

TOPST VCP-G Hardware

User Guide

Rev. 1.01 [G] 2025-07-18

* The information in this document is subject to change without notice and should not be construed as a commitment by Telechips, Inc.

Kindly visit www.telechips.com for more information.

© 2025 Telechips Inc. All rights reserved.

TABLE OF CONTENTS

Contents

TABLE O	F CONTENTS	2
1 Int	roduction	3
1.1	Terminology	3
2 Blo	ck Diagram	4
2.1	System Block Diagram	
2.2	Features of VCP-G Board	
	erview	
3.1	VCP-G Board	
	ecifications	
4.1	Serial NOR Flash Memory (U101)	
4.2	Power Connector (J101)	
4.3	JTAG Connector (J100)	
4.4	FWDN Switch (SW101).	
4.4.		
4.5	RESET Switch (SW100)	
4.5.		
4.6	Connector for Debugging and FWDN (JC100)	
4.7	Pin Headers for GPIO, ADC, Power, CAN, SPI	
	erences	
	vision History	
	.01: 2025-07-18	
Rev. 1	.00: 2025-02-28	19
Figures		
	Figure 2.1 System Block Diagram	4
	Figure 3.1 VCP-G Board (Top View)	
	Figure 3.2 VCP-G Board (Bottom View)	7
	Figure 4.1 Power Connector (J101)	8
	Figure 4.2 JTAG Connector (J100)	9
	Figure 4.3 FWDN Tact Switch (SW101)	
	Figure 4.4 Enter FWDN Mode by using Method 1	
	Figure 4.5 Enter FWDN Mode by using Method 2	
	Figure 4.6 RESET Switch (SW100)	
	Figure 4.7 USB Type-C Connector (JC100)	
	Figure 4.8 Pin Headers on VCP-G Board	
	Figure 4.9 Total Pin Assignment of Pin Headers on VCP-G Board	
	rigule 4.9 Total Fill Assignment of Fill Fleaders on Ver-G board	1/
Tables		
iables		
	Table 1.1 Terminology	2
	Table 2.1 Features of VCP-G Board	ɔ
	Table 3.1 Connectors of VCP-G Board (Top View)	
	Table 4.1 J100 Pin Description	
	Table 4.2 Setting of JTAG Disable/Enable	
	Table 4.3 Description of Tact Switch (SW101) for Boot Mode	
	Table 4.4 Pin Headers on VCP-G	
	Table 4.5 J10D100 Pin Description	
	Table 4.6 J8D100 Pin Description	
	Table 4.7 J8D101 Pin Description	
	Table 4.8 J8D102 Pin Description	14
	Table 4.9 J8D103 Pin Description	15
	Table 4.10 J8D104 Pin Description	15
	Table 4.11 J3D100 Pin Description	
	Table 4.12 J18D100 Pin Description	
	Table 4.13 J5D100 Pin Description.	

1 INTRODUCTION

This document is a hardware user guide for the VCP-G based on the TCC7045. This document describes system installation, debugging, and detailed information on the overall design and usage of the VCP-G.

1.1 Terminology

Table 1.1 Terminology

Terminology	Definition
ADC	Analog to Digital Converter
FWDN	Firmware Download
GPIO	General Purpose Input Output
MCU	Micro-Controller Unit
TOPST	Total Open-Platform for System development and Training
VCP	Vehicle Control Processor

2 BLOCK DIAGRAM

2.1 System Block Diagram

Figure 2.1 shows the system block diagram of the VCP-G.

Figure 2.1 System Block Diagram

2.2 Features of VCP-G Board

Table 2.1 describes the features of the VCP-G board.

