MSc - Statisztika Házi feladat

Kiss Dániel Márk

2023

Contents

Chapter 1	1. teladat	Page 2
1.1	a) feladat	2
1.2	b) feladat	3
1.3	c) feladat	4
1.4	d) feladat	4
1.5	e) feladat	5
Chapter 2	2.feladat	Domo 6
_	a) feladat	Page 66
Chapter 3	3.feladat	Page 7
3.1	a) feladat	7
3.2	b) feladat	7
3.3	c) feladat	7

Chapter 1

1. feladat

Az elmúlt évek kutatásai arra irányultak, hogy felmérjék a mosolygós emojik használatának hatását a digitális kommunikációban és a felhasználók boldogságszintjére. Az alábbi adatokkat gyűjtötték össze: bead11.1.csv.

Lineáris regressziós modellt szeretnénk felírni, melyben az eredményváltozó a boldogságszint, míg a magyarázó változók az üzenet hossza és a mosolygós emojik száma.

1.1 a) feladat

Beccsüld meg és értelmezd a lineáris regresszió paramétereit, teszteld le, szignifikánsak-e a magyarázó változók!(5%-os szignifikanciaszinten)

Megodlás: A bead11.1.csv fájl négy oszlopot tartalmaz: "Sorszám," "Üzenet hossza," "Mosolygós emojik száma," és "Boldogságszint." A lineáris regresszió célja az, hogy a függő változót (pl. Boldogságszint) lineáris kapcsolatban álló magyarázó változókkal (pl. Üzenet hossza, Mosolygós emojik száma) modellezze.

A lineáris regresszió modellje általánosan a következő alakú: Y=B0+B1X1+B2X2+E Python kód:

```
import pandas as pd
import statsmodels.api as sm
from scipy.stats import shapiro

def main():
    """The main function of the program."""
    #1.lepes: Adatok beolvasasa
    data = pd.read_csv("bead11.1.csv")
```

```
# 2.lepes: Magyarazo valtozok es a celvaltozo kivalasztasa
X = data[["Uzenet hossza", "Mosolygos emojik szama"]]
X = sm.add_constant(X) # Allando hozzaadasa a magyarazo valtozokhoz
y = data["Boldogsagszint"] #Celvaltozo kivalasztasa
model = sm.OLS(y, X).fit()
# Regresszios modell parametereinek kiirasa
```

Kimenet értelmezése: Az alábbi kimenet a Figure 1.1-en látható. Az R-négyzet érték azt

) python <u>feladat01.py</u> OLS Regression Results								
Dep. Variable:					0.870			
Model:		Adj. R-			0.865			
Method:	Least Squares				157.5			
	Wed, 06 Dec 2023							
Time:								
	11:57:13		elinooa:		7.2608			
No. Observations:		AIC:			-8.522			
Df Residuals:	47	BIC:			-2.786			
Df Model:	2							
Covariance Type:	nonrobust							
	coef s		t 		[0.025	0.975]		
const	5.2548				4.494	6.016		
Üzenet hossza	0.0077	0.005	1.686	0.098	-0.001	0.017		
Mosolygós emojik szán	na 0.3069	0.070	4.388	0.000	0.166	0.448		
Omnibus:	33.845	Durbin-	Watson:		1.603			
Prob(Omnibus):	0.000	Jarque-	Bera (JB):		73.474			
Skew:	-2.037	Prob(JB):		1.11e-16			
Kurtosis:	7.321	Cond. N	0.		1.57e+03			

Figure 1.1: Feladat 1/a kimenet

mutatja, hogy a modell mennyire magyarázza a függő változó (Boldogságszint) változását. Az 0.870 érték azt jelenti, hogy a modell 87%-ban magyarázza a változást. P abs(t) (szignifikanciaszint): Az egyes együtthatók (const, Üzenet hossza, Mosolygós emojik száma) szignifikanciaszintje. Az értékek alattuk a p-értékeket jelentik. Azok az együtthatók, amelyek p-értéke kevesebb, mint 0.05, szignifikánsak a 0.05 szignifikanciaszinten. Ebben a modellben mind a const (konstans), mind a Mosolygós emojik száma szignifikáns, mivel a p-értékük kisebb, mint 0.05. Összességében ez azt jelenti, hogy a modell jól teljesít a magyarázatokban, és mind a konstans, mind a Mosolygós emojik szám változói szignifikánsan kapcsolódnak a Boldogságszint változóhoz.

1.2 b) feladat

print(model.summary())

Határozd meg és értelmezd a többszörös determináiós együtthatót!

