

Dimensionality Reduction for Data in Multiple Feature Representations

Yen-Yu Lin^{1,2}, Tyng-Luh Liu¹, and Chiou-Shann Fuh²

1. Summary

- In solving complex visual learning tasks, we establish an approach
 in which multiple kernel learning (MKL) is incorporated into the
 training process of dimensionality reduction (DR) methods.
- · Our approach
- Based on MKL, data described by various descriptors are jointly considered, and projected into a unified space of low dimension.
- Built on graph embedding, any DR methods explainable by graph embedding can be generalized by our approach.
- Via integrating with different DR methods, MKL can address not only supervised learning problems but also semi-supervised and unsupervised ones.

2. Background

 Multiple kernel learning and graph embedding are two important components in the establishment of the approach.

2 1

Multiple Kernel Learning

- In complex vision applications, adopting multiple descriptors to characterize data is a feasible way for improving performances.
- Kernel matrix as a unified feature representation:
- Represent the pairwise relationships among data under each descriptor by a kernel matrix.
- Multiple kernel learning: Learning an optimal ensemble kernel over a given convex set of base kernels:

$$K = \sum_{m=1}^{M} \beta_m K_m, \ \beta_m \ge 0$$
 (1)

or
$$k(\mathbf{x}_i, \mathbf{x}_j) = \sum_{m=1}^{M} \beta_m k_m(\mathbf{x}_i, \mathbf{x}_j), \ \beta_m \ge 0$$
 (2)

Multiple kernel learning for finding optimal coefficients {β_m}^M_{m=1} can be interpreted as descriptor combination.

2.2

Graph Embedding

- Many DR methods focus on modeling pairwise relationships among data points via graph structures.
- The framework of graph embedding [Yan et al. PAMI07] provides a unified formulation for a set of graph-based DR methods:

$$\mathbf{v}^* = \underset{\substack{\mathbf{v}^T X D X^T \mathbf{v} = \mathbf{1}, \text{ or } \\ \mathbf{v}^T X D X^T \mathbf{v} = \mathbf{1}}}{\arg \min} \mathbf{v}^T X L X^T \mathbf{v}, \tag{3}$$

where $X = [\mathbf{x_1} \ \mathbf{x_2} \ \cdots \ \mathbf{x}_N]$ is the data matrix,

L and L' are graph Laplacian,

D is a diagonal matrix,

v*is the optimized linear embedding.

- By specifying particular L and L' (or L and D), a set of DR methods can by expressed by (3), such as PCA, LPP, LDA, LDE, or SDA.
- These DR methods include supervised, semi-supervised, and unsupervised ones.

3. Problem Definition

- Our goal is to make DR methods that can be expressed by (3) to consider multiple base kernels simultaneously, such that
 - Data characteristics captured in different descriptors can be jointly utilized to accomplish the objectives of these DR methods.
 - The diversity in the objectives of these DR methods enhances the applicability of MKL.
 - > We could provide more prior knowledge to benefit the analysis of given data.
- With some derivation, sample i in the projected space can be expressed as

$$\mathbf{v}^{\mathsf{T}}\mathbf{x}_{i} = \boldsymbol{\alpha}^{\mathsf{T}}\mathbf{K}^{(i)}\boldsymbol{\beta} \in \mathbb{R}.$$

where $\boldsymbol{\alpha} = [\boldsymbol{\alpha}_1 \ \boldsymbol{\alpha}_2 \ \cdots \ \boldsymbol{\alpha}_N]^\mathsf{T}$ is the sample coefficient vector, $\boldsymbol{\beta} = [\boldsymbol{\beta}_1 \ \boldsymbol{\beta}_2 \ \cdots \ \boldsymbol{\beta}_M]^\mathsf{T} \text{ is the kernel weight vector,}$ $\mathbf{K}^{(i)} = [\mathbf{K}_1^{(i)} \ \mathbf{K}_2^{(i)} \ \cdots \ \mathbf{K}_M^{(i)}] \in \mathbb{R}^{N \times M}.$

· The resulting constrained optimization problem is

$$\begin{split} \min_{A,\beta} \quad & \sum_{i,j=1}^{N} \|A^{\mathsf{T}} \mathbb{K}^{(i)} \boldsymbol{\beta} - A^{\mathsf{T}} \mathbb{K}^{(j)} \boldsymbol{\beta} \|^2 w_{ij} \\ \text{subject to} \quad & \sum_{i,j=1}^{N} \|A^{\mathsf{T}} \mathbb{K}^{(i)} \boldsymbol{\beta} - A^{\mathsf{T}} \mathbb{K}^{(j)} \boldsymbol{\beta} \|^2 w'_{ij} = 1, \\ & \boldsymbol{\beta}_{m} \geq 0, \text{ for } m = 1, 2, ..., M, \end{split}$$

where $W = [w_{ij}]$ is the affinity matrix of L in (3), $W' = [w'_{ij}]$ is the affinity matrix of L' in (3), $A = [\alpha_1 \ \alpha_2 \ \cdots \ \alpha_P]$.

4. Optimization

- An alternative optimization procedure is used to solve (4).
- Variable A is optimized by solving a generalized eigenvalue problem.
- > Variable **\(\beta \)** is optimized via semidefinite programming.