Table 2.1 Features of VCP-G Board

	Part Na	ame	TCC7045		
	Packa	ige	Package Pin to Pin Compatible FBGA-196pin (12BD)		
	CPU Freq	uency	200 MHz (Up to 300 MHz)		
	Pr	ogram Flash	4 MB		
On-chip		SRAM	512 KB (Including Retention RAM 16 KB)		
Memory	ĺ	Data Flash	256 KB		
	D	MA Channel	16-channel		
		Ethernet	1 Gbps with AVB		
	C	AN/CANFD	3 channels		
	Dedicated LIN/UART		3 channels (Maximum 6-channel)		
	Dedicated I2C		3 channels (Maximum 6-channel)		
	Dedicated GPSB (SPI)		2 channels (Maximum 5-channel)		
B	MFIO		3 channels		
Peripheral	(Allocated UART, I2C, GPSB)				
		Resolution	12-bit SAR type		
	ADC	Channels	12-channel x 2 groups		
	ADC	Input Range	3.3V		
		Sample Rate	Over 1.0 MSPs		
	I2S		1-channel		
	Serial Flash Interface		Quad SPI		
	Power S	ystem	3.3V single		
	Tempera	ature	-40 to 105 °C		

3 OVERVIEW

3.1 VCP-G Board

Figure 3.1 shows the top view of the VCP-G board.

Figure 3.1 VCP-G Board (Top View)

Table 3.1 describes the connectors of the VCP-G board (top view).

Table 3.1 Connectors of VCP-G Board (Top View)

Number	Reference Number	Name	Description
1	J18D100	36-pin Socket Header (Female)	Header for GPIO and ADC
2	J5D100	10-pin Header (Male)	Header for CAN
3	J3D100	6-pin Header (Male)	Header for SPI
4	J8D104	8-pin Socket Header (Female)	Header for GPIO and ADC
5	J8D102	8-pin Socket Header (Female)	Header for GPIO
6	J10D100	10-pin Socket Header (Female)	Header for GPIO and ADC
7	J100	10-pin Header (Male)	Header for JTAG
8	SW100	RESET Switch	Switch for system reset
9	JC100	USB Type-C Connector	UART for debugging or FWDN port
10	SW101	Tact Switch	FWDN: Enter the Firmware download mode of TCC7045
11	J101	Power Jack	12V Power Jack
12	J8D100	8-pin Socket Header (Female)	Header for Power and Reset
13	J8D101	8-pin Socket Header (Female)	Header for GPIO and ADC
14	J8D103	8-pin Socket Header (Female)	Header for GPIO and ADC

Figure 3.2 shows the bottom view of the VCP-G board.

Note: Figure 3.2 currently shows the VCP-G_V1.1.1 board. This image will be updated to the VCP-G_V2.1.1 board.

Figure 3.2 VCP-G Board (Bottom View)

4 SPECIFICATIONS

4.1 Serial NOR Flash Memory (U101)

SNOR (Quad SPI type) is located on the VCP-G board and the information is as follows:

■ Quad I/O

■ Density: 64 Mb

Note: Mounted SNOR is provided upon request.

4.2 Power Connector (J101)

J101 is a DC 12V external power supply connector with a 2.1 mm x 5.5 mm plug. It is used to power supply to the VCP-G board.

Note: The plug size must be compatible with 2.1 mm to 2.5 mm.

Caution: Compatibility problems may occur if you use an adapter other than the power adapter provided by TOPST.

Figure 4.1 shows the location of J101 on the VCP-G board.

Figure 4.1 Power Connector (J101)

4.3 JTAG Connector (J100)

J100 is a standard 10-pin/1.27 mm connector for the JTAG emulator.

Figure 4.2 shows the location of J100 on the VCP-G board.

Figure 4.2 JTAG Connector (J100)

Table 4.1 describes the pins of J100.

Table 4.1 J100 Pin Description

1 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1							
Pin Number	Schematic Net Name	DIR	Description				
Pili Nullibei	Schematic Net Name	MCU ∢ ▶ J100	Description				
1	SW_VDD_3P3	-	Power 3.3V				
2	TMS	◀	Test Mode State				
3	DGND	-	Ground				
4	TCK	◀	Test Clock				
5	DGND	-	Ground				
6	TDO	>	Test Data Output				
7	NC	-	Not Connected				
8	TDI	◀	Test Data In				
9	DGND	-	Ground				
10	JTAG RESETn	◀	System Reset				

By default, JTAG is disabled. To enable JTAG, you must change the connections of R178 and R179. If TRSRn is set to high by R178, the MCU enters JTAG mode.

Table 4.2 describes the setting of JTAG Disable/Enable.

