Lecture 4.1

Non-parametric classifiers

Recommended bibliography: Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000, Chapter 4

Credits: Some figures are taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Unknown

Course overview

- 1. Useful only if covariance matrices are not rank deficient.
- 2. Useful with the number of features is very large, even larger that the number of training vectors.
- 3. Imposes a structure to the classifier irrespective of the training data base.
- 4.Useful when non-numeric features are present.

Clustering

(lecture 6)

CONTENTS

4.1 Non-parametric classifiers

- 4.1.1 Non-parametric estimation of the pdf
- 4.1.2 Parzen windows
- 4.1.3 Probabilistic neural classifier
- 4.1.4 K-nearest neighbour estimation
- 4.1.5 K-nearest neighbour classification rule
- 4.1.6 Distances
- 4.1.7 Conclusions

1 NON-PARAMETRIC ESTIMATION OF THE PDF

If we cannot assume a model for $f_{\mathbf{x}}(\mathbf{x}|\omega_i)$ we have to resort to non-parametric estimators, like the histogram. A precise definition follows:

• The probability that \mathbf{x} is in region R is:

$$P = \int_{R} f_{\mathbf{x}}(\mathbf{x}') d\mathbf{x}'$$

• If we have n independent observations $D = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, the probability of having k among the n vectors in the region is:

$$P_k = \binom{n}{k} P^k (1 - P)^{n - k} \qquad \Rightarrow \qquad E\{k\} = nP$$

The ML estimator of P is: $\hat{P} = k/n$

If $f_{\mathbf{x}}(\mathbf{x})$ is continuous and R is small enough that $f_{\mathbf{x}}(\mathbf{x})$ does not change:

$$\int\limits_R f_{\mathbf{x}}(\mathbf{x}') d\mathbf{x}' \cong f_{\mathbf{x}}(\mathbf{x}) \ V_R$$

Combining both expressions we get the histogram:

$$f_{\mathbf{x}}(\mathbf{x}) = \frac{\int_{R} f_{\mathbf{x}}(\mathbf{x}') d\mathbf{x}'}{\int_{R} d\mathbf{x}'} \cong \frac{k/n}{V_{R}}$$

CONVERGENCE CONDITIONS

The histogram is averaging values in a region, and hence it is a distorted versión of $f_{\mathbf{x}}(\mathbf{x})$.

To reduce the effect we are interested in having $V_R \to 0$, which implies $k \to 0$ if the number of samples is finite.

How can we guarantee the convergence of

$$f_n(\mathbf{x}) = \frac{k_n/n}{V_{R,n}}$$

when $n \rightarrow \infty$?

How shall we design $V_{R,n}$?

Having $\lim_{n\to\infty} f_n(\mathbf{x}) = f(\mathbf{x})$ implies:

$$\lim_{n \to \infty} V_{R,n} = 0$$

$$\lim_{n \to \infty} k_n = \infty$$

$$\lim_{n \to \infty} \frac{k_n}{n} = 0$$

We can guarantee the three conditions in two ways:

- 1. Parzen windows: taking $V_{R,n}$ as a function of n.
- 2. k-nearest neighbors: adapting $V_{R,n}$ in every region of the domain of **x** in such a way that k grows at a smaller rate than n.

2 PARZEN WINDOWS

Assume that region R is defined by a function $\varphi(\mathbf{x})$ enclosing a hiper-volume $V_{R,n}$ around \mathbf{x} . A measure of the number of vectors inside this region is:

$$k_n\left(\mathbf{x}\right) = \sum_{i=1}^n \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

The estimation of the pdf is given by:

$$f_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_{R,n}} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) = \frac{1}{n} \sum_{i=1}^n \gamma_n \left(\mathbf{x} - \mathbf{x}_i\right)$$

The condition for $\varphi(\mathbf{x})$ such that $f_n(\mathbf{x})$ be a pdf are:

$$\varphi(\mathbf{x}) \ge 0$$

$$\int \varphi(\mathbf{x}) d\mathbf{x} = 1$$

$$V_n \propto h_n^d$$

Example 1:

averaged estimation of the pdf

the pdf

Estimation of $f_n(\mathbf{x})$ obtained with n=5 vectors, for three different values of h:

