25(9) D 124.1 59 G 4C. 1100 42" CLASS RECORTI

0日本国特许庁

**印**特許出 版公告

昭52一5353

報

❷公告 昭和52年(1977)2月12日

厅内整理者号 7166-37

発明の数 1

(全4頁)

MATU .29.03.74 103 P73 L(3-H4E). ATSUSHITA ELEC WILL ·J7 7005-353 29 CL.74-JA-03A502 (12.02.77) 8326-15/08 moted printed circuit base plate - comprises aluminium fell and er fail on e.g. a proprog Copper for having aluminium foil firmly adhered to its apper surface, is lapped onto a base plate, e.g. of prepreg. Copper powder of 25 µ dia. are dispersed on the aluminium fou to give a copper density of 100 mg/dm2 of prepreg. area The composite is then treated by heating and pressing. USE Lep. for printed circuit boards.(4ppW15).

### 砂特許買求の範囲

1 基板上に便設せる網箔の表面にアルミニウム 筏を積着し、イオン化域向がアルミニウムよりも 小さくかつ第以上の金属の役役末をアルミニウム 箔の表層に点在せしめて成ることを特徴とするア 20 の代わりに、アルミニウム箔(30g~50g) ルミニウム指付網接費層板。

## 発明の詳細な説明

本発明は基板1上に複数せる網箔2の表面にア ルミニウム符3を表層し、イオン化模向がアルミ ニウムよりも小さくかつ銅以上の金属の微粉末 4,25 変のよいプリント配換板を製造する方法である。 4····・をアルミニウム各3の表層に点在せしめて 成ることを特徴とするアルミニウム指付網張後層 板に係り、その目的とするところは表層のアルミ ニウム箔を迅速に験去し得るアルミニウム箔付銅 抵表層板を提供するにある。

従来、無抵秩居板に使用される銀箔は35~7 70×の厚さのものが多く使用されている。この 鯛箔は35g以下の厚さでも可能であるが、ピン ホール、しわ等を考定すると188種産が下降で ある。このような網接後層板によつてプリント配 お て、アルミニウム箔が完全に落房放去されるまで 鬱板を製造する場合はエッチドフォイル法、即ち 回路以外の部分を塩化第2鉄、過貨管アンモニウ

## のが現状である。

このような情勢の中で上記二者の折衷案ともい えるUTC法が開発された。UTC法とはUltrs Thin Copper Process の略称で、従来の網箔 の上に鎖を58程度の厚さでメッキしたものを使 用して網箔が基板上に密着する如く表層板を成型 し、表面のアルミニウム筏を除去して、表存せる 寒い角花をエッテングすることによりパターン精 しかるにアルミニウム指付角後後潜板のアルミニ ウム箔のみを選択的に飲去するためには塩酸のよ うな象化力の低い酸、或いは水酸化ナトリウム、 水像化カリウム、水像化リテウム等の強アルカリ 30 等の水溶液をエツテング液として用いて浸液、咳 得その他の方法でアルミニウム指に接触せしめて 都無除去するが、上記エッチング放をアルミュウ ム笛に装触させるだけでは密集反応開始に長時間 を要すると共に容易むらが生じやすいものであっ た長時間を祭し、書板が長時間エッテンダ旅に されることにより基板の電気的特性、機械的特性

377005353

(2)

アるなどの感影響を及ぼしやすい欠点が #Kアエノール樹脂基板と気丁ルカリエツ テンド版の場合をはその影響が著しかつた。

زير.

本発明はかかる従来の欠点に置みて研究した結 景。完成されたもので、以下派付図に基づいて詳 5 アルミニウム箔をエツチング液にて除去するに誤 組に説明する。厚さが30~50gのアルミニク ム箔3の表面にメッキにより5m粒度の浮みの制 着2ヶ市港させ、熱可塑性樹脂又は熱硬化性樹脂 を含長せる複数枚のプリプレグを , 8 ……よりな る基板1の今面又は両面に網箔2が密港するよう 20 に密解反応が進行するものである。したがつてア に重ね合せ、更に外方に貫出せるアルミニウム領 3の表面側に盤粉末4,4……を点在させて第2 國のよう全型3,957円挟んでホットプレスする ものである。気効末4,4……としてはイオン化 傾向がアルミニウムより小さくかつ鯛以上の金属、15 張稜板にパンテング、ドリリングなどで孔を明け 図も悪化量元電位がアルミニウムより費でかつ網 上向等又はそれこり卑なる金属が用いられるもの で、具体的にはZa、Fe、Ni、Pb、Cu の一 程又は複数性が用いられる。この金属の微粉末4 ~は直径が数十点以下、好ましくは5~25点程度 20 核の影響が低減されるので乗れ有用である。 がものが用いられ、アルミニウム箔3の表面に対 し好ましくは10~100m/d 4の割合で均一 かつ高密度に点在するように付着されるものであ る。このとき象粉末4,4……はアルミニウム箔 多の長崖に完全には塩込まれず、最初末4,4… 25 ミニウム箱付銅箔を重ね、アルミニウム箱表面に 一の表層はアルミニウム哲さの表面に一部が露出 しているものである。

