Hypothesis testing 2: p-value, GLRT test

Y. Polyanskiy, D. Shah, J. Tsitsiklis

6.S077

2018

Outline:

- Recap (basics, z-test, t-test
- p-value
- GLRT test
- G-statistic
- Kolmogorov-Smirnov test

Recall: Formal setting for HT

Definition

Statistical hypotheses:

- H : data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_0$
- ullet K: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$

where C_0, C_1 are COLLECTIONS OF DISTRIBUTIONS.

Remarks:

- ALWAYS (!) make sure you can formulate in the form above
- Most common special case: X_i are i.i.d. from P
- ... So will just write things like:

$$H:\mathbb{E}[X]=0$$
 vs. $K:\mathbb{E}[X]\neq 0$.

Can reject H, but not "prove it"!

Design of tests

• **Before** seeing the data we announce test:

Data
$$X = (X_1, \dots, X_n)$$
 lands in set $R_{\alpha} \Rightarrow$ REJECT null.

with $P[\mathsf{data} \in R_{\alpha}|H] \leq \alpha$ (false positive, significance)

More exactly:

(*)
$$P[X \in R_{\alpha}] \le \alpha \quad \forall P \in C_0$$

- How is R_α selected?
- Usually: by thresholding some statistic:

$$R_{\alpha} = \{T(\boldsymbol{X}) \geq t_{\alpha}\}.$$

- Statistic T(X) is chosen with two goals in mind:
 - "pivotality": Under any null $P \in \mathcal{C}_0$ distribution of T(X) is same
 - "consistency": Under any non-null $P \in \mathcal{C}_1$, T(X) grows to ∞ with n
- Threshold t_{α} is selected to satisfy (*) (approximately or exactly)
- We learned about two statistics with such properties: Z and T

Recap: z- and t-tests

Testing for mean

- Data $X_i \overset{iid}{\sim} P$, mean $\mathbb{E}[X] = \mu$
- null $H : \mu = 0$
- alt $K: \mu \neq 0$ (or $\mu > 0$)
- Good idea: compute sample mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- *z*-test:
 - ▶ Applicable when $Var[X|H] = \sigma_0^2$ (known, null-variance)
 - $Z = \sqrt{\frac{n}{\sigma_0^2}} (\hat{\mu} \mu_0)$
 - Asymptotically normal: $n \gg 1$ have $Z \approx \mathcal{N}(0,1)$ under null!
 - ▶ REJECT null if |Z| > 1.96 for significance $\alpha = 0.05$
- t-test:
 - ► Applicable when variance is unknown (aka nuisance parameter)
 - $T = \sqrt{\frac{n}{\widehat{\sigma}^2}} (\hat{\mu} \mu_0)$
 - Asymptotically normal: $n \gg 1$ have $T \approx \mathcal{N}(0,1)$ under null!

HT steps (again)

Hypothesis testing mindset:

- **1** Suppose in your experiment you will see $\underline{\mathsf{data}}\ \boldsymbol{X} = (X_1, \dots, X_n)$
- **2** Formulate null hypothesis $H: X \sim P$ with $P \in \mathcal{C}_0$
- **3** Formulate alternative hypothesis $K: X \sim P$ with $P \in \mathcal{C}_1$
- **4** Choose statistic whose distribution under H is same for all $P \in \mathcal{C}_0$

$$T = \sqrt{n} \frac{\hat{\mu} - \mu_0}{\sqrt{\widehat{\sigma}^2}} \approx \mathcal{N}(0, 1)$$

- **5** Threshold test: If T "large", REJECT null H.
- **6** Threshold chosen s.t. $\mathbb{P}[\text{reject}|H] \leq \alpha$ for pre-specified α (typ. 0.05)
- Only then see the data
- Q: Do we really need **[3-6]**? Why threshold at all?

