

Laboratorium podstaw teleinformatyki

Ćwiczenie 3

Modulacje analogowe nośnej harmonicznej

Spis treści:

I. Cel ćwiczenia	3
II. Instrukcja wykonania ćwiczenia	4
III. Informacje dotyczące sprawozdania	20
IV. Podstawy teoretyczne	21

I. Cel ćwiczenia

Celem tego ćwiczenia jest analiza modulacji analogowych. Polegać ma ona na obserwacji przebiegów czasowych i widm sygnałów w poszczególnych charakterystycznych punktach modelu łącza telekomunikacyjnego. Zauważyć należy podstawowe zależności pomiędzy zadanymi parametrami symulacji a wynikami w postaci wyliczanej bitowej stopy błędu i zniekształceniami widma sygnału. Obserwacja powinna też dotyczyć wpływu pasma łącza telekomunikacyjnego (jego jakości) na szerokość widma sygnału i związane z tym błędy w transmisji.

Uruchomienie modeli powinno wiązać się z wcześniejszym zapoznaniem z podstawami teoretycznymi zawartymi w niniejszej instrukcji a także przypomnieniem wiadomości z Wykładów.

II. Instrukcja wykonania ćwiczenia

Program:

Część 1. Modulacja AM

- 1. Obserwacja przebiegów czasowych i widma, zmian przebiegów i widma w wyniku zmian parametrów sygnału modulującego i parametrów modulacji
- 2. Ocena szerokości pasma zajmowanego przez sygnał zmodulowany
- 3. Ocena odporności na szumy. Wyznaczenie ch-ki szumowej.

Część 2. Modulacja FM

- 4. Obserwacja przebiegów czasowych i widma, zmian przebiegów i widma w wyniku zmian parametrów sygnału modulującego i parametrów modulacji
- 5. Ocena szerokości pasma zajmowanego przez sygnał zmodulowany
- 6. Ocena odporności na szumy. Wyznaczenie ch-ki szumowej.

Wymagania

- 1) Znajomość przebiegów i widm w modulacji AM i FM
- 2) Znajomość budowy i działania modulatora iloczynowego AM i demodulatorów: synchronicznego i detektora obwiedni.
- 3) Znajomość budowy i działania modulatora FM i dyskryminatora częstotliwości.
- 4) Znajomość charakterystyk szumowych AM i FM

Przebieg ćwiczenia (patrz niżej)

1. Obserwacja przebiegów czasowych i widma, zmian przebiegów i widma w wyniku zmian parametrów sygnału modulującego i parametrów modulacji.

Schemat układu pomiarowego.

Model lacza analogowego z modulacja AM

Załaduj plik Am 1.mdl

Wykonaj:

- a. Czas symulacji ustaw 1s. Włącz źródło sygnału; Wybierz typ sygnału: sinus 100Hz.
- b. Włącz modulator.
- c. W demodulatorze wyłącz wejściowy filtr pasmowy. Wybierz detektor synchroniczny.
- d. Ustawiając w modulatorze głębokości modulacji:
 - a. m = 0.2
 - b. m = 0.7
 - c. m = 1.0
 - d. m = 1.5

wykonaj symulację i zaobserwuj przebiegi czasowe z oscyloskopu i widma ze spektroskopów w poszczególnych punktach układu. Na podstawie wyników uzyskanych dla m = 0.5 umieść w sprawozdaniu:

- a. przebiegi czasowe w zakresie współrzędnej czasu: 0.3...0.5s z oscyloskopu (Rys. 1.a)
- b. widma w zakresie współrzędnej częstotliwości: -1000Hz...+1000Hz ze spektroskopów sygnałów: wejściowego (Rys. 1.b), zmodulowanego (Rys. 1.c), odbieranego (Rys. 1.d) i zdemodulowanego (Rys. 1.e)

Rys. 1.a. Sygnał wejściowy, zmodulowany, odbierany, zdemodulowany, dla m = 0.5

Rys. 1.b. Widmo sygnału wejściowego dla m = 0.5

Rys. 1.c. Widmo sygnału zmodulowanego dla m = 0.5

Rys. 1.d. Widmo sygnału odbieranego dla m = 0.5

Rys. 1.e. Widmo sygnału zdemodulowanego dla m = 0.5

2. Ocena szerokości pasma zajmowanego przez sygnał zmodulowany

Schemat układu pomiarowego.

