Project Development Phase Model Performance Test

Date	19 October 2022
Team ID	PNT2022TMID28015
Project Name	Project – Web Phishing Detection
Maximum Marks	10 Marks

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot		
1.	Metrics	Classification Model: Gradient Boosting Classification Accuray Score- 97.4%	So [32] despite the constitution report of the relation provides the constitution report of the relation provides the constitution of the constitu		
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method	Wiccom Signed and bod a control of the mercy claim for signed the mercy claim if and the signed the mercy control district if and the signed the mercy control district if and the signed the mercy claim if a lattice control property claim if a lattice control property if a lattice contr		

1. METRICS:

CLASSIFICATION REPORT:

In [52]:	#computing the classification report of the model					
	<pre>print(metrics.classification_report(y_test, y_test_gbc))</pre>					
			precision	recall	f1-score	support
		-1	0.99	0.96	0.97	976
		1	0.97	0.99	0.98	1235
	accur	асу			0.97	2211
	macro	avg	0.98	0.97	0.97	2211
	weighted	avg	0.97	0.97	0.97	2211

PERFORMANCE:

Out[83]:		ML Model	Accuracy	f1_score	Recall	Precision
	0	Gradient Boosting Classifier	0.974	0.977	0.994	0.986
	1	CatBoost Classifier	0.972	0.975	0.994	0.989
	2	Random Forest	0.969	0.972	0.992	0.991
	3	Support Vector Machine	0.964	0.968	0.980	0.965
	4	Decision Tree	0.958	0.962	0.991	0.993
	5	K-Nearest Neighbors	0.956	0.961	0.991	0.989
	6	Logistic Regression	0.934	0.941	0.943	0.927
	7	Naive Bayes Classifier	0.605	0.454	0.292	0.997
	8	XGBoost Classifier	0.548	0.548	0.993	0.984
	9	Multi-layer Perceptron	0.543	0.543	0.989	0.983

2. TUNE THE MODEL - HYPERPARAMETER TUNING

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
         from scipy.stats import wilcoxon
         from sklearn.datasets import load_iris
         from sklearn.ensemble import GradientBoostingClassifier
         from xgboost import XGBClassifier
         from sklearn.model_selection import cross_val_score, KFold
         # Load the dataset
         X = load iris().data
         y = load_iris().target
         # Prepare models and select your CV method
         model1 = GradientBoostingClassifier(n_estimators=100)
         model2 = XGBClassifier(n_estimators=180)
        kf = KFold(n_splits=20, random_state=None)
         # Extract results for each model on the same folds
         results_model1 = cross_val_score(model1, X, y, cv=kf)
         results_model2 = cross_val_score(model2, X, y, cv=kf)
         stat, p = wilcoxon(results_model1, results_model2, zero_method='zsplit');
         stat
Out[78]: 95.0
```

5x2CV combined F test

```
In [89]: from mlxtend.evaluate import combined ftest_5x2cv
         from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
         from sklearn.ensemble import GradientBoostingClassifier
         from mlxtend.data import iris_data
         # Prepare data and clfs
         X, y = iris_data()
         clf1 = GradientBoostingClassifier()
         clf2 = DecisionTreeClassifier()
        # Calculate p-value
        f, p = combined_ftest_5x2cv(estimator1=clf1,
                                   estimator2-clf2,
                                   X×X, y×y,
                                   random_seed=1)
         print('f-value:', f)
         print('p-value:', p)
         f-value: 1.727272727272733
         p-value: 0.2840135734291782
```