Intégration de données :

Mise en pratique sur Talend Open Studio

Mourad Ouziri

Mourad.Ouziri@ParisDescartes.fr

Maître de conférences à l'Université Paris Descartes Formateur indépendant

Programme

- 1. Intégration de données : qu'est ce que c'est ? pourquoi ?
- 2. Architectures d'intégration de données
- 3. Mises en pratique sur Talend Open Studio en modes :
 - 1. ETL: Extract-Transform-Load (1 jour)
 - 2. ELT sur un SGBD et la programmation de procédures stockées (1/2 jour)
 - 3. ELT sur Hadoop : mise en œuvre sur HDFS, Hive, Pig et HBase (2,5 jour)

Intégration de données Définition

Processus de fusion, de rapprochement, de croisement et de consolidation de données issues de multiples sources de données

Intégration de données Objectif

Objectif technique : interroger plusieurs sources de données hétérogènes via une interface unique

Intégration de données Objectif qualité

- © Objectif métier : collecter des données riches/complètes et fiables !
- © Comment ? Exploiter tous les canaux (sources de données) possibles
 - Données internes à l'entreprise : bases commerciales, sites Web, centres d'appels
 - Données externes : données des partenaires, des collaborateurs, de l'Open Data
- Caractéristiques des données
 - Proviennent de multiples sources hétérogènes
 - Duplication des entités du monde réel (selon différentes facettes) sous différents identifiants
 - Décrites avec différentes terminologies : Client/Customer, France/FR
 - Conflits/divergence de données : possibles violations de règles de gestion

Intégration de données Un étape importante de la chaine décisionnelle

Intégration de données Meilleure prise de décision

En assurance habitation : meilleure connaissance du client (et de ses biens) pour une tarification plus juste, personnalisation des services, etc.

Intégration de données Meilleure prise de décision

Pour la santé:

- Un meilleur diagnostic médical : par l'obtention des antécédents médicaux du patient, des informations sociétales, environnementales, etc.
- Préserver la santé du patient : ne pas ré-administrer les mêmes médicaments (à effets secondaires), ne pas refaire les radiologies/scanners (à rayons X!), etc.
- Economies des examens médicaux déjà réalisés

En marketing:

 Meilleure connaissance du client et de ses besoins : mieux cibler, mieux fidéliser, réduire les coûts des opérations de marketing, etc.

Intégration de données

Enrichissement de données

Incomplétude des données internes

Apj	Source externe Appartements de Paris				
	•	Aire m2	nb- occupants		
a	1	70	3		
a	5	20	1		

Evaluation de requêtes

Id	Adresse	Туре
a1	Paris	T2

Intégration de données

Enrichissement de données

Hétérogénéité structurelle des données

Source externe

<appartements>

<appart num="a1">

<aire>70</aire>

<nb-occ>3</nb-occ>

<cp>75011</cp>

</appart>

<appart num="a2">

<aire>20</aire>

<nb-occ>1</nb-occ>

</appart>

</appartements>

Base interne

Evaluation de requêtes

Info sur les appartements de Paris?

Id	Adresse	Туре
a1	Paris	T2

Intégration de données

Enrichissement de données

Duplication des entités du monde réel

Clients

Id tél a-maison

cc10 06.20 m1

cc20 01.50

Tout savoir sur le client c1?

Evaluation de requêtes

Résultats	Id	tél	a-voiture
	c1	06.20	v1

Incomplet! 11

Qualité de données

Enrichissement par les méthodes statistiques (non traitées!)

Imputation de données manquantes

Base de données Clients						
	Id	adresse	employeur	est-proprio-de	revenus	
	c1	paris	e2	???	36k	
	c2	???	e2	appart	60k	
	c3	dpt 75	e2	???	40k	
	c4	paris	e2	maison	42k	

Quelques méthodes :

Knn (kppv), Régression, Inférence bayesienne, Gradient, etc.

La qualité de l'approximation dépend de la richesse des données!

Qualité de données

Enrichissement par les méthodes statistiques (non traitées!)

Améliorer la fiabilité des modèles prédictifs

			Base de d	onnées	
	Id	adresse	employeur	type-hab	revenus
	c1	paris	e2	appart	36k
	c2	paris	e2	appart	60k
	c3	paris	e2	appart	40k
	c4	paris	e2	maison	42k
	c 5	lyon	e1	maison	42k
_					

Règle d'association:

(adresse="paris", employeur="e2") → type-hab="appart"

support (indicateur de fiabilité) = 4 (ou 80% en relatif)

Architectures d'intégration de données Intégration matérialisée

© M. Ouziri

Architectures d'intégration de données Intégration virtuelle

© M. Ouziri

Outils d'intégration de données : ETL

© ETL pour Extract, Tansform, Load

- Extract : récupération de données à partir de sources hétérogènes (fichiers textes, bases de données, services web, etc.)
- Transform : traitements de données (conversion de types et formats, de valeurs, nettoyage de données, agrégations, jointures, etc.)
- Load : insérer les données dans les sources cibles (datawarehouse, data lake, etc.)

Intégration de données dans le Big Data Limites du processus ETL

Elimites du mode ETL : problèmes de performances pour le traitement de gros volumes de données

- Exemple
 - Mise à jour d'une base de données avec des données issues d'un fichier externe!

Intégration de données dans le Big Data : le processus ELT

- ELT: Extract, Load, Transform
 - Mêmes objectifs que l'ETL, mais la manière diffère!
 - Pousse les traitements (T de ELT) vers les données (philosophie de Hadoop!)
 - Les traitements sont ainsi réalisés par le système cible hébergeant les données
 (SGBD, ERP, Hadoop, CRM, etc.)
 - Par conséquent, les traitements sont écrits dans le langage cible (SQL, PL/SQL, Hive, Pig, MapReduce, Spark, etc.)

https://www.talend.com

- Talend est un ETL/ELT open source de type générateur de code (Java)
- Produit de la société Telend créée en 2006 à Suresnes
- Talend offre une palette de composants graphiques de lecture/ extraction, traitement/transformation et écriture/chargement de données
- Il dispose d'un éditeur graphique (basé sur Eclipse RCP) permettant de concevoir des processus (Job) d'intégration de données complets
- Il offre des composants permettant d'écrire du code Java et d'autres pour le chargement de package Java externes

© M. Ouziri

Plusieurs éditions adaptées

Composants graphiques

- Lecture de données (E)
 - Fichiers: tFileInputDelimited, tFileInputExcel, tFileInputXML,...
 - Bases de données : tMySQLInput, tMyOracleInput, tMongoDBInput,...
 - Services Web: tREST, tSOAP, etc.
- Traitement et transformation de données (T)
 - tMap: transformation, jointure, filtre.
 - tSortRow, tFilterRow, tUniqRow: tri, filtre, déduplication
 - tNormalize et tDenormalize : normaliser les données tabulaires
- Ecriture de données (L)
 - Fichiers: tFileOutputDelimited, tFileOututExcel...
 - Bases de données : tMySQLOutput, tMongoDBOutput,...

Composants graphiques

- Visualiser des résultats temporaires pour débogage
 - tLogRow : afficher les résultats sur la sortie standard de Talend
- Assemblage des composants : deux types de liens
 - Par transmissions de données (row)
 - Par évènement (trigger) : composant ok/error, Iterate
- Les matrices de données sont traitées sous forme de flux
 - Chaque ligne est traitée dans une itération
 - tAggregateRow permet de faire l'agrégation de plusieurs lignes

Mise en pratique sur Talend Open Studio for Big Data!