NAME:

P525/1 CHEMISTRY PAPER 1 NOV. 2024

2 HRS 45 MINS

S.5
PCB/SM
BCM/ICT
PCM/ICT
BCA/SM
BCG/SM & FCM

FINAL MARKS

0/0

Tick your subject Combination

NYONDO SECONDARY SCHOOL

UGANDA ADVANCED CERTIFICATE OF EDUCATION 85 PROMOTIONAL EXAMINATIONS 2024

CHEMISTRY PAPER 1

DURATION: 2 Hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

- ❖ This paper consists of two sections A and B, Section A is compulsory and attempt only six questions from Section B. Any additional question(s) answered will not be marked.
- ❖ Incorrect symbols, formulae and spellings of especially technical terms will lead to loss of marks.
- ❖ The periodic table, with relative atomic masses, is attached at the end of the paper.
- ❖ Illustrate your answers with equations where applicable, Non-programmable scientific calculators may be used

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	TOTAL

NYONDO SECONDARY SCHOOL

CHEMISTRY DEPARTMENT@2024

1	. а.	$^{239}_{94}Pu + ^{4}_{2}He \rightarrow \dots + 2^{1}_{0}n$ [O1 n	nark]
	Ь.	$^{98}_{250}Cf$ + \rightarrow $^{257}_{103}$ + 4^1_0n [01 m	nark]
d.		$^{214}_{83}Bi \rightarrow ^{206}_{82}Pb$ + + 2^4_2He [01 mg of thorium was left to decay. Calculate the mass of thorium that	_
•	after	2.500×10^{10} years. (The half-life of thorium is 1.400×10^{10})	[03 marks]
	••••••		
•			
2.	(a)	Define diagonal relationship.	(01 mark)
	(i)	State two properties in which beryllium resembles Aluminium.	(02 marks)
	(ii)	State two reasons why beryllium resembles Aluminium.	(01 mark)
	•••••		

ii) State any other pair of elements iagonal relationship.	on a periodic table that exhibit (01 mar
. A hydrocarbon Q, with molecular formula according to the following equation.	CxHy reacts with oxygen
$C_xH_y + \frac{4x.y}{4}O_2$ When 20cm^3 of Q was exploded in a oxygen, it burnt completely with a sooty gas after cooling to room temperature was hydroxide was added, the gas that finally	200cm ³ of an excess amount of flame. The volume of the residual as 160cm ³ . When aqueous potassium
a. Determine the molecular formula of Q.	[02½ marks]
. When Q was treated with bromine in t	·

bromin	e and compou	nd Q.	[03½ marks]
t. The energy are shown in t	_	·	the formation of barium chloric
Process:			ΔH ^θ /Kj mol ⁻¹
Ba(s)	A	→ Ba(g)	+176.00
Ba(g)	В	Ba ²⁺ (g)	+1480.00
Cl2(g)	С	2Cl(g)	+242.00
Cl(g) + e-	D	Cl⁻(g)	-364.00
Ba ²⁺ (g) + 2Cl ⁻ (g) E	BaCl2(s)	-2018.00
a. Name the en	ergy changes	for reaction proces	ses: [02½ marks]
A:			
c:	•••••		
D:			

b. Calculate the standard enthalpy of formation of barium chloride. $[02\frac{1}{2}marks]$

5. Write equation for the reaction between aqueous sodium hyd	roxide and: -
a. Aluminium oxide.	[01½ marks]
b. Beryllium oxide.	[01½ marks]
c. Tin (II) oxide.	[01½ marks]
. a. Define the term freezing point constant of a substance.	[01½ marks]
b. A solution containing 1.54g of naphthalene, C10H8 in 18.0g	of camphor

freezes at 148.3°C. Calculate the freezing point constant of camphor. (Kf for

camphor is 175°C)	[03 marks]
2-bromobutane was treated with sodium ethox	xide in ethanol and the
mixture heated to form compound T.	iam for the reaction between 2
 a. Write the equation and suggest a mechani promobutane and ethoxide ion. 	ism for the reaction between 2. $[02\frac{1}{2} \text{ mar}]$
. The compound T formed in (a) can be synthes	sized from an alcohol. Write th
quation and include a mechanism for the reaction of the reacti	on leading to the formation of [02½ marks]

resultant solution diluted to 250cm^3 . To 30cm^3 of this solution was added 10% potassium iodide solution. The liberated iodine required 23.5cm^3 of 0.05M sodium thiosulphate solution for complete reaction. Calculate the percentage of copper in the ore. The reactions taking place are: $-[04\frac{1}{2}]$ marks]

$$2Cu^{2+}$$
 (aq) + 4I⁻ \rightarrow $Cu_2I_2(s) + I_2(aq)$
 I_2 (aq) + $2S_2O_3^{2-}$ (aq) \rightarrow 2I⁻(aq) + $S_4O_6^{2-}$ (aq)

 	 •••••

9. Draw the structure and name the shape of the following anions. In each case, state the oxidation state of the chlorine atom. $[04\frac{1}{2} \text{ marks}]$

Anion	Structure	Shape	Oxidation state of chlorine
CIO ₂			

CIO ₃		
CIO ₄		

SECTION B (54 Marks)

Attempt ANY SIX Questions from this Section.

