LÓGICA EI Mestrado Integrado em Engenharia Informática

Universidade do Minho

Dep. Matemática e Aplicações

2017/2018

Observação 165: As fórmulas do Cálculo de Predicados são construídas a partir das fórmulas atómicas (símbolos de relação "aplicados" a termos) e, por esta razão, as fórmulas atómicas desempenham papel semelhante ao das variáveis proposicionais no Cálculo Proposicional. Contudo, ao passo que no Cálculo Proposicional podemos atribuir "diretamente" um valor lógico a uma variável proposicional, a atribuição de valores lógicos às fórmulas atómicas é mais complexa.

Para atribuirmos valores lógicos a fórmulas atómicas, em particular, será necessário fixar previamente a interpretação dos termos.

Tal requer que indiquemos qual o universo de objetos (domínio de discurso) pretendido para a denotação dos termos (por exemplo, números naturais, conjuntos, etc.), bem como a interpretação pretendida quer para os símbolos de função do tipo de linguagem em questão (por exemplo, para indicar que tomando \mathbb{N}_0 por universo, o símbolo de função binário + denotará a operação de adição) quer para as variáveis de primeira ordem.

Para a interpretação das fórmulas atómicas, será ainda necessário fixar a interpretação dos símbolos de relação como relações entre objetos do domínio de discurso.

A indicação de qual o domínio de discurso pretendido e de quais as interpretações que deverão ser dadas aos diversos símbolos será efetuada através daquilo que designaremos por estrutura para um tipo de linguagem.

A interpretação de variáveis de primeira ordem será feita no contexto de um domínio de discurso, através daquilo a que chamaremos atribuições numa estrutura.

Um par (estrutura, atribuição) permitirá fixar o valor lógico de qualquer fórmula e, portanto, pode ser pensado como uma valoração, uma vez que estes pares desempenharão papel idêntico ao das valorações do Cálculo Proposicional.

ESTRUTURAS VALOR DE TERMO VALOR LÓGICO DE FÓRMULA

- **Definição 166**: Seja $L = (\mathcal{F}, \mathcal{R}, \mathcal{N})$ um tipo de linguagem. Uma estrutura de tipo L é um par $(D, \overline{(\cdot)})$ t.q.:
- a) D é um conjunto não vazio, chamado o domínio da estrutura;
- **b)** $\overline{(\cdot)}$ é uma função com domínio $\mathcal{F} \cup \mathcal{R}$, chamada a *(função de) interpretação da estrutura*, t.q.:
 - para cada constante c de L, \overline{c} é um elemento de D;
 - para cada símbolo de função f de L, de aridade $n \ge 1$, \overline{f} é uma função de tipo $D^n \longrightarrow D$;
 - para cada símbolo de relação R de L, de aridade n, \overline{R} é uma relação n-ária em D (i.e. $\overline{R} \subseteq D^n$).

Notação 167:

- Usaremos a letra E (possivelmente indexada) para denotar estruturas.
- Dada uma estrutura E, dom(E) denotará o domínio de E.

Exemplo 168:

- **a)** Seja $NATS = (\mathbb{N}_0, \overline{(\cdot)})$, onde:
 - 0 é o número zero;
 - \overline{s} é a função *sucessor* em \mathbb{N}_0 , *i.e.*, $\overline{s}:\mathbb{N}_0\longrightarrow\mathbb{N}_0$; $n\mapsto n+1$
 - ullet $\overline{+}$ $\acute{ ext{e}}$ a função adição em \mathbb{N}_0 , $\emph{i.e.}$, $\overline{+}: \mathbb{N}_0 imes \mathbb{N}_0 \longrightarrow \mathbb{N}_0$; $(m,n) \mapsto m+n$
 - $\bullet \ \overline{\times}$ é a função multiplicação em $\mathbb{N}_0,$ i.e.,

$$\overline{\times} : \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0 \\
(m, n) \mapsto m \times n$$

- $\bullet \ \equiv \acute{e}$ a relação de igualdade em $\mathbb{N}_0,$ i.e.,
 - $\equiv = \{(m,n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m = n\};$
- \leq é a relação *menor do que* em \mathbb{N}_0 , *i.e.*,
 - $\leq = \{(m, n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m < n\}.$

Então, *NATS* é uma estrutura de tipo *Arit*. Designaremos, por vezes, esta estrutura por *estrutura standard* de tipo *Arit*.

