

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ- IFCE

CAMPUS JUAZEIRO DO NORTE CURSO SUPERIOR EM AUTOMAÇÃO INDUSTRIAL PROGRAMA DE UNIDADE DIDÁTICA – PUD

Disciplina: Eletrônica de potência

Código: AUT2420

Carga Horária Teórica: 60, Prática 20, Total: 80

Número de créditos: 4

Código pré-requisitos: AUT2416, AUT2411

Semestre: 4°
Nível: Superior

Ementa

Dispositivos semicondutores de potência; Software de Simulação dedicado; Conversores CA-CA: Circuitos Retificadores; Conversores CC-CC; Conversores CC-CA: Inversores.

Objetivo

- Conhecer o princípio de funcionamento dos semicondutores de potência
- Conversores CA-CC e suas topologias
- Conversores CC-CC e suas topologias
- Conversores CC-CA e suas topologias
- Simular circuitos dos conversores CA-CC, CC-CC e CC-CA utilizando software dedicado.

Programa

- Software de simulação dedicado.
- Desenho dos esquemas elétricos.
- Configuração dos parâmetros de simulação.
- Interpretação dos dados de simulação.
- Dispositivos semicondutores de potência.
- Diodo de potência.
- Tiristores (SCR, DIAC, TRIAC e GTO).
- MOSFET e IGBT.
- Simulação dos dispositivos semicondutores.
- Conversores CA-CC: Circuitos retificadores.
- Retificadores monofásicos controlados e não controlados.
- Retificadores trifásicos controlados e não controlados.
- Simulação dos circuitos retificadores monofásicos e trifásicos.
- Conversores CC-CC: Reguladores chaveados não isolados.

continua...

continuação PUD Eletrônica de potência

- Conversor CC-CC Buck.
- Conversor CC-CC Boost.
- Simulação de conversores CC-CC Buck e Boost.
- Projeto e implementação de um conversor CC-CC Buck ou Boost.
- Conversores CC-CA: Inversores.
- Inversor monofásico de meia ponte (half bridge).
- Inversor monofásico de ponte completa (full bridge).
- Inversor monofásico de ponte completa (full bridge) com modulação PWM e Filtro de saída.
- Simulação dos inversores monofásicos.
- Projeto e implementação de um inversor monofásico half bridge ou full bridge.

Metodologia de ensino

Aulas expositivas de caráter informativo com questionamentos críticos sobre os assuntos abordados em sala com os estudantes.

Aulas práticas em laboratório (Lab. de medidas elétricas e Eletricidade e Lab. de Informática).

Aulas para esclarecimento de dúvidas.

Simulação computacional utilizando software dedicado licenciado para o IFCE ou nas versões lite, gratuita ou trial.

Projetos para implementação de circuitos.

Visita técnica.

Recursos

Livros contidos na bibliografia.

Pesquisa em artigos científicos e livros não contidos na bibliografia.

Quadro; pincel e datashow.

Laboratório específico.

Avaliação

Avaliação de aprendizagem escrita (conforme o R.O.D.).

Práticas individuais ou em grupo em laboratório.

Relatório de prática.

Listas de exercícios.

Poderão ser inseridas outras avaliações durante o semestre letivo.

Bibliografia básica

continua...

continuação PUD Eletrônica de potência

- ALMEIDA, José Luiz A. Dispositivos semicondutores: Tiristores: controle de potência em CC e CA. 12 ed. São Paulo: Editora Érica, 2011.
- RASHID, Muhammad H. Eletrônica de potência: Dispositivos, circuitos e aplicações. 4 ed. São Paulo: Pearson Education do Brasil, 2014. Disponível em: http://bvu.ifce.edu.br/ > Acesso em 15 jun. 2017.
- AHMED, Ashfaq. Eletrônica de potência. São Paulo: Pearson Prentice Hall, 2000.

Bibliografia complementar

- BARBI, Ivo. Eletrônica de Potência. 4ª Ed. Florianópolis: Edição do Autor, 2002.
- FIGINI, Gianfranco. Eletrônica industrial: circuitos e aplicações. São Paulo: Hemus S.A., 2002.
- LANDER, Cyril W. Eletrônica Industrial: teoria e aplicações. 2ª Ed. São Paulo: Makron Books, 1996.
- HART, Daniel W. Eletrônica de Potência: análise e projetos de circuitos. Porto Alegre: AMGH, 2012.
- ARRABAÇA, Devair A.; GIMENEZ, Salvador P. Eletrônica de Potência: conversores de energia (CA/CC): teoria, prática e simulação. 1ª Ed. Editora Érica LTDA. São Paulo SP, 2014.
- ARRABAÇA, Devair A.; GIMENEZ, Salvador P. Conversores de Energia Elétrica CC/CC para Aplicações em Eletrônica de Potência. 1ª Ed. Editora Érica LTDA. São Paulo SP, 2013.
- MOHAN, Ned. Eletrônica de Potência: curso introdutório. 1ª Ed. Rio de Janeiro: LTC, 2014

coordenação	departamento pedagogico