第十六章电解质溶液

物理化学多媒体课堂教学软件 V1.0版

物理化学多媒体课堂教学软件 V1.0版

电解质溶液—溶质溶解于溶剂后完全或部分电离 为离子的溶液,相应溶质称为电解质

16-2 电解质溶液的滑度

物理化学多媒体课堂教学软件 V1.0版

$$\mathbf{M}_{\nu_{+}}\mathbf{X}_{\nu_{-}} \quad \longleftarrow \quad \nu_{+}\mathbf{M}^{\mathbf{z}_{+}} + \nu_{-}\mathbf{X}^{\mathbf{z}_{-}}$$

$$v_{+}z_{+} + v_{-}z_{-} = 0$$

例:
$$H_2SO_4$$
 \rightleftharpoons $2H^+ + SO_4^{2-}$

$$v_{+} = 2$$
 $v_{-} = 1$ $z_{+} = +1$ $z_{-} = -2$

$$\mu_{A} = \mu_{A}^{*} + RT \ln a_{A}$$

$$\mu_{Bu} = \mu_{b,Bu}^{**} + RT \ln a_{b,Bu}$$

$$\mu_{+} = \mu_{b,+}^{**} + RT \ln a_{b,+}$$

$$\mu_{-} = \mu_{b,-}^{**} + RT \ln a_{b,-}$$

$$a_{A} = x_{A} \gamma_{A}$$
 $a_{b,-} = (b_{-}/b^{\circ}) \gamma_{b,-}$ $a_{b,Bu} = (b_{Bu}/b^{\circ}) \gamma_{b,Bu}$ $a_{b,+} = (b_{+}/b^{\circ}) \gamma_{b,+}$

$$\mu_{A} = \mu_{A}^{*} + RT \ln a_{A}$$

$$\mu_{Bu} = \mu_{b,Bu}^{**} + RT \ln a_{b,Bu}$$

$$\mu_{+} = \mu_{b,+}^{**} + RT \ln a_{b,+}$$

$$\mu_{-} = \mu_{b,-}^{**} + RT \ln a_{b,-}$$

$$\mathbf{M}_{\nu_{+}}\mathbf{X}_{\nu_{-}}$$
 \longrightarrow $\nu_{+}\mathbf{M}^{\mathbf{z}_{+}}+\nu_{-}\mathbf{X}^{\mathbf{z}_{-}}$

$$\sum v_{\rm B} u_{\rm B} = 0$$

$$\implies \mu_{\text{Bu}} = \nu_{+}\mu_{+} + \nu_{-}\mu_{-}$$

$$\mathbf{M}_{\nu_{+}}\mathbf{X}_{\nu_{-}}$$
 \longrightarrow $\nu_{+}\mathbf{M}^{\mathbf{z}_{+}}+\nu_{-}\mathbf{X}^{\mathbf{z}_{-}}$

$$\sum \nu_{\rm B} u_{\rm B} = 0 \quad \Longrightarrow \quad \left[\mu_{\rm Bu} = \nu_{+} \mu_{+} + \nu_{-} \mu_{-} \right]$$

$$K^{\Theta} \stackrel{\text{def}}{=} \exp{-\frac{\sum_{\mathbf{B}} v_{\mathbf{B}} \mu_{\mathbf{B}}^{\Theta}}{RT}} \approx \exp{\frac{\mu_{b,\mathbf{Bu}}^{**} - v_{+} \mu_{b,+}^{**} - v_{-} \mu_{b,-}^{**}}{RT}}$$

$$\mathbf{M}_{\nu_{+}}\mathbf{X}_{\nu_{-}}$$
 \longrightarrow $\nu_{+}\mathbf{M}^{\mathbf{z}_{+}}+\nu_{-}\mathbf{X}^{\mathbf{z}_{-}}$

$$\sum v_{\rm B} u_{\rm B} = 0 \quad \Longrightarrow \quad \left[\mu_{\rm Bu} = v_{+} \mu_{+} + v_{-} \mu_{-} \right]$$

$$K^{\Theta} \approx K_a = \frac{a_{b,+}^{v_+} a_{b,-}^{v_-}}{a_{b,Bu}}$$

2. 电解质作为整体的活度

$$\mu_{\rm B} = \mu_{\rm B}^{**} + RT \ln a_{\rm B}$$

$$\mu_{\rm B} = \mu_{\rm Bu}$$

2. 电解质作为整体的活度

$$\mu_{\rm B} = \mu_{\rm B}^{**} + RT \ln a_{\rm B}$$

$$dG = \mu_{B}dn_{B}$$

$$= \mu_{Bu}dn_{Bu} + \mu_{+}dn_{+} + \mu_{-}dn_{-}$$

$$dn_{B} - dn_{Bu} = \frac{dn_{+}}{v_{+}} = \frac{dn_{-}}{v_{-}}$$

$$dG = (\mu_{Bu} - v_{+}\mu_{+} - v_{-}\mu_{-})dn_{Bu} + (v_{+}\mu_{+} + v_{-}\mu_{-})dn_{B}$$

$$= (v_{+}\mu_{+} + v_{-}\mu_{-})dn_{B} = \mu_{Bu}dn_{B}$$

$$\mu_{B} \stackrel{\square}{=} \mu_{Bu} = v_{+}\mu_{+} + v_{-}\mu_{-}$$

2. 电解质作为整体的活度

$$\mu_{\rm B} = \mu_{\rm B}^{**} + RT \ln a_{\rm B}$$

$$//$$

$$\mu_{\rm Bu} = \mu_{b,\rm Bu}^{**} + RT \ln a_{b,\rm Bu}$$

$a_{\rm B}$ 的参考状态

$$\mu_{\mathrm{B}}^{**} = \mu_{b,\mathrm{Bu}}^{**}$$

$$a_{\rm B} = a_{b,{\rm Bu}} = \frac{a_{b,+}^{\nu_+} a_{b,-}^{\nu_-}}{K_a}$$

$$\mathbf{M}_{\nu_{+}}\mathbf{X}_{\nu_{-}} \quad \longleftarrow \quad \nu_{+}\mathbf{M}^{\mathbf{z}_{+}} + \nu_{-}\mathbf{X}^{\mathbf{z}_{-}}$$

