CSC429 – Computer Security

LECTURE 2
MODERN CRYPTOGRAPHY

Mohammed H. Almeshekah, PhD meshekah@ksu.edu.sa

Modern Cryptography

- One thread of defeating frequency analysis
 - Use different keys in different locations
 - Example: one-time pad, stream ciphers
- Another way to defeat frequency analysis
 - Make the unit of transformation larger, rather than encrypting letter by letter, encrypting block by block
 - Example: block cipher

Stream Ciphers

- In One-Time Pad, a key is a random string of length at least the same as the message.
 - Is this practical?
- Stream ciphers:
 - Idea: replace "rand" by "pseudo rand".
 - Use Pseudo Random Number Generator:
 - PRNG: $\{0,1\}^s \to \{0,1\}^n$
 - expand a short (e.g., 128-bit) random seed into a long (e.g., 106 bit) string that "looks random".
 - Secret key is the seed
 - $E_{key}[M] = M \oplus PRNG(key)$

Pseudo Random Number Generator (PRNG)

- Useful for cryptography and for simulation.
- The same seed gives the same output stream:
 - why is this necessary for stream ciphers?
- Cryptographically secure pseudo-random number generator requires unpredictable sequences
 - satisfies the "next-bit test": given consecutive sequence of bits output (but not seed), next bit must be hard to predict
 - withstands "state compromise extensions": given sequences from bits k+1 on, should be difficult to predict earlier bits
- Also useful for generating temporary keys, etc.

Stream Cipher – Illustrated

Properties of Stream Ciphers

- Typical stream ciphers are very fast.
- If the same stream is used twice ever, then easy to break.
- Highly malleable
 - Easy to change ciphertext so that plaintext changes in predictable, e.g., flip bits
 - which of the three properties (confidentiality, integrity, availability) is violated here?

Stream Ciphers vs. OTP

- Length of keys: keys are shorter
- Randomness of keys:
 - keys are pseudo-randomly generated
- One-time use of keys:
 - keys can be used once since they are "cheap"
 - can derive one-time keys from the initial key

Example of Real Stream Ciphers

• RC4

- Simple, fast stream cipher, with relatively low level of security
- Most widely implemented stream cipher in software
- Widely supported (for example in SSL/TLS, WEP and Microsoft Office)
- A5/1
 - Used in GSM to secure the radio link
- E0
 - Used in Bluetooth

Modern Cryptography

Block Ciphers

Modern Cryptography - Revisit

- One thread of defeating frequency analysis
 - Use different keys in different locations
 - Example: one-time pad, stream ciphers
- Another way to defeat frequency analysis
 - Make the unit of transformation larger, rather than encrypting letter by letter, encrypting block by block
 - Example: block cipher

Block vs. Stream Ciphers

Stream cipher

100110110100010111010010

110010011101010010001001

Block cipher

100110110100010111010010

100110 110100 010111 010010

110010 011101 010010 001001

1100100111010100100010011

Block Ciphers

- An ideal block cipher is a substitution cipher from {0,1}ⁿ to {0,1}ⁿ
 - Also known as a random permutation
 - Each key determines one permutation on the plaintext space
- Is this practical?
 - What is the total number of keys?
 - What is the length of a key?

Practical Block Ciphers

- The best block cipher should be a pseudo-random permutation (PRP)
- For n-bit plaintext and ciphertext blocks and a fixed key, the encryption function is a bijection; E: P_n X K → C_n s.t. for all key k ∈ K, E(x, k) is an invertible mapping written E_k(x).
- The inverse mapping is the decryption function, $y = D_k(x)$ denotes the decryption of plaintext x under k.

Block Ciphers – Terminology

- Block size: in general larger block sizes mean greater security.
- Key size: in general larger key size means greater security (larger key space).
- Encryption modes: define how messages larger than the block size are encrypted, very important for the security of the encrypted message.

Next Lecture

- Modern Cryptography:
 - Block ciphers.
 - Hash Functions.
 - Message Authentication Codes.
- Readings for next lecture:
 - Anderson's book sections (5.5), (5.3.1) and (5.6.2).