Análisis Complejo

Ramiro Dibur

2025

Índice general

1.	Nociones básicas		
	1.1.	El cuerpo de los números complejos	2
		Forma polar y exponencial	
	1.3.	Potencias y raíces	3
	1.4.	Topología en \mathbb{C} y continuidad	4
	1.5.	La esfera de Riemann	1
	1.6.	Homografías (transformaciones de Möbius)	1
		Pequeario de cálculo en $\widehat{\mathbb{C}}$	

Prefacio

Estas son mis notas de Análisis Complejo del segundo cuatrimestre de 2025. Las escribo más que nada para estudiar yo, pero las publico por si le llegan a ser útiles a alguien.

Nociones básicas

Formalizamos algunas nociones de números complejos que usamos todo el tiempo y que conviene fijar desde el inicio.

1.1 El cuerpo de los números complejos

Definición 1.1. Definimos $\mathbb C$ como el conjunto $\mathbb R^2$ con las operaciones

$$(x,y) + (u,v) = (x+u,y+v),$$
 $(x,y) \cdot (u,v) = (xu - yv, xv + yu).$

Identificamos $x+iy \leftrightarrow (x,y)$ y escribimos i=(0,1), de modo que $i^2=-1.$

Observación 1.2. Con estas operaciones, \mathbb{C} es un cuerpo con unidad 1=(1,0) y $\mathbb{R}=$ $\{(x,0):x\in\mathbb{R}\}$ se inyecta de modo natural en \mathbb{C} .

Ejemplo 1.3. Si z = x + iy, entonces

$$z \cdot \overline{z} = (x + iy)(x - iy) = x^2 + y^2 \in \mathbb{R}_{\geq 0}.$$

Conjugación

Definición 1.4. La *conjugación* es la aplicación $\mathbb{C} \to \mathbb{C}$, $z = x + iy \mapsto \overline{z} = x - iy$.

Proposición 1.5. Para todo $z, w \in \mathbb{C}$ y $\lambda \in \mathbb{R}$ se cumple:

- 1. $\overline{\overline{z}} = z \ y \ \overline{z+w} = \overline{z} + \overline{w}$. 2. $\overline{zw} = \overline{z} \ \overline{w}$. 3. $\overline{\lambda z} = \lambda \ \overline{z}$.

Demostración. Son identidades directas de las definiciones.

Valor absoluto y argumento

Definición 1.6. El *valor absoluto* (o *módulo*) de z = x + iy es $|z| = \sqrt{x^2 + y^2}$. Un argumento de $z \neq 0$ es cualquier $\theta \in \mathbb{R}$ tal que $z = |z|(\cos \theta + i \sin \theta)$. El argumento principal se nota Arg $z \in (-\pi, \pi]$.

Proposición 1.7. $Para z, w \in \mathbb{C}$:

- 2. $|zw| = |z| |w| \ y \ |z/w| = |z|/|w| \ si \ w \neq 0.$ 3. **Designaldad triangular:** $|z+w| \leq |z| + |w|.$
- 4. |z-w| es la distancia euclídea entre los puntos de \mathbb{R}^2 que representan z y w.

Demostración. (3.) Se puede ver expandiendo $|z+w|^2$ o vía Cauchy-Schwarz en \mathbb{R}^2 . \square

Observación 1.8. Usaremos libremente la notación $B(z_0,r)=\{z\in\mathbb{C}:|z-z_0|< r\}$ para el disco abierto de centro z_0 y radio r; y $\overline{B}(z_0, r)$ para el disco cerrado.

1.2 Forma polar y exponencial

Definición 1.9. Para $z \neq 0$, su *forma polar* es $z = r(\cos \theta + i \sin \theta)$ con r = |z|y $\theta \in \mathbb{R}$ un argumento. Usamos la abreviatura $e^{i\theta} = \cos \theta + i \sin \theta$ (fórmula de **Euler**) y escribimos $z = re^{i\theta}$.

Proposición 1.10 (Producto y cociente en forma polar). $Si z = re^{i\theta} y w = \rho e^{i\varphi} con$ $r, \rho \geq 0$, entonces

$$zw = (r\rho) e^{i(\theta+\varphi)}, \qquad \frac{z}{w} = \left(\frac{r}{\rho}\right) e^{i(\theta-\varphi)} \quad (\rho > 0).$$

Ejemplo 1.11. Las rotaciones alrededor del origen son $z \mapsto e^{i\alpha}z$. Son isometrías: preservan distancias y ángulos.

1.3 Potencias y raíces

Proposición 1.12 (De Moivre). $Para \ n \in \mathbb{Z} \ y \ \theta \in \mathbb{R}$,

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta).$$

Definición 1.13. Una *n-ésima raíz* $(n \in \mathbb{N})$ de $w \in \mathbb{C}$ es un z tal que $z^n = w$.

