Analyse - TD1

Lucie Le Briquer

3 octobre 2017

Exercice 1 : Autour de la continuité

- 1. Par définition $f: E \to F$ est continue en x
 - $\Leftrightarrow_{\text{def}} \forall V \in \mathcal{V}(f(x)), \exists V' \in \mathcal{V}(x) \text{ tq } \forall y \in V', f(y) \in V$
 - $\Leftrightarrow \forall V \in \mathcal{V}(f(x)), f^{-1}(V) \in \mathcal{V}(x)$

On suppose : $\forall O \subset F$, O ouvert $\Rightarrow f^{-1}(O)$ ouvert. Soit $x \in E$ et $V \in \mathcal{V}(f(x))$. Par définition $\exists O$ ouvert tq $O \subset V$ et $f(x) \in O$. Par hypothèse, $f^{-1}(O)$ est ouvert. Or $O \subset V \Rightarrow f^{-1}(O) \subset f^{-1}(V)$ et $f(x) \in O \Rightarrow x \in f^{-1}(O)$. Donc $f^{-1}(V) \in \mathcal{V}(x)$.

On suppose que $\forall x \in E, \forall V \in \mathcal{V}(f(x)), f^{-1}(V) \in \mathcal{V}(x)$. Soit $U \subset F, U$ ouvert :

- si $f^{-1}(U) = \emptyset$ c'est un ouvert
- soit $x \in f^{-1}(U)$, $f(x) \in U$ comme U est ouvert, c'est un voisinage de f(x). Par continuité de f en x, $f^{-1}(U)$ est un voisinage de x. Ceci est vrai pour tout $x \in f^{-1}(U)$. Donc $f^{-1}(U)$ est un voisinage de chacun de ses points. C'est un ouvert de E.

Remarque. Soit $V \subset E$, V voisinage de tous ses points. $\forall x \in V, V \in \mathcal{V}(x), \exists U_x$ ouvert tq $x \in U_x \subset V$. Donc $V = \bigcup_{x \in V} U_x$, donc V est ouvert.

 $Par\ analogie.\ f$ est continue en tout point de E ssi l'image réciproque par f d'un fermé et un fermé.

- 2. \Rightarrow : Soit $A \subset E$, comme f est continue on a que $f^{-1}(\overline{f(A)})$ est fermé. Donc $\overline{A} \subset f^{-1}(f(\overline{A}))$ (car $A \subset f^{-1}(\overline{f(A)})$) qui est fermé). Donc $f(\overline{A}) \subset \overline{f(A)}$.
 - \Leftarrow : Supposons que $\forall A \subset E, f(\overline{A}) \subset \overline{f(A)}$. Soit V un fermé de F. Soit $A = f^{-1}(V)$. On a $f(A) \subset f(\overline{A}) \subset \overline{f(A)} = \overline{V} = V$. Donc $f^{-1}(V) = A \subset \overline{A} \subset f^{-1}(V)$ donc $\overline{A} = f^{-1}(V)$. Ainsi f est continue.
- 3. $f \colon E \to F$ et $g \colon F \to G$. Soit U un ouvert de G.

$$(g \circ f)^{-1}(U) = f^{-1}(\underbrace{g^{-1}(U)}_{\text{ouvert}})$$

est ouvert par continuité. Donc $g \circ f$ est continue.

- 4. (a) f continue $\Rightarrow f$ séquentiellement continue. $x_n \to x: \forall V \in \mathcal{V}(x), \exists N \in \mathbb{N}$ tq $\forall n \geq N, x_n \in V$
 - Soit $V' \in \mathcal{V}(f(x))$. Comme f continue en x, $f^{-1}(V') \in \mathcal{V}(\S)$. Donc $\exists N \in \mathbb{N}$ tq $\forall n \geq N, x_n \in f^{-1}(V')$ donc $\forall n \geq N, f(x_n) \in V'$. Donc $f(x_n) \xrightarrow[n \to +\infty]{} f(x)$

(b) E métrique. Si f n'est pas continue en x:

$$\exists V \in \mathcal{V}(f(x)), \forall U_n = \mathcal{B}\left(x, \frac{1}{n}\right), f(U_n) \cap V^C \neq \emptyset$$

 $\forall n \geq 0, \exists y_n \in f(U_n) \cap V^C. \ \exists x_n, f(x_n) = y_n \text{ avec } x_n \in U_n \ x_n \to x. \ \text{Mais } y_n \nrightarrow y = f(x) \text{ car } \forall n, y_n \in V^C.$

Exercice 3 : Prolongement des applications uniformément continues

E, F deux espaces métriques, D dense dans $E, \varphi \colon D \to F$. F complet.

