echniques of

ARITHMATIC SIMPLIFICATION

- USING ALC, TO SIMPLIFY EXPRESSION TO HELP SOLVE IT EASIER
 - CHAIN RULE -D OUTSIDE TO INSIDE

 - CHAIN PULLE -> EXESSION TO INSTITUTE

 MULTIPLY -> $f(x) \times g(x) = f(x) \cdot g(x) + f(x) \cdot g(x)$ DIVISION -> $f(x) : g(x) = \frac{f(x) \cdot g(x)}{(g(x))^2}$

U-SUBSTITUTIONS

- ADJUST BOUDS BASED AN U(X)

 IF SY X+2 dy, U= X+2 -> Sy U du
 INTEGRATE

INTEGRATION BY PARTS DENTIFY HARD TO INTEGRATE FUNCTION of SET REST IS SET TO DIV SOLVE FOR UV - J V DIV REPEAT (Gr)

- REPEAT (FOE)
 COS/SIN:

 - (USBLY 2x)
 · MULTI POWER FUNCTIONS:
 · WOTIL X -> POWER -(
 - REMEMBER U + dV STAY SAME DISPITE CHANGE

FOR TANY SEC

- Stan x Sec2dx
- u=tank du=Sec2dy Ju"du du
- Sec x secx fanxdy u= sec x du= secx fanxdx

- Rules for Lnck) $-(n(k^{\frac{1}{2}})=\frac{1}{2}\ln(k)$ -(n(a+b): nucc

 - . ln(ab): ln(a)+ln(b) . ln(ab): ln(a) ln(b)

TRIG SUB

- GOAL IS TO GET TO SUBSTITUTION -
- 1. IDENTIFY FUNCTIONS TO HAVE SAME ARLYMENT
- IF M OR IN IS ODD:
- - TAKE OUT 150 ITS EVEN L-> (Sin3 -> Sin2 Sin)
 - IF M IS ODD
 - · CHANGE SINZ TO 1- COSZ
 - -IF'N IS ODD
 - · CHANGE COS2 TO 1-SIN2

- F MORN IS EVEN

 2b. Sin! = 1- Cos2x
 - $\cdot \sin^2 = \frac{2}{2}$ $\cdot \cos^2 = \frac{1 \cdot \cos 2 \times}{2}$ 2

FOR TAN + SEC

- u=tan du=sec² Su* du
- Sec#x secx tonxdx u=sec#x du=sectondx

Sec2n+1 x dx -> WIEGRATE By

- RABBLY SEE

Integration TRIGISHESTITUTION

IDEN . FIND PERFECT SQUIRE

1 - Sin2 = COS2		
1+ tan2 = Sec2		
sec2 -1 = tan2		

IF WE HAVE	Sug	So
Ta2-u2	u= asino	= a coso
1 ast ris	.u=atano,	= a sec &
√u²-a²	u = a sec 0	= asectan

PARTIAL FRACTIONS

NOTE: CAN BE COMBO

NUMERICAL INTEGRATION + ERROR

 $\Delta X = \frac{b-\alpha}{2}$

Teapezooial=
$$\frac{a_{X}}{2}$$
 (yo + 24, +24; ...+24n., +4n)
|EEEOR1. $\frac{m(b-a)^{3}}{12n^{2}}$ | $m = |f|(x) | \leq k$ als $x \leq b$

Simpsons = 3. (4. + 44. + 24. + 44. + 24. ... + 44. +

m = If "x) | < K a L x L b 186-Nº1

Impeoper INTEGRATION

IF P>1 -> ONVERGES

OTHERWISE DWERGES

