

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE FITTING AND MACHINING THEORY N2

1 AUGUST 2019

This marking guideline consists of 9 pages.

Copyright reserved Please turn over

QUESTION 1: OCCUPATIONAL SAFETY

1.1 1.1.1 D 1.1.2 Ε 1.1.3 Α 1.1.4 В 1.1.5 C

 (5×1)

OR

1.2 1.2.1 F 1.2.2 D 1.2.3 В

1.2.4 Α 1.2.5 C

> (5×1) [5]

QUESTION 2: COUPLINGS

2.1 2.1.1 Permanent/Fixed/Rigid coupling

> 2.1.2 Flexible or self-aligning couplings

> > (2×1) (2)

2.2 2.2.1 Fluid drive coupling (1)

2.2.2 Permanent/Fixed/Rigid coupling

2.2.3 A – driving member (pump/impeller) (2)

B – driven member (turbine)

[6]

(1)

QUESTION 3: LIMITS AND FITS

3.1 40,030 mm (1)

3.2 40,035 mm (1)

3.3 39,980 mm (1)

3.4 Maximum allowance = (40 + 0.035 mm) - (40 - 0.020 mm) $=40,035-39,98\checkmark$ = 0,055 mm√ (2)

3.5 Minimum allowance = (40 + 0.030 mm) - (40 - 0.010 mm) $=40,030-39,99\checkmark$ = 0.04 mm√

Copyright reserved Please turn over

FITTING AND MACHINING N2

QUESTION 4: BEARINGS

4.1	A bearing is a device designed to reduce friction between two parts of a machine, one stationary and the other rotating.		
4.2	 White metal Cast iron Bronze Nylon Teflon (Any 4 × 1) 	(4) [5]	
QUES	TION 5 : LUBRICATION AND VALVES		
5.1	 Siphon-wick lubricator Sight-feed lubricator Needle lubricator (3 × 1) 	(3)	
5.2	When a fluid flows through a foot valve, the flap of the foot valve opens ✓ and allows the fluid to flow.✓ If the flow of the fluid is reversed, the flap closes and does not allow the fluid to flow back.✓		
QUES	TION 6: PACKING, STUFFING BOXES, JOINTS AND WATER PIPE SYSTEMS		
6.1	 Pressure within the pipe Nature of fluid medium Temperature of fluid Environmental conditions (4 × 1) 	(4)	
6.2	The wedge design prevents steam from escaping by applying a light pressure on the piston rod.		
6.3	 Plastic piping is relatively cheap Easy to handle due to its light weight No machining required Good insulator when used with electricity Combining pipes is very easy 	(4)	
	• Corrosion resistant (Any 4 × 1)	(4) [9]	

Copyright reserved Please turn over

FITTING AND MACHINING N2

QUESTION 7: PUMPS

7.1	7.1.1	Single acting pump		
	7.1.2	Double acting pump		
	7.1.3	Piston pump	(3 × 1)	(3)
7.2	Vane	pump al screw gear pump type pump ble impeller pump	(Any 3 × 1)	(3) [6]
QUES	STION 8: CO	OMPRESSORS		
B – D C – V	ir intake iffuser ring olute casing npeller eye		(4 × 1)	[4]
QUES		V-BELTS, GEAR DRIVES, CHAIN DR GEARBOXES	,	
9.1	Chair	n drives		
	GearBelt of		(Any 2 × 1)	(2)
9.2	The defl	ection should be 16 mm for every meter of	span.	(1)
9.3	To inTo ch	ansmit high power crease speed and reduce torque or vice ve aange the direction of drive n space is limited	ersa (Any 3 × 1)	(3)
9.4	9.4.1	Ensure that bearings are well lubricated	l.	(1)
	9.4.2	Measure the sag and adjust if it is too la	arge	(1)
9.5		speed of the motor would be too fast. heavy load put onto the motor would cause the motor to stop rotating.		(2)
9.6	• Doub	e-reduction gearbox le-reduction gearbox		
	• VVorn	n and worm-wheel gearbox	(Any 2 × 1)	(2) [12]

Copyright reserved Please turn over

TOTAL SECTION A:

60

-5-FITTING AND MACHINING N2

SECTION B (Any TWO answers)

QUESTION 10: HYDRAULICS AND PNEUMATICS

- 10.1 Power transmission
 - Lubrication
 - Cooling
 - Prevents corrosion
 - Removes dirt (Any 3 × 1) (3)

10.2.2

 (3×1) (3)

- 10.3 10.3.1 Provides mechanical energy to the hydraulic fluid.
 - 10.3.2 It protects the system from experiencing excessive pressure.
 - 10.3.3 Stores hydraulic fluid until it is required.