- 1. Soit $\varphi_1, \varphi_2 \colon E \to F$ deux prolongements continus de φ . Soit $x \in E$. $x_n \xrightarrow[n \to +\infty]{} x, x_n \in D$. Donc $\forall n \varphi_1(x_n) = \varphi_2(x_n)$. Par continuité $\varphi_1(x) \xrightarrow[n \to +\infty]{} \varphi(x)$, idem pour φ_2 , d'où $\varphi_1(x) = \varphi_2(x)$.
- 2. (a) $x_n \xrightarrow[n \to +\infty]{} x$. Montrons que $(\varphi(x_n))_{n \in \mathbb{N}}$ converge en montrant qu'elle est de Cauchy. Par définition de l'uniforme continuité :

$$\forall \varepsilon, \exists \eta, \forall (x, y) \in D^2, \ d(x, y) \le \eta \Rightarrow d(\varphi(x), \varphi(y)) \le \varepsilon$$

Soit $\varepsilon > 0$, $\exists n_0, \forall p \geq n_0, \forall q, d(x_p, x_q) \leq \eta_{\varepsilon}$. Donc $\forall p, q \geq n_0, d(\varphi(x_p), \varphi(x_q)) \varepsilon$. $(\varphi(x_n))$ est de Cauchy donc elle converge vers l.

Unicité de la limite. Soient $x_n \to x$ et $x'_n \to x$, on a $\varphi(x_n) \to l$ et $\varphi(x'_n) \to l'$. En posant $z_{2n+1} = x_n$ et $z_{2n} = x'_n, z_n \to x$, on a $\varphi(z_n) \to l'', \varphi(z_{2n+1}) \to l$ et $\varphi(z_{2n}) \to l'$, on a donc l'égalité entre toutes les limites.

(b) Prolongement. Limite de la suite constante

Uniforme continuité. Soit $\varepsilon > 0$. Soit η le pas d'uniforme continuité de φ , montrons qu'on a le même pas pour ψ . Soit $x,y \in E$ tels que $d(x,y) \leq \frac{\eta}{2}$. $x_n \to x$ et $y_n \to y$, $x_n,y_n \in D$.

$$d(\psi(x), \psi(y)) \le d(\psi(x), \psi(x_n)) + d(\psi(x_n), \psi(y_n)) + d(\psi(y_n)\psi(y))$$

À partir d'un certain rang on a :

$$d(\psi(x_n), \psi(x)) \le \frac{\varepsilon}{3}$$
$$d(\psi(y_n), \psi(y)) \le \frac{\varepsilon}{3}$$

et

$$\forall n \in \mathbb{N}, \quad \psi(x_n) = \varphi(x_n) \quad \psi(y_n) = \varphi(y_n)$$

et φ est uniformément continue. Comme $x_n \to x$ et $y_n \to y$ et que $d(x,y) \le \frac{\eta}{2}$, à partir d'un certain rang, $d(x_n,y_n) \le \eta$. Donc $d(\varphi(x_n),\varphi(y_n)) \le \varepsilon$. Donc $d(\psi(x),\psi(y)) \le K\varepsilon$.

Exercice 4 : Complété d'un espace métrique

Soit (E, d) un espace métrique.

1. (Existence) Soit $(x, a) \in E^2$:

$$i_x: \left\{ \begin{array}{ccc} E & \longrightarrow & \mathbb{R} \\ y & \longmapsto & d(x,y) - d(a,y) \end{array} \right.$$

Continuité. Par continuité de la distance.

Borné.

$$i_x(y) \le d(x, a) + d(a, y) - d(a, y) = d(x, a)$$

 $-i_x(y) \le d(a, x) + d(x, y) - d(x, y) = d(a, x)$

donc i_x est bornée.

