Low-cost and flexible Electronic Study KIT through Project-Based Learning and Design-Build hands-on activities.

Students:

Nguyễn Huỳnh Đăng Khoa Phan Duy Linh Nguyễn Đình Vinh

Advisor:

Lê Quốc Huy, PhD

Nguyễn Thị Minh Hiền Trần Trọng Đức Nguyễn Đức Khải

Introduction

Abstract

Fundamental and most popular Analog electronic circuit Amplifier and Filter Designing are hard to calculate and test in real circuit.

Team 16ES bring you multi-solution with various low-cost and flexible Filter and Amplifiers circuits based on a 3-step process: Design-Build-Test.

Objectives

This project contains 4 KITs:

- 1) High-Q Amplifier with UA741.
- 2) Notch Filter with UA741.
- 3) BJT CE Amplifier frequency response with 2n2222.
- 4) High frequency band-pass Amplifier with 2n2222.
- On-going work: Multi-stage Amplifier with 2n7000 and 2n22222.

In this articles, we decide to demonstrate 2 KITs: Band-pass Amplifier and High-Q Amplifier.

Method

3-step method: Design-Build-Test

Step 1: Design the circuit based on hand calculation and MATLAB simulation.

- Step 2: Build and simulate the circuit in LTSpice, then build real circuit.
- Step 3: Testing the real circuit in laboratory.

Conclusions

Achievements

McGraw-Hill

- Exclusive hands-on KITs for students
- Very low-cost and highly flexible, can be implemented on general analog purposes.

References

[1] Green, A. K. (2014-2015). Analog Engineer's Pocket Reference. Texas Instrument Incorporated.

[2] Le Quoc Huy, P. (2018-2019). Electronic 1 & 2 Slide (Adapted from Microelectronic Circuit Design-Jaeger, Blalock. Danang.

[3] N.Blalock, R. C. (2006). Microelectronic Circuit Design. New York:

Results

HAND CALCULATION

 $Z_1 = Z_2 = \frac{1 + sCR}{sC}, \qquad Z_3 = \frac{R}{(1 + sCR)},$

 $Z_4 = R_4$, $Z_5 = R_5$, $K = \frac{R_4}{R_5}$

 $A_0 = \frac{1}{2-k} = 4 \rightarrow k = 1.75 = \frac{R_4}{R_5}$

Choose $R = 8.2 k\Omega$, C = 1 nF

 $f_0 = 20 \ kHz \rightarrow \frac{1}{2\pi CR} \rightarrow CR \approx 7.96 \times 10^{-6}$

 $u_l = \frac{-(2-K) + \sqrt{(2-K)^2 + 4}}{2} = 0.88 \to f_l$

 $u_h = \frac{(2-K) + \sqrt{(2-K)^2 + 4}}{2} \to f_h = u_h f_0$

 $For A_0, f_0 = 20 \ kHz,$

Choose $R_4 = 8.2 k\Omega$,

 $= u_l f_0 = 17.66 \, kHz$

 $R_5 = 4.7 k\Omega$,

FORMULAR

- With Av=5, design Rf & Ri: $Av=5 \Rightarrow \frac{Rf}{Ri} = 5$ Choose Rf=50kOhm & Ri=10kOhmWith $\omega_0=35k \ rad/s$, $B=87.5k \ rad/s$, design R_1 , R_2 , C: $\omega_0=\sqrt{\omega_1\omega_2}=35k \ rad/s$, $B=\omega_1-\omega_2=87.5k \ rad/s$
- $=>\begin{cases} s & R_1C\\ \omega_2=100k\frac{rad}{s}=\frac{1}{R_2C} \end{cases}$ Choose C = 2nF, we have $\begin{cases} R_1=40kOhm\\ R_2=3kOhm \end{cases}$ Choose $\begin{cases} R_1=43kOhm\ (standard\ value)\\ R_2=5kOhm\ (standard\ value) \end{cases}$
- $R_{I} = 50 \,\Omega, R_{3} = 100 \,k\Omega, R_{2} = 8.3 \,k\Omega, R_{1} = 3.7 \,k\Omega,$ $C_{1} = C_{2} = CE = 100 \,\mu F, RC = RE = 1 \,k\Omega, R_{L}$ $= 100 \,k\Omega$ DC Analysis $V_{EQ} = V_{CC} \times \frac{R_{1}}{R_{1} + R_{2}} = 3.7 \,V, R_{EQ} = R_{1}//R_{2}$ $= 2.56 k\Omega$ $I_{C} = \beta \times I_{B} = 2.95 \,mA \approx I_{E}, V_{CE} = V_{CC} I_{C}R_{C} I_{E}R_{E}$ = 6.09 V, $V_{CB} = V_{CE} V_{BE} = 5.39 \,V$

