

Finite Element Simulation For Mechanical Design

Buckling of thin cylindrical shells

Prof. A. Bernasconi, Dr. L. M. Martulli

Introduction

This document is distributed by Andrea Bernasconi to the students of the course Finite Element Simulation for Mechanical Design for personal use only, as teaching/learning materials. Any other use is forbidden without the written consent of the author.

Complex phenomenon involving:

Bifurcation of equilibrium

Plasticity (for metals)

Assumption: $w = -A \sin\left(\frac{m\pi x}{L}\right)$ (axis-symmetric deformation)

$$\sigma_{cr} = rac{Et}{r\sqrt{3(1-
u^2)}}$$

$$\frac{L}{m} = \pi \sqrt[4]{\frac{r^2 t^2}{12(1 - \nu^2)}}$$

Occurring at:

$$\frac{L}{m} = \pi \sqrt[4]{\frac{r^2 t^2}{12(1 - \nu^2)}}$$

4	Α	В	С	D	Е
1	r	250	mm		
2	t	2	mm		
3	E	72000	MPa		
4	nu	0.35			
5	L	500	mm		
6					
7	s_cr	355.0081	MPa		
8					
9	Α	3141.593	mm^2	L/m	38.99669
10	P_cr	1115.29	kN	m	12.8216

Common settings

This document is distributed by Andrea Bernasconi to the students of the course Finite Element Simulation for Mechanical Design for personal use only, as teaching/learning materials. Any other use is forbidden without the written consent of the author.

D = 500 mm (mid-diameter)

L = 500 mm

t = 2 mm

E = 73100 Mpa (Alu)v = 0.35

Coupling edges with RPs

Encastre one of the two RPs

LINEAR BUCKLING SIMULATIONS

Name: Step-1 Type: Buckle Other Basic Description: NIgeom: Off Eigensolver: O Lanczos

Subspace Number of eigenvalues requested: 3 Maximum eigenvalue of interest: Vectors used per iteration: 6 Maximum number of iterations: 6500

On the free RP:

$$U_{Y} = U_{Y} = UR_{X} = UR_{Y} = UR_{Z} = 0$$

 $P_{z} = -1$

distributed by Andrea Bernasconi to the students of the course Finite Element Simulation for Mechanical all use only, as teaching/learning materials. Any other use is forbidden without the written consent of the This document is dist Design for personal uauthor.

Abaqus will create a file (.fil) in which the nodal displacements will be stored.

Note: files with .fil extension are not editable with text editors

Step: Step-1 Mode 1: EigenValue = 1.14676E+06

Step: Step-1 Mode 2: EigenValue = 1.14696E+06 Step: Step-1 Mode 3: EigenValue = 1.14712E+06

Lin_buckle.com	09/12/2021 12:04	MS-DOS Applicati	3 KB
Lin_buckle.dat	09/12/2021 12:13	DAT File	9,016 KB
✓ Lin_buckle.fil	09/12/2021 12:13	FIL File	11,679 KB
Lin_buckle.inp	09/12/2021 12:03	INP File	2,594 KB
Lin_buckle.ipm	09/12/2021 12:13	IPM File	5 KB
Lin_buckle.log	09/12/2021 12:13	Text Document	1 KB
Lin_buckle.msg	09/12/2021 12:13	Outlook Item	144 KB
Lin_buckle.odb	09/12/2021 12:13	ODB File	4,921 KB
Lin_buckle.prt	09/12/2021 12:13	PRT File	2,099 KB
Lin_buckle.sim	09/12/2021 12:13	SIM File	1,119 KB
Lin_buckle.sta	09/12/2021 12:13	STA File	1 KB

Analytical calculation:

10	P_cr	1115.29	kN	m	12.8216

Name: Step-1				
Type: Buckle				
Basic Other				
Description:				
Nlgeom: Off				
Eigensolver: O Lanczos Subspace				
Number of eigenvalues requested: 3				
Maximum eigenvalue of interest:				
Vectors used per iteration: 6				
Maximum number of iterations: 6500				

On the free RP:

$$U_Y = U_Y = UR_X = UR_Y = UR_Z = 0$$

$$P_z = -1$$

distributed by Andrea Bernasconi to the students of the course Finite Element Simulation for Mechanical all use only, as teaching/learning materials. Any other use is forbidden without the written consent of the This document is dist Design for personal uauthor.

