Gautam Singh

Indian Institute of Technology Hyderabad

April 28, 2025

- Introduction
- 2 Preliminaries

Boomerang Attacks
The S-box Switch
The Yoyo Game
Mixture Differentials

3 The Retracing Boomerang Attack

The Retracing Boomerang Framework
The Shifting Retracing Attack
The Mixing Retracing Attack
Comparison Between the Two Types of Retracing Attacks

4 Retracing Boomerang Attack on Five Round AES

Brief Description of AES
The Yoyo Attack on Five Round AES

1 Broke the record for 5-round AES when it was published.

Introduction

- Broke the record for 5-round AES when it was published.
- Brings the attack complexity down to $2^{16.5}$ encryptions.

Introduction

- Broke the record for 5-round AES when it was published.
- Brings the attack complexity down to $2^{16.5}$ encryptions.
- Uncovers a hidden relationship between boomerang attacks and two other cryptanalysis techniques: yoyo game and mixture differentials.

The Boomerang Attack

1 Typically split the encryption function as $E = E_1 \circ E_0$, with differential trails for each sub-cipher.

Figure 1: The boomerang attack.

The Boomerang Attack

- Typically split the encryption function as $E = E_1 \circ E_0$, with differential trails for each sub-cipher.
- We can build a distinguisher that can distinguish E from a truly random permutation in $\mathcal{O}((pq)^{-2})$ plaintext pairs.

Figure 1: The boomerang attack.

The Boomerang Distinguisher

Algorithm 1 The Boomerang Attack Distinguisher

- 1: Initialize a counter $ctr \leftarrow 0$.
- 2: Generate $(pq)^{-2}$ plaintext pairs (P_1, P_2) such that $P_1 \oplus P_2 = \alpha$.
- 3: **for all** pairs (P_1, P_2) **do**
- 4: Ask for the encryption of (P_1, P_2) to (C_1, C_2) .
- 5: Compute $C_3 = C_1 \oplus \delta$ and $C_4 = C_2 \oplus \delta$.

 $\triangleright \delta$ -shift

- 6: Ask for the decryption of (C_3, C_4) to (P_3, P_4) .
- 7: **if** $P_3 \oplus P_4 = \alpha$ **then**
- 8: Increment *ctr*
- 9: if ctr > 0 then
- 10: **return** This is the cipher E
- 11: **else**
- 12: **return** This is a random permutation

• Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.

- **1** Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .

- **1** Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .
- \odot Denoting this part of the intermediate state by X_i ,

$$(X_1)_j \oplus (X_2)_j = (X_1)_j \oplus (X_3)_j = (X_2)_j \oplus (X_4)_j = \Delta$$
 (1)

which shows $(X_1)_j = (X_4)_j$ and $(X_2)_j = (X_3)_j$.

- **1** Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .
- $oldsymbol{0}$ Denoting this part of the intermediate state by X_j ,

$$(X_1)_j \oplus (X_2)_j = (X_1)_j \oplus (X_3)_j = (X_2)_j \oplus (X_4)_j = \Delta$$
 (1)

- which shows $(X_1)_j = (X_4)_j$ and $(X_2)_j = (X_3)_j$.
- 4 If the differential characteristic in f_j^{-1} holds for (X_1, X_2) , then it will hold for (X_3, X_4) . We pay for probability in one direction.

- Gain 1-2 middle rounds for free by choosing differentials carefully. Here, we discuss the *S-box switch*.
- 2 Suppose the last operation in E_0 is a layer of S-boxes where $S(\rho_1 \| \rho_2 \| \dots \| \rho_t) = (f_1(\rho_1) \| f_2(\rho_2) \| \dots \| f_t(\rho_t))$ for t independent keyed functions f_i . Suppose the difference for both β and γ corresponding to the output of some f_i is equal to Δ .
- Denoting this part of the intermediate state by X_i ,

$$(X_1)_j \oplus (X_2)_j = (X_1)_j \oplus (X_3)_j = (X_2)_j \oplus (X_4)_j = \Delta$$
 (1)

which shows $(X_1)_i = (X_4)_i$ and $(X_2)_i = (X_3)_i$.

- 4 If the differential characteristic in f_i^{-1} holds for (X_1, X_2) , then it will hold for (X_3, X_4) . We pay for probability in one direction.
- **6** Distinguisher probability increases by a factor of $(q')^{-1}$, where q' is the probability of the differential characteristic in f_k .

1 Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.

The Yoyo Game

- ① Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- 2 Unlike the boomerang attack, this process continues in the yoyo game.

- ① Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- Unlike the boomerang attack, this process continues in the yoyo game.
- 3 All pairs of intermediate values (X_{2l+1}, X_{2l+2}) satisfy some property (such as zero difference in some part).

- 1 Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- 2) Unlike the boomerang attack, this process continues in the yoyo game.
- § All pairs of intermediate values (X_{2l+1}, X_{2l+2}) satisfy some property (such as zero difference in some part).
- OPProbabilities are low with large 1. Still, the yoyo technique has been used to attack AES reduced to 5 rounds.

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a mixture counterpart of (P_1, P_2) if for each $1 \le j \le t$, the quartet $(\rho_i^1, \rho_i^2, \rho_i^3, \rho_i^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a mixture counterpart of (P_1, P_2) if for each $1 \le i \le t$, the quartet $(\rho_i^1, \rho_i^2, \rho_i^3, \rho_i^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

1 If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a mixture counterpart of (P_1, P_2) if for each $1 \le i \le t$, the quartet $(\rho_i^1, \rho_i^2, \rho_i^3, \rho_i^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

- 1 If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.
- 2 $X_1 \oplus X_3 = \gamma \implies X_2 \oplus X_4 = \gamma$. Hence, for $\gamma \xrightarrow{q} \delta$ in E_1 , $C_1 \oplus C_3 = C_2 \oplus C_4 = \delta$ with probability a^2 .

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a mixture counterpart of (P_1, P_2) if for each $1 \le i \le t$, the quartet $(\rho_i^1, \rho_i^2, \rho_i^3, \rho_i^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

- \bigcirc If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.
- 2 $X_1 \oplus X_3 = \gamma \implies X_2 \oplus X_4 = \gamma$. Hence, for $\gamma \xrightarrow{q} \delta$ in E_1 , $C_1 \oplus C_3 = C_2 \oplus C_4 = \delta$ with probability a^2 .
- \bigcirc Has been applied to AES reduced up to 6 rounds. E_0 is taken to be the first 1.5 rounds of AES, which can be treated as four parallel super S-boxes.

The Retracing Boomerang Framework

Figure 2: The retracing boomerang attack.

The retracing boomerang framework consists of a shifting type and a mixing type.

- The retracing boomerang framework consists of a shifting type and a mixing type.
- 2 Both attacks use the setup shown in Figure 2.

- The retracing boomerang framework consists of a shifting type and a mixing type.
- 2 Both attacks use the setup shown in Figure 2.
- 3 Although the additional split looks restrictive, it applies for a wide class of block ciphers such as SASAS constructions.

- The retracing boomerang framework consists of a shifting type and a mixing type.
- Both attacks use the setup shown in Figure 2.
- Although the additional split looks restrictive, it applies for a wide class of block ciphers such as SASAS constructions.
- Further, we assume that E_{12} can be split into two parts of size b and n-b bits, call these functions E_{12}^L and E_{12}^R , with characteristic probabilities q_2^L and q_2^R respectively.

1 Adds a (b-1)-bit filtering in the middle of the attack procedure.

- $oldsymbol{0}$ Adds a (b-1)-bit filtering in the middle of the attack procedure.
- 2 Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.

- $oldsymbol{0}$ Adds a (b-1)-bit filtering in the middle of the attack procedure.
- 2 Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.
- **6** A δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) .

- $oldsymbol{0}$ Adds a (b-1)-bit filtering in the middle of the attack procedure.
- 2 Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.
- **6** A δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) .
- 4 Filtering ensures that the two unordered pairs (C_1, C_3) and (C_2, C_4) are equal.

- $oldsymbol{0}$ Adds a (b-1)-bit filtering in the middle of the attack procedure.
- 2 Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.
- **3** A δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) .
- 4 Filtering ensures that the two unordered pairs (C_1, C_3) and (C_2, C_4) are equal.
- **5** If one of these pairs satisfies the differential characteristic $\delta_L \xrightarrow{q_L^L} \mu_L$, the other pair will too!.

- $oldsymbol{0}$ Adds a (b-1)-bit filtering in the middle of the attack procedure.
- 2 Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.
- **3** A δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) .
- 4 Filtering ensures that the two unordered pairs (C_1, C_3) and (C_2, C_4) are equal.
- **5** If one of these pairs satisfies the differential characteristic $\delta_L \xrightarrow{q_L^L} \mu_L$, the other pair will too!.
- **6** Increases the probability of the boomerang distinguisher by $(q_2^L)^{-1}$.

