EOS1 Course project

Erland Larsen – VIA University College Engineering in Software Technology

Greenhouse Control

- Sensors
 - Temperature
 - Humidity
 - Daylight
- Actuators
 - Heater
 - Window opening
 - Artificial daylight
- User interface
 - Web interface

Greenhouse model

User interface

Control system

Greenhouse

Requirements

Feature	Technology
Measure temperature	I ² C bus
Measure humidity	I ² C bus
Measure light intensity	Analog
Control servo motor for window	PWM
Control heater	Digital on/off
Control light intensity	PWM
User interface: Live monitoring of sensors Control of actuators	Web interface

Options

Automatic control of climate, e-mail to user when temperature drops etc..

Project plan

- Week 45 and 46
 - Understand the problem
 - Make your group project plan
 - Design and implement your Greenhouse Controller to meet requirements
 - Integrate knowhow from previous exercises into this project

- Week 47
 - Present/demonstrate for class
 - Hand in zip'ed project folder on itslearning
 - Include executable program(s) (C, Bash, html, bonescript, etc) as well as source code.

Documentation and Report

- Header in all files with filename, author and date
 - Header above all functions/methods with name, purpose, description of input parameters and return values.
- Document your code with plenty of comments
- Document which Beaglebone pins are used for which sensors and actuators (e.g. in a table).
- VIA standard report layout
- Document your interface circuits (include block and circuit diagrams)
- Document your code (include relevant UML diagrams, doxygen reports, etc.)
- User manual in appendix
- No process report needed

The control system

The control system

Deadline

23 November 2021:

- 8:20 Presentation in class
- 23:59 Upload final solution to itslearning

