SOLUCIONES PARA LOS EJERCICIOS DEL TEMA 2 ESPECIFICACIÓN Y DOCUMENTACIÓN DE PROGRAMAS

ÍNDICE

a) l	Fórmulas, predicados y variables libres y ligadas	
1.	. par	3
2.	1	
3.	potencia	. 3
4.	potdos	3
5.	todosmayores	3
6.	algunpositivo	3
7.	. todospositivos	3
8.	digitos	3
9.	numpares	3
10	0. todospares	4
1	1. denotatodospares	4
12	2. vecessection	4
13	3. veces	4
14	4. todosdistintos	4
15	5. masvecesque	4
16	6. mismonumveces	5
1′	7. almenosdosrep	5
18	8. justodosrep	5
19	9. todosdosvecesomas	5
20	0. todosjustodosveces	5
2	1. primo	6
22	2. sumaconsecutivos	6
23	3. sumaintervalo	6
24	4. sumaintervalo2	6
25	5. sumapospares	. 6
26	6. sumapares	. 6
2	7. sumamayores	6
28	8. productoprimos	6
29	9. sumacontiguos	7
30	0. aparece	7
3	1. aparecenambos	. 7
32	2. mayoresdistintos	. 7
33	3. dostresmult	. 7
34	4. multposicion	8
35	5. posparespositivos	8
36	6. mayormenor	8
3	7. unnegninguncero	8
38	1 1	
39	9. denotaaparece	8
4(
4	1	
42	1	
43		
44	4. maximoseccion	9

45.	numprimosseccion	. 9
46.	ultimosiguales	. 9
47.	distintoshastaposicion	10
48.	apareceizquierda	10
49.	apareceizquierda2	10
50.	rotacionderecha	10
51.	rotacionizquierda	10
52.	disjuntos	11
53.	maspositivos	11
54.	permutacion	11
55.	palindromo	11
56.	almenosunpardif	12
57.	justounpardif	12
58.	numposmismovalor	12
59.	mismasvecesvectores	12
60.	numero	12
61.	numcapicua	12
62.	contieneveces	13
63.	subvectorseccion	13
64.	subvector	13
65.	almenosparcomun	13
66.	justoparcomun	14
67.	almenosparcomunpos	14
68.	justoparcomunpos	14
69.	primosconsec	
70.	indicemax	14
71.	indicemin	14
72.	creciente	14
73.	inverso	14
74.	norep	15
75.	nosecsumanula	
76.	noparcerosconsec	15
77.	todosdosveces	15
78.	tresdisjuntos	15
79.	seleccionpositivos	
80.	particion	
81.	primerosprimosorden	
82.	maximominimounavez	

a) Fórmulas, predicados y variables libres y ligadas

1. par

 $par(x) \equiv x \mod 2 = 0$ Variables libres: x Var

Variables ligadas: ---

2. impar

(i) $impar(x) \equiv \neg par(x)$

Variables libres: x Varia

Variables ligadas: ---

(ii) $impar(x) \equiv x \mod 2 \neq 0$

Variables libres: x Variables ligadas: ---

3. potencia

potencia(x, w) = $\exists k (k \ge 0 \land x = w^k)$

Variables libres: x, w Variables ligadas: k

4. potdos

(i) $potdos(x) \equiv potencia(x, 2)$

Variables libres: x Variables ligadas: ---

(ii) $potdos(x) \equiv \exists k(k \ge 0 \land x = 2^k)$

Variables libres: x Variables ligadas: k

5. todosmayores

todosmayores $(x, A(1..n)) \equiv \forall k (1 \le k \le n \rightarrow A(k) > x)$ Variables libres: x, A(1..n) Variables ligadas: k

6. algunpositivo

algunpositivo(A(1..n)) $\equiv \exists k (1 \le k \le n \land A(k) > 0)$ Variables libres: A(1..n) Variables ligadas: k

7. todospositivos

(i) $todospositivos(A(1..n)) \equiv todosmayores(0, A(1..n))$

Variables libres: A(1..n) Variables ligadas: ---

(ii) todospositivos $(A(1..n)) \equiv \forall k (1 \le k \le n \rightarrow A(k) > 0)$ Variables libres: A(1..n) Variables ligadas: k

8. digitos

 $digitos(A(1..n)) \equiv \forall k(1 \le k \le n \to 0 \le A(k) \le 9)$ Variables libres: A(1,n) Variables 1

Variables libres: A(1..n) Variables ligadas: k

También es posible escribir $A(k) \ge 0 \land A(k) \le 9$ en vez de $0 \le A(k) \le 9$

9. numpares

numpares $(x, A(1..n)) \equiv Nk(1 \le k \le n \land par(A(k))) = x$ Variables libres: x, A(1..n) Variables ligadas: k

