LAP0049: Cálculo Diferencial e Integral I Assunto: Limite, continuidade e aplicações

Tiago Matos Santos

02 de fevereiro de 2023

Tópicos

- Breve revisão;
- Noção intuitiva de limite;
- Definição de limite;
- Exemplos simples;
- Limites laterais;
- Propriedades de limites;
- Exemplos;
- Noção intuitiva de continuidade;
- Definição de continuidade
- Aplicação em engenharia e física.

Brevissima revisão

Conjunto:

Coleção finita ou infinita de objetos, sem ordem especifica, em que a multiplicidade de tais objetos é ignorada. Este objetos são chamados elementos.

Notaç<u>ão</u>

 $a \in A$ significa que o a é elemento do conjunto A

Notação

 $C = \{x \in A : p(x)\}$ é o conjunto dos elementos de A em que a propriedade p se verifica válida

Brevissima revisão

Funções

Uma função é um relação que associa de forma única os elementos de um conjunto aos elementos de outro conjunto.

Sejam A e B conjuntos:

Uma função f de A em B relaciona, de forma única, elementos $a \in A$ para elementos $f(a) \in B$

Notação

 $f:A\to B$

Brevissima revisão

Funções de uma variável real

 ${\mathbb R}$ simboliza o conjunto dos números reais

$$f: \mathbb{R} \to \mathbb{R}$$

$$f:A\subseteq\mathbb{R}\to\mathbb{R}$$

A é um subconjunto de $\mathbb R$ que chamamos de domínio de f

Noção intuitiva de limite

Tabela: Alguns valores de $f(x) = x^2 - x + 2$, para x próximo de 2.

Х	f(x)	х	f(x)
1,0	2,000000	3,0	8,000000
1,5	2,750000	2,5	5,750000
1,8	3,440000	2,2	4,640000
1,9	3,710000	2,1	4,310000
1,95	3,852500	2,05	4,152500
1,99	3,970100	2,01	4,030100
1,995	3,985025	2,005	4,015025
1,999	3,997001	2,001	4,003001

Noção intuitiva de limite

Definição de limite

Seja f(x) uma função, escrevemos:

$$\lim_{x\to p}f(x)=L$$

e diremos que o limite de f(x), quando x tende a p, é igual a L, se pudermos tornar os valores de f(x) arbitrariamente próximos de L tomando valores de x suficientemente próximos a p, mas não necessariamente iguais.

$$f(x) = x^2 - x + 4$$

$$\lim_{x\to 2}(x^2-x+4)$$

$$\lim_{x \to 2} (x^2 - x + 4) = 6$$

$$f(x) = \frac{x}{\sqrt{x+1}-1}$$

$$\lim_{x\to 0}\frac{x}{\sqrt{x+1}-1}$$

$$\lim_{x\to 0}\frac{x}{\sqrt{x+1}-1}=2$$

Tomaremos a função definida por:
$$f(x) = \begin{cases} x+1, \ \text{caso} \ x \leqslant 1 \\ x+3, \ \text{caso} \ x < 1 \end{cases}$$

Tomaremos a função definida por:
$$f(x) = \begin{cases} x+1, \ \text{caso} \ x \leqslant 1 \\ x+3, \ \text{caso} \ x < 1 \end{cases}$$

$$\lim_{x\to 1^-} f(x) = 2$$

$$\lim_{x\to 1^+} f(x) = 4$$

Tomaremos a função definida por:
$$f(x) = \begin{cases} x+1, \ \mathsf{caso} \ x \leqslant 1 \\ x+3, \ \mathsf{caso} \ x < 1 \end{cases}$$

Não existe limite de f(x), quando x tende a 1

Limites laterais

- Quando faz-se x tender para a, por valores menores que a, está se calculando o limite lateral esquerdo: $x \to a^-$
- Quando faz-se x tender para a, por valores maiores que a, está se calculando o limite lateral direito: $x \rightarrow a^+$
- Para o limite existir, os limites laterais devem ser iguais:

$$\lim_{x \to a^{-}} = \lim_{x \to a^{+}} = \lim_{x \to a}$$

Limites laterais

- Quando faz-se x tender para a, por valores menores que a, está se calculando o limite lateral esquerdo: $x \to a^-$
- Quando faz-se x tender para a, por valores maiores que a, está se calculando o limite lateral direito: $x \rightarrow a^+$
- Para o limite existir, os limites laterais devem ser iguais:

```
\lim_{x \to a^{-}} = \lim_{x \to a^{+}} = \lim_{x \to a}
```

