ALGEBRA (INDIVIDUAL)

Problem 1.

- (1) Classify the groups of order 8.
- (2) For each finite group of order 8, classify the irreducible finite dimensional representations over \mathbb{C} .

Problem 2. For each integer m > 1, let $\mathcal{K}_m = \mathbb{Q}(e^{\frac{2\pi i}{m}})$.

- (1) Prove that the polynomial $x^4 + x^3 + x^2 + x + 1$ is irreducible over \mathbb{Q} .
- (2) Prove that K_5 is a Galois extension of \mathbb{Q} whose Galois group is cyclic of order 4.
- (3) Prove that $\mathcal{K}_5 \supseteq \mathbb{Q}(\cos \frac{2\pi}{5})$.
- (4) Prove that \mathcal{K}_{20} is a Galois extension of \mathbb{Q} whose Galois group is isomorphic to $(\mathbb{Z}/20\mathbb{Z})^{\times}$.

(Recall that $(\mathbb{Z}/20\mathbb{Z})^{\times}$ is the group of units of the ring $\mathbb{Z}/20\mathbb{Z}$.)

Problem 3. Let f be a nonconstant polynomial in $\mathbb{C}[x]$ and $R = \mathbb{C}[x]/(f)$. Show that the following are equivalent:

- (1) R has no nonzero nilpotent element.
- (2) any finitely generated indecomposable R-module is projective.