Stat 120

Deepak Bastola

2022-12-31

Contents

About						
	0.1	Usage	5			
	0.2	Render book	5			
	0.3	Preview book	6			
1	(PA	RT*) Basics R	7			
2	Wh	What is R?				
	2.1	What is RStudio?	9			
	2.2	R Studio Server	9			
	2.3	R Markdown Basics	10			
	2.4	Installing R/RStudio (not needed if you are using the maize server) $$	10			
	2.5	Install LaTeX (for knitting R Markdown documents to PDF):	11			
	2.6	Updating R/RStudio (not needed if you are using the maize server)	11			
3	R Markdown					
	3.1	Including Plots	14			
	3.2	Read in data files	15			
	3.3	Hide the code	17			
4	(PART*) Class Activity					
5	Conclusion					

4 CONTENTS

About

This is a *sample* book written in **Markdown**. You can use anything that Pandoc's Markdown supports; for example, a math equation $a^2 + b^2 = c^2$.

0.1 Usage

Each **bookdown** chapter is an .Rmd file, and each .Rmd file can contain one (and only one) chapter. A chapter *must* start with a first-level heading: # A good chapter, and can contain one (and only one) first-level heading.

Use second-level and higher headings within chapters like: ## A short section or ### An even shorter section.

The index.Rmd file is required, and is also your first book chapter. It will be the homepage when you render the book.

0.2 Render book

You can render the HTML version of this example book without changing anything:

- 1. Find the **Build** pane in the RStudio IDE, and
- 2. Click on **Build Book**, then select your output format, or select "All formats" if you'd like to use multiple formats from the same book source files.

Or build the book from the R console:

bookdown::render_book()

To render this example to PDF as a bookdown::pdf_book, you'll need to install XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.org/tinytex/.

6 CONTENTS

0.3 Preview book

As you work, you may start a local server to live preview this HTML book. This preview will update as you edit the book when you save individual .Rmd files. You can start the server in a work session by using the RStudio add-in "Preview book", or from the R console:

bookdown::serve_book()

(PART*) Basics R

What is R?

R is a free and open source statistical programming language that facilitates statistical computation. There are a myriad of application that can be done in R, thanks to a huge online support community and dedicated packages. However, R has no graphical user interface and it has to be run by typing commands into a text interface.

2.1 What is RStudio?

RStudio provides graphical interface to R! You can think of RStudio as a graphical front-end to R that that provides extra functionality. The use of the R programming language with the RStudio interface is an essential component of this course.

2.2 R Studio Server

The quickest way to get started is to go to https://maize.mathcs.carleton.edu, which opens an R Studio window in your web browser. Once logged in, I recommend that you do the following:

- Step 1: Create a folder for this course where you can save all of your work. In the Files window, click on New Folder.
- Step 2: Click on Tools -> Global Options -> R Markdown. Then uncheck the box that says "Show output inline..."

(It is also possible to download RStudio on your own laptop. Instructions may be found at the end of this document.)

2.3 R Markdown Basics

An R Markdown file (.Rmd file) combines R commands and written analyses, which are 'knit' together into an HTML, PDF, or Microsoft Word document.

An R Markdown file contains three essential elements:

- Header: The header (top) of the file contains information like the document title, author, date and your preferred output format (pdf_document, word_document, or html_document).
- Written analysis: You write up your analysis after the header and embed R code where needed. The online help below shows ways to add formatting details like bold words, lists, section labels, etc to your final pdf/word/html document. For example, adding ** before and after a word will bold that word in your compiled document.
- R chunks: R chunks contain the R commands that you want evaluated.
 You embed these chunks within your written analysis and they are evaluated when you compile the document.

2.3.1 R Markdown example:

- Simple R Markdown example
 - compiled pdf

The following handouts, written by Prof Katie St Clair, contain useful information for making the figured and tables in your compiled documents look nice:

- Graph Formatting: Markdown .Rmd file and pdf
- Table Formatting: Markdown .Rmd file and pdf

2.4 Installing R/RStudio (not needed if you are using the maize server)

- Download the latest version of R:
 - Windows: http://cran.r-project.org/bin/windows/base/
 - Mac: http://cran.r-project.org/bin/macosx/
- Download the free Rstudio desktop version (Windows or Mac): https://www.rstudio.com/products/rstudio/download/

Use the default download and install options for each.

