

Classifying Countries Based On Life Expectancy Using Machine Learning

DENNIS LIM KAM HO - 2540125131 EMMANUEL BRANDON HAMDI - 2501970941 MARCELLINO BONAMUTIAL - 2501965140

Muhammad Fikri Hasani, S. Kom., M.T. Karli Eka Setiawan S. Si., M.Kom.

OVERVIEW

- 1. Introduction
- 2. Literature Review
- 3. Methodology
- 4. Result & Discussion
- 5. Conclusion

Introduction Overview

- Advanced technology increasing rapidly, hence resulting rapid developments in various fields.
- One of the fields is the health sector, which can lead into improved human life expectancy.
- Many factors affect life expectancy, one of them is diseases and health.
- Knowing the factors such as diseases, health, and others, data mining techniques with clustering algorithm can determine apropriate machine learning algorithms.

Introduction Objectives

- Contributing to global efforts in improving life expectancy.
- Give valuable insight for policymakers in each nation, international organization, and or stakeholders that can guide targeted interventions, resource allocations, and policy development that aimed to eradicate poverty, enhance healthcare infrastructure, and promote investment in underprivileged countries.

Literature Review Life Expectancy

- Compare social categories within countries or regions.
- Affect country or region life expectancy:

Socioeconomic factor	population growth	mental psychology		
Mortality rates	social determinants	COVID-19		
low education level	.S	cancer		
unemployment rates	economic inequal	ity Social needs		
F	Pollution			
Treatable disease	Health fac	tors (unhealthy life style)		

Literature Review Clustering

- Used in various studies, such as predicting Healthy Life Expectancy factors (HLE), and realtionship between gender equality and how it affects health indicators.
- Proposed model:
 - Fuzzy C-Means
 - k-Means clustering
 - DBSCAN

Literature Review Clustering Models

DBSCAN

 Unable to detect anomalies in datasets (same trend or seasonality) -> not involved time series data

K-Means Clustering

Fast execution time and model performance

Fuzzy C-Means

Enhance model performance, can even surpassed other models that mention above.

Workflow

Dataset

GHO (Global Health Observatory)

Row: Genfer Difference (Male / Female)

Column:

- mental health conditions
- physical health conditions
- accident rates
- etc...

2000, 2010, 2015, 2019 (time series)

Dataset

	Country Y	ear Gende	r Life Expectancy at birth	BMI	Alcohol	Tuberculosis	Syphilis	Chlamydia	Gonorrhoea .	Р	oisonings	Falls	Fire, heat and hot substances	Drowning	Exposure to mechanical forces	Natural disasters	Other unintentional injuries	Self- harm	Interpersonal violence	Collective violence and legal intervention
0	Afghanistan 20)19 Ma	e 63.29	NaN	0.003	4.454469	0.050986	0.000000	0.000321		0.057880	0.620751	0.151339	0.801665	1.545577	0.067079	2.008284	0.904954	2.595521	12.843526
1	Afghanistan 20)19 Fema	e 63.16	NaN	0.022	5.384610	0.043190	0.001424	0.004201		0.325711	0.284562	0.196666	0.194389	0.056229	0.067360	1.233210	0.667653	0.621160	12.776039
2	Afghanistan 20)15 Ma	e 61.04	22.5	0.002	6.109258	0.056666	0.000000	0.000277		3.980983	0.056828	0.570412	0.151665	0.769096	1.382456	0.286633	0.768236	2.553344	16.771404
3	Afghanistan 20)15 Fema	e 62.35	24.0	0.014	7.384937	0.047379	0.001201	0.003568		0.310311	0.322669	0.183147	0.251741	0.052141	0.172981	1.203843	0.597401	0.576237	7.570893
4	Afghanistan 20)10 Ma	e 59.60	22.1	0.006	5.652315	0.051922	0.000000	0.000243		0.087785	0.697883	0.235376	1.370172	1.611014	0.219533	2.513913	0.692336	2.233730	5.684718
1459	Zimbabwe 20)15 Fema	e 60.96	25.3	9.290	0.457023	0.055791	0.004304	0.012291		0.250199	0.191028	0.479394	0.297724	0.081625	0.006214	0.802611	0.914977	0.431202	0.006617
1460	Zimbabwe 20)10 Ma	e 49.58	22.0	1.470	0.711036	0.089442	0.000000	0.001461		0.334334	0.282539	0.429810	0.650420	0.246179	0.000000	1.148517	1.587510	1.430862	0.007299
1461	Zimbabwe 20)10 Fema	e 53.21	25.1	7.150	0.464125	0.065319	0.006029	0.017061		0.253757	0.210764	0.536211	0.297708	0.087766	0.000000	0.940847	1.143750	0.394385	0.003225
1462	Zimbabwe 20	000 Ma	e 45.15	21.7	0.880	2.530362	0.066511	0.000000	0.000808		0.160531	0.165435	0.189768	0.277759	0.122977	0.041924	0.553637	0.822588	1.329588	0.033451
1463	Zimbabwe 20	000 Fema	e 48.12	24.7	4.220	1.337442	0.049303	0.005999	0.013202		0.145500	0.126618	0.327487	0.116338	0.063647	0.027507	0.562145	0.755036	0.333557	0.012363
4404	un v 4.47 ankumu																			

Methodology Preprocessing

- 1. Extract data from the 2019 Dataset
- 2. Remove columns that have many zeroes and are unrelated to reduce dimensionality
- 3. Columns that have many zeroes use mean imputation (inputting with mean value)
- 4. Separate base on gender for data analysis
- 5. Separate label, then stored since using unsupervised learning
- 6. Data is normalized (standard scaler), PCA

Methodology Models

DBSCAN

K-Nearest Neighbor

Fuzzy C-Means

Performance Metrics

Silhouette Score

Wrong

Cluster

Other

Right Cluster Cluster

Silhouette coefficient =
$$\frac{(b-a)}{max(a,b)}$$

Bouldin Davis Index

(DBI)

Optimal

$$DB = \frac{1}{n} \sum_{i=1}^{N} \max_{j \neq i} \left(\frac{\sigma i + \sigma j}{d(ci, cj)} \right)$$

Calinski-Harabasz Index

$$CHk = \frac{BCSM}{k - 1} \times \frac{n - k}{WCSM}$$

Performance Metrics

Silhouette Score

- | Wrong

Cluster

Other

1 Right

Cluster

Cluster

Silhouette coefficient =
$$\frac{(b-a)}{max(a,b)}$$

Davis Bouldin Index

O Optimal

(DBI)

$$DB = \frac{1}{n} \sum_{i=1}^{N} \max_{j \neq i} \left(\frac{\sigma i + \sigma j}{d(ci, cj)} \right)$$

Calinski-Harabasz Index

$$CHk = \frac{BCSM}{k - 1} \times \frac{n - k}{WCSM}$$

Result and Discussion Result

No	Model Name	Silhouette Score	Calinski- Harabasz score	Davies-Bouldin score
1	DBSCAN	0.7327	64.2857	1.8881
2	K-Means Clustering	0.7812	541.2260	0.3297
3	Fuzzy C-Means	0.7931	256.7199	0.8133

Result and Discussion Result

2 Cluster epsilon = 0.9

$$3$$
 Cluster $c = 3$

6 Cluster k = 6

Result and Discussion Result

DBScan

	Negara	Cluster
0	Afghanistan	0
1	Albania	0
2	Algeria	0
3	Angola	0
4	Antigua and Barbuda	0
178	Venezuela (Bolivarian Republic of)	0
179	Viet Nam	-1
180	Yemen	0
181	Zambia	0
182	Zimbabwe	0

Fuzzy C-Means

	Negara	Cluster
0	Afghanistan	0
1	Albania	0
2	Algeria	0
3	Angola	0
4	Antigua and Barbuda	0
178	Venezuela (Bolivarian Republic of)	0
179	Viet Nam	0
180	Yemen	0
181	Zambia	0
182	Zimbabwe	0
183 rc	ws × 2 columns	

K-Means

	Negara	Cluster
0	Afghanistan	0
1	Albania	0
2	Algeria	0
3	Angola	0
4	Antigua and Barbuda	0
178	Venezuela (Bolivarian Republic of)	0
179	Viet Nam	0
180	Yemen	0
181	Zambia	0
182	Zimbabwe	0

No	Model Name	Silhouette Score [8]	Silhouette Score This Research
1	K-Means Clustering	0.7260	0.7812
2	Fuzzy C-Means	0.8960	0.7931
No	Model Name	Calinski- Harabasz [8]	Calinski- Harabasz This Research
1	K-Means Clustering	354.4230	541.2260
2	Fuzzy C-Means	354.4230	256.7199

DBScan

Using silhouette score to determine the highest value was found at 0.9, with the minimum sample values used is 4, as shown in the graph. Hence resulting using the specific parameter.

K-Means

Using elbow to determine the WCSS with a range of cluster resulting the optimal cluster falls into the nuber of cluster of 6, just as shown in the paragraph.

K-Means

Also using silhouette score to determine how many cluster is optimal for K-means also resulting 6 cluster, as shown in the graph.

Fuzzy C-Means

Using silhouette score to determine the C values, the most optimal score is at c = 3, as shown in the graph.

Conclusion

- The k-Means clustering algorithm is the most optimal model in terms of performance, where it can exhibit a high level of separation and compactness in the clustering result. The model using three evaluation metrics resulted in Silhouette Score = 0.7327, Calinski-Harabasz score = 64.2857, and Davies-Bouldin score = 1.8881
- The model is using GHO (Global Health Observatory) as the dataset to determine the relationship between features.

