Package 'rmelting'

April 7, 2018

nucleic acid duplex.

Usage

```
melting(sequence, comp.sequence = NULL, nucleic.acid.conc,
hybridisation.type = c("dnadna", "rnarna", "dnarna", "rnadna", "mrnarna",
 "rnamrna"), Na.conc, Mg.conc, Tris.conc, K.conc, dNTP.conc, DMSO.conc,
 formamide.conc, size.threshold = 60, self = FALSE, correction.factor,
 method.approx = c("ahs01", "che93", "che93corr", "marschdot", "owe69"
 "san98", "wetdna91", "wetrna91", "wetdnarna91"), method.nn = c("all97"
 "bre86", "san04", "san96", "sug96", "tan04", "fre86", "xia98", "sug95",
 "tur06"), method.GU = c("tur99"), method.singleMM = c("allsanpey", "tur06",
 "zno07", "zno08"), method.tandemMM = c("allsanpey", "tur99"),
 method.single.dangle = c("bom00", "sugdna02", "sugrna02", "ser08"),
 method.double.dangle = c("sugdna02", "sugrna02", "ser05", "ser06"),
 method.long.dangle = c("sugdna02", "sugrna02"), method.internal.loop =
 c("san04", "tur06", "zno07"), method.single.bulge.loop = c("tan04", "san04",
 "ser07","tur06"), method.long.bulge.loop = c("san04", "tur06"), method.CNG
 = c("bro05"), method.inosine = c("san05", "zno07"), method.hydroxyadenine =
 c("sug01"), method.azobenzenes = c("asa05"), method.locked = c("mct04"),
 correction.Na = c("ahs01", "kam71", "marschdot", "owc1904", "owc2004",
 "owc2104", "owc2204", "san96", "san04", "schlif", "tanna06", "tanna07",
 "wet91"), correction.Mg = c("oxcmg08", "tanmg06", "tanmg07"),
 correction.NaMg = c("oxcmix08", "tanmix07"), method.Naeq = c("ahs01",
 "mit96", "pey00"), correction.DMSO = c("ahs01", "cul76", "esc80", "mus80"),
 correction.formamide = c("bla96", "lincorr"))
```

Arguments

Sequence (5' to 3') of one strand of the nucleic acid duplex as a character string. sequence Complementary sequence (3' to 5') of the nucleic acid duplex as a character comp.sequence string. nucleic.acid.conc Concentration of the nucleic acid strand (mol L^{-1}) in excess as a numeric value. hybridisation.type The hybridisation type. Either "dnadna", "rnarna", "dnarna", "rnadna", "mrnarna" or "rnamrna" (see **Hybridisation type options**). Na.conc Concentration of Na ions (M) as a numeric value (see Ion and agent concentrations). Mg.conc Concentration of Mg ions (M) as a numeric value (see Ion and agent concentrations). Concentration of Tris ions (M) as a numeric value (see Ion and agent concen-Tris.conc trations). Concentration of K ions (M) as a numeric value (see Ion and agent concentra-K.conc tions). dNTP.conc Concentration of dNTP (M) as a numeric value (see Ion and agent concentrations). DMSO.conc Concentration of DMSO (%) as a numeric value (see Ion and agent concentra-

formamide.conc Concentration of formamide (M or % depending on correction method) as a

size.threshold Sequence length threshold to decide approximative or nearest-neighbour ap-

numeric value (see Ion and agent concentrations).

proach for computation. Default is 60.

tions).

self

logical. Specifies that sequence is self complementary and complementary sequence is not required (seed **Self complementary sequences**). Default is FALSE.

correction.factor

Correction factor to be used to modulate the effect of the nucleic acid concentration (nucleic.acid.conc) in the computation of melting temperature (see Correction factor for nucleic acid concentration).

method.approx

Specify the approximative formula to be used for melting temperature calculation for sequences of length greater than size.threshold. Either "ahs01", "che93", "che93corr", "schdot", "owe69", "san98", "wetdna91", "wetrna91" or "wetdnarna91" (see **Approximative formulas**).

method.nn

Specify the nearest neighbor model to be used for melting temperature calculation for sequences of length lesser than size.threshold. Either "all97", "bre86", "san04", "san96", "sug96", "tan04", "fre86", "xia98", "sug95" or "tur06" (see **Nearest neighbor models**).

method.GU

Specify the nearest neighbor model to compute the contribution of GU base pairs to the thermodynamic of helix-coil transition. Available method is "tur99" (see GU wobble base pairs effect).

