Scilab Textbook Companion for Principles of Power Systems by V. K. Mehta And R. Mehta¹

Created by Apoorva M N B.E

Electrical Engineering
Sri Jayachamarajendra College of Engineering
College Teacher
Prof. R S Ananda Murthy
Cross-Checked by
TechPassion

July 24, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Principles of Power Systems

Author: V. K. Mehta And R. Mehta

Publisher: S. Chand, New Delhi

Edition: 4

Year: 2009

ISBN: 81-219-2496-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	et of Scilab Codes	4
1	Introduction	6
2	Generating Stations	8
3	Variable Load on Power Stations	26
4	Economics of Power Generation	52
5	Tariff	72
6	Power factor improvement	87
7	Supply Systems	111
8	Mechanical Design of Overhead Lines	120
9	Electrical Design of Overhead Lines	146
10	Performance of Transmission Lines	161
11	Underground Cables	187
13	D C Distribution	207

14 A C distribution	247
15 Voltage Control	264
17 Symmetrical Fault Calculations	267
18 Unsymmetrical Fault Calculations	284
19 Circuit Breakers	307
20 Fuses	311
21 Protective relays	312
22 Protection of Alternators and Transformers	314
26 Neutral Grounding	321

List of Scilab Codes

Exa 1.1	efficiency and energy	6
Exa 2.1	calorific value fuel	8
Exa 2.2	annual coal bill	G
Exa 2.3	average load	10
Exa 2.4	limiting value	11
Exa 2.5	coal consumption per hour	11
Exa 2.6	total energy available	12
Exa 2.7	yearly gross output	13
Exa 2.8	energy per hour	13
Exa 2.9	maximum demand	14
Exa 2.10	level of reservoir	15
Exa 2.11	excess power	16
Exa 2.12	load factor	17
Exa 2.13	installed capacity 1	18
Exa 2.14	engine efficiency	20
Exa 2.15	thermal efficiency	21
Exa 2.16	overall efficiency	22
Exa 2.17	nuclear power 1	23
Exa 2.18	energy per second	24
Exa 3.1	energy per year	26
Exa 3.2	load factor	26
Exa 3.3	annual load factor	27
Exa 3.4	maximum energy	28
Exa 3.5	diesel station	29
Exa 3.6	reserve capacity	29
Exa 3.7	connected load	30
Exa 3.8	feeder max demand	31
Exa 3.9	max capacity	32

Exa 3.10	load curve	4
Exa 3.11	diversity and load factor	5
Exa 3.12	station load factor	6
Exa 3.13		8
Exa 3.14		8
Exa 3.15	load duration curve 4	0
Exa 3.16	utilisation factor	.1
Exa 3.17	maximum load on feeder 4	2
Exa 3.18	daily load cycle 4	.5
Exa 3.19	installed capacity 4	7
Exa 3.20	capacity factor	8
Exa 3.21	steam plant capacity 4	.9
Exa 3.22	generated units	0
Exa 4.1		2
Exa 4.2	payment for sinking fund 5	2
Exa 4.3		3
Exa 4.4	fixed and running charges 5	4
Exa 4.5		5
Exa 4.6		6
Exa 4.7		7
Exa 4.8		8
Exa 4.9	two part form	9
Exa 4.10	a b c form	0
Exa 4.11	overall generation cost 6	1
Exa 4.12	private and public supply 6	3
Exa 4.13	steam and hydro 6	4
Exa 4.14	unit cost	7
Exa 4.15	generation cost 6	8
Exa 4.16		0
Exa 5.1		2
Exa 5.2		3
Exa 5.3		4
Exa 5.4		4
Exa 5.5		5
Exa 5.6	1	6
Exa 5.7		8'
Exa 5.8		' 9
Exa 5.9	annual saving 1	

Exa 5.10	monthly bill 1	81
Exa 5.11	cost at varying pf	82
Exa 5.12	difference in cost annually	83
Exa 5.13	cheaper alternative	85
Exa 6.1	extra power supplied	87
Exa 6.2	capacitance in parallel	87
Exa 6.3	kw kva and pf	88
Exa 6.4	rating of capacitors	89
Exa 6.5	capacitance of each capacitor	90
Exa 6.6	annual saving 2	91
Exa 6.7	annual saving 3	93
Exa 6.8	net annual saving	95
Exa 6.9	motor power factor	96
Exa 6.10	total annual bill	97
Exa 6.11	synchronous motor power factor	98
Exa 6.12	annual saving 5	99
Exa 6.13	economical pf operation	102
Exa 6.14	annual saving 6	102
Exa 6.15	annual saving 9	104
Exa 6.16	annual bill 3	105
Exa 6.17	annual saving 8	106
Exa 6.18	pfc equipment	107
Exa 6.19	phase advancers	109
Exa 7.1	saving in feeder copper	111
Exa 7.4	additional load	112
Exa 7.5	conductor volume comparision	112
Exa 7.6	voltages in DC 2wire system	114
Exa 7.7	area of conductor 1	115
Exa 7.8	area of conductor 2	116
Exa 7.9	area of conductor 3	117
Exa 7.10	area of conductor 4	118
Exa 8.1	string efficiency 1	120
Exa 8.2	string efficiency 2	121
Exa 8.3	string efficiency 3	122
Exa 8.4	voltage between busbars	122
Exa 8.5	string efficiency 4	123
Exa 8.6	string efficiency 5	124
Exa 8.7	string efficiency 6	125

Exa 8.8	voltage between conductors 12'
Exa 8.9	string efficiency 7
Exa 8.10	string efficiency
Exa 8.11	string eff 1
Exa 8.12	v across each insulator
Exa 8.13	rms line voltage
Exa 8.14	conductor spacing
Exa 8.15	total corona loss
Exa 8.16	power loss
Exa 8.17	ground clearing 1
Exa 8.18	sag and vertical sag
Exa 8.19	vertical sag 2
Exa 8.20	sag in tr lines
Exa 8.21	safety factor
Exa 8.22	ground clearance 2
Exa 8.23	clearence from water level
Exa 8.24	sag
Exa 8.25	clearence from water level 2
Exa 8.26	clearence from ground
Exa 8.27	min clearance
Exa 9.1	loop inductance per km 1 140
Exa 9.2	loop inductance per km 2
Exa 9.3	inductance per phase per km 3 148
Exa 9.4	inductance per phase per km 4 148
Exa 9.5	inductance per phase per km 5 14
Exa 9.6	loop inductance per km 3 150
Exa 9.7	inductance per phase per km 4 15
Exa 9.8	inductance per phase per km 6 155
Exa 9.9	inductance per phase per km 7 154
Exa 9.10	loop inductance per km 4 158
Exa 9.11	capacitance per km
Exa 9.12	capacitance of each line conductor 15'
Exa 9.13	charging current per phase 15'
Exa 9.14	capacitance of line
Exa 9.15	charging current per phase 2 159
Exa 10.1	transmission efficiency 1 16
Exa 10.2	length of conductor
Exa 10.3	transmission efficiency 2 163

Exa 10.4	length of line	164
Exa 10.5	transmission eff	165
Exa 10.6	sending end pf	166
Exa 10.7	transmission efficiency 3	167
Exa 10.8	transmission efficiency 4	168
Exa 10.9	transmission efficiency 5	169
Exa 10.10	supply pf for medium tr lines	171
Exa 10.11	nominal t method 1	173
Exa 10.12	nominal t method 2	175
Exa 10.13	nominal pi method 1	177
Exa 10.14	nominal pi method 2	179
Exa 10.15	long tr line	181
Exa 10.16	generalised contants 1	182
Exa 10.17	generalised contants 2	183
Exa 10.18	generalised contants 3	185
Exa 11.1	insulaiton resistance	187
Exa 11.2	insulation thickness	187
Exa 11.3	insulaiton resistance 2	188
Exa 11.4	cable capacitance	189
Exa 11.5	total charging kvar	189
Exa 11.6	total charging kvar 1	190
Exa 11.7	minimum dielectric stress	191
Exa 11.8	operating voltage	192
Exa 11.9	charging current	192
Exa 11.10	economical conductor diameter	193
Exa 11.11	internal sheath diameter	194
Exa 11.12	rms safe working voltage	195
Exa 11.13	rms safe working voltage 2	196
Exa 11.14	max dielectric stress	197
Exa 11.15	intersheath grading 1	198
Exa 11.16	intersheath grading 2	199
Exa 11.17	three core cable Ic	200
Exa 11.18	three core cable Ic2	201
Exa 11.19	kva taken by cable	202
Exa 11.20	permissible current loading	203
Exa 11.21	loop testing fault location 1	204
Exa 11.22	loop testing fault location 2	204
Exa 11 23	loop testing fault location 3	205

Exa 11.24	distance from fault end	206
Exa 13.1	PD at each point	207
Exa 13.2	cross sectional area of conductor	209
Exa 13.3	voltages across trams	210
Exa 13.4	voltage at tapping points	211
Exa 13.5	max voltage drop	212
Exa 13.6	x section of distributor	213
Exa 13.7	voltage at feeding points	214
Exa 13.9	power loss in distributor	215
Exa 13.10	minimum consumer voltage	216
Exa 13.11	currents and voltages	217
Exa 13.12	power loss in distributor2	219
Exa 13.13	current supplied by stations	221
Exa 13.14	maximum voltage drop	222
Exa 13.15	currents supplied from two ends	223
Exa 13.16	voltage calculations	224
Exa 13.17	$\max \text{ voltage drop } 2 \dots \dots \dots \dots \dots$	225
Exa 13.19	concentrated and uniform loads	226
Exa 13.20	loading	227
Exa 13.21	point of min potential	228
Exa 13.22	ring distributor	229
Exa 13.23	current tapping	230
Exa 13.24	currents and voltages	231
Exa 13.25	interconnector parameters	233
Exa 13.26	voltage at loads	234
Exa 13.27	voltage at load end	235
Exa 13.28	voltage calculations 2	236
Exa 13.29	voltage across various loads	237
Exa 13.30	voltage across various loads 3	238
Exa 13.31	break in lines	239
Exa 13.32	current in two machines	240
Exa 13.33	current and load calculations	241
Exa 13.34	current and load calculations 2	243
Exa 13.35	load on main generator	244
Exa 13.36	output of booster	245
Exa 14.1	voltage drop in distributor	247
Exa 14.2	phase difference and Vs	248
Exa 14 3	phase difference	250

Exa 14.4	thevenins theorem
Exa 14.5	line voltage at sending end
Exa 14.6	station voltages
Exa 14.7	current in nuetral
Exa 14.8	lamp and motor load
Exa 14.9	component currents
Exa 14.10	phase voltage calculation
Exa 14.11	voltages across lamps
Exa 15.1	Vs per phase
Exa 15.2	sunchronous condensor capacity 265
Exa 17.1	short circuit current
Exa 17.2	percentage reactance
Exa 17.3	short circuit kva 1
Exa 17.4	fault mva calculations
Exa 17.5	fault mva calculations 2 271
Exa 17.6	reactance
Exa 17.7	short circuit mva
Exa 17.8	steady state input
Exa 17.9	short circuit mva 2
Exa 17.10	sc kVA
Exa 17.11	reactor reactance
Exa 17.12	reactance of reactor
Exa 17.13	fault mva calculations 3 279
Exa 17.14	fault current fed by alternator 280
Exa 17.15	short circuit current calculations 282
Exa 18.3	sequence currents
Exa 18.4	sequence components for voltage 285
Exa 18.5	sequence components calculations 286
Exa 18.6	zero sequence currents
Exa 18.7	with and without fuse
Exa 18.8	line current values
Exa 18.9	currents in three phases 291
Exa 18.10	resistor and line currents 292
Exa 18.11	current calculations
Exa 18.12	current calculations 2
Exa 18.13	current calculations 3
Exa 18.14	impedance and voltage calculations 299
Exa 18 15	ratio of fault currents 301

Exa 18.16	fault current
Exa 18.17	fault current 2
Exa 18.18	fault current 3
Exa 18.19	fault current 4
Exa 18.20	reactance calculations
Exa 19.1	circuit breaker rating
Exa 19.2	average rrrv
Exa 19.3	natural frequency of oscillations
Exa 19.4	voltage during chopping
Exa 20.1	radius of wire
Exa 21.1	relay operating time
Exa 22.1	Merz Price principle
Exa 22.2	unprotected winding calculations
Exa 22.3	unprotected winding and r
Exa 22.4	earthing resistance r
Exa 22.5	turn ratio 1
Exa 22.6	turn ratio 2
Exa 26.1	peterson coil reactance
Exa 26.2	peterson coil rating
Exa 26.3	reactance to nuetralize capacitance
Eva 26.4	coil rating

List of Figures

2.1	installed capacity 1	19
3.1	load curve	33
3.2	diversity and load factor	35
3.3	load duration curve	40
3.4	daily load cycle	46

Chapter 1

Introduction

Scilab code Exa 1.1 efficiency and energy

```
1 //Chapter 1
2 //Example 1.1
3 // Page 6
5 clear;
6 clc;
7 \text{ Pi} = 4200;
8 E = 120;
9 I = 32.2;
10
11 printf("(i) Input Power, Pi = \%.4 \text{ f J/s} = 4200 \text{ W} \text{ n}
      ", Pi)
12
13 Po = E*I;
                  Output Power, Po = \%.4 \text{ f W} \text{n}, Po)
14 printf("
15
16 // Calculation of efficiency
17 n = Po/Pi*100;
18 printf(" Efficiency, n = \%.2 f \% n", n)
19
20 \text{ Pl} = \text{Pi-Po};
```

```
21 printf("(ii) Power lost, Pl = %.4 f W\n", Pl)
22
23 //Calculation of energy lost per minute of operation
24 El = Pl*60;
25 printf(" Energy lost per minute(=60s) of operation= Pl*t = %.4 f J\n", El)
```

Chapter 2

Generating Stations

Scilab code Exa 2.1 calorific value fuel

```
1 //Chapter 1
2 //Example 2.1
3 //Page 16
5 clear;
6 clc;
8 \text{ n_overall} = 20;
9 W = 0.6;
10
11 printf("Let x kcal/kg be the calorific value of fuel
      .\n")
12 printf("Heat produced by 0.6 \text{ kg} of coal = 0.6 \text{ x kcal}
13 printf ("Heat equivalent of 1 kWh = 860 k cal\n")
14
15 // Calculation of calorific value of coal
16 printf("Now, n_overall = Electrical output in heat
      units/ Heat of combustion\n")
17
18 x=860/(0.6*0.2);
```

Scilab code Exa 2.2 annual coal bill

```
1 //Chapter 2
2 //Example 2.2
3 // Page 17
5 clear;
6 clc;
8 \text{ max\_demand} = 20000;
9 \text{ n_boiler} = 0.85;
10 coal_consumption = 0.9;
11 load_factor = 40;
12 \text{ n_turbine} = 0.90;
13 \quad cost_per_ton = 300;
14
15 // Calculation of thermal efficiency
16
17 printf("(i) Thermal efficiency = \%.2 \text{ f } \% \n\n",
      n_boiler*n_turbine*100);
18 printf("(ii) Units generated per annum = \%.3 f kWh\n
      ", max_demand*load_factor*8760);
19 printf("\t Coal consumption/annum = \%.3 f tons n",
      coal_consumption*7008*1e4/1000);
20 printf("\t Annual coal bill = Rs \%.4 \text{ f} \cdot \text{n}",
      cost_per_ton*coal_consumption*7008*1e4/1000);
```

Scilab code Exa 2.3 average load

```
1 //Chapter 2
2 //Example 2.3
3 // Page 17
5 clear;
6 clc;
8 cost_per_annum = 300000;
9 cal_value = 5000;
10 \quad cost_per_kg = 0.03;
11 n_{thermal} = 0.33;
12 \text{ n\_electrical} = 0.90;
13
14 n_overall = n_thermal*n_electrical;
15 printf("Overall efficiency = \%.2 \text{ f } \% \setminus \text{n}",
       n_overall*100);
16 coal_per_annum = cost_per_annum/cost_per_kg;
17 printf ("Coal used/annum = \%.2 \text{ f kg/n/n}",
       coal_per_annum);
18 hoc = coal_per_annum*cal_value;
19 //hoc-heat of combustion
20 printf ("Heat of combustion = \%.2 \, \text{f} \, \text{kcal} \, \ln \, hoc);
21 heat_op = n_overall*hoc;
22 printf("Heat output = \%.2 \, \text{f kcal } \ln \, heat_op);
23 \text{ upa} = \text{heat_op/860};
24 //upa- units generated per annum
25 printf ("Units generated per annum = \%.0 \, \mathrm{f} \, \mathrm{kWh} \, \ln n",
       upa);
26 \text{ avgl} = \text{upa}/8760;
27 //avgl- average load on station
28 printf ("Average load on station = \%.1 \text{ f kW } \ln \text{"},
       avgl);
```

Scilab code Exa 2.4 limiting value

```
1 //Chapter 2
2 //Example 2.4
3 //Page 17
5 clear;
6 clc;
8 \quad w = 13500;
9 \text{ kWh1} = 7.5;
10 c = 5000;
11 kWh2=2.9;
12 hours = 8;
13
14 //limiting value
15 printf("Limiting value =%.2 f kg n\n", (w+kWh1)/(c+
      kWh2));
16
17 //coal consumption per hour
18
19 printf("Coal consumption per hour = \%.1 \, f \, kg \, nn", c
      /hours);
```

Scilab code Exa 2.5 coal consumption per hour

```
1 //Chapter 2
2 //Example 2_5
```

```
3 //PAge 18
4
5 clear; clc;
6
7 power=100;
8 cv=6400;
9 n_thermal =0.3;
10 n_electrical =0.92;
11
12 //coal consumption
13 n_overall = n_thermal*n_electrical;
14 ugpa=power*1000;
15 h=ugpa*860/n_overall;
16 printf("Coal consumption per hour = %.1 f kg \n\n", h /cv);
```

Scilab code Exa 2.6 total energy available

```
15 e = w*h*n_overall/3600/1000;

16 //e - electrical energy

17 printf("Electrical energy available = W*H*n_overall

= \%.2 \, \text{f kWh } \ \text{n}", e);
```

Scilab code Exa 2.7 yearly gross output

```
1 //Chapter 2
2 //Example 2.7
3 // Page 23
5 clear; clc;
7 w = 94;
8 h = 39;
9 n_plant=0.8;
10
11 work=w*h*9.81;
12 printf("Work done/sec = \%.1 \text{ f kW } \ln \text{n}", work);
13
14 printf("This is gross plant capacity\n");
15
16 fc=n_plant*work;
17 printf("(i)\t Firm capacity = \%.1 \text{ f kW } \ln \text{"}, \text{ fc});
18
19 printf("(ii)\t Yearly gross output = \%.1 \text{ f kW } \ln \text{"},
       fc*8760);
```

Scilab code Exa 2.8 energy per hour

```
1 //Chapter 2
2 //Example 2.8
3 //Page 23
4
5 clear; clc;
6
7 h=100;
8 n_hydraulic=0.86;
9 n_electrical=0.92;
10
11 n_overall=n_hydraulic*n_electrical;
12 w=9.81*1e3;
13 printf("Weight of water available = %.1 f N \n\n", w);
14 power=w*h*n_overall;
15 printf("Power produced = %.1 f kW \n\n", power/1000);
16 printf("Energy produced per hour = %.1 f kWh \n\n", power/1000);
```

Scilab code Exa 2.9 maximum demand

```
1 //Chapter 2
2 //Example 2_9
3 //PAge 23
4
5 clear; clc;
6
7 area=5e9;
8 h=30;
9 rainfall=1.25;
10 k=0.8;
11 n_overall=0.7;
12 lf=0.4;
```

```
13
14 //generator rating
15 vol=area*rainfall*k;
16 printf("Volume of water which can be utilised per annum =%1.0 f m^3 \n\n", vol);
17 w=area*9.81*1e3;
18 printf("Weight of water available =%2.2 f N \n\n", w);
19 e=w*h*n_overall/1e3/3600;
20 printf("Electrical energy available pr annum = %1.2 f kWh\n\n", e);
21 ap=e/8760;
22 printf("Average power = %.1 f kW \n\n", ap);
23 printf("MAximum demand = %.0 f kW \n\n", ap/lf);
```

Scilab code Exa 2.10 level of reservoir

```
1 //Chapter 2
2 //Example 2_10
3 //Page 24
4
5 clear; clc;
6
7 area=2.4;
8 capacity=5e6;
9 head=100
10 n_penstock=0.95;
11 n_turbine=0.9;
12 n_generation=0.85;
13 load_kWh=15000;
14
15
16 //calculation of total electrical energy that can be
```

```
generated
17 w=capacity*1e3*9.81;
18 printf("Wt. of water available= \%.2 \, f \, N \, n^{n}, w);
19 n_overall=n_penstock*n_turbine*n_generation;
20 printf ("Overall efficiency = \%.2 \, \text{f } \ln \, n_overall);
21 energy=w*head*n_overall/1000/3600;
22 printf ("Electrical energy that can be generated = \%.1
      f kWh \n\n", energy);
23
24 //calculation of fall in reservoir level
25 printf ("Level of reservoir= \%.3 \, \mathrm{f} \, \mathrm{m} \, \ln ^{n}", capacity/
      area/1e6);
26 printf("kWh generated in 3 hours=\%.2 f kWh \n\n",
      load_kWh*3);
27 fall= capacity/area/1e6*load_kWh*3/energy*100;
28 printf("Fall in reservoir level= \%.2 \, f \, cm \, nn", fall)
```

Scilab code Exa 2.11 excess power

```
1 //Chapter 2
2 //Example 2_11
3 //PAge 25
4
5 clear; clc;
6
7 h=25;
8 power=400;
9 vol=[10 6 1.5];
10 months=[4 2 6];
11 n_overall=0.8;
12
13 //standby capacity
```

Scilab code Exa 2.12 load factor

```
1 //Chapter 2
2 //Example 2_12
3 //Page 25
4
5 clear; clc;
6
7 md=10;
8 h=20;
9 n_overall=0.8;
10 lf=0.4;
11
12
13 //river discharge
14 ugpw=md*lf*24*7*1e3;
15 printf("(i) Units generated per week =%.1 f kWh \n\n", ugpw);
```

Scilab code Exa 2.13 installed capacity 1

```
1 //Chapter 2
2 //Example 2_13
3 //Page 26
4
5 clear; clc;
6
7 d=[500 520 850 800 875 900 546];
8 days=7;
9 h=15;
10 n_overall=0.85;
11 lf=0.4;
12
13 scf(0)
14 bar(d, 1, 'red');
15 xlabel('Days');
16 ylabel('Discharge')
```


Figure 2.1: installed capacity 1

```
17 xgrid(0);
18
19 // Average daily discharge
20 avg=sum(d)/days;
21 printf("(i) Average daily discharge = %.0 f m^3/sec \
       n \setminus n", avg);
22
23 //Pondage required
24 \text{ vol} = 0;
25 \quad j = 0;
26 \text{ for } i=1:7
27
     if d(i) < avg</pre>
28
        vol= vol+d(i);
29
        j=j+1;
30
      end;
31 end;
32
33 \text{ v=vol}*24*3600;
34 \text{ v_req=} j*avg*24*3600;
35 p=v_req-v;
36 printf("(ii) Pondage required = \%.0 \, \text{f m} \, 3 \, \ln n, p);
37
38 //Installed capacity
39 \text{ w=avg*}1000*9.81;
40 app=w*h*n_overall;
41 ic=app/lf;
42 printf("(iii) Installed capacity of the plant = \%.0 f
       MW \setminus n \setminus n", ic/1e6);
```

Scilab code Exa 2.14 engine efficiency

```
1 //Chapter 2
2 //Example 2_14
```

Scilab code Exa 2.15 thermal efficiency

```
1  //Chapter 2
2  //Example 2_15
3  //PAge 30
4
5  clear; clc;
6
7  fc=1e3;
8  ugpd=4e3;
9  cv=1e4;
10  n_alternator=0.96;
11  n_mech=0.95;
12
13  // specific fuel consumption
14  printf("(i)\t Specific fuel consumption = %.2 f kg/kWh \n\n", fc/ugpd);
```

```
15
16 //overall efficiency
17 heat_per_day = fc*cv;
18 e=ugpd*860;
19 printf("\t\t Electrical output in heat units per day
       =\%3.0 f kcal \n\n", e);
20 \text{ n_overall} = e/1e7*100;
21 printf("(ii)\t Overall efficiency = \%.2 f \% \ln n,
      n_overall);
22
23 //thermal efficiency
24 n_engine = n_overall/n_alternator;
25 printf("\t\t Engine efficiency = \%.2 \, \text{f } \% \setminus \text{n} ",
      n_engine);
26 printf("(iii)\t Thermal efficiency = \%.2 \text{ f } \% \setminus \text{n} \text{n}",
      n_engine/n_mech);
```

Scilab code Exa 2.16 overall efficiency

```
1 //Chapter 2
2 //Example 2_16
3 //PAge 30
4
5 clear; clc;
6
7 p1=700;
8 p2=500;
9 n1=1;
10 n2=2;
11 fc=0.28;
12 cv=10200;
13 days=30;
14 pcf=0.4;
```

Scilab code Exa 2.17 nuclear power 1

Scilab code Exa 2.18 energy per second

```
1 //Chapter 2
2 / \text{Example } 2 18
3 //Page 35
5 clear; clc;
6
7 d=30;
8 m = 2;
9 e = 200 * 1e6;
10
11 n=m/235*6.023*10^26;
12 fr=n/d/8760;
13 epf=e*1.6*10^-19;
14 p = epf * fr;
15
16 printf ("Number of atoms = \%.2 \text{ f}*10^24 \text{ } \text{n}\text{n}", n*1e-24)
17 printf("Fission rate = \%.3 f*10^18 \ln^n, fr*10^-19);
18 printf("Energy per fission = \%.2 \text{ f}*10^-11 \text{ J} \text{ } \text{n}",
       epf *10^11);
19 printf ("Energy released per second = \%.3 \text{ f MW } \ln \text{"},
       p*10^-7);
```

Chapter 3

Variable Load on Power Stations

Scilab code Exa 3.1 energy per year

```
1 //Chapter 3
2 //Example 3_1
3 //Page 50
4
5
6 clear; clc;
7
8 max_dem=100;
9 lf=0.4;
10
11 //energy generated
12 printf("Energy generated per annum = %.1 f kWh\n\n", max_dem*lf*8760*1000);
```

Scilab code Exa 3.2 load factor

```
1 //Chapter 3
\frac{2}{2} //Example 3_2
3 / \text{Page } 50
5 clear;
6 clc;
8 c1 = 43;
9 \text{ max\_dem} = 20;
10 \text{ ugpa} = 61.5e6;
11
12 //Demand factor and load factor
13
14 printf("Demand factor = \%.3 \, f \, \ln n", max_dem/cl);
15
16 \text{ avg\_dem} = \text{ugpa/8760};
17 printf("Load facor = \%.3 f \ \n\n", avg_dem/max_dem
       /1000);
```

Scilab code Exa 3.3 annual load factor

```
1 //Chapter3
2 //Example 3_3
3 //PAge 50
4
5 clear; clc;
6
7 max_dem =100;
8 p1=100;
9 t1=2;
10 p2=50;
```

```
11 t2=6;
12 no_operation =45;
13
14
15 //Annual load factor
16 e_per_day=(p1*t1)+(p2*t2);
17 printf("Energy per day = %.2 f MWh \n\n", e_per_day)
18 operation_days=365-no_operation;
19 e_per_year = e_per_day*operation_days;
20 printf("energy per year = %.2 f MWh\n\n", e_per_year)
21 alf= e_per_year/max_dem/(operation_days*24);
22 printf("Annual load factor = %.2 f %% \n\n", alf*100);
```

Scilab code Exa 3.4 maximum energy

```
1  //Chapter 3
2  //Example 3_4
3  //PAge 50
4
5  clear;
6  clc;
7
8  max_dem=25;
9  lf=0.6;
10  pcf=0.5;
11  puf=0.72;
12
13  //reserve capacity
14  avg_dem=lf*max_dem;
15  pc=avg_dem/pcf;
16  printf("(i)\t Reserve capacity of plant = %.1 f MW \n \n", pc-max_dem);
```

```
17 printf("(ii)\t Daily energy produced = \%.1 \, f \, MWh \ n\ n", avg_dem*24);
18 printf("(iii)\t Maximum energy produced = \%.1 \, f \, MWh/\ day \ n\ n", avg_dem*24/puf);
```

Scilab code Exa 3.5 diesel station

```
1 //Chapter 3
2 //Example 3_5
3 //PAge 51
5 clear; clc;
7 ic = 1500;
8 \text{ ce} = 750;
9 dp = 100;
10 \, dl = 450;
11 max_dem = 2500;
12 e_per_year =45e5;
13
14 //diversity factor and annual load factor
15 printf("Diversity factor = \%.2 \text{ f } \ln \text{n}", (ic+ce+dp+dl)
      /max_dem);
16 \text{ avg\_dem} = e_per_year/8760;
17 printf("Average demand = \%.2 \text{ f kW } \ln \text{n}, avg_dem);
18 printf("Load factor = \%.1 f \% \ \n\n", avg_dem/max_dem
       *100);
```

Scilab code Exa 3.6 reserve capacity

```
1 //Chapter 3
2 //Example 6
3 //PAge 51
4
5 clear; clc;
6
7 max_dem=15000;
8 lf=0.5;
9 pcf=0.4;
10
11 //reserve capacity
12 e_per_annum=max_dem*lf*8760;
13 printf("Energy generated per annum = %.0 f kWh \n\n", e_per_annum)
14 pc=e_per_annum/pcf/8760;
15 printf("Plant capacity =%.0 f kW \n\n", pc)
16 printf("Reserve capacity =%.1 f kW \n\n", pc-max_dem);
```

Scilab code Exa 3.7 connected load

```
1 //Chapter 3
2 //Example 3_7
3 //Page 51
4
5 clear;
6 clc;
7
8 md1=1500;
9 d1=1.2;
10 df1=0.8;
11 md2=2000;
12 d2=1.1;
```

```
13 df2=0.9;
14 \text{ md3} = 10000;
15 d3=1.25;
16 df3=1;
17 odf=1.35;
18
19 //Maximum demand and connected load
20 \quad sum_md=md1+md2+md3;
21 printf ("Maximum demand on supply system = \%.1 f kW \n
       n, sum_md/odf);
22 \text{ sum\_domestic} = \text{md1*d1};
23 printf ("Connected domestic load = \%.1 \text{ f kW } \ln \text{,}",
       sum_domestic/df1);
24 \text{ sum\_commercial} = \text{md2*d2};
25 printf ("Connected commercial load = \%.1 \text{ f kW } \ln \text{"},
       sum_commercial/df2);
26 sum_industrial =md3*d3;
27 printf ("Connected industrial load = \%.1 \, \text{f kW } \ln \",
       sum_industrial/df3);
```

Scilab code Exa 3.8 feeder max demand

```
1 //Chapter 3
2 //Example 3_8
3 //Page 52
4
5 tl=[10 12 15];
6 tdf=[0.65 0.6 0.7];
7 tdg=[1.5 3.5 1.5];
8 df=1.3;
9 total=0;
10
11 //maximum load
```

```
12 n=3;
13 for i=1:n;
14
      sum_md(i)=tl(i)*tdf(i);
     printf("Sum of maximum demands on transformer %i =
15
          \%.2 \text{ f kW } \text{ } \text{n} \text{n}", i,
                                  sum_md(i));
16
     md(i)=sum_md(i)/tdg(i);
     printf("Maximum demand on transformer %i = %.3 f kW
17
          \n\n", i, md(i));
      total=total+md(i);
18
19 end;
20
21 mdf=total/df;
22 printf("Maximum demand on feeder = \%.2 \text{ f kW } \ln \text{,}",
      mdf)
```

Scilab code Exa 3.9 max capacity

```
1 //Chapter 3
2 //Example 3_9
3 //PAge 52
4
5 clear;
6 clc;
7
8 houses=1e3;
9 cl=1.5;
10 dem_fac=0.4;
11 div_fac=2.5;
12 factories=10;
13 md_f=90;
14 tubewells=7;
15 mdt=7;
16 df=1.2;
```


Figure 3.1: load curve

```
17
18  //Minimum capacity of power station
19
20  sum_md=cl*dem_fac*houses;
21  md_dl=sum_md/div_fac;
22  md_t=mdt*tubewells;
23  total_md=md_dl+md_t+md_f;
24  md_station=total_md/df;
25  printf("Minimum capacity of station required=%.2 f kW\\n\n", md_station);
```

Scilab code Exa 3.10 load curve

```
1 //Chapter 3
2 //Example 3_10
3 // Page 53
5 clear; clc;
7 time=[6 4 2 4 4 4];
8 load_mw=[40 50 60 50 70 40];
9
10 scf(0);
11 y = [40 \ 40 \ 40 \ 50 \ 50 \ 60 \ 50 \ 50 \ 70 \ 70 \ 40 \ 40];
12 bar(y, 2, 'red');
13 xlabel('Time in hours');
14 ylabel('Load in kW');
15 xgrid(0)
16
17
18 md = max(y);
19 printf("\t (i) Maximum demand = \%.0 \text{ f MW } \ln \text{, md};
20
21 \text{ area=0};
22 n=6;
23 \text{ for } i=1:n;
24
      area=area+time(i)*load_mw(i);
25 \text{ end};
26
27 printf("\t (ii) Units generated per day = \%.0 \, \text{f kWh} \, \text{n}
      n, area*1000);
28 \text{ al=area}*1000/24;
29 printf("\t (iii) Average load = \%.0 \text{ f kW } \ln \text{, al};
30 \ lf = al/md/1000;
31 printf("\t (iv)Load factor = \%.2 f \% \ \n\n", lf*100);
```


Figure 3.2: diversity and load factor

${\bf Scilab} \ {\bf code} \ {\bf Exa} \ {\bf 3.11} \ {\bf diversity} \ {\bf and} \ {\bf load} \ {\bf factor}$

```
1 //Chapter 3
2 //Example 3_11
3 //Page 54
4
5 clear;
6 clc;
```

```
7
8 1=[200 100 50 100]
9 p = [100 150 350 300 100];
10 t = [6 \ 2 \ 2 \ 8 \ 6];
11
12 scf(2);
13 y = [100 \ 100 \ 100 \ 150 \ 350 \ 300 \ 300 \ 300 \ 100 \ 100 \ 100];
14 bar(y, 2, 'green');
15 xgrid(0)
16 xlabel('Time in hours');
17 ylabel('Load in kW');
18
19 md = max(p);
20 printf("Maximum demand = \%.0 \text{ f kW } \ln \text{, md});
21 \quad sum_l = sum(1);
22
23 printf("(i) Diversity factor = \%.3 \, \text{f } \ln \text{n}, sum_1/md)
24
25 \text{ ugpd=0};
26 \text{ for } i=1:5
27
      ugpd=ugpd+p(i)*t(i);
28 \quad end;
29 printf("(ii) Units generated per day = \%.0 \text{ f kWh } \ln n
       ", ugpd);
30
31 \text{ al=ugpd/}24;
32 printf("(iii) Average load = \%.1 \text{ f kW } \ln \text{"}, al);
34 printf("\t Load factor = \%.1 \text{ f } \% \setminus \text{n} \text{n}", al/md*100);
```

Scilab code Exa 3.12 station load factor

```
1 //Chapter 3
\frac{2}{\sqrt{\text{Example } 3.12}}
3 //Page 54
5 clear; clc;
7 c=[0 600 200 800 0; 200 0 1000 0 200; 0 200 1200 0
      200];
8 t = [8 6 2 6 2];
10 for i=1:3
11
     energy(i)=0;
12
      sum_md=0;
     md(i)=max(c(i,:));
13
     printf("Max demand of customer \%i = \%.0 f W \setminus n \setminus n",i
14
         , md(i));
15
16
     for j=1:5
        energy(i)=energy(i)+c(i,j)*t(j);
17
18
19
     end;
20
      sum_md=sum_md+md(i);
     lf(i) = energy(i)/md(i)/24*100;
21
22
     printf("Load factor of customer \%i = \%.2 f \%\% \ \n\n"
23
         , i,lf(i));
24
25 end;
26
27 \text{ for } j=1:5
28
      sum_c(j)=0;
     for i=1:3
29
30
        sum_c(j) = sum_c(j) + (c(i,j));
31
32
33
     end;
34 \text{ end};
35 sim=max(sum_c);
```

```
36 df=sum(md)/sim;
37 printf("Diversity factor = %.2 f \n\n", df);
38
39 slf=sum(energy)/sim/24;
40 printf("Station load factor = %.2 f %% \n\n", slf
     *100);
```

Scilab code Exa 3.13 15 min peak

```
1 //Chapter 3
2 //Example 3_13
3 //Page 55
4
5 clear; clc;
6
7 peak=3000;
8 area=12;
9 area_per_cm=1000;
10 peak_time=15;
11
12 ad=area_per_cm*2*area/24;
13 printf("Average demand = %.0 f kW \n\n", ad);
14 lf=area_per_cm/peak*100;
15 printf("Load factor = %.2 f %% \n\n", lf);
```

Scilab code Exa 3.14 heat rate

```
1 //Chapter 3
2 //Example 3_14
```

```
3 //Page 56
5 clear; clc;
7 p = [260 200 160 100];
8 t = [6 8 4 6];
9 \text{ sets}=4;
10 p_set=75;
11 cv = 10000;
12 heat=2860;
13
14 //load factor
15 n=4;
16 \text{ upd=0};
17 for i=1:n
18 upd=(upd+(p(i)*t(i)));
19 end;
20
21 dlf=upd/max(p)/24;
22 printf("(i)\t Daily load factor=\%.2 f \% \ \n\n", dlf
      *100);
23
24 //average demand per day
25 \text{ adpd=upd/24};
26 printf("(ii)\t Average demand per day=\%.0 f kW \n\n",
       adpd*1000);
27 sc=p_set*1000*sets;
28 \text{ pcf} = \text{adpd/sc} * 1000;
29 printf("\t Plant capacity factor =\%.2 f \%\ \n\n", pcf
      *100);
30
31 //fuel per day
32 \text{ hpd=heat*upd};
33 fpd=hpd/cv;
34 printf("(iii)\tFuel required per day = \%.1 f tons \n\
      n", fpd);
```


Figure 3.3: load duration curve

Scilab code Exa 3.15 load duration curve

```
1 //Chapter 3
2 //Example 3_15
3 //Page 56
4
5 clear; clc;
```

```
7 1 = [20 40 60 20 50 20];
8 t=[2 4 4 4 4 6];
9
10 scf(0);
11 subplot (1,2,1)
12 y = [20 20 40 60 20 50];
13 bar(y, 1, 'red');
14 xgrid(0);
15 xlabel('Time of day');
16 ylabel('Load in kW');
17 title('Load curve');
18
19 subplot(1,2,2)
20 r = [60 50 40 20 20 20];
21 bar(r, 1, 'green');
22 xgrid(0);
23
24 xlabel('Hours duration');
25 ylabel('Load in kW');
26 title('Load duration curve');
27
28 \text{ area=0};
29 for i=1:6
     area=area+l(i)*t(i);
30
31 end;
32 printf("Units generated per day = \%.0 \text{ f MWh } \ln \text{"},
      area);
```

Scilab code Exa 3.16 utilisation factor

```
1 // Chapter 3
2 // Example 3_16
3 // Page 57
```

```
4
5 clear; clc;
7 const=4;
8 \text{ max1=20};
9 \text{ tg1=10};
10 \text{ tg}2=10;
11 tg3=5;
12
13 ic=tg1+tg2+tg3;
14 ad=0.5*(maxl+const);
15 pf=ad/ic;
16 ugpa=ad*1000*8760;
17 lf = ad/max1 * 100;
18 uf=maxl/ic;
19
20 printf("Installed capacity = \%.0 \text{ f MW } \ln \text{, ic};
21 printf("Average demand = \%.0 \text{ f MW } \backslash n \backslash n", ad);
22 printf("Plant factor = \%.2 \text{ f } \% \setminus \text{n} \text{n}", pf*100);
23 printf ("Units generated per annum = \%.2 \, f*10^6 \, kWh \ n
        n, ugpa*1e-6);
24 printf("Load factor = \%.2 \, \text{f } \% \setminus \text{n} \cdot \text{n}", lf);
25 printf("Utilisation factor = \%.2 \text{ f } \% \setminus \text{n} \text{n}", uf*100);
```

