Optimal Control of Teams with Exchangeable Agents: A Design Methodology for Demand Response

Jalal Arabneydi and Aditya Mahajan

Electrical and Computer Engineering Department, McGill University

Date: May 4th, 2016

Outline

Motivation and connection with mean field teams.

• Mean field teams — Markov Chain.

• Mean field teams — Linear Quadratic.

• Summary and Conclusion.

Motivation

 Demand response: It manages the power consumption of demands in order to decrease the volatility of power grids.

Motivation

• Demand response: It manages the power consumption of demands in order to decrease the volatility of power grids.

Motivation

 Demand response: It manages the power consumption of demands in order to decrease the volatility of power grids.

Demand Response acts like Virtual Battery!

Main Challenges

We are dealing with large scale systems.

- ullet Decentralized information at demands \Longrightarrow cooperation is difficult!
- Communication ⇒ costly and may not be feasible!
- Computational complexity \impresses exponential in number of demands!

Exchangeability

We prove exchangeable systems are equivalent to mean-field (aggregate-behaviour) coupled systems.

Exchangeability

Consider a heterogeneous population with partial exchangeable agents.

Since there is no dependence on the index of agents, agents are only influenced by aggregate behaviour of other agents, i.e., mean field.

Mean Field Teams

- Key feature of mean-field teams is that the solution is tractable. In particular,
 - Markov chain mean-field team (J. Arabneydi and A. Mahajan, CDC 2014):
 - mean-field: empirical distribution
 - Linear quadratic mean-field team (J. Arabneydi and A. Mahajan, CDC 2015):
 - mean-field: empirical mean

Motivating Example 1: Markov Chain

Objective: Keep the distribution of demands close to a desired reference trajectory with minimum force.

Motivating Example 2: Linear Quadratic

Objective: Control the average temperature with minimum forcing of space heaters.

Outline

Motivation and connection with mean field teams.

• Mean field teams — Markov Chain.

• Mean field teams — Linear Quadratic.

• Summary and Conclusion.

- *N* : number of heterogeneous agents (entire population)
- K : number of types (sub-populations)

- *N* : number of heterogeneous agents (entire population)
- K : number of types (sub-populations)

For agent $i \in \mathcal{N}^k$ of type $k \in \mathcal{K}$

- ullet $X_t^i \in \mathcal{X}^k$: state of agent i
- $U_t^i \in \mathcal{U}^k$: action of agent i

- N: number of heterogeneous agents (entire population)
- K : number of types (sub-populations)

For agent $i \in \mathcal{N}^k$ of type $k \in \mathcal{K}$

- $X_t^i \in \mathcal{X}^k$: state of agent i
- $U_t^i \in \mathcal{U}^k$: action of agent i

For sup-population of type $k \in \mathcal{K} = \{1, \dots, K\}$

- \mathcal{N}^k : entire sub-population of type k
- $ar{X}^k_t = rac{1}{|\mathcal{N}^k|} \sum_{i \in \mathcal{N}^k} \delta_{X^i_t}$: mean-field of states
- $ar{U}^k_t = rac{1}{|\mathcal{N}^k|} \sum_{i \in \mathcal{N}^k} \delta_{U^i_t}$: mean-field of actions

- N : number of heterogeneous agents (entire population)
- K : number of types (sub-populations)

For agent $i \in \mathcal{N}^k$ of type $k \in \mathcal{K}$

- $X_t^i \in \mathcal{X}^k$: state of agent i
- $U_t^i \in \mathcal{U}^k$: action of agent i

For sup-population of type $k \in \mathcal{K} = \{1, \dots, K\}$

- \mathcal{N}^k : entire sub-population of type k
- ullet $ar{X}^k_t = rac{1}{|\mathcal{N}^k|} \sum_{i \in \mathcal{N}^k} \delta_{X^i_t}$: mean-field of states
- $ar{U}^k_t = rac{1}{|\mathcal{N}^k|} \sum_{i \in \mathcal{N}^k} \delta_{U^i_t}$: mean-field of actions

