# שיעור 4 משפט קיילי-המילטון ופולינום מינימלי

### 4.1 הצבה של מטריצה ריבועית בפולינם

#### הגדרה 4.1 הצבה של מטריצה ריבועית בפולינם

יהי . $\mathbb F$  מטריצה ריבועית מעל שדה  $A\in\mathbb F^{n imes n}$ 

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \ldots + \alpha_k x^k$$

פולינים p מוגדרת של הצבה של סקלרים. הצבה מסקלרים מוגדרת מוגדרת פוליניום כאשר

$$p(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \ldots + \alpha_k A^k$$

 $.\mathbb{F}^{n imes n}$  של המטריצה היחידה ל

#### דוגמה 4.1

$$.p(A)$$
 השבו את  $.p(x)=2x^2-2x-4$  ו-  $A=egin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$  יהיו

#### פתרון:

$$p(x) = 2x^{2} - 2x - 4 = 2(x - 2)(x + 1) .$$

$$p(A) = 2(A - I_{2})(A + I_{2}) = 2\begin{pmatrix} -2 & 2 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 8 & 16 \\ 24 & 32 \end{pmatrix} .$$

#### דוגמה 4.2

תהי 
$$p(x)$$
 פרקו  $p(x)=x^3-2x^2-x+2\in\mathbb{R}_3[x]$  ו  $A=\begin{pmatrix}1&-1&2\\3&-1&2\\1&-1&4\end{pmatrix}\in\mathbb{R}^{3 imes3}$ תהי והשתמשו בפירוק זה כדי לחשב שוב את ההצבה של  $A$ ב- והשתמשו בפירוק ה

#### פתרון:

$$p(x) = (x-1)(x-2)(x+1) .$$

$$p(A) = (A-I_3)(A-2I_3)(A+I_3) = \begin{pmatrix} 0 & -1 & 2 \\ 3 & -2 & 2 \\ 1 & -1 & 3 \end{pmatrix} \begin{pmatrix} -1 & -1 & 2 \\ 3 & -3 & 2 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 \\ 3 & 0 & 2 \\ 1 & -1 & 5 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 10 \\ -5 & 1 & 18 \\ 1 & -5 & 26 \end{pmatrix}$$

#### משפט 4.1

תהי 
$$p(x)\in\mathbb{F}[x]$$
 מטריצה אלכסונית ויהי  $D=egin{pmatrix} \lambda_1&0&\dots&0\\0&\lambda_2&\dots&0\\ \vdots&\vdots&\ddots&\vdots\\0&0&\dots&\lambda_n \end{pmatrix}$  פולינום. אז

$$p(D) = \begin{pmatrix} p(\lambda_1) & 0 & \dots & 0 \\ 0 & p(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & p(\lambda_n) \end{pmatrix}$$

**הוכחה**: תרגיל בית

#### 4.2 משפט

. מעקיים: מתקיים:  $B\in\mathbb{F}^{n\times n}$  נניח ש $B\in\mathbb{F}^{n\times n}$  ו-  $A\in\mathbb{F}^{n\times n}$  הפיכה. מתקיים:

$$(BAB^{-1})^k = BA^kB^{-1}$$
.

הוכחה: נוכיח ע"י אינדוקציה.

k=1 בסיס: עבור

$$(BAB^{-1})^1 = BA^1B^{-1} .$$

#### :מעבר

 $(BAB^{-1})^{k+1}=BA^{k+1}B^{-1}$  - נניח ש- ( $BAB^{-1})^k=BA^kB^{-1}$  (ההנחת האינדוקציה). נוכיח ש-

$$(BAB^{-1})^{k+1} = (BAB^{-1})^k \cdot BAB^{-1}$$
 $= BA^k B^{-1} \cdot BAB^{-1}$  (ההנחת האינדוקציה)
 $= BA^k \cdot \underbrace{(B^{-1}B)}_{=I} \cdot AB^{-1}$ 
 $= BA^k \cdot I \cdot AB^{-1}$ 
 $= BA^k \cdot AB^{-1}$ 
 $= BA^{k+1}B^{-1}$ .

#### משפט 4.3

-תהיינה  $B=PAP^{-1}$  שטריצות דומות. כלומר קיימת P הפיכה כך ש-  $A,B\in\mathbb{F}^{n\times n}$  מטריצות דומות. כלומר קיימת  $Q(x)\in\mathbb{F}[x]$ 

$$Q(A) = PQ(B)P^{-1} .$$

$$Q(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_k x^k$$
 הוכחה: נסמן

$$Q(A) = \alpha_0 I + \alpha_1 A + \dots + \alpha_k A^k$$
  
= \alpha\_0 I + \alpha\_1 (PBP^{-1}) + \dots + \alpha\_k (PBP^{-1})^k  
= \alpha\_0 PP^{-1} + \alpha\_1 (PBP^{-1}) + \dots + \alpha\_k (PBP^{-1})^k

לכן נקבל (4.2 לפי משפט ( $PBP^{-1}$ ) $^k = PB^kP^{-1}$ 

$$Q(A) = \alpha_0 P P^{-1} + \alpha_1 P B P^{-1} + \dots + \alpha_k P B^k P^{-1}$$
  
=  $P(\alpha_0 I + \alpha_1 B + \dots + \alpha_k B^k) P^{-1}$   
=  $PQ(B) P^{-1}$ .

#### 4.4 משפט

 $A=PDP^{-1}$  -ש אלכסונית כך אלכסונית פיימת P הפיכה קיימת לכסינה, כלומר לכסינה, כלומר אז לכל  $A\in\mathbb{F}^{n\times n}$  מתקיים נניח ש-  $q(x)\in\mathbb{F}[x]$  אז אז לכל  $D=\mathrm{diag}\,(\lambda_1,\dots,\lambda_n)$ 

$$q(A) = P \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix} P^{-1}$$

,4.3 לפי משפט  $D=P^{-1}AP$  הוכחה: נסמן

$$P^{-1}q(A)P = q(P^{-1}AP) = q(D)$$
.

לפי משפט 4.1,

$$q(D) = \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix}$$

לכן נקבל

$$P^{-1}q(A)P = \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix} ,$$

מכאן נובע כי

$$q(A) = P \begin{pmatrix} q(\lambda_1) & 0 & \dots & 0 \\ 0 & q(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(\lambda_n) \end{pmatrix} P^{-1}.$$

#### דוגמה 4.3

$$A=\left(egin{array}{cc} 11 & -6 \ 20 & -11 \end{array}
ight)\in\mathbb{R}^{2 imes2}$$
 שבו את ההצבה של  $A=\left(egin{array}{cc} 11 & -6 \ 20 & -11 \end{array}
ight)$ 

#### פתרון:

הם עמציים עמציים הם . $\lambda=1$  ו-  $\lambda=-1$  הם A הם עמציים הם

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \;, V_1 = \operatorname{span}\left\{ \begin{pmatrix} 3 \\ 5 \end{pmatrix} \right\} \;.$$
 
$$D = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \; \text{-1} \; P = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \; \text{ and } \; A = PDP^{-1} \; A = PDP^{-1} \; \text{ a$$

#### דוגמה 4.4

יניחו:  $p(x) \in \mathbb{F}[x]$  מטריצות דומות ויהי  $\lambda \in \mathbb{F}$  סקלר. נניח ש $A, B \in \mathbb{F}^{n \times n}$  מטריצות מטריצות מטריצות אוני

$$p(B) = \lambda I_n$$
 אס"ם  $p(A) = \lambda I_n$ 

#### הוכחה: ⇒

,4.3 לכן לפי . $B=C^{-1}AC$  א הפיכה כך הפיכה מו $C\in\mathbb{F}^{n\times n}$  לכן קיימת אדומות לכן דומות א

$$p(B) = p(C^{-1}AC) = C^{-1}p(A)C$$

אס 
$$p(A) = \lambda I_n$$
 אס

$$p(B) = C^{-1}\lambda I_n C = \lambda I_n$$
.

