

ARMY RESEARCH LABORATORY

Mechanical Response Comparison of Gun Propellants Evaluated Under Equivalent Time-Temperature Conditions

Robert J. Lieb Michael G. Leadore

ARL-TR-228

September 1993

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

93 10 8 095

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 isotion of information, including suggestic ris Highway, Suits 1204, Arlington, VA (n. VA 22202-4302, and to the Of 1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED (Leeve blenk) Final Sep 1992 - Nov 1992 September 1993 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Mechanical Response Comparison of Gun Propellants Evaluated Under Equivalent PR: 1L161102AH43 **Time-Temperature Conditions** 6. AUTHOR(S) Robert J. Lieb and Michael G. Leadore 7. PERFORMING ORGANIZATION NAMP(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER US Army Research Laboratory ATTN: AMSRL-WT-PE Aberdeen Proving Ground, MD 21005-5066 9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) D. SPONSORING/MONITORING AGENCY REPORT NUMBER US Army Research Laboratory ATTN: AMSRL-OP-CI-B (Tech Lib) ARL-TR-228 Aberdeen Proving Ground, MD 21005-5066 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Compressive stress relaxation measurements have been performed for single- (M14), double- (JA2), and triple-base (M30) propellants, as well as a nitramine composite (M43) gun propellant. This was done to evaluate the response of gun propellants at higher rates than can be easily reached within the laboratory by calculating time-temperature shift factors from these relaxation curves. However, in order to apply these shift parameters to high rate events to predict propellant mechanical response and damage, a link must be established between predicted equivalent response and the actual mechanical and failure behavior observed for these propellants. The mechanical response of these four propellants was characterized at strain rates, which spanned four orders of magnitude, and at the corresponding shifted temperatures. Test results show that the mechanical response for a given propellant type under each of these temperature-rate conditions was the same in the strain domain for which the relaxation shift factors were measured. In addition, the failure response for a given propellant type also proved to be nearly identical at strain levels outside the domain of the stress relaxation tests. These observations permit greater confidence to be placed in the prediction of mechanical and failure response for gun propellants undergoing deformation in strain rate regimes outside the current range of laboratory measurement.

14. SUBJECT TERMS 15. NUMBER OF PAGES Mechanical response, time-temperature, propellants, bed, JA2, M14, M30, M43, stress 24 profile, strain rate 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 9. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF THIS PAGE OF ABSTRACT OF REPORT SAR UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

Intentionally Left Blank

TABLE OF CONTENTS

		Page	
	LIST OF FIGURES	v	
	LIST OF TABLES	v	
1.	INTRODUCTION	1	
2.	EXPERIMENTAL PROCEDURE	1	
2.1	Establishment of Testing Conditions	1	
2.2	Description of the Tester and Procedure	2	
3.	RESULTS ARD DISCUSSION	4	
4.	CONCLUSIONS	8	
5.	FUTURE EFFORTS	9	
7.	REFERENCES	10	
	DISTRIBUTION LIST	u	

DTIC QUALITY INSPECTED 2

40055	ion For				
BTIS	GRALI				
DTIC 1	AB				
Unanno	peom				
Justii	ication_				
Distribution/ Availability 60408					
	Avail an				
2284	Specia	1			
IN'I		• 6			
! [`					

Intentionally Left Blank

LIST OF FIGURES

Figu	<u>re</u>	Page
1	Log[A(T)] Versus Temperature Determined from Stress Relaxation Experiments	. 2
2	Servohydraulic Tester Schematic	. 3
3	Stress-Strain Diagram Illustrating the Measured Parameters	. 4
4	Mechanical Responses of Each Propellant at Equivalent Strain Rate and Temperature Combination	. 5
5	Mechanical Response Differences for JA2 as a Function of Strain Rate and M43 as a Function of Temperature	. 7
6	The Appearance of Tested Specimens from Each Test Condition	. 8
	LIST OF TABLES	
Tabl	<u>e</u>	Page
1	Equivalent Temperature Shifts from Strain Rate of 100 s ⁻¹	. 3
2	Nominal Percent Composition of Propellants	. 3
3	Mechanical Response Parameters	. 7

Intentionally Left Blank

i. INTRODUCTION

The response of gun propellant to mechanical stress plays a critical role in the evolution of pressure during the ballistic cycle. Attempts to link the relationship between mechanical measurements performed in the lab and both gun performance and vulnerability have made considerable progress^{1,2,3}. Recent work has revealed that at low temperatures, the change in magnitude of failure parameters measured on a single propellant grain correlated well with the change in magnitude of the explosive response of propellant beds upon impact with shaped charge jets ^{2,3}. However, the mechanical response measurements were performed at rates of about 100 s⁻¹, whereas the rate of mechanical deformation during the jet interaction is estimated to be between 10⁵ and 10⁶ s⁻¹. This observation led to studies, completed within the last year, in which compressive stress relaxation measurements⁴ were performed and, time-temperature shift factors were employed to obtain master curves for the four basic propellant types. This information provides the temperature shift required to simulate the mechanical response characteristics of the propellant undergoing deformation at the corresponding higher strain rate.

