CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGGATCCTCTAGAGATCCCT CGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA CAGGCCAGGCAGGTGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCCTGAGGCCCCAGC AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCACCCCCAGGACCGGGGGGGGCACAGGTGGCCCCCACCACCCGGAGG AGCAGCTCCTGCCCCTGTCCGGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGA AGGCCACCCGCCTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCT TCTGGTGTTGGCAGTGGGCGCACAGAGCACGCCTACCGGCCCGGCCGTTAGGGTGTGTGCT GTCCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCC TCACCACCTGCGACGGCCACCGGGCCTGCAGCACCTACCGAACCATTTATAGGACCGCCTAC CGCCGCAGCCCTGGGCTGGCCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAG GACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAG GGAGCTGTGTCCAGCCTGGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAG TCAGATGTGGATGAATGCAGTGCTAGGAGGGGGGGGTGTCCCCAGCGCTGCATCAACACCGC CGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTG TGCCCAAGGGAGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAG GAAGAAGTGCAGAGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCT GGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCC CTGGACTGAGCCCCTCACGCCGCCTGCAGCCCCATGCCCCTGCCCAACATGCTGGGGGTC CCACCCTGGCTACCCCACCCTGGTTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCA GCTGAGGGAAGGTACGAGTTCCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCC CGGAGGCTGGGTGGGGCCTCAGTGGGGGCTGCCTGACCCCCAGCACAATAAAAATGAAA AGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGT TACAAAT

MTDSPPPGHPEEKATPPGGTGHEGLSGGAADVASGVGSGRHRARLPARPLGCVLSRAHGDPV SESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGAC GAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCW EGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLAS QALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 93-97, 270-274

N-myristoylation sites.

amino acids 19-25, 78-84, 97-103, 100-106, 103-109, 157-163, 191-197, 265-271

Amidation site.

amino acids 26-30

Aspartic acid and asparagine hydroxylation site.

amino acids 152-164

Cell attachment sequence.

amino acids 130-133

EGF-like domain cysteine pattern signature.

amino acids 123-135

 $\tt GTCAGCCCACGGGGGGACT{\color{red} ATG} GTGAAATTCCCGGCGCTCACGCACTACTGGCCCCTGATC{\color{red} CCCCTGATC} {\color{red} CCCTGATC} {\color{red} CCCCTGATC} {\color{red} CCCCTGATC} {\color{red} CCCCTGATC} {\color{red} CCCCTGATC} {\color{red} CCCTGATC} {\color{red} CCCCTGATC} {\color{red} CCCTGATC} {\color{red} CCCCTGATC} {\color{red} CCCTCTGATC} {\color{red} CCCCTGATC} {\color{red} CCCTCTGATC} {\color{red} CC$ CGGTTCTTGGTGCCCCTGGGCATCACCAACATAGCCATCGACTTCGGGGAGCAGGCCTTGAA CCGGGGCATTGCTGCTGTCAAGGAGGATGCAGTCGAGATGCTGGCCAGCTACGGGCTGGCGT ACTCCCTCATGAAGTTCTTCACGGGTCCCATGAGTGACTTCAAAAATGTGGGCCTGGTGTTT GTGAACAGCAAGAGACAGGACCAAAGCCGTCCTGTGTATGGTGGTGGCAGGGGCCATCGC TGCCGTCTTTCACACACTGATAGCTTATAGTGATTTAGGATACTACATTATCAATAAACTGC ACCATGTGGACGAGTCGGTGGGGAGCAAGACGAGAAGGGCCTTCCTGTACCTCGCCGCCTTT CCTTTCATGGACGCAATGGCATGGACCCATGCTGGCATTCTCTTAAAACACAAATACAGTTT CCTGGTGGGATGTCCCAATCTCAGATGTCATAGCTCAGGTTGTTTTTGTAGCCATTTTGC TTCACAGTCACCTGGAATGCCGGGAGCCCCTGCTCATCCCGATCCTCTCCTTGTACATGGGC GCACTTGTGCGCTGCACCACCCTGTGCCTGGGCTACTACAAGAACATTCACGACATCATCCC GGCCTTTGGCTCTAATTCTGGCCACACAGAGAATCAGTCGGCCTATTGTCAACCTCTTTGTT TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTGTATCCTGCTTTCG ACAAGAATAACCCCAGCAACAAACTGGTGAGCACGAGCAACACAGTCACGGCAGCCCACATC AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTTCGTGATGTTTTTGGAC ACCCAACGTGTCTGAGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTGCAGAAC TCTGTGTTGTTCCTTTGCGGATCTTCTCCTTCTTCCCAGTTCAGTGAGGGCGCAT CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTCCTTGCCCCCAGCTCTGTGCTGCG GATCATCGTCCTCATCGCCAGCCTCGTGGTCCTACCCTACCTGGGGGTGCACGGTGCGACCC TGGGCGTGGGCTCCCTCCTGGCGGGCTTTGTGGGAGAATCCACCATGGTCGCCATCGCTGCG TGCTATGTCTACCGGAAGCAGAAAAAGAAGATGGAGAATGAGTCGGCCACGGAGGGGGAAGA CTCTGCCATGACAGACATGCCTCCGACAGAGGGGGGGGGACATCGTGGAAATGAGAGAGG GAAAGAGGCCTTGATTTAAAGGTTTCGTGTCAATTCTCTAGCATACTGGGTATGCTCACACT TTCATACCCCTGCCTCACGAAAACCCAAAAGACACAGCTGCCTCACGGTTGACGTTGTCCC TCCTCCCCTGGACAATCTCCTCTTGGAACCAAAGGACTGCAGCTGTGCCATCGCGCCTCGGT CACCCTGCACAGCAGGCCACAGACTCTCCTGTCCCCCTTCATCGCTCTTAAGAATCAACAGG TTAAAACTCGGCTTCCTTTGATTTGCTTCCCAGTCACATGGCCGTACAAAGAGATGGAGCCC CGGTGGCCTCTTAAATTTCCCTTCTGCCACGGAGTTCGAAACCATCTACTCCACACATGCAG GAGGCGGGTGGCACGCTGCAGCCCGGAGTCCCCGTTCACACTGAGGAACGGAGACCTGTGAC CACAGCAGGCTGACAGATGGACAGAATCTCCCGTAGAAAGGTTTGGTTTGAAATGCCCCGGG GGCAGCAAACTGACATGGTTGAATGATAGCATTTCACTCTGCGTTCTCCTAGATCTGAGCAA GCTGTCAGTTCTCACCCCCACCGTGTATATACATGAGCTAACTTTTTTAAATTGTCACAAAA CTTTCCTGAAGGTCGCATTAGAGCGAGTCACATGGAGCATCCTAACTTTGCATTTTAGTTTT TACAGTGAACTGAAGCTTTAAGTCTCATCCAGCATTCTAATGCCAGGTTGCTGTAGGGTAAC TTTTGAAGTAGATATTACCTGGTTCTGCTATCCTTAGTCATAACTCTGCGGTACAGGTAA TTGAGAATGTACTACGGTACTTCCCTCCCACACCATACGATAAAGCAAGACATTTTATAACG ATACCAGAGTCACTATGTGGTCCTCCCTGAAATAACGCATTCGAAATCCATGCAGTGCAGTA TATTTTTCTAAGTTTTGGAAAGCAGGTTTTTTCCTTTAAAAAAATTATAGACACGGTTCACT AAATTGATTTAGTCAGAATTCCTAGACTGAAAGAACCTAAACAAAAAAATATTTTAAAGATA TAAATATATGCTGTATATGTTATGTAATTTATTTTAGGCTATAATACATTTCCTATTTTCGC ATTTTCAATAAAATGTCTCTAATACAAAAA

MVKFPALTHYWPLIRFLVPLGITNIAIDFGEQALNRGIAAVKEDAVEMLASYGLAYSLMKFF
TGPMSDFKNVGLVFVNSKRDRTKAVLCMVVAGAIAAVFHTLIAYSDLGYYIINKLHHVDESV
GSKTRRAFLYLAAFPFMDAMAWTHAGILLKHKYSFLVGCASISDVIAQVVFVAILLHSHLEC
REPLLIPILSLYMGALVRCTTLCLGYYKNIHDIIPDRSGPELGGDATIRKMLSFWWPLALIL
ATQRISRPIVNLFVSRDLGGSSAATEAVAILTATYPVGHMPYGWLTEIRAVYPAFDKNNPSN
KLVSTSNTVTAAHIKKFTFVCMALSLTLCFVMFWTPNVSEKILIDIIGVDFAFAELCVVPLR
IFSFFPVPVTVRAHLTGWLMTLKKTFVLAPSSVLRIIVLIASLVVLPYLGVHGATLGVGSLL
AGFVGESTMVAIAACYVYRKQKKKMENESATEGEDSAMTDMPPTEEVTDIVEMREENE

Transmembrane domains:

amino acids 86-106, 163-179, 191-205, 237-253, 327-343, 357-374, 408-423, 431-445

CCTGACAGAAGTGCCCCGGAGCTGGGGGAGATNCAACATTAAGAAGATGCTGAGCTTCTGGT
GCCNTTTGGCTCTAATTCTGGCCACACAGAGAANCAGTCGGCCTATTGTCAACCTCTTTGTT
TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA
CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTGTATCCTGCTTTCG
ACAAGAATAACCCCAGCAACAAACTGGTGAGCACCAGAGCAACACAGTCACGGCGGCCCACATC
AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTGGAC
ACCCAACGTGTCTGNGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTTGCAGAAC
TCTGTGTTGTTCCTTTGCGGATCTTCTCCCTTCTTCCCAGTTCCAGTGAGGGCGCAT
CTCACCGGGTGGCTGATGACACCTGAAGAAAACCTTCGTC

TGACGGAATCCCGGGCTGGGTATCCTGGTTTNGACAAGATAAACCCCCAGCAANAAATTGGG
GAGCAGGCAAAACAGTNACGGGCAGCCCACATCAAGAAGTTCACCTTNGTTTGNATGGNTC
TGTCAACTCACGCTNTGTTTCGTGATGTTTTGGACACCCAAAGTGTTTTGAGAAAATTTTGAT
AGACATNATCGGAGTGGANTTTGCCTTTGCAGAANTTTGNGNTGTTCCTTTGCGGATTTTCT
CCTTTTTCCCAGTTCCAGTCACAGNGAGGGCGCATCTCACCGGGNGGNTGATGACANTGAAG
AAAACCTTTGTCCTTGCCCCCAGCTNTTTGGTGCGGATCATTGTCCTNATNGCCAGCCTTGT
GGTCCTACCCTACCTGGGGGTGCACGGTGCGACCCTGGGCGTGGGTTCCCTCCTGGCGGGCA

GCCTGCTCCCTGCTCAGCTGCGCGTCCTGCGGCTCTGCCCCCTGCATCCTGTGCAG TGGGGGTGCTGGTCCATCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTG CCCTGGGTGTGTGAGGGGGGGCCGGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGG CTCCCTGCTTGGCTACCGCGCTGTCTACCGCATGTGCTTCGCCACGGCGGCCTTCTTCTTCT TCTTTTTCACCCTGCTCATGCTCTGCGTGAGCAGCCGGGACCCCCGGGCTGCCATCCAG AATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTCACCGTGGGTGCCTTCTACAT TCCTCATCCAGCTGGTGCTCATCGACTTTGCGCACTCCTGGAACCAGCGGTGGCTGGGC AAGGCCGAGGAGTGCGATTCCCGTGCCTGGTACGCAGGCCTCTTCTTCTTCACTCTCTT CTACTTGCTGTCGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCT GCCACGAGGCCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCGTGTCCATCGCT GCTGTCCTGCCCAAGGTCCAGGACGCCCAGCCCAACTCGGGTCTGCTGCAGGCCTCGGTCAT CACCCTCTACACCATGTTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCA ACCCCCATTTGCCAACCCAGCTGGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAG ACCCAGTGGTGGGATGCCCCGAGCATTGTGGGCCTCATCATCTTCCTCCTGTGCACCCTCTT CATCAGTCTGCGCTCCTCAGACCACCGGCAGGTGAACAGCCTGATGCAGACCGAGGAGTGCC TTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCTTCCACTTCTGCCTGGTGCT GGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAGACCCCGGAAGA TGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCTCCTC ${\tt TACCTGTGGACCCTGGTAGCCCCACTCCTGCGCAACCGCGACTTCAGC{\tt TGA}_{\tt GGCAGCCT}}$ CACAGCCTGCCATCTGGTGCCTCCTGCCACCTGGTGCCTCTCGGCTCGGTGACAGCCAACCT GCCCCCTCCCCACACCAATCAGCCAGGCTGAGCCCCCACCCCTGCCCCAGCTCCAGGACCTG CCCCTGAGCCGGGCCTTCTAGTCGTAGTGCCTTCAGGGTCCGAGGAGCATCAGGCTCCTGCA TGCCCATACTCAGCATCTCGGATGAAAGGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGG CTGCTGGAGAGCGGGGAACTCCCACCACAGTGGGGCATCCGGCACTGAAGCCCTGGTGTT CCTGGTCACGTCCCCAGGGGACCCTGCCCCCTTCCTGGACTTCGTGCCTTACTGAGTCTCT AAGACTTTTTCTAATAAACAAGCCAGTGCGTGTAAAAAAA

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVE
SQLYKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFTLLMLCVSSSRD
PRAAIQNGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSW
NQRWLGKAEECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFC
VCVSIAAVLPKVQDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVA
GPEGYETQWWDAPSIVGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVA
ACEGRAFDNEQDGVTYSYSFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICAS
WAGLLLYLWTLVAPLLLRNRDFS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

GAGCGAGGCCGGGGACTGAAGGTGTGGGTGTCGAGCCCTCTGGCAGAGGGTTAACCTGGGTC AAATGCACGGATTCTCACCTCGTACAGTTACGCTCTCCCGCGGGCACGTCCGCGAGGACTTGA ${\tt AGTCCTGAGCGCTCAAGTTTGTCCGTAGGTCGAGAGAGGCC} {\tt ATG} {\tt GAGGTGCCGCCACCGGC}$ ACCGCGGAGCTTTCTCTGTAGAGCATTGTGCCTATTTCCCCGAGTCTTTGCTGCCGAAGCTG TGACTGCCGATTCGGAAGTCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCC TATTACCCGGAATCTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAG AATTTCAAAGGACCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGG TGTATGGGGGAATACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCA GAAATTTATCATAACCGGTTTGATGCTGTGCAATCTGCACATCGTGCTGCCACACGAGGCTT CATTCGTTATGGCTGGCGCTGGGGTTGGAGAACTGCAGTGTTTGTGACTATATTCAACACAG TGAACACTAGTCTGAATGTATACCGAAATAAAGATGCCTTAAGCCATTTTGTAATTGCAGGA AATTGGAGCCTTGCTGGGCACTCCTGTAGGAGGCCTGCTGATGGCATTTCAGAAGTACGCTG GTGAGACTGTTCAGGAAAGAAAACAGAAGGATCGAAAGGCACTCCATGAGCTAAAACTGGAA GAGTGGAAAGGCAGACTACAAGTTACTGAGCACCTCCCTGAGAAAATTGAAAGTAGTTTACG GGAAGATGAACCTGAGAATGATGCTAAGAAAATTGAAGCACTGCTAAACCTTCCTAGAAACC $\tt CTTCAGTAATAGATAAACAAGACAAGGAC{\color{blue}{TGA}} AAGTGCTCTGAACTTGAAACTCACTGGAG{\color{blue}{A}}$ TGACAAATTTAAGTGCTGGTACCTGTGGTGGCAGTGGCTTGCTCTTGTCTTTTCTT GCAGTAAATAAAACATTTCGCAAAAGATTAAAGTTGAATTTTACAGTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23318</pre>

><subunit 1 of 1, 285 aa, 1 stop

><MW: 32190, pI: 9.03, NX(S/T): 2

MEVPPPAPRSFLCRALCLFPRVFAAEAVTADSEVLEERQKRLPYVPEPYYPESGWDRLRELF GKDEQQRISKDLANICKTAATAGIIGWVYGGIPAFIHAKQQYIEQSQAEIYHNRFDAVQSAH RAATRGFIRYGWRWGWRTAVFVTIFNTVNTSLNVYRNKDALSHFVIAGAVTGSLFRINVGLR GLVAGGIIGALLGTPVGGLLMAFQKYAGETVQERKQKDRKALHELKLEEWKGRLQVTEHLPE KIESSLREDEPENDAKKIEALLNLPRNPSVIDKQDKD

Important Features:

Signal Peptide:

amino acids 1-24

Transmembrane domains:

amino acids 76-96 and 171-195

N-glycosylation site:

amino acids 153-156

CGGAAGTCCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATCTGGATGGGACCGCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGGA
CCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGAA
TACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATCAT
AACCGGTTTGATGCTGCAATCTGCACATCGTGCTGCCACACGAGGCTTCATTCGTTCATG
GCTGGCGCCGAACC

TCAAGTTTGTCCGTAGGTCGAGAGAGGCCATGGAGGTGCCGCCACCGGCACCGCGGAGCTT
TTTTCTGTAGAGCATTGTGCCTATTTCCCCGAGTTTTTGCTGCCGAAGCTGTGACTGCCGAT
TCGGAAGTCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATTTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGG
ACCTTGCTGATATNTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGA
ATACCAGCTTTTATTCATGNTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATNA
TAACC

GCGTTGCTGCCCCGCCTGGGCCAGGCCCCAAAGGCAAGGACAAAGCAGCTGTCAGGGAACCT CCGCCGGAGTCGAATTTACGTGCAGCTGCCGGCAACCACAGGTTCCAAG**ATG**GTTTGCGGGG GCTTCGCGTGTTCCAAGAACTGCCTGTGCGCCCTCAACCTGCTTTACACCTTGGTTAGTCTG ${\tt CTGCTAATTGGAATTGCTGCGTGGGGCATTGGCTTCGGGCTGATTTCCAGTCTCCGAGTGGT}$ CGGCGTGGTCATTGCAGTGGGCATCTTCTTGTTCCTGATTGCTTTAGTGGGTCTGATTGGAG GTTCAGTTTTCTGTATCTTGCGCTTGTTTAGCCCTGAACCAGGAGCAACAGGGTCAGCTTCT GGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAATCTAAACTGCT GTGGGTTCCGAAGTGTTAACCCAAATGACACCTGTCTGGCTAGCTGTGTTAAAAGTGACCAC TCGTGCTCGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTTGAGATTTGTTGG TGGCATTGGCCTGTTCTTCAGTTTTACAGAGATCCTGGGTGTTTTGGCTGACCTACAGATACA GGAACCAGAAAGACCCCCGCGCGAATCCTAGTGCATTCCTT**TGA**TGAGAAAACAAGGAAGAT TTCCTTTCGTATTATGATCTTGTTCACTTTCTGTAATTTTCTGTTAAGCTCCATTTGCCAGT TTAAGGAAGGAAACACTATCTGGAAAAGTACCTTATTGATAGTGGAATTATATATTTTTACT CTATGTTTCTCACATGTTTTTTTTTTCTTCCGTTGCTGAAAAATATTTGAAACTTGTGGTCTC TGAAGCTCGGTGGCACCTGGAATTTACTGTATTCATTGTCGGGCACTGTCCACTGTGGCCTT TCTTAGCATTTTTACCTGCAGAAAAACTTTGTATGGTACCACTGTGTTGGTTATATGGTGAA TCTGAACGTACATCTCACTGGTATAATTATATGTAGCACTGTGCTGTGTAGATAGTTCCTAC TGGAAAAAGAGTGGAAATTTATTAAAATCAGAAAGTATGAGATCCTGTTATGTTAAGGGAAA TCCAAATTCCCAATTTTTTTTGGTCTTTTTAGGAAAGATTGTTGTGGTAAAAAGTGTTAGTA TAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAAATAGTTAT GTCTTAGGAAATTGTGGTTTAATTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTGGTTT CATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCATCAGAATGGAACGAGTTT TGAGTAATCAGGAAGTATATCTATATGATCTTGATATTGTTTTATAATAATTTGAAGTCTAA AAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGATATTTG ATTATCTTAAAAATTGTTAAATACCGTTTTCATGAAATTTCTCAGTATTGTAACAGCAACTT GTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATTGTGTG ATTAAAAGAAAGTAATGGAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA39979</pre>

><subunit 1 of 1, 204 aa, 1 stop

><MW: 22147, pI: 8.37, NX(S/T): 3

MVCGGFACSKNCLCALNLLYTLVSLLLIGIAAWGIGFGLISSLRVVGVVIAVGIFLFLIALV GLIGAVKHHQVLLFFYMIILLLVFIVQFSVSCACLALNQEQQGQLLEVGWNNTASARNDIQR NLNCCGFRSVNPNDTCLASCVKSDHSCSPCAPIIGEYAGEVLRFVGGIGLFFSFTEILGVWL TYRYRNQKDPRANPSAFL

Signal Peptide:

amino acids 1-34

Transmembrane domains:

amino acids 47-63, 72-95 and 162-182

 $TGATTGGAGCTGTAAAAAANTCTTCAGGTGTTGTNATTTTTTTATATGATTATTCTGTAANT\\ TGTATTTATTGTTCAGTTTTNTGTATCTTGCGCTTGTTTAGCCNTGAACCAGGAGCAACAGG\\ GTCAGNTTNTGGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAAT\\ NTAAACTGCTGTGGGTTCCGAAGTGTTAACCCAAATGACACCTGTNTGGCTAGCTGTGTAA\\ AAGTGACCACTNGTGCTCGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTTGA\\ GATTTGTTGGTGGCATTGGCCTGTTNTTCAGTTTTACAGAGATCCTGGGTGTTTGGCTGACC\\ TACAGATACAGGAACCAG\\ \\ \dot{}$

AATCCCAAATTCCCCAATTTTTTTGGNCTTTTTAGGGAAAGATGTGTTGTGGTAAAAAGTGT
TAGTATAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAATAG
TTATGTCTTAGGAAATTGTGGTTTAATTTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTG
GTTTCATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCCATCAGAATGGAACG
AGTTTTGAGTAATCCAGGAAGTATATCTATATGATCTTGATATTGTTTTATATAATTTGAAG
TCTAAAAAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGAT
ATTTGATTATCTTAAAAAATTGTTAAATACCGTTTTCATGAAAGTTCTCAGTATTGTAACAGC
AACTTGTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATT
GTGTGGAGGAAATGGCAATCTTATGTGTGCTGAAGGACACAGTAAGAGCACCAAGTTGTGCC
CCACTTGC

ATGATTATTCTGTTACTTGTATTTATTGTTCAGTTTTATGGTATCTTGCGCTTGTTTAGCCC
CTGAAACCAGGAGCAACAGGGNNCAGCTTCCTGGAGGTTGGTTGGCAACAATCACGGCCAAG
TGACTCCGCAAATGACATCCCAGAGAAATCCTAAACTGCTGTGGGTTCCGAAGTGTTAACCC
AAATGACACCTGTCTGGCTNGCTGTGTTAAAAGTGACCACTCGTGCTCGCCATGTGCTCCAA
TCATAGGAGAATATGC

 ${\tt CAGTCACC} \underline{\textbf{ATG}} \\ \texttt{AAGCTGGGCTGTGTCCTCATGGCCTGGGCCCTCTACCTTTCCCTTGGTGTG} \\$ CTCTGGGTGGCCCAGATGCTACTGGCTGCCAGTTTTGAGACGCTGCAGTGTGAGGGACCTGT ${\tt CTGCACTGAGGAGCAGCTGCCACACGGAGGATGACTTGACTGATGCAAGGGAAGCTGGCT}$ TCCAGGTCAAGGCCTACACTTTCAGTGAACCCTTCCACCTGATTGTGTCCTATGACTGGCTG ATCCTCCAAGGTCCAGCCAAGCCAGTTTTTGAAGGGGACCTGCTGGTTCTGCGCTGCCAGGC CTGGCAAGACTGGCCACTGACTCAGGTGACCTTCTACCGAGATGGCTCAGCTCTGGGTCCCC CCGGGCCTAACAGGGAATTCTCCATCACCGTGGTACAAAAGGCAGACAGCGGGCACTACCAC TGCAGTGGCATCTTCCAGAGCCCTGGTCCTGGGATCCCAGAAACAGCATCTGTTGTGGCTAT CACAGTCCAAGAACTGTTTCCAGCGCCAATTCTCAGAGCTGTACCCTCAGCTGAACCCCAAG CAGGAAGCCCCATGACCCTGAGTTGTCAGACAAAGTTGCCCCTGCAGAGGTCAGCTGCCCGC CTCCTCTTCTCCTCTACAAGGATGGAAGGATAGTGCAAAGCAGGGGGCTCTCCTCAGAATT CCAGATCCCCACAGCTTCAGAAGATCACTCCGGGTCATACTGGTGTGAGGCCACCTGAGG ACAACCAAGTTTGGAAACAGAGCCCCCAGCTAGAGATCAGAGTGCAGGGTGCTTCCAGCTCT GCTGCACCTCCCACATTGAATCCAGCTCCTCAGAAATCAGCTGCTCCAGGAACTGCTCCTGA GGAGGCCCTGGGCCTCTGCCTCCGCCGCCAACCCCATCTTCTGAGGATCCAGGCTTTTCTT CTCCTCTGGGGATGCCAGATCCTCATCTGTATCACCAGATGGGCCTTCTTCTCAAACACATG CAGGATGTGAGAGTCCTCCTCGGTCACCTGCTCATGGAGTTGAGGGAATTATCTGGCCACCA GAAGCCTGGGACCACAAAGGCTACTGCTGAA**TAG**AAGTAAACAGTTCATCCATGATCTCACT TAACCACCCCAATAAATCTGATTCTTTATTTTCTCTTCCTGTCCTGCACATATGCATAAGTA CTTTTACAAGTTGTCCCAGTGTTTTGTTAGAATAATGTAGTTAGGTGAGTGTAAATAAATTT ATATAAAGTGAGAATTAGAGTTTAGCTATAATTGTGTATTCTCTCTTAACACAACAGAATTC TGCTGTCTAGATCAGGAATTTCTATCTGTTATATCGACCAGAATGTTGTGATTTAAAGAGAA CTAATGGAAGTGGATTGAATACAGCAGTCTCAACTGGGGGCAATTTTGCCCCCCAGAGGACA TTGGGCAATGTTTGGAGACATTTTGGTCATTATACTTGGGGGGGTTGGGGGATGGTGGGATGT GTGTCTACTGGCATCCAGTAAATAGAAGCCAGGGGTGCCGCTAAACATCCTATAATGCACAG GGCAGTACCCCACAACGAAAAATAATCTGGCCCAAAATGTCAGTTGTACTGAGTTTGAGAAA CCCCAGCCTAATGAAACCCTAGGTGTTGGGCTCTGGAATGGGACTTTGTCCCTTCTAATTAT TATCTCTTTCCAGCCTCATTCAGCTATTCTTACTGACATACCAGTCTTTAGCTGGTGCTATG GTCTGTTCTTTAGTTCTAGTTTGTATCCCCTCAAAAGCCATTATGTTGAAATCCTAATCCCC AAGGTGATGGCATTAAGAAGTGGGCCTTTGGGAAGTGATTAGATCAGGAGTGCAGAGCCCTC ATGATTAGGATTAGTGCCCTTATTTAAAAAGGCCCCAGAGAGCTAACTCACCCTTCCACCAT ATGAGGACGTGGCAAGAAGATGACATGTATGAGAACCAAAAAACAGCTGTCGCCAAACACCG ACTCTGTCGTTGCCTTGATCTTGAACTTCCAGCCTCCAGAACTATGAGAAATAAAATTCTGG TTGTTTGTAGCCTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40594</pre>

><subunit 1 of 1, 359 aa, 1 stop

><MW: 38899, pI: 5.21, NX(S/T): 0

MKLGCVLMAWALYLSLGVLWVAQMLLAASFETLQCEGPVCTEESSCHTEDDLTDAREAGFQV
KAYTFSEPFHLIVSYDWLILQGPAKPVFEGDLLVLRCQAWQDWPLTQVTFYRDGSALGPPGP
NREFSITVVQKADSGHYHCSGIFQSPGPGIPETASVVAITVQELFPAPILRAVPSAEPQAGS
PMTLSCQTKLPLQRSAARLLFSFYKDGRIVQSRGLSSEFQIPTASEDHSGSYWCEAATEDNQ
VWKQSPQLEIRVQGASSSAAPPTLNPAPQKSAAPGTAPEEAPGPLPPPPTPSSEDPGFSSPL
GMPDPHLYHQMGLLLKHMQDVRVLLGHLLMELRELSGHQKPGTTKATAE

Signal sequence:

amino acids 1-17

Leucine zipper pattern sequence:

amino acids 12-33

Protein kinase C phosphorylation site:

amino acids 353-355

CCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGGGCCACCAGAAGTT TGAGCCTCTTTGGTAGCAGGAGGCTGGAAGAAGGACAGAAGTAGCTCTGGCTGTG**ATG**GGG ATCTTACTGGGCCTGCTACTCCTGGGGCACCTAACAGTGGACACTTATGGCCGTCCCATCCT GGAAGTGCCAGAGAGTGTAACAGGACCTTGGAAAGGGGATGTGAATCTTCCCTGCACCTATG ACCCCCTGCAAGGCTACACCCAAGTCTTGGTGAAGTGGCTGGTACAACGTGGCTCAGACCCT GTCACCATCTTTCTACGTGACTCTTCTGGAGACCATATCCAGCAGGCAAAGTACCAGGGCCG CCTGCATGTGAGCCACAAGGTTCCAGGAGATGTATCCCTCCAATTGAGCACCCTGGAGATGG ATGACCGGAGCCACTACACGTGTGAAGTCACCTGGCAGACTCCTGATGGCAACCAAGTCGTG AGAGATAAGATTACTGAGCTCCGTGTCCAGAAACTCTCTGTCTCCAAGCCCACAGTGACAAC ${\tt TGGCAGCGGTTATGGCTTCACGGTGCCCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTCAGGCTTCAGGCTTCAGGCTCAGG$ GGGGTTCTCCCCCATCAGTTATATTTGGTATAAGCAACAGACTAATAACCAGGAACCCATC AAAGTAGCAACCCTAAGTACCTTACTCTTCAAGCCTGCGGTGATAGCCGACTCAGGCTCCTA $\tt TTTCTGCACTGCCAAGGGCCAGGTTGGCTCTGAGCAGCACAGCGACATTGTGAAGTTTGTGG$ TCAAAGACTCCTCAAAGCTACTCAAGACCAAGACTGAGGCACCTACAACCATGACATACCCC TGGAGAGACCAGTGCTGGGCCAGGAAAGAGCCTGCCTGTCTTTGCCATCATCCTCATCATCT CCTTGTGCTGTATGGTGTTTTTACCATGGCCTATATCATGCTCTGTCGGAAGACATCCCAA ${\tt CAAGAGCATGTCTACGAAGCAGCCAGG} \underline{{\tt TAA}}{\tt GAAAGTCTCTCCTCTTCCATTTTTGACCCCGT}$ $\verb|CCCTGCCCTCAATTTTGATTACTGGCAGGAAATGTGGAGGAGGGGGGGTGTGGCACAGACCC| \\$ AATCCTAAGGCCGGAGGCCTTCAGGGTCAGGACATAGCTGCCTTCCCTCTCTCAGGCACCTT CTGAGGTTGTTTTGGCCCTCTGAACACAAAGGATAATTTAGATCCATCTGCCTTCTGCTTCC AGAATCCCTGGGTGGTAGGATCCTGATAATTAATTGGCAAGAATTGAGGCAGAAGGGTGGGA AACCAGGACCACAGCCCCAAGTCCCTTCTTATGGGTGGTGGGCCTCTTGGGCCCATAGGGCACA TGCCAGAGAGGCCAACGACTCTGGAGAAACCATGAGGGTGGCCATCTTCGCAAGTGGCTGCT CCAGTGATGAGCCAACTTCCCAGAATCTGGGCAACAACTACTCTGATGAGCCCTGCATAGGA TCTGGATTATGAGTTTCTGGCCACTGAGGGCAAAAGTGTCTGTTAAAAATGCCCCATTAGGC CAGGATCTGCTGACATAATTGCCTAGTCAGTCCTTGCCTTCTGCATGGCCTTCTTCCCTGCT ACCTCTCTTCCTGGATAGCCCAAAGTGTCCGCCTACCAACACTGGAGCCGCTGGGAGTCACT GGCTTTGCCCTGGAATTTGCCAGATGCATCTCAAGTAAGCCAGCTGCTGGATTTGGCTCTGG GCCCTTCTAGTATCTCTGCCGGGGGCTTCTGGTACTCCTCTCTAAATACCAGAGGGAAGATG CCCATAGCACTAGGACTTGGTCATCATGCCTACAGACACTATTCAACTTTGGCATCTTGCCA CCAGAAGACCCGAGGGAGGCTCAGCTCTGCCAGCTCAGAGGACCAGCTATATCCAGGATCAT TTCTCTTTCTTCAGGGCCAGACAGCTTTTAATTGAAATTGTTATTTCACAGGCCAGGGTTCA ATCATAACAGC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45416</pre>

><subunit 1 of 1, 321 aa, 1 stop

><MW: 35544, pI: 8.51, NX(S/T): 0

MGILLGLLLGHLTVDTYGRPILEVPESVTGPWKGDVNLPCTYDPLQGYTQVLVKWLVQRGS
DPVTIFLRDSSGDHIQQAKYQGRLHVSHKVPGDVSLQLSTLEMDDRSHYTCEVTWQTPDGNQ
VVRDKITELRVQKLSVSKPTVTTGSGYGFTVPQGMRISLQCQARGSPPISYIWYKQQTNNQE
PIKVATLSTLLFKPAVIADSGSYFCTAKGQVGSEQHSDIVKFVVKDSSKLLKTKTEAPTTMT
YPLKATSTVKQSWDWTTDMDGYLGETSAGPGKSLPVFAIILIISLCCMVVFTMAYIMLCRKT
SQQEHVYEAAR

