

<u>Home</u> <u>Gameboard</u> Physics Electricity Resistors Essential Pre-Uni Physics C1.2

Essential Pre-Uni Physics C1.2

Figure 1: Two different resistor arrangements

Part A Combination (C)

What is the resistance of combination (C)? Answer to 2 significant figures.

Part B Combination (D)

What is the resistance of combination (D)? Answer to 2 significant figures.

Home Gameboard Physics Electricity Resistors Essential Pre-Uni Physics C1.8

Essential Pre-Uni Physics C1.8

Conventional domestic $13\,\mathrm{A}$ sockets are connected with copper cables with a cross sectional area of $2.5\,\mathrm{mm}^2$. Copper has a resistivity of $1.5\,\times\,10^{-8}\,\Omega\,\mathrm{m}$. What is the resistance of $20\,\mathrm{m}$ of cable to 2 significant figures?

Gameboard:

STEM SMART Physics 15 - Electricity Revision

<u>Home</u> <u>Gameboard</u>

Physics

Charge & Current

Essential Pre-Uni Physics C2.2

Essential Pre-Uni Physics C2.2

Data:

• Magnitude of the charge on the electron = $1.60 imes 10^{-19} \, \mathrm{C}$

Electricity

How many electrons flow past a point each second in a $5.0\,\mathrm{mA}$ electron beam?

Gameboard:

STEM SMART Physics 15 - Electricity Revision

Home Gameboard

Physics Electricity

Resistors

Essential Pre-Uni Physics C4.5

Essential Pre-Uni Physics C4.5

Figure 1: Circuit diagram

Part A Current in (J)

What is the current in (J)?

Part B Voltage across (K)

What is the voltage across (K)?

Part C Current in (L)

What is the current in (L)?

Part D Voltage across (M)

What is the voltage across (M)?

Gameboard:

STEM SMART Physics 15 - Electricity Revision

<u>Home</u> <u>Gameboard</u> Physics Electricity Resistors Essential Pre-Uni Physics C5.5

Essential Pre-Uni Physics C5.5

Figure 1: Circuit diagram

What is the voltage across the lower resistor in this circuit to 2 significant figures?

Gameboard:

STEM SMART Physics 15 - Electricity Revision

Home Gameboard Physics Electricity Resistors Essential Pre-Uni Physics C5.8

Essential Pre-Uni Physics C5.8

A thermistor has a resistance of $800\,\Omega$ at a temperature of $16\,^{\circ}\mathrm{C}$. It is wired in series with a fixed resistor and a $9.0\,\mathrm{V}$ battery. A high-resistance voltmeter is connected to give a 'temperature' reading.

[Note: For this thermistor the resistance decreases as the temperature increases.]

Part A Connecting the voltmeter

	oltage reading is to g d in parallel with the t	•	-	s, should the voltme	eter be
F	ixed resistor				
Т	hermistor				

Part B Resistance of the fixed resistor

b) If the voltmeter needs to read $3.0\,\mathrm{V}$ when the temperature is $16\,^\circ\mathrm{C}$, what is the resistance of the fixed resistor to 2 significant figures?

Gameboard:

STEM SMART Physics 15 - Electricity Revision

Home Gameboard Physics Electricity Internal Resistance Essential Pre-Uni Physics C6.3

Essential Pre-Uni Physics C6.3

A small battery is powering a powerful lamp. The terminal p.d. is $11.3\,\mathrm{V}$, and the current flowing is $10.2\,\mathrm{A}$. Assuming that the battery has an internal resistance of $2.4\,\Omega$, calculate the e.m.f. of the battery.

Gameboard:

STEM SMART Physics 15 - Electricity Revision

<u>Home</u> <u>Gameboard</u>

Physics Electricity

Charge & Current

Essential Pre-Uni Physics C3.5

Essential Pre-Uni Physics C3.5

Data: Magnitude of the charge on the electron = $1.60 imes 10^{-19} \, \mathrm{C}$

How long does it take for a current of $6.0\,\mathrm{A}$ to deliver $1.5\times10^{17}\,\mathrm{Cu}^{2+}$ ions in a solution? Assume these ions are the only charged particles moving.