Results simulation study DelayedGSD

January 20, 2023

1 Rejection rate

Power by method (columns) and scenario (rows): (nominal level 0.8) N missing binding fixC ar method 1 method 2 method 3 scenario 1 10000 80.79 TRUE TRUE FALSE 10 81.00 80.45 3 10000 TRUE TRUE FALSE 5 80.60 80.45 80.21 5 10000 TRUE TRUE TRUE 10 79.81 80.41 80.39 7 10000 TRUE TRUE 5 TRUE 80.00 80.46 80.08 9 10000 TRUE FALSE TRUE 10 80.50 80.85 80.91 11 10000 TRUE FALSE TRUE 80.73 80.75 80.82 13 10000 TRUE FALSE FALSE 10 80.67 80.60 80.65 15 10000 TRUE FALSE FALSE 80.65 80.64 80.46 17 10000 **FALSE** TRUE FALSE 5 79.93 80.31 80.28

⚠ slightly too high power for some scenario

Type 1 error by method (columns) and scenario (rows): (nominal level 0.025)

```
scenario
             N missing binding fixC ar method 1 method 2 method 3
       2 10000
                   TRUE
                           TRUE FALSE 10
                                              2.46
                                                        2.53
                                                                 2.40
       4 10000
                   TRUE
                           TRUE FALSE 5
                                              2.42
                                                        2.41
                                                                 2.40
       6 10000
                   TRUE
                           TRUE
                                 TRUE 10
                                              2.25
                                                        2.25
                                                                 2.45
       8 10000
                   TRUE
                           TRUE
                                 TRUE 5
                                              2.42
                                                        2.39
                                                                 2.50
      10 10000
                          FALSE
                                 TRUE 10
                   TRUE
                                              2.09
                                                        2.09
                                                                 2.26
      12 10000
                   TRUE
                          FALSE
                                 TRUE
                                              2.30
                                                        2.28
                                                                 2.33
      14 10000
                                              2.29
                                                        2.28
                                                                 2.46
                   TRUE
                          FALSE FALSE 10
      16 10000
                   TRUE
                          FALSE FALSE
                                              2.38
                                                        2.37
                                                                 2.46
      18 10000
                 FALSE
                           TRUE FALSE 5
                                              2.46
                                                        2.44
                                                                 2.45
```

⚠ slightly too lower type 1 error for some scenario

Figure 1: Naive and adjusted p-value distribution over all simulations. Each row correspond to a different scenario

2 Conclusion of the trial

Relative frequency of stopping for efficacy/futility at decision/final

\bullet Method 1

	N	${\tt missing}$	hypo	${\tt binding}$	fixC	ar	decision.eff	decision.fut	final.eff	final.fut
1:	10000	TRUE	power	TRUE	FALSE	10	37.82	6.050	43.18	13.0
2:	10000	TRUE	typeI	TRUE	FALSE	10	0.79	70.850	1.67	26.7
3:	10000	TRUE	power	TRUE	FALSE	5	35.60	6.020	45.00	13.4
4:	10000	TRUE	typeI	TRUE	FALSE	5	0.68	69.210	1.74	28.4
5:	10000	TRUE	power	TRUE	TRUE	10	36.45	6.530	43.36	13.7
6:	10000	TRUE	typeI	TRUE	TRUE	10	0.64	71.290	1.61	26.5
7:	10000	TRUE	power	TRUE	TRUE	5	34.68	5.860	45.32	14.1
8:	10000	TRUE	typeI	TRUE	TRUE	5	0.72	69.110	1.70	28.5
9:	10000	TRUE	power	FALSE	TRUE	10	37.57	6.630	42.93	12.9
10:	2870	TRUE	typeI	FALSE	TRUE	10	1.99	0.976	5.30	91.7
11:	10000	TRUE	power	FALSE	TRUE	5	36.02	6.280	44.71	13.0
12:	3043	TRUE	typeI	FALSE	TRUE	5	2.40	0.296	5.16	92.1
13:	10000	TRUE	power	FALSE	FALSE	10	38.32	5.870	42.35	13.5
14:	2874	TRUE	typeI	FALSE	FALSE	10	2.40	0.313	5.57	91.7
15:	10000	TRUE	power	FALSE	FALSE	5	36.75	5.700	43.90	13.6
16:	3080	TRUE	typeI	FALSE	FALSE	5	2.18	0.000	5.55	92.3
17:	10000	FALSE	power	TRUE	FALSE	5	33.98	5.330	46.33	14.4
18:	10000	FALSE	typeI	TRUE	FALSE	5	0.74	67.480	1.72	30.1