Signal Sequence:

amino acids 1-19

Glycosaminoglycan attachment site:

amino acids 149-152

Transmembrane domain:

amino acids 282-300

GGCTGCAGCCACCTCGCGCGCACCCCGAGGCGCCCCAGCTCGCCCGAGGTCCGTCGGA GGCGCCCGGCCCCCGGAGCCAAGCAGCAACTGAGCGGGGAAGCGCCCGCGTCCGGGGATC GGG<u>ATG</u>TCCCTCCTCCTCCTCTCTCTGCTAGTTTCCTACTATGTTGGAACCTTGGGGACTCA CACTGAGATCAAGAGGGCAGAGGAAAAGGTCACTTTGCCCTGCCACCATCAACTGGGGC TTCCAGAAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAAGGGAACCAAAAA GTGGTGATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAGGAACAGAAGGGCCG AGTGGCCTTTGCTTCCAATTTCCTGGCAGGAGATGCCTCCTTGCAGATTGAACCTCTGAAGC CCAGTGATGAGGCCGGTACACCTGTAAGGTTAAGAATTCAGGGCGCTACGTGTGGAGCCAT GTCATCTTAAAAGTCTTAGTGAGACCATCCAAGCCCAAGTGTGAGTTGGAAGGAGAGCTGAC AGAAGGAAGTGACCTGACTTTGCAGTGTGAGTCATCCTCTGGCACAGAGCCCATTGTGTATT ACTGGCAGCGAATCCGAGAGAAAGAGGGAGAGGATGAACGTCTGCCTCCCAAATCTAGGATT GACTACAACCACCCTGGACGAGTTCTGCTGCAGAATCTTACCATGTCCTACTCTGGACTGTA CCAGTGCACAGCAGCAACGAAGCTGGGAAGGAAAGCTGTGTGGGGGGGTAACTGTACAGT ATGTACAAAGCATCGGCATGGTTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTG ATTTTCCTCTTGGTGTGCTGCTAATCCGAAGGAAGAAGAAGAAGATATGAGGAAGAAGA GAGACCTAATGAAATTCGAGAAGATGCTGAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCT CCTCTTCCTCAGGCTCTCGGAGCTCACGCTCTGGTTCTTCCTCCACTCGCTCCACAGCAAAT ACGGTCTGAATTACAATGGACTTGACTCCCACGCTTTCCTAGGAGTCAGGGTCTTTGGACTC TTCTCGTCATTGGAGCTCAAGTCACCAGCCACACAACCAGATGAGAGGTCATCTAAGTAGCA GTGAGCATTGCACGGAACAGATTCAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAA AGGATGTAAGCTGATTCATCTGTAAAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGG AAAGCAGGAGTCCAAATCTATTTGTTGACCAGGACCTGTGGTGAGAAGGTTGGGGAAAGGTG AGGTGAATATACCTAAAACTTTTAATGTGGGATATTTTGTATCAGTGCTTTGATTCACAATT TTCAAGAGGAAATGGGATGCTGTTTGTAAATTTTCTATGCATTTCTGCAAACTTATTGGATT ATTAGTTATTCAGACAGTCAAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTAC TGAGCTAACCACTTCTAAGAAACTCCAAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC TTCATTTGTCATAAGGTTTGGATATTAATTTCAAGGGGAGTTGAAATAGTGGGAGATGGAGA AGAGTGAATGAGTTTCTCCCACTCTATACTAATCTCACTATTTGTATTGAGCCCAAAATAAC TATGAAAGGAGACAAAAATTTGTGACAAAGGATTGTGAAGAGCTTTCCATCTTCATGATGTT ATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTTCCCCTCAAAT CAGATGCCTCTAAGGACTTTCCTGCTAGATATTTCTGGAAGGAGAAAATACAACATGTCATT TATCAACGTCCTTAGAAAGAATTCTTCTAGAGAAAAAGGGATCTAGGAATGCTGAAAGATTA CCCAACATACCATTATAGTCTCTTCTTTCTGAGAAAATGTGAAACCAGAATTGCAAGACTGG TGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAGGTTGCAGTGAGCCGAGATTATGCC ATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45419</pre>

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41281, pI: 8.33, NX(S/T): 3

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKV VITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHV ILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRID YNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTGIVAGALLI FLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSSGSRSSRSGSSSTRSTANS ASRSQRTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTPSMIPSQSRAFQTV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

GTCGTTCCTTTGCTCTCGCGCCCAGTCCTCCTCGTTCTCTCAGCCGCTGTCGGAGGAGAGCACCCGGA GACGCGGGCTGCAGTCGCGGCGGCTTCTCCCCGCCTGGGCGGCCTCGCCGCTGGGCAGGTGCTGAGCGCCCCTAG AGCCTCCCTTGCCGCCTCCTCTGCCCGGCCGCAGCAGTGCACATGGGGTGTTGGAGGTAGATGGGCTCCCG GCCCGGGAGGCGCGGTGGATGCGGCGCTGGGCAGAAGCAGCCGCCGATTCCAGCTGCCCCGCGCGCCCCGGGGCG GCCCGCCGAGCCACGACGATGATCGCGGGCTCCCTTCTCCTGCTTGGATTCCTTAGCACCACCACACGCTCAG CCAGAACAGAAGGCCTCGAATCTCATTGGCACATACCGCCATGTTGACCGTGCCACCGGCCAGGTGCTAACCTGT GACAAGTGTCCAGCAGGAACCTATGTCTCTGAGCATTGTACCAACACACAGCCTGCGCGTCTGCAGCAGTTGCCCT GTGGGGACCTTTACCAGGCATGAGAATGGCATAGAGAAATGCCATGACTGTAGTCAGCCATGCCCATGGCCAATG ${\tt ATTGAGAAATTACCTTGTGCTGCCTTGACTGACCGAGAATGCACTTGCCCACCTGGCATGTTCCAGTCTAACGCT}$ ${\tt TGTAAGCAGTGTGCTCGGGGTACCTTCTCAGATGTGCCTTCTAGTGTGATGAAATGCAAAGCATACACAGACTGT}$ $\tt CTGAGTCAGAACCTGGTGGTGATCAAGCCGGGGACCAAGGAGACAACGTCTGTGGCACACTCCCGTCCTTC$ TCCAGCTCCACCTTCCCCTGGCACAGCCATCTTTCCACGCCCTGAGCACATGGAAACCCATGAAGTCCCT TCCTCCACTTATGTTCCCAAAGGCATGAACTCAACAGAATCCAACTCTTCTGCCTCTGTTAGACCAAAGGTACTG GCCACTGGGGGCGAGAAGTCCAGCACGCCCATCAAGGGCCCCAAGAGGGGACATCCTAGACAGAACCTACACAAG CATTTTGACATCAATGAGCATTTGCCCTGGATGATTGTGCTTTTTCCTGCTGCTGGTGCTTGTGGTGATTGTGGTG TGCAGTATCCGGAAAAGCTCGAGGACTCTGAAAAAGGGGCCCCGGCAGGATCCCAGTGCCATTGTGGAAAAGGCA GGGCTGAAGAATCCATGACTCCAACCCAGAACCGGGAGAAATGGATCTACTACTGCAATGGCCATGGTATCGAT AGGGAGGTTGCTGCTTTCTCCAATGGGTACACAGCCGACCAGGGGGGCCTACGCAGCTCTGCAGCACTGGACC ATCCGGGGCCCCGAGGCCAGCCTCGCCCAGCTAATTAGCGCCCTGCGCCAGCACCGGAGAAACGATGTTGTGGAG AAGATTCGTGGGCTGATGGAAGACACCACCCAGCTGGAAACTGACAAACTAGCTCTCCCGATGAGCCCCAGCCCG CTTAGCCCGAGCCCCATCCCCAGCCCCAACGCGAAACTTGAGAATTCCGCTCTCCTGACGGTGGAGCCTTCCCCA CAGGACAAGAACAAGGGCTTCTTCGTGGATGAGTCGGAGCCCCTTCTCCGCTGTGACTCTACATCCAGCGGCTCC CCCTGTGACTTGCAGCCTATCTTTGATGACATGCTCCACTTTCTAAATCCTGAGGAGCTGCGGGTGATTGAAGAG ${ t TCTCTCTTTTTTTTTTAAATAACTCTTCTGGGAAGTTGGTTTATAAGCCTTTGCCAGGTGTAACTGTTGTGAA$ ATACCCACCACTAAAGTTTTTTAAGTTCCATATTTTCTCCATTTTTGCCTTCTTATGTATTTTCAAGATTATTCTG $\tt TTCTTAAAAGTATAATGGCATCTTGTGAATCCTATAAGCAGTCTTTATGTCTCTTAACATTCACACCTACTTTTT$ $\tt CCCCATTGAGTTACTGTAATGCAATTCAACTTTGAGTTATCTTTTAAATATGTCTTGTATAGTTCATATTCATGG$ TCTTCTTATGCTAATATGCTCTGGGCTGGAGAAATGAAATCCTCAAGCCATCAGGATTTGCTATTTAAGTGGCTT GACAACTGGGCCACAAGAACTTGAACTTCACCTTTTAGGATTTGAGCTGTTCTGGAACACATTGCTGCACTTT GGAAAGTCAAAATCAAGTGCCAGTGGCGCCCTTTCCATAGAGAATTTGCCCAGCTTTGCTTTAAAAGATGTCTTG TTTTTTATATACACATAATCAATAGGTCCAATCTGCTCTCAAGGCCTTGGTCCTGGTGGGATTCCTTCACCAATT ACTTTAATTAAAAATGGCTGCAACTGTAAGAACCCTTGTCTGATATATTTTGCAACTATGCTCCCATTTACAAATG AAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52594</pre>

><subunit 1 of 1, 655 aa, 1 stop

><MW: 71845, pI: 8.22, NX(S/T): 8

MGTSPSSSTALASCSRIARRATATMIAGSLLLLGFLSTTTAQPEQKASNLIGTYRHVDRATG
QVLTCDKCPAGTYVSEHCTNTSLRVCSSCPVGTFTRHENGIEKCHDCSQPCPWPMIEKLPCA
ALTDRECTCPPGMFQSNATCAPHTVCPVGWGVRKKGTETEDVRCKQCARGTFSDVPSSVMKC
KAYTDCLSQNLVVIKPGTKETDNVCGTLPSFSSSTSPSPGTAIFPRPEHMETHEVPSSTYVP
KGMNSTESNSSASVRPKVLSSIQEGTVPDNTSSARGKEDVNKTLPNLQVVNHQQGPHHRHIL
KLLPSMEATGGEKSSTPIKGPKRGHPRQNLHKHFDINEHLPWMIVLFLLLVLVVIVVCSIRK
SSRTLKKGPRQDPSAIVEKAGLKKSMTPTQNREKWIYYCNGHGIDILKLVAAQVGSQWKDIY
QFLCNASEREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLISALRQHRRNDVVEKIRG
LMEDTTQLETDKLALPMSPSPLSPSPIPSPNAKLENSALLTVEPSPQDKNKGFFVDESEPLL
RCDSTSSGSSALSRNGSFITKEKKDTVLRQVRLDPCDLQPIFDDMLHFLNPEELRVIEEIPQ
AEDKLDRLFEIIGVKSQEASQTLLDSVYSHLPDLL

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 350-370

ATGGGAAGCCAGTAACACTGTGGCCTACTATCTCTTCCGTGGTGCCATCTACATTTTTGGGA CTCGGGAATTATGAGGTAGAGGTGGAGGCGGAGCCGGATGTCAGAGGTCCTGAAATAGTCAC CATGGGGGAAAATGATCCGCCTGCTGTTGAAGCCCCCTTCTCATTCCGATCGCTTTTTGGCC TTGATGATTTGAAAATAAGTCCTGTTGCACCAGATGCAGATGCTGTTGCTGCACAGATCCTG TCACTGCTGCCATTGAAGTTTTTTCCAATCATCGTCATTGGGATCATTGCATTGATATTAGC ACTGGCCATTGGTCTGGGCATCCACTTCGACTGCTCAGGGAAGTACAGATGTCGCTCATCCT TTAAGTGTATCGAGCTGATAGCTCGATGTGACGGAGTCTCGGATTGCAAAGACGGGGAGGAC GAGTACCGCTGTGTCCGGGTGGGTGGTCAGAATGCCGTGCTCCAGGTGTTCACAGCTGCTTC GTGGAAGACCATGTGCTCCGATGACTGGAAGGGTCACTACGCAAATGTTGCCTGTGCCCAAC TGGGTTTCCCAAGCTATGTGAGTTCAGATAACCTCAGAGTGAGCTCGCTGGAGGGGCAGTTC CGGGAGGAGTTTGTCCATCGATCACCTCTTGCCAGATGACAAGGTGACTGCATTACACCA CTCAGTATATGTGAGGGAGGGATGTGCCTCTGGCCACGTGGTTACCTTGCAGTGCACAGCCT TGGCCCTGGCAGGCCAGCCTTCAGTTCCAGGGCTACCACCTGTGCGGGGGCTCTGTCATCAC GCCCCTGTGGATCATCACTGCTGCACACTGTGTTTATGACTTGTACCTCCCCAAGTCATGGA CCATCCAGGTGGGTCTAGTTTCCCTGTTGGACAATCCAGCCCCATCCCACTTGGTGGAGAAG ATTGTCTACCACAGCAAGTACAAGCCAAAGAGGCTGGGCAATGACATCGCCCTTATGAAGCT GGCCGGGCCACTCACGTTCAATGAAATGATCCAGCCTGTGTGCCCTGCCCAACTCTGAAGAGA ACTTCCCCGATGGAAAAGTGTGCTGGACGTCAGGATGGGGGGCCACAGAGGATGGAGGTGAC GCCTCCCCTGTCCTGAACCACGCGGCCGTCCCTTTGATTTCCAACAAGATCTGCAACCACAG GGACGTGTACGGTGGCATCATCTCCCCCTCCATGCTCTGCGCGGGCTACCTGACGGGTGGCG TTAGTGGGAGCGACCAGCTTTGGCATCGGCTGCGCAGAGGTGAACAAGCCTGGGGTGTACAC GAGGAAGGGGACAAGTAGCCACCTGAGTTCCTGAGGTGATGAAGACAGCCCGATCCTCCCCT GGACTCCCGTGTAGGAACCTGCACACGAGCAGACACCCTTGGAGCTCTGAGTTCCGGCACCA GTAGCAGGCCCGAAAGAGGCACCCTTCCATCTGATTCCAGCACAACCTTCAAGCTGCTTTTT GTTTTTTTTTTTTGAGGTGGAGTCTCGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCGAAA TCCCTGCTCACTGCAGCCTCCGCTTCCCTGGTTCAAGCGATTCTCTTGCCTCAGCTTCCCCA GTAGCTGGGACCACAGGTGCCCGCCACCACCCAACTAATTTTTGTATTTTTAGTAGAGAC AGGGTTTCACCATGTTGGCCAGGCTGCTCTCAAACCCCTGACCTCAAATGATGTGCCTGCTT CAGCCTCCCACAGTGCTGGGATTACAGGCATGGGCCACCACGCCTAGCCTCACGCTCCTTTC TGATCTTCACTAAGAACAAAAGAAGCAGCAACTTGCAAGGGCGGCCTTTCCCCACTGGTCCAT CTGGTTTTCTCCAGGGTCTTGCAAAATTCCTGACGAGATAAGCAGTTATGTGACCTCACG TGCAAAGCCACCAACAGCCACTCAGAAAAGACGCACCAGCCCAGAAGTGCAGAACTGCAGTC TTTCACATGTGGGGAGGTTAATCTAGGAATGACTCGTTTAAGGCCTATTTTCATGATTTCTT CATTGTCTGGCGTGTCTGCGTGGACTGGTGAATCAAAATCATCCACTGAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45234</pre>

><subunit 1 of 1, 453 aa, 1 stop

><MW: 49334, pI: 6.32, NX(S/T): 1

MGENDPPAVEAPFSFRSLFGLDDLKISPVAPDADAVAAQILSLLPLKFFPIIVIGIIALILA
LAIGLGIHFDCSGKYRCRSSFKCIELIARCDGVSDCKDGEDEYRCVRVGGQNAVLQVFTAAS
WKTMCSDDWKGHYANVACAQLGFPSYVSSDNLRVSSLEGQFREEFVSIDHLLPDDKVTALHH
SVYVREGCASGHVVTLQCTACGHRRGYSSRIVGGNMSLLSQWPWQASLQFQGYHLCGGSVIT
PLWIITAAHCVYDLYLPKSWTIQVGLVSLLDNPAPSHLVEKIVYHSKYKPKRLGNDIALMKL
AGPLTFNEMIQPVCLPNSEENFPDGKVCWTSGWGATEDGGDASPVLNHAAVPLISNKICNHR
DVYGGIISPSMLCAGYLTGGVDSCQGDSGGPLVCQERRLWKLVGATSFGIGCAEVNKPGVYT
RVTSFLDWIHEQMERDLKT

Signal Peptide:

amino acids 1-20

Transmembrane domain:

amino acids 240-284

GCTCAGCGGCGCGCGCGCGCGCGAGGGCTCCGGAGCTGACTCGCCGAGGCAGAAATCCCTCCGGTCGCGA CGCCCGGCCCGGCTCGCCCCGCGTGGGATGCTGCAGCGCTCGCCGGCCCGGGCCCGAGAGCTGCTGCACTGAAG GCTCGCGCCCTGCGAGGGCCCGAGGGGTGAGCTTATGGAACCAAGGAAGAGCTGATGAAGTTGTCAGTGCCTCTGT CCACTATCTGCAAGACGGTACTGATGTCTCCCTCGCTCGAAATTACACGGGTCACTGTTACTACCATGGACATGT ACGGGGATATTCTGATTCAGCAGTCAGCTCAGCACGTGTTCTGGTCTCAGGGGGACTTATTGTGTTTGAAAATGA AAGCTATGTCTTAGAACCAATGAAAAGTGCAACCAACAGATACAAACTCTTCCCAGCGAAGAAGCTGAAAAGCGT ATGGGCAAGAAGGCATAAAAGAGAGACCCTCAAGGCAACTAAGTATGTGGAGCTGGTGATCGTGGCAGACAACCG AGAGTTTCAGAGGCAAGGAAAAGATCTGGAAAAAGTTAAGCAGCGATTAATAGAGATTGCTAATCACGTTGACAA GTTTTACAGACCACTGAACATTCGGATCGTGTTGGTAGGCGTGGAAGTGTGGAATGACATGGACAAATGCTCTGT AAGTCAGGACCCATTCACCAGCCTCCATGAATTTCTGGACTGGAGGAAGATGAAGCTTCTACCTCGCAAATCCCA TGACAATGCGCAGCTTGTCAGTGGGGTTTATTTCCAAGGGACCACCATCGGCATGGCCCCAATCATGAGCATGTG CACGGCAGACCAGTCTGGGGGAATTGTCATGGACCATTCAGACAATCCCCTTGGTGCAGCCGTGACCCTGGCACA TGAGCTGGGCCACAATTTCGGGATGAATCATGACACACTGGACAGGGGCTGTAGCTGTCAAATGGCGGTTGAGAA GGAGACCAGCCTGGAGAAAGGAATGGGGGTGTGCCTGTTTAACCTGCCGGAAGTCAGGGAGTCTTTCGGGGGCCA GAAGTGTGGGAACAGATTTGTGGAAGAAGGAGGAGTGTGACTGTGGGGAGCCAGAGGAATGTATGAATCGCTG CTGCAATGCCACCACCTGTACCCTGAAGCCGGACGCTGTGTGCGCACATGGGCTGTGCTGTGAAGACTGCCAGCT GAAGCCTGCAGGAACAGCGTGCAGGGACTCCAGCAACTCCTGTGACCTCCCAGAGTTCTGCACAGGGGCCAGCCC TCACTGCCCAGCCAATGTGTACCTGCACGATGGGCACTCATGTCAGGATGTGGACGGCTACTGCTACAATGGCAT CTGCCAGACTCACGAGCAGCAGTGTGTCACGCTCTGGGGACCAGGTGCTAAACCTGCCCCTGGGATCTGCTTTGA GAGAGTCAATTCTGCAGGTGATCCTTATGGCAACTGTGGCAAAGTCTCGAAGAGTTCCTTTGCCAAATGCGAGAT GAGAGATGCTAAATGTGGAAAAATCCAGTGTCAAGGAGGTGCCAGCCGGCCAGTCATTGGTACCAATGCCGTTTC CATAGAAACAACATCCCTCTGCAGCAAGGAGGCCGGATTCTGTGCCGGGGGACCCACGTGTACTTGGGCGATGA CATGCCGGACCCAGGGCTTGTGCTTGCAGGCACAAAGTGTGCAGATGGAAAAATCTGCCTGAATCGTCAATGTCA AAATATTAGTGTCTTTGGGGTTCACGAGTGTGCAATGCAGTGCCACGGCAGAGGGGGTGTGCAACAACAGGAAGAA CATCCGGCAAGCAGAAGCAAGGCAGGAAGCTGCAGAGTCCAACAGGGAGCGCGGCCAGGAGCCCGTGGG ${\tt ATCGCAGGAGCATGCGTCTACTGCCTCACTGACACTCATC} {\tt TGA} {\tt GCCCTCCCATGACATGGAGACCGTGACCAGTG}$ $\tt CTGCTGCAGAGGGTCACGCGTCCCCAAGGCCTCCTGTGACTGGCAGCATTGACTCTGTGGCTTTGCCATCGTT$ TCCATGACAACAGACACACACTTCTCGGGGCTCAGGAGGGGAAGTCCAGCCTACCAGGCACGTCTGCAGAAA AGAGTAGCAGGTTACCACTCTGGCAGGCCCCAGCCCTGCAGCAAGGAGGAAGAGGACTCAAAAGTCTGGCCTTTC TGGCAGCCCTGATGACTGGTCTCTGGCTGCAACTTAATGCTCTGATATGGCTTTTAGCATTTATTATATGAAAAT AGCAGGGTTTTAGTTTTAATTTATCAGAGACCCTGCCACCCATTCCATCTCATCCAAGCAAACTGAATGGCAA TGAAACAAACTGGAGAAGAAGGTAGGAGAAAGGGCGGTGAACTCTGGCTCTTTGCTGTGGACATGCGTGACCAGC AGTACTCAGGTTTGAGGGTTTGCAGAAAGCCAGGGAACCCACAGAGTCACCCATCATTTAACAAGTAAGAA TGTTAAAAAGTGAAAACAATGTAAGAGCCTAACTCCATCCCCCGTGGCCATTACTGCATAAAATAGAGTGCATTT GAAAT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49624</pre>

><subunit 1 of 1, 735 aa, 1 stop

><MW: 80177, pI: 7.08, NX(S/T): 5

MAARPLPVSPARALLLALAGALLAPCEARGVSLWNQGRADEVVSASVRSGDLWIPVKSFDSK
NHPEVLNIRLQRESKELIINLERNEGLIASSFTETHYLQDGTDVSLARNYTGHCYYHGHVRG
YSDSAVSLSTCSGLRGLIVFENESYVLEPMKSATNRYKLFPAKKLKSVRGSCGSHHNTPNLA
AKNVFPPPSQTWARRHKRETLKATKYVELVIVADNREFQRQGKDLEKVKQRLIEIANHVDKF
YRPLNIRIVLVGVEVWNDMDKCSVSQDPFTSLHEFLDWRKMKLLPRKSHDNAQLVSGVYFQG
TTIGMAPIMSMCTADQSGGIVMDHSDNPLGAAVTLAHELGHNFGMNHDTLDRGCSCQMAVEK
GGCIMNASTGYPFPMVFSSCSRKDLETSLEKGMGVCLFNLPEVRESFGGQKCGNRFVEEGEE
CDCGEPEECMNRCCNATTCTLKPDAVCAHGLCCEDCQLKPAGTACRDSSNSCDLPEFCTGAS
PHCPANVYLHDGHSCQDVDGYCYNGICQTHEQQCVTLWGPGAKPAPGICFERVNSAGDPYGN
CGKVSKSSFAKCEMRDAKCGKIQCQGGASRPVIGTNAVSIETNIPLQQGGRILCRGTHVYLG
DDMPDPGLVLAGTKCADGKICLNRQCQNISVFGVHECAMQCHGRGVCNNRKNCHCEAHWAPP
FCDKFGFGGSTDSGPIRQAEARQEAAESNRERGQGQEPVGSQEHASTASLTLI

Signal peptide:

amino acids 1-28

TCCCAAGGCTTCTTGGATGGCAGATGATTNTGGGGTTTTGCATTGTTTCCCTGACAACGAAA
ACAAAACAGTTTTGGGGGTTCAGGAGGGGAANTCCAGCCTACCCAGGAAGTTTGCAGAAACA
GTGCAAGGAAGGGCAGGANTTCCTGGTTGAGNTTTTTGNTAAAACATGGACATGNTTCAGTG
CTGCTCNTGAGAGAGTAGCAGGTTACCACTTTTGGCAGGCCCCAGCCCTGCAGCAAGGAGGA
AGAGGACTCAAAAGTTTGGCCTTTCACTGAGCCTCCACAGCAGTGGGGGAGAAGCAAGGGTT
GGGCCCAGTGTCCCCTTTCCCCAGTGACACCTCAGCCTTGGCAGCCCTGATAACTGGTNTNT
GGCTGCAANTTAATGCTNTGATATGGCTTTTAGCATTTATTATATGAAAATAGCAGGGTTTT
AGTTTTTAATTTATCAGAGACCCTGCCACCCATTCCATNTCCATCCAAG

CATCCTGCAACATGGTGAAACCACGCCTGGCTAATTTTGTTGTATTTTTTGGTAGAGATGGGA TTTCACCGTGTTAGCCAGGATTGTCTCAATCTGACCTCATGATCTGCCCGCCTCGGCCTCCC AAAGTGCTGGGATTACAGGCGAGTGCAACCACACCCGGCCACAAACTTTTTAAGAAGTTAAT GAAACCATACCTTTTACATTTTTAATGACAGGAAAATGCTCACAATAATTGTTAACCCAAAA TTCTGGATACAAAGTACAATCTTTACTGTGTAAATACATGTATATGTACTATATGAAAATA TACCAAATATCAATAATACTTATCTCTGGGTAAAAACCTCTTCTCATACCCTGTGCTAACAA CTTTTAACAAAAATTTGCATCACTTTTAAGAATCAAGAAAAATTTCTGAAGGTCATATGGG ACAGAAAAAAAACCAAGGGAAAAATCACGCCACTTGGGAAAAAAAGATTCGAAATCTGCCT TTTTATAGATTTGTAATTAATGGTCCAGGCTTTCTAAGCAACTTAAATGTTTTGTTTCGA AACAAAGTACTTGTCTGGATGTAGGAGGAAAGGGAGTGATGTCACTGCCATTATGATGCCCC ACACTGAGCAGCAAGCTGGACACACGGCACACTGATCCAAATGGGTAAGGGGGATGGTGGCGA TGCTCATTCTGGGTCTGCTACTTCTGGCGCTGCTCCTACCCGTGCAGGTTTCTTCATTTGTT CCTTTAACCAGTATGCCGGAAGCTACTGCAGCCGAAACCACAAAGCCCTCCAACAGTGCCCT ACAGCCTACAGCCGGTCTCCTTGTGGTCTTGCTTGCCCTTCTACATCTCTACCAT**TAA**GAGG CAGGTCAAGAAACAGCTACAGTTCTCCAACCCATACACTAAAACCGAATCCAAATGGTGCCT AGAAGTTCAATGTGGCAAGGAAAAAACCAGGTCTTCATCAAATCTACTAATTTCACTCCTT GACTAGATGATAAATGCCTGTACTCCCAGTACTTTGGGAGGCCTAGGCCGGCGGATCACCTG AGGTCAGGAGTTTGAGACTAACCTGGCCAAAATGGTGAAACCCCCATCTGTACTAAAAATACA AATATTGACTGGGCGTGGTGAGTGCCTGTGATCCCAGCTACTCAGGTGGCTGAAGCAGG ACAATCACTTGAACTCAGGAGGCAGAGGTTGCAGTGAGCTGAGATCGCGCTACTGCACTCTA CACGCCTGTAATCCCGGCACTTTGGGAGGCCGAGGTGGGCGGATCACGAGGTCAGGAGATCA AGACCATCCTGGCTAATACAGTGAAACCCTGTCTCTACTAAAAATACAAAAAATTAGCCGGG GATGGTGGCAGCACCTGGAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATAGCGTGAA CTCAGGAGGCGGAGCTTGCAGTGAGCCGAGATTGCGCTACTGCACTCCAGCCTGGGCGACAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48309</pre>

><subunit 1 of 1, 67 aa, 1 stop

>< MW: 6981, pI: 7.47, NX(S/T): 0

 ${\tt MGKGMVAMLILGLLLLALLLPVQVSSFVPLTSMPEATAAETTKPSNSALQPTAGLLVVLLAL}$

LHLYH

Signal peptide:

amino acids 15-27

CGGCGGCCCTGACTGCGCTGCTGCTGCTGCTGGCCATGGCGGCGGGGGGCGCTGGGGCGCCCGGGCCCAGG AGGCGGCGGCGGCGGCGGACGGCCCCCCGCGCAGACGGCGAGGACGGACAGGACCCGCACAGCAAGCACC TGTACACGGCCGACATGTTCACGCACGGGATCCAGAGCGCCGCGCACTTCGTCATGTTCTTCGCGCCCTGGTGTG GACACTGCCAGCGGCTGCAGCCGACTTGGAATGACCTGGGAGACAAATACAACAGCATGGAAGATGCCAAAGTCT ATGTGGCTAAAGTGGACTGCACGGCCCACTCCGACGTGTGCTCCGCCCAGGGGGGTGCGAGGATACCCCACCTTAA AGCTTTTCAAGCCAGGCCAAGAAGCTGTGAAGTACCAGGGTCCTCGGGACTTCCAGACACTGGAAAACTGGATGC GGCTGTATGAGCTCTCAGCAAGCAACTTTGAGCTGCACGTTGCACAAGGCGACCACTTTATCAAGTTCTTCGCTC CGTGGTGTGGTCACTGCAAAGCCCTGGCTCCAACCTGGGAGCAGCTGGCTCTGGGCCTTGAACATTCCGAAACTG TCAAGATTGGCAAGGTTGATTGTACACAGCACTATGAACTCTGCTCCGGAAACCAGGTTCGTGGCTATCCCACTC TTCTCTGGTTCCGAGATGGGAAAAAGGTGGATCAGTACAAGGGAAAGCGGGATTTGGAGTCACTGAGGGAGTACG TGGAGTCGCAGCTGCAGCGCACAGAGACTGGAGCGACGGAGACCGTCACGCCCTCAGAGGCCCCGGTGCTGGCAG TAACCTTCATCAAGTTTTATGCTCCATGGTGTGGTCATTGTAAGACTCTGGCTCCTACTTGGGAGGAACTCTCTA AAAAGGAATTCCCTGGTCTGGCGGGGGTCAAGATCGCCGAAGTAGACTGCACTGCAGCAACAGCAACAGAATATCTGCAGCA AGTATTCGGTACGAGGCTACCCCACGTTATTGCTTTTCCGAGGAGGAGAAAAGTCAGTGAGCACAGTGGAGGCA ${\tt GAGACCTTGACTCGTTACACCGCTTTGTCCTGAGCCAAGCGAAAGACGAACTT} \underline{{\tt TAG}} {\tt GAAACACAGTTGGAGGTCAC}$ ATTCTTTATTAAGTTAAGTTTCTCTAAGTAAATGTGTAACTCATGGTCACTGTGTAAACATTTTCAGTGGCGATA TATCCCCTTTGACCTTCTCTTGATGAAATTTACATGGTTTCCTTTGAGACTAAAATAGCGTTGAGGGAAATGAAA TTGCTGGACTATTTGTGGCTCCTGAGTTGAGTGATTTTGGTGAAAGAAGCACATCCAAAGCATAGTTTACCTGC CCACGAGTTCTGGAAAGGTGGCCTTGTGGCAGTATTGACGTTCCTCTGATCTTAAGGTCACAGTTGACTCAATAC TGTGTTGGTCCGTAGCATGGAGCAGATTGAAATGCAAAAACCCACACCTCTGGAAGATACCTTCACGGCCGCTGC TGGAGCTTCTGTTGCTGTGAATACTTCTCTCAGTGTGAGAGGTTAGCCGTGATGAAAGCAGCGTTACTTCTGACC GTGCCTGAGTAAGAGAATGCTGATGCCATAACTTTATGTGTCGATACTTGTCAAATCAGTTACTGTTCAGGGGGAT CCTTCTGTTTCTCACGGGGTGAAACATGTCTTTAGTTCCTCATGTTAACACGAAGCCAGAGCCCACATGAACTGT TGGATGTCTTCCTTAGAAAGGGTAGGCATGGAAAATTCCACGAGGCTCATTCTCAGTATCTCATTAACTCATTGA AAGATTCCAGTTGTATTTGTCACCTGGGGTGACAAGACCAGACAGGCTTTCCCAGGCCTGGGTATCCAGGGAGGC TCTGCAGCCCTGCTGAAGGGCCCTAACTAGAGTTCTAGAGTTTCTGATTCTGTTTCTCAGTAGTCCTTTTAGAGG CTTGCTATACTTGGTCTGCTTCAAGGAGGTCGACCTTCTAATGTATGAAGAATGGGATGCATTTGATCTCAAGAC CAAAGACAGATGTCAGTGGGCTGTGGGCCTGGTGTGCACGGCTGTGGCAGCTGTTGATGCCAGTGTCCTCTA ACTCATGCTGTCCTTGTGATTAAACACCTCTATCTCCCTTGGGAATAAGCACATACAGGCTTAAGCTCTAAGATA CCCATACGCAAGGGGATGTGGATACTTGGCCCAAAGTAACTGGTGGTAGGAATCTTAGAAACAAGACCACTTATA $\tt CTGTCTGAGGCAGAAGATAACAGCAGCATCTCGACCAGCCTCTGCCTTAAAGGAAATCTTTATTAATCACG$ TATGGTTCACAGATAATTCTTTTTTAAAAAAACCCAACCTCCTAGAGAGCACAACTGTCAAGAGTCTTGTACA GATACTTTCTAAATAAACTCTTTTTTTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA46776</pre>

