

Системный анализ процессов химической технологии

Лекция №6

Расчет химико-технологической системы переменной структуры

Вячеслав Алексеевич Чузлов, к.т.н., доцент ОХИ ИШПР

9 марта 2023 г.

Задача

Рассчитать химико-технологическую систему (определить составы и свойства всех потоков):

Для решения поставленной задачи будет реализована объектная модель: каждый элемент химико-технологической системы будет описан как отдельный класс.

Атрибуты класса	Описание
mass_flow_rate: float	Массовый расход, кг / ч
mole_flow_rate: float	Мольный расход, кмоль / ч
volume_flow_rate: float	Объемный расход, м ³ / ч
mass_fractions: np.ndarray	Массовые доли
mole_fractions: np.ndarray	Мольные доли
volume_fractions: np.ndarray	Объемные доли
temperature: float	Температура потока, К
density: float	Плотность потока, г / см 3
average_mol_mass: float	Средняя молекулярная масса потока, г / моль
cp: float	Массовая теплоемкость потока, кДж / кг
<pre>definit(self, mass_flow_rate: float, mass_fractions: np.ndarray, temperature: float) -> None</pre>	Создает новый экземпляр класса Flow, заполняя все поля

Функции для пересчета составов

1. Пересчет массовых долей в объемные:

$$\varphi_i = \frac{\frac{\omega_i}{\rho_i}}{\sum\limits_{i=1}^n \frac{\omega_i}{\rho_i}}$$

где φ_i – объемная доля i-го компонента; ω_i – массовая доля i-го компонента; ρ_i – плотность i-го компонента; n – число компонентов в системе; i – индекс компонента в системе.

2. Пересчет массовых долей в мольные:

$$\chi_i = \frac{\frac{\omega_i}{M_i}}{\sum_{i=1}^n \frac{\omega_i}{M_i}}$$

где χ_i – мольная доля i-го компонента; ω_i – массовая доля i-го компонента; M_i – молярная масса i-го компонента; n – число компонентов в системе; i – индекс компонента в системе.

Функции для расчета плотности и средней молекулярной массы

1. Расчет плотности:

$$\rho = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{\rho_i}}$$

где ho – плотность потока; ω_i – массовая доля i-го компонента; ρ_i – плотность i-го компонента; n – число компонентов в системе; i – индекс компонента в системе.

2. Расчет средней молекулярной массы потока:

$$m = \frac{1}{\sum_{i=1}^{n} \frac{\omega_i}{M_i}}$$

где m – средняя молекулярная масса потока; ω_i – массовая доля i-го компонента; M_i – молярная масса i-го компонента; n – число компонентов в системе; i – индекс компонента в системе.

Функции для расчета теплоемкости потока

Расчет теплоемкости потока в зависимости от состава потока и температуры среды осуществляется следующим образом:

• определяется теплоемкость компонентов потока при температуре среды:

$$Cp_i = \sum_{j=1}^{5} j \cdot k [i, j] \cdot T^{j-1}$$

где Cp_i – теплоемкость i-го компонента, кДж / кг; $k\left[i,j\right]$ – коэффициенты аппроксимации температурной зависимости энтальпии для i-го компонента; T – температура потока, K;

• определяется общая теплоемкость потока:

$$Cp = \sum_{i=1}^{n} \omega_i \cdot Cp_i$$

где ω_i – массовая доля i-го компонента; Cp_i – теплоемкость i-го компонента, кДж / кг; n – число компонентов в системе.

Описание класса Mixer

Атрибуты класса	Описание
<pre>def mix(self, *flows: Flow) -> Flow</pre>	Реализация метода смешения потоков. Возвращает результирующий поток в виде объекта класса Flow
<pre>defcalculate_temperature(self) -> float</pre>	Закрытый метод, необходимый для расчета температуры смесевого потока

Материальный и тепловой балансы смешения

Состав смесевого потока (в массовых долях) можно найти следующим образом:

$$\omega_i = rac{\sum\limits_{j=1}^n G_j \cdot \omega_{i,j}}{\sum\limits_{j=1}^n G_j}$$

где ω_i – массовая доля i-го компонента; G_j – массовый расход j-го потока, кг/ч; $\omega_{i,j}$ – массовая доля i-го компонента в j-ом потоке; n – количество смешиваемых потоков.

Теплоемкость смесевого потока можно найти следующим образом:

$$Cp = \frac{\sum_{i=1}^{n} G_i \cdot Cp_i}{\sum_{i=1}^{n} G_i}$$

где Cp – теплоемкость смесевого потока, кДж/кг · K; G_i – массовый расход i-го потока, кГ/ч; Cp_i – теплоемкость i-го потока, кДж/кг · K; n – количество смешиваемых потоков.

Материальный и тепловой балансы смешения

Температура смесевого потока определяется следующим образом:

$$T = \frac{\sum_{i=1}^{n} G_i \cdot Cp_i \cdot T_i}{G \cdot Cp(T)}$$

где T – температура смесевого потока, K; G_i – массовый расход i-го потока, к Γ /ч; Cp_i – теплоемкость i-го потока, к Γ /ч; Cp_i – количество смешиваемых потоков; G – массовый расход смесевого потока, к Γ /ч; Cp_i – теплоемкость смесевого потока, к Γ /к Γ /к, являющаяся функцией от температуры.

В итоге получаем нелинейное уравнение, корнем которого является искомое значение температуры смесевого потока.

Описание класса HeatExchanger

Будем рассматривать теплообменник типа «труба в трубе».

Атрибуты класса	Описание
<pre>definit(self, d_in: float = .1, d_out: float = .25, length: float = 3.0, k: float = 4900) -> None</pre>	Конструктор класса HeatExchanger
<pre>def calculate(self, hot: Flow, cold: Flow, h: float = .01) -> tuple[Flow]:</pre>	Расчет теплообменного аппарата. В качестве результата возращается объект кортежа, состоящий из двух элементов: горячего и холодного потоков (объекты класса Flow)

В стационарном режиме уравнения теплового баланса теплообменного аппарата примут следующий вид:

$$\begin{cases} \frac{dT_h}{dl} = -\frac{k \cdot \pi \cdot d}{v_h \cdot \rho_h \cdot Cp_h} \cdot (T_h - T_c) \\ \frac{dT_c}{dl} = \frac{k \cdot \pi \cdot d}{v_c \cdot \rho_c \cdot Cp_c} \cdot (T_h - T_c) \end{cases}$$

где T_h и T_c – температуры горячего и холодного потоков, соответственно, K; k – коэффициент теплопередачи; d – диаметр трубы, m; v_h и v_c – объемные скорости горячего и холодного теплоносителей, c^{-1} ; ρ_h и ρ_c – плотности горячего и холодного потоков, кг/ m^3 ; Cp_h и Cp_c – теплоемкости горячего и холодного потоков, кДж/кг · K.

С целью упрощения выберем для решения данной системы дифференциальных уравнений метод Эйлера.

Описание класса Splitter

Атрибуты класса	Описание
<pre>def calculate(self, flow: Flow, *ratio: float) -> list[Flow]:</pre>	Расчет делителя потока; возвращает в качестве результата список объектов Flow

Контакты

Вячеслав Алексеевич Чузлов, к.т.н., доцент ОХИ ИШПР

Учебный корпус №2, ауд. 136chuva@tpu.ru

+7-962-782-66-15

Благодарю за внимание!