- **b)** O par $E_0 = (\{a, b\}, \overline{(\cdot)})$, onde:
 - 0 = a:
 - \overline{s} é a função $\{a,b\} \longrightarrow \{a,b\}$;
 - \mp é a função $\{a,b\} \times \{a,b\} \longrightarrow \{a,b\}$; $(x,y) \mapsto b$
 - $\overline{\times}$ é a função $\{a,b\} \times \{a,b\} \longrightarrow \{a,b\}$ $(x,y) \qquad \mapsto \begin{cases} a & \text{se } x = y \\ b & \text{se } x \neq y \end{cases}$

$$\bullet \equiv = \{(a,a),(b,b)\};$$

- \leq = {(a, b)}.

é também uma estrutura de tipo Arit

c) Existem $2 \times 4 \times 16 \times 16 \times 16 \times 16$ estruturas de tipo *Arit* cujo domínio é { a, b}. (Porquê?)

Definição 169: Seja E uma estrutura de tipo L. Uma função $\alpha: \mathcal{V} \longrightarrow dom(E)$ diz-se uma atribuição em E e o par (E,α) diz-se uma valoração de tipo L.

(Recorde que V é o conjunto das variáveis de primeira ordem.)

Exemplo 170: São atribuições em *NATS* as funções

- $\begin{array}{ccc} \bullet & \alpha_0 : \mathcal{V} & \longrightarrow & \mathbb{N}_0 \\ & \mathbf{x} & \mapsto & \mathbf{0} \end{array}$
- $\begin{array}{ccc} \bullet & \alpha_{ind} : \mathcal{V} & \longrightarrow & \mathbb{N}_0 \\ & \mathbf{x}_i & \mapsto & i \end{array}$

Definição 171: Sejam $L = (\mathcal{F}, \mathcal{R}, \mathcal{N})$ um tipo de linguagem e E uma estrutura de tipo L. Dada α uma atribuição em E, define-se

$$\overline{(\cdot)}_{\alpha}:\mathcal{T}_{\mathsf{L}}\longrightarrow \mathit{dom}(E)$$

por recursão estrutural do seguinte modo:

- a) $\overline{x}_{\alpha} = \alpha(x)$, para todo $x \in \mathcal{V}$;
- **b)** $\overline{c}_{\alpha} = \overline{c}$, para todo $c \in \mathcal{F}$ de aridade 0;
- c) $\overline{(f(t_1,...,t_n))}_{\alpha} = \overline{f}(\overline{(t_1)}_{\alpha},...,\overline{(t_n)}_{\alpha})$ para todo $f \in \mathcal{F}$ de aridade $n \ge 1$ e para todo $t_1,...,t_n \in \mathcal{T}_L$.

Dado $t \in \mathcal{T}_L$, \bar{t}_α diz-se o *valor de t* em E determinado por α .

Observação 172:

- A alínea a) da def. anterior diz que $\overline{(\cdot)}_{\alpha}$ é uma extensão de α .
- As alíneas b) e c) dizem, em particular, que $\overline{(\cdot)}$ de E também contribui para o valor de t.

Exemplo 173: Seja t o termo $s(0) \times (x_0 + x_2)$ de tipo Arit. Recorde as atribuições α_{ind} e α_0 em NATS definidas no Exemplo 170.

1 O valor de t determinado pela atribuição α_{ind} é

Observação: Compare o termo t com a expressão $(0+1) \times (0+2)$.

