```
In [1]: # Sources Used :
        # 1. https://www.youtube.com/watch?v=OlVepNU8GtU&t=360s ( Main )
        # 2. https://cran.r-project.org/web/packages/plspm/vignettes/plspm introduction.pdf
        # 3. https://sagaofpls.github.io/kidding.html
        # 4. https://www.gastonsanchez.com/PLS_Path_Modeling_with_R.pdf (Main Reference Boo
        install.packages("plspm")
        library(plspm)
        Updating HTML index of packages in '.Library'
        Making 'packages.html' ...
         done
In [2]: data <- read.csv("Pilot_modified_data_new.csv")</pre>
In [3]: # Independent variables
        independent_vars =c(0,0,0)
        # Mediator variable
        mediator_var = c(1,0,0)
        # Dependent variables
        dependent_vars =c(1,1,0)
In [4]: x=rbind(independent_vars, mediator_var, dependent_vars)
        colnames(x) = rownames(x)
        innerplot(x)
```



```
In [5]:
        print(x)
                          independent_vars mediator_var dependent_vars
        independent_vars
        mediator_var
                                         1
                                                       0
                                                                      0
        dependent_vars
                                         1
                                                       1
                                                                      0
        out=list(4:13, 14 ,1:3)
In [6]:
        mode=c("A","A","A")
In [7]:
In [8]:
        xx=plspm(data, x, out)
In [9]:
        summary(xx)
```

PARTIAL LEAST SQUARES PATH MODELING (PLS-PM)

