STROKE PREDICTION USING HEALTH-CARE DATASET

IMPORTING LIBRARIES

LOADING THE DATASET

DATA PRE-PROCESSING

3]:[1 df.head()										
]:		id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type		
	0	9046	Male	67.0	0	1	Yes	Private	Urban		
	1	51676	Female	61.0	0	0	Yes	Self- employed	Rural		
	2	31112	Male	80.0	0	1	Yes	Private	Rura		
	3	60182	Female	49.0	0	0	Yes	Private	Urban		
	4	1665	Female	79.0	1	0	Yes	Self- employed	Rura		
	•										

```
In [7]:
            1 df.tail()
Out[7]:
                   id gender
                              age hypertension heart_disease ever_married work_type Residence_typ
           5105 18234 Female
                              80.0
                                             1
                                                          0
                                                                     Yes
                                                                             Private
                                                                                            Urba
                                                                              Self-
           5106 44873 Female 81.0
                                             0
                                                          0
                                                                                            Urba
                                                                     Yes
                                                                           employed
                                                                              Self-
           5107 19723 Female 35.0
                                             0
                                                          0
                                                                                             Rur
                                                                     Yes
                                                                           employed
           5108 37544
                                             0
                                                          0
                         Male 51.0
                                                                     Yes
                                                                             Private
                                                                                            Rur
           5109 44679 Female 44.0
                                             0
                                                          0
                                                                           Govt_job
                                                                     Yes
                                                                                            Urba
 In [7]:
              df.shape
Out[7]: (5110, 12)
 In [8]:
            1 df.columns
 Out[8]: Index(['id', 'gender', 'age', 'hypertension', 'heart disease', 'ever marrie
          ď,
                  'work_type', 'Residence_type', 'avg_glucose_level', 'bmi',
                  'smoking_status', 'stroke'],
                dtype='object')
In [12]:
              df.duplicated().sum()
Out[12]: 0
```

NULL VALUES TREATEMENT

```
In [13]:
              df.isnull().sum()
Out[13]: id
                                  0
                                  0
          gender
                                  0
          age
          hypertension
                                  0
          heart_disease
                                  0
          ever_married
                                  0
          work type
                                  0
          Residence_type
                                  0
          avg_glucose_level
                                  0
          bmi
                                201
          smoking_status
                                  0
                                  0
          stroke
          dtype: int64
```

In [14]: 1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	id	5110 non-null	int64
1	gender	5110 non-null	object
2	age	5110 non-null	float64
3	hypertension	5110 non-null	int64
4	heart_disease	5110 non-null	int64
5	ever_married	5110 non-null	object
6	work_type	5110 non-null	object
7	Residence_type	5110 non-null	object
8	<pre>avg_glucose_level</pre>	5110 non-null	float64
9	bmi	4909 non-null	float64
10	smoking_status	5110 non-null	object
11	stroke	5110 non-null	int64
المراد والملاكم	Cl+C4/2\+	(1/1) abiast([)	

dtypes: float64(3), int64(4), object(5)

memory usage: 479.2+ KB

In [15]: 1 df.describe()

Out[15]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	4909.000000
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237
std	21161.721625	22.612647	0.296607	0.226063	45.283560	7.854067
min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.500000
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.100000
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	33.100000
max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000

In [17]: 1 df.nunique()

Out[17]: id 5110 gender 3 age 104 hypertension 2 2 heart_disease 2 ever_married work_type 5 Residence_type 2 avg_glucose_level 3979 bmi 418 smoking_status 4

dtype: int64

stroke

2

```
In [4]:
          1 df['bmi'].fillna(df['bmi'].mean(),inplace=True)
          2 df.isnull().sum()
Out[4]: id
                              0
        gender
                              0
        age
                              0
                              0
        hypertension
                              0
        heart_disease
        ever_married
                              0
        work_type
                              0
        Residence_type
                              0
        avg_glucose_level
                              0
                              0
        bmi
                              0
        smoking_status
                              0
        stroke
        dtype: int64
```

