Cryopreservation of labyrinthulomycetes in trehalose

Jackie Collier

Abstract

This method adapted from instructions provided by Daiske Honda, Konan University.

Citation: Jackie Collier Cryopreservation of labyrinthulomycetes in trehalose. protocols.io

dx.doi.org/10.17504/protocols.io.pgtdjwn

Published: 16 May 2018

Protocol

Prepare cryopreservation solution

Step 1.

mix

20% glycerol

10% trehalose

in 35ppt artifical seawater

Autoclave

Grow up cells

Step 2.

For Aurantiochytrium and Schizochytrium, we've grown cultures in 790By+ (or 1/2 790By+) to latelog or early stationary phase.

For Oblongichytrium, we've grown cells in GPY to late-log or early stationary phase.

NOTES

Jackie Collier 14 Apr 2018

We have not experimented with how growth phases affects cryopreservation success with these strains.

We are still testing Aplanochytrium and Labyrinthula.

Mix cells with cryopreservant

Step 3.

Mix gently 1 volume of cell culture with 1 volume cryopreservant solution

(final concentration 10% glycerol, 5% trehalose)

We usually mix 0.5 ml culture with 0.5 cryo solution in 2 ml cryovials

Slowly freeze cells

Step 4.

Place cyrovials in Mr Frosty (filled with isopropanol as instructed)

Place Mr Frosty in -80 freezer overnight

Long-term storage

Step 5.

Transfer cryovials to a -80 freezer for storage

To revive cells

Step 6.

Thaw at 30C for 3-5 min, until just melted

Pour into 10 ml growth medium (such as 790)

Return to standard growth conditions

NOTES

Jackie Collier 14 Apr 2018

Sometimes cultures growth is evident the next day; sometimes it takes nearly a week.