NORMALIZING FLOWS INVERTIBLE NEURAL NETWORKS (INNS)

Jérémie Cabessa Laboratoire DAVID, UVSQ

- On s'intéresse maintenant aux modèles génératifs.
- On possède des data d'apprentissages (e.g. des images) et on aimerait générer de nouvelles data "ressemblantes" à partir de ces dernières.
- Idée générale:
- On définit un réseau de neurones inversible qui transporte la distribution des data sur une loi normale centrée réduite.
- Pour générer de nouvelles data, on sample la loi normale et on applique la transformation inverse.

- On s'intéresse maintenant aux modèles génératifs.
- On possède des data d'apprentissages (e.g. des images) et on aimerait générer de nouvelles data "ressemblantes" à partir de ces dernières.
- Idée générale:
- 1. On définit un réseau de neurones inversible qui transporte la distribution des data sur une loi normale centrée réduite.
- 2. Pour générer de nouvelles data, on sample la loi normale et on applique la transformation inverse.

- On s'intéresse maintenant aux modèles génératifs.
- On possède des data d'apprentissages (e.g. des images) et on aimerait générer de nouvelles data "ressemblantes" à partir de ces dernières.
- Idée générale:
- 1. On définit un réseau de neurones inversible qui transporte la distribution des data sur une loi normale centrée réduite.
- 2. Pour générer de nouvelles data, on sample la loi normale et on applique la transformation inverse.

- On s'intéresse maintenant aux modèles génératifs.
- On possède des data d'apprentissages (e.g. des images) et on aimerait générer de nouvelles data "ressemblantes" à partir de ces dernières.
- Idée générale:
- 1. On définit un réseau de neurones inversible qui transporte la distribution des data sur une loi normale centrée réduite.
- 2. Pour générer de nouvelles data, on sample la loi normale et on applique la transformation inverse.

- On s'intéresse maintenant aux modèles génératifs.
- On possède des data d'apprentissages (e.g. des images) et on aimerait générer de nouvelles data "ressemblantes" à partir de ces dernières.
- Idée générale:
- 1. On définit un réseau de neurones inversible qui transporte la distribution des data sur une loi normale centrée réduite.
- 2. Pour générer de nouvelles data, on sample la loi normale et on applique la transformation inverse.

- Les concepts clés qui sous-tendent ces approches génératives sont:
- L'apprentissage d'une distribution de data.
 - → Density estimation
- 2. Le transport de mesures.
 - ightarrow Transportation of measures

Les concepts clés qui sous-tendent ces approches génératives sont:

Transport de mesures

- 1. L'apprentissage d'une distribution de data.
 - ightarrow Density estimation
- 2. Le transport de mesures
 - ightarrow Transportation of measures

- Les concepts clés qui sous-tendent ces approches génératives sont:
- 1. L'apprentissage d'une distribution de data.
 - → Density estimation
- 2. Le transport de mesures.
 - \rightarrow Transportation of measures

▶ Soit un dataset $\mathcal{D} = \{\mathbf{x_i} \in \mathbb{R}^d : i = 1, \dots, n\}$ dont les éléments proviennent d'une distribution empirique inconnue p, i.e.,

$$\mathbf{x_1}, \dots, \mathbf{x_n} \sim p$$
 (i.i.d)

▶ Apprendre la distribution p (density estimation) signifie chercher un réseau de neurones $p_{\theta}: \mathbb{R}^d \to \mathbb{R}$ de paramètres θ tel que

$$p_{\theta}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$$

On cherche un réseau de neurones qui, pour tout élément \mathbf{x} , prédit la probabilité empirique $p(\mathbf{x})$.

NORMALIZING FLOWS (INNs)

DENSITY ESTIMATION

Soit un dataset $\mathcal{D} = \{\mathbf{x_i} \in \mathbb{R}^d : i = 1, \dots, n\}$ dont les éléments proviennent d'une distribution empirique inconnue p, i.e.,

$$\mathbf{x_1}, \dots, \mathbf{x_n} \sim p$$
 (i.i.d)

▶ Apprendre la distribution p (density estimation) signifie chercher un réseau de neurones $p_{\theta}: \mathbb{R}^d \to \mathbb{R}$ de paramètres θ tel que

$$p_{\theta}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$$

On cherche un réseau de neurones qui, pour tout élément \mathbf{x} , prédit la probabilité empirique $p(\mathbf{x})$.

INTRODUCTION

DENSITY ESTIMATION

▶ Soit un dataset $\mathcal{D} = \{\mathbf{x_i} \in \mathbb{R}^d : i = 1, \dots, n\}$ dont les éléments proviennent d'une distribution empirique inconnue p, i.e.,

$$\mathbf{x_1}, \dots, \mathbf{x_n} \sim p$$
 (i.i.d)

▶ Apprendre la distribution p (density estimation) signifie chercher un réseau de neurones $p_{\theta}: \mathbb{R}^d \to \mathbb{R}$ de paramètres θ tel que

$$p_{\theta}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$$

▶ On cherche un réseau de neurones qui, pour tout élément \mathbf{x} , prédit la probabilité empirique $p(\mathbf{x})$.

lacktriangle On cherche un réseau de neurones $p_{ heta}$ de paramètres heta tel que

$$p_{\theta}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$$

Pour cela, on cherche à minimiser la distance de Kullback-Leibler entre les lois p et p_{θ}

$$D_{\mathsf{KL}}(p \parallel p_{\theta}) = \int_{-\infty}^{\infty} p(\mathbf{x}) \log \left(\frac{p(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) d\mathbf{x}$$

On cherche un réseau de neurones p_{θ} de paramètres θ tel que

$$p_{\theta}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$$

Pour cela, on cherche à minimiser la distance de Kullback-Leibler entre les lois p et p_{θ}

$$D_{\mathsf{KL}}(p \parallel p_{\theta}) = \int_{-\infty}^{\infty} p(\mathbf{x}) \log \left(\frac{p(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) d\mathbf{x}$$
$$= \int_{-\infty}^{\infty} p(\mathbf{x}) \left[\log(p(\mathbf{x})) - \log(p_{\theta}(\mathbf{x})) \right] d\mathbf{x}$$
$$= \mathbb{E}_{p} \left[\log(p(\mathbf{x})) \right] - \mathbb{E}_{p} \left[\log(p_{\theta}(\mathbf{x})) \right]$$
(1)

INTRODUCTION

On cherche un réseau de neurones p_{θ} de paramètres θ tel que

$$p_{\theta}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$$

Pour cela, on cherche à minimiser la distance de Kullback-Leibler entre les lois p et p_{θ}

$$D_{\mathsf{KL}}(p \parallel p_{\theta}) = \int_{-\infty}^{\infty} p(\mathbf{x}) \log \left(\frac{p(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) d\mathbf{x}$$
$$= \int_{-\infty}^{\infty} p(\mathbf{x}) \left[\log(p(\mathbf{x})) - \log(p_{\theta}(\mathbf{x})) \right] d\mathbf{x}$$
$$= \mathbb{E}_{p} \left[\log(p(\mathbf{x})) \right] - \mathbb{E}_{p} \left[\log(p_{\theta}(\mathbf{x})) \right]$$
(1)

ightharpoonup On cherche un réseau de neurones $p_{ heta}$ de paramètres heta tel que

$$p_{\theta}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$$

Pour cela, on cherche à minimiser la distance de Kullback-Leibler entre les lois p et p_{θ}

$$D_{\mathsf{KL}}(p \parallel p_{\theta}) = \int_{-\infty}^{\infty} p(\mathbf{x}) \log \left(\frac{p(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) d\mathbf{x}$$
$$= \int_{-\infty}^{\infty} p(\mathbf{x}) \left[\log(p(\mathbf{x})) - \log(p_{\theta}(\mathbf{x})) \right] d\mathbf{x}$$
$$= \mathbb{E}_{p} \left[\log(p(\mathbf{x})) \right] - \mathbb{E}_{p} \left[\log(p_{\theta}(\mathbf{x})) \right]$$
(1)

