第十一次作业参考

贺维易,王睿

2023年6月2日

目录

1	5月	23 日布置的作业	2
	1.1	教材习题 P220-221:2,5,6,17	2
	1.2	补充习题 1,2,3,4	3
2	5 月	25 日布置的作业	7
	2.1	教材习题 P221:8,9,10,11,14	7
	2.2	补充习题 5,6	8

一点说明

- (i) 作业讲义部分题过程可能有省略。如对作业仍有疑问可以在群里或答疑课上讨论。
- (ii) 作业讲义会随时间更新。
- (iii) 请及时核对自己在 BB 系统里的分数,如有问题请向对应的助教反馈。
- (iv) 附录里的内容仅供有兴趣的同学参考,有可能涉及之后才会学习或课外的知识,不要求在现阶段掌握。
- (v) 讲义最好用电脑打开,文档内置了链接功能,复习或查看指定的作业很方便。

成绩说明:成绩公式为

$$score = \begin{cases} 10 - k \cdot \max\{n - n_0, 0\} & \text{未迟交} \\ 5 & \text{迟交} \end{cases}$$

其中 n 为错题数, n_0 为容忍度; k 为系数,取决于当周作业的题量。第十一次作业不考虑补充题共 10 题,n=10,考虑到一些同学出现了计算失误、笔误、抄错题目等等情况, $n_0=1$; k=0.5。对于一些不严格的证明,助教也会酌情给分。也意味着作业得到满分不代表作业没有问题,请认真查看自己的作业。

上述评分标准对每个助教都成立。

1 5月23日布置的作业

1.1 教材习题 P220-221:2,5,6,17

习题 1 (教材习题 2). 设在 \mathbb{R}^3 中, 基 $\alpha_1, \alpha_2, \alpha_3$ 给出的度量矩阵是

$$\begin{pmatrix}
1 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 2
\end{pmatrix}$$

试求 \mathbb{R}^3 中由 $\alpha_1,\alpha_2,\alpha_3$ 给出的一组标准正交基。

解. $\operatorname{rank}(\boldsymbol{G}) = \operatorname{rank}(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = 3$,因此 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 是 \mathbb{R}^3 中的一组基。可用 Gram - Schmidt 正交化得到标准正交基。根据度量矩阵 \boldsymbol{G} ,已知 $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1) = 1$, $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = 0$, $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_3) = -1$, $(\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2) = 2$, $(\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = 0$, $(\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = 2$, 使用 Gram-Schmidt 正交化计算有

$$\beta_1 = \alpha_1 \xrightarrow{||\beta_1||=1} \epsilon_1 = \beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - (\alpha_2, \epsilon_1)\epsilon_1 = \alpha_2 \xrightarrow{||\beta_2||=\sqrt{2}} \epsilon_2 = \frac{1}{\sqrt{2}}\beta_2 = \frac{1}{\sqrt{2}}\alpha_2$$

$$\beta_3 = \alpha_3 - (\alpha_3, \epsilon_1)\epsilon_1 - (\alpha_3, \epsilon_2)\epsilon_2 = \alpha_3 + \alpha_1 \xrightarrow{||\beta_3||=\sqrt{(\alpha_3 + \alpha_1, \alpha_3 + \alpha_1)} = 1} \epsilon_3 = \beta_3 = \alpha_3 + \alpha_1$$

$$\epsilon_1, \epsilon_2, \epsilon_3 \text{ 即为一组标准正交基。(此题答案不唯一)}$$

习题 2 (教材习题 5). 证明: n 维向量空间中任意一个正交向量组都能扩充成一组正交基。

证明. 正交向量组中元素 $\alpha_1, \dots, \alpha_r$ 显然线性无关,因此可将这一正交向量组扩充为 n 个线性无关的向量 $\alpha_1, \dots, \alpha_n$,这 n 个线性无关的向量构成 n 维向量空间的一组基,对它们正交化即可得到一组正交基,在正交化的过程中先选择 $\beta_1 = \alpha_1, \beta_2 = \alpha_2 - (\alpha_2, \alpha_1)\alpha_1 = \alpha_2, \dots, \beta_r = \alpha_r, \beta_{r+1} = \dots$,即可保持原本的正交向量组不变,此时原本的正交向量组扩充成 n 维向量空间中的一组正交基。

