امتحانات شهادة الثانوية العامة فرع العلوم العامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

عدد المسائل: ستة مسابقة في الرياضيات الاسم: المدة: ٤ ساعات الرقم:

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الاجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (2points)

Dans l'espace rapporté à un repère orthonormé direct $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$,

on donne la droite (d) définie par : $\begin{cases} x = t+1 \\ y = -t+2 \\ z = 2t \end{cases}$ (t est un paramètre

réel) et le plan (P) d'équation x - y - 2z - 5 = 0.

- 1) Déterminer les coordonnées de E, point d'intersection de (d) et (P).
- 2) a- Ecrire une équation du plan (Q) perpendiculaire en E à (d).
 b- Donner un système d'équations paramétriques de la droite (D) contenue

dans (P) et perpendiculaire en E à (d).

3) I(2; 1; 2) est un point de (d). Déterminer les coordonnées de J symétrique de I par rapport à (D).

II-(3,5 points)

Dans le plan rapporté à un repère orthonormé (O; i, j), on donne la conique (C_m)

d'équation : $2mx^2 + (m+1)y^2 - 8(m-1)x - 2m - 1 = 0$ où m est un paramètre réel

différent de -1.

1) Pour quelle valeur de m la conique (C_m) est-elle une parabole ?

Déterminer alors son sommet, son foyer et sa directrice.

- 2) Dans cette question on prend m = 2.
 a- Déterminer la nature, le centre et les sommets de l'axe focal de (C₂).
 - b- La conique (C_2) coupe l'axe des ordonnées aux points G et L; écrire des équations des tangentes à (C_2) en ces points.
 - c- Calculer l'aire du domaine limité par (C_2) et son cercle principal
 - 3) Soit f la fonction donnée par $f(x) = \sqrt{\frac{3}{2} x^2}$ et (T) sa courbe représentative dans

le repère (O;
$$i$$
, j).

a- Démontrer que (T) est une partie d'une $\operatorname{courbe}(C_m)$; déterminer dans ce cas la

nature et les éléments de (C_m) .

b- On désigne par (D) le domaine limité par (T) et l'axe des abscisses.

Calculer le volume du solide de révolution engendré par la rotation de (D) autour de

l'axe des abscisses.

III- (2,5 points)

Dans un plan orienté on donne un triangle direct ABC rectangle en A et tel que

AB = 2cm et
$$(\overrightarrow{BC}; \overrightarrow{BA}) = \frac{\pi}{3} (2\pi)$$
.

Soit S la similitude directe qui transforme A en B et B en C.

1) Déterminer le rapport et l'angle de S.

- 2) a- Construire le point C' transformé de C par S. (donner les étapes de la construction) b- Calculer l'aire du triangle BCC'.
- 3) Le point O étant le milieu de [AB], on considère le repère orthonormé direct

$$(O; u, v)$$
 tel que $u = OB$.

- a- Donner la forme complexe de S.
- b- Déterminer l'affixe du point W centre de S .
- c- Soit \mathbf{S}^{-1} la transformation réciproque de \mathbf{S} . Donner la forme complexe de \mathbf{S}^{-1} .

IV- (2 points)

Le plan complexe est muni d'un repère orthonormé direct (O; u, v).

On désigne par A. P. et C. trais points de se plan d'offines respectives e

On désigne par A, B et C trois points de ce plan d'affixes respectives a, b et c.

1) Montrer que si le triangle ABC est rectangle en B alors le complexe $\frac{c-b}{a-b}$ est

 $imaginaire\ pur\ .$

2) Dans cette question, on suppose que $\,a=z\,\,,\,\,b=z^2\,$ et $\,c=z^4\,$ où $\,z\,$ est un complexe

quelconque.

- a- Résoudre l'équation $z^4 z = 0$.
- b- Pour quelles valeurs de z les points A, B et C sont-ils distincts deux à deux ?
- c- Démontrer que si le triangle ABC est rectangle en B, alors le point A

d'affixe z = x + iy décrit une conique dont on déterminera l'équation et la nature .

V- (3 points)

Une urne contient **neuf** boules:

trois blanches numérotées de 1 à 3

trois noires numérotées de 1 à 3

trois rouges numérotées de 1 à 3.

