Convergence analysis of evolution strategies with covariance matrix adaptation

PhD students seminar

Armand Gissler

Wednesday 10th April, 2024

RandOpt team, Inria & École polytechnique Advisors: Anne Auger & Nikolaus Hansen

$$x \in \mathbb{R}^d \longrightarrow f: \mathbb{R}^d \to \mathbb{R} \longrightarrow f(x)$$

$$x \in \mathbb{R}^d \longrightarrow f: \mathbb{R}^d \to \mathbb{R} \longrightarrow f(x)$$

$$\nabla f(x) \qquad \partial f(x)$$

Find
$$x^* \in \operatorname{Arg\,min} f(x)$$
 (P)

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat: (Given $m_t \in \mathbb{R}^d$)

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat: (Given $m_t \in \mathbb{R}^d$)

1.
$$x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m_t}, I_d)$$

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat: (Given $m_t \in \mathbb{R}^d$)

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m_t}, I_d)$
- 2. Rank population:

$$f\left(x_{t+1}^{1:\,\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\,\lambda}\right)$$

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat: (Given $m_t \in \mathbb{R}^d$)

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m_t}, I_d)$
- 2. Rank population:

$$f\left(x_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

3. Update mean: $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$

 $\lambda = \text{population size}$

 $\mu = parent number$

Algorithm 2 ES with step-size adaptation

 $\overline{\mathbf{Goal:} \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})}$

Algorithm 2 ES with step-size adaptation

 $\overline{\mathbf{Goal:} \min_{x \in \mathbb{R}^d} f(x)}$

Repeat (Given $m_t \in \mathbb{R}^d$ and $\sigma_t > 0$)

Algorithm 2 ES with step-size adaptation

Goal: $\min_{x \in \mathbb{R}^d} \overline{f(x)}$

Repeat (Given
$$m_t \in \mathbb{R}^d$$
 and $\sigma_t > 0$)

1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 I_d)$

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat (Given $m_t \in \mathbb{R}^d$ and $\sigma_t > 0$)

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 I_d)$
- 2. sort $f(x_{t+1}^i)$:

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat (Given $m_t \in \mathbb{R}^d$ and $\sigma_t > 0$)

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m}_t, \sigma_t^2 I_d)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat (Given $m_t \in \mathbb{R}^d$ and $\sigma_t > 0$)

1.
$$\mathbf{x}_{t+1}^1, \dots, \mathbf{x}_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m}_t, \sigma_t^2 I_d)$$

2. sort
$$f(x_{t+1}^i)$$
:
 $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

 $\lambda = \text{population size}$

 $\mu = parent number$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat (Given $m_t \in \mathbb{R}^d$ and $\sigma_t > 0$)

1.
$$x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m}_t, \sigma_t^2 I_d)$$

2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

4.
$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (\|m_{t+1} - m_t\|)$$

$$\lambda = \text{population size}$$

$$\mu = \mathsf{parent} \ \mathsf{number}$$

Prove:

$$\frac{\|m_{t+1}-x^*\|}{\|m_t-x^*\|}\approx \frac{\sigma_{t+1}}{\sigma_t}\approx \rho\in(0,1).$$

Prove:

$$\log \frac{\|m_{t+1} - x^*\|}{\|m_t - x^*\|} \approx \log \frac{\sigma_{t+1}}{\sigma_t} \approx -CR.$$

 $P \colon \mathsf{X} \times \mathcal{B}(\mathsf{X}) \to \mathbb{R}$ is a **transition kernel** when

 $\forall x \in X, P(x, \cdot)$ is a probability measure.

 $P: X \times \mathcal{B}(X) \to \mathbb{R}$ is a **transition kernel** when

 $\forall x \in X$, $P(x, \cdot)$ is a probability measure.

A **Markov chain** with transition kernel P is a random sequence $\{\theta_t\}_{t\in\mathbb{N}}$ such that:

$$\mathbb{P}[\theta_{t+1} \in A \mid \theta_t = x] = P(x, A).$$

 $P \colon \mathsf{X} \times \mathcal{B}(\mathsf{X}) \to \mathbb{R}$ is a **transition kernel** when

 $\forall x \in X$, $P(x, \cdot)$ is a probability measure.

A **Markov chain** with transition kernel P is a random sequence $\{\theta_t\}_{t\in\mathbb{N}}$ such that:

$$\mathbb{P}[\theta_{t+1} \in \mathsf{A} \mid \theta_t = x] = P(x, \mathsf{A}).$$

• When $X = \{1, ..., n\}$ is finite, P can be represented as a $n \times n$ matrix:

$$\mathbb{P}[\theta_{t+1} = j \mid \theta_t = i] = P_{ij}$$

 $P \colon \mathsf{X} \times \mathcal{B}(\mathsf{X}) \to \mathbb{R}$ is a **transition kernel** when

 $\forall x \in X$, $P(x, \cdot)$ is a probability measure.

A **Markov chain** with transition kernel P is a random sequence $\{\theta_t\}_{t\in\mathbb{N}}$ such that:

$$\mathbb{P}[\theta_{t+1} \in A \mid \theta_t = x] = P(x, A).$$

• When $X = \{1, ..., n\}$ is finite, P can be represented as a $n \times n$ matrix:

$$\mathbb{P}[\theta_{t+1} = j \mid \theta_t = i] = P_{ij}$$

• We can define a *k*-steps transition kernel *P*^{*k*} which satisfies

$$\mathbb{P}[\theta_{t+k} \in \mathsf{A} \mid \theta_t = x] = P^k(x, \mathsf{A})$$

If X is finite:

If $X = \{1, ..., n\}$:

$$u_0 = (p_1, \dots, p_n) \quad \text{with } \sum_k p_k = 1$$

represents an initial state of the Markov chain $\{\theta_k\}_{k\in\mathbb{N}}$

If $X = \{1, ..., n\}$:

$$u_0 = (p_1, \dots, p_n) \quad \text{with } \sum_k p_k = 1$$

represents an initial state of the Markov chain $\{\theta_k\}_{k\in\mathbb{N}}$

After *k* steps:

$$\nu_k = \nu_0 \times P^k$$

If $X = \{1, ..., n\}$:

$$u_0 = (p_1, \dots, p_n) \quad \text{with } \sum_k p_k = 1$$

represents an initial state of the Markov chain $\{\theta_k\}_{k\in\mathbb{N}}$

After k steps:

$$\nu_k = \nu_0 \times P^k$$

lf

$$\exists \pi, \forall \nu_0, \quad \lim_{k \to \infty} \nu_k = \pi$$

then $\{\theta_k\}_{k\in\mathbb{N}}$ is ergodic.

If X is **infinite**:

ν_0 probability measure on X

represents an initial state of the Markov chain $\{\theta_k\}_{k\in\mathbb{N}}$

After *k* steps:

$$\nu_k = \int \nu_0(\mathrm{d}x) P^k(x,\cdot)$$

lf

$$\exists \pi, \forall \nu_0, \quad \lim_{k \to \infty} \nu_k = \pi$$

then $\{\theta_k\}_{k\in\mathbb{N}}$ is ergodic.

