PRÁTICA 3

1) Imagens RGB.

Figura 1 - Píxels de uma Imagem RGB

T_1: Decompor a imagem Flor.bmp em suas três componentes RGB.

```
f = imread('Flor.bmp');

fR = f(:, :, 1);

fG = f(:, :, 2);

fB = f(:, :, 3);

subplot(2,3,1);imshow(f)

subplot(2,3,2);imshow(fR)

subplot(2,3,3);imshow(fG)

subplot(2,3,4);imshow(fB)
```

T_2: Gerar a imagem RGB a partir de suas três componentes.

```
g = cat(3, fR, fG, fB);

subplot(2,3,1); imshow(fR)

subplot(2,3,2); imshow(fG)

subplot(2,3,3); imshow(fB)

subplot(2,3,4); imshow(g)
```

2) Imagens Indexadas.

Figura 2 Imagens Indexadas

Uma Imagem Indexada no MATLAB tem dois componentes:

- a) Uma Matriz de Dados Inteiros (X), e
- b) Uma Matriz de cor (*map*)

A Matriz *map* é um arranjo de m x 3 elementos de classe *double* contendo valores em ponto-flutuante no intervalo [0,1].

O comprimento *m* do *map* é igual ao número de cores definido.

Cada linha da Matriz map especifica o valor de R,G,B de uma cor na Matriz X. Ou seja, um Pixel de cor em X é um ponteiro para sua cor RGB em map.

T_3: Converter uma imagem RGB em uma imagem Indexada.

```
RGB = imread('peppers.png');

[X,map] = rgb2ind(RGB,256);

figure

imshow(X,map)
```

Para alterar o número de cores de uma imagem indexada pode-se usar a função *imapprox* que tem a seguinte sintaxe:

$$[Y, newmap] = imapprox(X, map, n)$$

onde *n* é o número de cores da nova imagem.

E_1: Reduzir e aumentar o número de cores da imagem indexada X mostrando e discutindo os resultados.

Para se especificar um mapa de cores pode-se usar a seguinte sintaxe:

$$map(k, :) = [r(k) g(k) b(k)]$$

onde [r(k) g(k) b(k)] são os valores RGB que especificam uma linha de um mapa de cor. O mapa deve ser completado variando-se k.

E_2: Gerar um mapa de cores para a imagem X e obter a imagem equivalente.

Long name	Short name	RGB values
Black	k	[0 0 0]
Blue	b	[0 0 1]
Green	g	[0 1 0]
Cyan	С	[0 1 1]
Red	r	[1 0 0]
Magenta	m	[1 0 1]
Yellow	у	[1 1 0]
White	w	[1 1 1]

Figura 3 -= Valores RGB para as cores básicas

A Figura 3 mostra a lista de valores RGB para as cores básicas.

 T_4 : Alterar o fundo (Background) da imagem X para verde. Qualquer dos comandos abaixo pode ser usado:

```
whitebg(g')
whitebg('green')
whitebg([0 1 0])
```

O MatLab possui diversos mapas de cores pré-definidos. A Figura 4 mostra alista de colormaps disponíveis no MatLab. O número de cores pode ser especificado incluindo-se o número entre parêntesis.

E_3: Alterar, usando a Figura 4, o mapa de cores da imagem X variando-se o número de cores. Comentar sobre o colormap gray. Concluir a respeito.

Name	Description
autumn	Varies smoothly from red, through orange, to yellow.
bone	A gray-scale colormap with a higher value for the blue component.
	This colormap is useful for adding an "electronic" look to gray-
	scale images.
colorcube	Contains as many regularly spaced colors in RGB color space as
	possible, while attempting to provide more steps of gray, pure red,
	pure green, and pure blue.
cool	Consists of colors that are shades of cyan and magenta. It varies
	smoothly from cyan to magenta.
copper	Varies smoothly from black to bright copper.
flag	Consists of the colors red, white, blue, and black. This colormap
	completely changes color with each index increment.
gray	Returns a linear gray-scale colormap.
hot	Varies smoothly from black, through shades of red, orange, and
	yellow, to white.
hsv	Varies the hue component of the hue-saturation-value color
	model. The colors begin with red, pass through yellow, green, cyan,
	blue, magenta, and return to red. The colormap is particularly
	appropriate for displaying periodic functions. Ranges from blue to red, and passes through the colors cyan,
jet	yellow, and orange.
lines	Produces a colormap of colors specified by the ColorOrder
TTHES	property and a shade of gray. Consult online help regarding
	function ColorOrder.
pink	Contains pastel shades of pink. The pink colormap provides sepia
Pank	tone colorization of grayscale photographs.
prism	Repeats the six colors red, orange, yellow, green, blue, and violet.
spring	Consists of colors that are shades of magenta and yellow.
summer	Consists of colors that are shades of green and yellow.
white	This is an all white monochrome colormap.
winter	Consists of colors that are shades of blue and green.

Figura 4 - Mapa de cores (colormap) pré-definidos

3) Manipulando-se Imagens RGB e Indexadas.