Additional Questions Shall not be marked.

10.	Complete	the	following	equations	of	reactions	and	in	each	case	outline	0
mech	nanism for	the	reaction.									

a) CH3CHO + N	NaH5O3	 [03 marks]
Mechanism:		
ь) снзсн=сн2	Conc. H25O4/H2O Warm	 [03 marks]
Mechanism:		
c) (CH3)3CBr		[03 marks]
Mechanism:	Heat	

11. (a) What is meant by the following terms	
11. (a) What is meant by the following terms (i) Hydration energy	(01 mark)
(ii) Lattice energy	(01 mark)
(iii) Enthalpy of solution	(01 mark)
(b) State two factors which can affect the magnitude of lattice energy.	(01 marks)

(c) The lattice hydration energies of salts RX and TX are given in the table below.

Salt	Lattice energy(kJmol-1)	Hydration energy(kJmol-1)
RX	880	860
TX	790	800

(i)	RX	(02 marks)
		······································
(ii)	TX	(02 marks)
•••••		
······		
(111)	Which one of the two salts is more soluble in water at	a given
	Which one of the two salts is more soluble in water at perature?	a given (0 ₁ mark)
tem		
tem	perature?	$(0_{\frac{1}{2}}mark)$ $(0_{\frac{1}{2}}mark)$

Comment on the solubility of calcium chloride.	[01 mark]
Write a mechanism to show how each of the follow	ving conversion
. 50 01700100.	
a) to O-SO ₃ H	[03 marks]
a) ()—SO ₃ H	[03 marks]
	[03 marks]

		H3COCH	13			03½ mark	«s]
	elow sho	ows the	melting	points	of period	d 3 elem	ents
Na	Mg	Al	Si	P 217	5	Cl	Ar
		1	I			1	83.6 ks)
	table bable.	table below shoable. Na Mg 370. 923	table below shows the able. Na Mg Al 370. 923 933.	table below shows the melting able. Na Mg Al Si 370. 923 933. 1687	table below shows the melting points able. Na Mg Al Si P 370. 923 933. 1687 317.	table below shows the melting points of periodable. Na Mg Al Si P S 370. 923 933. 1687 317. 388.2	table below shows the melting points of period 3 elemable. Na Mg Al Si P S Cl 370. 923 933. 1687 317. 388.2 171.5

Sulphur has a higher melting point than phosphorus.	(03 marks)
Potassium manganate (VII) is not used a primary star lysis and has to be standardized.	ndard in volumeti
Explain why potassium manganate (VII) is not used as a p	primary standard [01 mark]
Explain why hydrochloric acid is not usually used to acid	ify solution of
potassium manganate(VII) during volumetric analysis.	[01 mark]
Acidified potassium manganate (VII) reacts with ethane	-1,2-dioic acid.
i. the half -reaction equations for the reaction.	[02 mark]
	Explain why potassium manganate (VII) is not used as a Explain why hydrochloric acid is not usually used to acid potassium manganate(VII) during volumetric analysis. Acidified potassium manganate (VII) reacts with ethane

16.55cm³ of a solution containing 5.10g per liter of an ethanedioate,

-	.2H2O, THE
•	[01 mark]
Vrite equations to show how the ore is purified.	[06 marks]
•	the ore has been [02 marks]
	ouring the extraction of aluminum from bauxite, Al_2O_3 . first purified. Name two major impurities in the ore. Vrite equations to show how the ore is purified.

	Name a reagent that can be used to distinguing wing pairs of compounds/ions. In each case stated with the pair is treated with the control of the pair is treated with the control of the pair is treated with the control of the control of the pair is treated with the control of	te what would be
a) (CH3CH2CECH and CH3CH2CH=CH2	[03 marks]
	Reagent:	
i.	Observation:	
o)	Cl and CH3CH2CH2CI. Reagent:	[03 marks]
Obs	ervation:	

ii.	Reagent:
iii.	Observation:
c	a. A compound W contains 37.3% manganese, 19.1% nitrogen, the rest being exygen. Calculate the empirical formula of compound W. [$02\frac{1}{2}$ marks] Mn=54.9, N=14, O=16]
b.	10.0g of compound W in 1000g of water lowered the freezing point of water by 0.127°C. Determine the molecular formula of W. [02 marks]

foll	en a few drops of concentrated nitric acid were added owed by a little lead (IV) oxide and the mixture boiled tion was formed. Write:	
i.	formula and name of W. Formula:	[01 mark]
	Name:	
ii.	Equation for the reaction leading to the formation of solution.	the purple colour [01½ marks]
<i>A</i> f	ew drops of aqueous sodium carbonate was added to a	solution of W.
i.	State was observed.	[01 mark]
		••••

PERIODIC TABLE

1	2											3	4	5	6	7	8
1 H 1.0																1 H 1.0	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 103	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Ti 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)		l												ı	
	1		57 La 139	58 Ce 140	59 Fr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 251	99 Ea (254)	100 Fm (257)	101 Mv (256)	102 No (254)	103 Lw 260

1

- 1. H indicates Atomic number
- 2. H indicates relative Atomic mass 1.0

END