For an ergodic Markov chain $\Theta = \{\theta_k\}_{k \in \mathbb{N}}$:

$$\theta_k \underset{k \to \infty}{\longrightarrow} \pi$$

For an ergodic Markov chain $\Theta = \{\theta_k\}_{k \in \mathbb{N}}$:

$$\theta_k \xrightarrow[k \to \infty]{} \pi$$

where π is the invariant probability measure of Θ :

$$\theta_k \sim \pi \Rightarrow \theta_{k+1} \sim \pi$$

When $\Theta = \{\theta_k\}_{k \in \mathbb{N}}$ is ergodic:

$$\lim_{T\to+\infty}\frac{1}{T}\sum_{k=0}^{T-1}g(\theta_k)=\int g(x)\mathrm{d}\pi(x)$$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat (Given $m_t \in \mathbb{R}^d$ and $\sigma_t > 0$)

1.
$$x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m}_t, \sigma_t^2 I_d)$$

2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

4.
$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (\|m_{t+1} - m_t\|)$$

$$\lambda = \text{population size}$$

$$\mu = \mathsf{parent} \ \mathsf{number}$$

 $\{(m_k,\sigma_k)\}_{k\in\mathbb{N}}$ is a Markov chain valued in $\mathsf{X}=\mathbb{R}^d imes (0,+\infty)$

$$\lim_{k\to\infty} m_k = x^* \quad \text{and} \quad \lim_{k\to\infty} \sigma_k = 0$$

$$\lim_{k\to\infty} m_k = x^* \quad \text{and} \quad \lim_{k\to\infty} \sigma_k = 0$$

 $\delta_{(\mathsf{x}^*,0)}$ is **not** a probability distribution on $\mathsf{X}=\mathbb{R}^d imes (0,+\infty)!$

$$z_t = \frac{m_t - x^*}{\sigma_t}$$

$$z_t = \frac{m_t - x^*}{\sigma_t}$$

Question: $\{z_t\}_{t\in\mathbb{N}}$ is an ergodic Markov chain?

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat (Given $m_t \in \mathbb{R}^d$ and $\sigma_t > 0$)

1.
$$x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 I_d)$$

2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

4.
$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (\|m_{t+1} - m_t\|)$$

 $\lambda = \text{population size}$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat (Given $\mathbf{z}_t \in \mathbb{R}^d$):

- 1. $x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 I_d)$
- 2. sort $f(x_{t+1}^i)$: $f\left(x_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$

$$m_{t+1} = \Delta \text{verage}(\mathbf{v}^{1:\lambda}, \mathbf{v}^{\mu:\lambda})$$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

4.
$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (\|m_{t+1} - m_t\|)$$

 $\lambda = \text{population size}$

 $\mu = parent number$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat (Given $\mathbf{z}_t \in \mathbb{R}^d$):

- 1. $\mathbf{z}_{t+1}^1, \dots, \mathbf{z}_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{z}_t, I_d)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

4.
$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (\|m_{t+1} - m_t\|)$$

 $\lambda = \text{population size}$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat (Given $\mathbf{z_t} \in \mathbb{R}^d$):

- 1. $\mathbf{z}_{t+1}^1, \dots, \mathbf{z}_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{z}_t, I_d)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

$$\mu:\lambda$$

3.
$$z_{t+1} = \text{Average}(z_{t+1}^{1:\lambda}, \dots, z_{t+1}^{\mu:\lambda})$$

4.
$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (\|m_{t+1} - m_t\|)$$

 $\lambda = \text{population size}$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat (Given $\mathbf{z}_t \in \mathbb{R}^d$):

1.
$$\mathbf{z}_{t+1}^1, \dots, \mathbf{z}_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{z}_t, I_d)$$

2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

$$3. \ \ z_{t+1} = \frac{\mathsf{Average}(z_{t+1}^{1:\lambda},...,z_{t+1}^{\mu:\lambda})}{\mathsf{increasing function}(\|z_{t+1}-\underline{z_t}\|)}$$

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat (Given $\mathbf{z}_t \in \mathbb{R}^d$):

1.
$$z_{t+1}^1, \ldots, z_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{z_t}, I_d)$$

2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

$$3. \ \ \textit{z}_{t+1} = \frac{\textit{Average}(\textit{z}_{t+1}^{1:\lambda},...,\textit{z}_{t+1}^{\mu:\lambda})}{\textit{increasing function}(\lVert \textit{z}_{t+1} - \textit{z}_{t} \rVert)}$$

 $\lambda = \text{population size}$

$$f\left(x_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant f\left(x_{t+1}^{\lambda:\lambda}\right) \stackrel{?}{\Leftrightarrow} g\left(z_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant g\left(z_{t+1}^{\lambda:\lambda}\right)$$

$$f(m_t) \leqslant f(x_{t+1}) \Leftrightarrow f\left(\star + \frac{m_t - \star}{\sigma_t}\right) \leqslant f\left(\star + \frac{x_{t+1} - \star}{\sigma_t}\right)$$

$$f(m_t) \leqslant f(x_{t+1}) \Leftrightarrow f\left(\star + \frac{m_t - \star}{\sigma_t}\right) \leqslant f\left(\star + \frac{x_{t+1} - \star}{\sigma_t}\right)$$

Proposition

If $f \in \left\{ \boxed{0}, \boxed{0}, \boxed{0}, \boxed{0} \right\}$, then $\{z_t\}_{t \in \mathbb{N}}$ is a Markov chain.

$$z_t = \frac{m_t - x^*}{\sigma_t}$$

Question: $\{z_t\}_{t\in\mathbb{N}}$ is an ergodic Markov chain?

When X is finite:

Theorem

If $\{\theta_t\}_{t\in\mathbb{N}}$ is an irreducible, aperiodic Markov chain, then it is ergodic.

When X is finite:

Theorem

If $\{\theta_t\}_{t\in\mathbb{N}}$ is an irreducible, aperiodic Markov chain, then it is ergodic.

If $X = \{1, \dots, n\}$,

If
$$X = \{1, ..., n\}$$
,

 $\{\theta_t\}_{t\in\mathbb{N}}$ is irreducible if

$$\forall x, y \in X, \exists k > 0, P_{x,y}^k > 0.$$

If
$$\mathsf{X} = \{1, \dots, n\}$$
,
$$\{\theta_t\}_{t \in \mathbb{N}} \text{ is irreducible if }$$

$$\forall x, y \in X, \ \underline{\exists k > 0, \ P_{x,y}^k > 0}.$$

If X infinite,

 $\{\theta_t\}_{t\in\mathbb{N}}$ is irreducible if

$$\forall x \in X, A \subset X, \quad \text{volume}(A) > 0 \Rightarrow x \rightsquigarrow A$$

If X infinite,

 $\{\theta_t\}_{t\in\mathbb{N}}$ is irreducible if

$$\forall x \in X, A \subset X, \quad \text{volume}(A) > 0 \Rightarrow x \rightsquigarrow A$$

for some volume on X.

When X is finite:

Theorem

If $\{\theta_t\}_{t\in\mathbb{N}}$ is an irreducible, aperiodic Markov chain, then it is ergodic.

lf

$$\begin{cases} \theta_1 \in A_1 \Rightarrow \mathbb{P}[\theta_2 \in A_2] = 1 \\ \theta_2 \in A_2 \Rightarrow \mathbb{P}[\theta_3 \in A_3] = 1 \\ \vdots \\ \theta_T \in A_T \Rightarrow \mathbb{P}[\theta_{T+1} \in A_1] = 1 \end{cases}$$

Then period = T.