- **1** Adds a (b-1)-bit filtering in the middle of the attack procedure.
- 2 Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all such pairs that do not satisfy this relation.
- **3** A δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) .
- 4 Filtering ensures that the two unordered pairs (C_1, C_3) and (C_2, C_4) are equal.
- § If one of these pairs satisfies the differential characteristic $\delta_L \xrightarrow{q_L^L} \mu_L$, the other pair will too!.
- **6** Increases the probability of the boomerang distinguisher by $(q_2^L)^{-1}$.
- Any possible characteristic of (E_{12}^L) has probability at least 2^{-b+1} , thus the overall probability increases by a factor of at most 2^{b-1} . On the other hand, filtering only leaves 2^{-b+1} of the pairs, so there is no apparent gain.

Figure 3: A shifted quartet (dashed lines indicate equality).

Advantages of Filtering

Advantages of Filtering

Improving the signal to noise ratio. Improving the probability by a factor of $(q_2^L)^{-1}$ improves the SNR which ensures a higher fraction of the filtered pairs on average satisfy $P_3 \oplus P_4 = \alpha$. The characteristic $\beta \xrightarrow{p} \alpha$ in the backward direction for the pair (X_3, X_4) can be replaced by a truncated differential characteristic $\beta \xrightarrow{p'} \alpha'$ of higher probability.

Advantages of Filtering

- Improving the signal to noise ratio. Improving the probability by a factor of $(q_2^L)^{-1}$ improves the SNR which ensures a higher fraction of the filtered pairs on average satisfy $P_3 \oplus P_4 = \alpha$. The characteristic $\beta \xrightarrow{p} \alpha$ in the backward direction for the pair (X_3, X_4) can be replaced by a truncated differential characteristic $\beta \xrightarrow{p'} \alpha'$ of higher probability.
- 2 Reducing the data complexity. Due to the filtering, the attack leaves fewer ciphertexts. This improves the complexity in cases where more decryption queries are made.

Advantages of Filtering

- 1 Improving the signal to noise ratio. Improving the probability by a factor of $(q_2^L)^{-1}$ improves the SNR which ensures a higher fraction of the filtered pairs on average satisfy $P_3 \oplus P_4 = \alpha$. The characteristic $\beta \xrightarrow{p} \alpha$ in the backward direction for the pair (X_3, X_4) can be replaced by a truncated differential characteristic $\beta \xrightarrow{p'} \alpha'$ of higher probability.
- Reducing the data complexity. Due to the filtering, the attack leaves fewer ciphertexts. This improves the complexity in cases where more decryption queries are made.
- **8** Reducing the time complexity. The filtering can also reduce the time complexity if it is dominated by the analysis of the plaintext pairs (P_3, P_4) .

In the shifting attack, the attacker forces equality between the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) using a δ -shift.

- **1** In the shifting attack, the attacker forces equality between the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) using a δ -shift.
- ② In this type of attack, each ciphertext pair can be shifted by $(C_1^L \oplus C_2^L, 0)$. The resulting ciphertexts are

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R),$$
 (2)

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (3)

- **1** In the shifting attack, the attacker forces equality between the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) using a δ -shift.
- ② In this type of attack, each ciphertext pair can be shifted by $(C_1^L \oplus C_2^L, 0)$. The resulting ciphertexts are

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R),$$
 (2)

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (3)

6 Again, the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) are equal.

- In the shifting attack, the attacker forces equality between the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) using a δ -shift.
- ② In this type of attack, each ciphertext pair can be shifted by $(C_1^L \oplus C_2^L, 0)$. The resulting ciphertexts are

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R),$$
 (2)

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (3)

- **6** Again, the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) are equal.
- ① Further, $C_1^R = C_3^R$ and $C_2^R = C_4^R$, thus we gain an additional factor of $(q_2^R)^{-2}$ for a total probability of $(pq_1)^2q_2^L$, better than shifting!

- In the shifting attack, the attacker forces equality between the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) using a δ -shift.
- ② In this type of attack, each ciphertext pair can be shifted by $(C_1^L \oplus C_2^L, 0)$. The resulting ciphertexts are

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R),$$
 (2)

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (3)

- 8 Again, the unordered pairs (C_1^L, C_2^L) and (C_3^L, C_4^L) are equal.
- ① Further, $C_1^R = C_3^R$ and $C_2^R = C_4^R$, thus we gain an additional factor of $(q_2^R)^{-2}$ for a total probability of $(pq_1)^2q_2^L$, better than shifting!
- Similar to the core step used in the yoyo attack on AES.