4.1

On Optimizing $m{A}$

• By fixing \$\mathcal{B}\$, the optimization problem (4) can be expressed as

$$\begin{aligned} & \min_{A} & \operatorname{trace}(A^{\top}S_{W}^{\pmb{\beta}}A) \\ & \text{subject to} & \operatorname{trace}(A^{\top}S_{W}^{\pmb{\beta}}A) = 1 \end{aligned}$$

where S_{W}^{β} and S_{W}^{β} are two fixed square matrices.

 The columns of the optimized A can be obtained by solving a generalized eigenvalue problem.

4.2

On Optimizing β

- By fixing A, (4) becomes a nonconvex QCQP with respect to B.
- . Thus, we instead consider its SDP relaxation:

$$\begin{aligned} \min_{\boldsymbol{\beta},\boldsymbol{\beta}} & \operatorname{trace}(S_W^A B) \\ \text{subject to} & \operatorname{trace}(S_{W^I}^A B) = 1, \\ & \beta_m \geq 0, \text{ for } m = 1, 2, ..., M, \\ & \begin{bmatrix} \mathbf{1} & \boldsymbol{\beta}^T \\ \boldsymbol{\beta} & B \end{bmatrix} \succeq 0, \end{aligned}$$

where S_{W}^{A} and S_{W}^{A} are two fixed square matrices.

• The optimal β can be obtained via semidefinite programming.

5. Experimental Results

- . The Caltech 101 image dataset is used in the experiments.
- It consists of 101 object categories and one additional class of background images.
- > All 102 classes are used in the application to object recognition
- > 30 classes are chosen in the application to image clustering

- We implement seven kinds of image descriptors that result in the following seven base kernel matrices:
- > GB-1 / GB-2: Based on geometric blur descriptor.
- > SIFT-Dist / SIFT- Grid: Based on the SIFT descriptor.
- > C2-SWP / C2-ML: Based on biologically inspired features.
- > PHOG: Based on PHOG descriptor.

5.1 Supervised Application to Recognition

- · We adopt two supervised DR schemes for the applications:
- Linear discriminant analysis (LDA): Assume data of a class can be modeled by a Gaussian.
- Local discriminant embedding (LDE) [Chen et al. CVPR05]: Assume data of a class spread as a submanifold.
- To express LDA and LDE in the form of (3), we need specify their corresponding graph Laplacian matrices, i.e., L and L'.
- · The recognition rates are listed as follows

Table 1: Recognition rates (mean \pm std %) for Caltech-101 dataset

kernel(s)	method	number of classes		method	number of classes	
Kerner(3)		102	101	method	102	101
GB-1	KFD	57.3 ± 2.5	57.7 ± 0.7		57.1 ± 1.4	57.7 ± 0.8
GB-2		60.0 ± 1.5	60.6 ± 1.5		60.9 ± 1.4	61.3 ± 2.1
SIFT-Dist		53.0 ± 1.4	53.2 ± 0.8		54.2 ± 0.5	54.6 ± 1.5
SIFT-Grid		48.8 ± 1.9	49.6 ± 0.7	KLDE	49.5 ± 1.3	50.1 ± 0.3
C2-SWP		30.3 ± 1.2	30.7 ± 1.5		31.1 ± 1.5	31.3 ± 0.7
C2-ML		46.0 ± 0.6	46.8 ± 0.9		45.8 ± 0.2	46.7 ± 1.5
PHOG		41.8 ± 0.6	42.1 ± 1.3		42.2 ± 0.6	42.6 ± 1.3
-	KFD-Voting	68.4 ± 1.5	68.9 ± 0.3	KLDE-Voting	68.4 ± 1.4	68.7 ± 0.8
-	KFD-SAMME	71.2 ± 1.4	72.1 ± 0.7	KLDE-SAMME	71.1 ± 1.9	71.3 ± 1.2
All	MKL-LDA	74.6 ± 2.2	75.3 ± 1.7	MKL-LDE	75.3 ± 1.5	75.5 ± 1.7

5.2 Unsupervised Application to Clustering

- We apply our approach to locality preserving projections (LPP) [He & Niyogi NIPS03] to serve as a data preprocessing tool.
- Data in various representations are projected into a unified space.
- \bullet Consider clustering methods affinity propagation and k-means.

Table 2: Clustering performance (NMI / ERR %) on the 20-class image dataset

	preprocessing method	anninty pr	opagation	K*Illeans clustering		
kernel(s)		without data preprocessing	with data preprocessing	without data preprocessing	with data preprocessing	
GB-1 GB-2 SIFT-Dist SIFT-Grid C2-SWP C2-ML PHOG	kernel LPP	0.553 / 50.8 0.577 / 48.0 0.627 / 43.7 0.598 / 41.3 0.383 / 70.3 0.499 / 54.5 0.455 / 57.3	0.609 / 38.3 0.624 / 43.7 0.651 / 31.0 0.631 / 45.7 0.379 / 60.5 0.488 / 56.0 0.482 / 52.7	- - - 0.383 / 68.5 0.525 / 53.0	0.611 / 44.7 0.640 / 43.0 0.671 / 41.7 0.642 / 43.0 0.379 / 66.7 0.507 / 55.8 0.510 / 52.7	
All	MKL-LPP		0.714 / 25.0		0.758 / 25.7	