习题 3 (教材习题 6). 验证下列个向量组是正交的, 并添加向量改造为标准正交基:

- (1):(2,1,2),(1,2,-2);
- (2):(1,1,1,2),(1,2,3,-3)

解. (1): $\alpha_1 = (2,1,2)$, $\alpha_2 = (1,2,-2)$. (α_1,α_2) = $2 \times 1 + 1 \times 2 + 2 \times (-2) = 0$,因此是正交的。容易看到加入 (1,0,0) 即得到 3 个线性无关的向量可构成 \mathbb{R}^3 的基,使用 Gram-Schmidt 正交化得到标准正交基。

$$\beta_{1} = \alpha_{1} \xrightarrow{||\beta_{1}||=3} \epsilon_{1} = \frac{1}{3}\beta_{1} = \frac{1}{3}(2, 1, 2)$$

$$\beta_{2} = \alpha_{2} - (\alpha_{2}, \epsilon_{1})\epsilon_{1} = \alpha_{2} \xrightarrow{||\beta_{2}||=3} \epsilon_{2} = \frac{1}{3}\beta_{2} = \frac{1}{3}(1, 2, -2)$$

$$\beta_{3} = \alpha_{3} - (\alpha_{3}, \epsilon_{1})\epsilon_{1} - (\alpha_{3}, \epsilon_{2})\epsilon_{2} = (1, 0, 0) - \frac{2}{9}(2, 1, 2) - \frac{1}{9}(1, 2, -2) = \frac{2}{9}(2, -2, -1)$$

$$\xrightarrow{||\beta_{3}||=\frac{2}{3}} \epsilon_{3} = \beta_{3} = \frac{1}{3}(2, -2, -1)$$

(2): $\alpha_1 = (1, 1, 1, 2), \alpha_2 = (1, 2, 3, -3). (\alpha_1, \alpha_2) = 0$,因此是正交的。容易看到加入 (1, 0, 0, 0), (0, 1, 0, 0) 即得到 3 个线性无关的向量可构成 \mathbb{R}^3 的基,使用 Gram-Schmidt 正交化得到标准正交基。

$$\beta_{1} = \alpha_{1} \xrightarrow{||\beta_{1}|| = \sqrt{7}} \epsilon_{1} = \frac{1}{\sqrt{7}} (1, 1, 1, 2) = (\frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}, \frac{2}{\sqrt{7}})$$

$$\beta_{2} = \alpha_{2} - (\alpha_{2}, \epsilon_{1}) \epsilon_{1} = \alpha_{2} \xrightarrow{||\beta_{2}|| = \sqrt{23}} \epsilon_{2} = (\frac{1}{\sqrt{23}}, \frac{2}{\sqrt{23}}, \frac{3}{\sqrt{23}}, -\frac{3}{\sqrt{23}})$$

$$\beta_{3} = \alpha_{3} - (\alpha_{3}, \epsilon_{1}) \epsilon_{1} - (\alpha_{3}, \epsilon_{2}) \epsilon_{2} \rightarrow \epsilon_{3} = (\sqrt{\frac{131}{161}}, -\frac{37}{\sqrt{21091}}, -\frac{44}{\sqrt{21091}}, -\frac{25}{\sqrt{21091}})$$

$$\beta_{4} = \alpha_{4} - (\alpha_{4}, \epsilon_{1}) \epsilon_{1} - (\alpha_{4}, \epsilon_{2}) \epsilon_{2} - (\alpha_{4}, \epsilon_{3}) \epsilon_{3} \rightarrow \epsilon_{4} = (0, \frac{9}{\sqrt{131}}, -\frac{7}{\sqrt{131}}, -\frac{1}{\sqrt{131}})$$

第二问答案不唯一。若使用 $\alpha_3=(0,0,1,0), \alpha_4=(0,0,0,1)$,应得到 $\epsilon_3=\frac{1}{\sqrt{483}}\left(-\frac{44}{5},-13,15,\frac{17}{5}\right)$, $\epsilon_4=\left(-\frac{7}{5\sqrt{3}},\frac{1}{\sqrt{3}},0,\frac{1}{5\sqrt{3}}\right)$

