Mixed / Multilevel models

Example dataset: trees

Data on 1000 trees from 10 sites.

head(trees)

```
      site
      dbh
      height
      sex
      dead

      1
      4
      29.68
      36.1
      male
      0

      2
      5
      33.29
      42.3
      male
      0

      3
      2
      28.03
      41.9
      female
      0

      4
      5
      39.86
      46.5
      female
      0

      5
      1
      47.94
      43.9
      female
      0

      6
      1
      10.82
      26.2
      male
      0
```

Example dataset: trees

- Data on 1000 trees from 10 sites.
- Trees per site: 4 392.

head(trees)

```
      site
      dbh
      height
      sex
      dead

      1
      4
      29.68
      36.1
      male
      0

      2
      5
      33.29
      42.3
      male
      0

      3
      2
      28.03
      41.9
      female
      0

      4
      5
      39.86
      46.5
      female
      0

      5
      1
      47.94
      43.9
      female
      0

      6
      1
      10.82
      26.2
      male
      0
```

Q: What's the relationship between tree

diameter and height?

A simple linear model

```
lm.simple <- lm(height ~ dbh, data = trees)</pre>
```

lm(formula = height ~ dbh, data = trees)

Residuals:

Call:

```
Min 1Q Median 3Q Max -13.3270 -2.8978 0.1057 2.7924 12.9511
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.33920 0.31064 62.26 <2e-16 ***
dbh 0.61570 0.01013 60.79 <2e-16 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 4.093 on 998 degrees of freedom Multiple R-squared: 0.7874, Adjusted R-squared: 0.7871 F-statistic: 3695 on 1 and 998 DF, p-value: < 2.2e-16

Remember our model structure

$$y_i \sim N(\mu_i, \sigma^2)$$
$$\mu_i = \alpha + \beta x_i$$

In this case:

$$Height_i \sim N(\mu_i, \sigma^2)$$
$$\mu_i = \alpha + \beta DBH_i$$

 α : expected height when DBH = 0

 β : how much height increases with every unit increase of DBH

There is only one intercept

What if allometry varies among sites?

Fitting a varying intercepts model with 1m

```
Call:
lm(formula = height ~ factor(site) + dbh, data = trees)
Residuals:
    Min
             10 Median
                              30
                                     Max
-10.1130 -1.9885 0.0582 2.0314 11.3320
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
             16.699037 0.260565 64.088 < 2e-16 ***
(Intercept)
factor(site)2 6.504303 0.256730 25.335 < 2e-16 ***
factor(site)3 4.357457 0.354181 12.303 < 2e-16 ***
factor(site)4 1.934650 0.356102 5.433 6.98e-08 ***
factor(site)5 3.637432 0.339688 10.708 < 2e-16 ***
factor(site)6 4.204511 0.421906 9.966 < 2e-16 ***
factor(site)7 -0.176193 0.666772 -0.264 0.7916
factor(site)8 -5.312648 0.893603 -5.945 3.82e-09 ***
factor(site)9 5.437049 1.087766 4.998 6.84e-07 ***
factor(site)10 2.263338 1.369986 1.652 0.0988.
              0.617075 0.007574 81.473 < 2e-16 ***
dbh
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 3.043 on 989 degrees of freedom Multiple R-squared: 0.8835, Adjusted R-squared: 0.8823

Single vs varying intercept

Mixed models enable us to account for variability

▶ Varying intercepts

www.esourceresearch.org/

Mixed models enable us to account for variability

- Varying intercepts
- Varying slopes

www.esourceresearch.org/

Mixed model with varying intercepts

$$\begin{aligned} y_i &= a + \alpha_j + b \cdot x_i + \varepsilon_i \\ \alpha_j &\sim N\left(0, \tau^2\right) \\ \varepsilon_i &\sim N\left(0, \sigma^2\right) \end{aligned}$$

En nuestro ejemplo:

$$\begin{split} Height_i = a + site_j + b \cdot DBH_i + \varepsilon_i \\ site_j \sim N\left(0, \tau^2\right) \\ \varepsilon_i \sim N\left(0, \sigma^2\right) \end{split}$$

Mixed models estimate varying parameters (intercepts and/or slopes) with pooling among levels (rather than considering them fully independent)

complete pooling: Single overall intercept.

