Leçon 201 : Espaces de fonctions. Exemples et applications.

Développements :

Ascoli, Riesz-Fischer, Weierstrass

Bibliographie:

Hauchecorne(H), Gourdon (G), Tauvel Analyse complexe (T), Li Analyse fonctionnelle (L)

Plan

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , K compact

1 Fonctions régulières

1.1 Fonctions continues, lipschitziennes, uniformément continues [H]

Définition 1. continue

Définition 2 (H p.144). uniformément continue

Proposition 3 (H p.144). U.c implique continue

Contre-exemple 4 (H p.145). Réciproque fausse

Théorème 5 (H p.144). Thm de Heine

Définition 6 (H p.144). Lipschitzienne

Proposition 7 (H p.144). Lipsch implique u.c.

Contre-exemple 8 (H p.145). Réciproque fausse

1.2 Fonctions continues sur un compact [G et L]

Proposition 9 (G p.31). L'image d'un compact par une application continue $est\ compacte$

Proposition 10 (G p.31). continue bijective sur un compact est d'inverse continue

Proposition 11 (G p.31). Bornée et atteint ses bornes

Proposition 12 (L p.10). C(K), $||.||_{\infty}$ est un Banach.

 $mathcalC^{k}(K), \|.\|_{\infty}^{(k)}$ est un Banach.

Contre-exemple 13 (L p.10). C(K), $\|.\|_1$ n'est pas complet

1.3 Parties compactes [L]

Définition 14 (L p. 179). équicontinuité

Théorème 15 (L p. 179). Ascoli

Application 16 (L p. 180). Montrer qu'un opérateur est compact

1.4 Parties denses

Théorème 17 (L p.50). Weierstrass

Application 18 (G p.286). Soit $f:[0,1]\to\mathbb{C}$ continue d'intégrale nulle contre t^n alors f est nulle

Théorème 19 (L p. 46). Stone-Weierstrass

Application 20.

2 Applications linéaires continues [L]

En bonus, si y a de la place +Banach Steinhauss

3 Fonctions holomorphes [T]

Définition 21. holomorphe

Exemple 22.

Proposition 23 (T p.76). Thm de Cauchy

Proposition 24 (T p.77). Formule de Cauchy

Proposition 25 (T p.78). Holomorphe equivalent à analytique

Théorème 26 (T p.85). Liouville

Proposition 27 (T p.86). Principe du maximum

Proposition 28 (T p.52). Principe du prolongement analytique

Théorème 29 (T p.89). Weierstrass cf de suites holo

Application 30. Montrer qu'une série de fonctions holomorphes est holomorphe

Proposition 31. Sous espace fermé de l'ensemble des fonctions continues

4 Espaces L^p [L]

4.1 Structure

Li p.7 + Riesz-Fischer

4.2 Parties denses

Proposition 32 (L p.76). L'ensemble des fonctions continues à support compact est dense dans L^p

Définition 33 (L p.75). Convolution

Définition 34 (L p.83). Suite régularisante

Exemple 35 (L p.82).

Proposition 36 (L p.82). Convergence de la convolée

Corollaire 37 (L p.85). Fonctions C^{∞} à support compact dense dans L^p

Proposition 38. $A(\mathbb{R})$ dense dans L^2 .

Application 39. Prolongement de la transformée de Fourier à ${\cal L}^2$

5 Espace de Schwartz