PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/82, 15/79, 5/10, A01H 5/00

A2

(11) International Publication Number: WO 97/06267

(43) International Publication Date: 20 February 1997 (20.02.97)

(21) International Application Number: PCT/EP96/03366

(22) International Filing Date: 31 July 1996 (31.07.96)

(30) Priority Data:
95401844.6
4 August 1995 (04.08.95)
EP
(34) Countries for which the regional or

international application was filed: GB et al.

(71) Applicant (for all designated States except US): PLANT GENETIC SYSTEMS, N.V. [BE/BE]; Jozef Plateaustraat 22, B-9000 Gent (BE).

(72) Inventor; and

(75) Inventor/Applicant (for US only): DE BLOCK, Marc [BE/BE];
Abrikozenstraat 26, B-9820 Merelbeke (BE).

(74) Agents: GUTMANN, Ernest et al.; Ernest Gutmann - Yves Plasseraud S.A., 3, rue Chauveau-Lagarde, F-75008 Paris (FR). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GENETIC TRANSFORMATION USING A PARP INHIBITOR

(57) Abstract

The invention concerns a process for producing transgenic eucaryotic cells, particularly plants, which comprises: contacting a culture of untransformed cells with an inhibitor of poly-(ADP-ribose) polymerase for a period of time sufficient to reduce the response of the cultured cells to stress and to reduce their metabolism. The untransformed cells are then contacted with foreign DNA comprising at least one gene of interest under conditions in which the foreign DNA is taken up by the untransformed cells and the gene of interest is stably integrated in the nuclear genome of the untransformed cells to produce the transgenic cells. Optionally, the transgenic cells are recovered from the culture. Preferably, the inhibitor is niacinamide, preferably at a concentration of about 200 mg/l to 500 mg/l and the untransformed cells are cultured in a medium containing the inhibitor for a period of time of approximately 3 to 14 days prior to the contacting with the foreign DNA. The invention also relates to a plant having in the nuclear genome of its cells foreign DNA integrated only in the regions of the nuclear genome that are transcriptionally active in cells of the plant when the cells are treated with an effective amount of a PARP inhibitor for a period of time sufficient to reduce cell metabolism to a state where gene expression is essentially limited to genes expressed irrespective of the differentiated or physiological condition of the cell.

- 1 -

GENETIC TRANSFORMATION USING A PARP INHIBITOR

This invention is related to tissue culture of eucaryotic cells and improved techniques to obtain genetically transformed eucaryotic cells and organisms, such as transgenic plant cells or plants, by lowering the stress reaction of cultured eucaryotic cells prior to contacting the cells with foreign DNA, particularly by specific inhibition of poly-(ADP-ribose) polymerase.

Background to the invention

Over the years many techniques for the genetic transformation of higher organisms (animals and plants) have been developed. In these techniques it is the ultimate goal to obtain a transgenic organism, e.g. a plant, in which all cells contain a foreign DNA comprising a gene of interest (the so-called transgene) stably integrated in their genome, particularly their nuclear genome.

15

10

5

Transformation is a complex process which always involves the contacting of starting cells with a DNA, usually a DNA comprising foreign gene(s) of interest. The contacting of the cells with the DNA is carried out under conditions that promote the uptake of the DNA by the cells and the integration of the DNA, including the gene(s) of interest into the genome of the cell.

20

25

Starting cells for transformation are usually cells that have been cultured in vitro for some time. After contacting the cells with the DNA, the transformed cells generally need to be cultured in vitro for a certain period in order to separate the transformed cells from the non-transformed cells and, in the case of plants, to regenerate transformed plants from the transformed cells. Indeed, complete plants can be regenerated from individual transformed cells thus ensuring that all cells of the regenerated plant will contain the transgene.

WO 97/06267

5

10

15

20

25

number of the introduced DNA at a given locus. It has been suggested that some of the variability in expression of introduced genes in transgenic plants is a consequence of "position effects" caused by influences of adjacent plant genomic DNA. Other factors that could contribute to the variability in expression are physiological variability of the plant material, differences in the number of independent T-DNA loci in different transformants or the inhibitory effects of certain T-DNA structures on gene expression. Between-transformant variability in expression has been observed for the majority of introduced genes in transgenic plants. The variability in expression of many introduced genes in independent transgenic plants necessitates large numbers of transgenic plants to be assayed to accurately quantitate the expression of the gene. It would be of great importance if the amount of between-transformant variability could be reduced (Dean et al. 1988, NAR 16:9267-9283).

If the transgene is under the control of a tissue-specific promoter, with the expectation that it will be expressed in selected tissues of the transformed organisms, the position effects can lead, at least in some transformants, to loss of specificity of the promoter and expression of the transgene in undesired tissues, e.g. in tissue cultured <u>in vitro</u>.

Factors that are known to influence the efficiency and quality of the genetic transformation process are the method of DNA delivery, specific tissue culture conditions, the physiological and metabolic state of the target cells etc. Direct gene transfer methods for instance are generally known to result in transformed organisms with a high copy number of the transgene.

Many of these factors are not under the control of man.

PCT/EP96/03366

5

10

15

20

25

used to influence the metabolic state of cells which are targeted for transformation (or which are being transformed) to increase the efficiency and/or quality of transformation.

In mammalians, PARP is a monomeric nuclear Zn-finger protein of about 116 kD that is closely associated with nuclear DNA, particularly with actively transcribed euchromatic regions (Shah et al, 1995, Anal.Biochem. 227:1-13). The protein is normally an inactive enzyme but is known to be activated by nicked or otherwise damaged DNA. Active PARP transfers the ADP-ribose moiety of NAD+ to various nuclear proteins to synthesize a polymer of ADP-ribose bound to these proteins which include PARP itself, polymerases, histones, endonuclease etc. The proteins on which such a ADP-ribose polymer is synthesized become biologically inactive (de Murcia et al, 1994, TIBS 19:172-176; Cleaver et al, 1991, Mutation Res. 257:1-18).

The biological function of PARP is largely unknown but the enzyme has been implicated in:

- enhancement of DNA repair (Satoh et al, 1992, Nature 356:356-358; Satoh et al, 1993, J.Biol.Chem. 268:5480-5487),
- recombination events: in general inhibition of PARP is observed to inhibit illegitimate recombination and to increase intrachromosomal recombination but it does apparently not affect extrachromosomal recombination (Farzaneh et al, 1988, NAR 16:11319-11326; Waldman and Waldman, 1990, NAR 18:5981-5988; Waldman and Waldman, 1991, NAR 19:5943-5947),
- regulation of gene expression: inhibition of PARP is observed to decrease gene expression (Girod et al, 1991, Plant Cell, Tissue and Organ Culture 25:1-12);
- reducing the amount of available NAD+ (and by consequence its precursor
 ATP): this results in a general slowing down of cell metabolism (Lazebnik

time") at which the cells are contacted with foreign DNA comprising one or more genes of interest. However, depending on the purpose, the PARP inhibitor may also be added to the culture medium during and/or after the contacting time or even solely after the contacting time.

5

In one aspect of this invention treatment of cultured cells, tissues or organs with PARP inhibitors may be used to increase the quality of transformation as measured by the copy number of the transgene and by variation in transgene expression (quality and quantity) in the transformed cells and in organisms obtained from the transformed cells.

10

In many conventional procedures for genetic transformation of eucaryotic cells, particularly plant cells, cultured cells, tissues or organs will be used as starting material and cells in such cultures will be contacted with foreign DNA comprising at least one gene of interest (i.e. the transgene) under conditions that will promote the uptake of the foreign DNA in the cells and the ultimate integration of the foreign DNA into the genome of the cells.

15

In one embodiment of the invention it is preferred that a PARP inhibitor is added to the culture medium for a period of at least 2-3 days, preferably at least about 3 days, prior to contacting the cells with the foreign DNA. The exact period in which the cultured cells are incubated in PARP inhibitor containing medium is believed not to be critical but should probably not exceed 4 weeks. It appears that 2-14 days, particularly 3-10 days, is an optimal period and best results were obtained with an incubation period of approximately 4 to 5 days prior to the contacting time. Generally it is believed that 4 days is a useful period for the PARP inhibitor to be added to the culture medium prior to the contacting time.

25

20

The concentration of the PARP inhibitor in the medium is also believed to have an effect on the inhibition of PARP, which varies depending on the nature of the cells (species, tissue explant, general culture conditions, etc.) However,

10

15

20

25

For other PARP inhibitors optimal concentrations can be easily established by experimentation in accordance with this invention.

During transformation it is not known whether the integration of the DNA into the genome of the cell occurs immediately after uptake of DNA by the cell. It may very well be that the foreign DNA exists as free DNA within the cell for a certain period after the contacting time. Therefore cultured cells may be further incubated in medium containing a PARP inhibitor during and, for a limited period of time after, contacting the cells with the foreign DNA. Again the length of the incubation period is not critical but is preferably 2-10 days, particularly approximately 4 days. It is preferred that the inhibitor concentration of the PARP inhibitor in the culture medium after the contacting time should be below 2 mM, between 0.8 and 1 mM. If the cells that are to be transformed are not obtained from a cell or tissue culture (e.g. when intact tissue of an organism is contacted directly with DNA, as for example described in WO 92/09696) the PARP inhibitor may still be applied to the target cells prior to the contacting time but the addition of the PARP inhibitor to the culture of the transformed cells during or after the contacting time is preferred.