Limites laterais

- Quando faz-se x tender para a, por valores menores que a, está se calculando o limite lateral esquerdo: $x \to a^-$
- Quando faz-se x tender para a, por valores maiores que a, está se calculando o limite lateral direito: $x \rightarrow a^+$
- Para o limite existir, os limites laterais devem ser iguais:

$$\lim_{x \to a^{-}} = \lim_{x \to a^{+}} = \lim_{x \to a}$$

Ideias centrais

- Dizer que o limite de f(x) é L quando x tende para p significa que o valor de f(x) pode tornar-se arbitrariamente próximo do número L escolhendo-se x cada vez mais próximo de p.
- Para que um limite exista, devemos ter x tendendo para p por ambos os lados esquerdo e direito. Se f(x) tende para valores diferentes em cada caso, então o limite não existe.
- O valor de f(x) para x = p não tem influência na existência ou não-existência do limite de f(x) quando x tende para p.

Algumas Propriedades

$$\lim_{x \to a} x = a$$

$$\lim_{x \to a} K = K$$

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [c \cdot g(x)] = c \cdot \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} f(x)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

Exemplo A

Calcular:

$$\lim_{x \to a} \frac{x^2 + x - 2}{x^2 - x}$$

$$\lim_{x \to a} \frac{x^2 + x - 2}{x^2 - x} = \frac{a^2 + a - 2}{a^2 - a}$$

Exemplo A

Calcular:

$$\lim_{x \to a} \frac{x^2 + x - 2}{x^2 - x}$$

$$\lim_{x \to a} \frac{x^2 + x - 2}{x^2 - x} = \frac{a^2 + a - 2}{a^2 - a}$$

Exemplo B

Calcular:

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$$

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{(x+2)(x-1)}{x \cdot (x-1)}$$

Exemplo B

Calcular:

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$$

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{(x+2)(x-1)}{x \cdot (x-1)}$$

Continuidade (noção intuitiva)

A noção é muito próxima do sentido do adjetivo contínuo em nossa linguagem. Que descreve algo ininterrupto ou sem mudanças abruptas.

Em essência, podemos dizer que uma função é contínua, se é possível desenhar o seu gráfico, com uma única pincelada no quadro. Ou seja, em momento algum levanta-se o pincel entre o início e o final da plotagem.

Mais estritamente, dizemos que ela é contínua em todos os pontos do gráfico que foram desenhados

Continuidade (noção intuitiva)

A noção é muito próxima do sentido do adjetivo contínuo em nossa linguagem. Que descreve algo ininterrupto ou sem mudanças abruptas.

Em essência, podemos dizer que uma função é contínua, se é possível desenhar o seu gráfico, com uma única pincelada no quadro. Ou seja, em momento algum levanta-se o pincel entre o início e o final da plotagem.

Mais estritamente, dizemos que ela é contínua em todos os pontos do gráfico que foram desenhados

Continuidade (definição)

Definição

Uma função f é contínua em um número a se

$$\lim_{x\to a} f(x) = f(a)$$

Continuidade (definição)

Definição

A definição apresentada impõe três requisitos para a continuidade de f em a

- f(a) está definida (i. e., a está no domínio de f)
- $\lim_{x\to a} f(x)$ existe
- $\bullet \ \operatorname{lim}_{X \to a} f(x) = f(a)$

Continuidade (definição)

Definição

A definição apresentada impõe três requisitos para a continuidade de f em a

- f(a) está definida (i. e., a está no domínio de f)
- $\lim_{x\to a} f(x)$ existe
- $\bullet \ \operatorname{lim}_{x \to a} f(x) = f(a)$

Continuidade (ilustração)

Descontinuidades (ilustração)

Exemplo: Carga de capacitor

$$v_R(t) = V_0 e^{-t/\tau}$$

 $v_C(t) = V_0 (1 - e^{-t/\tau})$

Exemplo: Carga de capacitor