2 Já para a atribuição α_0 , o valor de t é 0. (Porquê?)

3 Considere-se agora a estrutura E_0 do Exemplo 168 e considere-se a seguinte atribuição nesta estrutura:

$$\begin{array}{ccc} \alpha: \mathcal{V} & \longrightarrow & \{a, b\} \\ x & \mapsto & b \end{array}$$

O valor de t determinado por α é:

Notação 174: Sejam α uma atribuição numa estrutura $E, d \in dom(E)$ e x uma variável. A função $\alpha': \mathcal{V} \longrightarrow dom(E)$ definida por:

$$\alpha'(y) = \begin{cases} d \text{ se } y = x \\ \alpha(y) \text{ se } y \neq x \end{cases}$$

é uma atribuição em E, denotada por $\alpha \begin{pmatrix} d \\ x \end{pmatrix}$.

Se
$$v = (E, \alpha)$$
 então $v \begin{pmatrix} d \\ x \end{pmatrix}$ denota $(E, \alpha \begin{pmatrix} d \\ x \end{pmatrix})$.

Observação: α e $\alpha \begin{pmatrix} a \\ x \end{pmatrix}$ diferem, no máximo, no valor que dão a x.

Exemplo 175: Recorde a atrubuição α_{ind} em *NATS* definida no Exemplo 170. $\alpha_{ind} \binom{1}{x_0}$ denota a atribuição em *NATS* definida por

$$lpha_{ind} \left(egin{array}{c} 1 \ x_0 \end{array}
ight) (x_i) = \left\{ egin{array}{c} 1 \ ext{se } i = 0 \ i \ ext{se } i
eq 0 \end{array}
ight.$$

Definição 176: Sejam L um tipo de linguagem e $E = (D, (\cdot))$ uma estrutura de tipo L. Dada α uma atribuição em E, define-se

$$\overline{(\cdot)}_\alpha:\mathcal{F}_L\longrightarrow\{0,1\}$$

por recursão estrutural do seguinte modo:

- **a)** $\overline{(R(t_1,...,t_n))}_{\alpha} = \begin{cases} 1 & \text{se } (\overline{(t_1)}_{\alpha},...,\overline{(t_n)}_{\alpha}) \in \overline{R} \\ 0 & \text{caso contrário} \end{cases}$, para todo $R \in L$ símbolo de relação n-ário, para todo $t_1,...,t_n \in \mathcal{T}_L$;
- **b)** $\perp_{\alpha} = 0;$
- c) $(\neg \varphi)_{\alpha} = v_{\neg}(\overline{\varphi}_{\alpha});$
- $\mathbf{d)} \ \overline{(\varphi \Box \psi)}_{\alpha} = \mathbf{\textit{v}}_{\Box}(\overline{\varphi}_{\alpha}, \overline{\psi}_{\alpha}), \quad \text{para todo } \Box \in \{\land, \lor, \rightarrow, \leftrightarrow\};$
- $\mathbf{e)} \ \overline{(\forall x \varphi)}_{\alpha} = \left\{ \begin{array}{ll} 1 & \text{se, para todo } d \in D, \overline{\varphi}_{\alpha'} = 1 \\ 0 & \text{caso contrário} \end{array} \right., \quad \text{onde } \alpha' = \alpha \left(\begin{array}{l} d \\ x \end{array} \right).$
- $\textbf{f)} \ \overline{(\exists x \varphi)}_{\alpha} = \left\{ \begin{array}{ll} 1 & \text{se existe } d \in D \text{ t.q. } \overline{\varphi}_{\alpha'} = 1 \\ 0 & \text{caso contrário} \end{array} \right., \quad \text{onde } \alpha' = \alpha \left(\begin{array}{l} d \\ x \end{array} \right).$

Dado $\varphi \in \mathcal{F}_L$, $\overline{\varphi}_{\alpha}$ diz-se o valor lógico de φ determinado por α .

