ВТЭК 3. Исследование электрических цепей постоянного тока.

Сергей Слепышев 109 группа

Декабрь 2022

0.1 Введение

Цель работы

Освоение методики измерения силы тока и напряжения аналоговыми и цифровыми приборами в цепях постоянного тока. Оценка приборной погрешности измерительных устройств. Измерение вольтамперной характеристики нелинейных элементов в цепях постоянного тока.

0.2 Эксперимент и обработка

0.2.1 Упражнение 1. Определение удельного сопротивления константана

Сделал замеры ВАХ, записал данные в следующие таблицы (погрешности считал в соответствии с характеристиками устройств DT380B - ток и M9803R - напряжение, погрешность учитывал только приборную):

L = 0.5m, d = 0.15mm

L = 0.5m, d = 0.25mm

U	Sigma U	L	Sigma I	U		Sigma U	I	Sigma I
V	V	mA	mA	V		V	mA	mA
0,346	0,011	22,8	0,4	0	,135	0,005	23,6	0,4
0,67	0,02	44,3	0,6	0	,249	0,009	44,4	0,6
0,96	0,03	63,2	0,8	0	,402	0,014	71,9	0,9
1,35	0,04	88,9	1,1	0	,514	0,017	91,5	1,1

L = 0.5m, d = 0.40mm

L = 1.0m, d = 0.15mm

U		Sigma U	l e	Sigma I	U		Sigma U	I	Sigma I
V		V	mA	mA	٧		V	mA	mA
	0,050	0,002	23,4	0,4		0,065	0,002	22,0	0,4
	0,103	0,004	48,5	0,7		1,30	0,04	43,8	0,6
	0,153	0,005	72,0	0,9		1,97	0,06	64,1	0,8
	0,196	0,006	92,4	1,1		2,60	0,08	85,2	1,1

L = 1.5m, d = 0.15mm

U	Sigma U		Sigma I
V	V	mA	mA
0,86	0,03	19,2	0,4
1,63	0,05	36,3	0,6
2,43	0,07	54,2	0,7
3,67	0,11	82,0	1,0

Далее их я проанализировал ЛЗ, получил:

$$I = \frac{1}{R}U$$

$$y = Ax + B$$

$$A = \frac{1}{R} \Rightarrow R = \frac{1}{A} \quad \sigma_R = R * \frac{\sigma_A}{A}$$

Посмотрел графики (см. приложение Графики), что-то у меня поплыла прямая при L=0.5м,d=0.15мм. Возможная причина - **нагрев провода**, вследствие чего у него поменялось сопротивление (я тогда чот зазевал немного).

Обработаю это с помошью МНК и запишу коэф. А в следующую таблицу:

Значения из аппроскимации Y = Ax + B

A	A	A	A	A
mA/B	мА/В	мА/В	мА/В	мА/В
L=0.5 d=0.15	L=0.5 d=0.25	L=0.5 d=0.4	L=1.0 d=0.15	L=1.5 d=0.15
65,9	179	472	25,8	22,3
Sigma A	Sigma A	Sigma A	Sigma A	Sigma A
0,9	2	6	0,4	0,3

Рассчитанные значения сразу подставляю в таблицы 3.2 и 3.3. Смотрю две зависимости R(1/S) и R(L) и обрабатываю их с МНК моделью y = Ax + B:

$$S = \frac{\pi d^2}{4}$$

$$R = \rho L * \frac{1}{S} \Rightarrow \quad A = \rho L; \quad \rho = \frac{A}{L}; \quad \sigma_{\rho} = \frac{\sigma_A}{L};$$

$$R = \frac{\rho}{S} * L \Rightarrow \quad A = \frac{\rho}{S}; \quad \rho = A * S; \quad \sigma_{\rho} = \sigma_A * S;$$

Таблицы:

Таблица 3.2

d	R	Sigma R	S	1/S	р	Sigma p
mm	Ohm	Ohm	mm^2	1 / mm^2	Ohm * mm^2 / m	Ohm * mm^2 / m
0,15	15,2	0,2	0,018	56,6	0,535	0,008
0,25	5,60	0,08	0,049	20,4		
0,4	2,12	0,03	0,126	7,96		

Таблица 3.3

L	R	Sigma R	р	Sigma p
m	Ohm	Ohm	Ohm * mm^2 / m	Ohm * mm^2 / m
0,5	15,2	0,9	0,518	0,005
1	38,8	0,4		
1,5	44,7	0,3		

Мне очень не нравится тот факт, что я аппроксимировал по 3м точкам, во второй есть причем одна проблемная при L=0.5м, d=0.15мм, по двум точкам оценить погрешность не удается, поэтому я просто "втупую" посчитал еще значения в 1 и 3 точках таблицы 3.3, сравнение предоставил на графике :

$$ho_L = rac{RS}{L} \quad \sigma_{
ho_L} =
ho rac{\sigma_R}{R}$$
 $ho_{L1} = 0.527 \quad \sigma_{
ho_{L1}} = 0.003$ $ho_{L3} = 0.536 \quad \sigma_{
ho_{L3}} = 0.007$ см. след. стр.

