

Aula 02:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

PCS-2302 / PCS-2024 Lab. de Fundamentos de Eng. de Computação

Aula 02

Exercícios Turma 4

Professores:

Marcos A. Simplício Junior Paulo Sergio Muniz Silva

»PCS

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 02:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Exercícios

• Vamos desenvolver algumas primitivas para a biblioteca básica do simulador MVN na "linguagem de montagem" do simulador MVN, na forma de sub-rotinas

Objetivos:

- Explorar os conceitos discutidos na aula anterior
- Exercitar a linguagem de montagem apresentada nesta aula
- Criar rotinas que serão usadas em aulas futuras desta disciplina
- Para cada sub-rotina, construa um programa "main" correspondente para testá-la

Aula 02:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Exercícios (1)

TYGXXA02E01.asm (Entrega obrigatória)

PACK: Compõe uma word a partir de seus bytes. O resultado está no acumulador.

Parâmetros: os dois endereços que contêm os bytes. **Retorno (acumulador)**: a palavra.

 Se os endereços que contêm os bytes (valores binários) forem denotados por B1 e B2, sendo: B1 = 00XY e B2 = 00ZT, a word resultante será XYZT (valor binário).

Endereço de início do programa principal: 0000 Endereço das words de entrada: 0002 e 0004 Endereco da word de saída: 0006

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 02:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Exercícios (2)

TYGXXA02E02.asm (Entrega obrigatória)

-UNPACK: Extrai os bytes de uma word contida no acumulador colocando-os em dois endereços da memória. Parâmetros: os dois endereços em que os bytes serão armazenados.

Retorno (acumulador): não.

 Se a word for denotada por XYZT (valores binários) e os endereços que conterão seus bytes forem denotados por B1 e B2, devemos ter:
 B1 = 00XY e B2 = 00ZT

Endereço de início do programa principal: 0000

Endereço da word de entrada: 0002

Endereço das words de saída: 0004 e 0006

Aula 02:

Introdução Mág. von Neumann

Autores:

Anna H. R. Costa João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Exercícios (3)

TYGXXA02E03.asm (Entrega obrigatória)

MEMCPY: Copia uma sequência de tamanho arbitrário de bytes da memória de uma posição em outra. Retorna 0000 em casô de sucesso e FFFF em caso de erro (ex.: endereço de destino inválido). Parâmetros: o número de caracteres a ser copiado, o endereço da sequência de origem e o endereço da sequência de destino. Retorno (acumulador): 0000 em caso de sucesso; FFFF caso contrário.

Endereço de início do programa principal: 0000 Endereço do número de bytes a ser copiado: 0002 Endereço inicial da sequência de origem: 0004 Endereço inicial da sequência de destino: 0006

Endereço reservado para sequências de origem e destino: 0008..0028

Laboratório de

Aula 02:

Introdução Máq. von Neumann

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Exercícios (4a)

TYGXXA02E04.asm (Entrega opcional)

STRCMP: Compara duas strings (sequências de caracteres), retornando o tamanho do prefixo em comum entre elas, ou seja, o número de caracteres mais à esquerda que são idênticos em ambas, sem contar o indicador de final de string.

Parâmetros: os endereço da primeira e da segunda strings. Retorno (acumulador): o tamanho do prefixo em comum.

- Uma string segue a seguinte convenção: seu final é indicado por uma word que denota o valor nulo – seus bytes têm valor 0 (binário).
- Duas situações podem ocorrer: a string tem um número par ou um número ímpar de caracteres. Usaremos a seguinte convenção:

Número par: "abcd"

61 62 63 64 00 00

Número ímpar: "abc" 61 62 63 00 00 00

Aula 02:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Exercícios (4b)

TYGXXA02E04.asm (Entrega opcional)

Para efeitos de teste, considere que as strings têm até 16 caracteres (8 words) cada.

Endereço de início do programa principal: 0000

Endereço da word de saída: 0002 Endereço da primeira string: 0004 Endereço da segunda string: 0014

Laboratório de

Aula 02:

Introdução Máq. von Neumann

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Exercícios: observações

Entrega:

- Em papel (**opcional**): solução em pseudo-linguagem de alto nível (ex.: similar a C) ou fluxograma.
- Código fonte (obrigatório) devidamente comentado.

