Конспект по пределам последовательностей и функций

1 Может ли подпоследовательность иметь предел, если сама последовательность предела не имеет?

Да, подпоследовательность может иметь предел, даже если сама последовательность предела не имеет. Например, рассмотрим последовательность $a_n = (-1)^n$. Эта последовательность не имеет предела, так как она колеблется между 1 и -1. Однако подпоследовательности, такие как $a_{2n} = 1$ и $a_{2n+1} = -1$, имеют пределы: $\lim_{n\to\infty} a_{2n} = 1$ и $\lim_{n\to\infty} a_{2n+1} = -1$.

2 Лемма Больцано — Вейерштрасса

Лемма Больцано — **Вейерштрасса:** Каждая ограниченная последовательность имеет сходящуюся подпоследовательность.

2.1 Доказательство

Пусть (a_n) — ограниченная последовательность. Это значит, что существует M>0, такое что $|a_n| \le M$ для всех n.

По теореме о полноте действительных чисел, множество значений (a_n) имеет верхнюю и нижнюю границы:

$$m = \inf_{n} a_n, \quad M = \sup_{n} a_n.$$

Теперь мы можем построить подпоследовательность. Выберем $\epsilon>0$ и рассмотрим интервал $(M-\epsilon,M)$. Поскольку (a_n) ограничена, существует бесконечно много индексов n, для которых $a_n\in (M-\epsilon,M)$. Таким образом, мы можем выбрать подпоследовательность (a_{n_k}) , которая будет сходиться к верхней границе M. Аналогично можно показать, что существует подпоследовательность, сходящаяся к нижней границе.

Таким образом, каждая ограниченная последовательность имеет сходящуюся подпоследовательность.

3 Предел функции и её график

Пусть функция f(x) определена на некотором интервале. Мы говорим, что $\lim_{x\to c} f(x) = L$, если для любого $\epsilon>0$ существует $\delta>0$, такое что:

$$0 < |x - c| < \delta \implies |f(x) - L| < \epsilon$$
.

Графически это означает, что при приближении x к c, значения функции f(x) приближаются к значению L.

limit_graph.png

График функции с пределом

4 Теорема об эквивалентности предела по Коши

Теорема: Последовательность (a_n) сходится к пределу L, если и только если для любого $\epsilon > 0$ существует натуральное число N, такое что для всех n > N выполняется:

$$|a_n - L| < \epsilon$$
.

Это условие называется условием Коши для сходимости последовательности.

5 Определение пределов функции по Гейне

**Определение: ** Функция f(x) имеет предел L при $x \to c$, если для любой последовательности (x_n) , сходящейся к c, значение функции $f(x_n)$ стремится к L. То есть:

$$\lim_{x \to c} f(x) = L \iff \forall (x_n) : x_n \to c \implies f(x_n) \to L.$$

Это определение позволяет использовать свойства пределов последовательностей для анализа пределов функций.

6 Частичные пределы: множество частичных пределов последовательности

Частичные пределы: Пусть (a_n) — последовательность. Частичными пределами этой последовательности называются все возможные пределы её сходящихся подпоследовательностей.

Обозначим множество частичных пределов как:

$$P(a_n) = \{L: L = \lim_{k \to \infty} a_{n_k}, n_k \text{ — возрастающая последовательность натуральных чисел}\}.$$

Если множество частичных пределов непусто и содержит более одного элемента, это говорит о том, что исходная последовательность не имеет предела.