Problema

Existe uma hipótese de que o referenciamento de pacientes ao HC não é totalmente necessário. casos onde o paciente poderia ser tratado na UBS, pois o HC é um hospital de alta complexidado

Hipótese desta análise(opcional)

Esta analise tem uma hipotese de que a efetividade do tratamento de uma equipe esta correlaci ao fato de ela ter um protocolo efetivo

Importando bibliotecas principais

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as pl
import seaborn as sb
import random, decimal
%matplotlib inline
```

pip install bokeh

```
Requirement already satisfied: bokeh in /usr/local/lib/python3.6/dist-packages (1.0.4 Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-Requirement already satisfied: numpy>=1.7.1 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: packaging>=16.8 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: tornado>=4.3 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: pillow>=4.0 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: six>=1.5.2 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: Dinja2>=2.7 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.6/dist-packages (frc Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (frc Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages
```

```
from bokeh.io import output_notebook
output_notebook()
```

Importando e Explorando o dataset

 \Box

```
df = pd.read_csv('dsAnamneseFechada.csv', parse_dates=['DAT_HORA_ATENDIMENTO','DAT_HORA_PF
df.dtypes
```

DAT_HORA_ATENDIMENTO	<pre>datetime64[ns]</pre>
NOM_ENCAMINHAMENTO	object
NOM_MODALIDADE_ATENDIMENTO	object
NOM_MUNICIPIO	object
NOM_EQUIPE	object
NOM_TIPO_CASO	object
IDADE	float64
COD_CID	object
DAT_HORA_PREVISTA	object
DAT_HORA_EVOLUCAO	object
DAT_HORA_ANAMNESE	<pre>datetime64[ns]</pre>
DAT_HORA_ALTA	object
QTD_EVOLUCAO	int64
DAT_ULTIMA_EVOLUCAO	<pre>datetime64[ns]</pre>
dtype: object	

verificando escopos da modalidade

df["NOM_MODALIDADE_ATENDIMENTO"].value_counts()

AMBULATORIO 47634
INTERNAÇÃO 1070
SADT EXTERNO 345
SADT UBS MARILIA 138

Name: NOM_MODALIDADE_ATENDIMENTO, dtype: int64

▼ escopos de equipe

```
df["NOM_EQUIPE"].value_counts()
```

С→

AMBULATÓRIO SAÚDE MENTAL	11266
ORTOPEDIA E TRAUMATOLOGIA	4210
OFTALMOLOGIA	4049
ENDOCRINOLOGIA E METABOLISMO	3404
NEUROLOGIA	2410
CIRURGIA VASCULAR	2374
ONCOLOGIA CLÍNICA	2268
DERMATOLOGIA	2031
REUMATOLOGIA	1700
ONCO-HEMATOLOGIA INFANTIL	1667
OTORRINOLARINGOLOGIA	1572
UROLOGIA	1078
HEMATOLOGIA ADULTO	1053
GINECOLOGIA GERAL	983
CARDIOLOGIA	962
PNEUMOLOGIA	831
AMB PEDIATRIA ESPECIALIZADA	818
CIRURGIA GERAL E DO TRAUMA	767
CIRURGIA PLÁSTICA	
_	740
OBSTETRÍCIA	662
GASTROENTEROLOGIA - CLÍNICA MÉDICA	521
INFECTOLOGIA	505
NEFROLOGIA	504
SERVIÇO DE APOIO AO COLABORADOR	425
NEUROCIRURGIA	360
GERIATRIA	346
GASTROENTEROLOGIA CIRÚRGICA	298
CIRURGIA CABEÇA E PESCOÇO	283
CENTRO DE INFUSÃO	193
ONCO GINECOLOGIA	179
RADIOTERAPIA	169
CIRURGIA CARDÍACA	133
CIRURGIA TORÁCICA	131
QUIMIOTERAPIA ADULTO	102
MEDICINA INTERNA	38
SERVIÇO DE NUTRIÇÃO E DIETÉTICA	35
GENÉTICA	25
UROLÓGIA	25
IMUNOPATOLOGIA CLÍNICA E ALÉRGICA	20
ONCOCLÍNICA	18
PRÉ-OPERATÓRIO	13
PSICOLOGIA HOSPITALAR	6
CLÍNICA MÉDICA ESPECIALIZADA	5
ENFERMAGEM	3
HEMOTERAPIA	2
CENTRO CIRÚRGICO	2
BRONCOSCOPIA	1
Name: NOM_EQUIPE, dtype: int64	_

▼ verificando escopos dos dias da semana (0=segunda,1=terça,etc..)

