Number Theory

October 25, 2019

1 Euclid's Algorithm

Theorem 1.1 (Division Algorithm). Given $a, b \in \mathbb{Z}, b > 0$, we can determine $\exists q, r \in \mathbb{Z}$ s.t. a = qb + r with $0 \le r < b$.

Proof. Let $S = \{a - nb : n \in \mathbb{Z}\}$. S contains some non-negative integer. Let r be the least such integer, say a - qb. Then a = qb + r, so STP r < b.

Suppose
$$b \le r$$
. Then $0 < r - b = a - (q+1)b \in S$, and $r - b < r$. $\mbox{$\rlap/$$}\mbox{(choice of r)}$

If r = 0, i.e. if a = qb for some $q \in \mathbb{Z}$, then we write b|a and say "b divides a" or "b is a divisor of a". If $r \neq 0$, then we instead write $b \nmid a$ and say "b does **not** divide a".

Given $a_1, \ldots, a_n \in \mathbb{Z}$ not all 0, let $I = \{\lambda_1 a_1 + \ldots + \lambda_n a_n : \lambda_i \in \mathbb{Z}\}$. Observe if $a, b \in I, \ell, m \in \mathbb{Z}$, then $\ell a + mb \in I$.

Theorem 1.2. $I = d\mathbb{Z} = \{dm : m \in \mathbb{Z}\} \text{ for some } d > 0$

Proof. I contains some positive integer. Let d>0 be the least such. Then clearly $I\supseteq d\mathbb{Z}$.

Conversely, let $a \in I$ and apply **1.1** to obtain a = qd + r for some $q, r \in \mathbb{Z}, 0 \le r < d$. Then $r = a - qd \in I \implies r = 0$, so $d\mathbb{Z} \supseteq I$

$$\therefore I = d\mathbb{Z}$$

Note that $a_i \in I \forall i$, so $d|a_i \forall i$. Conversely, if $c|a_i \forall i$ then c divides every element of I, so in particular c|d.

We write $d = \gcd(a_1, \ldots, a_n) = (a_1, \ldots, a_n)$, and say d is the **greatest common divisor** of the a_i .

Corollary 1.3 (Bézout). Let $a, b \in \mathbb{Z}$, a, b not both 0. Then $\exists x, y \in \mathbb{Z}$ s.t. $ax + by = c \iff (a, b)|c$.

The division algorithm gives an efficient method for computing (a, b).

Theorem 1.4 (Euclid's Algorithm). Suppose a > b > 0. Then:

$$a = q_1b + r_1 \qquad 0 \le r_1 < b$$

$$b = q_2r_1 + r_2 \qquad 0 \le r_2 < r_1$$

$$r_1 = q_3r_2 + r_3 \qquad 0 \le r_3 < r_2$$

$$\vdots$$

$$r_{k-2} = q_kr_{k-1} + r_k \qquad r_k \ne 0$$

$$r_{k-1} = q_{k+1}r_k(+0)$$

and $r_k = (a, b)$

Proof. We have $r_k|r_{k-1} \implies \ldots \implies r_k|a,r_k|b \implies r_k|(a,b)$, so $r_k \le (a,b)$. Note also that any m s.t. m|a and m|b also divides r_k . In particular, $(a,b)|r_k$, and thus $(a,b) \le r_k$, hence $r_k = (a,b)$.

Additionally, by working back up the algorithm, we can obtain a representation $(a,b) = \lambda a + \mu b$ where $\lambda, \mu \in \mathbb{Z}$

An integer n > 1 is **prime** if its only positive divisors are 1 and n. Otherwise, we say n is **composite**.

Corollary 1.5. Let p be a prime, $a, b \in \mathbb{Z}$. Then $p|ab \iff p|a \text{ or } p|b$

Proof. It is clear that if p|a or p|b, then p|ab. Conversely, suppose p|ab but $p \nmid a$. Them $(a,p) \neq p$. By definition, $(a,p)|p \implies (a,p) \in \{1,p\}$, so (a,p) = 1. Now by **1.3** we can find $x,y \in \mathbb{Z}$ s.t. $1 = ax + by \implies b = b(ax + py) = x(ab) + (by)p$, so p|b.

Theorem 1.6 (The Fundamental Theorem of Arithmetic). Every integer n > 1 can be written as a product of primes uniquely up to reordering

Proof. We have existence by strong induction.

For uniqueness, n is the least integer with two distinct such representations, say $= n = p_1 \dots p_s = q_1 \dots q_r$ for p_i, q_j primes.

Then $p_1|q_1 \dots q_r \implies p_1|q_j$ for some j. WLOG j=1. Since $p_1>1$ as 1 is non-primes, $n/p_1 < n$, and $n/p_1=p_2 \dots p_s=q_2 \dots q_r$ can be written in two distinct ways as a product of primes. $\frac{1}{2}$ (choice of n)

If $m = \prod_{i=1}^k p_i^{\alpha_i}$, $n = \prod_{i=1}^k p_i^{\beta_i}$ where p_i are distinct primes, $\alpha_i, \beta_i \geq 0$, then $(m, n) = \prod_{i=1}^k p_i^{\gamma_i}$ with $\gamma_i = \min\{\alpha_i, \beta_i\}$. However, if m, n are large, it is much more "efficient" to compute the gcd via Euclid's algorithm.

