Deep Generative Models Lecture 2

Roman Isachenko

Ozon Masters

Spring, 2021

Generative models zoo

Bayesian framework

- x samples;
- y − target variables;
- ightharpoonup heta model parameters.

Discriminative

$$p(\mathbf{y}, \boldsymbol{\theta} | \mathbf{x}) = p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta}) p(\boldsymbol{\theta})$$

- Find conditional probability of y given x.
- ► Samples **x** are given.
- Used for classification, regression.

Generative

$$p(\mathbf{y}, \mathbf{x}, \boldsymbol{\theta}) = p(\mathbf{y}, \mathbf{x} | \boldsymbol{\theta}) p(\boldsymbol{\theta})$$

- Find joint probability of (x, y).
- Samples x should be modelled.
- Generation of new samples (x, y).

Generative models

We age given samples $\{\mathbf{x}_i\}_{i=1}^n \in X$ from unknown distribution $p(\mathbf{x})$.

Goal

We would like to learn a distribution p(x) for

- evaluating $p(\mathbf{x})$ for new samples;
- ightharpoonup sampling from p(x).

Challenge

Data is complex and high-dimensional (curse of dimensionality).

Solution

Fix probabilistic model $p(\mathbf{x}|\theta)$ – the set of parameterized distributions .

Instead of searching true $p(\mathbf{x})$ over all probability distributions, learn function approximation $p(\mathbf{x}|\theta) \approx p(\mathbf{x})$.

Latent variable models (LVM)

Suppose that our probabilistic model is $p(\mathbf{x}, \mathbf{z}|\theta)$ instead of $p(\mathbf{x}|\theta)$.

- Here z are latent variables.
- ► We observe only samples x.
- Latent variables **z** are unknown.
- \triangleright Parameters θ are not random.

MLE problem for LVM

$$egin{aligned} m{ heta}^* &= rg\max_{m{ heta}} p(\mathbf{X}, \mathbf{Z}|m{ heta}) = rg\max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i, \mathbf{z}_i|m{ heta}) = \ &= rg\max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i, \mathbf{z}_i|m{ heta}). \end{aligned}$$

What if θ are random variables with distribution $p(\theta)$?

Bayesian framework

What if θ are random variables with distribution $p(\theta)$?

Before we get any data, we do not know anything about θ except the **prior** distribution $p(\theta)$.

When we get data, we could change the **prior** distribution to the **posterior**.

Bayes theorem

$$p(\theta|\mathbf{X},\mathbf{Z}) = \frac{p(\mathbf{X},\mathbf{Z}|\theta)p(\theta)}{p(\mathbf{X},\mathbf{Z})} = \frac{p(\mathbf{X},\mathbf{Z}|\theta)p(\theta)}{\int p(\mathbf{X},\mathbf{Z}|\theta)p(\theta)d\theta}$$

Full Bayesian inference

$$p(\mathbf{x}^*|\mathbf{X},\mathbf{Z}) = \int p(\mathbf{x}^*|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{X},\mathbf{Z})d\boldsymbol{\theta}$$

Bayesian framework

Full Bayesian inference

$$p(\mathbf{x}^*|\mathbf{X},\mathbf{Z}) = \int p(\mathbf{x}^*|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{X},\mathbf{Z})d\boldsymbol{\theta}$$

Maximum a posteriori (MAP)

$$egin{aligned} m{ heta}^* &= rg\max_{m{ heta}} p(m{ heta}|\mathbf{X},\mathbf{Z}) = rg\max_{m{ heta}} ig(\log p(\mathbf{X},\mathbf{Z}|m{ heta}) + \log p(m{ heta})ig) \ p(\mathbf{x}^*|\mathbf{X},\mathbf{Z}) &= \int p(\mathbf{x}^*|m{ heta}) p(m{ heta}|\mathbf{X},\mathbf{Z}) dm{ heta} pprox p(\mathbf{x}^*|m{ heta}^*). \end{aligned}$$

Latent variable models

MLE problem

$$\theta^* = \underset{\theta}{\operatorname{arg max}} p(\mathbf{X}|\theta) = \underset{\theta}{\operatorname{arg max}} \prod_{i=1}^n p(\mathbf{x}_i|\theta) = \underset{\theta}{\operatorname{arg max}} \sum_{i=1}^n \log p(\mathbf{x}_i|\theta).$$

Challenge

 $p(\mathbf{x}|\boldsymbol{\theta})$ could be intractable.

Extend probabilistic model

Introduce latent variable z for each sample x

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z}); \quad \log p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) + \log p(\mathbf{z}).$$

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}.$$

Motivation

The distributions $p(\mathbf{x}|\mathbf{z}, \theta)$ and $p(\mathbf{z})$ could be quite simple.

Latent variable models

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

Examples

Mixture of gaussians

- $ho(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) = \mathcal{N}(\mathbf{x}|oldsymbol{\mu}_{\mathbf{z}}, oldsymbol{\Sigma}_{\mathbf{z}})$
- $p(z) = \text{Categorical}(z|\pi)$

PCA model

- $\qquad \qquad \rho(\mathsf{x}|\mathsf{z},\boldsymbol{\theta}) = \mathcal{N}(\mathsf{x}|\mathsf{Wz} + \boldsymbol{\mu},\boldsymbol{\Sigma}_{\mathsf{z}})$
- $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|0,\mathbf{I})$

Latent variable models

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

PCA goal: Project original data **X** onto low latent space while maximizing the variance of the projected data.