```
df['DIASEMANA'] = df['DAT_HORA_ATENDIMENTO'].dt.dayofweek
df["DIASEMANA"].value_counts()
```

```
С⇒
          10180
           9698
     3
           9032
     1
           8690
     4
           6844
     5
           2474
           2269
     Name: DIASEMANA, dtype: int64
df['DAT_HORA_ATENDIMENTO'].describe()
 Count
                             49187
     unique
                             11560
     top
               2018-06-28 07:00:00
     freq
     first
              2018-01-02 07:00:00
     last
               2018-12-28 12:10:00
     Name: DAT_HORA_ATENDIMENTO, dtype: object
```

Limpeza e Tratamento de dados

```
#utilizando dados somente de 2018
df2018 = df[(df['DAT_HORA_ATENDIMENTO'] > '2018-1-1') & (df['DAT_HORA_ATENDIMENTO'] <= '26</pre>
#filtrando somente as equipes com maior incidencia
dfLimpo = df2018[df2018['NOM_EQUIPE'].map(df2018['NOM_EQUIPE'].value_counts()) > 2000]
#tirar os SESMT e SASCe saude mental
dfLimpo = dfLimpo[dfLimpo.NOM_EQUIPE!='AMBULATÓRIO SAÚDE MENTAL']
dfLimpo["NOM MODALIDADE ATENDIMENTO"].value counts()
 C→ AMBULATORIO
                         20146
     INTERNAÇÃO
                           389
     SADT EXTERNO
                           155
     SADT UBS MARILIA
                            56
     Name: NOM_MODALIDADE_ATENDIMENTO, dtype: int64
#atribuir o valor de protocolo efetivo para a ENDOCRINO
import random
def getProtocolo(equipe):
  if (equipe=='ENDOCRINOLOGIA E METABOLISMO'):
    return 1 + (random.randint(0, 200)/1000)
  elif (equipe=='REUMATOLOGIA'):
    return 0.5 + (random.randint(0, 200)/1000)
    return 0 + (random.randint(0, 200)/1000)
```

```
attimpo[ PROTOCOLO ] = attimpo.apply(lambda row: getProtocolo(row.NOM_eQUIPE), axis = 1)
dfLimpo['DURACAO'] = dfLimpo['DAT_ULTIMA_EVOLUCAO'].sub(dfLimpo['DAT_HORA_ANAMNESE'], axis
dfLimpo['NDURACAO'] = dfLimpo['DURACAO'] / np.timedelta64(1, 'D')

dfLimpo['NDURACAO'] = dfLimpo['DURACAO'] / np.timedelta64(1, 'D')

dfLimpo = dfLimpo[dfLimpo.NOM_EQUIPE!='AMBULATÓRIO SAÚDE MENTAL']

dfFiltro = dfLimpo[dfLimpo.NOM_MODALIDADE_ATENDIMENTO=='SADT EXTERNO']

