

Variational quantum eigensolver algorithm performance analysis on various molecules

Naglis Šuliokas

Supervisor: doc. dr. Linas Petkevičius

Reviewer: lect. Irus Grinius

Table of contents

- 1. Introduction I. Object of the study, significance
- 2. Introduction II. Problem, aim, objectives
- 3. Methodology
- 4. Experiment structure
- 5. Results
- 6. Conclusions

Introduction I

- Quantum computing and NISQ era.
- Object of the study:

Variational quantum eigensolver (Peruzzo et al., 2014).

• Significance:

Material science, medicine.

$$C(\boldsymbol{\theta}) = \langle \psi(\boldsymbol{\theta}) | \hat{H}_{qubit} | \psi(\boldsymbol{\theta}) \rangle$$

Vilnius University

Introduction II

- Problem: finding the ground state energy (many new VQE improvements, few analysis data, tedious implementation).
- Aim: analyze, find best VQE method, determine computational limits.
- Objectives:
 - literature analysis (Hamiltonian mappings, ansätze, optimizers),
 - benchmarks on simulator and real hardware with H₂, LiH, BeH₂,
 - determine limitations,
 - compare with literature.

Methodology

- Devices: Aer simulator, Madness simulator, ibm_brisbane hardware (127 qubits).
- Analysis:
 - Hamiltonian mapping maximum Pauli weight, depending on qubit count,
 - ansatz VQE convergence, accuracy,
 - optimizer accuracy

Experiment structure

- Hamiltonian mapping:
 - Jordan-Wigner, Bravyi-Kitaev, parity.
- Ansatz and VQE variations:
 - UCCSD, k-UpCCGSD, ADAPT-VQE.
- Optimizer:
 - L-BFGS-B, COBYLA.

Vilnius University

Results II

Choy et al. (2023)

Results III

Conclusions

Comparison:

- ADAPT-VQE accuracy contradicted,
- k-UpCCGSD more accurate than UCCSD (same in literature),
- Bravyi-Kitaev better than parity, Jordan-Wigner mappings (same in literature),
- optimizers no difference for small molecules.
- New data, implementation code.

Limitations:

- few molecules, few data, broad and shallow algorithm analysis.

Future research:

- more analysis, more calculations on hardware, adjusting gradient tolerance, robust code implementation for new discoveries.

Recommendations:

- analysis on chemistry methods related to quantum computation part.

References

- Peruzzo, A., McClean, J., Shadbolt, P., Yung, M. H., Zhou, X. Q., Love, P. J., ... & O'brien, J. L. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5(1), 4213.
- Choy, B., & Wales, D. J. (2023). Molecular energy landscapes of hardware-efficient ansatze in quantum computing. Journal of chemical theory and computation, 19(4), 1197-1206.

CONTACTS

Naglis Šuliokas Software engineering bachelor, 4th year naglis.suliokas@mif.stud.vu.lt naglis.suliokas@gmail.com