Robótica Móvil un enfoque probabilístico

Técnicas de mapeo en 3D

Ignacio Mas

¿Por qué representar 3 dimensiones?

- Los mapas 2D se han usado exitosamente para tareas tales como navegación y localización.
- Los robots se mueven en un mundo de 3D.
- La evasión robusta de obstáculos y el planeamiento de trayectorias requieren modelos en 3D.
- ¿Cómo representar estructuras del entorno en 3D?

Representaciones más comunes

- Nube de puntos
- Grillas de vóxeles (pixel en 3D)
- Mapas de superficie
- Mallas

• ...

Nubes de puntos

Pro:

- No discretizan los datos
- El área a mapear no esta limitada

- Uso de memoria no acotado
- No hay una representación directa de espacio libre o desconocido

Grillas de vóxeles 3D

Pro:

- Representación volumétrica
- Tiempo de acceso constante
- Actualización probabilística

- Requerimiento de memoria: El mapa completo debe alocarse en memoria
- El tamaño del mapa debe saberse/suponerse
- Errores de discretización

Mapas 2.5D: "Mapas de elevación"

El promedio de todos los puntos escaneados caen en una celda

Pro:

- Eficiente en cuanto a memoria
- Tiempo de acceso constante

- No-probabilistico
- No hay distinción entre espacio libre y desconocido

Mapas de elevación

- Grilla 2D que almacena una altura (elevación) estimada para cada celda
- En general, la incerteza aumenta con la distancia medida

Mapas de elevación

- Grilla 2D que almacena una altura (elevación) estimada para cada celda
- En general, la incerteza aumenta con la distancia medida
- Kalman para estimar la elevación

Mapas de elevación

Pro:

- Representación 2.5D (vs. grilla 3D completa)
- Tiempo de acceso constante
- Estimación estadística de la altura

- No contempla superficies verticales
- Sólo un nivel es representado

Ejemplo de mapa de elevación

Datos crudos:

Mapa de elevación:

Mapa de elevación extendido

- Identificar:
 - Celdas que corresponden a estructuras verticales
 - Celdas que contienen espacios vacíos
- Chequear si la varianza de la altura de todas las mediciones de una celda es alta
- Chequear si el espacio vacío es mayor que la altura del robot ("gap cell")

Ejemplo: Mapa de elevación extendido

- Celdas con superficies verticales (rojo)
- Mediciones por sobre un espacio vacío grande (azul)
- Celdas vistas desde arriba (amarillo)
- → usar la brecha de celdas para determinar transitabilidad

Mapa de elevación extendido

Tipos de mapa de terreno

Nube de puntos

Mapa de elevación estándar

Mapa de elevación extendido

Tipos de mapa de terreno

Nube de puntos

Mapa de elevación estándar

Mapa de elevación extendido

- + Planeamiento de paso bajo nivel es posible (celdas con espacios verticales)
- No puede pasar por abajo y por arriba del puente (solo un nivel por celda)

Tipos de mapa de terreno

Nube de puntos

Mapa de elevación estándar

Mapa de elevación extendido

Mapa de superficie multi-nivel

Representación de mapas multi-nivel (MLS)

De nube de puntos a mapas multi-nivel

 Determinar la celda para cada punto 3D

Calcular intervalos verticales

 Clasificar en intervalos verticales (>10cm) u horizontales

 Tomar la media y la varianza de las mediciones más altas de los intervalos verticales

Tamaño de la brecha

Resultados

- Resolución de la celda: 10 cm
- Número de puntos de datos: 45,000,000

Mapa MLS de estructura de estacionamiento

Mapas MLS

Pro:

Puede representar múltiples superficies por celda

- No representa áreas desconocidas
- No es una representación volumétrica sino una discretización en la dimensión vertical
- La localización en mapas MLS no es fácil de implementar

Representación basada en Octrees

- Estructura de datos basada en árboles
- Subdivisión recursiva del espacio en octantes
- Asignación de volumen a medida que se necesita
- "Grilla 3D inteligente"

Octrees

Pro:

- Modelo completo 3D
- Probabilístico
- Resolución variable
- Eficiente en memoria

Contra:

 La implementación es más compleja (memoria, actualizaciones, etc...)

