МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Кафедра «Комп'ютерні інформаційні технології»

Лабораторна робота №3

з дисципліни «Організація комп'ютерних мереж»

на тему: «Базові топології. Компоненти комп'ютерної мережі»

Виконав: студент гр.П31911 Сафонов Д.Є. Прийняв: Івченко Ю.М. Тема. Базові топології. Компоненти комп'ютерної мережі.

Мета. Навчитися:

- 1. ідентифікувати три базові топології та їх комбінації,
- 2. описувати переваги та недоліки кожної топології,
- 3. робити вибір топології, що відповідає реалізації конкретної задачі,
- 4. визначати оптимальні для конкретного мережного середовища тип кабелю та апаратури підключення.

Порядок виконання роботи.

- 1. Ознайомитись з описом та ілюстрацією роботи базових топологій, областями використання кожної топології, аспектами, на які необхідно звернути увагу при плануванні мережі (Lab_top).
- 2. Ознайомитись з описом та ілюстрацією підключення мережних компонентів (Lab_comp). Необхідно засвоїти:
 - основні концепції побудови кабельної системи в локальній обчислювальній мережі;
 - основні типи кабелів, їх конструкції, характеристики і способи функціонування;
 - засвоїти терміни:
 - "екранування",
 - "перехресні перешкоди",
 - "загасання",
 - "пленум",
 - "термінатор";

Короткий опис базових топологій

Топологія	Визначення	Переваги	Недоліки
Шина(bus)	Комп'ютери під- ключені уздовж одного кабелю.	 Економна витрата кабелю. Порівняно недорога і нескладна у використанні мережа, середовище передачі. Простота, надійність. Легко розширюється 	 При значних об'ємах трафіку зменшується пропускна спроможність. Важко локалізувати проблеми. Вихід з ладу кабелю зупиняє роботу багатьох користувачів
Кільце(ring)	Кабель, до якого підключені комп'ютери, замкнутий у кільце.	 Всі комп'ютери мають рівний доступ. Кількість користувачів не має значного впливу на продуктивність. 	 Вихід з ладу одного комп'ютера може вивести з ладу всю мережу. Важко локалізувати проблеми. Зміна конфігурації мережі вимагає зупинки роботи всієї мережі
Зірка(Star)	Комп'ютери під- ключені до се- гментів кабелю, що виходять з однієї точки або концентратора.	 Легко модифікувати мережу, додаючи нові комп'ютери. Централізований контроль і управління. Вихід з ладу одного комп'ютера не впливає на працездатність мережі. 	• Вихід з ладу центрального вузла виводить з ладу всю мережу

Короткий опис основних типів кабелів та їх характеристик

Характеристика	Тонкий коаксі-	Товстий коаксі-	Вита пара	Оптоволоконний
	альний кабель 10Base2	альний кабель 10Base5	10BaseT	кабель
Вартість	Дорожче витої пари	Дорожче за тонкий коаксі- альний кабель	Найдешевший	Найдорожчий
Ефективна довжина кабелю*	185 м	500 м	100 м	2 км
Швидкість пере- дачі**	10 Мбіт/с	10 Мбіт/с	4-100 Мбіт/с	100 Мбіт/с і вище
Гнучкість	Досить гнучкий	Менш гнучкий	Найгнучкіший	Не гнучкий
Простота установки	Простий в установці	Простий в установці	Дуже простий в установці; може бути встановлений при будівництві	Важкий в установці
Схильність до завад	Хороший захист від перешкод	Хороший захист від перешкод	Схильний до перешкод	Не схильний до перешкод
Особливі властивості	Електронні компоненти дешевше, ніж у витої пари	Електронні компоненти дешевше, ніж у витої пари	Той же телефонний дріт, прокладений під час будівництва	Підтримує часто мову, відео і дані
Рекомендоване за- стосування	Середні або великі мережі з високими вимогами до захисту даних	Середні або великі мережі з високими вимогами до захисту даних	UTP – найдешевший варіант; STP – Token Ring будь-якого розміру	Мережі будь-яко- го розміру з ви- сокими вимогами до швидкості передачі, рівня захисту і цілі- сності даних
З'єднувачі	BNC	AUI	RJ45	

З'єднувачі ВNС AUI RJ45

* Ефективна довжина кабелю може змінюватися залежно від кожної конкретної мережі. З поліпшенням технології вона збільшується.

