HIGH-PERFORMANCE COMPUTING

Stepan Gordeev September 17, 2020

OUTLINE

- 1. Parallelization
- 2. BlueHive
- 3. General Coding
- 4. Julia Recommendations
- 5. Exposition of Advanced Techniques

PARALLELIZATION

- All consumer CPUs have multiple cores, but by default your code will run sequentially on one core!
- Can write code that will explicitly split tasks across cores
- Work is split between cores, they all work simultaneously, then they pool results together.
- Matlab and Julia will run certain things in parallel on their own, e.g. linear algebra.
- Split sequential code across two processors → 2x speedur
 - Parallelization adds overhead: CPU does extra work to split the task across cores and then to collect the results.

- All consumer CPUs have multiple cores, but by default your code will run sequentially on one core!
- · Can write code that will explicitly split tasks across cores.
- Work is split between cores, they all work simultaneously, then they pool results together.
- Matlab and Julia will run certain things in parallel on their own, e.g. linear algebra.
- Split sequential code across two processors → 2x speedup
 - Parallelization adds overhead: CPU does extra work to split the task across cores and then to collect the results.

- All consumer CPUs have multiple cores, but by default your code will run sequentially on one core!
- · Can write code that will explicitly split tasks across cores.
- Work is split between cores, they all work simultaneously, then they pool results together.
- Matlab and Julia will run certain things in parallel on their own, e.g. linear algebra.
- Split sequential code across two processors → 2x speedup
 - Parallelization adds overhead: CPU does extra work to split the task across cores and then to collect the results.

- All consumer CPUs have multiple cores, but by default your code will run sequentially on one core!
- · Can write code that will explicitly split tasks across cores.
- Work is split between cores, they all work simultaneously, then they pool results together.
- Matlab and Julia will run certain things in parallel on their own, e.g. linear algebra.
- Split sequential code across two processors → 2x speedup
 - Parallelization adds overhead: CPU does extra work to split the task across cores and then to collect the results.

- All consumer CPUs have multiple cores, but by default your code will run sequentially on one core!
- · Can write code that will explicitly split tasks across cores.
- Work is split between cores, they all work simultaneously, then they pool results together.
- Matlab and Julia will run certain things in parallel on their own, e.g. linear algebra.
- Split sequential code across two processors → 2x speedup
 - Parallelization adds overhead: CPU does extra work to split the task across cores and then to collect the results.

- · Cannot parallelize tasks that have to be done sequentially
 - Outer loop of VFI (go through V_l): No (V_{l+1} depends on V_l).
 - Inner loop of VFI (go through k_i): Yes (k_{i+1} does not depend on k_i). Send the $V_{l+1}(k_i) = \max ...$ problem to each core, then collect results before moving on to V_{l+2} .
- Run $V_{l+1}(k_i) = \max ...$ tasks in parallel:
 - e.g. CPU has 4 cores, grid is $[k_1, ..., k_{100}]$
 - core 1 solves $V_{i+1}(k_i) = \max ...$ for i = 1, ..., 25
 - core 2 solves $V_{i+1}(k_i) = \max ...$ for i = 26, ..., 50
 - ...
 - CPU collects four pairs of V'(k), g(k), merges into one pair
 - Move on to V_{l+2}

- · Cannot parallelize tasks that have to be done sequentially
 - Outer loop of VFI (go through V_l): No (V_{l+1} depends on V_l).
 - Inner loop of VFI (go through k_i): Yes (k_{i+1} does not depend on k_i). Send the $V_{l+1}(k_i) = \max ...$ problem to each core, then collect results before moving on to V_{l+2} .
- Run $V_{l+1}(k_i) = \max ...$ tasks in parallel:
 - e.g. CPU has 4 cores, grid is $[k_1, ..., k_{100}]$
 - core 1 solves $V_{i+1}(k_i) = \max ...$ for i = 1, ..., 25
 - core 2 solves $V_{i+1}(k_i) = \max ...$ for i = 26, ..., 50
 - . . .
 - CPU collects four pairs of V'(k), g(k), merges into one pair
 - Move on to V_{l+2}

- · Cannot parallelize tasks that have to be done sequentially
 - Outer loop of VFI (go through V_l): No (V_{l+1} depends on V_l).
 - Inner loop of VFI (go through k_i): Yes (k_{i+1} does not depend on k_i). Send the $V_{l+1}(k_i) = \max ...$ problem to each core, then collect results before moving on to V_{l+2} .
- Run $V_{l+1}(k_i) = \max ...$ tasks in parallel:
 - e.g. CPU has 4 cores, grid is $[k_1, ..., k_{100}]$
 - core 1 solves $V_{i+1}(k_i) = \max ...$ for i = 1, ..., 25
 - core 2 solves $V_{i+1}(k_i) = \max ...$ for i = 26, ..., 50

 - CPU collects four pairs of V'(k), g(k), merges into one pair
 - Move on to V_{l+2}

- · Cannot parallelize tasks that have to be done sequentially
 - Outer loop of VFI (go through V_l): No (V_{l+1} depends on V_l).
 - Inner loop of VFI (go through k_i): Yes (k_{i+1} does not depend on k_i). Send the $V_{l+1}(k_i) = \max ...$ problem to each core, then collect results before moving on to V_{l+2} .
- Run $V_{l+1}(k_i) = \max ...$ tasks in parallel:

```
• e.g. CPU has 4 cores, grid is [k_1, ..., k_{100}]
```

• core 1 solves
$$V_{l+1}(k_i) = \max ...$$
 for $i = 1, ..., 25$

- core 2 solves $V_{l+1}(k_i) = \max ...$ for i = 26, ..., 50
-
- · CPU collects four pairs of V'(k), g(k), merges into one pair
- Move on to V_{l+2}

- · Cannot parallelize tasks that have to be done sequentially
 - Outer loop of VFI (go through V_l): No (V_{l+1} depends on V_l).
 - Inner loop of VFI (go through k_i): Yes (k_{i+1} does not depend on k_i). Send the $V_{l+1}(k_i) = \max ...$ problem to each core, then collect results before moving on to V_{l+2} .
- Run $V_{l+1}(k_i) = \max ...$ tasks in parallel:
 - e.g. CPU has 4 cores, grid is $[k_1, ..., k_{100}]$
 - core 1 solves $V_{l+1}(k_i) = \max ...$ for i = 1, ..., 25
 - core 2 solves $V_{l+1}(k_i) = \max ...$ for i = 26, ..., 50
 - •
 - · CPU collects four pairs of V'(k), g(k), merges into one pair
 - Move on to V_{l+2}

- Cannot parallelize tasks that have to be done sequentially
 - Outer loop of VFI (go through V_l): No (V_{l+1} depends on V_l).
 - Inner loop of VFI (go through k_i): Yes (k_{i+1} does not depend on k_i). Send the $V_{l+1}(k_i) = \max ...$ problem to each core, then collect results before moving on to V_{l+2} .
- Run $V_{l+1}(k_i) = \max ...$ tasks in parallel:
 - e.g. CPU has 4 cores, grid is $[k_1, ..., k_{100}]$
 - core 1 solves $V_{l+1}(k_i) = \max ...$ for i = 1, ..., 25
 - core 2 solves $V_{l+1}(k_i) = \max ...$ for i = 26, ..., 50
 -
 - CPU collects four pairs of V'(k), g(k), merges into one pair
 - Move on to V_{l+2}

- Cannot parallelize tasks that have to be done sequentially
 - Outer loop of VFI (go through V_l): No (V_{l+1} depends on V_l).
 - Inner loop of VFI (go through k_i): Yes (k_{i+1} does not depend on k_i). Send the $V_{l+1}(k_i) = \max ...$ problem to each core, then collect results before moving on to V_{l+2} .
- Run $V_{l+1}(k_i) = \max ...$ tasks in parallel:
 - e.g. CPU has 4 cores, grid is $[k_1, ..., k_{100}]$
 - core 1 solves $V_{l+1}(k_i) = \max ...$ for i = 1, ..., 25
 - core 2 solves $V_{l+1}(k_i) = \max ...$ for i = 26, ..., 50
 - ٠..
 - · CPU collects four pairs of V'(k), g(k), merges into one pair
 - Move on to V_{l+2}

- Cannot parallelize tasks that have to be done sequentially
 - Outer loop of VFI (go through V_l): No (V_{l+1} depends on V_l).
 - Inner loop of VFI (go through k_i): Yes (k_{i+1} does not depend on k_i). Send the $V_{l+1}(k_i) = \max ...$ problem to each core, then collect results before moving on to V_{l+2} .
- Run $V_{l+1}(k_i) = \max ...$ tasks in parallel:
 - e.g. CPU has 4 cores, grid is [$k_1, ..., k_{100}$]
 - core 1 solves $V_{l+1}(k_i) = \max ...$ for i = 1, ..., 25
 - core 2 solves $V_{l+1}(k_i) = \max ...$ for i = 26, ..., 50
 - ...
 - CPU collects four pairs of V'(k), g(k), merges into one pair
 - Move on to V_{l+2}

