Рассмотрим следующую пятимерную систему с неотрицательными переменными $x=(x_1,x_2,x_3,x_4,x_5)$ и положительными параметрами:

$$\begin{cases} \dot{x}_{1} = r_{1}x_{1} \left(1 - \frac{x_{1}}{c_{1}}\right) - \frac{1}{x_{4} + e_{1}} (\alpha_{1}x_{2} + \alpha_{2}x_{3}) \frac{x_{1}}{x_{1} + k_{1}}, \\ \dot{x}_{2} = r_{2}x_{2} \left(1 - \frac{x_{2}}{c_{2}}\right) + \frac{x_{5}}{k_{4} + x_{5}} a_{1} \frac{1}{x_{4} + e_{2}} - \alpha_{3} \frac{x_{1}}{x_{1} + k_{2}} x_{2}, \\ \dot{x}_{3} = a_{2} \frac{x_{1}}{k_{5} + x_{4}} - \mu_{1}x_{3} - \alpha_{4} \frac{x_{1}}{x_{1} + k_{3}} x_{3}, \\ \dot{x}_{4} = s_{1} + b_{1}x_{1} - \mu_{2}x_{4}, \\ \dot{x}_{5} = b_{2}x_{3} - \mu_{3}x_{5}, \end{cases}$$

$$(1)$$

где $t \ge 0$ — время;

 x_1 — количество клеток глиомы;

 x_2 — количество макрофагов;

 x_3 — количество т-киллеров;

 x_4 — количество белков TGF- β ;

 x_5 — количество γ -интерферонов.

Также из биологических соображений будем полагать, что начальные условия имеют следующий вид:

$$x_1(0) \ge 0, \ x_2(0) \ge 0, \ x_3(0) \ge 0, \ x_4(0) \ge 0, \ x_5(0) \ge 0.$$
 (2)

Введем следующие обозначения:

$$\mathbb{R}^n_{+,0} = \{ x = (x_1, \dots, x_n) \in \mathbb{R}^n : x_i \ge 0, i = \overline{1,n} \}, \, \mathbb{R}_{+,0} = \{ x \in \mathbb{R} : x \ge 0 \}.$$

Для системы (1) покажем, что множество $D = \mathbb{R}^5_{+,0} = \{x \geq 0\}$ положительно инвариантно, проведем исследование инвариантности пересечений множества D с координатными плоскостями, а также систем, являющихся ограничениями (1) на инвариантные координатные плоскости. Кроме того, найдем компактное множество, содержащее аттрактор системы.

Теорема 1. Множество $D = \mathbb{R}^5_{+,0}$ является положительно инвариантным для системы (1).

 \blacktriangleleft Заметим, что граница множества D — множество точек с хотя бы одной нулевой координатой. Таким образом, достаточно показать, для траекторий системы, начинающихся на границе D, справедливо, что

$$x_i(t) \ge 0, i = \overline{1,5}, t \in [0, \varepsilon), \varepsilon > 0.$$

Рассмотрим случай, когда

$$x_1(0) = 0, x_2(0) > 0, x_3(0) > 0, x_4(0) > 0, x_5(0) > 0.$$
 (3)

Для каждого такого начального условия существует $\varepsilon_1 > 0$ такое, что существует, причем единственное, решение задачи Коши:

$$x_1 = x_1(t), x_2 = x_2(t), x_3 = x_3(t), x_4 = x_4(t), x_5 = x_5(t), t \in [0, \varepsilon_1),$$

обращающее систему (1) в тождество. Рассмотрим исходную систему при t=0:

$$\begin{cases} \dot{x}_1(0) = 0, \\ \dot{x}_2(0) = r_2 x_2(0) \left(1 - \frac{x_2(0)}{c_2} \right) + \frac{x_5(0)}{k_4 + x_5(0)} a_1 \frac{1}{x_4(0) + e_2}, \\ \dot{x}_3(0) = -\mu_1 x_3(0), \\ \dot{x}_4(0) = s_1 - \mu_2 x_4(0), \\ \dot{x}_5(0) = b_2 x_3(0) - \mu_3 x_5(0). \end{cases}$$

Решение $x_1(t) \equiv 0$ удовлетворяет начальным условиям $x_1(0) = 0$, $\dot{x}_1(0) = 0$. При подстановке (1) первое уравнение становится тождеством, а сама система преобразуется к следующему виду:

$$\begin{cases} \dot{x}_2(t) = r_2 x_2(t) \left(1 - \frac{x_2(t)}{c_2} \right) + \frac{x_5(t)}{k_4 + x_5(t)} a_1 \frac{1}{x_4(t) + e_2}, \\ \dot{x}_3(t) = -\mu_1 x_3(t), \\ \dot{x}_4(t) = s_1 - \mu_2 x_4(t), \\ \dot{x}_5(t) = b_2 x_3(t) - \mu_3 x_5(t). \end{cases}$$

Определив $x_2(t), \dots, x_5(t)$ как решения системы с пониженным порядком, из единственности решения задачи Коши имеем, что

$$x_1 \equiv 0, x_2 = x_2(t), x_3 = x_3(t), x_4 = x_4(t), x_5 = x_5(t), t \in [0, \varepsilon_1),$$

является решением исходной системы с начальными условиями (3), лежащим на плоскости $x_1=0$ и не покидающим область D через неё.