When period = 1, $\{\theta_t\}$ is **aperiodic**.

When X is finite:

Theorem

If $\{\theta_t\}_{t\in\mathbb{N}}$ is an irreducible, aperiodic Markov chain, then it is ergodic.

When X is infinite:

Theorem

If $\{\theta_t\}_{t\in\mathbb{N}}$ is an irreducible, aperiodic Markov chain, then it is ergodic if

$$\mathbb{E}[V(\theta_{t+1}) \mid \theta_t] \leqslant (1 - \varepsilon)V(\theta_t) \quad \text{ if } \theta_t \not \in \textit{small set}$$

for some $V: X \to [1, +\infty]$.

Proposition: for $\{z_t\}_{t\in\mathbb{N}}$, compact sets are small

When X is infinite:

Theorem

If $\{\theta_t\}_{t\in\mathbb{N}}$ is an irreducible, aperiodic Markov chain, then it is ergodic if

$$\mathbb{E}[V(\theta_{t+1}) \mid \theta_t] \leqslant (1-\varepsilon)V(\theta_t)$$
 if $\theta_t \notin compact$ set

for some $V: X \to [1, +\infty]$.

When X is infinite:

Theorem

If $\{\theta_t\}_{t\in\mathbb{N}}$ is an irreducible, aperiodic Markov chain, then it is ergodic if

$$\mathbb{E}[V(\theta_{t+1}) \mid \theta_t] \leqslant (1-\varepsilon)V(\theta_t) \quad \text{ if } \theta_t \not\in \textit{compact set}$$

for some $V: X \to [1, +\infty]$.

1. irreducibility and aperiodicity of $\{z_t\}_{t\in\mathbb{N}}$

- 1. irreducibility and aperiodicity of $\{z_t\}_{t\in\mathbb{N}}$
- 2. drift condition: $\exists \mathsf{K} \subset \mathbb{R}^d$ compact and $V \colon \mathbb{R}^d \to [1, +\infty]$

$$\mathbb{E}[V(z_1)] \leqslant (1-\varepsilon)V(z_0) \quad \forall z_0 \not\in \mathsf{K}$$

- 1. irreducibility and aperiodicity of $\{z_t\}_{t\in\mathbb{N}}$
- 2. drift condition: $\exists \mathsf{K} \subset \mathbb{R}^d$ compact and $V \colon \mathbb{R}^d \to [1, +\infty]$

$$\mathbb{E}[V(z_1)] \leqslant (1-\varepsilon)V(z_0) \quad \forall z_0 \not\in \mathsf{K}$$

3. deduce convergence from the ergodicity

- 1. irreducibility and aperiodicity of $\{z_t\}_{t\in\mathbb{N}}$
- 2. drift condition: $\exists \mathsf{K} \subset \mathbb{R}^d$ compact and $V \colon \mathbb{R}^d \to [1, +\infty]$

$$\mathbb{E}[V(z_1)] \leqslant (1-\varepsilon)V(z_0) \quad \forall z_0 \not\in \mathsf{K}$$

3. deduce convergence from the ergodicity

$$\theta_{k+1} = F(\theta_k, x_{k+1}) \tag{CM(F)}$$

where $x_{k+1} \sim p_{\theta_k}$

$$\theta_{k+1} = F(\theta_k, x_{k+1})$$

$$= F_{k+1}(\theta_0, x_1, \dots, x_{k+1})$$
(CM(F))

where $x_{k+1} \sim p_{\theta_k}$

 θ^* is **attracting** when

θ^* is **attracting** when

$$\exists x_1, x_2, \dots, \lim_{k \to \infty} F_k(\theta_0, x_{1...k}) = \theta^*$$

θ^* is $\mathbf{attracting}$ when

$$\exists x_1, x_2, \dots, \lim_{k \to \infty} F_k(\theta_0, x_{1..k}) = \theta^*$$

Theorem *If*

- $\exists \theta^*$ attracting
- $\exists x_1^*,\ldots,x_k^*$

such that $F_k(\theta^*, \cdot)$ is a **submersion** at $x_{1..k}^*$, then, $\{\theta_t\}_{t\in\mathbb{N}}$ is **irreducible** and **aperiodic**.

Algorithm 3 ES with step-size adaptation

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat (Given $\mathbf{z_t} \in \mathbb{R}^d$):

1.
$$\mathbf{z}_{t+1}^1, \dots, \mathbf{z}_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{z}_t, I_d)$$

2. sort $f(z_{t+1}^i)$:

$$f\left(z_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(z_{t+1}^{\lambda:\lambda}\right)$$

$$3. \ \ z_{t+1} = \frac{\mathsf{Average}(z_{t+1}^{1:\lambda},...,z_{t+1}^{\mu:\lambda})}{\mathsf{increasing function}(\|z_{t+1}-\underline{z_t}\|)}$$

 $\lambda = \text{population size}$

 $\mu = \mathsf{parent} \ \mathsf{number}$

$$z_{k+1} = F(z_k, z_{k+1}^{1:\lambda}, \dots, z_{k+1}^{\lambda:\lambda})$$

$$z_{k+1} = F(z_k, z_{k+1}^{1:\lambda}, \dots, z_{k+1}^{\lambda:\lambda})$$

Proposition

0 is attracting

Proof.

Take $z_k^{i:\lambda} = 0$. Then

$$z_{k+1} = \frac{\mathsf{Average}(0, \dots, 0)}{\mathsf{normalization}} = 0$$

$$z_{k+1} = F(z_k, z_{k+1}^{1:\lambda}, \dots, z_{k+1}^{\lambda:\lambda})$$

Proposition

0 is attracting, and $F(0, \cdot)$ is submersive at 0.

Proof.

$$F(0, h^1, \ldots, h^{\lambda}) = 0 + \mathsf{Average}(h^1, \ldots, h^{\lambda}) + o(h^1, \ldots, h^{\lambda})$$

Corollary

- 1. irreducibility and aperiodicity of $\{z_t\}_{t\in\mathbb{N}}$
- 2. drift condition: $\exists \mathsf{K} \subset \mathbb{R}^d$ compact and $V : \mathbb{R}^d \to [1, +\infty]$

$$\mathbb{E}[V(z_1)] \leqslant (1-\varepsilon)V(z_0) \quad \forall z_0 \not\in \mathsf{K}$$

3. deduce convergence from the ergodicity

Proposition

If
$$f \in \left\{ \bigcirc, \bigcirc, \bigcirc\right\}$$
:

$$\mathbb{E}[\|z_{t+1}\| \mid z_t] \leqslant (1 - \varepsilon) \times \|z_t\| \quad \text{if } \|z_t\| \gg 1$$

Proposition

If
$$f \in \left\{ \bigcirc, \bigcirc, \bigcirc\right\}$$
:

$$\mathbb{E}[\|z_{t+1}\| \mid z_t] \leqslant (1-\varepsilon) \times \|z_t\| \quad \text{if } \|z_t\| \gg 1$$

Theorem

If
$$f \in \left\{ \bigcirc, \bigcirc, \bigcirc\right\}$$
: $\{z_t\}_{t \in \mathbb{N}}$ is ergodic.

