Labor Mobility with Environmental Regulation

MIBB

Jonathan Leisner

Spring, 2022

Department of Economics University of Copenhagen

Motivation

Political hesistancy

The 2015 Paris Agreement

Political hesistancy

The 2015 Paris Agreement

The Yellow Vests

Contents

- Research question, Contribution and Related Literature
- Data
- Model
- Estimation
- Counterfactual simulations
- Possible extensions
- Weak points

Research question, Contribution and

Related Literature

• How are workers in the labor market affected by environmental regulation?

- How are workers in the labor market affected by environmental regulation?
- Sub-questions include
 - How does the costs of carbon taxes vary across workers of different initial industries, educations, ages and levels of tenure?

- How are workers in the labor market affected by environmental regulation?
- Sub-questions include
 - How does the costs of carbon taxes vary across workers of different initial industries, educations, ages and levels of tenure?
 - What compensating policies are necessary to compensate those who are worst off from environmental regulation?

- How are workers in the labor market affected by environmental regulation?
- Sub-questions include
 - How does the costs of carbon taxes vary across workers of different initial industries, educations, ages and levels of tenure?
 - What compensating policies are necessary to compensate those who are worst off from environmental regulation?
 - To what extent are costs reduced when the policy is announced in advance or phased in gradually?

- How are workers in the labor market affected by environmental regulation?
- Sub-questions include
 - How does the costs of carbon taxes vary across workers of different initial industries, educations, ages and levels of tenure?
 - What compensating policies are necessary to compensate those who are worst off from environmental regulation?
 - To what extent are costs reduced when the policy is announced in advance or phased in gradually?
- How: Set up a general equilibrium dynamic discrete choice model with heterogeneous workers choosing which sector to work in and representative firms emitting greenhouse gasses from burning fossil fuels. Structurally estimate the model to capture historical patterns of labor market choices.

Why use a structural model?

Why use a structural model?

• The reforms are often counterfactual in nature, few natural experiments exist.

Why use a structural model?

- The reforms are often counterfactual in nature, few natural experiments exist.
- Structural approach circumvents identification issues of reduced-form papers.

Contribution and related literature

• Three relevant strands of literature

Contribution and related literature

- Three relevant strands of literature
 - Reduced form evidence of the effects of environmental regulation on labor market earnings and job loss (Walker 2013; Yip 2018).
 - **Structural evidence** of the effects of carbon taxes on labor markets (Hafstead and Williams 2018) and income groups (Goulder et al. 2019).
 - Dynamic discrete choice programming models of the labor market. (Dix-Carneiro 2014; Ashournia 2018; Traiberman 2019; Humlum 2019) building on early papers by Rust (1987) and Keane and Wolpin (1997).

Reduced form evidence of Yip (2018):

• British Columbia in Canada, revenue neutral carbon tax implemented in 2008.

Reduced form evidence of Yip (2018):

- British Columbia in Canada, revenue neutral carbon tax implemented in 2008.
- Difference-in-differences with other provinces as control

Reduced form evidence of Yip (2018):

- British Columbia in Canada, revenue neutral carbon tax implemented in 2008.
- Difference-in-differences with other provinces as control
- Issues: General equilibrium effects, financial crisis.

Reduced form evidence of Yip (2018):

- British Columbia in Canada, revenue neutral carbon tax implemented in 2008.
- Difference-in-differences with other provinces as control
- Issues: General equilibrium effects, financial crisis.
- ⇒ Structural approach can provide complementary evidence.

Reduced form evidence of Yip (2018):

- British Columbia in Canada, revenue neutral carbon tax implemented in 2008.
- Difference-in-differences with other provinces as control
- Issues: General equilibrium effects, financial crisis.
- ⇒ Structural approach can provide complementary evidence.

Structural evidence of Hafstead and Williams (2018):

• Search model with a clean sector, a dirty sector and unemployment.

Reduced form evidence of Yip (2018):

- British Columbia in Canada, revenue neutral carbon tax implemented in 2008.
- Difference-in-differences with other provinces as control
- Issues: General equilibrium effects, financial crisis.
- ⇒ Structural approach can provide complementary evidence.

Structural evidence of Hafstead and Williams (2018):

- Search model with a clean sector, a dirty sector and unemployment.
- Issues: No heterogeneity between workers.

