म

Co4b-22/06 C04b-24 C04b-28/04 Coment compsn. for water-tight concrete - has amorphous silicalines contg. discharged fly ash of specified size which is then kneaded with aggregate and water C72-024645 Full Patentees: Shikoku Sogo Kenkyu; Taisei Construction KK Compsn is made by adding a suitable amt. of water reducing agent, fly ash and amorphous silica tines in which the fly ash discharged on kneaded with aggregate and water. USE: Used for water-tight concrete for use at the underground parts. (6pp Dwg.No.0/4)
C92-024645 Full Patentees: Shikoku Sogo Kenkyu; Taisei Construction KK Compsn is made by adding a suitable amt. of water reducing agent, fly ash and amorphous silica fines in which the fly ash discharged on firing coal is up to 20 microns in size. Resulting fly ash is then kneaded with aggregate and water. USE Used for water-tight concrete for use at the underground parts. (6pp Dwg.No.0/4)
Full Patentees: Shikoku Sogo Kenkyu; Taisei Construction KK Compsn is made by adding a suitable amt. of water reducing agent, fly ash and amorphous silica lines in which the fly ash discharged on firing coal is up to 20 microns in size. Resulting fly ash is then kneaded with aggregate and water. USE - Used for water-light concrete for use at the underground parts. (6pp Dwg.No.0/4)
Compsn is made by adding a sultable amt. of water reducing agent, fly ash and amorphous silica fines in which the fly ash discharged on firing coal is up to 20 microns in size. Resulting fly ash is then kneaded with aggregate and water. USE - Used for water-light concrete for use at the underground parts. (6pp Dwg.No.0/4)
firing coal is up to 20 microns in size. Resulting fly ash is then kneaded with aggregate and water. USE · Used for water-light concrete for use at the underground parts. (6pp Dwg.No.0/4)
USE - Used for water-light concrete for use at the underground parts. (6pp Dwg.No.0/4)
-
•

⑩ 公 開 特 許 公 報 (A) 平4-2642

®Int. Cl. ⁵	識別記号	庁内整理番号	❸公開	平成 4 年(1992) 1 月 7 日
C 04 B 28/04 14/02 18/08 20/00 22/06 24/00	C Z B A	2102-4G 2102-4G 2102-4G 2102-4G 2102-4G 2102-4G 2102-4G	未請求	請求項の数 2 (全6頁)

水密性コンクリート用セメント組成物およびその製造方法 60発明の名称

> 願 平2-102233 ②特

@出 願 平2(1990)4月17日

浮 田 和明 香川県高松市上福岡町1077 @発 明 者

香川県綾歌郡綾上町山田下2239-3 @発明者 石川 光 裕 東京都新宿区西新宿1丁目25番1号 大成建設株式会社内

康 弘 山本 ⑫発 明 者 東京都新宿区西新宿1丁目25番1号 大成建設株式会社内 田中 秀 男 @発 明 者

香川県髙松市屋島西町2109番地8 株式会社四国総合研究 の出願人

大成建設株式会社 東京都新宿区西新宿1丁目25番1号 勿出 願 人

弁理士 西脇 民雄 個代 理 人

明細書

1. 発明の名称

水密性コンクリート用セメント組成物およびそ

2. 特許請求の範囲

(1) セメントと非晶質シリカ数粉末とを有する水 密性コンクリート用セメント組成物において、

遺量の滅水剤と、 石炭燃焼時に排出されたフラ イアッシュを、破砕することなく、そのまま20 μm以下の粒径で分級し、 この分級で得られた細 粒分とを抵加したことを特徴とする水密性コンク リート用セメント組成物。

(2) セメントと非晶質シリカ散粉末とを有する水 密性コンクリート用セメント組成物に、適量の拡 水剤とフライアッシュとを添加し、 放フライアッ シュは石炭燃焼時に排出されたフライアッシュを、 破砕することなく、そのまま20μm以下の粒径 で分級し、この分級で得られた細粒分とし、これ らと骨材および水とを混練することを特徴とする 水密性コングリート用セメント組成物の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

この発明は、例えば地下部等に用いる。 水密性 コンクリート用セメント組成物およびその製造方 妊に関するものである.

