Systematic review of SysID - Different models and prediction error methods

Part 3. Prediction error methods

- a) Compute $\hat{y}[k;\theta|k-1]$;
- b) Form the prediction error $\epsilon[k] = y[k] \hat{y}[k; \theta|k-1]$;
- c) Construct the loss function $L_N = \frac{1}{N} \sum_{k=1}^N \epsilon^2[k]$;
- d) $\theta^* = \underset{\theta}{\operatorname{argmin}} L_N$.

3.1 Different model types

3.1.1 Finite impulse response (FIR) model

$$y(t) = b_1 u(t-1) + b_2 u(t-2) + \dots + b_{n_b} (t-n_b) + e(t) = \left(\sum_{k=1}^{n_b} b_k q^{-k}\right) u(t) + e(t) = B(q) u(t) + e(t)$$

if n_b is infinity, this is a infinite impulse response model

3.1.2 Autoregressive exogenous (ARX) model

$$\begin{split} y(t) + a_1 y(t-1) + \cdots + a_{n_a} y(t-n_a) &= b_1 u(t-1) + b_2 u(t-2) + \cdots + b_{n_b} (t-n_b) + e(t) \\ \left(\sum_{k=0}^{n_a} a_k q^{-k} \right) y(t) &= \left(\sum_{k=1}^{n_b} b_k q^{-k} \right) u(t) + e(t) \\ y(t) &= \frac{B(q)}{A(q)} u(t) + \frac{1}{A(q)} e(t) \end{split}$$

3.1.3 Autoregressive moving average exogenous (ARMAX) model (equation error model family)

$$y(t) + a_1 y(t-1) + \dots + a_{n_a} y(t-n_a) = b_1 u(t-1) + b_2 u(t-2) + \dots + b_{n_b} (t-n_b) + e(t) + c_1 e(t-1) + \dots + c_{n_c} e(t-n_c)$$

$$\left(\sum_{k=0}^{n_a} a_k q^{-k}\right) y(t) = \left(\sum_{k=1}^{n_b} b_k q^{-k}\right) u(t) + \left(\sum_{k=0}^{n_c} c_k q^{-k}\right) e(t)$$

$$y(t) = \frac{B(q)}{A(q)} u(t) + \frac{C(q)}{A(q)} e(t)$$

3.1.4 Output-error model

If the linear difference equation is error-free, but that the noise consists of white measurement noise only:

$$\begin{split} x(t) + f_1 x(t-1) + \cdots + f_{n_f} x(t-n_a) &= b_1 u(t-1) + b_2 u(t-2) + \cdots + b_{n_b} (t-n_b) \\ y(t) &= x(t) + e(t) \\ y(t) &= \frac{\left(\sum_{k=1}^{n_b} b_k q^{-k}\right)}{\left(\sum_{k=0}^{n_f} f_k q^{-k}\right)} u(t) + e(t) \\ y(t) &= \frac{B(q)}{F(q)} u(t) + e(t) \end{split}$$

3.1.5 Box-Jenkins model (contains above all)

$$y(t) = \frac{B(q)}{F(q)}u(t) + \frac{C(q)}{A(q)}e(t)$$

3.2 2-DoF mass-spring-damper system

Define stiffness and mass matrices

|\\\\\\O\\\\\\O

k1 c1 m1 k2 c2 m2

$$M\ddot{X} + C\dot{X} + KX = F$$

```
clc;
clear;
close all;
addpath ../functions/
m1=5; %mass 1 [kg]
m2=2; %mass 2 [kg]
k1=200; %spring 1 [N/m]
k2=100; %spring 2 [N/m]
c1=10; % damping coeff 1
c2=10; % damping coeff 2
M=[m1 0;0 m2]; %mass matrix
K=[k1+k2 -k2; -k2 k2]; %stiffness matrix
Damp=[c1+c2 -c2; -c2 c2]; % damping matrix
```

```
T = 10; %length of time duration
nt = 500; %number of time stamps
Fs = nt/T;
tspan=linspace(0,T,nt);
F = csvread(['../data/ambient.csv']); %load data
```

