

#### **Appendix**

#### **SQL SCRIPTS**

#### 2.1 Import to Tableau and PostgreSQL

The cleaned data was imported into Tableau and left joined with the Ad data provided.

The marketing\_data and ad\_data were imported into 2 tables created in PostgreSQL by the following syntax:

```
CREATE TABLE marketing_data(
                                                                     CREATE TABLE ad_data(
   "ID" INT PRIMARY KEY,
                                                                        "ID" INT PRIMARY KEY,
    "Year_Birth" INT,
                                                                        "Bulkmail_ad" BOOL,
   "Age" INT,
                                                                        "Twitter_ad" BOOL,
   "Education" VARCHAR(50),
                                                                        "Instagram_ad" BOOL,
                                                                        "Facebook_ad" BOOL,
   "Marital_Status" VARCHAR(50)
                                                                        "Brochure_ad BOOL"
   "Income" INT,
                                                                     );
    "Kidhome" INT,
    "Teenhome" INT,
    "Dt_Customer" DATE,
   "Recency" INT,
   "AmtLiq" INT,
    "AmtVege" INT,
    "AmtNonVeg" INT,
    "AmtPes" INT,
    "AmtChocolates" INT,
    "AmtComm" INT,
    "Total_Sales" INT,
    "NumDeals" INT,
    "NumWebBuy" INT,
    "NumWalkinPur" INT,
    "NumVisits" INT,
   "Response" BOOL,
    "Complain" BOOL,
    "Country" VARCHAR(50),
    "Count_success" INT
);
```

#### 2.2 Children / No Children

• Aggregated into those with and without children.

```
CREATE TABLE kid_data AS

SELECT "ID",

'No children' child_type

FROM public.marketing_data

WHERE "Kidhome" = '0'

AND "Teenhome" = '0'

UNION ALL

SELECT "ID",

'Children' child_type

FROM public.marketing_data

WHERE "Kidhome" != '0'

OR "Teenhome" != '0'
```



2.4

 Aggregated into Products: PostgreSQL to create new table enabling each product line to be incorporated into records.

```
CREATE TABLE product_analysis AS
SELECT *
   FROM (
   SELECT "ID",
       'Alcohol' product_type,
       "AmtLiq" amount
   FROM public.marketing_data
UNION ALL
       SELECT "ID",
       'Vegetables' product_type,
       "AmtVege" amount
   FROM public.marketing_data
UNION ALL
       SELECT "ID",
       'Meat' product_type,
       "AmtNonVeg" amount
   FROM public.marketing_data
UNION ALL
       SELECT "ID",
       'Fish' product_type,
       "AmtPes" amount
   FROM public.marketing_data
UNION ALL
       SELECT "ID",
       'Chocolate' product_type,
       "AmtChocolates" amount
   FROM public.marketing_data
UNION ALL
       SELECT "ID",
       'Commodities' product_type,
       "AmtComm" amount
   FROM public.marketing_data
);
```

• The new table was joined with relevant columns from marketing data in SQL.



# **Excel Exploratory Analysis.**

#### **SUPPLEMENTS**

### **MODULE 2**

## **Age Distribution**



| Mean   | 53.17 |
|--------|-------|
| Median | 52    |

The age bracket with the highest number of customers is 50-53.





### **Descriptive Statistics:**

| Mean               | \$51,891      |
|--------------------|---------------|
| Standard Error     | \$480         |
| Median             | \$51,684      |
| Mode               | \$7,500       |
| Standard Deviation | \$20,611      |
| Sample Variance    | \$424,817,626 |
| Kurtosis           | -0.824427683  |
| Skewness           | 0.00801373    |
| Range              | \$109,306     |
| Minimum            | \$4,428       |
| Maximum            | \$113,734     |
| Sum                | \$95,687,580  |
| Count              | 1844          |





#### **Average Age and Marital Status**

Predictably, the highest average age customers had the marital status "Widow" (64.2) and "Divorced" (56.0). The lowest average age was in the marital status "Single" (50.8). Pivot tables and Pivot Charts were used for advanced aggregations.



Married and together form the majority of 2Market's Customers.



#### i. Income Bracket \$90k to \$100k

The average age of customers with a yearly income of between \$90,000 and \$100,000 was 50.5.