Załaduj plik Am_2.mdl

 $Procedura\ wyznaczenia\ szerokości\ pasma\ B_M$ zajmowanego przez widmo mocy sygnału zmodulowanego:

- a. Ustaw czas symulacji 1 s
- b. Włącz źródło sygnału wejściowego; Częstotliwość/pasmo sygnału modulującego B_s ustaw wg. polecenia.
- c. Włącz modulator.
- d. W szerokopasmowym mierniku mocy włącz odfiltrowanie nośnej AM
- e. W selektywnym mierniku mocy: włącz odfiltrowanie nośnej AM i ustaw szerokość pasma 5 krotnie większą od B_s pasma sygnału modulującego.
- f. W drodze symulacji zmierz wartość $P_F P_0$ różnicy mocy sygnału zmodulowanego zawartej w paśmie miernika selektywnego (P_F) i mocy sygnału wskazywanej przez

miernik szerokopasmowy i na wejściu detektora progowego (P_0) . Obydwa mierniki wskazują moc w dB.

- g. Jeżeli zmierzona wartość P_F jest mniejsza od P_0 o mniej niż 0,22 \pm 0,04 dB (5% mocy sygnału), zmniejsz pasmo miernika selektywnego i wróć do punktu"f".
- h. Jeżeli zmierzona wartość P_F jest mniejsza od P_0 o 0,22 \pm 0,04 dB przyjmij, że ustawiona szerokość pasma miernika selektywnego odpowiada B_M szerokości pasma widma mocy sygnału zmodulowanego.

Wykonaj:

a. Wykonaj pomiar szerokości pasma B_{M} sygnału zmodulowanego dla następujących ustawień:

Lp	sygnał	$B_s[Hz]$
1	Sinus	100
2	Sinus	200
3	Sinus	300
4	Szum	300

Głębokość modulacji m=0.7.

b. Wyniki umieść w tabeli Tab. 2a..

Tabela 2.a. Szerokość pasma (95% mocy) sygnału zmodulowanego

Lp	$B_s[Hz]$	$B_{M}[Hz]$
1		
2		
3		
4		

3. Ocena odporności na szumy modulacji AM.

Schemat układu pomiarowego.

Model lacza analogowego z modulacja AM

Załaduj plik Am 3.mdl

Procedura wyznaczenia charakterystyki SNRwy=f(SNRwe):

- a. Włącz źródło sygnału; Częstotliwość sygnału B_s źródła ustaw wg. polecenia.
- b. Czas symulacji ustawiaj 1 s.
- c. Włącz modulator. Głębokość modulacji ustawiaj według polecenia.
- d. Wyłącz dodawanie białego szumu w kanale.
- e. W demodulatorze typ demodulatora wybierz według polecenia. Ustawiaj szerokość pasma B_F równą dwukrotnej wartości pasma sygnału modulującego B_s .
- f. W drodze symulacji zmierz i zanotuj wartość P_{F0} (ustala się na końcu symulacji) mocy sygnału za filtrem pasmowym (dB) i P_{R0} mocy sygnału zdemodulowanego (dB)
- g. Wyłącz modulator.

- h. Włącz dodawanie szumu białego; Moc szumu w kanale 0 dB.
- i. W drodze symulacji zmierz i zanotuj wartość Psz_{F0} (ustala się na końcu symulacji) mocy szumu za filtrem pasmowym (dB) i Psz_{R0} (ustala się na końcu symulacji) mocy szumu za demodulatorem (dB).
- j. Włącz modulator.
- k. Ustaw wartość Psz_K mocy szumu w kanale równą wartości $Psz_K = +5dB$,
- l. W drodze symulacji zmierz a następnie zanotuj wartość Psz_F (ustala się na końcu symulacji) mocy szumu za filtrem pasmowym (dB) i Psz_R (ustala się na końcu symulacji) mocy szumu za demodulatorem (dB).
- m. Znając ustawioną wartość mocy szumu Psz oblicz wartość SNR_{we} na wejściu demodulatora i SNR_{wy} na wyjściu demodulatora wg. wzoru

$$SNR_{we} = P_{F0} - Psz_{F0} - Psz_{,}$$
 $SNR_{wy} = P_{R0} - Psz_{R0} - Psz_{,}$