Scheme of proof:

- 1. irreducibility and aperiodicity of $\{z_t\}_{t\in\mathbb{N}}$
- 2. drift condition: $\exists \mathsf{K} \subset \mathbb{R}^d$ compact and $V \colon \mathbb{R}^d \to [1, +\infty]$

$$\mathbb{E}[V(z_1)] \leqslant (1-\varepsilon)V(z_0) \quad \forall z_0 \not\in \mathsf{K}$$

3. deduce convergence from the ergodicity

If $f \in \{ \bigcirc, \bigcirc, \bigcirc \}$, ES converges linearly (or geometrically):

$$\lim_{t\to\infty}\frac{1}{t}\log\frac{\|m_t-x^*\|}{\|m_0-x^*\|}=\lim_{t\to\infty}\mathbb{E}\left[\log\frac{\|m_{t+1}-x^*\|}{\|m_t-x^*\|}\right]=-\mathsf{CR}.$$

Proof.

$$\frac{1}{T}\log\frac{\|m_T - x^*\|}{\|m_0 - x^*\|}$$

If
$$f \in \{ \bigcirc, \bigcirc, \bigcirc \}$$
, ES converges linearly (or geometrically):

$$\lim_{t \to \infty} \frac{1}{t} \log \frac{\|m_t - x^*\|}{\|m_0 - x^*\|} = \lim_{t \to \infty} \mathbb{E} \left[\log \frac{\|m_{t+1} - x^*\|}{\|m_t - x^*\|} \right] = -\mathsf{CR}.$$

Proof.

$$\frac{1}{T}\log\frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \frac{1}{T}\sum_{t=0}^{T-1}\log\|m_{t+1} - x^*\| - \log\|m_t - x^*\|$$

If
$$f \in \{ \bigcirc, \bigcirc, \bigcirc \}$$
, ES converges linearly (or geometrically):

$$\lim_{t\to\infty}\frac{1}{t}\log\frac{\|m_t-x^*\|}{\|m_0-x^*\|}=\lim_{t\to\infty}\mathbb{E}\left[\log\frac{\|m_{t+1}-x^*\|}{\|m_t-x^*\|}\right]=-\mathsf{CR}.$$

Proof.

$$\frac{1}{T}\log\frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \frac{1}{T}\sum_{t=0}^{T-1}\log\sigma_{t+1}\|z_{t+1}\| - \log\sigma_t\|z_t\|$$

If $f \in \{ \bigcirc, \bigcirc, \bigcirc \}$, ES converges linearly (or geometrically):

$$\lim_{t \to \infty} \frac{1}{t} \log \frac{\|m_t - x^*\|}{\|m_0 - x^*\|} = \lim_{t \to \infty} \mathbb{E} \left[\log \frac{\|m_{t+1} - x^*\|}{\|m_t - x^*\|} \right] = -\mathsf{CR}.$$

Proof.

$$\frac{1}{T}\log\frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \frac{1}{T}\sum_{t=0}^{T-1}\log\|z_{t+1}\| - \log\|z_t\| + \log\frac{\sigma_{t+1}}{\sigma_t}$$

If $f \in \{ \bigcirc, \bigcirc, \bigcirc \}$, ES converges linearly (or geometrically):

$$\lim_{t \to \infty} \frac{1}{t} \log \frac{\|m_t - x^*\|}{\|m_0 - x^*\|} = \lim_{t \to \infty} \mathbb{E} \left[\log \frac{\|m_{t+1} - x^*\|}{\|m_t - x^*\|} \right] = -\mathsf{CR}.$$

Proof.

$$\frac{1}{T}\log\frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \frac{1}{T}\sum_{t=0}^{T-1}\log\|z_{t+1}\| - \log\|z_t\| + \log \uparrow (\|z_{t+1} - z_t\|)$$

If $f \in \{ \bigcirc, \bigcirc, \bigcirc, \}$, ES converges linearly (or geometrically):

$$\lim_{t\to\infty}\frac{1}{t}\log\frac{\|m_t-x^*\|}{\|m_0-x^*\|}=\lim_{t\to\infty}\mathbb{E}\left[\log\frac{\|m_{t+1}-x^*\|}{\|m_t-x^*\|}\right]=-\mathsf{CR}.$$

Proof.

$$\lim_{T \to \infty} \frac{1}{T} \log \frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \mathbb{E}_{z_t \sim \pi} \left[\log \|z_{t+1}\| - \log \|z_t\| + \uparrow (\|z_{t+1} - z_t\|) \right]$$

If
$$f \in \{ \bigcirc, \bigcirc, \bigcirc \}$$
, ES converges linearly (or geometrically):

$$\lim_{t \to \infty} \frac{1}{t} \log \frac{\|m_t - x^*\|}{\|m_0 - x^*\|} = \lim_{t \to \infty} \mathbb{E} \left[\log \frac{\|m_{t+1} - x^*\|}{\|m_t - x^*\|} \right] = -\mathsf{CR}.$$

Proof.

$$\lim_{T\to\infty}\frac{1}{T}\log\frac{\|m_T-x^*\|}{\|m_0-x^*\|}=\mathbb{E}_{z_t\sim\pi}\left[\uparrow\left(\|z_{t+1}-z_t\|\right)\right]$$

If
$$f \in \{ \bigcirc, \bigcirc, \bigcirc \}$$
, ES converges linearly (or geometrically):

$$\lim_{t \to \infty} \frac{1}{t} \log \frac{\|m_t - x^*\|}{\|m_0 - x^*\|} = \lim_{t \to \infty} \mathbb{E} \left[\log \frac{\|m_{t+1} - x^*\|}{\|m_t - x^*\|} \right] = -\mathsf{CR}.$$

Proof.

$$\lim_{T \to \infty} \frac{1}{T} \log \frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \mathbb{E}_{z_t \sim \pi} \left[\uparrow \left(\|z_{t+1} - z_t\| \right) \right]$$

$$\mathsf{CR} = -\mathbb{E}_{\mathsf{z}_t \sim \pi} \uparrow (\|\mathsf{z}_{t+1} - \mathsf{z}_t\|)$$

$$x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$$

where C_t is the covariance matrix at iteration t

$$x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$$

where C_t is the covariance matrix at iteration t

$$\mathbf{x}_{t+1}^{1:\lambda}$$
 is the best point among $\{\mathbf{x}_{t+1}^1,\dots,\mathbf{x}_{t+1}^{\lambda}\}$

$$x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$$

where C_t is the covariance matrix at iteration t

$$\mathbf{x}_{t+1}^{1:\lambda}$$
 is the best point among $\{\mathbf{x}_{t+1}^1,\dots,\mathbf{x}_{t+1}^{\lambda}\}$

Idea: sample more in the direction $x_{t+1}^{1:\lambda}-m_t$ at iteration t+1

If v is a vector,

 $\overset{\leftrightarrow}{v}$ is a matrix with range collinear to v

If v is a vector,

 $\stackrel{\leftrightarrow}{v}$ is a matrix with range collinear to v:

$$\overset{\leftrightarrow}{v} = v \otimes v = v \times v^{\top}$$

If v is a vector,

 \overrightarrow{v} is a matrix with range collinear to v:

$$\overset{\leftrightarrow}{v} = v \otimes v = v \times v^{\top}$$

$$C_{t+1} = \text{Positive combination}\left(C_t, \overset{1:\lambda}{x_{t+1}^{1:\lambda} - m_t}\right)$$

favors more the sampling in the direction $x_{t+1}^{1:\lambda}-m_t$ than C_t

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

 $\overline{\mathbf{Goal:} \min_{x \in \mathbb{R}^d} f(x)}$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$

 $\overline{\textbf{Goal:}} \min_{x \in \mathbb{R}^d} f(x)$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$

1.
$$x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$$

 $\lambda = \text{population size}$

 $\overline{\mathbf{Goal:}} \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$:

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$

1.
$$x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$$

2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leqslant \cdots \leqslant f(x_{t+1}^{\lambda:\lambda})$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

 $\lambda = \text{population size}$

 $\mu = \mathsf{parent} \; \mathsf{number}$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat
$$(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$$

- 1. $x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$: $f\left(x_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$

$$\lambda = \text{population size}$$

$$\mu = \mathsf{parent} \ \mathsf{number}$$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$

1.
$$x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$$

2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

- 3. $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$
- 4. $\sigma_{t+1} = \sigma_t \times \text{increasing function} (\|m_{t+1} m_t\|)$
- 5. $C_{t+1} = \text{Positive combination}\left(C_t, \text{Average}\left[(x_{t+1}^{i:\lambda} m_t)\right]\right)$

 $\lambda = \text{population size}$

 $\mu = \mathsf{parent} \ \mathsf{number}$

$$\lim_{t\to\infty} m_t = x^*$$

$$\lim_{t\to\infty} m_t = x^*$$

$$\lim_{t\to\infty}\sigma_t=\lim_{t\to\infty}C_t=0$$

$$\lim_{t\to\infty} m_t = x^*$$

$$\lim_{t\to\infty}\sigma_t=\lim_{t\to\infty}C_t=0$$

and

$$\lim_{t o \infty} \mathbb{E}\left[rac{C_t}{\mathsf{normalization}}
ight] \propto \mathsf{Hessian}(f)^{-1}$$

$$\lim_{t\to\infty} m_t = x^*$$

$$\lim_{t\to\infty}\sigma_t=\lim_{t\to\infty}C_t=0$$

and

$$\lim_{t \to \infty} \mathbb{E}\left[\frac{C_t}{\mathsf{normalization}} \right] \propto \mathsf{Hessian}(f)^{-1}$$

For the proof: we rely (again) on Markov chains

$$z_t = \frac{m_t - x^*}{\sigma_t \sqrt{\lambda_{\min}(C_t)}}$$

$$z_{t} = \frac{m_{t} - x^{*}}{\sigma_{t} \sqrt{\lambda_{\min}(C_{t})}}$$
$$\Sigma_{t} = \frac{C_{t}}{\lambda_{\min}(C_{t})}$$

$$z_{t} = \frac{m_{t} - x^{*}}{\sigma_{t} \sqrt{\lambda_{\min}(C_{t})}}$$
$$\Sigma_{t} = \frac{C_{t}}{\lambda_{\min}(C_{t})}$$

Proposition

If
$$f \in \left\{ \bigcirc, \right[$$

If $f\in \left\{ \textcircled{0}, \textcircled{0}, \textcircled{0}, \textcircled{0} \right\}$, then $\{(z_t,\Sigma_t)\}_{t\in\mathbb{N}}$ is a Markov chain.

Scheme of proof:

- 1. irreducibility and aperiodicity of $\{(z_t, \Sigma_t)\}_{t \in \mathbb{N}}$
- 2. drift condition: $\exists \mathsf{K} \subset \mathbb{R}^d \times \lambda_{\min}^{-1}(\{1\})$ compact and $V \colon \mathbb{R}^d \times \lambda_{\min}^{-1}(\{1\}) \to [1, +\infty]$

$$\mathbb{E}[\mathit{V}(\mathit{z}_1, \Sigma_1)] \leqslant (1-\varepsilon) \mathit{V}(\mathit{z}_0, \Sigma_0) \quad \forall (\mathit{z}_0, \Sigma_0) \not \in \mathsf{K}$$

3. deduce convergence from the ergodicity

Scheme of proof:

- 1. irreducibility and aperiodicity of $\{(z_t, \Sigma_t)\}_{t \in \mathbb{N}}$
- 2. drift condition: $\exists \mathsf{K} \subset \mathbb{R}^d \times \lambda_{\min}^{-1}(\{1\})$ compact and $V \colon \mathbb{R}^d \times \lambda_{\min}^{-1}(\{1\}) \to [1, +\infty]$

$$\mathbb{E}[V(z_1, \Sigma_1)] \leqslant (1 - \varepsilon)V(z_0, \Sigma_0) \quad \forall (z_0, \Sigma_0) \not \in \mathsf{K}$$

3. deduce convergence from the ergodicity

θ^* is **attracting** when

$$\exists x_1, x_2, \dots, \lim_{k \to \infty} F_k(\theta_0, x_{1..k}) = \theta^*$$

Theorem If

- $\exists \theta^*$ attracting
- $\exists x_1^*,\ldots,x_k^*$

such that $F_k(\theta^*, \cdot)$ is a **submersion** at $x_{1..k}^*$, then, $\{\theta_t\}_{t\in\mathbb{N}}$ is **irreducible** and **aperiodic**.

$$(z_{k+1}, \Sigma_{k+1}) = F(z_k, \Sigma_k, z_{k+1}^{1:\lambda}, \dots, z_{k+1}^{\lambda:\lambda})$$

$$(z_{k+1}, \Sigma_{k+1}) = F(z_k, \Sigma_k, z_{k+1}^{1:\lambda}, \dots, z_{k+1}^{\lambda:\lambda})$$

Proposition $(0, I_d)$ is attracting

$$(z_{k+1}, \Sigma_{k+1}) = F(z_k, \Sigma_k, z_{k+1}^{1:\lambda}, \dots, z_{k+1}^{\lambda:\lambda})$$

Proposition

 $(0,\dot{I_d})$ is attracting, and $F_k(0,I_d,\cdot)$ is submersive somewhere.

$$(z_{k+1}, \Sigma_{k+1}) = F(z_k, \Sigma_k, z_{k+1}^{1:\lambda}, \dots, z_{k+1}^{\lambda:\lambda})$$

Proposition

 $(0, \dot{I_d})$ is attracting, and $F_k(0, I_d, \cdot)$ is submersive somewhere.

Corollary

If $f\in \{0, 0, \infty, \infty, \infty\}$, $\{z_t, \Sigma_t\}_{t\in \mathbb{N}}$ is irreducible and aperiodic.

