.
$$B^{s_N} x^{(\theta)} + F_N^s y_{s_N}^{(\theta)} = d^{s_N}$$

$$C^{s_N} x^{(\theta)} + G_N^s y_{s_N}^{(\theta)} \le e^{s_N}$$

$$x^{(\theta)} = x^{fixed(\theta)}$$
:

on

Stochastic Programming – Benders Decomposition

Master problem

$$\min_{x^{(\theta+1)},\alpha^{(\theta+1)}} Ax^{(\theta+1)} + \alpha^{(\theta+1)} \qquad \text{(Auxiliary variable, representing the objective function of subproblems)}$$
 s.t. $B^0x^{(\theta+1)} = d^0$
$$C^0x^{(\theta+1)} \leq e^0 \qquad \text{(Benders cuts, one at each iteration)}$$

$$\alpha^{(\theta+1)} \ge \pi_{s_1} A_{s_1} y_{s_1}^{(k)} + \dots + \pi_{s_N} A_{s_N} y_{s_N}^{(k)} + (\rho_{s_1}^{(k)} + \dots + \rho_{s_N}^{(k)}) (x^{(\theta+1)} - x^{(k)}) : k = 1, \dots, \theta$$

$$\alpha^{(\theta+1)} \ge \alpha^{down}$$

$y_{s_1}^{(heta)} ho_{s_1}^{(heta)}$

$y_{s_1}^{(\theta)} \rho_{s_1}^{(\theta)}$

Subproblem (scenario s1)

$$\min_{x^{(\theta)}, y_{s_1}^{(\theta)}} \pi_{s_1} A_{s_1} y_{s_1}^{(\theta)}$$
s.t.
$$B^{s_1} x^{(\theta)} + F_1^s y_{s_1}^{(\theta)} = d^{s_1}$$

$$C^{s_1} x^{(\theta)} + G_1^s y_{s_1}^{(\theta)} \le e^{s_1}$$

$$x^{(\theta)} = x^{fixed(\theta)} \cdot o^{(\theta)}$$

$$\begin{aligned} & \min_{x^{(\theta)}, y_{s_N}^{(\theta)}} \ \pi_{s_N} A_{s_N} y_{s_N}^{(\theta)} \\ & \text{s.t.} & B^{s_N} x^{(\theta)} + F^s_N y_{s_N}^{(\theta)} = d^{s_N} \\ & C^{s_N} x^{(\theta)} + G^s_N y_{s_N}^{(\theta)} \leq e^{s_N} \\ & x^{(\theta)} = x^{fixed(\theta)} & : \rho_{s_N}^{(\theta)} \end{aligned}$$

Let's go back to our stochastic optimization problem...

$$\begin{split} & \text{Master problem} \\ & \min_{x^{(\theta+1)},\alpha^{(\theta+1)}} Ax^{(\theta+1)} + \alpha^{(\theta+1)} \\ & \text{s.t. } B^0 x^{(\theta+1)} = d^0 \\ & C^0 x^{(\theta+1)} \leq e^0 \\ & \alpha^{(\theta+1)} \geq \pi_{s_1} A_{s_1} y_{s_1}^{(k)} + \ldots + \pi_{s_N} A_{s_N} y_{s_N}^{(k)} \\ & \qquad \qquad + (\rho_{s_1}^{(k)} + \ldots + \rho_{s_N}^{(k)}) (x^{(\theta+1)} - x^{(k)}) & : k = 1, \ldots, \theta \\ & \alpha^{(\theta+1)} \geq \alpha^{down} \end{split}$$

Let's go back to our stochastic optimization problem...

$$\begin{aligned} & & \text{Master problem} \\ & & \min_{x^{(\theta+1)},\alpha^{(\theta+1)}} Ax^{(\theta+1)} + \alpha^{(\theta+1)} \\ & \text{s.t. } B^0 x^{(\theta+1)} = d^0 \\ & & C^0 x^{(\theta+1)} \leq e^0 \\ & & \alpha^{(\theta+1)} \geq \pi_{s_1} A_{s_1} y_{s_1}^{(k)} + \ldots + \pi_{s_N} A_{s_N} y_{s_N}^{(k)} \\ & & & + (\rho_{s_1}^{(k)} + \ldots + \rho_{s_N}^{(k)}) (x^{(\theta+1)} - x^{(k)}) \\ & & \alpha^{(\theta+1)} \geq \alpha^{down} \end{aligned} : k = 1, \ldots, \theta$$

Question: Why doesn't the weight of the scenarios (Π_s) multiply the sensitivities in my expression of the Benders cuts?

Let's go back to our stochastic optimization problem...

```
\begin{array}{l} \text{Subproblem (scenario s1)} \\ \min\limits_{\boldsymbol{x}^{(\theta)}, y_{s_1}^{(\theta)}} \pi_{s_1} A_{s_1} y_{s_1}^{(\theta)} \\ \text{s.t.} \qquad B^{s_1} \boldsymbol{x}^{(\theta)} + F_1^s y_{s_1}^{(\theta)} = d^{s_1} \\ C^{s_1} \boldsymbol{x}^{(\theta)} + G_1^s y_{s_1}^{(\theta)} \leq e^{s_1} \\ \boldsymbol{x}^{(\theta)} = \boldsymbol{x}^{fixed(\theta)} \qquad : \rho_{s_1}^{(\theta)} \end{array}
```

Benders Decomposition – Benders Cuts

Let's go back to our stochastic optimization problem...

Subproblem (scenario s1)
$$\min_{x^{(\theta)},y^{(\theta)}_{s_1}} (\pi_{s_1}) A_{s_1} y^{(\theta)}_{s_1}$$
 s.t.
$$B^{s_1} x^{(\theta)} + F^s_1 y^{(\theta)}_{s_1} = d^{s_1}$$

$$C^{s_1} x^{(\theta)} + G^s_1 y^{(\theta)}_{s_1} \le e^{s_1}$$

$$x^{(\theta)} = x^{fixed(\theta)}$$

$$\vdots \rho^{(\theta)}_{s_1}$$

The weight of each scenario is already accounted for in the objective function of the subproblem.

This influences the sensitivities (ρ_s)

Careful not to account for the weights twice!!