Reduced form evidence of Yip (2018):

- British Columbia in Canada, revenue neutral carbon tax implemented in 2008.
- Difference-in-differences with other provinces as control
- Issues: General equilibrium effects, financial crisis.
- ⇒ Structural approach can provide complementary evidence.

Structural evidence of Hafstead and Williams (2018):

- Search model with a clean sector, a dirty sector and unemployment.
- Issues: No heterogeneity between workers.
- \Rightarrow I include multiple dimensions of heterogeneity in a different model framework.

Structural evidence of Goulder et al. (2019):

Structural evidence of Goulder et al. (2019):

 CGE model with many sectors, labor-leisure supply decision, households differ across income quintiles, but not in labor supply decisions.

Structural evidence of Goulder et al. (2019):

- CGE model with many sectors, labor-leisure supply decision, households differ across income quintiles, but not in labor supply decisions.
- No labor market frictions, no heterogeneity in human capital.
- \Rightarrow I include worker heterogeneity

Structural evidence of Goulder et al. (2019):

- CGE model with many sectors, labor-leisure supply decision, households differ across income quintiles, but not in labor supply decisions.
- No labor market frictions, no heterogeneity in human capital.
- ⇒ I include worker heterogeneity

Discrete choice dynamic programming models (Dix-Carneiro 2014; Ashournia 2018; Humlum 2019; Traiberman 2019):

Structural evidence of Goulder et al. (2019):

- CGE model with many sectors, labor-leisure supply decision, households differ across income quintiles, but not in labor supply decisions.
- No labor market frictions, no heterogeneity in human capital.
- ⇒ I include worker heterogeneity

Discrete choice dynamic programming models (Dix-Carneiro 2014; Ashournia 2018; Humlum 2019; Traiberman 2019):

• Previous subjects include import competition, offshoring, education, automation.

Structural evidence of Goulder et al. (2019):

- CGE model with many sectors, labor-leisure supply decision, households differ across income quintiles, but not in labor supply decisions.
- No labor market frictions, no heterogeneity in human capital.
- ⇒ I include worker heterogeneity

Discrete choice dynamic programming models (Dix-Carneiro 2014; Ashournia 2018; Humlum 2019; Traiberman 2019):

- Previous subjects include import competition, offshoring, education, automation.
- ⇒ I adapt it for questions about environmental regulation.

Data

• Register-based linked worker-firm data for Denmark (1996 - 2016)

- Register-based linked worker-firm data for Denmark (1996 2016)
- Worker data on education, choice of sector, gender, tenure, unemployment transfers

- Register-based linked worker-firm data for Denmark (1996 2016)
- Worker data on education, choice of sector, gender, tenure, unemployment transfers
- Firm/sector data on value added, carbon emissions, wage bill, capital stock, energy use, input-output tables

- Register-based linked worker-firm data for Denmark (1996 2016)
- Worker data on education, choice of sector, gender, tenure, unemployment transfers
- Firm/sector data on value added, carbon emissions, wage bill, capital stock, energy use, input-output tables
- Prices on energy (not certain yet, could be backed out from unit values)

Data patterns (1/2)

Figure 1: From Traiberman (2019)

Data patterns (2/2)

Average Yearly Transition Rates						
From \downarrow , to \rightarrow	(0)	(1)	(2)	(3)	(4)	(5)
(0)	0.4794	0.0141	0.1053	0.0436	0.1046	0.2531
(1)	0.0409	0.8447	0.0281	0.0228	0.0265	0.0370
(2)	0.0294	0.0017	0.9090	0.0080	0.0249	0.0271
(3)	0.0290	0.0042	0.0208	0.9009	0.0191	0.0261
(4)	0.0227	0.0016	0.0226	0.0063	0.9144	0.0324
(5)	0.0182	0.0009	0.0075	0.0026	0.0111	0.9596

Notes. Sectors: (0) unemployment; (1) agriculture/mining; (2) manufacturing; (3) construction; (4) trade/utilities/transportation/communication; (5) services.

