ADVANCED BAYESIAN MODELING

Mixed Models

In an ordinary (non-hierarchical) regression model, coefficients are sometimes called **fixed effects**.

This is to distinguish them from random effects (in a hierarchical model).

A **mixed model** has both types of effects ...

Matrix Formulation

A normal-theory linear mixed model:

$$y \mid \beta_f, \beta_r, \sigma_y^2, X_f, X_r \sim \mathrm{N}(X_f \beta_f + X_r \beta_r, \sigma_y^2 I)$$

 $\beta_r \mid \Sigma_\beta \sim \mathrm{N}(0, \Sigma_\beta)$

$$eta_f \; = \; {
m fixed \; effects} \qquad \qquad eta_r \; = \; {
m random \; effects}$$

 X_f and X_r are known or observed.

 X_r typically contains indicator variables of groups (or their interactions).

 Σ_{β} is often diagonal, and contains variance components.

Q: Why assume β_r is multivariate normal?

A: It is (partially) conjugate. (Convenient, if not always correct.)

Q: Why assume β_r has (prior) mean zero?

A: If not, its mean could be moved into the fixed effects portion of the model.

Q: Where is the intercept?

A: In the fixed portion $X_f \beta_f$ (possibly implicitly)

Priors

To be noninformative:

$$p(\sigma_y^2) \propto (\sigma_y^2)^{-1} \qquad \sigma_y^2 > 0$$

 $p(\beta_f) \propto 1$

Hyperprior for Σ_{β} depends on its structure.

For example, if $\Sigma_{\beta} = \tau^2 I$, might choose

$$p(\tau) \propto 1 \qquad \tau > 0$$

Remarks:

- ▶ General structure of $X_r\beta_r$ allows more than one grouping criterion, and even group hierarchies (groups of groups).
- ▶ Higher levels of linear model hierarchy are possible (BDA3, Sec. 15.3).
- ▶ Response variance (σ_u^2) may also vary by group.

For examples, see BDA3, Sec. 15.2-4.