Predicting Alumni Income Based on University-level Data

Niko Miller, Akseli Manninen, Santeri Löppönen

Project Introduction

- Past studies have concluded that a strong connection exists between higher education and income¹
- We further examine this link by regressing median earnings of students 10 years after entry on university-level covariates
- We extend previous studies by considering demographic and geographic factors
- Data on 6681 U.S. universities spans over 9 regions, 59 state post codes, 2430 cities
- Bayesian models:
 - Pooled model for all universities
 - Separate and hierarchical model with region-grouping

Data Description

- Most recent institutional-level college scorecard data from U.S. Department of Education¹
- 6681 observations/universities and 2989 variables
- Aggregate data for each university
 - Institutional characteristics, enrollment, student aid, costs and student outcomes
- Data quality is quite good, but many variables have lots of NAs
- Why this dataset?

Data Description

Dependent variable / Median earnings 10 yr. after entry

Age of entry

Analysis Problem

- Predict median earnings of alumni with university level covariates
- Multivariate regression setting
- Mathematical model:
 - Y is the dependent variable
 - X is the data matrix of covariates
 - \circ β is the regression coefficient vector
 - \circ ε is the residual error
 - Hatted variables \hat{Y} , $\hat{\beta}$ indicate LS¹ estimates

$$Y = X\beta + \varepsilon$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1q} \\ 1 & x_{21} & x_{22} & \dots & x_{2q} \\ 1 & x_{31} & x_{32} & \dots & x_{3q} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nq} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_q \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

$$\hat{m{Y}} = m{X}\hat{m{eta}}$$

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$$

Feature Selection

- Raw data had ~3000 variables → feature selection was a focus area
- Feature selection in 3 phases:
 - Select initial set of features based on common intuition and literature
 - 2. Assess correlations, linear relationships, and dummy effects of categorical variables
 - 3. Use stepwise regression to suggest final subset of features

Initial set of features

	1	ı	
	Name	Data type	Description
1	SATVRMID	integer	Midpoint of SAT scores at the institution (critical reading)
2	SATMTMID	integer	Midpoint of SAT scores at the institution (math)
3	SATWRMID	integer	Midpoint of SAT scores at the institution (writing)
4	MD_FAMINC	double	Median family income
5	AGE_ENTRY	double	Average age of entry
6	FEMALE	double	Share of female students
7	FIRST_GEN	double	Share of first-generation students
8	PCT_WHITE	double	Percent of the population from students' zip codes that is White
9	DEBT_MDN_SUPP	integer	Median debt, suppressed for n=30
10	C150_4	double	Completion rate for first-time, full-tim students
11	COSTT4_A	integer	Average cost of attendance (academic year institutions)
12	POVERTY_RATE	double	Poverty rate
13	UNEMP_RATE	double	Unemployment rate
14	MARRIED	double	Share of married students
15	VETERAN	double	Share of veteran students
16	LOCALE	categorical	Locale of institution
17	CCBASIC	categorical	Carnegie Classification – basic
18	CONTROL	categorical	Control of institution

Comments

- Ability assumed to have positive effect
- Privileged background assumed to have positive effect
- Age of entry assumed to have adverse effect
- Gender split assumed to have an effect due to empirically observed gender gap
- Marriage and veteran rates assumed to have adverse affect
- Cost and debt assumed to have positive effect
- Assumption that location, control, classification has some effect

Numerical variables

Pearson's correlation

1.0

0.5

0.0

-0.5

University locale

Comments

We created a dummy variable URBAN if locale is not rural

University control

Comments

 We created a dummy variable for private institutions (for-profit and non-profit)

- Lastly, we used stepwise regression with backward elimination to finetune our model
- Final model suggested by the stepwise regression model:

$$egin{align*} Y &= eta_{SAT_ALL} x_{SAT_ALL} + eta_{MD_FAMINC} x_{MD_FAMINC} + eta_{COSTT4_A} x_{COSTT4_A} \ &+ eta_{POVERTY_RATE} x_{POVERTY_RATE} + eta_{URBAN} x_{URBAN} + eta_{PRIVATE} x_{PRIVATE} + arepsilon \end{aligned}$$

We proceeded to Stan with this final model

Model Descriptions

Separate Model

$$y_{ij} \mid \mu_j, \sigma_j \sim N(\mu_j, \sigma_j^2),$$

 $\mu_j = \alpha_j + X\beta_j$
 $\alpha_j, \beta_j, \mu_j, \sigma_j \sim N$

Pooled Model

$$y_i \mid \mu, \sigma \sim N(\mu, \sigma^2),$$

 $\mu = \alpha + X\beta$
 $\alpha, \beta, \mu, \sigma \sim N$

Hierarchical Model

$$y_{ij} \mid \mu_j, \sigma \sim N(\mu_j, \sigma^2),$$

$$\mu_j = \alpha_j + X\beta_j$$

$$\alpha_j, \beta_j \mid \mu_P, \sigma_P \sim N(\mu_P, \sigma_P^2)$$

$$\mu_P, \sigma_P \sim N$$

Choice of Priors

- We tried to conduct background research on the prior choices whenever possible
 - E.g., mean on SAT effect was based on national averages on income and SAT scores
- If no meaningful analysis on effect could be done, we assumed no effect on average
- We chose sufficiently large standard deviations to prevent informativeness in the priors
- We tried to avoid prior-data conflict by keeping the level of informativeness between location and scale parameters constant