Figure 2: From Ashournia (2018)

Model

Firms and emissions

One representative firm for each sector s in each year t produces using four inputs:

- Human capital, H, with price r^H
- Physical capital, K, with price r^K
- Clean energy, E, with price p^E
- Dirty energy, O, with price p^O and carbon tax τ_s

Firms and emissions

One representative firm for each sector s in each year t produces using four inputs:

- Human capital, H, with price r^H
- Physical capital, K, with price r^K
- Clean energy, E, with price p^E
- Dirty energy, O, with price p^O and carbon tax τ_s

It has the production function

$$Y = AH^{\alpha_1}K^{\alpha_2}(\mathsf{Energy})^{\alpha_3}, \qquad \mathsf{Energy} \equiv \left(E_{st}^{\theta_s} + O_{st}^{\theta_s}\right)^{\frac{1}{\theta_s}}$$
 (1)

Firms and emissions

One representative firm for each sector *s* in each year *t* produces using four inputs:

- Human capital, H, with price r^H
- Physical capital, K, with price r^K
- Clean energy, E, with price p^E
- Dirty energy, O, with price p^O and carbon tax τ_s

It has the production function

$$Y = AH^{\alpha_1}K^{\alpha_2}(\mathsf{Energy})^{\alpha_3}, \qquad \mathsf{Energy} \equiv \left(E^{\theta_s}_{st} + O^{\theta_s}_{st}\right)^{\frac{1}{\theta_s}}$$
 (1)

and emits carbon dioxide emissions Z according to

$$Z = \eta_s O. (2)$$

Worker *i*'s problem:

Worker i's problem:

- Discrete choice between sectors.
 - No intensive margin, no saving/borrowing.

Worker *i*'s problem:

- Discrete choice between sectors.
 - No intensive margin, no saving/borrowing.
- Active in the labor market from age (a_{it}) 30 to 65.

Worker *i*'s problem:

- Discrete choice between sectors.
 - No intensive margin, no saving/borrowing.
- Active in the labor market from age (a_{it}) 30 to 65.

Utility is the sum of three parts

- Wages, wist
- Sector switching costs, $M(s_t, s_{t-1}, \Omega_{it})$
- ullet Sectoral preference shocks (unobserved to the econometrician), $arepsilon_{ist}$

Bellman equation and state space

The Bellman equation is

$$V_t(\Omega_{it}) = \max_{s} V_{st}(\Omega_{it}). \tag{3}$$

Bellman equation and state space

The Bellman equation is

$$V_t(\Omega_{it}) = \max_{s} V_{st} (\Omega_{it}). \tag{3}$$

with sector-specific value functions given by

$$V_{st}(\Omega_{it}) = \begin{cases} w_{ist} - M(s_t, s_{t-1}, \Omega_{it}) + \varepsilon_{ist} + \rho E_{\varepsilon} \left[V_{t+1} \left(\Omega_{it+1} \right) | d_{ist} \right] & \text{for } a_{it} < 65 \\ w_{ist} - M(s_t, s_{t-1}, \Omega_{it}) + \varepsilon_{ist} & \text{for } a_{it} = 65 \end{cases}$$

$$(4)$$

Bellman equation and state space

The Bellman equation is

$$V_t(\Omega_{it}) = \max_{s} V_{st} (\Omega_{it}). \tag{3}$$

with sector-specific value functions given by

$$V_{st}(\Omega_{it}) = \begin{cases} w_{ist} - M(s_t, s_{t-1}, \Omega_{it}) + \varepsilon_{ist} + \rho E_{\varepsilon} \left[V_{t+1} \left(\Omega_{it+1} \right) | d_{ist} \right] & \text{for } a_{it} < 65 \\ w_{ist} - M(s_t, s_{t-1}, \Omega_{it}) + \varepsilon_{ist} & \text{for } a_{it} = 65 \end{cases}$$

$$(4)$$

The state space includes age, previous sector, education, tenure and the expectation of future skill prices:

$$\Omega_{it} = \left\{ a_{it}, s_{it-1}, \mathsf{educ}_i, \mathsf{ten}_{it}, \left\{ r_{st+\iota} \right\}_{\iota=0}^{65 - a_{it}} \right\}. \tag{5}$$

• Wage offer for each s and t is the product of two parts:

• Wage offer for each *s* and *t* is the product of two parts:

$$w_{ist} = \underbrace{H_s(a_{it}, \text{educ}_i, \text{ten}_{it}, s_{it-1})}_{\text{Human capital that } i \text{ offers } s} \times \underbrace{r_{st}}_{\text{Unit price of skill}}. \tag{6}$$

• Wage offer for each s and t is the product of two parts:

$$w_{ist} = \underbrace{H_s(a_{it}, \mathsf{educ}_i, \mathsf{ten}_{it}, s_{it-1})}_{\mathsf{Human capital that } i \mathsf{ offers } s} \times \underbrace{r_{st}}_{\mathsf{Unit price of skill}}. \tag{6}$$