method.singleMM

Specify the nearest neighbor model to compute the contribution of single mismatch to the thermodynamic of helix-coil transition. Either "allsanpey", "tur06", "zno07" or "zno08" (see **Single mismatch effect**).

method.tandemMM

Specify the nearest neighbor model to compute the contribution of tandem mismatches to the thermodynamic of helix-coil transition. Either "allsanpey" or "tur99" (see **Tandem mismatches effect**).

method.single.dangle

Specify the nearest neighbor model to compute the contribution of single dangling end to the thermodynamic of helix-coil transition. Either "bom00", "sugdna02", "sugrna02" or "ser08" (see **Single dangling end effect**).

method.double.dangle

Specify the nearest neighbor model to compute the contribution of double dangling end to the thermodynamic of helix-coil transition. Either "sugdna02", "sugrna02", "ser05" or "ser06" (see **Double dangling end effect**).

method.long.dangle

Specify the nearest neighbor model to compute the contribution of long dangling end to the thermodynamic of helix-coil transition. Either "sugdna02" or "sugrna02" (see **Long dangling end effect**).

method.internal.loop

Specify the nearest neighbor model to compute the contribution of internal loop to the thermodynamic of helix-coil transition. Either "san04", "tur06" or "zno07" (see **Internal loop effect**).

method.single.bulge.loop

Specify the nearest neighbor model to compute the contribution of single bulge loop to the thermodynamic of helix-coil transition. Either "san04", "tan04", "ser07" or "tur06" (see **Single bulge loop effect**).

method.long.bulge.loop

Specify the nearest neighbor model to compute the contribution of long bulge loop to the thermodynamic of helix-coil transition. Either "san04" or "tur06" (see **Long bulge loop effect**).

method. CNG Specify the nearest neighbor model to compute the contribution of CNG repeats to the thermodynamic of helix-coil transition. Available method is "bro05" (see CNG repeats effect).

method.inosine Specify the pecific nearest neighbor model to compute the contribution of inosine bases (I) to the thermodynamic of helix-coil transition. Either "san05" or "zno07" (see **Inosine bases effect**).

method.hydroxyadenine

Specify the nearest neighbor model to compute the contribution of hydroxyadenine bases (A*) to the thermodynamic of helix-coil transition. Available method is "sug01" (see **Hydroxyadenine bases effect**).

method.azobenzenes

Specify the nearest neighbor model to compute the contribution of azobenzenes (X_T for trans azobenzenes and X_C for cis azobenzenes) to the thermodynamic of helix-coil transition. Available method is "asa05" (see **Azobenzenes effect**).

method.locked Specify the nearest neighbor model to compute the contribution of locked nucleic acids (AL, GL, TL and CL) to the thermodynamic of helix-coil transition. Available method is "mct04" (see **Locked nucleic acids effect**).

correction.Na Specify the correction method for Na ions. Either "ahs01", "kam71", "owc1904", "owc2004", "owc2104", "owc2204", "san96", "san96", "san04", "schlif", "tanna06", "wetdna91", "tanna07", "wetrna91" or "wetdnarna91" (see **Sodium corrections**).

correction.Mg Specify the correction method for Mg ions. Either "owcmg08", "tanmg06" or "tanmg07" (see **Magnesium corrections**).

correction.NaMg

Specify the correction method for mixed Na and Mg ions. Either "owcmix08", "tanmix07" or "tanmix07" (see **Mixed Sodium and Magnesium corrections**).

method. Naeq Specify the ion correction which gives a sodium equivalent concentration if other cations are present. Either "ahs01", "mit96" or "pey00" (see **Sodium equivalent concentration methods**).

correction.DMSO

Specify the correction method for DMSO. Specify the correction method for DMSO. Either "ahs01", "mus81", "cul76" or "esc80" (see **DMSO corrections**).

correction.formamide

Specify the correction method for formamide. Specify the correction method for formamide Either "bla96" or "lincorr" (see **Formamide corrections**).

Mandatory arguments

The following are the arguments which are mandatory for computation.