There are, however, two questions that, if answered, would help establish much greater confidence in the shifted results. First is the behavior actually simulated when these shifts occur, and second, if the simulated behavior is represented, does the correspondence extend outside the strain level at which the relaxation measurements were made, that is, into the region of failure? In seeking answers to these questions, four series of tests were performed using the same propellant lots that were used to establish the relaxation curves. Each propellant response was characterized at conditions predicted by the shift factors to be equivalent. The mechanical responses were then compared to reveal what similarities and differences existed.

2. EXPERIMENTAL PROCEDURE

2.1 Establishment of Testing Conditions. The strain rates for the uniaxial compressive measurements were selected to be 100, 10, 1, and 0.1 s⁻¹. The temperatures corresponding to these rates were determined by the time-temperature shift factors measured earlier for each of the propellants and were selected so that each propellant would maintain the same mechanical response at each strain rate. Figure 1 shows the logarithm of the shift factors versus temperature taken from earlier work⁴. The stress relaxation curves used to generate the values of A(T) were not corrected for temperature. These uncorrected curves were used since the comparisons being made here are among tests performed at different temperatures. The corrections need to be applied when constructing master curves representing responses at the same temperature but at different rates. Testing conditions were determined from the curves in Figure 1 and are presented in Table 1.

Figure 1. Log[A(T)] Versus Temperature Determined from Stress Relaxation Experiments [A(T)] values are not temperature corrected

2.2 <u>Description of the Tester and Procedure</u>. The propellant riechanical response was measured using a specially designed servohydraulic tester, illustrated in Figure 2. The machine allows compression measurements to be performed from quasistatic rates to rates as great as 10^3 s⁻¹ for a specimen with a nominal length of 1 cm. Compression can be arrested at a predetermined strain by adjusting the anvil height and permitting contact between the impact bell and cone (which shunts the force around the specimen). Temperature conditioning was obtained within an environmental chamber surrounding the compression tool and was able to be controlled to within $\pm 1^{\circ}$ C. A complete description of the device is given in Reference 5.

Table 1. Equivalent Temperature Shifts from Strain Rate of 100 s⁻¹

Propellant	Strain Rates				
	10 s ¹	1 5 '	0.1 s ¹		
M14	-10°C	-2 0℃	-30°C		
JA2	-12	-24	-37		
M30A1	-14	-26	-37		
M43	-13	-24	-34		

Figure 2. Servohydraulic Tester Schematic

Table 2. Nominal Percent Composition of Propellants

	M14	JA2	M30A1	M43
Nitrocellulose (NC)	89	59	27	4
NC Nitration Level	13.0	13.1	12.6	12.6
Nitroglycerin (NG)		15	23.4	
Nitroguanidine (NQ)			47.2	
DNT	8			
DBP	2			
DPA	1			
Ethyl Centralite (EC)			1.4	
Diethylene Glycol Dinitrate		25		
Akardit II		1		
K ₂ SO ₄			ı	
RDX (Ground)				76.0
Cellulose Acetate Butyrate				12.0
Plasticizer				8

The specimens were prepared from multiperforated gun propellant grains whose formulations are listed in Table 2. To make the sample suitable for stress and strain measurements, the grain ends were cut with a diamond saw so that they were flat, parallel, and perpendicular to the grain axis. The specimenlength-to-diameter ratio was made equal to 1 so that grains of different diameters have nearly the same end effects. Temperature conditioning was achieved by placing prepared grains inside the environmental chamber for a time at least twice that needed to reach thermal equilibrium (30 minutes in most cases). Testing of the specimens took place within the conditioning chamber, so no transfer was required, and therefore, no thermal disruption occurre.

The tests were conducted in accordance with a proposed NATO draft STANAG entitled "Uniaxial Compressive Test", which is an updated version of the test entitled "Uniaxial Compressive Gun Propellant Test" in CPIA Pub 21. Five specimens were tested at each temperature, and all reported results

Figure 3. Stress-Strain Diagram Illustrating the Measured Parameters

are the average of the five data sets. The mechanical parameters, maximum stress, strain at maximum stress, yield stress and strain, modulus, and failure modulus, were recorded. A diagram illustrating these parameters is presented in Figure 3. Note that the failure modulus is defined as the slope of the stress-strain curve in the linear region between yield and twice the strain at maximum stress. If no maximum stress is observed in the vicinity of yield, as is sometimes the case with JA2 and other propellants with plastic responses, the slope is taken between yield and three times the yield strain.

3. RESULTS AND DISCUSSION

The mechanical response curves for each propellant are presented in Figure 4. Each curve in the plots corresponds to one of the four conditions predicted by the stress relaxation data to have an equivalent mechanical response, as outlined above.

