

Analyzing and Visualizing Survey Questions Using Open-Source Software

Okan Bulut

Centre for Research in Applied Measurement and Evaluation University of Alberta

Outline

01 Visualizing survey items

What are the key principles in developing visualizations?

02 Evaluating survey items

What are the visual and statistical analysis options for evaluating survey items?

03 Example

Visual and statistical analysis of survey items in PISA 2015

Visualizing Survey Items

Four datasets with nearly identical simple descriptive statistics for x and y but they have very different distributions...

Property	Value
Mean of x	9
Mean of y	7.50
SD of x	3.32
SD of y	2.03
Correlation of x and y	0.82

Source: https://en.wikipedia.org/wiki/Anscombe%27s_quartet

To move a huge amount of information into the brain very quickly

To identify patterns and communicate relationships and meaning

To inspire new questions and further exploration

To help identify sub-problems

To discover or search for interesting or specific data points in a larger field

Source: Hand drawn by William Playfair (1786) in The Commercial and Political Atlas – to make a case against England's policy of financing colonial wars through national debt.

Did we get any better?

Source: Fox News – the percentages add up to 193%...

We have all done this...

Purpose

Source: Adapted from <u>Iliinsky and Steele</u> (2011, p. 9)

In practice, we...

EXPLORE (Informative)

Potential issues in the data:

- Missingness
- Outliers
- Non-normality
- Non-linearity
- o Extreme skewness and kurtosis

EXPLAIN (Informative)

Relationships between variables; correlations; interactions; patterns over time

PROVE (Persuasive)

Statistical models (e.g., regression); model fit; accuracy; predictions; inferences

Deviation

Example FT uses Trade surplus/deficit, climate change

Diverging bar

The shaded area of

The shaded area of these charts allows a balance to be shown - either against a baseline or between two series.

Correlation

Show the relationship between two or more variables. Be mindful that, unless you tell them otherwise, many readers will assume the relationships you show them to be causal (i.e. one causes the other).

Example FT uses Inflation and unemployment, income and life expectancy

....

The standard way to show the relationship between two continuous variables, each of which has its own axis.

adds additional detail by sizing the circles according to a third

the patterns between 2 categories of data, less effective at showing fine differences in amounts.

Ranking

Example FT uses Wealth, deprivation, league tables, constituency election results

Effective for showing changing rankings across multiple dates. For large datasets, consider grouping lines using colour.

showing the age and sex breakdown of a population distribution; effectively, back to back

Change over Time

Example FT uses Share price movements, economic time series, sectoral changes in a market

show a changing time series. If data are irregular, consider markers to represent

=

Magnitude

An alternative to bar/column charts when being able to count data or highlight individual elements is useful.

Can be useful for showing part-to-whole relationships where some of the components are negative.

Flow

Used for showing the strength and inter-connectedness of relationships of varying types.

Visual vocabulary

Designing with data

There are so many ways to visualise data - how do we know which one to pick? Use the categories across the top to decide which data relationship is most important in your story, then look at the different types of chart within the category to form some initial ideas about what might work best. This list is not meant to be exhaustive, nor a wizard, but is a useful starting point for making informative and meaningful data visualisations.

Distribution

Dot strip plot

Barcode plot

Show size comparisons. These can be relative (just being able to see largerbigger) or absolute (need to see fine differences). Usually these show a 'counted' number (for example, barrels, dollars or people) rather than a calculated rate or per cent.

Example FT uses Commodity production, market capitalisation, volumes in general

Part-to-whole

Spatial

for putting data on a map – should always be rates rather than totals and use a sensible base opporably.

Distribution

Show values in a dataset and how often they occur. The shape (or 'skew') of a distribution can be a memorable way of highlighting the lack of uniformity or equality in the data.

Example FT uses

Income distribution, population (age/sex) distribution, revealing inequality

Histogram

The standard way to show a statistical distribution - keep the gaps between columns small to highlight the 'shape' of the data.

Dot plot

A simple way of showing the change or range (min/max) of data across multiple categories.