On tire simultanément et au hasard deux boules de l'urne.

Soit les événements suivants :

A : "Les deux boules tirées portent des numéros impairs".

B: "Les deux boules tirées sont de même couleur".

C: "Les deux boules tirées sont de couleurs différentes".

D : "Les **deux** boules tirées sont de couleurs différentes et portent des numéros impairs ".

1) Calculer les probabilités suivantes : P(A) , P(B) , $P(A \cap B)$ et P(A/B).

Les événements A et B sont-ils indépendants ?

- 2) a- Calculer P(C) et démontrer que P(D) = $\frac{1}{3}$.
- b- Les deux boules tirées sont de couleurs différentes, quelle est la probabilité

qu'elles portent des numéros impairs ?

3) Soit X la variable aléatoire ,(X ≥ 0) , égale à la valeur absolue de la différence entre

les deux numéros portés par les deux boules tirées.

Déterminer la loi de probabilité de X et calculer l'espérance mathématique E(X).

VI- (7 points)

Soit f_n la fonction définie sur IR par $f_n(x) = \frac{2e^{nx}}{1 + e^x} - 1$, où n est un entier naturel,

et (C_n) sa courbe représentative dans un repère orthonormé \rightarrow \rightarrow (O; i , j). Unité 2 cm.

- **A-** Dans cette partie on prend n = 1
 - 1) Calculer $\lim_{x \to +\infty} f_1(x)$ et $\lim_{x \to -\infty} f_1(x)$.
 - 2) Calculer $f'_1(x)$ et dresser le tableau de variations de f_1 .
 - 3) a- Démontrer que O est un point d'inflexion de (C_1) . b- Ecrire une équation de la tangente (d) en O à (C_1) .
 - 4) Tracer (d) et (C_1).
- B- Soit (C_0) la courbe représentative de la fonction f_0 , correspondant à n =0 , $\xrightarrow{}$ dans le même repère $(O;\;i\;,\;j\;).$
 - 1) Démontrer que la courbe $\,(C_0)$ est symétrique de la courbe $\,(C_1)$ par rapport à l'axe

des ordonnées.

- 2) Démontrer que (C_0) est symétrique de (C_1) par rapport à l'axe des abscisses.
- 3) Calculer, en cm^2 , l'aire du domaine limité par les courbes (C_1), (C_0) et les droites d'équations x=0 et x=1.
- C- Soit la suite (U_n) définie par $U_n = \int_0^1 f_n(x) dx$.
 - 1) Démontrer que $U_{n+1} + U_n = 2 \frac{e^n n 1}{n}$.
- 2) Calculer $\lim_{n\to +\infty} (U_{n+1}+U_n)$ et en déduire que la suite (U_n) ne peut pas être convergente .