Usually radial basis functions are used for $\varphi(\mathbf{x})$. These are defined as functions for which:

$$\|\mathbf{x}_1\| = \|\mathbf{x}_2\| \implies \varphi(\mathbf{x}_1) = \varphi(\mathbf{x}_2)$$

MEAN AND VARIANCE OF THE HISTOGRAM

Mean

$$\overline{f}_{n}(\mathbf{x}) = E\left\{f_{n}(\mathbf{x})\right\} = \frac{1}{n} \sum_{i=1}^{n} E\left\{\frac{1}{V_{R,n}} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h_{n}}\right)\right\} =$$

$$= \int \frac{1}{V_{R,n}} \varphi\left(\frac{\mathbf{x} - \mathbf{v}}{h_{n}}\right) f(\mathbf{v}) d\mathbf{v} = \int \gamma_{n} (\mathbf{x} - \mathbf{v}) f(\mathbf{v}) d\mathbf{v}$$

It is a convolution of the window with the true pdf

Interpretation

If $V_{R,n} \to 0$, then $\varphi(\mathbf{x}) \to \delta(\mathbf{x})$ (a Dirac delta function) and the estimator is non-biased, but the number of vectors in each region tends to zero and the estimation will not be good \Rightarrow we have to evaluate the variance.

Variance

$$\sigma_n^2(\mathbf{x}) = \sum_{i=1}^n E\left\{ \left(\frac{1}{nV_{R,n}} \varphi \left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n} \right) - \frac{1}{n} \overline{f}_n(\mathbf{x}) \right)^2 \right\} =$$

$$= nE\left\{ \frac{1}{n^2 V_{R,n}^2} \varphi^2 \left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n} \right) \right\} - \frac{1}{n} \overline{f}_n^2(\mathbf{x}) =$$

$$= \frac{1}{nV_{R,n}} \int \frac{1}{V_{R,n}} \varphi^2 \left(\frac{\mathbf{x} - \mathbf{v}}{h_n} \right) f(\mathbf{v}) d\mathbf{v} - \frac{1}{n} \overline{f}_n^2(\mathbf{x})$$
Upper bound:
$$\sigma_n^2(\mathbf{x}) \le \frac{\sup \left(\varphi(.) \right) \overline{f}(\mathbf{x})}{nV_{R,n}}$$

Interpretation

Given n, a low variance implies a large $V_{R,n} \implies \text{large bias}$

Variance can be small if $V_{R,n}$ is large, when $n \to \infty$.

Example 3: Decision boundaries for a two classes problem using Parzen Gaussian windows for a small (left) and large value (right) of h.

Observation: The optimum size of the window possibly depends on the region under analysis: should be larger where the density of data is small...

3 NEURAL PROBABILISTIC CLASSIFIER

A classifier based on the estimation of the pdf using Parzen windows can be built using a neural network-like structure that estimates the pdf and implements a Bayesian rule.

We have n training vectors of dimension d: \mathbf{X}_i

Training phase

3. An edge is set between the block associated to the vector \mathbf{x}_i and its associated class

2. The pattern block i weights its inputs with the weights $\mathbf{w}_i = \mathbf{x}_i$

1. Training vectors are normalized.

Links can be weighted with a priori probabilities if known

max

 ω_c

Decision phase

- 4. The decision on the class is taken by maximizing $g_i(\mathbf{x})$
- 3. Each block sums its inputs and generate a likelihood function $\propto f_n(\mathbf{x}|\omega_i)$
- 2. The pattern blocks compute an activity factor:

$$\varphi\left(\frac{\mathbf{x} - \mathbf{w}_{i}}{h_{n}}\right) \propto \exp\left(-\left(\mathbf{x} - \mathbf{w}_{i}\right)^{T}\left(\mathbf{x} - \mathbf{w}_{i}\right)/2\sigma^{2}\right) = \text{Training vectors}$$

$$= \exp\left(-\left(\mathbf{x}^{T}\mathbf{x} + \mathbf{w}_{i}^{T}\mathbf{w}_{i} - 2\mathbf{x}^{T}\mathbf{w}_{i}\right)/2\sigma^{2}\right) = \left\{\mathbf{x}^{T}\mathbf{x} = \mathbf{w}_{i}^{T}\mathbf{w}_{i} = 1\right\} = \exp\left(\left(\mathbf{x}^{T}\mathbf{w}_{i} - 1\right)/\sigma^{2}\right)$$

