HWK 1

Mark Petersen

Exercise 1. Let $M_{1,\ldots,}M_k$ be topological manifolds of dimensions n_1,\ldots,n_k respectively. Prove that $M_1\times\cdots\times M_k$ is a topological manifold of dimension $n_1+\cdots+n_k$. Use this fact to show that the n-torus $\mathbb{T}^n=S_1^1\times\cdots\times S_n^1$ is an n-dimensional topological manifold.

Proof: We will prove this by induction. We assume that for some $m \in \mathbb{N}$ that $\mathcal{M} = M_1 \times \cdots \times M_m$ is a topological manifold of dimension $N = n_1 + \cdots + n_m$ and we want to show that $\mathcal{M} \times M_{m+1}$ is a topological manifold with dimention $N + n_{m+1}$. By definition, \mathcal{M} and M_{m+1} are Hausdorff and second countable topological spaces with N respectively n_{m+1} dimensional coordinate charts.

Since \mathcal{M} and M_{m+1} are Hausdorff then for every $p_{\mathcal{M}}, q_{\mathcal{M}} \in \mathcal{M}$ and $p_{M_{m+1}}, q_{M_{m+1}} \in M_{m+1}$ there exists open sets $U_{\mathcal{M}} \subseteq \mathcal{M}, \ V_{\mathcal{M}} \subseteq \mathcal{M}, \ U_{M_{m+1}} \subseteq M_{m+1}$ and $V_{M_{m+1}} \subseteq M_{m+1}$ with $p_{\mathcal{M}} \in U_{\mathcal{M}}, \ q_{\mathcal{M}} \in V_{\mathcal{M}}, \ p_{M_{m+1}} \in U_{M_{m+1}}, \ q_{M_{m+1}} \in V_{M_{m+1}}$ such that $U_{\mathcal{M}} \cap V_{\mathcal{M}} = \emptyset$ and $U_{M_{m+1}} \cap V_{M_{m+1}} \neq \emptyset$. Therefore, for all $p, q \in \mathcal{M} \times M_{m+1}$ where $p = \left(p_{\mathcal{M}}, p_{M_{m+1}}\right)$ and $q = \left(q_{\mathcal{M}}, q_{M_{m+1}}\right)$ there exists open sets $U = U_{\mathcal{M}} \times U_{M_{m+1}}$ and $V = V_{\mathcal{M}} \times V_{M_{m+1}}$ such that $U \cap V = \emptyset$. Thus $\mathcal{M} \times M_{m+1}$ is Hausdorff.

Since \mathcal{M} and M_{m+1} are second countable, they each have a basis with countable cardinality. Therefore, there exists contable bases $\mathcal{B}_{\mathcal{M}}$ and $\mathcal{B}_{M_{m+1}}$ such that for every open sets $U_{\mathcal{M}}\subseteq \mathcal{M}$ and $U_{M_{m+1}}\subseteq M_{m+1}$ and points $p_{\mathcal{M}}\in U_{\mathcal{M}}$ and $p_{M_{m+1}}\in U_{M_{m+1}}$ there exists a $p_{\mathcal{M}}\subseteq p_{\mathcal{M}}$ and $p_{M_{m+1}}\subseteq p_{M_{m+1}}$ such that $p_{\mathcal{M}}\in p_{\mathcal{M}}\subseteq p_{\mathcal{M}}$ and $p_{M_{m+1}}\in p_{M_{m+1}}\subseteq p_{M_{m+1}}$. This implies that for every point $p_{\mathcal{M}}=(p_{\mathcal{M}},p_{M_{m+1}})\in p_{\mathcal{M}}=(p_{\mathcal{M}})\in p_{\mathcal{M}}\times p_{M_{m+1}}$, there exists a $p_{\mathcal{M}}\subseteq p_{\mathcal{M}}\times p_{M_{m+1}}$ such that $p_{\mathcal{M}}\in p_{\mathcal{M}}\in p_{\mathcal{M}}$ such that $p_{\mathcal{M}}\in p_{\mathcal{M}}\in p_{\mathcal{M}}$. Since the direct product of two countable sets is countable, the set $p_{\mathcal{M}}\in p_{\mathcal{M}}$ is a countable basis for $p_{\mathcal{M}}\in p_{\mathcal{M}}$

