ISyE 6739 Video Assignment 4

due Thursday, Jan 25

1. What is the following expression equal to:

$$\Pr\{\chi^2_{\alpha,\nu} < X\},\,$$

where $X \sim \chi^2(\nu)$?

Answer:

$$\Pr\{\chi^2_{\alpha,\nu} < X\} = \alpha.$$

2. What is the relationship between the normal and χ^2 - distributions? Write the mean and the variance of $\chi^2(\nu)$.

Answer: If $Z_1, Z_2, \ldots, Z_{\nu} \sim N(0, 1)$ and are independent then

$$X = \sum_{i=1}^{\nu} Z_i^2 \sim \chi^2(\nu),$$

$$E[X] = \nu, Var(X) = 2\nu.$$

3. Suppose $X \sim \chi^2(\nu)$, $Z \sim N(0,1)$ are independent random variables, $t = \frac{Z}{\sqrt{X/\nu}}$.

- (a) What is the distribution of t?
- (b) What is the distribution of t as $\nu \to \infty$?

Answer:

- (a) $t \sim t(\nu)$.
- (b) $t \sim N(0,1)$ as $\nu \to \infty$.
- 4. What is the relationship between F- and χ^2- distributions?

Answer: Suppose $X_1 \sim \chi^2(\nu_1), X_2 \sim \chi^2(\nu_2)$ and X_1 and X_2 are independent. Then

$$\frac{X_1/\nu_1}{X_2/\nu_2} \sim F_{(\nu_1,\nu_2)}.$$

5. Formulate the Central Limit Theorem.

Answer: If X_1, X_2, \dots, X_n are i.i.d., $E[X_i] = \mu$, $Var(X_i) = \sigma^2 < \infty$ then

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1),$$

as $n \to \infty$.