IL CAMPO ELETTROSTATICO NEL VUOTO

- Conduttori posti in un campo elettrico
- La capacità elettrica
- Energia del campo elettrico.

Teoria e.s. nel vuoto

Principi:

- Legge di Coulomb
- principio di sovrapposizione
- conservazione della carica

Conservatività E Legge di Gauss

campo elettrico E

in presenza della materia

dobbiamo immaginarci un modello microscopico della materia: atomi neutri costituiti da unione bilanciata elettricamente di cariche positive (nuclei) e cariche negative elettroni

→ se le cariche sono vincolate: isolanti (dielettrici)

se le cariche sono libere di muoversi: conduttori

- il campo E agisce sulle singole cariche dotate di massa secondo le regole della meccanica newtoniana e raggiungono una situazione di equilibrio che le sbilancia
- si crea un campo aggiuntivo dovuto alle cariche sbilanciate nella materia

LE SUPERFICI EQUIPOTENZIALI

sono caratterizzate dallo stesso potenziale elettrico in ogni punto; quindi dalla equazione

V(**P**)= costante

$$\vec{E} = -\vec{\nabla}V$$

Le superfici equipotenziali sono in ogni punto perpendicolari alle linee di forza del campo elettrico. Quindi ponendo una carica di prova in $P q_P$ essa subisce una forza elettrica con la sola componente perpendicolare alla superficie V=cost.

Conduttore posto in un campo elettrico

In un conduttore immerso in un campo elettrico esterno le cariche elettriche libere di muoversi vengono spinte dalla forza del campo elettrico E fino ad addensarsi sulle superfici finché il campo che esse producono all'interno del conduttore non annulla completamente il campo esterno applicato, producendo così un equilibrio.

Il potenziale elettrostatico V nel conduttore deve essere costante fino alla superficie.

ECCESSO DI CARICA IN CONDUTTORRE CARICO

DISTRIBUZIONE DI CARICA

Fig. 36 — In un conduttore carico in equilibria elettrostatico il campo elettrico nell'interna è nullo e il potenziale è costante, in particolare la sua superficie è equipotenziale.

All'interno di un conduttore in equilibrio elettrostatico non vi sono cariche elettriche

La carica elettrica si distribuisce sulla superficie

DIMOSTRAZIONE:

Poiché il campo elettrico è nullo, anche il flusso attraverso una qualsiasi superficie chiusa contenuta nel conduttore è nullo.

Per il teorema di Gauss, però:

$$\Phi = \frac{Q}{\varepsilon_o}$$

E quindi:

$$Q = 0$$

CONDUTTORRE SCARICO IN CAMPO ELETTRICO

In conclusione:

- 1) in un conduttore posto in un campo elettrostatico e che sia in equilibrio elettrico, il campo elettrico nei punti interni è nullo;
- 2) il campo elettrico alla superficie di un conduttore in equilibrio è normale alla superficie (altrimenti le cariche sarebbero libere di muoversi fino a raggiungere un equilibrio, campo nullo);
- 3) l'intera carica elettrica di un conduttore in equilibrio si trova sulla sua superficie

POTENZIALE V(x,y,z) **DISTRIBUZIONE CONTINUA:**

FUNZIONE

avendo una carica Q

continua, il potenziale τ in P può essere ottenuto scomponendo Q in tanti volumetti $d \tau$ di carica dq e sommando i potenziali delle infinitesime cariche puntiformi: $dV(P) = \frac{dq}{4\pi\varepsilon_o |\vec{r} - \vec{r}|}$

Potenziale di una distribuzione continua di carica con densità
$$\rho$$

$$\rho = \frac{\mathrm{dq}}{\mathrm{d}\tau}$$

$$V = \frac{1}{4\pi\varepsilon_{o}} \int \frac{\rho}{|\vec{r} - \vec{r}|} d\tau + \text{costante}$$

La carica si distribuisce sulla superficie con densità $\sigma(x,y,z)$.

