Student

Total Points

101 / 101 pts

Question 1

(no title) **21** / 21 pts

1.1 (no title) 6 / 6 pts

→ + 6 pts Correct

X	\mathbf{y}	\mathbf{z}	E	F	G
0	0	0	0	0	1
0	0	1	d	\mathbf{d}	\mathbf{d}
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	\mathbf{d}	\mathbf{d}
1	1	1	d	\mathbf{d}	\mathbf{d}

1.2 (no title) 8 / 8 pts

→ + 8 pts Correct

$$E = x + y$$

$$F = x$$

$$G = x'y' + x'z$$

$$G = x'y' + yz$$

1.3 (no title) 7 / 7 pts

→ + 7 pts Correct

Question 2 (no title) **20** / 20 pts **12** / 12 pts 2.1 (no title) ✓ - 0 pts Correct (x'z' + xz) (no title) 8 / 8 pts 2.2 ✓ - 0 pts Correct K-Map and results (x'z + xz) Question 3 (no title) **1** / 1 pt Question 4 (no title) **31** / 31 pts 4.1 (no title) **10** / 10 pts ✓ + 10 pts Correct **7** / 7 pts 4.2 (no title) ✓ - 0 pts Correct **7** / 7 pts 4.3 (no title) ✓ - 0 pts Correct **7** / 7 pts (no title) 4.4

- **1.** Design a combinational circuit with three inputs: x, y, z and three outputs: E, F, G, such that,
 - When the binary input xyz represents the decimal digits 2, 3, or 4, the binary output EFG should represent the decimal digit that is 2 greater than the input: that is 4, 5, or 6 respectively.
 - Similarly, when the binary input represents the digits 0 or 5, the binary output should represent the digit that is 1 greater than the input.
 - The remaining three, binary representations of the decimal digits 1, 6, and 7 never occur.
 - a) Start by drawing the truth table for the functions E, F, and G.

X	16	21	E	F	61	
0	0	0	0	0	T	
0	13	11	1	19	1	
0	(1)	0	1	0	0	1
0	Id.	1	1	0	1	I
T	0	0	1	1	0	1
1	1	10	1 d	1	1	1

b) Next, using K-Maps find all minimal forms of the three functions.

c) Finally, draw a circuit with three inputs and three outputs, representing a minimal form of the functions.

2. a) Find all minimal forms of the function below using the Tabulation Method and the Prime Implicant Table.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 1111 +
Index Binary Picinal 0 0-0 0,2 1-1-15,7-1 XZ+X'Z' XZ+X'Z' XZ + X'Z' 7 X X
b) Now use a K-Map to confirm your results in 2.a).
3. Draw a full-adder using two half-adders, and one more simple gate only.
+ FHA THATOS

. a) Draw a simple S-R-Flip-Flop using two gates and inverters, and show the truth table for this flip-flop.

111 doesn't ecunt 8

b) Draw a Clocked (controlled) S-R-Flip-Flop using an existing simple S-R-Flip-Flop and additional gates.

c) Draw a T-Flip-Flop using an existing Clocked S-R-Flip-Flop and wires only.

d) Draw the Racing Problem solution for a Clocked S-R-Flip-Flop using two existing Clocked S-R-Flip-Flops.

5. A sequential circuit with two clocked D-flip-flops A and B, one input x, and one output z is specified by the following input equations:

$$D_A = B * x$$
, $D_B = A * x + B$, $z = A + B$

Occurais	State	Input	Next	State	out put	1
A	B	X	DA	03	2	
C	0	0	0	3	0	
0	0	. 1	0	0	0	
0	1	0		1	- 1 - 1	
0	14	1		4 2 4 5		
-	0	0	0	10		
	0	1	0	1		
1		ಲ	0			
1	- 1		1 2	1 1	1 1	

c) Derive the state diagram.

d) Is this a Mealy

or a Moore

finite state machine? Check the appropriate box.