Entrega: Homeomorfismos y conexidad

Alejandro Zubiri & David Mateos

1. Ejercicio 1 (6 puntos)

Demuestre que los únicos conjuntos conexos de $\mathbb R$ son los intervalos, $\mathbb R$ y el conjunto vacío.

1.1. Solución. Empezamos definiendo ambos elementos. Un subconjunto I es un intervalo si para todo $x,y \in I, x < z < y, z \in I$. Por otro lado, un conjunto E no es conexo si existen dos conjuntos abiertos G,H tal que $G \neq \phi, H \neq \phi, E = (E \cap G) \cup (E \cap H)$ y $G \cap H$.

Empezaremos demostrando que un conjunto es un intervalo sí y solo sí es conexo. Si es un intervalo, es conexo: supongamos que existen dos conjuntos G, H que forman una desconexión en un intervalo I. Sea $a \in G \cap I$ y $b \in H \cap I$, y asumamos que a < b. Puesto que I es un intervalo, se tiene que $[a, b] \subseteq I$. Ahora definamos

2. Ejercicio 2 (3 puntos)

Sea X un espacio topológico y sea $Y = \{0,1\}$ considerado como espacio topológico con la topología discreta. Demuestre que si X es conexo, entonces X no puede ser homeomorfo a Y.

- **2.1. Solución.** Si $X \cong Y$, existe una función continua y biyectiva $f: X \to Y$. Como Y tiene dos elementos, entonces hay dos casos:
 - ullet Caso 1: X tiene más o menos de dos elementos: entonces la función ya no es biyectiva.
 - ullet Caso 2: X tiene dos elementos: entonces X no es conexo.