- n. Jeżeli wartość SNRwe nie jest większa niż 20 dB, zmniejsz wartość Psz mocy szumu w kanale o 2,5 dB, oblicz SNR i przejdź do punktu "k"
- o. Sporządź wykres $SNR_{wy}=f(SNR_{we})$

Zadanie 3.1. Wyznaczenie charakterystyki szumowej modulacji AM

Wykonanie:

a. Wykonaj pomiary SNR_{wy}=f(SNR_{we}) dla następujących ustawień

Lp	sygnał	$B_s[Hz]$	m	demodulator
1	Sinus	300	0.7	synchroniczny
2	Sinus	200	0.7	synchroniczny
3	Sinus	100	0.7	synchroniczny
4	Sinus	100	0.1	synchroniczny
5	Sinus	100	0.7	asynchroniczny
6	Sinus	100	0.1	asynchroniczny

- b. Wyniki umieść w tabelach (Tab.3.a, 3.b, 3.c, 3.d, 3.e, 3.f).
- c. Na wspólnym wykresie przedstaw SNR_{wy}=f(SNR_{we}) dla wyników pomiarów poz. 1,2,3. (Rys. 3.a).
- d. Na wspólnym wykresie przedstaw $SNR_{wy}=f(Psz_K)$ dla wyników pomiarów poz. 1,2,3. (Rys. 3.b).
- e. Na wspólnym wykresie przedstaw $SNR_{wy}=f(Psz_K)$ dla wyników pomiarów poz. 3,4 (Rys. 3.c).

f. Na wspólnym wykresie przedstaw $SNR_{wy}=f(Psz_K)$ dla wyników pomiarów poz. 5,6 (Rys. 3.d).

Tab. 3.a. Charakterystyka szumowa; B_s =300 Hz, m=0.7, demodulacja synchroniczna.

P_{F0}	Psz _{F0}	P _{R0}	Psz _{R0}	5	2.5	0	-2.5	-5	:	Psz K
										SN
										R_{we}
										SN
										R_{wy}

Tab. 3.b. Charakterystyka szumowa; B_s=200 Hz, m=0.7, demodulacja synchroniczna.

P _{F0}	Psz _{F0}	P _{R0}	Psz _{R0}	5	2.5	0	-2.5	-5	 Psz K
									SN
									R_{we}
									SN
									R_{wy}

Tab. 3.c. Charakterystyka szumowa; B_s=100 Hz, m=0.7, demodulacja synchroniczna.

P _{F0}	Psz _{F0}	P_{R0}	Psz _{R0}	5	2.5	0	-2.5	-5	:	Psz K
										SN
										R_{we}
										SN
										R_{wv}

Tab. 3.d. Charakterystyka szumowa; B_s=100 Hz, m=0.1, demodulacja synchroniczna.

P_{F0}	Psz _{F0}	P_{R0}	Psz _{R0}	5	2.5	0	-2.5	-5	:	Psz K
										SN
										R_{we}
										SN
										R_{wy}

Tab. 3.e. Charakterystyka szumowa; $B_s = 100$ Hz, m = 0.7, demodulacja asynchroniczna.

P_{F0}	Psz _{F0}	P_{R0}	Psz _{R0}	5	2.5	0	-2.5	-5	 Psz
10		110							K
									SN
									R_{we}
									SN
									R_{wy}

Tab. 3.f. Charakterystyka szumowa; $B_s = 100 \text{ Hz}$, m = 0.1, demodulacja asynchroniczna.

