REFERENCES:

- 1. Papoulis. A and Unnikrishnapillai. S., "Probability, Random Variables and Stochastic Processes", Mc Graw Hill Education India, 4th Edition, New Delhi, 2010.
- 2. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 8th Edition, 2007.
- 3. Ross, S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 3rd Edition, Elsevier, 2004.
- 4. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 2004.

Evaluation Pattern:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory	40	20	40

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓	✓	✓	✓						✓	✓
CO2	✓	✓	✓	✓	✓							
CO3	✓	✓	✓	✓	✓							
CO4	✓	✓	✓	✓	✓							
CO5	✓	✓	✓	✓	✓							
CO6	✓	✓	✓	✓	✓							

EE6351	EE6351 BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	L	T	Р	EL	TOTAL CREDITS
		4	0	4	3	7

Prerequisites for the course: None

OBJECTIVES:

- To learn the steady state DC and AC characteristics of electric circuits
- To understand the working of DC/AC motors, transformer and generators
- To understand the functionality of basic electronic circuits namely amplifiers, filters, data converters and oscillators
- To learn the design aspects of basic amplifier configurations and concepts of feedback techniques

MODULE I:	L	T	Р	EL
	2	0	4	3

DC Electrical circuit - Fundamental laws- Steady State Solution of DC Circuits - Electrical measuring instruments.

SUGGESTED ACTIVITIES:

- Computer simulation of DC circuits problems and solution
- EL- Solving of complex electrical networks using circuit theorems
- Practical Basic electrical circuit measurements and verification of circuit theorems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE II:	L	Т	Р	EL
	4	0	4	3

Introduction to AC Circuits –Sinusoidal steady state analysis– Power and Power factor – Single Phase and Three Phase Balanced Circuits.

SUGGESTED ACTIVITIES:

- Computer simulation of AC circuits problems and solution
- EL- Solving of other engineering problems as electrical circuit equivalents
- Practical Three phase power measurements

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE III:	L	T	Р	EL
	4	0	4	3

Construction, Principle of Operation, Basic Equations and Applications of DC Generators, DC Motors

SUGGESTED ACTIVITIES:

- EL- Survey of commonly used DC machines and their applications
- Practical Load test on DC motor and generator

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IV:	L	T	Р	EL
	4	0	4	3

Operating principle of Transformers –Induction Motor – single phase and three phase operation, Stepper motor

SUGGESTED ACTIVITIES:

- Study of utility power grid and the use of transformers
- EL- Survey of commonly used AC machines and their applications
- Practical Load test on transformer and Induction motor

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE V:	L	Т	Р	EL
	4	0	4	3

Characteristics of PN Junction Diode, Half wave and Full wave Rectifiers, Zener Diode and its Characteristics – Voltage Regulation. Bipolar Junction Transistor – CB, CE, CC Configurations and Characteristics.

SUGGESTED ACTIVITIES:

- Practical V- I characteristics of PN Junction and Voltage regulator characteristic of Zener Diode.
- Demonstration Half wave and Full wave Rectifiers

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VI:	L	Т	Р	EL
	4	0	4	3

Elementary Treatment of Small Signal Amplifier – Linear Amplifier, Biasing Requirement – Voltage Divider Biasing, Basic CE amplifier circuit - Small signal equivalent model - Small signal Voltage gain

SUGGESTED ACTIVITIES:

Practical – CE amplifier Voltage Divider Biasing and verification of operating point,
Verification of small signal voltage gain

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VII:	L	Т	Р	EL
	4	0	4	3

Differential amplifier using BJT, Negative feedback amplifier – characteristics – topologies, Opamp - inverting amplifier - non inverting amplifier.

SUGGESTED ACTIVITIES:

Practical - Opamp characteristics:
Verification of inverting amplifier gain
Verification of non inverting amplifier gain

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VIII:	L	T	Р	EL
	4	0	4	3

Opamp based circuit – Summer – Subtractor – Integrator – Differentiator, Opamp based Filters – Low pass, High pass, Band pass, Band reject.

SUGGESTED ACTIVITIES:

Practical -Verification of opamp based arithmetic circuit
Verification of frequency response characteristics of opamp based
First order lowpass filter, First order highpass filter

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IX:	L	Т	Р	EL
	4	0	4	3

Analog to Digital Converter – Flash ADC- Successive Approximation ADC, Digital to Analog Converter – Binary weighted DAC, Positive feedback – Ring oscillator.

SUGGESTED ACTIVITIES:

 Presentation / Assignment on Performance metrics of ADC Ring oscillator circuit architecture

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE X:	L	T	Р	EL
	4	0	4	3

MOSFET – V-I characteristics, MOSFET small signal equivalent circuit, Common Source amplifier – Voltage gain – Frequency response characteristic.

SUGGESTED ACTIVITIES:

Spice simulation - MOSFET V-I characteristic

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

OUTCOMES:

Upon completion of the course, the students will be able to:

- Compute steady state solution of DC and AC electric circuits
- Analyze the characteristics of motors and transformers
- Design and analyze amplifiers
- Characterize the frequency response of BJT based amplifiers
- Realize arithmetic circuits, basic filter configurations using opamp
- Point out the characteristics of data converters

TEXT BOOKS:

- 1. J Nagarath and Kothari DP, "Electrical Machines", Tata McGraw Hill, 2010.
- Donald .A. Neamen, "Electronic Circuit Analysis and Design", 3rd Edition, Tata McGraw Hill, 2010.

REFERENCES:

- 1. P.C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons, 2nd Edition, 2007.
- 2. Leonard S Bobrow, "Foundations of Electrical Engineering", Oxford University Press, 2013.
- 3. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum's Outline Series, McGraw Hill, 2002.
- 4. Del Toro, "Electrical Engineering Fundamentals", Pearson Education, New Delhi, 2007
- 5. A.E. Fitzgerald, David E Higginbotham and Arvin Grabel, "Basic Electrical Engineering", McGraw Hill Education (India) Private Limited, 2009.
- 6. David A. Bell, "Electronic Devices and Circuits", Oxford Higher Education Press, 5th Edition, 2010.
- 7. Adel .S. Sedra, Kenneth C. Smith, "Micro Electronic Circuits", 7th Edition, Oxford University Press, 2014.
- 8. Coughlin and Driscoll, "Operational Amplifiers and Linear Integrated Circuits", Prentice Hall. 1989.

Evaluation Pattern:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory Integrated with Practical	15(T) + 25 (P)	20	40

CO - PO Mapping:

CO - FO Mapping.												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓		✓					✓			
CO2	✓	✓	✓	✓	✓				✓			
CO3	✓	✓	✓	✓	✓				✓			
CO4	✓	✓	✓	✓	✓	✓			✓			
CO5	✓	✓		✓		✓	✓		✓	✓		✓