- Cannot parallelize tasks that have to be done sequentially
 - Outer loop of VFI (go through V_l): No (V_{l+1} depends on V_l).
 - Inner loop of VFI (go through k_i): Yes (k_{i+1} does not depend on k_i). Send the $V_{l+1}(k_i) = \max ...$ problem to each core, then collect results before moving on to V_{l+2} .
- Run $V_{l+1}(k_i) = \max ...$ tasks in parallel:
 - e.g. CPU has 4 cores, grid is $[k_1, ..., k_{100}]$
 - core 1 solves $V_{l+1}(k_i) = \max ...$ for i = 1, ..., 25
 - core 2 solves $V_{l+1}(k_i) = \max ...$ for i = 26, ..., 50
 - ٠ ..
 - CPU collects four pairs of V'(k), g(k), merges into one pair
 - Move on to V_{1+2}

- Cannot parallelize tasks that have to be done sequentially
 - Outer loop of VFI (go through V_l): No (V_{l+1} depends on V_l).
 - Inner loop of VFI (go through k_i): Yes (k_{i+1} does not depend on k_i). Send the $V_{l+1}(k_i) = \max ...$ problem to each core, then collect results before moving on to V_{l+2} .
- Run $V_{l+1}(k_i) = \max ...$ tasks in parallel:
 - e.g. CPU has 4 cores, grid is $[k_1, ..., k_{100}]$
 - core 1 solves $V_{l+1}(k_i) = \max ...$ for i = 1, ..., 25
 - core 2 solves $V_{l+1}(k_i) = \max ...$ for i = 26, ..., 50
 - ..
 - CPU collects four pairs of V'(k), g(k), merges into one pair
 - Move on to V_{l+2}

 Split tasks to maximize computation by cores and minimize communication between cores

```
for i=1:100
for j=1:100
...
end
```

- \cdot if parallelize outer ${f i}$ loop: 100 tasks, each has 1/100th work
 - · CPU sends out work to cores and collects results just once
- if parallelize inner j loop: 10,000 tasks, each has 1/10,000th work
 - CPU sends out work to cores and collects results 100 times
- outer is faster: less overhead

 Split tasks to maximize computation by cores and minimize communication between cores

```
for i=1:100
for j=1:100
...
end
```

- · if parallelize outer **i** loop: 100 tasks, each has 1/100th work
 - · CPU sends out work to cores and collects results just once
- if parallelize inner j loop: 10,000 tasks, each has 1/10,000th work
 - · CPU sends out work to cores and collects results 100 times
- outer is faster: less overhead

 Split tasks to maximize computation by cores and minimize communication between cores

```
for i=1:100
for j=1:100
...
end
```

- if parallelize outer i loop: 100 tasks, each has 1/100th work
 - · CPU sends out work to cores and collects results just once
- if parallelize inner j loop: 10,000 tasks, each has 1/10,000th work
 - CPU sends out work to cores and collects results 100 times
- outer is faster: less overhead

 Split tasks to maximize computation by cores and minimize communication between cores

```
for i=1:100
for j=1:100
...
end
```

- if parallelize outer i loop: 100 tasks, each has 1/100th work
 - · CPU sends out work to cores and collects results just once
- if parallelize inner j loop: 10,000 tasks, each has 1/10,000th work
 - CPU sends out work to cores and collects results 100 times
- outer is faster: less overhead

 Split tasks to maximize computation by cores and minimize communication between cores

```
for i=1:100
for j=1:100
...
end
```

- if parallelize outer i loop: 100 tasks, each has 1/100th work
 - CPU sends out work to cores and collects results just once
- if parallelize inner j loop: 10,000 tasks, each has 1/10,000th work
 - CPU sends out work to cores and collects results 100 times
- outer is faster: less overhead

 Split tasks to maximize computation by cores and minimize communication between cores

```
for i=1:100
for j=1:100
...
end
```

- if parallelize outer i loop: 100 tasks, each has 1/100th work
 - CPU sends out work to cores and collects results just once
- if parallelize inner j loop: 10,000 tasks, each has 1/10,000th work
 - · CPU sends out work to cores and collects results 100 times
- outer is faster: less overhead

 Split tasks to maximize computation by cores and minimize communication between cores

```
for i=1:100
for j=1:100
...
end
```

- if parallelize outer i loop: 100 tasks, each has 1/100th work
 - · CPU sends out work to cores and collects results just once
- if parallelize inner j loop: 10,000 tasks, each has 1/10,000th work
 - · CPU sends out work to cores and collects results 100 times
- · outer is faster: less overhead

- · Julia: several ways, threads are simplest.

- · Julia: several ways, threads are simplest.
- · Julia needs to be started with a pre-set number of threads.
 - · Juno will pass this setting automatically.
 - \cdot Explicitly: Preferences \rightarrow Packages \rightarrow Julia Client \rightarrow Number of Threads
- Verify threads setting: Threads.nthreads()
- Put Threads.@threads before a loop you want to make parallel
 Threads.@threads for i=1:n
 ...

end

 In Matlab, use parpool to control the number of worker processes and replace for with parfor.

- · Julia: several ways, threads are simplest.
- · Julia needs to be started with a pre-set number of threads.
 - · Juno will pass this setting automatically.
 - \cdot Explicitly: Preferences \rightarrow Packages \rightarrow Julia Client \rightarrow Number of Threads
- Verify threads setting: Threads.nthreads()
- Put Threads.@threads before a loop you want to make parallel
 Threads.@threads for i=1:n
 ...
 end
- In Matlab, use parpool to control the number of worker processes and replace for with parfor.

- · Julia: several ways, threads are simplest.
- Julia needs to be started with a pre-set number of threads.
 - · Juno will pass this setting automatically.
 - Explicitly: Preferences → Packages → Julia Client → Number of Threads
- · Verify threads setting: Threads.nthreads()
- Put Threads. athreads before a loop you want to make parallel:

```
Threads. athreads for i=1:n
```

- · Julia: several ways, threads are simplest.
- · Julia needs to be started with a pre-set number of threads.
 - · Juno will pass this setting automatically.
 - Explicitly: Preferences \rightarrow Packages \rightarrow Julia Client \rightarrow Number of Threads
- Verify threads setting: Threads.nthreads()
- Put Threads.athreads before a loop you want to make parallel:

```
Threads.@threads for i=1:n ... end
```

• In Matlab, use **parpool** to control the number of worker processes and replace **for** with **parfor**.

- BlueHive is a university cluster running RHEL (a Linux distribution)
- Hundreds of compute nodes, each with 12-64 processors.
- Info: info.circ.rochester.edu
- Uses of BlueHive
 - Large parallel problems: exploit huge number of cores
 - Work with large datasets: exploit huge RAM
 - Expensive specialized software unavailable on lab computers

- BlueHive is a university cluster running RHEL (a Linux distribution)
- · Hundreds of compute nodes, each with 12-64 processors.
- Info: info.circ.rochester.edu
- Uses of BlueHive
 - Large parallel problems: exploit huge number of cores
 - Work with large datasets: exploit huge RAM
 - Expensive specialized software unavailable on lab computers

- BlueHive is a university cluster running RHEL (a Linux distribution)
- · Hundreds of compute nodes, each with 12-64 processors.
- · Info: info.circ.rochester.edu
- Uses of BlueHive
 - Large parallel problems: exploit huge number of cores
 - Work with large datasets: exploit huge RAM
 - Expensive specialized software unavailable on lab computers

- BlueHive is a university cluster running RHEL (a Linux distribution)
- Hundreds of compute nodes, each with 12-64 processors.
- · Info: info.circ.rochester.edu
- · Uses of BlueHive
 - Large parallel problems: exploit huge number of cores
 - · Work with large datasets: exploit huge RAM
 - Expensive specialized software unavailable on lab computers

- BlueHive is a university cluster running RHEL (a Linux distribution)
- · Hundreds of compute nodes, each with 12-64 processors.
- · Info: info.circ.rochester.edu
- · Uses of BlueHive
 - · Large parallel problems: exploit huge number of cores
 - Work with large datasets: exploit huge RAM
 - Expensive specialized software unavailable on lab computers

OVERVIEW

- BlueHive is a university cluster running RHEL (a Linux distribution)
- · Hundreds of compute nodes, each with 12-64 processors.
- · Info: info.circ.rochester.edu
- · Uses of BlueHive
 - · Large parallel problems: exploit huge number of cores
 - · Work with large datasets: exploit huge RAM
 - Expensive specialized software unavailable on lab computers

OVERVIEW

- BlueHive is a university cluster running RHEL (a Linux distribution)
- · Hundreds of compute nodes, each with 12-64 processors.
- · Info: info.circ.rochester.edu
- · Uses of BlueHive
 - · Large parallel problems: exploit huge number of cores
 - · Work with large datasets: exploit huge RAM
 - · Expensive specialized software unavailable on lab computers

- · Access through bluehive.circ.rochester.edu
 - if off campus, have to connect through the university VPN
- Launch session with desired parameters:
 mate-session --time=8:00:00 --cpus-per-task=16 --mem=32s
- Wait for the session to appear. Wait time depends on queue, faster if ask for fewer resources.
- Session opens in a virtual desktop. The desktop environment is MATE.
- Pop-up bar in the top: toggle fullscreen, exchange text between your computer's clipboard and the virtual desktop's clipboard.