Scilab code Exa 3.17 maximum load on feeder

```
1 //Chapter 3
2 //Example 3_17
3 //Page 57
4
5 clear; clc;
6
7 //Transformer 1- general power service and lighting
```

```
8 \text{ ahp=10}; akw=5;
9 bhp=7.5; bkw=4;
10 chp = 15;
11 dhp=5; dkw=2;
12
13 //Transformer 2 - residence lighting
14 ekw=5;
15 fkw=4;
16 \text{ gkw=8};
17 hkw = 15;
18 \text{ ikw} = 20;
19
20 //Transformer 3 - Store lighting and power
21 \text{ jkw=10; jhp=5;}
22 \text{ kkw=8; khp=25;}
23 \ 1kw=4;
24
25 \quad n=0.72;
26
27 // Referring to Article 3.8 for demand factor values
       for various load types
28 //The factor used to convert HP to kW is 0.746
29 a=ahp*0.746/n*0.65+akw*0.6;
30 b=bhp*0.746/n*0.75+bkw*0.6;
31 c = chp * 0.746/n * 0.65;
32 d = dhp * 0.746/n * 0.75 + dkw * 0.6;
33
34 t1=a+b+c+d;
35 // diversity factor for consumers of this type is 1.5
        as per Article 3.8
36 \text{ md1}=t1/1.5;
37
38 e = ekw * 0.5;
39 f = fkw * 0.5;
40 g = gkw * 0.5;
41 h = hkw * 0.5;
42 i = ikw * 0.5;
43
```

```
44 t2 = e + f + g + h + i;
45 //diversity factor is given to be between 3 and 4,
       taking average of these two values
46 \text{ md}2=t2/3.5;
47
48 j = jhp*0.746/n*0.75 + jkw*0.5;
49 k=khp*0.746/n*0.55+kkw*0.5;
50 l = 1kw * 0.5;
51
52 t3=j+k+1;
53 //diversity factor is 1.5
54 \text{ md}3=t3/1.5;
55
56 //diversity factor between transformers is 1.3
57 \text{ max\_load} = (\text{md1+md2+md3})/1.3;
58
59 printf("Individual maximum demand of the group of
       consumers connected to transformer 1 as obtained
        from Article 3.8 are as follows: \n");
60 printf("\t a: \%.2 \, f \, kW \, \n", a);
61 printf("\t b: \%.2 \text{ f kW } \text{ \n", b)};
62 printf("\t c: \%.2 \text{ f kW } \text{ n}", c);
63 printf("\t d: \%.2 \text{ f kW } \setminus n \setminus n", d);
64 printf("Total = \%.2 \text{ f kW } \text{ n}", t1);
65 printf ("Maximum demand on transformer 1 = \%.2 \, \text{f kW} \setminus \text{n}
       \n\n", md1);
66
67 printf ("Individual maximum demand of the group of
       consumers connected to transformer 2 are as
       follows: \n");
68 printf("\t e: \%.2 \text{ f kW } \text{ n}", e);
69 printf("\t f: \%.2 \text{ f kW } \text{ n}", f);
70 printf("\t g: \%.2 \text{ f kW } \n", g);
71 printf("\t h: \%.2 \text{ f kW } \setminus n", h);
72 printf("\t i: \%.2 \text{ f kW } \ln n", i);
73 printf("Total = \%.2 \text{ f kW } \text{ n}", t2);
74 printf ("Maximum demand on transformer 2 = \%.2 \, \text{f kW} \setminus \text{n}
       \n\n", md2);
```

Scilab code Exa 3.18 daily load cycle

```
1 //Chapter 3
2 //Example 3_18
3 //Page 61
4
5 clear; clc;
6
7 l=[20 40 50 35 70 40];
8 t=[8 3 5 3 3 2];
9
10 scf(0);
11 y=[20 20 20 20 20 20 20 40 40 40 50 50 50 50 35 35 35 70 70 70 40 40];
12 bar(y, 1, 'red');
```


Figure 3.4: daily load cycle

```
13 xlabel('Time in hours');
14 ylabel('Load in MW');
15 xgrid(0);
16
17 ugpa=0;
18 for i=1:6;
      ugpa=ugpa+l(i)*t(i);
19
20 \text{ end};
21
22 printf("Units generated per day = \%.0 \text{ f MWh } \ln \text{"},
       ugpa);
23
24 al=ugpa*1000/24;
25 \quad lf = al/max(1)/1000;
26 printf("Average load = \%.1 \, f \, kW \, n\n", al);
27 printf("Load factor = \%.2 \, \text{f} \, \% \, \backslash \text{n} \, \text{n}", lf*100);
```

Scilab code Exa 3.19 installed capacity

```
1 //Chapter 3
2 //Example 3_19
3 //Page 61
4
5 clear; clc;
6
7 pl=[10 5 8 7];
8 df=1.5;
9 lf=0.6;
10 sets=4;
11
12 //maximum demand
13 md=sum(pl)/df;
14 printf("(i)\t Max. demand on station = %.0 f MW\n\n"
```

Scilab code Exa 3.20 capacity factor

```
1 //Chapter 3
\frac{2}{2} //Example 3_20
3 // Page 64
5 clear; clc;
7 \text{ bl} = 18;
8 \text{ sc} = 20;
9 asso=7.35*1e6;
10 ablso=101.35*1e6;
11 pl=12;
12 hours = 2190;
13
14 printf("Standby station\n\n");
15 alf=asso/pl/1000/hours;
16 printf("\t Annual loadfactor = \%.2 f \% \ \n\n", alf
      *100);
17 apcf=asso/sc/1000/8760;
18 printf("\t Annual plan capacity factor = \%.2 f \% \ \n
```

```
n", apcf*100);
19
20 printf("Base load station\n\n");
21 alf_base=ablso/bl/1000/8760;
22 printf("Annual load factor = %.2 f %% \n\n", alf_base *100);
```

Scilab code Exa 3.21 steam plant capacity

```
1 //Chapter 3
\frac{2}{2} //Example 3_31
3 // Page 64
5 clear; clc;
7 max_1=60000;
8 min_1=20000;
9 peak_1=50000;
10 lf=1;
11 n_steam=0.6;
12
13 s = poly(0, "s");
14 p=333*s^2+24000*s-338000;
15 \text{ r=roots(p)};
16 \text{ x=r(1)};
17 y=40000*round(x)/24;
18 steam_capacity=max_l-y;
19
20 printf("x=\%d \ n", x);
21 printf("y=\%d kW \n", y);
22 printf("Capacity of steam plant = %d kW \n",
```

Scilab code Exa 3.22 generated units

```
1 //Chapter 3
2 / Example 3_22
3 / \text{Page } 65
5 clear; clc;
7 \text{ ratio} = [7, 4, 1];
8 lf=1;
9
10 //Referring to the graph in page 66
11
12 ugpa=1000*(1/2*(320+160)*8760);
13 steam=ugpa*ratio(1)/sum(ratio);
14 ror=ugpa*ratio(2)/sum(ratio);
15 reservoir=ugpa*ratio(3)/sum(ratio);
16
17 md_ror=ror/8760;
18 y=sqrt(reservoir*32/876000);
19 md_res=y;
20 md_steam=320-y-md_ror/1000;
21 lf_res=reservoir/md_res/1000/8760;
22 lf_steam=steam/md_steam/1000/8760;
23
24 printf ("Units generated per annum = \%.2 \text{ f}*10^6 \text{ kW } \text{ }
      n", ugpa/10<sup>6</sup>);
25 printf ("Units generated by steam plant = \%.2 \, f*10^6
      kWh \ n, steam/10^6);
26 printf ("Units generated by run of river plant = \%.2 \,\mathrm{f}
      *10^6 kWh \n", ror/10^6);
27 printf ("Units generated by reservoir plant = \%.2 f
      *10^6 kWh \ln n, reservoir/10^6);
```

```
28
29 printf("(i) Maximum demand of run of river plant =
     \%d~kW~\n" , \mbox{md\_ror} );
30 printf("
              Maximum demand of reservoir plant = %d
     M\!W \n", md_res);
31 printf("
              Maximum demand of steam plant = %d MW \n
     n, md_steam);
32
33 printf("(ii) Load factor of run of river plant = %d
     34 printf("
                Load factor of reservoir plant = %d %%
     \n", lf_res*100);
               Load factor of steam plant = \%.2 f \% \ n
35 printf("
     ", lf_steam *100);
```

Chapter 4

Economics of Power Generation

Scilab code Exa 4.1 annual depreciation charge

```
1 //Chapter 4
2 //Example 4_1
3 //Page 74
4
5 clear; clc;
6
7 p=90000;
8 n=20;
9 s=10000;
10
11 adc=(p-s)/n;
12 printf("Annual depreciation charge = Rs. %.0 f \n\n", adc);
```

 ${\it Scilab}\ {\it code}\ {\it Exa}\ 4.2$ payment for sinking fund

```
1 //Chapter 4
2 //Example 4_2
3 //Page 74
4
5 clear; clc;
6
7 p=200000;
8 s=10000;
9 n=20;
10 r=0.08;
11
12 q=(p-s)*r/((1+r)^n-1);
13 printf("Annual payment for sinking fund = Rs. %.0f \ n\n", q);
```

Scilab code Exa 4.3 value after 20years

```
1 //Chapter 4
2 //Example 4_3
3 //Page 75
4
5 clear; clc;
6
7 p=1560000;
8 s=60000;
9 n=25;
10 y=20;
11 r=0.05;
12
13 printf("(i)Straight line method\n");
14 ad=(p-s)/n;
15 val1=p-ad*y;
16 printf("\t Value of equipment after %.0 f years = Rs.
```

Scilab code Exa 4.4 fixed and running charges

```
1 //Chapter 4
2 //Example 4_4
3 //Page 76
4
5 clear; clc;
6
7 md=50000;
8 p=95*1e6;
9 lf=0.4;
10 fuel_oil=9*1e6;
11 tax=7.5*1e6;
12 rate=0.12;
13
14 ugpa=md*lf*8760;
15 printf("Units generated per annum = %.0 f kWh \n\n", ugpa);
```

```
16
17 afc=rate*p;
18 printf("Annual fixed charges = Rs. %.0 f \n\n", afc);
19
20 arc=fuel_oil+tax;
21 tac=afc+arc;
22 cpu=tac/ugpa;
23 printf("Cost per unit= Rs. %.2 f \n\n", cpu);
```

Scilab code Exa 4.5 cost per unit

```
1 //Chapter 4
\frac{2}{\text{Example }}4_{-5}
3 // Page 76
5 clear; clc;
7 ic=50000;
8 units=220*1e6;
9 afc_per_kW=160;
10 rc_per_kWh = 0.04;
11
12 afc=afc_per_kW*ic;
13 arc=rc_per_kWh*units;
14 tac=afc+arc;
15 cpu=tac/units;
16
17 printf("Annual fixed charges = Rs. \%.0 \, f \, \ln n", afc);
18 printf("Annual running charges = Rs. \%.0 \text{ f } \ln \text{n}, arc
      );
19
20 printf("Total annual charges = Rs. \%.0 f \ \n\n", tac);
21 printf("Cost per unit = Rs. \%.5 f \n\n", cpu);
```

Scilab code Exa 4.6 load factor values

```
1 //Chapter4
\frac{2}{\text{Example }}4_{-6}
3 // Page 76
5 clear; clc;
7 \text{ md} = 100;
8 cost=160000;
9 afc_rate=0.12;
10 interest = 0.05;
11 dep=0.05;
12 \text{ tax=0.02};
13 lf1=1;
14 \ 1f2=0.5;
15
16 afc=afc_rate*cost;
17 printf("Annual fixed charges = Rs. \%.0 \, f \, \ln n", afc);
18
19 printf("When land factor is 100\%\% \ n");
20 ugpa1=md*lf1*8760;
21 fc1=afc/ugpa1;
22 printf("Units generated per annum = \%.0 \, \text{f kWh } \, \text{n}",
      ugpa1);
23 printf("Fixed charges per kWh = Rs. \%.5 \, f \ n\n", fc1)
24
25 printf("When land factor is 50\%\% \ n");
26 ugpa2=md*lf2*8760;
27 fc2=afc/ugpa2;
28 printf("Units generated per annum = \%.0 \, f \, kWh \, n",
```

```
ugpa2); 29 printf("Fixed charges per kWh = Rs. %.5 f \n\n", fc2);
```

Scilab code Exa 4.7 cost per kWh

```
1 //Chapter 4
\frac{2}{\sqrt{\text{Example } 4.7}}
3 // Page 77
5 clear; clc;
6
7 \text{ pc} = 50;
8 	 1f = 0.4;
9 p=12*1e6;
10 tax = 400000;
11 other_cost=0.01;
12 interest = 0.05;
13 \text{ dep=0.06};
14
15 \text{ md=pc};
16 printf("Annual fixed charges\n");
17 i_and_d=p*(interest+dep);
18 afc=i_and_d+tax;
19 printf ("Interest and depreciation = Rs. \%.0 \, f \, n",
       i_and_d);
20 printf ("Wages and taxation = Rs. \%.0 \, \text{f} \, \text{n}", tax);
21 printf("Total annual fixed charges = Rs. \%.0 \, f \, \ln n",
        afc);
22
23 printf("Annual running charges\n");
24 ugpa=md*lf*8760*1000;
25 cost=other_cost*ugpa;
```

Scilab code Exa 4.8 reserve capacity and kWh

```
1 //Chapter 4
2 / Example 4_8
3 //PAge 77;
 5 clear; clc;
 7 ic = 300;
8 \text{ cf} = 0.5;
9 	ext{ lf = 0.6};
10 cost = 9 * 1 e7;
11 p=1e9;
12 i_d=0.1;
13
14 md=ic*cf/lf;
15 \text{ rc=ic-md};
16 printf("Reserve capacity = \%.0 \, f \, MW \, \ln n", rc);
17
18 ugpa=md*lf*8760*1000;
19 afc=i_d*p;
20 arc=cost;
21 tac=afc+arc;
22 cost=tac/ugpa;
```

Scilab code Exa 4.9 two part form

```
1 //Chapter 4
\frac{2}{\text{Example }}4_{-9}
3 //Page 78
5 clear; clc;
6
7 \text{ md} = 40;
8 	 1f = 0.6;
9 \text{ cost} = 7 * 1 e 5;
10 \text{ fc\_rate} = 0.2;
11
12 ic=50;
13 p=1000;
14 \text{ dep=0.1};
15 r_per_kW=1;
16 \text{ r_per_kWh=0.1};
17
18 ugpa=md*lf*1000*8760;
19 \text{ cc=ic*1e6};
20
21 printf("Annual fixed charges\n");
22 d=dep*cc;
23 sm=fc_rate*cost;
24 afc=d+sm;
```

```
25 \text{ c_per_kW=afc/md/1000+r_per_kW};
26
27 printf("\t Depreciation = Rs. \%.0 \, f \, \n", d);
28 printf("\t Sales, maintainence = Rs. \%.0 \, \text{f} \, \text{n}", sm);
29 printf("\t Total annual fixed charges = Rs. %.0 f \n"
      , afc);
30 printf("\t Cost per kW = Rs. \%.2 f \n\n", c_per_kW);
31
32 printf("Annual running charges\n");
33 \text{ s_m=}(1-\text{fc_rate})*\text{cost};
34 c_per_kWh=s_m/ugpa+r_per_kWh;
35 printf("\t Salaries, maintainence = Rs. \%.0 \, \mathrm{f} \, \ln",
      s_m);
36 printf("\t Cost per kWh = Rs. \%.4 \text{ f } \ln n", c_per_kWh)
37
38 printf("Total generation cost in two part form is
      given by: \n \t \t \t \t \t \t \ Rs. (%.2 f *kW + %.4 f
```

Scilab code Exa 4.10 a b c form

```
1 //Chapter 4
2 //Example 4_10
3 //Page 78
4
5 clear; clc;
6
7 md=60;
8 lf=0.5;
9 b_and_e=5*1e6;
10 fotw=900000;
11 int_dep=0.1;
```

```
12 org=500000;
13
14 ugpa=md*lf*8760*1000;
15 \text{ a=org};
16 asfc=int_dep*b_and_e;
17 b=asfc/md/1000;
18 c=fotw/ugpa;
19
20 printf("Units generated per annum = \%.0 \, f \, kWh \, \ln n",
       ugpa);
21
22 printf("Annual fixed cost = Rs. \%.0 \text{ f } \ln \text{n}", a);
23
24 printf("Annual semi fixed cost = Rs. \%.2 \text{ f } \ln \text{ n}", b);
25
26 printf("Annual running cost = Rs. \%.5 \, f \ \n\n", c);
```

Scilab code Exa 4.11 overall generation cost

```
1 //Chapter 4
2 //Example 4_11
3 //Page 79
4
5 clear; clc;
6
7 cost=3000;
8 i=0.05;
9 dep=0.02;
10 om=0.02;
11 i_r=0.015;
12 l=0.125;
13 d=1.25;
14 m_d=0.8
```

```
15 lf=0.4;
16
17 // assume ic = 100kW
18 \text{ ic} = 100;
19
20 \text{ md=m_d*ic};
21 \text{ ad=md*lf};
22 \text{ cc=cost}*100;
23
24 \text{ fc=cc*(i+dep)};
25 \text{ agg_md=md*d};
26 afc=fc/agg_md;
27
28 \text{ rc=cc*(om+i_r)};
29 ugpa=ad*8760;
30 u = ugpa*(1-1);
31 \text{ arc=rc/u};
32
33 printf("Annual fixed charges\n");
               Annual fixed charges = Rs. \%.0 \, f \, n, fc);
34 printf("
                Aggregate of maximum demand = \%.0 \text{ f kW } \text{ } \text{n}",
35 printf("
        agg_md);
36 printf("
               Annual fixed charges = Rs. %.0f per kW of
      \max demand \langle n \rangle ", afc);
37
38 printf("Annual running charges\n");
39 printf("
               Annual running charges = Rs. \%.0 \, f \, n, rc)
                Units generated per annum = \%.0 \, f \, kWh \, n,
40 printf("
      ugpa);
                Units reaching customer = \%.0 \, f \, kWh \, n, u
41 printf("
      );
42 printf("
                Annual running charges = Rs. \%.5 f \n\n,
      arc);
43
44 printf ("Generation cost in two part form is: \n \t \t
      \t \t \t \Rs(\%.0 f * kW + \%.5 f * kWh) \n\n", afc, arc)
```

```
45
46 t=fc+rc;
47 printf("Total annual charges = Rs. %.0 f n", t);
48 printf("Cost per kWh = Rs. %.4 f n", t/u);
```

Scilab code Exa 4.12 private and public supply

```
1 //Chapter 4
2 / \text{Example } 4_12
3 / \text{Page } 80
5 clear; clc;
7 \text{ md} = 1;
8 	ext{ lf=0.5};
9 \text{ cc}=12*1e5;
10 \text{ rm} = 0.005;
11 fc=1600;
12 id=0.1;
13 fcon=0.3;
14 \quad w = 50000;
15 c = 150;
16 \text{ rc=0.15};
17
18 ugpa=md*1000*lf*8760;
19
20 printf("(i) Private oil engine generating plant\n");
21 afc=fcon*ugpa;
22 \ a_f_c = afc * fc / 1000;
23 arm=rm*ugpa;
24 \text{ aw=w};
25 \text{ aid=id*cc};
26
```

```
27 printf(" Annual fuel consumption = \%.0 \, \text{f} \, \text{kg} \, \text{n}", afc)
28 printf(" Annual cost of fuel = Rs. \%.0 \, f \ n", a_f_c);
29 printf(" Annual cost of maintainence and repair = Rs
       . \%.0 f \n, arm);
30 printf(" Annual wages = Rs. \%.0 \, \text{f} \, \text{n}", aw);
31 printf(" Annual interest and depreciation = Rs. \%.0 \, \mathrm{f}
        n^n, aid);
32 printf(" Total annual charges = Rs. \%.0 \, f \, \ln n",
       a_f_c+arm+aw+aid);
33
34
35 \text{ afc2=c*1000};
36 arc=rc*ugpa;
37 t = afc2 + arc;
38 printf("(ii) Public supply\n");
39 printf(" Annual fixed charges = Rs. \%.0 \, \text{f} \, \text{n}", afc2);
40 printf("Annual running charges = Rs. \%.0 \, f \, n", arc);
41 printf("Total annual charges = Rs. \%.0 \text{ f } \ln \text{,r},t);
```

Scilab code Exa 4.13 steam and hydro

```
1 //Chapter 4
2 //Example 4_13
3 //Page 80
4
5 clear; clc;
6
7 md=100;
8 lf=0.3;
9 hp=1e8;
10 max0(2)=40;
11
```

```
12 \text{ cc} = [1250 \ 2500];
13 id=[0.12 .1];
14 \text{ oc} = [0.05 \ 0.015];
15 tc = [0 \ 0.002];
16
17 ugpa=md*lf*8760*1000;
18 printf ("Units generated per annum = \%.0 \text{ f kWh } \ln \text{n}",
      ugpa);
19
20 printf("STEAM IN CONJUNCTION WITH HYDRO STATION\n");
21 u(2) = hp;
22 u(1) = ugpa - u(2);
23 printf("Units supplied by hydro station = \%.0 f kWh \
      n \setminus n", u(2));
24 printf("Units supplied by steam station = \%.0 \, f \, kWh \setminus
      n \setminus n", u(1));
25
26
27 \text{ max0}(1) = \text{md} - \text{max0}(2);
28 printf ("Maximum output of steam station = \%.0 f MW \n
      n, max0(2));
29
30 \text{ for } i=1:2
     if i==1
31
        printf("\n(a) Steam station\n");
32
33
      end;
34
35
     if i==2
        printf("\n(b) Hydro station\n");
36
37
      end;
38
      capc(i) = max0(i) *1000*cc(i);
39
40
      aid(i)=id(i)*capc(i);
      opc(i)=oc(i)*u(i);
41
      trc(i)=tc(i)*u(i);
42
      tac(i)=opc(i)+trc(i)+aid(i);
43
44
      printf("Capital cost = Rs. \%.0 \, f \ n", capc(i));
45
```

```
printf("Annual interest and depreciation = Rs. %.0
46
         f \setminus n, aid(i));
     printf("Operating cost = Rs. \%.0 \, f \ n", opc(i));
47
      printf("Transmission cost = Rs. \%.0 \, \text{f} \, \text{n}", trc(i));
48
49
      printf("Total annual cost = Rs. \%.0 \, f \, \ln n", tac(i)
         );
50
51 end;
52
53 t = sum(tac);
54 printf("Total annual charges for both steam and
      hydro stations = Rs. \%.0 \, \text{f} \, \text{n}, t);
55 o_c=t/ugpa;
56 printf("Overall cost per kWh = Rs. \%.5 f \n\n", o_c);
57
58 \text{ for } j=1:2
59
      if j==1
60
        printf("\nSTEAM STATION\n");
61
62
      end:
63
      if j==2
64
        printf("\nHYDRO STATION\n");
65
      end;
66
67
68
      cct(j) = cc(j) * md * 1000;
      a_id(j)=id(j)*cct(j);
69
70
      fc(j)=a_id(j)/ugpa;
71
      opct(j)=oc(j);
72
     trct(j)=tc(j);
      ovct(j)=fc(j)+opct(j)+trct(j);
73
74
75
      printf("Capital cost = Rs. \%.0 \, f \ n", cct(j));
      printf ("Annual interest and depreciation = Rs. %.0
76
         f \setminus n, a_{id}(j);
      printf ("Fixed charges/kWh = Rs. %.5 f \n", fc(j));
77
78
      printf ("Operating cost/kWh = Rs. %.4 f \n", opct(j)
         );
```

```
79    printf("Transmission cost/kWh = Rs. %.4 f \n", trct (j));
80    printf("Overall/kWh cost = Rs. %.5 f \n\n", ovct(j));
81 end;
```

Scilab code Exa 4.14 unit cost

```
1 //Chapter 4
\frac{2}{2} //Example 4_14
3 // Page 81
5 clear; clc;
7 \text{ mw} = 150;
8 cc_steam = 1600;
9 cc_hydro=3000;
10 \text{ oc\_steam} = 0.06;
11 oc_hydro=0.03;
12 interest = 0.07;
13
14 \text{ md} = \text{mw} * 10^3;
15 printf("MAximum demand = \%d MW \n", mw);
16 printf("STEAM PLANT: \n");
17 cc_s=cc_steam*md;
18 ai_s=interest*cc_s;
19 fc_s=ai_s;
20 rc_s=oc_steam;
21
22 printf("Capital cost = Rs. \%d*10^6 \ n", cc_s/10^6);
23 printf("Annual interest = Rs. \%.2 \, f*10^6 \, n", ai_s
       /10^6);
24 printf ("Fixed cost/unit = Rs. \%.2 \text{ f}*10^6/\text{x} \text{ n}", fc_s
```

```
/10^6);
25 printf ("Running cost/unit = Rs. \%.2 \, \text{f} \, \text{n}", rc_s);
26 printf ("Total cost/unit = Rs. \%.2 \text{ f}*10^6/\text{x}+\%.2 \text{ f} \text{ } \text{n}"
       , ai_s/10^6, rc_s);
27
28 printf("HYDRO PLANT: \n");
29 cc_h=cc_hydro*md;
30 ai_h=interest*cc_h;
31 fc_h=ai_h;
32 rc_h=oc_hydro;
33
34 printf("Capital cost = Rs. \%d*10^6 \ n", cc_h/10^6);
35 printf("Annual interest = Rs. \%.2 \, f*10^6 \, n", ai_h
       /10^6);
36 printf("Fixed cost/unit = Rs. \%.2 \text{ f}*10^6/\text{x} \text{ n}", fc_h
       /10^6);
37 printf ("Running cost/unit = Rs. \%.2 \, \text{f} \, \text{n}", rc_h);
38 printf ("Total cost/unit = Rs. \%.2 \text{ f}*10^6/\text{x}+\%.2 \text{ f} \text{ } \text{n}"
       , ai_h/10^6, rc_h);
39
40 x = 490 * 10^6;
41 printf ("By equating the overall cost, we get x = \%.2
       f \text{ kWh } \setminus n", x);
42
43 lf=x/md/8760;
44 printf("Load factor = \%.2 \, \text{f} \, \%\%", lf*100);
```

Scilab code Exa 4.15 generation cost

```
1 //Chapter 4
2 //Example 4_15
3 //Page 82
```

```
5 clear; clc;
7 \text{ cc_h} = 2100;
8 \text{ cc_s} = 1200;
9 \text{ rc_h=0.032};
10 rc_s = 0.05;
11 id_s=0.09;
12 id_h=0.075;
13 resc_h=0.33;
14 \text{ resc_s=0.25};
15 units=40*10^6;
16
17 u = 8760;
18 printf(" x kW - maximum demand \ny -annual load
      factor at which cost for both stations are same \
      nUnits generated per annum = %dxy kWh \n\n", u);
19
20 \text{ ic_s=1+resc_s};
21 ic_h=1+resc_h;
22 printf ("Installed capacity of steam plant = \%.2 fx kW
       n, ic_s);
23 printf ("Installed capacity of hydro plant = \%.2 fx kW
       \n\n", ic_h);
24 printf("STEAM STATION: \n");
25 \text{ ccs=cc\_s*ic\_s};
26 ids=id_s*ccs;
27 rcs=rc_s*8760;
28 printf("Capital cost = Rs. \%dx \n", ccs);
29 printf ("Interest and depreciation = Rs. \%dx n", ids
      );
30 printf("Running cost/annum = Rs %dxy \n", rcs);
31 printf ("Overall cost/kWh = Rs (\%dx+\%dxy)/(\%dxy) \ln n
      ", ids, rcs, u);
32
33 printf("HYDRO STATION: \n");
34 \text{ cch=cc_h*ic_h};
35 idh=id_h*cch;
36 rch=rc_h*8760;
```

Scilab code Exa 4.16 hours of operation

```
1  //Chapter 4
2  //Example 4_16
3  //Page 83
4
5  clear; clc;
6
7  cap_b=17241;
8  cap_a=50000-cap_b;
9  y=8760*cap_b/50000;
10
11  printf("Capacity of station B = %d kW \n", cap_b);
12  printf("Capacity of station A = %d kW \n", cap_a);
13  printf("Number of hours if station B operation = %d hours \n\n", y);
```

Chapter 5

Tariff

Scilab code Exa 5.1 simple tariff 1

```
1 //Chapter 5
\frac{2}{2} //Exxample 5_1
3 //PAge 91
5 clear; clc;
7 \text{ md} = 200;
8 lf=0.4;
9 \text{ mdc} = 100;
10 \text{ ec=0.1};
11
12 ugpa=md*lf*8760;
13 ac=mdc*md+ec*ugpa;
14 oc=ac/ugpa;
15
16 printf("Units generated per annum = \%.0\,\mathrm{f} kWh \n\n",
17 printf("Annual charges = \%.0 \, f \, kWh \, \ln n", ac);
18 printf("Overall cost per kWh = Rs. \%.5 \, f \ \n\n", oc);
```

Scilab code Exa 5.2 flat rate 1

```
1 //Chapter 5
2 //Example 5_2
3 / \text{Page } 91
5 clear; clc;
7 i = 20;
8 v = 220;
9 e = 8760;
10 t = 500;
11 et=0.2;
12 et_plus=0.1;
13
14 lf=1;
15 md=i*v*lf/1000;
16 printf("Assuming load factor to be unity\n");
17 printf("Maximum demand = \%.1 \text{ f kW } \ln \text{, md});
18
19 u=md*t;
20 c=et*u;
21 \text{ ru=e-u};
22 c_extra=et_plus*ru;
23 total=c+c_extra;
24 eqfr=total/e;
25
26 printf("(i) Units consumed = \%.0 \text{ f kWh } \ln n", u);
27 printf("
                  Charges = Rs. \%.0 f \n\n", c);
28 printf("
                  Remaining units = \%.0 \, \text{f kWh } \ln \text{n}, ru);
                  Extra charges = Rs. \%.0 \, f \, \ln n, c_extra)
29 printf("
       ;
```

```
30 printf(" Total annual bill = Rs. %.0 f \ln n, total);
31 printf("(ii) Equivalent flat rate = Rs. %.5 f \ln n, eqfr);
```

Scilab code Exa 5.3 economical tariff

```
1 //Chapter 5
2 //Example 5_3
3 //Page 92
4
5 clear; clc;
6
7 rs=100;
8 exceed=0.15;
9 fr=0.3;
10
11 x=rs/(fr-exceed);
12
13 printf("Number of units at which charges due to both tariffs become equal = %.2 f units \n\n", x);
14 printf("Tariff (a) is economical if consumption is more than %.2 f units \n\n", x);
```

Scilab code Exa 5.4 number of units

```
1 // Chapter 5
2 // Example 5_4
3 // Page 92
```

```
5 clear; clc;
7 \text{ fc} = 30;
8 \text{ rc} = 0.03;
9 fu=400;
10 rfu=0.06;
11 add_u=0.05;
12
13 rate=fu*rfu-fu*add_u;
14 x=(fc-rate)/(add_u-rc);
16 printf("x is the number of units taken per annum for
       which the annual charges due to both tariffs
     become equal. \langle n \rangle;
17 printf ("Annual charges due to first tariff = Rs. (%d
     18 printf ("Annual charges due to second tariff = Rs. (
     19 printf ("Equating the two equations, x = \%.2 f \text{ kWh } \backslash n \backslash
     n", x);
```

Scilab code Exa 5.5 two part 1

```
1 //Chapter 5
2 //Example 5_5
3 //PAge 92
4
5 clear; clc;
6
7 md=50;
8 u=18*1e7;
9 ad=75;
```

```
10 fc=9000000;
11 fcg=2800000;
12 fctnd=3200000;
13 1=0.15;
14 \text{ rc=0.9};
15
16 printf("Annual fixed charges\n");
17 fuel=(1-rc)*fc;
18 tac=fcg+fctnd+fuel;
19 printf("Total annual charges = Rs. \%.0 \, f \, n", tac);
20 cmd=tac/ad/1000;
n", cmd);
22
23 printf("Annual running charges\n");
24 \text{ cf=rc*fc};
25 \text{ udc} = (1-1)*u;
26 c=cf/udc;
27
28 printf("Cost of fuel = Rs. \%.0 \, f \ n", cf);
29 printf ("Units deliivered to consumers = \%.0 \,\mathrm{f} kWh \n"
      , udc);
30 printf("Cost per kWh = Rs. \%.3 \text{ f } \ln \text{ n}", c);
31
32 printf ("Tariff is Rs. %.0f of maximum demand plus %
      .3f rupess per kWh \n\n", cmd, c);
```

Scilab code Exa 5.6 substation and consumer

```
1 //Chapter 5
2 //Exampl 5_6
3 //PAge 93
```

```
5 clear; clc;
7 \text{ md} = 75;
8 	 1f = 0.4;
9 \text{ gcc} = 60;
10 \text{ goc} = 0.04;
11 tcc=2000000;
12 \, dcc = 1500000;
13 tdf=1.2;
14 ddf=1.25;
15 n_tr=0.9;
16 \, \text{n\_dr} = 0.85;
17
18 printf("Cost at Substation\n\n");
19 printf("\t (i) Annual fixed charges\n");
20 \text{ gc=gcc*md*1000};
21 tafc=gc+tcc;
22 agg=md*1000*tdf;
23 ac=tafc/agg;
24
25 printf("\t\t Generation cost = Rs. \%.0 \, f \ n", gc);
26 printf("\t\t Transmission cost = Rs. \%.0 \, \text{f} \, \text{n}",tcc);
27 printf("\t\t Total annual fixed charges at the
      substation=Rs. \%.0 f \ n", tafc);
28 printf("\t\t Aggregate of all max demands by various
       substations = \%.0 f kW \n", agg);
29 printf("\t\t Annual cost per kW of maximum demand =
      Rs. \%.2 f \setminus n \setminus n, ac);
30
31 printf("\t (ii) Running charges\n");
32 c=goc/n_tr;
33 printf("\t\t Cost per kWh at substation = Rs. \%.4 f \
      n \setminus n", c);
34
35 printf("Cost at Consumers premises\n");
36 cp=tafc+dcc;
37 aggm=agg*ddf;
38 ckW=cp/aggm;
```

Scilab code Exa 5.7 solving for L

```
1 //Chapter 5
\frac{2}{\text{Example }}
3 / \text{Page } 94
5 clear; clc;
7 \text{ fcd} = 300;
8 \text{ fcs} = 1200;
9 \text{ rcd} = 0.25;
10 \text{ rcs} = 0.0625;
11
12 printf("Let L be the load factor\n");
14 printf("DIESEL STATION: \n");
15 apd=100/8760;
16 fc_d=fcd*apd;
17 rc_d=100*rcd;
18 printf("Average power = \%.4 \, \text{f kW } \, \text{n}", apd);
19 printf ("Maximum demand = \%.4 \text{ f/L kW } \text{n}", apd);
20 printf("Fixed charges = Rs. \%.2 f/L \n", fc_d);
```

```
21 printf("Running charges = Rs. \%.2 f \ n", rc_d);
22 printf ("Fixed and running charges = Rs. (\%.2 \text{ f/L} + \%)
       .2 f) \ \n\n", fc_d, rc_d);
23
24 printf("STEAM STATION: \n");
25 \text{ aps} = 100/8760;
26 \text{ fc_s=fcs*aps};
27 \text{ rc_s} = 100 * \text{rcs};
28 printf("Fixed charges = Rs. \%.2 \text{ f/L } \text{ n}", fc_s);
29 printf("Running charges = Rs. \%.2 \, \text{f} \, \text{n}", rc_s);
30 printf ("Fixed and running charges = Rs. (%.2 f/L + %
       31
32 \quad 1 = 54.72;
33 printf("Equating the two charges and solving, we get
        L = \%.2 f \% \langle n \rangle , 1);
```

Scilab code Exa 5.8 annual bill 1

```
1 //Chapter 5
2 //Example 5_8
3 //PAge 95
4
5 clear; clc;
6
7 md=100;
8 pf=0.8;
9 lf=0.6;
10 fc=75;
11 rc=0.15;
12
13 ucpy=md*lf*8760;
14 mdkva=md/pf;
```

Scilab code Exa 5.9 annual saving 1

```
1 //Chapter 5
 \frac{2}{\text{Example }}
3 //PAge 95
 5 clear; clc;
 7 \text{ ml} = 240;
8 \text{ pf} = 0.8;
9 \text{ ac} = 50000;
10 fc=50;
11 rc=0.1;
12
13 \text{ md1=ml/pf};
14 \text{ ab1=fc*md1+rc*ac};
15 flat1=ab1/ac;
16
17 md2=m1/1;
18 \text{ ab2=fc*md2+rc*ac};
19 as=ab1-ab2;
20
21 printf("With power factor = \%.1 \, f \ n", pf);
22 printf("Maximum demand = \%.0 \text{ f kVA } \text{n}", md1);
23 printf("Annual bill = Rs. \%.0 \, f \, n", ab1);
24 printf("Flat rate per unit = Rs. \%.3 f \n\n", flat1);
```

```
25
26 printf("With power factor unity \n");
27 printf("Maximum demand = %.0 f kVA \n", md2);
28 printf("Annual bill = Rs. %.0 f \n", ab2);
29
30
31 printf("Annual saving = Rs. %.0 f\n", as);
```

Scilab code Exa 5.10 monthly bill 1

```
1 //Chapter 5
 \frac{2}{\sqrt{\text{Example } 5.10}}
 3 //Page 96
 5 clear; clc;
7 \text{ md} = 50;
8 \text{ ec} = 36000;
9 \text{ re} = 23400;
10 \text{ fc=80};
11 \text{ rc=0.08};
12 plus=0.5;
13 pfl=86;
14
15 al=ec/24/30;
16 \text{ arp=re}/24/30;
17 phi=atan(arp/al);
18 pf = cos(phi);
19 pfsc=ec*plus*(pfl-pf*100)/100;
20 \text{ mb=fc*md+rc*ec+pfsc};
21
22 printf("Average laod = \%.0 \text{ f kW } \ln n", al);
23 printf("Average reactive power = \%.1 \, \text{f kVAR } \ln \,
```

Scilab code Exa 5.11 cost at varying pf

```
1 //Chapter 5
\frac{2}{\text{Example }} 5_11
3 //Page 96
5 clear; clc;
7 \text{ fc} = 150;
8 \text{ rc} = 0.08;
9 1f = 0.3;
10 pf1=1;
11 pf2=0.7;
12
13 md1=fc*100/8760/lf/pf1;
14 \text{ oc1=md1+rc*100};
15 printf("(i) When power factor is unity\n ");
                 MAx demand charge per unit = \%.2 f paise
16 printf("
      n, md1);
17 printf("
                 Energy charge per unit = \%.0 \, f paise \n",
       rc*100);
18 printf("
                 Overall cost per unit = \%.2 \, f paise \n\"
       , oc1);
19
20 md2=fc*100/8760/lf/pf2;
```

Scilab code Exa 5.12 difference in cost annually

```
1 //Chapter 5
2 / Example 5_12
3 / \text{Page } 97
5 clear; clc;
7 h=8;
8 d=300;
9 \text{ kwh} 1 = 0.05;
10 kva1=4.5;
11 kwh2=5.5;
12 \text{ kva}2=5;
13 al = 200;
14 pf1=0.8;
15 \text{ md} = 250;
16 \text{ hvc} = 50;
17 \quad lhv = 0.04;
18 id=0.12;
19
20 \text{ md1=md/pf1};
21 \text{ cap=md1/(1-lhv)};
22 \text{ ci=hvc*cap};
```

```
23 \text{ aid=ci*id};
24 ac1=cap*kva1*12;
25 \text{ uc1=al*h*d/(1-lhv)};
26 \quad ackwh1=kwh1*uc1;
27 tac1=aid+ac1+ackwh1;
28
29 printf("(i) High voltage supply \n");
                 Max demand in kVA = \%.2 f \ n, md1);
30 printf("
                 Considering losses in hy equipment, the
31 printf("
      capacity is = \%.2 \text{ f kVA } \text{ n}", cap);
32 printf("
                 Annual interest and depreciation = Rs. \%
      .0 f \ n, aid);
33 printf("
                 Annual charge due to max kVA demand = Rs
      . \%.0 f \n, ac1);
                 Units consumed/year = \%.0 \, f \, kWh \, n, uc1)
34 printf("
35 printf("
                 Annual charge due to kWh consumption =
      Rs. \%.0 f \ n, ackwh1);
36 printf("
                 Total annual cost = Rs. \%.0 \, f \ n\n, tac1
      );
37
38 \text{ md2=md/pf1};
39 \text{ ac2=md2*kva2*12};
40 \text{ uc2=al*h*d};
41 ackwh2=kwh2*uc2/100;
42 \text{ tac2=ac2+ackwh2};
43
44 printf("(ii)Low voltage supply\n");
                 Max demand in kVA = \%.2 f \ n, md2);
45 printf("
46 printf("
                 Annual charge due to max kVA demand = Rs
      . \%.0 f \ n, ac2);
47 printf("
                 Units consumed/year = \%.0 \, f \, kWh \, n, uc2)
                 Annual charge due to kWh consumption =
48 printf("
      \mathrm{Rs.}\ \%.0\,\mathrm{f}\ \backslash\mathrm{n}", ackwh2);
49 printf("
                 Total annual cost = Rs. \%.0 \, f \ \n\n, tac2
      );
50
```

```
51 printf("Difference in annual costs of two systems = Rs. %.0 f \n", tac2-tac1);
```

Scilab code Exa 5.13 cheaper alternative

```
1 //Chapter 5
 \frac{2}{2} //Example 5_13
 3 //Page 97
 5 clear; clc;
 7 p=1000;
 8 \text{ md} = 2500;
9 inc=5.5*1e6;
10
11 \, ds = 1000;
12 \text{ rs} = 400;
13 id=0.1;
14 fc=75;
15 \text{ rc=0.05};
16
17 \text{ gcc} = 120;
18 \text{ grc} = 0.03;
19
20 \text{ cc=rs*ds};
21 aid=id*cc;
22 \text{ ep=md-}2*ds;
23 kw1=fc*ep;
24 \text{ kwh1=rc*inc};
25 \text{ tac1}=\text{aid}+\text{kw1}+\text{kwh1};
26
27 printf("(i) Purchasing diesel set: \n");
28 printf("Capital cost = Rs. \%.0 \, f \ n", cc);
```

```
29 printf ("Annual interest and depreciation = Rs. %.0f
      n, aid);
30 printf ("Extra power to be generated = \%.0 \, \text{f kW } \, \text{n}",
      ep);
31 printf("Annual charge due to extra kW max demand =
      Rs. \%.0 f \setminus n", kw1);
32 printf("Annual charge due to extra kWh consumption =
       Rs. \%.0 f \ n, kwh1);
33 printf("Total Annual cost = Rs. \%.0 \, f \, \ln ", tac1);
34
35 \text{ kw2=ep*gcc};
36 kwh2=grc*inc;
37 \text{ tac2=kw2+kwh2};
38 printf("(ii) Purchasing from grid supply: \n");
39 printf("Annual charge due to extra kW max demand =
      Rs. \%.0 f \ n, kw2);
40 printf("Annual charge due to extra kWh consumption =
       Rs. \%.0 f \ n, kwh2);
41 printf("Total Annual cost = Rs. \%.0 \, f \, \ln ", tac2);
42
43 cheap=abs(tac1-tac2);
44
45 if tac1<tac2
46
     printf("Alternative (i) is cheaper by Rs. %.0f\n",
47
         cheap);
48
  else
    printf("Alternative (ii) is cheaper by Rs. %.0 f\n",
49
        cheap);
```

