Positivity in matroid theory: MaTroCom Minicourse

Christopher Eur

January 9, 2023

In algebraic geometry, "positivity" broadly refers to numerical properties enjoyed by certain classes of vector bundles on projective varieties. In this minicourse, we survey how a similar "positivity" arises in the combinatorics of matroids. We assume some familiarity with polyhedra and an acquaintance with matroids. Statements involving algebraic geometry (toric varieties) are in a different color, which may be skipped.

Notation. Let $E = \{1, ..., n\}$ be a finite set of cardinality n. For a subset $S \subseteq E$, denote by $\mathbf{e}_S = \sum_{i \in S} \mathbf{e}_i$ the sum of standard basis vectors in \mathbb{R}^E . Let $\langle \cdot, \cdot \rangle$ denote the standard inner product. Let $T = (\mathbb{C}^*)^E$ be the torus whose character lattice is \mathbb{Z}^E . A variety is reduced and irreducible.

1 Overview

Let Σ be a unimodular projective fan in \mathbb{R}^E . *Projective* means that Σ is the (inner) normal fan Σ_P of a polytope P in \mathbb{R}^E . We allow dim P < n, so the lineality space

$$\lim(\Sigma) = \{\text{the minimal cone of } \Sigma\} = \{u \in \mathbb{R}^E : \langle u, x \rangle = 0 \ \forall x \in P\}$$

may be nontrivial of dimension ℓ . *Unimodular* means that for any cone $\sigma \in \Sigma$, the *primitive ray vectors* of $\sigma / \operatorname{lin}(\Sigma)$ extends to a \mathbb{Z} -basis of $\mathbb{Z}^E / (\operatorname{lin}(\Sigma) \cap \mathbb{Z}^E)$. Let $\Sigma(d)$ be the set of d-dimensional cones of Σ .

Example 1.1.

Recall the dimension-reversing bijection between the faces of a polytope P and the cones of its normal fan Σ_P given by:

$$\Sigma_P \ni \sigma \leftrightarrow \mathrm{face}_\sigma(P) = \{ p \in P : \langle p, v \rangle = \min_{q \in P} \langle q, v \rangle \} \text{ for any } v \text{ in the relative interior of } \sigma.$$

A lattice polytope Q is a *deformation* of Σ , denoted $Q \in \mathrm{Def}(\Sigma)$, if its normal fan Σ_Q coarsens Σ . For instance, deformations of Σ in Example 1.1 include rectangles, standard simplices, etc.

Let X_{Σ} be the smooth projective toric variety associated to $\Sigma/\ln(\Sigma)$, considered as a T-variety. Recall similarly the bijection between the cones of Σ and the torus-orbits of X_{Σ} . In particular, the

maximal cones correspond to the torus-fixed points of X_{Σ} . A deformation Q of Σ corresponds to the base-point-free T-line bundle \mathcal{L}_Q on X_{Σ} whose complete linear system gives a map $X_{\Sigma} \to \mathbb{P}^{|Q \cap \mathbb{Z}^E|-1}$ induced by the map of tori $t \mapsto (t^{\mathbf{m}})_{\in Q \cap \mathbb{Z}^E}$ [CLS11, Chapter 6].

We will learn about two well-studied rings $K(\Sigma)$ and $A^{\bullet}(\Sigma)$ attached to such Σ . In geometric terms, these are the Grothendieck K-ring of vector bundles and the Chow cohomology ring of the toric variety X_{Σ} . "GKM-varieties" is a good keyword for those wanting more geometric details. By associating to each matroid certain elements in these rings, one gains an insight into combinatorial properties of matroids via geometric methods.

2 K-rings and matroid polytopes

2.1 K-rings, polytope algebras, and "piecewise" Laurent polynomials

We first describe the ring denoted $K_T(\Sigma)$ and then describe $K(\Sigma)$ as its quotient. It has three different descriptions, whose equivalence is a consequence of some major theorems.

