Package 'ipsfs'

October 13, 2022

Title Intuitionistic, Pythagorean, and Spherical Fuzzy Similarity

Measure
Version 1.0.0
Date 2022-06-16
Author Rama Ranjan Panda and Naresh Kumar Nagwani
Maintainer Rama Ranjan Panda <pre>rrpanda.phd2018.cs@nitrr.ac.in></pre>
Description Advanced fuzzy logic based techniques are implemented to compute the similarity among different objects or items. Typically, application areas consist of transforming raw data into the corresponding advanced fuzzy logic representation and determining the similarity between two objects using advanced fuzzy similarity techniques in various fields of research, such as text classification, pattern recognition, software projects, decision making, medical diagnosis, and market prediction. Functions are designed to compute the membership, non-membership, hesitant-membership, indeterminacy-membership, and refusal-membership for the input matrices. Furthermore, it also includes a large number of advanced fuzzy logic based similarity measure functions to compute the Intuitionistic fuzzy similarity (IFS), Pythagorean fuzzy similarity (PFS), and Spherical fuzzy similarity (SFS) between two objects or items based on their fuzzy relationships. It also includes working examples for each function with sample data sets.

License GPL-2
Encoding UTF-8
RoxygenNote 7.1.2
NeedsCompilation no
Repository CRAN
Date/Publication 2022-06-21 10:10:02 UTC

R topics documented:

Type Package

hmemIFS																						3
hmemPFS																						4
imemSFS																						5
leftfootfind	ing	Ţ.																				5

eftshoulderfinding	 6
nemG	 7
nemT	 7
nemTP	 8
nidvalue	 9
nn	 10
nonmemS	 10
nonmemY	
ightfootfinding	
ightshoulderfinding	
memSFS	
imBA	
imC	
imDC	
imGK	
imHK	
imHY1	
imHY2	
imHY3	
imHY4	
imJJLY	
imKKDKS	
imL	
imM	
imNNNG1	
imNNNG2	
imNSCA	
.imP	
imPYY2	
imSGFDK1	
imSGFDK2	
imSGFDK4	
imSGFDK4	
imSGFDK6	
imSGFDK6	
imSGFDK7	
imSGFDK8	
imSWLX	
imSY	
imWW1	
imWW2	
imWW3	
imWW4	
.imWW5	 55

hmemIFS	
IIIIICIIII S	•

Index		78
	std	. 7
	simZHFLL4	
	simZHFLL3	. 74
	simZHFLL2	
	simZHFLL1	. 72
	simZ	. 7
	simY	. 70
	simWWLWW9	. 69
	simWWLWW8	. 6
	simWWLWW7	. 60
	simWWLWW6	
	simWWLWW5	
	simWWLWW4	
	simWWLWW3	
	simWWLWW2	
	simWWLWW10	
	simWWLWW1	
	simWW6	. 56

Description

 ${\tt hmemIFS}$

Intuitionistic hesitancy membership values with membership and non-membership values as input

Intuitionistic hesitancy membership function

Usage

hmemIFS(m, nm)

Arguments

m IFS membership values computed using either triangular or trapezoidal or guassian membership function

IFS non-membership values computed using either Sugeno and Terano's or

Yager's non-membership function

Value

IFS hesistancy values

4 hmemPFS

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
m<-memG(a,b,x)
lam<-0.5
nm<-nonmemS(m,lam)
hmemIFS(m,nm)
# [,1] [,2] [,3]
#[1,]0.09921264 0.05810582 0.03270001
#[2,]0.09915966 0.03100937 0.05966479
#[3,]0.04565299 0.09939456 0.04565299
#[4,]0.04565299 0.09939456 0.04565299</pre>
```

hmemPFS

Pythagorean hesitancy membership function

Description

Pythagorean hesitancy membership values with membership and non-membership values as input

Usage

```
hmemPFS(m, nm)
```

Arguments

m PFS membership values computed using either triangular or trapezoidal or guas-

sian membership function

nm PFS non-membership values computed using either Sugeno and Terano's or

Yager's non-membership function

Value

PFS hesistancy values

imemSFS 5

imemSFS

Spherical indeterminacy membership function

Description

Spherical indeterminacy membership values with membership and non-membership values as input

Usage

```
imemSFS(m, nm)
```

Arguments

m SFS membership values computed using either triangular or trapezoidal or guas-

sian membership function

nm SFS non-membership values computed using either Sugeno and Terano's or

Yager's non-membership function

Value

SFS indeterminacy membership values

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
m<-memG(a,b,x)
lam<-0.5
nm<-nonmemS(m,lam)
imemSFS(m,nm)
# [,1] [,2] [,3]
#[1,] 0.09921264 0.05810582 0.03270001
#[2,] 0.09915966 0.03100937 0.05966479
#[3,] 0.04565299 0.09939456 0.04565299
#[4,] 0.04565299 0.09939456 0.04565299</pre>
```

leftfootfinding

Left foot values

Description

Left foot value for triangular or trapezoidal membership function

Usage

```
leftfootfinding(x, n)
```

6 leftshoulderfinding

Arguments

x A data set in the form of document-term matrix

n A constant value to fix the left foot value

Value

Left foot values for the input data set x.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
leftfootfinding(x,5)
#[1] 10 5 10 10</pre>
```

leftshoulderfinding

Left shoulder values

Description

Left shoulder value for trapezoidal membership function

Usage

```
leftshoulderfinding(a, b)
```

Arguments

- a A constant value for fixing the left shoulder
- b Middle values for the data set x

Value

Left shoulder values for the input data set x.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
mid<-midvalue(x)
leftshoulderfinding(2.5,mid)
#[1] 14.0 10.5 12.0 15.0</pre>
```

memG 7

memG

Gaussian membership function

Description

Gaussian membership function with mean, standard deviation, and data set

Usage

```
memG(a, b, x)
```

Arguments

- a Mean values of individual rows of the data set x
- b Standard deviation values of individual rows of the data set x
- x A data set in the form of document-term matrix

Value

Gaussian membership values for the input data set x.

