APPENDIX B

X-Ray Critical-Absorption and Emission Energies in keV

By S. FINE and C. F. HENDEE Philips Laboratories Irvington on Hudson, New York

Increased use of energy-proportional detectors for x rays has created a need for a table of energy values of K and L absorption and emission series.

The table presented here includes all elements. Most values were obtained by a conversion to keV of tabulated experimental wavelength values (1-3); some are from previous energy-value compilations (4,5). Where a choice existed, the value chosen was the one derived from later work. Certain values were determined by interpolation, using Moseley's law. (All this is annotated in footnotes.)

The conversion equations relating energy and wavelength used are (6)

E(keV) = $(12.39644 \pm 0.00017)/\lambda(\text{Å})$ = $12.39644/1.002020 \lambda(\text{kX unit})$

In computing values the number of places retained sufficed to maintain the uncertainty in the original source value. The values in the table have been listed uniformly to 1 eV. However, chemical form may shift absorption edges as much as 10–20 eV (4,5).

To discover computational errors a fit was made to Moseley's law. In general the values were consistent, however there were a few irregularities due to the deviation of some input values (1). These were retained in the body of the table but a set of values calculated to fit better are footnoted.

The authors wish to express their appreciation to W. Parrish for helpful suggestions and to H. Kasper for performing the computation in connection with this work.

BIBLIOGRAPHY

1. Y. Cauchois, H. Hulubei, "Tables de Constantes et Donnees Numeriques, I, Longueurs D'Onde des Emissions X et des Discontinuites D'Absorption X" (Hermann et Cie, Paris, France, 1947).

2. A. H. Compton and S. K. Allison, "X-Rays in Theory and Experiment" (D. Van Nostrand

Co., Inc., New York, 1951).
3. C. E. Moore, "Atomic Energy Levels," NBS 467 (National Bureau of Standards, U.S. De-

partment of Commerce, Washington, D.C., 1949). 4. Y. Cauchois, J. phys. radium 13, 113 (1952). 5. R. D. Hill, E. L. Church, and J. W. Mihelich,

Rev. Sci. Instr. 23, 523 (1952). 6. J. W. M. DuMond, E. R. Cohen, Phys. Rev. 82, 555 (1951).

Y.Ray	Critical-Absorption	and	Emission	Energies	in kev
V-VA1	Cilical-Ausorbion	4		g	

Atomic Num- ber	<u> </u>		K series L series											
	Element	Ksb	Kø:	Kβı	Kai	Ka;	J tab	Lilab	Lillab	Ly,	Lø,	Lø:	La,	Las
1	Hydrogen	0.0136‡												
2	Helium	0.02461												
3	Lithium	0.055				052								
4	Beryllium	0.116				110								
5	Boron	0.192†			0.	185								
6	Carbon	0.283			0.	282								
7	Nitrogen	0.399			0.	392								
. 8	Oxygen	0.531			0.	523								
9	Fluorine	0.687†			0.	677								
10	Neon	0.874*			0.	851	0.048†	0.022†	0.022†					
	Sodium	1.08*		1.067	1.	041	0.055	0.034	0.034					
11 12	Magnesium	1.303		1.297		254	0.063	0.050	0.049					
13	Aluminum	1.559		1.553	1.487	1.486	0.087	0.073**	0.072**	,				
14	Bilicon	1.838		1.832	1.740	1.739	0.118*	0.099**	0.098**	•				
15	Phosphorus	2.142		2.136	2.015	2.0145	0.153*	0.1295	0.128					
	•			2.464	2.308	2.306		0.164**	0 16300	ı				
16	Sulphur	2.470		2.815	2.622	2.621		0.203						
17	Chlorine	2.819¶		3.1925	2.957	2.955		0.247**		1				
18	Argon	3.203		3.1929	3.313	3.310		0.297**						
19	Potassium	3.607		4.012	3.691	3.688	0.399*		0.349			0.344	0.3	341
20	Calcium	4.038						0.411**				0.399		395
21	Scandium	4.496		4.460	4.090	4.085						0.458		152
22	Titanium	4.964		-4.931	4.510	4.504		0.460**				0.519		510
23	Vanadium	5.463		-5.427	4.952	4.944		0.583**				0.581		571
24	Chromium	5.988		-5.946	5.414	5.405		0.650.**				0.647		536
25	Manganese	6.537		6.490	5.898	5.887								704
26	Iron	7.111		7.057	6.403	6.390		0.721**				0.717		775
27	Cobalt	7.709		7.649	6.930	0.915		0.794**				0.790		775 849
28	Nickel	8.331	8.328	8.264	7.477	7.460		0.871**		,		0.866		928
29	Copper	8.980	8.976	8.904	8.047	8.027	1.100*		0.933			0.948		009
30	Zine	9.660	9.657	9.571	8.638	8.615	1.200		1.022			1.032		096
31	Gallium	10.368	10.365	10.263	9.261	9.234	1.30		1.117*			1.122		186
82	Germanium	11.103	11.100	10.981	9.885	9.854	1.42*		1.217**	•		1.216		282
	Arsenic	11.863	11.863	11.725	10.543	10.507	1.529	1.359	1.323			1.317		379
	Selenium	12.652	12.651	12.495	11.221	11.181	1.652	1.473	1.434			1.419		480
	Bromine		13.465	13.290	11.923	11.877	1.794	1.599**	1.552**	•		1.526		
			14.313	14.112	12.648	12.597		1.727**				1.638		587**
	Krypton		15.184	14.960		13.335	2.067	1.866	1.806			1.752	1.694	1.692
	Rubidium		16.083	15.834	14.164		2.221	2.008	1.941			1.872	1.806	1.80
	Strontium		17.011	16.736	14.957		2.369	2.154	2.079			1.996	1.922	1.920
	Yttrium						2.547	2.305	2.220	2.302	2,219	2.124	2.042	2.040
40	Zirconium	17.998	17.969	17.666	15.774	15.690	ø. 0 1 2 /	⊿.3 03	<i></i>					

