专业: 电气工程及其自动化

姓名: 严旭铧

学号: <u>3220101731</u>

浙江大学实验报告

实验 4 混沌发生器

一、 实验目的

- 1. 掌握非线性电阻伏安特性曲线的测量方法
- 2. 了解混沌现象以及产生混沌的电路基本结构
- 3. 了解相轨迹(李萨如图形)的原理和测试方法;以电容电压为输出,分析电位器不同取值时电容电压相轨迹的形状

二、实验任务

(设计、制作并)测试混沌发生器,要求能够观察到从吸引子—分叉—混沌吸引子,并通过仿真加以分析。

- 1. 测量负阻完整的伏安特性曲线
- 2. 调节电位器、并联电容/电感使电路发生自激振荡
- 3. 利用李萨如图形,以电容电压为输出,分析电位器不同取值时电容电压相轨迹的形状。

三、 实验原理

1. 负阻变换器

图 2.5.8 负阻抗变换器实现电路

设输入电压为 \dot{U}_1 ,根据运算放大器"虚短"分析,可知负载 R_L 上的电压 $\dot{U}_2=\dot{U}_1$,负载电流 $\dot{I}_2=\dot{\underline{U}}_2$ 。流过电阻 R_2 的电流 $\dot{I}_b=\dot{I}_2$,电阻 R_1 和 R_2 上的电流有关系式 $R_1\times\dot{I}_a=-R_2\times\dot{I}_b$,而输入端电流 $\dot{I}_1=\dot{I}_a$ 。因此输入端入端阻抗为:

$$Z_{i} = \frac{\dot{U}_{1}}{\dot{I}_{1}} = \frac{\dot{U}_{1}}{\dot{I}_{a}} = \frac{\dot{U}_{1}}{-\frac{R_{2}}{R_{1}}\dot{I}_{b}} = \frac{\dot{U}_{2}}{-\frac{R_{2}}{R_{1}}\dot{I}_{2}} = -\frac{R}{R_{2}} \times R_{L}$$

当外接电阻 $R_1 = R_2$ 时,入端阻抗为 $Z_i = -R_L$,即入端阻抗为负阻抗值。

2. 混沌发生器

四、 实验过程和结果

- 1. 测量负阻伏安特性曲线
 - (1) 仿真电路图

(2) 仿真结果

计算两段斜率, 再取倒数就可以得到

$$R_{ia} = -1.89k\Omega$$
, $R_{ib} = -2.44k\Omega$

(3) 理论分析和推导

可以列出:

$$\begin{cases} U_1 = U_p = U_N = U_2 \\ \frac{U_1 - U_O}{R} = \frac{U_2 - U_O}{kR} = -I_1 = -I_2 \end{cases}$$

解得:

$$\begin{bmatrix} \mathbf{U}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -k \end{bmatrix} \begin{bmatrix} \mathbf{U}_2 \\ -\mathbf{I}_2 \end{bmatrix}$$

根据本实验实际使用的元件参数,在 U2 端接入负载 R_{L} 。实际上有

$$R_{L1} = 3.3k\Omega, R_1 = R_2 = 22k\Omega$$

$$R_{L2} = 2.2k\Omega, R1 = R2 = 220\Omega$$

由此,并联之后可以得到 $R_{ia}=-1.32k\Omega$, $R_{ib}=-2.44k\Omega$

(4) 实际测量结果

由于是非线性元件,本次实验中先尝试使用隔离通道直接测量负阻两端的电压和流过负阻的电流,但是发现电流的测量效果并不理想,能加的电压太小,XY模式下输入输出特性曲线不能完全显示。因此最终选用了在负阻外串联一个 $1k\Omega$ 的采样电阻用于测量电流。

这里使用的是 50Hz, 20Vpp 的正弦信号输入。但是似乎输入电压过大造成了失真, 也超过

了该运放的最大输出电压,电流的波形也出现了峰值凹陷。但是,在 XY 模式下,特性曲线两端的还是没有完全显示(当电压更小的时候,会更加不完全)

由上图,根据理论推导可以计算得到:

$$R_{ia} = -1.07k\Omega$$
, $R_{ib} = -2.58k\Omega$

实验名称: _______混沌发生器______姓名: _____严旭铧______学号: ____3220101731____

2. 自激振荡

(1) 仿真电路图

(2) 仿真结果

(3) 实测结果

(4) 数据分析

参数	实测	仿真
L1/mH	10	10
C1/uF	0.1	0.1
f/kHz	4.83	4.89
T/ms	0.207	0.205

理论计算:

$$T = 2RCln\left(1 + \frac{2R_1}{R_2}\right) = 2.41$$
ms

3. 混沌发生器的相轨迹

调节电位器,先调大的部分,再微调小的那个电位器,在示波器上观察两个电容的电压波形。利用 XY 模式,观察其李萨如图形(相轨迹)。调到对应的图形后断电,用万用表欧姆档测量此时电位器的阻值。

##注意: 此时用万用表测量时,需要先把电位器一端的导线断开,否则用万用表欧姆档测得的电阻实际是并联了回路中其他的电阻的值,会使测得的阻值偏小。在实验中,实际测得约 $1500\,\Omega$ 左右的电阻,如不断开一端的导线则会得到 $900\,\Omega$ 左右的数值,是错误的数据。

实验均采用了 15mH 电感和 0.1uF+0.01uF 并联。很遗憾部分开始时用 U 盘存示波器图形,手机也拍了很奇特的李萨如图形,但是后面发现 U 盘中的图像全部损坏了,因此前几张时基图形缺失,只能先以其他同学的结果演示一下。

测得参 数 Rv/kΩ	相轨迹	时基
1.273		MATH かたCHI かた200V P/S/0 000V 来样 病率(1)=3.48kHz 爆発値(1)=24.80V 機構値(2)=59.20V 機能(2-1)=36.32*
1.311	OV 特定(5-2)=29.81* 原证(3)=189.64Hz 原则(2) (2)	元性 粉電(3)=5-3.0 20mg 解析(E)(3)=7.2AV 新物(E)(2)=3.2AV 新物(E)(2)=3.2AV AND (E)(2)=3.2AV AND (E)
1510		
1691	文[1-2]=-37.06° 频率[1]=3.02kHz	来样 new((1)=5.20V #H((1-2)=-62.00*