Chapter 6

Power factor improvement

Scilab code Exa 6.1 extra power supplied

```
1 //Chapter 6
2 //Example 6_1
3 //Page 109
4
5 clear; clc;
6
7 kw=300;
8 pf=0.6;
9
10 kva=kw/pf;
11 p=kva-kw;
12
13 printf("kVA = %0.f kW \n\n", kva);
14 printf("Increased power supplied by the alternator = %0.f kW \n\n", p);
```

Scilab code Exa 6.2 capacitance in parallel

```
1 //Chapter 6
2 //Example 6_2
3 / \text{Page } 109
5 clear; clc;
7 v = 400;
8 f = 50;
9 im = 31.7;
10 pf1=0.7;
11 pf2=0.9;
12
13 acim=im*pf1;
14 i=acim/pf2;
15 rcim=im*sin(acos(pf1));
16 rci=i*sin(acos(pf2));
17 ic=rcim-rci;
18 c=ic/v/(2*\%pi*f);
19
20 printf ("Active component of Im = \%.2 \, f \, A \, \ln n", acim)
21 printf("Active component of I = \%.1 f*I A \n\n", pf2)
22 printf ("Reactive component of Im = \%.2 f A \n\n",
      rcim);
23 printf ("Reactive component of I = \%.2 f A \n\n", rci)
24 printf ("Current through capacitor = \%.2 \, \text{f A } \ln ^{\circ}, ic
25 printf("C = \%.2 \, \text{f uF } \ln \, c*1e6);
```

Scilab code Exa 6.3 kw kva and pf

```
1 //Chapter 6
2 //Example 6_3
3 / \text{Page } 110
5 clear; clc;
7 \text{ kw} = [20 \ 100 \ 50];
8 \text{ pf} = [1 -0.707 \ 0.9];
9
10 tkvar=0;
11 for i=1:3
     kva(i) = abs(kw(i)/pf(i));
      printf("kVA %i = \%.2 \text{ f kVA } \text{ n}", i,kva(i));
13
      kvar(i)=kva(i)*sin(acos(pf(i)));
14
      printf("kVAR \%i = \%.2 f kVAR \n", i, kvar(i));
15
16 end;
17 tkvar=kvar(1)+kvar(2)+kvar(3);
18 tkva=sqrt(sum(kw)^2+(tkvar)^2);
19 printf("Total kW = \%.2 \text{ f kW } \text{ n}", sum(kw));
20 printf("Total kVAR = \%.2 \, \text{f kVAR } \ \text{n}", tkvar);
21 printf("Total kVA = \%.2 \, \text{f kVA } \ \text{n}", tkva);
22 printf("Power factor = \%.2 f lagging \n", sum(kw)/tkva
       );
```

Scilab code Exa 6.4 rating of capacitors

```
1 //Chapter 6
2 //Example 6_4
3 //Page 111
4
5 clear; clc;
6
7 p=5;
```

```
8 pf1=0.75;
9 pf2=0.9;
10
11 phi1=acos(pf1);
12 phi2=acos(pf2);
13
14 lead_kvar=p*(tan(phi1)-tan(phi2));
15 c=lead_kvar/3;
16
17 printf("Leading kVAR taken by condensor bank = %.2f kVAR \n\n", lead_kvar);
18 printf("Rating of capacitors connected in phase = % .3f kVAR \n\n",c);
```

Scilab code Exa 6.5 capacitance of each capacitor

```
1 //Chapter 6
2 //Example 6_5
3 //Page 111
4
5 clear; clc;
6
7 f=50;
8 v=400;
9 op=74.6;
10 pf1=0.75;
11 n=0.93;
12 pf2=0.95;
13 nc=4;
14 vc=100;
15
16 p=op/n;
17 phi1=acos(pf1);
```

```
18 \text{ phi2} = a\cos(pf2);
19 lead=p*(tan(phi1)-tan(phi2));
20 lead_each=lead/3;
21 icp=2*%pi*f*v;
22 kvar=v*icp/1000;
23 c=lead_each/kvar;
24 \text{ c_each=c*nc};
25
26 printf ("Leading kVAR taken by the condensor bank = \%
       .2 f kVAR \setminus n \setminus n", lead);
27 printf ("Leading kVAR taken by the each of the three
       sets = \%.2 f kVAR \ \ n\ ", lead_each);
28 printf ("Phase current of each capacitor is = \%.2 \, f*C
       A \setminus n \setminus n, icp);
29 printf("kVAR/phase = \%.2 \text{ f*C } \ln n", kvar);
30 printf("C = \%.2 \, \text{f uF } \setminus \text{n} \setminus \text{n}", c*1e6);
31 printf ("Capacitance of each capacitor is = \%.2 \,\mathrm{f} uF \
       n \ n", c_each*1e6);
```

Scilab code Exa 6.6 annual saving 2

```
1 //Chapter 6
2 //Example 6_6
3 //Page 112
4
5 clear; clc;
6
7 p=800;
8 pf1=0.8;
9 pf2=0.9;
10 h=3000;
11 fc=100;
12 rc=0.2;
```

```
13 \text{ cap=}60;
14 id=0.1;
15
16 phi1=acos(pf1);
17 phi2=acos(pf2);
18
19 lead=p*(tan(phi1)-tan(phi2));
20
21 printf ("Leading kVAR taken by the capacitors = \%.2 \,\mathrm{f}
       n", lead);
22 printf("Annual cost before pf correction\n");
23
24 md1=p/pf1;
25 \text{ kva1=fc*md1};
26 \text{ uc1=p*h};
27 \text{ ec1=rc*uc1};
28 tac1=kva1+ec1;
29
30 printf("Max kVA demand = \%.2 \, \text{f} \, \text{n}", md1);
31 printf("kVA demand charges = Rs. \%.0 \, \text{f} \, \text{n}", kva1);
32 printf("Units consumed per year = \%.0 \, f \, kWh \, n", uc1)
33 printf ("Energy charges per year = Rs. \%.0 \, f \, n", ec1)
34 printf("Total annual cost = Rs. \%.0 \, f \, \ln n", tac1);
35
36 printf("Annual cost after pf correction\n");
37
38 \text{ md2=p/pf2};
39 \text{ kva2=fc*md2};
40 \text{ ec2=rc*uc1};
41 cc=cap*lead;
42 \text{ aid=id*cc};
43 \text{ tac2=kva2+ec2+aid};
45 printf("Max kVA demand = \%.2 \, \text{f} \, \text{n}", md2);
46 printf("kVA demand charges = Rs. \%.0 \, \text{f} \, \text{n}", kva2);
47 printf ("Energy charges per year = Rs. \%.0 \,\mathrm{f} \, \mathrm{n}", ec2)
```

Scilab code Exa 6.7 annual saving 3

```
1 //Chapter 6
\frac{2}{\text{Example } 6.7}
3 //PAge 112
5 clear; clc;
7 p1 = 200;
8 \text{ pf1=0.85};
9 pf2=0.9;
10 h=2500;
11 fc=150;
12 \text{ rc=0.05};
13 cap = 420;
14 \; loss=100;
15 id=0.1;
16
17 phi1=acos(pf1);
18 phi2=acos(pf2);
19
20 ini=p1*tan(phi1);
21 x=(ini-p1*tan(phi2))/(1+0.1*tan(phi2));
```

```
22 printf ("Lead kVAR taken by the capacitor is = \%.2 f
      kVAR \setminus n \setminus n", x);
23
24 printf("Annual cost before pf correction\n");
25
26 md1=p1/pf1;
27 \text{ kva1=fc*md1};
28 \text{ uc1=p1*h};
29 \text{ ec1=rc*uc1};
30 \text{ tac1=kva1+ec1};
31
32 printf("Max kVA demand = \%.2 \, \text{f} \, \text{n}", md1);
33 printf("kVA demand charges = Rs. \%.0 \, \text{f} \, \text{n}", kva1);
34 printf("Units consumed per year = \%.0 \, \text{f} kWh \n", uc1)
   printf("Energy charges per year = Rs. %.0 f \n", ec1)
36 printf("Total annual cost = Rs. \%.0 \, \text{f } \ln \text{n}, tac1);
37
38 printf("Annual cost after pf correction\n");
39
40 \text{ md2=p1/pf2};
41 kva2=fc*md2;
42 \text{ ec2=rc*uc1};
43
44 \text{ aid=x*cap*id};
45 \text{ cap_loss=0.1*x*h};
46 al=cap_loss*rc;
47 tac2=kva2+ec2+aid+al;
48
49 printf("Max kVA demand = \%.2 \, \text{f} \, \text{n}", md2);
50 printf("kVA demand charges = Rs. \%.0 \, \text{f} \, \text{n}", kva2);
51 printf ("Energy charges per year = Rs. \%.0 \, \text{f} \, \text{n}", ec2)
52 printf ("Annual interest and depreciation = Rs. \%.0 f
       n, aid);
53 printf("Annual energy loss in capacitors = %.0 f kWh
       \n", cap_loss);
```

Scilab code Exa 6.8 net annual saving

```
1 //Chapter 6
2 / Example 6_8
3 / PAge 113
5 clear; clc;
6
7 \text{ md} = 750;
8 \text{ pf} = 0.8;
9 \text{ nc} = 250;
10 pr=8.5;
11 ic=20000;
12 fc=0.1;
13
14 phi=acos(pf);
15 \text{ ac=md*pf};
16 rc=md*sin(phi);
17 lead=rc-nc;
18 kva=sqrt(ac^2+lead^2);
19 red=md-kva;
20 m_saving=pr*red;
21 y_saving=m_saving*12;
22 fc_year=fc*ic;
23 net=y_saving-fc_year;
24
```

```
25 printf("Monthly demand = %.0 f kVA \n", md);
26 printf("kW component of demand = %.0 f \n", ac);
27 printf("kVA component of demand = %.0 f \n", rc);
28 printf("Lead kVA = %.0 f kVA \n", lead);
29 printf("kVA after improvement = %.2 f kVA \n", kva);
30 printf("Reduction in kVA = %.2 f kVA \n", red);
31 printf("Monthly saving on kVA charges = Rs. %.2 f \n", m_saving);
32 printf("Yearly saving on kVA charges = Rs. %.2 f \n", y_saving);
33 printf("Fixed charges per year = Rs. %.0 f \n", fc_year);
34 printf("Net annual saving = Rs. %.0 f \n\n", net);
```

Scilab code Exa 6.9 motor power factor

```
1 //Chapter 6
2 //Example 6_9
3 //Page 113
4
5 clear; clc;
6
7 p1=200;
8 p2=80;
9 pf1=0.8;
10 pf2=0.9;
11
12 p=p1+p2;
13 phi1=acos(pf1);
14 phi2=acos(pf2);
15
16 //From the figure given,
17
```

```
18 lead=p1*tan(phi1)-p*tan(phi2);
19 kva_rating=sqrt(p2^2+lead^2);
20 pf=p2/kva_rating;
21
22 printf("Combined load = %.0 f kW \n\n", p);
23 printf("(i) Leading kVAR taken by the motor = %.2 f kVAR \n\n", lead);
24 printf("(ii) kVA rating of the motor = %.2 f kVA \n\n", kva_rating);
25 printf("(iii) pf of the motor = %.2 f \n\n", pf);
```

Scilab code Exa 6.10 total annual bill

```
1 //Chapter 6
\frac{2}{2} //Example 6_10
\frac{3}{2} = \frac{114}{2}
5 clear; clc;
7 im = 37.3;
8 pf1=0.8;
9 n_{im} = 0.85;
10 \text{ sm} = 18.65;
11 pf2=0.9;
12 n_sm=0.9;
13 11=10;
14 pf3=1;
15 \text{ fc=60};
16 \text{ rc} = 0.05;
17 h = 2000;
18
19 ip_im=im/n_im;
20 lag_im=ip_im*tan(acos(pf1));
```

```
21 printf ("Input power to induction motor = \%.2 \text{ f kW } \text{ } \text{n}"
       , ip_im);
22 printf ("Lagging kVAR taken by induction motor = \%.2 f
       kW \setminus n \setminus n, lag_im);
23
24 \text{ ip\_sm=sm/n\_sm};
25 lead_sm=ip_sm*tan(acos(pf2));
26 printf ("Input power to synchronous motor = \%.2 \,\mathrm{f} kW \
      n", ip_sm);
27 printf ("Leading kVAR taken by synchronous motor = %
       .2 f kW \n\n", lead_sm);
28 net=lag_im-abs(lead_sm);
29 tap=ip_im+ip_sm+11;
30 tkva=abs(sqrt(net^2+tap^2));
31 dc=fc*tkva;
32 \text{ ec=tap*h};
33 aec=abs(rc*ec);
34 \text{ t=dc+aec};
35
36 printf("Net lagging kVAR = \%.2 \, \text{f} \, \text{n}", net);
37 printf("Total active power = \%.2 \, f \ n", tap);
38 printf("Total kVA = \%.2 \, \text{f} \, \text{n}", tkva);
39 printf("Annual demand charges = Rs. %.2 f \n", dc);
40 printf("Energy consumed per year = \%.2 \, f \, kWh \, n", ec)
41 printf("Annual energy charges = Rs. \%.2 \, f \ n", aec);
42 printf("Total annual bill = Rs. \%.2 \text{ f } \text{ n}", t);
```

Scilab code Exa 6.11 synchronous motor power factor

```
1 //Chapter 6
2 //Example 6_11
3 //Page 114
```

```
5 clear; clc;
711=500;
8 11 = 400;
9 \text{ pf1=0.707};
10 12=800;
11 pf2=0.8;
12 13=500;
13 pf3=0.6;
14 \, dcg = 540;
15 \quad n=0.9;
16
17 tlag=11*tan(acos(pf1))+13*tan(acos(pf3));
18 lead=12*tan(acos(pf2));
19 tlead=tlag-lead;
20 ip=dcg/n;
21 tan_phi=tlead/lead;
22 phi=atan(tan_phi);
23 pf = cos(phi);
24
25 printf("Total lagging kVAR taken = \%.2 \, \text{f} \, \text{n}", tlag);
26 printf ("Leading kVAR taken = \%.2 \, \text{f} \, \text{n}", lead);
27 printf("Total leading kVAR taken = \%.2 \,\mathrm{f} \, \mathrm{n}", tlead);
28 printf("Motor input = \%.2\,\mathrm{f} kW \n", ip);
29 printf("phi = \%.2 \, \text{f radians} \, \text{n}", phi);
30 printf ("Power factor of synchronous motor = \%.2 f
       lead \n", pf);
```

Scilab code Exa 6.12 annual saving 5

```
1 //Chapter 6
2 //Example 6_12
```

```
3 // Page 115
5 clear; clc;
7 \text{ sm} = 100;
8 im = 200;
9 pf2=0.707;
10 n2=0.82;
11 11=30;
12 fc=100;
13 \text{ rc=0.06};
14 pf1=0.8;
15 \text{ n1=0.93};
16
17 printf("(i) When synchronous motor runs at %.1f pf
       lag: \n\n", pf1);
18 ip_sm=sm*735.5/n1/1000;
19 lag1=ip_sm*tan(acos(pf1));
20 printf("\t Input to synchronous motor = \%.2 \,\mathrm{f} kW \n",
        ip_sm);
21 printf("\t Lagging kVAR taken by synchronous motor =
       \%.2 \text{ f kVAR } \n\n", lag1);
22
23 ip_im=im*735.5/n2/1000;
24 lag2=ip_im*tan(acos(pf2));
25 printf("\t Input to induction motor = \%.2 \text{ f kW } \text{ n}",
       ip_im);
26 printf ("\t Lagging kVAR taken by induction motor = \%
       .2 f kVAR \setminus n \setminus n, lag2);
27
28 tlag1=lag1+lag2;
29 tap1=ip_im+ip_sm+ll;
30 tkva1=sqrt(tlag1^2+tap1^2);
31 dc1=tkva1*fc;
32 \text{ ec1=tap1*8760};
33 \text{ aec1=ec1*rc};
34 \text{ tab1}=\text{aec1}+\text{dc1};
35 printf("\t Total lagging kVAR = \%.2 \text{ f kVAR } \text{ } \text{n}", tlag1
```

```
);
36 printf("\t Total active power = \%.2 \text{ f kW } \text{n}", tap1);
37 printf("\t Total kVA = \%.2 \, \text{f kVA \n"}, tkva1);
38 printf("\t Annual kVA demand charges = Rs. \%.2 \, \text{f} \, \text{n}",
        dc1);
39 printf("\t Energy consumed per year = \%.2 \, \text{f kWh } \ \text{n}",
40 printf("\t Annual energy charges = Rs. \%.2 \, \mathrm{f} \, \backslash \mathrm{n}",
41 printf("\t Total annual bill = Rs. \%.2 \text{ f } \text{ } \text{n}", tab1)
42
43 printf("(ii) When synchronous motor runs at %.1f pf
       lead: \n\n", pf1);
44 \text{ net} = -lag1 + lag2;
45 	 tap2=ip_im+ip_sm+ll;
46 tkva2=sqrt(net^2+tap2^2);
47 dc2=tkva2*fc;
48 \text{ ec2=tap2*8760};
49 \text{ aec2=ec2*rc};
50 \text{ tab2=aec2+dc2};
51 printf("\t Net lagging kVAR = \%.2 \, \text{f} kVAR \n", net);
52 printf("\t Total active power = \%.2 \, \text{f kW } \, \text{n}", tap2);
53 printf("\t Total kVA = \%.2 \, \text{f kVA \n"}, tkva2);
54 printf("\t Annual kVA demand charges = Rs. \%.2 f \n",
        dc2);
55 printf("\t Energy consumed per year = \%.2 \text{ f kWh } \text{n}",
56 printf("\t Annual energy charges = Rs. \%.2 \, f \ n",
       aec2);
57 printf("\t Total annual bill = Rs. \%.2 f \n\n", tab2)
58
59 \quad as=tab1-tab2;
60 printf("Annual saving = Rs. \%.0 \, f \, \ln \, as);
```

Scilab code Exa 6.13 economical pf operation

```
1 //Chapter 6
2 / Example 6_13
\frac{3}{\text{Page }} 118
5 clear; clc;
7 \text{ md} = 175;
8 \text{ pf} = 0.75;
9 \text{ fc} = 72;
10 pae=120;
11 id=0.1;
12
13 x=fc;
14 \text{ y=pae*id};
15 ec_pf=sqrt(1-(y/x)^2);
17 printf("MAx demand charges = Rs. %.0f per kVA per
      annum\n", fc);
18 printf("Expenditure on phase advancing equipment =
      Rs. \%.0 f / kVAR / annum \n", y);
19 printf ("Most economical power factor at which
      factory should operate = \%.3 \, f lag n, ec_pf);
```

Scilab code Exa 6.14 annual saving 6

```
1 //Chapter 6
```

```
\frac{2}{\text{Example } 6.14}
3 //PAge 119
5 clear; clc;
6
7 \text{ ad} = 400;
8 \text{ pf1=0.8};
9 	 1f = 0.5;
10 fc=50;
11 \text{ rc=0.05};
12 \text{ pf2=0.95};
13 pae=100;
14 id=0.1;
15
16 p=ad/lf;
17 printf("Max kW demand = \%.0 \text{ f kW } \ln n", p);
18
19 phi1=acos(pf1);
20 phi2=acos(pf2);
21
22 lead=p*(tan(phi1)-tan(phi2));
23 printf("(i) Leading kVAR taken by the phase
       advancing equipment = \%.2 \, \text{f kVAR } \n", lead);
24 printf("
                 Capacity of phase advancing equipment =
      \%.2 \text{ f kVAR } \n\n", lead);
25 \text{ x=fc};
26 \text{ y=pae*id};
27 \text{ max1=p/pf1};
28 \text{ max2=p/pf2};
29 as=fc*(max1-max2);
30 aexp=y*lead;
31 net=as-aexp;
32
33 printf("(ii) Max demand charges = \%.0 \text{ f kW } \text{n}", x);
                   Expenditure on phase advnacing
       equipement = Rs. \%.2 f /kVAR/annnum \n", y);
                   Max demand at \%.1 f pf = \%.2 f kVA \n",
35 printf("
      pf1, max1);
```

Scilab code Exa 6.15 annual saving 9

```
1 //Chapter 6
 \frac{2}{\sqrt{\text{Example } 6.15}}
 \frac{3}{19}
 5 clear; clc;
7 \text{ md} = 50;
8 	ext{ lf=0.5};
9 \text{ pf} = 0.75;
10 fc=100;
11 \text{ rc=0.05};
12 \, \text{lfc=600};
13 id=0.1;
14
15 \text{ x=fc};
16 \text{ y=id*lfc};
17 z=y/x;
18 \text{ ec_pf=sqrt}(1-z^2);
19 kwd=md/lf;
20 \text{ m1=kwd/pf};
21 m2=kwd/ec_pf;
22 \text{ as=fc*(m1-m2)};
23
```

Scilab code Exa 6.16 annual bill 3

```
1 //Chapter 6
\frac{2}{2} //Example 6_16
\frac{3}{2} = \frac{120}{2}
5 clear; clc;
7 p = 200;
8 \text{ pf} = 0.8;
9 \text{ fc=100};
10 \text{ rc} = 0.05;
11 pae=500;
12 id=0.1;
13 h=5000;
14
15 x=fc;
16 \text{ y=pae*id};
17 ec_pf = sqrt(1-(y/x)^2);
18 cap=p*(tan(acos(pf))-tan(acos(ec_pf)));
19 uc=h*p;
```

```
20 \text{ ec=uc*rc};
21 \text{ cpae=y*cap};
22 	ext{ dc=x*p/ec_pf};
23 ab=ec+cpae+dc;
24
25 printf("Max demand charges = \%.0 \text{ f kW } \text{n}", x);
26 printf("Expenditure on phase advnacing equipement =
      Rs. \%.2 f / kVAR / annnum / n / n", y);
27 printf("(i) Most economical power factor at which
      factory should operate = \%.3 f lag \n\n", ec_pf);
28 printf("(ii) Capacity of phase advancing equipment =
      \%.2 \text{ f kVAR } \n\n", cap);
29 printf("(iii) Units consumed per year = %.0 f kWh \n"
       , uc);
30 printf("Annual energy charges = Rs. \%.0 \, \text{f} \, \text{n}", ec);
31 printf("Annual cost of phase advancing equipment =
      Rs. \%.0 f \ n, cpae);
32 printf("Max demand charges = Rs. \%.0 \, \text{f} \, \text{n}", dc);
33 printf("Annual bill for energy = Rs. \%.0 \, \text{f} \, \text{n}", ab);
```

Scilab code Exa 6.17 annual saving 8

```
1 //Chapter 6
2 //Example 6_17
3 //Page 120
4
5 clear; clc;
6
7 u=80000;
8 md=500;
9 pf1=0.707;
10 fc=120;
11 rc=0.025;
```

```
12 pae = 50;
13 pf2=0.9;
14 id=0.1;
15
16 printf ("Energy consumed per year = \%.0 \text{ f kWh} \ ", u);
17 printf("Max kVA demand = \%.0 \, \text{f} \, \text{n}", md);
18
19 \text{ ac=md*fc+rc*u};
20 printf("Annual cost of supply = Rs. \%.0 \, f \, n", ac);
21 \quad m1 = md * pf1;
22 p = m1;
23 printf("Max kW demand at \%.3 \, \text{f} pf = \%.2 \, \text{f} \n", pf1, m1
24 lead=p*(tan(acos(pf1))-tan(acos(pf2)));
25 printf("Leading kVAR taken by phase advancing
       equipment = \%.1 \, f \, kVAR \, \backslash n", lead);
26 cpae=pae*id*lead;
27 printf("Annual cost of phase advancing equipment =
       Rs. \%.0 f \ n, cpae);
28 \text{ m} 2 = p/pf 2;
29 printf ("Max kW demand at \%.3 \,\mathrm{f} pf = \%.2 \,\mathrm{f} \n", pf2, m2
30 \text{ red=md-m2};
31 printf ("Reduction in kVA demand = \%.1 \, \text{f} \, \text{n}", red);
32 \text{ as=fc*red};
33 printf("Annual saving in kVA charges = Rs. %.0 f \n",
        as);
34 printf("Annual saving = Rs. \%.0 \,\mathrm{f} \, \mathrm{n}", as-cpae);
```

Scilab code Exa 6.18 pfc equipment

```
1 //Chapter 6
2 //Example 6_18
```

```
\frac{3}{2} = \frac{123}{2}
5 clear; clc;
6
7 \text{ pf1=0.7};
8 pf2=0.85;
9 add_cost = 800;
10
11 //Referring to figure 6.15,
12 //The initial capacity of the plant is OB kVA at pf
      = pf1
13 a1=pf2/pf1;
14 BD=a1-1;
15 tc=BD*add_cost;
16 phi1=(acosd(pf1));
17 phi2=(acosd(pf2));
18 lead=a1*sind(phi1)-sind(phi2);
19 cost=tc/lead;
20
21 disp("COST OF INCREASING PLANT CAPACITY: ");
22 printf("The initial capacity of the plant is OB kVA
      at pf = pf1 \setminus n \setminus n");
23 printf ("The increase in kVA capacity of the plant =
      \%.4 \text{ f}*OB \setminus n \setminus n", BD);
24 printf ("Total cost of increasing the plant capacity
      = Rs. \%.2 \text{ f}*OB \ \n\n", tc);
25
26 disp ("COST OF POWER FACTOR CORRECTION EQUIPMENT: ");
27 printf ("Leading kVAR taken by p.f correction
      equipment = \%.2 \text{ f*OB } \n\n", lead);
28 printf ("Let the cost per kVAR of the equipment be Rs
      . y \setminus n \setminus n");
29 printf("Total cost of p.f correction equipment = Rs.
       30 printf ("Equating the total cost, y = Rs. \%.1 f \n\n",
       cost);
```

Scilab code Exa 6.19 phase advancers

```
1 //Chapter 6
\frac{2}{\sqrt{\text{Example } 6.19}}
\frac{3}{2} = \frac{124}{2}
5 clear; clc;
7 pf1=0.7;
8 pf2=0.866;
9 \text{ tc=100};
10 id=0.1;
11
12 //Referring to phasor diagram of figure 6.16,
13 a1=pf2/pf1;
14 BD=a1-1;
15 ac=BD*10;
16 phi1=(acosd(pf1));
17 phi2=(acosd(pf2));
18 lead=a1*sind(phi1)-sind(phi2);
19 pae_cost=lead*id;
20 cost=ac/pae_cost;
21
22 disp("COST OF INCREASING PLANT CAPACITY: ");
23 printf ("The increase in kVA capacity of the plant =
      \%.4 \text{ f}*OB \setminus n \setminus n", BD);
24 printf ("Total cost of increasing the plant capacity
      = Rs. \%.2 f*OB \n\n", ac);
25
26 disp("COST OF PHASE ADVANCING EQUIPMENT: ");
27 printf ("Leading kVAR taken by p.f correction
      equipment = \%.3 \text{ f*OB } \ln n, lead);
```

- 28 printf("Let the cost per kVAR of the equipment be Rs . y \n^n);
- 29 printf("Annual cost of phase advancing equipment = Rs. %.3 f*y*OB \n\n", pae_cost);
- 30 printf("Equating the total costs for economy, y = Rs . %.2 f \n\n", cost);

Chapter 7

Supply Systems

Scilab code Exa 7.1 saving in feeder copper

```
1 //Chapter 7
2 //Example 7_1
3 //Page 145
4
5 clear; clc;
6
7 v1=200;
8 v2=400;
9
10 //ratio of two voltages r is
11 r=v1/v2;
12 v2_by_v1=1/(2/r);
13 //In the above relation 'v' is volume
14 saving=(1-v2_by_v1)*100;
15
16 printf("%% saving in feeder copper = %d %% \n\n", saving);
```

Scilab code Exa 7.4 additional load

```
1 //Chapter 7
2 //Example 7_4
\frac{3}{4} = \frac{149}{1}
5 clear; clc;
7 p1 = 200;
9 //The inference from the derivation is that power
      supplied by 3-phase, 3-wire a.c. system is twice
       the power supplied by single phase 2 wire system
10
11 p2=2*p1;
12
13 printf("Power supplied by 3-phase, 3-wire a.c.
      system is = \%d kW \setminus n \setminus n", p2);
14 \text{ per} = (p2-p1)/p1*100;
15 printf("Thus three phase three wire system can
      supply \%d \%\% additional load \n\n", per);
```

Scilab code Exa 7.5 conductor volume comparision

```
1 //Chapter 7
2 //Example 7_5
3 //Page 149
```

```
5 clear; clc;
71=0;
8 \text{ mva}=5;
9 \text{ pf} = 0.8;
10 kv = 33;
11 n=0.9;
12 \text{ sr} = 2.85 * 1e - 8;
13
14 p=mva*1e6*pf;
15 w = 0.1*p;
16
17 // Single phase 2-wire system
18 i1=mva*1e6/kv/1000;
19 area1=2*sr*i1^2*1*1000/w;
20 vol1=2*area1*1*1000;
21
\frac{22}{3-\text{phase }3-\text{wire system}}
23 i2=mva*1e6/sqrt(3)/kv/1000;
24 area2=3*i2^2*sr*l*1000/w;
25 vol2=3*area2*1*1000;
26
27 printf("(I) SINGLE PHASE, 2-WIRE SYSTEM: \n");
28 printf("Line current = \%.1 \, f \, A \, n", i1);
29 printf ("Area of cross section = \%.3 \, f*10^-4 \, m^2 \, n",
      area1*1e4);
30 printf ("Volume of conductor required = \%.2 \, \text{f m}^3 \, \ln n
      ", vol1);
31
32 printf("(II) 3-PHASE, 3-WIRE SYSTEM: \n");
33 printf("Line current = \%.1 \, \text{f A } \setminus \text{n}", i2);
34 printf("Area of cross section = \%.3 \, f*10^-4 \, m^2 \, n",
       area2*1e4);
35 printf ("Volume of conductor required = \%.2 \text{ f m}^3 \ln n
      ", vol2);
```

Scilab code Exa 7.6 voltages in DC 2wire system

```
1 //Chapter 7
2 //Example 7_6
\frac{3}{\text{Page }} 149
5 clear; clc;
7 \text{ kv} = 11;
8 pf = 0.8;
9 r=0.15;
10 \text{ vd} = 0.15;
11 tr=0.05;
12 \text{ avd} = 0.25;
13
14 //single phase system
15 volt_drop=vd*kv*1000;
16 i1=volt_drop/r;
17 p1=i1*kv*1000*pf/1000;
18
19 //DC two wire system
20 v=sqrt((p1*1000*tr)/avd);
21
22 printf("SINGLE PHASE SYSTEM: \n");
23 printf("Voltage drop = \%.2 \, f*I1 \, V \, n", vd);
24 printf("Also voltage drop = \%d V \n", volt_drop);
25 printf("Load current = I1 = \%d A \n", i1);
26 printf("Power recieved by consumer = \%.2 \text{ f}*10^4 \text{ kW} \setminus n
      n, p1*1e-4);
27
28 printf("DC TWO WIRE SYSTEM: \n");
29 printf("Load current = I2 = \%d/V A \n", p1*1000);
```

```
30 printf("Voltage drop = \%.2\,f*\%.3\,f/V\ n", p1*1000, tr);
31 printf("Allowable voltage drop = \%.2\,f\ V\ n", avd);
32 printf("V = \%d\ V\ n", v);
```

Scilab code Exa 7.7 area of conductor 1

```
1 //Chapter 7
2 //Example 7_{-}7
3 //Page 153
5 clear; clc;
7 1=1;
8 i = 200;
9 / \cos t = (20*a + 20)
10 \text{ cost=5};
11 id=0.1;
12 p=1.73*1e-6;
13
14 ra=p*1*1e5;
15 e=2*i^2*ra*8760/1000;
16 ac=cost*e/100;
17 \text{ cc} = 20 * 1000;
18 vac=id*cc;
19 a=sqrt(ac/vac);
20
21 printf ("Resistance of one conductor = \%.3 \, f/a ohm \n\
      n", ra);
22 printf ("Energy lost per annum = \%.1 \, f/a \, kWh \, \ln ", e)
23 printf("Annual cost of energy lost = Rs. \%d/a \ n\ ",
       ac);
```

```
24 printf("Capital cost is given to be Rs.20*a per
    metre. Threfore for 1km cable = Rs. %d*a \n\n",
    cc);
25 printf("Variable annual charge = Rs. %d*a \n\n", vac
    );
26 printf("Area of cross section = %.2 f cm^2 \n\n", a);
```

Scilab code Exa 7.8 area of conductor 2

```
1 //Chapter 7
2 //Example 7_8
\frac{3}{2} = \frac{153}{2}
5 clear; clc;
7 mw=5;
8 \text{ kv} = 33;
9 \text{ pf} = 0.8;
10 \text{ cost} = 4;
11 id=0.1;
12 p=1e-6;
13
14 // \cos t = Rs (25000 * a + 2500)
15
16 \text{ ra=p*1e5};
17 i=mw*1e6/sqrt(3)/kv/1000/pf;
18 e=3*i^2*ra*8760/1000;
19 ac=cost*e/100;
20 \text{ cc} = 25000;
21 vac=id*cc;
22 a=sqrt(ac/vac);
24 printf ("Resistance of one conductor = \%.3 \, f/a ohm \n\
```

```
n", ra);
25 printf("Line current = %.2 f A \n\n", i);
26 printf("Energy lost per annum = %.1 f/a kWh \n\n", e);
27 printf("Annual cost of energy lost = Rs. %d/a \n\n", ac);
28 printf("Capital cost is given to be Rs.20*a per metre. Threfore for 1km cable = Rs. %d*a \n\n", cc);
29 printf("Variable annual charge = Rs. %d*a \n\n", vac );
30 printf("Area of cross section = %.2 f cm^2 \n\n", a);
```

Scilab code Exa 7.9 area of conductor 3

```
1 //Chapter 7
2 //Example 7_9
3 // Page 154
5 clear; clc;
7 i = 250;
8 \text{ cc} = 5;
9 id=0.1;
10 \text{ cost} = 5;
11 d=8.93;
12 p=1.73*1e-8;
13 1=1;
14
15 ra=p*1;
16 e=2*i^2*ra*8760/1000;
17 ac=cost*e/100;
18 mass=2*d*1*1000;
```

```
19 cc=cc*mass;
20 vac=id*cc;
21 a=sqrt(ac/vac);
22
23 printf ("Resistance of one conductor = \%.3 \, f*10^-8/a
      ohm \n\n", ra*1e8);
24 printf("Line current = \%.2 \, f \, A \, \ln \,, i);
25 printf ("Energy lost per annum = \%d*10^-8/a kWh n\n"
      , e*1e8);
26 printf ("Annual cost of energy lost = Rs. \%d*10^-8/a
      \n\n", ac*1e8);
27 printf("Mass of 1m feeder = \%.2 \, f*10^3*a \n\n", mass
      *1e-3);
28 printf("Capital cost is given to be Rs.20*a per
      metre. Threfore for 1km cable = Rs. \%d*a \n\n",
29 printf ("Variable annual charge = Rs. \%d*a \n\n", vac
30 printf("Area of cross section = \%.2 \text{ f}*10^-4 \text{ m}^2 \text{ } \text{ } \text{n}"
      , a*1e4);
```

Scilab code Exa 7.10 area of conductor 4

```
1 //Chapter 7
2 //Example 7_10
3 //Page 154
4
5 clear; clc;
6
7 h=[6 12 6];
8 mw=[20 5 6];
9 pf=[0.8 0.8 0.8];
10 days=365;
```

```
11 kv = 110;
12 \text{ cc} = 6000;
13 id=0.1;
14 \text{ cost=6};
15 \text{ ra}=0.176;
16
17 v = kv * 1000;
18 printf ("Resistance of one conductor = \%.3 \, f/a \, ohm \, n
      n", ra);
19 printf("Line voltage = \%d V \setminus n \setminus n", v);
20 sum_i=0;
21 \text{ for } i=1:3
22
      I(i)=mw(i)*1e6/sqrt(3)/v/pf(i);
     printf ("Current at %d MW = \%.2 \, f A \n\n", mw(i), I(
23
         i));
24
      sum_i = sum_i + I(i)^2 * h(i);
25 end
26 \text{ e=}3*ra*sum_i/1000;
27 loss=e*days;
28 \text{ ac=cost*loss/100};
29 vac=id*cc;
30 a=sqrt(ac/vac);
31
32 printf ("Energy lost per day in three phase line = \%
       .2 f/a \text{ kWh } \ln n, e);
33 printf("Energy lost per annum = \%.2 \, f/a \, kWh \, \ln n",
       loss);
34 printf ("Annual cost of energy lost = Rs. \%.2 \text{ f/a} \ln n
      ", ac);
35 printf("Variable annual charge = Rs. \%d*a \n\n", vac
36 printf("Area of cross section = \%.2 \text{ f cm}^2 \ln^2, a);
```

Chapter 8

Mechanical Design of Overhead Lines

Scilab code Exa 8.1 string efficiency 1

```
1 //Chapter 8
\frac{2}{\sqrt{\text{Example } 8.1}}
\frac{3}{\sqrt{page}} \frac{171}{1}
5 clear; clc;
7 v = 33 * 1 e 3;
8 \text{ k=0.11};
9 ins=3;
10
11 v_string=v/sqrt(3);
12 v1=v_string/(3+4*k+k^2);
13 v2=v1*(1+k);
14 \quad v3 = v1 * (1 + 3 * k + k^2);
15 n=v_string*100/ins/v3;
16
17 printf("(i) Voltage across top unit = \%.2 \text{ f kV } \ln \text{m},
       v1/1000);
18 printf(" Voltage across middle unit = \%.2 \text{ f kV } \ln
```

Scilab code Exa 8.2 string efficiency 2

```
1 //Chapter 8
2 / Example 8_2
\frac{3}{2} // Page 172
5 clear; clc;
7 v1=8;
8 v2=11;
10 k = (v2 - v1) / v1;
11 v3=v2+(v2+v1)*k;
12 v = v1 + v2 + v3;
13 lv = sqrt(3) *v;
14 n = v * 100/3/v3;
15
16 printf("k = \%.2 f kV \setminus n \setminus n", k);
17 printf ("Voltage across third unit = \%.2 \text{ f kV } \ln \text{"},
       v3);
18 printf("Voltage between line and earth = \%.2 f kV \n\
       n", v);
19 printf("Line voltage = \%.2 \, f \, kV \, nn", lv)
20 printf ("String efficiency = \%.2 \text{ f } \% \setminus \text{n} \text{n}", n);
```

Scilab code Exa 8.3 string efficiency 3

```
1 //Chapter 8
2 //Example 8_3
\frac{3}{2} // Page 172
 5 clear; clc;
7 ins=3;
8 v3=17.5;
9 k=1/8;
10 v1=v3/(1+3*k+k^2);
11 v2 = (1+k) * v1;
12 v = v1 + v2 + v3;
13
14 n = v * 100/3/v3;
15
16 printf("Voltage across first unit = \%.2 \text{ f kV } \ln \text{,}",
       v1);
17 printf("Voltage across second unit = \%.2 \, f \, kV \, n^*,
18 printf ("Voltage between line and earth = \%.2 \,\mathrm{f} kV \n\
       n", v);
19 printf("String efficiency = \%.2 \text{ f } \% \setminus \text{n} \text{n}", n);
```

Scilab code Exa 8.4 voltage between busbars

```
1 //Chapter 8
```

```
\frac{2}{\text{Example } 8.4}
3 //Page 173
5 clear; clc;
6
7 v2=11;
8 v3=13.1;
10 p1=poly([1 3 1], 'k', 'c');
11 p2=poly([1 1],'k', 'c');
12 p = v3 * p2 - v2 * p1;
13 r=roots(p, 'e');
14 \text{ k=r(2)};
15
16 v1=v2/(1+k);
17 printf("V1 = \%.2 \text{ f kV } \setminus n \setminus n", v1);
18
19 v = v1 + v2 + v3;
20 printf("Voltage between line and earth = \%.2 \, f \, kV \setminus n \setminus
       n", v);
21 printf("Voltage between bus bars = \%.2 \text{ f kV } \text{ } \text{n}", v*
       sqrt(3));
```

Scilab code Exa 8.5 string efficiency 4

```
1 //Chapter 8
2 //Example 8_5
3 //Page 173
4
5 clear; clc;
6
7 ins=3;
8 v3=15;
```

```
9 k=1/8;
10 v1=v3/(1+3*k+k^2);
11 v2=(1+k)*v1;
12 v=v1+v2+v3;
13
14 n=v*100/3/v3;
15
16 printf("Voltage across first unit = %.2 f kV \n\n", v1);
17 printf("Voltage across second unit = %.2 f kV \n\n", v2);
18 printf("Voltage between line and earth = %.2 f kV \n\n", v);
19 printf("String efficiency = %.2 f %% \n\n", n);
```

Scilab code Exa 8.6 string efficiency 5

```
1 //Chapter 8
2 //Example 8_6
3 //Page 174
4
5 clear; clc;
6
7 ins=4;
8 k=0.1;
9 x=1;
10
11 v1=x*1;
12 v2=x*(1+k);
13 v3=x*(1+3*k+k^2);
14 v4=x*(1+6*k+5*k^2);
15 v=v1+v2+v3+v4;
16
```

```
17 pv1=v1/v*100;
18 pv2=v2/v*100;
19 pv3=v3/v*100;
20 pv4=v4/v*100;
21
22 n=v/ins/v4*100;
23
24 printf("\n(i) Voltage across top unit = \%.2 \, \text{f V } \text{n}",
25 printf ("Voltage across second unit = \%.2 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n}", v2)
26 printf ("Voltage across third unit = \%.2 \, \text{f V } \text{n}", v3);
27 printf("Voltage across fourth unit = \%.2 \, f \, V \, \ln^n,
       v4);
28 printf("Voltage across the string = \%.2 \, \text{f V } \, \text{n}", v);
29
30 printf ("The voltage across each unit expressed as a
       percentage becomes: \n");
31 printf("\t Top unit = \%.2 f \% \ n", pv1);
32 printf("\t Second from top = \%.2 f \% \ n", pv2);
33 printf("\t Third from top = \%.2 \text{ f } \% \text{ } \text{n}", pv3);
34 printf("\t Fourth from top = \%.2 \text{ f } \% \setminus \text{n} ", pv4);
35
36 printf("(ii) String efficiency = \%.2 \text{ f } \% \setminus \text{n}", n);
```

