Math 620: Subgroup HW

Due on Monday, October 12, 2015

Boynton 10:00

Kailee Gray

Exercise 3.2.4: Show that $\{(1), (12)(34), (13)(24), (14)(23)\}$ is a subgroup of S_4 .

Let $G = \{(1), (12)(34), (13)(24), (14)(23)\}$. Notice that G and S_4 are finite sets. G contains only permutations of $\{1, 2, 3, 4\}$ and S_4 contains all possible permutations of $\{1, 2, 3, 4\}$ so G is a subset of S_4 . From proposition 3.1.6 we know S_4 is a group under the operation of composition of functions. Thus, by corollary 3.2.4, it suffices to show for any $a, b \in G$, $a \circ b \in G$. Since |G| = 4, we will verify this property holds by calculating every possible composition in G:

0	(1)	(12)(34)	(13)(24)	(14)(23)
(1)	(1)	(12)(34)	(13)(24)	(14)(23)
(12)(34)	(12)(34)	(1)	(14)(23)	(13)(24)
(13)(24)	(13)(24)	(14)(23)	(1)	(12)(34)
(14)(23)	(14)(23)	(13)(24)	(12)(34)	(1)

The table above shows the composition of any two elements in G is contained in G. Thus, G is a subgroup of S_4 .

Exercise 3.2.11: Let S be a set, and let a be a fixed element of S. Show that $\{\sigma \in \operatorname{Sym}(S) | \sigma(a) = a\}$ is a subgroup of $\operatorname{Sym}(S)$.

Let $H = \{ \sigma \in \operatorname{Sym}(S) | \sigma(a) = a \}$. Then, by definition of H, for any $\sigma \in H$, $\sigma \in \operatorname{Sym}(S)$, so $H \subseteq \operatorname{Sym}(S)$. Consider any $\sigma, \tau \in H$. Then, $\sigma(a) = a$ and $\tau(a) = a$. By definition 2.3.1, a function σ is a permutation of S if σ is one-to-one and onto. Therefore, σ and τ are well-defined, one-to-one, and onto. Then, $\sigma\tau(a) = \sigma(\tau(a)) = \sigma(a) = a$ implies $\sigma\tau \in H$ for any $\sigma, \tau \in H$. Also if $\tau(a) = a$, $\tau^{-1}(a) = a$ which implies $\tau^{-1} \in H$. We know $\sigma\tau \in H$ for any $\sigma, \tau \in H$; so since $\sigma, \tau^{-1} \in H$, $\sigma\tau^{-1} \in H$.

Notice $\delta = (1) \in \text{Sym}(S)$. Also, since $\delta(a) = a$, $\delta \in H$. So, $H \neq \emptyset$. Thus, for any $\sigma, \tau \in H$, $\sigma \tau^{-1} \in H$. By corollary 3.2.3, H is a subgroup of Sym(S).

Exercise 3.2.15: Prove that any cyclic group is abelian.

Proof. Let G be any cyclic group. By definition 3.2.5, there exists some $a \in G$ such that $\langle a \rangle = G$. So, for any $x, y \in G$, $x = a^{n_1}$ and $y = a^{n_2}$ for some $n_1, n_2 \in \mathbb{Z}$. Then, $xy = a^{n_1}a^{n_2}$. By definition 3.1.4', $a^{n_1}a^{n_2} = a^{n_1+n_2}$. Then, addition in \mathbb{Z} is commutative, so $n_1 + n_2 = n_2 + n_1$. Therefore, $xy = a^{n_2+n_1} = a^{n_2}a^{n_1} = yx$. For any $x, y \in G$ we have xy = yx; hence G is abelian.

Exercise 3.2.17: Prove that the intersection of any collection of subgroups of a group is again a subgroup.

Proof. Let G be a group with identity element e. Consider some collection of subgroups of G, indexed in no particular order by $k \in K$. Then consider $L = \bigcap_K H_k$. $H_k \subseteq G$ for all k so $\bigcap_K H_k \subseteq G$. Notice $L \neq \emptyset$ since all subsets of G must contain e. If $L = \{e\}$, then L is trivially a subgroup, so consider $a, b \in L$. Then $a, b \in H_k$ for all k. Since all $H_k \subseteq G$, $ab \in H_k$ for all k which implies $ab \in L$. Also, if $a \in H_k$ for all k, H_k are groups, so $a^{-1} \in H_k$ for all k. Thus, $a^{-1} \in L$. Thus, by proposition 3.2.2, L is a subgroup of G.

Exercise 3.2.19: Let G be a group and let $a \in G$. The set $C(a) = \{x \in G \mid xa = ax\}$ of all elements of G that commute with a is called the centralizer of a.

(a) Show that C(a) is a subgroup of G.