- · Access through bluehive.circ.rochester.edu
 - if off campus, have to connect through the university VPN
- Launch session with desired parameters:
 mate-session --time=8:00:00 --cpus-per-task=16 --mem=32g
- Wait for the session to appear. Wait time depends on queue, faster if ask for fewer resources.
- Session opens in a virtual desktop. The desktop environment is MATE.
- Pop-up bar in the top: toggle fullscreen, exchange text between your computer's clipboard and the virtual desktop's clipboard.

- · Access through bluehive.circ.rochester.edu
 - if off campus, have to connect through the university VPN
- Launch session with desired parameters:mate-session --time=8:00:00 --cpus-per-task=16 --mem=32g
- Wait for the session to appear. Wait time depends on queue, faster if ask for fewer resources.
- Session opens in a virtual desktop. The desktop environment is MATE.
- Pop-up bar in the top: toggle fullscreen, exchange text between your computer's clipboard and the virtual desktop's clipboard.

- · Access through bluehive.circ.rochester.edu
 - if off campus, have to connect through the university VPN
- Launch session with desired parameters:
 mate-session --time=8:00:00 --cpus-per-task=16 --mem=32g
- Wait for the session to appear. Wait time depends on queue, faster if ask for fewer resources.
- · Session opens in a virtual desktop. The desktop environment is MATE.
- Pop-up bar in the top: toggle fullscreen, exchange text between your computer's clipboard and the virtual desktop's clipboard.

- · Access through bluehive.circ.rochester.edu
 - if off campus, have to connect through the university VPN
- Launch session with desired parameters:
 mate-session --time=8:00:00 --cpus-per-task=16 --mem=32g
- Wait for the session to appear. Wait time depends on queue, faster if ask for fewer resources.
- · Session opens in a virtual desktop. The desktop environment is MATE.
- Pop-up bar in the top: toggle fullscreen, exchange text between your computer's clipboard and the virtual desktop's clipboard.

- BH has an extensive list of free and paid software pre-installed (everything that lab computers have, and more): see
 info.circ.rochester.edu/#BlueHive/Software/ for the list.
- \cdot Some programs available in Applications menu (e.g. MATLAB, Stata)
- \cdot If a program isn't there, need to activate it through the terminal
 - see the software list to find the appropriate package name for the program you want
 - open terminal through the applications menu or a top panel shortcut
 - type module load package_name and press Ente

- BH has an extensive list of free and paid software pre-installed (everything that lab computers have, and more): see
 info.circ.rochester.edu/#BlueHive/Software/ for the list.
- · Some programs available in Applications menu (e.g. MATLAB, Stata)
- \cdot If a program isn't there, need to activate it through the terminal
 - see the software list to find the appropriate package name for the program you want
 - open terminal through the applications menu or a top panel shortcut.
 - type module load package_name and press Enter

- BH has an extensive list of free and paid software pre-installed (everything that lab computers have, and more): see
 info.circ.rochester.edu/#BlueHive/Software/ for the list.
- · Some programs available in Applications menu (e.g. MATLAB, Stata)
- If a program isn't there, need to activate it through the terminal
 - see the software list to find the appropriate package name for the program you want
 - open terminal through the applications menu or a top panel shortcut
 - type module load package_name and press Enter

- BH has an extensive list of free and paid software pre-installed (everything that lab computers have, and more): see
 info.circ.rochester.edu/#BlueHive/Software/ for the list.
- · Some programs available in Applications menu (e.g. MATLAB, Stata)
- If a program isn't there, need to activate it through the terminal
 - see the software list to find the appropriate package name for the program you want
 - open terminal through the applications menu or a top panel shortcut
 - type module load package_name and press Enter

- BH has an extensive list of free and paid software pre-installed (everything that lab computers have, and more): see
 info.circ.rochester.edu/#BlueHive/Software/ for the list.
- · Some programs available in Applications menu (e.g. MATLAB, Stata)
- If a program isn't there, need to activate it through the terminal
 - see the software list to find the appropriate package name for the program you want
 - · open terminal through the applications menu or a top panel shortcut
 - type module load package_name and press Enter

- BH has an extensive list of free and paid software pre-installed (everything that lab computers have, and more): see
 info.circ.rochester.edu/#BlueHive/Software/ for the list.
- · Some programs available in Applications menu (e.g. MATLAB, Stata)
- If a program isn't there, need to activate it through the terminal
 - see the software list to find the appropriate package name for the program you want
 - · open terminal through the applications menu or a top panel shortcut
 - type module load package_name and press Enter

Running Julia shell

- · module load julia
- export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
- · julia
- you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - · module load julia
 - module load atom
 - · atom
 - · once Atom has launched, install the uber-juno package in i
 - · find the path to the Julia executable by running which julia. Paste into the
 - "Julia Path" setting of the julia-client Atom package settings. Set the

- Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - · julia
 - \cdot you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - · module load julia
 - module load atom
 - atom
 - · once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the
 - "Julia Path" setting of the julia-client Atom package settings. Set the

- Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - ·julia
 - you are now in the Julia REPL
- · Running a .jl file
 - load module, set threads
 - julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - · module load julia
 - module load atom
 - ator
 - · once Atom has launched, install the uber-juno package in it
 - · find the path to the Julia executable by running which julia. Paste into the

10/28

"Julia Path" setting of the julia-client Atom package settings. Set the

- · Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - ·julia
 - you are now in the Julia REPL
- · Running a .jl file
 - load module, set threads
 - julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - · module load julia
 - module load atom
 - atom
 - · once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the
 - "Julia Path" setting of the julia-client Atom package settings. Set the

- Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - · julia
 - · you are now in the Julia REPL
- · Running a .jl file
 - load module, set threads
 - julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - · module load julia
 - module load atom
 - atom
 - · once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the
 - "Julia Path" setting of the julia-client Atom package settings. Set the

- Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - ·julia
 - · you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - · julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - · module load julia
 - module load atom
 - atom
 - · once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the

10/28

"Julia Path" setting of the julia-client Atom package settings. Set the

- · Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - ·julia
 - · you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - · module load julia
 - · module load atom
 - ator
 - · once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the

10/28

"Julia Path" setting of the Julia-client Atom package settings. Set the

- Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - ·julia
 - you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - module load julia
 - · module load atom
 - atom
 - · once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the

10/28

number of threads manually there as well

- · Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - · julia
 - · you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - · module load julia
 - · module load atom
 - atom
 - · once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the "Julia Path" setting of the julia-client Atom package settings. Set the

- · Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - · julia
 - · you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - · module load julia
 - module load atom
 - atom
 - once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the "Julia Path" setting of the julia-client Atom package settings. Set the

- · Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - · julia
 - · you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - julia ''path/to/your/file.jl''
- · Using Atom as an IDE for Julia
 - · module load julia
 - · module load atom
 - atom
 - once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the "Julia Path" setting of the julia-client Atom package settings. Set the

- · Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - · julia
 - · you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - julia ''path/to/your/file.jl''
- Using Atom as an IDE for Julia
 - · module load julia
 - · module load atom
 - · atom
 - · once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the "Julia Path" setting of the julia-client Atom package settings. Set the

- · Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - · julia
 - · you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - julia ''path/to/your/file.jl''
- · Using Atom as an IDE for Julia
 - · module load julia
 - · module load atom
 - · atom
 - · once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the "Julia Path" setting of the julia-client Atom package settings. Set the

- · Running Julia shell
 - · module load julia
 - export JULIA_NUM_THREADS=16 (or however many CPUs you requested)
 - · julia
 - · you are now in the Julia REPL
- · Running a .jl file
 - · load module, set threads
 - julia ''path/to/vour/file.jl''

number of threads manually there as well.