Exemplo 177: Consideremos a estrutura Arit e seja α a atribuição α_{ind} em NATS definida no Exemplo 170. Consideremos as fórmulas

$$\varphi_1 = s(0) < x_2 \qquad \qquad \varphi_2 = \exists x_2(s(0) < x_2)
\varphi_3 = \forall x_2(s(0) < x_2) \qquad \qquad \varphi_4 = \forall x_1 \exists x_2(s(x_1) < x_2)$$

Vamos determinar $\overline{(\varphi_i)}_{\alpha}$, para i=1,2,3,4. A melhor forma de usar a Def. 176 é verificar se $\overline{(\varphi_i)}_{\alpha}=1$.

1

$$(\varphi_1)_{\alpha} = 1$$
sse $((\overline{s(0)})_{\alpha}, (\overline{x_2})_{\alpha}) \in \overline{<}$ (por def. de valor de fórmula)
sse $(1,2) \in \overline{<}$ (por def. de valor de termo)
sse $1 < 2$ (por def. de $\overline{<}$)

Ora, 1 < 2. Logo, $\overline{(\varphi_1)}_{\alpha} = 1$.

Observação: Compare φ_1 com a proposição "1 < 2".

existe $n \in \mathbb{N}_0$ t.q. 1 < n

sse

$$\overline{(\varphi_2)}_{\alpha} = 1$$
e existe $n \in \mathbb{N}_0$ t.q. $(\overline{(s(0))}_{\alpha'}, \overline{(x_2)}_{\alpha'}) \in \overline{<}$ (por def. valor de fórmula)
e existe $n \in \mathbb{N}_0$ t.q. $(1, n) \in \overline{<}$ (por def. valor de termo)

(por def. de \leq)

onde
$$\alpha' = \alpha \binom{n}{x_2}$$
. Ora, existe $n \in \mathbb{N}_0$ t.q. $1 < n$. Logo, $\overline{(\varphi_2)}_{\alpha} = 1$.

Observação: Compare φ_2 e "existe $n \in \mathbb{N}_0$ t.g. 1 < 2".

3 $\overline{(\varphi_3)}_{\alpha} = 0$ porque a proposição "para todo $n \in \mathbb{N}_0$, 1 < n" é falsa.

$$(\varphi_4)_{\alpha} = 1$$

sse para todo $n \in \mathbb{N}_0$, existe $m \in \mathbb{N}_0$ t.q. $(\overline{(s(x_1))}_{\alpha'}, \overline{(x_2)}_{\alpha'}) \in \mathbb{R}$
sse para todo $n \in \mathbb{N}_0$, existe $m \in \mathbb{N}_0$ t.q. $(n+1, m) \in \mathbb{R}$
sse para todo $n \in \mathbb{N}_0$, existe $m \in \mathbb{N}_0$ t.q. $n+1 < m$

onde
$$\alpha' = \alpha \binom{n}{x_1} \binom{m}{x_2}$$
. Logo $\overline{(\varphi_4)}_{\alpha} = 1$.

ALGUMAS PROPRIEDADES

- Vamos provar que, uma vez fixada uma estrutura, o valor de um termo (resp. de uma fórmula) depende apenas do valor das suas variáveis (resp. das suas variáveis livres).
- Vamos estabelecer como se relacionam os valores de t'[t/x] e de t', e como se relacionam os valores lógicos de φ[t/x] e de φ.

Proposição 178: Seja t um termo de tipo L e sejam α_1 e α_2 duas atribuições numa estrutura $E = (D, \overline{(\cdot)})$ do mesmo tipo. Se, para todo $x \in VAR(t)$, $\alpha_1(x) = \alpha_2(x)$, então $\overline{t}_{\alpha_1} = \overline{t}_{\alpha_2}$.

Dem.: Por indução estrutural em *t*. Exercício.

