Switch-Tokenizer: Pretraining Language Models to Use Multiple Tokenizers

Nikita Razuvaev

Data Scientist, MTS Fintech

GitHub: hardesttype/switch-tokenizer

April 20, 2025

Introduction

What is Switch-Tokenizer?

A multilingual tokenizer implementation that uses a shared vocabulary space between different language-specific tokenizers.

Why is it important?

Enables efficient parameter usage in multilingual language models through context-dependent token interpretation.

Background

Traditional multilingual models use a common vocabulary trained on multilingual data, which can be very unbalanced, resulting in inefficient parameter usage and increased model size.

Goal of the research

Develop an efficient multilingual tokenization approach that maintains performance while reducing parameter costs.

Problem Statement

What exactly are we solving?

Inefficient parameter usage in multilingual language models due to common vocabularies trained on unbalanced multilingual data.

Challenges

- Maintaining a fixed-size embedding table despite multiple languages
- Learning context-dependent token interpretation
- Ensuring tokenization efficiency without using a single shared vocabulary

Scope

Focusing on efficient multilingual language modeling while maintaining performance across languages.

Related Work: Tokenizer Adaptation Methods

Method	Approach	Key Advantages
Zero-Shot Tok-	Transfers pretrained	Enables switching tokeniz-
enizer Transfer	model to new tok-	ers post-training with mini-
	enizer without fine-	mal performance loss
	tuning	
LazyLLM	Dynamic token	Reduces computation for
	pruning during infer-	long contexts by 2-4x while
	ence	preserving quality
ReTok	Replaces original to-	Improves context length by
	kenizer with more ef-	up to 2x with minimal per-
	ficient one	plexity degradation
MRT5	Dynamic token	Processes longer contexts
	merging for byte-	efficiently while maintain-
	level models	ing byte-level precision
Dynamic Tok-	Retrofits LLMs with	Enables specialized en-
enization	specialized tokeniz-	coding for different do-
	ers	mains/languages without
		retraining

Methods: The Switch-Tokenizer Approach

Approach:

- Each language has its own tokenizer with its own vocabulary
- All tokenizers map into the same shared vocabulary ID space
- Why this method? Maintains a fixed-size embedding table and output projection layer regardless of the number of languages.
- How it works:

The model learns to associate token IDs with different tokens depending on the language context.

Switch-Tokenizer methodology

Results: Experiment 1

Key findings:

- With equal (monolingual) training budget for all models, monolingual models perform better on their respective languages
- But for multilingual tasks, the switchable model outperforms by 22.07%
- Tokenization efficiency remained consistent across approaches

Perplexity comparison (lower is better)

Tokenization Efficiency

Metrics used:

- Tokens per word ratio (lower is better)
- Perplexity scores across languages

Experimental setup:

- Data: Wikipedia articles (EN + RU)
- ► Base model: gpt2-medium
- ► Tokenizers: gpt2 (EN), ruGPT-3.5-13B (RU)

► Idea:

Increase token budget to multilingual

Tokens per word comparison

Future Work

Planned experiments:

- Comparison vs. Common Vocabulary Approach
- Multilingual Baseline Comparison
- Context Sensitivity Analysis

Unresolved challenges:

- Dynamic tokenizer switching without explicit language tokens
- Scaling to larger models and more languages

Why it matters:

Efficient multilingual models have applications in translation, cross-lingual understanding, and content creation.

Future opportunities:

- Specialized tokenizers for programming languages
- Expanded benchmarks on standard multilingual tasks

Bibliography I

"Tokenizer Choice For LLM Training: Negligible or Crucial?" (Ali et al., 2024)

Appendix: Training Curves

Training loss comparison between switchable and monolingual models