EXPLORATORY DATA ANALYSIS

Out[5]:		gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_
	0	Male	67.0	0	1	Yes	Private	Urban	
	1	Female	61.0	0	0	Yes	Self- employed	Rural	
	2	Male	80.0	0	1	Yes	Private	Rural	
	3	Female	49.0	0	0	Yes	Private	Urban	
	4	Female	79.0	1	0	Yes	Self- employed	Rural	
	5105	Female	0.08	1	0	Yes	Private	Urban	
	5106	Female	81.0	0	0	Yes	Self- employed	Urban	
	5107	Female	35.0	0	0	Yes	Self- employed	Rural	
	5108	Male	51.0	0	0	Yes	Private	Rural	
	5109	Female	44.0	0	0	Yes	Govt_job	Urban	
	5110 r	ows × 1	1 colu	mns					

ut[6]:		gender	age	hypertension	heart_disease	work_type	Residence_type	avg_glucose_level
	0	Male	67.0	0	1	Private	Urban	228.69
	1	Female	61.0	0	0	Self- employed	Rural	202.21
	2	Male	80.0	0	1	Private	Rural	105.92
	3	Female	49.0	0	0	Private	Urban	171.23
	4	Female	79.0	1	0	Self- employed	Rural	174.12
				***	•••			
	5105	Female	0.08	1	0	Private	Urban	83.75
	5106	Female	81.0	0	0	Self- employed	Urban	125.20
	5107	Female	35.0	0	0	Self- employed	Rural	82.99
	5108	Male	51.0	0	0	Private	Rural	166.29
	5109	Female	44.0	0	0	Govt_job	Urban	85.28
	5110 r	ows × 10) colu	mns				
	4							•

Label Encoding

```
In [7]:
             from sklearn.preprocessing import LabelEncoder
             enc=LabelEncoder()
In [8]:
             Residence_type=enc.fit_transform(df['Residence_type'])
             Residence_type
Out[8]: array([1, 0, 0, ..., 0, 0, 1])
 In [9]:
             gender=enc.fit_transform(df['gender'])
             gender
Out[9]: array([1, 0, 1, ..., 0, 1, 0])
In [10]:
             smoking_status=enc.fit_transform(df['smoking_status'])
In [18]:
             work_type=enc.fit_transform(df['work_type'])
           1
```

```
In [12]:
              Residence_type=enc.fit_transform(df['Residence_type'])
In [19]:
              df['work_type']=work_type
              df['Residence type']=Residence_type
              df['smoking status' ]=smoking_status
           4 df['gender']=gender
              df["Residence_type"]= df["Residence_type"].replace("Urban", 1)
In [38]:
              df["Residence_type"]= df["Residence_type"].replace("Rural",0)
           3
In [39]:
              df.head()
Out[39]:
             gender age hypertension heart_disease work_type Residence_type avg_glucose_level
          0
                 1 67.0
                                  0
                                               1
                                                         2
                                                                                   228.69
                                                                                         36
                                                                       1
          1
                 0 61.0
                                                         3
                                                                                   202.21 28
                                  0
                                               0
                                                                       0
          2
                 1 80.0
                                  0
                                                         2
                                                                       0
                                                                                   105.92 32
          3
                 0 49.0
                                               0
                                                         2
                                                                       1
                                                                                   171.23 34
                 0 79.0
                                               0
                                                         3
                                                                       0
                                                                                   174.12 24
                                  1
              df["smoking_status"]= df["smoking_status"].replace("never smoked",1)
In [40]:
              df["smoking_status"]= df["smoking_status"].replace("Unknown",0)
           3 | df["smoking_status"]= df["smoking_status"].replace("formerly smoked", 2)
           4
              df["smoking_status"]= df["smoking_status"].replace("smokes",3)
           5
```

```
In [21]:
            1
               df
Out[21]:
                 gender age hypertension heart_disease work_type Residence_type avg_glucose_level
              0
                     1 67.0
                                       0
                                                     1
                                                               2
                                                                          Urban
                                                                                           228.69
              1
                     0 61.0
                                       0
                                                     0
                                                               3
                                                                           Rural
                                                                                           202.21
              2
                     1 80.0
                                                     1
                                                               2
                                                                           Rural
                                                                                           105.92
              3
                     0 49.0
                                                     0
                                                               2
                                                                                           171.23
                                       0
                                                                          Urban
                                                               3
                        79.0
                                                                           Rural
                                                                                           174.12
                                                               2
           5105
                     0.08
                                       1
                                                     0
                                                                          Urban
                                                                                            83.75
           5106
                     0 81.0
                                       0
                                                                          Urban
                                                                                           125.20
           5107
                     0 35.0
                                                                                            82.99
                                       0
                                                     0
                                                               3
                                                                           Rural
                     1 51.0
                                                                                           166.29
           5108
                                                                           Rural
           5109
                                                     0
                                                               0
                                                                                            85.28
                     0 44.0
                                       0
                                                                          Urban
          5110 rows × 12 columns
In [22]:
               df['smoking_status'].value_counts()
Out[22]: 1
                1892
                1544
          0
          2
                 885
          3
                 789
          Name: smoking_status, dtype: int64
In [41]:
            1
               df['Residence_type'].value_counts()
Out[41]: 1
                2596
                2514
          Name: Residence_type, dtype: int64
          HANDLING NULL VALUES
```

```
In [ ]: | 1 |
```

```
In [86]:
              df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 5110 entries, 0 to 5109
          Data columns (total 13 columns):
           #
               Column
                                   Non-Null Count
                                                    Dtype
          ---
           0
               gender
                                   5110 non-null
                                                    int64
                                   5110 non-null
                                                    float64
           1
               age
           2
               hypertension
                                                    int64
                                   5110 non-null
           3
               heart_disease
                                   5110 non-null
                                                    int64
               work_type
           4
                                   5110 non-null
                                                    int64
           5
               Residence_type
                                   5110 non-null
                                                    int64
           6
               avg_glucose_level 5110 non-null
                                                    float64
           7
                                   5110 non-null
                                                    float64
           8
                                   5110 non-null
                                                    int64
               smoking_status
           9
               stroke
                                   5110 non-null
                                                    int64
           10 ever married
                                   5110 non-null
                                                    int32
           11 Residence type
                                   5110 non-null
                                                    int32
               smoking status
                                   5110 non-null
                                                    int32
          dtypes: float64(3), int32(3), int64(7)
          memory usage: 459.2 KB
In [42]:
              X=df.drop('stroke',axis=1)
In [43]:
              X.head()
Out[43]:
             gender
                     age hypertension heart_disease work_type Residence_type avg_glucose_level
          0
                  1 67.0
                                   0
                                                1
                                                          2
                                                                        1
                                                                                    228.69
                                                                                           36
          1
                  0 61.0
                                   0
                                                0
                                                          3
                                                                        0
                                                                                    202.21
                                                                                           28
          2
                  1 80.0
                                   0
                                                1
                                                          2
                                                                        0
                                                                                    105.92 32
                                                          2
          3
                  0 49.0
                                   0
                                                0
                                                                        1
                                                                                    171.23 34
                  0 79.0
                                   1
                                                0
                                                          3
                                                                        0
                                                                                    174.12 24
              Y=df['stroke']
In [28]:
              Y.head()
Out[28]: 0
               1
          1
               1
          2
               1
               1
          3
          4
               1
```

