UNIVERSIDADE FEDERAL DE UBERLÂNDIA

FACULDADE DE ENGENHARIA ELÉTRICA

AVALIAÇÃO DE LABORATÓRIO ELETRÔNICA DIGITAL 1º SEMESTRE DE 2021

Prof. Carlos Augusto Bissochi Junior

Aluno: Vilson Camilo Borges de Moraes Neves

Projetar o circuito da figura 1 utilizando linguagem de descrição de hardware (VHDL). O estudante terá 60 minutos para executar a tarefa.

PROCEDIMENTOS PARA A EXECUÇÃO DO PROJETO:

- 1) Criar uma pasta na área de trabalho. O nome da pasta deve ser o número de matrícula.
- 2) A entidade principal dever ser denominada de CIRCUITO
- 3) A FPGA pertence a família CYCLONEII
- 4) A FPGA utilizada é a EP2C35F672C6

VARIÁVEIS DA ENTIDADE PRINCIPAL:

- E3, E2, E1, E0: são elementos de uma variável que deve ser declarada como vetor
- S3, S2, S1, S0: são elementos de uma variável que deve ser declarada como vetor

DADOS PARA SIMULAÇÃO:

TEMPO DE SIMULAÇÃO = 160 ms

- E3 = onda quadrada com período de 80ms, offset de 0 e duty cycle de 70%
- E2 = onda quadrada com período de 80ms, offset de 0 e duty cycle de 30%
- E1 = onda quadrada com período de 40ms, offset de 0 e duty cycle de 50%
- **E0** = onda quadrada com período de 20ms, offset de 0 e duty cycle de 50%

BOA PROVA

TABELA DA VERDADE DO CIRCUITO 1

E3	E2	E1	EO	A1	Α0
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	0	0
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	1	1
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	0	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	1	1
1	1	1	1	0	1

TABELA DA VERDADE DO MUX 4x1

Α1	Α0	B1
0	0	EO
0	1	E1
1	0	E2
1	1	E3

TABELA DA VERDADE DO CIRCUITO MULTIPLICADOR

				ı			
A1	Α0	В1	B0	S3	S2	S1	S0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

S é um algarismo de 4 BITs

A e B são algarismos de 2 BITs

 $S = A \times B$