

### GET00211 - Modelos Lineares 2

#### Rafael Erbisti

Instituto de Matemática e Estatística Universidade Federal Fluminense

Aula 08

#### Modelo Linear Normal

Considere o seguinte modelo:

$$E(Y_i) = \mu_i = \mathbf{x}_i' \boldsymbol{\beta}, \quad Y_i \sim \mathcal{N}(\mu_i, \sigma^2), \quad i = 1, \dots, n,$$

onde  $Y_1, \ldots, Y_n$  são variáveis aleatórias independentes.

• A função de ligação é a identidade:

$$g(\mu_i) = \mu_i$$

• Esse modelo pode ser escrito como:

$$\mathsf{y} = \mathsf{X} oldsymbol{eta} + oldsymbol{arepsilon}$$

onde:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1' \\ \vdots \\ \mathbf{x}_n' \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}, \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

• Assumindo que  $arepsilon_i \overset{iid}{\sim} \mathcal{N}(0, \sigma^2)$ , para  $i = 1, \dots, n$ .



### Estimação no Modelo Linear Normal

• O estimador de máxima verossimilhança e o estimador de mínimos quadrados de  $oldsymbol{eta}$  coincidem e são dados por:

$$\hat{\boldsymbol{\beta}} = \left( \mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{y},$$

onde X'X é não singular.

ullet O estimador  $\hat{eta}$  é não viciado e possui matriz de covariâncias dada por:

$$E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}, \quad V(\hat{\boldsymbol{\beta}}) = E\left[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\right] = \sigma^2 \left(\mathbf{X}'\mathbf{X}\right)^{-1} = \mathcal{I}^{-1}$$

• No contexto de MLG,  $\sigma^2$  é tratado como parâmetro de ruído e seu estimador é não viciado:

$$\hat{\sigma}^2 = \frac{\mathsf{SQRes}}{n-p} = \frac{1}{n-p} \left( \mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \right)' \left( \mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \right) = \frac{1}{n-p} \left( \mathbf{y}' \mathbf{y} - \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} \right)$$

• Esse estimador pode ser utilizado para estimar  $\mathcal I$  e, consequentemente, para realizar inferência sobre  $\hat{\boldsymbol \beta}$ .

#### Deviance no Modelo Linear Normal

 A deviance para o modelo linear normal, do ponto de vista matricial, é dada por:

$$D = rac{1}{\sigma^2} \left( \mathbf{y} - \mathbf{X} \hat{oldsymbol{eta}} 
ight)' \left( \mathbf{y} - \mathbf{X} \hat{oldsymbol{eta}} 
ight)$$

Expandindo:

$$D = \frac{1}{\sigma^2} \left[ \mathbf{y}' \mathbf{y} - 2 \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} + \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{X} \hat{\boldsymbol{\beta}} \right]$$

• Como  $\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$ , obtemos:

$$D = rac{1}{\sigma^2} \left[ \mathbf{y}' \mathbf{y} - \hat{oldsymbol{eta}}' \mathbf{X}' \mathbf{y} 
ight].$$

Note que a deviance depende do parâmetro  $\sigma^2$ . Neste caso, não é possível utilizá-la diretamente para comparar modelos, como é feito nos outros modelos da família exponencial.

### Teste de Hipóteses em Modelos Lineares

• Para comparar dois modelos, considere a hipótese nula  $H_0$  e uma hipótese alternativa mais geral  $H_1$ :

$$H_0: \boldsymbol{\beta} = \boldsymbol{\beta}_0 = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_q \end{pmatrix}, \quad H_1: \boldsymbol{\beta} = \boldsymbol{\beta}_1 = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix},$$

onde q .

• Sejam  $\mathbf{X}_0$  e  $\mathbf{X}_1$  as correspondentes matrizes de variáveis explicativas,  $\hat{\boldsymbol{\beta}}_0$  e  $\hat{\boldsymbol{\beta}}_1$  os EMVs, e  $D_0$  e  $D_1$  as deviances.