(従来の技術)

コンクリートの水密性を高めるために、 セメン ト等のコンクリート材料として、 シリカフューム 等の非品質シリカ数粉末を添加することが行なわ れている.

これによれば、 非晶質シリカはセメントの水和 からのアルカリ性条件の下で、混錬水を取り込み、 ゲルを形成することにより、 コンクリート中の傲 細空隙を充塡し、 コンクリートの水密性が高めら

(発明が解決しようとする謀題)

ところで、このような非晶質シリカ数粉末は、 数粉末であるのでコンクリート中に形成される間 放を充填することができるものであるが、 同時に 数粉末であることにより凝集しやすいものである。 そのため、セメント粒子や骨材等の間に形成された間隙に均一に分散して充壌するようにこれらの非晶質シリカ散粉末を混錬することは困難な作業であり、結果として呈される。この種のセメント組成物による水密性能は十分なものではない。

本類は、このような事情に鑑みてなされたもので、 本類の第1の発明はこの種の非晶質シリカ徴粉末を有する水密性コンクリートの水密性能を高めるとともに、良好な混練を容易に行なうことのできる水密性コンクリート用セメント組成物を提供することを目的とする。

また、本願の第2の発明は、良好な水密性能を 有するかかる水密性コンクリート用セメント組成 物を容易に製造することのできる製造方法を提供 することを目的とするものである。

(課題を解決するための手段)

これらの目的を達成するために、本額の第1の 発明は、セメントと非晶質シリカ酸粉末とを有す る水密性コンクリート用セメント組成物において、 適量の減水剤と、石炭燃焼時に排出されたフラ イアッシュを、破砕することなく、 そのまま 2 0 μm以下の粒径で分級し、この分級で得られた細粒分とを添加したものである。

また、本願の第2の発明は、セメントと非晶質シリカ 散粉末とを有する水密性コンクリート用セメント組成物に、適量の減水剤とフライアッシュとを添加し、酸フライアッシュは石炭燃焼時に排出されたフライアッシュを、破砕することなく、そのまま20μm以下の粒径で分級し、この分級で得られた細粒分とし、これらと骨材および水とを混練するものである。

(作用)

本類の第1の発明によれば、破砕することなく
20μm以下の粒径で分級されたフライアッシュが、
非晶質シリカ酸粉末を有する水密性コンクリート
用セメント組成物に添加されているので、セメント粒子の間に形成された間隙内には、前記フライアッシュ粒子が位置し、このフライアッシュ粒子
同士の間やフライアッシュ粒子とセメント粒子と
の間の間隙に、前記非晶質シリカ散粉末が位置す

ることとなる。

このように分級フライアッシュが抵加されていることによって、 非品質シリカ微粉末の充填されるべき間隙寸法が小さくなり、 非品質シリカ微粉末の凝集が空間的に抑制される.

そして、このセメント組成物には適量の減水剤が添加されているので、前記非品質シリカ酸粉末の凝集が軽減し、前記非品質シリカ酸粉末を前記の小さな間隙に良好に分散して充塡することができる。

したがって、 セメント組成物の粒子の間隙が小さく、 かつこの間隙には非晶質シリカ酸粉末が確実に充填されるので、 水密性能が改善される。

また、前記のようにきわめて粒径の小さい非晶質シリカ散粉末の凝集のおそれが少なく、 非品質シリカ散粉末の使用量も少ないので、 良好な混練を容易に行なうことができる。

さらに、本願の第2の発明によれば、かかるセ メント等の混合物に所要の作材と水とを添加して、 単に混練することによって、 きわめて水密性の高 いコンクリートを確実に得ることができ、 水密性 コンクリート用セメント組成物の製造が容易である。

(実施例)

以下、実施例を説明する。

この実施例の水密性コンクリート用セメント組成物は、セメントと、非晶質シリカ微粉末と、減水剤と、フライアッシュとからなる混合物に所要の骨材と水とを添加して混練したものである。

以下の実施例において、 セメントは普通のポルトランドセメントであって、 平均粒径はおよそ35~40μmである。

非品質シリカ酸粉末としては、シリカフュームであって、平均粒径はおよそ0.1~0.3μmである。なお、かかる粒径のシリカフュームを顆粒状に形成したものを用いても良く、またシリカフュームに限らずその他の非品質シリカ材料の微粉末を用いてもよい。

滅水剤としては、いわゆる高性能滅水剤であってアニオン系界面活性剤であるが、普通の滅水剤

を用いることとしてもよい。

フライアッシュは、石炭燃焼時に排出されたフライアッシュを、破砕することなく、そのまま20 μmの粒径で分級し、この分級で得られた細粒分 である(以下、分級フライアッシュという)。

この分級フライアッシュの粒子のほとんどは、 小さな球形をなしており、 そのブレーン値は5500 cm^2/gr 、 平均粒径はおよそ 7.5μ mである。

なお、この分級フライアッシュの分級すべき粒 径は前記20μmに限らず、 20μm以下であれば適 宜設定してもよい。

これらの材料を用いて、 これらの混合物に適宜 の組骨材。 租骨材および水を添加して混練し、 硬 化させることにより、 図面に示すごとを組織のコ ンクリートが形成される。

図面において、 1 はセメント粒子、 2 は分級フライアッシュ粒子、 3 はシリカフュームであり、 4 は細骨材である。

このコンクリート組織は、 前記のように各材料 の粒径が設定されているので、 基本的には、 大き な粒子である組骨材 4 等の骨材とセメント粒子 1 との間の間隙 S 1 内に、つぎに粒径の大きな分級フライアッシュ粒子 2 が配置され、最も粒径の小さいシリカフューム 3 は、これらの組骨材 4。セメント粒子 1 および分級フライアッシュ粒子 2 との間に形成された小さな間隙 S 2 内に充填された組織となる。

前記のセメント等の材料からなる混合物について、 後述の各種の配合を設定し、 これらの配合ごとに適量の租骨材。 細骨材および水を抵加して混練することによりそれぞれコンクリートを形成し、それぞれのコンクリートについて物性を測定した。 その測定結果は、 表、 1 および表、 2 のとおりである。

(以下余白)

表. 1

試料番号	1	2	3	4			
セメント組成物 (重量%)							
セメント	100	90	90	90			
分級 P/A	•	10	10	10			
非品質シリカ	1	_	3	3			
コンクリート紙要							
券盤たメント)	325	325	325	325			
高性能被水剂	-	-	-	使用			
W/セメント分(%)	52.6	50.6	50.8	49.0			
S/A (%)	46.9	46.9	46.9	46.9			
スランブ (cm)	18.5	18.3	18.2	18.0			
空気量(%)	4.0	3.5	3.2	3.8			
圧縮強度(kg/cm)							
材令7日	233	231	232	250			
材令 28日	367	350	361	408			
透水率 (%)							
2.4時間	1.02	0.74	0.34	0.27			
72時間	1.63	1.17	0.51	0.56			
中性化深さ(cm)	0.8	0.8	0.6	0.5			

费. 2

	6	7	8					
		<u></u> 1						
セメント組成物 (重量%)								
80	80	80	70					
20	20	20	30					
3	6	8	3					
コンクリート概要								
325	325	325	325					
使用	使用	使用	使用					
48.6	48.8	48.2	48.0					
46.9	46.9	46.9	46.9					
18.5	17.8	18.0	18.2					
3.5	2.9	2.9	3.8					
)								
232	228	213	199					
405	411	415	390					
0.27	0.17	0.18	0.17					
0.46	0.50	0.48	0.23					
0.6	0.4	0.4	0.6					
	80 20 3 3 使用 48.6 46.9 18.5 3.5	重量%) 80 80 20 20 3 6 325 325 使用 使用 48.6 48.8 46.9 46.9 18.5 17.8 3.5 2.9 232 228 405 411 0.27 0.17 0.46 0.50	重量%) 80 80 80 80 20 20 20 3 6 8 325 325 325 使用 使用 使用 48.6 48.8 48.2 46.9 46.9 46.9 18.5 17.8 18.0 3.5 2.9 2.9 232 228 213 405 411 415 0.27 0.17 0.18 0.46 0.50 0.48					

