				1			1
- >	law	01	Grarina	1 principle	01	Conillante	action):
			7	(1			,

$$\frac{\omega_3}{\omega_2} = \frac{O_2 J_{23}}{O_3 J_{23}}$$

Li speed ratio

One option:

Input: pinion

Output: gear

Modification:

P = TI m
For the buro gear teeth to be consistent i.e. mesh properly, p or m nwst be same.
In general, Law of gearing is not satisfied for any general tooth profile.
Involute profile: (Engineering auru)
p' Properties: Pp I to involute
at p! PP' tangent to base circle at P.
PP tangent to base will at P.
During construction, string undergoes rotation and translation. As pur the construction, string rotates clockwise.
Consider two involutes
Pinion (P) At every instant of

contact between involuter

point of contact lies on

commin tangent

Addendum Lirue for Pinion

pitch

02 P = rp

Addendum cioue for gear

Intersection of common tangent with the addendum circles leads to the length of a crion.

$$7 = QR = \sqrt{(r_{q} + a_{q})^{2} - r_{q}^{2} \cos^{2}\phi} + \sqrt{(r_{p} + a_{p})^{2} - r_{p}^{2} \cos^{2}\phi}$$

$$- (r_6 + r_p) sin \phi = Qb + Ra - (Pb + Pa)$$

= 2 21 rg / Ng
21 rg / Ng
By default: ay = ap
and the second s
All length dimensions are expressed as multiples of module "m".
$a_{q} = a_{p} = fm$ f is a real m .
The track with the property of the record with
Limiting values of the addendum correspond to 94 R
win with a and b ruspectively.
with a with a radipe of very
Since reprepended, & ag = ap.
Sind if if (in general), a alg ap
P will coincide with a before R coincides with b.
T WITH SOLVE WITH WE SCHOOL TO WITH SINGLE WAS TO SELECTION OF THE SELECTI
$(r_G + a_G) \leq (o_3 a) = \sqrt{(r_G + r_p)^2 \sin^2 \phi} + r_G^2 \cos \phi^2$
COPT OCCITION OF THE STATE OF T
$a_{\alpha} \leq (r_{\alpha} + r_{\rho})^2 \sin^2 \phi - r_{\alpha} \cos^2 \phi - r_{\alpha}$
The second secon
$a_{c} = fm = f \cdot \frac{2\gamma_{q}}{2} = f \cdot \frac{2\gamma_{p}}{2}$
$\frac{\alpha_{G}}{N_{G}} = \frac{1}{N_{F}} = \frac{2\gamma_{F}}{N_{F}}$
$\frac{2 + r_{G}}{N_{i}} \leq \frac{r_{G}}{r_{G}} \left(1 + \frac{r_{p}}{r_{G}}\right)^{2} - r_{G} \omega_{i} \psi - 1$
N _G (Y _G)
1

$N_{G} \geq 2f$
$N_{G} \geqslant \frac{2f}{1 + \left(\frac{r_{p}}{r_{G}}\right)^{2} \sin^{2}\phi} + \frac{2r_{p}}{r_{G}} - 1$
Ty Ty
Case of Rack and Pinion:
$(a_{q}+r_{q}) \leq (r_{p}+2r_{p}r_{q})\sin^{2}\phi$
, , , , , , , , , , , , , , , , , , ,
$\left(a_{4}+r_{4}\right)^{2} \leq r_{4}^{2}+\left(r_{p}^{2}+2r_{p}r_{4}\right)sin^{2}$
$a_{4}^{2} + 2a_{6}r_{4} \leq r_{p}^{2}sin_{4}^{2} + 2r_{p}r_{4}sin_{4}^{2}\theta$
WG T ZUG G IP III V T ZIP IG JIII V
$\frac{\left(\frac{\alpha_{G}}{\gamma_{G}}\right)^{2}+2\left(\frac{\alpha_{G}}{\gamma_{G}}\right)}{\left(\frac{\gamma_{F}}{\gamma_{G}}\right)^{2}\sin^{2}\phi}+2\left(\frac{\gamma_{F}}{\gamma_{G}}\right)\sin^{2}\phi}{\left(\frac{\gamma_{F}}{\gamma_{G}}\right)\sin^{2}\phi}$
(rg) (rg) (rg)
$\frac{a_{4}}{r_{4}} = \frac{fm}{r_{4}} = \frac{f \cdot 2r/4}{N_{4}} = \frac{2f}{r_{4}} = \frac{Np}{r_{4}}$
To Ty Na Ny Ta Ny
$\frac{4f^2}{N_G} + 4f \leq \frac{N\rho^2}{N_G} + 2N\rho \sin^2 \phi$
NG NG
Pinion
Special case:
rg - s i.e. Ng - s.

	$\therefore 4f \leq 2Npsin^{2}q \qquad \qquad N_{p} \geq \frac{2f}{\sin^{2}q}$
	If not satisfied, we have "interference".
	· · · · · · · · · · · · · · · · · · ·
	Note: Even if we change unter to unter distance 0,0,
	he will have conjugate action. Nowever, \$, r, rp, Z
	will change accordingly.
	Changing 0203 is one way to avoid interference.
	Another way is to use unequal addendum ap \$ aq.
	Mowever, standard gears may not have this option.
\Rightarrow	Gear Train:
\rightarrow	Epicyclic gear train (Planetary):
	2: Sun
	3: Arm
	3: Arm
	If arm in fixed, we recover simple gear train-
	Speed ratio:

Arm fixed: $\frac{\omega_4}{\omega_2} = -\frac{N_2}{N_4}$
Arm is notating: (Shift to the frame of arm to get)
$\frac{\omega_4 - \omega_3}{\omega_2 - \omega_3} = -\frac{N_2}{N_4}$
$\omega_2 - \omega_3$ N4
Special Case: Sun is fixed. (W2=0).
$\omega_{4} = \omega_{3} \left(1 + \frac{N_{2}}{N_{4}} \right)$
Schematic representation:
4
2 3
Common Arrangement:

