Algorithms Chapter 9 Medians and Order Statistics

Assistant Professor: Ching-Chi Lin

林清池 助理教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- Minimum and maximum
- Selection in expected linear time
- Selection in worst-case linear time

Order statistics

- ▶ The *i*th **order statistic** of a set of *n* elements is the *i*th smallest element.
- ▶ The minimum is the first order statistic (i = 1).
- ▶ The **maximum** is the *n*th order statistic (i = n).
- ▶ A median is the "halfway point" of the set.
- When n is odd, the median is unique, at i = (n + 1)/2.
- ▶ When *n* is even, there are two medians:
 - ▶ The **lower median**: $i = \lfloor (n+1)/2 \rfloor$, and
 - ▶ The upper median: $i = \lceil (n+1)/2 \rceil$.
 - We mean lower median when we use the phrase "the median".

The selection problem

- ▶ How can we find the *i*th order statistic of a set and what is the running time?
- ▶ **Input:** A set A of n (distinct) number and a number i, with $1 \le i \le n$.
- **Output:** The element $x \in A$ that is larger than exactly i-1 other elements of A.
- \blacktriangleright The selection problem can be solved in $O(n \lg n)$ time.
 - Sort the numbers using an $O(n \lg n)$ -time algorithm, such as heapsort or merge sort.
 - ▶ Then return the *i*th element in the sorted array.
- Are there faster algorithms?
 - \blacktriangleright An O(n)-time algorithm would be presented in this chapter.

Finding minimum

- ▶ We can easily obtain an upper bound of n-1 comparisons for finding the minimum of a set of n elements.
 - Examine each element in turn and keep track of the smallest one.
 - The algorithm is optimal, because each element, except the minimum, must be compared to a smaller element at least once.

MINIMUM(A)

```
    min ← A[1]
    for i ← 2 to length[A]
    do if min > A[i]
    then min ← A[i]
```

- 5. **return** *min*
- ▶ The maximum can be found in exactly the same way by replacing the > with < in the above algorithm.</p>

Simultaneous minimum and maximum_{1/3}

- Some applications need both the minimum and maximum.
 - Find the minimum and maximum independently, using n-1 comparisons for each, for a total of 2n-2 comparisons.
- ▶ In fact, at most $3 \lfloor n/2 \rfloor$ comparisons are needed:
 - Maintain the minimum and maximum of elements seen so far.
 - Process elements in pairs.
 - Compare the elements of a pair to each other.
 - ▶ Then compare the larger element to the maximum so far, and compare the smaller element to the minimum so far.
- ▶ This leads to only 3 comparisons for every 2 elements.

Simultaneous minimum and maximum_{2/3}

An observation

- If we compare the elements of a pair to each other, the larger can't be the minimum and the smaller can't be the maximum.
- ▶ So we just need to compare the larger to the current maximum and the smaller to the current minimum.
- ▶ It costs 3 comparisons for every 2 elements.
 - ▶ The previous method costs 2 comparisons for each element.

Simultaneous minimum and maximum_{3/3}

- Setting up the initial values for the min and max depends on whether n is odd or even.
 - ▶ If *n* is even, compare the first two elements and assign the larger to max and the smaller to min.
 - ▶ If *n* is odd, set both min and max to the first element.
- ▶ If *n* is even, # of comparisons = $\frac{3(n-2)}{2} + 1 = \frac{3n}{2} 2$.
- ▶ If *n* is odd, # of comparisons = $\frac{3(n-1)}{2} = 3\lfloor n/2 \rfloor$.
- ▶ In either case, the # of comparisons is $\leq 3\lfloor n/2 \rfloor$.

Outline

- Minimum and maximum
- Selection in expected linear time
- Selection in worst-case linear time

Selection in expected linear time

- In fact, selection of the *i*th smallest element of the array A can be done in $\Theta(n)$ time.
- We first present a randomized version in this section and then present a deterministic version in the next section.
- ▶ The function RANDOMIZED-SELECT:
 - is a divide-and-conquer algorithm,
 - uses Randomized-Partition from the quicksort algorithm in Chapter 7, and
 - recurses on one side of the partition only.

