Setrvačníky v ℝ⁴

Pavel Hájek

MFF UK

8. září 2010

Geometrická mechanika

Hamiltonovská mechanika

Hamiltonovský systém

Trojice (M, ω, H) , kde

- (M,ω) je symplektická varieta, tj.
 M je hladká varieta a ω je nedegenerovaná uzavřená vnější diferenciální 2-forma
- H je hladká funkce zvaná Hamiltonián

Příklady symplektických variet

- T^*Q , $\dim(Q) = n$ s $\omega = \sum_{i=1}^n \mathrm{d} p_i \wedge \mathrm{d} q^i$ v kanonických souřadnicích (q^i, p_i) $(\omega = -\mathrm{d} \theta, \theta = \sum_{i=1}^n p_i \mathrm{d} q^i$ Liouvilleova 1-forma)
- S^2 s $\omega = \sin^2(\alpha) d\alpha \wedge d\beta$ ve sférických souřadnicích (α, β) . Není symplektickým kotečným bandlem žádné variety (ω není exaktní)

Příklady symplektických variet

- T^*Q , $\dim(Q) = n$ s $\omega = \sum_{i=1}^n \mathrm{d} p_i \wedge \mathrm{d} q^i$ v kanonických souřadnicích (q^i, p_i) $(\omega = -\mathrm{d} \theta, \theta = \sum_{i=1}^n p_i \mathrm{d} q^i$ Liouvilleova 1-forma)
- S^2 s $\omega = \sin^2(\alpha) d\alpha \wedge d\beta$ ve sférických souřadnicích (α, β) . Není symplektickým kotečným bandlem žádné variety (ω není exaktní)

Hamiltonovy rovnice

Hamiltonovské vektorové pole a Hamiltonovy rovnice

 (M, ω, H) Hamiltonovský systém. Pak

- Hamiltonovské vektorové pole ... $X_H \in \mathfrak{X}(M)$ splňující $i_{X_H}\omega = dH$, kde $i_{X_H}\omega = \omega(X_H, -) \in \mathcal{E}^1(M)$.
- Hamiltonovy kanonické rovnice ... rovnice pro integrální křivku $z(t) \in M, \ t \in \mathbb{R}$ pole X_H , tj. $\frac{\mathrm{d}}{\mathrm{d}t}z(t) = X_H(z(t))$.

"Klasicky" (lokálně):
$$M=T^*Q, z(t)=(q^i(t),p_i(t))$$

$$\dot{q}^i=\frac{\partial H}{\partial p_i}\,,\;\dot{p}_i=-\frac{\partial H}{\partial q^i}$$

Hamiltonovy rovnice

Hamiltonovské vektorové pole a Hamiltonovy rovnice

 (M, ω, H) Hamiltonovský systém. Pak

- Hamiltonovské vektorové pole ... $X_H \in \mathfrak{X}(M)$ splňující $i_{X_H}\omega = dH$, kde $i_{X_H}\omega = \omega(X_H, -) \in \mathcal{E}^1(M)$.
- Hamiltonovy kanonické rovnice ... rovnice pro integrální křivku $z(t) \in M, \ t \in \mathbb{R}$ pole X_H , tj. $\frac{\mathrm{d}}{\mathrm{d}t}z(t) = X_H(z(t))$.

"Klasicky" (lokálně):
$$M=T^*Q, z(t)=(q^i(t),p_i(t))$$

$$\dot{q}^i=\frac{\partial H}{\partial p_i}\ ,\ \dot{p}_i=-\frac{\partial H}{\partial q^i}$$

Poissonovy závorky a integrály pohybu

Poissonovy závorky

Zobrazení $\{-,-\}:C^\infty(M)\times C^\infty(M)\to C^\infty(M)$ definované jako

$$\{F,G\} = \omega(X_F,X_G)$$
, $F,G \in C^{\infty}(M)$

- {−,−} jsou antisymetrické
- $X \in \mathfrak{X}(M)$ Hamiltonovské $\Leftrightarrow X[f] = \{f, H\}, f \in C^{\infty}(M)$ (Poissonovy variety $(M, \{-, -\})$
- $\frac{\mathrm{d}}{\mathrm{d}t}(f \circ z) = \{f, H\} \circ z \text{ pro každou } f \in C^{\infty}(M).$

Integrál pohybu

 $f\in C^\infty(M)$ je integrálem pohybu (M,ω,H) , resp. zachovávající se veličinou, jestliže $\{f,H\}=0$.

• Integrálem pohybu je vždy "energie" H (= T + V), tj. $\{H, H\} = 0$

Poissonovy závorky a integrály pohybu

Poissonovy závorky

Zobrazení $\{-,-\}: C^\infty(M) \times C^\infty(M) \to C^\infty(M)$ definované jako

$$\{F,G\} = \omega(X_F,X_G)$$
, $F,G \in C^{\infty}(M)$

- {−,−} jsou antisymetrické
- $X \in \mathfrak{X}(M)$ Hamiltonovské $\Leftrightarrow X[f] = \{f, H\}, f \in C^{\infty}(M)$ (Poissonovy variety $(M, \{-, -\})$
- $\frac{\mathrm{d}}{\mathrm{d}t}(f \circ z) = \{f, H\} \circ z \text{ pro každou } f \in C^{\infty}(M).$

Integrál pohybu

 $f\in C^\infty(M)$ je integrálem pohybu (M,ω,H) , resp. zachovávající se veličinou, jestliže $\{f,H\}=0$.

