INTELIGÊNCIA ARTIFICIAL

Parte 9

Lógica Proposicional

Representação

Semântica

Prof. Me. Celso Gallão - 2015

1.5 – Representação Semântica:

 Para estabelecer uma representação semântica a partir dos argumentos definidos, recorre-se ao uso da Tabela-Verdade, que apresenta todos os possíveis valores lógicos da proposição composta.

 A tabela-verdade de uma proposição composta com n proposições simples, contém 2ⁿ linhas.

1.5 – Representação Semântica:

p	q	¬р	p^q	p ^v q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

 O significado de uma fórmula bem formada é derivado da interpretação de seus símbolos proposicionais e da tabela-verdade dos conectivos lógicos.

1.5 – Representação Semântica:

p	q	¬р	p^q	p ^v q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

 Deve-se <u>evitar</u> termos imprecisos como <u>possivelmente</u>, alguns, quase sempre, a maioria, etc., pois <u>não</u> se tornarão sentenças apropriadas para a lógica proposicional.

Exemplo ruim:

Poucos funcionários possuem filhos.

1.5 – Representação Semântica:

p	q	¬р	p^q	p ^v q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

• A tabela-verdade para *não*, *e*, *ou* é intimamente relacionada com as nossas intuições sobre as palavras.

р	q	¬р	p^q	p∨q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

- Se **p** for bem formada, então ¬**p**:
 - será <u>verdadeiro</u> quando p for <u>falso</u>;
 - será <u>falso</u> quando p for <u>verdadeiro</u>.
- Ou seja, a negação resulta na troca do valor-verdade.

р	q	¬р	p^q	p∨q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

- Se p, q forem bem formadas, então (p ∧ q):
 - será <u>verdadeiro</u> quando p e q forem <u>verdadeiros</u>;
 - será <u>falso</u> quando p, q, ou ambos forem <u>falsos</u>.
- Ou seja, a conjunção só é verdadeira se ambos os argumentos forem verdadeiros.

р	q	¬р	p^q	p^q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

- Se p, q forem bem formadas, então (p vq):
 - será <u>verdadeiro</u> quando p ou q, ou ambos forem <u>verdadeiros</u>;
 - será <u>falso</u> quando p e q forem <u>falsos</u>.
- Ou seja, a disjunção só é falsa se ambos os argumentos forem falsos.

р	q	¬р	p^q	p∨q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

- Se p, q forem bem formadas, então (p ⊕ q):
 - será <u>verdadeiro</u> quando p e q tiverem valores-verdade <u>iguais</u>;
 - será <u>falso</u> quando p e q tiverem valores-verdade <u>diferentes</u>.
- Ou seja, trata-se do <u>ou-exclusivo</u>, ou ainda da disjunção exclusiva, sendo verdadeiro quando <u>apenas um</u> dos argumentos for verdadeiro.

1.5 – Representação Semântica:

р	q	¬р	p^q	p ^v q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

- A tabela-verdade para

 pode parecer enigmática...
- Mas, entenda que a lógica proposicional não exige qualquer relação causa-efeito entre p, q; por exemplo:

p: 5 é ímpar.

q: Tóquio é a capital do Japão.

$$p \rightarrow q \models 1$$

1.5 – Representação Semântica:

р	q	¬р	p^q	p ^v q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

 Observe também que toda implicação é verdadeira sempre que seu antecedente é falso, por exemplo:

p: 5 é par.

q: Zé é inteligente.

p → q ⊨ 1, independente de Zé ser inteligente (ou não), pois se
 p é verdadeira afirma-se que q é verdadeira, mas se
 p é falsa não afirma-se nada!

1.5 – Representação Semântica:

р	q	¬р	p^q	p ^v q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

- Se p, q forem bem formadas, então $(p \rightarrow q)$:
 - será <u>verdadeiro</u> quando p for <u>falso</u> ou q for <u>verdadeiro</u>;
 - será <u>falso</u> quando p for verdadeiro e q for <u>falso</u>.

Ou seja, o único modo de (p → q) ser <u>falso</u> é o argumento q ser <u>falso</u> quando p é <u>verdadeiro</u>.

