ActivityMonitor

Nashit 8/10/2017

Activity Monitoring

This is an R Markdown document used for computing the course project 1 of Reproducable Research module of Data Science on coursera.

Loading and preprocessing the data

This code chunk loads the data and Transforms the dates

```
filename <- "repdata%2Fdata%2Factivity.zip"

## Download and unzip the dataset:
filename <- "repdata%2Fdata%2Factivity.zip"

if (!file.exists(filename)){
fileURL <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2Factivity.zip"
download.file(fileURL, filename, method="curl")
}

if (!file.exists("activity.csv")) {
unzip(filename)
}

raw_activity <- read.csv("activity.csv")
```

raw_activity\$steps[is.na(raw_activity\$steps)] <- 0

raw_activity\$date <- as.Date(date_format, format = "%Y-%m-%d")

date_format <- factor(raw_activity\$date)

Mean total number of steps taken

This code chunk computes the total number of steps taken each day steps_per_day <- aggregate(raw_activity\$steps, by=list(dates=raw_activity\$date), FUN=sum)

```
print(steps_per_day)
##
      dates x
## 1 2012-10-01
## 2 2012-10-02 126
## 3 2012-10-03 11352
## 4 2012-10-04 12116
## 5 2012-10-05 13294
## 6 2012-10-06 15420
## 7 2012-10-07 11015
## 8 2012-10-08 0
## 9 2012-10-09 12811
## 10 2012-10-10 9900
## 11 2012-10-11 10304
## 12 2012-10-12 17382
## 13 2012-10-13 12426
## 14 2012-10-14 15098
## 15 2012-10-15 10139
## 16 2012-10-16 15084
## 17 2012-10-17 13452
## 18 2012-10-18 10056
## 19 2012-10-19 11829
## 20 2012-10-20 10395
## 21 2012-10-21 8821
## 22 2012-10-22 13460
## 23 2012-10-23 8918
## 24 2012-10-24 8355
## 25 2012-10-25 2492
## 26 2012-10-26 6778
## 27 2012-10-27 10119
```

28 2012-10-28 11458 ## 29 2012 10 29 5018

```
## 30 2012-10-30 9819
## 31 2012-10-31 15414
## 32 2012-11-01 0
## 33 2012-11-02 10600
## 34 2012-11-03 10571
## 35 2012-11-04 0
## 36 2012-11-05 10439
## 37 2012-11-06 8334
## 38 2012-11-07 12883
## 39 2012-11-08 3219
## 40 2012-11-09 0
## 41 2012-11-10 0
## 42 2012-11-11 12608
## 43 2012-11-12 10765
## 44 2012-11-13 7336
## 45 2012-11-14 0
## 46 2012-11-15 41
## 47 2012-11-16 5441
## 48 2012-11-17 14339
## 49 2012-11-18 15110
## 50 2012-11-19 8841
## 51 2012-11-20 4472
## 52 2012-11-21 12787
## 53 2012-11-22 20427
## 54 2012-11-23 21194
## 55 2012-11-24 14478
## 56 2012-11-25 11834
## 57 2012-11-26 11162
## 58 2012-11-27 13646
## 59 2012-11-28 10183
## 60 2012-11-29 7047
## 61 2012-11-30 0
```

This code chunk produces the histogram of Steps Per Day hist(steps_per_day\$x,main = "Histogram Of Steps Per Day",xlab = "Steps Per Day")

Histogram Of Steps Per Day

This code chunk produces the mean and median of the total number of steps taken per day

```
summary(steps_per_day$x)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 6778 10395 9354 12811 21194
steps_mean<- mean(steps_per_day$x)
steps_median <- median(steps_per_day$x)
# Mean
print(steps_mean)</pre>
```

[1] 9354 #Median

nrint(stens median)

[1] 10395

The mean of the total number of steps taken per day is 9354.23

The median of the total number of steps taken per day is 10395

Average daily activity pattern

This code chunk produces a time series plot

avg_steps_per_interval <- aggregate(raw_activity\$steps ~ raw_activity\$interval, raw_activity, mean)

Plot(avg_steps_per_interval\$ raw_activity\$interval avg_steps_per_interval\$ raw_activity\$steps

plot(avg_steps_per_interval\$`raw_activity\$interval`,avg_steps_per_interval\$`raw_activity\$steps`,
type="I', col=1, main="Average number of steps per interval", xlab="Time Intervals",
ylab="Average number of steps")

Average number of steps per interval

maximum number of steps in 5 min interval

max_steps_row <- which.max(avg_steps_per_interval\$`raw_activity\$steps`)</pre>

```
avg_steps_per_interval[max_steps_row,]
## raw_activity$interval raw_activity$steps
## 104 835 179
```

Imputing missing values

Total Number Of Missing Values

```
# re - initialising the data
```

```
library(dplyr)
```

##

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

##

filter, lag

The following objects are masked from 'package:base':

##

intersect, setdiff, setequal, union

raw_activity <- read.csv("activity.csv")

date_format <- factor(raw_activity\$date)</pre>

raw_activity\$date <- as.Date(date_format, format = "%Y-%m-%d")

sum(is.na(raw_activity\$steps))

[1] 2304

The number of NA values in given dataset is 2304

Filling up the missing values

new_steps <- raw_activity\$steps

```
new_steps[is.na(new_steps)] <- mean(new_steps[!is.na(new_steps)])
Creating the new Dataset
refined_activity <- raw_activity
refined_activity$steps <- new_steps
refined_steps_per_day <- aggregate(refined_activity$steps, by=list(dates=refined_activity$date),
FUN=sum)
```

Histogram With no NA Values

hist(refined_steps_per_day\$x,main = "Histogram Of Steps Per Day Without NA Values",xlab = "Steps Per Day")

Histogram Of Steps Per Day Without NA Values


```
summary(refined_steps_per_day$x)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
     41 9819 10766 10766 12811 21194
redefined_steps_mean<- mean(refined_steps_per_day$x)</pre>
redefined_steps_median <- median(refined_steps_per_day$x)
```

The mean with NAs values in data was 9354.23 while the new mean is 10766.19

The median with NAs values in data was 10395 while the new median is 10766.19

 $facet_grid(day \sim .) +$ xlab("Time Intervals") + ylab("Average number of steps")

```
patterns between weekdays and weekends
new factor variable in the dataset with two levels
refined_activity['day'] <- weekdays(refined_activity$date)
refined_activity$day[refined_activity$day %in% c('Saturday','Sunday')]<-"weekend"
refined_activity$day[refined_activity$day != "weekend"]<-"weekday"
refined_activity$day <- as.factor(refined_activity$day)</pre>
PLotting the TimeSeries
new_avg_steps_per_interval <- aggregate(steps ~ interval + day, data=refined_activity, mean)
library(ggplot2)
ggplot(new_avg_steps_per_interval, aes(interval, steps)) +
geom_line() +
```

