Sammanfattning av SF1681 Linjär algebra, fortsättningskurs

Yashar Honarmandi yasharh@kth.se

22 november 2018

Sammanfattning

Detta är en sammanfattning av SF1681 Linjär algebra, fortsättningskurs. Den innehåller förklaringar av centrala begrepp, definitioner och satser som täcks i kursen.

Innehåll

1	Vektorrum 1.1 Definitioner 1.2 Satser	1 1 2
2	Avbildningar 2.1 Definitioner 2.2 Satser	2 3
3		4 4
4	Inreprodukt 4.1 Definitioner	6 8
5	5.1 Definitioner	9 9

1 Vektorrum

1.1 Definitioner

Kroppar En kropp är något som har definierat multiplikation och addition, och som fungerar som (är isomorft med) \mathbb{R}, \mathbb{C} osv.

Vektorrum Ett vektorrum är en mängd med en operation som gör V till en abelsk grupp och för vilken det finns en kropp k med skalärer och en operation med skalären som uppfyller

- $c(x+y) = cx + cy, c \in \mathbb{R}, x, y \in V.$
- (c+d)x = cx + dx, $c, d \in \mathbb{R}$.
- c(dx) = (cd)x.
- 1x = x.

Delrum En delmängd V av ett vektorrum är ett delrum om

- $0 \in V$, där 0 är nollelementet.
- $\bullet \ \, x,y \in V \implies x+y \in V.$
- $cx \in V$ för alla $c \in \mathbb{R}$.

Inre direkt summa Vi definierar den inre direkta summan

$$\bigoplus_{i=0}^{\infty} V_i = \left\{ \sum_{i=0}^{\infty} a_i, a_i \in V_i \right\}.$$

Yttre direkt summa Den yttre direkte summan av två vektorrum definieras som

$$V \oplus W = \{(x, y), x \in V, y \in W\}.$$

Kvotrum Om $W \subseteq V$ är delrum, kan vi bilda

$$\frac{V}{W} = \left\{ x + W, x \in V \right\},\,$$

där vi har användt summan

$$x + W = \{x + y, y \in W\}.$$

Dessa kallas för sidoklasser.

Operationer på sidoklasser Till sidoklasser hör operationer

$$(x + W) + (y + W) = x + y + W,$$

 $a(x + W) = (ax) + W.$

Linjärt oberoende mängder S är en linjärt oberoende mängd om

$$\sum a_i x_i = 0 \implies a_i = 0 \forall i,$$

1

där alla x_i är elementer i S.

Linjärt hölje Det linjära höljet Span(S) av mängden S är

- \bullet mängden av alla linjärkombinationer av vektorer i S.
- \bullet det minsta delrummet som innehåller S.
- $\bullet \bigcap_{S \subset W} W.$
- $\sum_{x \in S} \operatorname{Span}(x)$.

Bas En bas B för vektorrummet W är en linjärt oberoende mängd så att $V = \operatorname{Span}(B)$, dvs. att alla vektorer i V är linjärkombinationer av vektorer i B på ett unikt sätt.

Duala rum För ett vektorrum V över kropp k är duala rummet V^* mängden av alla linjära former på V, dvs. alla linjära avbildningar $V \to k$.

Dual bas Givet en bas $\{e_i\}_{i\in I}$ för V, väljer vi en bas $\{e_i^*\}_{i\in I}$ fför V^* som uppfyller

$$e_i^*(e_j) = \delta_{ij}.$$

1.2 Satser

Operationer på sidoklasser Öperationer på sidoklasser är väldefinierade.

Bevis

2 Avbildningar

2.1 Definitioner

Isomorfir En isomorfi är en bijektiv avbildning mellan vektorrum.

Linjära avbildningar En avbildning T är linjär om

$$T(x + y) = T(x) + T(y),$$

$$T(cx) = cT(x), c \in \mathbb{R}.$$

Vi säjer att T respekterar eller bevarar strukturen som vektorrum.

Isomorfir En isomorfi är en linjär och bijektiv avbildning mellan vektorrum.