As indicated above, PARP inhibitor treatment of cultured cells for at least 2-3 days increases the quality of transformation. Indeed the number of copies of the foreign DNA is expected to be generally lower and variation in expression profile (level - i.e. the quantity - of expression as well as spatial and time distribution - i.e. the quality - of expression in the transgenic organism) of the gene(s) of interest in the foreign DNA, due to position effects, is decreased. However, at least in this aspect of the invention, the efficiency of transformation can be decreased. The efficiency of transformation as used herein can be measured by the number of transformed cells (or transgenic organisms grown from individual transformed cells) that are recovered under standard experimental conditions (i.e. standardized or normalized with respect to amount

PCT/EP96/03366

5

10

15

20

25

of lesser importance since <u>Agrobacterium</u> mediated transformation, being a biological process, already results in a generally low copy number of the transformed plant cells.

In accordance with this invention the addition of PARP inhibitors, such as niacinamide, to the culture medium of eucaryotic cells, can be used in combination with any known transformation procedure that requires cells, tissues or organs cultured in vitro as starting cells to be contacted with foreign DNA. The process of this invention is thus generally identical to existing conventional transformation methods except for the fact that at some times during the tissue culture of the cells, a PARP inhibitor is added to the culture medium.

The cell of a plant, particularly a plant capable of being infected with Agrobacterium such as most dicotyledonous plants (e.g. Brassica napus) and some monocotyledonous plants, can be transformed using a vector that is a disarmed Ti-plasmid containing the gene(s) of interest and carried by Agrobacterium. This transformation can be carried out using conventional procedures (EP 0,116,718; Deblaere et al, supra; Chang et al, 1994, The Plant Journal 5:551-558). Preferred Ti-plasmid vectors contain the foreign DNA between the border sequences, or at least located to the left of the right border sequence, of the T-DNA of the Ti-plasmid. Of course, other types of vectors can be used to transform the plant cell, using procedures such as direct gene transfer (as described, for example, in EP 0,233,247), pollen mediated transformation (as described, for example, in EP 0,270,356, PCT patent publication "WO" 85/01856, and US patent 4,684,611), plant RNA virusmediated transformation (as described, for example, in EP 0,067,553 and US patent 4,407,956) and liposome-mediated transformation (as described, for example, in US patent 4,536,475). Cells of monocotyledonous plants such as the major cereals including corn, rice, wheat, barley, and rye, can be

5

10

15

20

25

accordance with this invention. As described above it is believed that in cells treated with a PARP inhibitor for at least 3 days, particularly for at least 4 days. only a limited number of genomic regions will remain transcriptionally active. In this regard the transformed cells, obtained with this process of the invention, will be characterized by having the foreign DNA integrated in a limited number of genomic regions. That the transformed cell or organism was obtained by this process of the invention can thus be easily ascertained by 1) culturing transformed cells or tissues under conditions that are similar as those in which the untransformed cells or tissues were grown or incubated prior to the integration of the foreign DNA in the genome (i.e. incubating in medium containing 250 mg/l niacinamide for 4-5 days prior to the contacting time), and monitoring the expression of at least one transgene in the foreign DNA that is expected to be expressed under normal tissue culture conditions (i.e. a selectable marker gene under the control of a promoter that directs expression in tissue culture). Under the above conditions the transformed cells or tissues of this invention express the relevant transgene in the tissue culture at essentially the same levels whether or not a PARP inhibitor is present in the culture medium. It is thus expected that, for instance after 4-5 days of culturing of the transformed cells in medium containing the PARP inhibitor, mRNA levels are not signicantly decreased, i.e. do not become lower than 75%, preferably not become lower than 90%, when compared to the mRNA levels observed in cells cultured in medium not containing the inhibitor. Indeed, if the relevant transgene is integrated in other regions of the genome (i.e. in regions that are normally not transcriptionally active in cells treated with PARP inhibitor according to this embodiment of the invention), the expression of the relevant transgene is considerably reduced after incubation of the cells in medium containing the PARP inhibitor for at least 3 days, e.g. 4-5 days (i.e. mRNA levels will drop below 75%, particularly below 50%, more particularly below

5

10

15

20

25

transformation may be reduced but the average quality of transformation is expected to be significantly improved because of lower copy number of the gene of interest in the genome of the transformed cells and because of reduced position effects i.e. the general integration of the gene of interest in the genomes at locations that minimally affect the transcriptional properties of the promoter of the transgene.

The foreign DNA used in the method of this invention generally also comprises a selectable marker gene the expression of which allows the selection of transformed cells (or organisms) from non-transformed cells (or organisms). Such selectable marker gene generally encodes a protein that confers to the cell resistance to an antibiotic or other chemical compound that is normally toxic for the cells. In plants the selectable marker gene may thus also encode a protein that confers resistance to a herbicide, such as a herbicide comprising a glutamine synthetase inhibitor (e.g. phosphinothricin) as an active ingredient. An example of such genes are genes encoding phosphinothricin acetyl transferase such as the <u>sfr</u> or <u>sfrv</u> genes (EP 242236; EP 242246; De Block et al, 1987 EMBO J 6:2513-2518).

The inventors also found that the initial reaction of cells, particularly cells contacted with PARP inhibitors, is a stress reaction which enhances free radical production by the cell. However, this stress only lasts for a limited period of time after which further contact with the PARP inhibitor causes a decrease in cell metabolism, particularly a decrease in electron flow in the mitochondrial electron transport chain. Therefore, the invention also relates to a new method to assess the agronomical fitness of a population of transformed plants to determine in which lines the plants have a foreign DNA integrated in their genomes in a way that agronomical performance is not or substantially not affected. The assay is based on comparative reaction of transgenic cells and corresponding untransformed controls to stress conditions.

- 17 -

endogenous genes by the transgene(s), or that expression of endogenous genes may be deregulated by sequences in the foreign DNA. As a consequence many transformed lines may not be agronomically useful.

The assay of this invention will for example allow to identify a line (i.e. a group of genetically similar plants) of transformed plants that have the transgene(s) integrated in regions that minimally affect the fitness of the plants, thus avoiding the extensive laboratory, greenhouse and/or field evaluations which are normally required to identify the transformants with the best agronomical properties.

10

15

20

25

5

The assay in accordance with this invention essentially comprises the incubation of cells or tissues of transformed plants of a particular transgenic line (e.g. callus, hypocotyl explants, shoots, leaf disks, whole leaves etc.) preferably with a PARP inhibitor (although for some plant species this is not necessary) under a range of conditions which induce the production of a different amount of free radicals in the tissues. An incubation time of approximately one day is normally sufficient to generate the desired amount of free radicals. Appropriate controls, i.e. untransformed tissues obtained from untransformed plants at the same developmental stage and grown in the same conditions as the transformed plant from which the transformed tissue was obtained, are subjected to the same treatment. Preferably the untransformed line is identical to the transgenic line except for the presence of the transgene(s).

For each plant line (control or transformant) it is preferred that a number of plants is assayed.

Useful conditions for the incubation of the untransformed and transformed tissues are those which induce increasing osmotic and salt stress in the incubated cells or tissues. For example a series of buffers with different salt

10

15

20

25

- spectrophotometric quantification of reduced TTC at 485 nm (optical density OD₄₈₅; for chlorophyll poor plant material) or 545 nm (OD₅₄₅; for chlorophyll rich plant material). The O.D. of the control extract is subtracted from the OD of the TTC-reacted extracts. In the above conditions 0.1 mM reduced TTC corresponds to an OD₄₈₅ of 0.214 or OD₅₄₅ of 1.025 (light path 1 cm).
- the reducing capacity of the transformed plant line is compared to that of the control line.

The amount of reduced TTC is determined by the intensity of the cytochromal and alternative respiratory pathways and the radical concentration in the tissues which, in turn are determined by the presence of mutations, the expression of genes affecting the metabolic activity of the plant cells, the developmental stage and the reaction of the tissue to external factors, such as stress factors.

The TTC reducing capacity (as for instance measured by the O.D. at 485 nm) for tissues incubated at high salt concentration (TTC-high) is expressed as the percentage of the TTC reducing capacity of the tissues incubated at a low salt concentration (TTC-low); in other words a TTC-ratio value is calculated as follows:

TTC-ratio = TTC/high.100/TTC.low.

The value of TTC-ratio is a measure of the fitness of a plant line as compared to a control line.

The determination of TTC-low and TTC-high will depend on the sensitivity of the plant species to the applied salt stress. Usually TTC-low will correspond to a salt concentration between 10 and 25 mM K-phosphate, e.g. at 20 mM while TTC-high will correspond to a salt concentration between 50 and 80 mM K-phosphate. The only requirement is that TTC-high should be significantly lower than TTC-low; preferably TTC-high should be lower than 50% of TTC-low, particularly lower than 30% of TTC-low. For instance for Brassica napus, TTC-

10

15

20

25

The TTC-reducing assay can further be used in a modified way to determine the quality and the fitness of plant material, for example plant material to be used in transformation experiments (i.e. whether particular plant material, e.g. explants, is suitable as starting material). To this end the TTC-reducing assay can be adapted for example in the following way:

- 1. A sample of the plant material to be tested for its suitability for transformation, is incubated for one day in plant culture medium or a buffer containing 2% sucrose and a K-phosphate concentration ranging between 10 and 80 mM, typically around 25 mM, to which a suitable amount of a PARP inhibitor, such as niacinamide has been added. For niacinamide, a preferred concentration to be used is 250 mg/L, although concentrations as low as 100 mg/L and as high as 1000 mg/L may be used. A comparable control sample of the same plant material is incubated under similar conditions without PARP inhibitor.
- 2. After one day of incubation the capacity of the plant material incubated with PARP inhibitor and the control plant material to reduce TTC is measured by the procedure described above.

