This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C07D 473/04, C07H 13/00, A61K 31/52, 31/70

(11) International Publication Number:

WO 99/62905

(43) International Publication Date:

9 December 1999 (09.12.99)

(21) International Application Number:

PCT/EP99/03644

A1

(22) International Filing Date:

26 May 1999 (26.05.99)

(30) Priority Data:

P 9801152

3 June 1998 (03.06.98)

ES

(71) Applicant (for all designated States except US): ALMIRALL PRODESFARMA, S.A. [ES/ES]; General Mitre, 151, E-08022 Barcelona (ES).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): VEGA NOVEROLA, Armando [ES/ES]; Travesera de Dalt, 62-64, 7°-3*, E-08024 Barcelona (ES). GRACIA FERRER, Jordi [ES/ES]; Plaza de las Navas, 5, 4°-2*, E-08004 Barcelona (ES). FEIXAS GRAS, Joan [ES/ES]; Calle Castillejos 363, 2°-3*, E-08025 Barcelona (ES). PRIETO SOTO, José Manuel [ES/ES]; Calle Rabassa, 46-48, 2°-2*, E-08024 Barcelona (ES).
- (74) Agent: GOLDIN, Douglas, Michael; J.A. Kemp & Co., 14 South Square, Gray's Inn, London WC1R 5LX (GB).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: 8-PHENYLXANTHINE DERIVATIVES AND THEIR USE AS PHOSPHODIESTERASE INHIBITORS

$$\begin{array}{c|c}
R^1 & 0 & R^4 \\
N_1 & 0 & N \\
N_1 & 0 & N
\end{array}$$

$$\begin{array}{c|c}
R^4 & 0 & R^4 \\
N & 0 & N
\end{array}$$

$$\begin{array}{c|c}
R^4 & 0 & N \\
N & 0 & N
\end{array}$$

(57) Abstract

8-phenylxanthine derivatives of formula (I), wherein R¹, R² and R³ each independently represent a hydrogen atom or an alkenyl, alkynyl, cycloalkyl or alkylcarbamoyl group or an alkyl group which may be unsubstituted or substituted or substituted either R⁴ and R⁵ together with the nitrogen atom to which they are attached form a 3 to 7-membered ring comprising a total of from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur, which ring may be unsubstituted or substituted, or R⁴ is as defined for R¹ and R⁵ represents an alkenyl, alkynyl, cycloalkyl, mono-or di-alkylamino, alkylcarbamoyl, aminocarboiminoyl group or a substituted alkyl group or R⁵ represents a group of formula -(CH₂)_n-R⁷ wherein n is an integer from 0 to 4 and R⁷ represents 3 to 7-membered ring comprising from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur, which ring may be unsubstituted or substituted, R⁶ represents a hydrogen atom or an alkyl group; and the -SO₂NR⁴R⁵ group is in the 4 or 5 position on the phenyl group; and pharmaceutically acceptable salts thereof, processes for their production, pharmaceutical compositions containing them and their use as phosphodiesterase 5 inhibitors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

1	AL.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
/	١M	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
1	١T	Austria	FR	France	LU	Luxembourg	SN	Senegal
A	ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
] 4	١Z	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
E	3A	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
l E	BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
1	BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
E	3F	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
В	3G	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
В	IJ	Benin	. IE	Ireland	MN	Mongolia	UA	Ukraine
B	R	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
В	IY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
C	:A	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
C	F	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
C	CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
C	H	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
C	1	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	244	Zimbabwe
C	:M	Cameroon		Republic of Korea	PL	Poland		
C	:N	China	KR	Republic of Korea	PT	Portugal		
С	ับ	Cuba	ΚZ	Kazakstan	RO	Romania		
С	Z	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
D	E	Germany	LI	Liechtenstein	SD	Sudan		
D	K	Denmark	LK	Sri Lanka	SE	Sweden		
	E	Estonia	LR	Liberia	SG	Singapore		

WO 99/62905 PCT/EP99/03644

8-PHENYLXANTHINE DERIVATIVES AND THEIR USE AS PHOSPHODIESTERASE INHIBITORS

This invention relates to new therapeutically useful 8-phenylxanthine derivatives, to processes for their preparation and to pharmaceutical compositions containing them.

It is known that some xanthine derivatives have been described in EP-A-435,811 as phosphodiesterase 4 (PDE 4) selective inhibitors and are useful in the treatment of diseases in which the production of cardiac stimulation is not appropriate.

US 4,722,929 relates to new 2-phenyl-imidazoles of formula:

$$\bigcap_{B} \bigcap_{A} \bigcap_{H} \bigcap_{R_{3}}^{R_{1}} \bigcap_{R_{3}}^{R_{2}}$$

20

25

30

10

15

which are useful for the treatment of cardiac insufficiency.

We have now found that certain 8-phenylxanthine derivatives are potent and selective inhibitors of cyclic guanosine 3'-5'-monophosphate specific phosphodiesterase (cGMP specific PDE) and more particularly inhibitors phosphodiesterase 5 (PDE 5), and for that reason, have efficacy in the treatment of angina, hypertension, conqestive heart failure, stroke, asthma, male erectile dysfunction, female sexual dysfunction, glaucoma and irritable bowel syndrome.

Accordingly, the present invention provides compounds which are 8-phenylxanthine derivatives of formula (I):

15

20

25

30

35

5

wherein:

R¹, R² and R³ each independently represent a hydrogen atom or an alkenyl, alkynyl, cycloalkyl or alkylcarbamoyl group or an alkyl group which may be unsubstituted or substituted by one or more halogen atoms or hydroxy, alkoxy, cycloalkyl, alkylthio, amino, mono- or di-alkylamino, oxo, hydroxycarbonyl, alkoxycarbonyl, carbamoyl or alkylcarbamoyl groups, or a benzyl or phenyl group which may be unsubstituted or substituted by one or more halogen atoms or alkyl, hydroxy, alkylenedioxy, alkoxy, amino, mono- or di-alkylamino, nitro, cyano or trifluoromethyl groups;

either R⁴ and R⁵ together with the nitrogen atom to which they are attached form a 3 to 7-membered ring comprising a total of from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur, which ring may be unsubstituted or substituted by one or two halogen atoms or hydroxy, carbamoyl, hydroxycarbonyl, alkoxycarbonyl, amino, mono- or di-alkylamino groups or one or two alkyl groups which may be unsubstituted or substituted by one or more hydroxy, alkoxy, hydroxyalkoxy, hydroxycarbonyl, alkoxycarbonyl, amino or mono- or di-alkylamino groups, or

R⁴ is as defined for R¹ and R⁵ represents an alkenyl, alkynyl, cycloalkyl, mono-or di-alkylamino, alkylcarbamoyl, aminocarboiminoyl group or an alkyl group substituted by one or more halogen atoms or hydroxy, alkoxy, cycloalkyl, alkylthio, oxo, hydroxycarbonyl, alkoxycarbonyl, carbamoyl, alkylcarbamoyl, amino or mono- or di-alkylamino groups, or R⁵

20

25

30

represents a group of formula

 $-(CH_2)_n - R^7$

wherein n is an integer from 0 to 4 and R⁷ represents a 3 to 7-membered ring comprising from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur, which ring may be unsubstituted or substituted by one or more halogen atoms or hydroxy, phenyl, alkoxycarbonyl, amino, mono-alkylamino, di-alkylamino or hydroxycarbonyl groups or one or more alkyl groups which may be unsubstituted or substituted by one or more halogen atoms or hydroxy, phenyl, alkoxycarbonyl, amino, mono-or di-alkylamino or hydroxycarbonyl groups;

 R^6 represents a hydrogen atom or an alkyl group; and the $-SO_2NR^4R^5$ group is in the 4 or 5 position on the phenyl group;

or a pharmaceutically acceptable salt thereof.

The alkyl groups and moieties such as those present in the alkoxy, alkylcarbamoyl, mono- or di-alkylamino, carbamoyl alkyl, alkylthio, oxoalkyl, alkylenedioxy and alkoxycarbamoyl groups, mentioned in relation to the groups R¹ to R² are usually "lower" alkyl that is containing from 1 to 6 particularly from 1 to 4 carbon atoms, the hydrocarbon chain being branched or straight. Preferred alkyl groups, and where relevant alkyl moieties, include methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl and t-butyl.

The alkenyl and alkynyl groups mentioned in relation to groups R¹ to R⁷ are usually "lower" alkenyl and alkynyl groups, that is containing from 2 to 6 and particularly from 2 to 4 carbon atoms. Preferred alkenyl groups include vinyl, allyl and but-2-enyl groups. Preferred alkynyl groups included propargyl and butynyl groups.

The cycloalkyl groups mentioned in relation to the groups R^1 to R^5 are preferably C_{3-10} cycloalkyl groups, more preferably C_{3-7} cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl groups. The cycloalkyl-alkyl groups mentioned in relation to the groups R^1 to R^4 comprise an alkyl

group as specified above attached to a cycloalkyl group as specified above. Preferred cycloalkyl-alkyl groups include cyclopropylmethylene, cyclopropylethylene, cyclopentylmethylene, cyclopentylethylene, cyclohexylmethylene and cyclohexylethylene.

