

VECTOR

VENUS. EXPLORATORY. CUBESAT. TRANSFER. ORBIT. RESEARCHER

April 7, 2023

Chandler Hutchens, Jacob Simonson, Elysian Hudson, Kelly Senanayake, Jackson Manship & Tyson Hill

AEE 445 Team 7

Overview

Slides	Topic	Overview
1-10	Mission & Background	Mission Statements, Mission Requirements & General Mission Information
11-36	System Level	Analysis of Alternatives, CONOPS, System Diagrams, System Requirements, & General Design
37-84	Sub-System Level	Analysis of Alternatives, Sub-System Requirements, & Technical Details
85-91	Risk & VV	Risk Management, Risk Matrix, & V&V
92-106	Summary & Future	Spacecraft Budgets, Standards, Schedule, Summary, & References

Mission & Background

Mission Statement

- Relatively little is known about Venus's atmosphere, weather patterns, and toxicity.
- There is a need for high-value, low-cost interplanetary science.
- This mission will be to reach Venus orbit through the means of a cubesat built from COTS.
- Primary need:
 - Build a CubeSat with COTS components and get it into Venus orbit
- Secondary need:
 - Perform useful science with a small and inexpensive instrument
 - Verify existence of lightning

Mission Requirements - Level 1

ID	Requirement	Verification	Parent
MR1.1	System shall execute a Venus orbit insertion burn	Demonstration	Mission Statement
MR1.2	System shall perform a science objective based on the Decadal survey	Demonstration	Mission Statement
MR1.3	System shall increase TRL of cubesat COTS components	Demonstration	Mission Statement

Venus Background

- Venus is the second planet from the sun
- Hottest planet in solar system with average temperature of 462°C
- Venus may have once been Earth-like, but due to the runaway greenhouse effect, its atmosphere is filled with carbon dioxide and is covered in clouds of sulfuric acid that trap heat
- These clouds of sulfuric acid may be responsible for lightning strikes on Venus
- 40 previous missions to Venus (23 successful)
 - 1 in operation (JAXA's Akatsuki launched 2010, ~520 kg's, ~\$300 Million)
- 2 future missions planned to Venus
 - DAVINCI (NASA scheduled 2029, ~\$500 Million)
 - VERITAS (NASA delayed to 2031, ~\$500 Million)

Societal Impacts

- Societal Impacts
 - Inspires young generation of STEM
 - High-value, low-cost science
 - Increases excitement towards smallsat
- Scientific Advancements
 - Venus lightning verification
 - Venus weather patterns
- **Technological Advancements**
 - Increase TRL of COTS components
 - First cubesat to insert into non-Earth planetary orbit

Constraints

Monetary:

- Estimating budget of \$25 M
 - Funding sources include government and private sector

Launch:

- Size: 12U Cubesat Standard
- **Mass**: 24 Kg
- **Vehicle**: Rocketlab Photon Spacecraft, Electron launch vehicle
- Timing: Launch Windows (4/2023, 12/2024, 7/2026, 3/2028, 10/2029)

Assumptions

- VECTOR can rideshare on Rocketlab's Photon Venus mission, for a trans-Venusian injection burn
- Use of the Deep Space Network (DSN)

Stakeholders

Primary Customer	National Aeronautics and Space Administration (NASA)
Secondary Customer	Arizona State University (ASU)
Providers	 Rocketlab Jet Propulsion Lab (JPL) Smallsat Companies (BCT, Ibeos, etc)
End Users	Planetary Research ScientistsFuture University/Industry Cubesats

Mission Selection & Overview

Mission Concept Trade Matrix

		Fo	r definiti	ons, pleas	e see Rep	ort 1. Wei	ghts are 1	0%, 10%,	30%, 30%	, 20% res _]	pectively.	
Team Totals		nercial ue:	Scientif	ic value:		very culty:		load culty:	Path fo	rward:	Total j	points:
Project:	Average	Std	Average	Std	Average	Std	Average	Std	Average	Std	Sum	Std
Venus Cubesat	1.83	0.41	4.17	0.75	3.67	0.82	4.00	1.10	4.17	0.98	3.73	0.99
Cislunar Cubesat	2.00	0.63	4.33	1.03	4.67	0.52	3.00	0.63	4.33	0.82	3.80	1.13
Titan Lander	2.67	1.86	4.50	0.84	1.33	0.52	2.33	0.82	3.33	0.82	2.48	1.18
Enceladus Lander	2.17	1.17	4.17	1.17	1.33	0.52	1.67	0.52	3.00	0.63	2.13	1.14
Europa orbiter	2.00	0.89	3.83	1.33	1.67	0.82	2.67	0.82	2.83	0.41	2.45	0.84
Asteroid mission	3.33	1.37	3.83	0.75	2.00	0.00	2.33	0.52	3.17	0.75	2.65	0.75
Kuiper belt objects	2.00	0.89	4.33	0.52	1.67	0.52	2.67	0.82	3.33	0.82	2.60	1.07
Remote mining	4.83	0.41	3.33	1.37	1.83	0.41	2.33	0.52	4.17	1.17	2.90	1.24
Propellant depot	4.50	0.55	2.00	1.55	2.50	0.84	1.83	0.75	3.83	0.75	2.72	1.18
Observatory for moon	2.83	1.33	3.67	1.21	2.33	0.82	2.50	1.38	3.00	0.63	2.70	0.52
Modular propulsion asteroids	2.83	1.33	2.33	0.52	2.17	0.41	3.33	0.82	3.33	1.03	2.83	0.55

Selection	Maighta	Custom Componen	ts	сотѕ		
Element:	Weights	Motivation	Score	Motivation	Score	
Cost	0.5	New parts incur high R&D costs + procurement	4 Only procurement cost		2	
Payload Capacity	0.25	No significant advantage	2.5	No significant advantage	2.5	
Lifetime	0.15	No significant advantage	2.5	No significant advantage	2.5	
Reliability	0.1	Slight significant advantage	2	Increasing the TRL	3	
Decision Scores:	1.0		3.2		2.3	

Selection	Mainte	Fly by		Insertion		
Element:	Weights	Motivation	Score	Motivation	Score	
Cost	0.5	Lower cost per mission, higher overall cost	3	Higher cost per mission, lower overall cost	2	
Payload Capacity	0.25	Increased payload capacity by 10-15%	2	Decreased payload capacity by 10-15%	3	
Lifetime	0.15	Limited to time of fly-by	4	4 Much longer time in service		
Reliability	.1	Less reliable data Less time in proving tech	4 More data available Longer tech life-time		2	
Decision Scores:	1.0		3		2.25	

Selection	Maighta	Fully self-propelle	ed	Assisted propulsion		
Element:	Weights	Motivation	Score	Motivation	Score	
Cost	0.5	More fuel & power costs	4	Less power and fuel required	2	
Payload Capacity	0.25	Smaller area due to increased battery capacity and propulsion fuel reserves	4	Larger area for science mission due to less power or fuel requirements	2	
Lifetime	0.15	Travel alone + science mission = Build for a Longer mission	2	Science mission will last less time due to no travel	4	
Reliability	.1	More design/development risk	3	Less design/development risk	2	
Decision Scores:	1.0		3.6		2.3	