Matriser för linjära avbildningar Om B är en bas för V och D är en bas för W kan vi ordna en matris för $L:V\to W$ genom

$$L(x_i) = \sum_{j \in I} a_{ji} y_j,$$

där alla $x_i \in B$, alla $y_i \in D$ och I är en mängd av index som det skall summeras över. Linjära kombinationer är per definition ändliga, och därmed summeras det över ett ändligt antal termer även om I är oändlig.

Analytiska funktioner av operatorer En analytisk funktion av en operator L definieras som

$$f(L) = \sum a_i L^i.$$

Matrisnorm Normen av en matris definieras som

$$||A|| = \sup_{\|x\|=1} ||Ax||.$$

Nilpotenta operatorer En operator L är nilpotent om $L^n = 0$ för något n.

2.2 Satser

Basbyte Låt L vara en avbildning från V till W. Låt $]_{B,D}$ vara en avbildning mellan vektorrum från basen B i definitionsmängden till D i målmängden, och låt $P_{A,B}$ vara avbildningen som byter bas från A till B i samma vektorrum. Då gäller det att

$$L_{B,D} = P_{D',D}L_{B',D'}P_{B,B'}$$

Bevis Kommutativt diagram

Koordinater Låt $B = \{x_i\}_{i \in I}$ vara en bas för vektorrummet V. Detta ger en isomorfi

$$V \to k^I \equiv \bigoplus_{i \in I} k,$$

$$x = \sum a_i x_i \to \{a_i\}_{i \in I}.$$

Bevis Avbildningen

$$\{a_i\}_{i\in I} \to \sum a_i xi$$

ger en avbildning $k^I \to V$ som är injektiv eftersom B är linjärt oberoende och surjektiv eftersom B spänner upp V.

Kärna och injektivitet En linjär avbildning är injektiv om och endast om $ker(L) = \{0\}.$

Bevis

$$L(x) = L(y) \implies L(x - y) = 0 \implies x - y \in \ker(L).$$

Alltså kan alla element i kärnan skrivas som differansen av två element på detta sättet, och det enda som garanterar injektivitet är om bara identiteten finns i kärnan.

Kvotavbildning Om $W \subseteq V$ är ett delrum , ger $x \to x + W$ en linjär kvotavbildning från V till $\frac{V}{W}$.

Bevis Vi har

$$x + y \rightarrow x + y + W = x + W + y + W,$$

$$ax \rightarrow ax + W = a(x + W).$$

och beviset är klart.

Isomorfisatsen

$$\operatorname{Im}(L) \cong \frac{V}{\ker(L)}$$

Bevis Avbildningen $\Phi(x + \ker(L)) = L(x)$ ger en väldefinierad avbildning från $\frac{V}{\ker(L)}$ till $\operatorname{Im}(L)$ eftersom $x + \ker(L) = y + \ker(L)$ implicerar L(x) = L(y) ty L är linjär. Φ är injektiv eftersom $\ker(\Phi) = \{x + \ker(L) : L(x) = 0\} = \{\ker(L)\}$. Φ är surjektiv eftersom y = L(x) för något x ger $y = \Phi(x + \ker(L))$, och alltså finns det för alla $y \in \operatorname{Im}(L)$ ett x så att $y = \Phi(x + \ker(L))$.

Dimensionssatsen Om V är ändligdimensionellt är rank $L + \dim(\ker(L)) = \dim(V)$.

Bevis

Faktorisering med kvotrum Om $U \subseteq \ker(L)$ finns det en unik avbildning $\Phi : \frac{V}{U} \to W$ sådan att $L = \Phi \circ \Psi$.

Bevis Definiera $\Phi(x+U) = L(x)$.

Norm av potenser av matriser

$$||A^i|| \le ||A||^i$$

Bevis

Konvergens av funktioner av matriser En funktion f av en matris konvergerar om

$$f(||A||) = \sum a_i ||A||^i$$

konvergerar.

3 Egenvärden och olika polynom

3.1 Definitioner

Egenvektorer x är en egenvektor till L om det finns ett $\lambda \in k$ så att

$$Lx = \lambda x$$
.

 λ kallas det motsvarande egenvärdet.

Karakteristiskt polynom Om V är ändligdimensionellt ges det karakteristiska polynomet av

$$p_L(x) = \det(xI - L) \in k[x],$$

där I är identitetsavbildningen.