10. todospares

- (i) $todospares(A(1..n)) \equiv numpares(n, A(1..n))$ Variables libres: A(1..n) Variables ligadas: ---
- (ii) todospares(A(1..n)) $\equiv \forall k (1 \le k \le n \rightarrow par(A(k)))$ Variables libres: A(1..n) Variables ligadas: k

11. denotatodospares

- (i) denotatedospares(p, A(1..n)) \equiv p \leftrightarrow todospares(A(1..n)) Variables libres: p, A(1..n) Variables ligadas: ---
- (ii) denotatodospares(p, A(1..n)) \equiv p $\leftrightarrow \forall k (1 \le k \le n \rightarrow par(A(k)))$ Variables libres: p, A(1..n) Variables ligadas: k

12. vecesseccion

```
vecesseccion(pos1, pos2, x, v, A(1..n)) \equiv 1 \le pos1 \le n + 1 \land 0 \le pos2 \le n \land Nk(pos1 \le k \le pos2 \land A(k) = x) = v Variables libres: pos1, pos2, x, v, A(1..n) Variables ligadas: k
```

13. veces

- (i) $veces(x, v, A(1..n)) \equiv vecesseccion(1, n, x, v, A(1..n))$ Variables libres: x, v, A(1..n) Variables ligadas: ---
- (ii) $\operatorname{veces}(x, v, A(1..n)) \equiv \operatorname{Nk}(1 \le k \le n \land A(k) = x) = v$ Variables libres: x, v, A(1..n) Variables ligadas: k

14. todosdistintos

- (i) todosdistintos(pos1, pos2, A(1..n)) \equiv $1 \le pos1 \le n + 1 \land 0 \le pos2 \le n \land$ $\forall k(pos1 \le k \le pos2 \rightarrow vecesseccion(pos1, pos2, A(k), 1, A(1..n)))$ Variables libres: pos1, pos2, A(1..n) Variables ligadas: k
- (ii) todosdistintos(pos1, pos2, A(1..n)) \equiv $1 \le pos1 \le n + 1 \land 0 \le pos2 \le n \land$ $\forall \mathbf{k}(pos1 \le k \le pos2 \rightarrow \forall \mathbf{j}(pos1 \le j \le pos2 \land j \ne k \rightarrow A(j) \ne A(k)))$ Variables libres: A(1..n) Variables ligadas: k, j

En esta segunda versión cada \forall ha de llevar necesariamente una variable distinta (por ejemplo k y j) porque una está anidada dentro de la otra.

15. masvecesque

```
masvecesque(x, y, A(1..n)) =

= N_{\mathbf{k}}(1 \le k \le n \land A(k) = x) > N_{\mathbf{j}}(1 \le j \le n \land A(j) = y)

Variables libres: x, y, A(1..n) Variables ligadas: k, j
```

En este caso como las dos apariciones de la función N son independientes, es decir, no están anidadas, se podría utilizar la misma letra (por ejemplo k) para las dos N's:

```
masvecesque(x, y, A(1..n)) =

\equiv N_{\mathbf{k}}(1 \le k \le n \land A(k) = x) > N_{\mathbf{k}}(1 \le k \le n \land A(k) = y)

Variables libres: x, y, A(1..n) Variables ligadas: k
```

16. mismonumveces

```
\begin{array}{l} \text{mismonumveces}(x,\,y,\,A(1..n)) \equiv \\ \equiv x \neq y \land N_{\textbf{k}}^{\textbf{k}}(1 \leq k \leq n \land A(k) = x) = N_{\textbf{j}}^{\textbf{j}}(1 \leq j \leq n \land A(j) = y) \\ \text{Variables libres: } x,\,y,\,A(1..n) & \text{Variables ligadas: k, j} \end{array}
```

También en este caso como las dos apariciones de la función N son independientes, es decir, no están anidadas, se podría utilizar la misma letra (por ejemplo k) para las dos N's:

```
mismonumveces(x, y, A(1..n)) \equiv

\equiv N_{\mathbf{k}}(1 \le k \le n \land A(k) = x) = N_{\mathbf{k}}(1 \le k \le n \land A(k) = y)

Variables libres: x, y, A(1..n) Variables ligadas: k
```

17. almenosdosrep

```
almenosdosrep(A(1..n)) \equiv

\equiv \exists \frac{k}{(1 \le k \le n \land \exists j(1 \le j \le n \land k \ne j \land A(j) = A(k)))}

Variables libres: A(1..n) Variables ligadas: k, j
```

Cada ∃ ha de llevar necesariamente una variable distinta (por ejemplo k y j) porque una está anidada dentro de la otra.

