Theorem 3.14. An operator A on $C_o(X)$ is the generator of a positive group $(T(t))_{t\in\mathbb{R}}$ if and only if there exist a derivation δ on $C_o(X)$ which is the generator of a group, a function $h\in C^b(X)$ and $p\in C^b(X)$ satisfying $\inf_{x\in X}p(x) \geq 0$ such that

(3.18)
$$A = V \delta V^{-1} + h$$

where $V : C_{O}(X) \rightarrow C_{O}(X)$ is given by $Vf = p \cdot f$. In that case one has

(3.19)
$$(T(t)f)(x) = [p(x)/p(\phi_t(x))] \cdot (\exp \int_0^t h(\phi(s,x))ds) \cdot f(\phi_t(x))$$

for all $f \in C_{O}(X)$, $t \in \mathbb{R}$, $x \in X$.

Note: (3.18) means that $D(A) = \{ f : V^{-1}f \in D(\delta) \}$ and $Af = V\delta V^{-1}f + hf$.

<u>Proof.</u> Assume that A is given by (3.18). Since V is a lattice isomorphism, it is clear that $V^{-1}\delta V$ generates a positive group; and consequently, A does so as well (cf. the proof of Theorem 3.5). Conversely, let $(T(t))_{t\in\mathbb{R}}$ be a positive group with generator A. By Prop. 3.9 and Lemma 3.12 we know that there exist a continuous flow ϕ , 0 << p \in C^b(X) and h \in C^b(X) such that (3.19) holds. Let δ be the generator of the automorphism group defined by ϕ . We have to show that (3.18) holds. As in Theorem 3.5 one sees that δ + h generates the group $(S(t))_{t\in\mathbb{R}}$ given by $(S(t))_{t\in\mathbb{R}}$ given by

 $(S(t)f)(x) = \exp\left(\int_0^t h(\phi(s,x))ds\right) \cdot f(\phi_t(x)) . \text{ Hence } \\ V\delta V^{-1} + h = V(\delta + h)V^{-1} \text{ generates } (VS(t)V^{-1})_{t \in \mathbb{R}} = (T(t))_{t \in \mathbb{R}} . \text{ This is } \\ (3.18).$

Since every generator of a positive group is the perturbation of a derivation, we now look for examples of derivations which generate a group.

Example 3.15. Let $X=\mathbb{R}^n$. Consider a function $f\in C^1(\mathbb{R}^n,\mathbb{R}^n)$ such that $\sup_{x\in\mathbb{R}^n}\|Df(x)\|<\infty$ where $Df(x)\in L(\mathbb{R}^n)$ denotes the derivative of f in x. Then there exists a continuous flow ϕ on \mathbb{R}^n such that

(3.20)
$$\frac{\partial}{\partial t} \phi(t,x) = F(\phi(t,x))$$
 for all $t \in \mathbb{R}$, $x \in \mathbb{R}^n$.

Consider the automorphism group $(T_O(t))_{t \in \mathbb{R}}$ given by $T_O(t)f = f \circ \phi_t$