MA4702. Programación Lineal Mixta. 2020.

Profesor: José Soto Auxiliar: Diego Garrido Fecha: 14 de mayo de 2020.

Dimensión y Caras

1. P1

Un vertex cover (VC) de G=(V,E) es un conjunto de vértices $W\subseteq V$ talque para cada $e\in E$ tiene al menos un extremo en W. Sea $P_{vc}(G)=conv\{\chi^W:W\text{es }VC\text{ de }G\}\subseteq\mathbb{R}^V$. Es fácil ver que:

$$P_{vc}(G) \subseteq Q(G) := \{ x \in \mathbb{R}^V : x_u + x_v \ge 1, \forall (u, v) \in E, 0 \le x_v \le 1, \forall v \in V \}$$

- a) Pruebe que P_{vc} es de dimensión completa.
- b) Pruebe que las desigualdades $x_v \leq 1$ inducen facetas.
- c) Pruebe que si existe un ciclo $\{(u,v),(v,w),(w,u)\}\subseteq E$ de largo 3, entonces, la desigualdad $x_u+x_v+x_w\geq 2$ es válida y la desigualdad $x_u+x_v\geq 1$ no induce faceta.

2. P2

Sea $a \in \mathbb{R}^n_{++}$ y $b \in \mathbb{R}_{++}$ tal que $\sum_{i=1}^n a_i > b$. Consideremos el polítopo de Knapsack:

$$K_n = conv(\{x \in \{0, 1\}^n : a^T x \le b\})$$

Y el polítpo de Knapsack Fraccionario:

$$K\text{-}Fr_n = \{x \in [0,1]^n : a^T x \le b\}$$

- a) Contraste K_n con K- Fr_n . $\xi K_n = K$ - Fr_n ? ξ Se tiene alguna inclusión?
- b) Calcula la dimensión de K- Fr_n y de K_n .
- c) Encuentre las facetas de K- Fr_n .