18. justodosrep

```
justodosrep(A(1..n)) ≡

\equiv N_{\mathbf{k}}(1 \le k \le n \land \exists_{\mathbf{j}}(1 \le j \le n \land k \ne j \land A(j) = A(k))) = 2

Variables libres: A(1..n) Variables ligadas: k, j
```

En este caso $N y \exists$ han de llevar necesariamente una variable distinta (por ejemplo k y j) porque una está anidada dentro de la otra.

19. todosdosvecesomas

```
todosdosvecesomas(A(1..n)) \equiv \forall \mathbf{k} (1 \le k \le n \rightarrow \exists \mathbf{j} (1 \le j \le n \land j \ne k \land A(j) = A(k))) Variables libres: A(1..n) Variables ligadas: k, j
```

Las dos letras k y j son necesarias porque el cuantificador \exists está anidado dentro del cuantificador \forall .

20. todosjustodosveces

(i) todosjustodosveces $(A(1..n)) \equiv \forall k (1 \le k \le n \rightarrow \text{veces}(A(k), 2, A(1..n)))$ Variables libres: A(1..n)Variables ligadas: k(ii) todosjustodosveces $(A(1..n)) \equiv \forall k (1 \le k \le n \rightarrow \text{(Nj)}(1 \le j \le n \land j \ne k \land A(k) = A(j)) = 1)$ Variables libres: A(1..n)Variables ligadas: k, k

Las dos letras k y j son necesarias porque la función N está anidada dentro del cuantificador \forall .

21. primo

 $primo(x) \equiv x \ge 1 \land Nk(1 \le k \le x \land x \mod k = 0) = 2$ Variables libres: x Variables ligadas: k

22. sumaconsecutivos

sumaconsecutivos(z) =
$$\exists k (k \ge 1 \land z = \sum_{\ell=1}^{k} \ell)$$

Variables ligadas: k, ℓ Variables libres: z

Las dos letras k y ℓ son necesarias porque la función Σ está anidada dentro del cuantificador ∃.

23. sumaintervalo

sumaintervalo(x, w, s, A(1..n)) =
$$1 \le x \le w \land x \le w \le n \land s = \sum_{k=x}^{w} A(k)$$

Variables libres: x, w, s, A(1..n)

Variables ligadas: k

En vez de $1 \le x \le w \land x \le w \le n$ se puede escribir también $1 \le x \le w \le n$.

24. sumaintervalo2

sumaintervalo2(x, y, A(1..n)) = sumaintervalo(x, y,
$$\frac{n}{n}$$
, A(1..n))
Variables libres: x, y, A(1..n) Variables ligadas: ---

Este predicado es un caso particular del anterior, en el que la suma coincide con el número de elementos de A(1..n).

25. sumapospares

sumapospares(s, A(1..n))
$$\equiv$$
 s $=$ $\sum_{1 \le k \le n \land par(k)} A(k)$

Variables libres: s, A(1..n) Variables ligadas: k

26. sumapares

sumapares(s, A(1..n))
$$\equiv$$
 s = $\sum_{1 \le k \le n \land par(A(k))} A(k)$

Variables libres: s, A(1..n)

Variables ligadas: k

27. sumamayores

$$\begin{aligned} \text{sumamayores}(s,\,x,\,A(1..n)) &\equiv s = \sum_{1 \leq k \leq n \land A(k) > x} A(k) \\ \text{Variables libres: } s,\,x,\,A(1..n) & \text{Variables ligadas: } k \end{aligned}$$

28. productoprimos

productoprimos(sp, A(1..n)) = todospositivos(A(1..n))
$$\land$$
 sp = $\prod_{1 \le k \le n \land primo(A(k))} A(k)$

Variables libres: sp, A(1..n)

Variables ligadas: k

29. sumacontiguos

sumacontiguos(s, A(1..n))
$$\equiv$$
 s = $\sum_{1 \le k \le n-1 \land A(k)+1 = A(k+1)} A(k)$
Variables libres: s, A(1..n) Variables ligadas: k

En este caso hay que poner n-1 porque consideramos los elementos de dos en dos y el último par es cuando k vale n-1 (el par n-1, n).