- sequence
- comp. sequence: Mandatory if there are mismatches, inosine(s) or hydroxyadenine(s) between the two strands. If not specified, it is computed as the complement of sequence. Self-complementarity in sequence is detected even though there may be (are) dangling end(s) and comp. sequence is computed (see **Self complementary sequences**).
- nucleic.acid.conc
- Na.conc, Mg.conc, Tris.conc, K.conc: At least one cation (Na, Mg, Tris, K) concentration is mandatory, the other agents(dNTP, DMSO, formamide) are optional.
- hybridisation.type

Hybridisation type options

The details of the possible options for hybridisation type specified in the argument hybridisation. type are as follows:

Option	Sequence	Complementary	sequence
dnadna	DNA	DNA	
rnarna	RNA	RNA	
dnarna	DNA	RNA	
rnadna	RNA	DNA	
mrnarna	2-o-methyl RNA	RNA	
rnamrna	RNA	2-o-methyl RNA	•

This parameter determines the nature of the sequences in the arguments sequence and comp. sequence.

Ion and agent concentrations

These values are used for different correction functions which approximately adjusts for effects of these ions(Na, Mg, Tris, K) and/or agents(dNTP, DMSO, formamide) on on thermodynamic stability of nucleic acid duplexes. Their concentration limits depends on the correction method used. All the concentrations must be in M, except for the DMSO (%) and formamide (% or M depending on the correction method). Note that Tris+ concentration is about half of the total tris buffer concentration.

Self complementary sequences

Self complementarity for perfect matching sequences or sequences with dangling ends is detected automatically. However it can be specified by the argument self.

Correction factor for nucleic acid concentration

For self complementary sequences (Auto detected or specified in self) it is 1. Otherwise it is 4 if the both strands are present in equivalent amount and 1 if one strand is in excess.

Approximative estimation formulas

The calculation is increasingly incorrect when the length of the duplex decreases. Moreover, it does not take into account nucleic acid concentration.

Formula	Type	Limits.Remarks	Reference
ahs01	DNA	No mismatch	von Ahsen et al., 2001
che93	DNA	No mismatch; Na=0, Mg=0.0015, Tris=0.01, K=0.05	Marmur and Doty, 1962
che93corr	DNA	No mismatch; Na=0, Mg=0.0015, Tris=0.01, K=0.05	Marmur and Doty, 1962
marschdot	DNA	No mismatch	Wetmur, 1991; Marmur and Doty, 1962; Chester and Marshak, 1993; Schildkraut and Lifson, 1965; Wahl et al., 1987; Britten et al., 1974; Hall et al., 1980
owe69	DNA	No mismatch	Owen et al., 1969; Frank-Kamenetskii, 1971; Blake, 1996; Blake and

san98	DNA	No mismatch	Delcourt, 1998 SantaLucia, 1998; von Ahsen
wetdna91*	DNA		et al., 2001 Wetmur, 1991
wetrna91*	RNA		Wetmur, 1991
wetdnarna91*	DNA/RNA		Wetmur, 1991

Nearest neighbor models

Model all97*	Type DNA	Limits.Remarks	Reference Allawi and SantaLucia, 1997
tur06*	2'-O-MeRNA/	A sodium correction	Kierzek et al., 2006
	RNA	(san04) is	
		automatically applied to convert the entropy (Na =	
		0.1M) into the entropy (Na =	
		1M).	
bre86	DNA		Breslauer et al., 1986
san04	DNA		SantaLucia and Hicks, 2004
san96	DNA		SantaLucia et al., 1996
sug96	DNA		Sugimoto et al., 1996
tan04	DNA		Tanaka et al., 2004
fre86	RNA		Freier et al., 1986
xia98*	RNA		Xia et al., 1998
sug95*	DNA/		SantaLucia et al., 1996
	RNA		

GU wobble base pairs effect

Model	Type	Limits.Remarks	Reference
tur99*	RNA		Mathews et al., 1999

Single mismatch effect

Model	Type	Limits.Remarks	Reference
allsanpey*	DNA		Allawi and SantaLucia, 1997;
			Allawi and SantaLucia, 1998;
			Allawi and SantaLucia, 1998;
			Allawi and SantaLucia,
			1998; Peyret et al., 1999
tur06	RNA		Lu et al., 2006
zno07*	RNA		Davis and Znosko, 2007
zno08	RNA	At least one adjacent GU base	Davis and Znosko, 2008
		pair.	

Tandem mismatches effect

Model	Type	Limits.Remarks	Reference
allsanpey st	DNA	Only GT mismatches and TA/TG	Allawi and SantaLucia, 1997;
		mismatches.	Allawi and SantaLucia, 1998;
			Allawi and SantaLucia, 1998;
			Allawi and SantaLucia,
			1998; Peyret et al., 1999
tur99*	RNA	No adjacent GU or UG base pairs.	Mathews et al., 1999

Tandem mismatches are not taken into account by the approximative mode. Note that not all the mismatched Crick's pairs have been investigated.

Single dangling end effect

Model	Type	Limits.Remarks	Reference
bom00*	DNA		Bommarito et al., 2000
sugdna02	DNA	Only terminal poly A self complementary sequences.	Ohmichi et al., 2002
sugrna02	RNA	Only terminal poly A self complementary sequences.	Ohmichi et al., 2002
ser08*	RNA	Only 3' UA, GU and UG terminal base pairs only 5' UG and GU terminal base pairs.	Miller et al., 2008

Single dangling ends are not taken into account by the approximative mode.

Double dangling end effect

Model	Type	Limits.Remarks	Reference
sugdna02*	DNA	Only terminal poly A self complementary sequences.	Ohmichi et al., 2002
sugrna02	RNA	Only terminal poly A self complementary sequences.	Ohmichi et al., 2002
ser05	RNA	Depends on the available thermodynamic parameters for single dangling end.	O'Toole et al., 2005
ser06*	RNA		O'Toole et al., 2006

Double dangling ends are not taken into account by the approximative mode.

Long dangling end effect

Model	Type	Limits.Remarks	Reference
sugdna02*	DNA	Only terminal poly A self	Ohmichi et al., 2002
		complementary sequences.	
sugrna02*	RNA	Only terminal poly A self	Ohmichi et al., 2002
		complementary sequences.	

Long dangling ends are not taken into account by the approximative mode.

Internal loop effect

Model	Type	Limits.Remarks	Reference
san04*	DNA	Missing asymmetry penalty.	SantaLucia and Hicks, 2004
		Not tested with experimental	
		results.	
tur06	RNA	Not tested with experimental	Lu et al., 2006
		results.	
zno07*	RNA		Davis and Znosko, 2007

Internal loops are not taken into account by the approximative mode.

Single bulge loop effect

Model	Type	Limits.Remarks	Reference
tan04*	DNA		Tan and Chen, 2007
san04	DNA	Missing closing AT penalty.	SantaLucia and Hicks, 2004
ser07	RNA	Less reliable results. Some missing parameters.	Blose et al., 2007
tur06*	RNA	missing parameters.	Lu et al., 2006

Internal loops are not taken into account by the approximative mode.

Long bulge loop effect

Model	Type	Limits.Remarks	Reference
san04*	DNA	Missing closing AT penalty.	SantaLucia and Hicks, 2004
tur06*	RNA	Not tested with experimental	Lu et al., 2006
		results.	

Long bulge loops are not taken into account by the approximative mode.

CNG repeats effect

Model	Type	Limits.Remarks	Reference
bro05*	RNA	Self complementary sequences.	Broda et al., 2005
		2 to 7 CNG repeats.	

CNG repeats are not taken into account by the approximative mode. The contribution of CNG repeats to the thermodynamic of helix-coil transition can be computed only for 2 to 7 CNG repeats. N represents a single mismatch of type N/N.

Inosine bases effect

Model	Type	Limits.Remarks	Reference
san05*	DNA	Missing parameters for tandem	Watkins and SantaLucia, 2005
		base pairs containing inosine	

bases.

zno07* RNA Only IU base pairs. Wright et al., 2007

Hydroxyadenine bases effect

ModelTypeLimits.RemarksReferencesug01*DNAOnly 5' GA*C 3' and 5' TA*A 3'Kawakami et al., 2001
contexts.

Hydroxyadenine bases (A*) are not taken into account by the approximative mode.

Azobenzenes effect effect

Model	Type	Limits.Remarks	Reference
asa05*	DNA	Less reliable results when	Asanuma et al., 2005
		the number of cis azobenzene	
		increases.	

Azobenzenes (X_T for trans azobenzenes and X_C for cis azobenzenes) are not taken into account by the approximative mode.

Locked nucleic acids effect

Model	Туре	Limits.Remarks	Reference
mct04*	DNA		McTigue et al., 2004

Locked nucleic acids (AL, GL, TL and CL) are not taken into account by the approximative mode.

