

Classification: The PAC Learning Framework

Machine Learning: Jordan Boyd-Graber
University of Colorado Boulder

Quiz!

Boulder

Admin Questions

Admin Questions

Admin Questions

PAC Learnability: Rectangles

Is the hypothesis class of axis-aligned rectangles PAC learnable?

PAC Learnability: Rectangles

Is the hypothesis class of axis-aligned rectangles PAC learnable?

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4):929?965, 1989

What's the learning algorithm

What's the learning algorithm

Call this h_S , which we learned from data. $h_S \in c$

Boulder

Let $c \equiv [b, t] \times [l, r]$.

Boulder

Let $c \equiv [b, t] \times [l, r]$. By construction, $h_S \in c$, so it can only give false negatives.

Let $c \equiv [b, t] \times [l, r]$. By construction, $h_S \in c$, so it can only give false negatives. The region of error is precisely $c \setminus h_S$.

Let $c \equiv [b, t] \times [l, r]$. By construction, $h_S \in c$, so it can only give false negatives. The region of error is precisely $c \setminus h_S$. WLOG, assume $P(R) \ge \epsilon$.

Let $c \equiv [b,t] \times [l,r]$. By construction, $h_S \in c$, so it can only give false negatives. The region of error is precisely $c \setminus h_S$. WLOG, assume $P(R) \ge \epsilon$. Consider rectangles $R_1 \dots R_4$:

Let $c \equiv [b, t] \times [l, r]$. By construction, $h_S \in c$, so it can only give false negatives. The region of error is precisely $c \setminus h_S$. WLOG, assume $P(R) \ge e$. Consider rectangles $R_1 \dots R_4$:

We get a bad h_S only if we have an observation fall in this region. So let's bound this probability.

$$\Pr[error] = \Pr[\bigcup_{i=1}^{4} x \notin R_i]$$
 (1)

$$\leq \sum_{i=1}^{4} \Pr[x \notin R_i] \tag{2}$$

$$= \sum_{i=1}^{4} (1 - P(R_i))^m$$
 (3)

$$Pr[error] = Pr[\bigcup_{i=1}^{4} x \notin R_i]$$
 (1)

$$\leq \sum_{i=1}^{4} \Pr[x \notin R_i] \tag{2}$$

$$= \sum_{i=1}^{4} (1 - P(R_i))^m$$
 (3)

If we assume that $P(R_i) \ge \frac{\epsilon}{4}$, then

$$\Pr[error] \le 4 \left(1 - \frac{\epsilon}{4}\right)^m \le 4 \cdot \exp\left\{-\frac{m\epsilon}{4}\right\} \tag{4}$$

$$\Pr[error] = \Pr[\bigcup_{i=1}^{4} x \notin R_i]$$
 (1)

$$\leq \sum_{i=1}^{4} \Pr[x \notin R_i] \tag{2}$$

$$= \sum_{i=1}^{4} (1 - P(R_i))^m \tag{3}$$

If we assume that $P(R_i) \ge \frac{\epsilon}{4}$, then

$$\Pr[error] \le 4 \left(1 - \frac{\epsilon}{4}\right)^m \le 4 \cdot \exp\left\{-\frac{m\epsilon}{4}\right\} \tag{4}$$

Solving for *m* gives

$$m \ge \frac{4\ln 4/\delta}{\epsilon} \tag{5}$$

Concept Learning

Are Boolean conjunctions PAC learnable? Think of every feature as a Boolean variable; in a given example the variable is given the value 1 if its corresponding feature appears in the examples and 0 otherwise. In this way, if the number of measured features is n the concept is represented as a Boolean function $c: \{0,1\} \mapsto \{0,1\}$. For example we could define a chair as something that has four legs **and** you can sit on **and** is made of wood. Can you learn such a conjunction concept over n variables?

Start with

$$h = \bar{x_1} x_1 \bar{x_2} x_2 \dots \bar{x_n} x_n \tag{6}$$

Start with

$$h = \bar{x_1} x_1 \bar{x_2} x_2 \dots \bar{x_n} x_n \tag{6}$$

For every positive example you see, remove the negation of all dimensions present in that example.

Start with

$$h = \bar{x_1} x_1 \bar{x_2} x_2 \dots \bar{x_n} x_n \tag{6}$$

For every positive example you see, remove the negation of all dimensions present in that example. Example: 10001, 11001, 10000, 11000

Start with

$$h = \bar{x_1} x_1 \bar{x_2} x_2 \dots \bar{x_n} x_n \tag{6}$$

For every positive example you see, remove the negation of all dimensions present in that example. Example: 10001, 11001, 10000, 11000

• After first example, $x_1 \bar{x_2} \bar{x_3} \bar{x_4} \bar{x_5}$

Start with

$$h = \bar{x_1} x_1 \bar{x_2} x_2 \dots \bar{x_n} x_n \tag{6}$$

For every positive example you see, remove the negation of all dimensions present in that example. Example: 10001, 11001, 10000, 11000

- After first example, $x_1 \bar{x_2} \bar{x_3} \bar{x_4} \bar{x_5}$
- After last example, $x_1 \bar{x_3} \bar{x_4}$

Observations

Observations

- Having seen no data, h says no to everything
- Our algorithm can be two specific. It might not say yes when it should.

Observations

- Having seen no data, h says no to everything
- Our algorithm can be two specific. It might not say yes when it should.
- We make an error on a literal if we've never seen it before (there are 2n literals: $x_1, \bar{x_1}$)

Let p(z) be the probability that our concept returns a positive example in which literal z is false.

$$R(h) \le \sum_{z} p(z) \tag{7}$$

A literal z is bad if $p(z) \ge \frac{\epsilon}{2n}$.

Let p(z) be the probability that our concept returns a positive example in which literal z is false.

$$R(h) \le \sum_{z} \rho(z) \tag{7}$$

A literal z is bad if $p(z) \ge \frac{\epsilon}{2n}$.

If h has no bad literals, then h will have error less than ϵ .

Solving for number of examples

Solving for number of examples

$$m \ge \frac{2n}{\epsilon} \left(\ln 2n + \ln \frac{1}{\delta} \right) \tag{8}$$

3-DNF

Not efficiently learnable unless P = NP.