Global EMC Inc. Labs EMC & RF Test Report

As per

RSS 210 Issue 6:2005

FCC Part 15 Subpart C:2006

Unlicensed Intentional Radiators

On the

EnviroGrid Controller – RM2-0001

Ashwani Malhotra Global EMC Inc. 180 Brodie Dr, Unit 2

Richmond Hill, ON L4B 3K8 Canada Ph: (905) 883-3919 Testing produced for

See Appendix A for full customer & EUT details.

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Table of Contents

Table of Contents	2
Report Scope	3
Summary	4
Test Results Summary Justifications, Descriptions, or Deviations Applicable Standards, Specifications and Methods Sample calculation(s) Document Revision Status	
Definitions and Acronyms	9
Testing Facility	10
Calibrations and Accreditations Testing Environmental Conditions and Dates	
Detailed Test Results Section	12
Spurious Radiated Emissions	49 54 59 71
Appendix A – EUT Summary	
Appendix B – EUT and Test Setup Photographs	

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	FMC AZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TOE INTERNET

Report Scope

This report addresses the EMC verification testing and test results of the EnviroGrid Controller RM2-0001 Wireless Demand Management/Demand Response Controller module, herein referred to as EUT (Equipment Under Test) performed at Global EMC Labs.

The EUT was tested for compliance against the following standards:

RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by A2LA or any other accreditation agency, any government, or Global EMC Inc.

Opinions/interpretations expressed in this report, if any, are outside the scope of Global EMC Inc accreditation. Any opinions expressed do not necessarily reflect the opinions of Global EMC Inc, unless otherwise stated.

Page 3 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB4
Product	EnviroGrid Controller – RM2-0001	EMC AND
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNAL

Summary

The results contained in this report relate only to the item(s) tested.

EUT FCC Certification #, FCC ID:	WMB – RM2-0001
EUT Industry Canada Certification #, IC:	7894A – RM20001
EUT Passed all tests performed.	Yes (see test results summary)
Tests conducted by	Ashwani Malhotra

Page 4 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Test Results Summary

Standard/Method	Description	Class/Limit	Result
FCC 15.203	Antenna Requirement	Unique	Pass See Justification
FCC 15.205 RSS 210 (Table 1)	Restricted Bands for intentional operation	QuasiPeak Average	Pass
FCC 15.207	Power line conducted emissions	QuasiPeak Average	Pass
FCC 15.209 RSS-210 (Table 2)	Spurious Radiated emissions	QuasiPeak Average	Pass
FCC 15.247(a)2 RSS-210 A8.2(a)	6 dB Bandwidth	> 500 kHz	Pass
FCC 15.247(b)2 RSS-210 A8.4(4)	Max output power	< 1 Watt	Pass
FCC 15.247(b)(4) RSS-210 A8.4(5)	Antenna Gain	< 6 dBi	Pass
FCC 15.247(d) RSS-210 A8.5	Antenna conducted spurious	< 20 dBc	Pass
FCC 15.247(e) RSS-210 A8.2(b)	Spectral Density	< 8 dBm (3 kHz BW)	Pass
FCC 15.247(i) IC Safety code 6	Maximum Permissible Exposure	> 20 cm separation.	Pass See justification and calculations
Overall	Result		PASS

Page 5 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	FMC AZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TOE INTERNET

All tests were performed by Ashwani Malhotra

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties. A 'PASS' / 'FAIL' grade within measurement uncertainty is marked with a '*'.

Justifications, Descriptions, or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

For the Antenna requirement specified in FCC 15.203 (RSS 210 section 5.5), the unit uses a reverse polarity SMA connector on the EUT. The antenna used is a rubber duck type with a gain of 5.5dbi. This antenna is connected to the EUT through an extension cable. There are two possible manufacturers of Antennas for this product. Both antennas are of the same type (rubber duck) and have the same gain. Both antennas were used for initial assessment and Quantech antenna with higher recorded field strength was used for testing.

Antenna model tested: Quantech/DPAC (ACH2-AT-DP011)
Alternate antenna: Hyperlinktech technologies (HG2405RD-RSP)

For the Restricted Bands of operation, the EUT is designed to only operate between 2400 – 2480.0MHz.