Sodium corrections

Correcion	Type	Limits.Remarks	Reference
ahs01	DNA	Na>0.	von Ahsen et al., 2001
schlif	DNA	Na>=0.07; Na<=0.12.	Schildkraut and Lifson, 1965
tanna06	DNA	Na>=0.001; Na<=1.	Tan and Chen, 2006
tanna07*	RNA	Na>=0.003; Na<=1.	Tan and Chen, 2007
	or		
	2'-O-MeRNA/RNA		
wet91	RNA,	Na>0.	Wetmur, 1991
	DNA		
	and		
	RNA/DNA		
kam71	DNA	Na>0; Na>=0.069; Na<=1.02.	Frank-Kamenetskii, 1971
marschdot	DNA	Na>=0.069; Na<=1.02.	Marmur and Doty, 1962; Blake
			and Delcourt, 1998
owc1904	DNA	Na>0.	Owczarzy et al., 2004
owc2004	DNA	Na>0.	Owczarzy et al., 2004
owc2104	DNA	Na>0.	Owczarzy et al., 2004
owc2204*	DNA	Na>0.	Owczarzy et al., 2004

san96	DNA	Na > = 0.1.	SantaLucia et al., 1996
san04	DNA	Na>=0.05; Na<=1.1;	SantaLucia and Hicks, 2004;
		Oligonucleotides inferior to	SantaLucia, 1998
		16 bases.	

Magnesium corrections

Correcion	Type	Limits.Remarks	Reference
owcmg08*	DNA	Mg>=0.0005; Mg<=0.6.	Owczarzy et al., 2008
tanmg06	DNA	Mg>=0.0001; Mg<=1; Oligomer	Tan and Chen, 2006
		length superior to 6 base	
		pairs.	
tanmg07*	RNA	Mg > = 0.1; $Mg < = 0.3$.	Tan and Chen, 2007

Mixed Sodium and Magnesium corrections

Correcion	Type	Limits.Remarks	Reference
owcmix08*	DNA	Mg>=0.0005; Mg<=0.6;	Owczarzy et al., 2008
		Na+K+Tris/2>0.	
tanmix07	DNA	Mg>=0.1; Mg<=0.3;	Tan and Chen, 2007
	and	Na+K+Tris/2>=0.1;	
	RNA	Na+K+Tris/2<=0.3.	

Sodium equivalent concentration methods

Correcion	Type	Limits.Remarks	Reference
ahs01*	DNA		von Ahsen et al., 2001
mit96	DNA		Mitsuhashi, 1996
pey00	DNA		Peyret, 2000

DMSO corrections

Correcion	Type	Limits.Remarks	Reference
ahs01	DNA	Not tested with experimental results.	von Ahsen et al., 2001
cul76	DNA	Not tested with experimental results.	Cullen and Bick, 1976
esc80	DNA	Not tested with experimental results.	Escara and Hutton, 1980
mus80	DNA	Not tested with experimental results.	Musielski et al., 1981

Formamide corrections

Correcion	Type	Limits.Remarks	Reference
bla96	DNA	With formamide concentration	Blake, 1996
		in mol/L.	
lincorr	DNA	With a formamide volume.	McConaughy et al., 1969;
			Record, 1967; Casey and
			Davidson, 1977; Hutton, 1977

References

Marmur J and Doty P (1962). "Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature." *Journal of Molecular Biology*, **5**(1), pp. 109–118. doi: 10.1016/S00222836(62)800667.

Schildkraut C and Lifson S (1965). "Dependence of the melting temperature of DNA on salt concentration." *Biopolymers*, **3**(2), pp. 195–208. doi: 10.1002/bip.360030207.

Record MT (1967). "Electrostatic effects on polynucleotide transitions. I. Behavior at neutral pH." *Biopolymers*, **5**(10), pp. 975–992. doi: 10.1002/bip.1967.360051010.

McConaughy BL, Laird C and McCarthy BJ (1969). "Nucleic acid reassociation in formamide." *Biochemistry*, **8**(8), pp. 3289–3295. doi: 10.1021/bi00836a024.

Owen R, Hill L and Lapage S (1969). "Determination of DNA base compositions from melting profiles in dilute buffers." *Biopolymers*, **7**(4), pp. 503–516. doi: 10.1002/bip.1969.360070408.

Frank-Kamenetskii MD (1971). "Simplification of the empirical relationship between melting temperature of DNA, its GC content and concentration of sodium ions in solution." *Biopolymers*, **10**(12), pp. 2623–2624. doi: 10.1002/bip.360101223.

Britten RJ, Graham DE and Neufeld BR (1974). "Analysis of repeating DNA sequences by reassociation." *Methods in Enzymology*, **29**, pp. 363–418. doi: 10.1016/00766879(74)290335.

Cullen BR and Bick MD (1976). "Thermal denaturation of DNA from bromodeoxyuridine substituted cells." *Nucleic Acids Research*, **3**(1), pp. 49–62. doi: 10.1093/nar/3.1.49.