- **complete pooling**: Single overall intercept.
 - lm (height ~ dbh)

- **complete pooling**: Single overall intercept.
 - lm (height ~ dbh)
- **no pooling**: One *independent* intercept for each site.

- **complete pooling**: Single overall intercept.
 - lm (height ~ dbh)
- **no pooling**: One *independent* intercept for each site.
 - lm (height ~ dbh + site)

- **complete pooling**: Single overall intercept.
 - lm (height ~ dbh)
- **no pooling**: One *independent* intercept for each site.
 - lm (height ~ dbh + site)
- **partial pooling**: Inter-related intercepts.

- **complete pooling**: Single overall intercept.
 - lm (height ~ dbh)
- **no pooling**: One *independent* intercept for each site.
 - lm (height ~ dbh + site)
- partial pooling: Inter-related intercepts.
 - lmer(height ~ dbh + (1 | site))

1. Fixed effects constant across individuals, random effects vary.

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.
- 4. Random effect if it's assumed to be a realized value of random variable.

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.
- Random effect if it's assumed to be a realized value of random variable.
- 5. Fixed effects estimated using least squares or maximum likelihood; random effects estimated with shrinkage.

What is a random effect, really?

▶ Varies by group

Random effects are estimated with *partial pooling*, while fixed effects are not (infinite variance).

What is a random effect, really?

- ▶ Varies by group
- ► Variation estimated with **probability model**

Random effects are estimated with *partial pooling*, while fixed effects are not (infinite variance).

Shrinkage improves parameter estimation

Especially for groups with low sample size

From Gelman & Hill p. 253

Fitting mixed/multilevel models

```
library(lme4)
mixed <- lmer(height ~ dbh + (1|site), data = trees)
Linear mixed model fit by REML ['lmerMod']
Formula: height ~ dbh + (1 | site)
  Data: trees
REML criterion at convergence: 5108.3
Scaled residuals:
   Min 10 Median 30 Max
-3.3199 -0.6607 0.0227 0.6716 3.7328
Random effects:
Groups Name
              Variance Std.Dev.
site (Intercept) 11.195 3.346
                     9.261 3.043
Residual
Number of obs: 1000, groups: site, 10
Fixed effects:
            Estimate Std. Error t value
(Intercept) 19.011468 1.100444 17.28
dbh
       0.616927 0.007572 81.47
Correlation of Fixed Effects:
```

(Intr)

Retrieve model coefficients

```
coef(mixed)
$site
   (Intercept)
                      dbh
      16.70800 0.6169271
      23.19162 0.6169271
3
      21.04229 0.6169271
4
      18.64086 0.6169271
5
      20.32995 0.6169271
6
      20.88200 0.6169271
      16.61686 0.6169271
8
      11.88302 0.6169271
9
      21.84779 0.6169271
10
      18.97228 0.6169271
attr(,"class")
[1] "coef.mer"
```

Broom: model estimates in tidy form

```
library(broom.mixed)
tidy(mixed)
```

```
# A tibble: 4 x 6
 effect group
                term
                               estimate std.error statistic
 <chr> <chr> <chr> <chr>
                                  <dbl>
                                           <dbl>
                                                    <dbl>
1 fixed <NA> (Intercept)
                                 19.0 1.10
                                                    17.3
2 fixed <NA>
                 dbh
                                  0.617 0.00757
                                                    81.5
3 ran_pars site sd__(Intercept)
                                3.35
                                        NΑ
                                                     NΑ
4 ran_pars Residual sd__Observation
                                  3.04
                                        NA
                                                     NΑ
```