For the Antenna gain, the EUT uses a 5.5 dbi antenna. The unit can also be used with1 other antennas of the same type and same gain (5.5 dbi). For the scope of this testing the antenna with the maximum emissions as tested in both horizontal and vertical orientation was used. The EUT was also flipped vertically and horizontally in order to obtain the maximum emissions.

For maximum permissible exposure, this device operates at less than 1 Watt at 2400 – 2480.0 MHz and is designed to operate greater then 20 cm from personnel during normal operation. No testing is required, however worst case calculated exposure compliance follows later in this report.

The EUT is not a hybrid system and FCC 15.247 (f) does not apply to it. However the 15.247 (d) requirement of power density were met and are detailed on page 59 of this test report.

Page 6 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	FMC AZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TOE INTERNET

Applicable Standards, Specifications and Methods

ANSI C63.4:2003	- Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CFR 47 FCC 15	- Code of Federal Regulations – Radio Frequency Devices
CISPR 22:1997	- Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
ICES-003:2004	- Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard
ISO 17025:2005	- General Requirements for the competence of testing and calibration laboratories
RSS 210:2005	- Issue 6: Spectrum Management and Telecommunications Policy. Radio Standards Specification Low Power Licence-Exempt Radiocommunication Devices

Page 7 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB4
Product	EnviroGrid Controller – RM2-0001	EMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNET

Sample calculation(s)

 $\begin{aligned} &Margin = limit - (received\ signal + antenna\ factor + cable\ loss - pre-amp\ gain) \\ &Margin = 50.5dBuV/m - (50dBuV + 10dB + 2.5dB - 20dB) \\ &Margin = 8.5\ dB \end{aligned}$

Document Revision Status

Revision 1 - August 13, 2008

Revision 2 - August 31, 2008 – Minor corrections as requested by TCB.

Note: This report replaces the report issued on August 13th, 2008 in its entirety.

Revision 3 - Sept 11, 2008 – IC # updated. Revision 4 - Model name description updated.

Note:

This revision 4 report replaces the previous report issued on September 11, 2008 in its entirety.

Page 8 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB4
Product	EnviroGrid Controller – RM2-0001	EMC AND
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNAL

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

AE – Auxiallary Equipment.

BW – Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.

EMC – Electro-Magnetic Compatibility

EMI – Electro-Magnetic Immunity

EUT – Equipment Under Test

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line impedance stabilization network

NCR – No Calibration Required

RF – Radio Frequency

Page 9 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB4
Product	EnviroGrid Controller – RM2-0001	EMC AND
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNAL

Testing Facility

Testing for EMC on the EUT was carried out at Global EMC labs in Toronto, Ontario, Canada. The testing lab consists of a 3m semi-anechoic chamber calibrated to be able to allow measurements on an EUT with a maximum width or length of up to 2m and height up to 3m. The chamber is equipped with a turn table that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120 Vac and 240Vac single phase, or 208 Vac 3 phase input. DC capability is also available. The chamber is equipped with an antenna mast that controls polarization and height from the control room adjoining the shielded chamber. Radiated emissions measurements are performed using a Bilog, and Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN.

Calibrations and Accreditations

The measurement site used is registered with Federal Communications Commission (FCC) and Industry Canada (IC). This site is calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The semi-anechoic chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. All measuring equipment is calibrated on an annual or bi-annual basis as listed for each respective test.

Page 10 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOE
Product	EnviroGrid Controller – RM2-0001	DVA (SEM
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	A GE IN

Testing Environmental Conditions and Dates

Following were the environmental conditions in the facility during time of testing –

Date	Test	Init.	Temperature (°C)	Humidity (%)	Pressure (kPa)
August 9 - 13, 2008	All	AM	22-24°C	38-43%	101.1 -101.5 kPa

Page 11 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GL
Product	EnviroGrid Controller – RM2-0001	A CYANG
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	ANGE

Detailed Test Results Section

Client	Regen Energy	GLOBA,
Product	EnviroGrid Controller – RM2-0001	EMC SAZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNET

Spurious Radiated Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limit(s) and Method

The method is as defined in ANSI C63.4:2003.

The limits, as defined in 15.247(d) for unintentional radiated emissions apply for those emissions that fall in the restricted bands, as defined in Section 15.205(a). These emissions must comply with the radiated emission limits specified in Section 15.209(a).