Selection Element	Weight	Veight Radio		Magnetometer and Elect Analyzer (ESA)	rostatic	Neuromorphic Camera	
		Motivation	Score	Motivation	Score	Motivation	Score
Cost	0.5	Cost effective	3	Cost effective	3	New and not as cheap	4
Size	0.1	No significant advantage	2	No significant advantage	2	No significant advantage	2
Future Missions	0.2	Ability to understand the chemical composition of the planet	2	Predict the space weather around Venus, and how Solar Winds interact with the planet	2	Catalog the weather and environment of Venus	1
Societal Impacts	0.2	Interesting, but not wholly eye-catching	4	There may not be much interest about what occurs around Venus	3	Lightning and meteor strikes hold potential to excite	1
Scores	1		2.9		2.7		2.6

Trade Study:	Selection:	Motivation:		
1.1 - Component design	COTS Components	Reduced R&D costs, higher compatibility		
1.2 - Orbit	Insertion into Venus Orbit	Longer mission lifetime, more science capability		
1.3 - Propulsion to Venus	Assisted propulsion	Higher payload capacity, reduced fuel requirement		
1.4 - Payload	Neuromorphic Camera	Slightly more costly, but would engage public interest and fulfill secondary mission statement		

Summary: VECTOR is a venusian ride sharing mission built from COTS components to perform an insertion burn with a neuromorphic cammer

Cubesat

Arizona State University

- Cal Poly Standard
- 12U Selected

VECTOR CAD Model:

Arizona State University

VECTOR CAD Model: Stowed Position

AEE 445 Team 7 Presenter: Elysian Hudson

- Deployer Specifications:
 - Max Mass: 24kg
 - Rail Width (X): 340.5mm
 - o Rail Height (Y): 226.3mm
 - Rail Length (Z): 226.3mm
- Deployment Mechanism:
 - 4 x Helical Springs

Concept of Operations

Concept of Operations

Functional Block Diagram

Level 1

Arizona State University

Physical Architecture

Product Work Breakdown Structure

Presenter: Jackson Manship

AEE 445 Team 7

N2 (Interfaced Diagram)

Requirements Flowdown

Launch Requirements - Level 2

ID	Requirement	Verification	Parent	Child
LS-2.1	System shall be designed for launch onboard Rocket Lab Electron Rocket, as stated in "Payload User's Guide V6.6"	Inspection	MR1.2	TBD
LS-2.2	Launch system shall have ability to insert spacecraft into Venus transfer orbit	Demonstration	MR1.1	TBD
LS-2.3	System shall have primary vibrational and acoustical modes that do not correspond to launch vehicles primary modes	Testing	MR1.2	TBD
LS-2.4	Launch shall occur only when Venus is nearing closest approach to Earth	Inspection	MR1.1	TBD

ID	Requirement	Verification	Parent	Child
SC-2.1	System shall have a minimum 2U payload capacity	Inspection	MR1.2	TBD
SC-2.2	System shall have a minimum operational life of 510 days	Analysis	MR1.3	TBD
SC-2.3	System shall generate sufficient power for each subsystem	Testing	MR1.2	TBD
SC-2.4	System shall have a controlled deorbit plan	Analysis	MR1.3	TBD
SC-2.5	System shall have ability to power on and off	Demonstration	MR1.1	TBD

ID	Requirement	Verification	Parent	Child
SC-2.6	System shall be able to stay within allowable temperature range for each subsystem	Testing	MR1.2	TBD
SC-2.7	System shall be powered off from time of delivery through orbit delivery	Testing	MR1.1	TBD
SC-2.8	System shall wait a minimum of 30 minutes after deployment switches triggered before releasing deployables	Testing	MR1.2	TBD
SC-2.9	System shall have attitude control accuracy to meet pointing constraints	Testing	MR1.2	TBD

ID	Requirement	Verification	Parent	Child
SC-2.10	System shall retain operational integrity throughout the mission duration	Testing	MR1.2	TBD
SC-2.11	System shall be protected against radiation during entire duration of mission	Testing	MR1.3	TBD
SC-2.12	System shall have at minimum one deployment switch	Inspection	MR1.2	TBD
SC-2.13	System shall be capable of communication back to Earth on average once every Earth day	Test	MR1.2	TBD

ID	Requirement	Verification	Parent	Child
SC-2.14	System shall have redundant downlink methods	Inspection	MR1.2	TBD
SC-2.15	System shall incorporate mechanism(s) to prevent premature subsystem operations	Inspection	MR1.2	TBD
SC-2.16	System shall provide flight system telemetry	Demonstration	MR1.2	TBD
SC-2.17	System shall have enough fuel to remain in desired orbit for 510 days	Analysis	MR1.1	TBD

Ground Requirements - Level 2

ID	Requirement	Verification	Parent	Child	
GS-3.1	System shall be operational during the entirety of the mission	Inspection	MR1.3	TBD	
GS-3.2	System shall interface with the flight system to upload commands	Inspection	MR1.2	TBD	
GS-3.3	System shall interface with the flight system to receive and process telemetry and payload science data	Inspection	MR1.2	TBD	
GS-3.4	System shall be available for communication with the flight system at any point during a 24-hour period	Inspection	MR1.2	TBD	

System Performance Requirements

ID	Requirement	Verification	Parent	Child	status
LS-2.3	System shall have primary vibrational and acoustical modes that do not correspond to launch vehicles primary modes	Testing	MR1.2	TBD	TBD
SC-2.2	System shall have a minimum operational life of 510 days	Analysis	MR1.2	TBD	TBD
SC-2.3	System shall generate sufficient power for each subsystem	Testing	MR1.2	TBD	meeting
SC-2.5	System shall be able to stay within allowable temperature range for each subsystem	Testing	MR1.2	TBD	TBD
SC-2.13	System shall be capable of communication back to Earth on average once every Earth day	Test	MR1.2	TBD	meeting
SC-2.22	System shall contain enough propellant to satisfy on-orbit stationkeeping requirements	Testing	MR1.1	TBD	meeting

Critical Design Requirements

ID	Requirement	Verification	Parent	Child	Status
SC-2.1	System shall have a minimum 2U payload capacity	Inspection	MR1.2	TBD	meeting
SC-2.8	System shall have attitude control accuracy to meet pointing constraints	Testing	MR1.2	TBD	meeting
SC-2.11	System shall be protected against radiation during entire duration of mission	Testing	MR1.3	TBD	TBD
PRO- 3.5.1	System shall produce a velocity increment of at least 1 km/s	Testing	MR1.1	TBD	meeting

Sub-System Level

38

Computing & Data Handling (CDH)