An algorithm with input N > 0 is said to run in **polynomial time** if it takes at most $c(\log N)^k$ elementary operations to complete, where c, k > 0 are constants independent of N. If the algorithm takes inputs N_1, N_2, \ldots, N_s , the polynomial time means $c(\max \log N_i)^k$.

Examples of polynomial time algorithms:

- Adding and multiplying integers
- The gcd of two numbers via Euclid's algorithm

• Testing of primality

On the other hand, factoring a number into prime factors does not have a polynomial time algorithm, and it is conjectured that one does not exist. For instance, if $N=p\cdot q$ with p,q primes of ~ 50 digits each, to do trial division up to \sqrt{N} at a rate of 2^9 divisions per second, it would take approximately $\sqrt{10^{100}}/2^9$ seconds, or about 6×10^39 years. However, we can compute the gcd in milliseconds using Euclid's algorithm.

Theorem 1.7. There are infinitely many primes. i.e. $\pi(x) \to \infty$ as $x \to \infty$

Proof. Fix N > 1, let p be the largest prime $\leq N$. Let q be a prime factor of $M = (2 \times 3 \times 5 \times \ldots \times p) + 1$. Then q > N since $q \notin \{2, 3, \ldots, p\}$, but N was arbitrary. \square

2 Congruences

Let $n \ge 1$ be an integer. We write $a \equiv b \mod n$ if n|a-b. This defines an equivalence relation on \mathbb{Z} , and we will write $\mathbb{Z}/n\mathbb{Z}$ for the equivalence classes induced by this relation, which are $a+n\mathbb{Z}$ for $0 \le a < n$. It is easy to check that $(a+n\mathbb{Z})+(b+n\mathbb{Z})=(a+b+n\mathbb{Z})$ and that $(a+n\mathbb{Z})\times(b+n\mathbb{Z})=(ab+n\mathbb{Z})$ are well defined operations, i.e $n\mathbb{Z}$ is an ideal, and $\mathbb{Z}/n\mathbb{Z}$ is the quotient ring.

Lemma 2.1. Let $a \in \mathbb{Z}$. Then the following are equivalent:

- 1. (a, n) = 1
- 2. $\exists b \in \mathbb{Z} \ s.t. \ ab \equiv b \mod n$
- 3. The equivalence class of a generates the group $(\mathbb{Z}/n\mathbb{Z}, +)$

Proof.

- (1) \Longrightarrow (2): $(a,n)=1 \Longrightarrow \exists b,c \in \mathbb{Z} \text{ s.t. } ab+cn=1 \text{ by } \mathbf{1.3}, \text{ and hence } ab\equiv 1 \mod n.$
- (2) \Longrightarrow (1): $ab \equiv 1 \mod n \iff ab-1=kn$ for some $k \in \mathbb{Z}$, and so by **1.3** (a,n)=1.

• (2) \iff (3): $ab \equiv 1 \mod n \iff 1 \in \langle a \rangle \leq \mathbb{Z}/n\mathbb{Z} \iff \langle a \rangle = \mathbb{Z}/n\mathbb{Z}$

We write $(\mathbb{Z}/n\mathbb{Z})^{\times}$ for the set of **units** (the elements with a multiplicative inverse) of $\mathbb{Z}/n\mathbb{Z}$. By **2.1**, $(\mathbb{Z}/n\mathbb{Z})^{\times}$ contains precisely those classes $a + n\mathbb{Z}$ such that (a, n) = 1. Note that if n > 1 then $\mathbb{Z}/n\mathbb{Z}$ is a field precisely when n is prime.

Let **Euler's** φ **function** be $\varphi(n) := |(\mathbb{Z}/n\mathbb{Z})^{\times}|$ for n > 1, and let $\varphi(1) = 1$. Observe that $\varphi(p) = p - 1$ for p prime. Moreover, φ is a multiplicative function: $(m, n) = 1 \implies \varphi(mn) = \varphi(m)\varphi(n)$.

Corollary 2.2. Let G be a cyclic group of order $n \ge 1$. Then $\varphi(n) = |\{g \in G : \operatorname{ord}(g) = n\}|$, the number of generators of G.

Theorem 2.3 (Euler-Fermat). IF (a, n) = 1, $a, n \in \mathbb{Z}$, then $a^{\varphi(n)} \equiv 1 \mod n$

Proof. By Lagrange's Theorem, the order of a in the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ divides the order of $(\mathbb{Z}/n\mathbb{Z})^{\times}$, which is $\varphi(n)$

Theorem 2.4 (Fermat's Little Theorem). If $a, p \in \mathbb{Z}$ and p is prime, then $a^p \equiv a \mod p$.

Proof. If p|a, then this holds trivially. If $p \nmid a, (a,p) = 1$ and so by **2.3** we have $a^{\varphi(p)} \equiv a^{p-1} \equiv 1$ mod p

Multiple Congruences

Can we find all $x \in \mathbb{Z}$ s.t. $x \equiv 4 \mod 7$ and $x \equiv 5 \mod 12$?