 \triangle something is not quite right for non-binding scenarios under the null (N should be 10000).

Method 2:

	N	missing	hypo	binding	fixC	ar	decision.eff	decision.fut	final.eff	final.fut
1:	10000	TRUE	power	TRUE	FALSE	10	37.66	6.2200	43.13	13.0
2:	10000	TRUE	typeI	TRUE	FALSE	10	0.85	71.1800	1.68	26.3
3:	10000	TRUE	power	TRUE	FALSE	5	35.55	6.1000	44.90	13.5
4:	10000	TRUE	typeI	TRUE	FALSE	5	0.67	69.0500	1.74	28.5
5:	10000	TRUE	power	TRUE	TRUE	10	36.82	5.9400	43.59	13.6
6:	10000	TRUE	typeI	TRUE	TRUE	10	0.63	70.0200	1.62	27.7
7:	10000	TRUE	power	TRUE	TRUE	5	35.06	5.6300	45.40	13.9
8:	10000	TRUE	typeI	TRUE	TRUE	5	0.71	68.4600	1.68	29.1
9:	10000	TRUE	power	FALSE	TRUE	10	37.76	6.2100	43.09	12.9
10:	2956	TRUE	typeI	FALSE	TRUE	10	1.89	0.8796	5.18	92.1
11:	10000	TRUE	power	FALSE	TRUE	5	36.07	6.1000	44.75	13.1
12:	3093	TRUE	typeI	FALSE	TRUE	5	2.33	0.2263	5.04	92.4
13:	10000	TRUE	power	FALSE	FALSE	10	38.33	6.1100	42.27	13.3
14:	2820	TRUE	typeI	FALSE	FALSE	10	2.45	0.3191	5.64	91.6
15:	10000	TRUE	power	FALSE	FALSE	5	36.78	5.7200	43.86	13.6
16:	3075	TRUE	typeI	FALSE	FALSE	5	2.15	0.0325	5.56	92.3
17:	10000	FALSE	power	TRUE	FALSE	5	33.68	5.1700	46.60	14.5
18:	10000	FALSE	typeI	TRUE	FALSE	5	0.72	67.4200	1.72	30.1

 \triangle something is not quite right for non-binding scenarios under the null (N should be 10000).

Method 3:

	N	missing	hypo	binding	fixC	ar	decision.eff	decision.fut	final.eff	final.fut
1:	10000	TRUE	power	TRUE	FALSE	10	40.44	6.540	40.01	13.0
2:	10000	TRUE	typeI	TRUE	FALSE	10	0.74	68.770	1.66	28.8
3:	10000	TRUE	power	TRUE	FALSE	5	36.49	6.420	43.72	13.4
4:	10000	TRUE	typeI	TRUE	FALSE	5	0.68	68.370	1.72	29.2
5:	10000	TRUE	power	TRUE	TRUE	10	39.85	5.830	40.54	13.8
6:	10000	TRUE	typeI	TRUE	TRUE	10	0.73	68.890	1.72	28.7
7:	10000	TRUE	power	TRUE	TRUE	5	35.70	5.810	44.38	14.1
8:	10000	TRUE	typeI	TRUE	TRUE	5	0.78	68.260	1.72	29.2
9:	10000	TRUE	power	FALSE	TRUE	10	41.03	6.390	39.88	12.7
10:	3086	TRUE	typeI	FALSE	TRUE	10	2.33	1.231	4.99	91.4
11:	10000	TRUE	power	FALSE	TRUE	5	37.08	6.140	43.67	13.1
12:	3133	TRUE	typeI	FALSE	TRUE	5	2.36	0.447	5.08	92.1
13:	10000	TRUE	power	FALSE	FALSE	10	41.47	6.050	39.18	13.3
14:	3130	TRUE	typeI	FALSE	FALSE	10	2.59	0.990	5.27	91.2
15:	10000	TRUE	power	FALSE	FALSE	5	37.37	5.860	43.09	13.7
16:	3163	TRUE	typeI	FALSE	FALSE	5	2.37	0.253	5.41	92.0
17:	10000	FALSE	power	TRUE	FALSE	5	34.66	5.580	45.27	14.5
18:	10000	FALSE	typeI	TRUE	FALSE	5	0.68	66.540	1.77	31.0