Abaqus will create a file (.fil) in which the nodal displacements will be stored.

Note: files with .fil extension are not editable with text editors

Step: Step-1 1: EigenValue = 1.13238E+06

2: EigenValue = 1.13262E+06

Step: Step-1 3: EigenValue = 1.13269E+06

Previous values with coarse mesh:

1: EigenValue = 1.14676E+06

Step: Step-1 EigenValue = 1.14696E+06

Analytical calculation: 10 P_cr

1115.29 kN

Buckling of cylindrical shells

NASA/SP-8007-2020/REV 2

Buckling of Thin-Walled Circular Cylinders

September 1965

August 1968 - first revision

November 2020 - second revision

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23681-2199

NON-LINEAR CRUSHING SIMULATIONS WITH IMPERFECTIONS

On the free RP:

$$U_Y = U_Y = UR_X = UR_Y = UR_Z = 0$$

$$P_z = -1.2E + 06$$

Sim 3: Non-linear crushing (coarse)

🖶 Edit Step
Name: Step-1 Type: Static, Riks
Basic Incrementation Other
Description:
NIgeom: On 🥒
☐ Include adiabatic heating effects
Stopping criteria
Maximum load proportionality factor:
Maximum displacement: DOF:
Node Region:

Name: Step-1							
Type: Static, Riks							
Basic Incrementation	Other						
Type: Automatic	Type: Automatic Fixed						
Maximum number of increments: 1000							
	Initial	Minimum	Maximum				
Arc length increment 0.001 1E-05 1							
Estimated total arc length: 1							
Note: Used only to compute the intial load proportionality factor							

Sim 3: Non-linear crushing (coarse)

🔷 Edi	♣ Edit Interaction ×					
Name:	Int-1					
Туре:	Gener	al contact (St	and	ard)		
Step:	Step-1	(Static, Riks)				
Cont	act Don	nain				
Includ	led surf	ace pairs:				
	All* w					
	Select	ed surface pa	irs:	None /		
		face pairs: N				
				*		
				es and feature edges. It exc segments, and reference p		
A 11 - 1						
		signments				
	ntact erties	Surface Properties				
∥ .						
Global property assignment: IntProp-1						
Individual property assignments: None 🧳						
Initialization assignments: None _/ 1						
Stabilization assignments: None 🥖 👔						
A.C.						
	OK Cancel					

On the free RP:

$$U_Y = U_Y = UR_X = UR_Y = UR_Z = 0$$

$$P_z = -1.2E + 06$$

🔷 Edit Step						
Name: Step-1						
Type: Static, Riks						
Basic Incrementation Other						
Description:						
NIgeom: On 🥖						
☐ Include adiabatic heating effects						
Stopping criteria						
Maximum load proportionality factor:						
Maximum displacement: DOF:						
Node Region:						

Name: Step-1							
Type: Static, Riks							
Basic Incrementation	Other						
Type: Automatic	○ Fixed						
Maximum number of increments: 1000							
	Initial	Minimum	Maximum				
Arc length increment 0.001 1E-05 1							
Estimated total arc length: 1							
Note: Used only to compute the intial load proportionality factor							

Sim 4: Non-linear crushing (fine)

distributed by Andrea Bernasconi to the students of the course Finite Element Simulation for Mechanical all use only, as teaching/learning materials. Any other use is forbidden without the written consent of the This document is dist Design for personal uauthor.

Y

Comparison of solutions