The halogen atoms mentioned in relation to the groups R^1 to R^5 and R^7 are preferably chlorine or fluorine atoms.

For compounds of the invention wherein R4 and R5 together with the nitrogen atom to which they are attached form a ring, the ring may be saturated or unsaturated for example a 10 piperidyl, pyrrolidyl, azetidinyl, aziridyl, piperazinyl, morpholinyl, thiomorpholinyl, pyrrolyl, pyrazolyl, imadazolyl, imadazolidinyl, pyrazolinyl, diazacycloheptyl, indolinyl or isoindolinyl group, said group being substituted unsubstituted. In preferred compounds of the invention the ring formed by R^4 , R^5 and the nitrogen atom to which they are attached is a substituted or unsubstituted 5,6 or 7 membered ring such as a piperidyl, piperazinyl, morpholinyl, diazacycloheptyl, pyrrolidinyl or pyrazolyl group, preferably a 4-hydroxypiperidyl, 3-carbamoylpiperidyl, carbamoylpiperidyl, 3-carboxypiperidyl, 4-carboxypiperidyl, 3ethoxycarbonylpiperidyl, 4-ethoxycarbonylpiperidyl, dimethylaminopiperidyl, 4-(2-dimethylaminoethyl)-4methylpiperidyl, piperazinyl, 3-methylpiperazinyl, methylpiperazinyl, 2,5-dimethylpiperazinyl, 3,5dimethylpiperazinyl, 4-ethylpiperazinyl, 4-propylpiperazinyl, 4-hydroxyethylpiperazinyl, 4-ethoxycarbonylpiperazinyl, ethoxycarbonylmethylpiperazinyl, hydroxyethoxy)ethylpiperazinyl, morpholinyl, 4-methyl-1,4-30 diazacycloheptyl, 2-hydroxycarbonylpyrrolidinyl, methoxycarbonylpyrrolidinyl or aminopyrazolyl group.

For compounds of the invention wherein $\ensuremath{\text{R}}^5$ represents a group of formula

 $-(CH_2)_nR^7$

35

n may represent 0, 1, 2, 3, or 4, preferably 0, 1 or 2, R^7 may

be unsaturated or saturated and may represent for example a piperidyl, pyrrolidyl, azetidinyl, aziridyl, piperazinyl, morpholinyl, thiomorpholinyl, pyrrolyl, imidazolyl, imidazolidinyl, pyrazolinyl, indolinyl, isoindolinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, phthalazinyl, quinolyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, quinuclidinyl, triazolyl, pyrazolyl, triazolyl, tetrazolyl or thienyl group, which group may be substituted or unsubstituted. In preferred compounds of the invention wherein R⁵ is a group of formula

-(CH₂)_nR⁷

15 R⁷ is a pyridyl, piperidyl, piperazinyl, quinuclidinyl, triazolyl or tetrazolyl group.

In compounds of the invention wherein $\ensuremath{R^5}$ is not a group of formula

-(CH₂)_nR⁷

25

 R^5 preferably represents a C_{1-6} alkyl group substituted by one or more halogen atoms or hydroxy, alkoxy, alkylthio, oxo, hydroxycarbonyl, alkoxycarbonyl, carbamoyl, alkylcarbamoyl or mono- or di-alkylamino groups.

In preferred compounds of the invention R⁵ represents a 2-hydroxyethyl, 2-dimethylaminoethyl, propargyl, hydroxycarbonylmethyl, methoxycarbonylmethyl, 2,3-dihydroxy-n-propyl, N-acetyl-2-aminoethyl, carbamoylmethyl, cyclopentyl, pyridyl, pyridylmethyl, pyridylethyl, imidazolylpropyl, N-piperidyl, methylpiperidyl, 2,2,6,6-tetramethylpiperidyl, benzylpiperidyl, N-methyl-4-phenylpiperidyl-4-methyl, N-methyl-4-hydroxypiperidyl-4-methyl, N-benzyl-4-hydroxypiperidyl-4-methyl, N-benzyl-3-hydroxypiperidyl-3-methyl, N-ethoxycarbonyl-4-hydroxypiperidyl-4-methyl, N-methylpyrrolidinyl-2-ethylene, 3-β-D-glucopyranosyl, 2,2-cyclohexylidine-2-ethylaminoethyl, N-morpholinylethyl, N-morpholinylpropyl, 2-tetrahydrofurylmethyl,

methylpiperazinyl, quinuclidinyl, amidino, triazolyl or tetrazolyl group.

In preferred compounds of the invention R¹, R² and R³ each independently represent an unsubstituted alkyl, monosubstituted alkyl, alkenyl, cycloalkyl, cycloalkyl-alkyl, phenyl, benzyl or substituted benzyl group. Most preferably, R¹, R² and R³ each independently represent a methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, t-butyl, 2-chloroethyl, 2-hydroxyethyl, 2-methoxyethyl, 2-dimethylaminoethyl, 3-chloropropyl, 3-dimethylaminopropyl, 2-methyl-n-butyl, hydroxycarbonylmethyl, cyclopropyl, cyclopropylmethyl, cyclohexylmethyl, allyl, phenyl, benzyl or piperonyl group.

In preferred compounds of the invention wherein R^4 and R^5 together with nitrogen atom to which they are bonded do not form a heterocyclic ring, R^4 preferably represents a hydrogen atom or a substituted or unsubstituted alkyl group, most preferably a methyl group or hydroxyethyl group.

In preferred compounds of the invention R^6 represents a hydrogen atom or a methyl group.

In preferred compounds of the invention the $-SO_2NR^4R^5$ group is on the 5-position of the phenyl group to which it is attached.

Of outstanding interest are:

- 3-(3-butyl-1-methyl-2,6-dioxo-2,3,6,7-tetrahydro-
- 25 1H-purin-8-yl)-4-propoxy-N-pyridin-4-ylbenzenesulfonamide,
 - 4-ethoxy-3-(1-methyl-2,6-dioxo-3-propyl-2,3,6,7-tetrahydro-1H
 - -purin-8-yl)-N-(1H-[1,2,4]triazol-3-yl)benzenesulfonamide,
 - 3-(1-methyl-2,6-dioxo-3-propyl-2,3,6,7-tetrahydro-1H-purin-8-
 - y1)-4-propoxy-N-(1H-[1,2,4]triazol-3-y1)benzenesulfonamide,
- 1-[3-(1-methyl-2,6-dioxo-3-propyl-2,3,6,7-tetrahydro-1H-purin
 -8-yl)-4-propoxybenzenesulfonyl]piperidine-4-carboxylic acid
 amide,
 - 1-methyl-8-[5-(4-methylpiperazine-1-sulfonyl)-2-propoxyphenyl]-3-propyl-3,7-dihydropurine-2,6-dione,
- 3-butyl-1-methyl-8-[5-(morpholine-4-sulfonyl)-2-propoxyphenyl]-3,7-dihydropurine-2,6-dione,

25

8-{5-[4-(2-hydroxyethyl)piperazine-1-sulfonyl]-2-propoxypheny 1}-1-methyl-3-propyl-3,7-dihydropurine-2,6-dione, and 1-methyl-8-[5-(piperazine-1-sulfonyl)-2-propoxyphenyl]-3-propyl-3,7-dihydropurine-2,6-dione.

According to a feature of the present invention, the 8-phenyl xanthine derivatives of general formula (I) in which R^6 is hydrogen, are prepared by cyclizing an uracil compound of the general formula (II):

(wherein R¹, R², R³, R⁴ and R⁵ are as hereinbefore defined) by application of cyclisation methods described in the literature, for example by heating with an aqueous solution of sodium or potassium hydroxide, preferably at the boiling point of the reaction mixture. After acidification of the reaction mixture the xanthine product of the general formula (I) is isolated in the known manner.

The 5-acylamido-uracil starting materials of general formula (II) are obtained by reaction of a corresponding 5,6-diaminouracil of the general formula (III):

10

20

25

(wherein R^1 and R^2 are as hereinbefore defined) with a carboxylic acid of the general formula (IV):

HOOC
$$R^3$$
 R^4
 R^5
 R^5
(IV)

(wherein R³, R⁴ and R⁵ are as hereinbefore defined) in an organic solvent preferably a polar aprotic solvent such as methylene chloride, dioxane or tetrahydrofuran, in the presence
 of a dehydrating agent such as 1,3-dicyclohexylcarbodiimide and a nucleophilic catalyst such as 4-dimethylaminopyridine, and at a temperature from 40°C to the boiling point of the solvent.

The 5,6-diaminouracils of general formula (III) can be prepared from a corresponding 6-aminouracil of the general formula (V):

$$\begin{array}{c|c}
R^1 & 0 \\
N_3 & 5 \\
2 & 6 \\
N_{1} & N_{2} \\
R^2
\end{array}$$
(V)

wherein R¹ and R² are as hereinbefore defined) by nitrosation at the 5-position using for example a mixture of sodium nitrite and acetic acid at a temperature between 10°C and 80°C, to give the corresponding 5-nitroso derivative, followed by reduction of the 5-nitroso compound using for example sodium dithionite in ammonium hydroxide aqueous solution at a temperature between 40°C and 90°C to give the diamino compound.