Proposição 179: Seja φ uma fórmula de tipo L e sejam α_1 e α_2 atribuições numa estrutura E do mesmo tipo. Se, para todo $x \in LIV(\varphi), \ \alpha_1(x) = \alpha_2(x), \ \text{então } \overline{\varphi}_{\alpha_1} = \overline{\varphi}_{\alpha_2}.$

Dem.: Por indução estrutural em φ . (Exercício.)

Observação 180: Se φ é fechada, E determina o valor lógico de φ .

Exemplo 181: Sejam
$$L = Arit e E = NATS$$
. Sejam

$$\varphi = \forall x_0 \ 0 = x_0$$
 $\psi = \forall x_0 (0 = x_0 \lor 0 < x_0)$

- Para toda a atribuição α em E, $\overline{\varphi}_{\alpha} = 0$
- Para toda a atribuição lpha em \emph{E} , $\overline{\psi}_{lpha}=$ 1

Proposição 182: Sejam t e t' termos de tipo L e seja α uma atribuição numa estrutura do mesmo tipo. Então, $\overline{(t'[t/x])_{\alpha}} = \overline{t'}_{\alpha'}$, onde $\alpha' = \alpha \left(\begin{array}{c} \overline{t}_{\alpha} \\ x \end{array} \right)$.

Dem.: Por indução estrutural em t'. (Exercício.)

Proposição 183: Sejam φ (resp. t) uma fórmula (resp. termo) de tipo L, $E=(D,\overline{(\cdot)})$ uma estrutura do mesmo tipo, α uma atribuição em E e x uma variável livre para t em φ . Então, $\overline{(\varphi[t/x])}_{\alpha}=\overline{\varphi}_{\alpha'}$, onde $\alpha'=\alpha\left(egin{array}{c} \overline{t}_{\alpha} \\ x \end{array}\right)$.

Dem.: Por indução estrutural em φ . Exercício.

SATISFAÇÃO MODELOS **Definição 184**: Seja $v=(E,\alpha)$ uma valoração de tipo L e seja φ uma fórmula do mesmo tipo. Se $\overline{\varphi}_{\alpha}=1$, dizemos que α satisfaz φ em E, ou que v satisfaz φ . Notação: v sat. φ .

A proposição seguinte estabelece as condições de satisfação.

Proposição 185: Seja $L=(\mathcal{F},\mathcal{R},\mathcal{N})$ um tipo de linguagem. Seja $R\in\mathcal{R}$ de aridade n. Sejam $v=(E,\alpha)$ uma valoração, φ,ψ fórmulas, t_1,\cdots,t_n termos, todos de tipo L. Então:

- **a)** v sat. $R(t_1, \dots, t_n)$ sse $(\overline{(t_1)}_{\alpha}, \dots, \overline{(t_n)}_{\alpha}) \in \overline{R}$.
- **b)** $v \text{ sat. } \perp \text{sse } (...) \text{ver Lógica Proposicional}$
- **c)** $v \text{ sat. } \neg \varphi \text{ sse } (...) \text{ ver Lógica Proposicional}$
- **d)** v sat. $(\varphi \Box \psi)$ sse (...) ver Lógica Proposicional
- **e)** v sat. $\forall x \varphi$ sse, para todo $d \in dom(E)$, $v \begin{pmatrix} d \\ x \end{pmatrix}$ sat. φ ;
- **f)** v sat. $\exists x \varphi$ sse existe $d \in dom(E)$ tal que $v \begin{pmatrix} d \\ x \end{pmatrix}$ sat. φ ;

Dem.: Consequência imediata das definições.

As condições de satisfação são uma alternativa conveniente à Def. 176.