Scilab code Exa 8.7 string efficiency 6

```
1 //Chapter 8
2 //Example 8_7
3 //Page 175
4
5 clear; clc;
```

```
7 ins=5;
8 \text{ vl} = 100;
9 k=0.1;
10
11 v1=1;
12 v2 = (1+k);
13 v3 = (1+3*k+k^2);
14 \quad v4 = (1+6*k+5*k^2);
15 v5 = (2+1*k+6*k^2);
16
17 \quad v = v1 + v2 + v3 + v4 + v5;
18
19 pv1=v1/v*100;
20 \text{ pv2=v2/v*100};
21 \text{ pv3=v3/v*100};
22 \text{ pv4} = \text{v4/v} * 100;
23 \text{ pv5} = \text{v5/v} * 100;
24
25 v_string=vl/sqrt(3);
26 \text{ v_1=pv1/100*v_string};
27 v_2=pv2/100*v_string;
28 v_3=pv3/100*v_string;
29 \text{ v}_4 = \text{pv4}/100 * \text{v}_string;
30 \text{ v}_5 = \text{pv}_5 / 100 * \text{v}_s \text{tring};
31
32 n=v_string/ins/v_5;
33
34 printf("Voltage across string = \%.2 \, \text{f kV } \, \text{N} \, \text{n}",
        v_string);
35 printf("(i) Voltage across top insulator = \%.2 f kV \
       n", v_1);
                     Voltage across second unit = \%.2 \, f \, V \, n,
36 printf("
         v<sub>2</sub>);
37 printf("
                     Voltage across third unit = \%.2 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n},
        v_3);
38 printf("
                     Voltage across fourth unit = \%.2 \, f \, V \, n,
         v_4);
                     Voltage across fifth unit = \%.2 \, f \, V \, n\"
39 printf("
```

```
, v_5);
40
41 printf("(ii) String efficiency = %.2 f %% \n\n", n
*100);
```

Scilab code Exa 8.8 voltage between conductors

```
1 //Chapter 8
2 / Example 8_8
3 //Page 176
5 clear; clc;
7 v2=13.2;
8 v3=18;
10 p1=poly([1 3 1], 'k', 'c');
11 p2=poly([1 1],'k', 'c');
12 p=v3*p2-v2*p1;
13 r=roots(p, 'e');
14 \text{ k=r(2)};
15
16 v1=v2/(1+k);
17 printf ("Voltage across first unit = V1 = \%.2 f kV \setminus n
      n", v1);
18 \quad v4 = v1 * (1 + k^3 + 5 * k^2 + 6 * k);
19 printf ("Voltage across fourth unit = V4 = \%.2 f kV \setminus n
      \n", v4);
20
21 \quad v = v1 + v2 + v3 + v4;
22 printf ("Voltage between line and earth = \%.2 \,\mathrm{f} kV \n\
      n", v);
23 printf("Voltage between bus bars = \%.2 \text{ f kV } \ln \text{n}", v*
```

Scilab code Exa 8.9 string efficiency 7

```
1 //Chapter 8
2 / Example 8_9
3 //Page 177
5 clear; clc;
7 ins=4;
8 k=1/5;
10 v1=1;
11 v2=v1*(1+k);
12 v3=v1*(1+3*k+k^2);
13 v4=v1*(1+6*k+5*k^2+k^3);
14 \quad v = v1 + v2 + v3 + v4;
15
16 pv1=v1/v*100;
17 pv2=v2/v*100;
18 \text{ pv3=v3/v*100};
19 pv4=v4/v*100;
20
21 n=v/ins/v4*100;
22
23 printf("\n(i) V1 = \%.2 \text{ f V } \text{ n}", v1);
24 printf("V2 = \%.2 f V \n", v2);
25 printf("V3 = \%.2 \, \mathrm{f} \, \mathrm{V} \, \backslash \mathrm{n}", v3);
26 printf("V4 = \%.2 \,\mathrm{f} V \n\n", v4);
27 printf("Voltage across the string = \%.2 \,\mathrm{f} V \n", v);
28
29 printf("The voltage across each unit expressed as a
```

```
percentage becomes: \n");
30 printf("\t Top unit = %.2 f %% \n", pv1);
31 printf("\t Second from top = %.2 f %% \n", pv2);
32 printf("\t Third from top = %.2 f %% \n", pv3);
33 printf("\t Fourth from top = %.2 f %% \n\n", pv4);
34
35 printf("(ii) String efficiency = %.2 f %% \n", n);
```

Scilab code Exa 8.10 string efficiency

```
1 //Chapter 8
 2 //Example 8_10
\frac{3}{2} / \text{Page } 177
 5 clear; clc;
7 shunt_cap=0.15;
8 line_cap=0.1;
9 n=3;
10
v1=13.25/40.55;
12 \quad v2=12.5*v1/13.25;
13 v3=14.8*v1/13.25;
14
15 pv1=v1*100;
16 \text{ pv2=v2*100};
17 pv3=v3*100;
18 eff=1/n/v3*100;
19
20 printf("V1 = \%.3 \, \text{f V } \ \text{n}", v1);
21 printf("V2 = \%.3 f V \ n", v2);
22 printf("V3 = \%.3 \text{ f V } \ln \text{n}", v3);
23
```

Scilab code Exa 8.11 string eff 1

```
1 //Chapter 8
2 //Example 8_11
3 / Page 179
5 clear; clc;
7 n=3;
8 shunt=0.2;
9 line=0.1;
10 lower=0.3;
11
12 \quad v2=15.4/15.5;
13 v3=12-11*0.993;
14 v = 1 + v2 + v3;
15 eff=v/n/v3;
16
17 printf("V2 = \%.3 f*V1 \ n", v2);
18 printf("V3 = \%.3 \text{ f}*\text{V1 } \text{n}", v3);
19 printf ("Voltage between conductor and earth = \%.2 \, f*
      V1 \setminus n", v);
20 printf ("String efficiency = \%d \%\% \ \ln ", eff*100);
```

Scilab code Exa 8.12 v across each insulator

```
1 //Chapter 8
2 / \text{Example } 8_{1}1
3 / Page 179
5 clear; clc;
7 c1=1/6;
8 c2=2/5;
9 c3=3/4;
10 c4=4/3;
11 c5=5/2;
12 c6=6/1;
13
14 printf("At Junction A : C1 = \%.3 f C \setminus n", c1);
15 printf("At Junction B : C2 = \%.3 f C \setminus n", c2);
16 printf("At Junction C : C3 = \%.3 f C \setminus n", c3);
17 printf("At Junction D : C4 = \%.3 f C \setminus n", c4);
18 printf("At Junction E : C5 = \%.3 f C \setminus n", c5);
19 printf("At Junction F : C6 = \%.3 f C \setminus n", c6);
```

Scilab code Exa 8.13 rms line voltage

```
1 //Chapter 8
2 //Example 8_13
3 //Page 184
```

```
5 clear; clc;
6
7 r=1;
8 d=100;
9 go=30/sqrt(2);
10 mo=0.9;
11 delta=0.952;
12
13 vc=mo*go*delta*r*log(d/r);
14 lv=vc*sqrt(3);
15
16 printf("Disruptive critical voltage = %.2 f kV/phase \n\n", vc);
17 printf("Line voltage = %.2 f kV \n\n", lv);
```

Scilab code Exa 8.14 conductor spacing

```
1 //Chapter 8
2 //Example 8_14
3 //Page 184
4
5 clear; clc;
6
7 v=132;
8 r=1.956/2;
9 vd=210;
10 go=30/sqrt(2);
11 mo=1;
12 delta=1;
13
14 vc=vd/sqrt(3);
15 dr=exp(vc/mo/go/delta/r);
16 d=dr*r;
```

```
17  
18    printf("Conductor spacing = \%.2 \, f cm \n\n", d);
```

Scilab code Exa 8.15 total corona loss

```
1 //Chapter 8
2 //Example 8_15
\frac{3}{2} = \frac{185}{2}
5 clear; clc;
7 v = 220;
8 r=1.5;
9 d=200;
10 t = 40;
11 b=76;
12 \text{ mo} = 0.85;
13 f = 50;
14
15 delta=3.92*b/(273+t);
16 go=30/sqrt(2);
17
18 vc=mo*go*delta*r*log(d/r);
19 v_phase=v/sqrt(3);
20
21 pc=242.2/delta*(f+25)*sqrt(r/d)*(v_phase-vc)^2*1e-5;
22
23 printf("Delta = \%.3 f \setminus n \setminus n", delta);
24 printf ("Disruptive critical voltage per phase = \%.2 \,\mathrm{f}
        kV \setminus n \setminus n", vc);
25 printf("Supply voltage per phase = \%.2 \text{ f kV } \ln \text{"},
       v_phase);
26 printf("Corona loss = \%.5 \text{ f kW/km/phase } \ln \text{, pc});
```

```
27 printf("Total corona loss = \%.5 \text{ f kW } \ln \text{n}", pc*3);
```

Scilab code Exa 8.16 power loss

```
1 //Chapter 8
2 / \text{Example } 8_{-}16
3 //Page 185
 5 clear; clc;
7 \text{ pc} = 53;
8 v = 106;
9 loss = 98;
10 pl=110.9;
11 cv = 113;
12
13 sq=sqrt(loss/pc);
14 vc = (sq*v/sqrt(3)-p1/sqrt(3))/(sq-1);
15 w=(cv/sqrt(3)-vc)^2/(v/sqrt(3)-vc)^2*pc;
16
17 printf("Critical disruptive voltage = \%.2 \, f \, kV \, n n",
18 printf("Power loss at \%.0 \text{ f kV} = \%.0 \text{ f kW } \text{n}\text{n}", cv, w
       );
```

Scilab code Exa 8.17 ground clearing 1

```
1 //Chapter 8
2 //Example 8_17
```

```
3 //Page 190
4
5 clear;clc;
6
7 w=680;
8 sf=2;
9 strength=3100;
10 l=260;
11 gc=10;
12
13 t=strength/sf;
14 sag=w/1000*l^2/8/t;
15
16 printf("Working tension = %.0 f kg \n\n", t);
17 printf("Sag = %.1 f m \n\n", sag);
18 printf("Conductor should be supported at a height of %.1 f m \n\n", sag+gc);
```

Scilab code Exa 8.18 sag and vertical sag

```
1 //Chapter 8
2 //Example 8_18
3 //Page 190
4
5 clear; clc;
6
7 l=150;
8 t=2000;
9 ww=1.5;
10 sg=9.9;
11 area=2;
12
13 w=sg*area*100/1000;
```

```
14 wt=sqrt(w^2+ww^2);
15 sag=wt*l^2/8/t;
16 theta=atan(ww/w);
17 vsag=sag*cos(theta);
18
19 printf("Weight of conductor per length = %.2 f kg \n\n", w);
20 printf("Total weight of 1m conductor = %.2 f kg \n\n", wt);
21 printf("Sag = %.2 f m \n\n", sag);
22 printf("theta = %.2 f degrees \n\n", theta/%pi*180);
23 printf("Vertical sag = %.2 f m \n\n", vsag);
```

Scilab code Exa 8.19 vertical sag 2

```
1 //Chapter 8
2 //Example 8_19
3 // Page 191
5 clear; clc;
7 1 = 200;
8 \quad w = 1170/1000;
9 \text{ bs} = 4218;
10 area=1.29;
11 pr=122;
12 \text{ sf} = 5;
13
14 t=bs*area/sf;
15 d=sqrt(4*area/%pi);
16 \text{ ww=pr*d*1e-2};
17 wt = sqrt(w^2 + ww^2);
18 sag=wt*l^2/8/t;
```

```
19 theta=atan(ww/w);
20 vsag=sag*cos(theta);
21
22 printf("Working tension = %.0 f kg \n\n", t);
23 printf("Diameter of the conductor = %.2 f \n\n", d);
24 printf("Total weight of the conductor per metre
        length = %.2 f kg \n\n", wt);
25 printf("Slant sag = %.2 f m \n\n", sag);
26 printf("theta = %.2 f degrees \n\n", theta*180/%pi);
27 printf("Vertical sag = %.2 f m \n\n", vsag);
```

Scilab code Exa 8.20 sag in tr lines

```
1 //Chapter 8
2 / \text{Example } 8 \text{-} 20
\frac{3}{2} = \frac{191}{2}
 5 clear; clc;
7 1 = 275;
8 d=1.96;
9 \text{ us} = 8060;
10 sf = 2;
11 ice_t=1.27;
12 \quad w = 0.865;
13 pr = 2;
14 \text{ wcc=} 0.91;
15 \text{ wp}=3.9;
16
17 t=us/sf;
18 vol=%pi*ice_t*(d+ice_t)*100;
19 wi=wcc*vol/1000;
20 \text{ ww=wp*}(d+2*ice_t)*100/1000;
```

Scilab code Exa 8.21 safety factor

```
1 //Chapter 8
2 //Example 8_21
3 //Page 192
4
5 clear; clc;
6
7 l=214;
8 vsag=2.35;
9 w=1.125;
10 ww=1.5;
11 area=3.225;
12 bs=2540;
13
14 wt=sqrt(w^2+ww^2);
15 t=bs*area;
16 s=vsag*wt/w;
17 f=t*8*s/(wt*1^2);
```

Scilab code Exa 8.22 ground clearance 2

```
1 //Chapter 8
 2 / \text{Example } 8 \text{-} 22
 3 // Page 192;
 5 clear; clc;
 7 1 = 150;
 8 \text{ area=2};
 9 \text{ us} = 5000;
10 \text{ sf} = 5;
11 \text{ sg=8.9};
12 ww = 1.5;
13 mc = 7;
14
15 w=area*sg*100/1000;
16 t=us*area/sf;
17 wt = sqrt(w^2 + ww^2);
18 \ s=wt*1^2/8/t;
19 vsag=s*w/wt;
20
21 printf("Wt of conductor = \%.2 \, f \, kg \, \ln n", w);
22 printf("Working tension = \%.0 \, \text{f kg } \ln \text{, t};
23 printf("Total weight = \%.2 \, f \, kg \, \ln \, wt);
24 printf("Slant sag = \%.2 \, \text{f m } \backslash \text{n} \backslash \text{n}", s);
```

```
25 printf("Vertcal sag = \%.2 \, f m \n\n", vsag);
26 printf("Ground clearance = \%.2 \, f m \n\n", vsag+mc);
```

Scilab code Exa 8.23 clearence from water level

```
1 //Chapter 8
\frac{2}{2} //Example 8_23
\frac{3}{2} = \frac{193}{2}
5 clear; clc;
7 1 = 500;
8 \quad w = 1.5;
9 t=1600;
10 h2=90;
11 h1=30;
12 h=h2-h1;
13
14 printf("x1+x2=500 \ n");
15 d=h*2*t/w/1;
16 printf("x2-x1=\%.0 f \ \ n\ \ d);
17
18 A = [1 \ 1; \ -1 \ 1];
19 b=[1; d];
20 X = A \setminus b;
21 \times 1 = X(1);
22 \times 2 = X(2);
23
24 s1=w*x1^2/2/t;
25 cl=h1-s1;
26 x=1/2-x1;
27 \text{ smid=w*x^2/2/t};
28 \text{ clmp=cl+smid};
```

Scilab code Exa 8.24 sag

```
1 //Chapter 8
 \frac{2}{\text{Example }} 8_{-}24
 \frac{3}{\text{Page }} 194
 5 clear; clc;
 71=600;
8 \text{ wi=1};
9 h = 15;
10 \quad w = 1.925;
11 t=8000*2.2/5;
12
13 wt=w+wi;
14 d=2*h*t/(1+w)/1;
15
16 \quad A = [1 \quad 1; \quad -1 \quad 1];
17 b=[1; d];
18 X = A \setminus b;
19 x1=X(1);
```

```
20 x2=X(2);

21 

22 s2=wt*x2^2/2/t;

23 

24 printf("x1 = %.0 f m \n", x1);

25 printf("x2 = %.0 f m \n\n", x2);

26 printf("S2 = %.2 f m \n", s2);
```

Scilab code Exa 8.25 clearence from water level 2

```
1 //Chapter 8
\frac{2}{2} //Example 8_25
3 //Page 195
5 clear; clc;
7 h2=90;
8 h1=40;
9 h=h2-h1;
10 \quad 1 = 400;
11 t = 2000;
12 w = 1;
13
14 d=h*2*t/1;
15
16 A = [1 \ 1; -1 \ 1];
17 b=[1; d];
18 X = A \setminus b;
19 x1=X(1);
20 x2=X(2);
21
22 printf("x1 = \%.0 \, f m \n", x1);
23 printf("x2 = \%.0 \, f \, m \, n \, x2);
```

Scilab code Exa 8.26 clearence from ground

```
1 //Chapter 8
2 //Example 8_26
3 //Page 195
4
5 clear; clc;
6
7 grad=20;
8 h1=22;
9 h2=22;
10 l=300;
11 lc=2;
12 w=1;
13 t=1500;
14
15 eh=h1-lc;
```

```
16 h=1*(1/grad);
17 dc=sqrt(1^2-h^2);
18 d=2*t*h/w/dc;
19
20 a = [1 1; -1 1];
21 b=[dc; d];
22 x=a \b;
23 	 s2=w*x(2)^2/t;
24 bc=eh+h;
25 \text{ og=bc-s}2-x(1)*tand(asind(1/grad));
26
27 printf ("Effective height of each tower = \%d m \n\n",
        eh);
28 printf ("Vertical distance between towers is = %d m \
      n \setminus n", h);
29 printf ("Horizontal distance between two towers = %d
      m \setminus n \setminus n, dc);
30 printf("x1+x2=\%d \n\n", dc);
31 printf("x2-x2=\%d m \setminus n \setminus n", d);
32 printf ("Solving the two, x1 = \%d m, x2 = \%d m \setminus n \setminus n"
       , x(1), x(2));
33 printf("Sag S2 = \%.2 \, \text{f m } \ln \, s2);
34 printf("BC = \%.2 \, \text{f m } \ln \, bc);
35 printf ("Clearance from the lowest point O from the
      ground = \%.2 \text{ f m } \ln \text{n}, og);
```

Scilab code Exa 8.27 min clearance

```
1 //Chapter 8
2 //Example 8_27
3 //Page 196
4
5 clear; clc;
```

```
6
7 c=8;
8 1 = 300;
9 s = 10;
10 slope=15;
11
12 printf("On level ground: \n")
13 wbyt=8*s/1^2;
14 h=s+c;
15 printf ("Height of tower = \%d \text{ m } \ln n", h);
16
17 printf("On sloping ground: \n");
18 hs=1/slope;
19 printf("Vertical distance between two towers = %d m
       \n", hs);
20 \times 1 = 75;
21 \times 2 = 225;
22 printf("From the graph: \nx1 = 75m, x2 = 225m \n");
23 	 s1 = wbyt * x1^2/2;
24 \text{ s2=wbyt*x2^2/2};
25 printf("S1 = \%.2 \, \text{f m } \ \text{n}", s1);
26 printf("S2 = \%.2 \, \text{f m } \ \text{n}", s2);
27 \text{ cl} = 38 - \text{s}2 - 5;
28 printf("Clearance = \%.2 \, \text{f m } \ \text{n}", cl);
29 x = 75;
30 //minimum clearance
31 \text{ minc=8};
32 printf("x = \%d m \setminus n", x);
33 printf("Minimum clearance = \%d m \n", minc);
```

Chapter 9

Electrical Design of Overhead Lines

Scilab code Exa 9.1 loop inductance per km 1

```
1 //Chapter 9
2 //Example 9_1
3 //Page 214
4
5 clear; clc;
6
7 d=200;
8 r=1.2/2;
9
10 loop_l=(1e-7)*(1+4*log(d/r));
11
12 printf("Loop indictance per length of the line = %.2 f*10^-7 H \n\n", loop_l*1e7);
13 printf("Loop indictance per km of the line = %.3 f mH \n\n", loop_l*1e6);
```

Scilab code Exa 9.2 loop inductance per km 2

```
1 //Chapter 9
2 / \text{Example } 9_2
3 //PAge 214
5 clear; clc;
7 d=300;
8 r = 1;
9 mr1=1;
10 \text{ mr} 2 = 100;
11
12 loop_l=(1e-7)*(mr1+4*log(d/r));
13 loop_ls=(1e-7)*(mr2+4*log(d/r));
14
15
16 printf("(i)) With copper conductors mr=1 \setminus n Loop
       indictance per meter = \%.2 \text{ f}*10^-7 \text{ H } \text{n}^{\circ}, loop_1
      *1e7);
17 printf("Loop indictance per km = \%.3 \text{ f mH } \ln \text{ m},
       loop_1*1e6 );
18
19 printf("(ii) With steel conductors mr=100 \n Loop
       indictance per meter = \%.2 f*10^-7 H \ln n,
      loop_ls*1e7 );
20 printf("Loop indictance per km = \%.3 \, f \, mH \, \ln n",
      loop_ls*1e6 );
```

Scilab code Exa 9.3 inductance per phase per km 3

Scilab code Exa 9.4 inductance per phase per km 4

```
1 //Chapter 9
2
3 //Example 9_4
4 //Page 215
```

```
6 clear; clc;
8 r=1.24/2;
9 d12=2;
10 d23 = 2.5;
11 \ d31=4.5;
12
13 deq=(d12*d23*d31)^(1/3)*100;
14 printf ("Equivalent equilateral spacing = \%.2 \text{ f cm } \
      n", deq);
15
16 loop_l=(1e-7)*(0.5+2*log(deq/r));
17
18 printf ("Inductance/phase/m = \%.2 \text{ f}*10^-7 \text{ H } \ln \text{ m}",
      loop_1*1e7 );
19 printf(" Inductance/phase/km = \%.3 \text{ f mH } \ln \text{n}", loop_1
      *1e6);
```

Scilab code Exa 9.5 inductance per phase per km 5

```
1 //Chapter 9
2 //Example 9_5
3 //PAge 215
4
5 clear; clc;
6
7 r=2.54/2;
8 d12=2;
9 d23=2;
10 d31=4;
11
12 deq=(d12*d23*d31)^(1/3);
13 printf("Equivalent equilateral spacing = %.3 f cm \n\
```

Scilab code Exa 9.6 loop inductance per km 3

```
1 //Chapter 9
\frac{2}{\text{Example }}9_{-6}
3 //Page 215
5 clear; clc;
7 r=1/2;
8 \, dab = 25;
9 daa=100;
10 dabdash=sqrt(dab^2+daa^2);
11
12 \text{ gmr} = 0.7788 * r;
13
14 ds = ((gmr*daa)^2)^(1/4);
15 dm=(dab^2*dabdash^2)^(1/4);
16 \ l=2*1e-7*log(dm/ds);
17
18 printf("GMR of conductor = \%.3 \text{ f cm } \ln \%", gmr);
19 printf("Self GMD = \%.2 \text{ f cm } \ln n", ds);
20 printf("Mutual GMD = \%.2 \text{ f cm } \ln \text{, dm});
21 printf ("Inductance/conductor/m = \%.2 \text{ f}*10^-7 \text{ H} \text{ } \text{n}\text{'n}",
        1*1e7);
```

```
22 printf(" Inductance/conductor/km = \%.3\,\mathrm{f} mH \n\n", 2* 1*1e6 );
```

Scilab code Exa 9.7 inductance per phase per km 4

```
1 //Chapter 9
\frac{2}{2} //Example 9_7
\frac{3}{2} = \frac{16}{2}
5 clear; clc;
7 r=1.3;
8 d_acd=6;
9 d_bbd=d_acd;
10 \, d_ab=3;
11 d_bc=3;
12 d_adbd=d_bc;
13 d_aa=1.01*1e-2;
14 d_bb=d_aa;
15 d_adad=d_aa;
16 d_bdbd=d_aa;
17 d_bdb=d_aa;
18 \, d_ca=6;
19 d_cad=6;
20 d_cda=6;
21 d_cdad=6;
22
23 \text{ gmr} = r * 0.7788;
24 d_abd=sqrt(d_acd^2+d_ab^2);
25 d_adb=d_abd;
26  d_aad=sqrt(d_acd^2+(d_ab+d_bc)^2);
27 ds1=(d_aa*d_aad*d_adad*d_aad)^(1/4);
28 ds2=(d_bb*d_bbd*d_bdbd*d_bbd)^(1/4);
```

```
29 ds = (ds1*ds2*ds1)^(1/3);
30 dab=(d_ab*d_abd*d_adb*d_adbd)^(1/4);
31 dbc=dab;
32 \text{ dca} = (d_ca*d_cad*d_cda*d_cdad)^(1/4);
33 \text{ dm}=(\text{dab}*\text{dbc}*\text{dca})^{(1/3)};
34 l = (1e-7)*2*log(dm/ds);
35
36 printf ("GMR of conductor = \%.2 \, \text{f cm } \ln \, gmr);
37 printf("Distance a to b_dash = \%.2 \,\mathrm{f} m \n", d_abd);
38 printf("Distance a to a_dash = \%.2 \text{ f m } \ln \text{, d_aad});
39 printf("Ds1 = \%.2 \, \text{f m } \ \text{n}", ds1);
40 printf("Ds2 = \%.2 \, \text{f m } \ \text{n}", ds2);
41 printf ("Ds = \%.2 \text{ f m } \ln \%, ds);
42 printf("Dab = \%.2 \, \text{f m } \setminus \text{n}", dab);
43 printf("Dbc = \%.2 \text{ f m } \text{ n}", dbc);
44 printf("Dca = \%.2 \, \text{f m } \ \text{n}", dca);
45 printf("Dm = \%.2 \text{ f m } \ln \%, dm);
46 printf ("Inductance per phase per metre length = \%.2 \,\mathrm{f}
         mH \setminus n \setminus n", l*1e6);
```

Scilab code Exa 9.8 inductance per phase per km 6

```
1 //Chapter 9
2 //Example 9_8
3 //Page 217
4
5 clear; clc;
6
7 r=0.75;
8
9 //According to the figure in the text book
10 dab=3;
11 dbc=3;
```

```
12 \, dacd=4;
13 dbbd=5.5;
14 \, dcad=4;
15
16 dca=dab+dbc;
17
18 \text{ gmr} = r*0.7788;
19 Daa=gmr;
20 Dadad=gmr;
21 Dab=sqrt(dab^2+r^2);
22 Dabd=sqrt(dab^2+(dacd+r)^2);
23 Daad=sqrt((dab+dbc)^2+dacd^2);
24 Dada=Daad;
25
26 Ds1=(Daa*Daad*Dada*Dadad)^(1/4)/10;
27 Ds2=(Daa*dbbd*Daa*dbbd)^(1/4)/10;
28 Ds3=Ds1:
29
30 Ds = (Ds1*Ds2*Ds3)^(1/3);
31
32 DAB=(Dab*Dabd*Dabd*Dab)^(1/4);
33 DBC=DAB;
34 DCA=(dca*dacd*dacd*dca)^(1/4);
35
36 \text{ Dm} = (DAB*DBC*DCA)^{(1/3)};
37
38 \ l_ph_m = 1e - 7*2*log(Dm/Ds);
39
40 printf("GMR of conductor = \%.3 \text{ f cm } \ln \%", gmr);
41 printf("Distance a to b = \%.2 f m \n", Dab);
42 printf ("Distance a to b-dash = \%.2 \, \text{f m } \ \text{n}", Dabd);
43 printf ("Distance a to a-dash = \%.2 \,\mathrm{f} m \n\n", Daad);
44
45 printf("Ds1 = \%.3 \, \text{f m } \ \text{n}", Ds1);
46 printf("Ds2 = \%.3 \, f m \n", Ds2);
47 printf ("Ds3 = \%.3 \, \text{f m } \ \text{n}", Ds3);
48 printf ("Equivalent self GMD of one phase = \%.3 \,\mathrm{f} m \n
       \n", Ds);
```

Scilab code Exa 9.9 inductance per phase per km 7

```
1 //Chapter 9
2 / Example 9_9
\frac{3}{2} = \frac{18}{2}
5 clear; clc;
7 r=5.3;
8 \text{ dab=8};
9 dbc=dab;
10 dcad=dab;
11 dadbd=dab;
12 dbdcd=dab;
13
14 gmr=r*0.7788/100;
15
16 Ds1=(gmr*3*dab*3*dab*gmr)^(1/4);
17 \text{ Ds}2 = \text{Ds}1;
18 Ds3=Ds1;
19
20 Ds = (Ds1*Ds2*Ds3)^(1/3);
```

```
21
22 DAB=(dab*4*dab*2*dab*dab)^(1/4);
23 DCA=(2*dab*1*dab*5*dab*2*dab)^(1/4);
DBC = DAB;
25
26 \text{ Dm} = (DAB*DBC*DCA)^(1/3);
27
28 \ l_ph_m = 1e - 7 * 2 * log(Dm/Ds);
29
30 printf("GMR of conductor = \%.4 \text{ f cm } \ln \%", gmr);
31
32 printf("Ds1 = \%.3 \, \text{f m } \ \text{n}", Ds1);
33 printf("Ds2 = \%.3 \, \text{f m } \ \text{n}", Ds2);
34 printf("Ds3 = \%.3 \, \text{f m } \ \text{n}", Ds3);
35 printf("Equivalent self GMD of one phase = \%.3 \,\mathrm{f} m \n
       \n", Ds);
36
37 printf("DAB = \%.3 \, \text{f m } \ \text{n}", DAB);
38 printf("DBC = \%.3 \text{ f m } \text{ n}", DBC);
39 printf ("DCA = \%.3 f m \n", DCA);
40 printf ("Equivalent mutual GMD = \%.3 \, \text{f m } \ln \, Dm);
41
42 printf ("Inductance/phase/m = \%.3 \text{ f}*10^-7 \text{ mH } \ln \%,
       l_ph_m *1e7);
```

Scilab code Exa 9.10 loop inductance per km 4

```
1 //Chapter 9
2 //Example 9_10
3 //Page 219
4
5 clear; clc;
```

```
7 //From the figure
8 Daad=20;
9 Dadb=100;
10 Dbbd=20;
11
12 Dab=Daad+Dadb;
13 Dabd=Daad+Dadb+Dbbd;
14 Dadbd=Dadb+Dbbd;
15
16 \text{ gmr} = 0.7788;
17 Daa=gmr;
18 Dadad=gmr;
19
20 Dm = (Dab * Dabd * Dadb * Dadbd) ^ (1/4);
21
22 Ds=(Daa*Daad*Dadad*Daad)^(1/4);
23
24 \ 1=4*1e-4*log(Dm/Ds);
25
26 printf("GMR of conductor = \%.4 \text{ f cm } \ln \%", gmr);
27 printf ("Equivalent self GMD of one phase = \%.3 \,\mathrm{f} m \n
      \n", Ds);
28 printf ("Equivalent mutual GMD = \%.3 \, \text{f m } \ln \, Dm);
29 printf ("Loop Inductance/km = \%.3 \text{ f mH/km } \ln \%", 1*1e3
      );
```

Scilab code Exa 9.11 capacitance per km

```
1 //Chapter 9
2 //Example 9_11
3 //Page 224
4
5 clear; clc;
```

Scilab code Exa 9.12 capacitance of each line conductor

```
1 //Chapter 9
2 //Example 9_12
3 //Page 225
4
5 clear; clc;
6
7 r=1.25/2;
8 d=200;
9 e0=8.854*1e-12;
10 c=2*%pi*e0/log(d/r);
11 printf("Capacitance of the line = %.4 f uF/km \n", c *1e9);
```

Scilab code Exa 9.13 charging current per phase

```
1 //Chapter 9
2 //Example 9_13
3 //Page 225
```

```
5 clear; clc;
7 v=66*1e3;
8 f = 50;
9 d1=2;
10 d2=2.5;
11 d3=4.5;
12 d=282;
13 r=1.25/2;
15 \text{ e0=8.854*1e-12};
16 c=2*\%pi*e0/log(d/r);
17 printf("(i) Line to nuetral Capacitance for 100km
      line = \%.4 f uF \ \n\n", c*1000*1e8);
18
19 ic=v/sqrt(3)*(2*%pi*f*c*100);
20 printf("(ii) Charging current per phase = %.2 f A \n\
      n", ic*1000);
```

Scilab code Exa 9.14 capacitance of line

```
1 //Chapter 9
2 //Example 9_14
3 //Page 225
4
5 clear; clc;
6
7 l=100;
8 f=50;
9 d=250;
10 r=2/2;
11 e0=8.854*1e-12;
12 c=2*%pi*e0/log(d/r);
```

```
13 printf("Capacitance of the line = \%.4\,f*10^-9 F/km \n \n", c*1e9*1000);
14 printf("Capacitance of 100km line = \%.4\,f uF/phase \n \n", c*1000*1e8);
```

Scilab code Exa 9.15 charging current per phase 2

```
1 //Chapter 9
2 //Example 9_15
3 //Page 226
5 clear; clc;
7 f = 50;
8 v = 132 * 1e3;
9 d1=4;
10 d2=4;
11 d3=8;
12 r = 1e - 2;
13
14 deq=(d1*d2*d3)^(1/3);
15 printf("Deq = \%.2 \, \text{f m } \backslash \text{n} \backslash \text{n}", deq);
16 \text{ e0=8.854*1e-12};
17 c=2*\%pi*e0/log(deq/r);
18 printf ("Capacitance of each conductor to nuetral = \%
       .4 f uF/km \n\n", c*1e9);
19 cn=c*1e9*100;
20 printf ("Capacitance/phase for 100km line = \%.4 f uF/
      km \ \n\n", cn);
21 ic=v/sqrt(3)*(2*\%pi*f)*cn/1e6;
22 printf ("Charging current per phase= \%.2 \, f \, A \, \ln n", ic
      );
```

Chapter 10

Performance of Transmission Lines

Scilab code Exa 10.1 transmission efficiency 1

```
1 // Chapter 10
2 //Example 10_1
\frac{3}{2} = \frac{133}{2}
5 clear; clc;
7 load_kw=1100;
8 \text{ vr} = 33;
9 \text{ pf} = 0.8;
10 r = 10;
11 x1=15;
12
13 phir=acos(0.8);
14 i=load_kw/vr/pf;
15 z=r+\%i*x1;
16 i_vector=i*(cos(phir)- %i*(sin(phir)));
17  vs=vr*1000+z*i_vector;
18 alpha=imag(vs)/real(vs);
19 phis=phir+alpha;
```

```
20 loss=i^2*r;
21 op=load_kw;
22 \text{ ps=op+loss/1000};
23 n = op/ps * 100;
24
25 printf("Line current = \%.2 \, f \, A \, n", i);
26 printf("
                             i_vector), imag(i_vector));
27
28 printf("(i) Sending end voltage = \%.2 \text{ f+j}(\%.2 \text{ f}) \setminus \text{n}",
       real(vs), imag(vs));
29 printf("
                 Magnitude of Vs = \%.0 f V \setminus n \setminus n, abs(vs))
30 printf("(ii) Angle betwee Vs and Vr = \%.2f degrees \
      n", alpha*180/%pi);
                   Sending end power factor angle = \%.2 \,\mathrm{f}
31 printf("
       degrees \n", phis*180/%pi);
                   Sending end power factor = \%.2 \text{ f } \ln \text{"},
32 printf("
       cos(phir));
33 printf("(iii) Line loss = \%.2 \, f \, kW \, n", loss/1000);
34 printf("
                    Output delivered = \%.0 \, f \, kW \, n, op);
                    Power sent = \%.3 f \text{ kW } \text{n}", ps);
35 printf("
36 printf("
                     Transmission efficiency = \%.2 \, \text{f} \, \% \, \text{n},
        n);
```

Scilab code Exa 10.2 length of conductor

```
1 //Chapter 10
2 //Example 10_2
3 //Page 235
4
5 clear; clc;
```

```
7 area=0.775;
8 pr = 200;
9 pf=1;
10 \quad v = 3300;
11 n=0.9;
12 \text{ sr}=1.725*1e-6;
13
14 ps=pr*1000/n;
15 loss=ps-pr*1000;
16 i = pr * 1000 / v;
17 r=loss/2/i^2;
18 l=r*area/sr;
19
20 printf("Sending end power = \%.0 \, f \, W \, \ln ", ps);
21 printf("Line losses = \%.0 \, f \, W \, \ln ", loss);
22 printf("Line current = \%.1 \, f \, A \, \ln ", i);
23 printf("Resistance of the line = \%.3 \, \text{f} ohms \n\n", r)
24 printf("Length of the conductor = \%.2 \, f \, km \, n^n, 1
       /1000/100);
```

Scilab code Exa 10.3 transmission efficiency 2

```
1 //Chapter 10
2 //Example 10_3
3 //Page 235
4
5 clear; clc;
6
7 load_kw=5000;
8 v_r=22;
9 pfr=0.8;
10 r=4;
```

```
11 x1=6;
12
13 \text{ vr} = 22*1000/\text{sqrt}(3);
14 z=r+\%i*x1;
15 i=load_kw*1000/3/vr/pfr;
16 vr_phasor=vr+%i*0;
17 i_phasor=i*(pfr-%i*sin(acos(pfr)));
18 vs_phasor=vr_phasor+i_phasor*z;
19 vs=abs(vs_phasor);
20 \quad lv = vs * sqrt(3);
21 \text{ reg} = (vs - vr) / vr * 100;
22 loss=3*i^2*r;
23 n=load_kw/(load_kw+loss/1000);
24
25 printf("Impedance per phase = \%.0 \, \text{f+j} \, (\%.0 \, \text{f}) \, \ln \,
       real(z), imag(z));
26 printf("Line current = \%.2 \, f \, A \, \ln ", i);
                              =\,\%.\,2\;f+j\;(\%.\,2\;f\,)\;\;\backslash n\backslash n" , real(
27 printf("
       i_phasor), imag(i_phasor));
28 printf("(i) Sending end voltage phasor =\%.2 \text{ f+j}(\%.2 \text{ f})
        \n^n, real(vs_phasor), imag(vs_phasor));
                   Magnitude of Vs = \%.2 f V \setminus n \setminus n", vs);
29 printf("
                   Line value of Vs = \%.2 f kV \n\n", lv
30 printf("
       /1000);
31 printf("(ii) Percentage regulation = \%.3 f \% \ \n\n",
       reg);
32 printf("(iii) Line losses = \%.3 \text{ f kW } \ln \text{, noss}
       /1000);
33 printf("
                      Transmission efficiency = \%.2 \text{ f } \% \setminus n \setminus n
       ", n*100);
```

Scilab code Exa 10.4 length of line

```
1 // Chapter 10
\frac{2}{\sqrt{\text{Example }}} \frac{10}{4}
3 // Page 236
5 clear; clc;
7 load_kw=15000;
8 \text{ pf} = 0.8;
9 r=1;
10 \text{ vr} = 132;
11 \; loss=0.05;
12
13 i=load_kw*1000/sqrt(3)/vr/1000/pf;
14 l_loss=loss*load_kw;
15 r=l_loss*1000/3/i^2;
16 l=r;
17
18 printf("Line current = \%.0 \, f \, A \, \ln n", i);
19 printf("Line losses = \%.0 \, f \, kW \, nn", l_loss);
20 printf("R = \%.2 \text{ f ohm } \n\n", r);
21 printf("Length of the line = \%.2 \, \text{f km } \ln \, 1);
```

Scilab code Exa 10.5 transmission eff

```
1 // Chapter 10
2 // Example 10_5
3 // Page 236
4
5 clear; clc;
6
7 kw=3600;
8 pf=0.8;
9 vs=33;
```

```
10 \text{ r=} 5.31;
11 x=5.54;
12
13 //Sending end voltage per phase
14 vsp=vs*1000/sqrt(3);
15 printf("Sending end voltage per- phase = %d V \n",
      vsp);
16 //line current
17 il=kw/3*1000/pf;
18 printf ("Line current = \%d*10^5/Vr \n", il/10^5);
19 //using approximate expression,
20 \text{ vr} = 18435;
21 printf("(i) Vr = %d V \setminus n", vr);
22 lv=sqrt(3)*vr/1000;
                 Line voltage at recieving end = \%.2 \,\mathrm{f} kV
23 printf("
      \n\n", lv);
24 //line current
25 lc=il/vr;
26 printf("(ii) Line current = \%.2 \, \text{f A } \ln \, lc);
27 \ loss = 3*lc^2*r;
28 eff=kw/(kw+loss/1000);
29 printf("(iii) Line losses = \%.3 \, f \, kW \, n", loss/1000);
                    Transmission efficiency = \%.2 \text{ f } \% \setminus \text{n} \setminus \text{n}
30 printf("
      ", eff*100)
```

Scilab code Exa 10.6 sending end pf

```
1 //Chapter 10
2 //Example 10_6
3 //Page 237
4
5 clear; clc;
```

```
7 r=6;
8 x1=8;
9 pfr = 0.9;
10 vr=110*1000/sqrt(3);
11 vs=120*1000/sqrt(3);
12
13 i=(vs-vr)/(r*pfr+xl*sin(acos(pfr)));
14 op=3*vr*i*pfr/1000;
15 pfs=(vr*pfr+i*r)/vs;
16
17 printf("Recieving end voltage = \%.0 \, f \, V \, \ln n", vr);
18 printf("Sending end voltage = \%.0 \, \text{f V } \ln \text{n}", vs);
19 printf("Load current = \%.2 f A \setminus n \setminus n", i);
20 printf("(i) Power output = \%.0 \text{ f kW } \ln \text{, n}, op);
21 printf("(ii) Sending end power factor = \%.2 f lag \n
      n", pfs);
```

