Parasites: Can Little Things Eat Big Things?

Nick

August 5, 2016

Motivation

Pood Web Models

- Identifying Parasites
- Mumerical Experiments

Parasitism in Food Webs

Underrepresentation

Parasitism in Food Webs

- Underrepresentation
- Novel, complex, and specific

Parasitism in Food Webs

- Underrepresentation
- Novel, complex, and specific
- Place in Food Webs

Past Work

Effect of Adding Parasites ¹

¹J. A. Dunne, K. D. Lafferty, A. P. Dobson, R. F. Hechinger, A. M. Kuris, N. D. Martinez, J. P. MICLAUGHLIN, K. N. MOURITSEN, R. POULIN, K. REISE, D. B. STOUFFER, D. W. THIELTGES, R. J. WILLIAMS, AND C. D. ZANDER, Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity, PLOS Biology, 11 (2013). pp. 1-17

²U. Brose, R. J. Williams, and N. D. Martinez, *Allometric scaling enhances stability in complex food webs*, Ecology Letters, 9 (2006), pp. 1228-1236

³C. P. Warren, M. Pascual, K. D. Lafferty, and A. M. Kuris, The inverse niche model for food webs with parasites. Theoretical Ecology, (2010)

Past Work

- Effect of Adding Parasites ¹
- Importance of Body Size Ratios ²

¹J. A. Dunne, K. D. Lafferty, A. P. Dobson, R. F. Hechinger, A. M. Kuris, N. D. Martinez, J. P. MICLAUGHLIN, K. N. MOURITSEN, R. POULIN, K. REISE, D. B. STOUFFER, D. W. THIELTGES, R. J. WILLIAMS, AND C. D. ZANDER, Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity, PLOS Biology, 11 (2013). pp. 1-17

²U. Brose, R. J. Williams, and N. D. Martinez, *Allometric scaling enhances stability in complex food webs*, Ecology Letters, 9 (2006), pp. 1228-1236

³C. P. Warren, M. Pascual, K. D. Lafferty, and A. M. Kuris, *The inverse niche model for food webs with* parasites. Theoretical Ecology, (2010)

Past Work

- Effect of Adding Parasites ¹
- Importance of Body Size Ratios ²
- An Inverse Niche Model ³

¹J. A. Dunne, K. D. Lafferty, A. P. Dobson, R. F. Hechinger, A. M. Kuris, N. D. Martinez, J. P. MICLAUGHLIN, K. N. MOURITSEN, R. POULIN, K. REISE, D. B. STOUFFER, D. W. THIELTGES, R. J. WILLIAMS, AND C. D. ZANDER, Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity, PLOS Biology, 11 (2013). pp. 1-17

²U. Brose, R. J. Williams, and N. D. Martinez, *Allometric scaling enhances stability in complex food webs*, Ecology Letters, 9 (2006), pp. 1228-1236

³C. P. Warren, M. Pascual, K. D. Lafferty, and A. M. Kuris, *The inverse niche model for food webs with* parasites. Theoretical Ecology, (2010)

Research Goals

• Niche Model vs. Inverse Niche Model(s)

Research Goals

- Niche Model vs. Inverse Niche Model(s)
- Dynamical Simulations

Research Goals

- Niche Model vs. Inverse Niche Model(s)
- Dynamical Simulations
- Concommitant (Incidental) Predation

- Bahia San Quintin, Estero de Punta Banda (bahia,punta)
 - Pics
 - View
 - Bird
- Carpinteria Salt Marsh (carp)
- Otago Harbor (otago)
- Sylt Tidal Basin (sylt)
- Flensburg Fjord (flens)

- Bahia San Quintin, Estero de Punta Banda (bahia,punta)
- Carpinteria Salt Marsh (carp)
 - Aerial
 - Close
 - Flowers
- Otago Harbor (otago)
- Sylt Tidal Basin (sylt)
- Flensburg Fjord (flens)

- Bahia San Quintin, Estero de Punta Banda (bahia,punta)
- Carpinteria Salt Marsh (carp)
- Otago Harbor (otago)
 - Map1
 - Map2
 - Far
- Sylt Tidal Basin (sylt)
- Flensburg Fjord (flens)

