Integration of Rainwater Catchment with Fire Suppression Systems

Ву

E. W. Bob Boulware, P.E., M.B.A.

Design-Aire Engineering, Inc.

Indianapolis, Indiana, USA

www.design-aire.com

FIGURE 10.11.8 Basic Components of a Wet-Pipe Sprinkler System (for SI units: 1 in. 25.4 mm)

FIGURE 10.11.7 Hypothetical Sprinkler System Installation Illustrating Various Water Supply Sources and System Attachments

Table 4-1 Sprinkler System and Water Supply Design Requirements for Sprinklered Facilities

THE REAL PROPERTY.	SPRINKL	ER SYSTEM	HOSE	DURATION OF SUPPLY Minutes
OCCUPANCY CLASSIFICATION ^a	DESIGN DENSITY L/min/m ² (GPM/ft ²)	DESIGN AREA m² (ft²) b	STREAM ALLOWANCE L/Min (GPM)	
Light Hazard	4.1 (0.10)	280 (3000)	950 (250)	60
Ordinary Hazard Group 1	6.1 (0.15)	280 (3000)	1900 (500)	60
Ordinary Hazard Group 2	8.2 (0.20)	280 (3000)	1900 (500)	90
Extra Hazard Group 1	12.2 (0.30)	280 (3000)	2840 (750)	120
Extra Hazard Group 2	16.3 (0.40)	280 (3000)	2840 (750)	120

a Refer to Appendix B for occupancy hazard classification.

b See paragraph 4-2.3.3.

Table 4-1 Sprinkler System and Water Supply Design Requirements for Sprinklered Facilities

III belatara esta	SPRINKLER SYSTEM		HOSE	DURATION OF SUPPLY Minutes
OCCUPANCY CLASSIFICATION ^a	DESIGN DENSITY L/min/m² (GPM/ft²)	DENSITY m² (ft²) b L/min/m²		
Light Hazard	4.1 (0.10)	280 (3000)	950 (250)	60
Ordinary Hazard Group 1	6.1 (0.15)	280 (3000)	1900 (500)	60
Ordinary Hazard Group 2	8.2 (0.20)	280 (3000)	1900 (500)	90
Extra Hazard Group 1	12.2 (0.30)	280 (3000)	2840 (750)	120
Extra Hazard Group 2	16.3 (0.40)	280 (3000)	2840 (750)	120

^a Refer to Appendix B for occupancy hazard classification.

For a Light Hazard Application:

• Sprinkler Volume: Design Density (.1 gallons per minute (gpm) / square foot) x Design Area (3000 sf) = 300 gpm.

b See paragraph 4-2.3.3.

Table 4-1 Sprinkler System and Water Supply Design Requirements for Sprinklered Facilities

III BALLETTE TO SEE	SPRINKLER SYSTEM		HOSE	DURATION OF SUPPLY Minutes
OCCUPANCY CLASSIFICATION ^a	DESIGN DESIGN AREA m² (ft²) b L/min/m² (GPM/ft²)		STREAM ALLOWANCE L/Min (GPM)	
Light Hazard	4.1 (0.10)	280 (3000)	950 (250)	60
Ordinary Hazard Group 1	6.1 (0.15)	280 (3000)	1900 (500)	60
Ordinary Hazard Group 2	8.2 (0.20)	280 (3000)	1900 (500)	90
Extra Hazard Group 1	12.2 (0.30)	280 (3000)	2840 (750)	120
Extra Hazard Group 2	16.3 (0.40)	280 (3000)	2840 (750)	120

^a Refer to Appendix B for occupancy hazard classification.

- Design Density (.1 gallons per minute (gpm) / square foot) x Design
 Area (3000 sf) = 300 gpm.
- Fire Hose Operation: The volume required for sprinkler operation is added to the water volume needed for Fire Hose operation (250 gpm). In this example, Total Design Flow is (300 fpm + 250 gpm) =550 gallons / minute

b See paragraph 4-2.3.3.

Table 4-1 Sprinkler System and Water Supply Design Requirements for Sprinklered Facilities

III BARRIES CONTROL	SPRINKLER SYSTEM		HOSE	DURATION OF SUPPLY Minutes
OCCUPANCY CLASSIFICATION ^a	DESIGN DESIGN AREA m² (ft²) b L/min/m² (GPM/ft²)		STREAM ALLOWANCE L/Min (GPM)	
Light Hazard	4.1 (0.10)	280 (3000)	950 (250)	60
Ordinary Hazard Group 1	6.1 (0.15)	280 (3000)	1900 (500)	60
Ordinary Hazard Group 2	8.2 (0.20)	280 (3000)	1900 (500)	90
Extra Hazard Group 1	12.2 (0.30)	280 (3000)	2840 (750)	120
Extra Hazard Group 2	16.3 (0.40)	280 (3000)	2840 (750)	120

^a Refer to Appendix B for occupancy hazard classification.

- Design Density (.1 gallons per minute (gpm) / square foot) x Design
 Area (3000 sf) = 300 gpm.
- Fire Hose Operation: The volume required for sprinkler operation is added to the water volume needed for Fire Hose operation (250 gpm). In this example, Total Design Flow is (300 fpm + 250 gpm) = 550 gallons / minute
- Flow duration is 60 minutes, resulting in the minimally required water volume for automatic fire sprinkler system operation to be (550 gpm x 60 minutes) = 33,000 gallons

b See paragraph 4-2.3.3.

