Insper

Computação Embarcada - IOs (Input/Output)

Rafael Corsi - rafael.corsi@insper.edu.br

Fevereiro 2018

Entrega até o começo da aula do dia ..

Visão Geral

($Utilize\ o\ manual\ encontrado\ em\ :\ Manuais/Cortex-M7-SAM-E70^*$ para resolução dessa secção.)*

Periféricos são hardwares auxiliares encontrados no uC que fornecem funcionalidades extras tais como : gerenciador de energia (SUPC), comunicação serial UART (UART), comunicação a dois fios (TWI), controlador de saída e entrada paralela (PIO), dentre muitos outros.

1

Liste a funcionalidade dos periféricos listados a seguir :

- RTC Real time clock
- TC Timer/Counter

Os periféricos são configuráveis via escrita/leitura nos registradores do microcontrolador, cada periférico possui um endereço único mapeado em memória. A Fig. [fig:same70pg41-memmappdf] define os endereços de memórias reservado para cada funcionalidade do uC.

2

- Qual endereço de memória reservado para os periféricos ?
- Qual o tamanho (em endereço) dessa secção ?

O diagrama completo do mapeamento de memória pode ser encontrado na página 41.

Figure 1: Mapa de memória SAME70 $(pg.\ 41)$

3

Encontre os endereços de memória referentes aos seguintes periféricos :

- 1. PIOA
- 2. PIOB
- 3. ACC
- 4. UART1
- 5. UART2

PMC - Gerenciador de energia

O Power Management Controller (PMC) é um periférico responsável por gerenciar a energia e clock dos demais periféricos. Para utilizarmos um periférico é necessário primeiramente ativarmos o mesmo no PMC.

Cada periférico é referenciado no PMC via um número único (ID), esse ID também será utilizado para o gerenciamento de interrupções. Os IDs estão listados na Tabela: 13.1 do datasheet Cortex-M7-SAM-E70.pdf.

4

Qual ID do PIOC?

Parallel Input Output (PIO)

Secção 32 datasheet

Leitura obrigatória, Secção 32 do datasheet.

No ARM-Atmel os pinos são gerenciados por um hardware chamado de Parallel Input/Output Controller (PIO), esse dispositivo é capaz de gerenciar até 32 diferentes pinos (I/Os).

Além do controle direito do pino pelo PIO, cada I/O no ARM-Atmel pode ser associado a uma função diferente (periférico), por exemplo: o I/O PA20 pode ser controlador pelo periférico do PWM enquanto o PA18 pode ser controlador pela UART.

Isso fornece flexibilidade ao desenvolvimento de uma aplicação, já que os I/Os não possuem uma funcionalidade fixa. Porém não possuímos tanta flexibilidade assim, existe uma relação de quais I/Os os periféricos podem controlar.

Podemos interpretar a tabela como : o pino **102** do microcontrolador identificado como **PA0** (PIOA_0) pode ser utilizado como **WKUP0** (wakeup) ou mapeado para um dos tres perifericos :

- Periferico A: PWM (Pulse width modulation)
- Periferico B: TIOA0 (Timer 0)
- Periferico C: I2C_MCL (I2C master clear)

A tabela na página 16 do datasheet (Table 5-1) ilustra quais periféricos podem ser associados aos respectivos pinos, a Fig. [fig:PIOA_mux] mostra as opções para o PIOA0 até PIOA9.

able 5-1. 144-lead Package Pinout																	
LQFP Pin	LFBGA Ball	UFBGA Ball	Power Rail	I/O Type	Primary		Alternate		PIO Peripheral A		PIO Peripheral B	П	PIO Peripheral C	П	PIO Peripheral D	Г	Reset State
					Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal	Dir	Signal, Dir, PU PD, HiZ, ST
102	C11	E11	VDDIO	GPIO_AD	PA0	VO	WKUP0 ⁽¹⁾	1	PWMC0_PWMH0	0	TIQA0	1/0	A17/BA1	0	I2SC0_MCK	-	PIO, I, PU, ST
99	D12	F11	VDDIO	GPIO_AD	PA1	VO	WKUP1 ⁽¹⁾	1	PWMC0_PWML0	0	TIOB0	1/0	A18	0	12SC0_CK	-	PIO, I, PU, ST
93	E12	G12	VDDIO	GPIO	PA2	VO	WKUP2 ⁽¹⁾	1	PWMC0_PWMH1	0	-	-	DATRG	1	-	-	PIO, I, PU, ST
91	F12	G11	VDDIO	GPIO_AD	PA3	VO	PIOD CO ⁽²⁾	1	TWD0	1/0	LONCOL1	1	PCK2	0	-	-	PIO, I, PU, ST
77	K12	L12	VDDIO	GPIO	PA4	VO	WKUP3/PIODC1(3)	1	TWCK0	0	TCLK0	1	UTXD1	0	-	-	PIO, I, PU, ST
73	M11	N13	VDDIO	GPIO_AD	PA5	VO	WKUP4/PIODC2 ⁽³⁾	1	PWMC1_PWML3	0	ISI_D4	1	URXD1	1	-	-	PIO, I, PU, ST
114	В9	B11	VDDIO	GPIO_AD	PA6	VO	-	-	-	-	РСК0	0	UTXD1	0	-	-	PIO, I, PU, ST
35	L2	N1	VDDIO	CLOCK	PA7	VO	XIN32 ⁽⁴⁾	1	-	-	PWMC0_PWMH3	0	-	-	-	-	PIO, HIZ
36	M2	N2	VDDIO	CLOCK	PA8	VO	XOUT32 ⁽⁴⁾	0	PWMC1_PWMH3	0	AFE0_ADTRG	1	-	-	-	-	PIO, HIZ
75	M12	L11	VDDIO	GPIO_AD	PA9	VO	WKUP6/PIODC3 ⁽¹⁾	1	URXD0	1	ISI_D3	1	PWMC0_PWMFI0	1	-	-	PIO, I, PU, ST

