

Elaborato di **Calcolo Numerico** Anno Accademico 2019/2020

Niccolò Piazzesi - 6335623 - niccolo.piazzesi@stud.unifi.it Pietro Bernabei - 6291312 - pietro.bernabei@stud.unifi.it

Contents

1	Cap	itolo 1																											4
	1.1	Esercizio 1 .																					 						4
	1.2	Esercizio 2 .																					 						4
	1.3	Esercizio 3 .																					 						4
2	Cap	$itolo \ 2$																											5
	2.1	Esercizio 4 .																					 						5
	2.2	Esercizio 5 .																					 						5
	2.3	Esercizio 6.																					 						8
	2.4	Esercizio 7.																											9
		Escretzio	•	•	•	• •	•	•	 •	•	•	•	•	•	• •	•	•	•	• •	•	•	•	 	•	•	 •	•	 •	
3	Cap	itolo 3																											12
	3.1	Esercizio 8 .																					 						12
	3.2	Esercizio 9 .																					 						12
	3.3	Esercizio 10																											13
	3.4	Esercizio 11																											13
	3.5	Esercizio 12																											14
	3.6	Esercizio 13																											14
	3.7	Esercizio 14			•			•	 •		•			•				٠		٠		•	 	•	•	 •	•	 •	15
1	Can	itolo 4																											16
4		Esercizio 15																											16
	4.2	Esercizio 16																											17
	4.3	Esercizio 17																											17
	4.4	Esercizio 18																											18
	4.5	Esercizio 19																											18
	4.6	Esercizio 20							 ٠													•	 	•					18
_		•, 1 =																											20
5	_	itolo 5																											20
	5.1	Esercizio 21																											20
	5.2	Esercizio 22																											21
	5.3	Esercizio 23																											22
	5.4	Esercizio 24																					 						22
	5.5	Esercizio 25																					 						23
6		ici ausiliari																											26
	6.1	Esercizio $\boldsymbol{6}$.																											26
	6.2	Esercizio 7 .																											
	6.3	Esercizio 15																					 						27
	6.4	Esercizio 16																					 						27
	6.5	Esercizio 18																					 						27
	6.6	Esercizio 19																					 						28
	6.7	Esercizio 20																											28
	6.8	Esercizio 21																											29
	6.9	Esercizio 21 Esercizio 22																											29 29
		Esercizio 23																											29
		Esercizio 24																											29
	6.12	Esercizio 25																					 						30

List of Figures

1 2 3 4	iterazioni richieste
List	of Tables
1	valori approssimati da bisezione, newton, secanti, corde
2	valori approssimati da newton, newton modificato e aitken(dati raccolti in es7.m) 11
3	valori approssimati
4	valori approssimati
5	pesi della formula di Newton-Cotes fino al settimo grado
6	risultati di es24.m
7	risultati di es25.m

1 Capitolo 1

1.1 Esercizio 1

Sia f(x) una funzione sufficientemente regolare e sia h > 0 una quantità abbastanza "piccola". Possiamo sviluppare i termini f(x - h) e f(x + h) mediante il polinomio di Taylor:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + O(h^4)$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + O(h^4)$$

Sostituiamo i termini nell'espressione iniziale:

$$\frac{f(x-h)-2f(x)+f(x+h)}{h^2} =$$

$$=\frac{f(x)-hf'(x)+\frac{h^2}{2}f''(x)-\frac{h^3}{6}f'''(x)+O(h^4)-2f(x)+f(x)+hf'(x)+\frac{h^2}{2}f''(x)+\frac{h^3}{6}f'''(x)+O(h^4)}{h^2}=\frac{f(x)-hf'(x)+\frac{h^2}{2}f''(x)-\frac{h^3}{6}f'''(x)+O(h^4)-2f(x)+f(x)+hf'(x)+\frac{h^2}{2}f''(x)+\frac{h^3}{6}f'''(x)+O(h^4)}{h^2}=\frac{h^2}{h^2}$$

$$=\frac{h^2f''(x) + O(h^4)}{h^2} = f''(x) + O(h^2)$$

1.2 Esercizio 2

Eseguendo lo script si ottiene $u=1.1102\cdot 10^{-16}=\frac{\epsilon}{2}$, dove ϵ è la precisione di macchina. Il controllo interno ci dice che si esce dal ciclo solamente quando u diventa talmente piccolo che la somma 1+u viene percepita dal calcolatore come uguale a 1. Questo avviene se $u<\epsilon$, e la prima iterazione in cui il controllo risulta vero è proprio quando $u==\frac{\epsilon}{2}$. Il codice può quindi essere utilizzato per calcolare la precisione di macchina di un calcolatore, moltiplicando per 2 il valore di u restituito.

1.3 Esercizio 3

Quando si esegue a-a+b il risultato è 100 mentre quando si esegue a+b-a si ottiene 0. La differenza dei risultati è dovuta al fenomeno della cancellazione numerica:

- nel primo caso la sottrazione avviene sullo stesso numero $a = 10^{20}$. Sottrare un numero da se stesso ha sempre risultato esatto 0 e quindi il risultato finale è corretto
- nel secondo caso la sottrazione avviente tra i termini $a+b=10^{20}+100$ e $a=10^{20}$. a+b ha le prime 18 cifre in comune con a e , a causa degli errori di approssimazione, le ultime tre cifre vengono cancellate dalla sottrazione, dando 0 come risultato finale.

