3	(a)	(i)	Define power.
			[1]
		(ii)	Mechanical power P can be calculated using the formula $P = Fv$.
			Use the concept of work and the definition of power to show how this formula is derived.
			[2]
			[4]

(b) The engine of a lorry provides 130 kW of power to the lorry's wheels when it is travelling at a constant speed of 25 m s⁻¹ along a straight horizontal road.

Show that the resistive force opposing the forward motion of the lorry is 5200 N.

(c) The lorry in (b) travels up a straight section of road that is inclined at an angle θ to the horizontal, as shown in Fig. 3.1.

Fig. 3.1 (not to scale)

The lorry has mass m and the acceleration of free fall is g.

(i) Determine an expression, in terms of m, g and θ , for the component of the weight of the lorry that acts parallel to the surface of the road.

[1]

(ii) The total resistive force remains unchanged at 5200 N and the engine now provides greater power to maintain the speed of $25\,\mathrm{m\,s^{-1}}$. The total mass m of the lorry is $36\,000\,\mathrm{kg}$. The angle θ is 1.4° .

Determine the power, in kW, now provided by the engine.

power = kW [3]

[Total: 8]