PLANIRANJE POGONA ELEKTROENERGETSKOG SUSTAVA

2. AUDITORNE VJEŽBE

doc. dr. sc. Igor Kuzle Hrvoje Pandžić

Potrošnja električne energije na području elektroenergetskog sustava u razdoblju 1986.-1992. godine slijedila je zakon promjene po logaritamskom pravcu. Ostvarene potrošnje u navedenom razdoblju iznosile su:

Godina	1986	1987	1988	1989	1990	1991	1992
<i>W</i> (<i>t</i>) [Gwh]	9750	10042	10544	11282	11507	12197	12624

Izračunajte koeficijente a i b te potrošnju električne energije koja se može očekivati u 1995. godini.

$$N = 7$$

t	W_t^0	$\log W_t^0$	t ²	$t \log W_t^0$
0	9750	3,989	0	0,000
1	10042	4,002	1	4,002
2	10544	4,023	4	8,046
3	11282	4,052	9	12,156
4	11507	4,061	16	16,244
5	12197	4,086	25	20,430
6	12624	4,101	36	24,606
$S_1 = 21$		$S_2 = 28,314$	$S_3 = 91$	$S_4 = 85,484$

$$\mathbf{A} = \begin{bmatrix} 7 & 21 \\ 21 & 91 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 28,314 \\ 85,484 \end{bmatrix}$$

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \begin{bmatrix} 3,987\\0,019 \end{bmatrix}$$

$$W = 10^{3,987 + 0,019t_p}$$

$$W(1995) = 1,439 \cdot 10^4 \text{ GWh}$$

Ostvarena godišnja potrošnja električne energije u razdoblju 1991.-1995. godine prikazana je u tablici. Potrebno je:

Aproksimirati ovisnost ostvarene potrošnje logaritamskim pravcem i metodom najmanjeg zbroja kvadrata odstupanja odrediti parametre modela a i b te srednju godišnju stopu porasta potrošnje p_{sr} .

Predvidjeti potrošnju u 2000. i 2005. godini.

Godina	1991	1992	1993	1994	1995
W(t) [Gwh]	10	12	16	22	30

N = 5

t	W_t^0	$\log W_t^{0}$	t ²	$t \log W_t^0$
1	10	1,000	1	1,0000
2	12	1,0792	4	2,1584
3	16	1,2041	9	3,6123
4	22	1,3424	16	5,3696
5	30	1,4771	25	7,3856
<i>S</i> ₁ = 15		$S_2 = 6,1028$	$S_3 = 55$	$S_4 = 19,5259$

Koeficijenti logaritamskog pravca:

$$a = \frac{S_2 S_3 - S_1 S_4}{N S_3 - S_1^2} = \frac{6,1028 \cdot 55 - 15 \cdot 19,5259}{5 \cdot 55 - 15^2} = 0,8559$$

$$b = \frac{NS_4 - S_1S_2}{NS_3 - S_1^2} = \frac{5 \cdot 19,5259 - 15 \cdot 6,1028}{5 \cdot 55 - 15^2} = 0,1216$$

Jednadžba logaritamskog pravca:

$$\log W_t = 0,8559 + 0,1216t$$

Podudaranje modela sa stvarnom potrošnjom:

a+bt	W _t	$W_t - W_t^0$	$(W_t - W_t^0)^2$
0,9775	9,495	-0,505	0,255
1,0991	12,563	0,563	0,317
1,2207	16,623	0,623	0,388
1,3423	21,994	-0,006	0,000
1,4639	29,100	-0,900	0,810

$$\varepsilon_{t} = \sum_{t=1}^{5} (W_{t} - W_{t}^{0})^{2} = 1,77$$

Standardna devijacija iznosi:

$$\sigma = \sqrt{\frac{\varepsilon_t}{N}} = \sqrt{\frac{1,77}{5}} = 0,6 \text{ GWh}$$

Prognozirane potrošnje električne energije za 2000. i 2005. godinu su:

$$\log W_{10} = 0.8559 + 0.1216 \cdot 10 \Rightarrow W(2000) = 118,00 \text{ GWh}$$

$$\log W_{15} = 0.8559 + 0.1216 \cdot 15 \Rightarrow W(2005) = 478,52 \text{ GWh}$$

Prosječna stopa porasta:

$$\frac{W_{1995}}{W_{1991}} = \frac{10^{a+5 \cdot b}}{10^{a+1 \cdot b}} = 10^{4 \cdot b} = (1 + p_{sr})^4$$

$$(1+p_{sr})=10^b=10^{0.1216}=1,3231$$

$$p_{sr} = 0.3231$$

Prognozirane potrošnje električne energije za 2000. i 2005. godinu korištenjem prosječne stope porasta potrošnje su:

$$W_{p_{sr}}(2000) = W(1995) \cdot (1 + p_{sr})^5 = 30 \cdot 1,3231^5 = 121,64 \text{ GWh}$$

$$W_{p_{sr}}(2005) = W(1995) \cdot (1 + p_{sr})^{10} = 30 \cdot 1,3231^{10} = 493,23 \text{ GWh}$$

Ostvarena godišnja potrošnja električne energije u razdoblju 1991.-1995. godine prikazana je u tablici. Potrebno je:

Aproksimirati ovisnost ostvarene potrošnje logaritamskom parabolom i metodom najmanjeg zbroja kvadrata odstupanja odrediti parametre modela a i b te srednju godišnju stopu porasta potrošnje p_{sr} .