Stochastic Programming – Benders Decomposition

This formulation of the master problem and subproblems:

Subproblem (scenario s1)

s.t.
$$B^{s_1} x^{(\theta)} + F^s_1 y^{(\theta)}_{s_1} = d^{s_1}$$
$$C^{s_1} x^{(\theta)} + G^s_1 y^{(\theta)}_{s_1} \le e^{s_1}$$
$$x^{(\theta)} = x^{fixed(\theta)} : \rho_{s_1}^{(\theta)}$$

Subproblem (scenario sN)

$$\min_{x^{(\theta)}, y_{s_N}^{(\theta)}} \pi_{s_N} A_{s_N} y_{s_N}^{(\theta)}$$
s.t.
$$B^{s_N} x^{(\theta)} + F^s_N y_{s_N}^{(\theta)} = d^{s_N}$$

$$C^{s_N} x^{(\theta)} + G^s_N y_{s_N}^{(\theta)} \le e^{s_N}$$

$$x^{(\theta)} = x^{fixed(\theta)} : \rho_{s_N}^{(\theta)}$$

Stochastic Programming – Benders Decomposition

is equivalent to the following formulation:

Subproblem (scenario s1)

$$\min_{x^{(\theta)}, y_{s_1}^{(\theta)}} A_{s_1} y_{s_1}^{(\theta)}$$
s.t.
$$B^{s_1} x^{(\theta)} + F_1^s y_{s_1}^{(\theta)} = d^{s_1}$$

$$C^{s_1} x^{(\theta)} + G_1^s y_{s_1}^{(\theta)} \le e^{s_1}$$

$$x^{(\theta)} = x^{fixed(\theta)} : \rho_{s_1}^{(\theta)}$$

Subproblem (scenario sN)

s.t.
$$B^{s_N} x^{(\theta)} + F^s_N y^{(\theta)}_{s_N} = d^{s_N}$$
$$C^{s_N} x^{(\theta)} + G^s_N y^{(\theta)}_{s_N} \le e^{s_N}$$
$$x^{(\theta)} = x^{fixed(\theta)} \qquad : \rho_{s_N}^{(\theta)}$$

Question: When can we consider that the algorithm has converged?

Benders Decomposition – Stopping criterion

Question: When can we consider that the algorithm has converged?

When the value of the <u>objective function of the "original problem"</u> in the subproblems and in the master problem have converged

We define, at each iteration:

$$LB^{(\theta)} = Ax^{(\theta)} + \alpha^{(\theta)}$$

$$UB^{(\theta)} = Ax^{(\theta)} + \pi_{s_1} A_{s_1} y_{s_1}^{(\theta)} + \dots + \pi_{s_N} A_{s_N} y_{s_N}^{(\theta)}$$

When $|LB^{(\theta)} - UB^{(\theta)}| \le \varepsilon$, the algorithm has converged.

Benders Decomposition Algorithm

Step 0: Initialization

Set $\theta=1$, $x^{fixed(1)}=x^{initial}$, and $LB^{(1)}=-\infty$

Step 1: Solve subproblems

For each subproblem obtain the value of primal $(y_s^{(\theta)})$ and dual $(\rho_s^{(\theta)})$, variables, and objective function $\prod_s A^s y_s^{(\theta)}$. Compute the upper-bound $UB^{(\theta)}$.

Step 2: check convergence

If $|LB^{(\theta)} - UB^{(\theta)}| \le \varepsilon$, the algorithm has converged.

Otherwise, $\theta < -(\theta +1)$ and go to step 3.

Step 3: Solve master problem

Obtain the values of $x^{(\theta)}$ and $a^{(\theta)}$. Compute the lower bound $LB^{(\theta)}$. Go back to step 1.

Applications: Stochastic Market Clearing

To sum up...

- We have expressed the Benders algorithm (compact form) for a generic (linear) stochastic optimization problem
- For a convex optimization problem, Benders decomposition guarantees convergence to a global optimum

Let's look at an example: Stochastic market clearing

Stochastic Market Clearing – Benders Decomposition

Recall this example (lecture 4):

- Capacity: 100MW
- Production cost: 10\$/MW
- Inflexible in RT

- Capacity: 30MW
- Production cost: 20\$/MW
- Fully flexible in RT

- Capacity: 70MW
- Production cost: 0\$/MW
- Uncertain production in DA
- 4 equiprobable scenarios: 30MW, 60MW, 70MW, 10MW

- Inelastic load: 120MW
- Curtailment cost: 80\$/MW

Stochastic Market Clearing – Benders Decomposition 🗮

Stochastic market clearing formulation:

$$\begin{split} \text{Minimize}_{p^{G_{1},DA},p^{G_{2},DA},p^{W,DA},p^{G_{2},RT}_{s_{1}},p^{G_{2},RT}_{s_{2}},p^{G_{2},RT}_{s_{3}},p^{G_{2},RT}_{s_{4}},p^{spill}_{s_{1}},p^{spill}_{s_{2}},p^{spill}_{s_{3}},p^{spill}_{s_{4}},p^{shed}_{s_{4}},p^{shed}_{s_{3}},p^{shed}_{s_{4}},p^$$

$$\begin{split} \text{s.t. } 0 &\leq p^{G1,DA} \leq 100 \\ 0 &\leq p^{G2,DA} \leq 30 \\ 0 &\leq p^{W,DA} \leq 70 \\ p^{G1,DA} + p^{G2,DA} + p^{W,DA} = 120 \ : \lambda^{^{D}A} \\ 0 &\leq p^{G2,DA} + p_{s_1}^{^{G}2,RT} \leq 30 \\ 0 &\leq p_{s_1}^{spill} \leq 30 \\ 0 &\leq p_{s_1}^{shed} \leq 120 \\ p_{s_1}^{^{G}2,RT} + \left(30 - p^{W,DA} - p_{s_1}^{spill}\right) + p_{s_1}^{shed} = 0 \ : \lambda_{s_1}^{^{R}T} \end{split}$$

Stochastic Market Clearing – Benders Decomposition

Stochastic market clearing formulation:

DA dispatch (first stage decision variables)

$$\begin{split} & \text{Minimize} \\ & p^{G_1,DA},p^{G_2,DA},p^{W,DA} \\ & p^{G_2,RT},p^{G_2,RT}_{s_2},p^{G_2,RT}_{s_3},p^{G_2,RT}_{s_4},p^{spill}_{s_1},p^{spill}_{s_2},p^{spill}_{s_3},p^{spill}_{s_4},p^{shed}_{s_4},p^{shed}_{s_3},p^{shed}_{s_4},p^{$$

s.t.
$$0 \le p^{G1,DA} \le 100$$

$$0 \le p^{G2,DA} \le 30$$

$$0 \le p^{W,DA} \le 70$$

$$p^{G1,DA} + p^{G2,DA} + p^{W,DA} = 120 : \lambda^{DA}$$

$$0 \le p^{G2,DA} + p^{G2,RT} \le 30$$

 $0 \le p_{s_1}^{spill} \le 30$

DA dispatch constraints

$$\begin{split} 0 & \leq p_{s_1}^{shed} \leq 120 \\ & p_{s_1}^{^G2,RT} + \left(30 - p^{W,DA} - p_{s_1}^{spill}\right) + p_{s_1}^{shed} = 0 \ : \lambda_{s_1}^{^RT} \end{split}$$

Stochastic Market Clearing – Benders Decomposition

Stochastic market clearing formulation:

RT redispatch per scenario (second stage decision variables)

$$\begin{aligned} & \text{Minimize}_{p^{G_{1},DA},p^{G_{2},DA},p^{W,DA}} \\ & p_{s_{1}}^{G_{2},RT}, p_{s_{2}}^{G_{2},RT}, p_{s_{3}}^{G_{2},RT}, p_{s_{4}}^{G_{2},RT}, p_{s_{1}}^{spill}, p_{s_{2}}^{spill}, p_{s_{3}}^{spill}, p_{s_{4}}^{spill}, p_{s_{4}}^{shed}, p_{s_$$

s.t.
$$0 \le p^{G1,DA} \le 100$$

 $0 \le p^{G2,DA} \le 30$
 $0 \le p^{W,DA} \le 70$
 $p^{G1,DA} + p^{G2,DA} + p^{W,DA} = 120 : \lambda^{^{D}A}$
 $0 \le p^{G2,DA} + p_{s_1}^{G_2,RT} \le 30$

$$\begin{split} 0 &\leq p_{s_1}^{spill} \leq 30 \\ 0 &\leq p_{s_1}^{shed} \leq 120 \\ p_{s_1}^{G_{2,RT}} + \left(30 - p^{W,DA} - p_{s_1}^{spill}\right) + p_{s_1}^{shed} = 0 \ : \lambda_{s_1}^{^{R}T} \end{split}$$