 \triangle something is not quite right for non-binding scenarios under the null (N should be 10000).

3 Bias (True effect: 0.6 under the alternative)

Bias ¹ per estimator and method:

```
hypo missing binding fixC ar biasMLE1 biasMLE2 biasMLE3 biasMUE1 biasMUE2 biasMUE3
 1: power
                      TRUE FALSE 10
                                                                            0.00556
             TRUE
                                       0.0130
                                                0.0131
                                                          0.0141
                                                                  0.00547
                                                                                     0.00321
 2: typeI
             TRUE
                      TRUE FALSE 10
                                      -0.0184
                                               -0.0184
                                                         -0.0185 -0.00426 -0.00433 -0.00472
 3: power
                                                                  0.01008 0.01016
             TRUE
                      TRUE FALSE
                                       0.0224
                                                0.0222
                                                          0.0234
 4: typeI
                      TRUE FALSE
                                      -0.0304
                                               -0.0308
                                                         -0.0306 -0.01176 -0.01214 -0.01214
             TRUE
                            TRUE 10
                                                                 0.00457
                                                                            0.00504
 5: power
             TRUE
                      TRUE
                                       0.0116
                                                0.0121
                                                          0.0130
                                                                                     0.00306
                                                         -0.0223 -0.00817 -0.00830 -0.00816
 6: typeI
             TRUE
                      TRUE
                            TRUE 10
                                      -0.0221
                                               -0.0223
 7: power
                      TRUE
                            TRUE
                                       0.0216
                                                0.0220
                                                          0.0227
                                                                  0.00990
                                                                            0.01050
                                                                                     0.00875
             TRUE
                                 5
 8: typeI
                            TRUE
                                                         -0.0341 -0.01450 -0.01457 -0.01499
             TRUE
                      TRUE
                                  5
                                      -0.0339
                                               -0.0344
 9: power
             TRUE
                            TRUE 10
                                                0.0151
                                                          0.0163
                                                                  0.00371
                                                                            0.00376
                     FALSE
                                       0.0150
                                                                                     0.00221
10: typeI
                            TRUE 10
                                                                  0.17905
             TRUE
                     FALSE
                                       0.1776
                                                0.1740
                                                          0.1713
                                                                            0.17536
                                                                                     0.17171
11: power
             TRUE
                     FALSE
                            TRUE
                                                0.0242
                                                          0.0252
                                                                  0.00864
                                                                            0.00835
                                                                                      0.00797
                                       0.0242
                     FALSE
12: typeI
             TRUE
                            TRUE
                                  5
                                                0.1701
                                                          0.1700
                                                                  0.17292
                                                                            0.17079
                                                                                      0.16962
                                       0.1722
13: power
             TRUE
                     FALSE FALSE 10
                                       0.0144
                                                0.0141
                                                          0.0157
                                                                  0.00338
                                                                            0.00297
                                                                                      0.00317
14: typeI
             TRUE
                     FALSE FALSE 10
                                       0.1803
                                                0.1821
                                                          0.1736
                                                                  0.18129
                                                                            0.18315
                                                                                     0.17484
15: power
             TRUE
                     FALSE FALSE
                                       0.0234
                                                0.0233
                                                          0.0243
                                                                  0.00884
                                                                            0.00883
                                                                                     0.00811
16: typeI
             TRUE
                     FALSE FALSE
                                                0.1720
                                                          0.1705
                                                                  0.17225
                                  5
                                       0.1721
                                                                            0.17208
                                                                                     0.17059
                                  5
17: power
            FALSE
                      TRUE FALSE
                                       0.0228
                                                0.0228
                                                          0.0238
                                                                  0.01197
                                                                            0.01208
                                                                                     0.01063
                      TRUE FALSE
                                  5
                                      -0.0295
                                                         -0.0299 -0.01105 -0.01139 -0.01161
18: typeI
            FALSE
                                               -0.0297
```