2 Capitolo 2

2.1 Esercizio 4

```
function x1=radn(x, n)
 2
 3
   % x1=radn(n.x)
   % funzione Matlab che implementa il metodo di newton per il calcolo della
   % radice n—esima di un numero positivo x
 5
 6
 7
   format long e
 8 imax=1000;
9
   tolx=eps;
10 | if x<=0
11
        error('valore in ingresso errato');
12 end
13
   x1=x/2:
   for i=1:imax
14
      x0=x1;
16
       fx=x0^n-x;
17
       fx1=(n)*x0^{n-1};
18
       x1=x0-fx/fx1;
19
       if abs(x1-x0)<=tolx</pre>
20
           break
21
       end
22
23 end
24 | if abs(x1-x0)>tolx
25
        error('metodo non converge')
26
   end
```

2.2 Esercizio 5

• Metodo di bisezione

```
function [x,i] = bisezione(f,a,b,tolx)
   %bisez
3 %[x,i]=bisezione(f, a, b, tolx, maxit)
4 %Pre: f continua in [a,b]
5 |% Applica il metodo di bisezione per il calcolo della
6 \% radice dell'equazione f(x)=0
                 -funzione
   % a, b

    estremi dell'intervallo

8
9
10
                 -tolleranza
   % tolx
   % restituisce in x l'approssimazione della radice e in i il numero di iterazioni
   % VEDI ANCHE: newton, corde, secanti, aitken, newtonmod
13
       format long e
14
       fa = feval(f,a);
15
       fb = feval(f,b);
16
       if(fa * fb > 0)
17
           error('gli estremi hanno lo stesso segno');
18
       end
19
20
       imax = ceil(log2(b-a) - log2(tolx));
21
       for i = 1:imax
22
           x = (a+b)/2;
23
           fx = feval(f,x);
```

```
24
             if abs(x-x0) \le tolx*(1+abs(x0))
25
                  break
26
             end
27
             x0=x;
28
             if fa*fx<0</pre>
29
                  b = x;
30
                  fb = fx;
31
             else
32
                  a = x;
33
                  fa = fx;
34
             end
35
         end
36
37
    end
```

• Metodo di Newton

```
function [x,i] = newton( f, f1, x0, tolx, maxit )
   %newton
3
   %[x,i]=newton(f,f1, x0, tolx, maxit)
   %Pre: f derivabile
4
   % Applica il metodo di newton per il calcolo della
   % radice dell'equazione f(x)=0
6
7
                 -funzione
8
   % f1
                  -derivata di f
9
   % x0
                  -approssimazione iniziale
   % tolx
10
                  -tolleranza
   % maxit
                  -numero massimo di iterazioni(default=100)
11
12
    % restituisce in x l'approssimazione della radice e in i il numero di iterazioni
13
   % VEDI ANCHE: bisezione, corde, secanti, aitken, newtonmod
14
           if nargin<4
15
                  error('numero argomenti insufficienti');
16
           elseif nargin==4
17
                   maxit = 100;
18
           end
19
           if tolx<eps</pre>
20
                  error('tolleranza non idonea');
21
           end
22
           x = x0;
23
           for i = 1:maxit
24
                  fx = feval(f, x);
25
                  f1x = feval(f1, x);
26
                  x = x - fx/f1x;
27
                  if abs(x-x0) \le tolx*(1+abs(x0))
28
                         break;
29
                  else
30
                         x0 = x;
31
                  end
32
           end
33
           if abs(x-x0) > tolx*(1+abs(x0))
34
                  error('metodo non converge');
35
           end
36
   end
```

• Metodo delle secanti

```
function [x, i]=secanti(f,x0,x1,tolx,maxit)
%secanti
%[x,i]=secanti(f, x0, x1, tolx, maxit)
```

```
4
5
   % Applica il metodo delle secanti per il calcolo della
   % radice dell'equazione f(x)=0
6
7
   % f
                 -funzione
8
   % x0
                  -approssimazione iniziale
9
   % x1
                  -seconda approssimazione iniziale
10
   % tolx
                  -tolleranza
11
   % maxit
                  -numero massimo di iterazioni(default=100)
   % restituisce in x l'approssimazione della radice e in i il numero di iterazioni
12
   % VEDI ANCHE: bisezione, newton, corde, aitken, newtonmod
13
14
15
     format long e
16
     if nargin<4
17
        error('numero argomenti insufficienti');
18
     elseif nargin==4
        maxit = 100;
19
20
      end
21
     i=0:
22
     f0=feval(f,x0);
23
     for i=1:maxit
24
          f1=feval(f,x1);
25
          df1=(f1-f0)/(x1-x0);
26
          x=x1-(f1/df1);
27
          if abs(x1-x0) \le tolx*(1+abs(x0))
28
            break;
29
          end
30
         x0=x1;
31
          x1=x;
32
          f0=f1;
33
34
     end
35
     if abs(x-x0) > tolx*(1+abs(x0))
36
        error('metodo non converge');
      end
38
   end
```

• Metodo delle corde

```
function [x,i] = corde( f, f1, x0, tolx, maxit )
2
   %corde
3
   %[x,i]=corde(f,f1, x0, tolx, maxit)
4
   %Pre: f derivabile
5
   % Applica il metodo delle corde per il calcolo della
   % radice dell'equazione f(x)=0
6
                 -funzione
   % f1
8
                 -derivata di f
   % x0
                 —approssimazione iniziale
0
10
   % tolx
                 —tolleranza
                 -numero massimo di iterazioni(default=100)
11
12
   % restituisce in x l'approssimazione della radice e in i il numero di iterazioni
   % VEDI ANCHE: bisezione, newton, secanti, aitken, newtonmod
13
14
        format long e
15
16
       if nargin<4
               error('numero argomenti insufficienti');
17
18
       elseif nargin==4
               maxit = 100;
19
20
       end
21
        if tolx<eps</pre>
```

```
22
               error('tolleranza non idonea');
23
        end
24
        f1x = feval(f1, x0);
25
        x = x0;
26
        for i = 1:maxit
27
               fx = feval(f, x);
28
               if fx==0
29
                       break;
30
               end
31
               x = x - fx/f1x;
32
               if abs(x-x0) \le tolx*(1+abs(x0))
33
                       break;
34
               else
                       x0 = x;
36
               end
37
        end
38
        if abs(x-x0) > tolx*(1+abs(x0))
39
           error('metodo non converge');
40
         end
41
    end
```

2.3 Esercizio 6

Eseguendo lo script es6.msi ottengono i risultati contenuti nella tabella 3 e nella figura 2. Come si può notare, il metodo di newton e il metodo delle secanti convergono molto più rapidamente del metodo di bisezione e del metodo delle corde.

