Modèles probabilistes des épidémies avec infectivité variable et perte progressive d'immunité. Inégalités à poids sur des espaces de Lebesgue à exposant variables pour le projecteur de Bergman dans la boule unité de \mathbb{C}^n .

Arsene Brice Zotsa Ngoufack
Doctorant à Aix-Marseille Université
Sous la direction du
Dr Raphaël Forien, Pr Raoul Ayissi et Co-dirigé par le Pr Etienne Pardoux
20/09/2024

1. Historique et motivation

Principe général

Dans le monde, nous faisons souvent face à des épidémies. Pour certaines d'entre elles, lorsque les individus se rétablissent,

- Ils acquièrent une immunité totale, comme c'est le cas pour la varicelle;
- Dans d'autres cas, l'individu est immunisé pendant une certaine période, mais cette immunité diminue progressivement et peut même disparaître comme c'est le cas pour la Covid-19.

Définitions de termes clés

- Infectivité : Taux avec lequel un individu infecte un autre individu ;
- Susceptibilité : La probabilité avec laquelle un individu est infecté;
- Âge d'infection : C'est le temps écoulé depuis l'infection ;
- Âge de rémission : C'est le temps écoulé depuis la rémission ;
- R₀: C'est le nombre d'indivdus infectés par un individu infecté dans une population de susceptibles.
- L'épidémie sera dite endémique lorsqu'elle persite pendant longtemps dans la population.
- On parle d'équilibre endémique lorsque le nombre de nouvelles infections est compensé par le nombre d'individus qui se rétablissent.
- Modèles markoviens :

Figure - Kermack et McKendrick.

- Mckendrick 1925 modèle stochastique d'épidémie. Il donne l'équation de Fokker Planck du modèle SIR
- Le modèle de Kermack et McKendrick de 1927, 1932 est déterministe.

Illustration cas markovien

Figure – Evolution de l'infectivité et de la susceptibilité en temps depuis l'infection.

00000000000

Limites des modèles compartimentaux markovien

- la probabilité qu'un contact entre un infectieux et un susceptible résulte en une infection est toujours la même, quel que soit le temps écoulé depuis l'infection du premier individu;
- 2 Les durées de séjours dans chaque compartiment suivent des lois exponentielles. D'où l'absence de mémoire;

Solutions aux manquements des modèles markoviens

- Soit rester dans le cadre markovien en multipliant le nombre de compartiments;
- Soit rester dans le cadre markovien en passant en dimension infinie en considérant les modèles structurés en âge.
- Soit s'affranchir du cadre markovien et passer aux modèles non-markoviens.

Les modèles structurés en âges

Introduction

00000000000

- Les modèles structurés en âges sont basés sur des processus de branchement avec interaction, plus précisément les processus de Crump-Mode et Jagers (CMJ) (1968).
- Les processus CMJ décrivent le nombre d'individus vivant à un instant donné qui descendent d'un unique ancêtre à l'instant initial.
- L'évolution des âges des individus est modélisée par un processus à valeurs mesures

Nous avons des travaux établissant la loi des grands nombres et le théorème central limite d'une population structurée en âge. Il s'agit en particulier de [Oeslchager, 1990], [Tran, 2006], [Hanza et al., 2013].

0000000000

- En 2020 Pang et Pardoux établissent la loi des grands nombres pour le modèle SIR non-markovien. Dans cet article la loi des durées est arbitraire mais le taux d'infection reste constant.
- Un peu plus tard (2021) Forien, Pang et Pardoux établissent la loi des grands nombres pour un modèle SIR non-markovien avec infectivité variable.
 Dans ce modèle, à chaque infection on se donne une fonction d'infectivité aléatoire λ.

Objectif

Notre objectif dans cette présentation est d'introduire un modèle stochastique d'épidémie prenant en compte la perte progressive d'immunité et une infectivité variable. Plus précisément,

- ullet La loi des grands nombres lorsque $N o \infty$,
- L'étude du comportement en temps long,
- Le théorème central limite.

Illustration cas non-markovien

Figure – Evolution de l'infectivité et de la susceptibilité en temps depuis l'infection. (Aix-Marselle

2. Loi des grands nombres

Description du modèle

- On se donne *N* le nombre d'individus ;
- ② On suppose qu'une fraction de la population est infectée à l'instant 0;
- On suppose que chaque paire d'individus a des contacts infectieux aux instants de saut d'un processus de Cox d'intensité égale à son infectivité courante divisée par N et il devient infectieux avec une probabilité qui est égale à sa susceptibilité courante;
- On suppose de plus qu'à chaque nouvelle infection on tire une paire de fonctions aléatoires càdlàg (λ, γ) indépendante des précédentes, représentant l'infectivité et la susceptibilité de l'individu nouvellement infecté.

