新概念模拟电路学习

目录

8/

目录

0.	绪言		1
	晶体管对世	界的影响	1
		技术?	
	模拟信号和	数字信号	4
	模拟电子技	术	5
	模拟电子技	*************************************	6
1.	晶体管基础		7
	11. 双极性晶体	管的工作原理及放大电路	7
	Section1.	电压信号如何放大——晶体管的引入	7
	Section2.	NPN 型晶体管的伏安特性	13
	Section3.	用 NPN 晶体管构建一个放大电路	18
	Section4.	静态和信号耦合	19
	Section5.	晶体管的 4 种工作状态	22
	Section6.	给定电路求解静态——包括状态判断	24
	Section7.	图解法,对晶体管工作状态的加深理解	34
	Section8.	两部件串联的图解方法	37
	Section9.	动态求解方法——以硅稳压管为例	41
	Section10.	双极型晶体管的动态模型——微变等效模型	45
	Section11.	双极型晶体管放大电路的动态分析	47
	Section12.	实验测量法	56
	Section13.	共基极、共集电极放大电路和 PNP 管电路	58
	Section14.	大信号情况下的失真分析	68
	Section15.	放大电路的综合分析	78
	Section16.	多级放大电路	90
	12. 场效应晶体	管的工作原理及应用电路	101
	Section24.	场效应管分类和管脚定义	102
	Section25.	JFET	104
	Section26.	MOSFET	
	Section27.	FET 放大电路的静态电路和信号耦合	
	Section28.	FET 的微变等效模型	
	Section29.	FET 放大电路的动态分析	
2.			
	2.1 晶体管的其	它应用电路	
	Section30.	恒流源实现高增益放大	
	Section31.	差动放大器 1:差分信号的来源	141

	Section32.	差动放大器 2:差动放大器雏形	
	Section33.	差动放大器 3:标准差动放大器	_ 9
	Section34.	差动放大器 4: 共模抑制比及其提高方法	.150
	Section35.	电流镜(Current Mirror)基本原理	165
	Section36.	比例电流镜和 Widlar 微电流源	171
	Section37.	威尔逊电流镜—Wilson Current Mirror	179
	Section38.	电流源的顺从电压和输出阻抗	185
	Section39.	恒流源(Constant Current Source)	188
	Section40.	模拟开关(Analog Switch)	.190
	Section41.	晶体管是组成集成电路的基础	193
	Section42.	扩流电路	194
	Section43.	超高频放大电路	195
	Section44.	负载开关(Load Switch)	.196
	Section45.	晶体管产品	.199
2.2.	晶体管放大电	B路的频率响应	.207
	Section46.	频率响应概述	.207
	Section47.	阻容基本单元的频率响应	211
	Section48.	基本单元变形的频率响应	213
	Section49.	基本单元串联的频率响应	217
	Section50.	晶体管放大电路的非杂散频率响应	.220
	Section51.	晶体管的高频等效模型	.235
	Section52.	共射极电路的高频响应	.236
	Section53.	共基极和共集电极放大电路的高频响应	240
	Section54.	利用晶体管的数据手册估算上限截止频率	.244
负质	5馈和运算放大	、器基础	.246
3.1.	理想运算放大	大器和负反馈电路	246
	Section56.	理想运算放大器	.246
	Section57.	理想运算放大器组成的负反馈放大电路	.247
3.2.	负反馈理论		248
	Section58.	反馈的概念引入	.248
	Section59.	认识电路中的反馈	251
	Section60.	负反馈放大电路的方框图分析法	.256
	Section61.	利用方框图法求解电路	.258
	Section62.	负反馈对放大电路性能的影响	261
	Section63.	负反馈对失真度的影响	.270
3.3.	负反馈放大电	B路的分析方法	274
	Section64.	虚短的来源	274
	Section65.	负反馈电路分析方法二:虚短虚断法	.278

