CSC373

Week 2: Greedy Algorithms

Announcements

First tutorial tomorrow!

- Details on Piazza
- First Assignment to be posted tomorrow (May 19) after tutorial

• Due June 1

Recap

Divide & Conquer

- > Master theorem
- \triangleright Counting inversions in $O(n \log n)$
- \succ Finding closest pair of points in \mathbb{R}^2 in $O(n \log n)$
- > Fast integer multiplication in $O(n^{\log_2 3})$
- > Fast matrix multiplication in $O(n^{\log_2 7})$
- \succ Finding k^{th} smallest element (in particular, median) in O(n)

Greedy Algorithms

- Greedy/myopic algorithm outline
 - \triangleright Goal: find a solution x maximizing/minimizing objective function f
 - \triangleright Challenge: space of possible solutions x is too large
 - Insight: x is composed of several parts (e.g., x is a set or a sequence)
 - Approach: Instead of computing x directly...
 - Compute it one part at a time
 - Select the next part "greedily" to get the most immediate "benefit" (this needs to be defined carefully for each problem)
 - Polynomial running time is typically guaranteed
 - Need to prove that this will always return an optimal solution despite having no foresight

- Problem
 - \triangleright Job j starts at time s_j and finishes at time f_j
 - \succ Two jobs i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ don't overlap
 - Note: we allow a job to start right when another finishes
 - Goal: find maximum-size subset of mutually compatible jobs

Greedy template

- Consider jobs in some "natural" order
- > Take a job if it's compatible with the ones already chosen

What order?

- Earliest start time: ascending order of s_i
- \triangleright Earliest finish time: ascending order of f_i
- \triangleright Shortest interval: ascending order of $f_i s_i$
- Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

Example

- Earliest start time: ascending order of s_i
- Earliest finish time: ascending order of f_i
- Shortest interval: ascending order of $f_i s_i$
- Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

Does it work?

Counterexamples for

earliest start time

shortest interval

fewest conflicts

- Implementing greedy with earliest finish time (EFT)
 - > Sort jobs by finish time, say $f_1 \le f_2 \le \cdots \le f_n$
 - $\circ O(n \log n)$
 - > For each job *j*, we need to check if it's compatible with *all* previously added jobs
 - \circ Naively, this can take O(n) time per job j, so $O(n^2)$ total time
 - \circ We only need to check if $s_i \geq f_{i^*}$, where i^* is the *last added job*
 - For any jobs i added before i^* , $f_i \leq f_{i^*}$
 - By keeping track of f_{i^*} , we can check job j in O(1) time
 - > Running time: $O(n \log n)$

- Proof of optimality by contradiction
 - > Suppose for contradiction that greedy is not optimal
 - > Say greedy selects jobs $i_1, i_2, ..., i_k$ sorted by finish time
 - > Consider an optimal solution $j_1, j_2, ..., j_m$ (also sorted by finish time) which matches greedy for as many indices as possible
 - \circ That is, we want $j_1 = i_1, ..., j_r = i_r$ for the greatest possible r
 - > Both i_{r+1} and j_{r+1} must be compatible with the previous selection $(i_1=j_1,\ldots,i_r=j_r)$

- Proof of optimality by contradiction
 - \triangleright Consider a new solution $i_1, i_2, \dots, i_r, i_{r+1}, j_{r+2}, \dots, j_m$
 - \circ We have replaced j_{r+1} by i_{r+1} in our reference optimal solution
 - \circ This is still feasible because $f_{i_{r+1}} \le f_{j_{r+1}} \le s_{j_t}$ for $t \ge r+2$
 - o This is still optimal because m jobs are selected
 - \circ But it matches the greedy solution in r+1 indices
 - This is the desired contradiction

- Proof of optimality by induction
 - \triangleright Let S_j be the subset of jobs picked by greedy after considering the first j jobs in the increasing order of finish time
 - \circ Define $S_0 = \emptyset$
 - > We call this partial solution *promising* if there is a way to extend it to an optimal solution by picking some subset of jobs j + 1, ..., n
 - $\circ \exists T \subseteq \{j+1,...,n\}$ such that $O_j = S_j \cup T$ is optimal
 - ▶ Inductive claim: For all $t \in \{0,1,...,n\}$, S_t is promising
 - > If we prove this, then we are done!
 - \circ For t = n, if S_n is promising, then it must be optimal (Why?)
 - \circ We chose t=0 as our base case since it is "trivial"