3. 离子平均活度

$$\mathbf{M}_{\nu_{+}}\mathbf{X}_{\nu_{-}} \qquad \qquad \mathbf{\nu}_{+}\mathbf{M}^{\mathbf{z}_{+}} + \mathbf{\nu}_{-}\mathbf{X}^{\mathbf{z}_{-}}$$

$$\boldsymbol{a}_{\pm} \stackrel{\mathrm{def}}{=\!\!\!=} \left(\boldsymbol{a}_{b,+}^{v_+} \boldsymbol{a}_{b,-}^{v_-} \right)^{\!\!1/v}$$

$$oldsymbol{b}_{\pm} \stackrel{ ext{def}}{=\!\!\!=\!\!\!=\!\!\!=} \left(oldsymbol{b}_{+}^{
u_{+}} oldsymbol{b}_{-}^{
u_{-}} \right)^{\!1/
u}$$

$$v = v_+ + v_-$$

$$\gamma_{\pm} \stackrel{\mathrm{def}}{=} \left(\gamma_{+}^{\nu_{+}} \gamma_{-}^{\nu_{-}} \right)^{1/\nu}$$

$$a_{\pm} = \left(\frac{b_{\pm}}{b^{\bullet}}\right) \gamma_{\pm}$$

$$a_{\rm B} = a_{b, \rm Bu}$$

$$K_a = \frac{a_{\pm}^{v}}{a_{\rm B}}$$

4. 第一类电解质溶液

$$\mu_{\rm B} = \mu_{\rm B}^{**} + RT \ln a_{\rm B} = v_{+} \mu_{+} + v_{-} \mu_{-}$$

$$\mu_{\rm B}^{**} = \nu_{+} \mu_{b,+}^{**} + \nu_{-} \mu_{b,-}^{**}$$

约定

$$a_{\rm B} = a_{b,+}^{v_+} a_{b,-}^{v_-} = a_{\pm}^{v_-}$$

 $K_a = 1$

$$\boldsymbol{b}_{\scriptscriptstyle{+}} = \boldsymbol{v}_{\scriptscriptstyle{+}} \boldsymbol{b}$$

$$b_{\pm} = b \left(v_{+}^{v_{+}} v_{-}^{v_{-}} \right)^{1/v}$$

$$b_{-} = v_{-}b$$

$$a_{\pm} = (b/b^{\Theta})(v_{+}^{v_{+}}v_{-}^{v_{-}})^{1/v}\gamma_{\pm}$$

表16-1各种价型电解质的 a_{\pm} 和 b_{\pm} 与b的关系

类型	电解质例	$b_{\pm} = b(v_{+}^{v_{+}}v_{-}^{v_{-}})^{1/v}$	$a_{\pm} = \left(\frac{b_{\pm}}{b^{\bullet}}\right) \gamma_{\pm}$	a _± ^v
1-1	NaCl	В	$(b/b^{e})\gamma_{\pm}$	$(b/b^{\Theta})^2 \gamma_{\pm}^2$
2-1	CaCl ₂	$4^{1/3}b$	$oldsymbol{4^{rac{1}{3}}}(oldsymbol{b}/oldsymbol{b^{e}})\gamma_{\pm}$	$4(b/b^{\Theta})^3 \gamma_{\pm}^3$
2-2	CuSO ₄	b	$(b/b^{\Theta})\gamma_{\pm}$	$(b/b^{\circ})^2 \gamma_{\pm}^2$
3-1	LaCl ₃	$27^{1/4}b$	$27^{rac{1}{4}}(b/b^{ m e}$) γ_{\pm}	

25℃下 b = 2mol·kg⁻¹ 的KCl水溶液

$$\gamma_{b,\pm} = 0.573$$

$$\gamma_{\rm A} = 1.006$$

5. 溶剂渗透因子

$$\mu_{A} = \mu_{A}^{*} + RT \ln a_{A}$$

$$a_{A} = x_{A} \gamma_{A}$$

$$\phi = \frac{RT \ln a_{A}}{RT \ln x_{A}} = 1 + \frac{\ln \gamma_{A}}{\ln x_{A}}$$

 $\phi = \frac{\det}{RT \ln x_A} \frac{\mu_A - \mu_A^*}{RT \ln x_A}$

理想稀溶液

$$\phi = 1$$
 $\gamma_A = 1$

稀溶液

$$\phi = \frac{RT \ln a_{A}}{RT \ln x_{A}} = 1 + \frac{\ln \gamma_{A}}{\ln x_{A}} \approx 1 + \frac{\ln \gamma_{A}}{x_{A} - 1}$$

$$\ln x_{A} = x_{A} - 1 - (x_{A} - 1)^{2} / 2 + \dots \approx x_{A} - 1$$

$$x_{\rm A} = \frac{M_{\rm A}^{-1}}{M_{\rm A}^{-1} + vb} = \frac{1}{1 + vbM_{\rm A}} \approx 1 - vbM_{\rm A}$$

$$\phi = -\frac{\mu_{A} - \mu_{A}^{*}}{RTvbM_{A}} = 1 - \frac{\ln \gamma_{A}}{vbM_{A}}$$