For entire population

- $\mathcal{N} = \mathcal{N}^1 \bigcup \ldots \bigcup \mathcal{N}^K$: entire population
- ullet $\mathbf{X}_t = (X_t^i)_{i \in \mathcal{N}}$: joint state of entire population at time t
- ullet $oldsymbol{\mathsf{U}}_t = (U_t^i)_{i \in \mathcal{N}}$: joint action of entire population at time t
- $\bar{\mathbf{X}}_t = \text{vec}(\bar{X}_t^1, \dots, \bar{X}_t^K)$: mean-field of states of entire population at time t
- ullet $ar{f U}_t{=}$ vec $(ar{U}_t^1,\ldots,ar{U}_t^K)$: mean-field of actions of entire population at time t

• Dynamics of agent $i \in \mathcal{N}^k$ with type $k \in \{1, \dots, K\}$: $X_{t+1}^i = f_t(X_t^i, U_t^i, W_t^i, \overline{\mathbf{X}}_t, \overline{\mathbf{U}}_t), \quad i \in \{1, \dots, N\}. \tag{1}$

• Dynamics of agent $i \in \mathcal{N}^k$ with type $k \in \{1, \dots, K\}$:

$$X_{t+1}^{i} = f_{t}(X_{t}^{i}, U_{t}^{i}, W_{t}^{i}, \overline{\mathbf{X}}_{t}, \overline{\mathbf{U}}_{t}), \quad i \in \{1, \dots, N\}.$$
 (1)

• Mean-field sharing Information structure: $U_t^i = g_t^i(\bar{\mathbf{X}}_{1:t}, \mathbf{X}_t^i)$, where g_t^i is called control law of subsystem i at time t.

• Dynamics of agent $i \in \mathcal{N}^k$ with type $k \in \{1, \dots, K\}$:

$$X_{t+1}^{i} = f_{t}(X_{t}^{i}, U_{t}^{i}, W_{t}^{i}, \overline{\mathbf{X}}_{t}, \overline{\mathbf{U}}_{t}), \quad i \in \{1, \dots, N\}.$$
 (1)

- Mean-field sharing Information structure: $U_t^i = g_t^i(\bar{\mathbf{X}}_{1:t}, \mathbf{X}_t^i)$, where g_t^i is called control law of subsystem i at time t.
- \bullet Optimization problem: We are interested in finding a strategy \boldsymbol{g} that minimizes

$$J(\mathbf{g}) = \mathbb{E}^{\mathbf{g}} \left[\sum_{t=1}^{T} \ell_t(\mathbf{X}_t, \mathbf{U}_t) \right]. \tag{2}$$

Key Assumption:

• All agents use identical control laws.

$$g_t^i(\cdot) = g_t^j(\cdot) = g_t, \quad \forall i, j \in \mathcal{N}^k$$

If agents $i,j \in \mathcal{N}^k$ have the same status, then

$$x_t^i = x_t^j = \mathbf{x} \longrightarrow u_t^i = g_t^i(\mathbf{\bar{x}}_{1:t}, \mathbf{x}) = g_t^j(\mathbf{\bar{x}}_{1:t}, \mathbf{x}) = u_t^j, \quad \forall i, j \in \mathcal{N}^k$$

 In general, above assumption leads to a loss in performance. However, it is a standard assumption in the literature on large scale systems for reasons of simplicity, fairness, and robustness.