Metodo	tolleranza= 10^{-3}	tolleranza= 10^{-6}	tolleranza= 10^{-9}	tolleranza= 10^{-12}
bisezione	0.739257812500000	0.739085197448730	0.739085133187473	0.739085133215667
newton	0.739085133385284	0.739085133215161	0.739085133215161	0.739085133215161
corde	0.739567202212256	0.739084549575213	0.739085132739254	0.739085133215737
secanti	0.739085133215001	0.739085133215161	0.739085133215161	0.739085133215161

Table 1: valori approssimati da bisezione, newton, secanti, corde

Figure 1: iterazioni richieste

2.4 Esercizio 7

Le nuove funzioni utilizzate in questo esercizio sono:

• Metodo di Newton modificato

```
function [x, i] = newtonmod(f, f1, x0, m, tolx, maxit)
    %NEWTONMOLT
2
    %[x,i]=Newtonmolt(f,f1,x0,m,tolx,maxit)
3
4
    % Pre: f derivabile
5
    % Applica il metodo di Newton per il calcolo della
6
      radice (di molteplicita' nota r) dell'equazione f(x)=0
   %
                  -funzione
   %
8
      f1
                  -derivata di f
9
   %
      x0
                  -approssimazione iniziale
10
   %
                  -molteplicita' della radice
      m
11
   % tolx
                  -tolleranza
                  -numero massimo di iterazioni(default=100)
12
    % maxit
    % restituisce in x l'approssimazione della radice e in i il numero di iterazioni
14
    % VEDI ANCHE: bisezione, newton, secanti, corde, aitken
15
16
        format long e
17
        if nargin<5
18
               error('numero argomenti insufficienti');
19
        elseif nargin==5
20
                maxit = 100;
21
        end
22
        if tolx<eps</pre>
23
               error('tolleranza non idonea');
24
        end
        x = x0;
26
        for i = 1:maxit
27
               fx = feval(f, x);
28
               f1x = feval(f1, x);
29
               if fx==0
30
                      break;
```

```
31
                end
                x = x - m*(fx/f1x);
                if abs(x-x0) \le tolx*(1+abs(x0))
34
                        break;
35
                else
36
                        x0 = x;
37
                end
38
        end
39
40
    end
```

• Metodo delle accelerazioni di Aitken

```
function [x, i] = aitken( f, f1, x0, tolx, maxit )
   %aitken
   %[x,i]=aitken(f,f1, x0, tolx, maxit)
4
    % Pre: f derivabile
    % Applica il metodo di accelerazione di aitken per il calcolo della
5
   % radice (di molteplicita' incognita) dell'equazione f(x)=0
6
7
                 -funzione
8
   % f1
                  -derivata di f
9
   % x0
                  -approssimazione iniziale
10
   % tolx
                  -tolleranza
   % maxit
11
                  -numero massimo di iterazioni(default=100)
12
    % restituisce in x l'approssimazione della radice e in i il numero di iterazioni
13
   % VEDI ANCHE: bisezione, newton, secanti, corde, newtonmod
14
   format long e
15
   if nargin<4
           error('numero argomenti insufficienti');
16
17
   elseif nargin==4
            maxit = 100;
18
19
20
   if tolx<eps</pre>
21
           error('tolleranza non idonea');
22
   end
23
   fx = feval(f,x0);
24
   f1x = feval(f1, x0);
25
   x= x0-fx/f1x;
26
    for i = 1:maxit
27
        x0 = x;
28
        fx = feval(f, x0);
29
        f1x = feval(f1, x0);
30
        x1 = x0 - fx/f1x;
31
        fx = feval(f, x1);
        f1x = feval(f1, x1);
33
        x = x1 - fx/f1x;
34
        x = (x*x0-x1^2)/(x-2*x1+x0);
        if abs(x-x0) \le tolx
36
                break;
37
        end
38
   end
39
    if abs(x-x0) > tolx*(1+abs(x0))
40
           error('metodo non converge');
41
    end
42
    end
```

La radice nulla della funzione $f(x) = x^2 tan(x)$ ha molteplicità m = 3, in quanto 0 annulla due volte il termine x^2 e una volta il termine tan(x).

Tolleranza	Newton	Newton modificato	Aitken
10^{-3}	$1.99400296195610 \cdot 10^{-3}$	$1.32348898008484 \cdot 10^{-23}$	$3.72603946110722 \cdot 10^{-24}$
10^{-6}	$1.34922220938115 \cdot 10^{-6}$	$1.32348898008484 \cdot 10^{-23}$	$3.72603946110722 \cdot 10^{-24}$
10^{-9}	$1.36940553054800 \cdot 10^{-9}$	0	$2.93579661656743 \cdot 10^{-39}$
10^{-12}	$1.38989077859525 \cdot 10^{-12}$	0	$2.93579661656743 \cdot 10^{-39}$

Table 2: valori approssimati da newton, newton modificato e aitken(dati raccolti in es7.m)

Figure 2: iterazioni richieste

Il metodo di newton classico perde la convergenza quadratica, essendo la radice cercata di molteplicità multipla. Il metodo di newton modificato e il metodo di aitken convergono molto più rapidamente e newton modificato riesce anche a trovare la radice esatta.

3 Capitolo 3

3.1 Esercizio 8

```
function [LU,p]=palu(A)
   % [LU,p]=palu(A)
 3
   % funzione che dato in input matrice A restituisce matrice fattorizzata LU
   % e il relativo vettore p di permutazione di LU con pivoting parziale di A
 5
       A= matrice di cui si vuole calcolare la fattorizzazione lu con pivoting
 6
 7
      parziale
   % output:
      LU=matrice quadrata di dimensioni n∗n, composta dalla matrice
 9
       triangolare superiore U e la matrice triangolare inferiore a diagonale
11
        unitaria L
12
        p= vettore di permutazione di dimensione n, generato dalla
13
   %
        fattorizzazione di A con pivoting parziale
14
16 \mid [n,m]=size(A);
17
   if(n\sim=m)
18
        error(matrice A non quadrata);
19
   end
20
   LU=A;
21
   p=[1:n];
22 | for i=1:n-1
23
        [mi,ki]=max(abs(LU(i:n,i)));
24
        if mi == 0
25
            error('La matrice e'' non singolare')
26
        end
27
        ki=ki+i-1;
28
        if ki>i
29
            p([i ki])=p([ki i]);
30
           LU([i ki],:)= LU([ki i],:);
31
32
        LU(i+1:n,i)=LU(i+1:n,i)/LU(i,i);
33
        LU(i+1:n,i+1:n)=LU(i+1:n,i+1:n)-LU(i+1:n,i)*LU(i,i+1:n);
34
   end
    return
   end
```