Examples

memT

Triangular membership function

Description

Triangular membership function with leftfooting, midvalue, rightfooting, and data set

Usage

```
memT(a, b, c, x)
```

8 memTP

Arguments

a	Leftfooting value of the data set x
b	Middle value of the data set x
С	Rightfooting value of the data set x
X	A data set in the form of document-term matrix

Value

Triangular membership values for the input data set x.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-leftfootfinding(x,5)
b<-midvalue(x)
c<-rightfootfinding(x,5)
memT(a,b,c,x)
# [,1] [,2] [,3]
#[1,] 0.3076923 0.4705882 0.5882353
#[2,] 0.5000000 0.5714286 0.4285714
#[3,] 0.8888889 0.9090909 0.8888889
#[4,] 0.1333333 0.1333333 0.1333333</pre>
```

memTP

Trapezoidal membership function

Description

Trapezoidal membership function with leftfooting, leftshoulder, rightshoulder, rightfooting, and data set

Usage

```
memTP(a, b, c, d, x)
```

Arguments

а	Leftfooting value of the data set x
b	Leftshoulder value of the data set x
С	Rightshoulder value of the data set x
d	Rightfooting value of the data set x
Χ	A data set in the form of document-term matrix

Value

Trapezoidal membership values for the input data set x.

midvalue 9

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-leftfootfinding(x,5)
mid<-midvalue(x)
b<-leftshoulderfinding(2.5,mid)
c<-rightshoulderfinding(mid,2.5)
d<-rightfootfinding(x,5)
memTP(a,b,c,d,x)
# [,1] [,2] [,3]
#[1,] 0.5000000 0.66666667 0.8333333
#[2,] 0.7272727 0.8888889 0.6666667
#[3,] 1.0000000 1.0000000 1.0000000
#[4,] 0.2000000 0.2000000 0.2000000</pre>
```

midvalue

Middle values

Description

Middle value for triangular or trapezoidal membership function

Usage

```
midvalue(x)
```

Arguments

Х

A data set in the form of document-term matrix

Value

Middle values for the input data set x.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4) midvalue(x) #[1] 16.5 13.0 14.5 17.5
```

10 nonmemS

mn

Mean values

Description

Mean values of the data set for gaussian membership function

Usage

mn(x)

Arguments

Χ

A data set in the form of document-term matrix

Value

Mean values for individual row of the input data set X.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
mn(x)
#[1] 17.66667 14.00000 14.33333 15.33333</pre>
```

nonmemS

Sugeno and Terano's non membership function

Description

Sugeno and Terano's non membership function with membership values and lambda value

Usage

```
nonmemS(m, lam)
```

Arguments

m Membership values for the data set x

lam Control parameter to establish relationship between membership and non-membership

values, values range from 0.1 to 1.0

Value

Sugeno and Terano's non membership for the data set x.

nonmemY 11

References

M. Sugeno and T. Terano. A model of learning based on fuzzy information. Kybernetes, 1977.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
m<-memG(a,b,x)
lam<-0.5
nonmemS(m,lam)
# [,1] [,2] [,3]
#[1,] 0.3838416 0.1460171 0.07314142
#[2,] 0.3828998 0.0689030 0.15121934
#[3,] 0.1078653 0.3871883 0.10786528
#[4,] 0.1078653 0.3871883 0.10786528</pre>
```

nonmemY

Yager's non membership function

Description

Yager's non membership function with membership values and lambda value

Usage

```
nonmemY(m, lam)
```

Arguments

m Membership values for the data set x

lam Control parameter to establish relationship between membership and non-membership

values, values range from 0.1 to 1.0

Value

Yager's non membership for the data set x.

References

R. R. Yager. On the measure of fuzziness and negation part i: membership in the unit interval. 1979.

rightfootfinding

Examples

rightfootfinding

Right foot values

Description

Right foot value for triangular or trapezoidal membership function

Usage

```
rightfootfinding(x, n)
```

Arguments

x A data set in the form of document-term matrix

n A constant value to fix the right foot value

Value

Right foot values for the input data set x.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
rightfootfinding(x,5)
#[1] 25 20 20 25</pre>
```

rightshoulderfinding 13

rightshoulderfinding Right shoulder values

Description

right shoulder value for trapezoidal membership function

Usage

```
rightshoulderfinding(b, c)
```

Arguments

b Middle values for the data set x

c A constant value for fixing the right shoulder

Value

Right shoulder values for the input data set x.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
mid<-midvalue(x)
rightshoulderfinding(mid,2.5)
#[1] 19.0 15.5 17.0 20.0</pre>
```

rmemSFS

Spherical refusal membership function

Description

Spherical refusal membership values with membership,non-membership and indeterminacy values as input

Usage

```
rmemSFS(m, nm, im)
```

Arguments

m	SFS membership values computed using either triangular or trapezoidal or guassian membership function
nm	SFS non-membership values computed using either Sugeno and Terano's or Yager's non-membership function
im	SFS indetermincay values

14 simBA

Value

SFS refusal membership values

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
a<-mn(x)
b<-std(x)
m<-memG(a,b,x)
lam<-0.5
nm<-nonmemS(m,lam)
im<-imemSFS(m,nm)
rmemSFS(m,nm,im)
# [,1] [,2] [,3]
#[1,] 0.7586762 0.5847071 0.4405241
#[2,] 0.7584805 0.4291073 0.5923419
#[3,] 0.5193742 0.7593476 0.5193742
#[4,] 0.5193742 0.7593476 0.5193742</pre>
```

 simBA

IFS similarity measure simBA

Description

IFS similarity measure values using simBA computation technique with membership, and non-membership of two objects or set of objects.

