1.3.1 Distance in Euclidean space

In 2d: dist
$$((x_1,y_1), (x_2,y_2)) = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$

In 3d: dist
$$((x_1, y_1, z_1), (x_2, y_2, z_2))$$

= $\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$

Non-Euclidean Geometry

sum of angles: 3th in this course only Euclidean space.

1.3.2 Vectors in 2 and 3 dimensions

Addition of vectors b= <b, b=>

Multiplication of vector
$$\vec{a} = \langle a_1, a_2 \rangle$$
 by a scalar (creal)
Define $\vec{a} = \langle (a_1, ca_2) \rangle$

Length of
$$\vec{a} = \langle a_1, a_2 \rangle$$
 (norm, magnitude)
 $|\vec{a}| = \sqrt{a_1^2 + a_2^2}$
Fact $|\vec{a}| = |\vec{a}|$

Vectors in 3d
$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$
operations similar

Dot Product

How to multiply two vectors
$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$
 and $\vec{b} = \langle b_1, b_2, b_3 \rangle$?

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$$

geometric interpretation: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

Dot product is commutative and distributive over addition

(1) 2.12=13.2

* Not associative

Pythagorean Theorem

If ZIB, then $|Z+B|^2 = |Z|^2 + |B|^2$

* Given 2. 2= |2|13| cos 8

Ca = orthogonal projection of or onto 2

1.3.5. Determinants

$$\det \begin{pmatrix} a_1 a_2 \\ b_1 b_2 \end{pmatrix} = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

$$\overrightarrow{a} = \langle a_1, a_2 \rangle$$

$$\overrightarrow{b} = \langle b_1, b_2 \rangle$$

Geometric meaning
$$\vec{a} = \langle a_1, a_2 \rangle$$
 $\vec{b} = \langle b_1, b_2 \rangle$

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{pmatrix} f \\ - \end{pmatrix}$$

 $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} + \\ + \end{vmatrix}$ Area (Parelle logram)

The when \overrightarrow{a} points to the right of b. - when a points to the left of b.

Geometric Interpretation

$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$
 $\vec{b} = \langle b_1, b_2, b_3 \rangle$
 $\vec{c} = \langle c_1, c_2, c_3 \rangle$

det = + Volume (Parallelopmed)