Versuchsbericht P428 Röntgenstrahlung und Materialanalyse

Gabriel Remiszewski und Christian Fischer ${\rm durchgef\"{u}hrt~am~15/16.11.2023}$

Inhaltsverzeichnis

Li	iteraturverzeichnis	7			
4	Fazit	6			
	3.2 Messung				
3	Laue-Aufnahme 3.1 Aufbau				
2	Bedienung des Rastertunnelmikroskops				
1	Einleitung				

1. Einleitung

2. Bedienung des Rastertunnelmikroskops

Tabelle 1: gemessene Energie und Höhe der charakteristischen Linien verschieder Metalle

Metall	Energie E/keV	Höhe in Detektionen		
	6,4(7)	10 700(600)		
FeZn	6,8(8)	4300(300)		
гедп	8,7(9)	1430(80)		
	9,7(9)	200(300)		
	3,5(6)	223(9)		
	8,2(8)	72(17)		
Ag1	9,2(9)	33(7)		
	22,2(17)	240(14)		
	24,9(19)	26(3)		
	8,5(8)	248(14)		
	10,0(9)	1170(90)		
Au	$12(1)^{'}$	640(40)		
	13,7(12)	53(7)		
	8,2(8)	7900(400)		
Cu	9,0(9)	1080(80)		
	3,8(6)	351(13)		
	8,3(8)	206(19)		
In	9,1(9)	43(14)		
	24,1(19)	99(7)		
	27(3)	11,8(17)		
	6,4(7)	13 600(1200)		
Fe	6,8(8)	5200(600)		
	9,9(9)	370(170)		
	17,7(14)	1050(60)		
Mo	19,8(16)	149(9)		
	6,5(7)	310(30)		
Ni	7,5(8)	6500(600)		
111	7,9(8)	4720(160)		
	8,2(8)	320(30)		
	9,2(9)	134(16)		
Pb	11(1)	1210(80)		
1.0	12,9(11)	700(30)		
	15,1(13)	57(5)		
	4,0(6)	640(30)		
	8,3(8)	160(30)		
Sn		` ′		
	9,0(9)	29(8)		
Titor	25,1(19)	58(4)		
Titan	4,9(7)	8400(1200)		
	5,7(7)	50(10) 112(15)		
117	7,6(8)	\ \ /		
W	8,6(9)	1570(70)		
	9,9(9)	1600(500)		
	12(1)	101(7)		
Zn	8,8(9)	7200(500)		
	9,7(9)	990(90)		
7	12(1)	56(11)		
Zr	16,0(13)	1690(70)		
	17,9(14)	230(30)		

Tabelle 2: Energien der charakteristischen Linien von Unbekannt1

Energie E/keV	Höhe in Detektionen
5,5(7)	2800(400)
6,5(7)	8000(1000)
6,7(8)	3800(300)

Tabelle 3: Energien der charakteristischen Linien von Unbekannt2

Energie E/keV	Höhe in Detektionen
8,1(8)	4320(140)
8,7(9)	3530(80)

Tabelle 4: Energien der charakteristischen Linien von Unbekannt3

Energie E/keV	Höhe in Detektionen
8,1(8)	4500(400)
8,7(9)	2700(300)

Tabelle 5: Energien der charakteristischen Linien von Unbekannt4

Energie E/keV	Höhe in Detektionen
5,7(7)	520(80)
5,2(7)	200(70)
7,0(8)	6100(1300)
7,7(8)	2000(1200)

3. Laue-Aufnahme

In diesem Versuchsteil wird die Symmetrie und Gitterstruktur eine NaCl-Kristalls mithilfe des Laue-Verfahrens untersucht. Dabei wird der zu untersuchende Kristall mit Röntgenstrahlung bestrahlt. Hinter dem Kristall ist ein Röntgenfilm platziert, auf dem die durch den Kristall laufende Röntgenstrahlung nachgewiesen werden kann. Mithilfe des auf dem Röntgenfilm entstehenden Musters können dann einige Eigenschaften des verwendeten Kristalls untersucht werden.

3.1. Aufbau

Zur Durchführung dieses Versuchsteils wird der zu Verfügung stehende NaCl-Kristall verwendet. Die Röntgenstrahlung wird mit einer Molybdän-Röntgenröhre erzeugt. Der Versuchsaufbau zur Laue-Aufnahme ist in Abb. 1 dargestellt.

Abbildung 1: Versuchsaufbau der Laue-Aufnahme zur Untersuchung eines NaCl-Kristalls [1].

Zunächst wird die Molybdän-Röntgenröhre zur Erzeugung der benötigten Röntgenstrahlung eingesetzt. Aus dem Vollschutzröntgengerät werden Targethalter und Sensorarm entfernt, sodass eine Experimentierschiene mittig vor die Kollimatoraufnahme platziert werden kann. In die Kollimatoraufnahme wird der Kollimator mit 1 mm Spaltbreite eingesetzt. Der verwendete NaCl-Kristall ist bereits auf einer Lochblende befestigt, welche deshalb sofort auf den Kollimator aufgesetzt werden kann. Für die Laue-Aufnahme wird ein AGFA Dentus M2 Comfort Röntgenfilm verwendet, welcher möglichst mittig auf der markierten Fläche des Filmhalters festgeklemmt wird. Dabei muss darauf geachtet werden, dass der Film möglichst plan über seine gesamte Fläche aufliegt. Anschließend wird der Filmhalter auf der Experimentierschiene platziert und verschoben, sodass zwischen NaCl-Kristall und Film ein Abstand von 15(1) mm (hier gibt es eine relativ große Unsicherheit, da die Einstellung nicht allzu exakt vorgenommen werden konnte) eingestellt wird.