		Section66.	负反馈电路分析方法三:大运放法	312
		Section67.	负反馈电路分析方法四:环路方程法	317
	3.4.	实际运算放大	- 器	321
		Section68.	用晶体管自制一个运算放大器	321
		Section69.	运算放大器的内部构造	326
		Section70.	运放的关键参数	328
		Section71.	运放的噪声参数	351
		Section72.	全差分运算放大器	357
		Section73.	运放电路设计实践	369
1.	运放	电路的频率 特	5性和滤波器	388
	4.1.	运放电路的频	页率特性	388
		Section74.	从开环到闭环	388
		Section75.	负反馈放大电路的稳定性分析	399
		Section76.	频率失真	409
		Section77.	频率特性的分析方法	412
	4.2.	滤波器概述		414
		Section78.	滤波器的一些常识	414
		Section79.	从运放组成的一阶滤波器入手	422
		Section80.	思考	432
		Section81.	二阶滤波器分析——低通和高通	440
		Section82.	二阶滤波器分析——带通、带阻和全通	445
		Section83.	群延时——Group Delay	451
	4.3.	运放组成的低	5通滤波器	453
		Section84.	4 元件二阶 SK 型低通滤波器	453
		Section85.	6 元件二阶 SK 型低通滤波器	459
		Section86.	易用型二阶 SK 型低通滤波器	464
		Section87.	MFB 型低通滤波器	469
		Section88.	高阶低通滤波器	473
		Section89.	单电源低通滤波器	479
		Section90.	滤波器设计中的注意	488
	4.4.	运放组成的高	5.通滤波器	492
		Section91.	4 元件二阶 SK 型高通滤波器	492
		Section92.	6 元件二阶 SK 型高通滤波器	495
		Section93.	易用型二阶 SK 型高通滤波器	499
		Section94.	MFB 型高通滤波器	506
		Section95.	高阶高通滤波器	513
		Section96.	单电源高通滤波器	517
	4.5.	运放组成的带	· · · · · ·	522

		Section97.	双频点带通滤波器——宽带通	522
		Section98.	单频点选频放大器——窄带通	523
	4.6.	运放组成陷	皮器	548
		Section99.	双频点带阻滤波器——宽带阻	548
		Section100.	陷波器——窄带阻滤波器	549
	4.7.	运放组成全运	通滤波器	581
		Section101.	二阶全通滤波器	581
	4.8.	其它类型的	莫拟滤波器	591
		Section102.	状态可变型滤波器分析	591
		Section103.	Biquad 滤波器分析	604
		Section104.	Fleischer-Tow 滤波器	617
		Section105.	椭圆滤波器——有源	631
		Section106.	椭圆滤波器——无源	667
	4.9.	开关电容滤	皮器	715
		Section107.	开关电容滤波器- Switched Capacitor Filter	715
5.	信号	处理电路		726
	5.1.	峰值检测和	精密整流电路	726
		Section108.	峰值检测电路和精密整流电路	726
	5.2.	功能放大器。		731
		Section109.	有效值检测芯片	731
		Section110.	程控增益放大器	736
		Section111.	压控增益放大器	742
	5.3.	比较器		747
		Section112.	运放实现的比较器	747
		Section113.	集成比较器及其关键参数	754
		Section114.	比较器的应用	764
	5.4.	功率放大电	路	782
		Section115.	功放电路的功率和效率	783
		Section116.	甲类功放	785
		Section117.	乙类功放和甲乙类功放	788
		Section118.	关于功放的其它知识	795
	5.5.	测量系统的	前端电路	808
		Section119.	仪表放大器及其应用电路	808
		Section120.	仪表放大器使用注意事项	818
		Section121.	多种类型的仪表放大器	837
		Section122.	其他常见传感器前端电路	849
		Section123.	电阻一二三	855
	5.6.	ADC 驱动电	路	858