1.5 – Representação Semântica:

р	q	¬р	p^q	p ^v q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

Exemplos:

p: O mês de maio tem 31 dias. (V)

q: A terra é plana. (F)

 $p \rightarrow q$: Se o mês de maio tem 31 dias, então a terra é plana. (F)

$$f(p \rightarrow q) =$$

 $f(p) \rightarrow f(q) =$
 $V \rightarrow F$

1.5 – Representação Semântica:

р	q	¬р	p^q	p ^v q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

Exemplos:

p: O mês de maio tem 31 dias. (V)

q: A terra é uma esfera. (V)

 $p \rightarrow q$: Se o mês de maio tem 31 dias, então a terra é esférica. (V)

$$f(p \rightarrow q) =$$

$$f(p) \rightarrow f(q) =$$

$$V \rightarrow V$$

р	q	¬p	p^q	p ^v q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

- Se p, q forem bem formadas, então $(p \leftrightarrow q)$:
 - será <u>verdadeiro</u> quando p e q tiverem o valores-verdade <u>iguais</u>;
 - será <u>falso</u> quando p e q tiverem o valores-verdade <u>diferentes</u>.
- Ou seja, a tabela-verdade para
 → mostra que ela é
 sempre verdadeira quando p → q e q → p, ou seja, é o
 chamado se e somente se (sse), por exemplo:

1.5 – Representação Semântica:

р	q	¬p	p^q	p ^v q	p xor q	p→q	p↔q
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

No Mundo de Wumpus, uma sala tem **Brisa** se em alguma sala vizinha tem um **Poço** e uma sala tem um **Poço** se alguma sala vizinha tem **Brisa**, então:

$$B_{2,1} \leftrightarrow (P_{2,2} \lor P_{3,1})$$

$$e$$

$$\neg B_{2,1} \leftrightarrow \neg (P_{2,2} \lor P_{3,1})$$

1.5 – Representação Semântica:

Tautologia

 Uma fórmula bem formada p é uma tautologia quando ela for sempre verdadeira, independente das atribuições de valores-verdade, por exemplo:

р	¬р	р∨¬р
0	1	1
0	1	1
1	0	1
1	0	1

1.5 – Representação Semântica:

Contradição

 Uma fórmula bem formada p é uma contradição quando ela for sempre falsa, independente das atribuições de valores-verdade:

р	¬р	р^¬р
0	1	0
0	1	0
1	0	0
1	0	0

1.5 – Representação Semântica:

Contingente

• Uma fórmula bem formada **p** é contingente quando ela não for <u>nem Tautologia</u> e <u>nem Contradição</u>.

1.6 – Validade de Argumentos

- Um argumento da forma $\{\alpha_1, ..., \alpha_n\} \models \beta$ é válido se e somente se a fórmula $\{\alpha_1 \land ... \land \alpha_n\} \rightarrow \beta$ é uma tautologia.
- Se um argumento $\delta \models \theta$ é válido, dizemos que θ é uma consequência lógica de δ .

1.6 – Validade de Argumentos

Exemplo 1: verifique a validade do argumento:

- (1) Se chove então a pista fica escorregadia.
- (2) Está chovendo.
- (3) Logo, a pista está escorregadia.

1.6 – Validade de Argumentos

Exemplo 1: verifique a validade do argumento:

- (1) Se chove então a pista fica escorregadia.
- (2) Está chovendo.
- (3) Logo, a pista está escorregadia.

p: chove

q: pista escorregadia

1.6 – Validade de Argumentos

Exemplo 1: verifique a validade do argumento:

- (1) Se chove então a pista fica escorregadia.
- (2) Está chovendo.
- (3) Logo, a pista está escorregadia.

p: chove

q: pista escorregadia

Representação do Argumento: $\{p \rightarrow q, p\} \models q$

1.6 – Validade de Argumentos

Exemplo 1: verifique a validade do argumento:

- (1) Se chove então a pista fica escorregadia.
- (2) Está chovendo.
- (3) Logo, a pista está escorregadia.

p: chove

q: pista escorregadia

Representação do Argumento: $\{p \rightarrow q, p\} \models q$

<u>Verificação</u> do Argumento: $((p \rightarrow q) \land p) \rightarrow q$

р	q	$p \rightarrow q$	$(p \rightarrow q)^p$	$((p \rightarrow q)^p) \rightarrow q$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

1.6 – Validade de Argumentos

Exemplo 1: verifique a validade do argumento:

- (1) Se chove então a pista fica escorregadia.
- (2) Está chovendo.
- (3) Logo, a pista está escorregadia.

p: chove

q: pista escorregadia

Representação do Argumento: $\{p \rightarrow q, p\} \models q$

<u>Verificação</u> do Argumento: $((p \rightarrow q) \land p) \rightarrow q$

р	q	$p \rightarrow q$	$(p \rightarrow q)^p$	((p	-, d)., p) → q
0	0	1	0		1	
0	1	1	0		1	
1	0	0	0		1	
1	1	1	1		1	

TAUTOLOGIA, argumento válido!