### Teste de Hipóteses com Deviance

• Testamos  $H_0$  versus  $H_1$  usando:

$$\begin{split} \Delta D &= D_0 - D_1 = \frac{1}{\sigma^2} \left[ \left( \mathbf{y}' \mathbf{y} - \hat{\boldsymbol{\beta}}_0' \mathbf{X}_0' \mathbf{y} \right) - \left( \mathbf{y}' \mathbf{y} - \hat{\boldsymbol{\beta}}_1' \mathbf{X}_1' \mathbf{y} \right) \right] \\ &= \frac{1}{\sigma^2} \left( \hat{\boldsymbol{\beta}}_1' \mathbf{X}_1' \mathbf{y} - \hat{\boldsymbol{\beta}}_0' \mathbf{X}_0' \mathbf{y} \right). \end{split}$$

• Como o modelo sob  $H_1$  é mais geral, ele tende a ajustar melhor os dados. Assim, assume-se que  $D_1$  segue uma distribuição central:

$$D_1 \sim \chi^2_{n-p}$$

 Por outro lado, se H<sub>0</sub> não for verdadeira, D<sub>0</sub> pode seguir uma distribuição não-central:

$$D_0 \sim \chi^2_{n-q,\nu}$$

Nesse caso, ΔD segue uma distribuição não-central:

$$\Delta D \sim \chi^2_{p-q,\nu}$$



## Teste de Hipóteses via Deviance

• Sob H<sub>0</sub> verdadeira, a estatística

$$F = \frac{D_0 - D_1}{p - q} / \frac{D_1}{n - p} = \frac{\hat{\boldsymbol{\beta}}_1' \mathbf{X}_1' \mathbf{y} - \hat{\boldsymbol{\beta}}_0' \mathbf{X}_0' \mathbf{y}}{p - q} / \frac{\mathbf{y}' \mathbf{y} - \hat{\boldsymbol{\beta}}_1' \mathbf{X}_1' \mathbf{y}}{n - p}$$

segue uma distribuição central

$$F \sim F_{p-q, n-p}$$

- Se o valor de F for grande em relação à distribuição  $F_{p-q, n-p}$ , há evidências contra  $H_0$ .
- Esse teste de hipóteses pode ser resumido na tabela ANOVA, relacionando soma de quadrados, graus de liberdade e estatísticas F.



### Resíduos no Modelo Linear Normal

• Para o modelo linear normal, os resíduos são definidos como:

$$e_i = y_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}} = y_i - \hat{\mu}_i,$$

onde  $\hat{\mu}_i$  é o valor ajustado pelo modelo.

• A matriz de covariâncias do vetor de resíduos  $\mathbf{e} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}} = (\mathbf{I}_n - \mathbf{H})\mathbf{y}$  é:

$$V(\mathbf{e}) = (\mathbf{I}_n - \mathbf{H}) V(\mathbf{Y}) (\mathbf{I}_n - \mathbf{H})' = \sigma^2 (\mathbf{I}_n - \mathbf{H})$$

onde  $I_n$  é a matriz identidade  $n \times n$  e

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

é chamada de matriz de projeção ou "chapéu".



## Resíduos Padronizados e Diagnóstico do Modelo

Os resíduos padronizados são definidos como:

$$r_i = \frac{e_i}{\hat{\sigma}\sqrt{1-h_{ii}}},$$

onde  $h_{ii}$  é o i-ésimo elemento da diagonal da matriz de projeção **H**, e  $\hat{\sigma}^2$  é o estimador de  $\sigma^2$ .

- Os resíduos são usados para verificar a adequabilidade do modelo ajustado.
- Ferramentas de diagnóstico permitem avaliar:
  - Linearidade das relações entre variáveis.
  - Independência e normalidade dos erros.
  - Possíveis associações com variáveis explicativas que não foram incluídas no modelo.