The TTC reducing capacity (as for instance measured by the O.D. at 485 nm) for plant material incubated with PARP inhibitor (TTC-INH) is compared with the TTC reducing capacity of the control plant material incubated without PARP inhibitor (TTC-CON) and a ratio (E) is calculated as follows:

E = TTC-INH / TTC-CON

The value E is a measure of the quality and fitness of the plant material, for example explants to be transformed. It is believed that those tissues, wherein the E value is larger than or equals 1, are healthy tissues, which are particularly suitable as starting material for transformation.

The modified TTC-procedure thus allows to select those types of (cultured) plant material especially appropriate for use in a transformation procedure,

10

15

20

25

peculiar aspect of fitness of cells, tissue, explant or organism. For instance, it is possible to apply a type of stress different from osmotic or salt stress, such as stress brought about by extreme temperatures, by sublethal treatment with chemicals (e.g. herbicides, heavy metals) or by irradiation with UV. Furthermore, other types of PARP inhibitors, as mentioned before may be used, within the indicated concentration ranges. Although it is believed that for the purpose of the assays defined here, TTC is the most suited substrate, other indicator molecules ,such as MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-2H-tetrazolium) can be used to measure the electron flow in the mitochondrial electron transport chain downstream of the "ubiquinone pool".

Unless otherwise indicated all experimental procedures for manipulating recombinant DNA were carried out by the standardized procedures described in Sambrook et al., 1989, "Molecular Cloning: a Laboratory Manual", Cold Spring Harbor Laboratory, and Ausubel et al, 1994, "Current Protocols in Molecular Biology", John Wiley & Sons.

The polymerase chain reactions ("PCR") were used to clone and/or amplify DNA fragments. PCR with overlap extension was used in order to construct chimeric genes (Horton et al, 1989, Gene 77:61-68; Ho et al, 1989, Gene 77:51-59).

All PCR reactions were performed under conventional conditions using the Vent[™] polymerase (Cat. No. 254L - Biolabs New England, Beverley, MA 01915, U.S.A.) isolated from <u>Thermococcus litoralis</u> (Neuner et al., 1990, Arch.Microbiol. <u>153</u>:205-207). Oligonucleotides were designed according to known rules as outlined for example by Kramer and Fritz (1968, Methods in Enzymology 154:350), and synthesized by the phosphoramidite method (Beaucage and Caruthers, 1981, Tetrahedron Letters 22:1859) on an applied Biosystems 380A DNA synthesizer (Applied Biosystems B.V., Maarssen,

10

15

20

25

Similar observations were made when <u>Brassica napus</u> hypocotyl explants were cultured on A5 medium (see Example 3) containing 250 mg/l niacinamide. It was also observed that, in <u>Brassica napus</u> tissue cultured on medium containing niacinamide, no anthocyanin was produced; normally anthocyanin in tissue culture is produced in stress conditions. In addition it was observed that after 4-5 days of incubation of the plant tissue with niacinamide, the concentrations of hydroxyl free radical and dehydroascorbate in the explants were drastically decreased.

It was also observed that, after a 4 day incubation in niacinamide containing medium, the percentage of cultured cells that were in G2 phase of the cell cycle was considerably increased (up to 45 % of all cells in the culture).

The above observations are interpreted as indicating that treating cultured cells with a PARP inhibitor for about 4-5 days generally results in :

- 1) a significant reduction of the response of the cultured cells to stress as measured for instance by free radical and/or anthocyanin production , and
- 2) a reduction of the general metabolism of the cultured cells to a very basic level as indicated by the fact that the tissue growth was slowed down, and the TTC reducing capacity was decreased while the tissue remained viable.

It is inferred that under these conditions many genes in cells (e.g. cultured cells) that would normally be switched on in response to stress (such as during transformation conditions) will in fact no longer be induced. It is expected that in such cells which only display a very basic metabolism, mainly general "housekeeping genes", i.e. genes that are expressed in any cell irrespective of its differentiated state or metabolic or physiological condition, are expressed.

As it is believed that foreign DNA is preferably inserted in portions of the genome that are transcriptionally active it follows that treatment with PARP inhibitors will condition eucaryotic cells to incorporate any foreign DNA

10

15

20

25

only 0.5 mg/l CuSO₄.5H₂0 and 1 mg/l 2,4-D), and incubated for 3 weeks at 24-25°C in the light (approx. 20 mEinsteins/s/m² (with a photoperiod of 16 hours light and 8 hours dark).

About 2 weeks prior to bombardment the calli were cleaned up by removal of non-morphogenic (i.e. the nonembryogenic and nonmeristematic) parts and were subcultured on W2 medium.

For bombardment the calli were divided into small pieces with an average maximum diameter of about 2-3 mm. These pieces were placed at the center of a 9 cm Petridish containing W2 medium in a circle with a diameter of approx. 0.5 cm. When required niacinamide (250 mg/l) was added to the W2 medium and the tissue pieces were maintained under these conditions for 4 days after they were bombarded.

Bombardment was carried out using the Biolistic PDS-1000/He apparatus (Bio-Rad). Preparation of the microcarriers (0.4-1.2m) and the coating of the microcarriers with DNA was essentially carried out according to the manufacturer's instructions. The Petridishes containing the calli were placed at level 2 of the apparatus and the bombardment was done at 1550 psi.

For the transformation experiments the following plasmid DNA was used.

- plasmid pVE136, the sequence of which is given in SEQ ID No 4. This plasmid contains the following chimeric genes:
 - P35S-bar-3'nos
 - PCA55-<u>barnase</u>-3'nos

in which P35S is the 35S promoter of the Cauliflower Mosaic virus, <u>bar</u> is a DNA encoding phosphinothricin acetyltransferase (EP 242236), 3'nos is the 3' untranslated end of the <u>Agrobacterium</u> T-DNA nopaline synthase gene, PCA55 is a stamen-specific promoter from corn gene CA55 (WO

10

15

20

25

CuSO₄.5H₂0 and 0.5 mg/l 2,4-D). Calli were subcultivated every two weeks at which time the nonmorphogenic parts of the calli were removed. When the calli started to form shoots they were transferred to W5 medium (W1 medium with half concentrated MS medium and only 0.5 mg/l CuSO₄.5H₂0 and without acetylsalicylic acid and 2,4-D, but supplemented with 50 mg/l myo-inositol, 0.25 mg/l pyridoxine.HCl and 0.25 mg/l nicotinic acid) containing 2.5 mg/l PPT. For the rest of the procedure temperature was maintained at a maximum of 24°C. The calli were subcultivated every 3-4 weeks. Once the shoots started to elongate and small roots started to form, the whole calli (or if possible individual shoots) were transferred to 1 liter vessels with W6 medium (half-concentrated MS medium supplemented with 1.5% sucrose, 50 mg/l myo-inositol, 0.25 mg/l pyridoxine.HCl, 0.25 mg/l nicotinic acid, 0.5 mg/l thiamine.HCl, 0.7% agar (Difco) pH 5.8 and 0.5 mg/l CuSO₄.5H₂O) containing 2.5 mg/l PPT. Once the shoots and roots had grown out, individual shoots were separated from each other and transferred to 1 I vessels containing W6 medium with 2.5 mg/l PPT. Well developed shoots are tested for PPT resistance by means of the TLC assay (De Block et al, 1987, EMBO 6:2513-2518) or by direct assay of ammonium production in the tissue (see e.g. De Block et al, 1995, Planta 197: 619-626). Transformed shoots were finally transferred to the greenhouse into soil.

For analysis of the results the transformed plants could be subdivided according to the niacinamide treatment of the parent calli during tissue culture. Thus the following groups were distinguished:

Group	Niacinamide treatment
None	No treatment
Before 100	100 mg/l niacinamide for four days prior to bombardment
Before 250	250 mg/l niacinamide for four days prior to bombardment

Results of wheat transformation experiments

Table 1:

5

Plasmid pTS172								
Treatment	Nr of bombarded calli	Nr of PPT- resistant calli recovered	Nr of PPT resistant plants recovered	Nr of MS plants recovered				
None	60	30	1 ^{a)}	0				
Before 250	125	30	3	3 ^{b)}				

a) This plant proved to be fertile and to be transformed only with the chimeric bar gene

b) The obtained plants looked healthy and tillered vigorously

Table 3:

Plasmid pVE136								
Treatment	Nr of bombarded calli	Nr of PPT resistant plants recovered	Nr of MS plants recovered					
None	200	1	0					
Before 100	800	8 ^{a)}	8					

a) The obtained plants looked healthy and tillered vigorously

PCT/EP96/03366

5

10

15

20

Plasmid pTHW107 is a vector carrying a T-DNA comprising the following chimeric genes:

- PTA29-<u>barnase</u>-3'g7
- PSSU-<u>bar</u>-3'nos

in which PTA29 is the promoter of the TA29 gene of tobacco (EP 344029) and PSSU is the promoter of the gene of <u>Arabidopsis thaliana</u> encoding the small subunit of Rubisco. The complete sequence of the T-DNA of pTHW107 is presented in SEQ ID No 1.

