Company-X Assessment - Monica Iyer Monica Iyer

the best predictors of retention, and offer suggestions to operationalize these insights and help Company-X!

02/01/2021

Aim

Analyze the data Company-X has an interactive design platform, where designers can make prototypes for online products that can be reviewed and accessed by different account holders. We are given two datasets - users data and their corresponding events. Our aim is to predict the number of users that will be retained in the first month of activity. For now, lets go ahead and convert the data into dataframes.

To understand behaviours that are most predictive of a new user starting and staying active on Product-X. The Growth team at Company-X is interested in month one retention, defined as whether a user remains active after signup. We will use the data sets to understand what factors are

	_	SIGNUP_DATE <chr></chr>	SIGNUP_CHANNEL <chr></chr>	EMAIL_TYPE <chr></chr>	JOB_TITLE <chr></chr>	COUNTRY <chr></chr>	M1_RETAINED <int></int>
1	7.81805e+17	2030-11-28 0:00	direct	Business	designer	Ukraine	1
2	7.75628e+17	2030-11-11 0:00	direct	Personal	other	China	1
3	7.86972e+17	2030-12-12 0:00	search	Business	other	Brazil	1
4	7.77574e+17	2030-11-16 0:00	direct	Personal	developer	Romania	0
5	7.91957e+17	2030-12-26 0:00	invites	Business	designer	Malaysia	1
6	7.74589e+17	2030-11-08 0:00	search	Personal	designer	Russia	1
6 row	'S						
DI	ECEIVED AT		LISER ID EILE	VEV		EV/EN	NT NAME

29772

NUMBER_OF_EVENTS_BY_JOB

512608

368173

182258

87780

DIFF

<int>

0

0

0

0

0

0

5 rows			
RECEIVED_AT <chr></chr>	_	FILE_KEY <chr></chr>	EVENT_NAME <chr></chr>
1 2030-11-17 14:51	7.76508e+17	4gyJ8HUHkwM0vfkrgBOo3G	file_edited
2 2030-12-13 19:52	7.86575e+17	XAUWxpYSQ1mFMwJzY43zKq	file_edited
3 2030-12-16 19:21	7.88480e+17	u0FflGyN4GerN0EHxuh7u8	file_edited
4 2030-11-19 13:53	7.70913e+17	ljp2t05FDJr5eJhuRjCq6l	file_edited
5 2030-12-16 3:37	7.78333e+17	35DJnOUjZp0p2kOzZEtYt9	file_edited
6 2030-12-05 15:25	7.79314e+17	KIH9hWCz9bGg3TRw9ux9PI	file_edited
rows			

#Result 1

file_created

JOB_TITLE

<chr>

designer

developer

project-manager

ON U.USER_ID=E2.USER_ID')

Preprocess the data

ts irrelevant

Visualization

final_user_df %>%

700

650

600

de from any conversion

numeric_cat_df<- as.data.frame(numeric_cat)</pre> cont_df <- as.data.frame(final_user_df_cont)</pre>

colnames(final_user_df)[7] <- "COUNTRY"</pre>

Feature Selection

step <- stepAIC(full, trace=FALSE)</pre>

#full model

step\$anova

- JOB_TITLE

- COUNTRY

#GLM Model

#Evaluation Metrics

rpart.plot(model_tree)

#Evaluation Metrics

0.17 71%

#Evaluation Metrics

Random Forest

plot(model_forest)

0.7

9.0

5 o.

Error

Logistic Regression

3 rows

Step

<chr>

knowledge base of customer retention, which may not appear in the ANOVA analysis.

full <- glm(M1_RETAINED ~ ., family='binomial', data=train_df)</pre>

#stepwise, forward and backward AIC and anova checks

Df

NA

156

data = train_df,

prob_glm <- as.factor(ifelse(pred_glm>0.5,1,0))

recall_glm <- result_glm\$byClass['Sensitivity']</pre>

f1_glm <- result_glm\$byClass['F1']</pre>

precision_glm <- result_glm\$byClass['Pos Pred Value']</pre>

<qpl>

exclude_df <- as.data.frame(final_user_df_exclude)</pre>

numerical factors

filter(M1_RETAINED == 1) %>%

all the dates fall in 2030 and the day of the month is irrelevant, and remove USER_ID.

