

Institutt for datateknikk og informasjonsvitenskap

Eksamensoppgave i TDT4305 Big Data-Arkitektur

	trykte eller håndsk middel tillatt. mt, enkel kalkulato	
Eksamenstid (fra-til): 09.00-13.00 Hjelpemiddelkode/Tillatte hjelpemidler: D: Ingen t hjelpe Bester Annen informasjon: Målform/språk: Bokmål Antall sider (uten forside): 4	middel tillatt.	
Hjelpemiddelkode/Tillatte hjelpemidler: D: Ingen t hjelpe Bester Annen informasjon: Målform/språk: Bokmål Antall sider (uten forside): 4	middel tillatt.	
hjelpe Bester Annen informasjon: Målform/språk: Bokmål Antall sider (uten forside): 4	middel tillatt.	
Bester Annen informasjon: Målform/språk: Bokmål Antall sider (uten forside): 4		r tillatt.
Annen informasjon: Målform/språk: Bokmål Antall sider (uten forside): 4	mt, enkel kalkulato	r tillatt.
Målform/språk: Bokmål Antall sider (uten forside): 4		
Antall sider (uten forside): 4		
Antall sider (uten forside): 4		
Antall sider vedlegg: 0		
		M = 104 11 = 14 = 1 = 1
		Kontrollert av:
	 Dato	Sign
Informasjon om trykking av eksamensoppgave	Dato	Sign
Originalen er:		
1-sidig X 2-sidig □		
sort/hvit X farger □		

Oppgave 1 – Big Data – 5 %

a) Når man skal forklare Big Data snakker man ofte om de tre (eller flere) V'ene. Forklar de tre viktigste av disse.

Oppgave 2 – Hadoop – 20 % (alle deler teller likt)

- a) Hva var viktige mål for Hadoop File system (HDFS), og hva er HDFS ikke egnet til?
- b) Beskriv arkitekturen til HDFS (bruk gjerne figur). Beskriv hvordan filer er lagret og node-typer.
- c) Forklar hva som skjer når en klient skal lese en fil som er lagret i HDFS (inkl. interaksjon mellom noder).
- d) Forklar utføring av en applikasjon på YARN, inkl. beskrivelse av node-typer og prosesser. Forklar gjerne med figur.

Oppgave 3 – MapReduce og Spark– 10 % (alle deler teller likt)

Anta at man har en fil PersonInfo.txt som inneholder informasjon om navn, alder og lønn, dvs. format som dette:

```
Kari 45 450000
Ola 30 200000
Kate 30 500000
Pål 45 550000
```

Vi ønsker å finne gjennomsnittsinntekt for hver alder, dvs. resultat som dette (trenger ikke å være sortert):

```
45 500000
30 350000
```

a) Vis med pseudokode for *mapper* og *reducer* hvordan dette kan gjøres i MapReduce. Anta for enkelhet skyld at *value* til map er en post med feltene *age* og *salary*, dvs. bruk følgende som utgangspunkt:

```
public void map(key(name), value(age,salary))
public void reduce(key, Iterable values)
```

b) Vi ønsker nå å finne maks-lønn for hver alder ved hjelp av Spark. Anta at vi allerede har lest filen inn i en RDD av par (key,value)=(age,salary), dvs. RDD[(int,int)]. Vis hvilke(n) transformasjon(er) som må gjøres for å få en resulterende RDD der (key,value)=(age,maxSalary). Hint: viktige transformasjoner og handlinger ("actions") i Spark inkluderer map, flatMap, filter, distinct, union, collect, count, countByValue, reduce, reduceByKey, groupByKey, values, sortByKey, og countByKey.

Oppgave 4 – NoSQL – 15 % (10 % på a, 5 % på b)

a) Vi har en studentdatabase med følgende tabeller i et relasjonsskjema.

```
Student(SNo, Name, Email)
Exam(ENo, CourseName, EDay, EMonth, EYear, Duration)
ExamResult(ExamNo, StudentNo, Grade)
```

Her er det interessant å finne hvilke eksamener en spesiell student har tatt (karakterutskrift). Det er også interessant å finne ut hvilke studenter som har tatt en spesiell eksamen (sensurliste). Hvordan ville du lagre dette skjemaet i HBase når du bruker designprinsippet DDI (*denormalization, duplication, intelligent keys*) og har bruk for de to forskjellige spørringene som antydet over?

b) Gi en beskrivelse av hvordan «sharding»/partisjonering foregår i både MongoDB og i Apache HBase (også kalt «auto-sharding»).

