

Analog Interfacing

Ravi Suppiah Lecturer, NUS SoC

Why It's Needed

NUS National University of Singapore

- Embedded systems often need to measure values of physical parameters
- These parameters are usually continuous (analog) and not in a digital form which computers (which operate on discrete data values) can process
- Temperature
 - Thermometer (do you have a fever?)
 - Thermostat for building, fridge, freezer
 - Car engine controller
 - Chemical reaction monitor
 - Safety (e.g. microprocessor processor thermal management)
- Light (or infrared or ultraviolet) intensity
 - Digital camera
 - IR remote control receiver
 - Tanning bed
 - UV monitor
- Rotary position
 - Wind gauge
 - Knobs

Pressure

- Blood pressure monitor
- Altimeter
- Car engine controller
- Scuba dive computer
- Tsunami detector
- Acceleration
 - Air bag controller
 - Vehicle stability
 - Video game remote
- Mechanical strain
- Other
 - Touch screen controller
 - EKG, EEG
 - Breathalyzer

CONVERTING BETWEEN ANALOG AND DIGITAL VALUES

The Big Picture – A Depth Gauge

Figure 4. Output vs. Absolute Pressure

- Sensor detects water pressure and generates a proportional output voltage V_sensor
- ADC generates a proportional digital integer (code) based on V_sensor and V_ref
- 3. Code can convert that integer to a something more useful
 - I. first a float representing the voltage,
 - 2. then another float representing pressure,
 - 3. finally another float representing depth

Getting From Analog to Digital

National University

- A Comparator tells us "Is $V_{in} > V_{ref}$?"
 - Compares an analog input voltage with an analog reference voltage and determines which is larger, returning a 1-bit number
 - E.g. Indicate if depth > 100 ft
 - Set V_{ref} to voltage pressure sensor returns with 100 ft depth.
- An **Analog to Digital converter** [AD or ADC] tells us how large V_{in} is as a fraction of V_{ref} .
 - Reads an analog input signal (usually a voltage) and produces a corresponding multi-bit number at the output.
 - E.g. calculate the depth

Digital to Analog Conversion

NUS National University

- May need to generate an analog voltage or current as an output signal
 - E.g. audio signal, video signal brightness.
- DAC: "Generate the analog voltage which is this fraction of V_{ref}"
- Digital to Analog Converter equation
 - n = input code
 - $\sim N =$ number of bits of resolution of converter
 - V_{ref} = reference voltage
 - V_{out} = output voltage. Either
 - $V_{out} = V_{ref} * n/(2^N)$ or
 - $V_{out} = V_{ref} * (n+1)/(2^N)$
 - The offset +1 term depends on the internal tap configuration of the DAC check the datasheet to be sure

Waveform Sampling and Quantization

- A waveform is **sampled** at a constant rate every Δt
 - Each such sample represents the instantaneous amplitude at the instant of sampling
 - "At 37 ms, the input is 1.91341914513451451234311... V"
 - Sampling converts a continuous time signal to a discrete time signal
- The sample can now be quantized (converted) into a digital value
 - Quantization represents a continuous (analog) value with the closest discrete (digital) value
 - "The sampled input voltage of 1.91341914513451451234311... V is best represented by the code 0x018, since it is in the range of 1.901 to 1.9980V which corresponds to code 0x018."

ANALOG TO DIGITAL CONVERSION CONCEPTS

A/D – Flash Conversion

National University

- A multi-level voltage divider is used to set voltage levels over the complete range of conversion.
- A comparator is used at each level to determine whether the voltage is lower or higher than the level.
- The series of comparator outputs are encoded to a binary number in digital logic (a priority encoder)
- Components used
 - 2^N resistors
 - 2^N-1 comparators
- Note
 - This particular resistor divider generates voltages which are not offset by ½ bit, so maximum error is 1 bit
 - We could change this offset voltage by using resistors of values R, 2R, 2R ... 2R, 3R (starting at bottom)

ADC - Successive Approximation Conversion

Voltage

NUS National University

- Successively approximate input voltage by using a binary search and a DAC
- SA Register holds current approximation of result
- Set all DAC input bits to 0
- Start with DAC's most significant bit
- Repeat
 - Set next input bit for DAC to I
 - Wait for DAC and comparator to stabilize
 - If the DAC output (test voltage) is smaller than the input then set the current bit to I, else clear the current bit to 0

A/D - Successive Approximation

NUS National University of Singapore

Converter Schematic

ADC Performance Metrics

- Linearity measures how well the transition voltages lie on a straight line.
- Differential linearity measure the equality of the step size.
- Conversion time: between start of conversion and generation of result
- Conversion rate = inverse of conversion time

Sampling Problems

- Nyquist criterion
 - F_{sample} >= 2 * F_{max frequency component}
 - Frequency components above $\frac{1}{2}$ F_{sample} are aliased, distort measured signal
- Nyquist and the real world
 - This theorem assumes we have a perfect filter with "brick wall" roll-off
 - Real world filters have more gentle roll-off
 - Inexpensive filters are even worse (e.g. first order filter is 20 dB/decade, aka 6 dB/octave)
 - So we have to choose a sampling frequency high enough that our filter attenuates aliasing components adequately