All unintentional emissions must also meet the 'Spurious Conducted Emissions' requirements of -20 dBc or greater. See also 'Spurious Conducted Emissions' for further details.

30 MHZ – 88 MHz, 100 uV/m (40.0 dBuV/m¹) at 3 m 88 MHz – 216 MHz, 150 uV/m (43.5 dBuV/m¹) at 3 m 216 MHz – 960 MHz, 200 uV/m (46.4 dBuV/m¹) at 3 m Above 960 MHz, 500 uV/m (54.0 dBuV/m¹) at 3 m Above 1000 MHz, 500 uV/m (54.0 dBuV/m²) at 3 m

¹Limit is with 120 kHz measurement bandwidth and a using a Quasi Peak detector. ²Limit is with 1 MHz measurement bandwidth and using an Average detector, scanned in accordance with 15.33 to above the 10th harmonic.

Page 13 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	EMC SAZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNET

Typical Radiated Emissions Setup

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	EMC AZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNA

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-4.4 dB with a 'k=2' coverage factor and a %95 confidence level.

Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector, please refer to the final measurement table where applicable. The graph shown below is a maximized peak measurement graph, measured with a resolution bandwidth greater then the final required detector and over a full 0-360 rotation. This peaking process is done as a worst case measurement. This process enables the detection of frequencies of concern for final measurement, and provides considerable time savings.

In accordance with FCC Part 15, Subpart A, Section 15.33, the device was scanned to a minimum of a 25 GHz.

Page 15 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBA(
Product	EnviroGrid Controller – RM2-0001	EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TO INTERN

Low Channel – 30MHz – 1 GHz Vertical – Peak Emissions Graph

Client	Regen Energy	GLOBA,
Product	EnviroGrid Controller – RM2-0001	EMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	POE INTER

Low Channel – 30MHz – 1 GHz Horizontal – Peak Emissions Graph

Page 17 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB.
Product	EnviroGrid Controller – RM2-0001	DVA GEMO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	ARGE INT

Mid Channel – 30MHz – 1 GHz Vertical – Peak Emissions Graph

Client	Regen Energy	GLOBA,
Product	EnviroGrid Controller – RM2-0001	EMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	POE INTER

Mid Channel – 30MHz – 1 GHz Horizontal – Peak Emissions Graph

Page 19 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOI
Product	EnviroGrid Controller – RM2-0001	DVA (S)
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TAGE IN

Hi Channel – 30MHz – 1 GHz Vertical – Peak Emissions Graph

Client	Regen Energy	GLOB,
Product	EnviroGrid Controller – RM2-0001	DVA GENC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	ARGE INTO

Hi Channel – 30MHz – 1 GHz Horizontal – Peak Emissions Graph

Page 21 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBA(
Product	EnviroGrid Controller – RM2-0001	EMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TOE INTERNET

$Low\ Channel - 1 - 2\ GHz$ $Vertical - Peak\ Emissions\ Graph$

Page 22 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBA,
Product	EnviroGrid Controller – RM2-0001	EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TROE INTE

$Low\ Channel - 1 - 2\ GHz$ $Horizontal - Peak\ Emissions\ Graph$

Page 23 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB4
Product	EnviroGrid Controller – RM2-0001	EMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	GE INTERNIT

$\begin{aligned} & \text{Mid Channel} - 1 - 2 GHz \\ & \text{Vertical} - \text{Peak Emissions Graph} \end{aligned}$

Page 24 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB.
Product	EnviroGrid Controller – RM2-0001	DVA GEMO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	ARGE INT

Mid Channel - 1 - 2GHzHorizontal – Peak Emissions Graph

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	EMC AND
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNA

Hi Channel – 1 – 2GHz Vertical – Peak Emissions Graph

Page 26 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB4
Product	EnviroGrid Controller – RM2-0001	EMC AND
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNAL

Hi Channel – 1 – 2GHz Horizontal – Peak Emissions Graph

Page 27 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBA
Product	EnviroGrid Controller – RM2-0001	EMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TO INTERNA

Client	Regen Energy	GLOB
Product	EnviroGrid Controller – RM2-0001	DVA CEMO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TAGE INT

Low Channel – 2-3 GHz Horizontal – Peak Emissions Graph

Client	Regen Energy	GLOB4
Product	EnviroGrid Controller – RM2-0001	EMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TE INTERNA

