## **INTRODUCTORY ECONOMICS: LECTURE 4**

The Production Process and Costs



## **Highlights**

- Production function and marginal product
- Marginal rate of technical substitutions
- Cost-minimizing input rule
- Cost function: Marginal cost vs Avg. cost
- Fixed costs vs sunk costs
- Long-run cost curve
- Economies of scale
- Economies of scope

## The Production Function

 Mathematical function that defines the maximum amount of output that can be produced with a given set of inputs.

$$Q = F(K, L)$$

- -Q is the level of output.
- -K is the quantity of capital input.
- -L is the quantity of labor input.

# Short-Run versus Long-Run Decisions: Fixed and Variable Inputs

#### Short-run

 Period of time where some factors of production (inputs) are *fixed*, and constrain a manager's decisions.

### Long-run

 Period of time over which all factors of production (inputs) are *variable*, and can be adjusted by a manager.

## **Measures of Productivity**

### Total product (TP)

 Maximum level of output that can be produced with a given amount of inputs.

#### Average product (AP)

- A measure of the output produced per unit of input.
  - Average product of labor:  $AP_L = \frac{Q}{L}$
  - Average product of capital:  $AP_K = \frac{Q}{K}$

### Marginal product (MP)

- The change in total product (output) attributable to the last unit of an input.
  - Marginal product of labor:  $MP_L = \frac{\Delta Q}{\Delta L}$
  - Marginal product of capital:  $MP_K = \frac{\Delta Q}{\Delta K}$

## Measures of Productivity in Action

- Consider the following production function when 5 units of labor and 10 units of capital are combined produce: Q = F(10,5) = 150.
- Compute the average product of labor.

$$AP_L = \frac{150}{5} = 30$$
 units per worker

Compute the average product of capital.

$$AP_L = \frac{150}{10} = 15$$
 units capital unit

# Increasing, Decreasing, and Negative



## **Algebraic Forms of Production Functions**

- Commonly used algebraic production function forms:
  - Linear: Assumes a perfect linear relationship between all inputs and total output
    - Q = F(K, L) = aK + bL, where a and b are constants.
  - Leontief: Assumes that inputs are used in fixed proportions
    - $Q = F(K, L) = \min\{aK, bL\}$ , where a and b are constants.
  - Cobb-Douglas: Assumes some degree of substitutability among inputs
    - $Q = F(K, L) = K^a L^b$ , where a and b are constants.

# Algebraic Forms of Production Functions in Action

 Suppose that a firm's estimated production function is:

$$Q = 3K + 6L$$

 How much output is produced when 3 units of capital and 7 units of labor are employed?

$$Q = F(3,7) = 3(3) + 6(7) = 51$$
 units

## **Algebraic Measures of Productivity**

 Given the commonly used algebraic production function forms, we can compute the measures of productivity as follows:

#### – Linear:

- Marginal products:  $MP_K = a$  and  $MP_L = b$
- Average products:  $AP_K = \frac{aK + bL}{K}$  and  $AP_L = \frac{aK + bL}{L}$

#### – Cobb-Douglas:

- Marginal products:  $MP_K = aK^{a-1}L^b$  and  $MP_L = bK^aL^{b-1}$
- Average products:  $AP_K = \frac{K^a L^b}{K}$  and  $AP_L = \frac{K^a L^b}{L}$

# Algebraic Measures of Productivity in Action

 Suppose that a firm produces output according to the production function

$$Q = F(1, L) = (1)^{1/4} L^{3/4}$$

- Which is the fixed input?
  - Capital is the fixed input.
- What is the marginal product of labor when 16 units of labor is hired?

$$MP_L = 1 \times \frac{3}{4}L^{-\frac{1}{4}} = 1 \times \frac{3}{4}(16)^{-\frac{1}{4}} = \frac{3}{8}$$

# Isoquants and Marginal Rate of Technical Substitution

- Isoquants capture the tradeoff between combinations of inputs that yield the same output in the long run, when all inputs are variable.
- Marginal rate of technical substitutions (MRTS)
  - The rate at which a producer can substitute between two inputs and maintain the same level of output.
  - Absolute value of the slope of the isoquant.

$$MRTS_{KS} = \frac{MP_L}{MP_K}$$

# Isoquants and Marginal Rate of Technical Substitution in Action



# Diminishing Marginal Rate of Technical Substitution



## **Isocost and Changes in Isocost Lines**

#### Isocost

Combination of inputs that yield cost the same cost.

$$wL + rK = C$$

or, re-arranging to the intercept-slope formulation:

$$K = \frac{C}{r} - \frac{w}{r}L$$

### Changes in isocosts

- For given input prices, isocosts farther from the origin are associated with higher costs.
- Changes in input prices change the slopes of isocost lines.

## **Isocosts**



# Changes in the Isocosts



## **Changes in the Isocost Line**



# Cost Minimization and the Cost-Minimizing Input Rule

#### Cost minimization

Producing at the lowest possible cost.

### Cost-minimizing input rule

 Produce at a given level of output where the marginal product per dollar spent is equal for all input:

$$\frac{MP_L}{w} = \frac{MP_K}{r}$$

 Equivalently, a firm should employ inputs such that the marginal rate of technical substitution equals the ratio of input prices:

$$\frac{MP_L}{MP_K} = \frac{w}{r}$$

## **Cost-Minimization Input Rule in Action**



## **Optimal Input Substitution**

 To minimize the cost of producing a given level of output, the firm should use less of an input and more of other inputs when that input's price rises.

### The Cost Function

- Mathematical relationship that relates cost to the costminimizing output associated with an isoquant.
- Short-run costs
  - Fixed costs (FC): do not change with changes in output;
    include the costs of fixed inputs used in production
  - Variable costs [VC(Q)]: costs that change with changes in outputs; include the costs of inputs that vary with output
  - Total costs: TC(Q) = FC + VC(Q)
- Long-run costs
  - All costs are variable
  - No fixed costs

## **Short-Run Costs**



## **Average and Marginal Costs**

- Average costs
  - Average fixed cost:  $AFC = \frac{FC}{Q}$
  - Average variable costs:  $AVC = \frac{VC(Q)}{Q}$
  - Average total cost:  $ATC = \frac{C(Q)}{Q}$
- Marginal cost (MC)
  - The (incremental) cost of producing an additional unit of output.

$$-MC = \frac{\Delta C}{\Delta Q}$$

The Relationship between Average and Marginal Costs





### **Fixed and Sunk Costs**

#### Fixed costs

Cost that does not change with output.

#### Sunk cost

Cost that is forever lost after it has been paid.

#### Irrelevance of Sunk Costs

 A decision maker should ignore sunk costs to maximize profits or minimize loses.

## **Algebraic Forms of Cost Functions**

 The cubic cost function: costs are a cubic function of output; provides a reasonable approximation to virtually any cost function.

$$C(Q) - F + aQ + bQ^2 + cQ^3$$
  
where  $a$ ,  $b$ ,  $c$ , and  $f$  are constants and  $f$  represents fixed costs

Marginal cost function is:

$$MC(Q) = a + 2bQ + 3cQ^2$$

## **Long-Run Costs**

 In the long run, all costs are variable since a manager is free to adjust levels of all inputs.

#### Long-run average cost curve

 A curve that defines the minimum average cost of producing alternative levels of output allowing for optimal selection of both fixed and variable factors of production.

# Long-Run Average Cost



## **Economies of Scale**

#### Economies of scale

 Declining portion of the long-run average cost curve as output increase.

#### Diseconomies of scale

 Rising portion of the long-run average cost curve as output increases.

#### Constant returns to scale

 Portion of the long-run average cost curve that remains constant as output increases.

## **Economies and Diseconomies of Scale**



## **Multiple-Output Cost Function**

### Economies of scope

– Exist when the total cost of producing  $Q_1$  and  $Q_2$  together is less than the total cost of producing each of the type of output separately.

$$C(Q_1, 0) + C(0, Q_2) > C(Q_1, Q_2)$$

### Cost complementarity

 Exist when the marginal cost of producing one type of output decreases when the output of another good is increased.

$$\frac{\Delta MC_1(Q_1, Q_2)}{\Delta Q_2} < 0$$

# Algebraic Form for a Multiproduct Cost Function

$$C(Q_1, Q_2) = f + aQ_1Q_2 + (Q_1)^2 + (Q_2)^2$$

For this cost function:

$$MC_1 = aQ_2 + 2Q_1$$

- When a < 0, an increase in  $Q_2$  reduces the marginal cost of producing product 1.
- If a < 0, this cost function exhibits cost complementarity
- If a > 0, there are no cost complementarities
- Exhibits economies of scope whenever f  $aQ_1Q_2 > 0$

## **Take-home Message**

- The production function shows the relationship between output and inputs.
- Marginal product usually diminishes as the input increases.
- A firm should employ inputs such that the marginal rate of technical substitution equals the ratio of input prices.
- Variable costs vary with output; fixed costs do not.
- The marginal cost curve intersects the average cost curve at minimum average cost.
- Economies of scale: LR average cost falls as Q rises.