THE ARCTIC UNIVERSITY OF NORWAY

Lecture 10: CUDA Optimization

Concurrent and Parallell Programming (INF-3201)

Autumn 2014

John Markus Bjørndalen (with foils from Lars Tiede)

Outline

- Overview
- CUDA Hardware
- Memory optimizations
- Execution Configuration Optimizations
- Task scheduling
- Atomic operations for non-blocking synchronization

Optimization overview

- Optimize algorithms for GPU
 - GPUs can support 30 000 concurrently active threads
 - ⇒ maximize independent parallelism
- Optimize memory transfer between CPU and GPU
 - The transfer (through PCIe bus) is costly
 - ⇒ maximize computation per data transferred
 - Ex.: Matrix multiplication: N³ operations, 3N² elements transferred ⇒ operations/elements = O(N)
 - ⇒ Keep data on GPU as long as possible
 - Do more computation (even low parallelism computations) on GPU
- Optimize memory access on GPU
 - Use shared memory (on-chip, fast)
 - Use coalesced memory access to global memory (off-chip DRAM)
- Keep GPU multiprocessors busy
 - Minimize resource usage/thread ⇒ maximize #active blocks

Outline

- Overview
- CUDA Hardware
- Memory optimizations
- Execution Configuration Optimizations
- Task scheduling
- Atomic operations for non-blocking synchronization

CUDA Architecture

Execution model

Warps

SIMT execution model

- "Single instruction, multiple threads", and each thread can branch differently.
 - However, all threads in a "warp" are executed in lockstep regardless of divergent branching.
- Example:
 - if threadId is even:
 do A
 else:
 do B
 - Execution:
 - Threads with even threadId execute A, threads with odd threadId idle.
 - Then, threads with odd threadId execute B, and threads with even threadId idle.

Outline

- Overview
- CUDA Hardware
- Memory optimizations
- Execution Configuration Optimizations
- Task scheduling
- Atomic operations for non-blocking synchronization

Memory architecture

Memory hierarchy

Figures from NVIDIA CUDA Programming Guide, version 3.1

Memory optimization

- Optimizing host-device data transfer
- Coalescing global memory accesses
- Using shared memory

Host

Host-Device Data Transfers

- Device to host memory bandwidth much lower than device to device bandwidth
 - ☐ 8GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX280)
 - □ 31.51GB/s (PCI-e 4.0 x16) vs. 280GB/s (K40), 2x240 (K80)
- Minimize transfers
 - ☐ Intermediate data structures should be created, operated on, and destroyed without ever copying them to host memory
 - even if running some kernels on the device do not show performance gains
- Group transfers
 - ☐ One large transfer much better than many small ones

Pinned host memory

- Enables highest bandwidth between host and device
 - 5.2 GB/s on PCI-e x16 Gen2
- Allocated using cudaMallocHost()
- See the "bandwidthTest" CUDA SDK sample
- Use with caution!!
 - Allocating too much pinned host memory can reduce overall system performance
 - Test your systems and apps to learn their limits

Asynchronous memory copy

- Asynchronous host-device memory copy frees up CPU on CUDA devices
 - cudaMemcpyAsync() (vs. blocking cudaMemcpy())
 - requires pinned host memory and a stream ID
- Stream = Sequence of operations that execute in order
 - Operations in different streams can be interleaved and overlapped
 - Stream ID used as argument to asynchronous calls and kernel launches
- Stream API:
 - 0 = default stream
 - cudaMemcpyAsync(dst, src, size, direction, 0);

Overlapping data transfers and computation

Asynchronous data transfers enable overlap of data transfers with computation

Overlap host computation with data transfer on all CUDA devices

```
cudaMemcpyAsync(d_a, h_a, size, cudaMemcpyHostToDevice, 0);
kernel<<<grid, block>>>(d_a);
cpuFunction(); //overlapped
```

Overlap kernel computation with data transfer on devices with compute capability >= 1.1 (ifilab: Yes!)

```
cudaStreamCreate(&stream1); //non-zero stream ID
cudaStreamCreate(&stream2);
cudaMemcpyAsync(d_a, h_a, size, cudaMemcpyHostToDevice, stream1);
kernel<<<grid, block, 0, stream2>>>(d_otherData); //overlapped
```

Staged concurrent copy and execution

Sequential

```
cudaMemcpy(a_d, a_h, N*sizeof(float), dir);
kernel<<<N/nThreads, nThreads>>>(a_d);
```

Copy data Execute

Concurrent

Timelines for sequential and concurrent copy and kernel execution

Figures from CUDA Best Practices Guide 3.1, Nvidia.

