Unit: Derivatives (2)

Quotient Rule

If f and g are differentiable at x and $g(x) \neq 0$ then so is $\frac{f}{g}$ and:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[f(x)]^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{g(x)\frac{d}{dx}f(x) - f(x)\frac{d}{dx}g(x)}{[g(x)]^2}$$

$$\frac{d}{dx}\frac{u}{v} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Ex 1. For each function f(x) find the derivative f'(x).

1.
$$f(x) = \frac{x+1}{x-1}$$

$$3. f(x) = \frac{2\sqrt{x}}{\sqrt{x}+1}$$

2.	f(x)	$-x^2$
		$-{2x+1}$

4.
$$f(x) = \frac{x^3 - 1}{x^3 + 1}$$

Chain Rule(Leibniz Notation)

 $\Delta x \underset{u=g(x)}{\longrightarrow} \Delta u \underset{v=f(u)}{\longrightarrow} \Delta v$

and

$$\frac{\Delta v}{\Delta x} = \frac{\Delta v}{\Delta u} \frac{\Delta u}{\Delta x} \quad \rightarrow \quad \frac{dv}{dx} = \frac{dv}{du} \frac{du}{dx}$$

Therefore:

$$\frac{dv}{dx} = \frac{dv}{du} \frac{du}{dx}$$

Chain Rule(Lagrange Notation)

$$v = f(u) = f(g(x)) = (f \circ g)(x)$$

$$\frac{dv}{dx} \to [f(g(x))]'$$

$$\frac{dv}{du} \to f'(u) = f'(g(x))$$

$$\frac{du}{dx} \to g'(x)$$

$$\frac{dv}{dx} = \frac{dv}{du}\frac{du}{dx} \to [f(g(x))]' = f'(g(x))g'(x)$$

If g is differentiable at x and f is differentiable at f(x) then the composition $(f \circ g)(x) = f(g(x))$ is differentiable at x and

$$(f \circ g)'(x) = [f(g(x))]' = f'(g(x))g'(x)$$

So, the derivative of f(g(x)) is the derivative of the *outside* function f evaluated of the *inside* function g times the derivative of the inside function g.

Ex 2. For each function f(x) find the derivative f'(x).

1. $f(x) = (3x - 2)^7$	2. $f(x) = (x^2 - 2x + 2)^{10}$

3.
$$f(x) = \left(\frac{x-2}{x-1}\right)^{10}$$

4.
$$f(x) = \sqrt{x^2 + 1}$$

$$5. f(x) = \frac{-5}{(6x^2 - 7)^4}$$

6.
$$f(x) = \sqrt{(3x^2 - 2)^3}$$

Higher Order Derivatives - Notations

Let consider the function y = f(x).

The first derivative of f or "f prime" is:

$$f'(x) = y' = \frac{dy}{dx}$$

The second derivative of f or "f double prime" is:

$$f''(x) = y'' = \frac{d^2y}{dx^2}$$

The third derivative of f or "f triple prime" is:

$$f'''(\mathbf{x}) = y''' = \frac{d^3y}{dx^3}$$

The n-th derivative of f is:

$$f^{(n)}(x) = y^{(n)} = \frac{d^n y}{dx^n}$$

Ex 3. Show that $y = x^3 + 3x + 1$ satisfies y"'+xy"-2y'= 0.

Ex 4. Find $f^{(2017)}(x)$ if f is:

1.
$$f(x) = x^2 - x + 3$$

Calculus and Vectors - Handout 04

2.
$$f(x) = x^{2017} - 3x^{2015} + 5x^2 + 10$$

3.
$$f(x) = \frac{1}{x}$$

Implicit differentiation

Ex 5. If we have $x^2 + y^2 = 25$, which represents a circle of radius five centered at the origin. Find the slope of the line tangent to the graph of this equation at the point (3, -4).

Ex 6. a. Find
$$\frac{dy}{dx}$$
 if $2x^5 + x^4y + y^5 = 36$

b. Find the slope of the tangent to the curve $2x^5 + x^4y + y^5 = 36$ at the point (1, 2)

Normal Line

If m_T is the slope of the tangent line, then slope of the normal line m_N is given by:

Ex 7. Find the equation of the normal line to the curve $y = f(x) = x + \frac{2}{x}$ at P(1, 3).