

Evolution of Cloud Computing

- Distributed Computing
- Grid Computing
- Cluster Computing
- Utility Computing
- Cloud Computing

Distributed Computing

- Field of computing science that studies distributed system.
- Use of distributed systems to solve computational problems.

Distributed system

- Wikipedia
- There are several autonomous computational entities, each of which has its own local memory.
- The entities communicate with each other by message

Passing.

Example Distributed Systems

Internet

- ATM (bank) machines
- Intranets/Workgroups
- Computing landscape will soon consist of ubiquitous network-connected devices

Distributed Computing... Contd.

- Computers in a Distributed System
- Workstations: Computers used by end-users to perform computing
- Server Systems: Computers which provide resources and services
- Personal Assistance Devices: Handheld computers connected to the system via a wireless communication link.

Distributed Computing... Contd.

Common properties of Distributed Computing

- Fault tolerance
- Each node play partial role
- Resource sharing
 - Load Sharing
 - Easy to expand
 - Performance

Distributed Computing... Contd.

Why Distributed Computing?

Nature of application

Performance

- Computing intensive
 - Computation of Pi value using Monte Carlo simulation
- Data intensive
 - Facebook, LHC(Large Hadron Collider) experimental data processing.
- Robustness

Grid Computing

Pcwebopedia.com

• Grid harnesses unused processing cycles of all computers in a network for solving problems too intensive for any stand-alone machine.

IBM

- Grid computing enables the virtualization of distributed computing and data resources such as processing, network bandwidth and storage capacity to create a single system image, granting users and applications seamless access to vast IT capabilities.

Sun Microsystems

- Grid Computing is a computing infrastructure that provides dependable, consistent, pervasive and inexpensive access to computational capabilities

Grid Computing ...Contd.

Electrical Power Grid Analogy

• Electrical Power Grid	• Grid
 Users (or electrical appliances) get access to electricity through wall sockets with no care or consideration for where or how the electricity is actually generated. 	 Users (or client applications) gain access to computing resources as needed with little or no knowledge of where those resources are located or what the underlying technologies, hardware, operating system, and so on
The power grid" links together power plants of many different kinds	 "The Grid" links together computing resources and provides the mechanism needed to access them.

Grid Computing ...Contd.

When we use Grid?

- Share more than information: Data, computing power, applications in dynamic environment, multi-institutional, virtual organizations
- Efficient use of resources at many institutes. People from many institutions working to solve a common problem (virtual organisation).
- Join local communities.
- Interactions with the underneath layers must be transparent and seamless to the user.

Grid Computing...Contd.

Type of Grids

- Computational Grid: These grids provide secure access to huge pool of shared processing power suitable for high throughput applications.
- Data Grid: Data grids provide an infrastructure to support data storage, data discovery, data handling, data publication, and data manipulation of large volumes of data actually stored in various heterogeneous databases and file systems.
- Collaboration Grid: With the advent of Internet, there has been an increased demand for better collaboration.
- Network Grid: A Network Grid provides fault-tolerant and high-performance communication services. Each grid node works as a data router between two communication points, providing data-caching and other facilities to speed up the communications between such points.
- Utility Grid: This is the ultimate form of the Grid, in which not only data and computation cycles are shared but software or just about any resource is shared.

Cluster Computing

- A cluster is a type of parallel or distributed computer system, which consists of a collection of inter connected stand-alone computers working together as a single integrated computing resource.
- Key components: multiple standalone computers (PCs, Workstations, or SMPs), operating systems, highperformance interconnects, middleware, parallel programming environments, and applications.
- Clusters are usually deployed to improve speed and/or reliability over that provided by a single computer, while typically being much more cost effective than single computer the of comparable speed or reliability

Cluster Computing ... Contd.

Benefits of Clustering

- System availability
- Hardware fault tolerance
- OS and application reliability
- Scalability
- High performance

Utility Computing

• It is a service provisioning model in which a service provider makes computing resources and infrastructure management available to the customer as needed, and charges them for specific usage rather than a flat rate.

Advantage: low cost to acquire computer resources

- The word utility is used to make an analogy to other services, such as electrical power.
- This approach, sometimes known as pay-per-use

Utility Computing ...Contd.

Utility Computing?

- Pay-for-use Pricing Business Model
- Data Center Virtualization and Provisioning
- Solves Resource Utilization Problem
- Outsourcing
- Web Services Delivery
- Automation
- Risks in a UC World
 - Data Backup
 - Data Security
 - Partner Competency
 - Defining SLA
 - Getting value from charge back

Cloud Computing

US National Institute of Standards and Technology defines Computing as

• "Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."

Essential Characteristics

- On-demand self-service
- Broad network access
- Resource Pooling
- Measured Service
- Rapid elasticity

Cloud Service Models

On-Premises

IaaS Infrastructureas a Service

PaaS Platform as a Service

SaaS Software as a Service

Applications

Applications

Applications

Applications

Runtime

Runtime

Runtime

Runtime

Middleware

Middleware

Middleware

Middleware

O/S

O/S

O/S

O/S

Virtualization

Virtualization

Virtualization

Virtualization

Servers

Servers

Servers

Servers

Storage

Storage

Storage

Storage

Networking

Networking

Networking

Cloud Deployment Models

- Private Cloud
- Public Cloud
- Hybrid Cloud
- Community Cloud

Cloud and Virtualization

- Wikipedia says "Virtualization, in computing, is the creation of a virtual (rather than actual) version of something, such as a hardware platform, operating system, a storage device or network resources"
- Concept is not new.
 - Multi Programming Each Process thinks it has complete control on all of the resources.
 - Virtual Memory
 - CPU Sharing

Similarities and Differences with Multiprogramming

Multi Programming

- CPU is shared among Processes
- Memory is shared using Page Tables.

