Permit No. 5252

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
201/219	Superheater	NO_x	42.00	166.31
	HS-201/219	SO_2	0.81	1.31
		PM	0.06	0.25
		CO	11.09	48.56
		VOC	1.28	5.62
1301 (5)	Boiler HB-1301-P	NO_x	15.10	66.10
		SO_2	0.23	0.52
		PM	0.43	1.89
		CO	10.78	47.21
		VOC	1.16	5.10
301-A (5)	Boiler HB-301-A	NO_x	32.65	143.00
` ,		SO_2	0.63	1.16
		PM	0.69	3.04
		CO	0.08	0.35
		VOC	0.21	0.91
301-B (5)	Boiler HB-301-B	NO_x	38.70	169.70
		SO_2	0.69	1.16
		PM	0.36	1.56
		CO	0.08	0.36
		VOC	1.18	5.18
301-S (5)	Boiler HB-301-S	NO_x	49.90	205.00
		SO_2	0.58	1.16
		PM	0.40	1.75
		CO	1.06	4.60
		VOC	1.11	4.85

Emission	Source	Air Contaminant	Emission	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
1301 (6)	Boiler HB-1301-P	NO _x	17.83	-
		SO_2	0.25	-
		PM	0.51	-
		CO	11.89	-
		VOC	1.38	-
301-A (6)	Boiler HB-301-A	NO_x	34.76	-
()		SO_2	0.66	-
		PM	0.74	-
		CO	0.09	-
		VOC	0.22	-
301-B (6)	Boiler HB-301-B	NO_x	40.20	_
	2 9 11 9 11 2 9 12 2	SO ₂	0.70	_
		PM	0.38	_
		CO	0.08	_
		VOC	1.22	-
301-S (6)	Boiler HB-301-S	NO_x	53.14	<u>-</u>
302 3 (0)	20 1.2 001 0	SO ₂	0.63	_
		PM	0.45	_
		CO	1.20	_
		VOC	1.26	-
101	Feed Preheater	NO_x	7.80	34.17
101	Heater HS-101	SO_2	0.20	0.31
	ricater rio 101	PM	0.39	1.71
		CO	0.17	0.75
		VOC	0.10	0.44
102	Clay Treater Decon.	NO_x	2.86	12.51
102	Heater HS-102	SO ₂	0.04	0.08
	116a(6) 113-102	PM	0.04	0.08
		CO	2.40	10.51
		VOC	0.15	0.66
		VOC	0.13	0.00

Emission	Source	Air Contaminant	Emission	n Rates *
Point No. (1)	Name (2)	Name (3)	<u>lb/hr</u>	TPY**
103	Benzene Recovery Column Reboiler HS-103	NO _x SO₂ PM CO VOC	17.14 0.28 0.36 6.96 0.72	75.07 0.47 1.58 30.48 3.15
104	EB Recovery Column Reboiler HS-104	NO _x SO ₂ PM CO VOC	10.95 0.17 0.39 0.24 0.05	47.95 0.26 1.71 1.04 0.22
601	TDA Reactor Feed Heater HS-601	NO_x SO_2 PM CO VOC	1.30 0.02 0.19 0.01 0.02	5.68 0.03 0.83 0.04 0.09
308	Flux Oil Tank MT-308	VOC	<0.01	<0.01
FUG-BZ	Benzene Fugitives (4)	Styrene Ethylbenzene Toluene Benzene	0.07 0.11 0.11 0.43	0.31 0.47 0.47 1.87
FUG-VOC	VOC Fugitives (4)	Styrene Ethylbenzene Toluene Benzene	0.74 0.59 0.59 0.10	3.23 2.58 2.58 0.43
LR-1	Loading Rack (4)	Ethylbenzene	4.32	<0.01
CT-1	Cooling Tower-1 (4)	VOC	2.52	6.03
CT-2 FL	Cooling Tower-2 (4) Flare	VOC NO _x SO ₂	<0.01 5.40 <0.01	<0.01 0.10 <0.01

Emission	Source	Air Contaminant	<u>Emissio</u>	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
		CO Total VOC (7) Benzene	38.97 120.00 114.00	0.74 1.10 1.04
GY-347	Precoat	PM	<0.01	<0.01
115	Emergency Generator	NOx SO ₂ PM CO VOC	12.09 0.80 0.86 2.61 0.96	0.35 0.02 0.03 0.08 0.03
802A, 802B, 802S, 805	Firewater Pumps	NO_x SO_2 PM CO VOC	42.16 2.80 3.00 9.08 3.36	3.37 0.22 0.24 0.73 0.27
812	Stormwater Pump	NO _x SO ₂ PM CO VOC	0.74 0.05 0.05 0.16 0.06	2.23 0.15 0.15 0.48 0.18
213	Ethylene Glycol Tank Tank MS-213-M	Ethylene Glycol	<0.01	<0.01
CTOTANK	Catalytic Thermal Oxidizer	NO _x CO VOC	0.32 2.75 4.08	0.74 6.37 0.73
CTOVENT	Catalytic Thermal Oxidizer	NO _x CO VOC	0.49 4.20 12.32	0.74 6.33 1.47
REGEN	EB Regenerator	CO	5.00	0.20

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number

Emission	Source	Air Contaminant	<u>Emissio</u>	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
		ve sources use area name or fugi	tive source na	ıme.
SO_2 - sulful	•			
•	•	in the atmosphere, including PM $_{\!\scriptscriptstyle 10}$	0.	
	on monoxide	defined in 30 Tayas Administrativ	va Coda Sacti	ion 101 1

- VOC volatile organic compounds as defined in 30 Texas Administrative Code Section 101.1
- (4) Fugitive emissions are an estimate and should not be considered a maximum allowable emission rate.
- (5) Short-term allowable emission rates in effect when all four boilers (EPNs 1301, 301-A, 301-B, and 301-S) are operating simultaneously.
- (6) Short-term allowable emission rates in effect when one boiler is out of service and the other three are operating. Annual allowables for each boiler are unchanged.
- (7) Total VOC includes benzene.
- Emission rates are based on and the facilities are limited by the following maximum operating schedule: hrs/year<u>8,760</u>
- Compliance with annual emission limits is based on a rolling 12-month period.

|--|