Programas Cálculo

Luis Eduardo Galindo Amaya

7 de diciembre de 2021

Índice

1.	Con	versión Entre Sistemas De Coordenadas	2	
	1.1.	Rectangulares a Cilíndricas (o Polares)	2	
		Rectangulares a Esféricas		
	1.3.	Cilíndricas a Rectangulares	4	
	1.4.	Cilíndricas a Esféricas	5	
	1.5.	Esfericas a Rectangulares	6	
	1.6.	Esfericas a Cilidnricas	7	
2.	Modulo del Vector			
	2.1.	Modulo - Version 1	8	
	2.2.	Modulo - Version 2	8	
	2.3.	Modulo del Vector Fuera Del Origen	8	

1. Conversión Entre Sistemas De Coordenadas

1.1. Rectangulares a Cilíndricas (o Polares)

```
# Sustituye el valor de 'x', 'y' y 'z'.
x = 4
y = -5
z = 2
r = sqrt(x^2+y^2)
theta = arctan(y/x)
# determinar la cantidad de ángulo faltante
# 'and' regresa 1 = True y 0 = False
ajuste(x,y) = (
   and(x \ge 0, y \ge 0) * 0
                         + # I
   and(x<0 ,y>=0) * pi + # II
   and(x<0,y<0) * pi
                        + # III
   and(x \ge 0, y < 0) * 2*pi # IV
)
# sumamos los grados faltantes
theta = theta+ajuste(x,y)
"Rectangular (x,y,z):"
float((x,y,z))
"Cilíndrica (r,theta,z):"
float((r,theta,z))
```

1.2. Rectangulares a Esféricas

```
# Sustituye el valor de 'x', 'y' y 'z'.
x = 4
y = -5
z = 2
rho = sqrt(x^2+y^2+z^2)
theta = arctan(y/x)
phi = arccos(z/rho)
# determinar la cantidad de ángulo faltante
# 'and' regresa 1 = True y 0 = False
ajuste(x,y) = (
   and(x \ge 0, y \ge 0) * 0
                        + # I
   and(x<0 ,y>=0) * pi + # II
   and(x<0,y<0) * pi + # III
   and(x>=0,y<0) * 2*pi
                         # IV
)
# sumamos los grados faltantes
theta = theta+ajuste(x,y)
"Rectangular (x,y,z):"
float((x,y,z))
"Esféricas (rho,theta,phi):"
float((rho,theta,phi))
```

1.3. Cilíndricas a Rectangulares

```
# Sustituye el valor de 'r', 'theta' y 'z'.

r = 4
theta = 2
z = 4

x = r * cos(theta)
y = r * sin(theta)
z = z

"Cilíndrica (r,theta,z):"
float((r,theta,z))

"Rectangular (x,y,z):"
float((x,y,z))
```

1.4. Cilíndricas a Esféricas

```
# Sustituye el valor de 'r', 'theta' y 'z'
# theta es el angulo de los ejes 'x' y 'y'
r = 1
theta = 1
z = 1

rho = sqrt(r^2+z^2)
theta = theta
phi = arccos(z/rho)

"Cilindrica (r,theta,z):"
float((r,theta,z))

"Esferica (rho,theta,phi):"
float((rho,theta,phi))
```

1.5. Esfericas a Rectangulares

```
# Sustituye el valor de 'rho', 'theta' y 'phi'
# theta es el angulo de los ejes 'x' y 'y'
# phi es el angulo del eje 'z'

rho = 1
theta = 1
phi = 1

x = rho * sin(phi) * cos(theta)
y = rho * sin(phi) * sin(theta)
z = rho * cos(phi)

"Esferica (rho,theta,phi):"
float((rho,theta,phi))

"Rectangular (x,y,z):"
float((x,y,z))
```

1.6. Esfericas a Cilidnricas

```
# Sustituye el valor de 'rho', 'theta' y 'phi'
# theta es el angulo de los ejes 'x' y 'y'
# phi es el angulo del eje 'z'

rho = 1
theta = 1
phi = 1

r = rho * sin(phi)
theta = theta
z = rho * cos(phi)

"Esferica (rho,theta,phi):"
float((rho,theta,phi))

"Cilindrica (r,theta,z):"
float((r,theta,z))
```

2. Modulo del Vector

2.1. Modulo - Version 1

```
# Sustituye el valor de 'x', 'y' y 'z'.
x = 1
y = 1
z = 1
sqrt(x^2 + y^2 + z^2)
```

2.2. Modulo - Version 2

```
# Sustituye los valores por los de tu vector (x,y,z). v = (1,3,5) abs(v)
```

2.3. Modulo del Vector Fuera Del Origen

```
# Sustituye 'v' por los valores por los de tu vector.
# Sustituye 'g' los valores por los de el origen.

v = (1,3,5) # Vector
g = (0,0,0) # Origen

abs(v-g)
```