これらの表において、分級 F/Aは分級フライアッシュを意味し、試料番号 4 ~ 8 は本発明にかかる 実施例であり、試料番号 1 ~ 3 は比較例である。

また、本額の解決すべき課題であるコンクリートの水密性に関する各配合の性能の判断は、 透水 率試験と中性化促進試験とにより行なうこととした。

なお、前記透水率試験は、JIS A 1404に準じて行い。加圧透水試験器を使用して、15kg/cm²の水圧で24時間。72時間の透水試験を実施し、その結果を容積%で表示した。また、中性化促進試験は、36℃、炭酸ガス濃度5%、湿度70%の条件下で3カ月間養生したときの中性化深さを測定し、衷示した。

表. 1 および衷. 2 に示す結果から、これらのコンクリートの水密性能については以下の事柄を 読みとることができる。

(1) 試料番号 3 および 4 と試料番号 1 および 2 との比較において、試料番号 3 および 4 はいずれも 透水率および中性化深さの両方で優っており、シ リカフュームの添加により良好な水密性能を呈し

(4) 試料番号8は、試料番号5の配合を基準として、分級フライアッシュとセメントとの割合につき分級フライアッシュの割合を増加させたもので、 極めて優れた透水率が測定され極めて良好な水密性を有する。

これらの測定結果から、この実施例の場合においては、セメントを分級フライアッシュで内割10~30重量%だけ置換し、これに外割で非品質シリカ 微粉末を3~6重量%添加するとともに、 滅水剤あるい は高性能滅水剤を添加して混練することによって、 高水密性のコンクリートを安定的に得ることができる。

コンクリートの水密性能についてかかる結果が得られた理由としては、水密性コンクリート用セメント組成物の前記の各材料が、各実施例において それぞれ以下のように機能したことによるものと考えられる(以下、図面参照)。

① 分級フライアッシュの機能および効果

分級フライアッシュは、粒子形状が小径の球形 に揃っているので、セメント粒子の間の間な S , に ているものと考えられる。

そして、試料番号3と4との間では、高性能滅水剤の有無のみが相違するものであり、コンクリートの水密性能の点ではほぼ回等である。

しかしながら、試料番号3の作成の際の混雑作業が比較的困難であったことから、 高性能減水剤を使用することが工業的には現実的である。

(2) 試料番号 4 と 5 の比較においては、分級フライアッシュとセメントの割合のみが相違し、その他は基本的に同一である。

コンクリートの水密性能の点では、ほぼ同様であるが、72時間での透水率において試料番号5が優れており、長期にわたる水密性能が求められるコンクリートとしては試料番号5がより好ましいと考えられる。

(3) 試料番号5~7は、非晶質シリカ酸粉束の抵加量のみが相違するものであって、透水率および中性化深さの点からみて、非晶質シリカ酸粉末の抵加量が6%以上であれば、各コンクリートは同等の水密性能を有するものと考えられる。

転がり込んで充塡されやすい。

分級フライアッシュが、 セメント粒子間の間放 S I に入ることにより、 ここに存在した水分は押し 出され、 起練水として機能するので、 コンクリー トの単位水量を低減させることができる。

フライアッシュは、アルカリ条件下で、セメントのカルシウムシリケート分と中和することによって、トバモライトゲルが生成され、コンクリートの水密性を向上させるとともに、強成を増進する。

また、分級フライアッシュを用いることによって、セメント粒子1間の間はSiに分級フライアッシュシュ粒子2を位置させ、その分級フライアッシュ粒子2により形成された酸小な間はSzをシリカフューム3が充填するので、シリカフューム3の模集が空間的に抑制される。

そして、分級フライアッシュを用いない場合と 比べて、高価なシリカフューム3の使用量をおよ そ数分の1程度に低級することができ、混錬作業 の作業性が良好となる。

② シリカフュームの機能および効果

非晶質シリカ数粉束であるシリカフューム3を 併用することによって、セメント粒子1および分 級フライアッシュ粒子2等との間に形成される数 小な間隙 S 2にシリカフューム3を充填させるので、 この間隙 S 2に存在した水分が追い出され、その分、 被水効果も得られる。