NORMALIZING FLOWS (INNs)

DENSITY ESTIMATION

On cherche un réseau de neurones p_{θ} de paramètres θ tel que

$$p_{\theta}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$$

Pour cela, on cherche à minimiser la distance de Kullback-Leibler entre les lois p et p_{θ}

$$D_{\mathsf{KL}}(p \parallel p_{\theta}) = \int_{-\infty}^{\infty} p(\mathbf{x}) \log \left(\frac{p(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) d\mathbf{x}$$
$$= \int_{-\infty}^{\infty} p(\mathbf{x}) \left[\log(p(\mathbf{x})) - \log(p_{\theta}(\mathbf{x})) \right] d\mathbf{x}$$
$$= \mathbb{E}_{p} \left[\log(p(\mathbf{x})) \right] - \mathbb{E}_{p} \left[\log(p_{\theta}(\mathbf{x})) \right]$$
(1)

Les paramètres $\hat{\theta}$ qui minimisent $D_{\mathsf{KL}}(p \parallel p_{\theta})$ sont donc donnés par

$$\hat{\theta} = \arg\min_{\theta} \left\{ D_{\mathsf{KL}}(p \parallel p_{\theta}) \right\}$$
by (1)
$$= \arg\min_{\theta} \left\{ \mathbb{E}_{p} \left[\log(p(\mathbf{x})) \right] - \mathbb{E}_{p} \left[\log(p_{\theta}(\mathbf{x})) \right] \right\}$$
serm indep of θ
$$= \arg\min_{\theta} \left\{ -\mathbb{E}_{p} \left[\log(p_{\theta}(\mathbf{x})) \right] \right\}$$
 (2)

Les paramètres $\hat{\theta}$ qui minimisent $D_{\mathsf{KL}}(p \parallel p_{\theta})$ sont donc donnés par

$$\hat{\theta} = \arg\min_{\theta} \left\{ D_{\mathsf{KL}}(p \parallel p_{\theta}) \right\}$$
by (1) = $\arg\min_{\theta} \left\{ \mathbb{E}_{p} \left[\log(p(\mathbf{x})) \right] - \mathbb{E}_{p} \left[\log(p_{\theta}(\mathbf{x})) \right] \right\}$
therm indep of θ = $\arg\min_{\theta} \left\{ -\mathbb{E}_{p} \left[\log(p_{\theta}(\mathbf{x})) \right] \right\}$ (2)

Les paramètres $\hat{\theta}$ qui minimisent $D_{\mathrm{KL}}(p \parallel p_{\theta})$ sont donc donnés par

$$\hat{\theta} = \arg\min_{\theta} \left\{ D_{\mathsf{KL}}(p \parallel p_{\theta}) \right\}$$
by (1)
$$= \arg\min_{\theta} \left\{ \mathbb{E}_{p} \left[\log(p(\mathbf{x})) \right] - \mathbb{E}_{p} \left[\log(p_{\theta}(\mathbf{x})) \right] \right\}$$
term indep of θ
$$= \arg\min_{\theta} \left\{ -\mathbb{E}_{p} \left[\log(p_{\theta}(\mathbf{x})) \right] \right\}$$
 (2)

Les paramètres $\hat{\theta}$ qui minimisent $D_{\mathrm{KL}}(p \parallel p_{\theta})$ sont donc donnés par

$$\hat{\theta} = \arg\min_{\theta} \left\{ D_{\mathsf{KL}}(p \parallel p_{\theta}) \right\}$$

$$\mathsf{by} \ (1) = \arg\min_{\theta} \left\{ \mathbb{E}_{p} \big[\log(p(\mathbf{x})) \big] - \mathbb{E}_{p} \big[\log(p_{\theta}(\mathbf{x})) \big] \right\}$$
term indep of $\theta = \arg\min_{\theta} \left\{ - \mathbb{E}_{p} \big[\log(p_{\theta}(\mathbf{x})) \big] \right\}$
(2)

On ne connaît pas la loi p mais on peut l'estimer de manière discrète à partir du dataset \mathcal{D}

$$p(\mathbf{x}) = \begin{cases} 1/n & \text{si } \mathbf{x} = \mathbf{x_i} \text{ pour } i = 1, \dots, n \text{ (i.e. si } \mathbf{x} \in \mathcal{D}) \\ 0 & \text{sinon} \end{cases}$$

$$\mathbb{E}_p[\log(p_{\theta}(x))] \simeq \sum_{i=1}^n p(\mathbf{x}_i) \log(p_{\theta}(\mathbf{x}_i)) = \sum_{i=1}^n \frac{1}{n} \log(p_{\theta}(\mathbf{x}_i))$$

$$\hat{\theta} = \arg\min_{\theta} \left\{ -\sum_{i=1}^{n} \frac{1}{n} \log(p_{\theta}(\mathbf{x_i})) \right\}$$
 (3)

INTRODUCTION

 \blacktriangleright On ne connaît pas la loi p mais on peut l'estimer de manière discrète à partir du dataset $\mathcal D$

$$p(\mathbf{x}) = \begin{cases} 1/n & \text{si } \mathbf{x} = \mathbf{x_i} \text{ pour } i = 1, \dots, n \text{ (i.e. si } \mathbf{x} \in \mathcal{D}) \\ 0 & \text{sinon} \end{cases}$$

Ainsi, l'espérance cherchée est estimée par

$$\mathbb{E}_p[\log(p_{\theta}(x))] \simeq \sum_{i=1}^n p(\mathbf{x_i}) \log(p_{\theta}(\mathbf{x_i})) = \sum_{i=1}^n \frac{1}{n} \log(p_{\theta}(\mathbf{x_i}))$$

et les paramètres optimaux $\hat{ heta}$ sont donc donnés par $_{ ext{(by (2))}}$

$$\hat{\theta} = \arg\min_{\theta} \left\{ -\sum_{i=1}^{n} \frac{1}{n} \log(p_{\theta}(\mathbf{x_i})) \right\}$$
 (3)

On obtient alors la fonction de loss, appelée negative log likelihood (NLL) ou negative log density, qui permet d'apprendre la distribution empirique p (by (3))

$$\mathcal{L}(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log(p_{\theta}(\mathbf{x_i})) = -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log(p_{\theta}(\mathbf{x}))$$
 (4)

On peut donc entraîner un réseau de neurones multicouches p_{θ} avec la loss $\mathcal{L}(\theta)$ pour tout problème de density estimation.

On obtient alors la fonction de loss, appelée negative log likelihood (NLL) ou negative log density, qui permet d'apprendre la distribution empirique p (by (3))

$$\mathcal{L}(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log(p_{\theta}(\mathbf{x}_{i})) = -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log(p_{\theta}(\mathbf{x}))$$
(4)

On peut donc entraîner un réseau de neurones multicouches p_{θ} avec la loss $\mathcal{L}(\theta)$ pour tout problème de density estimation.