The 6-aminouracils of general formula (V) can be prepared

25

30

35

from the corresponding N,N'-disubstituted-urea by methods known per se, e.g. V. Papesch and E.F. Schroeder, J. Org. Chem., $\underline{16}$, 1879-90, (1951).

The 8-phenyl-xanthine derivatives of general formula (I) in which R^6 is hydrogen and the group of formula (VI):

$$- \underset{O}{\overset{O}{\parallel}} \underset{R^{5}}{\overset{R^{4}}{\parallel}}$$
 (VI)

(wherein R⁴ and R⁵ are as defined above) is in position five of the phenyl ring to which it is attached, viz. the 8phenylxanthines of formula (VII):

in which R^1 , R^2 , R^3 , R^4 and R^5 are as defined above, are also prepared according to a further feature of the present invention from the corresponding compound of formula (VIII):

$$\begin{array}{c|c}
R^1 & O & H \\
N & N & N \\
N & N & O & R^3
\end{array}$$
(VIII)

wherein R^1 , R^2 and R^3 are as defined above, by reaction with an excess of chlorosulphonic acid, preferably under a nitrogen atmosphere and at a temperature from -5°C to 10°C and where the solvent is the same chlorosulphonic acid. In this manner, the sulphonyl chloride of formula (IX):

$$\begin{array}{c|c}
R^{1} & O & H & S - CI \\
N & N & O & N
\end{array}$$

$$\begin{array}{c|c}
O & S - CI \\
O & O & O
\end{array}$$

$$\begin{array}{c|c}
O & O & O & O
\end{array}$$

$$\begin{array}{c|c}
O & O & O & O
\end{array}$$

$$\begin{array}{c|c}
O & O & O & O
\end{array}$$

$$\begin{array}{c|c}
O & O & O & O
\end{array}$$

$$\begin{array}{c|c}
O & O & O & O
\end{array}$$

$$\begin{array}{c|c}
O & O & O & O
\end{array}$$

$$\begin{array}{c|c}
O & O & O & O
\end{array}$$

$$\begin{array}{c|c}
O & O & O & O
\end{array}$$

$$\begin{array}{c|c}
O & O$$

$$\begin{array}{c|c}
O & O
\end{array}$$

$$\begin{array}{c|c}
O & O
\end{array}$$

$$\begin{array}{c|c}
O & O$$

$$\begin{array}{c|c}
O & O
\end{array}$$

$$\begin{array}{c|c}
O & O$$

15

10

wherein R^1 , R^2 and R^3 are as defined above, is obtained, which by further reaction with the corresponding amine (X):

20

35

$$R^4$$
 R^5
 (X)

wherein R⁴ and R⁵ are as defined above, gives the 8-phenylxanthine derivative of general formula (I). The reaction is carried out in an organic solvent preferably a polar aprotic organic solvent such as dioxane, methylene chloride or tetrahydrofuran, at a temperature from 10°C to 40°C and in the presence of an organic base, preferably an amine base such as triethylamine. The thus obtained 8-phenylxanthine derivative is then isolated by the usual method known in the art.

The intermediate compounds of formula (VIII) can be prepared from the 5,6-diaminouracil of formula (III) and the corresponding carboxylic acid of the general formula (XI):

10

15

30

35

HOOC
$$(XI)$$

wherein R³ is as defined above. In this case, a reactive derivative of the carboxylic acid (XI), as an acid halide or anhydride can also be used instead of the carboxylic acid itself. The reaction between the 5,6-diaminouracil of formula (III) and the reactive derivative of the carboxylic acid (XI) is carried out in a solvent, preferably a polar aprotic solvent, such as N,N-dimethylformamide, dioxane, acetone or tetrahydrofuran, in the presence of an organic base, preferably an amine base, such as triethylamine and at a temperature from 15°C to 40°C. Thus, the corresponding uracil compound of formula (XII):

wherein R^1 , R^2 and R^3 are as defined above, is obtained and is treated with an inorganic base such as sodium or potassium hydroxide as disclosed above for 8-phenylxanthine derivatives of formula (I). The corresponding compound of formula (VIII) is then obtained.

The 8-phenylxanthine derivatives of general formula (I) in which R^6 is an alkyl group and R^1 , R^2 and R^3 are other than hydrogen, are prepared according to a further feature of the present invention, from the corresponding compound of formula (XIII):

30

$$\begin{array}{c|c}
R^{1'} & & H \\
N & & N \\
N & & N
\end{array}$$
(XIII)

(wherein R¹', R²' and R³' are as defined for R¹, R² and R³ except that are other than hydrogen) by reaction with an alkyl sulfate or alkyl halide (preferably alkyl iodide or bromide), in an inert solvent, preferably an aprotic polar organic solvent, such as N,N-dimethylformamide, dioxane or tetrahydrofuran, at a temperature from 20°C to 120°C and in the presence of an inorganic base such as sodium or potassium hydride or amide. In this manner, the corresponding alkyl intermediate of formula (XIV) is obtained.

$$\begin{array}{c|c}
 & R^{1'} & N & R^{6'} \\
 & N & N & N \\
 & N & N & N
\end{array}$$
(XIV)

wherein $R^{1'}$, $R^{2'}$ and $R^{3'}$ are as defined above, and $R^{6'}$ is an alkyl group. Compound (XIV) is then treated as compounds (VIII) and (IX) to obtain the corresponding 8-phenylxanthine derivative of formula (I) in which R^6 is an alkyl group.

The 8-phenylxanthine derivatives of formula (I) can be converted by methods known <u>per se</u> into pharmaceutically acceptable salts, preferably acid addition salts by treatment with organic or inorganic acids as fumaric, tartaric, succinic or hydrochloric acid. Also, 8-phenylxanthine derivatives of formula (I) in which there is the presence of an acidic group,

may be converted into pharmacologically acceptable salts with, for instance, alkali metals such as sodium or potassium by reaction with an alkali metal hydroxide. The acid or alkali addition salts so formed may be interchanged with suitable pharmaceutically acceptable counter ions using process known per se.

The cyclic GMP specific phosphodiesterase (PDE 5) was isolated from human platelet lysates by ion exchange chromatography using a Mono-Q column. The enzyme activity was determined using 0.25 μ M [3H]-cyclic GMP as substrate. The purification of the enzyme and the assessment of the PDE 5 inhibitory activity of our compounds were performed essentially as described by Gristwood et al. (Br. J. Pharmacol. 105, 985-991, 1992).

The results from such test are shown in Table 1.

TABLE 1

	PDE 5 Activity
Compound (*)	from human tissues
	IC _{so} (nM)
16	9
37	12
. 38	3
75	9
86	35
96	19
133	12
154	58

(*) See structures in Tables 2 and 3.

As it can be seen from Table 1, the compounds of formula 20 (I) potent inhibitors of cyclic GMP phosphodiesterase (PDE 5) and are useful in the treatment of stable, unstable and variant angina, hypertension, pulmonary hypertension, congestive heart failure, renal atherosclerosis, conditions of reduced blood vessel potency, peripheral vascular disease, vascular disorders (e.g. Raynaud's disease), stroke, bronchitis, chronic asthma, allergic asthma, allergic rhinitis, glaucoma, male erectile dysfunction, female sexual dysfunction and diseases characterized by disorders of gut motility, e.g. irritable bowel syndrome.

Accordingly, the 8-phenylxanthine derivatives of formula
(I) and pharmaceutically acceptable salts thereof, and
pharmaceutical compositions comprising such compound and/or
salts thereof, may be used in a method of treatment of
disorders of the human body which comprises administering to a

10

15

20

30

15

patient requiring such treatment an effective amount of a 8-phenylxanthine derivative of formula (I) or a pharmaceutically acceptable salt thereof.

The present invention also provides pharmaceutical compositions which comprise, as an active ingredient, at least a 8- phenylxanthine derivative of formula (I) or a pharmacologically acceptable salt thereof in association with a pharmaceutically acceptable excipient such as a carrier or diluent. The active ingredient may comprise 0.001% to 99% by weight, preferably 0.01% to 90% by weight of the composition depending upon the nature of the formulation and whether further dilution is to be made prior to application.

Preferably the compositions are made up in a form suitable for oral, topical, nasal, rectal, percutaneous or injectable administration.

The pharmaceutically acceptable excipients which are admixed with the active compound, or salts of such compound, to form the compositions of this invention are well-known per se and the actual excipients used depend inter alia on the intended method of administering the compositions.

Compositions of this invention are preferably adapted for injectable and per os administration. In this case, the compositions for oral administration may take the form of tablets, retard tablets, sublingual tablets, capsules or liquid preparations, such as mixtures, elixirs, syrups or suspensions, all containing the compound of the invention; such preparations may be made by methods well-known in the art.

The diluents which may be used in the preparation of the compositions include those liquid and solid diluents which are compatible with the active ingredient, together with colouring or flavouring agents, if desired. Tablets or capsules may conveniently contain between 2 and 500 mg of active ingredient or the equivalent amount of a salt thereof.