Minimalpolynom Om A är en matris, är minimalpolynomet $q_A(x) \in k[x]$ det moniska polynomet av lägst grad så att $q_A(A) = 0$.

Diagonaliserbarhet En operator är diagonaliserbar om det finns en bas så att operatorns matris i den basen är diagonal.

Samtidig diagonaliserbarhet Två operatorer L_1 och L_2 är samtidigt diagonaliserbara om båda är diagonaliserbara och det finns en gemensam bas av egenvektorer.

3.2 Satser

Karakteristiska polynom och egenvärden Om lambda är ett egenvärde till L så är $p_L(\lambda) = 0$.

Bevis Ez

Existens av minimalpolynom Om V är ändligdimensionellt, har L ett karakteristiskt polynom.

Bevis Betrakta matrisen A för L i någon bas. Det gäller att mängden $\{A^0, A^1, \dots, A^{n^2}\}$ är linjärt beroende, och därmed finns det koefficienter a_0, \dots, a_n så att

$$\sum a_i A^i = 0.$$

Cayley-Hamiltons sats $p_L(L) = 0$.

Bevis Om matrisen för L är diagonal så är det uppenbart, ty

$$A^{i} = \begin{bmatrix} \lambda_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{n} \end{bmatrix} \implies p_{A}(A) = \begin{bmatrix} p_{A}(\lambda_{1}) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & p_{A}(\lambda_{n}) \end{bmatrix}.$$

I övrigt oklart.

Korrolar q_L är en faktor i p_L .

Multipliciteter och diagonaliserbarhet Om L är diagonaliserbar, är den geometriska multipliciteten lika med den algebraiska multipliciteten för alla L:s egenvärden.

Bevis

Konjugerade matriser Alla matriser är konjugerade med en övertriangulär matris med matrisens egenvärden på diagonalen.

Samtidig diagonaliserbarhet och kommutativitet Låt V vara ett ändligdimensionellt vektorrum och L_1, L_2 två operatorer på detta. Då går det att diagonalisera L_1 och L_2 om de kommuterar.

Bevis

Kommutativitet och egenrum Låt L_1 och L_2 kommutera och E_1 vara egenrum till L_1 . Då är $L_2(E_1) \subset E_1$.

Bevis

Nilpotens och blockdiagonalitet Om L är nilpotent finns det en bas för V så att matrisen för L blir blockdiagonal, där varje block är på formen

$$\begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \vdots \\ 0 & 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 0 \end{bmatrix}.$$

Bevis Här kommer endast en bevisidé presenteras.

Det finns ett s så att $L^s = 0$ och $L^{s-1} \neq 0$. Vi väljer då ett delrum W_s så att

$$V = \ker(L^s) = W_s \oplus \ker(L^{s-1}).$$

Vi väljer vidare $W_{s-1} \subseteq \ker(L^{s-1})$ så att

$$\ker(L^{s-1}) = W_{s-1} \oplus L(W_s) \oplus \ker(L^{s-2}).$$

Detta går eftersom $L(W_s) \subseteq \ker(L^{s-2})$ och $L(W_s) \cap \ker(L^{s-2}) = \{0\}$. Upprepa prosedyren tills man får

$$\ker(L) = \bigoplus_{i=0}^{s-1} L^i(W_{i+1}).$$

Välj nu baser för alla W_i och bilderna av alla potenser av L. Dissa bildar en bas för V. Med en lämplig ordning på basen fås $\dim(W_i)$ block på formen ovan i matrisen, varje med storlek $i \times i$.

Jordans normalform Om en operator har karakteristiskt polynom

$$p_L(x) = \prod (x - \lambda_i),$$

finns det en bas så att matrisen för L är på formen

$$\left|\begin{array}{cccc} \Lambda_1 & 0 & \dots & 0 \\ 0 & \Lambda_2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \Lambda_i \end{array}\right|,$$

med

$$\Lambda_i = \left[egin{array}{cccc} \lambda_i & 1 & \dots & 0 \\ 0 & \lambda_i & \dots & dots \\ dots & \dots & \ddots & 1 \\ 0 & \dots & 0 & \lambda_i \end{array}
ight].$$

En sådan matris är på Jordans normalform. Vi noterar att $\Lambda_i = \lambda_i I + N$, där N är nilpotent.

