

I - Medidas de Tensão ±DC (Página 2)

- Medida de tensão somente DC com mudança de polaridade ($\pm DC$)

Para outros modelos equivalentes, acessar: https://www.secon.com.br/produtos/transdutores.tensao.DC

II - Medidas de Tensão AC e ±DC (Página 8)

- Medida de tensão AC (qualquer formato de onda). Saída com reprodução do formato de onda.
- Medida simultânea de tensão AC (qualquer formato de onda) e DC com mudança de polaridade (\pm DC). Saída com reprodução do formato de onda.

 $Para\ outros\ modelos\ equivalentes,\ acessar:\ \underline{https://www.secon.com.br/produtos/transdutores.tensao.MI}$

www.secon.com.br comercial@secon.com.br

02/19

Fone: 51 3223-0608 Página **1** de **12**

I - Medidas de Tensão ±DC

Os transdutores da LINHA VMI podem medir sinais em tensão DC com mudança de polaridade e com total isolamento galvânico (óptico). São montados em um encapsulamento padrão DIN para fixação em fundo de painel (trilhos – 35mm) e são fornecidos com saída analógica do tipo (0-5)V, (0-10)V, (0-20)mA, (4-20)mA, (5-0)V, (10-0)V, (20-0)mA, (20-4)mA, $\pm 5V$, $\pm 10V$ ou $\pm 20mA$ (outros sob-consulta) e para comunicação em rede RS485 protocolo MODBUS-RTU. É possível o fornecidos de modelos com saída somente analógica, somente para rede e analógica mais rede.

Características Técnicas:

- Transdutor analógico de tensão.
- Tipo de medida: ±DC instantânea com mudança de polaridade (MI).
- Saída padronizada e proporcional a faixa de medida.
- Erro máximo (70°C): ±1% de V_{nom.}
- Tempo de resposta: ≤300μs
- Total isolamento galvânico (óptico) entre entrada / saída / alimentação. Ensaio de isolamento entre entradas de tensão e outros: 1,5kV_{ac}/1min (60Hz); e 2kV (1,2/50μs).
- V_{máx} por um período ≤1min: V_{nom} + 50%.
- V_{máx} por um período ≤10s: 2 x V_{nom}.
- Faixa de temperatura: -10°C à 70°C
- Grau de proteção: IP40; IP20 (Modelos
 - com comunicação em rede RS485-MODBUS)
- Peso: 300 g

Nomenclatura:

V_{nom}: Tensão Nominal

 $V_{\text{máx}}$: Tensão máxima suportada na entrada da medida (sem causar danos ao transdutor)

VM : Tensão medida S: Sinal de saída

Tipos de Saída				
Saída	Código			
(0 - 5)V	$S(V) = 2.5 + 2.5.VM/V_{nom}$	05V		
(0 - 10)V	$S(V) = 5 + 5.VM/V_{nom}$	010V		
(0 - 20)mA	$S(mA) = 10 + 10.VM/V_{nom}$	020A		
(4 – 20)mA	$S(mA) = 12 + 8.VM/V_{nom}$	420A		
(5 - 0)V	$S(V) = 2.5 - 2.5.VM/V_{nom}$	50V		
(10 - 0)V	$S(V) = 5 - 5.VM/V_{nom}$	100V		
(20 - 0)mA	$S (mA) = 10 - 10.VM/V_{nom}$	200A		
(20 – 4)mA	$S (mA) = 12 - 8.VM/V_{nom}$	204A		
±5V	$S(V) = 5.VM/V_{nom}$	±5V		
±10V	$S(V) = 10.VM/V_{nom}$	±10V		
±20mA	$S(mA) = 20.VM/V_{nom}$	±20A		
Rede	RS485 - Protocolo MODBUS-RTU	MOD		
Outras	Sob-Consulta			

- Modelos com saída em tensão:
 - Corrente máxima suportada nas saídas: 2mA.
 - Tensão máxima na saída: < |13|Vdc (p/ tensões maiores que V_{nom})
- Modelos com saída em corrente:
 - Impedância máxima a ser colocada na saída: 500Ω .
 - Corrente máxima na saída: < |24|mAdc (p/ tensões maiores que V_{nom})

