数理逻辑

第5讲联结词的扩充与规约

授课教师: 蒋琳

e-mail: zoeljiang@hit.edu.cn

哈尔滨工业大学(深圳)计算机科学与技术学院

主要内容

- 1. n元联结词
- 2. 联结词的表示与完备

n元联结词的个数

命题: *n*元命题公式的全体可以划分为2^{2ⁿ}个等价类,每一类中的公式相互逻辑等价,都等价于它们公共的**主合取范式(主析**

取范式)。

从真值表的角度, A = B

p_1	p_2	 p_n	A
0	0	 0	0
0	0	 1	0
1	1	 0	0
1	1	 1	0

一元联结词

$$n=1$$
, $\mathbb{P}^{2^1}=4$

表: 一元联结词

\overline{p}	$\Delta_1(p)$	$\Delta_2(p)$	$\Delta_3(p)$	$\Delta_4(p)$
0	0	0	1	1
1	0	1	0	1

其中, Δ_1 , Δ_4 为常联结词, Δ_2 为幺联结词, Δ_3 为否定词。

$$\Delta_1(p) \Leftrightarrow f, \quad \Delta_4(p) \Leftrightarrow t$$

$$\Delta_2(p) \Leftrightarrow p, \ \Delta_3(p) \Leftrightarrow \neg p$$

二元联结词

n=2,即 $2^{2^2}=16$ 种

表: 二元联结词

p	q	* 1	* 2	* 3	* 4	* 5	* 6	* 7	* 8
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1
p	q	* 9	* 10	* 11	* 12	* 13	* 14	* 15	* 16
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

$$p *_{i} q = \neg (p *_{17-i} q), i = 1,2, \dots, 8$$

二元联结词的个数

我们有下面的等式:

$$p*_1q \leftrightarrow 0, p*_{16}q \leftrightarrow 1, 即*_{1}, *_{16}$$
为常联结词 $p*_4q \leftrightarrow p, p*_6q \leftrightarrow q, 即*_4, *_6$ 为投影联结词 $p*_{13}q \leftrightarrow \neg p, p*_{11}q \leftrightarrow \neg q, 即*_{13}, *_{11}$ 为二元否定词 $p*_9q \leftrightarrow \neg (p \lor q), *_9$ 称为或非词,用记号\表示, 即 $p \lor q \leftrightarrow \neg (p \lor q)$ $p*_{15}q \leftrightarrow \neg (p \land q), *_{15}$ 称为与非词,用记号\表示, 即 $p \uparrow q \leftrightarrow \neg (p \land q)$ $p*_3q \leftrightarrow \neg (p \to q), p*_5q \leftrightarrow \neg (q \to p)$ 即 $*_3$, $*_5$ 为蕴含否定词 $p*_7q \leftrightarrow (p \lor q) \land \neg (p \land q) \leftrightarrow \neg (p \leftrightarrow q) \leftrightarrow (\neg p \land q) \lor (p \land \neg q)$ $*_7$ 称为异或词,用记号 $V \neg (g \leftrightarrow q) \leftrightarrow \neg (p \leftrightarrow q)$ 表示,即 $p V \neg q \leftrightarrow p \oplus q \leftrightarrow \neg (p \leftrightarrow q)$ 除此之外, $*_2$ 为 \wedge , $*_8$ 为 \vee , $*_{12}$, $*_{14}$ 为 \to , $*_{10}$ 为 \leftrightarrow

二元联结词

$$p*_7q \Leftrightarrow \neg(p \leftrightarrow q)$$

$$\Leftrightarrow \neg((p \land q) \lor (\neg p \land \neg q))$$

$$\Leftrightarrow \neg(p \land q) \land \neg(\neg p \land \neg q)$$

$$\Leftrightarrow \neg(p \land q) \land (\neg \neg p \lor \neg \neg q)$$

$$\Leftrightarrow \neg(p \land q) \land (p \lor q)$$

$$\Leftrightarrow ((\neg p \lor \neg q) \land p) \lor ((\neg p \lor \neg q) \land q)$$

$$\Leftrightarrow (\neg p \land p) \lor (\neg q \land p) \lor (\neg p \land p) \lor (\neg q \land q)$$

$$\Leftrightarrow (\neg p \land q) \lor (p \land \neg q)$$

$$A \leftrightarrow B \Leftrightarrow (A \land B) \lor (\neg A \land \neg B)$$

$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

$$(对合律) \neg \neg A \Leftrightarrow A$$

定义: 联结词的可表示

称n元联结词h是由m个联结词 $g_1,g_2,...,g_m$ 可表示的,如果 $h(p_1,p_2,...,p_n) \Leftrightarrow A$,而A中所含的联结词仅取自 $g_1,g_2,...,g_m$ 。

