Classification

Lecture 2 - DAMLF | ML1

Univariate Linear Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$

Univariate Linear Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$

Multiple Linear Regression:

$$h(x; \theta) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$$

where $x_0 = 1$

Univariate Linear Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$

Multiple Linear Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$$

where $x_0 = 1$

Polynomial Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x + \theta_2 x^2 \cdots + \theta_n x^n$$

Univariate Linear Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$

Multiple Linear Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$$
 where $x_0 = 1$

Polynomial Regression:

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x + \theta_2 x^2 \cdots + \theta_n x^n$$

Cost Function $J(\theta)$:

$$\textit{MSE} = \tfrac{1}{m} \textstyle \sum_{i=1}^m (y^{(i)} - h(x^{(i)}; \boldsymbol{\theta}))^2$$

Univariate Linear Regression:

$$h(x; \theta) = \theta_0 + \theta_1 x$$

Normal Equation: $\hat{\theta} = (X^T X)^{-1} X^T y$

Multiple Linear Regression:

$$h(x; \theta) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \cdots + \theta_n x_n$$

where $x_0 = 1$
Normal Equation: $\hat{\theta} = (X^T X)^{-1} X^T y$

Polynomial Regression:

$$h(x; \theta) = \theta_0 + \theta_1 x + \theta_2 x^2 \cdots + \theta_n x^n$$

Normal Equation: $\hat{\theta} = (X^T X)^{-1} X^T y$

Cost Function $J(\theta)$:

$$\textit{MSE} = \tfrac{1}{m} \textstyle \sum_{i=1}^m (y^{(i)} - h(x^{(i)}; \boldsymbol{\theta}))^2$$

Normal Equation & the MSE Estimator

The Ordinary Least Squares or Mean Squared Error Estimator $\hat{ heta}$

$$\hat{\boldsymbol{\theta}} := \min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}_0, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_n} J(\boldsymbol{\theta}_0, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_n)$$

where $\hat{\theta}$ is solved by

$$(X\hat{\theta} - y)^{T}X = 0$$
$$y^{T}X = \hat{\theta}^{T}(X^{T}X)$$
$$X^{T}y = (X^{T}X)\hat{\theta}$$
$$\hat{\theta} = (X^{T}X)^{-1}X^{T}y$$

¹In statistics, β and $\hat{\beta}$ are sometimes used instead of θ and $\hat{\theta}$, respectively.

WHAT IS A LEARNING ALGORITHM?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E"

-Tom Mitchell

Ingredients:

Task to perform

Type of Experience

Performance *measure*

WHAT IS A LEARNING ALGORITHM?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E"

-Tom Mitchell

Gradient Descent for Multiple Linear Regression

Multiple Linear Regression

1. Hypothesis

$$h(x; \boldsymbol{\theta}) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

2. Parameters

$$\theta$$
 (n + 1-dimensional scalar-valued vector)

3. Cost Function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}; \theta) - y^{(i)})^2$$

4. Goal

$$\min_{(\theta)} J(\theta)$$

Gradient Descent for Multiple Linear Regression

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \mathbf{x}_{j}^{(i)}$$

simultaneously update θ_j for $j=0,\ldots,n$ Stop at convergence » Exit loop

Note: remember that $x_0 = 1$; that is., $x_0^{(i)} = 1$ for all $i = 1 \dots m$.

Gradient Descent for Multiple Linear Regression

Tips:

How to choose a good learning rate, α Importance of feature scaling

Iterations to convergence can vary enormously from problem-to-problem

For n ≥ 1: » Enter loop Repeat:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}_j^{(i)}$$

simultaneously update θ_j for $j=0,\ldots,n$ Stop at convergence » Exit loop

Note: remember that $x_0 = 1$; that is., $x_0^{(i)} = 1$ for all $i = 1 \dots m$.

Regression vs Classification

Regression Problems

Input: Features x are continuous valued data

Output: *Predicts* a **continuous** value *y*.

Classification Problems

Input: Features x are continuous valued data

Output: *Predicts* a **discrete** value *y*.