 $(3 \times 1) \qquad (3)$

- 10.4 Control valve (1)
- 10.5 10.5.1 Non-return valve 10.5.2 Compressor
 - 10.5.3 Pneumatic motor
 - 10.5.4 Pressurised receiver
 - 10.5.5 Single acting cylinder or cylinder

 $(5 \times 1) \tag{5}$

10.6 10.6.1 False 10.6.2 True 10.6.3 True

 $(3 \times 1) \qquad (3)$

- Not affected by dust or corrosive atmospheres
 - Can be used in damp and inflammable conditions

(2) **[20]**

Copyright reserved

-6-FITTING AND MACHINING N2

QUESTION 11: CENTRE LATHES

- Used to support long work pieces on a centre lathe
 - Used for turning long, small diameter shafts on a centre lathe
 - Used to support a square bar on the centre lathe (Any 2 x 1) (2)
- 11.2 11.2.1 Travelling steady
 - 11.2.2 Fixed steady

$$(2 \times 1) \qquad (2)$$

- 11.3 Angle that the thread makes with a line perpendicular to the axis of the thread (1)
- 11.4 11.4.1 Lead = No. of starts \times Pitch of thread = 3×10 = $30 \text{ mm} \checkmark$

$$\tan\theta = \frac{Lead}{\pi Dm}$$

$$=\frac{30}{\pi \times 155}\checkmark$$

$$= 0.0616$$

$$\theta = 3^{\circ} 31' \checkmark \tag{3}$$

- 11.4.2 Leading tool angle = 90° (Helix angle + Clearance angle) = 90° – $(3^{\circ}31' + 3^{\circ})\checkmark$ = 90° – $(6^{\circ}31')$ = $83^{\circ}29'\checkmark$ (2)
- 11.4.3 Following tool angle

$$= 90^{\circ} + (Helix \ angle - Clearance \ angle)$$

$$=90^{\circ} + (3^{\circ}31' - 3^{\circ}) \checkmark$$

$$= 90^{\circ} + (0^{\circ}31')$$

$$=90^{\circ}31'\checkmark$$
 (2)

Copyright reserved

11.5 N = 24 r/sec

 $N = 24 \times 60$

 $N = 1440 \, r/min \checkmark$

 $V = \pi DN$

$$= \pi \times 0.02 \times 1440 \checkmark$$

$$N = 90.478 \ m/min \checkmark$$
(3)

11.6 $L = f \times N \times t$

$$f = \frac{L}{N \times t} \checkmark$$
700

$$f = 0.36 \, mm/rev \checkmark \tag{3}$$

11.7 11.7.1 G-commands

QUESTION 12: MILLING MACHINES AND SURFACE GRINDERS

- 12.1 Used to indicate the fraction of a turn in the holes on a specific hole-circle. (1)
- 12.2 The Cincinnati index plate has holes on both sides so it is reversible ✓ whereas the Brown and Sharp system has three loose plates with different hole-circles on each plate. ✓ (2)
- 12.3 Slab milling cutter or rose cutter (1)

Indexing = 4 full turns of the crank handle and 12 holes in a 16-hole circle OR
4 full turns of the crank handle and 15 holes in a 20-hole circle (7)

Copyright reserved Please turn over

-9-FITTING AND MACHINING N2

12.5	HelpsReductEasierImproveProvide	nts the continuous forming of shavings in the removal of shavings ces chattering flow of coolant ves the finish on the workpiece les a better cutting action economical on power consumptions (Any 4 × 1)	(4)
12.6	12.6.1	Grit size refers to the actual size of the abrasive particles	
	12.6.2	Grade of the grinding wheel refers to the strength of the bond which holds the abrasive grains in place	
	12.6.3	The structure of the wheel refers to the spacing of the grit in the wheel	
	12.6.4	The structure number indicates the structure of the grinding wheel $)4 \times 1)$	(4)
12.7	Produces	s a flat surface which is smooth and accurate	(1) [20]
		TOTAL SECTION B: GRAND TOTAL:	40 100

Copyright reserved