30. aparece

(i) aparece(pos1, pos2, x, A(1..n)) =
=
$$1 \le pos1 \le pos2 \le n \land \exists k(pos1 \le k \le pos2 \land A(k) = x)$$

Variables libres: pos1, pos2, x, A(1..n)

Variables ligadas: k

(ii) aparece(pos1, pos2, x, A(1..n))
$$\equiv$$

 $\equiv 1 \le pos1 \le pos2 \le n \land Nk(pos1 \le k \le pos2 \land A(k) = x) \ge 1$

Variables libres: pos1, pos2, x, A(1..n)

Variables ligadas: k

31. aparecenambos

aparecenambos(x, y, A(1..n))
$$\equiv$$

 \equiv x \neq y \land aparece(1, n, x, A(1..n)) \land aparece(1, n, y, A(1..n))

Variables libres: x, y, A(1..n)

Variables ligadas: ---

32. mayoresdistintos

- (i) mayoresdistintos(x, w, A(1..n)) = $\equiv x \neq w \land \text{todosmayores}(x, A(1..n)) \land \neg \text{aparece}(1, n, w, A(1..n))$ Variables libres: x, w, A(1..n) Variables ligadas: ---
- (ii) mayoresdistintos(x, w, A(1..n)) \equiv $\equiv x \neq w \land \forall k (1 \leq k \leq n \rightarrow (A(k) \geq x \land A(k) \neq w))$ Variables libres: x, w, A(1..n) Variables ligadas: k

33. dostresmult

$$\begin{aligned} & \text{dostresmult}(x, w, A(1..n)) \equiv \\ & \equiv N_{\mathbf{k}}(1 \le k \le n \land A(k) \text{ mod } x = 0) = 2 \land N_{\mathbf{j}}(1 \le j \le n \land A(j) \text{ mod } w = 0) = 3 \\ & \text{Variables libres: } x, w, A(1..n) & \text{Variables ligadas: } k, j \end{aligned}$$

Como las N's no están anidadas se puede utilizar la misma letra en ambos casos, por ejemplo k:

dostresmult(x, w, A(1..n)) =

$$\equiv N_{\mathbf{k}}(1 \le k \le n \land A(k) \mod x = 0) = 2 \land N_{\mathbf{k}}(1 \le k \le n \land A(k) \mod w = 0) = 3$$

Variables libres: x, w, A(1..n) Variables ligadas: k

34. multposicion

```
multposicion(A(1..n)) \equiv \forall k (1 \le k \le n \rightarrow (A(k) > 0 \land A(k) \mod k = 0))
Variables libres: A(1..n) Variables ligadas: k
```

35. posparespositivos

```
posparespositivos(A(1..n)) \equiv \forall k (1 \le k \le n \land par(k) \rightarrow A(k) > 0)
Variables libres: A(1..n) Variables ligadas: k
```

36. mayormenor

```
mayormenor(x, A(1..n)) =

\equiv \exists \mathbf{k} (1 \le k \le n \land A(k) > x) \land \exists \mathbf{j} (1 \le j \le n \land A(j) < x)

Variables libres: x, A(1..n) Variables ligadas: k, j
```

Como los cuatificadores ∃ no están anidados se puede utilizar la misma letra en ambos casos, por ejemplo k:

```
mayormenor(x, A(1..n)) =

\exists \mathbf{k} (1 \le k \le n \land A(k) > x) \land \exists \mathbf{k} (1 \le k \le n \land A(k) < x)

Variables libres: x, A(1..n) Variables ligadas: k
```

37. unnegninguncero

- (i) unnegninguncero(pos, A(1..n)) $\equiv 1 \le pos \le n \land Nk(pos \le k \le n \land A(k) < 0) = 1 \land vecessection(pos, n, 0, 0, A(1..n))$ Variables libres: pos, A(1..n) Variables ligadas: k
- (ii) unnegninguncero(pos, A(1..n)) $\equiv 1 \le pos \le n \land$ $(N_{\mathbf{k}}(pos \le k \le n \land A(k) < 0) = 1) \land (N_{\mathbf{j}}(pos \le j \le n \land A(j) = 0) = 0)$ Variables libres: pos, A(1..n) Variables ligadas: k, j Al no estar anidadas las N's, se puede utilizar k para las dos.

38. primerapos

- (i) primerapos(pos, x, A(1..n)) = $1 \le pos \le n \land A(pos) = x \land \neg aparece(1, pos 1, x, A(1..n))$ Variables libres: pos, x, A(1..n) Variables ligadas: ---
- (ii) primerapos(pos, x, A(1..n)) = $1 \le pos \le n \land A(pos) = x \land \forall k (1 \le k \le pos 1 \rightarrow A(k) \ne x)$ Variables libres: pos, x, A(1..n) Variables ligadas: k

39. denotaaparece

- (i) denotaaparece(esta, x, A(1..n)) \equiv esta \leftrightarrow aparece(1, n, x, A(1..n)) Variables libres: esta, x, A(1..n) Variables ligadas: ---
- (ii) denotaaparece(esta, x, A(1..n)) \equiv esta $\leftrightarrow \exists k (1 \le k \le n \land A(k) = x)$ Variables libres: esta, x, A(1..n) Variables ligadas: k

40. denotaantes

```
denotaantes(antes, pos, x, A(1..n)) \equiv 1 \leq pos \leq n \wedge (antes \leftrightarrow aparece(1, pos – 1, x, A(1..n))) Variables libres: antes, pos, x, A(1..n) Variables ligadas: ---
```

41. paresceros

```
paresceros(z, A(1..n)) \equiv

\equiv Nk(1 \le k \le n-1 \land A(k) = 0 \land A(k+1) = 0) = z

Variables libres: z, A(1..n) Variables ligadas: k
```

En este caso hay que poner n-1 porque consideramos los elementos de dos en dos y el ultimo par es cuando k vale n-1 (el par n-1, n).

