A versatile distributed MCMC algorithm for large scale inverse problems

P.-A. THOUVENIN*, A. REPETTI^{†‡}, P. CHAINAIS*

*University of Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, France

†Department of Actuarial Mathematics & Stats., Heriot-Watt University, U. K.

‡ Institute of Sensors, Signals and Systems, Heriot-Watt University, U. K.

EUSIPCO 2022, Aug. 29 - Sep. 2, Belgrade

AUGUST 30, 2022

Work supported by the ANR-20-CHIA-0031-01 and ANR-16-IDEX-0004 projects.

Introduction •0000

Observation model

$$y = \mathcal{D}(Ax)$$
,

 $\boldsymbol{u} \in \mathbb{R}^{M}$ observations

 $x \in \mathbb{R}^N$ unknown parameters (image, ...)

 $\mathbf{A} \in \mathbb{R}^{M \times N}$ measurement operator

 $\mathcal{D} \cdot \mathbb{R}^M \to \mathbb{R}^M$ noise

Objective: find estimate of x from y

$$\pi(x \mid y) \propto \exp(-f_y(Ax) - g(Bx)),$$

$$f_y \colon \mathbb{R}^M \to]-\infty, +\infty]$$
 data-fidelity $g \colon \mathbb{R}^P \to]-\infty, +\infty], B \in \mathbb{R}^{P \times N}$ prior

Challenges

Introduction 00000

Typical applications (imaging, ...)

- large number of parameters (N large, from 10³ to 10⁸)
- large datasets (*M* large, $M \approx N$)

Scaling with the dimensions of the problem

- distribute parameters and observations
- decompose inference over multiple workers
- limit communication bottlenecks
 - Exploit the structure of the problem
 - Algorithm amenable to parallel implementation?

Distributed state-of-the-art approaches

Optimization literature

- Splitting methods: large class of parallelizable algorithms: ADMM (Boyd et al. 2011), primal-dual (Chambolle et al. 2011), ...
- MAP estimator only
- Distributed implementation (client-server, SPMD)

MCMC methods

Introduction 00000

- Asymptotically exact data augmentation (AXDA) approach (Vono et al. 2021; Rendell et al. 2021)
 - Divide to conquer strategy (splitting) via data augmentation
- ✓ Estimator (MMSE, MAP, ...) + credibility interval
- Distributed implementation (limited to client-server so far)

Client-server vs SPMD distributed architecture

Client-server

00000

- each client executes a specific task assigned by the server
- information from clients aggregated periodically on the server
- communications bottleneck (copies across workers, ...)
- load balancing issues (if drastically different tasks)

Client-server communications

Client-server vs SPMD distributed architecture

Single Program Multiple Data (SPMD) (Darema 2001)

- all workers execute the same task
- √ communications between a worker and its neighbours
- each worker responsible for a chunk of y and x (data locality)

SPMD: exchanging borders

SPMD: aggregating borders

Problem structure

Idea: many problems involve localized operators A and Be.g., inpainting mask, convolution, Laplacian, gradient, ...

Proposed approach 0000000

Block-sparse model

Assumption: A and B are block-sparse (localized structure)

- ► Overlap between contiguous blocks ≪ [N/K]
- $ightharpoonup (A_k)_{1 \le k \le K}$ (dashed orange), $x = (x_k)_{1 \le k < K}, x_k \in \mathbb{R}^{N_k}$

Model (I)

Assumption: \mathcal{D} block-separable: $\mathcal{D}(z) = \left(\mathcal{D}_k(z_k)\right)_{1 \leq k \leq K}$ e.g., additive white Gaussian noise, Poisson noise, ...

$$y = \mathcal{D}(Ax) = (y_k)_{1 \le k \le K}$$
, where $(\forall k) \ y_k = \mathcal{D}_k(A_k C_k x)$

 $C_k \in \mathbb{R}^{\widetilde{N}_k \times N}$ selection operator, with $N \leq \sum_k \widetilde{N}_k$ (allows overlap in pixel selection)

