## Electrónica I

## Clase Práctica #7

## Diodos.

Bibliografía: Electrónica: Teoría de Circuitos y Dispositivos Electrónicos. Robert L. Boylestad y Louis Nashelsky, 10ma ed. Capítulo 1.

- 1- Calcular la tensión y la corriente en la resistencia de 1 k $\Omega$  y la potencia en el diodo en la siguiente figura empleando:
  - a) la aproximación del diodo ideal.
  - b) la segunda aproximación o modelo simplificado.
  - c) la tercera aproximación o modelo lineal por segmentos, considerando una resistencia interna de  $23 \Omega$ .



2- Hallar en cada caso (a y b) el valor de la resistencia para que el LED no se queme y funcione con los valores indicados.





 $V_D = 2.5 \text{ V}, I_D = 25 \text{ mA}$ 

3- Trace la forma de onda de i de la red de la figura si  $t_t=2t_s$  y el tiempo de recuperación en inversa es de 9 ns.





4- Calcular la potencia mínima del diodo zener de la figura, para que el circuito estabilice correctamente, si la entrada del circuito puede variar entre 10 y 15 V y  $R_L$  entre 1 y 10 k $\Omega$  El diodo zener tiene una tensión zener de 5 V y la resistencia R del circuito un valor de 100  $\Omega$ .



- Determine la reactancia ofrecida por un diodo descrito por las características de la figura, con un potencial en directa de  $0.2~\mathrm{V}$  y un potencial en inversa de  $20~\mathrm{V}$  si la frecuencia aplicada es de  $6~\mathrm{MHz}$ .

