Zusammenfassung von Neumann Algebren

Sebastian Bechtel

3. Februar 2017

1 Erster Kontakt

Eine *-Algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ heißt *Operatoralgebra*. Ist \mathcal{M} stop-abgeschlossen, so heißt \mathcal{M} von Neumann Algebra (vNA). Durch GNS-Darstellung lässt sich jede C*-Algebra als Operatoralgebra darstellen. Sei $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$, da der Schnitt von vNAen wieder vNA ist, existiert kleinste vNA vN(\mathcal{S}), die \mathcal{S} enthält. Ist \mathcal{S} Operatoralgebra, so gilt vN(\mathcal{S}) = $\overline{\mathcal{S}}^{stop}$, dies ist aber nicht offensichtlich, da Involution nicht stop-stetig ist!

Für $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ ist die Kommutante gegeben durch $\mathcal{M}' \coloneqq \{x \in \mathcal{B}(\mathcal{H}) : xy = yx \text{ für all } y \in \mathcal{M}\}$. Es gilt immer \mathcal{M}' stop-abgeschlossen und ist \mathcal{M} Operatoralgebra, so auch \mathcal{M}' , somit \mathcal{M}' vNA. Ferner gilt $1_{\mathcal{H}} \in \mathcal{M}'$ und $\mathcal{M}' = \mathcal{M}'''$ (wegen $\mathcal{M} \subset \mathcal{M}''$), also gilt für \mathcal{M} Operatoralgebra auch nach Bikommutantensatz (vgl. später) \mathcal{M}' vNA! Aus $\mathcal{M} \subset \mathcal{M}''$ folgt für \mathcal{M} Operatoralgebra, dass vN(\mathcal{M}) $\subset \mathcal{M}''$. Ist $1_{\mathcal{H}} \in \mathcal{M}$, so folgt mit Bikommutantensatz $\mathcal{M}'' \subset \text{vN}(\mathcal{M})'' = \text{vN}(\mathcal{M})$, also $\mathcal{M}'' = \text{vN}(\mathcal{M})$. Ist \mathcal{M} nicht s.a., geht alles schief: Die Matrizen $\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$ haben als Kommutante $\begin{pmatrix} b & c \\ 0 & b \end{pmatrix}$, also ist jene nicht s.a., somit folgt wegen $\mathcal{M}' = \mathcal{M}'''$, dass Bikommutantenbildung keine Selbstadjungiertheit herbeiführt.

1.1 Beispiel: L^{∞} ist vNA

Durch $L^{\infty}\ni g\mapsto M_g\in\mathcal{B}(L^2)$ wird L^{∞} als Operatoralgebra dargestellt, vgl. Borel-FK. Ist (Ω,Σ,μ) lokalisierbar, so zerlege $L^2(\Omega)$ in direkte Summe $\oplus_i L^2(\Omega_i)$ mit $\mu(\Omega_i)<\infty$. Zeige dann für einen solchen Summanden, dass er seine eigene Kommutante ist, somit vNA: Sei $T\in L^{\infty}(\Omega)'$ und setze $f\coloneqq T(1)\in L^2(\Omega)$. Es gilt für $g\in L^{\infty}$ nun $T(g)=TM_g(1)=M_gT(1)=gf=M_f(g)$, also $T|_{L^{\infty}}=M_f|_{L^{\infty}}$, somit $M_f:L^{\infty}\subset L^2\to L^2$ beschränkt. Wäre $f\not\in L^{\infty}$, würde es für $n\in\mathbb{N}$ messbare Mengen $\Omega_n\subset\Omega$ geben mit $|f(\omega)|\geq n$ f.ü. auf Ω_n und $g_n:=\chi_{\Omega_n}/\mu(\Omega_n)^{1/2}$ würde Beschränktheit auf L^{∞} widersprechen, also $f\in L^{\infty}$ und $M_f=T$ auf dichter Teilmenge, also $T\in L^{\infty}$.

