Self-Organizing Maps

Background

- A neural net technique based on image processing in the brain
- Invented in the 1980s by Teuvo Kohonen
- Also called "Kohonen Maps"

Purpose

- Reduce dimensionality to 2 or 3 dimensions
- Preserves numerical relationship between data points
- A non-linear PCA

Uses

- Customer segmentation
- Document clustering
- Image processing
- Intrusion detection
- Speech recognition
- Data compression
- Gene research

Pros and Cons

• Pros:

- Resistant to outliers/noise
- Allows intuitive, visual exploration of clusters
- Preserves structure of data

• Cons:

- Can be computationally expensive
- Can't handle missing values
- Must have numerical attributes

First, an analogy...

Analogy...

- Consider k-medoids
 - Choose k number of clusters
 - Each cluster has a representative centroid
 - Centroid is updated when an item is assigned to that cluster

SOM ≈ k-medoids in a grid

- Choose k
- Clusters locked in a 2-D grid
- Each cluster has a centroid
- Items assigned to most similar centroid (Euclidian distance)
- Centroids updated with each assignment

How SOM is Different

- Large k: 10s to 10,000s
- Neighboring centroids update each time an item is assigned
- Amount the centroid is updated and the number of neighbors that are updated decreases each time a new item is assigned

How it actually works...

Step 0: Normalize the Data

Animal	Lifespan	Avg. Weight	Scariness
Lizard	6	5	3
Tiger	67	80	10
Snail	1	0.5	0
Lion	64	90	9

Animal	Lifespan	Avg. Weight	Scariness
Lizard	0.09	0.06	0.30
Tiger	1.00	0.89	1.00
Snail	0.01	0.01	0.00
Lion	0.96	1.00	0.90

Step 1: Create a Grid of Nodes

- Current debate over number of nodes to choose
- Grids can be rectangular or hexagonal lattice

OR

(Gives more granular output)

Step 2: Initialize Nodes

- Assign each node a random starting value ("weight") for each dimension in the dataset
- Values can be:
 - Random sample from dataset
 - Random [0,1] values from the data space
 - Evenly sampled from the subspace of the 2 largest PCA eigenvectors

Step 3: Assign Nodes

 Randomly select an item from the dataset, and assign it to the node with the closest Euclidian distance to its attribute values

Step 4: Update the Node Values

 Assigned node and neighboring nodes ("neighborhood) centroids update to be more like the newly mapped item

Neighboring Node Changes

- Fewer nodes updated each time
- Number of neighboring nodes decreases with each new item assigned
- Debate over starting radius of nodes that get updated

Centroid Update Formula

$$w_i(t+1) = w_i(t) + f_i(t) * [d(t) - w_i(t)]$$

w_i = nearest centroid to the data point being assigned

d(t) = data point being assigned

t = iteration number

 $f_i(t)$ = neighborhood function that controls the impact that the winning node has on other nodes- Most commonly:

$$f_i(t) = \exp\left(-\frac{dist^2}{2\sigma^2}\right)$$

dist²= Euclidian distance between point being classified and assigned node value σ^2 = size of neighborhood (radius of points)- has its own decay function

Steps 5 and 6: Stopping

- Continue assignment and updates until all items are assigned to a node
- "Iterations" are number of items that are assigned. Used for classification/conceptual mapping

Final Outcome

Validating Maps

- Quantization Errormean distance between items in a node and node centroid
 - Decreases with more nodes
 - Decreases with more iterations

Clustering Approaches with SOM

- Visually explore spatial patterns of items that are in nearby nodes
- Set a small k and each node is a cluster
- Use output of SOM for hierarchical clustering

Visualizing the Results

Node Counts

 Can see the number of items assigned to each node when viewing grid

U-maps / U-mats

- "Unified Distance Matrix"
- Distance between nodes in greyscale
 - White: most similar nodes
 - Black: most dissimilar
- x and y positions don't have meaning
- Clarity of separation another way of judging map quality
 - Light areas = clusters
 - Dark areas = cluster separators

Component Plane Representation/ Heatmap

Centroids of nodes as color

Red: High values

Blue: Low values

- x and y positions don't have meaning
- Because node arrangement doesn't change, can easily compare heatmaps for multiple variables

Visualizing Variable Values

 R can create a rose plot that shows the variable values for each node

Wine data

Hierarchical Clustering

 The node centroids can be used to hierarchically cluster nodes, to get clusters across the entire grid

Implementation

- Available in most statistical tools:
 - R packages: som and kohonen
 - Python: SOMPY
 - Matlab
 - -SAS
 - Tensorflow
 - Open-source software

Further Reading

- Kohonen, Teuvo. 2001. *Self-organizing maps*. Berlin: Springer.
- Kohonen, Teuvo. 1982. "Self-organized formation of topologically correct feature maps". *Biological Cybernetics*. 43(1): 59-69.
- "Kohonen's self organizing feature maps": http://bit.ly/1y7g40w
- "Self-organising maps for customer segmentation using R": http://bit.ly/1mpErsh
- "Self-organizing maps": http://bit.ly/1PaSXiR