Illustration

Figure – Illustration de l'évolution de l'infectivité et de la susceptibilité d'un individu avec le temps.

Aix*Marseille

Modèle mathématiques

Introduction

- On se donne $(\lambda_{k,i}, \gamma_{k,i})_{k>1,i>1} \subset D^2$ une famille i.i.d de fonctions aléatoires.
- On se donne aussi $(\lambda_{k,0}, \gamma_{k,0})_{k\geq 1} \subset D^2$ une famille i.i.d de fonctions aléatoires indépendantes des précédentes.
- Pour chaque individu k, nous notons $A_k^N(t)$ le nombre de fois que l'individu k a été infecté entre l'instant 0 et t, et nous définissons

$$\varsigma_k^N(t) := (t - \sup\{s \in [0, t] : A_k^N(s) = A_k^N(s^-) + 1\}) \vee 0,$$

le temps écoulé depuis la dernière infection de l'individu k.

ullet Par conséquent à l'instant t, l'individu ℓ infecte l'individu k au taux

$$\gamma_{k,\mathcal{A}_{k}^{N}(t)}(\varsigma_{k}^{N}(t))\frac{\lambda_{\ell,\mathcal{A}_{\ell}^{N}(t)}(\varsigma_{\ell}^{N}(t))}{N} \tag{1}$$

Aix*Marseille

Modèle Mathématique

• Ainsi le k-ième individu devient infecté à l'instant t au taux

$$\gamma_{k,A_k^N(t)}(\varsigma_k^N(t))\frac{1}{N}\sum_{\ell=1}^N \lambda_{\ell,A_\ell^N(t)}(\varsigma_\ell^N(t)). \tag{2}$$

On note

$$\overline{\mathfrak{F}}^{N}(t) = \frac{1}{N} \sum_{k=1}^{N} \lambda_{k,A_{k}^{N}(t)}(\varsigma_{k}^{N}(t))$$
(3)

et

$$\overline{\mathfrak{S}}^{N}(t) = \frac{1}{N} \sum_{k=1}^{N} \gamma_{k, A_{k}^{N}(t)}(\varsigma_{k}^{N}(t)). \tag{4}$$

Mémoire

Nous notons la durée de l'infection de l'individu k après sa i-ième infection par

$$\eta_{k,i}=\sup\{t\geq 0, \lambda_{k,i}(t)>0\}.$$

Alors

Introduction

• Le nombre d'individus infectés à l'instant t > 0 est donné par

$$I^{N}(t) = \sum_{k=1}^{N} \mathbb{1}_{\varsigma_{k}^{N}(t) < \eta_{k, A_{k}^{N}(t)}}.$$
 (5)

ullet Le nombre d'individus non-infectés à l'instant $t\geq 0$ est donné par

$$U^{N}(t) = \sum_{k=1}^{N} \mathbb{1}_{\varsigma_{k}^{N}(t) \ge \eta_{k,A_{k}^{N}(t)}}.$$
 (6)

Remarquons que $U^N(t) + I^N(t) = N$ pour tout $t \ge 0$.

Hypothèses 1

On suppose que :

- Il existe une constante $\lambda_* < \infty$ telle que pour tout $t \geq 0, \ 0 \leq \lambda(t), \ \lambda_0(t) \leq \lambda_*$ presque surement, et $0 \leq \gamma(t), \ \gamma_0(t) \leq 1$ presque surement.
- Presque surement,

$$\sup\{t \ge 0, \, \lambda_0(t) > 0\} \le \inf\{t \ge 0, \, \gamma_0(t) > 0\} \tag{7}$$

et

$$\sup\{t \ge 0, \ \lambda(t) > 0\} \le \inf\{t \ge 0, \ \gamma(t) > 0\}. \tag{8}$$

Aix*Marseille université

Sous les hypothèses ci-dessus,

$$(\overline{\mathfrak{S}}^N, \overline{\mathfrak{F}}^N) \xrightarrow[N \to +\infty]{\mathbb{P}} (\overline{\mathfrak{S}}, \overline{\mathfrak{F}}) \ dans \ D^2$$

où $(\overline{\mathfrak{S}}, \overline{\mathfrak{F}})$ est solution du système d'équations ci-dessous.

$$\begin{cases}
\overline{\mathfrak{S}}(t) = \mathbb{E}\left[\gamma_0(t) \exp\left(-\int_0^t \gamma_0(r)\overline{\mathfrak{F}}(r)dr\right)\right] \\
+ \int_0^t \mathbb{E}\left[\gamma(t-s) \exp\left(-\int_s^t \gamma(r-s)\overline{\mathfrak{F}}(r)dr\right)\right] \overline{\mathfrak{S}}(s)\overline{\mathfrak{F}}(s)ds, & (9) \\
\overline{\mathfrak{F}}(t) = \overline{I}(0)\overline{\lambda}_0(t) + \int_0^t \overline{\lambda}(t-s)\overline{\mathfrak{S}}(s)\overline{\mathfrak{F}}(s)ds. & (10)
\end{cases}$$

