Introduction to Diode and Diode Logic Gates

Lecture 7

Course No: CSE 251

Course Title: Electronic Devices and Circuits

Course instructor:

Aroni Ghosh (AGS) Lecturer, CSE, Brac University

Introduction to Diode

- A two terminal Non-linear device. The two terminals are: Anode (+) and Cathode(-)
- The voltage difference between the terminals is expressed as, Vd= V_{anode} –V_{cathode}
- The working principle of a diode can be expressed with an "Electronic Valve". It only allows the current to flow in one direction (From Anode to Cathode). This means the diode is "ON"/ in Forward Bias only when Vd is positive ($V_{anode} > V_{cathode}$). This property makes it suitable as a "Rectifier"

Ideal diode model and IV characteristics

Copyright @ Physics and Radio-Electronics, All rights reserved

In the Ideal diode model, the following conditions are assumed:

- i. V_{anode}>V_{cathode}:
- -The Diode will be ON It will act as a "Short circuit"
- ii. V_{anode} < V_{cathode}:
- -The Diode will be OFF
- It will act as a "Open circuit"

Fig: V-I characteristics of ideal diode

Copyright @ Physics and Radio-Electronics, All rights reserved

Open circuit → I-V: x axis Short Circuit → I-V: y axis

Real Diode I-V

In the Real diode model, the following conditions are assumed:

- i. Vd>Vthreshold:
- -The Diode will be ON
- It will act as a "Constant Voltage Source"
- ii. Vd< Vthreshold:
- -The Diode will be OFF
- It will act as a "Open circuit"

Open circuit \rightarrow I-V: x axis

Constant Voltage Source → I-V: parallel to y axis

p-n junction Diode

P-type semiconductor: When an intrinsic or pure semiconductor material (Like, Silicon (Si) and Germanium (Ge)) doped with acceptor impurities atom (Trivalent atoms, like Boron (B), Gallium (G), Aluminium(Al)) **N-type semiconductor:** When pure semiconductor doped with donor impurities (Pentavalent atoms, like Phosphorus (P), Arsenic (As), Antimony (Sb))

p, n type semiconductor

p-n junction

Threshold voltage- for silicon about 0.7V - for germanium about 0.3V.

Shockley Diode Equation

$$I_D = I_S \left(e^{\frac{qV_D}{nkT}} - 1 \right)$$

$$i_D = I_s \left[\exp\left(\frac{v_D}{nV_T}\right) - 1 \right] \qquad V_T = \frac{kT}{q}$$

k = 1.38 × 10⁻²³ J/K is Boltzmann's constant and q = 1.60 × 10⁻¹⁹ C is the magnitude of the electrical charge of an electron. At a temperature of 300 K, we have $V_T \cong 26 \,\mathrm{mV}$

Where V_T is Thermal Voltage

Where I_s is reverse saturation current

 I_D and V_D are the diode current and voltage, respectively q is the charge on the electron n is the ideality factor:

Example Problems (Ideal Diode)

Example 1:

V_{anode}= 5V Diode is on → replace with short circuit (Ideal Diode Model)

Vo= V= 5V
I= Vo/R= 5V/2.5k
$$\Omega$$
= 2 mA

Example Problems (Ideal Diode)

Example 2:

V_{cathode}= 5V Diode is off → replace with open circuit (Ideal Diode Model)

As the circuit is open, I= 0 mA Vo= 0V

Example Problems (Ideal Diode)

Example 3:

V_{cathode}= -5V Diode is on→ replace with short circuit (Ideal Diode Model)

Vo= -5V
I= Vo/R= -5V/5k
$$\Omega$$
= -1 mA

Logical Operations with Diode (OR)

Logic Truth Table

INPUTS		OUTPUT	
X	Y	Z	
0	0	0	
0	1	1	
1	0	1	
1	1	.1.	

Voltage Truth Table

INPUTS X Y		OUTPUT Z	
0 V	5 V	5 V	
5 V	0 V	5 V	
5 V	5 V	5 V	

Low/False High/True

Logic Levels: 0 1

Corresponding voltage levels: 0V 5V

Logical Operations with Diode (OR)

R is a **Pull Down Resistor** which pulls down the voltage of V_C from floating condition to OV.

Case 1: $V_A = 0V$, $V_B = 0V$

Both D1 and D2 are off as $V_{anode} < V_{cathode}$ Replace D1 and D2 with open circuits. So, $V_{C} = 0V$

Logical Operations with Diode (OR)

Case 2: $V_A = 0V$, $V_B = 5V$

D1 is off and D2 is on

Replace D1 with open circuit and D2 with short circuit.

So,
$$V_C = V_B = 5V$$

Case 3: $V_A = 5V$, $V_B = 0V$

D1 is on and D2 is off

Replace D1 with short circuit and D2 with open circuit.

So,
$$V_C = V_A = 5V$$

Case 1: $V_A = 5V$, $V_B = 5V$

Both D1 and D2 are on

Replace D1 and D2 with short circuits.