- $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|0,\mathbf{I})$

Incomplete likelihood

MLE

$$egin{aligned} m{ heta}^* &= rg\max_{m{ heta}} p(\mathbf{X}, \mathbf{Z} | m{ heta}) = rg\max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i, \mathbf{z}_i | m{ heta}) = \ &= rg\max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i, \mathbf{z}_i | m{ heta}). \end{aligned}$$

Since **Z** is unknown, maximize **incomplete likelihood**.

MILE problem

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i, \mathbf{z}_i|\boldsymbol{\theta}) d\mathbf{z}_i = \\ &= \arg\max_{\boldsymbol{\theta}} \log \int p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Variational lower bound

$$\log p(\mathbf{x}|\theta) = \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{p(\mathbf{z}|\mathbf{x}, \theta)} =$$

$$= \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{p(\mathbf{z}|\mathbf{x}, \theta)} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}, \theta)q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} + \int q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}, \theta)} d\mathbf{z} =$$

$$= \mathcal{L}(q, \theta) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta)) \ge \mathcal{L}(q, \theta).$$

Kullback-Leibler divergence

- $KL(q||p) = \int q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z})} d\mathbf{z};$
- $KL(q||p) \geq 0$;
- $\mathsf{KL}(q||p) = 0 \Leftrightarrow q \equiv p.$

Variational lower bound

$$\log p(\mathbf{x}|\boldsymbol{ heta}) = \mathcal{L}(q, \boldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{ heta})) \geq \mathcal{L}(q, \boldsymbol{ heta}).$$

Evidence Lower Bound (ELBO)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}$$

$$= \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Instead of maximizing incomplete likelihood, maximize ELBO (equivalently minimize KL)

$$\max_{ heta} p(\mathbf{x}|oldsymbol{ heta}) \quad o \quad \max_{q, heta} \mathcal{L}(q,oldsymbol{ heta}) \equiv \min_{q, heta} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})).$$

EM-algorithm

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}.$$

Block-coordinate optimization

- Initialize θ*;
- E-step

$$q(\mathbf{z}) = \underset{q}{\operatorname{arg max}} \mathcal{L}(q, \boldsymbol{\theta}^*) = \underset{q}{\operatorname{arg min}} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*);$$

M-step

$$oldsymbol{ heta}^* = rg\max_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{q}, oldsymbol{ heta});$$

Repeat E-step and M-step until convergence.

Ugly pic

Amortized variational inference

E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*).$$

could be intractable.

Idea

Restrict a family of all possible distributions $q(\mathbf{z})$ to a particular parametric class conditioned on sample: $q(\mathbf{z}|\mathbf{x}, \phi)$.

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}}$$

Variational EM-algorithm

ELBO

$$\log p(\mathbf{x}|\boldsymbol{ heta}) = \mathcal{L}(q, \boldsymbol{ heta}) + \mathcal{K}\mathcal{L}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{ heta})) \geq \mathcal{L}(q, \boldsymbol{ heta}).$$

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}},$$

where ϕ – parameters of variational distribution $q(\mathbf{z}|\mathbf{x},\phi)$.

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}},$$

where θ – parameters of likelihood $p(\mathbf{x}|\mathbf{z},\theta)$.

Now all we have to do is to obtain two gradients $\nabla_{\phi} \mathcal{L}(\phi, \theta)$, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$.

Difficulty: number of samples n.

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - \mathit{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})) \to \max_{\phi, \theta}.$$

Optimization w.r.t. θ : **mini-batching** (1) + **Monte-Carlo** estimation (2)

$$\nabla_{\theta} \mathcal{L}(\phi, \theta) = \sum_{i=1}^{n} \int q(\mathbf{z}_{i}|\mathbf{x}_{i}, \phi) \nabla_{\theta} \log p(\mathbf{x}_{i}|\mathbf{z}_{i}, \theta) d\mathbf{z}_{i}$$

$$\stackrel{(1)}{\approx} n \int q(\mathbf{z}_{i}|\mathbf{x}_{i}, \phi) \nabla_{\theta} \log p(\mathbf{x}_{i}|\mathbf{z}_{i}, \theta) d\mathbf{z}_{i}, \quad i \sim U[1, n]$$

$$\stackrel{(2)}{\approx} n \nabla_{\theta} \log p(\mathbf{x}_{i}|\mathbf{z}_{i}^{*}, \theta), \quad \mathbf{z}_{i}^{*} \sim q(\mathbf{z}_{i}|\mathbf{x}_{i}, \phi).$$

Monte-Carlo estimation (2):

$$\int q(\mathbf{z})f(\mathbf{z})d\mathbf{z}pprox f(\mathbf{z}^*), ext{where } \mathbf{z}^*\sim q(\mathbf{z}).$$