- Bahia San Quintin, Estero de Punta Banda (bahia,punta)
- Carpinteria Salt Marsh (carp)
- Otago Harbor (otago)
- Sylt Tidal Basin (sylt)
 - Map1
 - Map2
 - Road
- Flensburg Fjord (flens)

- Bahia San Quintin, Estero de Punta Banda (bahia,punta)
- Carpinteria Salt Marsh (carp)
- Otago Harbor (otago)
- Sylt Tidal Basin (sylt)
- Flensburg Fjord (flens)
 - Map1
 - Map2
 - Road

Parasitic Webs	S	С	S_{free}	S_{free}	S_{basal}
bahia	141	.092	.35	.65	.06
carp	154	.085	.36	.64	.06
punta	185	.084	.37	.63	.05
flens	109	.073	.38	.62	.06
otago	117	.077	.15	.85	.03
sylt	147	.079	.20	.80	.04
Free Webs	S	С	S_{par}	S_{free}	S _{basal}
Free Webs bahia	<i>S</i> 80	<i>C</i> .085	S _{par}	S_{free} 1	S _{basal} .11
bahia	80	.085	0	1	.11
bahia carp	80 91	.085	0 0	1 1	.11 .10
bahia carp punta	80 91 106	.085 .096 .099	0 0 0	1 1 1	.11 .10 .08

• $n_p \sim U(a, b)$

- $n_p \sim U(a, b)$
- $y_p \sim \text{Beta}(1, \frac{\beta_p}{p})$

- $n_p \sim U(a, b)$
- $y_p \sim \text{Beta}(1, \frac{\beta_p}{p})$
- $r_p \sim (1 n_p) \cdot y_p$

9 / 23

- $n_p \sim U(a, b)$
- $y_p \sim \text{Beta}(1, \beta_p)$
- $r_p \sim (1 n_p) \cdot y_p$
- $c_p \sim U(\max(n_p, r_p/2), 1 r_p/2)$

Types of links; sub-web connectances

- Types of links; sub-web connectances
- Diet intersections with parasitic niches

- Types of links; sub-web connectances
- Diet intersections with parasitic niches
- Scale dependent errors vs. Parasitic errors

- Types of links; sub-web connectances
- Diet intersections with parasitic niches
- Scale dependent errors vs. Parasitic errors
- Low(?) parasitic resolution

Proposed Models

All at once models:

	Description
Model 0	Plain Niche Model
Model 1	Random parasites; correct bias; eat below
Model 2	Random parasites; correct bias; eat above

Adding to niche web models:

	$\min(n_p)$	$\max(n_p)$	Invert Parasites	Match C_{fp}
Model 3	0	1	no	no
Model 4	0	1	no	yes
Model 5	0	1	yes	no
Model 6	0	1	yes	yes
Model 7	0.7	0.9	no	yes
Model 8	0.1	0.3	yes	yes
Model 9	0.1	0.3	yes	no
Model 10	0.7	0.9	no	no

Generalities of Free-Living Consumers and Parasites

Web	$G_f,(n_f)$	$G_p,(n_p)$	P-value
bahia	0.8984,(83)	1.355,(49)	.0091
carp	1.012,(88)	1.161,(56)	.3835
punta	1.173,(108)	0.8570,(68)	.0310
flens	1.190,(62)	0.8595,(41)	.0714
otago	1.040,(96)	1.012,(17)	.8857
sylt	.9019,(112)	1.586,(29)	.0036

Independence

- Independence
- Empirical

- Independence
- Empirical
- Matching Dunne et al 2013.