RT dispatch constraints for scenario s₁

(identical set of constraints for each scenario s_1 to s_4)

Stochastic Market Clearing – Benders Decomposition 🗮

Stochastic market clearing formulation:

$$\begin{split} \text{Minimize}_{p^{G_{1},DA},p^{G_{2},DA},p^{W,DA},p^{G_{2},RT}_{s_{1}},p^{G_{2},RT}_{s_{2}},p^{G_{2},RT}_{s_{3}},p^{G_{2},RT}_{s_{4}},p^{spill}_{s_{1}},p^{spill}_{s_{2}},p^{spill}_{s_{3}},p^{spill}_{s_{4}},p^{shed}_{s_{4}},p^$$

s.t.
$$0 \le p^{G1,DA} \le 100$$

 $0 \le p^{G2,DA} \le 30$
 $0 \le p^{W,DA} \le 70$
 $p^{G1,DA} + p^{G2,DA} + p^{W,DA} = 120 : \lambda^{DA}$
 $0 \le p^{G2,DA} + p^{G_2,RT} \le 30$

Question:

Is this problem decomposable?

$$0 \le p_{s_1}^{spill} \le 30$$

$$0 \le p_{s_1}^{shed} \le 120$$

$$p_{s_1}^{G_{2,RT}} + (30 - p^{W,DA} - p_{s_1}^{spill}) + p_{s_1}^{shed} = 0 : \lambda_{s_1}^{R_T}$$

Stochastic Market Clearing – Benders Decomposition 🗮

Stochastic market clearing formulation:

$$\begin{split} \text{Minimize}_{p^{G_{1},DA},p^{G_{2},DA},p^{W,DA},p^{G_{2},RT}_{s_{1}},p^{G_{2},RT}_{s_{2}},p^{G_{2},RT}_{s_{3}},p^{G_{2},RT}_{s_{4}},p^{spill}_{s_{1}},p^{spill}_{s_{2}},p^{spill}_{s_{3}},p^{spill}_{s_{4}},p^{shed}_{s_{4}},p^$$

s.t.
$$0 \le p^{G1,DA} \le 100$$

 $0 \le p^{G2,DA} \le 30$
 $0 \le p^{W,DA} \le 70$
 $p^{G1,DA} + p^{G2,DA} + p^{W,DA} = 120 : \lambda^{^{D}A}$
 $0 \le p^{G2,DA} + p_{s_1}^{^{G2,RT}} \le 30$
 $0 \le p_{s_1}^{spill} \le 30$
 $0 \le p_{s_1}^{shed} \le 120$

- Complicating variables: DA dispatch variables
- 4 subproblems (one per scenario)

 $p_{s_1}^{G_{2,RT}} + (30 - p_{s_1}^{W,DA} - p_{s_1}^{spill}) + p_{s_1}^{shed} = 0 : \lambda_{s_1}^{RT}$

Stochastic Market Clearing – Benders Decomposition 🗮

Subproblems formulation (compact):

$$\begin{split} & \text{Minimize}_{p^{G_1,DA(\theta)},p^{G_2,DA(\theta)},p^{W,DA(\theta)},p^{G_2,RT(\theta)},p^{spill(\theta)}_{s_1},p^{shed(\theta)}_{s_1} \\ & 0.25 \big[20 p_{s_1}^{G_2,RT(\theta)} + 80 p_{s_1}^{shed(\theta)} \big] \\ & \text{s.t.} 0 \leq p^{G_2,DA(\theta)} + p_{s_1}^{G_2,RT(\theta)} \leq 30 \\ & 0 \leq p_{s_1}^{spill(\theta)} \leq 30 \\ & 0 \leq p_{s_1}^{shed(\theta)} \leq 120 \\ & p_{s_1}^{G_2,RT(\theta)} + \Big(30 - p^{W,DA(\theta)} - p_{s_1}^{spill(\theta)} \Big) + p_{s_1}^{shed(\theta)} = 0 \ : \lambda_{s_1}^{RT} \\ & p^{G_1,DA(\theta)} = p^{G_1,fixed(\theta)} \\ & p^{G_2,DA(\theta)} = p^{G_2,fixed(\theta)} \\ & p^{G_2,DA(\theta)} = p^{W,fixed(\theta)} \\ & \vdots \rho_{s_1}^{G_2(\theta)} \\ & p^{W,DA(\theta)} = p^{W,fixed(\theta)} \\ & \vdots \rho_{s_1}^{G_2(\theta)} \\ & \vdots$$

(Identical formulation for scenarios s_1 to s_4)

Stochastic Market Clearing – Benders Decomposition

Master problem formulation:

$$\begin{split} & \text{Minimize}_{p^{G_1,DA},p^{G_2,DA},p^{W,DA},\alpha^{(\theta)}} \\ & \left[10p^{G1,DA(\theta)} + 20p^{G_2,DA(\theta)} \right] + \alpha^{(\theta)} \end{split}$$

s.t.
$$0 \le p^{G1,DA(\theta)} \le 100$$

 $0 \le p^{G2,DA(\theta)} \le 30$
 $0 \le p^{W,DA(\theta)} \le 70$
 $p^{G1,DA(\theta)} + p^{G2,DA(\theta)} + p^{W,DA(\theta)} = 120 : \lambda^{DA}$

Benders cuts?

$$\alpha^{(\theta)} > \alpha^{down}$$

Stochastic Market Clearing – Benders Decomposition 😆

$$\begin{split} & \text{Minimize}_{p^{G_1,DA},p^{G_2,DA},p^{W,DA},\alpha^{(\theta)}} \\ & [10p^{G_1,DA(\theta)} + 20p^{G_2,DA(\theta)}] + \alpha^{(\theta)} \\ & \text{s.t. } 0 \leq p^{G_1,DA(\theta)} \leq 100 \\ & 0 \leq p^{G_2,DA(\theta)} \leq 30 \\ & 0 \leq p^{W,DA(\theta)} \leq 70 \\ & p^{G_1,DA(\theta)} + p^{G_2,DA(\theta)} + p^{W,DA(\theta)} = 120 \\ & : \lambda^{DA} \\ & \text{Benders cuts: one per iteration} \\ & \alpha^{(\theta)} \geq 0.25 \big[20p_{s_1}^{G_2,RT(k)} + 20p_{s_2}^{G_2,RT(k)} + 20p_{s_3}^{G_2,RT(k)} + 20p_{s_4}^{G_2,RT(k)} \\ & \quad + 80p_{s_1}^{shed(k)} + 80p_{s_2}^{shed(k)} + 80p_{s_3}^{shed(k)} + 80p_{s_3}^{shed(k)} \big] \\ & \quad + (\rho_{s_1}^{G_1(k)} + \rho_{s_2}^{G_1(k)} + \rho_{s_3}^{G_1(k)} + \rho_{s_4}^{G_1(k)})(p^{G_1,DA(\theta)} - p^{G_1,DA(k)}) \\ & \quad + (\rho_{s_1}^{G_2(k)} + \rho_{s_2}^{G_2(k)} + \rho_{s_3}^{G_2(k)} + \rho_{s_4}^{G_2(k)})(p^{G_2,DA(\theta)} - p^{G_2,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & \quad + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{$$

