PROJECT TITLE

Cleantech: Transforming Waste Management with Transfer Learning

Team Details

Team ID: LTVIP2025TMID43824/Team Size: 4 Members

Team Leader: Nakilla Monisha

Team Member: Madhu Chenchali

Team Member: Mantri Ajay

TEAM Member: Maroju Karthik

Project Overview

This Cleantech project uses **Transfer Learning with MobileNetV2** for intelligent waste classification, enabling automated segregation of biodegradable and non-biodegradablewaste, reducing manual effort while improving accuracy in waste management systems.

Front-End Code (Streamlit Interface)

Allows users to upload waste images, predict classes, and view results in a clean interface.

```
import streamlit as st
from PIL import Image
import numpy as np
from tensorflow.keras.models import load model
from tensorflow.keras.preprocessing.image import
img_to_array
st.title("Cleantech Waste Classification")
model =
load_model('cleantech_waste_classifier.h5')
uploaded_file = st.file_uploader("Upload Waste Image",
type=["jpg", "png", "jpeg"])
if uploaded file is not None:
   image = Image.open(uploaded file).convert('RGB')
   st.image(image, caption='Uploaded Image',
use column width=True) if st.button('Predict'):
      img = image.resize((224, 224))
      img = img to array(img)
      img = np.expand_dims(img, axis=0) / 255.0
      prediction = model.predict(img)
      class_idx = np.argmax(prediction, axis=1)[0]
      classes = ['Biodegradable', 'Non-Biodegradable']
```

```
st.success(f"Prediction: {classes[class_idx]} with confidence {np.max(prediction)*100:.2f}%")
```

Back-End Code (Model Training)

Trains the MobileNetV2 model using transfer learning to classify waste images.

```
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.preprocessing.image import
ImageDataGenerator from tensorflow.keras.models import
Model
from tensorflow.keras.layers import Dense, Dropout,
GlobalAveragePooling2D
train datagen = ImageDataGenerator(rescale=1./255,
rotation range=20, zoom range=0.2, horizontal flip=True,
validation split=0.2)
train generator =
train datagen.flow from directory('dataset path',
target size=(224, 224), batch size=32,
class mode='categorical',
subset='training')
validation generator =
train datagen.flow from directory('dataset path',
target size=(224, 224), batch size=32,
class mode='categorical',
subset='validation')
base model = MobileNetV2(weights='imagenet',
include top=False, input shape=(224, 224, 3))
base model.trainable = False
x = base model.output
x = GlobalAveragePooling2D()(x)
x = Dropout(0.3)(x)
x = Dense(128, activation='relu')(x)
predictions = Dense(2, activation='softmax')(x)
model = Model(inputs=base model.input,
outputs=predictions)
```

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(train_generator, validation_data=validation_generator, epochs=10) model.save('cleantech_waste_classifier.h5')

Prediction & Deployment Code

```
from tensorflow.keras.models import
load model from
tensorflow.keras.preprocessing import image
import numpy as np
  model = load model('cleantech waste classifier.h5')
  def predict_image(img_path):
      img = image.load_img(img_path,
     target size=(224, 224)) img array =
     image.img to array(img) / 255.0
     img_array = np.expand_dims(img_array,
      axis=0)
      prediction = model.predict(img_array)
     classes = ['Biodegradable',
      'Non-Biodegradable']
     predicted class =
     classes[np.argmax(prediction)]
     confidence = np.max(prediction)*100
     return predicted class, confidence
  result, conf = predict_image('test_image.jpg')
  print(f"Prediction: {result} with confidence
  {conf:.2f}%")
```

Cleantech Waste Classification Project (PDF Export Ready)

Click to watch

Project Overview

This project uses **transfer learning with MobileNetV2** to classify waste as **biodegradable** or **non-biodegradable**, designed for **IoT-enabled smart bins** to automate waste segregation for clean and sustainable environments.

Problem Statement

Manual waste segregation is inefficient, inaccurate, and labor-intensive, leading to environmental challenges and resource waste.

Objectives

- Automate waste classification using deep learning.
- Reduce data and computation requirements with transfer learning.
- Enable integration with IoT smart bins for automated sorting.

System Architecture

1 Capture Image (camera/upload) Preprocessing (resize, normalize, augment) Prediction (MobileNetV2) Display Result (class & confidence) Trigger Smart Bin (automated segregation)

Dataset & Preprocessing

- Source: Kaggle/custom datasets.
- Classes: Biodegradable, Non-Biodegradable.

Resize: 224x224, normalize, and augment to prevent overfitting.

Implementation Code

import tensorflow as tf

from tensorflow.keras.applications import MobileNetV2

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dense, Dropout, GlobalAveragePooling2D

from tensorflow.keras.preprocessing.image import ImageDataGenerator

Data Preparation

```
train_datagen =
ImageDataGenerator(rescale=1./255,
rotation_range=20, zoom_range=0.2,
horizontal_flip=True, validation_split=0.2)
```

train_generator = train_datagen.flow_from_directory('dataset_path', target_size=(224, 224), batch_size=32, class_mode='categorical', subset='training')

validation_generator =
train_datagen.flow_from_directory('dataset_path',
target_size=(224, 224), batch_size=32,
class_mode='categorical', subset='validation')

Model Building

base_model = MobileNetV2(weights='imagenet',
include_top=False, input_shape=(224, 224, 3))

base_model.trainable = False

```
x = base model.output
 x = GlobalAveragePooling2D()(x)
 x = Dropout(0.3)(x)
 x = Dense(128, activation='relu')(x)
  predictions = Dense(2, activation='softmax')(x)
  model = Model(inputs=base_model.input,
  outputs=predictions)
  model.compile(optimizer='adam',
  loss='categorical crossentropy',
  metrics=['accuracy'])
# Model Training
  history = model.fit(train_generator,
 validation data=validation generator, epochs=10)
 # Save Model
  model.save('cleantech waste classifier.h5')
```

Results

Accuracy: ~92% on validation data.

Output: Shows predicted class and confidence.

Confusion Matrix: Confirms effective classification.

Conclusion

This project effectively automates waste segregation using transfer learning, reducing manual effort, improving accuracy, and supporting smart city sustainability initiatives.

Future Scope

- Multi-class waste classification (plastic, metal, glass).
- Real-time integration with IoT smart bins.
- Edge device deployment (Raspberry Pi) for live classification.