NOISE POLLTUION MONITORING

Hardware Selection:

Choose suitable sensors for measuring noise polltuion monitoring parameters, such as PM2.5,PM10,CO2,temperature,andhumidity.Selectan IOT development board like Raspberry Pi, Arduino, or specialized IOT hardware.

Hardware Setup:

Connect the selected sensors to the IOT device following their datasheets and pinouts. Make sure the IOT device has an internet connection method, such as Wi-Fi or Ethernet.

Install Required Libraries:

Install necessary Python libraries for sensor data collection. For example, if you're using a Raspberry Pi, you might use libraries like Adafruit_DHT, smbus, or pandas.

Collect Sensor Data:

Write Python code to read data from the connected sensors. Ensure that the data is accurate and calibrated

Here's an example code snippet for collecting data from a DHT22 temperature and humidity sensor on a Raspberry Pi: import Adafruit_DHT sensor = Adafruit_DHT.DHT22 pin = 4 humidity, temperature = Adafruit_DHT. readretry(sensor, pin) if humidity is not None and temperature is not None: print(fTemperature: {temperature:.2f}°C, Humidity: {humidity:.2f}%') else: print('Failed to retrieve data from the sensor.')

Data Processing:

Process the collected sensor data if necessary. You might need to filter, aggregate, or format the data.

Data Sharing Platform:

Choose a data-sharing platform where you want to send the data. Options include cloud platforms like AWS, Google Cloud, Azure, or dedicated IOT platforms like ThingSpeak or Ubidots.

Here's a Python script to read data from an SDS011 sensor using the pms5003 library, which is a common library for working with these sensors:

import time import random import requests # Simulating noise level data def get_noise_level(): return random.randint(50, 100) # Replace this with your actual sensor reading # Sending data to the platform def send_to_platform(data): url = 'https://your-noise-pollution-platform.com /api/data' # Replace with your platform's API endpoint headers = {'Content-Type': 'application/ json'} payload = {'noise_level': data} try: response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: print("Data sent successfully.") else: print(f"Failed to send data. Status code: {response.status_code}") except requests.RequestException as e: print(f"An error occurred: {e}") # Main loop if __name__ == '__main__': while True: noise_level = get_noise_level() send_to_platform(noise_level) time.sleep(5) # Adjust the interval based on your requirements