Bevis

4 Inreprodukt

4.1 Definitioner

Inreprodukt över \mathbb{R} En inreprodukt $\langle x|y\rangle$ på ett vektorrum V över \mathbb{R} är en avbildning $V\times V\to \mathbb{R}$ som är

- bilinjär, dvs.
 - $-\langle x+y|z\rangle = \langle x|z\rangle + \langle y|z\rangle.$
 - $\langle ax|y \rangle = a \langle x|y \rangle.$
 - $-\langle x|y+z\rangle = \langle x|y\rangle + \langle x|z\rangle.$
 - $-\langle x|ay\rangle = a\langle x|y\rangle.$
- symmetrisk, dvs. $\langle x|y\rangle = \langle y|x\rangle$.
- positivt definit, dvs. $\langle x|x\rangle > 0$ om $x \neq 0$.

Inreprodukt över \mathbb{C} En inreprodukt $\langle x|y\rangle$ på ett vektorrum V över \mathbb{C} är en avbildning $V\times V\to \mathbb{C}$ som är

- seskvilinjär, dvs. bilinjär, men $\langle ax|y\rangle = a^*\langle x|y\rangle$.
- konjugatsymmetrisk, dvs. $\langle x|y\rangle = \langle y|x\rangle^*$.
- positivt definit, dvs. $\langle x|x\rangle > 0$ om $x \neq 0$. Notera att detta och konjugatsymmetrin implicerar att $\langle x|x\rangle$ har ingen imaginärdel.

Inreprodukt från matris Vi kan få en inreprodukt i \mathbb{C}^n från en matris genom

$$\langle x|y\rangle = \sum a_{ij}x_i^*y_j = (x^*)^T Ay.$$

Om detta skall uppfylla konjugatsymmetri, ger det

$$(x^*)^T A y = (y^*)^T A x^* = y^T A^* x^*.$$

Transponering av högersidan ger

$$(x^*)^T A y = (x^*)^T (A^*)^T y,$$

och därmed uppfylls konjugatsymmetrin om

$$A = (A^*)^T.$$

Om matrisen uppfyller detta, säjs den vara konjugatsymmetrisk eller Hermitesk.

Norm Normen eller längden av en vektor definieras som

$$|x| = \sqrt{\langle x|x\rangle}.$$

Vinkel Vinkeln θ mellan två vektorer definieras som

$$\cos \theta = \frac{\langle x | x \rangle}{|x||y|}.$$

Ortogonalitet x och y är ortogonala om

$$\langle x|y\rangle = 0.$$

Ortogonalt komplement Om $W \subseteq V$ är ett delrum så finns det ett ortogonalt komplement

$$W^{\perp} = \{ x \in V : \langle x | y \rangle = 0 \forall y \in W \} \subseteq V.$$

Projektion Låt V vara ett delrum med bas bas $B = \{e_i\}_{i=0}^n$. Då definieras projektionen som

$$\operatorname{proj}_{V}(x) = \sum_{i=0}^{n} \frac{\langle x_{i} | e_{j} \rangle}{\|e_{i}\|^{2}} e_{i}.$$

Adjungerade operatorer På ett inreproduktrum V är L^{\dagger} den adjungerade operatorn till L om

$$\langle L^{\dagger}(x) | y \rangle = \langle x | L(y) \rangle \, \forall x, y \in V.$$

Självadjungerade operatorer På ett inreproduktrum V är L självadjungerad om

$$\langle L(x)|y\rangle = \langle x|L(y)\rangle \, \forall x,y \in V.$$

Matrisen för en sådan operator sägs vara Hermitesk.

Cauchyföljder En Cauchyföljd är en följd som indexeras med naturliga talen och som uppfyller att för varje $\varepsilon > 0$ finns det ett N så att

$$i, j > N \implies ||x_i - x_j|| < \varepsilon.$$

Fullständiga rum V är fullständigt om alla Cauchy-följder konvergerar.

Hilbertrum Ett Hilbertrum är ett inreproduktrum som är fullständigt.