また、微小な間隙 S 2 にシリカフューム 3 が充填 され硬化するので、コンクリートの組織を設密化 し、水密性および強度が一層高められる。

そして、かかるシリカフューム3は、表面積が 大きく、水との反応性が高いので、水密性および 独産の発現は迅速に行なわれる。

③ 高性能滅水剤の機能および効果

高性能域水剤を用いているので、非晶質シリカ 微粉末であるシリカフューム3の凝集を抑制し、 前記のような微小な間隙S₂に充填することが容易 となり混練作築性が向上する。

施工厚さが30cm以上となるコンクリートに水密

以上説明したように、本願の第1の発明によれば、破砕することなく20μm以下の粒径で分級されたフライアッシュが、非晶質シリカ散粉末を有する水密性コンクリート用セメント組成物に添加されているので、セメント粒子の間に形成された間隙内には、前記フライアッシュ粒子が位置し、このフライアッシュ粒子同士の間やフライアッシュ粒子とセメント粒子との間の間隙に、前記非晶質シリカ散粉末が位置することとなる。

このように分級フライアッシュが抵加されていることによって、 非品質シリカ数粉末の充填される べき間隙 寸法が小さくなり、 非品質シリカ数粉末の凝集が空間的に抑制される。

そして、このセメント組成物には適量の減水剤が低加されているので、前記非品質シリカ微粉末の凝集が軽減し、前記非品質シリカ微粉末を前記の小さな間隙に良好に分散して充壌することができる。

したがって、 セメント組成物の粒子の間隙が小さく、 かつこの間隙には非晶質シリカ微粉末が確

性を付与する場合、 セメントの水和熱がコンクリートの内部に替積されて、 熱歪によってコンクリートにひび割れを生じ、 このひび割れによってコンクリートの水密性が破壊されることがある。

しかし、本発明によれば、 分級フライアッシュ を添加しているので、 セメントの使用量が少なく 発生熱量が少ない。

また、熱源となるセメント粒子1が分級フライアッシュ粒子2の存在によって分散して配置され、セメントの局部的な偏在による高温部分の形成が抑制されるので、熱歪によるひび割れの発生を軽減することができる利点がある。

このようなセメント等の混合物を用いて水密性コンクリート用セメント組成物を製造する場合、前述の混合物に所要の骨材や水を添加し、 通常の場合と同様に単に混練することによってきわめて水密性の高いコンクリートを確実に得ることができるので、 水密性コンクリート用セメント組成物の製造が容易である。

(発明の効果)

実に充填されるので、水密性能が改善される。

また、前記のようにきわめて粒径の小さい非晶質シリカ微粉末の凝集のおそれが少なく、 非晶質シリカ微粉末の使用量も少ないので、 良好な混練を容易に行なうことができる。

さらに、本顧の第2の発明によれば、かかるセメント等の混合物に所要の骨材と水とを添加して、単に混練することによって、 きわめて水密性の高いコンクリートを確実に得ることができ、 水密性コンクリート用セメント組成物の製造が容易である。

4. 図面の簡単な説明

図面は、実施例のコンクリート組織の模型図で ある。

1: セメント粒子、 2: 分級フライアッシュ粒子、
 3: シリカフューム (非晶質シリカ微粉末)、
 4: 組合材、

出願人 株式会社 四国総合研究所 同 大成建設 株式会社 代理人 弁理士 西 脇 民 雄

図面の浄書(内容に変更なし)

面 図

1;也从松子

2;分級フライアッシュ粒子

3;シリカフューム 4;細骨材

手統補正 (自発)

特許庁長官 殿

平成2年8月30日

1. 事件の表示 平成2年特許顯第102233号

2. 発明の名称 水密性コンクリート用セメント組成物および その製造方法

3. 補正をする者

事件との関係 人類 出

名 称 株式会社四国総合研究所(他1名)

〒135 電話 03-820-1811 住 所 東京都江東区門前仲町1-14-3

オフィス・プラネット6階

氏名 (8267) 弁理士 西 脇 民 雄

5. 補正の対象

図面

変更なし)

6. 補正の内容 図面の浄書・別紙の通り補正する(内容に