Table 4.2 Setting of JTAG Disable/Enable

Mode	TRSTn Value	R178	R179
JTAG Disable (Default)	Low (1)	N.C	1K
JTAG Enable (Option)	High (1)	1K	N.C

4.4 FWDN Switch (SW101)

The VCP-G has one pin for boot configuration using Boot Mode (BM) and supports 2 modes: UART FWDN mode and normal mode. Figure 4.3 shows the location of FWDN tact switch (SW101), which is used to select the boot modes of the VCP-G board.

Figure 4.3 FWDN Tact Switch (SW101)

Table 4.3 describes the boot mode selection using the FWDN tact switch (SW101).

Table 4.3 Description of Tact Switch (SW101) for Boot Mode

Mode	BM00 Value	SW101 Status
Normal (Default)	Low (1)	Default
FWDN (Optional)	High (1)	Push and supply power

4.4.1 FWDN Mode Method

There are two methods to enter FWDN mode as follows.

4.4.1.1 Method 1

While pressing the FWDN switch (SW101), connect the 12V power supply to turn on the VCP-G board. The FWDN red indicator turns on when power is applied while the FWDN switch is pressed. After releasing the FWDN switch, the MCU enters FWDN mode.

Figure 4.4 shows how to enter FWDN mode by using method 1.

Figure 4.4 Enter FWDN Mode by using Method 1

4.4.1.2 Method 2

While connecting the 12V power supply, press the FWDN switch (SW101) and then press the RESET switch (SW100). The FWDN red indicator turns on when the power is applied while the FWDN switch is pressed. The 3.3V green indicator turns off while the RESET switch is pressed. After releasing the FWDN switch, the MCU enters FWDN mode.

Figure 4.5 shows the FWDN mode by using method 2.

Figure 4.5 Enter FWDN Mode by using Method 2

4.5 RESET Switch (SW100)

The VCP-G has one RESET switch to perform reset by using the GRESETn pin.

Figure 4.6 shows the RESET switch (SW100) on the VCP-G board.

Figure 4.6 RESET Switch (SW100)

4.5.1 RESET Switch (SW100) Function

SW100 is a tact switch used to reset the power block and system block in TCC7045. The function of this button is as follows:

Pressing the tack switch (SW100) while the power is on forces the power block and the system of the VCP-G to reset.

Important: Be careful when pressing the tack switch as the power suddenly turns off and data may be corrupted.

4.6 Connector for Debugging and FWDN (JC100)

JC100 is a standard USB Type-C connector that is used for debugging or FWDN through UART.

Figure 4.7 shows the location of JC100 on the VCP-G board.

Figure 4.7 USB Type-C Connector (JC100)

You can perform FWDN or check debug messages of the VCP-G through JC100. JC100 on the VCP-G board includes a built-in USB-to-UART bridge controller, so you can directly connect JC100 to PC by using the USB Type-C cable.

4.7 Pin Headers for GPIO, ADC, Power, CAN, SPI

The VCP-G board has nine 2.54 mm pin headers for GPIO, ADC, power, CAN, and SPI to connect to other peripherals such as sensor or sub-boards.

Table 4.4 describes the purpose of nine pin headers on the VCP-G board.

Table	4.4	Pin He	aders	on \	VCP-G

Number	Reference Number	Name	Description
1	J18D100	36-pin Socket Header (Female)	Header for GPIO and ADC
2	J5D100	10-pin Header (Male)	Header for CAN
3	J3D100	6-pin Header (Male)	Header for SPI
4	J8D104	8-pin Socket Header (Female)	Header for GPIO and ADC
5	J8D102	8-pin Socket Header (Female)	Header for GPIO
6	J10D100	10-pin Socket Header (Female)	Header for GPIO and ADC
7	J8D100	8-pin Socket Header (Female)	Header for Power and Reset
8	J8D101	8-pin Socket Header (Female)	Header for GPIO and ADC
9	J8D103	8-pin Socket Header (Female)	Header for GPIO and ADC

Figure 4.8 shows the location of the pin headers on the VCP-G board.

Figure 4.8 Pin Headers on VCP-G Board

Table 4.5 shows the pin description of J10D100.