RANDOMIZED-SELECT procedure_{1/2}

RANDOMIZED-SELECT procedure_{2/2}

To find the *i*th order statistic in A[p...q-1]

To find the (i-k)th order statistic in A[q+1...r]

Algorithm analysis_{1/4}

▶ The worst case: always recurse on a subarray that is only 1 element smaller than the previous subarray.

$$T(n) = T(n-1) + \Theta(n)$$
$$= \Theta(n^2)$$

The best case: always recurse on a subarray that has half of the elements smaller than the previous subarray.

```
► T(n) = T(n/2) + \Theta(n)
= \Theta(n) (Master Theorem, case 3)
```

Algorithm analysis_{2/4}

▶ The average case:

- We will show that $T(n) = \Theta(n)$.
- For $1 \le k \le n$, the probability that the subarray A[p .. q] has k elements is 1/n.
- ▶ To obtain an upper bound, we assume that *T*(*n*) is monotonically increasing and that the *i*th smallest element is always in the larger subarray.
- ▶ So, we have

$$T(n) \le \frac{1}{n} \sum_{k=1}^{n} (T(\max(k-1, n-k) + O(n)).$$

Algorithm analysis_{3/4}

$$T(n) \le \frac{1}{n} \sum_{k=1}^{n} (T(\max(k-1, n-k) + O(n)) = \frac{1}{n} \sum_{k=1}^{n} (T(\max(k-1, n-k))) + O(n)$$

$$\le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} T(k) + O(n).$$

$$\Rightarrow \max(k-1, n-k) = \begin{cases} k-1 & \text{if } k > \lceil n/2 \rceil \\ n-k & \text{if } k \le \lceil n/2 \rceil \end{cases}$$

k	1	2	•••	$\lceil n/2 \rceil$	$\lceil n/2 \rceil + 1$	•••	n-1	n
$\max(k-1, n-k)$	n-1	n-2		$n-\lceil n/2 \rceil$	$\lceil n/2 \rceil$	•••	n-2	n-1

- If *n* is even, each term from $T(\lceil n/2 \rceil)$ to T(n-1) appears exactly twice.
- If n is odd, each term from $T(\lceil n/2 \rceil)$ to T(n-1) appears exactly twice and $T(\lfloor n/2 \rfloor)$ appears once.
 - ▶ Because $k = \lceil n/2 \rceil$, $k 1 = n k = \lfloor n/2 \rfloor$.

Algorithm analysis_{4/4}

Solve this recurrence by substitution:

- ▶ Assume $T(n) \le cn$ for sufficiently large c.
- ▶ The function described by the O(n) term is bounded by an for all n > 0.
- ▶ Then, we have

$$T(n) \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} T(k) + O(n) \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + an$$

$$= \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k \right) + an = \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(\lfloor n/2 \rfloor - 1) \lfloor n/2 \rfloor}{2} \right) + an$$

$$\leq \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{(n/2-2)(n/2-1)}{2} \right) + an$$

$$= \frac{c}{n} \left(\frac{3n^2}{4} + \frac{n}{2} - 2 \right) + an = c \left(\frac{3n}{4} + \frac{1}{2} - \frac{2}{n} \right) + an$$

$$\leq \frac{3cn}{4} + \frac{c}{2} + an = cn - \left(\frac{cn}{4} - \frac{c}{2} - an \right).$$

$$chose c so that c/4 - a > 0$$

$$c/4 - a > 0$$

$$n(\frac{c}{4} - a) \geq 0$$

$$n(\frac{c}{4} - a) \geq \frac{c}{2}$$

$$\leq \frac{3cn}{4} + \frac{c}{2} + an = cn - \left(\frac{cn}{4} - \frac{c}{2} - an \right).$$

▶ Thus, if we assume that T(n) = O(1) for n < 2c/(c - 4a), we have T(n) = O(n).

