

Introduction to Semantic Segmentation

Sergei Belousov Machine learning R&D Engineer

Internet of Things Group

Agenda

- Problem formulation
- Datasets
- Evaluation metrics
- Architectures
- Loss functions
- Results

Problem formulation

Input:

$$I \in R^{C*H*W} - input\ image \ L \in [l_0, \dots l_n] - set\ of\ valid\ labels$$

Output: $M \in L^{H*W} - labels\ mask$

Dataset	Labeled Images for Training	Classes
KITTI	200	34
VOC PASCAL 2012	2913	21
Cityscapes	3478	34
BDD100K	8000	19
ADE20K	20210	3169
Mapillary Vistas	20000	66
ApolloScape	147000	36
WAYMO	600000	?

Evaluation metrics

Evaluation metrics

$$accuracy = rac{TP+TN}{TP+TN+Fp+FN}$$

relevant elements false negatives true negatives true positives false positives selected elements How many selected How many relevant items are relevant? items are selected? Precision =-Recall = -

Evaluation metrics

$$Dice(A,B)=2rac{|A\cap B|}{|A|+|B|}=rac{2TP}{2TP+FN+FP}$$
 $IOU(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{TP}{TP+FN+FP}$ $IOU=rac{Dice}{2-Dice}$

$$IOU = \frac{Dice}{2-Dice}$$

 $Error_{total} = c_0 FP + c_1 FN$

Architectures: In ancient time

image

groundtruth

classification

Architectures: CNN

Architectures: Going deeper into ResNet18

Label: Sport's car

Architectures: Going deeper into ResNet18

Label: Siamese cat

Architectures: FCN

Architectures: Architectures to capture multi-scale context

(b) Encoder-Decoder

(c) Deeper w. Atrous Convolution

(d) Spatial Pyramid Pooling

CNN: Encoder-Decoder

Architectures: Deconvolution

Architectures: Encoder-Decoder

Architectures: w. Atrous Convolution

(a) Going deeper without atrous convolution.

CNN: w. Atrous Convolutions

Architectures: Spatial Pyramid Pooling

Architectures: All inclusive

$$L_{CE}(p,y) = -\sum_{c=1}^{M} y_{o,c} \log(p_{o,c})$$

$$L_{Focal}(p,y) = -\sum_{c=1}^{M} y_{o,c} * (1-p_{o,c})^{\gamma} * \log(p_{o,c})$$

$$IOU(A,B) = rac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

$$IOU(p,y) = rac{\sum_{i=0}^{N} p_i y_i + \epsilon}{\sum_{i=0}^{N} p_i + \sum_{i=0}^{N} y_i - \sum_{i=0}^{N} p_i y_i + \epsilon}$$

$$Loss_{IOU}(p,y) = -log(rac{\sum_{i=0}^{N} p_{i}y_{i} + \epsilon}{\sum_{i=0}^{N} p_{i} + \sum_{i=0}^{N} y_{i} - \sum_{i=0}^{N} p_{i}y_{i} + \epsilon})$$

Results

Results

Results

- UNet: https://arxiv.org/abs/1505.04597
- DeepLab: https://arxiv.org/abs/1606.00915
- DeepLabV3: https://arxiv.org/abs/1706.05587
- DeepLabV3+: https://arxiv.org/abs/1802.02611
- SegNet: https://arxiv.org/abs/1511.00561
- FCN: https://arxiv.org/abs/1411.4038
- Grad-CAM: https://arxiv.org/abs/1610.02391

- https://github.com/mrgloom/awesome-semantic-segmentation
- Kaggle: https://www.kaggle.com/
- ODS (@bes): https://ods.ai/ https://ode.ai/ <a href=
- Deep Learning Book: https://www.deeplearningbook.org/