Table 4.5 J10D100 Pin Description

Dim			J10D100	
Pin Number	Port Name	DIR		Description
Number	Port Name	Signal Name	MCU ◄► J10D100	Description
1	SCL	GPIO_AC07	◆ ▶	GPIO or ADC signal
2	SDA	GPIO_AC06	◆ ▶	GPIO or ADC signal
3	AREF	ADC06	◀	ADC signal
4	GND	DGND	-	Ground
5	13	GPIO_C12	∢ ▶	GPIO signal
6	12	GPIO_C15	∢ ▶	GPIO signal
7	11	GPIO_C14	∢ ▶	GPIO signal
8	10	GPIO_C13	◆ ▶	GPIO signal
9	9	GPIO_A12	◆ ▶	GPIO signal
10	8	GPIO_B00	∢ ▶	GPIO signal

Table 4.6 shows the pin description of J8D100.

Table 4.6 J8D100 Pin Description

Tubic 110 505 200 Till 5000 1500					
Di-			J8D100		
Pin Number	Dord Name	Cianal Nama	DIR	Description	
Number	Port Name	Signal Name	MCU ∢ ▶ J8D100	Description	
1	-	-	-	NC	
2	IOREF	VCP_3P3	-	Power 3.3V	
3	RST	RESET	◀	Reset signal	
4	3.3V	VCP_3P3	-	Power 3.3V	
5	5V	VCP_5P0	-	Power 5.0V	
6	GND	DGND	-	Ground	
7	GND	DGND	-	Ground	
8	VIN	VIN	-	Voltage input for VCP-G	

Table 4.7 shows the pin description of J8D101.

Table 4.7 J8D101 Pin Description

			J8D101	
Pin	Doub Nouse	Cinnal Nama	DIR	Description
Number	Port Name	Signal Name	MCU ◄► J8D101	Description
1	A0	ADC03	◀	ADC signal
2	A1	ADC04	◀	ADC signal
3	A2	GPIO_AC02	∢ ▶	GPIO signal
4	A3	GPIO_AC03	∢ ►	GPIO signal
5	A4	GPIO_AC05	∢ ▶	GPIO signal
6	A5	GPIO_AC04	∢ ▶	GPIO signal
7	A6	ADC05	-	ADC signal
8	A7	ADC01	◀	ADC signal

Table 4.8 shows the pin description of J8D102.

Table 4.8 J8D102 Pin Description

Dim	J8D102				
Pin	Port Name	Signal Name	DIR	Description	
Number			MCU ∢ ▶ J8D102		
1	7	GPIO_B01	∢ ▶	GPIO signal	
2	6	GPIO_A13	∢ ►	GPIO signal	
3	5	GPIO_B10	∢ ►	GPIO signal	
4	4	GPIO_B27	∢ ▶	GPIO signal	
5	3	GPIO_B11	∢ ►	GPIO signal	
6	2	GPIO_B28	∢ ►	GPIO signal	
7	1	GPIO_B25	∢ ▶	GPIO signal	
8	0	GPIO_B26	∢ ▶	GPIO signal	

Table 4.9 shows the pin description of J8D103.

Table 4.9 J8D103 Pin Description

142.6 112.62 111.26361.124611					
Pin	J8D103				
	Port Name	Signal Name	DIR	Description	
Number			MCU ∢ ▶ J8D103		
1	A8	GPIO_AC08	∢ ►	GPIO or ADC signal	
2	A9	GPIO_AC09	∢ ▶	GPIO or ADC signal	
3	A10	GPIO_AC10	∢ ▶	GPIO or ADC signal	
4	A11	ADC02	◀	ADC signal	
5	54	GPIO_K14	∢ ▶	GPIO signal	
6	55	GPIO_K15	∢ ▶	GPIO signal	
7	56	GPIO_K01	◀	GPIO signal	
8	57	GPIO_K08	∢ ▶	GPIO signal	

Table 4.10 shows the pin description of J8D104.