2 Tensorprodukte

2.1 algebraische Theorie

Seien E, F Vektorräume, E^*, F^* ihre algebraischen Duale. Bezeichne mit $\operatorname{Bil}(E^*, F^*)$ die bilinearen Funktionale auf $E^* \times F^*$. Für $e \in E, f \in F$ definiere $e \otimes f \in \operatorname{Bil}(E^*, F^*)$ via $e \otimes f(e', f') := e'(e)f'(f)$. Es heißt $e \otimes f$ elementarer Tensor und $E \otimes F := \operatorname{LH}\{e \otimes f : e \in E, f \in F\}$ heißt das Tensorprodukt von E mit F. Die Zuordnung $i : E \times F \ni (e, f) \mapsto e \otimes f \in E \otimes F$ ist bilinear und aus $0 \neq e \in E, 0 \neq f \in F$ folgt $e \otimes f \neq 0$, jedoch ist i nicht injektiv. Ist (e_i) Basis von E, (f_j) Basis von F, dann $\{e_i \otimes f_j : i \in I, j \in J\}$ Basis von $E \otimes F$. Für einen weiteren Vektorraum W gilt die Isomorphie $\operatorname{Bil}(E \times F, W) \cong \operatorname{Lin}(E \otimes F, W)$.

Darstellung eines Tensors ist nicht eindeutig, aber für eine minimale Darstellung (d.h. Anzahl der Summanden ist minimal) $x = \sum_{i=1}^{n} e_i \otimes f_i$ gilt $\{e_1, \ldots, e_n\}$ sowie $\{f_1, \ldots, f_n\}$ l.u. (und umgekehrt, vgl. endlich-Rang Operatoren!) und ist $0 = \sum_{i=1}^{n} e_i \otimes f_i$ und $\{e_1, \ldots, e_n\}$ l.u., so folgt $f_i = 0$ für alle i.

2.1.1 Tensorprodukt von linearen Abbildungen

Für $A \in \text{Lin}(E, E_1), B \in \text{Lin}(F, F_1)$ gibt es eindeutige (universelle Eigenschaft!) lineare Abbildung $A \boxtimes B : E \otimes F \ni (e, f) \mapsto Ae \otimes Bf \in E_1 \otimes F_1$. Wir wollen gerne $A \otimes B$ für $A \boxtimes B$ schreiben. Dazu identifizieren wir $\text{Lin}(E, E_1) \otimes \text{Lin}(F, F_1)$ mit einem Unterraum von $\text{Lin}(E \otimes F, E_1 \otimes F_1)$. Wegen $\text{Lin}(E, E_1) \times \text{Lin}(F, F_1) \ni (A, B) \mapsto A \boxtimes B \in \text{Lin}(E \otimes F, E_1 \otimes F_1)$ bilinear gibt es $\beta : \text{Lin}(E, E_1) \otimes \text{Lin}(F, F_1) \to \text{Lin}(E \otimes F, E_1 \otimes F_1)$ mit $\beta(A \otimes B) = A \boxtimes B$. Man zeigt, dass β injektiv ist und kann dann wie gewünscht $A \otimes B$ mit $A \boxtimes B$ identizifieren.

2.1.2 Tensorprodukt von Algebren

Sind \mathcal{A}, \mathcal{B} Algebren, so gibt es eindeutige Multiplikation auf $\mathcal{A} \otimes \mathcal{B}$ mit $x \otimes y \cdot x' \otimes y' = xx' \otimes yy'$.

2.1.3 n-faches Tensorprodukt über Linearformen

Erhalte Einbettung $E_1 \otimes \cdots \otimes E_n \hookrightarrow \text{Mult}(E_1^* \times \cdots \times E_n^*, \mathbb{K})$ via $m(e_1 \otimes \cdots \otimes e_n) := ((e'_1, \dots, e'_n) \mapsto e'_1(e_1) \cdot \cdots \cdot e'_n(e_n)$. Dann $E_1 \otimes \cdots \otimes E_n \cong m(E_1 \otimes \cdots \otimes E_n)$.

2.1.4 Tensorprodukt über endlich-Rang Operatoren

Für $e \in E, f \in F$ definiere $t_{e,f} : E^* \ni e' \mapsto \langle e, e' \rangle f$, also $t_{e,f} \in \text{Lin}(E^*, F)$. Es ist $E \times F \ni (e, f) \mapsto t_{e,f}$ bilinear, also gibt es $\beta : E \otimes F \to \text{Lin}(E^*, F)$ mit $\beta(e \otimes f) = t_{e,f}$, welches injektiv ist, also $E \otimes F \hookrightarrow \text{Lin}(E^*, F)$.

Ist $E \neq E^{**}$, so ist β sicher nicht surjektiv!

Der Rang eines Tensors $x \in E \otimes F$ ist gegeben durch Rang $(\beta(x))$ und stimmt mit der Länge einer minimalen Darstellung überein.

