Math Problem Set # 4 *

Suleyman Gozen

Exercises from **Chapter 6** and **Chapter 7** at "Humpherys, Jeffrey and Tyler J. Jarvis, Foundations of Applied Mathematics, Volume II: Algorithm Design and Optimization, forthcoming. SIAM, Philadelphia, PA."

Chapter 6

Problem 6. Solving for the critical points:

$$f(x,y) = 2x^{2}y + 4xy^{2} + xy$$

$$f_{x} = 4xy + 4y^{2} + y$$

$$f_{y} = 2x^{2} + 8xy + x$$

$$f_{xx} = 4y$$

$$f_{yy} = 8x$$

$$f_{xy} = f_{yx} = 4x + 8y + 1$$

Set $f_y = 0$, then

$$2x^{2} + 8xy + x = 0 \Rightarrow x(2x + 8y + 1) = 0 \Rightarrow x = 0, y = \frac{-2x - 1}{8}$$

Set $f_x = 0$, then

$$4xy + 4y^{2} + y = 0$$

$$x = 0 \Rightarrow y(4y + 1) = 0 \Rightarrow y = 0, -\frac{1}{4}$$

$$y = \frac{-2x - 1}{8} \Rightarrow x = -\frac{1}{6}, -\frac{1}{2} \Rightarrow y = -\frac{1}{12}, 0$$

Therefore the critical points are $\{(0,0), (0,-\frac{1}{4}), (-\frac{1}{6},-\frac{1}{12}), (-\frac{1}{2},0)\}$. To determine whether the critical points are local min, max, or saddle points, refer to the determinant of the second derivative matrix. We have that:

$$D(0,0) = -1$$

$$D(0, -\frac{1}{4}) = -1$$

$$D(-\frac{1}{6}, -\frac{1}{12}) = \frac{1}{3}$$

$$D(-\frac{1}{2}, 0) = -1$$

Therefore $\left(-\frac{1}{6}, -\frac{1}{12}\right)$ is a local maximum and the rest are saddle points.

^{*}I thank Yung-Hsu Tsui for his valuable comments.

Problem 7.

(i) Notice that
$$Q^T = (A^T + A)^T = A^T + A = A + A^T = Q$$
. Also, $x^T A x = \sum_{i=1}^n a_{ij} x_i x_j = \sum_{i=1}^n a_{ji} x_i x_j = x^T A^T x$. Therefore $x^T Q x = 2x^T A x$ and (6.17) is equivalent to

$$f(x) = x^T Q x / 2 - b^T x + c.$$

(ii) The first order necessary conditions for a minimizer imply $Q^T x^* = b$, since $f'(x) = Q^T x - b$.

(iii) If Q is positive definite, then f''(x) > 0 for any x. Also, Q is invertible and by (6.19) we have that $x^* = Q^{-1}b$ is such that $f'(x^*) = 0$. Then by the second order sufficient condition, x^* is the unique minimizer of f. Now assume x^* is the unique minimizer of f. Then by the second order necessary condition, Q is positive semi-definite. Also, x^* is a solution to $Q^Tx^* = b$. If Q has at least one zero eigenvalue, then x^* is not unique. Therefore Q must be positive definite.

Problem 11. Let $f(x) = ax^2 + bx + c$ where a > 0 and $b, c \in \mathbb{R}$. Then

$$x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)} = x_0 - \frac{2ax_0 + b}{2a} = -\frac{b}{2a}$$

The first derivative of f is 2ax + b = 0. Then the critical point is $-\frac{b}{2a}$. Checking the second derivative 2a > 0 so the point is a local minimizer and Newton's method converges within one iteration.

Chapter 7

Problem 1. Set arbitrary elements, $x, y \in conv(S)$. Then, by the definition of convex hull, $x = \sum_{i=1}^k \lambda_i s_i$, and $y = \sum_{i=1}^k \mu_i s_i$. Then, set an arbitrary scalar, $\lambda \in [0, 1]$. Then,

$$\lambda x + (1 - \lambda)y = \sum_{i=1}^{k} (\lambda \lambda_i + (1 - \lambda)\mu_i)s_i$$

Note that $\sum_{i=1}^{k} (\lambda \lambda_i + (1-\lambda)\mu_i) = 1$. Thus, $\lambda x + (1-\lambda)y \in conv(S)$

Problem 2.