P _{F0}	Psz _{F0}	P_{R0}	Psz _{R0}	5	2.5	0	-2.5	-5	 Psz K
									SN
									R _{we}
									$R_{\rm wy}$

Rys. 3.a Charakterystyka szumowa AM, m=0.7, demodulacja synchroniczna

Rys. 3.b. SNR AM w funkcji mocy szumu kanału, m=0.7, demodulacja synchroniczna

Rys. 3.c. SNR AM w funkcji mocy szumu kanału, Bs=100Hz, demodulacja synchroniczna

przez Un DA-POKL

Rys. 3.d. Charakterystyka szumowa AM, Bs=100Hz, , demodulacja asynchroniczna

Część 2. Modulacja FM

4. Obserwacja przebiegów czasowych i widma, zmian przebiegów i widma w wyniku zmian parametrów sygnału modulującego i parametrów modulacji.

Schemat układu pomiarowego.

Model lacza analogowego z modulacja FM

Załaduj plik Fm_4.mdl

Wykonaj:

- a. Czas symulacji ustaw 1s. Włącz źródło sygnału; Wybierz typ sygnału: sinus 100Hz.
- b. Włącz modulator.
- c. W demodulatorze wyłącz wejściowy filtr pasmowy. Ustawiaj pasmo sygnału odbieranego równe pasmu ustawionemu w źródle. Ustawiaj wartość dewiacji jak w modulatorze.
- d. Ustawiając w modulatorze wartość dewiacji:

Lp	sygnał	$B_s[Hz]$	Fd [Hz]
1	Sinus	100	100
2	Sinus	100	300
3	Sinus	300	100
4	Szum	100	100
5	Sinus	100	300

- wykonaj symulację i zaobserwuj przebiegi czasowe z oscyloskopu i widma ze spektroskopów w poszczególnych punktach układu.
- e. Na podstawie wyników uzyskanych dla poz. 2 umieść w sprawozdaniu przebiegi czasowe w zakresie współrzędnej czasu: 0.3...0.35s z oscyloskopu (Rys. 5.a)
- f. Na podstawie wyników uzyskanych dla poz. 1,2,3 przenieś do sprawozdania widma sygnału zmodulowanego (Rys. 5.b, 5.b, 5.b)
- g. Na podstawie wyników uzyskanych dla poz. 4,5 przenieś do sprawozdania widma sygnału zmodulowanego (Rys. 5.e, 5.f)

sygnału zmodulowanego (Rys. 5.e	, 5.f)
B . 5 . B. I'' FM EL 2004	
Rys. 5.a. Przebiegi FM, Fd = 300Hz, Bs=100Hz	
Rys. 5.b. Widmo sygnału FM, sinus Bs=100Hz, Fd=100Hz,	Rys. 5.c. Widmo sygnału FM, sinus Bs=100Hz, Fd=300Hz

Rys. 5.d. Widmo sygnału FM, szum 0..100Hz, Fd=100Hz

zez Unię .-POKL.0

Rys. 5.e. Widmo sygnału FM, szum 0..100Hz, Fd=300Hz

5. Ocena szerokości pasma zajmowanego przez sygnał zmodulowany

Schemat układu pomiarowego.

Załaduj plik Fm 5.mdl

Procedura wyznaczenia szerokości pasma B_M zajmowanego przez widmo mocy sygnału zmodulowanego:

- a. Ustaw czas symulacji 1 s
- b. Włącz źródło sygnału wejściowego; Wyłącz opcję sygnału losowego. Częstotliwość/pasmo sygnału modulującego B_s ustaw wg. polecenia.
- c. Włącz modulator. Dewiację Fd ustawiaj według polecenia.
- d. W selektywnym mierniku mocy ustaw szerokość pasma równą podwojonej wartości dewiacji Fd.
- e. W drodze symulacji zmierz wartość $P_F P_0$ różnicy mocy sygnału zmodulowanego zawartej w paśmie miernika selektywnego (P_F) i mocy sygnału wskazywanej przez miernik szerokopasmowy i na wejściu detektora progowego (P_0) . Obydwa mierniki wskazują moc w dB.