• Human capital function:

$$H_{s}(a_{it}, \mathsf{educ}_{i}, \mathsf{ten}_{it}, s_{it-1}) \equiv \exp\left(\beta_{s}^{0} a_{it} + \beta_{s}^{1} (a_{it})^{2} + \beta_{s}^{educ} \mathsf{educ}_{i} + \beta_{s}^{5} \mathsf{ten}_{it} \mathbf{1}(s = s_{it-1})\right)$$
(7)

• Wage offer for each s and t is the product of two parts:

$$w_{ist} = \underbrace{H_s(a_{it}, \text{educ}_i, \text{ten}_{it}, s_{it-1})}_{\text{Human capital that } i \text{ offers } s} \times \underbrace{r_{st}}_{\text{Unit price of skill}}. \tag{6}$$

Human capital function:

$$H_{s}(a_{it}, \mathsf{educ}_{i}, \mathsf{ten}_{it}, s_{it-1}) \equiv \exp\left(\beta_{s}^{0} a_{it} + \beta_{s}^{1} (a_{it})^{2} + \beta_{s}^{educ} \mathsf{educ}_{i} + \beta_{s}^{5} \mathsf{ten}_{it} \mathbf{1}(s = s_{it-1})\right)$$
(7)

Sector-specific knowledge (tenure):

$$ten_{it+1} = \begin{cases} ten_{it} + 1 & \text{if} \quad s_{it} = s_{it-1} \\ 1 & \text{if} \quad s_{it} \neq s_{it-1} \end{cases}$$
(8)

Switching costs, $M(s_t, s_{t-1}, \Omega_{it})$

• Switching sectors is costly

Switching costs, $M(s_t, s_{t-1}, \Omega_{it})$

• Switching sectors is costly, parameterized as

$$M(s_{t}, s_{t-1}, \Omega_{it}) = \begin{cases} m_{1}(s_{t}, s_{t-1}) m_{2}(\Omega_{it}) & \text{if } s_{t} \neq s_{t-1} \\ 0 & \text{if } s_{t} = s_{t-1} \end{cases}$$
(9)

Switching costs, $M(s_t, s_{t-1}, \Omega_{it})$

• Switching sectors is costly, parameterized as

$$M(s_t, s_{t-1}, \Omega_{it}) = \begin{cases} m_1(s_t, s_{t-1}) m_2(\Omega_{it}) & \text{if } s_t \neq s_{t-1} \\ 0 & \text{if } s_t = s_{t-1} \end{cases}$$
(9)

with

$$m_1(s_t, s_{t-1}) = \exp\left(\xi_{s_{t-1}}^{out} + \xi_{s_t}^{in}\right).$$
 (10)

$$m_2(a_{it}, \text{educ}_i) = \exp\left(\kappa_0 a_{it} + \kappa_1 (a_{it})^2 + \kappa_{\text{educ}} \text{educ}_i\right)$$
 (11)

Solving the model

• Distributional assumption on ε_{ist} :

$$\varepsilon_{ist} \sim \mathsf{Gumbel}(-0.57721\sigma, \sigma)$$
 (12)

Solving the model

• Distributional assumption on ε_{ist} :

$$\varepsilon_{ist} \sim \mathsf{Gumbel}(-0.57721\sigma, \sigma)$$
 (12)

• Perfect foresight of skill prices $\{r_{st+\iota}\}_{\iota=0}^{65-a_{it}}$ as in Lee (2005).

Solving the model

• Distributional assumption on ε_{ist} :

$$\varepsilon_{ist} \sim \mathsf{Gumbel}(-0.57721\sigma, \sigma)$$
 (12)

- Perfect foresight of skill prices $\{r_{st+\iota}\}_{\iota=0}^{65-a_{it}}$ as in Lee (2005).
- Equilibrium skill prices $\{r_{st+\iota}\}_{\iota=0}^{65-a_{it}}$ are determined in equilibrium,

$$H_{st}^{supply}(\{\mathbf{r}_{t+\iota}\}_{\iota=0}^{65-30}) = H_{st}^{demand}(r_{st})$$
 (13)

• Previously shown models parts are sufficient for estimation.

- Previously shown models parts are sufficient for estimation.
- Counterfactual simulations, requires endogenizing output prices.