(Aix*Marseille université

où $\overline{\lambda}_0(t) = \mathbb{E}\left[\lambda_{1,0}(t)\middle|\eta_{1,0}>0\right], \ \overline{\lambda}(t) = \mathbb{E}\left[\lambda_{1,1}(t)\right] \text{ et } \gamma_0 \stackrel{d}{=} \gamma_{1,0}, \gamma \stackrel{d}{=} \gamma_{1,1}$

Loi fonctionelle des grands nombres

Nous avons aussi

Introduction

$$(\overline{U}^N, \overline{I}^N) \xrightarrow{\mathbb{P}} (\overline{U}, \overline{I})$$
 dans D^N

où $(\overline{U},\overline{I})$ est donné

$$\overline{U}(t) = \mathbb{E}\left[\mathbb{1}_{t \geq \eta_{0}} \exp\left(-\int_{0}^{t} \gamma_{0}(r)\overline{\mathfrak{F}}(s)dr\right)\right]
+ \int_{0}^{t} \mathbb{E}\left[\mathbb{1}_{t-s \geq \eta} \exp\left(-\int_{s}^{t} \gamma(r-s)\overline{\mathfrak{F}}(r)dr\right)\right] \overline{\mathfrak{S}}(s)\overline{\mathfrak{F}}(s)ds,
\overline{I}(t) = \overline{I}(0)F_{0}^{c}(t) + \int_{0}^{t} F^{c}(t-s)\overline{\mathfrak{S}}(s)\overline{\mathfrak{F}}(s)ds,$$

avec
$$F_0^c(t)=\mathbb{P}(\eta_0\geq t\big|\eta_0>0),\,F^c(t)=\mathbb{P}(\eta\geq t),\, ext{et }\overline{I}(0)=\mathbb{P}(\eta>0)$$

(Aix*Marseille

On rappelle que

$$A_k^N(t) = \int_{[0,t]\times\mathbb{R}_+} \mathbb{1}_{\overline{\mathfrak{F}}^N(s)\gamma_{A_k^N(s)}(\varsigma_k^N(s))\geq u} Q_k(ds,du); \tag{11}$$

 \bigcirc Pour toute fonction mesurable positive m, nous définissons le processus

$$A^{(m)}(t) = \int_{[0,t] \times \mathbb{R}_+} \mathbb{1}_{m(s)\gamma_{A^{(m)}(s)}(\varsigma^{(m)}(s)) \geq u} Q(ds,du),$$

et nous définissons $\overline{\mathfrak{F}}^{(m)}(t) = \mathbb{E}\left[\lambda_{A^{(m)}(t)}(\varsigma^{(m)}(t))\right]$ et $\overline{\mathfrak{S}}^{(m)}(t) = \mathbb{E}\left[\gamma_{A^{(m)}(t)}(\varsigma^{(m)}(t))\right]$.

Puis nous montrons qu'il existe une unique fonction mesurable positive m_* telle que $m_* = \overline{\mathfrak{F}}^{(m_*)}$. De plus $(m_*, \overline{\mathfrak{S}}^{(m_*)})$ est une solution de (9)-(10).

Idée de la preuve

Introduction

Par la suite comme dans l'article de [Chevallier,2017] nous construisons une suite i.i.d $(A_k)_k$ définie par

$$A_k(t) = \int_{[0,t]\times\mathbb{R}_+} \mathbb{1}_{\overline{\mathfrak{F}}(s)\gamma_{A_k(s)}(\varsigma_k(s))\geq u} Q_k(ds,du)$$
 (12)

$$\mathtt{où}\ \overline{\mathfrak{F}}(t) = \mathbb{E}\left[\lambda_{1,A_{\mathbf{1}}(t)}(\varsigma_{1}(t))\right]\ \mathtt{et}\ \overline{\mathfrak{S}}(t) = \mathbb{E}\left[\gamma_{1,A_{\mathbf{1}}(t)}(\varsigma_{1}(t))\right].$$

2 Puis nous montrons que pour $k \in \mathbb{N}$ et $T \geq 0$, on a

$$\mathbb{E}\left[\sup_{t\in[0,T]}\left|A_k^N(t)-A_k(t)\right|\right]\leq \frac{\lambda^*}{\sqrt{N}}T\exp(2\lambda^*T),\tag{13}$$

Illustration

Figure – Modèle stochastique vs modèle déterministe. La zone foncée contient les trajectoires de 50% du nombre de simulations.