Where required niacinamide (250 mg/l) was added to the media for the last 4 days prior to infection with Agrobacterium. Plants regenerated from transformed calli obtained on niacinamide cultured cells were observed to have a low copy number as well as to display less variation in the expression profile of the transgenes (results summarized in Table 4). Five plants regenerated from the calli obtained by transformation including niacinamide and five plants regenerated from the calli obtained by conventional transformation without niacinamide inclusion, were analyzed by Southern hybridization to determine the copy number of the transgenes, and were further analyzed for reproductive phenotype. In the non-treated group, a substantial number of regenerated plants proved not to have a transgene integrated in their nuclear DNA.

10

15

20

25

Example 4: Agrobacterium-mediated transformation of oilseed rape using niacinamide in the culture medium.

Hypocotyl explants of <u>Brassica napus</u> were obtained as described in Example 3. Four groups of 200 hypocotyl explants each, were either not treated with niacinamide (indicated in table 4 as NONE), treated with 250 mg/l niacinamide for 1 day prior to infection with <u>Agrobacterium</u> (BEFORE), treated for 2 days during the infection with 250 mg/l niacinamide (DURING), or treated for 1 day after the <u>Agrobacterium</u> infection with 250 mg/l niacinamide (AFTER).

All hypocotyl explants were infected with <u>Agrobacterium tumefaciens</u> strain C58C1Rif carrying T-DNA vector pTHW142 and a helper Ti-plasmid pMP90 (Koncz and Shell, 1986 <u>supra</u>)(or a derivative thereof).

Plasmid pTHW142 is a vector carrying a T-DNA comprising the following chimeric genes:

- PSSU-<u>bar</u>-3'g7
- p35S-<u>uid</u>A-3'35S

In which <u>uidA</u> is a DNA encoding b-glucuronidase (Jefferson et al., 1986, Proc. Natl. Acad. Sci. USA 83, 8447-8451) and 3' 35S is the 3' untranslated end of the cauliflower mosaic virus 35S transcript.

The complete sequence of the T-DNA of pTHW142 is presented in SEQ ID No 5.

After the Agrobacterium infection, hypocotyl explants were transferred to selection medium A5, and if appropriate to A5 medium containing 250 mg/l niacinamide. The hypocotyl explants that were placed on medium containing niacinamide were transferred after 1 day to niacinamide-free selection medium A5. After 5 weeks on selective medium the number of transformed calli was scored. b-glucuronidase expression was verified in the obtained calli using established protocols (Jefferson et al.,1986). The results are summarized in

PCT/EP96/03366

- 39 -

SEQUENCE LISTING

(1) GENERAL INFORMATION: 5 (i) APPLICANT: (A) NAME: PLANT GENETIC SYSTEMS N.V. (B) STREET: Plateaustraat 22 (C) CITY: Ghent (E) COUNTRY: Belgium 10 (F) POSTAL CODE (ZIP): 9000 (G) TELEPHONE: 32 9 235 84 58 (H) TELEFAX: 32 9 223 19 23 (I) TELEX: 11.361 Pgsgen 15 (ii) TITLE OF INVENTION: Genetic Transformation using a PARP inhibitor (iii) NUMBER OF SEQUENCES: 5 (iv) COMPUTER READABLE FORM: 20 (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO) 25 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4946 base pairs 30 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 35 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 40 (vi) ORIGINAL SOURCE: (A) ORGANISM: T-DNA of plasmid pTHW107 (ix) FEATURE: 45 (A) NAME/KEY: -(B) LOCATION: complement (1..25) (D) OTHER INFORMATION:/label= RB /note= "T-DNA right border" 50 (ix) FEATURE: (A) NAME/KEY: -(B) LOCATION:complement (97..330) (D) OTHER INFORMATION:/label= 3'g7 /note= "3' untranslated region containing the polyadenylation signal of gene 7 of Agrobacterium T-DNA " 55

PCT/EP96/03366

	GGGCGGTACC	GGCAGGCTGA	AGTCCAGCTG	CCAGAAACCC	ACGTCATGCC	AGTTCCCGTG	420
	CTTGAAGCCG	GCCGCCCGCA	GCATGCCGCG	GGGGGCATAT	CCGAGCGCCT	CGTGCATGCG	480
5	CACGCTCGGG	TCGTTGGGCA	GCCCGATGAC	AGCGACCACG	CTCTTGAAGC	CCTGTGCCTC	540
	CAGGGACTTC	AGCAGGTGGG	TGTAGAGCGT	GGAGCCCAGT	CCCGTCCGCT	GGTGGCGGGG	600
10	GGAGACGTAC	ACGGTCGACT	CGGCCGTCCA	GTCGTAGGCG	TTGCGTGCCT	TCCAGGGGCC	660
	CGCGTAGGCG	ATGCCGGCGA	CCTCGCCGTC	CACCTCGGCG	ACGAGCCAGG	GATAGCGCTC	720
	CCGCAGACGG	ACGAGGTCGT	CCGTCCACTC	CTGCGGTTCC	TGCGGCTCGG	TACGGAAGTT	780
15	GACCGTGCTT	GTCTCGATGT	AGTGGTTGAC	GATGGTGCAG	ACCGCCGGCA	TGTCCGCCTC	840
	GGTGGCACGG	CGGATGTCGG	CCGGGCGTCG	TTCTGGGTCC	ATTGTTCTTC	TTTACTCTTT	900
20	GTGTGACTGA	GGTTTGGTCT	AGTGCTTTGG	TCATCTATAT	ATAATGATAA	CAACAATGAG	960
	AACAAGCTTT	GGAGTGATCG	GAGGGTCTAG	GATACATGAG	ATTCAAGTGG	ACTAGGATCT	1020
	ACACCGTTGG	ATTTTGAGTG	TGGATATGTG	TGAGGTTAAT	TTTACTTGGT	AACGGCCACA	1080
25	AAGGCCTAA	GAGAGGTGTT	GAGACCCTTA	TCGGCTTGAA	CCGCTGGAAT	AATGCCACGT	1140
	GGAAGATAA	TCCATGAATC	TTATCGTTAT	CTATGAGTGA	AATTGTGTGA	TGGTGGAGTG	1200
30	GTGCTTGCT	ATTTTACTTG	CCTGGTGGAC	TTGGCCCTTT	CCTTATGGGG	TTATATTTAA	1260
	TTACTTACT	TAGAGCTTTC	ATACCTTTTT	TTTACCTTGG	ATTTAGTTAA	TATATAATGG	1320
2.0		GAATAAAAAT	GGGAAATTTT	TGAATTTGTA	CTGCTAAATG	CATAAGATTA	1380
35	GGTGAAACT	TGGAATATAT	ATTTTTTCA	TTTAAAAGCA	AAATTTGCCT	TTTACTAGAA	1440
	TTATAAATA	T AGAAAAATAT	ATAACATTCA	AATAAAAATG	AAAATAAGAA	CTTTCAAAAA	1500
4 (ACAGAACTA	T GTTTAATGTG	TAAAGATTAG	TCGCACATCA	AGTCATCTGT	TACAATATGT	1560
	TACAACAAG'	r cataagccca	ACAAAGTTAG	CACGTCTAAA	TAAACTAAAG	AGTCCACGAA	1620
4		A ATCATAAGCC	CAACAAAGTT	ATTGATCAAA	AAAAAAAAC	GCCCAACAAA	1680
4	GCTAAACAA	A GTCCAAAAAA	AACTTCTCAA	GTCTCCATCT	TCCTTTATGA	ACATTGAAAA	1740
	CTATACACA	A AACAAGTCAG	ATAAATCTCT	TTCTGGGCCT	GTCTTCCCAA	CCTCCTACAT	1800
5	CACTTCCCT	A TCGGATTGAA	TGTTTTACTT	GTACCTTTTC	CGTTGCAATG	ATATTGATAG	1860
	TATGTTTGT	G AAAACTAATA	GGGTTAACAA	TCGAAGTCAT	GGAATATGGA	TTTGGTCCAA	1920
5		A GAGCTTTCTA	GTAGAAAGCC	CATCACCAGA	AATTTACTAG	TAAAATAAAT	1980
J	,						