Binary classification problem

Predicts output variables y in $\{0,1\}$, where

0 denotes the **negative** class

1 denotes the **positive** class

Binary classification problem

```
Predicts output variables y in {0,1}, where

0 denotes the negative class

1 denotes the positive class
```

Examples:

- Email spam filter: 1 = spam; 0 = not spam
- Tumor classification: 1 = malignant; 0 = benign
- University Admissions: 1 = accept; 0 = reject
- \cdot Credit score: 1 = credit-worthy; 0 = not credit-worthy

:

Example: Credit Scoring

Example: Credit Scoring

Suppose we applied **linear regression** to this example:

$$h(x^{(i)}; \boldsymbol{\theta}) = \boldsymbol{\theta}^{\mathsf{T}} x^{(i)}$$

where

$$\boldsymbol{\theta} = (X^T X)^{-1} X^T y$$

Example:
$$h(x; \theta) = \theta^T x$$

If
$$h(x; \theta) \geqslant \frac{1}{2}$$
, predict that $y = 1$

If
$$h(x; \theta) < \frac{1}{2}$$
, predict that $y = 0$

Example:
$$h(x; \theta) = \theta^T x$$

If
$$h(x; \theta) \geqslant \frac{1}{2}$$
, predict that $y = 1$

If
$$h(x; \theta) < \frac{1}{2}$$
, predict that $y = 0$

Example:
$$h(x; \theta) = \theta^T x$$

If
$$h(x; \theta) \geqslant \frac{1}{2}$$
, predict that $y = 1$

If
$$h(x; \theta) < \frac{1}{2}$$
, predict that $y = 0$

Example:
$$h(x; \theta) = \theta^T x$$

If
$$h(x; \theta) \geqslant \frac{1}{2}$$
, predict that $y = 1$

If
$$h(x; \theta) < \frac{1}{2}$$
, predict that $y = 0$

Example:
$$h(x; \theta) = \theta^T x$$

If
$$h(x; \theta) \geqslant \frac{1}{2}$$
, predict that $y = 1$

If
$$h(x; \theta) < \frac{1}{2}$$
, predict that $y = 0$

Binary Classification Output:

$$y = 0$$
 or $y = 1$

Binary Classification Output:

$$y = 0$$
 or $y = 1$

However,

$$h(x; \theta) = \theta^T x < 0$$
 and $h(x; \theta) = \theta^T x > 1$,

is possible.

Recall:

When selecting a learning algorithm, you must decide how to **represent** *h*.

For binary classification, we want $h(x; \theta)$ to take values between 0 and 1:

$$0 \le h(x; \theta) \le 1$$

For binary classification, we want $h(x; \theta)$ to take values between 0 and 1:

$$0 \leqslant h(x; \theta) \leqslant 1$$

Sigmoid Function $g(\cdot)$

For binary classification, we want $h(x; \theta)$ to take values between 0 and 1:

$$0 \leqslant h(x; \theta) \leqslant 1$$

Sigmoid Function $g(\cdot)$

Linear Regression

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$
$$= \boldsymbol{\theta}^\mathsf{T} x$$

Linear Regression

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$
$$= \theta^T x$$

Logistic Regression

$$h(x; \boldsymbol{\theta}) = g(\boldsymbol{\theta}^\mathsf{T} \mathbf{x})$$

Linear Regression

$$h(x; \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$
$$= \theta^T x$$

Logistic Regression

$$h(x; \boldsymbol{\theta}) = g(\boldsymbol{\theta}^\mathsf{T} \mathbf{x})$$

where

$$g(z) = \frac{1}{1 + \exp^{-1z}}$$

So:

$$h(x; \boldsymbol{\theta}) = \frac{1}{1 + \exp^{-\boldsymbol{\theta}^{\mathsf{T}} x}}$$

Hypothesis Interpretation

Logistic Regression

$$h(x; \theta) = \frac{1}{1 + e^{-\theta^T x}}$$
= estimated probability that $y = 1$ given data x parameterized by θ
= $P(y = 1 \mid x; \theta)$

Hypothesis Interpretation

Logistic Regression

$$h(x; \theta) = \frac{1}{1 + e^{-\theta^T x}}$$
= estimated probability that $y = 1$ given data x parameterized by θ
= $P(y = 1 \mid x; \theta)$

Example:

 $h(x; \theta) = .37$ means: 37% chance that applicant will be accepted.

Hypothesis Interpretation

Logistic Regression

$$h(x; \theta) = \frac{1}{1 + e^{-\theta^T x}}$$

= estimated probability that $y = 1$ given data x parameterized by θ
= $P(y = 1 \mid x; \theta)$
= 0.37

Question: What is the probability that y = 0?