Table 4.10 J8D104 Pin Description

	J8D104				
Pin	Port Name	Signal Name	DIR	Donatin Maria	
Number			MCU ◄► J8D104	Description	
1	14	GPIO_AC00	∢ ►	GPIO or ADC signal	
2	15	GPIO_AC01	∢ ►	GPIO or ADC signal	
3	16	GPIO_A06	∢ ▶	GPIO signal	
4	17	GPIO_A07	∢ ►	GPIO signal	
5	18	GPIO_A28	∢ ►	GPIO signal	
6	19	GPIO_A29	∢ ▶	GPIO signal	
7	20	GPIO_B03	∢ ►	GPIO signal	
8	21	GPIO_B02	∢ ▶	GPIO signal	

Table 4.11 shows the pin description of J3D100.

Table 4.11 J3D100 Pin Description

D:	J3D100				
Pin	Port Name	Signal Name	DIR	Description	
Number			MCU ∢ ▶ J3D100		
1	MISO	GPIO_B07	∢ ▶	GPIO signal	
2	5V	VCP_5P0	-	Power 5.0V	
3	SCK	GPIO_B04	∢ ▶	GPIO signal	
4	MOSI	GPIO_B06	∢ ▶	GPIO signal	
5	CMD	GPIO_B05	∢ ▶	GPIO signal	
6	GND	DGND	-	Ground	

Table 4.12 shows the pin description of J18D100.

Table 4.12 J18D100 Pin Description

	J18D100 Pin Description J18D100				
Pin			DIR		
Number	Port Name	Signal Name	MCU ∢ ▶ J18D100	Description	
1	5V	VCP_5P0	-	Power 5.0V	
2	5V	VCP_5P0	-	Power 5.0V	
3	22	GPIO_B24	∢ ▶	GPIO signal	
4	23	GPIO_B23	∢ ▶	GPIO signal	
5	24	GPIO_B22	∢ ▶	GPIO signal	
6	25	GPIO_B21	∢ ▶	GPIO signal	
7	26	GPIO_B20	∢ ▶	GPIO signal	
8	27	GPIO_B19	∢ ▶	GPIO signal	
9	28	GPIO_A30	∢ ▶	GPIO signal	
10	29	GPIO_A27	∢ ►	GPIO signal	
11	30	GPIO_A26	∢ ▶	GPIO signal	
12	31	GPIO_A24	∢ ▶	GPIO signal	
13	32	GPIO_A25	∢ ▶	GPIO signal	
14	33	GPIO_A23	∢ ▶	GPIO signal	
15	34	GPIO_A22	∢ ▶	GPIO signal	
16	35	GPIO_A21	∢ ▶	GPIO signal	
17	36	GPIO_A20	∢ ▶	GPIO signal	
18	37	GPIO_A19	∢ ▶	GPIO signal	
19	38	GPIO_K13	∢ ▶	GPIO signal	
20	39	GPIO_K12	∢ ▶	GPIO signal	
21	40	GPIO_K11	∢ ▶	GPIO signal	
22	41	GPIO_A18	∢ ▶	GPIO signal	
23	42	GPIO_A17	∢ ▶	GPIO signal	
24	43	GPIO_A16	∢ ►	GPIO signal	
25	44	GPIO_A11	∢ ▶	GPIO signal	
26	45	GPIO_A10	∢ ▶	GPIO signal	
27	46	GPIO_A09	∢ ▶	GPIO signal	
28	47	GPIO_A08	∢ ▶	GPIO signal	
29	48	GPIO_A05	∢ ▶	GPIO signal	
30	49	GPIO_A04	∢ ►	GPIO signal	
31	50	GPIO_A03	∢ ▶	GPIO signal	
32	51	GPIO_A02	∢ ▶	GPIO signal	
33	52	GPIO_A01	∢ ▶	GPIO signal	
34	53	GPIO_A00	∢ ▶	GPIO signal	
35	GND	DGND	-	Ground	
36	GND	DGND	-	Ground	

Table 4.13 shows the pin description of J5D100.

