Insurance Charge Predictions

1. Identify your problem statement

Given the dataset predict insurance charges using the inputs (age, sex, bmi, children, smoker).

Problem identification:

- 1. Machine Learning
- 2. Supervised Learning
- 3. Regression

2. Tell basic info about the dataset (Total number of rows, columns)

No of rows and columns

 $1338 \text{ rows} \times 6 \text{ columns}$

Data Types:

age	int64
sex	object
bmi	float64
children	int64
smoker	object
charges	float64

Statistics:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

3. Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

Converted sex and smoker columns to nominal data using pandas library.

4. Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

Developed models using SLR, MLR, SVM, Decision Tree and Random Forest

5. All the research values (r2_score of the models) should be documented.

Please find the details in next section.

6. Mention your final model, justify why u have chosen the same.

Random Forest provides good model with R2 score as 87%

r2_score of the models:

To find following the Machine Learning Regression method using r2 value

1. Multiple Linear Regression

R2 value = 0.78

2. Support Vector Machine (SVM)

R2 values for different Kernel and C,

#	Hyper Parameter	Linear	Poly	RBF (Default)	Sigmoid	Precomputed
1	C=0.10	-0.1220	-0.0862	-0.0895	-0.0899	Must be square matrix
2	C=1.0	-0.1116	-0.0642	-0.0884	-0.0899	
3	C=10	-0.0016	-0.0931	-0.0884	-0.0907	
4	C=100	0.5432	-0.0997	-0.1248	-0.1181	
5	C=1000	0.6340	-0.0555	-0.1174	-1.6659	
6	C=2000	0.6893	-0.0027	-0.1174	-5.6164	
7	C=3000	0.7590	0.04892	-0.0962	-12.0190	

The **SVM Regression** use R2 value (Linear & C3000) = $\frac{0.7590}{0.000}$

3. Decision Tree

#	Criterion	Max Features	Splitter	R Value
1	friedman_mse	log2	best	0.7128
2	friedman_mse	log2	random	0.6336
3	friedman_mse	sqrt	random	0.6756
4	friedman_mse	sqrt	best	<mark>0.7593</mark>
5	squared_error	log2	best	0.7115
6	squared_error	log2	random	0.6580

7	squared_error	sqrt	random	0.6691
8	squared_error	sqrt	best	0.7412
9	absolute_error	log2	best	0.6827
10	absolute_error	log2	random	0.6796
11	absolute_error	sqrt	random	0.5808
12	absolute_error	sqrt	best	0.7536
13	poisson	log2	best	0.7050
14	poisson	log2	random	0.6413
15	poisson	sqrt	random	0.6973
16	poisson	sqrt	best	0.6607

The **Decision Tree** use R2 value (friedman_mse, sqrt, best) = $\frac{0.7593}{0.7593}$

4. Random Forest

n_estimators=100, random_state=0

#	Criterion	Max Features	R Value
1	squared_error	log2	<mark>0.8710</mark>
2	squared_error	Sqrt	<mark>0.8710</mark>
11	absolute_error	Log2	<mark>0.8710</mark>
12	absolute_error	Sqrt	<mark>0.8710</mark>
13	poisson	sqrt	0.8680
14	poisson	log2	0.8680
15	friedman_mse	log2	<mark>0.8710</mark>
16	friedman_mse	sqrt	<mark>0.8710</mark>

The **Random Forest** use R2 value for multiple combinations = 0.8710