See also broom.mixed

Visualising model: allEffects

Visualising model: visreg

```
visreg(mixed, xvar = "dbh", by = "site", re.form = NULL)
```


Visualising model

visreg(mixed, xvar = "dbh", by = "site", re.form = NULL, overlay

Visualising model: sjPlot

```
sjPlot::plot_model(mixed, type = "re")
```

Random effects

Using merTools to understand fitted model

library(merTools)
shinyMer(mixed)

Checking residuals

plot(mixed)

Checking residuals

ggResidpanel::resid_panel(mixed)

Checking residuals (DHARMa)

DHARMa::simulateResiduals(mixed, plot = TRUE, use.u = TRUE)

DHARMa residual diagnostics

Model checking with simulated data

```
library(bayesplot)
sims <- simulate(mixed, nsim = 100)
ppc_dens_overlay(trees$height, yrep = t(as.matrix(sims)))</pre>
```


R-squared for GLMMs

Many approaches! Somewhat polemic (e.g. see this). Nakagawa & Schielzeth propose **marginal** (considering fixed effects only) and **conditional** R^2 (including random effects too):

```
library(MuMIn)
r.squaredGLMM(mixed)
```

```
R2m R2c [1,] 0.752535 0.8879656
```

Growing the hierarchy: adding site-level

predictors

Model with group-level predictors

We had:

$$\begin{aligned} y_i &= a + \alpha_j + b \cdot x_i + \varepsilon_i \\ \alpha_j &\sim N(0, \tau^2) \\ \varepsilon_i &\sim N(0, \sigma^2) \end{aligned}$$

Now

$$\begin{split} y_i &= a + \alpha_j + b \cdot x_i + \varepsilon_i \\ \alpha_j &\sim N(\mu_j, \tau^2) \\ \mu_j &= \delta \cdot Predictor_j \\ \varepsilon_i &\sim N(0, \sigma^2) \end{split}$$

Are height differences among sites related to temperature?

$$\begin{split} Height_i = site_j + b \cdot DBH_i + \varepsilon_i \\ site_j \sim N(\mu_j, \tau^2) \\ \mu_j = a + \delta \cdot Temperature_j \\ \varepsilon_i \sim N(0, \sigma^2) \end{split}$$

Are height differences among sites related to temperature?

```
sitedata <- read.csv("data/sitedata.csv")</pre>
sitedata
   site temp
      1 15.1
      2 22.0
3
      3 20.1
4
      4 20.4
5
      5 20.0
6
      6 20.1
      7 17.5
      8 14.6
8
9
      9 19.2
     10 16.0
10
```

Merging trees and site data

5

6

0 15.1

1 6.02 21.1 male 0 15.1

1 40.82 38.7 male

Fit multilevel model

```
group.pred <- lmer(height ~ dbh + (1 | site) + temp, data = trees.full)
Linear mixed model fit by REML ['lmerMod']
Formula: height ~ dbh + (1 | site) + temp
  Data: trees.full
REML criterion at convergence: 5098.2
Scaled residuals:
   Min
            10 Median
                            3Q
                                  Max
-3.3247 -0.6517 0.0192 0.6663 3.7268
Random effects:
                   Variance Std.Dev.
Groups Name
site
       (Intercept) 3.158 1.777
                     9.266 3.044
Residual
Number of obs: 1000, groups: site, 10
Fixed effects:
            Estimate Std. Error t value
(Intercept) -1.730910 4.671330 -0.371
dbh
            0.616894 0.007571 81.484
           1.115104 0.248000 4.496
temp
Correlation of Fixed Effects:
    (Intr) dbh
dbh -0.055
temp -0.991 0.008
Too strong correlation of parameters!
```

Centre (and scale) continuous variables

```
mean(sitedata$temp)
```

[1] 18.5

trees.full\$temp.c <- trees.full\$temp - 18</pre>

Temperatures now referred as deviations from 18 °C (close to average)