Proposición 1.14 (Fórmula de las raíces). $Si \ w = \rho e^{i\phi} \ con \ \rho \ge 0 \ y \ n \in \mathbb{N}, \ entonces \ las \ n-ésimas \ raíces \ de \ w \ son$

$$z_k = \rho^{1/n} e^{i\frac{\phi + 2\pi k}{n}}, \qquad k = 0, 1, \dots, n - 1.$$

Son n puntos igualmente espaciados sobre el círculo de radio $\rho^{1/n}$.

Ejemplo 1.15 (Raíces de la unidad). Las soluciones de $z^n = 1$ son $\omega_k = e^{2\pi i k/n}$, $0 \le k \le n-1$. Forman un subgrupo cíclico del círculo unitario.

Observación 1.16. La función argumento es multivaluada: arg $z = \operatorname{Arg} z + 2\pi \mathbb{Z}$. Esto explica la periodicidad en las raíces.

1.4 Topología en \mathbb{C} y continuidad

Definición 1.17. Consideramos en $\mathbb C$ la métrica euclídea d(z,w)=|z-w|. Un conjunto $U\subseteq \mathbb C$ es **abierto** si para todo $z\in U$ existe r>0 tal que $B(z,r)\subseteq U$; es **cerrado** si su complemento es abierto.

Proposición 1.18 (Heine-Borel en \mathbb{C}). Un conjunto $K \subseteq \mathbb{C}$ es compacto \Leftrightarrow es cerrado y acotado.

Definición 1.19. Una función $f: U \to \mathbb{C}$ (con $U \subseteq \mathbb{C}$) es **continua en** z_0 si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que $|z - z_0| < \delta$ implica $|f(z) - f(z_0)| < \varepsilon$. Es **continua** si lo es en todo punto de U.

Proposición 1.20 (Criterios de continuidad). Sean $U \subseteq \mathbb{C}$ abierto $y \ f : U \to \mathbb{C}$, $f = u + iv \ con \ u, v : U \to \mathbb{R}$.

- 1. f es continua en $z_0 \Leftrightarrow u \ y \ v$ son continuas en z_0 .
- 2. Si f,g son continuas, también lo son f+g, fg y, si $g \neq 0$, f/g.
- 3. Las funciones polinomiales y racionales (con denominador no nulo) son continuas en su dominio natural.

Observación 1.21. Cuando sea útil, identificaremos $\mathbb{C} \cong \mathbb{R}^2$ y aplicaremos resultados de topología métrica en \mathbb{R}^2 .

1.5 La esfera de Riemann

Definición 1.22. La esfera de Riemann es el plano complejo extendido

$$\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}.$$

Topológicamente, se obtiene por proyección estereográfica desde la esfera unitaria $S^2 \subset \mathbb{R}^3$ (excluyendo el polo norte).

Proposición 1.23 (Proyección estereográfica). Sea $z=x+iy\in\mathbb{C}$ y $r^2=|z|^2$. La proyección estereográfica $\sigma:\mathbb{C}\to S^2\setminus\{N\}$ y su inversa son

$$\sigma(z) = \left(\frac{2x}{1+r^2}, \frac{2y}{1+r^2}, \frac{r^2-1}{1+r^2}\right), \qquad \sigma^{-1}(X, Y, Z) = \frac{X+iY}{1-Z}.$$

El punto N = (0,0,1) se identifica con ∞ .

Observación 1.24. Una base de entornos de ∞ está dada por los complementos de compactos: $V_R = \{\infty\} \cup \{z \in \mathbb{C} : |z| > R\}$. Decimos que $z_n \to \infty$ si $|z_n| \to \infty$.

Definición 1.25 (Métrica cordal (opcional)). La *distancia cordal* en $\widehat{\mathbb{C}}$ se define por

$$\chi(z,w) = \frac{2|z-w|}{\sqrt{(1+|z|^2)(1+|w|^2)}}, \quad \chi(z,\infty) = \frac{2}{\sqrt{1+|z|^2}}.$$

Induce la topología usual de $\widehat{\mathbb{C}}$.

Ejemplo 1.26. Para un polinomio p(z) de grado $n \ge 1$, definimos $p(\infty) = \infty$; para una racional R(z) = p(z)/q(z) con deg $p \le \deg q$, se define $R(\infty) = 0$ si deg $p < \deg q$ y $R(\infty) = \cos$. líderes si deg $p = \deg q$.

1.6 Homografías (transformaciones de Möbius)

Definición 1.27. Una *homografía* (o *transformación de Möbius*) es una aplicación

$$f(z) = \frac{az+b}{cz+d},$$
 $a, b, c, d \in \mathbb{C}, ad-bc \neq 0,$

entendida como $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ con las convenciones $f(-d/c) = \infty$ si $c \neq 0$ y $f(\infty) = a/c$ si $c \neq 0$ (si c = 0, f es afín: $f(\infty) = \infty$).

