Primeira Lista de Exercícios Geometria Analítica e Vetores

1. Determine a soma dos vetores indicados em cada caso da figura abaixo:

2. Na figura abaixo os hexagonos são regulares. Em cada caso, determine a soma dos vetores indicados.

- 3. Quais são a origem e a extremidade de um representante do vetor $\overrightarrow{BC} + \overrightarrow{GH} \overrightarrow{FA} \overrightarrow{GC} + \overrightarrow{FB}$?
- 4. Sendo \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} representados na figura abaixo, represente $\overrightarrow{x} = 2\overrightarrow{u} \overrightarrow{v} + \frac{5}{4}\overrightarrow{w}$ por uma flecha de origem O.

5. Na figura abaixo representa-se um hexágono regular \overrightarrow{ABCDEF} . Determine X, sabendo que $\overrightarrow{CX}=-3\overrightarrow{u}+2\overrightarrow{v}+\frac{3}{2}\overrightarrow{w}$.

6. Na figura abaixo está representado um paralelepípedo retângulo. Sendo M, tal que

$$\overrightarrow{BM} = \frac{1}{2}\overrightarrow{BG}.$$

Indique a ponta da flecha de origem H que corresponde ao vetor $\frac{1}{2}\overrightarrow{HB} + \frac{1}{3}\overrightarrow{AB} - \frac{1}{6}\overrightarrow{CD}$.

2

- 7. Na figura do paralelepípedo retângulo no exercício 6, decida se é verdadeira ou falsa cada uma das as afirmações:
 - a) $\overrightarrow{DH} = \overrightarrow{BF}$
- b) $\overrightarrow{AB} = -\overrightarrow{HG}$ c) $\overrightarrow{AB} \perp \overrightarrow{CG}$ d) $\overrightarrow{AF} \perp \overrightarrow{BC}$
- $e) \, \|\overrightarrow{AC}\| = \|\overrightarrow{HF}\| \qquad f) \, \|\overrightarrow{AG}\| = \|\overrightarrow{DF}\| \qquad g) \, |\overrightarrow{BG}| / |\overrightarrow{ED}|.$
- h) \overrightarrow{AB} , \overrightarrow{BC} e \overrightarrow{CG} são coplanares.
- i) \overrightarrow{AB} , \overrightarrow{FG} e \overrightarrow{EG} são coplanares.
- (j) \overrightarrow{EG} , \overrightarrow{CB} e \overrightarrow{HF} são coplanares. (k) \overrightarrow{AC} , \overrightarrow{DB} e \overrightarrow{FG} são coplanares.
- l) \overrightarrow{AB} , \overrightarrow{BG} e \overrightarrow{CF} são coplanares. m) \overrightarrow{AB} , \overrightarrow{DC} e \overrightarrow{CF} são coplanares.
- n) \overrightarrow{AE} é ortogonal ao plano (ABC). o) \overrightarrow{AB} é ortogonal ao plano (BCG).
- p) \overrightarrow{DC} é paralelo ao plano (HEF).
- 8. Com o paralelepípelo retângulo no exercício 6, determine os vetores a seguir, expressando-os com origem no ponto A:
 - a) $\overrightarrow{AB} + \overrightarrow{CG}$

- b) $\overrightarrow{BC} + \overrightarrow{DE}$ c) $\overrightarrow{BF} + \overrightarrow{EH}$ d) $\overrightarrow{EG} \overrightarrow{BC}$

- $(e) \overrightarrow{CG} + \overrightarrow{EH}$ $(f) \overrightarrow{EF} \overrightarrow{FB}$ $(g) \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$ $(h) \overrightarrow{EG} + \overrightarrow{DA} + \overrightarrow{FH}$.
- 9. A figura abaixo é constituída de nove quadrados congruentes (de mesmo tamanho). Decidir se é verdadeira ou falsa cada uma das seguintes afirmações:

- a) $\overrightarrow{AB} = \overrightarrow{OF}$ b) $\overrightarrow{AM} = \overrightarrow{PH}$
- c) $\overrightarrow{BC} = \overrightarrow{OP}$ d) $\overrightarrow{BL} = \overrightarrow{MC}$
- $e) \ \overrightarrow{DE} = -\overrightarrow{ED} \qquad f) \ \overrightarrow{AO} = \overrightarrow{MG} \qquad g) \ \overrightarrow{KN} = \overrightarrow{FI} \qquad h) \ \overrightarrow{AC} // \ \overrightarrow{HI}$ $i) \ \overrightarrow{JO} // \ \overrightarrow{LD} \qquad j) \ \overrightarrow{AJ} // \ \overrightarrow{FG} \qquad k) \ \overrightarrow{AB} \perp \ \overrightarrow{EG} \qquad l) \ \overrightarrow{AM} // \ \overrightarrow{BL}$

- $m) \overrightarrow{PE} \perp \overrightarrow{EC}$ $n) \overrightarrow{PN} \perp \overrightarrow{NB}$ $o) \overrightarrow{PN} \perp \overrightarrow{AM}$ $p) \|\overrightarrow{AC}\| = \|\overrightarrow{FP}\|$