Name: stroke, dtype: int64

SPLITTING DATA FOR TRAIN AND TEST

```
In [44]:
                from sklearn.model_selection import train_test_split
               X_train, X_test, Y_train, Y_test=train_test_split(X,Y,test_size=0.2,randor
In [45]:
               X_train
             1
Out[45]:
                         age hypertension heart_disease work_type Residence_type avg_glucose_level
                                                                  2
            2285
                         49.0
                                         0
                                                       0
                                                                                  0
                                                                                                79.64
                      1
            4733
                      1
                         67.0
                                         0
                                                       0
                                                                  2
                                                                                  0
                                                                                                83.16
            3905
                      1 78.0
                                         0
                                                       0
                                                                  2
                                                                                  1
                                                                                               208.85
                                                                  2
            4700
                         47.0
                                         0
                                                       0
                                                                                  0
                                                                                               110.14
                                                                  2
            4939
                      0 59.0
                                         0
                                                       0
                                                                                  1
                                                                                                71.08
              ...
                                                                  • • •
                                                                                                   • • •
            1180
                      0 62.0
                                         0
                                                       0
                                                                  2
                                                                                  0
                                                                                                82.57
                      0 59.0
            3441
                                         0
                                                       0
                                                                  3
                                                                                  1
                                                                                                90.06
            1344
                      1 47.0
                                         0
                                                       0
                                                                  2
                                                                                  0
                                                                                                86.37
            4623
                         25.0
                                         0
                                                       0
                                                                  0
                                                                                  1
                                                                                               166.38
                      1
            1289
                      0.08 0
                                         0
                                                       0
                                                                  3
                                                                                  0
                                                                                                72.61
           4088 rows × 11 columns
In [46]:
               Y_train
Out[46]: 2285
                    0
           4733
                    0
           3905
                    0
           4700
                    0
          4939
                    0
                   . .
          1180
                    0
           3441
                    0
           1344
                    0
          4623
                    0
          1289
                    0
          Name: stroke, Length: 4088, dtype: int64
```

