SJK006 - Master in Intelligent Systems



### Learning goals

- Main issues in traditional text representation?
- Transformers: Encoders and Decoders
- BERT the base encoder
- Zero Shot Learning with LLMs
- Few Shot Learning with LLMs
- Using LLMs for automating tasks

# Natural Language Processing Tasks

| Segmentation          | Named Entity Recognition (NER)         | Textual Entailment                      | Coreference<br>Resolution |
|-----------------------|----------------------------------------|-----------------------------------------|---------------------------|
| Part Of Speech<br>PoS | Text Classification Sentiment Analysis | Question Answering (QA)                 | Summarization             |
| Parsing               | Machine Translation                    | Natural Language<br>Understanding (NLU) | Discourse<br>Analysis     |
| Speech to text        | Word Sense<br>Disambiguation           | Natural Language<br>Generation (NLG)    | CHATBOTS                  |
| SYNTAX                | SEMANTIC-RELATED TASKS                 |                                         | DISCOURSE                 |

## Traditional machine learning applied to texts

- Bag of Words: Text is split in words and words are weighted by some indexing scheme (TF, TF-IDF, ...)
- Feature selection (vocab reduction)
- Each task has its own labeled data:
  - Sentiment analysis (+/-)
  - Topic classification
  - Regression for rankings
  - o etc.
- Each task adopts the most suited model for predictive analysis
  - Logistic regression
  - XG-Boost
  - Decision trees (Random Forests)
  - Naïve Bayes
  - o etc.



## Word frequency distribution: Zipf law



#### Som reflections

- The "Long tail" issue has several implications:
  - We can always find a new word not seen before (OOV Out of Vocabulary)
  - We only have enough statistics for a small set of words
  - Overfitting in traditional machine learning methods
- Semantics are difficult to capture with traditional models
  - Synonymy, antonymy, etc.
  - Frequent terms are often ambiguous
  - They are used in many different senses in different contexts.
  - Combinations of frequent terms can also be ambiguous
- Any collection will be heavily biased towards certain topics
  - Large latent class imbalance
  - Few very big topics, many very small topics

## Neural-based word embeddings

- Main Methods:
  - Word2Vec [seer <u>DEMO Projector TF</u>]
  - GloVe
  - <u>FastText</u> (embeddings sub-word level)
- Addresses some main problems of traditional text representation:
  - Long tail: semantics come from the context regardless the word frequencies
  - Dense vectors instead of sparse vectors (suited for linear algebra ML methods).
- But other issues still present:
  - Averaging word embeddings do not account for word ordering
  - An ambiguous word (e.g. bank) is only associated to one vector
  - Words out of vocabulary have no vector (OOV)

### Deep Learning architectures

#### Convolutional Networks (CNN 2D)

# Recurrent Networks LSTM/GRU bi-LSTM Seq2Seq



Basic Principle: encoder-decoder

- Encode the input (embeddings)
- Decode the output (task)

The encoder can be shared in many different tasks:

- **Transfer Learning** (pre-trained models)
- Fine-tuning (re-training the model)

**Input**: text is tokenized, where tokens are numbers

Since texts have non-fixed length,

- there is a maximum length
- "padding" is used for completing sequences

#### **Transformers**

2017: All you need is attention

#### **KEY POINTS:**

- Divide words into tokens (tokenizer)
- Self-supervised + Fine tuning
- Token position embeddings
- Self-attention layers
- Predict with all  $\rightarrow$  encoder
- Predict with mask → decoder

VISUALISATION OF SELF-ATTN



#### **Encoders and Decoders**



#### **Tokenizers**

- They address the OOV problem by split words into known tokens
- Simplest tokenizers just detect frequent prefixes and suffixes
- Byte Pair Encoding (BPE) is intended to learn a tokenizer according to the frequency of consecutive letters in a corpus

More details of tokenizers can be found at <u>Huggingface</u>

### BERT: an encoder transformer for multiple tasks



BERT only uses the *encoder* part of a transformer. Two self-supervised tasks are used for training BERT with large collections of texts:

- Mask filling (MASK)
- Next sequence prediction (CLS, SEP)



## Self-attention mechanism (BERT base)



#### MASK task



- Each token has an initial pre-defined *embedding* (GloVe)
- ~15% of the tokens are masked at each train sentence
- Loss: cross entropy

The result is a conditional distribution of tokens at each mask:

$$p(W_{i} | ..., W_{i-1}, W_{i+1}, ...)$$

https://www.youtube.com/watch?v=eMlx5fFNoYc

https://www.youtube.com/watch?v=9-Jl0dxWQs8

# Pre-train & fine tune models

**Applying Transformers** 

Pre-trained models (Foundation models) can be used to

- generate word/sentence embeddings
- fine-tune to other languages, tasks, etc.

