Problem Set 5

Daniel Halmrast

February 14, 2018

Problem 1

Define $f: S^1 \times I \to S^1 \times I$ by $f(\theta, s) = (\theta + 2\pi s, s)$ so that f restricts to the identity on the two boundary circles of $S^1 \times I$. Show that f is homotopic to the identity by a homotopy f_t that is stationary on one of the boundary circles, but not by any homotopy f_t that is stationary on both boundary circles.

Proof. We begin by explicitly constructing the homotopy that is stationary on $S^1 \times \{0\}$. This is done via the homotopy

$$f_t(\theta, s) = (\theta + t2\pi s, s)$$

Clearly, $f_0 = 1$ and $f_1 = f$. Furthermore, $f_t(\theta, 0) = (\theta, 0)$ and so f_t is stationary on $S^1 \times \{0\}$

Problem 2

Does the Borsuk-Ulam theorem hold for the torus? That is, for every map $f: S^1 \times S^1 \to \mathbb{R}^2$ does there exist a point (x,y) for which f(x,y) = f(-x,-y)?

Proof. I assert that the Borsuk-Ulam theorem does not hold for the torus. To see this, we construct an explicit function from T^2 to \mathbb{R}^2 which does not have any antipodal points with the same value.

Consider the function $f: T^2 \to \mathbb{R}^2$ given as follows. First, let T^2 be embedded in \mathbb{R}^3 . Then, consider the vector field $\frac{\partial}{\partial \phi}$ where ϕ runs parallel to the x-y plane. Since T^2 is embedded in \mathbb{R}^3 , these vectors can be thought of as living in the tangent bundle to \mathbb{R}^3 . Thus, for each vector, it makes sense to take its projection onto the x-y plane. Now, since the original vector field $\frac{\partial}{\partial \phi}$ is smooth, and projection is a continuous operation, this defines a continuous map from T^2 to \mathbb{R}^2 .

In coordinates, this map is given as

$$f(\theta, \phi) = (\cos(\phi), \sin(\phi)) \tag{0.1}$$

and clearly, $f(\theta, \phi) \neq f(-\theta, -\phi)$ as desired.

PROBLEM EXTRA

Find the standard form of $\mathbb{Z}_4 \times \mathbb{Z}_6 \times \mathbb{Z}_6$, and prove or disprove:

$$\mathbb{Z}_4 \times \mathbb{Z}_6 \times \mathbb{Z}_6 \cong \mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3$$