⚠ clear bias for non-binding scenarios under the null Median bias ² per estimator and method:

	111	icaiaii oic	no Por o	D CITIE CO	J1 C	ina momoa	•				
	hypo	missing	binding	fixC	ar	${\tt mbiasMLE1}$	${\tt mbiasMLE2}$	${\tt mbiasMLE3}$	${\tt mbiasMUE1}$	${\tt mbias MUE2}$	mbiasMUE3
1:	power	TRUE	TRUE	FALSE	10	0.0250	0.0240	0.0266	-0.0023	-0.0017	-0.0042
2:	typeI	TRUE	TRUE	FALSE	10	-0.0193	-0.0198	-0.0223	0.0002	-0.0013	0.0001
3:	power	TRUE	TRUE	FALSE	5	0.0387	0.0382	0.0406	-0.0030	-0.0016	-0.0018
4:	typeI	TRUE	TRUE	FALSE	5	-0.0346	-0.0339	-0.0361	0.0000	-0.0002	0.0001
5:	power	TRUE	TRUE	TRUE	10	0.0164	0.0188	0.0179	-0.0053	-0.0061	-0.0080
6:	typeI	TRUE	TRUE	TRUE	10	-0.0327	-0.0314	-0.0347	-0.0113	-0.0079	-0.0099
7:	power	TRUE	TRUE	TRUE	5	0.0356	0.0369	0.0361	-0.0073	-0.0075	-0.0075
8:	typeI	TRUE	TRUE	TRUE	5	-0.0473	-0.0492	-0.0493	-0.0105	-0.0081	-0.0105
9:	power	TRUE	FALSE	TRUE	10	0.0328	0.0301	0.0345	-0.0025	-0.0044	-0.0036
10:	typeI	TRUE	FALSE	TRUE	10	0.3599	0.3555	0.3474	0.3606	0.3562	0.3487
11:	power	TRUE	FALSE	TRUE	5	0.0479	0.0459	0.0499	-0.0014	-0.0012	-0.0026
12:	typeI	TRUE	FALSE	TRUE	5	0.3413	0.3432	0.3379	0.3413	0.3432	0.3382
13:	power	TRUE	FALSE	FALSE	10	0.0326	0.0324	0.0339	-0.0033	-0.0036	0.0012
14:	typeI	TRUE	FALSE	FALSE	10	0.3605	0.3621	0.3482	0.3612	0.3628	0.3508
15:	power	TRUE	FALSE	FALSE	5	0.0442	0.0442	0.0465	-0.0010	-0.0010	-0.0028
16:	typeI	TRUE	FALSE	FALSE	5	0.3455	0.3452	0.3410	0.3455	0.3452	0.3416

¹average difference between the estimate and the truth

²Relative frequency at which the estimate is greater than the truth minus 0.5

17: power 0.0378 -0.0026 -0.0008 -0.0038 FALSE TRUE FALSE 5 0.0383 0.0400 0.0035 18: typeI FALSE TRUE FALSE 5 -0.0329 -0.0336 -0.0353 0.0044 0.0031

4 Distribution of the estimates

Distribution of the estimates:

Figure 2: Naive and Median unbiased estimate distribution over all simulations. Each row correspond to a different scenario

Figure 3: Same but specific to scenario 1

Distribution of the median unbiased estimate conditional to the stage:

Figure 4: Median unbiased estimate distribution conditional to the stage. Each row correspond to a different scenario.

