

Projet: Calcul Scientifique

Résolution de l'équation d'advection d'un scalaire

Zakaria BOUALI zakaria.bouali@isae-ensma.fr

Objectif du projet

- Etude théorique d'un ensemble de schémas numériques (Discrétisation, analyse de stabilité).
- Résolution numérique de l'EDP d'advection d'un scalaire en utilisant un ensemble de schémas numériques.
- Langages de programmation : Matlab, Python ou Fortran
- Analyse des résultats obtenus.
- Mise en œuvre des connaissances acquises en cours à travers un problème applicatif.

Choix d'EDP - Equation d'advection

La quantité $\Phi(x, t)$ est advectée à la vitesse constante a.

$$\frac{\partial \Phi}{\partial t} + a \frac{\partial \Phi}{\partial x} = 0$$

- Caractéristiques :
 - □ La plus simple de toutes les EDPs (nombre de variables indépendants, ordre de l'EDP).
 - □ Figure parmi les EDPs les plus difficiles à résoudre numériquement.

Schémas numériques

- Premier ordre, décentré à gauche
- Premier ordre, décentré à droite
- Second ordre, décentré à gauche
- Second ordre, centré
- Mac Cormack
- Lax-Friedrichs
- Warming Beam amont

Diffusion - Dispersion

Travail demandé

Schémas explicites

	PRECISION	STABILITE	CONSISTANCE	DIFFUSION	DISPERSION
Schéma 1	O(Δt, Δx²)	OUI si CFL	OUI	FORTE	FAIBLE
Schéma 2					
Schéma 3					
Schéma 4					

Schémas implicites (1 ou 2 schémas)

Equation d'advection-diffusion

 Résolution numérique de l'équation d'advection d'un scalaire avec un terme de diffusion.

$$\frac{\partial \Phi}{\partial t} + a \frac{\partial \Phi}{\partial x} = \nu \frac{\partial^2 \Phi}{\partial x^2}$$

Conditions aux limites périodiques

Déroulement et évaluation

■ Fonctionnement :

 Vous travaillez en binôme durant 6 séances de 3 heures dont 4 séances seront encadrées (1-2-3 ou 4-5)

Evaluation et délivrable :

□ appréciation continue, un exposé de votre travail lors de la cinquième séance, un rapport résumant vos résultats (10 pages au maximum plus annexes si besoin)

