EE24BTECH11006 - Arnay Mahishi

1) Let $f(x) = |2x^2 + 5|x| - 3|$, $x \in R$. If m and n denote the number of points where f is not continuous and not differentiable respectively, then m + n is equal to:

2) Let α and β be the roots of the equation $px^2 + qx - r = 0$, where $p \neq 0$. If p,q, and r be the consecutive terms of a non-constant G·P and $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{3}{4}$, then the value of

c) 0

d) 3

b) 2

a) 5

 $(\alpha - \beta)^2$ is

a) $\frac{80}{9}$	b) 9	c) $\frac{20}{3}$	d) 8		
3) The number of $[-2\pi, 2\pi]$ is:	of solutions of the	equation $4\sin^2 x - 4\cos^2 x$	$\cos^3 x + 9 - 4\cos x =$	0; <i>x</i> ∈	
a) 1	b) 3	c) 2	d) 0		
4) The value of $\int_{0}^{1} (2x^3 - 3x^2 - x + 1)^{1/3} dx$ is equal to					
a) 0	b) 1	c) 2	d) -1		
5) Let P be a point on the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Let the line passing through P and parallel to the y -axis meet the circle $x^2 + y^2 = 9$ at point Q such that P and Q are on the same side of the x -axis. Then, the eccentricity of the locus of the point R on PQ such that $PR : RQ = 4 : 3$ as P moves along the ellipse, is:					
a) $\frac{11}{19}$	b) $\frac{13}{21}$	c) $\frac{\sqrt{139}}{23}$	d) $\frac{\sqrt{13}}{7}$		
6) Let m and n be the coefficient of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3}x^{\frac{1}{3}} + \frac{1}{2x^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{n}{m}\right)^{\frac{1}{3}}$ is:					
a) $\frac{4}{9}$	b) $\frac{1}{9}$	c) $\frac{1}{4}$	d) $\frac{9}{4}$		
	$= 2$ and $\lim_{x\to\infty} f$	r. Suppose $f: R \to R$ $f'(x) = 1$. If $f'(x) = \alpha f$			

d) 7

8) Let P and Q be the points on the line $\frac{x+3}{8} = \frac{y-4}{8} = \frac{z+1}{2}$ which are at a distance of 6 units from the point $R(1,2,3)$. If the centroid of the triangle PQR is (α,β,γ) , then $\alpha^2 + \beta^2 + \gamma^2$ is:					
a) 26	b) 36	c) 18	d) 24		
9) Consider a $\triangle ABC$ where $A(1,3,2)$, $B(-2,8,0)$, and $(3,6,7)$. If the angle bisector of $\angle BAC$ meets the line BC at D , then the length of the projection of the vector \overrightarrow{AD} on the vector \overrightarrow{AC} is:					
a) $\frac{37}{2\sqrt{38}}$	b) $\frac{\sqrt{38}}{2}$	c) $\frac{39}{2\sqrt{38}}$	d) $\sqrt{19}$		
10) Let S_n denote the sum of the first n terms of an arithmetic progression. If $S_n = 390$ and the ratio of the tenth and the fifth terms is $15:7$, then $S_{15} - S_5$ is equal to:					
a) 800	b) 890	c) 790	d) 690		
11) If $\int_0^{\frac{\pi}{3}} \cos^4 x dx = a\pi + b\sqrt{3}$, where a and b are rational numbers, then $9a + 8b$ is equal to:					
a) 2	b) 1	c) 3	d) $\frac{3}{2}$		
12) If z is a complex number such that $ z \ge 1$, then the minimum value of $\left z + \frac{1}{2}(3 + 4i)\right $					
a) $\frac{5}{2}$	b) 2	c) 3	d) (3) 2		
13) If the domain of the function $f(x) = \frac{\sqrt{x^2-25}}{(4-x^2)} + \log_{10}(x^2+2x-15)$ is $(-\infty, \alpha) \cup [\beta, \infty)$, then $\alpha^2 + \beta^3$ is equal to:					
a) 140	b) 175	c) 150	d) 125		
 14) Consider the relations R₁ and R₂ defined as aR₁b					

15) If the mirror image of the point P(3,4,9) in the line $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-2}{1}$ is (α,β,γ) ,

c) 9

b) 5

d) Neither R_1 nor R_2 is an equivalence relation

then $14(\alpha + \beta + \gamma)$ is:

a) 3

3

a) 102

b) 138

c) 108

d) 132