Resumen de interrupciones de megaAVR®

La familia megaAVR® proporciona varias fuentes de interrupción diferentes, todas las cuales son enmascarables y se dividen en tres categorías:

- Interrupciones periféricas internas
 - Asociado con temporizadores, USART, SPI, periféricos ADC
- Interrupciones de clavijas externas
 - Asociado con los pines de interrupción externa INT0-INT7
- Interrupciones de cambio de pin
 - Asociado con interrupciones externas PCINT0-PCINT2 que ocurren en un cambio de pin de puerto

A los periféricos se les asignan bits de habilitación de interrupción individuales en su respectivo registro de máscara de interrupción que debe escribirse como uno lógico junto con el bit I de habilitación de interrupción global en el registro de estado para habilitar la interrupción.

Name: SREG Offset: 0x5F Reset: 0x00

Property: When addressing as I/O Register: address offset is 0x3F

(/local--files/8avr:interrupts-mega-overview/status-register.png)

Restablecer e interrumpir ubicaciones de vectores

Cada una de las fuentes de reinicio e interrupción tiene un vector de programa separado en el **espacio de memoria** del programa . Las direcciones más bajas en el espacio de la memoria del programa se definen de manera predeterminada como

vectores de reinicio e interrupción, como se muestra:

Program Memory

(/local--files/8avr:interrupts-megaoverview/vectors.png)

Reubicación de vectores

El usuario puede reubicar el vector RESET así como la ubicación de inicio de los vectores de Interrupción en la **Sección Flash de Arranque** del espacio de la memoria del programa programando el bit de fusible **BOOTRST** en "0" y configurando el bit **IVSEL** del Registro de Configuración del Microcontrolador (**MCUCR**) en "1". Aquí se muestra la posible ubicación del vector de interrupción y RESET:

BOOTRST	IVSEL	Restablecer dir.	Dirección de inicio del vector de interrupción.
1	0	0x0000	0x0002
1	1	0x0000	Dirección de reinicio de arranque + 0x0002

0	0	Dirección de reinicio de arranque	0x0002
0	1	Dirección de reinicio de	Dirección de reinicio de arranque +
		arranque	0x0002

La **dirección de reinicio de arranque** se establece mediante bits de fusible BOOTSZ0/BOOTSZ1 como se muestra aquí para ATmega328PB:

Table 32-7 Boot Size Configuration, ATmega328PB

BOOTSZ1	BOOTSZ0	Boot Size	Pages	Application Flash Section	Boot Loader Flash Section	End Application Section	Boot Reset Address (Start Boot Loader Section)
1	1	256 words	4	0x0000 - 0x3EFF	0x3F00 - 0x3FFF	0x3EFF	0x3F00
1	0	512 words	8	0x0000 - 0x3DFF	0x3E00 - 0x3FFF	0x3DFF	0x3E00
0	1	1024 words	16	0x0000 - 0x3BFF	0x3C00 - 0x3FFF	0x3BFF	0x3C00
0	0	2048 words	32	0x0000 - 0x37FF	0x3800 - 0x3FFF	0x37FF	0x3800

(/local--files/8avr:interrupts-mega-overview/bootflash328pb.png)

Los fusibles se programan utilizando un **procedimiento de programación especial (/8avr:avrfuses)** dentro de Atmel Studio 7 u otro programador.

Para evitar cambios no intencionales de las tablas de vectores de interrupción, se debe seguir un procedimiento de escritura especial para cambiar el bit IVSEL:

- Escriba el bit de habilitación de cambio de vector de interrupción (IVCE) a uno.
- Dentro de cuatro ciclos, escriba el valor deseado en IVSEL mientras escribe un cero en IVCE.

Aquí hay un ejemplo de código que muestra cómo modificar el bit IVSEL y reubicar los vectores de interrupción:


```
<font></font>
    void move_interrupts(void)<for</pre>
 3
    {<font></font>
      uchar temp; <font></font>
      /* GET MCUCR */<font></font>
      temp = MCUCR; <font></font>
 7
      /* Enable change of Interrug
      MCUCR = temp | (1 << IVCE);
      /* Move interrupts to Boot I
      MCUCR = temp | (1 << IVSEL)
10
              <font></font>
11
12
    <font></font>
```

Nivel de prioridad

Cada vector tiene un nivel de prioridad predeterminado: cuanto **menor** sea la dirección, **mayor** será el nivel de prioridad. RESET tiene la prioridad más alta, y el siguiente es INT0: la solicitud de interrupción externa 0. El siguiente gráfico muestra la lista de vectores parciales para la MCU ATmega328PB:

Table 16-1 Reset and Interrupt Vectors in ATmega328PB

Vector No	Program Address	Source	Interrupts definition
1	0x0000	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 0
4	0x0006	PCINT0	Pin Change Interrupt Request 0
5	0x0008	PCINT1	Pin Change Interrupt Request 1
6	0x000A	PCINT2	Pin Change Interrupt Request 2
7	0x000C	WDT	Watchdog Time-out Interrupt
8	0x000E	TIMER2_COMPA	Timer/Counter2 Compare Match A
9	0x0010	TIMER2_COMPB	Timer/Coutner2 Compare Match B
10	0x0012	TIMER2_OVF	Timer/Counter2 Overflow
11	0x0014	TIMER1_CAPT	Timer/Counter1 Capture Event
12	0x0016	TIMER1_COMPA	Timer/Counter1 Compare Match A
13	0x0018	TIMER1_COMPB	Timer/Coutner1 Compare Match B
14	0x001A	TIMER1_OVF	Timer/Counter1 Overflow
15	0x001C	TIMER0_COMPA	Timer/Counter0 Compare Match A
16	0x001E	TIMER0_COMPB	Timer/Coutner0 Compare Match B
17	0x0020	TIMER0_OVF	Timer/Counter0 Overflow
18	0x0022	SPI0 STC	SPI1 Serial Transfer Complete
19	0x0024	USARTO_RX	USART0 Rx Complete
20	0x0026	USARTO_UDRE	USART0, Data Register Empty
21	0x0028	USARTO_TX	USART0, Tx Complete
22	0x002A	ADC	ADC Conversion Complete

(/local--files/8avr:interrupts-mega-overview/vectors328pb.png)

Procesamiento de interrupciones

Cuando ocurre una interrupción, el bit I de habilitación de interrupción global se borra y todas las interrupciones se desactivan. El bit I se establece automáticamente cuando se ejecuta una instrucción Return from Interrupt (RETI).

El software del usuario puede escribir uno lógico en el bit I para habilitar **interrupciones anidadas**. Todas las interrupciones habilitadas pueden interrumpir la rutina de interrupción actual.

Hay básicamente dos tipos de interrupciones:

Interrupciones persistentes

Este tipo de interrupción se activará siempre que la condición de interrupción esté presente. Estas interrupciones no necesariamente tienen banderas de interrupción. Ejemplo: Interrupción de recepción completa de USART El USART contiene un indicador de recepción completa (RXC) que se establece si hay datos no leídos en el búfer de recepción. Cuando se establece la habilitación de interrupción de recepción completa (RXCIE) en UCSRnB, la interrupción de recepción completa de USART se ejecutará siempre que el indicador RXC esté establecido (siempre que las interrupciones globales estén habilitadas). Cuando se utiliza la recepción de datos impulsada por interrupciones, la rutina de recepción completa debe leer los datos recibidos de UDR para borrar el indicador RXC; de lo contrario, se producirá una nueva interrupción una vez que finalice la rutina de interrupción.

Non-Persistent Interrupts

Este tipo de interrupción se desencadena por un evento que establece un indicador de interrupción . Para estas interrupciones, el contador de programa se vectoriza al vector de interrupción real para ejecutar la rutina de manejo de interrupciones, y el hardware borra el indicador de interrupción correspondiente .. Las banderas de interrupción también se pueden borrar escribiendo un uno lógico en la(s) posición(es) del bit de bandera que se va a borrar. Si se produce una condición de interrupción mientras se borra el bit de activación de interrupción correspondiente, el indicador de interrupción se establecerá y se recordará hasta que se habilite la interrupción o el software borre el indicador. De manera similar, si ocurren una o más condiciones de interrupción mientras se borra el bit de habilitación de interrupción global, los indicadores de interrupción correspondientes se establecerán y recordarán hasta que se establezca el bit de habilitación de interrupción global, y luego se ejecutarán por orden de prioridad. Ejemplo: Timer/Counter0 Overflow Interrupt Bit-0 del Timer0 Interrupt Flag Register (TIFR0) contiene el indicador de interrupción TOV0. Este indicador se establece cuando se produce un desbordamiento en Timer/Counter0. TOV0 es

borrado por el hardware al ejecutar el vector de manejo de interrupción correspondiente . Alternativamente, TOV0 se borra escribiendo un uno lógico en la bandera. Cuando se establecen el bit I de SREG, TOIE0 (habilitación de interrupción de desbordamiento del temporizador/contador0) y TOV0, se ejecuta la interrupción de desbordamiento del temporizador/contador0.

Aprende más

Configuración de interrupciones megaAVR

Más información > (/8avr:interrupts-mega-configuration)

Consideraciones especiales

Más información > (/8avr:interrupts-special-considerations)

Ejemplo de interrupción de megaAVR

Más información > (/8avr:interrupts-mega-example)