Fractions rationnelles

QCOP FRAC. 1

On considère $F:=rac{\mathsf{X}^4+1}{\mathsf{x}^3-1}\in\mathbb{R}(\mathsf{X}).$

- Calculer la partie entière de F, que l'on notera E.
- (a) Factoriser $X^3 1$ dans $\mathbb{C}[X]$.
 - (b) En déduire la forme de la décomposition en éléments simples de F-E dans $\mathbb{C}(X)$, puis de F.
- (a) Factoriser $X^3 1$ dans $\mathbb{R}[X]$.
 - **(b)** On fixe $A_1, A_2 \in \mathbb{R}[X]$ tels que

$$F = E + \frac{A_1}{X - 1} + \frac{A_2}{X^2 + X + 1}.$$

Déterminer $deg(A_1)$ et $deg(A_2)$.

QCOP FRAC.2

- $lackbox{O}$ On considère $F \coloneqq \frac{1}{(\mathsf{X}^2-1)^2} \in \mathbb{R}(\mathsf{X}).$
 - (a) Déterminer les racines de $(X^2 1)^2$ et leur multiplicité.
 - **(b)** Quelle est la forme de la décomposition en éléments simples de *F* ?
 - (c) Par des arguments de parité, montrer qu'il reste à déterminer deux coefficients pour obtenir la décomposition de *F*.
- Donner la forme de la décomposition en éléments simples de la fraction rationnelle

$$\frac{\mathsf{X}+1}{(\mathsf{X}-1)^3(\mathsf{X}-2)}.$$

QCOP FRAC.3

Soit $p \in \mathbb{N}^*$. Soient $a_1, \dots, a_p \in \mathbb{C}$ et $\alpha_1, \dots, \alpha_p \in \mathbb{N}^*$. Soit $\lambda \in \mathbb{C}^*$. On pose

$$P := \lambda (X - a_1)^{\alpha_1} \dots (X - a_p)^{\alpha_p}.$$

- \nearrow (a) Donner l'expression de P'.
 - **(b)** Déterminer $\beta_1, \dots, \beta_p \in \mathbb{R}$ tels que $\frac{P'}{P} = \sum_{k=1}^p \frac{\beta_k}{\mathsf{X} \mathsf{a}_k}$.
- $\alpha_1 = \cdots = \alpha_p = 1.$

Calculer
$$\sum_{k=1}^{p} \frac{1}{a_k}$$
.