Quiz: Wednesday 17 October 2012

Homework Assignment #8

- 1. Use z transforms to find the ZIR $y_{ZI}(k)$, the ZSR $y_{ZS}(k)$, and the complete response y(k) for each system.
 - (a) $(E+0.5)\{y(k)\}=0$, y(0)=2.
 - (b) $(E^2-3E+2)\{y(k)\} = u_s(k), y(0) = 2, y(1) = 1.$ $(u_s(k) = unit step sequence.)$
 - (c) $(E^2-2E+2)\{y(k)\}=(2)^{-k}u_s(k), y(0)=y(1)=0.$
- 2. Use a digital computer to plot the frequency response of the system

$$H(z) = \frac{1-a}{z-a}$$

for the cases a = 0.95, a = 0.85, and a = 0.75. Comment on the effect of the pole location on the magnitude and phase of the frequency response.

3. The transfer function

$$G(z) = \frac{z^3 + 0.5z^2 + 0.25z + 0.125}{z^4}$$

is an FIR approximation to the transfer function

$$H(z) = \frac{1}{z - 0.5}.$$

- (a) Plot the impulse response of each system.
- (b) Plot the step response of each system. Determine the d.c. gain of each system from its step response.
- (c) Plot the frequency response of each system. Determine the d.c. gain of each system from its frequency response.
- 4. Consider the discrete-time system having the transfer function

$$H(z) = \frac{z+1}{z-0.9}.$$

- (a) Plot the magnitude and phase of the frequency response of the system.
- (b) Program the corresponding difference equation, and iterate to determine the responses to the inputs $x_1(k) = u_s(k)$, $x_2(k) = \cos(k\pi/4) \cdot u_s(k)$, and $x_3(k) = (-1)^k \cdot u_s(k)$.
- (c) Explain the amplitudes of the steady-state responses from part (b) in terms of the system frequency response.