Oppgave 5 – Datastrømmer (streaming data) – 30 % (Alle deler teller likt)

Du skal analysere hvor mange ganger et tema om amerikansk valg og valgkamp blir nevnt i meldinger i sosiale media som Twitter.

- a) Drøft karakteristikkene og/eller utfordringene med datastrøm. Nevn to andre eksempler hvor man er nødt til å håndtere en datastrøm (i tillegg til Twitter og eller sosiale media generelt).
- b) Vi skiller mellom to typer spørringer når det gjelder datastrøm. Forklar hva disse er. Bruk eksempler til å støtte forklaringen din.
- c) Se for deg at du skal finne ut hvor stor andel av meldingene er relatert til temaet "valg" og "valgkamp" i en gitt begrenset tidsperiode. Til dette formålet velger vi å bruke glidende-vinduprinsippet ("sliding window"). Anta at dette vinduet har en størrelse på 1000 twitter-meldinger (dvs. Tweets). Vis hvordan du går fram for å beregne denne andelen.
- d) Kan problemet over sees på som en variant av "bit counting"? Begrunn svaret ditt.
- e) Bruk "bloom filter"-prinsippet til å fylle ut tabellen nedenfor

Strømelement	omelement Hash-funksjon - h ₁		Filtrere Innhold		
			0000000000		
39 = 10 0111					
214 = 1101 0110					
353 = 01 0110 0001					

Hint: bruk $h(x) = y \mod 11$, der y er hentet henholdsvis fra oddetalls-bits fra x eller partalls-bits fra x.

- f) Anta at vi vil analysere de 11 siste meldingene som er kommet inn. Generelt på twitter, vil mange av meldingene bli sendt på nytt av samme bruker for å markere sitt synspunkt. Andre brukere vil "re-tweete" for å få flere til å få med seg meldingene. Forklar hvordan vi kan bruke bloom-filtre for å filtrere bort slike meldinger. Gjør de antakelsene du finner nødvendig.
- g) Anta nå at når de 11 meldingene har kommet inn har vi fått en strøm av data som ser ut som dette: 10100101010. Kan vi ha sett meldingen som kan representeres ved y = 1111011 før? Begrunn svaret ditt.

Oppgave 6 – Anbefalingssystem (recommender systems) – 20 % (6% på a.i, 4% på a.ii, 10% på b)

Du er nyansatt i et nytt firma som vil spesialisere seg på strømming av film. En av oppgavene dine er å utvikle gode anbefalingsalgoritmer og metoder.

a) En del av metoden du foreslår går ut på å gi brukeren mulighet til å "rate" filmene for så bruke dette til å finne ut hvilke filmer systemet deres skal anbefale senere. Anta at brukerne deres har "rated" følgende 10 filmer med 3 eller flere stjerner:

Jurasic Park (Fantasi/SciFi), Harry Potter (Fantasi/Adventure), ET (SciFi), Lord of the Rings (Fantasi/Adventure), Alien (SciFi), Terminator (SciFi), 101 Dalmatians (Adventure/Family), Titanic (Romantic), Sleepless in Seattle (Romantic) og Mr. Bean (Comedy).

- i. Forklar hvordan du vil gå fram for å anbefale neste film til denne brukeren. Gjør de antakelsene du finner nødvendig.
- ii. Ville du brukt innholdsbasert ("content-based") anbefalingsmetode eller "collaborative filtering"? Begrunn svaret ditt.

b) Anta følgende brukerratingstabell.

ш	5	ρ	п	ς

		1	2	3	4	5	6	7	8
	1	1		3			5		
	2			5	4			4	
movies	3	2	4		1	2		3	
Ε	4		2	4		5			4
	5			4	3	4	2		
	6	1		3		3		Α	2

Bruk "*item-item collaborative filtering*"-metoden til å foreslå bruker nr. 7 sin rating av film nr. 6. Dvs. hva blir ratingverdien A? Du må vise mellomregningen.

Til denne oppgaven vil du trenge følgende formler:

Pearson Correlation similarity - likhet mellom vektor x, og vektor y:

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) \left(r_{ys} - \overline{r_y}\right)}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

der r_{xs} er bruker s sin rating på film x og \bar{r}_x (overline) er gjennomsnitt av alle rating-ene på film x.

Vektet gjennomsnitt (weighted average) for en brukers ratinger:

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

 r_{ix} er her bruker x sin rating på film i, mens s_{ij} er likhet (similarity) mellom ratingene til film i og j