

Sybil Detection in Social-Activity Networks: Modelling, Algorithm and Evaluations

Xiaoying Zhang, Xie Hong, John C.S. Lui Dept. of Computer Science & Engineering The Chinese University of Hong Kong

Online Social Networks (OSNs)--Popular & Important

Millions Fake Users (Sybils) exist on OSNs

FACEBOOK SOCIAL

Facebook has disabled almost 1.3 billion fake accounts over the past six months

Facebook will begin publishing more data about how many posts it takes down.

By Kurt Wagner and Rani Molla | May 15, 2018, 10:00am EDT

Technology

(\) 9 July 2018

Twitter 'shuts down millions of fake accounts'

Threats of Sybils

TECHNOLOGY

How Twitter Bots Are Shaping the Election

Between the first two presidential debates, a third of pro-Trump tweets and nearly a fifth of pro-Clinton tweets came from automated accounts.

DOUGLAS GUILBEAULT AND SAMUEL WOOLLEY NOV 1 2016

Unofficial #RepublicTv satirical website. 100% #Fake, #Satire, #Parody, All tweets

are imaginary and fake.

(i) Mumbai India

@ republicty.com

DOW THE AP @republic

Official handle of India's only independent news venture. Republic is independent, Republic is global, Republic is your movement. Join us.

Can social media influence financial markets?

This article is published in collaboration with The Conversation Costas Milas Scottish financial trader James Alan Craig has been charged in the US for

allegedly using Twitter to manipulate share prices. According to the US Department of Justice, the 62 year old, from Dunrapit in Dumfries and Galloway. caused shareholders to lose more than \$1.6m (£1.1m) after allegedly spreading. "fraudulent" information about companies on the social network. According to

零

Existed Sybil detection methods

Feature-based methods

Personal information, tweeting behavior Clustering coefficient, common neighbors ML Classifiers SVM Logistic regression Deep neural network

Detect only sybils with known patterns!

Existed Sybil detection methods

Graph-based methods

Limited attack edges

Limited-attack-edge assumption: honest users seldom make friends with sybils.

Techniques

- Random walk (SybilRank [NSDI'12])
- Fundamental matrix (SybilWalk [DSN'17])
- Belief propagation (SybilBelief [TIFS'2014],SybilScar[I NFCOM' 2017])

•

Inefficiency of Previous Attack Model

Limited attack edges

- Limited-attack-edge assumption may not hold!
 - Sybils can easily befriend with honest users, thus large attack edges exist (Twitter games[ACSAC'14], LinkFarm[WWW'12]).

Breaking the assumption leads to low accuracy.

Our objective

• What's the realistic attack model?

 How to design efficient algorithms to detect sybils under realistic attack model?

Contributions

Realistic Attack

Model

 The Social-Activity Attack Model

Efficient Detection

Algorithm

Sybil_SAN

Theoretical

Analysis

Convergence &Sensitivity analysis

Extensive

Experiments

 Synthetic & real datasets from Twitter

Social-Activity Network Model: Main intuition

Even honest users befriend with sybils, they seldom initiate activities to sybils.

- · mention sybils in their own tweets
- reply/retweet sybils' tweets
-

It has been verified by the analysis of a dataset containing thousands of real sybils in Twitter by Zhang et.al[TON'2016].

The Social and Activity Network Model

 (v_1, a_1) : user v_1 creates tweet a_1 (v_3, a_2) : user v_3 creates tweet a_2 (v_4, a_3) : user v_4 creates tweet a_3 (v_5, a_4) : user v_5 creates tweet a_4 (a_2, a_1) : tweet a_2 retweets tweet a_2 (a_4, a_2) : tweet a_4 retweets tweet a_3 (a_2, v_1) : tweet a_2 mentions user v_1 (a_1, v_2) : tweet a_1 mentions user v_2

(a) Social network and users' activities

Layer 1: friendship graph GLayer 2: Activity graph \tilde{G}

Between layers: useractivity mapping graph

A More Realistic Attack Model

Sybil region

Friendship attacks (N_A) :

- Property I. N_A can take any value in $\{0,1,...,|V_h|\times|V_S|\}$.
- v_1 v_2 v_3 v_4 v_5 a_2 a_4

Honest region

Incoming interactions attacks (αW_h) :

- Activities initiated from honest users to sybils
- $\alpha \approx 10^{-5}$ ([TON'2016]).
- W_h:# of activities among honest users

Outgoing interaction attacks (βW_h) :

• Property 2. β can be arbitrary large.

