# Task 4

**Task 4:** Use 5-fold cross-validation to select the best  $\lambda$ . Compare the prediction performance between the "optimal" model and "full" model.

#### 5-fold CV

We write an R function cv.logit.lasso to conduct 5-fold cross-validation to select the best  $\lambda$ .

```
cv.logit.lasso <- function(x, y, nfolds = 5, lambda) {
  auc <- data.frame(matrix(ncol = 3, nrow = 0))</pre>
  folds <- createFolds(y, k = nfolds)</pre>
  for (i in 1:nfolds) {
    valid_index <- folds[[i]]</pre>
    x_training <- x[-valid_index, ]</pre>
    y_training <- y[-valid_index]</pre>
    training_dat <- data.frame(cbind(y_training, x_training))</pre>
    x_valid <- cbind(rep(1, length(valid_index)), x[valid_index, ])</pre>
    y_valid <- y[valid_index]</pre>
    res <- LogisticLASSO(dat = training_dat, start = rep(0, ncol(training_dat)), lambda = lambda)
    for (k in 1:nrow(res)) {
      betavec <- res[k, 2:ncol(res)]</pre>
      u_valid <- x_valid %*% betavec
      phat_valid <- sigmoid(u_valid)[, 1]</pre>
      roc <- roc(response = y_valid, predictor = phat_valid)</pre>
      auc <- rbind(auc, c(lambda[k], i, roc$auc[1]))</pre>
    }
  }
  colnames(auc) <- c("lambda", "fold", "auc")</pre>
  cv_res <- auc %>%
    group_by(lambda) %>%
    summarize(auc mean = mean(auc)) %>%
    mutate(auc ranking = min rank(desc(auc mean)))
  bestlambda <- min(cv_res$lambda[cv_res$auc_ranking == 1])</pre>
  return(cv_res)
```

Compare the results of cross-validation using glmnet and using our algorithm.

1. Our function cv.logit.lasso:

```
lambda_max <- max(t(x) %*% y) / length(y)
lambdas <- exp(seq(log(lambda_max), log(lambda_max) - 8, length = 30))
set.seed(1)
res_cv = cv.logit.lasso(x, y, nfolds = 5, lambda = lambdas)
as.matrix(res_cv %>% arrange(-lambda))
```

```
lambda auc_mean auc_ranking
## [1,] 0.3979882278 0.6844328
## [2,] 0.3020402714 0.9784198
                                          29
                                          28
## [3,] 0.2292236784 0.9814917
   [4,] 0.1739618843 0.9830838
                                          27
## [5,] 0.1320227361 0.9845052
                                          22
## [6,] 0.1001943782 0.9859027
                                          18
## [7,] 0.0760392772 0.9874342
                                          15
## [8,] 0.0577075459 0.9891438
                                          10
## [9,] 0.0437952724 0.9898392
                                          8
## [10,] 0.0332370031 0.9899387
                                          7
## [11,] 0.0252241467 0.9903360
                                           4
## [12,] 0.0191430489 0.9902353
                                           5
                                           6
## [13,] 0.0145279968 0.9902346
## [14,] 0.0110255525 0.9905325
                                           1
## [15,] 0.0083674858 0.9905317
                                           2
## [16,] 0.0063502323 0.9904323
                                          3
## [17,] 0.0048193031 0.9896377
                                          9
## [18,] 0.0036574539 0.9891413
                                          11
## [19,] 0.0027757062 0.9880447
                                          12
## [20,] 0.0021065323 0.9878500
                                          14
## [21,] 0.0015986844 0.9878512
                                          13
## [22,] 0.0012132697 0.9868503
                                          16
## [23,] 0.0009207718 0.9863493
                                          17
## [24,] 0.0006987899 0.9856446
                                          19
## [25,] 0.0005303240 0.9850432
                                          20
## [26,] 0.0004024722 0.9844403
                                          23
## [27,] 0.0003054432 0.9837394
                                          25
## [28,] 0.0002318062 0.9837389
                                          26
## [29,] 0.0001759218 0.9840401
                                          24
## [30,] 0.0001335102 0.9845400
                                          21
# best lambda
best_lambda <- max(res_cv$lambda[res_cv$auc_ranking == 1])</pre>
best_lambda
## [1] 0.01102555
plot(log(res_cv$lambda), res_cv$auc_mean, pch = 16, col = "red")
```



```
# coefficients of the best model
res_coef <- LogisticLASSO(dat = Training, start = rep(0, ncol(Training)),</pre>
                           lambda = lambdas) %>% as.data.frame
res_coef[res_coef$lambda == best_lambda, -1]
##
      (Intercept) radius_mean texture_mean perimeter_mean area_mean
  14 -0.6429962
                            0
                                  0.3643606
##
      smoothness_mean compactness_mean concavity_mean concave.points_mean
## 14
      symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
##
## 14
                                          0 0.6235709
      area_se smoothness_se compactness_se concavity_se concave.points_se
##
## 14
##
      symmetry_se fractal_dimension_se radius_worst texture_worst perimeter_worst
## 14
                                      0
                                            2.490748
                                                          0.4262261
##
      area_worst smoothness_worst compactness_worst concavity_worst
## 14
               0
                        0.4563645
                                                           0.09595825
##
      concave.points_worst symmetry_worst fractal_dimension_worst
## 14
                 0.9998579
                                 0.3463273
  2. glmnet from \mathbf{R} package caret
set.seed(1)
```