		Section124.	为什么要给 ADC 前端增加驱动电路	858
		Section125.	单电源标准运放 ADC 驱动电路	863
		Section126.	全差分运放形成的 ADC 驱动电路	890
		Section127.	基于全差分运放的滤波器	913
	5.7.	杂项		919
		Section128.	复合放大器	919
		Section129.	用程序控制增益和自动增益控制	932
		Section130.	电荷放大器和锁定放大器	956
		Section131.	继电器和模拟开关	968
õ.	源电	3路—信号源和	口电源	990
	6.1.	基于蓄积翻轴	专思想的波形产生电路	991
		Section132.	蓄积翻转和方波发生器	991
		Section133.	方波三角波发生器	994
		Section134.	独立可调的方波三角波发生器	999
		Section135.	压控振荡器	1003
	6.2.	基于自激振荡	荡的正弦波发生器	1007
		Section136.	自激振荡产生正弦波的原理	1007
		Section137.	RC 型正弦波发生器	1008
		Section138.	LC 型正弦波发生器	1013
		Section139.	晶体振荡器	1018
	6.3.	直接数字合成	成技术-DDS	1021
		Section140.	DDS 核心思想	1021
		Section141.	常用 DDS 芯片	1028
		Section142.	DDS 的外围电路	1030
	6.4.	线性稳压电流	原	1033
		Section143.	线性稳压电源结构	1033
		Section144.	串联型稳压电路	1037
		Section145.	集成三端稳压器	1040
		Section146.	低跌落电压稳压器——LDO	1048
		Section147.	基准电压源	1058

1.1 BJT工作原理和放大电路

Section1

学习了BJT的形式,感受它作为电流控制电流元件的优势,了解关于其热水器式的模拟

Section2

NPN BJT伏安特性曲线,明白BJT伏安特性曲线实际上就是科学家人为刻意划分成两种玩意,输入和输出,其中输入是二极管式的,输出的理想和非理想也了解了

对于静态和非静态理解的更深了,关于电阻和β,不过β静态和非静态近似相等

学习了用NPN搭建一个NPN共射级基本放大电路

信号加偏置,电阻加电压

Section4

了解静态工作点的作用,对耦合有了更深的认识,耦合电容是很大的电容,当信号快速改变时,时间常数大,电容充电速度慢,电容电压保持相对的不变,则信号耦合了进去

Section5

了解BJT的四种状态,有截止,饱和,放大,倒置

我们平常用的是放大,截止就是指发射结反偏的时候或0的时候,IBQ非常小,就像管子没有导通一样,饱和是指的增大IBQ而ICQ基本不变的时候,其实是UCE偏小的时候,倒置是ce插反了嘻嘻

Section6

BJT求解静态,首先掌握了怎么判断**四种状态**,齐次对于戴维南定理等等运用更为合理了呢并熟练了呢,对于如何求解静态工作点也有了自己的想法嘻嘻

Exercise

p44

对图解法有了了解,所谓图解法,其实是更为准确的一种方法,因为其实UBEQ不是单纯的0.7V,用图解法可以得到更准确的电流值,不过它有一点就是UceQ不会影响输入伏安特性曲线罢了

同时对饱和区截止区也了解更多了

Section8

对两部件串联的图解法有了了解,尤其是

图 Section8-6 两个晶体管串联电路

这种结构右侧的串联方式

Exercise

1) 图 Section8-6 中,需要小心遴选电阻 R2,才能保证两个晶体管都处于放大状态。 这在实际应用中很难做到。有什么办法能够让 Vout 自动保持在 5V 左右?

对动态求解方法有更清晰的认识,尤其是它为什么成立,由于线性性

Section10

对BJT微变等效低频模型有了了解,尤其是rbe的来历

图 Section10-2 输入伏安特性的微变等效

知道了
$$r_{be}=r_{bb'}+rac{U_T}{I_{BQ1}}$$

图 Section10-3 晶体管简化微变等效模型—低频

图 Section10-4 晶体管等效模型 (含高频)

学习了对BJT放大电路的动态分析,构成了一个基本操作,就是先算静态工作点,再算rbe,再画小信号电路图,再算Aui,再算rori,再算其它的各种增益

主要学了一点,就是关于黑箱的认识,尤其是输出种加负载和不加负载的区别,只是相差一个比例系数罢了,但是可能会改变输入电阻

Section12

一个放大电路的输入电阻,可能与输出是否带负载有关

学习了实验测量法测量Av Ri Ro

Section13(important)