# Outros Diagnósticos no Modelo Linear

- Além dos resíduos, existem outros métodos para avaliar a adequação do modelo e identificar observações não usuais ou influentes.
- Um outlier é uma observação que não é bem ajustada pelo modelo, enquanto uma observação influente é aquela que exerce um efeito relativamente grande na inferência do modelo.
- O valor  $h_{ii}$  é chamado de ponto de alavancagem da i-ésima observação.
- Uma observação com alta alavancagem pode ter grande impacto no ajuste do modelo.



# Diagnóstico de Observações Influentes

- Valores de  $h_{ii}$  maiores do que 2p/n ou 3p/n podem ser motivo de preocupação.
- Medidas que combinam resíduos padronizados e alavancagem incluem:

$$\mathsf{DFITS}_i = \frac{r_i \sqrt{h_{ii}}}{\sqrt{1 - h_{ii}}},$$

Distância de Cook: 
$$D_i = \frac{r_i^2 h_{ii}}{p(1 - h_{ii})}$$
.

• Valores grandes dessas estatísticas indicam que a *i*-ésima observação é influente.



- O exemplo considera um modelo de regressão linear múltipla com todas as variáveis explicativas contínuas.
- A variável resposta é a porcentagem de calorias totais obtidas a partir de carboidratos complexos para 20 homens diabéticos dependentes de insulina, que seguiram uma dieta rica em carboidratos durante seis meses.
- Considerou-se que o cumprimento do regime estava relacionado com:
  - Idade (em anos),
  - Peso corporal (em relação ao peso ideal para a altura),
  - Outros componentes, como a porcentagem de calorias provenientes de proteínas.



| Carbohydrate | Age   | Weight | Protein |
|--------------|-------|--------|---------|
| У            | $x_1$ | $x_2$  | $x_3$   |
| 33           | 33    | 100    | 14      |
| 40           | 47    | 92     | 15      |
| 37           | 49    | 135    | 18      |
| 27           | 35    | 144    | 12      |
| 30           | 46    | 140    | 15      |
| 43           | 52    | 101    | 15      |
| 34           | 62    | 95     | 14      |
| 48           | 23    | 101    | 17      |
| 30           | 32    | 98     | 15      |
| 38           | 42    | 105    | 14      |
| 50           | 31    | 108    | 17      |
| 51           | 61    | 85     | 19      |
| 30           | 63    | 130    | 19      |
| 36           | 40    | 127    | 20      |
| 41           | 50    | 109    | 15      |
| 42           | 64    | 107    | 16      |
| 46           | 56    | 117    | 18      |
| 24           | 61    | 100    | 13      |
| 35           | 48    | 118    | 18      |
| 37           | 28    | 102    | 14      |

Tabela: Carboidrato, idade, peso relativo e proteína para 20 homens diabéticos dependentes de insulina.

Considere o seguinte modelo (Modelo 1):

$$E(Y_i) = \mu_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3}, \quad Y_i \sim N(\mu_i, \sigma^2)$$

onde o carboidrato y está linearmente relacionado com a idade  $x_1$ , o peso relativo  $x_2$  e a proteína  $x_3$ , i = 1, ..., n.

Nesse caso, podemos escrever em forma matricial:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{13} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & x_{n3} \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$$

• Note que o modelo proposto inclui um intercepto  $\beta_0$ .



• A solução da equação normal  $\hat{oldsymbol{eta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$  é

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} 36,9601 \\ -0,1137 \\ -0,2280 \\ 1,9577 \end{bmatrix}$$

• Usando os resultados  $\mathbf{y}'\mathbf{y}=29.368$  e  $\hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}=28.799,97$ , obtemos uma estimativa para a variância:

$$\hat{\sigma}^2 = \frac{1}{n-p} \left( \mathbf{y}' \mathbf{y} - \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} \right) = 35,5.$$

- Os erros padrão para os elementos de  $\hat{\beta}$  são obtidos a partir do cálculo da inversa da matriz de informação de Fisher  $\mathcal{I}^{-1} = \hat{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}$ .
- No nosso exemplo, temos