- Proof of optimality by induction
 - $\succ S_i$ is *promising* if $\exists T \subseteq \{j+1,...,n\}$ such that $O_j = S_j \cup T$ is optimal
 - ▶ Inductive claim: For all $t \in \{0,1,...,n\}$, S_t is promising
 - **Base case:** For t = 0, $S_0 = \emptyset$ is clearly promising
 - Any optimal solution extends it
 - > Induction hypothesis: Suppose the claim holds for t=j-1 and optimal solution \mathcal{O}_{j-1} extends \mathcal{S}_{j-1}
 - ▶ Induction step: At t = j, we have two possibilities:
 - 1) Greedy did not select job j, so $S_j = S_{j-1}$
 - Job j must conflict with some job in S_{j-1}
 - Since $S_{i-1} \subseteq O_{i-1}$, O_{i-1} also cannot include job j
 - $O_j = O_{j-1}$ also extends $S_j = S_{j-1}$

- Proof of optimality by induction
 - ▶ Induction step: At t = j, we have two possibilities:
 - 2) Greedy selected job j, so $S_i = S_{i-1} \cup \{j\}$
 - Consider the earliest job r in $O_{j-1} \setminus S_{j-1}$
 - Consider O_j obtained by replacing r with j in O_{j-1}
 - Prove that O_i is still feasible
 - O_i extends S_i , as desired!

Contradiction vs Induction

- Both methods make the same claim
 - \succ "The greedy solution after j iterations can be extended to an optimal solution, $\forall j$ "
- They also use the same key argument
 - \succ "If the greedy solution after j iterations can be extended to an optimal solution, then the greedy solution after j+1 iterations can be extended to an optimal solution as well"
 - For proof by induction, this is the key induction step
 - > For proof by contradiction, we take the greatest j for which the greedy solution can be extended to an optimal solution, and derive a contradiction by extending the greedy solution after j+1 iterations

Problem

- \triangleright Job j starts at time s_j and finishes at time f_j
- > Two jobs are compatible if they don't overlap
- Goal: group jobs into fewest partitions such that jobs in the same partition are compatible

One idea

- > Find the maximum compatible set using the previous greedy EFT algorithm, call it one partition, recurse on the remaining jobs.
- Doesn't work (check by yourselves)

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 4 classrooms for scheduling 10 lectures

373S22 - Deepanshu Kush

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 3 classrooms for scheduling 10 lectures

- Let's go back to the greedy template!
 - > Go through lectures in some "natural" order
 - Assign each lecture to an (arbitrary?) compatible classroom, and create a new classroom if the lecture conflicts with every existing classroom
- Order of lectures?
 - \triangleright Earliest start time: ascending order of s_i
 - \triangleright Earliest finish time: ascending order of f_i
 - \triangleright Shortest interval: ascending order of $f_i s_i$
 - > Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

- At least when you
 assign each lecture to
 an arbitrary compatible
 classroom, three of
 these heuristics do not
 work.
- The fourth one works! (next slide)

EARLIESTSTARTTIMEFIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$ SORT lectures by start time so that $s_1 \le s_2 \le ... \le s_n$. $d \leftarrow 0$ — number of allocated classrooms For j = 1 to nIF lecture *j* is compatible with some classroom Schedule lecture *j* in any such classroom *k*. FLSE Allocate a new classroom d + 1Schedule lecture j in classroom d + 1. $d \leftarrow d + 1$ RETURN schedule.

