

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа

«Динамические системы и модели биологии»

«Часть 1: Динамические системы с дискретным временем»

Студент 315 группы И.В. Шамков

Преподаватель к.ф.-м.н., доцент И.В. Востриков

Содержание

1 Постановка задачи

• Одномерная система:

$$u_{t+1} = r \cdot \sqrt{u_t} (1 - au_t^3), a > 0, r > 0, u_t \in \mathbb{R}_+, \forall t \in \mathbb{Z}_+$$
 (1.1)

• Двумерная система:

$$u_{t+1} = r \cdot \sqrt{u_t} (1 - a u_{t+1}^3), a > 0, r > 0, u_t \in \mathbb{R}_+, \forall t \in \mathbb{Z}_+$$
 (1.2)

Необходимые задачи:

- 1. Найти неподвижные точки.
- 2. Исследовать устойчивость неподвижных точек в зависимости от значений параметров.
- 3. Проверить существование циклов длиной 2 и 3.
- 4. В случае существования цикла длиной 3 построить бифуркационную диаграмму.
- 5. Построить график показателя Ляпунова в зависимости от значений параметра.
- 6. В случае системы с запаздыванием проверить возможность возникновения бифуркации Неймарка-Сакера.

2 Исследование одношаговой системы

2.1 Нахождение неподвижных точек

Введём определение неподвижной точки для исследования дискретной одношаговой системы 1.1

Определение. Точка $u^* \in \mathbb{R}$ называется неподвижной точкой системы $u_{t+1} = f(u_t)$, если $u^* = f(u^*)$, где $f : \mathbb{R} \mapsto \mathbb{R}$.

Рассмотрим $f = f(u, a, r) = r\sqrt{u}(1 - au^3)$. Тогда для нахождения неподвижный точек требуется решить уравнение f(u, a, r) = u.

$$r\sqrt{u}(1 - au^3) = u$$

$$r\sqrt{u}(1 - au^3) - u = 0$$

$$\sqrt{u} \cdot (r - aru^3 - \sqrt{u}) = 0$$

$$\begin{cases} u = 0, \\ (r - aru^3 - \sqrt{u}) = 0 \end{cases}$$

Из системы следует, что первая неподвижная точка $u_1^*=0$. Исследуем второе уравнение из системы: $r-aru^3=\sqrt{u}$. Аналитического решения этого уравнения не существует, однако попробуем выяснить количество решений и их зависимость от параметров a, r. Рассмотрим функцию $f(u)=\sqrt{u}$. $g'(u)=\frac{1}{2\sqrt{u}}>0$ для $\forall u>0$ (по условию) \Rightarrow функция f(u) возрастает на \mathbb{R}_+ .

Аz Исследуем функцию $g(u) = r - aru^3$. Исследуем производную, чтобы найти промежутки возрастания-убывания $g(u).g'(u) = -3aru^2$. Тогда для $\forall a>0, r>0$ g(u) убывает на \mathbb{R}_+ . Следовательно существует единственное некоторое нетривиальное решение $\tilde{u}: f(\tilde{u}) = g(\tilde{u})$. Однако аналитически выразить решение не представляется возможным.

Рис. 1. Графики $g(u) = r - aru^3$ и $f(u) = \sqrt{u}$ при фиксированном r = 1 и $a \in [1, 10]$ красными точками помечено решение уравнения f(u) = g(u)

2.2 Исследование устойчивости неподвижных точек

Сначала дадим теоретическую сводку об устойчивости и ассимптотическом устойчивости точек.

Пусть задана дискретная система:

$$u_{t+1} = f(u_t), f: \mathbb{R}_+ \mapsto \mathbb{R}_+$$
.

Пусть также задано начальное приближение u_0 .

Определение. (Устойчивость по Ляпунову)

Неподвижная точка u^* называется $\underline{ycmoйчивой}$ точкой по Ляпунову, если: для $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0$: $\forall u_0 : |u_0 - u^*| < \delta \Rightarrow |u_t - u^*| < \varepsilon$ для $\forall t \in \mathbb{Z}_+$. Кроме того, если $\lim_{t \to \infty} f(u_t) = u^*$, то точка u^* называется accumnmomuvecku ycmoйчивой.

Определение. Устойчивые неподвижные точки называются $\underline{ammpaкmopamu}$, а неустойчивые неподвижные точки называются $\underline{peneллepamu}$.

Утверждение 2.1. Пусть задана система $\ref{eq:condition}$ и f — непрерывно-дифференцируемая функция на \mathbb{R} , u^* — неподвижная точка системы $\ref{eq:condition}$, тогда есть три случая:

- 1. Если $|f'(u^*)| < 1$, то u^* ассимптотически устойчива.
- 2. Если $|f'(u^*)| > 1$, то u^* неустойчива.
- 3. Если $|f'(u^*)| = 1$, то устойчивость точки неопределенна.

Найдём производную функции:

 $f(u) = r\sqrt{u} - aru^{\frac{7}{2}}, \ f'(u) = \frac{r}{2\sqrt{u}} + \frac{7}{2}aru^{\frac{5}{2}}$. Рассмотрим $\lim_{u \to u^*} f'(u) = \infty \Rightarrow u^*$ — неустойчива. Наглядно показано на следующем графике.

Рис. 2. Начальное приближение $u_0 = 0.1$, фиксированные $a = 1, r = 1, t = \overline{0,10}$

Видно, что траектория не сходится к неподвижной точке $u^* = 0$.

2.3 Исследование существования циклов длинной 2 и 3

Дадим теоретическую сводку.