SCIE	SCIENCES GENERALES MATH 2 ^{ème} session 2004		
Questions		Eléments de réponses	N
I	1	t+1+t-2-4t-5=0; $t=-3$; $E(-2;5;-6)$	1/2
	2-a-	$M(x; y; z)$ est un point de (Q) ssi \overrightarrow{EM} . $\overrightarrow{V}_d = 0$; (Q) : $x - y + 2z + 19 = 0$	1
	2-b-	La droite (D), de (P), passe par E et perpendiculaire à (d), elle est contenue dans (Q), donc c'est la droite d'intersection de (P) et (Q). (D) : $x = t - 7$; $y = t$, $z = -6$	1 ½
	3	(d) est perpendiculaire à (D) en E, donc J est le symétrique de I par rapport à E; E: milieu de [IJ], donc J(-6; 9; -14).	1
П	1	$\begin{array}{l} (C_m) \text{ est une parabole ssi } 2m \ (m+1) = 0 \ , \ donc \ m = 0 \ (car \ m \neq -1) \\ (C_o) : y^2 + 8x - 1 = 0 \ ; \ y^2 = -8(x - \frac{1}{8}) \ ; \qquad p = 4 \\ \\ Sommet \ S(\ \frac{1}{8}\ ; \ 0) \ ; \ foyer \ F(-\frac{15}{8}\ ; \ 0) \ ; \ directrice \ x = \frac{17}{8} \end{array}$	1 ½
	2-a-	$(C_2): 4x^2 + 3y^2 - 8x - 5 = 0 \; ; \frac{(x-1)^2}{\frac{9}{4}} + \frac{y^2}{3} = 1 \; ; \; a = \sqrt{3} \; \text{ et } b = \frac{3}{2}$ Ellipse ; Centre O'(1;0); sommets principaux (1, $\sqrt{3}$) et (1; $-\sqrt{3}$).	1
	2-b-	Si x = 0 alors y = $\sqrt{\frac{5}{3}}$ ou y = $-\sqrt{\frac{5}{3}}$; G(0; $\sqrt{\frac{5}{3}}$) et L(0; $-\sqrt{\frac{5}{3}}$) $8x + 6yy' - 8 = 0$; donc y' = $\frac{4 - 4x}{3y}$. $y'_G = \frac{4}{\sqrt{15}}$ et $y'_L = -\frac{4}{\sqrt{15}}$ $(T_G): y = \frac{4}{\sqrt{15}}x + \sqrt{\frac{5}{3}}$ et $(T_L): y = -\frac{4}{\sqrt{15}}x - \sqrt{\frac{5}{3}}$	1
	2-c-	A = aire(cercle principal) – aire(C ₂) = $\pi a^2 - \pi ab = 3 \pi (1 - \frac{\sqrt{3}}{2}) u^2$	1
	3-a-	$(T): y = \sqrt{\frac{3}{2} - x^2} ; (T) \text{ est une partie de la courbe d'équation}$ $y^2 = \frac{3}{2} - x^2 \text{ ou } x^2 + y^2 = \frac{3}{2} \text{ qui est celle de } (C_1).$ $(T) \text{ est une partie du cercle } (C_1) \text{ de centre O et de rayon } r = \sqrt{\frac{3}{2}} \ .$	1 ½
		$V = \pi \int_{-\sqrt{\frac{3}{2}}}^{\sqrt{\frac{3}{2}}} f^2(x) dx = 2\pi \int_0^{\sqrt{\frac{3}{2}}} (\frac{3}{2} - x^2) dx = 2\pi \left[\frac{3}{2} x - \frac{x^3}{3} \right]_0^{\sqrt{\frac{3}{2}}} = \pi \sqrt{6} \ u^3$	1