Running time

- Key step: check if the next lecture can be scheduled at some classroom
- > Store classrooms in a priority queue
 - o key = latest finish time of any lecture in the classroom
- > Is lecture *j* compatible with some classroom?
 - \circ Same as "Is s_i at least as large as the minimum key?"
 - \circ If yes: add lecture j to classroom k with minimum key, and increase its key to f_i
 - \circ Otherwise: create a new classroom, add lecture j, set key to f_i
- > O(n) priority queue operations, $O(n \log n)$ time

- Proof of optimality (lower bound)
 - > # classrooms needed ≥ "depth"
 - depth = maximum number of lectures running at any time
 - \circ Recall, as before, that job *i* runs in $[s_i, f_i)$
 - > Claim: our greedy algorithm uses only these many classrooms!

- Proof of optimality (upper bound)
 - > Let d = # classrooms used by greedy
 - > Classroom d was opened because there was a lecture j which was incompatible with some lectures already scheduled in each of d-1 other classrooms
 - \triangleright All these d lectures end after s_i
 - \triangleright Since we sorted by start time, they all start at/before s_i
 - \triangleright So, at time s_i , we have d mutually overlapping lectures
 - \triangleright Hence, depth $\ge d = \#$ classrooms used by greedy
 - Note: before we proved that #classrooms used by any algorithm (including greedy) ≥ depth, so greedy uses exactly as many classrooms as the depth.

Interval Graphs

 Interval scheduling and interval partitioning can be seen as graph problems

Input

- \rightarrow Graph G = (V, E)
- Vertices V = jobs/lectures
- ▶ Edge $(i,j) \in E$ if jobs i and j are incompatible
- Interval scheduling = maximum independent set (MIS)
- Interval partitioning = graph coloring

Interval Graphs

- MIS and graph coloring are NP-hard for general graphs
- But they're efficiently solvable for "interval graphs"
 - > Graphs which can be obtained from incompatibility of intervals
 - In fact, this holds even when we are not given an interval representation of the graph
- Can we extend this result further?
 - > Yes! Chordal graphs
 - Every cycle with 4 or more vertices has a chord

Problem

- > We have a single machine
- \triangleright Each job j requires t_i units of time and is due by time d_i
- \triangleright If it's scheduled to start at s_j , it will finish at $f_j = s_j + t_j$
- > Lateness: $\ell_j = \max\{0, f_j d_j\}$
- ightharpoonup Goal: minimize the maximum lateness, $L=\max_j\ell_j$
- Contrast with interval scheduling
 - > We can decide the start time
 - > There are soft deadlines

Example

Input

An example schedule

373S22 - Deepanshu Kush

- Let's go back to greedy template
 - > Consider jobs one-by-one in some "natural" order
 - Schedule jobs in this order (nothing special to do here, since we have to schedule all jobs and there is only one machine available)
- Natural orders?
 - \triangleright Shortest processing time first: ascending order of processing time t_i
 - ightharpoonup Earliest deadline first: ascending order of due time d_i
 - \triangleright Smallest slack first: ascending order of $d_i t_i$

- Counterexamples
 - > Shortest processing time first
 - \circ Ascending order of processing time t_i

- > Smallest slack first
 - \circ Ascending order of $d_i t_i$

	1	2
tj	1	10
dj	100	10

	1	2
tj	1	10
dj	2	10

 By now, you should know what's coming...

 We'll prove that earliest deadline first

works!

EARLIEST DEADLINE FIRST $(n, t_1, t_2, ..., t_n, d_1, d_2, ..., d_n)$

SORT *n* jobs so that $d_1 \leq d_2 \leq ... \leq d_n$.

$$t \leftarrow 0$$

For j = 1 to n

Assign job j to interval $[t, t+t_j]$.

$$s_j \leftarrow t \; ; \; f_j \leftarrow t + t_j$$

$$t \leftarrow t + t_j$$

RETURN intervals $[s_1, f_1]$, $[s_2, f_2]$, ..., $[s_n, f_n]$.