График получил такой:

Табличные значения из интернета:

Удельные электрические сопротивления некоторых веществ,

$\mathbf{O}\mathbf{M}\cdot\mathbf{MM}^2$	(222	t=20 °C)
	(npa	1-20 C

Серебро	0,016	Никелин		Нихром	
Медь	0,017	[[(сплав)	0,40	((сплав)	1,1
Золото	0,024	Манганин	1	Фехраль	
А лю м иний	0,028	(сплав)	0,43	(сплав)	1,3
Вольфрам	0,055	Константан		Графит	13
Железо	0,10	(сплав)	0,50	Фарфор	1019
Свинец	0,21	Ртуть	0,96	Эбонит	1020

Вывод

Эксперимент удачный! Хоть я и получил отклонение по второй аппроксимации из-за кривой точки (см. графики), но оно все равно оказалось очень близким как к табличному, так и полученному в другой аппроксимации.

0.2.2 Упражнение 2. Проверка выполнения правил Кирхгофа

а) Проверка выполнения первого правила Кирхгофа

Проделал измерения при двух различных номиналах сопротивления R_1 , полученный и обработанный значения записал в следующие таблицы (соответствующие сопротивления подписаны в правом столбце):

Таблица 3.4-3.5

Таблица 3.4-3.5

	Mean	Sigma	Range	R		Mean	Sigma	Range	R
	mA	mA	mA	Ohm		mA	mA	mA	Ohm
I_1	48,6	0,7	200	330	I_1	4,5	0,1	20	6800
I_2	32,3	0,5	200	500	I_2	59,8	0,8	200	500
I_3	15,9	0,4	200	1000	I_3	29,2	0,5	200	1000
I_0	96,6	1,2	200		I_0	93,5	1,1	200	
I_SUM	96,8	0,9			I_SUM	93,5	0,9		

где

$$I_{\Sigma} = I_1 + I_2 + I_3$$
 $\sigma_{I_{\Sigma}} = \sqrt{\sigma_{I_1}^2 + \sigma_{I_2}^2 + \sigma_{I_3}^2}$

Сравню полученные I_0 и I_{Σ} :

Вывод Первое правило Кирхгофа выполняется в пределах погрешности!

б) Проверка второго правила Кирхгофа

Согласно методичке собрал схему, результаты измерений записал в таблицу:

	Mean	Sigma	Range	R	I_0	Sigma I_0	Range I_0
	V	V	V	Ohm	mA		
U_1	3,17	0,12	20	330	9,51	0,12	40
U_2	4,8	0,2	20	500			
U_3	9,7	0,3	20	1000			
U_0	17,8	0,6	20				
U_SUM	17,7	0,4					
U_IR	17,4	0,6					

Сразу в таблице обработал данные:

$$\begin{split} U_{\Sigma} &= U_1 + U_2 + U_3 \quad \sigma_{U_{\Sigma}} = \sqrt{\sigma_{U_1}^2 + \sigma_{U_2}^2 + \sigma_{U_3}^2} \\ U_{IR} &= I_0 * R_{\Sigma} \quad \sigma_{U_{IR}} = U_{IR} * \sqrt{\left(\frac{\sigma_{R_{\Sigma}}}{R_{\Sigma}}\right)^2 + \left(\frac{\sigma_{I_0}}{I_0}\right)^2} \end{split}$$

где

$$R_{\Sigma} = R_1 + R_2 + R_3$$
 $\sigma_{R_{\Sigma}} = \sqrt{\sigma_{R_1}^2 + \sigma_{R_2}^2 + \sigma_{R_3}^2}$

Сравню полученные значения U_0, U_{Σ} и U_{IR} по графику (все в вольтах, забыл подписать):

Вывод Второе правило Кирхгофа тоже выполняется в пределах погрешности!

0.2.3 Упражнение 3. Измерение вольтамперной характеристики нелинейного элемента

В этом упражнении я мерю ВАХ двух светодиодов, соединенных таким образом:

Рис. 3.12. Схема для измерения вольтамперной характеристики светодиода.