3.2 Esercizio 9

```
function x=LUsolve(LU,p,b)
1
2
3
   % funzione che risolve il sistema lineare LUx=b(p):
4
       LU=matrice quadrata (n*n) fattorizzata LU, ottenuta attrarso la
5
6
       fattorizzazione con pivoting parziale
7
       p= vettore di permutazione per b, di dimensione n, con valori da (1 a
8
   %
       n)
9
       b=vettore dei termini noti
11
       x=vettore delle incognite calcolate
12
   %
   %
13
14
       [m,n]=size(LU);
```

```
15
       if(m~=n || n~=length(b)) error('dati incosistenti')
16
       else if(min(abs(diag(LU)))==0)
               error(fattorizzazione errata);
17
18
           end
19
       end
        x=b(p);
20
21
        for i=1:n-1
22
            x(i+1:n)=x(i+1:n)-(LU(i+1:n,i)*x(i));
23
        end
24
           x(n)=x(n)/LU(n,n);
25
           for i=n-1:-1:1
26
               x(1:i)=x(1:i)-(LU(1:i,i+1)*x(i+1));
27
               x(i)=x(i)/LU(i,i);
28
           end
29
        return
30
   end
```

3.3 Esercizio 10

i	Sigma	Norma
1	10^{-1}	8.9839e-15
2	10^{1}	1.4865e-14
3	10^{3}	1.3712e-12
4	10^{5}	1.2948e-10
5	10^{7}	5.3084e-09
6	10^{9}	1.0058e-06
7	10^{11}	8.5643 e-05
8	10^{13}	0.0107
9	10^{15}	0.9814
10	10^{17}	$4.1004\mathrm{e}{+03}$

Table 3: valori approssimati

Tabella che composta: i=indice dell'iterazione; Sigma=valore calcolato e usato dalla funzione linsis(), per introdurre un errore nella matrice generata A e nel suo vettore dei termini noti b, che cresce al crescere dell'interazione. Norma= valore della distanza tra il vettore x, soluzione del sistema lineare LU*x=b, il quale è affetto da errore, e il vettore xref, soluzione corretta del sistema. Da questa tabella quindi si può notare come all'incremento della interazione, e quindi della sigma, l'errore nelle soluzioni cresce, quasi proporzionalmente come sigma, con un fattore di 10^2 ;

3.4 Esercizio 11

```
function QR = myqr(A)
2
    %
        QR = myqr(A)
   %
3
        calcola la fattorizzazione QR di Householder della matrice A
4
   %
        Input:
5
   %
                A= matrice quadrata da fattorizzare
6
    %
7
   %
        Output:
   %
                QR=matrice contenente le informazioni sui fattori Q e R della
8
9
   %
                fattorizzazione OR di A
    %
        [m,n] = size(A);
12
        if n > m
13
            error('Dimensioni errate');
14
        end
15
        QR = A;
```

```
for i = 1:n
16
17
            alfa = norm(QR(i:m,i));
18
            if alfa == 0
19
                error('la matrice non ha rango massimo');
20
            end
21
            if QR(i,i) >= 0
22
                alfa = -alfa;
23
            end
24
            v1 = QR(i,i) -alfa;
25
            QR(i,i) = alfa;
26
            QR(i+1:m,i) = QR(i+1:m,i)/v1;
27
            beta = -v1/alfa;
28
            V = [1; QR(i+1:m,i)];
29
            QR(i:m,i+1:n) = QR(i:m,i+1:n) - (beta * v) * (v' * QR(i:m,i+1:n));
30
        end
31
   end
```

3.5 Esercizio 12

```
function x = qrsolve(QR, b)
 2
   %
 3
 4
   %
        x = qrSolve(QR, b)
 5
        risolve il sistema QR*x=b nel senso dei minimi quadrati.
 6
   %
       Input:
 7
                QR=matrice contenente le informazioni Q e R della
    %
 8
    %
                fattorizzazione di una matrice quadrata A
 9
   %
                b=termine noto del sistema lineare
10
   %
        Output:
                x=vettore delle soluzioni del sistema lineare
   %
11
12
13
14
   [m,n] = size(QR);
15
   k = length(b);
16
   if k \sim = m
17
        error('Dati inconsistenti');
18
   end
19
   x=b(:);
20
   for i = 1:n
21
        V=[1; QR(i+1:m,i)];
22
        beta = 2/(v'*v);
23
        x(i:m) = x(i:m) - beta*(v'*x(i:m))*v;
24
   end
25
   x=x(1:n);
26
   for j = n:-1:1
27
        if QR(j,j)==0
28
            error('Matrice singolare');
29
        end
30
        x(j) = x(j) / QR(j,j);
31
        x(1:j-1) = x(1:j-1) - QR(1:j-1,j)*x(j);
32
   end
    return
34
   end
```

3.6 Esercizio 13

```
1    A= [1, 2, 3; 1 2 4; 3 4 5; 3 4 6; 5 6 7];
2    b=[14 17 26 29 38];
3    QR=myqr(A);
4    ris=qrsolve(QR,b);
5    disp(ris);
```

Il risultato finale è $ris = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

3.7 Esercizio 14

A\b	$(A^{*}A)\setminus (A^{*}b)$
1.0000	3.5759
2.0000	-3.4624
3.0000	9.5151
4.0000	-1.2974
5.0000	7.9574
6.0000	4.9125
7.0000	7.2378
8.0000	7.9765

Table 4: valori approssimati

L'espressione $A \setminus b$ risolve in matlab, il sistema di equazioni lineari nella forma matriciale A*x=b per x. L'espressione $(A**A) \setminus (A**b)$ impiega lo stesso operatore \setminus , quindi risolve il sistema delle equazioni lineare delle due parentesi. La Matrice A viene calcolata usando la funzione vander() che genera una matrice di tipo Vandermonde, la quale è mal condizionata. Usando la funzione cond() sulla matrice A si ottiene una condizionamento pari a: 1.5428e+09. Eseguendo poi la moltiplicazione della prima parentesi tonda, il condizionamento è pari a: 4.4897e+18. Andando così ad eseguire una divisione tra una matrice mal condizionata e un vettore, il risultato presenta degli errori.