Definition 2.1. Let $K_T(\Sigma)$ be the Grothendieck K-ring of T-equivariant vector bundles on X_{Σ} , and let $K(\Sigma)$ be the non-equivariant K-ring. That is,

$$K_T(\Sigma) = \frac{\left\{ \sum_i a_i [\mathcal{E}_i]^T : a_i \in \mathbb{Z}, \; \mathcal{E}_i \text{ a T-equivariant vector bundle on } X_\Sigma \right\}}{\left\langle [\mathcal{E}]^T = [\mathcal{E}']^T + [\mathcal{E}'']^T : \exists \text{ a T-equivariant SES } 0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0 \right\rangle}, \quad \text{and}$$

$$K(\Sigma) = \frac{\left\{ \sum_i a_i [\mathcal{E}_i] : a_i \in \mathbb{Z}, \; \mathcal{E}_i \text{ a vector bundle on } X_\Sigma \right\}}{\left\langle [\mathcal{E}] = [\mathcal{E}'] + [\mathcal{E}''] : \exists \text{ a SES } 0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0 \right\rangle},$$

with the multiplication is given by tensor products.

The natural "forgetting T-equivariance" map $K_T(\Sigma) \to K(\Sigma)$ is a surjection [Mor93, Proposition 3]. This geometrically defined ring has the following combinatorial descriptions. For $\mathbf{m} \in \mathbb{Z}^E$, denote by $\mathbf{T}^{\mathbf{m}}$ the Laurent monomial $T_1^{m_1} \cdots T_n^{m_n} \in \mathbb{Z}[\mathbf{T}^{\pm}] = \mathbb{Z}[T_1^{\pm}, \dots, T_n^{\pm}]$.

Theorem 2.2. The rings $K_T(\Sigma)$ and $K(\Sigma)$ have the following equivalent descriptions:

1. For a polytope $Q \subset \mathbb{R}^E$, let $1_Q : \mathbb{R}^E \to \mathbb{Z}$ be its indicator function given by $1_Q(x) = 1$ if $x \in Q$ and $1_Q(x) = 0$ otherwise. Then, we have by [EHL, Theorem A.10]

$$K_T(\Sigma) \simeq \mathbb{I}(\Sigma) = \text{the subgroup of } \mathbb{Z}^{(\mathbb{R}^E)} \text{ generated by } \{1_Q \mid Q \in \mathrm{Def}(\Sigma)\}, \quad \text{and}$$
 $K(\Sigma) \simeq \overline{\mathbb{I}}(\Sigma) = \mathbb{I}(\Sigma)/\operatorname{transl}(\Sigma)$

where $\operatorname{transl}(\Sigma)$ is the subgroup of $\mathbb{I}(\Sigma)$ generated by $\{1_Q - 1_{Q+u} \mid u \in \mathbb{Z}^m\}$. Multiplication in these rings are given by Minkowski sums of polytopes. Denote by [Q] the class of 1_Q in $\overline{\mathbb{I}}(\Sigma)$. The ring $\overline{\mathbb{I}}(\Sigma)$ is also known as the *polytope algebra* [McM89].

2. For two maximal cones σ and σ' of Σ sharing a wall (i.e. a codimension 1 face), let $\mathbf{m}(\sigma, \sigma')$ be the primitive vector normal to $\sigma \cap \sigma'$. Then, we have by [Nie74, VV03]

$$K_T(\Sigma) \simeq LP(\Sigma) = \left\{ (f_\sigma)_{\sigma \in \Sigma_{\max}} \in \prod_{\sigma \in \Sigma_{\max}} \mathbb{Z}[\mathbf{T}^\pm] \, \middle| \, \begin{array}{l} f_\sigma - f_{\sigma'} \equiv 0 \, \mathrm{mod} \, (1 - \mathbf{T}^{\mathbf{m}(\sigma, \sigma')}) \\ \text{for any } \sigma \text{ and } \sigma' \text{ sharing a wall} \end{array} \right\}, \quad \text{and} \quad K(\Sigma) \simeq \overline{LP}(\Sigma) = LP(\Sigma)/I_K$$

where I_K is the ideal generated by $\{T_i - 1 : i \in E\}$ where T_i here is considered as an element $(f_{\sigma})_{\sigma} \in \prod_{\sigma \in \Sigma_{\max}} \mathbb{Z}[\mathbf{T}^{\pm}]$ by $f_{\sigma} = T_i$ for all σ .

Given $Q \in \mathrm{Def}(\Sigma)$, the claimed isomorphisms are given by $1_Q \mapsto (\mathbf{T}^{-\mathrm{face}_\sigma(Q)})_\sigma \in LP(\Sigma)$ and $1_Q \mapsto [\mathcal{L}_Q] \in K_T(\Sigma)$. The isomorphism $K_T(\Sigma) \simeq LP(\Sigma)$ is also described by $[\mathcal{E}]^T \mapsto \mathrm{Hilb}(\mathcal{E}|_{p_\sigma})_\sigma$, the restriction to the torus-fixed points.