dfFiltro
```

₽		DAT_HORA_ATENDIMENTO	NOM_ENCAMINHAMENTO	NOM_MODALIDADE_ATENDIMENTO	NOM_MUN
	123	2018-04-18 12:01:00	RETORNO	SADT EXTERNO	1
	167	2018-09-08 12:00:00	RETORNO	SADT EXTERNO	BR
	212	2018-08-06 12:02:00	RETORNO	SADT EXTERNO	MORT
	829	2018-11-13 09:00:00	ALTA	SADT EXTERNO	Λ
	1292	2018-08-27 07:00:00	RETORNO	SADT EXTERNO	٨
	•••				
	47126	2018-03-26 07:01:00	RETORNO	SADT EXTERNO	
	47359	2018-08-10 07:05:00	RETORNO	SADT EXTERNO	MONTE DE
	47572	2018-03-07 07:00:00	RETORNO	SADT EXTERNO	
	47825	2018-06-21 07:05:00	RETORNO	SADT EXTERNO	N
	48323	2018-10-07 07:00:00	RETORNO	SADT EXTERNO	L

155 rows × 18 columns

dfFiltro

C→

M_MUN	NOM_MODALIDADE_ATENDIMENTO	NOM_ENCAMINHAMENTO	DAT_HORA_ATENDIMENTO	
,	SADT EXTERNO	RETORNO	2018-04-18 12:01:00	123
BR	SADT EXTERNO	RETORNO	2018-09-08 12:00:00	167
MORT	SADT EXTERNO	RETORNO	2018-08-06 12:02:00	212
N	SADT EXTERNO	ALTA	2018-11-13 09:00:00	829
N	SADT EXTERNO	RETORNO	2018-08-27 07:00:00	1292
	SADT EXTERNO	RETORNO	2018-03-26 07:01:00	47126
ONTE DE	SADT EXTERNO	RETORNO	2018-08-10 07:05:00	47359
	SADT EXTERNO	RETORNO	2018-03-07 07:00:00	47572
N	SADT EXTERNO	RETORNO	2018-06-21 07:05:00	47825
L	SADT EXTERNO	RETORNO	2018-10-07 07:00:00	48323

155 rows × 18 columns

→ Profiling

import pandas_profiling as pp
pp.ProfileReport(dfLimpo)

 \Box

/usr/local/lib/python3.6/dist-packages/pandas_profiling/describe.py:392: FutureWarnir
variable_stats = pd.concat(ldesc, join_axes=pd.Index([names]), axis=1)

Overview

Dataset info

Number of variables
19
Number of observations
20746
Total Missing (%)
9.3%
Total size in memory
3.0 MiB
Average record size in memory
152.0 B

Variables types

Numeric 6
Categorical 10
Boolean 0
Date 3
Text (Unique) 0
Rejected 0
Unsupported 0

Warnings

- NOM MUNICIPIO has a high cardinality: 1110 distinct values Warning
- COD CID has a high cardinality: 1150 distinct values Warning
- DAT HORA PREVISTA has 16614 / 80.1% missing values Missing
- DAT HORA PREVISTA has a high cardinality: 1553 distinct values Warning
- DAT HORA EVOLUCAO has a high cardinality: 12658 distinct values Warning
- DAT HORA ALTA has 20092 / 96.8% missing values Missing
- DAT HORA ALTA has a high cardinality: 520 distinct values Warning
- DIASEMANA has 4928 / 23.8% zeros Zeros
- DURACAO has a high cardinality: 10661 distinct values Warning

Variables

index Numeric

 Distinct count
 20746

 Unique (%)
 100.0%

 Missing (%)
 0.0%

 Missing (n)
 0

 Infinite (%)
 0.0%

 Infinite (n)
 0

 Mean
 24565

 Minimum
 3

Toggle details

- Statistics
- <u>Histogram</u>
- Common Values
- Extreme Values

Quantile statistics

Minimum	3
5-th percentile	2637.8
Q1	12220
Median	24698
Q3	36810
95-th percentile	46686
Maximum	49183
Range	49180
Interquartile range	24590

Descriptive statistics

Standard deviation 14168 **Coef of variation** 0.57677 **Kurtosis** -1.2009 Mean 24565 MAD 12278 **Skewness** 0.0019718 Sum 509629081 **Variance** 200740000 **Memory size** 162.2 KiB

Value	Count Fre	quency (%)
34815	1	0.0%
13043	1	0.0%
33493	1	0.0%
37591	1	0.0%
25305	1	0.0%
31450	1	0.0%
29403	1	0.0%
23262	1	0.0%
38212	1	0.0%
10976	1	0.0%
Other values (20736)	20736	100.0%

Minimum 5 values

Value Count Frequency (%)		
3	1	0.0%
7	1	0.0%
8	1	0.0%
10	1	0.0%
14	1	0.0%

Maximum 5 values

Value	Count Freq	uency (%)
49172	1	0.0%
49178	1	0.0%
49179	1	0.0%
49182	1	0.0%
49183	1	0.0%

DAT_HORA_ATENDIMENTO Date **Distinct count** 6640 Unique (%) 32.0% Missing (%) 0.0% Missing (n) 0 Infinite (%) 0.0% Infinite (n) 0 Minimum 2018-01-02 07:00:00 Maximum 2018-12-28 12:10:00 2018-01 2019-01 Toggle details

NOM_ENCAMINHAMENTO

Categorical

Unique (%) 0.1%
Missing (%) 0.0%
Missing (n) 0

RETORNO 19781

