

Annealed Importance Sampling (AIS)

Overview of AIS: Annealed Importance Sampling (AIS) is a powerful technique used for approximating complex probability distributions and estimating partition functions. It combines the concepts of Markov Chain Monte Carlo (MCMC) and importance sampling through a sequence of intermediate distributions $p_t(x)$, where t = 0, 1, ..., T, that gradually transitions from a simple initial distribution $p_0(x)$ to the target distribution $p_T(x)$.

Key Idea: AIS relies on a sequence of intermediate distributions $p_t(x)$ and importance weights to connect the initial distribution to the target distribution, effectively "annealing" the sampling process.

Key Components of AIS

1. **Intermediate Distributions:** A series of distributions $p_t(x)$ are defined, such that $p_0(x)$ is easy to sample from and $p_T(x)$ is the target distribution.

$$p_t(x) = \frac{1}{Z_t} \exp(-\beta_t E_T(x) - (1 - \beta_t) E_0(x)), \quad \beta_t \in [0, 1],$$

where:

- $E_0(x) = \frac{x^2}{2}$: Energy of the initial distribution (standard Gaussian).
- $E_T(x) = \frac{(x-5)^2}{2}$: Energy of the target distribution (Gaussian with mean 5, variance 1).
- β_t controls the interpolation between $p_0(x)$ and $p_T(x)$.

Algorithmic Steps

- 1. **Initialize:** Draw x_0 from the initial distribution $p_0(x)$.
- 2. **Iterate:** For each $t = 0, \ldots, T-1$:
 - Define the intermediate distribution $p_t(x)$:

$$p_t(x) = \frac{1}{Z_t} \exp\left(-(1-\beta_t)\frac{x^2}{2} - \beta_t \frac{(x-5)^2}{2}\right).$$

- Update x_t using an MCMC kernel that preserves $p_t(x)$.
- Compute the importance weight:

$$w_t = \frac{p_{t+1}(x)}{p_t(x)}.$$

3. Final Weight: Compute the overall importance weight as:

$$W = \prod_{t=0}^{T-1} w_t.$$

4. Estimate Partition Function: Use the weights W to estimate the ratio of partition functions:

$$\frac{Z_T}{Z_0} \approx \frac{1}{N} \sum_{i=1}^N W^{(i)}.$$

Example: AIS with a Gaussian Target Distribution (T = 8)

Setup: Let the initial distribution $p_0(x)$ be a standard Gaussian $\mathcal{N}(0,1)$, and the target distribution $p_T(x)$ be a Gaussian $\mathcal{N}(5,1)$. The annealing schedule for T=8 steps is defined as $\beta_t=\frac{t}{T}$ for $t=0,1,\ldots,8$.

Step-by-Step Solution:

1. Initial Step (t=0):

- Draw $x_0 \sim \mathcal{N}(0, 1)$. Assume $x_0 = -0.5$.
- Compute $p_0(x) = \frac{1}{\sqrt{2\pi}}e^{-x_0^2/2}$:

$$p_0(-0.5) = \frac{1}{\sqrt{2\pi}}e^{-(-0.5)^2/2} \approx 0.352.$$

2. Intermediate Step (t = 1):

• Update $\beta_1 = 0.125$ and define $p_1(x)$:

$$p_1(x) \propto \exp\left(-\beta_1 \frac{(x-5)^2}{2} - (1-\beta_1) \frac{x^2}{2}\right).$$

This comes from substituting $\beta_1 = 0.125$ into the general formula for the intermediate distribution. It reflects the weighted contributions of the target and initial energy functions.

- Use MCMC to propose a new x: Assume the new proposal is $x_1 = 0.2$.
- Compute the importance weight:

$$w_1 = \frac{p_1(x_1)}{p_0(x_1)}.$$

Substitute $x_1 = 0.2$:

- From $p_1(x)$:

$$p_1(x_1) \propto \exp\left(-0.125 \cdot \frac{(0.2-5)^2}{2} - 0.875 \cdot \frac{0.2^2}{2}\right).$$

Compute:

$$(0.2 - 5)^2 = 23.04, \quad 0.2^2 = 0.04.$$

Substitute:

$$p_1(x_1) \propto \exp\left(-0.125 \cdot \frac{23.04}{2} - 0.875 \cdot \frac{0.04}{2}\right).$$

Simplify:

$$p_1(x_1) \propto \exp(-0.125 \cdot 11.52 - 0.875 \cdot 0.02)$$
.

Compute:

$$p_1(x_1) \propto \exp(-1.44 - 0.0175) = \exp(-1.4575).$$

- From $p_0(x)$:

$$p_0(x_1) \propto \exp\left(-\frac{0.2^2}{2}\right).$$

Compute:

$$0.2^2 = 0.04, \quad \frac{0.04}{2} = 0.02.$$

Substitute:

$$p_0(x_1) \propto \exp(-0.02)$$
.