25℃下 b = 2mol·kg⁻¹的KCl水溶液

$$\gamma_{b,\pm} = 0.573$$

$$\gamma_{\rm A}=1.006$$

$$\phi = 0.912$$

6. 如何得到活度因子和渗透因子

表 16-2 KCl、MgCl,溶液渗透因子和平均活度因子,25℃

b	K	Cl	MgCl ₂	
$\overline{\text{mol} \cdot \text{kg}^{-1}}$	φ	${\gamma}_{\pm}$	φ	γ _±
0.1	0.927	0.770	0.861	0.528
0.2	0.913	0.718	0.877	0.488
0.7	0.897	0.626	1.004	0.505
1.2	0.899	0.593	1.184	0.630
2.0	0.912	0.573	1.523	1.051
4.5	0.980	0.583	2.783	8.72
5.0	107	77	3.048	13.92

注: 引自 R.A. Robinson, R.H. Stokes, "Electrolyte Solutions", 2nd ed., Butterworth, 1970.

- •在稀溶液中 / ±主 要决定于浓度和 电解质的价型, 与离子的本性关 系较小。
- •浓度较高时,同一价型中不同电解质的差异才逐渐显著起来。
- · 当浓度很稀时, $lg\gamma_{\pm}$ 与 \sqrt{b} 还近似表现出线性关系

$\lg \gamma_{\pm} \propto \sqrt{b}$

$$\lg \gamma_{\pm} = -B\sqrt{I}$$

离子强度

$$I \stackrel{\text{def}}{=} \frac{1}{2} \sum_{i} b_{i} z_{i}^{2}$$

$$I \stackrel{\text{def}}{=} \frac{1}{2} \sum_{i} c_{i} z_{i}^{2}$$

第一类电解质溶液

$$b_i = v_i b$$

$$I = \frac{1}{2} \left(v_{+} z_{+}^{2} + v_{-} z_{-}^{2} \right) b$$

16-3 电解质溶液活度的理论和半 经验方法

物理化学多媒体课堂教学软件 V1.0版

1. 离子互吸理论

(1)离子氛的概念;

薄壳在中心离子表面处所产生的电势:

$$\phi(a) = -\frac{z_j e}{4\pi\varepsilon (a + \kappa^{-1})}$$

中心离子与离子氛的静电相互作用能:

$$E = \frac{1}{2}z_j e\phi(a) = -\frac{z_j^2 e^2}{8\pi\varepsilon(a + \kappa^{-1})}$$

离子在实际溶液与理想稀溶液中化学势之差:

$$\mu_j - \mu_j \text{(isol)} = LE = -\frac{Lz_j^2 e^2}{8\pi\varepsilon(a + \kappa^{-1})}$$

离子在实际溶液与理想稀溶液中化学势之差:

$$\mu_j - \mu_j \text{(isol)} = LE = -\frac{Lz_j^2 e^2}{8\pi\varepsilon(a + \kappa^{-1})}$$

$$\ln \gamma_j = -\frac{z_j^2 e^2}{8\pi\varepsilon kT(a + \kappa_{\bullet}^{-1})}$$

???

(2) 离子在离子氛中的分布服从玻尔兹曼分布;

$$\psi(r) = \frac{z_j e}{4\pi \varepsilon r} + \phi(r)$$

$$C_i = C_{i0} \exp{-\frac{z_i e \psi(r)}{kT}}$$

$$\rho(r) = \sum_{i} C_{i} z_{i} e$$

$$= \sum_{i} C_{i0} z_{i} e \exp{-\frac{z_{i} e \psi(r)}{kT}}$$

$$= -\sum_{i} C_{i0} z_{i}^{2} e^{2} \frac{\psi(r)}{kT}$$

(3) 电荷密度与电势间遵守泊松方程;

$$\frac{1}{r}\frac{d^2[r\psi(r)]}{dr^2} = -\frac{\rho(r)}{\varepsilon}$$

利用电中性等条件,可导得:

$$\kappa^2 = \frac{2e^2L\rho_{\rm s}I}{\varepsilon kT}$$

$$\psi(r) = \frac{z_j e}{4\pi\varepsilon} \cdot \frac{\exp(\kappa a)}{1 + \kappa a} \cdot \frac{\exp(-\kappa r)}{r}$$

$$\phi(r) = \psi(r) - \frac{z_j e}{4\pi \varepsilon r} = \frac{z_j e}{4\pi \varepsilon r} \left(\frac{\exp(\kappa a)}{1 + \kappa a} \exp(-\kappa r) - 1 \right)$$

$$\kappa^{2} = \frac{2e^{2}L\rho_{s}I}{\varepsilon kT} \qquad \qquad \ln \gamma_{j} = -\frac{z_{j}^{2}e^{2}}{8\pi\varepsilon kT(a+\kappa^{-1})}$$

德拜-休克尔活度因子方程

$$\ln \gamma_j = -\frac{Az_j^2 \sqrt{I}}{1 + Ba\sqrt{I}}$$

$$A = \frac{e^3 L^{1/2} \rho_{\rm s}^{1/2}}{4\pi \sqrt{2} (\varepsilon kT)^{3/2}}$$

$$B = \left(\frac{2e^2L\rho_{\rm s}}{\varepsilon kT}\right)^{1/2}$$

25℃, H₂O

$$A = 1.1709 \text{mol}^{-\frac{1}{2}} \cdot \text{kg}^{\frac{1}{2}}$$

$$B = 0.32816 \text{mol}^{-\frac{1}{2}} \cdot \text{kg}^{\frac{1}{2}} \cdot \text{m}^{-1}$$