Hutton JR (1977). "Renaturation kinetics and thermal stability of DNA in aqueous solutions of formamide and urea." *Nucleic Acids Research*, **4**(10), pp. 3537–3555. doi: 10.1093/nar/4.10.3537.

Casey J and Davidson N (1977). "Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide." *Nucleic Acids Research*, **4**(5), pp. 1539–1552. doi: 10.1093/nar/4.5.1539.

Hall TJ, Grula JW, Davidson EH and Britten RJ (1980). "Evolution of sea urchin non-repetitive DNA." *Journal of Molecular Evolution*, **16**(2), pp. 95–110. doi: 10.1007/BF01731580.

Escara JF and Hutton JR (1980). "Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: Acceleration of the renaturation rate." *Biopolymers*, **19**(7), pp. 1315–1327. doi: 10.1002/bip.1980.360190708.

Musielski H, Mann W, Laue R and Michel S (1981). "Influence of dimethylsulfoxide on transcription by bacteriophage T3-induced RNA polymerase." *Zeitschrift fur allgemeine Mikrobiologie*, **21**(6), pp. 447–456. doi: 10.1002/jobm.19810210606.

Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T and Turner DH (1986). "Improved free-energy parameters for predictions of RNA duplex stability." *Proceedings of the*

National Academy of Sciences, **83**(24), pp. 9373. http://www.pnas.org/content/83/24/9373. abstract.

Breslauer KJ, Frank R, Blocker H and Marky LA (1986). "Predicting DNA duplex stability from the base sequence." *Proceedings of the National Academy of Sciences*, **83**(11), pp. 3746. http://www.pnas.org/content/83/11/3746.abstract.

Wahl GM, Barger SL and Kimmel AR (1987). "Molecular hybridization of immobilized nucleic acids: Theoretical concepts and practical considerations." *Methods in Enzymology*, **152**, pp. 399–407. doi: 10.1016/00766879(87)520468.

Wetmur JG (1991). "DNA probes: Applications of the principles of nucleic acid hybridization." *Critical Reviews in Biochemistry and Molecular Biology*, **26**(3-4), pp. 227–259. doi: 10.3109/10409239109114069.

Chester N and Marshak D (1993). "Dimethyl sulfoxide-mediated primer Tm reduction: A method for analyzing the role of renaturation temperature in the polymerase chain reaction." *Analytical Biochemistry*, **209**(2), pp. 284–290. doi: 10.1006/abio.1993.1121.

Sugimoto N, Katoh M, Nakano S, Ohmichi T and Sasaki M (1994). "RNA/DNA hybrid duplexes with identical nearest-neighbor base-pairs have identical stability." *FEBS Letters*, **354**(1), pp. 74–78. doi: 10.1016/00145793(94)010986.

Sugimoto N, Nakano S, Katoh M, Matsumura A, Nakamuta H, Ohmichi T, Yoneyama M and Sasaki M (1995). "Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes." *Biochemistry*, **34**(35), pp. 11211–11216. doi: 10.1021/bi00035a029.

SantaLucia J, Allawi HT and Seneviratne PA (1996). "Improved nearest-neighbor parameters for predicting DNA duplex stability." *Biochemistry*, **35**(11), pp. 3555–3562. doi: 10.1021/bi951907q.

Sugimoto N, Nakano S, Yoneyama M and Honda K (1996). "Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes." *Nucleic Acids Research*, **24**(22), pp. 4501–4505. doi: 10.1093/nar/24.22.4501.

Blake RD and Delcourt SG (1996). "Thermodynamic effects of formamide on DNA stability." *Nucleic Acids Research*, **24**(11), pp. 2095–2103. doi: 10.1093/nar/24.11.2095.

Blake RD (1996). "Denaturation of DNA." In Meyers RA (ed.), *Encyclopedia of molecular biology and molecular medicine*, volume 2, pp. 1–19. VCH Verlagsgesellschaft, Weinheim, Germany.

Mitsuhashi M (1996). "Technical report: Part 1. Basic requirements for designing optimal oligonucleotide probe sequences." *Journal of Clinical Laboratory Analysis*, **10**(5), pp. 277–284. doi: 10.1002/(sici)10982825(1996)10:5<277::aidjcla8>3.0.co;25.

Allawi HT and SantaLucia J (1997). "Thermodynamics and NMR of internal G-T mismatches in dna." *Biochemistry*, **36**(34), pp. 10581–10594. doi: 10.1021/bi962590c.