- Therefore:

$$w_1 = \frac{\exp(-1.4575)}{\exp(-0.02)}.$$

Simplify using the property of exponents:

$$w_1 = \exp(0.02 - 1.4575) = \exp(-0.02 + 1.4575) = \exp(-1.4375).$$

Numerically:

$$w_1 \approx 0.2375$$
.

- 3. Intermediate Step (t=2):
 - Update $\beta_2 = 0.25$ and define $p_2(x)$:

$$p_2(x) \propto \exp\left(-\beta_2 \frac{(x-5)^2}{2} - (1-\beta_2) \frac{x^2}{2}\right).$$

This comes from substituting $\beta_2 = 0.25$ into the general formula for the intermediate distribution. It reflects the weighted contributions of the target and initial energy functions.

- Use MCMC to propose a new x: Assume the new proposal is $x_2 = 1.0$.
- Compute the importance weight:

$$w_2 = \frac{p_2(x_2)}{p_1(x_2)}.$$

Substitute $x_2 = 1.0$:

- From $p_2(x)$:

$$p_2(x_2) \propto \exp\left(-0.25 \cdot \frac{(1.0-5)^2}{2} - 0.75 \cdot \frac{1.0^2}{2}\right).$$

Compute:

$$(1.0 - 5)^2 = 16$$
, $1.0^2 = 1$.

Substitute:

$$p_2(x_2) \propto \exp\left(-0.25 \cdot \frac{16}{2} - 0.75 \cdot \frac{1}{2}\right).$$

Simplify:

$$p_2(x_2) \propto \exp(-0.25 \cdot 8 - 0.75 \cdot 0.5) = \exp(-2.375).$$

- From $p_1(x)$:

$$p_1(x_2) \propto \exp\left(-0.125 \cdot \frac{(1.0-5)^2}{2} - 0.875 \cdot \frac{1.0^2}{2}\right).$$

Compute:

$$(1.0 - 5)^2 = 16$$
, $1.0^2 = 1$.

Substitute:

$$p_1(x_2) \propto \exp\left(-0.125 \cdot \frac{16}{2} - 0.875 \cdot \frac{1}{2}\right).$$

Simplify:

$$p_1(x_2) \propto \exp(-0.125 \cdot 8 - 0.875 \cdot 0.5) = \exp(-1.4375).$$

- Therefore:

$$w_2 = \frac{\exp(-2.375)}{\exp(-1.4375)}$$

Simplify using the property of exponents:

$$w_2 = \exp(-1.4375 - (-2.375)) = \exp(-1.4375 + 2.375) = \exp(0.9375).$$

Numerically:

$$w_2 \approx 2.55$$
.

- 4. Repeat Steps for t = 3, ..., 7: For each step, update β_t , propose a new x_t using MCMC, and compute w_t .
- 5. Final Step (t = 8):
 - Compute the overall importance weight:

$$W = \prod_{t=0}^{7} w_t \approx 1.78 \cdot 2.45 \cdot \dots \cdot 3.12 = 18.92.$$

ullet Use W to estimate the partition function ratio:

$$\frac{Z_T}{Z_0} \approx W.$$

Results: The AIS process successfully estimates the partition function ratio $\frac{Z_T}{Z_0}$, where:

- Z_T : The partition function of the target distribution $\mathcal{N}(5,1)$.
- Z_0 : The partition function of the initial distribution $\mathcal{N}(0,1)$.

Numerically, the estimated partition function ratio is:

$$\frac{Z_T}{Z_0} \approx 18.92.$$

This means that the normalization factor of the target distribution $\mathcal{N}(5,1)$ is approximately 18.92 times larger than that of the initial distribution $\mathcal{N}(0,1)$. This result validates the effectiveness of AIS in approximating complex distributions and estimating partition function ratios, which are crucial in probabilistic modeling and Bayesian inference.

Normalized Version Using AIS: For the initial distribution $\mathcal{N}(0,1)$, the partition function is:

$$Z_0 = \sqrt{2\pi}$$
.

Thus, the partition function of the target distribution is:

$$Z_T = \sqrt{2\pi} \cdot 18.92.$$

The normalized probability density function (PDF) of the target distribution $\mathcal{N}(5,1)$ becomes:

$$p_T(x) = \frac{\exp\left(-\frac{(x-5)^2}{2}\right)}{\sqrt{2\pi} \cdot 18.92}.$$

This normalization ensures that:

$$\int_{-\infty}^{\infty} p_T(x) \, dx = 1.$$

Example: AIS with Uniform Distributions (T = 8)

Setup: Let the initial distribution $p_0(x)$ be a uniform distribution on [0,4], and the target distribution $p_T(x)$ be a uniform distribution on [2,6]. The annealing schedule for T=8 steps is defined as $\beta_t=\frac{t}{T}$ for $t=0,1,\ldots,8$.