Concept of p-value

Consider test procedure:

$$(*)$$
 $T(X) \ge t_{\alpha} \Rightarrow \text{reject null } H$

- ullet Value of T, aka "effect size", is more important than binary decision
- Question: "effect size" has units, can we convert it to universal scale?
- Answer: Yes! p-value is the answer.
- Can be computed if: 1) H is specified, 2) test is of the form (*)

Algorithm for computing p-value

- Got data $x = (x_1, ..., x_n)$.
- ▶ Compute observed statistics $t_{obs} \triangleq T(x)$
- p-value $\triangleq P[T(\boldsymbol{X}) \geq t_{obs}|H]$
- Mnemonic: probability of observing same or more extreme data
- For $P[\cdot|H]$ to make sense, should have "pivotality" (for general case, wait a bit)

Illustration of *p*-value: $\mu = \mu_0$ vs $\mu > \mu_0$

Illustration of p-value: $\mu = \mu_0$ vs $\mu \neq \mu_0$

Illustration of *p*-value: $\mu = \mu_0$ vs $\mu < \mu_0$

Lady tasting tea

Back story

- M. Bristol claims to be able to tell whether tea or milk was poured into cup first
- Famous statistician R. Fisher is her colleague
- Proposes to test it

The experiment

- Design: 8 teacups are placed (4 tea first, 4 milk first)
- Data: X = tasting, Y = truth(e.g. X = TTTTMMMM, Y = TMTMTMTM)
- Test statistic: T = # of correct guesses
- Experiment: M. Bristol got T = 8. What is p-value?

Lady tasting tea

- Design: 8 teacups are placed (4 tea first, 4 milk first)
- Data: X = tasting, Y = truth (e.g. X = TTTTMMMM, Y = TMTMTMTM)
- Test statistic: T = # of correct guesses
- Experiment: M. Bristol got T = 8. What is p-value?

Hypothesis testing formulation

- Null hypothesis H: X, Y are i.i.d. uniform on $\binom{8}{4} = 70$ strings
- Distribution of T under null:

$$p$$
-value = $1/70 \approx 0.014$

T	Prob	$\mid T$	Prob
0	1/70	6	16/70
2	$\frac{16}{70}$ $\frac{36}{70}$	8	1/70
4	36/70		

Concept of p-value: MIT version

Consider test procedure:

$$(*)$$
 $T(X) \ge t_{\alpha} \Rightarrow \text{reject null } H$

- Value of T, aka "effect size", is more important than binary decision
- Then we have $t_{obs} \triangleq T(x)$ (observed value of T)

$$p$$
-value $\triangleq \mathbb{P}[T(\boldsymbol{X}) \geq t_{obs}|H]$

- **Problem**: What is $\mathbb{P}[\cdot|H]$?
- Solution: Just replace with $\max_{P \in \mathcal{C}_0}!$

Algorithm for computing p-value

- Got data $\boldsymbol{x} = (x_1, \dots, x_n)$.
- lacktriangle Compute observed statistics $t_{obs} riangleq T(oldsymbol{x})$
- ▶ p-value $\triangleq \max_{P \in C_0} P[T(X) \ge t_{obs}]$

Concept of p-value: MIT version (PhD's only)

Consider test procedure:

$$(*)$$
 $T(X) \ge t_{\alpha} \Rightarrow \text{reject null } H$

- ullet Value of T, aka "effect size", is more important than binary decision
- Then we have $t_{obs} \triangleq T(x)$ (observed value of T)

$$p$$
-value $\triangleq \max_{P \in \mathcal{C}_0} P[T(\boldsymbol{X}) \ge t_{obs}]$

- **Problem:** What if test is not of the form " $T(x) \ge t_{\alpha}$ "?
- Solution: Let R_{α} be a family of tests s.t.

$$P[X \in R_{\alpha}] \le \alpha \quad \forall P \in \mathcal{C}_0$$

then

$$p$$
-value $\triangleq \inf\{\alpha : \boldsymbol{x} \in R_{\alpha}\}$

REMEMBER: p-value is not a function of data ONLY.

- It depends on data and test.
- \bullet You cannot say this data is significant to reject null with p=0.001.
- ullet ... the test for which p is computed should be specified.
- In practice hard to decipher from actual papers.
- "Reproducible research" movement is to fix this.

$\overline{\mathsf{Interpreting}}\ p$ -value

- Roughly: p-value = P[data (or more extrem)|H]
- Value p = 0.05 means false REJECT in 5% of experiments
- ... often used to decide on funding, continuing drug trials etc
- Rookie mistake: think p-value is $P[H|{\rm data}]$ Mass media: "null is true w.p. <5%"
- Fun calculation: If p < 0.05 is rejection threshold False-positive in 5 tests w.p. 22% False-positive in 10 tests w.p. 40% False-positive in 15 tests w.p. 53% False-positive in 20 tests w.p. 64%
- Recall: 10^6 articles per year in PubMed... so 50000 false positives
- ... and 2500 false-positive replications, 125 triple replications, 6 quad replications
- Sensational (false?) positives get blown up by the media

