Вариант 1.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3x_4\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3x_4\overline{x_5}x_6 \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 2.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2\overline{x_3}x_4\overline{x_5}x_6 \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2\overline{x_3}x_4\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 3.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}x_2x_3x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 4.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 5.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5x_6 \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}x_2x_3\overline{x_4}x_5x_6 \vee \overline{x_1}x_2x_3\overline{x_4}x_5x_6 \vee \overline{x_1}x_2x_3\overline{x_4}x_5x_6 \vee \overline{x_1}x_2x_3\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5x_6 \vee$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 6.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}x_3x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5x_6 \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5x_6 \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 7.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 8.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3x_4x_5\overline{x_6} \vee \overline{x_1}x_2\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1,a_2,a_3) и строки (a_4,a_5,a_6) стоит значение $f(a_1,\ldots,a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 9.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 10.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5x_6 \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 11.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee x_1\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee x_1\overline{x_2}x_3\overline{x_4}\overline{x_5}x_6 \vee x_1\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee x_1\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee x_1\overline{x_2}\overline{x_3}\overline{x_4}\overline{x_5}\overline{x_6} \vee x_1\overline{x_2$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 12.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 13.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 14.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee x_1\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 15.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5x_6 \vee \overline{x_1}\overline{x_2}x_3x_4\overline{x_5}x_6 \vee \overline{x_1}\overline{x_2}x_3x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3x_4x_5\overline{x_6} \vee \overline{x_1}x_2x_3x_4\overline{x_5}x_6 \vee \overline{x_1}x_2x_3x_4x_5\overline{x_6} \vee \overline{x_1}x_2x_3x_4x_5\overline{x_6} \vee \overline{x_1}x_2x_3x_4x_5\overline{x_6} \vee \overline{x_1}x_2x_3x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$

Вариант 16.

1) Известно, что функция $f \in F_2(6)$, задаваемая СДНФ $\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5x_6 \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}x_4x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}\overline{x_5}\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}x_2x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}x_5\overline{x_6} \vee \overline{x_1}\overline{$

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = F(h(x_1, x_2, x_3), x_4, x_5, x_6).$$

- а) Выпишите задание функции f в виде таблицы размера $2^3 \times 2^3$, столбцы и строки которой проиндексированы двоичными наборами длины 3, а на пересечении столбца (a_1, a_2, a_3) и строки (a_4, a_5, a_6) стоит значение $f(a_1, \ldots, a_6)$.
- б) Выпишите многочлены Жегалкина функций h, F_0 , F_1 , f_1 и f_2 таких, что $F(y, x_4, x_5, x_6) = \overline{y}F_0(x_4, x_5, x_6) \vee yF_1(x_4, x_5, x_6),$ $f(x_1, x_2, x_3, x_4, x_5, x_6) = h(x_1, x_2, x_3) f_1(x_4, x_5, x_6) + f_2(x_4, x_5, x_6).$