Synthèse Chapitres TC1-TC2

Plan du cours

(TC1) Description d'un système chimique

- I. Classification de la matière par composition : corps pur simple et composé, mélange homogène et hétérogène.
- II. États physiques courants des corps purs : paramètre intensif (définition qualitative), phase , transitions de phase courantes, modèle du gaz parfait, solide cristallin et verre.
- III. Transformations de la matière : physiques, chimiques et nucléaires.
- IV. Système physico-chimique : notions de système, fractions molaires et massiques d'un mélange homogène, concentrations massiques et molaires, pression partielle, loi de Dalton.
- V. Activité d'une espèce chimique : solide et liquide purs et incompressibles, gaz parfait, solutions diluées idéales et mélange parfait de gaz parfait.

(TC2) État final d'un système chimique

- I. **Réaction chimique :** modélisation d'un transformation par une équation bilan de réaction, coefficients stœchiométriques, avancements molaire ξ et volumique x, proportions stœchiométriques, coefficient de dissociation d'un réactif.
- II. Équilibre chimique : définition, réaction renversable, activité d'une espèce chimique, quotient de réaction et constante d'équilibre, loi d'évolution, expression de K° en fonction de ξ_{eq} .
- III. **Transformation totale :** définition, détermination du réactif limitant (calcul de ξ_{max}), réactions quasi-totale et quasi-nulle.
- IV. **Détermination de la composition finale d'un système chimique :** méthode pour remplir un tableau d'avancement pour des réactions totales, des équilibres atteints ou non.

Ce qu'il faut savoir et savoir faire

- Reconnaître la nature d'une transformation physique, chimique ou nucléaire.
- Distinguer un corps pur d'un mélange.
- Connaître la notion de variété allotropique
- Décrire la composition d'un système à l'aide des grandeurs physiques pertinentes : concentration molaire, fraction molaire, pression partielle.
- Exprimer l'activité d'une espèce chimique pure ou dans un mélange dans le cas de solutions aqueuses très diluées ou de mélanges de gaz parfaits.
- Exprimer le quotient réactionnel.
- Prévoir le sens de l'évolution spontanée d'un système chimique.
- Déterminer la composition chimique du système dans l'état final, en distinguant les cas d'équilibre chimique et de transformation totale, pour une transformation modélisée par une réaction chimique unique.

Questions de cours possibles en colle

- La loi des gaz parfaits et la loi de Dalton. Définir tous les paramètres, donner leur unité. Retrouver la loi de Dalton par le calcul.
- Activité chimique d'un constituant physico-chimique : définition et différentes expressions selon la nature du constituant considéré.
- Donner la loi d'évolution d'un système chimique. Application à la prévision du sens d'une transformation chimique.

Synthèse

Activité chimique d'une espèce

Activité chimique		
	État Physique du constituant	Expression de l'activité du constituant
	Gaz (pur ou dans un mélange)	$a_{X(g)} = \frac{P_X}{P^0}$ avec P_X la pression partielle de $X(g)$
	Liquide ou Solide pur (PAS dans un mélange)	$a_{X(l)} = a_{X(s)} = 1$
	Soluté dans une solution très diluée	$a_{X(aq)} = \frac{[X]}{c^0}$ avec $[X]$ la concentration molaire de $X(aq)$
	Solvant	$a_{ m solvant} = 1$
	• $c^0=1$ mol.L $^{-1}$ une concentration de référe • $P^0=1$ bar $=1\times 10^5$ Pa une pression de r	

Loi d'évolution d'un système chimique

Soit un système composé des espèces R_i et P_i où se déroule la réaction renversable :

$$\underbrace{\alpha_1 R_1 + \alpha_2 R_2 + \dots}_{\text{réactifs}} \xrightarrow[\text{sens indirect}]{\text{sens indirect}} \underbrace{\beta_1 P_1 + \beta_2 P_2 + \dots}_{\text{produits}}$$

Le quotient de réaction Q du système $pour\ cette\ réaction$ est :

$$Q = \underbrace{\frac{a(P_1)^{\beta_1} \times a(P_2)^{\beta_2} \times \dots}{a(R_1)^{\alpha_1} \times a(R_2)^{\alpha_2} \times \dots}} = \underbrace{\frac{\prod_{\text{produits}} a(P_i)^{\beta_i}}{\prod_{\text{réactifs}} a(R_i)^{\alpha_i}}}$$

$$Q \xrightarrow{\text{évolution}} V \xrightarrow{\text{evolution}} Q$$
 La réaction s'effectue dans le sens
$$V \xrightarrow{\text{equilibre}} V$$

Méthode pour déterminer l'état final d'un système chimique