Pour

$$\lambda(t) = \widetilde{\lambda}(t) \mathbb{1}_{t < \eta}$$
 et $\gamma(t) = \widetilde{\gamma}(t - \eta) \mathbb{1}_{t > \eta}$

avec η bien choisi et $\widetilde{\lambda}$, $\widetilde{\gamma}$ déterministes, le modèle est équivalent à l'edp de Kermack et McKendrick suivante : (1932).

$$\begin{cases} \frac{d\overline{S}}{dt}(t) = -\overline{S}(t) \int_{0}^{+\infty} \widetilde{\lambda}(\tau)\overline{I}(t,\tau)d\tau \\ \frac{\partial \overline{I}}{\partial t}(t,\tau) + \frac{\partial \overline{I}}{\partial \tau}(t,\tau) = -\mu_{F}(\tau)\overline{I}(t,\tau) \\ \frac{\partial \overline{R}}{\partial t}(t,\tau) + \frac{\partial \overline{R}}{\partial \tau}(t,\tau) = -\overline{R}(t,\tau)\widetilde{\gamma}(\tau) \int_{0}^{+\infty} \widetilde{\lambda}(r)\overline{I}(t,r)dr \\ \overline{I}(t,0) = \left(\overline{S}(t) + \int_{0}^{+\infty} \widetilde{\gamma}(\theta)\overline{R}(t,\theta)d\theta\right) \int_{0}^{+\infty} \widetilde{\lambda}(\tau)\overline{I}(t,\tau)d\tau \\ \overline{R}(t,0) = \int_{0}^{+\infty} \mu_{F}(\tau)\overline{I}(t,\tau)d\tau. \end{cases}$$

3. Comportement en temps long du modèle déterministe

On rappelle que $R_0 = \int_0^{+\infty} \overline{\lambda}(s) ds$, le nombre de reproduction de base.

Théorème 2

Introduction

$$extit{Si } extit{R}_0 < \mathbb{E}\left[\left(\sup_{ au}\gamma(au)
ight)^{-1}
ight]$$
 , $extit{lorsque } t o +\infty, \ \overline{\mathfrak{F}}(t) o 0.$

Hypothèses 2

• On suppose que la fonction $t \mapsto \gamma(t)$ est croissante p.s et on définit

$$\gamma_* = \sup_{t \geq 0} \gamma(t) = \lim_{t \to +\infty} \gamma(t).$$

2 Il existe une v.a positive t_* telle que $\mathbb{E}[t_*] < +\infty$ et pour $t \geq t_*, \gamma(t) \geq \frac{\gamma_*}{2}$ p.s.

Caractérisation de l'équilibre endémique

Théorème 3

Sous les hypothèses ci-dessus et si $R_0 > \mathbb{E}\left[\frac{1}{\gamma_*}\right]$. S'il existe $(\overline{\mathfrak{S}}_*, \overline{\mathfrak{F}}_*)$ telle que $(\overline{\mathfrak{S}}(t), \overline{\mathfrak{F}}(t)) \xrightarrow{t} (\overline{\mathfrak{S}}_*, \overline{\mathfrak{F}}_*)$, Soit $\overline{\mathfrak{F}}_* = 0$, ou sinon

$$\overline{\mathfrak{S}}_* = \frac{1}{R_0}$$

et $\overline{\mathfrak{F}}_*$ est l'unique solution positive de l' équation

$$\int_{0}^{+\infty} \mathbb{E}\left[\exp\left(-\int_{0}^{s} \gamma\left(\frac{r}{\overline{\mathfrak{F}}_{*}}\right) dr\right)\right] ds = R_{0}. \tag{14}$$

Dans le second cas, $(\overline{I}(t), \overline{U}(t)) \to (\overline{I}_*, \overline{U}_*)$ lorsque $t \to \infty$, où $\overline{U}_* = 1 - \overline{I}_*$ et

$$\overline{I}_* = \frac{\mathbb{E}\left[\eta\right]\overline{\mathfrak{F}}_*}{R_2}.$$

Instabilité de l'équilibre sans maladie

Lemme 4

Introduction

Sous certaines hypothèses, si $R_0 > \mathbb{E}\left[\frac{1}{\gamma_*}\right]$ et $\overline{\mathfrak{F}}(0) > 0$, alors il existe c > 0 tel que pour tout t > 0, $\overline{\mathfrak{F}}(t) \geq c$.

Conjecture

Introduction

Conjecture 1

Sous certaines hypothèses, si $R_0 > \mathbb{E}\left[\frac{1}{\gamma_*}\right]$ et $\overline{\mathfrak{F}}(0) > 0$, alors

$$(\overline{\mathfrak{F}}(t),\overline{\mathfrak{S}}(t)) o (\overline{\mathfrak{F}}_*,\overline{\mathfrak{S}}_*)$$
 lorsque $t o \infty,$

où $\overline{\mathfrak{S}}_* = 1/R_0$ et $\overline{\mathfrak{F}}_*$ est l'unique solution positive de (14).