- ► En pratique, la density estimation via réseaux de neurones classiques et minimisation de la NLL fonctionne mal...
- Distributions multimodales difficiles à apprendre
- ▶ Distributions de haute dimension très difficiles à apprendre
 → curse of dimensionality
- ► Il existe beaucoup d'autres méthodes très performantes

- En pratique, la density estimation via réseaux de neurones classiques et minimisation de la NLL fonctionne mal...
- Distributions multimodales difficiles à apprendre
- ▶ Distributions de haute dimension très difficiles à apprendre → curse of dimensionality
- Il existe beaucoup d'autres méthodes très performantes.

- ► En pratique, la density estimation via réseaux de neurones classiques et minimisation de la NLL fonctionne mal...
- Distributions multimodales difficiles à apprendre
- Distributions de haute dimension très difficiles à apprendre
 → curse of dimensionality
- ► Il existe beaucoup d'autres méthodes très performantes

- ► En pratique, la density estimation via réseaux de neurones classiques et minimisation de la NLL fonctionne mal...
- Distributions multimodales difficiles à apprendre
- Distributions de haute dimension très difficiles à apprendre
 → curse of dimensionality
- Il existe beaucoup d'autres méthodes très performantes.

- Apprentissage de distributions multimodales (1, 2, 3 et 4 modes) par un MLP.
- Le MLP n'arrive pas à capturer les différents modes de manière discontinue.

- Apprentissage de distributions multimodales (1, 2, 3 et 4 modes) par un MLP.
- ▶ Le MLP n'arrive pas à capturer les différents modes de manière discontinue.

- ▶ Apprentissage de distributions multimodales (1, 2, 3 et 4 modes) par un MLP.
- ► Le MLP n'arrive pas à capturer les différents modes de manière discontinue.

- Apprentissage de distributions multimodales (1, 2, 3 et 4 modes) par un MLP.
- ▶ Le MLP n'arrive pas à capturer les différents modes de manière discontinue.

- Apprentissage de distributions multimodales (1, 2, 3 et 4 modes) par un MLP.
- Le MLP n'arrive pas à capturer les différents modes de manière discontinue.

DENSITY ESTIMATION

- Apprentissage de distributions multimodales (1, 2, 3 et 4 modes) par un MLP.
- ▶ Le MLP n'arrive pas à capturer les différents modes de manière discontinue.

DENSITY ESTIMATION

- Apprentissage de distributions multimodales (1, 2, 3 et 4 modes) par un MLP.
- Le MLP n'arrive pas à capturer les différents modes de manière discontinue.

DENSITY ESTIMATION

- Apprentissage de distributions multimodales (1, 2, 3 et 4 modes) par un MLP.
- Le MLP n'arrive pas à capturer les différents modes de manière discontinue.

- ► Apprentissage d'une distributions multimodales (4 modes) par un réseau de neurones inversible (INN) (cf. slides suivants).
- C'est beaucoup mieux ! (malgré quelques filaments de continuité entre les modes)

Transport de mesures

Transport de mesures (dim. 1)

lacktriangle Soit X une variable aléatoire sur $\mathbb R$ de fonction de densité p_X (PDF) et de répartition P_X (CDF).

Rappel:
$$P_X(a) = Pr(X \le a) = \int_{-\infty}^a p_X(x) dx$$

Transport de mesures (dim. 1)

Soit X une variable aléatoire sur \mathbb{R} de fonction de densité p_X (PDF) et de répartition P_X (CDF).

Rappel:
$$P_X(a) = Pr(X \le a) = \int_{-\infty}^a p_X(x) dx$$

- ▶ Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction différentiable bijective.
 - Remarque: f continue et bijective $\Rightarrow f$ monotone croissante ou monotone décroissante (sinon, on a des oscillations qui cassent l'injectivité et donc la bijectivité).
- Soit Z=f(X) la variable aléatoire obtenue par transformation de X via f.
 - ac μ cirrollection ac μ_{χ} :

Transport de mesures (dim. 1)

▶ Soit X une variable aléatoire sur \mathbb{R} de fonction de densité p_X (PDF) et de répartition P_X (CDF).

Rappel:
$$P_X(a) = Pr(X \le a) = \int_{-\infty}^a p_X(x) dx$$

▶ Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction différentiable bijective.

Transport de mesures (dim. 1)

▶ Soit X une variable aléatoire sur \mathbb{R} de fonction de densité p_X (PDF) et de répartition P_X (CDF).

Rappel:
$$P_X(a) = Pr(X \le a) = \int_{-\infty}^a p_X(x) dx$$

▶ Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction différentiable bijective.

Remarque: f continue et bijective $\Rightarrow f$ monotone croissante ou monotone décroissante (sinon, on a des oscillations qui cassent l'injectivité et donc la bijectivité).

▶ Soit X une variable aléatoire sur \mathbb{R} de fonction de densité p_X (PDF) et de répartition P_X (CDF).

Transport de mesures

Rappel:
$$P_X(a) = Pr(X \le a) = \int_{-\infty}^a p_X(x) dx$$

▶ Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction différentiable bijective.

Remarque: f continue et bijective $\Rightarrow f$ monotone croissante ou monotone décroissante (sinon, on a des oscillations qui cassent l'injectivité et donc la bijectivité).

Soit Z = f(X) la variable aléatoire obtenue par transformation de X via f. On cherche à exprimer la fonction de densité p_Z

▶ Soit X une variable aléatoire sur \mathbb{R} de fonction de densité p_X (PDF) et de répartition P_X (CDF).

Transport de mesures

Rappel:
$$P_X(a) = Pr(X \le a) = \int_{-\infty}^a p_X(x) dx$$

▶ Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction différentiable bijective.

Remarque: f continue et bijective $\Rightarrow f$ monotone croissante ou monotone décroissante (sinon, on a des oscillations qui cassent l'injectivité et donc la bijectivité).

Soit Z = f(X) la variable aléatoire obtenue par transformation de X via f. On cherche à exprimer la fonction de densité p_Z

▶ Soit X une variable aléatoire sur \mathbb{R} de fonction de densité p_X (PDF) et de répartition P_X (CDF).

Transport de mesures

Rappel:
$$P_X(a) = Pr(X \le a) = \int_{-\infty}^a p_X(x) dx$$

▶ Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction différentiable bijective.

Remarque: f continue et bijective $\Rightarrow f$ monotone croissante ou monotone décroissante (sinon, on a des oscillations qui cassent l'injectivité et donc la bijectivité).

Soit Z = f(X) la variable aléatoire obtenue par transformation de X via f. On cherche à exprimer la fonction de densité p_Z de Z en fonction de p_X .

Si f est monotone croissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \le f^{-1}(z)$$
 (5)

$$(f^{-1}(z))' \ge 0 \quad \Rightarrow \quad |(f^{-1}(z))'| = (f^{-1}(z))'$$
 (6)

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le z)$$

$$\stackrel{(5)}{=} Pr(X \le f^{-1}(z)) = P_{X}(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{dP_{X}(f^{-1}(z))}{dz} = \frac{dP_{X}(f^{-1}(z))}{dx} \cdot \frac{dx}{dz}$$

$$= \frac{dP_{X}(f^{-1}(z))}{dz} \cdot \frac{d(f^{-1}(z))}{dz} \stackrel{(6)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{d(f^{-1}(z))}{dz} \right|$$

Si f est monotone croissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \le f^{-1}(z)$$
 (5)

$$\left(f^{-1}(z)\right)' \ge 0 \quad \Rightarrow \quad \left| \left(f^{-1}(z)\right)' \right| = \left(f^{-1}(z)\right)' \tag{6}$$