Hypothesis Interpretation

Logistic Regression

$$h(x; \theta) = \frac{1}{1 + e^{-\theta^T x}}$$

= estimated probability that $y = 1$ given data x parameterized by θ
= $P(y = 1 \mid x; \theta)$
= 0.37

Question: What is the probability that y = 0? Since (y = 0 xor y = 1), apply the **Law of Total Probability**:

$$P(y = 0 \mid x; \theta) + P(y = 1 \mid x; \theta) = 1 \qquad \text{(Law of Total Probability)}$$

$$P(y = 0 \mid x; \theta) = 1 - P(y = 1 \mid x; \theta)$$

$$P(y = 0 \mid x; \theta) = 1 - 0.37$$

$$P(y = 0 \mid x; \theta) = 0.63$$

$$h(x; \theta) = g(\theta^{T}x)$$

$$= P(y = 1 \mid x; \theta)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid Function g(z)

$$h(x; \theta) = g(\theta^{T}x)$$

$$= P(y = 1 \mid x; \theta)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Predict that 'y = 1' if $h(x; \theta) \ge 0.5$

Predict that y = 0 if $h(x; \theta) < 0.5$

$\textbf{Sigmoid Function } g(\mathbf{z})$

$$h(x; \theta) = g(\theta^{T}x)$$

$$= P(y = 1 \mid x; \theta)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Predict that 'y = 1' if $h(x; \theta) \ge 0.5$

Predict that y = 0 if $h(x; \theta) < 0.5$

Sigmoid Function g(z)

$$h(x; \theta) = g(\theta^{T}x)$$

$$= P(y = 1 \mid x; \theta)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Predict that
$$y = 1$$
 if $h(x; \theta) \ge 0.5$
when $z \ge 0$

Predict that 'y = 0' if
$$h(x; \theta) < 0.5$$

when $z < 0$

$\textbf{Sigmoid Function } g(\mathbf{z})$

$$h(x; \theta) = g(\theta^{T} x)$$

$$= P(y = 1 \mid x; \theta)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Predict that
$$y = 1'$$
 if $h(x; \theta) \ge 0.5$
when $z \ge 0$
when $\theta^T x \ge 0$

Predict that
$$'y = 0'$$
 if $h(x; \theta) < 0.5$
when $z < 0$
when $\theta^T x < 0$

Sigmoid Function g(z)

$$h(x; \theta) = g(\theta^{T}x)$$

$$= g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2})$$

$$=$$

$$=$$

$$\begin{aligned} h(x;\theta) &= g(\theta^T x) \\ &= g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \\ &= g(-4 + x_1 + 2x_2), \text{ where} \\ \theta &= \begin{bmatrix} -4 \\ 1 \\ 2 \end{bmatrix} \end{aligned}$$

$$h(x; \theta) = g(\theta^T x)$$

$$= g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$= g(-4 + x_1 + 2x_2), \text{ where}$$

$$\theta = \begin{bmatrix} -4\\1\\2 \end{bmatrix}$$

Predict that y = 1 if $h(x; \theta) \ge 0.5$

$$\begin{aligned} h(x;\theta) &= g(\theta^T x) \\ &= g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \\ &= g(-4 + x_1 + 2x_2), \text{ where} \\ \theta &= \begin{bmatrix} -4 \\ 1 \\ 2 \end{bmatrix} \end{aligned}$$

Predict that
$$'y=1'$$
 if $h(x;\theta)\geqslant 0.5$ when $-4+x_1+2x_2\geqslant 0$

$$\begin{aligned} h(x;\theta) &= g(\theta^T x) \\ &= g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \\ &= g(-4 + x_1 + 2x_2), \text{ where} \\ \theta &= \begin{bmatrix} -4 \\ 1 \\ 2 \end{bmatrix} \end{aligned}$$

