

Summary:

- Nuclear Fusion
- Types of H fusion
- PP chain
- Coulomb barrier
- Binding Energy
- Fusion Shells

Nuclear Fusion

Recap

- 1. Which parts of the EM spectrum are ionising?
- 2. A star hotter than the Sun would look what colour?
- 3. How do we identify elements in stars?

Nuclear Fusion

Two or more atomic nuclei combine to form one or more different nuclei and some subatomic particles (protons/neutrons).

Nuclear Fusion

Three main processes for Hydrogen fusion.

7

PP Chain fusion at 4×10^6 K.

Core of Sun ~15.7×10⁶ K.

log T

RJHall

PP Chain

The first step takes a VERY long time ~9 BILLION years.

This is because the two Hydrogen nuclei are positively charged and repel.

Total energy released is: 26.73 MeV (4.3×10⁻¹² J)

PP Chain

$$4^{1}H^{+} \rightarrow {}^{4}He^{2+} + 2e^{+} + 2v_{e}$$

26.73 MeV

Coulomb Barrier

The two protons (Hydrogen nuclei) repel due to the electrostatic force.

They have to have enough energy to overcome the potential barrier (the peak on the diagram).

In practice they cheat using quantum tunnelling.

Binding Energy

The mass of the Helium is less than the mass of the four protons.

This mass difference is released as energy.

$$E = mc^2$$

Binding Energy

The evolving composition of the Universe

J.A. Johnson

Recap

2. What force prevents two protons from colliding?

3. Which Hydrogen fusion process dominates at high temperatures?

4. Why can't a star fuse past Iron?

Fusion Shells

Really big stars can fuse up to Iron.

After most of the Hydrogen is used you have a lot of Helium which sinks to the centre.

This heats up the star so that it can fuse Helium and causes a Helium flash.

25 Solar Mass Star

Fusion type	Duration	T (10 ⁹ K)	ρ (kg.m -³)
H Burning	7x10 ⁶ yrs	0.06	5x10 ⁴
He Burning	5x10 ⁵ yrs	0.23	7x10 ⁵
C Burning	600 yrs	0.93	2x10 ⁸
Ne Burning	1 yr	1.7	4x10 ⁹
O Burning	6 months	2.3	1x10 ¹⁰
Si Burning	1 day	4.1	3x10 ¹⁰

Mass vs Fusion Process

Mass	Fusion type	
0.1 - 0.5 M _☉	H burning but no He burning	
0.5 - 8 M _☉	H and He burning	
8 - 10 M _☉	H, He and C burning	
> 10 M _☉	All stages of thermonuclear fusion	
core < 1.4 M _☉	White dwarf (He, C/O, O/Mg/Ne)	
core > 1.4 M _☉	Core will collapse, supernova	

Recap

1. What shell comes after Helium?

3. Which lasts longer Helium or Neon burning?

4. Define hydrostatic equilibrium.

Up next:

Observing the Night Sky