Suppose we can find $u, v \in \mathbb{Z}$ s.t. $\begin{cases} u \equiv 1 \mod 7; & u \equiv 0 \mod 12 \\ v \equiv 0 \mod 7; & v \equiv 1 \mod 12 \end{cases}$ Then we can write down

that x = 4u + 5v. Since (7,12) = 1, by **1.3** there are some $m, n \in \mathbb{Z}$ with 7m + 12n = 1, and from Euclid's algorithm we can determine these to be m = -5, n = 3. Then we can find u = 12n = 1 - 7m; v = 7m = 1 - 12n, and substitution gives u = 36, v = -35, and so a solution to the original problem is $4 \times 36 - 5 \times 35 = -31$. Now the lowest common multiple of 7 and 12 is 84, and so our solution set is: $\{x \in \mathbb{Z} : x \equiv -31 \mod 84\}$.

We can in fact generalise this process:

Theorem 2.5 (Chinese Remainder Theorem). Let m_1, \ldots, m_k be pairwise coprime positive integers, and let $M = \prod_{i=1}^k m_i$. Then given any integers a_1, \ldots, a_k there is a solution x to the the system of congruences:

```
x \equiv a_1 \mod m_1

x \equiv a_2 \mod m_2

\vdots

x \equiv a_k \mod m_k
```

Moreover, this solution is unique modulo M.

Note that if x satisfies this system of equations, then so does x + tM for any $t \in \mathbb{Z}$, and so the complete set of solutions is $x + M\mathbb{Z}$.

Proof.

<u>Uniqueness:</u> If x, y satisfy the system, then $m_i|x-y$ for all $i=1,\ldots,k$. Since no prime divides any tow the $m_i, M|x-y$ and hence $x \equiv y \mod M$.

Existence: Write $M_i = \frac{M}{m_i} = \Pi_{j \neq i} m_j$ for each i = 1, 2, ..., k. Since $(m_i, m_j) = 1 \forall i \neq j$, $(m_i, M_i) = 1$ for all i = 1, 2, ..., k. Therefore, for each i = 1, 2, ..., k we can find $b_i \in \mathbb{Z}$ such that $M_i b_i \equiv 1 \mod m_i$ and $M_i b_i \equiv 0 \mod m_j$ for $j \neq i$. Then $x = \sum_{i=1}^k a_i b_i M_i$ solves the system of congruences.

If m_1, \ldots, m_k are pairwise coprime, and $M = \prod m_i$, then map $\theta : \mathbb{Z}/M\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \ldots \times \mathbb{Z}/m_k\mathbb{Z}$, taking $x \mod M \mapsto (x \mod m_1, \ldots, x \mod m_k)$ is an isomorphism of rings. To see this, note that if $m_i|M$ then $x \mod m_i$ is determined by $x \mod M$ which implies that θ is well-defined. It is a homomorphism by the properties of $+, \times$ in $\mathbb{Z}/n\mathbb{Z}$, and **2.5** implies that θ is a bijection. In particular, if $n = p_1^{\alpha_1} \ldots p_k^{\alpha_k}$ for distinct primes p_i , then $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p_k^{\alpha_k}\mathbb{Z}$.

Corollary 2.6. If m_1, \ldots, m_k are pairwise coprime and $M = \prod_{i=1}^k m_i$ and $a_1, \ldots, a_k \in \mathbb{Z}$ are such that $(a_i, m_i) = 1$ for each $i = 1, 2, \ldots, k$, then there is a solution to the system of congruences in **2.5**, and any such solution is in fact coprime to M.

Proof. **2.5** gives us a solution, say $x \in \mathbb{Z}$. Suppose (x, M) > 1. Then there is a prime p such that p|x and p|M simultaneously. p prime, so WLOG suppose that p divides m_1 . Since $x \equiv a_1 \mod m_1$, we must have $p|a_1$, and so $p|(a_1, m_1) \notin$.

Corollary 2.7. If m_1, \ldots, m_k are pairwise coprime with $M = \prod_{i=1}^k m_i$, then $\varphi(M) = \varphi(m_1) \cdot \ldots \cdot \varphi(m_k)$

A multiplicative function is a function $f: \mathbb{N} \to \mathbb{C}$ such that, for all $m, n \in \mathbb{N}$ coprime, f(mn) = f(m)f(n). A function $f: \mathbb{N} \to \mathbb{C}$ is said to be **totally multiplicative** if for all $m, n \in \mathbb{N}$, f(m, n) = f(m)f(n).

Some multiplicative functions are:

- $\varphi(m)$
- $\tau(n)$ = the number of positive divisors of n
- $\sigma(n)$ = the sum of the positive divisors of n
- $\sigma_k(n) = \sum_{d|n} d^k$, so that $\sigma_0(n) = \tau(n), \sigma_1(n) = \sigma(n)$.

None of these are totally multiplicative however.

Lemma 2.8. Let f be a multiplicative function. Then so is g, where $g(n) = \sum_{d|n} f(d)$.

