Московский физико-технический институт

Лабораторная работа

Моделирование оптических приборов и определение их увеличения

выполнила студент 653 группы ФФКЭ Давыдов Валентин

1 Цель работы:

Определить фокусные расстояния собирающих и рассеивающих линз, смоделировать ход лучей в трубе Галилея, трубе Кеплера и микроскопе, определить их увеличение

2 В работе используются:

- оптическая скамья
- набор линз
- экран
- осветитель со шкалой
- зрительная труба
- диафрагма
- линейка.

3 Определение фокусных расстояний линз с помощью зрительной трубы

3.1 Определение фокусного расстояния собирающих линз

- 1. Настроим зрительную трубу на бесконечность
- 2. Поставим положительную линзу на расстоянии от предмета примерно равном фокусному. На небольшом расстоянии от линзы закрепим трубу, настроенную на бесконечность, и отцентрируем её по высоте. Диафрагма диаметром d=1 см, надетая на ближнюю к осветителю линзу, уменьшит сферические аберрации и повысит чёткость изображения.

Передвигая линзу вдоль скамьи, получим в окуляре зрительной трубы изображение предмета — миллиметровой сетки. При этом расстояние между предметом и серединой тонкой линзы (между проточками на оправах) равно фокусному.

3. Результаты измерения фокусных расстояний собирающих линз:

$$f_1 = 11 \text{ cm}$$
 $f_2 = 7.5 \text{ cm}$ $f_3 = 25 \text{ cm}$

3.2 Определение фокусного расстояния рассеивающих линз

- 1. Для определения фокусного расстояния тонкой отрицательной линзы сначала получим на экране увеличенное изображение сетки при помощи одной короткофокусной положительной линзы. Измерьте расстояние между линзой и экраном $a_0 = 30$ см.
- 2. Разместите сразу за экраном трубу, настроенную на бесконечность, и закрепите её. Уберите экран и поставьте на его место исследуемую рассеивающую линзу (рис. 8). Перемещая рассеивающую линзу, найдите в окуляре зрительной трубы резкое изображение сетки.

Измерив расстояние между линзами l, рассчитайте фокусное расстояние рассеивающей линзы $f=a_0-l$.

3. Результаты измерения фокусного расстояния рассеивающих линз:

$$f_1 = 2 \text{ cm}$$
 $f_2 = 14 \text{ cm}$

Рис. 1: Определение фокусного расстояния собирающей линзы

Рис. 2: Определение фокусного расстояния рассеивающей линзы

Рис. 3: Ход лучей в трубе Кеплера

4 Моделирование трубы Кеплера

1. Рассмотрим ход лучей в трубе Кеплера и найдём увеличение данной оптической системы: Пусть пучок света, попадающий в объектив, составляет с оптической осью угол φ_1 , а пучок, выходящий из окуляра, — угол φ_2 . Увеличение γ зрительной трубы по определению равно

$$\gamma = \frac{\tan \varphi_2}{\tan \varphi_1},\tag{1}$$

но также из рис. 3 следует, что

$$\gamma_K = \frac{f_1}{f_2} = \frac{D_1}{D_2},\tag{2}$$

где D_1 - ширина пучка, прошедшего через объектив, а D_2 - ширина пучка, вышедшего из окуляра

2. Построим оптическую систему из каллиматора и непосредственно трубы Кеплера.

Рис. 4: Схема трубы Кеплера

Параметры действующих линз:

$$f_1 = 25 \text{ cm}$$
 $f_2 = 13 \text{ cm}$

Найдём увеличение трубы Кеплера непосредственно: пусть h_1 - размер ячейки миллиметровой сетки без телескопа, h_2 - с телескопом

$$h_1=1.5$$
 дел., $h_2=2.8$ дел.
$$\gamma_K=\frac{h_2}{h_1}=1.867$$

При этом по формуле (2) также

$$\gamma_K = \frac{f_1}{f_2} = 1.923$$

Полученные значения практически совпадают

5 Моделирование трубы Галилея

Рис. 5: Ход лучей в трубе Галилея

1. Труба Галилея получается из трубы Кеплера заменой собирающей линзы окуляра рассеивающей. Формулы для увеличения, соответственно, остаются теми же:

$$\gamma_G = \frac{f_1}{f_2} = \frac{D_1}{D_2},\tag{3}$$

2. Заменим собирающую линзу с фокусным расстоянием $f_2 = 13$ см рассеивающей с фокусным расстоянием $f_2 = 14$ см. Проведём те же операции, что и для трубы Кеплера:

$$h_1 = 1.5$$
 дел., $h_2 = 2.6$ дел.
$$\gamma_K = \frac{h_2}{h_1} = 1.733$$

При этом по формуле (2) также

$$\gamma_K = \frac{f_1}{f_2} = 1.786$$

Полученные значения практически совпадают.

6 Моделирование микроскопа

Рис. 6: Ход лучей в микроскопе

1. Ход лучей в микроскопе показан на рис. 6. Увеличение микроскопа вычисляется по формуле

$$\gamma_M = \Gamma_{ob} \Gamma_{oc} = \frac{\triangle}{f_1} \frac{L}{f_2},\tag{4}$$

где f_1 и f_2 - фокусные расстояния линз микроскопа, $\triangle = 16$ см - длина тубуса, L - расстояние наилучшего зрения (L = 25 см).

Рис. 7: Схема микроскопа

2. Соберём микроскоп с пятикратным увеличением. Используемые линзы: $f_1=11$ см, $f_2=7.5$ см. Получим

$$\gamma_M = \frac{\Delta}{f_1} \frac{L}{f_2} = 4.848$$

$$\gamma_M = \frac{h_2}{h_1} = \frac{7.2}{1.5} = 4.8$$

Значения практически совпадают

7 Вывод

В ходе работы были определены фокусные расстояния собирающих и рассеивающих линз с помощью зрительной трубы. Из этих линз далее сконструированы следующие оптические приборы: труба Кеплера, труба Галилея, микроскоп. Были определены их увеличения и проведено сравнение с её действительным значением:

$$\gamma_{Kth} = 1.923 \qquad \gamma_{Kex} = 1.867$$

 $\gamma_{Gth} = 1.786$ $\gamma_{Gex} = 1.733$

$$\gamma_{Mth} = 4.848 \qquad \qquad \gamma_{Mex} = 4.800$$