Ainsi

$$\begin{array}{rcl} P_Z(z) & = & Pr(Z \le z) = Pr(f(X) \le z) \\ & \stackrel{(5)}{=} & Pr(X \le f^{-1}(z)) = P_X(f^{-1}(z)) \\ \\ p_Z(z) & = & \frac{dP_Z(z)}{dz} = \frac{dP_X(f^{-1}(z))}{dz} = \frac{dP_X(f^{-1}(z))}{dx} \cdot \frac{dx}{dz} \\ \\ & = & \frac{dP_X(f^{-1}(z))}{dz} \cdot \frac{d(f^{-1}(z))}{dz} \stackrel{(6)}{=} p_X(f^{-1}(z)) \cdot \left| \frac{d(f^{-1}(z))}{dz} \right| \\ \end{array}$$

Si f est monotone croissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \le f^{-1}(z)$$
 (5)

$$\left(f^{-1}(z)\right)' \ge 0 \quad \Rightarrow \quad \left| \left(f^{-1}(z)\right)' \right| = \left(f^{-1}(z)\right)' \tag{6}$$

Ainsi

$$\begin{array}{rcl} P_Z(z) & = & Pr(Z \le z) = & Pr(f(X) \le z) \\ & \stackrel{(5)}{=} & Pr(X \le f^{-1}(z)) = & P_X(f^{-1}(z)) \\ \\ P_Z(z) & = & \frac{dP_Z(z)}{dz} = & \frac{dP_X(f^{-1}(z))}{dz} = & \frac{dP_X(f^{-1}(z))}{dx} \cdot \frac{dx}{dz} \\ \\ & = & \frac{dP_X(f^{-1}(z))}{dz} \cdot \frac{d(f^{-1}(z))}{dz} \stackrel{(6)}{=} & p_X(f^{-1}(z)) \cdot \left| \frac{d(f^{-1}(z))}{dz} \right| \end{array}$$

Si f est monotone croissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \le f^{-1}(z)$$
 (5)

$$\left(f^{-1}(z)\right)' \ge 0 \quad \Rightarrow \quad \left| \left(f^{-1}(z)\right)' \right| = \left(f^{-1}(z)\right)' \tag{6}$$

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le z)$$

$$\stackrel{(5)}{=} Pr(X \le f^{-1}(z)) = P_{X}(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{dP_{X}(f^{-1}(z))}{dz} = \frac{dP_{X}(f^{-1}(z))}{dx} \cdot \frac{dx}{dz}$$

$$= \frac{dP_{X}(f^{-1}(z))}{dz} \cdot \frac{d(f^{-1}(z))}{dz} \stackrel{(6)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{d(f^{-1}(z))}{dz} \right|$$

Si f est monotone croissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \le f^{-1}(z)$$
 (5)

$$\left(f^{-1}(z)\right)' \ge 0 \quad \Rightarrow \quad \left| \left(f^{-1}(z)\right)' \right| = \left(f^{-1}(z)\right)' \tag{6}$$

$$P_Z(z) = Pr(Z \le z) = Pr(f(X) \le z)$$

$$\stackrel{(5)}{=} Pr(X \le f^{-1}(z)) = P_X(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{dP_{X}(f^{-1}(z))}{dz} = \frac{dP_{X}(f^{-1}(z))}{dx} \cdot \frac{dx}{dz}$$
$$= \frac{dP_{X}(f^{-1}(z))}{dx} \cdot \frac{d(f^{-1}(z))}{dz} \stackrel{(6)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{d(f^{-1}(z))}{dz} \right|$$

Si f est monotone croissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \le f^{-1}(z)$$
 (5)

$$(f^{-1}(z))' \ge 0 \Rightarrow |(f^{-1}(z))'| = (f^{-1}(z))'$$
 (6)

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le z)$$

$$\stackrel{(5)}{=} Pr(X \le f^{-1}(z)) = P_{X}(f^{-1}(z))$$

$$\begin{array}{lcl} p_Z(z) & = & \frac{dP_Z(z)}{dz} = \frac{dP_X(f^{-1}(z))}{dz} = \frac{dP_X(f^{-1}(z))}{dx} \cdot \frac{dx}{dz} \\ & = & \frac{dP_X(f^{-1}(z))}{dx} \cdot \frac{d(f^{-1}(z))}{dz} \stackrel{(6)}{=} & p_X(f^{-1}(z)) \cdot \left| \frac{d(f^{-1}(z))}{dz} \right| \end{array}$$

Si f est monotone croissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \le f^{-1}(z) \tag{5}$$

$$\left(f^{-1}(z)\right)' \ge 0 \quad \Rightarrow \quad \left| \left(f^{-1}(z)\right)' \right| = \left(f^{-1}(z)\right)' \tag{6}$$

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le z)$$

$$\stackrel{(5)}{=} Pr(X \le f^{-1}(z)) = P_{X}(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{dP_{X}(f^{-1}(z))}{dz} = \frac{dP_{X}(f^{-1}(z))}{dx} \cdot \frac{dx}{dz}$$

$$= \frac{dP_{X}(f^{-1}(z))}{dx} \cdot \frac{d(f^{-1}(z))}{dz} \stackrel{(6)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{d(f^{-1}(z))}{dz} \right|$$

Si f est monotone décroissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \ge f^{-1}(z)$$
 (7)

$$\left(f^{-1}(z)\right)' \le 0 \quad \Rightarrow \quad \left| \left(f^{-1}(z)\right)' \right| = -\left(f^{-1}(z)\right)' \tag{8}$$

Ains

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le y)$$

$$\stackrel{(7)}{=} Pr(X \ge f^{-1}(z)) = 1 - P_{X}(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dz}$$

$$= \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{dx}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{df^{-1}(z)}{dz}$$

$$= -p_{X}(f^{-1}(z)) \cdot \frac{df^{-1}(z)}{dz} \stackrel{(8)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{df^{-1}(z)}{dz} \right|$$

Si f est monotone décroissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \ge f^{-1}(z)$$
 (7)

$$(f^{-1}(z))' \le 0 \implies |(f^{-1}(z))'| = -(f^{-1}(z))'$$
 (8)

Ains

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le y)$$

$$\stackrel{(7)}{=} Pr(X \ge f^{-1}(z)) = 1 - P_{X}(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dz}$$

$$= \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{dx}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{df^{-1}(z)}{dz}$$

$$= -p_{X}(f^{-1}(z)) \cdot \frac{df^{-1}(z)}{dz} \stackrel{(8)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{df^{-1}(z)}{dz} \right|$$

Si f est monotone décroissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \ge f^{-1}(z)$$
 (7)

$$(f^{-1}(z))' \le 0 \Rightarrow |(f^{-1}(z))'| = -(f^{-1}(z))'$$
 (8)

Ainsi

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le y)$$

$$\stackrel{(7)}{=} Pr(X \ge f^{-1}(z)) = 1 - P_{X}(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dz}$$

$$= \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{dx}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{df^{-1}(z)}{dz}$$

$$= -p_{X}(f^{-1}(z)) \cdot \frac{df^{-1}(z)}{dz} \stackrel{(8)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{df^{-1}(z)}{dz} \right|$$

Si f est monotone décroissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \ge f^{-1}(z)$$
 (7)

$$(f^{-1}(z))' \le 0 \Rightarrow |(f^{-1}(z))'| = -(f^{-1}(z))'$$
 (8)

Ainsi

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le y)$$

$$\stackrel{(7)}{=} Pr(X \ge f^{-1}(z)) = 1 - P_{X}(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dz}$$

$$= \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{dx}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{df^{-1}(z)}{dz}$$

$$= -p_{X}(f^{-1}(z)) \cdot \frac{df^{-1}(z)}{dz} \stackrel{(8)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{df^{-1}(z)}{dz} \right|$$