• Process knows it is being managed- uses system calls.

Virtualization

- CPU is shared among
- Oss.
- Memory is shared using
- more level of indirections.
 Multiple Page tables.
- OS may or may not know
- that it is being managed.

Virtualization Architecture

- OS assumes complete control of the underlying hardware.
- Virtualization architecture provides this illusion through a hypervisor
- Hypervisor/VMM is a software layer which:
 - Allows multiple Guest OS (Virtual Machines) to run simultaneously on a single host

 Provides hardware abstraction to the running Guest OSs and efficiently multiplexes underlying hardware resources.

Benefits of Virtualization

- Instant provisioning fast scalability
- Live Migration is possible
- Load balancing and consolidation in a Data Center is possible.
- Low downtime for maintenance
- Security and fault isolation

Cloud Storage

- Allows data stored remotely to be temporarily cached on desktop computers, mobile phones or other internet-linked devices
- Traditional storage in databases, now moving to simpler key-value stores etc.
- Cloud storage techniques
 - In-memory key-value stores (Amazon Dynamo)
 - Semi-structured data storage (Google Bigtable)
 - Application specific storage (Facebook's Haystack to store photos)
 - Caching-based optimizations to the cloud storage layer (Facebook's memcache)

Cloud Advantages

- Lower computer costs
- Improved Performance
- Reduced sofware costs
- Instant software updates
- Improved document format compatibility
- Unlimited storage capacity
- Increased data reliability
- Universal information access
- Latest version availability
- Easier group collaboration
- Device independence

Disadvantages of Cloud

- Requires a constant internet connection
- Limited Featuress
- Security

Cloud Architecture

Context: High-level Architectural Approach

Major Building Blocks of Cloud Architecture

Technical Architecture:

- Structuring according to XaaS stack
- Adopting cloud computing paradigms
- Structuring cloud services and cloud components
- Showing relationships and external endpoints
- Middleware and communication
- Management and security

Deployment Operation Architecture:

- Geo-location check (Legal issues, export control)
- Operation and Monitoring

Cloud Computing Architecture - XaaS

XaaS Stack views: Customer view vs Provider view

Microsoft Azure vs Amazon EC2

Architecture for Elasticity

Vertical Scale Up

- Add more resources to a single computation unit i.e.
 Buy a bigger box
- Move a workload to a computation unit with more resources

For small scenarios scale up is probably cheaper - code "just works"

Horizontal Scale Out

- Adding additional computation units and having them act in concert
- Splitting workload across multiple computation units
- Database partitioning

For larger scenarios scale out is the only solution 1x64 Way Server much more expensive that 64x1 Way Servers

Service Models (XaaS)

- Combination of Service-Oriented Infrastructure (SOI) and cloud computing realizes to XaaS.
- X as a Service (XaaS) is a generalization for cloudrelated services
- XaaS stands for "anything as a service" or "everything as a service"
- XaaS refers to an increasing number of services that are delivered over the Internet rather than provided locally or on-site
- XaaS is the essence of cloud computing.
- Broad network access (cloud) + resource pooling (cloud) + business-driven infrastructure on-demand (SOI) + serviceorientation (SOI) = XaaS
- Xaas fulfils all the 4 demands!

Service oriented Architecture

- It defines a way to make software components reusable using the interfaces.
 - SOA allows users to combine a large number of facilities from existing services to form applications.
 - SOA-based computing packages functionalities into a set of interoperable services, which can be integrated into different software systems belonging to separate business domains.
 - Two major roles
 - Service provider
 - Service consumer
 - Design Principles
 - Loose coupling
 - Abstraction
 - Reusability
 - Composability

Service Models (XaaS)

While cloud-based software services are maturing, cloud platform and infrastructure offerings are still in their early stages

Requirements of CSP (Cloud Service Provider)

- Increase productivity
- Increase end user satisfaction
- Increase innovation
- Increase agility

Classical Service Model

Cloud Security

Security - Basic Components

Confidentiality

Keeping data and resources hidden

Integrity

- Data integrity (integrity)
- Origin integrity (authentication)

Availability

Enabling access to data and resources

Security Attacks

- Any action that compromises the security of
- information.
- Four types of attack:
 - Interruption
 - Interception
 - Modification
 - Fabrication

Classes of Threats

- Disclosure
 - Snooping
- Deception
 - Modification, spoofing, repudiation of origin, denial of receipt
- Disruption
 - Modification
- Usurpation
 - Modification, spoofing, delay, denial of service

Policies and Mechanisms

- Policy says what is, and is not, allowed
 - This defines "security" for the site/system/etc.
- Mechanisms enforce policies
- Composition of policies
 - If policies conflict, discrepancies may create security vulnerabilities

Goals of Security

Prevention

Prevent attackers from violating security policy

Detection

Detect attackers' violation of security policy

Recovery

- Stop attack, assess and repair damage
- Continue to function correctly even if attack succeeds

Trust and Assumptions

Underlie all aspects of security

Policies

- Unambiguously partition system states
- Correctly capture security requirements

Mechanisms

- Assumed to enforce policy
- Support mechanisms work correctly

Assurance

Specification

- Requirements analysis
- How system will meet specification

Design

- Statement of desired functionality
- Implementation
 - Programs/systems that carry out design

Operational Issues

- Cost-Benefit Analysis
 - Is it cheaper to prevent or recover?
- Risk Analysis
 - Should we protect something?
 - How much should we protect this thing?
- Laws and Customs
 - Are desired security measures illegal?
 - Will people do them?