Scilab code Exa 10.7 transmission efficiency 3

```
1 //Chapter 10
2 //Example 10_7
3 //Page 237
4
5 clear; clc;
6
7 vr=11*1000/sqrt(3);
8 r=1.5;
9 xl=4;
10 pfr=0.8;
11 pd=5000;
12
13 i=pd*1000/3/vr;
14 vs=vr+i*r*pfr+i*xl*sin(acos(pfr));
```

```
15  reg=(vs-vr)/vr*100;
16  loss=3*i^2*r;
17  op=pd*pfr;
18  ip=op+loss/1000;
19  n=op/ip*100;
20
21  printf("Recieving end voltage = %.0 f V \n\n", vr);
22  printf("Load current = %.2 f A \n\n", i);
23  printf("Sending ebd voltage = %.2 f V \n\n", vs);
24  printf("%% Regulation = %.2 f %% \n\n", reg);
25  printf("Lone losses = %.0 f kW \n\n", loss/1000);
26  printf("Output power = %.0 f kW \n\n", op);
27  printf("Input power = %.0 f kW \n\n", ip);
28  printf("Transmission efficiency = %.2 f %% \n\n", n);
```

Scilab code Exa 10.8 transmission efficiency 4

```
1 //Chapter 10
2 //Example 10_8
3 //Page 238
4
5 clear; clc;
6
7 f=50;
8 ll=16;
9 pd=1000;
10 v_r=11;
11 pfr=0.8;
12 r=0.03;
13 l=0.7;
14
15 r_ohm=r*ll;
16 xl=1*2*%pi*f*ll/1000;
```

```
17 vr=v_r*1000/sqrt(3);
18 i = pd*1000/3/vr/pfr;
19 vs=vr+i*r_ohm*pfr+i*xl*sin(acos(pfr));
20 \text{ reg} = (vs - vr) / vr * 100;
21 loss=3*i^2*r_ohm;
22 op=pd;
23 \text{ ip=op+loss/1000};
24 n = op/ip*100;
25
26 printf ("Resistance of each conductor = \%.2 \text{ f ohm } \ln
       ", r_ohm);
27 printf ("Reactance of each conductor = \%.2 \text{ f ohm } \ln"
28 printf("Recieving end voltage = \%.0 \, \text{f V } \ln , \text{ vr};
29 printf("Load current = \%.2 \, f \, A \, \ln n", i);
30 printf ("Sending end voltage = \%.2 \, \text{f V } \ln , \text{ vs});
31 printf("\%\% Regulation = \%.2 f \%\ \n\n", reg);
32 printf("Line losses = \%.3 \text{ f kW } \ln \text{n}", loss/1000);
33 printf("Output power = \%.0 \text{ f kW } \ln \text{, op)};
34 printf("Input power = \%.1 \text{ f kW } \ln \text{, ip});
35 printf ("Transmission efficiency = \%.2 \, \text{f} \, \% \, \backslash \text{n} / \text{n}", n);
```

Scilab code Exa 10.9 transmission efficiency 5

```
1 //Chapter 10
2 //Example 10_9
3 //Page 238
4
5 clear; clc;
6
7 pd=2000;
8 pfr=0.8;
9 vrd=6.6;
```

```
10 11 = 20;
11 f = 50;
12 \text{ vr} = 33;
13 r = 0.4;
14 x1=0.5;
15 \text{ rp=7.5};
16 \text{ xlp}=13.2;
17 \text{ rs} = 0.35;
18 xls=0.65;
19
20 \text{ rc=11*r};
21 xlc=ll*xl;
22
23 eqr=rp+rs*(vr/vrd)^2;
24 eqxl=xlp+xls*(vr/vrd)^2;
25
26 \text{ tr=rc+eqr};
27 \text{ txl=xlc+eqxl};
28
29 vr_phase=vr*1000/sqrt(3);
30 i = pd*1000/sqrt(3)/vr/1000;
31 vs=vr_phase+i*tr*pfr+i*txl*sin(acos(pfr));
32 pfs=(vr_phase*pfr+i*tr)/vs;
33 loss=3*i^2*tr/1000;
34 \text{ op=pd*pfr};
35 ip=op+loss;
36 n = op/ip*100;
37
38 printf ("Resistance of each conductor = \%.2 \text{ f ohm } \ln
      ", rc);
39 printf ("Reactance of each conductor = \%.2 \text{ f ohm } \ln"
       , xlc);
40
41 printf ("Equivalent resistance of transformer
       referred to primary = \%.2 f ohm \n\n", eqr);
42 printf ("Equivalent reactance of transformer referred
        to primary = \%.2 f ohm \n\n", eqx1);
43
```

Scilab code Exa 10.10 supply pf for medium tr lines

```
1 //Chapter 10
2 //Example 10_10
3 //Page 241
4
5 clear; clc;
6
7 r=0.25;
8 xl=0.8;
9 y=14*1e-6;
10 vr=66000;
11 pd=15000;
12 pfr=0.8;
13 ll=100;
14
15 tr=ll*r;
16 txl=ll*xl;
```

```
17 ty = y * 11;
18
19 z = tr + \%i * txl;
20 l=pd/vr/pfr;
21 i=pd*1000/vr/pfr;
22 \text{ vr_phasor=vr+}\%i*0;
23 ir_phasor=i*(pfr-%i*sin(acos(pfr)));
24 \text{ ic=\%i*ty*vr};
25
26 is_phasor=ir_phasor+ic;
27 mag_is=abs(is_phasor);
28 vd=is_phasor*z;
29 vs_phasor=vr_phasor+is_phasor*z;
30 mag_vs=abs(vs_phasor);
31 reg=(mag_vs-vr)/vr*100;
32 theta1=atan(-imag(is_phasor)/real(is_phasor));
33 theta2=atan(imag(vs_phasor)/real(vs_phasor));
34 thetas=abs(theta1)+theta2;
35 pfs=cos(thetas);
36
37 printf("Total resistance = \%.0 \, \text{f ohm } \ln \, tr);
38 printf("Total reactance = \%.0 \, f ohm \n\n", txl);
39 printf ("Total susceptance = \%.0 \,\mathrm{f} ohm \n\n", ty);
40 printf ("Recieving end voltage = \%.0 \, \text{f V } \ln \text{n}", vr);
41 printf("Load current = \%.0 \, f \, A \, \ln ", i);
42 printf("Vr phasor = \%.2 \text{ f+j}\%.2 \text{ f} \ \text{n}", real(vr_phasor
       ), imag(vr_phasor));
43 printf ("Load current phasor = \%.2 \text{ f+j}\%.2 \text{ f} \n\n", real
       (ir_phasor), imag(ir_phasor));
44 printf("Capacitive current = j\%.2 f \ln n", imag(ic));
45 printf("(i) Sending end current = \%.2 f+i\%.2 f n",
       real(is_phasor), imag(is_phasor));
46 printf(" Magnitude = \%.0 \text{ f V } \ln \text{n}", mag_is);
47 printf("(ii) Voltage drop = \%.2 \text{ f+j}\%.2 \text{ f} \ \text{n}", real(vd)
       , imag(vd))
                   Sending end voltage = \%.2 \text{ f+j}\%.2 \text{ f} \text{ } \text{n}",
48 printf("
       real(vs_phasor), imag(vs_phasor));
                   Magnitude of Vs = \%.0 f V \setminus n \setminus n, mag_vs)
49 printf("
```

```
;
50 printf("(iii) %% Regulation = %.2 f %% \n\n", reg);
51 printf("(iv) Phase angle between Vr and Ir = %.2 f
    degrees \n\n", theta1*180/%pi);
52 printf(" Phase angle between Vr and Vs = %.2 f
    degrees \n\n", theta2*180/%pi);
53 printf(" Supply power factor angle = %.2 f
    degrees \n\n", thetas*180/%pi);
54 printf(" Supply power factor = %.2 f lag \n\n",
    pfs);
```

Scilab code Exa 10.11 nominal t method 1

```
1 // Chapter 10
2 //Example 10_11
3 // Page 244
5 clear; clc;
7 r=0.1;
8 x1=0.2;
9 y=0.04*1e-4;
10 11=100;
11 f = 50;
12 pd=10000;
13 \text{ v_r=}66000;
14 pfr=0.8;
15
16 tr=r*11;
17 txl=l1*x1;
18 \text{ ty=11*y};
19
20 vr=v_r/sqrt(3);
```

```
21 ir=pd*1000/sqrt(3)/v_r/pfr;
22 z=tr+\%i*tx1;
23 ir_p=ir*(pfr-%i*sin(acos(pfr)));
24 \text{ v1=vr+ir_p*z/2};
25 ic = \%i * ty * v1;
26 \text{ is=ir_p+ic};
27 \text{ vs=v1+is*z/2};
28 theta1=atan(imag(vs)/real(vs));
29 theta2=atan(imag(is)/real(is));
30 thetas=theta1+abs(theta2);
31 pfs=cos(thetas);
32 \text{ ps} = 3*abs(vs)*abs(is)*pfs/1000;
33 \text{ n=pd/ps};
34
35 printf("Total resistance per phase = \%.2 \, \text{f} ohm \n\n",
36 printf ("Total reactance per phase = \%.2 \, \text{f ohm } \ln \,
37 printf ("Total susceptance per phase = \%.5 \,\mathrm{f} ohm \n\n"
       , ty);
38
39 printf ("Recieving end voltage = \%.0 \, \text{f V } \ln \text{n}", vr);
40 printf("Load current = \%.2 \, f \, A \, \ln n", ir);
41 printf("Impedance per phase = \%.2 \text{ f+j}\%.2 \text{ f} \n\n", real
       (z), imag(z);
42
43 printf ("Receiving end voltage is the reference
       phasor = \%.2 f+j0 \setminus n \setminus n", vr);
44 printf("Load current = \%.2 \text{ f+j}\%.2 \text{ f} \setminus n \setminus n", real(ir_p),
         imag(ir_p));
45 printf ("Voltage across C = \%.2 \text{ f+j}\%.2 \text{ f} \ \text{n}\text{n}", real (v1
       ), imag(v1));
46 printf ("Charging current = \%.2 \text{ f+j}\%.2 \text{ f} \ \text{n}\ \text{n}", real (ic
       ), imag(ic));
47 printf ("Sending end current = \%.2 \text{ f+j}\%.2 \text{ f} \setminus n \setminus n", real
       (is), imag(is));
48 printf ("Sending end current magnitude = \%.2 f A \ln "
       , abs(is));
```

Scilab code Exa 10.12 nominal t method 2

```
1 //Chapter 10
2 //Example 10_12
3 //Page 245
4
5 clear; clc;
6
7 f=50;
8 ll=100;
9 pd=20*1e6;
10 pfr=0.9;
11 v_r=110*1e3;
12 r=0.2;
13 xl=0.4;
14 y=2.5*1e-6;
15
```

```
16 tr=r*11;
17 txl=ll*xl;
18 \text{ ty=ll*y};
19
20 \text{ vr=v_r/sqrt}(3);
21 ir=pd/sqrt(3)/v_r/pfr;
22 z=tr+\%i*tx1;
23 ir_p=ir*(pfr-%i*sin(acos(pfr)));
24 \text{ v1=vr+ir_p*z/2};
25 ic=%i*ty*v1;
26 \text{ is=ir_p+ic};
27 \text{ vs=v1+is*z/2};
28 lv=abs(vs)*sqrt(3);
29 loss=3*is^2*tr/2+3*ir^2*tr/2;
30 n = (pd)/(pd + loss);
31
32 printf("Total resistance per phase = \%.2 \, \text{f ohm } \ln \,
33 printf("Total reactance per phase = \%.2 \, \text{f ohm } \ln \,
34 printf("Total susceptance per phase = \%.5 f ohm \n'"
35 printf ("Phase impedance = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \ln \, real (z
       ), imag(z);
36 printf ("Recieving end voltage = \%.0 \, \text{f V } \ln \text{n}", vr);
37 printf("Load current = \%.2 f A \setminus n \setminus n", ir);
38 printf("Impedance per phase = \%.2 \text{ f+j } (\%.2 \text{ f}) \setminus n \setminus n",
       real(z), imag(z));
39
40 printf("Receiving end voltage is the reference
       phasor = \%.2 f+j0 \setminus n \setminus n", vr);
41 printf("Load current = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \ln \, real(ir_p)
       ), imag(ir_p));
42 printf("Voltage across C = \%.2 \, f + j \, (\%.2 \, f) \, \ln n", real(
       v1), imag(v1));
43 printf ("Charging current = \%.2 \text{ f+j } (\%.2 \text{ f}) \setminus \text{n} \text{n}", real (
       ic), imag(ic));
44 printf ("Sending end current = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \ln \,
```

```
real(is), imag(is));
45 printf("Sending end current magnitude = %.2 f A \n\n", abs(is));
46 printf("Sending end voltage = %.2 f+j(%.2 f) \n\n", real(vs), imag(vs));
47 printf("Sending end voltage magnitude = %.2 f V \n\n", abs(vs));
48 printf("Line value of sending end voltage = %.2 f V \n\n", lv/1000);
49 printf("Total line losses for three phases = %.3 f MW \n\n", loss/1e6);
50 printf("Transmission efficiency = %.2 f %% \n\n", n *100);
```

Scilab code Exa 10.13 nominal pi method 1

```
1 //Chapter 10
2 //Example 10_13
3 //Page 247
4
5 clear; clc;
6
7 f=50;
8 ll=150;
9 r=0.1;
10 xl=0.5;
11 y=3*1e-6;
12 pd=50*1e6;
13 v_r=110*1e3;
14 pfr=0.8;
15
16 tr=r*ll;
17 ty=y*ll;
```

```
18 \text{ txl}=\text{xl}*\text{ll};
19
20 z=tr+\%i*tx1;
21 vr=v_r/sqrt(3);
22 ir=pd/sqrt(3)/v_r/pfr;
23 ir_p=ir*(pfr-%i*sin(acos(pfr)));
24 \text{ ic1=vr*}\%i*ty/2;
25 il=ir_p+ic1;
26 \text{ vs=vr+il*z};
27 \text{ ic2=vs*\%i*ty/2};
28 is=il+ic2;
29
30 printf("Total resistance / phase = \%.2 \, \text{f ohm } \ln \, tr
       );
31 printf("Total reactance / phase = \%.2 \text{ f ohm } \ln \%, txl
32 printf("Total susceptance / phase = \%.6 f S \ln n, ty)
33
34 printf ("Recieving end voltage = \%.0 \, \text{f V } \ln \text{n}", vr);
                                          = \%.0 f+j0 \setminus n \setminus n", vr);
35 printf("
36 printf("Load current = \%.2 \, f+j \, (\%.2 \, f) \, \ln n", real(ir_p)
       ), imag(ir_p));
37 printf ("Charging current at load end = j (\%.2 f) \ \n\"
       , imag(ic1));
38 printf("Line current = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \ln \, real(i1),
        imag(il));
39 printf ("Sending end voltage = \%.2 \, f + j \, (\%.2 \, f) \, \ln n",
       real(vs), imag(vs));
40 printf ("Line to line sending end voltage = \%.2 \,\mathrm{f} kV \
       n n, abs(vs)*sqrt(3)/1000);
41 printf ("Charging current at sending end = j (%.2 f) \n
       \n", imag(ic2));
42 printf ("Sending end current = \%.2 \text{ f+j} (\%.2 \text{ f}) \text{ A } \text{ } \text{n}",
       real(is), imag(is));
43 printf("Sending end current = \%.2 \, f \, A \, \ln n", abs(is))
```

Scilab code Exa 10.14 nominal pi method 2

```
1 // Chapter 10
2 //Example 10_14
\frac{3}{248}
5 clear; clc;
7 11 = 100;
8 r=0.1;
9 x1=0.5;
10 y=10*1e-6;
11 pd=20*1e6;
12 pfr=0.9;
13 \text{ v_r=}66*1e3;
14
15 tr=r*11;
16 ty = y * 11;
17 txl=x1*11;
18
19 z=tr+\%i*txl;
20 vr=v_r/sqrt(3);
21 ir=pd/sqrt(3)/v_r/pfr;
22 ir_p=ir*(pfr-%i*sin(acos(pfr)));
23 ic1=vr*%i*ty/2;
24 il=ir_p+ic1;
25 \text{ vs=vr+il*z};
26 ic2=vs*%i*ty/2;
27 is=il+ic2;
28 theta1=atan(imag(vs)/real(vs));
29 theta2=atan(imag(is)/real(is));
30 thetas=theta1+abs(theta2);
```

```
31 pfs=cos(thetas);
32 \text{ reg=}(abs(vs)-vr)/vr*100;
33 \text{ ps}=3*abs(vs)*abs(is)*pfs;
34 \text{ n=pd/ps}*100;
35
36 printf ("Total resistance / phase = \%.2 \,\mathrm{f} ohm \n\n", tr
37 printf ("Total reactance / phase = \%.2 \, \text{f ohm } \ln \, txl
  printf ("Total susceptance / phase = \%.6 f S \ln n, ty)
39
40 printf ("Recieving end voltage = \%.0 \, \text{f V } \ln \text{n}", vr);
41 printf("Load current = \%.2 \, f \, A \, \ln n", ir);
42 printf ("Recieving end voltage phasor = \%.0 \, \text{f+j0} \, \text{n}"
       , vr);
43 printf("Load current = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \ln \", real(ir_p)
       ), imag(ir_p));
44 printf ("Charging current at load end = j (\%.2 f) \ \n\"
       , imag(ic1));
45 printf("Line current = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \ln \, real(i1),
        imag(il));
46 printf ("Sending end voltage = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \ln \,
       real(vs), imag(vs));
47 printf ("Line to line sending end voltage = \%.2 \,\mathrm{f} kV \
       n n, abs(vs)*sqrt(3)/1000);
48 printf ("Charging current at sending end = \%.2 \, \text{f+j} \, (\%.2)
       f) n^n, real(ic2), imag(ic2));
49 printf ("Sending end current = \%.2 \text{ f+j} (\%.2 \text{ f}) \text{ A } \text{ } \text{n}",
       real(is), imag(is));
50 printf("Sending end current = \%.2 \, \text{f A } \ln \, abs(is))
51
52 printf("(i) Angle between Vr and Vs = \%.2 \, f degrees \
       n \ n", theta1*180/%pi);
                   Angle between Vr and Is = \%.2 \,\mathrm{f} degrees \
53 printf("
       n \ n", theta2*180/%pi);
54 printf("
                   Angle between Is and Vs = \%.2 f degrees \
```

Scilab code Exa 10.15 long tr line

```
1 // Chapter 10
2 //Example 10_15
3 //Page 254
5 clear; clc;
6
711=200;
8 r=0.16;
9 x1=0.25;
10 y=1.5*1e-6;
11 pd=20*1e6;
12 pfr=0.8;
13 \text{ v_r=}110*1e3;
14
15 tr=r*ll;
16 ty=y*11;
17 txl=x1*11;
18
19 z=tr+\%i*txl;
20 vr=v_r/sqrt(3);
21 ir=pd/sqrt(3)/v_r/pfr;
```

Scilab code Exa 10.16 generalised contants 1

```
1 // Chapter 10
2 //Example 10_16
3 // Page 258
5 clear; clc;
7 pd=30*1e6;
8 \text{ v_r=}132*1e3;
9 pfr = 0.85;
10 z=20+\%i*52;
11 y = \%i * 315 * 1e - 6;
12
13 a=1+z*y/2;
14 d=a;
15 b=z*(1+z*y/4);
16 c=y;
17
18 vr=v_r/sqrt(3)/1000;
19 ir=pd/sqrt(3)/v_r/pfr;
```

```
20 ir_p=ir*(pfr-%i*sin(acos(pfr)));
21 vs=a*vr*1000+b*ir_p;
22 \text{ mag_vs=} \frac{\text{abs}(vs)}{1000};
23 ll=mag_vs*sqrt(3);
24
25 reg=(mag_vs/abs(a)-vr)/vr*100;
26
27 printf("(i) GENERALISED CONSTANTS OF LINE: \n");
                  A = \%.3 f + j (\%.6 f) \ n, real(a), imag(a));
28 printf("
                  B = \%.2 f + j(\%.2 f) n, real(b), imag(b));
29 printf("
                  C = \%.6 \, f + j \, (\%.4 \, f) \, \backslash n", real(c), imag(c));
30 printf("
31 printf("
                  D = \%.3 f+j (\%.6 f) \setminus n \setminus n, real(d), imag(d)
      );
32
33 printf("(ii) SENDING END VOLTAGE: \n");
34 printf("
                   Recieving end voltage per phase = \%.0 f
      kV \ \ n\ ", \ vr);
35 printf("
                   Recieving end current = \%.0 \, f \, A \, \ln ",
       ir);
36 printf("
                   Recieving end current phasor = \%.2 f+j (\%
       .2 f) \ \n\n, real(ir_p), imag(ir_p));
37 printf("
                   Sending end voltage per phase = \%.2 f+j(
      \%.2 \, f) \, \, V \, \, \backslash n \backslash n", real(vs), imag(vs));
38 printf("
                   Magnitude of Sending end voltage = \%.2 \,\mathrm{f}
       kV \setminus n \setminus n, mag_vs);
39 printf("
                   Line value = \%.2 \, f \, kV \, nn, 11);
40
41 printf("(iii) REGULATION: \n");
42 printf("
                    \%\% regulation = \%.2 f \%\% \n\n", reg);
```

Scilab code Exa 10.17 generalised contants 2

```
1 //Chapter 10
```

```
2 //Example 10_17
3 //Page 259
5 clear; clc;
7 v_r=132*1e3;
8 \text{ pd} = 50 * 1 e6;
9 pfr=0.8;
10 a=0.9497+\%i*0.02321;
11 d=a;
12 b=19.9595+\%i*93.90216;
13 c = \%i * 0.0015;
14
15 vr=v_r/sqrt(3);
16 ir=pd/sqrt(3)/v_r/pfr;
17 printf ("Recieving end voltage per phase = \%.0 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n}
       n", vr);
18 printf ("Recieving end current = \%.0 \, f \, A \, \ln ", ir);
19 printf ("Recieving end voltage phasor = \%.0 \, \text{f+j0} \, \text{V} \, \text{n}
       n", vr);
20 ir_p=ir*(pfr-%i*sin(acos(pfr)));
21 printf("Load current phasor = \%.2 \text{ f+j } (\%.2 \text{ f}) \setminus n \setminus n",
       real(ir_p), imag(ir_p));
22
23 \text{ vs=a*vr+b*ir_p};
24 \text{ mag_vs=abs(vs)};
25 printf ("Sending end voltage per phase = \%.2 \text{ f+j} (\%.2 \text{ f})
        V \setminus n \setminus n, real(vs), imag(vs));
26
27 is=c*vr+d*ir_p;
28 mag_is=abs(is);
29 printf ("Sending end current = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) = \%.2 \, \text{f A}
       n^n, real(is), imag(is), abs(is));
30
31 ic=is-ir_p;
32 printf ("Charging current = \%.2 \text{ f+j } (\%.2 \text{ f}) \setminus \text{n} \in \text{m}", real (
       ic), imag(ic));
33
```

```
34 reg=(abs(vs)/a-vr)/vr*100;
35 printf("\mathcal{n}\mathcal{n}\text{ regulation} = \mathcal{n}.2 f \mathcal{n}\mathcal{n}\text{ n\n", reg);
```

Scilab code Exa 10.18 generalised contants 3

```
1 // Chapter 10
2 //Example 10_18
\frac{3}{\text{Page }} 260
5 clear; clc;
7 v_r=110*1e3;
8 \text{ pd} = 50 * 1 e6;
9 pfr=0.8;
10 a=0.97865+\%i*0.051289;
11 d=a;
12 b=28.47009+\%i*106.25184;
13 c=0.00008682+\%i*0.0004924;
14
15 vr=v_r/sqrt(3);
16 \text{ ir=pd/sqrt}(3)/v_r;
17 printf ("Recieving end voltage per phase = \%.0 f V \n\
      n", vr);
18 printf("Recieving end current = \%.0 \, f \, A \, \ln^n, ir);
19 printf ("Recieving end voltage phasor = \%.0 \text{ f+j0 V } \n\
      n", vr);
20 ir_p=ir*(pfr-%i*sin(acos(pfr)));
21 printf("Load current phasor = \%.2 \text{ f+j } (\%.2 \text{ f}) \setminus n \setminus n",
       real(ir_p), imag(ir_p));
22
23 \text{ vs=a*vr+b*ir_p};
24 \text{ mag_vs=abs(vs)};
25 printf("(i) Sending end voltage per phase = \%.2 \text{ f+j}(%
```

```
.2 f) V \n", real(vs), imag(vs));
26 printf (" Magnitude of Sending end voltage = \%.2 f
      kV \ \ n\ ", \ mag_vs);
27
28 is=c*vr+d*ir_p;
29 mag_is=abs(is);
30 printf("(ii) Sending end current = \%.2 \text{ f+j}(\%.2 \text{ f}) = \%
       .2 f A \n", real(is), imag(is), abs(is));
31 printf("
              Magnitude of Sending end current = \%.2 \,\mathrm{f}
       kV \setminus n \setminus n, mag_is);
32
33 t1=atan(imag(is)/real(is))*180/%pi;
34 t2=atan(imag(vs)/real(vs))*180/%pi;
35 pfs = cos((abs(t1)+t2)*\%pi/180);
36 ps=3*mag_vs*mag_is*pfs/1e6;
37 printf("(iii) Sending end power = \%.2 \text{ f MW } \ln n, ps)
38
39 \text{ pr=pd*pfr/1e6};
40 printf("(iv) Recieving end power = \%.2 \text{ f MW } \ln n", pr
      );
                   Transmission efficiency = \%.2 \text{ f } \% \setminus \text{n} \text{n}"
41 printf("
       , pr/ps*100);
```

Chapter 11

Underground Cables

Scilab code Exa 11.1 insulaiton resistance

Scilab code Exa 11.2 insulation thickness

```
1 //Chapter 11
2 //Example 11_2
3 //Page 274
4
5 clear; clc;
6
7 l=1000;
8 r=495*1e6;
9 r1=2.5/2;
10 p=4.5*1e12;
11
12
13 r2=r1*exp(2*%pi*r*1/p);
14
15 printf("Insulation thickness = %.2 f cm \n\n", r2-r1)
;
```

Scilab code Exa 11.3 insulaiton resistance 2

```
1 //Chapter 11
2 //Example 11_3
3 //Page 274
4
5 clear; clc;
6
7 l=5000;
8 r=0.4*1e6;
9 r1=20/2;
10 r2=50/2;
11
12 p=2*%pi*r*1/log(r2/r1);
13
14 printf("Resistance of the insulating material = %.2 f
```

Scilab code Exa 11.4 cable capacitance

```
1 //Chapter 11
2 //Example 11_4
3 //Page 275
4
5 clear; clc;
6
7 er=4;
8 l=1000;
9 d_out=1.8;
10 d_in=1;
11
12 c=er*l*1e-9/41.4/log10(d_out/d_in)/10;
13
14 printf("Capacitance of the cable = %.3 f uF \n\n", c *10e6);
```

Scilab code Exa 11.5 total charging kvar

```
1 //Chapter 11
2 //Example 11_5
3 //Page 276
4
5 clear; clc;
6
7 er=4;
```

```
8 1 = 1000;
9 d_in=10;
10 d_out=10+2*7;
11 v=66*1e3;
12 f = 50;
13
14 c=er*l*1e-9/(41.4*log(d_out/d_in))*log(10);
15
16 printf("Capacitance of the cable = \%.3 \, f uF \n\n", c
       *10e5);
17
18 v_ph=v/sqrt(3);
19 xc=1/(2*\%pi*f*c);
20 ic=v_ph/xc;
21
22 printf ("Voltage between core and sheath = \%.0 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n}
      nCharging current = \%.2 f A \setminus n \setminus n", v_ph, ic);
```

Scilab code Exa 11.6 total charging kvar 1

```
1 //Chapter 11
2 //Example 11_6
3 //Page 276
4
5 clear; clc;
6
7 er=3;
8 l=4000;
9 d_in=2.5;
10 d_out=d_in+2*0.5;
11 v=33*1e3;
12 f=50;
13
```

```
14 c=er*l*1e-9/(41.4*log(d_out/d_in))*log(10);
15
16 printf("(i) Capacitance of the cable = \%.3 \, f \, uF \, \ln^{2}
       , c*10e5);
17
18 v_ph=v/sqrt(3);
19 xc=1/(2*\%pi*f*c);
20 ic=v_ph/xc;
21
22 printf("(ii) Voltage between core and sheath = \%.0 f
                  Charging current/phase = \%.2 f A \ln ",
      V \setminus n \setminus n
      v_ph, ic);
23
24 \text{ kvar}=3*ic*v_ph;
25 printf("(iii) Total charging kVAR = \%.2 \text{ f}*10^3 \text{ kVAR}
      n \ n", kvar*1e-3);
```

Scilab code Exa 11.7 minimum dielectric stress

```
1 //Chapter 11
2 //Example 11_7
3 //Page 278
4
5 clear; clc;
6
7 v=33;
8 d_in=1;
9 d_out=4;
10
11 g_max=2*v/d_in/log(d_out/d_in);
12 g_min=2*v/d_out/log(d_out/d_in);
13
14 printf("Maximum stress in the insulation = %.2 f kV/
```

```
cm \n^n, g_max);
15 printf("Minimum stress in the insulation = %.2 f kV/cm \n^n, g_min);
```

Scilab code Exa 11.8 operating voltage

```
1 //Chapter 11
2 //Example 11_8
3 //Page 278
4
5 clear; clc;
6
7 g_max=40;
8 g_min=10;
9 d_in=2;
10
11 d_out=d_in*g_max/g_min;
12 v=g_max*d_in*log(d_out/d_in)/2;
13
14 printf("(i) Insulation thickness = %.0 f cm \n\n", (d_out-d_in)/2);
15 printf("(ii) Operating voltage = %.2 f kV rms \n\n", v);
```

Scilab code Exa 11.9 charging current

```
1 //Chapter 11
2 //Example 11_9
3 //Page 279
```

```
5 clear; clc;
7 v = 11;
8 \text{ area} = 0.645;
9 d_out=2.18;
10 \text{ er} = 3.5;
11 1=1000;
12 f = 50;
13
14 d_in=sqrt(4*area/%pi);
15 g_max=2*v/d_in/log(d_out/d_in);
16 g_min=2*v/d_out/log(d_out/d_in);
17
18 printf("(i) Maximum stress in the insulation = \%.2 \,\mathrm{f}
      kV/cm \ \ n\ \ g_max);
19 printf("(ii) Minimum stress in the insulation = \%.2 \,\mathrm{f}
       kV/cm \ nn", g_min);
20
21 c=er*l*1e-9/(41.4*log(d_out/d_in))*log(10);
22
23 printf("(iii) Capacitance of the cable = \%.3 \,\mathrm{f} uF \n\
      n", c*10e5);
24
25 \text{ xc}=1/(2*\%\text{pi}*f*c);
26 ic=v*1e3/xc;
27
28 printf("(iv) Charging current = \%.2 \, f \, A \, \ln n", ic);
```

Scilab code Exa 11.10 economical conductor diameter

```
1 //Chapter 11
2 //Example 11_10
```

```
3 //Page 280
4
5 clear; clc;
6
7 v=50;
8 g_max=40;
9
10 v_rms=v*sqrt(2);
11 d=2*v_rms/g_max;
12
13 printf("Peak value of cable voltage = %.2 f kV \n\n", v_rms);
14 printf("Most economical conductor diameter = %.2 f cm \n\n", d);
```

Scilab code Exa 11.11 internal sheath diameter

```
1 //Chapter 11
2 //Example 11_11
3 //Page 280
4
5 clear; clc;
6
7 v=132;
8 g_max=60;
9
10 vp=v/sqrt(3);
11 pv_ph=vp*sqrt(2);
12
13 d=2*pv_ph/g_max;
14 d_out=2.718*d;
15
16 printf("Phase value of cable voltage = %.2 f kV \n\n"
```

Scilab code Exa 11.12 rms safe working voltage

```
1 //Chapter 11
2 //Example 11_12
3 / \text{Page } 282
5 clear; clc;
7 d_in=2;
8 d_out=8;
9 e1=5;
10 e2=4;
11 e3=3;
12 g_max = 40;
13
14 d1=e1*d_in/e2;
15 d2=e1*d_in/e3;
16
17 printf("GRADED CABLE: \n");
18 printf("d1 = \%.2 \, \text{f cm } \ \text{n}", d1);
19 printf("d2 = \%.2 \text{ f cm } \n", d2);
20
v = g_max/2*(d_in*log(d1/d_in)+d1*log(d2/d1)+d2*log(d2/d1)
      d_out/d2));
```

Scilab code Exa 11.13 rms safe working voltage 2

```
1 //Chapter 11
2 //Example 11_13
3 //Page 283
4
5 clear; clc;
6
7 d_in=3;
8 d_out=9;
9 e1=5;
10 e2=4;
11 g1_max=30;
12 g2_max=20;
13
14 d1=g1_max*e1*d_in/g2_max/e2;
15 ri=(d1-d_in)/2;
16 ro=(d_out-d1)/2;
17 v=g1_max/2*d_in*log(d1/d_in)+g2_max/2*d1*log(d_out/
```

```
d1);
18
19 printf("d1 = %.3 f cm \n\n", d1);
20 printf("Radial thickness of inner dielectric = %.3 f cm \n\n", ri);
21 printf("Radial thickness of outer dielectric = %.3 f cm \n\n", ro);
22 printf("Permissible peak voltage for the cable = %.3 f kV \n", v);
23 printf("Safe working rms voltage for the cable = %.3 f kV \n", v/sqrt(2));
```

Scilab code Exa 11.14 max dielectric stress

```
1 //Chapter 11
2 //Example 11<sub>-</sub>14
3 // Page 284
5 clear; clc;
7 d_{in}=2;
8 d1=4;
9 d_out=6;
10 \text{ v=} 66;
11 e1=5;
12 e2=3;
13
14 vp = v * sqrt(2/3);
15
16 g1max = 2*vp/d_in/(log(d1/d_in)+e1*log(d_out/d1)/e2);
17 g2max=2*vp/d1/(e2*log(d1/d_in)/e1+log(d_out/d1));
18
19 printf("g1max = \%.2 \text{ f kV/cm } \ln n", g1max);
```

Scilab code Exa 11.15 intersheath grading 1

```
1 //Chapter 11
2 //Example 11_{-}15
3 //Page 285
5 clear; clc;
7 d_in=2;
8 d1=3.1;
9 d2=4.2;
10 d_out=5.3;
11 v = 66;
12
13 vp = v * sqrt(2/3);
14
15 g1_{max}=1/(d_{in}/2)/log(d1/d_{in});
16 g2_{max}=1/(d1/2)/log(d2/d1);
17 g3_{max}=1/(d2/2)/log(d_out/d2);
18
19 v2=g1_max/g2_max;
20 \quad v3=g1_max/g3_max;
21
22 \text{ vd} = 1 + v2 + v3;
23 \text{ val=vp/vd};
24 \text{ va2=v2*va1};
25
26 \text{ vf=vp-va1};
27 \text{ vs=vp-val-va2};
28
29 printf("g1_max = \%.2 \, \text{fV1} \, \text{n}", g1_max);
```

```
30  printf("g2_max = %.2fV1 \n", g2_max);
31  printf("g3_max = %.2fV1 \n\n", g3_max);
32  33  printf("V2 = %.3fV1 \n", v2);
34  printf("V3 = %.3fV1 \n\n", v3);
35  36  printf("V1 = %.2f kV \n\n", va1);
37  38  printf("Voltage on the first intersheath = %.2f kV \n", vf);
39  printf("Voltage on the second intersheath = %.2f kV \n\n", vs);
```

Scilab code Exa 11.16 intersheath grading 2

```
1 //Chapter 11
2 //Example 11_16
3 //Page 286
5 clear; clc;
7 v = 66;
8 d_in=2;
9 d_out=5.3;
10 d1=(2*d_out*d_in)^(1/3);
11 d2=d1^2/2;
12
13 vp=v*sqrt(2/3);
14
15 v1=vp/(1+d1/d_in+d2/d_in);
16 v2=d1/d_in*v1;
17 vf = vp - v1;
18 vs = vp - v1 - v2;
```

```
19
20 maxs=v1/(d_in*log(d1/d_in)/2);
21 mins=v1/(d1*log(d1/d_in)/2);
22
23 printf("(i) POSITIONS OF INTERSHEATHS: \n");
24 printf("d1 = \%.2 \text{ f cm } \n", d1);
25 printf("d2 = \%.2 \text{ f cm } \ln \%, d2);
26
27 printf("(ii) VOLTAGE ON INTERSHEATH: \n");
28 printf("V1 = \%.2 \, f \, kV \, \backslash n", v1);
29 printf("V2 = \%.2 f kV \n", v2);
30 printf("Voltage on first intersheath = \%.2 \, \text{f kV } \, \text{n}",
      vf);
31 printf ("Voltage on second intersheath = \%.2 \text{ f kV } \ln
      ", vs);
32
33 printf("(iii) STRESSES ON DIELECTRIC: \n");
34 printf("Maximum stress = \%.2 \text{ f kV/cm } \text{n}", maxs);
35 printf("Minimum stress = \%.2 \text{ f kV/cm } \ln n", mins);
```

Scilab code Exa 11.17 three core cable Ic

```
1 //Chapter 11
2 //Example 11_17
3 //Page 289
4
5 clear; clc;
6
7 c=0.3;
8 v=11;
9 f=50;
10 l=5;
11
```

```
12 c3=1*c;
13 vph=v*1000/sqrt(3);
14 cn=2*c3;
15 ic=2*%pi*f*cn*vph/1e6;
16
17 printf("The capacitance between a pair of cores with third core earthed for a length of %d km is: \n C3 = %.2 f uF \n\n", 1, c3);
18 printf("Phase voltage = %.0 f V \n\n", vph);
19 printf("Core to nuetral capacitance = %.2 f uF \n\n", cn);
20 printf("Charging current = %.2 f A \n\n", ic);
```

Scilab code Exa 11.18 three core cable Ic2

```
1 //Chapter 11
2 / \text{Example } 11\_18
3 // Page 290
5 clear; clc;
7 v = 66;
8 \text{ v_ph} = 66*1000/\text{sqrt}(3);
9 f = 50;
10 c1=12.6;
11 c2=7.4;
12
13 ce=c1/3;
14 \text{ cc}=(c2-ce)/2;
15 cn=ce+3*cc;
16 ic=2*%pi*f*v_ph*cn/1e6;
17
18 printf ("Core-core capacitance of the cable = \%.2 \,\mathrm{f} uF
```

Scilab code Exa 11.19 kva taken by cable

```
1 //Chapter 11
2 //Example 11_19
3 / Page 290
5 clear; clc;
7 c=0.18;
81=20;
9 v = 3300;
10 f = 50;
11
12 c3=c*1;
13 v_ph=v/sqrt(3);
14
15 \text{ cn} = 2 * c3;
16 ic=2*%pi*f*v_ph*cn/1e6;
17 kva=3*v_ph*ic;
18
19 printf ("Capacitance between pair of cores with third
        core = \%.2 f uF \n\n", c3);
20 printf ("Core to nuetral capacitance of the cable = \%
       .2 f uF \n\n", cn);
21 printf ("Charging current = \%.2 \, f \, A \, \ln \,", ic);
22 printf("kVA taken by the cable = \%.2 \, \text{f} \, \text{kVA } \, \text{n} \, \text{n}", kva
```

Scilab code Exa 11.20 permissible current loading

```
1 //Chapter 11
2 / Example 11_20
3 //Page 292
5 clear; clc;
7 k=5;
8 r=30/2;
9 r1=r+40;
10 er=110*1e-6;
11
12 s1=k/2/\%pi*log(r1/r);
13 \text{ s}2=0.45;
14 \text{ s=s1+s2};
15 n=1;
16 t = 55;
17 i=sqrt(t/n/er/s);
18
19 printf ("Thermal resistance of the dielectric of the
      cable = \%.2 f thermal ohms per metre length \n\,
       s1);
20 printf ("Total thermal resistance = \%.2 f thermal ohms
       per metre legth \n\n", s);
21 printf("Maximum permissible current loading = %.0 f A
       n", i);
```

Scilab code Exa 11.21 loop testing fault location 1

```
1 //Chapter 11
2 //Example 11_21
3 //Page 296
4
5 clear; clc;
6
7 q=15;
8 p=45;
9 11=2*300;
10
11 d=q/(p+q)*11;
12
13 printf("Distance of the fault point from test end = %.0 f m \n\n", d);
```

Scilab code Exa 11.22 loop testing fault location 2

```
1 //Chapter 11
2 //Example 11_22
3 //Page 297
4
5 clear; clc;
6
7 q=1;
8 p=3*q;
9 11=2*500;
```

Scilab code Exa 11.23 loop testing fault location 3

```
1 // Chapter 11
2 //Example 11_23
3 //Page 297
5 clear; clc;
7 q=1;
8 p=2.75*q;
9 r1=1;
10 m1 = 1000;
11 r2=2.25;
12 \text{ m} 2 = 1000;
13 \quad 1 = 500;
14
15 r=r1/m1*1+r2/m2*1;
16 x=q/(p+q)*r;
17 d=x*1000;
18
19 printf("Resistance of the loop = \%.3 \, \text{f ohm } \ln \, r);
20 printf ("Resistance of faulty cable from test end
      upto fault point = \%.3 f ohm \n\n", x);
21 printf("Distance of fault point from the testing end
       = \%.0 f m \nn, d);
```