TCL •000

4. Théorème central limite

Théorème central limite

On définit

Introduction

$$\hat{\mathfrak{S}}^N(t) := \sqrt{N} \left(\overline{\mathfrak{S}}^N(t) - \overline{\mathfrak{S}}(t) \right) \text{ et } \hat{\mathfrak{F}}^N(t) := \sqrt{N} \left(\overline{\mathfrak{F}}^N(t) - \overline{\mathfrak{F}}(t) \right).$$

Théorème 5

Sous certaines hypothèses classique sur les moments des fonctions d'infectivités et susceptibilités,

$$\left(\hat{\mathfrak{S}}^{N}, \hat{\mathfrak{F}}^{N}\right) \Rightarrow \left(\hat{\mathfrak{S}}, \hat{\mathfrak{F}}\right) \quad dans \ D^{2},$$
 (15)

où $(\hat{\mathfrak{S}},\hat{\mathfrak{F}})$ est l'unique solution du système d'équations ci-dessous.

Aix+Marseille université

TCL

0000

$$\begin{split} \hat{\mathfrak{S}}(t) &= -\int_{0}^{t} \mathbb{E}\left[\gamma_{0}(t)\gamma_{0}(s) \exp\left(-\int_{0}^{t} \gamma_{0}(r)\overline{\mathfrak{F}}(r)dr\right)\right] \hat{\mathfrak{F}}(s)ds \\ &- \int_{0}^{t} \int_{s}^{t} \mathbb{E}\left[\gamma(t-s)\gamma(r-s) \exp\left(-\int_{s}^{t} \gamma(u-s)\overline{\mathfrak{F}}(u)du\right)\right] \hat{\mathfrak{F}}(r)\overline{\mathfrak{F}}(s)\overline{\mathfrak{F}}(s)drds \\ &+ \int_{0}^{t} \mathbb{E}\left[\gamma(t-s) \exp\left(-\int_{s}^{t} \gamma(r-s)\overline{\mathfrak{F}}(r)dr\right)\right] \left(\hat{\mathfrak{S}}(s)\overline{\mathfrak{F}}(s) + \overline{\mathfrak{S}}(s)\hat{\mathfrak{F}}(s)\right)ds \\ &+ \hat{\mathfrak{J}}_{0,1}(t) + \frac{W^{\gamma}}{s}(t). \end{split}$$

$$\hat{\mathfrak{F}}(t) = \int_0^t \overline{\lambda}(t-s) \left(\hat{\mathfrak{S}}(s)\overline{\mathfrak{F}}(s) + \overline{\mathfrak{S}}(s)\hat{\mathfrak{F}}(s)\right) ds + \hat{\mathfrak{M}}_{0,1}(t) + W^{\lambda}(t),$$

où $(\hat{\mathfrak{J}}_{0,1}, \hat{\mathfrak{M}}_{0,1}, W^{\gamma}, W^{\lambda})$ est un vecteur gaussien de fonctions de covariance connues.

Idée de la preuve

Introduction

$$\begin{split} \hat{\mathfrak{F}}^N(t) &= \sqrt{N} \left(\frac{1}{N} \sum_{k=1}^N \left(\lambda_{k,A_k^N(t)}(\varsigma_k^N(t)) - \lambda_{k,A_k(t)}(\varsigma_k(t)) \right) \right) \\ &+ \sqrt{N} \left(\frac{1}{N} \sum_{k=1}^N \lambda_{k,A_k(t)}(\varsigma_k(t)) - \mathbb{E} \left[\lambda_{1,A_1(t)}(\varsigma_1(t)) \right] \right). \end{split}$$

et

$$\hat{\mathfrak{S}}^N(t) = \sqrt{N} \left(\frac{1}{N} \sum_{k=1}^N \left(\gamma_{k,A_k^N(t)}(\varsigma_k^N(t)) - \gamma_{k,A_k(t)}(\varsigma_k(t)) \right) \right) + \sqrt{N} \left(\frac{1}{N} \sum_{k=1}^N \gamma_{k,A_k(t)}(\varsigma_k(t)) - \mathbb{E}\left[\gamma_{1,A_1(t)}(\varsigma_1(t)) \right] \right).$$

5. Modèle avec Mémoire

Susceptibilité et infectivité avec mémoire

(Travail en collaboration avec Hélène Guérin UQAM) Dans cette partie, on suppose que pour $\theta \in \Theta$,

- $\gamma(t) = \gamma(t, \theta)$ et $\lambda(t) = \lambda(t, \theta)$;
- les applications $t \mapsto \lambda(t, \theta)$ et $t \mapsto \gamma(t, \theta)$ sont déterministes;
- A chaque infection si le trait avant infection est θ , on tire un nouveau trait $\widetilde{\theta}$ suivant la loi de probabilité $K(\theta, \widetilde{\theta})\nu(\mathrm{d}\widetilde{\theta})$.