nfolds = 5, alpha = 1,

fit.logit.lasso <- cv.glmnet(x, y,</pre>

## [1] 0.01102555

plot(fit.logit.lasso)



```
# coefficients of the best model
coef(fit.logit.lasso, fit.logit.lasso$lambda.min)
```

```
## 31 x 1 sparse Matrix of class "dgCMatrix"

## (Intercept) -0.62737091

## radius_mean .

## texture_mean 0.35254009

## perimeter_mean .

## area_mean .

## area_mean .

## compactness_mean .

## concavity_mean .

## concave.points_mean 0.43620649

## symmetry_mean .
```

```
## fractal_dimension_mean .
                0.72496571
## radius_se
## texture_se
## perimeter_se
## area_se
## smoothness_se
## compactness_se
## concavity_se
## concave.points_se
## symmetry_se
## area_worst
## smoothness_worst 0.46310471
## compactness_worst .
## concavity_worst 0.07948187
## concave.points_worst 1.07060218
## symmetry_worst 0.35124064
## fractal_dimension_worst .
```

The results are slightly different (mean AUC values).

```
tibble(
  lambda = lambdas,
  ours_AUC = res_cv %>% arrange(-lambda) %>% .$auc_mean,
  cv.glmnet_AUC = fit.logit.lasso$cvm
) %>%
  knitr::kable()
```

| lambda    | $ours\_AUC$ | ${\rm cv.glmnet\_AUC}$ |
|-----------|-------------|------------------------|
| 0.3979882 | 0.6844328   | 0.5000000              |
| 0.3020403 | 0.9784198   | 0.9754654              |
| 0.2292237 | 0.9814917   | 0.9811797              |
| 0.1739619 | 0.9830838   | 0.9835991              |
| 0.1320227 | 0.9845052   | 0.9850204              |
| 0.1001944 | 0.9859027   | 0.9859165              |
| 0.0760393 | 0.9874342   | 0.9874491              |
| 0.0577075 | 0.9891438   | 0.9889595              |
| 0.0437953 | 0.9898392   | 0.9895565              |
| 0.0332370 | 0.9899387   | 0.9899549              |
| 0.0252241 | 0.9903360   | 0.9899533              |
| 0.0191430 | 0.9902353   | 0.9903517              |
| 0.0145280 | 0.9902346   | 0.9903518              |
| 0.0110256 | 0.9905325   | 0.9906491              |
| 0.0083675 | 0.9905317   | 0.9904501              |
| 0.0063502 | 0.9904323   | 0.9905479              |
| 0.0048193 | 0.9896377   | 0.9895550              |
| 0.0036575 | 0.9891413   | 0.9889605              |
| 0.0027757 | 0.9880447   | 0.9880654              |
| 0.0021065 | 0.9878500   | 0.9878701              |

| lambda    | ours_AUC  | cv.glmnet_AUC |
|-----------|-----------|---------------|
| 0.0015987 | 0.9878512 | 0.9877668     |
| 0.0012133 | 0.9868503 | 0.9864656     |
| 0.0009208 | 0.9863493 | 0.9867637     |
| 0.0006988 | 0.9856446 | 0.9857520     |
| 0.0005303 | 0.9850432 | 0.9849479     |
| 0.0004025 | 0.9844403 | 0.9846392     |
| 0.0003054 | 0.9837394 | 0.9840368     |
| 0.0002318 | 0.9837389 | 0.9838370     |
| 0.0001759 | 0.9840401 | 0.9839377     |
| 0.0001335 | 0.9845400 | 0.9844378     |

The best  $\lambda$ 's are the same, and the coefficients are very similar.

```
# our best lambda
best_lambda
```