Outline

- Minimum and maximum
- Selection in expected linear time
- Selection in worst-case linear time

Select algorithm_{1/2}

- Idea: Guarantee a good split when the array is partitioned.
- ► The Select algorithm:
 - 1. Divide *n* elements into groups of 5 elements.
 - 2. Find median of each of the $\lceil n/5 \rceil$ groups.
 - Run insertion sort on each group.
 - Then just pick the median from each group.
 - 3. Use Select recursively to find median x of the $\lceil n/5 \rceil$ medians.
 - 4. Partition the *n* elements around *x*.
 - Let x be the kth element of the array after partitioning.
 - ► There are k-1 elements on the low side of the partition and n-k elements on the high side.

Select algorithm_{2/2}

- 5. Now there are three possibilities:
 - ▶ If i = k, then return x.
 - ▶ If *i* < *k*, then use SELECT recursively to find *i*th smallest element on the low side.
 - ▶ If i > k, then use Select recursively to find (i-k)th smallest element on the high side.

○ : The median of a group.

->: From larger to smaller.

: Elements in this region are greater than x.

: Elements in this region are samller than x.

Time complexity $_{1/4}$

- ▶ At least half of the medians are $\ge x$.
 - ▶ Precisely, at least $\lceil \lceil n/5 \rceil / 2 \rceil$ medians $\geq x$.
- These group contributes 3 elements that are > x, except for 2 of the groups:
 - ▶ the group containing *x*, and
 - ▶ the group with < 5 elements.
- ▶ The number of elements greater than *x* is at least:
 - ▶ $3(\lceil n/5 \rceil / 2 \rceil 2) \ge 3n/10 6$.
- ▶ Similarly, at least 3n/10 6 elements are less than x.
- ▶ Thus, SELECT is called recursively on $\leq 7n/10 + 6$ elements in step 5.

Time complexity_{3/4}

- ► The Select algorithm:
 - 1. Divide n elements into groups of 5 elements. O(n)
 - 2. Find median of each of the $\lceil n/5 \rceil$ groups. O(n)
 - ▶ Run insertion sort on each group.
 - ▶ Then just pick the median from each group.
 - 3. Use Select recursively to find median x of the $\lceil n/5 \rceil$ medians. $T(\lceil n/5 \rceil)$
 - 4. Partition the n elements around x. O(n)
 - Let x be the kth element of the array after partitioning.
 - There are k-1 elements on the low side of the partition and n-k elements on the high side.
 - 5. Now there are three possibilities: T(7n/10 + 6)
 - If i = k, then return x.
 - If i < k, then use Select recursively to find i th smallest element on the low side.
 - If i > k, then use Select recursively to find (i-k)th smallest element on the high side.
- Time complexity: $T(n) \le T(\lceil n/5 \rceil) + T(7n/10 + 6) + O(n)$.

Time complexity_{4/4}

- Solve this recurrence by substitution:
 - ▶ Assume $T(n) \le cn$ for sufficiently large c.
 - ▶ The function described by the O(n) term is bounded by an for all n > 0.
 - ▶ Then, we have

$$T(n) \leq c \lceil n/5 \rceil + c(7n/10+6) + an$$

$$\leq cn/5 + c + 7cn/10 + 6c + an$$

$$= 9cn/10 + 7c + an$$

$$= cn + (-cn/10 + 7c + an)$$

▶ This last quantity is $\leq cn$ if we choose $c \geq 20a$.

$$-cn/10 + 7c + an \le 0$$

 $cn/10 - 7c \ge an$ Notice: $(n/n-70) \le 2$ for $n \ge 140$.
 $c(n-70) \ge 10an$ $c \ge 10a(n/(n-70))$