MODEL SPECIFICATIO							
1 Number of Case		34					
<pre>Latent Variabl</pre>							
3 Manifest Varia							
		Standardized Data FALSE					
5 Non-Metric PLS							
6 Weighting Sche							
7 Tolerance Crit							
	1e-						
		100					
9 Convergence It			CE				
0		FAL					
11 Bootstrap samp	ites	NOL	-L				
BLOCKS DEFINITION							
	ck		· ·				
<pre>1 independent_va</pre>							
2 mediator_v		_	•				
<pre>3 dependent_va</pre>	ırs	Endog	genous	3	Α		
BLOCKS UNIDIMENSIO							
	Mode	MVs	C.alpha	DG.rh	o ei	g.1st	eig.2nd
independent_vars						_	_
·							
	Α	1	1.000	1.0	d	1.00	0.000
mediator_var	А	3	0.000	0.1	7	1.60	0.875
mediator_var dependent_vars	Α	3	0.000	0.1	7	1.60	0.875
mediator_var dependent_vars OUTER MODEL	Α	3	0.000	0.1	7	1.60	0.875
mediator_var dependent_vars OUTER MODEL independent_vars	A we:	3 ight	0.000	0.1	7 ality	1.60 redu	0.875 ndancy
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE.	we:	3 ight 0976	0.000 loading -0.2754	0.1 commun 0.0	7 ality 75870	1.60 redu	0.875 ndancy 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA.	-0.0	3 ight 0976 3542	0.000 loading -0.2754 -0.6417	0.1 commun 0.0 0.4	7 ality 75870 11719	1.60 redu	0.875 ndancy 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIC.	-0.0 -0.0	3 ight 3976 3542 3712	0.000 loading -0.2754 -0.6417 0.0547	0.1 commun 0.0 0.4 0.0	7 ality 75870 11719 02989	1.60	0.875 ndancy 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIC. 1 BFIN.	-0.0 -0.0	3 ight 0976 3542 0712	0.000 loading -0.2754 -0.6417 0.0547 -0.0120	0.1 commun 0.0 0.4 0.0 0.0	7 ality 75870 11719 02989	1.60	0.875 ndancy 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIC. 1 BFIN. 1 BFIO.	A we:	3 ight 2976 3542 2712 2381 2899	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326	0.1 commun 0.0 0.4 0.0 0.0 0.4	7 ality 75870 11719 02989 00144 00203	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIC. 1 BFIN. 1 BFIO. 1 EISelf.A.	A wes	3 ight 3976 3542 3712 3381 2899 1268	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773	0.1 commun 0.0 0.4 0.0 0.4 0.4	7 ality 75870 11719 02989 00144 00203 27775	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIC. 1 BFIN. 1 BFIO. 1 EISelf.A. 1 EISelf.M.	A we:	3 ight 3976 3542 3712 3381 2899 1268 2539	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5	7 ality 75870 11719 02989 00144 00203 27775 55293	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIC. 1 BFIN. 1 BFIO. 1 EISelf.A. 1 EISocial.A.	A wes	3 ight 2976 3542 2712 2381 2899 1268 2539 1417	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535	0.1 commun. 0.0 0.4 0.0 0.0 0.4 0.2 0.5 0.3	7 ality 75870 11719 02989 00144 00203 27775 55293 06308	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIC. 1 BFIN. 1 BFIO. 1 EISelf.A. 1 EISocial.A. 1 EIRM.	A wes	3 ight 3976 3542 3712 3381 2899 1268 2539 1417 1755	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIC. 1 BFIO. 1 EISelf.A. 1 EISocial.A. 1 EIRM. 1 Total	A wes	3 ight 2976 3542 2712 2381 2899 1268 2539 1417	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3	7 ality 75870 11719 02989 00144 00203 27775 55293 06308	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIC. 1 BFIN. 1 BFIO. 1 EISelf.A. 1 EISelf.M. 1 EISocial.A. 1 EIRM. 1 Total mediator_var	A wes	3 ight 3976 3542 3712 3381 2899 1268 2539 1417 1755 1605	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982 0.7791	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3 0.3	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790 06956	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIO. 1 EISelf.A. 1 EISelf.M. 1 EISocial.A. 1 EIRM. 1 Total mediator_var 2 PAQ	A wes	3 ight 3976 3542 3712 3381 2899 1268 2539 1417 1755	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982 0.7791	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3 0.3	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars DUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIO. 1 EISelf.A. 1 EISelf.M. 1 EISocial.A. 1 EIRM. 1 Total mediator_var 2 PAQ dependent_vars	A wes	3 ight 3976 3542 3712 3381 2899 1268 2539 1417 1755 1605	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982 0.7791 1.0000	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3 0.3 0.6	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790 06956	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIO. 1 EISelf.A. 1 EISelf.A. 1 EISocial.A. 1 EIRM. 1 Total mediator_var 2 PAQ dependent_vars 3 Panas	A wes	3 ight 2976 3542 2712 2899 1268 2539 1417 1755 1605	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982 0.7791 1.0000	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3 0.3 0.6	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790 06956	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIC. 1 BFIO. 1 EISelf.A. 1 EISelf.A. 1 EIRM. 1 Total mediator_var 2 PAQ dependent_vars 3 Panas 3 Panas1	A wes	3 ight 3976 3542 3712 3381 2899 1268 2539 1417 1755 1605 3000	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982 0.7791 1.0000 -0.5705 0.8981	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3 0.6 1.0 0.3 0.8	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790 06956	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.062 0.154
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIO. 1 EISelf.A. 1 EISelf.A. 1 EISocial.A. 1 EIRM. 1 Total mediator_var 2 PAQ dependent_vars 3 Panas	A wes	3 ight 3976 3542 3712 3381 2899 1268 2539 1417 1755 1605 3000	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982 0.7791 1.0000	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3 0.6 1.0 0.3 0.8	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790 06956	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIO. 1 BFIN. 1 BFIO. 1 EISelf.A. 1 EISelf.A. 1 EISocial.A. 1 EIRM. 1 Total mediator_var 2 PAQ dependent_vars 3 Panas 3 Panas 1 CBCL	A west -0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	3 ight 2976 3542 2712 2381 2899 1268 2539 1417 1755 1605 2000 3383 7993 1775	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982 0.7791 1.0000 -0.5705 0.8981	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3 0.3 0.6 1.0 0.3 0.8 0.2	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790 06956 00000 25499 06522 52191	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.062 0.154 0.048
