

Estrategias de Persistencia Introducción

Universidad Nacional de Quilmes

Contenido

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- Estrategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- 2 Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- 3 Estrategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- 4 Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

Aplicación y estado

Aplicación

- Proceso ejecutado por S.O.
- Area de memoria asignada
- Paradigmas imperativos: transformación continua de ese estado (efecto de lado)

Aplicación y estado

Aplicación

- Proceso ejecutado por S.O.
- Area de memoria asignada
- Paradigmas imperativos: transformación continua de ese estado (efecto de lado)

Aplicación y estado

Aplicación

- Proceso ejecutado por S.O.
- Area de memoria asignada
- Paradigmas imperativos: transformación continua de ese estado (efecto de lado)

Ejemplo

Ejemplo

Hacen al estado de mi sistema:

- Las referencias de personaje a números (como la cantidad de "vida")
- Las relaciones de personaje con otros objetos que forman parte de su inventor o
- Que mi personaje exista (sea un objeto que tenga una identidad)

Ejemplo

Hacen al estado de mi sistema:

- Las referencias de personaje a números (como la cantidad de "vida")
- Las relaciones de personaje con otros objetos que forman parte de su inventario
- Que mi personaje exista (sea un objeto que tenga una identidad)

Ejemplo

Hacen al estado de mi sistema:

- Las referencias de personaje a números (como la cantidad de "vida")
- Las relaciones de personaje con otros objetos que forman parte de su inventario
- Que mi personaje exista (sea un objeto que tenga una identidad)

Requerimientos

- Almacenar el estado generado por una ejecución para ser reutilizado por ejecuciones posteriores.
- Sobrevivor a la volatilio
- Poder trabajar con estados más grandes que la capacidad física de la memoria

Requerimientos

- Almacenar el estado generado por una ejecución para ser reutilizado por ejecuciones posteriores.
- Sobrevivor a la volatilidad de la memoria.
- Poder trabajar con esta

7 / 67

Requerimientos

- Almacenar el estado generado por una ejecución para ser reutilizado por ejecuciones posteriores.
- Sobrevivor a la volatilidad de la memoria.
- Poder trabajar con estados más grandes que la capacidad física de la memoria.

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- 2 Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- 3 Estrategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- 4 Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

¿Qué significa persisitir?

Capacidad de una aplicación de hacer frente a los requerimientos anteriores.

Conceptos:

- Base de datos: es el conjunto de datos persistidos.
- Medio Persistente: Es el soporte físico donde se almacenan los datos.
 - Disco magnético.
 - Array
 - Memor
 - Cluster d

¿Qué significa persisitir?

Capacidad de una aplicación de hacer frente a los requerimientos anteriores.

Conceptos:

- Base de datos: es el conjunto de datos persistidos.
- Medio Persistente: Es el soporte físico donde se almacenan los datos.
 - Disco magnético.
 - Array de discos.
 - Memoria flash.
 - Cluster de máquinas.

¿Qué significa persisitir?

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- 2 Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- 3) Estrategia<mark>s de Persistencia</mark>
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- 4 Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

- ¿Qué datos guardar?
- ¿Con qué formato estructura
- ¿En qué medio?
- ¿Cuándo guardar?
- ¿ Cuándo consultar?
- ¿Cómo consultar
- ¿Soportaremos actualizar o eliminar los datos? ¿Cómo
- ¿Cómo mantener la consistencia

- ¿Qué datos guardar?
- ¿Con qué formato/estructura?
- ¿En qué
- ¿Cuándo guardar?
- ¿ Cuándo consultar?
- ¿Cómo consultar?
- ¿Soportaremos actualizar o eliminar los datos?
- ¿Cómo mantener la cons

- ¿Qué datos guardar?
- ¿Con qué formato/estructura?
- ¿En qué medio?
- ¿Cuándo guardar?
- ¿Cuándo consultar?
- ¿Cómo consultar?
- o ; Soportaremos actualizar o eliminar los datos
- ¿Cómo mantener la cons

- ¿Qué datos guardar?
- ¿Con qué formato/estructura?
- ¿En qué medio?
- ¿Cuándo guardar?
- ¿ Cuándo consultar?
- ¿Cómo consultar?
- ¿Soportaremos actualizar o eliminar los datos?
- ¿Cómo mantener la cons

- ¿Qué datos guardar?
- ¿Con qué formato/estructura?
- ¿En qué medio?
- ¿Cuándo guardar?
- ¿Cuándo consultar?
- ¿Cómo d
- ¿Soportaremos actualizar o eliminar los datos
- ¿Cómo mantener la cons

- ¿Qué datos guardar?
- ¿Con qué formato/estructura?
- ¿En qué medio?
- ¿Cuándo guardar?
- ¿Cuándo consultar?
- ¿Cómo consultar?
- ¿Soportaremos actualizar o elimina
- ¿Cómo mantener la cons