- Using Atom as an IDE for Julia
 - · module load julia
 - · module load atom
 - · atom
 - · once Atom has launched, install the uber-juno package in it
 - find the path to the Julia executable by running which julia. Paste into the "Julia Path" setting of the julia-client Atom package settings. Set the

- Quick and dirty way to transfer files: upload to some cloud service, open its web app in Firefox on the virtual desktop, download.
- · For more efficiency and speed, use FTP. See the info page
- Jobs: don't need to run code through GUI
 - can set up a script asking for certain resources and executing a certain command (e.g. julia file.jl)
 - most software packages we use (MATLAB, Julia, Stata, R) can run scripts (.m, .jl, .do, .R) from the command line
 - \cdot the job enters a queue and is executed once resources are available
 - preferable for more demanding programs (don't need to wait around for session to open)
 - more efficient when want to run many scripts simultaneously
 - see the info page

- Quick and dirty way to transfer files: upload to some cloud service, open its web app in Firefox on the virtual desktop, download.
- · For more efficiency and speed, use FTP. See the info page.
- Jobs: don't need to run code through GUI
 - can set up a script asking for certain resources and executing a certain command (e.g. julia file.jl)
 - most software packages we use (MATLAB, Julia, Stata, R) can run scripts (.m, .jl, .do, .R) from the command line
 - the job enters a queue and is executed once resources are available
 - preferable for more demanding programs (don't need to wait around for session to open)
 - more efficient when want to run many scripts simultaneously
 - see the info page

- Quick and dirty way to transfer files: upload to some cloud service, open its web app in Firefox on the virtual desktop, download.
- For more efficiency and speed, use FTP. See the info page.
- · Jobs: don't need to run code through GUI
 - can set up a script asking for certain resources and executing a certain command (e.g. julia file.jl)
 - most software packages we use (MATLAB, Julia, Stata, R) can run scripts (.m, .jl .do, .R) from the command line
 - the job enters a queue and is executed once resources are available
 - preferable for more demanding programs (don't need to wait around for session to open)
 - more efficient when want to run many scripts simultaneously
 - see the info page

- Quick and dirty way to transfer files: upload to some cloud service, open its web app in Firefox on the virtual desktop, download.
- · For more efficiency and speed, use FTP. See the info page.
- · Jobs: don't need to run code through GUI
 - can set up a script asking for certain resources and executing a certain command (e.g. julia file.jl)
 - most software packages we use (MATLAB, Julia, Stata, R) can run scripts (.m, .jl .do, .R) from the command line
 - the job enters a queue and is executed once resources are available
 - preferable for more demanding programs (don't need to wait around for session to open)
 - more efficient when want to run many scripts simultaneously
 - see the info page

- Quick and dirty way to transfer files: upload to some cloud service, open its web app in Firefox on the virtual desktop, download.
- For more efficiency and speed, use FTP. See the info page.
- · Jobs: don't need to run code through GUI
 - can set up a script asking for certain resources and executing a certain command (e.g. julia file.jl)
 - most software packages we use (MATLAB, Julia, Stata, R) can run scripts (.m, .jl, .do, .R) from the command line
 - the job enters a queue and is executed once resources are available
 - preferable for more demanding programs (don't need to wait around for session to open)
 - more efficient when want to run many scripts simultaneously
 - see the info page

- Quick and dirty way to transfer files: upload to some cloud service, open its web app in Firefox on the virtual desktop, download.
- · For more efficiency and speed, use FTP. See the info page.
- · Jobs: don't need to run code through GUI
 - can set up a script asking for certain resources and executing a certain command (e.g. julia file.jl)
 - most software packages we use (MATLAB, Julia, Stata, R) can run scripts (.m, .jl, .do, .R) from the command line
 - the job enters a queue and is executed once resources are available
 - preferable for more demanding programs (don't need to wait around for session to open)
 - more efficient when want to run many scripts simultaneously
 - see the info page

- Quick and dirty way to transfer files: upload to some cloud service, open its web app in Firefox on the virtual desktop, download.
- · For more efficiency and speed, use FTP. See the info page.
- · Jobs: don't need to run code through GUI
 - can set up a script asking for certain resources and executing a certain command (e.g. julia file.jl)
 - most software packages we use (MATLAB, Julia, Stata, R) can run scripts (.m, .jl, .do, .R) from the command line
 - the job enters a queue and is executed once resources are available
 - preferable for more demanding programs (don't need to wait around for session to open)
 - more efficient when want to run many scripts simultaneously
 - see the info page

- Quick and dirty way to transfer files: upload to some cloud service, open its web app in Firefox on the virtual desktop, download.
- · For more efficiency and speed, use FTP. See the info page.
- · Jobs: don't need to run code through GUI
 - can set up a script asking for certain resources and executing a certain command (e.g. julia file.jl)
 - most software packages we use (MATLAB, Julia, Stata, R) can run scripts (.m, .jl, .do, .R) from the command line
 - · the job enters a queue and is executed once resources are available
 - preferable for more demanding programs (don't need to wait around for session to open)
 - · more efficient when want to run many scripts simultaneously
 - see the info page

- Quick and dirty way to transfer files: upload to some cloud service, open its web app in Firefox on the virtual desktop, download.
- · For more efficiency and speed, use FTP. See the info page.
- · Jobs: don't need to run code through GUI
 - can set up a script asking for certain resources and executing a certain command (e.g. julia file.jl)
 - most software packages we use (MATLAB, Julia, Stata, R) can run scripts (.m, .jl, .do, .R) from the command line
 - the job enters a queue and is executed once resources are available
 - preferable for more demanding programs (don't need to wait around for session to open)
 - more efficient when want to run many scripts simultaneously
 - see the info page

GENERAL CODING

- · Computers store approximations of real numbers in floating point type.
- Default: double precision (64 bits).
- In Julia: can go down to 16/32, can go up to 128 with packages, can do arbitrary precision.
- · Can declare all variables as 32-bit types instead of 64-bit
 - RAM consumption ↓ almost 50%, speed ↑
 - · (usually) negligible precision loss
- Machine epsilon for double: $2^{-52} = 2.2 \times 10^{-16}$.
- · Results of intermediate computations are approximated

```
julia> sqrt(2)^2 == 2
false
julia> isapprox(sqrt(2)^2, 2)
true
```

- · Computers store approximations of real numbers in floating point type.
- Default: double precision (64 bits).
- In Julia: can go down to 16/32, can go up to 128 with packages, can do arbitrary precision.
- · Can declare all variables as 32-bit types instead of 64-bit
 - RAM consumption ↓ almost 50%, speed ↑
 - · (usually) negligible precision loss
- Machine epsilon for double: $2^{-52} = 2.2 \times 10^{-16}$.
- Results of intermediate computations are approximated

```
julia> sqrt(2)^2 == 2
false
julia> isapprox(sqrt(2)^2, 2)
true
```

- · Computers store approximations of real numbers in floating point type.
- Default: double precision (64 bits).
- In Julia: can go down to 16/32, can go up to 128 with packages, can do arbitrary precision.
- Can declare all variables as 32-bit types instead of 64-bit
 - RAM consumption ↓ almost 50%, speed ↑
 - · (usually) negligible precision loss
- Machine epsilon for double: $2^{-52} = 2.2 \times 10^{-16}$.
- Results of intermediate computations are approximated

```
julia> sqrt(2)^2 == 2
false
julia> isapprox(sqrt(2)^2, 2)
true
```

- · Computers store approximations of real numbers in floating point type.
- Default: double precision (64 bits).
- In Julia: can go down to 16/32, can go up to 128 with packages, can do arbitrary precision.
- · Can declare all variables as 32-bit types instead of 64-bit
 - RAM consumption ↓ almost 50%, speed ↑
 - · (usually) negligible precision loss
- Machine epsilon for double: $2^{-52} = 2.2 \times 10^{-16}$.
- Results of intermediate computations are approximated

```
julia> sqrt(2)^2 == 2
false
julia> isapprox(sqrt(2)^2, 2)
true
```

- · Computers store approximations of real numbers in floating point type.
- Default: double precision (64 bits).
- In Julia: can go down to 16/32, can go up to 128 with packages, can do arbitrary precision.
- · Can declare all variables as 32-bit types instead of 64-bit
 - RAM consumption ↓ almost 50%, speed ↑
 - · (usually) negligible precision loss
- Machine epsilon for double: $2^{-52} = 2.2 \times 10^{-16}$.
- Results of intermediate computations are approximated:

```
julia> sqrt(2)^2 == 2
false
julia> isapprox(sqrt(2)^2, 2)
true
```

- · Computers store approximations of real numbers in floating point type.
- Default: double precision (64 bits).
- In Julia: can go down to 16/32, can go up to 128 with packages, can do arbitrary precision.
- · Can declare all variables as 32-bit types instead of 64-bit
 - RAM consumption ↓ almost 50%, speed ↑
 - · (usually) negligible precision loss
- Machine epsilon for double: $2^{-52} = 2.2 \times 10^{-16}$.
- · Results of intermediate computations are approximated:

```
julia> sqrt(2)^2 == 2
false
julia> isapprox(sqrt(2)^2, 2)
true
```

Language	Version/Compiler	$_{ m Time}$	Rel. Time
C++	GCC-4.9.0	0.73	1.00
	Intel C++ 14.0.3	1.00	1.38
	Clang 5.1	1.00	1.38
Fortran	GCC-4.9.0	0.76	1.05
	Intel Fortran 14.0.3	0.95	1.30
Java	JDK8u5	1.95	2.69
Julia	0.2.1	1.92	2.64
Matlab	2014a	7.91	10.88