^{**} Діапазон швидкостей передачі для деяких типів кабелів розширюється. Технічні досягнення у виробництві мідних дротів привели до такої швидкості передачі сигналів, яку раніше не можна було і припустити.

Висновки

В ході лабораторної роботи ми ознайомилися з описом та ілюстрацією роботи базових топологій, областями використання кожної топології, аспектами, на які необхідно звернути увагу при плануванні мережі. Також ознайомилися з описом та ілюстрацією підключення мережних компонентів.

Були вивчені основні концепції побудови кабельної системи в локальній обчислювальній мережі, основні типи кабелів, їх конструкції, характеристики і способи функціонування, основні терміни.

Окрім цього було з'ясовано що існує безліч комбінацій базових топологій, які й використовуються у більшості випадків. Були розглянуті недоліки та переваги базових топологій, видів кабелів.

Контрольні питання

1. Призначення комп'ютерної мережі.

Основне призначення комп'ютерних мереж - сумісне використання ресурсів і здійснення інтерактивного зв'язку як усередині однієї фірми, так і за її межами.

2. Локальні і глобальні обчислювальні мережі (ЛОМ і ГОМ).

ЛОМ(LAN) — Локальна обчислювальна мережа (Local Area Network) складається з декількох комп'ютерів і периферійних пристроїв, сполучених кабелем в межах певної території, наприклад, в одному з відділів компанії або усередині невеликої будівлі. Мережа дозволяє спільно використовувати ресурси, наприклад, файли і принтери, а також працювати з інтерактивними застосуваннями, наприклад, планувальниками і електронною поштою.

ГОМ(WAN) — Глобальна обчислювальна мережа(Wide Area Network), те саме що ЛОМ, але поєднуються користувачі з різних міст і держав, також кількість користувачів суттєво збільшується — від десятків до декількох тисяч.

3. Два основних типи мереж: однорангові мережі та мережі на основі сервера.

Параметри	Однорангові мережі	Мережі на основі сервера
Розмір	≤10	Обмежені апаратним забезпеченням сервера і мережі
Захист	Питання захисту розв'язується кожним користувачем самостійно	Централізований захист, яким займається адміністратор.
Адміністрування	Кожен користувач адмініструє свій комп'ютер.	Централізоване
Операційні системи	Майже у всіх сучасних вбудована підтримка однорангових мереж. Тому, щоб встановити однорангову мережу, додаткового програмного забезпечення не вимагається	Мережевий сервер і операційна система працюють як єдине ціле. Деякі системи, наприклад Microsoft Windows NT Server, були створені спеціально для того, щоб використовувати переваги найбільш передових серверних технологій.
Апаратне забезпечення	Оскільки кожен комп'ютер є одночасно і клієнтом, і сервером, немає необхідності в потужному центральному сервері або в інших компонентах, обов'язкових для складніших мереж. Однорангові мережі звичайно вимагають потужніших комп'ютерів.	Оскільки комп'ютер користувача не виконує функції сервера, вимоги до його характеристик залежать від потреб самого користувача

4. Загальні компоненти, функції і характеристики всіх мереж: сервери (server), клієнти(client), середовище (media), ресурси (resources).

- сервери комп'ютери, що надають свої ресурси мережевим користувачам;
- клієнти комп'ютери, що здійснюють доступ до мережевих ресурсів, що надаються сервером;
- середовище спосіб з'єднання комп'ютерів;
- ресурси файли, принтери і інші елементи, використані в мережі.

5. Спеціалізовані сервери.