Scheme of proof:

- 1. irreducibility and aperiodicity of $\{(z_t, \Sigma_t)\}_{t \in \mathbb{N}}$
- 2. **drift condition:** $\exists \mathsf{K} \subset \mathbb{R}^d \times \lambda_{\min}^{-1}(\{1\})$ **compact and** $V \colon \mathbb{R}^d \times \lambda_{\min}^{-1}(\{1\}) \to [1, +\infty]$ $\mathbb{E}[V(z_1, \Sigma_1)] \leqslant (1 \varepsilon)V(z_0, \Sigma_0) \quad \forall (z_0, \Sigma_0) \not\in \mathsf{K}$

3. deduce convergence from the ergodicity

$$V(z,\Sigma) = \mathsf{linear} \; \mathsf{combination}(\|z\|^2,\|\Sigma\|)$$

$$V(z, \Sigma) = \text{linear combination}(||z||^2, ||\Sigma||)$$

If $f = \bigcirc$, then:

$$\mathbb{E}[V(z_{t+1}, \Sigma_{t+1}) \mid z_t, \Sigma_t] \leqslant (1 - \varepsilon) \times V(z_t, \Sigma_t)$$

when
$$||z_t|| \gg 1$$
 or $||\Sigma_t|| \gg 1$

When $\|\Sigma_t\|\gg \|z_t\|^2$:

When $\lambda_{\max}(\Sigma_t) \gg ||z_t||^2$:

When $\lambda_{\max}(\Sigma_t) \gg ||z_t||^2$: we want

$$\mathbb{E}_{t} \left[\text{linear combination}(\|z_{t+1}\|^{2}, \|\Sigma_{t+1}\|) \right] \\ \leqslant (1 - \varepsilon) \times \text{linear combination}(\|z_{t}\|^{2}, \|\Sigma_{t}\|)$$

When $\lambda_{\max}(\Sigma_t) \gg ||z_t||^2$: we want

$$\mathbb{E}_{t}\left[\left\|\Sigma_{t+1}\right\|\right] \leqslant (1-\varepsilon) \times \left\|\Sigma_{t}\right\|$$

When $\lambda_{\max}(\Sigma_t) \gg ||z_t||^2$: we want

$$\mathbb{E}_t \left[\lambda_{\mathsf{max}}(\Sigma_{t+1}) \right] \leqslant (1 - \varepsilon) \times \lambda_{\mathsf{max}}(\Sigma_t)$$

$$\mathbb{E}\left[\lambda_{\mathsf{max}}(\Sigma_{t+1})\right] \leqslant (1-\varepsilon) \times \lambda_{\mathsf{max}}(\Sigma_t)$$

When $||z_t||^2 \gg ||\Sigma_t||$:

$$\begin{split} \mathbb{E}_t \left[\text{linear combination}(\|z_{t+1}\|^2, \|\Sigma_{t+1}\|) \right] \\ \leqslant \left(1 - \varepsilon \right) \times \text{linear combination}(\|z_t\|^2, \|\Sigma_t\|) \end{split}$$

$$\mathbb{E}_t \left[\| z_{t+1} \|^2 \right] \leqslant (1 - \varepsilon) \times \| z_t \|^2$$

$$\mathbb{E}_t \left[\| z_{t+1} \|^2 \right] \leqslant (1 - \varepsilon) \times \| z_t \|^2$$

$$z_t = \frac{m_t - x^*}{\sigma_t \sqrt{\lambda_{\min}(C_t)}}$$

$$\begin{split} \mathbb{E}_t \left[\| z_{t+1} \|^2 \right] & \leqslant (1 - \varepsilon) \times \| z_t \|^2 \\ z_t &= \frac{m_t - x^*}{\sigma_t \sqrt{\lambda_{\min}(C_t)}} \\ z_{t+1} &= \frac{\mathsf{Update\ mean}(z_t)}{\mathsf{normalization}} \end{split}$$

$$\begin{split} \mathbb{E}_t \left[\| z_{t+1} \|^2 \right] & \leqslant (1 - \varepsilon) \times \| z_t \|^2 \\ z_t &= \frac{m_t - x^*}{\sigma_t \sqrt{\lambda_{\min}(C_t)}} \\ z_{t+1} &= \frac{\mathsf{Update\ mean}(z_t)}{\mathsf{normalization}} \end{split}$$

$$\mathsf{normalization} = \frac{\sigma_{t+1}}{\sigma_t} \sqrt{\frac{\lambda_{\mathsf{min}}(\mathcal{C}_{t+1})}{\lambda_{\mathsf{min}}(\mathcal{C}_t)}}$$

$$\mathbb{E}_{t} \left[\| z_{t+1} \|^{2} \right] \leqslant (1 - \varepsilon) \times \| z_{t} \|^{2}$$

$$z_{t} = \frac{m_{t} - x^{*}}{\sigma_{t} \sqrt{\lambda_{\min}(C_{t})}}$$
Undate mean(z_t)

$$z_{t+1} = \frac{\mathsf{Update\ mean}(z_t)}{\mathsf{normalization}}$$

normalization =
$$\frac{\sigma_{t+1}}{\sigma_t} \sqrt{\frac{\lambda_{\min}(C_{t+1})}{\lambda_{\min}(C_t)}}$$

$$\sigma_{t+1} = \sigma_t \times \text{increasing function}(\|m_{t+1} - m_t\|)$$

$$rac{\sigma_{t+1}}{\sigma_t} = ext{increasing function} (\|z_{t+1} - z_t\|)$$

$$rac{\sigma_{t+1}}{\sigma_t} = ext{increasing function}(\|z_{t+1} - z_t\|)$$

$$\mathbb{E}[\|z_{t+1}-z_t\|] \geqslant constant.$$

$$\frac{\sigma_{t+1}}{\sigma_t} = \text{increasing function}(\|z_{t+1} - z_t\|)$$

$$\mathbb{E}[\|z_{t+1}-z_t\|] \geqslant constant.$$

Corollary

 \exists increasing function s.t.:

$$\mathbb{E}\left[\|z_{t+1}\|^2\right] \leqslant (1-\varepsilon) \times \|z_t\|^2$$

$$V(z, \Sigma) = \text{linear combination}(||z||^2, ||\Sigma||)$$

If $f = \bigcirc$, then:

$$\mathbb{E}[V(z_{t+1}, \Sigma_{t+1}) \mid z_t, \Sigma_t] \leqslant (1 - \varepsilon) \times V(z_t, \Sigma_t)$$

when
$$||z_t|| \gg 1$$
 or $||\Sigma_t|| \gg 1$

Scheme of proof:

- 1. irreducibility and aperiodicity of $\{(z_t, \Sigma_t)\}_{t \in \mathbb{N}}$
- 2. drift condition: $\exists \mathsf{K} \subset \mathbb{R}^d \times \lambda_{\min}^{-1}(\{1\})$ compact and $V \colon \mathbb{R}^d \times \lambda_{\min}^{-1}(\{1\}) \to [1, +\infty]$

$$\mathbb{E}[V(z_1, \Sigma_1)] \leqslant (1 - \varepsilon)V(z_0, \Sigma_0) \quad \forall (z_0, \Sigma_0) \not \in \mathsf{K}$$

3. deduce convergence from the ergodicity

Theorem

If $f = \bigcirc$, CMA-ES converges linearly (or geometrically).

Theorem

If $f = \bigcirc$, CMA-ES converges linearly (or geometrically).

Question: how to extend to $f = \bigcirc$?

