Projet en statistique non-paramétrique

Mamaou Lamine DIAMBAN

12 Décembre 2019

On considère le modèle de régression,

$$Y_i = g(\frac{i}{n}) + \epsilon_i, \quad 1 \le i \le n$$

On suppose ici $\epsilon_1,...,\epsilon_n$ des variables aléatoires centrées et de variance σ^2 et dépendantes. Elles vérifient la relation,

$$\epsilon_n = \eta_n \sqrt{\sigma^2(1-\alpha) + \alpha \epsilon_{n-1}^2}, \quad 0 \leq i \leq 1$$

,

avec $(\eta_n)_{n\geq 1}$ est une suite iid centrée de loi normal $\mathcal{N}(0,1)$ et η_n est indépendante de $\epsilon_1,...,\epsilon_{n-1}$. On définit, \hat{g} l'estimateur de g, par :

$$\hat{g}(x) = \frac{1}{nh} \sum_{i=1}^n Y_i K(\frac{x - X_i}{h})$$

h est la fenêtre et K est un noyau pair et à support compact. L'objectif de ce projet est d'étudier empiriquement un bon choix de la fenêtre h. On prendra par la suite que :

$$g(x) = \sin(2\pi x)$$

1. Représenter sur un même graphique le nuage des points $(\frac{i}{n}, Y_i)_{1 \le i \le n}$, la fonction g et l'estimateur \hat{g} pour un choix K, de α et de σ^2 que vous préciserz. Afin de trouver le modèle de regression Y, nous avons d'abord fixé les paramètres des erreurs (ϵ_i) : $\sigma^2 = 0.0225$

$$\alpha = 0.022$$
 $\alpha = 0.05$.

Puis pour calculer l'estimateur \hat{g} , on a pris un noyeau gaussien pour $K, K(u) = \frac{1}{\sqrt{2\pi}} \exp(\frac{-u^2}{2})$ et une fenêtre h = 0.03.

Nuage de points Y avec alpha = 0.05 et sigma = 0.15

Pour un choix des paramètres cités ci-dessous, on peut voir que Y a une forme sinisoïdale et la fonction g et son estimateur \hat{g} sont très proches.

Et dans notre cas, lorsque Y augmente, g est sous-estimée par \hat{g} . Et inversement, lorsque Y diminue, la fonction g est sur-estimée par \hat{g} .

2. Visualisez, selon différentes valeurs de h, la situation de sous et de sur-lissage. Comparaison de différentes valeurs de h

Nous avons fait varier la fenêtre h entre 10-3 et 0.2.

Et il en résulte que pour des valeurs de $h \in [0.001, ..., 0, 1]$, la fonction g est sur-lissée.

Tant disque pour des valeurs de $h \ge 0.1$, la fonction g est sous-lissée.

On peut donc conclure que la vraie valeur du paramètre de lissage h se situe dans la décimale 2.

3. Ecrire un programme qui calcule la valeur optimale du paramètre de lissage en fonction du ASE ASE (Average square error) est définit par,

$$ASE(h) = \frac{1}{h} \sum_{i=1}^{n} (\hat{r}(x_i) - r(x_i))^2$$

Soit \hat{h}_0 cette valeur optimale du ASE(h), c'est-à-dire,

$$\hat{h}_0 = argmin_{h>0} ASE(h)$$

h.optimale	0.026
ASE.optimale	0.0015

4. Même question, en remplacant $\operatorname{ASE}(h)$ pour le critère de validation croisé $\operatorname{CV}(h)$

CV(h) est définit comme suit,

$$CV(h) = \frac{1}{h} \sum_{i=1}^{n} (\frac{\hat{r}(x_i) - Y_i}{1 - L_{i,i}})^2$$

avec $L_{i,i} = \frac{K(0)}{nh}$. On pose,

$$\hat{h} = argmin_{h>0}CV(h)$$

h.optimale	0.032
CV.optimale	0.0246

Illustration avec ASE(h) et CV(h)

Bien que le paramètre de lissage soit supérieur avec la crosse validation (h = 0.032), il apparaît cependant que toutes les deux fournissent un lissage très satisfaisant.

5. Illustrer le comportement asymptotique lorsque n tend vers l'infini de $\frac{ASE(\hat{h})}{ASE(\hat{h}_0)}$

Lorsque $n \to \infty$, le rapport des erreurs du paramètre de lissage est presque constante et est proche de 1. Cela est d'autant plus marquant lorsque n > 600, toutes les valeurs sont comprises entre 1et1.5. Tant disque lorsque n < 600, on peut voir qu'il existe des valeurs aberrantes pouvant aller jusqu'à ≈ 3 .

6. Illustrer le comportement asymptotique lorsque n tend vers l'infini de $\frac{\hat{h}}{\hat{h}_0}$.

On a une asymétrie du rapport $\frac{\hat{h}}{\hat{h}_0}$ qui ne s'atténue pas, lorsque n tend vers l'infini avec une moyenne

 $\approx 1.$

7. Vérifier, par simulations, que $n^{3/10}(\hat{h}-\hat{h}_0)$ a un comportement gaussien. empirical distribution

 $n^{3/10}(\hat{h}-\hat{h}_0)$ suit bien une loi $\mathcal{N}(-0.0076,0.037^2)$

emp

- 8. Que peut être la loi asymptotique de $n(ASE(\hat{h})-ASE(\hat{h}_0))$. $n(ASE(\hat{h})-ASE(\hat{h}_0)) \text{ suit une loi de Poisson.}$
- 9. Conclure quant au critère CV(h). D'une part, la vrai fonction r(x) nous a été donnée de sorte qu'on puisse facilement calculer $ASE(h) = \frac{1}{h} \sum_{i=1}^n (\hat{r}(x_i) r(x_i))^2$ et trouver la fenêtre optimale qui rend ASE minimum. Cependant, dans la pratique, il est impossible de connaître la vraie fonction qui produit les données r(x).

Et d'autre part, même si \hat{h} est sensiblement plus grande que \hat{h}_0 , les résultats montrent que, $\frac{ASE(\hat{h})}{ASE(\hat{h}_0)}$ et $\frac{\hat{h}}{\hat{h}_0}$ sont respectivement proches de 1, ce qui nous permet de conclure que dans la pratique, nous pouvons utiliser la méthode CV(h) à la place de ASE pour calculer la fenêtre optimale h.