CDH Requirements - Level 3

ID	Requirement	Verification	Parent	Status
CDH-3.1.1	System shall resist at least 40 krad.	Testing	SC-2.12	TBD
CDH-3.1.2	System shall collect telemetry data for communication at minimum every 12 hours.	Inspection	SC-2.12	TBD
CDH-3.1.3	System shall operate neuromorphic camera during orbit.	Inspection	MR-1.2	TBD
CDH-3.1.4	System shall have at minimum 1GB of local storage.	Inspection	SC-2.12	TBD
CDH-3.1.5	System shall have at minimum 200 MHz of processing power.	Inspection	SC-2.12	TBD

Analysis of Alternatives - Processor

Selection Element	Weight	Alen Space TRISKEL EnduroSat OBC		EnduroSat OBC		CHREC Space Processo	r
		Motivation	Score	Motivation	Score	Motivation	Score
Cost	0.2	Unknown	3	\$4,300-\$10,400	2	Unknown	3
Weight	0.1	200 g	5	130 g	3	74 g	1
Radiation Resistance	0.5	No data, TRL 4	5	40 krad	3	100 krad	1
Storage	0.1	1 GB, room for more	4	8 GB	1	4 GB	2
Processing	0.1	280 MHz/32b	4	216 MHz	5	766 MHz	2
Score	es		4.4		2.8		1.6

Note: 5 = worst 1 = best

Technical Details

CHREC Space Processor

- Xilinx Zynq 7020 System on Chip
- Reconfigurable FPGA
- CPU: 766 MHz
- Memory: 32 Gbit FM, 2 Gbit NAND, 8
 Gbit SDRAM
- Linux OS
- Radiation tolerant, up to 100 krads
- Vibration: NASA GEVS Acceptance Levels
- Temperature: 0°C to +70°C

Presenter: Jackson Manship

Thermal Control System (TCS)

TCS Requirements - Level 3

ID	Requirement	Verification	Parent	Status
TCS-3.2.1	System shall maintain internal operating temperature between 0°C and 50°C.	Testing	SC-2.6	TBD
TCS-3.2.2	System shall have a nominal operating temperature of 20°C.	Analysis	SC-2.6	TBD
TCS-3.2.3	System shall be have the ability to modulate the internal temperature of the spacecraft by ± 25 °C	Testing	SC-2.6	TBD
TCS-3.2.4	System shall have a peak power usage of 154.7 W.	Testing	SC-2.6	TBD

1st Order Thermal Analysis

Assumptions:

- 1. If the system can achieve a **net zero load in both the hot case and the cold case**, then the system can survive any temperature within that range.
 - a. Hot Case: during insertion burn while in sun

b. Cold Case: in orbit & venus in between SC & sun

- 1. If the steady state NASTRAN simulation attains similar results as the hand calculations, then the model can be considered **validated** and the transient simulation can be trusted.
- For internal loads; 1-Watt of power consumption is equal to 1-Watt of heat generation because of the inefficiencies of microprocessors.
- 3. Average distance between spacecraft and sun is 0.7 AU. (~ avg sun-venus radius)
- 4. Only radiating to space (venus/sun are sufficiently far enough away)

Thermal Calculations

Governing Equations

 $Q = \varepsilon \sigma FA(T_1^4 - T_2^4)$ Radiation

 $Q = kA(T_1 - T_2)/L$ Conduction

Thermal Controls:

- Adjust emissivity
- Adjust absorptivity
- Material Selection for thermal conductances
- Use of MLI
- Radiators

Thermal Calculations

if positive system is heating, if negative system is cooling. If 0 assume ss stable

Hot Case, with	TCS	TCS Method
Q_solar, W	27.1391744	Paint sun-side white
Q_internal, W	38.9	
Q_rad-space, W	-0.45	Painted Black
Q_rad-space/panels, W	-63.02	wrap in MLI & paint black
Q_cond-panels, W	0.000	aerogell insulation
Q_cond_engine	0	aerogell insulation
Q_in, W	66.04	
Q_out, W	-63.47	
Q_net, W	2.56	
if positive system is heat system is cooling. If 0 as		

0
55.91
-0.45
-63.02
0.000
55.91
-252.54
-7.56

if positive system is heating, if negative system is cooling. If 0 assume ss stable

Presenter: Tyson Hill

Mounting	Acrylic Adhesive (PSA)			
Thickness (in)	0.060			
Min Temp (°F)	-26			
Max Temp (°F)	212			
Weight (oz)	0.080			
Style	Etched Kapton/WA			
X dim (in)	1.00			
Y dim (in)	4.00			
R (Ω)	23.59			
AWG	26			
Area (in²)	3.3232			
Volt	28.00			
Watt	33.2			
Watt Density (w/in²)	10.00			

Payload (PAY)

Payload Requirements - Level 3

ID	Requirement	Verification	Parent	Status
PAY-3.3.1	System shall be an instrument sensitive to lightning	Test	MR1.2	Meeting
PAY-3.3.2	System shall consist of shielding to moderate radiation damage and background signals	Analysis	SC-2.11	TBD
PAY-3.3.3	System shall reside inside the spacecraft volume	Inspection	SC-2.1	Meeting
PAY-3.3.4	System shall have a method for confirmation of event detection	Demonstration	MR1.2	Meeting

Science Traceability Matrix (STM)

			easurement ements		
Science Goals	Science Objectives	Physical Parameters	Observables	Instrument Pe Require	
	Determine if lightning	Identify the	Collect low-latency,	Latency Range:	<150ms
There is strong	forms from the sulfuric acid clouds within the Venusian atmosphere	images of lightning strikes in the Venusian atmosphere	high-speed, light- changing events	Framerate:	>7,000 fps
			with no motion blur over a large area	Dynamic Range	>70 dB
evidence to suggest that lightning forms on			9	Power Consumption:	30 mW
the planet Venus		Identify the radio	Collect radio waves	Frequency Range:	1kHz-300MHz
	Confirmation of the	signals emitted	in the very low	Dynamic Range	>/=50 dB
	1 " " 1	from lightning strikes on Venus	frequency (VLF) range of 10-80 kHZ	Power Consumption:	3-26W

Presenter: Elysian Hudson

Neuromorphic Camera

- Neuromorphic camera is inspired by the biology of the human retina
- Captures the motion of an object, also called events
- An array of pixels react to fluctuations in brightness within a given scene
- When an event is captured, motion blur is significantly reduced allowing for a clearer image
- Contains high dynamic range, allowing for a greater detection between light and dark patches
- Typically does not incorporate color or texture

Technical Details

Telemetry Tracking & Control (TT&C)

TT&C Requirements - Level 3

ID	Requirement	Verification	Parent	Status
TTC-3.4.1	System shall communicate through DSN	Inspection	SC-2.16	meeting
TTC-3.4.2	System shall withstand radiation up to particles with 20GeV	Testing	SC-2.10	TBD
TTC-3.4.3	System shall communicate back to Earth on average once per day	Analysis	SC-2.12	meeting
TTC-3.4.4	System shall compile telemetry check data every 12 hours	Testing	SC-2.16	TBD
TTC-3.4.5	System shall include redundant communication systems	Inspection	SC-2.14	meeting

