Machine learning for instance selection in SMT solving (Work in Progress)

Jasmin Christian Blanchette ^{1, 2} Daniel El Ouraoui² Pascal Fontaine² Cezary Kaliszyk³

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

University of Lorraine, CNRS, Inria, and LORIA, Nancy, France

University of Innsbruck, Innsbruck, Austria

9th April 2019

Contents

- 1 Introduction
- 2 CDCL(T)
- 3 Instantiation techniques
- 4 Machine learning for instance selection
- 5 Evaluation
- 6 Conclusion

Contents

- 1 Introduction
- 2 CDCL(T)
- 3 Instantiation techniques
- 4 Machine learning for instance selection
- 5 Evaluation
- 6 Conclusion

Motivations

Satisfiability modulo theories (SMT)

- Automation
 - Proof assistant
 - Verification conditions
 - Model checking
- Solvers
 - Z3, cvc4, veriT, ...

Instantiation

- Hard for SMT solvers
- Heuristically solved

Challenge

- Improve instantiation techniques
- Solve more problems
- Be more efficient

Our tool

Université de Lorraine/UFRN (http://www.verit-solver.org)

Contents

- 1 Introduction
- 2 CDCL(T)
- 3 Instantiation technique
- 4 Machine learning for instance selection
- 5 Evaluation
- 6 Conclusion

Context

$$(f(a,b) = g(a) \lor d = b) \land d = g(b) \land d \neq f(a,b) \land b = a \land d \neq g(a)$$

$$(\underline{f(a,b)} = \underline{g(a)} \vee \underline{d = \underline{b}}) \wedge \underline{d = \underline{g(b)}} \wedge \underline{d \neq \underline{f(a,b)}}_{l_3} \wedge \underline{b = \underline{a}} \wedge \underline{d \neq \underline{g(a)}}_{l_6}$$

$$\underbrace{(f(a,b)=g(a)}_{l_1}\vee\underbrace{d=b}_{l_2})\wedge\underbrace{d=g(b)}_{l_3}\wedge\underbrace{d\neq f(a,b)}_{l_4}\wedge\underbrace{b=a}_{l_5}\wedge\underbrace{d\neq g(a)}_{l_6}$$

$$\underbrace{(f(a,b)=g(a)}_{l_1}\vee\underbrace{d=b}_{l_2})\wedge\underbrace{d=g(b)}_{l_3}\wedge\underbrace{d\neq f(a,b)}_{l_4}\wedge\underbrace{b=a}_{l_5}\wedge\underbrace{d\neq g(a)}_{l_6}$$

$$\downarrow$$

$$(l_1\vee\neg l_2)\wedge l_3\wedge l_4\wedge l_5\wedge l_6$$

CDCL(T)

- Formulas are embedded in SAT
- SAT solver produces a boolean model
- Theory solvers produce conflict clauses
- Conflict clauses guide the SAT solver

Instantiation

$$b \neq a \land f(a) = f(b) \land \forall xy f(x) = f(y) \Rightarrow x = y$$

$$b \neq a \land f(a) = f(b) \land \forall xy \, f(x) = f(y) \Rightarrow x = y$$

$$\frac{b \neq a \land f(a) = f(b)}{\text{SAT}} \land \forall xy \, f(x) = f(y) \Rightarrow x = y$$

$$\frac{b \neq a \land f(a) = f(b)}{\text{SAT}} \land \forall xy \, f(x) = f(y) \Rightarrow x = y$$

$$\frac{b \neq a \land f(a) = f(b)}{\text{SAT}} \land \forall xy \, f(x) = f(y) \Rightarrow x = y$$

$$\downarrow \\ f(a) \neq f(b) \lor a = b$$

$$\frac{b \neq a \land f(a) = f(b)}{\text{SAT}} \land \forall xy \, f(x) = f(y) \Rightarrow x = y$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$f(a) \neq f(b) \lor a = b$$

$$\downarrow$$

$$\frac{b \neq a \land f(a) = f(b)}{\text{SAT}} \land \forall xy \, f(x) = f(y) \Rightarrow x = y$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$f(a) \neq f(b) \lor a = b$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\frac{b \neq a \land f(a) = f(b) \land f(a) \neq f(b)}{\text{UNSAT}}$$

First-Order CDCL(T)

Contents

- 1 Introduction
- 2 CDCL(T)
- 3 Instantiation techniques
- 4 Machine learning for instance selection
- 5 Evaluation
- 6 Conclusion

State of the art

- **Conflict based instantiation** Introduced by Reynolds, this technique produces relevant sets of instances. The idea is that, given a ground model \mathcal{M} and a quantified formula $\forall (\overline{x}_n : \overline{\tau}_n).\varphi$, we find a substitution σ such that $\mathcal{M} \models \neg \varphi \sigma$.
- Congruence Closure with Free Variable (CCFV) Introduced by Barbosa et al., generalizes the idea of Conflict based instantiation by reasoning over equivalence classes.