Betrachte nun $\beta: E^* \otimes F \to \mathcal{F}(E^{**}, F)$. Diese ist nach wie vor injektiv, aber i.A. nicht surjektiv. Wenn wir jedoch $\beta(e' \otimes f)|_{E \subset E^{**}}$ betrachten, so bleibt die Zuordnung injektiv und wird sogar surjektiv, also $E^* \otimes F \cong \mathcal{F}(E, F)$. Wir können also die endlich-Rang Operatoren als Tensorprodukt verstehen! Dies gilt ferner für die topologischen Dualräume.

2.1.5 Beispiel: Matrizen als TP und ihre Spur

Betrachte $(\mathbb{K}^n)^* \otimes \mathbb{K}^m$. Es ist $t_{e'_j,e_i} = e_{ij}$, also $m \times n$ Matrizen sind Tensorprodukt. Ist A eine $m \times n$ -Matrix mit Zeilen $a_1, \ldots, a_m \in (\mathbb{K}^n)^*$, so ist $A = \sum_{j=1}^m a_j \otimes e_j$, analog: sind $b_1, \ldots, b_n \in \mathbb{K}^m$ die Spalten von A, so gilt $A = \sum_{i=1}^n e_i \otimes b_i$. Definiere $(\mathbb{K}^n)^* \times \mathbb{K}^n \ni (x', y) \mapsto \langle y, x' \rangle$ bilinear, diese besitzt Fortsetzung $\tau : (\mathbb{K}^n)^* \otimes \mathbb{K}^n = M_n \to \mathbb{K}$ mit $\tau(A) = \operatorname{Spur}(A)$. Nutze dies später, um den Begriff der Spur zu verallgemeinern!

2.2 topologische Tensorprodukte

2.2.1 Tensorprodukte von Hilberträumen

Bezeichne mit \odot das algebraische Tensorprodukt. Sind \mathcal{H}, \mathcal{K} Hilberträume, so gibt es auf $\mathcal{H} \odot \mathcal{K}$ ein eindeutiges Skalarprodukt $\langle \cdot, \cdot \rangle_{HS}$ mit $\langle x \otimes y, x' \otimes y' \rangle_{HS} = \langle x, x' \rangle_{\mathcal{H}} \langle y, y' \rangle_{\mathcal{K}}$. Also ist $(\mathcal{H} \otimes \mathcal{K}, \langle \cdot, \cdot \rangle_{HS})$ Prähilbertraum. Dessen Vervollständigung heißt $\mathit{Hilbertraumtensorprodukt}$ von \mathcal{H} und \mathcal{K} , schreibe $\mathcal{H} \otimes_{HS} \mathcal{K}$ bzw. $\mathcal{H} \otimes \mathcal{K}$. Die induzierte Norm $\| \cdot \|_{HS}$ ist eine $\mathit{Kreuznorn}, d.h. \| x \otimes y \|_{HS} = \| x \|_{\mathcal{H}} \| y \|_{\mathcal{K}}$ (somit ist $B: \mathcal{H} \times \mathcal{K} \to \mathcal{W}$ bilinear genau dann beschränkt, wenn es $T_B: \mathcal{H} \odot \mathcal{K} \to \mathcal{W}$ ist, also erhalten wir eine topologische Version der universellen Eigenschaft für $\mathcal{H} \otimes \mathcal{K}$). Außerdem folgt aus $x_i \to x, y_j \to y$, dass $x_i \otimes y_j \to x \otimes y$ und sind $(e_i), (f_j)$ ONBs von \mathcal{H} bzw. \mathcal{K} , so ist $\{e_i \otimes f_j: i \in I, j \in J\}$ ONB von $\mathcal{H} \otimes \mathcal{K}$.