Exemplo 186: Consideremos a estrutura E_0 de tipo Arit do Exemplo 168, com domínio $D = \{a, b\}$, e a atribuição α em E_0 tal que $\alpha(x) = b$, para todo x. Seja $v = (E_0, \alpha)$.

$$v$$
 sat. $\exists x_2 \ s(0) < x_2$
sse existe $d \in D$ t.q. $((s(0))_{\alpha'}, (x_2)_{\alpha'}) \in \overline{<}$ (pelas condições de satisfação)
sse existe $d \in D$ t.q. $(a, d) \in \overline{<}$ (por def. de valor de termo)
sse existe $d \in D$ t.q. $d = b$ (por def. de $\overline{<}$)

onde
$$\alpha' = \alpha \begin{pmatrix} a \\ x_2 \end{pmatrix}$$
.

Logo v sat. $\exists x_2 \ s(0) < x_2$, donde $\overline{(\exists x_2 \ s(0) < x_2)}_{\alpha} = 1$.

Definição 187: Seja L um tipo de linguagem. Sejam $\varphi \in \mathcal{F}_L$ e $\Gamma \subseteq \mathcal{F}_L$.

- Seja v = (E, a) uma valoração de tipo L.
 - Recordar que v satisfaz φ (Notação: v sat. φ) se $\overline{\varphi}_v = 1$.
 - Dizemos que v satisfaz Γ se, para todo $\psi \in \Gamma$, v sat. ψ . Notação: v sat. Γ .
- Dizemos que φ (resp. Γ) é satisfazível se existe valoração v de tipo L que satisfaz φ (resp. Γ).

Exemplo 188: Sejam L = Arit, E = NATS e α atribuição em E tal que $\alpha(x) = 0$, para todo $x \in \mathcal{V}$. Seja $v = (E, \alpha)$. Sejam

- v sat. $\varphi \lor \psi$ e v sat. $\forall x_0 (\varphi \lor \psi)$.
- v não sat. ψ , mas ψ é satisfazível.
- v não sat. $\forall x_0 \psi$, mas $\forall x_0 \psi$ é satisfazível.
- ν não sat. Γ, mas Γ é satisfazível.
- v não sat. Δ, aliás Δ não é satisfazível.

Definição 189: Seja L um tipo de linguagem. Sejam $\varphi \in \mathcal{F}_L$, $\Gamma \subseteq \mathcal{F}_L$ e E uma estrutura de tipo L.

- Dizemos que E é modelo de φ , ou que φ é verdadeira em E, se: para toda a atribuição α em E, (E, α) sat. φ . Notação: E mod. φ .
- Dizemos que E é modelo de Γ se, para todo ψ ∈ Γ, E mod. ψ.
 Notação: E mod. Γ.

Exemplo 190: Sejam L = Arit e E = NATS. Sejam

- Ou seja: $\varphi \lor \psi$ e $\forall x_0 (\varphi \lor \psi)$ são verdadeiras em E.

 E não mod. ψ , mas existe modelo de ψ .
- E não mod. ψ , mas existe modelo de ψ . Ou seja: ψ é falsa em E, mas existe estrutura onde ψ é verdadeira.
- E não mod. $\forall x_0 \psi$, mas existe modelo de $\forall x_0 \psi$.
- E não mod. Γ, mas existe modelo de Γ.

• $E \mod. \varphi \lor \psi$ e $E \mod. \forall x_0 (\varphi \lor \psi)$.

E não mod. Δ, aliás Δ não tem modelo.

Proposição 191: Seja L um tipo de linguagem. Sejam $\varphi \in \mathcal{F}_L$ e E uma estrutura de tipo L. As seguintes condições são equivalentes:

- **1** E mod. φ .
- **2** $E \mod. \forall x \varphi.$
- **3** $E \mod \varphi[t/x]$, para todo $t \in \mathcal{T}_L$.

Dem.: $1 \Rightarrow 2$: Fácil. $2 \Rightarrow 3$: usa a Proposição 183. $3 \Rightarrow 1$: Trivial.

