Компонентная структура современного имитационного моделирования

М. А. Кочарова

Финансовый университет при Правительстве Российской Федерации (Финуниверситет), Financial University makocharova@mail.ru

Аннотация. За все время своего существования моделирование способствовало и продолжает способствовать развитию большого числа наук. В целом, моделирование, в том числе агентно-ориентированное и дискретнособытийное, является одним из путей решения проблем, возникающих в реальном мире в рамках реальных сложных систем (в технической, производственной, финансовой, транспортной сферах, а также в сферах обслуживания, маркетинга и здравоохранения).

Ключевые слова: агентное моделирование; дискретность; событие; моделирование; квалиметрия; объекты; комплекс

Моделирование позволяет получить объективные прогнозы реальных кризисных явлений, таких как террористические атаки, пандемии и др. Перечисленные области имеют огромную социальную и экономическую важность, являются неотъемлемыми элементами структуры общества.

Агентно-ориентированное и дискретно-событийное моделирование используются В случае. экспериментирование c реальными представляется невозможным или очень дорогостоящим. дает возможность оптимизировать Моделирование систему вплоть до ее реализации. Процесс моделирования всегда ведет к принятию решения при соблюдении таких этапов, как представление реальной системы в виде модели, анализ и оптимизация полученной модели.

Целью данной работы является анализ структуры таких видов моделирования, как агентно-ориентированное и дискретно-событийное, выявление спектра их практического применения.

Понятие, структура и этапы агетноориентированного моделирования

Агентно-ориентированное, ипи агентное, моделирование является разделом имитационного моделирования. С помощью данного метода проводится поведенческих исследование особенностей индивидуального агента системы, выявляется влияние его поведения на механизм целой системы. В сравнении с системной динамикой, которая также является одним из направлений изучения комплексных систем, в процессе агентно - ориентированного моделирования происходит определение поведения агентов на частном уровне, а обобщенное поведение является итогом деятельности и взаимодействия нескольких агентов.

Под названием агентно-ориентированного моделирования проводится огромное число разработок и исследований в различных научных сферах, таких как искусственный интеллект, теория игр, теории сложных систем и др.

ТАБЛИЦА I Компоненты агентно-ориентированного молелирования

Компонент	Суть компонента
Клеточные	Вид дискретной модели, который исследуется в
автоматы	математической науке, теории вычислимости,
	физике, биологии. Эта дискретная модель состоит из
	решетки ячеек. Каждая ячейка пребывает в одном из
	конечного числа состояний. Решетка имеет любой
	размер.
Элементы	Теория игр является разделом математической
теории игр	экономики. Она исследует способы разрешения
	конфликтных ситуаций, возникающих между
	игроками. Конфликт происходит в различных сферах,
	таких как экономика, социология, политология,
	порой и в биологии, кибернетике и военном деле.
	Сам конфликт возникает в том случае, когда
	совокупность стратегий одного игрока противоречит
	стратегиям другого, а так бывает практически во всех
	случаях в процессе игры. В результате пересечения
	этих стратегий каждый игрок получает свой
	результат, положительный или отрицательный. В
	процессе выбора стратегии необходимо принимать во
	внимание не только возможность получения
	оптимального для себя результата, но и стратегию
Drawarmy	соперника, ее воздействие на общее положение игры.
Элементы	Сложная система – это совокупность элементов, или полсистем нахолящихся в постоянном
сложных	подсистем, находящихся в постоянном взаимодействии. В результате этого взаимодействия
СИСТСМ	сложная система получает ряд свойств, которые
	нельзя отнести к свойствам подсистемы. Существуют
	споры о понятии сложной системы, некоторые
	ученые считают, что его до сих пор не существует в
	точном виде. Однако выделяют определенные
	признаки сложных систем: отсутствует
	математический алгоритм; нельзя провести
	эксперимент; не терпит управления; обладает
	динамикой, отличается постоянным изменением,
	эволюцией; является неоднозначным и сложным
	объектом наблюдения и изучения по причине
	крупного количества второстепенных процессов.
Элементы	Мультиагентная, или многоагентная, система
мультиагент	образуется в результате образования совокупности
ных систем	нескольких интеллектуальных агентов. К такому виду
	системы прибегают в тех случаях, когда решение
	сложной проблемы невозможно путем изучения
	одного агента. Мультиагентная система имеет
	следующие свойства: агенты обладают определенной
	автономностью, пусть и не абсолютной; каждый