Main Results: Markov Chain

We identify a dynamic program to compute an optimal strategy. In particular,

Theorem 1:

Let ψ_t^* be a solution to the following dynamic program: at time t for every $ar{\mathbf{x}}_t$

$$V_t(ar{\mathbf{x}}_t) = \min_{oldsymbol{\gamma}_t} \mathbb{E}ig[\ell_t(\mathbf{X}_t, \mathbf{U}_t) + V_{t+1}(ar{\mathbf{X}}_{t+1}) | ar{\mathbf{X}}_t = ar{\mathbf{x}}_t, \Gamma_t = oldsymbol{\gamma}_tig]$$

where $\gamma_t = (\gamma_t^1, \dots, \gamma_t^K), \gamma_t^k : \mathcal{X}^k \to \mathcal{U}^k$, and $\gamma_t = \psi_t(\bar{\mathbf{x}}_t)$. Then, optimal solution is $g_t^{*,k}(\bar{\mathbf{x}}, x) := \psi_t^{*,k}(\bar{\mathbf{x}})(x), \quad \forall \bar{\mathbf{x}}, \forall x \in \mathcal{X}^k, k \in \mathcal{K}.$

Agent i of sub-population k at time t:

- Upon observing mean-field $\bar{\mathbf{x}}_t$, it solves the above dynamic program and **computes** the optimal strategy in a decentralized manner i.e. $g_t^{*,k}(\bar{\mathbf{x}}_t,\cdot)$.
- Upon observing local state x_t^i , it chooses local control action

$$u_t^i = g_t^{*,k}(\overline{\mathbf{x}}_t, \mathbf{x}_t^i).$$

Main Results: Markov Chain

Salient feature of the model:

- Very few assumptions on the model.
- Allow for mean-field coupled dynamics.
- Allow for arbitrary coupled cost. (We do not assume cost to be weakly coupled.)
- Mean-field of the system can be computed and communicated easily.

Main Results: Markov Chain

Salient feature of the model:

- Very few assumptions on the model.
- Allow for mean-field coupled dynamics.
- Allow for arbitrary coupled cost. (We do not assume cost to be weakly coupled.)
- Mean-field of the system can be computed and communicated easily.

Salient feature of the results:

- Computing globally optimal solution.
- Solution approach works for arbitrary number of agents.
- Computational complexity of solution increases polynomially (rather than exponentially) w.r.t. the number of agents.
- The results extend to infinite horizon, noisy observation, Major Minor, infinite population, and randomized strategies.

Motivating Example 1: Markov Chain

- $X_t^i \in \mathcal{X} = \{OFF, ON\}, \quad \bar{X}_t = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_t^i = OFF)$
- ullet Dynamics: $\mathbb{P}(X_{t+1}^i|X_t^i,U_t^i)=:[P(u_t^i)]_{x_t^ix_{t+1}^i}$
- Actions: $U_t^i \in \mathcal{U} = \{FREE, OFF, ON\},$ Cost of action: $C(U_t^i)$
- Objective: $\min_{\mathbf{g}} \mathbb{E}^{\mathbf{g}} \left[\sum_{t=1}^{\infty} \beta^{t} \left(\frac{1}{n} \sum_{i=1}^{n} C(U_{t}^{i}) + D(\bar{X}_{t} \parallel \zeta_{t}) \right) \right].$

Motivating Example 1: Markov Chain

Uncontrolled case

Mean-field tracking case

Optimal case

Outline

Motivation and connection with mean field teams.

• Mean field teams — Markov Chain.

• Mean field teams — Linear Quadratic.

• Summary and Conclusion.

• Dynamics of agent $i \in \mathcal{N}^k$ with type $k \in \{1, \dots, K\}$:

$$x_{t+1}^{i} = A_{t}^{k} x_{t}^{i} + B_{t}^{k} u_{t}^{i} + D_{t}^{k} \bar{\mathbf{x}}_{t} + E_{t}^{k} \bar{\mathbf{u}}_{t} + w_{t}^{i},$$
(3)

• Dynamics of agent $i \in \mathcal{N}^k$ with type $k \in \{1, \dots, K\}$:

$$x_{t+1}^{i} = A_{t}^{k} x_{t}^{i} + B_{t}^{k} u_{t}^{i} + D_{t}^{k} \bar{\mathbf{x}}_{t} + E_{t}^{k} \bar{\mathbf{u}}_{t} + w_{t}^{i},$$
(3)

