Présentation projet 4: Anticiper les besoins en consommation électrique de bâtiments

Parcours Data Scientist : Bagué Pierre

Sommaire

- Présentation des données
- Nettoyage du jeu de données
 Préparation des variables cibles pour le k-fold
- 4. Preprocessing
 - 4.1. Les variables numériques
 - 4.2. Variables numériques + non numériques
 - 4.3. Variables numériques à forte corrélation
 - 4.4. Variables numériques à forte corrélation + non numériques les plus utilisées
- 5. Les algorithmes utilisés
 - 5.1. Diversité du benchmark
 - 5.2. Mesure des résultats
 - 5.3. Résultats pour la consommation d'électricité
 - 5.4. Résultats pour l'émission de gaz à effet de serre
 - 5.5. Axes d'amélioration
- 6. Conclusion

1. Présentation des données

Provenance et description des données

- Données de la ville de Seattle
- Deux années de bilan énergétiques
- Plus de 3300 bâtiments
- Plus de 40 variables : type des bâtiments, surface, lieu, année de construction, nombre d'étages, consommation en tout genre,...

2. Nettoyage du jeu de

données

Visualisation et nettoyage des données

- Deux fichiers avec des différences de variables:
 - o noms différents :
 - changements de noms
 - o variable rassemblée ou divisée d'une année à l'autre :
 - coordonnées gps
 - o variables enlevées ou ajoutées d'une année à l'autre :
 - données parcellaires
- concaténation des fichiers

3. Préparation des variables cibles pour le k-fold

Préparation des valeurs cibles

Regard sur la répartition des valeurs :

Préparation des variables cibles

- pour l'électricité et l'émission de gaz à effet de serre:
 - mise à 0 pour les valeurs non définies (consommation électrique ne rejetant pas de gaz)
 - opposition des valeurs négatives
 - Création d'une seconde cible avec le logarithme en base 10 pour l' électricité

k-fold

- 5 folds prévus
- création de 5 index de données pour les entraînements et les tests des algorithmes
- répartition équitable par intervalle de valeur des données cibles

4. Preprocessing

4.1 Les variables numériques

- Sélection des variables numériques dans le dataset
- Corrélation de pearson entre les variables numériques
- Suppression des variables à corrélation supérieur à 99% (duplicatas d'une autre unité de mesure)
- Sélection des variables avec une bonne corrélation

	SiteEUI(kBtu/sf)	SiteEUIWN(kBtu/sf)
SiteEUIWN(kBtu/sf)	1.000000	0.994560
SourceEUI(kBtu/sf)	0.994560	1.000000

- Suppression des valeurs aberrantes
- Remplissage de variables en fonction du contexte

4.2 variables numériques + non numériques

• Sélection des variables autre que numériques dans le dataset

LargestPropertyUseType ThirdLargestPropertyUseType		
Hotel	NaN	
Hotel	Restaurant	

- Transformation des variables avec one hot encoding
- Concaténation avec les variables numériques

4.3 Variables numérique à forte corrélation

- Sélection des variables numériques à forte corrélation avec la cible (électricité ou émission de gaz à effet de serre):
 - surface du plus gros bâtiment
 - surface des bâtiments
 - surface de la propriété
 - surface du deuxième bâtiment le plus gros
 - surface du troisième bâtiment le plus gros

4.4 Variables numériques à forte corrélation + non numériques les plus utilisées

- Sélection des variables non numériques les plus utilisées
 - deux algorithmes utilisés
 - mesure de permutation des variables
 - diminution des impuretées
 - intersection des deux

5. Les algorithmes utilisés

5.1 Diversité du benchmark

- 1 Algorithme étalon :
 - Dummy Regressor
 - moyenne
 - médiane

- 13 Algorithmes simples :
 - Linear Regressor
 - Elastic Net CV
 - Elastic Net
 - Ridge
 - Lasso
 - MLP Regressor
 - Support Vector Regression
 - Random Forest Regressor
 - K Neighbors Regressor
 - Decision Tree Regressor
 - Extratrees Regressor
 - Ada Boost Regressor
 - Gradient Boosting Regressor

- 1 Algorithme conjugué:
 - Voting Regressor
 - Extratrees
 - Decision Tree

5.2 Mesure des résultats

- Interface générique
- Deux mesures utilisées:
 - mae : mean absolute error
 - rmse : root mean squared error
- pourcentage final :
 - disparité entre les folds :
 - normalisation du résultat entre 0 et 1 (1 étant le meilleur)
 - moyenne sur les folds

5.3 Résultats pour la consommation d'électricité

5.3.1 Résultats pour la consommation d'électricité

Dataset mean: 1050000, Dummy regressor: mae=850000,rmse=3439000

5.3.2 Affinage des résultats : variables à haute corrélation

Dataset mean: 1050000, Dummy regressor: mae=850000,rmse=3439000

5.3.3 Affinage des résultats : paramètre n estimators

Dataset mean: 1050000, Dummy regressor: mae=850000,rmse=3439000

5.3.3 Affinage des résultats : gridsearchCV et extratrees

Tester sur les variables à fortes corrélation pour un gain de temps

ExtraTreesRegressor_best_param

Recherche paramètre par paramètre

Recherche par liste paramètres pertinents

ExtraTreesRegressor default

5.4 Résultats pour l'émission de gaz à effet de serre

5.4.1 Résultats pour l'émission de gaz à effet de serre

Dataset mean: 114, Dummy regressor: mae=101,rmse=456

5.4.2 Affinage des résultats : variables à haute corrélation

Dataset mean: 114, Dummy regressor: mae=101,rmse=456

5.4.3 Affinage des résultats : paramètre n estimators

Dataset mean: 114, Dummy regressor: mae=101,rmse=456

5.4.4 Incidence de l'energy star score

mean_with_energyStarScore

5.4.4 Incidence de l'energy star score

5.5 Axes d'amélioration

- Amélioration des variables d'entrées
 - les variables de type chaîne de caractère :
 - rassembler les valeurs de certains traits (type de bâtiments)
 - remplacer les valeurs discrètes par des nombres
 - les variables numériques :
 - trouver une conversion des données gps en valeurs
 - faire un compteur du nombre d'années energy star certified
 - trouver des valeurs pour les energy star score manquants
- Essayer du gridsearchCV sur le deuxième meilleur algorithme
- Trouver la cause des résultats sans corrélation

6. Conclusion

Pour l'électricité :

- o moyenne du dataset = 1.050.000
- Dummy regressor best score :
 - mae moyenne = 850.000
 - rmse moyenne 3.440.000
- Meilleur algorithme pour la mae et rmse :
 - Extratrees
 - mae moyenne = 221.000
 - rmse moyenne = 1.770.000
- variables d'entrées :
 - variables numériques à haute corrélation ou non
 - les one hot encoding totaux ou à haute utilité
- o meilleurs paramètres :
 - mae moyenne = 218.000
 - rmse moyenne = 1.718.000

Pour l'émission de gaz à effet de serre :

- o moyenne du dataset = 114
- Dummy regressor best score :
 - mae moyenne = 101
 - rmse moyenne 456
- Meilleur algorithme pour la mae ou rmse :
 - Extratrees
 - mae moyenne = 26
 - rmse moyenne = 163
- variables d'entrées :
 - gain (très léger) de mae ou de rmse en fonction du choix des variables d'entrées
- incidence de l'energy star score :
 - forte incidence, amélioration très significative du score

• mae : 34 → 26

• rmse : 222 → 163