MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2008 SOLUTION KEY

Round 3

A)
$$\frac{1}{\sin 2\theta} + \frac{\cos 2\theta}{\sin 2\theta} = \frac{1 + \cos 2\theta}{\sin 2\theta} = \frac{1 + 2\cos^2 \theta - 1}{2\sin \theta \cos \theta} = \frac{\cos \theta}{\sin \theta} = \cot(\theta) = 1$$

$$\Rightarrow \theta = \frac{45^\circ, 225^\circ}{\sin 2\theta}$$

- B) Using the double angle formula, $\sin(x) = 1 2\cos^2 40^\circ = -(2\cos^2 40^\circ 1) = -\cos(80^\circ) = -\sin(10^\circ)$ The related values of 10° in quadrants II, III and IV are 170° , 190° and 350° . Since $\sin(x)$ is negative only in quadrants III and IV, $x = 190^\circ$ or 350° .
- C) Let $A = Arc\cos(-n/11)$ and $B = Arc\tan(-1/(2\sqrt{6}))$. Then $\pi/2 < A < \pi$ (quadrant 2) and $-\pi/2 < B < 0$ (quadrant 4)
 and $\sin(A + B) = \sin A \cos B + \sin B \cos A = \frac{\sqrt{121 - n^2}}{11} \cdot \frac{2\sqrt{6}}{5} + \frac{-1}{5} \cdot \frac{-n}{11} = \frac{2\sqrt{6}\sqrt{121 - n^2} + n}{55}$ Thus, $2\sqrt{6}\sqrt{121 - n^2} + n = 53$ and the radicand $121 - n^2$ must be 6 times a perfect square Additionally, since n/11 is a cosine value, the only possible integer values of n are 1 ... 11. Only n = 5 satisfies both conditions ($2\sqrt{6}\sqrt{96} + 5 = 2 \cdot 6 \cdot 4 + 5 = 53$).