德拜-休克尔活度因子方程

$$\ln \gamma_j = -\frac{Az_j^2 \sqrt{I}}{1 + Ba\sqrt{I}}$$

$$\gamma_{\pm} \stackrel{\mathrm{def}}{=} \left(\gamma_{+}^{\nu_{+}} \gamma_{-}^{\nu_{-}} \right)^{1/\nu}$$

$$\ln \gamma_{\pm} = \frac{Az_{+}z_{-}\sqrt{I}}{1 + Ba\sqrt{I}}$$

德拜-休克尔活度因子方程

$$\ln \gamma_{\pm} = \frac{Az_{+}z_{-}\sqrt{I}}{1 + Ba\sqrt{I}}$$

如果浓度很稀, $Ba\sqrt{I}$ 可略,得:

德拜-休克尔极限公式

$$\ln \gamma_{\pm} = A z_{+} z_{-} \sqrt{I}$$

2. 离子水化理论

3. 半经验方法

古根海姆(E.A.Guggenheim)采用下式

$$\ln \gamma_{\pm} = \frac{Az_{+}z_{-}\sqrt{I}}{1+\sqrt{I}} + Bb$$
 短程相互作用项

16-4 电解质溶液活度的应用

物理化学多媒体课堂教学软件 V1.0版

电 解质溶液活度的应用

相平衡

化学平衡

$$K = 6$$
 $\pi = 2$ $R = 2$ $R' = 1$

$$f = 6 - 2 + 2 - 2 - 1 = 3$$

$$NH_{3}(g) \iff NH_{3}(aq)$$

$$py_{NH_{3}} = K_{Hb,NH_{3}}(b_{NH_{3}}/b^{\circ})\gamma_{b,NH_{3}}$$

$$H_{2}O(g) \iff H_{2}O(aq)$$

$$py_{H_{2}O} = p_{H_{2}O}^{*} x_{H_{2}O} \gamma_{H_{2}O}$$

$$NH_{3}(aq) + H_{2}O(aq) \iff NH_{4}^{+} + OH^{-}$$

$$K_{a1} = \frac{a_{b,NH_{4}^{+}} a_{b,OH^{-}}}{a_{b,NH_{3}} a_{H_{2}O}} = \frac{(b_{NH_{4}^{+}} / b^{\theta}) \gamma_{b,NH_{4}^{+}} (b_{OH^{-}} / b^{\theta}) \gamma_{b,OH^{-}}}{(b_{NH_{3}} / b^{\theta}) \gamma_{b,NH_{3}} \cdot x_{H_{2}O} \gamma_{H_{2}O}}$$

$$H_2O(aq) \iff H^+ + OH^-$$

$$K_{a2} = \frac{a_{b,H^{+}}a_{b,OH^{-}}}{a_{H_{2}O}} = \frac{(b_{H^{+}}/b^{\theta})\gamma_{b,H^{+}}(b_{OH^{-}}/b^{\theta})\gamma_{b,OH^{-}}}{x_{H_{2}O}\gamma_{H_{2}O}}$$

$$\boldsymbol{b}_{\mathrm{NH}_{4}^{+}} + \boldsymbol{b}_{\mathrm{H}^{+}} = \boldsymbol{b}_{\mathrm{OH}^{-}}$$

理论结果与实验结果的比较:

德拜-休克尔极限公式:

$$\ln \gamma_{\pm} = A z_{+} z_{-} \sqrt{I}$$

实验关联:

$$\lg \gamma_{\pm} = -B\sqrt{I}$$

$$B = -Az_{+}z_{-} / 2.303$$

25°C, H₂O $A = 1.1709 \text{mol}^{\frac{1}{2}} \cdot \text{kg}^{\frac{1}{2}}$

16-5 电解质溶液的导电机理

物理化学多媒体课堂教学软件 V1.0版

第一类导体→依靠自由电子导电 第二类导体→依靠离子的迁移与电极反应导电

法拉第定律

当电流通过电解质溶液时,电极反应的反应进度 ξ 与通过的电量 Q 成正比,与反应电荷数 z 成反比。

$$\xi = \frac{n_{\rm B} - n_{\rm B}(0)}{v_{\rm B}} = \frac{Q}{zF}$$

 $Z_{\underline{}}$ 反应电荷数, \neq 离子电荷数 z_i

F 法拉第常数, = 96485 C·mol -1

$$\frac{1}{2}Cu^{2+} + e^{-} \rightarrow \frac{1}{2}Cu$$

$$z = 1$$

$$1$$

$$1 \text{ MB=Cu}, \ \nu_{\text{B}} = 1/2$$

$$1 \text{ mol Cu} \rightarrow Q = \frac{n_{\text{B}} - n_{\text{B}}(0)}{\nu_{\text{B}}} zF = 2 \times 96485C$$

$$1 \text{ MB=Cu/2}, \ \nu_{\text{B}} = 1$$

$$1 \text{ mol Cu/2} \rightarrow Q = \frac{n_{\text{B}} - n_{\text{B}}(0)}{\nu_{\text{B}}} zF = 1 \times 96485C$$

$$2 \text{ mol Cu/2} \rightarrow Q = \frac{n_{\text{B}} - n_{\text{B}}(0)}{\nu_{\text{B}}} zF = 2 \times 1 \times 96485C$$

