Recitation 4

Monte Carlo

Monte Carlo (MC)

Update Rule:

$$V(S_t) \leftarrow \text{average}(Returns(S_t))$$

Incremental Update:

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

where return is the sum of discounted rewards:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

DP (Value/Policy Iteration):

- Iterate through all possibilities

$$\sum_{s',r} \underline{p(s',r|s,a)} [r + \gamma V(s')]$$

- assumes full knowledge of env
- One step bootstrap: biased estimate

Monte Carlo Learning:

+ Collect samples from episodes

 $\pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T$

What does this assume?

- mean return: unbiased

Pro or con?

DP vs MC

Monte Carlo (MC)

Every-visit also exists... different convergence property

```
First-visit MC prediction, for estimating V \approx v_{\pi}
Input: a policy \pi to be evaluated
Initialize:
     V(s) \in \mathbb{R}, arbitrarily, for all s \in S
     Returns(s) \leftarrow \text{an empty list, for all } s \in S
Loop forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0: Aggregate backwards
         G \leftarrow \gamma G + R_{t+1}
         Unless S_t appears in S_0, S_1, \ldots, S_{t-1}: G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T
              Append G to Returns(S_t)
              V(S_t) \leftarrow \text{average}(Returns(S_t)) \quad Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))

\overline{\pi(S_t)} \leftarrow \operatorname{argmax}_a Q(S_t, a)
```

How would you modify the above to also generate a policy?

Temporal Difference Learning

Temporal Difference Learning

New update rule:

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$
target: an estimate of the return

- + Can learn before reaching a terminal state
- + Much more memory and computation-efficient than MC
- Using value in the target introduces bias

Motivation for TD learning and N-step returns

TD(o)

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$= \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s\right]$$

$$= \mathbb{E}_{\pi}\left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k R_{t+k+2}|S_t = s\right]$$

$$= \mathbb{E}_{\pi}\left[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s\right]$$

Approximate with v

N-step returns

N-step returns

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{i=0}^{N-1} \gamma^{i+1} R_{t+i} + \gamma^N \sum_{k=0}^{\infty} \gamma^k R_{t+k+N+1} | S_t = s \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{i=0}^{N-1} \gamma^{i+1} R_{t+i} + \gamma^N v_{\pi}(S_{t+N}) | S_t = s \right]$$

Less reliance on v

N-step returns

$$V(s_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2}) - V(S_t))$$

Q-learning: Off-policy TD Learning

1-step Q-learning update:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

- Key benefit: off-policy!
- Only require state, action, reward, and next state drawn from the MDP
- Doesn't depend on the policy anywhere!
- Is foundation for many sample-efficient RL methods

Deep Q-learning

- What happens if the state space and action space are too large?
 - Use function approximation to approximate the Q-values!
- Use gradient descent to take a step towards minimizing the Bellman error:

$$L = \left(\operatorname{sg}(R_{t+1} + \gamma \max_{A_t} q(S_{t+1}, A_{t+1}, w)) - q(S_t, A_t, w) \right)^2$$
Target value Prediction

Tabular

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{A_t} q(S_{t+1}, A_{t+1}) - q(S_t, A_t) \right]$$

Function Approximation

$$w \leftarrow w + \alpha \left[R_{t+1} + \gamma \max_{A_t} q(S_{t+1}, A_{t+1}, w) - q(S_t, A_t, w) \right] \nabla_w q(S_t, A_t, w)$$

Target Networks

$$L = \left(\operatorname{sg}(R_{t+1} + \gamma \max_{A_t} q(S_{t+1}, A_{t+1}, w)) - q(S_t, A_t, w) \right)^2$$
Target value Prediction

- One problem with deep Q-learning: nonstationary targets
 - Updating the network weights changes the target value, which requires more updates
 - Unintended generalization to other states S' can lead to error propagation
- Solution: calculate target values with a network that's updated every T gradient steps
 - Network has more time to fit targets accurately before they change
 - Slows down training, but not too many alternatives (recently: functional regularization)

Experience Replay

- Problem #1: neural networks undergo catastrophic forgetting if they haven't been trained on a (similar) sample recently
- Problem #2: online samples tend to be very correlated, which leads to unstable optimization
- Solution: keep large history of transitions in a "replay buffer," then optimize the Bellman error wrt random minibatches

$$\begin{array}{c|c}
s_{1}, a_{1}, r_{2}, s_{2} \\
s_{2}, a_{2}, r_{3}, s_{3} \\
s_{3}, a_{3}, r_{4}, s_{4}
\end{array}
\rightarrow \begin{array}{c}
s, a, r, s' \\
I = \left(r + \gamma \max_{a} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})\right)^{2}
\end{array}$$

Monte Carlo Tree Search

Problem: Large State-Action Space

Trying to estimate the value at every state (solving the full MDP) is often

infeasible

MC and TD still try to estimate Q/V value function for every state or state-action visited

- Too much memory for tabular (10^48 states for chess)
- NN may be undefined at unseen states, "similar" states may have completely different values and optimal paths

Online Planning

 Use internal model to simulate trajectories at current state, find the best one

Monte Carlo Tree Search (MCTS):

- Only estimate value function for relevant part of state space
- Consider only part of the full MDP at a given step

Repeat while time remains **MCTS** Selection Expansion —— Simulation Backup node = state edge = action Tree Rollout **Policy** Policy

- Tree: Stores Q-values for only a subset of all state-actions
- MC method: require episode termination to update values

Selection

Given:

- current state of agent = root node
- Empty or existing tree with Q-values

Steps:

"children" = actions, don't know all

```
function MCTS_sample (node) possible (s,a) \rightarrow s' transitions if all <u>children</u> expanded: #selection next = UCB_sample (node) A_t = \operatorname{argmax}_a outcome = MCTS sample (next)
```

$$A_t = \operatorname{argmax}_a \left[Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}} \right]$$

 keep executing UCB repeatedly until you reach frontier of tree (state that is not a node)

→ Expansion —

Expansion

Given:

- at a new state **s** not part of the tree

Steps:

Why not store all nodes and Q values?

- Based on some rule, possibly add this new state to the tree
 - ex: if depth of this state < max depth
- Take random action a (since no Q-values available), receive reward r if available
- G = Simulation(s, a)
- Store Q(\mathbf{s} , \mathbf{a}) = gamma* \mathbf{G} + \mathbf{r}
- return gamma***G** + **r** to propagate return to parent node

→ Simulation —

Simulation

Given:

- at a new state **s** not part of the tree

Steps:

- If at terminal state, return reward
- use very fast policy to determine action **a** to take
 - ex: random policy
- **G** = Simulation(**s**, **a**)
- return gamma*G + r (Do Not store Q-value)

Backup

- Propagate return from the recursive calls
- Calculate return at each state

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

MCTS Overall

- For the current state of agent, repeatedly perform the previous steps until some criteria
 - ex: time limit
 - ex: Q-value convergence within some threshold
- Execute the best action
- Reuse the subtree of the successor state and repeat!

What scenarios would you use MCTS as opposed to learning?

- available time
- internal model
- size or dynamic nature of state-action space