

Institut für Fusionstechnologie und Reaktortechnik Bereich Innovative Reaktorsysteme Vincenz-Prießnitz-Str. 3

Vincenz-Prießnitz-Str. 3 76131 Karlsruhe http://www.ifrt.kit.edu

Validierung von Korrelationen und Fluid Skalierungsgesetze anhand eigener CHF Versuche

Master Thesis

Aufgabenbeschreibung

Phasenübergänge und Mehrphasenströmungen sind in Kraftwerken allgegenwertig und unabdingbar. Beim Blasensieden besonders zu beachtet ist die kritische Wärmestromdichte (CHF). Beim Überschreiten der kritischen Wärmestromdichte kommt es zu einer plötzlichen Reduzierung des Wärmeübergangs und bei konstanter Heizleistung kann die Heizfläche durch die in der Folge stark ansteigende Oberflächentemperatur beschädigt werden. Die KIMOF wurde am IFRT errichtet, um dieses Phänomen mittels des Modellfluides R134a zu verstehen. Die Aufgabe der Studentenarbeit ist die Validierung verschiedener Korrelationen und Skalierungsgesetze anhand der an der KIMOF gewonnenen Versuchsdaten. Einzelne Aufgaben sind:

- Literaturrecherche zu vorhandenen CHF Messdaten, Korrelationen und Skalierungsgesetze
- Einordnung der eigenen CHF Versuchsdaten in Literatur
- Validierung von Korrelationen und Gesetze anhand eigener Versuchsdaten
- Aufzeigen der Schwächen der Korrelationen und Gesetze

Abbildung 1: Zweiphasenströmung bis zum CHF

Voraussetzungen

- Kenntnisse in Strömungslehre und Thermodynamik
- Kenntnisse in Matlab

Arbeitsbeginn

ab sofort

Arbeitsdauer

4 - 6 Monate (je nach Umfang der Arbeit)

Betreuer und Kontakt

Dipl.-Ing. Florian Feuerstein Institut für Fusionstechnologie und Reaktortechnik R 333.1, Geb. 07.08, Vincenz-Priessnitz-Str. 3

Tel.: 0721 608 45133

E-Mail: Florian.Feuerstein@kit.edu