$$4OH^- \rightarrow 2H_2O + O_2 + 4e^-$$

$$OH^- \to \frac{1}{2}H_2O + \frac{1}{4}O_2 + e^-$$

1mol $H_2O \rightarrow$

$$z = 4$$

取
$$B=H_2O$$
, $\nu_B=2$

$$Q = 1 \text{mol} \times 4F / 2$$

$$z = 1$$

取B=
$$H_2O$$
, $\nu_B=1/2$

$$Q = 1 \text{mol} \times 1F / (1/2)$$

16-6 离子的电迁移拳手和迁移数

物理化学多媒体课堂教学软件 V1.0版

1. 离子的电迁移率

表 16 3 25℃无限稀释时若干离子的电迁移率

离子	$\frac{u_{+}^{\infty} \times 10^{8}}{\text{m}^{2} \cdot \text{s}^{-1} \cdot \text{V}^{-1}}$	离子	$\frac{u_{-}^{\infty} \times 10^{8}}{\text{m}^{2} \cdot \text{s}^{-1} \cdot \text{V}^{-1}}$
$\mathrm{H}^{\!\scriptscriptstyle{+}}$	36.25	OH-	20.55
Li^+	4.01	F^-	5.74
$\mathrm{NH_4}^+$	7.61	C1 ⁻	7.92
Na^+	5.19	Br ⁻	8.09
K^{+}	7.62	I^-	7.96
Ag^+ Ca^{2+}	6.42	NO_3^-	7.40
	6.17	CH ₃ COO	4.24
La ³⁺	7.21	CO_3^{2-}	7.18
		SO_4^{2-}	8.27

$$Q_{+}$$
 = 正离子数量×正离子携带电量 $A_{s}\upsilon_{+}t$ $c\alpha\nu_{+}$ $z_{+}F$

$$Q_{+}$$
 = 正离子数量×正离子携带电量
= $A_{s}v_{+}t c\alpha v_{+} \times z_{+}F$
= $A_{s}c\alpha v_{+}z_{+}u_{+}EFt$

$$I_{+} = Q_{+} / t = A_{s} c \alpha v_{+} z_{+} u_{+} EF$$

$$I_{+} = A_{s} c \alpha v_{+} z_{+} u_{+} EF$$

$$I_{-} = A_{s} c \alpha v_{-} |z_{-}| u_{-} EF$$

$$I = I_{+} + I_{-} = A_{s} c \alpha (v_{+} z_{+} u_{+} + v_{-} | z_{-} | u_{-}) EF$$

2. 离子迁移数

$$t_{+} = \frac{\text{def}}{I_{+} + I_{-}} = \frac{Q_{+}}{Q_{+} + Q_{-}}$$

$$t_{-} = \frac{\text{def}}{I_{+} + I_{-}} = \frac{Q_{-}}{Q_{+} + Q_{-}}$$

$$t_+ + t_- = 1$$

迁移数与电迁移率的关系

$$t_{+} = \frac{A_{s}c\alpha v_{+}z_{+}u_{+}EF}{A_{s}c\alpha (v_{+}z_{+}u_{+} + v_{-}|z_{-}|u_{-})EF}$$

$$= \frac{v_{+}z_{+}u_{+}}{v_{+}z_{+}u_{+} + v_{-}|z_{-}|u_{-}|}$$

$$\overline{v}_+ z_+ = v_- |z_-|$$

$$t_{+} = \frac{u_{+}}{u_{+} + u_{-}}$$
 $t_{-} = \frac{u_{-}}{u_{+} + u_{-}}$

迁移数的实验测定

希托夫法

迁移数的实验测定

希托夫法

- n_前 电解前某电极区存在的某一离子的数量;
- **n**_后 电解后该电极区存在的该离子的数量;
- № 电极反应所引起的该离子数量的变化;
- n_迁 由于离子迁移所引起的该离子数量的变化。

$$n_{\rm ff} = n_{
m fl} \pm n_{
m el} \mp n_{
m fl}$$

例: 用希托夫法测定Cu2+的迁移数。在三 管中放入b=0.200 molkg-1 硫酸铜溶液,以铜 为电极,用20mA直流电通电约2-3h,实验 结束测得银库仑计阴极上析出Ag为 0.0405g, 迁移管阴极区溶液重量为 36.4340g, 其中含Cu为0.4417g。

解题思路: 选定阴极区为物料衡算对象 计算通电前后Cu²⁺物质量的变化 计算电极反应引起的Cu²⁺物质量的变化

通电后Cu2+物质的量

取基本单元 B=Cu²⁺

$$n_{\text{Cu}^{2+}, \text{ fi}} = \frac{m_{\text{Cu}^{2+}, \text{ fi}}}{M_{\text{Cu}^{2+}}} = \frac{0.4417g}{63.55g \cdot \text{mol}^{-1}}$$

$$= 6.950 \times 10^{-3} \text{mol}$$

通电前Cu2+物质的量?

通电前溶质溶剂

海质 溶剂 溶剂

通电前后溶剂的量保持不变

通电前Cu2+物质的量?

