

فرض كتابي 1 ليوم: 22 / 10 / 2014

===7
12.1.3

<u>01.</u> لنعتبر التطبيقات التالية :
$\begin{cases} h: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} \\ (x,y) \mapsto h((x,y)) = (x+3y,x-y) \end{cases} g \begin{cases} g: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \\ (n,p) \mapsto g((n,p)) = n+p \end{cases} g \begin{cases} f: \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) = \sin x \end{cases}$
[. هل التطبيق f تبايني ؟ هل التطبيق f شمولي ؟ (معللا جوابك)
$ (\dot{\upsilon} 1) \dots g^{-1}(\{3\}) $
ي هل النطبيق f تبايني ؟ هل النطبيق f شمولي ؟ (معللا جوابك) $g^{-1}ig(3\}$ حدد $g^{-1}ig(3\}$ عدد $g^{-1}ig(3\}$ و $g^{-1}ig(3\}$ و $g^{-1}ig(3\}$ يين أن : النطبيق $g^{-1}ig(3\}$ عدد $g^{-1}ig(3\}$ و $g^{-1}ig(3\}$ و $g^{-1}ig(3\}$
<u>bāi 3</u> 02
$($ ما هي قيمة حقيقية العبارة التالية : $rac{1}{n^3} \leq rac{1}{(n-2)(n-1)n} \leq rac{1}{n^3}$ ، ما هي قيمة حقيقية العبارة التالية : المحامدة $rac{1}{n^3}$
. \mathbb{N}^* ننعتبر \mathbf{p} من
$($ ن $)$ $\forall p \in \mathbb{N}^*, 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{p}} \geq \sqrt{p}$ في المتعمال الترجع $\forall p \in \mathbb{N}^*, 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{p}} \geq \sqrt{p}$
(ن 1) (E) : $x \in [-1, +\infty[$, $\sqrt{x+1} + \sqrt{x+10} + \sqrt{x+100} = 12 .: \frac{3}{2} بين أن المعادلة التالية ليس لها حل x \in [-1, +\infty[$
3 نقط
استدل بالخلف على ما يلي :إذا كان العدد q يقسم العدد q لا يقسم $n+1$ $n\in\mathbb{N}^*$ و $q\in\mathbb{N}^*\setminus\{1\}$. استدل بالخلف على ما يلي :إذا كان العدد q يقسم العدد q
(20 i) يين أن : لكل $(20 i)$ أن العدد $(20 i)$ يقبل القسمة على $(20 i)$ يقبل القسمة على $(20 i)$
4 نقط
$($ ن $)$ يا يتفصيل المجموعة : $\{ r \in \mathbb{Q} \ / \ \exists (n,p) \in \mathbb{N}^2, r = rac{n}{p} \}$ و $1 \leq p \leq 3n \leq 9 \}$
(1) ي لتكن $(B \setminus C) = (A \cap B) \setminus (A \cap C)$ بين أن $(C \cap B \setminus C) = (A \cap B) \setminus (A \cap C)$ يتكن $(C \cap B \setminus C) = (A \cap B)$
$(\ \dot{\upsilon}\ 2\)$ \cdots \cdots $(B\setminus C\subset A)\Rightarrow B\setminus D\subset A:$ \cdots
2 نقط
ر ن 2)(a+b)(b+c)(c+a)≥8abc : يكن a و d و c من R ^{+*} بين أن
و نقط 3 .06
. نعتبر المضلعات المحدبة التالية : $({f P}_4$ مضلع رباعي محدب ${f P}_5$ مضلع خماسي محدب ${f P}_6$ مضلع سداسي محدب
$(0,5)$ ي ما هو عدد أقطار كل من المضلعات \mathbf{P}_4 و \mathbf{P}_5 و \mathbf{P}_6 ؛
انضع $\mathbf{d_n}$ نضع $\mathbf{P_n} = \mathbf{A_1} \mathbf{A_2} \mathbf{A_3}$ مضلع محدب حیث عدد رؤوسه هو \mathbf{n} مع \mathbf{n} عدد صحیح طبیعی و $\mathbf{P} = \mathbf{A_1} \mathbf{A_2} \mathbf{A_3}$ هو
عدد أقطار المضلع المحدب $\mathbf{P}_{\mathbf{n}}$ لنعتبر الصيغتين التاليتين حيث إحداهما تحقق الجواب عن السؤال الأول من هي ؟
$(\dot{0},5)$ الصيغة الأولى: $\mathbf{d}_{\mathrm{n+1}}=3+\mathbf{d}_{\mathrm{n}}$ الصيغة الثانية: الأولى: $\mathbf{d}_{\mathrm{n+1}}=3+\mathbf{d}_{\mathrm{n}}$ الصيغة الأولى:
يحقق كذلك ${f n}$ بين بالترجع : كل مضلع محدب ${f P}_n$ حيث عدد رؤوسه هو ${f n}$ مع ${f n}$ عدد صحيح طبيعي و ${f d}$ جأن عدد أقطاره ${f d}_n$ يحقق كذلك ${f c}$
$($ ن 2 $)$ $\mathbf{d_n}=rac{\mathbf{n}^2-3\mathbf{n}}{2}$: العلاقة التالية

