Gamma Function:

If m and n are non-negative integers, then

$$\int_0^{\pi/2} \sin^m x \cos^n x dx = \frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{m+n+2}{2}\right)}$$

where $\Gamma(n)$ is called gamma function which satisfied the following properties

$$\Gamma(n+1) = n\Gamma(n) = n!$$
 i.e. $\Gamma(1) = 1$ and $\Gamma(1/2) = \sqrt{\pi}$

Evaluate $\int_{0}^{\infty} x^{1/4} e^{-\sqrt{x}} dx$ (a) $2\sqrt{\pi}$ Q.1.

(a)
$$2\sqrt{\pi}$$

(b)
$$\frac{3}{2}\pi$$

(d)
$$\frac{3}{2}\sqrt{\pi}$$

Q2.

If $I_n = \int_0^\infty e^{-x} x^{n-1} dx$, then $\int_0^\infty e^{-\lambda x} x^{n-1} dx$ is equal to

(a) λI_n

(b) $\frac{1}{\lambda}I_n$

(c) $\frac{I_n}{\lambda^n}$

(d) $\chi^n I_n$

Q.3. Let a,b be positive real numbers such that a < b Given that

$$\lim_{n\to\infty}\int_0^n e^{-t^2}dt = \frac{\sqrt{\pi}}{2} \text{ Then value of } \lim_{n\to\infty}\int_0^n \frac{1}{t^2} \left(e^{-at^2} - e^{-bt^2}\right)dt \text{ is }$$

ПТ JAM 2022

(a)
$$\sqrt{\pi} \left(\sqrt{b} - \sqrt{a} \right)$$

(b)
$$\sqrt{\pi} \left(\sqrt{b} + \sqrt{a} \right)$$

(a)
$$\sqrt{\pi} \left(\sqrt{b} - \sqrt{a} \right)$$
 (b) $\sqrt{\pi} \left(\sqrt{b} + \sqrt{a} \right)$ (c) $-\sqrt{\pi} \left(\sqrt{b} - \sqrt{a} \right)$ (d) $\sqrt{\pi} \left(-\sqrt{b} + \sqrt{a} \right)$

(d)
$$\sqrt{\pi} \left(-\sqrt{b} + \sqrt{a} \right)$$

Q4.

The value of $\int_0^{\pi/2} \sin^4 x \cos^6 x dx$

(a) $3\pi/312$

- (b) $5\pi/512$
- (c) $3\pi/512$

(d) $5\pi/312$

Q5.

$$\int_0^{\pi/2} \sin^7 x dx \text{ has value}$$

(a) $\frac{37}{184}$

(b) $\frac{17}{45}$

(c) $\frac{16}{35}$

(d) $\frac{16}{45}$

Tracing of curve

- (1) Tracing of cartisiancurve:
 - (a) Symmetric:
- (i) If f(x, y) be a given curve and the power of x is even then it is symmetric about y- axis.
 - (ii) If f(x, y) be a given curve and the power of y is even power then it is symmetric about x-axis.
 - (iii) If power of x & y both even then this curve is symmetric about x & y axis.

(b) Curve passing through origin:

If f(x, y) be a given curve and f(0, 0) = 0 then this curve passes through origin.

(c) Intersection with coordinate axis:

- If we put y = 0 in given curve then we get intersection point of curve and x-axis.
- (ii) If we put x = 0 in given curve we get intersection point of curve and y-axis

(d) **Asymtote**:

If f(x, y) is a curve

- (i) At x = a, if we get $y = \infty$, then Asymtote is parallel to y-axis.
- (ii) At y = a, if we get x = ∞, then Asymtote is parallel to x-axis.

Curve tracing of polar form:

(1) Symmetry:

(i) If $f(r, \theta) = f(r, -\theta)$

Then this curve is symmetric about initially line (i.e. $\theta = 0$ line)

(ii) If $f(r, \theta) = f(r, \pi - \theta)$

Then this curve is symmetric about $\theta = \frac{\pi}{2}$

line.

- (iii) Pole: Put r = 0, then find value of θ . Hence (r, θ) is a pole.
- (iv) Tangent at pole: Put r = 0, then value of θ is tangent at pole.

(v) Table:

r			-	2//	9				
θ	0	30	45	60	90	120	135	150	180

(vi) Asymtotes:

For any value of θ if r become ∞ , then a curve has asymtotes.

Q.1. The curve $ay^2 = x^2 (a - x)$ is passing through

(a)(0,1)

(b)(0,0)

(c)(1,0)

(d)(1,2)

Q.2. The cardiod $r = a(1 + \cos\theta)$ is symmetric about

(a)
$$\theta = 0$$
 line

(b)
$$\theta = \pi/4$$
 line

(c)
$$\theta = \pi/2$$
 line

(d) none of these

The tangent at origin of the curve $2y^2 = x^2(2 - x)$ is Q.3.

(a)
$$x = +2y$$
 and $x=-2y$ (b) $y = 2x$ and $y=-2x$

(b)
$$y = 2x$$
 and $y = -2x$

(c)
$$x = y$$
 and $x=-y$

(d) none of these