المتجهات في الفضاء

I)- تساوي متجهتين – جمع المتجهات

1- عناصر متحمة

: و \vec{u} بالرمز \vec{u} بالرمز \vec{u} و \vec{u} نقطتين مختلفتين من الفضاء، إذا رمزنا للمتجهة

- (AB) اتجاه \vec{u} هو اتجاه المستقيم \bullet
- B منحى \vec{u} هو المنحى من \vec{u}
- $AB = \|\vec{u}\|$ و نكتب: AB هي المسافة B و نكتب: •

ملحوظة: لكل نقطة A من الفضاء المتجهة \overrightarrow{AA} ليس لها اتجاه و منظمها منعدم.

 $\overrightarrow{AA} = \overrightarrow{0}$ تسمى المتجهة المنعدمة و نكتب \overrightarrow{AA}

تكون متجهتان متساويتان اذا كان لهما نفس الاتجاه و نفس المنحى و نفس المنظم

لكل متجهة \vec{u} من الفضاء و لكل نقطة A في الفضاء توجد نقطة وحيدة M حيث $\vec{u}=\overline{AM}$

خاصية

رباعيا في الفضاء ABCD

 $\overrightarrow{AB} = \overrightarrow{DC}$ متوازي الأضلاع إذا وفقط إذا كان ABCD

خاصىة

لتكن A و B و C و D أربع نقط من الفضاء

(تبدیل الوسطین) $\overrightarrow{AC} = \overrightarrow{BD}$ إذا وفقط إذا كان $\overrightarrow{AB} = \overrightarrow{CD}$

(تبدیل الطرفین) $\overrightarrow{DB} = \overrightarrow{CA}$ إذا وفقط إذا كان $\overrightarrow{AB} = \overrightarrow{CD}$

متجهتان في الفضاء \vec{v} متجهتان أي \vec{u} أنقطة من الفضاء،

 $\overrightarrow{AB} = \overrightarrow{u}$ توجد نقطة وحيدة \overrightarrow{B} حيث $\overrightarrow{BC} = \overrightarrow{v}$ توجد نقطة وحيدة $\overrightarrow{BC} = \overrightarrow{v}$

النقطتان A و C تحددان متجهة \longrightarrow

 $\vec{w} = \overrightarrow{AC}$ وحيدة

المتجهة \vec{w} هي مجموع المتجهتين \vec{v} و \vec{v}

 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$ نکتب

ب- علاقة شال

مهما كانت النقط A و B و \overline{A} من الفضاء $\overline{AC}=\overline{AB}+\overline{BC}$

لتكن O و MوN و R أربع نقط من الفضاء \overline{OM} لنا ختيا الناكان \overline{OM}

متوازي الأضلاع $\overrightarrow{OM} + \overrightarrow{ON} = \overrightarrow{OR}$ إذا وفقط إذا كان $\overrightarrow{OM} + \overrightarrow{ON} = \overrightarrow{OR}$

ملاحظة: اذا كانت $\vec{v}=ON$ و $\vec{u}=OM$ فان ملاحظة: اذا كانت $\vec{v}=ON$ متوازي الأضلاع $\vec{u}+\vec{v}=\overrightarrow{OR}$

ج- خاصیات

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 و \vec{v} و \vec{v} -*

$$\left(\vec{u}+\vec{v}\right)+\vec{w}=\vec{u}+\left(\vec{v}+\vec{w}\right)$$
 و \vec{v} و \vec{v} و \vec{v} -*

$$\vec{u}+\vec{0}=\vec{0}+\vec{u}=\vec{u}$$
 لکل متجهة \vec{u} -*

مقابل متجهة - فرق متجهتين

أ- مقابلٌ متجهَّة

لتكن $ec{u}$ متجهة غير منعدمة في الفضاء

مقابل المتجهة \vec{u} هي المتجهة التي لها نفس الاتجاه و نفس المنظم و منحاها مضاد لمنحى المتجهة \vec{u} نرمز لها بالرمز

$$\vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = \vec{0}$$
 : \vec{u} متجهة *-*

$$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$$
 لكل نقطتين A و B من المستوى لدينا *

 $\overrightarrow{AB} = -\overrightarrow{BA}$ المتجهتان \overrightarrow{AB} و \overrightarrow{AB} متقابلتان نکتب

ب- فرق متجهتین

تعریف

$$ec{u}-ec{v}=ec{u}+\left(-ec{v}
ight)$$
 لکل متجهتین $ec{u}$ و $ec{v}$

 $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$ لكل ثلاث نقط A و B و B

ABCDEFGH مكعب

$$\overrightarrow{ED} + \overrightarrow{EF} = \overrightarrow{EC}$$
 $\overrightarrow{BC} = -\overrightarrow{HE}$

 $\overrightarrow{AB} = \overrightarrow{HG}$ منتصف قطعة -4

$$(\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0})$$
 $\overrightarrow{AI} = \overrightarrow{IB}$ كان I