Posons $i: \left\{ \begin{array}{ccc} E & \longrightarrow & \mathcal{C}_b(E) \\ x & \longmapsto & i_x \end{array} \right.$ Montrons que $\|i_x - i_y\|_{\infty} = d(x,y)$.

$$|i_x(z) - i_y(z)| = |d(x, z) - d(y, z)| \le d(x, y)$$

et pour z = y, $|i_x(z) - i_y(z)| = d(x, y)$. D'où $||i_x - i_y||_{\infty} = d(x, y)$

 $i \colon E \to i(E) \subset \mathcal{C}_b(E)$. Définissons $\widehat{E} = \overline{i(E)}^{\|\cdot\|_{\infty}}$. \widehat{E} est bien complet car \widehat{E} est fermé dans $\mathcal{C}_b(E)$ qui est un espace complet et i(E) dense dans \widehat{E} par définition de l'adhérence.

2. (Unicité) F_1, F_2 deux espaces métriques complets et $j_1: E \to F_1, j_2: E \to F_2$ tq $\overline{j_1(E)} = F_1$ et $\overline{j_2(E)} = F_2$. On construit d'abord i entre $j_1(E)$ et $j_2(E)$. j_1 et j_2 sont des bijections de E dans $j_1(E)$ et $j_2(E)$. Définissons :

$$i: \left\{ \begin{array}{ccc} j_1(E) & \longrightarrow & j_2(E) \\ x & \longmapsto & j_2 \circ j_1^{-1}(x) \end{array} \right.$$

On a donc $i: j_1(E) \longrightarrow j_2(E)$. Comment la prolonger sur F_1 ? i est une application uniformément continue (isométrie) définie sur un espace dense d'un espace métrique, à valeurs dans un espace complet. On a donc toutes les hypothèses nécessaires pour appliquer l'exercice 3. Alors, il existe un unique prolongement de i sur F_1 .

Isométrie. $\forall x,y \in j_1(E), d_{F_2}(i(x),i(y)) = d_{F_1}(x,y)$ Si $x,y \in F_1$ prenons $x_n \in j_1(E) \to x$ et $y_n \in j_2(E) \to y$.

$$d_{F_2}(i(x_n), (y_n)) = d_{F_1}(x_n, y_n) \longrightarrow d_{F_1}(x, y) = d_{F_2}(i(x), i(y))$$

Bijective. On fait le travail inverse avec $i'=j_1\circ j_2^{-1}$. On définit ainsi la bijection réciproque de i.

- 3. (a) \mathbb{R}
 - (b) C([0,1])

(c)
$$C_0(\mathbb{R}) = \left\{ f \in C_b(\mathbb{R}) \mid f(x) \xrightarrow[x \to \pm \infty]{} 0 \right\}$$

(d) $L_p([0,1])$ pour $p < +\infty$ et $\mathcal{C}([0,1])$ pour $p = \infty$

Exercice 6 : Un exemple de topologie non métrisable

Soit $E = [0,1]^{[0,1]}$ muni de la topologie produit.

 $f \colon E \to F$. On veut rendre f continue en bougeant les topologies. Si on prend, comme topologie sur $E, \mathcal{T}_E = \mathcal{P}(E)$ f forcément continue puisque $\{x\}$ est un ouvert. Si on prend, comme topologie de $F, \mathcal{T}_F = \{\emptyset, F\}$ aussi. On cherche à construire la topologie la plus fine qui rendrait f continue. Topologie produit : $\Pi_x \colon f \in [0,1]^{[0,1]} \to f(x)$, la topologie la moins fine rendant toutes ces projections continues.

 $\Pi_x:[0,1]^{[0,1]}\longrightarrow [0,1].$ Soit $U\subset [0,1]$ ouvert.

$$\Pi_x^{-1}(U) = \left\{ f \in [0,1]^{[0,1]} | f(x) \in U \right\} = \left(\prod_{y \neq x} [0,1] \right) \times U$$

$$\mathcal{A} = \{\Pi_x^{-1}(U), U \text{ ouvert de } [0, 1], x \in [0, 1]\}$$

La topologie produit \mathcal{T} est alors définie comme la topologie engendrée par \mathcal{A} . Soit Ω un ouvert de \mathcal{T} . Ω est de la forme :

$$\Omega = \prod_{i \in I} U_i \times \prod_{j \notin I} [0, 1]$$

avec I un ensemble fini de [0,1].