1. The vector \mathbf{x} to classify is normalized.

Decision

Classes

Input vectors

4 K-NEAREST NEIGHBORS ESTIMATION

Instead of looking for the best window (in shape and size), the volumen of the cell is increased or decreased as a function of the training data:

To estimate $f(\mathbf{x})$ we enlarge the volumen $V_R(\mathbf{x})$ around \mathbf{x} until k_n vectors are included: the k_n – nearest neighbors.

$$f_n(\mathbf{x}) = \frac{k_n / n}{V_R(\mathbf{x})}$$

Convergence is guaranteed if $\lim_{n\to\infty} \frac{k_n}{n} = 0$

Example 4:

$$k_n \le \sqrt{n}$$
 $k_n \le \ln(n)$

Example 5:

k-nearest-neighbors
estimations. Compare
them with those in
slide 13

A posteriori probabilities $Pr(\omega_i|\mathbf{x})$ can be computed as:

$$\Pr(\boldsymbol{\omega}_{i} \mid \mathbf{x}) = \frac{f_{\mathbf{x}}(\mathbf{x} \mid \boldsymbol{\omega}_{i}) \Pr(\boldsymbol{\omega}_{i})}{\sum_{i=1}^{c} f_{\mathbf{x}}(\mathbf{x} \mid \boldsymbol{\omega}_{i}) \Pr(\boldsymbol{\omega}_{i})} = \frac{f_{\mathbf{x}}(\mathbf{x} \mid \boldsymbol{\omega}_{i}) \Pr(\boldsymbol{\omega}_{i})}{\sum_{i=1}^{c} f_{\mathbf{x}}(\mathbf{x}, \boldsymbol{\omega}_{i})} = \frac{k_{i}}{k/nV_{R}(\mathbf{x})} = \frac{k_{i}}{k}$$

$$f_{\mathbf{x}}(\mathbf{x} \mid \boldsymbol{\omega}_{i}) \Pr(\boldsymbol{\omega}_{i}) \simeq \frac{k_{i}/n_{i}}{V_{R}(\mathbf{x})} \frac{n_{i}}{n} = \frac{k_{i}}{nV_{R}(\mathbf{x})}$$

A fraction of data belonging to class ω_i among the k neighbours of \mathbf{x} . It is the discriminant $g_i(\mathbf{x})$

5 K-NEAREST NEIGHBORS RULE

Classification rule. Using the previous equation we can classify a vector \mathbf{x} with the following rule (which is optimum if n is large):

Select the class most represented in a region around \mathbf{x} .

$$k = 8$$

Selected class for vector **X** is '+'

The size of the region is not constant in the whole domain

• Parzen: Select the class with more weighted vectors in the window centered in \mathbf{x}_i $\varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$

• K-nearest-neighbors: Find the window containing k neighbours around \mathbf{x} . The most represented class is the chosen one.

Decision regions for 1-nearest

We can obtain reasonable performance if the class is chosen from the one associated to the nearest training vector **x** ("1-nearest").

6 DISTANCE

Properties:

Non-negativity $D(\mathbf{x}, \mathbf{y}) \ge 0$

Reflexivity $D(\mathbf{x}, \mathbf{y}) = 0$ iff $\mathbf{x} = \mathbf{y}$

Symmetry $D(\mathbf{x}, \mathbf{y}) = D(\mathbf{y}, \mathbf{x})$

Triangular inequality $D(\mathbf{x}, \mathbf{y}) + D(\mathbf{y}, \mathbf{t}) \ge D(\mathbf{x}, \mathbf{t})$

The chosen distance depence on each problem.

Example 7:

$$D(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{1/p}$$

$$p = 1$$

$$p = 2$$

$$p = \infty$$

Example 7: Crime prediction in San Francisco

• Problem definition

Predict crimes in San Francisco among 38 types from a labeled data base.