4 Capitolo 4

4.1 Esercizio 15

Eseguendo il codice es15.m si ottengono i seguenti risultati:

Figure 3: risultati interpolazione

Per le ascisse di chebyshev, si ha una decrescita esponenziale dell'errore massimo per $n \leq 25$ per poi assestarsi a circa $2 \cdot 10^{-15}$ per n successivi. Per quanto riguarda le ascisse equidistanti invece, si può notare come l'errore massimo torni a crescere esponenzialmente per n > 25. I risultati confermano il mal condizionamento del problema di interpolazione polinomiale quando vengono usate ascisse d'interpolazione equidistanti,

4.2 Esercizio 16

Eseguendo es16.m si ottiene:

Figure 4: risultati interpolazione hermite

Si può notare come, rispetto all'interpolazione classica, l'errore decresca più rapidamente per $n \le 15$. Anche in questo caso l'errore commesso usando le ascisse di chebyshev è migliore in confronto al caso delle ascisse equidistanti(eccetto per n = 15).

4.3 Esercizio 17

```
1
    function output=splinenat(x,y,xq)
2
3
   % output=splinenat(x,y,xq)
    %funzione che calcola la spline cubica naturale.
4
5
    %Input:
6
        x=vettore delle ascisse su cui calcolare la spline
    %
 7
        y=vettore dei valori di f(x), con x ascissa
    %
8
        xq= insieme delle ascisse di cui si vuole sapere il valore della spline
    %
9
        output=vettore delle approssimazioni sulle ascisse xq
   %
11
12
   n=length(x);
13
   l=length(xq);
   if(length(y)~=n), error(dati in input con dimensioni differenti);end
14
15
    [x1,i]=sort(x);
16
   y1=y(i);
17
   m=spline0(x1,y1);
18
   h=diff(x1);
19
   df = diff(y1)./h;
    r=y(1:(n-1))-((h(1:n-1).^2)/6)*m(2:n);
20
   q=df(1:n-1)-h(1:n-1)*(m(2:n)-m(1:n-1));
22
   output=zeros(l,1);
23
   for i=1:l
24
      indg=find(xq(i) \le x1(2:n),1)+1;
```

```
25    indp=find(xq(i)>=x1(1:n-1),1,'last');
26    output(i)=(((xq(i)-x1(indp)).^3).*m(indg)+((x1(indg)-xq(i))^3).*m(indp))/(6*h(indp))+q(
        indp).*(xq(i)-x1(indp))+r(indp);
27    end
28    return
29    end
```

4.4 Esercizio 18

4.5 Esercizio 19

4.6 Esercizio 20

```
function y = minimiquadrati(xi, fi, m)

function y = minimiquadrati(xi, fi, m)

%

y = minimiquadrati(xi, fi, m)

calcola il valore del polinomio di approssimazione ai minimi quadrati di grado m

sulle ascisse xi. fi contiene i valori approssimati di una funzione f valutata su xi

flength(unique(xi)) < m+1
    error('ascisse distinte non sufficienti');

end

fi = fi(:);

V = fliplr(vander(xi));</pre>
```

```
12
   V = V(1:end, 1:m+1);
13
   QR = myqr(V);
14
   p = qrsolve(QR, fi);
   y = p(m+1)*ones(size(xi));
15
16
   for i = 0:m-1
17
        y = y.*xi+p(m-i);
18
   end
19
   end
```

Eseguendo es20.m si ottiene:

Si nota una decrescita delll'errore esponenziale fino a m=10, dove si assesta tra 10^{-3} e 10^{-4} .

5 Capitolo 5

5.1 Esercizio 21

```
function c = ncweights(n)
 2
 3
 4
      c = nc-weights(n)
 5
   % calcola i pesi della formula di newton cotes di grado n;
 6
 7
    if n \le 0
 8
        error('grado della formula non positivo');
 9
   end
10
   c=zeros(1,floor(n / 2 + 1));
11
   for j = 1:(ceil((n+1)/2))
12
        temp = (0:n);
13
        temp(j)=[];
        f = @(x)(prod(x-temp)/prod(j-1-temp));
14
        c(j) = integral(f, 0, n, 'ArrayValued', true);
15
16
   end
17
    c = [c flip(c)]; %sfrutto la simmetria dei pesi
18
   if mod(n,2)==0
19
        %elimino la copia del valore centrale prodotta da flip(c) e che risulta di troppo per
             n pari
20
        c(n/2+1) = [];
21
   end
22
   return
23
   end
```

Eseguendo lo script es21.m si ottiene:

n \c_{in}	0	1	2	3	4	5	6	7
1	$\frac{1}{2}$	$\frac{1}{2}$						
2	$\frac{1}{3}$	$\frac{4}{3}$	$\frac{1}{3}$					
3	$\frac{3}{8}$	$\frac{9}{8}$	$\frac{9}{8}$	$\frac{3}{8}$				
4	$\frac{14}{45}$	$\frac{64}{45}$	$\frac{8}{15}$	$\frac{64}{45}$	$\frac{14}{45}$			
5	$\frac{95}{288}$	$\frac{95}{288}$	$\frac{95}{288}$	$\frac{95}{288}$	$\frac{95}{288}$	$\frac{95}{288}$		
6	$\frac{41}{140}$	$\frac{54}{35}$	$\frac{27}{140}$	$\frac{68}{35}$	$\frac{27}{140}$	$\frac{54}{35}$	$\frac{41}{140}$	
7	$\frac{108}{355}$	$\frac{810}{559}$	$\frac{343}{640}$	$\frac{649}{536}$	$\frac{649}{536}$	$\frac{343}{640}$	$\frac{810}{559}$	$\frac{108}{355}$