Predict that
$$'y = 1'$$
 if $h(x; \theta) \ge 0.5$
when $-4 + x_1 + 2x_2 \ge 0$

Predict that 'y = 0' if
$$h(x; \theta) < 0.5$$

when $-4 + x_1 + 2x_2 < 0$

$$h(x; \theta) = g(\theta^{T}x)$$

$$= g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2})$$

$$= g(-4 + x_{1} + 2x_{2}), \text{ where}$$

$$\theta = \begin{bmatrix} -4\\1\\2 \end{bmatrix}$$

Predict that
$$'y = 1'$$
 if $h(x; \theta) \ge 0.5$
 $when -4 + x_1 + 2x_2 \ge 0$
The Decision Boundary — $x_1 + 2x_2 = 4$
Predict that $'y = 0'$ if $h(x; \theta) < 0.5$
 $when -4 + x_1 + 2x_2 < 0$

Non-linear Decision Boundaries

$$h(x; \theta) = g(\theta^{T}x)$$

$$= g(\theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{1}^{2} + \theta_{4}x_{2}^{2})$$

$$= g(-1 + x_{1}^{2} + x_{2}^{2}), \text{ where}$$

$$\theta = \begin{bmatrix} -1\\0\\0\\1\\1 \end{bmatrix}$$

Non-linear Decision Boundaries

$$\begin{split} h(x; \boldsymbol{\theta}) &= g(\boldsymbol{\theta}^T x) \\ &= g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2) \\ &= g(-1 + x_1^2 + x_2^2), \text{ so:} \end{split}$$

Decision Boundary:
$$x_1^2 + 2x_2^2 = 1$$

Non-linear Decision Boundaries

Note:

Decision Boundaries are functions of **parameters** rather than functions of data + parameters.

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ with m examples

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ with m examples

$$n+1$$
 Features: $x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$, where $x_0 = 1$.

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ with m examples

$$n+1$$
 Features: $x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$, where $x_0 = 1$.

Target variable: $y \in \{0, 1\}$.

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ with m examples

$$n + 1$$
 Features: $x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$, where $x_0 = 1$.

Target variable: $y \in \{0, 1\}$.

Form of the Hypothesis:
$$h(x; \theta) = \frac{1}{1 + e^{-\theta^T x}}$$

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ with m examples

$$n+1$$
 Features: $x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$, where $x_0 = 1$.

Target variable: $y \in \{0, 1\}$.

Form of the Hypothesis:
$$h(x; \theta) = \frac{1}{1 + e^{-\theta^T x}}$$

How are the values of the vector θ chosen?

Recall how θ are chosen for Linear Regression:

Linear Regression Cost Function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h(x^{(i)}; \theta) - y^{(i)})^{2}$$
$$= \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h(x^{(i)}; \theta), y^{(i)})$$

Simplifying, the cost function for Linear Regression:

$$Cost(h(x; \theta), y) = \frac{1}{2}(h(x; \theta) - y)^{2}$$

$$Cost(h(x; \theta), y) = \begin{cases} -log(h(x; \theta)) & \text{if } y = 1\\ -log(1 - h(x; \theta)) & \text{if } y = 0 \end{cases}$$

Intuition:

$$Cost(h(x; \theta), y) = \begin{cases} -log(h(x; \theta)) & \text{if } y = 1\\ -log(1 - h(x; \theta)) & \text{if } y = 0 \end{cases}$$

Intuition:

$$Cost(h(x; \theta), y) = \begin{cases} -log(h(x; \theta)) & \text{if } y = 1\\ -log(1 - h(x; \theta)) & \text{if } y = 0 \end{cases}$$

If
$$y = 1$$
:

Cost = 0 if
$$y = 1$$
 and $h(x; \theta) = 1$;
Cost $\to \infty$ as $h(x; \theta) \to 0$

$$Cost(h(x; \theta), y) = \begin{cases} -log(h(x; \theta)) & \text{if } y = 1\\ -log(1 - h(x; \theta)) & \text{if } y = 0 \end{cases}$$

If
$$y = 0$$
:

Cost = 0 if
$$y = 0$$
 and $h(x; \theta) = 0$;
Cost $\rightarrow \infty$ as $h(x; \theta) \rightarrow 1$

$$Cost(h(x; \theta), y) = \begin{cases} -\log(h(x; \theta)) & \text{if } y = 1\\ -\log(1 - h(x; \theta)) & \text{if } y = 0 \end{cases}$$