GPU/CPU Synchronization

- Context (i.e., "GPU process") based
 - cudaDeviceSynchronize()
 - Blocks until all previously issued CUDA calls from a CPU program complete
- Stream based
 - cudaStreamSynchronize(stream)
 - Blocks until all CUDA calls issued to given stream complete
 - Exception: stream id == 0 --> sync all streams
 - cudaStreamQuery(stream)
 - · Indicates whether stream is idle
 - Returns cudaSuccess, cudaErrorNotReady, ...
 - Does not block CPU thread

Sources: Nvidia CUDA webinar Memory Optimizations.

GPU/CPU Synchronization

- Stream based using events
 - Events can be inserted into streams:
 - cudaEventRecord(event, stream)
 - Event is recorded when GPU reaches it in a stream
 - Recorded = assigned a timestamp (GPU clocktick)
 - Useful for timing
 - cudaEventSynchronize(event)
 - · Blocks until given event is recorded
 - cudaEventQuery(event)
 - Indicates whether event has recorded
 - Returns cudaSuccess, cudaErrorNotReady, ...
 - · Does not block CPU thread

Sources: Nvidia CUDA webinar Memory Optimizations.

Outline

- Overview
- CUDA Hardware
- Memory optimizations
 - ☐ Data transfers between host and device
 - ☐ Coalesced memory accesses
 - ☐ Shared memory
- Execution Configuration Optimizations
- Task scheduling
- Atomic operations for non-blocking synchronization

Memory model

CUDA Programming ver. 2.1

- Local storage
 - Each thread has its own local storage (e.g. registers)
- Shared memory
 - Each thread block has its own shared memory
 - Accessible by all threads in the block
 - Low latency: a few cycles
 - High throughput: 38-44 GB/s per SM ⇒ over 1.1 TB/s per 30 SMs
- Global memory (off-chip DRAM)
 - Accessible by all threads
 - High latency: 400-800 cycles
 - Throughput: 102-140 GB/s

Global memory accesses

- GPU with compute capability < 2.0 (i.e. before Fermi)
 - Ifilab 2011: Quadro FX 580, compute capability 1.1
 - Global memory is not cached
 - Highest latency instructions: 400-600 clock cycles
 - Likely to be a performance bottleneck
 - Optimizations can greatly increase performance
- Ifilab 2012: Quadro 600, compute capability 2.1
 - Has some high-bandwidth caching for global memory
 - L1 cache per SM, not coherent (16-48 kb)
 - L2 cache for whole GPU, coherent (512-768kb)

Global memory

- Always accessed via 32B, 64B or 128B memory transactions
- Transaction segment must be aligned
 - First address = multiple of segment size
- Coalesced memory accesses
 - The global memory accesses of threads within a half-warp can be coalesced into one transaction
 - Coalescing is achieved even if the warp is divergent
 - i.e. there are some inactive threads that do not actually access memory.

Coalescing: C.C. 1.1- vs. C.C. 1.2+

C.C. 1.1- & C.C. 1.2+

- k-th thread accessesk-th word in segment
- even divergent warp
- \Rightarrow 1 64B transaction

C.C. 1.1-: 16 32B transactions (one per thread)

C.C. 1.2+:
1 64B transaction

CUDA Prog. 2.1

Coalescing: C. C. 1.2+

P. Micikevicius

Coalescing protocol, C.C. 1.2+

- Find the memory segment that contains the address requested by the lowest-numbered active thread
 - □ 32B segment for 1B words, 64B segment for 2B words, 128B segment for 4, 8 and 16B words
- Find all other active threads whose requested address lies in the same segment
- Reduce the transaction size, if possible
 - ☐ If size = 128B and only the lower/upper half is used, reduce transaction to 64B
 - \Box If size = 64B ~~~~~~, reduce transaction to 32B
- ☐ Carry out the transaction and mark the serviced threads as inactive
- Repeat until all threads in the half-warp are serviced.