习题 4 (教材习题 17). 设 e_1, e_2, \cdots, e_n 是 \mathbb{R}^n 的标准正交基, x_1, x_2, \cdots, x_k 是 \mathbb{R}^n 中任意 k 个向量, 试证: x_1, x_2, \cdots, x_k 两两正交的充分必要条件是

$$\sum_{s=1}^{n} (\boldsymbol{x}_i, \boldsymbol{e}_s)(\boldsymbol{x}_j, \boldsymbol{e}_s) = 0$$

证明. 由于 e_1, e_2, \cdots, e_n 是 \mathbb{R}^n 的标准正交基, x_i 可表示为 $x_i = \sum_{s=1}^n (x_i, e_s) e_s$,因此

$$(\mathbf{x}_i, \mathbf{x}_j) = \left(\sum_{s=1}^n (\mathbf{x}_i, \mathbf{e}_s) \mathbf{e}_s, \sum_{t=1}^n (\mathbf{x}_j, \mathbf{e}_t) \mathbf{e}_t\right)$$

$$= \sum_{s=1}^n \sum_{t=1}^n (\mathbf{x}_i, \mathbf{e}_s) (\mathbf{x}_j, \mathbf{e}_t) (\mathbf{e}_s, \mathbf{e}_t)$$

$$= \sum_{s=1}^n \sum_{t=1}^n (\mathbf{x}_i, \mathbf{e}_s) (\mathbf{x}_j, \mathbf{e}_t) \delta_{st} = \sum_{s=1}^n (\mathbf{x}_i, \mathbf{e}_s) (\mathbf{x}_j, \mathbf{e}_s)$$

对任意向量 x_i, x_j ,上式成立。因此 x_1, x_2, \cdots, x_k 两两正交的充分必要条件是

$$(\boldsymbol{x}_i, \boldsymbol{x}_j) = 0 = \sum_{s=1}^n (\boldsymbol{x}_i, \boldsymbol{e}_s)(\boldsymbol{x}_j, \boldsymbol{e}_s)$$

1.2 补充习题 1,2,3,4

习题 5 (补充习题 1). 用 Gram-Schmidt 正交化方法把 \mathbb{R}^4 的一组向量

$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{\alpha}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{\alpha}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

化成一组标准正交向量。

解.

$$\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1 \xrightarrow{||\boldsymbol{\beta}_1||=2} \boldsymbol{\epsilon}_1 = \frac{1}{2} \boldsymbol{\beta}_1 = \frac{1}{2} (1, 1, 1, 1)^T$$

$$\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - (\boldsymbol{\alpha}_2, \boldsymbol{\epsilon}_1) \boldsymbol{\epsilon}_1 = \boldsymbol{\alpha}_2 - \frac{3}{2} \boldsymbol{\epsilon}_1 = \left(-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \rightarrow \boldsymbol{\epsilon}_2 = \left(-\frac{\sqrt{3}}{2}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}} \right)$$

$$\boldsymbol{\beta}_3 = \boldsymbol{\alpha}_3 - (\boldsymbol{\alpha}_3, \boldsymbol{\epsilon}_1) \boldsymbol{\epsilon}_1 - (\boldsymbol{\alpha}_3, \boldsymbol{\epsilon}_2) \boldsymbol{\epsilon}_2 = \left(0, -\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right) \rightarrow \boldsymbol{\epsilon}_3 = (0, -\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}})$$

习题 6 (补充习题 2). 我们考虑线性空间 $V = \mathbb{R}_4[x]$, 这是次数不超过 4 的实系数多项式构成的实线性空间,设 a_0, a_1, a_2, a_3, a_4 依次为 -2, -1, 0, 1, 2. 对于 $f, g \in \mathbb{R}_4[x]$,定义

$$(f,g) := \sum_{i=0}^{4} f(a_i)g(a_i)$$

这给出了 V 的一个内积. 用 Gram-Schmidt 正交化方法把 V 的一组向量 $1, x, x^2$ 变成一组标准正交向量.