Simplification:

$$Cost(h(x; \theta), y) = -y \log (h(x; \theta)) - (1 - y) \log (1 - h(x; \theta))$$

if
$$y = 1$$
:

$$Cost(h(x; \theta), y) = -1 \log (h(x; \theta)) - (1 - 1) \log (1 - h(x; \theta))$$
$$= -\log (h(x; \theta)) - 0$$
$$= -\log (h(x; \theta))$$

if
$$y = 0$$
:

$$\begin{aligned} \mathsf{Cost}(h(x; \theta), y) &= - \frac{\mathbf{0}}{\log(h_{\theta} x)} - (1 - \frac{\mathbf{0}}{0}) \log(1 - h(x; \theta)) \\ &= 0 - \log(1 - h(x; \theta)) \\ &= - \log(1 - h(x; \theta)) \end{aligned}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h(x^{(i)}; \theta), y^{(i)})$$

= $-\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h(x; \theta)) + (1 - y^{(i)}) \log(1 - h(x; \theta)) \right]$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h(x^{(i)}; \theta), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h(x; \theta)) + (1 - y^{(i)}) \log(1 - h(x; \theta)) \right]$$

 $J(\theta)$ is derived from the **Principle of Maximum Likelihood Estimation** (MLE).

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h(x^{(i)}; \theta), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h(x; \theta)) + (1 - y^{(i)}) \log(1 - h(x; \theta)) \right]$$

In order to **fit parameters** θ , we first $\min_{\theta} J(\theta)$

Then, given $\min_{\theta} J(\theta)$ and a **new** x, we **make a prediction** for **unknown** y using $h(x; \theta)$ calculated by:

$$h(x; \boldsymbol{\theta}) = \frac{1}{1 + e^{-\theta^T x}}$$

Algorithm:

Gradient Descent

» Enter loop Repeat:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

 $\mbox{for all } \theta_j \mbox{ simultaneously} \\ \mbox{Stop at convergence}$

» Exit loop

Model:

Logistic Regression

Hypothesis:

$$h(x; \boldsymbol{\theta}) = g(\theta^T x)$$

Cost Function:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log (h(x; \theta)) + (1 - y^{(i)}) \log (1 - h(x; \theta)) \right]$$

Derivative Term:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \theta) - y^{(i)} \right) x_j^{(i)}$$

Algorithm:

Gradient Descent

» Enter loop Repeat:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_j^{(i)}$$
 for all θ_j simultaneously
Stop at convergence

» Exit loop

Remarks:

Algorithm:

Gradient Descent

» Enter loop Repeat:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_j^{(i)}$$
 for all θ_j simultaneously
Stop at convergence

» Exit loop

Remarks:

Compare to Gradient Descent for Linear Regression:

Algorithm:

Gradient Descent

» Enter loop Repeat:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_j^{(i)}$$
 for all θ_j simultaneously
Stop at convergence

» Exit loop

Remarks:

Compare to Gradient Descent for Linear Regression:

Same algorithm?!

Algorithm:

Gradient Descent

» Enter loop Repeat:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_j^{(i)}$$
 for all θ_j simultaneously

Stop at convergence

» Exit loop

Remarks:

Compare to Gradient Descent for Linear Regression:

Same algorithm?!

The Difference:

$$h(x; \boldsymbol{\theta}) = \theta^{\mathsf{T}} x$$
- linear regression

$$h(x; \theta) = \frac{1}{1 + e^{-\theta^T x}}$$
- logistic regression

Simplifying the Cost Function
Gradient Descent & Advanced Algorithms

So far, you have learned the fundamentals of regression-based machine learning.

So far, you have learned the fundamentals of regression-based machine learning.

But, to be serious – to deal with thousands (or more) features and millions (or more) training examples – we need more sophisticated algorithms.

Here's what we know how to do now.

Here's what we know how to do now.

1. Start with a cost function $J(\theta)$

Here's what we know how to do now.

- 1. Start with a cost function $J(\theta)$
- 2. Goal: $\min_{\theta} J(\theta)$

Here's what we know how to do now.

- 1. Start with a cost function $J(\theta)$
- 2. Goal: $\min_{\theta} J(\theta)$
- 3. Given θ , compute two things:

Here's what we know how to do now.

- 1. Start with a cost function $J(\theta)$
- 2. Goal: $\min_{\theta} J(\theta)$
- 3. Given θ , compute two things:

```
\begin{array}{ll} J(\theta) & \text{the cost of fitting with } \theta \\ \frac{\partial}{\partial \theta_i} J(\theta) & \text{the partial derivatives for each } \theta_j \in \theta \end{array}
```

4. Compute the partial derivative (well, this has been done for you)

Here's what we know how to do now.

