Définition 1

- a-l = .

Le corps commutatif $(\mathbb{R}^2,+,.)$ est appelé le corps des nombres complexes et est noté \mathbb{C} . Ses éléments sont appelés nombres complexes.

C est un corps commutatif

II. CHANGEMENT DE NOTATION. FORME ALGÉBRIQUE

Proposition 1

1) Pour tous réels a et b on a :

i)
$$(a, 0) + (b, 0) = (a + b, 0)$$
; ii) $(a, 0)$, $(b, 0) = (a b, 0)$; iii) $(a, b) = (a, 0)$, $(1, 0) + (b, 0)$, $(0, 1)$

2) (0, 1). (0, 1) = (-1, 0)
$$(2i) \cdot (2i) \cdot (2i) \cdot (2i) \cdot (2i) \cdot (2i) = (2i - 0.1, 2.5 + 0.6) = (2b - 0.1 + 1) - 3.2.1.1$$

Preuve

Preuve

1) 11 16 + bein = 1 + bec+ 1) = (2 5) + bein = 2+111)

-) (-1, 1) = (-1, 1) = (-1, 1)

Notations

Ce qui précède nous amène à confondre le nombre complexe (a, 0) et le nombre réel a. Si par ailleurs nous désignons par i le nombre complexe (0, 1) nous avons :

1)
$$\forall$$
 (a, b) \in C, (a, b) = a + bi

2)
$$i^2 = -1$$

Remarque

Pour tout $(a, b, a', b') \in \mathbb{R}^4$, $a + bi = a' + b'i \Leftrightarrow (a = a', b = b')$

Définition 1

Pour tout nombre complexe z il existe un unique couple de réels (a, b) tel que z = a + bi

L'expression a + b i est appelée la forme algébrique de z

Les nombres réels a et b sont appelés respectivement les parties réelle et imaginaire de z, et sont notés Re (z) et Im (z)

Tout nombre de la forme bi ($b \in \mathbb{R}$) est dit imaginaire pur.