To find the average age of a single salary bracket, one might use a simple filter. To find multiple, the grouping function within a pivot table was utilised.



| Salary Bracket | Average of Age |
|----------------|----------------|
| 0-9999         | 45.6           |
| 10000-19999    | 44.8           |
| 20000-29999    | 47.7           |
| 30000-39999    | 50.6           |
| 40000-49999    | 54.1           |
| 50000-59999    | 56.7           |
| 60000-69999    | 56.3           |
| 70000-79999    | 55.2           |
| 80000-89999    | 54.2           |
| 90000-99999    | 50.5           |
| 100000-109999  | 46.0           |
| 110000-119999  | 77.0           |
| Grand Total    | 53.2           |



Age is evenly distributed within the income bracket \$90,000 and \$100,000. There is no correlation between income and age within this bracket.





## ii. Income and Age Correlation

Customer age and average income are positively correlated. There is a notable outlier in the 25–29 year-old bracket.





#### **MODULE 4**

#### **Table Creation**

Two new tables were created in PgAdmin corresponding to the cleaned Marketing and Ad data files. The following syntax was used:

```
CREATE TABLE marketing_data(
                                                 CREATE TABLE ad_data(
   "ID" INT PRIMARY KEY,
                                                       "ID" INT PRIMARY KEY,
                                                       "Bulkmail_ad" BOOL,
   "Year_Birth" INT,
                                                       "Twitter_ad" BOOL,
   "Age" INT,
                                                      "Instagram_ad" BOOL,
   "Education" VARCHAR(50),
                                                      "Facebook_ad" BOOL,
    "Marital_Status" VARCHAR(50)
                                                       "Brochure_ad BOOL"
    "Income" INT,
                                                  );
    "Kidhome" INT,
   "Teenhome" INT,
   "Dt_Customer" DATE,
    "Recency" INT,
    "AmtLiq" INT,
    "AmtVege" INT,
    "AmtNonVeg" INT,
   "AmtPes" INT,
    "AmtChocolates" INT,
    "AmtComm" INT,
    "Total_Sales" INT,
    "NumDeals" INT,
    "NumWebBuy" INT,
    "NumWalkinPur" INT,
    "NumVisits" INT,
    "Response" BOOL,
   "Complain" BOOL,
   "Country" VARCHAR(50),
   "Count_success" INT
);
```

### **Total Spend Per Country**

The total spend per country was ascertained using the sum function and the output labelled as "Total\_Spend". The data was grouped by Country and ordered in descending order by "Total\_Spend".

The following syntax was used:

```
SELECT "Country", SUM("Total_Sales") AS "Total_Spend"
FROM public.marketing_data
GROUP BY "Country"
ORDER BY "Total_Spend" DESC;
```

The following output was produced:



|   | Country character varying (50) | Total_Spend bigint |
|---|--------------------------------|--------------------|
| 1 | Spain                          | 568644             |
| 2 | South Africa                   | 169986             |
| 3 | Canada                         | 142927             |
| 4 | Australia                      | 65009              |
| 5 | India                          | 61956              |
| 6 | Germany                        | 58113              |
| 7 | USA                            | 53597              |
| 8 | Montenegro                     | 1258               |

Spain is 2Market's largest market in terms of total spend, by a considerable margin.

### **Total Spend per Product per Country**

The total spend per product per country was ascertained using the sum function and the output labelled in a more obvious manner. The data was grouped by country and ordered by total spend. The following syntax was used:

```
SELECT "Country",

SUM("AmtLiq") AS "Alcohol",

SUM("AmtVege") AS "Vegetables",

SUM("AmtNonVeg") AS "Meat",

SUM("AmtPes") AS "Fish",

SUM("AmtChocolates") AS "Chocolates",

SUM("AmtComm") AS "Commodities",

SUM("Total_Sales") AS "Total_spend"

FROM public.marketing_data

GROUP BY "Country"

ORDER BY "Total_spend" DESC;
```