Компонент	Суть компонента
	агент лишен полного представления о сложной
	системе, либо система является слишком
	усложненной и, следовательно, в своей
	характеристике не имеет практического решения
	проблемы индивидуального агента; агенты лишены возможности управления всей системы в целом.
Элементы	Эволюционное программирование в современном
эволюционн	мире используется для решения обобщенных
ого	проблем оптимизации. Основой данного вида
программир	программирования являются случайный отбор и
ования	изменчивость. Область применения: медицина
	(фармацевтика, эпидемиология, изучения рака),
	военное дело, государственное планирование,
	системы управления и идентификации, энергетика.
Методы	Совокупность числовых методов, базирующихся на
Монте-	получении крупного количества реализаций
Карло	случайного, или стохастического, процесса. Такой
	процесс создается так, чтобы его вероятностные
	особенности совпадали с аналогичными решаемой
	задачи. Методы Монте-Карло задействуются во многих технических и естественных науках.
Случайные	ļ
числа	Случайные числа – это числа, выбираемые в хаотичном порядке. Это означает, что на каждую из
числа	десяти цифр (от 0 до 9) может пасть выбор. Активно
	используется в гуманитарных науках (психологии,
	социологии) и технических науках (психологии,
	четкие требования к процессу ГПСЧ (генерации
	псевдослучайных чисел): алгоритм должен работать
	быстро и процесс не должен требовать большого
	количества памяти; должна быть возможность
	повтора процесса генерирования случайных чисел;
	должно аналогичным образом функционировать при
	использовании различного оборудования в рамках
	различных операционных систем.

При отсутствии общего представления о том, что такое агент системы, крайне сложно понять сущность агентно-ориентированного моделирования. Всеми признанного определения агента до сих пор не существует, так как уже довольно долгое время ведутся споры о том, каким требованиям должен непосредственно отвечать агент. Соответственно, на данный момент времени четко обозначенных критериев и требований просто нет. Однако существуют довольно общие признаки и свойства агента, которые выделяют почти все исследователи:

- автономность (агент обладает относительной автономией, он может выбирать задачи и свои поведенческие особенности без участия человека в данном процессе. Однако такая автономия является довольно относительно по причине того, что агент не может коренным образом влиять на вид всей системы, как было сказано выше, принимать глобальные решения, пусть и в рамках системы);
- социальное поведение (индивидуальный агент может оказывать влияние на ряд других агентов в процессе взаимодействия с ними, привлекая их с целью совместного решения каких-либо задач);
- реактивность (на агентов напрямую влияет контекст, в котором они функционируют и совершают работу, агенты реагируют в ответ на этот контекст).

Сложность в выявлении определения агента состоит в том, что они имеют свойства, схожие со свойствами объектов системы и экспертных систем. Поэтому эти понятия зачастую отожествляют с понятием агента. Но обозначить ряд различий представляется возможным.

Отличия агентов от объектов системы: наличие у агентов большей автономности, чем у объектов; наличие у агентов более реактивного, пластичного поведения, чем у объектов; наличие у агентов одного и более потока выполнения (минимальной единицы обработки, выполнение которой обычно назначается основной частью операционной системы).

Отличия агентов от экспертных систем: наличие у агентов связи с внешним миром, в отличие от экспертных систем; наличие у агентов более реактивного, пластичного поведения, чем у экспертных систем; наличие у агентов признаков социального поведения, в отличие от экспертных систем.

С учетом всех свойств и особенностей агента можно определить, как некую сущность, функционирующую в обладающую пределах системы, определенной автономией и способную задавать данные, воздействовать и реагировать на другие объекты, принимать ряд решений в рамках правил системы. Агентно-ориентированное моделирование, как и практически любой другой вид требует соблюдения моделирования, последовательных этапов. Несоблюдение одного из этапов может привести к созданию неполноценной или неадекватной модели, не отвечающей всем необходимым требованиям.