Mid Channel – 2-3 GHz Vertical – Peak Emissions Graph

Page 30 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB.
Product	EnviroGrid Controller – RM2-0001	DVA GEMO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	ARGE INT

Mid Channel – 2-3 GHz Horizontal – Peak Emissions Graph

Client	Regen Energy	GLOBAL OR
Product	EnviroGrid Controller – RM2-0001	EMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	POE INTER

Hi Channel – 2-3 GHz Vertical – Peak Emissions Graph

Page 32 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB
Product	EnviroGrid Controller – RM2-0001	DVA (S'EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	ARGE INT

Hi Channel – 2-3 GHz Horizontal – Peak Emissions Graph

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Low channel Vertical peak emissions

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Low channel Horizontal peak emissions

Page 35 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Low channel Vertical Average emissions

Page 36 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Low channel Horizontal Average emissions

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Hi channel Vertical peak emissions

Page 38 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Hi channel Vertical peak emissions Marker Delta Method (Delta Calculation)

Page 39 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Hi channel Vertical peak emissions 2485.5 MHz

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Hi channel Vertical average emissions 2485.5 MHz

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Hi channel Horizontal peak emissions

Page 42 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Hi channel Vertical Average emissions

Page 43 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Band Edge – Hi channel Horizontal Average emissions

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	FMC AZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TOE INTERNET

Final Measurements

Note:

- 1. For Vertical peak emissions at hi channel the unit did not meet the band edge requirements at 2483.5 MHz (using the marker delta method). As a result the power was dropped on the Hi channel to 16.3 dbm. Performing the marker delta procedure again at this lower power met the band edge limits. However since this method cannot be used past 2 regular bandwidths (2 MHz) at 2485.5 MHz regular peak readings were recorded and deemed to pass the limits. Plots of these steps are attached above.
- 2. In accordance with 15.247(d), only radiated emissions exceeding the 15.209 limit that occur within the bands listed in 15.205, need to be verified with a quasi-peak detector or an average detector.

Marker Delta tests -

- 1. For radiated emissions vertical orientation the marker delta method was used for band edge measurements. The peak recorded was 104.8 dbuV/m raw data = 111.2 dbuV/m (with factors applied)
- 2. The delta between peak and band edge at RBW = 100 kHz was 40.1 db. This lead to a raw signal of 104.8-40.1 = 64.7 dbuV/m raw data. The final reading with factors applied is 71.1 dbuV/m which has a 2.9 db margin.
- 3. The average readings and readings in horizontal orientation met the limits without the marker delta approach and are recorded.

The requirement of -20dBc is verified by the conducted method, please see 'Spurious Antenna Conducted Emissions' section of this report.

Some of the frequencies shown on the peak graph do not fall within a restricted band as listed in FCC 15.205 and does not need to be verified.

For information purposes, the fundamental was measured to be 114.2 dBuV/m at 3 meters, and none of the unintentional radiated emissions that fall outside of the restricted bands exceeded the -20dBc (or 94.2 dBuV/m) requirement.

The following measurements were made at the harmonics shown in the above graphs.

See 'Spurious Antenna Conducted Emissions' measurements for -20 dBc requirements. No other emissions above the 2nd harmonic were detected.

Page 45 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB4/
Product	EnviroGrid Controller – RM2-0001	EMC SAZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TO INTERNET

Radiated Emissions Measurements

Product category				FCC	15.247 Sp	urious Radiated	Emissions				
Project Name / Number	RF Module										
Test Frequency (MHz)	Detection mode (Q-Peak)	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB	Attenuator dB	Pre- Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB(μV)	Result
					Hi Char	inel					
4960	Peak	Vert	52.1	30.0	6.0	10.0	30.0	68.1	74.0	5.9	PASS
4960	Avg	Vert	31.7	30.0	6.0	10.0	30.0	47.7	54.0	6.3	PASS
4960	Peak	Horz	50.0	30.0	6.0	10.0	30.0	66.0	74.0	8.0	PASS
4960	Avg	Horz	31.6	30.0	6.0	10.0	30.0	47.6	54.0	6.4	PASS
2485.5	Peak	Vert	65.1	30.0	2.4	10.0	36.0	71.5	74.0	2.5	PASS
2485.5	Avg	Vert	35.0	30.0	2.4	10.0	36.0	41.4	54.0	12.6	PASS
2480	Peak	Vert	104.8	30.0	2.4	10.0	36.0	111.2			
2480	Avg	Vert	41.2	30.0	2.4	10.0	36.0	47.6			
2483.5	Peak	Vert	64.7	30.0	2.4	10.0	36.0	71.1	74.0	2.9	PASS
2483.5	Avg	Vert	37.1	30.0	2.4	10.0	36.0	43.5	54.0	10.5	PASS
2480	Peak	Horz	89.4	30.0	2.4	10.0	36.0	95.8			
2480	Avg	Horz	39.3	30.0	2.4	10.0	36.0	45.7			

