

Claims

1. A process for purifying a radiolabelled product which comprises use of a solid-support bound scavenger group of formula (IV):

5

wherein Z is a scavenger group and SP is a solid support.

10 2. A process comprising the steps of:

(a) contacting a solution-phase mixture of a radiolabelled product of formula (III) and excess precursor of formula (I):

15 wherein XY is a functional group and R* is a radioisotope or radiolabelled portion; with a compound of formula (IV):

20 wherein Z is a scavenger group;

such that the compounds of formulae (IV) and (I) may form a covalent bond to each other;

25 (b) separation of purified radiolabelled product of formula (III) in the solution phase.

3. A process according to claim 1 or 2 wherein the scavenger group Z is an

isocyanate, isothiocyanate, thiol, hydrazine, hydrazide, aminoxy, 1,3-dipole, aldehyde or ketone.

4. A process according to any of claims 1 to 3 comprising the steps of:

5 (a) contacting a solution-phase mixture of a radiolabelled product of formula (IIIa) and excess precursor of formula (Ia):

wherein R^1 is C_{1-6} alkyl and R^* is $^{[11]\text{C}}\text{-C}_{1-6}$ alkyl, such as $^{11}\text{CH}_3$ or $^{[18]\text{F}}$ fluoro C_{1-6} alkyl or $^{[18]\text{F}}$ fluoro C_{6-12} aryl;

10

with a compound of formula (IVa):

15 wherein R^2 is oxygen or sulphur
 such that the compounds of formulae (IVa) and (Ia) may form a covalent bond to each other; and

20 (b) separation of purified radiolabelled product of formula (IIIa) in the solution phase.

5. A process according to any of claims 1 to 3 comprising the steps of:

(a) contacting a solution-phase mixture of a radiolabelled product of formula (IIIb) and excess precursor of formula (Ib):

25

wherein either

(i) the functional group $-X^bY^b$ in the compound of formula (Ib) is $-OSO_2R^3$ wherein R^3 is C_{1-15} alkyl or C_{1-10} alkylaryl and R^3 is optionally substituted by halo (preferably fluoro), for example R^3 is methyl, para-toluene, trifluoromethyl, and R^{*b} in the compound of formula (IIIb) is a radiohalogen such as radiofluoro (for example ^{18}F) or radioiodo (such as ^{123}I , ^{124}I , or ^{125}I) or radiobromo (such as ^{76}Br); or

5 (ii) the functional group $-X^bY^b$ in the compound of formula (Ib) is $-C(O)CH_2Cl$ and R^{*b} in the compound of formula (IIIb) is $-S-L^b-nF$ wherein L^b is a C_{1-30} hydrocarbyl linker group optionally including 1 to 10 heteroatoms; and

10 nF is a radioisotope of fluorine such as ^{18}F ;

with a compound of formula (IVb):

15

wherein R^4 is hydrogen;

such that the compounds of formulae (IVb) and (Ib) may form a covalent bond to each other;

20

(b) separation of purified radiolabelled product of formula (IIIb) in the solution phase.

25

6. A process according to any of claims 1 to 3 comprising the steps of:
 (a) contacting a solution-phase mixture of a radiolabelled product of formula (IIIc) and excess precursor of formula (Ic):

30

(Ic)

(IIIc)

wherein the functional group $-X^cY^c$ in the compound of formula (Ic) is an aldehyde or ketone and R^{*c} in the compound of formula (IIlc) is $=N-W$ -Linker-F where W is C_{1-15} alkyl or C_{7-15} aryl, with a compound of formula (IVc):

5

(IVc)

wherein Z^c is selected from $-NH_2$, hydrazine, hydrazide, aminoxy,

10 phenylhydrazines, semicarbazide, or thiosemicarbazide;

such that the compounds of formulae (IVc) and (Ic) may form a covalent bond to each other; and

(b) separation of purified radiolabelled product of formula (IIlc) in the solution

15 phase.

7. A process according to any of claims 1 to 3 comprising the steps of:

(a) contacting a solution-phase mixture of a radiolabelled product of formula (IIlc) and excess precursor of formula (Ic):

20

(Ic)

(IIlc)

wherein the functional group $-X^cY^c$ in the compound of formula (Ic) is $-OSO_2R^3$

25 wherein R^3 is C_{1-15} alkyl or C_{1-10} alkylaryl and R^3 is optionally substituted by halo

(preferably fluoro), for example R^3 is methyl, para-toluene, trifluoromethyl and R^{*c}

in the compound of formula (IIlc) is $=N-W$ -Linker-F where W is C_{1-15} alkyl or C_{7-15}

aryl, with a compound of formula (IVci):

30

where W is selected from C₁₋₁₅ alkyl or C₇₋₁₅ aryl, -NH-, -NH-CO- or -O- ; such that the compounds of formulae (IVci) and (Ic) may form a covalent bond to each other; and

5

(b) separation of purified radiolabelled product of formula (IIIc) in the solution phase.

8. A process according to any of claims 1 to 3 comprising the steps of:

10 (a) contacting a solution-phase mixture of a radiolabelled product of formula (IIId) and excess precursor of formula (Id):

(Id)

(IIId)

15 wherein the functional group X^dY^d in the compound of formula (Id) is an amine, hydrazine, hydrazide, aminoxy, phenylhydrazine, or semicarbazide, thiosemicarbazide group and R^{*d} in the compound of formula (IIId) is $=\text{CH-Linker-F}$ where the linker comprises an alkyl, aryl or polyethylene glycol component;

20

with a compound of formula (IVd):

(IVd)

25

wherein Z^d is an aldehyde or ketone moiety;

such that the compounds of formulae (IVd) and (Id) may form a covalent bond to each other; and

(b) separation of purified radiolabelled product of formula (IIId) in the solution phase.

9. A process according to claim 8 wherein the compound of formula (IVd) has a 5 ketone scavenging group based on a ring-opening metathesis polymerisation (ROMP) polymer backbone.

10. A process according to any of claims 1 to 3 comprising the steps of 10 (a) contacting a solution-phase mixture of a radiolabelled product of formula (IIIe) and a by-product (VIIe):

15 wherein the by-product (VIIe) contains an unwanted double bond, formed by an elimination side-reaction, and R*^e in the compound of formula (IIIe) is radiohalo, particularly [¹⁸F]fluoro;

with a compound of formula (IVe):

20

25

wherein Z^e is a 1,3-dipole such as $-N=N^+=N^-$ or $-C\equiv N^+-O^-$ such that the compounds of formula (IVe) and (VIIe) may form a covalent bond to each other; and

(b) separation of purified radiolabelled product of formula (IIIe) in the solution phase.

30 11. A process according to claim 10 wherein the compound of formula (IIIe) and

(VIIe) are:

(IIIe)

(VIIe)

wherein each PG is hydrogen or a hydroxyl protecting group (suitably tert-butoxycarbonyl, benzyl, triphenylmethyl, or dimethoxytriphenylmethyl).

5

12. A process according to claim 1 which comprises use of a compound of formula (IVf):

10 wherein Z^f is $\text{Cl}-\text{CH}_2-\text{CO}-$ or another haloacetyl containing moiety for removal of unreacted radiolabelling agent containing a thiol moiety from a reaction mixture resulting in formation of a compound of formula (VIf):

15

wherein R^* is a radioisotope or radiolabelled portion.

13. An automated radiosynthesis apparatus, or a cassette therefor, comprising a vessel, such as a cartridge, containing a solid-support bound scavenger group of 20 formula (IV), (IVa), (IVb), (IVc), (IVd), (IVe), or (IVf) as defined in claims 1 to 12.