What is Claimed:

1	1. A phased array antenna comprising:
2	a plurality of radiating elements arranged as orthogonal pairs in a
3	herringbone pattern, and
4	each radiating element includes multiple microstrips disposed
5.	conformally on a planar substrate.
1	2. The antenna of claim 1 wherein
2	each radiating element includes a dipole formed as a pair of dipole
3	microstrips extending from a pair of launch points.
1	3. The antenna of claim 2 wherein
2	each dipole microstrip of the pair of dipole microstrips extends
3	between one launch point of the pair of launch points and a top loading microstrip
4	and
5	the top loading microstrip provides a capacitive load to the dipole.
1	4. The antenna of claim 3 wherein
. 2	the top loading microstrip extends between parallel microstrips for
3	providing an additional capacitive load to the dipole, and

4	the pair of dipole microstrips are oriented substantially parallel an
5	sandwiched between the parallel microstrips.
1	5. The antenna of claim 1 wherein
2	each of the radiating elements is oriented approximately 45 degre
3	relative to an array scan axis.
1	6. The antenna of claim 1 wherein
2	the multiple microstrips are disposed approximately one-quarter
3	wavelength above a ground plane.
1	7. The antenna of claim 1 wherein
2	the planar substrate is mounted on a composite substrate having a
3	permittivity and permeability matched at a mid-band frequency of operation to
4	achieve an impedance of approximately 377 ohms.
1	8. The antenna of claim 7 wherein
2	the composite substrate is approximately 1/16 of a wavelength in thickness.
	9. The antenna of claim 7 wherein
!	the composite substrate is formed from a compound having electric
ı	and magnetic properties.

1		10.	The antenna of claim 7 wherein
2		the c	omposite substrate includes an effective dielectric constant of
3	approximate	ly 10.	
1		11.	The antenna of claim 7 wherein
2		the co	omposite substrate is mounted on a dielectric substrate having a
3	dielectric con	stant v	ralue of approximately 98.
1		12.	The antenna of claim 11 wherein
2		the di	electric substrate is approximately 3/16 of a wavelength in
3	thickness.		
1		13.	The antenna of claim 11 wherein
2		both t	he dielectric substrate and the composite substrate have an
3	approximate t	thickne	ss of 1/4 of a wavelength and yield an approximate thickness
ļ	reduction ratio	o of 6.6	5 to 1.
		14.	The antenna of claim 1 wherein
		the mu	ultiple microstrips are formed by etching the planar substrate.
		15.	The antenna of claim 1 wherein

2	the multiple microstrips are formed by depositing metallic strips on the
3	planar substrate.
1	16. The antenna of claim 1 wherein
2	the multiple microstrips are arranged to form a current sheet for an
3	aperture of the phased array antenna.
1	17. The antenna of claim 1 wherein the radiating elements are
2	arranged to provide mutual coupling to each other to extend operation at a low end
3	of the frequency band.
1	18. The antenna of claim 1 wherein
2	each radiating element is excited by a balanced transmission line.
1	19. The antenna of claim 1 wherein
2	each radiating element is connected to a transmit/receive network for
•	varying the amplitude and phase of a transmitted signal.
ļ	20. The antenna of claim 19 wherein
!	the transmit/receive network includes a receiver for determining
1	direction and phase of a received signal, and
	a processor for controlling the amplitude and phase of the transmitted
	signal based on the direction and phase of the received signal.

1 21. An antenna system comprising: a phased array formed of a plurality of radiating elements arranged in 2 a herringbone pattern, wherein the radiating elements are formed of multiple 3 microstrips disposed conformally on a planar substrate, and 4 a transmit/receive network connected to the radiating elements for 5 varying the amplitude and phase of a transmitted signal. 6 22. 1 The antenna system of claim 21 wherein the transmit/receive network includes a receiver for determining 2 direction and phase of a received signal, and 3 a processor for controlling the amplitude and phase of the transmitted 4 signal based on the direction and phase of the received signal. 5 23. The antenna system of claim 21 wherein 1 the transmit/receive network includes an array of modular transmitters 2 for exciting a corresponding array of the radiating elements. 3 A method of making a phased array antenna comprising the 1 24. steps of: 2 conformally forming multiple microstrips on a planar substrate, 3 (a) arranging the multiple microstrips in a herringbone pattern, and 4 (b)

3	(c) placing the multiple microstrips of the planar substrate
6	approximately one quarter of a wavelength above a ground plane.
. 1	25. The method of claim 24 including the step of:
2	placing a composite substrate and a dielectric substrate between the
3	planar substrate and the ground plane,
4	wherein the composite substrate has an effective dielectric constant of approximately 10 and the dielectric substrate has an effective dielectric constant of
6	approximately 98.
1	26. The method of claim 25 wherein
2	the composite substrate is made approximately 1/16 of a wavelength in thickness, and
4 5	the dielectric substrate is made approximately 3/16 of a wavelength in thickness.