

Machine Learning for Business

Module 7: Poisson regression Day 4, 9.00 – 12.00

Asst. Prof. Dr. Santitham Prom-on

Department of Computer Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi

Regression

$$f(x) = b_0 + b_1 x_1 + b_2 x_2 + \dots$$

Poisson regression

So far we have looked at 2 kinds of regression

- Linear regression (simple, multiple)
 - Continuous response, normally distributed with constant variance
 - Mean a linear function of the covariates
- "Logistic regression"
 - Response (number of successes in n trials) has a binomial distribution Bin(n, p)
 - Mean is *np* where log-odds of *p* is a linear function of the covariates

g-able

g-able

Example - Count data

ceb.data <- read.csv("4-ceb.csv")
head(ceb.data)</pre>

```
index duration resident education mean
#
                       Suva
                                  none 0.50 1.14
      1
              0-4
#
      2
              0 - 4
                       Suva
                                lower 1.14 0.73 21
#
      3
              0 - 4
                       Suva
                                upper 0.90 0.67 42
#
              0-4
                       Suva
                                  sec+ 0.73 0.48 51
      4
#
      5
              0-4
                      urban
                                  none 1.17 1.06 12
                                lower 0.85 1.59 27
              0-4
                      urban
```


Poisson regression (cont)

- Now we consider "Poisson regression"
 - Response is a count, assumed to have a Poisson distribution with (positive) mean μ
 - Assume that $\log \mu$ is a linear function of the covariates
 - Alternatively,

 \(\mu = \exp(\) linear function of covariates)
- Poisson is a standard distribution when response is a count.

Poisson distribution

$$\Pr(Y = y) = \frac{e^{-\mu}\mu^y}{y!}$$

Count Y can have values 0, 1, 2, . . .

(thus, mean μ must be positive)

Poisson distribution (cont)

The Poisson Regression Model

- The response Y with covariates $x_1, ..., x_k$ has a Poisson distribution, with mean μ
- Mean μ is related to the covariates by $\log(\mu) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$
- As for logistic regression, the parameters are estimated by maximum likelihood

Interpretation of β 's

- If $\beta_j > 0$, mean *increases* with x_j
- If β_j <0, mean *decreases* with x_j
- Unit increase in x_j changes the mean by a factor of $exp(\beta_i)$

(like the odds in logistic regression)

g-able

g_{*}able

Estimation of β 's

- To estimate the β 's , we use the method of *maximum likelihood*, as in logistic regression
- Basic idea:
 - Using the *Poisson* distribution, we can work out the probability of getting any particular set of responses y.
 - In particular, we can work out the probability of getting the data we actually observed this is the likelihood
 - Choose β 's to maximise this probability (or, equivalently, the log-likelihood)

Example: Mining accident data

- This example features the number of accidents per mine in a 3 month period in 44 coal mines in West Virginia. The variables are
 - COUNT: the number of accidents (response)
 - INB: inner burden thickness
 - EXTRP: percentage of coal extracted from mine
 - AHS: the average height of the coal seam in the mine
 - AGE: the age of the mine

g-able

g_{*}able

R: read coal mine data

mines.df <- read.csv("4-mines.csv")
head(mines.df)</pre>

```
COUNT INB EXTRP AHS AGE
# 1
           50
                 70
                     52 1.0
        1 230
                     42 6.0
                 65
        0 125
                     45 1.0
                 70
# 4
        4 75
                 65
                     68 0.5
       1 70
# 5
                 65 53 0.5
        2 65
                     46 3.0
                 70
```


R: Modeling with Poisson regression

summary(mines.glm)

∰ g₊able

Deviance Residuals:

Min 1Q Median 3Q Max -1.7756 -0.8653 -0.1060 0.3745 2.1536

Coefficients:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

∰ g_{*}able

R: validate goodness of fit

Null deviance: 74.984 on 43 degrees of freedom Residual deviance: 37.717 on 39 degrees of freedom

AIC: 143.99

```
1 - pchisq(37.717,39)
#[1] 0.5283455
```

This is the probability that the result is fitted to the distribution.

It has chi-square distribution.