通电前

溶质

溶剂

溶质

溶剂

通电后

溶剂

溶液-溶质

Cu²⁺

CuSO₄

通电后CuSO₄物质的量(取基本单元B=CuSO₄)

$$CuSO_4 \rightarrow Cu^{2+} + SO_4^{2-}$$

$$\frac{n_{\text{CuSO}_4}}{v_{\text{cuSO}_4}} = \frac{n_{\text{Cu}^{2+}}}{v_{\text{Cu}^{2+}}} \qquad m_{\text{CuSO}_4} = \frac{M_{\text{CuSO}_4} m_{\text{Cu}^{2+}}}{M_{\text{Cu}^{2+}}}$$

$$m_{\text{CuSO}_4, \text{/fi}} = 0.4417\text{g} \times \frac{159.62}{63.55} = 1.1094\text{g}$$

通电前Cu2+物质的量

通电前后溶剂的量保持不变

$$m_{\text{CuSO}_4, \text{fi}} = 0.4417 \text{g} \times \frac{159.62}{63.55} = 1.1094 \text{g}$$
 $m_{\text{H}_2\text{O}, \text{fi}, \text{fi}} = \left(36.4340 - 1.1094 \frac{n_{\text{CuSO}_4}}{n_{\text{CuSO}_4}}\right) 46 \text{g}$
 $m_{\text{CuSO}_4, \text{fi}} = \left(\frac{35.3246}{1000} \times 0.200 \times M_{\text{CuSO}_4}\right) \text{g} = 1.1277 \text{g}$
 $n_{\text{Cu}^{2+}, \text{fi}} = \frac{m_{\text{CuSO}_4, \text{fi}}}{M_{\text{CuSO}_4}} = 7.065 \times 10^{-3} \text{mol}$

计算电极反应引起的Cu2+物质量的变化

$$Q = z_{Ag} F \frac{n_{Ag}}{v_{Ag}}$$

$$Q = z_{Cu^{2+}} F \frac{n_{Cu^{2+}}}{v_{Cu^{2+}}}$$

$$n_{\text{Cu}^{2+}} = \frac{z_{\text{Ag}} n_{\text{Ag}} v_{\text{Cu}^{2+}}}{z_{\text{Cu}^{2+}} v_{\text{Ag}}}$$

$$Ag^{+} + e \rightarrow Ag \qquad z = 1$$

$$v = 1$$

$$Cu^{2+} + 2e \rightarrow Cu \quad z = 2$$

$$v = 1$$

$$n_{\text{Cu}^{2+}} = \frac{1 \times 0.0405}{2 \times 107.87} \text{mol}^{-1}$$

= 1.878×10⁻⁴ mol⁻¹

物料衡算 $n_{\rm fl} = n_{\rm fl} \pm n_{\rm el} \mp n_{\rm fl}$

$$n_{\text{Cu}^{2+},\text{if}} = n_{\text{Cu}^{2+},\text{fi}} - n_{\text{Cu}^{2+},\text{ii}} + n_{\text{Cu}^{2+},\text{le}}$$

$$= (6.950 - 7.065 + 0.1878) \times 10^{-3} \text{ mol}$$

$$= 0.728 \times 10^{-4} \text{mol}$$

计算离子迁移数

$$t_{\text{Cu}^{2+}} = \frac{Q_{\text{Cu}^{2+}}}{Q} = \frac{n_{\text{Cu}^{2+}, \text{±}} \times z_{\text{Cu}^{2+}} F}{n_{\text{Ag}, \text{‡}} \times z_{\text{Ag}} F}$$

$$= \frac{n_{\text{Cu}^{2+}, \text{!!}} \times z_{\text{Cu}^{2+}}}{n_{\text{Cu}^{2+}, \text{!!}} \times z_{\text{Cu}^{2+}}} = \frac{0.728 \times 10^{-4}}{1.878 \times 10^{-4}}$$

$$= 0.388$$

$$t_{SO_4^{2}} = 1 - 0.388 = 0.612$$

希托夫法解题过程

- 基础: 物料(电量平衡)衡算;
- 选定某一电解区(阴极或阳极);
- 选定某种离子作计算对象;
- 假定(溶剂)水分子不发生迁移;
- 以(溶剂)水为基准求出某种离子的迁 移量:
- 计算离子携带电量。

16-7 电解质溶液的静电导率

物理化学多媒体课堂教学软件 V1.0版

1. 电导率

1. 电导率

$$\kappa \stackrel{\mathrm{def}}{=} \frac{1}{\rho} = G \begin{vmatrix} I \\ A_{\mathrm{s}} \end{vmatrix} = \frac{j}{E}$$
电导池常数 $E = V/I$

节首

- ·强酸和强碱的电导率最大, 盐类次之, 弱电屏炎的电导率最小。

2. 摩尔电导率

电极表面积为1m²,电极间 距为1m,溶液的电导 电极间距为1m,含1mo1 电解质的溶液的电导

2. 摩尔电导率

$$\Lambda_{\rm m} \stackrel{\rm def}{=} \kappa / c$$

$$\kappa = G \frac{l}{A_{\rm s}}$$

$$=G^{l^2}$$

电极表面积为1m²,电极间 距为1m,溶液的电导 电极间距为1m,含1mo1 电解质溶液的电导

$$A_{\rm m} = A_{\rm m}^{\infty} - A\sqrt{c}$$

科尔劳斯定律

2. 摩尔电导率

$$\Lambda_{\rm m} \stackrel{\rm def}{=} \kappa / c$$

$$\Lambda_{\rm m}({\rm CuSO_4}) = 2 \times \Lambda_{\rm m}(\frac{1}{2}{\rm CuSO_4})$$

$$\Lambda_{\rm m}[{\rm Al}({\rm NO}_3)_3] = 3 \times \Lambda_{\rm m}[\frac{1}{3}{\rm Al}({\rm NO}_3)_3]$$