Contributions

Realistic Attack
Model

 The Social-Activity Network Model

Efficient Detection

Algorithm

Sybil_SAN

Theoretical

Analysis

Convergence &Sensitivity analysis

Extensive

Experiments

 Synthetic & real datasets from Twitter

Sybil_SAN

Input

Social-Activity-Nework

A small set of labelled users

- S_s : sybils
- S_h :honest users)

Process

Sybil_SAN

- Initialize nodes' trust/distrust score s/s_{dis}
- Trust/distrust distribution on SAN
- Rank nodes according to $\mathbf{s} + \mathbf{s}_{dis}$

Output

A rank of nodes

nodes with low rank -> sybils

Sybil_SAN

• Initialization (s, s_{dis})

$$s_i = \begin{cases} \frac{1}{|S_h|}, & i \in S_h \\ 0, & o.w \end{cases} (s_{dis})_i = \begin{cases} -\frac{1}{|S_s|}, & i \in S_s \\ 0, & o.w \end{cases}$$

Sybil_SAN

Trust/distrust Distribution

- Distribution in each layer:
 - personalized pagerank (γ)

Sybil_SAN: Coupled random walks

- Mutual reinforcement relationship between users and activities.
 - The activities of a trusted user can be trusted.
 - An activity with high trust score can certify the trustiness of its creator.

Contributions

Realistic Attack
Model

 The Social-Activity Network Model

Efficient Detection

Algorithm

Sybil_SAN

Theoretical

Analysis

Convergence &Sensitivity analysis

Extensive

Experiments

 Synthetic & real datasets from Twitter

Theoretical Analysis: Convergence

Theorem 1:

Sufficient conditions to guarantee Sybil_SAN **converge** to **unique** trust score

- friendship graph G is connected
- $0 < \gamma < 1$
- $0 < \lambda_i < 1$, $\forall i$ satisfying $i > |\mathcal{V}|$ or v_i has activities

Theorem 2:

Suppose $\left| |s^{t+1} - s| \right| \leq \epsilon$ in Sybil_SAN is measured by

- 1 norm, then Sybil_SAN stops in at most $1 + \frac{1}{v} \ln(\frac{4}{\epsilon s_{min}^*})$
- rounds, where
 - $s_{min}^* = \min_i s_i^*$
- v: spectral gap of the Markov chain

Theoretical Analysis: Sensitivity analysis

Trust score under graph without attack edges

Trust score estimated by Sybil_SAN

Theorem 3:

$$\frac{\left||\mathbf{\tilde{s}}^* - \mathbf{\tilde{s}}^*|\right|}{||\mathbf{\tilde{s}}^*||} \le \epsilon_{sd}$$

where ϵ_{sd} is defined as :

$$\epsilon_{sd} \triangleq \left| \left| \left[(\boldsymbol{P}_{cr} - \boldsymbol{I})(\boldsymbol{P}_{cr}^T - \boldsymbol{I}) + \boldsymbol{e}^T \boldsymbol{e} \right]^{-1} \times (\boldsymbol{E}(\boldsymbol{P}_{cr} - \boldsymbol{I} + \boldsymbol{E}^T) + (\boldsymbol{P}_{cr} - \boldsymbol{I})\boldsymbol{E}^T) \right| \right|$$

Contributions

Realistic Attack

Model

 The Social-Activity Network Model

Efficient Detection
Algorithm

Sybil_SAN

Theoretical

Analysis

Convergence & Sensitivity analysis

Extensive

Experiments

 Synthetic & real datasets from Twitter

Synthetic datatsets

- Honest region:
 - a public Twitter dataset([Weng et.al 2013])

# of nodes	# of edges	# of activities
543,785	28,397,413	21,426,709

- Two type of activities:
 - user v_i retweets user v_j 's tweets
 - user v_i mentions user v_j
- Sybil region (N_S, M) :
 - M disconnected clusters, all together N_S sybils.
 - the Preferential Attachment (PA) model
- Attack (N_A, α, β)

A More Realistic Attack Model

Friendship attacks (N_A) :

- Property 1. N_A can take any value in $\{0,1,...,|V_h|\times|V_S|\}$.
- v_5 Sybil region Honest region

Incoming interactions attacks (αW_h) :

- Activities initiated from honest users to sybils
- $\alpha \approx 10^{-5}$ ([TON'2016]).
- W_h: # of activities among honest users

Outgoing interaction attacks (βW_h) :

• Property 2. β can be arbitrary large.

Experiments on real dataset

- A crawled subnetwork from Twitter starting from public 991 sybils.
 - Sybils: blocked users
 - Honest users: unblocked users

# of honest users	# of sybils	# of edges	# of interactions	
409, 694	40, 548	222,944,310	102,693,769	

Experiments on real dataset

- A crawled subnetwork from Twitter starting from public 991 sybils.
 - Sybils: blocked users
 - Honest users: unblocked users (noisy).

Results

	Inter	SR_W	SR_U	SScar	SWalk	SAN
AUC	0.62	0.48	0.52	0.15	0.44	0.73
Improved ratio	17.7%	52.1%	40.4%	386%	66%	

Contributions

Realistic Attack

Model

 The Social-Activity Network Model

Efficient Detection

Algorithm

Sybil_SAN

Theoretical

Analysis

Convergence &Sensitivity analysis

Extensive

Experiments

 Synthetic & real datasets from Twitter