(i) Let $P = \{x \in V | \langle a, x \rangle = b\}$, a hyperplane in V. Then, pick arbitrary $x, y \in P$,

satisfying $\langle a, x \rangle = b$ and $\langle a, y \rangle = b$. Then, for arbitrary scalar $\lambda \in [0, 1]$, the following is satisfied;

$$< a, \lambda x + (1 - \lambda)y > = \lambda < a, x > +(1 - \lambda) < a, y > = b$$

Thus, $\lambda x + (1 - \lambda)y \in P$. (ii)

Proof. The argument is the same as above.

Problem 4.

(i)

$$||x - y||^2 = ||x - p + p - y||^2$$

$$= \langle x - p + p - y, x - p + p - y \rangle$$

$$= ||x - p||^2 + ||p - y||^2 + 2 \langle x - p, p - y \rangle$$

(ii) By the assumption that $p \neq y$, $||p - y||^2 > 0$. If we have the assumption that $(x - p, p - y) \geq 0$, using (i), the staement trivially holds. (iii) Using (i),

$$||x - z||^2 = ||x - p||^2 + ||\lambda y - \lambda p||^2 + \langle x - p, \lambda p - \lambda y \rangle$$
$$= ||x - p||^2 + 2\lambda \langle x - p, p - y \rangle + \lambda^2 ||y - p||^2$$

(iv)

Using (7.15), and setting $\lambda = 1$, thus z = y. Then, using (7.15),

$$0 \le ||x - y||^2 - ||x - p||^2 = 2\lambda < x - p, p - y > +\lambda^2 ||y - p||^2$$

If you divide by λ , then $0 \le 2 < x - p, p - y > +\lambda ||y - p||^2$ This holds for every $y \in C$, so < x - p, p - y >> 0

Problem 8.

$$g(\lambda x + (1 - \lambda)y = f(\lambda(Ax + b) + (1 - \lambda)(Ay + b))$$

$$\leq \lambda f(Ax + b) + (1 - \lambda)f(Ay + b)$$

$$= \lambda g(x) + (1 - \lambda)g(y)$$

Problem 12.

(i) Take $X, Y \in PD_n(\mathbb{R})$ and $\lambda \in [0, 1]$. Then for every $v \in \mathbb{R}^n$ we have that

$$v^{T}(\lambda X + (1 - \lambda)Y)v = \lambda(v^{T}Xv) + (1 - \lambda)(v^{T}Yv) > 0,$$

because X and Y are positive definite.

(ii)

(a) Take $t_1, t_2 \in \mathbb{R}$ and $\lambda \in [0, 1]$. On the one hand,

$$\lambda g(t_1) + (1 - \lambda)g(t_2) = \lambda f(t_1 A + (1 - t_1)B) + (1 - \lambda)f(t_2 A + (1 - t_2)B).$$

On the other,

$$g(\lambda t_1 + (1 - \lambda)t_2) = f((\lambda t_1 + (1 - \lambda)t_2)A + (1 - \lambda t_1 + (1 - \lambda)t_2)B)$$

= $f(\lambda(t_1A + (1 - t_1)B) + (1 - \lambda)(t_2A + (1 - t_2)B)).$

Since g is convex we get

$$f(\lambda X + (1 - \lambda)Y) \le \lambda f(X) + (1 - \lambda)f(Y),$$

with $X = t_1A + (1 - t_1)B$ and $Y = t_2A + (1 - t_2)B$. Since the choice of t was arbitrary and this holds for any $A, B \in PD_n(\mathbb{R})$, we conclude that f is convex.

