שיטות חישוביות באופטימיזציה 046197 תרגיל בית מספר 1

22/04/2021 תאריך הגשה

תרגיל 1

הוכיחו או הפריכו את הטענות הבאות. אם אתם מוכיחים, יש לעשות זאת לפי הגדרת המכפלה הפנימית.

- . כללית. $M \in \mathbb{R}^{n \times n}$ אם מכפלה מנימית הוא $\langle \mathbf{x}, \mathbf{y} \rangle_M = \mathbf{x}^T M \mathbf{y}$.1
 - $0 \prec Q \in \mathbb{R}^{n imes n}$ הוא מכפלה פנימית אם $\langle \mathbf{x}, \mathbf{y}
 angle_Q = \mathbf{x}^T Q \mathbf{y}$.2

תרגיל 2

תהי מטריעה $A \in \mathbb{R}^{n \times n}$ תהי

- $A^{-1}\succ 0$ כי אם אזי היא $A\succ 0$ אזי וכי 1.
 - $A\succ 0$ אזי אוי והפיכה $A\succeq 0$ אם .2
- $B \neq 0$ עבור $A = B^T B$ כלשהי. הוכיחו כי $B \in \mathbb{R}^{m \times n}$ עבור $A = B^T B$ נתון כי $A \neq 0$ עבורה $A \neq 0$ עבור מוגדרת אי־שלילית מוגדרת אך לא חיובית מוגדרת).
- 4. הוכיחו כי אם $A \not\succeq 0$ אם לו כלשהו אזי ב $i \leq n$ עבור עבור $A_{i,i} < 0$ בי כלומר, תנאי הכרחי לכך ש־A אי־שלילית מוגדרת הוא שאיברי האלכסון שלה אי־שליליים. האם זהו גם תנאי מספיק: הוכיחו או תנו דוגמה נגדית.

תרגיל 3

תהי $0 \neq \mathbf{d}$ נקרא כיוון יריזה $U \subseteq \mathbb{R}^n$ מונקציה דיפרנציאבילית ברציפות, כאשר ברציפות $f: U \mapsto \mathbb{R}$ על הפונקציה בנקודה אם קיים 0 < t < T כך שלכל T > 0 נקרא כיוון יריזה של הפונקציה בנקודה

$$f(\mathbf{x} + t\mathbf{d}) < f(\mathbf{x}).$$

- ${f x}$ ב־ ${f x}$ מקיים ${f d}$ מקיים ${f d}$ עבור ${f x}$ עבור ${f x}$ עבור ${f d}$ מקיים ${f d}$
 - ${f x}$ ב־בf אזי הכיוון ירידה ${f d}=abla f({f x})$ אזי הכיוון אזי הכיוון ב־ב.
- $\mathbf{x}^{(0)} = \begin{bmatrix} x_1^{(0)} & x_2^{(0)} \end{bmatrix}^T$ מצאו דוגמה לפונקציה $f(x_1,x_2)$ דיפרנציאבילית ברציפות, נקודה \mathbf{d}_1 וכיוונים \mathbf{d}_1 סדון ירידה של \mathbf{d}_1 הוא כיוון ירידה של \mathbf{d}_1 ואילו כיוון \mathbf{d}_1 איננו כיוון ירידה של \mathbf{d}_2 ב $\mathbf{x}^{(0)}$ ם ב

תרגיל 4

יהי $A \in \mathbb{R}^{m \times n}$ נסמן: תחום קמור תהי $C \subseteq \mathbb{R}^m$

$$B_1 = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} = A^T \mathbf{z}, \ \mathbf{z} \in C \}$$

$$B_2 = \{ \mathbf{x} \in \mathbb{R}^n | A\mathbf{x} \in C \}$$

הוכיחו כי B_1, B_2 קמורות.

תרגיל 5

הגדרה 1 תהי $S\subseteq\mathbb{R}^n$ קבוצה.

