Tema 5 - Vectores

Ramon Ceballos

28/2/2021

Propiedades de las operaciones con vectores

Al definir las operaciones de suma y producto por un escalar, conviene tener presentes las diferencias y similitudes entre ambos.

1. Ley de composición interna

Ley de composición interna. La suma de vectores se denomina ley de composición interna ya que opera entre elementos de un conjunto dado, \mathbb{K}^n y el resultado es otro elemento de este conjunto.

$$\begin{array}{cccc} f: \mathbb{K}^n \times \mathbb{K}^n & \longrightarrow & \mathbb{K}^n \\ (\vec{u}, \vec{v}) & \mapsto & \vec{u} + \vec{v} \end{array}$$

2. Ley de composición externa

Ley de composición externa. El producto de un escalar por un vector tiene como operandos conjuntos diferentes: escalares por un lado y vectores por el otro. El resultado cae del lado de los vectores y la operación se denomina ley de composición externa.

$$f: \mathbb{K} \times \mathbb{K}^n \longrightarrow \mathbb{K}^n$$

$$(\lambda, \vec{u}) \mapsto \lambda \vec{u}$$

3. Propiedades de la suma de vectores

Propiedades de la suma de vectores. Sean $\vec{u}, \vec{v}, \vec{w} \in \mathbb{K}^n$

• Ley asociativa:

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

• Ley conmutativa:

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

• Elemento neutro de la suma:

$$\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$$

• Vector opuesto:

$$\vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = 0$$

4. Propiedades del producto por un escalar

Propiedades del producto por un escalar. Sean $\vec{u}, \vec{v} \in \mathbb{K}^n$ y $\alpha, \beta \in \mathbb{K}$

• Ley distributiva del producto por un escalar para la suma de vectores:

$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$$

• Ley distributiva del producto de un vector por la suma de escalares:

$$(\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{u}$$

• Ley asociativa del producto entre escalares y vectores:

$$(\alpha\beta)\vec{u} = \alpha(\beta\vec{u}) = \beta(\alpha\vec{u})$$

• Elemento unidad:

$$1\vec{u} = \vec{u}$$