解. 只需按照定义。

$$\beta_{1} = \alpha_{1} = 1, (\beta_{1}, \beta_{1}) = \sum_{i=0}^{4} (1 \times 1) = 5 \xrightarrow{||\beta_{1}|| = \sqrt{5}} \epsilon_{1} = \frac{1}{\sqrt{5}} \beta_{1} = \frac{1}{\sqrt{5}}$$

$$\beta_{2} = \alpha_{2} - (\alpha_{2}, \epsilon_{1}) \epsilon_{1} = x - (x, \frac{1}{\sqrt{5}}) \frac{1}{\sqrt{5}}, (x, \frac{1}{\sqrt{5}}) = \sum_{i=0}^{4} \left(a_{i} \times \frac{1}{\sqrt{5}} \right) = 0$$

$$\Rightarrow \beta_{2} = x, (\beta_{2}, \beta_{2}) = \sum_{i=0}^{4} (a_{i} \cdot a_{i}) = 10 \rightarrow \epsilon_{2} = \frac{1}{\sqrt{10}} \beta_{2} = \frac{1}{\sqrt{10}} x$$

$$\beta_{3} = \alpha_{3} - (\alpha_{3}, \epsilon_{1}) \epsilon_{1} - (\alpha_{3}, \epsilon_{2}) \epsilon_{2} = x^{2} - (x^{2}, \frac{1}{\sqrt{10}} x) \frac{1}{\sqrt{10}} x - (x^{2}, \frac{1}{\sqrt{5}}) \frac{1}{\sqrt{5}} = x^{2} - 2$$

$$(\beta_{3}, \beta_{3}) = 14 \rightarrow \epsilon_{3} = \frac{1}{\sqrt{14}} (x^{2} - 2)$$

即 $\frac{1}{\sqrt{5}}$, $\frac{1}{\sqrt{10}}x$, $\frac{1}{\sqrt{14}}(x^2-2)$ 为一组标准正交向量。

习题 7 (补充习题 3). 考虑线性空间 $V = \mathbb{R}_2[x]$, 运算为多项式的加法和数乘. 对于 $f(x) = a_0 + a_1 x + a_2 x^2$ 和 $g(x) = b_0 + b_1 x + b_2 x^2$, 定义 $(f,g) = \int_0^1 f(x)g(x) dx$, 则 $(V,(\cdot,\cdot))$ 为欧氏空间。用 Schmidt 正交化方法将 $1,x,x^2$ 按顺序改造成标准正交基。

解. 只需按照定义。

$$\beta_{1} = \alpha_{1} = 1, (\beta_{1}, \beta_{1}) = \int_{0}^{1} 1 \cdot 1 dx = 1 \xrightarrow{||\beta_{1}||=1} \epsilon_{1} = 1$$

$$\beta_{2} = \alpha_{2} - (\alpha_{2}, \epsilon_{1})\epsilon_{1} = x - (x, 1)1, (x, 1) = \int_{0}^{1} x \cdot 1 dx = \frac{1}{2}$$

$$\Rightarrow \beta_{2} = x - \frac{1}{2}, (\beta_{2}, \beta_{2}) = \int_{0}^{1} \left(x - \frac{1}{2}\right) \cdot \left(x - \frac{1}{2}\right) dx = \frac{1}{12} \to \epsilon_{2} = \sqrt{12}\beta_{2} = 2\sqrt{3}\left(x - \frac{1}{2}\right)$$

$$\beta_{3} = \alpha_{3} - (\alpha_{3}, \epsilon_{1}) \epsilon_{1} - (\alpha_{3}, \epsilon_{2}) \epsilon_{2} = x^{2} - \left(x^{2}, 2\sqrt{3}\left(x - \frac{1}{2}\right)\right) 2\sqrt{3}\left(x - \frac{1}{2}\right) - (x^{2}, 1)1 = x^{2} - x + \frac{1}{6}$$

$$(\beta_{3}, \beta_{3}) = \frac{1}{180} \to \epsilon_{3} = 6\sqrt{5}\left(x^{2} - x + \frac{1}{6}\right)$$

即 $1,2\sqrt{3}(x-\frac{1}{2}),6\sqrt{5}(x^2-x+\frac{1}{6})$ 为 (V,(,)) 的一组标准正交向量。

习题 8 (补充习题 4). 设 G 是欧氏空间 V 中的向量 x_1, x_2, \cdots, x_m 的 Gram 矩阵.