1.6 – Validade de Argumentos

Exemplo 2: alterando o exemplo 1, da seguinte forma:

1.6 – Validade de Argumentos

Exemplo 2: alterando o exemplo 1, da seguinte forma:

- (1) Se chove então a pista fica escorregadia.
- (2) <u>Não está chovendo</u>.
- (3) Logo, a pista **não está escorregadia**.

1.6 – Validade de Argumentos

Exemplo 2: alterando o exemplo 1, da seguinte forma:

- (1) Se chove então a pista fica escorregadia.
- (2) Não está chovendo.
- (3) Logo, a pista não está escorregadia.

p: chove

q: pista escorregadia

1.6 – Validade de Argumentos

Exemplo 2: alterando o exemplo 1, da seguinte forma:

- (1) Se chove então a pista fica escorregadia.
- (2) Não está chovendo.
- (3) Logo, a pista não está escorregadia.

p: chove

q: pista escorregadia

Representação do Argumento: $\{p \rightarrow q, \neg p\} \models \neg q$

1.6 – Validade de Argumentos

Exemplo 2: alterando o exemplo 1, da seguinte forma:

- (1) Se chove então a pista fica escorregadia.
- (2) Não está chovendo.
- (3) Logo, a pista **não está escorregadia**.

p: chove

q: pista escorregadia

Representação do Argumento: $\{p \rightarrow q, \neg p\} \models \neg q$

<u>Verificação</u> do Argumento: $((p \rightarrow q) \land \neg p) \rightarrow \neg q$

1.6 – Validade de Argumentos

Exemplo 2: alterando o exemplo 1, da seguinte forma:

- (1) Se chove então a pista fica escorregadia.
- (2) Não está chovendo.
- (3) Logo, a pista **não está escorregadia**.

p: chove

q: pista escorregadia

Representação do Argumento: $\{p \rightarrow q, \neg p\} \models \neg q$

<u>Verificação</u> do Argumento: $((p \rightarrow q) \land \neg p) \rightarrow \neg q$

р	q	¬р	¬q	$p \rightarrow q$	$(p \rightarrow q) \land \neg p$	$((p \rightarrow q) \land \neg p) \rightarrow \neg q$
0	0	1	1	1	1	1
0	1	1	0	1	1	0
1	0	0	1	0	0	1
1	1	0	0	1	0	1

1.6 – Validade de Argumentos

Exemplo 2: alterando o exemplo 1, da seguinte forma:

- (1) Se chove então a pista fica escorregadia.
- (2) Não está chovendo.
- (3) Logo, a pista **não está escorregadia**.

p: chove

q: pista escorregadia

<u>Representação</u> do Argumento: $\{p \rightarrow q, \neg p\} \models \neg q$ CONTINGENTE, <u>Verificação</u> do Argumento: $((p \rightarrow q) \land \neg p) \rightarrow \neg q_{não}$ válido!

р	q	¬р	¬q	$p \rightarrow q$	$(p \rightarrow q) \land \neg p$	((p →	14- VIS	→ ¬q
0	0	1	1	1	1		1	
0	1	1	0	1	1		0	
1	0	0	1	0	0		1	
1	1	0	0	1	0		1	

1.7 - Inferência

- O objetivo da inferência em lógica proposicional é decidir se um argumento é uma consequência lógica de suas premissas verdadeiras.
- Assim, deve-se tomar todas as premissas verdadeiras de cada modelo e verificar se sua consequência lógica também é verdadeira.