Coalescing: C. C. 1.2+

P. Micikevicius

Step-by-step

- Thread 0 is lowest active, accesses address 116
- 128-byte segment: 0-127

- Thread 0 is lowest active, accesses address 116
- 128-byte segment: 0-127 (reduce to 64B)

- Thread 0 is lowest active, accesses address 116
- 128-byte segment: 0-127 (reduce to 32B)

- Thread 3 is lowest active, accesses address 128
- 128-byte segment: 128-255

- Thread 3 is lowest active, accesses address 128
- 128-byte segment: 128-255 (reduce to 64B)

Effects of Misaligned Accesses

Kernel

- GTX 8800, compute cap. 1.0
 - 1 64B- vs. 16 32B-transactions
 - 74 GBps vs. 7 GBps
- GTX 280, compute cap. 1.3
 - 1 64B- vs. 2 transactions
 - 120 GBps vs. 70 GBps

Strided accesses

Kernel

- C.C. 1.1-: 16 transactions
- C.C. 1.2+ : effective bandwidth decreases with increasing stride
 - Stride=2: half the elements in 128Btransaction not used
 - Stride=32: 16 transactions issued
- Use shared memory to avoid strided global mem. accesses

Figures from CUDA Best Practices Guide 3.1, Nvidia

Outline

- Overview
- CUDA Hardware
- Memory optimizations
 - ☐ Data transfers between host and device
 - ☐ Coalesced memory accesses
 - ☐ Shared memory
- Execution Configuration Optimizations
- Task scheduling
- Atomic operations for non-blocking synchronization

Memory model

Shared memory

Uses

- Inter-thread cooperation within a block
- Cache data to reduce redundant global memory accesses

Organization:

- 16 (C.C. 1.x), 4B wide banks
 - Can be accessed simultaneously by 16 threads (halfwarp)
- Successive 4B words belong to different banks

Performance

- Bandwidth: 4B per bank per clock cycle
- Bank conflicts: if n (of 16) threads access the same bank, n accesses are executed serially.
- If threads (of a warp) write to the same location
 - Only one of the threads performs the write
- Broadcast: a 4B word can be read by n threads simultaneously

CUDA Prog. 2.1

Bank conflicts

2-way bank conflict: Addressing with a stride of 2 4B-words

Service 1 conflict-free subset of accesses per step.

No bank conflict due to broadcast

Shared memory: C.C. 2.0 vs. C.C. 1.3-

- 32 banks
- Bank conflicts:
 - only occur if two or more threads access any bytes within different 4B words belonging to the same bank.
 - If two or more threads access any bytes within the same 4B word, there is no bank conflict between these threads

```
Ex:
__shared__ char shared[32]
char data = shared[BaseIndex + tid]
```

- C.C. 1.3-: 4-way bank conflict since shared[0], ... shared[3] belong to the same bank.
- C.C. 2.0: no bank conflict since shared[0], ... shared[3] within the same 4B word.

Outline

- Overview
- CUDA Hardware
- Memory optimizations
 - ☐ Data transfers between host and device
 - ☐ Coalesced memory accesses
 - ☐ Shared memory
- Execution Configuration Optimizations
- Task scheduling
- Atomic operations for non-blocking synchronization

Occupancy

- Thread instructions are executed sequentially
 - ⇒ executing other warps is the only way to hide latencies and keep the hardware busy
- Occupancy = #active warps / max #active warps
 - per multiprocessor
- Limited by resource usage:
 - Registers
 - Shared memory

Determining resource usage

- Compile the kernel code with —ptxas-options=-v flag to nvcc
 - Open the .cubin file with a text editor and look for the "code" section

- CUDA Occupancy calculator
 - CUDA SDK tools

Register dependency

- Read-after-write register dependency
 - Instruction's result can be read ~24 cycles later
 - Scenario:

```
int x = y +5;

z = x + 3;
```

- To completely hide the latency:
 - Run at least 192 threads (6 warps) per multiprocessor
 - Then, you have 24 threads per scalar processor
 - x for first thread is ready to be read in line 2 right after 24th thread finished executing line 1
 - Scalar procesors busy all the time -> "latency is hidden"!
 - Note: threads needn't be in the same thread block

Thread and block heuristics

- Goal: balance latency hiding (occupancy) and resource utilization
 - Grid size:
 - #blocks > #multiprocessors
 - #blocks / #multiprocessors > 2
 - Blocks that aren't waiting at a __syncthreads() keep the hardware busy
 - Subject to resource availability registers, shared memory
 - #blocks > 1000 to scale to future devices
 - Block size:
 - #threads/block = a multiple of warp size (i.e. 32)
 - More threads per block -> better memory latency hiding
 - But, more threads per block -> fewer registers per thread
 - Experiment!

Outline

- Overview
- CUDA Hardware
- Memory optimizations
 - ☐ Data transfers between host and device
 - ☐ Coalesced memory accesses
 - ☐ Shared memory
- Execution Configuration Optimizations
- Task scheduling
- Atomic operations for non-blocking synchronization

What are "tasks" in CUDA?