Proof. Let $m, n \in \mathbb{N}$, (m, n) = 1. Then the divisors of mn are precisely the integers of the form d_1d_2 where $d_1|m, d_2|n$ and $(d_1, d_2) = 1$. This means that we can write down

$$g(mn) = \sum_{d|mn} f(d)$$

$$= \sum_{d_1|m} \sum_{d_2|n} f(d_1d_2)$$

$$= \sum_{d_1|m} \sum_{d_2|n} f(d_1)f(d_2)$$

$$= \sum_{d_1|m} f(d_1) \sum_{d_2|n} f(d_2)$$

$$= g(m)g(n)$$

Then if we let $f(n) = n^k$ for some $k \in \mathbb{N}$. Then $g(n) = \sum_{d|n} d^k = \sigma_k(n)$. Later on, we shall see that we can recover f from g via Möbius inversion.

Theorem 2.9.

1. If p is a prime and $m \in \mathbb{N}$ then $\varphi(p^m) = p^{m-1}(p-1) = p^m \left(1 - \frac{1}{p}\right)$

2.
$$\forall n \in \mathbb{N}, \varphi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

3.
$$\sum_{d|n} \varphi(d) = n$$

Proof.

1.

$$\begin{split} \varphi(p^m) &= |\{1 \leq a \leq p^m : (a, p^m) = 1\}| \\ &= p^m - p^{m-1} \\ &= p^m \left(1 - \frac{1}{p}\right) \end{split}$$

2. Let $n = \prod_{i=1}^k p_i^{\alpha_i}$ for p_i distinct primes, $\alpha_1 \geq 1$. Then:

$$\begin{split} varphi(n) &= \Pi_{i=1}^k \varphi(p_i^{\alpha_i}) \\ &= \Pi_{i=1}^k p_i^{\alpha_i} \left(1 - \frac{1}{p_i}\right) \\ &= n \cdot \Pi_{p|n} \left(1 - \frac{1}{p}\right) \end{split}$$

3. φ is multiplicative and so is $n \mapsto n$, so it suffices to check that both sides agree when n is a prime power. Let p be a prime $m \in \mathbb{N}$. Then:

$$\sum_{d|p^m} \varphi(d) = \varphi(1) + \varphi(p) + \dots + \varphi(p^m)$$

$$= 1 + (p-1) + (p^2 - p) + \dots + (p^m - p^{m-1})$$

$$= p^m$$

Polynomials over $\mathbb{Z}/n\mathbb{Z}$ can have varying numbers of solutions, e.g.:

- 1. $x^2 + 2 \equiv 0 \mod 5$ has no solutions
- 2. $x^3 + 1 \equiv 0 \mod 7$ has three solutions
- 3. $x^2 1 \equiv 0 \mod 8$ has four solutions

Let $R \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/n\mathbb{Z}\}$ be a ring. Then we define R[x] to be the ring of polynomials with coefficients in R, with addition and multiplication given in the usual way.

WARNING: Two polynomials are **equal** if their coefficients are all equal, however the map from R[x] to the set of all functions $R \to R$ is not necessarily injective. For instance, if $R = \mathbb{Z}/p\mathbb{Z}$ for some prime \mathbb{Z} , then under this map $x^p - x$ is the zero function by Fermat's little theorem.

Theorem 2.10 (Division Algorithm for Polynomials). Let $f, g \in R[x]$, and suppose that the leading coefficient of g is a unit (i.e. has a multiplicative inverse) in R. Then $\exists q, r \in R[x]$ such that $f = q \cdot g + r$ where $\deg r < \deg g$.

Proof. We prove this by induction on $n = \deg f$. If $\deg f < \deg g$, then just take q = 0, r = f. Otherwise, $f(x) = ax^n + \ldots; g(x) = bx^m + \ldots$ for $a, b \neq 0, n \geq m, b = c^{-1}$ for some $c \in R$.

Then define $f'(x) = f(x) - acx^{n-m}g(x)$ has degree < n. By the induction hypothesis, there is some $q, r \in R[x]$ such that f'(x) = q(x)g(x) + r(x), with deg $r < \deg g$. But now $f(x) = (q(x) + acx^{n-m})g(x) + r(x)$, and we are done. **Theorem 2.11** (Remainder Theorem). let $f \in R[x], \alpha \in R$. Then there is some $q \in R[x]$ such that:

$$f(x) = (x - \alpha)q(x) + f(\alpha)$$

Proof. By **2.10** with $g(x) = x - \alpha$, there is some $q \in R[x]$ and $r \in R$ such that $f(x) = (x - \alpha)q(x) + r$. But now $f(\alpha) = r$, and the required equality holds.

A (non-zero) ring R is said to be an *integral domain* if it doesn't have any zero divisors, i.e. $ab = 0 \iff a = 0$ or b = 0. Note that \mathbb{Z} and \mathbb{Q} are integral domains, whilst $\mathbb{Z}/n\mathbb{Z}$ is an integral domain if and only if n is prime (if n = pq is a proper factorization, then pq = 0 in $\mathbb{Z}/n\mathbb{Z}$).

Theorem 2.12. Let R be an integral domain, and let $f \in R[x]$ be a non-zero polynomial of degree $n \ge 0$. Then f has at most n roots in R.

Theorem 2.13 (Lagrange). Lt p be a prime, and let $f(x) = a_n x^n + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$ be a polynomial of degree n such that $p \nmid p$. Then the congruence $f(x) = 0 \mod p$ has at most n distinct solutions.

Of 2.12. By induction on n. Check n = 0 - trivial.

