Reporte de Simulación: Localización de Robot Móvil

Juan Paulo Salgado Arvizu A01737223

April 24, 2025

Reactivo 1: Integración Numérica de la Pose (Modelo de Markov)

Condiciones iniciales: Posición (-1, -5), orientación 0° .

a) Tabla de resultados por paso

Paso	X (m)	Y (m)	θ (rad)
1	-1.000	-5.000	0.000
2	0.000	-5.000	1.047
3	0.500	-4.134	1.047
4	0.500	-4.134	2.094
5	0.000	-3.268	2.094
6	0.000	-3.268	3.142
7	-1.000	-3.268	3.142
8	-1.000	-3.268	4.189
9	-1.500	-4.134	4.189
10	-1.500	-4.134	5.236
11	-1.000	-5.000	5.236
12	-1.000	-5.000	6.283

Table 1: Pose del robot en cada paso del modelo Markov.

b) Pose final

- x = -1.0000 m
- y = -5.0000 m
- $\phi = 6.2832 \text{ rad } (\approx 0^{\circ})$

c) Gráficas de simulación

Figure 1: Simulación 3D de trayectoria del robot - Reactivo 1.

Figure 2: Gráficas de pose $x(t),\,y(t)$ y $\phi(t)$ - Reactivo 1.

Figure 3: Velocidades angulares de ruedas $\omega_L,\,\omega_R$ - Reactivo 1.

Reactivo 2: Trayectoria con Entradas de Sensores

Parámetros: $r=0.1~\mathrm{m},\,L=0.4~\mathrm{m},\,\Delta t=1~\mathrm{s}.$

a) Trayectoria simulada

Figure 4: Trayectoria simulada del robot - Reactivo 2.

Figure 5: Velocidades lineal v(t) y angular $\omega(t)$ - Reactivo 2.

b) Tabla completa de resultados

t (s)	v (m/s)	w (rad/s)	ω_R	ω_L	x (m)	y (m)	θ (°)
0	0.314	0.720	4.582	1.701	0.000	0.000	0.00
1	0.356	0.605	4.773	2.353	0.236	0.207	41.27
2	0.448	0.404	5.291	3.676	0.323	0.553	75.93
3	0.541	0.276	5.960	4.856	0.252	0.996	99.06
4	0.605	0.218	6.490	5.618	0.025	1.486	114.88
5	0.605	-0.218	-1.168	13.735	-0.342	1.933	102.38
6	0.541	-0.276	-1.364	13.472	-0.574	2.378	86.55
7	0.448	0.404	5.960	4.856	-0.646	2.723	60.61
8	0.356	0.605	5.291	3.676	-0.559	3.070	25.95
9	0.314	0.720	4.773	2.353	-0.323	3.277	-15.32
10	0.356	0.605	4.582	1.701	-0.086	3.070	-56.60

Table 2: Resultados simulados usando entradas reales.

Reactivo 3: Trayectoria Circular de Radio 20 m

Condiciones: R = 20 m, v = 1 m/s.

a) Velocidades calculadas:

- $\omega_L = 9.9 \text{ rad/s}$
- $\omega_R = 10.1 \text{ rad/s}$

b) Simulación y gráficas

Figure 6: Trayectoria circular simulada - Reactivo 3.

Figure 7: Velocidades angulares $\omega_L,\,\omega_R$ - Reactivo 3.

c) Tabla de velocidades constantes por tiempo

t (s)	$\omega_R \; (\mathrm{rad/s})$	$\omega_L \; ({\rm rad/s})$
0	10.1	9.9
5	10.1	9.9
10	10.1	9.9
15	10.1	9.9
20	10.1	9.9
25	10.1	9.9
30	10.1	9.9
35	10.1	9.9
40	10.1	9.9
45	10.1	9.9
50	10.1	9.9
55	10.1	9.9
60	10.1	9.9
65	10.1	9.9
70	10.1	9.9
75	10.1	9.9
80	10.1	9.9
85	10.1	9.9
90	10.1	9.9
95	10.1	9.9
100	10.1	9.9
105	10.1	9.9
110	10.1	9.9
115	10.1	9.9
120	10.1	9.9
125	10.1	9.9

Table 3: Velocidades angulares requeridas para mantener una trayectoria circular uniforme.

Conclusiones

A través de la implementación y simulación del modelo cinemático diferencial se pudieron abordar tres escenarios fundamentales para la localización de un robot móvil:

- Reactivo 1: Se comprobó la integración numérica de la pose mediante una trayectoria programada paso a paso, obteniendo la misma pose inicial al completar el ciclo.
- Reactivo 2: Se validó el modelo con datos reales de sensores, permitiendo analizar la evolución de la pose con base en señales de velocidad angular por rueda.
- Reactivo 3: Se diseñó una trayectoria circular ideal calculando las velocidades angulares necesarias para mantenerla constante, logrando simular una trayectoria suave y estable.

Estas simulaciones permiten observar el comportamiento del robot en distintas condiciones, así como comprobar la precisión de los modelos implementados.