- 1. Start with a cost function $J(\theta)$
- 2. Goal: $\min_{\theta} J(\theta)$
- 3. Given θ , compute two things:

```
J(\theta) the cost of fitting with \theta \frac{\partial}{\partial \theta_i}J(\theta) the partial derivatives for each \theta_j \in \theta
```

- 4. Compute the partial derivative (well, this has been done for you)
- 5. Plug the derivative term into *Gradient Descent*:

```
» Enter loop Repeat: \theta_j := \theta_j - \alpha \, \tfrac{1}{m} \sum_{i=1}^m \left( h(x^{(i)}; \boldsymbol{\theta}) - y^{(i)} \right) x_j^{(i)} for all \theta_j simultaneously Stop at convergence » Exit loop
```

Now let's look at this optimization task anew.

- 1. Start with a cost function $J(\theta)$
- 2. Goal: $\min_{\theta} J(\theta)$
- 3. Given θ , compute two things:
 - $J(\theta) \quad \text{the cost of fitting with } \theta$ $\frac{\partial}{\partial \theta_i} J(\theta) \quad \text{the partial derivatives for each } \theta_j \in \theta$
- 4. Optimization algorithms:
 - Gradient Descent

Now let's look at this optimization task anew.

- 1. Start with a cost function $J(\theta)$
- 2. Goal: $\min_{\theta} J(\theta)$
- 3. Given θ , compute two things:
 - $J(\theta) \quad \text{the cost of fitting with } \theta$ $\frac{\partial}{\partial \theta_i} J(\theta) \quad \text{the partial derivatives for each } \theta_j \in \theta$
- 4. Optimization algorithms:
 - Gradient Descent

however, asymptotic rate of convergence is inferior to more advanced algorithms

- BFGS
 - · Broyden-Fletcher-Goldfarb-Shanno Algorithm

Now let's look at this optimization task anew.

- 1. Start with a cost function $J(\theta)$
- 2. Goal: $\min_{\theta} J(\theta)$
- 3. Given θ , compute two things:
 - $J(\theta) \quad \text{the cost of fitting with } \theta$ $\frac{\partial}{\partial \theta_i} J(\theta) \quad \text{the partial derivatives for each } \theta_j \in \theta$
- 4. Optimization algorithms:
 - Gradient Descent

however, asymptotic rate of convergence is inferior to more advanced algorithms

- BFGS
 - · Broyden-Fletcher-Goldfarb-Shanno Algorithm
 - BFGS is a quasi-Newton approximation method (stores histories of dense matrices in memory)
 - L-BFGS refers to limited memory BFGS (stores vectors as estimates of full matrices)

Advanced Optimization Algorithms

Hessian based methods: use 2nd derivative information

- · Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm
- Limited Memory BFGS (L-BFGS)
- Conjugate gradient

Advantages:

- $\cdot \ \alpha$ is picked and adjusted automatically (at every iteration)
- · Often faster than gradient descent (i.e., fewer iterations)

Advanced Optimization Algorithms

Hessian based methods: use 2nd derivative information

- · Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm
- Limited Memory BFGS (L-BFGS)
- Conjugate gradient

Advantages:

- $\cdot \ \alpha$ is picked and adjusted automatically (at every iteration)
- Often faster than gradient descent (i.e., fewer iterations)

Disadvantages:

- Each step is more computationally / memory expensive
- More complicated to implement / harder to inspect

How do these advanced algorithms work?

Hessian based methods: use 2nd derivative information

- · Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm
- Limited Memory BFGS (L-BFGS)
- Conjugate gradient

Line Search Strategy

- Find a descent direction (pos, neg, 0)
 - by gradient descent or Newton's method, etc.
- Compute a step-size in that direction.
- Repeat.

Simulated annealing

- · probabilistic technique for finding a **global minima**
 - · for more, look it up!

How do these advanced algorithms work?

