

Lab 11: Mosfet Amplifier Configuration

Kylan Lewis

UIN: 719001131

ECEN 325 -501 TA: Jian Shao Date: 11/14/2020

Simulation

Common-Source Amplifier

Figure 1: DC Solution for common-source amplifier ▲

$$V_{RG2}=3.43\,V$$

$$V_{RS}=0.996V\\$$

$$V_{RD} = 5\text{-}2.5 = 2.5V$$

$$V_{\text{o,dc}} = 2.5 V\,$$

$$I_{\text{D}}=1.78mA$$

Figure 2.1: AC Simulation of A_V for common-source amplifier ▲

 $A_V = 24.9948$

Figure 2.2: AC Simulation of R₁ for common-source amplifier **△**

 $R_{\rm i}=11.0740k\Omega$

Figure 3: Time-domain waveform of $V_i = 40 \text{mV}$ for common-source amplifier \blacktriangle

$$A_V = \frac{3.4434 - 1.4659}{0.039 - (-0.039)} = 25.35 \approx 25$$

Figure 4: Total harmonic distortion (THD) for common-source amplifier ▲

THD =
$$4.9432\% \le 5\%$$

Figure 5: Clipping voltage for common-source amplifier ▲

Clipping voltage = 70mV

Common-Drain Amplifier

Figure 6: DC Solution for common-drain amplifier ▲

 $V_{RG2}=3.43\,V$

 $V_{RS}=0.996V$

 $I_{\text{D}}=1.78mA$

Figure 7.1: AC Simulation of A_V for common-drain amplifier \blacktriangle

 $A_V = 0.909$

Figure 7.2: AC Simulation of R₁ for common-drain amplifier ▲

 $R_{\rm i}=10.9998k\Omega$

Figure 7.3: AC Simulation of R₀ for common-drain amplifier **△**

 $R_o=50.8675\Omega\,$

Figure 8: Time-domain waveform of $V_i = 0.8V$ for common-drain amplifier \blacktriangle

$$A_V = \frac{1.7324 - 0.2881}{0.7999 - (-0.7999)} = 0.903$$

Figure 9: Total harmonic distortion (THD) for common-drain amplifier \blacktriangle THD = 0.983%

TA Question:

How can you improve the linearity of the common source amplifier?

To improve the linearity of the common source amplifier, one should manipulate the V_{RD} . As this value directly impacts the linearity and signal swing at the output of the amplifier. Furthermore we seek a $V_{RD}=V_{DD}-V_o-V_{RS}-V_{OV}$. Or slightly less.