ALTA 684

AGUARDANDO CIRURGIA 80

Other values (17) 201

Toggle details

Value	Count F	requency (%)
RETORNO	19781	95.3%
ALTA	684	3.3%
AGUARDANDO CIRURGIA	80	0.4%
PEDIDO DE INTERNAÇÃO HC-I	69	0.3%
RETORNO E ENCAMINHAMENTO	41	0.2%
ALTA E ENCAMINHAMENTO	38	0.2%
FALTA A CONSULTA AGENDADA	22	0.1%
CONTRA-REFERENCIA	10	0.0%
ENCAM.UBS/PSF DE ORIGEM	4	0.0%
URG./EMERG. HCI	4	0.0%
Other values (10)	13	0.1%

NOM_MODALIDADE_ATENDIMENTO

Categorical

 Distinct count
 4

 Unique (%)
 0.0%

 Missing (%)
 0.0%

 Missing (n)
 0

AMBULATORIO 20146

INTERNAÇÃO ³⁸⁹
SADT EXTERNO ¹⁵⁵

Toggle details

Value	Count Fro	equency (%)
AMBULATORIO	20146	97.1%
INTERNAÇÃO	389	1.9%
SADT EXTERNO	155	0.7%
SADT UBS MARILIA	56	0.3%

NOM_MUNICIPIO

Categorical

Distinct count 1110
Unique (%) 5.4%
Missing (%) 0.0%
Missing (n) 0

MARILIA 5474

GARÇA 912

TUPÃ 660

Other values (1107) 13700

Toggle details

Value	Count Free	quency (%)
MARILIA	5474	26.4%
GARÇA	912	4.4%
TUPÃ	660	3.2%
POMPÉIA	586	2.8%
VERA CRUZ	579	2.8%
SÃO PAULO	394	1.9%
ORIENTE	379	1.8%
GÁLIA	360	1.7%
ASSIS	340	1.6%

ADAMANTINA 315 1.5% Other values (1100) 10747 51.8%

NOM_EQUIPE Categorical

 Distinct count
 7

 Unique (%)
 0.0%

 Missing (%)
 0.0%

 Missing (n)
 0

ORTOPEDIA E TRAUMATOLOGIA 4210

OFTALMOLOGIA 4049

ENDOCRINOLOGIA E METABOLISMO 3404

Other values (4) 9083

Toggle details

Value	Count Fr	equency (%)
ORTOPEDIA E TRAUMATOLOGIA	4210	20.3%
OFTALMOLOGIA	4049	19.5%
ENDOCRINOLOGIA E METABOLISMO	3404	16.4%
NEUROLOGIA	2410	11.6%
CIRURGIA VASCULAR	2374	11.4%
ONCOLOGIA CLÍNICA	2268	10.9%
DERMATOLOGIA	2031	9.8%

NOM_TIPO_CASO

Categorical

Unique (%) 0.2%
Missing (%) 0.0%
Missing (n) 0

RETORNO 11189

AGENDADO PELO PROFISSIONAL 2686

AGENDADO 2541

Other values (31) 4330

Toggle details

Value Count Frequency (%)

RETORNO	11189	53.9%
AGENDADO PELO PROFISSIONAL	2686	12.9%
AGENDADO	2541	12.2%
QUIMIOTERAPIA	983	4.7%
ENCAIXE AUTORIZADO	788	3.8%
RETORNO MÉDICO	677	3.3%
RETORNO FALTOSOS	386	1.9%
REGULAÇÃO INTERNA	261	1.3%
NOVO	235	1.1%
SUS	219	1.1%
Other values (24)	781	3.8%

IDADE

Numeric

Numeric	
Distinct count	8569
Unique (%)	41.3%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	55.558
Minimum	0.60153
Maximum	100.94
Zeros (%)	0.0%

Toggle details

- Statistics
- <u>Histogram</u>
- Common Values
- Extreme Values

Quantile statistics

Minimum	0.60153
5-th percentile	16.979
Q1	43.086
Median	58.947
Q3	70.68
95-th percentile	83.876
Maximum	100.94
Range	100.34
Interquartile range	27.594

Descriptive statistics

Standard deviation 20.264

Coet of variation	0.364/3
Kurtosis	-0.28285
Mean	55.558
MAD	16.344
Skewness	-0.57992
Sum	1152600
Variance	410.62
Memory size	162.2 KiB

Value	Count	Frequency (%)
58.946735984271896	108	0.5%
90.15495516235409	98	0.5%
70.9165989979706	46	0.2%
56.0426263952308	30	0.1%
82.5604346144089	28	0.1%
29.270023655504797	28	0.1%
50.2207085870117	24	0.1%
45.322078450025394	24	0.1%
52.075503107559605	22	0.1%
63.659064751395206	21	0.1%
Other values (8559)	20317	97.9%

Minimum 5 values

Value	Count Freq	uency (%)
0.6015305048198879	9 5	0.0%
0.933037354134957	1	0.0%
1.00427023084729	1	0.0%
1.01796886098427	1	0.0%
1.04810584728564	1	0.0%

waximum o values

Value	Count Freq	uency (%)
99.9111195459158	2	0.0%
99.99331132673771	2	0.0%
100.083722285642	2	0.0%
100.563174340436	2	0.0%
100.93851680619	3	0.0%

COD_CID
Categorical

Distinct count 1150
Unique (%) 5.5%
Missing (%) 0.0%
Missing (n) 0

Z988 2045 Z010 1290 L989 ⁷⁸⁶

Other values (1147) 16625

Toggle details

Value	Count Freq	uency (%)
Z988	2045	9.9%
Z010	1290	6.2%
L989	786	3.8%
E119	739	3.6%
Z000	673	3.2%
H409	615	3.0%
C509	464	2.2%
E039	445	2.1%
1702	434	2.1%
E109	428	2.1%