- Файл-сервери і принт-сервери управляють доступом користувачів відповідно до файлів і принтерів.
- На серверах додатків виконуються прикладні частини клієнт-серверних додатків, а також знаходяться дані, доступні клієнтам.
 - Клієнт додатків на віддаленому комп'ютері дістає доступ до даних, що зберігаються на сервері додатків. Проте, замість всієї бази даних на Ваш комп'ютер з сервера завантажуються тільки результати запиту.
- Поштові сервери управляють передачею електронних повідомлень між користувачами мережі.
- Сервери Факсу управляють потоком вхідних і вихідних факсимільних повідомлень через один або декілька факс-модемів.
- Комунікаційні сервери управляють потоком даних і поштових повідомлень між цією і іншими мережами, мейнфреймами або віддаленими користувачами через модем і телефонну лінію.

6. Топології мереж і їх вплив на характеристики мережі.

Термін «топологія», або «топологія мережі», характеризує фізичне розташування комп'ютерів, кабелів і інших компонентів мережі.

Вибір тієї або іншої топології впливає на:

- склад необхідного мережевого устаткування;
- характеристики мережевого устаткування;
- можливості розширення мережі;
- спосіб управління мережею.

7. Базові топології: шина, зірка, кільце. Компоненти необхідні для створення мереж базових топологій шина і зірка.

Шина — Комп'ютери підключені уздовж одного кабелю(магістраль). Пасивна топологія.

Зірка — Комп'ютери підключені до сегментів кабелю, що виходять з однієї точки або концентратора.

Кільце — Кабель, до якого підключені комп'ютери, замкнутий у кільце, кожен комп'ютер виступає в ролі репітера.

Для створення мережі топології шина потрібні комп'ютери, магістральний кабель, термінаторі сигналу на кінцях магістралі.

Для створення мережі топології зірка необхідні комп'ютери, концентратор, кабелі від концентратора до комп'ютерів.

8. Концентратори (hub): активні, пасивні, гібридні.

Одним із стандартних компонентів мережі ϵ концентратор. В мережах з топологі ϵ ю «зірка» він служить центральним вузлом.

Використання концентраторів дає ряд переваг. Розрив кабелю в мережі із звичайною топологією «лінійна шина» приведе до «падіння» всієї мережі. А розрив кабелю, підключеного до концентратора, порушить роботу тільки даного сегменту. Решта сегментів залишиться працездатною.

До інших переваг використання концентраторів належать:

- простота зміни або розширення мережі: достатньо просто підключити ще один комп'ютер або концентратор;
- використання різних портів для підключення кабелів різних типів;
- централізований контроль за роботою мережі і мережевим трафіком.
- Активні концентратори регенерують і передають сигнали так само, як це роблять репітери. Іноді їх називають багатопортовими репітерами вони мають від 8 до 12 портів для підключення комп'ютерів.
- Пасивні концентратори просто пропускають через себе сигнал як вузли комутації, не підсилюючи і не відновлюючи його. Пасивні концентратори не треба підключати до джерела живлення.
- Гібридні концентратори до них можна підключати кабелі різних типів. Мережі, побудовані на концентраторах, легко розширити, якщо підключити додаткові концентратори.

9. Три основні групи кабелів.

- коаксіальний кабель (coaxial cable);
- вита пара (twisted pair);
- оптоволоконний кабель (fiber optic).

10. Що означають специфікації: 10BaseT, 10Base2, 10Base5.

10BaseT — Вита пара

10Base2 — Тонкий коаксіальний кабель

10Base5 — Товстий коаксіальний кабель

Base — скорочення від BASEband signaling,

10 — швидкість передачі даних (хоча вже не ϵ актуальною для деяких стандартів)

T — twisted pair(вита пара)

2 — означає що максимальна довжина сегменту наближається до 200 метрів(насправді 185)

5 — означає що максимальна довжина сегменту — 500 метрів.

11. Топологія мережі і її компоненти (ауд. 4208а).

Топологія мережі у аудиторії 4208а — шина-зірка(starbus) — комбінована топологія, яка поєднує базові топології шина та зірка. Комп'ютери біля стінок, перпендикулярних вікнам, поєднані топологією зірка, а два концентратори поєднуються між собою топологією шина. Використовуються гібридні концентратори з наступними характеристиками

- 8x RJ45 використовується 10BaseT UTP5
- 1x BNC 10Base2
- 1x AUI 10Base5