The Mixing Retracing Attack

Figure 4: A mixture quartet of ciphertexts (dashed lines indicate equality).

- Using structures
 - Shifting applies the same δ -shift to all pairs of ciphertexts.

Comparison Between the Two Types of Retracing Attacks

Advantages of Shifting Retracing Attack

- Using structures
 - Shifting applies the same δ -shift to all pairs of ciphertexts.
 - Filtering is applied first to reduce the data complexity.

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.
- **2** Combination with E_{11}

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

2 Combination with E_{11}

In mixing, the output difference of E^L₁₂ is arbitrary.

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

Combination with E₁₁

- In mixing, the output difference of E₁₂ is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

2 Combination with E_{11}

- In mixing, the output difference of E_{12}^L is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.
- Construction of 'friend pairs'

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

2 Combination with E_{11}

- In mixing, the output difference of E₁₂ is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.

Construction of 'friend pairs'

'Friend pairs' are pairs which satisfy a common property.

Comparison Between the Two Types of Retracing Attacks

Advantages of Shifting Retracing Attack

Using structures

- Shifting applies the same δ -shift to all pairs of ciphertexts.
- Filtering is applied first to reduce the data complexity.
- Not possible in mixing: shift is based on ciphertexts, no filtering.
- Basic boomerang attacks add a round at the top or bottom of the distinguisher. With shifting, one can obtain all ciphertexts, shift them by δ and then decrypt, simulatneously checking for the filter and condition between P_3 and P_4 using a hash table.

2 Combination with E_{11}

- In mixing, the output difference of E_{12}^L is arbitrary.
- Usually no good combination between characteristics of $(E_{12}^L)^{-1}$ and $(E_{11})^{-1}$. For instance, in the yoyo attack, E_{11} is empty.

6 Construction of 'friend pairs'

- 'Friend pairs' are pairs which satisfy a common property.
- More 'friend pairs' can be constructed in the shifting variant.

1 Byte ordering shown after SB in Figure 5 (column major).

Figure 5: An AES round.

- \bullet Byte ordering shown after SB in Figure 5 (column major).
- 2 j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_j$.

Figure 5: An AES round.

- 1 Byte ordering shown after SB in Figure 5 (column major).
- \bigcirc j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_j$.
- 3 Denote by W, Z and X the states before MC in round 0, at the input to round 1 and before MC in round 2 respectively.

Figure 5: An AES round.

- Byte ordering shown after SB in Figure 5 (column major).
- 2 j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_j$.
- Oenote by W, Z and X the states before MC in round 0, at the input to round 1 and before MC in round 2 respectively.
- 4 The *I*-th shifted column (resp. *I*-th inverse shifted column) refers to application of SR (resp. SR^{-1}) to the *I*-th column.

Figure 5: An AES round.

- Byte ordering shown after SB in Figure 5 (column major).
- 2 j-th byte of a state X_i is denoted as $X_{i,j}$ or $(X_i)_j$.
- Oenote by W, Z and X the states before MC in round 0, at the input to round 1 and before MC in round 2 respectively.
- 4 The *I*-th shifted column (resp. *I*-th inverse shifted column) refers to application of SR (resp. SR^{-1}) to the *I*-th column.
- **5** Round subkeys are k_{-1}, k_0, \ldots

Figure 5: An AES round.

Summary of Yoyo Attack on Five Round AES

Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.

- Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- \bigcirc Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$. (why?)

The Yoyo Attack on Five Round AES

- **1** Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$. (why?)
- § For E_{12} , 1.5 rounds of AES can be taken as four 32-bit super S-boxes.

The Yoyo Attack on Five Round AES

- **1** Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$. (why?)
- **3** For E_{12} , 1.5 rounds of AES can be taken as four 32-bit super S-boxes.
- 4 Ciphertext pair (C_1, C_2) modified into its mixture (C_3, C_4) w.r.t. super S-boxes and decrypted. The four inputs to the S-boxes have zero XOR, thus $X_1 \oplus X_2 \oplus X_3 \oplus X_4 = 0$ since MC is linear.