Giver information

 $g_{m} = 40I_{C} = 118 \, ms, r_{\pi} = \frac{\beta}{g_{m}} = 1.7k\Omega, C_{JC0}$ $= 8 \, pF, C_{JE0} = 25pF,$ $\emptyset_{JC} = 0.75, \tau_{F} = 400 \, ps, m = 0.33, r_{\pi} = 10\Omega, V_{A}$ = 100V $C_{\mu} = \frac{C_{JC0}}{(1 + \frac{5.39}{0.75})^{0.33}} = 4 \, pF, C_{de} = \tau_{F}g_{m} = 47.2 \, pF, C_{je}$

AC Analysis

- $(1 + \frac{5.59}{0.75})^{0.33}$ $= 2C_{JE0} = 50 \ pF$ $C_{\pi} = C_{de} + C_{je} = 97.2 \ pF, C_{in} = C_{\pi} + C_{\mu}(1 + g_{m}R'_{L})$ $= 0.55 \ nF$ $A_{M} = \frac{R_{B}}{R_{B} + R_{Sig}} \times \frac{r_{\pi}}{r_{x} + r_{\pi} + (R_{Sig}//R_{B})} \times g_{m}R'_{L}$ = 107.6 $f_{H} = \frac{\omega_{H}}{2\pi} = \frac{1}{2\pi C_{in}R_{Sig}'} = 5.03 \ MHz$
- Giver information $R_{I} = 50 \Omega, R_{3} = 100 k\Omega, R_{2} = 8.3 k\Omega, R_{1} = 3.7 k\Omega,$ $C = C = CE = 100 \text{ u.e. } RC = RE = 1 k\Omega, R_{2} = 1$
- $C_1 = C_2 = CE = 100 \,\mu F, RC = RE = 1 \,k\Omega, R_L = 100 \,k\Omega$ $DC \,Analysis$ $V_{EQ} = V_{CC} \times \frac{R_1}{R_1 + R_2} = 3.7 \,V, R_{EQ} = R_1//R_2 = 2.56 k\Omega$
- $V_{EQ} V_{CC} \times R_1 + R_2 3.7 V$, $N_{EQ} N_1 / N_2 2.30 KM$ $I_C = \beta \times I_B = 2.95 \, mA \approx I_E$, $V_{CE} = V_{CC} I_C R_C I_E R_E = 6.09 V$, $V_{CB} = V_{CE} V_{BE} = 5.39 \, V$ $AC \, Analysis$
- $g_{m} = 40I_{C} = 118 \, ms, r_{\pi} = \frac{\beta}{g_{m}} = 1.7k\Omega, C_{JC0} = 8 \, pF, C_{JE0} = 25pF,$ $\phi_{JC} = 0.75, \tau_{F} = 400 \, ps, m = 0.33, r_{\pi} = 10\Omega, V_{A} = 100V$ $C_{\mu} = \frac{C_{JC0}}{(1 + \frac{5.39}{0.75})^{0.33}} = 4 \, pF, C_{de} = \tau_{F}g_{m} = 47.2 \, pF, C_{je} = 2C_{JE0}$ $= 50 \, pF$
- $C_{in} = \frac{C_{\pi}}{1 + g_m R_E} + C_{\mu} \left[\frac{(1 + g_m R_L') + g_m R_E}{1 + g_m R_E} \right] = 11.72 \ pF$ $A_M = \frac{-g_m R_L'}{1 + g_m R_E} = -1.92, C_{\pi} = C_{de} + C_{je} = 97.2 \ pF$
- $f_H = \frac{\omega_H}{2\pi} = \frac{1}{2\pi C_{in} R_{Sia'}} = 238 \, MHz$

MATLAB SIMULATION

LTSPICE SIMULATION

REAL CIRCUIT

15dB 100Hz

EXPERIMENT

On-going Work

- Recommend working carefully.
- Update the circuits on PCB layout .
- Choose resistor with low tolerance (5%).Choose better transistor from Texas
- Choose better transistor from Texas instrument,
- or Onsemi for higher performance.