

Этикетка

КСНЛ.431279.005 ЭТ

Микросхема 1564ЛП15ТЭП

Микросхема интегральная 1564ЛП15ТЭП

Функциональное назначение:

Шесть повторителей с раздельными элементами управления входами по $2- \mathrm{m}\,$ повторителям с $3- \mathrm{m}\,$ состояниями на выходе и ТТЛ - входом

Таблица назначения выводов

№	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
		Вход		404	_
1	1EZ	управления	9	1Q3	Выход
2	1D0	Вход	10	1D3	Вход
3	1Q0	Выход	11	2Q0	Выход
4	1D1	Вход	12	2D0	Вход
5	1Q1	Выход	13	2Q1	Выход
6	1D2	Вход	14	2D1	Вход
					Вход
7	1Q2	Выход	15	2EZ	управления
8	0V	Общий	16	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = 25+10 °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма		Примечание
	обозначение	не менее	не более	
1	2	3	4	
1. Максимальное выходное напряжение низкого уровня, В, при:				
U_{CC} =4,5 B, U_{IL} =0,8 B, I_{O} = 20 мкА	$U_{OL\;max}$	-	0,10	
$U_{CC}=5,5 \text{ B}, U_{IL}=0,8 \text{ B}, I_{O}=20 \text{ MKA}$		-	0,10	
при:				
$U_{CC}=4,5 \text{ B}, U_{IL}=0,8 \text{ B}, I_{O}=6,0 \text{ mA}$		-	0,26	
$U_{CC}=5.5 \text{ B}, U_{IL}=0.8 \text{ B}, I_{O}=7.8 \text{ mA}$		-	0,26	
2. Минимальное выходное напряжение высокого уровня, В, при:				
U_{CC} =4,5 B, U_{IL} =0,8 B, U_{IH} =2,0 B, I_{O} = 20 мкА	U_{OHmin}	4,4	-	
U_{CC} =5,5 B, U_{IL} =0,8 B, U_{IH} =2,0 B, I_{O} = 20 MKA		5,4	-	
при:				
U_{CC} =4,5 B, U_{IL} =0,8 B, U_{IH} =2,0 B, I_{O} =6,0 MA		3,98	-	
U_{CC} =5,5 B, U_{IL} =0,8 B, U_{IH} =2,0 B, I_{O} = 7,8 mA		4,98	-	
3. Входной ток низкого уровня, мкА, при:				
$U_{CC} = 5.5 \text{ B}, U_{IL} = 0 \text{ B}$	I_{IL}	-	/-0,1/	
4. Входной ток высокого уровня, мкА, при:	112		,	
$U_{CC} = 5.5 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1	
5.Выходной ток в состоянии «Выключено», мкА, при:				$U_0 = 0$,
$U_{CC} = 5.5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{OZ}	=	0,5	$U_0 = U_{CC}$
6. Ток потребления, мкА, при:				
$U_{CC} = 5.5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}, I_{O} = 0$	I_{CC}	-	4,0	
при:				Для одного
$U_{CC} = 5.5 \text{ B}, U_{IL} = 0.4 \text{ B}, U_{IH} = 2.4 \text{B}, I_0 = 0$		-	500	входа
7. Динамический ток потребления, мА, при:				
$U_{CC} = 5.5 \text{ B}, f = 10 \text{ M}\Gamma \text{II}, C_L = 0, U_{IL} = 0, U_{IH} = U_{CC}$	I_{OCC}	-	7,0	

8. Время задержки распространения сигнала, нс, при: $U_{CC} = 4,5 \; B, \; C_L = 50 \; п\Phi$ $U_{IL} = 0 \; B, \; U_{IH} = 3,0 \; B$	$t_{ m PHL}$, $t_{ m PLH}$	-	36
$U_{CC} = 4,5 \text{ B}, C_L = 150 \text{ m}\Phi$ $U_{IL} = 0 \text{ B}, U_{IH} = 3,0 \text{ B}$		-	45
U_{CC} = 4,5 B, C_L = 50 пФ, R =1 кОм U_{IL} = 0 B, U_{IH} = 3,0 B	$t_{ m PHZ,} \ t_{ m PLZ}$	-	44
U_{CC} = 4,5 B, C_L = 50 пФ, R = 1 кОм U_{IL} = 0 B, U_{IH} = 3,0 B	t _{PZH,} t _{PZL}	-	48
U_{CC} = 4,5 B, C_L = 150 пФ, R = 1 кОм U_{IL} = 0 B, U_{IH} = 3,0 B		-	53
9. Время перехода при включении и выключении, нс, при: U_{CC} = 4,5 B, U_{IL} = 0 B, U_{IH} =3,0 B	t _{THL,} t _{TLH}	-	12
10. Входная емкость, п Φ , при: $U_{CC} = 0$ В	C_{I}	-	10

 t_{PHL}, t_{PLH} - время задержки распространения сигнала при включении и выключении, нс;

t_{РZH,} t_{РZL} - время задержки распространения сигнала при переходе из третьего состояния в состояние высокого и низкого уровня;

t_{PHZ}, t_{PLZ} - время задержки распространения сигнала при переходе из состояния высокого и низкого уровня в третье состояние.

1.2 Содержание драгоценных металлов в 1000 шт. изделий:

золото г. серебро г.

в том числе:

золото г/мм на 16 выводах длиной мм.

Цветных металлов не содержится

2 НАЛЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-25ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛП15ТЭП соответствуют техническим условиям АЕЯР.431200.424-25ТУ и признаны годными для эксплуатации.

Приняты по от от (извещение, акт и др.)	(дата)	
(nobelilenie, uni n'Ap.)	(Auru)	
Место для штампа ОТК		Место для штампа ПЗ
Место для штампа « Перепроверка пр	ооизведена	»
-		(дага)
Приняты по (извещение, акт и др.)	от	
Место для штампа ОТК		Место для штампа ПЗ
Цена договорная		

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ, АЕЯР.431200.424-25ТУ.