Scilab code Exa 11.24 distance from fault end

```
1 // Chapter 11
\frac{2}{2} //Example \frac{11}{24}
3 //Page 297
5 clear; clc;
7 s = 200;
8 r = 20;
9 1 = 20;
10 //R+X is represented by the variable rx
11 rx=r*(1+1);
12 x=(rx-s)/2;
13 d=x/r;
14
15 printf("Resistance of cable from test end to fault
     16 printf("Distance of fault from test end = \%d km \n\n
    ", d);
```

Chapter 13

D C Distribution

Scilab code Exa 13.1 PD at each point

```
1 // Chapter 13
2 //Example 13_1
3 //Page 313
5 clear; clc;
7 Va=300;
8 \text{ Ic} = 100;
9 \text{ Id} = 150;
10 Ie=200;
11 Ib=50;
12 Lac=500;
13 \text{ Lcd} = 400;
14 Lde=600;
15 Leb=400;
16 r = 0.01;
17
18 R=r*2;
19 Rac=R*Lac/1000;
20 Rcd=R*Lcd/1000;
21 Rde=R*Lde/1000;
```

```
22 \text{ Reb=R*Leb}/1000;
23
24 Ieb=Ib;
25 Ide=Ieb+Ie;
26 Icd=Ide+Id;
27 Iac=Icd+Ic;
28
29 \text{ Vc=Va-Iac*Rac};
30 Vd=Vc-Icd*Rcd;
31 Ve=Vd-Ide*Rde;
32 \text{ Vb=Ve-Ieb*Reb};
33
34 printf("Resistance per 1000m of distributor = %.2 f
      ohm \n\n", R);
35 printf("Resistance of section AC = \%.3 \, \mathrm{f} ohm \n", Rac
36 printf ("Resistance of section CD = \%.3 f ohm \n", Rcd
37 printf ("Resistance of section DE = \%.3 \, \mathrm{f} ohm \n", Rde
      );
38 printf("Resistance of section EB = \%.3 \, \text{f ohm } \ln \,
      Reb);
39
40 printf("I_EB = \%.0 f A \n", Ieb);
41 printf("I_DE = \%.0 f A \n", Ide);
42 printf("I_CD = \%.0 \text{ f A } \text{ n}", Icd);
43 printf("I_AC = \%.0 f A \setminus n \setminus n", Iac);
44
45 printf ("Potential difference at load point C = Vc =
      \%.1\,f V \n", Vc);
46 printf ("Potential difference at load point D = Vd =
      \%.1 \, f \, V \, \backslash n", Vd);
47 printf ("Potential difference at load point E = Ve =
      \%.1 \, f \, V \setminus n", Ve);
48 printf ("Potential difference at load point B = Vb =
      \%.1 f V \n", Vb);
```

Scilab code Exa 13.2 cross sectional area of conductor

```
1 // Chapter 13
2 //Example 13_2
3 //Page 314
5 clear; clc;
711=300;
8 max_drop=10;
9 p=1.78*1e-8;
10 Lac=40;
11 Lcd=60;
12 \text{ Lde} = 50;
13 Lef = 100;
14 Lfb=50;
15 Ic=30;
16 \text{ Id} = 40;
17 Ie=100;
18 If=50;
19
20 \quad \text{Ief=If};
21 Ide=Ief+Ie;
22 Icd=Ide+Id;
23 Iac=Icd+Ic;
24
25 Rac=Lac/100;
26 Rcd=Lcd/100;
27 Rde=Lde/100;
28 Ref=Lef/100;
29
30 vd=Iac*Rac+Icd*Rcd+Ide*Rde+Ief*Ref;
```

```
31 r=max_drop/vd;
32 //for 100 m length of the conductor area is given by
33 area=p*100*2/r;
34
35 printf("Resistance of 100 m length of distributor =
        %.5 f ohm \n\n", r);
36 printf("Area = %.3 f cm^2 \n", area*1e4);
```

Scilab code Exa 13.3 voltages across trams

```
1 / Chapter 13
2 //Example 13_3
3 //Page 315
5 clear; clc;
711=2;
8 12=6-2;
9 i1=40;
10 i2=20;
11 v = 600;
12 \text{ rw} = 0.25;
13 \text{ rt} = 0.03;
14
15 \text{ r=rw+rt};
16 i_sa=i1+i2;
17 i_ab=i2;
18 v_sa=i_sa*r*l1;
19 v_ab=i_ab*r*12;
20 \text{ va=v-v_sa};
21 \text{ vb=va-v_ab};
22
```

Scilab code Exa 13.4 voltage at tapping points

```
1 // Chapter 13
 \frac{2}{\sqrt{\text{Example }}} \frac{13}{4}
 \frac{3}{2} = \frac{1}{2} = \frac{315}{2}
 5 clear; clc;
7 Va=250;
8 \text{ Ic} = 15;
9 Id=20;
10 Ib=12;
11 Lab=75;
12 \text{ Lcd} = 50;
13 Lbc=100;
14 \text{ area} = 0.27;
15 p=1.78*1e-6;
16
17 //single core resistance of the section of 100m
       length
18 R=p*100*100/area;
19 Rab=R*Lab/100*2;
```

```
20 Rbc=R*Lbc/100*2;
21 Rcd=R*Lcd/100*2;
22
23 \text{ Icd=Id};
24 Ibc=Icd+Ic;
25 Iab=Ibc+Ib;
26
27 \text{ Vb=Va-Iab*Rab};
28 \text{ Vc=Vb-Ibc*Rbc};
29 Vd=Vc-Icd*Rcd;
30
31 printf("(i) CURRENTS IN VARIOUS SECTIONS: \n");
32 printf("I_AB = \%.0 \text{ f A } \text{ n}", Iab);
33 printf("I_BC = \%.0 f A \n", Ibc);
34 printf("I_CD = \%.0 f A \setminus n \setminus n", Icd);
35
36 printf("(ii) Single core resistance of the section
      of 100m length = \%.3f ohm \n", R);
37 printf ("Resistance of section AB = \%.3 f ohm \n", Rab
      );
38 printf ("Resistance of section BC = \%.3 \, \mathrm{f} ohm \n", Rbc
39 printf("Resistance of section CD = \%.3 f ohm \n\n",
      Rcd);
40
41
42 printf("(iii) Voltage at tapping point B = Vb = \%.2f
       V \setminus n", Vb);
43 printf ("Voltage at tapping point C = Vc = \%.2 f V \n"
      , Vc);
44 printf ("Voltage at tapping point D = Vd = \%.2 f V \n"
      , Vd);
```

Scilab code Exa 13.5 max voltage drop

```
1 // Chapter 13
2 //Example 13_{5}
\frac{3}{2} = \frac{1}{2} = \frac{317}{2}
5 clear; clc;
71=200;
8 i=2;
9 r_km = 0.3;
10 x = 150;
11
12 r = 2 * r_k m / 1000;
13 vd=i*r*(1*x-x^2/2);
14 I = i * 1;
15 R=r*1;
16 \text{ tvd} = 1/2 * I * R;
17
18 printf ("Resistance of distributor per metre run = \%
       .4 \text{ f ohm } \n\n", r);
19 printf("(i) Voltage drop upto %d m from feeding
       point = \%.1 f V \setminus n \setminus n", x, vd);
20 printf("(ii) Total current entering distributor = %d
        A \setminus n \setminus n, I);
21 printf("
                    Total resistance of distributor = \%.2 \,\mathrm{f}
       ohm \n\n", R);
                    Maximum voltage drop = \%d V \n\n", tvd)
22 printf("
```

Scilab code Exa 13.6 x section of distributor

```
1 // Chapter 13
```

```
2 //Example 13_6
3 //Page 317
5 clear; clc;
7 1 = 500;
8 i = 0.4;
9 \text{ vd} = 10;
10 p=1.7*1e-6;
11
12 I=i*1;
13 r = vd/0.5/I/1;
14 \text{ area=p*100*2/r};
15
16 printf("Resistance per metre length of the
       distributor = \%.2 \text{ f}*10^-3 \text{ ohm } \ln n, r*1e3);
17 printf("Area of cross section of the distributor = %
      .1 f cm<sup>2</sup> n", area);
```

Scilab code Exa 13.7 voltage at feeding points

```
1 //Chapter 13
2 //Example 13_7
3 //Page 318
4
5 clear; clc;
6
7 l=250;
8 i=1.6;
9 r=0.0002;
10 v=250;
11
12 I=i*1;
```

```
13 R=2*r*1;
14 vd = 0.5 * I * R;
15 vfp=v+vd;
16 x=1/2;
17 v_d=i*r*2*(1*x-x^2/2);
18 \text{ v_fp=v_d+v};
19 printf ("Current entering the distributor = %d A \n\n
      ", I);
20 printf ("Total Resistance of the distributor = \%.4 f
      ohm \n'n", R);
21 printf("(i) Voltage drop over the entire distibutor
      = \%d V \setminus n \setminus n, vd);
22 printf("
                 Voltage at feeding point = \%d V \setminus n \setminus n,
       vfp);
23 printf("(ii) Voltage drop upto distance %d m from
       feeding point = %d V \setminus n \setminus n, x, v_d);
24 printf("
                   Voltage at feeding point = \%d V \setminus n \setminus n,
       v_fp);
```

Scilab code Exa 13.9 power loss in distributor

```
1 //Chapter 13
2 //Example 13_9
3 //Page 319
4
5 clear; clc;
6
7 x=200;
8 l=300;
9 i=0.75;
10 r=0.00018;
11 v=250;
12
```

```
13  vd=i*r*(1*x-x^2/2);
14  printf("Voltage drop = %.1 f V \n\n", vd);
15  printf("Voltage at a distance %d m from supply end = %.1 f V \n\n", x, v-vd);
16
17  p=i^2*r*l^3/3;
18  printf("Power loss in distributor = %.2 f W \n\n", p)
    ;
```

Scilab code Exa 13.10 minimum consumer voltage

```
1 / Chapter 13
2 //Example 13_{-}10
3 //Page 321
 5 clear; clc;
7 Va=220;
8 \text{ Ic} = 20;
9 \text{ Id} = 40;
10 Ie=50;
11 If=30;
12 Vb = 220;
13 Lac=100;
14 \text{ Lcd=150};
15 \text{ Lde} = 150;
16 \text{ Lef=100};
17 Lfb=100;
18 area=1;
19 p=1.7*1e-6;
20
21 //resistance for 100 m length of conductor
22 R=2*p*100/area;
```

```
23
24 \text{ Rac=R*Lac};
25 \text{ Rcd}=R*Lcd;
26 \text{ Rde}=R*Lde;
27 Ref = R * Lef;
28 Rfb=R*Lfb;
29
30 //considering drop across various sections of the
      distributor and adding them to calculate Ia
31 Ia=(Va-Vb+(Ic*Rcd)+(Ic+Id)*Rde+(Ic+Id+Ie)*Ref+(Ic+Id
      +Ie+If)*Rfb)/(Rac+Rcd+Rde+Ref+Rfb);
32
33 Ve=Va-(Ia*Rac+(Ia-Ic)*Rcd+(Ia-Ic-Id)*Rde);
34
35 printf ("Resistance per 100 m of distributor = \%.2 f
      *10^-4 ohm \n\n", R*1e4);
36 printf ("Resistance of section AC = \%.3 f ohm \n", Rac
37 printf ("Resistance of section CD = \%.3 \, f ohm n", Rcd
38 printf ("Resistance of section DE = \%.3 \, \mathrm{f} ohm \n", Rde
39 printf("Resistance of section EF = \%.3\,\mathrm{f} ohm \n", Ref
40 printf ("Resistance of section FB = \%.3 f ohm \n\,
      Rfb);
41
42 printf ("Ia = \%.1 \, \text{f A } \setminus \text{n}", Ia);
44 printf ("Minimum consumer voltage = Ve = \%.2 f V \setminus n",
      Ve);
```

Scilab code Exa 13.11 currents and voltages

```
1 // Chapter 13
2 //Example 13_11
3 //Page 322
5 clear; clc;
7 Va = 230;
8 \text{ Ic} = 25;
9 \text{ Id} = 50;
10 Ie=30;
11 If=40;
12 Vb = 235;
13 Lac=50;
14 Lcd=25;
15 Lde=25;
16 Lef = 50;
17 Lfb=50;
18 r = 0.3;
19 1 = 200;
20
21 //resistance for 1000 m length of conductor
22 R = 2 * r;
23
24 Rac=R*Lac/1000;
25 Rcd=R*Lcd/1000;
26 \text{ Rde} = R*Lde/1000;
27 \text{ Ref} = R * Lef / 1000;
28 Rfb=R*Lfb/1000;
29
30 //considering drop across various sections of the
       distributor and adding them to calculate Ia
31 Ia = (Va - Vb + (Ic * Rcd) + (Ic + Id) * Rde + (Ic + Id + Ie) * Ref + (Ic + Id)
      +Ie+If)*Rfb)/(Rac+Rcd+Rde+Ref+Rfb);
32
33 Iac=Ia;
34 Icd=Ia-Ic;
35 Ide=Ia-Ic-Id;
36 Ief=Ia-Ic-Id-Ie;
```

```
37
  Ifb=Ia-Ic-Id-Ie-If;
38
39 Vd=Va-(Iac*Rac+Icd*Rcd);
40
41 printf ("Resistance per 1000 m of distributor = \%.2 f
      ohm \n\n", R);
42 printf ("Resistance of section AC = \%.3 \,\mathrm{f} ohm \n", Rac
43 printf ("Resistance of section CD = \%.3 f ohm \n", Rcd
44 printf ("Resistance of section DE = \%.3 \, \mathrm{f} ohm \n", Rde
45 printf ("Resistance of section EF = \%.3 \, \mathrm{f} ohm \n", Ref
      );
46 printf("Resistance of section FB = \%.3 \, \text{f ohm } \ln \,
      Rfb);
47
48 printf("Ia = \%.1 f A \setminus n \setminus n", Ia);
49
50 printf("(i) Current in section AC = Iac = \%.2 f A \n"
      , Iac);
51 printf("
                 Current in section CD = Icd = \%.2 f A \n"
      , Icd);
52 printf("
                 Current in section DE = Ide = \%.2 f A \n"
      , Ide);
53 printf("
                 Current in section EF = Ief = \%.2 f A \n"
      , Ief);
                 Current in section FB = Ifb = \%.2 f A \setminus n \setminus
54 printf("
      n", Ifb);
55
56 printf("(ii) Voltage at D = Vd = \%.2 f V n, Vd
```

Scilab code Exa 13.12 power loss in distributor2

```
1 // Chapter 13
2 //Example 13_12
3 //Page 323
5 clear; clc;
7 Va = 440;
8 \text{ Ic} = 100;
9 Id = 200;
10 Ie=250;
11 If=300;
12 Vb = 430;
13 Lac=150;
14 Lcd=150;
15 Lde=50;
16 Lef=100;
17 Lfb=150;
18 r = 0.01;
19 1 = 600;
20
21 //resistance for 100 m length of conductor
22 R = 2 * r;
23
24 \operatorname{Rac}=R*\operatorname{Lac}/100;
25 \text{ Rcd}=R*Lcd/100;
26 \text{ Rde}=R*Lde/100;
27 Ref = R * Lef / 100;
28 Rfb=R*Lfb/100;
29
30 //considering drop across various sections of the
       distributor and adding them to calculate Ia
31 Ia = (Va - Vb + (Ic * Rcd) + (Ic + Id) * Rde + (Ic + Id + Ie) * Ref + (Ic + Id)
      +Ie+If)*Rfb)/(Rac+Rcd+Rde+Ref+Rfb);
32
33 Iac=Ia;
34 Icd=Ia-Ic;
35 Ide=Ia-Ic-Id;
36 Ief=Ia-Ic-Id-Ie;
```

```
37
  Ifb=Ia-Ic-Id-Ie-If;
38
39 \text{ Ib=abs}(Ifb);
40
41 P=Iac^2*Rac+Icd^2*Rcd+Ide^2*Rde+Ief^2*Ref+Ifb^2*Rfb;
42
43 printf ("Resistance per 100 m of distributor = \%.2 f
      ohm \n' n", R);
44 printf ("Resistance of section AC = \%.3 f ohm \n", Rac
45 printf ("Resistance of section CD = \%.3 \, f ohm n", Rcd
46 printf ("Resistance of section DE = \%.3 \, \mathrm{f} ohm \n", Rde
      );
47 printf ("Resistance of section EF = \%.3 \,\mathrm{f} ohm \n", Ref
48 printf ("Resistance of section FB = \%.3 f ohm \n\,
      Rfb);
49
50 printf("Ia = \%.1 f A \setminus n \setminus n", Ia);
51
52 printf("(i) Current supplied from end A = Ia = \%.2 f
      A \setminus n", Ia);
53 printf("
               Current supplied from end B = Ib = \%.2f
      A \setminus n \setminus n", Ib);
54
55 printf("(ii) Power loss in the distributor = \%.3 \,\mathrm{f} kW
        n^n, P/1000);
```

Scilab code Exa 13.13 current supplied by stations

```
1 // Chapter 13
2 // Example 13_13
```

```
3 // Page 324
5 clear; clc;
6
71=6;
8 \text{ va} = 600;
9 \text{ vb} = 590;
10 i = 300;
11 r=0.04;
12
13 x=3.425;
14 ia=341.7-50*x;
15 ib=i-ia;
16
17 printf("(i) x = \%.3 f \text{ km } n", x);
18 printf("(ii) Current suplied by A = \%.2 f A \n", ia);
                   Current suplied by B = \%.2 f A \n", ib);
19 printf("
```

Scilab code Exa 13.14 maximum voltage drop

```
1 //Chapter 13
2 //Example 13_14
3 //Page 327
4
5 clear; clc;
6
7 l=1000;
8 i=0.5;
9 r_km=0.05;
10 v=220;
11
12 r=2*r_km/1000;
13 I=i*1;
```

```
14 R=r*l;
15 vd=I*R/8;
16 maxv=v-vd;
17
18 printf("Resistance of distributor per metre = %.1 f
          *10^-3 ohm \n\n", r*1e3);
19 printf("Total current supplied by distributor = %d A
          \n\n", I);
20 printf("Total resistance of the distributor = %.1 f
          ohm \n\n", R);
21 printf("Maximum voltage drop = %.2 f V \n\n", vd);
22 printf("Maximum voltage drop will occur at the
          midpoint of the distributor = %.2 f V \n\n", maxv)
          ;
```

Scilab code Exa 13.15 currents supplied from two ends

```
1 //Chapter 13
2 //Example 13_15
3 //Page 327
4
5 clear; clc;
6
7 l=500;
8 i=1;
9 Va=255;
10 Vb=250;
11 r_km=0.1;
12
13 r=2*r_km/1000;
14 x=(Va-Vb)/(i*r*1)+(1/2);
15 Vc=Va-i*r*x^2/2;
16 ia=i*x;
```

```
17 ib=i*(l-x);
18
19 printf("Resistance of distributor per metre = %.4 f
        ohm \n\n", r);
20 printf("(i) Minimum potential occurs at %d m from A
        \n\n", x);
21 printf(" Minimum voltage Vc = %d V \n\n", Vc);
22 printf("(ii) Current supplied from A = %d A \n\n",
        ia);
23 printf(" Current supplied from B = %d A \n\n",
        ib);
```

Scilab code Exa 13.16 voltage calculations

```
1 // Chapter 13
2 //Example 13_16
3 //Page 328
5 clear; clc;
7 i=1.25;
8 //minimum voltage occurs at point C
9 \text{ Vc} = 220;
10 x = 450;
11 r_km = 0.05;
12 1=800;
13
14 r=2*r_km/1000;
15 Vac=i*r*x^2/2;
16 Va=Vc+Vac;
17 Vbc=i*r*(1-x)^2/2;
18 Vb = Vc + Vbc;
19
```

Scilab code Exa 13.17 max voltage drop 2

```
1 / Chapter 13
2 //Example 13_17
\frac{3}{2} // Page \frac{329}{2}
5 clear; clc;
7 1 = 1000;
8 i=1.25;
9 r_km = 0.05;
10
11 r=2*r_km/1000;
12 I = i * 1;
13 R=r*1;
14 vd=I*R/8;
15
16 //Part 1 is derivation of maximum voltage drop and
       is not included in the code. Only Part 2 is
       solved.
17
18 printf("(i) Total current supplied by distributor =
      % d\ A\ \backslash n \backslash n" , I);
19 printf("Total resistance of the distributor = \%.1 \, \mathrm{f}
```

```
ohm \n\n", R); 20 printf("Maximum voltage drop = \%.2\,\mathrm{f} V \n\n", vd);
```

Scilab code Exa 13.19 concentrated and uniform loads

```
1 // Chapter 13
2 //Example 13_19
\frac{3}{2} / \text{Page } 330
5 clear; clc;
7 1 = 900;
8 \text{ Va} = 400;
9 \text{ Ic=50};
10 Id=100;
11 Ie=150;
12 Lac=200;
13 Lcd=300;
14 \text{ Lde} = 300;
15 \text{ Leb=100};
16 \text{ r=0.0001};
17 x = 500;
18 i = 0.5;
19
20 Rac=Lac*r;
21 Rcd=Lcd*r;
22 \text{ Rde=Lde*r};
23
24 Ide=Ie;
25 Icd=Ie+Id;
26 Iac=Ic+Icd;
27
28 Vac=Iac*Rac;
```

```
29 Vcd=Rcd*Icd;
30 Vde=Ide*Rde;
31
32 tdrop=Vac+Vcd+Vde;
33
34 \text{ Vab=i*r*l^2/2};
35 Vad=i*r*(1*x-x^2/2);
36
37 Vb=Va-(tdrop+Vab);
38 Vd=Va-(Vac+Vcd+Vad);
39
40 disp("DROPS DUE TO CONCENTRATED LOADS: ");
41 printf(" Iac = \%d A \n", Iac);
42 printf("Icd = \%d A \n", Icd);
43 printf("Ide = \%d A \n\n", Ide);
44
45 printf("Drop in section AC = \%.2 \, f \, V \, n", Vac);
46 printf("Drop in section CD = \%.2 \, f \, V \, n", Vcd);
47 printf("Drop in section DE = \%.2 \, f \, V \, \backslash n", Vde);
48 printf("Total drop over AB = \%.2 \, \text{f V } \ln n", tdrop);
49
50 disp("DROPS DUE TO UNIFORM LOADING: ");
51 printf("Drop over AB = \%.2 \, \text{f V } \text{n}", Vab);
52 printf("Drop over Ad = \%.2 \, \text{f V } \ln \text{n}", Vad);
53
54 printf("(i) Voltage at point B = \%.2 \text{ f V } \ln \text{ n}, Vb);
55 printf("(ii) Voltage at point D = \%.2 \text{ f V } \ln \text{ n}, Vd);
```

Scilab code Exa 13.20 loading

```
1 // Chapter 13
2 // Example 13_20
3 // Page 331
```

```
5 clear; clc;
7 1 = 1000;
8 r=0.1;
9 \text{ va} = 240;
10 \text{ vb} = 240;
11 i_load=0.5;
12 ic = 120;
13 id=60;
14 ie = 100;
15 i_f=40;
16 //solving for current
17 I=166;
18 printf("(i) I = \%d A \n\n", I);
20 Ib=154+i_load*(1-400);
21 printf("(ii) Current supplied by A = \%d A \setminus n", Ia);
                 Current supplied by B = \%d A \setminus n, Ib);
23 //drop due to concentrated loading
24 cld=I*200/10000+46*200/10000;
25 //drop due to distributed loading
26 dld=i_load*400^2/2/10000;
27 vd=va-cld-dld;
28 printf ("Drop due to concentrated loading = \%.2 \,\mathrm{f} V \n
      ", cld);
29 printf ("Drop due to distributed loading = \%.2 \,\mathrm{f} V \n"
      , dld);
30 printf("Vd = \%.2 f V \setminus n", vd);
```

Scilab code Exa 13.21 point of min potential

```
1 //Chapter 13
```

```
2 //Example 13_21
3 //Page 332
5 clear; clc;
7 1 = 500;
8 v = 240;
9 r = 0.001;
10
11 x = 50;
12 printf("(i) Point of minimum potential = \%d A \setminus n \setminus n",
        x);
13 tc=160+200;
14 Ia = 100 + x;
15 Ib = 360 - 150;
16 vd=v-150*(100*r)-x*(150*r);
17 printf("(ii) Total current = \%d A \n", tc);
18 printf("Current supplied by A = \%d A \setminus n", Ia);
19 printf ("Current supplied by B = \%d A \setminus n", Ib);
20 printf("Minimum potential = \%.2 \, f \, V \, \backslash n", vd);
```

Scilab code Exa 13.22 ring distributor

```
1 //Chapter 13
2 //Example 13_22
3 //Page 334
4
5 clear; clc;
6
7 l=300;
8 va=240;
9 lab=150;
10 ib=120;
```

```
11 1bc = 50;
12 ic=80;
13 \ lca=100;
14 r=0.03;
15
16 \text{ rd} = 2 * r;
17 rab=rd*lab/100;
18 rbc=rd*lbc/100;
19 rca=rd*lca/100;
20
21 Ia=86.67;
22 \quad Iab=Ia;
23 Ibc=Ia-ib;
24 Ica=Ia-(ib+ic);
25
26 Vb=va-Iab*rab;
27 \text{ Vc=Vb+Ibc*rbc};
28
29 printf("Resistance per 100m = \%.2 f ohms \n", rd);
30 printf("Rab = \%.2 \, \text{f ohms } \ \text{n}", rab);
31 printf("Rbc = \%.2 \, \text{f} ohms \n", rbc);
32 printf("Rca = \%.2 \text{ f ohms } \ln \%, rca);
33
34 printf("(i) Ia = \%.2 \, f \, A \, n", Ia);
35 printf("Iab = \%.2 \,\mathrm{f} \, \backslash \mathrm{n}", Iab);
36 printf("Ibc = \%.2 \,\mathrm{f} \, \backslash \mathrm{n}", Ibc);
37 printf("Ica = \%.2 \text{ f } \ln n, Ica);
38
39 printf("(ii) Vb = \%.2 \,\mathrm{f} V \n", Vb);
40 printf("
                     Vc = \%.2 f V \ n", Vc)
```

Scilab code Exa 13.23 current tapping

```
1 / Chapter 13
 2 //Example 13_23
3 //Page 335
5 clear; clc;
7 v = 220;
8 ib=10;
9 ic = 20;
10 id=30;
11 ie=10;
12 rab=0.1;
13 \text{ rbc} = 0.05;
14 rcd=0.01;
15 \text{ rde} = 0.025;
16 \text{ rea} = 0.075;
17
18 //by solving for current through the loop,
19 I=29.04;
20 printf("(i) I = \%.2 \text{ f A } \ln \text{n}, I);
21
22 iab=I;
23 \text{ ibc=I-ib};
24 \text{ icd=I-(ib+ic)};
25 ide=I-(ib+ic+id);
26 iea=I-(ib+ic+id+ie);
27 printf("Iab = \%.2 \, f \, A \, n", iab);
28 printf("Ibc = \%.2 \, f \, A \, n", ibc);
29 printf("Icd = \%.2 \, f \, A \, n", icd);
30 printf("Ide = \%.2 f A \n", ide);
31 printf("Iea = \%.2 f A \n", iea);
```

Scilab code Exa 13.24 currents and voltages

```
1 // Chapter 13
     \frac{2}{2} //Example \frac{13}{24}
    \frac{3}{2} = \frac{1}{2} = \frac{1}
    5 clear; clc;
    7 \text{ va} = 250;
    8 \text{ rab=0.02};
    9 \text{ rbc} = 0.018;
10 \text{ rcd} = 0.025;
11 rda=0.02;
12 ib = 150;
13 ic=300;
14 id=250;
15 //interconnector resistance
16 icr=0.02;
17
18 I=(rbc*ib+rcd*(ib+ic)+rda*(ib+ic+id))/(rab+rbc+rcd+
19 printf("I = \%.2 \, f \, A \, n", I);
20
21 //from fig(ii)
22 \text{ vab=I*rab};
23 \text{ vbc} = 186.75 * \text{rbc};
24 \text{ vcd} = 113.25 * \text{rcd};
25 \text{ vda} = 363.25 * rda;
26
27 \text{ vb=va-vab};
28 \text{ vc=vb-vbc};
29 \text{ vd=vc+vcd};
30
31 printf("Vab = \%.3 \, f \, V \, n", vab);
32 printf("Vbc = \%.3 \, f \, V \, n", vbc);
33 printf("Vcd = \%.3\,\mathrm{f} V \n", vcd);
34 printf("Vda = \%.3 f V \setminus n \setminus n", vda);
35
36 printf("Vb = \%.3 \, \text{f V } \setminus \text{n}", vb);
37 printf("Vc = \%.3 f V \setminus n", vc);
```

```
38 printf("Vd = \%.3 \, \text{f V } \ln \text{n}", vd);
39
40 printf("WITH INTERCONNECTOR: \n");
41 \text{ eo=va-vc};
42 ro=(rab+rbc)*(rab+rcd)/(rab+rbc+rab+rcd);
43 ith=eo/(ro+rab);
44 I1=(rbc*ib+rda*ith)/(rab+rbc);
45
46 \text{ dab=I1*rab};
47 dbc=53.15*rbc;
48 \, dad = 244.45 * rda;
49
50 pb=va-dab;
51 \text{ pc=pb-dbc};
52 \text{ pd=va-dad};
53
54 printf("Thevenin voltage = \%.3 \, \text{f V } \text{n}", eo);
55 printf ("Rac = \%.2 \, \text{f} ohms \n", ro);
56 printf ("Current in interconnecter = \%.2 f A \ln n",
       ith);
57
58 printf("I1 = \%.2 \, f \, A \, n", I1);
59 printf("Drop in AB = \%.3 \, \text{f V } \ \text{n}", dab);
60 printf("Drop in BC = \%.3 \, \text{f V } \ \text{n}", dbc);
61 printf ("Drop in AD = \%.3 \, \text{f V } \setminus \text{n} \setminus \text{n}", dad);
62
63 printf("Potential of B = \%.3 f V \setminus n", pb);
64 printf("Potential of C = \%.3 \, f \, V \, n", pc);
65 printf("Potential of D = \%.3 f V \setminus n \setminus n", pd);
```

Scilab code Exa 13.25 interconnector paramenters

```
1 // Chapter 13
```

```
2 //Example 13_25
3 //Page 338
5 clear; clc;
7 I=10.65/0.26;
8 vbd=30.96*.025+.96*.01;
9 e0 = .7836;
10 r0 = (.075 + .1 + .05) * (.025 + .01) / (.075 + .1 + .05 + .025 + .01);
11 ibd=e0/(r0+0.05);
12 vdrop=9.8*0.05;
13
14 printf (" I = \%.2 \, f \, A \, n", I);
15 printf("Voltage drop along BCD = \%.4 \, f \, V \, n", vbd);
16 printf("Thevenin voltage E0 = \%.4 \, f \, V \, n", e0);
17 printf("Ro = \%.3 \, \text{f} ohms \n", r0);
18 printf("(i) Current in interconnector = \%.2 \, f \, A \, n",
       ibd);
19 printf("(ii) Voltage drop along interconnector = \%.2
       f V \setminus n", vdrop);
```

Scilab code Exa 13.26 voltage at loads

```
1 //Chapter 13
2 //Example 13_26
3 //Page 341
4
5 clear; clc;
6
7 I1=50;
8 I2=40;
9 r=0.1;
10 v=250;
```

Scilab code Exa 13.27 voltage at load end

```
1 // Chapter 13
2 //Example 13<sub>2</sub>7
3 // Page 342
5 clear; clc;
7 v1 = 240;
8 v2 = 240;
9 \text{ r1=5};
10 \text{ r2=6};
11 Rae=0.1;
12 Rnl=0.1;
13 Rbc=0.1;
14
15 I1=v1/r1;
16 I2=v2/r2;
17 In=I1-I2;
18
19 V1=v1+I1*Rae+In*Rnl;
```

Scilab code Exa 13.28 voltage calculations 2

```
1 // Chapter 13
2 //Example 13_28
\frac{3}{2} = \frac{1}{2} = \frac{343}{2}
5 clear; clc;
7 v1 = 250;
8 v2 = 250;
9 11=35;
10 \ 12 = 20;
11
12 r1=v1^2/11/1000;
13 r2=v2^2/12/1000;
14
15 I = (v1+v2)/(r1+r2);
16 V1=I*r1;
17 V2=I*r2;
18
19 printf ("Resistance of load on the +ve side = \%.3 \,\mathrm{f}
       ohm \n'n", r1);
```

Scilab code Exa 13.29 voltage across various loads

```
1 // Chapter 13
2 //Example 13<sub>2</sub>9
3 //Page 344
5 clear; clc;
7 v1 = 250;
8 v2=250;
10 r=[0.015 0.01 0.006 0.014 0.02 0.02 0.024 0.02];
11 i=[50 30 30 6 14 10 36 60];
12
13 v=r.*i;
14
15 vck=v1-v(1)-v(5)+v(6);
16 vdm = vck - v(2) - v(3) + v(4);
17 vjg=v2-v(6)-v(8);
18 vlh=vjg+v(5)-v(4)-v(7);
19
20 printf ("Voltage acorss load CK = \%.2 \, f \, V \, \ln ", vck);
21 printf("Voltage acorss load DM = \%.2 \, f \, V \, \ln n", vdm);
22 printf("Voltage acorss load JG = \%.2 f V \setminus n \setminus n", vjg);
23 printf("Voltage acorss load LH = \%.2 \, \text{f V } \ln \text{n}", vlh);
```

Scilab code Exa 13.30 voltage across various loads 3

```
1 //Chapter 13
2 //Example 13_30
3 //Page 344
5 clear; clc;
7 1=[200 160 240 100 60 100 100 340 160 100];
8 r=0.02;
9 R=r.*1/100;
10 i=[100 40 15 25 35 25 5 15 75 95];
11 v=R.*i;
12 v1 = 250;
13 v2 = 250;
14
15 vck=v1-v(1)-v(5)-v(7);
16 vdm=vck-v(2)-v(4)+v(5);
17 vjg=v2+v(7)-v(10);
18 vlh=vjg+v(6)-v(5)-v(9);
19 vpf = vlh + v(4) - v(3) - v(8);
20
21 printf ("Voltage acorss load CK = \%.2 \, f \, V \, \ln ", vck);
22 printf("Voltage acorss load DM = \%.2 \, \text{f V } \text{n}", vdm);
23 printf("Voltage acorss load JG = \%.2 f V \setminus n \setminus n", vjg);
24 printf("Voltage acorss load LH = \%.2 \, f \, V \, n^*, vlh);
25 printf("Voltage acorss load PF = \%.2 \, \text{f V } \text{n}", vpf);
```

Scilab code Exa 13.31 break in lines

```
1 // Chapter 13
2 //Example 13_31
3 //Page 345
5 clear; clc;
7 v1 = 240;
8 v2 = 240;
9 r1=4;
10 \text{ r2=6};
11 Rae=0.15;
12 Rnl=0.15;
13 Rbc=0.15;
14
15 i1=v1/r1;
16 i2=v2/r2;
17 in=i1-i2;
18
19 V1=v1+i1*Rae+in*Rnl;
20 V2=v2-in*Rn1+i2*Rbc;
21
22 printf("Current on +ve outer = \%d A \n", i1);
23 printf("Current on -ve outer = \%dA \setminus n", i2);
24 printf("Current in nuetral = \%d A \n\n", in);
25
26 printf ("Voltage at the load end on the +ve side = \%
      .2 f V \n", V1);
27 printf ("Voltage at the load end on the -ve side = \%
      .2 f V \langle n \rangle n, V2);
28
29 disp("(i) WHEN NUETRAL BREAKS: ");
30 tr=r1+r2+Rae+Rbc;
31 i = (V1 + V2)/tr;
32 vn1=i*r1;
33 \text{ vn2}=i*r2;
34 printf("Total circuit resistance = \%.1 f ohm \n", tr)
```

```
35 printf("Load current = \%.2 \, f \, A \, n", i);
36 printf ("Voltage across %d ohm resistance = %.2 f V \n
      ", r1, vn1);
37 printf("Voltage across %d ohm resistance = %.2 f V \n
      n, r2, vn2);
38
39 disp("(ii) WHEN +VE OUTER BREAKS: ");
40 trd=r2+Rbc+Rn1;
41 id=V2/trd;
42 \text{ vd=id*r2};
44 printf("Total circuit resistance = \%.1 f ohm \n", trd
      );
45 printf("Load current = \%.2 \, f \, A \, n", id);
46 printf ("Voltage across %d ohm resistance = %.2 f V \n
      n, r2, vd);
47
48 disp("(iii) WHEN -VE OUTER BREAKS: ");
49 trdd=r1+Rae+Rnl;
50 idd=V1/trdd;
51 vdd=idd*r1;
52
53 printf ("Total circuit resistance = \%.1 \,\mathrm{f} ohm \n",
54 printf("Load current = \%.2 \, f \, A \, n", idd);
55 printf ("Voltage across %d ohm resistance = %.2 f V \n
      n, r1, vdd);
```

Scilab code Exa 13.32 current in two machines

```
1 //Chapter 13
2 //Example 13_32
```

```
\frac{3}{2} = \frac{1}{2} = \frac{348}{2}
5 clear; clc;
7 v1 = 250;
8 v2=250;
9 \text{ w1} = 1500;
10 \text{ w}2 = 2000;
11
12 i1 = w1 * 1000 / v1;
13 i2=w2*1000/v2;
14 in=i1-i2;
15 w = w1 + w2;
16 ig=w*1000/(v1+v2);
17 ia=ig-i1;
18 \text{ ib=i2-ig};
19
20 printf("Load current on +ve outer = \%d A \setminus n \setminus n", i1);
21 printf("Load current on -ve outer = \%d A \n\n", i2);
22 printf ("Current in nuetral = \%d A \n\n", in);
23 printf("Total load on main generator = \%dW \setminus n \setminus n", w
24 printf ("Current supplied by main generator = %d A \n
       n, ig);
25 printf("Current in machine A = \%d A \setminus n \setminus n", ia);
26 printf ("Current in machine B = \%d A \setminus n \setminus n", ib);
```

Scilab code Exa 13.33 current and load calculations

```
1 //Chapter 13
2 //Example 13_33
3 //Page 349
```

```
5 clear; clc;
7 v1 = 250;
8 v2 = 250;
9 \text{ w1} = 150;
10 \text{ w} 2 = 100;
11 loss=3;
12
13 tl=w1+w2+loss*2;
14 i1=w1*1000/v1;
15 i2=w2*1000/v2;
16 in=i1-i2;
17 w = w1 + w2;
18 ig=t1*1000/(v1+v2);
19 ia=i1-ig;
20 \text{ ib=ig-i2};
21 la=ia*v1/1000;
22 lb=ib*v2/1000;
23
24 printf("(i) Total load on main generator = %d kW \n\
      n", tl);
25
26 printf("(ii) Current supplied by main generator = %d
       A \setminus n \setminus n, ig);
27 printf("\t Load current on +ve outer = \%d A \n\n",
28 printf("\t Load current on -ve outer = \%d A \n\n",
      i2);
29 printf("\t Current in nuetral = \%d A \n\n", in);
30 printf("\t Current in machine A = \%d A \setminus n \setminus n", ia);
31 printf("\t Current in machine B = \%d A \setminus n \setminus n", ib);
32 printf("\t Load on machine A = \%d \ kW \ n\ n", la);
33 printf("\t Load on machine B = \%d \ kW \ n\ n", lb);
```

Scilab code Exa 13.34 current and load calculations 2

```
1 //Chapter 13
2 //Example 13\_34
3 / \text{Page } 350
5 clear; clc;
7 v1 = 250;
8 v2 = 250;
9 i1=1200;
10 i2 = 1000;
11 1=200;
12 \ loss1=5;
13 \ loss2=5;
14
15 p1=v1*i1/1000;
16 p2=v2*i2/1000;
17 p3=1;
18
19 tl=p1+p2+p3+loss1+loss2;
20 ig=t1*1000/(v1+v2);
21 in=i1-i2;
22 i3=p3/(v1+v2)*1000;
23 ia=i1+i3-ig;
24 ib=ig-i2-i3;
25 la=ia*v1/1000;
26 lb=ib*v2/1000;
27
28 printf("Load on positive side = \%d kW \n\n", p1);
29 printf("Load on negative side = \%d \text{ kW } \ln n", p2);
30 printf("Load on outers = \%d \ kW \ n\ ", p3);
31
32 printf("(i) Total load on main generator = %d W \n\n
      ", t1);
33 printf("
             Current supplied by main generator = %d
      A \setminus n \setminus n, ig);
34
```

```
35 printf("(ii) Current in nuetral = %d A \n\n", in);
36 printf("\t Current in machine A = %d A \n\n", ia);
37 printf("\t Current in machine B = %d A \n\n", ib);
38 printf("\t Load on machine A = %d W \n\n", la);
39 printf("\t Load on machine B = %d W \n\n", lb);
```

Scilab code Exa 13.35 load on main generator

```
1 // Chapter 13
2 //Example 13_35
3 //Page 350
5 clear; clc;
7 v = 500;
8 \text{ ip=800};
9 in=550;
10 \text{ io} = 1500;
11 ra=0.2;
12 //no load current
13 inl=5;
14
15 tip=io+ip;
16 tin=io+in;
17 cn=ip-in;
18 printf("Total current on positive side = %d A \n",
19 printf("Total current on negative side = \%d A \n",
20 printf("Current in nuetral wire = \%d A \n\n", cn);
21
22 e=v/2-ra*5;
23 printf("(i)BAck emf = \%d V \n", e);
```