• Integrálem pohybu je vždy "energie" H (= T + V), tj. $\{H, H\} = 0$

Poissonovy závorky a integrály pohybu

Poissonovy závorky

Zobrazení $\{-,-\}:C^\infty(M)\times C^\infty(M)\to C^\infty(M)$ definované jako

$$\{F,G\} = \omega(X_F,X_G)$$
, $F,G \in C^{\infty}(M)$

- {−,−} jsou antisymetrické
- $X \in \mathfrak{X}(M)$ Hamiltonovské $\Leftrightarrow X[f] = \{f, H\}, f \in C^{\infty}(M)$ (Poissonovy variety $(M, \{-, -\})$)
- $\frac{\mathrm{d}}{\mathrm{d}t}(f \circ z) = \{f, H\} \circ z \text{ pro každou } f \in C^{\infty}(M).$

Integrál pohybu

 $f \in C^{\infty}(M)$ je integrálem pohybu (M, ω, H) , resp. zachovávající se veličinou, jestliže $\{f, H\} = 0$.

• Integrálem pohybu je vždy "energie" H (= T + V), tj. $\{H, H\} = 0$

Integrabilita

Integrabilní systém

 (M, ω, H) , $\dim(M) = 2n$ je **úplně integrabilní** \Leftrightarrow existuje n integrálů pohybu $K_i \in C^{\infty}(M)$ v involuci, tj.

 $\{K_i, K_j\} = 0, i, j = 1, ..., n$ a diferenciály $\mathrm{d}f_i, i = 1, ..., n$ jsou lineárně nezávislé

Liouville-Arnoldova věta

Liouville-Arnoldova věta

 (M,ω,H) úplně integrabilní Hamiltonovský systém na kompaktní varietě M. Označme $\{K_1,\ldots,K_n\}$ integrály pohybu a $E:m\in M\mapsto (K_1(m),\ldots,K_n(m))\in\mathbb{R}^n$. Jestliže je $c\in\mathbb{R}^n$ regulární hodnotou E a $E^{-1}(c)$ je souvislé, pak

$$M_c = E^{-1}(c) \simeq_{\mathsf{difeo}} \mathbb{T}^n$$

Heslo: "Pohyby se dějí na toru"

Důsledky Liouville-Arnoldovy věty

• "Action-angle variables": Lokální souřadnice $(\alpha_1, \ldots, \alpha_n, K_1, \ldots, K_n)$ na T^*Q $((\alpha_i)$ na $M_c \simeq \mathbb{T}^n)$, že $\omega = \sum_{i=1}^n \mathrm{d}\alpha_i \wedge \mathrm{d}K_i$ a $H = H(K_i)$, tj.

$$\dot{K}_i = -\frac{\partial H}{\partial \alpha_i} = 0$$
, $\dot{\alpha}_i = \frac{\partial H}{\partial K_i} = F_i(K_j)$

• Původní řešení $z(t) = (q^i(t), p_i(t))$ v **kvadraturách**

Příklad (kyvadlo):

$$H = rac{p_q^2}{2m} + mgI(1 - \cos(q))$$

 $E(q, p_q) = H(q, p_q), E^{-1}(c_i) \simeq S^1$

Setrvačníky

n-rozměrné setrvačníky

Hamiltonovské systémy na $(T^*SO(n), \omega)$ s:

Volný...
$$H(R, P_R) = \frac{1}{2} \operatorname{tr}(P_R Q P_R^T)$$
.
Těžký... $H(R, P_R) = \frac{1}{2} \operatorname{tr}(P_R Q P_R^T) + R \mathbf{X}_T \cdot \mathbf{g}$.

- $R \in SO(n), P_R \in T_R^*SO(n)$ $M = (L_R)_E^*(P_R) \in \mathfrak{so}^*(n)$ moment hybnosti v tělese
- Q positivně definitní matice "momentu setrvačnosti" (rozložení hmoty)
- $\mathbf{X}_T \in \mathbb{R}^n$ "těžiště", $\mathbf{g} \in \mathbb{R}^n$ tíhový vektor
- transformace souřadnic x = RX

3D Lagrangeův setrvačník

$$Q = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & B \end{pmatrix}, A, B > 0$$
$$\mathbf{X}_{T} = (X, 0, 0)$$

•
$$H(\mathbf{M}) = \frac{1}{2}\mathbf{M} \cdot Q\mathbf{M} + R\mathbf{X}_T \cdot \mathbf{g}$$

- $\bullet~\textbf{M} \in (\mathbb{R}^3)^* \simeq \mathfrak{so}^*(3),$ kde \cdot je standardní skal. součin na \mathbb{R}^3
- Integrály pohybu: H, M · X_T (SO(2) symetrie vůči otočení kolem X_T), RM · g (SO(2) symetrie vůči otočení kolem g v prostoru), tj. 3 funkce
- dim(T*SO(3)) = 6, tedy úplně integrabilní systém, se sadou I.P. výše

4D Lagrangeův setrvačník

SO(2) × SO(2) symetrický setrvačník, tj.

$$Q = \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & A & 0 & 0 \\ 0 & 0 & B & 0 \\ 0 & 0 & 0 & B \end{pmatrix}, A, B > 0, \mathbf{X}_{T} = (X, X, 0, 0)$$

- $H(R, P_R) = \frac{1}{2} \operatorname{tr}(P_R Q P_R^T) + R \mathbf{X}_T \cdot \mathbf{g}, P_R \in T_R^* SO(4)$
- Integrály pohybu: H, 3 složky RMR^T (SO(3) symetrie kolem g, analogie RM · g), jedna složka M (SO(2) symetrie kolem X_T), tj. zatím 5 funkcí
- dim(T*SO(4)) = 12, tj. k integrabilitě zbývá 1 a ověření předpokladů

Poděkování

Děkuji za pozornost.