# **Importing Libraries**

## In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

# **Importing Datasets**

### In [3]:

df=pd.read\_csv(r"C:\Users\user\Downloads\C10\_air\csvs\_per\_year\csvs(Dataset)\madrid\_2001.
df

### Out[3]:

|                          | date                       | BEN   | со   | EBE  | MXY   | ИМНС | NO_2      | NOx        | OXY  | O_3       |    |
|--------------------------|----------------------------|-------|------|------|-------|------|-----------|------------|------|-----------|----|
| 0                        | 2001-<br>08-01<br>01:00:00 | NaN   | 0.37 | NaN  | NaN   | NaN  | 58.400002 | 87.150002  | NaN  | 34.529999 | 1( |
| 1                        | 2001-<br>08-01<br>01:00:00 | 1.50  | 0.34 | 1.49 | 4.10  | 0.07 | 56.250000 | 75.169998  | 2.11 | 42.160000 | 1( |
| 2                        | 2001-<br>08-01<br>01:00:00 | NaN   | 0.28 | NaN  | NaN   | NaN  | 50.660000 | 61.380001  | NaN  | 46.310001 | 1( |
| 3                        | 2001-<br>08-01<br>01:00:00 | NaN   | 0.47 | NaN  | NaN   | NaN  | 69.790001 | 73.449997  | NaN  | 40.650002 | ť  |
| 4                        | 2001-<br>08-01<br>01:00:00 | NaN   | 0.39 | NaN  | NaN   | NaN  | 22.830000 | 24.799999  | NaN  | 66.309998 | 7  |
|                          |                            |       |      |      |       |      |           |            |      |           |    |
| 217867                   | 2001-<br>04-01<br>00:00:00 | 10.45 | 1.81 | NaN  | NaN   | NaN  | 73.000000 | 264.399994 | NaN  | 5.200000  | 2  |
| 217868                   | 2001-<br>04-01<br>00:00:00 | 5.20  | 0.69 | 4.56 | NaN   | 0.13 | 71.080002 | 129.300003 | NaN  | 13.460000 | 2  |
| 217869                   | 2001-<br>04-01<br>00:00:00 | 0.49  | 1.09 | NaN  | 1.00  | 0.19 | 76.279999 | 128.399994 | 0.35 | 5.020000  | ۷  |
| 217870                   | 2001-<br>04-01<br>00:00:00 | 5.62  | 1.01 | 5.04 | 11.38 | NaN  | 80.019997 | 197.000000 | 2.58 | 5.840000  | 3  |
| 217871                   | 2001-<br>04-01<br>00:00:00 | 8.09  | 1.62 | 6.66 | 13.04 | 0.18 | 76.809998 | 206.300003 | 5.20 | 8.340000  | ŧ  |
| 217872 rows × 16 columns |                            |       |      |      |       |      |           |            |      |           |    |
| 4                        |                            |       |      |      |       |      |           |            |      |           |    |

# **Data Cleaning and Data Preprocessing**

## In [4]:

df=df.dropna()

#### In [5]:

```
df.columns
```

```
Out[5]:
```

### In [6]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 29669 entries, 1 to 217871
Data columns (total 16 columns):
    Column
             Non-Null Count Dtype
    -----
             -----
---
                             ----
0
    date
             29669 non-null object
 1
    BEN
             29669 non-null float64
 2
    CO
             29669 non-null float64
 3
    EBE
             29669 non-null float64
 4
    MXY
             29669 non-null float64
 5
             29669 non-null float64
    NMHC
 6
    NO_2
             29669 non-null float64
 7
    NOx
             29669 non-null float64
 8
    OXY
             29669 non-null float64
 9
    0 3
             29669 non-null float64
 10
    PM10
             29669 non-null float64
 11
    PXY
             29669 non-null float64
 12
    S0_2
             29669 non-null float64
 13
    TCH
             29669 non-null float64
 14
             29669 non-null float64
    TOL
   station 29669 non-null int64
15
dtypes: float64(14), int64(1), object(1)
memory usage: 3.8+ MB
```

```
In [17]:
```

```
data=df[['BEN', 'CO', 'station']]
data
```

### Out[17]:

|        | BEN   | СО   | station  |
|--------|-------|------|----------|
| 1      | 1.50  | 0.34 | 28079035 |
| 5      | 2.11  | 0.63 | 28079006 |
| 21     | 0.80  | 0.43 | 28079024 |
| 23     | 1.29  | 0.34 | 28079099 |
| 25     | 0.87  | 0.06 | 28079035 |
|        |       |      |          |
| 217829 | 11.76 | 4.48 | 28079006 |
| 217847 | 9.79  | 2.65 | 28079099 |
| 217849 | 5.86  | 1.22 | 28079035 |
| 217853 | 14.47 | 1.83 | 28079006 |
| 217871 | 8.09  | 1.62 | 28079099 |

29669 rows × 3 columns

## Line chart

### In [18]:

```
data.plot.line(subplots=True)
```

### Out[18]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)



## Line chart

```
In [19]:
```

```
data.plot.line()
```

## Out[19]:

<AxesSubplot:>



## **Bar chart**

```
In [20]:
```

```
b=data[0:50]
```

```
In [21]:
```

```
b.plot.bar()
```

## Out[21]:

<AxesSubplot:>



## Histogram

### In [22]:

data.plot.hist()

## Out[22]:

<AxesSubplot:ylabel='Frequency'>



## Area chart

## In [23]:

data.plot.area()

## Out[23]:

<AxesSubplot:>



## **Box chart**

## In [24]:

data.plot.box()

## Out[24]:

<AxesSubplot:>



## Pie chart

### In [25]:

```
b.plot.pie(y='station' )
```

## Out[25]:

<AxesSubplot:ylabel='station'>



## **Scatter chart**

#### In [26]:

```
data.plot.scatter(x='CO' ,y='station')
```

#### Out[26]:

<AxesSubplot:xlabel='CO', ylabel='station'>



#### In [27]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 29669 entries, 1 to 217871
Data columns (total 16 columns):
 #
     Column
              Non-Null Count Dtype
0
     date
              29669 non-null
                               object
 1
     BEN
              29669 non-null
                               float64
 2
     CO
              29669 non-null
                               float64
 3
     EBE
              29669 non-null
                               float64
 4
     MXY
              29669 non-null
                               float64
 5
     NMHC
              29669 non-null
                               float64
 6
     NO_2
              29669 non-null
                               float64
 7
     NOx
              29669 non-null
                               float64
 8
     OXY
              29669 non-null
                               float64
 9
     0 3
              29669 non-null
                               float64
 10
     PM10
              29669 non-null
                               float64
 11
     PXY
              29669 non-null
                               float64
 12
     SO 2
              29669 non-null
                               float64
 13
     TCH
              29669 non-null
                               float64
 14
     TOL
              29669 non-null
                               float64
              29669 non-null
     station
                               int64
dtypes: float64(14), int64(1), object(1)
memory usage: 3.8+ MB
```

```
In [28]:
```

```
df.describe()
```

### Out[28]:

|       | BEN          | СО           | EBE          | MXY          | NMHC         | NO_2         |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| count | 29669.000000 | 29669.000000 | 29669.000000 | 29669.000000 | 29669.000000 | 29669.000000 |
| mean  | 3.361895     | 1.005413     | 3.580229     | 8.113086     | 0.195222     | 67.652292    |
| std   | 3.176669     | 0.863135     | 3.744496     | 7.909701     | 0.192585     | 34.003120    |
| min   | 0.100000     | 0.000000     | 0.140000     | 0.210000     | 0.000000     | 1.180000     |
| 25%   | 1.280000     | 0.470000     | 1.390000     | 3.040000     | 0.080000     | 44.299999    |
| 50%   | 2.510000     | 0.760000     | 2.600000     | 5.830000     | 0.140000     | 64.449997    |
| 75%   | 4.420000     | 1.270000     | 4.580000     | 10.640000    | 0.250000     | 86.540001    |
| max   | 54.560001    | 11.890000    | 77.260002    | 150.600006   | 2.880000     | 292.700012   |
| 4     |              |              |              |              |              | •            |

## In [30]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

## **EDA AND VISUALIZATION**

## In [31]:

sns.pairplot(df1[0:50])

## Out[31]:

<seaborn.axisgrid.PairGrid at 0x248f6e09250>



#### In [32]:

```
sns.distplot(df1['station'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

#### Out[32]:

<AxesSubplot:xlabel='station', ylabel='Density'>



#### In [33]:

sns.heatmap(df1.corr())

#### Out[33]:

### <AxesSubplot:>



## TO TRAIN THE MODEL AND MODEL BULDING

```
In [34]:
```

```
In [35]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

## **Linear Regression**

### In [36]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

### Out[36]:

LinearRegression()