对共基极,共集极,PNP电路进行学习

首先了解了BJT的本质,ube变化,引起iB变化,映射出iCiE变化,那么,能改变ube的都能作为输入,能反应ce的都能作为输出,所以有bc,be,ec三种组合

Rc是用来把电流变化显示成电压变化的,同理,在ce中就需要RE来做此操作了

求解方式和BJT共射级基本相同,见Section11

be是射极跟随器,不具备电压放大能力,输入电阻大,输出电阻校,扩流,阻抗匹配好用

ec是电流跟随器呦

需要特别指出的是,共射级、共基极电路都有如下特点:输入电阻与负载无关,输出 电阻与信号源内阻无关。但共集电极电路却不是如此。它的输入电阻与负载大小有关,而 输出电阻与信号源内阻有关,在多级电路级联时,需要特别注意。

面对ec,输入电阻与负载大小有关,输出电阻与信号源内阻有关!!!面对级联一定要考虑哦

Section14

主要学习了失真,有饱和失真和截止失真,学习了静态负载线和动态负载线,并根据此学习了失真电压裕度的求法

UCEQ-UCES,饱和失真

ICQ*RL',截止失真

Section15

学习了BJT放大电路的一些偏置的好处,如为什么用4电阻偏置,怎样选择静态工作点,静态和动态分离以及增益如何改变,怎么合理的用电容来消除影响,T型偏置电路的灵活使用等等

Section16

多级放大电路

主要学习电容耦合形式,静态工作点分立,注意动态分析里共集电极的区别,它的输入输出电阻和负载和Rsi有关,则需要先算其他的输出电阻输入电阻再算它,而且算出每一个的Aui(不管负载信号源内阻的那种)然后乘衰减因子就行(共集除外)

直接耦合放大电路,主要麻烦的是共射共基放大电路,主要是两个0.7V用好就能很方便的求静态工作点,动态反而是好做的,直接画图求就行,直接耦合放大电路就是静态工作点麻烦

NPN和PNP交替使用的好处

1.2 场效应管工作原理及应用电路

Section24

了解FET的定义和分类和管脚,对FET压控有了了解

Section25

了解JFET,但是我决定不去认真学他,因为MOSFET更重要免得记混

但是有几个想法还是很好的,比如转移特性曲线和输出伏安特性曲线其实是冗余的

Section26

学习了MOSFET,知道了几个伏安特性的关键,开启电压UGSTN,转移特性曲线的数学表达式,可变电阻区和恒流区的分界线,知道如何去判断Mos的工作状态

Section27

对FET静态电路做了了解,知道了四电阻对于稳定辅助维持静态工作点的好处学习关于MOSFET的静态分析

Section28

了解MOSFET的微变等效模型,尤其是gm的来源是iD对vGS做偏导

Section29

学习了MOSFET的动态电路,主要是先算静态,再算gm,再画小信号,再算Aui,Ri,Ro

2.1 晶体管其它应用电路

Section41-Section45开阔眼界,不要求读懂

Section30

首先了解Au~URC/UT,与RC上的压降关系较大,于是用恒流源代替RC可以大幅提高电压增益,所谓恒流源负载,静态电阻小,动态电阻极大,也就是说不怎么改变静态工作点,却能hold住较大变化的电压

Section31

差分信号,对于差分信号抵消外界电场干扰做了了解

两个共射放大器输出电压差可以消除共模保留差模,但是,它对差模和共模都起到了衰减相同倍数的作用

Section33(important)

学习了差动放大器,跟上面的区别主要是把RE并到一起,从而起到抵消共模促进差模的作用

同时考虑到之间接负载的情况,如果负载直接连的话可以想见它不会影响静态工作点和共模情况,将它分开,找中间的对称地,从而和RC并联化简运算,单向负载会改变静态工作点,从而改变它对差模和共模的A,但是认为其不改变RE的情况.RE仍然可以看作是两个分开的2RE