The liquid composition adapted for oral use may be in the form of solutions or suspensions. The solutions may be aqueous solutions of a soluble salt or other derivative of the active compound in association with, for example, sucrose to form a

WO 99/62905 PCT/EP99/03644

16

syrup. The suspensions may comprise an insoluble active compound of the invention or a pharmaceutically acceptable salt thereof in association with water, together with a suspending agent or flavouring agent.

Compositions for parenteral injection may be prepared from soluble salts, which may or may not be freeze-dried and which may be dissolved in pyrogen free aqueous media or other appropriate parenteral injection fluid.

Effective doses are normally in the range of 10-600 mg of active ingredient per day. Daily dosage may be administered in one or more treatments, preferably from 1 to 4 treatments, per day.

The invention is illustrated by the following Examples which do not limit the scope of the invention in any way.

EXAMPLE 1

10

30

35

a) To a solution of 1-propyl-3-methyl-5,6-diaminouracil (6.1 g; 0.031 moles) and triethylamine (3.1 g = 4.2 ml; 0.031)moles) in N,N-dimethylformamide (60 ml), another solution of 2ethoxybenzoyl chloride (6.2 g; 0.034 moles) in N, N-dimethylformamide was slowly added at a temperature between 15°C and 20°C. The reaction mixture was stirred at room temperature for 20 hours, the solvent removed under reduced pressure, the residue treated with ethyl acetate and the resulting solution washed with water. After drying (Na₂SO₄) the solvent was removed in vacuo, the residual oil was treated with water (275 ml) and 2N sodium hydroxide aqueous solution (100 ml), and the mixture boiled under reflux for one hour. The resulting solution was cooled, washed with diethyl ether and the aqueous solution treated with acetic acid until acid pH (12 ml of acetic acid were necessary). The precipitated solid was collected by filtration, washed with water and diethyl ether and dried in a vacuum 8-(2-Ethoxyphenyl)-1-methyl-3-propyl-3,7dihydropurine-2,6-dione was obtained as a pale cream solid (4.7 g; 46% yield), m.p. 205-206°C (after recrystallization from isopropanol).

- b) Chlorosulphonic acid (12.4 ml) was cooled at 0°C, and while stirring and maintaining nitrogen atmosphere, the compound obtained above (4.5 g; 0.0137 moles) was added over a period of 10 minutes. The mixture was stirred at room temperature for 15 hours, poured into ice-water (80 ml) and extracted with methylene chloride. The organic solution was washed with water, dried (Na_2SO_4), the solvent removed under reduced pressure and the residue collected by filtration with diethyl ether. A white solid of impure 4-ethoxy-3-(1-methyl-2,6-dioxo-3-propyl-2,3,6,7-tetrahydro-1H-purin-8-yl)benzenesulphonyl chloride (4.8 g; 83% yield) was obtained which was purified by recrystallization from acetonitrile.
- c) To a solution of 1-methylpiperazine (0.13 g; 0.00125 moles) and triethylamine (0.13 g; 0.00125 moles) in methylene chloride (30 ml), the above compound obtained in b) (0.53 g; 0.00125 moles) was slowly added and the resulting mixture stirred at room temperature for 20 hours. A solid crystallized which was collected by filtration, washed with methylene chloride and diethyl ether and dried. 8-[2-Ethoxy-5-(4-methylpiperazine-1-sulfonyl)phenyl]-1-methyl-3-propyl-3,7-dihydropurine-2,6-dione was obtained (0.43 g; 72% yield) which was purified by flash-chromatography with silica gel and a mixture of methylene chloride-methanol (15:1) as eluent. Melting point 174°C. (Compound 94 in Table 3).

30

35

10

15

EXAMPLE 2

A mixture of 1-benzyl-3-methyl-5,6-diaminouracil (0.36 g; 1.48 mmoles), 2-propoxy-5-(4-morpholinylsulphonyl)-benzoic acid (0.49 g; 1.48 mmoles), 1,3-dicyclohexylcarbodiimide (0.30 g; 1.48 mmoles) and 4-dimethylaminopyridine (0.18 g; 1.48 mmoles) in methylene chloride (15 ml), was boiled under reflux for 20 hours. The solvent was removed under reduced pressure, 2N sodium hydroxide aqueous solution (10 ml) was added and boiled under reflux for 2 hours. The reaction mixture was cooled, filtered and the residue washed with ethanol (4 ml). The filtered solution was treated with acetic acid until pH=6, then extracted with ethyl acetate and the organ ic solution washed

with water and brine. After drying (Na_2SO_4) the solvent was removed under reduced pressure and the residual orange solid $(0.43~\rm g)$ was purified by flash-chromatography with silica gel and ethyl acetate as eluent. 3-Benzyl-1-methyl-8-[5-(morpholine-4-sulphonyl)-2-propoxyphenyl]-3,7-dihydropurine-2,6-dione was obtained $(0.30~\rm g;~37.6\%~yield)$, m.p. 218°C . (Compound 158 in Table 3).

EXAMPLE 3

30

35

- To a solution of 3-butyl-8-(2-ethoxyphenyl)-1-methyl-10 a) 3,7-dihydropurine-2,6-dione (1.5 g; 0.0044 moles) in N,Ndimethylformamide (20 ml), a 60% dispersion in mineral oil sodium hydride (0.18 g; 0.0045 moles) was slowly added, and the resulting mixture stirred at room temperature until the release of hydrogen was completed. After heating at 60°C for 15 minutes, dimethyl sulfate (0.73 g; 0.0058 moles) was added, stirred at room temperature for 30 minutes and at 110°C for further 4 hours. The cooled reaction mixture was poured into water, extracted with ethyl acetate and the organic solution successively washed with water, 2N sodium hydroxide and water. After drying (Na₂SO₄) the solvent was removed under reduced pressure and the obtained solid treated with a mixture of diethyl ether-diisopropyl ether and collected by filtration. 3-Butyl-8-(2-ethoxyphenyl)-1,7-dimethyl-3,7-dihydropurine-2,6dione was obtained (1.1 g; 70% yield) m.p. 135°C.
 - b) To chlorosulphonic acid (3 ml), the compound obtained above (1 g; 0.0028 moles) was slowly added at a temperature of 0°C while nitrogen atmosphere was maintained. After stirring at room temperature for 20 hours, the reaction mixture was poured into ice-water and extracted with methylene chloride. The organic solution was washed with water, dried (Na₂SO₄), the solvent removed in vacuo and the obtained residue treated with a mixture of diethyl ether-diisopropyl ether. 3-(3-Butyl-1,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-4-ethoxybenzenesulphonyl chloride was obtained as a white solid (1.1 g; 86% yield).
 - c) To a solution of 1-methylpiperazine (0.075 g; 0.00075

WO 99/62905 PCT/EP99/03644

moles) and triethylamine (0.076 g; 0.00075 moles) in methylene chloride (25 ml) the above compound obtained in b) (0.34 g; 0.00075 moles) was slowly added and the resulting mixture stirred at room temperature for 20 hours. Methylene chloride (30 ml) was added, washed with water, decanted, the organic solution dried (Na₂SO₄) and the solvent removed under reduced pressure. The residue was treated with diethyl ether and collected by filtration when 3-Butyl-8-[2-ethoxy-5-(4-methylpiperazine-1-sulphonyl)phenyl]-1,7-dimethyl-3,7-dihydropurine-2,6-dione was obtained (0.31 g; 80% yield), m.p. 144°C. (Compound 101 in Table 3).

The 8-phenylxanthine derivatives of general formula (I) included in Tables 2 and 3, were prepared according to the processes disclosed in these Examples, but with the appropriate starting materials.

10

15

When the defined groups are changed under the conditions of the hereinbefore described processes or are inadequate to those processes, processes can be readily carried out by usual methods well known in the field of synthetic organic chemistry, for example, by protection of functional groups and elimination of protecting groups.

