Potential Model

akim1

February 25, 2015

The problem is formulated as follows: $\mathscr{G}_n = (V, X, Y, Z)$ where as defined in class V is the set of all nodes with edges, $X = (0,1)^{n \times n}$ and $Y = (0,1)^n$ describing the excitatory or inhibitory nature of the neuron. Z represents the orientation of the neuron discretized into four equally spaced regions starting from 0 degree to 180 degrees. $SBM_n^k = (\rho(z), \beta(z))$.

1 Potential Model of \mathcal{Z}

The simplest model of \mathscr{Z} would a uniform distribution that assigns equal probability to the four regions from 0 degree to 180 degrees. It seems that a more educated distribution can be constructed, however infeasible, by characterizing the actual orientation of all the neurons in vivo.

2 Potential Structure of $\rho(z)$ and $\beta(z)$

As described in class, $\rho \in \Delta_k$ and $\beta \in (0,1)^{k \times k}$. The simplest distribution for β would be a Bernoulli distribution. The model proposed above has no dependence on the orientation of the neurons. In the respect to the graph being studied, this would not be a useful model as we initially assumed that the connectivity of the graph has an inherent dependence on the orientation of the neurons.