Измерение потенциальных убытков портфеля из-за изменения рыночных цен

Выполнили Бабанин П. В., Семёнов А.Ш., Сулоев. Р. А., Панчёха Л.Д.

ВВЕДЕНИЕ И ОБЗОР МОДЕЛЬНЫХ РИСКОВ

Финансовые организации

банки, инвест дома и т.д. Нефинансовые организации

метеорология медицина и т.д

Модельные риски

возникают при использовании сложных моделей в финансовых и нефинансовых компаниях

Финансовые организации

ВВЕДЕНИЕ И ОБЗОР МОДЕЛЬНЫХ РИСКОВ

ОСНОВНЫЕ РИСКИ

1 Кредитование

риск выдать кредит неплатежеспособному клиенту 2 Торговля

риск заключить сделку с ненадежным контрагентом/ задолженность контрагента

3 Управление активами

риск неэффективно использовать активы

4 Составление отчетности

риск составить отчетность некорректно

Финансовые организации

СПЕЦИФИКА ФИНАНСОВЫХ ОРГАНИЗАЦИЯ

ОСНОВНЫЕ МОДЕЛЬНЫЕ РИСКИ

- финансовые потери
- репутационный ущерб
- системные кризисы
- потеря инвесторов и клиентов

РЕГУЛЯТОРЫ

строгие требования (например, SR 11-7 в США, Базель III). введение и обзор модельных рисков

ОСНОВНЫЕ РИСКИ

1 Прогнозирование

2

Диагностика

риск неправильного и некорректного прогноза

риск неверно собранных данных и их анализа

Оптимизация

риск внедрения неэффективных обновлений

Нефинансовые организации

Нефинансовые организации

СПЕЦИФИКА НЕФИНАНСОВЫХ ОРГАНИЗАЦИЯ

ОСНОВНЫЕ МОДЕЛЬНЫЕ РИСКИ

- метеорология (неточные прогнозы)
- медицина (ошибки диагностики)
- добыча ископаемых (экологические риски)

РЕГУЛЯТОРЫ

требования к безопасности и точности, но менее жёсткие, чем в финансовом секторе.

ЖИЗНЕННЫЙ ЦИКЛ МОДЕЛИ

Разработка политики

Определение целей, ролей и ответственности

Разработка модели

Выбор методов, подготовка данных, документирование

Классификация моделей

Оценка уровня риска

Валидация модели

Независимая проверка корректности и производительности

Списание модели

Архивация при превышении допустимого количества ошибок

Использование ML/AI

Адаптация методов для машинного обучения

Применение модели **м**

Ввод в эксплуатацию и мониторинг

модельные риски

МЕЖДУНАРОДНЫЙ И РОССИЙСКИЙ ОПЫТ РЕГУЛИРОВАНИЯ

Зарубежный опыт

- Базельские соглашения (Basel II, III): требования к валидации и стресс-тестированию.
- США (ОСС, ФРС): стандарты независимой валидации и мониторинга.
- ЕС (ЕВА): рекомендации по управлению рисками и стресс-тестам.

Отечественный опыт

- Регуляторы: ЦБ РФ (Положения № 683-П, № 492-П).
- Требования: валидация, стресс-тестирование, обратное тестирование (backtesting).

РЕГУЛЯТОРЫ

ФРС США

ЦЕНТРАЛЬНЫЙ БАНК РОССИИ

МЕТОДЫ ОЦЕНКИ РИСКА

Conditional Value at Risk (CVaR)

Средние потери при превышении VaR (учёт "хвостовых"рисков).

Примеры рассчетов

Для портфеля из акций и золота, с учётом кризисных периодов (например, 2020 год).

Value at Risk (VaR)

Оценка максимальных потерь за период с заданной вероятностью.

Garch & Arch models

Модели, используемые для прогнозирования ситуации в условиях волатильности

VALUE AT RISK (VAR)

Оценка максимальных потерь за период с заданной вероятностью.

МЕТОДЫ

Исторический

 $VaR = -\text{rate}((1 - \alpha) \cdot N) \cdot P$

Параметрический

$$VaR = \sqrt{w^T * \sum w * w} * z_\alpha * V$$

Монте-Карло

Симуляции будущих сценариев, упорядочивание от худшего к лучшему

CONDITIONAL VALUE AT RISK (CVAR)

Средние потери при превышении VaR (учёт "хвостовых"рисков).

ОСОБЕННОСТИ

1

Оценка рисков при экстремальных значениях 2

Регулирование и контроль рисков улучшается при внесение CVAR, а не при отдельной оценке VAR

Регулирование и контроль рисков улучшается при внесение CVAR, а не при отдельной оценке VAR

GARCH & ARCH MODELS

Модели, используемые для прогнозирования ситуации в условиях волатильности

МОДЕЛИ

1

ARCH-моделью порядка q называют временной ряд с условной дисперсией вида:

$$\sigma^2(t) = \alpha + \sum_{i=1}^n \beta_i r_{t-i}^2$$

2

В GARCH-модели условная дисперсия рассчитывается как:

$$\sigma^{2}(t) = \alpha + \sum_{i=1}^{n} \beta_{i} r_{t-i}^{2} + \sum_{i=1}^{m} \gamma \sigma_{t-i}^{2}$$

РАСЧЕТЫ

Для портфеля из акций и золота, с учётом кризисных периодов (например, 2020 год).

ШАГИ

1

Разделили данные на 1998-2017 и 2020, чтобы оценить модельный риск в коронакризис

2

Выбор долей активов в портфеле на основе historical_VaR, parametric_VaR, monte_carlo_VaR, bootstrap_CVaR, parametric_CVaR, garch_CVaR

Применение полученной модели на данных в кризисный период (2020 год) и анализ результатов

ПРАКТИЧЕСКАЯ ЧАСТЬ

СИСТЕМА УПРАВЛЕНИЯ ПОРТФЕЛЬНЫМ РИСКОМ

<u>Цель</u>: Создание инструмента для оценки рисков и

оптимизации портфеля.

<u>Данные</u>: Котировки индексов (MOEX, S&P500, HKE) и золота

(1998-2020).

Рекомендации

Диверсификация (ограничение доли одного актива).

Регулярное стресстестирование и обновление модели.

Стабильные времена

0.32%

Довольно низкий показатель

Кризисные времена (коронакризис)

1.98%

0.01%

3% CVAR

Довольно низкий показатель

Оптимальный портфель: высокая доля золота (97%) для минимизации риска.

УЛУЧШЕНИЕ МОДЕЛЕЙ

MLOps и ModelOps

- **MLOps**: Автоматизация жизненного цикла моделей (разработка, тестирование, развёртывание).
- **ModelOps**: Управление работающими моделями (мониторинг, обновление).

ПРОБЛЕМЫ

По завершении исследования мы пришли к следующим выводам:

Управление модельным риском требует комплексного подхода на всех этапах жизненного цикла модели.

Финансовый сектор более регулируем, но нефинансовые компании также сталкиваются с серьёзными последствиями ошибок.

Российский рынок развивается в сторону международных стандартов, но отстаёт в зрелости процессов.

Практические решения (например, VaR-модели) эффективны, но нуждаются в адаптации к кризисам.