#remove USER_ID - does not add any useful information to the model

retain values m1_retained_test from the test set.We're ready to build our model!

final_user_df_cont <- final_user_df\$COUNTRY # continuous variables</pre>

#bind all dataframes after conversions to the final dataframe final_user_df <- cbind(numeric_cat_df,exclude_df,cont_df)</pre>

We can Visualize the first month retention over the year 2030.

#Create a final dataframe, that we can divide into training and test sets

final_user_df[is.na(final_user_df)] <- 0 #replace NAs in user activity with 0</pre>

#This dataframe contains the number of events corresponding to each user in users_df

other

#lets explore the data!

ORDER BY 2 DESC')

sqldf('SELECT JOB_TITLE, COUNT(JOB_TITLE) NUMBER_OF_USERS_RETAINED FROM users_df WHERE M1_RETAINED=1 GROUP BY JOB_TITLE

The data doesn't seem to require extensive cleaning. I haven't found null values in key columns and the only redundant value would be FILE_KEY

in events_data which will not be considered in this analysis, or prediction modelling for that matter.

JOB_TITLE	NUMBER_OF_USERS_RETAINE
<chr></chr>	<in< th=""></in<>
developer	20
designer	18
other	3
project-manager	4
marketer	5

project manager	100
marketer	353
5 rows	
#Result 2	
sqldf('SELECT EVENT_NAME, COUNT(EVENT_NAME) EVENTS_COUNT FROM events_df	
GROUP BY EVENT_NAME	
ORDER BY 2 DESC')	
EVENT_NAME	EVENTS_COUNT
<chr></chr>	<int></int>
file_opened	759631
file_edited	154825
prototype_viewed	53783

comment_created		1803
rows		
‡Result 3		
sqldf('SELECT U.JOB_TITLE,E.EVENT_NAME	HIGHEST_USED_EVENT	
FROM users_df U INNER JOIN		
(SELECT USER_ID, EVENT_NAME, CO	UNT(EVENT_NAME) EVENTS_COUNT	
FROM events_df		
GROUP BY EVENT_NAME) E		
ON U.USER_ID=E.USER_ID		
GROUP BY U.JOB_TITLE		
ORDER BY E.EVENTS_COUNT')		
JOB_TITLE	HIGHEST_USED_EVENT	
	111011201_0025_242111	

developer	comment_created
project-manager	file_created
designer	file_edited
other	file_opened
4 rows	
#Result 4	
sqldf('SELECT U.JOB_TITLE, SUM(E.EVENTS_COUNT) NUMBER_OF_EVENTS_BY_JOB
sqldf('SELECT U.JOB_TITLE, SUM(FROM users_df U INNER JO	IN
sqldf('SELECT U.JOB_TITLE, SUM(FROM users_df U INNER JO (SELECT USER_ID, COUNT(E	IN
sqldf('SELECT U.JOB_TITLE, SUM(FROM users_df U INNER JO (SELECT USER_ID, COUNT(E FROM events_df	IN
sqldf('SELECT U.JOB_TITLE, SUM(FROM users_df U INNER JO (SELECT USER_ID, COUNT(E	IN
sqldf('SELECT U.JOB_TITLE, SUM(FROM users_df U INNER JO (SELECT USER_ID, COUNT(E FROM events_df GROUP BY USER_ID) E	IN

marketer		64008
5 rows		
temn df <- data.fram	(sqldf('SELECT U.USER_ID,E.NUMBER_OF_EVENTS	
FROM users df		
-	COUNT(EVENT_NAME) NUMBER_OF_EVENTS	
FROM events_df		
GROUP BY USER_	O) E	
ON U.USER_ID=E		
. ,	R_ID, E1.FIRST_DATE - E2.SECOND_DATE DIFF	
FROM users_df U		
•	SER_ID, MIN(RECEIVED_AT) FIRST_DATE FROM events_df WHERE EVENT_NAME="file_opened"	
GROUP BY USER	ID ORDER BY RECEIVED_AT) E1	
ON U.USER_ID=	L.USER_ID	
INNER JOIN (SELECT	SER_ID, MIN(RECEIVED_AT) SECOND_DATE FROM events_df WHERE RECEIVED_AT NOT IN (SELECT	MIN(REC
EIVED AT) FROM event	df WHERE EVENT NAME="file opened") GROUP BY user id ORDER BY RECEIVED AT) E2	

