What is claimed is:

1. A digital signal processing device comprising:

multiplication means for multiplying an input $\Delta\Sigma$ modulation signal generated from $\Delta\Sigma$ modulation by a factor;

 $\Delta\Sigma$ modulation means having a plurality of integrators for varying effective orders and applying $\Delta\Sigma$ modulation again to an output from said multiplication means; and

switchover means for switching between a reprocessed $\Delta\Sigma$ modulation signal from said $\Delta\Sigma$ modulation means and said input $\Delta\Sigma$ modulation signal.

- 2. The digital signal processing device according to claim 1, wherein said $\Delta\Sigma$ modulation means comprises order control means for varying effective orders depending on signal switchover situations in said switchover means.
- 3. The digital signal processing device according to claim 2, wherein said order control means varies effective orders for said $\Delta\Sigma$ modulation means at an approximate timing when said switchover means switches between said input $\Delta\Sigma$ modulation signal and said reprocessed $\Delta\Sigma$ modulation signal.
- 4. The digital signal processing device according to claim 2, wherein said order control means varies effective orders for said $\Delta\Sigma$ modulation means at an approximate timing when said switchover means switches between a fixed signal changing to no sound in an audible band and music data processed with $\Delta\Sigma$ modulation.

- 5. The digital signal processing device according to claim 1, wherein said $\Delta\Sigma$ modulation means comprises fraction elimination means for eliminating a fraction remaining in said integrator.
- A digital signal processing method, comprising steps of:
 a multiplication step for multiplying an input ΔΣ modulation signal generated
 from ΔΣ modulation by a specified factor for specified processing;
- a reprocessed $\Delta\Sigma$ modulation step for reapplying $\Delta\Sigma$ modulation to an output provided with said specified processing by using a $\Delta\Sigma$ modulator comprising a plurality of integrators for varying effective orders; and
- a switchover step for switching between said input $\Delta\Sigma$ modulation signal and said reprocessed $\Delta\Sigma$ modulation signal.
- 7. The digital signal processing method according to claim 6, wherein said reprocessed $\Delta\Sigma$ modulation step varies effective orders for said $\Delta\Sigma$ modulator depending on signal switchover situations in said switchover step.
- 8. The digital signal processing method according to claim 7, wherein said reprocessed $\Delta\Sigma$ modulation step varies effective orders for said $\Delta\Sigma$ modulator at an approximate timing when said switchover step switches between said input $\Delta\Sigma$ modulation signal and said reprocessed $\Delta\Sigma$ modulation signal.
- 9. The digital signal processing method according to claim 7, wherein said reprocessed $\Delta\Sigma$ modulation step varies effective orders for said $\Delta\Sigma$ modulator at an

approximate timing when said switchover step switches between a fixed signal changing to no sound in an audible band and music data processed with $\Delta\Sigma$ modulation.

- 10. The digital signal processing method according to claim 6, wherein said reprocessed $\Delta\Sigma$ modulation step not only varies effective orders for a $\Delta\Sigma$ modulator, but also eliminates a fraction remaining in said integrator.
- 11. A $\Delta\Sigma$ modulator for applying $\Delta\Sigma$ modulation to a multi-bit signal comprising: a plurality of integrators; and order variation means for varying effective orders increasing due to connection with a plurality of said integrators.
- 12. The $\Delta\Sigma$ modulator according to claim 11, wherein the fraction elimination means for eliminating a fraction remaining in said integrator.