Problem 3.14

Validate the statement that the high-frequency components in Eq. (3.36) represent a VSB wave modulated onto a carrier of frequency $2f_c$.

Solution

The high-frequency components in Eq. (3.36) are defined by the formula

$$G(f) = \frac{1}{4} A_c A'_c [M(f - 2f_c) H(f - f_c) + M(f + 2f_c) H(f + f_c)]$$
 (1)

Referring to Eq. (3.33), the spectrum of the incoming VSB modulated wave is

$$S(f) = \frac{1}{2} A_c [M(f - f_c) + M(f + f_c)] H(f)$$

$$= \frac{1}{2} A_c M(f - f_c) H(f) + \frac{1}{2} A_c M(f + f_c) H(f)$$
(2)

Examining Eqs. (1) and (2), as labelled here, we see that (ignoring the scaling factors)

- 1. The first term in Eq. (1), namely, $M(f 2f_c)H(f f_c)$ is equal to the first term in Eq. (2), namely $M(f f_c)H(f)$ shifted to the right by f_c .
- 2. By the same token, the second term in Eq. (1), namely, $M(f + 2f_c)H(f + f_c)$ is equal to the second term in Eq. (2), namely, $M(f + f_c)H(f)$ shifted to the left by f_c .

Since Eq. (2) represents a VSB wave modulated onto carrier frequency f_c , it follows that Eq. (1) represents a VSB wave modulated onto the new carrier frequency $2f_c$.