Type Soundness in an Intensional Dependent Type Theory with Type-in-Type and Recursion

February 27, 2021

1 Type Soundness

1.1 Contexts

1.1.1 Sub-Contexts are well formed

The following rules are admissible:

$$\begin{split} \frac{\Gamma,\Gamma' \vdash}{\Gamma \vdash} \\ \frac{\Gamma,\Gamma' \vdash m : M}{\Gamma \vdash} \\ \frac{\Gamma,\Gamma' \vdash m \Rrightarrow m' : M}{\Gamma \vdash} \\ \frac{\Gamma,\Gamma' \vdash m \Rrightarrow_* m' : M}{\Gamma \vdash} \\ \frac{\Gamma,\Gamma' \vdash m \equiv m' : M}{\Gamma \vdash} \end{split}$$

by mutual induction on the derivations.

1.1.2 Context weakening

For any derivation of $\Gamma \vdash M : \star$, the following rules are admissible:

$$\begin{split} \frac{\Gamma,\Gamma' \vdash}{\Gamma,x:M,\Gamma' \vdash} \\ \frac{\Gamma,\Gamma' \vdash n:N}{\Gamma,x:M,\Gamma' \vdash n:N} \\ \frac{\Gamma,\Gamma' \vdash n \Rrightarrow n':N}{\Gamma,x:M,\Gamma' \vdash n \Rrightarrow n':N} \end{split}$$

$$\frac{\Gamma, \Gamma' \vdash n \Rightarrow_* n' : N}{\Gamma, x : M, \Gamma' \vdash n \Rightarrow_* n' : N}$$
$$\frac{\Gamma, \Gamma' \vdash n \equiv n' : N}{\Gamma, x : M, \Gamma' \vdash n \equiv n' : N}$$

by mutual induction on the derivations.

1.1.3 \Rightarrow is reflexive

The following rule is admissible:

$$\frac{\Gamma \vdash m : M}{\Gamma \vdash m \, \Rrightarrow \, m : M} \, {\Rrightarrow}\text{-refl}$$

by induction

1.1.4 \equiv is reflexive

The following rule is admissible:

$$\frac{\Gamma \vdash m : M}{\Gamma \vdash m \equiv m : M} \equiv \text{-refl}$$

by $\Rightarrow *-refl$

1.1.5 Context substitution

For any derivation of $\Gamma \vdash m : M$ the following rules are admissible:

$$\begin{split} \frac{\Gamma, x : M, \Gamma' \vdash}{\Gamma, \Gamma' \left[x \coloneqq m\right] \vdash} \\ \frac{\Gamma, x : M, \Gamma' \vdash n : N}{\Gamma, \Gamma' \left[x \coloneqq m\right] \vdash n \left[x \coloneqq m\right] : N \left[x \coloneqq m\right]} \\ \frac{\Gamma, x : M, \Gamma' \vdash n \Rightarrow n' : N}{\Gamma, \Gamma' \left[x \coloneqq m\right] \vdash n \left[x \coloneqq m\right] \Rightarrow n' \left[x \coloneqq m\right] : N \left[x \coloneqq m\right]} \\ \frac{\Gamma, x : M, \Gamma' \vdash n \Rightarrow_* n' : N}{\Gamma, \Gamma' \left[x \coloneqq m\right] \vdash n \left[x \coloneqq m\right] \Rightarrow_* n' \left[x \coloneqq m\right] : N} \\ \frac{\Gamma, x : M, \Gamma' \vdash n \Rightarrow_* n' : N}{\Gamma, \Gamma' \left[x \coloneqq m\right] \vdash n \left[x \coloneqq m\right] \Rightarrow_* n' \left[x \coloneqq m\right] : N} \\ \frac{\Gamma, x : M, \Gamma' \vdash n \equiv n' : N}{\Gamma, \Gamma' \left[x \coloneqq m\right] \vdash n \left[x \coloneqq m\right] \equiv n' \left[x \coloneqq m\right] : N \left[x \coloneqq m\right]} \end{split}$$

by mutual induction on the derivations. Specifically, at every usage of x from the var rule in the original derivation, replace the usage of the var rule with the derivation of $\Gamma \vdash m : M$ weakened to the context of $\Gamma, \Gamma'[x := m]$, and apply \Rightarrow -refl , \Rightarrow_* -refl or \equiv -refl when needed.