TABLE 2	0=0
	Z - Z Z - Z Z

		Π	T	Τ	T	Ι	Τ	T -
ii.p.	224	172	216	245	285	268	245	229
Method Example	Ħ	1	н	п	1	1	1	1
a a	н	н	H	H	×	н	H	×
Sulfon- amide position	5	2	5	ĸ	5	S	2	S
R _S	носн,-сн,	HOCH2-CH2	носн,-сн,	propargyl	H2N-CO-CH2	H,N-co-ch,	HO2C-CH2	CH3O2C-CH2
A	носн,-сн,	носн,-сн,	носн,-сн,	н	н	н	н	н
R³	С2Н5	C ₃ H,	C ₃ H,	C ₃ H ₇	C ₂ H ₅	C,H,	C ₃ H,	C ₃ H,
. R ²	CH,	C,H,	i-C ₄ H ₉	C ₃ H,	CH,	C3H,	С,Н,	C ₃ H,
R ₁	GH,	GH,	GH,	GH ₃	CH ₃	СЖ	CH,	CH,
Com- pound	1	2	3	4	S	9	7	8

			_				_				,		
E. G.	255	265	242	310	302	301-303	295-296	264	246	239	197-199	257	211
Method Example	1	1	1	1	ц	п	1	п	1	H	1	1	1
፟፟፟፟፟፟	H	H	Ħ	H	H	н	H	н	H	ж	æ	H	Ħ
Sulfon- amide position	ĸ	ĸ	ĸ		ĸ	Ŋ	2	5		Z.	N	s	S
R ⁵	носн,-снон-сн,	CH3CONH-CH2-CH2	cyclopentyl	4-pyridyl	4-pyridyl	4-pyridyl	4-pyridyl	4-pyridyl	4-pyridyl	4-pyridyl	4-pyridyl	4-pyridyl-CH2	1-methyl-4- piperidyl
, W	н	н	н	н	н	н	Н	н	н	н	н	н	H
R³	C,H,	C ₃ H,	C,H,	C,H5	C_2H_5	C,H,	C,H,	C,H,	C,H,	C ₃ H,	с,в,	C ₃ H,	C,B,
R²	C ₃ H,	С ₃ н,	С ₃ Н,	СН	C ₃ H ₇	C ₃ H,	n-C4H,	n-C,H,	cyclo- hexyl-CH ₂	C,H,	n-C,H9	С ₃ Н,	C ₃ H,
R.	CH ₃	CH3	CH3	СН3	CH3	CH ₃	CH,	CH,	CH,	C ₂ H ₅	n- C ₄ H ₉	CH3	СН3
Com- pound	6	10	11	12	13	14	15	16	17	18	19	20	21

							
B. P. O.	198	157	186	122	174	27.1	223
Method Example	1	1	1	1	r	1	н
a g	CH3	Ħ	*	Ħ	æ	Ħ	=
Sulfon- amide position	5	ю	ហ	ß	'n	ιn.	ro.
şk	1-methyl-4- piperidyl	H ₃ C-N CH ₂	1-benzyl-4- piperidyl	2-tetrahydro- furyl-CH ₂	O N-CH ₂ -CH ₂	CH2-CH2-CH2	H ₃ C-N CH ₂
R	cH ₃	н	н	C ₂ H ₅	ш	ш	ж
R ³	C,B,	С³Н,	С³Н,	С,Н,	С ₃ Н,	C3H,	C ₃ H,
R²	C ₃ H,	C ₃ H ₇	С3Н,	С ₃ Н,	C ₃ H,	C ₃ H,	C ₃ H,
æ,	CH ₃	CH,	CH,	СН3	СН3	СН3	CH,
Com- pound	22	23	24	25	26	27	28

								
я. р. °С	200	173	117	115	132	159	277-279	189
Method Example	H	н	ı	1	1	1		
r R	н	Ħ	н	Ħ	H	×	×	×
Sulfon- amide position	ß	ဟ	ഗ	ĸ		.s	v	rv
R ⁵	H ₃ C-N CH ₂	NH C ₂ H ₆	C ₆ H ₆ -CH ₂ N OH CH ₂	C,Hg-CH,N OH	CHO,C-N CH	4-methyl-1- piperazinyl	3-quinucli- dinyl	3-quinuoli- dinyl
R	CH,	н	m	н	ш	н	Н	ш
R³	C ₃ H,	C ₃ H,	C,H,	с₃н,	C ₃ H,	с³н,	C,H ₅	С,Н,
R²	C,H,	C,H,	C,H,	C ₃ H,	C ₃ H,	C ₃ H,	СН	С³Н,
R1	СН,	СН	СН	CH,	CH,	CH,	СН3	CH,
Com-	. 29	30	31	32	33	34	35	38

	,				,	,		,	,		
m.p. °C	228	229	245	223	256-258	224-226	189-190	181-182	204-206	260	148
Method Example	1	1	н	1	н	п	1	1	1		-
ж М	×	×	Ħ	Æ	н	H	H	Ħ	æ	н	=
Sulfon- amide position	S	ស	Ŋ	ស	5	5	ĸ	Ŋ	ru	S	ம
R,	1,2,4-triazol- 3-yl	1,2,4-triazol- 3-yl	1,2,4-triazol- 3-yl	1,2,4-triazol- 3-yl	tetrazol-5-yl	tetrazol-5-yl	tetrazol-5-yl	tetrazol-5-yl	tetrazol-5-yl	HOCH2-CH2	o N-(cH ₂),
Å.	ш	н	ш	ш	H	н	Ħ	н	н	н	н
R³	C ₂ H ₅	C,H,	с _з н,	C,H,	C,H,	C,H,	С,Н,	C,H,	C,H,	C ₃ H,	C ₃ H ₇
R²	C,H,	C ₃ H ₇	cyclo- hexyl-CH ₂	С,Н,	CH,	C ₃ H,	C ₃ H,	n-C ₄ H ₉	n-C ₄ H ₉	C,H,	C,H,
R¹	сн	СН,	сн,	C,H5	СН3	GH ₃	CH3	СН	n- C,H9	сн	СН
Com- pound	37	38	39	40	41	42	43	44	45	46	47

					η-					
m.p.°C	182	215	130	223	204	199	177	243	337-338	200
Method Example		1	1	Ħ	1	н	н	1	1	+
, M	Ħ	×	H	H	H	Ħ	æ	H	Ħ	Ħ
Sulfon- amide position	S.	S	S	r.	5	ம	r.	rv	5	20
°K	N—(CH ₂) ₂	(CH ₃) 2NCH ₂ -CH ₂	(CH ₃) ₂ NCH ₂ -CH ₂	(CH ₃) ₂ NCH ₂ -CH ₂	(CH ₃) ₂ NCH ₂ -CH ₂	2-pyridyl-ch,- ch,	1-imidazolyl- -(CH ₂) ₃	2,2,6,6- tetramethyl-4- piperidyl	H ₂ N-CNH	3-β-D-gluco- pyranosyl
,	Ħ	H	сн	н	Н	ж	н	Н	Н	н
ž	C,H,	C,H,	C ₃ H,	C ₃ H,	C,H,	C ₃ H,	C ₃ H,	C,H,	C ₃ H ₇	С ₃ Н,
R²	C3H7	$c_3 H_7$	C,H,	i-C,H9	сісн,-сн,	C ₃ H,	C,H,	С ₃ Н,	C ₃ H,	C ₃ H,
R.	CH ₃	CH3	CH,	СН3	CB ₃	СН	СН	СН³	CH,	CR,
Com- pound	48	49	50	51	52	53	54	55	56	57

m.p. °C	195
Method Example	r.
r,	#
Sulfon- amide position	ហ
g K	N-(CH ₂) ₂
, a	ж
R³	C3H,
R ²	С ₃ Н,
R¹	СН,
Com- pound	58

PABLE 3

i 	250	200	241	227	100	607	273	187	645	235	240
Method Example	-	i	-		-	-	-	-		1	1
ğ.	H	H	×	Ħ	H	H	×	×	=	H	æ
Sulfon- amide position	5	5	5	5	5	5	S	5	5	S	S.
N R ⁵	4-hydroxy-1-piperidyl	4-hydroxy-1-piperidyl	4-hydroxy-1-piperidyl	4-hydroxy-1-piperidyl	4-hydroxy-1-piperidyl	4-hydroxy-1-piperidyl	4-hydroxy-1-piperidyl	4-hydroxy-1-piperidyl	4-hydroxy-1-piperidy1	4-hydroxy-1-piperidyl	4-hydroxy-1-piperidyl
ţ	C ₂ H ₅	C,H,	C ₂ H ₅	C,H,	C,H,	C,H,	C3H,	C,H,	C,H,	C ₃ H,	С ₃ Н,
, ,	CH3	C,H5	C3H,	C ₃ H,	i-C ₃ H,	носн,-сн,	i-C,H9	сн, осн, сн,	ClCH2-CH2	CH ₃ CH ₂ - CH (CH ₃) CH ₂	(CH ₃) ₂ NCH ₂ -CH ₂
IR.	СН	СН3	CH,	CH3	СН	СН3	СН3	CH3	CH ₃	СН,	сн,
Com-	59	09	61	62	63	64	65	99	67	89	69

m.p.	255	286	289	287	288-289	279	254	283
Method Example	1		1	1	1	1	1	1
%	Ħ	×	Ħ	×	×	m	Ħ	Ħ
Sulfon- amide position	S	ស	ស	ĸ	ĸ	w	W	гV
$N R^4$	3-carbamoyl-1- piperidyl	4-carbamoyl-1- piperidyl	4-carbamoy1-1- piperidy1	4-carbamoyl-1- piperidyl	4-carbamoyl-1- piperidyl	4-carbamoyl-1- piperidyl	4-carbamoyl-1- piperidyl	4-carbamoyl-1- piperidyl
r ₂	C,H,	C ₃ H,	C ₂ H ₅	СН3	C ₂ H ₅	C ₃ H,	n- C,H9	C,H,
7 2	с _з н,	C ₃ H,	СН,	С3Н,	С3Н,	C3H,	С ₃ н,	n-C,H,
Ţ.	СН3	×	СН3	CH,	CH ₃	CH,	СН3	CH ₃
Com- pound	70	71	. 72	73	74	75	76	77