Determine the number of dimensions to be adjusted

Number of variables

Colours and shading

Shapes and lines

Size/area and line weight

Font type and font Size

Decoding -> Understanding

Brainpower used for decoding

Brainpower left for understanding

TOTAL BRAINPOWER AVAILABLE

Source: Adapted from <u>Iliinsky and Steele</u> (2011, p.24)

More Complex # Better

"Simplicity is the ultimate sophistication."

-- Leonardo da Vinci

Created by Darkhorse Analytics

www.darkhorseanalytics.com

Source: https://www.darkhorseanalytics.com/blog/data-looks-better-naked

Created by Darkhorse Analytics

www.darkhorseanalytics.com

Which comparison is easier?

Which comparison is the easiest?

Which comparison is the easiest?

Some Resources...

- Stephanie Evergreen <u>Data Visualization Checklist</u>
- Financial Times Chart Doctor
- Darkhorse Analytics <u>Visualizing Distributions</u>
- Chez Voila Glass Ceiling Visuals Remake
- Eager Eyes <u>Understanding Pie Charts</u>

Data Visualization Software

Software Options (1)

https://www.microsoft.com

https://powerbi.microsoft.com/

https://www.alteryx.com/

https://plot.ly/

https://cran.r-project.org/

Software Options (2)

https://datastudio.google.com/

https://www.tableau.com

https://www.datawrapper.de/

https://flourish.studio/

https://infogram.com/

Evaluating Survey Items

Checklist for Evaluating Items

Alignment 3

Check if the items are related to each other

Construct validity

Check if the items can define a single construct properly

Functionality

Check if response options of the items function properly

Discrimination

Check if the items discriminate low and high levels of the target construct

Check if any items has extreme missingness

Analyzing Survey Items

Descriptive statistics

For quantitative variables (e.g., age, height, weight):

Mean, median, standard deviation, variance, minimum, maximum, etc.

For qualitative variables (e.g., Likert-scale items, demographic variables):

- Nominal variables: Frequencies and proportions (i.e., percentages)
- Ordinal variables: Frequencies, proportions, median, and mode

Categorical data analysis

Test of independence: This test examines whether two variables are either independent or related to each other (e.g., is there any relationship between gender and movie ratings (1 star, 2 stars, 3 stars, or 4 stars)?

Data Analysis Software

Software Options

| Section | Sect

jamovi
https://www.jamovi.org

JASP
https://jasp-stats.org

FREE (using R in the background)
Compatible with Windows, Mac, and Linux
Good for both statistical analysis and data visualizations

https://www.learnstatswithjamovi.com

https://datalab.cc/jamovi

https://www.jamovi.org/user-manual.html https://www.jamovi.org/community.html

Example

- http://www.oecd.org/pisa/
- A large-scale, international assessment for 15-year-old students
- Administered every 3 years
- 540,000 students from 72 countries participated in PISA 2015
- Reading, science, and math assessments (plus additional subject areas)
- Student, teacher, and school survey items to learn more about students

- Alberta students who participated in PISA 2015 (n = 2,133)
- Data files are available at: https://github.com/okanbulut/otessa2022
 - PISA Alberta.csv
 - PISA_Alberta.sav

To run data analysis with jamovi, your dataset must be in one of the following formats:

- ✓ Excel (.xlsx)
- ✓ CSV (.csv)
- ✓ SPSS (.sav)
- √ R (.RData) or SAS (.xpt, sas7bdat)
- 10 Likert-type survey items potentially measuring "attitudes towards teamwork"
- Each question has the following response options:

1 = Strongly disagree 2 = Disagree 3 = Agree 4 = Strongly agree 9999 = Missing

First eight questions share the same statement:

"To what extent do you disagree or agree about yourself?"

- 1. I prefer working as part of a team to working alone.
- 2. I am a good listener.
- 3. I enjoy seeing my classmates be successful.
- 4. I take into account what others are interested in.
- 5. I find that teams make better decisions than individuals.
- 6. I enjoy considering different perspectives.
- 7. I find that teamwork raises my own efficiency.
- 8. I enjoy cooperating with peers.