Suppose n > 0. If f has no roots the we're done. Otherwise there exists $\alpha \in R$ such that $f(\alpha) = 0$, and so by the remainder theorem, $f(x) = (x - \alpha)q(x)$ with $\deg q < \deg f = n$. So by the induction hypothesis, we know that q has at most n - 1 roots. But if $\beta \in R$ is such that $f(\beta) = 0$, then $0 = (\beta - \alpha)q(\beta)$, and since R is an integral domain, we must have $\beta = \alpha$ or $q(\beta) = 0$, and so f has at most n roots.

Example: Let p be a prime, $G = \mathbb{Z}/p\mathbb{Z}$, and let $f(x) = x^{p-1} - 1 - \prod_{\alpha \in G} (x - \alpha)$. Observe that $\alpha = 1, 2, \ldots, p-1$, then $f(\alpha) = \alpha^{p-1} - 1 \equiv 0 \mod p$, so f has at least p-1 roots.

But deg f < p-1 because the coefficient of $x^{p-1} = 0$. This means that f must be the zero polynomial, and hence $0 = f(0) = -1 - (p-1)! \mod p$, and we have Wilson's theorem, that $(p-1)! \equiv -1 \mod p$.

Example: Consider $(\mathbb{Z}/7\mathbb{Z})^{\times}$.

 $\overline{3 \in (\mathbb{Z}/7\mathbb{Z})^{\times}}$ since $3 \cdot 5 \equiv 1 \mod 7$, $3^6 \equiv 1 \mod 7$, so 3 generates $(\mathbb{Z}/7\mathbb{Z})^{\times}$, and $(\mathbb{Z}/7\mathbb{Z})^{\times}$ is cyclic.

Theorem 2.14. If p is a prime, then $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic and of order p-1.

Proof.
$$|G| = \varphi(p) = p - 1 = \sum_{d|p-1} \varphi(d)$$

By Lagrange's Theorem, $|G| = \sum_{a||G|} N_a$ where $N_a = |\{g \in G : \operatorname{ord}(g) = d\}|$. Suppose G is not cyclic, so G does not contain an element of order p-1, so $N_{p-1} = 0 < \varphi(p-1)$, and so there must be some d for which $N_d > \varphi(d)$. Let α be an element of order for such a d. Then $\langle \alpha \rangle \leq G$ is cyclic of order d, so it has precisely $\varphi(d)$ elements of order d. Since $N_d > \varphi(d), \exists \beta \notin \langle \alpha \rangle$ s.t. $\operatorname{ord}(\beta) = d$. This implies that the polynomial $x^d - 1$ has d + 1 roots, namely $1, \alpha, \ldots, \alpha^{d-1}, \beta \not = 2.12$.

A positive integer is said to be a **primitives root modulo** n if $\langle g \rangle = (\mathbb{Z}/n\mathbb{Z})^{\times}$. Hence **2.14** says that primitive roots exist modulo p for all primes p.

For instance, take p=19, and let $d=\operatorname{ord}(2)$ in $(\mathbb{Z}/19\mathbb{Z})^{\times}$. Then $d|\varphi(19)=18$, so d=18 or d|6 or d|9. $2^6=64\not\equiv 1\mod 19$, and $2^9=512\not\equiv 1\mod 19$, so d=18, and 2 is a primitive room modulo 19.

There are many open problems concerning primitive roots:

1. Artin's Primitive Root Conjecture:

Given $g \ge 1$ does there exist infinitely many primes p such that g is a primitive root modulo p. We do know that there are infinitely many primes for which one of $\{2,3,5\}$ is a primitive root.

2. How large is the smallest primitive root modulo p?

We can prove that it is $\leq cp^{1/4+\epsilon}$ for some constant c>0 and for any $\epsilon>0$. However, conditional on the Generalised Riemann Hypothesis (GRH), it is $\leq c\log^6 p$ for constant c>0

Now consider $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{\pm 1, \pm 3\}$. All of these have order 1 or 2, and hence $(\mathbb{Z}/8\mathbb{Z})^{\times}$ is not cyclic. In fact, let $\theta : (\mathbb{Z}/2^k\mathbb{Z})^{\times} \to (\mathbb{Z}/8\mathbb{Z})^{\times}$ map $x \mod 2^k$ onto $x \mod 8$. Since $(a, 2^k) = 1 \iff (a, 8) = 1$, θ is surjective. Hence, for $k \geq 3$ we have that $(\mathbb{Z}/2^k\mathbb{Z})^{\times}$ is not cyclic, since a generator would map to a generator.

Theorem 2.15. If p > 2, $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ is cyclic for $k \geq 1$.

Lemma 2.16. Let $p > 2, k \ge 1, y \in \mathbb{Z}$. Then

1. If
$$x \equiv 1 + p^k y \mod p^{k+1}$$
, then $x^p \equiv 1 + p^{k+1} y \mod p^{k+2}$

2.
$$(1+yp)^{p^k} \equiv 1+p^{k+1}y \mod p^{k+2}$$

Proof.

1.
$$x^p = (1 + p^k y)^p = \sum_{j=0}^p {p \choose j} (p^k y)^j = 1 + p^{k+1} y + \dots + p^{pk} y^p$$
.

For
$$2 \le j \le p-1$$
, $p | {p \choose j}$, so ${p \choose j} (p^k y)^j \equiv 0 \mod p^{2k+2}$, and so $\equiv 0 \mod p^{k+2}$.

Since $p \ge 2, pk \ge k+2$, so $p^{pk}y^p \equiv 0 \mod p^{k+2}$, and therefore $x^p \equiv 1+p^{k+1}y \mod p^{k+2}$

2. Let x = 1 + py and apply part 1 k times.

Lemma 2.17. Let $p > 2, k \ge 1$. If g is a primitive root $\mod p$, and $g^{p-1} \not\equiv 1 \mod p^2$, then g generates $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ for all $k \ge 1$.

Proof. Let d = ord g as a member of $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$. Note that $\varphi(p^k) = p^{k-1}(p-1)$, and so $d|p^{k-1}(p-1)$.

If g is not a generator of $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$, then one of the following holds:

1.
$$d|p^{k-2}(p-1)$$

2.
$$d = p^{k-1}e$$
 where $e|p-1, e \neq p-1$

We tackle each of these cases individually, and will see that they cannot be the case:

- 1. We thus have $g^{p^{k-2}(p-1)} \equiv 1 \mod p^k$. We've already seen that $g^{p-1} \equiv 1 \mod p$ and $g^{p-1} \not\equiv 1 \mod p^2$, and so there exists some $y \not\equiv 0$ such that $x \coloneqq g^{p-1} = 1 + py$.
 - Then we have $x^{p^{k-2}} \equiv 1 + p^{k-1}y \mod p^k \implies g^{p^{k-2}(p-1)} \equiv 1 + p^{k-1}y \mod p^k \not\equiv 1$
- 2. Here, we have $g^{p^{k-1}e} \equiv 1 \mod p^k$. Fermat tells us that $g^p \equiv g \mod p$, and so $g^{p^{k-1}} \equiv g \mod p \implies g^{p^{k-1}e} \equiv g^e \mod p$. However, e < p, and so this is not 1 mod p, and hence $q^{p^{k-1}e} \not\equiv 1 \mod p \not\downarrow.$

Hence the only case left is that g is a generator of $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$.

Proof of 2.15. Let g be a primitive root modulo p. If $g^{p-1} \not\equiv 1 \mod p^2$, then $(\mathbb{Z}/p^k\mathbb{Z})^{\times} = p^{p-1}$ $\langle g \rangle \ \forall k \geq 1.$

Otherwise, $g^p \equiv g \mod p^2$. Let h = (1+p)g, so that $h^p \equiv (1+p)^p g^p \equiv g \mod p^2$. Observe that $g \not\equiv h \mod p^2$, as g is a primitive root modulo p, so that (g, p) = 1.

So
$$h^p \not\equiv h \mod p^2$$
, and so $\langle h \rangle = (\mathbb{Z}/p^k\mathbb{Z})^{\times} \ \forall k \geq 1$.

2.16 fails for p=2 because of the k=1 case in 1. However, it does hold if $p=2, k\geq 2$. In particular, $(1+4)^{2^{k-1}} \equiv 1+2^{k+1} \mod 2^{k+2}$. So we have $(\mathbb{Z}/2^k\mathbb{Z})^{\times} = \langle -1, 5 \rangle \cong \mathbb{Z}/2^{k-2}\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ for k > 3.

Quadratic Residues 3

Let p be an odd prime, and let $a \in \mathbb{Z}$ such that $a \not\equiv 0 \mod p$. We say that a is a quadratic **residue modulo** p if the congruence $x^2 \equiv a \mod p$ has a solution. Otherwise, we say that a is a quadratic non-residue modulo p. So a is a quadratic residue mod p if and only if its residue class in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a square.

Conjecture 3.1 (Open). Let n(p) be the least quadratic non-residue modulo p. We can show that $n(p) \le cp^{\theta}$ for any $\theta > \frac{1}{4}\sqrt{e}$ for some constant c > 0, and, conditional on GRH, $n(p) \le c\log^2 p$ for some c > 0

Lemma 3.2. Let p be an odd prime. Then there are precisely $\frac{p-1}{2}$ quadratic residues modulo p.

Proof. Let $\sigma: (\mathbb{Z}/p\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times}; x \mapsto x^2$.

It suffices to show that σ is 2 - to - 1:

$$x^2 \equiv y^2 \mod p \iff (x+y)(x-y) \equiv 0 \mod p \iff x \equiv \pm y \mod p$$

as p is prime and $\mathbb{Z}/p\mathbb{Z}$ is an integral domain. Hence there are precisely $\frac{p-1}{2}$ elements in the

Alternative. Let g be a primitive root mod p, i.e. $(\mathbb{Z}/p\mathbb{Z})^{\times}=\{1,g,g^2,\ldots g^{p-2}\}$, and so $\{x^2:x\in(\mathbb{Z}/p\mathbb{Z})^{\times}\}=\{1,g^2,g^4,\ldots,g^{p-3},g^{p-1},g^{p+1},\ldots,g^{2p-4}\}$. But $g^{p-1}\equiv 1\mod p$, and so the second half of this set is the same as the first half, and hence only half the elements are squares.