### ## [1] 0.01102555

```
# cv.glmnet's best lambda
fit.logit.lasso$lambda.min
```

## ## [1] 0.01102555

```
tibble(
   predictor = c("(Intercept)", names(Training)[-1]),
   ours_coef = res_coef[res_coef$lambda == best_lambda, -1] %>% as.vector %>% as.numeric,
   cv.glmnet_coef = coef(fit.logit.lasso, fit.logit.lasso$lambda.min) %>% as.vector
) %>%
   knitr::kable()
```

| predictor              | ours_coef  | ${\rm cv.glmnet\_coef}$ |
|------------------------|------------|-------------------------|
| (Intercept)            | -0.6429962 | -0.6273709              |
| radius_mean            | 0.0000000  | 0.0000000               |
| texture_mean           | 0.3643606  | 0.3525401               |
| perimeter_mean         | 0.0000000  | 0.0000000               |
| area_mean              | 0.0000000  | 0.0000000               |
| smoothness_mean        | 0.0000000  | 0.0000000               |
| compactness_mean       | 0.0000000  | 0.0000000               |
| concavity_mean         | 0.0000000  | 0.0000000               |
| concave.points_mean    | 0.4862220  | 0.4362065               |
| symmetry_mean          | 0.0000000  | 0.0000000               |
| fractal_dimension_mean | 0.0000000  | 0.0000000               |
| radius_se              | 0.6235709  | 0.7249657               |
| texture_se             | 0.0000000  | 0.0000000               |
| perimeter_se           | 0.0000000  | 0.0000000               |
| area_se                | 0.0000000  | 0.0000000               |
| smoothness_se          | 0.0000000  | 0.0000000               |
| compactness_se         | 0.0000000  | 0.0000000               |

| predictor               | $ours\_coef$ | ${\rm cv.glmnet\_coef}$ |
|-------------------------|--------------|-------------------------|
| concavity_se            | 0.0000000    | 0.0000000               |
| concave.points_se       | 0.0000000    | 0.0000000               |
| symmetry_se             | 0.0000000    | 0.0000000               |
| fractal_dimension_se    | 0.0000000    | 0.0000000               |
| radius_worst            | 2.4907478    | 2.5042404               |
| texture_worst           | 0.4262261    | 0.4516084               |
| perimeter_worst         | 0.0000000    | 0.0000000               |
| area worst              | 0.0000000    | 0.0000000               |
| smoothness_worst        | 0.4563645    | 0.4631047               |
| compactness worst       | 0.0000000    | 0.0000000               |
| concavity_worst         | 0.0959582    | 0.0794819               |
| concave.points worst    | 0.9998579    | 1.0706022               |
| symmetry worst          | 0.3463273    | 0.3512406               |
| fractal_dimension_worst | 0.0000000    | 0.0000000               |

## Prediction performance comparison

We probably need resampling methods (conducted in training data) to select the best model. Is the resampling methods in task 2 correct?

Below is the prediction performance on the test data. (I suppose this should not be used for model comparison)

```
# test data
X_test <- cbind(rep(1, nrow(Test)), model.matrix(diagnosis ~ ., Test)[, -1])</pre>
y_test <- Test$diagnosis</pre>
# logistic model
res_logit <- NewtonRaphson(dat = Training, func = logisticstuff, start = rep(0, ncol(Training)))
## Warning in NewtonRaphson(dat = Training, func = logisticstuff, start = rep(0, :
## Complete separation occurs. Algorithm does not converge.
betavec logit <- res logit[nrow(res logit), 3:ncol(res logit)]</pre>
u <- X_test %*% betavec_logit
phat <- sigmoid(u)[, 1]</pre>
roc.logit <- roc(response = y_test, predictor = phat)</pre>
# logistic LASSO model
betavec_logit.lasso <- res_coef[res_coef$lambda == best_lambda, -1] %>% as.vector %% as.numeric
u <- X_test %*% betavec_logit.lasso
phat <- sigmoid(u)[, 1]</pre>
roc.logitlasso <- roc(response = y_test, predictor = phat)</pre>
# logistic LASSO model (cv.qlmnet)
betavec_logit.lasso.glm <- coef(fit.logit.lasso, fit.logit.lasso$lambda.min) %>% as.vector
u <- X_test %*% betavec_logit.lasso.glm
phat <- sigmoid(u)[, 1]</pre>
roc.logitlasso.glm <- roc(response = y_test, predictor = phat)</pre>
# draw rocs
auc <- c(roc.logit\( \)auc [1], roc.logitlasso\( \)auc [1])</pre>
```

```
plot(roc.logit, legacy.axes = TRUE)
plot(roc.logitlasso, col = 2, add = TRUE)
plot(roc.logitlasso.glm, col = 3, add = TRUE)
modelNames <- c("logistic", "logistic LASSO", "logistic LASSO (cv.glmnet)")
legend("bottomright", legend = pasteO(modelNames, ": ", round(auc, 3)),
col = 1:3, lwd = 2)</pre>
```

