

Entwicklung einer Anwendung zur automatisierten Beschaffung von personenbezogenen Daten im Internet und deren Integration in Phishing-Mails

Bachelorarbeit

Wintersemester 2018/2019

im Studiengang Angewandte Informatik

an der Hochschule Ravensburg - Weingarten

von

Marco Lang Matr.-Nr.: 27416 Abgabedatum: 27. März 2019

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit mit dem Titel

Entwicklung einer Anwendung zur automatisierten Beschaffung von personenbezogenen Daten im Internet und deren Integration in Phishing-Mails

selbstständig angefertigt, nicht anderweitig zu Prüfungszwecken vorgelegt, keine anderen als die angegebenen Hilfsmittel benutzt und wörtliche sowie sinngemäße Zitate als solche gekennzeichnet habe.

Weingarten, 27. März 2019 Autor Name

Inhaltsverzeichnis

Kurzfassung						
Da	anksa	gung	VI			
1	1.1 1.2 1.3 1.4	Motivation	1 1 2 3 3			
2	2.1 2.2 2.3	Personenbezogene Daten Social Engineering 2.2.1 Phishing 2.2.2 Spear-Phishing Open Source Intelligence 2.3.1 Definition OSINT 2.3.2 Web Crawler 2.3.3 Web Scraper	5 5 6 7 8 8 8			
3	Prol	olembeschreibung	11			
4	Ethi	sche und rechtliche Betrachtung	12			
5	5.1 5.2 5.3 5.4 5.5	Anforderung an OSINT 5.1.1 OSINT einer ausgewählten Person 5.1.2 OSINT einer großen Menge von unbekannten Personen Anforderung an die Datenverwaltung/-speicherung Anforderung an die Generierung der E-Mail-Adressen Anforderung an die E-Mail-Muster Anforderung an die Erstellung der Phishing-Mail	13 13 14 14 14 15 15			

Inhaltsverzeichnis II

6	Lösungsideen					
	6.1	OSINT einer ausgewählten Person				
		6.1.1 Verwendung von OSINT-Tools				
		6.1.2 Algorithmus für OSINT entwickeln				
	6.2	Webseiten für OSINT mehrerer unbekannter Personen				
		6.2.1 XING				
		6.2.2 LinkedIn				
		6.2.3 Fupa				
	6.3	Konzept für die Erstellung einer Phishing-Mail				
		6.3.1 E-Mail-Adresse Generierung				
		6.3.2 E-Mail Inhalt				
7	Bewertung der Lösungsideen anhand der Anforderung					
	7.1	OSINT einer ausgewählten Person				
	7.2	OSINT einer großen Anzahl unbekannter Personen				
	7.3	Erstellung einer Phishing-Mail				
8	OSI	NT einer ausgewählten Person				
J	8.1	Auswahl der Programmiersprache				
	8.2	Methoden zur Suche nach einer Person im Internet				
		8.2.1 Personensuche mit Hilfe einer Suchmaschine				
		8.2.2 Personensuche auf festgelegten Webseiten				
	8.3	Bewertung der Methoden zur Personensuche				
		8.3.1 Auswahl der Suchmaschine				
	8.4	Umsetzung: Personensuche mit Hilfe der Google-Suchmaschine im Internet				
		8.4.1 Eingabe der bekannten Daten				
		8.4.2 Generierung der Google-Such-URLs				
		8.4.3 Mit welcher Bibliothek werden Serveranfragen umgesetzt?				
		8.4.4 Web Crawler erstellen				
	8.5	Methoden zum Erkennen von wichtigen Informationen auf einer Webseite				
		8.5.1 RAKE				
		8.5.2 Automatic Keyword Extraction mit NLP				
	8.6	Bewertung: Herausfiltern von wichtigen Informationen auf einer Webseite				
	8.7	Umsetzung: Herausfiltern von wichtigen Informationen auf einer Webseite				
		8.7.1 Text formatieren				
		8.7.2 Automatic Keyword Extraction mit NLP				
		8.7.3 Wortsammlungen erstellen				
		8.7.4 E-Mails erkennen				
	8.8	Methoden zum Erkennen einer Person				
		8.8.1 Zeitraum beachten				
		8.8.2 Kontakte der Suchperson werden in Betracht gezogen				

Inhaltsverzeichnis III

		8.8.3 Identifikationsschlüssel verwenden	45		
	8.9	Bewertung: Die gesuchten Person erkennen	45		
	8.10	Umsetzung: Die gesuchte Person erkennen	45		
		8.10.1 Zeitrahmen wird mit Beachtet	45		
	0.44	8.10.2 Kontakte in Betracht ziehen	46		
	8.11	Speicherung der gewonnenen Daten	46		
9 OSINT einer großen Anzahl von Person					
	9.1	Methoden für OSINT	47		
		9.1.1 Methode für die Suche nach Information	47		
	0.0	9.1.2 Methode zum Auslesen der Information	48		
	9.2	Bewertung: OSINT große Anzahl	48		
	9.3	Erstellung eines internen Web Crawlers	48		
		9.3.1 Funktionsweise des Web Crawlers	49		
		9.3.2 Probleme bei der Erstellung	49 49		
	0.4	9.3.3 Lösungen			
	9.4 9.5	Auslesen der Webseite durch Hartkodierung	50 50		
	9.0	Datenverwantung und Speicherung	50		
10 Erstellung einer Phishing-Mail					
	10.1	Konzept zur Erstellung einer Phishing-Mail	51		
		10.1.1 Methoden zur Generierung von E-Mail-Adressen	51		
		10.1.2 Bewertung: E-Mail-Adresse generieren	52		
		10.1.3 Methode zur Erstellung von E-Mail-Mustern	52		
		10.1.4 Bewertung E-Mail-Muster	53		
	10.2	Generierung der E-Mail-Adressen	53		
		10.2.1 Funktion des eigenen Algorithmus	53		
	10.3	Validität der generierten Mail-Adressen prüfen	53		
		10.3.1 Methoden zum Prüfen der Validität	53		
		10.3.2 Bewertung: Validität Prüfen	53		
	10.4	E-Mail-Muster erstellen	54		
		10.4.1 Kategorien erstellen	54		
		10.4.2 Lückentexte erstellen	54		
11	Eval	uation der Implementation	55		
12	Schl	ussbemerkungen und Ausblick	56		
_		Wie kann eine Person weiter identifiziert werden?	56		
		Keyword Extraction mit Hilfe von Machine Learning	56		
Λ	Fin I	Kapitel des Anhangs	57		
~		Napitei ues Allialigs	J 1		

Inhaltsverzeichnis		
Abkürzungsverzeichnis	58	
Literatur	59	
Stichwortverzeichnis	62	

Kurzfassung

Es wird gezeigt, wie eine automatisierte Suche nach personenbezogenen Daten im Internet aussehen kann und wie diese Daten für einen Phishing-Mail-Angriff verwendet werden können.

Danksagung

1.1 Motivation

Bei einer Umfrage des Meinungsforschungsinstitut forsa, wurden Internetnutzer befragt, ob Sie Angst davor haben, Opfer von einem Datendiebstahl im Internet zu werden. Dabei bezeichnet der Datendiebstahl die missbräuchliche Verwendung persönlichen Daten durch Dritte. Über 70% der Befragten antworteten darauf, dass sie keine große beziehungsweise gar keine Angst vor einem Datendiebstahl haben. [Ang18]

Das Ergebnis dieser Umfrage spricht für die Behauptung, dass viele Personen Informationen über die eigenen Person im Internet preis geben, da keine Ängste vorhanden sind. Doch diese Informationspreisgabe kann in den falschen Händen schwerwiegende Folgen haben. So kann beispielsweise bei einem Phishing-Mail-Angriff diese Art von Information genutzt werden, um ein potentielles Opfer zu täuschen oder zu manipulieren. Ein Beispiel dafür, sind die gefälschten DSGVO-E-Mails, bei denen der Angreifer das Opfer durch scheinbar echte Mails der Sparkasse täuscht. Dabei wird die Zielpersonen persönlich mit ihrem Namen angesprochen, wodurch die Mail an Glaubwürdigkeit gewinnt. [NW18]

Solch ein Angriff benötigt allerdings im Voraus eine ausführliche Recherche über das Opfer. Als Informationsquelle für die Recherche dienen beliebig viele Medien. Doch in der heutigen Zeit ist das Internet die meistgenutzte Informationsquelle für Menschen und birgt dadurch Gefahren für jeden einzelnen Internetnutzer, der personenbezogene Daten im Internet teilt. [All18] Diese Gefahr wird unter anderem durch die Entwicklung von kostenlosen OSINT-Tools, welche Informationen über Opfer von öffentlichen und frei zugänglichen Medien sammeln, erhöht, da die Recherche im Internet nach persönlichen Informationen deutlich vereinfacht wurde. Des Weiteren wurde es jedem einfachen Internetnutzer ermöglicht, OSINT im Internet zu betreiben.

1.2 Zielsetzung und Forschungsfragen

Ziel dieser Arbeit ist es eine Anwendung zu entwickeln, welche automatisiert nach personenbezogenen Daten im Internet sucht und deren Integration in eine Phishing-Mail. Dabei soll der Fokus auf der automatisierten Informationsbeschaffung liegen, welche grundsätzlich mit zwei Arten von Suchfunktionen realisiert werden soll.

Unter anderem sollen Antworten auf die folgenden Fragen gefunden werden. Mit welchem Aufwand ist eine Phishing-Mail-Angriff verbunden? Ist es möglich ein Personenprofil zu erstellen, bei dem ausschließlich korrekte Informationen vorhanden sind?

Ziel 1 Informationen zu einer ausgewählten Person im Internet suchen.

Die erste Suchfunktion beinhaltet die Suche nach Informationen einer bestimmten Person. Dadurch können bereits bekannte Daten über die Person angegeben und somit die Suche verfeinert beziehungsweise verbessert werden. Hierbei ist es wichtig zu erkenne wann es sich um eine Information der gesuchten Person handelt.

Ziel 2 Nach Informationen einer großen Anzahl von unbekannten Personen suchen, indem eine festgesetzte Webseite vollständig durchsucht wird.

Bei dieser Suchfunktion soll eine bestimmte Webseiten vorgegeben werden, welche durchsucht, analysiert und ausgelesen wird. Dadurch ist es möglich einen weitläufigen "real-world" Phishing-Mail-Angriff zu simulieren.

Ziel 3 E-Mail-Adressen aus den gewonnen Daten generieren.

Durch die Zusammensetzung von Vorname, Name und Geburtsjahr werden die E-Mail-Adressen generiert. Außerdem kann der Arbeitgeber, falls er bekannt ist, mit in den Generierungsprozess einfließen.

Ziel 4 Phishing-Mail-Muster erstellt

Abhängig von den gefundenen Informationen, soll mit Hilfe dieser Muster, eine Phishing-

Mail mit glaubhaftem und sinnvollem Inhalt erstellt werden.

Ziel 5 Phishing-Mail erzeugen.

Mit der vorhandenen Information, der E-Mail-Adresse und einem passende Muster, soll eine Phishing-Mail erzeugt und versendet werden können.

1.3 Eigene Leistung

In dieser Arbeit wird ein Programm erstellt, welches personenbezogene Daten automatisiert aus dem Internet heraussucht und diese in potentielle Opferprofile ablegt. Die gewonnenen Informationen werden automatisiert in eine personalisierte Phishing-E-Mail eingebaut. Für einen höheren Erfolg werden E-Mail-Muster konzeptioniert und realisiert.

Damit ein kompletter Ablauf eines Phishing-Mail-Angriffs simuliert werden kann, wird zu jeder Personensuche eine passende E-Mail-Adresse benötigt. Allerdings kann nicht bei jeder Suche eine korrekte E-Mail gefunden werden. Aus diesem Grund wird zusätzlich ein Algorithmus entwickelt, der im Fall, dass keine E-Mail-Adresse zu der Zielperson gefunden wurde, eine Adresse aus den gefundenen Informationen generiert.

1.4 Methodische Vorgehensweise

Die Arbeit gliedert sich in einen theoretischen und praktischen Teil auf. Die Theorie beginnt im zweiten Kapitel und beschreibt die Grundlagen 2 im Bereich von personenbezogenen Daten, Social Engineering und der Informationsbeschaffung im Internet. In Kapitel 3 wird das Problem aufgezeigt, auf welches in dieser Arbeit eingegangen wird. Darauf folgt die ethische und rechtliche Betrachtung in Kapitel 4. Die Anforderungsanalyse 5 beschreibt das nächste Kapitel, in welchem die Anforderungen und Prioritäten der Arbeit festgelegt werden. Darauf folgen die Lösungsvorschläge im Kapitel 6 und die Auswahl der Lösung anhand den Anforderungen im Kapitel ??. Anschließend wird bei der Umsetzung auf den Praktischen Teil eingegangen. Dieser unterteilt sich in die Themen Informationsbeschaffung

einer ausgewählten Person 8, Informationsbeschaffung einer großen Menge an unbekannten Personen 9 und die Erstellung einer Phishing-Mail 10. Am Ende dieser Arbeit befindet sich die Evaluation der Implementation in Kapitel 11 und die Schlussbemerkung und der Ausblick in Kapitel 12.