Human Issues

- Organizational Problems
 - Power and responsibility
 - Financial benefits
- People problems
 - Outsiders and insiders
 - Social engineering

Trying Together

Passive and Active Attacks

Passive attacks

 Obtain information that is being transmitted (eavesdropping).

• Two types:

- Release of message contents:- It may be desirable to prevent the opponent from learning the contents of the transmission.
- Traffic analysis:- The opponent can determine the location and identity of communicating hosts, and observe the frequency and length of messages being exchanged.
- Very difficult to detect.

Active Attacks

- Involve some modification of the data stream or the creation of a false stream.
- Four categories:
- Masquerade:- One entity pretends to be a different entity.
- **Replay:-** Passive capture of a data unit and its subsequent retransmission to produce an unauthorized effect.
- **Modification:-** Some portion of a legitimate message is altered.
- Denial of service:- Prevents the normal use of communication facilities.

Security Services

- Confidentiality (privacy)
- Authentication (who created or sent the data)
- Integrity (has not been altered)
- Non-repudiation (the order is final)
- Access control (prevent misuse of resources)
- Availability (permanence, non-erasure)
- Denial of Service Attacks
- Virus that deletes files

Role of Security

- A security infrastructure provides:
 - Confidentiality protection against loss of privacy
 - Integrity protection against data alteration/ corruption
 - Availability protection against denial of service
 - Authentication identification of legitimate users
 - Authorization determination of whether or not an operation is allowed by a certain user
 - Non-repudiation ability to trace what happened, & prevent denial of actions
 - Safety protection against tampering, damage & theft

Types of Attack

- Social engineering/phishing
- Physical break-ins, theft, and curb shopping
- Password attacks
- Buffer overflows
- Command injection
- Denial of service
- Exploitation of faulty application logic
- Snooping
- Packet manipulation or fabrication
- Backdoors

Network Security

- Determine network security policy
- Implement network security policy
- Reconnaissance
- Vulnerability scanning
- Penetration testing
- Post-attack investigation

Step 1: Determine Security Policy

- A security policy is a full security roadmap
- Usage policy for networks, servers, etc.
- User training about password sharing, password strength, social engineering, privacy, etc.
- Privacy policy for all maintained data
- A schedule for updates, audits, etc.
- The network design should reflect this policy
- The placement/protection of database/file servers
- The location of demilitarized zones (DMZs)
- The placement and rules of firewalls
- The deployment of intrusion detection systems (IDSs)

Step 2: Implementing Security Policy

- Installing and configuring firewalls
- iptables is a common free firewall configuration for Linux
- Rules for incoming packets should be created
- These rules should drop packets by default
- Rules for outgoing packets may be created
- This depends on your security policy
- Installing and configuring IDSes
- snort is a free and upgradeable IDS for several platforms
- Most IDSs send alerts to log files regularly
- Serious events can trigger paging, E-Mail, telephone

Step 3: Reconnaissance

- First, we learn about the network
- IP addresses of hosts on the network
- Identify key servers with critical data
- Services running on those hosts/servers
- Vulnerabilities on those services
- Two forms: passive and active
- Passive reconnaissance is undetectable
- Active reconnaissance is often detectable by IDS

Step 4: Vulnerability Scanning

- Many scanners will detect vulnerabilities (e.g. nessus)
- These scanners produce a risk report
- Other scanners will allow you to exploit them (e.g. metasploit)
- These scanners find ways in, and allow you to choose the payload to use (e.g. obtain a root shell, download a package)
- The payload is the code that runs once inside
- The best scanners are updateable
- For new vulnerabilities, install/write new plug-ins
- e.g. Nessus Attack Scripting Language (NASL)

Step 5: Penetration Testing

- We have identified vulnerabilities
- Now, we can exploit them to gain access
- Using frameworks (e.g. metasploit), this is as simple as selecting a payload to execute
- Otherwise, we manufacture an exploit
- We may also have to try to find new vulnerabilities
- This involves writing code or testing functions accepting user input

Step 6: Post-Attack Investigation

- Forensics of Attacks
- This process is heavily guided by laws
- Also, this is normally done by a third party
- Retain chain of evidence
- The evidence in this case is the data on the host
- The log files of the compromised host hold the footsteps and fingerprints of the attacker
- Every minute with that host must be accounted for
- For legal reasons, you should examine a low-level copy of the disk and not modify the original

Cloud Computing

- Cloud computing is a new computing paradigm, involving data and/or computation outsourcing, with
 - Infinite and elastic resource scalability
 - On demand "just-in-time" provisioning
 - No upfront cost ... pay-as-you-go
- Use as much or as less you need, use only when you want, and pay only what you use
- Clouds are still subject to traditional data confidentiality, integrity, availability, and privacy issues, plus some additional attacks

the challenges/issues ascribed to the 'cloud'/on-deman (1=not significant, 5=very significant)

Why Cloud Computing brings New Threats?