Analysis of Alternatives - Antenna

Selection Element	Weight	MarCO-type Custom HGA/MGA/LGA (X-Band)	Syrlinks SPAN-X-T3		Endurosat Module (X-Band)	
		Motivation	Score	Motivation	Score	Motivation	Score
Weight	0.2	1.25 kg	4	65 g	2	53 g	1
Cost	0.1	~ \$760k	4	Unknown	3	\$8,400	1
Data rate	0.3	Max 1kbps up, 8kbps down	2	Unknown	3	Unknown	3
Radiation resistance	0.3	Unknown [DS Exp.]	2	Unknown [FH Unk.]	5	Unknown [FH Unk.]	5
Data loss	0.1	X-Band	1	X-Band	1	X-Band	1
Scor	es		2.5		3.2		2.8

Note: 5 = worst 1 = best

Analysis of Alternatives - Radio

Selection Element	Weight JPL IRIS v.2 GD Small Deep Sp		JPL IRIS v.2		
		Motivation	Score	Motivation	Score
Weight	0.2	1.2 kg	2	3.2 kg	4
Cost	0.2	\$500k	2	~ \$5 mil	4
Data rate [BPSK]	0.3	Max 8kbps up, 6.25 Mbps down	3	Max 4kbps up, 15 Mbps down	2
Radiation resistance	0.2	> 23.0 krad	4	50 krads	2
Data loss	0.1	X-Band	3	X-Band and Ka-Band	2
Sco	res		2.8		3.0

Note: 5 = worst 1 = best

Technical Details

Mar-CO Custom Antenna Arrays:

- Frequency Range = 8-12 GHz
- Low Gain = 6dBi
- Medium Gain = 9dBi
- High Gain = 29.2 dBi
- Mass = ~1 kg
- Power = 4W

Endurosat X-band 4x4 Patch:

- Frequency Range = 8.25 8.4 GHz
- Gain = 6+ dBi
- Mass = \sim 3g
- Power = 4W

Technical Details

JPL IRIS v.2 Radio

- Dry Mass = 1.1 kg
- Average Power = 35.0 W DC power consumption at 3.8 W RF
- Transponder Volume = $\sim 0.5 U$
- X-Band: 7.2 GHz uplink, 8.4 GHz downlink
- Design Lifetime = ~3yr
- Noise Figure: 2.2 dB X-Band
- Carrier Tracking Signal Range: -70 to -130 dBm
- Operating Temperature: 253 K to 323 K

Block Diagram

Propulsion (PRO)

Propulsion Requirements - Level 3

ID	Requirement	Verification	Parent	Status
PRO-3.5.1	VECTOR shall produce a velocity increment of at least 1 km/s	Test	MR-1.1	TBD
PRO-3.5.2	System shall retain at least TBD kg of propellant for deorbit burn	Demonstration	SC-2.4	TBD
PRO-3.5.3	System shall contain a propellant depletion gauge	Inspection	SC-2.17	Meeting
PRO-3.5.4	System shall contain at least one redundant thruster	Inspection	MR-1.1	Meeting
PRO-3.5.5	Propulsion system shall monitor and control the S/C thrust	Test	SC-2.16	Meeting

Analysis of Alternatives - Propulsion

				_			
Selection Element	Weight	Electric Ion Propuls	sion	Bi-Propellant		Mono-Propellant	
		Motivation	Score	Motivation	Score	Motivation	Score
Mass	0.4	Does not require much propellant mass to achieve needed Isp	1	Will consume large amounts of propellant	3	Will consume large amounts of propellant	3
Complexity	0.10	Ionization process less complex as compared to liquid feed systems	2	Feed Systems more complex compared to mono-propellant	4	Feed System slightly less complex than bipropellant	3
Cost	0.25	Cost effective compared to liquid propellant	2	Separate fuel and oxidizer increases costs	5	Less costly than Bi- Propellant	4
Efficiency	0.25	Produces small thrust but high Isp	1	Works best for medium to heavy satellites and spacecrafts	5	Good in-space propulsion for smaller maneuvers (end-of-life)	3
Scores	1.0	Best Choice	1.35		4.1		3.25

Note: 5 = worst 1 = best

Presenter: Kelly Senanayake Note: 5 = worst; 1 = best AEE 445 Team 7

Trajectory Details

ΔV Requirements						
Pho	oton	3.42 km/s				
VEC	TOR	0.4 km/s (minimum) - 0.97 km/s (nominal)				
Target Orbit Parameters						
Apoapsis	Periapsis	Orbit Period	Eccentricity			
40,000 km	1,000 km	13.25 hours	0.734			

- Transfer period of 144 days from LEO to Venus capture
- VECTOR delta V can be minimized to around 0.4 km/s, the minimum needed to enter Venus orbit (e = ~0.98). This will be the contingency plan in case of propulsion system anomalies.
- Contingency orbit will reduce effectiveness of payload, but still satisfy MR-1.1

ΔV Calculations

ΔV_1 to achieve transfer orbit (Photon):

Transfer orbit parameters

$$V_{a,t} = \sqrt{2\mu_{sun} \frac{r_V}{r_E(r_E + r_E)}} = 27.72 \frac{km}{s}$$

$$V_{p,t} = \sqrt{2\mu_{sun} \frac{r_E}{r_V(r_E + r_V)}} = 37.45 \frac{km}{s}$$

Desired excess velocity after exiting Earth's SOI

$$V_{\infty,e} = V_E - V_{a,t} = 2.058 \frac{km}{s}$$
 relative to Earth

ΔV₁ to initiate transfer is given by

$$\Delta V_1 = V_{after\ burn} - V_{park}$$

Velocity in LEO parking orbit

$$V_{park} = \sqrt{\frac{\mu_{Earth}}{r_{park}}} = 7.78 \frac{km}{s}$$

Required velocity after burn to achieve desired excess velocity

$$V_{after\;burn} = \sqrt{V_{\infty,e}^2 + 2\frac{\mu_{Earth}}{r_{park}}} = 11.2\frac{km}{s}$$
 relative to Earth

Thus, required ΔV₁ for Photon to initiate transfer orbit is

$$\Delta V_1 = V_{after\ burn} - V_{park} = 3.42 \frac{km}{s}$$

Necessary Constants:

 $r_E = 1.469 \times 10^8 \text{ km}$ (mean Sun-Earth distance)

 $r_V = 1.0874x10^8$ km (mean Sun-Venus distance)

 $R_V = 6,051$ km (mean Venus radius)

 $\mu_{sun} = 1.327x10^{11} \text{ km}^3/\text{s}^2$

 $\mu_{Venus} = 324,860 \text{ km}^3/\text{s}^2$

 $\mu_{\text{Earth}} = 398,600 \text{ km}^3/\text{s}^2$

 $V_E = 29.78 \text{ km/s (mean orbital speed)}$

 $V_V = 35.02$ km/s (mean orbital speed)

ΔV Calculations

ΔV₂ to capture into elliptical 1000km x 40,000km Venus orbit (VECTOR)