Function	Purpose
dither grayslice	Creates an indexed image from an RGB image by dithering. Creates an indexed image from a gray-scale intensity image by multilevel thresholding.
gray2ind ind2gray rgb2ind ind2rgb rgb2gray	Creates an indexed image from a gray-scale intensity image. Creates a gray-scale intensity image from an indexed image. Creates an indexed image from an RGB image. Creates an RGB image from an indexed image. Creates a gray-scale image from an RGB image.

Figura 5 - Funções de conversão entre imagens

T 5: Converter a imagem indexada X em escala de cinza e em RGB

```
GR = ind2gray(X, map);

RGB2 = ind2rgb(X, map);

figure, imshow(GR)

figure, imshow(RGB2)
```

E_4 : Explicar o que faz a função dither (renderização) em imagens coloridas e em imagens em escala de cinza.

```
[X1, map1] = rgb2ind(RGB, 16, 'nodither');

[X2, map2] = rgb2ind(RGB, 16, 'dither');

G1 = dither(GR);

figure;imshow(RGB)

figure;imshow(X1,map1)

figure;imshow(X2,map2)

figure;imshow(G1)
```

4) Conversão de RGB para outros espaços de cores.

RGB para o NTSC:

A função *rgb2ntsc* realiza esta conversão e a função *ntsc2rgb* faz a re-conversão.

T_6: Converter a imagem RGB em NTSC e gerar separadamente as componentes de Luminância, Matiz e Saturação.

```
YIQ = rgb2ntsc(RGB);

subplot(2,2,1);imshow(YIQ)

subplot(2,2,2);imshow(YIQ(:,:,1))

subplot(2,2,3);imshow(YIQ(:,:,2))

subplot(2,2,4);imshow(YIQ(:,:,3))
```

RGB para YCbCr:

A função *rgb2ycbcr* realiza esta conversão e a função *ycbcr2rgb* faz a re-conversão.

E_5: Realizar a conversão para este espaço de cor conforme T_6 e explicar.

RGB para HSV:

A função *rgb2hsv* realiza esta conversão e a função *hsv2rgb* faz a re-conversão

E_6: Realizar a conversão para este espaço de cor conforme T_6 e explicar.

RGB para CMY:

A função *imcomplement* realiza a conversão entre os dois espaços de cores.

E_7: Realizar a conversão para este espaço de cor conforme T_6 e explicar.

RGB para HSI:

O Matlab não possui esta função implementada em seu Toolbox. Para fazer esta conversão copiar o arquivo *rgb2hsi.p* e *hsi2rgb.p* para o diretório work .

E 8: Realizar a conversão para este espaço de cor conforme T 6 e explicar.

5) Filtragem espacial de Imagens coloridas.

Para aplicar um filtro em uma imagem RGB deve-se:

1) Extrair as três componentes.

$$R = RGB(:,:,1); G = RGB(:,:,2); B = RGB(:,:,3)$$

2) Filtrar cada componente individualmente

$$RF = imfilter(R, w)$$
; $GF = imfilter(G, w)$; $BF = imfilter(B, w)$;

3) Reconstruir a imagem filtrada em RGB

$$RGBF = cat(3,RF,GF,BF)$$

Ou pode-se filtrar diretamente a imagem RGB como se esta fosse em escala de cinza.

RGBF = imfilter(RGB, w)

Suavização (Passa Baixa):

- E_9: Filtrar a imagem RGB através de um Filtro da Média de 25 x 25.
 - 1) Filtrando separadamente as componentes RGB.
- 2) Filtrando a imagem RGB sem separar as componentes

Avaliar os resultados.

E_10: a) Converter a imagem RGB para HSI, separar as componentes, filtrar a componente de Intensidade (I) com o mesmo filtro da média de E_9, recompor a imagem HSI e re-converter para RGB.

- b) Filtrar as 3 componentes (H S e I) separadamente e re-converter para RGB.
- c) Filtrar a imagem HSI sem separar as componentes.
- O que se pode concluir?

Realce(Passa Alta):

E_11: Filtrar a imagem RGB através de um Filtro Laplaciano, processando separadamente as componentes RGB.

Avaliar os resultados.

6) Trabalhando diretamente no espaço Vetorial RGB.

Detecção de bordas em Imagens RGB. Copiar o arquivo colorgrad.p para o diretório work.

A função colorgrad implementa o gradiente em imagens RGB com a seguinte sintaxe:

$$[VG, A, PPG] = colorgrad(f, T)$$

onde:

f é a Imagem RGB

T é um Threshold opcional no intervalo [0 1] – o default é zero.

VG é o Vetor Gradiente RGB (Magnitude)

A é o ângulo do vetor gradiente em radianos

PPG é o gradiente formado através da detecção de bordas nas componentes individuais. O detector utilizado é o de Sobel.

E_12: Aplicar o detector de bordas Gradiente no espaço RGB, conforme a função *colorgrad* e verificar a diferença entre o uso do detector aplicado nas componentes individuais, através de subtração das imagens resultantes.