Proof. Let G be a group and let $a \in G$. Define the set $C(a) = \{x \in G \mid xa = ax\}$. Notice for all $x \in C(a)$, $x \in G$, so $C(a) \subseteq G$. Also, G is a group so G contains an identity element e, and for any $a \in G$, ea = a = ea. Thus, $e \in C(a)$. Consider any $x \in C(a)$. Then, xa = ax. Since $x \in C(a)$, $x \in G$, so there exists $x^{-1} \in G$ such that $x^{-1}x = e$. xa = ax implies $x^{-1}xax^{-1} = x^{-1}axx^{-1}$. Thus, $eax^{-1} = x^{-1}ae$, so $ax^{-1} = x^{-1}a$ implies $x^{-1} \in C(a)$. Finally, consider any $x, y \in C(a)$. Then, xa = ax and ya = ay. If ya = ay, then xya = xay. But, xa = ax, so xya = axy. Thus, $x, y \in C(a)$. By proposition 3.2.2, $C(a) \leq G$.

(b)Show that $\langle a \rangle \subseteq C(a)$.

Proof. Consider some $x \in \langle a \rangle$. Then, $x = a^n$ for some $n \in \mathbb{Z}$. Notice $ax = aa^n = a^{1+n} = a^{n+1} = a^n a = xa$. Thus, $x \in C(a)$.

(c) Compute C(a) if $G = S_3$ and a = (123). Note, $S_3 = \{(1), (123), (132), (23), (13), (12)\}$. Since (1) is the identity element of S_3 , (1)(123) = (123)(1) implies $(1) \in C(a)$. Also, any element commutes with itself, so $(123) \in C(a)$. We will compose all remaining elements of S_3 with (123) to check for commutativity:

	(132)	(23)	(13)	(12)
permutation from top row \circ (123)	(1)	(12)	(23)	(13)
(123) o permutation from top row	(1)	(13)	(12)	(23)

Thus, $C((123)) = \{(1), (123), (132)\} = \langle (123) \rangle$.

(d)Compute C(a) if $G = S_3$ and a = (12). Since (1) is the identity element of S_3 , (1)(12) = (12)(1) implies $(1) \in C(a)$. Also, any element commutes with itself, so $(12) \in C(a)$. We will compose all remaining elements of S_3 with (12) to check for commutativity:

	(132)	(23)	(13)	(123)
permutation from top row \circ (12)	(13)	(123)	(132)	(23)
$(12) \circ \mathbf{permutation}$ from top row	(23)	(132)	(123)	(13)

Thus, $C((12)) = \{(1), (12)\}.$

Exercise 3.2.21: Let G be a group. The set $Z(G) = \{x \in G \mid xg = gx \text{ for all } g \in G\}$ is called the center of G. (a) Show that Z(G) is a subgroup of G.

Proof. Note $e \in Z(G)$ since eg = ge for all $g \in G$. Also, all $x \in Z(G) \in G$ by defintion of Z(G) so $Z(G) \subseteq G$. Consider any $x, y \in Z(G)$. Then, for all $g \in G$, xg = gx and yg = gy. If yg = gy, xyg = xgy. Since xg = gx we have xyg = gxy. Thus, $xy \in Z(G)$. Since $x \in G$, $x^{-1} \in G$ such that $x^{-1}x = e = xx^{-1}$. Then, if $x \in Z(G)$, xg = gx for all $g \in G$. Equivalently, $x^{-1}xgx^{-1} = x^{-1}gxx^{-1}$ and $egx^{-1} = x^{-1}ge$. So, $gx^{-1} = x^{-1}g$ implies $x^{-1} \in Z(G)$ for any $x \in Z(G)$. By proposition 3.2.2, Z(G) is a subgroup of G.

(b) Show that $Z(G) = \bigcap_{a \in G} C(a)$.

Proof. (show $Z(G) \subseteq \bigcap_{a \in G} C(a)$) Consider any $x \in Z(G)$. Then, for all $g \in G$, xg = gx. Equivalently for all $a \in G$, xa = ax. Thus, $x \in C(a)$ for all $a \in G$ so $x \in \bigcap_{a \in G} C(a)$. (show $Z(G) \supseteq \bigcap_{a \in G} C(a)$) Consider any $x \in \bigcap_{a \in G} C(a)$. Then, for all $a \in G$, $x \in C(a)$. So, for all $a \in G$, xa = ax. Equivalently, for all $g \in G$, xg = gx so $x \in Z(G)$.

(c) Compute the center of S_3 . Consider the multiplication table of S_3 :

0	(1)	(12)	(13)	(23)	(123)	(132)
(1)	(1)	(12)	(13)	(23)	(123)	(132)
(12)	(12)	(1)	(132)	(123)	(23)	(13)
(13)	(13)	(123)	(1)	(132)	(12)	(23)
(23)	(23)	(132)	(123)	(1)	(13)	(12)
(123)	(123)	(13)	(23)	(12)	(132)	(1)
(132)	(132)	(23)	(12)	(123)	(1)	(123)

By inspection, $Z(G) = \{(1)\}$. Also note that $C(123) \cap C(12) = \{(1)\}$ so $Z(G) = \{(1)\}$ also follows from exercise 3.2.19 parts c, d.