Excess velocity upon arrival into Venus SOI, relative to Venus

$$V_{\infty,V} = V_{p,t} - V_V = 2.43 \frac{km}{s}$$
 relative to Venus

Semi-major axis of hyperbolic arrival trajectory

$$a = -\frac{\mu_{Venus}}{V_{\infty,V}^2} = -55,015.3 \ km$$

Velocity at closest approach (1000km above surface)

$$V_{p,approach} = \sqrt{\frac{2\mu_{Venus}}{r} + \frac{\mu_{Venus}}{a}} = 9.9 \frac{km}{s} relative to Venus$$

Desired orbit parameters:

$$r_a = 46,051 \, km, r_n = 7,051 \, km$$

$$a = \frac{r_a + r_p}{2} = 26,551 \, km$$

$$e = 1 - \frac{r_p}{q} = 0.734$$

Velocity at periapsis of desired orbit

$$V_{p,desired} = \sqrt{\frac{\mu_{Venus}}{a} \left(\frac{1+e}{1-e}\right)} = 8.93 \frac{km}{s}$$

Thus, ΔV_2 required to capture into elliptical Venus orbit is the velocity at periapsis of desired orbit minus our velocity at closest point of our hyperbolic approach:

$$\Delta V_2 = V_{p,desired} - V_{p,approach} = -0.97 \text{ km/s}$$

Note that the negative velocity indicates that we will be slowing down to capture. Delta V can be further reduced by increasing eccentricity however this will decrease the usefulness of our payload. Camera will be most effective at close proximity to the surface.

Propulsion System

4 x NPT30-I2 1U Electric Propulsion System

Wet Mass	1.2 kg
Wet Mass	1.2 Kg
Size	96mm x 96mm x 113mm
Propellant	Solid Iodine
Total Power	35-65 W
Specific Impulse	<2400s
Input Voltage	12-28 V
Operating Temperature	-40 - 50 C
Radiation Tolerance	>20 krad

Presenter: Kelly Senanayake

Attitude Determination & Control System (ADCS)

ADCS Requirements - Level 3

ID	Requirement	Verification	Parent	Status
ADCS-3.7.1	System shall control the spacecraft attitude to reference frames to support default, propulsion, and science pointing modes	Analysis	SC-2.9	Meeting
ADCS-3.7.2	System shall autonomously control pointing of the solar array to within 2 degrees of the angle that provides optimal Sun illumination of the solar array in any attitude	Analysis	SC-2.9	TBD
ADCS-3.7.3	System shall provide attitude control of < 1 degree in all axes	Analysis	SC-2.9	Meeting
ADCS-3.7.4	System shall maintain and propagate on- board estimates of the spacecraft attitude and state vector	Analysis	SC-2.9	TBD

Analysis of Alternatives - ADCS

Selection Element	Weight	BCT XACT-100		AAC Clyde Space IADCS400		CubeSpace CubeADCS Gen 2	
		Motivation	Score	Motivation	Score	Motivation	Score
Mass	.1	1.52kg	2	1.3kg	1	1.25kg	1
Flight Heritage	.2	Multiple successful LEO and beyond flights	1	Multiple successful LEO missions	2	Just launched in LEO missions	4
Cost	.2	~\$500k	4	Unknown	3	~\$65k	1
Accuracy	.2	+/003 degrees (1- sigma)	1	< 1 degree (3-sigma)	4	< .1 degrees	2
Size	.1	.5U	1	.7U	2	1U	4
Peak Power	.2	6.7W	2	5W	1	6.5W	2
Scores	1.0		1.9		2.3		2.3

Note: 5 = worst 1 = best

Technical Details

- ADCS System Specifications
 - o BCT XACT-100
 - Star tracker
 - 50 mNms reaction wheels
 - MEMS IMU
 - 2 x Pyramid Sun Sensors
 - TRL 8
 - BCT NST
 - TRL 8

Safe Mode

- Defined by one vector
 - Point +X axis at sun
- Primary object is met by control system
 - Sun acquired using 2 x pyramid sun sensors
 - If no sun in sight, rotisseries until sun is discovered
- Once Sun acquired, rotisserie at table defined rate about sun line

Fine Reference Point: Thrusting

- Defined by two vectors
 - Primary: point thrust vector in velocity or antivelocity direction
 - Secondary: point solar array articulation axis perpendicular to Sun line
- Primary objective is met by control system
 - Defines 2-axis of attitude
- Secondary objective is met as closely as possible
 - Defines the rotation about the primary axis
- When thrust and Sun vector become co-aligned, a yaw flip automatically occurs
 - Spacecraft physics limit the peak speed of this flip

Primary Vector (Thrust Direction)

Secondary Vector (Sun)

Fine Reference Point: Venus Science

Defined by two vectors

Primary: Point radio and neuromorphic camera (+Z) to Venus nadir

Secondary: point solar array articulation axis perpendicular to Sun line

- Primary objective is met by control system
 - Defines 2-axis of attitude
- Secondary objective is met as closely as possible
 - Defines the rotation about the primary axis
- When Venus nadir and Sun vector become co-aligned, a yaw flip automatically occurs
 - Spacecraft physics limit the peak speed of this flip

Angular Momentum Unloading

Arizona State University

Bradford ECAPS 100 mN HPGP Thrusters

- 8 thrusters for full 3-axis control
- 0.04 Kg per thruster
- 0.5 Kg propellant for momentum management
- LMP-103S monopropellant

Thrusters pairs will be fired as needed to help unload angular momentum

- When slowing RW speed, angular momentum is transferred to S/C (momentum is conserved)
- Thrusters provide external torque to counter this
- Maintain S/C attitude during unload

Electrical Power System (EPS)

Electrical Requirements - Level 3

ID	Requirement	Verification	Parent	Status
EPS-3.8.1	System shall generate, regulate, store, and distribute power to each subsystem	Test	SC-2.3	Meeting
EPS-3.8.2	System shall be powered off prior to separation and, upon detecting separation, power on C&DH and TT&C	Test	SC-2.7	TBD
EPS-3.8.3	System shall use approved batteries based on NASA/TM-2009-215751	Inspection	SC-2.3	Meeting
EPS-3.8.4	System shall provide 8 solar array inputs	Test	SC-2.3	Meeting

Analysis of Alternatives - Solar Panels

Selection Element	Weight	MMA HaWK 38A-191		AAC Clyde Space PH	OTON	BCT 12U-H Triple Wing	
		Motivation	Score	Motivation	Score	Motivation	Score
Mass	0.1	No significant advantage	2	No significant advantage	2	No significant advantage	2
Flight Heritage	0.2	Multiple successful LEO and beyond flights	1	Flown mostly with 3U configuration	2	Flown mostly with 6U configuration	2
Cost	0.2	Aerospace Industry Standard	3	Aerospace Industry Standard	3	Aerospace Industry Standard	3
Peak Power	0.5	191W, 29.5% Efficiency	1	85W, Unknown Efficiency	4	118W, 30% Efficiency	2
Scores	1.0		1.5		3.2		2.2