命题:任何一个一元、二元联结词都可以通过¬,∨,∧表示出来。

理解: (1) 范式定理中任何一个命题公式,都存在与之等价的

合取和析取范式。

(2) 消去蕴涵与等价

- 若联结词{g₁, g₂, ···, g_m} 可表示所有一元、二元联结 词时, 称其为完备联结词组。
- {¬, ∨, ∧}是完备的联结词组。
- 有没有长度更小的完备联结词组?

命题: {¬,→}是完备联结词组。

思路:因为{¬,∧,∨}是完备的联结词组,只需要证明{¬,∨,∧}可

被{¬,→} 所表示的,就可以证明{¬,→}是完备的联结词组。

证明: (1) $\neg p \Leftrightarrow \neg p$

(2) $p \land q \Leftrightarrow \neg \neg (p \land q)$ (对合律 $\neg \neg A \Leftrightarrow A$) $\Leftrightarrow \neg (\neg p \lor \neg q)$ (德摩根律 $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$) $\Leftrightarrow \neg (p \to \neg q)$ ($A \to B \Leftrightarrow \neg A \lor B$)

(3) $p \lor q \Leftrightarrow \neg \neg p \lor q$ (对合律 $\neg \neg A \Leftrightarrow A$) $\Leftrightarrow \neg p \to q \ (A \to B \Leftrightarrow \neg A \lor B)$

因此, {¬,→}是完备的联结词组。

命题: $\{\Delta_1, \rightarrow\}$ 是完备联结词组。

思路:因为{¬, ∨, ∧}是完备的联结词组,只需要证明{¬, ∨, ∧}可

被 $\{\Delta_1, \rightarrow\}$ 所表示的,就可以证明 $\{\Delta_1, \rightarrow\}$ 是完备联结词组。

证明: (1) $\neg p \Leftrightarrow \neg p \lor \Delta_1(p)$ (析取永假项,真值不变,同一律 $A \lor 0 \Leftrightarrow A$) $\Leftrightarrow p \to \Delta_1(p)$ ($A \to B \Leftrightarrow \neg A \lor B$)

(2) $p \land q \Leftrightarrow \neg \neg (p \land q)$ (对合律 $\neg \neg A \Leftrightarrow A$) $\Leftrightarrow \neg (\neg p \lor \neg q)$ (德摩根律 $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$) $\Leftrightarrow \neg (p \to \neg q)$ ($A \to B \Leftrightarrow \neg A \lor B$) $\Leftrightarrow (p \to \neg q) \to \Delta_1(p \to \neg q)$ (利用(1))

(3) $p \lor q \Leftrightarrow \neg \neg p \lor q \Leftrightarrow \neg p \to q$ (对合律 $\neg \neg A \Leftrightarrow A, A \to B \Leftrightarrow \neg A \lor B$) $\Leftrightarrow (p \to \Delta_1(p)) \to q$ (利用(1))

 $\Leftrightarrow (p \to (q \to \Delta_1(q)) \to \Delta_1(p \to (q \to \Delta_1(q)))$ (两次利用(1))

因此, $\{\Delta_1, \rightarrow\}$ 是完备联结词组。

命题: {↓}(或非) 是完备联结词组。 证明: (1) $\neg p \Leftrightarrow \neg (p \lor p)$ (幂等 $\triangle A \lor A \Leftrightarrow A$ 和替换定理) **⇔◆** ↓ *p* (或非定义) (2) $p \land q \Leftrightarrow \neg \neg (p \land q)$ (对合律 $\neg \neg A \Leftrightarrow A$) $\Leftrightarrow \neg (\neg p \lor \neg q)$ (徳摩根律 $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$) **⇔¬◆** ↓¬*q* (或非定义) $\Leftrightarrow (\diamondsuit \downarrow p) \downarrow (q \downarrow q)$ (利用(1)) (3) $p \lor q \Leftrightarrow \neg \neg (p \lor q)$ (对合律 $\neg \neg A \Leftrightarrow A$) $\Leftrightarrow \neg(\neg(p \lor q))$ $\Leftrightarrow \neg (p \downarrow q)$ (或非定义) $\Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q)$ (利用(1))

