Języki formalne i techniki translacji

Lista nr 1

Zadanie 1

Podać deterministyczne automaty skończone (DFA) akceptujące następujące języki nad alfabetem $\{0,1\}$:

- 1. zbiór wszystkich łańcuchów o zakończeniu 101;
- 2. zbiór wszystkich łańcuchów zawierających trzy kolejne jedynki;
- 3. zbiór wszystkich łańcuchów, w których każdy blok złożony z pięciu kolejnych symboli zawiera co najmniej dwa zera;
- 4. zbiór wszystkich łańcuchów zaczynających się od 1, które interpretowane jako binarna reprezentacja liczby całkowitej są wielokrotnością 7;
- 5. zbiór wszystkich łańcuchów, w których piąty symbol od końca jest zerem.

Zadanie 2

Podać niedeterministyczny automat skończony (NFA) akceptujący następujący język: zbiór wszystkich łańcuchów zer i jedynek, w których dziesiąty symbol od końca jest jest jedynką. Jaki jest związek między rozwiązaniem tego zadania a zadania 1.5?

Zadanie 3

Skonstruować automaty skończone równoważne z następującymi wyrażeniami regularnymi:

- 1. $10 + (0 + 11)0^*1$,
- 2. $01[((10)^* + 111)^* + 0]^*1$,
- 3. $((0+1)(0+1))^* + ((0+1)(0+1)(0+1))^*$.

Zadanie 4

Skonstruować wyrażenia regularne odpowiadające następującym automatom:

- 1. $(\{A, B, C\}, \{0, 1\}, \{(A, 0) \to A, (A, 1) \to B, (B, 0) \to C, (B, 1) \to B, (C, 0) \to A, (C, 1) \to B\}, A, \{A\})$,
- 2. $(\{A, B, C\}, \{0, 1\}, \{(A, 0) \to B, (A, 1) \to C, (B, 0) \to A, (B, 1) \to C, (C, 0) \to B, (C, 1) \to A\}, A, \{B, C\}),$

Zadanie 5

Udowodnić następujące tożsamości dla wyrażeń regularnych r, s i t, przy czym r=s oznacza identyczność języków opisywanych przez r i s.

- 1. (r+s)+t=r+(s+t)
- 2. (rs)t = r(st),

3.
$$r(s+t) = rs + rt$$
,

4.
$$(r+s)t = rt + st$$
,

5.
$$\emptyset^* = \varepsilon$$
,

6.
$$(r^*)^* = r^*$$
,

7.
$$(r^*s^*)^* = (r+s)^*$$
.

Zadanie 6

Udowodnić lub obalić następujące tożsamości dla wyrażeń regularnych r, s i t:

1.
$$(rs+r)^*r = r(sr+r)^*$$
,

2.
$$(r+s)^* = r^* + s^*$$
,

3.
$$s(rs+s)^*r = rr^*s(rr^*s)^*$$
.

Zadanie 7

Udowodnić, że DFA akceptujący język słów nad alfabetem $\{0,1\}$, w których piąty symbol od prawego końca jest jedynką, musi mieć co najmniej 32 stany.

Zadanie 8

Skonstruuj NFA rozpoznający język tych słów nad $\{0,1\}^*$ które jako liczba w systemie dwójkowym dzielą się przez 5, przy czym liczba jest wczytywana począwszy od najmniej znaczącego bitu.