5 Special cases

Reason for stopping (first 4) or continuing the trial (last):

		scenario	1	2	3	4	5	6	7	8
reason	method									
decreasing information	1		0	0	1	1	0	0	0	0
	2		0	0	1	1	0	0	0	0
	3		0	0	1	1	0	0	0	0
efficacy	1		3740		3559	67	3696	82	3502	82
	2		3729	82	3554	68	3732	82	3546	83
	3		4137	107	3712	83	4071	110	3632	92
futility	1		646	7086	603	6922	600	7109	552	6901
	2		658	7120	611	6904	542	6981	523	6834
	3		560	6843	579	6822	495	6850	519	6812
Imax reached	1		1	1	0	0	2	2	0	0
	2		1	1	0	0	2	2	0	0
	3		1	1	0	0	2	2	0	0
no boundary crossed	1		5613	2836	5838	3011	5702	2807	5946	3017
	2		5612	2797	5835	3028	5724	2935	5931	3083
	3		5302	3049	5709	3095	5432	3038	5849	3096
		scenario	9	10	11	12	13	14	15	16
reason	method	scenario	9	10	11	12	13	14	15	16
reason decreasing information		scenario	9	10	11	12	13	14	15 0	16 0
		scenario								
	1	scenario	0	0	1	0	0	0	0	0
	1 2	scenario	0	0 0	1	0 0	0	0 0	0	0
decreasing information	1 2 3	scenario	0 0	0 0 0 84	1 1 1	0 0 0 82	0 0	0 0 0 78	0 0	0 0
decreasing information	1 2 3 1	scenario	0 0 0 3805	0 0 0 84 81	1 1 1 3634	0 0 0 82 79	0 0 0 3815	0 0 0 78 78	0 0 0 3674	0 0 0 67
decreasing information	1 2 3 1 2	scenario	0 0 0 3805 3824 4206	0 0 0 84 81	1 1 1 3634 3646 3761	0 0 0 82 79	0 0 0 3815 3816 4238	0 0 0 78 78	0 0 0 3674 3677 3788	0 0 0 67 67
decreasing information efficacy	1 2 3 1 2 3	scenario	0 0 0 3805 3824 4206 614	0 0 0 84 81 109	1 1 3634 3646 3761 596	0 0 0 82 79 88	0 0 0 3815 3816 4238 604	0 0 0 78 78 112	0 0 0 3674 3677 3788 571	0 0 0 67 67 83
decreasing information efficacy	1 2 3 1 2 3 1	scenario	0 0 0 3805 3824 4206 614 572	0 0 0 84 81 109 7130	1 1 3634 3646 3761 596 571	0 0 0 82 79 88 6957	0 0 0 3815 3816 4238 604 628	0 0 0 78 78 112 7126	0 0 0 3674 3677 3788 571 573	0 0 0 67 67 83 6920
decreasing information efficacy	1 2 3 1 2 3 1 2	scenario	0 0 0 3805 3824 4206 614 572	0 0 0 84 81 109 7130 7044	1 1 3634 3646 3761 596 571	0 0 0 82 79 88 6957 6907	0 0 0 3815 3816 4238 604 628	0 0 78 78 112 7126 7180	0 0 0 3674 3677 3788 571 573	0 0 0 67 67 83 6920
decreasing information efficacy futility	1 2 3 1 2 3 1 2 3	scenario	0 0 3805 3824 4206 614 572 535	0 0 0 84 81 109 7130 7044 6914	1 1 3634 3646 3761 596 571 561	0 0 0 82 79 88 6957 6907 6867	0 0 0 3815 3816 4238 604 628 514	0 0 78 78 112 7126 7180 6870	0 0 0 3674 3677 3788 571 573 535	0 0 0 67 67 83 6920 6925 6837
decreasing information efficacy futility	1 2 3 1 2 3 1 2 3 1 2 3	scenario	0 0 3805 3824 4206 614 572 535	0 0 84 81 109 7130 7044 6914	1 1 3634 3646 3761 596 571 561	0 0 82 79 88 6957 6907 6867 0	0 0 3815 3816 4238 604 628 514 0	0 0 78 78 112 7126 7180 6870 0	0 0 0 3674 3677 3788 571 573 535 0	0 0 67 67 83 6920 6925 6837 0
decreasing information efficacy futility	1 2 3 1 2 3 1 2 3 1 2 3	scenario	0 0 3805 3824 4206 614 572 535 1 1	0 0 84 81 109 7130 7044 6914 1	1 1 3634 3646 3761 596 571 561 0 0	0 0 82 79 88 6957 6907 6867 0 0	0 0 0 3815 3816 4238 604 628 514 0 0	0 0 78 78 112 7126 7180 6870 0 0	0 0 3674 3677 3788 571 573 535 0	0 0 67 67 83 6920 6925 6837 0 0
decreasing information efficacy futility Imax reached	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	scenario	0 0 3805 3824 4206 614 572 535 1 1 1	0 0 84 81 109 7130 7044 6914 1 1 2785	1 1 3634 3646 3761 596 571 561 0 0 5770	0 0 0 82 79 88 6957 6907 6867 0 0	0 0 3815 3816 4238 604 628 514 0 0 0	0 0 78 78 112 7126 7180 6870 0 0 2796	0 0 3674 3677 3788 571 573 535 0 0	0 0 67 67 83 6920 6925 6837 0 0 3013
decreasing information efficacy futility Imax reached	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	scenario	0 0 3805 3824 4206 614 572 535 1 1 5580 5603	0 0 84 81 109 7130 7044 6914 1 1 2785 2874	1 1 3634 3646 3761 596 571 561 0 0 5770 5783	0 0 82 79 88 6957 6907 6867 0 0 2961 3014	0 0 0 3815 3816 4238 604 628 514 0 0 5581 5556	0 0 78 78 112 7126 7180 6870 0 0 2796 2742	0 0 0 3674 3677 3788 571 573 535 0 0 0 5755	0 0 67 67 83 6920 6925 6837 0 0 3013 3008

