Assignment 6.1

Table 5.1 Selected typical properties of Ge, Si, and GaAs at 300 K

	E_g (eV)	χ (eV)	$\frac{N_c}{(\mathrm{cm}^{-3})}$	N_v (cm ⁻³)	n_i (cm ⁻³)	$({\rm cm}^2~{\rm V}^{-1}~{\rm s}^{-1})$	$({\rm cm}^2~{\rm V}^{-1}~{\rm s}^{-1})$	m_e^*/m_e	m_h^*/m_e	ε_r
Ge	0.66	4.13	1.04×10^{19}	6.0×10^{18}	2.3×10^{13}	3900	1900	0.12 <i>a</i> 0.56 <i>b</i>	0.23 <i>a</i> 0.40 <i>b</i>	16
Si	1.10	4.01	2.8×10^{19}	1.2×10^{19}	1.0×10^{10}	1350	450	0.26 <i>a</i> 1.08 <i>b</i>	0.38 <i>a</i> 0.60 <i>b</i>	11.9
GaAs	1.42	4.07	4.7×10^{17}	7×10^{18}	2.1×10^{6}	8500	400	0.067 <i>a</i> , <i>b</i>	0.40 <i>a</i> 0.50 <i>b</i>	13.1

NOTE: Effective mass related to conductivity (labeled a) is different than that for density of states (labeled b). In numerous textbooks, n_i is taken as 1.45×10^{10} cm⁻³ and is therefore the most widely used value of n_i for Si, though the correct value is actually 1.0×10^{10} cm⁻³. (M. A. Green, *J. Appl. Phys.*, **67**, 2944, 1990.)

Question 1: Using the values of the density of states effective masses m_e^* and m_h^* in Table 5.1, calculate the intrinsic concentration in Ge at 400K.

What is n_i if you use N_c and N_v from Table 5.1 at 300K?

Calculate the intrinsic resistivity of Ge at 300 K.

Question 2: Using the values of the density of states effective masses m_e^* and m_h^* in Table 5.1, find the position of the Fermi energy in intrinsic GaAs with respect to the middle of the bandgap $(E_g/2)$.

Question 3: A Si crystal has been doped with P. The donor concentration is 10^{15} cm⁻³. Find the conductivity, and resistivity of the crystal at room temperature (300 K).

Ouestion 4:

- a) From Table 5.1, calculate the expected doping concentration of a p-type Si semiconductor with a resistivity of 1 Ω ·cm at room temperature, assuming the electron and hole drift mobility remain unchanged.
- b) What is the change in the Fermi energy of the p-type Si compared to intrinsic Si?

Question 5:

Schematically draw the energy diagram, density of states, Fermi-Dirac probability, and carrier distributions of a *p-type* semiconductor.