Seminar 2021. 12. 17.

Occluded Point Clouds Classification via Point Clouds Completion

소프트웨어융합학과 4학년 2017103762 최명규

Point Cloud

{ p_1 , p_2 , p_3 , ...} where $p=\{x, y, z\}$

3D data

Point Cloud Sensor

LiDAR

RGB-D camera

Point Cloud

3D data

geometric shape scale

No need to 3D reconstruction

Point Cloud Applications

Autonomous driving

Robotics

Medical treatment

Computer

Segmentaion

Classification

Point Cloud Computer Vision

Just Set of points

{
$$p_1$$
, p_2 , p_3 , ...}
where $p=\{x, y, z\}$

UnStructed Unordered

CNN(structed)
RNN(ordered)

PointNet: consume raw point clouds

Permutataion Invariant

Symmetric Function

Point-wise mlp

{ p_1 , p_2 , p_3 , ...} where $p=\{x, y, z\}$

PointNet-based

Are these reseaches practical? No, Why?

ShapeNet

ModelNet40

SharpNet

Prior researches or researches are based on consiste point clouds

Not practical in real life.

In real environment using 3D scanning sensor

PointClouds are incomplete

Point Clouds are Incomplete

We can only obtain a subset of point cloud

Point Clouds are incomplete!

occlusion

resolution

noise

Point Cloud Occlusion

Point Cloud Occlusion

Point Cloud Occlusion

Self occlusion is inevitable

Complete 3D geometric shape

Incomplete Point Clouds Classification Experiment

Dataset

Classifier

PointNet

Experiment Result

Accuracy

For Practical Application For Real Enviornments

Algorithms should be robust to:

Incomplete(=occluded) point clouds

Occluded Point Clouds Classification via Point Clous Completion

Completion = Generation

Concept: 2-Step

Complete Point Cloud

1. Generation incomplete Point Cloud

2. Classification

It's a chair!

Incomplete Point Clouds Classification Experiments

Generator & Classifier

Generator

Classifier

PCN(Point Completion Network)

AutoEncoder Based

Pretrained PointNet

with complete point clouds

Incomplete Point Clouds Classification Experiments

No generation, Only Classfication

pre-trained Classifier

with complete point clouds

It's a chair

Accuracy 68.11%

Incomplete Point Clouds Classification Experiments

Generation to Classfication

2. Classification

pre-trained Classifier
with complete pcds

1.Generation

AutoEncoder Based

It's a chair

Accuracy

86.82%

Incomplete Point Clouds Classification Experiment Results

Method

Accuracy

Only Classfier

68.11%

Generator & Classfier

Thank you

A1. Incomplete point clouds dataset is Hard to obtain.

3D CAD **Point Clouds**

A2. Information Loss problem

complete

geometry

incomplete

Incomplete point clouds dataset is Hard to obtain.

Information Loss problem