К основным этапам агентно-ориентированного моделирования относят: Выявление агентов системы и их основных поведенческих признаков; выявление степени и характера взаимосвязей между агентами, создание теоретического обоснования (объяснения) взаимосвязей; поиск платформы для проведения агентноориентированного моделирования и создание плана его проведения; получение для агентов всех необходимых данных; проверка модели агента на соответствие всем требованиям; запуск модели, проверка поведения агентов системы в частности и всей системы в целом. Ключевым моментом агентно-ориентированного моделирования является процесс взаимодействия агентов, так как система - это не просто совокупность элементов, в данном случае агентов, но и набор динамичных взаимосвязей. Отсюда и вытекают основные преимущества агентного подхода к важнейшим достоинствам системе. агентноориентированного моделирования можно отнести:

- Отражение поведения агентов в индивидуальном порядке, что ведет к уменьшению количества ошибок усреднения;
- Адекватное отражение процессов, происходящих в рамках децентрализованных систем, таких как человеческое поведение и транспортные потоки;
- 3. Способность решения нетривиальных задач, таких как прогнозирование распространения

- эпидемических заболеваний, моделирование поведения толпы в экстремальных ситуациях;
- 4. Способность поиска режимов для наиболее оптимального функционирования системы с множеством агентов (к примеру, режим, способствующий росту количества агентов, действующих в рамках системы);
- 5. Способность создания наиболее подходящей стратегии поведения агентов в условиях конкурентного рынка (игровые стратегии, рыночное сегментирование и др.).
- 6. Направленность на проектирование «искусственной жизни» (к примеру, система «разумный город»).

Если говорить о практическом применении агентноориентированного моделирования, то в пример можно привести рынок потребителя. В рамках рыночной системы, отличаюшейся динамичностью. конкурентностью сложностью, выбор потребителя зависит от таких различных факторов, как персональные предпочтения, его степень активности, сети контактов, внешние явления. Эти факторы очень эффективно отражаются и анализируются с помощью агентно-ориентированного моделирования. Еще одним примером является эпидемиология. В данном случае в качестве агентов выступают люди, которые могут быть подвержены болезни, или наоборот, носителями инфекции или уже перенесшими болезнь. Агентноориентированное моделирование позволяет отразить взаимосвязи между людьми и предоставляет объективные прогнозы распространения болезни.

II. ПОНЯТИЕ, СТРУКТУРА И ЭТАПЫ ДИСКРЕТНО – СОБЫТИЙНОГО МОДЕЛИРОВАНИЯ

Дискретно-событийное моделирование, как и агентноориентированное, является видом имитационного моделирования. Дискретно-событийное моделирование представляет реальную систему как ряд событий, явлений процессов, происходящих В определенной последовательности, в определенное время. Эти процессы означают изменения в структуре или поведении системы, демонстрируют ее динамику. Дискретно-событийное моделирование особенно активно используется в системах массового обслуживания в различных сферах. На основе такого вида моделирования производится обслуживание банковских клиентов, автомобилей на заправочных пунктах, пациентов в больницах, телефонных абонентов.

УПОМЯНУТЫ выше, Системы, являются небольшим количеством систем массового обслуживания. К ним также можно отнести производственные системы конвейеров и системы сборки готовых изделий. Однако такие системы нуждаются в учете особенностей конвейеров (вид, производительность) и алгоритмов Также огромное количество систем, аккумулирующих в себе процессы обслуживания. запрашивают для определенных операций соблюдение особых требований, таких как задействование конкретного вида ресурсов. Дискретно-событийное моделирование

базируется на концепции заявок, ресурсов и потоковых диаграмм, изображающих потоки заявок и использование ресурсов. Заявки – это объекты, отражающие людей, детали, документы, задачи, сообщения и др. Существует примерно сто инструментов, которые поддерживают такой способ моделирования. Инструменты бывают общего большинство назначения, однако направлено специфические области (обслуживание, бизнес, производство, логистика и др.). Их интерфейсы иногда существенно различаются, но за ними определенно стоит дискретно-событийный практически аналогичный «движок», прогоняющий эти заявки через блоки. Основными составляющими процесса дискретнособытийного моделирования являются переменные, необходимые для определения состояния реальной системы, и логика выявления дальнейшего поведения системы, ее реакции на изменения, происходящие внутри системы или во внешней среде. Однако существуют и другие элементы дискретно-событийного моделирования.

