Assignment-1

Course: SC-374

Computational and Numerical Methods

Instructor: Prof. Arnab Kumar

Made by:

Yatin Patel – 201601454

Rutvik Kothari – 201601417

Problem: 1

♦ Statement:

With the help of a single code, plot the following functions (a) $y=\exp(x)$, (b) y=x, (c) $y=\ln(x)$. use suitable ranges of x for each of the functions and judge their properties on various scale of x. Extending this exercise, plot $\exp(x)$ and $\exp(-x)$ on the same graph and compare them.

Problem: 2

♦ Statement:

For a fixed parameter a plot the function $y=\sin(kx)$ for a few suitably chosen values of k. What is the role of k in determining the profile of the function? Thereafter for k=1 plot $\sin(x)$ and $\sin^2(x)$ on the same graph within -pi < x < pi. Compare both.

Problem: 3

♦ Statement:

Plot the Gaussian function y=, for a few suitably chosen values of the parameters y0,a and μ . Examine the shifting profile oof the function with changes in the parameters. Then for y0=a=1 and $\mu=0$. Consider the first order expansion of the Gaussian function to obtain the Lorentz function. Plot both of them together and compare their behaviour. For every value of x take the difference between the two functions and plot it against x over 0 < x < 10.

Problem: 4

♦ Statement:

Plot $y=x\log(x)$ and carefully examine it for 0 < x < 2. Provide an analytical justification for what you observe .Also note the growth of the function for very large x.

Problem: 5

♦ Statement:

Plot y(x) , y'(x) , y''(x) for the following polynomial functions ,

(a)
$$y = -ax + x^3$$

$$(b)y = -ax^2 + x^4$$

Change a continuously over a suitable range of values(a>=0) to observe the shift in the function profiles and their two derivatives .Carefully , check all conditions for a=0.

Problem: 1(set - 2)

♦ Statement:

Consider the following functions y=f(x), produce the first, the second and third-degree Taylor polynomials for each of the foregoing functions, using a=1 as the point of approximation for logx and a=0 for the rest. In a suitably chosen neighbourhood of a, follow how the accuracy of a Taylor polynomial improves with the increasing degree. For this you will have to estimate the difference between f(x) and its Taylor polynomials in a code. Present your results graphically for each function along with its Taylor polynomials of all three degrees.

(A)
$$y = \exp(x)$$

(A)
$$y = In(x)$$

(A)
$$y = \sin(x)$$

(A)
$$y = cos(x)$$

