

X-Class HiPerFET™ **Power MOSFET**

IXFK90N60X IXFX90N60X

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	600	V
V _{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GS} = 1M\Omega$	600	
V _{GSS}	Continuous	± 30	V
V _{GSM}	Transient	± 40	
I _{D25}	$T_{\rm c} = 25^{\circ}{\rm C}$	90	A
	$T_{\rm c} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	200	A
I _A	T _c = 25°C	45	A
E _{AS}	T _c = 25°C	3	J
P _D	T _C = 25°C	1100	W
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	50	V/ns
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	O° O°
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	Plastic Body for 10s	260	°C
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb
Weight	TO-264	10	g
	PLUS247	6	g

Symbol (T _J = 25°C U	mbol Test Conditions = 25°C Unless Otherwise Specified)		Characteristic Value Min. Typ. Ma		
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	600			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 8mA$	2.5		4.5	V
l _{gss}	$V_{GS} = \pm 30V, V_{DS} = 0V$			± 100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$	Г _Ј = 125°С		50 1.5	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note$	e 1		38	mΩ

600V 90A D25 $38m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$ ≤

G	=	Gate	D	=	Drain
S	=	Source	Tab	=	Drain

Features

- International Standard Packages
- Low $R_{\rm DS(ON)}$ and $Q_{\rm G}$ Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

SymbolTest ConditionsCha $(T_1 = 25^{\circ}\text{C}, \text{ Unless Otherwise Specified})$ Min.		racteristic Values		
			Typ.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$	30	50	S
\mathbf{R}_{Gi}	Gate Input Resistance		1.0	Ω
C _{iss}			8500	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		6300	pF
C _{rss}			56	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		400	pF
C _{o(tr)}	Time related $V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1.37	nF
t _{d(on)}	Resistive Switching Times		38	ns
t,	_		22	ns
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		84	ns
t _f	$R_{\rm G} = 1\Omega$ (External)		12	ns
$Q_{g(on)}$			210	nC
Q _{qs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		50	nC
Q_{gd}			90	nC
R _{thJC}				0.113 °C/W
R _{thCS}			0.15	°C/W

Source-Drain Diode

Symbo	l Test Conditions	Char	acteristi	c Values	
$(T_{J} = 25)$	5°C, Unless Otherwise Specified)	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			90	Α
I _{sm}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			360	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
t _{rr}	$I_{E} = 45A$, $-di/dt = 100A/\mu s$		210		ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	> '		1.8		μC
I _{RM}	$V_{R} = 100V, V_{GS} = 0V$		16.8		A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-264P Outline R1J D2x2e 1 = Gate 2,4 = Drain 3 = Source **MILLIMETERS INCHES** SYM MIN MAX MIN MAX 4.70 Α .209 Α1 0.90 2.30 2.80 .049 Ь1 .091 .106 b2 110 .033 1.035 .799 0.50 25.70 19.90 1.012 .783 D 1 4.70 19.70 185 .661 .215 BSC .768 .807 5.46 19.50 .091 .106 2.30 5.80 8.80 3.80 Q Q1 .228 .346 .244 .362 9.20 .150 .071 .165 .087 ØR ØR1 1.80

SYM	INCH	INCHES		1ETERS
SIM	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
A1	.090	.100	2.29	2,54
A2	.075	.085	1.91	2.16
Ь	.045	.055	1.14	1.40
b2	.075	.087	1.91	2.20
b4	.115	.126	2.92	3.20
С	.024	.031	0.61	0.80
D	.819	.840	20.80	21.34
D1	.650	.690	16.51	17.53
D2	.035	.050	0.89	1.27
Ε	.620	.635	15.75	16.13
E1	.520	.560	13.08	14.22
е	.215	BSC	5.45 BSC	
L	.780	.810	19.81	20.57
1.4	150	470	0.04	1.00

.244

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