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIO. 1 BFIO. 1 EISelf.A. 1 EISelf.A. 1 EISocial.A. 1 EIRM. 1 Total mediator_var 2 PAQ dependent_vars 3 Panas 3 Panas 3 CBCL	A west -0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	3 ight 2976 3542 2712 2381 2899 1268 2539 1417 1755 1605 2000 3383 7993 1775	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982 0.7791 1.0000 -0.5705 0.8981 0.5022	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3 0.3 0.6 1.0 0.3 0.8 0.2	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790 06956 00000 25499 06522 52191	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.062 0.154 0.048
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIO. 1 BFIO. 1 EISelf.A. 1 EISelf.A. 1 EISocial.A. 1 EIRM. 1 Total mediator_var 2 PAQ dependent_vars 3 Panas 3 Panas 3 CBCL	A wes	3 ight 3976 3542 3712 381 2899 1268 2539 1417 1755 1605 3000 3383 7993 1775	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982 0.7791 1.0000 -0.5705 0.8981 0.5022	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3 0.6 1.0 0.3 0.8 0.2	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790 06956 00000 25499 06522 52191	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.062 0.154 0.048
mediator_var dependent_vars OUTER MODEL independent_vars 1 BFIE. 1 BFIA. 1 BFIO. 1 BFIN. 1 BFIO. 1 EISelf.A. 1 EISelf.M. 1 EISocial.A. 1 EIRM. 1 Total mediator_var 2 PAQ dependent_vars 3 Panas 3 Panas 1 CBCL	A wes	3 ight 3976 3542 3712 381 2899 1268 2539 1417 1755 1605 3000 3383 7993 1775	0.000 loading -0.2754 -0.6417 0.0547 -0.0120 -0.6326 0.4773 0.7452 0.5535 0.5982 0.7791 1.0000 -0.5705 0.8981 0.5022	0.1 commun 0.0 0.4 0.0 0.4 0.2 0.5 0.3 0.6 1.0 0.3 0.8 0.2	7 ality 75870 11719 02989 00144 00203 27775 55293 06308 57790 06956 00000 25499 06522 52191	1.60	0.875 ndancy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.062 0.154 0.048

```
1 BFI..A.
                             -0.6417
                                         0.5009
                                                   -1.64e-01
         1 BFI..C.
                                                    6.38e-21
                             0.0547
                                        -0.1335
         1 BFI..N.
                                                   -1.23e-02
                             -0.0120
                                         0.0592
         1 BFI..O.
                             -0.6326
                                        0.0828
                                                   -4.61e-01
         1 EI..Self.A.
                             0.4773
                                        -0.1979
                                                    4.00e-02
         1 EI..Self.M.
                             0.7452
                                        -0.1259
                                                    3.50e-01
         1 EI..Social.A.
                             0.5535
                                        -0.1036
                                                    1.62e-01
         1 EI..RM.
                                                   -8.05e-02
                              0.5982
                                        -0.4097
         1 Total
                             0.7791
                                        -0.0164
                                                   2.85e-01
       mediator var
         2 PAQ
                             -0.3688
                                         1.0000
                                                   1.15e-01
       dependent vars
         3 Panas..
                             -0.3036
                                         0.1036
                                                   -5.71e-01
         3 Panas...1
                             0.2998
                                         0.1727
                                                   8.98e-01
         3 CBCL
                              0.0380
                                         0.0669
                                                    5.02e-01
       ______
       INNER MODEL
       $mediator_var
                       Estimate Std. Error t value Pr(>|t|)
                                  0.164 9.06e-17
                                                    1.0000
       Intercept
                      1.49e-17
                                   0.164 -2.24e+00
                                                     0.0319
       independent vars -3.69e-01
       $dependent_vars
                      Estimate Std. Error t value Pr(>|t|)
       Intercept
                     -1.30e-16 0.162 -8.04e-16
                                                     1.000
                     4.53e-01
                                   0.174 2.61e+00
                                                     0.014
       independent_vars
       mediator var
                                  0.174 1.62e+00
                      2.82e-01
                                                     0.115
       CORRELATIONS BETWEEN LVs
                     independent_vars mediator_var dependent_vars
       independent vars
                           1.000 -0.369
                                                      0.349
       mediator var
                             -0.369
                                        1.000
                                                      0.115
       dependent vars
                             0.349
                                         0.115
                                                      1,000
       _____
       SUMMARY INNER MODEL
                                 R2 Block_Communality Mean_Redundancy
                          Type
                                                                   AVE
       independent_vars Exogenous 0.000
                                        0.295
                                                          0.0000 0.295
                                              1.000
       mediator_var Endogenous 0.136
                                                          0.1360 1.000
       dependent_vars
                     Endogenous 0.191
                                              0.461
                                                          0.0879 0.461
       _____
       GOODNESS-OF-FIT
       [1] 0.2332
       _____
       TOTAL EFFECTS
                          relationships direct indirect total
           independent_vars -> mediator_var -0.369     0.000 -0.369
       2 independent_vars -> dependent_vars 0.453
                                                     0.349
                                              -0.104
             mediator_var -> dependent_vars 0.282
                                             0.000
                                                     0.282
In [10]: plot(xx)
```