Stochastic Market Clearing – Benders Decomposition 🗮

$$\begin{split} & \text{Minimize}_{p^{G_{1},DA},p^{G_{2},DA},p^{W,DA},\alpha^{(\theta)}} \\ & \left[10p^{G_{1},DA(\theta)} + 20p^{G_{2},DA(\theta)} \right] + \alpha^{(\theta)} \\ & \text{s.t. } 0 \leq p^{G_{1},DA(\theta)} \leq 100 \\ & 0 \leq p^{G_{2},DA(\theta)} \leq 30 \\ & 0 \leq p^{W,DA(\theta)} \leq 70 \\ & \text{Objective function of subproblems} \\ & p^{G_{1},DA(\theta)} + p^{G_{2},DA(\theta)} + p^{W,DA(\theta)} = 120 \\ & : \lambda^{DA} \\ & \text{(previous iterations)} \\ & \alpha^{(\theta)} \geq & \left[0.25 \left[20p_{s_{1}}^{G_{2},RT(k)} + 20p_{s_{2}}^{G_{2},RT(k)} + 20p_{s_{3}}^{G_{2},RT(k)} + 20p_{s_{3}}^{G_{2},RT(k)} \\ & \quad + 80p_{s_{1}}^{shed(k)} + 80p_{s_{2}}^{shed(k)} + 80p_{s_{3}}^{shed(k)} + 80p_{s_{4}}^{shed(k)} \right] \\ & \quad + (\rho_{s_{1}}^{G_{1}(k)} + \rho_{s_{2}}^{G_{2}(k)} + \rho_{s_{3}}^{G_{1}(k)} + \rho_{s_{4}}^{G_{1}(k)})(p^{G_{1},DA(\theta)} - p^{G_{1},DA(k)}) \\ & \quad + (\rho_{s_{1}}^{G_{2}(k)} + \rho_{s_{2}}^{G_{2}(k)} + \rho_{s_{3}}^{G_{2}(k)} + \rho_{s_{4}}^{G_{2}(k)})(p^{G_{2},DA(\theta)} - p^{G_{2},DA(k)}) \\ & \quad + (\rho_{s_{1}}^{W(k)} + \rho_{s_{2}}^{W(k)} + \rho_{s_{3}}^{W(k)} + \rho_{s_{4}}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) : k = 1, \dots, \theta - 1 \\ & \alpha^{(\theta)} > \alpha^{down} \end{aligned}$$

Stochastic Market Clearing – Benders Decomposition 🗮

$$\begin{split} & \text{Minimize}_{p^{G_1,DA},p^{G_2,DA},p^{W,DA},\alpha^{(\theta)}} \\ & \left[10p^{G_1,DA(\theta)} + 20p^{G_2,DA(\theta)} \right] + \alpha^{(\theta)} \\ & \text{s.t. } 0 \leq p^{G_1,DA(\theta)} \leq 100 \\ & 0 \leq p^{G_2,DA(\theta)} \leq 30 \\ & 0 \leq p^{W,DA(\theta)} \leq 70 \\ & p^{G_1,DA(\theta)} + p^{G_2,DA(\theta)} + p^{W,DA(\theta)} = 120 \\ & (a^{(\theta)}) \geq 0.25 \left[20p^{G_2,RT(k)}_{s_1} + 20p^{G_2,RT(k)}_{s_2} + 20p^{G_2,RT(k)}_{s_3} + 20p^{G_2,RT(k)}_{s_3} + 80p^{Shed(k)}_{s_4} \right] \\ & + 80p^{Shed(k)}_{s_1} + 80p^{Shed(k)}_{s_2} + 80p^{Shed(k)}_{s_3} + 80p^{Shed(k)}_{s_4} \right] \\ & + (\rho^{G_1(k)}_{s_1} + \rho^{G_1(k)}_{s_2} + \rho^{G_2(k)}_{s_3} + \rho^{G_1(k)}_{s_4}) (p^{G_1,DA(\theta)} - p^{G_1,DA(k)}) \\ & + (\rho^{W(k)}_{s_1} + \rho^{G_2(k)}_{s_2} + \rho^{G_2(k)}_{s_3} + \rho^{G_2(k)}_{s_4}) (p^{G_2,DA(\theta)} - p^{G_2,DA(k)}) \\ & + (\rho^{W(k)}_{s_1} + \rho^{W(k)}_{s_2} + \rho^{W(k)}_{s_3} + \rho^{W(k)}_{s_4}) (p^{W,DA(\theta)} - p^{W,DA(k)}) : k = 1, ..., \theta - 1 \\ & \alpha^{(\theta)} \geq \alpha^{down} \end{split}$$

Stochastic Market Clearing – Benders Decomposition

$$\begin{split} & \text{Minimize}_{p^{G_{1},DA},p^{G_{2},DA},p^{W,DA},\alpha^{(\theta)}} \\ & \left[10p^{G1,DA(\theta)} + 20p^{G_{2},DA(\theta)} \right] + \alpha^{(\theta)} \\ & \text{s.t. } 0 \leq p^{G1,DA(\theta)} \leq 100 \\ & 0 \leq p^{G2,DA(\theta)} \leq 30 \\ & 0 \leq p^{W,DA(\theta)} \leq 70 \\ & p^{G1,DA(\theta)} + p^{G2,DA(\theta)} + p^{W,DA(\theta)} = 120 \\ & : \lambda^{DA} \\ & \alpha^{(\theta)} \geq 0.25 \left[20p^{G_{2},RT(k)}_{s_{1}} + 20p^{G_{2},RT(k)}_{s_{2}} + 20p^{G_{2},RT(k)}_{s_{3}} + 20p^{G_{2},RT(k)}_{s_{4}} \\ & + 80p^{shed(k)}_{s_{1}} + 80p^{shed(k)}_{s_{2}} + 80p^{shed(k)}_{s_{3}} + 80p^{shed(k)}_{s_{4}} \right] \\ & + (\rho^{G1(k)}_{s_{1}} + \rho^{G1(k)}_{s_{2}} + \rho^{G2(k)}_{s_{3}} + \rho^{G1(k)}_{s_{4}})(p^{G1,DA(\theta)} - p^{G1,DA(k)}) \\ & + (\rho^{G2(k)}_{s_{1}} + \rho^{G2(k)}_{s_{2}} + \rho^{G2(k)}_{s_{3}} + \rho^{G2(k)}_{s_{4}})(p^{G2,DA(\theta)} - p^{G2,DA(k)}) \\ & + (\rho^{W(k)}_{s_{1}} + \rho^{G2(k)}_{s_{2}} + \rho^{G2(k)}_{s_{3}} + \rho^{G2(k)}_{s_{4}})(p^{W,DA(\theta)} - p^{W,DA(k)}) : k = 1, ..., \theta - 1 \\ & \alpha^{(\theta)} \geq \alpha^{down} \end{split}$$