These "K-rings" have distinguished maps to $\mathbb{Z}[\mathbf{T}^{\pm}]$ and \mathbb{Z} . Let $\chi^T: K_T(\Sigma) \to \mathbb{Z}[\mathbf{T}^{\pm}]$ and $\chi: K(\Sigma) \to \mathbb{Z}$ be the sheaf Euler characteristic maps. Combinatorial descriptions of these are:

Theorem 2.3. [CLS11, Ch. 9] For an element $1_Q \in \mathbb{I}(\Sigma)$, under the isomorphism $K_T(\Sigma) \simeq \mathbb{I}(\Sigma)$ we have

$$\chi^T(1_Q) = \sum_{\mathbf{m} \in Q \cap \mathbb{Z}^E} \mathbf{T}^{-\mathbf{m}} \quad \text{and} \quad \chi([Q)]) = |Q \cap \mathbb{Z}^E|.$$

[Bri88, Ish90]For an element in $f \in K_T(\Sigma)$ given by $(f_\sigma)_\sigma \in \prod_{\sigma \in \Sigma_{\max}} \mathbb{Z}[\mathbf{T}^{\pm}]$, we have

$$\chi^T(f) = \sum_{\sigma \in \Sigma_{\max}} \frac{f_{\sigma}}{\prod_{\substack{\mathbf{m} \text{ a primitive ray} \\ \text{generator of } \sigma^{\vee}}}} \quad \text{and} \quad \chi(f) = \chi^T(f)|_{T_1 = \dots = T_n = 1}.$$

2.2 Permutohedral fan and base polytopes of matroids

Let \mathfrak{S}_E be the permutation group of E. The *permutohedron* on E is the polytope

$$\Pi_E = \text{convex hull of } \{w \cdot (0, \dots, n-1) : w \in \mathfrak{S}_E\}.$$

Let the *permutohedral fan* Σ_E be its normal fan in \mathbb{R}^E with lineality space $\mathbb{R}\mathbf{e}_E$. It consists of the cones

$$\mathbb{R}_{\geq 0}\{\mathbf{e}_{S_1},\ldots,\mathbf{e}_{S_k}\}+\mathbb{R}\mathbf{e}_E$$

for $\varnothing \subsetneq S_1 \subsetneq \cdots \subsetneq S_k \subsetneq E$ a nonempty proper chain of subsets of E.

Proposition 2.4. [Pos09, ACEP20] A lattice polytope $Q \subset \mathbb{R}^E$ is a deformation of Σ_E if and only if each edge of Q is parallel to $\mathbf{e}_i - \mathbf{e}_j$ for some $i, j \in E$. Deformations of Σ_E are also known as (integral) generalized permutohedra.

Matroids finally enter into our picture as follows.

Theorem 2.5. [GGMS87] For a collection $\mathcal{B} \subseteq 2^E$ of subsets of E, the polytope

convex hull of
$$\{\mathbf{e}_B : B \in \mathcal{B}\} \subset \mathbb{R}^E$$
.

is a generalized permutohedron if and only if \mathcal{B} is the set of basis of a matroid M on E.

For a matroid M on E, we call the polytope in the theorem the *base polytope* of M, denoted P(M). The theorem implies that the base polytopes of matroids are exactly the generalized permutohedra contained in the unit cube $[0,1]^E$.

Remark 2.6. When a matroid M of rank r has a realization by $L \subseteq \mathbb{C}^E$, that is, a point in the Grassmannian Gr(r; E) with the usual T-action, we have that $\overline{T \cdot L}$ is isomorphic to the toric variety of the base polytope. The line bundle $\mathcal{L}_{P(M)}$ is the pullback of $\mathcal{O}(1)$ on Gr(r; E) along the composition $X_E \to X_{P(M)} \to Gr(r; E)$.

Exercise 2.7. Deduce the greedy algorithm property of matroids from the fact that base polytopes of matroids are generalized permutohedra.

The following notion of *valuativity* is a powerful tool in the study of matroid invariants [AFR10, DF10, AS22, BEST, FS].

Definition 2.8. For $0 \le r \le n$, define the (rank r) valuative group by

 $\operatorname{Val}_r(E) = \text{the subgroup of } \mathbb{I}(\Sigma_E) \text{ generated by } \{1_{P(M)} : M \text{ a matroid on } E \text{ of rank } r\}.$

A function f on the set of matroids on E with values in an abelian is *valuative* if it factors through $\bigoplus_{r=0}^{n} \operatorname{Val}_{r}(E)$.