Table 4.13 J5D100 Pin Description

rable 1129 99 2 200 1 111 Description					
Pin Number	J5D100				
	Port Name	Signal Name	DIR MCU ∢ ▶ J5D100	Description	
					1
2	3.3V	VCP_3P3	-	Power 3.3V	
3	TX0	GPIO_K08	4 >	GPIO signal	
4	RX0	GPIO_K01	◀	GPIO signal	
5	TX1	GPIO_K09	◆	GPIO signal	
6	RX1	GPIO_K02	◀	GPIO signal	
7	TX2	GPIO_K10	◆	GPIO signal	
8	RX2	GPIO_K03	◀	GPIO signal	
9	GND	DGND	-	DGND	
10	GND	DGND	-	DGND	

Figure 4.9 shows the total pin assignment of ten pin headers on the VCP-G board.

Figure 4.9 Total Pin Assignment of Pin Headers on VCP-G Board

5 REFERENCES

[1] Contact TOPST for more details: topst@topst.ai

Note: Reference documents can be provided whenever available, depending on the terms of a contract. If the reference documents are unavailable, the contents directly related to your development can be guided.

6 REVISION HISTORY

Rev. 1.01: 2025-07-18

- Updated
 - Chapter 1: Description
 - Chapter 2.1: Figure 2.1
 - Chapter 3:
 - Changed chapter title from "TOPST VCP-G Overview" to "Overview"
 - Description
 - Table 3.1
 - Chapter 4.1:
 - Changed chapter title from "Quad SPI Flash Memory (U101)" to "Serial NOR Flash Memory (U101)"
 - Description
 - Chapter 4.2: Description
 - Chapter 4.3:
 - Changed chapter title from "Connector for JTAG (J100)" to "JTAG Connector (J100)"
 - Description
 - Chapter 4.5.1: Changed chapter title from "RESET Tact Switch (SW100) Function" to "RESET Switch (SW100) Function"
 - Chapter 4.7:
 - Figure 4.9
 - Table 4.6
- Added
 - Chapter 2.2: Features of VCP-G Board

Rev. 1.00: 2025-02-28

Official version release

DISCLAIMER

This material is being made available solely for your internal use with its products and service offerings of Telechips, Inc ("Telechips"). and/or licensors and shall not be used for any other purposes. This material may not be altered, edited, or modified in any way without Telechips' prior written approval. Unauthorized use or disclosure of this material or the information contained herein is strictly prohibited, and you agree to indemnify Telechips and licensors for any damages or losses suffered by Telechips and/or licensors for any unauthorized uses or disclosures of this material, in whole or part. Further, Telechips, Inc. reserves the right to revise this material and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

THIS MATERIAL IS BEING PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESSED, IMPLIED, STATUTORY OR OTHERWISE. TO THE MAXIMUM EXTENT PERMITTED BY LAW, TELECHIPS AND/OR LICENSORS SPECIFICALLY DISCLAIM ALL WARRANTIES OF TITLE, MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY, COMPLETENESS OR ACCURACY, AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. MOREOVER, NEITHER TELECHIPS, INC. NOR LICENSORS, SHALL BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY EXPENSES, LOSSES, USE, OR ACTIONS HOWSOEVER INCURRED OR UNDERTAKEN BY YOU IN RELIANCE ON THIS MATERIAL.

THIS MATERIAL IS DESIGNED FOR GENERAL PURPOSE, AND ACCORDINGLY YOU ARE RESPONSIBLE FOR ALL OR ANY OF INTELLECTUAL PROPERTY LICENSES REQUIRED FOR ACTUAL APPLICATION. TELECHIPS, INC. DOES NOT PROVIDE ANY INDEMNIFICATION FOR ANY INTELLECTUAL PROPERTIES OWNED BY THIRD PARTY.

COPYRIGHT STATEMENT

Copyright in this material provided by Telechips, Inc. is owned by Telechips unless otherwise noted. For reproduction or use of Telechips' copyright material, prior written consent should be obtained from Telechips. That prior written consent, if given, will be subject to conditions that Telechips' name should be included and interest in the material should be acknowledged when the material is reproduced or quoted, either in whole or in part. You must not copy, adapt, publish, distribute, or commercialize any contents contained in the material in any manner without the written permission of Telechips. Trademarks used in Telechips' copyright material are the property of Telechips.

For customers who use Google technology:

"Copyright © 2013 Google Inc. All rights reserved."