Scilab code Exa 13.36 output of booster

```
1 //Chapter 13
2 //Example 13_36
3 //Page 352
4
5 clear; clc;
6
7 v=500;
8 l=3;
9 i=120;
10 r=0.5;
11
12 tr=r*l;
13 vd=tr*i;
14 tv=vd;
15 op=i*tv/1000;
16
17 printf("Total resistance of line = %.1 f ohm \n\n",
```

```
tr);
18 printf("Full load voltage drop in the line = %d V \n
        \n", vd);
19 printf("Terminal voltage of booster = %d V \n\n", tv
    );
20 printf("Output of booster = %.2 f kW \n\n", op);
```

Chapter 14

A C distribution

Scilab code Exa 14.1 voltage drop in distributor

```
1 // Chapter 14
2 //Example 14_1
\frac{3}{\text{Page }} \frac{359}{3}
5 clear; clc;
71=300;
8 i1 = 100;
9 i2 = 200;
10 \ 11 = 200;
11 pf1=0.707;
12 pf2=0.8;
13 r = 0.2;
14 x = 0.1;
15
16 12=1-11;
17 z=r+\%i*x;
18 Zac=z*11/1000;
19 Zcb=z*12/1000;
20 I2=i2*(pf2-%i*sin(acos(pf2)));
21 I1=i1*(pf1-%i*sin(acos(pf1)));
```

```
22 \quad Icb=I2;
23 Iac=I1+I2;
24 \text{ Vcb=Icb*Zcb};
25 Vac=Iac*Zac;
26 \text{ vd=Vac+Vcb};
27
28 printf ("Impedance of distributor/km = \%.2 \text{ f+j} (\%.2 \text{ f})
       ohm \langle n \rangle n, real(z), imag(z));
29
30 printf ("Impedance of section AC = Zac = \%.2 f+j (\%.2 f)
        ohm \n", real(Zac), imag(Zac));
31 printf ("Impedance of section CB = Zcb = \%.2 f+j (\%.2 f)
        ohm \n'n", real(Zcb), imag(Zcb));
32
  printf ("Load current at point B = \%.2 f+j (\%.2 f) A \n"
       , real(I2), imag(I2));
34 printf ("Load current at point C = \%.2 f + j (\%.2 f) A \backslash n \backslash
      n", real(I1), imag(I1));
35 printf ("Current in section CB = \%.2 \, f + j \, (\%.2 \, f) \, A \, n",
       real(Icb), imag(Icb));
  printf ("Current in section AC = \%.2 \text{ f+j } (\%.2 \text{ f}) A \backslash n \backslash n"
       , real(Iac), imag(Iac));
  printf ("Voltage drop in section CB = \%.2 f+j (\%.2 f) A
       n, real(Vcb), imag(Vcb));
38 printf ("Voltage drop in section AC = \%.2 f+j (\%.2 f) A
       \n\n", real(Vac), imag(Vac));
39 printf ("Voltage drop in the distributor = \%.2 \, \text{f+j} (\%.2 \,
       f) A \n\, real(vd), imag(vd));
40 printf("Magnitude of drop = \%.2 \, \text{f V } \ln ", abs(vd));
```

Scilab code Exa 14.2 phase difference and Vs

```
1 //Chapter 14
```

```
2 //Example 14_2
3 //Page 359
5 clear; clc;
7 1 = 2000;
8 i1=80;
9 pf1=0.9;
10 i2 = 120;
11 pf2=0.8;
12 r=0.05;
13 x = 0.1;
14 Vb = 230 + \%i *0;
15 \quad 11 = 1000;
16 12=1-11;
17
18 z=r+\%i*x;
19 Zac=z*11/1000;
20 \text{ Zcb=}z*12/1000;
21
22 printf ("Impedance of distributor/km = \%.2 \text{ f+j} (\%.2 \text{ f})
      ohm \n\n", real(z), imag(z));
23
24 printf ("Impedance of section AC = Zac = \%.2 f+j (\%.2 f)
       ohm n, real(Zac), imag(Zac));
  printf ("Impedance of section CB = Zcb = \%.2 f+j (\%.2 f)
       ohm \langle n \rangle n, real(Zcb), imag(Zcb));
26
27 I2=i2*(pf2-%i*sin(acos(pf2)));
28 I1=i1*(pf1-%i*sin(acos(pf1)));
29
30 printf("(i)Load current at point B = \%.2 f+j (\%.2 f) A
      n, real(I2), imag(I2));
31 printf ("Load current at point C = \%.2 f + j (\%.2 f) A \n\
      n", real(I1), imag(I1));
32
33 Icb=I2;
34 \, \text{Iac=I1+I2};
```

```
35
36 \text{ Vcb=Icb*Zcb};
37 Vac=Iac*Zac;
38
39 printf ("Current in section CB = \%.2 \, f + j \, (\%.2 \, f) \, A \, n",
       real(Icb), imag(Icb));
40 printf ("Current in section AC = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \text{A} \, \text{Nn}"
       , real(Iac), imag(Iac));
41
42 printf ("Voltage drop in section CB = \%.2 f+j (\%.2 f) A
       \n", real(Vcb), imag(Vcb));
43 printf ("Voltage drop in section AC = \%.2 f + j (\%.2 f) A
       \n^n, real(Vac), imag(Vac));
44
45 \text{ Va=Vb+Vcb+Vac};
46 printf ("Sending end voltage = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \text{n}", real
       (Va), imag(Va));
  printf("Magnitude of sending end voltage = \%.2 \,\mathrm{f} V \n
       n^n, abs(Va));
48
49 pd=atan(imag(Va)/abs(Va));
50 printf("(ii)The phase difference between Va and Vb =
        \%.2 f degrees \n\n", pd*180/%pi);
```

Scilab code Exa 14.3 phase difference

```
1 //Chapter 14
2 //Example 14_3
3 //Page 360
4
5 clear; clc;
6
7 r=0.1;
```

```
8 x=0.15;
9 Vb = 200 + \%i *0;
10 i1 = 100;
11 pf2=0.8;
12 i2 = 100;
13 pf1=0.6;
14
15 z=r*2+%i*x*2;
16 Zam=z/2;
17 Zmb=z/2;
18
19 printf ("Impedance of distributor/km = \%.2 \text{ f+j} (\%.2 \text{ f})
      ohm \n^n, real(z), imag(z));
20
21 printf ("Impedance of section AC = Zac = \%.2 f + j (\%.2 f)
       ohm \n", real(Zam), imag(Zam));
22 printf ("Impedance of section CB = Zcb = \%.2 f+j (\%.2 f)
       ohm \n\n", real(Zmb), imag(Zmb));
23
24 //part 1
25 I2=i2*(pf2-%i*sin(acos(pf2)));
26 printf("(i)Load current at point B = \%.2 f + j (\%.2 f) A
      n, real(I2), imag(I2));
27 \quad \text{Imb=I2};
28 printf ("Current in section MB = \%.2 f + j (\%.2 f) A \ n",
      real(Imb), imag(Imb));
29 Vmb = Imb * Zmb;
30 printf ("Voltage drop in section MB = \%.2 f+j (\%.2 f) A
      n, real(Vmb), imag(Vmb));
31 \quad Vm = Vb + Vmb;
32 printf ("Voltage at point M = \%.2 f+j (\%.2 f) \setminus n", real (
      Vm), imag(Vm));
33 printf("Magnitude of Vm = \%.2 f V \setminus n", abs(Vm));
34 alpha=atan(imag(Vm)/abs(Vm));
35 printf ("Phase angle between Vm and Vb = \%.2\,\mathrm{f} degrees
       \n\n\n, alpha*180/%pi);
36
37 / part 2
```

```
38 phi1=acos(pf1)-alpha;
39 printf ("Phase angle between I1 and Vb = \%.2 \,\mathrm{f} degrees
        n, phi1*180/%pi);
40 I1=i1*(\cos(\text{phi1})-%i*\sin(\text{phi1}));
41 printf("(ii)Load current at point M = \%.2 f+j (\%.2 f) A
        n, real(I1), imag(I1));
42 Iam=I1+I2;
43 printf("Current in section AM = \%.2 \text{ f+j} (\%.2 \text{ f}) A \n",
       real(Iam), imag(Iam));
44 Vam = Iam * Zam;
45 printf ("Voltage drop in section AM = \%.2 f + j (\%.2 f) A
      n, real(Vam), imag(Vam));
46
47
48 \quad Va = Vm + Vam;
49 printf ("Sending end voltage = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \text{n}", real
       (Va), imag(Va));
50 printf ("Magnitude of sending end voltage = \%.2 \,\mathrm{f} V \n
      n^n, abs(Va));
51
52 pd=atan(imag(Va)/abs(Va));
53 printf("(iii)The phase difference between Va and Vb
      = \%.2 \, f \, degrees \, \ln n, pd*180/%pi);
```

Scilab code Exa 14.4 thevening theorem

```
1 // Chapter 14
2 // Example 14_4
3 // Page 362
4
5 clear; clc;
6
7 Ib=20;
```

```
8 \text{ Ic} = 15;
9 \text{ pfb=0.8};
10 pfc=0.6;
11 zab=1+\%i*1;
12 \text{ zac} = 1 + \%i * 3;
13 zbc=1+\%i*2;
14
15 Iab=Ib*(pfb-%i*sin(acos(pfb)));
16  Iac=Ic*(pfc-%i*sin(acos(pfc)));
17 Vab=Iab*zab;
18 Vac=Iac*zac;
19
20 \text{ Eo=Vac-Vab};
21 Zo=zab+zac;
22 \text{ Ibc=Eo/(Zo+zbc)};
23 Iabs=Iab-Ibc;
24 Iacs=Iac-Ibc;
25 Ia=Iab+Iac;
26
27 printf ("Current in section AB = \%.2 f + j (\%.2 f) \setminus n",
       real(Iab), imag(Iab));
  printf ("Current in section AC = \%.2 \, f + j \, (\%.2 \, f) \, n",
       real(Iac), imag(Iac));
   printf ("Voltage drop in section AB = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \text{n}
       ", real(Vab), imag(Vab));
30 printf ("Voltage drop in section AC = \%.2 f + j (\%.2 f) \setminus n
       ", real(Vac), imag(Vac));
31 printf ("Thevenins equivalent circuit emf Eo = \%.2 f+(
       \%.2 f) \n", real(Eo), imag(Eo));
32 printf ("Thevenins equivalent impedance Zo = \%.2 f + (\%
       .2 f) \n", real(Zo), imag(Zo));
33 printf ("Current in BC = \%.2 \text{ f+j } (\%.2 \text{ f}) \setminus \text{n}", real (Ibc),
        imag(Ibc));
34 printf ("Current in AB = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \text{n}", real (Iabs)
       , imag(Iabs));
35 printf ("Current in AC = \%.2 \text{ f+j} (\%.2 \text{ f}) \setminus \text{n}", real (Iacs)
       , imag(Iacs));
36 printf ("Current fed at A = \%.2 f+j (\%.2 f) \setminus n", real (Ia
```

```
), imag(Ia));
```

Scilab code Exa 14.5 line voltage at sending end

```
1 // Chapter 14
2 //Example 14_5
3 // Page 363
5 clear; clc;
7 i1=5;
8 i2=14.08;
9 \text{ pf1=0.8};
10 pf2=0.85;
11 11=600;
12 12 = 400;
13 hp=10;
14 n=0.90;
15 \text{ vb} = 400;
16 r=1;
17 x = 0.5;
18
19 z=r+\%i*x;
20 \text{ Zac=}z*11/1000;
21 \text{ Zcb=}z*12/1000;
22
23 printf ("Impedance of distributor/km = \%.2 \text{ f+j} (\%.2 \text{ f})
      ohm \n^n, real(z), imag(z));
24
25 printf ("Impedance of section AC = Zac = \%.2 f+j (\%.2 f)
        ohm \n", real(Zac), imag(Zac));
26 printf ("Impedance of section CB = Zcb = \%.2 f+j (\%.2 f)
       ohm \langle n \rangle n, real(Zcb), imag(Zcb));
```

```
27
28 Vb = vb/sqrt(3) + \%i *0;
29 printf ("Voltage at point B taken as the reference
       vector = \%.0 \text{ f+j}\%.0 \text{ f} \setminus \text{n}", real(Vb), imag(Vb));
30 Ib=hp*746/sqrt(3)/vb/n/pf2;
31 I2=i2*(pf2-\%i*sin(acos(pf2)));
32 I1=i1*(pf1-%i*sin(acos(pf1)));
33 Iac=I2+I1;
34 \text{ Icb=I2};
35 \text{ Vcb=Icb*Zcb};
36 Vac=Iac*Zac;
37 \text{ Va=Vb+Vcb+Vac};
38
39 printf("Line current at B = \%.2 f A \setminus n \setminus n", Ib);
40
41 printf ("Load current at point B = \%.2 f+j (\%.2 f) A \n"
       , real(I2), imag(I2));
42 printf ("Load current at point C = \%.2 f + j (\%.2 f) A n
       n", real(I1), imag(I1));
43
44 printf ("Current in section CB = \%.2 \text{ f+j } (\%.2 \text{ f}) \text{ A } \text{n}",
       real(Icb), imag(Icb));
45 printf ("Current in section AC = \%.2 f + j (\%.2 f) A \setminus n \setminus n"
       , real(Iac), imag(Iac));
46
47 printf ("Voltage drop in section CB = \%.2 f+j (\%.2 f) A
       n, real(Vcb), imag(Vcb));
48 printf ("Voltage drop in section AC = \%.2 f + j (\%.2 f) A
       \n^n, real(Vac), imag(Vac));
49
50 printf ("Voltage at A/phase = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \text{A} \, \ln ^{n},
       real(Va), imag(Va));
51 printf("Magnitude of Va/phase = \%.2 \, f \, V \, \ln n", abs(Va
52 printf("Line voltage at A = \%.2 f V \setminus n \setminus n", abs(Va)*
       sqrt(3));
```

Scilab code Exa 14.6 station voltages

```
1 // Chapter 14
\frac{2}{\sqrt{\text{Example }}} \frac{14_{-6}}{}
3 //Page 365
5 x = 139.7;
6 y = -42.8;
8 iab=x+\%i*(y);
9 ibc=(x-40)+\%i*(y+30);
10 icd=(x-160)+\%i*(y+30);
11 ida=(x-220.6)+\%i*(y+65);
12 va=11000/sqrt(3);
13 vb=va-(iab)*(1+\%i*0.6);
14 vc=vb-(ibc)*(1.2+\%i*0.9);
15 vd=vc-(icd)*(0.8+\%i*0.5);
16
17 printf ("Current in section AB = \%.2 \text{ f+j} (\%.2 \text{ f}) A \n",
       real(iab), imag(iab));
18
19 printf ("Current in section BC = \%.2 \text{ f+j} (\%.2 \text{ f}) \text{ A } \text{n}",
       real(ibc), imag(ibc));
20
21 printf ("Current in section CD = \%.2 \text{ f+j } (\%.2 \text{ f}) \text{ A } \text{n}",
       real(icd), imag(icd));
22
23 printf ("Current in section DA = \%.2 \text{ f+j } (\%.2 \text{ f}) \text{ A } \text{ } \text{n}\text{'}\text{n}"
       , real(ida), imag(ida));
24
25 printf("Voltage at supply end = \%d V/phase \n", va);
26
```

Scilab code Exa 14.7 current in nuetral

```
1 // Chapter 14
\frac{2}{\sqrt{\text{Example }}} \frac{14}{7}
3 //Page 368
5 clear; clc;
7 lr = 10 * 1 e3;
8 \text{ ly=8*1e3};
9 1b=5*1e3;
10 v = 400;
11
12 ph_v=v/sqrt(3);
13 ir=lr/ph_v;
14 iy=ly/ph_v;
15 \text{ ib=lb/ph_v};
16
17 hc=iy*cos(30*\%pi/180)-ib*cos(30*\%pi/180);
18 vc=ir-iy*cos(60*\%pi/180)-ib*cos(60*\%pi/180);
19 in=sqrt(hc^2+vc^2);
20
21 printf("(i) Phase voltage = \%.2 \, \text{f V } \text{n}", ph_v);
22 printf("\t Ir = \%.1f A \n", ir);
```

```
23 printf("\t Iy = %.1f A \n", iy);
24 printf("\t Ib = %.1f A \n", ib);
25
26 printf("(ii) The three line currents are different
    in magnitude and displaced by 120 degrees from
    one another. Resolving currents on x and y axis:\
    n");
27 printf("\t Resultant horizontal component = %.1f A \
    n", hc);
28 printf("\t Resultant vertical component = %.1f A \n", vc);
29 printf("\t Current in nuetral wire = %.1f A \n", in)
    ;
```

Scilab code Exa 14.8 lamp and motor load

```
1 //Chapter 14
2 //Example 14_8
3 //Page 369
4
5 clear; clc;
6
7 v=400;
8 v1=230;
9 ia=70;
10 ib=84;
11 ic=33;
12 im=200;
13 pf=0.2;
14
15 //part 1
16 printf("LAMP LOAD ALONE: \n");
17
```

```
18 // Referring to the phasor diagram in the book
19 hc=ib*cos(30*\%pi/180)-ic*cos(30*\%pi/180);
20 vc=ia-ib*cos(60*\%pi/180)-ic*cos(60*\%pi/180);
21 in=sqrt(hc^2+vc^2);
22
23 printf("Resultant horizontal component = \%.2 f A \n",
24 printf ("Resultant vertical component = \%.2 \, \mathrm{f} \, \mathrm{A} \, \mathrm{n}",
25 printf("Neutral component = \%.2 \, f \, A \, \ln \, , in);
26
27 / part 2
28 printf("BOTH LAMP AND MOTOR LOAD: \n");
29
30 \text{ ac=im*pf};
31 rc=im*sin(acos(pf));
32 Ir=sqrt((ac+ia)^2+rc^2);
33 Iy=sqrt((ac+ib)^2+rc^2);
34 Ib=sqrt((ac+ic)^2+rc^2);
35
36 printf ("Nuetral current remains the same, ie In = \%
       .2 f A \setminus n, in);
37 printf ("Active component of motor current = \%.0 f A \
      n", ac);
38 printf("Reactive component of motor current = \%.0 f A
       \n", rc);
39 printf("\t Ir = \%.2 f A \n", Ir);
40 printf("\t Iy = \%.2 f A \n", Iy);
41 printf("\t Ib = \%.2 f A \setminus n \setminus n", Ib);
42
43 //part 3
44 printf("POWER SUPPLIED: \n");
45
46 \text{ pl=vl*(ia+ib+ic)};
47 pm = sqrt(3) *v*im*pf;
48
49 printf("Power supplied to lamps = \%.0 \, \text{f W } \text{n}", pl);
50 printf("Power supplied to motor = \%.0 \, f \, W \, n", pm);
```

Scilab code Exa 14.9 component currents

```
1 // Chapter 14
 2 / Example 14_9
 3 //Page 370
 5 clear; clc;
 7 v = 400;
8 \text{ ph_v} = 230;
9 \text{ lr}=20*1e3;
10 ly=28.75*1e3;
11 1b=28.75*1e3;
12
13 ir=lr/ph_v;
14 iy=ly/ph_v;
15 \text{ ib=lb/ph_v};
16
17 //referring to the phasor diagram in the text book
18 xc=ir-iy*cos(30*\%pi/180)-ib*cos(30*\%pi/180);
19 yc=iy*cos(60*\%pi/180)-ib*cos(60*\%pi/180);
20 in=sqrt(xc^2+yc^2);
21
22 printf("\t Ir = \%.1 \, f \, A \, \backslash n", ir);
23 printf("\t Iy = \%.1 f A \n", iy);
24 printf("\t Ib = \%.1 f A \setminus n \setminus n", ib);
25
26 printf("\t Resultant X-component = \%.1 \, f \, A \, n", xc);
27 printf("\t Resultant Y-component = \%.1 \, f \, A \, n", yc);
28 printf("\t Current in nuetral wire = \%.1 f A \setminus n \setminus n",
       in);
29
```

Scilab code Exa 14.10 phase voltage calculation

```
1 //Chapter 14
2 //Example 14_10
3 //Page 371
4
5 clear; clc;
6
7 v=400;
8 ph_v=230;
9 r=0.2;
10 i=30;
11 pfr=-0.866;
12 pfy=0.866;
13 pfb=1;
14 ar=0;
15 ay=-120;
16 ab=120;
17
```

```
18 //referring to the phasor diagram given in the text
       book
19 air = -30;
20 aiy = -90;
21 aib=120;
22 vr = ph_v * (cos(0) - \%i * sin(0));
23 vy=ph_v*(cos(-120*\%pi/180)-\%i*sin(-120*\%pi/180));
24 vb=ph_v*(cos(120*\%pi/180)-\%i*sin(120*\%pi/180));
25
26 ir=i*(cos(-30*\%pi/180)+\%i*sin(-30*\%pi/180));
27 iy=i*(cos(-90*\%pi/180)+\%i*sin(-90*\%pi/180));
28 ib=i*(cos(120*\%pi/180)+\%i*sin(120*\%pi/180));
29
30
31 in=ir+iy+ib;
32
33 \text{ er=vr+r*ir+2*r*in};
34
35 printf("Vr = \%.0 f/_{-}\%.0 f \ n", ph_v, ar);
36 printf("Vy = \%.0 f/_{\%}.0 f \ n", ph_v, ay);
37 printf("Vb = \%.0 f/_{\%}.0 f \n\n", ph_v, ab);
38
39 printf("Ir = \%.0 \, f/.\%.0 \, f \, n", i, air);
40 printf("Iy = \%.0 f/_{\%}.0 f \ n", i, aiy);
41 printf("Ib = \%.0 \text{ f}/_{-}\%.0 \text{ f} \setminus n \setminus n", i, aib);
42
43 printf ("Nuetral current = \%.2 \text{ f+j } (\%.2 \text{ f}) \setminus \text{n} \cdot \text{n}", real (
       in), imag(in));
44 printf("The supply voltage of phase R to nuetral =
       Er = \%.2 f/_{\%}.2 f \text{ volts } \ln n, abs(er), atan(imag(
       er)/real(er))*180/%pi);
```

Scilab code Exa 14.11 voltages across lamps

```
1 // Chapter 14
2 //Example 14_11
3 //Page 372
5 clear; clc;
7 v = 400;
8 \text{ ph_v} = 230;
9 \text{ w1} = 100;
10 \text{ w} 2 = 150;
11
12 r1=ph_v^2/w1;
13 r2=ph_v^2/w2;
14
15 i=v/(r1+r2);
16 \text{ v1}=i*r1;
17 v2=i*r2;
19 printf("Resistance of lamp L1 = R1 = \%.2 f ohm \n\n",
        r1);
20 printf ("Resistance of lamp L2 = R2 = \%.2 f ohm \n\n",
21 printf("Curretn through lamps = \%.3 \, f \, A \, \ln n", i);
22 printf("Voltage across lamp L1 = V1 = \%.0 \, f \, V \, \ln^n,
23 printf("Voltage across lamp L2 = V2 = \%.0 \, f \, V \, \ln^n,
      v2);
```

Chapter 15

Voltage Control

Scilab code Exa 15.1 Vs per phase

```
1 // Chapter 15
2 //Example 15_1
\frac{3}{\text{Page }} 384
5 clear; clc;
7 \text{ kw} = 10000;
8 \text{ pf} = 0.8;
9 v = 33;
10 \text{ r=5};
11 x = 10;
12
13 i2=kw*1000/sqrt(3)/v/1000/pf;
14 ip=i2*pf;
15 iq=i2*sind(acosd(pf));
16 v1=v*1000/sqrt(3);
17 \text{ im} = 231;
18 capacity = 3*v1*im/1000;
19
20 printf("Load current = \%d A \n", i2);
21 printf("Ip = \%.2 f A \setminus n", ip);
```

```
22 printf("Iq = %.2 f A \n", iq);
23 printf("Sending end voltage per phase = %d V \n", v1
    );
24 printf("Im = %d A \n", im);
25 printf("Capacity of synchrounous condenser = %d kVAR \n", capacity);
```

Scilab code Exa 15.2 sunchronous condensor capacity

```
1 // Chapter 15
 2 //Example 15_{-2}
\frac{3}{\text{Page }} 385
 5 clear; clc;
 6
 7 \text{ kw} = 25000;
8 \text{ pf} = 0.8;
9 v = 33;
10 r=5;
11 x = 20;
12
13 i2=kw*1000/sqrt(3)/v/1000/pf;
14 ip=i2*pf;
15 iq=i2*sind(acosd(pf));
16 v1=v*1000/sqrt(3);
17 \text{ im} = 579.5;
18 capacity = 3 * v1 * im / 10 ^ 6;
19
20 printf("Load current = \%d A \n", i2);
21 printf("Ip = \%.2 \, f \, A \, n", ip);
22 printf("Iq = \%.2 f A \n", iq);
23 printf("Sending end voltage per phase = \%d V \ n", v1
      );
```

```
24 printf("Im = %d A \n", im);
25 printf("Capacity of synchrounous condenser = %.2 f MVAR \n", capacity);
```

Chapter 17

Symmetrical Fault Calculations

Scilab code Exa 17.1 short circuit current

```
1 // Chapter 17
2 // Page 402
3 //Example 17_1
5 clear; clc;
7 kva=[15000 20000];
8 x = [30 50];
9 \text{ vl} = 12000;
10
11 base=input("Enter base kVA: ");
12
13 for i=1:2;
14
     per_x(i)=base*x(i)/kva(i);
     printf("% Reactance of alternator % i is = %.2 f %%
15
         n", i,
                         per_x(i));
16 \text{ end};
17
18 i=base*1000/sqrt(3)/vl;
19 printf("Line current = \%.0\,\mathrm{f} A \n\n", i);
20
```

```
21 tx=per_x(1)*per_x(2)/(per_x(1)+per_x(2));
22 printf("Total percentage reactance from generator
        nuetral upto fault point = %.2 f %% \n\n", tx);
23
24 isc=i*100/tx;
25 printf("Short circuit current = %.0 f A \n\n", isc);
```

Scilab code Exa 17.2 percentage reactance

```
1 //Chapter 17
2 //Example 17_{-2}
\frac{3}{\text{Page }} 404
5 clear; clc;
7 \text{ mva} = 20 * 1 e6;
8 \text{ kv} = 10 * 1 e 3;
9 x = 5;
10 \text{ sc=8};
11
12 i=mva/sqrt(3)/kv;
13 vph=kv/sqrt(3);
14 tperx=(1/sc)*100;
15 \text{ ext=tperx-x};
16 perx=ext*vph/100/i;
17
18 printf("Full load current = \%.2 \, f \, A \, n \, n", i);
19 printf("Voltage per phase = \%.2 \, \text{f V } \text{/n/n}", vph);
20 printf ("Total percentage reactance required = \%.2 f
      \% \n\n", tperx);
21 printf ("External percentage reactance required = %.2
       f \% / n n, ext);
22 printf ("Percentage reactance = \%.2 \, \text{f ohm } \ln \, perx)
```

Scilab code Exa 17.3 short circuit kva 1

;

```
1 //Chapter 17
2 //Example 17_{-3}
3 //Page 404
5 clear; clc;
7 \text{ kv} = 10;
8 r=1;
9 x = 4;
10 mvaa=10;
11 mvat=5;
12 \text{ xt} = 5;
13 mvabb=10;
14 \text{ xa} = 10;
15
16 base=input("Enter base kVA: ");
17
18 per_xa=base*xa/(mvaa*1000);
19 per_xt=base*xt/(mvat*1000);
20
21 per_xl=x*mvabb*1000/10/kv^2;
22 per_rl=r*mvabb*1000/10/kv^2;
23
24 tx=per_xa+per_xt+per_x1;
25 tr=per_rl;
26 \text{ per_z=sqrt}(tr^2+tx^2);
27 sckva1=mvabb*1000*100/per_z;
28
29 txgf=per_xa+per_xt;
```

```
30 sckva2=mvaa*1000*100/txgf;
31
32 printf("\%% reactance of alternator = \%.2 f \%% \n\n",
      per_xa);
33 printf("\%% reactance of transformer = \%.2 f \%\ \n\n",
       per_xt);
34 printf("\%% reactance of transmission line = \%.2 f \%%
      \n\n", per_x1);
35 printf ("%% resistance of transmission line = %.2 f %%
       \n^n, per_rl);
36
37 printf("(i) Total \%% reactance = \%.2 f \%% \n\n", tx);
38 printf("
                 Total \%\% resistance = \%.2 f \%\% \n\n", tr)
                %% impedance from generator nuetral upto
39 printf("
       fault point = \%.2 f \% \ \n\n", per_z);
40 printf("
                 Short circuit kva = \%.0 \text{ f kVA } \ln \text{"},
      sckva1);
41
42 printf("(ii) %% impedance from generator nuetral
      upto fault point = \%.2 f \% \ \n\n", txgf);
43 printf("
                  Short circuit kva = \%.0 \text{ f kVA } \text{ } \text{n} \text{ } \text{n},
      sckva2);
```

Scilab code Exa 17.4 fault mva calculations

```
1 //Chapter 17
2 //Example 17_4
3 //Page 405
4
5 clear; clc;
6
7 kva=[10000 10000 5000];
```

```
8 x = [12 12 18];
9 kva_tr=5000;
10 \text{ x_tr=5};
11
12 base=input("Enter base kva:
                                       ");
13
14 for i=1:3;
15
     per_x(i) = x(i)*base/kva(i);
     printf("\% x (\%i) = \%.0 f \ \ n\ ", i, per_x(i));
16
17 \text{ end}
18 per_xt=x_tr*base/kva_tr;
19 printf("%% Xt = \%.0 f \ n\n", per_xt);
20
21 tx1=1/(1/per_x(1)+1/per_x(2)+1/per_x(3));
22 fmva1=base*100/tx1*1/1000;
23 \text{ tx2=tx1+per_xt};
24 fmva2=base*100/tx2*1/1000;
25
26 printf("(i) Total percentage reactance from
      generator to fault F1 = \%.2 f \% \ \n\n", tx1);
27 printf("
               Fault MVA = \%.2 \, \text{f} \, \backslash \text{n} \, \text{n}, fmva1);
28
29 printf("(ii) Total percentage reactance from
      generator to fault to F2 = \%.2 f \% /n/n, tx2);
30 printf("
                  Fault MVA = \%.2 \text{ f } \text{ } \text{n} \text{n}", fmva2);
```

Scilab code Exa 17.5 fault mva calculations 2

```
1 //Chapter 17
2 //Example 17_5
3 //Page 407
4
5 clear; clc;
```

```
6
7 kva=[10000 10000 8000 8000];
8 x = [10 10 12 12];
9 kva_bb=5000;
10 x_bb=10;
11
12 base=input("Enter base kva:
                                   ");
13
14 for i=1:4;
     per_x(i) = x(i)*base/kva(i);
     printf("%% reactance of generator %i = \%.0 f \ n\ ",
16
         i, per_x(i));
17 \text{ end}
18 per_bb=x_bb*base/kva_bb;
19 printf("\%% reactance of bus bar = \%.0 f \n\n", per_bb
      );
20
21 xa=per_x(1)*per_x(2)/(per_x(1)+per_x(2));
22 xb=per_x(3)*per_x(4)/(per_x(3)+per_x(4));
23
24 xf=xa+per_bb;
25 tx=xf*xb/(xf+xb);
26
27 printf ("Total %% reactance from generator nuetral to
       fult point is = \%.2 \text{ f } \% \setminus \text{n} \text{n}, tx);
28
29 fmva=base*100/tx/1000;
30 printf("Fault MVA = \%.2 \text{ f } \ln \%, fmva);
```

Scilab code Exa 17.6 reactance

```
1 //Chapter 17
2 //Example 17_6
```

```
\frac{3}{\text{Page }} 408
5 clear; clc;
7 kva1=3000;
8 \text{ kva}2=4500;
9 \times 1 = 7;
10 x2=8;
11 rc=150*1e6/1000;
12 kvatr=7500;
13 xt = 7.5;
14 \text{ bv} = 3300;
15
16 \text{ base} = 7500;
17 printf("Let base kVA be 7500 kVA \n");
18 \text{ per_x1=x1*base/kva1};
19 per_x2=x2*base/kva2;
20 per_xt=xt*base/kvatr;
21
22 r_ab=per_x1*per_x2/(per_x1+per_x2);
23 c=base*100/r_ab/rc;
24 per_x = abs((c*(r_ab+per_xt)-per_xt)/(c-1));
25 \text{ x=per_x*10*(bv/1000)^2/base};
26
27 printf("\%% reactance of generator A = \%.2 f \% \ \n\n",
       per_x1);
28 printf("\%% reactance of generator B = \%.2 f \% \ \n\n",
       per_x2);
29 printf ("\%% reactance of transformer = \%.2 f \%% \n\n",
       per_xt);
30 printf("\%% reactance of the bus bar = \%.2 f \%% \n\n",
       per_x);
31 printf("\%% reactance in ohms = \%.3 f ohms \n\n", x);
```

Scilab code Exa 17.7 short circuit mva

```
1 // Chapter 17
2 //Example 17_{-}7
3 / Page 409
5 clear; clc;
7 \text{ mva1} = 1500;
8 \text{ mva} 2 = 1200;
9 v = 33;
10 x = 1;
11
12 base=input("Base MVA: ");
13 per_x1=base * 100/mva1;
14 per_x2=base*100/mva2;
15 printf("\%% reactance of station A = \%.2 f \% \ \n\n",
      per_x1);
16 printf("\%% reactance of station B = \%.2 f \%\% \ \n\n",
      per_x2);
17
18 per_xt=base*1000*x/10/v^2;
19 printf ("\%% reactance of interconnector = \%.2 f \%% \n\
      n", per_xt);
20
21 x1=per_x1+per_xt;
22 \text{ tx1=x1*per_x2/(x1+per_x2)};
23 scmva1=base*100/tx1;
24
25 	ext{ x2=per_x2+per_xt};
26 \text{ tx2=x2*per_x1/(x2+per_x1)};
27 \text{ scmva2=base*100/tx2};
28
29 printf("FAULT ON STATION A: \n\n");
30 printf ("Total \%% reactance upto fault point F2 = \%.2
      f \% \langle n \rangle , tx2);
31 printf("Short circuit MVA = \%.2 \, \text{f } \n\n", scmva2);
32
```

```
33 printf("FAULT ON STATION B: \n\n");
34 printf("Total %% reactance upto fault point F1 = %.2 f %% \n\n", tx1);
35 printf("Short circuit MVA = %.2 f \n\n", scmva1);
```

Scilab code Exa 17.8 steady state input

```
1 // Chapter 17
2 //Example 17_8
3 //Page 410
5 clear; clc;
7 \text{ kva} = 5000;
8 x = 12;
9 r=6;
10
11 base=input("Input base kva: ");
12
13 perx=base*x/kva;
14 printf("With reactors: \n");
15 x1 = (perx + r)/2 + r;
16 tx1=x1*x/(x1+x);
17 sci1=base*100/tx1;
18 printf ("Total %% reactance from generator to fault =
       \%.2 f \% \ n", tx1);
19 printf ("Short circuit input = \%.3 f MVA \n\n", scil
      /1000);
20
21 printf("Without reactors: \n");
22 \text{ tx} 2 = x/3;
23 \text{ sci2=base*100/tx2};
24 printf("Total %% reactance from generator to fault =
```

```
\%.2\,f %% \n", tx2); 25 printf("Short circuit input = %.3 f MVA \n\n", sci2 /1000);
```

Scilab code Exa 17.9 short circuit mva 2

```
1 // Chapter 17
\frac{2}{\sqrt{\text{Example } 17.9}}
\frac{3}{2} = \frac{11}{2}
5 clear; clc;
6
7 gmva=10;
8 \text{ gx} = 30;
9 rmva=10;
10 \text{ rx} = 10;
11 tmva=5;
12 tx=5;
13
14 base=input("Enter base MVA: ");
15
16 pergx=base*gx/gmva;
17 printf("\%% reactance of each generator = \%.0 f \%% \n\
      n", pergx);
18
19 perrx=base*rx/rmva;
20 printf ("\%% reactance of each generator = \%.0 f \%% \n\
      n", perrx);
21
22 pertx=base*tx/tmva;
23 printf("\%% reactance of each generator = \%.0 f \%% \n\
      n", pertx);
24
```

Scilab code Exa 17.10 sc kVA

```
1 // Chapter 17
2 //Example 17_10
3 // Page 412
5 clear; clc;
7 q = 50000;
8 x = 20;
9 b=10;
10 n1=3;
11 n2=9;
13 //from the derivation
14 sckva1=(q/x+q*(n1-1)/(b*n1+x))*100;
15 sckva2=(q/x+q*(n2-1)/(b*n2+x))*100;
16 //When n is very large
17 sckva3 = (q/x+q/b)*100;
18
19 printf("(i) Short circuit kVA with %d sections = %d
     kVA \ \ n\ \ , n1, sckva1);
20 printf("(ii) Short circuit kVA with %d sections = %d
      kVA \ nn, n2, sckva2);
21 printf("(iii) Short circuit kVA when n is very large
      = \%d kVA \n\n", sckva3);
```

Scilab code Exa 17.11 reactor reactance

```
1 // Chapter 17
2 //Example 17_11
\frac{3}{2} = \frac{14}{2}
5 clear; clc;
7 v = 33;
8 \text{ pmva=10};
9 \text{ qmva}=50;
10 xp = 20;
11 xq=10;
12 \text{ rc} = 500;
13 base=50;
14
15 per_xg=base/pmva*xp;
16 per_xt=base/qmva*xq;
17 printf("%% reactance of each generator = %d %% \n",
      per_xg);
18 printf("\%% reactance of transformer = \%d \%% \n",
      per_xt);
19
20 \text{ per_x=base*100/rc};
21 printf("Required \%\% reactance = \%d \%\% \ n", per_x);
22 x = 100/15;
23 \text{ rr}=x*10*v^2/base/1000;
24 printf("Reactance of reactor = \%.3 \, f ohms \n\n", rr);
```

Scilab code Exa 17.12 reactance of reactor

```
1 // Chapter 17
2 //Example 17_12
3 //Page 415
5 clear; clc;
7 m1 = 5000;
8 v = 6600;
9 x = 6;
10 m=5;
11
12 base=input("Base kVA: ");
13 x = base * 100/m/ml - 6;
14 xohm = x*10*(v/1000)^2/m1;
15
16 printf("%% reactance of the reactor = \%.2 f %% \n\n",
       x);
17 printf("Reactance in ohms = \%.2 \, f \, \ln n", xohm);
```

Scilab code Exa 17.13 fault mva calculations 3

```
1 //Chapter 17
2 //Example 17_13
3 //Page 416
4
5 clear; clc;
```

```
7 mva=[15 15 8];
8 x = [12 12 10];
9 mvat=5;
10 xt = 4;
11 mvar=10;
12 \text{ xr} = 15;
13
14 base=input("Enter base mva: ");
15 for i=1:3
16 perx(i)=base*x(i)/mva(i);
17 printf("%% X(\%i) = \%.2 f \% \ \n\n", i, perx(i));
18 end;
19 perxt=base*xt/mvat;
20 perxr=base*xr/mvar;
21 printf("%% Xt = \%.2 \, f %% \n\n", perxt);
22 printf("%% Xr = \%.2 f %% \n\n", perxr);
23
24 xabt=perx(1)/2+perxt;
25 xcr=perx(3)+perxr;
26 tx=xabt*xcr/(xabt+xcr);
27 f = base * 100/tx;
28
29 printf("Total %% reactance = \%.2 f %% \n\n", tx);
30 printf("Fault MVA = \%.2 \, f MVA \n\n", f);
```

Scilab code Exa 17.14 fault current fed by alternator

```
1 //Chapter 17
2 //Example 17_14
3 //Page 417
4
5 clear; clc;
```

```
7 \text{ mva}=10;
8 \text{ kv} = 6.6;
9 xa = 20;
10 mvat=5;
11 kvpt=6.6;
12 kvst=33;
13 xt = 10;
14 r = 0.2;
15 x = 1;
16 11=50;
17
18 base=input("Enter base MVA: ");
19
20 per_xa=base*xa/mva;
21 per_xt=base*xt/mvat;
22 per_xl=mva*1000*ll*x/10/kvst^2;
23 per_rl=mva*1000*ll*r/10/kvst^2;
24
25 tx=per_xl+per_xa+per_xt;
26 tr=per_rl;
27
28 per_z=sqrt(tx^2+tr^2);
29 scmva=base*100/per_z;
30
31 isc=scmva*1e6/sqrt(3)/kv/1000;
32
33 printf ("\%% reactance of the alternator = \%.2 f \%\ \n\
      n", per_xa);
34 printf ("\%% reactance of the transformer = \%.2 f \%% \n
      n, per_xt);
35 printf ("\%% reactance of the transmission line = \%.2 f
       \% \n\n", per_x1);
36 printf ("\%\% resistance of the transmission line = \%.2
      f \% \langle n \rangle, per_rl);
37 printf("Total %% reactance upto fault point = %.2 f
     \%\% \ \n\n" , tx);
38 printf ("Total \%% resistance upto fault point = \%.2 f
```

Scilab code Exa 17.15 short circuit current calculations

```
1 //Chapter 17
2 //Example 17_{-}15
\frac{3}{2} = \frac{18}{2}
5 clear; clc;
7 \text{ kv} = 11;
8 \text{ mva}=10;
9 xa=12;
10 mvar=10;
11 xr = 24;
12 mvat=6;
13 \text{ xt} = 3;
14 \text{ ts=}66;
15
16 base=input("Enter base MVA: ");
17 per_xa=base*xa/mva;
18 per_xr=base*xr/mvar;
19 per_xt=base*xt/mvat;
20
21 //From the figure, the total reactance from
       generator to fault point is
22
23 11=per_xa/2+per_xr;
```

```
24 12=per_xa/2;
25 tx=11*12/(11+12)+per_xt;
26
27 fmva=base*100/tx;
28 isc=fmva*1e6/sqrt(3)/ts/1000;
29
30 printf("\%% reactance of the alternator = \%.2 f \%% \n\
      n", per_xa);
31 printf("\%% reactance of the transformer = \%.2 f \%% \n
      \n", per_xt);
32 printf("\%% reactance of the reactor = \%.2 f \%% \n\n",
       per_xr);
33
34 printf ("Total \%\% reactance upto fault point = \%.2 f
     \%\% \ \n\n", tx);
35 printf("Fault MVA = \%.2 \, f MVA \n\n", fmva);
36 printf ("Short circuit current fed by the alternator
      to the fault = \%.2 \, f \, A \, \ln ", isc);
```

