REPORT ON ASSIGNMENT 5 (MACHINE LEARNING LAB)

PROCEDURE

The *Flower recognition* dataset was downloaded that included 4,242 images of five different classes of flowers: tulip, sunflower, daisy, rose and dandelion.

★PRE-PROCESSING OF THE DATASET

- Since the assignment was to apply CNN on both RGB as well as grayscale images, the pre-processing was done simultaneously for both RGB and grayscale images.
- The images were of varying sizes, so all of them were resized to a size of 120 X 120 pixels.
- All images were randomly shuffled to create training, test, and development set with a ratio of 90:10:10, respectively.

★TRAINING AND CLASSIFICATION (IN KERAS)

- A convolutional neural network (CNN) having two CNN layers was used in the model chosen for training on the color images.
- For the grayscale images, three CNN layers were used.In addition, batch normalization was also used between the layers.
- From the test set, the images of ten different flowers were taken and their class was predicted.
- The graph for loss and accuracy vs epoch for the training set, and the graph for accuracy vs epoch for the development set were plotted.

RESULTS

1. Preview of sample images from different classes after resizing

2. The model summary

Layer (type)	0utput	Shape	Param #
conv2d_15 (Conv2D)	(None,	120, 120, 32)	2432
max_pooling2d_15 (MaxPooling	(None,	60, 60, 32)	0
conv2d_16 (Conv2D)	(None,	60, 60, 64)	18496
max_pooling2d_16 (MaxPooling	(None,	30, 30, 64)	0
conv2d_17 (Conv2D)	(None,	30, 30, 128)	73856
max_pooling2d_17 (MaxPooling	(None,	15, 15, 128)	0
flatten_8 (Flatten)	(None,	28800)	0
dense_15 (Dense)	(None,	512)	14746112
activation_8 (Activation)	(None,	512)	0
dense 16 (Dense)	(None,	5)	2565

Total params: 14,843,461 Trainable params: 14,843,461

Non-trainable params: 0

3. Prediction on sample images

a) On color images

ground truth: dandelion prediction: dandelion

ground truth: tulip prediction: tulip

U ZU 4U 6U 8U 1UU

ground truth: dandelion prediction: dandelion

ground truth: daisy prediction: daisy

ground truth: sunflower prediction: sunflower

ground truth: dandelion prediction: dandelion

ground truth: daisy prediction: daisy

ground truth: rose prediction: tulip

ground truth: rose prediction: tulip

ground truth: daisy prediction: daisy

b) On grayscale images

ground truth: dandelion prediction: tulip

ground truth: rose prediction: tulip

ground truth: rose prediction: tulip

ground truth: dandelion prediction: tulip

ground truth: rose prediction: tulip

ground truth: rose prediction: tulip

ground truth: tulip prediction: tulip

ground truth: dandelion prediction: tulip

ground truth: dandelion prediction: tulip

ground truth: tulip prediction: tulip

4. Loss curves

a. aFor color images

b. For grayscale images

5. Accuracy curves

a. For color images

b. For grayscale images