STA305/1004-Class 23

March 28, 2016

Today's Class

- if no replication 12+1/2- (Y+1/3) Assessing significance in unreplicated factorial designs
 - Normal plots
 - half-Normal plots ► Lenth's method (wednesday)

Not possible to est. the Standard

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Factorial Assignment

HW#4

- ► Read the sample report.
- You are supposed to design an experiment using a factorial design.
- ▶ This means I want you to collect the data. So finding data (e.g., on the web) is not appropriate.
- What are the controllable input variables (factors) in your experiment? What is the response variable?

Example: How does coffee consumption and hours of sleep affect running speed?

Sloop = 1/2+/a/t. 1/2/2000 effect

hours close - 128 hours (+

Quantile-Quantile Plots

plot quantiles of one set of numbers vs. other set of numbers

- ▶ Quantile-quantile (Q-Q) plots are useful for comparing distribution functions.
- If X is a continuous random variable with strictly increasing distribution function F(x) then the pth quantile of the distribution is the value of x_p such that,

$$F(x_p) = p$$

or

$$x_p = F^{-1}(p).$$

- In a Q-Q plot, the quantiles of one distribution are plotted against another distribution.
- Q-Q plots can be used to investigate if a set of numbers follows a certain distribution.

if straight line then some dist.

Quantile-Quantile Plots

- ▶ Suppose that we have observations independent observations $X_1, X_2, ..., X_n$ from a uniform distribution on [0,1] or Unif[0,1].
- The ordered sample values (also called the order statistics) are the values $X_{(j)}$ such that

$$X_{(1)} < X_{(2)} < \cdots < X_{(n)}$$

▶ It can be shown that

$$E\left(X_{(j)}\right) = \frac{j}{n+1}.$$

$$E\left(X_{(j)}\right) = \frac{1}{n+1}$$

$$E\left(X_{(j)}\right) = \frac{n}{n+1}$$

► This suggests that if we plot

$$X_{(j)}$$
 vs. $\frac{j}{n+1}$

then if the underlying distribution is Unif[0,1] then the plot should be rooughly linear.

Quantile-Quantile Plots

- \triangleright A continuous random variable with strictly increasing CDF F_X can be transformed to a Unif[0,1] by defining a new random variable $Y = F_X(X)$.
- Suppose that it's hypothesized that X follows a certain distribution function with CDF F. prob integral transformation
- Given a sample $X_1, X_2, ..., X_n$ plot

wrif(0,1)
$$F(X_{(k)})$$
 vs. $\frac{k}{n+1}$ If a random var. X has cdf F_X , then $Y = F_X(X)$ has

or equivalently

- equivalently ved $X_{(k)}$ vs. $F^{-1}\left(\frac{k}{n+1}\right)$ wife [0,1] $F(y) = P(F(x) \le y)$ $X_{(k)}$ can be thought of as empirical quantiles and $F^{-1}\left(\frac{k}{n+1}\right)$ as the hypothesized Y(x) = P(x) = P(x)quantiles.
- The quantile assigned to X_(k) is not unique.
- ▶ Instead of assigning it $\frac{k}{n+1}$ it is often assigned $\frac{k-0.5}{n}$. In practice it makes little difference which definition is used.

which is unif [0,1]

The cumulative distribution function (CDF) of the normal has an S-shape.

The normality of a set of data can be assessed by the following method.

- ▶ Let $r_{(1)} < ... < r_{(N)}$ denote the ordered values of $r_1, ..., r_N$.
- A test of normality for a set of data is to plot the ordered values $r_{(i)}$ of the data versus $p_i = (i 0.5)/N$.
- ▶ If the plot has the same S-shape as the normal CDF then this is evidence that the data come from a normal distribution.

▶ A plot of $r_{(i)}$ vs. $p_i = (i-0.5)/N, i=1,...,N$ for a random sample of 1000 simulated from a N(0,1).

 $N \leftarrow 1000; x \leftarrow rnorm(N); p \leftarrow ((1:N)-0.5)/N$ plot(sort(x),p) 0.1 0.8 α 9.4 0.2 0.0 -3 -2 -1

sort(x)

- ▶ It can be shown that $\Phi(r_i)$ has a uniform distribution on [0,1].
- ▶ This implies that $E(\Phi(r_{(i)})) = i/(N+1)$ (this is the expected value of the *jth* order statistic from a uniform distribution over [0,1].
- ▶ This implies that the N points $(p_i, \Phi(r_{(i)}))$ should fall on a straight line.
- \blacktriangleright Now apply the Φ^{-1} transformation to the horizontal and vertical scales. The N points

$$\left(\Phi^{-1}(p_i), r_{(i)}\right),$$

form the normal probability plot of $r_1, ..., r_N$.