Stochastic Market Clearing – Benders Decomposition

$$\begin{split} & \text{Minimize}_{p^{G_1,DA},p^{G_2,DA},p^{W,DA},\alpha^{(\theta)}} \\ & \left[10p^{G1,DA(\theta)} + 20p^{G_2,DA(\theta)} \right] + \alpha^{(\theta)} \\ & \text{s.t. } 0 \leq p^{G1,DA(\theta)} \leq 100 \\ & 0 \leq p^{G2,DA(\theta)} \leq 30 \\ & 0 \leq p^{W,DA(\theta)} \leq 70 \\ & p^{G1,DA(\theta)} + p^{G2,DA(\theta)} + p^{W,DA(\theta)} = 120 \\ & p^{G1,DA(\theta)} + p^{G2,DA(\theta)} + p^{W,DA(\theta)} = 120 \\ & \alpha^{(\theta)} \geq 0.25 \left[20p_{s_1}^{G_2,RT(k)} + 20p_{s_2}^{G_2,RT(k)} + 20p_{s_3}^{G_2,RT(k)} + 20p_{s_4}^{G_2,RT(k)} \\ & + 80p_{s_1}^{shed(k)} + 80p_{s_2}^{shed(k)} + 80p_{s_3}^{shed(k)} + 80p_{s_3}^{shed(k)} \right] \\ & + (\rho_{s_1}^{G1(k)} + \rho_{s_2}^{G1(k)} + \rho_{s_3}^{G1(k)} + \rho_{s_4}^{G1(k)})(p^{G1,DA(\theta)} - p^{G1,DA(k)}) \\ & + (\rho_{s_1}^{G2(k)} + \rho_{s_2}^{G2(k)} + \rho_{s_3}^{G2(k)} + \rho_{s_4}^{G2(k)})(p^{G2,DA(\theta)} - p^{G2,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & + (\rho_{s_1}^{W(k)} + \rho_{s_2}^{W(k)} + \rho_{s_3}^{W(k)} + \rho_{s_4}^{W(k)})(p^{W,DA(\theta)} - p^{W,DA(k)}) \\ & +$$

Stochastic Market Clearing – Benders Decomposition

For this afternoon:

- Solve this stochastic market clearing using a Benders decomposition algorithm (compact and non-compact)
- Compare the results and computational time with the non-decomposed problem
- ➤ Think about the extension for a multi time step market clearing: How can it be decomposed? (# of complicating variables and subproblems)
- ➤ Think about the extension for a Unit Commitment problem (binaries in DA or RT dispatch): Can you apply Benders decomposition? Is convergence guaranteed?

Results:

	DA	RT (w1)	RT (w2)	RT (w3)	RT (w4)
G1 [MW]	90	-	-	-	-
G2 [MW]	30	-30	-30	-30	-10
WP [MW]	0	+30	+60 (30 spilled)	+70 (40 spilled)	+10
Load [MW]	120	-	-	-	-
Market price [\$/MWh]	10	20	0	0	20
System cost [\$]	1500	-600	-600	-600	-200

Total expected system cost = 1500 - 0.25*[600+600+600+200] = \$1000

Stochastic Market Clearing – Results

Results: Benders algorithm convergence

$$UB^{(k)} = 0.25 \left[20p_{s_1}^{G_2,RT(k)} + 20p_{s_2}^{G_2,RT(k)} + 20p_{s_3}^{G_2,RT(k)} + 20p_{s_4}^{G_2,RT(k)} + 80p_{s_1}^{shed(k)} + 80p_{s_2}^{shed(k)} + 80p_{s_3}^{shed(k)} + 80p_{s_4}^{shed(k)} \right]$$

$$LB^{(k)} = \alpha^{(k)}$$

$$\begin{split} \text{Minimize}_{p_{t}^{G_{1},DA},p_{t}^{G_{2},DA},p_{t}^{W,DA},p_{s_{1},t}^{G_{2},RT},p_{s_{2},t}^{G_{2},RT},p_{s_{3},t}^{G_{2},RT},p_{s_{4},t}^{G_{2},RT},p_{s_{1},t}^{spill},p_{spill}^{spill},p_{s_{2},t}^{spill},p_{s_{1},t}^{spill},p_{s_{3},t}^{shed},p_{s_{4$$

s.t.
$$0 \le p_t^{G1,DA} \le 100, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{G2,DA} \le 30, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{W,DA} \le 70, \ t = t_1, ..., t_{24}$$

$$p_t^{G1,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$0 \le p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT} \le 30, \quad -30 \le p_{s_1,t_1}^{G2,RT} \le 30$$

$$0 \le p_{s_1,t_1}^{spill} \le W_{s_1,t_1}^{real}$$

$$0 \le p_{s_1,t_1}^{shed} \le L_{t_1}$$

$$p_{s_1,t_1}^{G2,RT} + \left(W_{s_1,t_1}^{real} - p_{t_1}^{W,DA} - p_{s_1,t_1}^{spill}\right) + p_{s_1,t_1}^{shed} = 0 : \lambda_{s_1,t_1}^{RT}$$

DA dispatch (first stage decision variables), indexed by time step

$$\begin{split} & \text{Minimize} \underbrace{\left[p_t^{G_1,DA}, p_t^{G_2,DA}, p_t^{W,DA}, p_{s_1,t}^{G_2,RT}, p_{s_2,t}^{G_2,RT}, p_{s_3,t}^{G_2,RT}, p_{s_4,t}^{G_2,RT}, p_{s_1,t}^{spill}, p_{s_2,t}^{spill}, p_{s_2,t}^{spill}, p_{s_3,t}^{spill}, p_{s_4,t}^{spill}, p_{s_4,t}^{spill}, p_{s_4,t}^{spill}, p_{s_4,t}^{spill}, p_{s_4,t}^{shed}, p_{s_$$

s.t.
$$0 \leq p_t^{G1,DA} \leq 100, \ t = t_1, ..., t_{24}$$

$$0 \leq p_t^{G2,DA} \leq 30, \ t = t_1, ..., t_{24}$$

$$0 \leq p_t^{W,DA} \leq 70, \ t = t_1, ..., t_{24}$$

$$p_t^{G1,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$0 \leq p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT} \leq 30, \quad -30 \leq p_{s_1,t_1}^{G2,RT} \leq 30$$

DA dispatch constraints, for all time steps

$$0 \leq p_{s_{1},t_{1}}^{spill} \leq W_{s_{1},t_{1}}^{real}$$

$$0 \leq p_{s_{1},t_{1}}^{shed} \leq W_{s_{1},t_{1}}^{real}$$

$$0 \leq p_{s_{1},t_{1}}^{shed} \leq L_{t_{1}}$$

$$p_{s_{1},t_{1}}^{G_{2,RT}} + \left(W_{s_{1},t_{1}}^{real} - p_{t_{1}}^{W,DA} - p_{s_{1},t_{1}}^{spill}\right) + p_{s_{1},t_{1}}^{shed} = 0 : \lambda_{s_{1},t_{1}}^{RT}$$