In [47]:	1	X_test						
Out[47]:		gender	age	hypertension	heart_disease	work_type	Residence_type	avg_glucose_level
	2413	0	58.00	0	0	2	0	100.42
	1141	1	57.00	0	0	2	0	90.06
	146	1	65.00	0	0	3	1	68.43
	3883	0	1.64	0	0	4	1	69.89
	1044	0	79.00	0	0	0	1	93.89
	2261	1	59.00	0	0	2	1	60.35
	4712	1	57.00	0	0	2	1	93.04
	4971	0	63.00	0	0	2	1	57.06
	2224	1	57.00	0	0	2	0	76.28
	4825	0	14.00	0	0	4	1	71.80
	1022	rows × 1	1 colun	nne				
	1022	10W3 ^ 1	Colum	11113				
In [48]:	1	Y_test						
Out[48]:	2413	0						
	1141	0						
	146	1						
	3883	0						
	1044	0						
	2261	0						
	4712	0						
	4971	0						

Name: stroke, Length: 1022, dtype: int64

NORMALIZE

```
In [34]:
               df.describe()
Out[34]:
                                    age hypertension heart_disease
                                                                    work_type avg_glucose_level
                      gender
           count 5110.000000 5110.000000
                                          5110.000000
                                                       5110.000000 5110.000000
                                                                                   5110.000000 5
                    0.414286
                               43.226614
                                                                                    106.147677
                                            0.097456
                                                         0.054012
                                                                     2.167710
           mean
                    0.493044
                               22.612647
             std
                                            0.296607
                                                          0.226063
                                                                     1.090293
                                                                                     45.283560
                               0.080000
            min
                    0.000000
                                            0.000000
                                                          0.000000
                                                                     0.000000
                                                                                     55.120000
            25%
                    0.000000
                                                          0.000000
                               25.000000
                                            0.000000
                                                                     2.000000
                                                                                     77.245000
            50%
                    0.000000
                               45.000000
                                            0.000000
                                                          0.000000
                                                                     2.000000
                                                                                     91.885000
            75%
                    1.000000
                               61.000000
                                            0.000000
                                                          0.000000
                                                                     3.000000
                                                                                     114.090000
            max
                    2.000000
                               82.000000
                                            1.000000
                                                          1.000000
                                                                     4.000000
                                                                                    271.740000
In [49]:
               from sklearn.preprocessing import StandardScaler
               std = StandardScaler()
In [50]:
               X_train_std = std.fit_transform(X_train)
              X test std = std.transform(X test)
In [51]:
               X train std
Out[51]: array([[ 1.19359699,
                                  0.2521852 , -0.33069968 , ..., 1.75888007 ,
                                  1.51158251],
                   -1.01777039,
                  [ 1.19359699,
                                  1.04686385, -0.33069968, ..., 0.79061967,
                   -1.01777039, -0.35191245],
                  [1.19359699, 1.5325008, -0.33069968, ..., 0.79061967,
                    0.98253988, -0.35191245],
                  [ 1.19359699,
                                  0.16388757, -0.33069968, ..., 1.75888007,
                   -1.01777039,
                                  1.51158251],
                  [1.19359699, -0.80738634, -0.33069968, ..., -0.17764073,
                                  0.57983503],
                    0.98253988,
                                  1.62079843, -0.33069968, ..., -0.17764073,
                  [-0.83780372,
                   -1.01777039,
                                  0.57983503]])
```

LOGISTIC REGRESSION

EVALUATION FOR LOGISTIC REGRESSION

KNN: KNEIGHBORS CLASSIFIER

Out[63]: array([[957,

3],

[61,

1]], dtype=int64)

```
In [60]:
             from sklearn.neighbors import KNeighborsClassifier
           2 knn=KNeighborsClassifier(n_neighbors=5,p=2)
           3 knn.fit(X_train, Y_train)
Out[60]: KNeighborsClassifier()
In [61]:
           1 # predictions
           2 Y_pred=knn.predict(X_test)
           3 Y pred
         C:\Users\hp\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:
         228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis
         `), the default behavior of `mode` typically preserves the axis it acts alon
         g. In SciPy 1.11.0, this behavior will change: the default value of `keepdims
           will become False, the `axis` over which the statistic is taken will be eli
         minated, and the value None will no longer be accepted. Set `keepdims` to Tru
         e or False to avoid this warning.
           mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
Out[61]: array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
In [62]:
           1 Y test
Out[62]: 2413
                 0
         1141
                 0
         146
                 1
         3883
                 0
         1044
         2261
         4712
                 0
         4971
                 0
         2224
                 0
         4825
         Name: stroke, Length: 1022, dtype: int64
         EVALUATION FOR KNN
In [63]:
           1 from sklearn.metrics import confusion matrix
           2
             cm=confusion_matrix(Y_test, Y_pred)
           3
             cm
```

```
In [64]:
              from sklearn.metrics import classification_report
              print(classification_report(Y_test, Y_pred))
                                      recall f1-score
                        precision
                                                          support
                     0
                             0.94
                                        1.00
                                                  0.97
                                                              960
                     1
                             0.25
                                        0.02
                                                  0.03
                                                               62
                                                  0.94
                                                             1022
              accuracy
                                                  0.50
                                                             1022
             macro avg
                             0.60
                                        0.51
         weighted avg
                             0.90
                                        0.94
                                                  0.91
                                                             1022
In [ ]:
           1 | ac_lr=accuracy_score(Y_test,Y_pred_lr)
```