In [11]: plot(xx, what="loadings", ar.width=0.5)

```
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
ol. :
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
ol, :
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
ol. :
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
ol, :
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
ol, :
""ar.width" is not a graphical parameter"
Warning message in polygon(xyouter[, 1], xyouter[, 2], col = Col, border = Col, :
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
ol, :
""ar.width" is not a graphical parameter"
Warning message in polygon(xyouter[, 1], xyouter[, 2], col = Col, border = Col, :
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
ol, :
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
ol, :
""ar.width" is not a graphical parameter"
Warning message in polygon(xy[, 1], xy[, 2], lwd = lwd, col = box.col, border = lc
""ar.width" is not a graphical parameter"
Warning message in polygon(xyouter[, 1], xyouter[, 2], col = Col, border = Col, :
""ar.width" is not a graphical parameter"
```


In [12]: **?plspm**

plspm {plspm}

R Documentation

PLS-PM: Partial Least Squares Path Modeling

Description

Estimate path models with latent variables by partial least squares approach (for both metric and non-metric data)

Estimate path models with latent variables by partial least squares approach (for both metric and non-metric data)

Usage

```
plspm(Data, path_matrix, blocks, modes = NULL,
    scaling = NULL, scheme = "centroid", scaled = TRUE,
    tol = 1e-06, maxiter = 100, plscomp = NULL,
    boot.val = FALSE, br = NULL, dataset = TRUE)
```

Arguments

Data	matrix or data frame containing the manifest variables.
path_matrix	A square (lower triangular) boolean matrix representing the inner model (i.e. the path relationships between latent variables).
blocks	list of vectors with column indices or column names from Data indicating the sets of manifest variables forming each block (i.e. which manifest variables correspond to each block).
scaling	optional argument for runing the non-metric approach; it is a list of string vectors indicating the type of measurement scale for each manifest variable specified in blocks . scaling must be specified when working with non-metric variables. Possible values: "num" (linear transformation, suitable for numerical variables), "raw" (no transformation), "nom" (non-monotonic transformation, suitable for nominal variables), and "ord" (monotonic transformation, suitable for ordinal variables).
modes	character vector indicating the type of measurement for each block. Possible values are: "A", "B", "newA", "PLScore", "PLScow" . The length of modes must be equal to the length of blocks .
scheme	string indicating the type of inner weighting scheme. Possible values are "centroid", "factorial", or "path".
scaled	whether manifest variables should be standardized. Only used when scaling = NULL . When (TRUE, data is scaled to standardized values (mean=0 and variance=1). The

variance is calculated dividing by N instead of N-1).

tol	decimal value indicating the tolerance criterion for the iterations ($tol=0.000001$). Can be specified between 0 and 0.001.
maxiter	integer indicating the maximum number of iterations (maxiter=100 by default). The minimum value of maxiter is 100.
plscomp	optional vector indicating the number of PLS components (for each block) to be used when handling non-metric data (only used if scaling is provided)
boot.val	whether bootstrap validation should be performed. (FALSE by default).
br	number bootstrap resamples. Used only when boot.val=TRUE . When boot.val=TRUE , the default number of re-samples is 100.
dataset	whether the data matrix used in the computations should be retrieved (TRUE by default).