ТАБЛИЦА II Компоненты дискретно-событийного моделирования:

Компонент	Суть компонента
Часы	Также являются одним из основных компонентов
	системы наравне с логикой и переменными. Часы
	синхронизируют процесс возникновения событий,
	то есть изменения в системе.
Список событий	Дискретно-событийное моделирование поллерживает олин и более список событий.
сооытии	
	Однопоточные системы имеют одно событие, происходящее в настоящее время, так как они
	основаны на мгновенных явлениях.
	Многопоточные же системы обычно имеют ряд
	текущих событий и поддерживают интервальные
	события.
Генераторы	Моменты возникновения событий зачастую
случайных	являются случайными. Для их анализа и обработки
чисел	задействуются генераторы случайных чисел. И чем
	больше период генерации чисел, тем лучше.
Статистика	Одной из задач симуляции является сбор статистических данных. В процессе реализации статистики необходимо понимать, что по окончанию процесса симуляции крайне сложно сохранить все статистические данные, по причине того, что их размер бывает слишком большим. Следовательно, статистику рациональней
	обрабатывать именно в процессе симуляции. К примерам таких статистических данных можно
	примерам таких статистических данных можно отнести число занятых и доступных ресурсов, число объектов, находящихся в очереди, их среднее время ожидания ресурса в очереди.
Условия	Условиями завершения обычно выступают:
завершения	Возникновение события, которое было задано заранее;
	1 '
	• Прохождение количества циклов (этапов), которые были заданы заранее, по часам системы
	моделирования.

III. ЗАКЛЮЧЕНИЕ

Таким образом, агентно-ориентированное и дискретнособытийное моделирование, имеют ряд отличий, несмотря на тот факт, что оба являются подвидами имитационного моделирования. Каждый имеет свои особенности и области применения. К основным сходствам можно отнести некоторые этапы процесса моделирования,

некоторые элементы (генераторы случайных чисел). В некоторой мере у них различается область и цель Дискретно-событийное моделирование преимущественно используется в сфере обслуживания, в то время как агентно-ориентированное задействуется при анализе систем c большим количеством взаимодействующих агентов (к примеру, экономической системы). Однако оба метода активно используются для распространения прогнозирования эпидемических заболеваний, несмотря на различия в подходах. Использование агентно-ориентированного и дискретно-событийного моделирования в совокупности дает возможность для более полного анализа сложных систем и процессов, обеспечивает более высокий результат.

Конечно, нельзя ограничивать область применения этих методов лишь примерами, приведенными выше, так как она очень широка и, скорее всего, в будущем станет еще шире, несмотря на тот факт, что данные виды имитационного моделирования являются относительно новыми. Важно сделать правильный выбор в сторону одного из видов моделирования, либо использовать оба вида, с учетом особенностей их структуры и практической направленности. Всегда нужно учитывать преимущества и недостатки применяемых методов с целью принятия определенных решений. В любом случае, и агентно-

ориентированное, и дискретно-событийное моделирование служат для упрощения сложных систем, позволяют описать их на доступном уровне и понять, какое влияние окажут те или иные изменения динамической системы или внешней среды на процессы и явления, происходящие в рамках этой реальной системы.

Список литературы

- [1] Звягин Л.С. Комплексная оценка безопасности функционирования моделей экономических систем// Экономика и управление: проблемы, решения. 2017. Т. 4. № 1. С. 18-25.
- [2] Звягин Л.С. Инновационные математические и системноаналитические исследования: наука и практика в XXI веке// Экономика и управление: проблемы, решения. 2017. Т. 4. № 3. С. 89-95.
- [3] «Многоподходное моделирование: практика использования»- Т. В. Попков. 4-я Всероссийская научно-практическая конференция по имитационному моделированию ИММОД 2009. Санкт-Петербург. 21-23 октября 2009 г.
- [4] «Моделирование пассажирского автобусного маршрута в AnyLogic» / А. В. Липенков, О. А. Маслова, М. Е. Елисеев (Нижний Новгород), ИММОД-2011, Санкт-Петербург, 19-21 октября 2011г.
- [5] «О практическом опыте моделирования нового сервиса в крупном торгово-развлекательном центре» / Липенков А.В., Усов С.П., Масягин С.В., Толстогузов М.В., ИММОД-2017, 18-20 октября, Санкт-Петербург