Empirical Data Revisited; Local

P-values for testing $\mu_{free} - \mu_{para} \neq 0$ for each property:

web	clustCoef	gen	vul	meanVulPrey	meanImpPrey	
bahia	-0.11	0.0081	-1.6e-10	0.46	-0.85	
carp	-0.47	1.4e-05	-2.2e-08	0.0063	-0.1	
punta	-0.59	1.5e-10	-7.2e-14	0.00047	-0.015	
flens	-3.1e-09	0.00016	-0.2	1.7e-05	-0.086	
otago	-0.56	0.078	-0.00016	5e-14	-0.0028	
sylt	0.065	0.72	-6.2e-12	2e-10	-0.013	
web	meanGenPred	meanImpPred	minSPToBasal	numConnBasal	SWTL	inLoop
bahia	-2.2e-08	4.3e-07	-5.9e-16	-2e-07	-1.9e-09	-5.6e-08
carp	-3.8e-06	6.5e-07	-4.3e-15	-0.0042	-2e-05	-0.0024
punta	-1e-13	3.4e-11	-7.1e-23	-3.3e-07	-2.3e-10	-2.3e-07
flens	-8.2e-10	2.3e-07	-5.1e-15	-2.1e-07	-9.2e-15	-2.1e-10
	-0.45	0.4	-1.1e-12	-0.13	-1.5e-06	-0.018
otago	-0.45	0.4	-1.16-12	-0.13	-1.5e-00	-0.010

Binary Splits

- Binary Splits
- 4 classes

- Binary Splits
- 4 classes
- Species Overlap?

- Binary Splits
- 4 classes
- Species Overlap?
- How to use?

Generate Niche Model

- Generate Niche Model
- Parasites from Classification Tree or Randomly

- Generate Niche Model
- Parasites from Classification Tree or Randomly
- To do:

- Generate Niche Model
- Parasites from Classification Tree or Randomly
- To do:
 - Properties of chosen classes

- Generate Niche Model
- Parasites from Classification Tree or Randomly
- To do:
 - Properties of chosen classes
 - Training data?

- Generate Niche Model
- Parasites from Classification Tree or Randomly
- To do:
 - Properties of chosen classes
 - Training data?
 - Classification on ONM/INM

- Generate Niche Model
- Parasites from Classification Tree or Randomly
- To do:
 - Properties of chosen classes
 - Training data?
 - Classification on ONM/INM
 - Consumer-Resource body size ratios

Constant body mass ratios already studied

- Constant body mass ratios already studied
- What is maximum fraction of parasites allowed?

- Constant body mass ratios already studied
- What is maximum fraction of parasites allowed?
- Where do empirical webs fit in the pattern?

- Constant body mass ratios already studied
- What is maximum fraction of parasites allowed?
- Where do empirical webs fit in the pattern?
- How do concomittant links affect that pattern?

Dynamical Model

$$\frac{dB_{i}}{dt} = r_{i} \left(1 - \frac{\sum_{j \in \text{basal}} B_{j}}{K} \right) B_{i}
-x_{i} B_{i}
+ \phi_{i} x_{i} B_{i} \sum_{j \in \text{diet}(i)} F_{ji} y
-\phi_{i} \sum_{j \in \text{pred}(i)} x_{j} B_{j} F_{ij} y / e_{ij}
-(1 - \phi_{i}) \{ \text{Concomittant Losses} \}$$
(1)

and

$$F_{ij} = \frac{\omega_{ij}B_i^h}{B_0^h + \sum_{k \in \text{diet}(i)} \omega_{kj}B_k^h} \tag{2}$$

Body Mass Ratios⁴

Туре	Median
Ecto. Inv.	72.1 (318)
Ecto. Vert.	887
Endo.	2160
Para.	1.77×10^{-6}

⁴U. Brose, R. J. Williams, and N. D. Martinez, Allometric scaling enhances stability in complex food webs, Ecology Letters, 9 (2006), pp. 1228–1236

Body Mass Ratios⁴

Туре	Median
Ecto. Inv.	14
Ecto. Vert.	398

⁴U. Brose, R. J. Williams, and N. D. Martinez, Allometric scaling enhances stability in complex food webs, Ecology Letters, 9 (2006), pp. 1228–1236

Body Mass Ratios⁴

- Parasites are small.
- To parameterize: $M = Z^{TL}$.

⁴U. Brose, R. J. Williams, and N. D. Martinez, Allometric scaling enhances stability in complex food webs, Ecology Letters, 9 (2006), pp. 1228–1236

Body Size Ratios & Body Sizes

Body Size Ratios & Body Sizes

Dynamical Model: Next Steps

Allometric scaling for parasites

Dynamical Model: Next Steps

- Allometric scaling for parasites
- Concomittant Losses