Si f est monotone décroissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \ge f^{-1}(z)$$
 (7)

$$(f^{-1}(z))' \le 0 \quad \Rightarrow \quad \left| (f^{-1}(z))' \right| = -(f^{-1}(z))'$$
 (8)

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le y)$$

$$\stackrel{(7)}{=} Pr(X \ge f^{-1}(z)) = 1 - P_{X}(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dz}$$

$$= \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{dx}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{df^{-1}(z)}{dz}$$

$$= -p_{X}(f^{-1}(z)) \cdot \frac{df^{-1}(z)}{dz} \stackrel{(8)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{df^{-1}(z)}{dz} \right|$$

Si f est monotone décroissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \ge f^{-1}(z)$$
 (7)

$$(f^{-1}(z))' \le 0 \quad \Rightarrow \quad \left| (f^{-1}(z))' \right| = -(f^{-1}(z))'$$
 (8)

$$P_Z(z) = Pr(Z \le z) = Pr(f(X) \le y)$$

$$\stackrel{(7)}{=} Pr(X \ge f^{-1}(z)) = 1 - P_X(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dz}$$

$$= \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{dx}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{df^{-1}(z)}{dz}$$

$$= -p_{X}(f^{-1}(z)) \cdot \frac{df^{-1}(z)}{dz} \stackrel{(8)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{df^{-1}(z)}{dz} \right|$$

Si f est monotone décroissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \ge f^{-1}(z)$$
 (7)

$$(f^{-1}(z))' \le 0 \quad \Rightarrow \quad \left| (f^{-1}(z))' \right| = -(f^{-1}(z))'$$
 (8)

Ainsi

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le y)$$

$$\stackrel{(7)}{=} Pr(X \ge f^{-1}(z)) = 1 - P_{X}(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dz}$$

$$= \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{dx}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{df^{-1}(z)}{dz}$$

$$= -p_{X}(f^{-1}(z)) \cdot \frac{df^{-1}(z)}{dz} \stackrel{(8)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{df^{-1}(z)}{dz} \right|$$

Si f est monotone décroissante, alors f^{-1} également, et on a

$$f(X) \le z \quad \Leftrightarrow \quad X \ge f^{-1}(z)$$
 (7)

$$(f^{-1}(z))' \le 0 \quad \Rightarrow \quad \left| (f^{-1}(z))' \right| = -(f^{-1}(z))'$$
 (8)

Ainsi

$$P_{Z}(z) = Pr(Z \le z) = Pr(f(X) \le y)$$

$$\stackrel{(7)}{=} Pr(X \ge f^{-1}(z)) = 1 - P_{X}(f^{-1}(z))$$

$$p_{Z}(z) = \frac{dP_{Z}(z)}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dz}$$

$$= \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{dx}{dz} = \frac{d(1 - P_{X}(f^{-1}(z)))}{dx} \cdot \frac{df^{-1}(z)}{dz}$$

$$= -p_{X}(f^{-1}(z)) \cdot \frac{df^{-1}(z)}{dz} \stackrel{(8)}{=} p_{X}(f^{-1}(z)) \cdot \left| \frac{df^{-1}(z)}{dz} \right|$$

En résumé, on a le théorème de changement de variable suivant:

Theorem

Soient X une variable aléatoire sur \mathbb{R} , $f:\mathbb{R}\to\mathbb{R}$ une fonction différentiable bijective et Z = f(X). La fonction de densité de Z

$$p_Z(z) = p_X(f^{-1}(z)) \cdot \left| \frac{df^{-1}(z)}{dz} \right|$$
 (9)

En résumé, on a le théorème de changement de variable suivant:

Theorem

Soient X une variable aléatoire sur \mathbb{R} , $f:\mathbb{R}\to\mathbb{R}$ une fonction différentiable bijective et Z = f(X). La fonction de densité de Zest donnée par:

$$p_Z(z) = p_X(f^{-1}(z)) \cdot \left| \frac{df^{-1}(z)}{dz} \right|$$
 (9)

INTRODUCTION

▶ En remplaçant X, Z et f par Z, X et f^{-1} , respectivement, dans le théorème, on a:

$$p_X(x) = p_Z(f(x)) \cdot \left| \frac{df(x)}{dx} \right| = p_Z(f(x)) \cdot |J_f(x)|$$
 (10)

- \triangleright Dans notre cas, on cherchera plutôt à exprimer p_X en fonction de p_Z , qui sera une loi normale centrés réduite (simple).
- ▶ En remplaçant X, Z et f par Z, X et f^{-1} , respectivement, dans le théorème, on a:

$$p_X(x) = p_Z(f(x)) \cdot \left| \frac{df(x)}{dx} \right| = p_Z(f(x)) \cdot |J_f(x)|$$
 (10)

Dans le cas multidimensionnel, le théorème de changement de variable se généralise ainsi:

Transport de mesures

Theorem

Introduction

Soient **X** une variable aléatoire sur \mathbb{R}^d , $f: \mathbb{R}^d \to \mathbb{R}^d$ une fonction différentiable bijective et $\mathbf{Z} = f(\mathbf{X})$. La fonction de densité de \mathbb{Z}

$$\begin{array}{c} \rho \mathbf{Z}(\mathbf{z}) = \rho \mathbf{X}(\mathbf{J} - (\mathbf{z})) & \text{det} \left(-\partial \mathbf{z} - \mathbf{J} \right) \\ \\ o \dot{u} \ \frac{\partial f^{-1}(\mathbf{z})}{\partial \mathbf{z}} = \begin{bmatrix} \frac{\partial f_1^{-1}(\mathbf{z})}{\partial z_1} & \dots & \frac{\partial f_1^{-1}(\mathbf{z})}{\partial z_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_d^{-1}(\mathbf{z})}{\partial z_1} & \dots & \frac{\partial f_d^{-1}(\mathbf{z})}{\partial z_d} \end{bmatrix} \text{ est le Jacobien de } f^{-1}(\mathbf{z}). \end{aligned}$$

Dans le cas multidimensionnel, le théorème de changement de variable se généralise ainsi:

Theorem

Introduction

Soient \mathbf{X} une variable aléatoire sur \mathbb{R}^d , $f: \mathbb{R}^d \to \mathbb{R}^d$ une fonction différentiable bijective et $\mathbf{Z} = f(\mathbf{X})$. La fonction de densité de \mathbf{Z} est donnée par:

$$\begin{split} p_{\mathbf{Z}}(\mathbf{z}) &= p_{\mathbf{X}} \left(f^{-1}(\mathbf{z}) \right) \cdot \left| \det \left(\frac{\partial f^{-1}(\mathbf{z})}{\partial \mathbf{z}} \right) \right| \\ où & \frac{\partial f^{-1}(\mathbf{z})}{\partial \mathbf{z}} = \begin{bmatrix} \frac{\partial f_1^{-1}(\mathbf{z})}{\partial z_1} & \dots & \frac{\partial f_1^{-1}(\mathbf{z})}{\partial z_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_d^{-1}(\mathbf{z})}{\partial z_1} & \dots & \frac{\partial f_d^{-1}(\mathbf{z})}{\partial z_d} \end{bmatrix} \text{ est le Jacobien de } f^{-1}(\mathbf{z}). \end{split}$$

- \triangleright Dans notre cas, on cherchera plutôt à exprimer $p_{\mathbf{X}}$ en fonction de $p_{\mathbf{Z}}$, qui sera une loi normale centrée réduite (simple).