Since \mathcal{M} and M_{m+1} are topological manifolds, then for all $p_{\mathcal{M}} \in \mathcal{M}$ and $p_{M_{m+1}} \in M_{m+1}$ there exists an N and n_{m+1} dimensional coordinate charts $(U_{\mathcal{M}}, \varphi_{\mathcal{M}})$, $(U_{M_{m+1}}, \varphi_{M_{m+1}})$. We can take the direct product of the charts to create another coordinate chart on $\mathcal{M} \times M_{m+1}$. Let $p = (p_{\mathcal{M}}, p_{M_{m+1}}) \in \mathcal{M} \times M_{m+1}$, then there exists a $N + n_{m+1}$ dimensional coordinate chart with domain $U = U_{\mathcal{M}} \times U_{M_{m+1}}$ and mapping $\varphi = (\varphi_{\mathcal{M}}, \varphi_{M_{m+1}}) : U \to \mathbb{R}^{N+n_{m+1}}$ defined as

$$\varphi\left(p\right) = \left(\varphi_{\mathcal{M}}\left(p_{\mathcal{M}}\right), \varphi_{M_{m+1}}\left(p_{M_{m+1}}\right)\right).$$

We have shown that $\mathcal{M} \times M_{m+1}$ is a Hausdorff, second countable topological space such that for all $p \in \mathcal{M} \times M_{m+1}$ there exists an $N+n_{m+1}$ dimensional coordinate chart. Therefore $\mathcal{M} \times M_{m+1}$ is an $N+n_{m+1}$ dimensional topological manifold. Thus by induction, $M_1 \times \cdots \times M_k$ is a topological manifold of dimension $n_1 + \cdots + n_k$.

We can use this fact to show that the n-torus $\mathbb{T}^n = S_1^1 \times \cdots \times S_n^1$ is an n-dimensional topological manifold. Since S^1 is

a topological manifold of dimension 1, then \mathbb{T}^n is a topological manifold of dimension n.

Exercise 2. Show that if M is a smooth manifold and $f: M \to \mathbb{R}^k$ is a smooth function. Then $f \circ \varphi^{-1}$ is smooth for all charts (U, φ) of M.

Proof: We suppose directly that M is a smooth manifold and $f:M\to\mathbb{R}^k$ is a smooth function. By definition, since f is smooth, then for every $p\in M$, there exists a chart (U_i,φ_i) on M containing p and a chart (V_i,ψ_i) on \mathbb{R}^k containing f(p) such that $f(U_i)\subseteq V_i$ and $\psi_i\circ f\circ \varphi_i^{-1}:\varphi_i(U_i)\to \psi_i(V_i)$ is smooth. Since \mathbb{R}^k is Euclidean, the maximal atlas is a single chart (\mathbb{R}^k,I) with the function being the identity function. Therefore, we can simplify the map $\psi_i\circ f\circ \varphi_i^{-1}:\varphi_i(U_i)\to \psi_i(V_i)$ to $f\circ \varphi_i^{-1}:\varphi_i(U_i)\to V_i$. This means that $f\circ \varphi_i^{-1}$ is smooth for every chart.

Exercise 3. Let M_1, \ldots, M_k and N be smooth manifolds. Show that $f: N \to M_1 \times \cdots \times M_k$ is smooth if an only if each component function is smooth $(\pi_i \circ f: N \to M_i)$.