ы. С.	170-171	140	261	168	186-187	174	240	27.1	198
ei -	17				18				
Method Example	1	T	f	1	1	. 1	1	+	1
្តីជ	æ	×	Ħ	H	н	н	н	Н	Н
Sulfon- amide position	S	5	5	S	S	ស	ĸ	ĸ	5
N R ⁵	4-carbamoyl-1- piperidyl	3-carboxy-1-piperidyl	4-carboxy-1-piperidyl	3-ethoxycarbonyl-1- piperidyl	4-ethoxycarbonyl-1- piperidyl	*(*HO)N	1-piperazinyl	1-piperazinyl	1-piperazinyl
್ಷ	С₃Н,	C,H,	C ₃ H,	С ₃ н,	C ₃ H,	C3H7	C ₃ H,	C,H5	C ₃ H,
, g	n-C ₄ H ₉	C,H,	C ₃ H,	C ₃ H,	C ₃ H ₇	C ₃ H,	C ₃ H ₇	СН,	C,H,
r _K	n- C,H9	СН3	СН3	сн	CH,	сн	н	CH,	СН,
Com- pound	78	79	80	81	82	83	84	85	86

ξ. Ο.	222	190	244	255	181	285	198	174
Method Example	1	1	П	1	1	1	1	1
ř.	Ħ	H	Ħ	Ħ	Ħ	×	m	H
Sulfon- amide position	S	'n	ហ	ហ	ហ	w	ம	ហ
$\frac{1}{N}$ R^4	1-piperazinyl	3-methy1-1- piperaziny1	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methy1-1- piperaziny1	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl
ŗ.	с _з н,	C,H,	C3H,	C ₂ H ₅	C3H7	н	СН3	С2Н5
ž.	C ₃ H,	С ₃ Н,	C ₃ H,	CH ₃	C ₂ H ₅	С ₃ Н,	C,H,	C,H,
Ţĸ	HO ₂ C- CH ₂	СН3	H	СН3	CH3	CH3	CH,	CH,
Com- Pound	87	88	68	06	91	92	93	94

e O	212	189	144	225	206	192	144	223
Method Example	7	п	m	1	1	1	3	
K	Ħ	H	CH3	æ	H	æ	CH,	#
Sulfon- amide position	4	S	'n	w	ъ	'n	ĸ	ហ
$\frac{N}{R^5}$	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl
ಜ	С ₃ Н,	C ₃ H,	C3H,	n- C ₄ H ₉	i- C,H9	C ₂ H ₅	C ₂ H ₅	C ₃ H,
R ²	C ₃ H,	C ₃ H,	C ₃ H,	C ₃ H,	C ₃ H,	n-C,H,	n-C,H,	i-C ₃ H,
R	СН3	СН3	СН3	CH,	CH,	СЯ	CH ₃	CH,
Com-	35	9 0	97	86	66	100	101	102

ii . •	155	199	193	131	242	235	190	202
Method Example	1	1	8	1	1	2	6	1
ğ,	æ	Ħ	CH3	H	H	ж	H	ж
Sulfon- amide position	S	S	ស	ហ	'n	ıa	ر.	rv
$\frac{N}{R^5}$	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1 piperazinyl	4-methyl-1- piperazinyl
r _x	С,Н,	С ₃ Н,	C ₃ H ₇	C ₃ H,	C ₃ H,	C3H,	C ₃ H,	C ₃ H,
ኤ	n-C,H,	i-C ₄ H ₉	i-C ₍ H ₉	СН,СН ₂ - СН (СН,) СН ₂	cyclo- propyl	C,Rs	cyclo- propyl- CH2	cyclo- hexyl-CH ₂
, K	СН3	СН3	снз	CR3	СН,	СК	СН3	CH,
Com- pound	103	104	105	106	107	108	109	110

e	222	185	242	171	181	197	176	170
Method Example	7	2	п	7	1	1	1	T.
ğ	Ħ	н	ж	Ħ	Ħ	Ħ	ж	H
Sulfon- amide position	S	S	ß	S	ß	v)	Ń	æ
N R^4	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl
ra .	C,H,	C,H,	C ₃ H,	C ₃ H,	C ₃ H,	C,H,	С ₃ Н,	C ₃ H,
R²	piperonyl	allyl	носн,-сн,	CH ₃ OCH ₂ - CH ₂	(CH ₃) ₂ NCH ₂ -CH ₂	(CH ₃) ₂ NCH ₂ -CH ₂ -CH ₂	сісн,-сн,	сісн,сн,- сн,
R ¹	СН3	CH,	СН3	CH,	GH,	GH,	CH,	CH,
Com-	111	112	113	114	115	116	117	118

ε .σ.	175	140	254	230	230	145	202	180	161
Method Example	1		H	1	-	1	1	1	1
ಷ	Ħ	н	×	Ħ	Ħ	H	m	×	H
Sulfon- amide position	ហ	ស	s,	ம	'n	23	r.	ស	ហ
N N R ⁵	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	4-methyl-1- piperazinyl	2,5-dimethyl-1- piperazinyl	3,5-dimethyl-1- piperazinyl	4-ethyl-1-piperazinyl	4-ethyl-1-piperazinyl	4-ethyl-1-piperazinyl	4-propyl-1- piperazinyl
gg .	C ₃ H,	C ₃ H,	C ₃ H,	C ₃ H ₇	C ₃ H,	C ₃ H,	C3H,	C ₃ H,	С ₃ Н,
R ²	C ₃ H,	n-C4H9	C ₃ H,	C ₃ H,	C ₃ H,	C3H,	i-C ₃ H,	i-C,H,	C ₃ H,
R ¹	C,H ₅	n- C,H,	HO,C- CH,	СН³	СН3	CH,	CH,	СН3	CH ₃
Com-	. 119	120	121	122	123	124	125	126	127

		-γ					
च ए	261	204	270	225	160	189	107-108
Method Example	1	1	H	1	1	1	6
ŭ	H	н	Ħ	Ħ	ж	H	GH,
Sulfon- amide position	ហ	ĸ	ĸ	S	4	w	'n
N R ⁵	4-(2-hydroxyethyl) -1-piperazinyl						
r r	C3H,	C,H,	C ₂ H ₅	CH,	C,H,	С ₃ Н,	C ₃ H,
R ²	C,H,	С2Н5	CH,	C ₃ H,	C,H,	C,H,	C,H,
R ₁	Ħ	CH ₃	СН	CH3	CH ₃	CH ₃	CH,
Com-	128	129	130	131	132	133	134

		1	T	T	1	1	
ei O	180	204	200	140-142	210	183	190
Method Example	п	1	1	m		1	8
ğ	æ	æ	ж	CH ₃	Ħ	Ħ	GH,
Sulfon- amide position	'n	ĸ	S	ro.	S	ın	ហ
N R^4	4-(2-hydroxyethyl) -1-piperazinyl						
r,	n- C4H9	**'5 -;	C ₂ H ₅	c, H _s	C,H,	C ₃ H,	C,H,
R ²	C,H,	C ₃ H,	n-C ₄ H ₉	n-C,H,	i-C,H,	i-c,H9	i-C,H,
r.	СН	CH,	CH3	CH,	CH3	СН	CH,
Com− ∵ound	135	136	137	138	139	140	141

я. р. ° с		265	168	166	217	213-214
Method Example	1	8	1	н		1
್ಷ	H	H	ж	m	æ	н
Sulfon- amide position	S	5	ß	ß	ហ	ru
N R ⁴	4-(2-hydroxyethyl) -1-piperazinyl	4-(2-hydroxyethyl) -1-piperazinyl	4-(2-hydroxyethyl) -1-piperazinyl	4-(2-hydroxyethyl) -1-piperazinyl	4-(2-hydroxyethyl) -1-piperazinyl	N_N-co,cH,CH,
r _a	с _ј н,	с,н,	C,H,	C,H,	С,Н,	C ₃ H,
R2	СН,СН,- СН (СН,) СН,	C,H5	с,в,	ClCH,CH2- CH2	C,H,	C ₃ H,
¹ K	СН3	CH3	C ₂ H ₃	СН,	но,с- сн,	СН3
Com- pound	142	143	144	145	146	147

ы . Ф.	161	137	145	261	212-214	208	184
Method Example	1	11	н	1	1	1	1
್ಞ	Ħ	×	ж	ж	н	H	н
Sulfon- amide position	ស	ហ	ហ	S.	5	5	S
$\frac{R^4}{N}$	N—CH,CO2CH,CH,	N N- (CH), O(CH), OH	М № (СИ,),О(СИ,),ОН	4-morpholinyl	4-morpholinyl	4-morpholinyl	4-morpholinyl
ř.	C ₃ H ₇	C ₃ B ₇	C ₃ H,	C ₂ H ₅	C,H,	C,H,	C,H,
ъ,	С,Н,	C ₃ H,	C ₃ H ₇	СН3	C,H,	C,H,	n-C,H,
ra ra	СН3	СВ	HO ₂ C- CH ₂	CH3	СН3	СН3	СН3
Com- pound	148	149	150	151	152	153	154