Данные снял и записал в следующие таблицы:

I(U) Red

L	Range	Sigma I	U	Range	Sigma U
micro A		mA	V		V
0	200mcA	2	0,0031	mV	0,0006
0	200mcA	2	1,47	V	0,05
2	200mcA	3	1,61	V	0,05
71	200mcA	4	1,76	V	0,05
244	2000mcA	7	1,80	V	0,06
545	2000mcA	20	1,83	V	0,06
1811	2000mcA	21	1,89	V	0,06
1910	20mA	39	1,89	V	0,06
3540	20mA	55	1,93	V	0,06

I(U) Yellow

L	Range	Sigma I	U	Range	Sigma U
micro A		mA	V		V
0	200mcA	2	0,0000	mV	0,0005
3	200mcA	2	1,60	V	0,05
42	200mcA	2	1,73	V	0,05
79	200mcA	3	1,76	V	0,05
225	2000mcA	4	1,82	V	0,06
373	2000mcA	6	1,84	V	0,06
513	2000mcA	7	1,86	V	0,06
808	2000mcA	10	1,88	V	0,06
1578	2000mcA	18	1,92	V	0,06
2020	20mA	40	1,96	V	0,06
3540	20mA	55	1,97	V	0,06

Графики зависимостей I(U) представлены в приложении.

Погрешности мерил в соответствии с приборными погрешностями из методички (представлены в приложении тоже).

Вывод

BAXи очень похожи на те, что были представлены в методичке! Можно наглядно выделить напряжение открытия. Повезло, что вольтметр был с достаточно большим сопротивлением, чтобы точно померить промежутки до 1,5B (см. граф.), с плохим вольтметром там была бы наклонная прямая, которую по-хорошему нужно было бы вычесть, т.е. спасибо составителям.

0.2.4 Графики упражнения 1:

BAXu (первая аппроксимация):

0.2.5 Параметры установки:

Блок питания НҮ-3003		
	Параметры	Значение
	Выходное напряжение, В	0 - 30
	Точность установки вы- ходного напряжения, В	0,1
	Выходной ток, А	0 - 3
	Точность установки вы- ходного тока, А	0,01

Регулировка силы тока и напряжения осуществляется вращением двух ручек (для каждого параметра): ГРУБО (COARSE) и ТОЧНО (FINE). Выходные значения силы тока и напряжения контролируются на 3-разрядных LED-индикаторах. Между каждой парой ручек находится по сигнальной лампочке. Если, например, горит сигнальная лампочка у ручек регулировки напряжения (VOLTAGE), то блок питания является источником напряжения, указанного на индикаторе. Если горит лампочка у ручек для силы тока (CURRENT), то блок питания является источником тока.

Приборные погрешности при измерении постоянного напряжения. X – измеренная величина, D – разрешение (единица последнего разряда).

мультиметр М9803R	
Диапазон	Точность, мВ
400 мВ	±(0.3% X+0,5)
4 B	$\pm (0.3\% X + 2)$
40 B	±(0.3% X+20)

мультиметр MS8040				
Диапазон	Разрешение D	Точность		
200 мВ	0,01 мВ	±(0.05% X + 6 D)		
2 B	0,1 мВ	±(0.05% X + 6 D)		
20 B	1мВ	±(0.05% X + 6 D)		

Приборные погрешности при измерении сопротивления.

мультиметр М9803R		
Диапазон	D, OM	Точность, мВ
400 Ом	0,1	±(0.5% X+5D)
4 кОм	1	±(0.5% X+3D)
40 кОм	10	±(0.5% X+3D)
400 кОм	100	±(0.5% X+3D)

Диапазон	D, O _M	Точность
200 Ом	0,1	±(0.1% X + 10D)
2 кОм	1	±(0.1% X + 10D)
20 кОм	10	±(0.1% X + 5D)
200 кОм	100	$\pm (0.1\% \text{ X} + 5\text{D})$

Цифровой мультиметр M830B* (используется для измерения силы тока)

Приборная погрешность при измерении постоянного тока: $\pm (1\%~X + 2D)$ X - измеренная величина, D – разрешение.

Плата с гнездами для установки элементов схем

Гнезда, соединенные на плате белыми линиями, внутри неё замкнуты проводниками накоротко.

Плата с пятью проволоками из константана

Проволоки имеют длину L=0.50 м и диаметры d=0.15 мм (3 шт.), 0.25 мм и 0.40 мм (по 1 шт.).

Набор элементов (резисторы, диоды, <u>перемычки</u>).

Номинал элемента указан на его верхней части.

Набор из трёх красных (*плюсовых*) и трёх синих (*минусовых*) проводов (на каждой установке).