PCT/EP96/03366 WO 97/06267

- 43 -

	ATGTTTATTC	TAGTCCAGCC	ACCCACCTTA	TGCAAGTCTG	CTTTTAGCTT	GATTCAAAAA	3720
	CTGATTTAAT	TTACATTGCT	AAATGTGCAT	ACTTCGAGCC	TATGTCGCTT	TAATTCGAGT	3780
5	AGGATGTATA	TATTAGTACA	TAAAAAATCA	TGTTTGAATC	ATCTTTCATA	AAGTGACAAG	3840
	TCAATTGTCC	CTTCTTGTTT	GGCACTATAT	TCAATCTGTT	AATGCAAATT	ATCCAGTTAT	3900
10	ACTTAGCTAG	ATATCCAATT	TTGAATAAAA	ATAGCTCTTG	ATTAGTAAAC	CGGATAGTGA	3960
	CAAAGTCACA	TATCCATCAA	ACTTCTGGTG	CTCGTGGCTA	AGTTCTGATC	GACATGGGGT	4020
	TAAAATTTAA	ATTGGGACAC	ATAAATAGCC	TATTTGTGCA	AATCTCCCCA	TCGAAAATGA	4080
15	CAGATTGTTA	CATGGAAAAC	AAAAAGTCCT	CTGATAGAAG	TCGCAAAGTA	TCACAATTTT	4140
	CTATCGAGAG	ATAGATTGAA	AGAAGTGCAG	GGAAGCGGTT	AACTGGAACA	TAACACAATG	4200
20	TCTAAATTAA	TTGCATTCGC	TAACCAAAAA	GTGTATTACT	CTCTCCGGTC	CACAATAAGT	4260
	TATTTTTTGG	CCCTTTTTTT	ATGGTCCAAA	ATAAGTGAGT	TTTTTAGATT	TCAAAAATGA	4320
	TTTAATTATT	TTTTTACTAC	AGTGCCCTTG	GAGTAAATGG	TGTTGGAGTA	TGTGTTAGAA	4380
25	ATGTTTATGT	GAAGAAATAG	TAAAGGTTAA	TATGATCAAT	TTCATTGCTA	TTTAATGTTA	4440
	AAATGTGAAT	TTCTTAATCT	GTGTGAAAAC	ААССАААААА	TCACTTATTG	TGGACCGGAG	4500
30	AAAGTATATA	AATATATAT	TGGAAGCGAC	ТАААААТААА	CTTTTCTCAT	ATTATACGAA	4560
	CCTAAAAACA	GCATATGGTA	GTTTCTAGGG	аатстааатс	ACTAAAATTA	ATAAAAGAAG	4620
	CAACAAGTAT	CAATACATAT	GATTTACACC	GTCAAACACG	AAATTCGTAA	ATATTTAATA	4680
35	TAATAAAGAA	TTAATCCAAA	TAGCCTCCCA	CCCTATAACT	ТАААСТАААА	ATAACCAGCG	4740
	AATGTATATT	ATATGCATAA	TTTATATATT	AAATGTGTAT	AATCATGTAT	AATCAATGTA	4800
40	TAATCTATGT	ATATGGTTAG	AAAAAGTAAA	CAATTAATAT	AGCCGGCTAT	TTGTGTAAAA	4860
	ATCCCTAATA	TAATCGCGAC	GGATCCCCGG	GAATTCCGGG	GAAGCTTAGA	TCCATGGAGC	4920
	CATTTACAAT	TGAATATATC	CTGCCG				4946
45	(2) INFORM	MATION FOR S	EQ ID NO: 2	:			
				· c •			

(i) SEQUENCE CHARACTERISTICS:

50

- 55

(A) LENGTH: 6548 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: circular

(ii) MOLECULE TYPE: DNA (genomic)

- 45 -

	CCCTTTTTTG	CGGCATTTTG	CCTTCCTGTT	TTTGCTCACC	CAGAAACGCT	GGTGAAAGTA	240
	AAAGATGCTG	AAGATCAGTT	GGGTGCACGA	GTGGGTTACA	TCGAACTGGA	TCTCAACAGC	300
5	GGTAAGATCC	TTGAGAGTTT	TCGCCCCGAA	GAACGTTTTC	CAATGATGAG	CACTTTTAAA	360
	GTTCTGCTAT	GTGGCGCGGT	ATTATCCCGT	ATTGACGCCG	GGCAAGAGCA	ACTCGGTCGC	420
10	CGCATACACT	ATTCTCAGAA	TGACTTGGTT	GAGTACTCAC	CAGTCAÇAGA	AAAGCATCTT	480
	ACGGATGGCA	TGACAGTAAG	AGAATTATGC	AGTGCTGCCA	TAACCATGAG	TGATAACACT	540
		TACTTCTGAC	AACGATCGGA	GGACCGAAGG	AGCTAACCGC	TTTTTTGCAC	600
15	AACATGGGGG	ATCATGTAAC	TCGCCTTGAT	CGTTGGGAAC	CGGAGCTGAA	TGAAGCCATA	660
	CCAAACGACG	AGCGTGACAC	CACGATGCCT	GTAGCAATGG	CAACAACGTT	GCGCAAACTA	720
20	TTAACTGGCG	AACTACTTAC	TCTAGCTTCC	CGGCAACAAT	TAATAGACTG	GATGGAGGCG	780
	GATAAAGTTO	CAGGACCACT	TCTGCGCTCG	GCCCTTCCGG	CTGGCTGGTT	TATTGCTGAT	840
		CCGGTGAGCG	TGGGTCTCGC	GGTATCATTG	CAGCACTGGG	GCCAGATGGT	900
25	AAGCCCTCCC	GTATCGTAGT	TATCTACACG	ACGGGGAGTC	AGGCAACTAT	GGATGAACGA	960
	AATAGACAGA	A TCGCTGAGAT	AGGTGCCTCA	CTGATTAAGC	ATTGGTAACT	GTCAGACCAA	1020
3	GTTTACTCA	T ATATACTTTA	GATTGATTTA	AAACTTCATT	TTTAATTTAA	AAGGATCTAG	1080
	GTGAAGATC	TTTTTGGCTC	GAGTCTCATG	ACCAAAATCC	CTTAACGTGA	GTTTTCGTTC	1140
		r CAGACCCCGT	AGAAAAGATC	AAAGGATCTT	CTTGAGATCC	TTTTTTTCTG	1200
3	CGCGTAATC	r GCTGCTTGCA	ААСАААААА	CCACCGCTAC	CAGCGGTGGT	TTGTTTGCCG	1260
	GATCAAGAG	C TACCAACTCT	TTTTCCGAAG	GTAACTGGCT	TCAGCAGAGC	GCAGATACCA	1320
4	AATACTGTC	C TTCTAGTGTA	GCCGTAGTTA	GGCCACCACT	TCAAGAACTC	TGTAGCACCG	1380
	CCTACATAC	C TCGCTCTGCT	AATCCTGTTA	CCAGTGGCTG	CTGCCAGTGG	CGATAAGTCG	1440
		G GGTTGGACTC	AAGACGATAG	TTACCGGATA	AGGCGCAGCG	GTCGGGCTGA	1500
4	5 ACGGGGGT	T CGTGCACAC	GCCCAGCTTC	G GAGCGAACGA	CCTACACCGA	ACTGAGATAC	1560
	CTACAGCGT	G AGCATTGAGA	AAGCGCCACG	CTTCCCGAAG	GGAGAAAGGC	GGACAGGTAT	1620
5	0 CCGGTAAGC	G GCAGGGTCGG	AACAGGAGAG	CGCACGAGGG	AGCTTCCAGG	GGGAAACGCC	1680
	TGGTATCTT	T ATAGTCCTG	CGGGTTTCGC	CACCTCTGAC	TTGAGCGTCG	ATTTTTGTGA	1740
_		G GGGGGCGGA	CCTATGGAA	A AACGCCAGCA	A ACGCGGCCTT	TTTACGGTTC	1800
	5						

- 47 -

	GATTTCATTG	TTGGGAGCTA	TGCAGTTGCG	GATATTCTGC	TGTGGAAGAA	CAGGAACTTA	3540
	TCTGCGGGGG	TCCTTGCTGG	GGCAACATTG	ATATGGTTCC	TGTTCGATGT	AGTAGAATAC	3600
5	AATATAATTC	CGCTCCTTTG	CCAGATTGCC	ATTCTTGCCA	TGCTTGTGAT	CTTCATTTGG	3660
	TCAAATGCCG	CACCACTCTT	GGACAGGTAT	TAGCTTTATT	TCCTGTGGAG	ATGGTAGAAA	3720
10	ACTCAGCTTA	CAGAAATGGC	ATTTCACGTA	GTATAACGCA	AGACATTAGG	TACTAAAACT	3780
	CAACTAACTG	TTTCCGAATT	TCAGGGCCCC	TCCAAGGATC	CCAGAAATCA	TCATCTCTGA	3840
	ACATGCCTTC	AGAGAAATGG	CATTGACCGT	CCATTACAAA	CTAACGTACA	CTGTATCTGT	3900
15	TCTTTACGAC	ATTGCATGTG	GAAAGGATCT	GAAGAGATTT	CTCCTGGTAC	ATAATAATCT	3960
	ACTCCTTTGC	TACGTTAATA	AGAGATGTAA	AAACATGCAA	CAGTTCCAGT	GCCAACATTG	4020
20	TCCAAGGATT	GTGCAATTCT	TTCTGGAGCG	CTAAAATTGA	CCAGATTAGA	CGCATCAGAA	4080
	TATTGAATTG	CAGAGTTAGC	CAATAATCCT	CATAATGTTA	ATGTGCTATT	GTTGTTCACT	4140
	ACTCAATATA	GTTCTGGACT	AACAATCAGA	TTGTTTATGA	TATTAAGGTG	GTTGGATCTC	4200
25	TATTGGTATT	GTCGGCGATT	GGAAGTTCTT	GCAGCTTGAC	AAGTCTACTA	TATATTGGTA	4260
	GGTATTCCAG	ATAAATATA	AATTTTAATA	AAACAATCAC	ACAGAAGGAT	CTGCGGCCGC	4320
30	TAGCCTAGGC	CCGGGCCCAC	AAAAATCTGA	GCTTAACAGC	ACAGTTGCTC	CTCTCAGAGC	4380
	AGAATCGGGT	ATTCAACACC	CTCATATCAA	CTACTACGTT	GTGTATAACG	GTCCACATGC	4440
	CGGTATATAC	GATGACTGGG	GTTGTACAAA	GGCGGCAACA	AACGGCGTTC	CCGGAGTTGC	4500
35	ACACAAGAAA	TTTGCCACTA	TTACAGAGGC	AAGAGCAGCA	GCTGACGCGT	ACACAACAAG	4560
	TCAGCAAACA	GACAGGTTGA	ACTTCATCCC	CAAAGGAGAA	GCTCAACTCA	AGCCCAAGAG	4620
40	CTTTGCTAAG	GCCCTAACAA	GCCCACCAAA	GCAAAAAGCC	CACTGGCTCA	CGCTAGGAAC	4680
	CAAAAGGCCC	AGCAGTGATC	CAGCCCCAAA	AGAGATCTCC	TTTGCCCCGG	AGATTACAAT	4740
	GGACGATTTC	CTCTATCTTT	ACGATCTAGG	AAGGAAGTTC	GAAGGTGAAG	GTGACGACAC	4800
45	TATGTTCACC	ACTGATAATG	AGAAGGTTAG	CCTCTTCAAT	TTCAGAAAGA	ATGCTGACCC	4860
	ACAGATGGTT	AGAGAGGCCT	ACGCAGCAGG	TCTCATCAAG	ACGATCTACC	CGAGTAACAA	4920
50	TCTCCAGGAG	ATCAAATACC	TTCCCAAGAA	GGTTAAAGAT	GCAGTCAAAA	GATTCAGGAC	4980
	TAATTGCATC	AAGAACACAG	AGAAAGACAT	ATTTCTCAAG	ATCAGAAGTA	CTATTCCAGT	5040
cc	ATGGACGATT	CAAGGCTTGC	TTCATAAACC	AAGGCAAGTA	ATAGAGATTG	GAGTCTCTAA	5100
55							