Figure 2: Mux PIOA - periféricos vs pinos pg. 16

5

Verifique quais periféricos podem ser configuráveis nos I/Os :

- 1. PC1
- 2. PB6

O SAME70 possui internamente 5 PIOs: PIOA, PIOB, PIOC,PIOD e PIOE. Cada um é responsável por gerenciar até 32 pinos.

Os I/Os são classificados por sua vez em grandes grupos: A, B,C (exe: PA01, PB22, PC12) e cada grupo é controlado por um PIO (PIOA, PIOB, PIOC, ...).

Configurações

O PIO suporta as seguintes configurações :

- Interrupção em nível ou borda em qualquer I/O
- Filtragem de "glitch"
- Deboucing
- Open-Drain
- Pull-up/Pull-down

• Capacidade de trabalhar de forma paralela

6

- O que é deboucing?
- Descreva um algorítimo que implemente o deboucing.

Funcionalidade

O diagrama de blocos do PIO é ilustrado na Fig. [fig:PIO geral], onde :

- 1. Peripheral DMA (direct memmory access) controller (PDC) : O PIO pode receber dados via DMA.
- Interrup Controller : Já que o PIO suporta interrupções nos I/Os o mesmo deve se comunicar com o controlador de interrupções para informar a CPU (NVIC) que uma interrupção ocorreu.
- 3. PMC : A energia e clock desse periférico é controlado pelo PMC (Power management controller).
- Embedded peripheral : O acesso aos pinos dos periféricos é realizado via PIO.

Jm diagrama lógico mais detalhado é encontrado no datasheet (Fig. [fig:PIO_interno]), esse diagrama mostra as funções dos registradores e seu impacto no PIO.

SET/Clear

Algumas funcionalidades no PIO são configuráveis via dois registradores distintos (set/clear), o primeiro apenas altera o estado do bit específico de 0 para 1, enquanto que o segundo (clear) altera o estado do registrador de 1 para 0. Isso é utilizado para evitar uma condição de corrida ("race condicions" [1]).

Um exemplo desse caso é o registrador Output Data Status Register (PIO_ODSR) que configura o valor de saída de um pino, ou seja, se será "1" ou "0". Para configurarmos por exemplo o bit 2 (referente ao pino PIOA02) precismos "setar" o segundo bit via o registrador Set Output Data Register (IO_SODR):

```
PIOA -> SODR = 1 << 1;
```

Não podemos por exemplo zerar esse registrador :

```
PIOA->SODR &= ~(1 << 1);
```

Para tanto é necessário utilizarmos o registrador Clear Output Data Register (CODR)

```
PIOA \rightarrow CODR = 1 << 1;
```


Figure 3: Block Diagram - pg. 346

Figure 4: [Datasheet pg. 571] I/O Line Control Logic

Esse tipo de controle evita que tenhamos que fazer uma operação de leitura no registrador antes de alterar o bit específico, aumentado assim a eficiência desse periférico.

- O que é race condicions?
- Como que essa forma de configurar os registradores evita isso?

Configurando um pino em modo de output

31.5.4 - Output Control (. 550)

When the I/O line is , i.e., the corresponding bit in PIO_PSR is at zero, . Peripheral A or B or C or D depending on the value in PIO_ABCDSR1 and PIO_ABCDSR2 determines whether the pin is driven or not.

. the Output Enable Register () and Output Disable Register (). are detected in the Output Status Register (). When a bit in this register is at , the corresponding I/O line is used as an . When the bit is at , the corresponding I/O line is .

line can be determined by in the Set Output Data Register () and the Clear Output Data Register (). the Output Data Status Register (), . Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to be controlled by the PIO Controller or assigned to a peripheral function. This enables configuration of the I/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR affects PIO_ODSR. This is important as it defines the first level driven on the I/O line.

 Explique com suas palavras o trecho anterior extraído do datasheet do uC, se possível referencie com o diagrama "I/O Line Control Logic".