1. $f \in [0,1]^{[0,1]}$. Base de voisinage de f:

$$V_{(x_i)_{i \in I}} = \left\{ g \in [0, 1]^{[0, 1]} \mid (x_i)_{i \in I}, I \text{ fini tq } |g(x_i) - f(x_i)| < \varepsilon \right\}$$

Si $f_n \xrightarrow[n \to +\infty]{} f$ dans $E \Leftrightarrow f_n \xrightarrow[n \to +\infty]{} f$ simplement

Si $f_n \xrightarrow[n \to +\infty]{n \to +\infty} f$ dans E. Soit $x \in [0,1]$ et $\varepsilon > 0$. On considère $V_{(x),\varepsilon} : \exists n_0 \in \mathbb{N}, \forall n \geq n_0, |f_n(x) - f(x)| \leq \varepsilon$. Donc $f_n(x) \to f(x)$.

Si $f_n \xrightarrow[n \to +\infty]{} f$ simplement. Soit $\varepsilon > 0, I$ fini, $(x_i)_{i \in I}$ dans [0, 1].

$$\forall i \in I, \exists n_i \in \mathbb{N} \text{ tq } \forall n \ge n_i, |f_n(x_i) - f(x_i)| \le \varepsilon$$

pour $n \ge \max_{i \in I} n_i$, les f_n sont dans $V_{(x_i),\varepsilon}$.

- 2. Montrons que les fonctions simples sont dens dans E. Soit $f \in E$, soit $V_{(x_i)_{i \in I}, \varepsilon, f}$ un voisinage de f. Prenons $g = \sum_{i \in I} f(x_i) \mathbb{1}_{\{x = x_i\}}$ est une fonction simple dans le voisinage. Donc les fonctions simples sont denses dans E.
- 3. Montrons que $\mathbbm{1}$, la fonction constante égale) 1, n'est pas une limite de fonctions simples. Soit f_n une suiste de fonctions simples qui converge vers f, montrons que $\{x \mid f(x) = 0\}$. $\forall n \in \mathbb{N}$ f_n a un nombre fini de $\neq 0$, posons $U_n = f_n^{-1}(]0,1]$), U_n est donc fini. $\bigcup_{n \in \mathbb{N}} U_n$ est dénombrable et f est nul sur $\bigcap_{n \in \mathbb{N}} U_n^C$ car $\forall n \in \mathbb{N}, \forall x \in U_n^C, 0 = f_n(x) \to f(x)$. f est nulle sauf sur un ensemble dénombrable $\Rightarrow f \neq \mathbb{1}$.
- 4. Par l'absurde, si *E* était métrisable, considérons *d* la distance associée (on suppose donc que la distance produit la topologie, convergence avec *d* correspond à la convergence en topologie). Posons 1, la fonction constante égale à 1.

$$\mathcal{B}\left(\mathbb{1},\frac{1}{n}\right) = \left\{ f \in E \mid d(f,\mathbb{1}) < \frac{1}{n} \right\} \text{ est un ouvert contenant } \mathbb{1}$$

c'est une base de voisinage de $\mathbb{1}$. Les fonctions sont denses dans E donc $\forall n \in \mathbb{N}, \exists f_n \in \mathcal{B}\left(\mathbb{1}, \frac{1}{n}\right)$ simple donc $d(\mathbb{1}, f_n) \leq \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ donc f_n converge vers $\mathbb{1}$, ce qui est absurde par la question 3. Donc E muni de la topologie produit n'est pas métrisable.

Exercice 8 : Cas particulier du théorème de Schauder

1. Soit $t \in]0,1[$, $f_t(x) = (1-t)f(x) + tx_0$. Soient $x,y \in K$,

$$||f_t(x) - f_t(y)|| \le ||(1-t)f(x) - (1-t)f(y)||$$

$$= (1-t)||f(x) - f(y)||$$

$$\le (1-t)||x-y||$$

Donc f_t est (1-t) contractante. Or $f_t : K \to K$. Donc d'après le théorème de Picard (un compact est complet), f_t admet un unique point fixe x_t .

