Modular Arithmetic

Previously, we defined

Def (Divisibility). We say that a *divides* b if there is an integer k such that

$$b = a \cdot k$$
.

We write $a \mid b$ if a divides b. Otherwise, we write $a \nmid b$.

Theorem (The Division Algorithm). Let a be an integer and d a positive integer. Then there are *unique* integers q and r, such that $0 \le r < d$ and

$$a = dq + r$$
.

Def (GCD).

Def (Prime numbers).

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

GCD is a linear combination

Theorem (Bezout's Theorem). If a and b are positive integers, then there exist integers s and t such that

$$\gcd(a,b) = sa + tb.$$

Exmaple: gcd(52, 44) = 4

$$6 \cdot 52 + (-7) \cdot 44 = 4$$

So called Extended Euclid's algorithm constructs such s and t, and so proves the theorem. The algorithm is described in the last section of this lecture.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Relative primes (co-primes)

Relative primes

GCD is a linear combination

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Extended Euclid's Algorithm

Def. a and b are relative primes if

$$gcd(a, b) = 1.$$

By Bezout's theorem, *a* and *b* are co-primes if and only if there exist s and t such that

$$sa + tb = 1$$

Factorization of positive integers

Theorem (Fundamental theorem of arithmetic). Every positive integer n can be written in a unique way as a product of primes

$$n = p_1 \cdot p_2 \cdot \ldots \cdot p_j$$
 $(p_1 \le p_2 \le \ldots \le p_j)$

This product is called prime factorization.

See Lehman and Leighton (p. 67) for the proof.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Def. For a positive integer n, a is *congruent* to b modulo n if

$$n \mid (a-b)$$
.

This is denoted

$$a \equiv b \pmod{n}$$
.

Example:

$$22 \equiv 15 \pmod{7}$$

$$29 \equiv 15 \pmod{7}$$

$$36 \equiv 15 \pmod{7}$$

because

$$7 \mid (22-15), 7 \mid (29-15), 7 \mid (36-15).$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Example:

$$22 \equiv 15 \pmod{7}$$

$$29 \equiv 15 \pmod{7}$$

$$36 \equiv 15 \pmod{7}$$

because

$$7 \mid (22-15), 7 \mid (29-15), 7 \mid (36-15).$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Extended Euclid's Algorithm

The distance between 15, 22, 29, 36, etc. is a multiple of 7.

Lemma. If $a \equiv b \pmod{n}$, then exists $k \in \mathbb{Z}$ s.t. a = b + kn.

Two numbers are congruent modulo n if and only if they have the same remainder when divided by n.

Lemma.

$$a \equiv b \pmod{n}$$
 if and only if $a \operatorname{rem} n = b \operatorname{rem} n$.

Proof:

By the division algorithm,

$$a = q_1 n + r_1,$$
 $b = q_2 n + r_2.$
 $a - b = (q_1 - q_2)n + (r_1 - r_2)$

" \Rightarrow ": If $a \equiv b \pmod{n}$ then $n \mid (a - b)$. So $r_1 - r_2 = 0$, the remainders are equal.

"
$$\Leftarrow$$
": If $r_1 = r_2$, then $n \mid (a - b)$, so $a \equiv b \pmod{n}$.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

x	9	10	11	12	13	14	15	16	17
<i>x</i> rem 3	0	1	2	0	1	2	0	1	2
x rem 3 = 0	9			12			15		
x rem 3 = 1		10			13			16	
x rem 3 = 2			11			14			17

Integers are divided into 3 congruence classes:

..., 9, 12, 15, 18, 21, ... are congruent modulo 3.

..., 10, 13, 16, 19, 22, ... are congruent modulo 3.

..., 11, 14, 17, 20, 23, ... are congruent modulo 3.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Congruence classes

Modulo 3:

 $\{\ldots,0,3,6,9,12,\ldots\}$ is the congruence class of 0 modulo 3.

 $\{\ldots,1,4,7,10,13,\ldots\}$ is the congruence class of 1 modulo 3.

 $\{\ldots,2,5,8,11,14,\ldots\}$ is the congruence class of 2 modulo 3.

Theorem.

$$a \operatorname{rem} n \equiv a \pmod{n}$$
.

Modulo 7:

Similarly, the days of the week:

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday define congruence classes modulo 7.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Modular arithmetic

Addition, subtraction, and multiplication preserve congruence.

Theorem. if
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$, then

$$a+c\equiv b+d\pmod{n}$$
.

Theorem. if
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$, then

Exist $x, y \in \mathbb{Z}$ such that a - b = xn and c - d = yn.

$$ac - bd = (b + xn)(d + yn) - bd = n(xd + by + xny)$$

 $ac \equiv bd \pmod{n}$.

Thus
$$ac \equiv bd \pmod{n}$$
.