Client	Regen Energy	
Product	EnviroGrid Controller – RM2-0001	doval
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	

2483.5	Peak	Horz	61.7	30.0	2.4	10.0	36.0	68.1	74.0	5.9	PASS
2483.5	Avg	Horz	35.0	30.0	2.4	10.0	36.0	41.4	54.0	12.6	PASS
2485.5	Peak	Horz	50.8	30.0	2.4	10.0	36.0	57.2	74.0	16.8	PASS
2485.5	Avg	Horz	33.3	30.0	2.4	10.0	36.0	39.7	54.0	14.3	PASS
					Mid Cha	nnel					
2445	Peak	Horz	94.0	31.6	2.4	10.0	36.0	102.0			PASS
2445	Peak	Vert	106.3	31.5	2.4	10.0	36.0	114.2			PASS
4890	Peak	Vert	52.6	30.0	6.0	10.0	36.0	62.6	74.0	11.4	PASS
4890	Avg	Vert	31.7	30.0	6.0	10.0	36.0	41.7	54.0	12.3	PASS
					Low Cha	nnel					
2405	Peak	Horz	92.2	31.6	2.4	10.0	36.0	100.2			PASS
2405	Avg	Horz	38.8	31.6	2.4	10.0	36.0	46.8			PASS
2390	Peak	Horz	46.0	31.6	2.4	10.0	36.0	54.0	74.0	20.0	PASS
2390	Avg	Horz	32.8	31.6	2.4	10.0	36.0	40.8	54.0	13.2	PASS
2405	Peak	Vert	106.0	31.5	2.4	10.0	36.0	113.9			PASS
2405	Avg	Vert	41.0	31.5	2.4	10.0	36.0	48.9			PASS
2390	Peak	Vert	57.6	31.5	2.4	10.0	36.0	65.5	74.0	8.5	PASS
2390	Avg	Vert	32.9	31.5	2.4	10.0	36.0	40.8	54.0	13.2	PASS
4810	Peak	Vert	50.1	30.0	6.0	10.0	36.0	60.1	74.0	13.9	PASS
4810	Avg	Vert	32.9	30.0	6.0	10.0	36.0	42.9	54.0	11.1	PASS

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	2006-08-09	2008-10-09	GEMC 6
Quasi Peak Adapter	85650A	HP	2006-08-07	2008-10-07	GEMC 7
BiLog Antenna	3142-C	ETS	2006-08-06	2008-10-06	GEMC 8
Horn Antenna	6878/24	Q-Par	On file	2008-10-01	GEMC 65
1-26G pre-amp	HP 8449B	HP	On file	2008-10-01	GEMC 68
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Pre-Amplifier	PA-2.5-26	Vican	2006-09-12	2008-10-12	GEMC 9
IFR Spectrum Analyzer	AN940	IFR	2006-4-4	6008-10-4	GEMC 6350
Horn Antenna	SAS-572	АН	NCR	NCR	GEMC 6371
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC - 15.209 - Radiated Emissions_Rev2.doc"

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	EMC SAZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNET

6dB Bandwidth of Digitally Modulated Systems

Purpose

The purpose of this test is to ensure that the bandwidth occupied exceeds a stated minimum. This helps ensure the utilization of the frequency allocation is sufficiently wide. This also helps prevent corruption of data by ensuring adequate data separation to distinguish the reception of the intended information.

Limits

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. This should be measured with a 100 kHz RBW and a 300 kHz VBW.

Results

The EUT passed. The 6 dB BW measured was 1.37 MHz.