Note: 5 = worst 1 = best

Analysis of Alternatives - Batteries

Selection Element	Weight	GOM NanoPower BPX		Ibeos B28-135		BCT 2P8S	
		Motivation	Score	Motivation	Score	Motivation	Score
Mass	0.2	2 x .5kg = 1kg	2	.8kg	1	1.2kg	3
Flight Heritage	0.3	Mostly LEO missions	3	In development, never flown in space	5	Multiple successful LEO and beyond flights	1
Cost	0.2	Aerospace Industry Standard	3	Aerospace Industry Standard	3	Aerospace Industry Standard	3
Energy	0.3	2 x 86Wh = 172Wh	4	135Wh	3	198Wh	1
Scores	1.0		3.1		3.2		1.8

Note: 5 = worst 1 = best

Technical Details

Arizona State University

- Battery Cell Specifications:
 - o BCT 2P8S
 - o 18650B Lithium Ion
 - Nominal Energy: 198Wh
 - o TRL 8
- Solar Panel Specifications:
 - MMA HaWK 38A-191
 - 4 x Deployed Panels (2U x 3U)
 - Peak Power: 191W
 - SADA
 - TRL 9

Technical Details

- Power System Specifications:
 - Ibeos 28-200 EPS
 - Max Power: 250W
 - Battery Power: 28V
 - 3.3V, 5V, 12V
 - o I2C, SPI
 - Watchdog
 - o TRL 8

Presenter: Chandler Hutchens AEE 445 Team 7

EPS Block Diagram

Structure and Mechanisms (STR)

Structure Requirements - Level 3

ID	Requirement	Verification	Parent	Status
STR-3.9.1	System shall accommodate a 12U internal volume	Inspection	LS-2.1	Meeting
STR-3.9.2	System shall interface with 12U deployer	Inspection	LS-2.1	Meeting
STR-3.9.3	System shall provide mounting interface and clearance accommodations for solar panels and SADA	Inspection	LS-2.1	Meeting
STR-3.9.4	System shall remain fully operational following a random vibrations test	Testing	LS-2.3	TBD

Arizona State University

Analysis of Alternatives - Structure

Selection Element	Weight	Enduro Sat		Custom Built	
		Motivation	Score	Motivation	Score
Cost	0.4	\$12,500	1	~\$6,000 machining + money spent designing/review	3
Schedule Risk	0.3	Immediately available	1	Needs to be designed	4
V&V	0.3	COTS tested 2		Needs to be internally vibed, temperature cycled, etc	4
Scores			1.3		3.6

Note: 5 = worst 1 = best

Technical Details

- Endurosat 12U CubeSat Structure
- 226.3 x 226.3 x 366 mm
- 2.44 Kg
- Hard Anodized Aluminum-6082
- Room for 1-4 Switches
- PC104 compliant

Presenter: Tyson Hill

Risk & VV

Risk Management Matrix

ID	Summary	L	С	Trend	Approach	Risk Statement	Status
1	Environment	2	3	\rightarrow	R	Charged particles and magnetic interference in Venusian orbit causing failure of subsystems	Active
2	Propulsion	2	4	1	W	CubeSat fails to enter desired orbit around Venus	Active
3	Communication	2	2	ļ	Unable to establish/maintain two-way M communication due to receiver/transceiv failure or inconsistent pointing		Active
4	Budget	4	3	\rightarrow	А	Missions exceeds \$25 million cost cap	Active
5	Power	2	4	1	М	System fails to generate TBD Watts or battery performance experiences premature degradation	Active
6	Schedule	1	4	\rightarrow	М	On-orbit failure due to schedule slippage	Active
7	COTS Components	3	4	↓	А	A COTS components failure	

L = Likelihood (1-5)	LxC Trend
1 = not likely	↓ - Decreasing (improving)
5 = extremely likely	↑ - increasing
C = Consequence (1-5)	(worsening)
	→ - unchanged
1 = low consequence	
5 = high consequence	NEW - added this month
Appro	ach
A - accept W -	watch
M- mitigate R -	research

PDR Risk Mitigation Matrix

L	5						
K E	4			4		7	
L I	3			3	2 CD	3 5	
Н О	2		CDR	1 CDR	CDR	6	
O D	1			- July			
		1	2	3	4	5	
		CONSEQUENCES					

CDR Risk Mitigation Matrix

		CONSEQUENCES					
		1	2	3	4	5	
O D	1				6		
H 0	2		3	1	5,2		
L I	3				7		
K E	4			4			
L I	5						

Risk Mitigation Plan

ID: Summary	1: Environment	2: Propulsion	3: Communication	4: Budget	5: Power	6: Schedule	7: COTS Components
	Centralize mission- critical components with mass and shielding material coverage	Propulsion module will be purchased from a reputable supplier	Ensure quality of communications components	Acquire standardized materials (COTS)		Set the purpose and vision of the mission early-on to ensure success	
Mitigation Plan	Optimize central "critical" flight stack with research, analysis, and testing; power cycle "non-critical" components	Unit will be subjected to V&V	Perform a communication link testing with the ground station	Simplify CubeSat and payload	Power system charge and discharge testing	compo	Subject COTS components to rigorous testing
	Unit will be subjected to V&V tests	tests	Redundant downlink capabilities	Follow NASA Project Life- Cycle to mitigate schedule slip			V.E.C.T.O.

Verification & Validation:

Critical Design Requirements

Req ID #	Verification Method	Test
SC-2.8 ADCS-3.7.1 ADCS-3.7.2 ADCS-3.7.3 ADCS-3.7.4	Testing	Momentum Control System Testbed (Facility TBD)
SC-2.12 SC-2.17	Testing	Simulate a 5-year mission worst case scenario by exposing the satellites' subsystems to a Cobalt-60 radiation source (Facility TBD)
PRO-3.5.1 PRO-3.5.1 PRO-3.5.2 PRO-3.5.3 PRO-3.5.4 PRO-3.5.5	Testing	Thrust Test Bench (Facility TBD)

Verification & Validation:System Performance Requirements

Req ID #	Verification Method	Test
LS-2.3 STR-3.9.4	Testing	Analysis of the CAD model using NASTRAN will be performed to verify the preliminary design. A viderations test(s) will be performed to validate the system after the CDR. (facility TBD)
SC-2.2 SC-2.5 TCS-3.2.1 TCS-3.2.2 TCS-3.2.3	Analysis	Analysis of the CAD model using NASTRAN will be performed to verify the preliminary design. Thermal-Vac lifecycle test will be performed to validate the completed system. Unit thermal-vac tests will be performed on critical subsystems throughout the build process. (facility TBD)
SC-2.3 EPS-3.8.1	Testing	Natural sunlight or a solar simulator tests will be performed. The set of measurements is performed from the solar panel open-circuit point, where the output current will be at its minimum and the output voltage reaches its maximum value, i.e. Voc. From this testing condition, the output current is increased until its maximum value is reached, i.e. Isc, when the solar panel is short-circuited and the output voltage is at its minimum value, i.e. zero.
SC-2.12	Analysis	Computational Electromagnetics (CEM) Laboratory and Computational Electromagnetics (CEM) Laboratory facilities at NASA Johnson Space Center. (ideal)