6 Reversal probability

Percentage of time we observe a reversal:

	N	hypo	missing	ar	binding	fixC	fu2eff_1	fu2eff_2	fu2eff_3	eff2fu_1	eff2fu_2	eff2fu_3
1:	10000	power	FALSE	5	TRUE	FALSE	0.06	0.07	0.01	0.04	0.04	0.63
2:	10000	power	TRUE	5	FALSE	FALSE	0.04	0.04	0.00	0.03	0.03	0.51
3:	10000	power	TRUE	5	FALSE	TRUE	0.04	0.03	0.03	0.36	0.42	0.56
4:	10000	power	TRUE	5	TRUE	FALSE	0.06	0.08	0.02	0.05	0.07	0.65
5:	10000	power	TRUE	5	TRUE	TRUE	0.02	0.02	0.01	0.36	0.42	0.63
6:	10000	power	TRUE	10	FALSE	FALSE	0.35	0.38	0.05	0.18	0.21	0.96
7:	10000	power	TRUE	10	FALSE	TRUE	0.15	0.13	0.10	0.63	0.61	1.13
8:	10000	power	TRUE	10	TRUE	FALSE	0.57	0.57	0.13	0.15	0.20	1.06
9:	10000	power	TRUE	10	TRUE	TRUE	0.17	0.16	0.11	0.70	0.68	0.99
10:	10000	typeI	FALSE	5	TRUE	FALSE	0.01	0.03	0.00	0.01	0.03	0.12
11:	10000	typeI	TRUE	5	FALSE	FALSE	0.00	0.00	0.00	0.00	0.01	0.08
12:	10000	typeI	TRUE	5	FALSE	TRUE	0.00	0.00	0.00	0.09	0.07	0.14
13:	10000	typeI	TRUE	5	TRUE	FALSE	0.02	0.02	0.00	0.01	0.03	0.15
14:	10000	typeI	TRUE	5	TRUE	TRUE	0.00	0.00	0.00	0.10	0.12	0.14
15:	10000	typeI	TRUE	10	FALSE	FALSE	0.00	0.00	0.00	0.09	0.09	0.31
16:	10000	typeI	TRUE	10	FALSE	TRUE	0.00	0.00	0.00	0.27	0.25	0.37
17:	10000	typeI	TRUE	10	TRUE	FALSE	0.11	0.11	0.03	0.09	0.08	0.36
18:	10000	typeI	TRUE	10	TRUE	TRUE	0.02	0.00	0.00	0.22	0.21	0.39