- (1) 证明: $\det(\mathbf{G}) \neq 0$ 当且仅当 $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m$ 线性无关.
- (2) 证明: $\operatorname{rank}(\boldsymbol{G}) = \operatorname{rank}(\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_m).$

解. (1)

(i) $\det(\mathbf{G}) \neq 0 \rightarrow \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m$ 线性无关。假设 $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m$ 线性相关,说明存在一组 $\lambda_i, i = 1, 2, \cdots, m$,使得 $\sum_{i=1}^m \lambda_i \mathbf{x}_i = \mathbf{0}$,将 λ_i 作为坐标写成列向量 λ ,有

$$(G\lambda)_i = \sum_{j=1}^m G_{ij}\lambda_j = \sum_{j=1}^m (x_i, x_j)\lambda_j = (x_i, \sum_{j=1}^m x_j\lambda_j) = (x_i, \mathbf{0}) = 0 \Rightarrow G\lambda = \mathbf{0}$$

由于 G 是 $m \times m$ 阶矩阵,因此 $\det(G)$ 是良定义的;存在 λ 使得 $G\lambda = 0$ 说明 $\det(G) = 0$ 。因此 $\det(G) \neq 0$ 时一定有 x_1, x_2, \dots, x_m 线性无关。

- (ii) x_1, x_2, \dots, x_m 线性无关 $\to \det(G) \neq 0$ 。若 $\det(G) = 0$,说明存在 $\lambda \neq 0$ 使得 $G\lambda = 0$ 。取 $x = \sum_{i=1}^m x_i \lambda_i$,则 $(x, x) = \lambda^T G\lambda = \lambda^T 0 = 0$ 。而 x 是欧氏空间 V 中的一个向量,根据正定性, $(x, x) \geq 0$ 等号成立当且仅当 $x = 0 = \sum_{i=1}^m x_i \lambda_i$,说明 x_1, x_2, \dots, x_m 线性相关。因此 x_1, x_2, \dots, x_m 线性无关时一定有 $\det(G) \neq 0$ 。若 $\det(G) = 0$
- (2) 与第一问类似,考虑 $G\lambda = 0$ 与 $\sum_{i=1}^{m} \lambda_i x_i = 0$ 解集的结构,使用与第一问相同的方法容易证明
 - (i) $\sum_{i=1}^{m} \lambda_i \mathbf{x}_i = \mathbf{0}$ 的解也是 $G\lambda = \mathbf{0}$ 的解。

(ii)
$$G\lambda = 0$$
 的解也是 $\sum_{i=1}^{m} \lambda_i x_i = 0$ 的解。

因此解空间维度相同,矩阵的秩 $\operatorname{rank}(G) = m - \dim(V_{G\lambda=0}) = \operatorname{rank}(x_1, x_2, \cdots, x_m)$. 注: 此题的证明不应涉及内积的具体形式。

2 5月25日布置的作业

2.1 教材习题 P221:8,9,10,11,14

习题 9 (教材习题 8). 设 e_1,e_2,e_3 是 \mathbb{R}^3 的一组标准正交基,且

$$\alpha_1 = \frac{1}{3}(2e_1 + 2e_2 - e_3), \alpha_2 = \frac{1}{3}(2e_1 - e_2 + 2e_3), \alpha_3 = \frac{1}{3}(e_1 - 2e_2 - 2e_3)$$

- (1) 证明: $\alpha_1, \alpha_2, \alpha_3$ 也是 \mathbb{R}^3 的一组标准正交基;
- (2) 求把 e_1, e_2, e_3 变换到 $\alpha_1, \alpha_2, \alpha_3$ 的正交变换的矩阵;
- (3) 求标准正交基 e_1, e_2, e_3 到标准正交基 $\alpha_1, \alpha_2, \alpha_3$ 的坐标变换矩阵.

证明. (1) 由标准正交基的定义易验证.

(2)

$$(\alpha_1, \alpha_2, \alpha_3) = (e_1, e_2, e_3) \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{pmatrix}$$

(3)

$$\begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{pmatrix}^{T} = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \end{pmatrix}$$

习题 10 (教材习题 9). 写出所有 3 阶正交矩阵, 它的元素是 0 或 1.

解. 设正交矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$,由 $A^T A = I$ 可得 $||\alpha_1|| = ||\alpha_2|| = ||\alpha_3|| = 1$, $\alpha_i^T \alpha_j = 0$ $(i \neq j)$,故 $\alpha_1, \alpha_2, \alpha_3$ 是向量 $(1, 0, 0)^T$, $(0, 1, 0)^T$, $(0, 0, 1)^T$ 的排列组合,满足题意的矩阵 共有 $A_3^3 = 6$ 种.