Table 5: pesi della formula di Newton-Cotes fino al settimo grado

5.2 Esercizio 22

Sappiamo che k=(b-a) e $k_n=(b-a)\frac{1}{n}\sum_{i=0}^n |c_{in}|$. Il rapporto sarà dunque dato da:

$$\frac{k_n}{k} = \frac{(b-a)\frac{1}{n}\sum_{i=0}^{n}|c_{in}|}{b-a} = \frac{1}{n}\sum_{i=0}^{n}|c_{in}|$$

Calcolando $\frac{k_n}{k}$ per n=1,.....,50 (es22.m) si ottiene:

5.3 Esercizio 23

```
1
   function y = newtoncotes(f,a, b, n)
2
3
   % y= newtoncotes(f,a,b, n)
   % calcola l'approssimazione dell'integrale definito per la funzione f sull'intervallo [a,
4
   % utilizzando la formula di newton cotes di grado n.
5
6
7
8
   if a > b || n < 0
9
        error('dati inconsistenti');
10 end
11 |xi = linspace(a, b, n+1);
12 \mid fi = feval(f, xi);
13 h = (b-a) / n;
14 \mid c = ncweights(n);
15 \mid y = h*sum(fi.*c);
16 return
   end
17
```

RISULTATI PER N DA 1 A 9(es23.m):

grado della formula	valore integrale	errore
1	$4,28 \cdot 10^{-1}$	$2,53 \cdot 10^{-1}$
2	$2,13\cdot 10^{-1}$	$3.8 \cdot 10^{-2}$
3	$1,96 \cdot 10^{-1}$	$2, 1 \cdot 10^{-2}$
4	$1,80\cdot 10^{-1}$	$5 \cdot 10^{-3}$
5	$1,79 \cdot 10^{-1}$	$4 \cdot 10^{-3}$
6	$1,76 \cdot 10^{-1}$	$1 \cdot 10^{-3}$
7	$1,76 \cdot 10^{-1}$	$1 \cdot 10^{-3}$
8	$1,75 \cdot 10^{-1}$	0
9	$1,75 \cdot 10^{-1}$	0

5.4 Esercizio 24

```
function I = trapecomp(f, a, b, n)
2
3
4
   % I = trapecomp(f, a, b)
5
6
   % Approssimazione dell'integrale definito di f(x) con estremi a e b,
   % mediante la formula composita dei trapezi su n+1 ascisse equidistanti
8
   if a==b
9
        I=0;
   elseif n < 1 \mid \mid n \sim = fix(n)
11
        error('numero di ascisse non valido');
12
   else
13
        h=(b-a)/n;
14
        x=linspace(a, b, n+1);
15
        f = feval(f, x);
16
        I = h*(f(1)/2 + sum(f(2:n)) + f(n+1)/2);
17 end
18
   return
19
   end
```

```
1
    function I = simpcomp(f, a, b, n)
2
        %myFun — Description
3
4
        % I = simpcomp(f, a, b)
5
6
        % Approssimazione dell'integrale definito di f(x) con estremi a e b,
7
        % mediante la formula composita di Simpson su n+1 ascisse equidistanti(n pari)
8
        if a==b
9
            I=0;
        elseif n < 2 \mid \mid n/2 \sim = fix(n/2)
11
            error('numero di ascisse non valido');
12
        else
13
            h=(b-a)/n;
            x=linspace(a, b, n+1);
14
15
            f = feval(f, x);
16
            I = (h/3) * (f(1) + f(n+1) + 4*sum(f(2:2:n)) + 2*sum(f(3:2:n-1)));
17
        end
18
        return
19
        end
```

Approssimando $\int_{-1}^{1.1} tan(x)dx$ con le due formule si ottiene:

intervalli\formula	trapezi composita	simpson composita
2	0.266403558406035	0.266403558406035
4	0.203432804450016	0.182442553131343
6	0.188498346613972	0.177333443886033
8	0.182789408875225	0.175908277016961
10	0.180034803521960	0.175392868382289
12	0.178504015707472	0.175172572071972
14	0.177568218195411	0.175066546519247
16	0.176955413111201	0.175010747856527
18	0.176532709616469	0.174979254439942
20	0.176229037552030	0.174960448895386

Table 6: risultati di es24.m

La formula composita di simpson converge più rapidamente ed è più precisa rispetto alla formula dei trapezi

5.5 Esercizio 25

```
function [I2, points] = adaptrap(f, a, b, tol, fa, fb)
2
3
4
   % Syntax: [I2, points] = adaptrap(f, a, b, tol, fa, fb)
5
6
7
   global points
8
   delta = 0.5;
   if nargin<=4
9
        fa = feval(f, a );
        fb = feval(f, b );
11
12
        if nargout==2
            points = [a fa; b fb];
14
15
            points = [];
16
        end
```

```
17 end
18 h = b-a;
19 |x1 = (a+b)/2;
20 f1 = feval(f, x1);
21 | if ~isempty(points)
22
        points = [points; [x1 f1]];
23 end
24 | I1 = .5*h*(fa+fb);
25 \mid I2 = .5*(I1+h*f1);
26
   e = abs(I2-I1)/3;
27
   if e>tol || abs(b—a) > delta
28
        I2 = adaptrap(f, a, x1, tol/2, fa, f1) + adaptrap(f, x1, b, tol/2, f1, fb);
29
   end
30 return
31
   end
```

```
function [I2, points] = adapsim(f, a, b, tol, fa, f1, fb)
    % [I2, points] = adapsim(f, a, b, tol, fa, f1, fb)
 3
    % Approssimazione dell'integrale definito di f(x) con estremi a e b,
    % mediante la formula adattiva di simpson
 4
 5
   global points
 6
   delta = 0.5;
 7
   x1 = (a+b)/2;
 8
   if nargin<=4
9
        fa = feval(f, a );
        fb = feval(f, b );
        f1 = feval(f, x1);
11
12
        if nargout==2
13
            points = [a fa;x1 f1; b fb];
14
        else
15
            points = [];
16
        end
17
   end
18
   h = (b-a)/6;
19
   x2 = (a+x1)/2;
20 | x3 = (x1+b)/2;
21 \mid f2 = feval(f, x2);
22 \mid f3 = feval(f, x3);
23
   if ~isempty(points)
24
        points = [points; [x2 f2; x3 f3]];
25 \quad \boxed{\text{end}}
26 | I1 = h*(fa+fb+4*f1);
27 \mid I2 = .5*h*(fa+4*f2+2*f1+4*f3+fb);
28 | e = abs(I2-I1)/15;
29 \mid if e>tol \mid \mid abs(b-a) > delta
        I2 = adapsim(f, a, x1, tol/2, fa, f2, f1) + adapsim(f, x1, b, tol/2, f1, f3, fb);
31 | end
32
   return
    end
```

