EDA Case Study

Credit Application & Previous Application Analysis

By: Mrunal Paunikar

Problem Statement

- High rejection rates in credit applications.
- Unclear drivers for defaults and refusals.
- Goal: Identify key patterns and provide actionable insights.

Steps for Analysis

- 1. Data Cleaning: Handle missing & sentinel values.
- 2. Univariate Analysis: Histograms, boxplots.
- 3. Bivariate Analysis: Scatterplots, jointplots.
- 4. Correlation Analysis: Heatmaps, VIF.
- 5. Previous Applications: Aggregate & analyze.
- 6. Modeling & Interpretability.

Visualization Techniques

- Univariate: Histogram, KDE, boxplot.
- - Bivariate: Scatterplot, regression, jointplot.
- - Multivariate: Heatmap, pairplot.
- Target Analysis: Boxplot AMT_CREDIT by TARGET.
- Missing Data: Matrix/bar plots.

Scatterplot: AMT_CREDIT vs AMT_INCOME_TOTAL
Shows a positive relationship: higher income tends to support higher credit amounts.

Histogram: AMT_CREDIT distribution
Credit amounts are right-skewed; most applicants request lower credit, with few very high outliers.

Boxplot: AMT_CREDIT by TARGET
Rejected (1) vs Accepted (0) applicants show overlapping credit levels but rejected tend to cluster at higher amounts.

For Understand Purpose

AMT_CREDIT by TARGET (Clear Zoomed View)

Boxplot: AMT_CREDIT by TARGET

Rejected (1) vs Accepted (0) applicants show overlapping credit levels but rejected tend to cluster at higher amou

Jointplot: AMT_CREDIT vs AMT_ANNUITY
Shows proportionality: higher credit leads to higher annuities, with dense clusters at low to mid levels.

Correlation Heatmap

Highlights strong collinearity between income, credit, annuity, and goods price. Useful for feature selection.

Model Explainability (SHAP)

Heatmap Summary Plot

Explains feature impact on model predictions. EXT_SOURCE variables and AMT_GOODS_PRICE are top predictors. Blue = low feature value, Pink = high feature value.

Root Cause & Findings

- High loan-to-income ratio drives rejection.
- Past refusals increase rejection likelihood.
- Missing demographic info linked to defaults.
- Employment instability increases risk.
- DAYS_EMPLOYED extreme values are sentinel placeholders.

Assumptions

- TARGET = 1 → rejected/defaulted, 0 → accepted.
- Sentinel values represent missing entries.
- Previous status values are accurate.
- Sampling ~5k rows is representative.

Solutions & Precautions

- Engineer features: credit_to_income, annuity_to_income.
- Cap extreme outliers.
- Encode categorical variables properly.
- Apply rejection rules for high-risk ratios.
- Monitor drift and retrain models.
- Ensure explainability (SHAP/feature importances).

Conclusion

- Credit and income strongly impact rejection.
- Past refusals and unstable employment predict risk.
- Combine rules + ML models for fair decisions.
- Clean, aggregated data supports reliable modeling.
- Recommend ongoing monitoring & retraining.