Definição 192: Seja $\varphi \in \mathcal{F}_L$ tal que $LIV(\varphi) = \{y_1, \dots, y_n\}$. Então, $\forall y_1 \dots \forall y_n \varphi$ é uma fórmula fechada e diz-se um *fecho universal* de φ .

Observação: Os vários fechos de φ diferem na ordem escolhida para o prefixo de quantificadores universais. Veremos que essa ordem é irrelevante a menos de equivalência lógica.

Corolário 193: Seja $\forall y_1 \cdots \forall y_n \varphi$ um fecho universal de φ . Então $E \mod. \varphi$ sse $E \mod. \forall y_1 \cdots \forall y_n \varphi$.

Observação 194: Podemos explorar a relação entre estruturas e fórmulas e considerar

- O conjunto das fórmulas que são verdadeiras numa estrutura;
- A classe dos modelos de um conjunto de fórmulas.

Definição 195: Sejam L um tipo de linguagem e E uma estrutura de tipo L. A *teoria de* E é o conjunto $\{\varphi \in \mathcal{F}_L | E \mod \varphi\}$, denotado TEO(E).

Exemplo 196: Seja $\Gamma = TEO(NATS)$.

- São elementos de Γ, por exemplo, as fórmulas
 - s(0) + s(0) = s(s(0))
 - $\neg \exists x_0 \ 0 = s(x_0)$
 - $\exists x_0 \exists x_1 \exists x_2 (x_0 \times x_0 + x_1 \times x_1 = x_2 \times x_2)$
- Pergunta difícil: será NATS o único modelo de Γ?

Observação 197: A partir do momento que dispomos do conceito de valoração, os seguintes conceitos têm em Lógica de 1a Ordem a mesma definição que em Lógica Proposicional.

Definição 198: Sejam φ e ψ fórmulas de tipo L. Seja Γ um conjunto de fórmulas do mesmo tipo.

- **1** φ diz-se *válida* (notação: $\models \varphi$) se, para toda a valoração v de tipo L, v satisfaz φ .
- 2 φ e ψ dizem-se *logicamente equivalentes* (notação: $\varphi \Leftrightarrow \psi$) se, para toda a valoração v de tipo L, v satisfaz φ se e só se v satisfaz ψ .
- 3 Γ diz-se insatisfazível, ou semanticamente inconsistente (notação: $\Gamma \models$) se, para toda a a valoração v de tipo L, v não satisfaz Γ .
- 4 φ diz-se consequência semantica de Γ (notação: Γ $\models \varphi$) se, para toda a a valoração v de tipo L, se v satisfaz Γ então v satisfaz φ .

Observação 199: Uma fórmula de tipo L é válida sse é verdadeira em todas as estruturas de tipo L.

Exemplo 200: Seja L = ARIT.

- 1 A fórmula $x_0 = x_1$ não é válida, pois não é válida na estrutura *NATS*.
- 2 A fórmula $x_0 = x_0$ é válida na estrutura *NATS*. No entanto, esta fórmula não é válida em todas as estruturas de tipo *ARIT*. Por exemplo, se considerarmos uma estrutura $E_1 = (\{a,b\}, \overline{(\cdot)})$ em que \equiv seja a relação $\{(a,a)\}$, E_1 não é modelo de $x_0 = x_0$.
- **3** A fórmula $\forall x_0(x_0 = x_1 \lor \neg(x_0 = x_1))$ é válida.

Observação 201:

- 1 As propriedades enunciadas para a equivalência lógica no capítulo anterior, mantêm-se verdadeiras no contexto do Cálculo de Predicados. Por exemplo, \Leftrightarrow é uma relação de equivalência em \mathcal{F}_L .
- 2 As equivalências lógicas notáveis do capítulo anterior continuam verdadeiras no contexto do Cálculo de Predicados.
- Naturalmente, há um conjunto de novas equivalências lógicas notáveis.

