Map-based Visual-Inertial Localization: A Numerical Study

Patrick Geneva and Guoquan Huang

Motivation & Contribution

- Leverage prior map information to improve visual-inertial navigation systems (VINS)
 - Prior point map with 2D-to-3D meas.
 - Prior keyframe map with 2D-to-2D meas.
- Summary of different filtering techniques for incorporating loop-closures
 - Extended Kalman filters (EKF)
- Schmidt-Kalman filters (SKF) [1]
- Measurement inflation models (INF)
- Investigate the accuracy, consistency, computational complexity, and memory

Map-based EKF-SLAM

Goal: Leverage a prior map to constrain "active" sliding window filter in an efficient manner.

$$\mathbf{x}_k = egin{bmatrix} \mathbf{x}_A & \mathbf{x}_M & \mathbf{x}_K \end{bmatrix} \;, \;\; \mathbf{x}_A = egin{bmatrix} \mathbf{x}_{I_k} & \mathbf{x}_C & \mathbf{x}_L \end{bmatrix}$$

We have the following point or keyframe map:

$$\mathbf{x}_M = \begin{bmatrix} G \mathbf{p}_{f_1} & \cdots & G \mathbf{p}_{f_m} \end{bmatrix}$$
 , $\mathbf{x}_K = \begin{bmatrix} \mathbf{x}_{T_1} & \cdots & \mathbf{x}_{T_n} \end{bmatrix}$

State $\mathbf{x}_{T_i} = \begin{bmatrix} I_i \bar{q} & G \mathbf{p}_{I_i} \end{bmatrix}$ and environmental feature related through bearing projection:

$$\mathbf{z}_k = \mathbf{h}(\mathbf{x}_{T_k}, {}^G\mathbf{p}_f) + \mathbf{n}_k =: \mathbf{\Lambda}({}^{C_k}\mathbf{p}_f) + \mathbf{n}_k$$

$${}^{C_k}\mathbf{p}_f = {}^{C}_{I}\mathbf{R}_G^{I_k}\mathbf{R}({}^{G}\mathbf{p}_f - {}^{G}\mathbf{p}_{I_k}) + {}^{C}\mathbf{p}_I$$

We can linearize this function to get the following: $\mathbf{r}_k = \mathbf{z}_k - \mathbf{h}(\hat{\mathbf{x}}_{T_k}, {}^G\hat{\mathbf{p}}_f) \simeq \mathbf{H}_{T_k}\tilde{\mathbf{x}}_{T_k} + \mathbf{H}_{f_k}{}^G\tilde{\mathbf{p}}_f + \mathbf{n}_k$

Thus the update is a function of the observation pose and feature position, either of which can be in our prior map. The measurement noise for an observation is $\mathbf{n}_k \sim \mathcal{N}(\mathbf{0}, \sigma_{pix}^2 \mathbf{I})$.

Prior Map Methodologies

- Point-based map (PTS) uses 2D-to-3D measurement of 3d feature positions [2]
- Keyframe-based (KFS) map uses 2D-to-2D map bearing observation and keyframe 6dof pose [3]

Efficient Prior Map Localization

- Extended Kalman filter (EKF), updates map, tracks full correlations, expensive computation
- Schmidt-Kalman filter (SKF), map states not updated, correlations are, proven consistency $\hat{\mathbf{x}}_{A_k}^{\oplus} = \hat{\mathbf{x}}_{A_k} + \mathbf{K}_{A_k} \mathbf{r} , \ \hat{\mathbf{x}}_{S_k}^{\oplus} = \hat{\mathbf{x}}_{S_k}$

$$\mathbf{P}_k^{\oplus} = \mathbf{P}_k - egin{bmatrix} \mathbf{K}_{A_k} \mathbf{S}_k \mathbf{K}_{A_k}^{\top} & \mathbf{K}_{A_k} \mathbf{H}_k \begin{bmatrix} \mathbf{P}_{AS_k} \\ \mathbf{P}_{SS_k} \end{bmatrix}^{\top} \\ \mathbf{H}_k^{\top} \mathbf{K}_{A_k}^{\top} & \mathbf{0} \end{bmatrix}$$

- Noise inflation methods, treat feature position or pose as true, compensate through inflation
 - Measurement $\mathbf{R} = (\gamma \sigma_{pix})^2 \mathbf{I}$
 - Marginal Covariance

$$\mathbf{R} = \mu \mathbf{H}'_{T_k} \mathbf{P}_{TT_k} \mathbf{H}'_{T_k} + \sigma_{pix}^2 \mathbf{I}$$

Alpha-Beta Covariance

$$\mathbf{R} = \alpha \mathbf{H}'_{T_k} \mathbf{P}_{TT_k} \mathbf{H}'_{T_k}^{\top} + \beta \mathbf{H}'_T \mathbf{P} \mathbf{H}'_T^{\top} + \sigma_{pix}^2 \mathbf{I}$$