Dicas:

- Planejar a divisão de tarefas nas duplas: atenção para o
- Para números positivos e negativos em complemento de 1:
 - Multiplicar por 2 equivale a fazer um deslocamento para a **esquerda**;
 - Dividir por 2 equivale a fazer um deslocamento para a direita, carregando o bit de sinal.

Aula 02:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Critério de correção

- 1. Programas com os **nomes** pedidos e bem **comentados**
- 2. Respeitou os endereços de memória pedidos
- 3. Executou corretamente os seguintes testes:

Teste	Entrada PACK, Saída UNPACK	Entrada UNPACK, Saída PACK			
E1_1, E2_1	/0012, /0034	/1234			
E1_2, E2_2	/007F, /00FF	/7FFF			
E1_3, E2_3	/0080, /0000	/8000			
E1_4, E2_4	/0080, /0001	/8001			
E1_5, E2_5	/00FA, /00FF	/FAFF			
E1_6, E2_6	/00FA, /0010	/FA10			

PCS 2302/2024 Laboratório de Fundamentos da Eng.de Computação

Aula 02:

Introdução Máq. von Neumann

Autores

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Critério de correção

Teste	Entrada	Saída			
E3_1	/0003, /0008, /0010:				
	0008: {/0001, /0002, /0003, /0004},	0010: {/0001, /0002, /0003, /FFFF}			
=	0010: {/FFFF, /FFFF, /FFFF, /FFFF}				
E3_2	/0002, /0008, /0012:				
	0008: {/0001, /0002, /0003, /0004},	0010: {/FFFF, /0001, /0002, /FFFF}			
	0010: {/FFFF, /FFFF, /FFFF, /FFFF}				
E3_3	/0000:				
	0008: {/0001, /0002, /0003, /0004},	0010: {/FFFF, /FFFF, /FFFF, /FFFF}			
	0010: {/FFFF, /FFFF, /FFFF, /FFFF}				
E4_1	{'va, 'ic, 'om, 'fe, /0000}	0008			
	{'va, 'ic, 'om, 'fe, /0000}				
E4 2	{'va, 'ic, 'om, /6665, /0000}	0007			
_	{'va, 'ic, 'om, /6600, /0000}				
E4 3	{'va, 'ic, 'om, 'fe, /0000}	0005			
	{'va, 'ic, 'oa, 'fe, /0000}				

	Tabela de caracteres ASCII (7 bits. Ex.: "K" = 4b)									
		0	1	2	3	4	5	6	7	
DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E SISTEMAS DIGITAIS	0	NUL		SP	0	@	P	`	p	
WPC3	1			!	1	A	Q	a	q	
PCS 2302/2024 Laboratório de	2			и	2	В	R	b	r	
Fundamentos da Eng.de Computação	3			#	3	С	S	C	s	
	4			\$	4	D	T	d	t	
	5			%	5	E	υ	е	u	
	6			&	6	F	v	f	v	
Aula 02:	7	BEL			7	G	W	g	w	
Introdução Máq. von Neumann	8			(8	Н	х	h	×	
Autores:	9)	9	I	Y	i	У	
Anna H. R. Costa Jaime S. Sichman	а	LF		*	:	J	Z	j	z	
João José Neto Paulo S. Muniz Silva	b		ESC	+	;	K]	k	{	
Ricardo L. A. Rocha	С			,	<	L	\	1	1	
Reestruturação: Paulo S. Muniz Silva	d	CR		_	=	М	1	m	}	
v.1.0 ago. 2012	е				>	N	^	n	~	
12	f			/	?	0	_	0	DEL	

Aula 02:

Introdução Máq. von Neumann

Autores:

Anna H. R. Costa Jaime S. Sichman João José Neto Paulo S. Muniz Silva Ricardo L. A. Rocha

Reestruturação: Paulo S. Muniz Silva

v.1.0 ago. 2012

Lista de Comandos

- Para a execução do montador

 - java -cp MLR.jar montador.MvnAsm [<arquivo asm>]
 Exemplo: java -cp MLR.jar montador.MvnAsm test.asm
- Para a execução da MVN
 - java -jar mvn.jar
 - Obs.: Se houver problemas com caracteres especiais, use:
 - java -Dfile.encoding=cp850 -jar mvn.jar