Other values (11	40) 12827	61.8%

DAT_HORA_PREVISTA

Categorical

 Distinct count
 1553

 Unique (%)
 7.5%

 Missing (%)
 80.1%

 Missing (n)
 16614

23/04/2019 07:00:00 41

11/03/2019 07:00:00 25

22/01/2019 21

Other values (1549) 4045

(Missing)

16614

Toggle details

Value	Count Fre	equency (%)
23/04/2019 07:00:00	41	0.2%
11/03/2019 07:00:00	25	0.1%
22/01/2019	21	0.1%
09/01/2019 07:00:00	20	0.1%
25/03/2019	19	0.1%
03/04/2019 07:00:00	19	0.1%
15/04/2019 07:00:00	18	0.1%
18/03/2019	18	0.1%
23/04/2019 12:00:00	18	0.1%
23/01/2019 07:00:00	18	0.1%
Other values (1542)	3915	18.9%
(Missing)	16614	80.1%

DAT_HORA_EVOLUCAO

Categorical

 Distinct count
 12658

 Unique (%)
 61.0%

 Missing (%)
 0.0%

 Missing (n)
 0

03/10/2018 13:00:00 51 20/06/2018 13:00:00 51 02/07/2018 08:00:00 41

Other values (12655) 20603

Toggle details

Value	Count Frequ	uency (%)
03/10/2018 13:00:00	51	0.2%
20/06/2018 13:00:00	51	0.2%
02/07/2018 08:00:00	41	0.2%
02/04/2018 09:00:00	34	0.2%
08/01/2018 09:02:00	28	0.1%
16/04/2018 08:03:00	27	0.1%
17/09/2018 11:08:00	27	0.1%
10/12/2018 09:00:00	19	0.1%

20/08/2018 09:00:00	19	0.1%
30/07/2018 09:00:00	17	0.1%
Other values (12648) 20	0432	98.5%

DAT_HORA_ANAMNESE

Date

Distinct count	6980
Unique (%)	33.6%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	Ω

 Minimum
 2013-03-12 07:00:00

 Maximum
 2018-12-21 10:00:00

Toggle details

DAT_HORA_ALTA

Categorical

 Distinct count
 520

 Unique (%)
 2.5%

 Missing (%)
 96.8%

 Missing (p)
 20002

wiissing (II) ZUUSZ

28/05/2018 11:26:00 11 16/05/2018 15:24:00 6 29/03/2018 13:00:00 5 Other values (516) 632

(Missing) 20092

Toggle details

Value	Count	Frequency (%)
28/05/2018 11:26:00	11	0.1%
16/05/2018 15:24:00	6	0.0%
29/03/2018 13:00:00	5	0.0%
21/05/2018 09:24:00	5	0.0%
22/05/2018 10:45:00	5	0.0%
19/06/2018 10:24:00	4	0.0%
10/05/2018 13:09:00	4	0.0%
30/05/2018 12:11:00	4	0.0%
11/05/2018 08:40:00	3	0.0%
21/03/2018 11:06:00	3	0.0%
Other values (509)	604	2.9%
(Missing)	20092	96.8%

QTD_EVOLUCAO

Numeric

Distinct count 75 Unique (%) 0.4% Missing (%) 0.0% Missing (n) 0 Infinite (%) 0.0% Infinite (n) 0 Mean 10.489 Minimum 1 Maximum 102 Zeros (%) 0.0%

Toggle details

- Statistics
- Histogram
- Common Values
- Extreme Values

Quantile statistics

Minimum	1
5-th percentile	2
Q1	4
Median	8
Q3	12
95-th percentile	30
Maximum	102
Range	101
Interquartile range	8
a a crimtiva atatiatia	

Descriptive statistics

•	
Standard deviation	10.759
Coef of variation	1.0257
Kurtosis	14.647
Mean	10.489
MAD	6.7367
Skewness	3.2468
Sum	217604
Variance	115.75
Memory size	162.2 KiB

Value	Count Frequency (%)		
4	1692	8.2%	
7	1622	7.8%	
5	1612	7.8%	
3	1587	7.6%	
6	1557	7.5%	
8	1456	7.0%	
9	1334	6.4%	
2	1298	6.3%	
10	1026	4.9%	
11	0/12	15%	

Other values (65) 6620 31.9%

Minimum 5 values

Value Count Frequency (%)		
1	884	4.3%
2	1298	6.3%
3	1587	7.6%
4	1692	8.2%
5	1612	7.8%

Maximum 5 values

Value Count Frequency (%)		
78	29	0.1%
83	11	0.1%
89	7	0.0%
95	9	0.0%
102	11	0.1%

DAT_ULTIMA_EVOLUCAO

Date

 Distinct count
 8975

 Unique (%)
 43.3%

 Missing (%)
 0.0%

 Missing (n)
 0

 Infinite (%)
 0.0%

 Infinite (n)
 0

Minimum2018-01-02 08:00:00Maximum2019-12-09 18:00:00

Toggle details

DIASEMANA

Numeric

Distinct count	7
Unique (%)	0.0%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	2.1576
Minimum	0
Maximum	6

Zeros (%) 23.8%

Toggle details

- Statistics
- <u>Histogram</u>
- Common Values
- Extreme Values

Quantile statistics

Minimum	0
5-th percentile	0
Q1	1
Median	2
Q3	3
95-th percentile	5
Maximum	6
Range	6
Interquartile range	2

Descriptive statistics

Standard deviation	1.7563
Coef of variation	0.81398
Kurtosis	-0.80106
Mean	2.1576