فرض كتابي 1 ليوم : 22 / 10 / 2014

تصحيح الفرض المحروس 1 – 2015/2014

.01

<u>. f ندرس تباینیة</u>

$$(\forall x, x' \in E : f(x) = f(x') \Rightarrow x = x') :$$
لدينا

$$f(x) = f(x') \Rightarrow \sin x = \sin x'$$

$$\Rightarrow \begin{cases} x = x' + 2k\pi \\ x = \pi - x' + 2k\pi \end{cases}$$

ومنه: أغير تبايني.

مثال مضاد

$$x' = \frac{\pi}{4} + 6\pi$$
 ناخذ: $x = \frac{\pi}{4}$

$$\sin\left(\frac{\pi}{4}\right) = \sin\left(\pi - \frac{\pi}{4} + 6\pi\right)$$

$$f\left(\frac{\pi}{4}\right) = f\left(\pi - \frac{\pi}{4} + 6\pi\right)$$
 إذن :

.
$$\pi - \frac{\pi}{4} + 6\pi \neq \frac{\pi}{4}$$
: ولكن

خلاصة: f غير تبايني.

<u>.</u> ندرس شمولية <u>f</u>:

 \mathbb{R} من \mathbf{x} من انجث هل له سابق \mathbf{x} من

$$f(x) = -2 : (12)$$

$$sinx = -2$$
: e $ain = -2$

$$-1 \leq \sin x \leq 1$$
 : و هذا غير ممكن لأن

خلاصة : f غير شمولي.

g⁻¹({3}): يندد

$$x \in f^{-1}(B) \Leftrightarrow f(x) \in B$$
 لدينا:

$$(n,p) \in \mathbb{N}^2$$
 ليكن

$$(n,p) \in g^{-1}(\{3\}) \Leftrightarrow g^{-1}((n,p)) \in \{3\}$$

 $\Leftrightarrow g((n,p)) = 3$

تصحيح الفرض المحروس 1 – 2015/2014

الصفحة

$$\Leftrightarrow$$
 n+p=3

$$\Leftrightarrow$$
 $(n,p) \in \{(1,2),(2,1),(0,3),(3,0)\}$

.
$$g^{-1}({3}) = {(1,2),(2,1),(0,3),(3,0)}$$
 : خلاصة

3 نبين أن : h تقابلي

لكي يكون h تقابلي:

تقابلي
$$f \Leftrightarrow (\forall a' \in F, \exists ! a \in E : a' = f(a))$$

.
$$\mathbf{F} = \mathbb{R}^2$$
 $\mathbf{g} \ \mathbf{E} = \mathbb{R}^2$ $\mathbf{g} \ \mathbf{a}' = (\mathbf{x}', \mathbf{y}')$ $\mathbf{g} \ \mathbf{a} = (\mathbf{x}, \mathbf{y})$

لهذا نبين أن المعادلة التالية تقبل حل وحيد:

$$h((x,y)) = (x',y') \Leftrightarrow (x+3y,x-y) = (x',y')$$

$$\Leftrightarrow \begin{cases} x+3y=x' \\ x-y=y' \end{cases}$$

 $\begin{cases} x+3y=x' \\ x-y=y' \end{cases}$ ومنه نحل النظمة:

$$\Delta = \begin{vmatrix} 1 & 3 \\ 1 & -1 \end{vmatrix} = -4 \neq 0$$

. 🗡 💬

ومنه نظمة هي نظمة كرامير تقبل حل وحيد.