Details

The function plspm estimates a path model by partial least squares approach providing the full set of results.

The argument path_matrix is a matrix of zeros and ones that indicates the structural relationships between latent variables. path_matrix must be a lower triangular matrix; it contains a 1 when column j affects row i, 0 otherwise.

- plspm: Partial Least Squares Path Modeling
- plspm.fit : Simple version for PLS-PM
- plspm.groups: Two Groups Comparison in PLS-PM
- rebus.pls: Response Based Unit Segmentation (REBUS)

Value

An object of class "plspm".

outer_model	Results of the outer model. Includes: outer weights, standardized loadings, communalities, and redundancies
inner_model	Results of the inner (structural) model. Includes: path coeffs and R-squared for each endogenous latent variable
scores	Matrix of latent variables used to estimate the inner model. If scaled=FALSE then scores are latent variables calculated with the original data (non-stardardized).

path_coefs	Matrix of path coefficients (this matrix has a similar form as <code>path_matrix</code>)
crossloadings	Correlations between the latent variables and the manifest variables (also called crossloadings)
inner_summary	Summarized results of the inner model. Includes: type of LV, type of measurement, number of indicators, R-squared, average communality, average redundancy, and average variance extracted
effects	Path effects of the structural relationships. Includes: direct, indirect, and total effects
unidim	Results for checking the unidimensionality of blocks (These results are only meaningful for reflective blocks)
gof	Goodness-of-Fit index
data	Data matrix containing the manifest variables used in the model. Only available when dataset=TRUE
boot	List of bootstrapping results; only available when argument boot.val=TRUE

Author(s)

Gaston Sanchez, Giorgio Russolillo

References

Tenenhaus M., Esposito Vinzi V., Chatelin Y.M., and Lauro C. (2005) PLS path modeling. *Computational Statistics & Data Analysis*, **48**, pp. 159-205.

Lohmoller J.-B. (1989) *Latent variables path modeling with partial least squares*. Heidelberg: Physica-Verlag.

Wold H. (1985) Partial Least Squares. In: Kotz, S., Johnson, N.L. (Eds.), *Encyclopedia of Statistical Sciences*, Vol. 6. Wiley, New York, pp. 581-591.

Wold H. (1982) Soft modeling: the basic design and some extensions. In: K.G. Joreskog & H. Wold (Eds.), *Systems under indirect observations: Causality, structure, prediction*, Part 2, pp. 1-54. Amsterdam: Holland.

Russolillo, G. (2012) Non-Metric Partial Least Squares. *Electronic Journal of Statistics*, **6**, pp. 1641-1669. https://projecteuclid.org/euclid.ejs/1348665231

See Also

innerplot, outerplot,

Examples

```
## Not run:
## typical example of PLS-PM in customer satisfaction analysis
## model with six LVs and reflective indicators
# load dataset satisfaction
data(satisfaction)
# path matrix
IMAG = c(0,0,0,0,0,0)
EXPE = c(1,0,0,0,0,0)
QUAL = c(0,1,0,0,0,0)
VAL = c(0,1,1,0,0,0)
SAT = c(1,1,1,1,0,0)
LOY = c(1,0,0,0,1,0)
sat_path = rbind(IMAG, EXPE, QUAL, VAL, SAT, LOY)
# plot diagram of path matrix
innerplot(sat_path)
# blocks of outer model
sat_blocks = list(1:5, 6:10, 11:15, 16:19, 20:23, 24:27)
# vector of modes (reflective indicators)
sat_mod = rep("A", 6)
# apply plspm
satpls = plspm(satisfaction, sat_path, sat_blocks, modes = sat_mod,
   scaled = FALSE)
# plot diagram of the inner model
innerplot(satpls)
# plot loadings
outerplot(satpls, what = "loadings")
# plot outer weights
outerplot(satpls, what = "weights")
## End(Not run)
```

[Package *plspm* version 0.5.0]

T io	г		
TII			
		-	