Circles

1 Equation of a Circle An equation of the circle with center (h, k) and radius r is

$$(x - h)^2 + (y - k)^2 = r^2$$

In particular, if the center is the origin (0, 0), the equation is

$$x^2 + y^2 = r^2$$

EXAMPLE 1 Find an equation of the circle with radius 3 and center (2, -5).

EXAMPLE 2 Sketch the graph of the equation $x^2 + y^2 + 2x - 6y + 7 = 0$ by first showing that it represents a circle and then finding its center and radius.

The geometric properties of parabolas are reviewed in Section 10.5. Here we regard a parabola as a graph of an equation of the form $y = ax^2 + bx + c$.

EXAMPLE 3 Draw the graph of the parabola $y = x^2$.

X	$y = x^2$
0	0
$\pm \frac{1}{2}$	$\frac{1}{4}$
±1	1
±2	4
±3	9

(a)
$$x = ay^2$$
, $a > 0$

(b)
$$x = ay^2$$
, $a < 0$

Ellipses

The curve with equation

2

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

EXAMPLE 5 Sketch the graph of $9x^2 + 16y^2 = 144$.

Hyperbolas

The curve with equation

3

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

FIGURE 10

The hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

FIGURE 11

The hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$

EXAMPLE 6 Sketch the curve $9x^2 - 4y^2 = 36$.

(a)
$$x^2 - y^2 = a^2$$

(b)
$$xy = k (k > 0)$$

Shifted Conics

Recall that an equation of the circle with center the origin and radius r is $x^2 + y^2 = r^2$, but if the center is the point (h, k), then the equation of the circle becomes

$$(x - h)^2 + (y - k)^2 = r^2$$

Similarly, if we take the ellipse with equation

4

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

and translate it (shift it) so that its center is the point (h, k), then its equation becomes

5

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

$$y - k = a(x - h)^2$$

$$y - k = a(x - h)^2$$
 or $y = a(x - h)^2 + k$

EXAMPLE 7 Sketch the graph of the equation $y = 2x^2 - 4x + 1$.

EXAMPLE 8 Sketch the curve $x = 1 - y^2$.

(b)
$$x = 1 - y^2$$