2. $(t_n) \in K^{\mathbb{N}}$ avec $t_n \to 0$. $(a_n)_n$ telle que a_n est un point fixe de f_{t_n} . Comme K est compact on extrait une sous-suite de $(a_n) : (a_{\varphi(n)})$ qui converge vers a. Quand $n \to +\infty$, par continuité de f, f(a) = a. f admet donc un point fixe.

Exercice 7: Tychonoff dénombrable

- 1. Vérifions tout d'abord que δ_n est une distance sur E_n . $t\mapsto \frac{t}{1-t}$ est croissante donc $d_n(x,z)\leq d_n(x,y)+d_n(y,z)$ implique que $\delta_n(x,z)\leq \frac{d_n(x,y)+d_n(y,z)}{1+d_n(x,y)+d_n(y,z)}$.
 - $\delta_n \leq d_n \Rightarrow T_{\delta_n} \subset T_{d_n}$: Soit $U \in T_{\delta_n}$, soit $x \in U$, $\exists r > 0$ tel que $\mathcal{B}_{\delta_n}(x,r) \subset U$. Soit $y \in \mathcal{B}_{d_n}(x,r)$, $\delta_n(x,y) \leq d_n(x,y) < r \Rightarrow \mathcal{B}_{\delta_n}(x,r)$. $\mathcal{B}_{d_n}(x,r) \subset \mathcal{B}_{\delta_n}(x,r) \subset U \Rightarrow U \in T_{d_n} \Rightarrow T_{\delta_n} \subset T_{d_n}$.
 - Montrons que $T_{d_n} \subset T_{\delta_n}$. Soit $U \in T_{d_n}$, soit $x \in U$, $\exists \alpha > 0$ tel que $\mathcal{B}_{d_n}(x,\alpha) \subset U$. Soit $y \in \mathcal{B}_{\delta_n}\left(x,\frac{\alpha}{1+\alpha}\right)$. Or $d_n(x,y) < \alpha \Leftrightarrow \delta_n(x,y) < \frac{\alpha}{1+\alpha}$. Alors $y \in \mathcal{B}_{d_n}(x,\alpha)$, d'où $\mathcal{B}_{\delta_n}\left(x,\frac{\alpha}{1+\alpha}\right) \subset \mathcal{B}_{d_n}(x,\alpha) \subset U$. Donc $T_{d_n} \subset T_{\delta_n}$.

Remarque. On vient de montrer que id: $(E,d) \to (E,\delta)$ est un homéomorphisme.

- 2. \mathcal{O} est la topologie produit, notons T_d la topologie métrique. On sait que \mathcal{O} est la topologie la moins fine qui rend les projections continues $p_n \colon E \to E_n$ tq $p_n(x) = x_n$.
 - Montrons que $\mathcal{O} \subset T_d$. Soit $x, y \in E$, $d(x, y) = \sum_{n=0}^{+\infty} 2^{-n} \delta_n(x_n, y_n)$.

$$\delta_n(p_n(x), p_n(y)) = \delta_n(x_n, y_n)$$

$$= 2^n 2^{-n} \delta_n(x_n, y_n)$$

$$\leq 2^n d(x, y)$$

 p_n est 2^n -lipschitzienne donc continue. Donc $O \subset T_d$.

- Montrons que $T_d \subset \mathcal{O}$. Soit Ω un ouvert de T_d . Soit $x \in \Omega$. On veut montrer que $\Omega \in \mathcal{V}(x)$. Il existe $\varepsilon > 0$ tel que $\forall y \in E, d(x,y) \leq \varepsilon \Rightarrow y \in \Omega$ $(B(x,\varepsilon) \subset \Omega)$. On va trouver un entier $n \in \mathbb{N}$ et une famille $(\varepsilon_j)_{0 \leq j \leq N}$ tel que :

$$\bigcap_{j=0}^{N} p_j^{-1} \left(B_{\delta_j}(x_j, \varepsilon_j) \right) \subset \Omega$$