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} 4,8158 & -0,0113 & -0,0188 & -0,1362 \\ -0,0113 & 0,0003 & 0,0000 & -0,0004 \\ -0,0188 & 0,0000 & 0,0002 & -0,0002 \\ -0,1362 & -0,0004 & -0,0002 & 0,0114 \end{bmatrix}$$



| Termo     | Estimativa $\hat{eta}_j$ | Erro padrão |
|-----------|--------------------------|-------------|
| Constante | 36,960                   | 13,071      |
| ldade     | -0,114                   | 0,109       |
| Peso      | -0,228                   | 0,083       |
| Proteína  | 1,958                    | 0,635       |



- Para ilustrar o uso da deviance, vamos testar a hipótese  $H_0$  de que a resposta não depende da idade, isto é,  $\beta_1=0$ .
- O modelo correspondente (Modelo 0) é dado por:

$$E(Y_i) = \beta_0 + \beta_2 x_{i2} + \beta_3 x_{i3}$$

Para esse modelo, obtemos a seguinte estimativa dos coeficientes:

$$\hat{\beta} = \begin{bmatrix} 33,130 \\ -0,222 \\ 1,824 \end{bmatrix}$$

•  $\mathbf{E} \, \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} = 28.761,89,$ 



O valor da estatística F é:

$$F = \frac{D_0 - D_1}{p - q} / \frac{D_1}{n - p} = \frac{\hat{\beta}_1' \mathbf{X}_1' \mathbf{y} - \hat{\beta}_0' \mathbf{X}_0' \mathbf{y}}{p - q} / \frac{\mathbf{y}_1' \mathbf{y} - \hat{\beta}_1' \mathbf{X}_1' \mathbf{y}}{n - p}$$
$$= \frac{28.799,97 - 28.761,89}{4 - 3} / \frac{29.368 - 28.799,97}{20 - 4} = \frac{38,36}{35,48}$$
$$\approx 1.08$$

- Esse valor não é significativo quando comparado com a distribuição  $F_{1.16}$ .
- Conclusão: os dados não fornecem evidências contra  $H_0$ , ou seja, a resposta parece não estar relacionada com a idade.

```
> anova(fit0,fit1)
Analysis of Variance Table

Model 1: Carbo ~ Peso + Proteina
Model 2: Carbo ~ Age + Peso + Proteina
Res.Df RSS Df Sum of Sq F Pr(>F)
1 17 606.02
2 16 567.66 1 38.359 1.0812 0.3139
```



### Multicolinearidade

- A multicolinearidade ocorre quando temos variáveis explicativas altamente correlacionadas entre si, trazendo consequências indesejadas.
- Algumas consequências da multicolinearidade:
  - As colunas da matriz X podem ser linearmente dependentes, levando à singularidade de X'X e comprometendo a equação de estimação:

$$\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$$

- ullet A solução  $\hat{oldsymbol{eta}}$  fica instável, e mudanças pequenas nos dados podem causar grandes alterações nos valores estimados.
- Os elementos de  $\sigma^2(\mathbf{X}'\mathbf{X})^{-1}$  serão grandes e, consequentemente, as variâncias e covariâncias dos elementos de  $\hat{\beta}$  também serão elevadas.
- A seleção de modelos e a escolha do melhor subconjunto de variáveis explicativas podem se tornar difíceis devido à instabilidade das estimativas.

### Multicolinearidade

- A multicolinearidade pode ser detectada pelo cálculo do Fator de Inflação da Variância (VIF).
- O VIF para a *j*-ésima variável é dado por:

$$VIF_j = \frac{1}{1 - R_j^2}$$

onde  $R_j^2$  é o coeficiente de determinação obtido pela regressão da j-ésima variável explicativa versus todas as demais variáveis explicativas.

- Interpretação:
  - Se a j-ésima variável não é correlacionada com as demais, então  $\emph{VIF}_j=1.$
  - O VIF; cresce conforme a correlação com outras variáveis aumenta.
  - Valores de  $VIF_i > 5$  devem ser considerados preocupantes.