• Per-step cost: for t = 1, ..., T - 1,

$$c_{t}(\mathbf{x}_{t}, \mathbf{u}_{t}, \bar{\mathbf{x}}_{t}, \bar{\mathbf{u}}_{t}) = \bar{\mathbf{x}}_{t}^{\mathsf{T}} P_{t}^{\mathsf{x}} \bar{\mathbf{x}}_{t} + \bar{\mathbf{u}}_{t}^{\mathsf{T}} P_{t}^{u} \bar{\mathbf{u}}_{t} + \sum_{k \in \mathcal{K}} \left[\frac{1}{|\mathcal{N}^{k}|} \sum_{i \in \mathcal{N}^{k}} \left[x_{t}^{i\mathsf{T}} Q_{t}^{k} x_{t}^{i} + u_{t}^{i\mathsf{T}} R_{t}^{k} u_{t}^{i} \right] \right]$$
(4)

and t = T,

$$c_{T}(\mathbf{x}_{T}, \bar{\mathbf{x}}_{T}) = \bar{\mathbf{x}}_{T}^{\mathsf{T}} P_{T}^{\mathsf{x}} \bar{\mathbf{x}}_{T} + \sum_{k \in \mathcal{K}} \left[\frac{1}{|\mathcal{N}^{k}|} \sum_{i \in \mathcal{N}^{k}} x_{T}^{i \mathsf{T}} Q_{T}^{k} x_{T}^{i} \right], \tag{5}$$

• Dynamics of agent $i \in \mathcal{N}^k$ with type $k \in \{1, \dots, K\}$:

$$\mathbf{x}_{t+1}^{i} = A_{t}^{k} \mathbf{x}_{t}^{i} + B_{t}^{k} \mathbf{u}_{t}^{i} + D_{t}^{k} \bar{\mathbf{x}}_{t} + E_{t}^{k} \bar{\mathbf{u}}_{t} + \mathbf{w}_{t}^{i}, \tag{3}$$

• Per-step cost: for t = 1, ..., T - 1,

$$c_{t}(\mathbf{x}_{t}, \mathbf{u}_{t}, \bar{\mathbf{x}}_{t}, \bar{\mathbf{u}}_{t}) = \bar{\mathbf{x}}_{t}^{\mathsf{T}} P_{t}^{\mathsf{x}} \bar{\mathbf{x}}_{t} + \bar{\mathbf{u}}_{t}^{\mathsf{T}} P_{t}^{u} \bar{\mathbf{u}}_{t} + \sum_{k \in \mathcal{K}} \left[\frac{1}{|\mathcal{N}^{k}|} \sum_{i \in \mathcal{N}^{k}} \left[x_{t}^{i\mathsf{T}} Q_{t}^{k} x_{t}^{i} + u_{t}^{i\mathsf{T}} R_{t}^{k} u_{t}^{i} \right] \right]$$
(4)

and t = T,

$$c_{T}(\mathbf{x}_{T}, \bar{\mathbf{x}}_{T}) = \bar{\mathbf{x}}_{T}^{\mathsf{T}} P_{T}^{\mathsf{x}} \bar{\mathbf{x}}_{T} + \sum_{k \in \mathcal{K}} \left[\frac{1}{|\mathcal{N}^{k}|} \sum_{i \in \mathcal{N}^{k}} x_{T}^{i \mathsf{T}} Q_{T}^{k} x_{T}^{i} \right], \tag{5}$$

where P_t^x , P_t^u , Q_t^k , and R_t^k are matrices of appropriate dimension; above matrices are symmetric and satisfy the following condition:

$$Q_t^k \ge 0 \quad \forall k \in \mathcal{K}, \quad \operatorname{diag}\{Q_t^1, \dots, Q_t^K\} + P_t^{\mathsf{x}} \ge 0,$$