In Python, there is a built-in implementation of BFGS called fmin_bfgs. Let's see an example.

```
» theta_new = fmin_bfgs(computeCostFunction,
: initial_theta, fprime=computeGradient,
: maxiter=100, args=(X,y), disp=True)
```

```
» theta_new = fmin_bfgs(computeCostFunction,
: initial_theta, fprime=computeGradient,
: maxiter=100, args=(X,y), disp=True)
```

```
» theta_new = fmin_bfgs(computeCostFunction,
: initial_theta, fprime=computeGradient,
: maxiter=100, args=(X,y), disp=True)
```

- Optimization function to be minimized
- 2. Initial parameter vector
- 3. fprime = —
 # optional parameter to
 # compute gradient with —
- 4. maxiter = —
 # maximum number of iterations set to —
- 5. args = (,)
 # features
 # target
- 6. disp = —
 # optional parameter to print convergence
 # message when set to True

initial_theta
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

Compute Cost Function (J):

Gradient (grad):

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(h(x^{(i)}; \theta) - y^{(i)} \right) x_{j}^{(i)}$$

```
» theta_new = fmin_bfgs(computeCostFunction,
: initial_theta, fprime=computeGradient,
: maxiter=100, args=(X,y), disp=True)
```

- 1. Optimization function to be minimized
- 2. Initial parameter vector
- 3. fprime = —
 # optional parameter to
 # compute gradient with —
- 4. maxiter = —
 # maximum number of iterations set to —
- 5. args = (,)
 # features
 # target
- 6. disp = —
 # optional parameter to print convergence
 # message when set to True

$$egin{array}{c|c} y & y=1 & y=2 \\ \hbox{answer:} & \hbox{yes} & \hbox{no} \\ \end{array}$$

```
egin{array}{c|cccc} y & y=1 & y=2 & y=3 \\ answer: & yes & no \\ parents' answer: & yes & no & maybe \\ \end{array}
```

У	<i>y</i> = 1	y = 2	y = 3	<i>y</i> = 4
answer:	yes	no		
parents' answer:	yes	no	maybe	
cardinal points:	North	South	East	West

У	<i>y</i> = 1	y = 2	<i>y</i> = 3	<i>y</i> = 4	<i>y</i> = 5
answer:	yes	no			
parents' answer:	yes	no	maybe		
cardinal points:	North	South	East	West	
fruit:	apples	oranges	pears	bananas	mangos

У	<i>y</i> = 1	<i>y</i> = 2	<i>y</i> = 3	<i>y</i> = 4	<i>y</i> = 5
answer:	yes	no			
parents' answer:	yes	no	maybe		
cardinal points:	North	South	East	West	
fruit:	apples	oranges	pears	bananas	mangos
:					

binary vs multi-class classification

Binary Classification

binary vs multi-class classification

Binary Classification

- **+** y = 1
- **★** y = 2
- \triangle y = 3

Hypothesis for Class 1: $h_{\theta}^{(1)}(x)$

$$y = 1 \text{ vs rest (i.e., } y = 2, 3)$$

- **+** y = 1
- \Rightarrow y = 2
- ightharpoonup y = 3

Hypothesis for Class 1: $h_{\theta}^{(1)}(x)$

$$y = 1$$
 vs rest (i.e., $y = 2, 3$)

- **+** y = 1
- \Rightarrow y = 2
- ightharpoonup y = 3

Hypothesis for Class 2: $h_{\theta}^{(2)}(x)$

$$y = 2 \text{ vs rest (i.e., } y = 1, 3)$$

- **+** y = '
- **★** y = 2
- ▲ y = 3

Hypothesis for Class 3: $h_{\theta}^{(3)}(x)$

$$y = 3$$
 vs rest (i.e., $y = 1, 2$)

- **+** y = 1
- **★** y = 2
- ightharpoonup y = 3

$$+$$
 $y = 1$

$$\Rightarrow$$
 y = 2

$$h_{\theta}^{(i)}(x) = P(y = i \mid x; \theta)$$
 (for $i = 1, 2, 3$)

How to implement OvR:

1. Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for **each** class i to predict the probability that y = i.

How to implement OvR:

- 1. Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for **each** class i to predict the probability that y = i.
- 2. To make a prediction on a **new** input *x*, pick the class *i* that **maximizes**:

$$\max_{i} h_{\theta}^{(i)}(x)$$

Example

$$h_{\theta}^{(1)}(x) = P(y = 1 \mid x; \theta)$$

$$h_{\theta}^{(2)}(x) = P(y = 2 \mid x; \theta)$$

$$h_{\theta}^{(3)}(x) = P(y = 3 \mid x; \theta)$$

References