Let p be an odd prime and $a \in \mathbb{Z}$. We define **Legendre's symbol** "a on p" to be:

$$\left(\frac{a}{p}\right) \coloneqq \begin{cases} 0 & p|a \\ +1 & a \text{ is a quadratic residue mod } p \\ -1 & a \text{ is not a quadratic residue mod } p \end{cases}$$

Theorem 3.3 (Euler's Criterion). Let $p > 2, a \in \mathbb{Z}$. Then $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$

Since p > 2, the elements 0, 1, -1 are distinct mod p, so this congruence determines $\left(\frac{a}{p}\right)$ uniquely.

Proof. If $a \equiv 0 \mod p$, then the result is trivial. Suppose therefore that (a,p)=1. Then by Fermat, $a^{p-1} \equiv 1 \mod p$, which means that $a^{\frac{p-1}{2}} \equiv \pm 1 \mod p$. Observe further that, if $a=x^2 \mod p$, then $a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \mod p$. By **3.2**, there are precisely $\frac{p-1}{2}$ quadratic residues, so the congruence $a^{\frac{p-1}{2}} \equiv 1 \mod p$ has at least $\frac{p-1}{2}$ solutions. However, this is a polynomial in a of degree $\frac{p-1}{2}$, and so it can only have at most this many solutions, and hence every solution is a quadratic residue. So whenever $\left(\frac{a}{p}\right) = -1$ we must have $a^{\frac{p-1}{2}} \equiv -1 \mod p$.

Corollary 3.4. Let
$$p > 2$$
, $a, b \in \mathbb{Z}$. Then $\left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$

Proof.

$$\left(\frac{ab}{p}\right) \equiv (ab)^{\frac{p-1}{2}} \mod p$$

$$\equiv a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \mod p$$

$$\equiv \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right) \mod p$$

This implies that

1. The map $(\mathbb{Z}/p\mathbb{Z})^{\times} \to \{\pm 1\}$; $a \mapsto \left(\frac{a}{p}\right)$ is a homomorphism.

2. Let R be any residue, N any non-residue. Then $R \times R = R$; $N \times N = N$; $R \times N = N$

3. There is a polynomial time algorithm for computing $\left(\frac{a}{p}\right)$ for odd p, because we can efficiently compute $a^n \mod p$ via binary modular exponentiation.

Corollary 3.5. Let
$$p > 2$$
. Then $\left(\frac{-1}{p}\right) = \begin{cases} +1 & p \equiv 1 \mod 4 \\ -1 & p \equiv -1 \mod 4 \end{cases}$

$$Proof. \ p \equiv \begin{cases} +1 \mod 4 \iff \frac{p-1}{2} \equiv \begin{cases} 0 \mod 2 \\ 1 \mod 2 \end{cases}$$
 and hence $(-1)^{\frac{p-1}{2}} \equiv \begin{cases} +1 & p \equiv 1 \mod 4 \\ -1 & p \equiv 3 \mod 4 \end{cases}$, and so by Euler's criterion, $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$

We can think about this in another way, by considering an alternative proof of Fermat's little theorem:

Observe that multiplying by a simply permutes the elements of the multiplicative group mod p as a is a generator, hence:

 $(p-1)! = \prod_{j=1}^{p-1} j \equiv \prod_{j=1}^{p-1} (aj) = a^{p-1} \prod_{j=1}^{p-1} j = a^{p-1} (p-1)!$, and hence $a^{p-1} \equiv 1 \mod p$.

Similarly, $\Pi_{j=1}^{\frac{p-1}{2}}(aj) = a^{\frac{p-1}{2}}\Pi_{j=1}^{\frac{p-1}{2}}j = a^{\frac{p-1}{2}}(\frac{p-1}{2})!$ Write $aj \equiv \epsilon_j c_j \mod p$ with $c_j \in \{1, 2, \dots, \frac{p-1}{2}\}$, and $\epsilon_j \in \{\pm 1\}$.

We claim that, if $1 \le j \le k \le \frac{p-1}{2}$, then $c_j \ne c_k$.

Indeed, if $c_j = c_k$, then $\frac{aj}{\epsilon_j} \equiv \frac{ak}{\epsilon_k} \mod p$, i.e. $j\epsilon_k \equiv k\epsilon_j \mod p$ if $j \equiv \pm k \mod p$.

Hence, $a^{\frac{p-1}{2}}(\frac{p-1}{2})! = \prod_{j=1}^{\frac{p-1}{2}}(aj) \equiv \prod_{j=1}^{\frac{p-1}{2}}(\epsilon_j c_j) \mod p \equiv \left(\prod_{j=1}^{\frac{p-1}{2}}\epsilon_j\right)(\frac{p-1}{2})! \mod p$, and hence $a^{\frac{p-1}{2}} \equiv \prod_{j=1}^{\frac{p-1}{2}}\epsilon_j \mod p$. This brings us onto:

Lemma 3.6 (Gauss's Lemma). Let $p > 2, a \in \mathbb{Z}$. Then:

$$\left(\frac{a}{p}\right) = (-1)^{\mu}$$

Where $\mu = \left|\left\{1 \le j \le \frac{p-1}{2} : aj \equiv k \mod p \text{ for some } \frac{p+1}{2} \le k \le p-1\right\}\right|$

Proof. By the above and observe that $\mu = |\{n \le j \le \frac{p-1}{2} : \epsilon_j = -n\}| = |\{1 \le j \le \frac{p-1}{2} : \epsilon_j = -1\}|$, and hence $(-1)^{\mu} = \prod_{j=n}^{\frac{p-1}{2}} \epsilon_j$.