Exercise 3.2.23: Let G be a cyclic group, and let a, b be elements of G such that neither $a = x^2$ nor $b = x^2$ has a solution in G. Show that $ab = x^2$ does have a solution in G.

Proof. Let G be a cyclic group, and let a,b be elements of G such that neither $a=x^2$ nor $b=x^2$ has a solution in G. Since G is cyclic, $G=\langle g \rangle$ for some $g \in G$ and so $a,b \in G$ imply $a=g^n$ and $b=g^m$ for some $n,m \in \mathbb{Z}$. If m or n are even, then m=2k or n=2l for $k,l \in \mathbb{Z}$. Then, $a=g^{2k}=(g^k)^2$ and $b=g^{2l}=(g^l)^2$. But $a\neq x^2$ and $b\neq x^2$ for any $x\in G$, so m,n must be odd. Also, G is a group so we can write $ab=g^{m+n}$. Then, since m,n are odd, m+n is even so $\frac{m+n}{2}\in \mathbb{Z}$ which implies $g^{\frac{m+n}{2}}\in G$. We can write $ab=(g^{\frac{m+n}{2}})^2$. Thus, $ab=x^2$ has a solution in G, namely $g^{\frac{m+n}{2}}$.

Exercise 3.2.24: Let G be a group with $a, b \in G$. (a) Show that $o(a^{-1}) = o(a)$.

Proof. Let G be a group with $a \in G$. Consider $o(a) < \infty$ and suppose o(a) = n for $n \in \mathbb{Z}^+$. Then, by definition 3.2.7, $a^n = e$ and n is the smallest such positive integer. Since G is a group, $a^{-1} \in G$ and $(a^{-1})^n = a^{-n} \in G$. If $a^n = e$, then $a^n a^{-n} = ea^{-n}$. By exponential laws of groups, $a^n a^{-n} = a^{n-n} = a^0 = e$. Thus, $ea^{-n} = a^{-n} = e$. Again, by the exponential laws of groups $a^{-n} = (a^{-1})^n$. Hence, $(a^{-1})^n = e$. Now, suppose there is $m \in \mathbb{Z}^+$, m < n such that $(a^{-1})^m = e$. Then, following a similar argument as above, $(a^{-1})^m = e$ implies $a^{-m}a^m = ea^m$ which implies $e = a^m$. The order of a is n, so the existence of such an m < n contradicts the definition of order of a. Thus, when $o(a) < \infty$, $o(a^{-1}) = n = o(a)$. Next, suppose $o(a) = \infty$. Then, there does not exists a $k \in \mathbb{Z}^+$ such that $a^k = e$. If $o(a^{-1}) \neq \infty$, then there exists some $k \in \mathbb{Z}^+$ such that $(a^{-1})^k = e$ where k is the smallest such integer. But from the first part of the proof we know this implies $a^k = e$ which contradicts our assumption that $o(a) = \infty$. Thus, if $o(a) = \infty$, $o(a^{-1}) = \infty$.

(b) Show that o(ab) = o(ba).

Proof. Let G be a group with $a, b \in G$. First, consider $o(ab) < \infty$. Then, suppose o(ab) = n for $n \in \mathbb{Z}^+$. Then, by definition 3.2.7, $(ab)^n = e$ and n is the smallest such positive integer. By part (a), o(ab) = n implies $o((ab)^{-1}) = n$. So, $(ab)^{-n} = e$. We will manipulate $(ab)^n = e$ using the listed properties of groups to obtain our desired result:

$$(ab)^n = e$$

$$(ab)(ab)\cdots(ab) = e$$
 by exponential laws of groups
$$a(ba)(ba)\cdots(ba)b = e$$
 by associative property
$$a(ba)^{n-1}b = e$$

$$a(ba)^{n-1}ba = ea$$
 multiply on the right by a
$$a^{-1}a(ba)^{n-1}ba = a^{-1}ea$$
 multiply on the left by a^{-1}

$$(a^{-1}a)(ba)^{n-1}(ba) = (a^{-1}e)a$$
 by associative property
$$(e)(ba)^{n-1}(ba) = (a^{-1})a$$
 definition of identity and inverse elements
$$(e(ba)^{n-1})(ba) = e$$
 definition of inverse elements, associativity
$$(ba)^{n-1}(ba) = e$$
 definition of identity element
$$(ba)^n = e$$
 definition of identity element.