An dem Vollschutzröntgengerät wird eine Röhrenhochspannung von $U=35,0\,\mathrm{kV}$ und ein Emissionsstrom von $I=1,0\,\mathrm{mA}$ eingestellt. Die Winkeländerung des Goniometers wird auf $\Delta\beta=0,0^\circ$ eingestellt. Schließlich wird die Messzeit auf $\Delta t=1800\,\mathrm{s}$ eingestellt.

3.2. Messung

3.3. Auswertung

Tabelle 6: Miller-Indizes

Punkt	$\mid x_{ m P}' \mid { m p} \mid$	$y_{ m P}^\prime$ / p	$ x_{ m P} $ p	$y_{ m P}$ / ${ m p}$	$z_{ m Q}$ / p	$\Delta z_{ m Q}$ / p	(hkl)
A01	1289	1665	-273	-184	81	13	$(\bar{3}\bar{2}1)$
A02	1364	1660	-198	-189	57	10	$(\bar{3}\bar{3}1)$
A03	1360	1589	-202	-260	81	13	$(\bar{2}\bar{3}1)$
A04	1739	1538	177	-311	95	14	$(2\bar{3}1)$
A05	1762	1623	200	-226	69	11	$(3\bar{3}1)$
A06	1862	1623	300	-226	104	15	$(3\bar{2}1)$
A07	1875	2058	313	209	104	15	(321)
A08	1776	2072	214	223	72	12	(331)
A09	1762	2158	200	309	100	14	(231)
A10	1363	2121	-199	272	85	13	$(\bar{2}31)$
A11	1363	2030	-199	181	55	10	$(\bar{3}31)$
A12	1283	2018	-279	169	80	13	$(\bar{3}21)$
B01	1507	1638	-55	-211	37	7	$(\bar{1}\bar{6}1)$
B02	1579	1623	17	-226	40	7	$(1\overline{6}1)$
В03	1807	1793	245	-56	48	10	$(6\bar{1}1)$
B04	1810	1908	248	59	50	10	(611)
B05	1597	2086	35	237	44	8	(161)
B06	1507	2075	-55	226	42	8	$(\bar{1}61)$
B07	1360	1884	-202	35	33	8	$(\bar{6}11)$
B08	1362	1803	-200	-46	33	8	$(\bar{6}\bar{1}1)$
C01	1414	1482	-148	-367	114	16	$(\bar{1}\bar{3}1)$
C02	1535	1416	-27	-433	135	17	$(0\bar{3}1)$
C03	1672	1450	110	-399	124	16	$(1\bar{3}1)$
C04	1974	1695	412	-154	139	18	$(3\bar{1}1)$
C05	2039	1835	477	-14	161	20	(301)
C06	1983	1985	421	136	140	19	(311)
C07	1689	2248	127	399	127	17	(311) (131)
C08	1548	2286	-14	437	137	18	(031)
C09	1422	2222	-140	373	116	16	$(\bar{1}31)$
C10	1200	1958	-362	109	105	15	$(\bar{3}11)$
C11	1161	1843	-401	-6	117	17	$(\bar{3}01)$
C12	1205	1730	-357	-119	104	15	$(\bar{3}\bar{1}1)$
D01	1236	1543	-326	-306	143	19	$(\bar{2}\bar{2}1)$
D01	1891	1478	329	-371	172	21	$(2\bar{2}1)$ $(2\bar{2}1)$
D02	1913	2205	351	356	175	21	(221) (221)
D03	1236	2152	-326	303	142	18	$(\bar{2}21)$ $(\bar{2}21)$
E01	1025	1585	-357	-264	141	18	$(\bar{2}\bar{1}1)$
E02	1262	1302	-300	-547	257	$\frac{10}{27}$	$(\bar{1}\bar{2}1)$
E03	1830	1239	268	-610	288	29	$(1\bar{2}1)$ $(1\bar{2}1)$
E04	2175	1516	613	-333	310	30	$(2\bar{1}1)$
E05	2204	2169	642	320	330	30	(211) (211)
E06	1859	2462	297	613	300	30	(211) (121)
E07	1262	2402	-300	553	261	$\frac{30}{27}$	$(\bar{1}21)$ $(\bar{1}21)$
E07 E08	1017	2104	-500 -545	$\frac{355}{255}$	242	26	$(\bar{2}11)$
			!				
F01 F02	850 1057	1390	$-712 \\ -505$	-459	430	40 40	$(\bar{3}\bar{2}2)$
F02 F03	$1057 \\ 2069$	1147 1016	-505 507	$-702 \\ -833$	440 530	40 50	$(\bar{2}\bar{3}2) \\ (2\bar{3}2)$
F03 F04			1				
	2388	1260	826	-589	570	50 50	$(3\bar{2}2)$
F05	2430	2431	868	582	590	50 50	(322)
F06	2115	2684	553	835	550	50	(232)
F07	1048	2583	-514	734	470	40	$(\bar{2}32)$
F08	834	2309	-728	460	440	40	$(\bar{3}22)$

4. Fazit

Literaturverzeichnis

[1] LD Didactic. Laue-Aufnahme: Untersuchung der Gitterstruktur kristalliner Stoffe. https://www.ld-didactic.de/literatur/hb/d/p7/p7122_d.pdf. Zugriff: 20.11.2023.