习题 11 (教材习题 10). 如果一个正交矩阵中每个元素都是 $\frac{1}{4}$ 或 $-\frac{1}{4}$, 那么这个正交矩阵 是几阶的?

 \mathbf{m} . 不妨设矩阵的某个列向量为 α_1 , 为了满足它的模长为 1, 设矩阵为 n 阶, 易见 $\frac{n}{4^2}=1$, 故为 16 阶的.

习题 12 (教材习题 11). 若 α 是一个单位向量,证明: $Q = I - 2\alpha\alpha^T$ 是一个正交矩阵. 当 $\alpha = \frac{1}{\sqrt{3}}(1,1,1)^T$ 时,具体求出 Q.

解. 验证 $QQ^T = (I - 2\alpha\alpha^T)(I - 2\alpha\alpha^T) = I - 4\alpha\alpha^T + 4\alpha\alpha^T\alpha\alpha^T = I - 4\alpha\alpha^T + 4\alpha\alpha^T = I$. 即 Q 为正交矩阵. 当 $\alpha = \frac{1}{\sqrt{3}}(1, 1, 1)^T$ 时,代入 $Q = \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$.

习题 13 (教材习题 14). 证明: 任何二阶正交矩阵必取下面两种形式之一:

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}, \theta \in [-\pi, \pi]$$

证明. 设正交变换 \mathscr{A} 在二维平面上任意一组标准正交基 $M = \{\alpha_1, \alpha_2\}$ 下的矩阵为 A,则 A 为正交方阵,它的两列 A_1, A_2 分别是 $\mathscr{A}(\alpha_1), \mathscr{A}(\alpha_2)$ 在基 M 下的坐标. 我们有 $|\mathscr{A}(\alpha_1)| = |\alpha| = 1$. 设由 α_1 绕原点旋转到 $\mathscr{A}(\alpha_1)$ 所称的角是 θ ,则 $A_1 = (\cos\theta, \sin\theta)^T$. 由于 $\mathscr{A}(\alpha_2) \perp \mathscr{A}(\alpha_1)$,从 α_1 旋转到 $\mathscr{A}(\alpha_2)$ 所成的角为 $\theta \pm \frac{\pi}{2}$,于是 $A_2 = (\cos(\theta \pm \frac{\pi}{2}), \sin(\theta \pm \frac{\pi}{2}))^T = \pm(-\sin\theta, \cos\theta)^T$,于是得证任何二阶正交矩阵必取上述两种形式之

2.2 补充习题 5,6

习题 14 (补充习题 5). (Hadamard 不等式) 设 $C = (c_{ij}) \in \mathbb{R}^{n \times n}$. 证明: $|C|^2 \leq \prod_{j=1}^n (c_{1j}^2 + \cdots + c_{nj}^2)$.

证明. 参考 https://zhuanlan.zhihu.com/p/377664850 有多种看法.

习题 15 (补充习题 6). 设欧式空间 V 中有一个指定的非零向量 α , 定义映射

$$\varphi: V \to V, \quad x \mapsto x - \frac{2(x, \alpha)}{(\alpha, \alpha)}\alpha,$$

证明 φ 是一个第二类的正交变换.

证明. 对欧式空间中的任意 x 由定义 $(\varphi(x), \varphi(\alpha)) = (x - \frac{2(x,\alpha)}{(\alpha,\alpha)}\alpha, -\alpha) = (x, -\alpha) + 2(x,\alpha) = (x,\alpha)$,即 φ 是一个正交变换. 下面可以证明 φ 在适当的标准正交基下的矩阵为 $\mathrm{diag}(-1,1,...,1)$,因此这是一个第二类的正交变换. 取单位向量 $\alpha_1 = \frac{1}{|\alpha|}\alpha$ 扩充为标准正交基 $S = \{\alpha_1,...,\alpha_n\}$. 则通过简单计算有

$$\varphi(\alpha_1) = -\alpha_1$$

$$\varphi(\alpha_i) = \alpha_i - \frac{2(\alpha_i, \alpha)}{(\alpha, \alpha)} \alpha = \alpha_i, 2 \le i \le n$$

即 φ 在适当的标准正交基下的矩阵为 diag(-1,1,...,1),它的行列式为 -1,是一个第二类正交变换.

致谢

感谢各助教对本文档的校对工作和内容补充,感谢申伊塃老师以及同学对助教工作的支持。