

CHEAT SHEET

Famous Regularizers

Loss Type		Comments
Ordinary Least Squres	$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2$	• Squared loss • No regularization • Closed form solution: $\mathbf{w} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}y^{\top}$ $\mathbf{X} = [\mathbf{x}_1,, \mathbf{x}_n]$ $y = [y_1,, y_n]$
Ridge Regression	$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2 + \lambda \mathbf{w} _2^2$	• Squared loss • l_2 -regularization • Closed form solution: $\mathbf{w} = (\mathbf{X}\mathbf{X}^\top + \lambda \mathbb{I})^{-1}\mathbf{X}y^\top$
Lasso	$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2 + \lambda \mathbf{w} _1$	 Also known as l₁-regularization + Sparsity inducing, helps feature selection + Convex - Not strictly convex (no unique solution) - Not differentiable (at 0) Solve with (sub)-gradient descent or SVEN
Elastic Net	$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i})^{2} + a \mathbf{w} _{1} + (1 - a) \mathbf{w} _{2}^{2}$	 + Strictly convex (i.e. unique solution) + Sparsity incuding (good for feature selection) Disadvantage: Non-differentiable
Logistic Regression	$\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y(\mathbf{w}^{\top}\mathbf{x} + b)})$	 Often l₁ or l₂ regularized Solve with gradient descent. Calibrated output probabilities: P(y x) = 1/(1 + e^{-y(\mathbf{w}^{\top}x + b)})
Linear Support Vector Machine	$\min_{\mathbf{w},b} C \sum_{i=1}^{n} \max[1 - y_i(\mathbf{w}^{\top}\mathbf{w}_i + b), 0] + \mathbf{w} _2^2$	 Typically l₂ regularized (sometimes l₁) When kernelized leads to sparse solutions Kernelized version can be solved very efficiently with specialized algorithms

Computing and Information Science