GROUP REPRESENTATION

王胤雅

SID: 201911010205

201911010205@mail.bnu.edu.cn

2024年1月4日

ROBEM I Find an n-dimensional real matrix representation of $(\mathbb{R}, +)$.

SOLTION. Let:

$$\phi: \mathbb{R} \to \mathrm{GL}_n(\mathbb{R}), x \mapsto e^x I_n \tag{1}$$

Then obviously $(M_n(\mathbb{R}), \phi)$ is an n-dimensional real matrix representation of $(\mathbb{R}, +)$.

ROBEM II Find an infinitely dimensional representation of $(\mathbb{R}, +)$.

SOLTION. Let:

$$\phi: \mathbb{R} \to \mathrm{GL}(\mathbb{R}[x]), \phi(a)(f)(x) := f(a+x)$$
 (2)

Then it's easy to know $(\phi, \mathbb{R}[x])$ is a representation of $(\mathbb{R}, +)$.

ROBEM III Determine whether the representation is faithful or not in Example 1 4 and Problem I, Problem II.

- SOUTHOW. Example 1: When a=0 we have $f_0(x)=\mathrm{e}^0=1$, so it's obviously not faithful. When $a\neq 0$, we can easily get f_a is injective, so it's faithful.
 - Example 2: When a=0 we have $f_0(x)=\mathrm{e}^0=1$, so it's obviously not faithful. When $a\in\mathbb{R}^*$, let $x=y+\frac{2\pi}{a}$, then $f_a(x)=f_a(y)$, so f_a is not faithful. When $a\in\mathbb{C}\setminus\mathbb{R}$, we get $|f_a(x)|=\mathrm{e}^{-\mathrm{Im}(a)x}$ is injective, so f_a is injective, thus faithful.
 - Example 3: Obviously $\phi(x+2\pi) = \phi(x)$ so it's not faithful.
 - Example 4: Consider $f \in \mathbb{R}_n[x]$, f(x) = x, then for $a \neq b$, we have $\phi(a)(f) = x + a \neq x + b = \phi(b)(f)$, so $\phi(a) \neq \phi(b)$, thus ϕ is faithful.
 - Problem I: Obviously it's faithful.
 - Problem II: Obviously it's faithful.

POBLEM IV Let $\lambda \in \mathbb{C}^*$, and:

$$\phi_{\lambda}: (\mathbb{Z}, +) \to \mathbb{C}^*, n \mapsto \lambda^n \tag{3}$$

Prove that ϕ_{λ} is an 1-dimensional complex representation of $(\mathbb{Z}, +)$, and find when it's faithful.

SOUTION. For $m, n \in \mathbb{Z}$, we have $\phi_{\lambda}(m+n) = \lambda^{m+n} = \lambda^m \lambda^n = \phi_{\lambda}(m)\phi_{\lambda}(n)$, so ϕ_{λ} is complex representation. Obviously $\mathbb{C}^* \cong GL(\mathbb{C})$, so it has dimension one.

Noting ϕ_{λ} is faithful $\iff \ker(\phi) = \{0\} \iff \forall n \neq 0, \lambda^n \neq 1$. So ϕ_{λ} is not faithful if and only if $\lambda = e^{q\pi}$ for some $q \in \mathbb{Q}$.

 $\mathbb{R}^{OBEM} V \text{ Let } V = \mathbb{R}[x]. \ \forall a \in \mathbb{R}, \text{ let:}$

$$L_a(f(x)) := f(ax), \quad \forall f(x) \in \mathbb{R}[x],$$

 $S_a(f(x)) := f(e^a x), \quad \forall f(x) \in \mathbb{R}[x].$

and:

$$\varphi(a) = L_a, \quad \forall a \in \mathbb{R},
\psi(a) = S_a, \quad \forall a \in \mathbb{R}.$$

Question: Is φ and ψ is infinitely dimensional real representation of $(\mathbb{R}, +)$?

SOLUTION. $\phi(a+b)(f)(x) = f((a+b)x), \phi(a)\phi(b)(f)(x) = \phi(a)(f(bx)) = f(abx), \text{ let } f(x) = x, a = b = 1 \text{ we get } \phi(a+b)(f)(x) = f((a+b)x) \neq f(abx), \text{ so } \phi \text{ is not representation of } \mathbb{R}.$

 $\psi(a+b)(f)(x) = f(e^{a+b}x), \psi(a)\psi(b)(f)(x) = \psi(a)(f(e^bx)) = f(e^ae^bx) = \psi(a+b)(f)(x), \text{ so } \psi \text{ is a representation of } (\mathbb{R}, +). \text{ Obviously } \mathbb{R}[x] \text{ is infinite-dimension, so } \psi \text{ is infinitely dimensional.} \quad \square$

ROBEM VI Give the matrix representation of $G = \langle a \rangle$ given by the regular representation, ρ , of field K, where rank(a) = 4.

SOLUTION. $\{e, a, a^2, a^3\}$ is basis of K[G]. And:

$$\rho(a)e = a, \rho(a)a = a^2, \rho(a)a^2 = a^3, \rho(a)a^3 = e$$
(4)

So matrix of $\rho(a)$ is:

$$P(a) = \begin{pmatrix} 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 (5)

And thus $P(a^n) = P(a)^n$. Then P is the matrix representation of G.