Proof 12-10-2020

1 Proof for minimum function

Note: The word monotonically increasing and decreasing are referring to weakly increasing and decreasing respectively. I.e. not strictly monotonically increasing or decreasing.

1.1 Theorem. Suppose f is continuous and monotonically decreasing on [a,b]. This implies that $h(x) = \min_{t \in [a,x]} f(x)$ is continuous on [a,b].

Proof. By definition of f(x) being monotonically decreasing on [a,b],

$$f(x) \le f(y) \ \forall x, y \in [a, b] \text{ s.t. } y \le x$$

This is fits the definition for a minimum of f(x) over the interval [a, x]. This minimum is f(x). Thus,

$$h(x) = \min_{t \in [a,x]} f(x) = f(x) \ \{ \forall x \in [a,b] \}$$

Therefore, h(x) = f(x) on [a, b] and since f(x) is continuous on [a, b], h(x) is continuous on [a, b].

1.2 Theorem. If f is piecewise C^1 on [a,b], then $h(x) = \min_{t \in [a,x]} f(x)$ is continuous on [a,b].

Proof. f piecewise $C^1 \implies \exists x_0, x_1, \ldots, x_n \text{ s.t. } a = x_0 < x_1 < \ldots < x_n = b$ such that f is monotonic on $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$.

 $\forall k \in \{1, \ldots, n\}$:

- Case 1: f is monotonically increasing on $[x_{k-1}, x_k]$: $h(x) = h(x_{k-1}) \implies h(x)$ continuous on $[x_{k-1}, x_k]$.
- Case 2: f is monotonically decreasing on $[x_{k-1}, x_k]$: By definition:

$$h(x) := \min_{t \in [x_0, x]} f(x) = \min_{t \in [x_0, x_{k-1}] \cup [x_{k-1}, x]} f(x)$$

$$= \min \left(\min_{t \in [x_0, x_{k-1}]} f(x), \min_{t \in [x_{k-1}, x]} f(x) \right)$$

$$= \min \left(h(x_{k-1}), \min_{t \in [x_{k-1}, x]} f(x) \right)$$

By Theorem 1.1, $\min_{t \in [x_{k-1}, x]} f(x)$ is continuous on $[x_{k-1}, x]$ since f is continuous (more specifically, on $[x_{k-1}, x]$). Since the minimum of two continuous functions is continuous and $h(x_{k-1})$ is constant (and therefore continuous on $[x_{k-1}, x_x]$), h(x) is continuous on $[x_{k-1}, x_k]$.

Therefore, h(x) is continuous on $[x_0, x_n]$.

2 Proof for maximum function

2.1 Theorem. Suppose f is continuous and monotonically increasing on [a,b]. This implies that $h(x) = \max_{t \in [a,x]} f(x)$ is continuous on [a,b].

Proof. By definition of f(x) being monotonically increasing on [a, b],

$$f(x) \ge f(y) \ \forall x, y \in [a, b] \text{ s.t. } y \le x$$

This is fits the definition for a maximum of f(x) over the interval [a, x]. This maximum is f(x). Thus,

$$h(x) = \max_{t \in [a,x]} f(x) = f(x) \left\{ \forall x \in [a,b] \right\}$$

Therefore, h(x) = f(x) on [a, b] and since f(x) is continuous on [a, b], h(x) is continuous on [a, b].

2.2 Theorem. If f is piecewise C^1 on [a,b], then $h(x) = \max_{t \in [a,x]} f(x)$ is continuous on [a,b].

Proof. f piecewise $C^1 \implies \exists x_0, x_1, \ldots, x_n \text{ s.t. } a = x_0 < x_1 < \ldots < x_n = b$ such that f is monotonic on $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$.

 $\forall k \in \{1, \dots, n\}$:

• Case 1: f is monotonically increasing on $[x_{k-1}, x_k]$: By definition:

$$h(x) := \max_{t \in [x_0, x]} f(x) = \max_{t \in [x_0, x_{k-1}] \cup [x_{k-1}, x]} f(x)$$
$$= \max \left(\max_{t \in [x_0, x_{k-1}]} f(x), \max_{t \in [x_{k-1}, x]} f(x) \right)$$
$$= \max \left(h(x_{k-1}), \max_{t \in [x_{k-1}, x]} f(x) \right)$$

By Theorem 2.1, $\max_{t \in [x_{k-1}, x]} f(x)$ is continuous on $[x_{k-1}, x]$ since f is continuous (more specifically, on $[x_{k-1}, x]$). Since the maximum of two continuous functions is continuous and $h(x_{k-1})$ is constant (and therefore continuous on $[x_{k-1}, x_x]$), h(x) is continuous on $[x_{k-1}, x_k]$.

• Case 2: f is monotonically decreasing on $[x_{k-1}, x_k]$: $h(x) = h(x_{k-1}) \implies h(x)$ continuous on $[x_{k-1}, x_k]$.

Therefore, h(x) is continuous on $[x_0, x_n]$.