OctoMaps

- Basado en octrees
- Representación probabilística y volumétrica de ocupación incluyendo espacios desconocidos
- Soporta acceso multi-resolución del mapa
- Eficiente en memoria
- Archivo de mapa compacto
- Implementaciones open-source: librerías
 C++ (http://octomap.github.io/)

Actualización probabilística del mapa

 Ocupación modelada como un filtro de Bayes binario recursivo [Moravec '85]

$$Bel(m_t^{[xyz]}) = \begin{bmatrix} 1 + \frac{1 - P(m_t^{[xyz]}|z_t, u_{t-1})}{P(m_t^{[xyz]}|z_t, u_{t-1})} \cdot \frac{P(m_t^{[xyz]})}{1 - P(m_{t-1}^{[xyz]})} \frac{1 - Bel(m_{t-1}^{[xyz]})}{Bel(m_t^{[xyz]})} \end{bmatrix}^{-1}$$

 Actualización eficiente usando notación log-odds

Actualización probabilística del mapa

 Recorte de valores (clamping) asegura actualización [Yguel '07]

$$Bel(m_t^{[xyz]}) \in [l_{\min}, l_{\max}]$$

Acceso multi-resolución usando

$$Bel(n) = \max_{i=1...8} Bel(n_i), n_i \in children(n)$$

Compresión de mapa sin pérdidas

- Poda sin pérdida de nodos con hijos idénticos
- Permite altos niveles de compresión

[Kraetzschmar '04]

Video: Edificio de oficinas

Univ. de Freiburg, Oficinas

Video: Grandes áreas

Campus Universitario (Freiburg)

(292 x 167 x 28 m³, 20 cm de resolución)

Localización 6D con un humanoide

Objetivo: Estimación de pose precisa al caminar y subir escaleras

Video: localización con humanoides

Representaciones de alta res.

- Cámaras RGBd:
 - Medición de distancia
- Alta resolución:
 - En general, mapeo de objetos, etc.

Función de distancia signada (SDF)

- Distancia de signo negativo (=adentro)
- Distancia de signo positivo (=afuera)

[cortesía de Jürgen Sturm]

Función de distancia signada (SDF)

- Calcular SDF de una imagen de profundidad
- Calcular la distancia de cada voxel a la superficie observada
- Se puede hacer en paralelo para todos los vóxeles (→ GPU)
- Es muy eficiente si solo se considera un pequeño intervalo alrededor del punto de medición (truncamiento)

Función de distancia signada (SDF)

- Calcular el promedio pesado de todas las mediciones de cada voxel
- Suponiendo que se conoce la pose de la cámara

Muchas mediciones de un voxel $\mathbf{C}_n = \mathbf{C}_{n-1} + \mathbf{C}_{m-1} + \mathbf{C$

Visualización de campos de distancia signados

Métodos comúnes de extracción de isosuperficies:

- Ray casting (GPU, rápido)
 Para cada pixel de la cámara, proyectar un rayo y buscar donde cruza el cero
- Poligonización (CPU, lento)
 por ejemplo, usando el algoritmo de
 "marching cubes"
 ventaja: produce una malla de triángulos

Extracción de mallas usando "Marching Cubes"

 Encontrar los cruces de cero en la función de distancia signada por interpolación

"Marching Cubes"

En el caso 2D: "Marching squares"

- Evaluar cada celda de forma separada
- Ver que aristas quedan adentro o afuera
- Generar triángulos según una tabla de 16 opciones
- Localizar vértices usando cuadrados mínimos

"Marching Cubes" (3D)

KinectFusion

- SLAM basado en ICP (más detalles luego) con métrica de punto-a-plano
- Función de distancia signada truncada (TSDF)
- Ray Casting

Ejemplo de aplicación

[Sturm, Bylow, Kahl, Cremers; GCPR 2013], cortesía de Jürgen Sturm]

Ejemplo: Mapa 3D

Funciones de distancia signada

Pro:

- Modelo 3D completo
- Resolución sub-pixel
- Implementación eficiente (tarjetas de video)

Contra:

Grilla de vóxeles consumen mucho espacio

Aplicación en robótica

Resumen

- Diferentes representaciones de mapas 3D
- El modelo más apropiado depende de la aplicación
- Los modelos de superficie permiten análisis de transitabilidad
- Las representaciones de vóxeles permiten una representación
 3D completa
- Octrees son una representación probabilística. Son inherentemente multi-resolución.
- Funciones de distancia signada usan grillas 3D, pero permiten resoluciones sub-pixel de la superficie.