UNICAMP EM 561 – MECÂNICA

NOME DO ALUNO:

DOS FLUIDOS II

2ª Prova - 26/06/2008 - Gabarito Consulta permitida ao livro-texto

Turmas A e Especial: Prof. Antonio C. Bannwart

Turma C:

Prof. Carlos A. Altemani

TAICO	CDI	TO	ÕEC.	
INST	L K I	('(JE.C.	

1. A duração desta prova é de 2 horas.

2. Leia a prova toda antes de tentar resolvê-la.

3. Qualquer dado que o aluno julgar necessário e que não tenha sido fornecido deve ser assumido.

4. A interpretação do texto faz parte da prova.

5. Devolver a folha de questões ao final da prova.

QUESTÕES:

1) O fabricante de uma bomba centrífuga de 37 cm de diâmetro fornece os seguintes dados para a bomba operando a 2140 rpm com água a 20 °C:

2140 rpm	Q, L/s	0	50	100	150	200	250	300
		105	104	102	100	95	85	67
	W _{eixo} , kW	100	115	135	171	202	228	249

Deseja-se instalar essa bomba para elevar 100 L/s de água entre dois reservatórios abertos para a atmosfera, cujas superfícies estão desniveladas de 20 m, através de uma tubulação de aço comercial de 200 m de comprimento. Visando uma operação com a máxima eficiência da bomba, determinar:

- a) a rotação (rpm) em que deverá operar;
- b) a altura manométrica e a potência de eixo;
- c) o diâmetro a ser empregado na tubulação.

Desprezar perdas localizadas e considerar o fator de atrito f = 0.016.

Solução:

a) A eficiência $\eta = \frac{\rho QgH}{\dot{W}_{eixo}}$ pode ser adicionada à tabela:

2140 rpm	Q, L/s	0	50	100	150	200	250	300
	H, m	105	104	102	100	95	85	67
	W _{eixo} , kW	100	115	135	171	202	228	249
	η (%)	0	44,3	74,0	85,9	92,1	91,2	79,0

Assim, por similaridade, temos:

$$\frac{Q_2}{Q_1} = \frac{N_2}{N_1}$$
 \Rightarrow $N_2 = 2140 \times \frac{100}{200} = 1070$ rpm

b) Por similaridade:

$$\frac{H_2}{H_1} = \frac{N_2^2}{N_1^2} \implies H_2 = 95 \times \left(\frac{1}{2}\right)^2 = 23,75 \text{ m}$$

$$\frac{\dot{W}_2}{\dot{W}_1} = \frac{N_2^3}{N_1^3} \implies \dot{W}_2 = 202 \times \left(\frac{1}{2}\right)^3 = 25.3 \text{ kW}$$

c) A carga manométrica requerida pela tubulação é dada por:

$$H_2 = 20 + 0.016 \times \frac{200}{D} \times \frac{1}{2 \times 9.81} \left(\frac{4 \times 0.1}{\pi D^2} \right)^2 = 23.75 \text{ m} \implies D = 23.4 \text{ cm}$$

- 2) (Valor: y,y pontos) Deseja-se extrair água a 20 °C de um poço situado a 500 m de profundidade, utilizando um tubo vertical de aço de 200 mm de diâmetro interno. Duas bombas idênticas às do problema 1 estão disponíveis e serão operadas a 3450 rpm. Desprezando perdas localizadas e assumindo f = 0,02, determinar:
 - a) o arranjo a ser utilizado (justificar sua resposta);
 - b) a vazão de água extraída.

Solução:

a) A carga requerida pela tubulação é dada por:

$$H = 500 + 0.02 \times \frac{500}{0.2} \times \frac{1}{2 \times 9.81} \left(\frac{4Q}{\pi \times 0.2^2} \right)^2 = 500 + 2582Q^2$$

Operando a 3450 rpm, uma bomba desenvolveria $H_{shutoff} = 105 \times \left(\frac{3450}{2140}\right)^2 = 272.9 < 500 \text{ m. Assim},$ uma bomba ou duas em paralelo serão insuficientes. A única opção é utilizar duas bombas em série.

b) A curva aproximada de uma bomba a 2140 rpm é:

$$H_{2140} = 105 - CQ^2$$

Determinando-se C no ponto de melhor eficiência tem-se: $C = \frac{105-95}{0.2^2} = 250$. Para 2 bombas em série a 3450 rpm a curva será:

$$H = 2(105 - 250Q^2)\left(\frac{3450}{2140}\right)^2 = 545.8 - 1300Q^2$$

Então, a vazão de operação será:
$$Q = \sqrt{\frac{545,8 - 500}{2582 + 1300}} = 108,6 \text{ L/s}$$

- 3) A seção a montante de um bocal convergente-divergente é conectada a um grande reservató de ar a 324 K e 860 kPa (abs.), e sua seção a jusante é conectada a um tubo liso com 0,07 m diâmetro interno. O escoamento deve ocorrer sem choque e de modo que na entrada do tub número de Mach seja 2,5 e na saída ele seja 1,5. Sabendo que o conjunto todo é termicame isolado, determine:
 - a) a pressão na saída do tubo;
 - b) o comprimento do tubo;
 - c) a variação da entropia específica do escoamento.

Avalie o fator de atrito considerando as condições do escoamento na seção de saída do tubo.

Solução:

a) A pressão e a temperatura na entrada do tubo (ponto 1) serão:

$$\frac{860}{p_1} = \left(1 + \frac{1.4 - 1}{2} \cdot 2.5^2\right)^{1.4/1.4 - 1} \implies p_1 = 50.33 \text{ kPa}$$

$$\frac{324}{T_1} = 1 + \frac{1.4 - 1}{2} 2.5^2 \implies T_1 = 144 \text{ K}$$

A temperatura na saída do tubo (ponto 2) será:

$$\frac{324}{T_2} = 1 + \frac{1,4-1}{2}1,5^2 \implies T_2 = 223,4 \text{ K}$$

A velocidade do som e a velocidade do ar na entrada do tubo serão:

$$c_1 = \sqrt{1.4 \times 287 \times 144} = \implies c_1 = 240.5 \text{ m/s}$$

$$V_1 = 2.5 \times 240.5 = 601.3 \text{ m/s}$$

A massa específica do ar na entrada do tubo será: $\rho_1 = \frac{50330}{287 \times 144} = 1,218 \text{ kg/m}^3$

A velocidade do som e a velocidade do fluido na saída do tubo serão:

$$c_2 = \sqrt{1.4 \times 287 \times 223.4} = 299.6 \text{ m/s}$$

$$V_2 = 1.5 \times c_2 = 449.4 \text{ m/s}$$

Para conservação da massa, a massa específica na saída do tubo será:

$$\rho_2 = 1.218 \times \frac{601.3}{449.4} = 1,630 \text{ kg/m}^3$$

Logo:
$$p_2 = 1,630 \times 287 \times 223,4 = 104,5 \text{ kPa}$$