Fit multilevel model

```
group.pred <- lmer(height ~ dbh + (1 | site) + temp.c, data = trees.full)
Linear mixed model fit by REML ['lmerMod']
Formula: height ~ dbh + (1 | site) + temp.c
  Data: trees.full
REML criterion at convergence: 5098.2
Scaled residuals:
   Min 1Q Median 3Q
                                 Max
-3.3247 -0.6517 0.0192 0.6663 3.7268
Random effects:
                Variance Std.Dev.
Groups Name
site (Intercept) 3.158 1.777
                    9.266 3.044
Residual
Number of obs: 1000, groups: site, 10
Fixed effects:
            Estimate Std. Error t value
(Intercept) 18.340954 0.655054 27.999
dbh
          0.616894 0.007571 81.484
temp.c 1.115104 0.248000 4.496
Correlation of Fixed Effects:
      (Intr) dbh
dbh -0.333
temp.c -0.250 0.008
```

Examine model with merTools

shinyMer(group.pred)

Comparing site effects with and without group predictor

Are site effects related to temperature?

Varying intercepts and slopes

There is overall difference in height among sites (different intercepts)

AND

Relationship between DBH and Height varies among sites (different slopes)

```
mixed.slopes <- lmer(height ~ dbh + (1 + dbh | site), data=trees
```

Varying intercepts and slopes

```
Linear mixed model fit by REML ['lmerMod']
Formula: height ~ dbh + (1 + dbh | site)
   Data: trees
```

REML criterion at convergence: 5105.1

```
Scaled residuals:
```

```
Min 1Q Median 3Q Max -3.3342 -0.6599 0.0375 0.6916 3.7756
```

Random effects:

```
Groups Name Variance Std.Dev. Corr

site (Intercept) 1.566e+01 3.95671

dbh 3.087e-04 0.01757 -1.00

Residual 9.226e+00 3.03744

Number of obs: 1000, groups: site, 10
```

Fixed effects:

```
Estimate Std. Error t value (Intercept) 18.95272 1.29190 14.67 dbh 0.61837 0.00946 65.37
```

Correlation of Fixed Effects:

```
dbh -0.722
```

(Intr)

optimizer (nloptwrap) convergence code: 0 (OK)

Varying intercepts and slopes

```
$site
   (Intercept)
                      dbh
1
      16.34655 0.6299443
2
      23.74733 0.5970814
3
      21.28802 0.6080019
4
      18.57844 0.6200337
5
      20.47961 0.6115916
6
      21.09608 0.6088542
      16.17675 0.6306983
8
      10.54681 0.6556978
9
      22.27301 0.6036281
10
      18.99463 0.6181856
attr(,"class")
[1] "coef.mer"
```

Visualising model: sjPlot

```
plot_model(mixed.slopes, type = "re")
```

Random effects

More examples

sleepstudy (repeated measures)

Varying intercepts and slopes (Ime4)

```
sleep <- lmer(Reaction ~ Days + (1+Days Subject), data = sleepstudy)</pre>
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (1 + Days | Subject)
  Data: sleepstudy
REML criterion at convergence: 1743.6
Scaled residuals:
   Min
            10 Median
                           30
                                 Max
-3.9536 -0.4634 0.0231 0.4634 5.1793
Random effects:
Groups Name
                 Variance Std.Dev. Corr
Subject (Intercept) 612.10 24.741
         Days 35.07 5.922 0.07
                    654.94 25.592
Residual
Number of obs: 180, groups: Subject, 18
Fixed effects:
           Estimate Std. Error t value
(Intercept) 251.405 6.825 36.838
         10.467 1.546 6.771
Davs
Correlation of Fixed Effects:
    (Intr)
Days -0.138
```

Varying intercepts and slopes (Ime4)

```
visreg(sleep, xvar = "Days", by = "Subject", re.form = NULL)
```