3.2.1 Load the data generated in script 1

```
ysol = csvread(['../data/2dof_noP.csv']); %load data
tspan=linspace(0,T,nt);
figure(1)
plot_dv(tspan,ysol')
```


3.2.2 FIR model identification

$$[y(n_b), \cdots, y(N)]^T = \begin{bmatrix} u(n_b - 1) & u(n_b - 2) & \cdots & u(0) \\ u(n_b) & u(n_b - 1) & \cdots & u(1) \\ \vdots & \vdots & & \vdots \\ u(N_1) & u(N - 2) & \cdots & u(N - n_b) \end{bmatrix} [b_1, b_2, \cdots, b_{n_b}] T$$

3.2.3 ARX model identification

$$[y(\max(n_a,n_b)),\cdots,y(N)]^T = \begin{bmatrix} -y(n_a-1) & \cdots & -y(0) & u(n_a-1) & \cdots & u(n_a-n_b) \\ -y(n_a) & \cdots & -y(1) & u(n_a) & \cdots & u(n_a-n_b+1) \\ \vdots & & \vdots & & \vdots & & \vdots \\ -y(N-1) & \cdots & -y(N-n_a) & u(N-1) & \cdots & u(N-n_b) \end{bmatrix} \begin{bmatrix} a_1,a_2,\cdots,a_{n_a},b_1,b_2,\cdots,b_{n_b} \end{bmatrix} T$$

3.2.4 ARMAX model identification

$$[y(\max(n_a,n_b,n_c)),\cdots,y(N)]^T = \begin{bmatrix} -y(n_a-1) & \cdots & -y(0) & u(n_a-1) & \cdots & u(n_a-n_b) & \epsilon(n_a-1) & \cdots & \epsilon(n_a-n_c) \\ -y(n_a) & \cdots & -y(1) & u(n_a) & \cdots & u(n_a-n_b+1) & \epsilon(n_a) & \cdots & \epsilon(n_a-n_c+1) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -y(N-1) & \cdots & -y(N-n_a) & u(N-1) & \cdots & u(N-n_b) & \epsilon(N-1) & \cdots & \epsilon(N-n_c) \end{bmatrix}$$

Need iterative solution

3.2.5 Output error identification

Similar to ARMAX, but error does not shift.

3.3 Prediction error method

All above can be generalized by considering the equation and out errors as prediction errors.

3.3.1 Deterministic model with one step information

```
x[k+1] = A x[k] + B u[k]
y[k+1] = C x[k+1]
y[k+1|k] = C A C^{-1}y[k] + C B u[k]
\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{k=0}^{N-1} (y[k+1] - \hat{y}[k+1|k])^2
```

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

True parameters:

```
disp([m1,m2,k1,k2,c1,c2])
```

5 2 200 100 10 10

Estimated parameters

disp(params)

4.9997	2.0000	199.9864	99.9995	10.0017	10.0001
2.9936	2.0927	6.1589	0.0001	19.9999	19.9993
5.8706	2.3510	0.0000	0.0000	6.2452	19.0026
5.7234	1.9322	0.0013	17.8977	19.9992	2.7900
6.9048	2.4573	188.7143	96.9373	19.4295	8.9579

3.3.2 Deterministic model without previous information

$$x[k+1] = A x[k] + B u[k]$$

$$y[k+1] = C x[k+1]$$

$$\hat{y}[k+1] = C A^{k} x[0] + C B u[k]$$

$$\theta^{*} = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{k=1}^{N} (y[k] - \hat{y}[k])^{2}$$

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the default value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

disp(params1)

5.0000	2.0000	199.9994	100.0005	10.0003	9.9999
5.5827	1.9749	219.3015	98.8743	9.5965	8.5350
3.3593	2.0498	188.5633	78.1357	5.6857	7.0251
0.6686	2.2558	96.5856	299.9998	0.0000	11.8992
1.4199	0.7358	95.1074	0.0016	0.0001	19.9982
0.4877	0.3804	38.4027	0.0073	0.0001	19.9746