CC ID: UDTSP - 770 DATE: November 3, 2006

ATTACHMENT R – PROBE CALIBRATION DATA

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

FT0 4000 N 00

Accreditation No.: SCS 108

Client H-CT (Dymste	ic)	Certificate No:	ET3-1609_Mar06		
CALIBRATION	CERTIFICAT	ĪΕ			
Object	ET3DV6 - SN:1609				
Calibration procedure(s)	QA CAL-01.v5 and QA CAL-12.v4 Calibration procedure for dosimetric E-field probes				
Calibration date:	March 23, 2006				
Condition of the calibrated item	In Tolerance				
The measurements and the unce	ertainties with confidence	ational standards, which realize the physical units probability are given on the following pages and a	ere part of the certificate.		
Calibration Equipment used (M&		tory facility: environment temperature (22 ± 3)°C a	nd humidity < 70%.		
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration		
ower meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06		
ower sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06		
ower sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-06		
Reference 3 dB Attenuator	SN: S5054 (3c)	11-Aug-05 (METAS, No. 251-00499)	Aug-06		
teference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06		
eference 30 dB Attenuator	SN: S5129 (30b)	11-Aug-05 (METAS, No. 251-00500)	Aug-06		
Reference Probe ES3DV2	SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Jan-07		
DAE4	SN: 654	2-Feb-06 (SPEAG, No. DAE4-654_Feb06)	Feb-07		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check		
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07		
letwork Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, In house check Nov-05)	In house check; Nov 06		
	Name	Function	Signature		
Calibrated by:	Katja Pokovic	Technical Manager	The fel		
approved by:	Niels Kuster	Quality Manager	1/000		
			0.7		

Certificate No: ET3-1609_Mar06

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1609_Mar06 Page 2 of 9

March 23, 2006

Probe ET3DV6

SN:1609

Manufactured:

July 27, 2001

Last calibrated:

September 22, 2004

Recalibrated:

March 23, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1609_Mar06

Page 3 of 9

March 23, 2006

DASY - Parameters of Probe: ET3DV6 SN:1609

Sensitivity in Free	compression ^B			
NormX	1.88 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	1.84 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	95 mV
NormZ	1.84 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR gradient: 5 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	8.3	4.4	
SAR _{be} [%]	With Correction Algorithm	0.1	0.1	

TSL Typical SAR gradient: 10 % per mm 1750 MHz

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	6.2	3.1	
SAR _{be} [%]	With Correction Algorithm	0.2	0.2	

Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1609_Mar06

Page 4 of 9

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

March 23, 2006

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1609_Mar06

Page 5 of 9

ET3DV6 SN:1609 March 23, 2006

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1609_Mar06

Page 6 of 9

March 23, 2006

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1609_Mar06

Page 7 of 9

March 23, 2006

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.27	3.19	6.82	± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	$0.90 \pm 5\%$	0.57	1.83	6.85	± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.59	1.81	6.53	± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.48	2.69	5.46	± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.45	5.16	± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.43	5.08	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.60	2.30	4.50	± 11.8% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.24	4.02	7.32	± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.47	2.06	6.42	± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.53	2.59	4.80	± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.70	2.19	4.63	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.62	2.21	4.17	± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1609_Mar06

Page 8 of 9

www.hct.co.kr

TEL: +82 31 639 8518 FAX: +82 31 639 8525

March 23, 2006

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1609_Mar06

Page 9 of 9