DEVOIR SURVEILLÉ Nº 4

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ▶ Les calculatrices sont interdites.

EXERCICE 1.

On considère, pour tout entier naturel n, l'application ϕ_n définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ \varphi_n(x) = (1-x)^n e^{-2x}$$

ainsi que l'intégrale $I_n = \int_0^1 \phi_n(x) dx$.

On se propose de démontrer l'existence de trois réels a, b, c tels que :

$$I_n \underset{n \to +\infty}{=} a + \frac{b}{n} + \frac{c}{n^2} + o\left(\frac{1}{n^2}\right)$$

- 1. Calculer I_0 , I_1 .
- **2. a.** Étudier la monotonie de la suite (I_n) .
 - b. Déterminer le signe de I_n pour tout entier naturel n.
 - c. Qu'en déduit-on pour la suite (I_n) ?
- 3. a. Majorer la fonction $g: x \mapsto e^{-2x}$ sur [0,1] et en déduire que :

$$\forall n \in \mathbb{N}, \; 0 \leqslant I_n \leqslant \frac{1}{n+1}$$

- $\mathbf{b.}\,$ Déterminer la limite de la suite $(I_n).$
- ${\bf 4.}\;\;{\rm A}$ l'aide d'une intégration par parties, montrer que :

$$\forall n \in \mathbb{N}, \ 2I_{n+1} = 1 - (n+1)I_n$$

- 5. En déduire la limite de la suite (nI_n) .
- 6. Déterminer la limite de la suite $(n(nI_n 1))$.
- 7. Donner alors les valeurs de a, b, c.

Problème 1 —

Partie I -

Soit f l'application de $\mathbb R$ dans $\mathbb R$ définie par f(0)=1 et $f(t)=\frac{\arctan t}{t}$ pour tout $t\in\mathbb R^*.$

- 1. Montrer que f est continue sur $\mathbb R$ et paire.
- 2. Donner le développement limité de f à l'ordre 1 en 0. En déduire que f est dérivable en 0 et donner f'(0).

- 3. Justifier que f est dérivable sur \mathbb{R} et calculer f'(t) pour tout $t \in \mathbb{R}^*$.
- **4.** A l'aide d'une intégration par parties, montrer que pour tout $t \in \mathbb{R}$,

$$\int_0^t \frac{u^2}{(1+u^2)^2} \, du = -\frac{1}{2} t^2 f'(t)$$

En déduire le sens de variation de f.

5. Tracer la courbe représentative de f dans un repère orthonormé (unité : 2cm). On précisera les éventuelles branches infinies.

Partie II -

Soit ϕ l'application de $\mathbb R$ dans $\mathbb R$ définie par $\phi(0)=1$ et pour tout $x\in\mathbb R^*, \ \phi(x)=\frac{1}{x}\int_0^x f(t)\ dt$.

- 1. Montrer que ϕ est continue sur \mathbb{R} et paire.
- 2. Montrer que pour tout $x \in \mathbb{R}$, $f(x) \leqslant \varphi(x) \leqslant 1$. On pourra commencer par supposer x > 0.
- 3. Montrer que ϕ est dérivable sur \mathbb{R}^* et que pour tout $x \in \mathbb{R}^*$, $\phi'(x) = \frac{1}{x} (f(x) \phi(x))$. Montrer que ϕ est dérivable en 0 avec $\phi'(0) = 0$. Donner les variations de ϕ .
- 4. Montrer que $\lim_{x\to +\infty}\frac{1}{x}\int_{1}^{x}f(t)\,dt=0$. En déduire que $\lim_{x\to +\infty}\varphi(x)=0$.
- 5. Tracer la courbe représentative de ϕ dans un repère orthonormé (unité : 2cm). On précisera les éventuelles branches infinies.

Partie III -

Soit (u_n) la suite définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = \varphi(u_n)$ pour tout $n \in \mathbb{N}$.

- $\textbf{1.} \ \, \text{Montrer que pour tout} \ \, t \in \mathbb{R}_+, \, 0 \leqslant \frac{t}{1+t^2} \leqslant \frac{1}{2}.$
- **2.** Montrer que pour tout $x \in \mathbb{R}_+^*$,

$$|\phi'(x)| \le \frac{1}{x}(1 - f(x)) = \frac{1}{x^2} \int_0^x \frac{t^2}{1 + t^2} dt$$

On pourra utiliser les questions ${\bf II.2}$ et ${\bf II.3}$.

En déduire que $|\phi'(x)| \leq \frac{1}{4}$ pour tout $x \in \mathbb{R}_+^*$ puis que cette inégalité reste vraie pour tout $x \in \mathbb{R}$.

- 3. Montrer que l'équation $\phi(x) = x$ admet une unique solution sur \mathbb{R} . On note α cette solution. Montrer que $\alpha \in]0,1]$.
- 4. Prouver que pour tout $n \in \mathbb{N}$, $|u_{n+1} \alpha| \le \frac{1}{4}|u_n \alpha|$. En déduire que (u_n) est convergente et préciser sa limite.

Partie IV -

On considère l'équation différentielle $x^2y' + xy = \arctan(x)$.

- 1. Résoudre cette équation différentielle sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- 2. Montrer que ϕ est l'unique solution de cette équation différentielle sur \mathbb{R} .