- Data base 800.000 crimes recorded between 2003 and 2015. Each crime is characterized by:
 - Dates timestamp of the crime incident
 - Category category of the crime incident (only in train.csv). This is the target variable you are going to predict.
 - Descript detailed description of the crime incident (only in train.csv)
 - DayOfWeek the day of the week
 - PdDistrict name of the Police Department District
 - Resolution how the crime incident was resolved (only in train.csv)
 - Address the approximate street address of the crime incident
 - X Longitude
 - Y Latitude

Top Crimes in San Francisco US 101 CA 1 US 101 CA 1 Type of Crime ASSAULT BURGLARY DRUG/NARCOTIC FRAUD
LARCENY/THEFT MISSING PERSON NON-CRIMINAL ROBBERY SUSPICIOUS OCC VANDALISM VEHICLE THEFT WARRANTS Lake Merced Hunters Point Annex Daly City

2003-01-07 07:52:00	WARRANTS	WARRANT ARREST	Tuesday	SOUTHERN	ARREST, BOOKED	5TH ST / SHIPLEY ST	-122.402843	37.779829
2003-01-07 04:49:00	WARRANTS	ENROUTE TO OUTSIDE JURISDICTION	Tuesday	TENDERLOIN	ARREST, BOOKED	CYRIL MAGNIN STORTH ST / EDDY ST	-122.408495	37.784452
2003-01-07 03:52:00	WARRANTS	WARRANT ARREST	Tuesday	NORTHERN	ARREST, BOOKED	OFARRELL ST / LARKIN ST	-122.417904	37.785167
2003-01-07 03:34:00	WARRANTS	WARRANT ARREST	Tuesday	NORTHERN	ARREST, BOOKED	DIVISADERO ST / LOMBARD ST	-122.442650	37.798999
2003-01-07 01:22:00	WARRANTS	WARRANT ARREST	Tuesday	SOUTHERN	ARREST, BOOKED	900 Block of MARKET ST	-122.409537	37.782691
2003-01-06 23:30:00	WARRANTS	ENROUTE TO OUTSIDE JURISDICTION	Monday	BAYVIEW	ARREST, BOOKED	REVERE AV / INGALLS ST	-122.384557	37.728487
2003-01-06 23:14:00	WARRANTS	WARRANT ARREST	Monday	CENTRAL	ARREST, BOOKED	BUSH ST / HYDE ST	-122.417019	37.789110
2003-01-06 22:45:00	WARRANTS	WARRANT ARREST	Monday	SOUTHERN	ARREST, BOOKED	800 Block of BRYANT ST	-122.403405	37.775421
2003-01-06 22:45:00	WARRANTS	ENROUTE TO OUTSIDE JURISDICTION	Monday	SOUTHERN	ARREST, BOOKED	800 Block of BRYANT ST	-122.403405	37.775421
2003-01-06 22:19:00	WARRANTS	ENROUTE TO OUTSIDE JURISDICTION	Monday	NORTHERN	ARREST, BOOKED	GEARY ST / POLK ST	-122.419740	37.785893
2003-01-06 21:54:00	WARRANTS	ENROUTE TO OUTSIDE JURISDICTION	Monday	NORTHERN	ARREST, BOOKED	SUTTER ST / POLK ST	-122.420120	37.787757
						•		

• Evaluation: multiclass logarithmic loss (better when lower)

$$\log \log s = -\frac{1}{N} \sum_{i=1}^{N_{test}} \sum_{j=1}^{c} y_{ij} \log \Pr(\omega_j | \mathbf{x}_i) \qquad y_{ij} \in \{0, 1\}$$

Validation using a fraction of the data base.

Organization of a machine learning competition

Organization of a machine learning competition

Organization of a machine learning competition

• Estimation of $f(\mathbf{x}|\omega_j)$ for 4 classes...

VEHICLE THEFT

One recent MLEARN proposed competition

7 CONCLUSIONS

Two non-parametric classifiers:

- 1. Parzen
- 2. k-nearest neighbors

The use of 1-nearest neighbor yields a Pr(error) (for large data base) equal to twice the Bayesian classifier, with a low complexity.

These are the only suitable methods when dimensionality of vectors is large compared to the number of training vectors.

