Cálculo II (Grupo 1º A) Relación de Ejercicios nº 3

Ejercicio 3.1: Sea $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n$. Dado $a \in \mathbb{R}$, expresar el polinomio p(x) en potencias de (x - a). Como aplicación, expresar en potencias de (x-2) el polinomio $p(x) = 6 + 7x - 3x^2 - 5x^3 + x^4$.

Ejercicio 3.2: Sea f(x) una función cuyo polinomio de Taylor de grado 3 centrado en el origen es $P_{3,0}^f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3}$. Calcular el polinomio de Taylor de grado 3 centrado en el origen de la función g(x) = xf(x).

Ejercicio 3.3: Si el polinomio de Taylor de grado 3, centrado en el origen, de la función f(x) es $P_{3,0}(x) = 1 - x + x^2 - x^3$, calcular el polinomio de Taylor del mismo orden y centro de la función $g(x) = e^{f(x)}$.

Ejercicio 3.4: Calcular el polinomio de Taylor de orden n, en el punto = 0 (desarrollo de Maclaurin) de las siguientes funciones:

(i) e^x

(ii) $(1+x)^{\alpha}$ $(\alpha \in \mathbb{R})$

(iii) $\cos x$

(iv) sen (x)

(v) tan(x)

(vi) arc sen (x)

(vii) ln(1+x)

(viii) arc tg (x)

Ejercicio 3.5: Sean $f, g: I \to \mathbb{R}$ funciones (n+1) veces derivables en el punto $a \in I$. Sea h(x) = f(x)g(x) para cada $x \in I$. Demostrar que $P_{n,a}^h(x)$ se obtiene del polinomio producto $P_{n,a}^f(x)P_{n,a}^g(x)$ eliminando los términos de orden mayor estricto que n.

Ejercicio 3.6: Sea $f: I \to \mathbb{R}$ una función (n+1) veces derivable en el punto x=0(que es interior a *I*). Sea $k \in \mathbb{N}$ y $h(x) = f(x^k)$. Demostrar que $P_{n-k,0}^h(x) = P_{n,0}^f(x^k)$.

Ejercicio 3.7: Calcular los siguientes límites (utilizando el desarrollo de Taylor):

(i) $\lim_{x \to 0} \frac{1}{x^4} (2x\sqrt[3]{1+x^3} + 2\sqrt{1+x^2} - 2 - 2x - x^2)$

(ii) $\lim_{x \to 0} \frac{(\tan x - \sin x) \sin x - \frac{x^4}{2}}{x^6}$ (iv) $\lim_{x \to 0} \frac{\ln^2(1+x) - \sin^2(x)}{1 - e^{-x^2}}$

(iii) $\lim_{x\to 0} \frac{\ln(1+x)\sin x - x^2 + x^3}{x^3}$

(v) $\lim_{x \to 0} \frac{e^x - \sum_{k=0}^n \frac{x^k}{k!}}{x^n}$

(vi)
$$\lim_{x \to 0} \frac{e^x - \sum_{k=0}^{n-1} \frac{x^k}{k!}}{x^n}$$

(vii) $\lim_{x \to 0} \frac{e^x - 1 - x - \frac{x^2}{2} - \frac{x^3}{6}}{x^4}$

(viii)
$$\lim_{x\to 0} \frac{e^x - \operatorname{sen}(x)}{e^x - 1 - x - x^2}$$

Ejercicio 3.8: Estudiar el comportamiento en 0 y $\pm \infty$ de la función $f: \mathbb{R}^* \to \mathbb{R}$ dada por $f(x) = \frac{x - \sin x}{x^6} \left(e^x - 1 - x - \frac{x^2}{2} \right)$, para cada $x \in \mathbb{R}^*$.

Ejercicio 3.9: Probar que $1 - \frac{x^2}{2} \le \cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{24}$, para todo $x \in [0, \pi]$.

Ejercicio 3.10: Calcular el polinomio de Taylor de orden 8 en el punto x = 0 de la función $ln(1+x^4)$.

Ejercicio 3.11: Calcular un valor aproximado, con un error menor que 10⁻², de los siguientes números reales: (i) $\sqrt[3]{7}$, (ii) sen $\frac{1}{2}$, (iii) ln 3, (iv) \sqrt{e} .

Ejercicio 3.12: Probar que la función ln x es cóncava hacia abajo. Deducir la Designaldad de Young: si $\frac{1}{p} + \frac{1}{q} = 1$, siendo p > 1, entonces $ab \le \frac{a^p}{p} + \frac{b^q}{q}$, para cada $a, b \in \mathbb{R}^+$.

Ejercicio 3.13: Sean I y J intervalos, y $f:I\to\mathbb{R}$ y $g:J\to\mathbb{R}$ funciones cóncavas hacia arriba tales que $f(I) \subseteq I$. Probar que si g creciente entonces $g \circ f$ es cóncava hacia arriba. Deducir que la función $h: I \to \mathbb{R}$ dada por $h(x) = e^{f(x)}$ es cóncava hacia arriba.

Ejercicio 3.14: Dar un ejemplo que muestre que la composición de dos funciones cóncavas hacia arriba puede no ser cóncava hacia arriba.

Ejercicio 3.15: En cada uno de los siguientes casos, determinar los intervalos en los que la función $f: \mathbb{R} \to \mathbb{R}$ es cóncava hacia arriba o cóncava hacia abajo:

(i)
$$f(x) = x^5 - 5x^4 + 5x^3 + 10$$
, (ii) $f(x) = \frac{x^2 + 3x + 1}{x^2 + 1}$,

(ii)
$$f(x) = \frac{x^2 + 3x + 1}{x^2 + 1}$$
,

(iii)
$$f(x) = \ln(1 + x^2)$$
,

$$(iv) f(x) = sen(x)$$

Ejercicio 3.16: Demostrar que toda función $f: \mathbb{R} \to \mathbb{R}$ cóncava hacia abajo y acotada es constante.

Ejercicio 3.17: Calcular los puntos de inflexión (si los hay) de las funciones

(i)
$$f(x) = \sqrt[3]{x+2}$$

(ii)
$$f(x) = 2x^3 + 9x^2 + 2x + 1$$

Ejercicio 3.18: Sea $f: I \to \mathbb{R}$ una función cóncava hacia arriba. Probar que:

- Si f tiene un mínimo relativo en $x_0 \in I$ entonces f tiene un mínimo absoluto en
- Si f es derivable en I y $x_0 \in I$ es un punto crítico de f entonces f alcanza un (ii) mínimo absoluto en x_0 .