Chap 5. Trees (5)

Contents

- **5.1 Introduction**
- **5.2 Binary Trees**
- **5.3 Binary Trees Traversals**
- **5.4 Additional Binary Tree Operations**
- **5.5 Threaded Binary Trees**
- 5.6 Heaps
- **5.7 Binary Search Trees**
- **5.8 Selection Trees**

5.8 Selection Trees

External storage

Internal memory

External storage

ordered sequences

5.8 Selection Trees

5.8.1 Introduction

* k ordered sequences, called runs, to be merged into a single ordered sequence.

10	9	20	6	8	9	90	17
15	20	20	15	15	11	95	18
16	38	30	25	50	16	99	20
			28				
run 1	run 2	run 3	run 4	run 5	run 6	run 7	run 8

- The merging task can be accomplished by repeatedly outputting the record with the smallest key.
- ❖ For k>2, we can reduce the number of comparisons by using the selection tree; winner trees and loser trees.

A winner tree is a complete binary tree in which each node represents the smaller of its two children.

Figure 5.32: Winner tree for k = 8, showing the first three keys in each of the eight runs

sequential allocation (complete binary tree)

Each node contains only a pointer to the record

Leaf node: the first record in the corresponding run

Runs: ordered sequences

18

20

8

Figure 5.33: Winner tree of Figure 5.32 after one record has been output and the tree restructured (nodes that were changed are shaded)

Analysis of merging runs using winner trees

- Let n be the number of records in all k runs.
- The number of levels in the tree is [log₂k+1]
- The time to restructure the tree is $O(\log_2 k)$.
- The time required to merge all n records is $O(n\log_2 k)$.
- The time required to set up the selection tree the first time is O(k).
- The total time needed to merge the k runs is $O(n\log_2 k)$.

5.8.3 Loser Trees

A selection tree in which each nonleaf node retains a pointer to the loser is called a loser tree.

Figure 5.34: Loser tree corresponding to winner tree of Figure 5.32

5.8.3 Loser Trees

- In winner tree, following the output of the overall winner, the tree is restructured by playing tournaments along the path from node 11 to node 1.
- In loser, the records with which the tournaments are to be played are readily available from the parent nodes.
 - As a result, sibling nodes along the path from 11 to I are not accessed.

11