><subunit 1 of 1, 432 aa, 1 stop

>< MW: 47629, pI: 5.90, NX(S/T): 0

MPARPGRLLPLLARPAALTALLLLLLGHGGGGRWGARAQEAAAAAADGPPAADGEDGQDPHS
KHLYTADMFTHGIQSAAHFVMFFAPWCGHCQRLQPTWNDLGDKYNSMEDAKVYVAKVDCTAH
SDVCSAQGVRGYPTLKLFKPGQEAVKYQGPRDFQTLENWMLQTLNEEPVTPEPEVEPPSAPE
LKQGLYELSASNFELHVAQGDHFIKFFAPWCGHCKALAPTWEQLALGLEHSETVKIGKVDCT
QHYELCSGNQVRGYPTLLWFRDGKKVDQYKGKRDLESLREYVESQLQRTETGATETVTPSEA
PVLAAEPEADKGTVLALTENNFDDTIAEGITFIKFYAPWCGHCKTLAPTWEELSKKEFPGLA
GVKIAEVDCTAERNICSKYSVRGYPTLLLFRGGKKVSEHSGGRDLDSLHRFVLSQAKDEL

Signal sequence:

amino acids 1-32

 $\tt CTTTTCTGAGGAACCACAGCA{\color{blue} ATG} AATGGCTTTGCATCCTTGCTTCGAAGAAACCAATTTAT$ CCTCCTGGTACTATTTCTTTTGCAAATTCAGAGTCTGGGTCTGGATATTGATAGCCGTCCTA CCGCTGAAGTCTGTGCCACACACACATTTCACCAGGACCCAAAGGAGATGATGGTGAAAAA GGAGATCCAGGAGAAGGGAAAGCATGGCAAAGTGGGACGCATGGGGCCGAAAGGAATTAA AGGAGAACTGGGTGATATGGGAGATCAGGGCCAATATTGGCAAGACTGGGCCCATTGGGAAGA AGGGTGACAAAGGGAAAAAGGTTTGCTTGGAATACCTGGAGAAAAAGGCAAAGCAGGTACT GTCTGTGATTGTGGAAGATACCGGAAATTTGTTGGACAACTGGATATTAGTATTGCTCGGCT CAAGACATCTATGAAGTTTGTCAAGAATGTGATAGCAGGGATTAGGGAAACTGAAGAGAAAT TCTACTACATCGTGCAGGAAGAAGAACTACAGGGAATCCCTAACCCACTGCAGGATTCGG GGTGGAATGCTAGCCAAGGATGAAGCTGCCAACACACTCATCGCTGACTATGTTGC TGTCCACAGACACTCCACTGCAGAACTATAGCAACTGGAATGAGGGGGAACCCAGCGAC CCCTATGGTCATGAGGACTGTGGGAGATGCTGAGCTCTGGCAGATGGAATGACACAGAGTG CCATCTTACCATGTACTTTGTCTGTGAGTTCATCAAGAAGAAAAG**TAA**CTTCCCTCATCCT ATTGTACTACATTTGATCTGAGTCAACATAGCTAGAAAATGCTAAACTGAGGTATGGAGCCT CCATCATCAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50980</pre>

><subunit 1 of 1, 277 aa, 1 stop

><MW: 30645, pI: 7.47, NX(S/T): 2

MNGFASLLRRNQFILLVLFLLQIQSLGLDIDSRPTAEVCATHTISPGPKGDDGEKGDPGEEG KHGKVGRMGPKGIKGELGDMGDQGNIGKTGPIGKKGDKGEKGLLGIPGEKGKAGTVCDCGRY RKFVGQLDISIARLKTSMKFVKNVIAGIRETEEKFYYIVQEEKNYRESLTHCRIRGGMLAMP KDEAANTLIADYVAKSGFFRVFIGVNDLEREGQYMSTDNTPLQNYSNWNEGEPSDPYGHEDC VEMLSSGRWNDTECHLTMYFVCEFIKKKK

Signal peptide:

amino acids 1-25

GGTTCTATCGATTCGAATTCGGCCACACTGGCCGGATCCTCTAGAGATCCCTCGACCTCGAC GCCAGCGCACGCGCCTCCCTGGAAGGAGAAGTCTCAGCTAGAACGAGCGGCCCTAGGTTTT CGGAAGGGAGGATCAGGGATGTTTGCGAGCGGCTGGAACCAGACGGTGCCGATAGAGGAAGC ${\tt AGCTACACCTCTGGCCGCAGTTGCGCTGGCTTCCGGCGGACTTGGCCTTTGCGGTGCGAGCT}$ CTGTGCTGCAAAAGGGCTCTTCGAGCTCGCGCCCTGGCCGCGGCTGCCGCCGACCCGGAAGG ACACCTTTCTCATTCACGGCTCGCGGCGCTTTAGCTACTCAGAGGCGGAGGCGCGAGAGTAAC AGGGCTGCACGCGCCTTCCTACGTGCGCTAGGCTGGGACTGGGGACCCGACGGCGACAG CGGCGAGGGGAGCGCTGGAGAAGGCGAGCGGGGCGCGGGAGCCGGAGATGCAGCGGCCG GAAGCGGCGCGGAGTTTGCCGGAGGGGACGGTGCCGCCAGAGGTGGAGGAGCCGCCCCCT CTGTCACCTGGAGCAACTGTGGCGCTGCTCCTCCCCGCTGGCCCAGAGTTTCTGTGGCTCTG GTTCGGGCTGGCCAAGGCCGGCCTGCGCACTGCCTTTGTGCCCACCGCCCTGCGCCGGGGCC CCCTGCTGCACTGCCGCAGCTGCGGCGCGCGCGCGCTGGTGCTGCGCCAGAGTTTCTG GAGTCCCTGGAGCCGGACCTGCCCCCCTGAGAGCCATGGGGCTCCACCTGTGGGCTGCAGG GGCCAGTGCCAGGATACCTCTCTCCCCCCAGAGCATAACAGACACGTGCCTGTACATCTTC ACCTCTGGCACCACGGCCTCCCCAAGGCTGCTCGGATCAGTCATCTGAAGATCCTGCAATG CCAGGGCTTCTATCAGCTGTGTGTGTCCACCAGGAAGATGTGATCTACCTCGCCCTCCCAC TCTACCACATGTCCGGTTCCCTGCTGGGCATCGTGGGCTGCATGGGGCATTGGGGCCACAGTG GTGCTGAAATCCAAGTTCTCGGCTGGTCAGTTCTGGGAAGATTGCCAGCAGCACAGGGTGAC GGTGTTCCAGTACATTGGGGAGCTGTGCCGATACCTTGTCAACCAGCCCCCGAGCAAGGCAG AACGTGGCCATAAGGTCCGGCTGGCAGTGGGCAGCGGGCTGCGCCCAGATACCTGGGAGCGT TTTGTGCGGCCCTTCGGGCCCCTGCAGGTGCTGGAGACATATGGACTGACAGAGGGCAACGT GGCCACCATCAACTACACAGGACAGCGGGGGGGGCGTGGGTGCTTCCTGGCTTTACAAGC ATATCTTCCCCTTGATTCGCTATGATGTCACCACAGGAGAGCCAATTCGGGACCCC CAGGGGCACTGTATGGCCACATCTCCAGGTGAGCCAGGGCTGCTGGTGGCCCCGGTAAGCCA GCAGTCCCCATTCCTGGGCTATGCTGGCGGGCCAGAGCTGGCCCAGGGGAAGTTGCTAAAGG ATGTCTTCCGGCCTGGGGATGTTTTCTTCAACACTGGGGACCTGCTGGTCTGCGATGACCAA GGTTTTCTCCGCTTCCATGATCGTACTGGAGACACCTTCAGGTGGAAGGGGGAGAATGTGGC CACAACCGAGGTGGCAGAGGTCTTCGAGGCCCTAGATTTTCTTCAGGAGGTGAACGTCTATG GAGTCACTGTGCCAGGGCATGAAGGCAGGGCTGGAATGGCAGCCCTAGTTCTGCGTCCCCCC CACGCTTTGGACCTTATGCAGCTCTACACCCACGTGTCTGAGAACTTGCCACCTTATGCCCG GCCCCGATTCCTCAGGCTCCAGGAGTCTTTGGCCACCACAGAGACCTTCAAACAGCAGAAAG TTCGGATGGCAAATGAGGGCTTCGACCCCAGCACCCTGTCTGACCCACTGTACGTTCTGGAC CAGGCTGTAGGTGCCTACCTGCCCCTCACAACTGCCCGGTACAGCGCCCTCCTGGCAGGAAA CCTTCGAATC<u>TGA</u>GAACTTCCACACCTGAGGCACCTGAGAGAGGAACTCTGTGGGGTGGGG CCGTTGCAGGTGTACTGGGCTGTCAGGGATCTTTTCTATACCAGAACTGCGGTCACTATTTT AAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGTAGGGATAACAGGGTAATAAGC TTGGCCGCCATGGCCCAACTTGTTTATTGCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50913</pre>

><subunit 1 of 1, 730 aa, 1 stop

>< MW: 78644, pI: 7.65, NX(S/T): 2

MGVCQRTRAPWKEKSQLERAALGFRKGGSGMFASGWNQTVPIEEAGSMAALLLLPLLLLLPL
LLLKLHLWPQLRWLPADLAFAVRALCCKRALRARALAAAAADPEGPEGGCSLAWRLAELAQQ
RAAHTFLIHGSRRFSYSEAERESNRAARAFLRALGWDWGPDGGDSGEGSAGEGERAAPGAGD
AAAGSGAEFAGGDGAARGGGAAAPLSPGATVALLLPAGPEFLWLWFGLAKAGLRTAFVPTAL
RRGPLLHCLRSCGARALVLAPEFLESLEPDLPALRAMGLHLWAAGPGTHPAGISDLLAEVSA
EVDGPVPGYLSSPQSITDTCLYIFTSGTTGLPKAARISHLKILQCQGFYQLCGVHQEDVIYL
ALPLYHMSGSLLGIVGCMGIGATVVLKSKFSAGQFWEDCQQHRVTVFQYIGELCRYLVNQPP
SKAERGHKVRLAVGSGLRPDTWERFVRRFGPLQVLETYGLTEGNVATINYTGQRGAVGRASW
LYKHIFPFSLIRYDVTTGEPIRDPQGHCMATSPGEPGLLVAPVSQQSPFLGYAGGPELAQGK
LLKDVFRPGDVFFNTGDLLVCDDQGFLRFHDRTGDTFRWKGENVATTEVAEVFEALDFLQEV
NVYGVTVPGHEGRAGMAALVLRPPHALDLMQLYTHVSENLPPYARPRFLRLQESLATTETFK
QQKVRMANEGFDPSTLSDPLYVLDQAVGAYLPLTTARYSALLAGNLRI

Type II transmembrane domain:

amino acids 45-65

Other transmembrane domain:

amino acids 379-398

cAMP- and cGMP-dependent protein kinase phosphorylation site starting at amino acid 136

CUB domain protein motif

amino acids 254-261

putative AMP-binding domain siganture

amino acids 332-343

N-glycosylation sites

amino acids 37-40 and 483-486

CCTGTGTTAAGCTGAGGTTTCCCCTAGATCTCGTATATCCCCAACACATACCTCCACGCACA CACATCCCCAAGAACCTCGAGCTCACACCAACAGACACGCGCGCATACACACTCGCTCTC GAGCCGAGCCCAGCGCTCCAGGATTCTGCGGCTCGGAACTCGGATTGCAGCTCTGAACCC CCATGGTGGTTTTTAAACACTTCTTTTCCTTCTCTCTCGTTTTGATTGCACCGTTTCCA CCATCTGGCTTATAAAAGTTTGCTGAGCGCAGTCCAGAGGGCTGCGCTGCTCGTCCCCTCGG CTGGCAGAAGGGGGTGACGCTGGGCAGCGGCGAGGAGCGCGCCGCTGCCTCTGGCGGGCTTT CGGCTTGAGGGGCAAGGTGAAGAGCGCACCGGCCGTGGGGTTTACCGAGCTGGATTTGTATG TCCCCGCCGGGGCGGATGTGAAGGCTCGGAGCTGCGGAGAGGTCCGCCAGGCGTACGGTGCC AAGGGATTCAGCCTGGCGGACATCCCCTACCAGGAGATCGCAGGGGAACACTTAAGAATCTG TCCTCAGGAATATACATGCTGCACCACAGAAATGGAAGACAAGTTAAGCCAACAAAGCAAAC TCGAATTTGAAAACCTTGTGGAAGAGACAAGCCATTTTGTGCGCACCACTTTTGTGTCCAGG CATAAGAAATTTGACGAATTTTTCCGAGAGCTCCTGGAGAATGCAGAAAAGTCACTAAATGA TATGTTTGTACGGACCTATGGCATGCTGTACATGCAGAATTCAGAAGTCTTCCAGGACCTCT TCACAGAGCTGAAAAGGTACTACACTGGGGGTAATGTGAATCTGGAGGAAATGCTCAATGAC TTTTGGGCTCGGCTCCTGGAACGGATGTTTCAGCTGATAAACCCTCAGTATCACTTCAGTGA AGACTACCTGGAATGTGTGAGCAAATACACTGACCAGCTCAAGCCATTTGGAGACGTGCCCC GGAAACTGAAGATTCAGGTTACCCGCGCCTTCATTGCTGCCAGGACCTTTGTCCAGGGGCTG ACTGTGGGCAGAGAAGTTGCAAACCGAGTTTCCAAGGTCAGCCCAACCCCAGGGTGTATCCG TGCCCTCATGAAGATGCTGTACTGCCCATACTGTCGGGGGCCTTCCCACTGTGAGGCCCTGCA ACAACTACTGTCTCAACGTCATGAAGGGCTGCTTGGCAAATCAGGCTGACCTCGACACAGAG TGGAATCTGTTTATAGATGCAATGCTCTTGGTGGCAGAGCGACTGGAGGGGCCATTCAACAT TGAGTCGGTCATGGACCCGATAGATGTCAAGATTTCTGAAGCCATTATGAACATGCAAGAAA ACAGCATGCAGGTGTCTGCAAAGGTCTTTCAGGGATGTGGTCAGCCCAAACCTGCTCCAGCC CTCAGATCTGCCCGCTCAGCTCCTGAAAATTTTAATACACGTTTCAGGCCCTACAATCCTGA GGAAAGACCAACAACTGCTGCAGGCACAAGCTTGGACCGGCTGGTCACAGACATAAAAGAGA AATTGAAGCTCTCTAAAAAGGTCTGGTCAGCATTACCCTACACTATCTGCAAGGACGAGAGC GTGACAGCGGCACGTCCAACGAGGAGGAATGCTGGAACGGGCACAGCAAAGCCAGATACTT GCCTGAGATCATGAATGATGGGCTCACCAACCAGATCAACAATCCCGAGGTGGATGTGGACA TCACTCGGCCTGACACTTTCATCAGACAGCAGATTATGGCTCTCCGTGTGATGACCAACAAA CTAAAAAACGCCTACAATGGCAATGATGTCAATTTCCAGGACACAAGTGATGAATCCAGTGG CTCAGGGAGTGGCATGGATGACGTGTGTCCCACGGAGTTTGAGTTTGTCACCA CACTCCTGCTCTCTCTCACCTGCATTGTCCTGGCACTGCAGAGACTGTGCAGATA ${f A}$ TCTTGGGTTTTTGGTCAGATGAAACTGCATTTTAGCTATCTGAATGGCCAACTCACTTCTT TTCTTACACTCTTGGACAATGGACCATGCCACAAAAACTTACCGTTTTCTATGAGAAGAGAG CAGTAATGCAATCTGCCTCCCTTTTTGTTTTCCCAAAGAGTACCGGGTGCCAGACTGAACTG CTTCCTCTTCCTCAGCTATCTGTGGGGACCTTGTTTATTCTAGAGAGAATTCTTACTCAA ATTTTTCGTACCAGGAGATTTTCTTACCTTCATTTGCTTTATGCTGCAGAAGTAAAGGAAT CTCACGTTGTGAGGGTTTTTTTTTTTTTCTCATTTAAAAT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50914

><subunit 1 of 1, 555 aa, 1 stop

><MW: 62736, pI: 5.36, NX(S/T): 0

MPSWIGAVILPLLGLLLSLPAGADVKARSCGEVRQAYGAKGFSLADIPYQEIAGEHLRICPQ
EYTCCTTEMEDKLSQQSKLEFENLVEETSHFVRTTFVSRHKKFDEFFRELLENAEKSLNDMF
VRTYGMLYMQNSEVFQDLFTELKRYYTGGNVNLEEMLNDFWARLLERMFQLINPQYHFSEDY
LECVSKYTDQLKPFGDVPRKLKIQVTRAFIAARTFVQGLTVGREVANRVSKVSPTPGCIRAL
MKMLYCPYCRGLPTVRPCNNYCLNVMKGCLANQADLDTEWNLFIDAMLLVAERLEGPFNIES
VMDPIDVKISEAIMNMQENSMQVSAKVFQGCGQPKPAPALRSARSAPENFNTRFRPYNPEER
PTTAAGTSLDRLVTDIKEKLKLSKKVWSALPYTICKDESVTAGTSNEEECWNGHSKARYLPE
IMNDGLTNQINNPEVDVDITRPDTFIRQQIMALRVMTNKLKNAYNGNDVNFQDTSDESSGSG
SGSGCMDDVCPTEFEFVTTEAPAVDPDRREVDSSAAQRGHSLLSWSLTCIVLALQRLCR

Signal peptide:

amino acids 1-23

FIGURE 42A

CGGACGCGTGGGCGACGCGAAAAGAACTCGGAGTGCCAAAGCTAAATAAGTTAGCTGAGAAAACGCACG CAGTTTGCAGCGCCTGCGCCGGGTGCGCCAACTACGCAAAGACCAAGCGGGCTCCGCGCGGGACCGGCGGGGGC GGAGGGAGATCAGGAAACGGCTTCTTCCTCACTTCGCCGCCTGGTGAGTGTCGGGGAGATTGGCAAACGCCTAGG AAAGGACTGGGGAAAATAGCCCTGGGAAAGTGGAGAAGGTGATCAGGAGGCCGGTCCACTACGGCAGTTTATCTG AAAGTTCCTGTCCACTGTGATTCTCAATTCCTTGCTTGGTTTTTTTCTCCAGAGAACTTTTGGGTGGAGATATTA AAGAAGGGCCTTACTAGCTCAAGCTGGAGAGAAACTAGAGCCCAGCACAACTTCCACCTCCCAGCCCCATCTCA ACAAGCTCGCTGCCGAAGGAGTTAAACTGGAGAACTACTATGTCCAGCCTATTTGCACACCATCCAGGAGTCAGT TTATTACTGGAAAGTATCAGATACACCCGGACTTCAACATTCTATCATAAGACCTACCCAACCCAACTGTTTAC $\tt CTCTGGACAATGCCACCCTACCTCAGAAACTGAAGGAGGTTGGATATTCAACGCATATGGTCGGAAAATGGCACT$ TGGGTTTTAACAGAAAAGAATGCATGCCCACCAGAAGAGGATTTGATACCTTTTTTGGTTCCCTTTTTGGGAAGTG GGGATTACTATACACACTACAAATGTGACAGTCCTGGGATGTGTGGCTATGACTTGTATGAAAACGACAATGCTG CCTGGGACTATGACAATGGCATATACTCCACAGAGATGTACACTCAGAGAGTACAGCAAATCTTAGCTTCCCATA TCGAACACTACCGATCCATTATCAACATAAACAGGAGAAGATATGCTGCCATGCTTTCCTGCTTAGATGAAGCAA TCAACAACGTGACATTGGCTCTAAAGACTTATGGTTTCTATAACAACAGCATTATCATTTACTCTTCAGATAATG GTGGCCAGCCTACGGCAGGAGGAGTAACTGGCCTCTCAGAGGTAGCAAAGGAACATATTGGGAAGGAGGATCC GGGCTGTAGGCTTTGTGCATAGCCCACTTCTGAAAAACAAGGGAACAGTGTGTAAGGAACTTGTGCACATCACTG ACTGGTACCCCACTCTCATTTCACTGGCTGAAGGACAGATTGATGAGGACATTCAACTAGATGGCTATGATATCT GGGAGACCATAAGTGAGGGTCTTCGCTCACCCCGAGTAGATATTTTGCATAACATTGACCCCTATACACCAAGGC AAAAATGGCTCCTGGGCAGCAGGCTATGGGATCTGGAACACTGCAATCCAGTCAGCCATCAGAGTGCAGCACTG GAAATTGCTTACAGGAAATCCTGGCTACAGCGACTGGGTCCCCCCTCAGTCTTTCAGCAACCTGGGACCGAACCG GTGGCACAATGAACGGATCACCTTGTCAACTGGCAAAAGTGTATGGCTTTTCAACATCACAGCCGACCCATATGA ${\tt GAGGGTGGACCTATCTAACAGGTATCCAGGAATCG\underline{\textbf{TGA}}{\tt AGAAGCTCCTACGGAGGCTCTCACAGTTCAACAAAAC}$ TGCAGTGCCGGTCAGGTATCCCCCCAAAGACCCCAGAAGTAACCCTAGGCTCAATGGAGGGGTCTGGGGACCATG GAAGAAGAAACAGCAGAAAGCAGTCTCAGGTAAACCAGCAAATTTGGCTCGATAATATCGCTGGCCTAAGCGTCA GGCTTGTTTTCATGCTGTGCCACTCCAGAGACTTCTGCCACCTGGCCGCCACACTGAAAACTGTCCTGCTCAGTG ${\tt CCAAGGTGCTACTCTTGCAAGCCACACTTAGAGAGAGTGGAGATGTTTATTTCTCTCGCTCCTTTAGAAAACGTG}$ GTGAGTCCTGAGTTCCACTGCTGTGCTTCAGTCAACTGACCAAACACTGCTTTGAATTATAGGAGGAGAACAATA ACCTACCATCCGCAAGCATGCTAATTTGATGGAAGTTACAGGGTAGCATGATTAAAACTACCTTTGATAAATTAC

FIGURE 42B

CACATGTGAACAGCTTGCACCTCATTTTACCATGCGTGAGGGAATGGCAAATAAGAATGTTTGAGCACACTGCCC ATTTTATTCATTTCTTCAAATTATCAAGCACTGTAATACTATAAATTAATGTAATACTGTGTGAATTCAGACTA ATTACTTGGAAATTCAATGTTTGTGCAGAGTTGAGACAACTTTATTGTTTCTATCATAAACTATTTATGTATCTT AATTATTAAAATGATTTACTTTATGGCACTAGAAAATTTACTGTGGCTTTTCTGATCTAACTTCTAGCTAAAATT GTATCATTGGTCCTAAAAAATAAAAATCTTTACTAATAGGCAATTGAAGGAATGGTTTGCTAACAACCACAGTAA TATAATATGATTTTACAGATAGATGCTTCCCCTTGGCTATGACATGGAGAAAGATTTTCCCATAATAATAACTAA TATTTATATTAGGTTGGTGCAAAACTAGTTGCGGTTTTTCCCATTAAAAGTAATAACCTTACTCTTATACAAAGT ACATGCAAACGTCATGAGGAGAATTAAAGGAGTATTATCAGTAATGAAGTTTATCATGGGTCATCAATGAGCATA GATTGGTGTGGATCCTGTAGACCCTGGTGTTTTCTTTGAAGTGCCCTCTCCTAATGCAGAGGCCTTGAAGCTTAC AGTATACACTTGAAAAGTCACAGATAGCTAGAATTATGATCTTTGAAGTTATAACTGTGATCTGAAAATGTGTGT GGTGGTATGACAGCATACCATTAAATACATTTACATCACAGCTCAAAGGACTGTGATATAATCCATTTATATCAC ${\tt AACTCAAAGGACTGTGATATAATCCATTTATATCACAGCTCACAGTTTCTGAAAATGTATAAAAGAATCTATAAT}$ CTAGTACTGAAATTACTAAATTGGGTAAGATGATTTAAATGATTTTAACATTTTATTTCTAGAATATAT GGCTCCATTTATTTTATAGTGTAAAGTTGTATTTCCTAAAGTTTGTGTGTTTTGTCGACAGTATCTTTTAAATGAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48296</pre>

><subunit 1 of 1, 515 aa, 1 stop

><MW: 56885, pI: 6.49, NX(S/T): 5

MAPRGCAGHPPPPSPQACVCPGKMLAMGALAGFWILCLLTYGYLSWGQALEEEEEGALLAQA
GEKLEPSTTSTSQPHLIFILADDQGFRDVGYHGSEIKTPTLDKLAAEGVKLENYYVQPICTP
SRSQFITGKYQIHTGLQHSIIRPTQPNCLPLDNATLPQKLKEVGYSTHMVGKWHLGFNRKEC
MPTRRGFDTFFGSLLGSGDYYTHYKCDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQ
ILASHNPTKPIFLYTAYQAVHSPLQAPGRYFEHYRSIININRRRYAAMLSCLDEAINNVTLA
LKTYGFYNNSIIIYSSDNGGQPTAGGSNWPLRGSKGTYWEGGIRAVGFVHSPLLKNKGTVCK
ELVHITDWYPTLISLAEGQIDEDIQLDGYDIWETISEGLRSPRVDILHNIDPYTPRQKMAPG
QQAMGSGTLQSSQPSECSTGNCLQEILATATGSPLSLSATWDRTGGTMNGSPCQLAKVYGFS
TSQPTHMRGWTYLTGIQES

Important Features:

Signal Peptide:

amino acids 1-37

Sulfatases signature 1.

amino acids 120-132

Sulfatases signature 2.

amino acids 168-177

Tyrosine kinase phosphorylation site.

amino acids 163-169

N-glycosylation sites.

amino acids 157-160, 306-309 and 318-321

CGGACGCGTGGGTGCGAGTGGAGCGGAGGACCCGAGCGGCTGAGGAGAGAGGAGGCGGCGGC CCGTGCGAGA<u>ATG</u>CCTCTGCCCTGGAGCCTTGCGCTCCCGCTGCTGCTCCTGGGTGGCAG GTGGTTTCGGGAACGCGGCCAGTGCAAGGCATCACGGGTTGTTAGCATCGGCACGTCAGCCT GGGGTCTGTCACTATGGAACTAAACTGGCCTGCTGCTACGGCTGGAGAAGAACAGCAAGGG GCAGATGCTTTCCAGGATACACCGGGAAAACCTGCAGTCAAGATGTGAATGAGTGTGGAATG AAACCCCGGCCATGCCAACACAGATGTGTGAATACACACGGAAGCTACAAGTGCTTTTGCCT CAGTGGCCACATGCTCATGCCAGATGCTACGTGTGAACTCTAGGACATGTGCCATGATAA ACTGTCAGTACAGCTGTGAAGACACAGAAGAAGGCCCACAGTGCCTGTGTCCATCCTCAGGA CTCCGCCTGGCCCCAAATGGAAGAGACTGTCTAGATATTGATGAATGTGCCTCTGGTAAAGT CATCTGTCCCTACAATCGAAGATGTGTGAACACATTTGGAAGCTACTACTGCAAATGTCACA ATGGATAGCCATACGTGCAGCCACCATGCCAATTGCTTCAATACCCAAGGGTCCTTCAAGTG TAAATGCAAGCAGGGATATAAAGGCAATGGACTTCGGTGTTCTGCTATCCCTGAAAATTCTG AAAAACAGCATGAAAAAGAAGGCAAAAATTAAAAATGTTACCCCAGAACCCACCAGGACTCC TACCCCTAAGGTGAACTTGCAGCCCTTCAACTATGAAGAGATAGTTTCCAGAGGCGGGAACT $\tt CTCATGGAGGTAAAAAAGGGGAATGAAGAGAAAA<math>{f TGA}$ AAGAGGGGGCTTGAGGATGAGAAAAGAG AAGAGAAAGCCCTGAAGAATGACATAGAGGAGCGAAGCCTGCGAGGAGATGTGTTTTTCCCT AAGGTGAATGAAGCAGGTGAATTCGGCCTGATTCTGGTCCAAAGGAAAGCGCTAACTTCCAA ACTGGAACATAAAGATTTAAATATCTCGGTTGACTGCAGCTTCAATCATGGGATCTGTGACT GGAAACAGGATAGAGAAGATGATTTTGACTGGAATCCTGCTGATCGAGATAATGCTATTGGC CCTACCTGACCTGCAACCCCAAAGCAACTTCTGTTTGCTCTTTGATTACCGGCTGGCCGGAG ACAAAGTCGGGAAACTTCGAGTGTTTGTGAAAAACAGTAACAATGCCCTGGCATGGGAGAAG ACCACGAGTGAGGATGAAAAGTGGAAGACAGGGAAAATTCAGTTGTATCAAGGAACTGATGC TACCAAAAGCATCATTTTTGAAGCAGAACGTGGCAAGGGCAAAACCGGCGAAATCGCAGTGG ATGGCGTCTTGCTTCAGGCTTATGTCCAGATAGCCTTTTATCTGTGGATGACTGAATG GACCTCTGGCATTTTAGAATTACTAGCTGAAAAATTGTAATGTACCAACAGAAATATTATTG TAAGATGCCTTTCTTGTATAAGATATGCCAATATTTGCTTTAAATATCATATCACTGTATCT TCTCAGTCATTTCTGAATCTTTCCNCATTATATATAAAATNTGGAAANGTCAGTTTATCTC CCCTCCTCNGTATATCTGATTTGTATANGTANGTTGATGNGCTTCTCTCTACAACATTTCTA GAAAATAGAAAAAAAGCACAGAGAAATGTTTAACTGTTTGACTCTTATGATACTTCTTGGA AACTATGACATCAAAGATAGACTTTTGCCTAAGTGGCTTAGCTGGGTCTTTCATAGCCAAAC TTGTATATTTAATTCTTTGTAATAA

MPLPWSLALPLLLSWVAGGFGNAASARHHGLLASARQPGVCHYGTKLACCYGWRRNSKGVCE
ATCEPGCKFGECVGPNKCRCFPGYTGKTCSQDVNECGMKPRPCQHRCVNTHGSYKCFCLSGH
MLMPDATCVNSRTCAMINCQYSCEDTEEGPQCLCPSSGLRLAPNGRDCLDIDECASGKVICP
YNRRCVNTFGSYYCKCHIGFELQYISGRYDCIDINECTMDSHTCSHHANCFNTQGSFKCKCK
QGYKGNGLRCSAIPENSVKEVLRAPGTIKDRIKKLLAHKNSMKKKAKIKNVTPEPTRTPTPK
VNLQPFNYEEIVSRGGNSHGGKKGNEEK

Signal peptide:

amino acids 1-21

EGF-like domain cysteine pattern signature.

amino acids 80-91

Calcium-binding EGF-like domains

amino acids 103-124, 230-251 and 185-206

GGGAGCTGCTGCTGCTGCTGCTGCTGCTGCTCCTCCTCTTGGTGCAGCTGCTG CGCTTCCTGAGGGCTGACGGCGACCTGACGCTACTATGGGCCGAGTGGCAGGGACGACGCCC AGAATGGGAGCTGACTGAT**ATG**GTGGTGTGGGTGACTGGAGCCTCGAGTGGAATTGGTGAGG AGCTGGCTTACCAGTTGTCTAAACTAGGAGTTTCTCTTGTGCTGTCAGCCAGAAGAGTGCAT GAGCTGGAAAGGGTGAAAAGAAGATGCCTAGAGAATGGCAATTTAAAAGAAAAAGATATACT TGTTTTGCCCCTTGACCTGACCGACACTGGTTCCCATGAAGCGGCTACCAAAGCTGTTCTCC AGGAGTTTGGTAGAATCGACATTCTGGTCAACAATGGTGGAATGTCCCAGCGTTCTCTGTGC ATGGATACCAGCTTGGATGTCTACAGAAAGCTAATAGAGCTTAACTACTTAGGGACGGTGTC CTTGACAAAATGTGTTCTGCCTCACATGATCGAGAGGAAGCAAGGAAGATTGTTACTGTGA CTCCGGGGTTTTTTTAATGGCCTTCGAACAGAACTTGCCACATACCCAGGTATAATAGTTTC TAACATTTGCCCAGGACCTGTGCAATCAAATATTGTGGAGAATTCCCTAGCTGGAGAAGTCA CAAAGACTATAGGCAATAATGGAGACCAGTCCCACAAGATGACAACCAGTCGTTGTGTGCGG CTGATGTTAATCAGCATGGCCAATGATTTGAAAGAAGTTTGGATCTCAGAACAACCTTTCTT GTTAGTAACATATTTGTGGCAATACATGCCAACCTGGGCCTGGTGGATAACCAACAAGATGG GGAAGAAAGGATTGAGAACTTTAAGAGTGGTGTGGATGCAGACTCTTCTTATTTTAAAATC GAAAACATGAAAACAGCAATCTTCTTATGCTTCTGAATAATCAAAGACTAATTTGTGATTTT ATTGCCATGAATCTTGCAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA36343</pre>

><subunit 1 of 1, 289 aa, 1 stop

><MW: 32268, pI: 9.21, NX(S/T): 0

MVVWVTGASSGIGEELAYQLSKLGVSLVLSARRVHELERVKRRCLENGNLKEKDILVLPLDL TDTGSHEAATKAVLQEFGRIDILVNNGGMSQRSLCMDTSLDVYRKLIELNYLGTVSLTKCVL PHMIERKQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGP VQSNIVENSLAGEVTKTIGNNGDQSHKMTTSRCVRLMLISMANDLKEVWISEQPFLLVTYLW QYMPTWAWWITNKMGKKRIENFKSGVDADSSYFKIFKTKHD

Important Features:

Signal Peptide:

amino acids 1-31

Transmembrane domain:

amino acids 136-157

Tyrosine kinase phosphorylation site.