- f. Jeżeli zmierzona wartość P_F nie jest mniejsza od P_0 o 0,22 \pm 0,04 dB (5% mocy sygnału), zwiększ pasmo miernika selektywnego i wróć do punktu"e".
- g. Jeżeli zmierzona wartość P_F jest mniejsza od P_0 o 0,22 \pm 0,04 dB przyjmij, że ustawiona szerokość pasma miernika selektywnego odpowiada B_M szerokości pasma widma mocy sygnału zmodulowanego.

Wykonaj:

a. Wykonaj pomiar szerokości pasma B_{M} sygnału zmodulowanego dla następujących ustawień:

Lp	sygnał	B _s [Hz]	Fd [Hz]
1	Sinus	100	100
2	Sinus	200	100
3	Sinus	300	100
4	Sinus	100	300

- c. Wyniki umieść w tabeli Tab. 5a..
- d. Oblicz szerokość pasma wg. reguły Carsona B^C_M=2·(Fd+B_s)

Tabela 5.a. Szerokość pasma (95% mocy) sygnału zmodulowanego

Lp	B_s [Hz]	Fd[Hz]	$B_{M}[Hz]$	$B_{M}^{C}[Hz]$
1	100	100		
2	200	100		
3	300	100		
4	100	300		

6. Ocena odporności na szumy modulacji FM.

Schemat układu pomiarowego.

Załaduj plik Fm_6.mdl

Procedura wyznaczenia charakterystyki SNRwy=f(SNRwe):

- a. Włącz źródło sygnału; Częstotliwość sygnału B_s źródła ustaw wg. polecenia.
- b. Czas symulacji ustawiaj 1 s.
- c. Włącz modulator. Dewiację ustawiaj według polecenia.
- d. Wyłącz dodawanie białego szumu w kanale.
- e. W demodulatorze wartość dewiacji ustawiaj jak w modulatorze. Ustawiaj szerokość pasma filtru pasmowego w.cz. B_F zgodnie z wartością obliczoną z reguły Carsona. Szerokość pasma filtru m.cz. ustawiaj równą wartości pasma sygnału modulującego B_s .
- f. W drodze symulacji zmierz i zanotuj wartość P_{F0} (ustala się na końcu symulacji) mocy sygnału za filtrem pasmowym (dB) i P_{R0} mocy sygnału zdemodulowanego (dB)
- g. Wyłącz modulator.
- h. Włącz dodawanie szumu białego; Moc szumu w kanale 0 dB.
- i. W drodze symulacji zmierz i zanotuj wartość Psz_{F0} (ustala się na końcu symulacji) mocy szumu za filtrem pasmowym (dB) i Psz_{R0} (ustala się na końcu symulacji) mocy szumu za demodulatorem (dB).

- j. Włącz modulator.
- k. Ustaw wartość Psz_K mocy szumu w kanale równą wartości $Psz_K = +5dB$,
- l. W drodze symulacji zmierz a następnie zanotuj wartość Psz_F (ustala się na końcu symulacji) mocy szumu za filtrem pasmowym (dB) i Psz_R (ustala się na końcu symulacji) mocy szumu za demodulatorem (dB).
- m. Znając ustawioną wartość mocy szumu Psz oblicz wartość SNR_{we} na wejściu demodulatora i SNR_{wy} na wyjściu demodulatora wg. wzoru

$$SNR_{we} = P_{F0} - Psz_{F0} - Psz_{F0}$$
 $SNR_{wv} = P_{R0} - Psz_{R0} - Psz_{F0}$

- n. Jeżeli wartość SNRwe nie jest większa niż 20 dB, zmniejsz wartość Psz mocy szumu w kanale o 2,5 dB, oblicz SNR i przejdź do punktu "l"
- o. Sporządź wykres SNR_{wy}=f(SNR_{we})

Zadanie 6.1. Wyznaczenie charakterystyki szumowej modulacji FM

Wykonanie:

a. Wykonaj pomiary SNR_{wy}=f(SNR_{we}) dla następujących ustawień

Lp	sygnał	$B_s[Hz]$	Fd [Hz]
1	Sinus	100	100
2	Sinus	100	300
3	Sinus	100	500

- b. Wyniki umieść w tabelach (Tab.6.a, 6.b, 6.c).
- c. Na wspólnym wykresie przedstaw SNR_{wy}=f(SNR_{we}) dla wyników pomiarów poz. 1,2,3. (Rys. 3.a).
- d. Na wspólnym wykresie przedstaw $SNR_{wy}=f(Psz_K)$ dla wyników pomiarów poz. 1,2,3. (Rys. 3.b).