Approssimando
$$\int_{-1}^1 \frac{1}{1+10^2 x^2} dx$$
 con le due formule si ottiene:

tolleranza\formula	trapezi adattiva	simpson adattiva
10^{-2}	0.295559711784128, punti = 21	0.281297643062670, punti = 17
10^{-3}	0.294585368185034, punti = 93	0.281297643062670, punti = 17
10^{-4}	0.294274200873635, punti = 277	0.294259338419631, punti = 41
10^{-5}	0.294230142164878, punti = 793	0.294227809768005, punti = 81
10^{-6}	0.294226019603178, punti = 2692	0.294225764620384, punti = 145

Table 7: risultati di es25.m

Per ciascuna formula, l'operazione che comporta maggior costo computazionale ad ogni chiamata è la valutazione funzionale dei punti di un sottointervallo. Poichè ogni punto viene valutato una sola volta, possiamo confrontare il costo delle due formule andando a vedere quanti punti aggiuntivi sono stati utilizzati. Osservando i dati riportati nella tabella 7, è palese come la formula di simpson adattiva convergà più rapidamente rispetto alla formula dei trapezi adattiva.

6 Codici ausiliari

6.1 Esercizio 6

Listing 1: es6.m

```
f = @(x)(x-\cos(x));
 2
   f1 = @(x)(1+sin(x));
 3
 4 | x0 = 0;
 5 | x1 = 1;
 6 \mid x=zeros(4,4);
 7
   v = zeros(4, 4);
 8
   for i=3:3:12
9
       [x(1, i/3), y(1, i/3)] = bisezione(f, x0, x1, 10^(-i));
       [x(2, i/3), y(2, i/3)] = newton(f, f1, x0, 10^(-i));
11
12
       [x(3, i/3), y(3, i/3)] = corde(f, f1, x0, 10^(-i));
13
       [x(4,i/3), y(4, i/3)] = secanti(f, x0, x1, 10^(-i), 100);
14 \mid \mathsf{end}
15 | row_names = {'bisezione', 'newton', 'corde', 'secanti'};
16 | colnames = \{'10^-3', '10^-6', '10^-9', '10^-12'\};
   values = array2table(x,'RowNames',row_names,'VariableNames',colnames);
17
18 | disp(values)
19 figure
20 | plot([3, 6, 9, 12], y', 'o-')
21 | title('iterazioni richieste per la convergenza al diminuire di tolx')
22 | xlabel('tolleranza = 10^{-x}')
23 | ylabel('iterazioni')
24 | legend({'bisezione', 'newton', 'corde', 'secanti'}, 'Location', 'northwest')
```

6.2 Esercizio 7

Listing 2: es7.m

```
f = @(x)(x^2*tan(x));
   f1 = @(x)(2*x*tan(x) + (x^2)/(cos(x)^2));
 3 \mid m = 3;
 4 \times 0 = 1;
 5 | y = zeros(3, 4);
   x=-1*ones(3,4);
 6
   for i=3:3:12
     [x(1, i/3), y(1, i/3)] = newton(f, f1, x0, 10^(-i));
 8
 9
     [x(2, i/3), y(2, i/3)] = newtonmod(f, f1, x0, m, 10^(-i));
     [x(3, i/3), y(3, i/3)] = aitken(f, f1, x0, 10^(-i));
11 end
12 | disp(x);
13 | disp(y);
row_names = {'newton', 'newton modificato', 'aitken'};
    colnames = \{'10^{-3}, '10^{-6}, '10^{-9}, '10^{-12}\};
16
    values = array2table(x,'RowNames',row_names,'VariableNames',colnames)
17
18 | format
19 | iterations = array2table(y, 'RowNames', row_names, 'VariableNames', colnames)
20 | plot([3, 6, 9, 12], y(1,1:end)','-o');
21 | hold on;
22 | plot([3, 6, 9, 12], y(2,1:end)','-o');
23 | plot([3, 6, 9, 12], y(3,1:end)','—')
```

```
title('iterazioni richieste per la convergenza al diminuire di tolx')

xlabel('tolleranza = 10^{-x}')
ylabel('iterazioni')
legend({'newton','newtonmod','aitken'},'Location','northwest')
```

6.3 Esercizio 15

Listing 3: es15.m

```
f = @(x)(cos((pi*x.^2)/2));
 2 | x = linspace(-1, 1, 100001);
3 linerrors = zeros(1, 40);
   chebyerrors = zeros(1, 40);
   for n = 1:40
5
6
       xlin = linspace(-1, 1, n+1);
7
       xcheby = chebyshev(-1,1,n+1);
8
       ylin = lagrange(xlin,f(xlin),x);
9
       ycheby = lagrange(xcheby,f(xcheby),x);
        linerrors(n) = norm(abs(f(x) - ylin), inf);
        chebyerrors(n) = norm(abs(f(x) - ycheby), inf);
11
12
   end
13
   semilogy(linerrors);
14 hold on;
15 | semilogy(chebyerrors);
16 | xlabel('numero di ascisse di interpolazione');
17 | ylabel('massimo errore di interpolazione');
18
   legend({'ascisse equidistanti', 'ascisse di chebyshev'}, 'Location', 'northeast');
```