 $\triangleq$ 

,4.3 לכן לפי 
$$A=CBC^{-1}$$

$$p(A) = p(CBC^{-1}) = Cp(B)C^{-1}$$
.

לכן אם 
$$p(B) = \lambda I_n$$
 לכן

$$p(A) = C\lambda I_n C^{-1} = \lambda I_n .$$

# 4.2 הצבת של העתקה לינארית בפולינום

#### הגדרה 4.2 הצבה של העתקה לינארית בפולינום

 $p(x)=lpha_0+lpha_1x+\dotslpha_kx^k$  - אופרטור לינארי אופרטור עניח שT:V o V אופרטור מעל " $\mathbb F$  מרחב וקטורי מעל פולינום. נגדיר את האופרטור הלינארי עp(T):V o V

$$p(T) = \alpha_0 I_V + \alpha_1 T + \dots \alpha_k T^k$$

( $u \in V$  לכל  $I_V(u) = u$ ) כאשר הזהות האופרטור הזהות  $I_V$  לכל p נקראת ההצבה של p(T)

#### דוגמה 4.5

יהי  $T:\mathbb{R}^2 o\mathbb{R}^2$  אופרטור המוגדר ע"י

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - 3y \\ 2x + y \end{pmatrix} .$$

T תוך כדי שימוש של המטריצה המייצגת הסטנדרטית של תוך כדי  $p(x)=3x^2-4x-1$  עבור p(T)

#### פתרון:

#### שיטה 1

המטנדרטית הסטנדרטית המטנדרטית המטנדרטית וואר . $E=\left\{e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}
ight\}$  הוא  $\mathbb{R}^2$  המטנדרטי של

נקבל .
$$[T]_E=egin{pmatrix} |T|_E=(T(e_1)]_E&[T(e_1)]_E\\ |T(e_1)]_E=(T(e_1)]_E&\end{bmatrix}$$
 נקבל  $[T(e_1)]_E=(T(e_1)]_E=(T(e_1)]_E$ 

לכן בנוסחה .
$$[T]_E = \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}$$
 לכן

$$[p(T)]_E = p([T]_E) .$$

 $:p\left([T]_{E}
ight)$  נחשב

$$p([T]_E) = 3([T]_E)^2 - 4[T]_E - I_3 = 3\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}^2 - 4\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -20 & -6 \\ 4 & -20 \end{pmatrix}$$

 $u = \begin{pmatrix} x \\ y \end{pmatrix}$  לכן לכל וקטור

$$\begin{split} \left[p(T)u\right]_E &= \left[p(T)\right]_E \cdot \left[u\right]_E \\ &= p\left([T]_E\right) \left[u\right]_E \\ &= \begin{pmatrix} -20 & -6 \\ 4 & -20 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \begin{pmatrix} -20x - 6y \\ 4x - 20y \end{pmatrix} \end{split}$$

שיטה 2

$$p(T) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 3T^{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 4T \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= 3T \begin{pmatrix} 1 \\ 2 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= 3 \begin{pmatrix} -5 \\ 4 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -15 \\ 12 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -20 \\ 4 \end{pmatrix} .$$

$$p(T) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 3T^{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 4T \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 3T \begin{pmatrix} -3 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 3T \begin{pmatrix} -6 \\ -5 \end{pmatrix} - 4 \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -18 \\ -15 \end{pmatrix} - \begin{pmatrix} -12 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -6 \\ -20 \end{pmatrix} .$$

$$p(T) \begin{pmatrix} x \\ y \end{pmatrix} = p \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -20x - 6y \\ 4x - 20y \end{pmatrix}$$

#### דוגמה 4.6

יהי  $T:\mathbb{R}^2 o\mathbb{R}^2$  אופרטור שמוגדר ע"י

$$Tinom{x}{y}=inom{x-3y}{2x+y}$$
 . 
$$p(x)=3x^2-4x+1$$
 עבור  $p(T)$  עבור

### פתרון:

$$[T]_E=egin{pmatrix} |& & | & | & | & | & | & | & | & | & & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | & | &$$

$$[T]_E = \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}$$
 לכן

$$p(x) = 3x^{2} - 4x + 1 = (3x - 1)(x - 1)$$

$$p([T]_{E}) = (3[T]_{E} - I)([T]_{E} - I)$$

$$= \left(3\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) \left(\begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$$

$$= \begin{pmatrix} 2 & -9 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} 0 & -3 \\ 2 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -18 & -6 \\ 4 & -18 \end{pmatrix}$$

$$p(T)\begin{pmatrix} x \\ y \end{pmatrix} = p([T]_{E}) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -18 & -6 \\ 4 & -18 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -18x - 6y \\ 4x - 18y \end{pmatrix} .$$

#### דוגמה 4.7

עמוגדר ע"י  $T:\mathbb{R}^2 o\mathbb{R}^2$  יהי  $p(x)=2x^2+3x-4\in\mathbb{R}[x]$  נסמן

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x + 2y \end{pmatrix} .$$

.p(T) חשבו את

#### פתרון:

$$p(T) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2T^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3T \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 2T \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 3T \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 2 \begin{pmatrix} 0 \\ 3 \end{pmatrix} + 32 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 9 \end{pmatrix}$$
$$p(T) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -9 \\ 8 \end{pmatrix}$$
$$p(T) \begin{pmatrix} x \\ y \end{pmatrix} = p \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}$$
$$= x \begin{pmatrix} -1 \\ 9 \end{pmatrix} + y \begin{pmatrix} -9 \\ 8 \end{pmatrix}$$
$$= \begin{pmatrix} -x - 9y \\ 9x + 8y \end{pmatrix}$$

#### דוגמה 4.8

יהי  $T:\mathbb{R}^2 o\mathbb{R}^2$  אופרטור שמוגדר ע"י

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - 2y \\ 3x + 7y \end{pmatrix} .$$

T תוך כדי שימוש של המטריצה המייצגת הסטנדרטית של תוך כדי שימוש  $p(x)=5x^2-6x+1$  חשבו את

