

Low-Rank Adaptation for Multilingual Summarization: An Empirical Study

Chenxi Whitehouse,¹ Fantine Huot,² Jasmijn Bastings,² Mostafa Dehghani,² Chu-Cheng Lin,³ Mirella Lapata² ¹University of Cambridge ² Google DeepMind ³ Google Cloud

Introduction

- LLMs are becoming increasingly powerful, but the growing size also makes training less practical
- Parameter-efficient fine-tuning (PEFT) approaches are desirable, especially for tasks requiring extensive memory, e.g., with long input
- We focus on LoRA (Low-rank Adaptation) and study a challenging task with long input:
 - Multilingual summarization, where LoRA is under-explored
 - Empirically evaluate LoRA vs Full Fine-tuning (FT) under different data availability scenarios

Low-Rank Adaptation

[Hu et al. 2021]

- Freezes the pre-trained model weights (W) and adds trainable low-rank matrices (A & B) into the Transformer architecture
- No extra cost or latency at inference time Can merge LoRA with the frozen parameters.
- Marginal trainable parameters and less GPU
- Competitive performance vs Full Fine-tuning (on classification or monolingual generation tasks)

LoraHub [Huang et al. 2023]:

- Compose individually trained LoRA modules for cross-task generalization
- Available LoRA modules m_i are synthesized into module $\hat{m} = \sum_{i=1}^{N} w_i m_i$

LoRA for Multilingual Summarization (PaLM-2)

Multilingual Summarization is Complex:

- Models: fluently generate in many languages
- High/low resource: not all languages have (sufficient) data
- Long input and output

Datasets & Metrics:

Dataset	XLSum	XWikis		
Source	BBC News	Wikipedia		
Languages	44	5		
Train/Val/Test Data	1.1M / 114K / 114K	1.4M / 40K / 35K		
Input/Output Words	470 / 22	1043 / 64		

Compare summary Relevance (Rouge-L), Faithfulness (NLI), and Conciseness (Seahorse)

Different Data Regimes:

- High-data
- Low-data
- Cross-lingual Transfer (zero- and few-shot)

High-data Regime

- Train on all the data available for each language
- Full FT > LoRA on summary relevance (R-L). LoRA with higher ranks enhances summary relevance
- LoRA is superior on summary faithfulness (NLI) & conciseness (SH), lower ranks see better scores

		XLSum		XWikis			
	R-L	NLI	SH	R-L	NLI	SH	
Full-FT	31.11	42.93	31.64	34.08	41.04	25.19	
LoRA-64	29.79	45.51	31.80	34.04	45.34	27.02	
LoRA-16	29.77	48.48	33.25	33.80	46.10	27.42	
LoRA-4	29.03	51.16	34.42	32.92	47.43	27.72	

Average scores of all languages when training on all available data

Takeaway: For High-Data, FT is better for summary relevance, LoRA generates more factual and concise summaries.

Low-Data Regime

- Randomly select 16, 64, 256, 1024, 4096 data per language and train together (balanced data)
- LoRA achieves overall better faithfulness (NLI) and conciseness (Seahorse) than Full FT
- For ROUGE-L, Full FT outperforms LoRA when provided > 1K training examples
- Low-data training on LoRA is more stable (Full FT more sensitive for the selection of checkpoints)

Takeaway: For Low-Data, LoRA is superior than FT across metrics and the learning curve is smoother and more stable.

Cross-lingual Transfer

Zero-shot transfer from English

FT exhibits catastrophic forgetting

		XLSum	1	XWikis			
	Rouge-L	NLI	Seahorse	Rouge-L	NLI	Seahorse	
Full-FT	5.20	4.49	6.88	17.51	35.95	22.43	
LoRA-4	21.13	39.07	23.08	23.86	45.54	25.96	

Performance of average non-English languages when training on English

Indonesian Hausa Target: Perempuan Vietnam yang dituding Target: Gwamnatin Najeriya ta ce 'yan terlibat dalam pembunuhan Kim Jongkasar sun ga irin amfani da rufe iyakokin nam, saudara tiri dari pemimpin Korea kasar ya yi a fannin tattalin arzikinta Utara Kim Jong-un, telah dibebaskan. Full FT: President Muhammadu Buhari Full FT: Kim Jong-nam, the wife of North has appointed his deputy, the BBC Korean leader Kim Jong-un, has died in a presenter and former minister, Shugaba fight with Malaysia Airlines flight MH17. Here

LoRA-4: Gwamnatin Nijeriya ta yi tsokacin da shawarar da zai rufe iyakokin kasar.

Muhammadu Buhari, as the new

chairman of the Presidential Council.

LoRA-4: Seorang wanita Vietnam yang didakwa sebagai bagian dari pembunuhan Kim Jong-nam, saudara tiri dari pemimpin Korea Utara, telah dibebaskan.

are the key points of the ruling:

Zero-shot transfer from Multiple Languages

- Multilingual LoRA and Weight averaging of individual LoRA benefits different unseen languages
- Lower resource languages (Kirundi, Scottish, Somali, Yoruba) work best with individual LoRA training
- Similar languages may transfer better

ROUGE-L scores for 10 test languages on XLSum

Few-shot transfer from Multiple Languages

- Assume a handful target examples available (16, 64), compare LoRA continued learning (CL) and LoraHub
- LoRA continued learning superior performance
- A few examples significantly improves Full FT compared to the zero-shot results

Zero-shot				16-shot				
	R-L	NLI	SH		R-L	NLI	SH	
Full FT	14.48	28.87	13.71	Full FT	22.31	30.15	18.79	
LoRA	22.59	37.39	24.21	LoRA (CL)	24.71	41.12	26.47	
Avg.LoRA	22.74	49.14	32.44	LoraHub	23.37	38.95	26.07	

Zero-and 16-shot scores for average of 10 test languages on XLSum

Takeaway: For Cross-lingual Transfer, LoRA is a clear winner, FT suffers from catastrophic forgetting.

Conclusions

Main Takeaway: For multilingual summarization, LoRA is not only efficient, but overall a better option across different data availability and evaluation metrics!

- LoRA achieves superior performance vs FT: Zero-shot and few-shot cross-lingual transfer
 - Low-data regime (< 1K examples)
 - Summary faithfulness and conciseness
 - In addition, LoRA continued learning outperforms LoraHub under few-shot settings
- LoRA achieves on-par performance vs Full FT in larger models (see paper)
- LoRA achieves worse performance vs Full FT:
 - Smaller models
 - High-data regime, particularly for summary relevance