So,
$$V_C = V_A = V_B = 5V$$

Logical Operations with Diode (AND)

Logic Truth Table

INPUTS		OUTPUT	
X	Υ	Z	
0	0	0	
0	1	0	
1	0	0	
1 1		1	

Voltage Truth Table

INPUTS		OUTPUT	
×	Y	Z	
0 V	0 V	0 V	
0 V	5 V	0 V	
5 V	0 V	0 V	
5 V	5 V	5 V	

Logical Operations with Diode (AND)

R is a **Pull Up Resistor** which pulls up the voltage of V_C from floating condition to 5V.

Case 1: $V_A = 0V$, $V_B = 0V$

Both D1 and D2 are on as V_{anode}>V_{cathode} Replace D1 and D2 with short circuits.

So, ,
$$V_C = V_A = V_B = 0V$$

Logical Operations with Diode (AND)

Case 2: $V_A = 0V$, $V_B = 5V$

D1 is on and D2 is off

Replace D1 with short circuit and D2 with open circuit.

So,
$$V_C = V_A = 0V$$

Case 3: $V_A = 5V$, $V_B = 0V$

D1 is off and D2 is on

Replace D1 with open circuit and D2 with short circuit.

So,
$$V_C = V_B = 0V$$

Case 1: $V_A = 5V$, $V_B = 5V$

Both D1 and D2 are off

Replace D1 and D2 with open circuits.

So,
$$V_C = 5V$$

Effect of input Voltage Variation in Logic Gates (OR)

If V_A = 4V and V_B = 5V, what is the value of output V_C ?

Case 1: Assuming both D1 and D2 are on Replace D1 and D2 with short circuits. So, V_C is short with both V_A and V_B Can V_C be 4V and 5V at the same time??? So this assumption is wrong!

Effect of input Voltage Variation in Logic Gates (OR)

Case 2: Assuming both D1 and D2 are off

Replace D1 and D2 with open circuits. So, $V_C = 0V$ But now $V_{anode}(4V \text{ for D1}, 5V \text{ for D2}) > V_{cathode}(0V)$ for both diode So this assumption is also wrong!

Case 3: Assuming D1 is on and D2 is off

Replace D1 with short circuit and D2 with open circuit. So, $V_C = V_A = 4V$ But now for D2, $V_{anode}(5V) > V_{cathode}(4V)$. So, D1 should have been ON! So this assumption is also wrong!

Case 4: Assuming D1 is off and D2 is on

Replace D1 with open circuit and D2 with short circuit. So, $V_C = V_B = 5V$ Now for D1, $V_{anode}(4V) < V_{cathode}(5V)$. So, D1 should be **OFF!** So this assumption is **correct!**

Effect of input Voltage Variation in Logic Gates (OR)

Example 4: Find the value of Vo

D1 and D2 are OFF → Open Circuit
Only D3 is ON → Short Circuit

Vo= 4.5VCurrent, I= $4.5V/2k\Omega$ = 2.25 mA

Effect of input Voltage Variation in Logic Gates (AND)

If V_A = 1V and V_B = 2V, what is the value of output V_C ? Case 1: Assuming both D1 and D2 are on Replace D1 and D2 with short circuits. So, V_C is short with both V_A and V_B Can V_C be 1V and 2V at the same time??? So this assumption is wrong!

Effect of input Voltage Variation in Logic Gates (AND)

Case 2: Assuming both D1 and D2 are off

Replace D1 and D2 with open circuits. So, $V_C = 5V$ But now $V_{anode}(5V) > V_{cathode}(1V \text{ for D1 \& 2V for D2})$ for both diode So this assumption is also wrong!

Case 3: Assuming D1 is off and D2 is on

Replace D1 with open circuit and D2 with short circuit. So, $V_C = V_B = 2V$ But now for D1, $V_{anode}(2V) > V_{cathode}(1V)$. So, D1 should have been ON! So this assumption is also wrong!

Case 4: Assuming D1 is on and D2 is off

Replace D1 with short circuit and D2 with open circuit. So, $V_C = V_A = 1V$ Now for D2, $V_{anode}(1V) < V_{cathode}(2V)$. So, D2 should be **OFF!** So this assumption is **correct!**

Effect of input Voltage Variation in Logic Gates (AND)

Example 5: Find the value of Vo

D1 and D2 are OFF → Open Circuit
Only D3 is ON → Short Circuit

Vo= -5V
Current,I =
$$\frac{5V-(-5)}{2k\Omega}$$
= 5 mA

Example

Assuming w, x, y, z are Boolean variables, analyze the circuits below to find an expression of "f" in terms of w, x, y, and z.

$$f = wx + y + z$$

W	X	У	Z	f
3.5V	2V	1.5V	1V	

Practice

- 1. Implement f = wx(y+z) with diode logic gates
- 2. Implement f = xy+z+w with diode logic gates

Example

Determine Vo

Stage 1: AND gate

Stage 2: OR gate

Thank You