Design and Analysis of Algorithms 6.046J/18.401J

LECTURE 13

Network Flow

- Flow networks
- Maximum-flow problem
- Cuts
- Residual networks
- Augmenting paths
- Max-flow min-cut theorem
- Ford Fulkerson algorithm

Flow networks

Definition. A *flow network* is a directed graph G = (V, E) with two distinguished vertices: a *source s* and a *sink t*. Each edge $(u, v) \in E$ has a nonnegative *capacity* c(u, v). If $(u, v) \notin E$, then c(u, v) = 0.

A flow on a network

Flow conservation (like Kirchoff's current law):

- Flow into u is 2 + 1 = 3.
- Flow out of *u* is 1 + 2 = 3.

Intuition: View flow as a *rate*, not a *quantity*.

The maximum-flow problem

Maximum-flow problem: Given a flow network *G*, find a flow of maximum value on *G*.

The value of the maximum flow is 4.

Flow network Assumptions

Assumption. If edge $(u, v) \in E$ exists, then $(v, u) \notin E$.

Assumption. No self-loop edges (u, u) exist

Net Flow

Definition. A *(net) flow* on G is a function $f: V \times V \rightarrow \mathbb{R}$ satisfying the following:

- Capacity constraint: For all $u, v \in V$, $f(u, v) \le c(u, v)$.
- *Flow conservation:* For all $u \in V \{s, t\}$,

$$\sum_{v \in V} f(u, v) = 0.$$

• Skew symmetry: For all $u, v \in V$, f(u, v) = -f(v, u).

Note: CLRS defines positive flows and net flows; these are equivalent for our flow networks obeying our assumptions.

Notation

Definition. The *value* of a flow f, denoted by |f|, is given by

$$|f| = \sum_{v \in V} f(s, v)$$
$$= f(s, V).$$

Implicit summation notation: A set used in an arithmetic formula represents a sum over the elements of the set.

• Example — flow conservation: f(u, V) = 0 for all $u \in V - \{s, t\}$.

Simple properties of flow

Lemma.

- $\bullet f(X,X)=0,$
- $\bullet f(X, Y) = -f(Y, X),$
- $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ if $X \cap Y = \emptyset$.

Theorem.
$$|f| = f(V, t)$$
.

Proof.

$$|f| = f(s, V)$$

= $f(V, V) - f(V-s, V)$ Omit braces.
= $f(V, V-s)$
= $f(V, t) + f(V, V-s-t)$
= $f(V, t)$.

Flow into the sink

$$|f| = f(s, V) = 4$$

$$f(V, t) = 4$$

Cuts

Definition. A *cut* (S, T) of a flow network G = (V, E) is a partition of V such that $s \in S$ and $t \in T$. If f is a flow on G, then the *flow across the cut* is f(S, T).

$$f(S, T) = (2+2) + (-2+1-1+2) = 4$$

Another characterization of flow value

Lemma. For any flow f and any cut (S, T), we have |f| = f(S, T).

$$f(S, T) = f(S, V) - f(S, S)$$

= $f(S, V)$
= $f(S, V) + f(S-S, V)$
= $f(S, V)$
= $|f|$.

Capacity of a cut

Definition. The *capacity of a cut* (S, T) is c(S, T).

$$c(S, T) = (3 + 2) + (1 + 3) = 9$$

Upper bound on the maximum flow value

Theorem. The value of any flow is bounded above by the capacity of any cut.

$$|f| = f(S,T)$$

$$= \sum_{u \in S} \sum_{v \in T} f(u, v)$$

$$\leq \sum_{u \in S} \sum_{v \in T} c(u, v)$$

$$=c(S,T)$$
.

Residual network

Definition. Let f be a flow on G = (V, E). The residual network $G_f(V, E_f)$ is the graph with strictly positive residual capacities

$$c_f(u, v) = c(u, v) - f(u, v) > 0.$$

Edges in E_f admit more flow.

If
$$(v, u) \notin E$$
, $c(v, u) = 0$, but $f(v, u) = -f(u, v)$.

$$|E_f| \le 2 |E|.$$

Flow and Residual Network

Augmenting paths

Definition. Any path from s to t in G_f is an *augmenting path* in G with respect to f. The flow value can be increased along an augmenting path p by $c_f(p) = \min_{(u,v) \in p} \{c_f(u,v)\}.$

$$p = \{s, u, x, v, t\}, c_f(p) = 1$$

Augmented Flow Network

$$p = \{s, u, x, v, t\}, c_f(p) = 1$$

The value of the maximum flow is 4.

Note: Some flows on edges decreased.

Max-flow, min-cut theorem

Theorem. The following are equivalent:

- 1. |f| = c(S, T) for some cut (S, T).
- 2. f is a maximum flow.
- 3. f admits no augmenting paths.

Proof. Next time!

Ford-Fulkerson max-flow algorithm

Algorithm:

```
f[u, v] \leftarrow 0 for all u, v \in V

while an augmenting path p in G wrt f exists

do augment f by c_f(p)
```

MIT OpenCourseWare http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.