 ℓ^2 Vi definierar $\ell^2(\mathbb{C})$ som mängden av alla följder av tal i \mathbb{C} så att

$$\sum_{i=0}^{N} |a_i|^2$$

är begränsad, med inreprodukten

$$\langle A|B\rangle = \sum_{i=0}^{N} a_i^* b_i.$$

 L^2 Vi definierar $L^2([0,1],\mathbb{C})$ som mängden av alla komplexvärda funktioner på [0,1] med inreprodukt

$$\langle f|g\rangle = \int_{0}^{1} f^{*}(t)g(t) dt.$$

Ortogonala och unitära operatorer En ortogonal operator över ett reellt vektorrum V är en inverterbar operator som uppfyller $\langle Lx|Ly\rangle = \langle x|y\rangle \, \forall x,y \in V$.

En unitär operator över ett komplext vektorrum V är en inverterbar operator som uppfyller $\langle Lx|Ly\rangle = \langle x|y\rangle \, \forall x,y \in V$.

4.2 Satser

Cauchy-Schwarz olikhet

$$|\langle x|y\rangle| \le |x||y|$$
.

Bevis

Triangelolikheten

$$|x+y| \le |x| + |y|.$$

Ortogonalt komplement och vektorrum Om V är ett ändligdimensionellt vektorrum, är

$$W = W \oplus W^{\perp}$$
.

Bevis Det gäller att

$$W \cap W^{\perp} = \{0\}.$$

Bra och dualrum Om V är ett inreproduktum, definierar båd $x \to \langle x|$ och $x \to \langle x^*|$ en injektiv avbildning $V \to V^*$. Om V är ändligdimensionellt, är detta dessutom en isomorfi.

Bevis

Inreproduktrum och ortogonal bas Ett ändligdimensionellt vektorrum har en ortogonal bas.

Bevis

Gram-Schmidts metod Låt V vara ett vektorrum med ändlig dimension eller en uppräknelig bas $B = \{x_i\}_{i=0}^n$. Då bildar vektorerna

$$e_i = x_i - \sum_{j=0}^{i-1} \frac{\langle e_j | x_i \rangle}{\|e_j\|^2} e_j$$

en ortogonal bas för V.

Bevis

Matrisen för en adjungerad operator Låt L beskrivas av matrisen A i någon ortonormal bas. Då beskrivas L^{\dagger} av matrisen $(A^T)^*$.

Bevis Vi har

$$L(e_i) = \sum_j a_{ij} e_j,$$

vilket ger

$$\langle e_i | L(e_j) \rangle = \left\langle e_i \middle| \sum_k a_{jk} e_k \right\rangle = \sum_k \langle e_i | a_{jk} e_k \rangle = \sum_k a_{jk} \langle e_i | e_k \rangle = \sum_k a_{jk} \delta_{ik} = a_{ji}.$$

Om B är matrisen för L^{\dagger} , så vi nu att dens komponenter kan skrivas som $b_{ji} = \langle e_i | L^{\dagger}(e_j) \rangle$. Vi utvecklar detta och får

$$b_{ji} = \left\langle e_i \middle| L^{\dagger}(e_j) \right\rangle = \left\langle L^{\dagger}(e_j) \middle| e_i \right\rangle^* = \left\langle e_j \middle| L(e_i) \right\rangle^* = a_{ij}^*,$$

och därmed är beviset klart.

Egenvärden för självadjungerade operatorer Självadjungerade operatorer har bara reella egenvärden.

Bevis

$$\langle L(x)|x\rangle = \langle x|L(x)\rangle$$
.

Detta kan utvecklas om x är en egenvektor för att ge

$$\lambda^* \langle x | x \rangle = \lambda \langle x | x \rangle,$$

och beviset är klart.

Diagonalisering av självadjungerade operatorer Alla självadjungerade operatorer på ändligdimensionella inreproduktrum kan diagonaliseras.

Bevis Vi gör induktion över $\dim(V)$.

Det är trivialt för dimension 1.