106-113 and 107-114

Homologous region to Short-chain alcohol dehydrogenase amino acids 80-90, 131-168, 1-13 and 176-185

GCGACGTGGGCACCGCCATCAGCTGTTCGCGCGTCTTCTCCTCCAGGTGGGGCAGGGGTTTC TTGCATCTTCTACACACTACAGCTATTGTTAGGTTGCCTGCGGACACGCTGGGCCTCTGTCC ${\tt TG} {f ATG} {\tt CTGCTGAGCTCCCTGGTGTCTCTCGCTGGTTCTGTCTACCTGGCCTGGATCCTGTTC}$ TTCGTGCTCTATGATTTCTGCATTGTTTGTATCACCACCTATGCTATCAACGTGAGCCTGAT GTGGCTCAGTTTCCGGAAGGTCCAAGAACCCCAGGGCAAGGCTAAGAGGCACTGAGCCCTCA ACCCAAGCCAGGCTGACCTCATCTGCTTTGCTTTGGTCTTCAAGCCGCTCAGCGTGCCTGTG GACAGCGTGGCCCCGGCCCCCCAAGCCTCAGGAGGGCAACACAGTCCCTGGCGAGTGGCCC TGGCAGGCCAGTGTGAGGAGGCAAGGAGCCCACATCTGCAGCGGCTCCCTGGTGGCAGACAC CTGGGTCCTCACTGCTGCCCACTGCTTTGAAAAGGCAGCAGCAACAGAACTGAATTCCTGGT CAGTGGTCCTGGGGTTCTCTGCAGCGTGAGGGACTCAGCCCTGGGGCCGAAGAGGTGGGGGTG GCTGCCTGCAGTTGCCCAGGGCCTATAACCACTACAGCCAGGGCTCAGACCTGGCCCTGCT CCTTTGGAGCCTCCTGGGCCACTGGCTGGGATCAGGACACCAGTGATGCTCCTGGGACC CTACGCAATCTGCGCCTGCGTCTCATCAGTCGCCCCACATGTAACTGTATCTACAACCAGCT GCACCAGCGACACCTGTCCAACCCGGCCCGGCCTGGGATGCTATGTGGGGGCCCCCAGCCTG GGGTGCAGGGCCCCTGTCAGGGAGATTCCGGGGGCCCTGTGCTGTGCCTCGAGCCTGACGGA CACTGGGTTCAGGCTGGCATCATCAGCTTTGCATCAAGCTGTGCCCAGGAGGACGCTCCTGT GCTGCTGACCAACACGCTGCTCACAGTTCCTGGCTGCAGGCTCGAGTTCAGGGGGCAGCTT TCCTGGCCCAGAGCCCCAGAGACCCCGGAGATGAGTGATGAGGACAGCTGTGTAGCCTGTGGA TCCTTGAGGACAGCAGGTCCCCAGGCAGGAGCACCCTCCCCATGGCCCTGGGAGGCCAGGCT GATGCACCAGGGACAGCTGGCCTGTGGCGGAGCCCTGGTGTCAGAGGAGGCGGTGCTAACTG CTGCCCACTGCTTCATTGGGCGCCAGGCCCCAGAGGAATGGAGCGTAGGGCTGGGGACCAGA TCTGCCTGCCCTATCCTGACCACCACCTGCCTGATGGGGAGCGTGGCTGGGTTCTGGGACGG GCCCGCCCAGGAGCAGCATCAGCTCCCTCCAGACAGTGCCCGTGACCCTCCTGGGGCCTAG GGCCTGCAGCCGGCTGCATGCAGCTCCTGGGGGTGATGGCAGCCCTATTCTGCCGGGGATGG TGTGTACCAGTGCTGTGGGTGAGCTGCCCAGCTGTGAGGGCCTGTCTGGGGGCACCACTGGTG CATGAGGTGAGGGCACATGGTTCCTGGCCGGGCTGCACAGCTTCGGAGATGCTTGCCAAGG CCCCGCCAGGCCGCGGTCTTCACCGCGCTCCCTGCCTATGAGGACTGGGTCAGCAGTTTGG ACTGGCAGGTCTACTTCGCCGAGGAACCAGAGCCCGAGGCTGAGCCTGGAAGCTGCCTGGCC AACATAAGCCAACCAGCTGCTGACAGGGGGACCTGGCCATTCTCAGGACAAGAGAATGC AGGCAGGCAAATGGCATTACTGCCCCTGTCCTCCCCACCCTGTCATGTGATTCCAGGCAC CAGGGCAGGCCCAGCAGCTGTGGGAAGGAACCTGCCTGGGGCCACAGGTGCCCA CTCCCCACCCTGCAGGACAGGGGTGTCTGTGGACACTCCCACACCCAACTCTGCTACCAAGC AAAATAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40571

MLLSSLVSLAGSVYLAWILFFVLYDFCIVCITTYAINVSLMWLSFRKVQEPQGKAKRHGNTV
PGEWPWQASVRRQGAHICSGSLVADTWVLTAAHCFEKAAATELNSWSVVLGSLQREGLSPGA
EEVGVAALQLPRAYNHYSQGSDLALLQLAHPTTHTPLCLPQPAHRFPFGASCWATGWDQDTS
DAPGTLRNLRLRLISRPTCNCIYNQLHQRHLSNPARPGMLCGGPQPGVQGPCQGDSGGPVLC
LEPDGHWVQAGIISFASSCAQEDAPVLLTNTAAHSSWLQARVQGAAFLAQSPETPEMSDEDS
CVACGSLRTAGPQAGAPSPWPWEARLMHQGQLACGGALVSEEAVLTAAHCFIGRQAPEEWSV
GLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLLAQPVTLGASLRPLCLPYPDHHLPDGERG
WVLGRARPGAGISSLQTVPVTLLGPRACSRLHAAPGGDGSPILPGMVCTSAVGELPSCEGLS
GAPLVHEVRGTWFLAGLHSFGDACQGPARPAVFTALPAYEDWVSSLDWQVYFAEEPEPEAEP
GSCLANISQPTSC

Important features:

Signal peptide:

amino acids 1-15

Homologous region to Serine proteases, trypsin family amino acids 79-95, 343-359 and 237-247

N-glycosylation sites.

amino acids 37-40 and 564-567

Kringle domains

amino acids 79-96, 343-360 and 235-247

CGGGCCGCCCCGGCCCCATTCGGGCCGGGCCTCGCTGCGGCGGCGACTGAGCCAGGCTGG GCCGCGTCCCTGAGTCCCAGAGTCGGCGCGCGCGCGGGGGGCAGCCTTCCACCACGGGGAG $\tt CCCAGCTGTCAGCCGCCTCACAGGAAG{\color{red} ATG} CTGCGTCGGCGGGGCAGCCCTGGCATGGGTGT$ GCATGTGGGTGCAGCCCTGGGAGCACTGTGGTTCTGCCTCACAGGAGCCCTGGAGGTCCAGG TCCCTGAAGACCCAGTGGTGGCACTGGTGGGCACCGATGCCACCCTGTGCTGCTCTCCC CCTGAGCCTGGCTCAGCCTGGCACAGCTCATCTGGCAGCTGACAGATACCAAACA GCTGGTGCACAGCTTTGCTGAGGGCCAGGACCAGGGCAGCGCCTATGCCAACCGCACGGCCC GACGAGGGCAGCTTCACCTGCTTCGTGAGCATCCGGGATTTCGGCAGCGCTGCCGTCAGCCT GCAGGTGGCCGCTCCCTACTCGAAGCCCAGCATGACCCTGGAGCCCAACAAGGACCTGCGGC CAGGGGACACGGTGACCATCACGTGCTCCAGCTACCAGGGCTACCCTGAGGCTGAGGTGTTC TGGCAGGATGGGCAGGTGTGCCCCTGACTGGCAACGTGACCACGTCGCAGATGGCCAACGA GCAGGGCTTGTTTGATGTGCACAGCGTCCTGCGGGTGCTGCTGGGTGCGAATGGCACCTACA GCTGCCTGGTGCGCAACCCCGTGCTGCAGCAGGATGCGCACRGCTCTGTCACCATCACAGGG TGCACTGCTGGTGGCCCTGGCTTTCGTGTGCTGGAGAAAGATCAAACAGAGCTGTGAGGAGG AGAATGCAGGAGCTGAGGACCAGGATGGGGAGGGAAGGCTCCAAGACAGCCCTGCAGCCT CTGAAACACTCTGACAGCAAAGAAGATGATGGACAAGAAATAGCC**TGA**CCATGAGGACCAGG GAGCTGCTACCCCTACAGCTCCTACCCTCTGGCTGCAATGGGGCTGCACTGTGAGCCC TGCCCCCAACAGATGCATCCTGCTCTGACAGGTGGGCTCCTTCTCCAAAGGATGCGATACAC AGACCACTGTGCAGCCTTATTTCTCCAATGGACATGATTCCCAAGTCATCCTGCTGCCTTTT GCCTTATTTCACAGTACATTCTTAGGGACACAGTACACTGACCACATCACCACCCTC TTCTTCCAGTGCTGCGTGGACCATCTGGCTGCCTTTTTTCTCCAAAAGATGCAATATTCAGA CTGACTGACCCCTGCCTTATTTCACCAAAGACACGATGCATAGTCACCCCGGCCTTGTTTC TCCAATGGCCGTGATACACTAGTGATCATGTTCAGCCCTGCTTCCACCTGCATAGAATCTTT TCTTCTCAGACAGGGACAGTGCGGCCTCAACATCTCCTGGAGTCTAGAAGCTGTTTCCTTTC CCCTCCTTCCTCCCCGAGTGAAGACAGGGCAGGGCCAGGAATGCTTTGGGGACACCG AGGGGACTGCCCCCACCCCCACCATGGTGCTATTCTGGGGCTGGGGCAGTCTTTTCCTGGC TTGCCTCTGGCCAGCTCCTGGCCTCTGGTAGAGTGAGACTTCAGACGTTCTGATGCCTTCCG GATGTCATCTCCCCTGCCCCAGGAATGGAAGATGTGAGGACTTCTAATTTAAATGTGGGAC AAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41386</pre>

><subunit 1 of 1, 316 aa, 1 stop, 1 unknown

>< MW: -1, pI: 4.62, NX(S/T): 4

MLRRRGSPGMGVHVGAALGALWFCLTGALEVQVPEDPVVALVGTDATLCCSFSPEPGFSLAQ
LNLIWQLTDTKQLVHSFAEGQDQGSAYANRTALFPDLLAQGNASLRLQRVRVADEGSFTCFV
SIRDFGSAAVSLQVAAPYSKPSMTLEPNKDLRPGDTVTITCSSYQGYPEAEVFWQDGQGVPL
TGNVTTSQMANEQGLFDVHSVLRVVLGANGTYSCLVRNPVLQQDAHXSVTITGQPMTFPPEA
LWVTVGLSVCLIALLVALAFVCWRKIKQSCEEENAGAEDQDGEGEGSKTALQPLKHSDSKED
DGQEIA

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 251-270

N-glycosylation site.

amino acids 91-94, 104-107, 189-192 and 215-218

Homologous region to Immunoglobulins and MHC

amino acids 217-234

TTCGTGACCCTTGAGAAAGAGTTGGTGGTAAATGTGCCACGTCTTCTAAGAAGGGGGAGTC CTGAACTTGTCTGAAGCCCTTGTCCGTAAGCCTTGAACTACGTTCTTAAATCTATGAAGTCG ${\tt AGGGACCTTTCGCTGCTTTTGTAGGGACTTCTTTCCTTGCTTCAGCAAC \textbf{ATG} AGGCCTTTTCT}$ TGTGGAACGCGGTCTTGACTCTGTTCGTCACTTCTTTGATTGGGGCTTTGATCCCTGAACCA GAAGTGAAAATTGAAGTTCTCCAGAAGCCATTCATCTGCCATCGCAAGACCAAAGGAGGGGGA TTTGATGTTGGTCCACTATGAAGGCTACTTAGAAAAGGACGGCTCCTTATTTCACTCCACTC ACAAACATAACAATGGTCAGCCCATTTGGTTTACCCTGGGCCATCCTGGAGGCTCTCAAAGGT TGGGACCAGGGCTTGAAAGGAATGTGTGTAGGAGAGAAGAGAAAGCTCATCATTCCTCCTGC TCTGGGCTATGGAAAAGAAGGAAAAGGTAAAATTCCCCCAGAAAGTACACTGATATTTAATA TTGATCTCCTGGAGATTCGAAATGGACCAAGATCCCATGAATCATTCCAAGAAATGGATCTT AATGATGACTGGAAACTCTCTAAAGATGAGGTTAAAGCATATTTAAAGAAGGAGTTTGAAAA ACATGGTGCGGTGAATGAAAGTCATCATGATGCTTTGGTGGAGGATATTTTTGATAAAG AAGATGAAGACAAAGATGGGTTTATATCTGCCAGAGAATTTACATATAAACACGATGAGTTA **TAG**AGATACATCTACCCTTTTAATATAGCACTCATCTTTCAAGAGAGGGCAGTCATCTTTAA GGGAAGAAAAGCTAATTGGTCTTTGAATAGAAGACTTCTGGACAATTTTTCACTTTCACAG ATATGAAGCTTTGTTTTACTTTCTCACTTATAAATTTAAAATGTTGCAACTGGGAATATACC ACGACATGAGACCAGGTTATAGCACAAATTAGCACCCTATATTTCTGCTTCCCTCTATTTTC TCCAAGTTAGAGGTCAACATTTGAAAAGCCTTTTGCAATAGCCCAAGGCTTGCTATTTTCAT GTTATAATGAAATAGTTTATGTGTAACTGGCTCTGAGTCTCTGCTTGAGGACCAGAGGAAAA TGGTTGTTGGACCTGACTTGTTAATGGCTACTGCTTTACTAAGGAGATGTGCAATGCTGAAG TTAGAAACAAGGTTAATAGCCAGGCATGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAG GCTGAGGCGGGCGGATCACCTGAGGTTGGGAGTTCGAGACCAGCCTGACCAACACGGAGAAA CCCTATCTCTACTAAAAATACAAAGTAGCCCGGCGTGGTGATGCGTGCCTGTAATCCCAGCT ACCCAGGAAGGCTGAGGCGGCAGAATCACTTGAACCCGAGGCCGAGGTTGCGGTAAGCCGAG ATCACCTNCAGCCTGGACACTCTGTCTCGAAAAAAGAAAGAACACGGTTAATACCATATNA ATATGTATGCATTGAGACATGCTACCTAGGACTTAAGCTGATGAAGCTTGGCTCCTAGTGAT TGGTGGCCTATTATGATAAATAGGACAAATCATTTATGTGTGAGTTTCTTTGTAATAAAATG TATCAATATGTTATAGATGAGGTAGAAAGTTATATTTATATTCAATATTTACTTCTTAAGGC TAGCGGAATATCCTTCCTGGTTCTTTAATGGGTAGTCTATAGTATATTATACTACAATAACA TTGTATCATAAGATAAAGTAGTAAACCAGTCTACATTTTCCCCATTTCTGTCTCATCAAAAAC TGAAGTTAGCTGGGTGTGGCTCATGCCTGTAATCCCAGCACTTTGGGGGGCCAAGGAGGG TGGATCACTTGAGATCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCTTGTCTCTA CTAAAAATACAAAAATTAGCCAGGCGTGGTGGTGCACACCTGTAGTCCCAGCTACTCGGGAG GCTGAGACAGGAGATTTGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCAAGATTGTGCC CCTACAGCAGCTACTATTGAATAAATACCTATCCTGGATTTT

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA44194

><subunit 1 of 1, 211 aa, 1 stop

><MW: 24172, pI: 5.99, NX(S/T): 1

MRLFLWNAVLTLFVTSLIGALIPEPEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSL FHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGKGKIPPEST LIFNIDLLEIRNGPRSHESFQEMDLNDDWKLSKDEVKAYLKKEFEKHGAVVNESHHDALVED IFDKEDEDKDGFISAREFTYKHDEL

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 176-179

Casein kinase II phosphorylation site.

amino acids 143-146, 156-159, 178-181 and 200-203

Endoplasmic reticulum targeting sequence.

amino acids 208-211

FKBP-type peptidyl-prolyl cis-trans isomerase

amino acids 78-114 and 118-131

EF-hand calcium-binding domain.

amino acids 191-203, 184-203 and 140-159

S-100/ICaBP type calcium binding domain

amino acids 183-203

CCAACCATTCCTCCCTTGTAGTTCTCGCCCCCTCAAATCACCCTCTCCCGTAGCCCACCCGA $\tt CTAACATCTCAGTCTCTGAAA{\color{red} ATG} CACAGAGATGCCTGGCTACCTCGCCCTGCCTTCAGCCT$ CACGGGGCTCAGTCTCTTTTCTCTTTTGGTGCCACCAGGACGGAGCATGGAGGTCACAGTAC $\tt CTGCCACCTCAACGTCCTCAATGGCTCTGACGCCCGCCTGCCCTGCACCTTCAACTCCTGC$ TACACAGTGAACCACAAACAGTTCTCCCTGAACTGGACTTACCAGGAGTGCAACAACTGCTC TGAGGAGATGTTCCTCCAGTTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTTCAAG ACCGCGTGGAGTTCTCAGGGAACCCCAGCAAGTACGATGTGTCGGTGATGCTGAGAAACGTG CAGCCGGAGGATGAGGGGATTTACAACTGCTACATCATGAACCCCCCTGACCGCCACCGTGG CCATGGCAAGATCCATCTGCAGGTCCTCATGGAAGAGCCCCCTGAGCGGGACTCCACGGTGG CCGTGATTGTGGGTGCCTCCGTCGGGGGCTTCCTGGCTGTTGGTCATCTTGGTGCTGATGGTG GTCAAGTGTGTGAGGAAAAAAAAGAGCAGAAGCTGAGCACAGATGACCTGAAGACCGAGGA GGAGGGCAAGACGGACGGTGAAGGCAACCCGGATGATGGCGCCAAG<u>TAG</u>TGGGTGGCCGGCC CTCTTGGTGTGCTTCCCGTGACCTAGGACCCCAGGGCCCACCTGGGGCCTCCTGAACCCCCG ${ t ACTTCGTATCTCCCACCCTGCACCAAGAGTGACCCACTCTCTTCCATCCGAGAAACCTGCCA}$ TGCTCTGGGACGTGTGGGCCCTGGGGAGAGAGAAAGGGCTCCCACCTGCCAGTCCCTGG GGAGGGCCGCTGTCACCTGCCCAGTGCTTGCCTGGCAGTGGCTTCAGAGAGGACCTGGTGG GGAGGGAGGGCTTTCCTGTGCTGACAGCGCTCCCTCAGGAGGGCCTTGGCCTGGCACGGCTG TGCTCCTCCCCTGCTCCCAGCCCAGAGCAGCCATCAGGCTGGAGGTGACGATGAGTTCCTGA AACTTGGAGGGCATGTTAAAGGGATGACTGTGCATTCCAGGGCACTGACGGAAAGCCAGGG CTGCAGGCAAAGCTGGACATGTGCCCTGGCCCAGGAGGCCATGTTGGGCCCTCGTTTCCATT GCTAGTGGCCTCCTTGGGGCTCCTGTTGGCTCCTAATCCCTTAGGACTGTGGATGAGGCCAG ACTGGAAGAGCAGCTCCAGGTAGGGGGCCATGTTTCCCAGCGGGGACCCACCAACAGAGGCC AGTTTCAAAGTCAGCTGAGGGGCTGAGGGGTGGGGCTCCATGGTGAATGCAGGTTGCTGCAG GCTCTGCCTTCTCCATGGGGTAACCACCCTCGCCTGGGCAGGGGGGCAGCCAAGGCTGGGAAAT GAGGAGGCCATGCACAGGGTGGGGCAGCTTTCTTTGGGGCCTTCAGTGAGAACTCTCCCAGTT GCCCTTGGTGGGGTTTCCACCTGGCTTTTGGCTACAGAGAGGGGAAAGCCTGAGGCCG GCATAAGGGGAGGCCTTGGAACCTGAGCTGCCAATGCCAGCCCTGTCCCATCTGCGGCCACG $\tt CTACTCGCTCTCCCAACAACTCCCTTCGTGGGGACAAAGTGACAATTGTAGGCCAGGC$ ACAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGGTGGATTACCTCCAT CTGTTTAGTAGAAATGGGCAAAACCCCATCTCTACTAAAAATACAAGAATTAGCTGGGCGTG GTGGCGTGTGCCTGTAATCCCAGCTATTTGGGAGGCTGAGGCAGGAGAATCGCTTGAGCCCG GGAAGCAGAGGTTGCAGTGAACTGAGATAGTGATAGTGCCACTGCAATTCAGCCTGGGTGAC ATAGAGAGACTCCATCTCAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45415</pre>

<subunit 1 of 1, 215 aa, 1 stop

<MW: 24326, pI: 6.32, NX(S/T): 4

MHRDAWLPRPAFSLTGLSLFFSLVPPGRSMEVTVPATLNVLNGSDARLPCTFNSCYTVNHKQ FSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFSGNPSKYDVSVMLRNVQPEDEGI YNCYIMNPPDRHRGHGKIHLQVLMEEPPERDSTVAVIVGASVGGFLAVVILVLMVVKCVRRK KEQKLSTDDLKTEEEGKTDGEGNPDDGAK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 161-179

Immunoglobulin-like fold:

amino acids 83-127

N-glycosylation sites.

amino acids 42-45, 66-69 and 74-77

GTTGTATATGTCCTGAAGTACATCCGTGCATTTTTTTTAGCATCCAACCATCCTCCCTTGTA
GTTCTCGCCCCCTCAAATCACCTTCTCCCTTAGCCCACCCNACTAACATCTCAGTCTCTGAA
AATGCACAGAGATGCCTGGCTACCTCGCCCTGCCTTCAGCCTCACGGGGCTCAGTCTCTTT
TCTCTTTGGTGCCACCAGGACGGAGCATGGAGGTCCACAGTACCTGNCCACCCTCAACGTCC
TCAATGGCTCTGACGCCCGCCTGCCCTTCAACTCCTGCTACACAGTGAACCACAAAC
AGTTCTCCCTGAACTGGACTTACCAGGAGTGCAACAACTGCTCTGAGGAGATGTTCCTCCAG
TTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTTCAAGACCGCGTGGAGTTCTCAGG
GAACCCCAGCAAGTACGATGTGTCGGTGATGCTGAGAAACGTGCAGCCGGAGGATGAGGGGA
TTTACAACTGCTACATCATGAACCCCCC

CTGGTGATTTGGGTAACCAACTGGAAGCCAAGCTGGACAAGCCGACAGTGGTGCACTACCTCTGCTCCAAGAAGA $\tt CCGAAAGCTACTTCACAATCTGGCTGAACCTGGAACTGCTGCTGCTGTCATCATTGACTGCTGGATTGACAATA$ TCAGGCTGGTTTACAACAAAACATCCAGGGCCACCCAGTTTCCTGATGGTGTGGATGTACGTGTCCCTGGCTTTG GGAAGACCTTCTCACTGGAGTTCCTGGACCCCAGCAAAAGCAGCGTGGGTTCCTATTTCCACACCATGGTGGAGA GCCTTGTGGGCTGGGGCTACACACGGGGTGAGGATGTCCGAGGGGCTCCCTATGACTGGCGCCGAGCCCCAAATG AAAACGGGCCCTACTTCCTGGCCCTCCGCGAGATGATCGAGGAGATGTACCAGCTGTATGGGGGCCCCGTGGTGC TGGTTGCCCACAGTATGGGCAACATGTACACGCTCTACTTTCTGCAGCCGCAGCCGCAGGCCTGGAAGGACAAGT ACAACAACCGGATCCCAGTCATCGGGCCCCTGAAGATCCGGGGAGCAGCGGTCAGCTGTCTCCACCAGCTGGC TGCTGCCCTACAACTACACATGGTCACCTGAGAAGGTGTTCGTGCAGACACCCCACAATCAACTACACACTGCGGG AAGCCACGATGCCACCTGGCGTGCACTGCCTCTATGGTACTGGCGTCCCCACACCAGACTCCTTCTACT ATGAGAGCTTCCCTGACCGTGACCCTAAAATCTGCTTTGGTGACGGCGATGGTACTGTGAACTTGAAGAGTGCCC TGCAGTGCCAGGCCTGGCAGAGCCGCCAGGAGCACCAAGTGTTGCTGCAGGAGCTGCCAGGCAGCGAGCACATCG ${f AGATGCTGGCCAACGCCACCACCCTGGCCTATCTGAAACGTGTGCTCCTTGGGCCC{f TGA}{CTCCTGTGCCACAGGA}$ CTCCTGTGGCTCGGCCGTGGACCTGCTGTTGGCCTCTGGGGCTGTCATGGCCCACGCGTTTTGCAAAGTTTGTGA GTGGCAGTGAAGAAGGAAGAATGAGAGTCTAGACTCAAGGGACACTGGATGGCAAGAATGCTGCTGATGGTGGA TGTCCCCCTATTCCTGTGGGCTTTTCATACTTGCCTACTGGGCCCTGGCCCGCAGCCTTCCTATGAGGGATGTT GCCACAGATAGGCCTGCCACTGGTCATGGGTAGCTAGAGCTGCTGGCTTCCCTGTGGCTTAGCTGGTGGCCAGCC ${\tt CCTGGGACATCTCACTCCACTCCCTTACCACCAGGAGCATTCAAGCTCTGGATTGGGCAGCAGATGTG}$ CCCCCAGTCCCGCAGGCTGTTTCCAGGGGCCCTGATTTCCTCGGATGTGCTATTGGCCCCAGGACTGAAGCTGC CTCCCTTCACCCTGGGACTGTGGTTCCAAGGATGAGAGCAGGGGTTGGAGCCATGGCCTTCTGGGAACCTATGGA GAAAGGGAATCCAAGGAAGCAGGCCAAGGCTGCTCGCAGCTTCCCTGAGCTGCACCTCTTGCTAACCCCACCATCA $\verb|CCTGGCCAGCACCCAGCTTAGTGCTGGGACTAGCCCAGAAACTTGAATGGGACCCTGAGAGAGCCAGGGGTCCCC||$ TGAGGCCCCCTAGGGGCTTTCTGTCTGCCCCAGGGTGCTCCATGGATCTCCCTGTGGCAGCAGGCATGGAGAGT ${\tt CAGGGCTGCCTTCATGGCAGTAGGCTCTAAGTGGGTGACTGGCCACAGGCCGAGAAAAGGGTACAGCCTCTAGGT}$ GGGGTTCCCAAAGACGCCTTCAGGCTGGACTGAGCTGCTCTCCCACAGGGTTTCTGTGCAGCTGGATTTTCTCTG TTGCATACATGCCTGGCATCTGTCTCCCCTTGTTCCTGAGTGGCCCCACATGGGGCTCTGAGCAGGCTGTATCTG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44189</pre>

><subunit 1 of 1, 412 aa, 1 stop

><MW: 46658, pI: 6.65, NX(S/T): 4

MGLHLRPYRVGLLPDGLLFLLLLLMLLADPALPAGRHPPVVLVPGDLGNQLEAKLDKPTVVH
YLCSKKTESYFTIWLNLELLLPVIIDCWIDNIRLVYNKTSRATQFPDGVDVRVPGFGKTFSL
EFLDPSKSSVGSYFHTMVESLVGWGYTRGEDVRGAPYDWRRAPNENGPYFLALREMIEEMYQ
LYGGPVVLVAHSMGNMYTLYFLQRQPQAWKDKYIRAFVSLGAPWGGVAKTLRVLASGDNNRI
PVIGPLKIREQQRSAVSTSWLLPYNYTWSPEKVFVQTPTINYTLRDYRKFFQDIGFEDGWLM
RQDTEGLVEATMPPGVQLHCLYGTGVPTPDSFYYESFPDRDPKICFGDGDGTVNLKSALQCQ
AWQSRQEHQVLLQELPGSEHIEMLANATTLAYLKRVLLGP

Important features:

Signal peptide:

amino acids 1-28

Potential lipid substrate binding site:

amino acids 147-164

N-glycosylation sites.

amino acids 99-102, 273-276, 289-292 and 398-401

Lipases, serine proteins

amino acids 189-201

Beta-transducin family Trp-Asp repeat

amino acids 353-365

GCCTACGGCGCGGCCAAGGCGGGCGCTCCTTCGACCTGCGGCGCTTCCTGACGCAGCCGCA GGTGGTGGCGCGCGCGTGTGCTTGGTCTTCGCCTTGATCGTGTTCTCCTGCATCTATGGTG AGGGCTACAGCAATGCCCACGAGTCTAAGCAGATGTACTGCGTGTTCAACCGCAACGAGGAT GCCTGCCGCTATGGCAGTGCCATCGGGGTGCTGGCCTTCCTGGCCTCCGGCCTTCTTCTTGGT GGTCGACGCGTATTTCCCCCAGATCAGCAACGCCACTGACCGCAAGTACCTGGTCATTGGTG ACCTGCTCTTCTCAGCTCTCTGGACCTTCCTGTGGTTTGTTGGTTTCTGCTTCCTCACCAAC ${\tt CAGTGGGCAGTCACCCGAAGGACGTGCTGGTGGGGGGCCGACTCTGTGAGGGCAGCCAT}$ ${\tt CACCTTCAGCTTCTTCTCCTGGGGTGTGCTGGCCTCCCTGGCCTACCAGCGCT}$ ACAAGGCTGGCGTGGACGACTTCATCCAGAATTACGTTGACCCCACTCCGGACCCCAACACT GCCTACGCCTCCTACCCAGGTGCATCTGTGGACAACTACCAACAGCCACCCTTCACCCAGAA $\tt CGCGGAGACCACCGAGGGCTACCAGCCGCCCCCTGTGTAC{\color{red}{\bf TGA}}GTGGCGGTTAGCGTGGGAA$ GGGGGACAGAGGGCCCTCCCCTCTGCCCTGGACTTTCCCATCAGCCTCCTGGAACTGCCA GCCCCTCTCTTCACCTGTTCCATCCTGTGCAGCTGACACACAGCTAAGGAGCCTCATAGCC CACTCCTCCAGGGCACTTTTAGGAAAGGGTTTTTAGCTAGTGTTTTTCCTCGCTTTTAATGA CCTCAGCCCCGCCTGCAGTGGCTAGAAGCCAGCAGGTGCCCATGTGCTACTGACAAGTGCCT CAGCTTCCCCCGGGCCGGGTCAGGCCGTGGGAGCCGCTATTATCTGCGTTCTCTGCCAAAG ACTCGTGGGGGCCATCACACCTGCCCTGTGCAGCGGAGCCGGACCAGGCTCTTGTGTCCTCA CTCAGGTTTGCTTCCCCTGTGCCCACTGCTGTATGATCTGGGGGCCACCACCCTGTGCCGGT GGCCTCTGGGCTGCCTCCCGTGGTGTGAGGGCGGGGCTGGTGCTCATGGCACTTCCTCCTTG CTCCCACCCTGGCAGCAGGGAAGGGCTTTGCCTGACAACACCCCAGCTTTATGTAAATATTC TGCAGTTGTTACTTAGGAAGCCTGGGGAGGGCAGGGGTGCCCCATGGCTCCCAGACTCTGTC TGTGCCGAGTGTATTATAAAATCGTGGGGGGAGATGCCCGGCCTGGGATGCTGTTTGGAGACG GAATAAATGTTTTCTCATTCAAAG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48304</pre>

<subunit 1 of 1, 224 aa, 1 stop

<MW: 24810, pI: 4.75, NX(S/T): 1

MESGAYGAAKAGGSFDLRRFLTQPQVVARAVCLVFALIVFSCIYGEGYSNAHESKQMYCVFN RNEDACRYGSAIGVLAFLASAFFLVVDAYFPQISNATDRKYLVIGDLLFSALWTFLWFVGFC FLTNQWAVTNPKDVLVGADSVRAAITFSFFSIFSWGVLASLAYQRYKAGVDDFIQNYVDPTP DPNTAYASYPGASVDNYQQPPFTQNAETTEGYQPPPVY

Important features:

Type II Transmembrane domain:

amino acids 1-45

Other transmembrane domains:

amino acids 74-90, 108-126 and 145-161

N-glycosylation site.