42. todospotdos

```
todospotdos(A(1..n)) \equiv \forall k (1 \le k \le n \rightarrow potdos(A(k)))
Variables libres: A(1..n) Variables ligadas: k
```

43. minimo

```
minimo(x, A(1..n)) \equiv \exists k (1 \le k \le n \land A(k) = x) \land \forall j (1 \le j \le n \rightarrow A(j) \ge x)
Variables libres: x, A(1..n) Variables ligadas: k, j
```

Como los cuantificadores \exists y \forall no están anidados, se puede utilizar la misma letra (por ejemplo k) para los dos.

44. maximoseccion

```
\begin{array}{l} \text{maximoseccion(i, j, x, A(1..n))} \equiv \\ 1 \leq i \leq n \land i \leq j \leq n \land \exists k (i \leq k \leq j \land A(k) = x) \land \forall h (i \leq h \leq j \rightarrow A(h) \leq x) \\ \text{Variables libres: i, j, x, A(1..n)} & \text{Variables ligadas: k, h} \end{array}
```

En vez de $1 \le i \le n \land i \le j \le n$ se puede escribir también $1 \le i \le j \le n$. Como los cuantificadores $\exists \ y \ \forall$ no están anidados, se puede utilizar la misma letra (por ejemplo k) para los dos.

45. numprimosseccion

```
numprimosseccion(i, j, x, A(1..n)) \equiv

\equiv 1 \le i \le j \le n \land todospositivos(A(1..n)) \land Nk(i \le k \le j \land primo(A(k))) = x

Variables libres: i, j, x, A(1..n) Variables ligadas: k
```

46. ultimosiguales

```
 \begin{array}{l} \text{ultimosiguales(pos, A(1..n))} \equiv \\ \equiv 1 \leq pos \leq n-1 \land A(pos) = A(pos+1) \land \\ \forall k(pos+1 \leq k \leq \textcolor{red}{n-1} \rightarrow A(k) \neq A(k+1)) \\ \text{Variables libres: pos, A(1..n)} & \text{Variables ligadas: k} \\ \end{array}
```

47. distintoshastaposicion

distintoshastaposicion(pos, A(1..n)) \equiv todosdistintos(1, pos, A(1..n))

Variables libres: pos, A(1..n) Variables ligadas: ---

En este caso al utilizar el predicado "todosdistintos", por definición de ese predicado se garantiza que pos cumplirá $1 \le pos \le n$. De todas formas, aunque se ponga otra vez, está bien:

distintoshastaposicion(pos, A(1..n)) \equiv = 1 \le pos \le n \wedge todosdistintos(1, pos, A(1..n))

48. apareceizquierda

- (i) apareceizquierda(x, A(1..n)) \equiv $\exists k (1 \le k \le n \land \text{vecesseccion}(1, k, x, k, A(1..n)) \land$ vecesseccion(k + 1, n, x, 0, A(1..n)) Variables libres: x, A(1..n) Variables ligadas: k
- (ii) apareceizquierda(x, A(1..n)) = $\exists k (1) \le k \le n \land \forall j (1 \le j \le k \rightarrow A(j) = x) \land \forall h(k+1 \le h \le n \rightarrow A(h) \ne x)$ Variables libres: x, A(1..n) Variables ligadas: k, j, h

En este caso al estar los cuantificadores \forall anidados dentro de \exists , es necesario que \exists y \forall lleven letras distintas (k y j por ejemplo o k y h). Pero al ser las dos fórmulas \forall independientes entre ellas, esas dos fórmulas sí podrían utilizar la misma letra (por ejemplo las dos j en vez de utilizar una j y la otra h).

49. apareceizquierda2

- (i) apareceizquierda2(x, A(1..n)) \equiv $\exists k (0 \le k \le n \land vecesseccion(1, k, x, k, A(1..n)) \land vecesseccion(k + 1, n, x, 0, A(1..n)))$ Variables libres: x, A(1..n) Variables ligadas: k
- (ii) apareceizquierda2(x, A(1..n)) = $\exists k (0 \le k \le n \land \forall j (1 \le j \le k \to A(j) = x) \land \forall h(k+1 \le h \le n \to A(h) \ne x)$ Variables libres: x, A(1..n) Variables ligadas: k, j, h

La única diferencia entre las fórmulas de los ejercicios 48 y 49 es que en el primero k está en el intervalo [1..n] y en el segundo k está en el intervalo [0..n].