USER_ID

6.61881e+17

6.61919e+17

6.61922e+17

6.61937e+17

6.61976e+17

6.61746e+17

<qpl>

accuracy will not be the best choice in this case since its a poor measure of imbalanced data, so it will be best to focus on both recall and

Create a final dataframe, that can be split into train and test sets. Replace NAs (if any) with zero, change the SIGNUP_DATE to just the month since

final_user_df <- sqldf('SELECT DISTINCT * FROM users_df U inner join temp_df T using (USER_ID) where U.USER_ID=T.

final_user_df <- final_user_df[, !(names(final_user_df) %in% c("USER_ID"))] #remove USER_ID from the data since i</pre>

final_user_df\$SIGNUP_DATE <- format(as.Date(final_user_df\$SIGNUP_DATE), "%m") #retain only month in date</pre>

group_by(SIGNUP_DATE) %>% summarise(n=n()) %>% plot_ly(x= ~SIGNUP_DATE, y = ~n, type='scatter', mode='lines')

550 \Box 450 400 350

Separate the categorical and continuous variables from variables that don't require any further pre-processing. Convert categorical variables to numeric factors and join all the variable back into the final_user_df . Once that's done, split into train and test sets and extract the test month 1

final_user_df_exclude <- final_user_df[, c('SIGNUP_DATE', 'NUMBER_OF_EVENTS', 'M1_RETAINED')] #variables to exclu</pre>

numeric_cat = apply(final_user_df_cat, 2, function(x) as.numeric(as.factor(x))) #convert categorical variables to

final_user_df_cat <- final_user_df[,c('SIGNUP_CHANNEL', 'EMAIL_TYPE','JOB_TITLE')] #categorical variables</pre>

Use StepAIC to assess which features are most valuable in building the model. Also make sure to include variables that are relevant to the

Deviance

0.06304798

310.96258374

model_glm <- glm(M1_RETAINED ~ SIGNUP_CHANNEL + EMAIL_TYPE + NUMBER_OF_EVENTS,</pre>

family = binomial(link='logit'))

pred_glm <- predict(model_glm, newdata=test_df, type="response")</pre>

result_glm <- confusionMatrix(data=prob_glm, m1_retained_test)</pre>

pred_tree <- predict(model_tree, newdata=test_df, type="class")</pre> result_tree <- confusionMatrix(data=pred_tree, m1_retained_test)</pre>

precision_tree <- result_tree\$byClass['Pos Pred Value']</pre>

data=train_df, method="class",

recall_tree <- result_tree\$byClass['Sensitivity']</pre>

f1_tree <- result_tree\$byClass['F1']</pre>

#Decision tree - variant with job_title

NA

- COUNTRY 156 310.96258374 14633 15596.14 15626.14 3 rows backward <- stepAIC(full, direction="backward", trace=FALSE)</pre> backward\$anova Df Step Deviance Resid. Df Resid. Dev AIC <chr> <qp|> <qpl> <qpl> 14476 15285.11 15629.11 NA NA 0.06304798 14477 15285.18 - JOB_TITLE 15627.18

Resid. Df

<qpl>

14476

14477

14633

AIC

<qpl>

15629.11

15627.18

15626.14

Resid. Dev

15285.11

15285.18

15596.14

Decision Trees #Decision Tree model_tree <- rpart(M1_RETAINED ~ SIGNUP_CHANNEL + EMAIL_TYPE + NUMBER_OF_EVENTS,</pre> data=train_df, method="class", control= rpart.control(xval=10))

model_treevar <- rpart(M1_RETAINED ~ SIGNUP_CHANNEL + EMAIL_TYPE + NUMBER_OF_EVENTS + JOB_TITLE,

