Линейное программирование Метод внутренней точки

Роланд Хильдебранд

Методы оптимизации, ФУПМ МФТИ, май 2022 г.

План

- допустимый метод внутренней точки
- поиск допустимой точки
- недопустимые методы
- приложение: оптимальное распределение ресурсов
- приложение: восстановление разреженного сигнала
- приложение: задача о максимальном потоке

Условия оптимальности

рассмотрим прямо-двойственную пару задач ЛП

$$\min_{x\geq 0} \langle c, x \rangle$$
: $Ax = b$

$$\max_{s \ge 0, y} \langle b, y \rangle$$
: $s + A^T y = c$

условия оптимальности для прямо-двойственной пары (x,s,y):

- Ax = b
- $\bullet \ s + A^T y = c$
- $x \ge 0$
- s ≥ 0
- \bullet $x_i s_i = 0$ для всех i

Идея метода

сохраняем справедливость условий допустимости приближаем условие комплементарности условием

$$x \bullet s \approx \mu \cdot 1, \qquad \mu \to 0$$

здесь ullet — по-элементное умножение пытаемся стремить произведения $x_i s_i$ к нулю с одной и той же скоростью

система уравнений

$$Ax = b$$
, $s + A^T y = c$, $x \bullet s = \mu \cdot 1$

решается приближённо методом Ньютона

аппроксимации допустимого множества условия комплементарности $x_i s_i = 0$ гиперболами

Структура допустимого множества

Лемма

Допустим, что прямая и двойственная ЛП строго допустимы. Тогда для любого $z \in \mathbb{R}^n_{++}$ существует единственная строго допустимая пара точек (x,s) такая, что $z=x \bullet s$.

с другой стороны, для любой такой пары точек имеем $x \bullet s > 0$ это означает, что квадратичное отображение

$$(x,s)\mapsto x\bullet s$$

есть биекция внутренности прямого произведения $X_P \times X_D$ допустимых множеств прямой и двойственной ЛП на открытый ортант

Доказательство

пусть дано z>0

рассмотрим задачу

$$\min_{x\geq 0} \left(\langle c, x \rangle - \sum_{i=1}^{n} z_i \log x_i \right) : \quad Ax = b$$

функция цены строго выпукла, допустимое множество то же, что в прямой ЛП,

на границе функция равна $+\infty$

если задача неограничена снизу, то существует рецессивное направление $\delta \geq$ 0, $A\delta=$ 0, на котором $\langle c,\delta \rangle \leq$ 0

для допустимого $s=c-A^Ty$ получаем $\langle s,\delta \rangle = \langle c,\delta \rangle \leq 0$, противоречие со строгой допустимостью двойственной задачи

значит сущестует единственное строго допустимое решение

Доказательство

Лагранжиан имеет вид

$$\mathcal{L} = \langle c, x \rangle - \sum_{i=1}^{n} z_{i} \log x_{i} - \langle y, Ax - b \rangle$$

условие оптимальности

$$c - \Delta_z x^{-1} - A^T y = 0$$

точка $s=\Delta_z x^{-1}$ строго допустима, и $z=x \bullet s$

с другой стороны, если $s = \Delta_z x^{-1}$ допустима, то x удовлетворяет условию оптимальности и совпадает с решением

Центральный путь

решение — прообраз точки z=0 при биекции

$$(x,s)\mapsto z=x\bullet s$$

метод находит предел прообраза луча

$$z = \{\mu \cdot 1 \mid \mu \in \mathbb{R}_{++}\}$$

эта кривая в пространстве (x,s) называется *центральным путём* центральный путь параметризован параметром $\mu>0$

Направление Ньютона

для того, чтобы найти точку (x_{μ}^*, s_{μ}^*) на центральном пути, нужно решить систему

$$Ax = b$$
, $s + A^T y = c$, $x_i s_i = \mu \ \forall i$

пусть текущая точка (x, s, y) строго допустима, тогда смещения удовлетворяют

$$A\delta_x = 0$$
, $\delta_s + A^T \delta_y = 0$, $\Delta_x \delta_s + \Delta_s \delta_x + \delta_x \bullet \delta_s = \mu \cdot 1 - x \bullet s$

линеаризацией получаем систему

$$\begin{pmatrix} 0 & A & 0 \\ A^T & 0 & I \\ 0 & \Delta_s & \Delta_x \end{pmatrix} \begin{pmatrix} \delta_y \\ \delta_x \\ \delta_s \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \mu \cdot 1 - x \bullet s \end{pmatrix}$$

