Theorem:

Let A be an n × n matrix. Then A is invertible if and only if:

- The number 0 is not an eigenvalue of A.
- The determinant of A is not zero

" A matrix must be **non-invertible** (i.e., rank-deficient) to have a **non-trivial** solution to Ax=0."

Imagine the matrix turns a square into another shape.

- If the shape becomes flat (like a line), the determinant = $0 \Rightarrow$ not invertible.
- If the shape stays 2D (stretched or rotated), the determinant $\neq 0 \Rightarrow$ invertible.

Theorem:

The eigenvalues of a triangular matrix are the entries on its main diagonal

Eigenvectors for different eigenvalues are Linearly Independent.

Theorem:

If v1,..., vr are eigenvectors that correspond to distinct eigenvalues λ 1, ..., λ r of an matrix A, then the set {v1, ..., vr} is linearly independent.

Theorem:

If A is a triangular matrix, then det A is the product of the entries on the main diagonal of A

The scalar λ is an eigenvalue of A if and only if the equation $(A-\lambda I)x = 0$ has a nontrivial solution, that is, iff equation has free variable.

Theorem:

Let A and B be n×m matrices.

a. A is invertible if and only if $det \neq 0$

- b. det AB=(det A)(det B)
- c. det (A)^T =det A

Orthogonal Matrix:

A square matrix having the same inverse and transpose. Cols are Orthonormal.

$$A^{(-1)} = A^{(T)}$$

 $A^{(T)} * A = I = A * A^{(T)}$

Orthogonal matrices have these properties:

- All columns (and rows) are:
 - Orthogonal to each other (dot product = 0)
 - Outlief (magnitude = 1)