HW 8 Math 672

Due Fri, Dec. 2 in class.

- 0. Read Chapter 8.
- 1. Recall that \mathbb{P}^n is defined (as a set) to be the set of equivalence classes of points in $\mathbb{C}^{n+1} \setminus \mathbf{0}$ where

$$(x_0,\ldots,x_n)\equiv(x'_0,\ldots,x'_n)$$

if there exists a complex number $\lambda \in \mathbb{C} \setminus \mathbf{0}$ such that $x_i = \lambda \cdot x_i'$ for all i.

For $d \in \mathbb{Z}$ an integer, define $\mathcal{O}_{\mathbb{P}^n}(d)$ to be the set of equivalence classes of points in $(\mathbb{C}^{n+1} \setminus \mathbf{0}) \times \mathbb{C}$ where

$$(x_0,\ldots,x_n,t) \equiv (x'_0,\ldots,x'_n,t)$$

if there exists a complex number $\lambda \in \mathbb{C} \setminus \mathbf{0}$ such that $x_i = \lambda \cdot x_i'$ for all i and $t = \lambda^d t'$. There is a map $\pi : \mathcal{O}_{\mathbb{P}^n}(d) \to \mathbb{P}^n$ which forgets the last coordinate.

What are the fibers of the map π ? What is another way of writing this space if d = 0?

2. Show that the map $\pi: \mathcal{O}_{\mathbb{P}^n}(d) \to \mathbb{P}^n$ by finding a local trivialization $\{U_i, \phi_i\}$. Using this trivialization, what are the maps

$$\psi_{ij}: U_i \cap U_j \times \mathbb{C} \to U_i \cap U_j \times \mathbb{C}$$

where recall that ψ_{ij} is defined to be $\phi_j \circ \phi_i^{-1}|_{\pi^{-1}(U_i \cap U_j)}$.

- 3. A section of $\mathcal{O}_{\mathbb{P}^n}(d)$ is a morphism $s: \mathbb{P}^n \to \mathcal{O}_{\mathbb{P}^n}(d)$ such that $\pi \circ s$ is the identity map on \mathbb{P}^n . The space of sections of $\mathcal{O}_{\mathbb{P}^n}(d)$ is a finite dimensional vector space for each d. Find a basis for the space of sections of $\mathcal{O}_{\mathbb{P}^n}(d)$.
- 4. (Read 8.5 for help) Fix some d > 1. Consider the map from \mathbb{P}^n to a (larger) projective space defined by the complete linear series

$$|\mathcal{O}_{\mathbb{P}^n}(d)|.$$

Prove that this map is the same as the Veronese embedding.

5. 8.4.1