EKT-816 Lecture 1

Probability Review (1)

Jesse Naidoo

University of Pretoria

• Discrete distribution:

- mass functions: f(x) = P(X = x).
- cumulative distribution functions: $F(x) = P(X \le x)$
- Examples: Bernoulli(p); binomial(n, p); Poisson(λ).
- continuous distributions:
 - density function $f_X(x)$ such that

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1.$$

- CDF $F_X(x)$ is increasing and such that $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to \infty} F_X(x) = 1$.
- $F'_{X}(x) = f_{X}(x)$, or

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

$$F(x_{\tau}) = \tau$$

- Discrete distribution:
 - mass functions: f(x) = P(X = x).
 - cumulative distribution functions: $F(x) = P(X \le x)$
 - Examples: Bernoulli(p); binomial(n, p); Poisson(λ).
- continuous distributions:
 - density function $f_X(x)$ such that

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1.$$

- CDF $F_X(x)$ is increasing and such that $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to \infty} F_X(x) = 1$.
- $F'_X(x) = f_X(x)$, or

$$F_X(x) = \int_{-\infty}^{x} f_X(t) dt$$

$$F(x_{\tau}) = \tau$$

- Discrete distribution:
 - mass functions: f(x) = P(X = x).
 - cumulative distribution functions: $F(x) = P(X \le x)$.
 - Examples: Bernoulli(p); binomial(n, p); Poisson(λ)
- continuous distributions:
 - density function $f_X(x)$ such that

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1.$$

- CDF $F_X(x)$ is increasing and such that $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to \infty} F_X(x) = 1$.
- $F'_X(x) = f_X(x)$, or

$$F_X(x) = \int_{-\infty}^{\infty} f_X(t) dt$$

$$F(x_{\tau}) = \tau$$

- Discrete distribution:
 - mass functions: f(x) = P(X = x).
 - cumulative distribution functions: $F(x) = P(X \le x)$.
 - Examples: Bernoulli(p); binomial(n, p); Poisson(λ).
- continuous distributions:
 - density function $f_X(x)$ such that

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1.$$

- CDF $F_X(x)$ is increasing and such that $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to \infty} F_X(x) = 1$.
- $F'_X(x) = f_X(x)$, or

$$F_X(x) = \int_{-\infty}^{\infty} f_X(t) dt$$

$$F(x_{\tau}) = \tau$$

- Discrete distribution:
 - mass functions: f(x) = P(X = x).
 - cumulative distribution functions: $F(x) = P(X \le x)$.
 - Examples: Bernoulli(p); binomial(n, p); Poisson(λ).
- continuous distributions:
 - density function $f_X(x)$ such that

$$\int_{-\infty}^{\infty} f_X(x) dx = 1.$$

- CDF $F_X(x)$ is increasing and such that $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to \infty} F_X(x) = 1$.
- $F'_X(x) = f_X(x)$, or

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

$$F(x_{\tau}) = \tau$$

- Discrete distribution:
 - mass functions: f(x) = P(X = x).
 - cumulative distribution functions: $F(x) = P(X \le x)$.
 - Examples: Bernoulli(p); binomial(n, p); Poisson(λ).
- continuous distributions:
 - density function $f_X(x)$ such that

$$\int_{-\infty}^{\infty} f_X(x) dx = 1.$$

- CDF $F_X(x)$ is increasing and such that $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to \infty} F_X(x) = 1$.
- $F'_X(x) = f_X(x)$, or

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

$$F(x_{\tau}) = \tau$$

- Discrete distribution:
 - mass functions: f(x) = P(X = x).
 - cumulative distribution functions: $F(x) = P(X \le x)$.
 - Examples: Bernoulli(p); binomial(n, p); Poisson(λ).
- continuous distributions:
 - density function $f_X(x)$ such that

$$\int_{-\infty}^{\infty} f_X(x) dx = 1.$$

- CDF $F_X(x)$ is increasing and such that $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to \infty} F_X(x) = 1$.
- $F'_X(x) = f_X(x)$, or