输入电阻和输出电阻

计算方法:

- 1. 把RE拆分成两个2RE并联
- 2. 计算直流工作点
- 3. 无需画等效电路图,可以直接脑袋里想
- 4. 计算共模,共差增益,计算CMRR

Section34

主要学习了共模抑制比CMRR,了解到用恒流源提高CMRR的方法,学习了怎么算恒流源的输出电阻和知道了它确实非常大的事实,知道了怎么去算一些一般电路

记得去学计算哦~我还是先把Section33的计算学一遍吧qwq

恒流源在RC位置,获得大电压增益,在RE位置,获得小电压增益

学习了电流镜,电流镜本质上是相同的Vgs/Vbe产生相同的电流I,由带短路线的那一只去控制另外一边,其实在BJT中还是有微小的差别的, $i_{\rm OUT}=\beta i_{\rm B2}=\beta i_{\rm B1}=\frac{\beta}{\beta+2}i_{\rm IN}$ However,由于

Early效应的存在,iC与uCE还有关系,所以需要更为复杂的操作

对于BJT电流镜:知道VAF,以及iCo,就可以得到rCE,再知道UCE就能知道实际电流

对于MOSFET电流镜: 使用 $i_{OUT}=K(u_{GS}-U_{GSTH})^2(1+\lambda u_{DS})$ 公式就可以知道实际电流。两边是可以不一样的

图 Section35-6 MOSFET 组成的电流镜

Section36

学习了比例电流镜和Widlar微电流源

比例电流镜就是再加两比例电阻构成了新的伏安特性曲线

图 Section36-2 MOSFET 组成的浮纳型比例电流镜工作原理图解

Widlar电流源是用小电阻实现一些输出电阻

记两个公式:

BJT
$$R_E = \frac{U_T}{i_{OUT}} \times \ln\left(\frac{i_{IN}}{i_{OUT}}\right)$$

$$R_S = \frac{\sqrt{\frac{i_{IN}}{K}} - \sqrt{\frac{i_{OUT}}{K}}}{i_{OUT}}$$

也可以用图解法来想,会简单一些

Section37

学习了Wilson Current Mirror,威尔逊电流镜,其主要是做到了降低Uce,减少Early效应,同时使输入输出电流比更接近于1

图 Section 37-2 4 晶体管威尔逊电流镜

顺从电压和输出阻抗, 没看懂也没认真看

Section39

学习了恒流源, 主要是简易恒流源

图 Section39-1 简易恒流源

科普了一些有关模拟开关的知识

Section41

晶体管是组成集成电路的基础:晶体管组成运放,晶体管组成数字电路基础单元

Section42

扩流电路

Section43

超高频放大电路

Section44

负载开关

Section45

晶体管产品

达林顿管等等

2.2 晶体管放大电路的频率响应

Section46

元件仅在高频时有有意义的较小并联电容串联电感有了更深认识 了解增益大小相位图

Section47

学习RC 低通高通

学习了复杂频率分析,对于频率如何分析有了了解,尤其是独立性原理,学习了高中低频,低通高通的定义等

Section49

学习高通低通串并联形式如何得到,记得有一个K

Section50 (important)

学习了晶体管放大电路的非杂散频率响应,这个挺难的qwq,主要是低频和高频,对于BJT算法还稍微简单一些,对于MOS真的好难qwq(因为不能直接想了,要用前后的Av来做),一定要先画小信号模型,再来画几个方框,分别来想,尤其是中间的控制部分,要仔细思考qwq,而且是用了那个min(fH串联)max(fL并联)的思想呢

