עוצמות 8

שחר פרץ

2024 במרץ 2024

דוגמאות מתרגילים מש.ב. 9 1

(נסיק: $\mathbb{N}: \mathbb{N} \to \mathbb{R}$ מתקיים (j)=g(j) מהדרה: נאמר ש־ $f,g: \mathbb{N} \to \mathbb{R}$ הן "כמעט מסכימות" אם קיים i כך שלכל

$$R = \{ \langle f, g \rangle \in (\mathbb{R}^{\mathbb{N}})^2 \mid f, g \text{ almost agrees} \}$$

- (א) אמור להיות קל
- (ב) מצאו את העוצמה של כל מחלקת שקילות; תהי $\mathbb{R} o \mathbb{R} o \mathbb{R}$. נחשב את $|[f]_R|$. עוזר לאינטואיציה, ולרוב גם להוכחה: מצד אחד, ע"י: $G\colon\mathbb{R} o [f]_R$ ולכן א $f\colon\mathbb{R} o [f]_R$ ולכן השני: נגדיר ו $[f]_R$ א $[f]_R=(2^{\aleph_0})^{\aleph_0}=2^{\aleph_0}=2^{\aleph_0}$ ולכן א

$$g = \lambda r \in \mathbb{R}. \lambda x \in \mathbb{N}. \begin{cases} r, & n = 0 \\ f(n), & n \ge 1 \end{cases}$$

את כאן אונים זאת נוכיח אייע. כרגע אחח"ע. כרגע את אנדרת היטב (מגיעה לטווח מתאים: $\forall r \in \mathbb{R}. g(r) \in [f]_R$ ושהיא אוגדרת היטב (מגיעה לטווח מתאים: איי זה בשביל להגיד שיש לי הוכחה פורמלית על הפונקציה הזו בדיוק בענן, שאמורה להיות יחסית נכונה].

 $||f|_R|=lpha$ מקיום הפונקציה, $|\mathbb{R}|\leq ||f|_R|$ מקיום הפונקציה,

(ג) מצאו את העוצמה של קבוצת המנה; $|\mathbb{N} - \mathbb{R}|/R| = |\mathbb{N}|$. טעות נפוצה הייתה היא, להתבונן בחסם העליון של ההכלה ולהניח כי הוא החסם העליון. במקרה הזה, $2^{(2^{\aleph})}$ (הערה: מותר נובע החסם העליון. ומכאן ומכאן ומכאן אוריים החסם העליון. במקרה הזה, מותר ב $\mathbb{R}(\mathbb{N} \to \mathbb{R})/R \subseteq \mathcal{P}(\mathcal{P}(\mathbb{N} \to \mathbb{R}))$ היא לאה). החסם העליון האה לעוצמה הוא לא ההדוק ביותר! ראוי לציון שלכל יחס שקילות R מעל A תמקיים A אומנם היא לאה). אסור להשתמש בזה כמשפט, אבל הוא מאפשר להקטין את החסם יותר כשמדברים על מחלקות שקילות. אין זה משפט, אבל די לנמקו ולכן A' o A/R היא זיווג $\lambda a \in A'.[a]_R$ כעת (AC) ולכן. מערכת נציגים מערכת ניקח $A' \subseteq A$ מערכת ניקח $A' \subseteq A$ היא זיווג $A' = \{[x]_R \mid x \in A\}$

דיברנו די; נחזור להוכחה. מהטענה לעיל, $\aleph = 2^{\aleph_0} = 2^{\aleph_0} = \mathbb{R}$. בעבור הכיוון השני: נתבונן בכל ע"י: $F\colon \mathbb{R} o (\mathbb{N} o \mathbb{R})/R$ הפונקציות הקבועות האפשרויות, שברור כי הן אינן מסכימות (נידרש להוכיח זאת בהמשך). נגדיר

$$F = \lambda r \in \mathbb{R}.[\lambda x \in \mathbb{N}.r]_R$$

אין צורך להוכיח ש־F מוגדרת היטב כי אנחנו מחזירים מחלקת שקילות של R וזה די ישיר. יש צורך להוכיח שהיא חח"ע (כלומר העטו, אז אל תעשו בעיקר חרא, אז בעיקר אל אתם תחפשו את ההוכחה המוגמרת בעיקר חרא, אז אל תעשו $\langle r_1
eq r_2 \in \mathbb{R}. \langle x \in \mathbb{N}. r_1, \lambda x \in \mathbb{N}. r_2 \rangle
otin Relation$ את זה. כל שאר התרגילים חוץ מהסעיף הזה כתובים טוב]

סעיף 10) 1.2

נגדיר:

$$S = \{ \langle A < B \rangle \in \mathcal{P}(\mathbb{Z}) \times \mathcal{P}(\mathbb{Z}) \colon |A| = |B| = |A \cup B| \}$$

- orall A finite. $[A]_S = \{A\}, \ orall A \in \mathcal{A}$ אשר הכיח אשר $[\mathbb{N}]_S = \{X \in \mathcal{P}(\mathbb{Z}) \mid |X| = \aleph_0\}, \ [\{2,3\}]_S = \{\{2,3\}\}$.1 $\mathcal{P}(\mathbb{Z})$ infinite. $[A]_S = [\mathbb{N}]_S$
 - 2. מהי קבוצת המנה? מהי עוצמתה? קבוצת המנה:

$$\mathcal{P}(\mathbb{Z})/S = \{[A]_S \mid A \in \mathcal{P}(\mathbb{Z})\} = \left\{\{A\} \mid A \in \underbrace{\{X \in \mathcal{P}(\mathbb{Z}) \mid |X| < \aleph_0\}}_{:=\mathcal{P}_{\text{finite}}(\mathbb{Z})}\right\} \uplus \left\{\underbrace{\{X \in \mathcal{P}(\mathbb{Z}) \mid |X| = \aleph_0\}}_{[\mathbb{N}]_S}\right\}$$

סה"כ $\mathcal{P}_{\mathrm{finite}}\subseteq\bigcup_{n\in\mathbb{N}}\mathcal{P}(\underbrace{\{-n,\dots,n\}}_{2n+1})$. גוכיח זאת. גוכיח זאת. גוכיח את (כדאי לזכור את אה). גוכיח זאת. $|\mathcal{P}_{\mathrm{finite}}(\mathbb{Z})|=\aleph_0$. טענה: $|\mathcal{P}(\mathbb{Z})/S|=|\mathcal{P}_{\mathrm{finite}}(\mathbb{Z})|+1$. איחוד בן מניה של קבוצות סופיות, הוא לכל היותר בן מניה. מצד שני, $\lambda n\in\mathbb{N}.\{n\}$ היא חח"ע ושלים אורים סופיות, הוא לכל היותר בן מניה. מצד שני, ושלים איחוד בן מניה של קבוצות סופיות, הוא לכל היותר בן מניה.

. סה"כ שוויון מקש"ב. סיימנו: $\mathcal{P}(\mathbb{Z})/S|=\aleph_0+1=\aleph_0$ כדרוש