- Previously shown models parts are sufficient for estimation.
- Counterfactual simulations, requires endogenizing output prices.
- For tradeables: Small country assumption to exogenize output prices p_s^Y .

- Previously shown models parts are sufficient for estimation.
- Counterfactual simulations, requires endogenizing output prices.
- For tradeables: Small country assumption to exogenize output prices p_s^Y .
- Cobb-Douglas utility of consumption

$$u(C_{1t},\ldots,C_{st},\ldots,C_{S-1t}) = \prod_{s=1}^{S-1} C_{st}^{\mu_s}.$$
 (14)

giving, for non-tradeables,

$$p_s^Y Y_s = p_s^Y C_s = \mu_s \sum_{j=1}^{S-1} p_j^Y Y_j.$$
 (15)

- Previously shown models parts are sufficient for estimation.
- Counterfactual simulations, requires endogenizing output prices.
- For tradeables: Small country assumption to exogenize output prices p_s^Y .
- Cobb-Douglas utility of consumption

$$u(C_{1t},\ldots,C_{st},\ldots,C_{S-1t}) = \prod_{s=1}^{S-1} C_{st}^{\mu_s}.$$
 (14)

giving, for non-tradeables,

$$p_s^Y Y_s = p_s^Y C_s = \mu_s \sum_{j=1}^{S-1} p_j^Y Y_j.$$
 (15)

Assumption on the supply of physical capital needed too.

Estimation

- Step 1: Calibration (follows Ashournia 2018)
 - ullet Cobb-Douglas factor reward shares in production (α)
 - Discount factor, $\rho = 0.96$
 - ullet Cobb-Douglas consumption shares μ based on input-output data
 - ullet Dirty energy emission intensity η_s

- Step 1: Calibration (follows Ashournia 2018)
 - ullet Cobb-Douglas factor reward shares in production (α)
 - Discount factor, $\rho = 0.96$
 - \bullet Cobb-Douglas consumption shares μ based on input-output data
 - Dirty energy emission intensity η_s
- ullet Step 2: OLS regression to identify the energy elasticity $heta_s$

- Step 1: Calibration (follows Ashournia 2018)
 - Cobb-Douglas factor reward shares in production (α)
 - Discount factor, $\rho = 0.96$
 - ullet Cobb-Douglas consumption shares μ based on input-output data
 - Dirty energy emission intensity η_s
- Step 2: OLS regression to identify the energy elasticity θ_s
 - From the first order conditions of the firm's problem (and adding an error term):

$$\log\left(\frac{E_{st}}{O_{st}}\right) = \frac{1}{\theta_s - 1}\log\left(\frac{p_t^E}{\eta_s \tau_{st} + p_s^O}\right) + \epsilon_{st} \qquad \forall t$$
 (16)

Step 3: Structural estimation using maximum likelihood

Step 3: Structural estimation using maximum likelihood

• Initial period is 1996, terminal period is 2016

Step 3: Structural estimation using maximum likelihood

- Initial period is 1996, terminal period is 2016
- Keep nominal output fixed, $p_{st}^Y Y_{st} = \overline{p_{st}^Y Y_{st}}$.

Step 3: Structural estimation using maximum likelihood

- Initial period is 1996, terminal period is 2016
- Keep nominal output fixed, $p_{st}^Y Y_{st} = \overline{p_{st}^Y Y_{st}}$.
- Solve model for a given set of parameters, calculate likelihood function and optimize.

Counterfactual simulations

Simulating forward, initial conditions

• To simulate individuals forward, I make the following assumptions:

Simulating forward, initial conditions

- To simulate individuals forward, I make the following assumptions:
 - The initial state of the economy in 1996 is exogenous (can be relaxed e.g. following Wooldridge (2005))

Simulating forward, initial conditions

- To simulate individuals forward, I make the following assumptions:
 - The initial state of the economy in 1996 is exogenous (can be relaxed e.g. following Wooldridge (2005))
 - Entering cohorts in the future have the same composition as entering cohorts in 2016

• Unemployment can be specified to reflect the Danish transfer system at the expense of additional state variables (Ashournia 2018)

- Unemployment can be specified to reflect the Danish transfer system at the expense of additional state variables (Ashournia 2018)
- Emissions tied also to output and endogenous carbon capture and storage (CCS)

