Sparkle: Accessible Meta-Algorithmics

Koen van der Blom¹, Chuan Luo², Holger H. Hoos^{1,3}

2020-11-09

¹Leiden University

²Microsoft Research Asia

³University of British Columbia

Sparkle

- Meta-algorithmics for everyone
 - Algorithm selection
 - Algorithm configuration
- Benchmarking Fair comparison of
 - Target algorithms (like CSSC) [Hutter et al. 2017]
 - Meta-algorithms (like AClib) [Hutter et al. 2014]
- Competitions (e.g. SAT, planning) [Luo et al. 2018, 2019]
- Best practice and avoid pitfalls [e.g. Eggensperger et al. 2019]

Algorithm configuration

- Get better performance
- Used incorrectly
 - "This doesn't work!"
 - Wrong result (interpretation)
- Comparing algorithms
 - More can go wrong
- Comparing configurators
 - Even more can go wrong

AClib [Hutter et al 2014]

- Wrapper Ensure algorithm calls are consistent across configurators
- Runsolver Ensure runtime measurement is consistent
- Basic statistics and scatterplots (AClib 2)

Sparkle

- Report
 - Plots and statistics
 - What happens under the hood / practices used
- Integration with selection
- Just running target algorithms
- Analysis and validation tools
 - Integrated parameter importance analysis
 - Was the instance set homogeneous?

Sparkle

- Configuration and selection for everyone
- Benchmarking
 - Compare target- and meta-algorithms fairly
- Competitions (e.g. SAT, planning)
- Aid following best practice and avoiding pitfalls
- First release soonTM:)