- Traditional system security mostly means keeping attackers out
- The attacker needs to either compromise the authentication/access control system, or impersonate existing users
- But cloud allows co-tenancy: Multiple independent users share the same physical infrastructure
 - → An attacker can legitimately be in the same physical machine as the target
- Customer's lack of control over his own data and application.
- Reputation fate-sharing

Gartner's Seven Cloud Computing Security Risks

Gartner:

 Cloud computing has "unique attributes that require risk assessment in areas such as data integrity, recovery and privacy, and an evaluation of legal issues in areas such as e- discovery, regulatory compliance and auditing," Gartner says

Security Risks

- Privileged User Access
- Regulatory Compliance & Audit
- Data Location
- Data Segregation
- Recovery
- Investigative Support
- Long-term Viability

Privileged User Access

- Sensitive data processed outside the enterprise brings with it an inherent level of risk
- Outsourced services bypass the "physical, logical and personnel controls" of traditional in-house deployments.
- Get as much information as you can about the people who manage your data
- "Ask providers to supply specific information on the hiring and oversight of privileged administrators, and the controls over their access," Gartner says.

Regulatory Compliance & Audit

- Traditional service providers are subjected to external audits and security certifications.
- Cloud computing providers who refuse to undergo this scrutiny are "signaling that customers can only use them for the most trivial functions," according to Gartner.
- Shared infrastructure isolation of user-specific log
- No customer-side auditing facility
- Difficult to audit data held outside organization in a cloud
 - Forensics also made difficult since now clients don't maintain data locally
- Trusted third-party auditor?

Data Location

- Hosting of data, jurisdiction?
- Data centers: located at geographically dispersed locations
- Different jurisdiction & regulations
 - Laws for cross border data flows
- Legal implications
 - – Who is responsible for complying with regulations (e.g., SOX, HIPAA, etc.)?
 - – If cloud provider subcontracts to third party clouds, will the data still be secure?

Data Segregation

- Data in the cloud is typically in a shared environment alongside data from other customers.
- Encryption is effective but isn't a cure-all. "Find out what is done to segregate data at rest," Gartner advises.
- Encrypt data in transit, needs to be decrypted at the time of processing
 - –Possibility of interception
- Secure Key Store
 - → Protect encryption keys
 - → Limit access to key stores
 - → Key backup & recoverability
- The cloud provider should provide evidence that encryption schemes were designed and tested by experienced specialists.

Recovery

- Even if you don't know where your data is, a cloud provider should tell you what will happen to your data and service in case of a disaster.
- "Any offering that does not replicate the data and application infrastructure across multiple sites is vulnerable to a total failure," Gartner says. Ask your provider if it has "the ability to do a complete restoration, and how long it will take."
- Recovery Point Objective (RPO): The maximum amount of data that will be lost following an interruption or disaster.
- Recovery Time Objective (RTO): The period of time allowed for recovery i.e., the time that is allowed to elapse between the disaster and the activation of the secondary site.
- Backup frequency
- Fault tolerance

• _

RecoveryContd.

- Backup frequency
- Fault tolerance
 - → Replication: mirroring/sharing data over disks which are located in separate physical locations to maintain consistency
 - → Redundancy: duplication of critical components of a system with the intention of increasing reliability of the system, usually in the case of a backup or fail-safe.

Investigative Support

- Investigating inappropriate or illegal activity may be impossible in cloud computing
- Monitoring
 - → To eliminate the conflict of interest between the provider and the consumer, a neural third-party organization is the best solution to monitor performance.
- Gartner warns. "Cloud services are especially difficult to investigate, because logging and data for multiple customers may be co-located and may also be spread across an everchanging set of hosts and data centers."

Long-term Viability

- "Ask potential providers how you would get your data back and if it would be in a format that you could import into a replacement application," Gartner says.
- When to switch cloud providers?
 - → Contract price increase
 - → Provider bankruptcy
 - → Provider service shutdown
 - → Decrease in service quality
 - → Business dispute
- Problem: vendor lock-in

Other Cloud Security Issues...

- Virtualization
- Access Control & Identity Management
- Application Security
- Data Life Cycle Management

Virtualization

- Components:
 - → Virtual machine (VM)
 - → Virtual machine manager (VMM) or hypervisor
- Two types:
 - Full virtualization: VMs run on hypervisor that interacts with the hardware
 - → Para virtualization: VMs interact with the host OS.
- Major functionality: resource isolation

- Hypervisor vulnerabilities:
 - → Shared clipboard technology— transferring malicious programs from VMs to host
 - → Keystroke logging: Some VM technologies enable the logging of keystrokes and screen updates to be passed across virtual terminals in the virtual machine, writing to host files and permitting the monitoring of encrypted terminal connections inside the VM.
 - Virtual machine backdoors: covert communication channel
 - → ARP Poisoning: redirect packets going to or from the other VM.

Hypervisor Risks

- → Rogue hypervisor rootkits
 - Initiate a 'rogue' hypervisor
 - Hide itself from normal malware detection systems
 - Create a covert channel to dump unauthorized code
- → External modification to the hypervisor
 - Poorly protected or designed hypervisor: source of attack
 - May be subjected to direct modification by the external intruder

Hypervisor Risks

- → VM escape
 - Improper configuration of VM
 - Allows malicious code to completely bypass the virtual environment, and obtain full root or kernel access to the physical host
 - Some vulnerable virtual machine applications: Vmchat, VMftp, Vmcat etc.
- → Denial-of-service risk

Threats:

Unauthorized access to virtual resources – loss of confidentiality, integrity, Availability

Hypervisor Risks

- → VM escape
 - Improper configuration of VM
 - Allows malicious code to completely bypass the virtual environment, and obtain full root or kernel access to the physical host
 - Some vulnerable virtual machine applications: Vmchat, VMftp, Vmcat etc.
- → Denial-of-service risk

