Linear Algebra Class on 12 January

Seanie Lee

12 January 2019

1.5 Basis Extension Theorem

Lemma 1.1. \mathfrak{B} is a basis for $\mathbf{W} \leq \mathbf{V}$. $\mathbf{v} \in \mathbf{V}$, $\mathbf{v} \neq \mathbf{0}$. $\mathfrak{B} \cup \{\mathbf{v}\}$ is linearly independent $\iff \mathbf{v} \notin span\mathfrak{B}$

Proof. We want to prove contrapositive of the statement. That is $\mathbf{v} \in \operatorname{span}\mathfrak{B} \iff \mathfrak{B} \cup \{\mathbf{v}\}$ is linearly dependent set.

 \implies Suppose $\mathfrak{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a basis for \mathbf{W} and $\mathbf{v} \in \text{span}\mathfrak{B}$ be given. Since $\mathbf{v} \in \text{span}\mathfrak{B}$, $\mathbf{v} = a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k$ i.e. $a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k - \mathbf{v} = \mathbf{0}$. There is a non-trivial representation of $\mathbf{0}$. Therefore $\mathfrak{B} \cup \{\mathbf{v}\}$ is linearly dependent.

 \Leftarrow Let's assume $a_1\mathbf{v}_1 + \cdots + a_k\mathbf{v}_k + c\mathbf{v} = 0$. Since $\mathfrak{B} \cup \{\mathbf{v}\}$ is linearly dependent, there are some non-zero coefficient. Assume c = 0. Then $\forall a_i = 0$ because \mathfrak{B} is linearly independent, which implies $\mathfrak{B} \cup \{\mathbf{v}\}$ is linearly independent. But it contradicts to the assumption. So c is non-zero. Then $v = c^{-1}(-a_1\mathbf{v}_1 - \cdots - a_l\mathbf{v}_k)$. $\mathbf{v} \in \mathrm{span}\mathfrak{B}$

Theorem (Basis Extension Theorem). W is a subspace of V and $\mathfrak{B} := \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a basis for W. Then there exists $\mathfrak{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n\} \supset \mathfrak{B}$ and \mathfrak{C} is a basis for V.

Proof. Choose $\mathbf{v} \in \mathbf{V}$ such that $\mathbf{v} \neq \mathbf{0}$ and $\mathbf{v} \notin \operatorname{span}\mathfrak{B}$. By the lemma 1.1, $\mathfrak{B}' \coloneqq \mathfrak{B} \cup \{\mathbf{v}\}$ is linearly independent. Since \mathbf{V} is finite vector space, this process terminates in finite step. Thus repeat this process until the cardinality of $\mathfrak{B}' = \dim \mathbf{V}$

Theorem. $\mathbf{W}_1, \mathbf{W}_2$ are subspace of \mathbf{V} . The followings are equivalent

- (1) $\mathbf{V} = \mathbf{W}_1 \oplus \mathbf{W}_2$
- (2) $\mathfrak{B}, \mathfrak{B}_1$, and \mathfrak{B}_2 are bases for V, W_1, W_2 respectively. $\mathfrak{B} = \mathfrak{B}_1 \biguplus \mathfrak{B}_2$