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

$$F(x_{\tau}) = \tau$$

- Discrete distribution:
 - mass functions: f(x) = P(X = x).
 - cumulative distribution functions: $F(x) = P(X \le x)$.
 - Examples: Bernoulli(p); binomial(n, p); Poisson(λ).
- continuous distributions:
 - density function $f_X(x)$ such that

$$\int_{-\infty}^{\infty} f_X(x) dx = 1.$$

- CDF $F_X(x)$ is increasing and such that $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to \infty} F_X(x) = 1$.
- $F'_X(x) = f_X(x)$, or

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

$$F(x_{\tau}) = \tau$$

- Discrete distribution:
 - mass functions: f(x) = P(X = x).
 - cumulative distribution functions: $F(x) = P(X \le x)$.
 - Examples: Bernoulli(p); binomial(n, p); Poisson(λ).
- continuous distributions:
 - density function $f_X(x)$ such that

$$\int_{-\infty}^{\infty} f_X(x) dx = 1.$$

- CDF $F_X(x)$ is increasing and such that $\lim_{x\to -\infty} F_X(x) = 0$, $\lim_{x\to \infty} F_X(x) = 1$.
- $F'_X(x) = f_X(x)$, or

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

$$F(x_{\tau}) = \tau$$

• the mean of a distribution is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• the variance of the distribution is

$$V[X] = E[(X - \mu)^2]$$

- note, these moments may not exist!
 - but, if $V[X] < \infty$, the mean will exist (why?)
 - also notice that $V[X] = E[X^2] E[X]^2$
 - third (centered) moment is called skewness
 - fourth (centered) moment is called kurtosis

• the mean of a distribution is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• the variance of the distribution is

$$V[X] = E[(X - \mu)^2]$$

- note, these moments may not exist!
 - but, if $V[X] < \infty$, the mean will exist (why?)
 - also notice that $V[X] = E[X^2] E[X]^2$
 - third (centered) moment is called skewness
 - fourth (centered) moment is called kurtosis

• the mean of a distribution is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• the variance of the distribution is

$$V[X] = E[(X - \mu)^2]$$

- note, these moments may not exist!
 - but, if $V[X] < \infty$, the mean will exist (why?)
 - also notice that $V[X] = E[X^2] E[X]^2$
 - third (centered) moment is called skewness
 - fourth (centered) moment is called kurtosis

• the mean of a distribution is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• the variance of the distribution is

$$V[X] = E[(X - \mu)^2]$$

- note, these moments may not exist!
 - but, if $V[X] < \infty$, the mean will exist (why?)
 - also notice that $V[X] = E[X^2] E[X]^2$
 - third (centered) moment is called skewness
 - fourth (centered) moment is called kurtosis

• the mean of a distribution is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• the variance of the distribution is

$$V[X] = E[(X - \mu)^2]$$

- note, these moments may not exist!
 - but, if $V[X] < \infty$, the mean will exist (why?)
 - also notice that $V[X] = E[X^2] E[X]^2$
 - third (centered) moment is called skewness
 - fourth (centered) moment is called kurtosis

• the mean of a distribution is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• the variance of the distribution is

$$V[X] = E[(X - \mu)^2]$$

- · note, these moments may not exist!
 - but, if $V[X] < \infty$, the mean will exist (why?)
 - also notice that $V[X] = E[X^2] E[X]^2$
 - third (centered) moment is called skewness
 - fourth (centered) moment is called kurtosis

• the mean of a distribution is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• the variance of the distribution is

$$V[X] = E[(X - \mu)^2]$$

- · note, these moments may not exist!
 - but, if $V[X] < \infty$, the mean will exist (why?)
 - also notice that $V[X] = E[X^2] E[X]^2$
 - third (centered) moment is called skewness
 - fourth (centered) moment is called kurtosis

- let $\alpha > 0$ be some constant
- density is

$$f_X(x) = \begin{cases} \alpha x^{-(\alpha+1)} & \text{if } x > 1\\ 0 & \text{else} \end{cases}$$

- what is the CDF, $F_X(x)$?
- what is the mean, E[X]? do we have to impose any conditions to ensure the mean exists?
- what is the variance, $V[X]^{\gamma}$

- let $\alpha > 0$ be some constant
- density is

$$f_X(x) = \begin{cases} \alpha x^{-(\alpha+1)} & \text{if } x > 1 \\ 0 & \text{else} \end{cases}$$

- what is the CDF, $F_X(x)$?
- what is the mean, E[X]? do we have to impose any conditions to ensure the mean exists?
- what is the variance, V[X]