Tab. 6.a. Charakterystyka szumowa; B_s=100 Hz, Fd=100 Hz

P_{F0}	Psz _{F0}	P_{R0}	Psz _{R0}	5	2.5	0	-2.5	-5	••	Psz K
										SN
										R_{we}
										SN
										R_{wy}

Tab. 6.b. Charakterystyka szumowa; B_s=100 Hz, Fd=300 Hz

P_{F0}	Psz _{F0}	P _{R0}	Psz _{R0}	5	2.5	0	-2.5	-5	 Psz K
									SN
									R_{we}
									SN
									R_{wy}

Tab. 6.c. Charakterystyka szumowa; $B_s = 100 \text{ Hz}$, Fd = 500 Hz

P_{F0}	Psz _{F0}	P_{R0}	Psz _{R0}	5	2.5	0	-2.5	-5	Psz K
									SN
									R_{we}
									SN
									R_{wy}

Rys. 6.a Charakterystyka szumowa FM, Bs=100Hz

Rys. 6.b. SNR FM w funkcji mocy szumu kanału, Bs=100Hz

III. Informacje dotyczące sprawozdania.

Sprawozdanie powinno zawierać:

- imiona i nazwiska wykonujących ćwiczenie
- temat i datę wykonania ćwiczenia
- opis sposobu realizacji wyznaczonych w instrukcji celów
- rysunki prezentujące analizowane sygnały (widma i przebiegi czasowe)
- wykresy BER=f(SNR) wraz z opisem (?)
- spostrzeżenia i wnioski

Termin oddania sprawozdania upływa wraz z następnym terminem odbywania laboratorium.

IV. Podstawy teoretyczne

Celem systemu telekomunikacyjnego jest dostarczenie wiadomości ze źródła informacji do odbiorcy w rozpoznawalnej formie, przy czym źródło i odbiorca sa fizycznie odseparowane od siebie. W tym celu w nadajniku dokonuje się przekształcenia sygnału informacyjnego do postaci dogodnej dla transmisji poprzez kanał. Przekształcenia tego dokonuje się za pomocą procesu znanego pod nazwą modulacji, polegającego na zmienianiu jednego z parametrów fali nośnej zgodnie ze zmianami sygnału informacyjnego. Odbiorca dokonuje odtworzenia oryginalnego sygnału informacyjnego na podstawie "pogorszonej" wersji sygnału wysyłanego, po jego przejściu przez kanał. Odtworzenie to dokonywane jest w procesie zwanym demodulacją, będącym odwróceniem procesu modulacji zachodzącego w nadajniku. Ze względu na nieuniknioną obecność szumów i zniekształceń w sygnale odbieranym, stwierdzić można, że odbiornik nie jest w stanie odtworzyć dokładnie oryginalnego sygnału niosącego wiadomość. Wynikające stąd "pogorszenie" odbieranego sygnału zależy od rodzaju użytej w nim modulacji. W szczególności można stwierdzić, że pewne rodzaje modulacji są mniej wrażliwe na szumy i zniekształcenia, niż inne.

Modulacja amplitudy AM

Sinusoidalna fala nośna zdefiniowana jest jako: $c(t) = A_c \cos(2\pi f_c t)$

gdzie A_c - amplituda fali nośnej, f_c- częstotliwość fali nośnej

i jeżeli przyjąć, że m(t) oznacza przebieg sygnału modulującego to można zapisać wzór na falę zmodulowaną amplitudowo:

$$s(t) = A_c [1 + k_a m(t)] \cos(2\pi f_c t)$$

gdzie k_a – czułość amplitudowa modulatora.