- 49

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
5	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
10	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: T72 promoter region</pre>	
15	<pre>(ix) FEATURE: (A) NAME/KEY: - (B) LOCATION:complement (11601) (D) OTHER INFORMATION:/label= PT72</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	CGCCGTGAGT GTCTTCTGCC GCCGAGGGGC TCTCGCTCGT CGTCGATGCC TGCACGGTGC	60
0.5	GTGCGTGTGT GTCGTGGTGG TGGTGGCGAT ACGCGACGCG	120
25	ATCGAAGGAG GGGAGCGCGC GCGCGAGGC CCGCGTTGCT CACCTACGCC GCGCGCATGC	180
	GGCGGACGCG CGGTCGGCGC CCGCGCCGGC CGGGAGGACG AGGGCGCAAG CGTGTGAGCC	240
30	ACCGAACGCG CGCGCGCGCC GCGGCGCGAA CTCTCCATCG CGTCGCGGCG AGCCGAGAGC	300
	CGACGAGAGC GTTTCGCGCG CGCGGTTGGG CCGGCGACAA GATGGGCCGT AGCCCTGGGC	360
	CTCGTGCCAT CTTTTTTTT CTTTTTTGCC TTTTTTGGCC TGGCAATTTC TTTTTGTTTT	420
35	TAGTCTTTTT GTGGTGATAA TGTGTCGTCT TCCGGTGAAC TAATTTACTC GTTGATCTTT	480
	TTGTGTCCCT TCGAATATTC GCAGTGGTAG AAGATGACTA CTACTACCAG TAGTTGATCT	540
40	CGAATGGCAA CTTTTGTGCA GAACTTATTC CACGGCTATG TCAGCTTCCA CTGTGACTAA	600
	AAAAACTACG GCCATCTTTT GGACTTGTTC TATCTTGGAA CTGAACAAAA AGGACGATCC	660
	TGATGTACAC ACGGCATAGT TTCCAGCACT GGATGCCAAG TTGCCAACTG TTACCACGAT	720
45	AATGGAACGA CGAGATGAGA TATTATACAA GTCCAATGGA TCAAGATCCT GTGCAGTTGT	780
	TATTGTAACT GTAACTTAAG CCGTTAACAT GTACATCACA TTTCCTACTC TATCAATGTC	840

TTGTGCGGGT TGTTTCAAAA AAACATGTAC ATCACATGAT CTAGAACGGA AGGCCAGGAT

ATGAAGTGGT ACTGCAGCAA AAACACTGTA GCAGAGATGT ACTATTATGC ATGTACTGTA

GCAGTCATCT AGAGCCGTTG GATCTGAAAA CGAATGGACA TGATTGTGTG CAGTTGCTAT

50

• 55

900

960

1020

- 51 -

/note= "stamen-specific promoter from corn gene CA55"

5	<pre>(ix) FEATURE: (A) NAME/KEY: - (B) LOCATION:23553187 (D) OTHER INFORMATION:/label= P35S</pre>	ıs"
10	<pre>(ix) FEATURE: (A) NAME/KEY: - (B) LOCATION:31883739 (D) OTHER INFORMATION:/label= bar /note= "region coding for phosphinotricin ac</pre>	cetyl
	transferase"	•
15	<pre>(ix) FEATURE: (A) NAME/KEY: - (B) LOCATION:37574017 (D) OTHER INFORMATION:/label= 3'nos</pre>	tho
20	/note= "3' untranslated region containing polyadenylation	the
	signal of the nopaline synthase gene of Agrobacte	erium
	T-DNA"	
25	<pre>(ix) FEATURE: (A) NAME/KEY: - (B) LOCATION:699702 (D) OTHER INFORMATION:/note= "region with unknown</pre>	
30	sequence (may contain up to 15 nucleotides)"	
30	OPO TRIVOLA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
35	TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA	60
33	CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG	120
	TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC	180
40	ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGGCGCC	240
	ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT	300
	TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT AAGTTGGGTA ACGCCAGGGT	360
45	TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGAATT CGAGCTCGGT ACCCGGGGAT	420
	CTTCCCGATC TAGTAACATA GATGACACCG CGCGCGATAA TTTATCCTAG TTTGCGCGCT	480
50	ATATTTTGTT TTCTATCGCG TATTAAATGT ATAATTGCGG GACTCTAATC ATAAAAACCC	540
٠	ATCTCATAAA TAACGTCATG CATTACATGT TAATTATTAC ATGCTTAACG TAATTCAACA	600
, 55	GAAATTATAT GATAATCATC GCAAGACCGG CAACAGGATT CAATCTTAAG AAACTTTATT	660

- 53 -

		CAGGCATGCA	AGCTCCTACG	CAGCAGGTCT	CATCAAGACG	ATCTACCCGA	GTAACAATCT	2400
•	c	CCAGGAGATC	AAATACCTTC	CCAAGAAGGT	TAAAGATGCA	GTCAAAAGAT	TCAGGACTAA	2460
	5	TTGCATCAAG	AACACAGAGA	AAGACATATT	TCTCAAGATC	AGAAGTACTA	TTCCAGTATG	2520
٠		GACGATTCAA	GGCTTGCTTC	ATAAACCAAG	GCAAGTAATA	GAGATTGGAG	TCTCTAAAAA	2580
	10	GGTAGTTCCT	ACTGAATCTA	AGGCCATGCA	TGGAGTCTAA	GATTCAAATC	GAGGATCTAA	2640
		CAGAACTCGC	CGTGAAGACT	GGCGAACAGT	TCATACAGAG	TCTTTTACGA	CTCAATGACA	2700
	15	AGAAGAAAAT	CTTCGTCAAC	ATGGTGGAGC	ACGACACTCT	GGTCTACTCC	AAAAATGTCA	2760
	13	AAGATACAGT	CTCAGAAGAC	CAAAGGGCTA	TTGAGACTTT	TCAACAAAGG	ATAATTTCGG	2820
		GAAACCTCCT	CGGATTCCAT	TGCCCAGCTA	TCTGTCACTT	CATCGAAAGG	ACAGTAGAAA	2880
	20	AGGAAGGTGG	CTCCTACAAA	TGCCATCATT	GCGATAAAGG	AAAGGCTATC	ATTCAAGATG	2940
		CCTCTGCCGA	CAGTGGTCCC	AAAGATGGAC	CCCCACCCAC	GAGGAGCATC	GTGGAAAAAG	3000
	25	AAGACGTTCC	AACCACGTCT	TCAAAGCAAG	TGGATTGATG	TGACATCTCC	ACTGACGTAA	3060
	23	GGGATGACGC	ACAATCCCAC	TATCCTTCGC	AAGACCCTTC	СТСТАТАТАА	GGAAGTTCAT	3120
		TTCATTTGGA	GAGGACACGC	TGAAATCACC	AGTCTCTCTC	TATAAATCTA	TCTCTCTCTC	3180
	30	TATAACCATG	GACCCAGAAC	GACGCCCGGC	CGACATCCGC	CGTGCCACCG	AGGCGGACAT	3240
		GCCGGCGGTC	TGCACCATCG	TCAACCACTA	CATCGAGACA	AGCACGGTCA	ACTTCCGTAC	3300
	35	CGAGCCGCAG	GAACCGCAGG	AGTGGACGGA	CGACCTCGTC	CGTCTGCGGG	AGCGCTATCC	3360
		CTGGCTCGTC	GCCGAGGTGG	ACGGCGAGGT	CGCCGGCATC	GCCTACGCGG	GCCCTGGAA	3420
		GGCACGCAAC	GCCTACGACT	GGACGGCCGA	GTCGACCGTG	TACGTCTCCC	CCCGCCACCA	3480
	40	GCGGACGGGA	CTGGGCTCCA	CGCTCTACAC	CCACCTGCTG	AAGTCCCTGG	AGGCACAGGG	3540
		CTTCAAGAGC	GTGGTCGCTG	TCATCGGGCT	GCCCAACGAC	CCGAGCGTGC	GCATGCACGA	3600
	45	GGCGCTCGGA	TATGCCCCCC	GCGGCATGCT	GCGGGCGGCC	GGCTTCAAGC	ACGGGAACTG	3660
		GCATGACGTG	GGTTTCTGGC	AGCTGGACTT	CAGCCTGCCG	GTACCGCCCC	GTCCGGTCCT	3720
		GCCCGTCACC	GAGATCTGAT	CTCACGCGTC	TAGGATCCGA	AGCAGATCGT	TCAAACATTT	3780
	50	GGCAATAAAG	TTTCTTAAGA	TTGAATCCTG	TTGCCGGTCT	TGCGATGATT	ATCATATAAT	3840
•		TTCTGTTGAA	TTACGTTAAG	CATGTAATAA	TTAACATGTA	ATGCATGACG	TTATTTATGA	3900
,	55	GATGGGTTTT	TATGATTAGA	GTCCCGCAAT	TATACATTTA	ATACGCGATA	GAAAACAAAA	3960