1.7 – Inferência

Siga os passos:

- 1. Construa a tabela da verdade;
- 2. Identifique as colunas das premissas e da conclusão;
- 3. Identifique as linhas críticas (onde todas as premissas são verdadeiras);
- 4. Para cada linha crítica verifique se a conclusão do argumento é verdadeira.
 - (a) Se for para todas as linhas críticas então a forma do argumento é válida.
 - (b) Se existir pelo menos uma linha crítica com conclusão falsa então a forma do argumento é inválida.

1.7 – Inferência

Retorne ao Exemplo 2 (Validade de Argumento):

$$\{p \rightarrow q, \neg p\} \models \neg q$$

temos: $((p \rightarrow q) \land \neg p) \rightarrow \neg q$

PREMISSAS .

		K		A		CONCLUSÃO
р	q	¬р	¬q	$p \rightarrow q$	$(p \rightarrow q) \land \neg p$	$((p \rightarrow q) \land \neg p) \rightarrow \neg q$
0	0	1	1	1	1	1
0	1	1	0	1	1	0
1	0	0	1	0	0	1
1	1	0	0	1	0	1

1.7 – Inferência

Retorne ao Exemplo 2 (Validade de Argumento):

$$\{p \rightarrow q, \neg p\} \models \neg q$$

temos: $((p \rightarrow q) \land \neg p) \rightarrow \neg q$

		1	PREMISSA	S		CONCLUSÃO
р	q	¬р	¬q	$p \rightarrow q$	(p → q) ^ ¬p	$((p \rightarrow q) \land \neg p) \rightarrow \neg q$
0	0	1	1	1	1	
0	1	1	0	1	1	○
1	0	0	1	0	0	1
1	1	0	0	1	0	1

LINHAS CRÍTICAS

1.7 – Inferência

Retorne ao Exemplo 2 (Validade de Argumento):

$$\{p \rightarrow q, \neg p\} \models \neg q$$

temos: $((p \rightarrow q) \land \neg p) \rightarrow \neg q$

ŗ)	q	¬р	¬q	$p \rightarrow q$	$(p \rightarrow q) \land \neg p$	$((p \rightarrow q) \land \neg p) \rightarrow \neg q$
C)	0	1	1	1	1	1
C)	1	1	0	1	1	0
1	1	S	0	1	0	0	1
1	1	1	0	0	1	0	1

INFERÊNCIA: não chove, pista não escorregadia.

1.7 – Inferência: *Modus Ponens* (Método de Afirmar)

É a regra de inferência mais conhecida:

$$\{p \rightarrow q, p\} \models q$$

Por exemplo:

- (1) Se o último dígito de um nº é 0 então este nº é divisível por 10.
- (2) O último dígito deste nº é 0.
- (3) Logo, este nº é divisível por 10.

p: o último dígito de um nº é 0

q: nº é divisível por 10

1.7 – Inferência: *Modus Ponens* (Método de Afirmar)

É a regra de inferência mais conhecida:

$$\{p \rightarrow q, p\} \models q$$

Por exemplo:

- (1) Se o último dígito de um nº é 0 então este nº é divisível por 10.
- (2) O último dígito deste nº é 0.
- (3) Logo, este nº é divisível por 10.

p: o último dígito de um nº é 0

q: nº é divisível por 10

1.7 - Inferência: *Modus Tollens* (Método de Negar)

É uma regra de inferência por negação:

$$\{p \rightarrow q, \neg p\} \models \neg q$$

Por exemplo:

- (1) Se Zeus é humano então Zeus é mortal.
- (2) Zeus não é mortal.
- (3) Logo, Zeus não é humano.

p: Zeus é humano

q: Zeus é mortal

1.7 - Inferência: *Modus Tollens* (Método de Negar)

É uma regra de inferência por negação:

$$\{p \rightarrow q, \neg p\} \models \neg q$$

Por exemplo:

- (1) Se Zeus é humano então Zeus é mortal.
- (2) Zeus não é mortal.
- (3) Logo, Zeus não é humano.

p: Zeus é humano

q: Zeus é mortal

1.7 – Inferência: *Diversos Modelos*

MODUS PONENS

	$p \to q$;
	p;
· · ·	q.

MODUS TOLLENS

$p \rightarrow q$		
$\neg q$;		
$\mid \cdot \cdot \cdot \mid \neg p \cdot$		

ADIÇÃO DISJUNTIVA

p;	q;
$\therefore p \lor q.$	$\therefore p \lor q.$

SIMPLIFICAÇÃO CONJUNTIVA

$p \wedge q$;	$p \wedge q$;
\dot{p} .	q .