Faixas de Medida				
Faixa de Medida	Tensão Nominal V _{nom} (V)	Tempo de Resposta	Impedância de Entrada	
(-60 à +60)mV _{dc}	0,06	100ms	40kΩ	
(-100 à +100)mV _{dc}	0,1	100ms	40kΩ	
(-150 à +150)mV _{dc}	0,15	100ms	50kΩ	
(-200 à +200)mV _{dc}	0,2	100ms	50kΩ	
(-300 à +300)mV _{dc}	0,3	100ms	50kΩ	
(-500 à +500)mV _{dc}	0,5	10ms	50kΩ	
(-750 à +750)mV _{dc}	0,75	10ms	50kΩ	
(-1 à +1)V _{dc}	1	10ms	50kΩ	
(-2 à +2)V _{dc}	2	10ms	50kΩ	
(-3 à +3)V _{dc}	3	10ms	50kΩ	
(-5 à +5)V _{dc}	5	10ms	50kΩ	
(-7 à +7)V _{dc}	7	10ms	50kΩ	
(-10 à +10)V _{dc}	10	10ms	50kΩ	
(-15 à +15)V _{dc}	15	10ms	50kΩ	
(-20 à +20)V _{dc}	20	10ms	50kΩ	
(-25 à +25)V _{dc}	25	10ms	50kΩ	
(-30 à +30)V _{dc}	30	10ms	1ΜΩ	
(-35 à +35)V _{dc}	35	10ms	1ΜΩ	
(-50 à +50)V _{dc}	50	10ms	1ΜΩ	
(-60 à +60)V _{dc}	60	10ms	1ΜΩ	
(-75 à +75)V _{dc}	75	10ms	1ΜΩ	
(-100 à +100)V _{dc}	100	10ms	2ΜΩ	
(-130 à +130)V _{dc}	130	10ms	2ΜΩ	
(-150 à +150)V _{dc}	150	10ms	2ΜΩ	
(-200 à +200)V _{dc}	200	10ms	2ΜΩ	
(-250 à +250)V _{dc}	250	10ms	2ΜΩ	
(-300 à +300)V _{dc}	300	10ms	5ΜΩ	
(-350 à +350)V _{dc}	350	10ms	5ΜΩ	
(-400 à +400)V _{dc}	400	10ms	5ΜΩ	
(-450 à +450)V _{dc}	450	10ms	5ΜΩ	
(-500 à +500)V _{dc}	500	10ms	5ΜΩ	
(-550 à +550)V _{dc}	550	10ms	5ΜΩ	
(-600 à +600)V _{dc}	600	10ms	5ΜΩ	
(-650 à +650)V _{dc}	650	10ms	5ΜΩ	
(-750 à +750)V _{dc}	750	10ms	5ΜΩ	
(-1000 à +1000)V _{dc}	1000	10ms	5ΜΩ	

Alimentação Auxiliar				
Tipo de Alimentação Auxiliar	Característica	Corrente Máxima de Consumo	Código	
(10 - 15)Vdc	Total Isolamento	650mA	E12VDC	
(17 - 30)Vdc	Total Isolamento	150mA	E24VDC	
(35 – 70)Vdc	Total Isolamento	100mA	UNIV2	
(80 - 350)Vdc (70 - 245)Vac 50/60Hz	Total Isolamento	70mA	UNIV	
127Vac (±10%) 60Hz	Total Isolamento	50mA	127VAC	
220Vac (±10%) 60Hz	Total Isolamento	25mA	220VAC	

02/19

Fone: 51 3223-0608 Página **3** de **12**

Código do modelo do produto:

Para o código final do produto, inserir as informações nas posições de 1 à 4 conforme diagrama abaixo.

Utilizando o diagrama anterior, pode-se determinar o código dos produtos a partir da etiqueta fixada sobre o transdutor:

- 1 Valor nominal (V) da tensão de entrada.
- 2 4 Tipo(s) de saída(s).
- 3 Alimentação auxiliar. Caso esteja indicado (80-350)Vdc/(70-245)Vac, utilizar o código UNIV.