Annars, om vi har en egenvektor x motsvarande egenvärdet λ , bilda $W = \mathrm{Span}\,(x)$. Då har man $L(W) \subseteq W$. Vidare, om $y \in W^{\perp}$, har man

$$\langle x|y\rangle = 0 \implies \langle \lambda x|y\rangle = \langle L(x)|y\rangle = \langle x|L(y)\rangle = 0,$$

och $L(W^{\perp}) \subseteq W^{\perp}$. Man kan vidare bilda en bas för V med basen för W^{\perp} och x. Matrisen för L med avseende på denna basen är

$$\begin{bmatrix} \lambda & 0 \\ 0 & X \end{bmatrix}.$$

Per induktion finns det då en ortogonal bas för W^{\perp} så att matrisen för L på W^{\perp} blir diagonal.

Ortogonal bas och självadjungerade operatorer Om L är en självadjungerad operator på ett ändligdimensionellt vektorrum V, finns det en ortogonal bas av egenvektorer till L.

Bevis

Självadjungerade operatorer och ortogonala egenvektorer Låt x vara en egenvektor till L med egenvärdet λ och y vara en egenvektor med egenvärde μ . Om $\lambda - \mu \neq 0$ är $\langle x|y \rangle = 0$.

Bevis

$$\langle L(x)|y\rangle = \langle x|L(y)\rangle$$
.

Vi använder att x och y är egenvektorer och får

$$\lambda^* \langle x|y\rangle = \mu \langle x|y\rangle$$
.

Enligt antagandet måste då $\langle x|y\rangle = 0$.

Längdbevarande operatorer För en operator L på ett reellt inreproduktrum V är följande ekvivalent:

- $\bullet ||Lx|| = ||x|| \forall x \in V.$
- $\langle x|y\rangle = \langle Lx|Ly\rangle \, \forall x,y \in V.$

Om vektorrummet är ändligdimensionellt, är påståenden även ekvivalenta med

 \bullet L avbildar ortonormala baser på ortonormala baser.

Bevis

Längdbevarande operatorer som bijektioner Längdbevarande operatorer på ändligdimensionella vektorrum är bijektiva.

Bevis Sådana operatorer är injektiva ty

$$||Lx|| = 0 \implies x = 0.$$

De är surjektiva ty matrisen för avbildningen i någon bas måste ha linjärt oberoende kolumner för att vara injektiv. Detta implicerar att avbildningen är surjektiv.

Ortogonala grupper

- Mängden $O(V) = \{L : V \to V : L \text{ är ortogonal}\}$ är en grupp under sammansättning om V är ett reellt inreproduktrum med en ortogonal bas.
- Mängden $O_n(V) = \{A \in M_n(\mathbb{R}) : A \text{ är ortogonal}\}$ är en grupp under matrismultiplikation.
- Mängden $O_n(V) = \{A \in M_n(\mathbb{R}) : \det(A) = 1, A \text{ är ortogonal}\}$ är en grupp under matrismultiplikation.

Satsen stämmer även för de komplexa motsvarigheterna.

Bevis

Egenvärden och egenvektorer till ortogonala och unitära operatorer Om L är en unitär operator på ett ändligdimensionellt vektorrum, finns det en ortogonal bas av egenvektorer till L och alla egenvärden till L har belopp 1.

Bevis Det finns (möjligtvis) minst ett egenvärde λ . Välj en motsvarande egenvektor x. Detta ger

$$||x|| = ||Lx|| \implies |\lambda| = 1.$$

Låt nu $W = \operatorname{Span}(x)$. Vi har att $L(W^{\perp}) \to W^{\perp}$ eftersom L bevarar inreprodukten. Detta ger (?) per induktion att det finns en bas för W^{\perp} av egenvektorer till L. Unionen av x och denna basen är därmed en bas för hela vektorrummet.

5 Linjär rekursion

5.1 Definitioner

Linjär rekursion En linjär rekursion definieras av en följd $\{x_i\}_{i\geq 0}$ av element i ett vektorrum, där

$$x_i = \sum_{j=1}^n a_j x_{i-j}, i \ge n$$

där x_0,\ldots,x_{n-1} är givna. Detta kan alternativt skrivas på matrisform som

$$y_i = \begin{bmatrix} x_i \\ \vdots \\ x_{i-n+1} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & 1 & 0 \end{bmatrix} y_{i-1}.$$

Dessa matriserna kan ej diagonaliseras.

5.2 Satser