Algorithm 1 Our first ES

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat: (Given $m_t \in \mathbb{R}^d$)

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m_t}, I_d)$
- 2. Rank population:

$$f\left(x_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

3. Update mean: $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$

 $\lambda = \text{population size}$

 $\mu = parent number$

Algorithm 1 Our first ES

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat: (Given
$$m_t \in \mathbb{R}^d$$
, $C_t \in \mathcal{S}^d_{++}$)

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m}_t, \mathbf{C}_t)$
- 2. Rank population:

$$f\left(x_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

- 3. Update mean: $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$
- 4. $C_{t+1} = C_t$

 $\lambda = \text{population size}$

 $\mu = \mathsf{parent} \ \mathsf{number}$

Definition

An algorithm $\Theta = \{\theta_t\}_{t \in \mathbb{N}}$ is affine-invariant if

(i)

(ii) From θ_0 , Θ can reach a trajectory which starts at $\theta_0' = \Psi(\theta_0)$.

Theorem *CMA-ES is affine-invariant.*

CMA-ES is affine-invariant.

Theorem

If
$$f \in \left\{ \bigcirc, \bigcirc \right\}$$
:

$$\lim_{t\to\infty} m_t = x^* \quad \text{geometrically}$$

$$f \in \left\{ \bigcirc, \bigcirc \right\}$$
:

$$\lim_{t \to +\infty} \mathbb{E}\left[\frac{C_t}{normalization} \right] \propto Hessian^{-1}(f)$$

$$f \in \left\{ \bigcirc, \bigcirc \right\}$$
:

$$\lim_{t \to +\infty} \mathbb{E}\left[\frac{C_t}{normalization}
ight] \propto \textit{Hessian}^{-1}(f)$$

When
$$f = \bigcirc$$
:

$$f \in \left\{ \bigcirc, \bigcirc \right\}$$
:

$$\lim_{t \to +\infty} \mathbb{E}\left[\frac{C_t}{normalization}
ight] \propto \textit{Hessian}^{-1}(f)$$

Proof.

When
$$f = \bigcirc$$
:

$$R \times \boxed{\bigcirc} = \boxed{\bigcirc}$$

$$f \in \left\{ \bigcirc, \bigcirc \right\}$$
:

$$\lim_{t \to +\infty} \mathbb{E}\left[\frac{C_t}{normalization}
ight] \propto \textit{Hessian}^{-1}(f)$$

Proof.

When
$$f = \bigcirc$$
:

$$R \times \boxed{\bigcirc} = \boxed{\bigcirc}$$

$$RC_tR^{\top}$$
 behaves like C_t

$$f \in \left\{ \bigcirc, \bigcirc \right\}$$
:

$$\lim_{t \to +\infty} \mathbb{E}\left[\frac{C_t}{normalization}\right] \propto Hessian^{-1}(f)$$

Proof.

When
$$f = \overline{\bigcirc}$$
:

$$R \times \bigcirc = \bigcirc$$

$$\lim_{t \to +\infty} \mathbb{E}\left[\frac{RC_tR^\top}{\mathsf{normalization}}\right] = \lim_{t \to +\infty} \mathbb{E}\left[\frac{C_t}{\mathsf{normalization}}\right]$$

$$f \in \left\{ \bigcirc, \bigcirc \right\}$$
:

$$\lim_{t \to +\infty} \mathbb{E}\left[\frac{C_t}{normalization} \right] \propto \textit{Hessian}^{-1}(f)$$

Proof.

When
$$f = \boxed{0}$$
:

$$R \times \bigcirc = \bigcirc$$

$$R \times \lim_{t \to +\infty} \mathbb{E}\left[\frac{C_t}{\text{normalization}}\right] = \lim_{t \to +\infty} \mathbb{E}\left[\frac{C_t}{\text{normalization}}\right] \times R$$

$$f \in \left\{ \bigcirc, \bigcirc \right\}$$
:

$$\lim_{t\to +\infty} \mathbb{E}\left[\frac{C_t}{\textit{normalization}}\right] \propto \textit{Hessian}^{-1}(f)$$

Proof.

When
$$f = \boxed{0}$$
:

$$R \times \bigcirc = \bigcirc$$

$$\lim_{t\to+\infty}\mathbb{E}\left[\frac{C_t}{\text{normalization}}\right]\propto I_d$$

$$f \in \left\{ \bigcirc, \bigcirc \right\}$$
:

$$\lim_{t \to +\infty} \mathbb{E}\left[rac{C_t}{normalization}
ight] \propto \textit{Hessian}^{-1}(f)$$

When
$$f = \bigcirc$$
:

$$\lim_{t\to+\infty} \mathbb{E}\left[\frac{C_t}{\text{normalization}}\right] \propto I_d$$

When
$$f = \mathbb{S}$$
:

$$f \in \left\{ \bigcirc, \bigcirc\right\}$$
:

$$\lim_{t \to +\infty} \mathbb{E}\left[rac{C_t}{normalization}
ight] \propto \textit{Hessian}^{-1}(f)$$

When
$$f = \bigcirc$$
:

$$\lim_{t\to+\infty} \mathbb{E}\left[\frac{C_t}{\text{normalization}}\right] \propto I_d$$

When
$$f = \mathbb{Q}$$
:

$$C_t$$
 behaves like Hessian^{-1/2} $C_t(\square)$ Hessian^{-1/2}

$$f \in \left\{ \bigcirc, \bigcirc\right\}$$
:

$$\lim_{t \to +\infty} \mathbb{E}\left[\frac{C_t}{normalization} \right] \propto \textit{Hessian}^{-1}(f)$$

When
$$f = \bigcirc$$
:

$$\lim_{t\to+\infty} \mathbb{E}\left[\frac{C_t}{\text{normalization}}\right] \propto I_d$$

When
$$f = \mathbb{Q}$$
:

$$\lim_{t\to +\infty} \mathbb{E}\left[\frac{C_t}{\mathsf{normalization}}\right] \propto \mathsf{Hessian}^{-1}(f)$$

$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (||m_{t+1} - m_t||)$$

$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (||m_{t+1} - m_t||)$$

Goal: remember previous iterations to update σ .

$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (\|m_{t+1} - m_t\|)$$

Goal: remember previous iterations to update σ .

$$\mathsf{path}_{t+1}^{\sigma} = \mathsf{linear} \; \mathsf{function} \left(\mathsf{path}_{t}^{\sigma}, m_{t+1} - m_{t} \right)$$

$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (\|m_{t+1} - m_t\|)$$

Goal: remember previous iterations to update σ .

$$\mathsf{path}_{t+1}^\sigma = \mathsf{linear} \; \mathsf{function} \, (\mathsf{path}_t^\sigma, m_{t+1} - m_t)$$

New update:

$$\sigma_{t+1} = \sigma_t \times \text{increasing function}(\|\mathsf{path}_{t+1}^{\sigma}\|)$$

$$\mathsf{path}_{t+1}^c = \mathsf{linear} \; \mathsf{function} \left(\mathsf{path}_t^c, m_{t+1} - m_t \right)$$

$$\mathsf{path}_{t+1}^c = \mathsf{linear} \; \mathsf{function} \left(\mathsf{path}_t^c, m_{t+1} - m_t \right)$$

$$C_{t+1} = \text{Linear combination}\left(C_t, \text{Average}[\overset{\longleftrightarrow}{x_{t+1}^{i:\lambda}} - m_t], \overset{\longleftrightarrow}{\mathsf{path}_{t+1}^c}\right)$$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m_t}, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$
- 3. $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$
- 4.