Para o exemplo da etiqueta acima, teremos o modelo: 150V420AMI-UNIV-MOD

Dimensões Físicas: 75,00 mm 55,00 mm 55,00 mm Fixação por trilho DIN 35mm.

Diagrama de Conexões:

Saída em rede RS485 (MODBUS-RTU).

Além da saída analógica, os transdutores também podem ser fornecidos com uma saída em rede RS485 protocolo MODBUS-RTU (atuando como escravo).

O endereço de comunicação MODBUS é determinado através de uma chave seletora (chaves de 1 à 7; Ver figura abaixo) e podem ser utilizados até 127 equipamentos em uma mesma rede.

Fone: 51 3223-0608 Página **5** de **12**

Detalhes da Chave Seletora.

- Chaves de 1 à 7: Endereço de comunicação MODBUS; Chave 1 é o BIT menos significativo do endereço.
- Chave 8: Velocidade de comunicação serial RS485; Posição 0 = 9600bps; Posição 1 (ON) = 19200bps.

Funções Válidas

03 (Read Holding Registers) 04 (Read Input Registers)

Paridade (Configurado em fábrica)

- Sem paridade (configuração padrão)
- Par
- Ímpar

Stop BIT

1

Endereço da Memória de Leitura.

ENDEREÇO MEMÓRIA	TIPO	DESCRIÇÃO	INDICAÇÃO EM DECIMAL
0	INT16	VALOR DA TENSÃO DE ENTRADA	-1000 à 1000

Rede Física

Nas redes RS485, o meio físico mais utilizado é um par de condutores trançados por onde os dispositivos transmitem e recebem os dados. O comprimento máximo dessas redes não deve exceder os 1200m e caso a mesma tenha acima de 100m é importante a colocação de resistores de terminação de 120 Ω (conforme figura abaixo) para que não seja necessário a diminuição de velocidade de comunicação em benefício de uma manutenção de confiabilidade da rede.

Página 6 de 12

Deve ser evitada a existência de condutores não utilizados em redes físicas pois os mesmos poderão autoressonar e acoplar ruídos. Caso a alternativa não seja possível, utilizar resistores de terminação em ambas as extremidades (ver figura).

II - Medidas de Tensão AC e ±DC (Medida Instantânea)

Os transdutores da LINHA VMI podem medir de forma instantânea sinais em <u>tensão AC</u> (qualquer formato de onda) ou simultaneamente sinais em <u>tensão AC</u> (qualquer formato de onda) <u>e DC com ou sem mudança de polaridade (\pm DC)</u>. Medem sinais com frequência de 0Hz à 2kHz, possuem total isolamento galvânico (óptico) e são montados em um encapsulamento padrão DIN para fixação em fundo de painel (trilhos – 35mm). Podem ser fornecidos com saída analógica do tipo (0–5)V, (0-10)V, (0-20)mA, (4-20)mA, (5–0)V, (10-0)V, (20-0)mA, (20-4)mA, \pm 5V, \pm 10V ou \pm 20mA (outros sob-consulta).

Observação: Os transdutores da LINHA VMI podem ser fornecidos com saída em rede RS485 MODOBUS RTU; entretanto, este tipo de comunicação não possui velocidade adequada para medidas instantâneas de sinais com reprodução de formato de onda. Podem ser fornecidos para medidas DC e \pm DC (ver página 2: I - Medidas de Tensão \pm DC)

Funcionamento: Podendo medir qualquer sinal AC, DC ou AC+DC, independente do formato de onda, reproduzem em sua saída padronizada este mesmo sinal. Ver figuras ilustrativas abaixo.

Transdutores com saída ±5Vdc

Transdutores com saída ±10Vdc

Amplitude do sinal de saída S(V)

Transdutores com saída ±20mAdc

Amplitude do sinal de saída S(mA)

Nomenclatura:

 V_{nom} : Tensão Nominal

VM: Tensão medida

 VM_{Pp} : Tensão de pico máxima nominal positiva do sinal medido ($VM_{Pp} = V_{nom}$)

 VM_{Np} : Tensão de pico mínima nominal negativa do sinal medido ($|VM_{Np}| = V_{nom}$)

VM_{pp}: Tensão pico-pico do sinal medido

S: Sinal de saída do transdutor

S_{pp}: Sinal pico-pico da saída do transdutor

 $V_{\text{máx}}$: Tensão máxima suportada na entrada da medida (sem causar danos ao transdutor).