2.1 Personenbezogene Daten

Laut der DSGVO sind **personenbezogene Daten**, alle Informationen, die sich auf eine identifizierbare Person beziehen. Als identifizierbar wird eine natürliche Person angesehen, die mittels einem oder mehreren Merkmalen direkt oder indirekt identifiziert werden kann. Mögliche Kennungen für die Unterscheidung der Merkmale sind der Name, eine Kennnummer, Standortdaten, eine Online-Kennung, et cetera von der Person. Dabei dienen diese Kennungen als Ausdruck der physischen, physiologischen, genetischen, psychischen, wirtschaftlichen, kulturellen oder sozialen Identitäten dieser natürlichen Person. [DSG]

2.2 Social Engineering

Die Definition von Social Engineering, kurz SE, ist nicht eindeutig, da es sehr verschiedene Ansichten davon gibt. Jedoch ist der Grundgedanke von Social Engineering, eine Zielperson so zu manipulieren, damit sie für den Angreifer bessere Entscheidung trifft. [Had11] Kevin D. Mitnick definiert Social Engineering wie folgt:

"Social Engineering uses influence and persuasion to deceive people by convincing them that the social engineer is someone he is not, or by manipulation. As a result, the social engineer is able to take advantage of people to obtain information with or without the use of technology" [Mit01]

SE wird Menschen von Geburt an beigebracht und begegnet einem beinahe jeden Tag. Schon ein Baby muss wissen wie es die Eltern manipulieren kann, damit es Dinge wie

Essen, Zuneigung, oder ähnliches bekommt. Darüber hinaus ist SE in vielen Berufen ein täglicher Bestandteil.

Im Bereich der Informationssicherheit, wird von Social Engineering gesprochen, wenn Angreifer durch die Manipulierung und Täuschung von Menschen vertrauliche Informationen oder Zugänge zu Systemen bekommen. Die bekanntesten Angriffsmethoden sind Phishing, Pretexting, Baiting und Quid Pro Quo. Bei dieser Arbeit wird hauptsächlich auf das Thema E-Mail-Phishing eingegangen.

Der Aufbau eines SE-Angriffes ist definiert in mehrere Phasen. Das wohl bekannteste Modell für einen Social Engineering-Angriffszyklus ist in dem Buch von Kevin D. Mitnicks [Mit01] definiert. Dieser Zyklus besteht aus den 4 Phasen **Research**, **Developing** rapport and trust, Exploiting trust und Utilize information.

In der Research-Phase geht es um die Informationsbeschaffung. Bei dieser Phase will der Angreifer möglichst viele Informationen über das Ziel herausfinden. Die Developing Rapport and Trust-Phase beschreibt den Kontaktaufbau zum Ziel, da wenn das Opfer dem Angreifer vertraut, hat dieser ein leichteres Spiel in den kommenden Phasen. Das nun erzeugte Vertrauen wird in der Exploitung Trust-Phase ausgenutzt. Hier will der Angreifer die eigentlich Information vom Opfer herausfinden. Dies geschieht einerseits durch bestimmtes Nachfragen oder durch Manipulation. Utilize Information ist die letzte Phase. Dort wird die gewonnene Information genutzt um das eigentliche Ziel des Angreifers zu erreichen.

Grundsätzlich werden bei einem Social Engineering Angriff menschliche Wünsche, Ängste und verbreitete Verhaltensmuster verwendet um ein Opfer zu manipulieren. [uDsiNe15]

2.2.1 Phishing

Das Wort Phishing wird von dem Wort "fishing" abgeleitet, da die Angreifer nach Informationen fischen. Das "Ph" kommt von "sophisticated" und meint damit, dass die Angreifer ausgeklügelte Techniken verwenden um an Informationen heranzukommen. [Jam05] Die wohl bekannteste Angriffsmethode von Phishing ist das E-Mail-Phishing. Bei diesem Verfahren, versendet ein Angreifer meist eine gefälschte E-Mail, um ein Opfer zu täuschen

und dadurch sein Ziel zu erreichen. Die sogenannten Phishing-Mails enthalten meist eine Aufforderung einen Link zu öffnen und sehen täuschend echt aus.

Ein reales Beispiel könnte sein, dass der Angreifer eine gefälschte E-Mail von Amazon an das Opfer versendet und es dabei auffordert, einen Link in der Mail zu öffnen. Nachdem die Zielperson auf den Link geklickt hat, muss Sie sich anmelden. Hier könnte der Angreifer ein täuschend echtes Anmeldeformular erstellt haben, um die Anmeldedaten der Zielperson zu bekommen. Sobald die Anmeldedaten eingegeben wurden, könnte eine Fehlermeldung erscheinen, die einen Authentifizierungsfehler beinhaltet und das Opfer auffordert sich erneut anzumelden. Jedoch wird während diesem Prozess das originale Anmeldeformular geladen und das Opfer kann sich korrekt bei der entsprechenden Webseite anmelden.

Dieser Verfahren ermöglicht Angreifern die Anmeldedaten von einer Zielperson ohne großen Aufwand zu beschaffen. Allerdings benötigt der Angreifer für diese Methode nicht nur Social Engineering sondern auch technische Fähigkeiten. [CH15]

2.2.2 Spear-Phishing

Das Spear-Phishing ist eine erweiterte Methode des herkömmlichen E-Mail-Phishings. Hierbei wird anstatt das Versenden etlicher Phishing-Mails an unbekannte Opfer, eine gezielte Mail an eine ausgewählte Person versendet. [Fir]

Bei dieser Form von E-Mail-Phishing spielt die Opferauswahl und die Informationsbeschaffung eine sehr große Rolle, da diese Information später für personalisierte E-Mails oder vorgetäuschte Identitäten verwendet werden können. Durch diese Art von Täuschung kann ein Opfer dazu bewegt werden auf einen Link zu klicken und dadurch eine Schadsoftware herunterzuladen. [Fir]

Der Aufwand für die Informationsbeschaffung wird oft in Kauf genommen, da der Erfolg bei dieser Methode vielversprechender ist als beim herkömmlichen E-Mail-Phishing. 91% der Advanced Persistent Threat (APT) Angriffe auf Firmen beginnen mit einer Spear-Phishing-E-Mail. Die Schadsoftware wir meisten als Remote Access Trojans (RATs) in einem Zip-Datei überliefert. [Cal13]

2.3 Open Source Intelligence

2.3.1 Definition OSINT

Open Source Intelligence kurz OSINT ist definiert in eine Intelligenz, welche aus öffentlich zugänglichen Informationen gewonnen wird. Allerdings kann sich die Bedeutung fallspezifisch ändern. So bedeutet OSINT für die CIA die Informationsgewinnung aus ausländischen Nachrichtensendungen. Doch für die meisten Menschen bedeutet OSINT die Gewinnung eines öffentlichen Inhalts aus dem Internet. [Baz18]

Unter Open Source wird die öffentlich zugängliche Information, die in gedruckter oder elektronischer Form vorliegt, bezeichnet. [Ste96] Eine Verbindung mit dem Begriff Open-Source-Software besteht nicht.

2.3.2 Web Crawler

Web Crawler, auch Robot oder Spider genannt, sind Computerprogramme, die mit Hilfe der Hypertextstruktur das Internet durchlaufen. [The01] Dabei können sie in einen **internen** und **externen Web Crawler** unterschieden werden. Der interne Web Crawler durchsucht ausschließliche interne Seiten einer Webseite und der externe Web Crawler durchsucht unbekannte Webseiten im ganzen Netz. [SG12]

In anderen Worten besteht die Funktionsweise darin, dass in den meisten Fällen ein automatisiertes Programm, Web Crawler, erstellt wird. Dieser lädt Webinhalte herunter und durchsucht den Inhalt nach Hyperlinks. Den gefundenen Links wird gefolgt, um neue Webseiten mit weiteren Links zu laden. So hangelt sich ein Web Crawler von Link zu Link durch das Internet. [Mit15] Dieser Ablauf ist in dem Bild 2.1 noch einmal verdeutlicht.

Bild 2.1: Architektur eines Web Crawlers

2.3.3 Web Scraper

In der Theorie bedeutet web scraping die Informationsbeschaffung im Internet mit unterschiedlichsten Mitteln. [Mit15]

Meist wird dies mit einem automatisierten Programm realisiert, welches Daten von einem Webserver anfragt, entgegen nimmt, analysiert und auswertet. In der Praxis gibt es ein großes Feld von Programmiertechniken und Einsatzmöglichkeiten. Mit Hilfe eines Web Scrapers ist es möglich, große Datenmengen zu erfassen und zu verarbeiten. [Mit15]

Natural Language Processing

Natural Language Processing kurz *NLP* beschreibt eine Technologie, für die Kommunikation zwischen Mensch und Computer. Mit dem Ziel, dass ein Computer die natürliche Sprache verstehen und verarbeiten kann. Dafür werden verschiedenste Methoden aus der Sprach- und Computerwissenschaft sowie aus der künstliche Intelligenz verwendet. Unter anderem hat eine NLP-Anwendung die Aufgabe von **Stemming**. [Lit16]

Stemming ist eine Methode der Wortstandardisierung, bei der verwandte Wörter auf ihrer Stammform reduziert werden. Dabei wird bei dem Rechenvorgang auf den Stamm und die

Semantik eines Wortes geachtet. Aus diesem Grund fällt der Name Stammformreduktion öfters in Verbindung mit Stemming. [EAD09] Ein Beispiel hierfür wären die Worte "Wetter" und "Wetten", welche auf den Stamm "Wett" reduziert werden könnten. [PH] Die Verwendung von Stemming, kann bei der Schlüsselwortgenerierung von Texten sehr hilfreich sein, da die Anzahl der möglichen Schlüsselwörter reduziert werden können.

3 Problembeschreibung

Persönliche Daten sind im Internet oft frei zugänglich. Das heißt, dass unterschiedlichste Webseiten persönliche Information von Menschen öffentlich bereitstellen. Die bekanntesten Webseiten sind die Social Media Seiten wie Twitter, Facebook und Instagram. Allerdings wird auch auf anderen Webseiten personenbezogene Daten in großen Mengen bereitgestellt. Ein Beispiel dafür ist das Fußballportal "www.fupa.net". Diese Art von Webseiten sind perfekte Informationsquellen für Phisher, da im Bereich von Social Engineering, diese Informationen oft genutzt werden um ein Opfer zu täuschen oder zu manipulieren. Dass hier beschriebene Problem zeigt, dass der Zugang für persönliche Information durch das Internet für die Öffentlichkeit einfacher gemacht wird. Es soll mit einem kritisch Blick darauf gezeigt werden, mit welchem Aufwand, personenbezogene Daten aus dem Internet herausgelesen, analysiert und für einen Phishing-Mail-Angriff verwendet werden können.

4 Ethische und rechtliche Betrachtung

Das Sammeln von personenbezogenen Daten auf sozialen Netzwerken ist ethisch und rechtlich gesehen ein sehr sensibles Thema. Jedoch werden in dieser Arbeit ausschließlich die Daten verwendet, die öffentlich frei zugänglich sind. Das heißt, unter den Informationen befinden sich keine Passwörter oder Informationen die nicht an die Öffentlichkeit gehören. Des Weiteren ist der hier verwendete Crawler nicht stark genug, um die Leistung eines Servers von einem sozialen Netzwerk zu beeinflussen.

Mit diesem realen Experiment, soll die Privatsphäre der Benutzer geschützt werden, indem aufgezeigt wird, wozu veröffentlichte Daten über eine Person im negativen Sinn verwendet werden können. Genau aus diesem Grund ist es wichtig, dass das Experiment in der realen Welt durchgeführt wird.

Die gefundenen Daten werden in einer verschlüsselten Datei gespeichert, um die Privatsphäre der Internetnutzer zu schützen.

5 Anforderungsanalyse

Die im Kapitel 1.2 definierten Ziele sollen mit den folgenden Anforderungen gewährleistet werden.

5.1 Anforderung an OSINT

Die Anforderung an OSINT lässt sich in zwei Teile gliedern. Der erste Teil beinhaltet das OSINT einer ausgewählten Personen und der zweite Teil OSINT einer großen Menge unbekannter Personen.

5.1.1 OSINT einer ausgewählten Person

Bei dieser Informationsbeschaffung soll eine Suchfunktion entwickelt werden, welche Daten zu einer angegeben Person im Internet sucht. Hierbei sollen so viele Daten wie möglich gefunden und gespeichert werden.

Das zu entwickelnde Programm soll für die Suche bekannte Daten wie Vorname, Nachname, Geburtsjahr, Ort und Benutzernamen von Social Media Plattformen einlesen können. Die Eingabe kann mit Hilfe einer Konsole oder einer grafische Oberfläche realisiert werden. Die Herausforderung besteht darin, zu erkennen, wann und ob es sich um die Information der gesuchten Person handelt. Sowie die Analyse und das Herauslesen dieser Daten.