Summary & Future

Power Budget: Insertion Burn

Subsystem	Generic Component Name	t Name Specific Component Name		Instantaneous Power	Total Instantaneous Power	Duty Cycle	Orbital Average Power (w/ Inefficiency)	
			GE	NERATED				
EPS	Solar Array	MMA HaWK 38A-191	1	191.00W	191.00W	0.9	154.71W	
EPS	Battery	BCT 2P8S	1	0.00W	0.00W	1	0.00W	
					TOTAL GENERAT	ED POWER	154.71W	
			C	ONSUMED				
C&DH	Mother board	CHREC Space Processor	1	2.85W	2.85W	1	2.85W	
CADH	Interface Board	Custom	1	1.00W	1.00W	1	1.00W	
EPS	Power System	Ibeos 28-200	1	1.50W	1.50W	1	1.50W	
TCS	Shielding	Z-Grade Radiation Shielding 3U Plates	8	0.00W	0.00W	0	0.00W	
103	Confirmal Coating	Arathane	2	0.00W	0.00W	0	0.00W	
	Camera	Inivation DVXplorer	2	0.70W	1.40W	0.5	0.70W	
Payload	Antenna	Custom Deployed Monopole	1	0.00W	0.00W	1	0.00W	
	Radio	Red Pitaya STEMlab 125-14	1	10.00W	10.00W	0.5	5.00W	
	ADCS	BCT XACT-100	1	5.00W	5.00W	1	5.00W	
ADCS	Star Tracker	BCT Standard NST	1	1.66W	1.66W	1	1.66W	
ADCS	Propellent	LMP-103S	1	0.00W	0.00W	1	0.00W	
	Momentum Mangement Thursters	100 mN HPGP Thruster	8	7.00W	56.00W	0.015	0.84W	
	Transponder	SDL IRIS V2	1	35.00W	35.00W	0.077	2.69W	
TT&C	Antenna	JPL Deployable X-Band	1	0.00W	0.00W	1.000	0.00W	
	Antenna	Endurosat X-Band Patch	1	0.00W	0.00W	1.000	0.00W	
Structure	Bus Structure	Endurosat 12U Standard Bus	1	0.00W	0.00W	0	0.00W	
Structure	Cabling & Harnessing	Custom	1	0.00W	0.00W	0	0.00W	
Propulsion	Thruster	NPT30-12 1U Electric Propulsion System	4	65.00W	260.00W	0.5	130.00W	
					TOTAL CONSUM	IED POWER	151.24W	
		_			POW	ER MARGIN	3.47W	

Power Budget: On Orbit

Subsystem	Generic Component Name	Specific Component Name	Qty	Instantaneous Power	Total Instantaneous Power	Duty Cycle	Orbital Average Power (w/ Inefficiency)
			G/	ENERATED			
EPS	Solar Array	MMA HaWK 38A-191	1	191.00W	191.00W	0.9	154.71W
EPS	Battery	BCT 2P8S	1	0.00W	0.00W	1	0.00W
					TOTAL GENERAT	ED POWER	154.71W
			C	CONSUMED			
C&DH	Mother board	CHREC Space Processor	1	2.85W	2.85W	1	2.85W
Cabii	Interface Board	Custom	1	1.00W	1.00W	1	1.00W
EPS	Power System	lbeos 28-200	1	1.50W	1.50W	1	1.50W
TCS	Shielding	Z-Grade Radiation Shielding 3U Plates	8	0.00W	0.00W	0	0.00W
103	Confirmal Coating	Arathane	2	0.00W	0.00W	0	0.00W
	Camera	Inivation DVXplorer	4	0.70W	2.80W	1	2.80W
Payload	Antenna	Custom Deployed Monopole	2	0.00W	0.00W	1	0.00W
<u></u>	Radio	Red Pitaya STEMlab 125-14	1	10.00W	10.00W	1	10.00W
	ADCS	BCT XACT-100	1	5.00W	5.00W	1	5.00W
ADCS	Star Tracker	BCT Standard NST	1	1.66W	1.66W	1	1.66W
ADCS	Propellent	LMP-103S	1	0.00W	0.00W	1	0.00W
<u> </u>	Momentum Mangement Thursters	100 mN HPGP Thruster	8	7.00W	56.00W	0.025	1.40W
	Transponder	SDL IRIS V2	1	35.00W	35.00W	0.077	2.69W
TT&C	Antenna	JPL Deployable X-Band	1	0.00W	0.00W	1.000	0.00W
<u> </u>	Antenna	Endurosat X-Band Patch	2	0.00W	0.00W	1.000	0.00W
Structure	Bus Structure	Endurosat 12U Standard Bus	1	0.00W	0.00W	0	0.00W
Structure	Cabling & Harnessing	Custom	1	0.00W	0.00W	0	0.00W
Propulsion	Thruster	NPT30-12 1U Electric Propulsion System	4	65.00W	260.00W	0.038	10.00W
					TOTAL CONSUM	IED POWER	38.90W
					POW	ER MARGIN	115.81W

VECTOR Mass Analysis						
Total Mass	17.98 kg					
Total Mass With 20% Margin	21.58 kg					
Maximum Mass (Per 12U Standard)	24 kg					

^{*}See references for component details

VECTOR Cost Analysis						
Total Mission Cost	\$25.8 Million USD					
Spacecraft Components Cost With 20% Margin (W/ EDU units)	\$12.18 Million USD					
Development Time	3-4 Years					
Mission Operational Time	1.5 Years (minimum)					
Funding Mechanism	NASA SIMPLEx					