amino acids 97-100

CCCGTGGCCGAGGCCCCCAGGTGGCTGGCGGGCAGGGGGACGGAGGTGATGGCGAGGAAGCGGAGCCAGAGGGG ATGTTCAAGGCCTGTGAGGACTCCAAGAGAAAAGCCCGGGGCTACCTCCGCCTGGTGCCCCTGTTTGTGCTGCTG GCCCTGCTCGTGCTGCGTCGCGGGGGTGCTACTCTGGTATTTCCTAGGGTACAAGGCGGAGGTGATGGTCAGC CAGGTGTACTCAGGCAGTCTGCGTGTACTCAATCGCCACTTCTCCCAGGATCTTACCCGCCGGGAATCTAGTGCC AACTCCAGCTCCGTCTATTCCTTTGGGGAGGGACCCCTCACCTGCTTCTTCTGGTTCATTCTCCAAATCCCCGAG CACCGCCGGCTGATGCTGAGCCCCGAGGTGGTGCAGGCACTGCTGGTGGAGGAGCTGCTGTCCACAGTCAACAGC ${\tt TCGGCTGCCGTCCCCTACAGGGCCGAGTACGAAGTGGACCCCGAGGGCCTAGTGATCCTGGAAGCCAGTGTGAAA}$ GACATAGCTGCATTGAATTCCACGCTGGGTTGTTACCGCTACAGCTACGTGGGCCAGGGCCAGGTCCTCCGGCTG AAGGGGCCTGACCACCTGGCCTCCAGCTGCCTGTGGCACCTGCAGGGCCCCAAGGACCTCATGCTCAAACTCCGG GTCTGGAAGAGGGCCTGCACAGCTACTACGACCCCTTCGTGCTCCCGTGCAGCCGGTGGTCTTCCAGGCCTGT GAAGTGAACCTGACGCTGGACAACAGGCTCGACTCCCAGGGCGTCCTCAGCACCCCGTACTTCCCCAGCTACTAC TATGCACTGAGGAGGCAGAAGTATGATTTGCCGTGCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGT TCCCAGATCTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCCCTGGA GAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGACAGCACATGCATCTCACTGCCCAAGGTCTGT GATGGCCAGCCTGATTGTCTCAACGGCAGCGATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACC TTCCAGTGTGAGGACCGGAGCTGCGTGAAGAAGCCCAACCCGCAGTGTGATGGGCGGCCCGACTGCAGGGACGGC TCGGATGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCCTCCAGCCGCATTGTTGGTGGAGCTGTGTCCTCCGAG GGTGAGTGGCCATGGCAGCCTCCAGGTTCGGGGTCGACACATCTGTGGGGGGGCCCTCATCGCTGACCGC TGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCATGGCCTCCACGGTGCTGTGGACCGTGTTCCTGGGC AAGGTGTGGCAGAACTCGCGCTGGCCTGGAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCCGTACCAC GAAGAGGACAGCCATGACTACGACGTGGCGCTGCTGCAGCTCGACCACCCGGTGGTGCGCTCGGCCGCCGTGCGC $\verb|CCCGTCTGCCCGCGCGCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCTGGGGCGCCTTG|\\$ CGCGAGGGCGCCCCATCAGCAACGCTCTGCAGAAAGTGGATGTGCAGTTGATCCCACAGGACCTGTGCAGCGAG GCCTATCGCTACCAGGTGACGCCACGCATGCTGTGTGCCGGCTACCGCAAGGGGCAAGAAGGATGCCTGTCAGGGT GACTCAGGTGGTCCGCTGGTGCCAAGGCACTCAGTGGCCGCTGGTTCCTGGCGGGGCTGGTCAGCTGGGGCCTG GGCTGTGGCCGGCCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGTG ACC<u>TGA</u>GGAACTGCCCCCTGCAAAGCAGGGCCCACCTCCTGGACTCAGAGAGCCCAGGGCAACTGCCAAGCAGG GGGACAAGTATTCTGGCGGGGGGGGGGGGAGAGAGCAGGCCCTGTGGTGGCAGGAGGTGGCATCTTGTCTCGTCC GCAGTGGCTCAGCAGCAAGAATGCTGGTTCTACATCCCGAGGAGTGTCTGAGGTGCGCCCCACTCTGTACAGAGG GGAAGGTGCTCCCATCGGAGGGGACCCTCAGAGCCCTGGAGACTGCCAGGTGGGCCTGCTGCCACTGTAAGCCAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49152</pre>

><subunit 1 of 1, 802 aa, 1 stop

><MW: 88846, pI: 6.41, NX(S/T): 7

MPVAEAPQVAGGQGDGGEAEPEGMFKACEDSKRKARGYLRLVPLFVLLALLVLASAGVL
LWYFLGYKAEVMVSQVYSGSLRVLNRHFSQDLTRRESSAFRSETAKAQKMLKELITSTRLGT
YYNSSSVYSFGEGPLTCFFWFILQIPEHRRLMLSPEVVQALLVEELLSTVNSSAAVPYRAEY
EVDPEGLVILEASVKDIAALNSTLGCYRYSYVGQGQVLRLKGPDHLASSCLWHLQGPKDLML
KLRLEWTLAECRDRLAMYDVAGPLEKRLITSVYGCSRQEPVVEVLASGAIMAVVWKKGLHSY
YDPFVLSVQPVVFQACEVNLTLDNRLDSQGVLSTPYFPSYYSPQTHCSWHLTVPSLDYGLAL
WFDAYALRRQKYDLPCTQGQWTIQNRRLCGLRILQPYAERIPVVATAGITINFTSQISLTGP
GVRVHYGLYNQSDPCPGEFLCSVNGLCVPACDGVKDCPNGLDERNCVCRATFQCKEDSTCIS
LPKVCDGQPDCLNGSDEEQCQEGVPCGTFTFQCEDRSCVKKPNPQCDGRPDCRDGSDEEHCD
CGLQGPSSRIVGGAVSSEGEWPWQASLQVRGRHICGGALIADRWVITAAHCFQEDSMASTVL
WTVFLGKVWQNSRWPGEVSFKVSRLLLHPYHEEDSHDYDVALLQLDHPVVRSAAVRPVCLPA
RSHFFEPGLHCWITGWGALREGGPISNALQKVDVQLIPQDLCSEAYRYQVTPRMLCAGYRKG
KKDACQGDSGGPLVCKALSGRWFLAGLVSWGLGCGRPNYFGVYTRITGVISWIQQVVT

Important features:

Type II transmembrane domain:

amino acids 46-67

Serine proteases, trypsin family, histidine active site.

amino acids 604-609

N-glycosylation sites.

amino acids 127-130, 175-178, 207-210, 329-332, 424-427, 444-447 and 509-512

Kringle domains.

amino acids 746-758 and 592-609

Homologous region to Kallikrein Light Chain:

amino acids 568-779

Homologous region to Low-density lipoprotein receptor:

amino acids 451-567

GCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGTGGCTTGCGCATCCTGCAGCCC TACGCCGAGAGGATCCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACCTCCCAGAT $\tt CTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCC$ TGCCCCAACGGCCTGGATGAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGA CAGCACATGCATCTCACTGCCCAAGGTCTGTGATGGGCAGCCTGATTGTCTCAACGGCAGCG ATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACCTTCCAGTGTGAGGACCGG AGCTGCGTGAAGAAGCCCAACCCGCAGTGTGATGGGCGGCCCGACTGCAGGGACGGCTCGGA TGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCCTCCAGCCGCATTGTTGGTGGAGCTGTGT CCTCCGAGGGTGAGTGGCCATGGCAGGCCAGCCTCCAGGTTCGGGGTCGACACATCTGTGGG GGGGCCCTCATCGCTGACCGCTGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCAT GGCCTCCACGGTGCTGGGACCGTGTTCCTGGGCAAGGTGTGGCAGAACTCGCGCTGGCCTG GAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCCGTACCACGAAGAGGACAGCCAT GACTACGACGTGGCGCTGCAGCTCGACCACCCGGTGGTGCGCCTCGGCCGCCGTGCGCCC CGTCTGCCTGCCGCGCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCT GGGGCGCCTTGCGCGAGGGCGCCCCATCAGCAACGCTCTGCAGAAAGTGGATGTGCAGTTG ATCCCACAGGACCTGTGCAGCGAGGCCTATCGCTACCAGGTGACGCCACGCATGCTGTGTGC $\tt CGGCTACCGCAAGGGCAAGAAGGATGCCTGTCAGGGTGACTCAGGTGGTCCGCTGGTGTGCA$ AGGCACTCAGTGGCCGGTTCCTGGCGGGGCTGGTCAGCTGGGGCCTGGGCCGG CCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGT GACCTGAGGAACTGCCCCCCTGCAAAGCAGGGCCCACCTCCTGGACTCAGAGAGCCCAGGGC AACTGCCAAGCAGGGGGACAAGTAT

GGACGAGGCAGATCTCGTTCTGGGGCAAGCCGTTGACACTCGCTCCCTGCCACCGCCCGGG CTCCGTGCCGCCAAGTTTTCCATTTTCCACCTTCTCTGCCTCCAGTCCCCCAGCCCCTGGCCG ACTTCTGTTTCTTGGGAGGGGTGTGGCGGGGCAGGATGAGCAACTCCGTTCCTCTGCTCTG TTTCTGGAGCCTCTGCTATTGCTTTGCTGCGGGGAGCCCCGTACCTTTTGGTCCAGAGGGAC GGCTGGAAGATAAGCTCCACAAACCCAAAGCTACACAGACTGAGGTCAAACCATCTGTGAGG TTTAACCTCCGCACCTCCAAGGACCCAGAGCATGAAGGATGCTACCTCTCCGTCGGCCACAG CCAGCCCTTAGAAGACTGCAGTTTCAACATGACAGCTAAAACCTTTTTCATCATCACGGAT GGACGATGAGCGGTATCTTTGAAAACTGGCTGCACAAACTCGTGTCAGCCCTGCACAAGA GAGAAAGACGCCAATGTAGTTGTGGTTGACTGGCTCCCCCTGGCCCACCAGCTTTACACGGA AGAAGGACGATTTTTCTCTCGGGAATGTCCACTTGATCGGCTACAGCCTCGGAGCGCACGTG GCCGGGTATGCAGGCAACTTCGTGAAAGGAACGGTGGGCCGAATCACAGGTTTGGATCCTGC CGGGCCCATGTTTGAAGGGGCCGACATCCACAAGAGGCTCTCTCCGGACGATGCAGATTTTG TGGATGTCCTCCACACCTACACGCGTTCCTTCGGCTTGAGCATTGGTATTCAGATGCCTGTG TCCACCTCTTTGTTGACTCTCTGGTGAATCAGGACAAGCCGAGTTTTGCCTTCCAGTGCACT GACTCCAATCGCTTCAAAAAGGGGATCTGTCTGAGCTGCCGCAAGAACCGTTGTAATAGCAT TGGCTACAATGCCAAGAAAATGAGGAACAAGGAACAGCAAAATGTACCTAAAAACCCGGG CAGGCATGCCTTTCAGAGGTAACCTTCAGTCCCTGGAGTGTCCCTGAGGAAGGCCCTTAATA CCTCCTTCTTAATACCATGCTGCAGAGCAGGGCACATCCTAGCCCAGGAGAAGTGGCCAGCA CAATCCAATCAAATCGTTGCAAATCAGATTACACTGTGCATGTCCTAGGAAAGGGAATCTTT AAAAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49646</pre>

><subunit 1 of 1, 354 aa, 1 stop

><MW: 39362, pI: 8.35, NX(S/T): 2

MSNSVPLLCFWSLCYCFAAGSPVPFGPEGRLEDKLHKPKATQTEVKPSVRFNLRTSKDPEHE GCYLSVGHSQPLEDCSFNMTAKTFFIIHGWTMSGIFENWLHKLVSALHTREKDANVVVVDWL PLAHQLYTDAVNNTRVVGHSIARMLDWLQEKDDFSLGNVHLIGYSLGAHVAGYAGNFVKGTV GRITGLDPAGPMFEGADIHKRLSPDDADFVDVLHTYTRSFGLSIGIQMPVGHIDIYPNGGDF QPGCGLNDVLGSIAYGTITEVVKCEHERAVHLFVDSLVNQDKPSFAFQCTDSNRFKKGICLS CRKNRCNSIGYNAKKMRNKRNSKMYLKTRAGMPFRGNLQSLECP

Important features:

Signal peptide:

amino acids 1-16

Lipases, serine active site.

amino acids 163-172

N-glycosylation sites.

amino acids 80-83 and 136-139

CTGCCTGCGGGCGGCTGTAGGCGAGGCGCCCCAGTGCCGAGACCCGGGGCTTCAGGAGCCGGCCCCGGGAG AGAAGAGTGCGGCGGCGGACGGAGAAAACAACTCCAAAGTTGGCGAAAGGCACCGCCCCTACTCCCGGGCTGCCG CACCAGGGAGCCTGGGCGCCGGGGCTCCGCCGCGACCCCATCGGGTAGACCACAGAAGCTCCGGGACCCTTCCG $ACCGGATTATTTTTCCAAAT\overline{CAT}GCTTGTGAGGACCCCCCAGCAGTGCTCTTAGAAGTGCAGGGCACCTTACAGA$ GGCCCCTGGTCCGGGACAGCCGCACCTCCCCTGCCAACTGCACCTGGCTCATCCTGGGCAGCAAGGAACAGACTG TCACCATCAGGTTCCAGAAGCTACACCTGGCCTGTGGCTCAGAGCGCTTAACCCTACGCTCCCCTCTCCAGCCAC TGATCTCCCTGTGTGAGGCACCTCCCAGCCCTCTGCAGCTGCCCGGGGGCAACGTCACCATCACTTACAGCTATG CTGGGGCCAGAGCACCCATGGGCCAGGGCTTCCTGCTCTCCTACAGCCAAGATTGGCTGATGTGCCTGCAGGAAG AGTTTCAGTGCCTGAACCACCGCTGTGTATCTGCTGTCCAGCGCTGTGATGGGGTTGATGCCTGTGGCGATGGCT ${\tt TCACCTTGGAGGACTTCTATGGGGTCTTCTCCTCTGGATATACACACCTAGCCTCAGTCTCCCACCCCCAGT}$ CCTGCCATTGGCTGCACCCCCATGATGGCCGGCGGCTGGCCGTTCACAGCCCTGGACTTGGGCTTTG GAGATGCAGTGCATGTGTATGACGGCCCTGGGCCCCCTGAGAGCTCCCGACTACTGCGTAGTCTCACCCACTTCA GCAATGGCAAGGCTGTCACTGTGGAGACACTGTCTGGCCAGGCTGTTGTGTCCTACCACACAGTTGCTTGGAGCA $\tt CTGGCCTGGGAGCTGAGGCCTAGGTGAGCGCTGCTACAGTGAGGCACAGCGCTGTGACGGCTCATGGGACT$ GTGCTGACGGCACAGATGAGGAGGACTGCCCAGGCTGCCCACCTGGACACTTCCCCTGTGGGGCTGCTGGCACCT CTGGTGCCACAGCCTGCTACCTGCTGACCGCTGCAACTACCAGACTTTCTGTGCTGATGGAGCAGATGAGA GACGCTGTCGGCATTGCCAGCCTGGCAATTTCCGATGCCGGGACGAGAAGTGCGTGTATGAGACGTGGGTGTGCG ATGGGCAGCCAGACTGTGCGGACGGCAGTGATGAGTGGGACTGCTCCTATGTTCTGCCCCGCAAGGTCATTACAG TTCGCACCCAGGAGTACAGCATCTTTGCCCCCCTCTCCCGGATGGAGGCTGAGATTGTGCAGCAGCAGCACCCC CTTCCTACGGGCAGCTCATTGCCCAGGGTGCCATCCCACCTGTAGAAGACTTTCCTACAGAGAATCCTAATGATA ACTCAGTGCTGGGCAACCTGCGTTCTCTGCTACAGATCTTACGCCAGGATATGACTCCAGGAGGTGGCCCAGGTG AGGCTCCCCTCCCATCTGCTAGCACGTCTCCAGCCCCCACTACTGTCCCTGAAGCCCCAGGGCCACTGCCCTCAC TGCCCCTAGAGCCATCACTATTGTCTGGAGTGGTGCAGGCCCTGCGAGGCCGCCTGTTGCCCAGCCTGGGGCCCC CAGGACCAACCCGGAGCCCCCTGGACCCCACACAGCAGTCCTGGCCCTGGAAGATGAGGACGATGTGCTACTGG ${\tt ACCACTTCCTTGCCTGGATTTCAGGGACTTGGTGGGCCTCCCGTTGACCCTATGTAGCTGCTATAAAGT}$ TAAGTGTCCCTCAGGCAGGGGAGAGGGCTCACAGAGTCTCCTCTGTACGTGGCCATGGCCAGACACCCCAGTCCCT TCACCACCACCTGCTCCCCACGCCACCATTTGGGTGGCTGTTTTTAAAAAGTAAAGTTCTTAGAGGATCATA GGTCTGGACACTCCATCCTTGCCAAACCTCTACCCAAAAGTGGCCTTAAGCACCGGAATGCCAATTAACTAGAGA $\verb|CCCTCCAGCCCCAAGGGGAGGATTTGGGCAGAACCTGAGGTTTTGCCATCCACAATCCCTCCTACAGGGCCTGG|\\$ CTCACAAAAAGAGTGCAACAAATGCTTCTATTCCATAGCTACGGCATTGCTCAGTAAGTTGAGGTCAAAAATAAA **GGAATCATACATCTC**

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49631</pre>

<subunit 1 of 1, 713 aa, 1 stop</pre>

<MW: 76193, pI: 5.42, NX(S/T): 4

MLLATLLLLLGGALAHPDRIIFPNHACEDPPAVLLEVQGTLQRPLVRDSRTSPANCTWLIL
GSKEQTVTIRFQKLHLACGSERLTLRSPLQPLISLCEAPPSPLQLPGGNVTITYSYAGARAP
MGQGFLLSYSQDWLMCLQEEFQCLNHRCVSAVQRCDGVDACGDGSDEAGCSSDPFPGLTPRP
VPSLPCNVTLEDFYGVFSSPGYTHLASVSHPQSCHWLLDPHDGRRLAVRFTALDLGFGDAVH
VYDGPGPPESSRLLRSLTHFSNGKAVTVETLSGQAVVSYHTVAWSNGRGFNATYHVRGYCLP
WDRPCGLGSGLGAGEGLGERCYSEAQRCDGSWDCADGTDEEDCPGCPPGHFPCGAAGTSGAT
ACYLPADRCNYQTFCADGADERRCRHCQPGNFRCRDEKCVYETWVCDGQPDCADGSDEWDCS
YVLPRKVITAAVIGSLVCGLLLVIALGCTCKLYAIRTQEYSIFAPLSRMEAEIVQQQAPPSY
GQLIAQGAIPPVEDFPTENPNDNSVLGNLRSLLQILRQDMTPGGGPGARRQRGRLMRRLVR
RLRRWGLLPRTNTPARASEARSQVTPSAAPLEALDGGTGPAREGGAVGGQDGEQAPPLPIKA
PLPSASTSPAPTTVPEAPGPLPSLPLEPSLLSGVVQALRGRLLPSLGPPGPTRSPPGPHTAV
LALEDEDDVLLVPLAEPGVWVAEAEDEPLLT

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 442-462

LDL-receptor class A (LDLRA) domain proteins

amino acids 411-431, 152-171, 331-350 and 374-393

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49645</pre>

><subunit 1 of 1, 152 aa, 1 stop

><MW: 17170, pI: 9.62, NX(S/T): 1

MDNVQPKIKHRPFCFSVKGHVKMLRLALTVTSMTFFIIAQAPEPYIVITGFEVTVILFFILL YVLRLDRLMKWLFWPLLDIINSLVTTVFMLIVSVLALIPETTTLTVGGGVFALVTAVCCLAD GALIYRKLLFNPSGPYQKKPVHEKKEVL

Important features:

Potential type II transmembrane domain:

amino acids 26-42

Other potential transmembrane domain:

amino acids 44-65, 81-101 and 109-129

Leucine zipper pattern

amino acids 78-99 and 85-106

N-myristoylation site.

amino acids 110-115

Ribonucleotide reductase large subunit protein

amino acids 116-127

GGGCGAGAAGTAGGGGAGGGCGTGTTCCGCCGCGGTGGCGGTTGCTATCGTTTTGCAGAACC
TACTCAGGCAGCCAGNTGAGAAGAGTTGAGGGAAAGTGCTGCTGCTGGGTCTGCAGACGCGA
TGGATAACGTGCAGCCGAAAATAAAACATCGCCCCTTCTGCTTCAGTGTGAAAGGCCACGTG
AAGATGCTGCGGCTGGCACTAACTGNGACATCTATGACCTTTTTTTATNATCGCACAAGCCCC
TGAACCATATATTGTTATCACTGGATTTGAAGTCACCGTTATCTTATTTTTCATACTTTTAT
ATGTACTCAGACTTGATCGATTAATGAAGTGGTTATTTTTGGCCTTTGCTTGATATTATCAAC
TCACTGGTAACAACAGTATTCATGCTCATCGTATCTGTTTGGCACTGATACCAGAAACCAC
AACATTGACAGTTGGTGGAGGGGTGTTTGCACTTGTGACAGCAGTATCCTGTTTTTCCCGAC

CAGCCCGCGCGCCGAGTCGCTGAGCCGCGCTGCCGGACGGGACGGGACCGGCTAGG CTGGGCGCCCCCGGGCCCGCCGTGGGCATGGCCACTGGCCCGGGCGCTGCTGC CTCTGCTGGCCCAGTGGCTCCTGCGCGCCCCCGGAGCTGGCCCCCGCGCCCTTCACGCTG ${\tt CCCTCCGGGTGGCCGCGCCACGAACCGCGTAGTTGCGCCCACCCCGGGACCCGGGACCCC}$ GCGCCGCCAACTTCTTGGCCATGGTAGACAACCTGCAGGGGGACTCTGGCCGCGGCTACTAC CTGGAGATGCTGATCGGGACCCCCCCGCAGAAGCTACAGATTCTCGTTGACACTGGAAGCAG TAACTTTGCCGTGGCAGGAACCCCGCACTCCTACATAGACACGTACTTTGACACAGAGAGGT CTAGCACATACCGCTCCAAGGGCTTTGACGTCACAGTGAAGTACACACAAGGAAGCTGGACG GGCTTCGTTGGGGAAGACCTCGTCACCATCCCCAAAGGCTTCAATACTTCTTTTCTTGTCAA CATTGCCACTATTTTTGAATCAGAGAATTTCTTTTTTGCCTGGGATTAAATGGAATGGAATAC TTGGCCTAGCTTATGCCACACTTGCCAAGCCATCAAGTTCTCTGGAGACCTTCTTCGACTCC CTGGTGACACAAGCAAACATCCCCAACGTTTTCTCCATGCAGATGTGTGGAGCCGGCTTGCC ATAAAGGAGACATCTGGTATACCCCTATTAAGGAAGAGTGGTACTACCAGATAGAAATTCTG AAATTGGAAATTGGAGGCCAAAGCCTTAATCTGGACTGCAGAGAGTATAACGCAGACAAGGC CATCGTGGACAGTGCACCACGCTGCTGCGCCCCAGAAGGTGTTTGATGCGGTGGTGG AAGCTGTGGCCCGCGCATCTCTGATTCCAGAATTCTCTGATGGTTTCTGGACTGGGTCCCAG CTGGCGTGCTGGACGAATTCGGAAACACCTTGGTCTTACTTCCCTAAAATCTCCATCTACCT GAGAGACGAGAACTCCAGCAGGTCATTCCGTATCACAATCCTGCCTCAGCTTTACATTCAGC CCATGATGGGGGCCGGCCTGAATTATGAATGTTACCGATTCGGCATTTCCCCCATCCACAAAT GCGCTGGTGATCGGTGCCACGGTGATGGAGGGCTTCTACGTCATCTTCGACAGAGCCCAGAA GAGGGTGGGCTTCGCAGCGAGCCCCTGTGCAGAAATTGCAGGTGCTGCAGTGTCTGAAATTT CCGGGCCTTTCTCAACAGAGGATGTAGCCAGCAACTGTGTCCCCGCTCAGTCTTTGAGCGAG CCCATTTTGTGGATTGTCCTATGCGCTCATGAGCGTCTGTGGAGCCATCCTCCTTGTCTT AATCGTCCTGCTGCTGCCGTTCCGGTGTCAGCGTCGCCCCCGTGACCCTGAGGTCGTCA ATGATGAGTCCTCTCGGTCAGACATCGCTGGAAA**TGA**ATAGCCAGGCCTGACCTCAAGCAA CCATGAACTCAGCTATTAAGAAAATCACATTTCCAGGGCAGCAGCCGGGATCGATGGTGGCG $\tt CTTTCTCCTGTGCCCACCCGTCTTCAATCTCTGTTCTGCTCCCAGATGCCTTCTAGATTCAC$ TGTCTTTGATTCTTGATTTTCAAGCTTTCAAATCCTCCCTACTTCCAAGAAAAATAATTAA AAAAAAACTTCATTCTAA

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA45493</pre>

><subunit 1 of 1, 518 aa, 1 stop

><MW: 56180, pI: 5.08, NX(S/T): 2

MGALARALLLPLLAQWLLRAAPELAPAPFTLPLRVAAATNRVVAPTPGPGTPAERHADGLAL ALEPALASPAGAANFLAMVDNLQGDSGRGYYLEMLIGTPPQKLQILVDTGSSNFAVAGTPHS YIDTYFDTERSSTYRSKGFDVTVKYTQGSWTGFVGEDLVTIPKGFNTSFLVNIATIFESENF FLPGIKWNGILGLAYATLAKPSSSLETFFDSLVTQANIPNVFSMQMCGAGLPVAGSGTNGGS LVLGGIEPSLYKGDIWYTPIKEEWYYQIEILKLEIGGQSLNLDCREYNADKAIVDSGTTLLR LPQKVFDAVVEAVARASLIPEFSDGFWTGSQLACWTNSETPWSYFPKISIYLRDENSSRSFR ITILPQLYIQPMMGAGLNYECYRFGISPSTNALVIGATVMEGFYVIFDRAQKRVGFAASPCA EIAGAAVSEISGPFSTEDVASNCVPAQSLSEPILWIVSYALMSVCGAILLVLIVLLLLPFRC QRRPRDPEVVNDESSLVRHRWK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 466-494

N-glycosylation sites.

amino acids 170-173 and 366-369

Leucine zipper pattern.

amino acids 10-31 and 197-118

Eukaryotic and viral aspartyl proteases

amino acids 109-118, 252-261 and 298-310

CGCCTCCGCCTTCGGAGGCTGACGCCCCGGGCGCCCGTTCCAGGCCTGTGCAGGGCGGATCG GCAGCCGCCTGGCGGCGATCCAGGGCGGTGCGGGGCCTGGGCGGGGGCCGGGAGGCGCGGCC GGCATGGAGGCGCTGCTGGGCGCGGGGTTGCTGCTGGGCGCTTACGTGCTTGTCTACTA CAACCTGGTGAAGGCCCCGCCGTGCGGCGGCATGGGCAACCTGCGGGGCCGCACGGCCGTGG TCACGGGCGCCAACAGCGGCATCGGAAAGATGACGGCGCTGGAGCTGGCGCGGGGGAGCG GGAGAGTGGGAACAATGAGGTCATCTTCATGGCCTTGGACTTGGCCAGTCTGGCCTCGGTGC GGGCCTTTGCCACTGCCTTTCTGAGCTCTGAGCCACGGTTGGACATCCTCATCCACAATGCC GGTATCAGTTCCTGTGGCCGGACCCGTGAGGCGTTTAACCTGCTGCTTCGGGTGAACCATAT TGGTGGTGGTAGCCTCAGCTGCCCACTGTCGGGGACGTCTTGACTTCAAACGCCTGGACCGC CCAGTGGTGGCGGCGGCAGGAGCTGCGGGCATATGCTGACACTAAGCTGGCTAATGTACT GTTTGCCCGGGAGCTCGCCAACCAGCTTGAGGCCACTGGCGTCACCTGCTATGCAGCCCACC CAGGGCCTGTGAACTCGGAGCTGTTCCTGCGCCATGTTCCTGGATGGCTGCGCCCACTTTTG CGCCCATTGGCTTGGCTGGTGCTCCGGGCACCAAGAGGGGGTGCCCAGACACCCCTGTATTG TGCTCTACAAGAGGGCCATCGAGCCCCTCAGTGGGAGATATTTTGCCAACTGCCATGTGGAAG AGGTGCCTCCAGCTGCCCGAGACGACCGGCCAGCCATCGGCTATGGGAGGCCAGCAAGAGG CTGGCAGGGCTTGGGCCTGGGGAGGATGCTGAACCCGATGAAGACCCCCAGTCTGAGGACTC AGAGGCCCCATCTTCTCTAAGCACCCCCACCCTGAGGAGCCCACAGTTTCTCAACCTTACC CCAGCCTCAGAGCTCACCAGATTTGTCTAAGATGACGCACCGAATTCAGGCTAAAGTTGAG CCTGAGATCCAGCTCTCCTAACCCTCAGGCCAGGATGCTTGCCATGGCACTTCATGGTCCTT GAAAACCTCGGATGTGTGAGGCCATGCCCTGGACACTGACGGTTTGTGATCTTGACCTC CGTGGTTACTTTCTGGGGCCCCAAGCTGTGCCCTGGACATCTCTTTTCCTGGTTGAAGGAAT AATGGGTGATTATTTCTTCCTGAGAGTGACAGTAACCCCAGATGGAGAGATAGGGGTATGCT AGACACTGTGCTTCTCGGAAATTTGGATGTAGTATTTTCAGGCCCCACCCTTATTGATTCTG ATCAGCTCTGGAGCAGAGGCAGGGAGTTTGCAATGTGATGCACTGCCAACATTGAGAATTAG TGAACTGATCCCTTTGCAACCGTCTAGCTAGGTAGTTAAATTACCCCCATGTTAATGAAGCG GAATTAGGCTCCCGAGCTAAGGGACTCGCCTAGGGTCTCACAGTGAGTAGGAGGAGGGCCTG GGATCTGAACCCAAGGGTCTGAGGCCAGGGCCGACTGCCGTAAGATGGGTGCTGAGAAGTGA GTCAGGGCAGGCAGCTGGTATCGAGGTGCCCCATGGGAGTAAGGGGACGCCTTCCGGGCGG ATGCAGGGCTGGGGTCATCTGTATCTGAAGCCCCTCGGAATAAAGCGCGTTGACCGCCAAAA AAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48227</pre>

<subunit 1 of 1, 377 aa, 1 stop

<MW: 40849, pI: 7.98, NX(S/T): 0

MEALLLGAGLLLGAYVLVYYNLVKAPPCGGMGNLRGRTAVVTGANSGIGKMTALELARRGAR VVLACRSQERGEAAAFDLRQESGNNEVIFMALDLASLASVRAFATAFLSSEPRLDILIHNAG ISSCGRTREAFNLLLRVNHIGPFLLTHLLLPCLKACAPSRVVVVASAAHCRGRLDFKRLDRP VVGWRQELRAYADTKLANVLFARELANQLEATGVTCYAAHPGPVNSELFLRHVPGWLRPLLR PLAWLVLRAPRGGAQTPLYCALQEGIEPLSGRYFANCHVEEVPPAARDDRAAHRLWEASKRL AGLGPGEDAEPDEDPQSEDSEAPSSLSTPHPEEPTVSQPYPSPQSSPDLSKMTHRIQAKVEP EIQLS

Important features:

Signal peptide:

amino acids 1-16

Glycosaminoglycan attachment site.

amino acids 46-49

Short-chain alcohol dehydrogenase family

amino acids 37-49 and 114-124

GACTCCCCGCCCAGATCCTAGTCCACCCCCAGGACCAGCTGTTCCAGGGCCCTGCCCAGGATGAGCTGC CCACACCACCTCCTGCCTGATGGGACCCTTCTGCTGCTACAGCCCCCTGCCCGGGGACATGCCCACGATGGCCAG GCCCTGTCCACAGACCTGGGTGTCTACACATGTGAGGCCAGCAACCGGCTTGGCACGGCAGTCAGCAGAGGCGCT TTTACTCTGGAATGTGGGCCGCCTGGGGCCCACGAGCCCACAGTCTCATGGTGGAAAGATGGGAAACCCCTG GCCCTCCAGCCCGGAAGGCACACAGTGTCCGGGGGGTCCCTGCTGATGGCAAGAGCAGAGAAGAGTGACGAAGGG CAGGACTACACGGAGCCTGTGGAGCTTCTGGCTGTGCGAATTCAGCTGGAAAATGTGACACTGCTGAACCCGGAT GGCTGGCAGAGCGCAGAGCTTGGAGGCCTCCACTGGGGCCAAGACTACGAGTTCAAAGTGAGACCATCCTCTGGC GTGACTCTAAAGCCTGGCAATGGCACTGTCTTTGTGAGCTGGGTCCCACCACCTGCTGAAAACCACAATGGCATC ATCCGTGGCTACCAGGTCTGGAGCCTGGGCAACACATCACTGCCACCAGCCAACTGGACTGTAGTTGGTGAGCAG ACCCAGCTGGAAATCGCCACCCATATGCCAGGCTCCTACTGCGTGCAAGTGGCTGCAGTCACTGGTGCTGGAGCT ${\tt GGTCCCTGGACCCTGGAGCAGCTGAGGGCTACCTTGAAGCGGCCTGAGGTCATTGCCACCTGCGGTGTTGCACTC}$ TGGCTGCTTCTGGGCACCGCCGTGTGTATCCACCGCCGGCGGGCCGAGCTAGGGTGCACCTGGGCCCAGGTCTG TGGCGTTCCACCTCTGGCTCTCGGGACCTGAGCAGCAGCAGCCTCAGCAGTCGGCTGGGGGGCGGATGCCCGG GACCCACTAGACTGTCGTCGCTCCTTGCTCTCCTGGGACTCCCGAAGCCCCGGCGTGCCCCTGCTTCCAGACACC AGCACTTTTTATGGCTCCCTCATCGCTGAGCTGCCCTCCAGTACCCCAGGCCAAGGTCCCCAGGTCCCAGCT GTCAGGCGCCTCCCACCCCAGCTGGCCCAGCTCTCCAGCCCTGTTCCAGCTCAGACAGCCTCTGCAGCCGCAGG GGACTCTCTCCCCCGCTTGTCTCTGGCCCCTGCAGAGGCTTGGAAGGCCAAAAAGAAGCAGGAGCTGCAGCAT GCCAACAGTTCCCCACTGCTCCGGGGCAGCCACTCCTTGGAGCTCCGGGCCTGTGAGTTAGGAAATAGAGGTTCC AAGAACCTTTCCCAAAGCCCAGGAGCTGTGCCCCAAGCTCTGGTTGCCTGGCGGGCCCTGGGACCGAAACTCCTC AGCTCCTCAAATGAGCTGGTTACTCGTCATCTCCCTCCAGCACCCCTCTTTCCTCATGAAACTCCCCCAACTCAG CTTAGCCCCTGCAGTCCCCCTAGCCCCCAGGCCTCTTCCCTCTCTGGCCCCAGCCCAGCTTCCAGTCGCCTGTCC AGCTCCTCACTGTCATCCCTGGGGGAGGATCAAGACAGCGTGCTGACCCCTGAGGAGGTAGCCCTGTGCTTGGAA CTCAGTGAGGGTGAGGAGACTCCCAGGAACAGCGTCTCTCCCATGCCAAGGGCTCCTTCACCCCCCACCACCTAT GGGTACATCAGCGTCCCAACAGCCTCAGAGTTCACGGACATGGGCAGGACTGGAGGAGGGGGGGCCCAAGGGG GCTCACTTTGCCCGGGCCCTGGCAGTGGCTGTGGATAGCTTTGGTTTCGGTCTAGAGCCCAGGGAGGCAGACTGC GTCTTCATAGATGCCTCATCACCTCCCTCCCCACGGGATGAGATCTTCCTGACCCCCAACCTCTCCCTGCCCTG ${\tt TGGGAGTGGAGGCCAGACTGGTTGGAAGACATGGAGGTCAGCCACCCAGCGGCTGGGAAGGGGGATGCCTCCC}$ TGGCCCCTGACTCTCAGATCTCTTCCCAGAGAAGTCAGCTCCACTGTCGTATGCCCAAGGCTGGTGCTTCTCCT ${\tt ACCTGGGCTGTGTGTGTGGCCTGTGTTTCTCTGCAGCTGGGGTCCACCTTCCCAAGCCTCCAGAGAG}$ TTCTCCCTCCACGATTGTGAAAACAAATGAAAACAAAATTAGAGCAAAGCTGACCTGGAGCCTCAGGGAGCAAA ACATCATCTCCACCTGACTCCTAGCCACTGCTTTCTCCTCTGTGCCATCCACCACCACCACGGTTGTTTTGGC GTGGAGGACAGCAGTGGCTGCTGGAGAGGGGCTGTGGAGGAGGAGCTTCTCGGAGCCCCCTCTCAGCCTTACCT ${\tt TATGAGACCGTAGGTCAAAAGCACCATCCTCGTACTGTTGTCACTATGAGCTTAAGAAATTTGATACCATAAAAT}$