5.1.2 OSINT einer großen Menge von unbekannten Personen

Für die real-world Simulation eines Phishing-Mail-Angriffs, soll eine Suchfunktion entwickelt werden, die OSINT einer kompletten Webseite betreiben kann. Dabei sollen möglichst viele Informationen von möglichst vielen Personen herausgefunden werden. Jedoch sind diese Personen dem Programm-Anwender unbekannt. Die Informationen sollen von einer festgesetzten Webseite herausgelesen werden. Hierfür wird manuell nach einer Webseite gesucht, die eine große Menge an personenbezogenen Daten enthält und sich dadurch gut für OSINT eignet.

Zusätzlich soll der zu entwickelnde Web Scraper möglichst performant arbeiten.

5.2 Anforderung an die Datenverwaltung/-speicherung

Ausgelesene Daten sollen vor dem speichern formatiert und klassifiziert werden, damit die Daten später korrekt in die Phishing-Mails eingesetzt werden können. Die Schwierigkeit besteht darin, zu erkennen, um welche Art von Information es sich handelt. Zusätzlich sollen die Daten in einer gut übersichtlichen Struktur gespeichert werden und müssen beliebig erweiterbar sein.

5.3 Anforderung an die Generierung der E-Mail-Adressen

Da nicht zu jeder Suche eine E-Mail-Adresse im Internet gefunden werden kann, muss die E-Mail-Adresse aus den vorhandenen Informationen generiert werden. Es soll eine größere Anzahl von möglichen E-Mail-Adressen erzeugt werden. Durch den Pool an erzeugten E-Mail-Adressen soll die Wahrscheinlichkeit erhöht werden, dass die richtige E-Mail-Adresse dabei ist. Des Weiteren sollen die Adresse auf Verfügbarkeit und Gültigkeit geprüft werden.

5.4 Anforderung an die E-Mail-Muster

Bei der Erstellung der E-Mail-Muster handelt es sich ausschließlich um das Erstellen potentieller Inhalte einer E-Mail, welche mit den gewonnenen Informationen über eine Person erweitert werden kann. Die Muster sollen erstellt werden und so klassifiziert sein, dass für jedes gefundene Opferprofil ein passendes Muster vorhanden ist. Des Weiteren soll der E-Mail-Text mit den eingesetzten Informationen Sinn ergeben und eine korrekte Grammatik beinhalten. Weiterführend können SE-Fähigkeiten genutzt werden um die Zielperson tatsächlich zu manipulieren und zu täuschen. Hierfür können beispielsweise Gefühle wie Freude und Angst ausgenützt oder gefälschte E-Mails von bekannten Firmen in Betracht gezogen werden.

5.5 Anforderung an die Erstellung der Phishing-Mail

Die Phishing-Mails sollen automatisiert erstellt werden. Die Auswahl des richtigen E-Mail-Musters zu der gewonnenen Opferinformation soll ebenfalls automatisiert ablaufen.

In diesem Kapitel werden die Lösungsideen für die Umsetzung der im Kapitel 1.2 definierten Ziele beschreiben.

6.1 OSINT einer ausgewählten Person

6.1.1 Verwendung von OSINT-Tools

Die Personensuche wird durch die Verwendung kostenloser OSINT-Tools durchgeführt. Eine entsprechende Webseite die mehrere OSINT-Methoden bereit stellt, ist unter dem URL "https://inteltechniques.com/index.html" erreichbar. Sie stellt Methoden zur Suche nach E-Mail-Adressen, Benutzernamen, Social-Media-Profilen, und noch viele mehr zu Verfügung. Allerdings werden nicht nur selbstentwickelt OSINT-Methoden von Michael Bazzell bereitgestellt, sondern auch andere Webseiten mit weiteren OSINT-Tools vorgeschlagen.

6.1.2 Algorithmus für OSINT entwickeln

Es wird ein Algorithmus für OSINT entwickelt, der aus einem Web Crawler und Web Scraper besteht. Mit diesem ist es möglich eigenständig nach Information zu suchen. Hierfür wird eine Suchmaschine, wie die von Google, verwendet.

Die Suchergebnisse können mit Hilfe des Web Crawlers verfolgt werden. Anschließen wird der Webseitentext, durch den Web Scraper, ausgelesen. Im letzten Schritt, wird der Text analysiert und interpretiert.

All diese Prozesse laufen unabhängig von den vorgeschlagenen Webseiten voll automatisiert ab.

6.2 Webseiten für OSINT mehrerer unbekannter Personen

Für das OSINT mehrere unbekannter Personen stehen die Webseiten von FuPa, Xing und LinkedIn zu Auswahl.

6.2.1 XING

XING ist ein soziales Netzwerk für Berufstätige mit über 15 Millionen Mitgliedern. Hier vernetzen sich Kontakte aus allen Branchen um Jobs, Mitarbeiter, Aufträge oder ähnliches zu suchen und zu finden. [SE]

XING bietet allerdings viele Möglichkeiten zum Schutz der Privatsphäre. So kann ein Nutzer einstellen, ob er von einer Suchmaschine gefunden werden oder nur für Xing-Mitglieder sichtbar sein will.

Bild 6.1: Profil von der Webseite XING

6.2.2 LinkedIn

LinkedIn ist das weltweit größte soziale Netzwerk für Berufstätige mit hunderten von Millionen Mitgliedern. Es vernetzt berufliche Kontakte der ganzen Welt und stellt ebenfalls Möglichkeiten zum Schutz der Privatsphäre zu Verfügung. [Cor17]

Bild 6.2: Profilkarte von der Webseite LinkedIn

6.2.3 Fupa

Die Webseite Fupa stellt ein regionales Fußballportal dar, welches zur Berichterstattung des Amateurfußballs vorhanden ist. Allerdings werden nicht nur Berichte sondern auch aussagekräftige Spielerprofile zur Verfügung gestellt. [Gmb16] Außer dem kann FuPa eine Mitgliederzahl von über 200.000 verzeichnet. [Wik19]

Das Bild 6.3 zeigt ein Spielerprofil, wie es auf dieser Webseite angezeigt wird. Allerdings kann sich die Vollständigkeit eines Profils variieren.

Bild 6.3: Spielerprofil von der Webseite FuPa

6.3 Konzept für die Erstellung einer Phishing-Mail

Die Generierung einer realen Phishing-Mail benötigt eine korrekte E-Mail-Adresse der Zielperson und einen sinnvollen Inhalt, der die gewonnenen Informationen verwendet.

6.3.1 E-Mail-Adresse Generierung

Algorithmus entwickeln zum generieren

Es kann ein Algorithmus entwickelt werden, der mögliche E-Mail-Adressen aus den gewonnen Daten generiert. Dies ist durch die Kombination aus Vorname, Nachname, Geburtsjahr und den bekanntesten E-Mail-Providern realisierbar. Dabei entsteht ein Adresspool, von dem jede einzelne E-Mail-Adresse auf Validität geprüft werden muss.

Automatisierbare OSINT-Tools verwenden

Für die Generierung der E-Mail-Adressen kann ein kostenloses OSINT-Tools von Michael Bazzel verwendet werden. Diese Tool ermöglicht es, die gewonnenen Informationen über eine Formular einzugeben und anschließend mögliche E-Mail-Adressen zu generieren. Auch hier entsteht ein Adresspool, bei dem die E-Mail-Adressen auf Validität geprüft werden müssen. Allerdings bringt das Tool eine weitere Funktion mit sich. Es wird automatisch nach Einträgen, der generierten E-Mail-Adressen, im Internet gesucht und angezeigt. [Baz]

6.3.2 E-Mail Inhalt

E-Mail-Muster erstellen

Die zu erstellenden E-Mail-Muster entsprechen hier kategorisierten Lückentexten. Abhängig von den gefundenen Daten, wird ein Lückentext ausgewählt und anschließend mit den Daten an den passenden Stellen ergänzt.

Die Lückentexte werden so kategorisiert, dass für jede gefundene Information ein passender Lückentext vorhanden ist. Eine denkbare Unterteilung wären die Kategorien Privat und Geschäftlich.

Text aus Fragmenten erzeugen

Bei dieser Methode besteht der E-Mail-Text aus zusammengesetzten Fragmenten. Dafür wird zu jeder gefundenen Information ein Fragment erstellt und anschließend werden alle Fragmente zu einem Text zusammengefügt.

7 Bewertung der Lösungsideen anhand der Anforderung

7.1 OSINT einer ausgewählten Person

Hierfür gibt es zwei verschiedene Methoden um OSINT zu betreiben. Die erste Lösungsidee beschreibt die Verwendung von einem öffentlich frei zugänglichen OSINT-Tool. Diese Tool bietet sehr viele Möglichkeiten um eine Person beziehungsweise Daten über eine Person zu finden. Allerdings ist es auf dieser Webseite nicht möglich ein zu suchendes Profil anzugeben, um eine Person zu finden. Die Suchen sind aufgeteilt in verschiedenste Daten wie Name, E-Mail, et cetera. Aus diesem Grund wird bei einer Suche ausschließlich nach dem Namen oder einer E-Mail gesucht. Dadurch ist das Suchergebnis am Ende kein vollständiges Personen-Profil, sondern lediglich Verweise auf weiterer Webseiten mit möglichen Einträgen. Dazu ist die Eingabemöglichkeiten der im Voraus bekannten, Daten begrenzt, da die Formulare nicht individuell erweiterbar sind.

Im Gegensatz zu diesem Tool, nutzt der eigenen Algorithmus alle im Vorfeld bekannten Daten für eine Suche. Des Weiteren kann die Laufzeit verbessert werden und bekannten Suchtechniken dieses Tools, mit Hilfe des Buches [Baz18] verwendet werden. Durch die eigene Anwendung wird die Suche beliebig erweiterbar programmiert. Dadurch kann jede Information zur Personensuche verwendet werden.

7.2 OSINT einer großen Anzahl unbekannter Personen

Bei den sozialen Netzwerken XING und LinkedIn lässt sich die Privatsphäre eines Benutzers in den Kontoeinstellungen konfigurieren. Dies hat zu folge, dass viele Profile nicht von Suchmaschinen sondern ausschließlich von angemeldeten Mitgliedern gefunden werden kann. Somit muss für das vollständige Auslesen dieser Webseite, ein Benutzerkonto angelegt werden. Das anlegen eines Kontos ist ein negativer Aspekt, da zusätzliche Arbeit für ein anonymes Konto entsteht.

Beide Netzwerke stellen eine Mitgliedersuche zur Verfügung. Des Weiteren lassen sich von bekannten Firmen Mitgliederliste anzeigen, wodurch Personenprofile mit zugehörigem Arbeitgeber angezeigt werden. Dies kann später für die Generierung einer E-Mail-Adresse sehr hilfreich sein.

Auf der Webseite Xing ist es möglich, ein Mitgliederverzeichnis anzuzeigen, ohne ein Benutzerkonto zu erstellen. Jedoch sind dort nur die Mitglieder aufgelistet, welche keinen besonderen Privatsphären-Schutz eingestellt haben. Trotzdem wäre dieses Verzeichnis eine gute Informationsquelle, da es eine große Liste mit vielen Verweisen zu persönlichen Profilen ist. Dennoch werden die Profile nicht vollständig angezeigt, da eine Anmeldung von Nöten ist. Dies könnte allerdings im folgenden Schritt getan werden.

Die Webseite Fupa, bietet kein Mitgliederverzeichnis, welches jedes Spielerprofil auf einer Seite auflistet. Jedoch benötigt FuPa keine Anmeldung und es besteht keine Möglichkeit, den Schutz der Privatsphäre von Spielerprofilen zu verstärken. Die einfach Struktur der Webseite ist ebenfalls ein Vorteil. Des Weiteren spricht die Gewinnung des Geburtsjahres für beinahe jeden Spieler ebenso für FuPa, da das Geburtsjahr für die E-Mail-Generierung sehr wichtig ist. Darüber hinaus benötigt FuPa kein JavaScript um angezeigt zu werden. Dies kann beim OSINT zu einer Laufzeitverbesserung gegenüber den Konkurrenten führen, da kein automatisierter Browser benötigt wird.

7.3 Erstellung einer Phishing-Mail

Generierung der E-Mail-Adressen

Bei der Verwendung eines bereits fertigen OSINT-Tools wird keine große Arbeit mehr benötigt, es ist ein komplettes System was funktioniert. Lediglich die Automatisierung muss entwickelt werden. Allerdings kann nicht jede individuelle Information für die Generierung genutzt werden. Dies ist für die zu entwickelnde Anwendung ein großer Nachteil. Die Wahrscheinlichkeit, dass sich die richtige E-Mail-Adresse darunter befindet, wird dadurch kleiner.

Im Gegensatz dazu, kann ein eigener Algorithmus jegliche Information mit in die Generierung einer E-Mail-Adresse einfließen lassen. Ein Beispiel hierfür wäre das Geburtsjahr einer Zielperson. Das OSINT-Tool [Baz] verwendet das nicht. Allerdings können die möglichen Adressen, welche von dem OSINT-Tool generiert wurden, als Anregung und Ideengeber für den eigenen Algorithmus dienen.

E-Mail-Inhalt

Muss noch festgleget werden!

8 OSINT einer ausgewählten Person

8.1 Auswahl der Programmiersprache

Damit das Programm anhand den Lösungsideen umgesetzt werden kann, ist der erste Schritt die Auswahl der Programmiersprache.