ADIÇÃO CONJUNTIVA

	p;
	q;
· ·	$p \wedge q$.

SILOGISMO DISJUNTIVO

$p \lor q$;	$p \lor q$;
$\neg q;$	$\neg p$;
$\therefore p$.	$\dot{\cdot}$ q.

SILOGISMO HIPOTÉTICO

	p o q;
	$q \rightarrow r$;
ļ <i>.</i>	$p \rightarrow r$.

DILEMA

```
egin{array}{c} pee q;\ p	o r;\ q	o r;\ \ddots r. \end{array}
```

CONTRADIÇÃO

```
\begin{array}{ccc}
\neg p \to c;\\
\vdots & p.
\end{array}
```

Extraído de Fundamentos da Lógica Proposicional, UFMG/ICEx/DCC

2.1 – Conjunto de Sentenças

- Uma base de conhecimento é um conjunto de sentenças, como por exemplo:
 - (1) Todos os habitantes natural da Lua são extraterrestres.
 - (2) Todos nerds são habitantes natural da Lua.
 - (3) Logo, nerds são extraterrestres.

p: habitante natural da Lua

q: extraterrestres

r: nerds

$$\{p \rightarrow q, r \rightarrow p\} \models (r \rightarrow q)$$

2.1 – Conjunto de Sentenças

 Uma base de conhecimento lógica é uma conjunção dessas sentenças, como por exemplo:

$$((p \rightarrow q) \land (r \rightarrow p)) \rightarrow (r \rightarrow q)$$

- É evidente que os *nerds* não são extraterrestres, contudo, o argumento tem uma forma válida:
 - Se todo o A é B e todo o C é A, então todo C é B.

р	q	r	$p \rightarrow q$	$r \rightarrow p$	$r \rightarrow q$	$(p \rightarrow q) \land (r \rightarrow p)$	$((p \rightarrow q) \land (r \rightarrow p)) \rightarrow (r \rightarrow q)$
0	0	0	1	1	1	1	1
0	0	1	1	0	0	0	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1
1	0	1	0	0	0	0	1
1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

Se
$$B_{1,2}$$
 \longleftrightarrow $(P_{2,2} \lor P_{1,3})$
Se $F_{1,2}$ \longleftrightarrow $(W_{2,2} \lor W_{1,3})$

Inteligência Artificial – Parte 9 – Prof. Celso Gallão – Slide 46

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

Se
$$B_{1,2}$$
 \leftrightarrow $(P_{2,2} \lor P_{1,3})$
Se $F_{1,2}$ \leftrightarrow $(W_{2,2} \lor W_{1,3})$
Se $B_{2,1}$ \leftrightarrow $(P_{2,2} \lor P_{3,1})$
Se $F_{2,1}$ \leftrightarrow $(W_{2,2} \lor W_{3,1})$

Inteligência Artificial – Parte 9 – Prof. Celso Gallão – Slide 47

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

Se
$$B_{1,2}$$
 \leftrightarrow $(P_{2,2} \lor P_{1,3})$
Se $F_{1,2}$ \leftrightarrow $(W_{2,2} \lor W_{1,3})$
Se $B_{2,1}$ \leftrightarrow $(P_{2,2} \lor P_{3,1})$
Se $F_{2,1}$ \leftrightarrow $(W_{2,2} \lor W_{3,1})$
Se $B_{2,2}$ \leftrightarrow $(P_{1,2} \lor P_{2,1} \lor P_{3,2} \lor P_{2,3})$
Se $F_{2,2}$ \leftrightarrow $(W_{1,2} \lor W_{2,1} \lor W_{3,2} \lor W_{2,3})^3$
• [1,1]: [0,0,0,0,0]

2.2 – Base de Conhecimento: Mundo de Wumpus

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

```
Se B_{1,2} \leftrightarrow (P_{2,2} \lor P_{1,3})
Se F_{1,2} \leftrightarrow (W_{2,2} \vee W_{1,3})
 Se B_{2,1} \leftrightarrow (P_{2,2} \lor P_{3,1})
 Se F_{2,1} \leftrightarrow (W_{2,2} \vee W_{3,1})
 Se B_{2,2} \leftrightarrow (P_{1,2} \lor P_{2,1} \lor P_{3,2} \lor P_{2,3})
Se F_{2,2} \leftrightarrow (W_{1,2} \vee W_{2,1} \vee W_{3,2} \vee W_{2,3})^3
• [1,1]=[0,0,0,0,0]
• [2,1]<del>=</del>[0,1,0,0,0]
```

