Ćwiczenia 1. Wyrażenia arytmetyczne

(Za wykonanie zadań 1 i 2 można otrzymać 1 punkt)

Zadanie 1

Napisać program przeliczający temperaturę podaną w stopniach Celsjusza na stopnie Fahrenheita, f=9/5c+32. Wyświetlić wynik z dokładnością do trzech miejsc po przecinku. Sprawdzić poprawność obliczeń porównując wyniki otrzymane za pomocą programu z wynikami otrzymanymi za pomocą kalkulatora internetowego. Wykonać z raport testowania.

Internetowy kalkulator temperatury: http://www.onlineconversion.com/temperature.htm

Zadanie 2

Napisać program obliczający wartości objętości i pola powierzchni całkowitej wybranej bryły, np. graniastosłupa prostego o podstawie trapezu równoramiennego, ostrosłupa prostego o podstawie prostokąta, walca. Należy ustalić, jakie parametry bryły będą podawane przez użytkownika, a jakie będą obliczane pomocniczo.

Sprawdzić poprawność obliczeń, porównując wyniki otrzymane za pomocą programu z wynikami obliczeń wykonanych za pomocą kalkulatora lub arkusza kalkulacyjnego. Wykonać raport testowania.

Zadanie 3* (+0.5 punkta)

Rzucamy piłką z prędkością v_0 pod kątem \propto względem poziomu z punktu ($x=0,y=y_0$). Trajektorią piłki jest parabola (zaniedbujemy opór powietrza) o następującej postaci:

$$y = x \cdot tg\alpha - \frac{1}{2v_0^2} \frac{gx^2}{\cos^2 \alpha} + y_0$$

Należy napisać program, który oblicza wartość y dla podanych przez użytkownika wartości x, y_0 , v_0 i \propto . Obliczenia wykonać z dokładnością do jednego miejsca po przecinku. Sprawdzić poprawność obliczeń.

y – wysokość, na której znajduje się piłka po przebyciu odległości x w poziomie;

 y_0 – wysokość, z której piłka zostaje rzucona, podawana w metrach;

 v_0 – prędkość początkowa, podawana w jednostkach km/h, wymaga przeliczenia na m/s (1km/h = 1000m/3600s);

 \propto - kat w stopniach, wymaga przeliczenia na radiany ($\alpha[rad] = \alpha^o \pi/180^o$);

g = 9.81 m/s - przyspieszenie ziemskie, wartość tą należy zadeklarować jako stałą.

funkcje matematyczne obliczające $tg \alpha$: $tan(\alpha)$, $cos \alpha$: $cos(\alpha)$

Wskazówka do zadania 3:

Np. **dla danych**: $\propto = 45^o$, $v_0 = 4 \text{[m/s]}$, $y_0 = 1$, piłka spadnie na ziemię w odległości $\frac{40}{981}(20 + \sqrt{1381})$, co ilustruje poniższy rysunek. Tak więc, w takim przypadku podawane wartości x powinny należeć do przedziału $[0, \frac{40}{981}(20 + \sqrt{1381})]$. Jeżeli na wejściu podana zostanie wartość $x > \frac{40}{981}(20 + \sqrt{1381})$, to wartość zmiennej y wyjdzie ujemna, co oczywiście nie ma sensu.

Na przykład, dla powyższych danych i dla x=1.5, wartość y=1+771/6400=1.120469.