- **1** Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$. (why?)
- **3** For E_{12} , 1.5 rounds of AES can be taken as four 32-bit super S-boxes.
- 4 Ciphertext pair (C_1, C_2) modified into its mixture (C_3, C_4) w.r.t. super S-boxes and decrypted. The four inputs to the S-boxes have zero XOR, thus $X_1 \oplus X_2 \oplus X_3 \oplus X_4 = 0$ since MC is linear.
- ⑤ $X_3 \oplus X_4 = 0$ in a shifted column and $Z_3 \oplus Z_4 = 0$ in an inverse shifted column with probability 2^{-6} . This corresponds to one of the four quartets (0,5,10,15), (1,4,11,14), (2,5,8,13), (3,6,9,12).

- **1** Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$. (why?)
- **3** For E_{12} , 1.5 rounds of AES can be taken as four 32-bit super S-boxes.
- 4 Ciphertext pair (C_1, C_2) modified into its mixture (C_3, C_4) w.r.t. super S-boxes and decrypted. The four inputs to the S-boxes have zero XOR, thus $X_1 \oplus X_2 \oplus X_3 \oplus X_4 = 0$ since MC is linear.
- **5** $X_3 \oplus X_4 = 0$ in a shifted column and $Z_3 \oplus Z_4 = 0$ in an inverse shifted column with probability 2^{-6} . This corresponds to one of the four quartets (0,5,10,15), (1,4,11,14), (2,5,8,13), (3,6,9,12).
- **6** Attack quartets of k_{-1} . Friend pairs of (Z_3, Z_4) used to get more information.

Algortihm of Yoyo Attack

Algorithm 2 Yoyo Attack on Five Round AES

- 1: Ask for the encryption of 2^6 pairs (P_1, P_2) of chosen plaintexts with non-zero difference only in bytes 0, 5, 10, 15.
- 2: for all corresponding ciphertext pairs (C_1, C_2) do
- 3. Let (C_3^J, C_4^J) , j = 1, 2, 3, 4 be the mixture counterparts of the pair (C_1, C_2) .
- Ask for the decryption of the ciphertext pairs and consider the pairs (Z_3^j, Z_4^j) . 4:
- 5: for all $l \in \{0, 1, 2, 3\}$ do
- Assume all four pairs (Z_3^j, Z_4^j) and the pair (Z_1, Z_2) have zero difference in byte I. 6:
- 7: Use the assumption to extract bytes 0, 5, 10, 15 of k_{-1} .
- 8: if a contradiction is reached then
- 9: Increment 1
- 10: if l > 3 then Discard the pair
- 11: else
- Using $Z_3^j \oplus Z_4^j = 0$ in the entire *I*-th inverse shifted column, attack the three 12: remaining columns of round 0 (sequentially) and decude the rest of k_{-1} .

Preliminaries

tracing Boomerang Attack on Five Round AE

The Yoyo Attack on Five Round AES

Meet in the Middle Improvement on Yoyo Attack

The yoyo attack has data complexity about 29 and overall time complexity is 2⁴⁰. A careful analysis of round 0 can reduce the complexity down to 2³¹ encryptions. However, there is a better improvement that can be made using a meet in the middle (MITM) attack on bytes 0, 5, 10 and 15 of k_{-1} . Denote the intermediate value of byte m before the MC operation of round 0 during encryption as W_m , and consider WLOG I=0. Then, the input to round 1 satisfies

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{4}$$

In the MITM attack, the adversary guesses bytes 0, 5 of k_{-1} by computing the values

$$02_{x} \cdot ((W_{3}^{j})_{0} \oplus (W_{4}^{j})_{0}) \oplus 03_{x} \cdot ((W_{3}^{j})_{1} \oplus (W_{4}^{j})_{1})$$
 (5)

for j = 1, 2, 3, concatenating these values and storing them in a table for each guess. Similarly, the adversary guesses the values for bytes 10, 15 of ac

k_{-1} and computes

$$01_x \cdot ((W_3^j)_2 \oplus (W_4^j)_2) \oplus 01_x \cdot ((W_3^j)_3 \oplus (W_4^j)_3)$$
 (6)

for j=1,2,3 and checks for a match in the table, which is equivalent to the condition $(Z_3^j)_0=(Z_4^j)_0$ for j=1,2,3. This 24-bit filtering leaves 2^8 candidates for bytes 0, 5, 10, 15 of k_{-1} . These can be checked by using the conditions $(Z_3^4)_0=(Z_4^4)_0$ and $(Z_1)_0=(Z_2)_0$.

Although the data complexity looks like 2^{16} , the *dissection technique* can be used to maintain the memory at 2^9 . The time complexity is now reduced to $2^6 \cdot 4 \cdot 2^{16} = 2^{24}$ operations, which is roughly equivalent to less than 2^{23} encryptions.