$$\sigma_{t+1} = \sigma_t \times \text{increasing function}(\|m_{t+1} - m_t\|)$$

5.

$$C_{t+1} = \text{Linear combination} \left(C_t, \text{Average} \left[\overleftarrow{(x_{t+1}^{i:\lambda} - m_t)} \right] \right)$$

$$\lambda = \text{population size}$$

 $\mu = \text{parent number}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m_t}, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leqslant \cdots \leqslant f(x_{t+1}^{\lambda:\lambda})$
- 3. $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$
- 4. $path_{t+1}^{\sigma} = Linear(path_{t}^{\sigma}, m_{t+1} m_{t})$ $\sigma_{t+1} = \sigma_{t} \times increasing function(||m_{t+1} - m_{t}||)$
- 5.

$$C_{t+1} = \text{Linear combination} \left(C_t, \text{Average} \left[\overleftarrow{(x_{t+1}^{i:\lambda} - m_t)} \right] \right)$$

$$\lambda = \text{population size}$$
 $\mu = \text{parent number}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m_t}, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leqslant \cdots \leqslant f(x_{t+1}^{\lambda:\lambda})$
- 3. $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$
- 4. $\operatorname{path}_{t+1}^{\sigma} = \operatorname{Linear}(\operatorname{path}_{t}^{\sigma}, m_{t+1} m_{t})$ $\sigma_{t+1} = \sigma_{t} \times \operatorname{increasing function}(\|\operatorname{path}_{t+1}^{\sigma}\|)$
- 5.

$$C_{t+1} = \text{Linear combination} \left(C_t, \text{Average} \left[\overleftarrow{(x_{t+1}^{i:\lambda} - m_t)} \right] \right)$$

$$\lambda = \text{population size}$$

 $\mu = \text{parent number}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m}_t, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leqslant \cdots \leqslant f(x_{t+1}^{\lambda:\lambda})$
- 3. $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$
- 4. $\operatorname{path}_{t+1}^{\sigma} = \operatorname{Linear}(\operatorname{path}_{t}^{\sigma}, m_{t+1} m_{t})$ $\sigma_{t+1} = \sigma_{t} \times \operatorname{increasing function}(\|\operatorname{path}_{t+1}^{\sigma}\|)$
- 5. $\mathsf{path}_{t+1}^c = \mathsf{Linear}(\mathsf{path}_t^c, m_{t+1} m_t)$ $C_{t+1} = \mathsf{Linear} \; \mathsf{combination} \left(\underbrace{C_t}, \mathsf{Average} \left[(x_{t+1}^{i:\lambda} m_t) \right] \right)$

$$\lambda = \text{population size}$$

 $\mu = \text{parent number}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m_t}, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$
- 3. $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$
- 4. $\operatorname{path}_{t+1}^{\sigma} = \operatorname{Linear}(\operatorname{path}_{t}^{\sigma}, m_{t+1} m_{t})$ $\sigma_{t+1} = \sigma_{t} \times \operatorname{increasing function}(\|\operatorname{path}_{t+1}^{\sigma}\|)$
- 5. $\mathsf{path}_{t+1}^c = \mathsf{Linear}(\mathsf{path}_t^c, m_{t+1} m_t)$ $C_{t+1} = \mathsf{Linear} \; \mathsf{combination} \left(\underbrace{C_t}, \mathsf{Average} \left[(\underbrace{x_{t+1}^{i:\lambda} m_t})^c \right], \underbrace{\mathsf{path}_{t+1}^c} \right)$

$$\lambda = \text{population size}$$

 $\mu = \text{parent number}$

$$z_t = \frac{m_t - x^*}{\sigma_t \sqrt{\lambda_{\min}(C_t)}}$$

$$z_{t} = \frac{m_{t} - x^{*}}{\sigma_{t} \sqrt{\lambda_{\min}(C_{t})}}$$
$$\Sigma_{t} = \frac{C_{t}}{\lambda_{\min}(C_{t})}$$

$$z_t = rac{m_t - x^*}{\sigma_t \sqrt{\lambda_{\min}(C_t)}}$$
 $\Sigma_t = rac{C_t}{\lambda_{\min}(C_t)}$

$$\text{normalized path}_t^{c,\sigma} = \frac{\mathsf{path}_t^{c,\sigma}}{\mathsf{normalization}}$$

$$z_t = rac{m_t - x^*}{\sigma_t \sqrt{\lambda_{\min}(C_t)}}$$
 $\Sigma_t = rac{C_t}{\lambda_{\min}(C_t)}$

normalized path_t<sup>c,
$$\sigma$$</sup> = $\frac{\text{path}_t^{c,\sigma}}{\text{normalization}}$

Proposition

If $f \in \left\{ \bigcirc, \bigcirc, \bigcirc, \bigcirc \right\}$, then $\{(z_t, \Sigma_t, n. \ path_t^c, n. \ path_t^\sigma)\}_{t \in \mathbb{N}}$ is a Markov chain.

When X is infinite:

Theorem

If $\{\theta_t\}_{t\in\mathbb{N}}$ is an irreducible, aperiodic Markov chain, then it is ergodic if

$$\mathbb{E}[V(\theta_{t+1}) \mid \theta_t] \leqslant (1-\varepsilon)V(\theta_t)$$
 if $\theta_t \notin compact$ set

for some $V: X \to [1, +\infty]$.

When X is infinite:

Theorem

If $\{\theta_t\}_{t\in\mathbb{N}}$ is an irreducible, aperiodic Markov chain, then it is ergodic if

$$\mathbb{E}[V(\theta_{t+n(\theta_t)}) \mid \theta_t] \leq (1-\varepsilon)^{n(\theta_t)} V(\theta_t) \quad \text{if } \theta_t \not\in \text{compact set}$$
 for some $V: X \to [1, +\infty]$.

 $V(z, \Sigma, \mathsf{n.} \; \mathsf{path}^c, \mathsf{n.} \; \mathsf{path}^\sigma) = \mathsf{linear} \; \mathsf{combination}(\|z\|^2, \|\Sigma\|, \|\mathsf{n.} \; \mathsf{paths}\|^2)$

$$\textit{V}\big(\textit{z}, \Sigma, \mathsf{n.} \; \mathsf{path}^\textit{c}, \mathsf{n.} \; \mathsf{path}^\sigma\big) = \mathsf{linear} \; \mathsf{combination}\big(\|\textit{z}\|^2, \|\Sigma\|, \|\mathsf{n.} \; \mathsf{paths}\|^2\big)$$

Proposition

If $f = \bigcirc$, then:

$$\mathbb{E}[V(\textit{iteration}_{t+k}) \mid \textit{iteration}_t] \leqslant (1 - \varepsilon) \times V(\textit{iteration}_t)$$

when $\|z_t\| \gg 1$ or $\|\Sigma_t\| \gg 1$ or $\|n$. path $\|z_t\| \gg 1$ or $\|n$. path $\|z_t\| \gg 1$.

If
$$f \in \left\{ \bigcirc, \bigcirc \right\}$$
:

$$\lim_{t\to\infty} m_t = x^* \quad \text{geometrically}$$

and

$$\lim_{t \to \infty} \mathbb{E}\left[\frac{C_t}{\textit{normalization}}\right] = H^{-1}$$

Thank you!