- ¿Qué datos guardar?
- ¿Con qué formato/estructura?
- ¿En qué medio?
- ¿Cuándo guardar?
- ¿Cuándo consultar?
- ¿Cómo consultar?
- ¿Soportaremos actualizar o eliminar los datos? ¿Cómo?
- ¿Cómo mantener la con

- ¿Qué datos guardar?
- ¿Con qué formato/estructura?
- ¿En qué medio?
- ¿Cuándo guardar?
- ¿Cuándo consultar?
- ¿Cómo consultar?
- ¿Soportaremos actualizar o eliminar los datos? ¿Cómo?
- ¿Cómo mantener la consistencia?

Dónde y cómo

Medio persistente:

- Cómo voy a persistir en el mismo.
- Qué estructura de datos tendrá.
- Cómo adaptar el modelo de objetos a dicha estructura.

Módelo de objetos

Cómo luce un ambiente de objetos

Cómo persistir objetos

Alternativas

- Snapshot del ambiente completo
- Serializar a un formato de archivo de un subconjunto de objetos.
- Delegar un servicio de base de datos para persistir mi modelo
 - Bases de datos jerarquicas
 - Bases de datos en red
 - Bases de datos relacionales
 - Bases de datos NO relacionales (NoSQL)
 - Bases de datos de objetos

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- 3 Estrategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- 4 Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

- Foto del ambiente completo.
- Persistida a un archivo binario
- Incluye todos los objetos (ventanas, variables globales, entorno de trabajo)
- Simple el ambiente provee este servicio
- No soporta cambios inc

- Foto del ambiente completo.
- Persistida a un archivo binario.
- Incluye todos los objetos (ventanas, variables globales, entorno de trabajo)
- Simple el ambiente provee este servicio
- No soporta cambios in

- Foto del ambiente completo.
- Persistida a un archivo binario.
- Incluye todos los objetos (ventanas, variables globales, entorno de trabajo)
- Simple el ambiente p
- No soporta cambios in

- Foto del ambiente completo.
- Persistida a un archivo binario.
- Incluye todos los objetos (ventanas, variables globales, entorno de trabajo)
- Simple el ambiente provee este servicio.
- No sopor

- Foto del ambiente completo.
- Persistida a un archivo binario.
- Incluye todos los objetos (ventanas, variables globales, entorno de trabajo)
- Simple el ambiente provee este servicio.
- No soporta cambios incrementales.

Snapshot del ambiente

Viable por lo general solamente en:

- Aplicaciones monousuario
- Persistencia a intervalos discretos (grandes)

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- 3 Estrategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- 4 Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

Implica:

- Seleccionar un o varios subgrafos
- Persistirlo a uno o varios archivos

Formatos de archivo

- Archivos binarios
- Archivos de texto
 - JSON
 - XML

Archivos binarios

- ObjectOutputStream (java)
- ReferenceStream (smalltalk)
- Apache Avro, Gooogle's protocolbuffers, etc

ALMACENAMIENTO PASIVO

ALMACENAMIENTO

ACTIVO

Archivos binarios

Ventajas:

- Eficiencia (temporal y espacial)
- Mejor soporte para estructuras de tipo grafo

Desventajas:

- Opacos
- Estándares pobres
- Acoplados a la implementación nativa

Archivos de texto - XML

- JAXB
- XStream

ALMACENAMIENTO ACTIVO

Archivos de texto - JSON

- Apache Jakcson
- FlexJSON
- Google's GSON
- json-io

Archivos de texto

Ventajas:

- El resultado puede leerse (y editarse) manualmente
- Suelen ser formatos mas estándares
- No acomplados a una implementación, portables

Desventajas:

- Menos eficientes
- Implican muchas conversiones de tipo
- Suelen ser limitados en cuanto a estructura (persisten arboles)

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- 2 Medios persistentes
 - Snapshot
 - Serialización a archivo
 - Servidores de Bases de Datos
- 3 Estrategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- 4 Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

Servidores de Bases de Datos

Es posible delegar en un servicio de base de datos:

• Aplicación especializada en persistir

Servidores de Bases de Datos

Mapeo contra otros modelos

Adaptaciones que cubran esas diferencias (lo que se llama **impedance mismatch**).