Data-snooping

Another rookie blunder

- Null: $\mu = \mu_0$
- See data, observed t-statistic $t_{obs}>0$ (i.e. sample-mean $>\mu_0$)
- Decide to report one-sided p-value.
 I.e. write paper "On testing μ = μ₀ vs. μ > μ₀"
- ERROR: cannot pick hypothesis after seeing data
- You report: "My p-value was calculated as"

$$p_{cheat} = \mathbb{P}[T(X) > t_{obs}|H]$$

but in truth you computed

$$p_{true} = \mathbb{P}[T(X) > t_{obs}|H, T(X) > 0].$$

- Under normal approximation $p_{true} \approx 2p_{cheat}$
- Example of data-snooping (beginner-level)
- Mid-level: do multiple trials, report one (Chicago Bears, coin tosses " $p = 2^{-14}$ "?)
- Pro-level: run many tests, report one

Roadmap of tests

Tests we will learn:

- One-sample tests:
- \P for mean of population: $\mathbb{E}[X] = \mu_0$ vs $\mathbb{E}[X] \neq \mu_0$
- - 3 generalized likelihood-ratio test: $X \sim \text{Uniform vs } X \sim \text{not Uniform}$
 - **4** testing normality: $X \sim \mathcal{N}(0,1)$ vs $X \nsim \mathcal{N}(0,1)$
- Two-sample tests:
 - **1** Equality of means: $\mathbb{E}[X] = \mathbb{E}[Y]$ vs. $\mathbb{E}[X] \neq \mathbb{E}[Y]$
 - **2** Equality of distributions: $P_X = P_Y$ vs. $P_X \neq P_Y$
 - **3** Testing independence: $X \perp\!\!\!\perp Y$ vs $X \not\perp\!\!\!\perp Y$

Design of tests

• **Before** seeing the data we announce test:

Data
$$X = (X_1, ..., X_n)$$
 lands in set $R_{\alpha} \Rightarrow$ REJECT null.

• Usual choice of crit. region:

$$R_{\alpha} = \{T(\boldsymbol{X}) \geq t_{\alpha}\}.$$

- Statistic T(X) is chosen with two goals in mind:
 - "pivotality": Under any null $P \in \mathcal{C}_0$ distribution of T(X) is known
 - "consistency": Under any non-null $P \in \mathcal{C}_1$, T(X) grows to ∞ with n
- How does one find such T????
- Art... (as in beautiful, cf. exact non-parametric tests)
- Some guidelines:
 - ▶ Use good $\hat{\theta}$
 - Shed nuisance scale parameters by Studentization
- How about cases other than $\theta \in H$ vs $\theta \in K$?

Generalized likelihood-ratio test

- How do we test for general hypotheses?
- MLE was our savior in estimation. Analog for HT?

The G-statistic

$$G \triangleq -2\log \frac{P_0^*(x_1, \dots, x_n)}{P_1^*(x_1, \dots, x_n)}$$

$$P_0^*(x_1, \dots, x_n) = \max_{P \in \mathcal{C}_0 \cup \mathcal{C}_1} P(x_1, \dots, x_n)$$

$$P_1^*(x_1, \dots, x_n) = \max_{P \in \mathcal{C}_0 \cup \mathcal{C}_1} P(x_1, \dots, x_n)$$

- The GLRT: REJECT if $G > g_{\alpha}$
- Rationale: Large P_0/P_1 means H is more likely than K. Later: Neyman-Pearson Lemma
- Version with $\max_{P \in \mathcal{C}_1}$ is also useful
- ullet Distribution of G under null? Let's find out . . .

Testing for discrete distribution (goodness-of-fit)

HT problem

- X be r-valued: $[r] = \{1, \ldots, r\}$
- P_0 a pmf on [r], i.e. $P_0(1) + \cdots + P_0(r) = 1$
- Null $H: X \stackrel{iid}{\sim} P_0$
- Alt $K: X \stackrel{iid}{\sim} P$ with $P \neq P_0$

