ORF526 - Problem Set 1

Bachir EL KHADIR

October 19, 2015

 $\Omega = [0, 1], \mathcal{F} = \mathcal{B}([0, 1]), \mathbb{P}$ is the restriction of the lebesgue measure on Ω . This is a probability space. Let's consider the sequence:

$$X_k = k1_{\{0 < x < \frac{1}{k}\}}$$

- $\mathbb{E}[X_k] = 1$
- $X_k \to_{k\infty} 0$ a.s., because for all $x \in (0,1), X_k(x) = 0$ for all $k > \frac{1}{x}$

Question 1

- $\sup_{k} ||X_k||_1 = 1 < \infty$
- For any C > 0, for any k > C, $\mathbb{E}[|X_k|1_{\{X_k > C\}}] = \mathbb{E}[X_k] = 1$. Which means the sequence is not uniformly integrable.

Question 2

the (X_k) satisfy the conditions

Question 3

 $\mathbb{E}(\liminf X_k) = \mathbb{E}(\lim X_k) = \mathbb{E}(0) = 0 < 1 = \lim_k \mathbb{E}(X_k) = \liminf \mathbb{E}(X_k)$

Question 4

Let's define

$$\begin{array}{l} \mu_1(A_1,...,A_m) = \prod_i \mathbb{P}(X_i \in A_i) \\ \mu_2(A_1,...,A_m) = \mathbb{P}(X_1 \in A_1,...,X_m \in A_m) \end{array}$$

 μ_1 is a measure (as the product measure of $\mathbb{P}oX^{-1}$)

 μ_2 agrees with μ_1 on sets of the form $(-\infty, x_1] \times ... \times (-\infty, x_m]$

Since μ_1 is σ -finite (it's a probability measure), by Cathedory extension theorem, $\mu_1 = \mu_2$ on ...

Question 5

1. $i \Rightarrow iii$

Let $\epsilon > 0, A_n = \bigcup_{m > n} \{\omega, |X_n(\omega) - X(\omega)| > \epsilon\}$ and $A_\infty = \bigcap_n A_n$ is a decreasing sequence.

If $\omega \in A_{\infty}$, for infinitely many $m \in \mathbb{N}$, $|X_n(\omega) - X(\omega)| > \epsilon$. Which means that $\omega \in N$. Therefore $\mathbb{P}(A_{\infty}) \leq \mathbb{P}(N) = 0$

By continuty from above:

$$\mathbb{P}(|X_n - X| > \epsilon) \le \mathbb{P}(A_n) \to \mathbb{P}(A_\infty) = 0$$

- 2. $ii \Rightarrow iii$ By Markov inequality $\mathbb{P}(|X_n X| > \epsilon) \leq \frac{E|X_n X|}{\epsilon} \to 0$
- 3. $iii \Rightarrow iv$
- 4. blabla

Question 6

1. Every cdf is right continous and admits F a left limit everywhere. (Let's call it F(x-))
A point of discontinuty if where $F(x-) \neq F(x)$.

Let A be the set of discontinuties of F.

$$f: \left\{ \begin{array}{ll} A \to & \mathbb{Q} \\ x \to & \text{some arbitrary } r \in (F(x^-), F(x)) \end{array} \right.$$

This application is an injection. So A is countable.

2.