50. rotacionderecha

```
rotacionderecha(A(1..n), (a_1, a_2, ..., a_n)) \equiv A(1) = a_n \land \forall k (2 \le k \le n \rightarrow A(k) = a_{k-1}) Variables libres: A(1..n), (a_1, a_2, ..., a_n) Variables ligadas: k
```

51. rotacionizquierda

```
rotacionizquierda(A(1..n), (a_1, a_2, ..., a_n)) \equiv

A(n) = a_1 \land \forall k (1 \le k \le n - 1 \rightarrow A(k) = a_{k+1})

Variables libres: A(1..n), (a_1, a_2, ..., a_n) Variables ligadas: k
```

52. disjuntos

- (i) disjuntos(A(1..n), B(1..m)) \equiv $\forall k(1 \le k \le n \rightarrow \neg aparece(1, m, A(k), B(1..m)))$ Variables libres: A(1..n), B(1..m) Variables ligadas: k

Otra posibilidad:

disjuntos(A(1..n), B(1..m)) \equiv

 \forall k(1 \le k \le n \rightarrow \forall j(1 \le j \le m \rightarrow A(k) \neq B(j)))

Variables libres: A(1..n), B(1..m) Variables ligadas: k, j También en este caso k y j son necesarias debido al anidamiento.

53. maspositivos

$$maspositivos(A(1..n)) \equiv$$

$$N_{\mathbf{k}}(1 \le k \le n \land A(k) \le 0) \le N_{\mathbf{j}}(1 \le j \le n \land A(j) \ge 0) \land \neg aparece(1, n, 0, A(1..n))$$

Variables libres: A(1..n)

Variables ligadas: k, j

Como no hay anidamiento, es posible utilizar solo k:

$$N_{\mathbf{k}}(1 \le k \le n \land A(k) < 0) < N_{\mathbf{k}}(1 \le k \le n \land A(k) > 0) \land \neg aparece(1, n, 0, A(1..n))$$

54. permutacion

$$\begin{aligned} & \text{permutacion}(A(1..n), B(1..n)) \equiv \\ & \forall k (1 \leq k \leq n \rightarrow (Nj(1 \leq j \leq n \land A(k) = A(j)) = Nh(1 \leq h \leq n \land A(k) = B(h)))) \end{aligned}$$

Número de veces que aparece A(k) en A(1..n)

Número de veces que aparece A(k) en B(1..n)

Variables libres: A(1..n), B(1..n)

Variables ligadas: k, j, h

Sería posible utilizar j con las dos N's ya que no están anidadas:

$$\forall k (1 \le k \le n \to (Nj(1 \le j \le n \land A(k) = A(j)) = Nj(1 \le j \le n \land A(k) = B(j))))$$

55. palindromo

palindromo(A(1..n))
$$\equiv \forall k (1 \le k \le n \rightarrow A(k) = A(n-k+1))$$

Variables libres: A(1..n) Variables ligadas: k

56. almenosunpardif

almenosunpardif
$$(A(1..n)) \equiv \exists k (1 \le k \le n-1) \land A(k) \ne A(k+1)$$

Variables libres: $A(1..n)$ Variables ligadas: k

57. justounpardif

justounpardif
$$(A(1..n)) = Nk(1 \le k \le n-1) \land A(k) \ne A(k+1) = 1$$

Variables libres: $A(1..n)$ Variables ligadas: k

58. numposmismovalor

numposmismovalor(A(1..n), B(1..m))
$$\equiv$$

np = Nk(1 \leq k \leq n \wedge 1 \leq k \leq m \wedge A(k) = B(k))
Variables libres: A(1..n), B(1..m) Variables ligadas: k

No sabemos cuál es mayor, n o m, por eso la variable ligada ha de estar entre 1 y n y entre 1 y m. De esta forma aseguramos que k estará en el intervalo más pequeño entre [1..n] y [1..m] y por tanto siempre respresenta posiciones tanto de A como de B.