- Unemployment can be specified to reflect the Danish transfer system at the expense of additional state variables (Ashournia 2018)
- Emissions tied also to output and endogenous carbon capture and storage (CCS)
- Endogenous technology upgrade choice for firms (Humlum 2019)

- Unemployment can be specified to reflect the Danish transfer system at the expense of additional state variables (Ashournia 2018)
- Emissions tied also to output and endogenous carbon capture and storage (CCS)
- Endogenous technology upgrade choice for firms (Humlum 2019)
- Increased worker heterogeneity (more state variables): Gender, make education categories more granular

- Unemployment can be specified to reflect the Danish transfer system at the expense of additional state variables (Ashournia 2018)
- Emissions tied also to output and endogenous carbon capture and storage (CCS)
- Endogenous technology upgrade choice for firms (Humlum 2019)
- Increased worker heterogeneity (more state variables): Gender, make education categories more granular
- Add a wage shock unobserved to the econometrician (Dix-Carneiro 2014; Ashournia 2018)

- Unemployment can be specified to reflect the Danish transfer system at the expense of additional state variables (Ashournia 2018)
- Emissions tied also to output and endogenous carbon capture and storage (CCS)
- Endogenous technology upgrade choice for firms (Humlum 2019)
- Increased worker heterogeneity (more state variables): Gender, make education categories more granular
- Add a wage shock unobserved to the econometrician (Dix-Carneiro 2014; Ashournia 2018)
- Apply estimation technique of Traiberman (2019) to retrieve switching cost parameters without having to solve the model by canceling continuation values

- Unemployment can be specified to reflect the Danish transfer system at the expense of additional state variables (Ashournia 2018)
- Emissions tied also to output and endogenous carbon capture and storage (CCS)
- Endogenous technology upgrade choice for firms (Humlum 2019)
- Increased worker heterogeneity (more state variables): Gender, make education categories more granular
- Add a wage shock unobserved to the econometrician (Dix-Carneiro 2014; Ashournia 2018)
- Apply estimation technique of Traiberman (2019) to retrieve switching cost parameters without having to solve the model by canceling continuation values
- ullet Add a geographic dimension to the choice, so a worker chooses g as well as s

- Unemployment can be specified to reflect the Danish transfer system at the expense of additional state variables (Ashournia 2018)
- Emissions tied also to output and endogenous carbon capture and storage (CCS)
- Endogenous technology upgrade choice for firms (Humlum 2019)
- Increased worker heterogeneity (more state variables): Gender, make education categories more granular
- Add a wage shock unobserved to the econometrician (Dix-Carneiro 2014; Ashournia 2018)
- Apply estimation technique of Traiberman (2019) to retrieve switching cost parameters without having to solve the model by canceling continuation values
- ullet Add a geographic dimension to the choice, so a worker chooses g as well as s
- Make foreign production more sophisticated for "carbon leakage" effects

- Unemployment can be specified to reflect the Danish transfer system at the expense of additional state variables (Ashournia 2018)
- Emissions tied also to output and endogenous carbon capture and storage (CCS)
- Endogenous technology upgrade choice for firms (Humlum 2019)
- Increased worker heterogeneity (more state variables): Gender, make education categories more granular
- Add a wage shock unobserved to the econometrician (Dix-Carneiro 2014; Ashournia 2018)
- Apply estimation technique of Traiberman (2019) to retrieve switching cost parameters without having to solve the model by canceling continuation values
- ullet Add a geographic dimension to the choice, so a worker chooses g as well as s
- Make foreign production more sophisticated for "carbon leakage" effects
- Different consumption shares for different workers (Känzig 2021)

• The small country assumption making some prices fully exogenous.

- The small country assumption making some prices fully exogenous.
- Measuring prices of outputs and inputs is not straightforward.

- The small country assumption making some prices fully exogenous.
- Measuring prices of outputs and inputs is not straightforward.
- External validity (Denmark vs. US)?

- The small country assumption making some prices fully exogenous.
- Measuring prices of outputs and inputs is not straightforward.
- External validity (Denmark vs. US)?
- Indirect links between firms are not present. Electricity (clean energy) price will go up when carbon tax does.

- The small country assumption making some prices fully exogenous.
- Measuring prices of outputs and inputs is not straightforward.
- External validity (Denmark vs. US)?
- Indirect links between firms are not present. Electricity (clean energy) price will go up when carbon tax does.
- Educational choice is exogenous in the model.