VISUALIZATIONS

- Out[4]: hypertension heart_disease ever_married work_type Residence_type 9046 67.0 0 1 Urban 0 Male Yes Private Self-51676 Female 61.0 0 0 Rural Yes employed 2 31112 Male 80.0 0 1 Yes Private Rural 60182 Female 49.0 0 0 Private Urban Yes Self-0 1665 Female 79.0 1 Yes Rural employed

BAR-GRAPHS

```
In [135]:
               fig,axes = plt.subplots(4,2,figsize = (16,16))
            1
            2
               sns.set_style('darkgrid')
            3
               fig.suptitle("Count plot for various categorical features")
            4
            5
               sns. countplot (ax=axes[0,0],data=df1,x='gender')
               sns. countplot (ax=axes[0,1],data=df1,x='hypertension')
            6
            7
               sns.countplot (ax=axes [1,0],data=df1,x='heart_disease')
               sns.countplot (ax=axes [1,1],data=df1,x='ever_married')
            8
            9
               sns.countplot(ax=axes[2,0],data=df1,x='work_type')
               sns.countplot (ax=axes[2,1],data=df1,x='Residence_type')
           10
               sns. countplot (ax=axes[3,0],data=df1,x='smoking_status')
           11
               sns.countplot (ax=axes[3,1],data=df1,x='stroke')
           12
           13
               plt.show()
```

Count plot for various categorical features

AGE

```
In [136]: 1 df1.groupby('gender').mean()[['age','stroke']]

Out[136]: age stroke

gender

Female 43.757395 0.047094

Male 42.483385 0.051064

Other 26.000000 0.0000000
```

Chances of stroke is more in men than women

WORK TYPE

```
In [139]:
              df1['work_type'].unique()
Out[139]: array(['Private', 'Self-employed', 'Govt_job', 'children', 'Never_worked'],
                dtype=object)
            1 df1['work_type'].value_counts()
In [140]:
Out[140]: Private
                            2925
          Self-employed
                            819
          children
                            687
          Govt_job
                            657
          Never_worked
                             22
          Name: work_type, dtype: int64
```

In [142]: 1 sns.countplot(data=df1,x='work_type',hue='stroke')
2 plt.show()

HEATMAP

In [143]:

- sns.heatmap(df1.corr(),annot=True)
- 2 plt.show()

BOX-PLOT

In [147]:

```
1 df.plot(kind='box',figsize=(9,6))
```

2 plt.show()

In [154]: 1 df1.head()

Out[154]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type
0	9046	Male	67.0	0	1	Yes	Private	Urban
1	51676	Female	61.0	0	0	Yes	Self- employed	Rural
2	31112	Male	80.0	0	1	Yes	Private	Rural
3	60182	Female	49.0	0	0	Yes	Private	Urban
4	1665	Female	79.0	1	0	Yes	Self- employed	Rural

SCATTER-PLOT

LINE-PLOT

CAT-PLOT

```
In [161]: 1 sns.catplot(y='age',x='stroke',data=df1)
```

Out[161]: <seaborn.axisgrid.FacetGrid at 0x196fc6c3880>

In [164]: | 1 | sns.distplot(df1['avg_glucose_level'])

C:\Users\hp\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Future Warning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histo grams).

warnings.warn(msg, FutureWarning)

Out[164]: <AxesSubplot:xlabel='avg_glucose_level'>

SWARNPLOT

In [5]: 1 sns.swarmplot(x='age',y='smoking_status',data=df1)

C:\Users\hp\anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarn ing: 50.7% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

C:\Users\hp\anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarn ing: 78.8% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

C:\Users\hp\anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarn ing: 70.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[5]: <AxesSubplot:xlabel='age', ylabel='smoking_status'>


```
In [171]: 1 sns.pairplot(df1,hue="gender")
```

Out[171]: <seaborn.axisgrid.PairGrid at 0x196805a7dc0>


```
In [ ]: 1
In [ ]: 1
In [ ]: 1
```