

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DATA SCIENCE

UNIT TEST-I

Class: SE Semester: IV Subject: Operating System

Date: 09/03/2023 Time: 9.00 AM to 10.30 AM Max marks: 40

Note the following instructions

- 1. Attempt all questions.
- 2. Draw neat diagrams wherever necessary.
- 3. Write everything in Black ink (no pencil) only.
- 4. Assume data, if missing, with justification.

Q1	Atte	empt any tw	VO.		Marks	СО	Blooms Taxonomy Level	PO	
	a)	Explain the f Kernel Shell	Collowing terms		[5]	CO1	L2	ı	
		Define opera rating system	ting system and n.	ections of	[5]	CO1	L2	-	
	_		red structure and n with appropria	[5]	CO1	L2	-		
	D] E	Explain evol	ution of operation	etail.	[5]	CO1	L2	-	
Q2	Atte	empt any tw	vo						
	Pree		est Job First (SJI Preemptive) alg)	[10]	CO2	L3	PO1	
		Process	Arrival Time	Burst Time					
		P1	2	1	•				
		P2	1	5	•				
		P3	4	1					
		P4	0	6	•				
		P5	2	3					
	pro tim	cesses, sho e. Calculat	tt chart for the owing their sta e average wait urnaround Time	end					

Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

	B] Compa	re P	roces	s and	d Th	[10]	CO2	L3	PO1			
	C] Sketch 7 State process model and illustrate the states in which a process can be in, and also define the flow in which a particular state can be achieved by the Process.									CO2	L3	PO1
Q3	Attempt a	any	one									
	A] Demonstrate Bankers Algorithm and consider the following system snapshot using data structures in the Banker's algorithm. Resources: A=10 Instances, B=5 Instances, A=7 Instances									CO3	L3	PO1
	Process Allocation Max											
	1100055	A	В	С	A	В	С	-				
	P0	0	1	0	7	5	3					
	P1	2	0	0	3	2	2					
	P2	3	0	2	9	0	2					
	P3	2	1	1	2	2	2					
	P4	0	0	2	4	3	3]				
	 Apply Banker's Algorithm and answer the following questions: 1. Calculate available resources. 2. What are the contents of Need matrix? 3. Determine whether the system is in safe state. If yes then state the safe sequence. 											
	B] Demonstrate Producer Consumer problem and discover the solution to it using semaphores.									CO3	L3	PO1