Floating Point Numbers

Floating Point Numbers

- 1) Wish to represent wide range of numbers (very small fractions to very large integers)
- 2) Range is limited by the number of bits
- Trade precision (accuracy of representation) for range

Scientific Notation

 $100100 = 1001 \times 2^2$

Scientific Notation

1001000 x 2⁰

100100 x 2¹

 10010×2^2

 1001×2^3

 100.1×2^4

 10.01×2^{5}

 1.001×2^6

All represent the same value!

Normalized Numbers

Limit the number of digits to the left of the point.

Example: normalize to 1 digit

 $1001000 = 1.001 \times 2^6$

Assuming all numbers have same base and number of digits to left of the point, only need digits in fraction and exponent.

Normalized Numbers

Exercises: normalize to 1 digit

100100 x 2¹

111010 x 2⁴

 1010.1×2^3

00.01001 x 2⁴

Binary Floating Point

Assign Fixed number of bits for the:

Sign

Exponent

Fraction

Normalize such that 1 is to the left of the decimal point: $1001101 = 1.001101 \times 2^6$

Since there is always a 1 to the left, drop the one when storing the number (hidden one)

```
1 bit sign (0 -> positive, 1 -> negative)
8 bit exponent, 00000001 to 11111110 excess 127
23 bit fraction, hidden 1
```

Example:

```
1 01111110 10000...0 what is the value?
```

Sign = -

Exponent =
$$011111110 = 126$$
 (excess 127) = -1_{10}

Fraction = $1.100...0$

-1.1 x 2^{-1}

Copyright 2020 - Queens College CSCI 240

```
1 bit sign (0 -> positive, 1 -> negative)8 bit exponent, 00000001 to 11111110 excess 12723 bit fraction, hidden 1
```

Exercise:

0 10000001 11000..0

convert Single Precision Floating Point to Decimal

```
1 bit sign (0 -> positive, 1 -> negative)8 bit exponent, 00000001 to 11111110 excess 12723 bit fraction, hidden 1
```

Example:

-5.5₁₀ encode into a Single Precision Floating Point

1 bit sign (0 -> positive, 1 -> negative)
8 bit exponent, 00000001 to 11111110 excess 127
23 bit fraction, hidden 1

Exercise:

13.25₁₀ encode into a Single Precision Floating Point

1 bit sign (0 -> positive, 1 -> negative)
8 bit exponent, 00000001 to 11111110 excess 127
23 bit fraction, hidden 1

Exercise:

-7.75₁₀ encode into a Single Precision Floating Point

Trade Precision for Range

32 bits used to encode a float.

Largest Float: $0.111111110.11111...1 = +1.111 \times 2^{127}$

Gaps between floats

$$10 \times 2^{0} = 2$$

 $11 \times 2^{0} = 3$

$$10 \times 2^{1} = 4$$

 $11 \times 2^{1} = 6$

$$10 \times 2^2 = 8$$

 $11 \times 2^2 = 12$

Trade Precision for Range

Represent 20,000,001 in single precision

Cannot do it.

2²⁴ is roughly 16 million. We only have 24 bits to represent the fraction (including the hidden bit) We need more than 24 bits for 20,000,001

Double Precision Floating Point

```
1 bit sign (0- positive, 1 - negative)11 bit exponent, 0000000001 to 11111111110 excess 102352 bit fraction, hidden 1
```

Example:

-5.5₁₀ encode into a Double Precision Floating Point

Denormalized Numbers

Sign	Exponent	Fraction	
0/1	11111111	0000	+/- Infinity
0/1	11111111	Nonzero	NaN / Not a Number
0/1	Not all 0 or 1	Anything	Hidden1, excess 127, normalized
0/1	00000000	Nonzero	Denormalized, no hidden 1, 2 ⁻¹²⁶ fixed exponent
0/1	00000000	0000	0

Exercises: What values are encoded in the following?

0 00000000 1000..0

0 00000001 1000..0