Fitting multilevel models (GAMM) with mgcv

R-sq.(adi) = 0.826 Deviance explained = 86.7%

```
sgamm <- mgcv::gam(Reaction ~ s(Days, Subject, k = 3, bs = "fs"),</pre>
                  data = sleepstudy, method = "REML")
Family: gaussian
Link function: identity
Formula:
Reaction ~ s(Days, Subject, k = 3, bs = "fs")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 295.22 10.49 28.15 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                edf Ref.df F p-value
s(Days, Subject) 42.2 53 16.05 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Fitting multilevel models (GAMM) with mgcv

```
visreg(sgamm, xvar = "Days", by = "Subject")
```


Fitting multilevel models (GAMM) with mgcv

Hierarchical generalized additive models: an introduction with mgcv

```
Eric J Pedersen COTTESP., 1, 2, David L. Miller 3, 4, Gavin L. Simpson 5, Noam Ross 6
```

https://doi.org/10.7287/peerj.preprints.27320v1

Multilevel logistic regression

Q: Relationship between tree size and mortality

Q: Relationship between tree size and mortality

Fit simple logistic regression

```
simple.logis <- glm(dead ~ dbh, data = trees, family=binomial)</pre>
```

```
Call:
```

```
glm(formula = dead ~ dbh, family = binomial, data = trees)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -0.4805 -0.3520 -0.2647 -0.1928 2.9690
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 360.91 on 999 degrees of freedom Residual deviance: 343.69 on 998 degrees of freedom

Logistic regression with independent site effects

```
logis2 <- glm(dead ~ dbh + factor(site), data = trees, family=binomial)</pre>
```

```
Call:
glm(formula = dead ~ dbh + factor(site), family = binomial, data = trees)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.6359 -0.3449 -0.2561 -0.1852 2.9763
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
               -4.80123
                          0.54985 -8.732 <2e-16 ***
dbh
                          0.01381 3.889 0.0001 ***
                0.05371
factor(site)2
               -0.29692
                          0.46073 -0.644 0.5193
factor(site)3
              0.21275
                          0.52799 0.403
                                          0.6870
factor(site)4 0.39841
                          0.53025 0.751
                                          0.4524
factor(site)5
               -0.42557
                        0.64018 -0.665
                                         0.5062
factor(site)6
                          0.53656 1.246
                                          0.2127
             0.66861
factor(site)7 0.11862
                         1.06211 0.112
                                          0.9111
factor(site)8
                0.43899
                          1.08058 0.406
                                          0.6846
factor(site)9
              -13.63389 840.90382
                                          0.9871
                                  -0.016
factor(site)10
              -13.17148 1042.21823 -0.013
                                          0.9899
              0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Fit multilevel logistic regression

```
mixed.logis <- glmer(dead ~ dbh + (1|site), data=trees, family = binomial)
Generalized linear mixed model fit by maximum likelihood (Laplace
 Approximation) [glmerMod]
Family: binomial (logit)
Formula: dead ~ dbh + (1 | site)
  Data: trees
    ATC
            BIC logLik deviance df.resid
  349.7
          364.4 -171.8 343.7
                                   997
Scaled residuals:
   Min 10 Median 30
                               Max
-0.3498 -0.2528 -0.1888 -0.1370 9.0031
Random effects:
Groups Name
               Variance Std.Dev.
site (Intercept) 0
Number of obs: 1000, groups: site, 10
Fixed effects:
          Estimate Std. Error z value Pr(>|z|)
dbh
       0.05365 0.01377 3.895 9.83e-05 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Retrieve model coefficients

```
coef(mixed.logis)
$site
   (Intercept)
                      dbh
     -4.778744 0.05364989
    -4.778744 0.05364989
3
    -4.778744 0.05364989
4
   -4.778744 0.05364989
5
    -4.778744 0.05364989
    -4.778744 0.05364989
    -4.778744 0.05364989
8
    -4.778744 0.05364989
    -4.778744 0.05364989
10
   -4.778744 0.05364989
attr(,"class")
[1] "coef.mer"
```