Proof. \Longrightarrow Suppose that $\mathfrak{B}_1 \coloneqq \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ and let $\mathfrak{B}_2 \coloneqq \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ be given and let them be bases for $\mathbf{W}_1, \mathbf{W}_2$ respectively. We want to show $\mathfrak{B}_1 \cap \mathfrak{B}_2 = \emptyset$. Assume $\mathfrak{B}_1 \cap \mathfrak{B}_2 \neq \emptyset$ and $\mathbf{w} \in \mathfrak{B}_1 \cap \mathfrak{B}_2$ such that $\mathbf{w} \neq \mathbf{0}$ be given. Since $\mathfrak{B}_1 \subset \mathbf{W}_1$ and $\mathfrak{B}_2 \subset \mathbf{W}_2$, $\mathbf{w} \in \mathbf{W}_1, \mathbf{W}_2$. So $\mathbf{w} \in \mathbf{W}_1 \cap \mathbf{W}_2$, i.e. $\mathbf{w} = \mathbf{0}$. But it contradicts to the assumption. Therefore $\mathfrak{B}_1 \cap \mathfrak{B}_2 = \emptyset$. Since $\mathfrak{B}_1, \mathfrak{B}_2$ are bases for $\mathbf{W}_1, \mathbf{W}_2$ and $\mathbf{W}_1, \mathbf{W}_2$ are direct sum of \mathbf{V} , $\mathfrak{B}_1 \cup \mathfrak{B}_2$ span \mathbf{V} . Thus it is enough to show that $\mathfrak{B}_1 \cup \mathfrak{B}_2$ is linearly independent subset of \mathbf{V} . Suppose that $a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k + b_1\mathbf{u}_1 + \dots + b_m\mathbf{u}_m = \mathbf{0}$ $\mathbf{v} \coloneqq a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k = -(b_1\mathbf{u}_1 + \dots + b_m\mathbf{u}_m)$ Since $\mathbf{v} \in \text{span}\mathfrak{B}_1 \cap \mathfrak{B}_2$, $\mathbf{v} \in \mathbf{W}_1 \cap \mathbf{W}_2$. Thus $\mathbf{v} = \mathbf{0}$, which implies that $a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k = b_1\mathbf{u}_1 + b_m\mathbf{u}_m = \mathbf{0}$. Since $\mathfrak{B}_1, \mathfrak{B}_2$ are bases for $\mathbf{W}_1, \mathbf{W}_2$, $a_i = 0$ for $i = 1, \dots, k$ and $b_j = 0$ for $j = 1, \dots, m$. Therefore $\mathfrak{B}_1 \cup \mathfrak{B}_2$ is linearly independent.

 $\mathbf{W}_1, \mathbf{W}_2$ respectively. Since it's trivial to show that $\mathbf{W}_1 + \mathbf{W}_2 \subset \mathbf{V}$, it is enough to show that $\mathbf{V} \subset \mathbf{W}_1 + \mathbf{W}_2$. Suppose $\mathbf{v} \in \mathbf{V}$ be given. Since $\mathbf{v} \in \mathbf{W}_1 + \mathbf{W}_2$, $\mathbf{v} = \sum_{i=1}^k a_i \mathbf{v}_i + \sum_{j=1}^l b_j \mathbf{u}_j \in \mathbf{W}_1 + \mathbf{W}_2$. Therefore $\mathbf{V} \subset \mathbf{W}_1 + \mathbf{W}_2$ Finally we want to show that $\mathbf{W}_1 \cap \mathbf{W}_2 = \mathbf{O}$. Let's assume that $\exists \mathbf{w}$ such that $\mathbf{w} \neq \mathbf{0}$, $\mathbf{w} \in \mathbf{W}_1 \cap \mathbf{W}_2$. Since $\mathbf{w} \in \mathbf{W}_1 \cap \mathbf{W}_2$, $\mathbf{w} = a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_n = b_1 \mathbf{u}_1 + \dots + b_m \mathbf{u}_m$. i.e. $\mathbf{w} = a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_n - b_1 \mathbf{u}_1 + \dots + b_m \mathbf{u}_m = 0$ Since \mathfrak{B} is a basis, $\forall a_i, b_j = 0$. Therefore \mathbf{v} is always zero vector.

1.6 Quotient Space

Definition (Coset). W is a subspace of V $\mathbf{v} \in \mathbf{V}, \mathbf{v} + \mathbf{W} \coloneqq \{\mathbf{v} + \mathbf{w} \mid \mathbf{w} \in \mathbf{W}\}$

Definition (Quotient Space). $V_W := \{v + W \mid v \in V\}$

Theorem. $v + W \le V \iff v \in W$

Proof. \Longrightarrow There exists $\mathbf{w} \in \mathbf{W}$ such that $\mathbf{v} + \mathbf{w} = \mathbf{0}$ (: $\mathbf{v} + \mathbf{W} \leq \mathbf{V}$).