因此, {↓}是完备联结词组。

命题: {↑} (与非)是完备联结词组。 证明: (1) $\neg p \Leftrightarrow \neg (p \land p)$ (幂等律 $A \land A \Leftrightarrow A$ 和替换定理) $\Leftrightarrow p \uparrow p$ (与非定义) (2) $p \land q \Leftrightarrow \neg \neg (p \land q)$ (对合律 $\neg \neg A \Leftrightarrow A$) $\Leftrightarrow \neg(\neg(p \land q))$ $\Leftrightarrow \neg (p \uparrow q)$ (与非定义) $\Leftrightarrow ((p \uparrow q)) \uparrow ((p \uparrow q))$ (利用 (1)) (3) $p \lor q \Leftrightarrow \neg \neg (p \lor q)$ (对合律 $\neg \neg A \Leftrightarrow A$) $\Leftrightarrow \neg (\neg p \land \neg q)$ (徳摩根律 $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$) $\Leftrightarrow \neg p \uparrow \neg q$ (与非定义)

 $\Leftrightarrow (p \uparrow p) \uparrow (q \uparrow q)$ (利用(1))

因此, {↑}是完备联结词组。

例子: 用 $\{\uparrow\}$ 表示 $(p \rightarrow \neg q) \rightarrow \neg r$ 。

解:
$$(p \rightarrow \neg q) \rightarrow \neg r$$

$$\Leftrightarrow (\neg \bullet \lor \neg q) \to \neg r$$
 (消去蕴涵 $A \to B \Leftrightarrow \neg A \lor B$)

$$\Leftrightarrow \neg (\neg \diamond \lor \neg q) \lor \neg r$$
 (再次消去蕴涵)

$$\Leftrightarrow \neg \neg (\diamond \land q) \lor \neg r$$
 (徳摩根律 $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B)$

$$\Leftrightarrow \neg (\bullet \uparrow q) \lor \neg r$$
 (与非的定义)

$$\Leftrightarrow \neg((\lozenge \uparrow q) \land r) \qquad (\texttt{德摩根} + \neg(A \land B) \Leftrightarrow \neg A \lor \neg B)$$

$$\Leftrightarrow (\diamond \uparrow q) \uparrow r$$
 (与非的定义)

命题: 任何n元联结词 $h(p_1,p_2,\cdots,p_n)$ 都可以通过联结词 $\{\neg,\rightarrow\}$ 表示出来。

证明思路:使用第一数学归纳法,n=1,2时,显然成立。因为 $\{\neg,\rightarrow\}$ 是完备联结词组,即可以表示所有一元、二元联结词。假设任何n-1元联结词可以通过联结词 $\{\neg,\rightarrow\}$ 表示。只需证明, $h(p_1,p_2,\cdots,p_n)\Leftrightarrow (p_1\rightarrow h(1,p_2,\cdots,p_n))$ $\Lambda(\neg p_1\rightarrow h(0,p_2,\cdots,p_n))$

证明: 对n用第一数学归纳法。

当
$$n=1,2$$
时,显然成立,假设任何 $n-1$ 元联结词都可以通过 $\{\neg,\rightarrow\}$ 来表示只需证明, $h(p_1,p_2,...,p_n)\Leftrightarrow (p_1\to h(1,p_2,...,p_n))\land (\neg p_1\to h(0,p_2,...,p_n))$ 1) 对于任意的指派 v ,当 $(h(p_1,p_2,...,p_n))^v=1$ 时,若 $p_1^v=1$,则 $(\neg p_1)^v=0$,那么, $(\neg p_1\to h(0,p_2,...,p_n))^v=1$ 由于 $(h(p_1,p_2,...,p_n))^v=h(p_1^v,p_2^v,...,p_n^v)=h(1,p_2^v,...,p_n^v)=(h(1,p_2,...,p_n))^v=1$ 现, $(p_1\to h(1,p_2,...,p_n))^v=1$ 数, $((p_1\to h(1,p_2,...,p_n))\land (\neg p_1\to h(0,p_2,...,p_n)))^v=1$ 若 $p_1^v=0$,则 $(\neg p_1)^v=1$,那么, $(p_1\to h(1,p_2,...,p_n))^v=h(p_1^v,p_2^v,...,p_n^v)=h(1,p_2,...,p_n))^v=1$ 由于 $(h(p_1,p_2,...,p_n))^v=h(p_1^v,p_2^v,...,p_n^v)=h(0,p_2,...,p_n))^v=1$ 则, $(\neg p_1\to h(0,p_2,...,p_n))^v=1$ 数, $((p_1\to h(1,p_2,...,p_n))^v=1$ 数, $((p_1\to h(1,p_2,...,p_n))^v=1$