ë	132	192	233	218	202	228	204	205
Method Example	1	2	1	2	N	1	1	1
g g	H	H	ж	#	Ħ	н	×	æ
Sulfon- amide position	n.	ស	ហ	5	5	ĸ	ĸ	w
N R ⁵	4-morpholinyl	4-morpholinyl	4-morpholinyl	4-morpholinyl	4-morpholinyl	4-morpholinyl	4-morpholinyl	4-morpholinyl
R	n- C ₄ H ₉	C ₃ H ₇	C ₃ H,	С ₃ Н,	C,H,	C ₃ H,	C,H,	C ₃ H,
R ²	n-C,H,	cyclo- propyl- CH ₂	cyclo- hexyl-CH2	benzyl	piperonyl	i-C ₃ H,	i-C ₄ H ₉	CH ₃ CH ₂ - CH (CH ₃) CH ₂
r _z	n- C ₄ H ₉	GH,	сн³	CH,	CH3	CH3	CH3	СН3
Com-	155	156	157	158	159	160	161	162

й. У.	204	138	179	149
Method Example	2	н	ī	1
ಜ	н	ж	н	æ
Sulfon- amide position	P	rð.		ស
N R^4	N CH ₃	N CH ₂	N CH,	N CH ₃
ر ب	C,H,	С³Н,	C ₃ H,	C,H,
R ²	С,Н,	с _з н,	i-C _e H ₉	СН,СН,- СН (СН,) СН,
Ta La	CH,	СН	СН,	СН3
Com- pound	163	164	. 165	166

i. P.	234	220	189	174	247	224
Method Example		1	TI.	п	1	1
ă	н	н	×	ж	æ	н
Sulfon- amide position	w	ĸ	ĸ	ហ	5	5
N R ⁴	E, CF,	HO ₂ C	N H,CO ₂ C	N N(CH ₂) ₂	3-amino-1-pyrazolyl	3-amino-1-pyrazolyl
א	C3H,	С³Н,	С³Н,	C,H,	C,H,	C ₃ H,
, K	C ₃ H,	С,3Н,	с _з н,	С³Н,	C,H,	C ₃ H ₇
r _a	HO,C- CH,	CH,	CH,	СВ3	СН3	СН,
Com- pound	167	168	169	170	171	172

The Examples 4 and 5 illustrate pharmaceutical compositions according to the present invention and procedure for their preparation.

5 EXAMPLE 4

50,000 capsules each containing 100 mg of 8-[2-ethoxy-5-(4-methylpiperazine-1-sulfonyl)phenyl]-1-methyl-3-propyl-3,7-dihydropurine-2,6-dione (active ingredient) were prepared according to the following formulation:

10

15

25

Active ingredient	5 Kg
Lactose monohydrate	10 Kg
Colloidal silicone dioxide	0.1 Kg
Corn starch .	1 Kg
Magnesium stearate	0.2 Kg

Procedure

The above ingredients were sieved through a 60 mesh sieve, and were loaded into a suitable mixer and filled into 50,000 gelatine capsules.

EXAMPLE 5

50,000 Tablets each containing 50 mg of the 8-[2-ethoxy-5-(4-methylpiperazine-1-sulfonyl)phenyl]-1-methyl-3-propyl-3,7-dihydropurine-2,6-dione (active ingredient) were prepared from the following formulation:

	Active ingredient	2.5	Kg
	Microcrystalline cellulose	1.95	Kg
30	Spray dried lactose	9.95	Kg
	Carboxymethyl starch	0.4	Kg
	Sodium stearyl fumarate	0.1	Kg
	Colloidal silicon dioxide	0.1	Kg
	_		

<u>Procedure</u>

All the porders were passed through a screen with an aperture of 0.6 mm, then mixed in a suitable mixer for 20

WO 99/62905 PCT/EP99/03644

43

minutes and compressed into 300 mg tablets using 9 mm disc and flat bevelled punches. The disintegration time of the tablets was about 3 minutes.

5

CLAIMS

1. A compound of formula (I)

wherein:

15

20

25

35

R¹, R² and R³ each independently represent a hydrogen atom or an alkenyl, alkynyl, cycloalkyl or alkylcarbamoyl group or an alkyl group which may be unsubstituted or substituted by one or more halogen atoms or hydroxy, alkoxyl, cycloalkyl, alkylthio, amino, mono- or di-alkylamino, cycloalkyl, oxo, hydroxycarbonyl, alkoxycarbonyl, carbamoyl or alkylcarbamoyl groups, or a benzyl or phenyl group which may be unsubstituted or substituted by one or more halogen atoms or alkyl, hydroxy, alkylenedioxy, alkoxy, amino, mono- or di-alkylamino, nitro, cyano or trifluoromethyl groups;

either R⁴ and R⁵ together with the nitrogen atom to which they are attached form a 3 to 7-membered ring comprising a total of from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur, which ring may be unsubstituted or substituted by one or two halogen atoms or hydroxy, carbamoyl, hydroxycarbonyl, alkoxycarbonyl, amino, mono- or di-alkylamino groups or one or two alkyl groups which may be unsubstituted or substituted by one or more hydroxy, alkoxy, hydroxyalkoxy, hydroxycarbonyl, alkoxycarbonyl, amino or mono- or di-alkylamino groups, or

R⁴ is as defined for R¹ and R⁵ represents an alkenyl, alkynyl, cycloalkyl, mono-or di-alkylamino, alkylcarbamoyl, aminocarboiminoyl group or an alkyl group substituted by one

or more halogen atoms or hydroxy, alkoxy, cycloalkyl, alkylthio, oxo, hydroxycarbonyl, alkoxycarbonyl, carbamoyl, alkylcarbamoyl, amino or mono- or di-alkylamino groups, or R⁵ represents a group of formula

5

10

15

 $-(CH_2)_{n}-R^7$

wherein n is an integer from 0 to 4 and R⁷ represents a 3 to 7-membered ring comprising from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur, which ring may be unsubstituted or substituted by one or more halogen atoms or hydroxy, phenyl, alkoxycarbonyl, amino, mono-alkylamino, dialkylamino or hydroxycarbonyl groups or one or more alkyl groups which may be unsubstituted or substituted by one or more halogen atoms or hydroxy, phenyl, alkoxycarbonyl, amino, mono-or di-alkylamino or hydroxycarbonyl groups;

 R^6 represents a hydrogen atom or an alkyl group; and the $-SO_2NR^4R^5$ group is in the 4 or 5 position on the phenyl group;

or a pharmaceutically acceptable salt thereof.

- 2. A compound according to claim 1 wherein R^1 , R^2 and R^3 each independently represent an unsubstituted alkyl, monosubstituted alkyl, alkenyl, cycloalkyl, cycloalkyl-alkyl, phenyl, benzyl or substituted benzyl group.
- 25 3. A compound according to claim 2 wherein R¹, R² and R³ each independently represent a methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, t-butyl, 2-chloroethyl, 2-hydroxyethyl, 2-methoxyethyl, 2-dimethylaminoethyl, 3-chloropropyl, 3-dimethylaminopropyl, 2-methyl-n-butyl,
- hydroxycarbonylmethyl, cyclopropyl, cyclopropylmethyl, cyclohexylmethyl, allyl, phenyl, benzyl or piperonyl group.
 - 4. A compound according to any one of the preceding claims wherein R^4 represents a hydrogen atom or a substituted or unsubstituted alkyl group.
- 35 5. A compound according to claim 4 wherein R⁴ represents a hydrogen atom, a methyl group or a hydroxyethyl group.

6. A compound according to any one of the preceding claims wherein R^5 represents a C_{1-6} alkyl group substituted by one or more halogen atoms or hydroxy, alkoxy, cycloalkyl, alkylthio, oxo, hydroxycarbonyl, alkoxycarbonyl, carbamoyl, alkylcarbamoyl, amino, mono- or di-alkylamino groups, or R^5 represents a group of formula

$-(CH_2)_n - R^7$

- wherein n is an integer from 0 to 4 and R⁷ represents a 3 to 7-membered ring comprising from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur, which ring may be unsubstituted or substituted by one or more halogen atoms or hydroxy, phenyl, alkoxycarbonyl, amino, mono- or di-
- alkylamino or hydroxycarbonyl groups or more alkyl groups which may be substituted or substituted by one or more halogen atoms or hydroxy, phenyl, alkoxycarbonyl, amino, mono-or di-alkylamino or hydroxycarbonyl groups.
- 7. A compound according to claim 6 wherein R⁵
 20 represents a 2-hydroxyethyl, 2-dimethylaminoethyl, propargyl,
- hydroxycarbonylmethyl, methoxycarbonylmethyl, 2,3-dihydroxyn-propyl, N-acetyl-2-aminoethyl, carbamoylmethyl,
 cyclopentyl, pyridyl, pyridylmethyl, pyridylethyl,
 imidazolylpropyl, N-piperidylethyl, methylpiperidyl, 2,2,6,6-
- tetramethylpiperidyl, benzylpiperidyl, N-methyl-4phenylpiperidyl-4-methyl, N-methyl-4-hydroxypiperidyl-4methyl, N-benzyl-4-hydroxypiperidyl-4-methyl, N-benzyl-3hydroxypiperidyl-3-methyl, N-ethoxycarbonyl-4hydroxypiperidyl-4-methyl, N-methylpyrrolidinyl-2-ethylene,
- 3-β-D-glucopyranosyl, 2,2-cyclohexylidine-2-ethylaminoethyl, N-morpholinylethyl, N-morpholinylpropyl, 2-tetrahydrofurylmethyl, methylpiperazinyl, quinuclidinyl, amidino, triazolyl or tetrazolyl group.
- 8. A compound according to any one of claims 1 to 3

 35 wherein R⁴ and R⁵ together with the nitrogen atom to which they are attached form a 5, 6 or 7-membered ring comprising a total of from 1 to 4 heteroatoms selected from nitrogen,

oxygen and sulphur, which ring may be unsubstituted or substituted by one or two halogen atoms or hydroxy, carbamoyl, hydroxycarbonyl, alkoxycarbonyl, amino or mono- or di-alkylamino groups or one or two alkyl groups which may be unsubstituted or substituted by one or more hydroxy, alkoxy, hydroxyalkoxy, amino or mono- or di-alkylamino groups.