Derive G-statistic

- Let $\hat{P}(\cdot) = \frac{1}{n} \# \{j : x_j = \cdot\}$ empirical dist
- $P_0^*(x_1,\ldots,x_n) = \prod_{a=1}^r P_0(a)^{n\hat{P}(a)}$
- $P_1^*(x_1, \dots, x_n) = \max_P \prod_{a=1}^r P(a)^{n\hat{P}(a)} = \prod_{a=1}^r \hat{P}(a)^{n\hat{P}(a)}$
- $G = 2n \sum_{a=1}^{r} \hat{P}(a) \log \frac{\hat{P}(a)}{P_0(a)}$
- ... = $2nD(\hat{P}||P_0)$ distance-like measure of proximity (KL-divergence)
- Strong MAGIC: as $n \to \infty$ under null

$$G \approx \chi^2(r-1)$$
 regardless of $P_0!$

Testing for discrete distribution (goodness-of-fit)

HT problem

- X be r-valued: $[r] = \{1, ..., r\}$
- P_0 a pmf on [r], i.e. $P_0(1) + \cdots + P_0(r) = 1$
- Null $H: X \stackrel{iid}{\sim} P_0$
- Alt $K: X \stackrel{iid}{\sim} P$ with $P \neq P_0$
- $G = 2n \sum_{a=1}^{r} \hat{P}(a) \log \frac{\hat{P}(a)}{P_0(a)}$
- Strong MAGIC: $G \approx \chi^2(r-1)$ regardless of $P_0!$
- What is $\chi^2(d)$? $\chi^2(d) \sim \sum_{i=1}^d Z_i^2 \qquad Z_i \stackrel{iid}{\sim} \mathcal{N}(0,1)$ $\chi^2(d) = \text{scipy.stats.chi2.pdf}(\cdot, \text{df} = d)$

Hacks:
$$\chi^2(d) \approx \mathcal{N}$$
 for $d \geq 500$ and $\sqrt{\chi^2} \approx \mathcal{N}$ for $d \geq 50$

• So the final test is: REJECT if $G>x_{\alpha}(r-1)$

Testing for discrete distribution (goodness-of-fit)

HT problem

- X be r-valued: $[r] = \{1, \ldots, r\}$
- P_0 a pmf on [r], i.e. $P_0(1) + \cdots + P_0(r) = 1$
- Null $H: X \stackrel{iid}{\sim} P_0$
- Alt $K: X \stackrel{iid}{\sim} P$ with $P \neq P_0$

G-test

- $\hat{P}(\cdot) = \frac{1}{n} \# \{j : x_j = \cdot\}$ empirical dist
- $g_{obs} = 2n \sum_{a=1}^{r} \hat{P}(a) \log \frac{\hat{P}(a)}{P_0(a)} = 2nD(\hat{P}||P_0)$
- p-value= $\mathbb{P}[\chi^2(r-1) > g_{obs}]$

Remarks: Could use any other "distance" $d(\hat{P}, P_0)$ and simulate.

Social experiment

Rules of the game

- Everyone please think of two random bits
- Write them down!
- Now let me collect the results

Test 1: Generated bits are uniform coin flips?

- $n_0 = \#$ of 0 bits, $n_1 = \#$ of 1 bits.
- Calculate $G = 2n_0 \log \frac{2n_0}{n} + 2n_1 \log \frac{2n_1}{n}$
- Compare to quantiles of $\chi^2(1)$:

$P[\chi^2(1) > g]$	g
0.05	3.8
0.1	2.7
0.2	1.6
0.3	1.1

Test 2: Generated pairs of bits are (1/4, 1/2, 1/4)?

Testing for continuous distribution (goodness-of-fit)

- What if now null $H: X \stackrel{iid}{\sim} P_0$ with P_0 continuous dist. on \mathbb{R} ?
- For example: $P_0 = \mathcal{N}(0,1)$?

Kolmogorov-Smirnov test

$$KS_n = \max_{-\infty < x < \infty} \sqrt{n} |\hat{F}_X(x) - F_0(x)|$$

• MAGIC: Distribution of KS_n is independent of P_0 (!!)

$$KS_n > \text{scipy.stats.ksone.ppf}(1 - \alpha, n)$$
 then REJECT

- ullet Non-parametric stats.: dist. of KS_n is same for all P_0 in a huge class
- Don't trust scipy? Can do Monte Carlo with $P_0 = \text{Uniform}[0,1]$.
- ullet For large n converges to explicit Kolmogorov distribution:

$$\mathbb{P}[KS_n \le x] \to \frac{\sqrt{2\pi}}{x} \sum_{k=1}^{\infty} e^{-(2k-1)^2 \pi^2 / (8x^2)}$$

Example: Check if Pearson's crab data is normal.

Pearson crab data

qq