### The following output was produced:

|   | Country character varying (50) | Alcohol bigint | Vegetables bigint | Meat bigint | Fish bigint | Chocolates bigint | Commodities bigint | Total_spend bigint |
|---|--------------------------------|----------------|-------------------|-------------|-------------|-------------------|--------------------|--------------------|
| 1 | Spain                          | 289622         | 24374             | 154514      | 34481       | 26353             | 39300              | 568644             |
| 2 | South Africa                   | 85997          | 7251              | 45923       | 11092       | 7378              | 12345              | 169986             |
| 3 | Canada                         | 72205          | 6566              | 39267       | 8302        | 6571              | 10016              | 142927             |
| 4 | Australia                      | 31749          | 2859              | 17238       | 4353        | 3255              | 5555               | 65009              |
| 5 | India                          | 30152          | 2982              | 17927       | 3712        | 2670              | 4513               | 61956              |
| 6 | Germany                        | 29746          | 2485              | 16002       | 3694        | 2095              | 4091               | 58113              |
| 7 | USA                            | 25927          | 2697              | 14678       | 3707        | 2516              | 4072               | 53597              |
| 8 | Montenegro                     | 420            | 0                 | 452         | 182         | 64                | 140                | 1258               |

Except for Montenegro (with only 1 customer in the dataset), total spend on alcohol exceeded all other products in all countries.



Meat was the most popular product in all countries (the USA equal with alcohol and commodities and Montenegro only having 1 record).

### **Most Popular Product based on Marital Status**

The most popular products (those bought most often) in each Marital Status were ascertained. The data was filtered for 0 values, relabeled, grouped and ordered by the total count. The following syntax was used:

```
SELECT "Marital_Status",
    COUNT("AmtLiq") FILTER (WHERE "AmtLiq" != 0) AS "Alcohol",
    COUNT("AmtVege") FILTER (WHERE "AmtVege" != 0) AS "Vegetables",
    COUNT("AmtNonVeg") FILTER (WHERE "AmtNonVeg" != 0)AS "Meat",
    COUNT("AmtPes") FILTER (WHERE "AmtPes" != 0)AS "Fish",
    COUNT("AmtChocolates") FILTER (WHERE "AmtChocolates" != 0) AS "Chocolates",
    COUNT("AmtComm") FILTER (WHERE "AmtComm" != 0)AS "Commodities",
    COUNT("Total_Sales") FILTER (WHERE "Total_Sales" != 0) AS "Total_count"
FROM public.marketing_data
GROUP BY "Marital_Status"
ORDER BY "Total_count" DESC;
```

#### The following output was produced:

| Marital_Status character varying (50) | Alcohol bigint | Vegetables bigint | Meat bigint | Fish bigint | Chocolates bigint | Commodities bigint | Total_count bigint |
|---------------------------------------|----------------|-------------------|-------------|-------------|-------------------|--------------------|--------------------|
| Married                               | 716            | 589               | 721         | 592         | 585               | 702                | 721                |
| Together                              | 452            | 361               | 453         | 373         | 365               | 435                | 453                |
| Single                                | 405            | 349               | 408         | 334         | 340               | 397                | 408                |
| Divorced                              | 194            | 167               | 196         | 163         | 162               | 192                | 197                |
| Widow                                 | 65             | 54                | 65          | 54          | 50                | 64                 | 65                 |

Meat is the most popular product in all marital statuses except "Widow" where it was joint top with alcohol.

#### Most Popular Products based on Kids / Teens at Home

Four alternatives were considered.

- 1. Both kids and teens at home Alcohol and Meat were the joint most popular product.
- 2. Teens at home but no kids Meat was the most popular product.
- 3. Kids at home but no teens Alcohol and Meat were the joint most popular product.
- 4. No children at home Meat was the most popular product.

