Assignment 9

AI24BTECH11008- Sarvajith

- 49. The Lagrangian of a particle of mass m moving in one dimension is L = $exp(\alpha t)\left[\frac{mx^2}{2} - \frac{kx^2}{2}\right]$, where α and k are positive constants. The equation of motion of the particle is
 - (A) $\ddot{x} + \alpha \dot{x} = 0$

 - (B) $\ddot{x} + \frac{k}{m}x = 0$ (C) $\ddot{x} \alpha \dot{x} + \frac{k}{m}x = 0$ (D) $\ddot{x} + \alpha \dot{x} + \frac{k}{m}x = 0$
- 50. Two monochromatic waves having frequencies ω and $\omega + \Delta\omega (\Delta\omega \ll \omega)$ and corresponding wavelength λ and $\lambda - \Delta \lambda (\Delta \lambda \ll \lambda)$ of same polarization, travelling along x-axis are superimposed on each other. The phase velocity and group velocity of the resultant wave are respectively given by
 - $\begin{array}{ll} (A) & \frac{\omega\lambda}{2\pi}, \frac{\Delta\lambda^2}{2\pi\Delta\lambda} \\ (B) & \omega\lambda, \frac{\Delta\lambda^2}{\Delta\lambda} \\ (C) & \frac{\omega\Delta l}{2\pi}, \frac{\Delta\lambda}{2\pi\Delta\lambda} \\ (D) & \omega\Delta\lambda, \omega\Delta\lambda \end{array}$

Common data questions Common data questions 51 and 52 Consider a two level quantum system with energies $\epsilon_1 = 0$ and $\epsilon_2 = \epsilon$

- 51. The Helmholtz free energy of the system is given by
 - (A) $-k_BT \ln\left(1+e^{\frac{-\epsilon}{k_BT}}\right)$
 - (B) $k_B T ln \left(1 + e^{\frac{-\epsilon}{k_B T}}\right)$
 - (C) $\frac{3}{2}k_BT$
- 52. The specific heat of the system is given by
 - (A) $\frac{\epsilon}{k_B T} \frac{e^{\frac{-\epsilon}{k_B T}}}{\left(1 + e^{\frac{-\epsilon}{k_B T}}\right)^2}$
 - (B) $\frac{\epsilon^2}{k_B T^2} \frac{e^{\frac{-\epsilon}{k_B T}}}{\left(1 + e^{\frac{-\epsilon}{k_B T}}\right)}$
 - (C) $-\frac{\epsilon^2 e^{\frac{-\epsilon}{k_B T}}}{\left(1 + e^{\frac{-\epsilon}{k_B T}}\right)_{-\epsilon}^2}$
 - (D) $\frac{\epsilon^2}{k_B T^2} \frac{e^{\frac{-\epsilon}{k_B T}}}{\left(1 + e^{\frac{-\epsilon}{k_B T}}\right)^2}$

Common data questions 53 and 54 A free particle of mass m moves along the xdirection. At t = 0, the normalized wave function of the particle is given by $\psi(x, 0)$ = $\frac{1}{(2\pi\alpha)^{1/4}}exp-\frac{x^2}{4a^2}+ix$, where α is a real constant 53. The expectation value of the momentum, in this state is

- - (A) $\hbar\alpha$

- (B) $\hbar \sqrt{\alpha}$
- (C) α
- (D) $\frac{\hbar}{\sqrt{a}}$
- 54. The expectation value of the particle energy is

 - (A) $\frac{\hbar^2}{2m} \frac{1}{2\alpha^{3/2}}$ (B) $\frac{\hbar^2}{2m} \alpha^2$ (C) $\frac{\hbar^2}{2m} \frac{4\alpha^2 +}{4\alpha^{3/2}}$ (D) $\frac{\hbar^2}{8m\alpha^{3/2}}$

Common data questions 55 and 56 Consider the Zeeman splitting of a single electron system for the 3d to 3p electric dipole transition

- 55. The Zeeman spectrum is
 - (A) Randomly polarized
 - (B) only π polarized
 - (C) only σ polarized
 - (D) both π and σ polarized
- 56. The fine structure line having the longest wavelength will split into
 - (A) 17 components
 - (B) 10 components
 - (C) 8 components
 - (D) 4 components

Linked Answer Questions Statement for Linked Answer Questions 57 and 58: The primitive translation vectors of the face centered cubic (fcc) lattice are

$$\hat{a}_1 = \frac{a}{2}(\hat{j} + \hat{k}); \hat{a}_2 = \frac{a}{2}(\hat{i} + \hat{k}); \hat{a}_1 = \frac{a}{2}(\hat{j} + \hat{i})$$

- 57. The primitive transition vectors of the fccreciprocal lattice are

 - (A) $\hat{b}_1 = \frac{2\pi}{a} (\hat{j} + \hat{k} \hat{i}); \hat{b}_2 = \frac{2\pi}{a} (-\hat{j} + \hat{k} + \hat{i}); \hat{b}_3 = \frac{2\pi}{a} (\hat{j} \hat{k} + \hat{i})$ (B) $\hat{b}_1 = \frac{\pi}{a} (\hat{j} + \hat{k} \hat{i}); \hat{b}_2 = \frac{\pi}{a} (-\hat{j} + \hat{k} + \hat{i}); \hat{b}_3 = \frac{\pi}{a} (\hat{j} \hat{k} + \hat{i})$ (C) $\hat{b}_1 = \frac{\pi}{2a} (\hat{j} + \hat{k} \hat{i}); \hat{b}_2 = \frac{\pi}{2a} (-\hat{j} + \hat{k} + \hat{i}); \hat{b}_3 = \frac{\pi}{2a} (\hat{j} \hat{k} + \hat{i})$ (D) $\hat{b}_1 = \frac{3\pi}{a} (\hat{j} + \hat{k} \hat{i}); \hat{b}_2 = \frac{3\pi}{a} (-\hat{j} + \hat{k} + \hat{i}); \hat{b}_3 = \frac{3\pi}{a} (\hat{j} \hat{k} + \hat{i})$
- 58. The volume of the primitive cell of the fcc reciprocal lattice is
 - (A) $4\left(\frac{\pi}{a}\right)^3$
 - (B) $4\left(\frac{2\pi}{a}\right)^3$
 - (C) $4\left(\frac{\pi}{2a}\right)^3$
 - (D) $4\left(\frac{3\pi}{a}\right)^3$

Statement for Linked Answer Questions 59 and 60: The Karnaugh map of logic circuit shown is below

	Ē	R
$\bar{P}ar{Q}$	1	1
Ρ̄Q	1	
PQ		
$Par{Q}$	1	1

Fig. 0.1: 1

- 59. The minimized logic expression for the above map is
 - (A) $Y = P\bar{R} + \bar{Q}$
 - (B) $Y = \bar{Q}.PR$
 - (C) $Y = PR + \bar{Q}$
 - (D) $Y = \bar{PR}.Q$
- 60. The corresponding logic implementation using gates is given as:

Fig. 0.2: option1

Fig. 0.3: option2

Fig. 0.4: option3

Fig. 0.5: option4