Hierbei wird keine Anforderung an die Geschwindigkeit der Sprache gestellt, da beim web scraping das Internet den zeitlichen Engpass darstellt. Allerdings wäre es von Vorteil wenn bereits entwickelte Bibliotheken für das web scraping vorhanden sind. Die Eingabe der Information für die Suche kann über eine Konsole oder über eine graphische Benutzeroberfläche möglich sein.

Als mögliche Programmiersprachen zählen Python, Ruby, C++.

Für web-basierende Anwendung eignet sich eine dynamische Programmsprache. Im Gegensatz zu Python und Ruby zählt C++ nicht zur Familie der dynamischen Programmiersprachen und fällt aus diesem Grund als mögliche Lösung heraus.

Python und Ruby können beide Webseiten, die JavaScript zum rendern benötigen, laden. Dies ist mit Hilfe eines automatisierten Webbrowsers möglich. Des Weiteren lässt sich die Anwendung durch beide Sprachen, entsprechend den Anforderungen entwickeln. Es kann sowohl eine Oberflächenanwendung als auch eine Konsolenanwendung programmiert werden. Zusätzlich bringen beide Sprachen Module mit sich, um das Pojekt mit den vorgegebenen Zielen umzusetzen. Somit haben beide Programmiersprachen die Voraussetzungen für die Entwicklung der Anwendung. Allerdings bietet Python in diesem Bereich eine große Community und eignet sich sehr gut für die Bearbeitung von linguistischen Daten. [BKL09] Aus diesen Gründen wird die zu erstellende Anwendung mit der Programmiersprache Python entwickelt.

8.2 Methoden zur Suche nach einer Person im Internet

Für die Suche einer Person im Internet, wird abhängig von den eingegebenen Daten, des Programm-Anwenders, die Art der Suche angepasst. Das heißt, dass die eingegebenen Daten vor der Suche analysiert werden und dementsprechend die Suche danach angepasst wird.

Die Art der Personensuche lässt sich in zwei mögliche Methoden gliedern.

8.2.1 Personensuche mit Hilfe einer Suchmaschine

Hier wird mit Hilfe einer Suchmaschine nach Informationen gesucht. Mögliche Suchmaschinen sind die von Google und Bing. Allerdings muss nicht für jede Suche eine Suchmaschine verwendet werden. Die nachfolgenden Fälle sollen diesen Ansatz verdeutlichen.

Im Fall, dass der Vorname, Nachname und Wohnort der gesuchten Person eingegeben wird, kann mit Hilfe der festgelegten Suchmaschine nach Information gesucht werden. Die von den Suchmaschinen vorgeschlagenen Seiten werden anschließend analysiert, ausgelesen und gespeichert. Dadurch können weitere Informationen gewonnen werden. Falls Benutzernamen von anderen Webseiten wie Instagram, Facebook oder ähnliches vorgeschlagen werden, kann somit die Suche mit diesen Daten speziell auf den entsprechenden Seiten erweitert werden.

Ein weiterer Fall beschreibt das Szenario, wenn ein Benutzername der gesuchten Person in das Programm eingegeben wird. Hierbei handelt es sich um einen Benutzernamen von Social-Media-Webseiten wie Facebook, Instagram, LinkedIn, et cetera.

Zuallererst, wird hier nach Einträgen auf der entsprechende Webseite zu dem angegebenen Benutzername durchsucht. Dadurch können zusätzliche Daten herausgefunden werden, die bei der weiteren Suche von Vorteil sind.

Sobald die Webseite mit Hilfe des Nutzernamens durchsucht und ausgewertet wurde, kann die Suche mit einer Suchmaschine erweitert werden.

8.2.2 Personensuche auf festgelegten Webseiten

Unabhängig von den eingegebenen Daten, wird eine festgesetzte Anzahl von Webseiten durchsucht. Als potentielle Kandidaten-Webseiten eigenen sich die Social-Media-Seiten wie Facebook, Instagram, Twitter, LinkedIn, et cetera. Diese Art der Personensuche arbeitet allerdings ohne die Verwendung einer Suchmaschine.

8.3 Bewertung der Methoden zur Personensuche

Um möglichst viele Informationen über eine Person im Internet zu finden, bietet die Personensuche mit der Verwendung einer Suchmaschine die beste Lösung. Es wird anstatt ausschließlich festgelegten Seiten das ganze Internet durchsucht. Dadurch können wesentlich mehr individuelle Einträge gefunden werden. Des Weiteren wird keine Logik zur Suche nach Einträgen im Internet benötigt, da lediglich den vorgeschlagenen Suchergebnissen gefolgt werden kann.

Allerdings muss beachtet werden, dass Benutzer bei verschiedensten Social-Media-Seiten auswählen können, ob das Benutzerprofil von einer Suchmaschine gefunden werden kann oder nicht. Bekannte Webseiten die diese Einstellungsmöglichkeiten unterstützen sind XING und LinkedIn. Aus diesem Grund, werden zu Beginn der Suche die Social-Media-Seiten durchsucht. Dadurch können vor der Google-Suche zusätzliche Informationen herausgefunden werden, die für das später OSINT von Vorteil sind. Falls sich eine Social-Media-Seite unter den Google-Suchergebnissen befindet, kann diese nachträglich ebenfalls durchsucht werden.

8.3.1 Auswahl der Suchmaschine

Laut Expertenaussage sucht Bing tiefgreifender nach Information auf Social Media Seiten wie Facebook, Twitter und LinkedIn. Allerdings finden nur 3,5% aller Suchanfragen in Deutschland über Bing statt. Im Gegensatz dazu hat Google einen Marktanteil von 91,2% in Deutschland. Diese Zahlen sprechen eindeutig für Google. Durch die höhere Anzahl von Suchanfragen, können mehr Daten erfasst und die Ergebnislisten besser gerankt werden.

Dies hat zu Folge, dass Bing bei einer konkreten Suche schlechter abschneidet. [Boh14] Grundsätzlich stellt die Verwendung von zwei Suchmaschinen die beste Lösung dar, da die Wahrscheinlichkeit für einen Suchtreffer erhöht wird. Dennoch wird in dieser Arbeit ausschließlich die Suchmaschine von Google verwendet, da sie gegenüber dem Konkurrenten keine Nachteile hat. Selbst die detailliertere Suche auf Sozialen Netzwerken, bringt bei der hier verwendeten Personensuche keinen großen Vorteil für Bing. Das heißt, durch die Analyse der Suchergebnisse, wird erkannt ob sich die bekannten Social Media Webseiten darunter befinden. Falls diese es nicht tun, wird die Suche auf den entsprechenden Sozialen Netzwerken erweitert.

8.4 Umsetzung: Personensuche mit Hilfe der Google-Suchmaschine im Internet

Für die Personensuche im Internet wird die Google-Suchmaschine verwendet. Gesucht wird nach den eingegebenen Daten, welche über die Konsole eingelesen werden.

8.4.1 Eingabe der bekannten Daten

Es besteht die Möglichkeit den Vorname, Nachname, Wohnort, Arbeitgeber, Instagram Benutzername, Facebook Benutzername, Twitter Benutzername, und das genaue beziehungsweise geschätzte Geburtsjahr der gesuchten Person über eine Konsole einzugeben. Falls der genaue Jahrgang der Zielperson nicht bekannt ist, kann ein geschätztes Geburtsjahr eingetragen werden. Dies kann später bei der Identifizierung der gesuchten Person hilfreich sein.

Zu Beginn werden alle Personen-Variablen mit einem leeren String initialisiert. Das bedeutet, alle Variablen, zu denen keine Information eingegeben wurde, enthalten einen leeren String.

Verarbeitung der Daten

Zu Beginn der Anwendung werden Abfragen gemacht, um zu erkennen in welchen Variablen sich Information befindet. Dabei kann gleichzeitig die Eingabe des Wohnortes mit der entsprechenden Wortsammlung verglichen werden. Falls sich der Wohnort nicht in der Datenbank befindet, kann er nachträglich ergänzt werden. Dies könnte bei der Informationserkennung von Vorteil sein.

Daraufhin werden mit diesen Eingaben Kombinationen für die Suche und die URL-Generierung erstellt. Mögliche Such-Kombinationen für erfolgreiche Ergebnisse sind:

```
Vorname, Nachname, Wohnort;
```

Vorname, Nachname, Geburtsjahr;

Vorname, Nachname, Institution;

Vorname, Nachname, Wohnort, Geburtsjahr;

Vorname, Nachname, Wohnort, Institution;

Benutzername einer Social-Media-Seite;

Die Kombination aus vielen oder allen Daten ist ebenfalls eine mögliche Option, allerdings wird dadurch oft kein Ergebnis gefunden, da nicht zur jeder Information ein Eintrag im Internet besteht.

Sobald die Kombinationen aus den Daten bekannt sind, werden die Such-URLs für die Google-Suchmaschine generiert.

8.4.2 Generierung der Google-Such-URLs

Aufbau eines URLs

Ein Uniform Resource Locator, kurz URL, lokalisiert eine Ressource, indem eine abstrakte Identifikation der Lokalisierung verwendet wird. Dabei wird ein URL grundsätzlich im folgenden Format angegeben. [RFC94]

```
< scheme > : < scheme - specific - part > [RFC94]
```

Das Schema gleicht hierbei meist dem verwendeten Protokoll wie HTTP oder FTP. Der Doppelpunkt stellt die Trennung zum Schema-spezifischen Teil dar. Ein Beispiel für ein HTTP-URL-Aufbau ist im Folgenden definiert. [RFC94]

$$http: // < host >: < port > / < path >? < searchpart > [RFC94]$$

Hier wird das Protokoll HTTP als Schema verwendet, wobei sich der Aufbau bei der Verwendung des HTTPS-Protokolls kaum unterscheidet. Lediglich das Schema und der Port verändert sich.

Für den <host> kann der FQDN oder die IP-Adresse des Hostrechners eingetragen werden. Wenn der Port nicht angegeben wird, ist der Standardport voreingestellt. Bei HTTP wäre dies Port 80 und bei HTTPS Port 443. Der <path> stellt ein HTTP-Selektor dar und ist mit einem Fragezeichen von der Suchzeichenkette getrennt. [RFC94]

Im Bereich des <searchpart> lassen sich URL-Parameter einfügen um Informationen an die entsprechende Webseite mitzugeben. Die Parameter bestehen aus einem Schlüssel und aus einem Wert, welche durch ein Gleichheitszeichen getrennt werden. Um mehrere Parameter hinzuzufügen und zu kombinieren wird das kaufmännische Und-Zeichen verwendet. [AH19] Ein URL für die Google-Suche von *Marco lang* ist in dem folgenden Beispiel gegeben.

$$https: //www.google.com/search?q = Marco + Lang$$

Allerdings können URLs nur mit ASCII-Zeichen erzeugt und versendet werden. Aus diesem Grund müssen Zeichen die nicht im ASCII vorkommen, in ein gültiges Format umgewandelt werden. Dies wird realisiert, indem die URL-Kodierung das nicht enthaltende ASCII-Zeichen durch ein "%", gefolgt von zwei Hexadezimalen Ziffern, ersetzt. Beispielsweise repräsentiert "%20" ein Leerzeichen und "%22" ein Anführungszeichen. [W3S]

Erstellen der Such-URLs

Dieser Absatz beschreibt die Erstellung der Such-URLs für Google, mit dem Wissen aus Kapitel 8.4.2.

