Theorem 1. 对于一个有向无环图 G, 插入一条边 (S_u,S_v) 使得 G 中出现环,记环中的所有节点集合为 C, 将把 C 中的节点合并为新节点 S_{new} 得到的 DAG 记为 G_{new} ,则对于 G_{new} 中的任何一个节点 S_i ,记 S_i 的入边集合为 IN_Si ,出边集合为 OUT_Si ,如果 $S_i \notin C$,那么 $C \cap IN_Si \neq \emptyset$ 与 $C \cap OUT_Si \neq \emptyset$ 至多有一个成立。

Proof. 使用反证法,假设 $C \cap IN_Si \neq \emptyset$ 与 $C \cap OUT_Si \neq \emptyset$ 同时成立,取 $S_j \in C \cap IN_Si$, $S_k \in C \cap OUT_Si$,由于合并后节点 S_j 与节点 S_k 之间存在一条边,所以在 G_{new} 中 S_j 与 S_k 属于同一个强连通分量,则必然存在一条路径 p,使得 $S_k \xrightarrow{P} S_j$.此时 G_{new} 中存在环 $S_i \to S_k \xrightarrow{P} S_j \to S_i$,与 G_{new} 为有向无环图相矛盾.故 $C \cap IN_Si \neq \emptyset$ 与 $C \cap OUT_Si \neq \emptyset$ 至多有一个成立。

Theorem1 2. 对于一个已经建立完成的索引图 G_I , 若其中有根据规则 g 创建的边 $(< S_i, L_1 >, < S_i, L_2 >), L_2 \in L_1$, 那么 $|L_1| = 1$, 即 L_1 中只含有一个时刻.

Proof. 索引图建立时,构造与 S_i 相关的出入边共有四种情况。

- S_i 作为 S_j 在 t_x 时刻的 N_1 出边, 构造边 ($< S_j, t_x >$, $< S_i, t_x >$)
- S_i 作为 S_j 在 $L_2(S_j, S_i)$ 时刻的 N_2 出边, 构造边 (< $S_j, L^+(S_j)$ >, < $S_i, L_2(S_j, S_i)$ >)
- S_i 在 t_x 时刻有 N_1 出边 S_k , 构造边 $(\langle S_i, t_x \rangle, \langle S_k, t_x \rangle)$
- S_i 在 $L_2(S_i, S_k)$ 时刻有 N_2 出边 S_k , 构造边 ($< S_i, L^+(S_i) >$, $< S_k, L_2(S_i, S_k) >$)

上述情况中,第二种情况构造的边($< S_j, L^+(S_j) >, < S_i, L_2(S_j, S_i) >$)表示 S_i 在 $L_2(S_j, S_i)$ 时刻必有入边节点 S_j ,第四种情况构造的边($< S_i, L^+(S_i) >, < S_i, L_2(S_i, S_k) >$)表示 S_i 在 $L^+(S_i)$ 时刻必定没有入边。因此必然满足 $\bigcup_{\substack{S_j \in G_S, S_j \neq S_i \\ }} L_2(S_j, S_i) \cap L^+(S_i) = \emptyset$,因此 L_2 只能含有有一个时刻,即 $|L_2| = 1$.