Docket Number: 10765-011003

WHAT IS CLAIMED IS:

1	1.	A method of draining a fluid system comprising:	
2		fluidly connecting a drainage wand to a first upper port of a service apparatus;	
3		sealably connecting the service apparatus with a reservoir;	
4		inserting the drainage wand into a service port of a fluid system; and	
5		applying a reduced pressure to a second upper port of the service apparatus to	
6	withd	raw fluid from the fluid system into the reservoir.	
1	2.	The method of claim 1, wherein the reservoir includes an internal volume and	
2	a pres	sure regulator.	
1	3.	The method of claim 2, wherein the pressure regulator is a pressure relief	
2	valve	a pressure relief valve operable to vent the internal volume when a pressure in	
3	the in	ternal volume decreases below a threshold value.	
1	4.	The method of claim 1, wherein the service port is an orifice of a radiator of a	
2	coolin	ng system.	
1	5.	The method of claim 2, wherein the service apparatus comprises:	
2		a body including a first lower port fluidly connected to a first upper	
3	port b	port by a first channel; and	
4		a sealing member on the body configured to sealably connect the	
5	servic	ee apparatus with the reservoir.	
1	6.	The method of claim 5, wherein the first upper port includes a valve.	
1	7.	The method of claim 5, wherein the service apparatus includes a second lower	
2	port f	luidly connected to a second upper port by a second channel and a valve	
3	proxi	proximate to the second channel that stops fluid flow in the second channel when	
4	fluid	enters the second lower port.	
1	8.	The method of claim 5, wherein the sealing member comprises a resilient	
2	mater	rial.	

Docket Number: 10765-011003

1	9.	The method of claim 5, wherein the sealing member forms a sealing surface
2	perpendicular to the first channel.	
1	10.	The method of claim 5, wherein the sealing member is a connector including a
2	sleeve	made of resilient material surrounding the body, the sleeve forming a seal
3	betwee	en the service apparatus and the service port.
1	11.	The method of claim 10, wherein the service apparatus further includes a
2	sleeve	compressor external to the body and in contact with the sleeve.
1	12.	The method of claim 5, wherein the service apparatus further includes a
2	pressure-reducing source fluidly connectable to the second upper port.	
1	13.	The method of claim 1, wherein reduced pressure is applied with a venturi.
1	14.	The method of claim 3, wherein the pressure relief valve comprises:
2		a cylindrical body having an outer wall, an inner wall, and a channel fluidly
3	connecting a first port and a second port;	
4		a poppet within the body biased to close the channel, the poppet opening the
5	channel when the pressure in the internal volume decreases below the threshold	
6	value; and	
7		a vent control knob threadably attached to the first port and capable of
8	engaging and opening the poppet.	
1	15.	The method of claim 1, wherein the drainage wand has a sufficient diameter
2	and le	ngth to enter the service port.
3	16.	A method of draining a fluid system comprising:
4		sealably connecting a service apparatus with a reservoir, the service apparatus
5	being fluidly connected to the fluid system and the reservoir including an internal	
6	volume and a pressure regulator; and	
7		applying a reduced pressure to a second upper port of the service apparatus to
8	withdraw fluid from the fluid system into the reservoir.	

Docket Number: 10765-011003

	1. 6		
1	17. The method of claim 16, wherein the pressure regulator is a pressure relief		
2	valve operable to vent the internal volume when a pressure in the internal volume		
3	decreases below a threshold value.		
1	18. The method of claim 16, wherein the service port is an orifice of a radiator of		
2	a cooling system.		
1	19. The method of claim 16, wherein the service apparatus comprises:		
2	a body including a first lower port fluidly connected to a first upper		
3	port by a first channel; and		
4	a sealing member on the body configured to sealably connect the		
5	service apparatus with the reservoir.		
1	20. A method of draining a fluid system comprising:		
2	sealably connecting a service apparatus with a reservoir, the service apparatus		
3	including a drainage wand to a first upper port of the service apparatus, and the		
4	reservoir including an internal volume and a pressure regulator and a sealing member		
5	on the body configured to sealably connect the service apparatus with the reservoir,		
6	the pressure regulator being a pressure relief valve operable to vent the internal		
7	volume when a pressure in the internal volume decreases below a threshold value;		
8	inserting the drainage wand into a service port of a fluid system; and		
9	applying a reduced pressure to a second upper port of the service apparatus to		
10	withdraw fluid from the fluid system into the reservoir.		