Previous Class Problem

- 1a) Add 10 mg/L of iron chloride (FeCl₃) in pure water. Can $Fe(OH)_{3(s)}$ precipitate?
- Step 1: Calculate TOTFe and TOTCI in M
- Step 2: Assume $Fe(OH)_{3(s)}$ DOES NOT precipitate, i.e. all iron stays dissolved.
- Step 3: Calculate pH of this hypothetical system
- Species: Fe³⁺ and its four OH complexes, H₂O, H⁺, OH⁻, Cl⁻
- Components: Fe³⁺,(H₂O), H⁺, Cl⁻
- Mass balance: TOTFe = $[Fe^{3+}]$ + $[Fe(OH)^{2+}]$ + $[Fe(OH)^{2+}]$ + $[Fe(OH)^{2+}]$ + $[Fe(OH)^{2-}]$
 - = $[Fe^{3+}](1 + \beta_1^*/[H^+] + \beta_2^*/[H^+]^2 + \beta_3^*/[H^+]^3 + \beta_4^*/[H^+]^4)$, where $log\beta^*$ values are taken from the Table
 - $= [Fe^{3+}] f([H^+])$

Metal-Complexation Reactions with OH-

Reactions in terms of OH- K_i : $Fe^{3+} + OH^- = Fe(OH)^{2+}$ β_i : $Fe^{3+} + 2OH^- = Fe(OH)_2^+$

Listing all reactions and constants sequentially

$$pK_1^* = 2.19$$
: $Fe^{3+} + H_2O = Fe(OH)^{2+} + H^+$
 $pK_2^* = 3.48$: $Fe(OH)^{2+} + H_2O = Fe(OH)_2^+ + H^+$
 $pK_3^* = 7.93$: $Fe(OH)_2^+ + H_2O = Fe(OH)_{3(aq)} + H^+$
 $pK_4^* = 8.00$: $Fe(OH)_{3(aq)} + H_2O = Fe(OH)_4^- + H^+$

-7.93

-8.00

Reactions in terms of H⁺ K_i^* : Fe³⁺ + H₂O = Fe(OH)²⁺ + H⁺ β_i^* : Fe³⁺ + 2H₂O = Fe(OH)₂⁺ + H⁺

4.80 Co 9.70 -9.104.90 10.80 -12.901.10 -4.0010.00 Cr3+ 10.00 8.38 -5.6218.38 -7.1325.25 6.87 28.23 2.98 -11.026.00 -8.00Cu2+ 6.00 14.32 -5.688.32 15.10 0.78 -13.2216.40 -12.701.30 -9.504.50 Fe2+ 4.50 7.43 -11.072.93 -10.4311.00 3.57 -2.1911.81 Fe3+ 11.81 22.33 -3.4810.52

6.07

6.00

Listing all reactions and constants cumulatively (in terms of component Fe³⁺)

$$\begin{array}{lll} 25.25 \\ 28.23 \\ 6.00 \\ 14.32 \\ 15.10 \\ 16.40 \\ \end{array} \quad \begin{array}{lll} p\beta_1^* = 2.19 : \\ p\beta_2^* = 5.67 : \\ p\beta_3^* = 13.6 : \\ 4.50 \\ 7.43 \\ 11.00 \\ \end{array} \quad \begin{array}{lll} p\beta_4^* = 21.6 : \\ -31.00 \\ \end{array} \quad \begin{array}{lll} -2.19 \\ -5.67 \\ -13.60 \\ -21.60 \\ \end{array}$$

```
Rearranging, [Fe^{3+}] = TOTFe/ f([H^+]) = 10^{-4.21}/ f([H^+])
Charge balance: [H^+] + 3[Fe^{3+}] + 2[Fe(OH)^{2+}] + [Fe(OH)^{2+}] = [OH^-] + [Fe(OH)_4] + [Cl^-]
```

Each of the other Fe-OH complexes are also a function of [H+] from their complexation reactions with [H+]

Listing all reactions and constants

```
p\beta_1^* = 2.19: Fe^{3+} + H_2O = Fe(OH)^{2+} + H^+

p\beta_2^* = 5.67: Fe^{3+} + 2H_2O = Fe(OH)_2^+ + 2H^+

p\beta_3^* = 13.6: Fe^{3+} + 3H_2O = Fe(OH)_{3(aq)} + 3H^+

p\beta_4^* = 21.6: Fe^{3+} + 4H_2O = Fe(OH)_4^- + 4H^+
```

Solve for [H⁺] graphically (plotting sums of cations and anions and finding intersection) or numerically (using Excel Solver) pH = 3.97 (remember, this is hypothetical!)

Step 4: Calculate the ion activity product (Q) for Fe(OH)_{3(s)}

$$Fe(OH)_{3(s)} + 3H^+ = Fe^{3+} + 3H_2O$$

$$Q = \frac{[Fe^{3+}]}{[H^+]^3} = \frac{10^{-6.6}}{(10^{-3.97})^3} = 10^{5.21} >> K_{sp} (=10^{4.89})$$

Yes, $Fe(OH)_{3(s)}$ will precipitate!

1b) If solid precipitates, find how much?

Because of solid precipitation, will hypothetical pH calculated in part 1a change?

Yes, it will! Because Fe(OH)_{3(s)} formation release H⁺ and decrease TOTFe dissolved in the system. This impacts mass balance and charge balance.

Environmental Quality and Pollution

Step 5: In the new charge balance, $[H^+]+3[Fe^{3+}]+2[Fe(OH)^{2+}]+[Fe(OH)^{2+}]=[OH^-]+[Fe(OH)^{4-}]+[CI^-]$ we need to find $[Fe^{3+}]=g([H+])$. How?

Use the solubility relation at equilibrium with solid, $Fe(OH)_{3(s)} + 3H^+ = Fe^{3+} + 3H_2O$

$$Q = \frac{[Fe^{3+}]}{[H^+]^3} = K_{sp} (=10^{4.89})$$

Step 6: Using [Fe³⁺] and the complexation reactions, all Fe-OH complexes can be written in terms of [Fe³⁺] and [H⁺] in the charge balance equation.

Solve for [H+] graphically or numerically to get true pH

Step 7: At the new pH value, calculate [Fe³⁺] from K_{sp} relationship

Step 8: Find total dissolved iron remaining in solution

TOTFe_{diss} =
$$[Fe^{3+}]$$
 + $[Fe(OH)^{2+}]$ + $[Fe(OH)^{2+}]$ + $[Fe(OH)^{3(aq)}]$ + $[Fe(OH)^{4-}]$

=
$$[Fe^{3+}](1 + \beta_1^*/[H^+] + \beta_2^*/[H^+]^2 + \beta_3^*/[H^+]^3 + \beta_4^*/[H^+]^4)$$
,

Step 9: Calculate molar concentration of solid precipitated

= TOTFe added (= $10^{-4.21}$ M) – TOT Fe_{diss} (from step 8)

Total Dissolved Solids (TDS) vs Annual RunOff