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41404</pre>

<subunit 1 of 1, 985 aa, 1 stop

<MW: 105336, pI: 6.55, NX(S/T): 7

 ${\tt MGGMAQDSPPQILVHPQDQLFQGPGPARMSCQASGQPPPTIRWLLNGQPLSMVPPDPHHLLP}$ DGTLLLLQPPARGHAHDGQALSTDLGVYTCEASNRLGTAVSRGARLSVAVLREDFOIOPRDM VAVVGEQFTLECGPPWGHPEPTVSWWKDGKPLALQPGRHTVSGGSLLMARAEKSDEGTYMCV ATNSAGHRESRAARVSIQEPQDYTEPVELLAVRIQLENVTLLNPDPAEGPKPRPAVWLSWKV SGPAAPAQSYTALFRTQTAPGGQGAPWAEELLAGWQSAELGGLHWGODYEFKVRPSSGRARG PDSNVLLLRLPEKVPSAPPQEVTLKPGNGTVFVSWVPPPAENHNGIIRGYOVWSLGNTSLPP ANWTVVGEQTQLEIATHMPGSYCVQVAAVTGAGAGEPSRPVCLLLEQAMERATQEPSEHGPW TLEQLRATLKRPEVIATCGVALWLLLLGTAVCIHRRRRARVHLGPGLYRYTSEDAILKHRMD HSDSQWLADTWRSTSGSRDLSSSSSLSSRLGADARDPLDCRRSLLSWDSRSPGVPLLPDTST FYGSLIAELPSSTPARPSPQVPAVRRLPPQLAQLSSPCSSSDSLCSRRGLSSPRLSLAPAEA WKAKKKQELQHANSSPLLRGSHSLELRACELGNRGSKNLSQSPGAVPQALVAWRALGPKLLS SSNELVTRHLPPAPLFPHETPPTQSQQTQPPVAPQAPSSILLPAAPIPILSPCSPPSPQASS LSGPSPASSRLSSSSLSSLGEDQDSVLTPEEVALCLELSEGEETPRNSVSPMPRAPSPPTTY GYISVPTASEFTDMGRTGGGVGPKGGVLLCPPRPCLTPTPSEGSLANGWGSASEDNAASARA SLVSSSDGSFLADAHFARALAVAVDSFGFGLEPREADCVFIDASSPPSPRDEIFLTPNLSLP LWEWRPDWLEDMEVSHTQRLGRGMPPWPPDSQISSQRSQLHCRMPKAGASPVDYS

Important features:

Transmembrane domain:

amino acids 448-467

N-glycosylation sites:

amino acids 224-227, 338-341, 367-370, 374-377, 658-661 and 926-929

N-myristoylation sites.

amino acids 47-52, 80-85, 88-93, 99-104, 105-110, 181-186, 272-277, 290-295, 355-360, 403-408, 462-467, 561-566, 652-657, 849-854 and 876-881

Phosphotyrosine interaction domain proteins

amino acids 740-753

 $\verb|CCCAGGTTATGAAGCCCTGGAGGGCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACTGTGT| \\$ CCCTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGGAAGGGT GGGATCCTCTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGACCAGGAGACAAT GAAGGGCAGGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTGACCCTGTGGA ACCTCACCCTGCAAGACGCTGGGGAGTACTGGTGTGGGGTCGAAAAACGGGGCCCCGATGAG TCTTTACTGATCTCTGTTCGTCTTTCCAGGACCCTGCTGTCCTCCCCTCCCCTTCTCCCAC CTTCCAGCCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCTCAGCAAACCCAGCCCC CAGGATTGACTTCTCCTGGGCTCTACCCGGCAGCCACACCCAAGCAGGGGAAGACAGGG GCTGAGGCCCCTCCATTGCCAGGGACTTCCCAGTACGGGCACGAAAGGACTTCTCAGTACAC AGGAACCTCTCCTCACCCAGCGACCTCTCCTCCTGCAGGGAGCTCCCGCCCCCCATGCAGC TGGACTCCACCTCAGCAGAGGACACCAGTCCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGG GTGTCCATCCCGATGGTCCGCATACTGGCCCCAGTCCTGGTGCTGCTGAGCCTTCTGTCAGC CGCAGGCCTGATCGCCTTCTGCAGCCACCTGCTCCTGTGGAGAAAGGAAGCTCAACAGGCCA CGGAGACACAGAGGAACGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCC CCTTCCCAGGCCCCTGAGGGGGACGTGATCTCGATGCCTCCCCTCCACACATCTGAGGAGGA GCTGGGCTTCTCGAAGTTTGTCTCAGCGTAGGGCAGGAGGCCCTCCTGGCCAGGCCAGCAGT GAAGCAGTATGGCTGGCTGGATCAGCACCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAG TCCAGCTGCCCGGACTCCAGGGCTCTCCCCACCCTCCCCAGGCTCTCCTCTTGCATGTTCCA GCCTGACCTAGAAGCGTTTGTCAGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTG GAGACTGGGACATCCCTGATAGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCA GCAGGGCCAGACAAGGCTCAGTGGATCTGGTCTGAGTTTCAATCTGCCAGGAACTCCTGGGC TGGCGTCCTCAGACTTAGTCCCACGGTCTCCTGCATCAGCTGGTGATGAAGAGAGCATGCT GGGGTGAGACTGGGATTCTGGCTTCTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCT GTGAAAAACGTGATTCCTGGCCCCACCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAG GACTCTGAATTCTAACAATGCCCAGTGACTGTCGCACTTGAGTTTGAGGGCCAGTGGGCCTG ATGAACGCTCACACCCCTTCAGCTTAGAGTCTGCATTTGGGCTGTGACGTCTCCACCTGCCC CAATAGATCTGCTCTGCGACACCAGATCCACGTGGGGACTCCCCTGAGGCCTGCTAAG TCCAGGCCTTGGTCAGGTCAGGTGCACATTGCAGGATAAGCCCAGGACCGGCACAGAAGTGG TTGCCTTTNCCATTTGCCCTCCCTGGNCCATGCCTTCTTGCCTTTTGGAAAAAATGATGAAGA AAACCTTGGCTCCTTGTCTGGAAAGGGTTACTTGCCTATGGGTTCTGGTGGCTAGAGA GAAAAGTAGAAAACCAGAGTGCACGTAGGTGTCTAACACAGAGGAGAGTAGGAACAGGGCGG ATACCTGAAGGTGACTCCGAGTCCAGCCCCTGGAGAAGGGGTCGGGGGTGGTGGTAAAGTA GCACAACTACTATTTTTTTTTTTCCATTATTATTGTTTTTTAAGACAGAATCTCGTGCT GCTGCCCAGGCTGGAGTGCAGTGGCACGATCTGCAAACTCCGCCTCCTGGGTTCAAGTGATT CTTCTGCCTCAGCCTCCCGAGTAGCTGGGATTACAGGCACCACCCCACCCCCACACCTGGCTAATT TTTGTACTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGAC CTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCGGGATTACAGGCATGAGCCACTGTG TCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTGTTCAGTATGCAAAACTTGGAAAG ATGGAGGAGAAAAGGAAAGGAAGAAAAAATGTCACCCATAGTCTCACCAGAGACTATCAT TATTTCGTTTTGTTGTACTTCCTTCCACTCTTTTCTTCTTCACATAATTTGCCGGTGTTCTT TTTACAGAGCAATTATCTTGTATATACAACTTTGTATCCTGCCTTTTCCACCTTATCGTTCC GCTGCATAAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44196</pre>

<subunit 1 of 1, 332 aa, 1 stop</pre>

<MW: 36143, pI: 5.89, NX(S/T): 1

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCS GTIYAEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLISLFV FPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPG TSQYGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSSKPRVSIPMVRI LAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEKEAPSQAPEGD VISMPPLHTSEEELGFSKFVSA

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain.

amino acids 104-113

Ig like V-type domain:

amino acids 13-128

TTGTGACTAAAAGCTGGCCTAGCAGGCCAGGGAGTGCAGCTGCAGGCGTGGGGGTGGCAGGA GCCGCAGAGCCAGACCAGCCGAGAAACAGGTGGACAGTGTGAAAGAACCAGTGGTCTC GCTCTGTTGCCCAGGCTAGAGTGTACTGGCGTGATCATAGCTCACTGCAGCCTCAGACTCCT GGACTTGAGAAATCCTCCTGCCTTAGCCTCCTGCATATCTGGGACTCCAGGGGTGCACTCAA GCCCTGTTTCTCCTCTGTGAGTGGACCACGGAGGCTGGTGAGCTGCCTGTCATCCCAA AGCTCAGCTCTGAGCCAGAGTGGTGGTGGCTCCACCTCTGCCGCCGGCATAGAAGCCAGGAG ${\tt CAGGGCTCTCAGAAGGCGGTGGTGCCCAGCTGGGATC} \underline{{\tt ATG}} {\tt TTGTTGGCCCTGGTCTGTCTGC}$ TCAGCTGCCTGCTACCCTCCAGTGAGGCCAAGCTCTACGGTCGTTGTGAACTGGCCAGAGTG CTACATGACTTCGGGCTGGACGGATACCGGGGATACAGCCTGGCTGACTGGGTCTGCCTTGC TTATTTCACAAGCGGTTTCAACGCAGCTGCTTTGGACTACGAGGCTGATGGGAGCACCAACA ACGGGATCTTCCAGATCAACAGCCGGAGGTGGTGCAGCAACCTCACCCCGAACGTCCCCAAC GTGTGCCGGATGTACTGCTCAGATTTGTTGAATCCTAATCTCAAGGATACCGTTATCTGTGC CATGAAGATAACCCAAGAGCCTCAGGGTCTGGGTTACTGGGAGGCCTGGAGGCATCACTGCC AGGGAAAAGACCTCACTGAATGGGTGGATGGCTGTGACTTCCAGCAGGCTGGGAAATGTGGTTTGGTTCCTGACCTAGGCTTGGGAAGACAAGCCAGCGAATA AAGGATGGTTGAACGTGAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52187
<subunit 1 of 1, 146 aa, 1 stop
<MW: 16430, pI: 5.05, NX(S/T): 1
MLLALVCLLSCLLPSSEAKLYGRCELARVLHDFGLDGYRGYSLADWVCLAYFTSGFNAAALD
YEADGSTNNGIFQINSRRWCSNLTPNVPNVCRMYCSDLLNPNLKDTVICAMKITQEPQGLGY
WEAWRHHCQGKDLTEWVDGCDF</pre>

Important features:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 67-72

Homolgous region to Alpha-lactalbumin / lysozyme C proteins. amino acids 34-58 (catalytic domain), 111-132 and 66-107

AGCCGCTGCCCCGGGGCGCCCCGCGGCGCGCGCACC ATG AGTCCCCGCTCGTGCCTTCGCTGCGCCTCCTCGTCTTCGCCGTCTTCTCAGCCGCCGCGAGCAACTGGCTGTACCTGGCCA AGCTGTCGTCGGTGGGGAGCATCTCAGAGGAGGAGACGTGCGAGAAACTCAAGGGCCTGATC CAGAGGCAGGTGCAGATGTGCAAGCGGAACCTGGAAGTCATGGACTCGGTGCGCCGCGGTGC TCGACTCCTTGCCCGTCTTCGGCAAGGTGGTGACGCAAGGGACTCGGGAGGCGGCCTTCGTG TACGCCATCTCTTCGGCAGGTGTGGCCTTTGCAGTGACGCGGGCGTGCAGCAGTGGGGAGCT GGAGAAGTGCGGCTGTGACAGGACAGTGCATGGGGTCAGCCCACAGGGCTTCCAGTGGTCAG GATGCTCTGACAACATCGCCTACGGTGTGGCCTTCTCACAGTCGTTTGTGGATGTGCGGGAG AGAAGCAAGGGGGCCTCGTCCAGCAGAGCCCTCATGAACCTCCACAACAATGAGGCCGGCAG GAAGGCCATCCTGACACACATGCGGGTGGAATGCAAGTGCCACGGGGTGTCAGGCTCCTGTG AGGTAAAGACGTGCTGGCGAGCCGTGCCGCCCTTCCGCCAGGTGGGTCACGCACTGAAGGAG AAGTTTGATGGTGCCACTGAGGTGGAGCCACGCCGCGTGGGCTCCTCCAGGGCACTGGTACC ACGCAACGCACAGTTCAAGCCGCACACAGATGAGGACCTGGTGTACTTGGAGCCTAGCCCCG ACTTCTGTGAGCAGGACATGCGCAGCGGCGTGCTGGGCACGAGGGGCCCGCACATGCAACAAG GGTGGAGCTGGAACGCTGCAGCTGCAAATTCCACTGGTGCTGCTTCGTCAAGTGCCGGC ${\tt AGTGCCAGCGGCTCGTGGAGTTGCACACGTGCCGA}{\tt TGA}{\tt CCGCCTGCCTAGCCCTGCGCCGGC}$ AACCACCTAGTGGCCCAGGGAAGGCCGATAATTTAAACAGTCTCCCACCACCTACCCCAAGA ACCAGGCAGCCAACCCAAGGGCCACCAACCCAGGGCCTCCCCAAAGCCTGGGCCTTTGTGGCT GCCACTGACCAAAGGGACCTTGCTCGTGCCGCTGCCGCCTGTGGCTGCCACTGACCA CTCAGTTGTTATCTGTGTCCGTTTTTCTACTTGCAGACCTAAGGTGGAGTAACAAGGAGTAT TACCACCACATGGCTACTGACCGTGTCATCGGGGAAGAGGGGGCCTTATGGCAGGGAAAATA GGTACCGACTTGATGGAAGTCACACCCTCTGGAAAAAAGAACTCTTAACTCTCCAGCACACA TACACATGGACTCCTGGCAGCTTGAGCCTAGAAGCCATGTCTCTCAAATGCCCTGAGAAAGG GAACAAGCAGATACCAGGTCAAGGGCACCAGGTTCATTTCAGCCCTTACATGGACAGCTAGA GTCCCACCCTAGAACCCAGCCTGCCCCAGCCTGCCCCTGGGAAGAGGAAACTTAACCACTCC CCAGACCCACCTAGGCAGGCATATAGGCTGCCATCCTGGACCAGGGATCCCGGCTGTGCCTT ACACACACACACACACACACACACACACACACACGGACACACACACACCTGCGAGA GAGAGGAGGAAAGGGCTGTGCCTTTGCAGTCATGCCCGAGTCACCTTTCACAGCACTGTTCCTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48328</pre>

<subunit 1 of 1, 351 aa, 1 stop</pre>

<MW: 39052, pI: 8.97, NX(S/T): 2

MSPRSCLRSLRLLVFAVFSAAASNWLYLAKLSSVGSISEEETCEKLKGLIQRQVQMCKRNLE VMDSVRRGAQLAIEECQYQFRNRRWNCSTLDSLPVFGKVVTQGTREAAFVYAISSAGVAFAV TRACSSGELEKCGCDRTVHGVSPQGFQWSGCSDNIAYGVAFSQSFVDVRERSKGASSSRALM NLHNNEAGRKAILTHMRVECKCHGVSGSCEVKTCWRAVPPFRQVGHALKEKFDGATEVEPRR VGSSRALVPRNAQFKPHTDEDLVYLEPSPDFCEQDMRSGVLGTRGRTCNKTSKAIDGCELLC CGRGFHTAQVELAERCSCKFHWCCFVKCRQCQRLVELHTCR

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation sites.

amino acids 88-91 and 297-300

Wnt-1 family signature.

amino acids 206-215

Homologous region to Wnt-1 family proteins

amino acids 183-235, 305-350, 97-138, 53-92 and 150 -174

 $\tt CGGACGCGTGGGCGGACGCGTGGGCGGACGCGTGGGCTGGGTGCCTGCAT$ $\tt CCTGGGGACGCTGGGTGCACTGGAGCAGGAGACCCCTCTTCTTGGCCCTGGCTGTCCTGGTC$ ACCACAGTCCTTTGGGCTGTGATTCTGAGTATCCTATTGTCCAAGGCCTCCACGGAGCGCGC GGCGCTGCTTGACGGCCACGACCTGCTGAGGACAAACGCCTCGAAGCAGACGGCGCGCTGG GTGCCCTGAAGGAGGAGGTCGGAGACTGCCACAGCTGCTCGGGGACGCAGGCGCAGCTG CAGACCACGCGCGCGGAGCTTGGGGAGGCGCAGGCGAAGCTGATGGAGCAGGAGAGCGCCCT GCGGGAACTGCGTGAGCGCTGACCCAGGGCTTGGCTGAAGCCGGCAGGGGCCGTGAGGACG ${\tt TCCGCACTGAGCTGTTCCGGGCGCTGGAGGCCGTGAGGCTCCAGAACAACTCCTGCGAGCCG}$ GTGGGCGCGCGCGCAGATCACTGCGCAGATGCCAGCGCGCACCTGGTGATCGTTGGGGGCC CAGCCACTGGAACCAGGGAGAGCCCAATGACGCTTGGGGGGCGCGAGAACTGTGTCATGATGC TGCACACGGGGCTGTGGAACGACGCACCGTGTGACAGCGAGAAGGACGGCTGGATCTGTGAG $AAAAGGCACAACTGC \underline{TGA}CCCCGCCCAGTGCCCTGGAGCCGCCCCATTGCAGCATGTCGTA$ TCCTGGGGGCTGCTCACCTCCCTGGCTCCTGGAGCTGATTGCCAAAGAGTTTTTTTCTTCCT CATCCACCGCTGCTGAGTCTCAGAAACACTTGGCCCAACATAGCCCTGTCCAGCCCAGTGCC TGGGCTCTGGGACCTCCATGCCGACCTCATCCTAACTCCACTCACGCAGACCCAACCTAACC TCCACTAGCTCCAAAATCCCTGCTCCTGCGTCCCCGTGATATGCCTCCACTTCTCTCCCTAA CCAAGGTTAGGTGACTGAGGACTGGAGCTGTTTGGTTTTCTCGCATTTTCCACCAAACTGGA AGCTGTTTTTGCAGCCTGAGGAAGCATCAATAAATATTTGAGAAATGAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56352</pre>

<subunit 1 of 1, 293 aa, 1 stop</pre>

<MW: 32562, pI: 6.53, NX(S/T): 2

MDTTRYSKWGGSSEEVPGGPWGRWVHWSRRPLFLALAVLVTTVLWAVILSILLSKASTERAA LLDGHDLLRTNASKQTAALGALKEEVGDCHSCCSGTQAQLQTTRAELGEAQAKLMEQESALR ELRERVTQGLAEAGRGREDVRTELFRALEAVRLQNNSCEPCPTSWLSFEGSCYFFSVPKTTW AAAQDHCADASAHLVIVGGLDEQGFLTRNTRGRGYWLGLRAVRHLGKVQGYQWVDGVSLSFS HWNQGEPNDAWGRENCVMMLHTGLWNDAPCDSEKDGWICEKRHNC

Important features:

Type II transmembrane domain:

amino acids 31-54

N-glycosylation sites.

amino acids 73-76 and 159-162

Leucine zipper pattern.

amino acids 102-123

N-myristoylation sites.

amino acids 18-23, 133-138 and 242-247

C-type lectin domain signature.

amino acids 264-287

GCCAGGGGAAGAGGTGATCCGACCCGGGGAAGGTCGCTGGGCAGGGCGAGTTGGGAAAGCG GCAGCCCCGCCGCCCCGCAGCCCCTTCTCCTCCTTTCTCCCACGTCCTATCTGCCTCTCG CGCGCTCCCGCTGCCCGGGTG**ATG**GAAAACCCCAGCCCGGCCGCCCCTGGGCAAG GCCCTCTGCGCTCTCCTGGCCACTCTCGGCGCCGCCGGCCAGCCTCTTGGGGGAGAGTC CATCTGTTCCGCCAGAGCCCCGGCCAAATACAGCATCACCTTCACGGGCAAGTGGAGCCAGA CGGCCTTCCCCAAGCAGTACCCCCTGTTCCGCCCCCTGCGCAGTGGTCTTCGCTGCTGGGG GCCGCGCATAGCTCCGACTACAGCATGTGGAGGAAGAACCAGTACGTCAGTAACGGGCTGCG CGACTTTGCGGAGCGCGAGGCCTGGGCGCTGATGAAGGAGATCGAGGCGGCGGGGGAGG CGCTGCAGAGCGTGCACGAGGTGTTTTCGGCGCCCGCCGTCCCCAGCGGCACCGGGCAGACG TCGGCGGAGCTGGAGGTGCAGCGCAGCCACTCGCTGGTCTCGTTTGTGGTGCGCATCGTGCC CAGCCCGACTGGTTCGTGGGCGTGGACAGCCTGTGCGACGGGGACCGTTGGCGGG TCCCCCAACTTCGCCACCATCCCGCAGGACACGGTGACCGAGATAACGTCCTCCTCTCCCAG CCACCCGGCCAACTCCTTCTACTACCCGCGGCTGAAGGCCCTGCCTCCCATCGCCAGGGTGA AGGGACAATGAGATTGTAGACAGCGCCTCAGTTCCAGAAACGCCGCTGGACTGCGAGGTCTC CCTGTGGTCGTCCTGGGGACTGTGCGGAGGCCACTGTGGGAGGCTCGGGACCAAGAGCAGGA CTCGCTACGTCCGGGTCCAGCCCGCCAACAACGGGAGCCCCTGCCCCGAGCTCGAAGAAGAG GCTGAGTGCGTCCCTGATAACTGCGTC**TAA**GACCAGAGCCCCGCAGCCCCTGGGGCCCCCCG GAGCCATGGGGTGTCGGGGGCTCCTGTGCAGGCTCATGCTGCAGGCGGCCGAGGGCACAGGG GGTTTCGCGCTGCTCCTGACCGCGGTGAGGCCGCCGACCATCTCTGCACTGAAGGGCCCT CTGGTGGCCGGCACGGCATTGGGAAACAGCCTCCTCCTTTCCCAACCTTGCTTCTTAGGGG CCCCCGTGTCCCGTCTCTCAGCCTCCTCCTCCTGCAGGATAAAGTCATCCCCAAGGCTC CAGCTACTCTAAATTATGTCTCCTTATAAGTTATTGCTGCTCCAGGAGATTGTCCTTCATCG TCCAGGGGCCTGGCTCCCACGTGGTTGCAGATACCTCAGACCTGGTGCTCTAGGCTGTGCTG AGCCCACTCTCCCGAGGGCGCATCCAAGCGGGGCCACTTGAGAAGTGAATAAATGGGGCGG TTTCGGAAGCGTCAGTGTTTCCATGTTATGGATCTCTCTGCGTTTGAATAAAGACTATCTCT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53971</pre>

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35844, pI: 5.45, NX(S/T): 2

MENPSPAAALGKALCALLLATLGAAGQPLGGESICSARAPAKYSITFTGKWSQTAFPKQYPL FRPPAQWSSLLGAAHSSDYSMWRKNQYVSNGLRDFAERGEAWALMKEIEAAGEALQSVHEVF SAPAVPSGTGQTSAELEVQRRHSLVSFVVRIVPSPDWFVGVDSLDLCDGDRWREQAALDLYP YDAGTDSGFTFSSPNFATIPQDTVTEITSSSPSHPANSFYYPRLKALPPIARVTLLRLRQSP RAFIPPAPVLPSRDNEIVDSASVPETPLDCEVSLWSSWGLCGGHCGRLGTKSRTRYVRVQPA NNGSPCPELEEEAECVPDNCV

Important features:

Signal peptide:

amino acids 1-26

GGCGGCGTCCGTGAGGGGCTCCTTTGGGCAGGGGTAGTGTTTGGTGTCCCTGTCTTGCGTGA TATTGACAAACTGAAGCTTTCCTGCACCACTGGACTTAAGGAAGAGTGTACTCGTAGGCGGA CAGCTTTAGTGGCCGGCCGCCCCTCTCATCCCCCGTAAGGAGCAGAGTCCTTTGTACTGAC CAAGATGAGCAACATCTACATCCAGGAGCCTCCCACGAATGGGAAGGTTTTATTGAAAACTA CAGCTGGAGATATTGACATAGAGTTGTGGTCCAAAGAAGCTCCTAAAGCTTGCAGAAATTTT ATCCAACTTTGTTTGGAAGCTTATTATGACAATACCATTTTTCATAGAGTTGTGCCTGGTTT CATTCAAAGATGAATTTCATTCACGGTTGCGTTTTAATCGGAGAGGACTGGTTGCCATGGCA AATGCTGGTTCTCATGATAATGGCAGCCAGTTTTTCTTCACACTGGGTCGAGCAGATGAACT TAACAATAAGCATACCATCTTTGGAAAGGTTACAGGGGATACAGTATATAACATGTTGCGAC TGTCAGAAGTAGACATTGATGACGAAAGACCACATAATCCACACAAAATAAAAGCTGT GAGGTTTTGTTTAATCCTTTTGATGACATCATTCCAAGGGAAATTAAAAGGCTGAAAAAAGA GAAACCAGAGGAGGAAGTAAAGAAATTGAAACCCAAAGGCACAAAAAATTTTAGTTTACTTT CATTTGGAGAGCAGCAGGAAGAAGAGGAGGAAGTAAATCGAGTTAGTCAGAGCATGAAG GGCAAAAGCAAAAGTAGTCATGACTTGCTTAAGGATGATCCACATCTCAGTTCTGTTCCAGT TGTAGAAAGTGAAAAGGTGATGCACCAGATTTAGTTGATGATGAGAAGATGAAAGTGCAG TTAAAAAAGGACACAAGTGCGAATGTTAAATCAGCTGGAGAAGGAGAAGTGGAGAAAATC AGTCAGCCGCAGTGAAGAGCTCAGAAAAGAAGCAAGACAATTAAAACGGGAACTCTTAGCAG CAAAACAAAAAAAGTAGAAAATGCAGCAAAACAAGCAGAAAAAAGAAGTGAAGAGGAAGAA GCCCCTCCAGATGGTGCTGTTGCCGAATACAGAAGAGAAAAGCAAAAGTATGAAGCTTTGAG GAAGCAACAGTCAAAGAAGGGAACTTCCCGGGAAGATCAGACCCTTGCACTGCTGAACCAGT TTAAATCTAAACTCACTCAAGCAATTGCTGAAACACCTGAAAATGACATTCCTGAAACAGAA GTAGAAGATGATGAAGGATGGATGTCACATGTACTTCAGTTTGAGGATAAAAGCAGAAAAGT GAAAGATGCAAGCATGCAAGACTCAGATACATTTGAAATCTATGATCCTCGGAATCCAGTGA GAGAATAATGATAACCAGAACTTGCTGGAAATGTGCCTACAATGGCCTTGTAACAGCCATTG TTCCCAACAGCATCACTTAGGGGTGTGAAAAGAAGTATTTTTGAACCTGTTGTCTGGTTTTG AAAAACAATTATCTTGTTTTGCAAATTGTGGAATGATGTAAGCAAATGCTTTTGGTTACTGG TACATGTGTTTTTTCCTAGCTGACCTTTTATATTGCTAAATCTGAAATAAAATAACTTTCCT TCCACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50919</pre>

><subunit 1 of 1, 472 aa, 1 stop

><MW: 53847, pI: 5.75, NX(S/T): 2

MSNIYIQEPPTNGKVLLKTTAGDIDIELWSKEAPKACRNFIQLCLEAYYDNTIFHRVVPGFI
VQGGDPTGTGSGGESIYGAPFKDEFHSRLRFNRRGLVAMANAGSHDNGSQFFFTLGRADELN
NKHTIFGKVTGDTVYNMLRLSEVDIDDDERPHNPHKIKSCEVLFNPFDDIIPREIKRLKKEK
PEEEVKKLKPKGTKNFSLLSFGEEAEEEEEEVNRVSQSMKGKSKSSHDLLKDDPHLSSVPVV
ESEKGDAPDLVDDGEDESAEHDEYIDGDEKNLMRERIAKKLKKDTSANVKSAGEGEVEKKSV
SRSEELRKEARQLKRELLAAKQKKVENAAKQAEKRSEEEEAPPDGAVAEYRREKQKYEALRK
QQSKKGTSREDQTLALLNQFKSKLTQAIAETPENDIPETEVEDDEGWMSHVLQFEDKSRKVK
DASMQDSDTFEIYDPRNPVNKRRREESKKLMREKKERR

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 109-112 and 201-204

Cyclophilin-type peptidyl-prolyl cis-trans isomerase signature. amino acids 49-66

Homologous region to Cyclophilin-type peptidyl-prolyl cis-trans isomerase

amino acids 96-140, 49-89 and 22-51

 $\verb|CCCGCCTCGGCTTTGAGGCGAGAGAGTGTCCCAGACCCATTTCGCCTTGCTGACGGCGTCG|\\$ AGCCCTGGCCAGAC<u>ATG</u>TCCACAGGGTTCTCCTTCGGGTCCGGGACTCTGGGCTCCACCACC GTGGCCGCCGGCGGACCACACACGCGGCGTTTTCTCCTTCGGAACGGGAACGTCTAGCAA CCCTTCTGTGGGGCTCAATTTTGGAAATCTTGGAAGTACTTCAACTCCAGCAACTACATCTG $\tt CTCCTTCAAGTGGTTTTGGAACCGGGCTCTTTGGATCTAAACCTGCCACTGGGTTCACTCTA$ GGAGGAACAAATACAGGTGCCTTGCACACCAAGAGGCCTCAAGTGGTCACCAAATATGGAAC CCTGCAAGGAAAACAGATGCATGTGGGGAAGACACCCATCCAAGTCTTTTTAGGAGTCCCCT TCTCCAGACCTCCTCTAGGTATCCTCAGGTTTGCACCTCCAGAACCCCCGGAGCCCTGGAAA GGAATCAGAGATGCTACCACCTACCCGCCTGGATGGAGTCTCGCTCTGTCGCCAGGCTGGAG TGCAGTGGCACGATCTCGGCTCACTGCAACCTCCGCCTCCCGGGTTCAAGCGAGTCTCCTGC $\tt CTCAGCCTCTGAGTGTCTGGGGCTACAGGTGCCTGCAGGAGTCCTGGGGCCAGCTGGCCTCG$ GAACGTGTACGCGCCGCGCGCGCCCCGGGGATCCCCAGCTGCCAGTGATGGTCTGGTTCC GAGAAAGTGGTGCTGGTTTTCTGCAGCACAGGCTCGGCATCTTCGGCTTCCTGAGCACGGA CGACAGCCACGCGCGGGAACTGGGGGCTGCTGGACCAGATGGCGGCTCTGCGCTGGGTGC AGGAGAACATCGCAGCCTTCGGGGGAGACCCAGGAAATGTGACCCTGTTCGGCCAGTCGGCG GGGGCCATGAGCATCTCAGGACTGATGATGTCACCCCTAGCCTCGGGTCTCTTCCATCGGGC CATTTCCCAGAGTGGCACCGCGTTATTCAGACTTTTCATCACTAGTAACCCACTGAAAGTGG CCAAGAAGGTTGCCCACCTGGCTGGATGCAACCACAACAGCACACAGATCCTGGTAAACTGC CTGAGGGCACTATCAGGGACCAAGGTGATGCGTGTGTCCAACAAGATGAGATTCCTCCAACT GAACTTCCAGAGAGACCCGGAAGAGATTATCTGGTCCATGAGCCCTGTGGTGGATGGTGTG TGATCCCAGATGACCCTTTGGTGCTCCTGACCCAGGGGAAGGTTTCATCTGTGCCCTACCTT CTAGGTGTCAACAACCTGGAATTCAATTGGCTCTTGCCTTATAATATCACCAAGGAGCAGGT ACCACTTGTGGTGGAGGAGTACCTGGACATGTCAATGAGCATGACTGGAAGATGCTACGAA ACCGTATGATGGACATAGTTCAAGATGCCACTTTCGTGTATGCCACACTGCAGACTGCTCAC TACCACCGAGAAACCCCAATGATGGGAATCTGCCCTGCTGGCCACGCTACAACAAGGATGAA ${\tt AAGTACCTGCAGCTGGATTTTACCACAAGAGTGGGCA} {\tt TGA} {\tt AGCTCAAGGAGAAGAAGATGGC}$ TTTTTGGATGAGTCTGTACCAGTCTCAAAGACCTGAGAAGCAGAGGCAATTCTAAGGGTGGC TATGCAGGAAGGAGCCAAAGAGGGGTTTGCCCCCACCATCCAGGCCCTGGGGAGACTAGCCA TGGACATACCTGGGGACAAGAGTTCTACCCACCCCAGTTTAGAACTGCAGGAGCTCCCTGCT GCCTCCAGGCCAAAGCTAGAGCTTTTGCCTGTTGTGTGGGACCTGCACTGCCCTTTCCAGCC TGACATCCCATGATGCCCCTCTACTTCACTGTTGACATCCAGTTAGGCCAGGCCCTGTCAAC ACCACACTGTGCTCAGCTCTCCAGCCTCAGGACAACCTCTTTTTTTCCCTTCTTCAAATCCT CCCACCCTTCAATGTCTCCTTGTGACTCCTTCTTATGGGAGGTCGACCCAGACTGCCACTGC TCACATTGGCCTGGAGGCCTAGGGCAGGTTGTGACATGGAGCAAACTTTTGGTAGTTTGGGA TCTTCTCCCACCACACTTATCTCCCCCAGGGCCACTCCAAAGTCTATACACAGGGGTGG TCTCTTCAATAAAGAAGTGTTGATTAGAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44179</pre>