Usage

```
simBA(ma, na, mb, nb, p, t, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
p	Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 $$
t	Level of uncertainty values, values range from 1 to 10
k	A constant value depends upon the number of rows in the y data set.

simBA 15

Value

The IFS similarity values of data set y with data set x

References

F. E. Boran and D. Akay. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Information sciences, 255:45 - 57, 2014.

```
#When data set y consist of only one row use k=1
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
p<-2
t<-2
k<-1
simBA(ma,na,mb,nb,p,t,k)
#0.7072291 0.6947466 0.8919850 0.8919850
#When data set y having more than one rows
#use k = the number of rows of data set y
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,24,21,12,6,11),nrow=2)
a < -mn(x)
b < -std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
p<-2
t<-2
sim<-c()
for(k in 1:nrow(y)){sim<-rbind(sim,simBA(ma,na,mb,nb,p,t,k))}</pre>
        [,1]
                   [,2]
                              [,3]
                                         [,4]
#[1,] 0.7072291 0.6947466 0.8919850 0.8919850
#[2,] 0.9410582 0.9843247 0.7380007 0.7380007
```

16 simC

simC	IFS similarity measure simC	

Description

IFS similarity measure values using simC computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simC(ma, na, mb, nb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

S.-M. Chen. Measures of similarity between vague sets. Fuzzy sets and Systems, 74(2):217 - 223, 1995.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simC(ma,na,mb,nb,k)
#[1] 0.7005061 0.7011282 0.8783314 0.8783314</pre>
```

simDC 17

simDC	IFS similarity measure simDC	
-------	------------------------------	--

Description

IFS similarity measure values using simDC computation technique with membership, non-membership, and hesitancy values of two objects or set of objects.

Usage

```
simDC(ma, na, mb, nb, ha, hb, p, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ha	IFS hesitancy values for the data set x
hb	IFS hesitancy values for the data set y
p	Lp norm values for measuring the p-norm distance between \boldsymbol{x} and \boldsymbol{y} , values range from 1 to 5
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

L. Dengfeng and C. Chuntian. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern recognition letters, 23(1-3):221 - 225, 2002.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5</pre>
```

18 simGK

```
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemIFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemIFS(mb,nb)
p<-2
k<-1
simDC(ma,na,mb,nb,ha,hb,p,k)
#[1] 0.3553975 0.3558802 0.5378438 0.5378438</pre>
```

simGK

IFS similarity measure simGK

Description

IFS similarity measure values using simGK computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simGK(ma, na, mb, nb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

H. Garg and K. Kumar. Distance measures for connection number sets based on set pair analysis and its applications to decision-making process. Applied Intelligence, 48(10):3346 - 3359, 2018.

simHK 19

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simGK(ma,na,mb,nb,k)
#[1] 0.1523230 0.1534360 0.6786289 0.6786289</pre>
```

simHK

IFS similarity measure simHK

Description

IFS similarity measure values using simHK computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simHK(ma, na, mb, nb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

D. H. Hong and C. Kim. A note on similarity measures between vague sets and between elements. Information sciences, 115(1-4):83 - 96, 1999.

20 simHY1

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simHK(ma,na,mb,nb,k)
#[1] 0.9702837 0.9702706 0.9874349 0.9874349</pre>
```

simHY1

IFS similarity measure simHY1

Description

IFS similarity measure values using simHY1 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simHY1(ma, na, mb, nb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

simHY2 21

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simHY1(ma,na,mb,nb,k)
#[1] 0.5562031 0.5673731 0.8158479 0.8158479</pre>
```

simHY2

IFS similarity measure simHY2

Description

IFS similarity measure values using simHY2 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simHY2(ma, na, mb, nb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

simHY3

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simHY2(ma,na,mb,nb,k)
#[1] 0.7247430 0.7253651 0.9021400 0.9021400</pre>
```

simHY3

IFS similarity measure simHY3

Description

IFS similarity measure values using simHY3 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simHY3(ma, na, mb, nb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

simHY4 23

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simHY3(ma,na,mb,nb,k)
#[1] 0.5460424 0.5468474 0.8109329 0.8109329</pre>
```

simHY4

IFS similarity measure simHY4

Description

IFS similarity measure values using simHY4 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simHY4(ma, na, mb, nb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

24 simJJLY

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simHY4(ma,na,mb,nb,k)
#[1] 0.7063744 0.7070477 0.8955969 0.8955969</pre>
```

simJJLY

IFS similarity measure simJJLY

Description

IFS similarity measure values using simJJLY computation technique with membership, non-membership, and hesitancy values of two objects or set of objects.

Usage

```
simJJLY(ma, na, mb, nb, ha, hb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ha	IFS hesitancy values for the data set x
hb	IFS hesitancy values for the data set y
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

simKKDKS 25

References

Q. Jiang, X. Jin, S.-J. Lee, and S. Yao. A new similarity/distance measure between intuitionistic fuzzy sets based on the transformed isosceles triangles and its applications to pattern recognition. Expert Systems with Applications, 116:439–453, 2019.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ha<-hmemIFS(ma,na)
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
hb<-hmemIFS(mb,nb)
k<-1
simJJLY(ma,na,mb,nb,ha,hb,k)
#[1] 0.7239098 0.7245767 0.8981760 0.8981760
```

simKKDKS

SFS similarity measure simKKDKS

Description

SFS similarity measure values using simKKDKS computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

Usage

```
simKKDKS(ma, na, mb, nb, ia, ib, k)
```

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
k	A constant value, considered as 1

26 simL

Value

The SFS similarity values of data set y with data set x

References

M. J. Khan, P. Kumam, W. Deebani, W. Kumam, and Z. Shah. Distance and similarity measures for spherical fuzzy sets and their applications in selecting mega projects. Mathematics, 8(4):519, 2020.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
k<-1
simKKDKS(ma,na,mb,nb,ia,ib,k)
#[1] 0.5726216 0.3223250 0.2791418 0.2791418
```

simL

IFS similarity measure simL

Description

IFS similarity measure values using simL computation technique with membership, non-membership, and hesitancy values of two objects or set of objects.

Usage

```
simL(ma, na, mb, nb, ha, hb, p, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function

simM 27

nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ha	IFS hesitancy values for the data set x
hb	IFS hesitancy values for the data set y
p	Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

H.-W. Liu. New similarity measures between intuitionistic fuzzy sets and between elements. Mathematical and Computer Modelling, 42(1-2):61 - 70, 2005.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ha<-hmemIFS(ma,na)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
hb<-hmemIFS(mb,nb)
k<-1
p<-2
simL(ma,na,mb,nb,ha,hb,p,k)
#[1] 0.7022635 0.6896045 0.8890488 0.8890488
```

simM

IFS similarity measure simM

Description

IFS similarity measure values using simM computation technique with membership, non-membership, and hesitancy values of two objects or set of objects.

Usage

```
simM(ma, na, mb, nb, p, k)
```

28 simM

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
р	Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

H. B. Mitchell. On the dengfeng–chuntian similarity measure and its application to pattern recognition. Pattern Recognition Letters, 24(16):3101 - 3104, 2003.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ha<-hmemIFS(ma,na)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
hb<-hmemIFS(mb,nb)</pre>
p<-2
k<-1
simM(ma,na,mb,nb,p,k)
#[1] 0.3840287 0.3837673 0.3849959 0.3849959
```

simNNNG1 29

simNNNG1	PFS similarity measure simNNNG1	

Description

PFS similarity measure values using simNNNG1 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simNNNG1(ma, na, mb, nb, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

X. T. Nguyen, V. D. Nguyen, V. H. Nguyen, and H. Garg. Exponential similarity measures for pythagorean fuzzy sets and their applications to pattern recognition and decision-making process. Complex & Intelligent Systems, 5(2):217 - 228, 2019.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
```

30 simNNNG2

```
k<-1
simNNNG1(ma,na,mb,nb,k)
#[1] 0.5885775 0.5995230 0.8202927 0.8202927
```

simNNNG2

PFS similarity measure simNNNG2

Description

PFS similarity measure values using simNNNG2 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simNNNG2(ma, na, mb, nb, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

X. T. Nguyen, V. D. Nguyen, V. H. Nguyen, and H. Garg. Exponential similarity measures for pythagorean fuzzy sets and their applications to pattern recognition and decision-making process. Complex & Intelligent Systems, 5(2):217 - 228, 2019.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5</pre>
```

simNSCA 31

```
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simNNNG2(ma,na,mb,nb,k)
#[1] 0.7761019 0.7803072 0.9079870 0.9079870</pre>
```

simNSCA

IFS similarity measure simNSCA

Description

IFS similarity measure values using simNSCA computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simNSCA(ma, na, mb, nb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

R. T. Ngan, B. C. Cuong, M. Ali, et al. H-max distance measure of intuitionistic fuzzy sets in decision making. Applied Soft Computing, 69:393 - 425, 2018.

32 simP

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
y<-matrix(c(11,24,21,12,6,11,15,21),nrow=1)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simNSCA(ma,na,mb,nb,k)
#[1] 0.6928792 0.6934970 0.8754130 0.8754130</pre>
```

simP

PFS similarity measure simP

Description

PFS similarity measure values using simP computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simP(ma, na, mb, nb, a, b, p, t, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
а	Level of uncertainty values, values range from 1 to 10
b	Level of uncertainty values, values range from 1 to 10
p	Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 $$
t	Level of uncertainty values, values range from 1 to 10
k	A constant value, considered as 1

simPG1

Value

The PFS similarity values of data set y with data set x

References

X. Peng. New similarity measure and distance measure for pythagorean fuzzy set. Complex & Intelligent Systems, 5(2):101 - 111, 2019.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a < -mn(x)
b<-std(x)
a1<-mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
a<-2
b<-2
p<-2
t<-2
k<-1
simP(ma,na,mb,nb,a,b,p,t,k)
#[1] 0.7007663 0.6879639 0.8834981 0.8834981
```

simPG1

PFS similarity measure simPG1

Description

PFS similarity measure values using simPG1 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simPG1(ma, na, mb, nb, p, l, t, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function

34 simPG2

mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
р	Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 $$
1	Level of uncertainty values, values range from 1 to 10
t	Level of uncertainty values, values range from 1 to 10
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

X. Peng and H. Garg. Multiparametric similarity measures on pythagorean fuzzy sets with applications to pattern recognition. Applied Intelligence, 49(12):4058 - 4096, 2019.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1<-std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
p<-2
1<-2
t<-2
k<-1
simPG1(ma,na,mb,nb,p,l,t,k)
#[1] 0.6027082 0.5857886 0.8375740 0.8375740
```

simPG2

PFS similarity measure simPG2

Description

PFS similarity measure values using simPG2 computation technique with membership, and non-membership values of two objects or set of objects.

simPG2 35

Usage

```
simPG2(ma, na, mb, nb, p, 1, t, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
p	Lp norm values for measuring the p-norm distance between x and y, values range from 1 to 5 $$
1	Level of uncertainty values, values range from 1 to 10
t	Level of uncertainty values, values range from 1 to 10
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