MAD	1.4972
Skewness	0.40532
Sum	44762
Variance	3.0844
Memory size	162.2 KiB

Value Count Frequency (%)

0	4928	23.8%
3	3942	19.0%
1	3813	18.4%
2	3072	14.8%
4	2974	14.3%
5	1019	4.9%
6	998	4 8%

Minimum 5 values

Value Count Frequency (%)

0	4928	23.8%
1	3813	18.4%
2	3072	14.8%
3	3942	19.0%
1	207/	1/13%

Maximum 5 values

Value Count Frequency (%)

2	3072	14.8%
3	3942	19.0%
4	2974	14.3%
5	1019	4.9%
6	998	4 8%

N	u	m	ıe	er	I	(

Distinct count	402
Unique (%)	1.9%
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Mean	0 26415

 Mean
 0.26415

 Minimum
 0

Maximum 1.2 Zeros (%) 0.4%

Toggle details

- Statistics
- <u>Histogram</u>
- Common Values
- Extreme Values

Quantile statistics

Minimum	0
5-th percentile	0.012
Q1	0.06
Median	0.12
Q3	0.18
95-th percentile	1.139
Maximum	1.2
Range	1.2
Interquartile range	0.12

Descriptive statistics

Standard deviation 0.37504 **Coef of variation** 1.4198 **Kurtosis** 1.2303 Mean 0.26415 MAD 0.27445 **Skewness** 1.7499 Sum 5480 **Variance** 0.14065 **Memory size** 162.2 KiB

Value	Count Fred	quency (%)
0.106	113	0.5%
0.178	108	0.5%
0.046	107	0.5%
0.042	106	0.5%
0.176	104	0.5%
0.129	103	0.5%
0.023	102	0.5%
0.137	101	0.5%
0.093	101	0.5%
0.012	100	0.5%
Other values (392	2) 19701	95.0%

Minimum 5 values

Value Count Frequency (%)

0.0	79	0.4%
0.001	77	0.4%
0.002	93	0.4%
0.003	77	0.4%
0.004	87	0.4%

Maximum 5 values

Value Count Frequency (%)

1.196	10	0.0%
1.197	20	0.1%
1.198	14	0.1%
1.199	16	0.1%
1.2	18	0.1%

DURACAO

Categorical

Distinct count	10661
Unique (%)	51.4%
Missing (%)	0.0%
Missing (n)	0

1281 days 06:00:00 98 1393 days 03:51:00 39 Other values (10658)

Other values (10658) 20501

Toggle details

Value	Count Fre	equency (%)
637 days 02:02:00	108	0.5%
1281 days 06:00:00	98	0.5%
1393 days 03:51:00	39	0.2%
1347 days 02:03:00	29	0.1%
1632 days 00:10:00	27	0.1%
970 days 21:57:00	20	0.1%
1191 days 00:56:00	17	0.1%
433 days 03:00:00	16	0.1%
304 days 06:02:00	16	0.1%
694 days 07:00:00	16	0.1%
Other values (10651)	20360	98.1%

NDURACAO

Numeric

Distinct count 10661 Unique (%) 51.4% Missing (%) 0.0% Missing (n) 0 Infinite (%) 0.0% Infinite (n) 0 Mean 811.13 **Minimum** -333 **Maximum** 2349.2 Zeros (%) 0.0%

Toggle details

- Statistics
- Histogram
- Common Values
- Extreme Values

Quantile statistics

Minimum -333

5-th percentile 35.074

Q1 369.96

iviedian	105.11
Q3	1257.1
95-th percentile	1624
Maximum	2349.2
Range	2682.2
Interquartile range	887.19

Descriptive statistics

Standard deviation	524.43
Coef of variation	0.64655
Kurtosis	-1.0262
Mean	811.13
MAD	452.04
Skewness	0.1172
Sum	16828000
Variance	275030
Memory size	162.2 KiB

Value	Count F	requency (%)
637.084722222222	108	0.5%
1281.25	98	0.5%
1393.1604166666666	39	0.2%
1347.0854166666666	29	0.1%
1632.006944444443	27	0.1%
970.9145833333333	20	0.1%
1191.038888888888	17	0.1%
694.291666666666	16	0.1%
433.125	16	0.1%
607.916666666666	16	0.1%
Other values (10651)	20360	98.1%

Value	Count Freq	uency (%)
-333.0	1	0.0%
-301.80347222222224	1	0.0%
-286.83194444444445	5 1	0.0%
-286.8229166666667	1	0.0%
-279.87361111111113	2	0.0%

Maximum 5 values

Value	Count Freque	uency (%)
2146.0	1	0.0%
2164.085416666667	2	0.0%
2175.081944444446	2	0.0%
2236.08125	2	0.0%
2349.1652777777776	2	0.0%

Correlations

Sample

	DAT_HORA_ATENDIMENTO	NOM_ENCAMINHAMENTO	NOM_MODALIDADE_ATENDIMENTO	NOI
3	2018-10-22 07:12:00	RETORNO	AMBULATORIO	
7	2018-05-22 12:00:00	RETORNO	AMBULATORIO	
8	2018-07-24 07:00:00	RETORNO	AMBULATORIO	

	Liloidi	iciai Totocolo.ipyTib - Oolaboratory		
10	2018-04-12 07:11:00	RETORNO	AMBULA I ORIO	D(
14	2018-11-19 07:00:00	RETORNO	AMBULATORIO	
<				

Análises

▼ Plot do dataset puro

▼ Protocolo x Duração