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(f(\mathbf{x})) \cdot \left| \det \left(\frac{df(\mathbf{x})}{d\mathbf{x}} \right) \right| = p_{\mathbf{Z}}(f(\mathbf{x})) \cdot \left| \det (J_f(\mathbf{x})) \right|$$
 (11)

- \triangleright Dans notre cas, on cherchera plutôt à exprimer $p_{\mathbf{X}}$ en fonction de $p_{\mathbf{Z}}$, qui sera une loi normale centrée réduite (simple).
- \triangleright En remplaçant X, Z et f par Z, X et f^{-1} , respectivement, dans le théorème, on a:

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(f(\mathbf{x})) \cdot \left| \det \left(\frac{df(\mathbf{x})}{d\mathbf{x}} \right) \right| = p_{\mathbf{Z}}(f(\mathbf{x})) \cdot \left| \det (J_f(\mathbf{x})) \right|$$
 (11)

NORMALIZING FLOWS

- Les modèles de flots génératifs (normalizing flows, flow-based generative models), en particulier les réseaux de neurones inversibles, utilisent le théorème du changement de variable pour:
- 1. apprendre la distribution des data plus efficacement ;
- 2. générer des data.

Un réseau de neurones inversible (invertible neural networks, INN) est un réseau de neurones dont la fonction associée

$$f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$$

Un réseau de neurones inversible (invertible neural networks, INN) est un réseau de neurones dont la fonction associée

$$f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$$

- 1. f_{θ} est bijective ;

 Un réseau de neurones inversible (invertible neural networks, INN) est un réseau de neurones dont la fonction associée

$$f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$$

- 1. f_{θ} est bijective ;
- 2. l'inverse f_{θ}^{-1} est facile à calculer ;
- 3. le Jacobien $\frac{\partial f_{\theta}}{\partial \mathbf{x}}$ et son déterminant sont faciles à calculer

RÉSEAUX DE NEURONES INVERSIBLES (INNS)

Un réseau de neurones inversible (invertible neural networks, INN) est un réseau de neurones dont la fonction associée

$$f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$$

- 1. f_{θ} est bijective ;
- 2. l'inverse f_{θ}^{-1} est facile à calculer ;
- 3. le Jacobien $\frac{\partial f_{\theta}}{\partial \mathbf{x}}$ et son déterminant sont faciles à calculer.

INTRODUCTION

Un real-valued non-volume preserving network (RealNVP) est un INNs composé de couches bijectives (inversibles) l_i : $\mathbb{R}^d \to \mathbb{R}^d$ appelées "coupling layers" (dim. d conservée). [Dinh et al., 2017]

Transport de mesures

$$\mathbf{x}_{new} = f_{\theta}^{-1}(\mathbf{z}) = l_1^{-1} \circ \cdots \circ l_n^{-1}(\mathbf{z})$$

INTRODUCTION

Un real-valued non-volume preserving network (RealNVP) est un INNs composé de couches bijectives (inversibles) l_i : $\mathbb{R}^d \to \mathbb{R}^d$ appelées "coupling layers" (dim. d conservée). [Dinh et al., 2017]

Transport de mesures

Le réseau est entraîné de telle sorte que la composition de toutes ses couches $f_{\theta} = l_n \circ \cdots \circ l_1$ réalise pas à pas (interpolation) un transport de mesure inversible :

$$\mathbf{x}_{\mathbf{new}} = f_{\theta}^{-1}(\mathbf{z}) = l_1^{-1} \circ \cdots \circ l_n^{-1}(\mathbf{z})$$

Un real-valued non-volume preserving network (RealNVP) est un INNs composé de couches bijectives (inversibles) l_i : $\mathbb{R}^d \to \mathbb{R}^d$ appelées "coupling layers" (dim. d conservée). [Dinh et al., 2017]

Transport de mesures

- Le réseau est entraîné de telle sorte que la composition de toutes ses couches $f_{\theta} = l_n \circ \cdots \circ l_1$ réalise pas à pas (interpolation) un transport de mesure inversible :
 - les data originales sont transportées sur une distribution normale centrée réduite.

$$\mathbf{x}_{\mathbf{new}} = f_{\theta}^{-1}(\mathbf{z}) = l_1^{-1} \circ \cdots \circ l_n^{-1}(\mathbf{z})$$

INTRODUCTION

- Un real-valued non-volume preserving network (RealNVP) est un INNs composé de couches bijectives (inversibles) l_i : $\mathbb{R}^d \to \mathbb{R}^d$ appelées "coupling layers" (dim. d conservée). [Dinh et al., 2017]
- Le réseau est entraîné de telle sorte que la composition de toutes ses couches $f_{\theta} = l_n \circ \cdots \circ l_1$ réalise pas à pas (interpolation) un transport de mesure inversible :
 - les data originales sont transportées sur une distribution normale centrée réduite.
- **Ensuite**, pour *générer* de nouvelles data, on sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ et on applique la transformation inverse

$$\mathbf{x_{new}} = f_{\theta}^{-1}(\mathbf{z}) = l_1^{-1} \circ \cdots \circ l_n^{-1}(\mathbf{z})$$

INN - REALNVP: LAYER

- ightharpoonup Chaque couche $l_i: \mathbb{R}^d \to \mathbb{R}^d$ réalise une transformation bijective facile à inverser.

$$\begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \end{bmatrix} \stackrel{l_i}{\longmapsto} \begin{bmatrix} \mathbf{z_1} \\ \mathbf{z_2} \end{bmatrix} = \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \odot \exp\left(s_i(\mathbf{x_1})\right) + t_i(\mathbf{x_1}) \end{bmatrix}$$

INN - REALNVP: LAYER

- ightharpoonup Chaque couche $l_i: \mathbb{R}^d \to \mathbb{R}^d$ réalise une transformation bijective facile à inverser.
- L'idée est de séparer l'input en deux parties $\mathbf{x} = [\mathbf{x_1}, \mathbf{x_2}] \in \mathbb{R}^d$, où $\mathbf{x_1} \in \mathbb{R}^{k_i}$ et $\mathbf{x_2} \in \mathbb{R}^{d-k_i}$.

$$\begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \end{bmatrix} \stackrel{l_i}{\longmapsto} \begin{bmatrix} \mathbf{z_1} \\ \mathbf{z_2} \end{bmatrix} = \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \odot \exp\left(s_i(\mathbf{x_1})\right) + t_i(\mathbf{x_1}) \end{bmatrix}$$

INN – REALNVP: LAYER

- ightharpoonup Chaque couche $l_i: \mathbb{R}^d \to \mathbb{R}^d$ réalise une transformation bijective facile à inverser.
- L'idée est de séparer l'input en deux parties $\mathbf{x} = [\mathbf{x_1}, \mathbf{x_2}] \in \mathbb{R}^d$. où $\mathbf{x_1} \in \mathbb{R}^{k_i}$ et $\mathbf{x_2} \in \mathbb{R}^{d-k_i}$.
- La couche $l_i: \mathbb{R}^d \to \mathbb{R}^d$ implémente la transformation affine suivante:

$$\begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \end{bmatrix} \stackrel{l_i}{\longmapsto} \begin{bmatrix} \mathbf{z_1} \\ \mathbf{z_2} \end{bmatrix} = \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \odot \exp\left(s_i(\mathbf{x_1})\right) + t_i(\mathbf{x_1}) \end{bmatrix}$$

où s_i (scale function) et t_i (translation function) sont des réseaux de neurones simples.