Beispiele: 1) Es gilt $l^2(I) \otimes l^2(J) = l^2(I \times J)$ (Dimensionsvergleich!) 2) Sind $(\Omega_1, \Sigma_1, \mu_1), (\Omega_2, \Sigma_2, \mu_2)$ σ -endliche Maßräume, dann gilt $L^2(\Omega_1 \times \Omega_2) \cong L^2(\Omega_1) \otimes L^2(\Omega_2)$ und der unitäre Operator ist eindeutig mit $U(f_1 \otimes f_2) = f_1(\omega_1) f_2(\omega_2)$ (nutze topologische universelle Eigenschaft!) Sind $A \in \mathcal{B}(\mathcal{H}), B \in \mathcal{B}(\mathcal{K})$, denn gibt es eindeutigen Operator $A \otimes B \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ mit $A \otimes B(x \otimes y) = Ax \otimes By$ und es gilt $||A \otimes B|| = ||A|| ||B||$. Eindeutigkeit folgt aus der Eindeutigkeit auf dem dichten algebraischen Tensorprodukt. Zeige $||A \otimes B|| = ||A|| ||B||$ auf $\mathcal{H} \odot \mathcal{K}$, dann stetige Fortsetzung. Nutze $A \otimes B = (A \otimes 1_{\mathcal{K}})(1_{\mathcal{H}} \otimes B)$ (denn $((A \otimes 1_{\mathcal{K}})(1_{\mathcal{H}} \otimes B))(x \otimes y) = A \otimes 1_{\mathcal{K}}(x \otimes By) = Ax \otimes By$) und $||A \otimes 1_{\mathcal{K}}|| \leq ||A||$. Außerdem gilt $(A \otimes B)^* = A^* \otimes B^*$.

2.3 Tensorprodukte auf Banachräumen

Seien E, F Banachräume. Auf $E \odot F$ wird durch $\|z\|_{\pi} \coloneqq \inf\{\sum_i \|x_i\|_E \|y_i\|_F : z = \sum_i x_i \otimes y_i\}$ eine Kreuznorm definiert, welche *projektive Norm* oder *maximale Norm* heißt. Motivation: Für eine Kreuznorm $\|\cdot\|$ gilt $\|z\| \le \sum_i \|x_i\| \|y_i\|$ wegen Dreiecksungleichung und Kreuznormeigenschaft. Beachte, dass Supremum keinen Sinn machen würde, da wegen $0 = x \otimes y + (-x) \otimes y$ für $x, y \ne 0$ bereits die Definitheit verletzt wäre.

Wiederum auf $E \odot F$ definieren wir eine weiter Norm, genannt injektive Norm oder ε -Tensornorm, durch $||z||_{\varepsilon} := \sup\{|e' \otimes f'(z)| : e' \in E_1^*, f' \in F_1^*\}$. Die Kreuznormeigenschaft folgt aus Hahn-Banach: zu $x \in E, y \in F$ gibt es $e' \in E_1^*, f' \in F_1^*$ mit $e'(x) = ||x||_E, f'(y) = ||y||_F$, also $||x \otimes y||_{\varepsilon} \ge |e' \otimes f'(x \otimes y)| = ||x||_E ||y||_F$.

3 Die vNA $\mathcal{B}(\mathcal{H})$

3.1 Projektionen

Ein $p \in \mathcal{B}(\mathcal{H})$ heißt Projektion, falls $p^2 = p$ gilt und orthogonale Projektion, falls p Projektion und $p^* = p$. Man nennt $v \in \mathcal{B}(\mathcal{H})$ eine partielle Isometrie, falls v^*v eine orthogonale Projektion ist (automatisch s.a., Projektion ist zu prüfen). Ist v Isometrie so ist $\mathcal{N}(v)^{\perp}$ der Anfangsraum von v und $\overline{\mathcal{R}(v)}$ der Zielraum von v. Es ist v^*v orthogonale Projektion auf den Anfangsraum, genannt initiale Projektion, und vv^* ist orthogonale Projektion auf den Zielraum, genannt finale Projektion. Zwischen Anfangsraum und Zielraum ist eine partielle Isometrie eine Isometrie. Für $x \in \mathcal{B}(\mathcal{H})$ definieren wir Anfangsraum und Zielraum wie oben und bezeichnen die initiale Projektion als Rechtsträger $s_r(x)$ und die finale Projektion als Linksträger $s_l(x)$. Für x s.a. definiere den Träger $s(x) \coloneqq s_l(x) = s_r(x)$ (wegen $\mathcal{N}(x)^{\perp} = \overline{\mathcal{R}(x^*)} = \overline{\mathcal{R}(x)}$). Es gilt (analog zu den partiellen Isometrien!) $s_l(x) = s(xx^*)$ und $s_r(x) = s(x^*x)$.

3.1.1 polare Zerlegung

Eine komplexe Zahl z lässt sich schreiben als $z = e^{i\varphi}|z|$, also $|z| \ge 0$ und