 $A_k \in \mathbb{R}^{M_k imes \widetilde{N}_k}$ local operator

Additively separable data-fidelity term

$$f_{y}(Ax) = \sum_{k=1}^{K} f_{y_k}(A_k C_k x), \quad f_{y_k} \colon \mathbb{R}^{M_k} \to]-\infty, +\infty]$$

Model (II)

► Additively separable data-fidelity term

$$f_{y}(Ax) = \sum_{k=1}^{K} f_{y_k}(A_k C_k x), \quad f_{y_k} \colon \mathbb{R}^{M_k} \to]-\infty, +\infty]$$

• g additively separable (e.g., ℓ_1 -norm (Laplace prior), $\ell_{1,2}$ -norm)

$$g(\boldsymbol{B}\boldsymbol{x}) = \sum_{k=1}^{K} g_k(\boldsymbol{B}_k \boldsymbol{D}_k \boldsymbol{x}) \quad g_k \colon \mathbb{R}^{P_k} \to]-\infty, +\infty]$$

 $D_k \in \mathbb{R}^{\overline{N}_k \times N}$ selection operator, $B_k \in \mathbb{R}^{P_k \times \overline{N}_k}$

✓ Problem amenable to SPMD architecture

Algorithm structure compatible with model structure?

Proposed approach

Model of interest

- Block sparse structure for matrices
- Additively separable functions

Towards a SPMD sampler

- Leverage AXDA (Vono et al. 2019b)
 - splitting via approximate data augmentation
- Gibbs sampler
- 3 Langevin kernels to handle non-trivial conditional distributions (e.g., PSGLA (Salim et al. 2020), MYULA (Durmus et al. 2018))
- Parallel implementation (SPMD)

Illustration on image inpainting

Observation model: additive white Gaussian noise

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x} + oldsymbol{w}$$
 , with $oldsymbol{w} \sim \mathcal{N} ig(oldsymbol{0}_{ extsf{M}}, \sigma^2 oldsymbol{I}_{ extsf{M} imes extsf{M}} ig)$

► Data fidelity term

$$f_{y_k}(A_kC_kx) = \frac{1}{2\sigma^2}||A_kx_k - y_k||_2^2$$
, A_k : local inpainting mask

► Total variation (TV) prior: *B* discrete gradient (Chambolle 2004),

$$g_k(B_kD_kx) = \tau ||B_kD_kx||_{1,2}, \ \tau > 0.$$

Application of AXDA

- Approximate posterior distribution $\widetilde{\pi}_{\alpha}$
 - $ightharpoonup \widetilde{\pi}_{\alpha} \to \pi \text{ when } \alpha \to 0$
 - ▶ splitting variable z, with $p(z \mid \alpha) \propto \exp(-\phi_{\alpha}(z))$, ϕ_{α} separable
- ► (Optional) additional exact augmentation, variable *u*
 - ▶ improves mixing of the chain (Vono et al. 2019a)

$$\widetilde{\pi}_{\alpha}(x, \boldsymbol{z}, \boldsymbol{u} \mid \boldsymbol{y}, \beta) \propto \exp\left(-\sum_{k=1}^{N} h_{k}(x, \boldsymbol{z}_{k}, \boldsymbol{u}_{k}; \alpha, \beta),\right)$$

$$h_{k}(x, \boldsymbol{z}_{k}, \boldsymbol{u}_{k}; \alpha, \beta) = f_{\boldsymbol{y}_{k}}(\boldsymbol{A}_{k}\boldsymbol{x}_{k}) + \tau \|\boldsymbol{z}_{k}\|_{2,1} + \frac{1}{2\beta} \|\boldsymbol{u}_{k}\|_{2}^{2}$$

$$+ \underbrace{\frac{1}{2\alpha} \|\boldsymbol{B}_{k}\boldsymbol{D}_{k}\boldsymbol{x} - \boldsymbol{z}_{k} + \boldsymbol{u}_{k}\|_{2}^{2}}_{\boldsymbol{\phi}_{k,\alpha}(\boldsymbol{z}_{k} - \boldsymbol{u}_{k})}.$$