- Parallel code is launched as a grid of thread blocks
 - Max x- or y-dimension is 65535
- A block consists of warps
 - Compute capability 2.0: max 32 warps/block
- A warp consists of 32 threads

warp

 Tasks to be scheduled are blocks and warps

CUDA Architecture

Block scheduling

- CUDA Prog. 1.1 (Nov. '07)
 - The issue order of the blocks within a grid of thread blocks is undefined
- IEEE Micro '08
 - The compute work distributor delivers blocks to SMs with sufficient recourses in a roundrobin scheme without preemption
- Blocks do not migrate
- Several concurrent thread blocks can reside on one SM
 - Max 8 blocks / SM

CUDA Programming 3.0

Potential deadlock

- Scenario 1
 - Threadblock scheduling
 - Non-preemptive: once a threadblock is active, it holds the resources (register/smem) until all of its threads complete execution.
 - Blocking synchronization

```
if (blockID ≠ i)
  while (S = 0); /*busy-wait*/
  ...
else
  S←1;
  ...
```

 Threadblock i has not run yet and will get activated only when some currently active threadblock finishes

Warp scheduling

- The SM warp scheduler is a priority-based scheduler
- A scoreboard qualifies each warp for issue each cycle
- The scheduler prioritizes all ready warps and selects the one with highest priority for issue
 - Compute capability 2.0: 48 warps / SM
- "Zero"-overhead warp scheduling
- Compute capability 2.0
 - 1st scheduler issues instructions for a warp with an odd ID and 2nd one for a warp with an even ID

Potential deadlock

Scenario 2:

- Divergent warps
 - Different execution paths within a warp are serialized
- Blocking synchronization
 - using a busy-waiting loop: the path with a busy-waiting loop is scheduled first.
 - using barrier primitive __syncthreads() in different paths

```
if (threadID ≠ 0)
while (S=0); /*busy-wait*/
...
else
S←1;
...
```


 \Rightarrow non-blocking synchronization \Rightarrow atomic operations

Outline

- Overview
- CUDA Hardware
- Memory optimizations
 - ☐ Data transfers between host and device
 - ☐ Coalesced memory accesses
 - ☐ Shared memory
- Task scheduling
- Atomic operations for non-blocking synchronization

Examples

```
atomicAdd( address, val)
atomically {
    old \leftarrow *address;
    *address ← (old + val);
    return old;
atomicCAS( address, compare, val)
atomically {
   old ← *address;
   if (old == compare)
       *address ← val;
   return old;
```

atomicSub()
atomicExch()

•••

Atomic operations

- History
 - Compute Capability

C.C. 1.0	C.C. 1.1	C.C. 1.2 and above
 No atomic ops No synchronization mechanism between blocks (CUDA Prog. 1.1) 	Atomic ops only for global memory	Atomic ops for both shared memory and global memory

- Why should processors, even graphics processors, support atomic operations?
 - Facilitate inter-thread cooperation
 - Concurrent data structures (e.g. stack, queue, list)
 - Non-blocking synchronization
 - Deadlock-freedom

Blocking synchronization: Mutual exclusion

```
shared counter = 0; cs = free;
Increment() {
   mutex_lock( &cs); //synch. point
   t = counter;
   counter = t + 1;
   mutex_unlock( &cs);
    return;
                                                mt_unlock(cs)
                                     = counter =
                                          counter = t +
                               mt_lock( cs)
                                                                             counter = 1
         Thread 1
                                                                   mt_unlock( cs)
                                                      = counter =
                                  mt_lock( cs)
                                                             counter = t
                                       blocked
         Thread 2
                                                                              counter = 2
```

Deadlock!

Non-blocking synchronization

```
\begin{array}{l} \textbf{shared } c = 0;\\ \textbf{Increment()} \ \{ \\ \textbf{do} \ \{ \\ t = c;\\ new = t+1;\\ \} \ \textbf{while(} \ \textbf{atomicCAS(} \ \&c, \ t, \ new) \ != t)\\ \textbf{return } \ new;\\ \end{array} \\ \end{array}
```

```
Thread 1 t = c(0) CAS(c, 0, 1) (0)
```

Result = 1

Thread 2
$$t = c(0)$$
 CAS(c, 0, 1) (1) $t = c(1)$ CAS(c, 1, 2) (1) Result = 2

References

- CUDA Best Practices Guide 3.1, Nvidia, 2009
- Introduction to CUDA Programming, Nvidia, 2008
- CUDA Programming Guide 3.1, Nvidia, 2009
- Nvidia CUDA Webinars
- David B. Kirk & Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on Approach, ISBN-13: 978-0123814722.