Predvidjeti potrošnju u 2000. i 2005. godini.

Godina	1991	1992	1993	1994	1995
W(t) [Gwh]	10	12	16	22	30

N = 5

t	t ²	t ³	t ⁴	W_t^0	$\log W_t^0$	$t \log W_t^0$	$t^2 \log W_t^0$
1	1	1	1	10	1,000	1,0000	1,0000
2	4	8	16	12	1,0792	2,1584	4,3167
3	9	27	81	16	1,2041	3,6123	10,8371
4	16	64	256	22	1,3424	5,3696	21,4787
5	25	125	625	30	1,4771	7,3856	36,9280
$S_1 = 15$	$S_2 = 55$	$S_3 = 225$	$S_4 = 979$		$S_5 = 6,1028$	$S_6 = 19,5259$	$S_7 = 74,5605$

Koeficijenti logaritamske parabole:

$$N \cdot a + S_1 \cdot b + S_2 \cdot c = S_5$$

$$S_1 \cdot a + S_2 \cdot b + S_3 \cdot c = S_6$$

$$S_2 \cdot a + S_3 \cdot b + S_4 \cdot c = S_7$$

$$5a + 15b + 55c = 6,1028$$

$$\Rightarrow 15a + 55b + 225c = 19,5259$$

$$55a + 225b + 979c = 74,5605$$

$$a = 0.91731$$

$$b = 0.068623$$

$$c = 8,8535 \cdot 10^{-3}$$

Provjera modela usporedbom sa stvarnim podacima:

a+bt+ct ²	W_t	$W_t - W_t^0$	$(W_t - W_t^{0})^2$
0,99478	9,88051	-0,11948	0,01427
1,08991	12,30185	0,30185	0,09111
1,20286	15,95369	-0,04631	0,00214
1,33346	21,55058	-0,44942	0,20198
1,48176	30,32243	0,32243	0,10396

$$\varepsilon_t = \sum_{t=1}^{5} (W_t - W_t^0)^2 = 0,41346$$

Standardna devijacija iznosi:

$$\sigma = \sqrt{\frac{\varepsilon_t}{N}} = \sqrt{\frac{0,41346}{5}} = 0,29 \text{ GWh}$$

Prognozirane potrošnje električne energije za 2000. i 2005. godinu su:

$$\log W_{10} = 2,488897 \Rightarrow W(2000) = 308,246 \text{ GWh}$$

$$\log W_{15} = 3,938710 \Rightarrow W(2005) = 8683,775 \text{ GWh}$$

Prosječna stopa porasta:

$$\frac{W_{1995}}{W_{1991}} = \frac{10^{a+5 \cdot b + 25c}}{10^{a+1 \cdot b + 1 \cdot c}} = 10^{4 \cdot b + 24 \cdot c} = (1 + p_{sr})^4$$

 $p_{\mbox{\tiny \it sr}}=0{,}323\,$ - mora biti isto kao i u prethodnom zadatku

Razlike u prognoziranoj potrošnji električne energije znatne su u odnosu na prethodni zadatak:

$$\Delta W(2000) = 308,246 - 118 = 190,246 \text{ GWh} (161,2 \%)$$

$$\Delta W(2005) = 8683,775 - 478,52 = 8105,255 \text{ GWh} (1693,8 \%)$$

Model logaritamske parabole daje značajno različite rezultate u odnosu na model logaritamskog pravca iz prethodnog zadatka. Razlike su to veće što predviđanje ide dalje u budućnost.

Ako se u modelu prognoze godišnje potrošnje električne energije po logaritamskom pravcu shodno razvoju funkcije $e^{p_{sr}}$ u Taylorov red izvrši zamjena $1+p_{sr}\approx e^{p_{sr}}$ dobije se eksponencijalni model oblika $W_g=W_0e^{p_{sr}t}$. Naći razliku u predviđanju potrošnje električne energije primjenom eksponencijalnog oblika umjesto logaritamske parabole pri udvostručenju potrošnje za 10, odnosno za 20 godina.

Prema modelu logaritamskog pravca za udvostručenje potrošnje električne energije u razdoblju od 10 godina vrijedi:

$$2W_0 = W_0 \left(1 + p_{sr}\right)^{10}$$

Odavde godišnja stopa porasta potrošnje električne energije prema modelu logaritamskog pravca iznosi:

$$p_{\rm er}^{lp,10} = \sqrt[10]{2} - 1 = 0,0718$$

Slično, ukoliko se potrošnja električne energije udvostruči u razdoblju od 20 godina vrijedi:

$$p_{sr}^{lp,20} = \sqrt[20]{2} - 1 = 0,0353$$

Korištenjem eksponencijalnog modela godišnje stope rasta su:

$$2W_0 = W_0 e^{10 p_{sr}^{10}} \Rightarrow p_{sr}^{10} = \frac{\ln 2}{10} = 0,0693$$

$$p_{sr}^{20} = \frac{\ln 2}{20} = 0,0347$$

Pogreške iznose:

$$\Delta p_{sr}^{10} = \frac{7,18-6,93}{7,18} \cdot 100 = 3,48 \%$$

$$\Delta p_{sr}^{20} = \frac{3,53 - 3,47}{3,53} \cdot 100 = 1,70 \%$$