### Aprendizagem Bayesiana

- A aprendizagem Bayesiana se inicia com a formulação numérica das crenças a priori sobre  $\theta$  e da informação vinda dos dados y.
- Isso é feito a partir das distribuições de θ e y:
  - ① Distribuição a priori: descreve nossas crenças sobre  $\theta$  antes de observar os dados,  $p(\theta)$ .
  - **2** Verossimilhança: descreve como os dados y se comportam dado  $\theta$ ,  $p(y \mid \theta)$ .
  - 3 Distribuição a posteriori: após observar y, nossas crenças sobre  $\theta$  são atualizadas para  $p(\theta|y)$ .
- A regra de atualização é a fórmula de Bayes:

$$p(\theta \mid y) = \frac{p(y \mid \theta) p(\theta)}{p(y)}$$

onde  $p(y) = \int p(y \mid \theta)p(\theta)d\theta$  é a distribuição preditiva de y.



### Modelo Normal: Média e Variância Desconhecidas

Suponha que

$$Y_1, \ldots, Y_n \mid \Theta \stackrel{iid}{\sim} N(\theta, \sigma^2)$$

A função de densidade conjunta é:

$$p(y_1, \dots, y_n \mid \theta, \sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \theta)^2\right\}$$

Considere a priori:

$$\theta \sim N(\mu_0, \tau^2), \quad \sigma^2 \sim \text{Gama-Inv}(a, b)$$

A posteriori conjunta é:

$$\begin{split} \rho(\theta,\sigma^2\mid\mathbf{y})&\propto(\sigma^2)^{-n/2}\exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\theta)^2\right\}\\ &\times\exp\left\{-\frac{1}{2\tau^2}(\theta-\mu_0)^2\right\}\\ &\times(\sigma^2)^{-\mathfrak{a}-1}\exp\left\{-\frac{b}{\sigma^2}\right\} \end{split}$$



# Modelo Normal: Condicionais Completas

• Condicional completa de  $\theta$ :

$$p(\theta \mid \sigma^2, \mathbf{y}) \propto \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \theta)^2\right\} \exp\left\{-\frac{1}{2\tau^2} (\theta - \mu_0)^2\right\}$$

• Condicional completa de  $\sigma^2$ :

$$p(\sigma^2 \mid \theta, \mathbf{y}) \propto (\sigma^2)^{-(n/2+a)-1} \exp\left\{-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - \theta)^2 + 2b\right]\right\}$$

Logo, temos:

$$(\theta \mid \sigma^2, \mathbf{y}) \sim \mathit{N}(\mu_1, \sigma_1^2), \quad (\sigma^2 \mid \theta, \mathbf{y}) \sim \mathsf{Gama-Inv}(a_1, b_1)$$



## Algoritmo de Gibbs: Ideia Básica

- As distribuições  $p(\theta \mid \sigma^2, \mathbf{y})$  e  $p(\sigma^2 \mid \theta, \mathbf{y})$  são conhecidas como distribuições condicionais completas.
- Recebem esse nome porque são distribuições condicionais de cada parâmetro dado todos os outros.
- A ideia do algoritmo de Gibbs é gerar valores dessas condicionais completas (fáceis de simular) ao invés de gerar diretamente a posteriori conjunta (difícil de simular).
- Procedemos iterativamente:

$$( heta^{(t)}, \sigma^{2(t)}) \sim egin{cases} heta^{(t)} \sim extstyle 
ho( heta \mid \sigma^{2(t-1)}, \mathbf{y}) \ \sigma^{2(t)} \sim extstyle 
ho(\sigma^2 \mid heta^{(t)}, \mathbf{y}) \end{cases}$$

até convergência para a posteriori conjunta  $p(\theta, \sigma^2 \mid \mathbf{y})$ .



