Задание 8

8.1.

Почему работа кэш памяти ЭВМ становится неэффективной при частых сигналах прерывания?

Рис. 14.2. Схема обмена с использованием памяти типа кэш.

Как видно из алгоритма работы кэша, он весьма "болезненно" реагирует на прерывания, так как при этом производится переключение на *другую* программу. При этом команды и данные в кэше, относящиеся к прерванной программе, постепенно *вытесняются* командами и данными *новой* программы. Таким образом, при возобновлении счета прерванной программы команды и данные в кэше будет необходимо обновить (заново считать из ОЗУ), что замедляет счет программ при частых прерываниях. Смена большой части кэш памяти (первого уровня) может обойтись в десятки и сотни тысяч процессорных тактов, поэтому, как уже говорилось, сигнал прерывания от внешних устройств направляется ядру, занятому наименее приоритетной работой.

8.2.

Что такое расслоение памяти?

Помимо податливости к наращиванию емкости, блочное построение памяти обладает еще одним достоинством — позволяет сократить время доступа к информации. Это возможно благодаря потенциальному параллелизму, присущему блочной организации. Большей скорости доступа можно достичь за счет одновременного доступа ко многим банкам памяти. Одна из используемых для этого методик называется расслоением памяти. В ее основе лежит так называемое чередование адресов, заключающееся в изменении системы распределения адресов между банками памяти.

8.3.

Какое свойство расслоения памяти даёт выигрыш в производительности процессора?

В ее основе лежит так называемое чередование адресов, заключающееся в изменении системы распределения адресов между банками памяти.

8.4.

Почему работа конвейера становится неэффективной при частых сигналах прерывания?

В конвейерной машине команда выполняется по этапам, и ее завершение осуществляется через несколько тактов после выдачи для выполнения. Еще в процессе выполнения отдельных этапов команда может изменить состояние машины. Тем временем возникшее прерывание может вынудить машину прервать выполнение еще не завершенных команд.

8.5.

Перечислите аппаратные действия, выполняемые центральным процессором фирмы Intel при поступлении непривилегированного (неприоритетного) сигнала прерывания

Таким образом, чаше всего процедура-обработчик *начинает* своё выполнение в режиме запрета внешних прерываний. Это гарантирует, что, начав свою работу, процедура-обработчик не будет тут же (перед выполнения первой же команды) прервана другим внешним сигналом прерывания. Как уже говорилось, значение флага IF=0 маски́рует все прерывания от внешних устройств, кроме прерывания с N2. Флаг TF=0 устанавливается потому, что при значении TF=1 процессор всегда посылает *сам себе* (немаски́руемый) сигнал об исключении EXCEPTION_SINGLE_STEP с номером N=1 после выполнения *каждой* команды. Этот флаг используется при работе программ-отладчиков для пошагового выполнения (трассировки) отлаживаемой программы. Надеюсь, что Вы уже имели воз-

8.6.

Что такое внешнее прерывание?

Привести пример внешнего прерывания

Внешнее прерывание – запросы поступившие от внешних устройств

Внутренее прерывание — инициализируется процессором как реакция на программные ошибки или прерывания пользователя.

Пример: прерывание от таймера; прерывание от внешних устройств; ...