EEE205 – Digital Electronics (II) Lecture 9

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

Quine-McCluskey Method

1

A Revision of Some Terminology

	Boolean Algebra View	Karnaugh Map View
Minterm	a product term with all variables	a 1 cell
Implicant	a product term	a group of 1's
Prime Implicant	a shortest product term	a group of 1's that is not fully contained in another group of 1's
Essential Prime Implicant	product terms which must stay	has a 1 not included in other group

A Revision of Some Terminology

This K-map contains:

- 7 minterms
- 14 implicants
- 4 prime implicants.
- 3 essential prime implicants.

Quine-McCluskey Method

- The Karnaugh map method is for logic functions with a small number of variables.
- **Quine-McCluskey method** can simplify logic functions with *a large number of variables*.
- The latter is a systematic approach that can be readily programmed for a digital computer.

Quine-McCluskey Method

The *procedure* consists of two steps:

- 1. Finding prime implicants. Eliminate as many as literals as possible from each term by repeatedly applying XY + XY' = X.
- 2. Select a minimum set of prime implicants by using a prime implicant chart.

5

Finding Prime Implicants

- We will start from a standard SOP form consisting of minterms only.
- By using the Theorem XY + XY' = X, two minterms will be combined if they differ in only one variable.

$$AB'CD' + AB'CD = AB'C$$

$$\underbrace{1 \ 0 \ 1}_{X} \ 0 + \underbrace{1 \ 0 \ 1}_{X} \ 1 = \underbrace{1 \ 0 \ 1}_{X} - \text{(the dash indicates a missing variable)}$$

$$A'BC'D + A'BCD' \text{ (will not combine)}$$

$$0 \ 1 \ 0 \ 1 + 0 \ 1 \ 1 \ 0 \text{ (will not combine)}$$

Finding Prime Implicants

 $f(a, b, c, d) = \sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)$

 The binary minterms are sorted into groups according to the number of 1's.

• This is to reduce the unnecessary comparisons.

group 0		0	0000
	ſ	1	0001
group 1	{	2	0010
	Į	8	1000
		5	0101
group 2		6	0110
8 1		9	1001
	(10	1010
group 3	ĺ	7	0111
9 G P	Į	14	1110

Finding Prime Implicants

- Only terms in adjacent groups must be compared.
- Terms in non-adjacent groups differ in at least two variables.
- Two terms within a group differ in at least two variables.

group 0		0	0000
	ſ	1	0001
group 1	{	2	0010
	Į	8	1000
	ſ	5	0101
group 2	2	6	0110
8r -		9	1001
	l	10	1010
group 3	[7	0111
9P	_ [14	1110

,

Finding Prime Implicants

	Colu	Colu	ımn II	
group 0	0	0000 🗸	0,	1 000-
,	1	0001 🗸	0, 2	2 00–0
group 1 {	2	0010 🗸	0, 8	8 –000
l	8	1000 🗸	1,	5 0–01
ſ	5	0101 🗸	1, 9	9 –001
group 2 {	6	0110 🗸	2,	6 0–10
group 2	9	1001 🗸	2, 1	0 –010
l	10	1010 🗸	8,	9 100-
group 3 {	7	0111 🗸	8, 1	0 10–0
	14	1110 🗸	5,	7 01–1
	,		6,	7 011–
			6, 1	4 –110
			10, 1	4 1–10

- Terms 0000 and 0001 can be combined to yield 000- (a'b'c'), and so on.
- The outcomes are listed in a new column.
- The terms which can be combined are checked off.
- The remaining ones are prime implicants.

10

Finding Prime Implicants

Karnaugh Map's View

$$f(a, b, c, d) =$$

 $\sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)$

- To find groups of 2.
- If a 1 is not in any group of 2, it is a prime implicant.

ab	00	01	11	10
00	1	1		1
01		1	1	1
11				1
10	1	1		1

Finding Prime Implicants

	Column I			Colum	ın II
group 0	0	0000	/	0, 1	000-
. (· 1	0001	✓	0, 2	00-0
group 1 {	2	0010	✓	0, 8	-000
l	8	1000	✓	1, 5	0-01
ſ	5	0101	✓	1, 9	-001
group 2	6	0110	✓	2, 6	0–10
group 2	9	1001	✓	2, 10	-010
Į	10	1010	✓	8, 9	100-
group 3	7	0111	✓	8, 10	10-0
group 5	14	1110	✓	5, 7	01–1
				6, 7	011–
				6, 14	-110
				10, 14	1–10

- Terms in the new column are grouped according to the number of 1's.
- Terms which have dashes in the same place and which differ in only one variable can be combined.
- Terms 000- (a'b'c') and 100- (ab'c') yield -00- (b'c').

Finding Prime Implicants

• Find and delete the duplicate terms.

Column I		Columi	n II	Column III	Column III	
group 0 0	0000 🗸	0, 1	000- 🗸	0, 1, 8, 9	-00-	
1	0001 🗸	0, 2	00-0 🗸	0, 2, 8, 10	-0-0	
group 1 { 2	0010 🗸	0, 8	-000 ✓	0, 8, 1, 9	00-	
l 8	1000 🗸	1, 5	001	0, 8, 2,10	-0-0	
5	0101 🗸	1, 9	-001 🗸	2, 6, 10, 14	10	
group 2 6	0110 🗸	2, 6	0-10 🗸	2, 10, 6, 14	10	
group 2 0	1001 🗸	2, 10	-010 ✓			
l 10	1010 🗸	8, 9	100- 🗸			
	0111 🗸	8, 10	10-0 🗸			
group 3 { 14	1110 🗸	5, 7	01–1			
		6, 7	011-			
		6, 14	−110 ✓			
		10, 14	1-10 🗸			

13

Finding Prime Implicants

Karnaugh Map's View

- To find groups of 4.
- If a group of 2 is not in any group of 4, it is a prime implicant.

Finding Prime Implicants

- Keep comparing terms and forming new groups of terms until no more terms could be combined.
- Terms which have not been checked off are prime implicants.

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$

(1, 5) (5, 7) (6,7) (0, 1, 8, 9) (0, 2, 8, 10) (2, 6, 10, 14)

• Each term has a minimum number of literals, but the number of terms is not minimum. This is left to the **prime implicant chart**.