- Running time usually less important than development time.
- MATLAB and Julia run slower, but much faster to code and debug.
- Julia considerably faster than MATLAB

Language	Version/Compiler	$_{ m Time}$	Rel. Time
C++	GCC-4.9.0	0.73	1.00
	Intel C++ 14.0.3	1.00	1.38
	Clang 5.1	1.00	1.38
Fortran	GCC-4.9.0	0.76	1.05
	Intel Fortran 14.0.3	0.95	1.30
Java	JDK8u5	1.95	2.69
Julia	0.2.1	1.92	2.64
Matlab	2014a	7.91	10.88

- · Running time usually less important than development time.
- MATLAB and Julia run slower, but much faster to code and debug
- Julia considerably faster than MATLAB

Language	Version/Compiler	$_{ m Time}$	Rel. Time
C++	GCC-4.9.0	0.73	1.00
	Intel C++ 14.0.3	1.00	1.38
	Clang 5.1	1.00	1.38
Fortran	GCC-4.9.0	0.76	1.05
	Intel Fortran 14.0.3	0.95	1.30
Java	JDK8u5	1.95	2.69
Julia	0.2.1	1.92	2.64
Matlab	2014a	7.91	10.88

- · Running time usually less important than development time.
- · MATLAB and Julia run slower, but much faster to code and debug.
- Julia considerably faster than MATLAB

Language	Version/Compiler	$_{ m Time}$	Rel. Time
C++	GCC-4.9.0	0.73	1.00
	Intel C++ 14.0.3	1.00	1.38
	Clang 5.1	1.00	1.38
Fortran	GCC-4.9.0	0.76	1.05
	Intel Fortran 14.0.3	0.95	1.30
Java	JDK8u5	1.95	2.69
Julia	0.2.1	1.92	2.64
Matlab	2014a	7.91	10.88

- · Running time usually less important than development time.
- · MATLAB and Julia run slower, but much faster to code and debug.
- Julia considerably faster than MATLAB

PROFILING

- Time and profile your code
 - Julia: atime some_fn() to measure time and memory allocations
 - Julia: Profile module to show time spent on each line (aprofile and aprofiler)
- · Find bottlenecks, figure out how to optimize them

PROFILING

- Time and profile your code
 - · Julia: atime some_fn() to measure time and memory allocations
 - Julia: Profile module to show time spent on each line (aprofile and aprofiler)
- · Find bottlenecks, figure out how to optimize them

Version control: revert to any version of the code

- · backups and file copies are unreliable, inconvenient, and inflexible
- a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
- instead, use a Version Control System

Git: most popular VCS

- \cdot change a file \implies commit the change with a descriptive name
- Git will store this commit forever
- can easily see differences between commits, revert to any commit
- each commit takes up little space: only the difference from previous commit needs to be stored

Collaboration

- · can work in parallel (branches), easily merge commits
- host code on GitHub or GitLab

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - Git will store this commit forever
 - can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - can work in parallel (branches), easily merge commits
 - host code on GitHub or GitLab

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - Git will store this commit forever
 - can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - can work in parallel (branches), easily merge commits
 - host code on GitHub or GitLah

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - · instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - Git will store this commit forever
 - can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - can work in parallel (branches), easily merge commits
 - host code on GitHub or GitLab

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - · instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - Git will store this commit forever
 - can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - · can work in parallel (branches), easily merge commits
 - host code on GitHub or GitLab

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - · instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - Git will store this commit forever
 - can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - · can work in parallel (*branches*), easily merge commits
 - host code on GitHub or GitLab

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - · instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - Git will store this commit forever
 - can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - can work in parallel (branches), easily merge commits
 - host code on GitHub or GitLab

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - · instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - Git will store this commit forever
 - · can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - can work in parallel (branches), easily merge commits
 - host code on GitHub or GitLab

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - · instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - Git will store this commit forever
 - · can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - can work in parallel (branches), easily merge commits
 - host code on GitHub or GitLab

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - · instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - Git will store this commit forever
 - · can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - · can work in parallel (branches), easily merge commits
 - host code on GitHub or GitLab

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - · instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - Git will store this commit forever
 - · can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - · can work in parallel (branches), easily merge commits
 - host code on GitHub or GitLab

- Version control: revert to any version of the code
 - · backups and file copies are unreliable, inconvenient, and inflexible
 - a file name from my 2nd year project: model2_4parallelVer2OptimizedMore.jl
 - · instead, use a Version Control System
- Git: most popular VCS
 - \cdot change a file \implies commit the change with a descriptive name
 - · Git will store this commit forever
 - · can easily see differences between commits, revert to any commit
 - each commit takes up little space: only the difference from previous commit needs to be stored
- Collaboration
 - · can work in parallel (branches), easily merge commits
 - host code on GitHub or GitLab

GIT EXAMPLE: THIS COURSE

--- Commits on Aug 30, 2020

Copied BH signup instructions to the notes stepangordeev conwitted 3 days ago	afd03df <>
Expanded BH instructions stepangordeev committed 3 days ago	[⁰] 7a1d193 <>
Second lecture VFI note made more explicit stepangordeev committed 3 days ago	□ b2006ad <>
Add uncovers to HPC lecture, expand on 32 bits stepangordeev committed 3 days ago	b086443 <>
Dynare output slides stepangordeev committed 3 days ago	[^a] 389d986 <>
Merge branch 'hw3, dynare_calib' stepangordeev committed 3 days ago	[ⁿ] 5c4761e <>
More detailed and explicit Dynare calibration instructions in hw3 stepangordeev committed 3 days ago	[ⁿ] 58ec23e <>
Merge branch 'hw3,dynare_calib' stepangordeev committed 3 days ago	dad4f73 <>
Adjusted hw3 dynare problem solution to correct parameter definition stepangordeev committed 3 days ago	(°) c906f03 <>
Greatly expanded Dynare estimation slides stepangordeev committed 3 days ago	7b81845 <>
Clarified and expanded Dynare estimation slides stepangordeev committed 3 days ago	[th] 0951d71 <>
Small Dynare lecture fixes stepangordeev committed 3 days ago	□ 0a2baf1 <>

GIT EXAMPLE: THIS COURSE

44	49	\begin{frame}{Comparison of Languages}
45	50	\begin{itemize}
46		- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	51	+ \\text{item}<+-> Aruoba and Fernández-Villaverde (2014), "A Comparison of Programming Languages in Economics":
47	52	\end{itemize}
48		- \centering\includegraphics[scale=0.4]{languageSpeeds.png}
	53	+ \centering\includegraphics[scale=0.35]{languageSpeeds.png}
49	54	\begin{itemize}
50		- \item Running time usually less important development time.
51		- \item Matlab and Julia run slower, but much faster to code and debug.
	55	+ \item<+-> Running time usually less important than development time.
	56	+ \item<+-> MATLAB and Julia run slower, but much faster to code and debug.
	57	+ \item<+-> Julia considerably faster than MATLAB
52	58	\end{itemize}
53	59	\end{frame}

GIT RESOURCES

- · Pro Git: free comprehensive guide
- Git is a command line tool, but many GUIs available
 - e.g. GitKraken: normally paid, but free with GitHub Student account (can get with UR email)

GIT RESOURCES

- · Pro Git: free comprehensive guide
- · Git is a command line tool, but many GUIs available
 - e.g. GitKraken: normally paid, but free with GitHub Student account (can get with UR email)

GIT RESOURCES

- · Pro Git: free comprehensive guide
- · Git is a command line tool, but many GUIs available
 - e.g. GitKraken: normally paid, but free with GitHub Student account (can get with UR email)

· Maintainable code

- write your code so that it could be read by anyone: then your future self will definitely be able to read it!
- self-explanatory names
- ample comments
- · Reproducible code
 - make sure your results can be obtained by running a single file on any computer.
 - make sure you can reproduce results obtained in the past (VCS!)
- Acquire technical skills and learn tools now—won't have time after the PhD!

- · Maintainable code
 - write your code so that it could be read by anyone: then your future self will definitely be able to read it!
 - self-explanatory names
 - · ample comments
- Reproducible code
 - make sure your results can be obtained by running a single file on any computer.
 - make sure you can reproduce results obtained in the past (VCS!)
- Acquire technical skills and learn tools now—won't have time after the PhD!

- · Maintainable code
 - write your code so that it could be read by anyone: then your future self will definitely be able to read it!
 - self-explanatory names
 - ample comments
- Reproducible code
 - make sure your results can be obtained by running a single file on any computer.
 - make sure you can reproduce results obtained in the past (VCS!)
- Acquire technical skills and learn tools now—won't have time after the PhD!

- Maintainable code
 - write your code so that it could be read by anyone: then your future self will definitely be able to read it!
 - self-explanatory names
 - ample comments
- Reproducible code
 - make sure your results can be obtained by running a single file on any computer.
 - make sure you can reproduce results obtained in the past (VCS!)
- Acquire technical skills and learn tools now—won't have time after the PhD!

