

OOO Arquitetura de Computadores

Paralelismo no nível de Instruções e Processadores Superescalares

Profa. Gisele S. Craveiro

000 O que é Superescalar?

- o Instruções usuais (aritméticas, load/store, desvio condicional) podem ser iniciadas e executadas independentemente
- o Aplicável igualmente tanto a RISC & CISC
- Na prática mais comum em RISC

O O O Porque Superescalar?

- Maioria das operações são sobre grandezas escalares
- Melhoria dessas operações leva a uma melhoria geral

0 0 0 Mecanismo

- Executar instruções independentementes em diferentes pipelines.
- Permite busca e execução parelela
- Passo seguinte:
 - o executar instruções em ordem diferente daquela que aparecem no programa original.

Organização Geral de Superescalar

0 0 0 Superpipelined

- o Muitos estágios do pipeline necessitam de menos da metade de um ciclo de relógio
- o Dobrar a velocidade do relógio interno leva a duas tarefas por ciclo de relógio externo
- Superescalar propicia paralelismo da busca e execução

Superscalar X Superpipeline

- o Pipeline com 4 estágios:
- 1) busca de instrução;
- 2) decodificação;
- 3) execução;
- 4) escrita de resultado.
- Superescalar:
- 2 instâncias em paralelo
- Superpipeline: overhead maior no início e em caso de desvios.
 Gisele S. Craveiro EACH - USP

O O O Paralelismo no nível de instrução

- o Otimização baseada no compilador
- o Técnicas de Hardware
- Limitado por
 - o Dependência de dados verdadeira
 - o Dependência de desvio
 - o Conflito de recurso
 - o Dependência de saída
 - o Antidependência

0 0 0 Dependência de dados verdadeira

- o ADD r1, r2 (r1 := r1+r2;)
- MOVE r3,r1 (r3 := r1;)
- o Pode buscar e decodificar a segunda instrução em paralelo com a primeira
- o Pode NÃO executar a segunda instrução até que a primeira tenha terminado

0 0 0 Dependência de Desvio

- o Não é possível executar as instruções depois de um desvio em paralelo com as instruções antes do desvio
- o Além disso, se o tamanho da instrução não é fixo, as instruções devem ser decodificadas para saber quantas buscas são necessárias
- o Isto impede buscas simultâneas

0 0 0 Conflito de Recurso

- Duas ou mais instruções necessitando do mesmo recurso ao mesmo tempo
 - o ex. duas instruções aritméticas
- Duplicação de recursos
 - o ex. ter duas unidades aritméticas

0 0 0

Questões de Projeto

- o Paralelismo no nível de instrução
 - o Instruções em sequência são independentes
 - Execução pode ser sobreposta
 - o Determinado pela dependência de dados e de desvio
- o Paralelismo de Máquina
 - Habilidade de aproveitar o paralelismo no nível de instrução
 - o Determinado pelo número de pipelines paralelos

O O O Política de Iniciação de Instruções

- o Processador:
 - o precisa identificar o paralelismo no nível de instruções;
 - o coordenar a busca, decodificação e execução de instruções em paralelo
- o Iniciação de Instruções: processo de iniciar a execução de instruções nas unidades funcionais.
- o Política: protocolo usado para iniciar a execução de instruções.

O O O Tipos de Ordenação de Instruções

- Ordem na qual as instruções são buscadas
- Ordem na qual as instruções são executadas
- o Ordem na qual as instruções atualizam o conteúdo de registradores e memória

O O O Política de Iniciação de Instruções

- o Iniciação em ordem com terminação em ordem.
- Iniciação em ordem com terminação for a de ordem.
- Iniciação fora de ordem com terminação fora de ordem.