Observação: VM precisa ser ≤V_{máx}.

Características Técnicas:

- Transdutor analógico de tensão.

- Tipo de medida: AC/DC instantânea (MI).

- Saída padronizada e proporcional a faixa de medida.

- Erro máximo (70°C): $\pm 1\%$ de $V_{nom.}$

- Tempo de resposta: ≤300μs - Faixa de frequência: (0 - 2)kHz

 Total isolamento galvânico (óptico) entre entrada / saída / alimentação. Ensaio de isolamento entre entradas de tensão e outros: 1,5kV_{ac}/1min (60Hz); e 2kV (1,2/50μs).

- V_{máx} por um período ≤1min: V_{nom} + 50%.

- $V_{m\acute{a}x}$ por um período ≤10s: 2 x V_{nom} .

- Faixa de temperatura: -10°C à 70°C

 - Grau de proteção: IP40; IP20 (Modelos com comunicação em rede RS485-MODBUS)

- Peso: 300 g

Faixas de Medida				
Faixa de Medida (VM _{Np} à VM _{Pp})	Tensão Nominal V _{nom} (V)	Faixa de Frequência	Tempo de Resposta	Impedância de Entrada
(-60 à +60)mV	0,06	0Hz à 2kHz	100ms	40kΩ
(-100 à +100)mV	0,1	0Hz à 2kHz	100ms	40kΩ
(-150 à +150)mV	0,15	0Hz à 2kHz	100ms	50kΩ
(-200 à +200)mV	0,2	0Hz à 2kHz	100ms	50kΩ
(-300 à +300)mV	0,3	0Hz à 2kHz	100ms	50kΩ
(-500 à +500)mV	0,5	0Hz à 2kHz	10ms	50kΩ
(-750 à +750)mV	0,75	0Hz à 2kHz	10ms	50kΩ
(-1 à +1)V	1	0Hz à 2kHz	10ms	50kΩ
(-2 à +2)V	2	0Hz à 2kHz	10ms	50kΩ
(-3 à +3)V	3	0Hz à 2kHz	10ms	50kΩ
(-5 à +5)V	5	0Hz à 2kHz	10ms	50kΩ
(-7 à +7)V	7	0Hz à 2kHz	10ms	50kΩ
(-10 à +10)V	10	0Hz à 2kHz	10ms	50kΩ
(-15 à +15)V	15	0Hz à 2kHz	10ms	50kΩ
(-20 à +20)V	20	0Hz à 2kHz	10ms	50kΩ
(-25 à +25)V	25	0Hz à 2kHz	10ms	50kΩ
(-30 à +30)V	30	0Hz à 2kHz	10ms	1ΜΩ
(-35 à +35)V	35	0Hz à 2kHz	10ms	1ΜΩ
(-50 à +50)V	50	0Hz à 2kHz	10ms	1ΜΩ
(-60 à +60)V	60	0Hz à 2kHz	10ms	1ΜΩ
(-75 à +75)V	75	0Hz à 2kHz	10ms	1ΜΩ
(-100 à +100)V	100	0Hz à 2kHz	10ms	2ΜΩ
(-130 à +130)V	130	0Hz à 2kHz	10ms	2ΜΩ
(-150 à +150)V	150	0Hz à 2kHz	10ms	2ΜΩ
(-200 à +200)V	200	0Hz à 2kHz	10ms	2ΜΩ
(-250 à +250)V	250	0Hz à 2kHz	10ms	2ΜΩ
(-300 à +300)V	300	0Hz à 2kHz	10ms	5ΜΩ
(-350 à +350)V	350	0Hz à 2kHz	10ms	5ΜΩ
(-400 à +400)V	400	0Hz à 2kHz	10ms	5ΜΩ
(-450 à +450)V	450	0Hz à 2kHz	10ms	5ΜΩ
(-500 à +500)V	500	0Hz à 2kHz	10ms	5ΜΩ
(-550 à +550)V	550	0Hz à 2kHz	10ms	5ΜΩ
(-600 à +600)V	600	0Hz à 2kHz	10ms	5ΜΩ
(-650 à +650)V	650	0Hz à 2kHz	10ms	5ΜΩ
(-750 à +750)V	750	0Hz à 2kHz	10ms	5ΜΩ
(-1000 à +1000)V	1000	0Hz à 2kHz	10ms	5ΜΩ