$$R_t^k > 0 \quad \forall k \in \mathcal{K}, \quad \operatorname{diag}\{R_t^1, \dots, R_t^K\} + P_t^{\mathsf{y}} > 0.$$

$$(6)$$

- Mean-field sharing Information structure: $u_t^i = g_t^i(\bar{\mathbf{x}}_{1:t}, \mathbf{x}_t^i)$, where g_t^i is called control law of agent i at time t.
- ullet Optimization problem: We are interested in finding a strategy ${f g}$ that minimizes

$$J(\mathbf{g}) = \mathbb{E}^{\mathbf{g}} \left[\sum_{t=1}^{I-1} c_t(\mathbf{x}_t, \mathbf{u}_t, \bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) + c_T(\mathbf{x}_T, \bar{\mathbf{x}}_T) \right], \tag{7}$$

where the expectation is with respect to the measure induced on all system variables by the choice of strategy ${\bf g}$.

Main Results: LQ

Theorem 2:

Let

$$\begin{split} \bar{A}_t &:= \mathsf{diag}\{A_t^1, \dots, A_t^K\} + \mathsf{vec}(D_t^1, \dots, D_t^K), \quad \bar{Q}_t := \mathsf{diag}\{Q_t^1, \dots, Q_t^K\} \\ \bar{B}_t &:= \mathsf{diag}\{B_t^1, \dots, B_t^K\} + \mathsf{vec}(E_t^1, \dots, E_t^K), \quad \bar{R}_t := \mathsf{diag}\{R_t^1, \dots, R_t^K\}. \end{split}$$

Under (A1) and (A2), we have the following results.

1 Structure of optimal strategy: The optimal strategy is unique and is linear in local state and the mean-field of the system. In particular,

$$u_t^i = \breve{L}_t^k (\mathbf{x}_t^i - \bar{\mathbf{x}}_t^k) + \bar{L}_t^k \bar{\mathbf{x}}_t \tag{8}$$

where the above gains are obtained by the solution of K+1 Riccati equations: one for computing each \check{L}_t^k , $k \in \mathcal{K}$, and one for $\bar{L}_t := \text{vec}(\bar{L}_t^1, \dots, \bar{L}_t^K)$.

Main Results: LQ

Theorem 2:

2 Riccati equations: For $t \in \{1, ..., T-1\}$,

$$\check{L}_{t}^{k} = -\left(B_{t}^{k\mathsf{T}}\check{M}_{t+1}^{k}B_{t}^{k} + R_{t}^{k}\right)^{-1}B_{t}^{k\mathsf{T}}\check{M}_{t+1}^{k}A_{t}^{k} \tag{9}$$

and

$$\bar{L}_{t} = -\left(\bar{B}_{t}^{\mathsf{T}}\bar{M}_{t+1}\bar{B}_{t} + \bar{R}_{t} + P_{t}^{u}\right)^{-1}\bar{B}_{t}^{\mathsf{T}}\bar{M}_{t+1}\bar{A}_{t},\tag{10}$$

where $\breve{M}^k_{1:T}$ and $\bar{M}_{1:T}$ are the solutions of following Riccati equations:

$$\begin{split} \breve{M}^k_{1:T} &= \mathsf{Riccati}(A^k_{1:T}, B^k_{1:T}, Q^k_{1:T}, R^k_{1:T}) \\ \bar{M}^k_{1:T} &= \mathsf{Riccati}(\bar{A}_{1:T}, \bar{B}_{1:T}, \bar{Q}_{1:T} + P^*_{1:T}, \bar{R}^k_{1:T} + P^u_{1:T}) \end{split}$$

Agent i of sub-population k:

- It computes $\breve{L}_{1:T}^k$ and $\bar{L}_{1:T}$ by solving above two Riccati equations.
- Upon observing local state \mathbf{x}_t^i and global mean-field $\bar{\mathbf{x}}_t$, it chooses local control action $u^i = \check{I}_t^k (\mathbf{x}_t^i \bar{\mathbf{x}}_t^k) + \bar{I}_t^k \bar{\mathbf{x}}_t$.