- let $\alpha > 0$ be some constant
- density is

$$f_X(x) = \begin{cases} \alpha x^{-(\alpha+1)} & \text{if } x > 1 \\ 0 & \text{else} \end{cases}$$

- what is the CDF, $F_X(x)$?
- what is the mean, E[X]? do we have to impose any conditions to ensure the mean exists?
- what is the variance, V[X]

- let $\alpha > 0$ be some constant
- density is

$$f_X(x) = \begin{cases} \alpha x^{-(\alpha+1)} & \text{if } x > 1 \\ 0 & \text{else} \end{cases}$$

- what is the CDF, $F_X(x)$?
- what is the mean, E[X]? do we have to impose any conditions to ensure the mean exists?
- what is the variance, V[X]

- let $\alpha > 0$ be some constant
- density is

$$f_X(x) = \begin{cases} \alpha x^{-(\alpha+1)} & \text{if } x > 1 \\ 0 & \text{else} \end{cases}$$

- what is the CDF, $F_X(x)$?
- what is the mean, E[X]? do we have to impose any conditions to ensure the mean exists?
- what is the variance, V[X]?

- \bullet suppose we want to generate random numbers from some distribution with CDF F
 - we can compute F and F^{-1}
 - ullet we can generate uniformly distributed random numbers, $U\sim U(0,1)$
- then, you can generate $X \sim F$ as follows:

$$X = F^{-1}(U)$$

- proof: let's find the CDF of such Xs.
 - let x be an arbitrary number; we're going to show that $P(X \le x) = F(x)$
 - $P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$

- \bullet suppose we want to generate random numbers from some distribution with CDF F
 - we can compute F and F^{-1}
 - ullet we can generate uniformly distributed random numbers, $U\sim U(0,1)$
- then, you can generate $X \sim F$ as follows:

$$X = F^{-1}(U)$$

- proof: let's find the CDF of such Xs.
 - let x be an arbitrary number; we're going to show that $P(X \le x) = F(x)$
 - $P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$

- suppose we want to generate random numbers from some distribution with CDF F
 - we can compute F and F^{-1}
 - ullet we can generate uniformly distributed random numbers, $U\sim U(0,1)$
- then, you can generate $X \sim F$ as follows:

$$X = F^{-1}(U)$$

- proof: let's find the CDF of such Xs.
 - let x be an arbitrary number; we're going to show that $P(X \le x) = F(x)$
 - $P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$

- suppose we want to generate random numbers from some distribution with CDF F
 - we can compute F and F^{-1}
 - ullet we can generate uniformly distributed random numbers, $U\sim U(0,1)$
- then, you can generate $X \sim F$ as follows:

$$X = F^{-1}(U)$$

• proof: let's find the CDF of such Xs.

let x be an arbitrary number; we're going to show that P(X ≤ x) = F(x)
P(X ≤ x) = P(F⁻¹(U) ≤ x) = P(U ≤ F(x)) = F(x)

- \bullet suppose we want to generate random numbers from some distribution with CDF F
 - we can compute F and F^{-1}
 - ullet we can generate uniformly distributed random numbers, $U\sim U(0,1)$
- then, you can generate $X \sim F$ as follows:

$$X = F^{-1}(U)$$

- proof: let's find the CDF of such Xs.
 - let x be an arbitrary number; we're going to show that $P(X \le x) = F(x)$

•
$$P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$$

- ullet suppose we want to generate random numbers from some distribution with CDF F
 - we can compute F and F^{-1}
 - ullet we can generate uniformly distributed random numbers, $U\sim U(0,1)$
- then, you can generate $X \sim F$ as follows:

$$X = F^{-1}(U)$$

- proof: let's find the CDF of such Xs.
 - let x be an arbitrary number; we're going to show that $P(X \le x) = F(x)$

•
$$P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$$

- suppose we want to generate random numbers from some distribution with CDF F
 - we can compute F and F^{-1}
 - ullet we can generate uniformly distributed random numbers, $U\sim U(0,1)$
- then, you can generate $X \sim F$ as follows:

$$X = F^{-1}(U)$$

- proof: let's find the CDF of such Xs.
 - let x be an arbitrary number; we're going to show that $P(X \le x) = F(x)$
 - $P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$