▶ If $r_1,...,r_N$ are generated from a normal distribution then a plot of the points $\left(\Phi^{-1}(p_i),r_{(i)}\right)$, i=1,...,N should be a straight line.

A marked (systematic) deviation of the plot from the straight line would indicate that:

- 1. The normality assumption does not hold.
- 2. The variance is not constant.

```
x <- runif(1000)
hist(x,main = "Sample from uniform")</pre>
```

Sample from uniform

qqnorm(x);qqline(x)

main effects

/ st interactions

- A major application is in factorial designs where the r(i) are replaced by ordered factorial effects.
- ▶ Let $\hat{\theta}_{(1)} < \hat{\theta}_{(2)} < \cdots < \hat{\theta}_{(N)}$ be N ordered factorial estimates.
- ▶ If we plot

$$\hat{\theta}_{(i)}$$
 vs. $\Phi^{-1}(p_i)$. $i = 1, ..., N$.

then factorial effects $\hat{\theta_i}$ that are close to 0 will fall along a straight line. Therefore, points that fall off the straight line will be declared significant.

Normal plots in factorial experiments

factorial effect = 0

The rationale is as follows:

- 1. Assume that the estimated effects $\hat{\theta}_i$ are $N(\theta, \sigma)$ (estimated effects involve averaging of N observations and CLT ensures averages are nearly normal for N as small as 8).
- 2. If $H_0: \theta_i = 0, i = 1, ..., N$ is true then all the estimated effects will be zero.
- 3. The resulting normal probability plot of the estimated effects will be a straight line.
- 4. Therefore, the normal probability plot is testing whether all of the estimated effects have the same distribution (i.e. same means).
- When some of the effects are nonzero the corresponding estimated effects will tend to be larger and fall off the straight line.

- when smaller than zero will fall below the line

Normal plots in factorial experiments

Positive effects fall above the line and negative effects fall below the line.

4□ > 4□ > 4□ > 4□ > 4□ > 1□

Example - 2⁴ design for studying a chemical reaction

×1	x2	x3	×4	conversion
-1	-1	-1	-1	70
1	-1	-1	-1	60
-1	1	-1	-1	89
1	1	-1	-1	81
-1	-1	1	-1	69
1	-1	1	-1	62
-1	1	1	-1	88
1	1	1	-1	81
-1	-1	-1	1	60
1	-1	-1	1	49
-1	1	-1	1	88
1	1	-1	1	82
-1	-1	1	1	60
1	-1	1	1	52
-1	1	1	1	86
1	1	1	1	79

The design is not replicated so it's not possible to estimate the standard errors of the factorial effects.

Example - 2^4 design for studying a chemical reaction

	<pre>fact1 <- lm(conversion~x1*x2*x3*x4,data=tab0510a) round(2*fact1\$coefficients,2)</pre>							
1.4								
الخلسي	(Intercept)	1	0	2	1	10		
musti	(Intercept)	x1	x2	x3	x4	x1:x2		
~0	144.50	-8.00	24.00	-0.25	-5.50	1.00		
メレ	x1:x3	x2:x3	x1:x4	x2:x4	x3:x4	x1:x2:x3		
	0.75	-1.25	0.00	4.50	-0.25	-0.75		
	x1:x2:x4	x1:x3:x4	x2:x3:x4	x1:x2:x3:x4				
	0.50	-0.25	-0.75	-0.25				

Example - 2⁴ design for studying a chemical reaction

A normal plot of the factorial effects is obtained by using the function DanielPlot() in the FrF2 library.

library(FrF2)
DanielPlot(fact1,half=FALSE,autolab=F, main="Normal plot of effects from process development study")

Normal plot of effects from process development study

Question

Question

Half-Normal Plots

- ▶ A related graphical method is called the half-normal probability plot.
- Let

$$\left|\hat{\theta}\right|_{(1)} < \left|\hat{\theta}\right|_{(2)} < \cdots < \left|\hat{\theta}\right|_{(N)}.$$

denote the ordered values of the unsigned factorial effect estimates.

- ▶ Plot them against the coordinates based on the half-normal distribution the absolute value of a normal random variable has a half-normal distribution.
- ► The half-normal probability plot consists of the points

$$\left|\hat{\theta}\right|_{(i)}$$
 vs. $\Phi^{-1}(0.5 + 0.5[i - 0.5]/N)$. $i = 1, ..., N$.

Half-Normal Plots

- ► An advantage of this plot is that all the large estimated effects appear in the upper right hand corner and fall above the line.
- ► The half-normal plot for the effects in the process development example is can be obtained with DanielPlot() with the option half=TRUE.

Half-Normal Plots

Normal plot of effects from process development study