Obwiednia takiego sygnału spełnia następujące warunki:

- amplituda sygnału k_am(t) jest zawsze mniejsza od jedności

 $|k_a m(t)| < 1, t \in (-\infty, \infty)$. Jeżeli warunek ten nie zostanie spełniony wtedy fala nośna zostaje przemodulowana co powoduje odwracanie fali nośnej i powoduje zniekształcenie obwiedni;

 częstotliwość fali nośnej f_c jest wiele większa od największej częstotliwości W sygnału modulującego m(t):

$$f_c >> W$$

Wielkość W określa się też szerokością pasma sygnału informacyjnego.

Widmo jest transformatą Fouriera fali AM:

$$S(f) = \frac{A_c}{2} [\delta(f - f_c) + \delta(f + f_c)] + \frac{k_a A_c}{2} [M(f - f_c) + M(f + f_c)]$$

Widmo to składa się z dwóch funkcji wziętych z wagą $A_c/2$ oraz dwu identycznych widm sygnału modulującego przesuniętych w częstotliwości o $\pm f_c$

przeskalowanych amplitudowo o wartość $k_a A_c/2$ co obrazuje poniższy rysunek (2).

Rysunek 1 Ilustracja procesu działania modulacji amplitudy AM

- a sygnał m(t) z pasma podstawowego
- b fala AM przy $|k_a m(t)| < 1$ dla każdego t
- c fala AM przy $|k_a m(t)| > 1$ dla pewnego t

Rysunek 2 Widmo z pasma podstawowego i widmo fali AM

Modulacja częstotliwości FM

Przy założeniu, że $\Theta_i(t)$ oznacza kąt zmodulowanej fali nośnej, będący z założenia funkcją sygnału informacyjnego można zapisać wzór na falę zmodulowaną kątowo:

$$s(t) = A_c \cos[\Theta_i(t)]$$

gdzie A_c - amplituda fali nośnej.

W czasie pełnego okresu argument $\Theta_i(t)$ zmienia się o 2π radianów. Gdy $\Theta_i(t)$ zmienia się monotonicznie wraz z czasem, średnia częstotliwość dla przedziału od t do t+ Δt wynosi [3]:

$$f_{\Delta t}(t) = \frac{\Theta_i(t + \Delta t) - \Theta_i(t)}{2\pi \Delta t}$$

Istnieje wiele sposobów, na które kąt $\Theta_i(t)$ może być zmieniany w takt sygnału modulującego ale wyróżnia się dwa podstawowe:

- modulację częstotliwości
- modulację fazy (nie analizowaną dalej)

Modulacja częstotliwości jest postacią modulacji kąta, przy której częstotliwość chwilowa f_i(t) zmienia się liniowo wraz z sygnałem informacyjnym m(t) zgodnie z zależnością:

$$f_i(t) = f_c + k_f m(t)$$

Składnik f_c reprezentuje częstotliwość niezmodulowanej fali nośnej; stała k_f jest czułością częstotliwościową modulatora.

Jeżeli m(t) jest sygnałem cosinusoidalnym to sygnał zmodulowany częstotliwościowo jest w dziedzinie czasu opisany równaniem:

$$s(t) = A_c \sin[2\pi f_c t + 2\pi k \int_0^t U_m \cos(2\pi f_m t) dt] = A_c \sin[2\pi f_c t + \frac{kU_m}{f_m} \sin(2\pi f_m t)]$$

Czynnik k U_m reprezentuje maksymalną zmianę częstotliwości wywoływaną przez sygnał modulujący (gdy $\sin(2\pi f_m t)$ równa się +1 lub -1) i jest nazywany

dewiacją częstotliwości Δf . Wyrażenie $\frac{kU_m}{f_m}$ nosi nazwę wskaźnika modulacji

M.

Matematycznie:

$$M = \frac{kU_m}{f_m} = \frac{\Delta f}{f_m}$$

Widmo sygnału zmodulowanego FM przedstawia Rysunek 3. Widmo to jest nieskończenie szerokie ale stosuje się przybliżenie polegające na określeniu szerokości widma, w granicach której moc zawarta w prążkach sygnału stanowi 98% mocy całego sygnału.

Rysunek 3 Widmo sygnału zmodulowanego FM