To provide a basis for comparison, examples of the effects that strain rate and temperature have on the response of propellants are shown in Figure 5. The response of JA2 at constant temperature for various strain rates is shown in Figure 5a, and the response of M43 at constant strain rate for various temperatures shown in Figure 5b. Note the changes in the level and form of response. For JA2, the form of the response remains about the same, while the stress levels show dramatic increases. This is a result of the viscoelastic-plastic response of JA2. Failure here is plastic with an increasing degree of work hardening with strain rate. For M43, both the level of the response and the form change with temperature. At high temperature, stress levels are lower and the response is more plastic. As the temperature decreases, the stress levels increase and the response becomes more brittle, as indicated by the more rapid decrease in stress level after maximum stress is reached. At the lowest temperature, the response has become very brittle with the highest stress levels attained, earlier failure strain realized, and a total loss of load bearing ability occurring after failure. Similar response changes have been observed for JA2 at temperatures below -20°C at rates of about 100 s⁻¹. The temperature at which this transition to brittle response occurs has been observed to depend on the strain rate.

Figure 4. Mechanical Responses of Each Propellant at Equivalent Strain Rate and Temperature Combination

Listed in the top section of Table 3 are the mechanical response parameters derived from the curves in Figure 5. Note that for JA2, the yield stress increases by a factor of more than three, the modulus by a factor of more than four, and the failure modulus by a factor of more than five as the rate goes from 0.01 to 160 s⁻¹. These numbers reflect what is shown in the curves and indicate that the propellant is becoming stifter and stronger with strain rate. For M43, the observed maximum stress, the yield stress, and modulus all decrease by about a factor of two, while the failure modulus shows dramatic change as the temperature goes from -20°C to 49°C. These numbers indicate the change from very brittle behavior to more plastic response, and again reflect the form of the curves presented in the figure. These plots and

the associated nur. bers show that characteristic response changes are significant wit—anges in either strain rate or temperature and that these changes can be demonstrated with stress-strain curves and their derived parameters.

Using the above as a preface for comparing the results shown in Figure 4, it can be stated that the form and stress level of each set of curves were very much the same for a given propellant type. This observation is further supported when the parameters derived from those curves (shown in Table 3) are compared. Again, for each propellant, no significant change or difference was observed. The similar modulus values indicated that the mechanical responses in the strain region where the stress relaxation measurements were taken, between 2% and 5%, were the same. In addition, it was also shown that the equivalent response extends outside this strain region into the region of failure. Maximum stress and strain values were the same, as were the yield stress and strain values. The equivalent response has been shown to extend significantly into the region of failure. Note that failure modulus values, which measure the change in load-bearing capability of the material after yield, were the same for each propellant. These results crongly indicated that the temperature-rate equivalence determined by stress relaxation data predicted the mechanical response and failure mode at each corresponding temperature and rate.

One set of results appears to be our of line with these observations. The test conditions at the strain rate of 10 s⁻¹ proved to provide the mechanical impedance match between the machine and specimen, which caused problems in maintaining constant strain rate during the deformation of the specimen. At higher rates (100 s⁻¹), the kinetic energy of the actuator was sufficient to maintain a constant rate. At lower rates (1 and 0.1 s⁻¹), the rate was low enough so that the pressure regulation within the actuator of the tester matched the stress changes in the specimen. At 10 s⁻¹, however, stress changes were rapid enough and kinetic energy values were low enough to cause nonuniform strain rates in the early portion of the deformation. Adjustments were performed to minimize the nonuniformity, but some variation of the strain rate still occurred within the first 2% to 3% of deformation. The result, since the material is rate sensitive, was a systematically lower modulus and corresponding higher strain values for results at 10 s¹. Note that the maximum and yield stresses, and the failure modulus values were more in line with the other values because of the strain rate reaching proper levels at higher strain. Several sets of data were taken at 10 s⁻¹ with procedure modifications to minimize the strain rate variation. From the results of these several data sets, it is believed that if the strain rates had remained constant during the entire grain deformation, then the curves and the associated parameters would have fallen into more exact agreement with the results from other rates.

Table 3. Mechanical Response Parameters

Propellant	Temperature (°C)	Strain Rate Rate (s¹)	Mazimuni Stress (MPa)	Strain at Max Stress (%)	Yield Stress (MPa)	Yield Strain (%)	Modulus (GPa)	Failure Modulus (GPa)
JA2	23	0.01			4.49	1.9	0.19	0.012
	23	1.0		-	10.0	2.7	0.41	0.034
	23	100	•	-	18.3	2.6	0.83	0.067
M43	-20	100	121.0	2.9	110	2.0	5.76	-31.7
	23	100	93.5	4.1	87.0	2.6	4.40	-0.61
	49	100	64.0	4.0	60.2	2.4	2.61	-0.20
M14	21	100	122.2	7.0	115.0	5.0	3.10	-0.21
	- 11	10	124.4	8.5	112.2	5.6	2.30	-0.12
	1	1	108.3	6.0	98.5	3.5	3.13	-0.10
	-9	0.1	112.6	6.0	1020	3.6	3.34	-0.16
JA2	22	100			21.2	2.7	0.82	0.021
	10	10	•	-	15.7	3.2	0.63	0.029
	-2	1		-	18.5	2.8	0.72	0.023
	-15	0.1	•	-	17.6	2.5	0.76	0.022
M30A1	21	100	96.5	7.5	92.2	5.7	1.88	-0.34
	7	10	95.8	8.0	90.1	5.8	1.61	-0.24
	-5	1	103.0	8.0	93.1	5.2	2.41	-0.30
	-16	0.1	102.3	8.0	94.2	5.3	2.33	-0.36
M43	21	100	99.7	4.1	93.9	2.7	4.40	-0.41
	8	19	105.1	5.0	102.2	4.2	3.23	-0.59
	-3	1	98.4	4.4	88.7	3.3	3.60	-0.52
	-13	0.1	94.3	4.4	88.4	3.1	3.83	-0.49