Atomi	 =	K series						L series						
Num- ber		Kab	Κβι	Kβι	Kαı	Kαι	Lieb	Lilab	Lillab	L_{γ_1}	Lβı	Lβι	Laı	La:
41 42 43 44 45	Niobium Molybdenum Technetium Ruthenium Rhodium	18.987 20.002 21.054 22.118 23.224	18.951 19.964 21.012§ - 22.072 23.169	18.621 19.607 -20.585¶ 21.655 22.721	16.614 17.478 18.410 19.278 20.214	16.520 17.373 18.328 19.149 20.072	2.706 2.884 3.054§ 3.236§ 3.419	2.900	2.374 2.523 2.677§ 2.837 3.002	2.462 2.623 2.792§ 2.964 3.144	2.367 2.518 2.674§ 2.836 3.001	2.257 2.395 2.538§ 2.683 2.834	2.166 2.293 2.424§ 2.558 2.696	2.163 2.290 2.420 2.554 2.692
46 47 48 49 50	Palladium Silver Cadmium Indium Tin	24.347 25.517 26.712 27.928 29.190	24.297 25.454 26.641 27.859 29.106	23.816 24.942 26.093 27.274 28.483	21.175 22.162 23.172 24.207 25.270	21.018 21.988 22.982 24.000 25.042	3.617 3.810 4.019 4.237 4.464	3.329 3.528 3.727 3.939 4.157	3.172 3.352 3.538 3.729 3.928	3.328 3.519 3.716 3.920 4.131	3.172 3.348 3.528 3.713 3.904	2.990 3.151 3.316 3.487 3.662	2.838 2.984 3.133 3.287 3.444	2.833 2.978 3.127 3.279 3.435
51 52 53 54 55	Antimony Tellurium Iodine Xenon Cesium	30.486 31.809 33.164 34.579 35.959 37.410	30.387 31.698 33.016 34.446¶ 35.819 37.255	29.723 30.993 32.292 33.644 34.984 36.376	26.357 27.471 28.610 29.802 30.970 32.191	26.109 27.200 28.315 29.485 30.623 31.815	4.697 4.938 5.190 7 5.452 5.720 5.995	4.381 4.613 4.856 5.104 5.358 5.623	4.132 4.341 4.559 4.782 5.011 5.247	4.347 4.570 4.800 5.036 5.280 5.531	4.100 4.301 4.507 4.720§ 4.936 5.156	3.843 4.029 4.220 4.422§ 4.620 4.828	4.286 4.467	4.272 4.451
56 57 58 59 60	Barium Lanthanum Cerium Praseodymium Neodymium	38.931 40.449 41.998 43.571	37 233 38 728 40 231 41 772 43 298¶	37.799 39.255 40.746 42.269	33 .440 34 .717 36 .023 37 .359	33.033 34.276 35.548 36.845	6.283 6.561 6.846 7.144	5.894 6.165† 6.443 6.727 7.018§	5.489 5.729 5.968 6.215 6.466§	5.789 6.052 6.322 6.602 6.891§			4.651 4.840 5.034 5.230 5.431	4.635 4.823 5.014 5.208 5.408
61 62 63 64 65	Promethium Samarium Europium Gadolinium Terbium	46.846 48.515 50.229 51.998	46.553¶ 48.241 49.961 51.737	45.400 47.027 48.718 50.391	40.124 41.529 42.983 44.470 45.985	39.523 40.877 42.280 43.737 45.193	7.754 8.069 8.393 8.724 9.083	7.281¶ 7.624 7.940 8.258 8.621¶	6.721 6.983 7.252 7.519 7.850¶	7.180 7.478 7.788 8.104	6.587 6.842 7.102 7.368 7.638	6.206 6.456 6.714 6.979 7.249	5.636 5.846 6.059 6.275 6.495	5.609 5.816 6.027 6.241 6.457
66 67 68 69 70	Dysprosium Holmium Erbium Thulium Ytterbium	61.303	53.491 55.292** 57.088 1 58.969** 60.959	55.690 57.576¶ 59.352	47.528 49.099 50.730 52.360	46.686 48.205 49.762 51.326	9.411 9.776 10.144 10.486	8.920 9.263 9.628 9.977	8.074 8.364 8.652 8.943 9.241	8.748 9.089 9.424 9.779	7.912 8.188 8.472 8.758 9.048	7.528 7.810 8.103 8.401 8.708	6.720 6.948 7.181 7.414 7.654	6.680 6.904 7.135 7.367 7.604
71 72 73 74 75	Lutecium Hafnium Tantalum Tungsten Rhenium	63.304 65.313 67.400 69.508 71.662	62.946 64.936 66.999 69.090 71.220	61.282 63.209 65.210 67.233 69.298	54.063 55.757 57.524 59.310 61.131	54.579 56.270 57.973 59.707	10.867 11.264 11.676 12.090 12.522	10.734 11.130 11.535 11.955	9.556 9.876 10.198 10.531	10.514 10.892 11.283 11.684	9.346 9.649 9.959 10.273	9.021 9.341 9.670 10.008	7.898 8.145 8.396 8.651 8.910	7.843 8.087 8.333 8.584 8.840
76 77 78 79 80	Osmium Iridium Platinum Gold Mercury	73.860 76.097 78.379 80.713 83.106	73.393 75.605 77.866 80.165 82.526	71.404 73.549 75.736 77.968 80.258	62.991 64.886 66.820 68.794 70.821	63.278 65.111 66.980 68.894	12.965 13.413 13.873 14.353 14.841	12.819 13.268 13.733 14.212	10.869 11.211 11.559 11.919 12.285	12.509 12.939 13.379 13.828	10.918 11.249 11.582 11.923	10.706 11.069 11.439 11.823	9.173 9.441 9.711 9.987	9.098 9.360 9.625 9.896
81 82 83 84 85	Thallium Lead Bismuth Polonium Astatine	85.517 88.001 90.521 93.112 95.740	84.904 87.343 89.833 92.386 94.976	82.558 84.922 87.335 89.809 92.319	72.860 74.957 77.097 79.296 81.525	72.794 74.805 76.868 78.956	15.346 15.870 16.393 16.935 17.490	15.207 15.716 16.244 16.784	13.424 13.817 14.215	14.762 15.244 15.740 16.248	12.620 12.977 13.338 13.705	12.611 13.021 13.441 13.873	10.549 10.836 11.128 11.424	10.448 10.729 11.014 11.304
89	Radon Francium Radium Actinium Thorium	106.759	103.048 105.838 108.671	102.846 105.592	90.894 93.334	83.243 85.446 87.681 89.942	20.460	17.904 18.481 19.078 19.688	14.618 15.028 15.442 15.865 16.296	17.301 17.845 18.405 18.977	14.459 14.839 15.227 15.620	14.770 15.233 15.712 16.200	12.029 12.338 12.650 12.966	11.894 12.194 12.499 12.808
92	Protactinium Uranium Neptunium Plutonium Americium	115.591 118.619 121.720 124.876	114.549 117.533 120.592 123.706	111.289 114.181 117.146 120.163	98.428 101.005 103.653 106.351	92.271 94.648 97.023 99.457 101.932	21.753 22.417 23.097 23.793	20.943 21.596 22.262 22.944	16.731 17.163 17.614 18.066 18.525 18.990	20.163 20.774° 21.401 22.042	16.425 16.837 17.254 17.677	17,218 17,740 18,278 18,829	13.613 13.945 14.279 14.618	13.438 13.758 14.082 14.411
	Curium Berkelium Californium	131.357 134.683	126.875 130.101 133.383 136.724 140.122	126.362 129.544	111.896 114.745		25.230 25.971	24 . 352 25 . 080 25 . 824	19.461 19.938 20.422	23.370 24.056 24.758	18.540 18.980 19.426	19.971 20.562 21.166	15.309 15.661 16.018	15.079 15.420 15.764