- Modelo relacional: estructura la información en:
 - Campos (columnas)
 - Registros (tuplas de campos)
 - Tablas (conjuntos de registros similares)
 - Relaciones entre tablas
- Modelo en jerarquico: la infromación de persiste en una estructura de nodos padre-hijo
- Modelo en red: los nodos no cienea una relación padre-hijo sino de iguales (persiste grafos)
- NoSQL: alternativa a BD relacionales

- Modelo relacional: estructura la información en:
 - Campos (columnas)
 - Registros (tuplas de campos)
 - Tablas (conjuntos de registros similares)
 - Relaciones entre tablas
- Modelo en jerarquico: la infromación de persiste en una estructura de nodos padre-hijo
- Modelo en red: los nodos no cienea una relación padre-hijo sino de iguales (persiste grafos)
- NoSQL: alternativa a BQ reacionales.

- Modelo relacional: estructura la información en:
 - Campos (columnas)
 - Registros (tuplas de campos)
 - Tablas (conjuntos de registros similares)
 - Relaciones entre tablas
- Modelo en jerarquico: la infromación de persiste en una estructura de nodos padre-hijo
- Modelo en red: los nodos no tienen una relación padre-hijo sino de iguales (persiste grafos)
- NoSQL: alternativa a BD relacionales

- Modelo relacional: estructura la información en:
 - Campos (columnas)
 - Registros (tuplas de campos)
 - Tablas (conjuntos de registros similares)
 - Relaciones entre tablas
- Modelo en jerarquico: la infromación de persiste en una estructura de nodos padre-hijo
- Modelo en red: los nodos no tienen una relación padre-hijo sino de iguales (persiste grafos)
- NoSQL: alternativa a BD relacionales.

Impedance mistmatch

Servidores de Bases de Datos

Bases de datos de Objetos

Mismo modelo = desparece el impedance mismatch

- Embebidas en el ambiente: Gemstone, Objectivity
- Servicios separados: DB4O, ObjectDB, Realm, Magma

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- 2 Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- Strategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

Nos interesa responder ahora las siguientes preguntas:

- Cuándo persistir
- Cómo manter la consistencia

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- 2 Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- Strategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

Ambiente vivo + BD como backup

Funcionamiento:

- Mantiene todos los objetos vivos en la imagén.
- Opera sobre ellos en form
- Luego de cada cambio sincroniza con el medio persistente. (solo escribe)

Ambiente vivo + BD como backup

Funcionamiento:

- Mantiene todos los objetos vivos en la imagén.
- Opera sobre ellos en forma normal.
- Luego de cada cambio sincroniza con el medio persistente. (solo escribe)

Ambiente vivo + BD como backup

Funcionamiento:

- Mantiene todos los objetos vivos en la imagén.
- Opera sobre ellos en forma normal.
- Luego de cada cambio sincroniza con el medio persistente. (solo escribe)

Ambiente vivo + BD como backup

Ambiente vivo + BD como backup

Ambiente vivo + BD como backup

Ambiente vivo + BD como backup

Características:

- El ambiente es el "dueño" de los datos
- No nos ayudará a sorter la limitación de la memo
- Deberen os asegurar que nuetro estado en objetos es consistente y todo cambio es atómico y durable

Ambiente vivo + BD como backup

Características:

- El ambiente es el "dueño" de los datos
- No nos ayudará a sorter la limitación de la memoria física
- Deberen os asegurar que nuetro estado en objetos es consistente y todo cambio es atómido y durable

Ambiente vivo + BD como backup

Características:

- El ambiente es el "dueño" de los datos
- No nos ayudará a sorter la limitación de la memoria física
- Deberemos asegurar que nuetro estado en objetos es consistente y todo cambio es atómico y durable

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- 2 Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- 3 Estrategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

Esquema prevalente

- Modelo de objetos vivo
- Se guarda un snapshot inicial de todo el ambiente a intervalos
 discreto.
- Toda operación sobre el ambiente se mode a como un comando
- Toda operación sobre el ambiente se persiste (operación, no resultado) en un lor

Esquema prevalente

- Modelo de objetos vivo
- Se guarda un snapshot inicial de todo el ambiente a intervalos discretos
- Toda operación sobre el ambiente se modela como un comando
- Toda operación sobre el ambiente se persiste (operación, no resultado) en un lor.

Esquema prevalente

- Modelo de objetos vivo
- Se guarda un snapshot inicial de todo el ambiente a intervalos discretos
- Toda operación sobre el ambiente se modela como un comando
- Toda operación sobre el ambiente se persiste (operación, no resultado) en un los

Esquema prevalente

- Modelo de objetos vivo
- Se guarda un snapshot inicial de todo el ambiente a intervalos discretos
- Toda operación sobre el ambiente se modela como un comando
- Toda operación sobre el ambiente se persiste (operación, no resultado) en un log

Esquema prevalente

Esquema prevalente

Esquema prevalente

Esquema prevalente

Esquema prevalente

- Relativamente simple de implementar
- Soporta una gran cant
- Permite tener memoria de todos los estados inte

Esquema prevalente

- Relativamente simple de implementar
- Soporta una gran cantidad de transacciones
- Permite tener memoria de todos los estados inte

Esquema prevalente

- Relativamente simple de implementar
- Soporta una gran cantidad de transacciones
- Permite tener memoria de todos los estados intermedios

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- 2 Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- 3 Estrategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

Ambiente muerto y recreado

- Mantiene un ambiete vacío
- Cada operación recupera de la BD previamente los objetos sobre los que va a operar
- Aplica los cambios
- Actualiza
- Vacía el an

Ambiente muerto y recreado

- Mantiene un ambiete vacío
- Cada operación recupera de la BD previamente los objetos sobre los que va a operar
- Aplica los cambios
- Actualiza
- Vacía el an

Ambiente muerto y recreado

- Mantiene un ambiete vacío
- Cada operación recupera de la BD previamente los objetos sobre los que va a operar
- Aplica los cambios
- Actualiza
- Vacía el an

Ambiente muerto y recreado

- Mantiene un ambiete vacío
- Cada operación recupera de la BD previamente los objetos sobre los que va a operar
- Aplica los cambios
- Actualiza la BD
- Vacía el ar

Ambiente muerto y recreado

- Mantiene un ambiete vacío
- Cada operación recupera de la BD previamente los objetos sobre los que va a operar
- Aplica los cambios
- Actualiza la BD
- Vacía el ambiente

Ambiente muerto y recreado

- La BD es "dueña" de los datos
- Nos ayudará a sorter la limitación de la memoria
- Tiene un overhead signicativo de comunicación
- Perdida de identidad d
- Permite aprovechar la transaccionalidad de la B

Ambiente muerto y recreado

- La BD es "dueña" de los datos
- Nos ayudará a sorter la limitación de la memoria física
- Tiene un overhead signicativo de comunicación
- Perdida de identidad d
- Permite aprovechar la transaccionalidad de la B

Ambiente muerto y recreado

- La BD es "dueña" de los datos
- Nos ayudará a sorter la limitación de la memoria física
- Tiene un overhead signicativo de comunicación
- Perdida de identidad d
- Permite aprovechar la transaccionalidad de la B

Ambiente muerto y recreado

- La BD es "dueña" de los datos
- Nos ayudará a sorter la limitación de la memoria física
- Tiene un overhead signicativo de comunicación
- Perdida de identidad de los objetos
- Permite aprovechar la transaccionalidad de la l

Ambiente muerto y recreado

- La BD es "dueña" de los datos
- Nos ayudará a sorter la limitación de la memoria física
- Tiene un overhead signicativo de comunicación
- Perdida de identidad de los objetos
- Permite aprovechar la transaccionalidad de la BD

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- 2 Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- 3 Estrategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

Transaccionalidad

Requerimiento: Confianza en que el estado es, en todo momento, correcto

Transacción Conjunto de transformaciones al estado del sistema que suponen una unidad lógica.

Transacción

Ejemplo

En nuestro juego recoger un item desde un cofre y agregarlo a nuestro inventario es una transacción.

Supone varias pequeñas transformaciones:

- remover el ítem de la colección del cofre
- agregar el item al inventario del personaje

Pero una sola unidad de trabajo (unit-of-work)

Transacción

Ejemplo

Transacción Propiedades ACID

Una transacción es un conjunto de operaciones sobre las que se aseguran:

- Atomicidad (Atomicity)
- Consistencia (Consistency)
- Aislamiento (Isolation)
- Durabilidad (Durability)

Atomicidad

Propiedades ACID

Todas las tareas que conforman una transacción son ejecutadas con éxito, o ninguna lo es.

Consistencia Propiedades ACID

Una transacción debe cumplir con todas las reglas definidas por el sistema:

- Integridad de las relaciones
- Validaciones
- Restricciones

El estado de la aplicación cumple las reglas al principio y al final de cada transacción.

Aislamiento

Propiedades ACID

El estado generado por una transacción no será visible por ninguna otra transacción hasta que ella no esté completada.

Cada transacción es entonces independiente.

Durabilidad

Propiedades ACID

Una vez que una transacción ha completado sus cambios persistirán en el sistema y no se descartaran.

Outline

- Introducción
 - Aplicación y estado
 - Persistencia
 - Decisiones de diseño
- 2 Medios persistentes
 - Snapshot
 - Serialización a archivos
 - Servidores de Bases de Datos
- 3 Estrategias de Persistencia
 - Estrategias de Persistencia
 - Ambiente vivo + BD como backup
 - Esquema prevalente
 - Ambiente muerto y recreado
- Transaccionalidad
 - Transaccionalidad
 - Persistencia y transaccionalidad

Persistencia y transaccionalidad

- Problemas inherentes a trabjar con estado.
- No se implican mutuamente.
- Son ortogonales a mi sistema (y a muchos sistemas).