State of the art

Enumerative instantiation
$$\forall (x:\tau).\psi[x] \equiv \bigwedge_{t \in \mathcal{D}_{\tau}} \psi[t]$$

Enumerate all ground terms over the domain of x (aka. Herbrand universe)

Trigger based instantiation

Triggers

A trigger T for a quantified formula $\forall \overline{x}_n.\psi$ is a set of non-ground terms $u_1,\ldots,u_n\in \mathbf{T}(\psi)$ such that: $\{\overline{x}\}\subseteq \mathsf{FV}(u_1)\cup\ldots\cup\mathsf{FV}(u_n)$.

$$E = f(a) \simeq g(b), \ a \simeq g(b)$$

 $Q = \forall x f(g(x)) \not\simeq g(x)$
 $T = f(g(x))$ $f(a)$ E-matches $f(g(x))$ under $x \mapsto b$

Strategie

Figure: Instantiation strategie

Summarize

Conflict based instantiation and CCFV:

Pro Efficient, if find substitution kill the model

Pro All generated instances are useful

Cons Finds contradiction involving only one instance

Enumerative and Trigger based instanciation:

Pro Useful when CCFV fail

Cons Many heuristics

Cons Generates a lot of junk, and many instances

Summarize

Conflict based instantiation and CCFV:

Pro Efficient, if find substitution kill the model

Pro All generated instances are useful

Cons Finds contradiction involving only one instance

Enumerative and Trigger based instanciation:

Pro Useful when CCFV fail

Cons Many heuristics

Cons Generates a lot of junk, and many instances

Indeed

This is what we want improve!

Contents

- 1 Introduction
- 2 CDCL(T)
- 3 Instantiation techniques
- 4 Machine learning for instance selection
- 5 Evaluation
- 6 Conclusion

Problem

- How many lemmas are generated to solve a problem?
 - around 300 for the UF category of the SMT-LIB
 - some generate more than 100 000 instances
- How many lemmas are needed to solve a problem?
 - Only 10% of this number, and sometimes much less

Problem

- How many lemmas are generated to solve a problem?
 - around 300 for the UF category of the SMT-LIB
 - some generate more than 100 000 instances
- How many lemmas are needed to solve a problem?
 - Only 10% of this number, and sometimes much less

Question

Could we select the good one?

Our approach

- Instances in a priority queue
- Encode instances
- Call predictor
- Several strategies for selection

State description

Model Formula Instances
$$(\begin{array}{c} \underbrace{l_1,\ldots,l_n}, \overline{\forall \overline{x_n}\,.\,\psi[\overline{x_n}]}, \overline{x_1\mapsto t_1,\ldots,x_n\mapsto t_n} \end{array})$$

Experiments

Contents

- 1 Introduction
- 2 CDCL(T)
- 3 Instantiation technique
- 4 Machine learning for instance selection
- 5 Evaluation
- 6 Conclusion

Time evaluation

- Experiments run on UF SMTLIB benchmarks with 120s timeout
- veriT without learning solves 2923
- veriT with learning solves 2939 with learning

Evaluation on test + training set

Figure: comparison of VERIT configurations on UF SMT-LIB benchmarks.

Evaluation on test set only

 $\label{thm:comparison} \textbf{Figure: comparison of VERIT configurations on UF SMT-LIB benchmarks.}$

Contents

- 1 Introduction
- 2 CDCL(T)
- 3 Instantiation technique
- 4 Machine learning for instance selection
- 5 Evaluation
- 6 Conclusion

Conclusions and future directions

- Could be a significant improvement
- Reduces the number of instances by two in average
- Reinforcement learning
- Features embedding can be improved

Thank you for you attention Questions or suggestions?

Evaluation

	All			T	Test only		
	unsat	avg	less	unsat	avg	less	
with learning	1443	113	1317	423	130	363	
without learning	1443	318	128	423	264	62	

Table: VERIT configurations on UF SMTLIB benchmarks with 30s timeout.

Features encoding

Terms abstraction

- Variables
- Skolem constants
- Polarity

Features

- FEATURE: Literal $\rightarrow \Sigma^3$
- FEATURES: $\Sigma^3 \to \mathbb{N}$
- Occurrences of term walks

Example

$$\mathsf{FEATURES}\left(f(x,y) = g(\mathit{sk1},\mathit{sk2}(x))\right) = (\oplus, =, f) \mapsto 1, (\oplus, =, g) \mapsto 1, (=, f, \circledast) \mapsto 2, (=, g, \odot) \mapsto 2, (g, \odot, \circledast) \mapsto 1$$

State description version 2

- E_{t_i} is the congruence class of t_i
- lacksquare D_{t_i} is the set of all terms explicitly disequals with t_i
- \blacksquare T_i is the set of triggers of x_i

This description reduce drastically the size of the problem