On définit

$$\mu_t^N = \frac{1}{N} \sum_{k=1}^N \delta_{(a_k^N(t), \theta_k^N(t))}.$$

Loi des grands nombres

 $\mu^N \to \mu$ quand $N \to \infty$, dans $D(\mathbb{R}_+, \mathcal{P}(\mathbb{R}_+ \times \Theta))$ où si μ_0 est à densité u_0 alors μ_t est à densité u_t où :

$$\begin{cases} \partial_{t}u_{t}(a,\theta) + \partial_{a}u_{t}(a,\theta) = -\overline{\mathfrak{F}}(t)\gamma(a,\theta)u_{t}(a,\theta) \\ u(t,0,\theta) = \overline{\mathfrak{F}}(t)\int_{\mathbb{R}_{+}\times\Theta} \gamma(a,\widetilde{\theta})K(\widetilde{\theta},\theta)u_{t}(a,\widetilde{\theta})\mathrm{d}a\nu(\mathrm{d}\widetilde{\theta}) \\ u(0,a,\theta) = u_{0}(a,\theta) \\ \overline{\mathfrak{F}}(t) = \int_{\mathbb{R}_{+}\times\Theta} \lambda(a,\theta)u_{t}(a,\theta)\mathrm{d}a\nu(\mathrm{d}\theta). \end{cases}$$
(16)

où a est l'âge d'infection, θ le trait de l'individu.

Hypothèses 3

Il existe $\Theta_0 \in \mathcal{A}$ avec $\mathbb{P}(\Theta_0) = 0$, et une fonction positive $\gamma_* : \Theta \to [0,1]$, telle que pour $\theta \in \Theta \setminus \Theta_0$,

$$\lim_{a\to +\infty} \frac{1}{a} \int_0^a \gamma(s,\theta) \mathrm{d} s = \gamma_*(\theta).$$

Hypothèses 4

- Le noyau K est positif sur Θ^2 et la fonction $\theta \mapsto \sup_{\widetilde{\theta} \in \Theta} K(\widetilde{\theta}, \theta)$ est $L^1(\Theta, \nu)$.
- ② Il existe c > 0 telle que pour $\theta \in \Theta, \gamma_*(\theta) > c$ p.s.
- $\Theta \forall \theta \in \Theta$,

$$\sup\{t \ge 0, \ \lambda(t, \theta) > 0\} \le \inf\{t \ge 0, \ \gamma(t, \theta) > 0\}.$$

Aix*Marseille université

Existence

Introduction

Lemme 6

Sous les hypothèses ci-dessus, il existe une unique fonction propre $\overline{\mathfrak{S}}_*$, positive ν -p.s., qui est $L^1(\Theta, \nu)$, et telle que

$$\begin{cases}
\overline{\mathfrak{S}}_{*}(\theta) = \int_{\Theta} K(\widetilde{\theta}, \theta) \overline{\mathfrak{S}}_{*}(\widetilde{\theta}) \nu(\mathrm{d}\widetilde{\theta}) \\
\int_{\mathbb{R}_{+} \times \Theta} \lambda(\mathbf{a}, \theta) \overline{\mathfrak{S}}_{*}(\theta) \mathrm{d}\mathbf{a}\nu(\mathrm{d}\theta) = 1.
\end{cases}$$
(18)

(Aix*Marseille université

Théorème 7

Sous les hypothèses ci-dessus, si

$$\int_{\Theta} \frac{1}{\gamma_*(\theta)} \overline{\mathfrak{S}}_*(\theta) \nu(d\theta) < 1, \tag{19}$$

il existe un équilibre endémique.

De plus, si on suppose que ν -p.s,

$$\forall a \geq 0 \quad \gamma(a,.) \geq \frac{1}{a} \int_0^a \gamma(s,.) ds,$$
 (20)

cet équilibre est unique, et si $\int_{\Theta} \frac{1}{\gamma_*(\theta)} \overline{\mathfrak{S}}_*(\theta) \nu(d\theta) > 1$ la maladie disparaît lorsque t tend vers $+\infty$.

(Aix+Marseille

Etude de la stabilité

Nous avons essayé les méthodes suivantes :

- Méthode de Doeblin
- Méthode Généralisée d'entropie
- Oeblin-Lyapunov
- Méthode des problèmes de Cauchy abstrait

Voir par exemple [Magal, Ruan et al, 2018], [Perthame, 2006], [Gabriel, 2018], [Torres, Perthame, Salort, 2022], [Webb, 1985], [Thieme, 2002].

Merci pour votre aimable attention

« La recherche est une quête perpétuelle de maturité intellectuelle » Zotsa.

