

Informatik der Systeme – Chapter 4: Computer Abstractions and Technology

Prof. Dr. Michael Menth

http://kn.inf.uni-tuebingen.de

Acknowledgements

- ► This set of slides is an adaptation of Prof. Mary Jane Irwin's lecture notes, http://www.cse.psu.edu/research/mdl/mji/
- Adapted from Patterson & Hennessy: "Computer Organization and Design", 4th Edition, © 2008, MK
- German translation: Patterson & Hennessy: "Rechnerorganisation und Rechnerentwurf"

- Application binary interface
- Components of a computer
- Classes of computers
- Technological evolution
- Performance considerations

- Application binary interface
- Components of a computer
- Classes of computers
- Technological evolution
- Performance considerations

Layers of Software

High-level language program (in C)

Assembly language program (for MIPS)

```
swap: sll $2, $5, 2
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31
```


Machine (object, binary) code (for MIPS)

```
000000 00000 00101 000100001000000
000000 00100 00010 000100000100000
```

. . .

Advantages of Higher-Level Languages

► Higher-level languages

- Allow the programmer to think in a more natural language and for their intended use (Fortran for scientific computation, Cobol for business programming, Lisp for symbol manipulation, Java for web programming, ...)
- Improve programmer productivity more understandable code that is easier to debug and validate
- Improve program maintainability
- Allow programs to be independent of the computer on which they are developed
 - Compilers and assemblers can translate high-level language programs to the binary instructions of any machine
- Compilers produce very efficient assembly code optimized for the target machine
- As a result, very little programming is done today at the assembler level

System Software

- Supervising program that interfaces the user's program with the hardware (e.g., Linux, MacOS, Windows)
- Handles basic input and output operations
- Allocates storage and memory
- Provides for protected sharing among multiple applications

Compiler

 Translates programs written in a high-level language (e.g., C, Java) into instructions that the hardware can execute

► Instruction set architecture (ISA)

- Abstract interface between the hardware and the lowest level software (aka basic instruction set)
- Encompasses all the information necessary to write a machine language program, including instructions, registers, memory access, I/O, ...
- Enables implementations of varying cost and performance to run identical software

► Application binary interface (ABI)

- Combination of the user portion of the instruction set and the operating system interface
- Used by application programmers
- Defines a standard for binary portability across computers

- Application binary interface
- Components of a computer
- Classes of computers
- Technological evolution
- Performance considerations

Components of a Computer

- ► Five classic components of a computer
 - Input
 - Output
 - Memory
 - Datapath
 - Control
- Processor (CPU)
 - Control
 - Datapath

AMD's Barcelona Multicore Chip

- Four cores on one chip
- 1.9 GHz clock rate
- 65 nm technology
- Three levels of caches (L1, L2, L3) on chip
- Integrated Northbridge

http://www.techwarelabs.com/reviews/processors/barcelona/

- Application binary interface
- Components of a computer
- Classes of computers
- Technological evolution
- Performance considerations

Classes of Computers

Desktop computers

 Designed to deliver good performance to a single user at low cost usually executing 3rd party software, usually incorporating a graphics display, a keyboard, and a mouse

Servers

 Used to run larger programs for multiple, simultaneous users typically accessed only via a network and that places a greater emphasis on dependability and (often) security

Supercomputers

 A high performance, high cost class of servers with hundreds to thousands of processors, terabytes of memory and petabytes of storage that are used for high-end scientific and engineering applications

Embedded computers (processors)

A computer inside another device used for running one predetermined application

Growth in Cell Phone Sales (Embedded)

embedded growth >> desktop growth

- The largest class of computers
- Span the widest range of applications and performance
- Often have
 - Minimum performance requirements
 - Stringent cost limitations
 - Stringent power consumption limitations
 - Low tolerance for failure

- Application binary interface
- Components of a computer
- Classes of computers
- Technological evolution
- Performance considerations

Technology Scaling Road Map (ITRS)

