

Решить уравнение

$$y'' + \frac{(y')^2}{y} = 3y'\sqrt{1+y^2}$$

при начальных условиях

$$y|_{x=0} = 1$$
, $y'|_{x=0} = 2\sqrt{2}$.

Вариант 10/2.

Вычислить объём тела, образованного вращением вокруг оси *ОУ* фигуры, ограниченной липцямк:

$$2y^2 = 3 - x; \ y^2 = 4 - 3x$$

Билеты утвержжены на заседании кафедры ФН-12 <u>22.04.2013</u> Кафедра математического воделярованая

Вариант 5/2.9

Вычислить площаль фигуры, ограниченной линиями:

$$y = \frac{3x - 2}{x + 2}; \ y = x - 4$$

Вариянт 21/5.9

Указать вид общего решения:

$$y^{VI} - 8y''' =$$

$$= (1 - x^2)e^{2x} + 4x - e^x \cos x + 5\sin x$$

Проинтегрировать дифференциальное уравнение $y \cdot y'' + (y')^2 = (y')^3$ при начальных условиях:

y(0) = 1, y'(0) = 1.

Решить уравнение:

$$3yy'' + 6(y')^2 = \frac{1}{2}y^2$$

при начальных условиях:

$$y|_{x=0} = 1; \ y'|_{x=0} = 1$$

Вариант 23

2/14

Найти площадь меньшей из двух фигур,

на которые кривая $x^2 + y = 0$ делит круг $x^2 + y^2 \le 2$.

Вариант 26/2.9

айти длину дуги кривой:

$$x = a\cos^3 t$$
, $y = a\sin^3 t$.

Вариант 14/5.9

Даны корни характеристического уравнения для уравнения с постоянными коэффициентами $\lambda = 1, 1, 1 \pm 2i$ и правая часть уравнения $f(x) = e^x + \sin 2x$. Не определяя численного значения коэффициентов,

Вариант 17/2.

Вычислить площадь фигуры, ограниченной кривыми:

(внутри каждой из кривых)

$$\rho = 2(1 + \sin \varphi); \ \rho = 6 \sin \varphi.$$