6. Aide pour les questions

Observation

Introduction

On pose $(x_i, y_i) := (\tau_i \overline{\mathfrak{S}}, \tau_i \overline{\mathfrak{F}})$ où $\tau_i x(t) = x(t + t_i)$.

$$\begin{cases} x_{j}(t) = \mathbb{E}\left[\gamma_{0}(t+t_{j}) \exp\left(-\int_{0}^{t+t_{j}} \gamma_{0}(r)y_{j}(r)dr\right)\right] \\ + \int_{-t_{j}}^{t} \mathbb{E}\left[\gamma(t-s) \exp\left(-\int_{s}^{t} \gamma(r-s)y_{j}(r)dr\right)\right] x_{j}(s)y_{j}(s)ds, \quad (21) \\ y_{j}(t) = \overline{I}(0)\overline{\lambda}_{0}(t+t_{j}) + \int_{-t_{j}}^{t} \overline{\lambda}(t-s)x_{j}(s)y_{j}(s)ds. \quad (22) \end{cases}$$

Par Ascoli $(x_j, y_j) \to (x, y)$ lorsque $j \to \infty$, où (x, y) est solution du système suivant :

$$\begin{cases} y(t) = \int_{-\infty}^{t} \overline{\lambda}(t-s)x(s)y(s)ds, \\ \int_{-\infty}^{t} \mathbb{E}\left[\exp\left(-\int_{s}^{t} \gamma(r-s)y(r)dr\right)\right]x(s)y(s)ds = 1. \end{cases}$$
 (23)

On réécrit notre EDP sous la forme suivante :

$$\begin{split} \partial_t u_t(a,\theta) &= -\partial_a u_t(a,\theta) - \overline{\mathfrak{F}}(t)\gamma(a,\theta)u_t(a,\theta) \\ &+ \delta_0(a)\overline{\mathfrak{F}}(t) \int_{\mathbb{R}_+ \times \Theta} \gamma(\widetilde{a},\widetilde{\theta})K(\widetilde{\theta},\theta)u_t(\widetilde{a},\widetilde{\theta})d\widetilde{a}\nu(d\widetilde{\theta}) \\ &=: \mathcal{A}_{\overline{\mathfrak{F}}} \ (u_t)(a,\theta) + h_t(a,\theta), \end{split}$$

οù

Introduction

$$egin{aligned} \mathcal{A}_{\overline{\mathfrak{F}}_*}(u_t)(\mathsf{a}, heta) &= -\partial_\mathsf{a} u_t(\mathsf{a}, heta) - \overline{\mathfrak{F}}_*\gamma(\mathsf{a}, heta)u_t(\mathsf{a}, heta) \ &+ \delta_0(\mathsf{a})\overline{\mathfrak{F}}_* \int_{\mathbb{R}_+ imes\Theta} \gamma(\widetilde{\mathsf{a}},\widetilde{ heta}) \mathsf{K}(\widetilde{ heta}, heta)u_t(\widetilde{\mathsf{a}},\widetilde{ heta})\mathrm{d}\widetilde{\mathsf{a}}
u(\mathrm{d}\widetilde{ heta}) \end{aligned}$$

et

$$egin{align*} h_t(a, heta) &:= (\overline{\mathfrak{F}}_* - \overline{\mathfrak{F}}(t)) \gamma(a, heta) u_t(a, heta) \\ &+ \delta_0(a) (\overline{\mathfrak{F}}(t) - \overline{\mathfrak{F}}_*) \int_{\mathbb{R}_+ imes \Theta} \gamma(\widetilde{a},\widetilde{ heta}) \mathcal{K}(\widetilde{ heta}, heta) u_t(\widetilde{a},\widetilde{ heta}) \mathrm{d}\widetilde{a}
u(\mathrm{d}\widetilde{ heta}). \end{align}$$

Hypothèses 5

Il existe $a_* > 0$ tel que pour tout $\theta \in \Theta$ il existe $\sigma(\theta) \in (0,1]$ tel que pour tout $a \in \mathbb{R}_+$,

$$\gamma(\mathbf{a}, \theta) \geq \sigma(\theta) \mathbb{1}_{(\mathbf{a}_*, +\infty)}.$$