Threats:

Unauthorized access to virtual resources – loss of confidentiality, integrity, Availability

Access Control & Identity Management

- Access control: similar to traditional in-house IT network
- Proper access control: to address CIA tenets of information
- security
- Prevention of identity theft major challenge
 - → Privacy issues raised via massive data mining
 - Cloud now stores data from a lot of clients, and can run data mining algorithms to get large amounts of information on clients
- Identity Management (IDM) authenticate users and services based on credentials and characteristics

Application Security

- Cloud applications Web service based
- Similar attacks:
 - > **Injection attacks:** introduce malicious code to change the course of execution
 - XML Signature Element Wrapping: By this attack, the original body of an XML message is moved to a newly inserted wrapping element inside the SOAP header, and a new body is created.
 - Cross-Site Scripting (XSS): XSS enables attackers to inject client-side script into Web pages viewed by other users to bypass access controls.
 - Flooding: Attacker sending huge amount of request to a certain service and causing denial of service.
 - > **DNS poisoning and phishing:** browser-based security issues
 - Metadata (WSDL) spoofing attacks: Such attack involves malicious reengineering of Web Services' metadata description
- Insecure communication channel

Data Life Cycle Management

- Data security
 - → Confidentiality:
 - Will the sensitive data stored on a cloud remain confidential?
 - Will cloud compromise leak confidential client data (i.e., fear of loss of control over data)
 - Will the cloud provider itself be honest and won't peek into the data?
 - → Integrity:
 - How do I know that the cloud provider is doing the computations correctly?
 - How do I ensure that the cloud provider really stored my data without tampering with it?

Data Life Cycle Management ... Contd.

- Availability
 - → Will critical systems go down at the client, if the provider is attacked in a Denial of Service attack?
 - → What happens if cloud provider goes out of business?
- Data Location
 - All copies, backups stored only at location allowed by contract, SLA and/or regulation
- Archive
- Access latency

Case Study

- Research Article
 - → Hey, You, Get Off of My Cloud! Exploring Information Leakage in Third-Party Compute Clouds. by Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. In Proceedings of CCS 2009, pages 199–212. ACM Press, Nov. 2009.
 - → First work on cloud cartography
 - Attack launched against commercially available "real" cloud (Amazon EC2)
 - Claims up to 40% success in co-residence with target VM

New Risks in Cloud

Trust and dependence

- → Establishing new trust relationship between customer and cloud provider
- Customers must trust their cloud providers to respect the privacy of their data and integrity of their computations
- Security (multi-tenancy)
 - → Threats from other customers due to the subtleties of how physical resources can be transparently shared between virtual machines (VMs)

Multi-Tenancy

- Multiplexing VMs of disjoint customers upon the same physical hardware
 - → Your machine is placed on the same server with other customers
 - → Problem: you don't have the control to prevent your instance from being co-resident with an adversary
- New risks
 - → Side-channels exploitation
 - Cross-VM information leakage due to sharing of physical resource (e.g., CPU's data caches)
 - Has the potential to extract RSA & AES secret keys
 - → Vulnerable VM isolation mechanisms
 - Via a vulnerability that allows an "escape" to the hypervisor
 - → Lack of control who you're sharing server space

Attack Model

- Motivation
 - → To study practicality of mounting cross-VM attacks in existing third-party compute clouds
- Experiments have been carried out on real laaS cloud service provider (Amazon EC2)
- Two steps of attack:
 - Placement: adversary arranging to place its malicious VM on the same physical machine as that of the target customer
 - Extraction: extract confidential information via side channel attack

Threat Model

- Assumptions of the threat model:
 - → Provider and infrastructure to be trusted
 - Do not consider attacks that rely on subverting administrator functions
 - → Do not exploit vulnerabilities of the virtual machine monitor and/or other software
 - → Adversaries: non-providers-affiliated malicious parties
 - → Victims: users running confidentiality-requiring services in the cloud
- Focus on new cloud-related capabilities of the attacker and implicitly expanding the attack surface

Threat Model (Contd).

- Like any customer, the malicious party can run and control many
- instances in the cloud
 - → Maximum of 20 instances can be run parallel using an Amazon EC2 account
- Attacker's instance might be placed on the same physical hardware as potential victims
- Attack might manipulate shared physical resources to learn otherwise confidential information
- Two kinds of attack may take place:
 - → Attack on some known hosted service
 - → Attacking a particular victim's service

Addresses the Following...

- Q1: Can one determine where in the cloud infrastructure an instance is located?
- Q2: Can one easily determine if two instances are co-resident on the same physical machine?
- Q3: Can an adversary launch instances that will be co-resident with other user's instances?
- Q4: Can an adversary exploit cross-VM information leakage once co- resident?

Amazon EC2 Service

- Scalable, pay-as-you-go compute capacity in the cloud
- Customers can run different operating systems within a virtual machine
- Three degrees of freedom: instance-type, region, availability zone
- Different computing options (instances) available
 - → m1.small, c1. medium: 32-bit architecture
 - → m1.large, m1.xlarge, c1.xlarge: 64-bit architecture
- Different regions available
 - → US, EU, Asia
- Regions split into availability zones
 - → In US: East (Virginia), West (Oregon), West (Northern California)
 - → Infrastructures with separate power and network connectivity
- Customers randomly assigned to physical machines based on their instance, region, and availability zone choices

Amazon EC2 Service(Contd).