2.2 – Base de Conhecimento: Mundo de Wumpus

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

```
Se B_{1,2} \leftrightarrow (P_{2,2} \lor P_{1,3})
 Se F_{1,2} \leftrightarrow (\mathbf{W}_{2,2} \vee W_{1,3})
 Se B_{2,1} \leftrightarrow (P_{2,2} \lor P_{3,1})
 False F_{2,1} \leftrightarrow (W_{2,2} \lor W_{3,1})
 Se B_{2,2} \longleftrightarrow (P_{1,2} \lor P_{2,1} \lor P_{3,2} \lor P_{2,3})
 Se F_{2,2} \leftrightarrow (W_{1,2} \vee W_{2,1} \vee W_{3,2} \vee W_{2,3})^3
• [1,1]=[0,0,0,0,0]
• [2,1]<del>=</del>[0,1,0,0,0]
```

2.2 - Base de Conhecimento: Mundo de Wumpus

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

Se
$$B_{1,2}$$
 \leftrightarrow $(P_{2,2} \lor P_{1,3})$
Se $F_{1,2}$ \leftrightarrow $(\textbf{W}_{2,2} \lor W_{1,3})$
True $B_{2,1}$ \leftrightarrow $(P_{2,2} \lor P_{3,1})$?

False $F_{2,1}$ \leftrightarrow $(\textbf{W}_{2,2} \lor \textbf{W}_{3,1})$
Se $B_{2,2}$ \leftrightarrow $(P_{1,2} \lor P_{2,1} \lor P_{3,2} \lor P_{2,3})$
Se $F_{2,2}$ \leftrightarrow $(\textbf{W}_{1,2} \lor \textbf{W}_{2,1} \lor \textbf{W}_{3,2} \lor \textbf{W}_{2,3})^3$
• $[1,1]=[0,0,0,0,0]$
• $[2,1]:[0,1,0,0,0]$

2.2 – Base de Conhecimento: Mundo de Wumpus

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

Se
$$B_{1,2}$$
 \leftrightarrow $(P_{2,2} \lor P_{1,3})$
Se $F_{1,2}$ \leftrightarrow $(W_{2,2} \lor W_{1,3})$
True $B_{2,1}$ \leftrightarrow $(P_{2,2} \lor P_{3,1})$?
False $F_{2,1}$ \leftrightarrow $(W_{2,2} \lor W_{3,1})$?
Se $B_{2,2}$ \leftrightarrow $(P_{1,2} \lor P_{2,1} \lor P_{3,2} \lor P_{2,3})$
Se $F_{2,2}$ \leftrightarrow $(W_{1,2} \lor W_{2,1} \lor W_{3,2} \lor W_{2,3})^3$
• $[1,1]=[0,0,0,0,0]$
• $[2,1]=[0,1,0,0,0]$