Направление Ньютона

умножаем последнюю строку на $A\Delta_s^{-1}$

$$\begin{pmatrix} 0 & A & 0 \\ A^{T} & 0 & I \\ 0 & A & A\Delta_{x/s} \end{pmatrix} \begin{pmatrix} \delta_{y} \\ \delta_{x} \\ \delta_{s} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ A(\mu \cdot s^{-1} - x) \end{pmatrix}$$

устраняем $\delta_{\scriptscriptstyle X}$

$$\begin{pmatrix} A^{T} & I \\ 0 & A\Delta_{x/s} \end{pmatrix} \begin{pmatrix} \delta_{y} \\ \delta_{s} \end{pmatrix} = \begin{pmatrix} 0 \\ A(\mu \cdot s^{-1} - x) \end{pmatrix}$$

умножаем первую строку на $A\Delta_{x/s}$

$$\begin{pmatrix} A\Delta_{x/s}A^T & A\Delta_{x/s} \\ 0 & A\Delta_{x/s} \end{pmatrix} \begin{pmatrix} \delta_y \\ \delta_s \end{pmatrix} = \begin{pmatrix} 0 \\ A(\mu \cdot s^{-1} - x) \end{pmatrix}$$

устраняем δ_s

$$A\Delta_{x/s}A^T\delta_y = A(x - \mu \cdot s^{-1})$$

Направление Ньютона

система имеет размерность m, равную числу условий равенства если $n-m\ll m$, имеет смысл перейти к двойственной задаче матрица системы положительно определена, можно решать через факторизацию Холецкого

получаем решение

$$\delta_{y} = (A\Delta_{x/s}A^{T})^{-1}A(x - \mu \cdot s^{-1})$$

$$\delta_{s} = -A^{T}\delta_{y},$$

$$\delta_{x} = \mu s^{-1} - x - \Delta_{x/s}\delta_{s}$$

но $(x + \delta_x, s + \delta_s)$ может не удовлетворять условию положительности

Широкая окрестность

мы не хотим слишком далеко уходить от центрального пути определим окрестность

$$N_{\gamma} = \{(x,s) \in X_P \times X_D \mid \min_i(x_i s_i) \geq \gamma \psi(x,s)\}$$

где $\psi(x,s)=\frac{\langle x,s\rangle}{n}$ — среднее значение произведений x_is_i типичное значение $\gamma=10^{-3}$

 N_{γ} является прообразом симплициального конуса в пространстве $z=x\bullet s$, который получается смещением фасадов ортанта внутрь

сечение ортанта сечение образа N_{γ}

Длина шага

шаг имеет вид

$$(x, s, y) \leftarrow (x', s', y') = (x + \alpha \delta_x, s + \alpha \delta_s, y + \alpha \delta_y)$$

где lpha — максимальное значение, при котором $(x',s',y')\in N_\gamma$ $z=x'\bullet s'$ — квадратична по lpha,

$$\psi(x',s') = \frac{\langle x + \alpha \delta_x, s + \alpha \delta_s \rangle}{n} = \psi(x,s) + \frac{\alpha(\langle x, \delta_s \rangle + \langle \delta_x, s \rangle)}{n}$$

линейна

нужно решить *п* квадратичных уравнений

образ в пространстве переменных z является параболой, которая снова приходит на границу окрестности N_γ

Другие параметры алгоритма

обновление μ

- ullet длина центрального пути пропорциональна $-\log \mu$
- ullet малое μ означает далёкую целевую точку линейная аппроксимация менее точная
- ullet медленное понижение μ означает небольшой прогресс можно полагать $\mu= heta\cdot\psi(x,s),\; heta\in(0,1)$

на центральном пути имеем

$$\psi(\mathsf{x}^*(\mu),\mathsf{s}^*(\mu)) = \mu$$

с другой стороны

$$\langle c, x \rangle - \langle b, y \rangle = \langle s, x \rangle = n \cdot \psi(x, s)$$

двойственный зазор стремится к нулю

обычно критерий останова — когда двойственный зазор достигнет $\sqrt{\epsilon} \approx 10^{-8}$

далее алгоритм теряет устойчивость

Фаза 1

бывает ситуация, когда строго допустимой точки не имеется для построения прямой допустимой точки можно решать вспомогательную задачу

$$\min_{x\geq 0,\tau} \tau: \qquad Ax = \tau Ax_0 + (1-\tau)b$$

где $x_0 > 0$ — произвольная точка

тогда пара $(x, \tau) = (x_0, 1)$ строго допустима для вспомогательной задачи

любая строго допустимая точка $(x, au) = (\hat{x}, 0)$ даёт строго допустимую точку \hat{x} для прямой ЛП