$$\mathbf{v} = -\mathbf{w} \in \mathbf{W}$$

⇐= Suppose $\mathbf{v} + \mathbf{w}_1, \mathbf{v} + \mathbf{w}_2 \in \mathbf{v} + \mathbf{W}$ be given. We want to show that $\mathbf{v} + \mathbf{w}_1 + \mathbf{v} + \mathbf{w}_2 \in \mathbf{v} + \mathbf{W}$. $\mathbf{v} + \mathbf{w}_1 + \mathbf{v} + \mathbf{w}_2 = \mathbf{v} + (\mathbf{v} + \mathbf{w}_1 + \mathbf{w}_2) \in \mathbf{v} + W$. For scalar multiplication, $c(\mathbf{v} + \mathbf{w}) = \mathbf{v} + (1 - c)\mathbf{v} + \mathbf{w} \in \mathbf{W}$. \therefore By the subspace test, $\mathbf{v} + \mathbf{W}$ is a subspace of \mathbf{V} .

Theorem. $\mathbf{v}_1 + \mathbf{W} = \mathbf{v}_2 + \mathbf{W} \iff \mathbf{v}_1 - \mathbf{v}_2 \in \mathbf{W}$

Proof. $\Longrightarrow \mathbf{v} \in \mathbf{v}_1 + \mathbf{W}, \mathbf{v}_2 + \mathbf{W}$. Then $\mathbf{v} = \mathbf{v}_1 + \mathbf{w}_1 = \mathbf{v}_2 + \mathbf{w}_2$ for some $\mathbf{w}_1, \mathbf{w}_2 \in \mathbf{W}$.

$$v_1 - v_2 = w_2 - w_1 \in W_1$$

 \Leftarrow Let $\mathbf{v}_1 + \mathbf{w}_1 \in \mathbf{v}_1 + \mathbf{W}$. Since $\mathbf{v}_1 - \mathbf{v}_2 \in \mathbf{W}$, $\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{w}$ for some $\mathbf{w} \in \mathbf{W}$.

 $\mathbf{v}_1 + \mathbf{w}_1 = (\mathbf{v}_2 + \mathbf{w}) + \mathbf{w}_1 = \mathbf{v}_2 + (\mathbf{w} + \mathbf{w}_1) \in \mathbf{v}_2 + \mathbf{W}$ Conversely, let $\mathbf{v}_2 + \mathbf{w}_2 \in \mathbf{v}_w + \mathbf{W}$ be given.

Then $\mathbf{v}_2 + \mathbf{w}_2 = (\mathbf{v}_1 - \mathbf{w}) + \mathbf{w}_2 = \mathbf{v}_1 + (-\mathbf{w} + \mathbf{w}_2) \in \mathbf{v}_1 + \mathbf{W}$

$$\therefore \mathbf{v}_1 + \mathbf{W} = \mathbf{v}_2 + \mathbf{W}$$

Theorem. Define a binary operation and a scalar multiplication as follows

$$(\mathbf{v}_1 + \mathbf{W}_1) + (\mathbf{v}_2 + \mathbf{W}_2) \coloneqq (\mathbf{v}_1 + \mathbf{v}_2) + \mathbf{W}$$

 $c(\mathbf{v} + \mathbf{W}) \coloneqq c\mathbf{v} + \mathbf{W}$

Then these two binary operations are well-defined.

Proof. Let $\mathbf{v}_1 + \mathbf{W} = \mathbf{v}_1' + \mathbf{W}$ and $\mathbf{v}_2 + \mathbf{W} = \mathbf{v}_2' + \mathbf{W}$ be given. By the previous theorem, $\mathbf{v}_1 - \mathbf{v}_1' \in \mathbf{W}$ and $\mathbf{v}_2 - \mathbf{v}_2' \in \mathbf{W}$. $(\mathbf{v}_1 + \mathbf{v}_2) - (\mathbf{v}_1' + \mathbf{v}_2') = (\mathbf{v}_1 - \mathbf{v}_1') + (\mathbf{v}_2 - \mathbf{v}_2') \in \mathbf{W}$ Thus, $(\mathbf{v}_1 + \mathbf{v}_2) + \mathbf{W} = (\mathbf{v}_1' + \mathbf{v}_2') + \mathbf{W}$ For scalar multiplication, $c\mathbf{v}_1 - c\mathbf{v}_1' \in \mathbf{W}$. Thus, $c\mathbf{v}_1 + \mathbf{W} = c\mathbf{v}_1' + \mathbf{W}$.