Page 49 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Graph(s)

The graphs shown below show the channel spacing during the operation of the device. This is measured by a max hold on the spectrum analyzer. This measurement is a peak measurement. Max hold is performed for a duration of not less then 1 minute.

Low Channel

Page 50 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Medium Channel

Client	Regen Energy	GLOBA,
Product	EnviroGrid Controller – RM2-0001	EMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	POE INTER

SWP 20.0 msec

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup.

VBW 300 kHz

RES BW 100 kHz

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Attenuator 20 dB	FP-50-20	Trilithic	NCR	NCR	GEMC 43
Spectrum Analyzer	8566B	HP	2006-08-09	2008-10-09	GEMC 6
Quasi Peak Adapter	85650A	HP	2006-08-07	2008-10-07	GEMC 7
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
Power Attenuator 20 dB	25-A-FFN-20	Bird / Hutton	NCR	NCR	GEMC 49

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	FMC AZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TOE INTERNET

Maximum Peak Envelope Conducted Power

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified. This ensures that if the end-user replaces the antenna, that the maximum power does not exceed an amount which may create an excessive power level.

Limits

The limits are defined in 15.247(b).

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the peak limit is 1 watt.

Results

The EUT passed. The peak power measured was 18.9 dBm (77.6 mW).

Page 54 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Table(s)

The tables shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT. Note there was 20 dB of external attenuation taken during this measurement.

Low channel

Page 55 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Medium channel

Client	Regen Energy	GLO
Product	EnviroGrid Controller – RM2-0001	DVAI
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TAGE II

The calculated value is:

- -13.1 dBm + 30 dB (attenuator) + 2 db cable losses
- = 18.9 dbm

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup.

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Power Head	PH 2000	AR	2006-10-13	2008-10-13	GEMC 15
Power meter	PM 2002	AR	2006-10-13	2008-10-13	GEMC 16
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
Power Attenuator 20 dB	25-A-FFN-20	Bird / Hutton	NCR	NCR	GEMC 49

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	EMC SAZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNET

Antenna Spurious Conducted Emissions (- 20 dbc Requirement)

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element at frequencies outside of the authorized spectrum does not exceed the limits specified. This ensures that the only the intended signal is delivered to the radiating element.

Limits

The limits are defined in 15.247(d). In any 100 kHz band, the peak spurious harmonics emissions must be at least 20 dB below the fundamental. Spurious Conducted emissions are to be evaluated up to the 10th harmonic. This -20 dBc requirement also applies at the 'band edge' or 2.4 GHz and 2.4835 GHz.

Results

The EUT passed the limits. Low, middle and high band was measured. The worst case for each mode is presented as a graph for the spectrum. The -20 dBc requirement is shown for the lower band edge at 2.4 GHz in the low band. The -20 dBc requirement is also shown for the higher band edge at 2.4835 GHz in the high band.

Graph(s)

The graphs shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT. Note there was 20 dB of external attenuation taken during this measurement.

Page 59 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

9 kHz – 2.5 GHz Lo

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

9 kHz – 2.5 GHz Med

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

9 kHz – 2.5 GHz Hi

Page 62 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

2 GHz - 22.5 GHz Lo

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

2 GHz - 22.5 GHz Med

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

2 GHz – 22.5 GHz Hi

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

2483.5 MHz Band edge Vertical peak emissions

Page 66 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

2483.5 MHz Band edge Horizontal peak emissions

Page 67 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

2390 MHz Band edge Vertical peak emissions

Page 68 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

2390 MHz Band edge Horizontal peak emissions

Page 69 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLO
Product	EnviroGrid Controller – RM2-0001	DVA (SE
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	A ROE II

The frequency range of 22.5 - 25 GHz, the 10^{th} harmonic and 9^{th} harmonic where applicable, was additionally scanned using an alternate spectrum analyzer, in low, middle and high band for each mode. No emissions were detected at the 9^{th} and 10^{th} harmonic.

The plots show raw data and no correction factors are applied. They simply show a 20dbc differential between the peak and the band edge

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup.