SantaLucia J (1998). "A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics." *Proceedings of the National Academy of Sciences*, **95**(4), pp. 1460. http://www.pnas.org/content/95/4/1460.abstract.

Xia T, SantaLucia J, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C and Turner DH (1998). "Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs." *Biochemistry*, **37**(42), pp. 14719–14735. doi: 10.1021/bi9809425.

Allawi HT and SantaLucia J (1998). "Thermodynamics of internal C-T mismatches in DNA." *Nucleic Acids Research*, **26**(11), pp. 2694–2701. doi: 10.1093/nar/26.11.2694.

Blake RD and Delcourt SG (1998). "Thermal stability of DNA." *Nucleic Acids Research*, **26**(14), pp. 3323–3332. doi: 10.1093/nar/26.14.3323.

Allawi HT and SantaLucia J (1998). "Nearest neighbor thermodynamic parameters for internal G-A mismatches in DNA." *Biochemistry*, **37**(8), pp. 2170–2179. doi: 10.1021/bi9724873.

Allawi HT and SantaLucia J (1998). "Nearest-neighbor thermodynamics of internal A-C mismatches in dna: sequence dependence and pH effects." *Biochemistry*, **37**(26), pp. 9435–9444. doi: 10.1021/bi9803729.

Mathews DH, Sabina J, Zuker M and Turner DH (1999). "Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure." *Journal of Molecular Biology*, **288**(5), pp. 911–940. doi: 10.1006/jmbi.1999.2700.

Peyret N, Seneviratne PA, Allawi HT and SantaLucia J (1999). "Nearest-Neighbor Thermodynamics and NMR of DNA Sequences with Internal A-A, C-C, G-G, and T-T Mismatches." *Biochemistry*, **38**(12), pp. 3468–3477. doi: 10.1021/bi9825091.

Peyret N (2000). *Prediction of nucleic acid hybridization: Parameters and algorithms*.. PhD thesis, Wayne State University, Detroit, MI.

Bommarito S, Peyret N and SantaLucia J (2000). "Thermodynamic parameters for DNA sequences with dangling ends." *Nucleic Acids Research*, **28**(9), pp. 1929–1934. doi: 10.1093/nar/28.9.1929.

Kawakami J, Kamiya H, Yasuda K, Fujiki H, Kasai H and Sugimoto N (2001). "Thermodynamic stability of base pairs between 2-hydroxyadenine and incoming nucleotides as a determinant of nucleotide incorporation specificity during replication." *Nucleic Acids Research*, **29**(16), pp. 3289–3296. doi: 10.1093/nar/29.16.3289.

von Ahsen N, Wittwer CT and Schutz E (2001). "Oligonucleotide melting temperatures under PCR conditions: Nearest-neighbor corrections for Mg2+, deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas." *Clinical Chemistry*, **47**(11), pp. 1956–1961. http://clinchem.aaccjnls.org/content/47/11/1956.

Le Novere N (2001). "MELTING, computing the melting temperature of nucleic acid duplex." *Bioinformatics*, **17**(12), pp. 1226–1227. doi: 10.1093/bioinformatics/17.12.1226.

Ohmichi T, Nakano S, Miyoshi D and Sugimoto N (2002). "Long RNA dangling end has large energetic contribution to duplex stability." *Journal of the American Chemical Society*, **124**(35), pp. 10367–10372. doi: 10.1021/ja0255406.

SantaLucia J and Hicks D (2004). "The thermodynamics of DNA structural motifs." *Annual Review of Biophysics and Biomolecular Structure*, **33**(1), pp. 415–440. doi: 10.1146/annurev.biophys.32.110601.141800.

Tanaka F, Kameda A, Yamamoto M and Ohuchi A (2004). "Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop." *Biochemistry*, **43**(22), pp. 7143–7150. doi: 10.1021/bi036188r.

McTigue PM, Peterson RJ and Kahn JD (2004). "Sequence-dependent thermodynamic parameters for locked nucleic acid (LNA)-DNA duplex formation." *Biochemistry*, **43**(18), pp. 5388–5405. doi: 10.1021/bi035976d.

Owczarzy R, You Y, Moreira BG, Manthey JA, Huang L, Behlke MA and Walder JA (2004). "Effects of sodium ions on DNA duplex oligomers: Improved predictions of melting temperatures." *Biochemistry*, **43**(12), pp. 3537–3554. doi: 10.1021/bi034621r.