- Observation 1
 - > There is an optimal schedule with no idle time

- Observation 2
 - > Earliest deadline first has no idle time
- Let us define an "inversion"
 - $\succ (i,j)$ such that $d_i < d_j$ but j is scheduled before i
- Observation 3
 - > By definition, earliest deadline first has no inversions
- Observation 4
 - If a schedule with no idle time has at least one inversion, it has a pair of inverted jobs scheduled consecutively

Observation 5

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

Proof

Check that swapping an adjacent inverted pair reduces the total #inversions by one

Observation 5

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

Proof

- \succ Let ℓ_k and ℓ_k' denote the lateness of job k before & after swap
- > Let $L = \max_k \ell_k$ and $L' = \max_k \ell'_k$
- > 1) $\ell_k = \ell'_k$ for all $k \neq i, j$ (no change in their finish time)
- > 2) $\ell_i' \le \ell_i$ (*i* is moved early)

Observation 5

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

Proof

$$>$$
 3) $\ell'_{j} = f'_{j} - d_{j} = f_{i} - d_{j} \le f_{i} - d_{i} = \ell_{i}$

 \circ This uses the fact that, due to the inversion, $d_j \geq d_i$

$$\succ L' = \max\left\{\ell_i', \ell_j', \max_{k \neq i, j} \ell_k'\right\} \leq \max\left\{\ell_i, \ell_i, \max_{k \neq i, j} \ell_k\right\} \leq L$$

- Observation 5
 - Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one
- Proof
 - 3) ℓ'_j = f'_j d_j = f_l d_j ≤ f_l d_l = ℓ_l
 This uses the fact that, due to the inversion, d_j ≥ d_l
 - $\succ L' = \max\left\{\ell_i', \ell_j', \max_{k \neq l, j} \ell_k'\right\} \leq \max\left\{\ell_i, \ell_i, \max_{k \neq l, j} \ell_k\right\} \leq L$

Minimizing Lateness

- Observations 4+5 are the key!
- Recall the proof of optimality of the greedy algorithm for interval scheduling:
 - \succ Took an optimal solution matching greedy for r steps, and produced another optimal solution matching greedy for r+1 steps
 - > "Wrapped" this in a proof by contradiction or a proof by induction
 - Observations 4+5 provide something similar
 - \circ If optimal solution doesn't fully match greedy (#inversions \geq 1), we can swap an adjacent inverted pair and reduce #inversions by one

Minimizing Lateness

- Proof of optimality by contradiction
 - Suppose for contradiction that the greedy EDF solution is not optimal
 - \triangleright Consider an optimal schedule S^* with the fewest inversions
 - Without loss of generality, suppose it has no idle time
 - \triangleright Because EDF is not optimal, S^* has at least one inversion
 - \triangleright By Observation 4, it has an adjacent inversion (i,j)
 - > By Observation 5, swapping the adjacent pair keeps the schedule optimal but reduces the #inversions by 1
 - ➤ Contradiction! ■

Minimizing Lateness

- Proof of optimality by (reverse) induction
 - ▶ Claim: For each $r \in \{0,1,...,\binom{n}{2}\}$, there is an optimal schedule with at most r inversions
 - **Base case of** $r = \binom{n}{2}$: trivial, any optimal schedule works
 - > Induction hypothesis: Suppose the claim holds for r = t + 1
 - > Induction step: Take an optimal schedule with at most t+1 inversions
 - o If it has at most t inversions, we're done!
 - If it has exactly $t + 1 \ge 1$ inversions...
 - Assume no idle time WLOG
 - Find and swap an adjacent inverted pair (Observations 4 & 5)
 - #inversions reduces by one to t, so we're done!
 - > QED!
 - \triangleright Claim for r=0 shows optimality of EDF

Contradiction vs Induction

- Choose the method that feels natural to you
- It may be the case that...
 - > For some problems, a proof by contradiction feels more natural
 - > But for other problems, a proof by induction feels more natural
 - No need to stick to one method
- As we saw for interval partitioning, sometimes you may require an entirely different kind of proof

Problem

- \triangleright We have a document that is written using n distinct labels
- \triangleright Naïve encoding: represent each label using $\log n$ bits
- > If the document has length m, this uses $m \log n$ bits
- > English document with no punctuations etc.
- > n = 26, so we can use 5 bits
 - $\circ a = 00000$
 - 0 b = 00001
 - $\circ c = 00010$
 - 0 d = 00011
 - 0 ...