X. Peng and H. Garg. Multiparametric similarity measures on pythagorean fuzzy sets with applications to pattern recognition. Applied Intelligence, 49(12):4058 - 4096, 2019.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1<-std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
p<-2
1<-2
t<-2
k<-1
simPG2(ma,na,mb,nb,p,1,t,k)
#[1] 0.5203669 0.5000073 0.7998594 0.7998594
```

36 simPYY1

simPYY1	PFS similarity measure simPYY1
---------	--------------------------------

Description

PFS similarity measure values using simPYY1 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simPYY1(ma, na, mb, nb, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

X. Peng, H. Yuan, and Y. Yang. Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems, 32(10):991 - 1029, 2017.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simPYY1(ma,na,mb,nb,k)
#[1] 0.7253069 0.7257693 0.8985028 0.8985028</pre>
```

simPYY2 37

simPYY2	PFS similarity measure simPYY2	
---------	--------------------------------	--

Description

PFS similarity measure values using simPYY2 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simPYY2(ma, na, mb, nb, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

X. Peng, H. Yuan, and Y. Yang. Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems, 32(10):991 - 1029, 2017.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simPYY2(ma,na,mb,nb,k)
#[1] 0.4082725 0.4321653 0.7383688 0.7383688</pre>
```

38 simPYY3

simPYY3	PFS similarity measure simPYY3	

Description

PFS similarity measure values using simPYY3 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simPYY3(ma, na, mb, nb, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

X. Peng, H. Yuan, and Y. Yang. Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems, 32(10):991 - 1029, 2017.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simPYY3(ma,na,mb,nb,k)
#[1] 0.6973456 0.7033537 0.8813094 0.8813094</pre>
```

simSGFDK1 39

Description

SFS similarity measure values using simSGFDK1 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

Usage

```
simSGFDK1(ma, na, mb, nb, ia, ib, k)
```

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)</pre>
```

40 simSGFDK2

```
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simSGFDK1(ma,na,mb,nb,ia,ib,k)
#[1] 0.5765316 0.5799590 0.9132581 0.9132581</pre>
```

simSGFDK2

SFS similarity measure simSGFDK2

Description

SFS similarity measure values using simSGFDK2 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.

Usage

```
simSGFDK2(ma, na, mb, nb, ia, ib, ra, rb, k)
```

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
ra	SFS refusal membership values for the data set x
rb	SFS refusal membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.

simSGFDK3 41

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b<-std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
ra<-rmemSFS(ma,na,ia)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
rb<-rmemSFS(mb,nb,ib)</pre>
simSGFDK2(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.5582521 0.5488739 0.8922309 0.8922309
```

simSGFDK3

SFS similarity measure simSGFDK3

Description

SFS similarity measure values using simSGFDK3 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

Usage

```
simSGFDK3(ma, na, mb, nb, ia, ib, k)
```

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
k	A constant value, considered as 1

42 simSGFDK4

Value

The SFS similarity values of data set y with data set x

References

S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1<-std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
mb < -memG(a1, b1, y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
k<-1
simSGFDK3(ma,na,mb,nb,ia,ib,k)
#[1] 0.5433799 0.5440421 0.8018367 0.8018367
```

 ${\sf simSGFDK4}$

SFS similarity measure simSGFDK4

Description

SFS similarity measure values using simSGFDK4 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.

Usage

```
simSGFDK4(ma, na, mb, nb, ia, ib, ra, rb, k)
```

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function

simSGFDK5 43

mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
ra	SFS refusal membership values for the data set x
rb	SFS refusal membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
ra<-rmemSFS(ma,na,ia)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
rb<-rmemSFS(mb,nb,ib)</pre>
k<−1
simSGFDK4(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.5433799 0.4910220 0.6803727 0.6803727
```

simSGFDK5

SFS similarity measure simSGFDK5

Description

SFS similarity measure values using simSGFDK5 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

44 simSGFDK5

Usage

```
simSGFDK5(ma, na, mb, nb, ia, ib, k)
```

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
k<-1
simSGFDK5(ma,na,mb,nb,ia,ib,k)
#[1] 0.6563487 0.6447030 0.8547821 0.8547821
```

simSGFDK6 45

DK6

Description

SFS similarity measure values using simSGFDK6 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.

Usage

```
simSGFDK6(ma, na, mb, nb, ia, ib, ra, rb, k)
```

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
ra	SFS refusal membership values for the data set x
rb	SFS refusal membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.

46 simSGFDK7

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b<-std(x)
a1<-mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
ra<-rmemSFS(ma,na,ia)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
rb<-rmemSFS(mb,nb,ib)</pre>
simSGFDK6(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.6563487 0.6334610 0.7893601 0.7893601
```

simSGFDK7

SFS similarity measure simSGFDK7

Description

SFS similarity measure values using simSGFDK7 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

Usage

```
simSGFDK7(ma, na, mb, nb, ia, ib, k)
```

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
k	A constant value, considered as 1

simSGFDK8 47

Value

The SFS similarity values of data set y with data set x

References

S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1<-std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
mb < -memG(a1, b1, y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
k<-1
simSGFDK7(ma,na,mb,nb,ia,ib,k)
#[1] 0.9670246 0.9661003 0.9976603 0.9976603
```

simSGFDK8

SFS similarity measure simSGFDK8

Description

SFS similarity measure values using simSGFDK8 computation technique with membership,nonmembership, indeterminacy membership, and refusal membership values of two objects or set of objects.

Usage

```
simSGFDK8(ma, na, mb, nb, ia, ib, ra, rb, k)
```

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function

48 simSWLX

mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
ra	SFS refusal membership values for the data set x
rb	SFS refusal membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

S. A. S. Shishavan, F. K. Gundogdu, E. Farrokhizadeh, Y. Donyatalab, and C. Kahraman. Novel similarity measures in spherical fuzzy environment and their applications. Engineering Applications of Artificial Intelligence, 94:103837, 2020.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1<-mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
ra<-rmemSFS(ma,na,ia)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
rb<-rmemSFS(mb,nb,ib)</pre>
k<−1
simSGFDK8(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.8558748 0.8421080 0.8994662 0.8994662
```

simSWLX

IFS similarity measure simSWLX

Description

IFS similarity measure values using simSWLX computation technique with membership, non-membership, and hesitancy values of two objects or set of objects.