Figure 5. Mechanical Response Differences for JA2 as a Function of Strain Rate and M43 as a Function of Temperature

Figure 6. The Appearance of Tested Specimens from Each Test Condition

In Figure 6, the physical appearance of tested M14 and M30A1 specimens is presented. The indication is that the mechanical damage suffered by each propellant type is nearly the same. These grains suffered a combination of plastic failure and lateral fracture. (Note that the lateral fracture begins adjacent to the grain perforations.) The physical appearance among each of the other propellant types was also the same. All the JA2 specimens remained intact without any fracture. The M43 specimens fractured into many chards, with each specimen having about the same size distribution of chards. The condition of these specimens reinforces the conclusions drawn above.

4. CONCLUSIONS

The temperature and rate equivalence for mechanical response in gun propellants as determined by compressive stress relaxation procedures has been demonstrated. Mechanical response measurements were performed on the four basic gun propellant types (single-, double-, and triple-base, and a nitramine composite) at four different strain rates (100 s⁻¹ to 0.01 s⁻¹) and at the corresponding temperatures that were predicted to provide equivalent mechanical response. In each case, the mechanical response of the propellant type remained nearly identical. This was true for the response measured in the strain region where the relaxation measurements were performed, and more importantly, this equivalent response was found to extend into the regions of strain corresponding to failure. For each propellant, very similar values for maximum stress, strain at maximum stress, yield stress and strain, compressive modulus, and

failure modulus were observed among each propellant tested under equivalent conditions. These values of these parameters for the different curves were within the scatter found for specimens tested under identical conditions. The plots of stress versus strain characterized the response as virtually identical.

These results provide great confidence in the ability to predict mechanical and failure response of materials at rates outside those available within the laboratory by employing time-temperature equivalence.

5. FUTURE EFFORTS

In earlier studies^{2,3}, a strong correlation was discovered between the change in the mechanical failure response of the propellants studied in this report and the vulnerability response change that was measured when a bed of these same propellants was subjected to hypervelocity impact by a shaped charge jet (SCJ). Each propellant tested in those reports showed a similar trend between the failure parameter and impulse measurement, which indicated a SCJ response dependence on the mechanical failure mechanisms. However, there was no direct correlation between the values of the failure parameters and the impulse results among the propellants. One possible reason for not being able to discover a direct correlation could be the rate differences experienced by the propellants in the mechanical properties and the hypervelocity impact procedures.

It is estimated that the rate of deformation of the propellant while being deformed by the jet is between 10⁵ and 10⁶ s⁻¹. The mechanical response measurements typically are performed at 100 s⁻¹. The rate difference between the two processes corresponds to a factor between 10³ and 10⁴. With the information generated in earlier stress relaxation experiments and the demonstration of actual equivalent responses shown here, each propellant could be tested at a temperature appropriately lowered to see if the mechanical response tracks more closely to the vulnerability response. This will require tests at temperatures near -70°C, which will present new problems. However, if successful, the role that mechanical response plays in the area of vulnerability response should be made more clear. Tests are now scheduled for these propellants and will be reported.

6. REFERENCES

- 1. Gazor, as, G. A., A. Juhasz, and J. C. Ford. "Strain Rate Insensitivity of Damaged-Induced Surface Area in M30 and JA2 Gun Propellants." BRL-TR-3251, USA Ballistic Research Laboratory, Aberdeen Proving Ground, MD, August 1991.
- Lu, P., J. Shin, B. Strauss, S. Moy, R. Lieb. "Shaped Charge Jet Impact on Gun Propellants Study I - Temperature and Mechanical Properties Effects." 1991 JANNAF Propulsion Systems Hazards Subcommittee Meeting, CPIA Publication 562, pp. 517-532, March 1991.
- 3. Lieb, R. J., and M. G. Leadore. Mechanical Failure Parameters in Gun Propellants." BRL-TR-3296, USA Ballistic Research Laboratory, Aberdeen Proving Ground, MD, November 1991.
- 4. Lieb, R. J., M. G. Leadore. "Time-Temperature Shift Factors for Gun Propellants." ARL-TR-131, Army Research Laboratory, Aberdeen Proving Ground, MD, May 1993.
- 5. Gazonas, G.A. "The Mechanical Response of M30, XM39, and JA2 Propellants at Strain Rates from 10⁻² to 250 sec⁻¹." BRL-TR-3181, USA Ballistic Research Laboratory, Aberdeen Proving Ground, MD, January 1991.