(b) By Proposition (4.5.7), we know that if A is positive definite, then there exits a non-singular matrix S such that $A = S^H S$. Then, $tA + (1-t)B = S^H (tI + (1-t)(S^H)^{-1}BS^{-1})S$, and so

$$g(t) = -\log(\det(tA + (1-t)B)) = -\log(\det(S^H(tI + (1-t)(S^H)^{-1}BS^{-1})S)).$$

By the fact that det(AB) = det(A)det(B) and the properties of logarithms, we obtain

$$\begin{split} -\log(\det(S^H(tI+(1-t)(S^H)^{-1}BS^{-1})S)) &= -\log(\det(S^H)) - \log(\det(tI+(1-t)(S^H)^{-1}BS^{-1})) \\ &- \log(\det(S)) \\ &= -\log(\det(S^H)\det(S)) - \log(\det(tI+(1-t)(S^H)^{-1}BS^{-1})) \\ &= -\log(\det(A)) - \log(\det(tI+(1-t)(S^H)^{-1}BS^{-1})). \end{split}$$

(c)

Since $A, B \in PD_n(\mathbb{R})$, then $B^{-1} \in PD_n(\mathbb{R})$ and $((S^H)^{-1}BS^{-1})^{-1} = SB^{-1}S^H$ is positive definite since

$$x^{H}SB^{-1}S^{H}x = (S^{H}x)^{H}B^{-1}(xS) > 0.$$

Therefore $(S^H)^{-1}BS^{-1}$ is positive definite. Now let $\{\lambda_i\}_i$ be the collection of eigenvalues of $((S^H)^{-1}BS^{-1})$ and $\{x_i\}_i$ the corresponding collection of eigenvectors. Then for every i:

$$(tI + (1-t)(S^H)^{-1}BS^{-1})x_i = tx_i + (1-t)\lambda_i x_i = (t+(1-t)\lambda_i)x_i.$$

Thus, $\{t + (1-t)\lambda_i\}_i$ are the eigenvalues of $(tI + (1-t)(S^H)^{-1}BS^{-1})$ corresponding to the $\{x_i\}_i$, and we can conclude that

$$-\log(\det(A)) - \log(\det(tI + (1-t)(S^H)^{-1}BS^{-1})) = -\log(\det(A)) - \log(\prod_{i=1}^n (t + (1-t)\lambda_i))$$
$$= -\log(\det(A)) - \sum_{i=1}^n \log((t + (1-t)\lambda_i)).$$

(d)

By using the expression of g(t) in part (c) we can see that $g'(t) \sum_{i=1}^{n} (1 - \lambda_i)/(t + (1 - t)\lambda_i)$

and $g''(t) = \sum_{i=1}^{n} (1 - \lambda_i)^2 / (t + (1 - t)\lambda_i)^2$, which is clearly nonnegative for all $t \in [0, 1]$.

Problem 13.

Suppose f(x) < M for all x for some real M and f is convex and not constant. Then, there exist $x, y \in \mathbb{R}^n$ such that $f(x) \neq f(y)$. But then the line between (x, f(x)) and (y, f(y)) intersects $f(\cdot) = M$. Since f must lie on or above this line, at some point it must cross $f(\cdot) = M$ as well, which is a contradiction.

Problem 20.

Take $x, y \in \mathbb{R}^n$, with $x \neq y$, and $\lambda \in [0, 1]$. Since f is convex we have $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$. Since -f is convex, the opposite hold. Therefore we must have $f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$. Therefore f is affine.

Problem 21.

Let $x^* \in \mathbb{R}^n$ be a local minimizer of f. Then $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}_r(x^*)$, where $\mathcal{N}_r(x^*)$ is an open ball around x^* of radius r > 0. Since ϕ is monotonically increasing, $\phi(f(x^*)) \leq \phi(f(x))$ for all $x \in \mathcal{N}_r(x^*)$. Thus, x^* is a local minimizer of $\phi \circ f$. Now let x^* be a local minimizer of $\phi \circ f$. Then $\phi(f(x^*)) \leq \phi(f(x))$ for all $x \in \mathcal{N}_r(x^*)$, and since ϕ is monotonically increasing, this implies that $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}_r(x^*)$. Thus, x^* is a local minimizer of f.