Für jede genannte Kombination aus den eingegebenen Daten werden Link-Muster erzeugt, die einem Lückentext entsprechen. Sobald die entsprechenden Muster ausgewählt wurden,

werden die Lücken mit den Daten befüllt. Dadurch wird eine Liste mit einer variierende Menge von Suchlinks erstellt. Diese Liste wird anschließende von dem Web Crawler verwendet um die Suche zu starten. Ein URL für die Suche nach Information auf beliebigen Webseiten wird wie folgt dargestellt.

https://www.google.com/search?q=%22Max+Mustermann%22+%22Weingarten%22

Wenn allerdings der Benutzername einer Social-Media-Seite bekannt ist, werden zwei unterschiedliche URLs verwendet. Mit Hilfe des ersten URLs, wird speziell nach Einträgen auf der entsprechenden Webseite gesucht. Dazu kann der Operator "site" verwendet werden. Dieser beschränkt die Suchergebnisse soweit, dass die vorgeschlagenen Einträge ausschließlich auf einer festgelegten Webseite vorkommen. Das folgende Beispiel beschreibt die Suche nach dem Benutzer "Mustermann" auf der Webseite "Instagram.com". Dabei ersetzt die ASCII-Zeichenkette "%3A" den Doppelpunkt. [W3S]

https://www.google.com/search?q=site%3Ainstagram.com+%22Mustermann%22

Der zweite URL wird für eine Social-Media-Suche verwendet. Bei dieser Suche werden Social-Media-Seiten nach Einträgen durchsucht. Dafür wird kein zusätzlicher Operator benötigt. Es wird lediglich ein @-Zeichen, welches mit der Zeichenkette "%40" dargestellt wird, vor dem zu suchenden Wort eingefügt. Die Social-Media-Suche nach dem Benutzernamen "Mustermann" sieht folgendermaßen aus. [Goo19]

https://www.google.de/search?q=%40Mustermann

Optimierung der Such-URLs

Um die Suchergebnisse von Google zu verbessern, können die Suchbegriffe in Anführungszeichen gesetzt werden. Dadurch wird eine Phrasensuche gestartet, die nach einer Zeichenfolge sucht. Das bedeutet, es wird ausschließlich nach diesen Zeichenfolgen gesucht und nicht nach einer Abwandlung. Ein Beispiel hierfür ist die Suche nach "Mike Bazzell". Wenn diese Suche ohne Anführungszeichen durchgeführt wird, werden zusätzlich Webseiten vorgeschlagen die den Namen Mike Bazzell anstatt Micheal Bazzell beinhalten. Diese erweiterte Suche kann dazu führen, dass unzählige Webseiten vorgeschlagen werden, die nicht unbedingt was mit dem Thema der Suchbegriffe zu tun hat. Um dem vorzubeugen

können Anführungszeichen verwendet werden, welche die Anzahl der Suchergebnisse um einen sehr großen Teil verringern. [Baz18]

Für die Suche nach Marco Lang werden ungefähr 96.400.000 Ergebnisse mit Hilfe der Google-Suchmaschine gefunden. Wird die Suche mit den Anführungszeichen verfeinert indem nach "Marco" "Lang" gesucht wird, werden etwa 55.600.000 Ergebnisse gefunden. Allerdings werden hier Webseiten vorgeschlagen, welche die Wörter "Marco" und "Lang" beinhalten, jedoch müssen diese nicht direkt nebeneinander und auch nicht in der Reihenfolge vorkommen. Es wäre Möglich, dass bei dieser Suche, Webseite mit Verweisen auf die Namen "Marco Mustermann" und "Max Lang" beinhaltet. Aus diesem Grund kann nach "Marco Lang" gegoogelt werden. Dadurch wird die Anzahl der Suchergebnisse auf 45.500 Ergebnisse reduziert. Der Grund für die starke Reduzierung ist, dass ausschließlich die Webseiten vorgeschlagen werden, die den kompletten String "Marco Lang" beinhalten. Für eine weitere Optimierung der Ergebnisse, wird der Wohnort hinzugefügt, wie in dem Beispiel "Marco Lang" "Tettnang". Dadurch werden die Suchvorschläge auf lediglich 95 Ergebnisse reduziert. Die URL zu dieser optimierten Suche lautet:

https://www.google.com/search?q=%22Marco+Lang%22+%22Tettnang%22

Nicht nur die Reduzierung der Suchergebnisse, sondern auch das herausfiltern von unerwünschten Webseiten hat einen positiven Effekt auf die zu erstellende Anwendung, da die vorgeschlagenen Seiten in den folgenden Schritten analysiert werden müssen. Das bedeutet, dass jede unerwünschte Seite die allein durch die Suche herausgefiltert werden kann, einen großen Laufzeitvorteil mit sich bringt.

8.4.3 Mit welcher Bibliothek werden Serveranfragen umgesetzt?

Damit eine Person im Internet gesucht werden kann, muss das Programm in der Lage sein, Anfragen an einen Server zu versenden und die dazugehörigen Antwort zu empfangen. Um Anfragen an einen Server zu versenden, gibt es drei Möglichkeiten. Zum einen ist das die Python Request-Bibliothek, welche sich optimal für HTTP-Anfragen eignet. [Mit15] Zum anderen bietet sich die Verwendung eines automatisierten Webbrowsers an, was mit Hilfe der Selenium Python API realisierbar ist. [Law15] Über diese API ist es möglich auf alle Funktionen des Selenium Webbrivers zuzugreifen. [Mut18] Eine Alternative dazu, ist

das Python Framework Scrapy, welches zum Crawlen von Webseiten und Extrahieren von Daten verwendet werden kann. [dev18] Die letzte Möglichkeit stellt die Scrapy Middleware Scrapy-Selenium dar. [Fou19] Dadurch wird die Kommunikation von Scrapy und Selenium ermöglicht.

Für komplizierte Anfragen an einen Server eignet sich die Request-Bibliothek von Python sehr gut. Der Umgang mit Cookies, Header und vielem mehr ist sehr einfach gestaltet. Auch die Generierung des Such-URLs wird von dieser Bibliothek übernommen. Des Weiteren hat Requests einen großen Laufzeit-Vorteil gegenüber dem automatisierten Webbrowser und kann HTTP-Fehlermeldungen empfangen. Allerdings lässt sich mit der Request-Bibliothek keine Javascript-Seite auslesen.

Wenn das Framework Scrapy standardmäßig verwendet wird, können ebenfalls keine Javascript-Seiten ausgelesen werden. Doch in Scrapy lässt sich ein automatisierter Webbrowser einfügen, mit welchem das Auslesen von Javascript-Webseiten möglich ist. Zusätzlich lässt sich mit Scrapy ein effektiver Web Crawler und Web Scraper entwickeln, was für die nächsten Schritte ein erheblicher Vorteil ist.

Aus den erläuternden Gründen, wird das Framework Scrapy mit der Verbindung eines automatisierten Webbrowsers für die Personensuche verwendet. Der automatisierte Webbrowser muss in dem Framework implementiert werden, da auf bestimmte Webseiten mit Javascript direkt zugegriffen wird. Infolgedessen wird die Middelware Scrapy-Selenium verwendet, da sie die eine kompakte Möglichkeit bietet, den automatisierten Webbrowser in Scrapy zu implementieren. Durch diese Kombination aus Scrapy und dem Selenium WebDriver, lassen sich Javascript-Seiten problemlos auslesen.

Zusätzlich zu diesem Framework wird ein unabhängiger Selenium-Wedriver implementiert. Dieser wird für den Umgang mit den Social-Media-Seiten benötigt, da auf diesen Seiten ein Login vollzogen werden muss. Das hat den Vorteil, dass die Anmeldung in der Session gespeichert wird. Somit muss bei einem erneuten Zugriff auf die selbe Seite keine neue Anmeldung vollzogen werden.

8.4.4 Web Crawler erstellen

Nachdem der Selenium WebDriver in das Scrapy Framework implementiert wurde, kann mit dem crawling begonnen werden. Der Web Crawler hat die Aufgabe ausgewählte

Social-Media-Seiten zu durchstöbern und den von Google vorgeschlagenen Webseiten zu folgen. Dazu werden zuerst die Social-Media-Seiten behandelt. Anschließend wird die Webseite mit den Google-Suchergebnissen analysiert. Dadurch kann die Position der URLs, für die vorgeschlagenen Seiten, bestimmt werden. Sobald der Aufbau dieser Seite bekannt ist, können die URLs herausgelesen und diese anschließend gefolgt werden.

Aufbau von Webcrawler aufzeigen -> Zeichnung

Social-Media-Seiten

Zu den verwendeten Webseiten gehören Instagram, Facebook, Twitter, Xing und LinkedIn. Für diese Webseiten werden Fake-Accounts Selenium Webdriver erstellt, der ausschließlich für die Social-Media-Seiten zuständig ist. Der Selenium Webdriver meldet sich automatisch auf den Webseiten an, damit die Möglichkeit besteht, vollständige Profile anzuzeigen. Die gewonnen Informationen werden dem Profil der gesuchten Person hinzugefügt und bei der Suche mit Google zusätzlich verwendet.

Login-Formulare

Der Selenium Webdriver muss sich nicht bei jeder Webseite einloggen. Zu beginn wird kontrolliert, zu welcher Social-Media-Plattform ein Benutzername eingegeben wurde. Dazu gibt es bei dieser Anwendung die Möglichkeit einen Facebook-, Instagram- oder Twitter-Benutzername einzugeben. Je nach Eingabe meldet sich der Browser auf den entsprechenden Seiten an. Auf den Seiten Xing und LinkedIn wird sich standardmäßig immer angemeldet. Das hat den Grund, dass der Benutzername dem offiziellen Namen entspricht.

Bei der Umsetzung wird im ersten Schritt die Login-Seite der entsprechenden Plattform angefordert. Die Antwort wird mit Hilfe der BeautifulSoup-Bibliothek nach dem HTML-Tag <input> durchsucht. Allerdings hat nicht jede Webseite den komplett identischen Aufbau. Das bedeutet dass sich bei diesen Tags die Attribute unterscheiden können. Aus diesem Grund muss nach der Angeforderten-Webseite die Suche der <input>-Tags unterschieden werden.

Die Anmeldung von Instagram, Facebook und Linked In sind nahezu identisch. Hier können die zwei gesuchten <input>-Felder mit Hilfe des Attributs *type* identifiziert und gefunden werden. Bei der Twitter-Login-Seite muss anstatt dem type nach dem Attribute class gesucht werden. Andernfalls findet der Browser keine interaktiven Elemente.

Zum übertragen der Benutzernamen und Passwörter, benötigt der Selenium Webdriver ein Element mit eindeutigem Attribut zur Referenzierung. Dafür dient bei Instragram, LinkedIn und Facebook das vorher gefundene Element mit dem Attribute "id". Bei Twitter ist das dass Attribut "class[0]" und bei Xing "name".

Instagram

Instagram und Twitter verwenden beide eine einzigartigen Benutzername. Dies ist einen riesigen Vorteil für die Identifikation einer Person, wenn der Benutzername bekannt ist. Es ist allerdings auch möglich eine Person mit ihrem offiziellen Namen zu suchen und zu finden.

Im Fall das der Instagram-Benutzername eingegeben wurde, wird die dazugehörige Profilseite angezeigt und nach Informationen durchsucht. Im nächsten Schritt dienen die vorgeschlagenen Freunde, welche in Beziehung zu diesem Profil stehen, als weitere Informationsquelle. Das bedeutet, dass diese Kontakte ebenfalls durchsucht werden. Bei Übereinstimmungen wie zum Beispiel der selben Universität, kann später eine glaubwürdige Phishing-Mail generiert werden.

Falls sich jedoch eine Instagram-Seite unter den Google-Vorschlägen befindet, und die Übereinstimmung des Profils mit der Zielperson nicht klar ist, können die Vorgeschlagenen Kontakte für die Identifizierung der Zielperson genutzt werden. So wird beispielsweise erkannt, wenn eine Anzahl von Freunden aus der selben Stadt vorgeschlagen werden, dass es sich um die gesuchte Person handeln kann. Diese Methode erzielt kein hundertprozentig sicheres Ergebnis, allerdings kann die Wahrscheinlichkeit erhöht werden, dass es sich um die richtige Person handelt.

Die Profilseite wird mit dem folgenden Link https://www.instagram.com/username/angefordert. Weitere Seiten und Einträge der gesuchten Person, unabhängig von der Profilseite,können mit dem Suchbefehl site:instagram.com "username"

-site:instagram.com/username angezeigt werden. [Baz18] In der Anwendung wird dies mit dem folgenden URL umgesetzt.

https://www.google.com/search?q=site%3Ainstagram.com+%22username%22+-site%3Ainstagram.com%2Fusername&oq=site%3Ainstagram.com+%22username%22+-site%3Ainstagram.com%2Fusername

Die dazugehörigen Suchergebnisse werden anschließend gleich den normalen Google-Suchergebnissen behandelt.

Twitter

Auf der Webseite Twitter wird ausschließlich die Profilseite nach Informationen durchsucht. Dies ist mit dem Link https://twitter.com/username möglich.

Facebook

Facebook bietet ein großes Potential um OSINT zu betreiben. Allerdings hat Facebook optimal Algorithmen zur Erkennung von automatisierten Crawlern entwickelt. Aus diesem Grund wurde das Fake-Konto nach wenigen Versuchen gesperrt. Das hat zu Folge, dass auf dieser Plattform nur begrenzt gesucht werden kann, da keine Anmeldung vorgenommen werden kann. Um das Konto zu entsperren müssten eine Kopie des Ausweises, Bild mit erkennbarem Gesicht und die Handynummer an Facebook übermittelt werden.

Aus den oben erwähnten Gründen wird Facebook nur dann und ohne Anmeldung verwendet, wenn sich ein Vorschlag unter den Google-Suchergebnissen befindet.

LinkedIn und XING

LinkedIn und XING bieten eine optimale Informationsquelle bezüglich der schulischen und beruflichen Laufbahn der Zielperson. Allerdings gibt es hier keinen einzigartigen Benutzernamen. Demzufolgem, wird eine Person mit dem vollen Namen und dem aktuellen Wohnort gesucht. Dabei wird auf LinkedIn ein Filter angewendet, bei dem ausschließlich Personen aus Deutschland angezeigt werden. Wenn genau eine Person vorgeschlagen wird, wird dieses gefundene Personenprofil durchsucht. Bei einer Mehrzahl von gefunden Personen werden diese nicht auf Informationen durchsucht, da keine Identifikation möglich ist.

Die Personensuche bei LinkedIn, mit angwandtem Filter, wird mit dem URL https://www.linkedin.com/search/results/people/?facetGeoRegion=%5B%22de%3A0%22%5D&keywords=vorname%20nachname%20wohnort&origin=FACETED_SEARCH dargetellt. Bei Xing sieht der Such-URL wie folgt aus.

