

VR Siddhartha Engineering College Department of Information Technology

17IT3305: OPERATING SYSTEMS ASSIGNMENT-II QUESTIONS A.Y:2021-22

Question No.			Course	BTL				
			Outcome					
1.	a	What is Safe	CO3	K2				
	b	Assume that we have following resources:						К3
		>						
		>						
		>						
		We can creat	1 _					
		(5, 2, 4, 3).						
		among four $(3, 2, 4, 3)$.						
		named Alloc	iowing mat					
			ation					
		Proce Name		Graphics	Printers	Disk Drives		
		Process		0	1	1		
		Process	B 0	1	0	0		
		Process	C 1	0	1	1		
		Process	D 1	1	0	1		
		The vector r	•					
		these column						
		Allocate						
		Anocau						
		The need ma						
		Dragge						
		Process Name	Tape Drives	Graphics	Printers	Disk Drives		
		Process A	1	1	0	0		
		Process B	0	1	1	2		
		Process C	3	1	0	0		
		Process D	0	0	1	0		

		T 1 (1 1 1	·.1 C .1 ·	11				
		Implement bankers algor						
		and check whether the s						
		safe generate safe sequen						
2	a	What is Deadlock and wh	at are the necess	ary conditions for the	CO3	K1		
(deadlock?						
		D : (1 1 1 1 1 1 1			902	77.0		
	b	Briefly discuss how dead	CO3	K2				
3	a	Compare and contrast into	CO3	K2				
		fragmentation.						
	b	Summarize the concepts	CO3	K2				
4	2	List and explain the meth	CO3	K2				
•		List and explain the meth	om ucauiock.	003	IX.			
	þ	Apply Deadlock detection	n algorithm to the	e following system	CO3	К3		
		state and check whether c	r not.					
		A 1111 (0100) B		(D0 D1 D2)				
		Available = (2 1 0 0) R=	:{A, B, C, D}, P	={P0, P1, P2}				
		/2 0 0 1\	/0 0 1 0\					
		Request = $\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{pmatrix}$	Allocation	$n = (2 \ 0 \ 0 \ 1).$				
		2 1 0 0 /		0 1 2 0/				
5	0/	****		1 11 0 1.0	CO3	K2		
3	<u>a</u> /	What is page fault and wh	to handle page fault?	COS	KΔ			
	b	A system uses 3 page frai	nes for storing p	rocess pages in main	CO2	K4		
		memory. Assume that all						
		What is the total number						
		processing the page refer						
		implementing First in First						
		policy, Optimal and LRU						
		4,7,						
		Analyze the above algorit						
		maryze me above argom						
6.	a	List and explain the strate	CO3	K2				
		memory allocation						
		•	905					
	·b	Consider the following se	CO3	K3				
		Segment Ba						
		0 219		Length 600				
		1 230	2300 14					
		2 90						
		3 132						
		4 193						

	Compute	the	physical	addresses	for	the	following	logical	
	addresses?								
	a. 0, 430								
	b. 1, 10								
	c. 2, 500								
	d. 3, 400								
	e. 4, 112								