- take a joint density $f_{XY}(x,y)$ that integrates to 1 over \mathbb{R}^2
 - \bullet the marginal density of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$

- analogous for marginal of Y
- the *conditional* density of Y given that X = x is

$$f_{Y|X}(y|X=x) = \frac{f_{XY}(x,y)}{f_X(x)}$$

- take a joint density $f_{XY}(x,y)$ that integrates to 1 over \mathbb{R}^2
 - \bullet the marginal density of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$

- analogous for marginal of Y
- the *conditional* density of Y given that X = x is

$$f_{Y|X}(y|X=x) = \frac{f_{XY}(x,y)}{f_X(x)}$$

- take a joint density $f_{XY}(x,y)$ that integrates to 1 over \mathbb{R}^2
 - \bullet the marginal density of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$

- ullet analogous for marginal of Y
- the *conditional* density of Y given that X = x is

$$f_{Y|X}(y|X=x) = \frac{f_{XY}(x,y)}{f_X(x)}$$

- take a joint density $f_{XY}(x,y)$ that integrates to 1 over \mathbb{R}^2
 - \bullet the marginal density of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$

- ullet analogous for marginal of Y
- the conditional density of Y given that X = x is

$$f_{Y|X}(y|X=x) = \frac{f_{XY}(x,y)}{f_X(x)}$$

Basic Rules

- expectations are linear: E[aX + Y] = aE[X] + E[Y]
- $V[aX] = a^2 V[X]$
- $V[X + Y] = V[X] + V[Y] + 2 \operatorname{cov}(X, Y)$

Basic Rules

- expectations are linear: E[aX + Y] = aE[X] + E[Y]
- $V[aX] = a^2V[X]$
- $V[X + Y] = V[X] + V[Y] + 2 \operatorname{cov}(X, Y)$

Basic Rules

- expectations are linear: E[aX + Y] = aE[X] + E[Y]
- $V[aX] = a^2V[X]$
- $V[X + Y] = V[X] + V[Y] + 2 \operatorname{cov}(X, Y)$

• consider the following distribution:

$$f_{XY}(x,y) = \begin{cases} 3/4 & \text{if } x \in (-1,1) \text{ and } y \in (0,1-x^2) \\ 0 & \text{otherwise} \end{cases}$$
 (1)

- show that cov(X, Y) = 0
 - yet, the two are not independent!
 - to see this, compute the conditional expectation E[Y|X]

• consider the following distribution:

$$f_{XY}(x,y) = \begin{cases} 3/4 & \text{if } x \in (-1,1) \text{ and } y \in (0,1-x^2) \\ 0 & \text{otherwise} \end{cases}$$
 (1)

- show that cov(X, Y) = 0
 - yet, the two are not independent!
 - to see this, compute the conditional expectation E[Y|X]

• consider the following distribution:

$$f_{XY}(x,y) = \begin{cases} 3/4 & \text{if } x \in (-1,1) \text{ and } y \in (0,1-x^2) \\ 0 & \text{otherwise} \end{cases}$$
 (1)

- show that cov(X, Y) = 0
 - yet, the two are not independent!
 - to see this, compute the conditional expectation E[Y|X]

consider the following distribution:

$$f_{XY}(x,y) = \begin{cases} 3/4 & \text{if } x \in (-1,1) \text{ and } y \in (0,1-x^2) \\ 0 & \text{otherwise} \end{cases}$$
 (1)

- show that cov(X, Y) = 0
 - yet, the two are not independent!
 - ullet to see this, compute the conditional expectation ${\it E}[Y|X]$

Law of Iterated Expectations and Variance Decomposition

• law of iterated expectations:

$$E[E[Y|X]] = E[Y]$$

• variance decomposition:

$$V[Y] = V[E[Y|X]] + E[V[Y|X]]$$

Law of Iterated Expectations and Variance Decomposition

• law of iterated expectations:

$$E[E[Y|X]] = E[Y]$$

• variance decomposition:

$$V[Y] = V[E[Y|X]] + E[V[Y|X]]$$

Example: Censored Normal Distribution

Classical Statistical Paradigm

Modes of Convergence

Law(s) of Large Numbers

Central Limit Theorems

Desirable Properties of Estimators

References

Table of Contents

Univariate Distributions

Joint Distributions

Classical (Frequentist) Estimation