II) الاستقامية– التعريف المتجهي للمستقيم

1- ضرب متجهة في عدد حقيقي

تعريف

متجهة غير منعدمة و k عدد حقيقي غير منعدم \vec{u} : حيث $k\vec{u}$ في العدد الحقيقي k هي المتجهة \vec{u} حيث

و $kec{u}$ لهما نفس الاتجاه $ec{u}$ *

kü

k>0

 $||k\vec{u}|| = |k| \times ||\vec{u}|| *$

 $k\succ 0$ منحی \vec{u} إذا كان

منحی $kec{u}$ هو *

 $k \prec 0$ عکس منحی \vec{u} إذا کان lacktriangle

 $k \succ 0$

 $k\cdot \vec{0}=\vec{0}$ و لکل عدد حقیقی $k\cdot \vec{0}=\vec{0}$ و لکل عدد حقیقی *

ū

مهما تكن المتجهتان $ec{u}$ و مهما يكن العددان الحقيقيان lpha و $ec{v}$ فان

$$(\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{v} \qquad \qquad \alpha(\vec{u} + \vec{v}) = \alpha\vec{u} + \alpha\vec{v}$$

$$(\alpha\beta)\vec{u} = \alpha(\beta\vec{u}) \qquad 1 \cdot \vec{u} = \vec{u}$$

 $ec{u}=ec{0}$ أو lpha=0 أو $lphaec{u}=ec{0}$

3- الاستقامية

استقامية متجهتين

أ- تعريف

تكون متجهتان $ec{v}$ و $ec{v}$ مستقيميتين إذا و فقط كانت احداهما جداء الأخرى في عدد حقيقي

ملاحظة

مستقيمية مع أية متجهة $ec{0}$

استقامية ثلاث نقط

ىرىف

 $A \neq B$ لتكن A و B و C نقطا من الفضاء حيث

 $\overrightarrow{AC} = \alpha \overrightarrow{AB}$ حيث α حيث و A مستقيمية إذا وفقط إذا وجد عدد حقيقي α حيث A

توازي مستقيمين

$$C
eq D$$
 و $A \neq B$ الفضاء حيث $A \neq B$ و $C \neq D$ لتكن $A \neq B$ و $C \neq D$ ليكن $C \neq B$ الفضاء حيث $C \neq D$ و $C \neq B$ الفضاء حيث $C \neq D$ الفضاء $C \neq D$ الفضاء $C \neq D$ الفضاء $C \neq D$ الفضاء حيث $C \neq D$ الفضاء $C \neq D$

التعريف المتجهي لمستقيم في الفضاء

نعريف

لتكن A و B نقطتين مختلفتين من الفضاء \overline{AB} كل متجهة \overline{u} غير منعدمة و مستقيمية مع المتجهة تسمى متجهة موجهم للمستقيم (AB)

لتكن A نقطة من الفضاء و \vec{u} متجهة غير منعدمة $lpha\in\mathbb{R}$ و $\overrightarrow{AM}=lpha \vec{u}$ حيث \vec{u} من الفضاء حيث \vec{u} من الفضاء من \vec{u} و الموجه بالرمز له بالرمز $D(A;\vec{u})$

$$D(A; \vec{u}) = \left\{ M \in (E) / \overrightarrow{AM} = \alpha \vec{u} \quad ; \quad \alpha \in \mathbb{R} \right\}$$

تمرين

 $\overrightarrow{AD} = \overrightarrow{j}$ و $\overrightarrow{AB} = \overrightarrow{i}$ مكعبا نضع $\overrightarrow{AB} = \overrightarrow{i}$ و

$$[HG]$$
 و $\vec{AE} = \vec{k}$ و $\vec{AE} = \vec{k}$ و $\vec{AE} = \vec{k}$

(AI) بين أن \vec{u} موجهة للمستقيم -1

يث المستقيم (Δ) المار من G و الموازي للمستقيم (AI) و M نقطة من الفضاء حيث -2

الجواب

(AI) نبين أن \vec{u} موجهة للمستقيم -1

أي نبين أن \overrightarrow{AI} و \overrightarrow{u} مستقيميتين

$$\overrightarrow{HI} = \frac{1}{2}\overrightarrow{HG}$$
 ومنه $[HG]$ لدينا

$$\overrightarrow{AI} = \overrightarrow{AE} + \overrightarrow{EH} + \overrightarrow{HI} = \overrightarrow{AE} + \overrightarrow{EH} + \frac{1}{2}\overrightarrow{HG}$$

$$\overrightarrow{HG}=\overrightarrow{AB}=\overrightarrow{i}$$
 و $\overrightarrow{EH}=\overrightarrow{AD}=\overrightarrow{j}$ مکعب فان $\overrightarrow{ABCDEFGH}$ ومنه $\overrightarrow{AI}=\overrightarrow{k}+\overrightarrow{j}+\frac{1}{2}\overrightarrow{i}=\frac{1}{2}(\overrightarrow{i}+2\overrightarrow{j}+2\overrightarrow{k})=\frac{1}{2}\overrightarrow{u}$ ومنه

