MA557 Homework 6

Carlos Salinas

November 9, 2015

Problem 6.1

For an n by n matrix ϕ with entries in R write $I_t(\phi)$ for the R-ideal generated by all the t by t minors of ϕ (set $I_t(\phi) = R$ for $t \le 0$ and $I_t(\phi) = 0$ for $t > \min\{m, n\}$). Thinking of ϕ as an R-linear map $\phi \colon R^m \to R^n$ set $M = \operatorname{coker}(\phi)$ and define $F_i(M) = \operatorname{Fitt}_i(M) = I_{n-i}(\phi)$. This ideal is called the *ith Fitting ideal of* M. Show:

- (a) $F_i(M)$ only depends on i and M (but not on m, n, ϕ).
- (b) $(\operatorname{ann}(M))^n \subset F_0(M) \subset \operatorname{ann}(M)$.
- (c) In case R is local, $F_i(M) = R$ if and only if $\mu(M) \leq i$.
- (d) $V(F_i(M)) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mu_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > i \}.$

Proof.

Problem 6.2

Let I be an ideal in a Noetherian ring. Show that either I contains an R-regular element or else aI = 0 for some $0 \neq a \in R$.

Proof. Suppose R is a Noetherian ring and $I \subset R$ an ideal. Then, by 3.2, I is finitely generated, say $I = (a_1, ..., a_n)$, for $a_1, ..., a_n \in R$. Then, either I contains an R-regular element or it does not. If I does not contain an R-regular element, then for every a_i there exists $x_i \in R$ such that $a_i x_i = 0$. Thus, $I \subset \bigcup_{i=1}^n \operatorname{ann}(x_i)$, but each $\operatorname{ann}(x_i) \subset \mathfrak{p}_i$ for some $\mathfrak{p} \in \operatorname{Ass}(R)$ so $I \subset \bigcup_{i=1}^m \mathfrak{p}_i$ for $m \leq n$. By the prime avoidance lemma, 1.7, it follows that $I \subset \mathfrak{p}_i = \operatorname{ann}(y_i)$ for some $1 \leq i \leq m$. Thus, $y_i I = 0$.

Problem 6.3

Let $I \subset J$ be ideals in a Noetherian ring. Show that if $I_{\mathfrak{p}} = J_{\mathfrak{p}}$ for every associated prime \mathfrak{p} of I, then I = J.

Proof.

Problem 6.4

Let R be a Noetherian ring and M a finite R-module. Show that $\ell(M) < \infty$ if and only if $\operatorname{Supp}(M) \subset \mathfrak{m}\operatorname{-Spec}(R)$.

Proof.

Problem 6.5

Let R be a Noetherian ring, $M \neq 0$ a finite R-module, and

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

a chain of submodules with $M_i/M_{i-1} \cong R/\mathfrak{p}_i$, $\mathfrak{p}_i \in \operatorname{Spec}(R)$.

- (a) Show that $\operatorname{Ass}(M) \subset \{\mathfrak{p}_1,...,\mathfrak{p}_n\}$ and that the minimal elements of the two sets coincide (hence only depend on M).
- (b) Let \mathfrak{p} be minimal in $\{\mathfrak{p}_1,...,\mathfrak{p}_n\}$. Show that in any chain as above, the multiplicity with witch the factor R/\mathfrak{p} appears is $\ell_{R_{\mathfrak{p}}}(M_{\mathfrak{p}})$ (hence only depends on M).

Proof.

Problem 6.6

Let R = k[X, Y] be a polynomial ring over a field and $I = (X^2, XY) \subset R$. Find two distinct shortest primary decompositions of I.

Proof.