CIS102 Tutorial 1 Answers

Goldsmiths College, University of London

October 10 2006

1. (a)
$$4037 = 4(10^3) + 0(10^2) + 3(10^1) + 7(10^0)$$

 $40371 = 4(10^4) + 0(10^3) + 3(10^2) + 7(10^1) + 1(10^0)$

(b)
$$abcd = 10^3 a + 10^2 b + 10^1 c + 10^0 d$$

 $abcd1 = 10^4 a + 10^3 b + 10^2 c + 10^1 d + 1(10^0)$
 $x = 10n + 1$

(c)
$$111011_2 = 1(2^5) + 1(2^4) + 1(2^3) + 0(2^2) + 1(2^1) + 1(2^0) = 59_{10}$$

 $1110110_2 = 1(2^6) + 1(2^5) + 1(2^4) + 0(2^3) + 1(2^2) + 1(2^1) + 0(2^0) = 2 \times 59_{10} = 118_{10}$
 $1111111111_2 = 10000000000_2 - 1_2 = 2^9 - 1 = 512_{10} - 1_{10} = 511_{10}$

(b)
$$10111_2 + 111010_2 = 23_{10} + 58_{10} = 81_{10}$$

 $111010_2 - 10111_2 = 48_{10} - 23_{10} = 25_{10}$
 $1101_2 \times 1101_2 = 13_{10} \times 13_{10} = 169_{10}$

3. (a)
$$(A2E)_{16} = A(16^2) + 2(16^1) + E(16^0) = 10(16^2) + 2(16^1) + 14(16^0) = 10 \times 256 + 2 \times 16 + 14 \times 1 = 2560 + 32 + 14 = 2606$$

		Decimal	Binary
4.	(a)	0	000
		1	001
		2	010
		3	011
		4	100
		5	101
		6	110
		7	111

(b)
$$10111011.101_2 = 273.5_8$$

 $53.04_8 = 101011.0001_2$

- 5. (a) A *rational number* is a number of the form $\frac{m}{n}$ where m, n are integers, $n \neq 0$
 - (b) A decimal number is rational if it is terminating (e.g. 10.53) or ends in a recurring block (e.g. 10.53)

(c)
$$\begin{array}{rcl} & 100x & = & 95.45\dot{4}\dot{5} \\ - & x & = & 0.95\dot{4}\dot{5} \\ \hline & 99x & = & 94.5000 \end{array}$$

$$x = \frac{21}{22}$$

6.
$$0.1011_2 = 1(2^{-1}) + 0(2^{-2}) + 1(2^{-3}) + 1(2^{-4}) = \frac{1}{2} + \frac{1}{8} + \frac{1}{16} = \frac{11}{16} = 0.6875$$

- 7. (a) $753_{10} = 1011110001_2 = 11003_5$
 - (b) $B.25_{16} = 11.14453125_{10} = 1011.00010101_2$
 - (c) $\frac{5_{10}}{8_{10}} = \frac{101_2}{1000_2} = 0.101_2$
- 8. $42900 = 2^2 \times 3 \times 5^2 \times 11 \times 13$
- 9. (a) $0.714 < \frac{5}{7} < 0.715$
 - (b) $1.41 \le \sqrt{2}$
 - (c) $1.732 \le \sqrt{3} \le 1.7322$
- 10. $0.0000526 = 0.526 \times 10^{-4}$ $429000000 = 0.429 \times 10^{9}$ $1 = 0.1 \times 10^{1}$