وبالتالي h تقابلي.

 $\cdot \; \mathbb{R}^2$ الى $\cdot \; \mathbb{R}^2$ إلى $\cdot \; \mathbf{h}$

$\underline{:} h^{-1}(\mathbb{R}^2)$ <u>ه</u> $h(\mathbb{R}^2)$

 $\mathbf{h}^{-1}(\mathbb{R}^2) = \mathbb{R}^2$ بما أن \mathbf{h} تقابلي فإن : $\mathbb{R}^2 = \mathbb{R}^2$ و

.02

$$\forall n \in \mathbb{N}^* \setminus \left\{1,2\right\} \ , \ \frac{1}{\left(n-2\right)\!\left(n-1\right)n} \leq \frac{1}{n^3} \underline{\qquad : \frac{1}{n^3}} \underline{\qquad : \frac{$$

لدينا:

$$n \le n \ \mathfrak{z} - 1 \le 0 \Longrightarrow n - 1 \le n \ \mathfrak{z} . -2 \le 0 \Longrightarrow n - 2 \le n$$

ومنه ضرب طرف بطرف : $n - 1 \times (n-1) \times (n-1) \times n \le n \times n$ ومنه ضرب طرف بطرف الأعداد موجبة

$$(n-2)\times(n-1)\times n \le n^3$$
 إذن :

$$\frac{1}{(n-2)\times(n-1)\times n} \ge \frac{1}{n^3} : \dot{0}$$
فإن

وبالتالي: العبارة خاطئة.

خلاصة : العبارة خاطئة .

تصحيح الفرض المحروس 1 – 2015/2014

 $\forall p \in \mathbb{N}^*, 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{p}} \leq \sqrt{p} : \frac{2}{\sqrt{p}}$

 $\forall k \in \mathbb{N}^*$, $1 \le k \le p$: ناخذ

$$1 \le k \le p \Rightarrow 1 \le \sqrt{k} \le \sqrt{p}$$

$$\Rightarrow \sqrt{p} \le \sqrt{k} \times \sqrt{p} \le p \left(\times \sqrt{p} \right)$$

$$\Rightarrow \frac{1}{p} \le \frac{1}{\sqrt{k} \times \sqrt{p}} \le 1$$

$$\Rightarrow \frac{1}{\sqrt{1} \times \sqrt{p}} \ge \frac{1}{p}$$

$$\Rightarrow \frac{1}{\sqrt{1} \times \sqrt{p}} \ge \frac{1}{p}, \frac{1}{\sqrt{2} \times \sqrt{p}} \ge \frac{1}{p}, \frac{1}{\sqrt{3} \times \sqrt{p}} \ge \frac{1}{p}, \dots, \frac{1}{\sqrt{p} \times \sqrt{p}} \ge \frac{1}{p}$$

$$\Rightarrow \frac{1}{\sqrt{1} \times \sqrt{p}} + \frac{1}{\sqrt{2} \times \sqrt{p}} + \frac{1}{\sqrt{3} \times \sqrt{p}} + \dots + \frac{1}{\sqrt{p} \times \sqrt{p}} \ge \frac{1}{p} + \frac{1}{p} + \frac{1}{p} + \dots + \frac{1}{p}$$

$$\Rightarrow \frac{1}{\sqrt{1} \times \sqrt{p}} + \frac{1}{\sqrt{2} \times \sqrt{p}} + \frac{1}{\sqrt{3} \times \sqrt{p}} + \dots + \frac{1}{\sqrt{p} \times \sqrt{p}} \ge p \times \frac{1}{p}$$

$$\Rightarrow \frac{1}{\sqrt{p}} \left[\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{p}} \right] \ge 1$$

$$\Rightarrow \left[\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{p}} \right] \ge \sqrt{p}$$