No. of No. of Copies Organization Copies Organization 2 Administrator 1 Commander Defense Technical Info Center U.S. Army Missile Command ATTN: AMSMI-RD-CS-R (DOC) ATTN: DTIC-DDA Cameron Station Redstone Arsenal, AL 35898-5010 Alexandria, VA 22304-6145 Commander Commander U.S. Army Tank-Automotive Command U.S. Army Materiel Command ATTN: AMSTA-JSK (Armor Eng. Br.) ATTN: AMCAM Warren, MI 48397-5000 5001 Eisenhower Ave. Alexandria, VA 22333-0001 Director U.S. Army TRADOC Analysis Command ATTN: ATRC-WSR Director U.S. Army Research Laboratory White Sands Missile Range, NM 88002-5502 ATTN: AMSRL-OP-CI-AD, Tech Publishing (Class only)] Commandant 2800 Powder Mill Rd. U.S. Army Infantry School Adelphi, MD 20783-1145 ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660 1 Director U.S. Army Research Laboratory (Unclass. only)] Commandant ATTN: AMSRL-OP-CI-AD, U.S. Army Infantry School Records Management ATTN: ATSH-WCB-O 2800 Powder Mill Rd. Fort Benning, GA 31905-5000 Adelphi, MD 20783-1145 WL/MNOI Commander Eglin AFB, FL 32542-5000 U.S. Army Armament Research, Development, and Engineering Center Aberdeen Proving Ground ATTN: SMCAR-IMI-I Dir, USAMSAA Picatinny Arsenal, NJ 07806-5000 ATTN: AMXSY-D Commander AMXSY-MP, H. Cohen U.S. Army Armament Research, Development, and Engineering Center Cdr, USATECOM ATTN: SMCAR-TDC ATTN: AMSTE-TC Picatinny Arsenal, NJ 07806-5000 Dir, ERDEC Director ATTN: SCBRD-RT Benet Weapons Laboratory U.S. Army Armament Research, Cdr, CBDA Development, and Engineering Center ATTN: AMSCB-CII ATTN: SMCAR-CCB-TL Watervliet, NY 12189-4050 Dir, USARL ATTN: AMSRL-SL-I Director U.S. Army Advanced Systems Research 10 Dir, USARL and Analysis Office (ATCOM) ATTN: AMSRL-OP-CI-B (Tech Lib) ATTN: AMSAT-R-NR, M/S 219-1

Ames Research Center

Moffett Field, CA 94035-1000

No. of Copies	Organization	No. of Copies	Organization
1	Chairman DOD Explosives Safety Board Room 856-C Hoffman Bldg. 1 2461 Eisenhower Avenue Alexandria, VA 22331-0600 Headquarters	4	PEO-Armaments Project Manager Tank Main Armament System ATTN: AMCPM-TMA AMCPM-TMA-105 AMCPM-TMA-120 AMCPM-TMA-AS, H. Yuen
·	U.S. Army Materiel Command ATTN: AMCICP-AD, M. Fisette 5001 Eisenhower Ave. Alexandria, VA 22333-0001	4	Picatinny Arsenal, NJ 07806-5000 Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-CCH-V.
1	U.S. Army Ballistic Missile Defense Systems Command Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807-3801		C. Mandala E. Fennell SMCAR-CCH-T, L. Rosendorf SMCAR-CCS Picatinny Arsenal, NJ 07806-5000
1	Department of the Army Office of the Product Manager 155mm Howitzer, M109A6, Paladin ATTN: SFAE-AR-HIP-IP, Mr. R. De Kleine Picatimy Arsenal, NJ 07806-5000	19	Commander U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-AEE, J. Lannon SMCAR-AEE-B, A. Beardell D. Downs
3	Project Manager Advanced Field Artillery System ATTN: SFAE-ASM-AF-E. LTC A. Eilis T. Kuriata J. Shields Picatinny Arsenal, NJ 07801-5000		S. Einstein S. Westley S. Bernstein J. Rutkowski B. Brodman P. O'Reilly R. Cirincione
1	Project Manager Advanced Field Artillery System ATTN: SFAE-ASM-AF-Q. W. Warren Picatinny Arsenal, NJ 07801-5000		A. Grabowsky P. Hui J. O'Reilly SMCAR-AEE-WW, M. Mezger J. Pinto
2	Commander Production Base Modernization Agency U.S. Army Armamen, Research, Development, and Engineering Center ATTN: AMSMC-PBM, A. Siklosi AMSMC-PBM-E, L. Laibson Picatinny Arsenal, NJ 07806-5000	1	D. Wiegand P. Lu C. Hu SMCAR-AES, S. Kaplowitz Picatinny Arsenal, NJ 07806-5000 Commander
			U.S. Army Armament Research, Development and Engineering Center ATTN: SMCAR-HFM. E. Barrieres