simSWLX 49

Usage

```
simSWLX(ma, na, mb, nb, ha, hb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ha	IFS hesitancy values for the data set x
hb	IFS hesitancy values for the data set y
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

Y. Song, X. Wang, L. Lei, and A. Xue. A new similarity measure between intuitionistic fuzzy sets and its application to pattern recognition. In Abstract and Applied Analysis, volume 2014. Hindawi, 2014.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ha<-hmemIFS(ma,na)</pre>
mb < -memG(a1, b1, y)
nb<-nonmemS(mb,lam)</pre>
hb<-hmemIFS(mb,nb)</pre>
k<-1
simSWLX(ma,na,mb,nb,ha,hb,k)
#[1] 0.9241207 0.9180258 0.9853267 0.9853267
```

50 simSY

simSY	IFS similarity measure simSY	
-------	------------------------------	--

Description

IFS similarity measure values using simSY computation technique with membership, non-membership, and hesitancy values of two objects or set of objects.

Usage

```
simSY(ma, na, mb, nb, ha, hb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ha	IFS hesitancy values for the data set x
hb	IFS hesitancy values for the data set y
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

L. Shi and J. Ye. Study on fault diagnosis of turbine using an improved cosine similarity measure for vague sets. Journal of Applied Sciences, 13(10):1781 - 1786, 2013.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
```

simWW1 51

```
ha<-hmemIFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemIFS(mb,nb)
k<-1
simSY(ma,na,mb,nb,ha,hb,k)
#[1] 0.8982202 0.8904059 0.9890627 0.9890627
```

simWW1

PFS similarity measure simWW1

Description

PFS similarity measure values using simWW1 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simWW1(ma, na, mb, nb, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.

 $\sin WW2$

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simWW1(ma,na,mb,nb,k)
#[1] 0.9360206 0.9342653 0.9953501 0.9953501</pre>
```

simWW2

PFS similarity measure simWW2

Description

PFS similarity measure values using simWW2 computation technique with membership, non-membership, and hesitancy values of two objects or set of objects.

Usage

```
simWW2(ma, na, mb, nb, ha, hb, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ha	PFS hesitancy values for the data set x
hb	PFS hesitancy values for the data set y
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

simWW3 53

References

G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a<-mn(x)
b<-std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ha<-hmemPFS(ma,na)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
hb<-hmemPFS(mb,nb)
k<-1
simWW2(ma,na,mb,nb,ha,hb,k)
#[1] 0.7061971 0.6841839 0.9511029 0.9511029
```

simWW3

PFS similarity measure simWW3

Description

PFS similarity measure values using simWW3 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simWW3(ma, na, mb, nb, k)
```

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

54 simWW4

Value

The PFS similarity values of data set y with data set x

References

G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simWW3(ma,na,mb,nb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755</pre>
```

simWW4

PFS similarity measure simWW4

Description

PFS similarity measure values using simWW4 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simWW4(ma, na, mb, nb, k)
```

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

simWW5 55

Value

The PFS similarity values of data set y with data set x

References

G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simWW4(ma,na,mb,nb,k)
#[1] 0.8971627 0.8883797 0.9843815 0.9843815</pre>
```

simWW5

PFS similarity measure simWW5

Description

PFS similarity measure values using simWW5 computation technique with membership, non-membership, and hesitancy values of two objects or set of objects.

Usage

```
simWW5(ma, na, mb, nb, ha, hb, k)
```

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function

56 simWW6

ha	PFS hesitancy values for the data set x
hb	PFS hesitancy values for the data set y
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemPFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemPFS(mb,nb)
k<-1
simWW5(ma,na,mb,nb,ha,hb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755</pre>
```

simWW6

PFS similarity measure simWW6

Description

PFS similarity measure values using simWW6 computation technique with membership, non-membership, and hesitancy values of two objects or set of objects.

Usage

```
simWW6(ma, na, mb, nb, ha, hb, k)
```

simWW6 57

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ha	PFS hesitancy values for the data set x
hb	PFS hesitancy values for the data set y
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

G.Wei and Y.Wei. Similarity measures of pythagorean fuzzy sets based on the cosine function and their applications. International Journal of Intelligent Systems, 33(3):634 - 652, 2018.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a < -mn(x)
b<-std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ha<-hmemPFS(ma,na)
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
hb<-hmemPFS(mb,nb)
k<-1
simWW6(ma,na,mb,nb,ha,hb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755
```

58 simWWLWW1

simWWLWW1 SFS similarity measure simWWLWW1
--

Description

SFS similarity measure values using simWWLWW1 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

Usage

```
simWWLWW1(ma, na, mb, nb, ia, ib, k)
```

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
```

simWWLWW10 59

```
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simWWLWW1(ma,na,mb,nb,ia,ib,k)
#[1] 0.9357619 0.9339882 0.9953291 0.9953291</pre>
```

simWWLWW10

 $SFS\ similarity\ measure\ simWWLWW10$

Description

SFS similarity measure values using simWWLWW10 computation technique with membership, non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.

Usage

```
simWWLWW10(ma, na, mb, nb, ia, ib, ra, rb, k)
```

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
ra	SFS refusal membership values for the data set x
rb	SFS refusal membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.

