Olimpiada de Matematică

Etapa județeană și a Municipiului București 11 Martie 2006

CLASA A XII-A

Problema 1. Fie $f_1, f_2, \ldots, f_n : [0, 1] \to (0, \infty)$ funcții continue și σ o permutare a mulțimii $\{1, 2, \ldots, n\}$. Să se demonstreze că

$$\prod_{i=1}^{n} \int_{0}^{1} \frac{f_{i}^{2}(x)}{f_{\sigma(i)}(x)} dx \ge \prod_{i=1}^{n} \int_{0}^{1} f_{i}(x) dx.$$

Problema 2. Fie $G = \{A \in \mathcal{M}_2(\mathbb{C}) \mid |\det(A)| = 1\}$ şi $H = \{A \in \mathcal{M}_2(\mathbb{C}) \mid \det A = 1\}$. Să se arate că G şi H înzestrate cu operația de înmulțire a matricilor sunt grupuri neizomorfe.

Problema 3. Fie A un inel comutativ finit cu cel puţin două elemente. Arătaţi că oricare ar fi numărul natural $n \geq 2$, există un polinom $f \in A[X]$, de gradul n, care nu are nici o rădăcină în A.

Problema 4. Fie $\mathcal{F} = \{f : [0,1] \to [0,\infty) \mid f \text{ continuă} \}$ şi n un număr natural, $n \geq 2$. Determinați cea mai mică constantă reală c, astfel încât

$$\int_0^1 f(\sqrt[n]{x}) \mathrm{d}x \le c \int_0^1 f(x) \mathrm{d}x$$

pentru orice $f \in \mathcal{F}$.

Timp de lucru: 3 ore

Fiecare subject este punctat cu 7 puncte.