Operating Systems: CPU Scheduling

Ahmad Yoosofan

https://yoosofan.github.io

University of Kashan

CPU Burst / Service Time

• cpu utilization by multiprogramming

• cpu - I/O cycle of a process

• cpu : burst time, service time

• I/O : or other blocking events like memory request

load store add store CPU burst read from file I/O burst wait for I/O store increment index CPU burst write to file I/O burst wait for I/O load store CPU burst add store read from file I/O burst wait for I/O

CPU Schedular

Short Term Schedular

- ready queue
- Dispatcher

Time Unit Concept

- Millisecond
- Nanosecond
- ?

Scheduling type

- nonpreemptivepreemptive

Processes Table

process	service(Burst) time
\mathbf{p}_0	3
p_1	2
\mathbf{p}_2	1
\mathbf{p}_3	2

process	service time	arrival time
p_0	3	0
p_1	2	0
\mathbf{p}_2	1	3
\mathbf{p}_3	2	5

First-Come, First-Served (FCFS)

process	service time	arrival time
p_0	2	0
p_1	1	0
\mathbf{p}_2	2	3
\mathbf{p}_3	1	4

	P_0	P_1	P_2	P_3
-	0	2	3	5 6

- t = 0: ready queue(q) = [p₀, p₁]
- t = 2: $q = [p_1]$
- t = 3: $q = [p_2]$
- t = 5: $q = [p_3]$

P_0	P_1	P_2	P_3	
0	2	3	5	6

Average Waiting Time

process	service time	arrival time
p_0	2	0
p_1	1	0
\mathbf{p}_2	2	3
\mathbf{p}_3	1	4

- P₀ waiting time: 0
- P₁ waiting time: 2
- P_2 waiting time: (3-3) = 0
- P_3 waiting time: (5-4) = 1

 \mathbf{p}_{0}

• Average Waiting Time: $\frac{0+2+0+1}{4} = \frac{3}{4} = 0.75$

FCFS - Convoy effect

process	service time	arrival time
p_0	4	0
p_1	6	0
\mathbf{p}_2	1	3
\mathbf{p}_3	3	4

	- 0		- 2	3	
0	4	1	10 11	14	
Δ	verage W	aiting Time 1	0+(4-0)+(10-	-3)+(11-4)	$=\frac{18}{4}=4\frac{2}{4}=4.5$
7 1	verage we		4		$=\frac{1}{4}=4\frac{1}{4}=4.5$

 \mathbf{p}_2

 \mathbf{p}_{2}

Rearange

P_0	P_2	P_3	P_1	
0	4 5		8	14

P₁

Average Waiting Time 2: $\frac{0+(4-3)+(5-4)+8}{4} = \frac{10}{4} = 2\frac{2}{4} = 2.5$

- Average Waiting Time 1: 4.5
- Average Waiting Time 2: 2.5
- 1: FCFS
- 2: Shortest Job First(SJF) or Shortest Process Next(SPN)

process	service time	arrival time
p_0	6	0
p_1	4	0
\mathbf{p}_2	1	3
\mathbf{p}_3	3	4

SJF/SPN

- Starvation
- Nonpreemptive

Shortest Remaining Time(SRT), preemptive SJF

process	service time	arrival time
p_0	4	0
p_1	6	0
p_2	1	1
p_3	3	2

,	P_0	\mathbf{P}_1	P_2 P_3	
	0	4	10 11 1	4
	Average W	<i>l</i> aiting Time	$1: \frac{0+(4-0)+(10-1)+(11-2)}{4}$	$\frac{2)}{1} = \frac{22}{4} = 5\frac{2}{4} = 5.5$
			Rearange	
	P_0 P_2 P_0	P_3	P_1	

P_0	P_2	2	P_0	P	3		$\overline{P_1}$			
0	1	2		5	8	3			1	4
							(0 (0	4)) (0	0) (4	

Average Waiting Time 2: $\frac{(0+(2-1))+(8-0)+(1-1)+(5-2)}{4} = \frac{12}{4} = 3$

- Average Waiting Time 1: 5.5
- Average Waiting Time 2: 3
- 1: FCFS
- 2: Shortest Job First(SJF) or Shortest Process Next(SPN)

Estimating Service Time(I)

$$\tau_{n} = \frac{t_{0} + t_{1} + t_{2} + \dots + t_{n-1}}{n}$$

$$n * \tau_n = t_0 + t_1 + t_2 + \dots + t_{n-1}$$

$$\tau_{n+1} = \frac{t_0 + t_1 + t_2 + \dots + t_{n-1} + t_n}{n+1}$$

$$= \frac{t_0 + t_1 + t_2 + \dots + t_{n-1}}{n+1} + \frac{t_n}{n+1}$$

$$\tau_{n+1} = \frac{n * \tau_n}{n+1} + \frac{t_n}{n+1}$$

$$\tau_{n+1} = \frac{n}{n+1} * \tau_n + \frac{1}{n+1} * t_n$$

Estimating Service Time(II)

$$\tau_{n+1} = \frac{n}{n+1} * \tau_n + \frac{1}{n+1} * t_n$$

$$\tau_{n+1} = \frac{n+1-1}{n+1} * \tau_n + \frac{1}{n+1} * t_n$$

$$\tau_{n+1} = (\frac{n+1}{n+1} - \frac{1}{n+1}) * \tau_n + \frac{1}{n+1} * t_n$$

$$\tau_{n+1} = (1 - \frac{1}{n+1}) * \tau_n + \frac{1}{n+1} * t_n$$

$$\alpha = \frac{1}{n+1}$$

$$\tau_{n+1} = (1 - \alpha) * \tau_n + \alpha * t_n$$

Estimating Service Time(III)

$$\alpha = \frac{1}{n+1}, \ \tau_{n+1} = (1-\alpha) * \tau_n + \alpha * t_n$$

 t_n = actual length of n^{th} service time

 τ_{n+1} = predicted value for the next service time

$$0 \le \alpha \le 1$$
, $\tau_{n+1} = (1 - \alpha) * \tau_n + \alpha * t_n$

 $\alpha \rightarrow 0$

Scheduling Criteria

- CPU utilization: keep the CPU as busy as possible
- *Throughput*: number of processes that complete their execution per time unit
- Turnaround time: amount of time to execute a particular process
- Waiting time: amount of time a process has been waiting in the ready queue
- *Response time*: amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time