

Machine learning – Week 5

Convolutioneel neuraal netwerk

- Bestaat uit 2 delen
 - Convolutionele + Pooling lagen -> Feature extraction
 - Neuraal network

-> Features to output

Pretrained networks

- Netwerk dat niet door jou getrained is met data die meestal niet beschikbaar is voor jou
- Wat moet je weten om het te gebruiken?

- Netwerk dat niet door jou getrained is met data die meestal niet beschikbaar is voor jou
- Wat moet je weten om het te gebruiken?
 - Welke lagen zijn er aanwezig
 - Type, kernels, strides, type pooling, aantal neurons, activation functions, ...
 - Alle gewichten van alle lagen
 - Kernels en neurons
 - Input dimensions en output dimensions

Waar vind je pretrained networks?

- https://www.tensorflow.org/hub
 - Bevat een groot aantal pretrained networks voor o.a. computer visie en tekstverwerking
 - Voor afbeelding van verschillend formaat
 - Voorbeeldcode hoe het te gebruiken
- https://www.tensorflow.org/api_docs/python/tf/keras/applications
 - Vooral veel gebruikte computer visie applicaties
- Github / Google Search
 - https://github.com/tensorflow/models/tree/master/research/audioset/yamnet

Oefening

- Ga naar https://tfhub.dev/tensorflow/collections/object_detection/1
 - Hoeveel klassen zijn er in de dataset waarvoor de modellen getraind zijn?
- Selecteer het SSD MobileNet v2 320x320 model
 - In welke output zit de beste klasse voor elke detectie
- Open de Colab Notebook en bestudeer de code
 - Besteed hier voldoende aandacht aan. Het uitvoeren van een pretrained netwerk is deel van de huistaak

Wat als er geen exact netwerk bestaat?

- Kan een bestaand netwerk aangepast worden?
 - Hoe zou je dit aanpakken?

Wat als er geen exact netwerk bestaat?

- Behoud convolutionele en pooling lagen
- Pas (gedeeltelijk) neural netwerk aan
 - Laatste laag/lagen aan te passen
 - Voeg laag toe
 - Output kan zijn wat we nodig hebben

Transfer learning

Wat is transfer learning?

- Bij transfer learning nemen we het grootste deel van het pretraind netwerk over
- Enkel de laatste lagen worden vervangen om je probleem op te lossen
 - Enkel de gewichten van de vervangen lagen worden getraind
 - De gewichten van de niet aangepaste gewichten blijven hetzelfde

Hoe vervang je de laatste lagen?

- Baseer je op de volgende guide: https://www.tensorflow.org/guide/keras/transfer_learning
 - Heel vaak is er een argument: include_top=False
 - Top is het fully-connected gedeelte na de flatten
 - Anders: layers property is een list
 - Pop/slice de nodige layers eruit
 - append nieuwe layers of maak een model aan met de nieuwe lagen eraan toegevoegd

Fine tuning

Fine tuning

- Uitbreiding op transfer learning
 - Gewichten van het reeds bestaande model worden niet gefreezed
 - Nieuwe data om verder te trainen om te fine-tunen naar wat je wil bereiken
- Voorbeeld: algemeen netwerk meer data geven over hondenrassen om de accuraatheid voor dat problem te verbeteren.

Belangrijke opmerkingen

- Voer compile() uit na aanpassen van de trainable property van het model/lagen
 - Anders wordt de wijziging niet doorgevoerd
- BatchNormalization
 - Bevat twee interne gewichten (mean en variance)
 - Na unfreezen voor fine-tuning moeten deze lagen terug op trainable=false gezet worden
 - Anders pas je de verdeling aan waardoor het reeds geleerde verwijderd wordt

Huiswerk

Huistaak over convolutionele netwerken en pretrained netwerken

- Opgave zie Toledo
- Maak gebruik van een pre-trained netwerk met transfer learning om een ML-probleem op te lossen.