- Xen hypervisor
 - → Domain0 (Dom0): privileged virtual machine
 - Manages guest images
 - Provisions physical resources
 - Access control rights
 - Configured to route packets for its guest images and reports itself as a hop in traceroutes.
 - → When an instance is launched, it is assigned to a single physical machine for its lifetime

Amazon EC2 Service(Contd).

- Each instance is assigned internal and external IP addresses and domain names
 - → External IP: public IPv4 address [IP: 75.101.210.100/domain name: ec2-75-101-210-100.compute-1.amazonaws.com]
 - → Internal IP: RFC 1918 private address [IP: 10.252.146.52/domain name: domU-12-31-38-00-8D-C6.compute-1.internal]
- Within the cloud, both domain names resolve to the internal IP address
- Outside the cloud, external name is mapped to the external IP address

Q1: Cloud Cartography

- Instance placing is not disclosed by Amazon but is needed to launch co- residency attack
- Map the EC2 service to understand where potential targets are located in the cloud
- Determine instance creation parameters needed to attempt establishing co-residence of an adversarial instance
- Hypothesis: different availability zones and instance types correspond to different IP address ranges

Network Probing

- Identify public servers hosted in EC2 and verify co-residence
- Open-source tools have been used to probe ports (80 and 443)
 - → nmap perform TCP connect probes (attempt to complete a 3-way hand-shake between a source and target)
 - hping perform TCP SYN traceroutes, which iteratively sends TCP SYN packets with increasing TTLs, until no ACK is received
 - → wget used to retrieve web page

Network Probing ...Contd.

- External probe: probe originating from a system outside EC2 and has an EC2 instance as destination
- Internal probe: originates from an EC2 instance, and has destination another EC2 instance
- Given an external IP address, DNS resolution queries are used to determine:
 - → External name
 - → Internal IP address

Survey Public Servers on EC2

- Goal: to enable identification of the instance type and availability zone of one or more potential targets
- WHOIS: used to identify distinct IP address prefixes associated with EC2
- EC2 public IPs: /17, /18, /19 prefixes
 - → 57344 IP addresses
- Use external probes to find responsive IPs:
 - → Performed TCP connect probe on port 80
 - 11315 responsive IPs
 - → Followed up with wget on port 80
 - 9558 responsive IPs
 - → Performed a TCP scan on port 443
 - 8375 responsive IPs
- Used DNS lookup service
 - Translate each public IP address that responded to either the port 80 or 443 scan into an internal EC2 address

Instance Placement Parameters

- EC2's internal address space is cleanly partitioned between availability zones
 - → Three availability zone; five instance-type/zone
 - → 20 instances launched for each of the 15 availability zone/instance type pairs from a particular account (Say Account 4)

- Samples from each zone are assigned IP addresses from disjoint portions of the observed internal address space
- Assumption: internal IP addresses are statically assigned to physical machines
 - To ease out IP routing
- Availability zones use separate physical infrastructure

Instance Placement Parameters...Contd.

100 instances have been launched in Zone 3 using two different accounts: A & B (39 hours after terminating the Account A instances)

- Of 100 Account A Zone 3 instances
 - → 92 had unique /24 prefixes
 - → Four /24 prefixes had two instances each
- Of 100 Account B Zone 3 instances
 - → 88 had unique /24 prefixes
 - → Six of the /24 prefixes had two instances each
- A single /24 had both an m1.large and m1.xlarge instance
- Of 100 Account B IP's, 55 were repeats of IP addresses assigned to instances for Account A

Q2: Determining Co-residence

- Network-based co-residency checks: instances are likely to be coresident if they have-
 - → Matching Dom0 IP address: determine an uncontrolled instance's Dom0 IP by performing a TCP SYN traceroute to it from another instance and inspect the last hop
 - → Small packet round-trip times: 10 probes were performed and the average is taken
 - → Numerically close internal IP addresses (e.g., within 7): the same Dom0 IP will be shared by instances with contiguous sequence of internal IP addresses

Verifying Co-residency Check

- If two (under self-control) instances can successfully transmit via the covert channel, then they are co-resident, otherwise not
- Experiment: hard-disk-based covert channel
 - → To send a 1, sender reads from random locations on a shared volume, to send a 0 sender does nothing
 - → Receiver times reading from a fixed location on the disk: longer read times mean a 1 is set, shorter a 0
- 3 m1.small EC2 accounts: control, victim, probe
 - → 2 control instances in each of 3 availability zones, 20 victim and 20 probe instances in Zone 3

Verifying Co-residency Check... (Contd.)

- Determine Dom0 address for each instance
- For each ordered pair (A, B) of 40 instances, perform coresidency checks
- After 3 independent trials, 31 (potentially) co-resident pairs have been identified - 62 ordered pairs
- 5 bit message from A to B was successfully sent for 60 out of 62 ordered pairs

Effective Co-residency Check

- For checking co-residence with target instances:
 - → Compare internal IP addresses to see if they are close
 - → If yes, perform a TCP SYN traceroute to an open port on the target and see if there is only a single hop (Dom0 IP)
 - Check requires sending (at most) two TCP SYN packets
 - No full TCP connection is established
 - Very "quiet" check (little communication with the victim)