Algo.	Cxty PTS	Cxty KFS	Mem. PTS	Mem. KFS
EKF	$O(9m^2)$	$O(36n^2)$	$O(9m^2)$	$O(36n^2)$
SKF	O(3m)	O(6n)	$O(9m^2)$	$O(36n^{2})$
Inf. γ	O(1)	O(1)	O(0)	O(0)
Inf. μ	O(1)	O(1)	O(9m)	O(36n)
Inf. α, β	O(1)	O(1)	O(9m)	O(36n)

Simulation – Prior Map Accuracy

- Prior map points generated based on trajectory with keyframes generated from prior distribution [4]
- EKF and SKF can gain accuracy improvements over VIO at all noise levels
- Even significantly noisy prior maps can still provide information

	Prior	Algo.	ATE (deg/m)	NEES (3)
	-	VIO	2.603 / 0.271	3.524 / 1.591
Ω	1.0°, 6cm	EKF	0.442 / 0.105	3.236 / 3.698
-to-2		SKF	0.518 / 0.130	2.806 / 3.466
	3.0°, 12cm	EKF	0.629 / 0.127	4.353 / 5.335
7		SKF	0.941 / 0.167	3.009 / 3.585
Ω	6cm	EKF	0.068 / 0.014	8.224 / 9.292
2D-to-3D		SKF	0.087 / 0.036	2.863 / 3.210
	12cm	EKF	0.079 / 0.015	9.321 / 9.472
7		SKF	0.122 / 0.065	2.761 / 3.175

Simulation – Method Comparisons

- All methods are able to outperform standard visual-inertial odometry
- SKF and inflation-based methods are most efficient
- After tuning, inflation methods are consistent, with low computational cost, while SKF-based guarantees consistency with a fraction of the cost of the EKF-based

	Algo.	40m	80m	120m	160m	200m	240m	NEES (ori / pos)	Time (ms)
	VIO	0.373 / 0.088	0.536 / 0.119	0.636 / 0.141	0.717 / 0.163	0.811 / 0.175	0.888 / 0.187	3.228 / 3.796	0.8 ± 0.3
2D-to-2D	EKF	0.225 / 0.091	0.323 / 0.111	0.372 / 0.120	0.402 / 0.121	0.424 / 0.122	0.394 / 0.125	3.298 / 4.311	3.6 ± 1.8
	SKF	0.260 / 0.097	0.339 / 0.129	0.415 / 0.146	0.448 / 0.155	0.492 / 0.167	0.542 / 0.171	3.074 / 3.596	1.4 ± 0.7
	Inf. Meas.	0.276 / 0.099	0.353 / 0.134	0.449 / 0.152	0.518 / 0.163	0.531 / 0.173	0.562 / 0.180	3.016 / 3.647	0.9 ± 0.3
	Inf. Marg.	0.265 / 0.091	0.350 / 0.122	0.447 / 0.142	0.520 / 0.156	0.560 / 0.169	0.613 / 0.175	2.795 / 2.784	0.9 ± 0.3
	Inf. $\alpha\beta$	0.269 / 0.091	0.353 / 0.122	0.456 / 0.142	0.546 / 0.156	0.599 / 0.168	0.656 / 0.173	2.781 / 2.689	0.9 ± 0.3
3D	EKF	0.041 / 0.009	0.041 / 0.009	0.041 / 0.009	0.041 / 0.009	0.041 / 0.009	0.041 / 0.009	9.612 / 7.792	5.8 ± 1.1
	SKF	0.090 / 0.040	0.092 / 0.038	0.091 / 0.040	0.090 / 0.038	0.092 / 0.039	0.091 / 0.039	3.051 / 2.963	1.4 ± 0.2
-01-	Inf. Meas.	0.125 / 0.068	0.139 / 0.065	0.141 / 0.067	0.141 / 0.064	0.142 / 0.066	0.136 / 0.065	3.663 / 3.528	0.6 ± 0.1
2D-	Inf. Marg.	0.102 / 0.046	0.103 / 0.045	0.102 / 0.046	0.098 / 0.044	0.103 / 0.046	0.100 / 0.045	3.201 / 2.546	0.6 ± 0.1
	Inf. $\alpha\beta$	0.102 / 0.047	0.103 / 0.046	0.102 / 0.047	0.098 / 0.045	0.103 / 0.046	0.100 / 0.046	3.126 / 2.437	0.6 ± 0.1

Summary and Discussion

- Prior maps can be leveraged at even high noise levels to improve accuracy
- Point-based 2D-to-3D provide the most accuracy improvements
- Keyframes 2D-to-2D reduce computation for large number of features
- SKF is computationally efficient and consistent
- Inflation methods are relatively invariant to their chosen parameters and can handle large maps

^[1] Schmidt, Stanley "Application of state-space methods to navigation problems." Advances in control systems. Vol. 3. Elsevier, 1966.

^[2] DuToit, Ryan C., et al. "Consistent map-based 3D localization on mobile devices." ICRA. IEEE, 2017.

^[3] Geneva, Patrick, et al. "A linear-complexity EKF for visual-inertial navigation with loop closures." ICRA. IEEE, 2019. [4] Geneva, Patrick, et al. "OpenVINS: A research platform for visual-inertial estimation." ICRA. IEEE, 2020.