Theory of Computation

Fall 2023

The Basic Questions

- What can a computer do at all?
 (Computability-Decidability)
- What can a computer do efficiently?
 (Complexity-Intractability)

Methodology

- Interplay between languages and machines
- Mathematical model = Machine = Automata

The Chomsky Hierarchy (Language Hierarchy)

Definitions

- Alphabet: << : A finite set of symbols.
- Empty string, e.
- <*:

The set of all strings, including the empty string, over an alphabet \triangleleft .

• Language:

Any set of strings over an alphabet **<**-that is any subset of **<**[∗].

Finite Automata

Machine Execution

 The movement of the machine is determined by the current state and input symbol.

Finite Automata

A deterministic finite automaton is a quintuple $M = (K, \Sigma, \delta, s, F)$ where

K is a finite set of states,

 Σ is an alphabet,

 $s \in K$ is the initial state,

 $F \subseteq K$ is the set of final states, and

 δ , the transition function, is a function from K $\times \Sigma$ to K.

Finite Automata

Construct a deterministic finite automaton (DFA) to recognize the following language that's defined on the alphabet $\Sigma = \{0,1\}$:

The set of strings whose number of 0's is divisible by five and whose number of 1's is even.

Pushdown Automata

Pushdown Automata

A pushdown automaton is a sextuple $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

K is a finite set of states,

 Σ is an alphabet (the input symbols),

 Γ is an alphabet (the stack symbols),

 Δ , is the transition relation, is a finite subset of $(K \times (\Sigma \cup \{e\}) \times \Gamma^*) \times (K \times \Gamma^*)$,

 $s \in K$ is the initial state,

 $F \subseteq K$ is the set of final states.

Pushdown Automata

Construct a pushdown automaton M to accept the language $L = \{wcw^R : w \in \{a,b\}^*\}.$

$$(1)$$
 $((s,a,e),(s,a))$

State	Unread Input	Stack	Transition Used
s	abbcbba	e	<u>~</u>
s	bbcbba	a	1
s	bcbba	ba	2
s	cbba	bba	2
f	bba	bba	3
f	ba	ba	5
f	a	a	5
f	e	e	4

Turing Machines

Turing Machines

A Turing machine is a quintuple $M = (K, \Sigma, \delta, s, H)$, where

K is a finite set of states,

 Σ is an alphabet, containing the blank symbol \coprod and the left end symbol \square ,

but not containing the symbols \leftarrow and \rightarrow ,

 $s \in K$ is the initial state,

 $H \subseteq K$ is the set of halting states,

 δ , the transition function, is a function from $(K - H) \times \Sigma$ to $K \times (\Sigma \cup \{\leftarrow, \rightarrow\})$ such that

(a) for all $q \in K$ - H, if $\delta(q, \square)$, then $b = \rightarrow$

(b) for all $q \in K$ - H and $a \in \Sigma$, if $\delta(q, a) = (p, b)$ then b $\neq \triangleright$.

Turing Machines

Construct a Turing machine to compute the sequence 0010110111011111... on the alphabet $\Sigma = \{0,1\}$:

Interplay between Languages and Machines (Automata)

- Regular Languages-Finite Automata
- Context-Free Languages-Pushdown Automata
- Recursive Languages-Deterministic Turing Machines
- Recursively Enumerable Languages-Nondeterministic Turing Machines

Determinism vs. Nondeterminism

- The movement of the machine is only partially determined by the current state and input symbol.
 - It can enter into a new state by consuming nothing.
 - It has potential to move into more than one state.