LONG RUN EFFECTIVE DE-MAND

Introducing Residential Investment in a Sraffian Supermultiplier SFC Model

February 29th, 2020

Summary

- Empirical motivation
- Review of the literature: demand-led growth models
- Stock-Flow Consistent Sraffian Supermutiplier model

Objective: Include residential investment in a heterodox demand-led growth model

Empirical Literature

Non-capacity creating autonomous expenditures

- Freitas and Dweck (2013)
- Braga (2018)
- Girardi and Pariboni (2016, 2018)

Residential Investment

- Green (1997)
- Leamer (2007)
- Fiebiger (2018)

Empirical motivation: U.S. Economy

Housing share vs. Capacity utilization ratio Trough to trough (Markers size increases over time)

Literature Review: Alternative Closures

Harrod's question: which are the conditions for a balanced growth between demand and supply?

Heterodox alternative closures:

- Cambridge
- Kalecki
- Sraffian Supermultiplier

Literature Review: Alternative Closures

Literature Review: autonomous expenditures

Hybrid neo-Kaleckian models:

- Allain (2015): public expenditures
- Nah and Lavoie (2017): exports

Sraffian Supermultiplier:

- Pariboni (2016), Mandarino, dos Santos and Macedo e Silva (ROKE, forthcoming): debt-financed consumption
- Brochier and Macedo e Silva (2019): fully specified SSM-SFC; wealth-financed consumption

Housing in SFC models

Balance Sheet Matrix

	Households	Firms	Banks	Σ
Deposits	+M		-M	0
Loans		-L	+L	0
Mortgages	-MO		+MO	O
∑ Net financial Wealth	V_h	V_f	V_b	0
Capital		$+K_f$		$+K_f$
Houses	$+K_h$, and the second		$+K_h$
∑ Net Wealth	NW_h	NW_f	NW_b	+K
Z Net Weath	1111	1117 f	11 11 b	-

Transaction Flow Matrix and Flow of Funds

	Households		Firms		Banks	Total
	Current	Capital	Current	Capital	•	\sum
Consumption	-C		+C			0
Non-Residential investment			$+I_f$	$-I_f$		0
Residential investment		$-I_h$	$+ \mathring{I_h}$			0
[Product]			[<i>Y</i>]			[Y]
Wages	+W		-W			0
Profits	+FD		-FT	+FU		0
Interest (deposits)	$+r_m \cdot M_{-1}$				$-r_m \cdot M_{-1}$	0
Interest (loans)			$-r_l \cdot L_{-1}$		$+r_l \cdot L_{-1}$	0
Interest (mortages)	$-r_{mo} \cdot MO_{-1}$				$+r_{mo}\cdot MO_{-1}$	0
Subtotal	$+S_h$	$-I_h$		$+NFW_f$	$+NFW_b$	0
Change in deposits	$-\Delta M$				$+\Delta M$	0
Change in mortgages		$+\Delta MO$			$-\Delta MO$	0
Change in Loans				$+\Delta L$	$-\Delta L$	0
Total	0	0	0	0	0	0

Model Structure I

$$Y = \begin{cases} C_w = W \\ I_f = h \cdot Y \\ I_h = Z = (1 + g_{I_h}) \cdot I_{h_{t-1}} \end{cases}$$

$$\Delta h = h_{t-1} \cdot \gamma_u (u - u_N)$$
$$\Delta MO = I_h$$

Model Structure II

(a) Flow dynamics

(b) Stock-Flow dynamics

Model Solution I

Output level:

$$Y_t = \frac{1}{1 - \omega - h_t} \cdot (I_h)$$

Out of equilibrium growth rate

$$g = g_{I_h} + \frac{h_{t-1} \cdot \gamma_u(u - u_N)}{1 - \omega - h_t}$$

Equilibrium rate of growth:

$$g = \overline{g}_{I_h}$$

Model Solution II

Firms investment share:

$$h^* = \frac{g_{I_h} \cdot v}{u_N}$$

Share of firms capital on total capital:

$$rac{K_f}{K} = rac{h^*}{(1-\omega)}$$

Numerical Simulations: increase of g_Z

Numerical Simulations: increase of ω

Final Remarks

- Our model preserves Sraffian Supermultipier main results
- Increase of the wage-share does not increase long run growth rate
 - No paradox of costs
- A greater rate of growth of residential investment reduces houses share of total capital
- Further research: to investigate the determinants of residential investment

Main References

Brochier & Macedo e Silva (2018): A supermultiplier Stock-Flow Consistent model: the "return" of the paradoxes of thrift and costs in the long run?

Leamer (2007): Housing IS the Business Cycle

Serrano (1995): Long Period Effective Demand and the Sraffian Supermultiplier

Teixeira (2015): Crescimento liderado pela demanda na economia norte-americana nos anos 2000: uma análise a partir do supermultiplicador sraffiano com inflação de ativos

THANK YOU!

Next steps I

Including housing bubbles

$$g_{I_h} = \phi_0 - \phi_1 \cdot \overbrace{\left(rac{1 + \overline{r}_m o}{1 + \dot{p}_h} - 1
ight)}^{\mathsf{own}}$$

Split between two classes and including more autonomous expenditures

$$Z = I_h + C_k$$

Next steps II

• Estimating a time series model (VEC)

$$g_{I_h}\sim {\sf own}$$

Inputing real data (own observable series) in the model

Next steps III