 $\forall y \in E, d(x,y) = \sum_{n=0}^{+\infty} 2^{-n} \delta_n(x,y).$

 $\exists N \in \mathbb{N} \text{ tel que } \sum_{n=N+1}^{+\infty} 2^{-n} \leq \frac{\varepsilon}{2}. \ \forall y \in E$:

$$d(x,y) \le \sum_{n=0}^{N} 2^{-n} \delta_n(x_n, y_n) + \frac{\varepsilon}{2}$$
$$\le \sum_{n=0}^{N} \sum_{n=0}^{N} \delta_n(x_n, y_n) + \frac{\varepsilon}{2}$$

Si $y \in \bigcap_{j=0}^N p_j^{-1} \left(\mathcal{B}_{\delta_j}(x_j, \frac{\varepsilon}{2N}) \right)$. Alors pour $j \leq N$,

$$\delta_j(x_j, y_j) \le \frac{\varepsilon}{2N} \Rightarrow d(x, y) \le \varepsilon \Rightarrow y \in \mathcal{B}(x, \varepsilon)$$

Conclusion : $\bigcap_{j=0}^{N} p_j^{-1} \left(\mathcal{B}_{\delta_j} \left(x_j, \frac{\varepsilon}{2N} \right) \right) \subset \Omega$. D'où $\Omega \in \mathcal{V}(x)$.

- 3. Supposons que $\forall n \ (E_n, d_n)$ est compact. Prenons $(x_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$.
 - sur E_1 : notons $x_n^1 = p_{E_1}(x_n)$, alors $(x_n^1)_{n \in \mathbb{N}} \in E_1^{\mathbb{N}}$ avec E_1 compact. Donc il existe φ_1 tel que $x_{\varphi_1(n)}^1 \xrightarrow[n \to +\infty]{} x^1 \in E_1$.

On considère maintenant $(x_{\varphi_1(n)})_{n\in\mathbb{N}}\in E^{\mathbb{N}}$.

- sur E_2 : considérons $(x_{\varphi_1(n)}^2) \in E_2^{\mathbb{N}}$ compact. Donc il existe φ_2 tel que $(x_{\varphi_1 \circ \varphi_2(n)}^2) \xrightarrow[n \to +\infty]{} x^2 \in E_2$.
- au rang p: considérons $(x^p_{\varphi_1 \circ \dots \circ \varphi_{p-1}}(n))_{n \in \mathbb{N}} \in E_p^{\mathbb{N}}$ compact. Donc il existe φ_p tel que $x^p_{\varphi_1 \circ \dots \circ \varphi_p(n)} \xrightarrow[n \to +\infty]{} x^p$.

Procédé d'extraction diagonal : on pose $\psi(n) = \varphi_1 \circ \varphi_2...\varphi_n(n)$. Alors $(x_{\psi(n)})_{n \in \mathbb{N}}$ est une suite extraite de $(x_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$. Et pour tout $p \in \mathbb{N} : x_{\psi(n)}^p \xrightarrow[n \to +\infty]{} x^p \in E_p$. Donc $x_{\psi(n)} \xrightarrow[n \to +\infty]{} x = (x^1,...,x^p,...) \in E$.

Exercice 9 : Précompacité et relative compacité

Soit E un espace métrique complet.

- 1. \overline{A} précompact $\Leftrightarrow A$ précompact
 - $\Rightarrow : clair$
 - \Leftarrow : Soit A précompact. Soit $\varepsilon > 0$. $\exists \{x_1, ..., x_n\}$ tels que $A \subset \bigcup_{i=1}^n \mathcal{B}\left(x_i, \frac{\varepsilon}{2}\right)$. Donc $\overline{A} \subset \bigcup_{i=1}^n \overline{\mathcal{B}\left(x_i, \frac{\varepsilon}{2}\right)} \subset \bigcup_{i=1}^n \mathcal{B}(x_i, \varepsilon)$.

- 2. Si A est relativement compact. \exists K compact de E tel que $A \subset K$. Soit $\varepsilon > 0$. K est recouvert par $\bigcup_{i=1}^{n} \mathcal{B}(x,\varepsilon)$ donc $A \subset \bigcup_{i=1}^{n} \mathcal{B}(x,\varepsilon)$.
 - A précompact. Par la première question \overline{A} est précompact. E complet donc \overline{A} est compact; qui est la définition de A relativement compact.
 - $\ \ A$ borné.