Supplementary material for 'Gaussian process modulated renewal processes'

Vinayak Rao

Gatsby Computational Neuroscience Unit University College London vrao@gatsby.ucl.ac.uk

Yee Whye Teh

Gatsby Computational Neuroscience Unit University College London ywteh@gatsby.ucl.ac.uk

We first prove equation (4) of the main text for a general nonstationary hazard function $h(\tau, t)$.

Proposition S.1 For a renewal process with nonstationary hazard function $h(\tau, t)$, the waiting time τ given that the last event occurred at time t_{prev} is given by

$$g(\tau|t_{prev}) = h(\tau, t_{prev} + \tau) \exp\left(-\int_0^\tau h(u, t_{prev} + u) du\right)$$
 (1)

Proof. By definition (see equation (2) in the main text),

$$h(\tau, t_{prev} + \tau) = \frac{g(\tau | t_{prev})}{1 - \int_0^\tau g(u | t_{prev}) du}$$
 (2)

Let $y = 1 - \int_0^{\tau} g(u|t_{prev})du$. It follows that

$$h(\tau, t_{prev} + \tau) = \frac{-dy/d\tau}{y}$$
, so that (3)

$$y = \exp\left(-\int_0^\tau h(u, t_{prev} + u)du\right) \tag{4}$$

Substituting back for y and differentiating w.r.t. τ , we get equation (1).

We now prove proposition 2 from the main text.

Proposition 2 For any $\Omega \geq \max_{t,\tau} h(\tau)\lambda(t)$, F is a sample from a modulated renewal process with hazard $h(\cdot)$ and modulating intensity $\lambda(\cdot)$.

Proof. We need to show that $F_i - F_{i-1} \sim g$. Denote by E_i^* the restriction of E to the interval (F_{i-1}, F_i) , not including boundaries. Note that

$$P(F_i, E_i^* | F_{i-1}) = \left(\prod_{e \in E_i^*} 1 - \frac{\lambda(e)h(e - F_{i-1})}{\Omega} \right) \frac{\lambda(F_i)h(F_i - F_{i-1})}{\Omega}$$
 (5)

Defining $n = |E_i^*|$ and $t_0 = F_{i-1}$, we have

$$P(F_{i}, n | F_{i-1}) = \frac{\lambda(F_{i})h(F_{i} - F_{i-1})}{\Omega}$$

$$\int_{F_{i-1}}^{F_{i}} \int_{t_{1}}^{F_{i}} \dots \int_{t_{n-1}}^{F_{i}} dt_{1} dt_{2} \dots dt_{n} \left(\prod_{j=1}^{n} \Omega \exp{-\Omega(t_{j} - t_{j-1})} \right) \left(\prod_{j=1}^{n} 1 - \frac{\lambda(t_{j})h(t_{j} - F_{i-1})}{\Omega} \right) (\Omega \exp{-(\Omega(F_{i} - t_{n}))})$$

$$= \lambda(F_{i})h(F_{i} - F_{i-1})\exp{(-\Omega(F_{i} - F_{i-1}))} \int_{F_{i-1}}^{F_{i}} \int_{t_{1}}^{F_{i}} \dots \int_{t_{n}}^{F_{i}} dt_{1} dt_{2} \dots dt_{n} \left(\prod_{j=1}^{n} (\Omega - \lambda(t_{j})h(t_{j} - F_{i-1})) \right)$$

$$= \lambda(F_{i})h(F_{i} - F_{i-1})\exp{(-\Omega(F_{i} - F_{i-1}))} \frac{1}{n!} \left(\int_{F_{i-1}}^{F_{i}} dt (\Omega - \lambda(t)h(t - F_{i-1})) \right)^{n}$$

$$(6)$$

Marginalizing out n, we then have

$$P(F_{i}|F_{i-1}) = \lambda(t)h(F_{i} - F_{i-1})\exp\left(-\Omega(F_{i} - F_{i-1})\right) \left(\sum_{n=0}^{\infty} \frac{1}{n!} \left(\int_{F_{i-1}}^{F_{i}} dt \left(\Omega - \lambda(t)h(t - F_{i-1})\right)\right)^{n}\right)$$

$$= \lambda(F_{i})h(F_{i} - F_{i-1})\exp\left(-\int_{F_{i-1}}^{F_{i}} \lambda(t)h(t - F_{i-1})dt\right)$$
(8)

Comparing equation (4) of the main text, we have the desired result.