Página **10** de **12**

Tipos de Saída				
Saída Função de Transferência		Código		
(0 - 5)V	$S(V) = 2.5 + 2.5.VM/V_{nom}$	05V		
(0 - 10)V	$S(V) = 5 + 5.VM/V_{nom}$	010V		
(0 – 20)mA	$S(mA) = 10 + 10.VM/V_{nom}$	020A		
(4 – 20)mA	$S(mA) = 12 + 8.VM/V_{nom}$	420A		
(5 - 0)V	$S(V) = 2.5 - 2.5.VM/V_{nom}$	50V		
(10 - 0)V	$S(V) = 5 - 5.VM/V_{nom}$	100V		
(20 – 0)mA	$S (mA) = 10 - 10.VM/V_{nom}$	200A		
(20 – 4)mA	$S (mA) = 12 - 8.VM/V_{nom}$	204A		
±5V	$S(V) = 5.VM/V_{nom}$	±5V		
±10V	$S(V) = 10.VM/V_{nom}$	±10V		
±20mA	$S(mA) = 20.VM/V_{nom}$	±20A		
Rede	RS485 - Protocolo MODBUS-RTU	MOD		
Outras	Sob-Consulta			

- Modelos com saída em tensão:
 - Corrente máxima suportada nas saídas: 2mA.
 - Tensão máxima na saída: < |13|Vdc (p/ tensões maiores que V_{nom})
- Modelos com saída em corrente:
 - Impedância máxima a ser colocada na saída: 500Ω.
 - Corrente máxima na saída: < |24|mAdc (p/ tensões maiores que V_{nom})

Alimentação Auxiliar				
Tipo de Alimentação Auxiliar	Característica	Corrente Máxima de Consumo	Código	
(10 - 15)Vdc	Total Isolamento	650mA	E12VDC	
(17 - 30)Vdc	Total Isolamento	150mA	E24VDC	
(35 – 70)Vdc	Total Isolamento	100mA	UNIV2	
(80 - 350)Vdc (70 - 245)Vac 50/60Hz	Total Isolamento	70mA	UNIV	
127Vac (±10%)	Total Isolamento	50mA	127VAC	
220Vac (±10%)	Total Isolamento	25mA	220VAC	

Código do modelo do produto:

Para o código final do produto, inserir as informações nas posições de 1 à 4 conforme diagrama abaixo.

Observação: Os transdutores da LINHA VMI podem ser fornecidos com saída em rede RS485 MODOBUS RTU; entretanto, este tipo de comunicação não possui velocidade adequada para medidas instantâneas de sinais com reprodução de formato de onda. Podem ser fornecidos para medidas DC e ±DC (ver página 2: I - Medidas de Tensão ±DC)

www.secon.com.br comercial@secon.com.br

Utilizando o diagrama anterior, pode-se determinar o código dos produtos a partir da etiqueta fixada sobre o transdutor:

- 1 Valor nominal (V) da tensão de entrada.
- 2 Tipo(s) de saída(s).
- 3 Alimentação auxiliar. Caso esteja indicado (80-350)Vdc/(70-245)Vac, utilizar o código UNIV.

Para o exemplo da etiqueta acima, teremos o modelo: 150V420AMI-UNIV

Dimensões Físicas:

Diagrama de Conexões:

Fixação por trilho DIN 35mm.

www.secon.com.br comercial@secon.com.br

02/19

Fone: 51 3223-0608 Página **12** de **12**