Broda M, Kierzek E, Gdaniec Z, Kulinski T and Kierzek R (2005). "Thermodynamic stability of RNA structures formed by CNG trinucleotide repeats. Implication for prediction of RNA structure." *Biochemistry*, **44**(32), pp. 10873–10882. doi: 10.1021/bi0502339.

Watkins NE and SantaLucia J (2005). "Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes." *Nucleic Acids Research*, **33**(19), pp. 6258–6267. doi: 10.1093/nar/gki918.

Asanuma H, Matsunaga D and Komiyama M (2005). "Clear-cut photo-regulation of the formation and dissociation of the DNA duplex by modified oligonucleotide involving multiple azobenzenes." *Nucleic Acids Symposium Series*, pp. 35–36. doi: 10.1093/nass/49.1.35.

O'Toole AS, Miller S and Serra MJ (2005). "Stability of 3' double nucleotide overhangs that model the 3' ends of siRNA." *RNA*, **11**(4), pp. 512–516. doi: 10.1261/rna.7254905.

Lu ZJ, Turner DH and Mathews DH (2006). "A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation." *Nucleic Acids Research*, **34**(17), pp. 4912–4924. doi: 10.1093/nar/gkl472.

Kierzek E, Mathews DH, Ciesielska A, Turner DH and Kierzek R (2006). "Nearest neighbor parameters for Watson-Crick complementary heteroduplexes formed between 2'-O-methyl RNA and RNA oligonucleotides." *Nucleic Acids Research*, **34**(13), pp. 3609–3614. doi: 10.1093/nar/gkl232.

Tan Z and Chen S (2006). "Nucleic acid helix stability: Effects of salt concentration, cation valence and size, and chain length." *Biophysical Journal*, **90**(4), pp. 1175–1190. doi: 10.1529/biophysj.105.070904.

O'Toole AS, Miller S, Haines N, Zink MC and Serra MJ (2006). "Comprehensive thermodynamic analysis of 3' double-nucleotide overhangs neighboring Watson-Crick terminal base pairs." *Nucleic Acids Research*, **34**(11), pp. 3338–3344. doi: 10.1093/nar/gkl428.

Tan Z and Chen S (2007). "RNA helix stability in mixed Na(+)/Mg(2+) solution." *Biophysical Journal*, **92**(10), pp. 3615–3632. doi: 10.1529/biophysj.106.100388.

Wright DJ, Rice JL, Yanker DM and Znosko BM (2007). "Nearest neighbor parameters for inosine-uridine pairs in RNA duplexes." *Biochemistry*, **46**(15), pp. 4625–4634. doi: 10.1021/bi0616910.

Davis AR and Znosko BM (2007). "Thermodynamic characterization of single mismatches found in naturally occurring RNA." *Biochemistry*, **46**(46), pp. 13425–13436. doi: 10.1021/bi701311c.

Blose JM, Manni ML, Klapec KA, Stranger-Jones Y, Zyra AC, Sim V, Griffith CA, Long JD and Serra MJ (2007). "Non-nearest-neighbor dependence of stability for RNA bulge loops based on the complete set of group i single nucleotide bulge loops." *Biochemistry*, **46**(51), pp. 15123–15135. doi: 10.1021/bi700736f.

Badhwar J, Karri S, Cass CK, Wunderlich EL and Znosko BM (2007). "Thermodynamic characterization of RNA duplexes containing naturally occurring 1 * 2 nucleotide internal loops." *Biochemistry*, **46**(50), pp. 14715–14724. doi: 10.1021/bi701024w.

Davis AR and Znosko BM (2008). "Thermodynamic characterization of naturally occurring RNA single mismatches with G-U nearest neighbors." *Biochemistry*, **47**(38), pp. 10178–10187. doi: 10.1021/bi800471z.

Miller S, Jones LE, Giovannitti K, Piper D and Serra MJ (2008). "Thermodynamic analysis of 5' and 3' single- and 3' double-nucleotide overhangs neighboring wobble terminal base pairs." *Nucleic Acids Research*, **36**(17), pp. 5652–5659. doi: 10.1093/nar/gkn525.

Owczarzy R, Moreira BG, You Y, Behlke MA and Walder JA (2008). "Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations." *Biochemistry*, **47**(19), pp. 5336–5353. doi: 10.1021/bi702363u.

Dumousseau M, Rodriguez N, Juty N and Le Novere N (2012). "MELTING, a flexible platform to predict the melting temperatures of nucleic acids." *BMC Bioinformatics*, **13**, pp. 101. doi: 10.1186/1471210513101.

Index