이항 분포

연속균등분포

		기호	$\mathcal{U}(a,b)$
		매개변수	$a,b:\infty < a < b < \infty$
매개변수	$n \geq 0$ 시행 횟수 (정수)	지지집합	$x \in [a,b]$
11.11.21	$0 \le p \le 1$ 발생 확률 (실수)	확률 밀도	$a \leq x \leq b$ 면 $\dfrac{1}{b-a}$, 아니면 0
지지집합	$k \in \{0, \dots, n\}$	누적 분포	$a \leq x \leq b$ 면 $\dfrac{x-a}{b-a}$, $x < a$ 면 0,
확률 질량	$\binom{n}{k} p^k (1-p)^{n-k}$		
	$(k)^{p-(1-p)}$		$x \geq b$ 면 1
누적 분포	$I_{1-p}(n-\lfloor k floor, 1+\lfloor k floor)$	기댓값	$rac{1}{2}(a+b)$
기댓값	np	중앙값	$\frac{1}{2}(a+b)$
중앙값	one of $\{\lfloor np \rfloor, \lceil np \rceil\}^{[1]}$	Alma	<u> </u>
최빈값	$\lfloor (n+1) p floor$	최빈값	$x \in [a,b]$ 모두
분산	np(1-p)	분산	$\frac{1}{12}(b-a)^2$

지수분포

매개변수 $\lambda > 0$: 빈도 $x \in [0, \infty)$ 학률 밀도 $\lambda e^{-\lambda x}$ 누적 분포 $1 - e^{-\lambda x}$ 기댓값 $\frac{1}{\lambda}$ 중앙값 $\frac{\ln 2}{\lambda}$ 최빈값 0 분산 $\frac{1}{\lambda^2}$

베르누이 분포

$$f_X(x) = p^x (1-p)^{1-x}, \ x = 0, 1$$

나음과 같이 될 것입니다. 성공할 확률 그 자체가 베르누

$$E(X) = 1 \cdot p + 0 \cdot (1 - p) = p$$
 $Var(X) = E(X - p)^{2}$
 $= (0 - p)^{2} \cdot (1 - p) + (1 - p)^{2} \cdot p$
 $= p(1 - p)$

푸아송 분포

매개변수	$\lambda > 0$
지지집합	0 이상의 정수
확률 질량	$rac{\lambda^k}{k!} \cdot e^{-\lambda}$
누적 분포	$e^{-\lambda}\sum_{i=0}^{\lfloor k floor} rac{\lambda^i}{i!} = rac{\Gamma(\lfloor k+1 floor,\lambda)}{\lfloor k floor!}$
	(이때 $\Gamma(x,y)$ 는 불완전 감마 함수, $\lfloor x floor$ 는 바닥 함수)
기댓값	λ
최빈값	$\lceil \lambda ceil - 1$
분산	λ

이산확률분포

매개변수	$a \in (\dots, -2, -1, 0, 1, 2, \dots)$ $b \in (\dots, -2, -1, 0, 1, 2, \dots)$ n = b - a + 1
지지집합	$k \in \{a,a+1,\dots,b-1,b\}$
확률 질량	$\frac{1}{n}$ for $a \le k \le b$
	0 otherwise
누적 분포	0 for $k < a$
	$rac{\lfloor k floor -a+1}{n}$ for $a \leq k \leq b$
	1 for $k > b$
기댓값	$\frac{a+b}{2}$
중앙값	$\frac{a+b}{2}$
최빈값	N/A
분산	$\frac{n^2-1}{12}$