Iniciação em Ordem com Terminação em Ordem

- o Inicia as instruções na ordem que elas ocorrem
- Não muito eficiente
- Pode buscar >1 instrução
- o Instruções devem esperar (stall) se for necessário

Iniciação em Ordem Terminação em Ordem (Diagrama)

Dec	ode		Execut	e		Write	Cycle
I 1	12						1
13	I4	I1	12				2
13	I4	I1					3
	I4			13		I1 I2	4
15	16			I4			5
	16		15			13 14	6
			16				7
						15 16	8
					J		**

- I1 requer 2 ciclos para execução
- I3 e I4 conflito de recursos
- I5 depende de dados de I4
- I5 e I6 conflito de recursos

Gisele S. Craveiro EACH - USP

Iniciação em Ordem com Terminação Fora de Ordem

- Melhora desempenho em processadores com execução de instruções que requerem vários ciclos.
- o Iniciação de instruções interrompida em caso de conflitos (dados, recursos ou desvio).
- o Dependência de Saída
- o Complexidade de interrupções

Iniciação em Ordem com Terminação Fora de Ordem

- o Dependência de Saída
 - o R3:= R3 + R5; (I1)
 - \circ R4:= R3 + 1; (I2)
 - o R3:= R5 + 1; (I3)
 - o I2 depende do resultado de I1 dependência de dados
 - o Se I3 termina antes de I1, o resultado de I1 estará errado - dependência de saída (escrita-escrita)

Iniciação em Ordem Terminação Fora de Ordem (Diagrama)

Decode		
I1	12	
13	14	
	I4	
15	16	
	16	

Execute		
I 1	12	
I 1		13
		14
	15	
	16	

Cycle
1
2
3
4
5
6
7

Iniciação Fora de Ordem com Terminação Fora de Ordem

- o Desacopla pipeline de decodificação do pipeline de execução
- o Pode continuamente buscar e decodificar até que o pipeline esteja cheio
- Quando uma unidade funcional se torna disponível pode executar uma instrução
- Já que as instruções foram decodificadas, o processador pode examinar instruções à frente (look ahead)

0 0 0

Iniciação Fora de Ordem Terminação Fora de Ordem (Diagrama)

Decode				
I 1	12			
13	14			
15	16			

	Execute				
I 1		12			
I1			13		
		16	I4		
		15			

Write				
12				
I 1	13			
I4	16			
15				

0 0 0 Antidependência

- o Com a iniciação fora de ordem, outro tipo de dependência pode ocorrer:
- o Dependência leitura-escrita
 - R3:=R3 + R5; (I1)
 - o R4:=R3 + 1; (I2)
 - \circ R3:=R5 + 1; (I3)
 - R7:=R3 + R4; (I4)
 - I3 não pode terminar antes que I2 inicie já que I2 necessita de um valor em R3 e I3 modifica R3

0 0 0

Renomeação de Registradores

- Dependência de saída e antidependência são conflitos de armazenamento
- O conteúdo dos registradores pode não refletir a correta ordenação do programa
- o Pode levar à espera no pipeline (pipeline stall)
- o Registradores alocados dinâmicamente
 - o registradores não são nomeados especificamente

0 0 0 Exemplo

- o Sem "letra": registrador lógico.
- o Com "letra": registrador em hardware alocado.
- o Observe R3a R3b R3c

0 0 0 Paralelismo de Máquina

- o Técnicas de hardware:
 - duplicação de recursos;
 - iniciação for a de ordem;
 - o renomeação de registradores.
- De acordo com estudo:
 - o não vale a pena duplicar recursos sem renomeação de registradores;
 - o Tamanho da janela de instruções: > 8.

0 0 0 Predição de Desvio

- 80486 busca tanto a instrução sequencial seguinte como a instrução alvo.
 - o atraso de 2 ciclos se o desvio é tomado.
- o Atraso de desvio (RISC): não é eficiente em superescalares.
- o Superescalares: técnicas estáticas ou dinâmicas de previsão de desvios.

000 Execução Superescalar

000 Implementação Superescalar

- Busca de múltiplas instruções simultaneamente.
- Lógica para determinar dependências de dados verdadeiras e mecanismos para transferir esses valores para onde necessários.
- Mecanismos para iniciar múltiplas instruções em paralelo.
- Recursos para execução de múltiplas instruções paralelas.
- Mecanismos para confirmar resultados do processamento na ordem correta.