Step-1

Consider the following Hadamard matrix *H*:

It is known that H has orthogonal rows and the box is hypercube. Objective is to find $\det H$ which is same as the volume of hypercube in \mathbb{R}^4 .

Step-2

For the determinant of H, use the cofactor expansion along with the first row and get,

Now again use the cofactor expansion along with the first row for all these four determinants:

$$\det H = \begin{vmatrix} 1 & -1 & -1 \\ -1 & -1 & 1 \\ -1 & 1 & -1 \end{vmatrix} \begin{vmatrix} 1 & -1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \end{vmatrix} + \begin{vmatrix} 1 & -1 & -1 \\ 1 & -1 & 1 \\ -1 & -1 & 1 \end{vmatrix} - \begin{vmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & -1 & -1 \\ -1 & -1 \end{vmatrix} - \begin{vmatrix} 1 & -1 & -1 \\ -1 & 1 \end{vmatrix} - \begin{vmatrix} 1 &$$

And then

$$\det H = (0+2+2)-(0-2-2)+(2+2+0)-(-2-2-0)$$
= 4+4+4+4
= 16

Step-3

Note that in \mathbb{R}^4 , the volume of the hypercube is $2^4 = 16$. Since det H = 16, therefore the determinant of Hadamard matrix will be same as the volume of the hypercube in \mathbb{R}^4 .