Inputs

Differential

- Use two channels, and compute difference between them
- Very good noise immunity
- Some sensors offer differential outputs (e.g. Wheatstone Bridge)

Multiplexing

- Typically share a single ADC among multiple inputs
- Need to select an input, allow time to settle before sampling

Signal Conditioning

- Amplify and filter input signal
- Protect against out-of-range inputs with clamping diodes

Sample and Hold Devices

- Some A/D converters require the input analog signal to be held constant during conversion (e.g. successive approximation devices)
- In other cases, peak capture or sampling at a specific point in time requires a sampling device.
- A "sample and hold" circuit performs this operation
- Many A/D converters include a sample and hold circuit

KL25 ANALOG INTERFACING PERIPHERALS

Sources of Information

- KL25 Subfamily Reference Manual (Rev. I, June 2012)
 - Describes architecture of peripherals and their control registers
 - Digital to Analog Converter
 - Chapter 30 of KL25 Subfamily Reference Manual
 - Analog Comparator
 - Chapter 29 of KL25 Subfamily Reference Manual
 - Analog to Digital Converter
 - Chapter 28 of KL25 Subfamily Reference Manual
- KL25 Sub-family Data Sheet (Rev. 3, 9/19/2012)
 - Describes circuit-specific performance parameters: operating voltages, min/max speeds, cycle times, delays, power and energy use

KL25Z Analog Interface Pins

NUS National University

- 80-pin QFP
- Inputs
 - I 16-bit ADC with 14 input channels
 - I comparator with 6 external inputs, one 6bit DAC
- Output
 - I 12-bit DAC

Freedom KL25Z Analog I/O

Inputs

14 external ADC channels6 external comparator channels

Output

1 12-bit DAC

Using a Pin for Analog Input or Output

- Configuration
 - Direction
 - MUX
- Data
 - Output (different ways to access it)
 - Input

Pin Control Register to Select MUX Channel

MUX field of PCR defines connections

MUX (bits 10-8)	Configuration
000	Digital circuits disabled, analog enabled
001	Alternative I – GPIO
010	Alternative 2
011	Alternative 3
100	Alternative 4
101	Alternative 5
110	Alternative 6
111	Alternative 7

DIGITAL TO ANALOG CONVERTER

DAC Overview

- Load DACDAT with 12-bit data N
- MUX selects a node from resistor divider network to create $V_o = (N+1)*V_{in}/2^{12}$
- V_o is buffered by output amplifier to create V_{out}
 - $V_o = V_{out}$ but V_o is high impedance can't drive much of a load, so need to buffer it

DAC Operating Modes

- Normal
 - DAT0 is converted to voltage immediately
- Buffered
 - Data to output is stored in 16-word buffer
 - Next data item is sent to DAC when a selectable trigger event occurs
 - Software Trigger write to DACSWTRG field in DACx_C0
 - Hardware Trigger from PIT timer peripheral
 - Normal Mode
 - Circular buffer
 - One-time Scan Mode
 - Pointer advances until reaching upper limit of buffer, then stops
 - Status flags in DACx_SR

DAC Control Register 0: DACx_C0

- DACEN DAC Enabled when I
- DACRFS DAC reference voltage select
 - 0: DACREF_I. Connected to VREFH
 - I: DACREF_2. Connected to VDDA
- LPEN low-power mode
 - 0: High-speed mode. Fast (15 us settling time) but uses more power (up to 900 uA supply current)
 - I: Low-power mode. Slow (100 us settling time) but more powerefficient (up to 250 uA supply current)
- Additional control registers used for buffered mode

DAC Control Register 1: DACx_CI

- DACBFEN
 - 0: Disable buffer mode
 - I: Enable buffer mode
- DACBFMD Buffer mode select
 - 0: Normal mode (circular buffer)
 - I: One-time scan mode

DAC Data Registers

- These registers are only eight bits long
- DATA[11:0] stored in two registers
 - DATA0: Low byte [7:0] in DACx_DATnL
 - DATA I: High nibble [11:0] in DACx_DATnH

Example: Waveform Generator

- Supply clock to DAC0 module
 - Bit 31 of SIM SCGC6
- Set Pin Mux to Analog (0)
- Enable DAC
- Configure DAC
 - Reference voltage
 - Low power mode?
 - Normal mode (not buffered)
- Write to DAC data register

ANALOG COMPARATOR

Example: Power Failure Detection

- Need warning of when power has failed
 - Very limited amount of time before capacitor C2 discharges
 - Save critical information
 - Turn off output devices
 - Put system into safe mode
- Can use a comparator to compare V_{in} against a fixed reference voltage V_{Ref}

Comparator Overview

- Comparator compares INP and INM
- CMPO Output indicates if INP>INM (I) or INP<INM (0)
- Can generate an interrupt request (+, -, or +- edges)
- ANMUX selection of one of multiple reference inputs, using PSEL and MSEL fields

The End!

We are done with Analog! For Now...