- 55 **-**

	GCAAAAAAGC	GGTTAGCTCC	TTCGGTCCTC	CGATCGTTGT	CAGAAGTAAG	TTGGCCGCAG	5700
_	TGTTATCACT	CATGGTTATG	GCAGCACTGC	ATAATTCTCT	TACTGTCATG	CCATCCGTAA	5760
5	GATGCTTTTC	TGTGACTGGT	GAGTACTCAA	CCAAGTCATT	CTGAGAATAG	TGTATGCGGC	5820
	GACCGAGTTO	CTCTTGCCCG	GCGTCAATAC	GGGATAATAC	CGCGCCACAT	AGCAGAACTT	5880
10	TAAAAGTGCT	CATCATTGGA	AAACGTTCTT	CGGGGCGAAA	ACTCTCAAGG	ATCTTACCGC	5940
	TGTTGAGATC	CAGTTCGATG	TAACCCACTC	GTGCACCCAA	CTGATCTTCA	GCATCTTTTA	6000
15	CTTTCACCAG	GCGTTTCTGGG	TGAGCAAAAA	CAGGAAGGCA	AAATGCCGCA	AAAAAGGGAA	6060
15	TAAGGGCGAC	ACGGAAATGT	TGAATACTCA	TACTCTTCCT	TTTTCAATAT	TATTGAAGCA	6120
	TTTATCAGGG	TTATTGTCTC	ATGAGCGGAT	ACATATTTGA	ATGTATTTAG	AAAAATAAAC	6180
20	AAATAGGGGT	TCCGCGCACA	TTTCCCCGAA	AAGTGCCACC	TGACGTCTAA	GAAACCATTA	6240
	TTATCATGAC	ATTAACCTAT	AAAAATAGGC	GTATCACGAG	GCCCTTTCGT	С	6291
25	(2) INFORM	MATION FOR SE	Q ID NO: 5:	:			
30	(i) S	BEQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDEL (D) TOPOLOGY	5560 base p cleic acid NESS: doubl	pairs			
	(ii) M	OLECULE TYPE	: DNA (gend	omic)			
35	(iii) H	HYPOTHETICAL:	NO				
55	(iv) A	ANTI-SENSE: N	10				
	(vi) C	RIGINAL SOUF		nlacmid nTF	-W1 4 2		
40	(iv) E	FEATURE:	. 1 5.21 01	prasmra pri	M112		
45	pTiB6S3"	(A) NAME/KEY (B) LOCATION (D) OTHER IN	:125 FORMATION:		equence of	octopine TL-D	NA from
		FEATURE:					
50	(12)	(A) NAME/KEY (B) LOCATION (D) OTHER IN	:complement	/label= 3'g?		egion contain	ing the
	polvadenvl	lation signal					9 (116

' 55 (ix) FEATURE:

- 57 -

(B)	LOCA	IT	ON:	507	7.	.50	7 E
-----	------	----	-----	-----	----	-----	-----

(D) OTHER INFORMATION:/note= "region with unknown sequence (may contain up to 20 nucleotides)"

(ix) FEATURE:

- (A) NAME/KEY: (B) LOCATION:5476..5479
 (D) OTHER INFORMATION:/note= "region with unknown" sequence (may contain up to 20 nucleotides)"

10

55

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

1.5	AATTACAACG	GTATATATCC	TGCCAGTACT	CGGCCGTCGA	GTACATGGTC	GATAAGAAAA	60
15	GGCAATTTGT	AGATGTTAAT	TCCCATCTTG	AAAGAAATAT	AGTTTAAATA	TTTATTGATA	120
	AAATAACAAG	TCAGGTATTA	TAGTCCAAGC	AAAAACATAA	ATTTATTGAT	GCAAGTTTAA	180
20	ATTCAGAAAT	ATTTCAATAA	CTGATTATAT	CAGCTGGTAC	ATTGCCGTAG	ATGAAAGACT	240
	GAGTGCGATA	TTATGTGTAA	TACATAAATT	GATGATATAG	CTAGCTTAGC	TCATCGGGGG	300
25	ATCCTAGACG	CGTGAGATCA	GATCTCGGTG	ACGGGCAGGA	CCGGACGGGG	CGGTACCGGC	360
23	AGGCTGAAGT	CCAGCTGCCA	GAAACCCACG	TCATGCCAGT	TCCCGTGCTT	GAAGCCGGCC	420
	GCCCGCAGCA	TGCCGCGGGG	GGCATATCCG	AGCGCCTCGT	GCATGCGCAC	GCTCGGGTCG	480
30	TTGGGCAGCC	CGATGACAGC	GACCACGCTC	TTGAAGCCCT	GTGCCTCCAG	GGACTTCAGC	540
	AGGTGGGTGT	AGAGCGTGGA	GCCCAGTCCC	GTCCGCTGGT	GGCGGGGGA	GACGTACACG	600
35	GTCGACTCGG	CCGTCCAGTC	GTAGGCGTTG	CGTGCCTTCC	AGGGCCCGC	GTAGGCGATG	660
33	CCGGCGACCT	CGCCGTCCAC	CTCGGCGACG	AGCCAGGGAT	AGCGCTCCCG	CAGACGGACG	720
	AGGTCGTCCG	TCCACTCCTG	CGGTTCCTGC	GGCTCGGTAC	GGAAGTTGAC	CGTGCTTGTC	780
40	TCGATGTAGT	GGTTGACGAT	GGTGCAGACC	GCCGGCATGT	CCGCCTCGGT	GGCACGGCGG	840
	ATGTCGGCCG	GGCGTCGTTC	TGGGTCCATG	CAGTTAACTC	TTCCGCCGTT	GCTTGTGATG	900
45	GAAGTAATGT	CGTTGTTAGC	CTTGCGGGTG	GCTGGGAAGG	CAGCGGAGGA	CTTAAGTCCG	960
40	TTGAAAGGAG	CGACCATAGT	GGCCTGAGCC	GGAGAGGCAA	CCATAGTAGC	GGAAGAGAGC	1020
	ATAGAGGAAG	CCATTGTTCT	TCTTTACTCT	TTGTGTGACT	GAGGTTTGGT	CTAGTGCTTT	1080
50	GGTCATCTAT	ATATAATGAT	AACAACAATG	AGAACAAGCT	TTGGAGTGAT	CGGAGGGTCT	1140
	AGGATACATG	AGATTCAAGT	GGACTAGGAT	CTACACCGTT	GGATTTTGAG	TGTGGATATG	1200
	TGTGAGGTTA	ATTTTACTTG	GTAACGGCCA	CAAAGGCCTA	AGGAGAGGTG	TTGAGACCCT	1260