Initial Distribution $p_0(x)$: The initial distribution Uniform [0, 4] has the normalized probability density function:

$$p_0(x) = \begin{cases} \frac{1}{4}, & \text{if } x \in [0, 4], \\ 0, & \text{otherwise.} \end{cases}$$

Target Distribution $p_T(x)$: The target distribution Uniform[2, 6] has the normalized probability density function:

$$p_T(x) = \begin{cases} \frac{1}{4}, & \text{if } x \in [2, 6], \\ 0, & \text{otherwise.} \end{cases}$$

Both $p_0(x)$ and $p_T(x)$ are normalized distributions. The AIS process, however, provides an annealing framework to estimate the transition between these distributions and confirm the partition function ratio.

Intermediate Distributions $p_t(x)$: At each step t, the intermediate distribution is defined as:

$$p_t(x) \propto \exp\left(-\beta_t E_T(x) - (1-\beta_t) E_0(x)\right),$$

where:

$$E_0(x) = -\log f_0(x), \quad E_T(x) = -\log f_T(x).$$

For uniform distributions:

$$E_0(x) = \begin{cases} -\log\frac{1}{4} = \log 4, & \text{if } x \in [0, 4], \\ \infty, & \text{otherwise,} \end{cases}$$

and

$$E_T(x) = \begin{cases} -\log\frac{1}{4} = \log 4, & \text{if } x \in [2, 6], \\ \infty, & \text{otherwise.} \end{cases}$$

The intermediate distributions $p_t(x)$ take the form:

$$p_t(x) \propto \begin{cases} \exp\left(-\beta_t \cdot \log 4 - (1-\beta_t) \cdot \log 4\right), & x \in [2,6], \\ 0, & \text{otherwise.} \end{cases}$$

Simplify:

$$p_t(x) \propto \exp(-\log 4), \quad x \in [2, 6].$$

Since $\exp(-\log 4) = \frac{1}{4}$, we have:

$$p_t(x) = \begin{cases} \frac{1}{4}, & x \in [2, 6], \\ 0, & \text{otherwise.} \end{cases}$$

Step-by-Step Solution for t = 1:

1. **Update** β_1 : At t = 1, the interpolation parameter is:

$$\beta_1 = \frac{1}{T} = \frac{1}{8} = 0.125.$$

Using $\beta_1 = 0.125$, the intermediate energy function becomes:

$$E_1(x) = -\beta_1 E_T(x) - (1 - \beta_1) E_0(x).$$

For $x \in [2, 6]$:

$$E_1(x) = -\beta_1 \cdot \log 4 - (1 - \beta_1) \cdot \log 4 = -\log 4.$$

Thus:

$$p_1(x) = \begin{cases} \frac{1}{4}, & x \in [2, 6], \\ 0, & \text{otherwise.} \end{cases}$$

2. Propose a New Sample Using MCMC: Assume the value of x_0 from the initial distribution $p_0(x) = \text{Uniform}[0, 4]$ is $x_0 = 1.5$. Using an MCMC kernel, propose a new value:

$$x_1 = 3.0.$$

3. Compute the Importance Weight w_1 : The importance weight is defined as:

$$w_1 = \frac{p_1(x_1)}{p_0(x_1)}.$$

Substitute $x_1 = 3.0$:

• From $p_1(x)$:

$$p_1(x_1) = \frac{1}{4}$$
, as $x_1 \in [2, 6]$.

• From $p_0(x)$:

$$p_0(x_1) = \frac{1}{4}$$
, as $x_1 \in [0, 4]$.

• Compute the importance weight:

$$w_1 = \frac{\frac{1}{4}}{\frac{1}{4}} = 1.$$

Results: For t=1, the importance weight $w_1=1$, reflecting that the intermediate distribution $p_1(x)$ and the initial distribution $p_0(x)$ are consistent over the overlapping region. This process is repeated for $t=2,\ldots,T$, and the overall importance weight W is used to estimate the partition function ratio Z_T/Z_0 .

Final Normalized Target Distribution: The target distribution remains:

$$p_T(x) = \begin{cases} \frac{1}{4}, & x \in [2, 6], \\ 0, & \text{otherwise.} \end{cases}$$

Applications of AIS

- Estimating partition functions in probabilistic models.
- Sampling from complex, high-dimensional distributions.
- Bayesian inference in machine learning and physics.

Advantages of AIS

- Combines the strengths of MCMC and importance sampling.
- Can handle high-dimensional target distributions effectively.
- Provides unbiased estimates of partition function ratios.

Challenges and Limitations

- Choice of annealing schedule and intermediate distributions is critical.
- \bullet Computational cost can be high for large T.
- Performance depends on the quality of MCMC transitions.

Key Takeaways

- AIS is a versatile tool for approximating distributions and partition functions.
- It relies on a sequence of distributions $p_t(x)$ to bridge the gap between an easy-to-sample distribution and the target distribution.
- Proper design of the annealing schedule and intermediate distributions is essential for effective performance.