(AI) ومنه \vec{u} مستقيميتان و منه \vec{u} موجهة للمستقيم إذن

 $M\in ig(\Deltaig)$ نبين أن 2

 $\left(\Delta\right) = D\left(G; \vec{u} \, \right)$ المار من G و الموازي للمستقيم $\left(\Delta I \, \right)$ أي

$$\overrightarrow{GM} = \overrightarrow{GF} + \overrightarrow{FB} + \overrightarrow{BM} = \overrightarrow{GF} + \overrightarrow{FB} + \frac{1}{2}\overrightarrow{AB} + 2\overrightarrow{BG} = \overrightarrow{GF} + \overrightarrow{FB} + \frac{1}{2}\overrightarrow{AB} + 2\overrightarrow{BC} + 2\overrightarrow{CG}$$

 $\overrightarrow{BC}=\overrightarrow{j}$ و $\overrightarrow{CG}=\overrightarrow{k}$ و $\overrightarrow{FB}=-\overrightarrow{AE}=-\overrightarrow{k}$ و $\overrightarrow{GF}=-\overrightarrow{AD}=-\overrightarrow{j}$ و مكعب فان ABCDEFGH

$$\overrightarrow{GM} = -\vec{j} - \vec{k} + \frac{1}{2}i + 2\vec{j} + 2\vec{k} = \frac{1}{2}\vec{i} + \vec{j} + \vec{k} = \frac{1}{2}(\vec{i} + 2\vec{j} + \vec{k}) = \frac{1}{2}\vec{u}$$

 $M \in (\Delta)$ إذن $M \in D(G; \vec{u})$ و بالتالي

III) الاستوائية– التعريف المتجهي للمستوى

- تعریف

ليكن (P) مستوى من الفضاء و A و B و نقط غير مستقيمية من المستوى (P)

نقول إن (P) هو المستوى المار من (P) و الموجه بالمتجهتين \overrightarrow{AB} و \overrightarrow{AB}

نتيجة

متجهتان $ec{u}$ و $ec{v}$ غير مستقيميتين و نقطة من الفضاء تحدد مستوى وحيدا (P) هو المستوى المار من النقطة $P(A;ec{u};ec{v})$. الموجه بالمتجهتين $ec{u}$ و $ec{v}$ نرمز له بالرمز

خاصية

لتكن \vec{v} و \vec{v} متجهتين غير مستقيميتين و \vec{u} نقطة من الفضاء.

مجموعة النقط M من الفضاء حيث M من النقط M من الفضاء حيث A و الموجه A هي المستوى A المار من A و الموجه بالمتجهتين A و نكتب A

تع ىف

لتكن \vec{u} و \vec{v} و \vec{w} ثلاث متجهات في الفضاء نقول إن المتجهات \vec{u} و \vec{v} و \vec{v} مستوائية اذا وفقط وجدت أربع نقط مستوائية \vec{A} و \vec{B} و \vec{C} و \vec{C} حيث $\vec{A}\vec{D}=\vec{w}$ و $\vec{A}\vec{C}=\vec{v}$

أمثلة

متوازي المستطيلات ABCDEFGH متوازي \overrightarrow{BH} و \overrightarrow{BC} و \overrightarrow{BE} مستوائية لان النقط \overrightarrow{BE}

igl[(BC)//(EH)igr] و E و E مستوائية \overline{BD} و \overline{BH} و \overline{BB} غير مستوائية لأن \overline{BD} رباعي الأوجه

لتكن \vec{v} و \vec{v} متجهتين غير مستقيميتين و \vec{w} متجهة في الفضاء المتحهات \vec{v} و \vec{v} مستوائية إذا وفقط إذا وجد عددين حقيقيين \vec{v} و \vec{v} و عدد \vec{v} و \vec{v} حيث \vec{v} = \vec{v} \vec{v} = \vec{v} \vec{v} + \vec{v} \vec{v}

نتيجة

M و C و B فان A فان A و A فان A و A و A و A و A و A و A و A و A و A مستوائیة

تمرين

هرم قاعدته المستطيل ABCD هرم قاعدته المستطيل I ، ABCD هرم قاعدته المستطيل EABCD

بين أن المتجهات \overrightarrow{IJ} و \overrightarrow{AB} و مستوائية

الحل

 $\overrightarrow{IJ}=\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}$: فان [BC و حيث I و I فان

$$\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{BC} \quad \overrightarrow{IA} = \frac{1}{2}\overrightarrow{EA}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EA} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} \quad \overrightarrow{BC}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \frac{1}{2}\overrightarrow{CA} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} \quad \overrightarrow{BC}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BA}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB} \quad \overrightarrow{AB} \quad \overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \frac{1}{2}\overrightarrow{AB} \quad \overrightarrow{AB} \quad \overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} \quad \overrightarrow{AB} \quad \overrightarrow{BC} \quad \overrightarrow{AB} \quad \overrightarrow{AB} \quad \overrightarrow{BC} \quad \overrightarrow{AB} \quad \overrightarrow$$