#### פתרון:

#### שיטה 1

הבסיס הסטנדרטי של  $\mathbb{R}^2$  הוא  $\mathbb{R}^2$  הוא  $\mathbb{R}^2$  ההגדרה של המטריצה המייצגת הסטנדרטית הבסיס הסטנדרטי  $E=\left\{e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}\right\}$  הוא  $\mathbb{R}^2$  ה הוא  $\mathbb{R}^2$  הוא  $\mathbb{R}^2$  הוא  $\mathbb{R}^2$  הוא  $\mathbb{R}^2$  הוא  $\mathbb{R}^2$ 

$$[T(e_1)]_E = {2 \choose 3}$$
,  $[T(e_2)]_E = {-2 \choose 7}$ ,

לנו נקבל לינאריים: ניתן לפרק ניתן ניתן (p(x)את לפרק (ניתן  $[T]_E = \begin{pmatrix} 2 & -2 \\ 3 & 7 \end{pmatrix}$ לכו לכו נקבל לכו ניתן לינאריים:

$$p(x) = 5x^2 - 6x + 1 = (5x - 1)(x - 1) .$$

 $:p\left([T]_{E}
ight)$  את בפירוק הזה בפירוק

$$p([T]_E) = (5([T]_E) - I_2)([T]_E - I_2)$$

$$= \left(5\begin{pmatrix} 2 & -2 \\ 3 & 7 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) \left(\begin{pmatrix} 2 & -2 \\ 3 & 7 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$$

$$= \begin{pmatrix} 9 & -10 \\ 15 & 34 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 3 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} -21 & -78 \\ 117 & 174 \end{pmatrix}$$

 $u = \begin{pmatrix} x \\ y \end{pmatrix}$  לכן עבור וקטור

$$\begin{aligned} [p(T)u]_E &= [p(T)]_E \cdot [u]_E \\ &= \begin{pmatrix} -21 & -78 \\ 117 & 174 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \begin{pmatrix} -21x - 78y \\ 117x + 174y \end{pmatrix} \end{aligned}$$

#### שיטה 2

$$p(T) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 5T^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 6T \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 5T \begin{pmatrix} 2 \\ 3 \end{pmatrix} - 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= 5 \begin{pmatrix} -2 \\ 27 \end{pmatrix} - 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} -21 \\ 117 \end{pmatrix}$$

$$p(T) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 5T^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 6T \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 5T \begin{pmatrix} -2 \\ 7 \end{pmatrix} - 6 \begin{pmatrix} -2 \\ 7 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 5 \begin{pmatrix} -18 \\ 43 \end{pmatrix} - 6 \begin{pmatrix} -2 \\ 7 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -90 \\ 215 \end{pmatrix} + \begin{pmatrix} 12 \\ -42 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -78 \\ 174 \end{pmatrix} .$$

$$p(T) \begin{pmatrix} x \\ y \end{pmatrix} = p \begin{pmatrix} x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -21x - 78y \\ 117x + 174y \end{pmatrix}$$

בדיוק כמו הפתרון המתקבל ע"י שיטה 1.

#### דוגמה 4.9

 $T:\mathbb{R}^3 o\mathbb{R}^3$  נגדיר  $T:\mathbb{R}^3$ 

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3y + z \\ 2x - y + z \\ x + y + z \end{pmatrix} .$$

 $\mathbb{R}^3$  נסמן E יהי  $p(x)=x^2+x-2\in\mathbb{R}[x]$  נסמן

 $[p(T)]_E$  א חשבו את

p(T) את למצוא כדי בסעיף א' כדי בחישוב בחישוב היעזרו

#### פתרון:

סעיף א 
$$p(x)=(x-1)(x+2)$$
 כ-  $p(x)$  את לפרק את ( $T]_E=\begin{pmatrix} 0&3&1\\2&-1&1\\1&1&1 \end{pmatrix}$  לכן לכן יינון א

$$[p(T)]_E = ([T]_E - I_3)([T]_E + 2I_3) = \begin{pmatrix} -1 & 3 & 1 \\ 2 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix}$$

סעיף ב לכן

$$\begin{split} p(T) \begin{pmatrix} x \\ y \\ z \end{pmatrix} &= [p(T)]_E \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} \\ &= x \left[ p(T) \right]_E \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \left[ p(T) \right]_E \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \left[ p(T) \right]_E \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ &= x \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 5 & 1 & 5 \\ 1 & 5 & 3 \\ 4 & 4 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ &= x \begin{pmatrix} 5 \\ 1 \\ 4 \end{pmatrix} + y \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix} + z \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} \\ &= \begin{pmatrix} 5x + y + 5z \\ x + 5y + 3z \\ 4x + 4y + 2z \end{pmatrix} \end{split}$$

#### 4.5 משפט

 $p\in\mathbb{F}[x]$  נניח ש T:V o V ותהי המעל שדה  $\mathbb{F}$  ותהי ותהי ותהי וער מניח ש p(X) מרחב וקטורי מעל שדה T ששייך לערך עצמי ועמי וקטור עצמי של וקטור עצמי של דערך עצמי אם עד ועמי ועמי של דערך עצמי ועמי ועמי ועמי ועמי ועמי ועמי ועמי של דערך עצמי ועמי של פלומר, אם

$$T(u) = \lambda u$$

111

$$p(T)(u) = p(\lambda)u$$
.

הוכחה: ראו משפט 3.18 למעלה:

$$p(T)(u) = (\alpha_0 + \alpha_1 T + \dots + \alpha_k T^k) (u)$$

$$= (\alpha_0 + \alpha_1 T(u) + \dots + \alpha_k T^k(u))$$

$$= (\alpha_0 + \alpha_1 \lambda u + \dots + \alpha_k \lambda^k u)$$

$$= (\alpha_0 + \alpha_1 \lambda u + \dots + \alpha_k \lambda^k) u$$

$$= p(\lambda)u.$$

# 4.3 איפוס פולינום על ידי מטריצה

#### הגדרה 4.3 איפוס פולינום ע"י מטריצה

תהי p(x) את מאפסת כי  $A\in\mathbb{F}^{[x]}$  אם  $A\in\mathbb{F}^{n imes n}$ 

$$p(A) = 0_{n \times n}$$

 $.\mathbb{F}^{n imes n}$  מטריצה האפס של  $0_{n imes n}$ 

#### משפט 4.6 מטריצות דומות מאפסות אותו פולינום

B י"י אם"ם הוא מתאפס ע"י אם מחאפס ע"י הפולינום או מעריצות דומות, אז הפולינום או הפולינום B

f(B) = 0 נוכיח שf(A) = 0 נוכיח ש

נסמן

$$f(x) = \alpha_k x^k + \ldots + \alpha_1 x + \alpha_0 ,$$

X

$$f(A) = \alpha_k A^k + \ldots + \alpha_1 A + \alpha_0 I = 0.$$

ו C מטריצות דומות לכן קיימת מטריצה הפיכה B ו A

$$A = C^{-1}BC .$$

לכן

$$\alpha_k(C^{-1}BC)^k + \ldots + \alpha_1(C^{-1}BC) + \alpha_0I = 0$$
.

