

# Neuromorphic Data Augmentation for Training Spiking Neural Networks

Yuhang Li, Youngeun Kim, Hyoungseob Park, Tarmar Geller, Priyadarshini Panda Yale University, USA > Observation



### Introduction

#### Event-based Data

- Streaming data with only 0 or 1 in its form.
- Each pixel is operated independently and asynchronously, reporting new brightness when it changes, and staying silent otherwise.



### Spiking Neural Networks

- o SNNs inherently can model streaming data with time steps.
- The spiking neurons constantly take input and output spikes through time
- Moreover, the spike are binary, like events.
- However, most existing works focus on the model improvement, they ignores the dataset issues.
- Problems of Event-based Datasets
- Generating Event-based data is expensive.
- For example, DVS CIFAR-10 contains 10k examples.
- Therefore, SNNs easily get over-parameterized on Eventbased dataset
- ResNet-19 / VGG 11 on DVS-CIFAR10 training curve





## Neuromorphic Data Augmentation

Since generating Event-based data is expensive, requiring special camera and human expert.

Can we directly augment the off-the-shelf event-based data to avoid converting augmented RGB data to events?



>NDA study the transform-invariant property:

 $f(H_{\alpha} [\log V(t) - \log V(t - \Delta t)]) \approx H_{\alpha} [\log f(V(t)) - \log f(V(t - \Delta t))],$ 

| Aug.  | Combination                   | Input-output                                                              | Pros                                                              | Cons                                                |  |  |
|-------|-------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|--|--|
| $f_P$ | $g\circ f_P(oldsymbol{x})$    | $\mathbb{C}^{3\times w\times h}\to\mathbb{B}^{t\times p\times w\times h}$ | i. Effective augmentation                                         | i. Impractical to record<br>huge amount of DVS data |  |  |
| $f_P$ | $f_P \circ g(m{x})$           | $\mathbb{C}^{3\times w\times h}\to\mathbb{C}^{t\times p\times w\times h}$ | i. Practical                                                      | i. Not effective, ii. Creates continuous data       |  |  |
| $f_G$ | $g\circ f_G(oldsymbol{x})$    | $\mathbb{C}^{3\times w\times h}\to\mathbb{B}^{t\times p\times w\times h}$ | i. Effective augmentation                                         | i. Impractical to record<br>huge amount of DVS data |  |  |
| $f_G$ | $f_G \circ g(\boldsymbol{x})$ | $\mathbb{C}^{3\times w\times h}\to\mathbb{B}^{t\times p\times w\times h}$ | i. Practical and effective, ii. Approximates $g \circ f_G({m x})$ | None                                                |  |  |

➤ NDA selects geometrical augmentations:

∘ Flip, Roll, Rotate, Cutout, Shear, CutMix

## Experiments

### Comparison to Existing Literature

NDA improves 5—15% accuracy.

**Table 4:** Accuracy comparison with different methods on CIFAR10-DVS, N-Caltech 101, N-Cars, we use tdBN in our model. Acc. is referred as the top-1 accuracy.

| Method                      | Model                    | CIFAR10-DVS |      | N Caltech-101 |             | N-Cars |      |
|-----------------------------|--------------------------|-------------|------|---------------|-------------|--------|------|
| viculou                     | Wiodel                   | T Step      | Acc. | T Step        | Acc.        | T Step | Acc  |
| HOTS [35]                   | N/A                      | N/A         | 27.1 | N/A           | 21.0        | 10     | 54.0 |
| Gabor-SNN [57]              | 2-layer CNN              | N/A         | 28.4 | N/A           | 28.4        | _      | _    |
| HATS [57]                   | N/A                      | N/A         | 52.4 | N/A           | 64.2        | 10     | 81.0 |
| DART [48]                   | N/A                      | N/A         | 65.8 | N/A           | 66.8        | -      | _    |
| CarSNN [60]                 | 4-layer CNN              | _           | _    | -             | _           | 10     | 77.  |
| CarSNN [60]                 | 4-layer CNN <sup>2</sup> | -           | -    | -             | -           | 10     | 86.  |
| BNTT [32]                   | 6-layer CNN              | 20          | 63.2 | -             | -           | _      | _    |
| Rollout [34]                | VGG-16                   | 48          | 66.5 | -             | -           | -      |      |
| SALT [33]                   | VGG11                    | 20          | 67.1 | 20            | 55.0        | -      |      |
| LIAF-Net [65]               | VGG-like                 | 10          | 70.4 | _             | _           | _      | _    |
| tdBN [69]                   | $ResNet-19^1$            | 10          | 67.8 | i <b>-</b>    |             | -      | -    |
| PLIF [17]                   | $VGG-11^2$               | 20          | 74.8 | -             | -           | -      | -    |
| tdBN (w/o NDA) <sup>3</sup> | ResNet-19 <sup>1</sup>   | 10          | 67.9 | 10            | 62.8        | 10     | 82.  |
| tdBN (w/. NDA)              | $ResNet-19^1$            | 10          | 78.0 | 10            | 78.6        | 10     | 87.  |
| tdBN (w/o NDA) <sup>3</sup> | VGG-11                   | 10          | 76.2 | 10            | 67.2        | 10     | 84.  |
| tdBN (w/. NDA)              | VGG-11                   | 10          | 79.6 | 10            | <b>78.2</b> | 10     | 90.  |
| $tdBN (w/o NDA)^3$          | $VGG-11^2$               | 10          | 76.3 | 10            | 72.9        | 10     | 87.  |
| tdBN (w/. NDA)              | $VGG-11^2$               | 10          | 81.7 | 10            | 83.7        | 10     | 91.  |

- >Model sharpness comparison
- NDA improves SNN's robustness to noise imposed on the weight parameters.
- o NDA reduce Hessian spectrum.



| Epoch |             | w/o NDA     | A     | 1           | w/. NDA     |      |
|-------|-------------|-------------|-------|-------------|-------------|------|
| Бросп | $\lambda_1$ | $\lambda_5$ | Tr    | $\lambda_1$ | $\lambda_5$ | Tr   |
| 100   | 910.7       | 433.4       | 6277  | 424.3       | 73.87       | 1335 |
| 200   | 3375        | 1416        | 21342 | 516.4       | 155.3       | 1868 |
| 300   | 3404        | 1686        | 20501 | 639.7       | 187.5       | 2323 |

>NDA slightly increases the fire rate (10%).