 $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{p}} \le \sqrt{p}$: خلاصة

نبين أن المعادلة $({f E})$ لبس لها حل ${f 3}$

لدينا:

$$x \ge -1 \Rightarrow \begin{cases} x+1 \ge 0 \\ x+10 \ge 9 \\ x+100 \ge 99 \end{cases}$$

$$\Rightarrow \begin{cases} \sqrt{x+1} \ge 0 \\ \sqrt{x+10} \ge 3 \\ \sqrt{x+100} \ge \sqrt{99} \end{cases}$$

$$\Rightarrow \sqrt{x+1} + \sqrt{x+10} + \sqrt{x+100} \ge 3 + \sqrt{99} > 12 ; (\sqrt{99} > 9)$$

 $\sqrt{x+1} + \sqrt{x+10} + \sqrt{x+100} \neq 12$: وبالتالي:

تصحيح الفرض المحروس 1 – 2015/2014

خلاصة: المعادلة ليس لها حلول

.03

ي نستدل بالخلف أن : q لا يقسم n + 1

نفترض أن: q يقسم n+1 وإذن: 'n+1

n = qk : 0

ومنه: 'qk+1=qk

إذن: 1=qk'-qk

 $1 = q \times (k' - k)$ فإن:

وبالتالى: q = 1 وهذا غير ممكن إذن ما فترضناه كان خاطئا

ومنه: q لا يقسم 1+n

فلاصة: q لا يقسم n+1

$A_{\rm n}=4^{2{ m n}+2}-15{ m n}-16$ يقبل القسمة على $A_{ m n}=4^{2{ m n}+2}$

 $\mathbf{n}=\mathbf{0}$ نتحقق أن العلاقة \mathbf{A}_{n} صحيحة ل

 $A_n = 4^{2n+2} - 15n - 16$: لدينا

$$A_0 = 4^{2 \times 0 + 2} - 15 \times 0 - 16$$

$$A_0 = 4^2 - 0 - 16$$

 $A_0 = 16 - 16$: أي

 $\mathbf{A}_0 = \mathbf{0}$

. $\mathbf{n}=\mathbf{0}$ صحيحة ل \mathbf{A}_{n}

 $oldsymbol{+}$ نفترض أن العلاقة $oldsymbol{A}_{
m n}$ صحيحة إلى $oldsymbol{+}$

أي أن: العدد $A_n=4^{2n+2}-15n-16=15k$ مع القسمة على 225 أي $A_n=4^{2n+2}-15n-16=15k$ معطيات (معطيات الترجع) .

لبين أن العلاقة A صحيحة ل n+1:

$$\mathbf{A}_{\mathrm{n+1}} = 4^{2(\mathrm{n+1})+2} - 15(\mathrm{n+1}) - 16$$
: أي نبين أن

$$A_{n+1} = 4^{2(n+1)+2} - 15(n+1) - 16$$

$$A_{n+1} = 4^{2n+2} \times 4^2 - 15n - 15 - 16$$

$$A_{n+1} = 4^{2n+2} \times (15+1) - 15n - 15 - 16$$

$$\mathbf{A}_{n+1} = \left(4^{2n+2} \times 1 - 15n - 16\right) + 4^{2n+2} \times 15 - 15$$

$$\mathbf{A}_{n+1} = \underbrace{\left(4^{2n+2} - 15n - 16\right)}_{15h} + 15 \times \left(4^{2n+2} - 1\right)$$

(1) :
$$A_{n+1} = \underbrace{\left(4^{2n+2} - 15n - 16\right)}_{} + 15 \times \left(4^{2n+2} - 1\right)$$
:

. 15 قبن نثبت بالترجع أن: ${\bf B}_{\rm n} = 4^{2{
m n}+2} - 1$ يقبل القسمة على

تصحيح الفرض المحروس 1 – 2015/2014

 $\mathbf{n}=\mathbf{0}$ نتحقق أن العلاقة $\mathbf{B}_{_{\mathrm{B}}}$ صحيحة ل \mathbf{d}

$$B_n = 4^{2n+2} - 1$$
 لدينا:

$$B_0 = 4^{2 \times 0 + 2} - 1 = 15$$

.
$$\mathbf{n}=\mathbf{0}$$
وبالتالي: العلاقة $\mathbf{B}_{\mathbf{n}}$ صحيحة ل

ب نفترض أن العلاقة B صحيحة إلى B ب

. (معطيات الترجع) $\mathbf{k}\in\mathbb{N}$ مع $\mathbf{B}_{\mathrm{n}}=4^{2\mathrm{n}+2}-1=15\mathrm{k}$ أي أن: العدد $\mathbf{B}_{\mathrm{n}}=4^{2\mathrm{n}+2}-1=15\mathrm{k}$ معطيات الترجع

+1نبين أن العلاقة B_n صحيحة ل+1

$$\mathbf{B}_{\mathrm{n+1}} = \mathbf{4}^{2(\mathrm{n+1})+2} - 1$$
: أي نبين أن

$$\mathbf{B}_{n+1} = 4^{2(n+1)+2} - 1$$

$$\mathbf{B}_{n+1} = \mathbf{4}^{2n+2} \times \mathbf{4}^2 - 1$$

$$B_{n+1} = 4^{2n+2} \times (15+1) - 1$$

$$\mathbf{B}_{n+1} = 4^{2n+2} \times 15 + \underbrace{4^{2n+2} - 1}_{15k'}$$

$$B_{n+1} = 15 \left[4^{2n+2} + k' \right]$$

(2): 15 يقبل القسمة على B_{n+1}

حسب (1) و (2) إذن: A_{n+1} يقبل القسمة على 15

خلاصة: العدد $A_n = 4^{2n+2} - 15n - 16$ يقبل القسمة على 225

هناك طريقة ثانية

ي نكتب بالتفصيل:

$$1 \le 3n \le 9 \Rightarrow \frac{1}{3} \le n \le 3$$

$$n \in \{1,2,3\}$$
 ومنه:

$$1 \le p \le 3n$$
 و نعلم أن: $n = 1$

ومنه:
$$2 \le p \le 3$$

$$r \in \left\{1, \frac{1}{2}, \frac{1}{3}\right\}$$
 الذن: $p \in \{1, 2, 3\}$ و $n = 1$

$$1 \le p \le 3n$$
 و نعلم أن: $n = 2$

$$\mathbf{r} \in \left\{2,1,\frac{2}{3},\frac{1}{2},\frac{2}{5},\frac{1}{3}\right\}$$
 اِذْن: $\mathbf{p} \in \left\{1,2,3,4,5,6\right\}$ و $\mathbf{n} = 2$

تصحيح الفرض المحروس 1 – 2015/2014

 $1 \le p \le 3n$ و نعلم أن: n = 3

إذن: 3×3≥p≥1

ومنه: $9 \ge p \ge 1$

 $p \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ وبالتالي:

 $\mathbf{r} \in \left\{3, \frac{3}{2}, 1, \frac{3}{4}, \frac{3}{5}, \frac{1}{2}, \frac{3}{7}, \frac{3}{8}, \frac{1}{3}\right\}$ ناخذ: $\mathbf{p} \in \left\{1, 2, 3, 4, 5, 6, 7, 8, 9\right\}$ و $\mathbf{p} \in \left\{1, 2, 3, 4, 5, 6, 7, 8, 9\right\}$

 $\mathbf{F} = \left\{ \frac{1}{3}, \frac{1}{2}, 1, \frac{2}{3}, \frac{2}{5}, 2, \frac{3}{2}, \frac{3}{4}, \frac{3}{5}, \frac{3}{7}, \frac{3}{8}, 3 \right\}$ خلاصة :