摩尔电导率与离子电迁移率的关系

$$Q = A_{s} c \alpha (\nu_{+} z_{+} \nu_{+} + \nu_{-} | z_{-} | \nu_{-}) F \times t$$

$$I = A_{s} c \alpha v_{+} z_{+} (u_{+} + u_{-}) EF$$

$$A_{\rm m} = \frac{\kappa}{c} = \frac{I}{V} \cdot \frac{l}{A_{\rm s}} \cdot \frac{1}{c} = \alpha v_{+} z_{+} (u_{+} + u_{-}) F$$

$$(u_+ + u_-) = \frac{\Lambda_{\rm m}}{\alpha v_+ z_+ F}$$

摩尔电导率与离子电迁移率的关系

$$u_{+} = t_{+}(u_{+} + u_{-}) = \frac{t_{+}\Lambda_{m}}{\alpha v_{+}z_{+}F}$$

$$u_{-} = t_{-}(u_{+} + u_{-}) = \frac{t_{-}A_{m}}{\alpha v_{-}|z_{-}|F|}$$

$$\Lambda_{\rm m}^{\infty} = v_{+} z_{+} \left(u_{+}^{\infty} + u_{-}^{\infty} \right) F$$

$$v_+ = v_- = 1$$

$$\Lambda_{\rm m}^{\infty} = \left(u_{+}^{\infty} + u_{-}^{\infty}\right)F$$

$$\Lambda_{\rm m} = \alpha (u_+ + u_-) F$$

$$\alpha = \Lambda_{\rm m}/\Lambda_{\rm m}^{\infty}$$

3. 离子的摩尔电导率

$$\Lambda_{\rm m} = \alpha v_+ z_+ (u_+ + u_-) F$$

$$\Lambda_{\rm m} = \alpha \left(v_+ z_+ u_+ F + v_- z_- u_- F \right)$$

$$\lambda_{\rm B} \stackrel{\rm def}{=} |z_{\rm B}| u_{\rm B} F$$

$$\Lambda_{\rm m} = \alpha (v_+ \lambda_+ + v_- \lambda_-)$$

$$v_+ = v_- = 1$$
 $\Lambda_{\rm m} = \alpha(\lambda_+ + \lambda_-)$

离子独立运动定律

表 16-4 25℃时若干强电解质的无限稀释摩尔电导率

电解质	$\frac{\Lambda_{m}^{\infty}}{\mathbf{S} \cdot \mathbf{m}^{2} \cdot \mathbf{mol}^{-1}}$	差值	电解质	$\frac{\Lambda_{m}^{\infty}}{\mathbf{S} \cdot \mathbf{m}^{2} \cdot \mathbf{mol}^{-1}}$	差值
KCl	0.014986	3.483×10^{-3}	LiCl	0.011503	0.49×10^{-3}
LiCl	0.011503	3.483×10	LiNO ₃	0.01101	}0.49 × 10
KClO ₄	0.014004	3.406×10^{-3}	KCl	0.014986	0.490×10^{-3}
LiClO ₄	0.010598	3.400 × 10	KNO_3	0.014496	\(\int 0.490 \times 10 \)
			HCl	0.042616	0.49×10^{-3}
			HNO_3	0.04213) 30.49 × 10

离子独立运动定律

表 16-4 25℃时若干强电解质的无限稀释摩尔电导率

电解质	$\frac{\Lambda_{m}^{\infty}}{\mathbf{S} \cdot \mathbf{m}^{2} \cdot \mathbf{mol}^{-1}}$	差值	电解质	$\frac{\Lambda_{\mathrm{m}}^{\infty}}{\mathbf{S} \cdot \mathbf{m}^2 \cdot \mathbf{mol}^{-1}}$	差值
KCl LiCl	0.014986 0.011503	3.483×10^{-3}	LiCl LiNO ₃	0.011503 0.01101	0.49×10^{-3}
KClO ₄	0.014004	3.406×10^{-3}	KCl	0.014986	0.490×10^{-3}
LiClO ₄	0.010598)3.400 × 10	KNO ₃ HCl	0.014496 0.042616	
			HNO ₃	0.04213	0.49×10^{-3}

$$\Lambda_{\rm m}^{\infty}(\text{LiCl}) - \Lambda_{\rm m}^{\infty}(\text{LiNO}_3) = \Lambda_{\rm m}^{\infty}(\text{KCl}) - \Lambda_{\rm m}^{\infty}(\text{KNO}_3)$$

=
$$\Lambda_{\rm m}^{\infty}$$
 (HCl) - $\Lambda_{\rm m}^{\infty}$ (HNO₃) = 0.49 × 10⁻³ Sm² mol⁻¹

离子独立运动定律

无限稀释时正负离子的摩尔电 导率与溶液中的其他离子无关, 仅 决定于溶剂、温度和离子本性。

无限稀释时

$$\Lambda_{\rm m}^{\infty} = \nu_{+} \lambda_{+}^{\infty} + \nu_{-} \lambda_{-}^{\infty}$$

$$v_+ = v_- = 1$$

$$\Lambda_{\mathbf{m}}^{\infty} = \lambda_{+}^{\infty} + \lambda_{-}^{\infty}$$

离子独立运动定律

$$\Lambda_{m}^{\infty}(HAc) = \lambda^{\infty}(H^{+}) + \lambda^{\infty}(Ac^{-})$$

$$+ \lambda^{\infty}(Na^{+}) + \lambda^{\infty}(Cl^{-})$$

$$- \lambda^{\infty}(Na^{+}) - \lambda^{\infty}(Cl^{-})$$

$$= \Lambda_{m}^{\infty}(NaAc) + \Lambda_{m}^{\infty}(HCl) - \Lambda_{m}^{\infty}(NaCl)$$