לכן נקבל (4.2 לפי משפט ( $C^{-1}BC)^k=C^{-1}B^kC$ 

$$C^{-1} \left( \alpha_k B^k + \ldots + \alpha_1 B + \alpha_0 I \right) C = 0.$$

ונקבל  $C^{-1}$  -ומצד ימין ב-  $C^{-1}$  ומצד מצד מצד מצד הפיכה אז נכפיל מצד שמאל ב- C

$$\alpha_k B^k + \ldots + \alpha_1 B + \alpha_0 I = 0 .$$

קיבלנו ש

$$f(B) = 0.$$

#### 4.7 משפט

 $A \in \mathbb{F}^{n imes n}$ תהי

לכל  $p(x)\in\mathbb{F}[x]$  מסדר מאפס פולינום שונה אם"ם קיים מסדר אם"ל אם"ל אם מסדר אם לכל אם"ל אם אם הקבוצה ווער כך ש- p(A)=0

הוכחה:

-סעיף א. קיימים סקלרים כך א $A^n \in \mathrm{sp}\{I_n,A,A^2,\dots,A^{n-1}\}$  אז קיימים סקלרים כך ש

$$A^{n} = \alpha_{0}I_{n} + \alpha_{1}A + \alpha_{2}A^{2} + \ldots + \alpha_{n-1}A^{n-1}$$

ז"א

$$A^{n} - \alpha_{n-1}A^{n-1} - \alpha_{n-2}A^{n-2} - \dots - \alpha_{1}A - \alpha_{0}I_{n} = 0$$

לכן A מאפסת את

$$p(x) = x^n - \alpha_{n-1}x^{n-1} - \ldots - \alpha_1x - \alpha_0 \in \mathbb{F}[x] .$$

נניח ש-A מאפסת את הפוליניום

$$Q(x) = \beta_n x^n + \beta_{n-1} x^{n-1} + \ldots + \beta_1 x + \beta_0 \in \mathbb{F}[x]$$

מסדר n, כלומר Q(A)=0. נניח ש n

$$\beta_n A^n = -(\beta_{n-1} A^{n-1} + \dots + \beta_1 A + \beta_0 I_n)$$

 $:\beta_n$  נחלק שני האגפים ב

$$A^{n} = -\left(\frac{\beta_{n-1}}{\beta_n}A^{n-1} + \ldots + \frac{\beta_1}{\beta_n}A + \frac{\beta_0}{\beta_n}I_n\right)$$

 $A^n \in \operatorname{sp}\{I_n,A,A^2,\ldots,A^{n-1}\}$  קיבלנו כי

-שינם כולם אפסים כך ת"ל. אז קיימים אז קיימים עניח אפסים כך אפסים כך עניח ( $I_n,A,A^2,\ldots,A^n\}$ 

$$\alpha_0 I_n + \alpha_1 A + \alpha_2 A^2 + \ldots + \alpha_{n-1} A^{n-1} + \alpha_n A^n = 0$$

מכאן A מאפסת שהוא פולינום שונה מאפס  $\sum\limits_{i=0}^{n} \alpha_i x^i$  מכאן מכאן מכאן

להיפך, נניח ש-  $p(x) = \sum_{i=0}^n \alpha_i x^i$  אינו פולינום האפס כך ש $p(x) = \sum_{i=0}^n \alpha_i x^i$  אז

$$\alpha_0 I_n + \alpha_1 A + \ldots + \alpha_n A^n = 0$$

הוא צירוף לנארי לא טריוויאלי.

# 4.4 איפוס פולינום על ידי העתקה לינארית

### הגדרה 4.4 איפוס פולינום על ידי העתקה לינארית

יהי p(T)=0 אם p(x) אם מאפס את  $p(x)\in\mathbb{F}[x]$  כאשר  $p(x)\in\mathbb{F}[x]$  כאשר  $p(x)\in\mathbb{F}[x]$  את העתקת האפס.

#### דוגמה 4.10

נתון 
$$T:\mathbb{R}^2 o \mathbb{R}^2$$
 נתון

$$T(x,y) = (-y,x)$$

חשבו את f(x) כאשר f(T) הפולינום

$$f(x) = x^3 - x^2 + x - 1 .$$

#### פתרון:

$$T^{2}(x,y) = T(T(x,y)) = T(-y,x) = (-x,-y)$$
$$T^{3}(x,y) = T(T^{2}(x,y)) = T(-x,-y) = (y,-x)$$

לכן

$$f(T) = (y, -x) - (-x, -y) + (-y, x) - (x, y) = (0, 0) .$$

# (Cayley-Hamilton) משפט קיילי-המילטון 4.5

#### משפט 4.8 משפט קיילי-המילטון

תהי  $A \in \mathbb{F}^{n imes n}$  הוא הפולינום האופייני של  $A \in \mathbb{F}^{n imes n}$ 

$$p_A(A) = 0_{n \times n}$$

 $\mathbb{F}^{n imes n}$  מטריצה האפס של  $0_{n imes n}$ 

#### דוגמה 4.11

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 נתונה

$$.p_A(A) = 0$$
 -בדקו ש-

. תשבו את  $A^2$  ללא חישוב ישיר

### פתרון:

(N

$$p_A(\lambda) = |\lambda - A| = \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 1 = \lambda^2 - 2\lambda$$

$$p_A(A) = A^2 - 2A = A(A - 2I)$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

לכן  $p_A(A)=0$  לכן לפילי-המילטון

$$A^2 - 2A = 0 \qquad \Rightarrow \qquad A^2 = 2A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

#### דוגמה 4.12

. מצאו את משפט קיילי משפט בעזרת את את  $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$  מטריצה מטריצה נתונה מטריצה המילטון.

#### פתרון:

הפולינום האופייני של A הוא:

$$p_A(\lambda) = \begin{vmatrix} \lambda - 1 & -2 \\ -1 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda - 3) - 2 = \lambda^2 - 4\lambda + 1$$

לכן

$$p_A(A) = A^2 - 4A + I = 0 \implies 4A - A^2 = I \implies A(4I - A) = I$$
 . (\*)

ולכן  $AI-A=A^{-1}$  ונקבל  $A^{-1}$  ב- ונקבל (\*) לכן A הפיכה. נכפיל |A|=1

$$A^{-1} = 4I - A = 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$$
.

#### דוגמה 4.13

נתונה מטריצה

$$A = \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix}$$

 $A^{-1}$  -ו  $A^3$  את ושבו המילטון המילי קיילי במשפט היילי

#### פתרון:

הפולינום האופייני של A הוא

$$p_{A}(\lambda) = \begin{vmatrix} \lambda + 3 & -1 & 1 \\ 5 & \lambda - 3 & 1 \\ 6 & -6 & \lambda + 4 \end{vmatrix}$$

$$= (\lambda + 3) \begin{vmatrix} \lambda - 3 & 1 \\ -6 & \lambda + 4 \end{vmatrix} + \begin{vmatrix} 5 & 1 \\ 6 & \lambda + 4 \end{vmatrix} + \begin{vmatrix} 5 & \lambda - 3 \\ 6 & -6 \end{vmatrix}$$

$$= (\lambda + 3) ((\lambda - 3)(\lambda + 4) + 6) + (5(\lambda + 4) - 6) + (-30 - 6(\lambda - 3))$$

$$= (\lambda + 3)(\lambda + 3)(\lambda - 2) + 5\lambda + 14 - 6\lambda - 12$$

$$= (\lambda + 3)(\lambda + 3)(\lambda - 2) - \lambda + 2$$

$$= (\lambda + 3)(\lambda + 3)(\lambda - 2) - (\lambda - 2)$$

$$= (\lambda - 2) ((\lambda + 3)(\lambda + 3) - 1)$$

$$= (\lambda - 2) (\lambda^{2} + 6\lambda + 8)$$

$$= (\lambda - 2)(\lambda + 2)(\lambda + 4)$$

$$= \lambda^{3} + 4\lambda^{2} - 4\lambda - 16$$

:ערכים עצמיים

 $\lambda=2$  מריבוי אלגברי

 $\lambda = -2$  מריבוי אלגברי  $\lambda$ 

 $\lambda = -4$  מריבוי אלגברי

נבדוק אם A הפיכה דרך הדטרמיננטה:

$$|A| = p_A(0) = -16 \neq 0$$

A לכן

לפי משפט קיילי-המילטון,

$$p_A(A) = 0 \implies A^3 + 4A^2 - 4A - 16I_3 = 0 \implies A^3 = -4A^2 + 4A + 16I_3$$

$$A^{2} = \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} \cdot \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} = \begin{pmatrix} 10 & -6 & 6 \\ 6 & -2 & 6 \\ 12 & -12 & 16 \end{pmatrix}$$