Proof: Since this is a biconditional statement, we must show both ways. Let $\mathcal{M} = M_1 \times \cdots \times M_k$

 $(\Longrightarrow): \text{We assume directly that } f: N \to M_1 \times \cdots \times M_k$ is smooth, then for every $p \in N$, there exists a chart (U, φ) on N containing p and a chart (V, ψ) on $\mathcal M$ containing f(p) such that $f(U) \subseteq V$ and $\psi \circ f \circ \varphi^{-1}: \varphi(U) \to \psi(V)$ is smooth. The subset V can be represented as $V = V_1 \times \cdots \times V_k$ where $V_i \subseteq M_i$ and the mapping ψ has a smooth inverse ψ^{-1} which can be represented as $\psi^{-1} = \left(\psi_1^{-1}, \ldots, \psi_k^{-1}\right)$ where $\psi_i^{-1}: \psi(V) \to M_i$. Since $\psi \circ f \circ \varphi^{-1}: \varphi(U) \to \psi(V)$ is smooth, we know that

$$\psi \circ \psi^{-1} \circ \psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$$

is also smooth. Let $\Pi=\psi^{-1}\circ\psi\circ f:N\to M$, then Π is smooth and can be represented as $\Pi=(\Pi_i,\dots,\Pi_k)$ where $\Pi_i=\psi_i^{-1}\circ\psi\circ f:N\to M_i.$ Since Π is smooth, then Π_i is smooth. Therefore, $(\pi_i\circ f:N\to M_i)$ is smooth for each component.

 (\longleftarrow) : We assume directly that each component function is smooth $(\pi_i \circ f: N \to M_i)$. Then for every $p \in N$, there exists a chart (U,φ) on N containing p and a chart (V_i,ψ_i) on M_i containing $\pi_i \circ f(p)$ such that $\pi_i \circ f(U) \subseteq V_i$ and $\psi_i \circ \pi_i \circ f \circ \varphi^{-1} : \varphi(U) \to \psi_i(V_i)$ is smooth. From exercise 1, we showed that $M_1 \times \cdots \times M_k$ is a topological manifold with charts (V,ψ) where $V=V_i \times \cdots \times V_k$ and $\psi=(\psi_1,\ldots,\psi_k)$. Since each ψ_i is smooth and compatible, then each ψ is smooth and compatible; therefore, \mathcal{M} is a smooth manifold. We can then take each component function to form a new function

$$\psi \circ f \circ \varphi^{-1} = (\psi_1 \circ \pi_1 \circ f \circ \varphi^{-1}, \dots, \psi_k \circ \pi_k \circ f \circ \varphi^{-1}) : \varphi(U) \to \psi(V)$$

1

which is smooth because each of its componentes is smooth.

Exercise 4. Let $f:M\to N$ be a homeomorphism between topological manifolds. Assume that N is a smooth manifold. Use f to pullback the smooth structure on N to a smooth structure on M.

Let (U_i, φ_i) be the smooth charts on N which constitute a maximal atlas, then any two charts (U_j, φ_j) and (U_k, φ_k) such that $U_j \cap U_k \neq \emptyset$ are compatible and the map $\varphi_j \circ \varphi_k^{-1}$: $\varphi_k (U_k) \to \varphi_j (U_j)$ is smooth. Since f is a homeomorphism, its inverse is also a homeomorphism. This allows us to constuct the map

$$\varphi_{j} \circ f \circ f^{-1} \circ \varphi_{k} : \varphi_{k} (U_{k}) \to \varphi_{j} (U_{j})$$

which is also smooth. Let $\varphi_i \circ f = \psi_i$, then the above map can be simplified to $\psi_j \circ \psi_k^{-1} : \varphi_k \left(U_k \right) \to \varphi_j \left(U_j \right)$ which is smooth. Since f is a homeomorphism, $f^{-1} \left(U_i \right) = V_i$ is also an open set. We can then write the above map as

$$\psi_j \circ \psi_k^{-1} : \varphi_k \circ f(V_k) \to \varphi_j \circ f(V_j),$$

which is smooth. Thus we have the smooth charts (V_i, ψ_i) on M where $V_i = f^{-1}(U_i)$ and $\psi_i = \varphi_i \circ f$.