6.4 Esercizio 16

Listing 4: es16.m

```
f = @(x)(cos((pi*x.^2)/2));
   f1 = @(x)(-pi*x.*sin((pi*x.^2)/2));
 3 \mid x = linspace(-1, 1, 100001);
   linerrors = zeros(1, 20);
   chebyerrors = zeros(1, 20);
6
   for n = 1:20
 7
       xlin = linspace(-1, 1, n+1);
        xcheby = chebyshev(-1,1, n+1);
8
9
       ylin = hermite(xlin,f(xlin),f1(xlin),x);
       ycheby = hermite(xcheby,f(xcheby),f1(xcheby),x);
11
       linerrors(n) = norm(abs(f(x) - ylin), inf);
        chebyerrors(n) = norm(abs(f(x) - ycheby), inf);
12
13
   end
14
   semilogy(linerrors);
15
   hold on;
   semilogy(chebyerrors);
16
   xlabel('numero di ascisse di interpolazione');
17
18
   ylabel('massimo errore di interpolazione');
19
   legend({'ascisse equidistanti', 'ascisse di chebyshev'},'Location','northeast');
```

6.5 Esercizio 18

Listing 5: es18.m

```
1 | f = @(x)(cos((pi*(x.^2))/2));
   x = linspace(-1, 1, 100001);
3 linerrors = zeros(1, 40);
4
   chebyerrors = zeros(1, 40);
5
   for n = 4:100
6
       xlin = linspace(-1, 1, n+1);
 7
       xcheby = chebyshev(-1,1,n+1);
8
       xcheby(1)=-1;
9
        xcheby(n+1)=1;
        ylin = splinenat(xlin,f(xlin),x);
11
       ycheby = splinenat(xcheby,f(xcheby),x);
12
       ylin=ylin';
13
       ycheby=ycheby';
14
        linerrors(n) = norm(abs(f(x) - ylin), inf);
15
        chebyerrors(n) = norm(abs(f(x) - ycheby), inf);
16 end
17
   semilogy(linerrors);
18
   hold on:
19
   semilogy(chebyerrors);
20 | xlabel('numero di ascisse di interpolazione');
21 | ylabel('massimo errore di interpolazione');
   legend({'ascisse equidistanti', 'ascisse di chebyshev'},'Location','northeast');
```

6.6 Esercizio 19

Listing 6: es19.m

```
f = @(x)(cos((pi*(x.^2))/2));
   x = linspace(-1, 1, 100001);
3 linerrors = zeros(1, 40);
   chebyerrors = zeros(1, 40);
4
5
   for n = 4:100
6
       xlin = linspace(-1, 1, n+1);
 7
       xcheby = chebyshev(-1,1,n+1);
8
       ylin = spline(xlin,f(xlin),x);
9
        ycheby = spline(xcheby, f(xcheby), x);
       linerrors(n) = norm(abs(f(x) - ylin), inf);
11
        chebyerrors(n) = norm(abs(f(x) - ycheby), inf);
12
   end
   semilogy(linerrors);
14 hold on;
   semilogy(chebyerrors);
16
   xlabel('numero di ascisse di interpolazione');
   ylabel('massimo errore di interpolazione');
17
   legend({'ascisse equidistanti', 'ascisse di chebyshev'},'Location','northeast');
```

6.7 Esercizio 20

Listing 7: es20.m

```
f = @(x)(cos((pi*x.^2)/2));
fp = @(x)(f(x) + 10^(-3)*rand(size(x)));
xi = -1 + 2*(0:10^4)/10^4;
fi = f(xi);
fpi = fp(xi);
errors=zeros(1, 20);
for m = 1:20
```

```
y = minimiquadrati(xi, fpi, m);
errors(m) = norm(abs(y—fi), inf);
end
semilogy(errors);
xlabel('grado del polinomio');
ylabel('errore di interpolazione massimo');
```

6.8 Esercizio 21

Listing 8: es21.m

```
for i = 1:7
    weights= rats(ncweights(i))
end
```

6.9 Esercizio 22

Listing 9: es22.m

```
rapp = zeros(1, 50);
for i = 1:50
    rapp(i) = sum(abs(ncweights(i)))/i;
end
semilogy(rapp);
xlabel('grado n della formula di Newton-Cotes');
ylabel('^{K_n}/_{K}');
```

6.10 Esercizio 23

Listing 10: es23.m

```
value = log(cos(1)/cos(1.1));
x = zeros(1,9);
errors=zeros(1, 9);
for i = 1:9
     x(i) = newtoncotes(@tan, -1,1.1, i);
errors(i) = abs(value—x(i));
end
```

6.11 Esercizio 24

Listing 11: es24.m

```
a = -1;
2
   b = 1.1;
3 \mid n = 10;
  itrap = zeros(1, n);
5
  isimp = zeros(1, n);
   for i = 1:n
6
        itrap(i) = trapecomp(@tan, a, b, i*2);
        isimp(i) = simpcomp(@tan, a, b, i*2);
8
9
   end
   integrali = [itrap; isimp];
   row_names = {'trapezi composta', 'simpson composta'};
12 | colnames = {'2','4','6','8','10','12','14','16','18','20'};
values = array2table(integrali, 'RowNames', row_names, 'VariableNames', colnames);
14
   disp(values);
```

6.12 Esercizio 25

Listing 12: es25.m

```
format long e
   f = @(x)(1/(1+100*x.^2));
 3 \mid a = -1;
   b = 1;
 5
   itrap = zeros(1, 5);
 6 | trap_points = zeros(1, 5);
   isimp = zeros(1, 5);
 8 simp_points = zeros(1, 5);
9
   for i = 1:5
10
        [itrap(i), points] = adaptrap(f, a, b, 10^{(-i-1)});
11
        trap_points(i) = length(points);
        [isimp(i), points] = adapsim(f, a, b, 10^(-i-1));
12
13
        simp_points(i) = length(points);
14
   end
15
   integrali = [itrap; isimp];
16 | npoints = [trap_points; simp_points];
17 | row_names = {'trapezi adattiva', 'simpson adattiva'};
18 | colnames = {'10^-2','10^-3','10^-4','10^-5','10^-6'};
   values = array2table(integrali, 'RowNames', row_names, 'VariableNames', colnames);
19
   npoints = array2table(npoints,'RowNames',row_names,'VariableNames',colnames);
21
   disp(values);
22 format
23
   disp(npoints);
```