# Exemplo: Modelo Normal

Considere o modelo:

$$y \mid \mu, \phi \sim N(\mu, 1/\phi)$$

onde  $\mu$  e  $\phi$  são desconhecidos, sendo  $\phi=1/\sigma^2$  a precisão.

• Suponha distribuições a priori:

$$\mu \sim N(0, \tau_0^2), \quad \phi \sim \text{Gama}(a_0/2, b_0/2)$$

As distribuições condicionais completas são:

$$\phi \mid \mu, y \sim \mathsf{Gama}\!\left(rac{n+\mathsf{a}_0}{2}, rac{\sum_{i=1}^n (y_i-\mu)^2 + b_0}{2}
ight)$$

$$\mu \mid \phi, y \sim N(\mu_1, \tau_1^2), \quad \mu_1 = \tau_1^2 n \bar{y} \phi, \quad \tau_1^2 = \frac{1}{n \phi + \tau_0^{-2}}$$



### Exemplo: Modelo Normal

```
## mu.true = 5 e sig2.true = 2
## dados simulados
v = c(4.05, 5.13, 6.93, 4.85, 5.72, 5.50,
5.21,5.17,9.23,3.32,4.33,4.20,5.55,
7.96,3.49,4.71,6.12,4.10,2.82,5.85)
## valores iniciais
mu = 0; phi = 1
## dados
y.bar = mean(y); n = length(y)
## priori
a0 = b0 = 0.01
tau20 = 10
M = 10000
for(k in 2:M){
  s1 = sum((y-mu[k-1])^2)
 phi[k] = rgamma(1,(n+a0)/2,(s1+b0)/2)
 v21 = 1/(n*phi[k]+1/tau20)
 mu1 = v21*n*v.bar*phi[k]
 mu[k] = rnorm(1, mu1, sgrt(v21))
```





### Exemplo: Modelo Normal

```
mu.sample = mu[seq(1000,M,bv=9)]
plot(density(mu.sample,adjust=2),main="",
    lwd=3,xlab=expression(mu))
abline(v=5,1ty=2,1wd=2,co1=2)
sig2.sample = 1/phi[seq(1000,M,by=9)]
plot(density(sig2.sample,adjust=2), main="",
     lwd=3,xlab=expression(sigma^2))
abline(v=2,lty=2,lwd=2,col=2)
## Monte Carlo
mean(mu.sample)
# 5,157425
mean(sig2.sample)
# 2.619667
quantile(mu.sample, c(0.025,0.975))
#4.427828 5.819331
quantile(sig2.sample, c(0.025,0.975))
#1.404951 4.828969
```







# Algoritmo de Metropolis-Hastings

- O amostrador de Gibbs é muito útil quando conhecemos a forma fechada das condicionais completas.
- Em muitas situações, essas distribuições não são conhecidas.
- O algoritmo de Metropolis generaliza o amostrador de Gibbs.
- Proposto originalmente por Metropolis et al. (1953) e generalizado por Hastings (1970), resultando no algoritmo de Metropolis-Hastings.
- É usado para gerar amostras de uma distribuição multivariada quando as condicionais completas são impossíveis de se amostrar diretamente.
- Ideia básica: gerar valores de uma distribuição proposta e aceitá-los ou rejeitálos de acordo com uma regra de aceitação.

## Algoritmo de Metropolis-Hastings

- Suponha que:
  - Estamos interessados em gerar amostras da distribuição alvo  $p(\theta)$ .
  - As distribuições condicionais completas são impossíveis de se amostrar diretamente.
  - Para cada parâmetro  $\theta_j$  existe uma distribuição proposta  $q(\theta_j \mid \cdot)$  que podemos gerar amostras facilmente e que podem ser usadas como alternativa à condicional completa.
- Dadas essas suposições, amostras de  $\theta$  são obtidas usando o seguinte algoritmo:
  - 1. Inicialize  $\theta^{(0)} = (\theta_1^{(0)}, \dots, \theta_p^{(0)})$
  - 2. Para k de 1 até M. faca
    - (a) Para j de 1 até p, faça
      - Gere um valor proposto θ\*, usando