Stan Setup

- Computing: JupyterLab
- Stan interface: cmdstanr
- Chains: 4 (default)
- Iterations per chain: 2 000 (default: 1 000 warmup, 1 000 sampling)
- Seed for RNG: 1234

Convergence Diagnostics - ESS

Ratios of effective sample size to total sample size

- light: between 0.5 and 1 (high)
- mid: between 0.1 and 0.5 (good)
- dark: below 0.1 (low)

Convergence Diagnostics – Rhat

Rhat values

- light: below 1.05 (good)
- mid: between 1.05 and 1.1 (ok)
- dark: above 1.1 (too high)

Convergence Diagnostics – HMC specific

- Treedepth:
 - For pooled and hierarchical models satisfactory
 - In separate model all transitions hit the max treedepth
- Divergences:
 - For separate and pooled models no divergent transitions
 - In hierarchical model ≈ 4% divergent transitions

Posterior Predictive Checks

Observed values vs. posterior predictions

Model Comparison - LOO

- Model performance order based on log pointwise predictive density (ELPD)
 - 1. Best: Separate model (-7700)
 - 2. Hierarchical model
 - Pooled model

	elpd_diff	se_diff
separate	0.0	0.0
hierarchical	-49.7	6.2
pooled	-7450000.0	75700.0

elpd_loo is an estimate of the expected log pointwise predictive densitity (ELPD). elpd_loo sums individual pointwise log predictive densities.¹

Model Comparison - k

- PSIS-LOO estimates of the separate model can be considered reliable since Khat values < 0.5
- PSIS-LOO estimates of the pooled model are likely too optimistic (biased)¹ since Khat values >> 0.7
- PSIS-LOO estimates of the hierarchical model are mostly reliable but few Khat values > 0.7

Predictive Performance Assessment

Approach

- Train/test split with 763/30 obs.
- Fit all models on train set
- Use fitted model to predict on test set
- Compute Root Mean Squared Error (RMSE)
- Assess model output for RMSE

Model output

MCMC posterior histogram for RMSE

→ Decent predictions as the sample st.dev. in the complete set (train+test) is \$11.6k for median earnings 1st Separate, 2nd Hierarchical, 3rd Pooled

Prior Sensitivity Analysis

- The width of priors had been a major point of discussion and uncertainty when setting original priors
- Experiment with priors of different widths:
 - Wide: 3x original prior sd
 - Narrow: 0.5x original prior sd
- Narrow priors perform better, Rhat, Khat, RMSE and ESS values improve
- For separate narrow model, all Rhat values reduced to below 1.01 from up to 1.12
- Estimates for coefficients are not affected much
- Wider priors lead to more convergence issues, worse predictive performance and lower ESS

Conclusion: Narrow priors perform better and should be used

Issues and Potential Improvements

- Narrowing down priors had a positive impact → Models could be improved by fine-tuning priors
- Pooled model had extreme k hat values and low elpd → Model could be rebuilt to prevent overfitting
- Separate model took ~1h to sample in Jupyter → Model could be made more efficient computationally
- Test set was small → Could be interesting to see how model fit and predictive performance is affected by altering the size of the test set

Conclusions

Project: Bayesian multivariate linear regression on median alumni earnings 10 years after entry in 793 universities in the U.S.

 Clear link found between education and future earnings; the model has decent predictive power in terms of RMSE

Three models: Pooled, Hierarchical and Separate

- Pooled model is prone to overfitting
- Separate model has issues with convergence and is slow to run, otherwise good performance, preferred by elpd and has lowest RMSE
- Hierarchical model has strong performance overall and doesn't have major issues

Prior sensitivity analysis shows that model performance can be improved by using narrower priors

Contact: Niko Miller: niko.miller@aalto.fi, Akseli Manninen: akseli.manninen@aalto.fi, Santeri Löppönen: santeri.lopponen@aalto.fi

References

- Card, D. (1999). THE CAUSAL EFFECT OF EDUCATION ON EARNINGS. Wolla, S. A., & Sullivan,
 J. (2017). Education, Income, and Wealth. https://fred.stlouisfed.org/graph/?g=7yKu.
- Stan. (n.d) Effective Sample Size [Website]. Retrieved from: https://mc-stan.org/docs/2_19/referencemanual/effective-sample-size-section.html
- Gabry, Gelman, Vehtari. (2016) Practical Bayesian model evaluation using leave-one-out crossvalidation and WAIC.