Amendments to the Claims

The following listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of the Claims:

Claims 1-21 (canceled)

- 22. (currently amended) A transparent, non-elastomeric, poly(thio)urethane/urea polythiourethane/urea material comprising the reaction product of:
 - (a) at least one (α, ω) -diiso(thio)cyanate polysulfide prepolymer, said prepolymer being free from disulfide (-S-S-) linkage; and
 - (b) at least one aromatic primary diamine, in an equivalent molar ratio amine function/iso(thio)cyanate function (NH₂/NCX, X=O, S) ranging from 0.5 to 2, said aromatic primary diamine being free from disulfide (-S-S-) linkage,

wherein the (α, ω) -diiso(thio)cyanate polysulfide prepolymer is the reaction product of at least one cycloaliphatic or aromatic (α, ω) -diiso(thio)cyanate and at least one (α, ω) -diol or (α, ω) -dithiol prepolymer, said (α, ω) -diol or (α, ω) -dithiol prepolymer being a polysulfide or a mixture of polysulfides.

- 23. (previously presented) The transparent, non elastomeric poly(thio)urethane/urea material of claim 22, wherein the equivalent ratio NH₂/NCX ranges from 0.90 to 1.10.
- 24. (previously presented) The material of claim 22, wherein the equivalent ratio NH_2/NCX ranges from 0.93 to 0.95.

Claims 25-27 (canceled)

28. (previously presented) The material of claim 22, wherein the polysulfide or mixture of polysulfides is a polysulfide of formula:

in which x and y are chosen such that the two following conditions are simultaneously satisfied:

- -the polysulfide of formula Ia is a prepolymer; and
- -the number average molecular weight of the polysulfide of formula Ia is not more than 3000 gmol⁻¹.
- 29. (previously presented) The material of claim 22, wherein the aromatic diamine contains at least one S atom in its molecule.
- 30. (previously presented) The material of claim 29 wherein the diamine is selected from

$$R'$$
 S
 S
 R'
 S
 S
 R'
 S
 NH_2
 NH_2
 NH_2

$$H_2N$$
 S NH_2

in which R is H or an alkyl group and R' is an alkyl group, and mixtures of the above diamines.

- 31. (previously presented) The material of claim 22, wherein the material is the reaction product of:
 - a) said at least one (α, ω) -diiso(thio)cyanate polysulfide prepolymer;
 - b) said at least one aromatic primary diamine; and
 - c) at least one di-, tri-, or tetra alcohol, or at least one di-, tri-, or tetra thiol, or a mixture thereof.
- 32. (previously presented) The material of claim 31, wherein the alcohols and thiols are selected from the group consisting of:

HS CH₂CH₂ S CH₂CH₂ SH

$$C\left(CH_2O-C-CH_2CH_2SH\right)_4$$

$$\begin{array}{c} {\rm CH_2-SH} \\ {\rm I} \\ {\rm CH--S---CH_2CH_2---SH} \\ {\rm I} \\ {\rm CH_2--S---CH_2CH_2----SH} \end{array}$$

Application No. 09/992,054 Response to Final Office Action Mailed November 16, 2009

and mixtures thereof.

- 33. (previously presented) The material of claim 22 having a refractive index, n_D^{25} , higher than 1.53.
- 34. (previously presented) The material of claim 22 having a refractive index, n_D^{25} , of at least 1.55.
- 35. (previously presented) The material of claim 22 having a refractive index, n_D^{25} , of at least 1.57.
- 36. (previously presented) The material of claim 22, wherein the polysulfide is an hyperbranched polysulfide resulting from the polymerization of a diepisulfide of formula:

$$CH_2$$
 $C-R^3-S-R^4$ $C-C+2$

in which R^1 and R^2 are, independently from each other, H, alkyl, aryl, alkoxy, alkylthio or arylthio, R^3 and R^4 are independently from each other,

$$-\left(\begin{array}{c} Ra \\ -CH \end{array}\right)_{1-10}$$
 or $-\left(\begin{array}{c} -CH \end{array}\right)_{1-3}$

Ra designates H, alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio, with 2-mercaptoethyl sulfide (DMES).

37. (previously presented) The material of claim 36, wherein the diepisulfide has formula:

$$CH_2$$
— CH — CH_2 — S — CH_2 — CH — CH_2

- 38. (previously presented) An optical article made from a material according to claim 22.
- 39. (previously presented) The material of claim 48, wherein n' is such that the number average molecular weight (\overline{M}_n) of the prepolymer ranges from 650 to 1350 g mol⁻¹.

Claims 40-41 (cancelled)

- 42. (previously presented) The material of claim 30, wherein R and R' are CH₃.
- 43. (previously presented) The material of claim 30, wherein the diamine is a mixture of by weight:

Claims 44-46 (cancelled)

47. (previously presented) The material of claim 22, wherein the polysulfide or mixture of polysulfides is a prepolymer resulting from the polymerization of diepisulfides of formula:

in which R^1 and R^2 are, independently from each other, H, alkyl, aryl, alkoxy, alkylthio or arylthio; R^3 and R^4 are, independently from each other,

 R_a designates H, alkyl, aryl, alkoxy, aryloxy, alkylthio or arylthio and, n is an integer from 0 to 4 and m is an integer from 1 to 6.

48. (previously presented) The material of claim 22, wherein the polysulfide or mixture of polysulfides is

55593097.1 - 7 -

a prepolymer of the formula:

$$HS - - (CH_2) \frac{1}{2} - S - - (CH_2) \frac{1}{2} - S - - (CH_2) \frac{1}{3} - S - - (CH_2) \frac{1}{3} - S - - (CH_2) \frac{1}{2} - S - (CH_2) \frac{1}{2} - (CH$$

where n' is such that the number average molecular weight (\overline{M}_n) of the prepolymer ranges from 500 to 1500g mol⁻¹.

49. (previously presented) The material of claim 22, wherein the at least one (α, ω) -diiso(thio)cyanate polysulfide prepolymer has a number average molecular weight of not more than 3000 g mol⁻¹.