

E-beam Strategies

- Motivation
- Stage movement strategies
- EBL writing strategies

Motivation

Applications of EBL

- mask fabrication (e.g. chromium on glass)
- direct write (rapid prototyping)
- nano devices in R&D
-

different <u>writing strategies</u> required

Recommended Literature:

SPIE HANDBOOK OF MICROLITHOGRAPHY, MICROMACHINING AND MICROFABRICATION Volume 1: Microlithography, Chapter 2.1

Stage Movement Strategies

versus

stationary stage

moving stage

"write-on-the-fly"

EBL Writing Strategies

EBL Methods

EBL Writing Strategies

strategy	beam	scan mode	stage
1 (Raith)	gaussian	vector	fixed
2 (Etec)	gaussian	raster	moving
3 (Leica)	shaped		fixed

5

www.raith.com

1st Strategy (Raith)

gaussian beam, vector scan, fixed stage

1st Strategy (Raith)

gaussian beam, vector scan, fixed stage

meander mode

line mode

1st Strategy (Raith)

gaussian beam, vector scan, fixed stage

- + fast writing of sparse patterns (unwritten areas are skipped)
- + easy dose variation from shape to shape
- settling time and hysteresis
 have to be calibrated
- overhead time caused by increased stage settling time

8

→ Applications: nano lithography, R&D, ...

www.raith.com

2nd Strategy (Etec)

gaussian beam, raster scan, moving stage

(e.g. used by MEBES (Etec Systems Inc.))

9

2nd Strategy (Etec)

gaussian beam, raster scan, moving stage

- + very simple
- + very repeatable --- calibration possible
- sparse patterns take as long as dense patterns
- difficult to adjust dose during writing

Applications: mask making, R&D, ...

3rd Strategy (Leica)

shaped beam, moving stage

3rd Strategy (Leica)

shaped beam, moving stage

- + » 10 x <u>faster</u> than equivalent gaussian beam machines
- extremely complex electron optical column
- complicated <u>calibration routines</u>
- resolution and focus varies with shape size

Applications: mask making,

advanced chip development

Extension: Cell projection (one of the square apertures is replaced by a more complex shape such as a DRAM cell.

Summary: 3 Strategies

	U	
	C	Į
	C	
	Č	
,	C	J
	ā	1
	=	
	2	2
_		
		_
1	Y	7
_	I	_

www.raith.com

strategy	beam	scan mode	stage
1 (Raith)	gaussian	vector	fixed
2 (Etec)	gaussian	raster	moving
3 (Leica)	shaped		fixed

Summary: Strategy used by Raith

Applications:

Nano device fabrication, R&D

14