Calcoliamo il potenziale nel punto P_0 dentro il metallo di coordinate (x_0,y_0,z_0) ponendolo nullo ad infinito.

$$V(P_0) = \int_{\text{sup}} \frac{\sigma(\vec{r})dS}{4\pi\varepsilon_0 |\vec{r} - \vec{r}_0|}$$

Calcoliamo il rapporto $V(P_0)/Q$

$$\frac{V(P_0)}{Q} = \int_{\text{sup}} \frac{\left[\sigma(\vec{r})/Q\right] dS}{4\pi\varepsilon_0 \left|\vec{r} - \vec{r}_0\right|}$$

Siccome il rapporto $\sigma(x,y,z)/Q=f(x,y,z)$ che dà la distribuzione di carica che annulla il campo all'interno del conduttore e annulla la componente tangenziale alla superficie del conduttore ha una distribuzione f(x,y,z) che non può che essere unica,

Il rapporto $V(P_0)/Q$ è una costante

$$\frac{V(P_0)}{Q} = \int_{\sup} \frac{f(\vec{r})dS}{4\pi\varepsilon_0 |\vec{r} - \vec{r}_0|} = \frac{1}{C} = \cos t$$

chiamiamo C capacità

Quando prendiamo due conduttori isolati su cui abbiamo posto due cariche Q uguali in modulo ma di segno opposto

abbiamo un CONDENSATORE

Calcolando il potenziale della superficie di uno dei conduttori rispetto all'altro si può dimostrare con una estensione del ragionamento precedente che qualunque sia la geometria del sistema

$$Q = C\Delta V$$

Dove ΔV è la diff. di pot. tra i metalli e C dipende solo dalla geometria e dal dielettrico in cui il condensatore è immerso.

La capacità elettrica e i condensatori

Se prendiamo un conduttore isolato su cui si trova la carica Q si può dimostrare che qualunque sia la geometria

la carica $oldsymbol{Q}$ è proporzionale al potenziale $oldsymbol{V}$

$$Q = CV$$

La costante C è detta capacità elettrica del conduttore.

ESEMPIO: prendiamo una sfera metallica di raggio R con carica Q:

$$V = rac{Q}{4\pi \varepsilon R}$$
 E quindi: $C = 4\pi \varepsilon R$

La capacità si misura in **FARAD** [F]=CV-1 nel S.I.

Il condensatore a facce piane e parallele

DATI: area facce S; carica Q; densità di carica $\sigma = Q/S$

$$E = \frac{Q}{\varepsilon_0 S} = \frac{\sigma}{\varepsilon_0} \quad V_1 - V_2 = E \cdot d = \frac{\sigma d}{\varepsilon_0} = \frac{Q \cdot d}{S \cdot \varepsilon_0}$$

$$C = \frac{Q}{\Delta V} \qquad \qquad C_0 = \frac{\varepsilon_0 S}{d}$$

Energia del campo elettrostatico

Se cerchiamo di caricare un condensatore a facce piane parallele di capacità C, il lavoro fatto per portare la carica +dq sulla faccia positiva vale:

$$dL = (V_1 - V_2)dq = Vdq$$

Ma V è la differenza di potenziale tra le armature

$$V = \frac{q}{C}$$

Se il processo parte da armature scariche con potenziale nullo, il caricamento con il trasferimento di una carica totale Q comporta un lavoro

$$L = \int_{0}^{V_0} V dq = \int_{0}^{Q} \frac{q}{C} dq = \frac{1}{2} \frac{Q^2}{C}$$

$$L = \int_{0}^{V_0} V dq = \int_{0}^{V_0} V d(CV) = \frac{1}{2} C V_0^2$$

Chi fa questo lavoro L?

Un generatore di forza elettromotrice che forza le cariche attraverso un filo conduttore da una armatura all'altra. Dove va a finire il lavoro L del generatore per caricare il condensatore ?

Nella costruzione del campo elettrico dentro il condensatore.

Quindi diventa energia del campo elettrostatico.

Vediamo di calcolare questa energia in funzione di *E per un condensatore a facce piane e parallele*:

$$L = \frac{1}{2}CV_0^2 = W$$
 en. campo elettr.

ma ricordando:
$$C = \frac{\varepsilon S}{d}$$
; $V_0 = Ed$

$$W = \frac{1}{2} \left(\frac{\varepsilon S}{d}\right) (Ed)^2 = \frac{1}{2} \varepsilon E^2 (Sd)$$

Introducendo il concetto di densità di energia del campo elettrostatico:

where
$$w = \frac{W}{(Sd)} = \frac{1}{2} \varepsilon E^2$$

Si può dimostrare che il risultato è generalizzabile a qualsiasi campo elettrostatico.