Chapitre 1: Interpolation polynomiale

June 8, 2023

1 Les polynômes de Lagrange et la formule de Newton

1.1 Théorème

Soient les n+1 points $(x_0, y_0), ..., (x_n, y_n)$ où les x_i sont distincts. Alors, il existe un polynôme unique p_n de degré $\leq n$, appelé le polynôme d'interpolation, tel que

$$p_n(x_i) = y_i \ pour \ i = 0, 1, ..., n$$

.

1.2 Définition (différences divisées)

Soient les couples (x_i, y_i) avec chaque x_i distinct pour i = 0, ..., n. On définit:

$$\delta y[x_i, x_{i+1}] = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

et pour k = 2, 3, ..., on a:

$$\delta^k y[x_i, x_{i+1}] = \frac{\delta^{k-1} y[x_{i+1}, \dots, x_{i+k}] - \delta^{k-1} y[x_i, \dots, x_{i+k-1}]}{x_{i+k} - x_i}$$

À modifier ???? On note $\delta^0 y[x_i] = y[x_i] = y_i$

1.3 Théorème (Formule de Newton, 1669)

Le polyôme de Newton est défini par:

$$p_n(x) = c_0 + c_1(x - x_0) + \ldots + c_n(x - x_0) \ldots (x - x_{n-1})$$

avec:

$$c_k = \delta^k y[x_0, \dots, x_k]$$

Il est de degré \leq n et passe par les points $(x_0, y_0), \ldots, (x_n, y_n)$ où les x_i sont distinct.

1.4 Lemme

Soit $f:[a,b]\to R$ une fonction n
 fois dérivable et soit $y_i=f(x_i)$ pour x_0,\dots,x_n