Q3: Causing Co-residence

- Two strategies to achieve "good" coverage (co-residence with a good fraction of target set)
 - → Brute-force placement:
 - * run numerous probe instances over a long period of time and see how many targets one can achieve co-residence with.
 - * For co-residency check, the probe performed a wget on port 80 to ensure the target was still serving web pages
 - * Of the 1686 target victims, the brute-force probes achieved coresidency with 141 victim servers (8.4% coverage)
 - Even a naïve strategy can successfully achieve co-residence against a not-so-small fraction of targets
 - → Target recently launched instances:
 - take advantage of the tendency of EC2 to assign fresh instances to small set of machines

Leveraging Placement Locality

- Placement locality
 - → Instances launched simultaneously from same account do not run on the same physical machine
 - → Sequential placement locality: exists when two instances run sequentially (the first terminated before launching the second) are often assigned to the same machine
 - → Parallel placement locality: exists when two instances run (from distinct accounts) at roughly the same time are often assigned to the same machine.
- Instance flooding: launch lots of instances in parallel in the appropriate availability zone and of the appropriate type

Leveraging Placement Locality ...Contd.

- Experiment
- Single victim instance is launched
- Attacker launches 20 instances within 5 minutes
- Perform co-residence check
- – 40% of the time the attacker launching just 20 probes achieves co-residence against a specific target instance

Q4: Exploiting Co-residence

- Cross-VM attacks can allow for information leakage
- How can we exploit the shared infrastructure?
 - Gain information about the resource usage of other instances
 - Create and use covert channels to intentionally leak information from one instance to another
 - Some applications of this covert channel are:
 - Co-residence detection
 - * Surreptitious detection of the rate of web traffic a coresident site receives
 - Timing keystrokes by an honest user of a co-resident instance

Exploiting Co-residence...Contd.

- Measuring cache usage
 - → Time-shared cache allows an attacker to measure when other instances are experiencing computational load
 - → Load measurement: allocate a contiguous buffer B of b bytes, s is cache line size (in bytes)
 - Prime: read B at s-byte offsets in order to ensure that it is cached.
 - Trigger: busy-loop until CPU's cycle counter jumps by a large value
 - Probe: measure the time it takes to again read B at s-byte offset
 - → Cache-based covert channel:
 - Sender idles to transmit a 0 and frantically accesses memory to transmit a 1
 - Receiver accesses a memory block and observes the access latencies
 - High latencies are indicative that "1" is transmitted

Exploiting Co-residence...Contd.

Load-based co-residence check

- → Co-residence check can be done without network- base technique
- Adversary can actively cause load variation due to a publicly-accessible service running on the target
- → Use a priori knowledge about load variation
- → Induce computational load (lots of HTTP requests) and observe the differences in load samples

Figure 5: Results of executing 100 Prime+Trigger+Probe cache timing measurements for three pairs of m1.small instances, both when concurrently making HTTP get requests and when not. Instances in Trial 1 and Trial 2 were co-resident on distinct physical machines. Instances in Trial 3 were not co-resident.

 Instances in Trial 1 and Trial 2 were co-resident on distinct physical machines; instances in Trial 3 were not co-resident

Exploiting Co-residence...Contd.

Estimating traffic rates

- → Load measurement might provide a method for estimating the number of visitors to a co-resident web server
- It might not be a public information and could be damaging
- → Perform 1000 cache load measurements in which
 - > no HTTP requests are sent

HTTP requests sent at a rate of (i) 50 per minute, (ii) 100 per minute, (iii) 200 per minu

Exploiting Co-residence...Contd.

Keystroke timing attack

- → The goal is to measure the time between keystrokes made by a victim typing a password (or other sensitive information)
- Malicious VM can observe keystroke timing in real time via cache-based load measurements
- → Inter-keystroke times if properly measures can be used to perform recovery of the password
- → In an otherwise idle machine, a spike in load corresponds to a letter being typed into the co-resident VM's terminal
- → Attacker does not directly learn exactly which keys are pressed, the attained timing resolution suffices to conduct the password-recovery attacks on SSH sessions

Preventive Measures

- Mapping
- Use a randomized scheme to allocate IP addresses
- Block some tools (nmap, traceroute)
- Co-residence checks
- Prevent identification of Dom0
- Co-location
- Not allow co-residence at all
 - Beneficial for cloud user
 - Not efficient for cloud provider
- Information leakage via side-channel
- - No solution

Summary

- New risks from cloud computing
- Shared physical infrastructure may and most likely will cause problems
- Exploiting software vulnerabilities not addressed here
- Practical attack performed
- Some countermeasures proposed

Security Issues in Cloud Computing

- Unique security features:
 - → Co-tenancy
 - → Lack of control on outsourced data and application
- General concerns among cloud customers:
 - → Inadequate policies and practices
 - Insufficient security controls
- Customers use cloud services to serve their clients
- Need to establish trust relationships
- Beneficial to both stakeholders

Infrastructure as a Service	Platform as a Service	Software as a Service
Application	Application	Application
Data	Data	Data
Runtime	Runtime	Runtime
Middleware	Middleware	Middleware
Operating System	Operating System	Operating System
Virtualization	Virtualization	Virtualization
Servers	Servers	Servers
Storage	Storage	Storage
Networking	Networking	Networking

SaaS Cloud-based Collaboration

- APIs for sharing resources/information
 - Service consumer(customers): human users, applications, organizations/domains, etc.
 - Service provider: SaaS cloud vendor
- SaaS cloud-centric collaboration: valuable and essential
 - Data sharing
 - Problems handled: inter-disciplinary approach
- Common concerns:
 - Integrity of data, shared across multiple users, may be compromised
 - Choosing an "ideal" vendor

