Hierarchical Data Analysis What is Hierarchical Clustering?

Objective

Apply methods of hierarchical data analysis

Hierarchical Clustering

Produces a set of nested clusters organized as a hierarchical tree

Can be visualized as a dendrogram (along with other options)

 A tree-like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

No assumptions on the number of clusters

 Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level

Hierarchical clusterings may correspond to meaningful taxonomies

Example in biological sciences
(e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc

Hierarchical Clustering

Agglomerative:

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)

Traditional hierarchical algorithms use a similarity or distance matrix

Merge or split one cluster at a time

Complexity of Hierarchical Clustering

Distance matrix is used for deciding which clusters to merge/split

Not usable for large datasets

At least quadratic in the number of data points