Thank you.

Feedback and comments:

jl@econ.ku.dk

Appendix

Closed form solutions

• Closed-form solutions for continuation values

$$E_{\varepsilon}[V_{t}(\Omega_{it})] = \sigma \log \left(\sum_{s} \exp \left(\frac{w_{ist} - M(s_{t}, s_{t-1}, \Omega_{it}) + \rho E_{\varepsilon}[V_{t+1}(\Omega_{it+1})|d_{ist}]}{\sigma} \right) \right).$$
(17)

Closed form solutions

Closed-form solutions for continuation values

$$E_{\varepsilon}\left[V_{t}(\Omega_{it})\right] = \sigma \log \left(\sum_{s} \exp\left(\frac{w_{ist} - M(s_{t}, s_{t-1}, \Omega_{it}) + \rho E_{\varepsilon}\left[V_{t+1}(\Omega_{it+1})|d_{ist}\right]}{\sigma}\right)\right). \tag{17}$$

and conditional choice probabilities:

$$P(d_{ist} = 1 | \Omega_{it}) = \frac{\exp\left(\frac{w_{ist} - M(s, s_{t-1}, \Omega_{it}) + \rho E_{\varepsilon}[V_{t+1}(\Omega_{it+1}) | d_{ist}]}{\sigma}\right)}{\sum_{j} \exp\left(\frac{w_{ijt} - M(j, s_{t-1}, \Omega_{it}) + \rho E_{\varepsilon}[V_{t+1}(\Omega_{it+1}) | d_{ijt}]}{\sigma}\right)}.$$
(18)

• The equilibrium skill prices r_{st} are determined in equilibrium in s in each t.

- The equilibrium skill prices r_{st} are determined in equilibrium in s in each t.
- Definitions:
 - $MASS_t$: Mass of individuals in economy at time t.

- The equilibrium skill prices r_{st} are determined in equilibrium in s in each t.
- Definitions:
 - MASS_t: Mass of individuals in economy at time t.
 - $\widetilde{\Omega}$: Collection of all possible points in state space (excluding r_{st}), indexed by ω .

- The equilibrium skill prices r_{st} are determined in equilibrium in s in each t.
- Definitions:
 - MASS_t: Mass of individuals in economy at time t.
 - $\widetilde{\Omega}$: Collection of all possible points in state space (excluding r_{st}), indexed by ω .
 - $D_t(\omega)$: The share of individuals in the population characterized by the point ω at time t.

- The equilibrium skill prices r_{st} are determined in equilibrium in s in each t.
- Definitions:
 - MASS_t: Mass of individuals in economy at time t.
 - $\widetilde{\Omega}$: Collection of all possible points in state space (excluding r_{st}), indexed by ω .
 - $D_t(\omega)$: The share of individuals in the population characterized by the point ω at time t.
 - $P\left(d_{\omega st}=1|\ \omega, \{\mathbf{r}_{t+\iota}\}_{\iota=0}^{65-30}\right)$: The probability that an individual, defined by the state space point ω as well as the expectation of future skill prices, chooses to work in sector s at time t.

- The equilibrium skill prices r_{st} are determined in equilibrium in s in each t.
- Definitions:
 - MASS_t: Mass of individuals in economy at time t.
 - $\widetilde{\Omega}$: Collection of all possible points in state space (excluding r_{st}), indexed by ω .
 - $D_t(\omega)$: The share of individuals in the population characterized by the point ω at time t.
 - $P\left(d_{\omega st}=1|\ \omega, \{\mathbf{r}_{t+\iota}\}_{\iota=0}^{65-30}\right)$: The probability that an individual, defined by the state space point ω as well as the expectation of future skill prices, chooses to work in sector s at time t.
- Equilibrium condition

$$H_{st}^{supply}(\{\boldsymbol{r}_{t+\iota}\}_{\iota=0}^{65-30}) = H_{st}^{demand}(r_{st})$$

$$\mathsf{MASS}_{t} \sum_{\omega \in \widetilde{\Omega}_{t}} D_{t}(\omega) P\left(d_{\omega st} = 1 | \omega, \{\boldsymbol{r}_{t+\iota}\}_{\iota=0}^{65-30}\right) = \alpha_{st}^{1} p_{st}^{Y} \frac{Y_{st}}{r_{st}} \qquad \forall s, t. \quad (19)$$