לכן

$$A^{3} = -4 \begin{pmatrix} 10 & -6 & 6 \\ 6 & -2 & 6 \\ 12 & -12 & 16 \end{pmatrix} + 4 \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} + \begin{pmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{pmatrix} = \begin{pmatrix} -36 & 28 & -28 \\ -44 & 36 & -28 \\ -72 & 72 & -64 \end{pmatrix}$$

לפי משפט קיילי-המילטון,

$$p_A(A) = 0 \implies A^3 + 4A^2 - 4A - 16I_3 = 0 \implies I_3 = \frac{1}{16}A^3 + \frac{1}{4}A^2 - \frac{1}{4}A = \left(\frac{1}{16}A^2 + \frac{1}{4}A - \frac{1}{4}I_3\right)A$$

7"%

$$A^{-1} = \frac{1}{16}A^{2} + \frac{1}{4}A - \frac{1}{4}I_{3}$$

$$= \frac{1}{16} \begin{pmatrix} 10 & -6 & 6 \\ 6 & -2 & 6 \\ 12 & -12 & 16 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} -3 & 1 & -1 \\ -5 & 3 & -1 \\ -6 & 6 & -4 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{3}{8} & -\frac{1}{8} & \frac{1}{8} \\ -\frac{7}{8} & \frac{3}{8} & \frac{1}{8} \\ -\frac{3}{4} & \frac{3}{4} & -\frac{1}{4} \end{pmatrix}$$

#### דוגמה 4.14

תהי הבאות: הוכיחו את הוכיחו  $A \in \mathbb{F}^{n \times n}$ 

N.

$$A^n \in \operatorname{sp}\left\{I_n, A, A^2, \dots, A^{n-1}\right\}$$

ב. אם A הפיכה אז

$$A^{-1} \in \text{sp}\left\{I_n, A, A^2, \dots, A^{n-1}\right\}$$

**ג.** עבור

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

 $A^{-2}$ ואת את מצאו הופכיות, מטריצות מטריצות ישירות מבלי לחשב מבלי

#### פתרון:

סעיף א. לפי משפט ק"ה A מאפסת את  $p_A(x)$  כלומר

$$p_A(A) = A^n + \alpha_{n-1}A^{n-1} + \ldots + \alpha_1A + \alpha_0I_n = 0$$
.

לכן

$$A^{n} = -\alpha_{n-1}A^{n-1} - \ldots - \alpha_{1}A - \alpha_{0}I_{n} \in \operatorname{sp}\left\{I_{n}, A, A^{2}, \ldots, A^{n-1}\right\}.$$

סעיף ב. לפי משפט ק"ה A מאפסת את  $p_A(x)$ , כלומר

$$p_A(A) = A^n + \alpha_{n-1}A^{n-1} + \ldots + \alpha_1A + \alpha_0I_n = 0$$
,

לכן

$$-\alpha_0 I_n = A^n + \alpha_{n-1} A^{n-1} + \ldots + \alpha_1 A .$$
 (\*)

(\*) מכיוון ש- A הפיכה אז  $\alpha_0^{-1}$  ו  $\alpha_0 \neq 0$  ו הפיכה אז A הפיכוון ש-  $|A| = p_A(0)$  ב  $\frac{-1}{\alpha_0}A^{-1}$  ב

$$A^{-1} = -\frac{1}{\alpha_0} A^{n-1} - \frac{\alpha_{n-1}}{\alpha_0} A^{n-2} - \dots - \frac{\alpha_1}{\alpha_0} I_n . \tag{#}$$

לכן קיבלנו כי

$$A^{-1} \in \text{sp}\left\{I_n, A, A^2, \dots, A^{n-1}\right\}$$
.

סעיף ג.

$$p_{A}(\lambda) = |\lambda I_{3} - A|$$

$$= \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 1) \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} + 2 \begin{vmatrix} -2 & -2 \\ -2 & \lambda - 1 \end{vmatrix} - 2 \begin{vmatrix} -2 & \lambda - 1 \\ -2 & -2 \end{vmatrix}$$

$$= (\lambda - 5)(\lambda + 1)^{2}$$

$$= \lambda^{3} - 3\lambda^{2} - 9\lambda - 5$$

$$p_A(A) = A^3 - 3A^2 - 9A - 5I_n = 0 \quad \Rightarrow \quad I_n = \frac{1}{5}A^3 - \frac{3}{5}A^2 - \frac{9}{5}A = A\left(\frac{1}{5}A^2 - \frac{3}{5}A - \frac{9}{5}I_3\right)$$

אזי

$$A^{-1} = \frac{1}{5}A^2 - \frac{3}{5}A - \frac{9}{5}I_3 . \tag{*1}$$

לכן 
$$A^2 = \left(\begin{array}{ccc} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{array}\right)$$

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} - \frac{3}{5} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} - \frac{9}{5} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \end{pmatrix}$$

(נקבל:  $A^{-1}$  ב (\*1) בי את שני אגפי (1\*) למצוא את ל-2 נכפיל את נכפיל את אני למצוא את

$$A^{-2} = \frac{1}{5}A - \frac{3}{5}I_3 - \frac{9}{5}A^{-1} = \frac{1}{5}\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} - \frac{3}{5}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{9}{5}\begin{pmatrix} -\frac{3}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \end{pmatrix} = \frac{1}{25}\begin{pmatrix} 17 & -8 & -8 \\ -8 & 17 & -8 \\ -8 & -8 & 17 \end{pmatrix}.$$

#### משפט 4.9 משפט קיילי-המילטון עבור העתקות

יהי V מרחב וקטורי מעל שדה  $\mathbb F$  ויהי V o V אופרטור. T: V o V מאפס את הפולינום האופייני שלה.