0.47 9%

-EMAIL_TYPE >= 3-

model_forest <- randomForest(M1_RETAINED ~ SIGNUP_CHANNEL + EMAIL_TYPE + NUMBER_OF_EVENTS,</pre>

model_forest

data = train_df,

type="classification")

ntree=200,

0.41

pred_treevar<- predict(model_treevar, newdata=test_df, type="class")</pre> result_treevar <- confusionMatrix(data=pred_treevar, m1_retained_test)</pre>

precision_treevar <- result_treevar\$byClass['Pos Pred Value']</pre>

recall_treevar <- result_treevar\$byClass['Sensitivity']</pre>

f1_treevar <- result_treevar\$byClass['F1']</pre>

control= rpart.control(xval=10)) rpart.plot(model_treevar) 0.30 yes - NUMBER_OF_EVENTS < 50 - no -0.61 29% -NUMBER_OF_EVENTS < 83-

0.57

3%

200

pred_forest <- predict(model_forest, newdata=test_df, type='class')</pre> result_forest <- confusionMatrix(data=pred_forest, m1_retained_test)</pre>

precision_forest <- result_forest\$byClass['Pos Pred Value']</pre>

recall_forest <- result_forest\$byClass['Sensitivity']</pre>

f1_forest <- result_forest\$byClass['F1']</pre>

0.7572634

0.8155304

precision_tree

Pos Pred Value

precision_treevar

Pos Pred Value 0.8155304

recall_treevar

Sensitivity ## 0.8782882

0.8434238

0.8457467

f1_treevar

0.8457467

f1_forest

0.8461102

Insights

monitoring behaviour using Google Analytics for the chosen streams.

streams are more likely to use is advantageous in retaining them and diversifying the product line!

F1

f1_tree

400

600

MeanDecreaseGini

800

Evaluation Metrics Precision precision_glm ## Pos Pred Value

1200

1000

precision_forest			
## Pos Pred Value ## 0.816886			
Recall			
recall_glm			
## Sensitivity ## 0.9517079			
recall_tree			
## Sensitivity ## 0.8782882			

recall_forest			
## Sensitivity ## 0.8775029			
F1 Statistic			
f1_glm			
## E1			

Conclusions	
Assessing from the Precision and Recall metrics, its best to choose the Decision Tree Model although the Rando With more time, I would tweak the models with different hyperparameters to see which one in fact performs bette Decision Trees Model.	
Additionally, I made a model model_treevar that used <code>JOB_TITLE</code> as one of the variables to consider even thou through stepwise model selection. Intuitively, it made more sense that a designer is more likely to continue to on vs a marketer or project-designer. This model has slightly better recall than model_tree and similar precision.	

1. It's interesting to note that the SIGNUP_CHANNEL plays an important role in determing whether the customer continues on Company-X after the first month. We can continue to build on the model to find which channels are likely to create customer 'stickiness'. The growth team can determine which marketing channels are valuable investments on financial and creative resources, and invest in analytics through CTRs and

2. EMAIL_TYPE plays a key role in understanding client accounts. Intuitively, Businesses and Personal users are more likely to continue on the platform. Investing in marketing streams that target these specific users and combining that with a focus on building features that these

3. By enhancing the functionality for key and subsidary users of Company-X accounts, we can better retain them. For instance, when including

JOB_TITLE as a variate in model_treevar, we were able to deduce that it is significant to know what role the user plays in their corporation. By creating functionality for project-managers and developers alongside the key user (a designer), Company-X as a platform is enables more collaborative work and retains better in the long run. 4. Using NUMBER_OF_EVENTS turned out to be very useful. Intuitively, a customer who uses Company-X more is more likely to be retained. As mentioned previously, understanding the most used event by JOB_TITLE helps with adding features beneficial to specific use cases. Hence, by improving events/activities that keep customers coming back and fixing those that have not been used as much could help.

Errors and Assumptions When adding NUMBER_OF_EVENTS to final_user_df, I encountered an issue with duplication that was caused during the use of both an inner join and left join. I solved this issue with by using a different SQL query when creating the dataframe, however instead of 18323 users, I was left with **18310** users. I believe this error occurred since R detected duplicate entries of USER_ID in one of the tables that maps to all duplicate values in the other table through inner join or left join. However, the users_data has no duplicate entries on inspecting the CSV. Since this accounts for less than 5% of the total users, I continued with building the predictive model using final_user_df .