

## Exploratory Data Analysis

#### Bank Marketing (Campaign)

Group Name: Data Visionaries
Name: Abdukhakimov Asatilla

Email: tremendous54@gmail.com

Country: Uzbekistan

Company: Data Glacier

**Specialization:** Data Science

Github: <a href="https://github.com/asat94/Data-Glacier-Internship">https://github.com/asat94/Data-Glacier-Internship</a>

# Agenda

PROBLEM STATEMENT
DATA EXPLORATION
EDA
EDA
EDA SUMMARY
MODELLING



#### **Problem Statement**

 ABC Bank wants to sell its term deposit product to customers. Before launching the product, the bank aims to develop a model to understand whether a particular customer will buy their product or not, based on the customer's past interaction with the bank or other financial institutions.







## **Data Exploration**

Bank-full data

**Total Data** 

- 45,211 rows
- 17 columns

- Data Cleaned & Formatted
- Checked Missing Values & Outliers

| #  | Column    | Non-Null Count | Dtype  |
|----|-----------|----------------|--------|
|    |           |                |        |
| 0  | age       | 45211 non-null | int64  |
| 1  | job       | 45211 non-null | object |
| 2  | marital   | 45211 non-null | object |
| 3  | education | 45211 non-null | object |
| 4  | default   | 45211 non-null | object |
| 5  | balance   | 45211 non-null | int64  |
| 6  | housing   | 45211 non-null | object |
| 7  | loan      | 45211 non-null | object |
| 8  | contact   | 45211 non-null | object |
| 9  | day       | 45211 non-null | int64  |
| 10 | month     | 45211 non-null | object |
| 11 | duration  | 45211 non-null | int64  |
| 12 | campaign  | 45211 non-null | int64  |
| 13 | pdays     | 45211 non-null | int64  |
| 14 | previous  | 45211 non-null | int64  |
| 15 | poutcome  | 45211 non-null | object |
| 16 | У         | 45211 non-null | object |

## **Age Distribution**



Customers are mainly between 25 to 60 years old, a key demographic for term deposits

## Job vs Subscription



Management and technician roles show higher subscription rates.

## **Education vs Subscription**



<u>Tertiary</u> educated customers are more likely to subscribe.

## Marital Status vs Subscription

Single customers tend to have higher subscription rates than married/divorced



## **Housing Loan Status**



Customers without housing loans appear slightly more likely to subscribe

#### **Personal Loan Status**



Those without personal loans show better subscription interest

## Balance Distribution (Zoomed In)



Most customers have balances under 5000, indicating a middle-income audience

## Contact Method vs Subscription



Customers contacted via cellular show better subscription rates



## Previous outcome vs Subscription



Successful outcomes in prior campaigns drastically improve subscription chances

## **Duration vs Subscription**



Longer call durations often lead to a 'yes' decision — indicating interest builds over time.



## Pair Plot (Scatter Matrix)



## Pair Plot (Scatter Matrix)



## **EDA Summary**

Duration forms distinct clusters for subscribed (yes) vs not (no) customers.

 Subscribed customers tend to lie in higher ranges of duration and sometimes higher balances.

No strong linear patterns between other variables and y.

## Modelling

| === LR with o            | duration ===<br>precision | recall         | f1-score     | support         | === LR w/o dur | ration ===<br>precision | recall         | f1-score                 | support                 |
|--------------------------|---------------------------|----------------|--------------|-----------------|----------------|-------------------------|----------------|--------------------------|-------------------------|
| 0                        | 0.91                      | 0.98           | 0.94         | 7952            | 0              | 0.90                    | 0.99           | 0.94                     | 7952                    |
| 1                        | 0.64                      | 0.30           | 0.41         | 1091            | 1              | 0.70                    | 0.16           | 0.26                     | 1091                    |
| accuracy                 |                           |                | 0.90         | 9043            | accuracy       |                         |                | 0.89                     | 9043                    |
| macro avg                | 0.78                      | 0.64           | 0.68         | 9043            | macro avg      | 0.80                    | 0.57           | 0.60                     | 9043                    |
| weighted avg             | 0.88                      | 0.90           | 0.88         | 9043            | weighted avg   | 0.87                    | 0.89           | 0.86                     | 9043                    |
| === RF with duration === |                           |                |              |                 |                |                         |                |                          |                         |
| === RF with o            | duration ===              |                |              |                 | === RF w/o dur | ration ===              |                |                          |                         |
| === RF with o            | duration ===<br>precision | recall         | f1-score     | support         | === RF w/o dur | ration ===<br>precision | recall         | f1-score                 | support                 |
| === RF with 0            |                           | recall<br>0.97 | f1-score     | support<br>7952 | === RF w/o dur |                         | recall<br>0.99 |                          |                         |
|                          | precision                 |                |              | • • •           |                | precision               |                | f1-score<br>0.94<br>0.31 | support<br>7952<br>1091 |
| 0                        | precision<br>0.92         | 0.97           | 0.94         | 7952            | 0 1            | precision<br>0.90       | 0.99           | 0.94<br>0.31             | 7952<br>1091            |
| ø<br>1                   | precision<br>0.92         | 0.97           | 0.94<br>0.49 | 7952<br>1091    | 0              | precision<br>0.90       | 0.99           | 0.94                     | 7952                    |

- Including the duration variable significantly improves performance across all models.
- Random Forest with duration achieves the best overall performance

# THANK YOU