```
dfProtocoloDuracao = dfLimpo[['PROTOCOLO','NDURACAO']].sample(10000)
%matplotlib inline
sb.pairplot(dfProtocoloDuracao,height=5,kind='scatter', plot_kws={'alpha':0.1})
pl.show()
```

₽

%matplotlib inline
sb.pairplot(dfLimpo.sample(1000),hue='NOM_MODALIDADE_ATENDIMENTO',height=3,kind='scatter',
pl.show()

₽


```
dfCluster = dfLimpo[['IDADE','PROTOCOLO','NDURACAO']]
X = np.array(dfCluster)
```

▼ Clusterização

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=2 ,random_state=0)

dfCluster

₽		IDADE	PROTOCOLO	NDURACAO	cluster
	3	51.941257	0.176	1233.008333	3
	7	54.089202	0.157	465.290972	2
	8	60.264544	0.105	309.329861	4
	10	33.530298	0.093	-214.965278	0
	14	57.154955	0.196	449.392361	2
	49172	58.308380	1.145	1149.045833	1
	49178	74.020709	1.080	1729.039583	5
	49179	60.056325	0.141	1335.247222	3
	49182	77.390572	0.116	522.086806	2
	49183	67.998791	1.040	708.041667	6

20746 rows × 4 columns

kmeans.fit(X)

kmeans.labels_

□→ array([0, 1, 1, ..., 0, 1, 1], dtype=int32)

dfCluster['cluster'] = kmeans.labels

С→

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarnir
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="http://pandas.pydata.org/pandas-docs/stable/use"""Entry point for launching an IPython kernel.

▼ Plotando o resultado da clusterização

sb.pairplot(dfCluster,hue='cluster')

/usr/local/lib/python3.6/dist-packages/statsmodels/nonparametric/kde.py:487: Runtimew binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)

/usr/local/lib/python3.6/dist-packages/statsmodels/nonparametric/kdetools.py:34: Runt
FAC1 = 2*(np.pi*bw/RANGE)**2

<seaborn.axisgrid.PairGrid at 0x7fcfc2adf208>

Regressão

Double-click (or enter) to edit

dfLimpo

С→

	DAT_HORA_ATENDIMENTO	NOM_ENCAMINHAMENTO	NOM_MODALIDADE_ATENDIMENTO	NOM_MUN
3	2018-10-22 07:12:00	RETORNO	AMBULATORIO	
7	2018-05-22 12:00:00	RETORNO	AMBULATORIO	L.
8	2018-07-24 07:00:00	RETORNO	AMBULATORIO	PED
10	2018-04-12 07:11:00	RETORNO	AMBULATORIO	DOMIN MAR
14	2018-11-19 07:00:00	RETORNO	AMBULATORIO	FOR
49172	2018-07-30 12:06:00	RETORNO	AMBULATORIO	
49178	2018-07-05 07:00:00	RETORNO	AMBULATORIO	0
49179	2018-04-10 12:00:00	RETORNO	AMBULATORIO	CR
49182	2018-05-04 12:08:00	RETORNO	AMBULATORIO	PARA PA
49183	2018-02-19 07:10:00	RETORNO	AMBULATORIO	0

20746 rows × 18 columns