#### דוגמה 4.15

יע"י שמוגדר  $T:\mathbb{R}^3 o \mathbb{R}^3$  נתון אופרטור לינארי

$$Tegin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} -6x+y+12z \ -8x+2y+15z \ -2x+5z \end{pmatrix}$$
 
$$T^{-1}egin{pmatrix} 3 \ 0 \ -4 \end{pmatrix}$$
 הוכיחו ש-  $T$  הפיך באמצעות משפט ק"ה וחשבו

#### פתרון:

הממ"ס היא

$$A = [T]_E = \begin{pmatrix} -6 & 1 & 12 \\ -8 & 2 & 15 \\ -2 & 0 & 5 \end{pmatrix} .$$

אז הפולינום האופייני

$$p_{A}(x) = |xI - A|$$

$$= \begin{vmatrix} x+6 & -1 & -12 \\ 8 & x-2 & -15 \\ 2 & 0 & x-5 \end{vmatrix}$$

$$= 2 \begin{vmatrix} -1 & -12 \\ x-2 & -15 \end{vmatrix} + (x-5) \begin{vmatrix} x+6 & -1 \\ 8 & x-2 \end{vmatrix}$$

$$= 2 (15+12x-24) + (x-5) ((x+6)(x-2)+8)$$

$$= -18+24x + (x-5) (x^{2}+4x-4)$$

$$= x^{3} - x^{2} + 2.$$

האיבר החופשי שונה מאפס לכן T הפיך. לפי משפט ק"ה:

$$T^3 - T^2 + 2I = 0$$

:כאשר האגף הימין הוא אופרטור האפס. נפעיל  $T^{-1}$  על המשוואה ונקבל

$$T^2 - T + 2T^{-1} = 0$$

לכן

$$T^{-1} = -\frac{1}{2}T^2 + \frac{1}{2}T$$

### 4.6 הפולינום המינימלי של מטריצה

#### הגדרה 4.5 פולינום המינימלי

תהי פולינום מתוקן מצורה. הפולינום המינימלי מטריצה אוא מטריצה ריבועית. מטריצה אוא מטריצה  $A \in \mathbb{F}^{n \times n}$ 

$$m(x) = \alpha_0 + \alpha_1 x_1 + \ldots + \alpha_{k-1} x^{k-1} + x^k$$
, (#)

:כאשר k > 1 כך ש

- m(A) = 0 (1
- A י"י שמתאפסים (#) היא הסדר הנמוכה ביותר מבין הפולינומים מצורה k

 $.m_A(x)$  ב- A ב- מינימלי של הפולינום המינימלי

### משפט 4.10 ל- $m_A(x)$ ול- $p_A(x)$ יש בדיוק אותם גורמים אי-פריקים.

ל-  $p_A(x)$  ול-  $p_A(x)$  יש בדיוק אותם גורמים אי-פריקים. כלומר

$$m_A(\lambda) = 0 \quad \Leftrightarrow \quad p_A(\lambda) = 0 .$$

#### הוכחה:

 $.m_A(\lambda)=0$  נניח ש

(נוסחת איוקליד לחיוק פולינומים). אז לפן  $m_A(x)=q(x)$  כאשר איוקליד לחיוק פולינומים). אז  $m_A(x)=q(x)$  הוא הפולינים המינימלי של A לכן A לכן A לכן הוא הפולינים

 $\mathbf{w} = q(A)\mathbf{v} \neq \bar{\mathbf{0}}$  -ע כך ש $\mathbf{w} + \mathbf{v}$  נגדיר וקטורים

$$\bar{0} = m_A(A)\mathbf{v} = (A - \lambda I)q(A)\mathbf{v} = (A - \lambda I)\mathbf{w}$$
,

לכן

 $A\mathbf{w} = \lambda \mathbf{w}$ .

A של  $\lambda$  אשייך לערך עצמי א א וקטור עצמי של א וקטור עצמי של א וא וקטור עצמי של א ו

 $.p_A(\lambda)=0$  לכן

 $p_A(\lambda) = 0$  נניח ש

A ערך עצמי של  $\lambda$  אז  $\lambda$ 

נניח ש- w הוקטור עצמי ששייך לערך עצמי  $\lambda$ . אז

 $A\mathbf{w} = \lambda \mathbf{w}$ .

לכן

 $m_A(A)\mathbf{w} = m_A(\lambda)\mathbf{w}$ .

 $m(\lambda)$ w = 0 לכן  $m_A(A)=0$ 

 $m_A(\lambda)=0$  לכן ,w  $eq ar{0}$  אין וקטור עצמי אז w

#### משפט 4.11 מטריצה מאפסת הפולינום המינימלי של מטריצה שאליה היא דומה

תהיינה  $m_B(x)$  ויהי ויהי  $A,B\in\mathbb{F}^{n\times n}$  הפולינום המינימלי של  $A,B\in\mathbb{F}^{n\times n}$  הפולינום המינימלי של A,B מטריצות דומות אז

$$m_A(B) = 0$$

-1

$$m_B(A)=0$$
.

-או- B ו- B דומות לכן קיימת P הפיכה כך ש- $A=PBP^{-1}$ . לפי משפט 4.3:

$$m_A(A) = P \cdot m_A(B) \cdot P^{-1}$$

 $:P^{-1}$  -ם ומצד שמאל ב- P הפיכה אז נכפיל מצד ימין ב- P

$$P^{-1} \cdot m_A(A) \cdot P = m_A(B) .$$

 $m_A(B) = 0$  לכן  $m_A(A) = 0$ 

### משפט 4.12 למטריצות דומות יש אותו פולינום מינימלי

. תהיינה  $A,B\in\mathbb{F}^{n\times n}$  שאותו פולינום מינימלי. מטריצות דומות. ל- $A,B\in\mathbb{F}^{n\times n}$ 

A ו- B דומות A ל- A ו- B יש אותם ערכים עצמיים (לפי משפט 3.21).

B הפולינום המינימלי של הפולינום המינימלי של הפולינום המינימלי של הפולינום המינימלי של הפולינום המינימלי של

כיוון של- A ו-  $m_A(x)$  ו-  $m_A(x)$  ו- עצמיים לאותם גורמים לינאריים:

$$m_A(x) = (x - \lambda_1)^{d_1} \dots (x - \lambda_k)^{d_k}, \qquad m_B(x) = (x - \lambda_1)^{e_1} \dots (x - \lambda_k)^{e_k}.$$

ו- B לפני משפט 4.11 (לפי משפט  $m_A(A)=0$  ו-  $m_A(B)=0$  למעלה).

. כעת נוכיח דרך השלילה כי  $m_B$  ולכן הפולינומים לכל לכל לכל  $d_i=e_i$  יה השלילה דרך כעת נוכיח לכל לכל לכל לכל לכל הש

 $d_i 
eq e_i$  נניח כי עבור אחד הגורמים,

אס בסתירה  $m_B(x)$  -ש. מתקיים ש- B מאפסת פולינום מדרגה נמוכה יותר מ-  $m_A(B)=0$  -שם אם  $d_i < e_i$  אם לכך כי  $m_B(x)$  הוא הפולינום המינימלי של

הם יותר מ- $m_A(x)$  ש- יותר מ- $m_B(A)=0$ , אז מתקיים ש- $m_A(x)$  אם אם אם און ש- $m_A(x)$ , אז מתקיים ש- $m_A(x)$  אם או הפולינום המינימלי של א.

#### משפט 4.13 לכסינה אא"ם לפולינום מינימלי יש גורמים לינאריים שונים A

תהי  $A\in \mathbb{F}^{n imes n}$  אם"ם כל הגורמים האי-פריקים תהי  $A\in \mathbb{F}^{n imes n}$  אם"ם כל הגורמים האי-פריקים אל תהי  $M_A(x)$  הם לינאריים ושונים.