- $q) \|\overrightarrow{IF}\| = \|\overrightarrow{MF}\| \quad r) \|\overrightarrow{AJ}\| = \|\overrightarrow{AC}\|$
- $s) \|\overrightarrow{AO}\| = 2\|\overrightarrow{NP}\|$ $t) \|\overrightarrow{AM}\| = \|\overrightarrow{BL}\|$

- 10. A igualdade $\|\overrightarrow{u} + \overrightarrow{v}\| = \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$ é válida para quaisquer vetores \overrightarrow{u} e \overrightarrow{v} ? Justifique.
- 11. Sejam M e N os pontos médios dos segmentos AC e BD, respectivamente. Prove que se $\overrightarrow{x} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$, então \overrightarrow{x} é paralelo ao \overrightarrow{MN} .
- 12. Prove que:
 - (a) $\{\overrightarrow{u}, \overrightarrow{v}\}$ é L.D. $\Longrightarrow \{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ é L.D.,
 - (b) $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ é L.I. $\Longrightarrow \{\overrightarrow{u}, \overrightarrow{v}\}$ é L.I.,
 - (c) $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\} \in L.I. \implies \{\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}, \overrightarrow{u} \overrightarrow{v}, 3\overrightarrow{v}\} \in L.I..$
 - (d) $\{\overrightarrow{u} 2\overrightarrow{v} + \overrightarrow{w}, 2\overrightarrow{u} + \overrightarrow{v} + 3\overrightarrow{w}, \overrightarrow{u} + 8\overrightarrow{v} + 3\overrightarrow{w}\}$ é L.D., quaisquer que sejam os vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} .
- 13. Sendo $\overrightarrow{u} = (1, -1, 3), \overrightarrow{v} = (2, 1, 3), \overrightarrow{w} = (-1, -1, 4),$ ache as coordenadas dos vetores:
- (a) $\overrightarrow{u} + \overrightarrow{v}$; (b) $\overrightarrow{u} 2\overrightarrow{v}$; (c) $\overrightarrow{u} + 2\overrightarrow{v} 3\overrightarrow{w}$.
- 14. Verifique se $\{\overrightarrow{u}, \overrightarrow{v}\}$ é L.I. ou L.D., nos seguintes casos:
 - (a) $\overrightarrow{u} = (0, 1, 0), \overrightarrow{v} = (1, 0, 1),$
 - (b) $\overrightarrow{u} = (0, 1, 1), \overrightarrow{v} = (0, 3, 1),$
 - (c) $\overrightarrow{u} = (1, -3, 14), \overrightarrow{v} = (\frac{-1}{14}, \frac{3}{14}, -1).$
- 15. Determine m e n tais que $\{\overrightarrow{u}, \overrightarrow{v}\}$ seja L.D., sendo $\overrightarrow{u} = (1, m, n+1)$ e $\overrightarrow{v} = (m, n, 10)$.
- 16. Verifique se $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ é L.I. ou L.D.:
 - (a) $\vec{u} = (1, 2, 1), \vec{v} = (1, -1, -7), \vec{w} = (4, 5, -4),$
 - (b) $\overrightarrow{u} = (7, 6, 1), \overrightarrow{v} = (2, 0, 1), \overrightarrow{w} = (1, -2, 1).$
- 17. Sejam $E = \{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ uma base, $\overrightarrow{f_1} = 2\overrightarrow{e_1} \overrightarrow{e_2} + \overrightarrow{e_3}$, $\overrightarrow{f_2} = \overrightarrow{e_2} \overrightarrow{e_3}$, $\overrightarrow{f_3} = 3\overrightarrow{e_3}$
 - (a) Mostre que $F = \{\overrightarrow{f_1}, \overrightarrow{f_2}, \overrightarrow{f_3}\}$ é uma base de $\mathbf{V^3}$.
 - (b) Determine as coordenadas do vetor $\vec{u} = (0, 1, -1)_F$ na base E.
 - (c) Calcule m para que $(0, m, 1)_E$ e $(0, 1, -1)_F$ sejam L.D..
- 18. Sejam OABC um tetraedro e M o ponto médio de BC. Explique por que $\{\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}\}$ é uma base de \mathbf{V}^3 e determine as coordenadas do vetor \overline{AM} em relação desta base.
- 19. Sejam $\mathcal{B} = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ uma base de \mathbf{V}^3 , e $\vec{f_1} = \vec{e_1} \vec{e_2}$, $\vec{f_2} = m\vec{e_1} + \vec{e_3}$, $\vec{f_3} = -\vec{e_1} \vec{e_2} \vec{e_3}$.
 - (a) Para que valores de m, a tripla $\mathcal{B}' = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ é uma base de \mathbf{V}^3 ?
 - (b) Nas condições do item (a), calcule $a \in b$ de modo que os vetores $\vec{u} = (1, 1, 1)_{\mathcal{B}} \in \vec{v} = (2, a, b)_{\mathcal{B}'}$ sejam L.D..
- 20. Seja $E = \{\overrightarrow{e_l}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ uma base ortonormal. Calcule $\|\overrightarrow{u}\|$, nos casos:
 - (a) $\vec{u} = (1, 1, 1)_E$;
- (b) $\overrightarrow{u} = -\overrightarrow{e_1} + \overrightarrow{e_2}$;
- (c) $\overrightarrow{u} = -4\overrightarrow{e_1} + 2\overrightarrow{e_2} \overrightarrow{e_3}$.