\* 本発明にあつてアルミニウム箱付網張積層板を エッテング液中に浸漬するとアルミニウムと微粉 元世位が卑なる金属、即ちイオン化傾向が大なる 全異が優先的に結解する。ここで像化量元電位と イオン化傾向はほぼ同一であり、次のような原位

(大)→イオン化傾向→(小) K, Ca, Na, Mg, Al, Zb, Fe, Ni, Sn. Pb. (H), Cu. Hg. Pt. Au

(卑)←食化量元常位→(貴)

したがつてアルミエウムを優先的に落算させる KはZn ~Au までの金属の象分末をアルミニウ 40 ムと無触させればよいが、アルミニクムのみを書 解し飼着は密算せずに保持しなければならないの で、銅よりイオン化傾向の小さい金属(IIg 、Ag、 Pt、An)は除外するものである。

本発明にあつては上述のようにアルミニウム格 付銅張積層板にあつてアルミニウム箔表面にイオ ン化傾向がアルミニウムより小さくかつ類以上の 金属の数粉末を高密度に点在せしめているので、 し世粉末とアルミニウムとの間に短絡電池が形成 されてルミニウムの君祭反応が電気化学的に促進 されるものであつて、アルミニウム箱の着無反応 開始時間が大巾に短旋されると共にむらなく均一 ルミニウム箔の落葉完了時間が短雄されるためエ ッチング放への基板の職業時間が短載され基板の エッチング旅による電気的、機械的特性の劣化を 防止できるものであり、またアルミニクム符付銅 たのちアルミニウム箔を除去する場合には基板に 浮たれた孔の縁に直接エッテング弦に晒されてエ ツチング茂の影響が大きくなるが、本発明にあつ てはエッチング放長度時間が遊離されエッテング

以下本発明を実施例に基づいて具体的に説明す る。

# 実施例

プリプレグの表層に銅箔が密着するようにアル 直径約25mの頻及粉末を14があたり100甲 の割合で点在させ、加熱加圧して無粉点在アルミ ニウム指付網張表層板を放型した。

前記のようにして成型した餌分点在アルミニウ 末間k短結電池が形成され両金属のうち、酸化量 30 ム箔付無張表層板と単たるアルミニウム箔付無張 機層板とも10%の塩酸水溶液に浸漬してアルミ エウム指が完全に容解し除去されるまでの時間を 比較した。結果は第1表の通りである。 反応条件人

- 35 1. エンテヤント
- 10%连续
- 2.アルミニウム箔庫 50g
- 3. 反応開始等の温度 宝盛(23で)

#### ( E 1 # )

|           | アルミニウム指完全終<br>解に要した時間(分) |
|-----------|--------------------------|
| 頻像粉末存在しない | 15~30(分)                 |
| 類象粉末存在する  | 5~10(分)                  |

間様にして1( いて溶解時間を上 ある. 反応条件 B 1. エンチャント

- 2. アルミニウム
- 3. 反応開始時の
- 4. ブリプレク

(第一

舞量粉末存在し;

氧复想来存在す

-158-

marcして10%水酸化ナトリウム水溶液を用 。- て海角時間を比較した。結果は第2長の通りで 33.

## 反応条件B

1. エッテャント

2. アルミニウム指揮 50g

3. 反応開始時の鑑度 宝濃(23℃)

4. ブリブレク

紙フエノール

(第

表】

|           | フルミニウム箔完全帝<br>第に長した時間(分) |
|-----------|--------------------------|
| 類量粉末存在しない | 20-40                    |
| 銅像粉末存在する  | 10-20                    |

アルミニウム
苗除去前に予め穴あけされた後層 板を用いて常法によりプリント配験板を作製して 性能を比較すると反応条件BKついては銅貨粉末 が存在しない場合には穴を面が使されメッキ密着 10%水象化ナトリウム 5 性が悪くなり、差しい場合は豊田が能化するよう れなり、更に機械的性能および電気的性能が低下 するものであり、強アルカリに長時間浸渍されて いたために離答が生するものであつた。一方類後 **粉末付アルミニウム箱を使用した物はアルカリ表** 10 後が短時間であつたためKこれらの障害は生じな

## 整面の簡単な説明

かつた。

第1回は本発明の一実施例の断面図、第2回は 同上の製造工程説明図、第3図は従来の興張復居 15 板のエッテング工程投明図であつて、1は基板、 2は飼箔、3はアルミニウム箔、4は食粉末を示 すものである。

券公 昭52-5353