The following syntax was used:



```
SELECT *
FROM (SELECT COUNT("AmtLiq") FILTER (WHERE "AmtLiq" != 0) AS "Alcohol",
    COUNT("AmtVege") FILTER (WHERE "AmtVege" != 0) AS "Vegetables",
    COUNT("AmtNonVeg") FILTER (WHERE "AmtNonVeg" != 0) AS "Meat",
    COUNT("AmtPes") FILTER (WHERE "AmtPes" != 0)AS "Fish",
    COUNT("AmtChocolates") FILTER (WHERE "AmtChocolates" != 0) AS "Chocolat
    COUNT("AmtComm") FILTER (WHERE "AmtComm" != 0)AS "Commodities"
FROM public.marketing_data
WHERE "Kidhome" != 0 AND "Teenhome" != 0)
UNION
SELECT *
FROM (SELECT COUNT("AmtLiq") FILTER (WHERE "AmtLiq" != 0) AS "Alcohol",
   COUNT("AmtVege") FILTER (WHERE "AmtVege" != 0) AS "Vegetables",
    COUNT("AmtNonVeg") FILTER (WHERE "AmtNonVeg" != 0)AS "Meat",
    COUNT("AmtPes") FILTER (WHERE "AmtPes" != 0)AS "Fish",
    COUNT("AmtChocolates") FILTER (WHERE "AmtChocolates" != 0) AS "Chocolat
    COUNT("AmtComm") FILTER (WHERE "AmtComm" != 0)AS "Commodities"
FROM public.marketing_data
WHERE "Kidhome" = 0 AND "Teenhome" != 0)
UNION
SELECT *
FROM (SELECT COUNT("AmtLiq") FILTER (WHERE "AmtLiq" != 0) AS "Alcohol",
   COUNT("AmtVege") FILTER (WHERE "AmtVege" != 0) AS "Vegetables",
    COUNT("AmtNonVeg") FILTER (WHERE "AmtNonVeg" != 0)AS "Meat",
    COUNT("AmtPes") FILTER (WHERE "AmtPes" != 0)AS "Fish",
    COUNT("AmtChocolates") FILTER (WHERE "AmtChocolates" != 0) AS "Chocolat
    COUNT("AmtComm") FILTER (WHERE "AmtComm" != 0)AS "Commodities"
FROM public.marketing_data
WHERE "Kidhome" != 0 AND "Teenhome" = 0)
UNION
SELECT *
FROM (SELECT COUNT("AmtLiq") FILTER (WHERE "AmtLiq" != 0) AS "Alcohol",
    COUNT("AmtVege") FILTER (WHERE "AmtVege" != 0) AS "Vegetables",
    COUNT("AmtNonVeg") FILTER (WHERE "AmtNonVeg" != 0)AS "Meat",
    COUNT("AmtPes") FILTER (WHERE "AmtPes" != 0)AS "Fish",
    COUNT("AmtChocolates") FILTER (WHERE "AmtChocolates" != 0) AS "Chocolat
    COUNT("AmtComm") FILTER (WHERE "AmtComm" != 0)AS "Commodities"
FROM public.marketing_data
WHERE "Kidhome" = 0 AND "Teenhome" = 0);
```

#### The following output was produced:

|   | Alcohol bigint | Vegetables bigint | Meat bigint | Fish bigint | Chocolates bigint | Commodities bigint |
|---|----------------|-------------------|-------------|-------------|-------------------|--------------------|
| 1 | 344            | 231               | 344         | 231         | 226               | 331                |
| 2 | 430            | 358               | 435         | 357         | 359               | 422                |
| 3 | 552            | 448               | 552         | 440         | 437               | 542                |
| 4 | 506            | 483               | 512         | 488         | 480               | 495                |



#### Module 5

### Most Effective Method of Advertising by Social Media Lead Conversions

The marketing data file and ad data file were left joined. This enabled retention of all the data from the marketing file whilst adding matching records from the ad data.

#### Country

The following syntax was used to ascertain the total number of lead conversions by social media platform in each country:

```
SELECT m."Country",
    COUNT("Twitter_ad") FILTER (WHERE "Twitter_ad" = true) AS "Twitter",
    COUNT("Instagram_ad") FILTER (WHERE "Instagram_ad" = true) AS "Instagram",
    COUNT("Facebook_ad") FILTER (WHERE "Facebook_ad" = true) AS "Facebook"
FROM public.marketing_data m
LEFT JOIN public.ad_data a
USING ("ID")
GROUP BY "Country"
ORDER BY "Country" ASC;
```

The following output was produced:

|   | Country character varying (50) | Twitter bigint | Instagram bigint | Facebook bigint |
|---|--------------------------------|----------------|------------------|-----------------|
| 1 | Australia                      | 4              | 7                | 5               |
| 2 | Canada                         | 23             | 19               | 14              |
| 3 | Germany                        | 9              | 5                | 7               |
| 4 | India                          | 9              | 5                | 4               |
| 5 | Montenegro                     | 0              | 0                | 0               |
| 6 | South Africa                   | 16             | 16               | 16              |
| 7 | Spain                          | 77             | 76               | 71              |
| 8 | USA                            | 4              | 3                | 6               |

Twitter was most effective in Canada, Germany, India and Spain. Facebook was most effective in the USA. Instagram was most effective in Australia. South Africans responded equally to all channels and Montenegro's sole customer did not provide a lead conversion.

