Dynamic Routing:

- Two types of routing protocols are used in internetworks:
 - 1. Interior gateway protocols (IGPs)
 - 2. Exterior gateway protocols (EGPs)

Interior gateway protocols (IGPs)

There are three classes of routing protocols:

1. Distance vector

Ex: RIP

2. Link state

EX: OSPF

3. Hybrid

EX: EIGRP

Administrative Distances

TABLE 8.1 Default administrative distances

Route Source	Default AD
Connected interface	0
Static route	1
EIGRP	90
OSPF	110
RIP	120
External EIGRP	170
Unknown	255 (This route will never be used.)

Characteristics of RIP(Routing information protocols)

Characteristic	RIPv2	RIPv1	
Type of protocol	Distance vector	Distance vector	_
Classiess support	Yes	No	
VLSM support	Yes	No	
Auto-summarization	Yes	Yes	
Manual summarization	Yes	No	
Noncontiguous support	Yes	No	
Route propagation	Periodic multicast	Periodic broadcast	
Path metric	Hops	Hops	==
Hop count limit	15	15	
Convergence	Slow	Slow	
Peer authentication	Yes	No	
Hierarchical network requirement	No (flat only)	No (flat only)	
Updates	Periodic	Periodic	
Route computation	Bellman-Ford	Bellman-Ford	

RIP Configuration:

	Command	Task
Step 1	router rip	Enters router configuration mode, and enables RIP on the router.
	Example:	
	Router> configure terminal Router(config)# router rip Router(config-router)#	
Step 2	version {1 2}	Specifies use of RIP version 1 or 2.
	Example:	
	Router(config-router)# version 2 Router(config-router)#	
Step 3	network ip-address	Specifies a list of networks on which RIP is to be applied, using the address of the network of
	Example:	directly connected networks.
	Router(config-router)# network 192.168.1.1 Router(config-router)# network 10.10.7.1 Router(config-router)#	
p 4	no auto-summary	Disables automatic summarization of subnet routes into network-level routes. This allows subprefix
	Example:	routing information to pass across classful network
	Router(config-router) # no auto-summary Router(config-router) #	boundaries.

Verifying RIP Configuration:

Router# show ip route Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

```
10.0.0.0/24 is subnetted, 1 subnets
C 10.108.1.0 is directly connected, Loopback0
R 3.0.0.0/8 [120/1] via 2.2.2.1, 00:00:02, Ethernet0/0
```

Characteristics of Eigrp:

- Metric value : 5k value
- Convergence : very fast
- AD value : 90
- Classless & vlsm : Yes
- Algorithm : DUAL (diffusing Algorithm)
- Authentication : MD5

Neighbor ship conditions:

- Same AS Number
- Same 5k value
- Same Password (if configured)

Enhanced IGRP (EIGRP)

TABLE 19.1 Metric association of K values

Constant	Metric
K1	Bandwidth (B _e)
K2	Load (utilization on path)
K3	Delay (D _c)
K4	Reliability (r)
K 5	MTU

Cost Formula:

$$metric = [K_1 \times Bandwidth + (K_2 \times Bandwidth) / (256 - Load) + K_3 \times Delay] \times [K_5 / (Reliability + K_4)]$$

The formula's components break down like this:

By default,
$$K_1 = 1$$
, $K_2 = 0$, $K_3 = 1$, $K_4 = 0$, $K_5 = 0$.

Maintain 3 Tables:

- Routing table : # show ip route
- Topology table : # show ip eigrp topology
- Neighbors table : # show ip eigrp neighbors

EIGRP Neighbors:

Corp#sh ip eigrp neighbors

IP-EIGRP neighbors for process 20

Н	Address	Interface	Hold Uptime	SRTT	RT0	Q	Seq
			(sec)	(ms)		Cnt	Num
1	172.16.10.2	Se0/0	11 03:54:25	1	200	0	127
0	172.16.10.6	Se0/1	11 04:14:47	1	200	Θ	2010

Eigrp Topology:

Corp#sh ip eigrp topology IP-EIGRP Topology Table for AS(20)/ID(10.10.11.1) Codes: P - Passive, A - Active, U - Update, Q - Query, R r - reply Status, s - sia Status P 10.10.10.0/24, 1 successors, FD is 128256 via Connected, GigabitEthernet0/0 P 10.10.11.0/24, 1 successors, FD is 128256 via Connected, GigabitEthernet0/1 P 10.10.20.0/24, 1 successors, FD is 2297856 via 172.16.10.2 (2297856/128256), Serial0/0 via 172.16.10.6 (2300416/156160), Serial0/1 P 10.10.30.0/24, 1 successors, FD is 2297856 via 172.16.10.2 (2297856/128256), Serial0/0 via 172.16.10.6 (2300416/156160), Serial0/1 P 10.10.40.0/24, 1 successors, FD is 2297856 via 172.16.10.6 (2297856/128256), Serial0/1 via 172.16.10.2 (2300416/156160), Serial0/0 P 10.10.50.0/24, 1 successors, FD is 2297856 via 172.16.10.6 (2297856/128256), Serial0/1 via 172.16.10.2 (2300416/156160), Serial0/0 P 192.168.10.0/24, 2 successors, FD is 2172416 via 172.16.10.2 (2172416/28160), Serial0/0 via 172.16.10.6 (2172416/28160), Serial0/1 P 172.16.10.4/30, 1 successors, FD is 2169856 via Connected, Serial0/1 P 172.16.10.0/30, 1 successors, FD is 2169856 via Connected, Serial0/0