INN – REALNVP: LAYER

$$\begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \end{bmatrix} \stackrel{l_i}{\longmapsto} \begin{bmatrix} \mathbf{z_1} \\ \mathbf{z_2} \end{bmatrix} = \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \odot \exp\left(s_i(\mathbf{x_1})\right) + t_i(\mathbf{x_1}) \end{bmatrix}$$

INN – REALNVP: FULL NETWORK

INN – REALNVP: INVERSE LAYER

Grâce à cette architecture, la transformation inverse de chaque couche l_i , notée $l_i^{-1}: \mathbb{R}^d \to \mathbb{R}^d$, peut se calculer simplement:

$$\begin{bmatrix} \mathbf{z_1} \\ \mathbf{z_2} \end{bmatrix} \overset{l_i^{-1}}{\longmapsto} \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \end{bmatrix} = \begin{bmatrix} \mathbf{y_1} \\ \left(\mathbf{z_2} - t_i(\mathbf{z_1}) \right) \odot \exp\left(-s_i(\mathbf{z_1}) \right) \end{bmatrix}$$

INN - REALNVP: INVERSE LAYER.

$$\begin{bmatrix} \mathbf{z_1} \\ \mathbf{z_2} \end{bmatrix} \overset{l_i^{-1}}{\longmapsto} \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \end{bmatrix} = \begin{bmatrix} \mathbf{z_1} \\ \left(\mathbf{z_2} - t_i(\mathbf{z_1}) \right) \odot \exp\left(-s_i(\mathbf{z_1}) \right) \end{bmatrix}$$

INN - REALNVP: FULL INVERSE NETWORK

CALCUL DU JACOBIEN (1 COUCHE)

Le Jacobien associé à chaque couche l_i est une matrice triangulaire inférieure :

$$\mathbf{z} = l_i(\mathbf{x}) = \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \odot \exp\left(s_i(\mathbf{x_1})\right) + t_i(\mathbf{x_1}) \end{bmatrix}$$

$$J_{l_i} := \frac{\partial l_i(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{bmatrix} \mathbf{I}_{k_i} & \mathbf{0} \\ \frac{\partial \mathbf{z_2}}{\partial \mathbf{x_1}} & \operatorname{diag}\left[\exp\left(s_i(\mathbf{x_1})\right)\right] \end{bmatrix}$$

où le terme $\frac{\partial \mathbf{z_2}}{\partial \mathbf{x_1}}$ est non trivial (ce qui ne pose aucun problème).

$$|\det(J_{l_i})| = \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = \exp \left(\sum_{i=1}^{d-k_i} s_i(\mathbf{x}_1) \right)$$
 (12)

CALCUL DU JACOBIEN (1 COUCHE)

 \blacktriangleright Le Jacobien associé à chaque couche l_i est une matrice triangulaire inférieure :

$$\mathbf{z} = l_i(\mathbf{x}) = \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \odot \exp\left(s_i(\mathbf{x_1})\right) + t_i(\mathbf{x_1}) \end{bmatrix}$$

$$J_{l_i} := \frac{\partial l_i(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{bmatrix} \mathbf{I}_{k_i} & \mathbf{0} \\ \frac{\partial \mathbf{z_2}}{\partial \mathbf{x_1}} & \operatorname{diag}\left[\exp\left(s_i(\mathbf{x_1})\right)\right] \end{bmatrix}$$

où le terme $\frac{\partial \mathbf{z_2}}{\partial \mathbf{x_1}}$ est non trivial (ce qui ne pose aucun problème).

Ainsi, le déterminant du Jacobien se calcule simplement :

$$|\det(J_{l_i})| = \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = \exp \left(\sum_{i=1}^{d-k_i} s_i(\mathbf{x_1}) \right)$$
 (12)

Calcul du Jacobien (réseau total)

La transformation totale du RealNVP est donnée par

$$f_{\theta}(\mathbf{x}) = l_n \circ l_{n-1} \circ \cdots \circ l_1(\mathbf{x}) = \mathbf{z}$$

$$\mathbf{x}_0 = \mathbf{x}, \quad \mathbf{x}_1 = l_1(\mathbf{x}_0), \dots, \mathbf{z} = \mathbf{x}_n = l_n(\mathbf{x}_{n-1})$$

$$J_{f_{\theta}}(\mathbf{x}) = J_{l_n}(\mathbf{x}_{n-1}) \cdots J_{l_2}(\mathbf{x}_1) J_{l_1}(\mathbf{x}_0)$$

$$t J_{f_{\theta}}(\mathbf{x})| = \prod_{i=1}^{n} |\det J_{l_i}(\mathbf{x}_{i-1})| \stackrel{(12)}{=} \prod_{i=1}^{n} \exp \left(\sum_{i=1}^{d-k_i} s_i(\mathbf{x}_1)\right)$$
(13)

La transformation totale du RealNVP est donnée par

$$f_{\theta}(\mathbf{x}) = l_n \circ l_{n-1} \circ \cdots \circ l_1(\mathbf{x}) = \mathbf{z}$$

$$\mathbf{x}_0 = \mathbf{x}, \quad \mathbf{x}_1 = l_1(\mathbf{x}_0), \dots, \mathbf{z} = \mathbf{x}_n = l_n(\mathbf{x}_{n-1})$$

 Pour cette transformation totale, en appliquant la 'chain rule', le Jacobien et son déterminant sont donnés par :

$$J_{f_{\theta}}(\mathbf{x}) = J_{l_n}(\mathbf{x}_{n-1}) \cdots J_{l_2}(\mathbf{x}_1) J_{l_1}(\mathbf{x}_0)$$

$$|\det J_{f_{\theta}}(\mathbf{x})| = \prod_{i=1}^{n} |\det J_{l_i}(\mathbf{x}_{i-1})| \stackrel{(12)}{=} \prod_{i=1}^{n} \exp \left(\sum_{i=1}^{d-k_i} s_i(\mathbf{x}_1)\right)$$
(13)

INTRODUCTION

- Soit un dataset $\mathcal{D} = \{\mathbf{x_i} \in \mathbb{R}^d : i = 1, \dots, n\}$ dont les éléments proviennent d'une distribution empirique p.

$$p_{\mathbf{X}}(\mathbf{x}) \stackrel{\text{(11)}}{=} p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot |\det(J_{f_{\theta}}(\mathbf{x}))|$$

$$\stackrel{\text{(13)}}{=} p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot \prod_{i=1}^{n} \exp\left(\sum_{i=1}^{d-k_{i}} s_{i}(\mathbf{x}_{1})\right)$$
(14)

INTRODUCTION

- Soit un dataset $\mathcal{D} = \{\mathbf{x_i} \in \mathbb{R}^d : i = 1, \dots, n\}$ dont les éléments proviennent d'une distribution empirique p.
- lacktriangle Soit la distribution normale centrée réduite $p_{\mathbf{Z}}$.
- Soit un réseau de neurones inversible $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$.
- Par le théorème de changement de variable, la distribution $p_{\mathbf{X}}$ qui est transportée par f_{θ} sur $p_{\mathbf{Z}}$ est donnée par :

$$p_{\mathbf{X}}(\mathbf{x}) \stackrel{\text{(11)}}{=} p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot |\det(J_{f_{\theta}}(\mathbf{x}))|$$

$$\stackrel{\text{(13)}}{=} p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot \prod_{i=1}^{n} \exp\left(\sum_{i=1}^{d-k_{i}} s_{i}(\mathbf{x}_{1})\right)$$
(14)

Soit un dataset $\mathcal{D} = \{\mathbf{x_i} \in \mathbb{R}^d : i = 1, \dots, n\}$ dont les éléments proviennent d'une distribution empirique p.