Picatinny Arsenal, NJ 07806-5000

No. of Copies	Organization	No. of Copies	Organization
9	Commander U.S. Army Armument Research. Development and Engineering Center ATTN: SMCAR-FSA-F, LTC R, Riddle SMCAR-FSC, G, Ferdmand	1	Program Manager U.S. Tank-Automotive Command ATTN: AMCPM-ABMS, T. Dean Warren, Mt. 48092-2498
	SMCAR-FS. T. Gora SMCAR-FS-DH. J. Feneck SMCAR-FSS-A. R. Kopmann B. Machek L. Pinder	1	Project Manager U.S. Tank-Automotive Command Fighting Vehicle Systems ATTN: SFAE-ASM-BV Warren, MI 48397-5000
	SMCAR-FSN-N, K. Chung Picatinny Arsenal, NJ 07806-5000	1	Project Manager, Abrams Tank System ATTN: SFAE-ASM-AB Warren, MI 48397-5000
3	Director Benet Weapons Laboratories ATTN: SMCAR-CCB-RA. G.P. O'Hara G.A. Pflegl SMCAR-CCB-S. F. Heiser	1	Director HQ. TRAC RPD ATTN: ATCD-MA Fort Monroe, VA 23651-5143
	Watervliet, NY 12189-4050	1	Commander U.S. Army Belvoir Research and
2	U.S. Army Research Office ATTN: Technical Library D. Mann		Development Center ATTN: STRBE-WC Fort Belvoir, VA 22060-5006
	P.O. Box 12211 Research Triangle Park, NC 27709-2211	I	Director U.S. Army TRAC-Ft. Lee ATTN: ATRC-L, Mr. Cameron
1	Director Army Research Office		Fon Lee, VA 23801-6140
	ATTN: AMXRO-MCS, Mr. K. Clark P.O. Box 12211 Research Triangle Park, NC 27709-2211	1	Commandant U.S. Army Command and General Staff College Fort Leavenworth, KS 66027
I	Director Army Research Office ATTN: AMXRO-RT-IP. Library Services P.O. Box 12211 Research Triangle Park, NC 27709-2211	1	Commandant U.S. Army Special Wartare School ATTN: Rev and Trng Lit Div Fort Bragg, NC 28307
1	Commander, USACECOM R&D Technical Library ATTN: ASQNC-ELC-1S-L-R. Myer Center Fort Moninouth, NJ 07703-5301	l	Commander Radford Army Ammunition Plant ATTN: SMCAR-QA/HI LIB Radford, VA 24141-0298
1	Commandant U.S. Army Aviation School ATTN: Aviation Agency Fort Rucker, AL 36360		

No. of	Occasionica	No. of	
Copies	Organization	Copics	Organization
1	Commander U.S. Army Foreign Science and Technology Center ATTN: AMXST-MC-3 220 Seventh Street, NE	I	Office of Naval Technology ATTN: ONT-213, D. Siegel 800 N. Quincy St. Arlington, VA 22217-5000
	Charlottesville, VA 22901-5396	2	Commander Naval Surface Warfare Center
2	Commandant U.S. Army Field Artillery Center and School		ATTN: Code 730 Code R-13, R. Bemecker
	ATTN: ATSF-CO-MW, E. Dublisky ATSF-CN, P. Gross		Silver Spring, MD 20903-5000
1	Ft. Sill, OK 73503-5600 Commandant	7	Commander Naval Surface Warfare Center ATTN: T.C. Smith
•	U.S. Army Armor School ATTN: ATZK-CD-MS, M. Falkovitch Armor Agency Fort Knox, KY 40121-5215		K. Rice S. Mitchell S. Peters J. Consaga
1	U.S. Army Europ an Research Office ATTN: USARDSG-UK Dr. Roy E. Richenbach		C. Gotzmer Technical Library Indian Head. MD 20640-5000
	Box 65 FPO New York (9510-1500)	4	Commander Naval Surface Warfare Center ATTN: Code G30, Guns & Munitions Div
2	Commander Naval Sea Systems Command ATTN: SEA 62R SEA 64 Westington DC 20262 5101		Code G32, Guns Systems Div Code G33, T. Doran Code E23 Technical Library Dahlgren, VA 22448-5000
	Washington, DC 20362-5101	5	Commander
1	Commander Naval Air Systems Command ATTN: AIR-954-Tech Library Washington, DC 20360		Naval Air Warfare Center ATTN: Code 388, C.F. Price T. Bongs Code 3895.
4	Commander Naval Research Laboratory ATTN: Technical Library Code 4410.		T. Part R. Derr Information Science Division China Lake, CA 93555-6001
	K. Kailasanate J. Boris E. Oran Washington, DC 20375-5000	1	Commanding Officer Naval Underwater Systems Center ATTN: Code 5B331, Technical Library Newport, RI 02840
1	Office of Naval Research ATTN: Code 473, R.S. Miller 800 N. Quincy Street Arlington, VA 22217-9999	1	AFOSR/NA ATTN: J. Tishkoff Bolling AFB, D.C. 20332-6448