GCD is a linear combination Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Extended Euclid's Algorithm

p. 11

Multiplicative inverse

What about division?

Theorem. if a and n are relative primes, i.e. gcd(a,n) = 1, then exists integer a^{-1} called *multiplicative inverse*, such that

$$aa^{-1} \equiv 1 \pmod{n}$$

Proof.

Exist *s* and *t*, such that sa + tn = 1. Therefore,

$$sa - 1 = tn$$

$$sa \equiv 1 \pmod{n}$$

Therefore,
$$a^{-1} = s$$
.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Multiplicative inverse

Corollary. If a and n are relative primes, then there exists a *unique* multiplicative inverse $a^{-1} \in \{1, 2, ..., n-1\}$ such that

$$aa^{-1} \equiv 1 \pmod{n}$$
.

Ok, uniqueness is great, but we need a procedure for finding multiplicative inverses.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Multiplicative inverse

Find inverse of 101 modulo 4620, *x* such that

$$101 \cdot x \equiv 1 \pmod{4620}$$

They are relative primes:

$$gcd(101, 4620) = 1.$$

By Bezout's theorem:

$$101 \cdot s + 4620 \cdot t = 1$$

$$101 \cdot s \equiv 1 \pmod{4620}$$

We have to find Bezout coefficients *s* and *t*. Then *s* is the inverse.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

$$101 \cdot s + 4620 \cdot t = 1$$

Run Euclid's algorithm:

$$a_0 = 4620 = 45 \cdot 101 + 75$$

$$a_1 = 101 = 1 \cdot 75 + 26$$

$$a_2 = 75 = 2 \cdot 26 + 23$$

$$a_3 = 26 = 1 \cdot 23 + 3$$

$$a_4 = 23 = 7 \cdot 3 + 2$$

$$a_5 = 3 = 1 \cdot 2 + 1$$

$$a_6 = 2 = 2 \cdot 1$$

$$a_7 = 1$$

Work backwards, to express GCD in terms of $a_1 = 101$ and $a_0 = 4620$:

$$1 = 3 - 1 \cdot 2$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

$$101 \cdot s + 4620 \cdot t = 1$$

Run Euclid's algorithm:

$$a_0 = 4620 = 45 \cdot 101 + 75$$

$$a_1 = 101 = 1 \cdot 75 + 26$$

$$a_2 = 75 = 2 \cdot 26 + 23$$

$$a_3 = 26 = 1 \cdot 23 + 3$$

$$a_4 = 23 = 7 \cdot 3 + 2$$

$$a_5 = 3 = 1 \cdot 2 + 1$$

$$a_6 = 2 = 2 \cdot 1$$

$$a_7 = 1$$

Work backwards, to express GCD in terms of $a_1 = 101$ and $a_0 = 4620$:

$$1 = 3 - 1 \cdot 2$$

= 3 - 1 \cdot (23 - 7 \cdot 3) = -1 \cdot 23 + 8 \cdot 3

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

$$101 \cdot s + 4620 \cdot t = 1$$

Run Euclid's algorithm:

$$a_0 = 4620 = 45 \cdot 101 + 75$$

$$a_1 = 101 = 1 \cdot 75 + 26$$

$$a_2 = 75 = 2 \cdot 26 + 23$$

$$a_3 = 26 = 1 \cdot 23 + 3$$

$$a_4 = 23 = 7 \cdot 3 + 2$$

$$a_5 = 3 = 1 \cdot 2 + 1$$

$$a_6 = 2 = 2 \cdot 1$$

$$a_7 = 1$$

Work backwards, to express GCD in terms of $a_1 = 101$ and $a_0 = 4620$:

$$1 = 3 - 1 \cdot 2$$

$$= 3 - 1 \cdot (23 - 7 \cdot 3) = -1 \cdot 23 + 8 \cdot 3$$

$$= -1 \cdot 23 + 8 \cdot (26 - 1 \cdot 23) = 8 \cdot 26 - 9 \cdot 23$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

$$101 \cdot s + 4620 \cdot t = 1$$

Run Euclid's algorithm:

$$a_0 = 4620 = 45 \cdot 101 + 75$$

$$a_1 = 101 = 1 \cdot 75 + 26$$

$$a_2 = 75 = 2 \cdot 26 + 23$$

$$a_3 = 26 = 1 \cdot 23 + 3$$

$$a_4 = 23 = 7 \cdot 3 + 2$$

$$a_5 = 3 = 1 \cdot 2 + 1$$

$$a_6 = 2 = 2 \cdot 1$$

$$a_7 = 1$$

Work backwards, to express GCD in terms of $a_1 = 101$ and $a_0 = 4620$:

$$1 = 3 - 1 \cdot 2$$

$$= 3 - 1 \cdot (23 - 7 \cdot 3) = -1 \cdot 23 + 8 \cdot 3$$

$$= -1 \cdot 23 + 8 \cdot (26 - 1 \cdot 23) = 8 \cdot 26 - 9 \cdot 23$$

$$= 8 \cdot 26 - 9(75 - 2 \cdot 26) = -9 \cdot 75 + 26 \cdot 26$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

$$101 \cdot s + 4620 \cdot t = 1$$

Run Euclid's algorithm:

$$a_0 = 4620 = 45 \cdot 101 + 75$$

$$a_1 = 101 = 1 \cdot 75 + 26$$

$$a_2 = 75 = 2 \cdot 26 + 23$$

$$a_3 = 26 = 1 \cdot 23 + 3$$

$$a_4 = 23 = 7 \cdot 3 + 2$$

$$a_5 = 3 = 1 \cdot 2 + 1$$

$$a_6 = 2 = 2 \cdot 1$$

$$a_7 = 1$$

Work backwards, to express GCD in terms of $a_1 = 101$ and $a_0 = 4620$:

$$1 = 3 - 1 \cdot 2$$

$$= 3 - 1 \cdot (23 - 7 \cdot 3) = -1 \cdot 23 + 8 \cdot 3$$

$$= -1 \cdot 23 + 8 \cdot (26 - 1 \cdot 23) = 8 \cdot 26 - 9 \cdot 23$$

$$= 8 \cdot 26 - 9(75 - 2 \cdot 26) = -9 \cdot 75 + 26 \cdot 26$$

$$= -9 \cdot 75 + 26 \cdot (101 - 1 \cdot 75) = 26 \cdot 101 - 35 \cdot 75$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

$$101 \cdot s + 4620 \cdot t = 1$$

Run Euclid's algorithm:

$$a_0 = 4620 = 45 \cdot 101 + 75$$

$$a_1 = 101 = 1 \cdot 75 + 26$$

$$a_2 = 75 = 2 \cdot 26 + 23$$

$$a_3 = 26 = 1 \cdot 23 + 3$$

$$a_4 = 23 = 7 \cdot 3 + 2$$

$$a_5 = 3 = 1 \cdot 2 + 1$$

$$a_6 = 2 = 2 \cdot 1$$

$$a_7 = 1$$

Work backwards, to express GCD in terms of $a_1 = 101$ and $a_0 = 4620$:

$$1 = 3 - 1 \cdot 2$$

$$= 3 - 1 \cdot (23 - 7 \cdot 3) = -1 \cdot 23 + 8 \cdot 3$$

$$= -1 \cdot 23 + 8 \cdot (26 - 1 \cdot 23) = 8 \cdot 26 - 9 \cdot 23$$

$$= 8 \cdot 26 - 9(75 - 2 \cdot 26) = -9 \cdot 75 + 26 \cdot 26$$

$$= -9 \cdot 75 + 26 \cdot (101 - 1 \cdot 75) = 26 \cdot 101 - 35 \cdot 75$$

$$= 26 \cdot 101 - 35 \cdot (4620 - 45 \cdot 101)$$

$$= -35 \cdot 4620 + 1601 \cdot 101$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

$$-35 \cdot 4620 + 1601 \cdot 101 = 1$$

Bezout coefficients are s = 1601 and t = -35.

Therefore, s = 1601 is the multiplicative inverse:

$$101 \cdot 1601 \equiv 1 \pmod{4620}$$

It works, but it's confusing. Let's describe the extended Euclid's algorithm more systematically.

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

Normally, when computing $gcd(a_0, a_1)$, we produce the sequence of remainders

$$a_0, a_1, a_2, \ldots, a_k,$$

where the last $a_k = \gcd(a_0, a_1)$.

Our ultimate goal is to compute coefficients x_k and y_k such that

$$a_k = x_k \cdot \mathbf{a_0} + y_k \cdot \mathbf{a_1}$$

Along the way, for every term a_i from the sequence, we compute x_i and y_i

$$a_i = x_i \cdot \mathbf{a_0} + y_i \cdot a_1$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

First term:

$$a_0 = 1 \cdot a_0 + 0 \cdot a_1$$

Second term:

$$a_1 = 0 \cdot a_0 + 1 \cdot a_1$$

*i*th term:

$$a_{i-2} = q_{i-1} \cdot a_{i-1} + a_i$$

$$a_i = a_{i-2} - q_{i-1} \cdot a_{i-1}$$

$$= x_{i-2} \cdot \mathbf{a}_0 + y_{i-2} \cdot a_1 - q_{i-1}(x_{i-1} \cdot \mathbf{a}_0 + y_{i-1} \cdot a_1)$$

= $(x_{i-2} - q_{i-1}x_{i-1}) \cdot \mathbf{a}_0 + (y_{i-2} - q_{i-1}y_{i-1}) \cdot a_1$

$$= \left(\underbrace{x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}}_{=x_i}\right) \cdot \underbrace{a_0} + \left(\underbrace{y_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} y_{i-1}}_{=y_i}\right) \cdot a_1$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence
Modular arithmetic

Multiplicative inverse

This is how we compute all x_i and y_i up to x_k and y_k :

$$x_0 = 1$$
 $y_0 = 0$
 $x_1 = 0$ $y_1 = 1$...
 $x_i = x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}$ $y_i = y_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} y_{i-1}$...