59. mismasvecesvectores

mismasvecesvectores(x, A(1..n), B(1..p))
$$\equiv$$

Nk(1 \le k \le n \land A(k) = x) = Nj(1 \le j \le p \land B(j) = x)

Variables libres: x, A(1..n), B(1..p) Variables ligadas: k, j

Al no estar anidadas se podría haber usado solo k:

$$Nk(1 \le k \le n \land A(k) = x) = Nk(1 \le k \le p \land B(k) = x)$$

Variables libres: x, A(1..n), B(1..p) Variables ligadas: k

60. numero

numero(x, A(1..n)) = x =
$$\sum_{k=1}^{n} (A(k) * 10^{n-k})$$

Variables libres: x, A(1..n) Variables ligadas: k

61. numcapicua

$$\label{eq:numcapicua} \begin{split} \text{numcapicua}(A(1..n)) &\equiv \text{digitos}(A(1..n)) \land \text{palindromo}(A(1..n)) \land \\ &\land (A(1) = 0 \rightarrow n = 1) \\ \text{Variables libres: } A(1..n) & \text{Variables ligadas: ---} \end{split}$$

62. contieneveces

(i) continueveces(A(1..n), B(1..n)) = $\forall k(1 \le k \le n \rightarrow B(k) = \text{veces}(A(k), A(1..n)))$ Variables libres: A(1..n), B(1..n) Variables ligadas: k

(ii) contieneveces(A(1..n), B(1..n))
$$\equiv$$

$$\forall k (1 \le k \le n \rightarrow B(k) = Nj(1 \le j \le n \land A(k) = A(j)))$$
Número de veces que aparece A(k) en A(1..n)

Variables libres: A(1..n), B(1..n) Variables ligadas: k, j Las variables k y j son necesarias debido al anidamiento.

63. subvectorseccion

subvectorseccion(A(1..n), B(1..p), i, j)
$$\equiv$$
 (1 \leq n \leq p) \wedge (1 \leq i \leq j \leq p) \wedge \wedge (j - i = n - 1) \wedge \forall k(1 \leq k \leq n \rightarrow A(k) $=$ B(i + k - 1))
Variables libres: A(1..n), B(1..p), i, j Variables ligadas: k

Otra opción:

$$\begin{array}{l} subvectorseccion(A(1..n),\,B(1..p),\,i,\,j)\equiv (1\leq n\leq p) \wedge (1\leq i\leq j\leq p) \wedge \\ \wedge (j-i=n-1) \wedge \forall k(i\leq k\leq j\rightarrow B(k)=A(k-i+1)) \\ Variables \ libres:\ A(1..n),\,B(1..p),\,i,\,j \end{array} \quad \begin{array}{l} Variables \ ligadas:\ k \end{array}$$

64. subvector

- (i) subvector(A(1..n), B(1..p)) \equiv $\exists h (1 \le h \le n \land \exists g (1 \le g \le n \land subvectorseccion(A(1..n), B(1..p), h, g)))$ Variables libres: A(1..n), B(1..p) Variables ligadas: h, g
- (ii) subvector(A(1..n), B(1..p)) \equiv $(1 \le n \le p) \land (1 \le i \le j \le p) \land \exists h (1 \le h \le n \land \exists g (h \le g \le n \land g h = n 1 \land \forall k (1 \le k \le n \rightarrow B(h + k 1) = A(k))))$ Variables libres: A(1..n), B(1..p) Variables ligadas: h, g, k Las variables ligadas h, g y k son necesarias debido al anidamiento.

65. almenosparcomun

almenosparcomun(mp, A(1..n), B(1..m))
$$\equiv$$
 mp $\leftrightarrow \exists k (1 \le k \le \frac{n-1}{n-1} \land 1 \le k \le \frac{m-1}{n-1} \land A(k) = B(k) \land A(k+1) = B(k+1))$ Variables libres: mp, A(1..n), B(1..m) Variables ligadas: k La variable k se utiliza para los dos vectores porque los elementos iguales han de ocupar las mismas posiciones en A y B.

66. justoparcomun

justoparcomun(b, A(1..n), B(1..m)) = $b \leftrightarrow Nk(1 \le k \le n-1 \land 1 \le k \le m-1 \land A(k) = B(k) \land A(k+1) = B(k+1)) = 1$ Variables libres: b, A(1..n), B(1..m) Variables ligadas: k

La variable k se utiliza para los dos vectores porque los elementos iguales han de ocupar las mismas posiciones en A y B.

67. almenosparcomunpos

```
\begin{aligned} & \text{almenosparcomunpos(dp, A(1..n), B(1..m))} \equiv \\ & \text{dp} \leftrightarrow \exists k (1 \leq k \leq \frac{n-1}{n-1} \land \exists j (1 \leq j \leq \frac{m-1}{n-1} \land A(k) = B(j) \land A(k+1) = B(j+1)))} \\ & \text{Variables libres: dp, A(1..n), B(1..m)} & \text{Variables ligadas: k, j} \end{aligned}
```

Las variables k y j son necesarias porque los elementos iguales pueden ocupar distintas posiciones en A y B.

68. justoparcomunpos

 $justoparcomunpos(c, A(1..n), B(1..m)) \equiv$

$$c \leftrightarrow Nk(1 \le k \le n-1 \land \exists j(1 \le j \le m-1 \land A(k) = B(j) \land A(k+1) = B(j+1))) = 1$$

Variables libres: c, A(1..n), B(1..m) Variables ligadas: k, j

Las variables k y j son necesarias porque los elementos iguales pueden ocupar distintas posiciones en A y B.