Visualising model: sjPlot

```
plot_model(mixed.logis, type = "eff", show.ci = TRUE)
```

\$dbh

Predicted probabilities of dead

▶ Perfect for **structured data** (space-time)

- ▶ Perfect for **structured data** (space-time)
- ▶ Predictors enter at the appropriate level

- Perfect for **structured data** (space-time)
- ▶ Predictors enter at the appropriate level
- Accommodate **variation** in treatment effects

- Perfect for **structured data** (space-time)
- ▶ Predictors enter at the appropriate level
- Accommodate variation in treatment effects
- ▶ More **efficient inference** of regression parameters

- Perfect for structured data (space-time)
- ▶ Predictors enter at the appropriate level
- Accommodate variation in treatment effects
- ▶ More **efficient inference** of regression parameters
- Using all the data to perform inferences for groups with small sample size

Varying intercepts

- ► Varying intercepts
 - y ~ x + (1 | group)

- Varying intercepts
 - y ~ x + (1 | group)
- ► Varying intercepts and slopes

- Varying intercepts
 - y ~ x + (1 | group)
- ► Varying intercepts and slopes
 - y ~ x + (1 + x | group)

- Varying intercepts
 - y ~ x + (1 | group)
- Varying intercepts and slopes
 - y ~ x + (1 + x | group)
- ▶ Varying intercepts, 2 groups (crossed)

- Varying intercepts
 - y ~ x + (1 | group)
- Varying intercepts and slopes
 - y ~ x + (1 + x | group)
- ► Varying intercepts, 2 groups (crossed)
 - y ~ x + (1 | group1) + (1 | group2)

- Varying intercepts
 - y ~ x + (1 | group)
- Varying intercepts and slopes
 - y ~ x + (1 + x | group)
- ► Varying intercepts, 2 groups (crossed)
 - y ~ x + (1 | group1) + (1 | group2)
- Varying intercepts, 2 groups (nested)

- Varying intercepts
 - y ~ x + (1 | group)
- Varying intercepts and slopes
 - y ~ x + (1 + x | group)
- Varying intercepts, 2 groups (crossed)
 - y ~ x + (1 | group1) + (1 | group2)
- ► Varying intercepts, 2 groups (nested)
 - y ~ x + (1 | group/subgroup)

- Varying intercepts
 - y ~ x + (1 | group)
- Varying intercepts and slopes
 - y ~ x + (1 + x | group)
- Varying intercepts, 2 groups (crossed)
 - y ~ x + (1 | group1) + (1 | group2)
- Varying intercepts, 2 groups (nested)
 - y ~ x + (1 | group/subgroup)
 - ► This is equivalent to y ~ x + (1 | group1) + (1 | group2) with distinct labelling of group levels.

- Varying intercepts
 - y ~ x + (1 | group)
- Varying intercepts and slopes
 - y ~ x + (1 + x | group)
- Varying intercepts, 2 groups (crossed)
 - y ~ x + (1 | group1) + (1 | group2)
- Varying intercepts, 2 groups (nested)
 - y ~ x + (1 | group/subgroup)
 - ► This is equivalent to y ~ x + (1 | group1) + (1 | group2) with distinct labelling of group levels.
- ▶ Varying intercepts and slopes, 2 groups (crossed)

- Varying intercepts
 - y ~ x + (1 | group)
- Varying intercepts and slopes
 - y ~ x + (1 + x | group)
- Varying intercepts, 2 groups (crossed)
 - y ~ x + (1 | group1) + (1 | group2)
- Varying intercepts, 2 groups (nested)
 - y ~ x + (1 | group/subgroup)
 - This is equivalent to y ~ x + (1 | group1) + (1 | group2) with distinct labelling of group levels.
- ▶ Varying intercepts and slopes, 2 groups (crossed)
 - y ~ x + (1 + x | group1) + (1 + x | group2)

GLMM FAQ

https://bbolker.github.io/mixed models-misc/glmmFAQ.html