Cost Budget: Detailed

Subsystem	Generic Component Name	Specific Component Name	Qty	Price	Total Cost
C&DH	Mother board	CHREC Space Processor	2	\$500,000.00	\$1,000,000
Cadh	Interface Board	Custom	2	\$10,000.00	\$20,000
	EPS	lbeos 28-200	2	\$500,000.00	\$1,000,000
EPS	Solar Array	MMA HaWK 38A-191	1	\$1,000,000.00	\$1,000,000
	Battery	BCT 2P8S	3	\$100,000.00	\$300,000
TCS	Shielding	Z-Grade Radiation Shielding 3U Plates	8	\$10,000.00	\$80,000
103	Confirmal Coating	Arathane 5750	2	2 \$500,000.00 \$1,000,000 2 \$10,000.00 \$20,000 1 \$1,000,000.00 \$1,000,000 1 \$1,000,000.00 \$1,000,000 3 \$100,000.00 \$300,000 8 \$100,000.00 \$80,000 2 \$500.00 \$11,000 4 \$3,900.00 \$15,600 2 \$1,000.00 \$2,000 2 \$377.00 \$754 2 \$500,000.00 \$1,000,000 2 \$75,000.00 \$1,000,000 2 \$75,000.00 \$1,000,000 3 \$200,000.00 \$1,000,000 4 \$500,000.00 \$1,000,000 1 \$760,000.00 \$25,000 2 \$12,500.00 \$2200,000 4 \$500,000.00 \$2,000,000 4 \$500,000.00 \$2,000,000	
	Camera	Inivation DVXplorer	4	\$3,900.00	\$15,600
Payload	Antenna	Custom Deployed Monopole	2	\$1,000.00	\$2,000
	Radio	Red Pitaya STEMlab 125-14	2	\$377.00	\$754
	ADCS	BCT XACT-100	2	\$500,000.00	\$1,000,000
ADCS	Star Tracker	BCT Standard NST	2	\$75,000.00	\$150,000
	Momentum Mangement Thrusters	Bradford ECAPS 100 mN HPGP Thruster	CHREC Space Processor 2 \$500,000.00 Custom 2 \$10,000.00 Ibeos 28-200 2 \$500,000.00 MMA HaWK 38A-191 1 \$1,000,000.00 BCT 2P8S 3 \$100,000.00 Brade Radiation Shielding 3U Plates 8 \$10,000.00 Arathane 5750 2 \$500.00 Inivation DVXplorer 4 \$3,900.00 Custom Deployed Monopole 2 \$1,000.00 Red Pitaya STEMlab 125-14 2 \$377.00 BCT XACT-100 2 \$500,000.00 BCT Standard NST 2 \$75,000.00 dford ECAPS 100 mN HPGP Thruster 8 \$200,000.00 SDL IRIS V2 2 \$500,000.00 JPL Deployable X-Band 1 \$760,000.00 Endurosat 12U Standard Bus 2 \$12,500.00 Custom 2 \$100,000.00 30-12 1U Electric Propulsion System 4 \$500,000.00	\$1,600,000	
TT&C	Transponder	SDL IRIS V2	2	\$500,000.00	\$1,000,000
HAC	Antenna	JPL Deployable X-Band	1	\$760,000.00	\$760,000
Structure	Bus Structure	Endurosat 12U Standard Bus	2	\$12,500.00	\$25,000
Suucture	Cabling & Harnessing	Custom		\$100,000.00	\$200,000
Propulsion	Thruster	NPT30-12 1U Electric Propulsion System	4	\$500,000.00	\$2,000,000
				TOTAL COST	\$10,154,354
		TOTAL CO	OST W	VITH 20% MARGIN	\$12,185,225

C&DH	\$1,224,000.00
EPS	\$2,760,000.00
TCS	\$97,200.00
Payload	\$22,024.80
ADCS	\$3,300,000.00
TT&C	\$2,112,000.00
Structure	\$270,000.00
Propulsion	\$2,400,000.00
Launch	\$2,000,000.00
Operations	\$2,000,000.00
Ground System	\$650,000.00
Integration & Test	\$800,000.00
Software	\$1,250,000.00
Mangement	\$1,250,000.00
Engineering Time	\$5,760,000.00
Total	\$25,895,224.80

^{*}See references for component details

Standards Chart

Document ID	Standard	Verification
Cal Poly CubeSat Design Specification Rev. 14.1	System shall be compliant with the 12U size standard	Inspection
Cal Poly CubeSat Design Specification Rev. 14.1 System shall be less than 24 kg as per 12U standard		Inspection
Cal Poly CubeSat Design Specification Rev. 14.1	System shall have a center of gravity which is compliant with 12U standard	Inspection
NASA-RP-1124-Rev-4 System shall satisfy NASA low-outgassing criteria		Testing
NPR 8715.6	System shall limit orbital debris	Demonstration
AFSPCMAN 91-710, Volume 3	System shall have hazardous materials conform	Inspection
AFSPCMAN 91-710 Volume 3 System shall have propulsion be designed, integrated, and tested		Inspection

Presenter: Elysian Hudson

ABET Requirements

Requirement	Slide Number's
Problem to be solved (identifying opportunities, defining requirements)	6-7, 28-36, 39, 43, 48, 53, 60, 67, 75, 82
Which concepts were initially considered and how they were evaluated (generating multiple solutions)	12-17
Decision-making process for arriving at the current design (iterative, creative decision-making process)	40, 54-55, 61, 68, 76-77, 83
Evolution of the design (trade-offs and optimization)	40, 54-55, 61, 68, 76-77, 83
How requirements are met (evaluation against requirements)	89-91
Summary of next steps, changes they would make given time and resources, possible improvements, recommendations for future work and upgrades	101-103

VECTOR Schedule Outlook

ID	Name	0) Jan, 23		Jan, 24		Jan, 25		Jan, 26	
טו		H2	H1	H2	H1	H2	H1	H2	H1	H2
1	Subsystem CDR's									
2	SIR (System Integration Review)			•						
3	System V & V				+					
4	FRR (Flight Readiness Review)				-					
5	Delivery (Deliver to Provider)					—				
6	ORR (Operational Readiness Review)									
8	Launch Preparation									
7	Launch									
9	PSR (Program Status Review)					-	<u></u>			
10	VECTOR Insertion Burn Initiation						-			
11	VECTOR Orbit Stablization						▶			
12	Payload Initiation and Calibration						—			
13	Science Operations						-			
14	End of Mission								••	

Summary

The Why

VECTOR's goal is to prove that high-scientific-value missions are executable at low cost

The How

VECTOR will use COTS CubeSat components for an interplanetary mission

The What

VECTOR is a venusian ride sharing mission built from COTS components to perform an insertion burn into a circular Venus orbit with a neuromorphic camera

What's Next

VECTOR will push towards flight!

Presenter: Elysian Hudson

AEE 445 Team 7

Thank you! Questions?

Backup Slides

References

C&DH

https://www.spacemicro.com/products/digital-systems/CSP%20CUBESAT%20SPACE%20PROCESSOR.pdf

EPS

https://www.ibeos.com/28v-eps-datasheet

https://mmadesignllc.com/products/solar-arrays/

https://storage.googleapis.com/blue-canyon-tech-news/1/2022/07/BCT_DataSheet_Batteries.pdf

TCS

https://ntts-prod.s3.amazonaws.com/t2p/prod/t2media/tops/pdf/LAR-TOPS-201.pdf

https://www.jarocorp.com/wp-content/uploads/2016/12/Arathane-5750.pdf

Payload

https://inivation.com/wp-content/uploads/2022/10/2022-09-iniVation-devices-Specifications.pdf

https://redpitaya.com/stemlab-125-14/

ADCS

https://storage.googleapis.com/blue-canyon-tech-news/1/2022/04/BCT DataSheet Components ACS.pdf

https://storage.googleapis.com/blue-canyon-tech-news/1/2022/04/BCT_DataSheet_Components_StarTrackers.pdf

https://www.ecaps.space/products-100mn.php

TT&C

https://satcatalog.s3.amazonaws.com/components/1076/SatCatalog - Space Dynamics Laboratory - IRIS v2.1 - Datasheet.pdf?lastmod=20220217200355

12U Bus

https://www.endurosat.com/cubesat-store/cubesat-structures/12u-cubesat-structure/

Propulsion

https://www.thrustme.fr/base/stock/ProductBannerFiles/2 thrustme-npt30-i2.pdf