2.2 – Base de Conhecimento: Mundo de Wumpus

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

Se
$$B_{1,2} \leftrightarrow (P_{2,2} \vee P_{1,3})$$

True $F_{1,2} \leftrightarrow (W_{2,2} \vee W_{1,3})$

True $B_{2,1} \leftrightarrow (P_{2,2} \vee P_{3,1})$

Se $B_{2,1} \leftrightarrow (W_{2,2} \vee W_{3,1})$

Se $B_{2,2} \leftrightarrow (P_{1,2} \vee P_{2,1} \vee P_{3,2} \vee P_{2,3})$

Se $F_{2,2} \leftrightarrow (W_{1,2} \vee W_{2,1} \vee W_{3,2} \vee W_{2,3})^3$

• $[1,1]=[0,0,0,0,0]$

• $[2,1]=[0,1,0,0,0]$

2.2 – Base de Conhecimento: Mundo de Wumpus

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

```
False B_{1,2} \leftrightarrow (P_{2,2} \lor P_{1,3})
 True F_{1,2} \leftrightarrow (W_{2,2} \vee W_{1,3})
 True B_{2,1} \leftrightarrow (P_{2,2} \lor P_{3,1})
 False F_{2,1} \leftrightarrow (W_{2,2} \lor W_{3,1})
 Se B_{2,2} \leftrightarrow (P_{1,2} \lor P_{2,1} \lor P_{3,2} \lor P_{2,3})
 Se F_{2,2} \leftrightarrow (W_{1,2} \lor W_{2,1} \lor W_{3,2} \lor W_{2,3})^3
• [1,1]=[0,0,0,0,0]
• [2,1]=[0,1,0,0,0]
• [1,2]<del>=</del>[1,0,0,0,0]
```

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

False
$$B_{1,2} \leftrightarrow (P_{2,2} \lor P_{1,3})$$

True $F_{1,2} \leftrightarrow (W_{2,2} \lor W_{1,3})$

True $B_{2,1} \leftrightarrow (P_{2,2} \lor P_{3,1})$

False $F_{2,1} \leftrightarrow (W_{2,2} \lor W_{3,1})$

Se $B_{2,2} \leftrightarrow (P_{1,2} \lor P_{2,1} \lor P_{3,2} \lor P_{2,3})$

Se $F_{2,2} \leftrightarrow (W_{1,2} \lor W_{2,1} \lor W_{3,2} \lor W_{2,3})^3$

• $[1,1]=[0,0,0,0,0]$

• $[2,1]=[0,1,0,0,0]$

- [1,2]=[1,0,0,0,0]
- [2,2]=[0,0,0,0,0]

2.2 – Base de Conhecimento: Mundo de Wumpus

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

False
$$B_{1,2} \leftrightarrow (P_{2,2} \lor P_{1,3})$$

True $F_{1,2} \leftrightarrow (W_{2,2} \lor W_{1,3})$

True $B_{2,1} \leftrightarrow (P_{2,2} \lor P_{3,1})$

False $F_{2,1} \leftrightarrow (W_{2,2} \lor W_{3,1})$

Se $B_{2,2} \leftrightarrow (P_{1,2} \lor P_{2,1} \lor P_{3,2} \lor P_{2,3})$

False $F_{2,2} \leftrightarrow (W_{1,2} \lor W_{2,1} \lor W_{3,2} \lor W_{2,3})^3$

• $[1,1]=[0,0,0,0,0]$

• $[2,1]=[0,1,0,0,0]$

• $[1,2]=[1,0,0,0,0]$

2.2 – Base de Conhecimento: Mundo de Wumpus

- [x,y]=[Fedor, Brisa, Ouro, Parede, Wumpus Morto]
- Para exemplificar, vamos observar 3 salas, [1,2]; [2,1] e [2,2]:

False
$$B_{1,2} \leftrightarrow (P_{2,2} \lor P_{1,3})$$

True $F_{1,2} \leftrightarrow (W_{2,2} \lor W_{1,3})$

True $B_{2,1} \leftrightarrow (P_{2,2} \lor P_{3,1})$

False $F_{2,1} \leftrightarrow (W_{2,2} \lor W_{3,1})$

False $B_{2,2} \leftrightarrow (P_{1,2} \lor P_{2,1} \lor P_{3,2} \lor P_{2,3})$

False $F_{2,2} \leftrightarrow (W_{1,2} \lor W_{2,1} \lor W_{3,2} \lor W_{2,3})^3$

• $[1,1]=[0,0,0,0,0]$

• $[2,1]=[0,1,0,0,0]$

• $[1,2]=[1,0,0,0,0]$

Bibliografias

Obrigatórias:

1. RUSSELL, Stuart J; NORVIG, Peter. **Inteligência Artificial.** 2ª ed. Rio de Janeiro: Campus, 2004, Capítulo 7.

Bibliografias

Recomendadas:

- 1. Tese, Capítulo 3, disponível em http://paginas.fe.up.pt/~lpreis/Tese/Capitulo3.PDF
- 2. Pereira, Silvio do Lago. Lógica Proposicional, IME, USP, SP.
- 3. Loureiro, Antonio Alfredo Ferreira. Fundamentos da Lógica Proposicional, UFMG/ICEx/DCC.
- 4. http://pt.scribd.com/doc/70460341/Exercicios-Logica-Proposicional-1