<subunit 1 of 1, 545 aa, 1 stop

<MW: 58934, pI: 9.45, NX(S/T): 4

MSTGFSFGSGTLGSTTVAAGGTSTGGVFSFGTGTSSNPSVGLNFGNLGSTSTPATTSAPSSG FGTGLFGSKPATGFTLGGTNTGALHTKRPQVVTKYGTLQGKQMHVGKTPIQVFLGVPFSRPP LGILRFAPPEPPEPWKGIRDATTYPPGWSLALSPGWSAVARSRLTATSASRVQASLLPQPLS VWGYRCLQESWGQLASMYVSTRERYKWLRFSEDCLYLNVYAPARAPGDPQLPVMVWFPGGAF IVGAASSYEGSDLAAREKVVLVFLQHRLGIFGFLSTDDSHARGNWGLLDQMAALRWVQENIA AFGGDPGNVTLFGQSAGAMSISGLMMSPLASGLFHRAISQSGTALFRLFITSNPLKVAKKVA HLAGCNHNSTQILVNCLRALSGTKVMRVSNKMRFLQLNFQRDPEEIIWSMSPVVDGVVIPDD PLVLLTQGKVSSVPYLLGVNNLEFNWLLPYNITKEQVPLVVEEYLDNVNEHDWKMLRNRMMD IVQDATFVYATLQTAHYHRETPMMGICPAGHATTRMKSTCSWILPQEWA

Important features:

Signal peptide:

amino acids 1-29

Carboxylesterases type-B serine active site.

amino acids 312-327

Carboxylesterases type-B signature 2.

amino acids 218-228

N-glycosylation sites.

amino acids 318-321, 380-383 and 465-468

GAGAACAGGCCTGTCTCAGGCAGGCCCTGCGCCTCCTATGCGGAG<u>ATG</u>CTACTGCCACTGCT GCTGTCCTCGCTGCTGGGCGGTCCCAGGCTATGGATGGGAGATTCTGGATACGAGTGCAGG AGTCAGTGATGGTGCCGGAGGGCCTGTGCATCTCTGTGCCCTGCTCTTTCTCCTACCCCCGA CAAGACTGGACAGGGTCTACCCCAGCTTATGGCTACTGGTTCAAAGCAGTGACTGAGACAAC CAAGGGTGCTCCTGTGGCCACAAACCACCAGAGTCGAGAGGTGGAAATGAGCACCCGGGGCC GATTCCAGCTCACTGGGGATCCCGCCAAGGGGAACTGCTCCTTGGTGATCAGAGACGCGCAG ATGCAGGATGAGTCACAGTACTTCTTTCGGGTGGAGAGGGAAGCTATGTGACATATAATTT CATGAACGATGGGTTCTTTCTAAAAGTAACAGTGCTCAGCTTCACGCCCAGACCCCAGGACC ACAACACCGACCTCACCTGCCATGTGGACTTCTCCAGAAAGGGTGTGAGCGCACAGAGGACC GTCCGACTCCGTGTGGCCTATGCCCCCAGAGACCTTGTTATCAGCATTTCACGTGACAACAC GCCAGCCCTGGAGCCCCAGCCCCAGGGAAATGTCCCATACCTGGAAGCCCAAAAAGGCCAGT TCCTGCGGCTCCTCTGTGCTGACAGCCAGCCCCCTGCCACACTGAGCTGGGTCCTGCAG AACAGAGTCCTCTCCTCGTCCCATCCCTGGGGCCCTAGACCCCTGGGGCTGGAGCTGCCCGG GGTGAAGGCTGGGGATTCAGGGCGCTACACCTGCCGAGCGGAGAACAGGCTTGGCTCCCAGC AGCGAGCCCTGGACCTCTCTGTGCAGTATCCTCCAGAGAACCTGAGAGTGATGGTTTCCCAA GCAAACAGGACAGTCCTGGAAAACCTTGGGAACGGCACGTCTCTCCCAGTACTGGAGGGCCA GGGGACAGGTTCTGAGCCCCTCCCAGCCCTCAGACCCCGGGGTCCTGGAGCTGCCTCGGGTT CAAGTGGAGCACGAAGGAGAGTTCACCTGCCACGCTCGGCACCCACTGGGCTCCCAGCACGT CTCTCTCAGCCTCTCCGTGCACTATAAGAAGGGACTCATCTCAACGGCATTCTCCAACGGAG CGTTTCTGGGAATCGGCATCACGGCTCTTCTTTTCCTCTGCCTGGCCCTGATCATCATGAAG ATTCTACCGAAGACGGACTCAGACAGAAACCCCGAGGCCCAGGTTCTCCCGGCACAGCAC GATCCTGGATTACATCAATGTGGTCCCGACGGCTGGCCCCTGGCTCAGAAGCGGAATCAGA AAGAACCAGAAAAAGCAGTATCAGTTGCCCAGTTTCCCAGAACCCAAATCATCCACTCAAGC CCCAGAATCCCAGGAGAGCCAAGAGGGGCTCCATTATGCCACGCTCAACTTCCCAGGCGTCA GACCCAGGCCTGAGGCCCGGATGCCCAAGGGCACCCAGGCGGATTATGCAGAAGTCAAGTTC CAA<u>TGA</u>GGGTCTCTTAGGCTTTAGGACTGGGACTTCGGCTAGGGAAGGTAGAGTAAGAG CTCTCTTTCTCTCTTTTAAAAAAACATCTGGCCAGGGCACAGTGGCTCACGCCTGTAATC CCAGCACTTTGGGAGGTTGAGGTGGGCAGATCGCCTGAGGTCGGGAGTTCGAGACCAGCCTG GCCAACTTGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCATGGTGGCAGG CGCCTGTAATCCTACCTACTTGGGAAGCTGAGGCAGGAGAATCACTTGAACCTGGGAGACGG AGGTTGCAGTGAGCCAAGATCACACCATTGCACGCCAGCCTGGGCAACAAAGCGAGACTCCA TCTCAAAAAAAATCCTCCAAATGGGTTGGGTGTCTGTAATCCCAGCACTTTGGGAGGCTA AGGTGGGTGGATTGCTTGAGCCCAGGAGTTCGAGACCAGCCTGGGCAACATGGTGAAACCCC ATCTCTACAAAAATACAAAACATAGCTGGGCTTGGTGGTGTGTGCCTGTAGTCCCAGCTGT CAGACATTTAAACCAGAGCAACTCCATCTGGAATAGGAGCTGAATAAAATGAGGCTGAGACC TACTGGGCTGCATTCTCAGACAGTGGAGGCATTCTAAGTCACAGGATGAGACAGGAGGTCCG ATCCCACCAAAACCAAGTTGGCCACGAGAGTGACCTCTGGTCGTCCTCACTGCTACACTCCT GACAGCACCATGACAGTTTACAAATGCCATGGCAACATCAGGAAGTTACCCGATATGTCCCA AAAGGGGGAGGAATGAATAATCCACCCCTTGTTTAGCAAATAAGCAAGAAATAACCATAAAA GTGGGCAACCAGCAGCTCTAGGCGCTGCTCTTGTCTATGGAGTAGCCATTCTTTTGTTCCTT TACTTTCTTAATAAACTTGCTTTCACCTTAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA54002</pre>

><subunit 1 of 1, 544 aa, 1 stop

><MW: 60268, pI: 9.53, NX(S/T): 3

MLLPLLLSSLLGGSQAMDGRFWIRVQESVMVPEGLCISVPCSFSYPRQDWTGSTPAYGYWFK
AVTETTKGAPVATNHQSREVEMSTRGRFQLTGDPAKGNCSLVIRDAQMQDESQYFFRVERGS
YVTYNFMNDGFFLKVTVLSFTPRPQDHNTDLTCHVDFSRKGVSAQRTVRLRVAYAPRDLVIS
ISRDNTPALEPQPQGNVPYLEAQKGQFLRLLCAADSQPPATLSWVLQNRVLSSSHPWGPRPL
GLELPGVKAGDSGRYTCRAENRLGSQQRALDLSVQYPPENLRVMVSQANRTVLENLGNGTSL
PVLEGQSLCLVCVTHSSPPARLSWTQRGQVLSPSQPSDPGVLELPRVQVEHEGEFTCHARHP
LGSQHVSLSLSVHYKKGLISTAFSNGAFLGIGITALLFLCLALIIMKILPKRRTQTETPRPR
FSRHSTILDYINVVPTAGPLAQKRNQKATPNSPRTPPPPGAPSPESKKNQKKQYQLPSFPEP
KSSTQAPESQESQEELHYATLNFPGVRPRPEARMPKGTQADYAEVKFQ

Important features:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 100-103, 297-300 and 306-309

Immunoglobulins and major histocompatibility complex proteins signature.

amino acids 365-371

AAGTCAAGCAGCCAGTGCGATCTCATTTGAGAGTGAAGCGTGGCTGGGTGTGGAACCAATTT TTTGTACCAGAGGAAATGAATACGACTAGTCATCACATCGGCCAGCTAAGATCTGATTTAGA CAATGGAAACAATTCTTTCCAGTACAAGCTTTTGGGAGCTGGAAGCTACTTTTATCA TTGATGAAAGAACAGGTGACATATATGCCATACAGAAGCTTGATAGAGAGGAGCGATCCCTC TACATCTTAAGAGCCCAGGTAATAGACATCGCTACTGGAAGGGCTGTGGAACCTGAGTCTGA GTTTGTCATCAAAGTTTCGGATATCAATGACAATGAACCAAAATTCCTAGATGAACCTTATG AGGCCATTGTACCAGAGATGTCTCCAGAAGGAACATTAGTTATCCAGGTGACAGCAAGTGAT GCTGACGATCCCTCAAGTGGTAATAATGCTCGTCTCCTCTACAGCTTACTTCAAGGCCAGCC ATATTTTTCTGTTGAACCAACAACAGGAGTCATAAGAATATCTTCTAAAATGGATAGAGAAC TGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGTCAGCCAGGAGCGTTG TCTGGAACAACAAGTGTATTAATTAAACTTTCAGATGTTAATGACAATAAGCCTATATTTAA AGAAAGTTTATACCGCTTGACTGTCTCTGAATCTGCACCCACTGGGACTTCTATAGGAACAA TCATGGCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTACAGCATTGAAGAGGAT GATTCGCAAACATTTGACATTATTACTAATCATGAAACTCAAGAAGGAATAGTTATATTAAA AAAGAAAGTGGATTTTGAGCACCAGAACCACTACGGTATTAGAGCAAAAGTTAAAAACCATC ATGTTCCTGAGCAGCTCATGAAGTACCACACTGAGGCTTCCACCACTTTCATTAAGATCCAG GTGGAAGATGTTGATGAGCCTCCTCTTTTCCTCCTTCCATATTATGTATTTGAAGTTTTTGA AGAAACCCCACAGGGATCATTTGTAGGCGTGGTGTCTGCCACAGACCCAGACAATAGGAAAT ACTACAAGTAACTCACTGGATCGTGAAATCAGTGCTTGGTACAACCTAAGTATTACAGCCAC AGAAAAATACAATATAGAACAGATCTCTTCGATCCCACTGTATGTGCAAGTTCTTAACATCA ATGATCATGCTCCTGAGTTCTCTCAATACTATGAGACTTATGTTTGTGAAAATGCAGGCTCT GGTCAGGTAATTCAGACTATCAGTGCAGTGGATAGAGATGAATCCATAGAAGAGCACCATTT TTACTTTAATCTATCTGTAGAAGACACTAACAATTCAAGTTTTACAATCATAGATAATCAAG ATAACACAGCTGTCATTTTGACTAATAGAACTGGTTTTAACCTTCAAGAAGAACCTGTCTTC TACATCTCCATCTTAATTGCCGACAATGGAATCCCGTCACTTACAAGTACAAACACCCTTAC CATCCATGTCTGTGACTGTGGTGACAGTGGGAGCACACAGACCTGCCAGTACCAGGAGCTTG TGCTTTCCATGGGATTCAAGACAGAAGTTATCATTGCTATTCTCATTTGCATTATGATCATA TTTGGGTTTATTTTTTGACTTTGGGTTTAAAACAACGGAGAAAACAGATTCTATTTCCTGA GAAAAGTGAAGATTTCAGAGAGAATATATTCCAATATGATGAAGGGGGTGGAGAAGAAG ATACAGAGGCCTTTGATATAGCAGAGCTGAGGAGTAGTACCATAATGCGGGAACGCAAGACT CGGAAAACCACAAGCGCTGAGATCAGGAGCCTATACAGGCAGTCTTTGCAAGTTGGCCCCGA CAGTGCCATATTCAGGAAATTCATTCTGGAAAAGCTCGAAGAAGCTAATACTGATCCGTGTG CCCCTCCTTTTGATTCCCTCCAGACCTACGCTTTTGAGGGGAACAGGGTCATTAGCTGGATCC CTGAGCTCCTTAGAATCAGCAGTCTCTGATCAGGATGAAAGCTATGATTACCTTAATGAGTT GGGACCTCGCTTTAAAAGATTAGCATGCATGTTTGGTTCTGCAGTGCAGTCAAATAAT<u>TAG</u>G GCTTTTTACCATCAAAATTTTTAAAAGTGCTAATGTGTATTCGAACCCAATGGTAGTCTTAA ${f AGAGTTTTGTGCCCTGGCTCTATGGCGGGGAAAGCCCTAGTCTATGGAGTTTTCTGATTTCC}$ CTGGAGTAAATACTCCATGGTTATTTTAAGCTACCTACATGCTGTCATTGAACAGAGATGTG GGGAGAAATGTAAACAATCAGCTCACAGGCATCAATACAACCAGATTTGAAGTAAAATAATG TAGGAAGATATTAAAAGTAGATGAGAGGACACAAGATGTAGTCGATCCTTATGCGATTATAT CATTATTTACTTAGGAAAGAGTAAAAATACCAAACGAGAAAATTTAAAGGAGCAAAAATTTG CAAGTCAAATAGAAATGTACAAATCGAGATAACATTTACATTTCTATCATATTGACATGAAA ATTGAAAATGTATAGTCAGAGAAATTTTCATGAATTATTCCATGAAGTATTGTTTCCTTTAT TTAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53906</pre>

><subunit 1 of 1, 772 aa, 1 stop

><MW: 87002, pI: 4.64, NX(S/T): 8

MNCYLLERFMLGIPLLWPCLGATENSQTKKVKQPVRSHLRVKRGWVWNQFFVPEEMNTTSHH
IGQLRSDLDNGNNSFQYKLLGAGAGSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIAT
GRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTASDADDPSSGNNARL
LYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSD
VNDNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHE
TQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQLMKYHTEASTTFIKIQVEDVDEPPLFLL
PYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDREISA
WYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYETYVCENAGSGQVIQTISAVDR
DESIEEHHFYFNLSVEDTNNSSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIP
SLTSTNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTEVIIAILICIMIIFGFIFLTLGLKQ
RRKQILFPEKSEDFRENIFQYDDEGGGEEDTEAFDIAELRSSTIMRERKTRKTTSAEIRSLY
RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLESAVSDQD
ESYDYLNELGPRFKRLACMFGSAVQSNN

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 597-617

N-glycosylation sites.

amino acids 57-60, 74-77, 419-423, 437-440, 508-511, 515-518, 516-519 and 534-537

Cadherins extracellular repeated domain signature.

amino acids 136-146 and 244-254

ATTTCAAGGCCAGCCATATTTTTTTTGTTGAACCAACAACAGGAGTCATAAGAATATTTTNTA
AAATGGATAGAAACTGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGT
CAGCCAGGAGCGTTGTNTGGAACAACAAGTGTATTAATTAAACTTTCAGATGTTAATGACAA
TAAGCCTATATTTAAAGAAAGTTTATACCGCTTGACTGTNTNTGAATCTGCACCCACTGGGA
NTTNTATAGGAACAATCATGGCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTAC
AGCATTGAAGAGGATGATTCGCAAACATTTGACATTATT

GCAACCTCAGCTTCTAGTATCCAGACTCCAGCGCCGCCCGGGCGCGGACCCCAACCCCGAC CCAGAGCTTCTCCAGCGGCGCGCGCGCGCGCGCGCCTTAACTTCCTCCGCGGGG CCCAGCCACCTTCGGGAGTCCGGGTTGCCCACCTGCAAACTCTCCGCCTTCTGCACCTGCCA $\tt CCCCTGAGCCAGCGGGCCCCCGAGCGAGTC{\textbf{ATG}} GCCAACGCGGGGCTGCAGCTGTTGGGC$ TTCATTCTCGCCTTCCTGGGATGGATCGCCCATCGTCAGCACTGCCCTGCCCCAGTGGAG GATTTACTCCTATGCCGGCGACAACATCGTGACCGCCCAGGCCATGTACGAGGGGCTGTGGA TGTCCTGCGTGTCGCAGAGCACCGGGCAGATCCAGTGCAAAGTCTTTGACTCCTTGCTGAAT CTGAGCACCATTGCAAGCAACCCGTGCCTTGATGGTGGTTGGCATCCTCCTGGGAGTGAT AGCAATCTTTGTGGCCACCGTTGGCATGAAGTGTATGAAGTGCTTGGAAGACGATGAGGTGC AGAAGATGAGGATGGCTGTCATTGGGGGTGCGATATTTCTTCTTGCAGGTCTGGCTATTTTA GTTGCCACAGCATGGTATGGCAATAGAATCGTTCAAGAATTCTATGACCCTATGACCCCAGT TTCTGGGAGGTGCCCTACTTTGCTGTTCCTGTCCCCGAAAAACAACCTCTTACCCAACACCA AGGCCCTATCCAAAACCTGCACCTTCCAGCGGGAAAGACTACGTG**TGA**CACAGAGGCAAAAG GAGAAAATCATGTTGAAACAAACCGAAAATGGACATTGAGATACTATCATTAACATTAGGAC ACCCATGTGTTAAAATACTCAGTGCTAAACATGGCTTAATCTTATTTTATCTTCCTCA ATATAGGAGGGAAGATTTTTCCATTTGTATTACTGCTTCCCATTGAGTAATCATACTCAAAT GGGGGAAGGGGTGCTCCTTAAATATATATAGATATGTATATACATGTTTTTCTATTAAAA ATAGACAGTAAAATACTATTCTCATTATGTTGATACTAGCATACTTAAAATATCTCTAAAAT AGGTAAATGTATTTAATTCCATATTGATGAAGATGTTTATTGGTATATTTTCTTTTTCGTCC TTATATACATATGTAACAGTCAAATATCATTTACTCTTCATTAGCTTTGGGTGCCTTTG CCACAAGACCTAGCCTAATTTACCAAGGATGAATTCTTTCAATTCTTCATGCGTGCCCTTTT CATATACTTATTTTTTTTTTTACCATAATCTTATAGCACTTGCATCGTTATTAAGCCCCTTAT TTGTTTTGTGTTTCATTGGTCTCTATCTCCTGAATCTAACACATTTCATAGCCTACATTTTA GTTTCTAAAGCCAAGAAGAATTTATTACAAATCAGAACTTTGGAGGCAAATCTTTCTGCATG ACCAAAGTGATAAATTCCTGTTGACCTTCCCACACAATCCCTGTACTCTGACCCATAGCACT CTTGTTTGCTTTGAAAATATTTGTCCAATTGAGTAGCTGCATGCTGTTCCCCCAGGTGTTGT AACACAACTTTATTGATTGAATTTTTAAGCTACTTATTCATAGTTTTATATCCCCCCTAAACT ACCTTTTTGTTCCCCATTCCTTAATTGTATTGTTTTCCCAAGTGTAATTATCATGCGTTTTA TATCTTCCTAATAAGGTGTGGTCTGTTTGTCTGAACAAGTGCTAGACTTTCTGGAGTGATA ATCTGGTGACAAATATTCTCTCTGTAGCTGTAAGCAAGTCACTTAATCTTTCTACCTCTTTT TTCTATCTGCCAAATTGAGATAATGATACTTAACCAGTTAGAAGAGGTAGTGTGAATATTAA TTAGTTTATTACTCTTATTCTTTGAACATGAACTATGCCTATGTAGTGTCTTTATTTGCT CAGCTGGCTGAGACACTGAAGAAGTCACTGAACAAAACCTACACGCTACCTTCATGTGATT CACTGCCTTCCTCTCTACCAGTCTATTTCCACTGAACAAAACCTACACACATACCTTCAT GTGGTTCAGTGCCTTCTCTCTCTCCAGTCTATTTCCACTGAACAAAACCTACGCACATAC CTTCATGTGGCTCAGTGCCTTCTCTCTCTACCAGTCTATTTCCATTCTTTCAGCTGTGTCT GACATGTTTGTGCTCTGTTCCATTTTAACAACTGCTCTTACTTTTCCAGTCTGTACAGAATG CTATTTCACTTGAGCAAGATGATGTAATGGAAAGGGTGTTGGCACTGGTGTCTGGAGACCTG GATTTGAGTCTTGGTGCTATCAATCACCGTCTGTGTTTTGAGCAAGGCATTTGGCTGCTGTAA GCTTATTGCTTCATCTGTAAGCGGTGGTTTGTAATTCCTGATCTTCCCACCTCACAGTGATG TTGTGGGGATCCAGTGAGATAGAATACATGTAAGTGTGGTTTTGTAATTTAAAAAGTGCTAT ACTAAGGGAAAGAATTGAGGAATTAACTGCATACGTTTTGGTGTTTGCTTTTCAAATGTTTGA AAATAAAAAAATGTTAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52185</pre>

><subunit 1 of 1, 211 aa, 1 stop

><MW: 22744, pI: 8.51, NX(S/T): 1

MANAGLQLLGFILAFLGWIGAIVSTALPQWRIYSYAGDNIVTAQAMYEGLWMSCVSQSTGQI QCKVFDSLLNLSSTLQATRALMVVGILLGVIAIFVATVGMKCMKCLEDDEVQKMRMAVIGGA IFLLAGLAILVATAWYGNRIVQEFYDPMTPVNARYEFGQALFTGWAAASLCLLGGALLCCSC PRKTTSYPTPRPYPKPAPSSGKDYV

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-102, 118-142 and 161-187

N-glycosylation site.

amino acids 72-75

PMP-22 / EMP / MP20 family proteins

amino acids 70-111

ABC-2 type transport system integral membrane protein

amino acids 119-133

GGGCCCGACCATTATCCAACCGGGNTCACTGTTGGCTCATCTCCCTCCTGGATGAANCGCGC
CATCNTCAGACTCCCTGCCCCATGGAGATTTNNCCTATGCTGGCGACAACATCNTGACCCCC
AGCCATGTACGAGGGGCTTTGAACGTCNGCGTGTCGCAGANCACCGGGCAGATCCAGTGCAA
AGTCTTTGACTCCTTGCTGAATCTGNGCAGCACATTGCAGCAACCCNTGCCCTGATGGTGGT
TGGCATCCTCCTGGGAGTGATAGCAATCTTTGTGGCCACCGTTGGCATGAAGTGTATGAAGT
GCTTGGAAGACGATGAGGTGCAGAAGATGAGGATGGCTGTCATTGGGGGGCGCGATATTTCTT
CTTGCAGGTCTGGCTATTTNNNGTTGCCACAGCATGGTATGGCAATAGAATCGTTCAAGAAT
TCTATGACCCTATGACCCCAGTCAATGCCAGGTACGAATTTGGTCAGGCTCTCTTCACTGGC
TGGGCTGCTGCTTCTTCTCTCTCTGCGTAGGAGGTGCCCTACTTTGCTGTTCCTGCGA

 ${\tt TCATAGGGGGGGGGGGGATATTTTTCTTGCAGGTNTGGTTATTTTAGTTGCCACAGCATGGTA} \\ {\tt TGGCAATAGAATCGTTCAAGAATTNTATGACCCTATGACCCCAGTCAATGCCAGGTACGAAT} \\ {\tt TTGGTCAGGCTCTNTTCACTGGNTGGGCTGCTGCTTCTNTNNGCCTTNTGGGAGGTGCCCTACTTTGCTGTTCCTG} \\ {\tt CTTTGCTGTTCCTG} \\$

GCGTGCCGTCAGCTCGCCGGGCACCGCGGCCTCGCCCTCGCCCCTGCGCCTGCAC ACCGGTCCCCGCCTTTTTGTAAAACTTAAAGCGGGCGCAGCATTAACGCTTCCCGCCCCGGT GACCTCTCAGGGGTCTCCCCGCCAAAGGTGCTCCGCCGCTAAGGAACATGGCGAAGGTGGAG CAGGTCCTGAGCCTCGAGCCGCAGCACGAGCTCAAATTCCGAGGTCCCTTCACCGATGTTGT CACCACCAACCTAAAGCTTGGCAACCCGACAGACCGAAATGTGTGTTTTAAGGTGAAGACTA CAGCACCACGTAGGTACTGTGTGAGGCCCAACAGCGGAATCATCGATGCAGGGGCCTCAATT AATGTATCTGTGATGTTACAGCCTTTCGATTATGATCCCAATGAGAAAAGTAAACACAAGTT TATGGTTCAGTCTATGTTTGCTCCAACTGACACTTCAGATATGGAAGCAGTATGGAAGGAGG CAAAACCGGAAGACCTTATGGATTCAAAACTTAGATGTGTGTTTGAATTGCCAGCAGAGAAT GATAAACCACATGATGTAGAAATAAATAAAATTATATCCACAACTGCATCAAAGACAGAAAC ACCAATAGTGTCTAAGTCTCTGAGTTCTTTTTGGATGACACCGAAGTTAAGAAGGTTATGG AAGAATGTAAGAGGCTGCAAGGTGAAGTTCAGAGGCTACGGGAGGAGAACAAGCAGTTCAAG GAAGAAGATGGACTGCGGATGAGGAAGACAGTGCAGAGCAACAGCCCCATTTCAGCATTAGC CCCAACTGGGAAGAAGAAGGCCTTAGCACCCGGCTCTTGGCTCTGGTGGTTTTTGTTCTTTA ${\tt TCGTTGGTGTAATTATTGGGAAGATTGCCTTG} {\tt TAG} {\tt AGGTAGCATGCACAGGATGGTAAATTG}$ GATTGGTGGATCCACCATATCATGGGATTTAAATTTATCATAACCATGTGTAAAAAGAAATT AGATACACACACAAATATAATGTAACGATCTTTTAGAAAGTTAAAAATGTATAGTAACTG ATTGAGGGGGAAAAAGAATGATCTTTATTAATGACAAGGGAAACCATGAGTAATGCCACAAT GGCATATTGTAAATGTCATTTTAAACATTGGTAGGCCTTGGTACATGATGCTGGATTACCTC TCTTAAAATGACACCCTTCCTCGCCTGTTGGTGCTGGCCCTTTGGGGAGCTGGAGCCCAGCAT GCTGGGGAGTGCGGTCAGCTCCACAGTAGTCCCCACGTGGCCCACTCCCGGCCCAGGCTG CTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTGATGAACAGAGTCAGA AGCCCAAAGGAATTGCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTGTGT TGACTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGACCAA GCTAAATTTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTTAATGCATA TTTAACTTATTTAATGTATTTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAATGC TGCGTGCTGAACTCTGTTGGGTGAACTGGTATTGCTGCTGGAGGGCTGTGGGCTCCTCT GTCTCTGGAGAGTCTGGTCATGTGGAGGTGGGGTTTATTGGGATGCTGGAGAAGAGCTGCCA CCACCTCTCAACCATTACTCACACTTCCAGCGCCCAGGTCCAAGTCTGAGCCTGACCTCCCC TTGGGGACCTAGCCTGGAGTCAGGACAAATGGATCGGGCTGCAGAGGGTTAGAAGCGAGGGC ACCAGCAGTTGTGGGTGGGGAGCAAGGGAAGAGAGAAACTCTTCAGCGAATCCTTCTAGTAC TAGTTGAGAGTTTGACTGTGAATTAATTTTATGCCATAAAAGACCAACCCAGTTCTGTTTGA CTATGTAGCATCTTGAAAAGAAAATTATAATAAAGCCCCCAAAATTAAGAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53977</pre>

<subunit 1 of 1, 243 aa, 1 stop

<MW: 27228, pI: 7.43, NX(S/T): 2

MAKVEQVLSLEPQHELKFRGPFTDVVTTNLKLGNPTDRNVCFKVKTTAPRRYCVRPNSGIID AGASINVSVMLQPFDYDPNEKSKHKFMVQSMFAPTDTSDMEAVWKEAKPEDLMDSKLRCVFE LPAENDKPHDVEINKIISTTASKTETPIVSKSLSSSLDDTEVKKVMEECKRLQGEVQRLREE NKQFKEEDGLRMRKTVQSNSPISALAPTGKEEGLSTRLLALVVLFFIVGVIIGKIAL

Important features:

Transmembrane domain:

amino acids 224-239

N-glycosylation site.

amino acids 68-71

N-myristoylation site.

amino acids 59-64, 64-69 and 235-240

TATTGTAAAGGCCATTTTAAACCATTGGTAGGCCTTGGTACATGATGCTGGATTACCTCCTT

AAATGACACCNTTCCTCGCCTGTTGGTGCTGGCCNTTGGGGAGCCCCAGCATGCTG
GGGAGTGCGGTCAGCTCCACACAGTAGTCCCCACGTGGCCCACTCCCGGCCCAGGCTGCTTT
CCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTGATGAACAGAGTCAGAAGCC
CAAAGGAATTGCCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTGTTTGA
CTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTTCTTATTCACTTAAAGGGACCAAGCT
AAATTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTAATGCATATTTA
ACTTATTTAATGTATTTCATCTCATGTTTTCTTTATTGTCACAAGAGTACAGTTAATGCTGCG
TGCTGCTGAACTCTGTTGGGGTGAACTGGTATTGCTGCTGGAGGGCTG

CCCTGGTGGTTTTGTTCTTTAATTCGTTGGTGTAATTNTTGGGAAGATTGCTTGTAGAGGTA
GNATGCACCNGGCTGGTAAATTGGATTGGTGGATCCACCATATCCATGGGATTTAAATTTAT
CATAACCATGTGTAAAAAGAAATTAATGTATGATGACATNTCACAGGTATTGCCTTTAAATT
ACCCATCCCTGNANACACATACACAGATACACANANACAAATNTAATGTAACGATNTTTTAG
AAAGTTAAAAATGTATAGTAAC

TGCTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTTGATGAACAGAGTC
AGAAGCCCAAAGGAATTGCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTG
TGTTGACTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGAC
CAAGCTAAATTTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTTAATGC
ATATTTAACTTATTTAATGTATTTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAA
TGCTGCGTGC

AAACCTTTAAAAGTTGAGGGGAAAAGAATGATCCTTTATTAATGACAAGGGAAACCNTGNGT
AATGCCACAATGGCATATTGTAAATGTCATTTTAAACATTGGTAGGCCTTGGTACATGATGC
TGGATTACCTCTCTTAAAATGACACCCTTCCTCGCCTGTTGGTGCCCTTTGGGGAGCTN
GAGCCCAGCATGCTGGGGAGTGCGGTCTGCTCCACACAGTAGTCCCCANGTGGCCCANTCCC
GGCCCAGGCTGCTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGANTGATGA
ACAGAGTCAGAAGCCCAAAGGAATTGCANTGTGGCAGCATCAGANGTANTNGTCATAAGTGA
GAGGCGTGTTTGANTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCANTT
AAAGGGNCCAAGNTAAATTTGTATTGGTTCATGTAGTGAAGTCAAANTGTTATTCAGAGATG
TTTAATGCATATTTAANTTATTTAATGTATTTCATNTCATGTTTTCTTATTGTCACAAGGGT
ACAGTTAATGCTGCGTGCTGCAANTCTGTTGGGTGAANTGGTATTGCTG