60 simWWLWW2

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1<-mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
ra<-rmemSFS(ma,na,ia)</pre>
mb<-memG(a1,b1,y)</pre>
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
rb<-rmemSFS(mb,nb,ib)</pre>
simWWLWW10(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.04488958 0.04334510 0.08280306 0.08280306
```

simWWLWW2

SFS similarity measure simWWLWW2

Description

SFS similarity measure values using simWWLWW2 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.

Usage

```
simWWLWW2(ma, na, mb, nb, ia, ib, ra, rb, k)
```

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
ra	SFS refusal membership values for the data set x
rb	SFS refusal membership values for the data set y
k	A constant value, considered as 1

simWWLWW3 61

Value

The SFS similarity values of data set y with data set x

References

G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
ra<-rmemSFS(ma,na,ia)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
rb<-rmemSFS(mb,nb,ib)</pre>
k<-1
simWWLWW2(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.7092608 0.6874359 0.9519182 0.9519182
```

simWWLWW3

SFS similarity measure simWWLWW3

Description

SFS similarity measure values using simWWLWW3 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

Usage

```
simWWLWW3(ma, na, mb, nb, ia, ib, k)
```

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function

62 simWWLWW4

mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simWWLWW3(ma,na,mb,nb,ia,ib,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755</pre>
```

simWWLWW4

SFS similarity measure simWWLWW4

Description

SFS similarity measure values using simWWLWW4 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

Usage

```
simWWLWW4(ma, na, mb, nb, ia, ib, k)
```

simWWLWW4 63

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a < -mn(x)
b<-std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
k<-1
simWWLWW4(ma,na,mb,nb,ia,ib,k)
#[1] 0.8946430 0.8856546 0.9840049 0.9840049
```

64 simWWLWW5

simWWLWW5	SFS similarity measure simWWLWW5	

Description

SFS similarity measure values using simWWLWW5 computation technique with membership, non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.

Usage

```
simWWLWW5(ma, na, mb, nb, ia, ib, ra, rb, k)
```

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
ra	SFS refusal membership values for the data set x
rb	SFS refusal membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)</pre>
```

simWWLWW6 65

```
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb)
k<-1
simWWLWW5(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755</pre>
```

simWWLWW6

SFS similarity measure simWWLWW6

Description

SFS similarity measure values using simWWLWW6 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.

Usage

```
simWWLWW6(ma, na, mb, nb, ia, ib, ra, rb, k)
```

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
ra	SFS refusal membership values for the data set x
rb	SFS refusal membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

66 simWWLWW7

References

G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b < -std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
ra<-rmemSFS(ma,na,ia)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
rb<-rmemSFS(mb,nb,ib)</pre>
simWWLWW6(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.7362461 0.7150021 0.9511755 0.9511755
```

simWWLWW7

SFS similarity measure simWWLWW7

Description

SFS similarity measure values using simWWLWW7 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

Usage

```
simWWLWW7(ma, na, mb, nb, ia, ib, k)
```

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function

simWWLWW8 67

ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
k<-1
simWWLWW7(ma,na,mb,nb,ia,ib,k)
#[1] 0.04488958 0.04334510 0.08280306 0.08280306</pre>
```

simWWLWW8

SFS similarity measure simWWLWW8

Description

SFS similarity measure values using simWWLWW8 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.

Usage

```
simWWLWW8(ma, na, mb, nb, ia, ib, k)
```

68 simWWLWW8

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a < -mn(x)
b<-std(x)
a1 < -mn(y)
b1<-std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ia<-imemSFS(ma,na)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
ib<-imemSFS(mb,nb)</pre>
k<-1
simWWLWW8(ma,na,mb,nb,ia,ib,k)
#[1] 0.06899567 0.06819133 0.09416530 0.09416530
```

simWWLWW9 69

|--|--|

Description

SFS similarity measure values using simWWLWW9 computation technique with membership,non-membership, indeterminacy membership, and refusal membership values of two objects or set of objects.

Usage

```
simWWLWW9(ma, na, mb, nb, ia, ib, ra, rb, k)
```

Arguments

ma	SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ia	SFS indeterminacy membership values for the data set x
ib	SFS indeterminacy membership values for the data set y
ra	SFS refusal membership values for the data set x
rb	SFS refusal membership values for the data set y
k	A constant value, considered as 1

Value

The SFS similarity values of data set y with data set x

References

G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)</pre>
```

70 sim Y

```
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ia<-imemSFS(ma,na)
ra<-rmemSFS(ma,na,ia)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
ib<-imemSFS(mb,nb)
rb<-rmemSFS(mb,nb,ib)
k<-1
simWWLWW9(ma,na,mb,nb,ia,ib,ra,rb,k)
#[1] 0.04488958 0.04334510 0.08280306 0.08280306</pre>
```

simY

IFS similarity measure simY

Description

IFS similarity measure values using simY computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simY(ma, na, mb, nb, k)
```

Arguments

ma	IFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	IFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	IFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	IFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

Value

The IFS similarity values of data set y with data set x

References

J. Ye. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Mathematical and computer modelling, 53(1-2):91 - 97, 2011.

simZ 71

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simY(ma,na,mb,nb,k)
#[1] 0.9024655 0.8950394 0.9898896 0.9898896</pre>
```

simZ

PFS similarity measure simZ

Description

PFS similarity measure values using simZ computation technique with membership, non-membership, and hesitancy values of two objects or set of objects.

Usage