Для каждого из начальных условий вида

$$x_1(0) \ge 0, x_2(0) \ge 0, x_3(0) \ge 0, x_4(0) = 0, x_5(0) \ge 0,$$

имеется некое $\varepsilon_2 > 0$ такое, что существует единственное решение задачи Коши на полу-

интервале $t \in [0, \epsilon_2)$, обращающее систему (1) в тождество. В этом случае

$$\dot{x}_4(0) = s_1 + b_1 x_1(0) > 0,$$

T.e.

$$x_4(t) > 0, t \in (0, \tilde{\varepsilon}_2), \tilde{\varepsilon}_2 \leq \varepsilon_2$$

и траектория не выходит из D через плоскость $x_4 = 0$.

Рассмотрим случай, когда

$$x_1(0) \ge 0, x_2(0) \ge 0, x_3(0) = 0, x_4(0) \ge 0, x_5(0) \ge 0.$$
 (4)

Для каждого такого начального условия имеется $\varepsilon_3 > 0$ такое, что существует единственное решение задачи Коши на $t \in [0, \varepsilon_3)$ обращающее систему (1) в тождество. Рассмотрим исходную систему при t = 0:

$$\begin{cases} \dot{x}_1(0) = r_1 x_1(0) \left(1 - \frac{x_1(0)}{c_1}\right) - \frac{\alpha_1 x_2(0)}{x_4(0) + e_1} \frac{x_1(0)}{x_1(0) + k_1}, \\ \dot{x}_2(0) = r_2 x_2(0) \left(1 - \frac{x_2(0)}{c_2}\right) + \frac{x_5(0)}{k_4 + x_5(0)} a_1 \frac{1}{x_4(0) + e_2} - \alpha_3 \frac{x_1(0)}{x_1(0) + k_2} x_2(0), \\ \dot{x}_3(0) = a_2 \frac{x_1(0)}{k_5 + x_4(0)}, \\ \dot{x}_4(0) = s_1 + b_1 x_1(0) - \mu_2 x_4(0), \\ \dot{x}_5(0) = -\mu_3 x_5(0). \end{cases}$$

Если $x_1(0) > 0$, то и $\dot{x}_3(0) > 0$, из чего $x_1(t) > 0$, $t \in (0, \tilde{\varepsilon}_3)$, $\tilde{\varepsilon}_3 \leq \varepsilon_3$ и траектория не выходит из D через плоскость $x_3 = 0$. Если же $x_1(0) = 0$, то при t = 0 система примет вид:

$$\begin{cases} \dot{x}_1(0) = 0, \\ \dot{x}_2(0) = r_2 x_2(0) \left(1 - \frac{x_2(0)}{c_2} \right) + \frac{x_5(0)}{k_4 + x_5(0)} a_1 \frac{1}{x_4(0) + e_2}, \\ \dot{x}_3(0) = 0, \\ \dot{x}_4(0) = s_1 + b_1 x_1(0) - \mu_2 x_4(0), \\ \dot{x}_5(0) = -\mu_3 x_5(0). \end{cases}$$

Тогда аналогично случаю с границей $x_1=0,\ x_1(t)\equiv 0$. При этом решение $x_3(t)\equiv 0$ удовлетворяет начальным условиям $x_3(0)=0,\ \dot{x}_3(0)=0$ и при его подстановке весте с $x(t)\equiv 0$ в исходную систему получим, что: что возможно только когда $x_1(t)\equiv 0$, т.е. когда

система имеет вид

$$\begin{cases} \dot{x}_2(t) = r_2 x_2(t) \left(1 - \frac{x_2(t)}{c_2} \right) + \frac{x_5(t)}{k_4 + x_5(t)} a_1 \frac{1}{x_4(t) + e_2}, \\ \dot{x}_4(t) = s_1 - \mu_2 x_4(t), \\ \dot{x}_5(t) = -\mu_3 x_5(t), \end{cases}$$

Если определить x_2, x_4, x_5 как решения системы с пониженным порядком на плоскости $x_1 = x_3 = 0$, то из единственности решения следует, что

$$x_1 \equiv 0, x_2 = x_2(t), x_3 \equiv 0, x_4 = x_4(t), x_5 = x_5(t), t \in [0, \varepsilon_3),$$

является решением исходной системы с начальными условиями (4), лежащим на плоскости $x_1 = x_3 = 0$ и не покидающим области D через границу $x_3 = 0$.

ДЛЯ x_5, x_2 ДОК-ВО ЗАКОММЕНТИРОВАНО, Т.К. ЭТО ПРОБНИК.

4