主管 领导 审核 签字

哈尔滨工业大学(深圳) 2018/2019 学年春季学期

高等数学 B 试 题

题号	_	_	Ξ	四	五	六	七	总分
得分								
阅卷人								

注意行为规范 遵守考场纪律

一、填空题(每小题 2 分,共 5 小题,满分 10 分)

- 1. 设空间区域 Ω 由圆锥面 $z = \sqrt{x^2 + y^2}$ 与平面z = 1围成,则 $\iiint (xy^2 + z) dx dy dz = \underline{\qquad}.$
- 2. 已知向量场 $\mathbf{F}(x,y,z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$,则其在点(1,2,3)处的旋度 $\operatorname{rot} \mathbf{F}|_{(1,2,3)} = \underline{\hspace{1cm}}.$
- 3. 设有分布着质量的曲线弧 $x = \cos t$, $y = \sin t$, $z = t (0 \le t \le 2\pi)$, 它的线 密度 $\rho(x,y,z) = \frac{z^2}{x^2 + y^2}$, 则该曲线弧对 z 轴的转动惯量
- 4. 设质点在平面力场 $\mathbf{F}(x,y) = -\mathbf{e}^{y}\mathbf{i} + (y+1-x\mathbf{e}^{y})\mathbf{j}$ 的作用下沿抛物线 $y = x^2$ 从点(0,0) 运动到点(1,1),则力场 $\mathbf{F}(x,y)$ 所作的功
- 5. 全微分方程 $\left(e^{x}+y\right)dx+\left(x+\sin y\right)dy=0$ 的通解为 ______
- 二、选择题(每小题 2 分, 共 5 小题, 满分 10 分, 每小题中给出的四个选项中只 有一个是符合题目要求的,把所选项的字母填在题后的括号内)
 - 1. 设 $a_n = (-1)^n \ln \left(1 + \frac{1}{\sqrt{n}}\right)$, 则级数 (

- (A) $\sum_{n=1}^{\infty} a_n \ni \sum_{n=1}^{\infty} a_n^2$ 均收敛; (B) $\sum_{n=1}^{\infty} a_n \ni \sum_{n=1}^{\infty} a_n^2$ 均发散;
- (C) $\sum_{n=1}^{\infty} a_n$ 收敛, $\sum_{n=1}^{\infty} a_n^2$ 发散; (D) $\sum_{n=1}^{\infty} a_n$ 发散, $\sum_{n=1}^{\infty} a_n^2$ 收敛.
- 2. 已知幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 x=1 处条件收敛,则 $x=\sqrt{5}$ 与 x=5 依次为幂级数

$$\sum_{n=1}^{\infty} \frac{1}{n} a_n (x-2)^n \text{ in } ($$

- (A) 收敛点, 收敛点; (B) 收敛点, 发散点; (C) 发散点, 收敛点; (D) 发散点, 发散点.

- 3. 设函数 $f(x) = \begin{cases} x, & 0 \le x \le \frac{1}{2}, \\ 2 2x, & \frac{1}{2} < x < 1, \end{cases}$ 的傅里叶级数的和函数为
 - $S(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos n\pi x \ \left(-\infty < x < +\infty\right), \ \ \sharp + a_n = 2\int_0^1 f(x) \cos n\pi x \ dx$

$$(n=0,1,2,\cdots), \ \bigcup S(-\frac{5}{2})=($$

- (A) $\frac{1}{2}$; (B) $-\frac{1}{2}$; (C) $\frac{3}{4}$; (D) $-\frac{3}{4}$.
- 4. 设Σ为球面 $x^2 + y^2 + z^2 = 1$ 的上半部分 $z \ge 0$,取上侧,则下列结论中,不正确的是

- (A) $\iint_{\Sigma} x^2 dz dx = 0;$ (B) $\iint_{\Sigma} x dz dx = 0;$
- (C) $\iint_{\Sigma} y^2 dz dx = 0;$ (D) $\iint_{\Sigma} y dz dx = 0.$
- 5. 设L是空间曲线 $\begin{cases} x^2+y^2=1, \\ x-y+z=2, \end{cases}$ 从z轴正向看去L是逆时针方向,则曲线积分

$$\oint_{I} (z-y) dx + (x-z) dy + (x-y) dz = ($$

- (A) 2π ; (B) π ; (C) $-\pi$; (D) -2π .

五、(7 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{n^2+1}{n} x^{2n}$ 的收敛域及和函数 S(x).

六、(5分) 计算曲面积分 $I=\iint\limits_{\Sigma} \frac{x\cos\alpha+y\cos\beta+z\cos\gamma}{\left(x^2+y^2+z^2\right)^{\frac{3}{2}}}\mathrm{dS}$,其中 Σ 为上半椭球面

 $x^2 + y^2 + \frac{z^2}{2} = 1$ ($z \ge 0$) 的上侧,方向余弦为 $\cos \alpha$, $\cos \beta$, $\cos \gamma$.