Transport de mesures

- Soit la distribution normale centrée réduite p_Z.
- ▶ Soit un réseau de neurones inversible $f_{\theta} : \mathbb{R}^d \to \mathbb{R}^d$.

$$p_{\mathbf{X}}(\mathbf{x}) \stackrel{\text{(11)}}{=} p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot |\det(J_{f_{\theta}}(\mathbf{x}))|$$

$$\stackrel{\text{(13)}}{=} p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot \prod_{i=1}^{n} \exp\left(\sum_{i=1}^{d-k_{i}} s_{i}(\mathbf{x}_{1})\right)$$
(14)

- Soit un dataset $\mathcal{D} = \{\mathbf{x_i} \in \mathbb{R}^d : i = 1, \dots, n\}$ dont les éléments proviennent d'une distribution empirique p.
- ightharpoonup Soit la distribution normale centrée réduite $p_{\mathbf{Z}}$.
- Soit un réseau de neurones inversible $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$.
- Par le théorème de changement de variable, la distribution $p_{\mathbf{X}}$ qui est transportée par f_{θ} sur $p_{\mathbf{Z}}$ est donnée par :

$$p_{\mathbf{X}}(\mathbf{x}) \stackrel{\text{(11)}}{=} p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot |\det(J_{f_{\theta}}(\mathbf{x}))|$$

$$\stackrel{\text{(13)}}{=} p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot \prod_{i=1}^{n} \exp\left(\sum_{i=1}^{d-k_{i}} s_{i}(\mathbf{x}_{1})\right)$$
(14)

- ightharpoonup On entraı̂ne f_{θ} pour que la distribution $p_{\mathbf{X}}$ qui est transportée par f_{θ} sur $p_{\mathbf{Z}}$ soit le plus proche possible de la distribution empirique p, i.e., $p_{\mathbf{X}}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$.

$$\mathcal{L}(\theta) \stackrel{(4)}{=} -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log \left(p_{\mathbf{X}}(\mathbf{x}) \right)$$

$$\stackrel{(14)}{=} -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log \left(p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot \prod_{i=1}^{n} \exp \left(\sum_{i=1}^{d-k_{i}} s_{i}(\mathbf{x}_{1}) \right) \right)$$

$$= -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \left[\log \left(p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \right) + \sum_{i=1}^{n} \log \left(\exp \left(\sum_{i=1}^{d-k_{i}} s_{i}(\mathbf{x}_{1}) \right) \right) \right]$$

- On entraı̂ne f_{θ} pour que la distribution $p_{\mathbf{X}}$ qui est transportée par f_{θ} sur $p_{\mathbf{Z}}$ soit le plus proche possible de la distribution empirique p, i.e., $p_{\mathbf{X}}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$.
- lackbox On se ramène alors à un problème de d'apprentissage de la distribution p via $p_{\mathbf{X}}$.
- Pour cela, on minimise la negative log likelihood (NLL)

$$\mathcal{L}(\theta) \stackrel{(4)}{=} -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log \left(p_{\mathbf{X}}(\mathbf{x}) \right)$$

$$\stackrel{(14)}{=} -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log \left(p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot \prod_{i=1}^{n} \exp \left(\sum_{i=1}^{d-k_{i}} s_{i}(\mathbf{x}_{1}) \right) \right)$$

$$= -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \left[\log \left(p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \right) + \sum_{i=1}^{n} \log \left(\exp \left(\sum_{i=1}^{d-k_{i}} s_{i}(\mathbf{x}_{1}) \right) \right) \right]$$

- On entraı̂ne f_{θ} pour que la distribution $p_{\mathbf{X}}$ qui est transportée par f_{θ} sur $p_{\mathbf{Z}}$ soit le plus proche possible de la distribution empirique p, i.e., $p_{\mathbf{X}}(\mathbf{x}) \simeq p(\mathbf{x}), \ \forall x \in \mathbb{R}^d$.
- lackbox On se ramène alors à un problème de d'apprentissage de la distribution p via $p_{\mathbf{X}}$.
- Pour cela, on minimise la negative log likelihood (NLL) :

$$\mathcal{L}(\theta) \stackrel{(4)}{=} -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log (p_{\mathbf{X}}(\mathbf{x}))$$

$$\stackrel{(14)}{=} -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log \left(p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \cdot \prod_{i=1}^{n} \exp \left(\sum_{i=1}^{d-k_{i}} s_{i}(\mathbf{x}_{1}) \right) \right)$$

$$= -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \left[\log \left(p_{\mathbf{Z}}(f_{\theta}(\mathbf{x})) \right) + \sum_{i=1}^{n} \log \left(\exp \left(\sum_{i=1}^{d-k_{i}} s_{i}(\mathbf{x}_{1}) \right) \right) \right]$$

INN – GÉNÉRATION

- Le réseau de neurones inversible $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$ peut ensuite être utilisé pour la *génération* de data.
- Pour générer une data \mathbf{x}_{new} :
- 1. On sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$:
- 2. On applique la transformation inverse

$$\mathbf{x}_{\text{new}} = f_{\theta}^{-1}(\mathbf{z}) = l_1^{-1} \circ \cdots \circ l_n^{-1}(\mathbf{z})$$

- Le réseau de neurones inversible $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$ peut ensuite être utilisé pour la *génération* de data.
- ightharpoonup Pour générer une data $\mathbf{x}_{\mathbf{new}}$:
- 1. On sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$;
- 2. On applique la transformation inverse

$$\mathbf{x}_{\text{new}} = f_{\theta}^{-1}(\mathbf{z}) = l_1^{-1} \circ \cdots \circ l_n^{-1}(\mathbf{z})$$

- Le réseau de neurones inversible $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$ peut ensuite être utilisé pour la *génération* de data.
- ightharpoonup Pour générer une data $\mathbf{x}_{\mathbf{new}}$:
- 1. On sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$;
- 2. On applique la transformation inverse

$$\mathbf{x}_{\text{new}} = f_{\theta}^{-1}(\mathbf{z}) = l_1^{-1} \circ \cdots \circ l_n^{-1}(\mathbf{z})$$

INN - GÉNÉRATION

- Le réseau de neurones inversible $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$ peut ensuite être utilisé pour la *génération* de data.
- ▶ Pour générer une data x_{new} :
- 1. On sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$;
- 2. On applique la transformation inverse

$$\mathbf{x}_{\mathbf{new}} = f_{\theta}^{-1}(\mathbf{z}) = l_1^{-1} \circ \cdots \circ l_n^{-1}(\mathbf{z})$$

- ► Apprentissage d'une distributions multimodales (4 modes) par un RealNVP.

Introduction

NORMALIZING FLOWS - INVERTIBLE NEURAL NETWORKS (INNS)

INTRODUCTION

- Apprentissage d'une distributions multimodales (4 modes) par un RealNVP.
- On entraı̂ne f_{θ} comme décrit précédemment et on utilise ensuite la formule (14) pour évaluer la densité des points du plan.

- ► Entraînement d'un RealNVP sur le dataset MNIST et génération de data...
- On pourrait utiliser d'autres architectures inversibles plus appropriées aux images.

- Entraînement d'un RealNVP sur le dataset MNIST et génération de data...
- On pourrait utiliser d'autres architectures inversibles plus appropriées aux images.

BIBLIOGRAPHIE

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using real NVP.

In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

Ermon, S. and Grover, A. (2023).

Normalizing flows.

https://deepgenerativemodels.github.io/notes/flow/. Accessed: 2025-04-28.

Weng, L. (2018).

Flow-based deep generative models.

lilianweng.github.io.

Wikipedia contributors (2024).

Flow-based generative model.

https://en.wikipedia.org/wiki/Flow-based_generative_model#cite_note-27

Accessed: 2025-04-28.