- 9. A compound according to claim 8 wherein the 5, 6 or 7-membered ring comprising a total of from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur is a substituted
- or unsubstituted piperidyl, piperazinyl, morpholinyl, diazacycloheptyl, pyrrolidinyl or pyrazolyl group.
 - 10. A compound according to claim 9 wherein the 5, 6 or 7-membered ring comprising a total of from 1 to 4 heteroatoms selected from nitrogen, oxygen and sulphur is a 4-
- hydroxypiperidyl, 3-carbamoylpiperidyl, 4-carbamoylpiperidyl, 3-carboxypiperidyl, 4-carboxypiperidyl, 3-ethoxycarbonylpiperidyl, 4-ethoxycarbonylpiperidyl, 4-dimethylaminopiperidyl, 4-(2-dimethylaminoethyl)-4-methylpiperidyl, piperazinyl, 3-methylpiperazinyl, 4-
- methylpiperazinyl, 2,5-dimethylpiperazinyl, 3,5-dimethylpiperazinyl, 4-ethylpiperazinyl, 4-propylpiperazinyl, 4-hydroxyethylpiperazinyl, 4-ethoxycarbonylpiperazinyl, 4-ethoxycarbonylmethylpiperazinyl, 4-(2-hydroxyethoxy)ethylpiperazinyl, morpholinyl, 4-methyl-1,4-
- 25 diazacycloheptyl, 2-hydroxycarbonylpyrrolidinyl, 2methoxycarbonylpyrrolidinyl or aminopyrazolyl group.
 - 11. A compound according to any one of the preceding claims wherein R^6 represents a hydrogen atom or a methyl group.
- 12. A compound according to any one of the preceding claims wherein the $-SO_2NR^4R^5$ group is on the 5-position of the phenyl group.
 - 13. 3-(3-butyl-1-methyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-8-yl)-4-propoxy-*N*-pyridin-4-ylbenzenesulfonamide,
- 4-ethoxy-3-(1-methyl-2,6-dioxo-3-propyl-2,3,6,7-tetrahydro-1*H*-purin-8-yl)-*N*-(1*H*-[1,2,4]triazol-3-yl)benzenesulfonamide,
 3-(1-methyl-2,6-dioxo-3-propyl-2,3,6,7-tetrahydro-1*H*-purin-8-

yl)-4-propoxy-N-(1H-[1,2,4]triazol-3-yl)benzenesulfonamide, 1-[3-(1-methyl-2,6-dioxo-3-propyl-2,3,6,7-tetrahydro-1H-purin

-8-yl)-4-propoxybenzenesulfonyl]piperidine-4-carboxylic acid amide,

5 1-methyl-8-[5-(4-methylpiperazine-1-sulfonyl)-2-propoxyphenyl
]-3-propyl-3,7-dihydropurine-2,6-dione,

3-butyl-1-methyl-8-[5-(morpholine-4-sulfonyl)-2-propoxyphenyl]-3,7-dihydropurine-2,6-dione,

8-{5-[4-(2-hydroxyethyl)piperazine-1-sulfonyl]-2-propoxypheny

10 1}-1-methyl-3-propyl-3,7-dihydropurine-2,6-dione, and
1-methyl-8-[5-(piperazine-1-sulfonyl)-2-propoxyphenyl]-3propyl-3,7-dihydropurine-2,6-dione;

or a pharmaceutically acceptable salt thereof.

14. A process for the preparation of a compound of formula (I)

wherein R^1 , R^2 , R^3 , R^4 , R^5 and R^7 are as defined in claim 1 and R^6 is hydrogen, which process comprises cyclisation of a uracil compound of formula (II)

30
$$\begin{array}{c|c}
R^1 & NHCO & S & N\\
NHCO & O & R^5
\end{array}$$
(II)

wherein R^1 , R^2 , R^3 , R^4 , R^5 , and R^7 are as defined above. 15. A process for the preparation of a compound of formula (I)

wherein R¹, R², R³, R⁴, R⁵ and R⁶ are as defined in claim 1 provided that if R⁶ is an alkyl group any of R¹, R² or R³ are not hydrogen atoms, and the -SO₂NR⁴R⁵ group is on the 5-position of the phenyl group, which process comprises reacting a compound of formula (IXa)

20
$$\begin{array}{c|cccc}
R^1 & & & & & & & & & & \\
R^1 & & & & & & & & & \\
N & & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & \\
N & & & & & \\
N & & & & \\
N & & & & & \\$$

wherein R^1 , R^2 , R^3 and R^6 are as defined above with an amine of formula (X)

- wherein R⁴ and R⁵ are as defined above, in the presence of an organic base.
 - 16. A composition comprising a compound according to

any one of claims 1 to 13 or pharmaceutically acceptable salt thereof in admixture with a pharmaceutically acceptable carrier or diluent.

50

- 17. A compound according to any one of claims 1 to 13 or pharmaceutically acceptable salt thereof or a composition according to claim 15 for use in a method of treatment of the human or animal body.
 - 18. Use of a compound according to any one of claims 1 to 13 or pharmaceutically acceptable salt thereof or a
- composition according to claim 16 for the manufacture of a medicament for the treatment of angina, hypertension, congestive heart failure, stroke, asthma, bronchitis, male erectile dysfunction, female sexual dysfunction, glaucoma or irritable bowel syndrome.
- 19. A method for treating angina, hypertension, congestive heart failure, stroke, asthma, bronchitis, male erectile dysfunction, female sexual dysfunction, glaucoma or irritable bowel syndrome which comprises administering to a human or animal subject in need of treatment an effective
- amount of a compound according to claim 1 or pharmaceutically acceptable salt thereof.

Intern Innal Application No PC1, cP 99/03644

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D473/04 C07H13/00 A61K31/52 A61K31/70 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07D C07H A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X US 4 722 929 A (AUSTEL V ET AL) 1-6,11, 2 February 1988 (1988-02-02) 14-17 cited in the application * the whole document, particularly examples 29, 49, 50, 90, 91 and 95 \ast Α EP 0 352 960 A (SMITH KLINE & FRENCH 1,17-19 LABORATORIES LIMITED) 31 January 1990 (1990-01-31) the whole document Α WO 94 00453 A (PFIZER LIMITED ET AL) 1,17-19 6 January 1994 (1994-01-06) the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed in the art "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 6 September 1999 20/09/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Allard, M

INTERNATIONAL SEARCH REPORT

Ir national application No.

PCT/EP 99/03644

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 19 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 19 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition. 2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by daims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

formation on patent family members

Intern 'anal Application No PC1, EP 99/03644

Patent document Publication Patent family Publication cited in search report date member(s) date US 4722929 Α 02-02-1988 DE 3347290 A 11-07-1985 ΑU 3721184 A 04-07-1985 DD 231355 A 24-12-1985 DK 610284 A 29-06-1985 ĘΡ 0149200 A 24-07-1985 FI 845117 A 29-06-1985 GR 82597 A 29-04-1985 JP 60172980 A 06-09-1985 PT 79755 A,B 01-01-1985 EP 352960 Α 31-01-1990 AT 113284 T 15-11-1994 ΑU 613503 B 01-08-1991 ΑU 3821089 A 25-01-1990 DE 68919010 D 01-12-1994 DK 363689 A 26-01-1990 JP 2088577 A 28-03-1990 PT 08-02-1990 91231 A,B US 5073559 A 17-12-1991 WO 9400453 Α 06-01-1994 AT 143961 T 15-10-1996 CA 2139109 A,C 06-01-1994 DE 69305344 D 14-11-1996 DE 69305344 T 20-02-1997 DK 647227 T 18-11-1996 ΕP 0647227 A 12-04-1995 ES 2092316 T 16-11-1996 FI 946083 A 23-12-1994 GR 3021878 T 31-03-1997 JP 2544903 B 16-10-1996 JΡ 7504681 T 25-05-1995 US 5734053 A 31-03-1998