... The two binary operations are well-defined.

Theorem.

1.
$$(\mathbf{v}_1 + \mathbf{W}) \cap (\mathbf{v}_2 + \mathbf{W}) \neq \emptyset \Longrightarrow \mathbf{v}_1 + \mathbf{W} = \mathbf{v}_2 + W$$

2.
$$\mathbf{V}_{\mathbf{W}} = \biguplus_{\mathbf{v} \in \mathbb{R}} \mathbf{v} + \mathbf{W}$$
 where $\mathbb{R} := \text{the set of representatives}$.

3. $\forall \mathbf{v} \in \mathbf{V}$, the following map is bijection. Thus, $|\mathbf{W}| = |\mathbf{v} + \mathbf{W}|$

$$\mathbf{W} \longrightarrow \mathbf{v} + \mathbf{W}$$
 $\mathbf{w} \longmapsto \mathbf{v} + \mathbf{w}$

Theorem. W is a subspace of V. $\mathfrak{B} := \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a basis for W and $\mathfrak{C} := \{\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$ is a basis for V by extending \mathfrak{B} . Then $\{\overline{\mathbf{v}}_{k+1}, \dots, \overline{\mathbf{v}}_n\}$ is a basis for $\mathbf{V}_{/\mathbf{W}}$ where $\overline{\mathbf{v}}_j := \mathbf{v}_j + \mathbf{W}$.

Proof. $\overline{\mathfrak{D}} := {\overline{\mathbf{v}}_{k+1}, \dots, \overline{\mathbf{v}}_n}$ where $\mathfrak{B} \biguplus \mathfrak{D} = \mathfrak{C}$ Let $\overline{\mathbf{v}} \in \mathbf{V}_{\mathbf{W}}$ be given. Since \mathfrak{C} is a basis for \mathbf{V} , $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k + a_{k+1} \mathbf{v}_{k+1} + \dots + a_n \mathbf{v}_n$ for some $a_i \in \mathbb{R}$. Then

$$\overline{\mathbf{v}} = \overline{a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n}$$

$$= \overline{a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k} + \overline{a_{k+1} \mathbf{v}_{k+1} + \dots + a_n \mathbf{v}_n}$$

$$= \overline{a_{k+1} \mathbf{v}_{k+1} + \dots + a_n \mathbf{v}_n} \quad (\because \mathfrak{B} \text{ is a basis for } \mathbf{W})$$

$$= a_{k+1} \overline{\mathbf{v}}_{k+1} + \dots + a_n \overline{\mathbf{v}}_n \in \operatorname{span} \overline{\mathfrak{D}}$$

We want to show that $\overline{\mathfrak{D}}$ is linearly independent subset. Suppose $a_{k+1}\overline{\mathbf{v}}_{k+1}+\cdots+a_n\overline{\mathbf{v}}_n=\overline{\mathbf{0}}$ Then $(a_{k+1}\mathbf{v}_{k+1}+\cdots+a_n\mathbf{v}_n-\mathbf{0})\in \mathbf{W}$. Put $\mathbf{v}:=a_{k+1}\mathbf{v}_{k+1}+\cdots+a_n\mathbf{v}_n$, then $\mathbf{v}\in\operatorname{span}\mathfrak{B}$. So, $a_{k+1}\mathbf{v}_{k+1}+\cdots+a_n\mathbf{v}_n=b_1\mathbf{v}_1+\cdots+b_k\mathbf{v}_k$. $a_{k+1}\mathbf{v}_{k+1}+\cdots+a_n\mathbf{v}_n-b_1\mathbf{v}_1-\cdots-b_k\mathbf{v}_k=\mathbf{0}$. Since \mathfrak{C} is a basis for \mathbf{V} , so $a_i,b_j=0$ for $i=k+1,\ldots,n$ and for $j=1,\ldots,k$. Thus \mathfrak{D} is linearly independent. $\overline{\mathfrak{D}}$ is a basis for $\{\overline{\mathbf{v}}_{k+1},\ldots,\overline{\mathbf{v}}_n\}$

Corollary. $\dim \mathbf{V}_{\mathbf{W}} = \dim \mathbf{V} - \dim \mathbf{W}$