An element $i \in E$ is a *loop* in a matroid M if i is in no basis of M, or equivalently $P(M) \subset \{x_i = 0\}$. Dually, an element $i \in E$ is a *coloop* if i is in every basis of M, or equivalently $P(M) \subset \{x_i = 1\}$. Let $\operatorname{Val}_r^{\circ}(E)$ be the subgroup of $\operatorname{Val}_r(E)$ generated by the loopless matroids.

Exercise 2.9. Let $E = \{1, 2, 3, 4\}$. Compute that the ranks of the groups $\operatorname{Val}_r^{\circ}(E)$ for $r = 0, \dots, 4$ are 0, 1, 11, 11, 1. Compare this to the h-vector of the simple polytope Π_E .

References

- [ACEP20] Federico Ardila, Federico Castillo, Christopher Eur, and Alexander Postnikov. Coxeter submodular functions and deformations of Coxeter permutahedra. *Adv. Math.*, 365:107039, 2020. 3
- [AFR10] Federico Ardila, Alex Fink, and Felipe Rincón. Valuations for matroid polytope subdivisions. *Canad. J. Math.*, 62(6):1228–1245, 2010. 4
- [AHK18] Karim Adiprasito, June Huh, and Eric Katz. Hodge theory for combinatorial geometries. *Ann. of Math.* (2), 188(2):381–452, 2018. 7
- [AP15] Dave Anderson and Sam Payne. Operational K-theory. Doc. Math., 20:357–399, 2015. 4
- [AS22] Federico Ardila and Mario Sanchez. Valuations and the Hopf Monoid of Generalized Permutahedra. International Mathematics Research Notices, 01 2022. rnab355. 4
- [BEST] Andrew Berget, Christopher Eur, Hunter Spink, and Dennis Tseng. Tautological classes of matroids. arXiv:2103.08021. 4
- [Bri88] Michel Brion. Points entiers dans les polyèdres convexes. *Ann. Sci. École Norm. Sup.* (4), 21(4):653–663, 1988. 3
- [CLS11] David A. Cox, John B. Little, and Henry K. Schenck. *Toric varieties*, volume 124 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2011. 2, 3, 6

- [DF10] Harm Derksen and Alex Fink. Valuative invariants for polymatroids. *Adv. Math.*, 225(4):1840–1892, 2010. 4
- [EHL] Christopher Eur, June Huh, and Matt Larson. Intersection theory of polymatroids. arXiv:2207.10605.
- [EL] Christopher Eur and Matt Larson. Stellahedral geometry of matroids. arXiv:2301.00831. 4
- [ELS] Alex Eur, Christopher Fink, Matt Larson, and Hunter Spink. Signed permutohedra, delta-matroids, and beyond. arXiv:2209.06752. 4
- [FS] Luis Ferroni and Benjamin Schröter. Valuative invariants for large classes of matroids. arXiv:2208.04893. 4
- [FS97] William Fulton and Bernd Sturmfels. Intersection theory on toric varieties. *Topology*, 36(2):335–353, 1997. 6
- [GGMS87] I. M. Gelfand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova. Combinatorial geometries, convex polyhedra, and Schubert cells. *Adv. in Math.*, 63(3):301–316, 1987. 3
- [Ish90] Masa-Nori Ishida. Polyhedral Laurent series and Brion's equalities. *Internat. J. Math.*, 1(3):251–265, 1990. 3
- [McM89] Peter McMullen. The polytope algebra. Adv. Math., 78(1):76–130, 1989. 2
- [Mor93] Robert Morelli. The K-theory of a toric variety. Adv. Math., 100(2):154–182, 1993. 2
- [MS15] Diane Maclagan and Bernd Sturmfels. *Introduction to tropical geometry*, volume 161 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2015. 5
- [Nie74] Andreas Nielsen. Diagonalizably linearized coherent sheaves. *Bull. Soc. Math. France*, 102:85–97, 1974.
- [Pos09] Alexander Postnikov. Permutohedra, associahedra, and beyond. *Int. Math. Res. Not. IMRN*, (6):1026–1106, 2009. 3
- [VV03] Gabriele Vezzosi and Angelo Vistoli. Higher algebraic *K*-theory for actions of diagonalizable groups. *Invent. Math.*, 153(1):1–44, 2003. 3