Topología I. Convocatoria ordinaria Doble grado en Ingeniería Informática y Matemáticas 25 de enero de 2023

1.– En \mathbb{R} se considera la familia de subconjuntos:

$$\mathcal{B} = \{(-\infty, a] : a \in \mathbb{R}\}.$$

- a) Demostrar que existe una única topología T en \mathbb{R} tal que \mathcal{B} es base de (\mathbb{R}, T) . Analizar si $T_u \subset T$ o $T \subset T_u$.
- b) En (\mathbb{R}, T) calcular el interior de $(-\infty, -2) \cup (0, +\infty)$ y la clausura de $\{x\}, x \in \mathbb{R}$.
- c) Estudiar si la aplicación $f:(\mathbb{R},T)\to(\mathbb{R},T)$ dada por f(x)=|x| es continua o abierta.
- d) Estudiar si la aplicación $f:(\mathbb{R},T)\to(\mathbb{R},T)$ dada por f(x)=|x| es cerrada.
- e) Demostrar que todo subconjunto finito y no vacío $A \subset \mathbb{R}$ es conexo en (\mathbb{R}, T) .
- f) Probar que (\mathbb{R}, T) no es un espacio compacto. ¿Es cierto que todo subconjunto compacto de (\mathbb{R}, T) es acotado para la distancia usual en \mathbb{R} ?
- **2.–** Dar la definición de subespacio compacto de un espacio topológico y probar las siguientes afirmaciones:
 - a) Un subespacio cerrado de un espacio topológico compacto es compacto.
 - b) Todo subespacio compacto de un espacio topológico Hausdorff es cerrado.
- 3.- Estudiar de forma razonada las siguientes cuestiones:
 - a) En \mathbb{R}^2 se define la siguiente relación de equivalencia: xRy si y solo si ||x|| = ||y||. Probar que el espacio cociente \mathbb{R}^2/R es homeomorfo a $[0, +\infty) \subset \mathbb{R}$ con la topología inducida por la topología usual de \mathbb{R} .
 - b) ¿Es posible encontrar una aplicación biyectiva y cerrada $f:(\mathbb{R}^2,T_u)\to (\mathbb{S}^2,T_u|_{\mathbb{S}^2})$?
 - c) Sean T_1 y T_2 dos topologías en X tales que $(X, T_1 \cap T_2)$ es un espacio Hausdorff. Probar que el conjunto diagonal $\Delta = \{(x, y) \in X \times X : y = x\}$ es cerrado en $(X_1 \times X_2, T_1 \times T_2)$.

Primera pregunta: 4,5 puntos Segunda pregunta: 2,5 puntos Tercera pregunta: 3 puntos

Duración del examen: 3 horas

Soluciones a los ejercicios

1.– a) Qué \mathcal{B} es base de una topología T en \mathbb{R} se sigue de que $\mathbb{R} = \bigcup_{B \in \mathcal{B}} B$ y del hecho de que si $B_1 = (-\infty, a_1]$, $B_2 = (-\infty, a_2]$ son elementos de \mathcal{B} , entonces $B_1 \cap B_2 = (-\infty, a] \in \mathcal{B}$, con $a = \min\{a_1, a_2\}$.

El conjunto U=(0,1) pertenece a la topología usual T_u , pero no es abierto en T porque ningún punto de U es interior. Por tanto, $T_u \not\subset T$. Por otra parte, ninguno de los conjuntos de \mathcal{B} es abierto en (\mathbb{R}, T_u) , por lo que $T \not\subset T_u$.

- b) El interior de $(-\infty, 2) \cup (0, +\infty)$ es $(-\infty, 2)$. La clausura de $\{x\}$ es $[x, +\infty)$.
- c) Si $B = (-\infty, a]$, con $a \ge 0$, entonces $f^{-1}(B) = [-a, a]$, que no pertenece a T. Por tanto f no es continua.
- Si $B = (-\infty, a]$, con $a \le 0$, entonces $f(B) = [-a, +\infty)$, que no es abierto. Por tanto, f no es abierta
- d) Veamos que f es cerrada. Sea C cerrado en (\mathbb{R}, T) . Comprobamos que $\mathbb{R} \setminus f(C)$ es abierto. Observamos en primer lugar que $f(C) \subset [0, +\infty)$. Pasando al complementario, $(-\infty, 0) \subset \mathbb{R} \setminus f(C)$. Tomamos $x \in \mathbb{R} \setminus f(C)$. Si x < 0 entonces $(-\infty, x] \subset (-\infty, 0) \subset \mathbb{R} \setminus f(C)$. Si $x \in \mathbb{R} \setminus f(C)$ y $x \ge 0$, entonces $x \in \mathbb{R} \setminus C$. Como $\mathbb{R} \setminus C$ es abierto, se tiene que $(-\infty, x] \subset \mathbb{R} \setminus C$. Entonces f([-x, x]) = [0, x] está contenido en $\mathbb{R} \setminus f(C)$ y, por tanto, $(-\infty, x] \subset \mathbb{R} \setminus f(C)$. Concluimos que $x \in \text{int}(\mathbb{R} \setminus f(C))$ y, por tanto, que f(C) es cerrado.
- e) Si $A = \{x_1, ..., x_k\}$ es finito, sea $x = \max\{x_1, ..., x_k\}$. Si U es un abierto que contiene a x, entonces $(-\infty, x] \subset U$ y se tiene que $A \subset (-\infty, x] \subset U$. Por tanto, A es conexo.
- f) Veamos que el conjunto $(-\infty,0]$ es compacto y no es acotado para la distancia usual. Razonando como en el apartado anterior, cualquier conjunto abierto que contiene a $(-\infty,0]$. Si $\{U_i\}_{i\in I}$ es un recubrimiento abierto de $(-\infty,0]$, tomamos $i_0\in I$ tal que $0\in U_{i_0}$. Entonces $(-\infty,0]\subset U_{i_0}$.
- **2.** a) Sea $f: \mathbb{R}^2 \to [0, +\infty)$ la aplicación f(x) = ||x||. Entonces $R_f = R$ y f es sobreyectiva, continua y abierta. Concluimos que f es una identificación y que \mathbb{R}^2/R_f es homeomorfo a $[0, +\infty)$.
- b) Si existe f en las condiciones del enunciado, entonces $f^{-1}:(\mathbb{S}^2,T_u|_{\mathbb{S}^2})\to(\mathbb{R},T_u)$ es continua y sobreyectiva. Como \mathbb{S}^2 es compacto, también lo sería \mathbb{R} , lo que es imposible.
- c) Sea $T = T_1 \cap T_2$. Tomamos $(x, y) \in X \times X \setminus \Delta$. Entonces $x \neq y$. Como (X, T) es Hausdorff, existen $U, V \in T$ tales que $x \in U, y \in V, U \cap V = \emptyset$. Puesto que $T \subset T_1, T_2$, el conjunto $U \times V$ pertenece a $T_1 \times T_2$ y se tiene que $U \times V \subset X \times X \setminus \Delta$. Es decir, el punto (x, y) es un punto interior de $X \times X \setminus \Delta$ en $(X \times X, T_1 \times T_2)$. Por tanto, $X \times X \setminus \Delta$ es un conjunto abierto en $T_1 \times T_2$ y Δ es un conjunto cerrado de $(X \times X, T_1 \times T_2)$.