Interpretation of coefficients

```
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.6097078  1.0284740  -3.510  0.000448 ***

INB     -0.0014441  0.0008415  -1.716  0.086145 .

EXTRP     0.0622011  0.0122872  5.062  4.14e-07 ***

AHS     -0.0017578  0.0050737  -0.346  0.729003

AGE     -0.0296244  0.0163143  -1.816  0.069394 .

---

Signif. codes:  0 '***'  0.001 '**'  0.05 '.'  0.1 ' ' 1
```

- As the inner burden thickness increases, the number of accidents goes down (but only weakly significant)
- As the extraction percentage goes up the accidents go up
- As the age of the mine increases, the number of accidents goes down (but only weakly significant)

Prediction

res

```
      1
      2
      3
      4
      5

      1.7352143
      0.8603991
      1.5763734
      1.2101086
      1.2514435

      6
      7
      8
      9
      10

      1.6173148
      0.8957271
      0.6109027
      3.9480205
      2.9110752

      11
      12
      13
      14
      15

      0.8701623
      4.6907901
      1.4209840
      3.4348331
      3.2271179

      16
      17
      18
      19
      20

      4.6047205
      4.6579239
      3.2443106
      0.6599130
      4.0092516
```


g-able

Prediction error

```
# measure Mean Absolute Error (MAE)
mean(abs(mines.df$COUNT - res))
```

[1] 0.9307389

Example: Onions

On each onion, the following were measured:

- Maturity: the maturity of the onion. Levels are 50%, 70%, 90%, 95% and 100%
- Cure: the method of curing: either "traditional", "shears or "partial"
- Block: the area of land the onions were grown in, one of 1, 2, 3 or 4
- Skins: the number of skins
- To make then data set more compact, the data were grouped.
- The number of onions having the same values of the above variable is recorded as "weight"

g_{*}able

R: read the onions data

```
onions.df <- read.csv("4-onions.csv")
head(onions.df, n = 20)</pre>
```


	maturity	cure	block	skins	weight
1	-	traditional	1	1	0
2	50%	traditional	1	2	18
3	50%	traditional	1	3	27
4	50%	traditional	1	4	5
5	50%	traditional	1	5	0
6	50%	traditional	2	1	0
7	50%	traditional	2	2	17
8	50%	traditional	2	3	24
9	50%	traditional	2	4	8
10	50%	traditional	2	5	1
11	50%	traditional	3	1	0
12	50%	traditional	3	2	17
13	50%	traditional	3	3	25
14	50%	traditional	3	4	8
15	50%	traditional	3	5	0
16	50%	traditional	4	1	0
17	50%	traditional	4	2	19
18	50%	traditional	4	3	25
19	50%	traditional	4	4	6
20	50%	traditional	4	5	0

∰ g_∗able

Doing it in R

Must treat "block" as a factor

> onions.glm<-glm(skins ~ factor(block)*maturity*cure,
family=poisson, weight=weight, data=onions.df)</pre>

> anova(onions.glm, test="Chisq")

Analysis of Deviance Table
Model: poisson, link: log

Response: skins

Terms added sequentially (first to last)

Takes care of the repetitions

	Df	Deviance	Resid. Df	Resid. Dev	P(> Chi)
NULL			227	680.81	
factor(block)	3	1.62	224	679.19	0.65
maturity	4	70.46	220	608.72	1.814e-14
cure	2	1.07	218	607.66	0.59
factor(block):maturity	12	2.43	206	605.23	1.00
factor(block):cure	6	0.81	200	604.43	0.99
maturity:cure	8	2.43	192	602.00	0.96
factor(block):maturity:cure	24	3.06	168	598.93	1.00

No evidence cure has an effect, p-value is 0.65. Strong maturity effect

Fit simpler model

```
> model2<-glm(skins ~ maturity, family=poisson,
weight=weight, data=onions.df)
                                       Baseline is 100%
> summary (model2)
Coefficients:
            Coefficients:
           Estimate Std zrror z value Pr(>|z|)
(Intercept) 0.76547 0.02784 27.493 < 2e-16 ***
maturity50% 0.28302
                       0.03687 7.676 1.64e-14 ***
maturity70% 0.21786
                       0.03740 5.825 5.70e-09 ***
maturity90% 0.15282
                       0.03795 4.026 5.66e-05 ***
                      0.03844 2.552
                                         0.0107 *
maturity95% 0.09813
Null deviance: 680.81 on 227 degrees of freedom
Residual deviance: 610.35 on 223 degrees of freedom
AIC: 8967.2
```

Number of skins goes down as onions get more mature

Offsets

- Often Poisson data are concerned with rates, as in death rates or accident rates in a population.
- In this case, we look at the number of deaths from a particular cause over a period of time. The number of deaths will be related to the population size, and the time, which we have to take into account.
- We could treat the data as binomial, but a more common approach is to use *offsets*.

