1 Notation

- We use μ to refer to a heap. A heap is treated as a function from memory addresses to variables.
- $-\mu\{a\mapsto b\}$ refers to a new function μ' defined as:

$$\mu'(x) = \left\{ \begin{array}{l} \mu(x), \, x \neq a \\ b, \quad x = a \end{array} \right\}$$

- For an expression e, $e[e_1/x_1,...,e_n/x_n]$ refers to e where every free occurrence of x_i in e is replaced with e_i .
- If f is a function $f(x) \uparrow$ and $f(x) \downarrow$ are boolean-valued postfix operators meaning that f(x) is undefined or defined, respectively. \uparrow alone is taken to mean the 'undefined' value.
- $-\varnothing$ is overloaded to represent the single instance of the special empty type, aka Unit.
- A configuration is a pair $\langle \mu, e \rangle$.
- $-\langle \mu, e \rangle \longrightarrow \langle \mu', e' \rangle$ if, after one reduction step on e in heap μ , the program ends in heap μ' , ready to execute e'.
- A program consisting of body e begins execution in the configuration $\langle \lambda x. \uparrow, e \rangle$.
- Terms which are values are members of the set $V = \{x \Rightarrow \overline{\sigma = e}, r\}$
- A valid program terminates in a finite number of reductions in the configuration $\langle \mu, v \rangle$ for some $v \in V$.
- $-\langle \mu_1, e_1 \rangle \longrightarrow_* \langle \mu_2, v \rangle$ if $\langle \mu_2, v \rangle$ is the terminating configuration after repeatedly applying reduction rules (assuming that reduction rules are congruent and that $\langle \mu_1, e_1 \rangle$ terminates).

2 Dynamic Semantics

This first section introduces a basic dynamic semantics that has no notion of an effect.

$$\langle \mu, e, \varepsilon \rangle \simeq \langle \mu, e, \varepsilon \rangle$$

$$\frac{\mu(x) = y}{\langle \mu, x \rangle \longrightarrow \langle \mu, y \rangle} \text{ (E-VAR)} \qquad \qquad \frac{\mu(l) \uparrow}{\langle \mu, \text{new } x \Rightarrow \overline{\sigma = e} \rangle \longrightarrow \langle \mu, \{l \mapsto \text{new } x \Rightarrow \overline{\sigma = e}\}, l \rangle} \text{ (E-New}_{\sigma})$$

$$\begin{split} \langle \mu_1, e_1 \rangle &\longrightarrow_* \langle \mu_2, l \rangle &\quad \langle \mu_2, e_2 \rangle \longrightarrow_* \langle \mu_3, v \rangle \\ \\ \frac{\mu_3() = x \Rightarrow \overline{\sigma = e} \quad \text{def m}(y : \tau_1) : \tau_2 \text{ with } \varepsilon \in \overline{\sigma = e}}{\langle \mu_1, e_1.m(e_2) \rangle \longrightarrow \langle \mu_3, e[l/x, v/y] \rangle} &\quad \text{(E-METHCALL)} \end{split}$$

$$\frac{\langle \mu_1, e_1 \rangle \longrightarrow_* \langle \mu_2, r \rangle \quad \langle \mu_2, e_2 \rangle \longrightarrow_* \langle \mu_3, v \rangle}{\langle \mu, e_1. \pi(e_2) \rangle \longrightarrow \langle, \varnothing \rangle} \ (\text{E-OperCall})$$

3 Dynamic Semantics With Effects

We amend the definition of configuration. A configuration is a triple $\langle \mu, e, \varepsilon \rangle$, where ε is an accumulated set of effects (i.e. pairs from $R \times II$). The code e has the effect (r, π) if, when $\langle \lambda x. \uparrow, e, \varnothing \rangle \longrightarrow_* \langle \mu, e', \varepsilon \rangle$, we have $(r, m) \in \varepsilon$.

This definition could be overstrict. A non-terminating program (or a program which does not terminate in a value) still has effects during execution. However, it might be a useful simplification to narrow our focus to only consider those programs which terminate.

$$\langle \mu, e, \varepsilon \rangle \simeq \langle \mu, e, \varepsilon \rangle$$

$$\frac{\mu(x) = y}{\langle \mu, x, \varepsilon \rangle \longrightarrow \langle \mu, y, \varepsilon \rangle} \text{ (E-VAR)} \qquad \frac{\mu(l) \uparrow}{\langle \mu, \text{new } \mathbf{x} \Rightarrow \overline{\sigma = e}, \varepsilon \rangle \longrightarrow \langle \mu, \{l \mapsto \text{new } \mathbf{x} \Rightarrow \overline{\sigma = e}, l, \varepsilon \rangle} \text{ (E-New}_{\sigma})$$

$$\begin{split} &\langle \mu_1, e_1, \varepsilon_1 \rangle \longrightarrow_* \langle \mu_2, l, \varepsilon_2 \rangle \qquad \langle \mu_2, e_2, \varepsilon_2 \rangle \longrightarrow_* \langle \mu_3, v, \varepsilon_3 \rangle \\ &\frac{\mu_3(l) = x \Rightarrow \overline{\sigma = e} \quad \text{def m}(y : \tau_1) : \tau_2 \text{ with } \varepsilon \in \overline{\sigma = e}}{\langle \mu_1, e_1.m(e_2), \varepsilon_1 \rangle \longrightarrow \langle \mu_3, e[l/x, v/y], \varepsilon_3 \rangle} \end{split} \tag{E-METHCALL}$$

$$\frac{\langle \mu_1, e_1, \varepsilon_1 \rangle \longrightarrow_* \langle \mu_2, r, \varepsilon_2 \rangle \quad \langle \mu_2, e_2, \varepsilon_2 \rangle \longrightarrow_* \langle \mu_3, v, \varepsilon_3 \rangle}{e_1.\pi(e_2) \longrightarrow \langle \mu_3, \varnothing, \varepsilon_3 \cup \{(r, \pi)\} \rangle} \text{ (E-Oper)}$$