Year	2004	2006	200)8	2010	2012
Feature size (nm)	90	65	45	5)	32	22
	•					

- ► Fun facts about 45 nm transistors
 - 30 million can fit on the head of a pin
 - You could fit more than 2,000 across the width of a human hair
 - If car prices had fallen at the same rate as the price of a single transistor has since 1968, a new car today would cost about 1 cent

Moore's Law for (Intel) CPU Chips

Source: A. Tanenbaum, Structured Computer Organization, 5/E, © Pearson

Another Example of Moore's Law Impact

- Application binary interface
- Components of a computer
- Classes of computers
- Technological evolution
- Performance considerations

Machine Clock Rate

- Machines proceed in clock cycles (CCs)
 - Given in ns, ps

- Clock rate = 1 / CC
 - Given in MHz, GHz
- Clock rates hit a "power wall"
 - Order of GHz not exceeded for several years for energy reasons

A Sea Change is at Hand

Product	AMD Barcelona	Intel Nehalem	IBM Power 6	Sun Niagara 2
Cores per chip	4	4	2	8
Clock rate	2.5 GHz	~2.5 GHz?	4.7 GHz	1.4 GHz
Power	120 W	~100 W?	~100 W?	94 W

- ► The power challenge has forced a change in the design of microprocessors
 - Since 2002 the rate of improvement in the response time of programs on desktop computers has slowed from a factor of 1.5 per year to less than a factor of 1.2 per year
- ▶ As of 2006 all desktop and server companies are shipping microprocessors with multiple processors cores per chip
- Plan of record is to double the number of cores per chip per generation (about every two years)

Clock Cycles per Instruction (CPI)

- Instruction set (IS)
 - Same IS may be supported by different machines
 - Performance may vary
- Clock cycles per instruction (CPI)
 - Depends on how IS is implemented on a machine
 - Complex instructions have large CPI
 - CPI is instruction-specific
 - Define instruction classes with similar CPI

	Instruction class			
	А	В	С	
CPI (machine 1)	1	2	3	
CPI (machine 2)	2	3	5	

- ► Given: programm (instructions)
 - *IC*: instruction count
 - IC_i: instruction count per CPI class i
- Instruction mix
 - Influences IC_i
 - Depends on program
- Effective CPI
 - n: number of CPI classes

•
$$CPI_{eff} = \frac{\sum_{i=1}^{n} CPI_{i} \cdot IC_{i}}{IC}$$

- ► CPU time
 - $t_{CPU} = \frac{\sum_{i=1}^{n} CPI_i \cdot IC_i}{clock \ rate}$
 - Three factors influenceing CPU time

Factors for Instruction Count, CPI_{eff}, Clock Rate

	Instruction count	CPI _{eff}	Clock rate
Algorithm	X	X	
Programming language	X	X	
Compiler	X	X	
ISA	X	Х	Х
Core organization		X	Х
Technology			X

- Execution speed (CPU time), does not reflect idle times
 - Time to wait for I/O
 - Time to wait for CPU access on multiprocessor machines
 - Etc.
- ► Still we define the performance of machine *X* for program *P* as
 - $Performance(X, P) = \frac{1}{t_{CPU}(X, P)}$
 - Faster is better
 - Comparison of two machines X and Y for specific program P
 - $\frac{Performance(X,P)}{Performance(Y,P)} = \frac{t_{CPU}(Y,P)}{t_{CPU}(X,P)} = n \text{ means}$
 - Performance of X is n times larger than the one of Y
 - X is n times faster than Y

Workloads and Benchmarks

- Benchmark
 - A set of programs that form a "workload" specifically chosen to measure performance
- ► SPEC (System Performance Evaluation Cooperative)
 - Creates standard sets of benchmarks
 - www.spec.org

28

Response Time Matters

Justin Rattner's ISCA'08 Keynote (VP and CTO of Intel)

Other Performance Metrics than CPU Time

- Response time (overall execution time)
 - Time between the start and the completion of a task
 - Important to individual users
- Throughput
 - Total amount of work done in a given time
 - Important to data center managers
- Energy efficiency
 - Power consumption especially important for power-limited applications, e.g., in the embedded market where battery life matters