7 Frequency mismatch p-value / boundaries

When concluding for futility:

```
hypo missing ar binding fixC
                                    method 1
                                               method 2
                                                          method 3
 1: power
           FALSE 5
                       TRUE FALSE 0.00000000 0.00000000 0.39860488
2: power
            TRUE 5
                      FALSE FALSE 0.41343669 0.41322314 0.46059365
3: power
            TRUE 5
                      FALSE TRUE 1.92008303 2.29405631 0.41558442
4: power
            TRUE 5
                       TRUE FALSE 0.00000000 0.00000000 0.45477514
5: power
            TRUE 5
                       TRUE TRUE 1.65000000 1.99590583 0.40160643
6: power
            TRUE 10
                      FALSE FALSE 2.43145370 2.47422680 0.93023256
7: power
            TRUE 10
                      FALSE TRUE 5.23076923 4.75195822 1.15243583
8: power
            TRUE 10
                       TRUE FALSE 0.00000000 0.00000000 1.22762148
                       TRUE TRUE 4.11094601 3.57325166 1.12187659
9: power
            TRUE 10
10: typeI
           FALSE 5
                       TRUE FALSE 0.00000000 0.00000000 0.00000000
                      FALSE FALSE 0.07037298 0.07047216 0.03428180
11: typeI
            TRUE 5
                      FALSE TRUE 0.31994312 0.24432810 0.03448276
12: typeI
            TRUE 5
                       TRUE FALSE 0.00000000 0.00000000 0.02049180
13: typeI
            TRUE 5
                       TRUE TRUE 0.08198401 0.10244852 0.03076923
14: typeI
            TRUE 5
15: typeI
            TRUE 10
                      FALSE FALSE 0.52930057 0.54012346 0.13869626
16: typeI
            TRUE 10
                      FALSE TRUE 0.75159714 0.69166363 0.00000000
            TRUE 10
                       TRUE FALSE 0.00000000 0.00000000 0.04098361
17: typeI
                       TRUE TRUE 0.17391304 0.15345269 0.08200923
18: typeI
            TRUE 10
```

When concluding for efficacy:

	hypo	${\tt missing}$	ar	binding	fixC	${\tt method}$	1	${\tt method}$	2	${\tt method}$	3
1:	power	FALSE	5	TRUE	FALSE		0		0		0
2:	power	TRUE	5	FALSE	FALSE		0		0		0
3:	power	TRUE	5	FALSE	TRUE		0		0		0
4:	power	TRUE	5	TRUE	FALSE		0		0		0
5:	power	TRUE	5	TRUE	TRUE		0		0		0
6:	power	TRUE	10	FALSE	FALSE		0		0		0
7:	power	TRUE	10	FALSE	TRUE		0		0		0
8:	power	TRUE	10	TRUE	FALSE		0		0		0
9:	power	TRUE	10	TRUE	TRUE		0		0		0
10:	typeI	FALSE	5	TRUE	FALSE		0		0		0
11:	typeI	TRUE	5	FALSE	FALSE		0		0		0
12:	typeI	TRUE	5	FALSE	TRUE		0		0		0
13:	typeI	TRUE	5	TRUE	FALSE		0		0		0
14:	typeI	TRUE	5	TRUE	TRUE		0		0		0
15:	typeI	TRUE	10	FALSE	FALSE		0		0		0
16:	typeI	TRUE	10	FALSE	TRUE		0		0		0
17:	typeI	TRUE	10	TRUE	FALSE		0		0		0
18:	typeI	TRUE	10	TRUE	TRUE		0		0		0

8 Percentage of missing values

Here only for method 1 - values are very similar between different methods:

- pc.all percentage of observations with full data
- pc.missing3 percentage of observations missing the final outcome but with intermediate outcome value and baseline.
- pc.missing23 percentage of observations with only baseline value