 $https://www.xing.com/search/old/members?hdr=1 \\ @keywords=vorname+nachname++wohnort.$

Webseite mit den Suchergebnissen von Google analysieren

Zur Analyse der Webseite mit den Suchergebnissen von Google, wird der Seitenquelltext benötigt. Mit Hilfe des Quelltextes, können die entsprechenden Links erkannt werden. Der Seitenquelltext wird mit Hilfe der Web-Entwickler-Tools eines standardmäßigen Browsers angezeigt.

Das Bild 8.1 stellt ein Suchergebnis von Google dar. Der dazugehörige Quelltext wird im Bild 8.2 dargestellt.

Marco Lang - Spieler - FuPa - FuPa

https://www.fupa.net/spieler/marco-lang-1261543.html ▼ Translate this page

Marco Lang ist ein Fußballspieler der diese Saison noch keine Einsätze zu verzeichnen hat. ... Geburtsdatum: 11.08.1995 (23). Nationalität ... TSV Tettnang.

Bild 8.1: Google-Suchergebnis

Im Ausschnitt des Seitenquelltextes 8.2 ist zu sehen, dass der <div>-Container mit der Klasse "g" einen Hyperlinks enthält. URLs oder Links werden mit dem HTML-Tag <a> dargestellt. Dieser Link wird für die Suche benötigt. Deswegen wird genau nach diesem Link gesucht.

Da der <div>-Container bei jedem Suchergebnis identisch ist, kann bei jedem Ergebnis nach dem entsprechenden <div>-Container gesucht werden. Anschließend kann der erste Link in diesem <div>-Tag ausgelesen werden. Dies wird mit Hilfe der BeautifulSoup-Bibliothek umgesetzt.

Um zu erkennen, ob mehrere Seiten mit Suchergebnissen existieren, wird nach bestimmten Hyperlinks gesucht. Diese Links werden über das Attribute *class* identifiziert. Mit Hilfe der BeautifulSoup-Bibliothek wird nach dem Klassennamen "fl" gesucht. Falls weiter Seiten mit Suchergebnissen vorhanden sind, werden die dazugehörigen Links in einer Liste gespeichert. Anschließend wird ihnen gefolgt und die neue Seite wird nach weiteren URLs durchsucht.

Bild 8.2: Ausschnitt des Quelltextes von einem einem Google-Suchergebnis

8.5 Methoden zum Erkennen von wichtigen Informationen auf einer Webseite

Bei der Suche nach einer ausgewählten Person können verschiedenste Arten von Webseiten gefunden werden. Aus diesem Grund muss das Programm eine gewisse Intelligenz mit sich bringen um die wichtigsten Daten aus einer Seite herauszufiltern. Dabei ist es nicht möglich eine Hartkodierung zu verwenden, um festgelegte Bereiche einer Webseite auszulesen, da jede Webseite eine individuelle Struktur hat.

Die Grundidee zur Lösung diese Problems ist die Analyse des vorliegenden Webseiten-Textes. Eine Methode zur Textanalyse ist die automatisierte Schlüsselwort-Gewinnung. Hierbei wird die HTML-Seite zu einem verwendbaren Text formatiert, wobei die meisten Sonderzeichen herausgefiltert werden. Sonderzeichen wie "." und "@" werden dabei nicht herausgefiltert, da sie für die E-Mail-Erkennung wichtig sind. Anschließend werden Schlüsselwörter aus dem formatierten Webseitentext generiert. Möglichkeiten zur automatisierten Schlüsselwortgenerierung sind die Verfahren RAKE 8.5.1 und die Automatic Keyword Extraction mit NLP 8.5.2, welche im Laufe dieser Arbeit detailliert beschrieben werden. Nachdem die Schlüsselwörter generiert und in Listen gespeichert wurden, werden Wortsammlung erstellt. Diese Wortsammlungen sind Listen, welche aussagekräftige Schlüsselwörter enthalten und nach Themen kategorisiert werden. Beispiele für den Inhalt der Listen sind alle Hochschulen und Universitäten in Deutschland, Berufsbezeichnungen und Tätigkeiten, Studiengänge, Hobbybezeichnungen und alle Städte und Gemeinden in Deutschland.

Mit diesen Wortsammlungen kann nun die Liste mit den bereits generierten Schlüssel-

wörtern aus dem Webseitentext verglichen werden. Bei einer Übereinstimmung eines Schlüsselwortes wird das Wort mit der entsprechenden Kategorie vorgemerkt und später in die verwendete Speicherstruktur eingetragen.

Die Wortsammlungen werden mit Hilfe von bekannten Listen im Internet eigenständig befüllt. Als Informationsquelle dienen alle öffentlich frei zugänglichen Listen, die hilfreiche Informationen enthalten.

8.5.1 RAKE

RAKE steht für Rapid Automatic Keyword Extraction und stellt eine sehr effiziente Methode zur Schlüsselwortgenerierung dar. Die Funktion von RAKE basiert darin, dass Schlüsselwörter mehrere Wörter mit inhaltlicher Relevanz enthalten, allerdings selten Stoppwörter und Sonderzeichen. [RECC10]

Als Stoppwörter werden Wörter bezeichnet, die sehr oft auftreten und keinen großen Informationsgewinn mit sich bringen. Beispiele dafür sind und, weil, der oder als. [Sla]

In einer jungen Wissenschaft wie der Informatik mit ihrer Vielschichtigkeit und ihrer unüberschaubaren Anwendungsvielfalt ist man oftmals noch bestrebt, eine Charakterisierung des Wesens dieser Wissenschaft und Gemeinsamkeiten und Abgrenzungen zu anderen Wissenschaften zu finden. Etablierte Wissenschaften haben es da leichter, sei es, dass sie es aufgegeben haben, sich zu definieren, oder sei es, dass ihre Struktur und ihre Inhalte allgemein bekannt sind.

Bild 8.3: Beispieltext

Zu Beginn wird der zu analysierende Text, hier der Beispieltext in Bild 8.3, durch einen Worttrenner in ein Array, bestehen aus möglichen Schlüsselwörtern, aufgeteilt. Das erzeugte Array wird anschließend in Sequenzen von zusammenhängenden Wörtern unterteilt. Dabei erhalten die Wörter in einer Sequenz die gleiche Position und Reihenfolge wie im Ursprungstext und dienen gemeinsam als Kandidatenschlüsselwort. [RECC10] Nachdem die möglichen Schlüsselwörter identifiziert sind, wird für jeden einzelnen Kandidaten ein Score ausgerechnet. Dieser besteht aus dem Quotient des Grades deg(w) und der Häufigkeit des Vorkommens eines Wortes innerhalb der Kandidaten freq(w). Daraus ergibt sich die Formel:

Dabei beschreibt der Grad eines Wortes, dass gemeinsame Auftreten mit sich selbst und anderen Schlüsselwörtern. In der Tabelle 8.5.1 ist der Grad für jedes Wort ablesbar, indem die Einträge in der entsprechenden Reihe summiert werden. Beispielsweise Beträgt der Grad des Wortes "Wissenschaft" den Wert 3. Dies ergibt sich aus der Rechnung:

$$2 + 1 = 3$$

Das Wort "Wissenschaft" kommt hier selbst zweimal in dem Kandidaten-Array vor und davon einmal in Verbindung mit dem Worten "jungen".

Die Häufigkeit des Vorkommens eines Wortes lässt sich ebenfalls in der Tabelle 8.5.1 ablesen. Allerdings muss hier in der Reihe und Spalte des jeweiligen Wortes nachgeschaut werden. Für das Wort "Wissenschaft" beträgt die Häufigkeit des Vorkommens den Wert 3. Zusammenfassend kann gesagt werden, dass deg(w) die Kandidaten bevorzugt, welche oft und in langen Schlüsselwörtern, die mehrere Wörter enthalten, vorkommen. Dies bedeutet, dass beispielsweise deg(etabliert) eine höhere Bewertung als deg(informatik) bekommt, obwohl beide Wörter gleich oft im Text vorkommen. Dagegen wird bei freq(w), ausschließlich die Häufigkeit des Vorkommens bewertet. Bei der Formel deg(w)/freq(w) werden die Wörter bevorzugt, welche überwiegend in langen Kandidatenwörtern vorkommen. Diese Formel bietet dadurch einen guten Mittelweg zur Schlüsselwortgewinnung. Ein Beispiel dafür sind die Wörter "Wissenschaften und "allgemein". Hier ist der Quotient von deg(allgemein)/freq(allgemein) höher als von deg(Wissenschaften)/freq(Wissenschaften), obwohl die Häufigkeit des Wortes "Wissenschaften" höher und der Grad gleich hoch ist. [RECC10]

Durch das genannte Verfahren und der Formel deg(w)/freq(w) für die Bewertung, ergeben sich die im Bild 8.4 befindenden Kandidaten mit den dazugehörigem Endbewertungen. [RECC10]

	wissenschaften	wissenschaft	sei	etablierte	informatik	aufgegeben	gemeinsamkeiten	oftmals	charakterisierung	jungen	inhalte	allgemein	bekannt	struktur	wesens	bestrebt	unüberschaubaren	anwendungsvielfalt	definieren	abgrenzungen	leichter	finden	vielschichtigkeit
wissenschaften	2			1																			
wissenschaft		2								1													
sei			1																				
etablierte	1			1																			
informatik					1																		
aufgegeben						1																	
gemeinsamkeiten							1																
oftmals								1															
charakterisierung									1														
jungen		1								1													
inhalte											1	1	1										
allgemein											1	1	1										
bekannt											1	1	1										
struktur														1									
wesens															1								
bestrebt																1							
unüberschaubaren																	1	1					
anwendungsvielfalt																	1	1					
definieren																			1				
abgrenzungen																				1			
leichter																					1		
finden																						1	
vielschichtigkeit																							1

Tabelle 8.1: Co-occurance

inhalte allgemein bekannt (9.0), unüberschaubaren anwendungsvielfalt (4.0), jungen wissenschaft(3.5), etablierte wissenschaften (3.5), wissenschaften (1.5), wissenschaft (1.5), wesens (1.0), vielschichtigkeit (1.0), struktur (1.0), sei (1.0), oftmals (1.0), leichter (1.0), informatik (1.0), gemeinsamkeiten (1.0), finden (1.0), definieren (1.0), dass (1.0), charakterisierung (1.0), bestrebt (1.0), aufgegeben (1.0), abgrenzungen (1.0)

Bild 8.4: Schlüsselwörter mit zugehörigem Score

8.5.2 Automatic Keyword Extraction mit NLP

Bei dieser Methode wird der vorliegende Text in die einzelnen Wörter unterteilt. Dabei wird eine Liste mit potentiellen Schlüsselwörtern erstellt, in der Stoppwörter und Sonderzeichen herausgefiltert werden. Bei den Schlüsselwörtern handelt es sich nicht ausschließlich um ein Wort sondern auch um Wortsequenzen. Sogenannte N-Gramme bestehen aus einer festgelegten Anzahl von Wörtern. Dies hat den Vorteil, dass nicht nur Schlüsselwörter bestehend aus einem Wort erstellt werden können, sondern auch Schlüsselwörter mit

Fragmenten eines Textes. Diese Art von Schlüsselwort wird benötigt um Informationen wie *Hochschule Ravensburg-Weingarten* herauszulesen. Ein Beispiel-Trigramm, bei welchem ein Fragment drei Wörter beträgt, aus dem Beispieltext 8.3 ist ['Wissenschaft und Gemeinsamkeiten'].

Erweiternd kann die Anzahl der Schlüsselwörter mit dem Verfahren von Stemming reduziert werden. Durch die Verwendung von ergänzende Regeln wie, eine Mindestanzahl von Buchstaben in einem Wort, können die Schlüsselwörter weiter begrenzen.

8.6 Bewertung: Herausfiltern von wichtigen Informationen auf einer Webseite

RAKE stellt eine fertige Methode dar, um Schlüsselwörter, die den Inhalt eines Textes in kurz wiedergeben, zu erstellen. Dabei hat ein Anwender kaum Möglichkeiten eigene Implementierungen vorzunehmen, da vieles vorgegeben ist. In der zu erstellenden Anwendung soll jedoch nicht der Inhalt eines Textes in Schlüsselwörter zusammengefasst werden, sondern es wird nach informationsreichen Wörtern gesucht. Aus diesem Grund ist jedes einzelne Wort aus dem Webseiten-Text von Bedeutung. Dies spricht gegen RAKE, da es nur die selbst errechnenden Favoriten-Schlüsselwörter zur Verfügung stellt. Dadurch werden viele Wörter nicht in Betracht gezogen oder für weiterführende Bearbeitungen bereitgestellt. Darüber hinaus ist die Berechnung eines Scores für diese Anwendung nicht notwendig.

Die Methode zur automatisierten Schlüsselwortgenerierung mit NLP bringt dagegen ein eigene Implementationsmöglichkeit mit sich. Das bedeutet, es kann selbst festgelegt werden, aus wie vielen Wörtern die Schlüsselwörter bestehen sollen. Des Weiteren wird jedes einzelne Wort in Betracht gezogen und verwendet. Die Suche nach einer E-Mail-Adresse im Text lässt sich bei beiden Methoden hinzufügen. Jedoch wird aus den eben genannten Vorteilen, die Information mit Hilfe der Methode zur automatisierten Schlüsselwortgewinnung mit NLP herausgefiltert.