69. primosconsec

$$\begin{array}{c} primosconsec(u,\,v) \equiv u < v \land primo(u) \land primo(v) \land \forall k (u < k < v \rightarrow \neg primo(k)) \\ Variables \ libres: \ u, \ v & Variables \ ligadas: \ k \end{array}$$

70. indicemax

indicemax(i, C(1..m))
$$\equiv 1 \le i \le m \land maximoseccion(1, m, C(i), C(1..m))$$

Variables libres: i, C(1..m) Variables ligadas: ---

71. indicemin

indicemin(i,
$$C(1..m)$$
) = $1 \le i \le m \land minimo(C(i), C(1..m))$
Variables libres: i, $C(1..m)$ Variables ligadas: ---

72. creciente

creciente(B(1..m), C(1..m))
$$\equiv$$
 permutacion(B(1..m), C(1..m)) \land $\forall k (1 \le k \le m - 1 \rightarrow B(k) \le B(k + 1))$ Variables libres: B(1..m), C(1..m) Variables ligadas: k

73. inverso

inverso(B(1..m), C(1..m))
$$\equiv \forall k (1 \le k \le m \rightarrow B(k) = C(m-k+1))$$

Variables libres: B(1..m), C(1..m) Variables ligadas: k

74. norep

```
norep(C(1..m)) \equiv todosdistintos(1, n, C(1..m))
Variables libres: C(1..m) Variables ligadas: ---
```

75. nosecsumanula

```
nosecsumanula(C(1..m)) \equiv \forall k (1 \le k \le m \rightarrow \forall j (k \le j \le m \rightarrow \neg sumaintervalo(k, j, 0, C(1..m)))) Variables libres: B(1..m), C(1..m) Variables ligadas: k, j
```

76. noparcerosconsec

```
noparcerosconsec(C(1..m)) = paresceros(0, C(1..m))
Variables libres: C(1..m) Variables ligadas: ---
```

77. todosdosveces

```
todosdosveces(C(1..m)) \equiv todosjustodosveces(C(1..m))
Variables libres: C(1..m) Variables ligadas: ---
```

78. tresdisjuntos

(i) tresdisjuntos(C(1..n), D(1..m), E(1..p)) $\equiv \forall k (1 \le k \le n \rightarrow (\text{veces}(C(k), 0, D(1..m)) \land \text{veces}(C(k), 0, E(1..p)))) \land \forall j (1 \le j \le m \rightarrow \text{veces}(D(j), 0, E(1..p)))$ Variables libres: C(1..n), D(1..m), E(1..p) Variables ligadas: k, j

Como los dos cuantificadores no están anidados, es posible utilizar k en vez de j también para el segundo cuantificador.

(ii) tresdisjuntos(C(1..n), D(1..m), E(1..p)) \equiv disjuntos(C(1..n), D(1..m)) \land disjuntos(C(1..n), E(1..p)) \land disjuntos(D(1..m), E(1..p)) Variables libres: C(1..n), D(1..m), E(1..p) Variables ligadas: ---

79. seleccionpositivos

```
\begin{split} seleccion positivos(B(1..p), C(1..m)) &\equiv algun positivo(C(1..m)) \land \\ to do spositivos(B(1..p)) \land to do s distintos(B(1..p)) \land \\ \forall k (1 \leq k \leq p \rightarrow aparece(1, m, B(k), C(1..m))) \end{split} \\ Variables \ libres: \ B(1..p), C(1..m) \qquad Variables \ ligadas: \ k \end{split}
```

80. particion

```
particion(C(1..m), D(1..p), E(1..q)) \equiv subvectorseccion(C(1..m), E(1..q), 1, m) \land subvectorseccion(D(1..p), E(1..q), m + 1, m + p) Variables libres: C(1..m), D(1..p), E(1..q) Variables ligadas: ---
```

81. primerosprimosorden

```
primerosprimosorden(A(1..n)) \equiv A(1) = 2 \land \forall k(1 \le k \le n-1 \rightarrow \text{primosconsec}(A(k), A(k+1)))
Variables libres: A(1..n) Variables ligadas: k
```

82. maximominimounavez

$$\begin{split} \text{maximominimounavez(max, min, B(1..m))} &\equiv \\ \text{maximoseccion(1, m, max, B(1..m))} &\land \text{minimo(min, B(1..m))} &\land \\ \text{veces(max, 1, B(1..m))} &\land \text{veces(min, 1, b(1..m))} \\ \text{Variables libres: max, min, B(1..m)} &\text{Variables ligadas: ---} \end{split}$$