Proposição 202: Sejam $x, y \in \mathcal{V}$ e $\varphi, \psi \in \mathcal{F}_I$. As seguintes afirmações são verdadeiras.

a)
$$\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$$

b)
$$\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$$

c)
$$\forall x \varphi \Leftrightarrow \neg \exists x \neg \varphi$$

d)
$$\exists x \varphi \Leftrightarrow \neg \forall x \neg \varphi$$

e)
$$\forall x(\varphi \land \psi) \Leftrightarrow \forall x\varphi \land \forall x\psi$$
 f) $\exists x(\varphi \lor \psi) \Leftrightarrow \exists x\varphi \lor \exists x\psi$

$$\dagger) \exists x (\varphi \lor \psi) \Leftrightarrow \exists x \varphi \lor \exists x \psi$$

g)
$$\forall x \forall y \varphi \Leftrightarrow \forall y \forall x \varphi$$

$$h) \exists x \exists y \varphi \Leftrightarrow \exists y \exists x \varphi$$

- i) $Qx\varphi \Leftrightarrow \varphi$ se $x \notin LIV(\varphi)$, para todo $Q \in \{\exists, \forall\}$
- i) $Qx\varphi \Leftrightarrow Qy\varphi[y/x]$ se $y \notin LIV(\varphi)$ e x é substituível por y em φ , para todo $Q \in \{\exists, \forall\}$

Exemplo 203: Seja L = ARIT.

- a) O conjuntos de fórmulas
 - $\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_0) = x_1)\}$
 - $\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_2) = x_1)\}$

são semanticamente consistentes

b) O conjunto $\{\forall x_0(x_0 = x_0), \neg (0 = 0)\}$ é semanticamente inconsistente.

Exemplo 204: Seja Γ o conjunto formado pelas seguintes sentenças:

```
\forall x_0 \neg (0 = s(x_0));

\forall x_0 \forall x_1 ((s(x_0) = s(x_1)) \rightarrow (x_0 = x_1));

\forall x_0 \neg (s(x_0) < 0);

\forall x_0 \forall x_1 ((x_0 = s(x_1)) \rightarrow ((x_0 < x_1) \lor (x_0 = x_1)));

\forall x_0 (x_0 + 0 = x_0);

\forall x_0 \forall x_1 (s(x_0) + x_1 = s(x_0 + x_1));

\forall x_0 (x_0 \times 0 = 0);

\forall x_0 \forall x_1 (s(x_0) \times x_1 = (x_0 \times x_1) + x_1).
```

Γ é uma parte da chamada *axiomática de Peano* para a Aritmética, e é um conjunto semanticamente consistente, pois *NATS* é um seu modelo.

Tem-se
$$\forall x_0 \neg (x_0 = s(x_0)) \models \neg (0 = s(0))$$
.
Verifique se $\Gamma \models s(0) + s(0) = s(s(0))$.

Proposição 205: Sejam φ e ψ fórmulas de tipo L, seja Γ um conjunto de fórmulas do mesmo tipo, sejam x e y variáveis e seja t um termo de tipo L.

- a) Se $\Gamma \models \forall x \varphi$ e x está livre para t em φ , então $\Gamma \models \varphi[t/x]$.
- **b)** Se $\Gamma \models \varphi$ e $x \notin LIV(\Gamma)$, então $\Gamma \models \forall x \varphi$.
- c) Se $\Gamma \models \varphi[t/x]$ e x está livre para t em φ , então $\Gamma \models \exists x \varphi$.
- **d)** Se $\Gamma \models \exists x \varphi$, $\Gamma, \varphi \models \psi$, e $x \notin LIV(\Gamma \cup \{\psi\})$, então $\Gamma \models \psi$.

Notação 206: Acima usámos a notação $LIV(\Gamma)$, com Γ um conjunto de L-formulas, para representar o conjunto $\bigcup_{\varphi \in \Gamma} LIV(\varphi)$.