Convergence

Introduction

$$||u_{t} - u_{*}||_{TV} \leq ||P_{t}^{*}(u_{0}) - u_{*}||_{TV} + \int_{0}^{t} ||P_{t-r}^{*}h_{r}(\cdot, \cdot)||_{TV} dr$$

$$\leq \frac{1}{1 - c} \left(e^{-\alpha t} ||u_{0} - u_{*}||_{TV} + \int_{0}^{t} e^{-\alpha(t-r)} ||h_{r}(\cdot, \cdot)||_{TV} dr \right)$$

$$\leq \frac{1}{1 - c} \left(e^{-\alpha t} ||u_{0} - u_{*}||_{TV} + 2\lambda_{*} \int_{0}^{t} e^{-\alpha(t-r)} ||u_{r} - u_{*}||_{TV} dr \right)$$

$$\leq \frac{1}{1 - c} e^{-(\alpha - \frac{2\lambda_{*}}{1 - c})t} ||u_{0} - u_{*}||_{TV}.$$

où
$$c = a_* \overline{\mathfrak{F}}_* \exp(-2\overline{\mathfrak{F}}_* a_*) \int_{\Theta} \sigma(\theta) \nu(\mathrm{d}\theta), \ \alpha = -\frac{\log(1-c)}{2a_*}$$

Webb (1985), Thieme

0

Introduction

$$\begin{cases} \partial_t v_t = \mathcal{A}(v_t) + F(v_t) \\ v(0, a, \theta) = v_0(a, \theta) \end{cases}$$
 (25)

οù

$$v_t(a,\theta) = \begin{pmatrix} 0 \\ u_t(a,\theta) \end{pmatrix}$$
 et $v_0(a,\theta) = \begin{pmatrix} 0 \\ u_0(a,\theta) \end{pmatrix}$.

9

$$w_0(\mathcal{A} + F'(u_*)) := \lim_{t \to \infty} \frac{1}{t} \log \|T_*(t)\|_{\text{op}},\tag{26}$$

3

$$w_{\rm ess}(A + F'(u_*)) := \lim_{t \to \infty} \frac{1}{t} \log \|T_*(t)\|_{\rm ess}.$$
 (27)

4 Étude des valeurs propres de $A + F'(u_*)$.

(Aix*Marseille université

Hypothèses 6

Il existe $\sigma \in (0,1]$ tel que pour tout $\theta \in \Theta$ il existe $a_*(\theta) > 0$ et borné tel que $\forall a \in \mathbb{R}_+$,

$$\gamma(a,\theta) \geq \sigma \mathbb{1}_{(a_*(\theta),+\infty)}$$
.

Introduction

On définit $\hat{\mu}^N = \sqrt{N} \left(\mu^N - \mu \right)$ et on démontre que $\hat{\mu}^N \to \hat{\mu}$ dans $D(\mathbb{R}_+, \mathcal{W}^{-(m_d+1),\alpha} \times \mathbb{R})$, où si $d\hat{\mu} = \hat{u} da \nu (d\theta)$, on a :

$$\begin{cases} \partial_{t}\hat{u}_{t}(a,\theta) + \partial_{a}\hat{u}_{t}(a,\theta) = -\hat{\mathfrak{F}}(t)\gamma(a,\theta)u_{t}(a,\theta) - \overline{\mathfrak{F}}(t)\gamma(a,\theta)\hat{u}_{t}(a,\theta) \\ -\sqrt{\overline{\mathfrak{F}}(t)\gamma(a,\theta)u_{t}(a,\theta)}\zeta_{t}(a,\theta) \end{cases} \\ \hat{u}(t,0,\theta) = \int_{\mathbb{R}_{+}\times\Theta} \left[\left(\hat{\mathfrak{F}}(t)u_{t}(a,\widetilde{\theta}) + \overline{\mathfrak{F}}(t)\hat{u}_{t}(a,\widetilde{\theta}) \right) \gamma(a,\widetilde{\theta}) + \sqrt{\overline{\mathfrak{F}}(t)\gamma(a,\widetilde{\theta})u_{t}(a,\widetilde{\theta})}\zeta_{t}(a,\widetilde{\theta}) \right] K(\widetilde{\theta},\theta) da\nu(d\widetilde{\theta}) \end{cases} \\ \hat{u}(0,a,\theta) = \hat{u}_{0}(a,\theta) \\ \hat{\mathfrak{F}}(t) = \int_{\mathbb{R}_{+}\times\Theta} \lambda(a,\theta)\hat{u}_{t}(a,\theta) da\nu(d\theta), \end{cases}$$

• $m_d := \left[\frac{d+1}{2} \right] + 1$, et $\alpha > \frac{1}{2}$.

Introduction

- $\leq \zeta_t \in \mathcal{W}_0^{-(m_d+1),\alpha}$ est le bruit blanc Gaussien en temps
- $\hat{u}_0 \in \mathcal{W}_0^{-(m_d+1),\alpha}$ est une v.a Gaussienne centrée telle que $\varphi, \psi \in \mathcal{W}_0^{m_d+1,\alpha}$

$$\mathbb{E}\left[\langle \hat{u}_0, \varphi \rangle \langle \hat{u}_0, \psi \rangle\right] = Cov(\varphi(a_0, \theta_0), \psi(a_0, \theta_0)).$$

