Tutoría 03

Problema 1: Dos cargas conectadas en paralelo toman un total de 2,4~kW con un $f_p=0,8$ en retraso de una línea a $120~V_{rms}$ y 60~Hz. Una de las dos cargas absorbe 1,5~kW con un $f_p=0,707$ atrasado. Calcule:

- a. El f_p de la segunda carga.
- b. El elemento requerido para conectar al circuito en paralelo que permita una corrección del f_p para hacerlo 0.9 en retraso.

Problema 2: Encuentre la potencia promedio absorbida por el resistor de 2 Ω en el circuito de la siguiente figura:

Problema 3: Dado el sistema de potencia en la siguiente figura, determine la potencia compleja total y el f_p .

Problema 4: Halle el valor de la impedancia de carga \mathbf{Z}_L que absorberá la máxima potencia y determine el valor de dicha potencia.

Problema 5: Para el siguiente circuito considere las direcciones de las corrientes y polaridades designadas por cada elemento.

Considere que la tensión eléctrica de entrada es: $V_{in}=100e^{j\frac{21\pi}{2}}V_{rms}$, con una frecuencia de $60\,Hz$. Con base a lo anterior responda lo siguiente:

- a) Determine el valor de las corrientes I_0 , I_1 e I_2 .
- b) Determine la potencia compleja que entrega la fuente de alimentación V_{in} .
- c) Compruebe de manera analítica que la suma de potencias (promedio y reactiva) de las cargas S_1 , S_2 y S_3 es igual a la potencia entregada (promedio y reactiva) por la fuente de alimentación V_{in} .

Problema 6: Para el siguiente circuito considere las direcciones de las corrientes y polaridades designadas por cada elemento.

Considere que la tensión eléctrica de entrada es: $V_{in} = 100e^{j10\pi} V_{rms}$, con una frecuencia de $60 \, Hz$. Con base a lo anterior responda lo siguiente:

- a) Esboce el triángulo de potencia de las tres cargas S_A , S_B y S_C .
- b) Determine la potencia compleja total, el ángulo del factor de potencia y el factor de potencia al combinar de manera paralela las cargas S_A , S_B y S_C .
- c) Según la potencia compleja total obtenida en el punto a), determine el valor de Q_C y la capacitancia C que debería conectarse en paralelo a las demás cargas para elevar el factor de potencia f_p a la unidad.
- d) ¿Qué implica llevar el factor de potencia a la unidad? Relacione su respuesta en función de la potencia promedio y reactiva.

Problema 7: Considere el siguiente circuito:

Considerando que:

- La tensión entre los nodos A y B es $V_{AB} = 400 \angle 0^o V_{rms}$.
- La frecuencia de la tensión entre los nodos A y B es $\omega = 100 \, rad/s$.
- La potencia total que consume el circuito entre los nodos A y B es de P = 9920 W.
- La potencia para el subcircuito entre los nodos X y Y es de P = 5120 W con un factor de potencia de 0.8 (atrasado).

- El subcircuito entre los nodos P y Q consume una potencia reactiva de $Q = -6400 \, VAR$.

Determine:

- a) Las corrientes que pasan por las resistencias R_1 y R_2 .
- b) El factor de potencia del circuito completo visto entre los nodos A y B.
- c) El valor de la resistencia R_1 y la impedancia Z_1 .
- d) El valor de la resistencia R_2 y la impedancia $\boldsymbol{Z_2}.$
- e) El capacitor o inductor necesario para corregir el factor de potencia del circuito completo A-B en $f_p = 1$. Además, indique mediante un diagrama el lugar donde debe ser conectado dicho elemento.