

Web Traffic Prediction/ Forecasting

Analyse séquentielle de données Cédric Campos Carvalho

Table des matières

Données (1)

- Compétition Google (25'000\$)
- Prédiction du trafic web sur 140'000 articles Wikipédia
- Solution du gagnant:
 - Transformation ln(1+p).
 - Attention based RNN
 - Encoder/Decoder, cuDNN GRU.

Données	
Article	Nom de l'article
Domaine	Mandarin (zh), Français (fr), Anglais (en), Allemand (de), Russe (ru), Northern Territory of Australia (nt), Japonais (ja), Espagnol (es)
Agent	Spider, vrai traffic
Type d'accès	Deskop, all access, mobile
Données temporelles (journalière)	Nombre de visites (Juillet 2015 à Septembre 2017)

Données (2)

- Données sommées par domaine
- Saut pendant l'été 2016 (Jeux Olympiques ?)
- Série sélectionnée : EN

Statistiques (1)

Distribution

Non normale, alpha continuous

Outliers

Valeurs extrêmes (événement)

Saisonalité

Hebdomadaire

Corrélation

Corrélation partielle forte à (t-1)

Statistiques (2)

- Non stationnaire
 - Augmented Dickey-Fuller: p1 = 0.14
 - o Kwiatkowski-Phillips-Schmidt-Shin: p2 = 0.01

$$\frac{p_1 + p_2}{2} > \alpha$$

• Décomposition multiplicative

Premier modèle (1)

AR, MA, ARIMA (p=1,d=1,q=1)

- Pas de saisonnalité
- « One-step forecast » correcte
- « Dynamic forecast » peu de sens
- Erreur niveau des événements

SARIMA

- Saisonnalité prise en compte
- « One-step forecast » meilleure
- « Dynamic forecast » bonne
- Erreur niveau des événements

Vs

Premier modèle (2)

Brute force avec MSE:

$$\circ$$
 p = [1,5]

$$\circ$$
 d = [1,3]

$$\circ$$
 q = [1,5]

$$s = 7$$

• GARCH(1,1) sur résidu

Premier modèle (3)

- Fenêtre interactive (matplotlib + PyQt5)
- Changement du nombre de jours à prédire
- Zone de sûreté
- One-step vs Dynamic

Wavenet (1)

- Développé pour les voix synthétiques par Google Deepmind
- Utilise des réseaux de convolution
- Causal Convolution (keras: padding='causal')
- Dilated Causal Convolution (keras dilation_rate=value)

Standard Convolution

Wavenet (2)

- k Layers: Une couche Wavenet par dilation rate
 - Extrait l'information sur des périodes différentes
 - Rates : Suivent une courbe exponentielle
- Concept: Extraire des informations via les CNN
- Résultats supérieurs à la seconde position
- Beaucoup plus rapide à entraîner
 - Moins de paramètres
 - Moins d'epochs pour converger

Second modèle (1)

- Données normalisées (MinMax)
- Input des données de 365 jours (≈ 1 année)
- 60 jours pour les données de test (≈ 2 mois)
- Suivi par un simple MLP (3 layers)
- Entraînement avec validation_split=0.1

Second modèle (2)

- Données plus régulières : domaine espagnol
- Très rapide à converger (<20 epochs, <1 min 30 sec)
- Dynamic forecasting

Second modèle (3)

- Input trop large, données temporelles non suffisantes.
- Input des données de 30 jours (≈ 1 mois)
- Test sur d'autres domaines (entraînement: EN/ES, test: DE)

Conclusion

SARIMA

Technique

- Brute force sur (p,d,q)
- Saisonnalité hebdomadaire
- GARCH sur résidu

Résultats

- Saisonnalité extraite
- Résultat GARCH moyen
- Plot interactif

Deep Learning

Technique

- CNN causal
- Wavenet
- Simple MLP

Résultats

- Entraîné en peu d'epochs et rapide
- Saisonnalité extraite avec 1 mois

Améliorations

- Encoder les données en logarithme
- Entraîner sur plusieurs données temporelles

Sources

01 Wavenet

https://bair.berkeley.edu/blog/2018/08/06/recurrent/ https://towardsdatascience.com/web-traffic-forecasting-f6152ca240cb

02 GARCH

 $\frac{https://medium.com/analytics-vidhya/arima-garch-forecasting-with-python-7a3f797de3ff}{}$

https://arch.readthedocs.io/en/latest/univariate/univariate_volatility_mod_eling.html

http://web.vu.lt/mif/a.buteikis/wp-content/uploads/2019/03/02_GARCH.html

03 ARIMA/SARIMA

https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/

https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/

