Master of Construction Engineering 2nd Semester Examination 2018

STRUCTURAL DYNAMICS & EARTHQUAKE ENGINEERING

Time: Three hours

Assume any relevant data not provided

Full Marks: 100

Answer any Four Questions

1	a) What are the Basic Safety Objectives from Earthquake considerations?			
	Discuss the important characteristics of an Earthquake?	5		
	b) Distinguish between Near field & Far field effect of earthquake.			
	c) Discuss on favourable structural features for earthquake hazards mitigation	4		
	d) Define Ductility and draw ductile details of the Beam-Column Joint .	5		
	e) Discuss Response Spectrum Method for Dynamic Analysis of structures	6		
2	a) Discuss damping of a dynamic system?	3		
	b) Derive Free vibration solution of an Under damped SDOF system. c) What do you mean by Critical Damping Ratio.	12		
	Evaluate Critical Damping Ratio by Logarithmic Decrement Method.	10		
3	a) Derive the equation for Multi Degree Freedom System (MDOF) of a lumped mass model and discuss the significance of Eigen values and Eigen vectors of various modes of a dynamic system?	11		
	b) Calculate the natural frequencies and mode shapes of the following 2DOF system			

- 4 a) Discuss Transient phase & Steady State Motion in forced vibration?
 - b) Derive the solution for steady state motion of the SDOF system under Forced Vibration of $M\ddot{x} + C\dot{x} + Kx = F_f \cos \omega_f t$.
 - c) Derive the expression for **Dynamic Load Factor** and discuss the significance of **Tuning Factor** & Critical Damping Ratio on DLF.

. 4

12

3

- d) Evaluate the D.L.F when the tuning factor is 0.95 and damping ratio is 2 %.
- A Four Storied RCC frame office building located in Bhuj, Gujrta. The plan of the building is shown below in Fig 2. The floor to floor height is 4 m & Plinth level to Foundation level is 2 M.

Fig. 2

The soil condition is medium stiff and supported on Raft foundation. The RC frames are in-filled with brick-masonry. The lump weight due to DL is 14.5 KN/m² on floors and 12.5 KN/m² on roof. The Live load on floors is 5 KN/m². Determine the Design seismic Force of the frame R/1-2-3-4-5 by dynamic analysis method. The free vibration analysis dynamic properties are given below.

Natural	Mode 1	Mode 2	Mode 3
Period (S)	1.48	0.854	0.436
Floor	Mode Shape		
Roof	1.000	1.000	0.724
3 rd Floor	0.824	0.368	-0.798
2 nd Floor	0.576	-0.548	- 0.526
1 st Floor	0.367	- 0.734	1.000