- · Maintainable code
 - write your code so that it could be read by anyone: then your future self will definitely be able to read it!
 - self-explanatory names
 - ample comments
- · Reproducible code
 - make sure your results can be obtained by running a single file on any computer.
 - make sure you can reproduce results obtained in the past (VCS!)
- Acquire technical skills and learn tools now—won't have time after the PhD!

- · Maintainable code
 - write your code so that it could be read by anyone: then your future self will definitely be able to read it!
 - self-explanatory names
 - ample comments
- Reproducible code
 - make sure your results can be obtained by running a single file on any computer.
 - make sure you can reproduce results obtained in the past (VCS!)
- Acquire technical skills and learn tools now—won't have time after the PhD!

GENERAL ADVICE

- · Maintainable code
 - write your code so that it could be read by anyone: then your future self will definitely be able to read it!
 - self-explanatory names
 - ample comments
- Reproducible code
 - make sure your results can be obtained by running a single file on any computer.
 - make sure you can reproduce results obtained in the past (VCS!)
- Acquire technical skills and learn tools now—won't have time after the PhD!

GENERAL ADVICE

- · Maintainable code
 - write your code so that it could be read by anyone: then your future self will definitely be able to read it!
 - self-explanatory names
 - ample comments
- Reproducible code
 - make sure your results can be obtained by running a single file on any computer.
 - make sure you can reproduce results obtained in the past (VCS!)
- · Acquire technical skills and learn tools now—won't have time after the PhD!

- Explicitly state the type when declaring fields or arguments
 - field in a struct: V::Array{Float64, 2}, not V
 - function y(x::Float64, z::Int64), not function y(x, z)
 - · faster in some cases: compiler optimizes code for specified type
 - easier to catch passing a wrong variable, e.g. grid index (Int64) vs grid value (Float64)
- Preallocate arrays with explicit types
 - e.g. need to create an array element-by-element (grid, value function, etc.)
 - specify array length and element type: preallocates the exact amount of memory needed
 - policy_fn = Array{Float64}(undef, n_z, n_k)

- Explicitly state the type when declaring fields or arguments
 - field in a struct: V::Array{Float64, 2}, not V
 - function y(x::Float64, z::Int64), not function y(x, z)
 - faster in some cases: compiler optimizes code for specified type
 - easier to catch passing a wrong variable, e.g. grid index (Int64) vs grid value (Float64)
- Preallocate arrays with explicit types
 - e.g. need to create an array element-by-element (grid, value function, etc.)
 - specify array length and element type: preallocates the exact amount of memory needed
 - policy_fn = Array{Float64}(undef, n_z, n_k)

- Explicitly state the type when declaring fields or arguments
 - field in a struct: V::Array{Float64, 2}, not V
 - function y(x::Float64, z::Int64), not function y(x, z)
 - faster in some cases: compiler optimizes code for specified type
 - easier to catch passing a wrong variable, e.g. grid index (Int64) vs grid value (Float64)
- Preallocate arrays with explicit types
 - e.g. need to create an array element-by-element (grid, value function, etc.)
 - specify array length and element type: preallocates the exact amount of memory needed
 - policy_fn = Array{Float64}(undef, n_z, n_k)

- Explicitly state the type when declaring fields or arguments
 - field in a struct: V::Array{Float64, 2}, not V
 - function y(x::Float64, z::Int64), not function y(x, z)
 - \cdot faster in some cases: compiler optimizes code for specified type
 - easier to catch passing a wrong variable, e.g. grid index (Int64) vs grid value (Float64)
- Preallocate arrays with explicit types
 - \cdot e.g. need to create an array element-by-element (grid, value function, etc
 - specify array length and element type: preallocates the exact amount of memory needed
 - policy_fn = Array{Float64}(undef, n_z, n_k)

- Explicitly state the type when declaring fields or arguments
 - field in a struct: V::Array{Float64, 2}, not V
 - function y(x::Float64, z::Int64), not function y(x, z)
 - faster in some cases: compiler optimizes code for specified type
 - easier to catch passing a wrong variable, e.g. grid index (Int64) vs grid value (Float64)
- Preallocate arrays with explicit types
 - \cdot e.g. need to create an array element-by-element (grid, value function, etc
 - specify array length and element type: preallocates the exact amount of memory needed
 - policy_fn = Array{Float64}(undef, n_z, n_k)

- Explicitly state the type when declaring fields or arguments
 - field in a struct: V::Array{Float64, 2}, not V
 - function y(x::Float64, z::Int64), not function y(x, z)
 - faster in some cases: compiler optimizes code for specified type
 - easier to catch passing a wrong variable, e.g. grid index (Int64) vs grid value (Float64)
- Preallocate arrays with explicit types
 - e.g. need to create an array element-by-element (grid, value function, etc.
 - specify array length and element type: preallocates the exact amount of memory needed
 - policy_fn = Array{Float64}(undef, n_z, n_k)

- Explicitly state the type when declaring fields or arguments
 - field in a struct: V::Array{Float64, 2}, not V
 - function y(x::Float64, z::Int64), not function y(x, z)
 - faster in some cases: compiler optimizes code for specified type
 - easier to catch passing a wrong variable, e.g. grid index (Int64) vs grid value (Float64)
- Preallocate arrays with explicit types
 - e.g. need to create an array element-by-element (grid, value function, etc)
 - specify array length and element type: preallocates the exact amount of memory needed
 - policy_fn = Array{Float64}(undef, n_z, n_k)

- · Explicitly state the type when declaring fields or arguments
 - field in a struct: V::Array{Float64, 2}, not V
 - function y(x::Float64, z::Int64), not function y(x, z)
 - faster in some cases: compiler optimizes code for specified type
 - easier to catch passing a wrong variable, e.g. grid index (Int64) vs grid value (Float64)
- Preallocate arrays with explicit types
 - e.g. need to create an array element-by-element (grid, value function, etc)
 - specify array length and element type: preallocates the exact amount of memory needed
 - policy_fn = Array{Float64}(undef, n_z, n_k)

- · Explicitly state the type when declaring fields or arguments
 - field in a struct: V::Array{Float64, 2}, not V
 - function y(x::Float64, z::Int64), not function y(x, z)
 - faster in some cases: compiler optimizes code for specified type
 - easier to catch passing a wrong variable, e.g. grid index (Int64) vs grid value (Float64)
- Preallocate arrays with explicit types
 - e.g. need to create an array element-by-element (grid, value function, etc)
 - specify array length and element type: preallocates the exact amount of memory needed
 - policy_fn = Array{Float64}(undef, n_z, n_k)

```
\cdot x = 1; x = 1.5 is slow \cdot x = 1.0; x = 1.5 is fast
```

- Return of a function shouldn't change type depending on input value
 - e.g. some_fn(x::Float) returns x if x>0, else (
 - faster if it returns 0.0: compiler will optimize the function for floats

```
\cdot x = 1; x = 1.5 is slow
\cdot x = 1.0; x = 1.5 is fas
```

- Return of a function shouldn't change type depending on input value
 - e.g. some_fn(x::Float) returns x if x>0, else (
 - faster if it returns 0.0: compiler will optimize the function for floats

```
x = 1; x = 1.5 is slow x = 1.0; x = 1.5 is fast
```

- Return of a function shouldn't change type depending on input value
 - e.g. some_fn(x::Float) returns x if x>0, else (
 - faster if it returns 0.0: compiler will optimize the function for floats

```
x = 1; x = 1.5 is slow x = 1.0; x = 1.5 is fast
```

- · Return of a function shouldn't change type depending on input value
 - e.g. some_fn(x::Float) returns x if x>0, else 0
 - faster if it returns 0.0: compiler will optimize the function for floats

```
\cdot x = 1; x = 1.5 \text{ is slow}

\cdot x = 1.0; x = 1.5 \text{ is fast}
```

- · Return of a function shouldn't change type depending on input value
 - e.g. some_fn(x::Float) returns x if x>0, else 0
 - faster if it returns 0.0: compiler will optimize the function for floats

```
x = 1; x = 1.5 is slow x = 1.0; x = 1.5 is fast
```

- · Return of a function shouldn't change type depending on input value
 - e.g. some_fn(x::Float) returns x if x>0, else 0
 - faster if it returns 0.0: compiler will optimize the function for floats

- apply a function to each element of a vector: can write a loop or use vectorized operations
 - automatically parallelized
 - not much performance difference otherwise (although loops MUCH slower in MATLAB)
 - but vectorization often more concise and readable
- e.g. want a * b + scalar_fn(c) done for 10 different a, b, c
 - dot notation: append a dot after any scalar operand or function

```
vec_sum = Array{Float64}(undef, 10)
vec_sum = vec_a .* vec_b .+ scalar_fn.(vec_c)
```

vec_sum = Array{Float64}(undef, 10)

```
@. vec_sum = vec_a * vec_b + scalar_fn(vec_c)
```