$$= (91 + 426.2 - 126.5)S \cdot m^{2} \cdot mol^{-1}$$

$$= 390.7S \cdot m^{2} \cdot mol^{-1}$$

16-8 电导测定的 其它应用

物理化学多媒体课堂教学软件 V1.0版

1. 计算弱电解质的解离度lpha和解离平衡常数 $K_{ m c}$

$$\Lambda_{\rm m} = \alpha v_+ z_+ (u_+ + u_-) F$$

$$\Lambda_{\rm m}^{\infty} = v_+ z_+ \left(u_+^{\infty} + u_-^{\infty} \right) F$$

$$\alpha = \Lambda_{\rm m} / \Lambda_{\rm m}^{\infty}$$

设1-1价型电解质MX,浓度为c,离解度 a

$$\mathbf{M}\mathbf{X} \rightarrow \mathbf{M}^+ + \mathbf{X}^-$$

$$t=0$$

C

0

0

$$t=t$$

$$c-c\alpha$$

$$c_{\mathrm{M}^+}$$

$$c_{\mathbf{x}}$$

$$K_c = \frac{c_{\text{M}^+} c_{\text{X}^-}}{c_{\text{MX}}} = \frac{c\alpha^2}{1 - \alpha}$$

设1-1价型电解质MX,浓度为c,离解度 a

$$\mathbf{MX} \rightarrow \mathbf{M}^+ + \mathbf{X}^-$$

$$K_c = \frac{c_{\text{M}^+} c_{\text{X}^-}}{c_{\text{MX}}} = \frac{c\alpha^2}{1 - \alpha} = \frac{c\Lambda_{\text{m}}^2}{\Lambda_{\text{m}}^{\infty} (\Lambda_{\text{m}}^{\infty} - \Lambda_{\text{m}})}$$

$$\alpha = \Lambda_{\rm m} / \Lambda_{\rm m}^{\infty} I_{\rm m}^{\infty^2} - K_c \Lambda_{\rm m}^{\infty}$$

W.Ostwald 冲淡定律

由电导测定计算醋酸在水溶液中的离解平衡常数.

$$A_{\rm m}^{\infty} =$$

$$0.03916 \cdot {\rm m}^2 {\rm mol}^{-1}$$

$$K_c = 1.787 \times 10^{-5} \,\mathrm{mol} \cdot \mathrm{dm}^{-3}$$

斜率: $K_c \Lambda_m^{\infty^2} = 0.2740 \times 10^{-7} \text{ S}^2 \text{ m}^4 \text{ mol}^{-1} \text{ dm}^{-3}$

截距: $-K_c\Lambda_m^{\infty} = -0.6998 \times 10^{-6} \text{Sm}^2 \text{dm}^{-3}$

2. 计算微溶盐的溶解度c 和溶度积 $K_{\rm SP}$

BaSO₄, AgCl...

$$c = \frac{\kappa}{\Lambda_{\rm m}} \approx \frac{\kappa}{\Lambda_{\rm m}^{\infty}} = \frac{\kappa_{\rm RRR} - \kappa_{\rm r}}{v_{+} \lambda_{+}^{\infty} + v_{-} \lambda_{-}^{\infty}}$$

考虑因素

$$\Lambda_{\rm m} \approx \Lambda_{\rm m}^{\infty} = \nu_{+} \lambda_{+}^{\infty} + \nu_{-} \lambda_{-}^{\infty}$$

$$\kappa = \kappa_{\tilde{R}\tilde{R}} - \kappa_{\tilde{K}}$$

2. 计算微溶盐的溶解度c 和溶度积 K_{SP}

溶度积

$$K_{\mathrm{sp}} = c_{\mathrm{M}^{z+}}^{\nu+} c_{\mathrm{X}^{z-}}^{\nu-}$$

单位: c^{ν}

对于1-1价型的微溶盐,其溶度积

$$K_{\rm sp} = c_+ \cdot c_- = c^2$$

对于其它价型的微溶盐

$$K_{\rm sp} = c_{\rm M^{z+}}^{\nu+} c_{\rm X^{z-}}^{\nu-}$$

$$= (v_{+}c)^{\nu_{+}} \cdot (v_{-}c)^{\nu_{-}}$$

$$= v_{+}^{\nu_{+}} \cdot v_{-}^{\nu_{-}} \cdot c^{(\nu_{+}+\nu_{-})}$$

3. 计算水的离子积

纯水是弱电解质 H₂O → H+OH-

若作无限 稀释处理

$$\Lambda_{\rm m} \approx \Lambda_{\rm m}^{\infty} = \lambda_{+}^{\infty} + \lambda_{-}^{\infty}$$

按微溶 盐处理

$$c = c_{\text{H}^{+}} = c_{\text{OH}^{-}} = \frac{\kappa}{\lambda_{+}^{\infty} + \lambda_{-}^{\infty}}$$

= 1.003×10⁻⁷ mol·dm⁻³

对于纯水

$$\kappa = 5.5 \times 10^{-6} \,\mathrm{S} \cdot \mathrm{m}^{-1}$$

水的离子积

$$K_{\rm w} = c_{\rm H^+} \cdot c_{\rm OH^-} = 1.01 \times 10^{-14} \,\rm mol^2 \cdot dm^{-6}$$

4. 电导滴定

$$E_{R1} = \frac{R1 \cdot E}{R1 + R3}$$

$$||$$

$$E_{R2} = \frac{R2 \cdot E}{R2 + Rx}$$

$$\frac{R1}{R2} = \frac{R3}{Rx}$$

$$Rx = \frac{R2}{R1}R3$$