In the end, we get two numbers x_k and y_k , so we can express the GCD as a linear combination of a_0 and a_1 :

$$\gcd(\mathbf{a}_0, \mathbf{a}_1) = \mathbf{a}_k = \mathbf{x}_k \cdot \mathbf{a}_0 + \mathbf{y}_k \cdot \mathbf{a}_1$$

In addition, if $gcd(a_0, a_1) = 1$, then y_k is the multiplicative inverse of a_1 modulo a_0 .

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

 $x_i = x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}$ $y_i = y_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} y_{i-1}$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence Modular arithmetic

> Extended Euclid's Algorithm

Compute coefficients:

 $x_0 = 1$

 $v_0 = 0$ Multiplicative inverse $y_1 = 1$

 $a_0 = 4620 = 45 \cdot 101 + 75$ $a_1 = 101 = 1 \cdot 75 + 26$

Run Euclid's algorithm:

 $a_2 = 75 = 2 \cdot 26 + 23$

 $a_3 = 26 = 1 \cdot 23 + 3$ $a_4 = 23 = 7 \cdot 3 + 2$

 $a_5 = 3 = 1 \cdot 2 + 1$ $a_6 = 2 = 2 \cdot 1$

 $a_7 = 1$

 $\frac{4620-75}{101} = 45$

 $\frac{75-23}{26} = 2$

 $\frac{26-3}{22}=1$

 $x_1 = 0$

 $x_2 = 1 - 45 \cdot 0 = 1$ $y_2 = 0 - 45 \cdot 1 = -45$

 $\frac{101-26}{75}=1$

 $x_2 = 0 - 1 \cdot 1 = -1$ $y_2 = 1 - 1 \cdot (-45) = 46$

 $x_4 = 1 - 2 \cdot (-1) = 3$ $y_4 = -45 - 2 \cdot 46 = -137$

 $x_5 = -1 - 1 \cdot 3 = -4$ $y_5 = 46 - 1 \cdot (-137) = 183$

$$x_i = x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}$$

$$x_i = x_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} x_{i-1}$$
 $y_i = y_{i-2} - \frac{a_{i-2} - a_i}{a_{i-1}} y_{i-1}$

Run Euclid's algorithm:

$$a_0 = 4620 = 45 \cdot 101 + 75$$

$$a_1 = 101 = 1 \cdot 75 + 26$$

$$a_2 = 75 = 2 \cdot 26 + 23$$

$$a_3 = 26 = 1 \cdot 23 + 3$$

$$a_4 = 23 = 7 \cdot 3 + 2$$

$$a_5 = 3 = 1 \cdot 2 + 1$$

$$a_6 = 2 = 2 \cdot 1$$

$$a_7 = 1$$

Compute coefficients:

$$x_0 = 1$$
 $y_0 = 0$

$$x_1 = 0$$
 $y_1 = 1$

$$x_2 = 1$$
 $y_2 = -45$

$$x_3 = -1$$
 $y_3 = 46$

$$x_4 = 3$$
 $y_4 = -137$

$$x_5 = -4$$
 $y_5 = 183$

$$\frac{23-2}{3} = 7$$

$$x_6 = 31$$

$$x_6 = 31$$
 $y_6 = -1418$

$$\frac{3-1}{2} = 1$$

$$x_7 = -35$$
 $y_7 = 1601 \leftarrow$ is the inverse

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse

By construction, x_7 and y_7 are such that

$$\gcd(\mathbf{a}_0, a_1) = a_7 = x_7 \cdot \mathbf{a}_0 + y_7 \cdot a_1$$

$$1 = \underbrace{-35}_{=x_7} \cdot \underbrace{4620}_{=\mathbf{a}_0} + \underbrace{1601}_{=y_7} \cdot \underbrace{101}_{=a_1}$$

$$1601 \cdot 101 - 1 = 35 \cdot 4620$$

Therefore, by definition of congruence,

$$101 \cdot 1601 \equiv 1 \pmod{4620}$$
.

So, 1601 is a multiplicative inverse of 101 modulo 4620.

In fact, you can verify x_i and y_i at every step, the following equality should hold

$$a_i = x_i \cdot \underbrace{4620}_{=a_0} + y_i \cdot \underbrace{101}_{=a_1}$$

GCD is a linear combination

Relative primes

Fundamental theorem of arithmetic

Congruence

Modular arithmetic

Multiplicative inverse