SaHHN(e)

Combinatorial Coworkspace

Basics on Lattice Polytopes and Ehrhart Theory

Day # 1

- **Exercise 1.** i) Prove that an empty triangle is a unimodular triangle.
 - ii) Give several proofs why the normalised volume of a lattice polytope is an integer.
 - iii)* Let $S(p,q) = \operatorname{conv}(\left(\begin{smallmatrix}0\\0\\0\\0\end{smallmatrix}\right), \left(\begin{smallmatrix}0\\0\\1\\1\end{smallmatrix}\right), \left(\begin{smallmatrix}1\\0\\0\\0\end{smallmatrix}\right), \left(\begin{smallmatrix}p\\q\\1\\1\end{smallmatrix}\right))$ where $0 \leq p \leq q$ with $\gcd(p,q) = 1$. For which p,q and p',q' are the empty tetrahedra S(p,q) and S(p',q') unimodularly equivalent?
- **Exercise 2.** i) Prove hierarchy: SFP implies reflexive implies canonical.
 - ii) A canonical centrally-symmetric lattice polytope has at most 3^d lattice points where d is the dimension of the polytope.
 - iii)** Show that every 3-dimensional smooth polytope has a facet with at most 4 vertices. (Recall that a lattice polytope is smooth if its normal fan has unimodular cones.)
- **Exercise 3.** i) Convince yourself that the leading coefficient of the Ehrhart polynomial is the (Euclidean) volume.
 - ii) Verify Ehrhart reciprocity for the standard simplex.
 - iii) What is the linear coefficient of the h^* -polynomial?
- **Exercise 4.** i) Let P be a reflexive polytope and $x,y\in P$ two lattice points. Show that if $x+y\neq 0$ and x,y are not contained in a common facet then there is a lattice point $0\neq z\in P$ such that there are two facets F,F' with $x,z\in F$ and $z,y\in F'$.
 - ii) Show that the diameter of the edge graph of a simplicial reflexive polytope is bounded by $3. \,$
 - iii) Let $P \subset \mathbb{R}^d$ be a reflexive polytope, F a facet and $v \in P$ a non-zero lattice point that has lattice distance 1 from F. Show that v is contained in a facet F' such that $\dim(F \cap F') = d 2$.