Молекулярная филогенетика: структура и принципы курса

7 модулей, а в каждом из них:

- ▶ теория;
- ▶ вопросы;
- ▶ небольшие практические задания.

Непонятно? Не нравится? Спросите!

- Классификация живых существ.
- ► Как происходит видообразование?
- ▶ Перенос свойств более изученных объектов на менее изученные.
- ▶ Определение объектов => от криминалистики до пищевой промышленности...

- Классификация живых существ.
- ► Как происходит видообразование?
- ▶ Перенос свойств более изученных объектов на менее изученные.
- ▶ Определение объектов => от криминалистики до пищевой промышленности...

Почему молекулярные данные?

- Классификация живых существ.
- ▶ Как происходит видообразование?
- ▶ Перенос свойств более изученных объектов на менее изученные.
- ▶ Определение объектов => от криминалистики до пищевой промышленности...

Почему молекулярные данные?

- ▶ Биополимеры есть у всех живых организмов и состоят из одинаковых элементов.
- ▶ Иногда последовательность ДНК это единственное, что мы знаем об организме.
- Можно комбинировать молекулярные и морфологические данные.

Терминология

Гомология (homology) — сходство признаков, обусловленное общим происхождением. **Дивергенция (divergence)** — расхождение признаков в ходе эволюции.

Гомоплазия (homoplasy) — сходство признаков, не обусловленное общим происхождением. Часто обусловлена параллельной (конвергентной) эволюцией.

Гомологи = ортологи (orthologs/orthologues) + паралоги (paralogs/paralogues).

Варианты гомологии

Термины paralogous / orthologous:

Fitch WM. Distinguishing homologous from analogous proteins.

Systematic Biology. 1970 Jun 1;19(2):99-113.

Варианты гомологии

см. Koonin EV. Orthologs, paralogs, and evolutionary genomics 1. Annu. Rev. Genet. 2005;39:309-38.

Названия частей дерева

Монофилия, полифилия и парафилия

Монофилия, полифилия и парафилия

Монофилия, полифилия и парафилия

Политомия

Soft polytomy (из-за недостатка данных) vs.
Hard polytomy (очень быстрое видообразование)

Типы дендрограмм

Укоренённое (rooted) дерево

Неукоренённое (unrooted)

Кладограммы (длина ветвей не означает ничего)

Филограммы (длина ветвей что-то означает)

Ультраметрическое (ultrametric): равная длина ветвей длина ветви — число замен (напр., длина ветви — время)

Число возможных топологий для дерева

Число OTE	Возможных	Возможных
	неукоренённых деревьев	укоренённых деревьев
3	1	3
4	3	15
22	0,5 моля	
n	(2n-5)!!	(2n-3)!!
n	$\frac{(2n-5)!}{2^{n-3} \cdot (n-3)!}$	$\frac{(2n-3)!}{2^{n-2}\cdot (n-2)!}$

Разные варианты отображения топологии

Это одно и то же дерево!

Формат Newick

```
(((A,B),(C,D)),E);
(((Ecoli, Bsubtilis), (Nequitans, Ihospitalis)), Hsapiens);
(((,),(,)),);
(((E coli, B subtilis), (N equitans, I hospitalis)), H sapiens);
(((Ecoli, Bsubtilis)B, (Nequitans, Ihospitalis)A)P, Hsapiens);
(((A:6.0,B:5.0):3.33,(C:1.1,D:3.5):2.22):0,E:4.3);
(((A:6.0,B:5.0)80:3.33,(C:1.1,D:3.5)75:2.22)95:0,E:4.3)99;
```

http://evolution.genetics.washington.edu/phylip/newicktree.html

Формат Nexus

```
#NEXUS
Begin block-name; [insert comment if you need it]
command-name token . . . ;
command-name token . . . ;
End;
#NEXUS
Begin Taxa;
Dimensions NTax=4;
TaxLabels fish frog snake mouse;
End:
Begin Trees;
Tree best = [&U] (fish, (frog, (snake, mouse)));
End:
```

Maddison DR, Swofford DL, Maddison WP. NEXUS: an extensible file format for systematic information. Syst Biol 1997;46(4):590-621.

Форматы для хранения деревьев

- ► Newick / New Hampshire
- ► Nexus
- ▶ NeXML
- ► PhyloXML