Troviamo l'immagine del punto S formata dallo specchio piano

Tracciamo due raggi uscenti dal punto **S** e applichiamo le leggi della riflessione.

I **prolungamenti dei raggi riflessi** si incontrano in **S'**. L'osservatore vede la luce provenire da **S'**: **S'** è l'immagine **virtuale** di **S**.

L'immagine riflessa da uno specchio piano è **virtuale** e appare in posizione simmetrica all'oggetto rispetto allo specchio.

Il nostro cervello localizza la sorgente luminosa sul prolungamento dei raggi che arrivano all'occhio.

L'immagine formata da uno specchio piano è virtuale: l'osservatore vede la luce provenire da punti in cui in realtà non passano raggi

- L'immagine è **dietro** lo specchio
- L'immagine è alla stessa distanza dallo specchio dell'oggetto
- L'immagine ha le **stesse dimensioni** dell'oggetto
- Nell'immagine la destra e la sinistra sono scambiate

La riflessione sugli specchi curvi

L'immagine di un oggetto formata da uno specchio curvo può essere reale o virtuale, più piccola o più grande dell'oggetto. La posizione dell'immagine si trova con la formula dei punti coniugati

I fari delle automobili

Come è fatto lo specchio che sta dietro la lampadina del faro?

Esso ha una forma curva.

Nei fari delle automobili la lampadina si trova nel punto F, detto *fuoco* dello specchio. Per una sorgente posta luminosa posta nel fuoco, i raggi riflessi sono tutti paralleli. Viceversa per una sorgente posta a distanza infinita i raggi, tutti paralleli, verranno riflessi e passanti per il fuoco.

Specchio curvo (sferico): la sua superficie ha la forma di una calotta sferica di raggio *r*.

Il raggio dello specchio è il raggio della sfera da cui esso è tratto;

Lo specchio è **concavo** se la **superficie riflettente** è quella **interna** alla calotta, altrimenti è **convesso**

Apertura dello specchio: angolo al centro α che corrisponde all'arco ottenuto sezionando la calotta.

Asse ottico: asse di simmetria della calotta; passa per il **centro** *C* della sfera (centro di curvatura) e per il **vertice** *V* dello specchio.

La distanza focale è la distanza tra il fuoco F e il vertice V.

Approssimazione di GAUSS

- I raggi luminosi sono considerati sempre parassiali (ossia con angoli di inclinazione piccoli rispetto all'asse ottico principale)
- Gli angoli di apertura di specchi e lenti sono piccoli (specchi e lenti sono una piccola porzione delle sfere cui appartengono), cioè α < 10°.

In tali condizioni si verifica che:

la distanza focale è uguale alla **metà del raggio**.

i raggi paralleli all'asse ottico sono riflessi nel fuoco F e FV = distanza focale = r/2

La formazione dell'immagine – Specchio concavo

Raggio parallelo all'asse ottico

Raggio per il centro

Raggio per il fuoco

Raggio nel vertice

La formazione dell'immagine – Specchio concavo

Costruiamo l'immagine dell'oggetto AB utilizzando la tecnica vista precedentemente.

I raggi si incontrano in A', immagine del punto A.

Determinando l'immagine di altri punti di AB si trova che l'immagine dell'oggetto AB è A'B'

Il raggio 1 uscente da **A** incide sullo specchio con **angolo nullo** e torna indietro nella stessa direzione.

Il raggio 2 è **parallelo all'asse** ottico e viene riflesso nel fuoco **F** (**f positivo**).

a Il raggio 1 che passa per C torna indietro, il raggio 2 viene riflesso nel fuoco; l'immagine è reale e capovolta. L'immagine è **reale** quando i punti di *A'B'* dell'immagine sono ottenuti come **intersezione di raggi luminosi** e non di prolungamenti.

L'immagine è virtuale quando i punti di A'B' dell'immagine sono ottenuti come intersezione dei prolungamenti dei raggi luminosi.

La formazione dell'immagine – Specchio concavo

Oggetto oltre il centro

Immagine reale, capovolta e rimpicciolita

Oggetto tra il centro e il fuoco

Immagine reale, capovolta e ingrandita

Oggetto tra il fuoco e lo specchio

Immagine virtuale, diritta e ingrandita

La formazione dell'immagine – Specchio convesso

Costruiamo l'immagine dell'oggetto AB formata da uno specchio convesso.

Il **raggio 1** uscente dal punto **B** incide sullo specchio con angolo nullo e torna indietro nella stessa direzione in modo che il suo prolungamento passi per il centro C.

Il **raggio 2** è **parallelo** all'asse ottico e viene **riflesso in modo che il suo prolungamento passi nel fuoco** *F* (*f* è negativo).

I prolungamenti dei raggi si incontrano in B', immagine del punto B, e l'immagine di AB è A'B'

L'immagine è diritta e virtuale (i punti di A'B' sono ottenuti come intersezione di prolungamenti di raggi luminosi).

La legge dei punti coniugati - (per specchi di piccola apertura)

Indipendentemente se lo specchio è concavo o convesso, le distanze p e q ed f sono:

Positive se si trovano dal lato del raggio riflesso.

Negative se si trovano dalla parte opposta rispetto al raggio riflesso.
Un punto dietro allo specchio ha distanza negativa.

SPECCHIO CONCAVO (f > 0)			
Distanza p	Distanza q Q positivo Q negativo	Ingrandimento G= - q/p	Tipo immagine
$P \rightarrow \infty$	Q=f	G = 0	Reale e puntiforme
p > 2f	f < q < 2f	-1 < G < 0	Reale, capovolta, rimpicciolita
P = 2f	Q = 2f	G= -1	Reale, capovolta, invariata
F < p < 2f	Q > 2f	G < -1	Reale, capovolta, ingrandita
P = f	Q → ∞		
P < f	q > p	G > 1	Virtuale, diritta, ingrandita
SPECCHIO CONVESSO (f < 0)			
Qualsiasi	q q < f	0 < G < 1	Virtuale, diritta, rimpicciolita

ESEMPIO 1 Una matita che dista 10 cm da uno specchio concavo, forma un'immagine a 40 cm dallo specchio. La distanza focale f soddisfa all'equazione:

$$\frac{1}{f} = \frac{1}{10} + \frac{1}{40}$$

che risolta dà f = 8 cm.

•L'ingrandimento lineare G dello specchio è il rapporto tra le altezze dell'immagine h; e dell'oggetto **h**_o:

$$G = \frac{h_i}{h_o}$$

Si dimostra che $\frac{h_i}{h_o} = \frac{q}{p}$ e quindi: $G = \frac{q}{p}$

$$G = \frac{q}{p}$$