- א. נקודה $B(\mathbf{a},\epsilon)\subseteq S$ נקראת נקודה פניס של אם אם אם אם אם או נקודה פולה מתקיים $B(\mathbf{a},\epsilon)\subseteq S$ נקראת נקודה אם כל הנקודות בכדור הפתוח $B(\mathbf{a},\epsilon)$ מוכלות ב־S).
- ב. נקודה $\mathbf{x}\in\mathbb{R}^n$ אם לכל $\mathbf{x}\in\mathbb{R}^n$ הכדור הפתוח ב. $\mathbf{y}\neq\mathbf{x}$, $\mathbf{y}\in S$ אחת נקודה אחת $\mathbf{x}\in\mathbb{R}^n$ מכיל לפחות נקודה אחת

הגדרה 2 תהי $S\subseteq\mathbb{R}^n$ קבוצה.

- א. הקבוצה S נקראת פתוחה אם כל נקודה ב־S היא נקודת פנים.
- ב. הקבוצה S נקראת סגורה אם הקבוצה המשלימה שלה, S^c , היא קבוצה פתוחה.

הוכיחו את הטענות הבאות:

תוח הפתוח הכדור הפתוח אזי לכל $s\in\mathbb{R}^n$ נקודת עבר של $S\subseteq\mathbb{R}^n$ הכדור הפתוח ג. תהי הכדור הפתוח מכיל אינסוף נקודות מ־ $B(\mathbf{x},\epsilon)$

רמז: הניחו בשלילה כי קיים כדור פתוח שמכיל מספר סופי של נקודות והגיעו לסתירה.

- 2. קבוצה S היא סגורה אם ורק אם היא מכילה את כל נקודות הצבר שלה. σ הדרכה: מדובר ב"אם ורק אם", ולכן יש להוכיח שני כיוונים. עבור הכיוון בו מניחים כי σ סגורה, העזרו בשלילה.
- , \mathbf{x} , מתכנסת $i=1,2,\ldots$, $\mathbf{x}_i\in S$ הסיקו הסדרה $i=1,2,\ldots$, $\mathbf{x}_i\in S$ מתכנסת כי אסיקו מהטענה הקודמת כי אזי ווה $\mathbf{x}_i=S$, אזי אזי $\lim_{i\to\infty}\|\mathbf{x}_i-\mathbf{x}\|=0$

תרגיל 6

יהי $\mathbf{x}_0 \notin C$ יהי $\mathbf{x}_0 \notin C$ יהי השפה שלו). יהי מכיל גם את השפה וסגור (כלומר, מכיל גם את האופטימיזציה

$$\min_{\mathbf{y}\in C} \|\mathbf{y} - \mathbf{x}_0\|,$$

כאשר $\|\cdot\|$ היא נורמה מושרית כלשהי. הניחו כי קיים פתרון לבעיית האופטימיזציה. הוכיחו כי פתרון זה הוא יחיד.

 $\mathbf{y}_0,\mathbf{z}_0\in C$ כך שי כל הניחו כי הניחו הדרכה:

$$\|\mathbf{y}_0 - \mathbf{x}_0\|^2 = \|\mathbf{z}_0 - \mathbf{x}_0\|^2 = (\min_{\mathbf{y} \in C} \|\mathbf{y} - \mathbf{x}_0\|)^2 = \delta^2.$$

הראות על מנת להראות ($\mathbf{x}_0-\mathbf{y}_0,\mathbf{x}_0-\mathbf{z}_0$) בי $(\mathbf{y}_0+\mathbf{z}_0)/2\in C$ הראו ($\mathbf{y}_0+\mathbf{z}_0$). הראו כי $(\mathbf{y}_0+\mathbf{z}_0)/2\in C$ כי $(\mathbf{y}_0+\mathbf{z}_0)/2\in C$ החסבירו מדוע לא ייתכן כי $(\mathbf{y}_0+\mathbf{z}_0)/2\in C$