Salient feature of the results

- 1 We show that the obtained optimal control laws perform as well as the optimal centralized control laws.
- 2 The solution and the solution complexity depend on the number of types but not on the number of agents of each type.
- 3 Each agent can independently solve the appropriate Riccati equations and compute the optimal strategy in a decentralized manner.
- 4 The results extend to weighted mean field, infinite horizon, Infinite population, Tracking problem, major-minor, and Noisy observation.
- 5 When population is infinite, mean-field becomes deterministic and computable.

Tracking problem

Per-step cost

$$\begin{aligned} c_t(\mathbf{x}_t, \mathbf{u}_t, \bar{\mathbf{x}}_t, \bar{\mathbf{u}}_t) &= (\bar{\mathbf{x}}_t - \mathbf{s}_t)^\mathsf{T} P_t^\mathsf{x} (\bar{\mathbf{x}}_t - \mathbf{s}_t) + \bar{\mathbf{u}}_t^\mathsf{T} P_t^\mathsf{u} \bar{\mathbf{u}}_t \\ &+ \sum_{k \in \mathcal{K}} \left[\frac{1}{|\mathcal{N}^k|} \sum_{i \in \mathcal{N}^k} \left[(x_t^i - r_t^i)^\mathsf{T} Q_t^k (x_t^i - r_t^i) + u_t^{i\mathsf{T}} R_t^k u_t^i \right] \right]. \end{aligned}$$

Everything else remains the same as in the basic model.

Tracking problem

Theorem 2:

Under (A1) and (A2), we have

1 Structure of optimal strategy:

$$u_t^i = \check{L}_t^k (x_t^i - \bar{x}_t^k) + \bar{L}_t^k \bar{\mathbf{x}}_t + \check{\boldsymbol{F}}_t^k v_t^i + \bar{\boldsymbol{F}}_t^k \bar{\mathbf{v}}_t, \tag{11}$$

where gains $\{ \breve{L}_t^k, \bar{L}_t^k \}_{t=1}^{T-1}$ are the same as in Theorem 1.

2 Riccati equations: Let $\{\breve{M}_t^k\}_{t=1}^T$ and $\{\bar{M}_t\}_{t=1}^T$ be the solution of (K+1) Riccati equations defined in Theorem 1. For $t=1,\ldots,T-1$:

$$\vec{F}_{t}^{k} = \left(B_{t}^{k\mathsf{T}} \vec{M}_{t+1}^{k} B_{t}^{k} + R_{t}^{k} \right)^{-1} B_{t}^{k\mathsf{T}} \quad \text{and} \quad \bar{F}_{t} = \left(\bar{B}_{t}^{\mathsf{T}} \bar{M}_{t+1} \bar{B}_{t} + \bar{R}_{t} + P_{t}^{u} \right)^{-1} \bar{B}_{t}^{\mathsf{T}}, \quad (12)$$

where $\bar{F}_t =: \text{vec}(\bar{F}_t^1, \dots, \bar{F}_t^K)$. For t = T,

$$v_T^i = Q_T^k r_T^i, \quad \bar{v}_T = \bar{Q}_T \bar{\mathbf{r}}_T + P_T^{\mathsf{x}} \mathbf{s}_T \tag{13}$$

and for $t = T - 1, \dots, 1$,

$$v_t^i = (A_t^k - B_t^k \breve{L}_t^k)^\mathsf{T} v_{t+1}^i + Q_t^k r_t^i \quad \text{and} \quad \bar{v}_t = (\bar{A}_t - \bar{B}_t \bar{L}_t)^\mathsf{T} \bar{v}_{t+1} + \bar{Q}_t \bar{\mathbf{r}}_t + P_t^x \mathbf{s}_t. \tag{14}$$

Tracking problem

Agent i of sub-population k:

- It computes $\bar{L}_{1:T}$ and $\bar{F}_{1:T}$ by solving one Riccati equation of types. In addition, given the mean-field of local reference trajectories $\bar{\mathbf{r}}_{1:T}$ and mean-field reference trajectory $\mathbf{s}_{1:T}$, it computes the global correction trajectory $\bar{\mathbf{v}}_{1:T}$.
- It computes $reve{L}_{1:T}^k$ and $reve{F}_{1:T}^k$ by solving one Riccati equation of type k. In addition, given the local reference trajectories $r_{1:T}^i$, it computes the local correction trajectory $v_{1:T}^i$.
- ullet Upon observing local state $oldsymbol{x}_t^i$ and global mean-field $ar{f x}_t$, it chooses local control action

$$u_t^i = \breve{L}_t^k (x_t^i - \bar{x}_t^k) + \bar{L}_t^k \bar{x}_t + \breve{F}_t^k v_t^i + \bar{F}_t^k \bar{v}_t.$$

Motivating Example 2: Linear Quadratic

• Space heater i:

$$\mathbf{x}_{t+1}^i = \mathbf{a}(\mathbf{x}_t^i - \mathbf{x}_{nominal}) + \mathbf{b}(\mathbf{u}_t^i + \mathbf{u}_{nominal}) + \mathbf{w}_t^i$$

Objective:

$$\mathbb{E}\left[\frac{1}{N}\sum_{t=1}^{T}\frac{q_{t}(x_{t}^{i}-r_{t}^{i})^{2}+p_{t}(\bar{x}_{t}-s_{t})^{2}+m_{t}(x_{t}^{i}-x_{nominal})^{2}+r_{t}u_{t}^{i}^{2}\right]$$

Motivating Example 2: Linear Quadratic

mean field

 $\mathsf{local} + \ \mathsf{mean}\text{-}\mathsf{field} + \ \mathsf{moderate}\text{-}\mathsf{temperature}$

local+ mean-field 1

local+ mean-field 2

Summary & Conclusion

Mean Field Team

- Every exchangeable system may be presented as mean field teams.
- Each agent can independently compute optimal strategy in a decentralized manner.
- Mean-field can be computed and communicated easily (via consensus algorithms).

Summary & Conclusion

Mean Field Team

- Every exchangeable system may be presented as mean field teams.
- Each agent can independently compute optimal strategy in a decentralized manner.
- Mean-field can be computed and communicated easily (via consensus algorithms).

Markov Chain Mean Field Team

- We identified a dynamic program to find the globally optimal strategy.
- The size of the information state of the dynamic program increases polynomially with the number of agents rather than exponentially.
- The results extend to different cases.

Summary & Conclusion

Mean Field Team

- Every exchangeable system may be presented as mean field teams.
- Each agent can independently compute optimal strategy in a decentralized manner.
- Mean-field can be computed and communicated easily (via consensus algorithms).

Markov Chain Mean Field Team

- We identified a dynamic program to find the globally optimal strategy.
- The size of the information state of the dynamic program increases polynomially with the number of agents rather than exponentially.
- The results extend to different cases.

Linear Quadratic Mean Field Team

- ullet We showed that optimal strategy is unique, identical across sub-populations, and linear in local state and (global) mean-field. To compute the optimal gains, we obtained K+1 standard Ricatti equations.
- The computational complexity of our solution is independent of the number of agents in each type and polynomial in number of types.
- When population is infinite, mean-field becomes deterministic and computable.

Thank You

 J. Arabneydi and Aditya Mahajan, "Team Optimal Solution of Finite Number of Mean-Field Coupled LQG Subsystems", CDC 2015.

 J. Arabneydi and Aditya Mahajan, "Team Optimal Control of Coupled Major-Minor Subsystems with Mean-Field Sharing", ICC 2015.

 J. Arabneydi and Aditya Mahajan, "Team Optimal Control of Coupled Subsystems with Mean-Field Sharing", CDC 2014.