Математический анализ, Коллоквиум 4

Балюк Игорь @lodthe, GitHub

Дата изменения: 2020.04.06 в 02:03

Содержание

1 Метрические и нормированные пространства.

 $\mathbf{2}$

Оригинальный список вопросов

Огромное спасибо Егору Косову: документ состоит из его конспектов и моих вставок.

1 Метрические и нормированные пространства.

Оригинальный конспект.

Определение. Пусть X — множество. Функция $d: X \times X \to [0; +\infty)$ называется метрикой, если

- 1. $d(x,y) = 0 \iff x = y;$
- 2. $d(x,y) = d(y,x) \forall x, y \in X$;
- 3. $d(x,z) \leq d(x,y) + d(y,z) \forall x, y, z \in X$.

Пара (X,d) называется метрическим пространством.

Говоря простым языком, метрика — это расстояние между двумя объектами. Мы будем часто работать с Евклидовой метрикой: пусть $x, y \in \mathbb{R}^n$, тогда $d(x, y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$.

Определение. Пусть X — линейное пространство. Функция $\|\cdot\|: X \to [0; +\infty)$ называется нормой, если

- 1. $||x|| = 0 \iff x = 0$;
- 2. $\|\lambda x\| = |\lambda| \|x\|, \forall x \in X;$
- 3. $||x + y|| \le ||x|| + ||y|| \, \forall x, y \in X$.

Пара $(X, \|\cdot\|)$ называется нормированным пространством.

Нормой является привычнам нам длина вектора. Аналогично матрике, мы будем часто работать с Евклидовой нормой: пусть $x \in \mathbb{R}^n$, тогда $||x|| = \sqrt{x_1^2 + \dots + x_n^2}$.

Всякое нормированное пространство является метрическим с метрикой d(x,y) = ||x-y||.

Определение. Пусть X — линейное пространство. Функция $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ называется скалярным произведением, если для всех $x, y, z \in X$ и всех $a, b \in \mathbb{R}$ выполнены следующие условия:

- 1. $\langle x, x \rangle \geqslant 0$ и $\langle x, x \rangle = 0 \iff x = 0$;
- 2. $\langle x, y \rangle = \langle y, x \rangle$;
- 3. $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$.

Линейное пространство X со скалярным произведением называется Евклидовым.

Мы будем часто работать со следующим скалярным произведением: пусть $x, y \in \mathbb{R}^n$, тогда $\langle x, y \rangle = x_1 \cdot y_1 \dots x_n \cdot y_n$.

Лемма. (Неравенство Коши-Буняковского) Пусть $\langle \cdot, \cdot \rangle$ скалярное произведение на линейном пространстве X, тогда $\forall x,y \in X$

$$|\langle x, y \rangle| \leqslant \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle}.$$