### In [37]:

```
lr.intercept_
```

#### Out[37]:

28079007.64496446

### In [38]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

### Out[38]:

|      | Co-efficient |
|------|--------------|
| BEN  | 6.970464     |
| со   | -15.513928   |
| EBE  | 0.740165     |
| MXY  | -0.177168    |
| NMHC | 80.626169    |
| NO_2 | 0.112355     |
| NOx  | -0.081561    |
| OXY  | -3.117769    |
| O_3  | -0.024178    |
| PM10 | -0.063713    |
| PXY  | 1.304098     |
| SO_2 | -0.315505    |
| тсн  | 36.870386    |
| TOL  | -1.132227    |

### In [39]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

### Out[39]:

<matplotlib.collections.PathCollection at 0x24882d7cac0>



## **ACCURACY**

```
8/4/23, 9:56 AM
                                             madrid 2001 - Jupyter Notebook
 In [40]:
 lr.score(x_test,y_test)
 Out[40]:
 0.1647074187443297
 In [41]:
 lr.score(x_train,y_train)
 Out[41]:
 0.16493490828376267
 Ridge and Lasso
 In [42]:
 from sklearn.linear_model import Ridge,Lasso
 In [43]:
 rr=Ridge(alpha=10)
 rr.fit(x_train,y_train)
 Out[43]:
 Ridge(alpha=10)
 Accuracy(Ridge)
 In [44]:
 rr.score(x_test,y_test)
 Out[44]:
 0.16425017603940917
```

```
In [45]:
rr.score(x_train,y_train)
Out[45]:
0.1646970650280114
In [46]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[46]:
```

Lasso(alpha=10)

```
In [47]:
```

```
la.score(x_train,y_train)
```

### Out[47]:

0.040014295690649515

## **Accuracy(Lasso)**

```
In [48]:
la.score(x_test,y_test)
Out[48]:
0.0376097730714563
In [49]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[49]:
ElasticNet()
In [50]:
en.coef_
Out[50]:
array([ 4.84124189, 0. , 0.71064843, -0.29880189, 0.0723964 ,
        0.06242194, -0.03254308, -2.52507789, -0.033144 , 0.07237582,
        0.81792277, -0.33712439, 1.21467131, -0.63262354])
In [51]:
en.intercept_
Out[51]:
28079049.346572097
In [52]:
prediction=en.predict(x_test)
In [53]:
en.score(x_test,y_test)
Out[53]:
0.09943610174409923
```

## **Evaluation Metrics**

```
In [54]:
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
30.369818605860505
1208.4702603479132
34.76305884625105
Logistic Regression
In [55]:
from sklearn.linear_model import LogisticRegression
In [56]:
feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
target_vector=df[ 'station']
In [57]:
feature_matrix.shape
Out[57]:
(29669, 14)
In [58]:
target_vector.shape
Out[58]:
(29669,)
In [59]:
from sklearn.preprocessing import StandardScaler
In [60]:
fs=StandardScaler().fit transform(feature matrix)
In [61]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs,target_vector)
Out[61]:
```

LogisticRegression(max\_iter=10000)

```
In [62]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [63]:
prediction=logr.predict(observation)
print(prediction)
[28079035]
In [64]:
logr.classes_
Out[64]:
array([28079006, 28079024, 28079035, 28079099], dtype=int64)
In [65]:
logr.score(fs,target_vector)
Out[65]:
0.8087229094340894
In [66]:
logr.predict_proba(observation)[0][0]
Out[66]:
1.724527777144498e-43
In [67]:
logr.predict_proba(observation)
Out[67]:
array([[1.72452778e-43, 2.43756289e-56, 9.99998565e-01, 1.43537418e-06]])
Random Forest
In [68]:
from sklearn.ensemble import RandomForestClassifier
In [69]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[69]:
```

RandomForestClassifier()

```
In [70]:
```

### In [71]:

```
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

### Out[71]:

#### In [72]:

```
grid_search.best_score_
```

### Out[72]:

0.7301617873651772

#### In [73]:

```
rfc_best=grid_search.best_estimator_
```

#### In [74]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
5\nvalue = [127, 28, 291, 115]\nclass = c'),
Text(4379.773584905661, 181.199999999982, 'gini = 0.596\nsamples = 13
03\nvalue = [1148, 38, 541, 341]\nclass = a')]
```

## Conclusion

## **Accuracy**

Linear Regression:0.15333059191475773

Ridge Regression:0.15336555741871216

Lasso Regression:0.03896350073644961

ElasticNet Regression:0.09871426228846358

Logistic Regression:0.8087229094340894

Random Forest: 0.7331953004622496

Logistic Regression is suitable for this dataset