

## **Biestables**

© Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid



# Circuitos digitales y microprocesadores





#### Índice

- Introducción
  - El biestable como elemento básico de memoria
  - Tipos de biestables
- Biestables síncronos
- Biestables síncronos con entradas asíncronas
- Lógicas de control de biestables
- Características temporales
- Circuitos síncronos
- Circuitos con biestables: cronogramas



#### 1. Introducción: biestables

- Definición:
  - Circuito capaz de almacenar un bit de información. Tiene dos estados estables, 0 y 1 lógicos. Dicho estado se mantiene hasta que sus señales de control indiquen un cambio
- Clasificación
  - Lógica de control: entradas que determinan el nuevo estado
    - D, T, SR, JK
  - Sincronismo:
    - Asíncronos: pueden cambiar al cambiar cualquier entrada
    - Síncronos: tienen una señal de control que indica cuándo pueden cambiar de valor
      - Activos por nivel
      - Activos por flanco



# 2. Biestables síncronos: activos por nivel

- Tiene una señal de control que permite que el biestable cambie de estado
- Biestable D síncrono activo por nivel (latch-D)
  - C='1' => el biestable toma el valor de la entrada D
  - C='0' => el biestable mantiene su valor





| C | D | Q | /Q |                   |
|---|---|---|----|-------------------|
| 0 | X | Q | /Q | → Mantener estado |
| 1 | 0 | 0 | 1  | → Asignar '0'     |
| 1 | 1 | 1 | 0  | → Asignar '1'     |



# Biestables síncronos: activos por flanco

Biestable D síncrono, activo por flanco







Solución mala debido a la tecnología: el retraso del inversor no es controlable



## Biestables síncronos: maestro esclavo

 Dos biestables activos por nivel que funcionan con niveles opuestos





- La salida QE sólo cambia en los flancos de subida del reloj
- La salida toma el valor de D justo antes del flanco



- Es el que más se usa para diseñar
- Sólo cambia de valor en los flancos de reloj (normalmente en el flanco de subida)
- El cambio a la salida del biestable se produce después del flanco de reloj
- El valor del biestable tras el flanco es el valor de su entrada D justo antes del flanco





## 3. Biestables síncronos con entradas asíncronas

- Biestables síncronos, que disponen de señales asíncronas para su inicialización
  - Clear: inicialización a '0' asíncrona
  - Preset: inicialización a '1' asíncrona
  - Normalmente activas por nivel bajo







## 4. Lógicas de control de biestables

- Señales que permiten controlar el cambio de estado del biestable
  - Tipos de biestable:
    - **D,T**,JK,SR
  - Señal de habilitación:
    - Habilita el cambio de estado.
    - Si no se habilita, el estado se mantiene.
  - Inicialización síncrona
    - Puesta a '0' y/o puesta a '1' atendiendo a la señal de reloj



### Lógicas de control de biestables

- Tabla de funcionamiento
  - Describe funcionalidad



- Tabla de transiciones
  - Describe el próximo estado en función del estado actual y las entradas

| Diestable <b>D</b> |   |    |  |  |
|--------------------|---|----|--|--|
| D                  | Q | Q' |  |  |
| 0                  | 0 | 0  |  |  |
| 0                  | 1 | 0  |  |  |
| 1                  | 0 | 1  |  |  |
| 1                  | 1 | 1  |  |  |

Riestahle **D** 

| Diestable I |   |    |  |  |
|-------------|---|----|--|--|
| Т           | Q | Q' |  |  |
| 0           | 0 | 0  |  |  |
| 0           | 1 | 1  |  |  |
| 1           | 0 | 1  |  |  |
| 1           | 1 | 0  |  |  |

Ripstahla T



### Lógicas de control de biestables

Biestables con señal de habilitación











## Lógicas de control de biestables

- Biestables con inicialización síncrona
  - Set: inicializa a '1'
  - Reset: iniclializa a '0'
- Ejemplo: biestable D con habilitación, Set y Reset
  - Orden de prioridad: Reset, Set, Enable





### 5. Características temporales

- Restricciones de los biestables
  - Duración de los niveles de la señal de reloj → (t<sub>0mín</sub>,t<sub>1mín</sub>)
  - Duración de las señales de inicialización asíncrona → (t<sub>reset mín</sub>)
  - Tiempo de inserción de señales de datos → (t<sub>setup</sub>,t<sub>hold</sub>)
  - Tiempo de propagación de la salida → (t<sub>pClk, Q</sub>)





#### 6. Circuitos síncronos

- Circuito síncrono
  - Todos sus biestables usan la misma señal de reloj
  - Los biestables son activos por el mismo flanco de reloj (normalmente el de subida)
  - Los biestables usan una señal común de inicialización llamada Reset





# Circuitos síncronos: el ciclo de reloj

#### Camino crítico:

Ej:  $t_{Clk} = 1 \text{ns} \rightarrow f_{Clk} = 1 \text{GHz}$ 

- Camino entre dos biestables cuyo retraso es el mayor de todo el circuito
- Camino más lento entre dos biestables, que determina la máxima frecuencia de reloj a la que el circuito puede funcionar

$$t_{Clk} > t_{pClk,Q} + t_{crítico} + t_{setup}$$

$$t_{Clk}$$

$$t_{Clk}$$

$$t_{pClk,Q}$$

$$t_{crítico}$$

$$t_{setup}$$



#### 7. Cronogramas con biestables





#### Cronogramas con biestables

Contador







### **Bibliografía**

- "Circuitos y Sistemas Digitales". J. E. García Sánchez, D. G. Tomás, M. Martínez Iniesta. Ed. Tebar-Flores
- "Electrónica Digital", L. Cuesta, E. Gil, F. Remiro, McGraw-Hill
- "Fundamentos de Sistemas Digitales ", T.L Floyd, Prentice-Hall



#### **Extra: Biestables asíncronos**

- Biestable SR asíncrono
  - S='1' => Encender (Set)
  - R='1' => Apagar (Reset)
  - S=R='0' => Mantener estado
- Características
  - Memoria: si no se activan las entradas, mantiene su estado
  - Asíncrono: cambia inmediatamente si se activan sus entradas (R o S)





#### **Extra: Biestables asíncronos**

 Circuito que mantiene su valor '1', '0'



Con entradas de control





## Extra: Otros tipos de biestables Lógicas de control

- Tabla de funcionamiento
  - Describe funcionalidad

Biestable D (Data) Biestable T (Toggle)

D Q' T Q'
0 0 Q
1 1 1 1 /Q

Biestable SR (Set-Reset)

S R Q'
0 0 Q
0 1 0
1 0 1

(Jump & Kill)

J K Q'

0 0 Q

0 1 0

1 0 1

1 1 /Q

Biestable **JK** 

- Tabla de transiciones
  - Describe el próximo estado en función del estado actual y las entradas

Biestable **D** 

| D | Q | Q' |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 1  |
| 1 | 1 | 1  |

Biestable T

| T | Q | Q' |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 1  |
| 1 | 0 | 1  |
| 1 | 1 | 0  |