# Transfer Learning - Fine Tuning



## NLP "Downstream" Tasks

| Segmentation          | Named Entity<br>Recognition (NER)      | Textual Entailment Semantic Text Similarity | Coreference<br>Resolution |
|-----------------------|----------------------------------------|---------------------------------------------|---------------------------|
| Part Of Speech<br>PoS | Text Classification Sentiment Analysis | Question Answering<br>(QA)                  | Summarization             |
| Parsing               | Machine Translation                    | Natural Language<br>Understanding (NLU)     | Discourse<br>Analysis     |
| Speech to text        | Word Sense<br>Disambiguation           | Natural Language<br>Generation (NLG)        | CHATBOTS                  |
| SYNTAX                | SEMANTIC-RELATED TASKS                 |                                             | DISCOURSE                 |

## BERT: change the head and re-train the model



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(c) Question Answering Tasks: SQuAD v1.1



(b) Single Sentence Classification Tasks: SST-2, CoLA



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

## Encoders: text to vectors (embeddings)

- The text is compressed into a dense vector of size 768 real numbers.
- Related words are reinforced by the self-attention mechanism.
- Distance of two encoded texts are somehow related to their the semantic similarity.
- APIs like <u>Cohere</u> provide multilingual vectors as a service.
- Visual Transformers (ViT) allow us to vectorize images/texts (<u>SBERT</u>)



The cat is jumping to the table ...

## NLP and Python (libraries)



#### **HOW TO WORK**

#### **Hubs vs. APIs**

**Hubs** provide models to be downloaded in our local programming environment

- TF Hub
- Huggingface transformers
- SPARK NLP

SAS/APIs provides embeddings and functionalities by means an API REST

- Huggingface API
- Cohere
- Open Al



#### Which model?

#### We must take into account:

- Input max. size (BERT ~ 512 tkns, LongFormer ~ 4000 tkns)
- Model size (base vs. large)
- Language (English, monolingual, multilingual models)
- Task to be performed: text classification, NER, sentiment analysis, summarization, etc.
- Reduced model versions: distilled (encoders) and quantized (LLMs)

Example: longformer-base-4096-Spanish (huggingface)

RoBERTa Spanish (BERTIN) → reshaped as LongFormer

#### Transformer models

#### **Trainer**



# Pre-train, Prompt & Predict

A new paradigm for NLP



Survey:

https://arxiv.org/abs/2107.13586

## What is wrong with fine-tuning?

- A model for each different *downstream* task
  - In complex applications we need to handle a lot of LLMs, one for each task
  - New tasks require new labelled datasets and fine-tune another LLM
  - Inspect for example Huggingface Hub, where the number of models increase exponentially
- Catastrophic forgetting
  - Fine-tuning a model with new samples can lead the model to forget knowledge of the original dataset
  - To avoid it, it is necessary to include samples of the original model to maintain that knowledge in the LLM
- Dynamic decision making will require few- or zero-shot approaches
  - Use no labelled data to make the inference of the intended labels with the LLM
  - Use few examples to guide the LLM to solve the inference problem

## **Prompts**

- A prompt is a chunk of text followed by a slot that must be filled with the desired inference.
- We assume two parts: an input (x) and the intended output (y)
- Both parts are expressed in natural language
- The output y will include the *slot* to be filled in
- Examples:
  - I missed the bus today. I felt so \_\_\_\_\_
  - English: I missed the bus today. French: \_\_\_\_\_
  - I love this movie. Overall, it was a \_\_\_\_ movie.

### Templates

- We must also define the permissible values in the slot (Z)
  - These values are verbalizations of our intended classes:
    - positive  $\in Y \rightarrow \{fantastic, great, ...\} \in Z$
    - negative  $\in Y \rightarrow \{poor, bad, ...\} \in Z$
- Templates allow to abstract the tasks:
  - o [X]. I felt so [Z]
  - o [X]. Overall, it was a [Z] movie.
  - [X1]. [X2] is a [Z] entity.
     (Mike went to Paris. Paris is a location entity)
- The goal is to find the most likely predicted  $z \in Z$  whose class  $y \in Y$  minimize the loss function.

### Some approaches and examples

#### Zero-shot learning at Huggingface:

- https://huggingface.co/tasks/zero-shot-classification
- GPT-3 completion task

#### Few-shot learning:

- PET, ADAPET (prompting approaches)
- SetFit: <a href="https://huggingface.co/blog/setfit">https://huggingface.co/blog/setfit</a> (without prompt)