$$\theta_i^{(k)} \sim q_i(. | \theta_i^{(k-1)})$$

ii. Aceite o valor proposto com probabilidade

$$\alpha = \min \left\{ 1, \frac{p(\theta^* \mid y, \theta_{-j}^{(a)}) \ q(\theta_j^{(k-1)} \mid \theta^*)}{p(\theta_j^{(k-1)} \mid y, \theta_{-j}^{(a)}) \ q(\theta^* \mid \theta_j^{(k-1)})} \right\}$$

onde 
$$\theta_{-i}^{(a)} = (\theta_1^{(k)}, ..., \theta_{i-1}^{(k)}, \theta_{i+1}^{(k-1)}, ..., \theta_p^{(k-1)})$$





### Resumo e Diagnóstico

- Para gerar amostras de uma distribuição usando as condicionais completas, podemos usar:
  - Amostrador de Gibbs: se soubermos gerar todas as condicionais completas.
  - Gibbs dentro do Metropolis: se soubermos gerar direto algumas condicionais completas, mas não outras.
  - Metropolis-Hastings: se n\u00e3o soubermos gerar diretamente das condicionais completas.
- Métodos via MCMC são muito úteis para resolver problemas práticos.
- É preciso garantir que as cadeias convergiram:
  - Traço das cadeias: gráfico de cada parâmetro ao longo das iterações.
  - Testes de convergência: Geweke, Raftery-Lewis, Gelman-Rubin.
  - Implementados no pacote coda do R.



## Modelo de Regressão Linear Bayesiano

Considere o modelo de regressão linear simples:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, n$$

onde  $\beta_0$  é o intercepto,  $\beta_1$  é o coeficiente angular e  $\epsilon_i$  é o termo de erro aleatório.

Suponha que os erros são independentes e normalmente distribuídos:

$$\epsilon_i \sim N(0, \sigma^2), \quad i = 1, \dots, n$$

A função de verossimilhança é:

$$L(\beta_0, \beta_1, \sigma^2; \mathbf{y}) = \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$



### Modelo de Regressão Linear Bayesiano

• Suponha independência a priori:  $p(\beta_0, \beta_1, \sigma^2) = p(\beta_0)p(\beta_1)p(\sigma^2)$ , com

$$\beta_0 \sim N(\mu_{00}, \tau_0^2), \quad \beta_1 \sim N(\mu_{10}, \tau_1^2), \quad \sigma^2 \sim \mathsf{Gama-Inv}(a, b)$$

A posteriori conjunta é dada por:

$$\begin{split} p(\beta_0,\beta_1,\sigma^2\mid\mathbf{y})&\propto (2\pi\sigma^2)^{-n/2}\exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\beta_0-\beta_1x_i)^2\right\}\\ &\times \exp\left\{-\frac{1}{2\tau_0^2}(\beta_0-\mu_{00})^2\right\}\\ &\times \exp\left\{-\frac{1}{2\tau_1^2}(\beta_1-\mu_{10})^2\right\}\\ &\times (\sigma^2)^{-s-1}\exp\left\{-\frac{b}{\sigma^2}\right\} \end{split}$$



# Modelo de Regressão Linear Bayesiano

#### Próximas etapas:

- 1 Derivar as Condicionais Completas a partir da posteriori conjunta.
- Verificar Conhecimento das Condicionais: Se todas forem conhecidas, podemos prosseguir com Gibbs diretamente (é o caso do modelo de regressão linear normal).
- 3 Aplicar o Algoritmo de Gibbs para gerar amostras da posteriori conjunta.
- 4 Avaliar Convergência e Diagnósticos das Cadeias: Gráficos de traço e Testes de convergência (Geweke, Gelman-Rubin, Raftery-Lewis)
- **6** Realizar Inferência a partir das amostras geradas: estimativas de parâmetros, intervalos de credibilidade, previsões.