1.2 Computation

1.2.1 \Rightarrow preserves type of source

The following rule is admissible:

$$\frac{\Gamma \vdash m \Rrightarrow m' : M}{\Gamma \vdash m : M}$$

by induction

$1.2.2 \Rightarrow$ -substitution

The following rule is admissible:

$$\frac{\Gamma, x: M, \Gamma' \vdash n \Rrightarrow n': N \quad \Gamma \vdash m \Rrightarrow m': M}{\Gamma, \Gamma' \left[x \coloneqq m\right] \vdash n \left[x \coloneqq m\right] \Rrightarrow n' \left[x \coloneqq m'\right]: N \left[x \coloneqq m\right]}$$

by induction on the \Rightarrow derivations

1.2.3 \Rightarrow is confluent

if $\Gamma \vdash m \Rightarrow n: M$ and $\Gamma \vdash m \Rightarrow n': M$ then there exists m' such that $\Gamma \vdash n \Rightarrow m': M$ and $\Gamma \vdash n' \Rightarrow m': M$ by standard techniques

$1.3 \Rightarrow_*$

1.3.1 \Rightarrow_* is transitive

The following rule is admissible:

$$\frac{\Gamma \vdash m \Rrightarrow_* m' : M \quad \Gamma \vdash m' \Rrightarrow_* m'' : M}{\Gamma \vdash m \Rrightarrow_* m'' : M} \Rrightarrow *\text{-trans}$$

by induction

1.3.2 \Rightarrow preserves type in destination

$$\frac{\Gamma \vdash m \Rrightarrow m' : M}{\Gamma \vdash m' : M}$$

By induction on the \Rightarrow derivation with the help of the substitution lemma.

- Π-⇒
 - $-m'[x \coloneqq n', f \coloneqq (\operatorname{fun} f. x.m')] : M'[x \coloneqq n']$ by the substitution lemma used on the inductive hypotheses
 - $-M[x := n] \Rightarrow M'[x := n']$ by \Rightarrow -substitution, so $M[x := n] \equiv M'[x := n']$
 - by the conversion rule $m'[x := n', f := (\operatorname{fun} f. x.m')] : M[x := m]$
- Π-Ε-⇒

- $-m'n': \tau[x\coloneqq n'], \text{ by } \Rightarrow \text{-substitution and reflexivity, } M[x\coloneqq n] \Rightarrow M[x\coloneqq n'], \text{ so } M[x\coloneqq n] \equiv M[x\coloneqq n']$
- by the conversion rule m'n': M[x := n]
- Π-I-⇒
 - fun $f.\,x.m':\Pi x:M'.N',\,\Pi x:M.N \Rrightarrow \Pi x:M'.N'$, so $\Pi x:M.N \equiv \Pi x:M'.N'$
 - by the conversion rule fun $f.x.m': \Pi x: M.N$
- all other cases are trivial

1.3.3 \Rightarrow_* preserves type

The following rule is admissible:

$$\frac{\Gamma \vdash m \Rightarrow_* m' : M}{\Gamma \vdash m : M}$$

by induction

$$\frac{\Gamma \vdash m \Rightarrow_* m' : M}{\Gamma \vdash m' : M}$$

by induction

1.3.4 \Rightarrow_* is confluent

if $\Gamma \vdash m \Rightarrow_* n : M$ and $\Gamma \vdash m \Rightarrow_* n' : M$ then there exists m' such that $\Gamma \vdash n \Rightarrow_* m' : M$ and $\Gamma \vdash n' \Rightarrow_* m' : M$

Follows from \Rightarrow *-trans and the confluence of \Rightarrow using standard techniques

$1.3.5 \equiv \text{is symmetric}$

The following rule is admissible:

$$\frac{\Gamma \vdash m \equiv m' : M}{\Gamma \vdash m' \equiv m : M} \equiv \text{-sym}$$

trivial

1.3.6 \equiv is transitive

$$\frac{\Gamma \vdash m \equiv m' : M \qquad \Gamma \vdash m' \equiv m'' : M}{\Gamma \vdash m \equiv m'' : M} \equiv \text{-trans}$$

by the confluence of \Rightarrow_*

$1.3.7 \equiv \text{preserves type}$

The following rules are admissible:

$$\frac{\Gamma \vdash m \equiv \, m' : M}{\Gamma \vdash m : M}$$

$$\frac{\Gamma \vdash m \equiv \, m' : M}{\Gamma \vdash m' : M}$$

by the def of \Rightarrow_*

1.3.8 Regularity

The following rule is admissible:

$$\frac{\Gamma \vdash m : M}{\Gamma \vdash M : \star}$$

by induction with \equiv -preservation for the Conv case

1.3.9 \rightsquigarrow implies \Rightarrow

For any derivations of $\Gamma \vdash m : M, m \leadsto m'$

$$\Gamma \vdash m \Rightarrow m' : M$$

by induction on \rightsquigarrow

$1.3.10 \rightarrow \text{preserves type}$

For any derivations of $\Gamma \vdash m : M, m \leadsto m'$,

$$\Gamma \vdash m' : M$$

since \leadsto implies \Rrightarrow and \Rrightarrow preserves types

1.4 Type constructors

1.4.1 Type constructors are stable

- if $\Gamma \vdash * \Rightarrow m : M$ then m is *
- if $\Gamma \vdash * \Rightarrow_* m : M$ then m is *
- if $\Gamma \vdash \Pi x : N.P \Rightarrow m : M$ then m is $\Pi x : N'.P'$ for some N', P'
- if $\Gamma \vdash \Pi x : N.P \Rightarrow_* m : M$ then m is $\Pi x : N'.P'$ for some N', P'

by induction on the respective relations

1.4.2 Type constructors definitionally unique

There is no derivation of $\Gamma \vdash * \equiv \Pi x : M.N : P$ for any Γ, M, N, P from \equiv -Def and constructor stability

1.5 Canonical forms

If $\Diamond \vdash v : P$ then

- if P is \star then v is \star or $\Pi x : M.N$
- if P is $\Pi x: M.N$ for some M, N then v is fun f. x.m for some m

By induction on the typing derivation

- Conv.
 - if P is \star then eventually, it was typed with type-in-type, or Π-F. it could not have been typed by Π-I since constructors are definitionaly unique
 - if P is $\Pi x: M.N$ then eventually, it was typed with Π -I. it could not have been typed by type-in-type, or Π -F since constructors are definitionally unique
- type-in-type, $\Diamond \vdash v : P \text{ is } \Diamond \vdash \star : \star$
- Π -F, $\Diamond \vdash v : P$ is $\Diamond \vdash \Pi x : M.N : \star$
- Π -I, $\Diamond \vdash v : P$ is $\Diamond \vdash \text{fun } f. \ x.m : \Pi x : M.N$
- no other typing rules are applicable

1.6 Progress

 $\Diamond \vdash m : M$ implies that m is a value or there exists m' such that $m \leadsto m'$.

By direct induction on the typing derivation with the help of the canonical forms lemma

Explicitly:

- m is typed by the conversion rule, then by **induction**, m is a value or there exists m' such that $m \rightsquigarrow m'$.
- m cannot be typed by the variable rule in the empty context
- m is typed by type-in-type. m is \star , a value
- m is typed by Π -F. M is $\Pi x: N.P$, a value
- m is typed by Π -I. m is fun f. x.n, a value

- m is typed by Π -E. M is p n then exist some σ, τ for $\Diamond \vdash P : \Pi x : \sigma. \tau$ and $\Diamond \vdash N : \sigma$. By **induction** (on the P branch of the derivation) P is a value or there exists P' such that $P \leadsto P'$. By **induction** (on the N branch of the derivation) N is a value or there exists N' such that $N \leadsto N'$
 - if P is a value then by **canonical forms**, P is f is f : f
 - * if N is a value then the one step reduction is $(\operatorname{fun} f:(x.\tau).x:\sigma.P')$ $N \leadsto P'[x:=N,f:=\operatorname{fun} f:(x.\tau).x:\sigma.M]$
 - * otherwise there exists N' such that $N \leadsto N'$, and the one step reduction is $(\operatorname{fun} f:(x.\tau).x:\sigma.P')\ N \leadsto (\operatorname{fun} f:(x.\tau).x:\sigma.P')\ N'$
 - otherwise, there exists P' such that $P \leadsto P'$ and the one step reduction is $P \, N \leadsto P' \, N$
- m is typed by ::, m is n :: N by induction
 - -n is a value, $n::N \leadsto n$
 - or there exists n' such that $n \leadsto n'$, $n :: N \leadsto n' :: N$

1.7 Type Soundness

For any well typed term in an empty context, no sequence of small step reductions will cause result in a computation to "get stuck". Either a final value will be reached or further reductions can be taken. This follows by iterating the progress and preservation lemmas.