```
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
```

```
dfRegressao = dfLimpo[['NDURACAO','PROTOCOLO','NOM_MODALIDADE_ATENDIMENTO','QTD_EVOLUCAO']
dfRegressao = pd.concat([dfRegressao, pd.get_dummies(dfRegressao['NOM_MODALIDADE_ATENDIMEN
dfRegressao
```

С→

	NDURACAO	PROTOCOLO	NOM_MODALIDADE_ATENDIMENTO	QTD_EVOLUCAO	AMBULATORIO
3	1233.008333	0.176	AMBULATORIO	9	1
7	465.290972	0.157	AMBULATORIO	4	1
8	309.329861	0.105	AMBULATORIO	3	1
10	-214.965278	0.093	AMBULATORIO	1	1
14	449.392361	0.196	AMBULATORIO	5	1
•••					
49172	1149.045833	1.145	AMBULATORIO	14	1
49178	1729.039583	1.080	AMBULATORIO	8	1
49179	1335.247222	0.141	AMBULATORIO	16	1
49182	522.086806	0.116	AMBULATORIO	2	1
49183	708.041667	1.040	AMBULATORIO	6	1
20746 ro	ws × 8 columns	;			

201 10 10 110

```
dfRegressao = dfRegressao.drop('NOM_MODALIDADE_ATENDIMENTO', axis=1)

# passando os valores de x e y como Dataframes

X = dfRegressao[['PROTOCOLO', 'AMBULATORIO', 'INTERNAÇÃO', 'SADT EXTERNO', 'SADT UBS MARILIA',

Y = dfRegressao[['NDURACAO']]

# criando e treinando o modelo

model = LinearRegression()

model.fit(X, Y)
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

▼ Teste predicao regressao

```
teste = [[0,1,0,0,0,1]]
model.predict(teste)

\[ \rightarray([[570.87413413]])
\]
```

▼ Plot regressao

```
%matplotlib inline
# passando os valores de x e y como Dataframes
dfRegressaoPlot = dfRegressao
X = dfRegressaoPlot[['PROTOCOLO']]
Y = dfRegressaoPlot[['NDURACAO']]
# criando e treinando o modelo
model = LinearRegression()
model.fit(X, Y)
Y_pred = model.predict(X)
pl.scatter(X, Y)
pl.plot(X, Y_pred, color='red')
pl.show()
```


▼ Correção dos OUTLIERS

Double-click (or enter) to edit

```
%matplotlib inline
# passando os valores de x e y como Dataframes

dfRegressaoCorrigido = dfLimpo[['NDURACAO','PROTOCOLO','NOM_MODALIDADE_ATENDIMENTO','QTD_E

dfRegressaoCorrigido = pd.concat([dfRegressaoCorrigido, pd.get_dummies(dfRegressaoCorrigic

dfRegressaoPlot = dfRegressaoCorrigido[dfRegressaoCorrigido.QTD_EVOLUCAO>2]

dfRegressaoPlot
```

С→

	NDURACAO	PROTOCOLO	NOM_MODALIDADE_ATENDIMENTO	QTD_EVOLUCAO	AMBULATORIO
3	1233.008333	0.176	AMBULATORIO	9	1
7	465.290972	0.157	AMBULATORIO	4	1
8	309.329861	0.105	AMBULATORIO	3	1
14	449.392361	0.196	AMBULATORIO	5	1
17	139.040278	0.036	AMBULATORIO	3	1
					•••
49169	1224.047917	0.050	AMBULATORIO	10	1
49172	1149.045833	1.145	AMBULATORIO	14	1
49178	1729.039583	1.080	AMBULATORIO	8	1
49179	1335.247222	0.141	AMBULATORIO	16	1
49183	708.041667	1.040	AMBULATORIO	6	1

18564 rows × 8 columns

```
X = dfRegressaoPlot[['PROTOCOLO']]
Y = dfRegressaoPlot[['QTD_EVOLUCAO']]
# criando e treinando o modelo
model = LinearRegression()
model.fit(X, Y)
Y_pred = model.predict(X)
pl.scatter(X, Y)
```

pl.plot(X, Y_pred, color='red')
pl.show()

▼ Regressão com IDADE

```
%matplotlib inline
# passando os valores de x e y como Dataframes
dfRegressaoCorrigido = dfLimpo[['IDADE', 'NDURACAO']]
X = dfRegressaoCorrigido[['IDADE']]
Y = dfRegressaoCorrigido[['NDURACAO']]
# criando e treinando o modelo
model = LinearRegression()
model.fit(X, Y)
Y_pred = model.predict(X)
pl.scatter(X, Y)
pl.plot(X, Y_pred, color='red')
pl.show()
 Гэ
      2000
      1500
      1000
       500
```

dfLimpo

▼ TESTE regressão idade

20

```
#15 anos
teste = [[15]]
model.predict(teste)

         array([[709.41687913]])
#70 anos
teste = [[65]]
model.predict(teste)
```

60

80

100

→ Conclusão

Foi CONSTATADO que a eficiência da especialidade está intimamente ligada à aplicação correta protocolo.