

Global Alignment of Meshes for the Microsoft HoloLens

Karen Hong¹, Kevin Shum¹, Jessica (Yi Fei) Bo¹, Martin Oswald², Pablo Speciale² 3D Vision¹, Computer Vision and Geometry Lab², ETH Zurich

Introduction

Goals & Objectives

- Implement a mesh registration algorithm based on the Guaranteed Outlier Removal (GORE) algorithm, developed by Bustos and Chin
- Refine GORE with ICP and RANSAC algorithms, compare performance

Challenges

Meshes on different coordinate systems generated by the HoloLens are difficult to align accurately and consistently

Applications

Stitching together different meshes taken at different points in time and aligning them into one global scene for VR and AR

Method Overview

Fig. 2. HoloLens spatial map of a small indoor environment

Input:

Independently generated spatial scans (meshes) created on the HoloLens with different coordinate systems (Fig.2)

Output:

Transformation matrix that aligns the two meshes into the same coordinate system

GORE Algorithm

- Given set of input points and correspondences, iterate over each point:
 - Compute improved lower bound, l, and upper bound, $\hat{p_l}$
 - Reject current point match as true outlier if the values of the bounds are not consistent
- GORE seeks to reject true outliers in set of points H and reduce to H',
- which is guaranteed to be included in the globally optimal solution I* The maximum consensus

problem is defined as: subject to

 $\|\mathbf{R}\mathbf{x}_i + \mathbf{t} - \mathbf{y}_i\| \le \xi, \ \forall i \in \mathcal{I}$

Results and Discussion

Runtime

- GORE's runtime is the most deterministic (0.4s 4s between datasets)
- RANSAC has low runtime & reduces ICP's runtime if performed prior to it

Angular Alignment Error

- ICP consistently improved angular errors for a point cloud in pure rotation, but results were not as consistent for a pure translation
- Normalized angular error between GORE, GORE+RANSAC, and GORE+RANSAC+ICP are similar at high rotation angles

Translation Alignment Error

ICP improved translation errors for a point clouds in pure rotation, but the results worsened for a pure translation (instability observed in error)

Fig. 4. Graphs of alignment errors at each rotation angle averaged over 10 unique point cloud datasets. Due to significantly

Conclusion

- GORE is robust as a preprocessing step in removing true outliers from the search space, particularly when combined with refinement algorithms
- ICP refinement, in addition to GORE and RANSAC, reduces the angular error for aligning affinely transformed point clouds
- However, additional speedup is required for GORE to be more effective
- Prototype project shows potential for application to the HoloLens in C# for registering various meshes with different coordinate systems

References

- Á. P. Bustos and T. J. Chin, "Guaranteed Outlier Removal for Rotation Search," 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp. 2165-2173.
- Radu B. Rusu et al. 3d is here: Point cloud library (pcl: pointclouds.org). In ICRA, 2011.
- Koltun V Zhou QY., Park J. Fast global registration. In ECCV, 2017.