.2

$(A \cap B) \setminus (A \cap C) = A \cap (B \setminus C)$ - نبین أن

 $(A \cap B) \setminus (A \cap C) = (A \cap B) \cap \overline{(A \cap C)}$

 $= A \cap B \cap \overline{A \cap C}$

 $=A \cap \overline{A \cap C} \cap B$

 $=(A \cap \overline{A \cap C}) \cap B$

 $= \left(\mathbf{A} \cap \left(\overline{\mathbf{A}} \cup \overline{\mathbf{C}}\right)\right) \cap \mathbf{B}$

 $= \left(\left(\mathbf{A} \cap \overline{\mathbf{A}} \right) \cup \left(\mathbf{A} \cap \overline{\mathbf{C}} \right) \right) \cap \mathbf{B}$

 $= \left(\varnothing \cup \left(A \cap \overline{C} \right) \right) \cap B$

 $=(A \cap \overline{C}) \cap B$

 $=A \cap \overline{C} \cap B$

 $=A \cap B \cap \overline{C}$

 $=A \cap (B \cap \overline{C})$

 $=A \cap (B \setminus C)$

 $(A \cap B) \setminus (A \cap C) = A \cap (B \setminus C)$ خلاصة :

$(B \setminus C \subset A) \Rightarrow B \setminus D \subset A$ و $C \setminus D \subset A$

. x ∈ A : نبين أن x ∈ B \ D

x ∈ B \ D إذن: x ∈ B \ D

 $x \in C$ حالة أولى:

 $(C \setminus D \subset A)$ لان $x \in C \setminus D$ ومنه $x \in C \setminus D$ لان $x \in C \notin D$ لاينا:

خلاصة 1: B\D⊂A.

حالة ثانية: x ∉ C

 $(B \ C \subset A)$ لائن $x \in A : A$ ومنه $x \in B \$ ومنه $x \in B$ وكن $x \in B$

خلاصة 2: B\D⊂A.

تصحيح الفرض المحروس 1 – 2015/2014

 $\mathbf{B} \setminus \mathbf{D} \subset \mathbf{A}$: في كلتا الحالتين

 $(B \setminus C \subset A) \Rightarrow B \setminus D \subset A$ فلاصة:

.05

(a+b)(b+c)(c+a) ≥ 8abc : نبین أن

 $x+y \geq 2\sqrt{xy}$: يجب أن نبين العلاقة تالية صحيحة $(a+b)(b+c)(c+a) \geq 8abc$ لكي نبين:

$$\left(\sqrt{x} - \sqrt{y}\right)^2 \ge 0 \Leftrightarrow x + y - 2\sqrt{xy} \ge 0$$

$$\Leftrightarrow x + y \ge 2\sqrt{xy}$$

ومنه العلاقة صحيحة

- $a+b \ge 2\sqrt{ab}$ ناخذ: y=b و x=a بنن:
- $b+c \ge 2\sqrt{bc}$ نأخذ: y=c و x=b
- $a+c \ge 2\sqrt{ac}$ ناخذ: y=a و x=c

ومنه ضرب جميع الأطراف:

$$(a+b)(b+c)(a+c) \ge 2\sqrt{ab} \times 2\sqrt{bc} \times 2\sqrt{ac} \Leftrightarrow (a+b)(b+c)(a+c) \ge 8\sqrt{a^2b^2c^2}$$

$$\Leftrightarrow$$
 $(a+b)(b+c)(a+c) \ge 8abc$

$$(a+b)\times(b+c)\times(c+a)\geq 8abc$$
 وبالتالي:

الشكل الأول:

عدد أقطار المضلعات:

- $\frac{\mathbf{d}_6 = \mathbf{9}}{\mathbf{d}_6}$: الشكل الثالث $\mathbf{d}_5 = \mathbf{5}$
- - : الشكل الثاني $\mathbf{d_4} = \mathbf{2}$
- $m{(2)}:m{d_{n+1}}=m{n-1+d_n}$: الصيغة الثانية والجواب عن السؤال الأول هي والصيغة الثانية والمجواب عن السؤال الأول هي والصيغة الثانية والمجواب عن السؤال الأول هي والمحاونة المجواب عن السؤال الأول هي والمحاونة المحاونة المحا

نبين بالترجع:

 $\mathbf{d}_{n} = \frac{\mathbf{n} \times (\mathbf{n} - 3)}{2}$ وه \mathbf{n} هو محدب حيث عدد رؤوسه معدد اقطار مضلع محدب حيث عدد رؤوسه الترجع أن عدد أقطار مضلع

مضلع محدب عدد رؤوسه n+1	مضلع محدب عدد رؤوسه n
N N N N N N N N N N N N N N N N N N N	M L K J H G F F S S T A B C D E

تصحيح الفرض المحروس 1 – 2015/2014

الصفحة

♣ نتحقق أن العلاقة صحيحة ل n = 4:

$$\mathbf{d}_{\mathbf{n}} = \frac{\mathbf{n} \times (\mathbf{n} - 3)}{2}$$
: لاينا

$$\mathbf{d}_4 = \frac{4 \times (4 - 3)}{2} = 2 \qquad \qquad : \emptyset$$

n = 0وبالتالى: العلاقة صحيحة ل

له نفترض أن العلاقة صحيحة إلى n:

. (معطیات الترجع)
$$\mathbf{d}_{\mathrm{n}} = \frac{\mathbf{n} \times (\mathbf{n} - \mathbf{3})}{2}$$
 ان:

بين أن العلاقة صحيحة ل n+1:

$$\mathbf{d}_{n+1} = \frac{(n+1)\times(n-2)}{2}$$
: أي نبين أن

الطريقة 1

 $ig(2ig): {f d}_{{f n}+1} = {f n} - {f 1} + {f d}_{{f n}}$ حسب السؤال السابق : لدين العلاقة

$$\mathbf{d}_{\mathbf{n}+1} = \mathbf{n} - \mathbf{1} + \mathbf{d}_{\mathbf{n}}$$
 : إذن :
$$\mathbf{n}(\mathbf{n} - \mathbf{3})$$

$$=n-1+rac{n(n-3)}{2}$$
 $= n-1+rac{n(n-3)}{2}$ $= rac{2n-2+n(n-3)}{2} = rac{n^2-n-2}{2} = rac{n^2-1-(n+1)}{2} = rac{(n+1)(n-1-1)}{2}$ $= rac{(n+1)(n-2)}{2}$

إذن العلاقة صحيحة ل n+1 .

الطريق 2:

وندما المضلع $\mathbf{P}_{\mathrm{n+1}}$ نحصل على مضلع محدب $\mathbf{P}_{\mathrm{n+1}}$ له $\mathbf{n+1}$ رأس

لدينا : $\mathbf{d}_{\mathbf{n}} = \frac{\mathbf{n} \times (\mathbf{n} - 3)}{2}$ نا الرأس الذي مضلع محدب عدد رؤوسه \mathbf{n}) تعطي لنا \mathbf{n}

أضفناه سيرتبط بالرؤوس ${f n}$ السابقة بقطع عددها ${f n}$ قطعة حيث 2 ليست بقطر إذن عدد الأقطار التي أضيفت هي : ${f 2}$ ${f N}$ و لا ننسى القطعة التي أصبحت قطر والتي كانت تربط الرأسين التي أضفنا بينهما الرأس ${f A}_{n+1}$ وبالتالي عدد الأقطار التي أضفت هو

ومنه : ${\bf d_n} + {\bf n} - {\bf 1}$ هو سيكون : ${\bf P_{n+1}}$ ومنه عدد الأقطار للمضلع المحدب ${\bf P_{n+1}}$ هو سيكون :

$$d_{n+1} = d_n + n - 1 = \frac{n \times (n-3)}{2} + n - 1 = \frac{n^2 - 3n + 2n - 2}{2} = \frac{n^2 - n - 2}{2}$$
$$= \frac{(n+1) \times (n-2)}{2}$$

$$\mathbf{d}_{n+1} = \frac{(n+1)\times(n-2)}{2} :$$

وبالتالى العلاقة صحيحة ل n+1

 $\mathbf{d}_{\mathrm{n}} = \frac{\mathbf{n} imes (\mathbf{n} - \mathbf{3})}{2}$ هو \mathbf{n} هو مصلع محدب حيث عدد رؤوسه م