RT redispatch per scenario and time step (second stage decision variables)

$$\begin{aligned} & \text{Minimize}_{p_{t}^{G_{1},DA},p_{t}^{G_{2},DA},p_{t}^{W,DA}} \left[p_{s_{1},t}^{G_{2},RT}, p_{s_{2},t}^{G_{2},RT}, p_{s_{3},t}^{G_{2},RT}, p_{s_{4},t}^{Spill}, p_{s_{1},t}^{spill}, p_{s_{2},t}^{spill}, p_{s_{4},t}^{spill}, p_{s_{4},t}^{s$$

Expected RT redispatch cost

s.t.
$$0 \le p_t^{G1,DA} \le 100, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{G2,DA} \le 30, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{W,DA} \le 70, \ t = t_1, ..., t_{24}$$

$$p_t^{G1,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$0 \le p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT} \le 30, \quad -30 \le p_{s_1,t_1}^{G2,RT} \le 30$$

$$0 \le p_{s_1,t_1}^{spill} \le W_{s_1,t_1}^{real}$$

$$0 \le p_{s_1,t_1}^{shed} \le L_{t_1}$$

$$p_{s_1,t_1}^{G2,RT} + \left(W_{s_1,t_1}^{real} - p_{t_1}^{W,DA} - p_{s_1,t_1}^{spill}\right) + p_{s_1,t_1}^{shed} = 0 : \lambda_{s_1,t_1}^{RT}$$

RT dispatch constraints for scenario s₁ and time step t₁

(identical set of constraints for each scenario and time step)

RT redispatch per scenario and time step (second stage decision variables)

$$\begin{aligned} & \text{Minimize}_{p_{t}^{G_{1},DA},p_{t}^{G_{2},DA},p_{t}^{W,DA}}, p_{t}^{W,DA}, p_{t}^{G_{2},RT}, p_{s_{2},t}^{G_{2},RT}, p_{s_{3},t}^{G_{2},RT}, p_{s_{4},t}^{G_{2},RT}, p_{s_{1},t}^{spill}, p_{spill}^{spill}, p_{spill}^{spill}, p_{s_{4},t}^{spill}, p_{s_{1},t}^{shed}, p_{s_{3},t}^{shed}, p_{s_{4},t}^{shed}, p_{s_{4},t}^{s$$

Expected RT redispatch cost

s.t.
$$0 \le p_t^{G1,DA} \le 100, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{G2,DA} \le 30, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{W,DA} \le 70, \ t = t_1, ..., t_{24}$$

$$p_t^{G1,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$0 \le p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT} \le 30, \quad -30 \le p_{s_1,t_1}^{G2,RT} \le 30$$

$$0 \le p_{s_1,t_1}^{spill} \le W_{s_1,t_1}^{real}$$

$$0 \le p_{s_1,t_1}^{shed} \le L_{t_1}$$

$$p_{s_1,t_1}^{G2,RT} + \left(W_{s_1,t_1}^{real} - p_{t_1}^{W,DA} - p_{s_1,t_1}^{spill}\right) + p_{s_1,t_1}^{shed} = 0 : \lambda_{s_1,t_1}^{RT}$$

RT dispatch constraints for scenario s₁ and time step t₁

(identical set of constraints for each scenario and time step)

Question: How can this problem be decomposed?

$$\begin{split} \text{Minimize}_{p_{t}^{G_{1},DA},p_{t}^{G_{2},DA},p_{t}^{W,DA},p_{s_{1},t}^{G_{2},RT},p_{s_{2},t}^{G_{2},RT},p_{s_{3},t}^{G_{2},RT},p_{s_{4},t}^{Spill},p_{spill}^{spill},p_{s_{2},t}^{spill},p_{s_{1},t}^{spill},p_{s_{3},t}^{shed},p_{s_{3},t}^{shed},p_{s_{4},t}$$

s.t.
$$0 \leq p_t^{G1,DA} \leq 100, \ t = t_1, ..., t_{24}$$

$$0 \leq p_t^{G2,DA} \leq 30, \ t = t_1, ..., t_{24}$$

$$0 \leq p_t^{W,DA} \leq 70, \ t = t_1, ..., t_{24}$$

$$p_t^{G1,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$0 \leq p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT} \leq 30, \quad -30 \leq p_{s_1,t_1}^{G2,RT} \leq 30$$

$$0 \leq p_{s_1,t_1}^{spill} \leq W_{s_1,t_1}^{real}$$

$$0 \leq p_{s_1,t_1}^{shed} \leq L_{t_1}$$

$$p_{s_1,t_1}^{G2,RT} + \left(W_{s_1,t_1}^{real} - p_{t_1}^{W,DA} - p_{s_1,t_1}^{spill}\right) + p_{s_1,t_1}^{shed} = 0 : \lambda_{s_1,t_1}^{RT}$$

Question: How can this problem be decomposed?

$$\begin{split} \text{Minimize}_{p_{t}^{G_{1},DA},p_{t}^{G_{2},DA},p_{t}^{W,DA},p_{s_{1},t}^{G_{2},RT},p_{s_{2},t}^{G_{2},RT},p_{s_{3},t}^{G_{2},RT},p_{s_{4},t}^{Spill},p_{spill}^{spill},p_{s_{2},t}^{spill},p_{s_{1},t}^{spill},p_{s_{3},t}^{shed},p_{s_{3},t}^{shed},p_{s_{4},t}$$

s.t.
$$0 \le p_t^{G1,DA} \le 100, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{G2,DA} \le 30, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{W,DA} \le 70, \ t = t_1, ..., t_{24}$$

$$p_t^{G1,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$0 \le p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT} \le 30, \quad -30 \le p_{s_1,t_1}^{G2,RT} \le 30$$

$$0 \le p_{s_1,t_1}^{spill} \le W_{s_1,t_1}^{real}$$

$$0 \le p_{s_1,t_1}^{shed} \le L_{t_1}$$

$$p_{s_1,t_1}^{G2,RT} + \left(W_{s_1,t_1}^{real} - p_{t_1}^{W,DA} - p_{s_1,t_1}^{spill}\right) + p_{s_1,t_1}^{shed} = 0 : \lambda_{s_1,t_1}^{RT}$$