Examples

- 1. Let a = -1. Then aj = -j for all $j \in \{1, \dots, \frac{p-1}{2}\}$, and so $\mu = \frac{p-1}{2}$, and $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$ as we saw in **3.5**.
- 2. Let a=2. Then $\{2j: 1 \leq j \leq \frac{p-1}{2}\} = \{2,4,\ldots,p-1\}$. If $0 < j < \frac{p}{4}$, then $2j \in \{1,\ldots,\frac{p-1}{2}\}$, so $\epsilon_j = 1$. If $\frac{p}{4} < j < \frac{p}{2}$ then $\frac{p}{2} < 2j < p$, so $\epsilon_j = -1$.

Hence $\mu = |\{1 \leq j \leq \frac{p-1}{2}: \frac{p}{4} < j < \frac{p}{2}\}| = \lfloor \frac{p}{2} \rfloor - \lfloor \frac{p}{4} \rfloor.$

The precise value depends on $p \mod 8$:

Corollary 3.7. Let p be an odd prime. Then:

3. Let a=3. Consider $\{3j:1\leq j\leq \frac{p-1}{2}\}$. We can check that $\mu=|\{1\leq j\leq \frac{p-1}{2}:\frac{p}{6}< j<\frac{p}{3}\}|$, and that it's parity depends on $p\mod 12$.

In general, we see that $\mu = \sum_{m \in \mathbb{Z}} |\{1 \leq j \leq \frac{p-1}{2} : (m - \frac{1}{2}\frac{p}{a} < j < m\frac{p}{a}\}|$. Observe that $0 < m < \frac{1}{2} + \frac{aj}{p} < \frac{a+1}{2}$. In particular, if a is odd, then $m \leq \frac{a-1}{2}$.

Theorem 3.8 (Gauss's Law of Quadratic Reciprocity). Let p, q be odd primes. Then:

$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$$

Equivalently,
$$\binom{q}{p} = \begin{cases} -\binom{p}{q} & p \equiv q \equiv 3 \mod 4 \\ \binom{p}{q} & otherwise \end{cases}$$

Examples

1. Let $p \ge 5$. Then $\left(\frac{3}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{3-1}{2}} {p \choose 3}$.

Now $(-1)^{\frac{p-1}{2}} = 1 \iff p \equiv 1 \mod 4$, and $\left(\frac{p}{3}\right) = 1 \iff p \equiv 1 \mod 3$, so $\left(\frac{3}{p}\right) = \begin{cases} +1 & p \equiv \pm 1 \mod 12 \\ -1 & p \equiv \pm 5 \mod 12 \end{cases}$.

2. $\left(\frac{19}{73}\right) = +1 \times \left(\frac{73}{19}\right) = \left(\frac{16}{19}\right) = 1$ as $16 = 4^2$.

3. $\left(\frac{34}{97}\right) = \frac{2}{17} \times \frac{17}{97} = +1 \times \left(\frac{17}{97}\right) = +1 \times \left(\frac{97}{17}\right) = \left(\frac{12}{17}\right) = \left(\frac{3}{17}\right) = -1 \text{ as } 17 \equiv 5 \mod 12.$

Proof of Gauss's Lemma. $\binom{q}{p} = (-1)^{\mu}$ where $\mu = |\{(j,m) \in S : (m - \frac{1}{2})^{\frac{p}{q}} < j < m^{\frac{p}{q}}\}|$ where $S = \{(j,m) : 1 \le j \le \frac{p-1}{2}, 1 \le m \le \frac{q-1}{2}\}.$

Rewriting, $\mu = |\{(j, m) \in S : 0 < mp - jq < \frac{p}{2}\}|.$

Similarly, $\binom{p}{q} = (-1)^{\eta}$, where $\eta = |\{(j,m) \in S : 0 < jq - mp < \frac{q}{2}\}|$.

Observe that $\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{\mu+\eta}$. Now $|S|=\frac{p-1}{2}\frac{q-1}{2}=\mu+\eta+|A|+|B|$, where:

$$A = \{(j, m) \in S : mp - jq > \frac{p}{2}\}$$
$$B = \{(j, m) \in S : jq - mp > \frac{q}{2}\}$$

Given $(j,m) \in S$, let $j' = \frac{p+1}{2} - j$, $m' = \frac{q+1}{2} - m$. Note that $(j',m') \in S$. We now claim that $(j,m) \in A \iff (j',m') \in B$.

Indeed, note that $j'q - m'p = (\frac{p+1}{2} - j)q - (\frac{q+1}{2} - m)p = mp - jq - \frac{p}{2} + \frac{q}{2}$. Hence $j'q - m'p > \frac{q}{2} \iff mp - jq > \frac{p}{2}$.

Hence |A| = |B|, and so these terms do not affect the sign of $(-1)^{\mu+\eta+|A|+|B|}$, and hence:

$$\left(\frac{p}{q}\right)\left(\frac{q}{b}\right) = (-1)^{\mu+\eta} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$