No. of Copies	Organization	No. of Copies	Organization
1	OLAC PL/TSTL ATTN: D. Shiplett Edwards AFB, CA 93523-5000	2	HQ DNA ATTN: D. Lewis A. Fahey 6801 Telegraph Rd.
3	AL/LSCF ATTN: J. Levine L. Quinn	1	Alexandria, VA 22310-3398
	T. Edwards Edwards AFB, CA 93523-5000	•	Sandia National Laboratories Energetic Materials & Fluid Mechanics Department, 1512
1	WL/MNAA ATTN: B. Simpson Eglin AFB, FL 32542-5434		ATTN: M. Bacr P.O. Box 5800 Albuquerque, NM 87185
	-		•
1	WL/MNME Energetic Materials Branch 2306 Perimeter Rd. STE 9 Eglin AFB, FL 32542-5910	1	Director Sandia National Laboratories Combustion Research Facility ATTN: R. Carling Livermore, CA 94551-0469
_	•		
1	WL/MNSH ATTN: R. Drubczuk Eglin AFB, FL 32542-5434	1	Director Sandia National Laboratorics ATTN: 8741, G. A. Beneditti P.O. Box 969
2	NASA Langley Research Center ATTN: M.S. 408.		Livermore, CA 94551-0969
	W. Scallion	2	Director
	D. Witcofski Hampton, VA 23605		Lawrence Livermore National Laboratory ATTN: L-355.
1	Central Intelligence Agency Office of the Central References Dissemination Branch		A. Buckingham M. Finger P.O. Box 808
	Room GE-47, HQS Washington, DC 20502		Livermore, CA 94550-0622
	Washington, DC 20502	2	Director
1	Central Intelligence Agency ATTN: J. Backofen NHB, Room 5N01		Los Alamos Scientific Lab ATTN: T3/D. Butler M. Division/B. Craig
	Washington, DC 20505		P.O. Box 1663 Los Alamos. NM 87544
1	SDIO/TNI	1	Battelle
	ATTN: L.H. Caveny Pentagon Washington, DC 20301-7100	,	ATTN: TWSTIAC V. Levin
1	SDIO/DA ATTN: E. Gerry		505 King Avenue Columbus, OH 43201-2693
	Pentagon Washington, DC 21301-7100	1	Battelle PNL ATTN: M.C.C. Bampton P.O. Box 999 Richland, WA 99352

No. of Copies	Organization	No. of Copies	Organization
1	Institute of Gas Technology ATTN: D. Gidaspow 3424 S. State Street Chicago, IL 60616-3896	2	University of Illinois Department of Mechanical/Industry Engineering ATTN: H. Krier R. Beddini
1	Institute for Advanced Technology ATTN: T.M. Kiehne The University of Texas of Austin 4030-2 W. Braker Lane	l	144 MEB: 1206 N. Green St. Urbana, IL 61801-2978 University of Maryland
	Austin, TX 78759-5329		ATTN: Dr. J.D. Anderson College Park, MD 20740
2	CPIA - JHU ATTN: H. J. Hoffman T. Christian 10630 Little Patuxent Parkway Suite 202 Columbia. MD 21044-3200	1	University of Massachusetts Department of Mechanical Engineering ATTN: K. Jakus Amherst. MA 01002-0014
1	Brigham Young University Department of Chemical Engineering ATTN: M. Beckstead Provo. UT 84601	ł	University of Minnesota Department of Mechanical Engineering ATTN: E. Fletcher Minneapolis, MN 55414-3368
1	Jet Propulsion Laboratory California Institute of Technology ATIN: L.D. Strand, MS 125/224 4800 Oak Grove Drive Pasadena, CA 91109	3	Pennsylvania State University Department of Mechanical Engineering ATTN: V. Yang K. Kuo C. Merkle University Park, PA 16802-7501
1	California Institute of Technology 204 Karman Lab Main Stop 301-46 ATTN: F.E.C. Culick 1201 E. California Street Pasadena, CA 91109	1	Rensseiger Polytechnic Institute Department of Mathematics Troy. NY 12181 Stevens Institute of Technology Davidson Laboratory
3	Georgia Institute of Technology School of Aerospace Engineering ATTN: B.T. Zim E. Price	1	ATTN: R. McAlevy III Castle Point Station Hobokett, NJ 07030-5907 Rulgers University
1	W.C. Strable Atlanta, GA 30332 Massachusetts Institute of Technology Department of Mechanical Engineering		Department of Mechanical and Acrospace Engineering ATTN: S. Temkin University Heights Campus New Brunswick, NJ 08903
	ATTN: T. Toong 77 Llassachusetts Avenue Cambridge, MA 02139-4307	1	University of Southern California Mechanical Engineering Department ATTN: 0HE200, M. Gerstein Los Angeles, CA 90089-5199