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Attenuator 1 dB	FP-50-1	Trilithic	NCR	NCR	GEMC 38
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Attenuator 6 dB	FP-50-6	Trilithic	NCR	NCR	GEMC 41
Attenuator 10 dB	FP-50-10	Trilithic	NCR	NCR	GEMC 42
Attenuator 20 dB	FP-50-20	Trilithic	NCR	NCR	GEMC 43
Spectrum Analyzer	8566B	HP	2006-08-09	2008-10-09	GEMC 6
Quasi Peak Adapter	85650A	HP	2006-08-07	2008-10-07	GEMC 7
IFR Spectrum Analyzer	AN940	IFR	2006-4-4	6008-10-4	GEMC 6350
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
Power Attenuator 20 dB	25-A-FFN-20	Bird / Hutton	NCR	NCR	GEMC 49

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Page 70 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOB4
Product	EnviroGrid Controller – RM2-0001	FMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNET

Power Spectral Density

Purpose

The purpose of this test is to ensure that the maximum power spectral density to the radiating element does not exceed the limits specified. This ensures that the modulation is significantly wide enough, or low enough in power that it will allow for co-operation of other wireless devices operating within this frequency allocation.

Limits

The limits are defined in 15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Results

The EUT passed. Each mode was tested at low, medium, and high band. The worst case value is $5.2 \text{ dbm} \{-26.8 + 32 \text{ dbm (attenuator + cable losses)} = 5.2 \text{ dbm} \}$.

Graph(s)

The graphs shown below show the power spectral density of the device during the conducted measurement operation of the EUT. Low, middle, and high channel was investigated in each mode.

Page 71 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Low channel

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Med channel

Client	Regen Energy	
Product	EnviroGrid Controller – RM2-0001	ADVA
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test setup.

Page 74 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	2006-08-09	2008-10-09	GEMC 6
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
Power Attenuator 20 dB	25-A-FFN-20	Bird / Hutton	NCR	NCR	GEMC 49

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	EMC AZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNA

Maximum Permissible Exposure

Purpose

The purpose of this test is to ensure that the RF energy intentionally transmitted, in terms of power density emitted from the EUT at a stated operating distance does not exceed the limits listed below as defined in the applicable test standard, as calculated based upon readings obtained during testing. This helps protect human exposure to excessive RF fields.

Limit(s) and Method

The limits, as defined in FCC 15.247(i) and FCC 1.1310 Table 1 (B) limits for general public exposure was applied. The limit for the frequency range of 1.5 GHz to 100 GHz was applied. This is a limit of 1.0 mW/cm². The distance used for calculations was 20cm, as this is the minimum distance an operator will be from the EUT during normal operation, as stated by the manufacturer.

Results

The EUT passed the requirements. The worst case calculated power density was 0.0017 mW/cm², this is significantly under the 1.0 mW/cm² requirement.

Calculations

Method 1 (conducted power)

 $P_d = (P_t * G) / (4 * pi * R^2)$

Where Pt = 18.9 dbm or 77.6mW as per Peak power conducted output

Where G = 5.5 dBi, or numerically 3.55

Where R = 20 cm

 $P_d = (77.6 \text{ x } 3.55) / (4 \text{ x pi x } 20\text{cm}^2)$

 $P_d = 275.4 \text{ mW} / 5026 \text{ cm}^2$

 $P_d = 0.055 \text{ mW/cm}^2$

Page 76 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	
Product	EnviroGrid Controller – RM2-0001	
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	

Power Line Conducted Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT's power line does not exceed the limits listed below as defined in the applicable test standard, as measured from a LISN. This helps protect lower frequency radio services such as AM radio, shortwave radio, amateur radio operators, maritime radio, CB radio, and so on, from unwanted interference.

Limits & Method

The limits are as defined in 47 CFR FCC Part 15 Section 15.207 Method is as defined in ANSI C64:2003

Average	e Limits	QuasiPeak Limits			
150 kHz – 500 kHz	56 to 46 dBuV	150 kHz – 500 kHz	66 to 56 dBuV		
500 kHz – 5 MHz	46 dBuV	500 kHz – 5 MHz	56 dBuV		
5 MHz – 30 MHz 50 dBuV		500 kHz – 30 MHz	60 dBuV		

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Note: If the Peak or Quasi Peak detector measurements do not exceed the Average limits, then the EUT is deemed to have passed the requirements.

Both limits are applicable, and each is specified as being measured with a 9 kHz measurement bandwidth.