Proposed SPMD sampler

For $t \in \{0, ..., N_{MC} - 1\}$, on worker k, each sample generated as

// Update x_k with PSGLA kernel (Salim et al. 2020) Communications induced by D_k to compute $\nabla_x h_k$

```
\begin{aligned} &\boldsymbol{x}_k^{(t+1)} = \boldsymbol{x}_k^{(t)} - \gamma \nabla_{\boldsymbol{x}} \boldsymbol{h}_k \Big( \boldsymbol{x}^{(t)}, \boldsymbol{z}_k^{(t)}, \boldsymbol{u}_k^{(t)}; \boldsymbol{\alpha}, \boldsymbol{\beta} \Big) + \sqrt{2\gamma} \boldsymbol{\xi}_k, \\ &\text{with } \boldsymbol{\xi}_k \sim \mathcal{N}(\boldsymbol{0}, \mathbf{I}_{N_k \times N_k}) \\ &\text{Communications to compute } \boldsymbol{B}_k \boldsymbol{D}_k \boldsymbol{x}^{(t+1)} \\ & // \text{ Update } \boldsymbol{z} \text{ with PSGLA kernel (Salim et al. 2020)} \\ &\boldsymbol{z}_k^{(t+1)} = \operatorname{prox}_{\eta \boldsymbol{g}_k} \Big( \boldsymbol{z}_k^{(t)} - \frac{\eta}{\alpha} (\boldsymbol{z}_k^{(t)} + \boldsymbol{B}_k \boldsymbol{D}_k \boldsymbol{x}^{(t+1)} - \boldsymbol{u}_k^{(t)}) + \sqrt{2\eta} \boldsymbol{\zeta}_k \Big), \\ &\text{with } \boldsymbol{\zeta}_k \sim \mathcal{N}(\boldsymbol{0}, \mathbf{I}_{M_k \times M_k}) \\ & // \text{ Sample } \boldsymbol{u} \text{ from its full conditional} \\ &\boldsymbol{u}_k^{(t+1)} \mid \boldsymbol{x}^{(t+1)}, \boldsymbol{z}_k^{(t+1)} \sim \mathcal{N}\Big( \frac{\gamma}{\alpha} (\boldsymbol{z}_k^{(t+1)} - \boldsymbol{B}_k \boldsymbol{D}_k \boldsymbol{x}^{(t+1)}), \boldsymbol{\nu} \mathbf{I}_{P_k \times P_k} \Big) \end{aligned}
```

Experiment

Simulation settings

- ► $M = \lfloor 0.6N \rfloor$ observations, σ^2 such that SNR = 40 dB
- N_{MC} = 10^4 samples, N_{bi} = 5×10^3 burn-in, $(\alpha, \beta, \tau) = (9, 1, 0.2)$
- ► Strong scaling (fixed problem size, increasing *K*)

Parallel setting

- ► HPC computer grid from University of Lille¹
- ➤ Single node: two 2.1 GHz, 18-core, Intel Xeon E5-2695 v4 series processors (36 CPU cores in total)
- Parallelization: mpi4py (Dalcin et al. 2021) library (1 worker = 1 process on a CPU core)

https://hpc.univ-lille.fr/

Strong scaling experiment

К	SNR (MMSE)	SNR (MAP)	Time per iter. $(\times 10^{-3} \text{ s})$	Speedup	Runtime (s)
1 (Vono et al. 2019a)	23.33	22.45	65.56 (2.08)	0.19	262.20
1	23.45	22.95	12.21 (0.63)	1.00	61.04
2	23.46	22.88	6.07 (0.42)	2.01	30.37
4	23.48	22.88	3.50 (0.21)	3.49	17.50
8	23.44	22.86	1.93 (0.77)	6.33	9.63
16	23.48	22.90	1.08 (2.35)	11.30	5.38

Table 1: Strong scaling experiment results.

Experiment results

Conclusions and perspectives

Conclusions: SPMD-distributed sampler (PSGLA within Gibbs)

- √ quality comparable to (Vono et al. 2019a);
- √ lower runtime (distribution flexibility);
- √ strong scaling behaviour.

Conclusions and perspectives

Conclusions: SPMD-distributed sampler (PSGLA within Gibbs)

- √ quality comparable to (Vono et al. 2019a);
- √ lower runtime (distribution flexibility);
- √ strong scaling behaviour.

Perspectives

- \rightarrow infer AXDA parameters α , β ;
- → more general applications
 - → inverse problems on hyper-graphs;
 - → assessment on multiple nodes;
- → extension to handle asynchronous communications.

Conclusions and perspectives

Conclusions: SPMD-distributed sampler (PSGLA within Gibbs)

- √ quality comparable to (Vono et al. 2019a);
- √ lower runtime (distribution flexibility);
- √ strong scaling behaviour.

Perspectives

- \rightarrow infer AXDA parameters α , β ;
- → more general applications
 - → inverse problems on hyper-graphs;
 - → assessment on multiple nodes;
- → extension to handle asynchronous communications.

Thank you for your attention.

A versatile distributed MCMC algorithm for large scale inverse problems

P.-A. THOUVENIN*, A. REPETTI^{†‡}, P. CHAINAIS*

*University of Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, France

†Department of Actuarial Mathematics & Stats., Heriot-Watt University, U. K.

‡ Institute of Sensors, Signals and Systems, Heriot-Watt University, U. K.

EUSIPCO 2022, Aug. 29 - Sep. 2, Belgrade

AUGUST 30, 2022

Work supported by the ANR-20-CHIA-0031-01 and ANR-16-IDEX-0004 projects.

Backup slides

► References

- Boyd, Stephen et al. (2011). "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers". In: Foundations and Trends® in Machine Learning 3.1, pp. 1–122.
- Chambolle, Antonin (Jan. 2004). "An algorithm for total variation minimization and applications". In: *J. Math. Imag. Vision* 20.1, pp. 89–97.
- Chambolle, Antonin and Thomas Pock (May 2011). "A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging". In: *J. Math. Imag. Vision* 40.1, pp. 120–145.
- Dalcin, Lisandro and Yao-Lung L. Fang (2021). "mpi4py: Status Update After 12 Years of Development". In: *IEEE Comput. Sci. Eng.* 23.4, pp. 47–54.

Backup slide References II

- Darema, Frederica (2001). "The SPMD Model: Past, Present and Future". In: Recent Advances in Parallel Virtual Machine and Message Passing Interface. Ed. by Yiannis Cotronis and Jack Dongarra. Berlin, Heidelberg, pp. 1–1.
- Durmus, Alain, Eric Moulines, and Marcelo Pereyra (2018). "Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau". In: *SIAM J. Imaging Sci.* 11.1, pp. 473–506.
- Rendell, Lewis J. et al. (2021). "Global Consensus Monte Carlo". In: *J. Comput. and Graph. Stat.* 30.2, pp. 249–259.
- Salim, Adil and Peter Richtàrik (2020). "Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin Algorithm". In: *Adv. in Neural Information Processing Systems*. Vol. 33, pp. 3786–3796.

Backup slide References III

- Vono, M., N. Dobigeon, and P. Chainais (Mar. 2019a). "Split-and-augmented Gibbs sampler Application to large-scale inference problems". In: *IEEE Trans. Signal Process.* 67.6, pp. 1648–1661.
- Vono, Maxime, Nicolas Dobigeon, and Pierre Chainais (2019b). "Asymptotically exact data augmentation: models, properties and algorithms". In: arXiv preprint.
- (2021). "Asymptotically Exact Data Augmentation: Models, Properties, and Algorithms". In: J. Comput. and Graph. Stat. 30.2, pp. 335–348.