2.5 Install LaTeX (for knitting R Markdown documents to PDF):

If you want to compile R Markdown to .pdf files, you also need a LaTeX distribution (Note: this is not necessary if you choose to compile as a Word document.) Click instructions for Windows or instructions for Mac, depending on your operating system to complete the installation.

2.6 Updating R/RStudio (not needed if you are using the maize server)

If you have used a local version of R/RStudio before and it is still installed on your machine, then you should make sure that you have the most recent versions of each program.

- To check your version of R, run the command getRversion() and compare your version to the newest version posted on https://cran.r-project.org/. If you need an update, then install the newer version using the installation directions above.
- In RStudio, check for updates with the menu option Help > Check for updates. Follow directions if an update is needed.

R Markdown

This is a R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

You can use asterisk mark to provide emphasis, such as *italics* or **bold**.

You can create lists with a dash:

```
- Item 1
- Item 2
- Item 3
+ Subitem 1
* Item 4
```

- Item 1
- Item 2
- Item 3
 - Subitem 1
- Item 4

You can embed Latex equations in-line, $\frac{1}{n}\sum_{i=1}^n x_i$ or in a new line as

$$\operatorname{Var}(X) = \frac{1}{n-1} \sum_{i-1}^n (x_i - \bar{x})^2$$

Embed an R code chunk:

Use

```
Use back ticks to create a block of code to produce:

Use back ticks to create a block of code
```

You can also evaluate and display the results of R code. Each tasks can be accomplished in a suitably labeled chunk like the following:

```
summary(cars)
    speed
                    dist
Min. : 4.0
               Min. : 2.00
 1st Qu.:12.0
               1st Qu.: 26.00
Median :15.0
               Median : 36.00
Mean :15.4
               Mean : 42.98
3rd Qu.:19.0
               3rd Qu.: 56.00
Max.
       :25.0
               Max.
                     :120.00
fit <- lm(dist ~ speed, data = cars)</pre>
fit
Call:
lm(formula = dist ~ speed, data = cars)
Coefficients:
(Intercept)
                  speed
    -17.579
                  3.932
```

3.1 Including Plots

You can also embed plots. See Figure 3.1 for example:

```
par(mar = c(0, 1, 0, 1))
pie(
   c(280, 60, 20),
   c('Sky', 'Sunny side of pyramid', 'Shady side of pyramid'),
```

```
col = c('#0292D8', '#F7EA39', '#C4B632'),
init.angle = -50, border = NA
)
```


Figure 3.1: A fancy pie chart.

(Credit: Yihui Xie)

3.2 Read in data files

```
simple_data <- read.csv("https://deepbas.io/data/simple-1.dat", )
summary(simple_data)</pre>
```

initials state age

Length:3 Length:3 Min. :45.0

Class:character Class:character 1st Qu.:47.5

Mode:character Mode:character Median:50.0

Mean:52.0

3rd Qu.:55.5

Max.:61.0

time Length:3

Class :character
Mode :character

knitr::kable(simple_data, format = "html")

initials

state

age

time

vib

MA

61

6:01

adc

TX

45

5:45

kme

CT

50

4:19

3.3 Hide the code

If we enter the echo = FALSE option in the R chunk (see the .Rmd file). This prevents the R code from being printed to your document; you just see the results.

initials

state

age

 ${\rm time}$

vib

MA

61

6:01

adc

TX

45

5:45

 ${\rm kme}$

 CT

50

4:19

(PART*) Class Activity

Conclusion

Click for answer

The correct answer is a. If there is a difference, we expect the between group variability to be higher than within group variability. RIGHT TAIL test!

```
Temperature = 37.7 + 0.231 Chirps

Predictor Coef SE Coef T Pr(>|t|)

Constant 37.67858 1.97817 19.05 7.35e-06 ***

Chirps 0.23067 0.01423 16.21 1.63e-05 ***
```

survey <- read.csv("https://raw.githubusercontent.com/deepbas/statdatasets/main/StudentSurvey.csv
mean(survey\$Pulse) # the command `mean` computes an average</pre>

[1] 69.57459

ROCK	PAPER	SCISSORS	TOTAL
36	12	37	85

First year at Carleton

- Originally from Nepal
- PhD in Applied Statistics from

${\bf UC\text{-}Riverside}$

- Diverse education background
- Avid learner and traveler