

Mamba Architecture: SSM with Selection Mechanism [1]

 SSM with selection mechanism (i.e. matrices A, B and C become input dependent)

$$h_t = \bar{\mathbf{A}}_t h_{t-1} + \bar{\mathbf{B}}_t x_t ,$$

$$y_t = \mathbf{C}_t h_t .$$

- ⇒ added predictive power.
- Selective SSM similar to RNN: Achieves linear time complexity over input length (similar to an RNN), however parallelizable.
- Early results show outstanding performance in NLP, vision, etc. [1].
- Thm [2]: One channel of the Mamba layer can express all functions that a single transformer head can express. Conversely, a single Transformer layer cannot express all functions that a single selective SSM layer can.
- [1] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752, 2023.
- [2] Ameen Ali, Itamar Zimerman and Lior Wolf. The Hidden Attention of Mamba Models. arXiv preprint arXiv:2403.01590, 2024.

Mamba Architecture: Selective Scan

- Based on Blelloch Parallel Scan [1] → Parallelize computation of prefix sum → O(n/t) complexity for input of size n and t workers.
- Same idea can be applied to SSM's and Mamba [2,3] for computing $h_t = \bar{\mathbf{A}}_t h_{t-1} + \bar{\mathbf{B}}_t x_t$,

$$\begin{aligned} \text{Via} & \quad \begin{array}{l} h_1 = \bar{\mathbf{B}}_1 x_1 \,, \\ h_2 = \bar{\mathbf{A}}_2 \bar{\mathbf{B}}_1 x_1 + \bar{\mathbf{B}}_2 x_2 \,, \\ h_3 = \bar{\mathbf{A}}_3 \bar{\mathbf{A}}_2 \bar{\mathbf{B}}_1 x_1 + \bar{\mathbf{A}}_3 \bar{\mathbf{B}}_2 x_2 + \bar{\mathbf{B}}_3 x_3 \,, \\ h_4 = \bar{\mathbf{A}}_4 \bar{\mathbf{A}}_3 \bar{\mathbf{A}}_2 \bar{\mathbf{B}}_1 x_1 + \bar{\mathbf{A}}_4 \bar{\mathbf{A}}_3 \bar{\mathbf{B}}_2 x_2 + \bar{\mathbf{A}}_4 \bar{\mathbf{B}}_3 x_3 + \bar{\mathbf{B}}_4 x_4 \,, \\ & \dots \end{aligned}$$

- ~ type of prefix "sum" and Parallel scan can be applied.
- Mamba further adds hardware-aware implementation akin to FlashAttention → significant speedups [3].
- [1] Guy E Blelloch. Prefix sums and their applications. In *Sythesis of parallel algorithms*, pages 35—60. Morgan Kaufmann Publishers Inc., 1990
- [2] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for sequence modeling. arXiv preprint arXiv:2208.04933, 2022 [3] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752, 2023.

Long Range Arena (LRA) Tasks [1]:

[MAX [MED [MED 1 [SM 3 1 3] 9] 6] 5]

Truth: 6; Pred: 5

32x32

64x64

- Long ListOps: Up to 2k-length, 10-way classification task.
- Text (IMDB): Byte/Char-level text sentiment analysis task for the IMDB dataset; fixed length of 2k characters.
- Retrieval (AAN): Byte-level document retrieval; determine if two (scientific) papers are related or not. Up to 4k+4k char length.
- Image (CIFAR-10): Unravel 32x32 CIFAR images into a 1028k length list and classify it into 10 categories.
- Pathfinder: Unravel different resolution images 32x32 → 256x256 and determine whether 2 dots connected.

Speed Comparison: Mamba Vs MHFA

Both models contain ~600k parameters and we replace the MHFA part with a Mamba block. Values are obtained from the LRA pathfinder task with batch size = 32, ran on A100 in Google Colab.

Performance Analysis: Mamba vs MHFA + others

Model	ListOps	Text	Retrieval	Image	Pathfinder	Pf-64	PathX	Avg*
(input length)	2000	2048	4000	1024	1024	4096	16384	
Mamba	44.86	81.27	86.51	68.74	74.17	76.28	N/A	71.11
MHFA+RoPE	38.86	65.79	74.30	67.70	68.44	N/A	N/A	63.02
Transformer [24]	36.37	64.27	57.46	42.44	71.40	N/A	N/A	54.39
Performer [24]	18.01	65.40	53.82	42.77	77.05	N/A	N/A	51.41
RoPE [1]**	47.90	79.08	82.31	75.04	76.64	N/A	84.72	72.19
S4 [10]	59.60	86.82	90.90	88.65	94.20	N/A	96.35	84.03
Diagonal [12]	60.6	84.8	87.8	85.7	84.6	N/A	87.8	80.7
S5 [23]	62.15	89.31	91.40	88.00	95.33	N/A	98.58	85.24

LRA Performance Vs Speed

Conclusions

- Mamba is a powerful new architecture that is competitive (or superior) to MHFA (and its variants).
- Mamba has faster training/inference.
- Our results indicate significantly better performance than RoPE MHFA for comparable (or smaller) model sizes on LRA.
- Previous SSM's (S4/S5/..) still reign supreme on LRA, but seem lacking in generalizing beyond benchmark tasks.
- We further experiment with modifications to Mamba (results in our report).