-כלומר A לכסינה אם"ם  $m_A(x)$  מתפרק ל

$$m_A(x) = (x - \lambda_1) \dots (x - \lambda_i) \dots (x - \lambda_k)$$
.

הוכחה: נניח ש- A לכסינה.

A הערכים עצמיים השונים של  $\lambda_1,\ldots,\lambda_k$  יהיו

-קיימת P הפיכה ו- D אלכסונית כך ש

$$A = PDP^{-1} .$$

כאשר

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \cdots & 0 & 0 & 0 \\ 0 & 0 & \lambda_1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_k & 0 & 0 \\ 0 & 0 & 0 & \cdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & \cdots & \lambda_k \end{pmatrix}$$

 $m_A(x) = m_D(x) .$ 

 $m_A(x) = (x - \lambda_1) \dots (x - \lambda_k)$  נוכיח כי

$$\begin{split} m_A(A) = & m_A(PDP^{-1}) \\ = & Pm_A(D)P^{-1} \\ &= \begin{pmatrix} m_A(\lambda_1) & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \cdots & 0 & 0 & 0 \\ 0 & 0 & m_A(\lambda_1) & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & m_A(\lambda_k) & 0 & 0 \\ 0 & 0 & 0 & \cdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & \cdots & m_A(\lambda_k) \end{pmatrix} P^{-1} \quad \text{(4.1 observed)} \\ = & P \cdot 0_{n \times n} \cdot P^{-1} \\ = & 0 \end{split}$$

 $m_A(x) = (x - \lambda_1) \dots (x - \lambda_k)$  לכך

# 4.7 תרגילים על הפולינום המינימלי

#### דוגמה 4.16

אם הפולינום המינימלי של מטריצה A הוא m(x)=(x-1)(x-2) אז A לכסינה.

#### דוגמה 4.17

נניח A מטריצה מעל  $\mathbb R$  כך שהפולינום המינימלי שלה הוא

$$m_A(x) = (x-1)(x-2)^2$$

.אז A לא לכסינה

#### דוגמה 4.18

נניח ש

$$p_A(x) = (x-1)^2(x-2)^2$$

121

$$m_A(x) \neq (x-1)(x-2)(x-3)$$

 $.m_A(x) \nmid p_A(x)$  כי

#### דוגמה 4.19

נניח ש

$$p_A(x) = (x-1)(x-2)x$$

אז

$$m_A(x) = (x-1)(x-2)x$$
.

#### דוגמה 4.20

נניח ש

$$p_A(x) = (x-1)^2(x-2)^2$$

 $?m_A$  מהן האפשרויות עבור

#### פתרון:

ישנן 4 אפשרויות:

$$(x-1)(x-2)$$
,  $(x-1)^2(x-2)$ ,  $(x-1)(x-2)^2$ ,  $(x-1)^2(x-2)^2$ .

(אם A נתונה אפשר לבדוק איזה מהם מתאפס ע"י A. יש להציב את בכל אחד מהפולינומים)

#### דוגמה 4.21

$$A=egin{pmatrix} 2&1&0&0\\0&2&0&0\\0&0&2&0\\0&0&0&5 \end{pmatrix}$$
 של של הפולינום המינימלי של

#### פתרון:

$$p_A(x) = (x-2)^3(x-5)$$
.

האפשרויות ל- $m_A(x)$  הם

$$f_1(x) = (x-2)(x-5)$$
,  $f_2(x) = (x-2)^2(x-5)$ ,  $f_3(x) = (x-2)^3(x-5)$ .

:A נציב את

$$m_A(x) = f_2(x) = (x-2)^2(x-5)$$
 לכן

#### דוגמה 4.22

תהיינה

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} , \qquad B = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

B -ומות A האם

#### פתרון:

$$p_A(x) = (x-2)^2 = p_B(x)$$

אלכסונית. B אבל הריבוי אווה עצמי  $\lambda=2$ עצמי עבור הערך אבל הריבוי אלכסונית. אלכסונית. B .1

$$A - 2I = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
  $\Rightarrow$   $\dim V_2 = 1$ .  
 $m_A(x) = x - 2$ ,  $m_B(x) = (x - 2)^2$ .

לכן A ו- B לכן

#### דוגמה 4.23

. תהי שכל של הפולינום המינימלי. אורש של הפולינום המינימלי. הוכיחו שכל ערך עצמי של  $A \in \mathbb{F}^{n \times n}$ 

A ערך עצמי של A. אז  $\lambda_0$  ערך עצמי של

$$p_A(x) = (x - \lambda_0)^k \cdot q(x) ,$$

ז"א  $m_A(x)$  -ט גם ב- 4.10, הוא מופיע הם הייק  $(x-\lambda_0)$ . לכן, לפי משפט איירם שי וורם אי פריק  $p_A(x)$  ז"א  $k\geq 1$ 

$$m_A(x) = (x - \lambda_0)^l \cdot t(x) .$$

ז"א

$$m_A(\lambda_0)=0$$
.

#### דוגמה 4.24

 $f(x)=x^2+4x+3$  יהי  $m_A(x)=(x-1)^2$  הוא שלה המינימלי שהפולינום המינימלי שהפולינום המינימלי שלה הוא הוכיחו כי המטריצה f(A) הפיכה.

פתרון: 
$$(A-I)^2 = 0 \Leftarrow m_A(A) = 0$$

$$f(A) = A^2 + 4A + 3I = (A^2 - 2A + I) + 6A + 2I = (A - I)^2 + 6A + 2I = 6A + 2I.$$

נוכיח כי  $|6A+2I|\neq 0$  בדרך השלילה.

נניח ש 
$$|6A+2I|=0$$
 אז

$$|6A + 2A| = \left|6(A + \frac{2}{6}I)\right| = 6^n \left|A + \frac{1}{3}I\right| = 0$$

מתירה. סתירה אורש של הפולינום המינימלי. לכן הוא לכן א"ג לכן עצמי אל  $\lambda=-\frac{1}{3}$  א"ג  $\lambda=\lambda$ 

#### דוגמה 4.25

$$A = egin{pmatrix} 0 & 1 & 0 \ -4 & 4 & 0 \ -2 & 1 & 2 \end{pmatrix}$$
 מצאו את הפולינום המינימלי של

#### פתרון:

הפולינום האופייני של A הוא

$$p_A(\lambda) = (\lambda - 2)^3 = \lambda^3 - 6\lambda^2 + 12\lambda - 8$$
.

לכו האפשרויות בשביל הפולינום מינימלי הן

$$f_1(x) = x_2$$
,  $f_2(x) = (x-2)^2$ ,  $f_3(x) = (x-2)^3$ .

$$f_1(A) = A - 2I = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} \neq 0$$

$$f_2(A) = (A - 2I)^2 = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

לכן הפולינום המינימלי הוא

$$m_A(x) = (x-2)^2$$
.

#### דוגמה 4.26

מצאו את הפולינום המינימלי והפולינום האופייני של המטריצה

$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = 4I \ .$$

#### פתרון:

הוא A הוא הפולינום האופייני

$$p_A(x) = (x-4)^3$$
.

