Collective Pitch Controller

Exercise to Lecture #3
Controller Design for Wind Turbines and Wind Farms

David Schlipf

04.09.2024

1 Design of a Collective Pitch Controller

Please run Exercise03_PitchControllerTest.m. In this first set of simulations, the pitch controller is tested with wind steps of 0.1 m/s at the operation points of 12 m/s, 16 m/s, 20 m/s, and 24 m/s.

With the control parameters in NREL5MWMWDefaultParameter_FBNREL_PitchController.m, the wind turbine remains again uncontrolled, see Figure 1 (left).

The objective is to have a closed-loop transfer function with a damping of 0.7 and a natural angular frequency of 0.5 rad/s at all 4 operation points, see Figure 1 (right).

Similar to the torque controller exercise, in this exercise some parameters for the pitch controller are missing in the function NREL5MWMWDefaultParameter_FBNREL_PitchController.m and also the Simulink model needs some correction.

- a) What are the poles of the desired closed-loop? Is the closed-loop stable?
- b) How does the step response of the desired closed-loop look like? You can use the Matlab command tf to define the transfer function and step to simulate the step of the nominal system. The static gain G_0 can be set to 1.
- c) Please determine the PI parameters (proportional gain $k_{\rm p}$ and time constant of the integrator $T_{\rm i}$) for the four operation points with the desired damping of D=0.7 and a angular frequency of $\omega=0.5\,{\rm rad/s}$ using the script Exercise03_PitchControllerDesign.m and the function LinearizeSLOW1DOF_PC.m. The solution needs to be copied to NREL5MWMWDefaultParameter_FBNREL_PitchController.m.
- d) Please implement the pitch controller in the subsystem FBNREL/Pitch Controller in the Simulink model NREL5MW_FBNREL_SLOW1DOF_PitchController.mdl without anti-windup but with gain scheduling (via interpolation) to obtain with Exercise03_PitchControllerTest.m the correct results, see Figure 1 (right). You can use the "Saturation Dynamic" block for the saturation and the "1-D Lookup Table" for the gain scheduling.
- e) Please implement an anti-windup and run a simulation with a wind step from $12\,\mathrm{m/s}$ to $10\,\mathrm{m/s}$ and back to $12\,\mathrm{m/s}$ using the script Exercise03_AntiWindupTest.m. Please test the effect with and without the Anti-Windup. The results should be similar to Figure 2.

Figure 1: Start (left) and solution (right) of Exercise 3.

Figure 2: Effect of Anti-Windup.

2 Evaluation of a Collective Pitch Controller

Modify a copy of Exercise03_PitchControllerTest.m to compare the FAST and the SLOW model to a wind step of $0.1\,\mathrm{m/s}$ at $20\,\mathrm{m/s}$ by plotting the rotor speed over time. Use the FAST input files from the FAST folder and perform the following steps:

- Update the controller parameters (proportional gain k_p and time constant of the integrator T_i) in FBNREL_Ex03_discon.in.
- The FAST file is modified to produce binary output files to get a higher accuracy. Use the ReadFASTbinary.m to read in the results and strcmp to extract the signals.
- The results should be quite similar. Why are they not exactly the same?

Note: The edgewise blade mode DOF is disabled to avoid resonances.