- apply a function to each element of a vector: can write a loop or use vectorized operations
 - · automatically parallelized
 - not much performance difference otherwise (although loops MUCH slower in MATLAB)
 - but vectorization often more concise and readable
- e.g. want a * b + scalar_fn(c) done for 10 different a, b, c
 - dot notation: append a dot after any scalar operand or function

```
vec_sum = Array{Float64}(undef, 10)
vec_sum = vec_a .* vec_b .+ scalar_fn.(vec_c)
```

- apply a function to each element of a vector: can write a loop or use vectorized operations
 - · automatically parallelized
 - not much performance difference otherwise (although loops MUCH slower in MATLAB)
 - but vectorization often more concise and readable
- e.g. want a * b + scalar_fn(c) done for 10 different a, b, c
 - dot notation: append a dot after any scalar operand or function

```
vec_sum = vec_a .* vec_b .+ scalar_fn.(vec_c)
```

• a. macro: appends . everywhere in the line

```
vec_sum = Array{Float64}(undef, 10)
```

@. vec_sum = vec_a * vec_b + scalar_fn(vec_c)

- apply a function to each element of a vector: can write a loop or use vectorized operations
 - · automatically parallelized
 - not much performance difference otherwise (although loops MUCH slower in MATLAB)
 - · but vectorization often more concise and readable
- e.g. want a * b + scalar_fn(c) done for 10 different a, b, c
 - · dot notation: append a dot after any scalar operand or function

```
vec_sum = vec_a .* vec_b .+ scalar_fn.(vec_c)
```

ം a. macro: appends . everywhere in the line

```
vec_sum = Array{Float64}(undef, 10)
```

@. vec_sum = vec_a * vec_b + scalar_fn(vec_c)

- apply a function to each element of a vector: can write a loop or use vectorized operations
 - · automatically parallelized
 - not much performance difference otherwise (although loops MUCH slower in MATLAB)
 - · but vectorization often more concise and readable
- e.g. want a * b + scalar_fn(c) done for 10 different a, b, c
 - vec_sum = Array{Float64}(undef, 10)
 vec_sum = vec_a .* vec_b .+ scalar_fn.(vec_c)
 - a. macro: appends . everywhere in the line

```
vec_sum = Array{Float64}(undef, 10)
a. vec sum = vec a * vec b + scalar fn(vec
```

- apply a function to each element of a vector: can write a loop or use vectorized operations
 - automatically parallelized
 - not much performance difference otherwise (although loops MUCH slower in MATLAB)
 - · but vectorization often more concise and readable
- e.g. want a * b + scalar_fn(c) done for 10 different a, b, c
 - · dot notation: append a dot after any scalar operand or function

```
vec_sum = Array{Float64}(undef, 10)
vec_sum = vec_a .* vec_b .+ scalar_fn.(vec_c)
```

ം a. macro: appends . everywhere in the line

```
vec_sum = Array{Float64}(undef, 10)

@. vec_sum = vec_a * vec_b + scalar_fn(vec_c)
```

- apply a function to each element of a vector: can write a loop or use vectorized operations
 - automatically parallelized
 - not much performance difference otherwise (although loops MUCH slower in MATLAB)
 - but vectorization often more concise and readable
- e.g. want a * b + scalar_fn(c) done for 10 different a, b, c
 - $\boldsymbol{\cdot}$ dot notation: append a dot after any scalar operand or function

```
vec_sum = Array{Float64}(undef, 10)
vec_sum = vec_a .* vec_b .+ scalar_fn.(vec_c)
```

· ລ. macro: appends . everywhere in the line

```
vec_sum = Array{Float64}(undef, 10)

@. vec_sum = vec_a * vec_b + scalar_fn(vec_c)
```

EXPOSITION OF ADVANCED TECHNIQUES

- · Aiyagari + transition dynamics
 - response of the economy to shocks
 - agents need to forecast the LOM of asset distribution
- Krussel and Smith: approximate the distribution with a sequence of moments
- Forecast error from looking at mean (K) alone is tiny
 - $\cdot \implies$ agents need to just forecast K, not the whole distribution
 - makes solving a heterogenous agent model with aggregate shocks feasible

- · Aiyagari + transition dynamics
 - response of the economy to shocks
 - agents need to forecast the LOM of asset distribution
- Krussel and Smith: approximate the distribution with a sequence of moments
- Forecast error from looking at mean (K) alone is tiny
 - $\cdot \implies$ agents need to just forecast K, not the whole distribution
 - · makes solving a heterogenous agent model with aggregate shocks feasible

- · Aiyagari + transition dynamics
 - response of the economy to shocks
 - agents need to forecast the LOM of asset distribution
- Krussel and Smith: approximate the distribution with a sequence of moments
- Forecast error from looking at mean (K) alone is tiny
 - $\cdot \implies$ agents need to just forecast K, not the whole distribution
 - makes solving a heterogenous agent model with aggregate shocks feasible

- · Aiyagari + transition dynamics
 - response of the economy to shocks
 - \cdot agents need to forecast the LOM of asset distribution
- · Krussel and Smith: approximate the distribution with a sequence of moments
- Forecast error from looking at mean (K) alone is tiny
 - $\cdot \implies$ agents need to just forecast K, not the whole distribution
 - makes solving a heterogenous agent model with aggregate shocks feasible

- · Aiyagari + transition dynamics
 - response of the economy to shocks
 - agents need to forecast the LOM of asset distribution
- Krussel and Smith: approximate the distribution with a sequence of moments
- Forecast error from looking at mean (K) alone is tiny
 - $\cdot \implies$ agents need to just forecast K, not the whole distribution
 - makes solving a heterogenous agent model with aggregate shocks feasible

- To solve a model, need to find policy functions that satisfy FOCs
- · Replace policy functions with parameterized approximations
 - · e.g. Chebyshev polynomials
- Solve for parameters that approximately solve FOCs
 - minimize sum of squared errors over state space
- Less subject to curse of dimensionality (like log-linearization)
- Global solution (like VFI)
- Resources
 - Heer and Maußner, ch. 6
 - Fernandez-Villaverde et al (2016), Solution and Estimation Methods for DSGE Models (handbook of macro chapter), section 5.

- To solve a model, need to find policy functions that satisfy FOCs
- · Replace policy functions with parameterized approximations
 - · e.g. Chebyshev polynomials
- Solve for parameters that approximately solve FOCs
 - · minimize sum of squared errors over state space
- Less subject to curse of dimensionality (like log-linearization)
- Global solution (like VFI)
- Resources
 - · Heer and Maußner, ch. 6
 - Fernandez-Villaverde et al (2016), Solution and Estimation Methods for DSGE Models (handbook of macro chapter), section 5.

- To solve a model, need to find policy functions that satisfy FOCs
- · Replace policy functions with parameterized approximations
 - e.g. Chebyshev polynomials
- Solve for parameters that approximately solve FOCs
 - minimize sum of squared errors over state space
- Less subject to curse of dimensionality (like log-linearization)
- Global solution (like VFI)
- Resources
 - Heer and Maußner, ch. 6
 - Fernández-Villaverde et al (2016), Solution and Estimation Methods for DSGE Models (handbook of macro chapter), section 5.

- To solve a model, need to find policy functions that satisfy FOCs
- · Replace policy functions with parameterized approximations
 - e.g. Chebyshev polynomials
- Solve for parameters that approximately solve FOCs
 - minimize sum of squared errors over state space
- Less subject to curse of dimensionality (like log-linearization)
- Global solution (like VFI)
- Resources
 - Heer and Maußner, ch. 6
 - Fernández-Villaverde et al (2016), Solution and Estimation Methods for DSGE Models (handbook of macro chapter), section 5.

- To solve a model, need to find policy functions that satisfy FOCs
- · Replace policy functions with parameterized approximations
 - e.g. Chebyshev polynomials
- Solve for parameters that approximately solve FOCs
 - minimize sum of squared errors over state space
- Less subject to curse of dimensionality (like log-linearization)
- Global solution (like VFI)
- Resources
 - · Heer and Maußner, ch. 6
 - Fernández-Villaverde et al (2016), Solution and Estimation Methods for DSGE Models (handbook of macro chapter), section 5.

- To solve a model, need to find policy functions that satisfy FOCs
- · Replace policy functions with parameterized approximations
 - e.g. Chebyshev polynomials
- Solve for parameters that approximately solve FOCs
 - minimize sum of squared errors over state space
- Less subject to curse of dimensionality (like log-linearization)
- Global solution (like VFI)
- Resources
 - Heer and Maußner, ch. 6
 - Fernández-Villaverde et al (2016), Solution and Estimation Methods for DSGE Models (handbook of macro chapter), section 5.