Megodlás:

A többszörös determináiós együttható (R-négyzet) azt mutatja, hogy a modell mennyire magyarázza a függő változó (Boldogságszint) változását. Az 0.870 érték azt jelenti, hogy a modell 87%-ban magyarázza a változást. Az R érték 0 és 1 közötti értéket vehet fel. Minél közelebb van az 1-hez, annál jobban magyarázza a modell a függő változó (Boldogságszint) változását. Az R-négyzet mellett fontos megjegyezni az "Adj. R-squared" értéket is (itt 0.865), amely korrigálja az R-négyzetet a magyarázó változók számára. Ez különösen fontos, ha több magyarázó változó van a modellben, mivel az R-négyzet hajlamos növekedni a változók számával anélkül, hogy ténylegesen javítaná a modell illeszkedését.

1.3 c) feladat

Teszteld a regressziós modell megbízhatóságát 5%-os szignifikanciaszinten!

Megoldás: A nullhipotézis az, hogy a modell nem szignifikáns azaz nincs összefüggés az emojik és a boldogságszint között. A nullhipotézis elutasításához a p-értéknek kisebbnek kell lennie, mint a szignifikanciaszint (5%). Az adott kimenetben a F-statistic értéke 157.5, és a hozzá tartozó p-érték a "Prob (F-statistic)" oszlopban található (1.46e-21). Ez az érték rendkívül kicsi, sok nagyságrenddel kisebb, mint 0.05 (5%-os szignifikanciaszint), így elvetjük a nullhipotézist (azaz elfogadjuk a modell szignifikanciáját). Ez azt jelenti, hogy a modell összességében szignifikánsan jól illeszkedik adatainkhoz.

1.4 d) feladat

Adj intervallumbecslést 95%-os megbizhatósággal paraméterekre!

Megoldás: Az "alpha=0.05" paraméter megadja a 95%-os megbízhatósági szintet. Python kód:

```
# 4.lepes: Intervallumbecslés

\mathbf{print} \pmod{1.000}
```

Kimenet értelmezése:

Az intervallumok azt mutatják, hogy a konstans érték (const) becslési intervalluma 4.493509 és 6.016082 között van, az Üzenet hossza becslési intervalluma -0.001479 és 0.016810 között van, míg a Mosolygós emojik száma becslési intervalluma 0.166219 és 0.447623 között van. Ezek az intervallumok segíthetnek abban, hogy becsüljük a paraméterek értékeinek megbízhatóságát és azt, mennyire pontosak a becslések.

	0	1
const	4.493509	6.016082
Üzenet hossza	-0.001479	0.016810
Mosolygós emojik száma	0.166219	0.447623

1.5 e) feladat

Készíts előrejelzést az új üzenetek boldogságszintjére, ha az üzenet hossza 130 karakter, és a mosolygós emojik száma 3. Illetve adj ugyanerre 95%-os megbízhatóságú intervallumbecslést is.

Megodlás:

Kimenet értelmezése: Előrejelzés: 7.172034019616269 95%-os megbízhatóságú intervallum: 7.09557490761663 - 7.248493131615907

Ez azt jelenti, hogy az új üzenetek boldogságszintje várhatóan körülbelül 7.2 lesz, és a 95%-os megbízhatóságú intervallum körülbelül 7.1 és 7.2 között lesz.

Chapter 2

2.feladat

A következő kutatás arra irányult, hogy mérje a mosolygós emojik használatának hatását a kommunikációban különböző csoportokban. Az alábbi adatokat gyűjtötték össze: bead11.1.csv.

2.1 a) feladat

Teszteld le, hogy van-e szignifikáns különbség a mosolygós emojik használatának gyakoriságában a különböző csoportokban (E=0.05 szignifikanciaszinten)!

Megoldás:

Chapter 3

3.feladat

A bead11.3.csv file egy felmérés adatait mutatja a mosolygós emojik használatának változásáról az elmúlt években egy adott online fórumon.

3.1 a) feladat

Készíts idősor diagramot az adatok alapján, majd számold ki a tapasztalati autokorrelációs és parciális autokorrelációs függvényeket.

Megoldás:

3.2 b) feladat

Az adatok transzformációjával és a trend, valamint a szezonális komponensek kiszűrésével kísérletezve illessz különböző idősor modelleket. Teszteld az illeszkedést.

Megoodlás:

3.3 c) feladat

Készíts előrejelzést a következő hónapokra várható mosolygós emojik használatára.

Megoldás: