CSCE 633: Machine Learning

Lecture 22: SVM Optimization

Texas A&M University
Bobak Mortazavi

Review

- 1. Which of the decision boundaries would you use from the plot on the right and why?
- 2. In the plot on the left, what are the dashed lines called?
- 3. In the plot of the left what are the dots on the dashed line called?
- 4. How can we modify the Maximum Margin Classifier for data that isn't linearly separable?

• Consider the margin boundary $y_i f(x) = y_i (w_0 + \sum_{j=1}^D w_j \phi(x_{ij}))$

- Consider the margin boundary $y_i f(x) = y_i (w_0 + \sum_{j=1}^D w_j \phi(x_{ij}))$
- Why do we multiply y_i by f(x)?

- Consider the margin boundary $y_i f(x) = y_i (w_0 + \sum_{j=1}^D w_j \phi(x_{ij}))$
- Why do we multiply y_i by f(x)?
- Can we somehow relate SVM's margin boundary to Regression's Loss Functions?

- Consider the margin boundary $y_i f(x) = y_i (w_0 + \sum_{j=1}^D w_j \phi(x_{ij}))$
- Why do we multiply y_i by f(x)?
- Can we somehow relate SVM's margin boundary to Regression's Loss Functions?
- Recall $y \hat{y} = y f(x)$ is our residual (error)

• The classification rule for SVM is G(x) = sign(f(x))

- The classification rule for SVM is G(x) = sign(f(x))
- Now, how do we classify error?
- Recall $y_i \in \{-1, +1\}$

- The classification rule for SVM is G(x) = sign(f(x))
- Now, how do we classify error?

- The classification rule for SVM is G(x) = sign(f(x))
- Now, how do we classify error?
- Recall $y_i \in \{-1, +1\}$
- So, $y_i G(x_i) > 0$ if samples are classified correctly

0-1 Loss

• The decision boundary as f(x) = 0

0-1 Loss

- The decision boundary as f(x) = 0
- L(y, f(x)) is called the 0-1 loss in this case

0-1 Loss

- The decision boundary as f(x) = 0
- L(y, f(x)) is called the 0-1 loss in this case
- $L(y, f(x)) = \sum_{i=1}^{N} I(y_i f(x_i) < 0)$

Support Vector Machine: Hinge Loss

$$L(x, y, w) = \sum_{i=1}^{N} \max(0, 1 - y_i(w_0 + w_1x_{i1} + \dots + w_Dx_{iD}))$$

Instead of the common loss for logistic regression

Optimal Hyperplane and Support Vectors

- Margin of Separation M: distance between the separating hyperplane and the closest input point
- Support Vectors: input points closest to the separating hyperplane

Mathematical Aside: Lagrange Multipliers

- Turn a constrained optimization problem into an unconstrained optimization problem by absorbing the constraints into a cost function, weighted by the Lagrange multipliers
- Example: Find point on the circle $x^2 + y^2 = 1$ closest to the point (2,2)
 - -Minimize $F(x, y) = (x 2)^2 + (y 2)^2$
 - -Subject to the constraint $x^2 + y^2 1 = 0$
 - Absorb the constraint into the cost function, after multiplying the Lagrange multiplier α :

$$F(x, y, \alpha) = (x - 2)^2 + (y - 2)^2 + \alpha(x^2 + y^2 - 1)$$

Mathematical Aside: Langrange Multipliers

Mathematical Aside: Lagrange Multipliers

- Formulate Lagrangian (primal problem):
- $F(x, y, \alpha) = (x 2)^2 + (y 2)^2 + \alpha(x^2 + y^2 1)$
- The optimization problem becomes:

$$\frac{\partial F}{\partial x} = 2(x - 2) + 2\alpha x = 0 \to x = \frac{2}{1 + \alpha}$$

$$\frac{\partial F}{\partial y} = 2(y - 2) + 2\alpha y = 0 \rightarrow y = \frac{2}{1 + \alpha}$$

• We substitute x,y in the Lagrangian and express it in terms of its dual form wrt α and maximize it

$$\frac{\partial F}{\partial x} = x^2 + y^2 - 1 = 0 \to \left(\frac{2}{1+\alpha}\right)^2 + \left(\frac{2}{1+\alpha}\right)^2 = 1 \to \alpha = 2\sqrt{2} - 1$$

• Recover the solution: $(x, y) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

Mathematical Aside: Lagrange Multipliers

- Exercise
 - Find point on the circle $x^2 + y^2 = 1$ closest to the point (-3,3)

Primal Problem: Constrained Optimization

- For the training set $D^{train} = \{(x_i, y_i)\}_{i=1}^N$ find w and w_0 such that they minimize the inverse separation margin $\left(\frac{1}{M} = \frac{\|w\|}{2}\right)$ while satisfying a constraint (all examples are correctly classified):
 - Cost function $\Phi(w) = \frac{1}{2} w^T w$
 - Constraint: $y_i(w^Tx_i + w_0) \ge 1$ for $i = 1, 2, \dots, N$

$$\min_{w} \frac{1}{2} w^T w, \text{ such that (s.t.) } y_i(w^T x_i + w_0) \ge 1 \text{ for } i = 1, 2, \dots, N$$

This problem can be solved using the method of Lagrange multipliers (see next two slides)

$$\min_{w} \frac{1}{2} w^{T} w$$
, such that (s.t.) $y_{i}(w^{T} x_{i} + w_{0}) \ge 1$ for $i = 1, 2, \dots, N$

1. Formulate Lagrangian function (primal problem)

$$L = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} - \sum_{i=1}^{N} \alpha_{i} (y_{i}(\mathbf{w}^{T} \mathbf{x}_{i} + w_{0}) - 1)$$

2. Minimize Lagrangian to solve for primal variables w and w_0

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \to \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial L}{\partial w_0} = 0 \to 0 = \sum_{i=1}^{N} \alpha_i y_i$$

3. Substitute the primal variables w and w_0 into the Lagrangian and express in terms of dual variables α_i

$$L = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} - \mathbf{w}^{T} \sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} - w_{0} \sum_{i=1}^{N} \alpha_{i} y_{i} + \sum_{i=1}^{N} \alpha_{i}$$

$$= -\frac{1}{2} \mathbf{w}^{T} \mathbf{w} + \sum_{i=1}^{N} \alpha_{i} = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_{i} \alpha_{i'} y_{i} y_{i'} \mathbf{x}_{i}^{T} \mathbf{x}_{i'}$$

$$\min_{w} \frac{1}{2} w^T w$$
, such that (s.t.) $y_i(w^T x_i + w_0) \ge 1$ for $i = 1, 2, \dots, N$

4. Maximize the Lagrangian with respect to dual variables (dual problem)

$$\max_{\alpha_i} L = \max_{\alpha_i} \left\{ \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{i'=1}^N \alpha_i \alpha_{i'} y_i y_{i'} \boldsymbol{x}_i^T \boldsymbol{x}_{i'} \right\}$$
s. t.
$$\sum_{i=1}^N \alpha_i y_i = 0$$

- Solved numerically using quadratic optimization methods
- The dual depends on data size N and no on the data dimensionality D
- Most of the α_i will vanish with $\alpha_i=0$ only a small percentage
- The set of x_i whose $\alpha_i \neq 0$ are the support vectors

$$\min_{w} \frac{1}{2} w^T w$$
, such that (s.t.) $y_i(w^T x_i + w_0) \ge 1$ for $i = 1, 2, \dots, N$

- 5. Recover the solution (for the primal variables) from the dual variables
 - Find w: Substitute α_i from (4) to $w = \sum_{i=1}^N \alpha_i y_i x_i$
 - Find w_0 :
 - From $\mathbf{w}^T \mathbf{x}_i + \mathbf{w}_0 = \mathbf{y}_i$, where \mathbf{x}_i is a support vector, calculate $\mathbf{w}_0 = \mathbf{y}_i \mathbf{w}^T \mathbf{x}_i$
 - For numerical stability, average w_0 values estimated from all support vectors

- Sample x_i for which $\alpha_i = 0$
 - Majority of samples
 - Lie away from the hyperplane: $y_i(\mathbf{w}^T \mathbf{x}_i + w_0) > 1$
 - Have no effect on the hyperplane
- Sample x_i for which $\alpha_i \neq 0$
 - Support Vectors
 - Lie close to the hyperplane: $y_i(\mathbf{w}^T \mathbf{x}_i + w_0) = 1$
 - Determine the hyperplane

Support Vector Machines: Non-separable case

- If two classes are not linearly separable, we look for the hyperplane that yields the least error
- We define slack variables $\epsilon_i \geq 0$ which represent the deviation from the margin

$$y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1 - \epsilon_i$$

- Case (a): Far away from the margin, $\epsilon_i=0$
- Case (b): On the right side and far from margin, $\epsilon_i=0$
- Case (c): On the right side, but in the margin, $\epsilon_i > 0$
- Case (d): On the wrong size, $\epsilon_i \geq 1$

$$\min_{w} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \epsilon_i$$
, such that (s.t.) $y_i(w^T x_i + w_0) \ge 1 - \epsilon_i$ and $\epsilon_i > 0$ for $i = 1, 2, \dots, N$

1. Formulate Lagrangian function (primal problem)

$$L = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} - C \sum_{i=1}^{N} \epsilon_{i} - \sum_{i=1}^{N} \alpha_{i} (y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + w_{0}) - 1 + \epsilon_{i}) - \sum_{i=1}^{N} \mu_{i} \epsilon_{i}$$

2. Minimize Lagrangian to solve for primal variables w and w_0

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \to \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L}{\partial w_0} = 0 \to 0 = \sum_{i=1}^{N} \alpha_i y_i$$

$$\frac{\partial L}{\partial \epsilon_i} = 0 \to 0 = C - \alpha_i - \mu_i$$

$$\min_{w} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \epsilon_i$$
, such that (s.t.) $y_i(w^T x_i + w_0) \ge 1 - \epsilon_i$ and $\epsilon_i > 0$ for $i = 1, 2, \dots, N$

3. Substitute the primal variables w and w_0 into the Lagrangian and express in terms of dual variables $lpha_i$

$$L = \frac{1}{2} \|\mathbf{w}\|_{2}^{2} - C \sum_{i=1}^{N} \epsilon_{i} - \mathbf{w}^{T} \sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} - w_{0} \sum_{i=1}^{N} \alpha_{i} y_{i} + \sum_{i=1}^{N} \alpha_{i} - \sum_{i=1}^{N} \alpha_{i} \epsilon_{i} - \sum_{i=1}^{N} \mu_{i} \epsilon_{i}$$

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_{i} \alpha_{i'} y_{i} y_{i'} x_{i}^{T} x_{i'}$$

Scribe Notes: Solve from the beginning of (3) to the end

$$\min_{w} \frac{1}{2} w^T w$$
, such that (s.t.) $y_i(w^T x_i + w_0) \ge 1$ for $i = 1, 2, \dots, N$

4. Maximize the Lagrangian with respect to dual variables (dual problem)

$$\max_{\alpha_i} L = \max_{\alpha_i} \left\{ \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{i'=1}^N \alpha_i \alpha_{i'} y_i y_{i'} \boldsymbol{x}_i^T \boldsymbol{x}_{i'} \right\}$$
s. t.
$$\sum_{i=1}^N \alpha_i y_i = 0 \text{ and } 0 \le \alpha_i \le C, \text{ for } i = 1, \dots, N$$

- Solved numerically suing quadratic optimization methods
- The dual depends on data size N and no on the data dimensionality D
- Most of the α_i will vanish with $\alpha_i=0$ only a small percentage
- The set of x_i whose $\alpha_i > 0$ are the support vectors
 - $-0 < \alpha_i < C$: instances lying on the margin
 - $-\alpha_i = C$: instances in the margin or misclassified

Takeaways So Far

- SVM aims at finding the hyperplane from which instances have a margin of distance
- Prime and dual problem formulation (Lagrange multiplies)
- Support vectors: instances closest to separating hyperplane
- Linearly separable case: maximize margin of separation between two classes
- Non-separable case: look for the hyperplane that yield the least error (soft erro)
 - Prime: minimizes Lagrangian wrt the primal variables of the problem
 - Dual: maximizes Lagrangian wrt multipliers