For Z ≤ 69, values without symbols are derived from (I). Values prefixed with n = sign are Kβ₁₊₂.

For Z ≥ 70, absorption-edge values are from (I) in the case of Z = 70-83, 88, 90, and 92; remaining absorption edges to Z = 100 are obtained from these by least-squares quadratic fitting. All emission values for Z ≥ 70 are derived from the preceding absorption edges, and others based on (I), using the transition relations Kα₁ = K_{ab} = L_{III}, Kα₂ = K_{ab} = L_{II}, Kβ₁ = K_{ab} = M_{III}, etc.

*Obtained from R. D. Hill, E. L. Church, J. W. Milclich (I). † Derived from Compton and Allison (I). † Derived from C. E. Moore (I).

*Values derived from Cauchois and Hulubei (I) which deviate from the Moseley law. Better-fitting values are: Z = 17, K_{ab} = 2.826; Z = 43, Kα₁ = 18.370, Kα₂ = 18.250, Kβ₁ = 20.612; Z = 54, Kα₁ = 29.779, Kα₂ = 29.463, Kβ₁ = 34.398; Z = 60, Kβ₁ = 43.349; Z = 61, Kα₁ = 38.726, Kα₁ = 8.591, L_{III} = 7.790; Z = 69, K_{ab} = \$9.382, Kβ₁ = 57.487.

**Culculated by method of least squares.