		$r = \sqrt{\frac{3}{2}}$; $V = \frac{4}{3}\pi r^3 = \pi \sqrt{6} u^3$	
	1	$S(A) = B ; S(B) = C .$ $ABC \text{ est un triangle demi - équilatéral, donc } BC = 4 \text{ cm.}$ $k = \frac{BC}{AB} = 2 ; \alpha = (\overrightarrow{AB}, \overrightarrow{BC}) = \frac{2\pi}{3} (2\pi)$	1
	2-a-	$S(B) = C \text{ et } S(C) = C',$ $CC' = k BC = 2BC = 8cm$ $(\overrightarrow{BC}, \overrightarrow{CC'}) = \frac{2\pi}{3} \text{ ; donc } (\overrightarrow{CB}, \overrightarrow{CC'}) = \frac{2\pi}{3} - \pi = -\frac{\pi}{3}.$ $C'\text{ est le point d'intersection du cercle } (C; 8) \text{ et de la demi droite } [Ct) \text{ telle}$ $que(\overrightarrow{CB}, \overrightarrow{Ct}) = -\frac{\pi}{3}.$ $\blacktriangleright \text{Ou : Le triangle } BCC' \text{ est directement semblable à ABC, il est donc}$ $\text{demi - équilatéral avec } (\overrightarrow{BC}, \overrightarrow{BC'}) = \frac{\pi}{2}.$	1
III	2-b-	S(B) = C, $S(A) = B$ et $S(C) = C'$, $aire(BCC') = k^2 \times aire(ABC) = 4 \times \frac{1}{2} AB \times AC = 8\sqrt{3} cm^2$.	1
	3-a-	$z_{A} = -1, z_{B} = 1; z' = 2e^{\frac{i^{2\pi}}{3}}z + b = (-1 + i\sqrt{3})z + b$ S(A) = B donne b = i\sqrt{3}; donc z' = (-1 + i\sqrt{3})z + i\sqrt{3}.	1
	3-b-	$z_{w} = (-1 + i\sqrt{3})z_{w} + i\sqrt{3}$; $z_{w} = -\frac{3}{7} + \frac{2i\sqrt{3}}{7}$.	1/2
		$z = \frac{z' - i\sqrt{3}}{-1 + i\sqrt{3}} = (\frac{-1 - i\sqrt{3}}{4})z' - \frac{3}{4} + i\frac{\sqrt{3}}{4}$ La forme complexe de S ⁻¹ est : z' = $(\frac{-1 - i\sqrt{3}}{4})z - \frac{3}{4} + i\frac{\sqrt{3}}{4}$. • Ou : S ⁻¹ est la similitude (W; $\frac{1}{2}$; $-\frac{2\pi}{3}$); z' $-z_w = \frac{1}{2}e^{-i\frac{2\pi}{3}}(z - z_w)$	1/2
IV	1	Si ABC est rectangle en B , alors $(\overrightarrow{BA},\overrightarrow{BC}) = \frac{\pi}{2}(\pi)$, donc $\arg(\frac{z_{\overrightarrow{BC}}}{z_{\overrightarrow{BA}}}) = \frac{\pi}{2}(\pi) \text{c.à.d} \frac{z_{\overrightarrow{C}} - z_{\overrightarrow{B}}}{z_{\overrightarrow{A}} - z_{\overrightarrow{B}}} \text{ est imaginaire pur , soit } \frac{c - b}{a - b}$ est imaginaire pur.	1
	2-a	$z^4 - z = 0 \text{ équivaut à } z(z^3 - 1) = 0$ $z = 0, z = 1, z = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = j \text{ ou } z = -\frac{1}{2} - i\frac{\sqrt{3}}{2} = j^2.$ A, B et C sont distincts deux à deux ssi $z \neq z^2, z \neq z^4$ et $z^2 \neq z^4$	1/2
	2-b	A, B et C sont distincts deux à deux ssi $z \neq z^2$, $z \neq z^4$ et $z^2 \neq z^4$	1

		$z \in \mathbb{C} - \left\{0, 1, -1, -\frac{1}{2} + i\frac{\sqrt{3}}{2}, -\frac{1}{2} - i\frac{\sqrt{3}}{2}\right\}$	
		Le triangle ABC est rectangle en B alors $\frac{z^4-z^2}{z-z^2}$ est imaginaire pur ; $\frac{z^4-z^2}{z-z^2}=-z(z+1)=-x^2+y^2-x-i(2xy+y)$ $\frac{z^4-z^2}{z-z^2}$ est imaginaire pur lorsque $-x^2+y^2-x=0$ et $2xy+y\neq 0$ A décrit une hyperbole d'équation $x^2-y^2+x=0$.	1 1/2
V	1	Nombre de cas possibles $C_9^2 = 36$ $P(A) = \frac{C_6^2}{C_9^2} = \frac{15}{36} = \frac{5}{12}$ $P(B) = P(2b) + P(2n) + p(2r) = \frac{3C_3^2}{C_9^2} = \frac{9}{36} = \frac{1}{4}$ $A \cap B = \{ b_1b_3 ; n_1n_3 ; r_1r_3 \} ; P(A \cap B) = \frac{3}{36} = \frac{1}{12}.$ $P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{1/12}{1/4} = \frac{1}{3}$ $P(A/B) \neq P(A), \text{ donc A et B ne sont pas indépendants}$	2
	2-a-	$C = \overline{B}, \text{ donc } P(C) = 1 - P(B) = \frac{3}{4}.$ $D = A \cap \overline{B}; p(D) = P(A) - P(A \cap B) = \frac{5}{12} - \frac{1}{12} = \frac{1}{3}$ $P(D) = Ou : On compte 12 cas favorables parmi 36; P(D) = \frac{12}{36} = \frac{1}{3}$	1
	2-b-	$P(A/C) = \frac{P(A \cap C)}{P(C)} = \frac{P(D)}{P(C)} = \frac{1/3}{3/4} = \frac{4}{9}.$	1
	3	Les valeurs possibles de X sont 0 ; 1 ; 2. $P(X = 0) = P(\text{les deux boules portent le même numéro}) = \frac{3C_3^2}{C_9^2} = \frac{9}{36} = \frac{1}{4}$ $P(X = 2) = \frac{C_3^1 \times C_3^1}{C_9^2} = \frac{9}{36} = \frac{1}{4} \; ; P(X = 1) = 1 - (\frac{1}{4} + \frac{1}{4}) = 1 - \frac{1}{2} = \frac{1}{2}$ $\boxed{X = x_i 0 1 2}$ $p_i \frac{1}{4} \frac{1}{2} \frac{1}{4}$ $E(X) = 1 \; .$	2

			1
VI	A-1-	$f_{1}(x) = \frac{2e^{x}}{1 + e^{x}} - 1$ $\lim_{x \to +\infty} f_{1}(x) = \lim_{x \to +\infty} \frac{2}{e^{-x} + 1} - 1 = 2 - 1 = 1 ; \lim_{x \to -\infty} f_{1}(x) = -1$	1
		$f'_{1}(x) = \frac{2e^{x}}{(1+e^{x})^{2}} \qquad \frac{x - \infty + \infty}{f_{1}'(x)} + \frac{f_{1}'(x) - 1}{f_{1}(x)}$	1 ½
	A-3- a	$f_1''(x) = \frac{2e^x(1-e^x)}{(1+e^x)^3} ; f_1''(0) = 0 ; f_1''(x) > 0 \text{ pour } x < 0 \text{ et } f_1''(x) < 0$ $\text{pour } x > 0 \text{ , donc } O(0; 0) \text{ est un point d'inflexion de } (C_1).$	1
	A-3- b	(d): $y = f_1'(0).x = \frac{1}{2}x$.	1
	A-4	y = 1 : A.H $y = -1 : A.H$	2
	B-1-	$f_0(x) = \frac{2}{1+e^x} - 1 \; ; \; f_1(-x) = \frac{2e^{-x}}{1+e^{-x}} - 1 = \frac{2}{e^x + 1} - 1 = f_0(x) \; ,$ donc la courbe (C_0) est symétrique de (C_1) par rapport à l'axe des ordonnées.	1
	B-2-	$f_1(x) + f_0(x) = \frac{2e^x}{1 + e^x} - 1 + \frac{2}{1 + e^x} - 1 = \frac{2(e^x + 1)}{1 + e^x} - 2 = 0,$ donc (C ₀) est symétrique de (C ₁) par rapport à l'axe des abscisses.	1
	B-3-	L'aire demandée est égale au double de l'aire du domaine limité par (C_1) , les droites : $x = 0$, $x = 1$ et l'axe des abscisses. $\int_0^1 f_1(x) dx = \int_0^1 (\frac{2e^x}{1+e^x} - 1) . dx = \left[2\ln(1+e^x) - x \right]_0^1 = 2\ln\frac{1+e}{2} - 1$ $A = 2 \int_0^1 f_1(x) . dx \ u^2 = (4\ln\frac{1+e}{2} - 2) u^2 = (16\ln\frac{1+e}{2} - 8) \text{ cm}^2$	1 ½
	C-1-	$u_{n+1} + u_n = \int_0^1 \left(\frac{2e^{(n+1)x}}{e^x + 1} + \frac{2e^{nx}}{e^x + 1} - 2\right) dx = \int_0^1 \left[\frac{2e^{nx}(e^x + 1)}{e^x + 1} - 2\right] dx$ $= \int_0^1 \left[2e^{nx} - 2\right] dx = \left[\frac{2}{n}e^{nx} - 2x\right]_0^1 = 2\frac{e^n - n - 1}{n}.$	2

	C-2-	$\lim_{n\to +\infty} (u_{n+1} + u_n) = \lim_{n\to +\infty} (2\frac{e^n}{n} - 2 - \frac{2}{n}) = +\infty.$ Si (u_n) converge vers un réel ℓ alors $(u_{n+1} + u_n)$ converge vers le réel 2ℓ ; ce qui est impossible.	2	
--	------	--	---	--