```
simZ(ma, na, mb, nb, ha, hb, k)
```

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ha	PFS hesitancy values for the data set x
hb	PFS hesitancy values for the data set y
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

72 simZHFLL1

References

X. Zhang. A novel approach based on similarity measure for pythagorean fuzzy multiple criteria group decision making. International Journal of Intelligent Systems, 31(6):593 - 611, 2016.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)</pre>
a < -mn(x)
b<-std(x)
a1<-mn(y)
b1 < -std(y)
lam<-0.5
ma < -memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ha<-hmemPFS(ma,na)</pre>
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
hb<-hmemPFS(mb,nb)
k<-1
simZ(ma,na,mb,nb,ha,hb,k)
#[1] 0.6128632 0.6335697 0.7722389 0.7722389
```

simZHFLL1

PFS similarity measure simZHFLL1

Description

PFS similarity measure values using simZHFLL1 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simZHFLL1(ma, na, mb, nb, k)
```

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

simZHFLL2 73

Value

The PFS similarity values of data set y with data set x

References

Q. Zhang, J. Hu, J. Feng, A. Liu, and Y. Li. New similarity measures of pythagorean fuzzy sets and their applications. IEEE Access, 7:138192 - 138202, 2019.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simZHFLL1(ma,na,mb,nb,k)
#[1] 0.4742565 0.4823949 0.7745995 0.7745995</pre>
```

simZHFLL2

PFS similarity measure simZHFLL2

Description

PFS similarity measure values using simZHFLL2 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simZHFLL2(ma, na, mb, nb, k)
```

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
k	A constant value, considered as 1

74 simZHFLL3

Value

The PFS similarity values of data set y with data set x

References

Q. Zhang, J. Hu, J. Feng, A. Liu, and Y. Li. New similarity measures of pythagorean fuzzy sets and their applications. IEEE Access, 7:138192 - 138202, 2019.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
k<-1
simZHFLL2(ma,na,mb,nb,k)
#[1] 0.6572330 0.6610095 0.8652155 0.8652155</pre>
```

simZHFLL3

PFS similarity measure simZHFLL3

Description

PFS similarity measure values using simZHFLL3 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simZHFLL3(ma, na, mb, nb, ha, hb, k)
```

n	na	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
r	ia	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
n	nb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
r	nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function

simZHFLL4 75

ha	PFS hesitancy values for the data set x
hb	PFS hesitancy values for the data set y
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

Q. Zhang, J. Hu, J. Feng, A. Liu, and Y. Li. New similarity measures of pythagorean fuzzy sets and their applications. IEEE Access, 7:138192 - 138202, 2019.

Examples

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a<-mn(x)
b<-std(x)
a1<-mn(y)
b1<-std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)
ha<-hmemPFS(ma,na)
mb<-memG(a1,b1,y)
nb<-nonmemS(mb,lam)
hb<-hmemPFS(mb,nb)
k<-1
simZHFLL3(ma,na,mb,nb,ha,hb,k)
#[1] 0.4742565 0.4823949 0.7745995 0.7745995</pre>
```

simZHFLL4

PFS similarity measure simZHFLL4

Description

PFS similarity measure values using simZHFLL4 computation technique with membership, and non-membership values of two objects or set of objects.

Usage

```
simZHFLL4(ma, na, mb, nb, ha, hb, k)
```

76 simZHFLL4

Arguments

ma	PFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
na	PFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
mb	PFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
nb	PFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
ha	PFS hesitancy values for the data set x
hb	PFS hesitancy values for the data set y
k	A constant value, considered as 1

Value

The PFS similarity values of data set y with data set x

References

Q. Zhang, J. Hu, J. Feng, A. Liu, and Y. Li. New similarity measures of pythagorean fuzzy sets and their applications. IEEE Access, 7:138192 - 138202, 2019.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
y<-matrix(c(11,21,6),nrow=1)
a < -mn(x)
b<-std(x)
a1 < -mn(y)
b1 < -std(y)
lam<-0.5
ma<-memG(a,b,x)
na<-nonmemS(ma,lam)</pre>
ha<-hmemPFS(ma,na)
mb < -memG(a1,b1,y)
nb<-nonmemS(mb,lam)</pre>
hb<-hmemPFS(mb, nb)</pre>
k<-1
simZHFLL4(ma,na,mb,nb,ha,hb,k)
#[1] 0.4742565 0.4823949 0.7745995 0.7745995
```

std 77

std

Standard deviation values

Description

Standard deviation of the data set for gaussian membership function

Usage

std(x)

Arguments

Х

A data set in the form of document-term matrix

Value

Standard deviation values for individual row of the input data set X.

```
x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4) std(x) #[1] 4.9328829 4.3588989 0.5773503 7.5055535
```

Index

hmemIFS, 3	simPYY2, 37
hmemPFS, 4	simPYY3,38
	simSGFDK1, 39
imemSFS, 5	simSGFDK2, 40
7 0 0 10 11 7	simSGFDK3,41
leftfootfinding, 5	simSGFDK4, 42
leftshoulderfinding, 6	simSGFDK5, 43
momC 7	simSGFDK6,45
memG, 7	simSGFDK7,46
memT, 7 memTP, 8	simSGFDK8,47
midvalue, 9	simSWLX,48
mn, 10	simSY, 50
1111, 10	simWW1, <u>51</u>
nonmemS, 10	simWW2, <u>52</u>
nonmemY, 11	simWW3, <u>53</u>
Troiline in 1, 11	simWW4, <u>54</u>
rightfootfinding, 12	simWW5, <u>55</u>
rightshoulderfinding, 13	simWW6, <u>56</u>
rmemSFS, 13	simWWLWW1, 58
	simWWLWW10,59
simBA, 14	simWWLWW2, 60
simC, 16	simWWLWW3, 61
simDC, 17	simWWLWW4,62
simGK, 18	simWWLWW5, 64
simHK, 19	simWWLWW6, 65
simHY1, 20	simWWLWW7,66
simHY2, 21	simWWLWW8,67
simHY3, 22	simWWLWW9, 69
simHY4, 23	simY, 70
simJJLY, 24	simZ, <mark>71</mark>
simKKDKS, 25	simZHFLL1, 72
simL, 26	simZHFLL2, 73
simM, 27	simZHFLL3, 74
simNNNG1, 29	simZHFLL4, 75
simNNNG2, 30	std, 77
simNSCA, 31	
simP, 32	
simPG1, 33	
simPG2, 34	
simPYY1,36	