No. of Copies	Organization	No. of Copies	Organization
1	University of Utah Department of Chemical Engineering ATTN: A. Baer Salt Lake City, UT 84112-1194	4	Hercules, Inc. Radford Army Ammunition Plant ATTN: L. Gizzi D.A. Worrell W.J. Worrell
1	Washington State University Department of Mechanical Engineering ATTN: C.T. Crowe Pullman, WA 99163-5201	2	C. Chandler Radford, VA 24141-0299 Hercules, Inc.
1	AFELM, The Rand Corporation ATTN: Library D 1700 Main Street Santa Monica. CA 90401-3297		Allegheny Ballistics Laboratory ATTN: William B. Walkup Thomas F. Farabaugh P.O. Box 210 Rocket Center, WV 26726
1	Arrow Technology Associates, Inc. ATTN: W. Hathaway P.O. Box 4218 South Burlington, VT 05401-0042	1	Hercules, Inc. Aerospace ATTN: R. Cariwright 100 Howard Blvd. Kenville, NJ 07847
3	AAI Corporation ATTN: J. Hebert J. Frankle D. Cleveland P.O. Box 126 Hunt Valley, MD 21030 0126	1	Hercules, Inc. Hercules Plaza ATTN: B.M. Riggleman Wilmington, DE 19894
2	Alliant Techsystems, Inc. ATTN: R.E. Tompkins J. Kennedy 7225 Northland Dr.	l	MBR Research Inc. ATTN: Dr. Moshe Ben-Reuven 601 Ewing St., Suite C-22 Princeton, NJ 08540
1	Brooklyn Park, MN 55428 Textron ATTN: A. Patrick 2385 Revere Beach Parkway	1	Olin Corporation Badger Army Ammunition Plant ATTN: F.E. Wolf Baraboo, WI 53913
1	Everett, MA 02149-5900 General Applied Sciences Lab ATTN: J. Erdos 77 Raynor Ave. Ronkonkama, NY 11779-6649	3	Olin Ordnance ATTN: E.J. Kirschke A.F. Gonzalez D.W. Worthington P.O. Box 222 St. Marks, FL 32355-0222
1	General Electric Company Tactical System Department ATTN: J. Mandzy 100 Plastics Ave.	1	Olin Ordnance ATTN: H.A. McElroy 10101 9th Street, North St. Petersburg, FL 33716
1	Pittsfield, MA 01201-3698 IITRI ATTN: M.J. Klein 10 W. 35th Street Chicago, IL 60616-3799	1	Paul Gough Associates, Inc. ATTN: P.S. Gough 1048 South St. Portsmouth, NH 03801-5423

No. of Copies Organization

- Physics International Library ATTN: H. Wayne Wampler P.O. Box 5010 San Leandro, CA 94577-0599
- 3 Rockwell International Rocketdyne Division ATTN: BA08, J. Flanagan J. Gray
 - R.B. Edelman 6633 Canoga Avenue Canoga Park. CA 91303-2703
- 2 Rockwell International Science Center ATTN: Dr. S. Chakravarthy Dr. S. Palaniswamy 1049 Camino Dos Rios P.O. Box 1085 Thousand Oaks, CA 91360
- Science Applications International Corp. ATTN: M. Palmer 2109 Air Park Rd. Albuquerque, NM 87106
- 1 Southwest Research Institute ATTN: J.P. Riegel 6220 Culebra Road P.O. Drawer 28510 San Antonio, TX 78228-0510
- 1 Sverdrup Technology, Inc. ATTN: Dr. John Deur 2001 Aerospace Parkway Brook Park, OH 44142
- 3 Thiokol Corporation
 Elkton Division
 ATTN: R. Willer
 R. Biddle
 Tech Library
 P.O. Box 241
 Elkton, MD = 21921-0241

No. of Copies Organization

- 1 Veritay Technology, Inc. ATTN: E. Fisher 4845 Millersport Hwy. East Amherst, NY 14501-0305
- 1 Universal Propulsion Company ATTN: H.J. McSpadden 25401 North Central Ave. Phoenix, AZ 85027-7837
- 1 SRI International Propulsion Sciences Division ATTN: Tech Library 333 Ravenwood Avenue Menlo Park, CA 94025-3493

Aberdeen Proving Ground

1 Cdr. USACSTA ATTN: STECS-PO/R. Hendricksen

of es Organization

- 1 Ernst-Mach-Institut ATTN: Dr. R. Heiser Haupstrasse 18 Weil am Rheim Germany
- Defence Research Agency, Military
 Division
 ATTN: C. Woodley
 RARDE Fort Halstead
 Sevenoaks, Kent, TN14 7BP
 Eng and
- School of Mechanical, Materials, and Civil Engineering
 ATTN: Dr. Bryan Lawton
 Royal Military College of Science
 Shrivenham, Swindon, Wiltshire, SN6 8LA
 England

No. of Copies Organization

- 2 Institut Saint Louis
 ATTN: Dr. Marc Giraud
 Dr. Gunther Sheets
 Postfach 1260
 7858 Weail am Rhein 1
 Germany
- Explosive Ordnance Division
 ATTN: A. Wildegger-Gaissmaier
 Defence Science and Technology
 Organisation
 P.O. Box 1750
 Salisbury, South Australia 5108
- I Armaments Division
 ATTN: Dr. J. Lavigne
 Defence Research Establishment Valcartier
 2459, Pic XI Blvd., North
 P.O. Box 8800
 Courcelette, Quebec GOA 1R0
 Canada

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report No	ımber	ARL-TR-228	Date of Report _	September 1993
2. Date Report Rec	ceived			
-	-	-	ourpose, related project,	or other area of interest for
4. Specifically, hideas, etc.)	now is the	report being used? (In		n data, procedure, source of
5. Has the inform operating costs av	nation in thi oided, or ef	s report led to any quan	atitative savings as far as? If so, please claborate.	man-hours or dollars saved,
6. General Com	ments. W	hat do you think should		ve future reports? (Inuicate
	Organ	ization		
CURRENT	Name			
ADDRESS		or P.O. Box No.		
	City, S	State, Zip Code		
		Address or Address Correct address below.	rection, please provide th	ne Current or Correct address
	Organ	ization		
OLD ADDRESS	Name			
	Street	or P.O. Box No.		
	City, S	State, Zip Code		

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)