Непараметрические критерии однородности

Грауэр Л.В.

Непараметрические критерии однородности

$$\xi,\ F(x),\ X_{[n]}=(X_1,\dots,X_n)$$
 $\eta,\ G(x),\ Y_{[m]}=(Y_1,\dots,Y_m)$ $H_0:\ F(x)=G(x)$ для всех $x\in\mathbb{R}$ $H_1:\ F(x)\geqslant G(x)$ для всех $x\in\mathbb{R}$ $H_1':\ F(x)\leqslant G(x)$ для всех $x\in\mathbb{R}$ $H_1'':\ F(x)\neq G(x)$ для всех $x\in\mathbb{R}$

Критерий однородности Вилкоксона

Пусть
$$m\leqslant n$$
 $Z_{[n+m]}=(X_{[n]},Y_{[m]})$

$$z_{(1)} < z_{(2)} < \ldots < z_{(m+n)}$$

$$rank(Y_1) = s_1$$
, $rank(Y_2) = s_2$, ..., $rank(Y_m) = s_m$.

Критическая область

$$W = \sum_{i=1}^m s_i$$

H_1	V_k
$F(x) \geq G(x)$	
$F(x) \leq G(x)$	
$F(x) \neq G(x)$	

Аппроксимация

$$\tilde{W} = \frac{W - \frac{m(m+n+1)}{2}}{\sqrt{\frac{mn(m+n+1)}{12}}}$$

$$\left\{\frac{mn(n+m+1)}{12}\left[1-\frac{\sum_{i=1}^{k}t_{i}(t_{i}^{2}-1)}{(n+m)(n+m-1)(n+m+1)}\right]\right\}^{1/2}$$

Критерий Манна-Уитни

$$U = \sum_{i=1}^{n} \sum_{j=1}^{m} I\{X_i < Y_j\},\,$$

где

$$I\{X_i < Y_j\} = \begin{cases} 1, & X_i < Y_j; \\ 0, & X_i > Y_j. \end{cases}$$

Взаимосвязь критериев Вилкоксона и Манна-Уитни

$$W=U+\frac{m(m+1)}{2}.$$

Непараметрические критерии для парных выборок

$$(\eta,\xi)$$
, $(X,Y)_{[n]}$

$$H_0: \ F(x) = G(x)$$
 для всех $x \in \mathbb{R}$.

$$H_1:\ F(x)\geqslant G(x)$$
 для всех $x\in\mathbb{R}.$

$$H_1^{'}:\ F(x)\leqslant G(x)$$
 для всех $x\in\mathbb{R}.$

$$H_1^{''}:\ F(x)
eq G(x)$$
 для всех $x\in\mathbb{R}.$

$$\zeta = \eta - \xi$$
$$z_i = X_i - Y_i$$

$$H_0: P\{z_i < 0\} = P\{z_i > 0\} = 1/2.$$

$$H_1:\ P\{z_i<0\}>P\{z_i>0\}.$$

$$H_1': P\{z_i < 0\} < P\{z_i > 0\}.$$

$$H_1'': P\{z_i < 0\} \neq P\{z_i > 0\}.$$

Критерий знаков

Пусть
$$A = \{z_i < 0\}$$
 $L = \sum_{i=1}^n I\{z_i < 0\}$
 H_1 V_k
 $F(x) \geq G(x)$
 $F(x) \neq G(x)$

Критерий знаковых ранговых сумм Вилкоксона

$$|z_1|<\ldots<|z_n|.$$
 $s_1=rank(|z_1|),\;\ldots,\;s_n=rank(|z_n|)$ $U=\sum_{i=1}^n \Psi_i s_i,\;$ где $\Psi_i=egin{cases} 1,&z_i<0;\ 0,&z_i>0. \end{cases}$

Пример

на уровне	1.65	1.0	2.04	1.25	1.05	1.02	1.67	1.86	1.56	1.73
выше	1.73	1.06	2.03	1.4	0.95	1.13	1.41	1.73	1.63	1.56
Zį	-0.08	-0.06	0.01	-0.15	0.10	-0.11	0.26	0.13	-0.07	0.17

 $H_0: F(x) = G(x)$ для всех $x \in \mathbb{R}$.

 $H_1: \ F(x) \leq G(x)$ для всех $x \in \mathbb{R}.$

T.test vs Wilcox.test

T.test vs Wilcox.test: ошибка 1 рода

T.test vs Wilcox.test: мощность

Проверка гипотез и доверительные интервалы

$$\xi, F(x, \theta), X_{[n]}, \alpha$$

$$H_0: \theta = \theta_0$$

$$H_1: \theta \neq \theta_0$$

$$(S_1, S_2): P\{\theta \in (S_1, S_2)\} = 1 - \alpha$$