- 59 -

	GAAAAATAGA	GAGAGATAGA	TTTGTAGAGA	GAGACTGGTG	ATTTTTGCGC	CGGGTACCGA	3000
_	GCTCGGTAGC	AATTCCCGAG	GCTGTAGCCG	ACGATGGTGC	GCCAGGAGAG	TTGTTGATTC	3060
5	ATTGTTTGCC	TCCCTGCTGC	GGTTTTTCAC	CGAAGTTCAT	GCCAGTCCAG	CGTTTTTGCA	3120
	GCAGAAAAGC	CGCCGACTTC	GGTTTGCGGT	CGCGAGTGAA	GATCCCTTTC	TTGTTACCGC	3180
10	CAACGCGCAA	TATGCCTTGC	GAGGTCGCAA	AATCGGCGAA	ATTCCATACC	TGTTCACCGA	3240
	CGACGGCGCT	GACGCGATCA	AAGACGCGGT	GATACATATC	CAGCCATGCA	CACTGATACT	3300
15	CTTCACTCCA	CATGTCGGTG	TACATTGAGT	GCAGCCCGGC	TAACGTATCC	ACGCCGTATT	3360
13	CGGTGATGAT	AATCGGCTGA	TGCAGTTTCT	CCTGCCAGGC	CAGAAGTTCT	TTTTCCAGTA	3420
	CCTTCTCTGC	CGTTTCCAAA	TCGCCGCTTT	GGACATACCA	TCCGTAATAA	CGGTTCAGGC	3480
20	ACAGCACATC	AAAGAGATCG	CTGATGGTAT	CGGTGTGAGC	GTCGCAGAAC	ATTACATTGA	3540
	CGCAGGTGAT	CGGACGCGTC	GGGTCGAGTT	TACGCGTTGC	TTCCGCCAGT	GGCGAAATAT	3600
25	TCCCGTGCAC	TTGCGGACGG	GTATCCGGTT	CGTTGGCAAT	ACTCCACATC	ACCACGCTTG	3660
25	GGTGGTTTTT	GTCACGCGCT	ATCAGCTCTT	TAATCGCCTG	TAAGTGCGCT	TGCTGAGTTT	3720
	CCCCGTTGAC	TGCCTCTTCG	CTGTACAGTT	CTTTCGGCTT	GTTGCCCGCT	TCGAAACCAA	3780
30	TGCCTAAAGA	GAGGTTAAAG	CCGACAGCAG	CAGTTTCATC	AATCACCACG	ATGCCATGTT	3840
	CATCTGCCCA	GTCGAGCATC	TCTTCAGCGT	AAGGGTAATG	CGAGGTACGG	TAGGAGTTGG	3900
35	CCCCAATCCA	GTCCATTAAT	GCGTGGTCGT	GCACCATCAG	CACGTTATCG	AATCCTTTGC	3960
33	CACGTAAGTC	CGCATCTTCA	TGACGACCAA	AGCCAGTAAA	GTAGAACGGT	TTGTGGTTAA	4020
	TCAGGAACTG	TTCGCCCTTC	ACTGCCACTG	ACCGGATGCC	GACGCGAAGC	GGGTAGATAT	4080
40	CACACTCTGT	CTGGCTTTTG	GCTGTGACGC	ACAGTTCATA	GAGATAACCT	TCACCCGGTT	4140
	GCCAGAGGTG	CGGATTCACC	ACTTGCAAAG	TCCCGCTAGT	GCCTTGTCCA	GTTGCAACCA	4200
45	CCTGTTGATC	CGCATCACGC	AGTTCAACGC	TGACATCACC	ATTGGCCACC	ACCTGCCAGT	4260
10	CAACAGACGC	GTGGTTACAG	TCTTGCGCGA	CATGCGTCAC	CACGGTGATA	TCGTCCACCC	4320
	AGGTGTTCGG	CGTGGTGTAG	AGCATTACGC	TGCGATGGAT	TCCGGCATAG	TTAAAGAAAT	4380
50	CATGGAAGTA	AGACTGCTTT	TTCTTGCCGT	TTTCGTCGGT	AATCACCATT	CCCGGCGGGA	4440
	TAGTCTGCCA	GTTCAGTTCG	TTGTTCACAC	AAACGGTGAT	ACCTGCACAT	CACCATGTTT	4500
55	TGGTCATATA	TTAGAAAAGT	TATAAATTAA	AATATACACA	CTTATAAACT	ACAGAAAAGC	4560
55							

10

15

20

25

CLAIMS

- 1. A process for producing transgenic eucaryote cells which comprises: contacting a culture of untransformed cells with an inhibitor of poly-(ADP-ribose) polymerase, prior to transformation, for a period of time sufficient to reduce the response of the cultured cells to stress and to reduce the metabolism of said cultured cells, particularly to reduce the electron flow in the mitochondrial electron transport chain; contacting said untransformed cells with foreign DNA comprising at least one gene of interest under conditions in which said foreign DNA is taken up by said untransformed cells and said gene of interest is stably integrated in the nuclear genome of said untransformed cells to produce said transgenic cells; and optionally recovering said transgenic cells from said culture.
- 2. The proces of claim 1, wherein said eucaryotic cells are plant cells.
- 3. The process of claim 1 or 2, wherein said inhibitor is niacinamide, preferably at a concentration of about 150 mg/l to 1000 mg/l, more preferably at a concentration of about 200 mg/l to 500 mg/l, particularly at a concentration of about 250 mg/l.
- 4. The process of any one of claims 1 to 3, wherein said untransformed cells are cultured in a medium containing said inhibitor for a period of time of approximately 2 to 28 days, preferably approximately 3 to 14 days, particularly approximately 4 days prior to the contacting with said foreign DNA.
- 5. The process of any one of claims 1 to 4, wherein said cells contacted with said foreign DNA are further cultured in a medium containing said inhibitor

10

15

20

25

- 11. The process of any one of claims 1 to 10, wherein a transgenic organism having said foreign DNA with said at least one gene of interest stably integrated in its genome is obtained from said transformed eucaryotic cell.
- 12. The proces of claim 11, wherein said organism is a plant which is obtained by regeneration from a transformed plant cell.
- 13. The transgenic organism obtained by the process of claim 11 or 12.
- 14. A plant having foreign DNA integrated in the nuclear DNA of its cells only in the regions of said nuclear DNA that are transcriptionally active in said cells of said plant when said cells are treated with an effective amount of a PARP inhibitor for a period of time sufficient to reduce cell metabolism to a state where gene expression is essentially limited to genes expressed irrespective of the differentiated or physiological condition of the cell.
- 15. The plant according to claim 14, wherein said integration of the foreign DNA in said transcriptionally active region is verified by measuring the level of expressed mRNA corresponding to this foreign DNA when said cells are incubated in a medium containing a PARP-inhibitor.
- 16. The plant according to claim 14, wherein said transcriptionally active regions of the genome of said plant include regions which are minimally affected by cell differentiation or cell physiological and biochemical changes caused by external factors such as environmental conditions, especially stress conditions.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/82, 15/79, 5/10, A01H 5/00

A3

(11) International Publication Number:

WO 97/06267

(43) International Publication Date:

20 February 1997 (20.02.97)

(21) International Application Number:

PCT/EP96/03366

(22) International Filing Date:

31 July 1996 (31.07.96)

(30) Priority Data:

95401844.6 4 August 1995 (04.08.95) EP (34) Countries for which the regional or international application was filed:

GB et al.

(71) Applicant (for all designated States except US): PLANT GENETIC SYSTEMS, N.V. [BE/BE]; Jozef Plateaustraat 22, B-9000 Gent (BE).

(72) Inventor; and

(75) Inventor/Applicant (for US only): DE BLOCK, Marc [BE/BE]; Abrikozenstraat 26, B-9820 Merelbeke (BE).

(74) Agents: GUTMANN, Ernest et al.; Ernest Gutmann - Yves Plasseraud S.A., 3, rue Chauveau-Lagarde, F-75008 Paris (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 13 March 1997 (13.03.97)

(54) Title: GENETIC TRANSFORMATION USING A PARP INHIBITOR

(57) Abstract

The invention concerns a process for producing transgenic eucaryotic cells, particularly plants, which comprises: contacting a culture of untransformed cells with an inhibitor of poly-(ADP-ribose) polymerase for a period of time sufficient to reduce the response of the cultured cells to stress and to reduce their metabolism. The untransformed cells are then contacted with foreign DNA comprising at least one gene of interest under conditions in which the foreign DNA is taken up by the untransformed cells and the gene of interest is stably integrated in the nuclear genome of the untransformed cells to produce the transgenic cells. Optionally, the transgenic cells are recovered from the culture. Preferably, the inhibitor is niacinamide, preferably at a concentration of about 200 mg/l to 500 mg/l and the untransformed cells are cultured in a medium containing the inhibitor for a period of time of approximately 3 to 14 days prior to the contacting with the foreign DNA. The invention also relates to a plant having in the nuclear genome of its cells foreign DNA integrated only in the regions of the nuclear genome that are transcriptionally active in cells of the plant when the cells are treated with an effective amount of a PARP inhibitor for a period of time sufficient to reduce cell metabolism to a state where gene expression is essentially limited to genes expressed irrespective of the differentiated or physiological condition of the cell.

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/EP 96/03366

A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C12N15/82 C12N15/79 C12N5/10 A01H5/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N A01H Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X NUCLEIC ACIDS RES 18 (20). 1990. 1,23 5981-5988., XP002023138 WALDMAN B C: " ILLEGITIMATE AND HOMOLOGOUS RECOMBINATION IN MAMMALIAN CELLS DIFFERENTIAL SENSITIVITY TO AN INHIBITOR OF POLY-ADP-RIBOSYLATION." cited in the application see the whole document EP,A,O 424 047 (PIONEER HI BRED INT) 24 Α 6 April 1991 see page 2, line 32 - page 3, line 9 Further documents are listed in the continuation of box C. Χ Patent family members are listed in annex. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled 'O' document referring to an oral disclosure, use, exhibition or in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 3 1. 01. 97 20 January 1997 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Maddox, A Fax: (+31-70) 340-3016

1

INTERNATIONAL SEARCH REPORT

Inter onal Application No PCI'/EP 96/03366

CICORRE	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	<u></u>
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	COMPTES RENDUS DE L'ACADEMIE DES SCIENCES SERIE III SCIENCES DE LA VIE 318 (1). 1995. 121-128., XP002023143 DEVIC M., ET AL.: "Assessment of promoter trap as a tool to study zygotic embryogenesis in Arabidopsis thaliana." see page 124, right-hand column	14,23
A	CHEMICAL ABSTRACTS, vol. 123, no. 21, 20 November 1995 Columbus, Ohio, US; abstract no. 276968, MANDAL, ABUL: "Identification of Arabidopsis thaliana sequences responsive to low temperature and abscisic acid by T-DNA tagging and in-vivo gen fusion" XP002023145 see abstract & PLANT MOL. BIOL. REP. (1995), VOLUME DATE 1995, 13(3), 243-54,	14,23