Table 4-1 Sprinkler System and Water Supply Design Requirements for Sprinklered Facilities

The same of the same	SPRINKLER SYSTEM		HOSE	DURATION
OCCUPANCY CLASSIFICATION ^a	DESIGN DENSITY L/min/m ² (GPM/ft ²)	DESIGN AREA m² (ft²) b	STREAM ALLOWANCE L/Min (GPM)	OF SUPPLY Minutes
Light Hazard	4.1 (0.10)	280 (3000)	950 (250)	60
Ordinary Hazard Group 1	6.1 (0.15)	280 (3000)	1900 (500)	60
Ordinary Hazard Group 2	8.2 (0.20)	280 (3000)	1900 (500)	90
Extra Hazard Group 1	12.2 (0.30)	280 (3000)	2840 (750)	120
Extra Hazard Group 2	16.3 (0.40)	280 (3000)	2840 (750)	120

^a Refer to Appendix B for occupancy hazard classification.

- Design Density (.1 gallons per minute (gpm) / square foot) x Design
 Area (3000 sf) = 300 gpm.
- Fire Hose Operation: The volume required for sprinkler operation is added to the water volume needed for Fire Hose operation (250 gpm). In this example, Total Design Flow is (300 fpm + 250 gpm)

 =550 gallons / minute
- Flow duration is 60 minutes, resulting in the minimally required water volume for automatic fire sprinkler system operation to be (550 gpm x 60 minutes)= 33,000 gallons
- Tank volume is (33,000 gallons/ 7.481 gallons per cubic foot)
 = 4411 Cubic Feet.

b See paragraph 4-2.3.3.

Table 4-1 Sprinkler System and Water Supply Design Requirements for Sprinklered Facilities

III Belginson record	SPRINKLER SYSTEM		HOSE	DURATION
OCCUPANCY CLASSIFICATION ^a	DESIGN DENSITY L/min/m ² (GPM/ft ²)	DESIGN AREA m² (ft²) b	STREAM ALLOWANCE L/Min (GPM)	OF SUPPLY Minutes
Light Hazard	4.1 (0.10)	280 (3000)	950 (250)	60
Ordinary Hazard Group 1	6.1 (0.15)	280 (3000)	1900 (500)	60
Ordinary Hazard Group 2	8.2 (0.20)	280 (3000)	1900 (500)	90
Extra Hazard Group 1	12.2 (0.30)	280 (3000)	2840 (750)	120
Extra Hazard Group 2	16.3 (0.40)	280 (3000)	2840 (750)	120

^a Refer to Appendix B for occupancy hazard classification

- Design Density (.1 gallons per minute (gpm) / square foot) x Design
 Area (3000 sf) = 300 gpm..
- Fire Hose Operation: The volume required for sprinkler operation is added to the water volume needed for Fire Hose operation (250 gpm). In this example, Total Design Flow is (300 fpm + 250 gpm)
 =550 gallons / minute
- Flow duration is 60 minutes, resulting in the minimally required water volume for automatic fire sprinkler system operation to be (550 gpm x 60 minutes)= 33,000 gallons
- Tank volume is (33,000 gallons/ 7.481 gallons per cubic foot)
 = 4411 Cubic Feet.
- Size of tank (Cubic Feet) = (length * width * height)

b See paragraph 4-2.3.3.

Table 4-1	Sprinkler System	and Water Su	ipply Design	Requirements for
	Sp	rinklered Faci	ilities	

III bela to the second	SPRINKLER SYSTEM		HOSE	DURATION
OCCUPANCY CLASSIFICATION ^a	DESIGN DENSITY L/min/m² (GPM/ft²)	DESIGN AREA m² (ft²) b	STREAM ALLOWANCE L/Min (GPM)	OF SUPPLY Minutes
Light Hazard	4.1 (0.10)	280 (3000)	950 (250)	60
Ordinary Hazard Group 1	6.1 (0.15)	280 (3000)	1900 (500)	60
Ordinary Hazard Group 2	8.2 (0.20)	280 (3000)	1900 (500)	90
Extra Hazard Group 1	12.2 (0.30)	280 (3000)	2840 (750)	120
Extra Hazard Group 2	16.3 (0.40)	280 (3000)	2840 (750)	120

^a Refer to Appendix B for occupancy hazard classification.

Metric

- Sprinkler Volume: Design Density (4.1 liter / m2) is the volume of water needed to be delivered to the Design Area (289 m2)

 =1148 liters / minute
- Hose Volume: The volume required for sprinkler operation is added to the water volume needed for Fire Hose operation. In this case, (1148 l/m + 950 l/m) = 2100 liters / minute
- •Flow duration is 60 minutes, resulting in the minimally required water volume for automatic fire sprinkler system operation to be (2100 l/m x 60 minutes) = 125,000 liters
- •Tank volume is (length * width * height) / 1000 liters / cubic meter) = 125 Cubic Meters

b See paragraph 4-2.3.3.

Spray Pattern NFPA 13 A.8.5.5.1

FIGURE 10.7.16 Vertical-Shaft-Turbine-Type Pump Installation. Note: The distance between the bottom of the strainer and the bottom of the wet pit should be one-half of the pump bowl diameter but less than 12 in. (305 mm).

CISTERN PIPING WITH FIRE RESERVE

For Further Information

Contact

E. W. Bob Boulware, P.E., M.B.A.
Design-Aire Engineering, Inc.
Indianapolis, Indiana, USA
www.design-aire.com
Toll Free 866-515-9090

Questions ??