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - \mathit{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))
ightarrow \max_{\phi, \theta}.$$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$abla_{\phi}\mathcal{L}(\phi, oldsymbol{ heta}) = \int
abla_{\phi}q(\mathbf{z}|\mathbf{x}, \phi)\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta})d\mathbf{z} -
abla_{\phi}KL$$

Log-derivative trick

$$abla_{\xi} q(\eta|\xi) = q(\eta|\xi) \left(rac{
abla_{\xi} q(\eta|\xi)}{q(\eta|\xi)}
ight) = q(\eta|\xi)
abla_{\xi} \log q(\eta|\xi).$$

$$abla_{\phi} q(\mathbf{z}|\mathbf{x}, \phi) = q(\mathbf{z}|\mathbf{x}, \phi) \nabla_{\phi} \log q(\mathbf{z}|\mathbf{x}, \phi).$$

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \int \nabla_{\phi} q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \nabla_{\phi} KL =$$

$$= \int q(\mathbf{z}|\mathbf{x}, \phi) [\nabla_{\phi} \log q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta)] d\mathbf{z} - \nabla_{\phi} KL$$

After applying the log-reparametrization trick, we are able to use the Monte-Carlo estimation:

$$abla_{\phi} \mathcal{L}(\phi, m{ heta}) pprox n
abla_{\phi} \log q(\mathbf{z}_i^* | \mathbf{x}_i, \phi) \log p(\mathbf{x}_i | \mathbf{z}_i^*, m{ heta}) -
abla_{\phi} KL,
onumber \ \mathbf{z}_i^* \sim q(\mathbf{z}_i | \mathbf{x}_i, \phi).$$

Problem

Unstable solution with huge variance.

Solution

Reparametrization trick

Reparametrization trick

$$f(\xi) = \int q(\eta|\xi)h(\eta)d\eta$$

Let $\eta = g(\xi, \epsilon)$, where g is a deterministic function, ϵ is a random variable with a density function $r(\epsilon)$.

$$egin{aligned}
abla_{\xi} \int q(\eta|\xi)h(\eta)d\eta &=
abla_{\xi} \int r(\epsilon)h(g(\xi,\epsilon))d\epsilon \ &pprox
abla_{\xi}h(g(\xi,\epsilon^*)), \quad \epsilon^* \sim r(\epsilon). \end{aligned}$$

Example

$$q(\eta|\xi) = \mathcal{N}(\eta|\mu, \sigma^2), \quad r(\epsilon) = \mathcal{N}(\epsilon|0, 1), \quad \eta = \sigma \cdot \epsilon + \mu, \quad \xi = [\mu, \sigma].$$

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \nabla_{\phi} KL$$

$$\approx n \nabla_{\phi} \int r(\epsilon) \log p(\mathbf{x}_{i}|g(\mathbf{x}_{i}, \epsilon, \phi), \theta) d\epsilon - \nabla_{\phi} KL$$

$$\approx n \nabla_{\phi} \log p(\mathbf{x}_{i}|g(\mathbf{x}_{i}, \epsilon^{*}, \phi), \theta) - \nabla_{\phi} KL, \quad \epsilon^{*} \sim r(\epsilon).$$

Variational assumption

$$egin{aligned} q(\mathbf{z}|\mathbf{x},\phi) &= \mathcal{N}(\mu(\mathbf{x}),\mathbf{\Sigma}(\mathbf{x})). \ \mathbf{z} &= g(\mathbf{x},\epsilon,\phi) &= \sqrt{\mathbf{\Sigma}(\mathbf{x})} \cdot \epsilon + \mu(\mathbf{x}). \end{aligned}$$

 $\nabla_{\phi} \mathit{KL}(q(\mathbf{z}|\mathbf{x},\phi)||p(\mathbf{z}))$ has an analytical solution.

Variational autoencoder (VAE)

Final algorithm

- ▶ pick $i \sim U[1, n]$;
- ightharpoonup compute stochastic gradient w.r.t. ϕ

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = n \nabla_{\phi} \log p(\mathbf{x}_i | g(\mathbf{x}_i, \epsilon^*, \phi), \theta) - \\ - \nabla_{\phi} KL(q(\mathbf{z}_i | \mathbf{x}_i, \phi) || p(\mathbf{z}_i)), \quad \epsilon^* \sim r(\epsilon);$$

ightharpoonup compute stochastic gradient w.r.t. heta

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\theta}) = n \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}_i | \mathbf{z}_i^*, \boldsymbol{\theta}), \quad \mathbf{z}_i^* \sim q(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\phi});$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, RMSProp).

Variational autoencoder (VAE)

image credit:

Variational Autoencoder

Variational Autoencoder

Generation objects by sampling the latent space $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$

Bayesian framework

Bayes theorem

$$p(\mathbf{t}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{\int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}}$$

- x observed variables;
- ▶ t unobserved variables (latent variables/parameters);
- $p(\mathbf{x}|\mathbf{t})$ likelihood;
- p(x) evidence;
- p(t) − prior;
- $ightharpoonup p(\mathbf{t}|\mathbf{x})$ posterior.

Summary