证明:对η用数学归纳法。

当n=1,2时,显然成立

只需证明, $h(p_1, p_2, \cdots, p_n) \Leftrightarrow (p_1 \to h(1, p_2, \cdots, p_n)) \land (\neg p_1 \to h(0, p_2, \cdots, p_n))$

2) 对于任意的指派v, 当 $(h(p_1, p_2, ..., p_n))^v = 0$ 时,

若 $p_1^v = 1$, 则 (课下自己证明)

若 $p_1^v = 0$, 则 (课下自己证明)

对偶式 (选修)

定义: 对偶式

在**仅含有**联结词¬、V, Λ 的命题公式A中,将 Λ 换成V,V换成 Λ , 0换成1,1换成0,得到的公式称为A的对偶式,记为 A^* 。

原式A	对偶式 <i>A</i> *
$(p \land \neg q) \lor r$	$(p \lor \neg q) \land r$
$\neg p \lor (q \land \neg r)$	$\neg p \land (q \lor \neg r)$
$\neg((\neg p \land \neg q) \lor \neg r)$	$\neg((\neg p \vee \neg q) \wedge \neg r)$
$(A^*)^* \Leftrightarrow A \qquad (A^*)^* = A$	

 $(\neg A)^* = \neg A^*$ 否定词对于对偶式不起作用

内否式 (选修)

定义: 内否式

设有命题公式 $A(p_1, p_2, \dots, p_n)$,对A中的 $p_i(i = 1, 2, \dots, n)$ 用 $\neg p_i$ 做代入,所得的结果为A的内否式,记为 A^- 。

原式A	内否式 A^-
$(p \land \neg q) \lor r$	$(\neg p \land \neg \neg q) \lor \neg r$
$\neg p \lor (q \land \neg r)$	$\neg\neg p \lor (\neg q \land \neg \neg r)$
$\neg((\neg p \land \neg q) \lor \neg r)$	$\neg((\neg\neg p \land \neg\neg q) \lor \neg\neg r)$
$(A^-)^- \Leftrightarrow A$	
$(-1)^{-} - 1^{-}$	The state of the s

(德摩根律) $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B; \neg (A \land B) \Leftrightarrow \neg A \lor \neg B$

相关定理(选修)

1.
$$(A^{-})^{-} \Leftrightarrow A$$
 2. $(\neg A)^{*} \Leftrightarrow \neg (A^{*}) \Leftrightarrow A^{-}$
3. $\neg A \Leftrightarrow (A^{*})^{-} \Leftrightarrow (A^{-})^{*}$ 4. $\neg (A^{-}) \Leftrightarrow (\neg A)^{-}$
5. $(\neg A)^{-} \Leftrightarrow A^{*}$ 6. $(A^{*})^{*} = A$

证明:因为 $A \Leftrightarrow B$,推得 $\neg A \Leftrightarrow \neg B$ (替换定理),

再由 $\neg A \Leftrightarrow (A^*)^-$, 推得 $(A^*)^- \Leftrightarrow (B^*)^-$,

最终推得 $A^* \leftrightarrow B^*$ 。

是否能够推出 $A^- \Leftrightarrow B^-$?

对偶式 (选修)

由 (3) : $\neg A \Leftrightarrow (A^*)^-$, 得 $(B^*)^- \to (A^*)^-$ 永真 。

由永真式的定义:任意的赋值(指派), $(B^*)^- \to (A^*)^-$ 都为真

那么两边都取内否式,蕴含式仍然是永真的,

得 B^* → A^* 。得证。

例: A(p,q,r) 为永真,那么 $A(\neg p, \neg q, \neg r)$ 为永真。

对偶式 (选修)

例: $p \land q \rightarrow p$ 为永真,那么 $p \rightarrow p \lor q$ 为永真。

总结

- 命题与联结词
- 范式
- 联结词的扩充与归约
- 2.4 对偶式 (选修)