Devoir nº 1 *

Claudéric DeRoy (p1174700) Alexandre Pachot (p0774809)

 $1^{\rm er}$ octobre 2020

Question 1

a) En utilisant les lois généralisées de De Morgan, montrez que $\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$.

 \Rightarrow

$$\begin{split} \forall x, x \in \overline{A \cup B \cup C} \Rightarrow x \notin A \cup B \cup C \\ \Rightarrow x \notin A \quad \land \quad x \notin B \quad \land \quad x \notin C \\ \Rightarrow x \in \overline{A} \quad \land \quad x \in \overline{B} \quad \land \quad x \in \overline{C} \\ \Rightarrow x \in \overline{A} \cap \overline{B} \cap \overline{C} \end{split}$$

 \Leftarrow

$$\begin{split} \forall x, x \in \overline{A} \cap \overline{B} \cap \overline{C} \Rightarrow x \in \overline{A} & \land & x \in \overline{B} & \land & x \in \overline{C} \\ \Rightarrow x \notin A & \land & x \notin B & \land & x \notin C \\ \Rightarrow x \notin A \cup B \cup C \\ \Rightarrow x \in \overline{A \cup B \cup C} & \Box \end{split}$$

b) Prouvez ou infirmez : Pour tous ensembles finis non-vides A, B, C

$$(\bar{A} \times B) \cup (A \times C) = (\bar{A} \cup A) \times (B \cup C)$$

$$\begin{split} x \in (\bar{A} \times C) &\Rightarrow x \notin (\bar{A} \times B) \quad \wedge \quad x \notin (A \times C) \\ &\Rightarrow x \notin (\bar{A} \times B) \cup (A \times C) \qquad (1) \\ x \in (\bar{A} \times C) &\Rightarrow x \in (\bar{A} \cup A) \times (C \cup B) \\ &\Rightarrow x \in (\bar{A} \cup A) \times (B \cup C) \qquad (2) \\ (1) \text{ et } (2) &\Rightarrow (\bar{A} \times B) \cup (A \times C) \neq (\bar{A} \cup A) \times (B \cup C) \qquad \Box \end{split}$$

^{*}IFT 1065 - Structures discrètes en informatique - Automne 2020 - Margarida CARVALHO

Question 2

Donnez la table de vérité de la proposition suivante :

$$(p \land (p \Rightarrow q) \Rightarrow q)$$

			(1)	(2)	
	p	q	$p \Rightarrow q$	$p \wedge (1)$	$(2) \Rightarrow q$
	V	V	V	V	V
ĺ	V	F	F	F	V
Ì	F	V	V	F	V
ĺ	F	F	V	F	V

Question 3

Sans avoir recours aux tables de vérité (utilisez le Théorème 1), montrez que les deux propositions suivantes sont équivalentes

$$\neg p \lor (r \Rightarrow (\neg q)) \equiv \neg p \lor \neg q \lor \neg r$$

$$\neg p \lor (r \Rightarrow (\neg q)) \equiv \neg p \lor \neg (\neg (r \Rightarrow (\neg q)))$$
$$\equiv \neg p \lor \neg (r \land \neg (\neg q))$$
$$\equiv \neg p \lor \neg r \lor \neg q$$

Question 4

Donnez la valeur de vérité de chacune des propositions suivantes :

(a)
$$\forall m \in \mathbb{N}, \exists n \in \mathbb{N}/ (m \ge 2) \Rightarrow (m^2 > n^2 + 3)$$

Posons n=0. Pour m=2, on a bien $2^2>0^2+3$. Pour m>2, on a $m^2>2^2>0^2+3$. La proposition est vraie.

(b)
$$\exists x \in \mathbb{R}, \forall y \in \mathbb{R}/\ x < -y^2$$

Étudions la négation de cette proposition, c'est à dire : $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}/\ x \geq -y^2$

Posons $y = \sqrt{|x|}$. On a bien $x \ge -(\sqrt{|x|})^2$. La négation de la proposition est vraie. Par conséquent, la proposition initiale est fausse.