Section51 晶体管高频等效模型

单纯的学习了晶体管高频等效模型,主要是Cb'e Cb'c

Section52

学习了共射级电路的高频响应,尤其是密勒效应,把跨接在输入输出的电容Cb`c等效成输入输出上两个电阻,输入上乘A0+1,输出上1倍

如果rbe<<rbb′ β或者Rs较大时,fH1起决定性作用

图 Section52-2 密勒等效后的动态电路

学习了共基极放大电路的高频响应和共集电集放大电路的高频响应,

图 Section53-2 输入和输出独立回路等效电路

决定共基极电路上限频率的主要是输出回路参数;一是内部的Cb'c.二是外部电阻RC,与输入端参数选择几乎无关

图 Section53-3 共集电极放大电路动态等效电路

学习了如何读数晶体管数据手册,尤其是了解了特征频率fT

上述所有放大电路,一是开环的,二是分立电路,当电路功能复杂,需要大量分立元器件时,体积大,设计复杂,能耗大成本高

3.1 理想运放和负反馈电路

Section 56

学习理想运放

A大

输入阻抗无穷大

输出阻抗为0

uo=A(u+-u-)

Section57

理想运放通过外部合适的电阻连接(负反馈)可以实现指定的电压放大倍数

3.2 负反馈理论

Section58

了解反馈的原理,尤其是通过生活中的例子更好理解了反馈

Section59

学习了怎么通过环路极性法判断正反馈和负反馈

Section60

学习了负反馈放大电路的方框图分析法

输入阻抗无穷大

输出阻抗为0

图 Section60-1 方框图

同时学习如何求解F和M

Section61

学习用方框图求解电路,注意一定要弄清楚输入和输出分别是什么

Section62

首先记住C=1+AF这个数字,及其常用,C是我定义的一个符号,方便书写而已

增益稳定性提高,改变比例为原来的C^-1

上限截止频率提高C倍,下限截止频率为C^-1倍

串联输入电阻提高C倍,并联输入电阻降低

学习如何计算负反馈输出电阻,牢记去掉负载电阻,把内部源置零,在输出端认为加激励u计算i

Section63

了解失真度

3.3 负反馈放大电路分析方法

方框图法,虚短虚断法,大运放法,环路方程法

Section64

理解虚短的来历和运放的平衡过程,知道延迟时间和压摆率的概念

Section65

学习了虚短虚断法,看了特别特别多的例子,给我一种感觉,就是真的好多啊qwq,基本上有负反馈构成或者负反馈大于正反馈就可以使用虚短虚断法(如果不考虑截止电压情况下)

又学习了采集电流的方法,采样电阻高测法和低测法,两者有利有弊

大运放法,遇到一种玄学方法,主要针对的是多级高增益放大电路和反馈网络的集合,重点是高增益本身不重要了,只需要搞清楚它的反馈就能弄懂状态,把其中的高增益放大电路用一个大运放代替,从而化简其中的复杂电路,简化分析

Section67

学习了环路方程法,换句话说就是在小信号等效模型中使用结点/网孔方程 学习了电流反馈型运算放大器,CFA,其与VFA不同,不同点不仔细再说了

3.4 实际运算放大器

Section68

学习了运放内部电路的设计,学习如何用晶体管做运放

需要学习晶体管的推挽

Section69

了解了运放的内部结构

图 Section 69-4 普通运放内部框图

Section 70

学习了很多运放的关键参数

- 输入失调电压
- 输入偏置电流
- 输入失调电流

此三项会影响输出失调电压

因此,本书认为,降低输出失调电压的核心在于以下三点:选择输入失调电压 V_{OS} 小的芯片;选择输入偏置电流 I_{OS} 小的芯片;选择输入偏置电流 I_{OS} 小的芯片;选择小的外部电阻。

• 等效输入失调电压

- 输入电压范围
- 输出电压范围
- 共模抑制比
- 开环电压增益
- 压摆率
- 增益带宽积GBW, 开环增益上指定频率处增益和频率值乘积
- 单位增益带宽积UGBW
- -3dB带宽 (闭环增益带宽) fHf
- 满功率带宽
- 至稳时间
- 相位裕度,φm和增益裕度
- 电源电压抑制比
- 热阻