SaaS Cloud-based Collaboration

- Types of collaboration in multi-domain/cloud systems :
 - Tightly-coupled or federated
 - Loosely-coupled
- Challenges: securing loosely-coupled collaborations in cloud environment
 - Security mechanisms: mainly proposed for tightly-coupled systems
 - Restrictions in the existing authentication/authorization mechanisms in clouds

Motivations and Challenges

- SaaS cloud delivery model: maximum lack of control
- No active data streams/audit trails/outage report
 - Security: Major concern in the usage of cloud services
- Broad scope: address security issues in SaaS clouds
- Cloud marketplace: rapid growth due to recent advancements
- Availability of multiple service providers
 - Choosing SPs from SLA guarantees: not reliable
 - → Inconsistency in service level guarantees
 - Non-standard clauses and technical specifications
- Focus: selecting an "ideal" SaaS cloud provider and address the security issues

Motivations and Challenges

- Online collaboration: popular
- Security issue: unauthorized disclosure of sensitive information
 - Focus: selecting an ideal SaaS cloud provider and secure the
- collaboration service offered by it
- Relevance in today's context: loosely-coupled collaboration
 - Dynamic data/information sharing
- Final goal (problem statement): selecting an ideal SaaS cloud provider and securing the loosely-coupled collaboration in its environment

Objectives

- A framework (SelCSP) for selecting a trustworthy and competent collaboration service provider.
- Select requests (for accessing local resources) from anonymous users, such that both access risk and security uncertainty due to information sharing are kept low.
- Formulate a heuristic for solving the IDRM problem, such that minimal excess privilege is granted
- A distributed secure collaboration framework, which uses only local information to dynamically detect and remove access conflicts.

Selection of Trustworthy and Competent SaaS Cloud Provider for Collaboration

Trust Models in Cloud

- Challenges
 - Most of the reported works have not presented mathematical formulation or validation of their trust and risk models
 - Web service selection based on QoS and trust are available
 - → Select resources (e.g. services, products, etc.) by modeling their performance
- Objective: Model trust/reputation/competence of service provider

Service Level Agreement (SLA) for Clouds

- Challenges:
 - Majority of the cloud providers guarantee "availability" of services
 - Consumers not only demand availability guarantee but also other performance related assurances which are equally business critical
 - Present day cloud SLAs contain non-standard clauses regarding assurances and compensations following a violation
- Objective: Establish a standard set of parameters for cloud SLAs, since it reduces the perception of risk in outsourced services

SelCSP Framework

SelCSP Framework- Overview

Recommending Access Requests from Anonymous Users for Authorization

Risk-based Access Control (RAC)

- RAC: Gives access to subjects even though they lack proper permissions
 - Goal: balance between access risk and security uncertainty due to information sharing
 - Flexible compared to binary MLS
- Challenges
 - Computing security uncertainty: not addressed
 - Authorization in existing RAC system: based on risk threshold and operational need.
 - → Operational need: not quantified.
 - → Discards many requests which potentially maximizes information sharing

Distributed RAC using Fuzzy Inference System

Number of Pareto-optimal Sets Selected

Mapping of Authorized Permissions into Local Roles

Inter-Domain Role Mapping (IDRM)

- Finds a minimal set of role which encompasses the requested permission set.
 - No polynomial time solution
 - Greedy search-based heuristics: suboptimal solutions
- Challenges:
 - There may exist multiple minimal role sets
 - There may not exist any role set which exactly maps all permissions
- Two variants of IDRM proposed: IDRM-safety, IDRM-availability
- Objective: formulate a novel heuristic to generate better solution for the IDRM-availability problem.
- Minimize the number of additional permissions

Distributed Role Mapping Framework

Dynamic Detection and Removal of Access Policy Conflicts

Access Conflicts

Objective

- Dynamic detection of conflicts to address security issue
- Removal of conflicts to address availability issue
- Proposed: distributed secure collaboration framework

Conflict Detection

Detection of inheritance conflict

- Necessary condition: at least one exit role
- Sufficient condition: current entry role is senior to at least one exit role

Detection of SoD constraint violation

- Necessary condition: at least one exit role
- Sufficient condition: current entry role and at least one exit role forms conflicting pair

- Cyclic Inheritance
- Two cases arise:
 - Exactly matched role set exists
 - RBAC hybrid hierarchy
 - → I-hierarchy, A-hierarchy
 - Replacing IA-relation with A-relation between exit role in previous domain and entry role in current domain
 - No-exactly matched role set exists
 - Introduce a virtual role

Cyclic Inheritance: Inheritance Conflict Removal Rule for Exactly Matched Role

Cyclic Inheritance: Inheritance Conflict Removal Rule for No-Exactly Matched Role

- SoD Constraint Violation
- Two cases: similar to removal of inheritance conflict
 - Additional constraint: identifying conflicting permission between collaborating role and entry role in current domain
 - Conflicting permission
 - Objects are similar
 - → Hierarchical relation exists between access modes
- Remove conflicting permission from permission set of collaborating role

SoD Constraint Violation: SoD Conflict Removal Rule for Exactly Matched Role

SoD Constraint Violation: SoD Conflict Removal Rule for No-Exactly Matched Role

Summary

- Secure Collaboration SaaS Clouds: A Typical Approach
 - Selection of Trustworthy and Competent SaaS Cloud Provider for Collaboration
 - Recommending Access Requests from Anonymous Users for Authorization
 - Mapping of Authorized Permissions into Local Roles
 - Dynamic Detection and Removal of Access Policy Conflicts