- To solve a model, need to find policy functions that satisfy FOCs
- · Replace policy functions with parameterized approximations
 - e.g. Chebyshev polynomials
- Solve for parameters that approximately solve FOCs
 - minimize sum of squared errors over state space
- Less subject to curse of dimensionality (like log-linearization)
- Global solution (like VFI)
- Resources
 - Heer and Maußner, ch. 6
 - Fernandez-Villaverde et al (2016), Solution and Estimation Methods for DSGE Models (handbook of macro chapter), section 5.

- To solve a model, need to find policy functions that satisfy FOCs
- · Replace policy functions with parameterized approximations
 - e.g. Chebyshev polynomials
- Solve for parameters that approximately solve FOCs
 - minimize sum of squared errors over state space
- Less subject to curse of dimensionality (like log-linearization)
- Global solution (like VFI)
- Resources
 - Heer and Maußner, ch. 6
 - Fernández-Villaverde et al (2016), Solution and Estimation Methods for DSGE Models (handbook of macro chapter), section 5.

- To solve a model, need to find policy functions that satisfy FOCs
- · Replace policy functions with parameterized approximations
 - e.g. Chebyshev polynomials
- Solve for parameters that approximately solve FOCs
 - minimize sum of squared errors over state space
- Less subject to curse of dimensionality (like log-linearization)
- Global solution (like VFI)
- Resources
 - · Heer and Maußner, ch. 6
 - Fernandez-Villaverde et al (2016), Solution and Estimation Methods for DSGE Models (handbook of macro chapter), section 5.

- To solve a model, need to find policy functions that satisfy FOCs
- · Replace policy functions with parameterized approximations
 - e.g. Chebyshev polynomials
- Solve for parameters that approximately solve FOCs
 - minimize sum of squared errors over state space
- Less subject to curse of dimensionality (like log-linearization)
- Global solution (like VFI)
- Resources
 - · Heer and Maußner, ch. 6
 - Fernández-Villaverde et al (2016), Solution and Estimation Methods for DSGE Models (handbook of macro chapter), section 5.

SPARSE GRIDS

- Sparse Grids: a more efficient way of spacing grids in multi-dimensional problems
 - · when function approximated is reasonably smooth, accuracy loss is small
 - · objective function in VFI usually is!
- · A sparse version of a 9x9 grid: 17 grid points instead of 81

· Gets dramatic for more dimensions:

Dimension d	Full Grid $ V_4 $	Sparse Grid $ V_4^S $
1	15	15
2	225	49
2 3	3,375	111
4	50,625	209
5	759,375	351
10	$5.77 \cdot 10^{11}$	2,001
20	$3.33 \cdot 10^{23}$	13,201
50	$6.38 \cdot 10^{58}$	182,001
100	>Googol	1,394,001

- · Spacing of grids can be varied while solving the model
 - put more grid points where curvature seems higher
- Can put very few grid points in regions with relatively lower curvature
- · As fast as classical sparse grids, but far more accuracy

- · Spacing of grids can be varied while solving the model
 - put more grid points where curvature seems higher
- · Can put very few grid points in regions with relatively lower curvature
- · As fast as classical sparse grids, but far more accuracy

- · Spacing of grids can be varied while solving the model
- put more grid points where curvature seems higher
- · Can put very few grid points in regions with relatively lower curvature
- · As fast as classical sparse grids, but far more accuracy

- · Can make VFI feasible for very high-dimensional problems
- Resources
 - Brumm and Scheidegger (2017), Using Adaptive Sparse Grids To Solve High-Dimensional Dynamic Models
 - Tasmanian.jl for Julia

- · Can make VFI feasible for very high-dimensional problems
- Resources
 - Brumm and Scheidegger (2017), Using Adaptive Sparse Grids To Solve High-Dimensional Dynamic Models
 - Tasmanian.jl for Julia

- · Can make VFI feasible for very high-dimensional problems
- Resources
 - Brumm and Scheidegger (2017), Using Adaptive Sparse Grids To Solve High-Dimensional Dynamic Models
 - Tasmanian.jl for Julia

- · Can make VFI feasible for very high-dimensional problems
- Resources
 - Brumm and Scheidegger (2017), Using Adaptive Sparse Grids To Solve High-Dimensional Dynamic Models
 - · Tasmanian.jl for Julia

- GPUs have thousands of small cores designed for rendering graphics
- · CUDA is Nvidia's library that allows using GPU for general processing
- \cdot Thousands of cores \implies need a problem with thousands of parallel tasks
- \cdot Data transfer between RAM and GPU is slow \implies each task needs to be big
- VFI with a huge state space is well-suited for GPUs
 - many parallel tasks
 - more computation than communication
 - VFI can be significantly faster on your GPU than your CPU
- Resources
 - Aldrich et al. (2010), Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors
 - CUDA.jl package for Julia (and its documentation)

- GPUs have thousands of small cores designed for rendering graphics
- · CUDA is Nvidia's library that allows using GPU for general processing
- \cdot Thousands of cores \implies need a problem with thousands of parallel tasks
- \cdot Data transfer between RAM and GPU is slow \implies each task needs to be big
- VFI with a huge state space is well-suited for GPUs
 - many parallel tasks
 - more computation than communication
 - VFI can be significantly faster on your GPU than your CPU
- Resources
 - Aldrich et al. (2010), Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors
 - CUDA.jl package for Julia (and its documentation)

- GPUs have thousands of small cores designed for rendering graphics
- · CUDA is Nvidia's library that allows using GPU for general processing
- \cdot Thousands of cores \implies need a problem with thousands of parallel tasks
- \cdot Data transfer between RAM and GPU is slow \implies each task needs to be big
- VFI with a huge state space is well-suited for GPUs
 - many parallel tasks
 - · more computation than communication
 - VFI can be significantly faster on your GPU than your CPU
- Resources
 - Aldrich et al. (2010), Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors
 - CUDA.jl package for Julia (and its documentation)

- GPUs have thousands of small cores designed for rendering graphics
- · CUDA is Nvidia's library that allows using GPU for general processing
- \cdot Thousands of cores \implies need a problem with thousands of parallel tasks
- \cdot Data transfer between RAM and GPU is slow \implies each task needs to be big
- VFI with a huge state space is well-suited for GPUs
 - many parallel tasks
 - more computation than communication
 - VFI can be significantly faster on your GPU than your CPU
- Resources
 - Aldrich et al. (2010), Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors
 - CUDA.jl package for Julia (and its documentation)

- GPUs have thousands of small cores designed for rendering graphics
- · CUDA is Nvidia's library that allows using GPU for general processing
- \cdot Thousands of cores \implies need a problem with thousands of parallel tasks
- \cdot Data transfer between RAM and GPU is slow \implies each task needs to be big
- VFI with a huge state space is well-suited for GPUs
 - many parallel tasks
 - more computation than communication
 - · VFI can be significantly faster on your GPU than your CPU
- · Resources
 - Aldrich et al. (2010), Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors
 - CUDA.jl package for Julia (and its documentation)

- GPUs have thousands of small cores designed for rendering graphics
- · CUDA is Nvidia's library that allows using GPU for general processing
- \cdot Thousands of cores \implies need a problem with thousands of parallel tasks
- \cdot Data transfer between RAM and GPU is slow \implies each task needs to be big
- VFI with a huge state space is well-suited for GPUs
 - many parallel tasks
 - more computation than communication
 - · VFI can be significantly faster on your GPU than your CPU
- Resources
 - Aldrich et al. (2010), Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors
 - CUDA.jl package for Julia (and its documentation)

- GPUs have thousands of small cores designed for rendering graphics
- · CUDA is Nvidia's library that allows using GPU for general processing
- \cdot Thousands of cores \implies need a problem with thousands of parallel tasks
- \cdot Data transfer between RAM and GPU is slow \implies each task needs to be big
- VFI with a huge state space is well-suited for GPUs
 - many parallel tasks
 - more computation than communication
 - VFI can be significantly faster on your GPU than your CPU
- Resources
 - Aldrich et al. (2010), Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors
 - CUDA.jl package for Julia (and its documentation)

- GPUs have thousands of small cores designed for rendering graphics
- · CUDA is Nvidia's library that allows using GPU for general processing
- \cdot Thousands of cores \implies need a problem with thousands of parallel tasks
- \cdot Data transfer between RAM and GPU is slow \implies each task needs to be big
- VFI with a huge state space is well-suited for GPUs
 - many parallel tasks
 - more computation than communication
 - VFI can be significantly faster on your GPU than your CPU
- Resources
 - Aldrich et al. (2010), Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors
 - CUDA.jl package for Julia (and its documentation)

- GPUs have thousands of small cores designed for rendering graphics
- · CUDA is Nvidia's library that allows using GPU for general processing
- \cdot Thousands of cores \implies need a problem with thousands of parallel tasks
- \cdot Data transfer between RAM and GPU is slow \implies each task needs to be big
- VFI with a huge state space is well-suited for GPUs
 - many parallel tasks
 - more computation than communication
 - VFI can be significantly faster on your GPU than your CPU
- Resources
 - Aldrich et al. (2010), Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors
 - · CUDA.jl package for Julia (and its documentation)