Chapter 18

Unsymmetrical Fault Calculations

Scilab code Exa 18.3 sequence currents

```
1 // Chapter 18
       2 //Example 18_3
       \frac{3}{2} = \frac{1}{2} = \frac{1}
       5 clear; clc;
       7 a=1*(cosd(120)+%i*sind(120));
       8
       9 Ir = 12 + \%i * 6;
  10 Iy=12+%i*-12;
 11 Ib = -15 + \%i * 10;
 12
                                                     Ir0=1/3*(Ir+Iy+Ib);
 13
 14
                                                      Ir1=1/3*(Ir+a*Iy+a^2*Ib);
 15
                                                      Ir2=1/3*(Ir+a^2*Iy+a*Ib);
 16
 17 disp("RED PHASE:");
18 printf("Ir0 = \%.2 \text{ f+j} (\%.2 \text{ f}) \text{ A } \n", real(Ir0), imag(
                                                              Ir0));
```

```
19 printf("Ir1 = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \text{A} \, \text{n}", real(Ir1), imag(
         Ir1));
20 printf("Ir2 = \%.2 \text{ f+j}(\%.2 \text{ f}) \text{ A } \text{\n\n"}, real(Ir2), imag(
         Ir2));
21
22 \text{ Iy0=Ir0};
23 Iy1=a^2*Ir1;
24 Iy2=a*Ir2;
25 disp("YELLOW PHASE:");
26 printf("Iy0 = \%.2 \text{ f+j} (\%.2 \text{ f}) \text{ A} \ \text{n}", real(Iy0), imag(
         Iy0));
27 printf("Iy1 = \%.2 \text{ f+j} (\%.2 \text{ f}) \text{ A} \ \text{n}", real(Iy1), imag(
         Iy1));
28 printf("Iy2 = \%.2 \text{ f+j}(\%.2 \text{ f}) \text{ A } \text{\n\n"}, real(Iy2), imag(
        Iy2));
29
30 Ib0=Ir0;
31 Ib1=a*Ir1;
32 Ib2=a^2*Ir2;
33 disp("BLUE PHASE:");
34 printf("Ib0 = \%.2 \, \text{f+j} \, (\%.2 \, \text{f}) \, \text{A} \, \text{n}", real(Ib0), imag(
         Ib0));
35 printf("Ib1 = \%.2 \text{ f+j} (\%.2 \text{ f}) \text{ A} \text{ n}", real(Ib1), imag(
         Ib1));
36 printf("Ib2 = \%.2 \text{ f+j}(\%.2 \text{ f}) \text{ A } \text{\n\n"}, \text{ real(Ib2), imag(}
         Ib2));
```

Scilab code Exa 18.4 sequence components for voltage

```
1 //Chapter 18
2 //Example 18_4
3 //Page 430
```

```
5 clear; clc;
7 a=1*(cosd(120)+%i*sind(120));
9 \text{ Er0} = 100;
10 Er1 = 200 - \%i * 100;
11 Er2 = -100;
12
13 Er=Er0+Er1+Er2;
14 Ey=Er0+a^2*Er1+a*Er2;
15 Eb=Er0+a*Er1+a^2*Er2;
16
17 printf("Er = \%.2 \, f /-\%.2 \, f volts \n\n", abs(Er), at and
       (imag(Er)/real(Er)));
18 printf ("Ey = \%.2 \, \text{f} / -\%.2 \, \text{f} \text{ volts } \ln n", abs (Ey), at and
       (imag(Ey)/real(Ey))-180);
19 printf ("Eb = \%.2 \, \text{f} / -\%.2 \, \text{f} \text{ volts } \ln n", abs (Eb), at and
       (imag(Eb)/real(Eb)));
```

Scilab code Exa 18.5 sequence components calculations

```
1 //Chapter 18
2 //Example 18_5
3 //Page 431
4
5 clear; clc;
6
7 a=1*(cosd(120)+%i*sind(120));
8
9 Er0=0.5-%i*0.866;
10 Er1=2*(cosd(0)+%i*sind(0));
11 Er=3*(cosd(0)+%i*sind(0));
12
```

Scilab code Exa 18.6 zero sequence currents

```
1 //Chapter 18
2 //Example 18_6
3 //Page 431
4
5 clear; clc;
6
7 i=12;
8
9 printf("Zero sequence current is equal to 1/3rd the current in nuetral wire.\n");
10 printf("Zero sequence current in each phase = %d A \n\n", i/3);
```

Scilab code Exa 18.7 with and without fuse

```
1 //Chapter 18
2 //Example 18_7
```

```
3 //Page 432
5 clear; clc;
6
7 i = 90;
9 disp("(i) BEFORE REMOVAL OF FUSES: ");
10
11 a=1*(cosd(120)+%i*sind(120));
13 Ir=90*(cosd(0)+%i*sind(0));
14 Iy=90*(cosd(240)+%i*sind(240));
15 Ib=90*(cosd(120)+%i*sind(120));
16
17 Ir0=1/3*(Ir+Iy+Ib);
18 Ir2=1/3*(Ir+a^2*Iy+a*Ib);
19
20 \text{ Iy2=a*Ir2};
21 Ib2=a^2*Ir2;
22
23 Ir1=Ir;
24 \text{ Iy1=Iy};
25 Ib1=Ib;
26
27 printf("Ir = \%.2 \, f /_\%.2 \, f A \n", abs(Ir), atand(imag(
     Ir)/real(Ir)));
Iy)/real(Iy))+180);
  printf("Ib = \%.2 f /_{-}\%.2 f A \backslash n \backslash n", abs(Ib), atand(
29
     imag(Ib)/real(Ib))+180);
30
31 printf("Zero sequence components of three line
      currents are: \n");
32 printf("Ir0 = Iy0 = Ib0 = \%d A \n\n", real(Ir0));
33
34 printf("Ir2 = \%d A \n", abs(Ir2));
35 printf("Iy2 = \%d A \n", abs(Iy2));
36 printf("Ib2 = \%d A \n\n", abs(Ib2));
```

```
37
38 printf("Ir1 = \%.2 f /.\%.2 f A \n", abs(Ir), atand(imag
       (Ir)/real(Ir)));
39 printf("Iy1 = \%.2 \, f /_\%.2 \, f A \n", abs(Iy), atand(imag
       (Iy)/real(Iy))+180);
40 printf("Ib1 = \%.2 \, f /_\%.2 \, f A \n\n\n", abs(Ib), atand(
      imag(Ib)/real(Ib))+180);
41
42 disp("AFTER REMOVAL OF FUSES: ");
43
44 Ird=90*(cosd(0)+%i*sind(0));
45 \text{ Iyd=0};
46 Ibd=0;
47
48 printf("Ir = \%.2 \, f /_\%.2 \, f A \n", abs(Ird), atand(imag
       (Ird)/real(Ird)));
49 printf("Iy = \%d A \n", Iyd);
50 printf("Ib = \%d A \n\n", Ibd);
51
52 \operatorname{Ir0d}=1/3*(\operatorname{Ird}+\operatorname{Iyd}+\operatorname{Ibd});
53 Ir1d=1/3*(Ird+a*Iyd+a^2*Ibd);
54 Ir2d=1/3*(Ird+a^2*Iyd+a*Ibd);
55
56 printf("Zero sequence components of three line
       currents are: \n");
  printf("Ir0 = Iy0 = Ib0 = \%d /_0 A \n\n", real(Ir0d)
      );
58
59 \text{ IyOd=IrOd};
60 IbOd=IrOd;
61
62 Iy1d=a^2*Ir1d;
63 \text{ Iy2d=a*Ir2d};
64
65 Ib1d=a*Ir1d;
66 Ib2d=a^2*Ir2d;
67
68 printf("Ir1 = \%.2 f /-\%.2 f A \n", abs(Ir1d), atand(
```

```
imag(Ir1d)/real(Ir1d)));
69 printf("Ir2 = \%.2 f /.\%.2 f A \n\n", abs(Ir2d), atand(
       imag(Ir2d)/real(Ir2d))+180);
70
71 printf("Iy1 = \%.2 \, \text{f} / \ \%.2 \, \text{f} \, \text{A} \, \text{n}", abs(Iy1d), atand(
       imag(Iy1d)/real(Iy1d))+180);
72 printf("Iy2 = \%.2 \, \text{f} / \ \%.2 \, \text{f} \, \text{A} \, \text{n} \, \text{n}", abs(Iy2d), atand(
       imag(Iy2d)/real(Iy2d))+180);
73
74 printf("Ib1 = \%.2 f /_\%.2 f A \n", abs(Ib1d), atand(
       imag(Ib1d)/real(Ib1d))+180);
75 printf("Ib2 = \%.2 \, f /_\%.2 \, f A \n\n", abs(Ib2d), atand(
       imag(Ib2d)/real(Ib2d))+180);
76
77 Iyd=Iy0d+Iy1d+Iy2d;
78 printf ("Curretn in yellow line = \%d A \n\n", real (
       Iyd));
```

Scilab code Exa 18.8 line current values

```
1 //Chapter 18
2 //Example 18_8
3 //Page 433
4
5 clear; clc;
6
7 a=1*(cosd(120)+%i*sind(120));
8
9 In=300*(cosd(300)+%i*sind(300));
10 Ir1=200*(cosd(0)+%i*sind(0));
11 Ir2=100*(cosd(60)+%i*sind(60));
12
13 Ir0=1/3*In;
```

Scilab code Exa 18.9 currents in three phases

```
1 // Chapter 18
2 //Example 18_9
3 // Page 434
5 clear; clc;
7 a=1*(cosd(120)+%i*sind(120));
9 Ir=10*(cosd(0)+%i*sind(0));
10 Iy=10*(cosd(180)+%i*sind(180));
11 Ib = 0;
12
13 Ir0=1/3*(Ir+Iy+Ib);
14 \text{ Ir1=1/3*(Ir+a*Iy+a^2*Ib)};
15 Ir2=1/3*(Ir+a^2*Iy+a*Ib);
16
17 Iy0=Ir0;
18 Iy1=a^2*Ir1;
19 Iy2=a*Ir2;
```

```
20
21 Ib0=Ir0;
22 Ib1=a*Ir1;
23 Ib2=a^2*Ir2;
24
25 printf("Ir = \%.2 f /_\%.2 f A \n", abs(Ir), atand(imag(
      Ir)/real(Ir)));
26 printf("Iy = \%.2 \, f /_\%.2 \, f A \n", abs(Iy), atand(imag(
      Iy)/real(Iy))+180);
27 printf("Ib = \%.d A \setminus n \setminus n", Ib);
28
29 disp("RED PHASE: ");
30 printf("Ir0 = \%d A \n", real(Ir0));
31 printf("Ir1 = \%.2 f /_\%.2 f A \n", abs(Ir1), atand(
      imag(Ir1)/real(Ir1)));
32 printf("Ir2 = \%.2 \, f /-\%.2 \, f A \ln n", abs(Ir2), atand(
      imag(Ir2)/real(Ir2)));
33
34 disp("YELLOW PHASE: ");
35 printf("Iy0 = \%d A \n", real(Iy0));
36 printf("Iy1 = \%.2 f /_\%.2 f A \n", abs(Iy1), atand(
      imag(Iy1)/real(Iy1))-180);
37 printf("Iy2 = \%.2 \, \text{f} /_\%.2 \, \text{f} A \n\n", abs(Iy2), atand(
      imag(Iy2)/real(Iy2))+180);
38
39 disp("BLUE PHASE: ");
40 printf("Ib0 = \%d A \n", real(Ib0));
41 printf("Ib1 = \%.2 \, f /_\%.2 \, f A \n", abs(Ib1), atand(
      imag(Ib1)/real(Ib1)));
42 printf("Ib2 = \%.2 f /_\%.2 f A \n\n", abs(Ib2), atand(
      imag(Ib2)/real(Ib2))-180);
```

Scilab code Exa 18.10 resistor and line currents

```
1 // Chapter 18
2 //Example 18_10
3 //Page 435
5 clear; clc;
7 a=1*(cosd(120)+%i*sind(120));
9 \text{ rr} = 5;
10 \text{ ry} = 10;
11 \text{ rb} = 20;
12
13 Er = -100*(cosd(0) + \%i*sind(0));
14 Ey=100*(cosd(60)+\%i*sind(60));
15 Eb=100*(cosd(-60)+\%i*sind(-60));
16
17 Ir=Er/rr;
18 Iy=Ey/ry;
19 Ib=Eb/rb;
20
21 printf ("Er = \%.2 \, \text{f} / -\%.2 \, \text{f} \, \text{V} \, \text{n}", Er, atand (imag (Er)/
       real(Er)));
22 printf("Ey = \%.2 \, \text{f} / \ \%.2 \, \text{f} \, \text{V} \, \text{n}", abs(Ey), atand(imag(
       Ey)/real(Ey)));
23 printf("Eb = \%.2 \, \text{f} / \ / \ \%.2 \, \text{f} \, \text{V} / \ \text{n/n}", abs(Eb), atand(
       imag(Eb)/real(Eb)));
24
  printf("Ir = \%.2 \, f /_\%.2 \, f A \n", Ir, atand(imag(Ir)/
       real(Ir)));
26 printf("Iy = \%.2 \, f /_\%.2 \, f A \n", abs(Iy), atand(imag(
       Iy)/real(Iy)));
27
  printf("Ib = \%.2 f /-\%.2 f A \n\n", abs(Ib), atand(
       imag(Ib)/real(Ib)));
28
29 disp("SEQUENCE CURRENTS IN RESISTORS: ");
30
31 \text{ Ir0=1/3*(Ir+Iy+Ib)};
32 \text{ Ir1=1/3*(Ir+a*Iy+a^2*Ib)};
```

```
33 \text{ Ir}2=1/3*(\text{Ir}+a^2*\text{Iy}+a*\text{Ib});
34
35 \text{ Iy0=Ir0};
36 Iy1=a^2*Ir1;
37 Iy2=a*Ir2;
38
39 Ib0=Ir0;
40 Ib1=a*Ir1;
41 Ib2=a^2*Ir2;
42
43 printf("Ir0 = \%.2 f /.\%.2 f A \n", abs(Ir0), atand(
       imag(Ir0)/real(Ir0))+180);
44 printf("Ir1 = \%.2 \, f /_\%.2 \, f A \n", abs(Ir1), atand(
       imag(Ir1)/real(Ir1))+180);
45 printf("Ir2 = \%.2 f /_-\%.2 f A \n\n", abs(Ir2), atand(
       imag(Ir2)/real(Ir2))-180);
46
47 printf("Iy0 = \%.2 \, \text{f} / \ \%.2 \, \text{f} \, \text{A} \, \text{n}", abs(Iy0), atand(
       imag(Iy0)/real(Iy0))+180);
48 printf("Iy1 = \%.2 \, f / \%.2 \, f \, A \, n", abs(Iy1), atand(
       imag(Iy1)/real(Iy1)));
49 printf("Iy2 = \%.2 \, \text{f} /_\%.2 \, \text{f} A \n\n", abs(Iy2), atand(
       imag(Iy2)/real(Iy2)));
50
51 printf("Ib0 = \%.2 f /_\%.2 f A \n", abs(Ib0), atand(
       imag(Ib0)/real(Ib0))+180);
52 printf("Ib1 = \%.2 f /_\%.2 f A \n", abs(Ib1), atand(
       imag(Ib1)/real(Ib1)));
  printf("Ib2 = \%.2 f /_\%.2 f A \n\n", abs(Ib2), atand(
       imag(Ib2)/real(Ib2)));
54
55 disp ("SEQUENCE CURRENTS IN SUPPLY LINES: ");
56 ir=Ib-Iy;
57 iy = Ir - Ib;
58 \text{ ib=Iy-Ir};
59
60 \text{ ir0} = 1/3*(\text{ir+iy+ib});
61 \text{ ir1}=1/3*(\text{ir+a*iy+a^2*ib});
```

Scilab code Exa 18.11 current calculations

```
1 //Chapter 18
2 //Example 18_11
3 //Page 437
4
5 clear; clc;
6
7 a=1*(cosd(120)+%i*sind(120));
8
9 Ir=20*(cosd(0)+%i*sind(0));
10 Iy=20*(cosd(180)+%i*sind(180));
11 Ib=0;
12
13 Ir0=1/3*(Ir+Iy+Ib);
14 Ir1=1/3*(Ir+a*Iy+a^2*Ib);
15 Ir2=1/3*(Ir+a^2*Iy+a*Ib);
```

```
16
17 Iy0=Ir0;
18 Iy1=a^2*Ir1;
19 Iy2=a*Ir2;
20
21 Ib0=Ir0;
22 Ib1=a*Ir1;
23 Ib2=a^2*Ir2;
24
25 printf("Ir = \%.2 \, f /_\%.2 \, f A \n", abs(Ir), atand(imag(
       Ir)/real(Ir)));
26 printf("Iy = \%.2 \, \text{f} / \ / \ \%.2 \, \text{f} A \ n", abs(Iy), atand(imag(
       Iy)/real(Iy))+180);
27 printf("Ib = \%d A \setminus n \setminus n", abs(Ib));
28
29 disp("RED LINE: ");
30 printf("Ir0 = \%d A \n", real(Ir0));
31 printf("Ir1 = \%.2\,\mathrm{f} /_\%.2\,\mathrm{f} A \n", abs(Ir1), atand(
       imag(Ir1)/real(Ir1)));
32 printf("Ir2 = \%.2 \, \text{f} /_\%.2 \, \text{f} A \n\n", abs(Ir2), atand(
       imag(Ir2)/real(Ir2)));
33
34 disp("YELLOW LINE: ");
35 printf("Iy0 = \%d A \n", real(Iy0));
36 printf("Iy1 = \%.2 \, f /_\%.2 \, f A \n", abs(Iy1), atand(
       imag(Iy1)/real(Iy1))+180);
37 printf("Iy2 = \%.2 \, \text{f} / -\%.2 \, \text{f} \, \text{A} \, \text{n} \, \text{n}", abs(Iy2), atand(
       imag(Iy2)/real(Iy2))+180);
38
39 disp("BLUE LINE: ");
40 printf("Ib0 = \%d A \n", real(Ib0));
41 printf("Ib1 = \%.2 \, f /_\%.2 \, f A \n", abs(Ib1), atand(
       imag(Ib1)/real(Ib1)));
42 printf("Ib2 = \%.2 f /-\%.2 f A \n\n", abs(Ib2), atand(
       imag(Ib2)/real(Ib2))+180);
```

Scilab code Exa 18.12 current calculations 2

```
1 // Chapter 18
2 //Example 18_12
3 //Page 438
5 clear; clc;
7 a=1*(cosd(120)+%i*sind(120));
9 z1=5-\%i*10;
10 z2=6+\%i*5;
11 z3=3+\%i*15;
12
13 Vry = 3300*(cosd(0) + \%i*sind(0));
14  Vyb=a^2*Vry;
15
16 Vr_minus_Vy = 3300;
17 Vy_minus_Vb = 3300*(cosd(120) - %i*sind(120));
18
19 printf("Since Ir+Iy+Ib=0, Ir0=Iy0=Ib0=0 A \n");
20
21 v=[Vr_minus_Vy; Vy_minus_Vb];
22
23 za=z1-a^2*z2;
24 \text{ zb=z1-a*z2};
25 \text{ zc=a}^2*z^2-a*z^3;
26 zd=a*z2-a^2*z3;
27 z=[za zb; zc zd];
28
29 I=z \setminus v;
30
```

Scilab code Exa 18.13 current calculations 3

```
1 // Chapter 18
2 //Example 18_13
\frac{3}{\text{Page }} 440
5 clear; clc;
7 a=1*(cosd(120)+%i*sind(120));
9 r = 1;
10 \text{ vry} = 200;
11 vyb = 346;
12 \text{ vbr} = 400;
13
14 //referring to the phasor diagram
15 //vbr is twice vry, ie, factor =2
16 / \text{vyb} = 1.75 \text{ times vry}
17 alpha=acosd((1+1.75*cosd(90))/2);
18
19 Vry = vry * (cosd (180) + %i * sind (180));
20 Vyb = vyb*(cosd(90) + %i*sind(90));
21 Vbr=vbr*(cosd(-alpha)+%i*sind(-alpha));
22
```

```
23 printf("Vry = \%.2 \text{ f+j}(\%.2 \text{ f}) \text{ V} \text{ \n"}, real(Vry), imag(
       Vry));
24 printf("Vyb = \%.2 \text{ f+j} (\%.2 \text{ f}) \text{ V} \ \text{n}", real(Vyb), imag(
       Vyb));
25 printf("Vbr = \%.2 \, \mathrm{f+j} \, (\%.2 \, \mathrm{f}) \, \mathrm{V} \, \ln n", real(Vbr), imag(
       Vbr));
26
27 \text{ Ir=Vry/sqrt}(3);
28 \text{ Iy=Vyb/sqrt}(3);
29 Ib=Vbr/sqrt(3);
30
31 disp("Line current: ");
32 printf("Ir = \%.2 \, f /_-\%.2 \, f A \n", abs(Ir), atand(imag(
       Ir)/real(Ir))+180);
33 printf("Iy = \%.2 \, f /_90 A \n", abs(Iy));
34 printf("Ib = \%.2\,\mathrm{f} /_\%.2\,\mathrm{f} A \n\n", abs(Ib), atand(
       imag(Ib)/real(Ib)));
35
36 \text{ Ir0=1/3*(Ir+Iy+Ib)};
37 \text{ Ir1=1/3*(Ir+a*Iy+a^2*Ib)};
38 \text{ Ir2=1/3*(Ir+a^2*Iy+a*Ib)};
39
40 printf("Ir0 = \%d A \n", abs(Ir0));
41 printf("Ir1 = \%.2 f / \%.2 f A / n", abs(Ir1), atand(
       imag(Ir1)/real(Ir1))-180);
42 printf("Ir2 = \%.2 \, f /_\%.2 \, f A \n", abs(Ir2), atand(
       imag(Ir2)/real(Ir2)));
```

Scilab code Exa 18.14 impedance and voltage calculations

```
1 //Chapter 18
2 //Example 18_14
3 //Page 449
```

```
4
5 clear; clc;
7 \text{ mva}=10;
8 \text{ kv} = 11;
9 g = [\%i*1.2 \%i*0.9 \%i*0.4];
10 f = [%i *1 %i *1 %i *3];
11
12 Er=kv*1000/sqrt(3);
13 printf("Phase enf of R phase = \%d V \n", Er);
14
15 printf("(i) Total impedance to any sequence current
      is sum of generator and feeder impedances of that
       sequence currents \n");
16
17 for i=1:3
     tz(i)=g(i)+f(i);
18
     printf("\tTotal Z(%i) = j(%.1f) ohm \n", i,imag(tz
19
         (i)));
20 end
21
22 z = sum(tz);
23 I1=Er/z;
24 I2=I1;
25 IO=I1;
26
27 \text{ Ir} = 3 * I0;
28
29 Vr = Er - I0 * sum(g);
30 printf("I1 = I2 = I0 = j(\%d) A n\n", imag(I0));
31 printf("Fault current = j(\%d) A \ln n", imag(Ir));
32
33 printf("(ii) Line to nuetral voltage of R-phase = \%
      .2 f V \setminus n \setminus n", Vr);
```

Scilab code Exa 18.15 ratio of fault currents

```
1 // Chapter 18
2 //Example 18_15
3 / \text{Page } 450
5 clear; clc;
7 \text{ kv} = 11;
8 \text{ mva}=10;
9 X0 = \%i * 0.05;
10 X1 = \%i * 0.15;
11 X2 = \%i * 0.15;
12
13 Er=1;
14 \quad IO = Er/(XO + X1 + X2);
15 I1=I0;
16 I2=I0;
17 Ir = 3 * I0;
18 Ish=Er/X1;
19 ratio=Ir/Ish;
20
21 disp("Line to ground fault: ");
22 printf("I1=I2=I0=j(\%.2 f) A \n", imag(I0));
23 printf("Fault current = j(\%.2 f) A \ln n", imag(Ir));
24
25 disp("Three phase fault: ");
26 printf("Fault current = j(\%.2 f) A \n\n", imag(Ish));
27 printf ("Ratio of two fault currents = \%.3 f A \ln n",
      ratio);
28 printf("Thus single line to ground fault is %.3f
      times that due to dead short circuit on the 3
```

Scilab code Exa 18.16 fault current

```
1 // Chapter 18
2 //Example 18_16
3 //Page 450
5 clear; clc;
7 \text{ kv} = 11;
8 \text{ mva}=25;
9 X0 = \%i * 0.05;
10 X1 = \%i * 0.2;
11 X2 = \%i * 0.2;
12
13 Xn = \%i * 0.3;
14 Er=1;
15 pu_xn=Xn*mva*1000/kv^2/1000;
16 I0=Er/(X0+X1+X2+3*pu_xn);
17 I1=I0;
18 I2 = I0;
19 Ir = 3 * I0;
20 fc=mva*1e6/sqrt(3)/kv/1000*abs(Ir);
21
22 printf("Per unit value of Xn = \%.4 f p.u \n\n", imag(
      pu_xn));
23 printf("I1=I2=I0=j(\%.3f) A n", imag(I0));
24 printf("Fault current = j(\%.3 f) A \ln n", imag(Ir));
25 printf("Fault current in amperes = Rated current *
      Per unit value \n");
                                            %d A \setminus n \setminus n", fc);
26 printf("
```

Scilab code Exa 18.17 fault current 2

Scilab code Exa 18.18 fault current 3

```
1 //Chapter 18
2 //Example 18_18
3 //Page 451
4
5 clear; clc;
6
7 X1=%i*0.08;
```

Scilab code Exa 18.19 fault current 4

```
1 //Chapter 18
2 //Example 18_19
3 / Page 452
5 clear; clc;
7 \text{ mva}=20;
8 \text{ kv} = 11;
9 \text{ xn=5};
10 \times 1 = 20;
11 \times 2 = 10;
12
13 Er = kv * 1000 / sqrt(3);
14 printf("Phase emf of red phase = \%d V \n\n", Er);
16 //from the reactance diagram given in the text;
17 r_x1=x1/2;
18 r_x2=x2/2;
19 r_xn=30;
20
21 X1=r_x1*kv^2*10/mva/1000;
22 \quad X2=r_x2*kv^2*10/mva/1000;
```

```
23  X0=r_xn*kv^2*10/mva/1000;
24
25  Ir=3*Er/(X1+X2+X0)/%i;
26
27  printf("X1 = %.3 f ohm \n\n", X1);
28  printf("X2 = %.3 f ohm \n\n", X2);
29  printf("X0 = %.3 f ohm \n\n", X0);
30
31  printf("Fault current = j(%d) A \n\n", imag(Ir));
```

Scilab code Exa 18.20 reactance calculations

```
1 // Chapter 18
2 //Example 18_20
3 //Page 453
5 clear; clc;
6
7 \text{ mva}=50;
8 \text{ kv} = 11;
9
10 //three phase fault
11 I1=2000;
12 //line to line fault
13 I2=2600;
14 //line to ground fault
15 \quad I3 = 4200;
16
17 Eph=kv*1000/sqrt(3);
18
19 X1=Eph/I1;
20 X2 = sqrt(3) * Eph/I2 - X1;
21 \quad X3=3*Eph/I3-X1-X2;
```

```
22  
23  printf("X1 = %.3 f ohm \n\n", X1);  
24  printf("X2 = %.3 f ohm \n\n", X2);  
25  printf("X3 = %.3 f ohm \n\n", X3);
```

Chapter 19

Circuit Breakers

Scilab code Exa 19.1 circuit breaker rating

```
1 //Chapter 19
     2 //Example 19_1
     \frac{3}{2} = \frac{1}{2} = \frac{1}
     5 clear; clc;
      7 i=1500;
     8 \text{ mva} = 1000;
     9 v = 33 * 1 e 3;
10 t=3;
11
 12 printf("(i) Rated normal current = \%.0 \, f \, A \, \ln n", i);
13 printf("(ii) Breaking capacity = \%.0 \, f \, MVA \, n n", mva
                                            );
14 rsbc=mva*1e6/sqrt(3)/v;
 15 printf("(iii) Rated symmetrical breaking capacity =
                                         \%.0 f A \n\n", rsbc);
16 \text{ rmc=}2.55*\text{rsbc};
17 printf("(iv) Rated making current = \%.0 \, f \, A \, \ln^{n},
                                            rmc);
18 printf("(v) Rated short time rating = \%.0 \, \text{f} A for \%.0
```

```
f sec \n\n", rsbc, t);
19 printf("(vi) Rated service voltage = %.0 f kV \n\n", v/1000);
```

Scilab code Exa 19.2 average rrrv

```
1 //Chapter 19
2 //Example 19_2
\frac{3}{\text{Page }} 484
5 clear; clc;
6
7 f = 50;
8 v = 11 * 1 e 3;
9 x = 5;
10 c=0.01*1e-6;
11
12 l=x/2/\%pi/f;
13 emax = sqrt(2) *v/1000/sqrt(3);
14 fn=1/2/%pi/sqrt(1*c);
15 t=1/2/fn;
16 \text{ avg}=2*\text{emax/t};
17
18 printf("Inductance per phase = \%.5 \, f \, H \, \ln \,", 1);
19 printf("(i) Maximum value of recovery voltage = %.2 f
       20 printf("
                 Peak restriking voltage = \%.2 \, \text{f kV } \, \text{n}",
       2*emax);
21 printf("(ii) Frequency of oscillation = \%.0 \, \text{f Hz } \ln
      ", fn);
22 printf("(iii) Time t at which peak restriking
      voltage occurs = \%.2 \, \text{f} us \n\n", t*1e6);
23 printf("
                   Average rate of rise of recovery
```

Scilab code Exa 19.3 natural frequency of oscillations

```
1 //Chapter 19
2 //Example 19_3
3 //Page 484
4
5 clear; clc;
6
7 tp=50*1e-6;
8 rvp=100*1e3;
9
10 rrrv=rvp/tp;
11 fn=1/2/tp;
12
13 printf("Average RRRV = %.0 f kV/sec \n\n", rrrv/1000);
14 printf("Natural frequency of oscillatins = %.0 f Hz \n\n", fn);
```

Scilab code Exa 19.4 voltage during chopping

```
1 //Chapter 19
2 //Example 19_4
3 //PAge 485
4
5 clear; clc;
```

Chapter 20

Fuses

Scilab code Exa 20.1 radius of wire

```
1 //Chapter 20
2 //Example 20_1
3 //Page 495
4
5 clear; clc;
6
7 r1=0.8;
8 i1=8;
9 i2=1;
10
11 r2=r1*(i2/i1)^(2/3);
12
13 printf("Radius = %.1 f mm \n\n", r2);
```

Chapter 21

Protective relays

Scilab code Exa 21.1 relay operating time

```
1 // Chapter 21
2 //Example 21.1
\frac{3}{\text{Page}} = 507
5 i=5;
6 \text{ cs} = 1.25;
7 \text{ ts} = 0.6;
8 \text{ tv1} = 400;
9 \text{ tv2=5};
10 fc=4000;
11
12 pup=i*cs;
13 frc=fc*tv2/tv1;
14 psm=frc/pup;
15 ot=3.5*0.6;
16
17 printf("Pick up current = \%.2 \, f \, A \, \ln n", pup);
18 printf("Fault current in relay coil = \%.0 f A \setminus n \setminus n",
       frc);
19 printf("Plug multiplier setting = \%.0 \,\mathrm{f} \, \ln \,\mathrm{m}, psm);
20 printf("Corresponding to the plug multiplier setting
```

of $\%.0\,f$, the time of operation is $3.5~seconds.\backslash n$ $\backslash t$ Therefore actual relay operating time $=\%.2\,f$ s $\backslash n\backslash n$, psm , ot);

Chapter 22

Protection of Alternators and Transformers

Scilab code Exa 22.1 Merz Price principle

```
1 // Chapter 22
2 //Example 22_1
3 //Page 529
5 clear; clc;
7 mva=10*1e6;
8 v=6.6*1e3;
9 \text{ ph_z=0.1};
10 i = 175;
11 awp=0.1;
12
13 vph=v/sqrt(3);
14 flc=mva/sqrt(3)/v;
15 x=v*mva/1e6/flc/sqrt(3)/100;
16 \text{ zw=x*ph_z};
17 emfw=vph*ph_z;
18
19 r=sqrt((emfw/i)^2-zw^2);
```

```
20
21 printf("Voltage per phase = %.0 f V \n\n", vph);
22 printf("Full load current = %.0 f V \n\n", flc);
23 printf("Reactance per phase = %.3 f ohm \n\n", x);
24 printf("Reactance of 10 percent winding = %.4 f ohm \n\n", zw);
25 printf("EMF induced in 10 percent winding = %.0 f V \n\n", emfw);
26 printf("Impedance offered by fault by 10 percent winding is Zf=sqrt(%.4 f^2+r^2) \n\n", zw);
27 printf("Earthing resistance to be provided = %.3 f ohm \n\n", r);
```

Scilab code Exa 22.2 unprotected winding calculations

```
1 // Chapter 22
2 //Example 22_{-}2
3 //Page 530
5 clear; clc;
7 r=7.5;
8 \text{ mva}=10;
9 i1 = 1000;
10 i2=5;
11 kv = 6.6;
12 \text{ oc=0.5};
13
14 v_ph=kv*1000/sqrt(3);
15 \text{ min_fc=i1/i2*oc};
16 emf = v_ph/100;
17 efc=emf/r;
18 uw=min_fc/efc;
```

```
19
20 printf("Voltage per phase = %d V \n\n", v_ph);
21 printf("Minimum fault current which will operate the relay = %d A \n\n", min_fc);
22 printf("EMF induced in %%x winding = %.2 f*x V \n\n", emf)
23 printf("Earth fault current which %%x winding will cause = %.2 f*x A \n\n", efc);
24 printf("This current must be equal to %dA \n\n", min_fc);
25 printf("Unprotected winding, x= %.2 f %% \n\n", uw);
```

Scilab code Exa 22.3 unprotected winding and r

```
1 // Chapter 22
2 //Example 22_3
3 //Page 530
5 clear; clc;
7 \text{ mva} = 10;
8 \text{ kv} = 6.6;
9 i1 = 1000;
10 i2=5;
11 \text{ oc} = 0.75;
12 r=6;
13 x = 10;
14
15 v_ph=kv*1000/sqrt(3);
16 min_fc=i1/i2*oc;
17 emf = v_ph/100;
18 efc=emf/r;
19 uw=min_fc/efc;
```

```
20
21 printf("(i) x\%% of the winding is unprotected, \n\"
22 printf("Voltage per phase = \%d V \setminus n \setminus n", v_ph);
23 printf ("Minimum fault current which will operate the
        relay = %d A \setminus n \setminus n", min_fc);
24 printf("EMF induced in \%\%x winding = \%.2 \, f*x \, V \, nn",
       emf)
25 printf("Earth fault current which \%\%x winding will
      cause = \%.2 \text{ f*x A } \backslash n \backslash n", efc);
26 printf ("This current must be equal to \%d A \n\n",
      min_fc);
27 printf ("Unprotected winding, x = \%.2 f \% \setminus n \in ", uw);
28
29 min_r=emf*x/min_fc;
30 printf("(ii) The minimum earthing resistance
      required to provide protection for %d %% of
      stator winding = \%.2 f ohm \n\, (100-x), min_r);
```

Scilab code Exa 22.4 earthing resistance r

```
1 //Chapter 22
2 //Example 22_4
3 //Page 531
4
5 clear; clc;
6
7 mva=10;
8 kv=6.6;
9 x=(100-85);
10
11 v_ph=kv*1000/sqrt(3);
12 i=mva*1e6/sqrt(3)/kv/1000;
```

```
13 min_fc=0.2*i;
14 emf=0.15*v_ph;
15 r=emf/min_fc;
16
17 printf("Full load current = %.2 f A \n\n", i);
18 printf("Minimum fault current which will operate the relay = %.2 f A \n\n", min_fc);
19 printf("Voltage induced in %d %% winding is %.2 f V \n\n", x, emf);
20 printf("Earth fault current which %d %% winding will cause = %.2 f/r \n\n", x, emf);
21 printf("This current must be equal to minimum fusing current %.2 f A \n\n", min_fc);
22 printf("Earthing resistance required = %.2 f ohm \n\n", r);
```

Scilab code Exa 22.5 turn ratio 1

```
1 //Chapter 22
2 //Example 22_5
3 //Page 538
4
5 clear; clc;
6
7 v1=220;
8 v2=11000;
9 v=220;
10 i1=600;
11 i2=5;
12
13 lc=sqrt(3)*i2;
14 pap=sqrt(3)*v*i1;
15 i=pap/sqrt(3)/v2;
```

```
16
17 ratio=i/lc;
18
19 printf("Line current of delta connected CTs on %d V side = %.2 f A \n\n", v1, lc);
20 printf("Phase current of star connected CTs on %d V side = %.2 f A \n\n", v2, lc);
21 printf("The line current on the %d V side = %.2 f A \n\n", v2, i);
22 printf("Turn ratio of CTs on %d V side = %.3 f:1 \n\n", v2, ratio);
```

Scilab code Exa 22.6 turn ratio 2

```
1 // Chapter 22
2 //Example 22_6
3 // Page 538
5 clear; clc;
7 v1=0.4;
8 v2=11;
9 v = 400;
10 i1 = 500;
11 i2=5;
12
13 lc=sqrt(3)*i2;
14 pap=sqrt(3)*v*i1;
15 i=pap/sqrt(3)/v2/1000;
16
17 ratio=i/lc;
18
19 printf ("Line current of delta connected CTs on %d V
```

```
side = \%.2 f A \setminus n \setminus n", v1, lc);
```

- 20 printf("Phase current of star connected CTs on %d V side = $\%.2\,f$ A \n\n", v2, lc);
- 21 printf("The line current on the %d V side = %.2 f A \ n\n",v2, i);
- 22 printf("Turn ratio of CTs on %d V side = $\%.1\,f:1 \ \n\n$ ", v2, ratio);

Chapter 26

Neutral Grounding

Scilab code Exa 26.1 peterson coil reactance

```
1 //Chapter 26
2 //Example 26_1
3 //Page 599
4
5 clear; clc;
6
7 f=50;
8 v=33*1e3;
9 c=4.5*1e-6;
10
11 x1=1/(3*2*%pi*f*c);
12 printf("Reactance of Peterson Coil = %.2 f ohm \n\n", x1);
```

Scilab code Exa 26.2 peterson coil rating

```
1 //Chapter 26
 2 //Example 26_{-2}
\frac{3}{\text{Page }} = \frac{599}{100}
5 clear; clc;
 7 v = 230 * 1 e3;
8 1t = 200;
9 c=0.02*1e-6;
10 f = 50;
11
12 \text{ cle=c*lt};
13 l=1/(3*(2*\%pi*f)^2*cle);
14 x1=2*%pi*f*1;
15 vph=v/sqrt(3);
16 fi=vph/xl;
17 rating=vph*fi;
18
19 printf("Capacitance of line to earth = \%.6 \, f \, F \, \ln n",
        cle);
20 printf("Required inductance of Peterson coil = \%.2 f
       F \setminus n \setminus n", 1);
21 printf ("Current through Peterson coil = \%.0 \, \text{f A } \ln^{3}
       , fi);
22 printf ("Rating of Peterson coil = \%.0 \, \text{f kVA } \, \text{n} \, \text{n}",
       rating/1000);
```

Scilab code Exa 26.3 reactance to nuetralize capacitance

```
1 //Chapter 26
2 //Example 26_3
3 //Page 600
```

```
5 clear; clc;
7 f = 50;
8 c=1.2*1e-6;
9 c1=c;
10 c2=0.9*c;
11 c3=0.8*c;
12
13 x11=1/(3*2*\%pi*f*c1);
14 \text{ x}12=1/(3*2*\%pi*f*c2);
15 x13=1/(3*2*\%pi*f*c3);
16
17 printf("Inductive reactance of coil to nuetralize
      capacitance of 100%% of the length of the line is
       \%.2 f ohm \nn", x11);
18 printf("Inductive reactance of coil to nuetralize
      capacitance of 90%% of the length of the line is
     \%.2 \, f \, ohm \, \backslash n \backslash n", x12);
19 printf("Inductive reactance of coil to nuetralize
      capacitance of 80%% of the length of the line is
      \%.2 \text{ f ohm } \ln n, x13);
```

Scilab code Exa 26.4 coil rating

```
1 //Chapter 26
2 //Example 26_4
3 //PAge 600
4
5 clear; clc;
6
7 v=132*1e3;
8 f=50;
9 lt=200;
```

```
10 d=20;
11 s=4;
12 eo=8.854*1e-12;
13
14 \text{ r=d/2/1000};
15 c=2*\%pi*eo/log(s/r);
16 \ w=2*\%pi*f;
17 l=1/(3*w^2*c*lt)/1000;
18 x1=2*\%pi*f*1;
19 fi=v/sqrt(3)/x1;
20 rating=v/sqrt(3)*fi;
21
22 printf ("Capacitance between phase and nuetral = \%.2 \,\mathrm{f}
      *10^--9 F/km \n\n", c*1e12);
23 printf ("Capacitance between phase and earth = \%.2 f
      *10^-7 F n^n, c*lt*1e7*1000);
24 printf ("Required Inductance of the arc supression
      coil = \%.2 f H \setminus n \setminus n", 1);
25 printf ("Current through the coil = \%.0\,\mathrm{f} A \ln", fi)
26 printf("Rating of the coil = \%.0 \, \text{f kVA } \, \text{Nn}", rating
      /1000);
```