

surfaces

Can We Jointly Register and Reconstruct Creased Surfaces by Shape-from-Template Accurately?

Mathias Gallardo, Toby Collins and Adrien Bartoli

ALCoV-ISIT, UMR 6284 CNRS / Université d'Auvergne, Clermont-Ferrand, France

Context and Motivations

Shape-from-Template: 3D reconstruction using the apparent **motion** of features between one single image and a 3D textured template Assumes smooth Needs textured

- deformations
- Usual regularizers [2,3]
- Reduction dimensionnality [4]

We tackle the problem of reconstructing surface creases

Problem Modeling

Deformation parameters $\mathbf{x} = \{\mathbf{x}_1,...,\mathbf{x}_N\}$

- ullet Embedded by arphi
- Triangular regular dense mesh

allows complex deformation modeling

Bending Constraint C_{bend}

• M-estimator allows piecewise smooth 3D reconstructions by reducing influence of high errors

- ullet Comparison of $(\ell_1$ – $\ell_2)$ and *Huber* M-estimators (bending weight and *Huber* hyper-parameter)

M-estimator retained: $(\ell_1 - \ell_2)$ $\rho(\mathbf{y}) = 2\left(\sqrt{1 + ||\mathbf{y}||_2^2/2} + 1\right)$

Boundary Constraint C_{bound}

• Projects the 3D surface boundaries in boundariness map ~ potential well

$$C_{bound}(\mathbf{x}) = \int_{\Omega_B} \rho\left(I^B\left((\pi \circ \varphi)(\mathbf{u}_j; \mathbf{x})\right)\right) d\Omega, \quad \text{with} \quad I^B = \exp\left(-\frac{|\nabla I^G|}{\sigma^B}\right)$$

• Enhancement of boundariness map: color-based foreground detector to reduce false boundary edges (from background clutter or texture)

Solution Strategy

- **Initialization** with an existing solution [3]
- Non-convex **refinement**
 - Minimization of cost function $C(\mathbf{x})$ for a dense mesh of $\mathcal{O}(10^4)$ vertices
 - Gauss-Newton optimization with sparse Cholesky solver for normal equations
 - > Two-stage optimization with images pyramid for boundary constraint

Conclusion

- Modeling and optimization framework to register and reconstruct accurately smooth and creased 3D surfaces from a single image and a deformable 3D template
- Creases modeled by a dense mesh with a robust bending constraint led by an M-estimator
- Use of boundary constraint for a more accurate registration and color-based foreground detector to improve convergence
- Future works: arbitrary topologies and dynamic crease modeling

Previous Attempts

	Smooth deformations	Non-smooth deformations
Convex formulation	√	√
Non-convex formulation	√	X

Closest work:

convex formulation of [1] • correspondences are not

sufficiently informative

does not use smoothing

Input image

Contributions

- (i) implicitly model surface creases without knowing a priori their location through an M-estimator for **bending** constraint
- (ii) introduce **boundary** constraint to complement motion constraint which is sparse (iii) use **statistical color models** to help disambiguate non-boundary edges

Global Cost Function

 $+\lambda_{iso} C_{iso}(\mathbf{x})$ Prevents the surface from extension and contraction (isometry)

 $+\lambda_{bend} C_{bend}(\mathbf{x})$ Penalizes non-smooth surfaces and reduces the energy at creases

M-estimators norms that fit to outliers/reduce the impact of high errors

to handle mis-matches Implementation to handle little contrast at edges surface $\min \sum \rho(residual_i)$ to allow piecewise smooth reconstructions

Results

- Real datasets with high-precision (<1 mm) ground truth with structured-light system
- Comparison to SfT state-of-the-art: [1,2,3,4]
- Smooth dataset presented in [3]: small improvement of the 3D mean error
- Quantitative evaluations all over the surface and at the creases: 3D errors and normals
- Better 3D reconstruction at creased regions and all over the surface

References:

[1] Salzmann and Fua, PAMI 2011 [2] Bartoli et al., PAMI 2015

[3] Chhatkuli et al., CVPR 2014 [4] Ngo et al., PAMI 2016