מטריצה סקלרית (מטריצה סקלירת היא מצורה  $\alpha I$  כאשר היא מצורה סקלירת (מטריצה סקלירת היא מצורה A סלרית הוא M לכן הפולינם המינימלי של M הפולינם המינימלי המינימלי של הוא

$$m_A(x) = x - 4 .$$

# 4.8 \*משפטים: חילוק פולינומים, פולינום המינימלי ופולינומים שמתאפסים ע"י מטריצה

#### משפט 4.14

הפולינום המינימלי הוא יחיד.

הוכחה: נניח שיש שני פולינומים  $f_1(x) \neq f_2(x)$  ו-  $f_2(x)$  ו-  $f_1(x)$  מאותו סדר, כלומר

$$f_1(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_{k-1} x^{k-1} + x^k$$
,

$$f_2(x) = \beta_0 + \beta_1 x + \ldots + \beta_{k-1} x^{k-1} + x^k$$
.

כך ש
$$f_2(A) = 0$$
 -ו $f_1(A) = 0$ , אז

$$(f_1 - f_2)(A) = 0$$
.

... מסדר קטן מ- פולינום מסדר פולינום  $(f_1 - f_2)(x)$ 

#### משפט 4.15 משפט חילוק של פולינומים

יחידים כך שr(x), q(x) פולינמים פולינמים כך ש-  $\deg g \leq \deg f$  יחידים כך שf(x), g(x) יהיו

$$f(x) = q(x) \cdot g(x) + r(x)$$

כאשר

$$\deg r(x) < \deg g(x), \qquad \deg g(x) \le \deg f(x)$$
 .

### משפט 4.16 פולינום שמתאפס ע"י A מחלק את הפולינום המינימלי

תהי f(A)=0 מטריצה ריבועית ויהי f(x) פולינום. אם  $A\in \mathbb{F}^{n\times n}$  תהי  $m_A(x)\mid f(x)$  .

הוכחה: נחלק את f(x) ב-  $m_A(x)$ . לפי משפט חילוק פולינומים,

$$f(x) = m_A(x) \cdot q(x) + r(x)$$

אז .deg  $r(x) < \deg m_A(x)$  כאשר

$$f(A) = q(A)m_A(A) + r(A) .$$

.r(A)=0 לכן  $m_A(A)=0$  ו f(A)=0

r(x) מתאפס ע"י מתאפס או הוא א פולינום האפס או הוא א פולינום האפס או הוא הפולינום האפס או הוא לא פולינום האפס או הוא הפולינום מדרגה הכי נמוכה  $m_A(x)$  הוא הפולינום מדרגה הכי נמוכה  $m_A(x)$  המתאפס ע"י א.

לכן r(x) פולינום האפס, r(x)=0 אם"ם אם"ם אם לכן לכן

 $m_A(x) \mid f(x) \mid f(x) = q(x) \cdot m_A(x)$  כלומר קיבלנו ש-

### מסקנה 4.1 פולינום המינימלי מחלק את הפולינום האופייני

תהי  $m_A(x)$  הפולינום המינימלי של  $p_A(x)$  הפולינום המינימלי של  $A\in\mathbb{F}^{n imes n}$ 

 $m_A(x) \mid p_A(x)$ .

הוכחה: לפי משפט קיילי המילטון ,  $p_A(A)=0$  , הפולינום המינימלי מחלק כל פולינום המתאפס ע"י A, לכן המילטון . $m_A(x)|p_A(x)$ 

### A משפט $p_A(x)$ בחזקת הסדר של פולינום המתאפס ע"י $p_A(x)$ 4.17 משפט

 $p_A(x)$  תהי  $A\in\mathbb{F}^{n imes n}$  מטריצה ריבועית. יהי עהי הפולינום האופייני של  $A\in\mathbb{F}^{n imes n}$  מטריצה ריבועית. יהי לומר אם f(A)=0 האופייני של

$$p_A(x) \mid f^n(x)$$
.

.deg  $p_A(x) = n$  הוכחה:

.deg  $p_A(x) \leq \deg \, f^n(x)$  ולכן ,deg  $f(x) \geq 1$  אינו פולינום קבוע, ז"א ולכן ,f(x) אינו פולינום קבוע, אינו פולינום

נחלק  $f^n(x)$  ב-  $p_A(x)$  ב-  $f^n(x)$  נחלק

$$f^{n}(x) = q(x)p_{A}(x) + r(x)$$
, (\*1)

 $\deg r(x) < \deg p_A(x) \le \deg f^n(x)$ 

ונקבל (1\*) נציב אה ב-  $p_A(x)=q_1(x)m_A(x)$  אא  $m_A(x)|p_A(x)$ 

$$f^{n}(x) = q_{1}(x)q(x)m_{A}(x) + r(x)$$
 (\*2)

 $.m_A(x)\mid f^n(x)$  לכן  $f^n(A)=0$  לכן f(A)=0 נניח ש-f(A)=0 בניח ש-f(A)=0 לכן f(A)=0 לכן f(A)=0

### A משפט 4.18 גורם אי-פריק של הפולינום הואפייני מחלק כל פולינום המתאפס ע"י

תהי  $(x-\lambda_0)$  אם  $(x-\lambda_0)$  אם הפולינום האופייני של  $p_A(x)$  היי מטריצה ריבועית. מטריצה ריבועית. יהי  $p_A(x)$  הפולינום האופייני של f(x) ו-  $p_A(x)$  פולינום האתאפס ע"י  $p_A(x)$ 

$$(x-\lambda_0)\mid f(x)$$
.

#### הוכחה:

A אם  $(p_A(x)$  אז  $(p_A(x)$  אז פריק של אי-פריק של אי גורם אי-פריק של איז איז אם אם  $(x-\lambda_0)$  אם אם  $(x-\lambda_0)$  בריק בי נחלק בי משפט חילוק פולינומים איימים פולינומים יחידים ( $(x-\lambda_0)$  כך ש-גוחלק ( $(x-\lambda_0)$ ). כלומר לפי משפט חילוק פולינומים קיימים פולינומים יחידים

$$f(x) = q(x)(x - \lambda_0) + r(x)$$

.deg  $r(x)<\deg{(x-\lambda_0)}\leq\deg{f(x)}$  כאשר .deg r(x)=0 אז .deg  $(x-\lambda_0)=1$  ז"א  $r(x)=c\in\mathbb{F}$  כאשר r(x)=c פולינום קבוע: r(x) אז יהי r(x) וקטור עצמי השייך ל- r(x). אז

$$0 = f(A)\mathbf{v} = q(A)(A - \lambda_0 I)\mathbf{v} + c\mathbf{v}$$

 $\mathbf{v}$  הוא הוקטור עצמי השייך ל- $(A-\lambda_0)\mathbf{v}=A\mathbf{v}-\lambda_0\mathbf{v}=\lambda_0\mathbf{v}-\lambda_0\mathbf{v}=0$ לכן  $(A-\lambda_0)\mathbf{v}=A\mathbf{v}-\lambda_0\mathbf{v}=0$  ואז נקבל

$$f(x) = q(x)(x - \lambda_0) ,$$

 $(x-\lambda_0)\mid f(x)$  א"ז.