

COEP TECHNOLOGICAL UNIVERSITY (COEP Tech)

A Unitary Technological University of Government of Maharashtra

(Formerly College of Engineering Pune (COEP))

MID Semester Examination

Programme: B. Tech. Semester: V

Course Code: CT-21007 Course Name: Computer Organization

Branch: Computer Science & Engineering Academic Year: 2024-25

Duration: 1.5 Hrs. Max Marks: 30

Date: 25/09/2024 MIS No.

Instructions:

- 1. Figures to the right indicate the full marks.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper is not allowed.
- 4. Exchange/Sharing of stationery, calculator etc. not allowed.

5. Write your MIS Number on Question Paper. Assume suitable data wherever required.

						Marks	CO	PO
Q 1					computer A, which has a 3 GHz clock. We			
		are trying to help a computer designer build a computer, B, which will run this program in						
		6 seconds. The designer has determined that a substantial increase in the clock rate is possible, but this increase will affect the rest of the CPU design, causing computer B to						
		require 1.2 times as many clock cycles as computer A for this program. What clock rate						
		_						
		should we tell the designer to target? Clock Rate _B = $\frac{\text{Clock Cycles}_{B}}{\text{CPU Time}_{B}} = \frac{1.2 \times \text{Clock Cycles}_{A}}{6\text{s}}$						
		Clock						
			= 10s ×	$2GHz = 20 \times 10^{9}$	9			
		Clock Rate _B = $\frac{1.2 \times 20 \times 10^9}{6s} = \frac{24 \times 10^9}{6s} = 4GHz$				3		
		Consider two different implementations of the same instruction set architecture. The instructions can be divided into four classes according to their CPI (classes A, B, C, and						
		1 1			s of 1, 2, 3, and 3, and P2 with a clock rate of			1
			program with a dynamic instruction count of			1, 2,		
		1.0E6 instructions divided into classes as follows: 10% class A, 20% class B, 50% class						3, 4,
		C, and 2	0% class D, which			9, 12		
		Class	P1 @ 2.5 GHz	P2 @ 3.0 GHz	% of instruction			
		A	1	2	10			
		В	2	2	20			
		С	3	2	50	3		
		D	3	2	20	5		
		Class A: 10^5 instr. Class B: 2×10^5 instr. Class C: 5×10^5 instr. Class D: 2×10^5 instr.						
		Time = No. instr. \times CPI/clock rate						
		Total time P1 = $(10^5 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 3 + 2 \times 10^5 \times 3)/(2.5 \times 10^9) = 10.4 \times 10^{-4} \text{ s}$ Total time P2 = $(10^5 \times 2 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 2 + 2 \times 10^5 \times 2)/(3 \times 10^9) = 6.66 \times 10^{-4} \text{ s}$						
		$CPI(P1) = 10.4 \times 10^{-4} \times 2.5 \times 10^{9} / 10^{6} = 2.6$						
		CPI(P2)	$CPI(P2) = 6.66 \times 10^{-4} \times 3 \times 10^{9} / 10^{6} = 2.0$					

Q2	Differentiate between hardwired and micro-prog	rammed ways of control unit design.			
	Hardwired Control Unit	Microprogrammed Control Unit			
	Hardwired control unit generates the control signals needed for the processor using logic circuits	Microprogrammed control unit generates the control signals with the help of micro instructions stored in control memory			
	Hardwired control unit is faster when compared to microprogrammed control unit as the required control signals are generated with the help of hardwares	This is slower than the other as micro instructions are used for generating signals here			
	Difficult to modify as the control signals that need to be generated are hard wired	Easy to modify as the modification need to be done only at the instruction level			
	More costlier as everything has to be realized in terms of logic gates	Less costlier than hardwired control as only micro instructions are used for generating control signals			
	It cannot handle complex instructions as the circuit design for it becomes complex	It can handle complex instructions			
	Only limited number of instructions are used due to the hardware implementation	Control signals for many instructions can be generated			
	Used in computer that makes use of Reduced Instruction Set Computers(RISC)	Used in computer that makes use of Complex Instruction Set Computers(CISC)			
В	Discuss the different components required for da program counter (PC), instruction and data m	-	3	1, 2	1, 2, 3, 4,
	adders.		3	,	9, 12
	Stage 2 Address A Register file Address B RA RB Immediate value O MuxB O MuxB RZ RM RET RET RET RM RET RET RET				
$\left \mathbf{Q} 3 \right P$	Explain the step of actions that are required/ tall Branch types of instructions.	ken to fetch and execute Load, Store and	3	1, 2	1, 2, 3, 4,
			3		9, 12
	Step Action	Manager Park			
	 Memory address ← [PC], Read memory, IR Decode instruction, RA ← [R7] 	← Memory data, PC ← [PC] + 4			
	3 RZ \leftarrow [RA] + Immediate value X				
	4 Memory address ← [RZ], Read memory, RY	← Memory data			
	5 R5 ← [RY]				

			1
	Step Action		
	1 Memory address ← [PC], Read memory, IR ← Memory data, PC ← [PC] + 4		
	2 Decode instruction, $RA \leftarrow [R8]$, $RB \leftarrow [R6]$		
	3 RZ \leftarrow [RA] + Immediate value X, RM \leftarrow [RB]		
	4 Memory address ← [RZ], Memory data ← [RM], Write memory		
	5 No action		
	Step Action		
	1 Memory address ← [PC], Read memory, IR ← Memory data, PC ← [PC] + 4		
	2 Decode instruction		
	3 PC \leftarrow [PC] + Branch offset		
	4 No action		
	5 No action		
	Step Action		
	 Memory address ← [PC], Read memory, IR ← Memory data, PC ← [PC] + 4 Decode instruction, RA ← [R5], RB ← [R6] 		
	 Compare [RA] to [RB], If [RA] = [RB], then PC ← [PC] + Branch offset 		
	4 No action		
	5 No action		
D	raw and discuss the flowchart of instruction cycle.		
В	↓		
	11 (interrupt) TCC? 00 (fetch)		
	10 (execute) 01 indirect		
	Setup interrupt Opcode Read address Fetch instruction		
	Execute instruction ICC = 10 No Indirect Yes addressing?		
	Yes Interrupt No for enabled interrupt?		
	ICC = 11 ICC = 00		
	+ + + + +		
	hat is the role of control signal? How a microinstruction is represented with differ	rent 3	1, 2
W	ays?	3	3, 4 9, 1
		twol	
	Jump condition —Unconditional 3 purposes where con —Zero	1101	
	-overflow signals act.		
	—Indirect bit —System bus control signals		
	System bus control signals Internal CPU control signals		
	System bus control signals		
	System bus control signals Internal CPU control signals		
	System bus control signals Internal CPU control signals		
	System bus control signals Internal CPU control signals (a) Horizontal microinstruction Microinstruction address Jump condition		
	System bus control signals Internal CPU control signals (a) Horizontal microinstruction Microinstruction address		
	System bus control signals Internal CPU control signals (a) Horizontal microinstruction Microinstruction address Jump condition		
	System bus control signals Internal CPU control signals (a) Horizontal microinstruction Microinstruction address Jump condition Function codes		