8.7 Umsetzung: Herausfiltern von wichtigen Informationen auf einer Webseite

8.7.1 Text formatieren

Bevor die Schlüsselwörter generiert werden können, muss der Text in ein verwertbares Format umgewandelt werden. Aus diesem Grund wird der Seitenquelltext zuallererst mit Hilfe eines Python-Skripts namens html2text zu einem ASCII Plaintext umgewandelt. [Fou18] Anschließend werden Zeilenumbrüche und Sonderzeichen aus diesem Text herausgefiltert. Einzelne Wörter und Zahlen die weniger als 2 Zeichen haben, können ebenfalls aussortiert werden. Nachdem der Text in ein verwertbares Format umgewandelt wurde, kann mit der Umsetzung für die automatisierte Schlüsselwortgenerierung mit NLP begonnen werden.

8.7.2 Automatic Keyword Extraction mit NLP

Schlüsselwortgenerierung mit Python NTLK

Durch das Natural Language Toolkit von Pyhton ist es möglich, den vorhandenen Webseitentext zu analysieren.

Zu Beginn wird der vorhandene Text in einzelne Wörter zerlegt und in eine Liste gespeichert. Aus diesen Wörtern werden die "stopwords" der deutschen als auch der englischen Sprache herausgefiltert. Dadurch verringert sich die Anzahl der gesamten Wörter im Text um einen sehr großen Teil.

Im nächsten Schritt werden die N-Gramme erstellt. Es werden nicht nur Bigramme sondern auch Trigramme, Tetragramme, Pentragramme und Hexagramme benötigt, damit vollständige Universitätsnamen und Firmennamen aus dem Text herausgelesen werden können. Alle erzeugten N-Gramme werden der eben erstellten Liste hinzugefügt. Diese Schlüsselwortliste wird später mit den Wortsammlungen verglichen.

8.7.3 Wortsammlungen erstellen

Die korrekte Erstellung der Wortsammlungen ist sehr wichtig für das Projekt, da die Informationsgewinnung abhängig von diesen Listen ist. Das bedeutet, umso besser diese Datenbanken erstellt werden, umso mehr Informationen können gewonnen werden.

Erstellung der Wortsammlungen

Eine Wortsammlung ist eine CSV-Datei die manuell erstellt und befüllt wird. Es gibt eine Wortsammlung mit allen Universität- und Hochschulnamen, Städten und Gemeinden in Deutschland, Vereinskürzel, Bezeichnungen für Tätigkeiten und Hobbys sowie einer Liste mit den bekanntesten Firmennamen.

Wie werden sie am effektivsten verglichen?

Es gibt keine Methode die den Vergleich der Schlüsselwörter mit den Wörtern der Datenbanken verbessern kann, da jedes einzelne Schlüsselwort mit jedem einzelnen Wort aus der Datenbank verglichen werden muss.

8.7.4 E-Mails erkennen

Originalen Quelltext keine formatierten, Regex aufstellen um E-Mails zu erkennen, mit difflib differnz von email adressen zu Namen bestimmen, dabei nicht nicht die domain in betracht ziehen. Wert bestimmen ab wann es übereinstimmt.

8.8 Methoden zum Erkennen einer Person

Bei jeder einzelnen Suche, besteht die Herausforderung darin, zu erkennen, wann es sich um die gesuchte Person handelt. Durch die große Anzahl an verfügbaren Informationen im Internet, besteht eine hohe Wahrscheinlichkeit, dass Personen mit sehr ähnlichen Profilen

gefunden werden.

Aus diesem Grund müssen Maßnahmen getroffen werden, damit die gesuchte Person erkannt wird. Dafür ist der erste Schritt die Anzahl der Suchergebnisse zu reduzieren. Dies ist durch den Ansatz der Personensuche im Kapitel 8.2 möglich. Dabei wird abhängig von der eingegebenen Information die Suche variiert. Des Weiteren kann durch eine Optimierung des Such-URLs 8.4.2, die Personensuche verfeinert und somit die Ergebnisse verbessert werden. Durch diese Maßnahmen steigt die Wahrscheinlichkeit, dass es sich um die richtige Person handelt.

Als zweites können die nachstehenden Methoden verwendet werden. Im Fall das auch mit diesen Methoden nicht die gesuchte Person identifiziert werden kann, können mehrere Personenprofile erstellt und angezeigt werde. Der Programm-Anwender kann anschließend aus den vorgeschlagenen Profilen eines auswählen.

8.8.1 Zeitraum beachten

Eine Methode für das Erkennen von Personen kann das Beachten von Zeiträumen sein. Dabei fließt das Alter der Zielperson mit in die Suche ein. Das bedeutet, dass nach dem Alter der Webseite gesucht wird, indem Jahreszahlen aus dem Webseitentext ausgelesen werden. Dadurch wird erkannt, ob der Zeitrahmen des Artikels oder das Erstellungsdatum einer Webseite mit dem Alter der Person grundsätzlich übereinstimmt.

8.8.2 Kontakte der Suchperson werden in Betracht gezogen

Hier kann die Suche erweitert werden, indem auf soziale und berufliche Verbindungen der Zielperson eingegangen wird. Das heißt, dass bekannte Kontakte der gesuchten Person ebenfalls durchsucht und ausgewertet werden. In diesem Fall könnten Facebook-Freunden, FuPa-Teammitglieder, Instagram-Follower oder LinkedIn/Xing-Kontakte als Kontaktquelle dienen.

Durch dieses Verfahren können weitere Informationen gewonnen werden, die zur Unterscheidung von Profilen nützlich sein könnten.

8.8.3 Identifikationsschlüssel verwenden

Bekannte Information zur Person können als Identifikationsschlüssel verwendetet werden. Allerdings müssen dies einzigartige Daten sein. Als einzigartige Daten zählen beispielsweise die E-Mail-Adresse oder eine Verbindung von mehreren Daten. Der vollständige Name ist nicht einzigartig und dient deswegen nicht als Identifikationsschlüssel, da häufig verwendete Namen oft in Verbindung mit unterschiedlichen Personen im Internet vorkommen. Des Weiteren, kann eine Zielperson auf einer Webseite einen erfundenen Benutzernamen und auf der nächsten Seite den vollständigen Namen verwenden.

8.9 Bewertung: Die gesuchten Person erkennen

Grundsätzlich gilt, dass alle Methoden zur Erkennung einer Person eine Verbesserungen der Ergebnisse mit sich bringen. Allerdings gibt es Unterschiede in der Wirksamkeit und in der Laufzeit des Programms. Die Erweiterung der Kriterien ?? bringt keine große Laufzeitänderung mit sich und stellt eine sehr gute Eigenschaft zur Optimierung der Informationsfindung dar, da die Zeit ebenfalls mit einbezogen wird.

8.10 Umsetzung: Die gesuchte Person erkennen

8.10.1 Zeitrahmen wird mit Beachtet

Wie kann Alter der Webseite herausgefunden werden

Der Webseitentext kann nach Datums suchen und diese mit dem angegebenen Geburtsjahr verglichen werden. Dabei kann erkannt werden, ob das theoretische Alter des Artikels mit dem Alter der Person übereinstimmen kann. Möglicherweise können Metadaten von der Webseite ausgelesen werden. möglicherweise über domain

8.10.2 Bereits umgesetzt

Jahr nach copyright wird ausgelesen, wenn das nicht vorhanden werden alle Jahreszahlen genommen und ein durchschnitt ausgerechnet

8.10.3 Kontakte in Betracht ziehen

Auf welcher Seite können mögliche Kontakte gefunden werden

Beinahe jede Social-Media-Seite bietet die Möglichkeit Kontakte der gesuchten Person anzusehen. Wenn nicht alle dann einen Teil

Wie werden Kontakte ausgelesen?

Möglicherweise hartkodiert.

Identifikationsschlüssel erstellen

Was dient als Identifikationsschlüssel

E-Mail.

8.11 Speicherung der gewonnenen Daten

Die gewonnenen Daten können in einem beliebig erweiterbaren Personen-Objekt gespeichert werden. Darüber hinaus lässt sich das Objekt mit bekannten Kontakten der zu suchenden Person erweitern.

Eine weitere Möglichkeit wäre die Daten in eine Datei auszulagern. Hierfür wäre eine Datei mit dem Format CSV oder TXT möglich.

9 OSINT einer großen Anzahl von Person

Für die *real-world* Simulation eines Phishing-Mail-Angriffs, wurde die Webseite FuPa festgelegt.

9.1 Methoden für OSINT

9.1.1 Methode für die Suche nach Information

Bei dieser Methode gibt es keine automatisierte Suche nach Informationen, jedoch eine automatisierte Suche nach internen Links. Diese interne Suche kann mit einem Web Crawler realisiert werden. Dieser hat das Ziel, sich mit den gefundenen Links durch die Webseite zu hangeln. Dadurch soll jedes Personenprofil gefunden werden. Für diese Aufgabe kann der Web Crawler hartkodiert werden. Eine weitere Möglichkeit ist die Erstellung eines Crawlers, welcher unabhängig von der Webseiten nach Links suchen kann. In Vorbereitung darauf, wird der Aufbau der FuPa-Webseite analysiert.

Anlayse der Webseite

Damit die Auswahl für die Art des Web Crawlers getroffen werden kann, muss zuerst einmal der komplette Aufbau einer Webseite bekannt sein. Dadurch können beide Möglichkeiten von Web Crawler korrekt bewertet werden.

Für die Analyse der Webseite wird das Entwicklertool eines Webbrowsers verwendet, welches standardmäßig mitgeliefert wird. Es wird von der Startseite begonnen. Diese Startseite stellt eine Karte von Deutschland dar. Struktur geht von Deutschland, Bundesland, Kreisen,...

9.1.2 Methode zum Auslesen der Information

Zum Auslesen einer großen Menge an Daten wird ein Web Scraper erstellt. Dieser könnte für die ausgewählte Webseite hartkodiert werden. Eine Alternative dazu, wäre die Analyse des Webseitentextes, was dem Ansatz 8.5 von der Suchfunktion einer ausgewählten Person entsprechen würde.

9.2 Bewertung: OSINT große Anzahl

Die Suchfunktion für eine große Anzahl von Personen kann hartkodiert werden und benötigt dadurch keine Textanalyse, da der Aufbau der Webseite im voraus bekannt ist. Das bedeutet, dass das Programm genau weiß wo welche Information auf einer Webseite steht. Auf der Seite "www.fupa.net" befindet sich beispielsweise der Name einer Person immer an der gleichen Position einer Tabelle. Das bringt den Vorteil mit sich, dass der Text nicht analysiert werden muss und das Programm genau weiß, was mit diesen Daten gemacht werden muss. Zusätzlich entsteht eine sehr performante Methode zur Auslesung von personenbezogenen Daten.

9.3 Erstellung eines internen Web Crawlers

Damit die Webseite www.fupa.net komplett nach Spielerdaten durchsucht werden kann, wird ein interner Web Crawler benötigt. Dieser wird sich anhand den internen Links, über die ganze Seite hinweg, durchhangeln.

9.3.1 Funktionsweise des Web Crawlers

Links mit Spielerinformationen speichern. Die Funktionsweise des Web Crawlers besteht darin, dass das Programm auf der Startseite von Fupa.net beginnt nach links zu suchen und diesen folgt.

9.3.2 Probleme bei der Erstellung

- 1. Python hat einen verkürzten und erkennbaren Standard http-Header. Dieser wird von vielen Administratoren geblockt und mit der Fehlermeldung 451 erkennbar gemacht. 451 for legal reason
- 2. Honeypots gewollt oder ungewollt, hier Kalender darstellung mit links zu neuen Jahren die eine sehr hohe bis überhaupt keine Begrenzung haben.
- 3. Rekursion erreicht schnell die Maximale tiefe von 1500.
- 4. Zu langsamer Algorithmus

9.3.3 Lösungen

- 1. http-Header selber konfigurieren
- 2. Links mit möglichen Honeypots nicht beachten
- 3. Stack Klasse schreiben damit keine Rekursion benötigt wird
- 4. Algorithmus anpassen auf fupa-Webseite

9.4 Auslesen der Webseite durch Hartkodierung

9.5 Datenverwaltung und Speicherung

Für die Speicherung der gewonnen Daten kann eine SQL-Datenbank erstellt werden. Als Alternative kann eine Datei angelegt werden, bei der alle Daten zu allen Personen gut strukturiert gespeichert werden können. Eine Möglichkeit dafür wäre das Dateiformat CSV oder TXT.

10 Erstellung einer Phishing-Mail

10.1 Konzept zur Erstellung einer Phishing-Mail

Die Generierung einer Phishing-Mail läuft voll automatisch ab. Das bedeutet, dass das Programm eigenständig die E-Mail-Adressen generiert und passende E-Mail-Muster auswählt.

10.1.1 Methoden zur Generierung von E-Mail-Adressen

Eine Möglichkeit zur Generierung der E-Mail-Adressen kann das Open Source-Tool von Michael Bazzell [Baz] sein, welches mit Hilfe eines automatisierten Webbrowsers gesteuert werden kann. Bei diesem Tool werden die Daten für die E-Mail-Generierung eingetragen. Unter anderem sind das Vorname, Nachname und der E-Mail-Provider. Daraufhin werden die vorgeschlagenen E-Mail-Adressen angezeigt, kopiert und in ein Suchfeld eingefügt. Anschließend kann bei Google, Bing, und Facebook nach Einträgen gesucht und falls ein Eintrag gefunden wurde auch angezeigt werden.

