DL4CV - Assignment 1

Itai Antebi 204817498

April 3, 2021

1. \

$$h_{\theta}\left(x_{i}\right) = \sum_{j=1}^{N} \theta_{j} x_{ij}$$

$$L = \frac{1}{2M} \sum_{i=1}^{M} (h_{\theta}(x_i) - y_i)^2 = \frac{1}{2M} \sum_{i=1}^{M} \left(\sum_{j=1}^{N} \theta_j x_{ij} - y_i \right)^2$$

First Derivitive:

$$\begin{split} \frac{\partial L}{\partial \theta_k} &= \frac{1}{2M} \sum_{i=1}^M 2 \left(\sum_{j=1}^N \theta_j x_{ij} - y_i \right) x_{ik} \\ &= \frac{1}{M} \sum_{i=1}^M \left(\sum_{j=1}^N \theta_j x_{ij} - y_i \right) x_{ik} \\ &= \frac{1}{M} \sum_{i=1}^M \left(\langle \theta, x_i \rangle - y_i \right) x_{ik} \\ &= \frac{1}{M} \left\langle \begin{pmatrix} \langle \theta, x_1 \rangle - y_1 \\ \vdots \\ \langle \theta, x_M \rangle - y_M \end{pmatrix}, \begin{pmatrix} x_{1k} \\ \vdots \\ x_{Mk} \end{pmatrix} \right\rangle \\ &= \frac{1}{M} \left\langle X \theta - y, (X^T)_k \right\rangle \\ &= \frac{1}{M} \left\langle (X^T)_k, X \theta - y \right\rangle \end{split}$$

The last equation is correct because the vectors $(X^T)_k$ and $X\theta - y$ are $\in \mathbb{R}^M$ (and not $\in \mathbb{C}^M$).

$$\nabla L = \frac{1}{M} X^T \left(X\theta - y \right)$$

Second Derivitive:

$$\begin{split} \frac{\partial^2 L}{\partial \theta_{k_1} \partial \theta_{k_2}} &= \frac{\partial}{\partial \theta_{k_2}} \left(\frac{\partial L}{\partial \theta_{k_1}} \right) \\ &= \frac{\partial}{\partial \theta_{k_2}} \left(\frac{1}{M} \sum_{i=1}^M \left(\sum_{j=1}^N \theta_j x_{ij} - y_i \right) x_{ik_1} \right) \\ &= \frac{1}{M} \sum_{i=1}^M \frac{\partial}{\partial \theta_{k_2}} \left(\left(\sum_{j=1}^N \theta_j x_{ij} - y_i \right) x_{ik_1} \right) \\ &= \frac{1}{M} \sum_{i=1}^M \left(x_{ik_2} x_{ik_1} \right) \end{split}$$

In other terms:

$$\nabla^{2}L_{i,j} = \frac{\partial^{2}L}{\partial\theta_{i}\partial\theta_{j}} = \frac{1}{M} \sum_{k=1}^{M} (x_{ki}x_{kj}) = \frac{1}{M} \left\langle \left(X^{T}\right)_{i}, \left(X^{T}\right)_{j} \right\rangle$$
$$\nabla^{2}L = \frac{1}{M} X^{T} X$$

Convexity:

$$\forall v \neq 0 \ \left\langle \left(\nabla^2 L \right) v, v \right\rangle = \left\langle \left(\frac{1}{M} X^T X \right) v, v \right\rangle$$

$$= \frac{1}{M} \left\langle \left(X^T X \right) v, v \right\rangle$$

$$= \frac{1}{M} \left\langle X^T \left(X v \right), v \right\rangle$$

$$= \frac{1}{M} \left\langle X v, X v \right\rangle$$

$$= \frac{1}{M} \left| X v \right|^2 \ge 0$$

We have proven that $\nabla^2 L$ is positive semi-definite, and therefore L is a convex function of θ .

Main proof:

$$\begin{split} \theta \text{ minimizes } L &\iff \nabla L\left(\theta\right) = 0 \\ &\iff \frac{1}{M} X^T \left(X\theta - y\right) = 0 \\ &\iff X^T \left(X\theta - y\right) = 0 \\ &\iff X^T X \theta = X^T \theta \end{split}$$

The first \iff stems from the fact that L is a convex function.

So, we have proven that θ minimizes $L \iff X^T X \theta = X^T \theta$. Note that the question only required proofing the \Rightarrow statement, but the converse direction is required for question 2.

2. Sentence: $A \in \mathbb{R}^{M \times N} \Rightarrow rank(A) = rank(A^T A)$. Prove:

$$x \in N_A \Rightarrow Ax = 0 \Rightarrow A^T Ax = A^T 0 = 0 \Rightarrow x \in N_{A^T A}$$

$$N_A \subseteq N_{A^T A}$$

$$x \in N_{A^T A} \Rightarrow A^T Ax = 0 \Rightarrow x^T A^T Ax = 0 \Rightarrow (Ax)^T Ax = 0$$

$$v = Ax \Rightarrow v^T v = 0 \Rightarrow \langle v, v \rangle = 0 \Rightarrow v = 0 \Rightarrow Ax = 0 \Rightarrow x \in N_A$$

$$N_{A^T A} \subseteq N_A$$

$$N_A = N_{A^T A} \Rightarrow \dim(N_A) = \dim(N_{A^T A})$$

from the conservation of dimensions we get:

$$N = dim(N_A) + rank(A) \Rightarrow rank(A) = N - dim(N_A)$$

$$N = dim(N_{A^T A}) + rank(A^T A) \Rightarrow rank(A^T A) = N - dim(N_{A^T A})$$

$$rank(A) = rank(A^T A)$$

Main proof:

 $X \in R^{\bar{M} \times N} \text{ for } M \ge N.$

We shall prove both directions:

(a) \Rightarrow Let us assume X has full column rank: rank(X) = N. Thus, from the sentence we have just proven, $rank(X^TX) = N$. Note that $X^TX \in R^{N \times N}$ and is full rank, therefore X^TX is invertible.

From our prove in question 1, any solution must suffice $X^TX\theta = X^Ty$.

Since X^TX is invertible, we know that there could be only is a single unique solution $\theta = (X^TX)^{-1}X^Ty$.

So, we have proven that \hat{X} has full column rank \Rightarrow there exists a unique solution to the linear regression.

(b) \Leftarrow Let us assume there is a unique solution to the linear regression. We shall assume towards contradiction that X is not full column rank $(rank\ (X) < N)$.

Therefore, from the conservation of dimentions we know that $dim(N_X) = N - rank(X) > 0 \Rightarrow \exists v \neq 0 \text{ s.t. } Xv = 0.$

Since we assumed there exists a unique solution - let us denote it θ_1 .

From question 1 we know that $X^TX\theta_1=X^Ty$ If we were to observe $\theta_2=\theta_1+v$ we can notice that

$$X^{T}X\theta_{2} = X^{T}X(\theta_{1} + v)$$

$$= X^{T}X\theta_{1} + X^{T}Xv$$

$$= X^{T}X\theta_{1} + 0$$

$$= X^{T}X\theta_{1} = X^{T}y$$

Again, from question 1, we know that θ_2 is also a solution because it

satisfies $X^TX\theta_2 = X^Ty$. Since $v \neq 0$ we know that $\theta_2 \neq \theta_1$ and this is contradiction to the fact that there is a unique solution to the linear regression.

Thus, we know that our assumption is incorrect and X is indeed full column rank (rank(X) = N).

So, we have proven that if there exists a unique solution to the linear regression $\Rightarrow X$ has full column rank.

So, we have proven that X has full column rank \iff there exists a unique solution to the linear regression, as requested.