- Complicating variables: day-ahead dispatch variables for all time steps
- One subproblem per time step and scenario

$$\begin{split} \text{Minimize}_{p_{t}^{G_{1},DA},p_{t}^{G_{2},DA},p_{t}^{W,DA},p_{s_{1},t}^{G_{2},RT},p_{s_{2},t}^{G_{2},RT},p_{s_{3},t}^{G_{2},RT},p_{s_{4},t}^{Spill},p_{s_{1},t}^{spill},p_{s_{2},t}^{spill},p_{s_{1},t}^{spill},p_{s_{3},t}^{spill},p_{s_{4},t}^{shed},p_{s_{4},t}^{shed},p_{s_{3},t}^{shed},p_{s_{4}$$

s.t.
$$0 \leq p_t^{G1,DA} \leq 100, \ t = t_1, ..., t_{24}$$

$$0 \leq p_t^{G2,DA} \leq 30, \ t = t_1, ..., t_{24}$$

$$0 \leq p_t^{W,DA} \leq 70, \ t = t_1, ..., t_{24}$$

$$p_t^{G1,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$0 \leq p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT} \leq 30, \quad -30 \leq p_{s_1,t_1}^{G2,RT} \leq 30$$

$$0 \leq p_{s_1,t_1}^{spill} \leq W_{s_1,t_1}^{real}$$

$$0 \leq p_{s_1,t_1}^{shed} \leq L_{t_1}$$

$$p_{s_1,t_1}^{G2,RT} + \left(W_{s_1,t_1}^{real} - p_{t_1}^{W,DA} - p_{s_1,t_1}^{spill}\right) + p_{s_1,t_1}^{shed} = 0 : \lambda_{s_1,t_1}^{RT}$$

Question: What happens if we add ramping constraints in the DA or RT dispatch?

$$\begin{split} \text{Minimize}_{p_{t}^{G_{1},DA},p_{t}^{G_{2},DA},p_{t}^{W,DA},p_{s_{1},t}^{G_{2},RT},p_{s_{2},t}^{G_{2},RT},p_{s_{3},t}^{G_{2},RT},p_{s_{4},t}^{Spill},p_{spill}^{spill},p_{s_{2},t}^{spill},p_{s_{1},t}^{spill},p_{s_{3},t}^{shed},p_{s_{3},t}^{shed},p_{s_{4},t}$$

s.t.
$$0 \le p_t^{G1,DA} \le 100, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{G2,DA} \le 30, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{W,DA} \le 70, \ t = t_1, ..., t_{24}$$

$$p_t^{G1,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$0 \le p_{t_1}^{G2,DA} + p_{t_1}^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$0 \le p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT} \le 30, \quad -30 \le p_{s_1,t_1}^{G2,RT} \le 30$$

$$0 \le p_{s_1,t_1}^{spill} \le W_{s_1,t_1}^{real}$$

$$0 \le p_{s_1,t_1}^{shed} \le L_{t_1}$$

$$p_{s_1,t_1}^{G2,RT} + \left(W_{s_1,t_1}^{real} - p_{t_1}^{W,DA} - p_{s_1,t_1}^{spill}\right) + p_{s_1,t_1}^{shed} = 0 : \lambda_{s_1,t_1}^{RT}$$

$$-R^{G1,D} \le p_{t+1}^{G1,DA} - p_t^{G1,DA} \le R^{G1,U}, \ t = t_1, ..., t_{23}$$

$$-R^{G2,D} \le p_{t+1}^{G2,DA} - p_t^{G2,DA} \le R^{G2,U}, \ t = t_1, ..., t_{23}$$

DA ramping constraints (inter-temporal)

$$\begin{split} \text{Minimize}_{p_{t}^{G_{1},DA},p_{t}^{G_{2},DA},p_{t}^{W,DA},p_{s_{1},t}^{G_{2},RT},p_{s_{2},t}^{G_{2},RT},p_{s_{3},t}^{G_{2},RT},p_{s_{4},t}^{Spill},p_{spill}^{spill},p_{s_{2},t}^{spill},p_{s_{1},t}^{spill},p_{s_{3},t}^{shed},p_{s_{3},t}^{shed},p_{s_{4},t}$$

s.t.
$$0 \le p_t^{G1,DA} \le 100, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{G2,DA} \le 30, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{W,DA} \le 70, \ t = t_1, ..., t_{24}$$

$$p_t^{G1,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$0 \le p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,DA} \le 30, \quad -30 \le p_{s_1,t_1}^{G2,RT} \le 30$$

$$0 \le p_{s_1,t_1}^{spill} \le W_{s_1,t_1}^{real}$$

$$0 \le p_{s_1,t_1}^{shed} \le L_{t_1}$$

$$p_{s_1,t_1}^{G2,RT} + \left(W_{s_1,t_1}^{real} - p_{t_1}^{W,DA} - p_{s_1,t_1}^{spill}\right) + p_{s_1,t_1}^{shed} = 0 : \lambda_{s_1,t_1}^{RT}$$

$$-R^{G1,D} \le p_{t+1}^{G1,DA} - p_t^{G1,DA} \le R^{G1,U}, \ t = t_1, ..., t_{23}$$

$$-R^{G2,D} \le p_{t+1}^{G2,DA} - p_t^{G2,DA} \le R^{G2,U}, \ t = t_1, ..., t_{23}$$

DA ramping constraints (inter-temporal)

The problem is still decomposable per scenario and per time step

$$\begin{split} \text{Minimize}_{p_{t}^{G_{1},DA},p_{t}^{G_{2},DA},p_{t}^{W,DA},p_{s_{1},t}^{G_{2},RT},p_{s_{2},t}^{G_{2},RT},p_{s_{3},t}^{G_{2},RT},p_{s_{4},t}^{Spill},p_{s_{1},t}^{spill},p_{s_{2},t}^{spill},p_{s_{1},t}^{spill},p_{s_{3},t}^{spill},p_{s_{4},t}^{shed},p_{s_{4},t}^{shed},p_{s_{3},t}^{shed},p_{s_{4}$$

s.t.
$$0 \le p_t^{G1,DA} \le 100, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{G2,DA} \le 30, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{W,DA} \le 70, \ t = t_1, ..., t_{24}$$

$$0 \le p_t^{W,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1, ..., t_{24}$$

$$DA \text{ ramping constraints}$$
 (inter-temporal)

DA ramping constraints (inter-temporal)

$$0 \leq p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT} \leq 30, \quad -30 \leq p_{s_1,t_1}^{G2,RT} \leq 30 \qquad -30 \leq p_{s_1,t$$

$$0 \leq p_{s_1,t_1}^{shed} \leq L_{t_1}$$

$$p_{s_1,t_1}^{G_{2,RT}} + \left(W_{s_1,t_1}^{real} - p_{t_1}^{W,DA} - p_{s_1,t_1}^{spill}\right) + p_{s_1,t_1}^{shed} = 0 : \lambda_{s_1,t_1}^{RT}$$

RT ramping constraints (inter-temporal)

