TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH

KHOA KHOA HỌC ỨNG DỤNG BỘ MÔN TOÁN

ĐÈ THI CUỐI KỲ HỌC KỲ I NĂM HỌC 2018 - 2019 Môn: Đại số tuyến tính & Cấu trúc đại số

Mã môn học: MATH143001

Đề thi có **02** trang. Thời gian: 90 phút.

Được phép sử dụng tài liệu giấy.

Được sử dụng kết quả tính toán bằng máy tính bỏ túi.

Câu 1. (2.0 điểm) Ký hiệu $M_n(\mathbb{R})$ là tập tất cả các ma trận vuông cấp n với hệ số thực $(n \ge 2)$ và $GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) / \det A \ne 0\}$, $SL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) / \det A = 1\}$.

- a. Chứng minh rằng phép nhân hai ma trận là một phép toán hai ngôi trên $GL_n(\mathbb{R})$
- b. Chứng tỏ rằng, $(GL_n(\mathbb{R}), \cdot)$ là một nhóm không giao hoán, với phép toán nhân hai ma trận.
- c. Chứng minh rằng, $(SL_n(\mathbb{R}),\cdot) \leq (GL_n(\mathbb{R}),\cdot)$.

Câu 2. (4.0 điểm) Cho các ma trận
$$A = \begin{pmatrix} 5 & -3 & 0 \\ -3 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \text{với } \left(x_i \in \mathbb{R}, i = \overline{1;3} \right).$$

- a) Viết biểu thức của dạng toàn phương $f(x_1, x_2, x_3) = X^T A X$, sau đó đưa dạng toàn phương trên về dạng chính tắc bằng phương pháp biến đổi trực giao.
- b) Sử dụng kết quả câu a) hãy đưa dạng toàn phương $F(x_1, x_2, x_3) = X^T A^{2018} X$ về dạng chính tắc.
- c) Tính định thức của ma trận A^{2018} .
- d) Tìm một cơ sở và số chiều của không gian RowA.

Câu 3. (4.0 điểm) Trên không gian $P_2[x] = \{a_0 + a_1x + a_2x^2 / a_i \in \mathbb{R}, i = \overline{0;2}\}$, cho các véc tơ $u_1 = 1 + x$, $u_2 = 3 - x + 2x^2$, $u_3 = -1 + 3x + x^2$, $u_4 = 2 + 3x + 4x^2$.

- a) Chứng minh rằng, tập $F = \{u_1, u_2, u_3\}$ là một cơ sở của $P_2[x]$. Tìm tọa độ của véc tơ u_4 trong cơ sở F.
- b) Hỏi $P_1[x] = \{b_0 + b_1 x / b_0; b_1 \in \mathbb{R}\}$ có là một không gian véc tơ con của $P_2[x]$ không? Vì sao?
- c) Xét ánh xạ tuyến tính $\varphi: P_1[x] \to \mathbb{R}^2$ được xác định bởi: với $u = a + bx \in P_1[x]$, thì $\varphi(u) = \begin{bmatrix} a+3b \\ 2a-b \end{bmatrix}$. Hãy xác định $Ker\varphi$? Tìm một véc tơ $v \in P_1[x]$ sao cho $[\varphi(v)]_B = {7 \choose 3}$, biết rằng $B = \{b_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, b_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}\}$ là một cơ sở của không gian véc tơ \mathbb{R}^2 .

------Hết------

Ghi chú: Cán bộ coi thi không được giải thích đề thi.

Chuẩn đầu ra của học phần (về kiến thức)	Nội dung kiểm tra
[CĐR G1.1], [CĐR G1.2], [CĐR G1.3], [CĐR G2.4]	Câu 1
[CĐR G1.1], [CĐR G1.2], [CĐR G2.4].	Câu 2
[CĐR G1.2], [CĐR G1.3], [CĐR G2.4].	Câu 3

Ngày 12 tháng 12 năm 2018

Thông qua bộ môn

Số hiệu: BM1/QT-PĐBCL-RĐTV Trang ²/2