Observación 1.28 (Notación matricial). A f le asociamos la clase de matrices

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{GL}_2(\mathbb{C}) / \mathbb{C}^{\times},$$

donde multiplicar por un escalar no cambia f. La composición de homografías corresponde al producto matricial (bien definido en la clase).

Proposición 1.29 (Estructura generadora). *Toda homografía es composición de transformaciones elementales:*

$$z\mapsto z+z_0 \quad (traslación), \qquad z\mapsto \lambda z \quad (dilatación/rotación), \qquad z\mapsto \frac{1}{z} \quad (inversión).$$

Proposición 1.30 (Imagen de líneas y circunferencias). Las homografías envían **líneas** y circunferencias (en $\widehat{\mathbb{C}}$) en **líneas** o circunferencias.

Idea. Las circunferencias/líneas se describen por ecuaciones del tipo $\alpha z\overline{z} + \beta z + \overline{\beta} \overline{z} + \gamma = 0$ con $\alpha \in \mathbb{R}$, $\beta \in \mathbb{C}$, $\gamma \in \mathbb{R}$. La invariancia se verifica para $z \mapsto 1/z$ y se preserva por composiciones.

Definición 1.31 (Razón cruzada). Para cuatro puntos distintos $z_1, z_2, z_3, z_4 \in \widehat{\mathbb{C}}$ definimos

$$[z_1, z_2; z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)}.$$

Proposición 1.32. La razón cruzada es invariante por homografías. Además, dada cualquier terna de puntos distintos (z_1, z_2, z_3) y otra terna (w_1, w_2, w_3) en $\widehat{\mathbb{C}}$, existe una única homografía f tal que $f(z_j) = w_j$ para j = 1, 2, 3.

Ejemplo 1.33 (Cayley). La aplicación

$$C(z) = \frac{z - i}{z + i}$$

es una homografía que envía el semiplano superior $\{{\rm Im}\,z>0\}$ en el disco unidad $\{|w|<1\}$ y la recta real (más ∞) en el círculo unitario.

Ejemplo 1.34 (Automorfismos del disco). Para $a \in \mathbb{D} = \{z : |z| < 1\}$ y $\theta \in \mathbb{R}$,

$$\varphi_{a,\theta}(z) = e^{i\theta} \frac{z - a}{1 - \overline{a}z}$$

es una homografía que preserva \mathbb{D} , con $\varphi_{a,\theta}(a)=0$ y $\varphi_{a,\theta}^{-1}=\varphi_{-e^{i\theta}a,-\theta}$.

Proposición 1.35 (Puntos fijos). Los puntos fijos de $f(z) = \frac{az+b}{cz+d}$ (con $c \neq 0$) son las soluciones de

$$cz^2 + (d-a)z - b = 0.$$

Hay 2, 1 o 0 puntos fijos en $\widehat{\mathbb{C}}$ según el discriminante.

Observación 1.36. Las homografías son holomorfas en $\mathbb{C} \setminus \{-d/c\}$ y conformes en todo punto donde son finitas y $cz + d \neq 0$; en ∞ también son conformes si c = 0.

Pequeario de cálculo en $\widehat{\mathbb{C}}$ 1.7

- Proposición 1.37. Sea $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ continua en ∞ . Entonces: 1. $f(\infty) = \infty \Leftrightarrow para \ todo \ R$ existe M tal que $|z| > M \Rightarrow |f(z)| > R$. 2. $f(\infty) = w_0 \in \mathbb{C} \Leftrightarrow f(1/z)$ es continua en 0 y $\lim_{z\to 0} f(1/z) = w_0$.

Ejemplo 1.38. Si $p \neq q$ son polinomios sin ceros comunes, la racional R = p/q se extiende continuamente a $\widehat{\mathbb{C}}$ definiendo

$$R(\infty) = \begin{cases} \infty, & \deg p > \deg q, \\ \text{coef. líderes}, & \deg p = \deg q, \\ 0, & \deg p < \deg q. \end{cases}$$

Resumen operativo

- $z = re^{i\theta}$, |z| = r, $\arg z = \theta + 2\pi \mathbb{Z}$; $\operatorname{Arg} z \in (-\pi, \pi]$.
- $zw = (r\rho)e^{i(\theta+\varphi)}, z/w = (r/\rho)e^{i(\theta-\varphi)}.$
- Raíces: $z_k = \rho^{1/n} e^{i(\phi + 2\pi k)/n}$.
- Topología: abiertos $B(z_0, r)$; compacto \Leftrightarrow cerrado y acotado.
- $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, vecindades de ∞ son exteriores de discos grandes.
- Homografías: $f(z) = \frac{az+b}{cz+d}$, $ad-bc \neq 0$; envían líneas/círculos en líneas/círculos; determinadas por la imagen de 3 puntos.