典型值和最大值

Section71

噪声,略看,反正没看懂

Section72

跳过它,全差分

Section73

设计电路,暂且跳过,学了更深的再回来看

4.1运放电路频率特性

Section74

$$\dot{A}_{uo}(f) = -j \times A_{uom} \times \frac{f_H}{f} = -j \times \frac{GBW}{f}$$

- 闭环增益带宽fHf
- 闭环增益ydB平坦带宽

分析负反馈放大电路的稳定性

当增加电容时会产生相位差, 当反相时变成正反馈, 自激振荡

Section76

非线性失真

线性失真

Section77

频率特性的分析方法

4.2 滤波器概述

Section78

学习了滤波器的一些知识

滤波器有有源滤波器和无源滤波器

对模拟滤波器的传函和阶数有了了解

Section79

各种计算,一阶滤波器,就是在复频域上正常去算就好了

Section80

思考一些有关运放构成滤波器的一些东西

Section81-83

这个等我学了书写点题再回过头来看,直接看没什么感触

5.3 比较器

Section112

学习运放实现的比较器

Section113

集成比较器, 反正我没看

5.4 功率放大电路

Section115

功放电路的功率和效率

Section116

讲了甲类运放,失真小,效率低,始终处于放大区

Section117

学习乙类运放, 主要是推挽输出, 学习甲乙类运放, 相当于是抵消那个交越失真

Section118

讲了D类运放, PWM调制控制

5.5 测量系统前端电路

Section119

图 Section119-5:三运放仪表放大器内部简图

学习有关仪表放大器的知识

Section120

学习仪表放大器的注意事项

仪表放大器输入端不能承载高共模电压 (失效图)

有合适的输入端直流通路

跳

Section122

跳

Section123 (maybe important For STIers)

关于电阻选型的一些东西

其实没讲什么, 只是冰山一角罢了

6.1 基于蓄积翻转思想的波形产生电路

Section132

方波发生器, 迟滞比较器+阻容充电电路

图 Section132-2 方波发生器

图 Section132-3 方波发生器关键点波形

对于蓄积翻转也有了理解

Section133

学习了三种方波三角波发生器

 u_{O1} u_{O1} u_{O1} u_{O2}

图 Section133-1 方波三角波发生器一

图 Section133-2 方波三角波发生器一关键点波形

图 Section133-3 方波三角波发生器二

图 Section133-4 方波三角波发生器二关键点波形

图 Section133-5 方波三角波发生器三

学习独立可调的方波三角波发生器

图 Section134-3 独立改变占空比电路

图 Section134-4 独立改变占空比电路关键点波形

图 Section134-5 可独立调节频率、占空比的电路

图 Section134-6 独立调节幅度和直流偏移量电路

再加一路

Section135

图 Section135-1 一种压控振荡器 (方波)

6.2 基于自激振荡的正弦波发生器

Section136

学习了自激振荡产生正弦波的原理

- 相位条件
- 幅度条件
- 环路条件
- 种子条件

稳幅电路

主要学习了文氏电桥原理和自激振荡电路

图 Section137-1 文氏电桥自激振荡电路原理

图 Section137-2 文氏电桥自激振荡电路的稳幅

选频网络的增益表达式为:

$$\dot{A}_{\text{选频}} = \frac{\dot{u}_+}{\dot{u}_0} = \frac{R//\frac{1}{j\omega C}}{R + \frac{1}{j\omega C} + R//\frac{1}{j\omega C}} = \frac{1}{3 + j(\omega RC - \frac{1}{\omega RC})}$$

Section138

LC正弦波发生器

忽略此章

Section139

晶体振荡器-压电效应

6.4 线性稳压电路

Section143

学习了线性稳压电源的结构

图 Section143-1 线性稳压电源结构

图 Section144-2 串联型稳压电路的分块

图 Section144-4 串联型稳压电路的限流保护

忽略

感动,终于把我觉得需要看的看完了

前面看的认真,后面更草率一些,因为后面的更多是应用,而我对原理看的更重视一些那么就可以开始做题了嘻嘻嘻,做到不会的再对着教材和新概念模拟电路学习对着看