

Applied Machine Learning

Lecture 12 Support Vector Machine

Ekarat Rattagan, Ph.D.

Classificat Outline 1. Definition 2. Linear classifiers 3. How SVM works? 4. Cost function 5. Optimization Classifica

1. Definition

Given a training dataset of points, $(\overrightarrow{x}_1, y_1), \dots, (\overrightarrow{x}_m, y_m)$, where y_i are either +1 or -1, each indicating the class to which the point \overrightarrow{x}_i belongs.

The objective is to find the "maximum-margin hyperplane" that divides the group of points \vec{x}_i for which $y_i = 1$ from the group of points for which $y_i = -1$, so that the distance between the hyperplane and the nearest point \vec{x}_i from either group is maximized.

- denotes +1
- o denotes -1

100/

- denotes +1
- o denotes -1

• denotes +1

o denotes -1

100 Accuracy

- denotes +1
- o denotes -1

Linear Classifiers (SVM VS Logistic Regression)

Classifier Margin

- denotes +1
- o denotes -1

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Maximum Margin

o denotes -1

The maximum margin linear classifier is the linear classifier with the maximum margin.

This is the simplest kind of SVM (Called an Linear SVM)

How SVM works dat product

w. u = [wx].[ux]

wy].[ux] = Wx × Ux + Wy × Uy

Ex.
$$\vec{W} = \begin{bmatrix} 1 \end{bmatrix}$$
, $\vec{U} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
 $\vec{U} \cdot \vec{U} = 2 + 2 = 4$

Define $\vec{U} \cdot \vec{W} > C$, \vec{U} is classified as

Let $C = -b$, so that $\vec{U} \cdot \vec{W} > -b$,

Let C--5, so mat w.w// 5)

t.g.=1

$$y_{i}(\tilde{w},\tilde{u}_{i}+b)-1=0 \rightarrow gutter$$

-1($wu+b$)-1=-5-1 \frac{\xi_{i}}{2}

Objective maximize $\| \| \| \|_{2} \rightarrow \| \| \| \|_{2}^{2}$ Minimize y; (w.u; +b)-1>,0, i=1, ... subject to

Hard SVM
Linear SVM

Loss function Penalty Palameter

= 1/1 | W | + 1 \le max (0, 1-9; (wu.+5))

Reguralization Hinge loss

agreemin J(w,b)

Hingeloss in correctly classitied in correctly classified

Correctly classified

Hinge

Loss (\overline{w} , \overline{b} , \overline{x} , \overline{y}) = $(0, if y; (\overline{w}, \overline{x}; +b))$, else

$$J(W,b) = \frac{\lambda}{2} \| \widetilde{W}\|_{2}^{2} + \frac{\lambda}{2}$$

$$||W||_{2}^{2} = ||W||_{2}^{2}$$

$$= ||W||_{2}^{2}$$

Learning GD

For each iteration: α is learning rate.

When $\alpha = \frac{\partial J}{\partial w}$

b' < - - d 3J

- Stochastic GD - some sample