Eine Weitere Möglichkeit wäre ein Algorithmus zu entwickeln, der alle möglichen E-Mail-Adressen aus den Kombinationen von Vorname, Nachname, Geburtsjahr, Benutzernamen und den Domains von den bekanntesten E-Mail-Providern generiert. Dazu gehören GMX, WEB.DE, Gmail, T-Online, Freenet und 1&1. [Anb19]

Für den Fall, dass der Arbeitgeber der Zielperson bekannt ist, kann auf der Firmenwebseite nach E-Mail-Adressen gesucht werden. Dadurch ist es möglich die Domain einer Firmen-Mailadresse zu bestimmen und eine Anzahl möglicher Firmenadressen für die Zielperson zu generieren.

Schon bei der Suche von personenbezogenen Daten wird ebenfalls nach E-Mail-Adressen gesucht. Dadurch kann bereits eine bis jetzt unbekannte Anzahl von Adressen gefunden werden.

10.1.2 Bewertung: E-Mail-Adresse generieren

Für die E-Mail-Adressgenerierung wird ein eigener Algorithmus entwickelt. Im Gegensatz zu dem Open Souce-Tool [Baz18] besteht bei diesem Algorithmus eine höhere Wahrscheinlichkeit, dass die richtige E-Mail-Adresse enthalten ist, da das Geburtsjahr, falls es bekannt ist, mit einbezogen wird.

10.1.3 Methode zur Erstellung von E-Mail-Mustern

Für die Erstellung der E-Mail-Muster kann eine eigene Klasse erstellt werden, welche für die Erzeugung des Textes zuständig ist. In dieser Klasse werden Strings gespeichert die einem Lückentext ähneln. Abhängig von den gefundenen Daten wird ein Lückentext ausgewählt, welcher anschließend mit den Daten an den passenden Lücken ergänzt wird. Mit dieser Methode muss jedoch für jede Kombination aus gewonnenen Daten ein Lückentext vorhanden sein.

Die Lückentexte werden so kategorisiert, dass für jede gefundene Information ein passender Lückentext vorhanden ist. Eine denkbare Unterteilung wäre in die Kategorien Privat und Geschäftlich.

10.1.4 Bewertung E-Mail-Muster

10.2 Generierung der E-Mail-Adressen

10.2.1 Funktion des eigenen Algorithmus

10.3 Validität der generierten Mail-Adressen prüfen

10.3.1 Methoden zum Prüfen der Validität

Die erzeugten Adressen werden anschließend auf Validität geprüft. Hierfür gab es früher eine VRFY Anfrage von SMTP. Mit dieser Anfrage konnte eine angegebene E-Mail-Adresse überprüft werden. Allerdings wurde der Dienst von Spammern ausgenutzt und wird dadurch von den meisten SMTP-Servern nicht mehr zu Verfügung gestellt. [BPH+10] Demnach muss die Validität auf einem anderen Weg geprüft werden. Eine Möglichkeit zur Prüfung ist die Verwendung bereitgestellter Webseiten, bei der die zu prüfenden E-Mail-Adresse angegeben werden kann. Eine anschließende Rückmeldung verrät dann, ob die Adresse verwendet wird oder nicht. Eine Webseite dafür wäre "https://centralops.net/co/". Als Alternative dazu, ist die Entwicklung eines Skriptes, welches die Validität der Adresse prüft.

Im Fall, dass mehrere Adressen von diesem Adresspool gültig sind, kann nach mit Hilfe dieser Mail-Adressen nach Einträgen im Internet gesucht werden. Wenn es eine Übereinstimmung mit der Zielperson gibt, wird diese E-Mail ausgewählt. Andernfalls wird an jede gültige Adresse eine Phishing-Mail gesendet.

10.3.2 Bewertung: Validität Prüfen

Für eine bessere Laufzeit des Programms, wird ein Skript zur Überprüfung der Adressen auf Verfügbarkeit und Gültigkeit, verwendet.

10.4 E-Mail-Muster erstellen

10.4.1 Kategorien erstellen

Grundsätzlich können die Muster in zwei große Kategorien unterteilt werden. Es gibt einen privaten und geschäftlichen Teil. Der private Teil hat weiter Unterteilungen wie beispielsweise Familie, Hobby und Interessen. Der Text kann hier in einer Alltagssprache erstellt werden. Für ein geschäftliches Muster sollte eine gehobene Sprache verwendet werden und Daten wie der Firmenname muss bekannt sein.

10.4.2 Lückentexte erstellen

11 Evaluation der Implementation

12 Schlussbemerkungen und Ausblick

12.1 Wie kann eine Person weiter identifiziert werden?

Durch die Google Bildersuche ist es möglich, anstatt einem Suchbegriff ein Bild zu verwenden und nach diesem zu suchen. Dabei kann ein zu suchendes Bild selbst hochgeladen oder ein URL angegeben werden. Bei dem Ergebnis kann es sich um ein ähnliches Bild oder eine Webseite, die das Bild enthält, handeln.

Als Alternative zur Google-Bildersuche kann eine Bilderkennungssoftware verwendet werden um Personen zu identifizieren bzw. zu unterscheiden.

12.2 Keyword Extraction mit Hilfe von Machine Learning

In der Theorie ist es möglich, ein Neuronales Netz mit den Begriffen zu trainieren und eine Kategorisierung durchzuführen. Dabei entsteht ein Netz, welches selbst entscheiden würde, in welche Kategorie ein Wort fällt. Das Wort "Fußball" müsste dadurch in die Kategorie Hobby eingeordnet werden.

A Ein Kapitel des Anhangs

Abkürzungsverzeichnis

- [AH19] ADS-HILFE, GOOGLE: *URL-Parameter*. https://support.google.com/google-ads/answer/6277564?hl=de, 2019. Abrufdatum: 26.02.2019.
- [All18] IFD: Information squellenderALLENSBACH, MeistgenutzteBevoelkerung inDeutschland Jahr*2018*. https:// imde.statista.com/statistik/daten/studie/171257/umfrage/ normalerweise-genutzte-quelle-fuer-informationen/, Abrufdatum: 18.01.2019.
- [Anb19] Bei welchem Anbieter haben Sie Ihr Haupt-E-Mail-Postfach? https://de.statista.com/statistik/daten/studie/170371/umfrage/nutzung-von-e-mail-domains/, 2019. Abrufdatum: 04.02.2019.
- [Ang18] HabenSieAngstdavor, dassSielOpfervon DatendiebqrostahlimInternet. alsodermissbrhlichen Verwendung durchrerpersnlichen DatenDritte, werden? https:// de.statista.com/statistik/daten/studie/886892/umfrage/ angst-vor-einem-datendiebstahl-im-internet-in-deutschland/, 2018. Abrufdatum: 22.02.2019.
- [Baz] BAZZELL, MICHAEL: *Email Assumptions*. https://inteltechniques.com/osint/email.html. Abrufdatum: 01.02.2019.
- [Baz18] BAZZELL, MICHAEL: Open Source Intelligence Techniques: Resources for Searching and Analyzing Online Information. CreateSpace Independent Publishing Platform, USA, 6th, 2018.
- [BKL09] BIRD, STEVEN, EWAN KLEIN EDWARD LOPER: Natural language processing with Python: analyzing text with the natural language toolkit. Ö'Reilly Media, Inc.", 2009.
- [Boh14] BOHNENSTEFFEN, MARCEL: Die alternativlose Suchmaschine. https://www.handelsblatt.com/unternehmen/it-medien/google-die-alternativlose-suchmaschine/11061626-all.html, 2014. Abrufdatum: 24.02.2019.

[BPH+10] Balduzzi, Marco, Christian Platzer, Thorsten Holz, Engin Kirda, Davide Balzarotti Christopher Kruegel: Abusing social networks for automated user profiling. International Workshop on Recent Advances in Intrusion Detection, 422–441. Springer, 2010.

- [Cal13] Caldwell, Tracey: Spear-phishing: how to spot and mitigate the menace. Computer Fraud & Security, 2013(1):11–16, 2013.
- [CH15] CHRISTOPHER HADNAGY, MICHELE FINCHER: Phishing Dark Waters: The Offensive and Defensive Sides of Malicious E-mails. 2015.
- [Cor17] CORP, LINKEDIN: *Ueber LinkedIn*. https://about.linkedin.com/de-de, 2017. Abrufdatum: 19.02.2019.
- [dev18] DEVELOPERS, SCRAPY: Scrapy at a glance. http://doc.scrapy.org/en/latest/intro/overview.html, 2018. Abrufdatum: 28.02.2019.
- [DSG] DSGVO: Art. 4 DSGVO Begriffsbestimmungen. https://dsgvo-gesetz.de/art-4-dsgvo/. Abrufdatum: 09.01.2019.
- [EAD09] ELDESOUKI, MOHAMED I, W ARAFA K DARWISH: Stemming techniques of Arabic language: Comparative study from the information retrieval perspective. The Egyptian Computer Journal, 36(1):30–49, 2009.
- [Fir] FIREEYE, INC: Spear-Phishing-Angriffe? Warum sie erfolgreich sind und wie sie gestoppt werden knnen.
- [Fou18] FOUNDATION, PYTHON SOFWARE: html2text 2018.1.9. https://pypi.org/project/html2text/, 2018. Abrufdatum: 15.03.2019.
- [Fou19] FOUNDATION, PYTHON SOFWARE: scrapy-selenium 0.0.7. https://pypi.org/project/scrapy-selenium/, 2019. Abrufdatum: 16.03.2019.
- [Gmb16] GMBH, FuPa: Was ist eingentlich diese "FuPa"? https://www.fupa.net/berichte/sachsenliga-was-ist-eigentlich-dieses-fupa-570543.html, 2016. Abrufdatum: 19.02.2019.
- [Goo19] GOOGLE: Refine web searches. https://support.google.com/websearch/answer/2466433?hl=en, 2019. Abrufdatum: 27.02.2019.
- [Had11] Hadnagy, Christopher: Social Engineering: The Art of Human Hacking. 2011.
- [Jam05] JAMES, LANCE: Phshing Exposed: Uncover Secrets from the Dark Side. 2005.
- [Law15] LAWSON, RICHARD: Web scraping with Python. Packt Publishing Ltd, 2015.

[Lit16] LITZEL, NICO: Was ist Natural Language Processing? https://www.bigdata-insider.de/was-ist-natural-language-processing-a-590102/, 2016. Abrufdatum: 10.02.2019.

- [Mit01] MITNICK, KEVIN D.: The art of deception:controlling the human elemnet of security. 2001.
- [Mit15] MITCHELL, RYAN: Web Scraping with Python: Collecting Data from the Modern Web. 2015.
- [Mut18] MUTHUKADAN, BAIJU: Selenium with Python. https://selenium-python.readthedocs.io/installation.html#introduction, 2018. Abrufdatum: 27.02.2019.
- [NW18] NORDRHEIN-WESTFALEN, VERBRAUCHERZENTRALE: Phishing-Radar: Aktuelle Warnungen. https://www.verbraucherzentrale.nrw/wissen/digitale-welt/phishingradar/phishingradar-aktuelle-warnungen-6059, 2018. Abrufdatum: 29.10.2018.
- [PH] PHILIPP, JONAS NATHANAEL GERHARD HEYER: Multi-Label Klassifikation am Beispiel sozialwissenschaftlicher Texte.
- [RECC10] ROSE, STUART, DAVE ENGEL, NICK CRAMER WENDY COWLEY: Automatic keyword extraction from individual documents. Text Mining: Applications and Theory, 1–20, 2010.
- [RFC94] Uniform Resource Locators (URL). https://tools.ietf.org/html/rfc1738#section-3.1, 1994. Abrufdatum: 27.02.2019.
- [SE] SE, XING: Was ist XING? https://faq.xing.com/de/startseite-allgemeines/was-ist-xing. Abrufdatum: 19.02.2019.
- [SG12] Sharma, Arvind Kumar PC Gupta: Study & Analysis of Web Content Mining Tools to Improve Techniques of Web Data Mining. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 1(8):pp-287, 2012.
- [Sla] SLAVIN, TIM: Stop Words. https://www.kidscodecs.com/stop-words/. Abrufdatum: 29.01.2019.
- [Ste96] STEELE, ROBERT DAVID: Open Source Intelligence: What Is It? Why Is It Important to the Military? American Intelligence Journal, 35–41, 1996.

[The01] Thelwall, Mike: A web crawler design for data mining. Journal of Information Science, 27(5):319-325, 2001.

- [uDsiNe15] NETZ E.V., DATEV UND DEUTSCHLAND SICHER IM: Verhaltensregeln zum Thema "Social Engineering". 2015.
- [W3S] W3SCHOOLS: HTML URL Encoding Reference. https://www.w3schools.com/tags/ref_urlencode.asp. Abrufdatum: 27.02.2019.
- [Wik19] WIKIPEDIA: FuPa. https://de.wikipedia.org/wiki/FuPa, 2019. Abrufdatum: 25.02.2019.