	${\tt method}$	missing	ar	hypo	fixC	binding	N	pc.all	<pre>pc.missing3</pre>	pc.missing23
1:	1	TRUE	5	power	FALSE	TRUE	10000	79.53472	9.562374	10.902910
2:	1	TRUE	5	typeI	FALSE	TRUE	10000	79.53472	9.562374	10.902910
3:	1	TRUE	5	power	TRUE	TRUE	10000	79.44022	9.531225	11.028558
4:	1	TRUE	5	typeI	TRUE	TRUE	10000	79.44022	9.531225	11.028558
5:	1	TRUE	5	power	TRUE	FALSE	10000	79.71917	9.427430	10.853396
6:	1	TRUE	5	typeI	TRUE	FALSE	10000	79.71917	9.427430	10.853396
7:	1	TRUE	5	power	FALSE	FALSE	10000	79.64196	9.449136	10.908902
8:	1	TRUE	5	typeI	FALSE	FALSE	10000	79.64196	9.449136	10.908902
9:	1	FALSE	5	power	FALSE	TRUE	10000	87.78863	6.090240	6.121126
10:	1	FALSE	5	typeI	FALSE	TRUE	10000	87.78863	6.090240	6.121126
11:	1	TRUE	10	power	FALSE	TRUE	10000	71.60971	13.327969	15.062319
12:	1	TRUE	10	typeI	FALSE	TRUE	10000	71.60971	13.327969	15.062319
13:	1	TRUE	10	power	TRUE	TRUE	10000	71.52189	13.282615	15.195496
14:	1	TRUE	10	typeI	TRUE	TRUE	10000	71.52189	13.282615	15.195496
15:	1	TRUE	10	power	TRUE	FALSE	10000	71.85935	13.144488	14.996166
16:	1	TRUE	10	typeI	TRUE	FALSE	10000	71.85935	13.144488	14.996166
17:	1	TRUE	10	power	FALSE	FALSE	10000	71.79364	13.168843	15.037522
18:	1	TRUE	10	typeI	FALSE	FALSE	10000	71.79364	13.168843	15.037522

9 Information

Percentage of information for method 1^3 :

```
scenario missing binding fixC ar interim decision
                                                        final
           TRUE
                    TRUE FALSE 10 54.56262 63.87624 102.43196
       1
      2
           TRUE
                    TRUE FALSE 10 54.56262 68.44170 102.27378
      3
                    TRUE FALSE 5 53.19699 57.43534 102.53302
           TRUE
      4
                    TRUE FALSE 5 53.19699 60.05461 102.25032
           TRUE
      5
           TRUE
                    TRUE
                         TRUE 10 54.46422 63.55543 102.55590
                          TRUE 10 54.46422 68.38828 102.04570
      6
           TRUE
                    TRUE
      7
           TRUE
                    TRUE
                          TRUE
                                5 53.10347 57.19873 102.61372
                          TRUE 5 53.10347 59.95959 102.13328
      8
           TRUE
                    TRUE
      9
           TRUE
                   FALSE
                          TRUE 10 54.52041 63.81588 102.45701
                   FALSE
                         TRUE 10 54.52041 68.36137 102.14337
      10
           TRUE
                          TRUE
                                5 53.18289 57.37841 102.60304
      11
           TRUE
                   FALSE
                               5 53.18289 60.00160 102.25444
      12
           TRUE
                   FALSE
                         TRUE
                   FALSE FALSE 10 54.50746 63.85073 102.45852
      13
           TRUE
           TRUE
                   FALSE FALSE 10 54.50746 68.22472 102.26402
     14
                   FALSE FALSE 5 53.16583 57.37762 102.59683
           TRUE
     15
                   FALSE FALSE 5 53.16583 59.91894 102.19314
      16
           TRUE
     17
           FALSE
                    TRUE FALSE 5 51.99597 56.30990 99.79909
                    TRUE FALSE 5 51.99597 59.23342 99.51892
      18
           FALSE
```

Similar results for other methods.

³average over the reached stages