- Is this optimal?
 - > What if a, e, r, s are much more frequent in the document than x, q, z?
 - > Can we assign shorter codes to more frequent letters?
- Say we assign...
 - $\Rightarrow a = 0, b = 1, c = 01, ...$
 - > See a problem?
 - What if we observe the encoding '01'?
 - o Is it 'ab'? Or is it 'c'?

- To avoid conflicts, we need a *prefix-free encoding*
 - > Map each label x to a bit-string c(x) such that for all distinct labels x and y, c(x) is not a prefix of c(y)
 - > Then it's impossible to have a scenario like this

- > Now, we can read left to right
 - Whenever the part to the left becomes a valid encoding, greedily decode it, and continue with the rest

Formal problem

- \succ Given n symbols and their frequencies (w_1, \ldots, w_n) , find a prefix-free encoding with lengths (ℓ_1, \ldots, ℓ_n) assigned to the symbols which minimizes $\sum_{i=1}^n w_i \cdot \ell_i$
 - \circ Note that $\sum_{i=1}^{n} w_i \cdot \ell_i$ is the length of the compressed document

Example

- $(w_a, w_b, w_c, w_d, w_e, w_f) = (42,20,5,10,11,12)$
- > No need to remember the numbers ©

• Observation: prefix-free encoding = tree

- Huffman Coding
 - > Build a priority queue by adding (x, w_x) for each symbol x
 - > While $|queue| \ge 2$
 - \circ Take the two symbols with the lowest weight (x, w_x) and (y, w_y)
 - \circ Merge them into one symbol with weight $w_{\chi} + w_{\nu}$
- Let's see this on the previous example

373S22 - Deepanshu Kush

373S22 - Deepanshu Kush

373S22 - Deepanshu Kush 50

373S22 - Deepanshu Kush

Final Outcome

Running time

- $> O(n \log n)$
- ightharpoonup Can be made O(n) if the labels are given to you sorted by their frequencies
 - Exercise! Think of using two queues...

Proof of optimality

- > Induction on the number of symbols *n*
- **Base case:** For n=2, both encodings which assign 1 bit to each symbol are optimal
- > Hypothesis: Assume it returns an optimal encoding with n-1 symbols

- Proof of optimality
 - > Consider the case of *n* symbols
 - ▶ Lemma 1: If $w_x < w_y$, then $\ell_x \ge \ell_y$ in any optimal tree.
 - > Proof:
 - \circ Suppose for contradiction that $w_x < w_y$ and $\ell_x < \ell_y$.
 - Swapping x and y strictly reduces the overall length as $w_x \cdot \ell_y + w_y \cdot \ell_x < w_x \cdot \ell_x + w_y \cdot \ell_y$ (check!)
 - o QED!

Proof of optimality

- Consider the two symbols x and y with lowest frequency which Huffman combines in the first step
- ▶ Lemma 2: \exists optimal tree T in which x and y are siblings (i.e., for some p, they are assigned encodings p0 and p1).
- > Proof:
 - 1. Take any optimal tree
 - 2. Let *x* be the label with the lowest frequency.
 - 3. If x doesn't have the longest encoding, swap it with one that has
 - 4. Due to optimality, x must have a sibling (check!)
 - 5. If it's not y, swap it with y
 - 6. Check that Steps 3 and 5 do not change the overall length. ■

Proof of optimality

- Let x and y be the two least frequency symbols that Huffman combines in the first step into "xy"
- > Let H be the Huffman tree produced
- > Let T be an optimal tree in which x and y are siblings
- > Let H' and T' be obtained from H and T by treating xy as one symbol with frequency $w_x + w_y$
- ▶ Induction hypothesis: $Length(H') \le Length(T')$
- > $Length(H) = Length(H') + (w_x + w_y) \cdot 1$
- > $Length(T) = Length(T') + (w_x + w_y) \cdot 1$
- \rightarrow So $Length(H) \leq Length(T) \blacksquare$

Other Greedy Algorithms

- If you aren't familiar with the following algorithms, spend some time checking them out!
 - > Dijkstra's shortest path algorithm
 - > Kruskal and Prim's minimum spanning tree algorithms