ROCK, PAPER, SCISSORS

A Multinomial Processing Tree application

Leclere Thibaut, Jannes Olieslagers, Frederik Panse, Stefano Dalla Bona

OVERVIEW

- I. Introduction
- II. MPT Adaptation
- III. The Model
- IV. Equations
- V. Identifiability
- VI. Results
- VII. Comparisons
- VIII.Questions

MTDA

What is the paradigm?

INTRO

- Paradigm
 - Simple rock, paper, scissors game

- Data
 - 2 players
 - 250 trials

MIDT ADADTATION

Conditions, Categories, Relevant Parameters

MIL I AUAL LALIUN

MPT ADAPTATION

- Conditions
 - Win
 - Lose
 - Draw
- Parameters
 - S
 - Stay = S
 - Switch = (1-S)
 - B
 - Bias = B
 - Complement = (1-B)

What does the MPT look like?

DATASET TRANSFORMATION

Round	Chiara	Mona
1	2	3
2	3	1
3	2	3
4	3	2
5	1	2
6	3	1
7	2	2
8	3	3
9	2	3

	cond	cat	freq
1	0	1	40
2	0	2	15
3	0	3	22
4	1	1	35
5	1	2	29
6	1	3	15
7	99	1	39
8	99	2	42
9	99	3	12

	cond	cat	freq
1	0	1	34
2	0	2	32
3	0	3	13
4	1	1	26
5	1	2	35
6	1	3	16
7	99	1	32
8	99	2	35
9	99	3	26

Model H1: Self-Reference Model

THE MPT MODEL

MODEL H1

MANTI 9

Model 2: Random Model

RANDOM MODEL

TATIATIC

What are the equations?

LUULIUIU

EQUATIONS

- Path equations for the self-reference and prediction models
 - $E_{stay} = S * 1$
 - $E_{\text{switch\&beat}} = (1-s)*b$
 - $E_{\text{switch\&lose}} = (1-s)*(1-b)$

→ In this case, path equations = redundant with categories equations

Testing the local identifiability

IDENTIFIABILITY

```
Run b1
             b2
                      b3
                              s1
                                       s2
                                                s3
                                                        Fit
                                                                 AIC
                                                                           BIC
                                                                                      Delta AIC Delta BIC
                              0.40506
                                                                538.97330
    0.27660
             0.68627
                     0.47761
                                       0.33766
                                               0.27957
                                                        0.00000
                                                                           560.07802 0.00000
                                                                                               0.00000
                                                                538.97330
    0.27660
             0.68627
                     0.47761 0.40506 0.33766 0.27957
                                                        0.00000
                                                                           560.07802 0.00000
                                                                                               0.00000
            0.68628 0.47761 0.40506 0.33766 0.27957
    0.27660
                                                        0.00000
                                                                538.97330
                                                                           560.07802 0.00000
                                                                                               0.00000
    0.27660
            0.68628 0.47761 0.40506 0.33766 0.27957
                                                       0.00000
                                                                538.97330
                                                                           560.07802 0.00000
                                                                                               0.00000
            0.68628 0.47761 0.40506 0.33766 0.27957
                                                                538.97330
    0.27660
                                                       0.00000
                                                                           560.07802 0.00000
                                                                                               0.00000
                                                       0.00000
                                                                538.97330
                                                                                               0.00000
    0.27660
             0.68628 0.47761 0.40506 0.33766 0.27957
                                                                           560.07802 0.00000
                                                       0.00000
    0.27660
             0.68628
                     0.47761 0.40506 0.33766 0.27957
                                                                 538.97330
                                                                           560.07802 0.00000
                                                                                               0.00000
    0.27660
            0.68627
                     0.47761 0.40506 0.33766 0.27957
                                                        0.00000
                                                                 538.97330
                                                                           560.07802 0.00000
                                                                                               0.00000
    0.27660
             0.68628
                     0.47761 0.40506 0.33766 0.27957
                                                        0.00000
                                                                 538.97330
                                                                           560.07802 0.00000
                                                                                               0.00000
    0.27660
             0.68627
                     0.47761 0.40506 0.33766 0.27957
                                                       0.00000
                                                                538.97330 560.07802 0.00000
                                                                                               0.00000
Dev. 0.00000
            0.00000
                     0.00000 0.00000 0.00000 0.00000
    b1
             b2
                      b3
                                       s2
                                               s3
                                                        Fit
                                                                 AIC
                                                                           BIC
                                                                                     Delta AIC Delta BIC
Run
                              s1
    0.27660
             0.68627
                     0.47761 0.40506
                                      0.33766 0.27957
                                                       0.00000
                                                                538.97330
                                                                           560.07802 0.00000
                                                                                               0.00000
    0.27660
             0.68627
                     0.47761
                              0.40506 0.33766 0.27957
                                                        0.00000
                                                                538.97330
                                                                           560.07802
                                                                                     0.00000
                                                                                               0.00000
                                                                538.97330
    0.27660
             0.68628
                     0.47761 0.40506 0.33766
                                              0.27957
                                                        0.00000
                                                                           560.07802 0.00000
                                                                                               0.00000
    0.27660
             0.68628 0.47761 0.40506 0.33766
                                              0.27957
                                                       0.00000
                                                                538.97330
                                                                           560.07802 0.00000
                                                                                               0.00000
             0.68628 0.47761 0.40506 0.33766 0.27957
                                                       0.00000
                                                                538.97330
                                                                           560.07802 0.00000
    0.27660
                                                                                               0.00000
    0.27660
             0.68628 0.47761 0.40506 0.33766 0.27957
                                                       0.00000
                                                                538.97330
                                                                           560.07802 0.00000
                                                                                               0.00000
                                                       0.00000
                                                                538.97330
                                                                           560.07802 0.00000
    0.27660
             0.68628
                     0.47761 0.40506 0.33766 0.27957
                                                                                               0.00000
    0.27660
             0.68627
                     0.47761 0.40506 0.33766
                                               0.27957
                                                        0.00000
                                                                538.97330
                                                                           560.07802 0.00000
                                                                                               0.00000
    0.27660
                     0.47761 0.40506 0.33766 0.27957
                                                       0.00000
                                                                538.97330
                                                                           560.07802 0.00000
                                                                                               0.00000
             0.68628
    0.27660
             0.68627
                     0.47761 0.40506 0.33766 0.27957 0.00000 538.97330 560.07802 0.00000
                                                                                               0.00000
            0.00000 0.00000 0.00000 0.00000 0.00000
Dev. 0.00000
```

(MultiTree)

DECITE

Estimated parameters and goodness of fit

Model H1: Self-Reference Model

RESULTS MODEL H1

CAMBADICCANIC

Comparing the model to the base model

UUIIII AILIUUUIIVU

CIMITATE TARA

Can This Model Detect Patterns in the Simulated Data?

DIMIULAILU DAIA

RESULTS SIMULATED DATA

ATICATIONIC

Any Questions or Comments?

VULUIUIV