Page 77 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	FMC AZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TOE INTERNET

Typical Setup Diagram

Note: The vertical reference plane is optional as per ANSI C63.4 section 5.2.2

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-3.6 dB with a 'k=2' coverage factor and a %95 confidence level.

Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector where applicable, please refer to the table. The graph shown below is a peak measurement graph, measured with a resolution bandwidth greater then or equal to the final required detector. These graphs are performed as a worst case measurement to enable the detection of frequencies of concern and for considerable time savings.

Page 78 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy
Product	EnviroGrid Controller – RM2-0001
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006

120V Line Peak emissions

Client	Regen Energy	
Product	EnviroGrid Controller – RM2-0001	
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	

120V Neutral Peak emissions

Client	Regen Energy	GLOBAL OB
Product	EnviroGrid Controller – RM2-0001	EMC SANOL
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TO INTERNAL

Final Measurements

Average Emissions Table

Product category	Class B Avg								
Project		Wireless Energy management module							
Test Frequency (MHz)	Detection mode (Q-Peak / Avg)	mode signal loss (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)							Result
				120V 60Hz	Line				
0.15	QP	19	0.2	10	1.75	30.95	56	25.05	PASS
0.252	QP	18	0.2	10	1	29.2	54	24.8	PASS
0.445	QP	15.9	0.2	10	0.4	26.5	48	21.5	PASS
	120V 60Hz N								
0.157	QP	17	0.2	10	1.75	28.95	56	27.05	PASS
0.175	QP	19	0.2	10	1.75	30.95	56	25.05	PASS
0.32	QP	16.5	0.2	10	0.6	27.3	52	24.7	PASS

Note:

- 1. All readings were recorded using QP detector and compared against Average limits.
- 2. See 'Appendix B EUT & Test Setup Photographs' for photos showing the test set-up for the highest line conducted emission

Client	Regen Energy	
Product	EnviroGrid Controller – RM2-0001	AVA(
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	2006-08-09	2008-10-09	GEMC 6
Quasi Peak Adapter	85650A	HP	2006-08-07	2008-10-07	GEMC 7
LISN	LISN 275-25-1	Vican	2006-09-12	2008-10-12	GEMC 12
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
Attenuator 10 dB	FP-50-10	Trilithic	NCR	NCR	GEMC 42

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Regen Energy	
Product	EnviroGrid Controller – RM2-0001	- OVA
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	7

Appendix A – EUT Summary General EUT Description

Client			
Organization	Regen Energy		
Contact	Roman Kulyk		
Phone	1-416-934-1040		
Email	roman.kulyk@regenenergy.com		
	EUT Details		
EUT Model number	RM2-0001		
Equipment Category	Wireless module for energy management applications.		
Basic EUT Functionality	RM2-0001 is a energy management wireless switch that is used to control high current devices. The current clamp on the unit is used to measure the current of the machine being monitored and based on a algorithm it is switched.		
Input Voltage and Frequency	120V 60Hz		
Connectors available on EUT	None.		
Peripherals Required for Test	None.		
Release type	Final		
Intentional Radiator	2400 – 2480.0 MHz for Wireless Demand		
Frequency	Management/Demand Response Controller protocol.		

Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B - EUT & Test Setup Photographs'.

Page 83 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	EMC SAZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNET

Appendix B – EUT and Test Setup Photographs

Page 84 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	
Product	EnviroGrid Controller – RM2-0001	
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	

Figure 1 – EUT

Client	Regen Energy	GLOB4
Product	EnviroGrid Controller – RM2-0001	FMC EMC
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNET

Figure 2 – Radiated emission setup

Page 86 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBA _Z
Product	EnviroGrid Controller – RM2-0001	FMC AZO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	TOE INTERNET

Figure 3 – Power line conducted emissions

Page 87 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4

Client	Regen Energy	GLOBAL OB
Product	EnviroGrid Controller – RM2-0001	EMC SANO
Standard(s)	RSS 210 Issue 6:2005 / FCC Part 15 Subpart C 15:2006	OF INTERNIT

Figure 4 – Conducted power emissions

Note: These photos are for information purposes only. Also refer to PDF files that are separate from this test report.

Page 88 of 88 Report issue date: 9/15/2008 GEMC File #:180493-v4