Offsets (cont)

 We imagine that the number of deaths in a fixed period in a population is Poisson, with mean of the form

 μ = (population size/100000) × mean for a population of size 100,000)

Taking logs, we get

 $log(\mu) = log(population size/100000) + log(mean of standardised population)$

g-able

Offsets (cont)

• The last term (the rate per 100,000) is modeled in terms of the covariates in the usual way.

The term log(pop size/100000) is just another variable in the model, except that its regression coefficient is fixed at 1. Such a variable is called an *offset*.

Example

- Deaths from childhood cancers 1951 1960 in Northumberland and Durham, classified by
 - Cytology (Lymphoblastic / Myeloblastic)
 - Residence (Rural/Urban)
 - Age (0-5, 6-14)

g-able

g_{*}able

R: read in cancer data

```
cancer.df <- read.csv("4-cancer.csv")
cancer.df</pre>
```

```
Cytology Residence
                       Age
                                 pop
                       0-5 38 103857
1
2
                    R 6-14 13 155786
3
                       0-5 51 135943
4
                    U 6-14 37 203914
5
         М
                       0-5
                           5 103857
6
                    R 6-14
                            8 155786
         М
                    U 0-5 13 135943
7
         М
         М
                    U 6-14 20 203914
```


Fitting

```
cancer.glm<-glm(n ~ Cytology*Residence*Age,</pre>
family=poisson, offset=log(pop/100000), data=cancer.df)
> anova(cancer.glm, test="Chisq")
                                      Specify offset like this
Analysis of Deviance Table
Model: poisson, link: log
Response: n
Terms added sequentially (first to last)
                     Df Deviance Resid. Df Resid. Dev P(>|Chi|)
                                             92.452
                                        7
Cvtology
                          48.952
                                        6
                                             43.500 2.624e-12
Residence
                          5.848
                                             37.652
                          23.875
                                            13.777 1.028e-06
Cytology:Residence
                      1
                          1.110
                                       3
                                              12.667
                                                        0.292
                                        2
Cytology:Age
                      1
                          8.717
                                             3.950
                                                        0.003
                                                        0.089
Residence:Age
                      1
                          2.895
                                        1
                                               1.054
Cytology:Residence:Age 1
                          1.054
                                        0 5.107e-15
                                                        0.304
```

Suggests model n ~ Cytology*Age + Residence

(effect of changing residence the same for all age/cytology combos)

g-able

Interpreting the cytology/age interaction

```
> model2<-glm(n ~ Cytology*Age + Residence, family=poisson,
offset=log(pop/100000), data=cancer.df)
> summary(model2)
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
                (Intercept)
                                 -6.184 6.24e-10 ***
CytologyM
                -1.5983
                          0.2584
Age6-14
                -0.9821
                          0.1767
                                -5.557 2.75e-08 ***
ResidenceU
                 0.3677
                          0.1546
                                  2.379 0.01736 *
                          0.3500
                                  2.910 0.00362 **
CytologyM:Age6-14
                 1.0184
```

Null deviance: 92.4517 on 7 degrees of freedom Residual deviance: 5.0598 on 3 degrees of freedom

AIC: 52.858

> 1-pchisq(5.0598, 3)
[1] 0.1674703

∰ g₁able

Interpreting the cytology/age interaction

For Rural residence, rate per 100,000 is :

Bas cell	seline	Age=0-5	Age=6-14	
Су	ytology=L	Exp(3.3893) =29.6	Exp(3.3893-0.9821) =11.1	
Cytology=M		Exp(3.3893-1.5983) =5.9	Exp(3.3893-0.9821- 1.5983 +1.0184) =6.2	

Urban residence increases these rates by a factor of exp(0.3677)=1.44

Activity

- Use the data "4-ceb.csv"
- Create a new column y = mean*n
- Because y comes from multiplication of Poisson distributed variable and the rate, taking log of y results in log(y) = log(mean) + log(n)
- Create a new variable os = log(n)
- Build models to predict y use os as an offset
 - $y \sim 1$
 - $y \sim resident$
 - y ~ education
 - y ~ duration
- Interpret the model result, which one affect the number of children

Thank you Question?