The other two items are independent:

- 9. I make friends easily at school.
- 10. Other students seem to like me.

Additional variables:

- studentid
- grade
- age
- gender (1 = Female, 2 = Male)

Missingness

- 1. Import the data into jamovi.
- 2. Exploration → Descriptives

Descriptives

Descriptives

	q1	q2	q3	q4	q5	q6	q7	q8	q9	q10
N	2050	2042	2042	2044	2043	2041	2040	2032	2046	2036
Missing	83	91	91	89	90	92	93	101	87	97
Median	3.00	3.00	3.00	3.00	3	3	3.00	3.00	2.00	2.00
Mode	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	2.00	2.00
Minimum	1	1	1	1	1	1	1	1	1	1
Maximum	4	4	4	4	4	4	4	4	4	4

Missingness

- 1. Install the "surveymv" module
- 2. Exploration → Survey Plots

Functionality

Exploration → Survey Plots

Q4. I take into account what others are interested in.

Alignment

Factor → Reliability Analysis → Correlation heatmap

Problematic items

Discrimination

Factor → Reliability Analysis → Cronbach's α & Item-rest correlation

	Cronbach's α		
	Cronbach's α		
scale	0.711		
correlate the total probably reversed	ms 'q9' and 'q10' negatively with scale and should be [6]	It should be > 0).20
terri ivena	onity statistics	If item dropped	
	Item-rest correlation	Cronbach's α	
q1	0.4688	0.669	
	0.4688 0.2775	0.669 0.702	
q1 q2 q3			
q2	0.2775	0.702	
q2 q3	0.2775 0.4937	0.702 0.671	
q2 q3 q4	0.2775 0.4937 0.4880	0.702 0.671 0.673	
q2 q3 q4 q5	0.2775 0.4937 0.4880 0.5603	0.702 0.671 0.673 0.652	
q2 q3 q4 q5 q6	0.2775 0.4937 0.4880 0.5603 0.5147	0.702 0.671 0.673 0.652 0.667	
q2 q3 q4 q5 q6 q7	0.2775 0.4937 0.4880 0.5603 0.5147 0.5987	0.702 0.671 0.673 0.652 0.667 0.642	

Construct Validity

Factor → Exploratory Factor Analysis → Scree plot

Factor Loadings

	Factor			
	1	2	3	Uniqueness
q1	0.774	,,		0.463
q2	1 1	0.545		0.744
q3	1 1	0.693		0.479
q4	1 1	0.799		0.381
q5	0.659	1 1		0.490
q6	1 1	0.605		0.532
q7	0.868	\		0.264
q8	0.615		/·	0.398
q9			0.794	0.357
q10			0.792	0.381

Note. 'Principal axis factoring' extraction method was used in combination with a 'oblimin' rotation

- 1. I prefer working as part of a team to working alone.
- 2. I am a good listener.
- 3. I enjoy seeing my classmates be successful.
- 4. I take into account what others are interested in.
- 5. I find that teams make better decisions than individuals.
- 6. I enjoy considering different perspectives.
- 7. I find that teamwork raises my own efficiency.
- 8. I enjoy cooperating with peers.
- 9. I make friends easily at school.
- 10. Other students seem to like me.

Construct Validity

- 1. Frequencies $\rightarrow \chi^2$ test of association (under "Independent Samples")
- 2. Install the "JJStatsPlot" module → Bar Charts

contingency	/ IdDIC3		
	gender		
q8	1	2	Total
1	30	33	63
2	108	93	201
3	609	592	1201
4	254	313	567
Total	1001	1031	2032

Contingency Tables

	Value	df	р
χ²	7.20	3	0.066
N	2032		

Null hypothesis:

There is no relationship between "Q8. I enjoy cooperating with peers" and gender.

Thank You

For questions and comments: bulut@ualberta.ca