#### **Marital Status**

The following syntax was used to ascertain the total number of lead conversions by social media platform in each Marital Status category:



```
SELECT m."Marital_Status",
    COUNT("Twitter_ad") FILTER (WHERE "Twitter_ad" = true) AS "Twitter",
    COUNT("Instagram_ad") FILTER (WHERE "Instagram_ad" = true) AS "Instagram",
    COUNT("Facebook_ad") FILTER (WHERE "Facebook_ad" = true) AS "Facebook"
FROM public.marketing_data m
LEFT JOIN public.ad_data a
USING ("ID")
GROUP BY "Marital_Status"
ORDER BY "Marital_Status" ASC;
```

### The following output was produced:

|   | Marital_Status character varying (50) | Twitter bigint | Instagram bigint | Facebook bigint |
|---|---------------------------------------|----------------|------------------|-----------------|
| 1 | Divorced                              | 16             | 12               | 11              |
| 2 | Married                               | 55             | 53               | 55              |
| 3 | Single                                | 27             | 25               | 28              |
| 4 | Together                              | 34             | 34               | 24              |
| 5 | Widow                                 | 10             | 7                | 5               |

Twitter was most effective in divorced and widowed customers. Married customers responded equally to Twitter and Facebook campaigns. Together customers responded equally to Twitter and Instagram campaigns. Facebook marginally beat Twitter in the single customer category.

## The Effectiveness of Social Media Advertising with amount spent per Product per Country

Initially, the amount spent per product type per country was ascertained and then compared to the lead conversions of the various ad campaigns. The following syntax was used:

```
SELECT m. "Country" AS country,
   SUM("AmtLiq") AS alcohol,
    SUM("AmtVege") AS veg,
    SUM("AmtNonVeg") AS meat,
    SUM("AmtPes") AS fish,
    SUM("AmtChocolates") AS chocolates,
    SUM("AmtComm") AS commodities,
    SUM("Total_Sales") AS total,
    COUNT("Twitter_ad") FILTER (WHERE "Twitter_ad" = true) AS "Twitter",
    COUNT("Instagram_ad") FILTER (WHERE "Instagram_ad" = true) AS "Instagram",
   COUNT("Facebook_ad") FILTER (WHERE "Facebook_ad" = true) AS "Facebook"
FROM public.marketing_data m
LEFT JOIN public.ad_data a
USING ("ID")
GROUP BY country
ORDER BY total DESC;
```

The following output was produced:



|   | country character varying (50) | alcohol bigint | veg<br>bigint | meat bigint | fish<br>bigint | chocolates bigint | commodities bigint | total bigint | Twitter bigint | Instagram bigint | Facebook bigint |
|---|--------------------------------|----------------|---------------|-------------|----------------|-------------------|--------------------|--------------|----------------|------------------|-----------------|
| 1 | Spain                          | 289622         | 24374         | 154514      | 34481          | 26353             | 39300              | 568644       | 77             | 76               | 71              |
| 2 | South Africa                   | 85997          | 7251          | 45923       | 11092          | 7378              | 12345              | 169986       | 16             | 16               | 16              |
| 3 | Canada                         | 72205          | 6566          | 39267       | 8302           | 6571              | 10016              | 142927       | 23             | 19               | 14              |
| 4 | Australia                      | 31749          | 2859          | 17238       | 4353           | 3255              | 5555               | 65009        | 4              | 7                | 5               |
| 5 | India                          | 30152          | 2982          | 17927       | 3712           | 2670              | 4513               | 61956        | 9              | 5                | 4               |
| 6 | Germany                        | 29746          | 2485          | 16002       | 3694           | 2095              | 4091               | 58113        | 9              | 5                | 7               |
| 7 | USA                            | 25927          | 2697          | 14678       | 3707           | 2516              | 4072               | 53597        | 4              | 3                | 6               |
| 8 | Montenegro                     | 420            | 0             | 452         | 182            | 64                | 140                | 1258         | 0              | 0                | 0               |

It appears that lead conversion is positively correlated with amounts spent. However, this correlation might also be associated with larger customer numbers. I intend to further investigate this by charting the correlation and assessing the R squared values.