если оптимальное значение $au^*>0$, то задача недопустима

Фаза 1

для построения двойственной допустимой точки можно решать вспомогательную задачу

$$\min_{s\geq 0,y,\tau} \tau: \qquad s+A^Ty=\tau s_0+(1-\tau)c$$

где $s_0>0$ — произвольная точка

тогда пара $(s,y, au)=(s_0,0,1)$ строго допустима для вспомогательной задачи

любая строго допустимая точка $(s,y, au)=(\hat{s},\hat{y},0)$ даёт строго допустимую точку (\hat{s},\hat{y}) для двойственной ЛП

если оптимальное значение $au^*>0$, то задача недопустима

Недопустимая внутренняя точка

можно сразу начать основную фазу с недопустимой начальной точки

тогда в построении системы для вычисления направления надо учитывать невязки

$$\begin{pmatrix} 0 & A & 0 \\ A^{T} & 0 & I \\ 0 & \Delta_{s} & \Delta_{x} \end{pmatrix} \begin{pmatrix} \delta_{y} \\ \delta_{x} \\ \delta_{s} \end{pmatrix} = \begin{pmatrix} b - Ax \\ c - s - A^{T}y \\ \mu \cdot 1 - x \bullet s \end{pmatrix}$$

шаг с коэффициентом lpha умножает невязки на множитель (1-lpha)

в частности, полный шаг приводит к допустимым точкам, и далее они уже остаются допустимыми

длина шага выбирается при условии что невязки сокращаются как минимум пропорционально μ

Оптимальное распределение ресурсов

рассмотрим задачу планировки распределения ресурсов $k=1,\ldots,K$ для производства продуктов $l=1,\ldots,n$ цены продуктов p_1,\ldots,p_n для производства единицы продукта l нужно a_{kl} единиц ресурса k в наличие имеется r_1,\ldots,r_K единиц ресурсов

нужно найти оптимальные количества x_1,\dots,x_n продуктов, максимизирующие выручку

задача формулируется в виде ЛП

$$\min_{x}(-\langle p, x \rangle): Ax \leq r, x \geq 0$$

если продукты производятся по-штучно, получаем смешанно-целочисленную ЛП

Восстановление разреженного сигнала

пусть х — разреженный сигнал

задача — восстановить x из зашумлённого линейного образа

$$y = Ax + \xi$$

где $A \in \mathbb{R}^{m imes n}$ и шум ξ ограничен δ в $\|\cdot\|_{\infty}$ норме

здесь $m\ll n$, т.е. система недоопределена

нужно использовать информацию о разреженности $oldsymbol{x}$

Восстановление разреженного сигнала

в идеале нужно решить проблему

$$\min_{x} \|x\|_{0}: \qquad \|Ax - y\|_{\infty} \leq \delta$$

где
$$||x||_0 := \#\{i \mid x_i \neq 0\}$$

линейная релаксация проблемы получается заменой 0-"нормы" на 1-норму:

$$\min_{x} \|x\|_1: \qquad \|Ax - y\|_{\infty} \le \delta$$

эта задача формулируется в виде ЛП

$$\min_{x,t} \langle 1, t \rangle : -t \leq x \leq t, -\delta \leq Ax - y \leq \delta$$

Задача о максимальном потоке

пусть дан граф с n вершинами и весами W_{ij} на гранях граф моделирует систему труб с пропускными способностями W_{ij}

требуется найти пропускную способность сети из выделенной вершины 1 в вершину \emph{n}

пусть $F_{ij} = -F_{ji}$ — поток из вершины i в вершину j тогда задача формулируется в виде ЛП

$$\max_{F=-F^T} \sum_{i=1}^n F_{1i}: \qquad F \le W, \quad \sum_{i=2}^{n-1} F_{ji} = 0 \,\,\forall \,\, j$$

Задача о минимальном разрезе

рассмотрим граф с весами $W_{ij}=W_{ji}\geq 0$ на гранях и с двумя выделенными вершинами 1,n

необходимо разделить вершины на две группы $S,\,T$, в каждой из которых по одной выделенной, и при этом минимизировать суммарный вес граней, соединяющих $S,\,T$

задача эквивалентна задаче о максимальном потоке

пусть F^* — оптимальный поток, $ilde{W}=W-F^*$ — вспомогательная матрицы ограничений

тогда S — множество вершин, достижимых из вершины 1 с помощью потока $\tilde{F}=-\tilde{F}^T$ с ограничением $\tilde{F}\leq \tilde{W}$

