1.

Methods Homework 4 Notes

Nooreen Dabbish

February 19, 2015

1 Useful Theorems

Theorem 1. Suppose $\mathbf{Y} \sim MVN_n(\mu, \mathbf{Sigma})$, Σ positive definite. Also suppose $\mathbf{A}_{n \times n}$ symmetric and $rank(\mathbf{A}) = k$.

If $\mathbf{A}\mathbf{\Sigma}$ idempotent, $\mathbf{Y}'\mathbf{A}\mathbf{Y} \sim \chi_k^2(\mu'\mathbf{A}\mu)$.

Theorem 2. Suppose $\mathbf{Y} \sim MVN_n(\mu, \sigma^2\mathbf{I})$. And the product $\mathbf{B}\mathbf{A} = \mathbf{0}$, with A and B of appropriate size.

Then,

- (a) If \mathbf{A} symmetric, $\mathbf{Y'AY}$ and \mathbf{BY} are independent.
- (b) If both B and A symmetric, Y'AY and Y'BY are independent.

2 Distributions of interests

2.1 SSE/ σ^2

Using theorem 1 above, we can show:

$$\frac{SSE}{\sigma^2} = \frac{(\mathbf{Y} - \hat{\mathbf{Y}})'(\mathbf{Y} - \hat{\mathbf{Y}})}{\sigma^2} \sim \chi^2_{n-rank(X)}$$

Rearranging to find confidence limits for σ gives:

$$P\left(\sqrt{\frac{SSE}{\text{upper }\alpha/2\,\text{quantile of }\chi^2_{\text{n-rank}(\mathbf{X})}}} < \sigma < \sqrt{\frac{SSE}{\text{upper }\alpha/2\,\text{quantile of }\chi^2_{\text{n-rank}(\mathbf{X})}}}\right) = 1 - \alpha$$

2.2 Estimable functions $c'\beta$

For an estimable $\mathbf{c}'\beta$, we have:

$$\frac{\widehat{\mathbf{c}'\beta} - \mathbf{c}'\beta}{\sqrt{MSE}\sqrt{\mathbf{C}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}}} \sim t_{n-\mathrm{rank}(X)}$$

Note that $MSE = \frac{SSE}{n-\mathrm{rank}(X)}$. Rearranging to find 1 - α confidence limits for $\mathbf{c}^{\boldsymbol{\cdot}}\beta$, denoting $\mathbf{t}^{\star} =$ the upper $\alpha/2$ quantile of $\mathbf{t}_{n-\mathrm{rank}(X)}$, we have:

$$P\left(\widehat{\mathbf{c}'\beta} - t^*\sqrt{MSE}\sqrt{\mathbf{C}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}} < \mathbf{c}'\beta < \widehat{\mathbf{c}'\beta} + t^*\sqrt{MSE}\sqrt{\mathbf{C}'(\mathbf{X}'\mathbf{X})^{-}\mathbf{C}}\right) = 1 - \alpha$$