Extension: Multi Time Step Market

$$\begin{split} \text{Minimize}_{p_{t}^{G_{1},DA},p_{t}^{G_{2},DA},p_{t}^{W,DA},p_{s_{1},t}^{G_{2},RT},p_{s_{2},t}^{G_{2},RT},p_{s_{3},t}^{G_{2},RT},p_{s_{4},t}^{Spill},p_{spill}^{spill},p_{s_{2},t}^{spill},p_{s_{1},t}^{spill},p_{s_{3},t}^{shed},p_{s_{3},t}^{shed},p_{s_{4},t}$$

s.t.
$$0 \le p_t^{G1,DA} \le 100, \ t = t_1,...,t_{24}$$

$$0 \le p_t^{G2,DA} \le 30, \ t = t_1,...,t_{24}$$

$$0 \le p_t^{W,DA} \le 70, \ t = t_1,...,t_{24}$$

$$0 \le p_t^{W,DA} + p_t^{G2,DA} + p_t^{W,DA} = L_t : \lambda_t^{DA}, \ t = t_1,...,t_{24}$$

$$DA \text{ ramping constraints}$$
 (inter-temporal)

$$0 \leq p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT} \leq 30, \quad -30 \leq p_{s_1,t_1}^{G2,RT} \leq 30 \qquad -80 \leq p_{s_1,t_1}^{G2,RT} \leq 30 \qquad -80 \leq p_{s_1,t_1}^{G2,DA} \leq (p_{t_1+1}^{G2,DA} + p_{s_1,t_1+1}^{G2,RT}) - (p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT}) \leq (p_{t_1+1}^{G2,DA} + p_{s_1,t_1+1}^{G2,DA}) - (p_{t_1}^{G2,DA} + p_{s_1,t_1}^{G2,RT}) \leq R^{G2,U}$$

$$0 \leq p_{s_1,t_1}^{shed} \leq L_{t_1}$$

$$p_{s_1,t_1}^{G_{2,RT}} + \left(W_{s_1,t_1}^{real} - p_{t_1}^{W,DA} - p_{s_1,t_1}^{spill}\right) + p_{s_1,t_1}^{shed} = 0 : \lambda_{s_1,t_1}^{RT}$$

RT ramping constraints (inter-temporal)

> The problem is only decomposable per scenario

 How can you formulate the Benders algorithm for a unit commitment problem (binary variables in the day-ahead dispatch)?

- How can you formulate the Benders algorithm for a unit commitment problem (binary variables in the day-ahead dispatch)?
 - Benders can still be applied if there are NO binaries in the subproblems (generate cuts by deriving sensitivities)
 - Careful: In the compact form the master problem variables are still variables of the subproblems... BUT there are not binaries in the subproblems
 - However, convergence is not guaranteed: non-convexity with respect to the complicating variables

- How can you formulate the Benders algorithm for a unit commitment problem (binary variables in the day-ahead dispatch)?
 - Benders can still be applied if there are NO binaries in the subproblems (generate cuts by deriving sensitivities)
 - Careful: In the compact form the master problem variables are still variables of the subproblems... BUT there are not binaries in the subproblems
 - ➤ However, convergence is not guaranteed: non-convexity with respect to the complicating variables
- What about binary variables in the real time dispatch?

- How can you formulate the Benders algorithm for a unit commitment problem (binary variables in the day-ahead dispatch)?
 - Benders can still be applied if there are no binaries in the subproblems (generate cuts by deriving sensitivities)
 - Careful: In the compact form the master problem variabels are still variables of the subproblems... BUT they are not binary in the subproblems
 - ➤ However, convergence is not guaranteed: non-convexity with respect to the complicating variables
- What about binary variables in the real time dispatch?
 - Can not generate Benders cuts directly (sensitivities)
 - Alternatives: binaries as complicating variables (large number?), primal-cut Benders

Upper-level: strategic producer

Maximize Expected profit $(x,y_{s1},...,y_{sN},\lambda_{s1},...,\lambda_{sN})$ **Subject to:**

market clearing (scenario 1)

Maximize social welfare (x,y_{s1})

Subject to:

- Balance equations at nodes $(y_{s1}): \lambda_{s1}$
- Transmission constraints (y_{s1}) : σ_{s1}
- Production bounds (x,y_{s1}) : μ_{s1}

market clearing (scenario N)

Maximize social welfare (x,y_{sN})

Subject to:

- Balance equations at nodes $(y_{sN}): \lambda_{sN}$
- Transmission constraints (y_{sN}) : σ_{sN}
- Production bounds (x,y_{sN}) : μ_{sN}

Upper-level: strategic producer

Maximize Expected profit $(x,y_{s1},...,y_{sN},\lambda_{s1},...,\lambda_{sN})$

Subject to:

market clearing (scenario 1)

KKT conditions

$$(x, y_{s1}, \lambda_{s1}, \sigma_{s1}, \mu_{s1})$$

market clearing (scenario N)

KKT conditions

$$(x, y_{sN}, \lambda_{sN}, \lambda_{sN}, \sigma_{sN}, \mu_{sN})$$

Upper-level: strategic producer

Maximize Expected profit $(x,y_{s1},...,y_{sN},\lambda_{s1},...,\lambda_{sN})$

Subject to:

market clearing (scenario 1)

Fortuny-Amat linearization

$$(x, y_{s1}, \lambda_{s1}, \sigma_{s1}, \mu_{s1}, u_{s1})$$

market clearing (scenario N)

Fortuny-Amat linearization

$$(x, y_{sN}, \lambda_{sN}, \sigma_{sN}, \mu_{sN}, u_{sN})$$

Upper-level: strategic producer

Maximize Expected profit $(\mathbf{x}, \mathbf{y}_{s1}, ..., \mathbf{y}_{sN}, \lambda_{s1}, ..., \lambda_{sN})$

Subject to:

market clearing (scenario 1)

Fortuny-Amat linearization

$$(\mathbf{x}, \mathbf{y}_{s1}, \lambda_{s1}, \sigma_{s1}, \mu_{s1}, \mathbf{u}_{s1})$$

market clearing (scenario N)

Fortuny-Amat linearization

$$(\mathbf{x}, \mathbf{y}_{sN}, \lambda_{sN}, \sigma_{sN}, \mu_{sN}, u_{sN})$$

x (upper-level & here-and-now decision variable) is a complicating variable

DTU

Stochastic Bilevel Optimization Problem: Strategic Offering

Master problem

Maximize profit (x) + a

Subject to: Benders cuts

Subproblem (scenario 1)

Maximize profit (y_{s1}, λ_{s1})

Subject to:

market clearing (scenario 1)

Fortuny-Amat linearization

$$(x, y_{s1}, \lambda_{s1}, \sigma_{s1}, \mu_{s1}, u_{s1})$$

Subproblem (scenario N)

Maximize profit (y_{sN}, λ_{sN})

Subject to:

market clearing (scenario N)

Fortuny-Amat linearization

$$(\mathbf{x}, \mathbf{y}_{sN}, \mathbf{\lambda}_{sN}, \mathbf{\sigma}_{sN}, \mathbf{\mu}_{sN}, \mathbf{u}_{sN})$$

Binary variables (Fortuny-Amat)! Alternatives?

DTU

Stochastic Bilevel Optimization Problem: Strategic Offering

Master problem

Maximize profit (x) + a

Subject to: Benders cuts

Subproblem (scenario 1)

Maximize profit (y_{s1}, λ_{s1})

Subject to:

market clearing (scenario 1)

Fortuny-Amat linearization

$$(\mathbf{x}, \mathbf{y}_{s1}, \mathbf{\lambda}_{s1}, \mathbf{\sigma}_{s1}, \mathbf{\mu}_{s1}, \mathbf{u}_{s1})$$

Subproblem (scenario N)

Maximize profit (y_{sN}, λ_{sN})

Subject to:

market clearing (scenario N)

Fortuny-Amat linearization

$$(\mathbf{x}, \mathbf{y}_{sN}, \mathbf{\lambda}_{sN}, \mathbf{\sigma}_{sN}, \mathbf{\mu}_{sN}, \mathbf{u}_{sN})$$

Thank you for your attention!