Lab 9: Clustering

Practical exercises

1. Consider the following training data without labels:

and the initialization centroids: $\mu_1 = [2 \ 0]^T$ and $\mu_2 = [2 \ 1]^T$

	У1	У2
\mathbf{X}_1	0	0
\mathbf{X}_2	1	0
X 3	0	2
\mathbf{X}_4	2	2

- a) Apply the k-means until convergence
- b) Plot the data points and draw the clusters
- c) Compute the silhouette of observation \mathbf{x}_1 , cluster \mathbf{c}_1 and overall solution
- d) Knowing \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_4 to be annotated as positive and \mathbf{x}_3 as negative (ground truth). Compute the error classification rate (ECR) of k-means against the given ground truth.
- 2. Consider the following data:

	У1	У2	Уз
\mathbf{X}_1	1	0	0
X 2	8	8	4
X 3	3	3	0
\mathbf{X}_4	0	0	1
X 5	0	1	0
X 6	3	2	1

- and let the initial k centroids be the first k data points
- a) Apply k-means with k = 2 and k = 3
- b) Which *k* provides a better clustering in terms of cohesion (sum of intra-cluster distance)?
- c) Which k provides a better clustering in terms of separation (mean inter-cluster centroid distance)?
- 3. Considering the following data points:

$$\{x_1 = (4), x_2 = (0), x_3 = (1)\}$$

and a mixture of two normal distributions with the following initialization of likelihoods:

$$P(x | k = 1) = N(u_1 = 1, \sigma_1 = 1)$$

$$P(x | k = 2) = N(u_2 = 0, \sigma_2 = 1)$$

and priors: p(k = 1) = 0.5 and p(k = 2) = 0.5

Plot the clusters after one iteration of the EM algorithm.

4. Consider the following Boolean data:

	У1	У2	Уз	У4
X 1	1	0	0	0
\mathbf{x}_2	0	1	1	1
\mathbf{X}_3	0	1	0	1
\mathbf{X}_4	0	0	1	1
X 5	1	1	0	0

Assuming the presence of 3 clusters, variables to be conditionally independent, and the following priors:

	$p(\mathbf{x}_1 = 1 \mid c = k)$	$p(\mathbf{x}_2=1 \mid c=k)$	$p(\mathbf{x}_3 = 1 \mid c = k)$	$p(\mathbf{x}_4 = 1 \mid c = k)$
c=1	0.8	0.5	0.1	0.1
c=2	0.1	0.5	0.4	0.8
<i>c</i> =3	0.1	0.1	0.9	0.2

- a) Perform one expectation maximization iteration.
- b) Verify that after one iteration the probability of the data increased.

5. Consider the following data points:

	У1	У2
X 1	2	2
X 2	0	2
\mathbf{X}_3	0	0

and a mixture of two multivariate normal distributions with the following likelihoods' initialization:

$$P(\mathbf{x} \mid k = 1) = N(u_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$

$$P(\mathbf{x} \mid k=2) = N(u_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$

and priors: p(k = 1) = 0.6 and p(k = 2) = 0.4

- a) Perform one expectation maximization iteration
- b) How much the fitting probability increased?
- c) Sketch the points and clusters
- **6.** Consider the following dataset (Euclidean distance space):
 - a) Assuming observations \mathbf{x}_1 , \mathbf{x}_4 and \mathbf{x}_7 to be the initial seeds, identify the centroids after the first epoch using:
 - i. *k*-means
 - ii. k-median
 - b) When is median preferred over mean?

	У1	У2
X 1	2	10
\mathbf{X}_2	2	5
X 3	8	4
X 4	5	8
X 5	7	5
\mathbf{x}_6	6	4
X 7	1	2
X 8	4	9

7. Consider the following four scenarios of plotted data sets:

- a) For each scenario, justify whether *k*-means is suitable
- b) Assuming you apply EM clustering to model all scenarios what would the means and covariances look like? For simplicity, assume all covariance matrices are diagonal.
- c) When moving from numeric to ordinal data spaces, is Hamming distance proper to handle ordinal data with high cardinality?

Programming quest

- **8.** Using the *iris* dataset (without the class variable)
 - a) Apply k-means with $k \in \{2,3,4,5,6,7,8,9,10\}$. Choose the best k using the elbow method by plotting the SSE (inertia) per k Resource: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
 - b) After selecting two informative features OR extracting two principal components PCA(n_components=2).fit(X), visualize the produced clusters Resource: https://scikit-learn.org/stable/modules/clustering.html