Introduction to Bioinformatics – Final Exam	
No No	
Email :	
	-==
Q01. An interdisciplinary field that develops methods and software tools for understanding biologic data and combines computer science, statistics, mathematics, and engineering: a. Genetics Bioinformatics	cal
c. Proteomics d. Genomics	
Q02. The term used to refer something performed on computer or computer simulation:	
a. Dry labb. Wet labc. Web labIn silico	
Q03. Bioinformatics does not use techniques and concepts from	
a. chemistry b. physics c. statics linguistics	
Q04. Application of bioinformatics include	
a. data storage and management	
 b. drug designing c. understand relationship between organizms all of the above 	
Q05. Meta data is a set of data that describes and gives information about other data. Meta data finding or understanding a resource is known as	for
Descriptive metadata b. Administrative metadata c. Structural metadata d. Markup languages	
Q06. Molecular data (DNA or protein sequences) are	
discrete quantitative data	

C.	Introduction to Bioinformatics – Final Exam continuous quantitative data nominal categorical data ordinal categorical data
Q07.	Human genome contains about
a.	2 billion base pairs
	3 billion base pairs
C.	4 billion base pairs
d.	5 billion base pairs
Q08.	Which of the following is a nucleotide sequence data base?
	EMBL
b.	SWISS PROT
c.	PROSITE
d.	TREMBL
Q09.	Phylogenetic relationship can be shown by
a.	Data search tool
b.	Gene Bank
c.	Data retrieving tool
	Dendrogram
 Q10.	Step-by-step procedure for solving problems in computer science is called
a.	fowchart
b.	sequential design
	algorithm
d.	procedure

Q11. A **scalar** variable in Perl can hold ...

- a. a number
- b. a word
- c. a sentence all of the above

Q12. Which of the following Perl statements is equivalent to the Perl statement given as

if (\$string !~ m/xyz/) ...

- b. if (\$string =~ m/!xyz /) ...
- c. if ($\frac{string}{m!}/xyz/)$...
- d. if (\$!string =~ m/xyz /) ...

Q13. A data base is a collection of one or more related ...

- a. rows of data
- b. columns of data
- files of data
 - d. tables of data

Q14. The given dotplot indicates which of the following conditions?

An indel (insertion or deletion)

- b. A tandem duplication
- c. An inversion
- d. Joining sequences

Q15. Two sequences are given as ACGT and TCGG. Which of the following dot plots is the correct one when a sliding window size of 3 and a similarity cut-off of 2 nucleotides are used.

a.

-	Α	С	G	Т
Т				•
С		•		
G			•	
G			•	

b.

-	Α	С	G	Т
Т				
С		•		
G			•	
G				

-	Α	С	G	Т
Т				•
С		•		
G			•	
G				

d.

-	Α	С	G	Т
Т				
С		•		
G			•	
G			•	

Q16. A research group has performed a number of micro-array experiments and they would like to perform a cluster analysis on the data. The experiment consists of four arrays. On each array, there are two genes. Results of experiments are given in the following table.

	Gene 1 (x)	Gene 2 (y)
Array1 (A1)	5	-2
Array2 (A2)	2	3
Array3 (A3)	-4	2
Array4 (A4)	-1	-4

What will be the Euclidean squared distance between Array 1 and Array 4.

- a. 20
- b. 30

d. 72

Q17. You want to calculate compositional complexity of your name. Which formula you use to calculate compositional complexity?

a.

$$K = \frac{1}{L}log_4 \left(\frac{L!}{\prod_{i=1}^4 n_i!}\right)$$

b.

$$K = \frac{1}{L} log_{20} \left(\frac{L!}{\prod_{i=1}^{20} n_i!} \right)$$

c.

$$K = \frac{1}{L} log_{26} \left(\frac{L!}{\prod_{i=1}^{26} n_i!} \right)$$

$$K = \frac{1}{L}log_{29}\left(\frac{L!}{\prod_{i=1}^{29}n_i!}\right)$$

Q18. Considering the following global dynamic programming matrix, which of the following statements about the alignment significance of sequences **F M D T** and **F K D T** are correct?

	-	F	M	D	Т
-	0	-2	-4	-6	-8
F	-2	9	7	5	3
K	-4	7	9	7	5
D	-6	5	7	13	11
Т	-8	3	11	11	16

- a. Alignment score > Significance cut-off. This is a significant alignment.
- b. Alignment score < Significance cut-off. This is not a significant alignment.
- c. Alignment score = Significance cut-off. This is neither significant nor insignificant alignment.
- d. All are incorrect.

Q19. Considering the following global dynamic programming matrix, determine the match score, the mismatch score, and the gap penalty.

	•	G	Α	С
-	0	-2	-4	-6
G	-2	1	-1	-3
G	-4	-1	•	-2
G	-6	-3	-2	-1
С	-8	-5	-4	-1

- a. match score = +1 mismatch score = 0 gap penalty = -2
- match score = +1 mismatch score = -1 gap penalty = -2
- c. match score = +2 mismatch score = -1 gap penalty = -2
- d. match score = +1 mismatch score = -1 gap penalty = -1

Q20. Considering the following global dynamic programming matrix, which of the following pairwise global alignments is the optimum alignment?

	-	G	Α	С
-	0	-2	-4	-6
G	-2	1	-1	-3
G	-4	-1	Ō	-2
G	-6	-3	-2	-1
С	-8	-5	-4	-1

- a. G A C
 - G G G C
- b. G A C
 - G G G C
- c. G A C
 - G G G C

O24. The sum of pairs method access all possible combinations of pairs of reciduse in a column of s

Q21. The **sum of pairs** method scores all possible combinations of pairs of residues in a column of a multiple sequence alignment. Assuming that we have 6 amino acid sequences in a data set, how many possible unique pairs will be formed?

- a. 6
- b. 10
- 15
 - d. 21

Q22. Graphical representation of quantifiable data, usually by means of well-known chart, graph or map types is known as ...

- a. information visualization
- data visualization
 - c. computer visualization
 - d. natural visualization

Q23. -----is used to convey overall impression of relationship between two variables.

- Scatter plot
 - b. Line graph
 - c. Star plot
 - d. Bar graph

Q24. A DNA sequence can be stored in the memory as a character array. However, when the memory size limitation is considered, saving a DNA sequence as character array is not desirable. Instead, a simple binary coding can be used for compressing the DNA sequence. In this case, how much memory saving can be achieved?

- a. 25%
- b. 35%
- c. 50%

Q25. In the following phylogenetic tree, the distance between cluster "{GTAC, GTCC}" and cluster "{TCAA, TTCA}" can be calculated as **2x**. **x** is the distance between the root of the tree and either the cluster "{GTAC, GTCC}" or cluster "{TCAA, TTCA}". Determine the value of **x** for the given node weights?

a.
$$x = 1.5$$

b.
$$x = 2$$

$$x = 2.5$$

d.
$$x = 3$$