The above implies that for any $n \in \mathbb{Z}^+$, if $(ab)^n = e$, then $(ba)^n = e$. So, if there exists some $k \in \mathbb{Z}^+$ with $k \le n$ and $(ba)^k = e$, then $(ab)^k = e$. This contradicts our assumption that o(ab) = n, since n must be the smallest positive integer with $(ab)^n = e$. Thus, n is the smallest positive integer such that $(ba)^n = e$ so o(ba) = n.

If $o(ab) = \infty$, then there is no integer $n \in \mathbb{Z}^+$ such that $(ab)^n = e$. If $o(ba) \neq \infty$, there there exists some integer $k \in \mathbb{Z}^+$ such that $(ba)^k = e$. From above, if $(ba)^k = e$, then $(ab)^k = e$ which contradicts our assumption that $o(ab) = \infty$. Thus, if $o(ab) = \infty$, then $o(ba) = \infty$. Hence, o(ab) = o(ba).

(c) Show that $o(aba^{-1}) = o(b)$.

Proof. Let G be a group with $a,b \in G$. Then, $a^{-1},e \in G$ such that $a^{-1}a = e$ and $aba^{-1} \in G$. By associative property we can write, $aba^{-1} = (ab)a^{-1}$. If two elements of G are equal, their orders must be equal so, $o(aba^{-1}) = o((ab)a^{-1})$. Then, $ab, a^{-1} \in G$, so by part (b), $o((ab)a^{-1})) = o(a^{-1}(ab))$. By associativity, $a^{-1}(ab) = (a^{-1}a)b = eb = b$. Since $a^{-1}(ab) = b$ and $o((ab)a^{-1})) = o(a^{-1}(ab))$, $o((ab)a^{-1})) = o(b)$. Thus, $o(aba^{-1}) = o(b)$ for any $a,b \in G$.

Exercise 3.2.26: Let G be a group with $a, b \in G$. Assume that o(a) and o(b) are finite and relatively prime, and that ab = ba. Show that o(ab) = o(a)o(b).

Proof. Let G be a group with $a, b \in G$. Without loss of generality, assume $a, b \neq e$. Assume that o(a) and o(b) are finite and relatively prime, and that ab = ba. Then, G is abelian. If o(a) and o(b) are finite and relatively prime, o(a) = p and o(b) = q for some $p, q \in \mathbb{Z}^+$ such that gcd(p,q) = 1. Then, p,q are the smallest positive integers such that $a^p = e$ and $b^q = e$. Since G is abelian, by exercise 17 in section 3.1, $(ab)^{pq} = a^{pq}b^{pq}$. Applying the exponential laws of groups, we obtain $a^{pq}b^{pq} = (a^p)^q(b^q)^p = e^qe^p = e$. Thus, $(ab)^{pq} = e$. Suppose $o(ab) \neq pq$ and o(ab) = k where $k \in \mathbb{Z}^+$, k < pq and $(ab)^k = e$. By proposition 3.2.8 (b), $(ab)^{pq} = e$ implies $o(ab) \mid pq$ and so $k \mid pq$. Because p and q are relatively prime, the only divisors of pq are $\pm 1, \pm p, \pm q, and \pm pq$. Since $k \in \mathbb{Z}^+$, k > 0, $k \neq pq$, so k = 1, p, q. We will consider all these cases:

(k = 1) If k = 1, $(ab)^1 = ab = e$. Then, $a^{-1} = b$ and $a = b^{-1}$. From part (a) of exercise 3.2.24, $o(a^{-1}) = o(a)$. Since $a^{-1} = b$, $o(a^{-1}) = o(b)$ which implies o(a) = o(b). So, p = q. Then, $gcd(p,q) = p = q \neq 1$ as assumed. Hence, $k \neq 1$.

(k = p) If k = p, $(ab)^p = e$. By exercise 3.1.17, $(ab)^p = a^pb^p = e$. Since o(a) = p, $a^p = e$, so $a^pb^p = e$ implies $a^pb^p = a^p$. Thus, $b^p = e$. If p > q, by proposition 3.2.8(b), $q \mid p$. But, p and q are relatively prime, $q \not\mid p$ and so p < q. But, $p \not< q$ since q is the smallest integer such that $b^q = e$. Hence, $k \neq p$.

(k=q) If k=q, $(ab)^q=e$. By exercise 3.1.17, $(ab)^q=a^qb^q=e$. Since o(b)=q, $b^q=e$, so $a^qb^q=e$ implies $a^qb^q=b^q$. Thus, $a^q=e$. If q>p, by proposition 3.2.8(b), $p\mid q$. But, p and q are relatively prime, $p\not\mid q$ and so q< p. But, $p\not < q$ since q is the smallest integer such that $b^q=e$. Hence, $k\neq p$.

Thus, pq is the smallest integer such that $(ab)^{pq} = e$ and o(ab) = pq = o(a)o(b).