GGCTCCCAGCTGCAGCGTCCCCGCCCGCCTCCTCGGGAGCTCTGATCTCAGCTGACAGTGCC $\tt CTCGGGGACCAAACAAGCCTGGCAGGTCTCACTTTGTTGCCCAGGCTGGAGTTCAGTGCCA$ ${\tt TGATCATGGTTTACTGCAGCCTTGACCTCCTGGGTTCAAGCGATCCTGCTGAGTAGCTGGGA}$ $\tt CTACAGGACAAAATTAGAAGATCAAA{\color{red} ATG} GAAAATATGCTGCTTTGGTTGATATTTTTCACC$ GGTACCCCGGATTGTCAGTGAAAGGACTTTCCATCTCACCAGCCCCGCATTTGAGGCAGATG CTTTCTGAATTGGAGGATTATCTTTCCTATGAGACTGTCTTTGAGAATGGCACCCGAACCTT AACCAGGGTGAAAGTTCAAGATTTGGTTCTTGAGCCGACTCAAAATATCACCACAAAGGGAG TATCTGTTAGGAGAAAGAGACAGGTGTATGGCACCGACAGCAGGTTCAGCATCTTGGACAAA AGGTTCTTAACCAATTTCCCTTTCAGCACAGCTGTGAAGCTTTCCACGGGCTGTAGTGGCAT TCTCATTTCCCCTCAGCATGTTCTAACTGCTGCCCACTGTGTTCATGATGGAAAGGACTATG TCAAAGGGAGTAAAAAGCTAAGGGTAGGGTTGTTGAAGATGAGGAATAAAAGTGGAGGCAAG AAACGTCGAGGTTCTAAGAGGAGCAGGAGAGAGCTAGTGGTGGTGACCAAAGAGAGGGTAC AGAGGATTGCCGAAGGGAGGCCTTCCTTTCAGTGGACCCGGGTCAAGAATACCCACATTCCG AAGGGCTGGGCACGAGGAGGCATGGGGGACGCTACCTTGGACTATGACTATGCTCTTCTGGA GCTGAAGCGTGCTCACAAAAAGAAATACATGGAACTTGGAATCAGCCCAACGATCAAGAAA TGCCTGGTGGAATGATCCACTTCTCAGGATTTGATAACGATAGGGCTGATCAGTTGGTCTAT CGGTTTTGCAGTGTCCGACGAATCCAATGATCTCCTTTACCAATACTGCGATGCTGAGTC GGGCTCCACCGGTTCGGGGGTCTATCTGCGTCTGAAAGATCCAGACAAAAAGAATTGGAAGC GCAAAATCATTGCGGTCTACTCAGGGCACCAGTGGGTGGATGTCCACGGGGTTCAGAAGGAC TACAACGTTGCTGTTCGCATCACTCCCCTAAAATACGCCCAGATTTGCCTCTGGATTCACGG GAACGATGCCAATTGTGCTTACGGC**TAA**CAGAGACCTGAAACAGGGCGGTGTATCATCTAAA TCACAGAGAAAACCAGCTCTGCTTACCGTAGTGAGATCACTTCATAGGTTATGCCTGGACTT GAACTCTGTCAATAGCATTTCAACATTTTTCAAAATCAGGAGATTTTCGTCCATTTAAAAAA TGTATAGGTGCAGATATTGAAACTAGGTGGGCACTTCAATGCCAAGTATATACTCTTCTTA CATGGTGATGAGTTTCATTTGTAGAAAATTTTGTTGCCTTCTTAAAAATTAGACACACTTT AAACCTTCAAACAGGTATTATAAATAACATGTGACTCCTTAATGGACTTATTCTCAGGGTCC TACTCTAAGAAGAATCTAATAGGATGCTGGTTGTGTATTAAATGTGAAATTGCATAGATAAA GGTAGATGGTAAAGCAATTAGTATCAGAATAGAGACAGAAAGTTACAACACAGTTTGTACTA CTCTGAGATGGATCCATTCAGCTCATGCCCTCAATGTTTATATTGTGTTATCTGTTTGGGTCT CAAAACTAATAACTGTTTTACTGCTTTAAGAAATAACAATTACAATGTGTATTATTAAAAA TGGGAGAAATAGTTTGTTCTATGAAATAAACCTAGTTTAGAAATAGGGAAGCTGAGACATTT TAAGATCTCAAGTTTTTATTTAACTAATACTCAAAATATGGACTTTTCATGTATGCATAGGG AAGACACTTCACAAATTATGAATGATCATGTGTTGAAAGCCACATTATTTTATGCTATACAT CTTTTTCTCCTTGACAAAATCCAGCTTTTGTATGAGGACTATAGGGTGAATTCTCTGATTAG TAATTTTAGATATGTCCTTTCCTAAAAATGAATAAAATTTATGAATATGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57253</pre>

<subunit 1 of 1, 413 aa, 1 stop

<MW: 47070, pI: 9.92, NX(S/T): 3

MENMLLWLIFFTPGWTLIDGSEMEWDFMWHLRKVPRIVSERTFHLTSPAFEADAKMMVNTVC GIECQKELPTPSLSELEDYLSYETVFENGTRTLTRVKVQDLVLEPTQNITTKGVSVRRKRQV YGTDSRFSILDKRFLTNFPFSTAVKLSTGCSGILISPQHVLTAAHCVHDGKDYVKGSKKLRV GLLKMRNKSGGKKRRGSKRSRREASGGDQREGTREHLQERAKGGRRRKKSGRGQRIAEGRPS FQWTRVKNTHIPKGWARGGMGDATLDYDYALLELKRAHKKKYMELGISPTIKKMPGGMIHFS GFDNDRADQLVYRFCSVSDESNDLLYQYCDAESGSTGSGVYLRLKDPDKKNWKRKIIAVYSG HQWVDVHGVQKDYNVAVRITPLKYAQICLWIHGNDANCAYG

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 90-93, 110-113 and 193-196

Glycosaminoglycan attachment site.

amino acids 236-239

Serine proteases, trypsin family, histidine active site.

amino acids 165-170

AATGTGAGAGGGGCTGATGGAAGCTGATAGGCAGGACTGGAGTGTTAGCACCAGTACTGGAT GTGACAGCAGGCAGAGGACCACTTAGCAGCTTATTCAGTGTCCGATTCTGATTCCGGCAAGG ATCCAAGC<u>ATG</u>GAATGCTGCCGTCGGGCAACTCCTGGCACACTGCTCCTCTTTCTGGCTTTC CTGCTCCTGAGTTCCAGGACCGCACGCTCCGAGGAGGACCGGGACGGCCTATGGGATGCCTG GCCTGAGCAGCAGGAGCTGTGAAGGAAGAATATCCGATACAGAACATGCAGTAATGTGGAC TGCCCACCAGAAGCAGGTGATTTCCGAGCTCAGCAATGCTCAGCTCATAATGATGTCAAGCA CCATGGCCAGTTTTATGAATGGCTTCCTGTGTCTAATGACCCTGACAACCCATGTTCACTCA AGTGCCAAGCCAAAGGAACACCCTGGTTGTTGAACTAGCACCTAAGGTCTTAGATGGTACG CGTTGCTATACAGAATCTTTGGATATGTGCATCAGTGGTTTATGCCAAATTGTTGGCTGCGA TCACCAGCTGGGAAGCACCGTCAAGGAAGATAACTGTGGGGTCTGCAACGGAGATGGGTCCA CCTGCCGGCTGGTCCGAGGGCAGTATAAATCCCAGCTCTCCGCAACCAAATCGGATGATACT GTGGTTGCACTTCCCTATGGAAGTAGACATATTCGCCTTGTCTTAAAAGGTCCTGATCACTT ATATCTGGAAACCAAAACCCTCCAGGGGACTAAAGGTGAAAACAGTCTCAGCTCCACAGGAA CTTTCCTTGTGGACAATTCTAGTGTGGACTTCCAGAAATTTCCAGACAAAGAGATACTGAGA ATGGCTGGACCACTCACAGCAGATTTCATTGTCAAGATTCGTAACTCGGGCTCCGCTGACAG CTTGCTCAGCAACCTGTGGAGGAGGTTATCAGCTGACATCGGCTGAGTGCTACGATCTGAGG AGCAACCGTGTGGTTGCTGACCAATACTGTCACTATTACCCAGAGAACATCAAACCCAAACC CAAGCTTCAGGAGTGCAACTTGGATCCTTGTCCAGCCAGTGACGGATACAAGCAGATCATGC CTTATGACCTCTACCATCCCCTTCCTCGGTGGGAGGCCACCCCATGGACCGCGTGCTCCTCC TCGTGTGGGGGGGCATCCAGAGCCGGCAGTTTCCTGTGTGGAGGAGGACATCCAGGGGCA TGTCACTTCAGTGGAAGAGTGGAAATGCATGTACACCCCTAAGATGCCCATCGCGCAGCCCT GCAACATTTTTGACTGCCCTAAATGGCTGGCACAGGAGTGGTCTCCGTGCACAGTGACATGT GGCCAGGGCCTCAGATACCGTGTGGTCCTCTGCATCGACCATCGAGGAATGCACACAGGAGG CTGTAGCCCAAAAACAAGCCCCACATAAAAGAGGAATGCATCGTACCCACTCCCTGCTATA AACCCAAAGAGAAACTTCCAGTCGAGGCCAAGTTGCCATGGTTCAAACAAGCTCAAGAGCTA ${\tt GAAGAAGGAGCTGTGTCAGAGGAGCCCTCG} {\tt TAA}{\tt GTTGTAAAAGCACAGACTGTTCTATA}$ TTTGAAACTGTTTTGTTTAAAGAAAGCAGTGTCTCACTGGTTGTAGCTTTCATGGGTTCTGA AAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58847</pre>

<subunit 1 of 1, 525 aa, 1 stop

<MW: 58416, pI: 6.62, NX(S/T): 1

MECCRRATPGTLLLFLAFLLLSSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRCLS
SKSCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYEWLPVSNDPDNPCSLKCQ
AKGTTLVVELAPKVLDGTRCYTESLDMCISGLCQIVGCDHQLGSTVKEDNCGVCNGDGSTCR
LVRGQYKSQLSATKSDDTVVALPYGSRHIRLVLKGPDHLYLETKTLQGTKGENSLSSTGTFL
VDNSSVDFQKFPDKEILRMAGPLTADFIVKIRNSGSADSTVQFIFYQPIIHRWRETDFFPCS
ATCGGGYQLTSAECYDLRSNRVVADQYCHYYPENIKPKPKLQECNLDPCPASDGYKQIMPYD
LYHPLPRWEATPWTACSSSCGGGIQSRAVSCVEEDIQGHVTSVEEWKCMYTPKMPIAQPCNI
FDCPKWLAQEWSPCTVTCGQGLRYRVVLCIDHRGMHTGGCSPKTKPHIKEECIVPTPCYKPK
EKLPVEAKLPWFKQAQELEEGAAVSEEPS

Important features:

Signal peptide:

amino acids 1-25

N-glycosylation site.

amino acids 251-254

Thrombospondin 1

amino acids 385-399

von Willebrand factor type C domain proteins

amino acids 385-399, 445-459 and 42-56

CGGACGCGTGGGCGGCTGCGGAACTCCCGTGGAGGGCCGGTGGGCCCTCGGGCCTGAC AGATGCCAGTGGCCACTGCGGCGGCAGTACTGGCCGCTCTGGGCGGGGGGCGCTGTGGCCG GCCCGCCGGTTCGTGGGGCCCAGGGTCCAGCGGCTGCGCAGAGGCGGGGACCCCGGCCTCAT GCACGGGAAGACTGTGCTGATCACCGGGGCGAACAGCGGCCTGGGCCGCGCCACGGCCGCCG GCGCGGGTCAGCTCCGCCGCGAGCTCCGCCAGGCCGCGGAGTGCGGCCCAGAGCCTGGCGT CAGCGGGGTGGCCGAGCTCATAGTCCGGGAGCTGGACCTCGCCTCGCTGCGCTCGGTGCGCG CCTTCTGCCAGGAAATGCTCCAGGAAGAGCCTAGGCTGGATGTCTTGATCAATAACGCAGGG ATCTTCCAGTGCCCTTACATGAAGACTGAAGATGGGTTTGAGATGCAGTTCGGAGTGAACCA TCTGGGGCACTTTCTACTCACCAATCTTCTCCTTGGACTCCTCAAAAGTTCAGCTCCCAGCA GGATTGTGGTAGTTTCTTCCAAACTTTATAAATACGGAGACATCAATTTTGATGACTTGAAC AGTGAACAAAGCTATAATAAAAGCTTTTGTTATAGCCGGAGCAAACTGGCTAACATTCTTTT TACCAGGGAACTAGCCCGCCGCTTAGAAGGCACAAATGTCACCGTCAATGTGTTGCATCCTG GTATTGTACGGACAAATCTGGGGAGGCACATACACATTCCACTGTTGGTCAAACCACTCTTC GGCCTCTTCACCTGAGGTAGAAGGAGTGTCAGGAAGATACTTTGGGGATTGTAAAGAGGAAG AACTGTTGCCCAAAGCTATGGATGAATCTGTTGCAAGAAAACTCTGGGATATCAGTGAAGTG ATGGTTGGCCTGCTAAAA**TAG**GAACAAGGAGTAAAAGAGCTGTTTATAAAACTGCATATCAG TTATATCTGTGATCAGGAATGGTGTGGGATTGAGAACTTGTTACTTGAAGAAAAAGAATTTTG ATATTGGAATAGCCTGCTAAGAGGTACATGTGGGTATTTTGGAGTTACTGAAAAATTATTTT GTACAATGAAAAATACAATTATATTGTAAAATTATAACTGGGCAAGCATGGATGACATATTA ATATTTGTCAGAATTAAGTGACTCAAAGTGCTATCGAGAGGTTTTTCAAGTATCTTTGAGTT ${\sf TCATGGCCAAAGTGTTAACTAGTTTTACTACAATGTTTGGTGTTTGTGTGGAAATTATCTGC}$ CTGGTGTGCACACAGTCTTACTTGGAATAAATTTACTGGTAC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58747</pre>

<subunit 1 of 1, 336 aa, 1 stop

<MW: 36865, pI: 9.15, NX(S/T): 2

MAVATAAAVLAALGGALWLAARRFVGPRVQRLRRGGDPGLMHGKTVLITGANSGLGRATAAE LLRLGARVIMGCRDRARAEEAAGQLRRELRQAAECGPEPGVSGVGELIVRELDLASLRSVRA FCQEMLQEEPRLDVLINNAGIFQCPYMKTEDGFEMQFGVNHLGHFLLTNLLLGLLKSSAPSR IVVVSSKLYKYGDINFDDLNSEQSYNKSFCYSRSKLANILFTRELARRLEGTNVTVNVLHPG IVRTNLGRHIHIPLLVKPLFNLVSWAFFKTPVEGAQTSIYLASSPEVEGVSGRYFGDCKEEE LLPKAMDESVARKLWDISEVMVGLLK

Important features:

Signal peptide:

amino acids 1-21

Short-chain alcohol dehydrogenase family protein amino acids 134-144, 44-56 and 239-248

N-glycosylation site.

amino acids 212-215 and 239-242

GAGAGGACGAGGTGCCGCTGCCTGGAGAATCCTCCGCTGCCGTCGGCTCCCGGAGCCCAGCC $\mathsf{CCCAGCGTTACC}$ GCTCCTGGTAACTTGGGTTTTTACTCCTGTAACAACTGAAATAACAAGTCTTGCTACAGAGA ATATAGATGAAATTTTAAACAATGCTGATGTTGCTTTAGTAAATTTTTATGCTGACTGGTGT CGTTTCAGTCAGATGTTGCATCCAATTTTTGAGGAAGCTTCCGATGTCATTAAGGAAGAATT TCCAAATGAAAATCAAGTAGTGTTTGCCAGAGTTGATTGTGATCAGCACTCTGACATAGCCC AGAGATACAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAATGGGATGATGAAG AGAGAATACAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTACATCAGGCAACAAAAAG TGACCCCATTCAAGAAATTCGGGACTTAGCAGAAATCACCACTCTTGATCGCAGCAAAAGAA ATATCATTGGATATTTTGAGCAAAAGGACTCGGACAACTATAGAGTTTTTGAACGAGTAGCG AATATTTTGCATGACTGTGCCTTTCTTCTGCATTTGGGGATGTTTCAAAACCGGAAAG ATATAGTGGCGACAACATAATCTACAAACCACCAGGGCATTCTGCTCCGGATATGGTGTACT TGGGAGCTATGACAAATTTTGATGTGACTTACAATTGGATTCAAGATAAATGTGTTTCCTCTT GTCCGAGAAATAACATTTGAAAATGGAGAGGAATTGACAGAAGAAGGACTGCCTTTTCTCAT ACTCTTTCACATGAAAGAAGATACAGAAAGTTTAGAAATATTCCAGAATGAAGTAGCTCGGC AATTAATAAGTGAAAAAGGTACAATAAACTTTTTACATGCCGATTGTGACAAATTTAGACAT CCTCTTCTGCACATACAGAAAACTCCAGCAGATTGTCCTGTAATCGCTATTGACAGCTTTAG GCATATGTATGTGTTTTGGAGACTTCAAAGATGTATTAATTCCTGGAAAACTCAAGCAATTCG TATTTGACTTACATTCTGGAAAACTGCACAGAGAATTCCATCATGGACCTGACCCAACTGAT ACAGCCCCAGGAGAGCCCAAGATGTAGCAAGCAGTCCACCTGAGAGCTCCTTCCAGAA ACTAGCACCCAGTGAATATAGGTATACTCTATTGAGGGATCGAGATGAGCTT**TAA**AAACTTG AAAAACAGTTTGTAAGCCTTTCAACAGCAGCATCAACCTACGTGGTGGAAATAGTAAACCTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57689</pre>

<subunit 1 of 1, 406 aa, 1 stop

<MW: 46927, pI: 5.21, NX(S/T): 0

MHPAVFLSLPDLRCSLLLLVTWVFTPVTTEITSLATENIDEILNNADVALVNFYADWCRFSQ
MLHPIFEEASDVIKEEFPNENQVVFARVDCDQHSDIAQRYRISKYPTLKLFRNGMMMKREYR
GQRSVKALADYIRQQKSDPIQEIRDLAEITTLDRSKRNIIGYFEQKDSDNYRVFERVANILH
DDCAFLSAFGDVSKPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWIQDKCVPLVREI
TFENGEELTEEGLPFLILFHMKEDTESLEIFQNEVARQLISEKGTINFLHADCDKFRHPLLH
IQKTPADCPVIAIDSFRHMYVFGDFKDVLIPGKLKQFVFDLHSGKLHREFHHGPDPTDTAPG
EQAQDVASSPPESSFQKLAPSEYRYTLLRDRDEL

Important features:

Signal peptide:

amino acids 1-29

Endoplasmic reticulum targeting sequence.

amino acids 403-406

Tyrosine kinase phosphorylation site.

amino acids 203-211

Thioredoxin family proteins

amino acids 50-66

ATTAAGGAAGAATTCCAAATGAAAATCAAGTAGTNTTTGCCAGAGTNGATTGTGATCAGCA CTCTGACATAGCCCAGAGATACAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAATG GGATGATGATGAAGAGAGAATACAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTA

CTGCCGCGCTCATCTTCTCGCCATTTGGCACATTATAGCATTTGATGAGCTGAAGACTGAT TACAAGAATCCTATAGACCAGTGTAATACCCTGAATCCCCTTGTACTCCCAGAGTACCTCAT CCACGCTTTCTTGTGTCATGTTTCTTTGTGCAGCAGAGTGGCTTACACTGGGTCTCAATA TGCCCCTCTTGGCATATCATATTTGGAGGTATATGAGTAGACCAGTGATGAGTGGCCCAGGA TGGTGAGCTCT**TAG**AACAACACACAGAAGAATTGGTCCAGTTAAGTGCATGCAAAAAGCCAC CAAATGAAGGGATTCTATCCAGCAAGATCCTGTCCAAGAGTAGCCTGTGGAATCTGATCAGT TACTTTAAAAAATGACTCCTTATTTTTTAAATGTTTCCACATTTTTTGCTTGTGGAAAGACTG TTTTCATATGTTATACTCAGATAAAGATTTTAAATGGTATTACGTATAAATTAATATAAAAT GATTACCTCTGGTGTTGACAGGTTTGAACTTGCACTTCTTAAGGAACAGCCATAATCCTCTG AATGATGCATTAATTACTGACTGTCCTAGTACATTGGAAGCTTTTGTTTATAGGAACTTGTA GGGCTCATTTTGGTTTCATTGAAACAGTATCTAATTATAAATTAGCTGTAGATATCAGGTGC TTCTGATGAAGTGAAAATGTATATCTGACTAGTGGGAAACTTCATGGGTTTCCTCATCTGTC ATGTCGATGATTATATGGATACATTTACAAAAATAAAAAGCGGGAATTTTCCCTTCGCTT GAATATTATCCCTGTATATTGCATGAATGAGAGATTTCCCATATTTCCATCAGAGTAATAAA TATACTTGCTTTAATTCTTAAGCATAAGTAAACATGATATAAAAAATATATGCTGAATTACTT AAATTGGTTATTATGCTTACTGTTCTAATCTGGTGGTAAAGGTATTCTTAAGAATTTGCAGG TACTACAGATTTTCAAAACTGAATGAGAGAAAATTGTATAACCATCCTGCTGTTCCTTTAGT GCAATACAATAAAACTCTGAAATTAAGACTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23330</pre>

<subunit 1 of 1, 144 aa, 1 stop</pre>

<MW: 16699, pI: 5.60, NX(S/T): 0

MAFTFAAFCYMLALLLTAALIFFAIWHIIAFDELKTDYKNPIDQCNTLNPLVLPEYLIHAFF CVMFLCAAEWLTLGLNMPLLAYHIWRYMSRPVMSGPGLYDPTTIMNADILAYCQKEGWCKLA FYLLAFFYYLYGMIYVLVSS

Important features:

Signal peptide:

amino acids 1-20

Type II transmembrane domain:

amino acids 11-31

Other transmembrane domain:

amino acids 57-77 and 123-143

ATTATAGCATTTGATGAGCTGAAGACTGATTACAAGATCCTATAGACCAGTGTAATACCCTG

AATCCCCTTGTACTCCCAGAGTACCTCATCCACGCTTTCTTCTGTGTCATGTTTCTTTGTGC

AGCAGAGTGGCTTACACTGGGTCTCAATATGCCCCTCTTGGCATATCATATTTGGAGGTATA

TGAGTAGACCAGTGATGAGTGGCCCAGGACTCTATGACCCTACAACCATCATGAATGCAGAT

ATTCTAGCATATTGTCAGAAGGAAGGATGGTGCAAATTAGCTTTTTATCTTCTAGCATTTTT

TTACTACCTATATGGCATGATCTATGTTTTGGTGAGCTCTTAGAACAACACACAGAAGAATT

GGTCCAGTTAAGTGCATGCAAAAAAGCCACCAAATGAAGGGATTCTATCCAGCAAGATCCTGT

CCAAGAGTAGCCTGTGGAATCTGATCAGTTACTTTAAAAAAATG

CGGACGCGTGGGGAAACCCTTCCGAGAAAACAGCAACAAGCTGAGCTGTGACAGAGGG GAACAAG**ATG**GCGGCGCCGAAGGGGAGCCTCTGGGTGAGGACCCAACTGGGGCTCCCGCCGC ${\tt TGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCGCTTCGGCTGAAGCATTTGACC}$ ${\tt TCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACAC}$ CTACCCTAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGTTGCAGGCTGTTTTCAATTTGTC AGTTTGTGGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACA GAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCC ATTCGCTGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTC CTCTAACTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGCACAGAGCTTCATAACC TCTTCATGGACTTTTTATCTTCAAGCCGATGACGGAAAAATAGTTATATTCCAGTCTAAGCC AGAAATCCAGTACGCACCACATTTGGAGCAGGAGCCTACAAATTTGAGAGAATCATCTCTAA GCAAAATGTCCTATCTGCAAATGAGAAATTCACAAGCGCACAGGAATTTTCTTGAAGATGGA GAAAGTGATGGCTTTTTAAGATGCCTCTCTCTTAACTCTGGGTGGATTTTAACTACAACTCT TGTCCTCTCGGTGATGGTATTGCTTTGGATTTGTTGTGCAACTGTTGCTACAGCTGTGGAGC CTAAACAGATATCCAGCTTCTTCTCTTGTGGTTGTTAGATCTAAAACTGAAGATCATGAAGA AGCAGGGCCTCTACCTACAAAAGTGAATCTTGCTCATTCTGAAAT**TTA**AGCATTTTTCTTTT AAAAGACAAGTGTAATAGACATCTAAAATTCCACTCCTCATAGAGCTTTTAAAATGGTTTCA TTGGATATAGGCCTTAAGAAATCACTATAAAATGCAAATAAAGTTACTCAAATCTGTG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA26847</pre>

<subunit 1 of 1, 323 aa, 1 stop</pre>

<MW: 36223, pI: 5.06, NX(S/T): 1

MAAPKGSLWVRTQLGLPPLLLLTMALAGGSGTASAEAFDSVLGDTASCHRACQLTYPLHTYP
KEEELYACQRGCRLFSICQFVDDGIDLNRTKLECESACTEAYSQSDEQYACHLGCQNQLPFA
ELRQEQLMSLMPKMHLLFPLTLVRSFWSDMMDSAQSFITSSWTFYLQADDGKIVIFQSKPEI
QYAPHLEQEPTNLRESSLSKMSYLQMRNSQAHRNFLEDGESDGFLRCLSLNSGWILTTTLVL
SVMVLLWICCATVATAVEQYVPSEKLSIYGDLEFMNEQKLNRYPASSLVVVRSKTEDHEEAG
PLPTKVNLAHSEI

Important features:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 241-260

N-glycosylation site.

amino acids 90-93

TTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACACCTACCC
TAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGGTTGCAGGCTGTTTTCAATTTGTCAGTTTG
TGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACAGAAGCA
TATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCCATTCGC
TGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTCCTCTAA
CTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGC

CACACTGGCCGGATCTTTTAGAGTCCTTTGACCTTGACCAAGGGTCNGGAAAACAGCAACAA
GCTGAGCTGCTGTGACAGAGGGAACAAGATGGCGCGCCGCAAGGGAGCCTTTGGGTGAGGAC
CCAACTGGGGCTCCCGCCGCTGCTGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCG
CTTCGGCTGAAGCATTTGACTCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAG
TTGACCTACCCCTTGCACACCCTAACGAAGAAGAGGAGTTGTACGCATGTCAGAAGAGTTG
CAGGCTGTTTTCAATTTGTCAGTTTGTGGATGATGAATTGACTTAAATCGAACTAAATTGG
AATGTGAATCTGCATGTACAGAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTT
GGTTGCCAGAATCAGCTGCCATTCGCTGAACTGAGACAACTTATGTCCCTGATGCC
AAAAATGCACCTACTCTTTCCTCTAACTCTGGTGAGGTCATTCTGGAGTGACATGATGACT

GCGAGGTGGCGATCGCTGAGAGGCAGGAGGCCGAGGCGGCCTGGGAGGCCCGGAGGT GGGGCGCCGCTGGGGCCCGCACGGGCTTCATCTGAGGGCGCACGGCCCGCGACCGAGC GTGCGGACTGCCTCCCAAGCGTGGGGCGACAAGCTGCCGGAGCTGCA**ATG**GGCCGCGGCTG GGGATTCTTGTTTGGCCTCCTGGGCGCCGTGTGGCTCCTCAGCTCGGGCCACGGAGAGGAGC AGCCCCGGAGACAGCGGCACAGAGGTGCTTCTGCCAGGTTAGTGGTTACTTGGATGATTGT ACCTGTGATGTTGAAACCATTGATAGATTTAATAACTACAGGCTTTTCCCAAGACTACAAAA ${\tt ACTTCTTGAAAGTGACTACTTTAGGTATTACAAGGTAAACCTGAAGAGGCCGTGTCCTTTCT}$ GGAATGACATCAGCCAGTGTGGAAGAAGGGACTGTGCTGAAACCATGTCAATCTGATGAA GTTCCTGATGGAATTAAATCTGCGAGCTACAAGTATTCTGAAGAAGCCAATAATCTCATTGA AGGCTGTTCTTCAGTGGACCAAGCATGATGATTCTTCAGATAACTTCTGTGAAGCTGATGAC ATTCAGTCCCCTGAAGCTGAATATGTAGATTTGCTTCTTAATCCTGAGCGCTACACTGGTTA CAAGGGACCAGATGCTTGGAAAATATGGAATGTCATCTACGAAGAAAACTGTTTTAAGCCAC AGACAATTAAAAGACCTTTAAATCCTTTGGCTTCTGGTCAAGGGACAAGTGAAGAGAACACT TTTTACAGTTGGCTAGAAGGTCTCTGTGTAGAAAAAAGAGCATTCTACAGACTTATATCTGG CCTACATGCAAGCATTAATGTGCATTTGAGTGCAAGATATCTTTTACAAGAGACCTGGTTAG AAAAGAAATGGGGACACAACATTACAGAATTTCAACAGCGATTTGATGGAATTTTGACTGAA GGAGAAGGTCCAAGAAGGCTTAAGAACTTGTATTTTCTCTACTTAATAGAACTAAGGGCTTT ATCCAAAGTGTTACCATTCTTCGAGCGCCCAGATTTTCAACTCTTTACTGGAAATAAAATTC AGGATGAGGAAAACAAAATGTTACTTCTGGAAATACTTCATGAAATCAAGTCATTTCCTTTG GTCTGTGGGGAAAGCTTCAGACTCAGGGTTTGGGCACTGCTCTGAAGATCTTATTTTCTGAG AAATTGATAGCAAATATGCCAGAAAGTGGACCTAGTTATGAATTCCATCTAACCAGACAAGA AATAGTATCATTATTCAACGCATTTGGAAGAATTTCTACAAGTGTGAAAGAATTAGAAAACT TCAGGAACTTGTTACAGAATATTCAT**TAA**AGAAAACAAGCTGATATGTGCCTGTTTCTGGAC AATGGAGGCGAAAGAGTGGAATTTCATTCAAAGGCATAATAGCAATGACAGTCTTAAGCCAA ACATTTTATATAAAGTTGCTTTTGTAAAGGAGAATTATATTGTTTTAAGTAAACACATTTTT AAAAATTGTGTTAAGTCTATGTATAATACTACTGTGAGTAAAAGTAATACTTTAATAATGTG AAAAAAAAAAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53974</pre>

<subunit 1 of 1, 468 aa, 1 stop

<MW: 54393, pI: 5.63, NX(S/T): 2

MGRGWGFLFGLLGAVWLLSSGHGEEQPPETAAQRCFCQVSGYLDDCTCDVETIDRFNNYRLF
PRLQKLLESDYFRYYKVNLKRPCPFWNDISQCGRRDCAVKPCQSDEVPDGIKSASYKYSEEA
NNLIEECEQAERLGAVDESLSEETQKAVLQWTKHDDSSDNFCEADDIQSPEAEYVDLLLNPE
RYTGYKGPDAWKIWNVIYEENCFKPQTIKRPLNPLASGQGTSEENTFYSWLEGLCVEKRAFY
RLISGLHASINVHLSARYLLQETWLEKKWGHNITEFQQRFDGILTEGEGPRRLKNLYFLYLI
ELRALSKVLPFFERPDFQLFTGNKIQDEENKMLLLEILHEIKSFPLHFDENSFFAGDKKEAH
KLKEDFRLHFRNISRIMDCVGCFKCRLWGKLQTQGLGTALKILFSEKLIANMPESGPSYEFH
LTRQEIVSLFNAFGRISTSVKELENFRNLLQNIH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 280-283 and 384-387

Amidation site.

amino acids 94-97

Glycosaminoglycan attachment site.

amino acids 20-23 and 223-226

Aminotransferases class-V pyridoxal-phosphate

amino acids 216-222

Interleukin-7 proteins

amino acids 338-343

AGTGAAGAAAACAGAAAAGGAGAGGGACAGAGGCCAGAGGACTTCTCATACTGGACAGAAAC CGATCAGGCATGGAACTCCCCTTCGTCACTCACCTGTTCTTGCCCCTGGTGTTCCTGACAGG TCTCTGCTCCCCCTTTAACCTGGATGAACATCACCCACGCCTATTCCCCAGGGCCACCAGAAG GCCCCTGGGATGGCCTTCAGGCGACCGGAGGGGGGACGTTTATCGCTGCCCTGTAGGGGG GGCCCACAATGCCCCATGTGCCAAGGGCCACTTAGGTGACTACCAACTGGGAAATTCATCTC ATCCTGCTGTGAATATGCACCTGGGGATGTCTCTGTTAGAGACAGATGGTGATGGGGGGATTC ATGGTGAGCTAAGGAGAGGGTGGTGGCAGTGTCTCTGAAGGTCCATAAAAGAAAAAAAGAAA GTGTGGTAAGGGAAAATGGTCTGTGTGGAGGGGTCAAGGAGTTAAAAACCCTAGAAAGCAAA AGGTAGGTAATGTCAGGGAGTAGTCTTCATGCCTCCTTCAACTGGGAGCATGTTCTGAGGGT GCCCTCCCAAGCCTGGGAGTAACTATTTCCCCCATCCCCAGGCCTGTGCCCCTCTCTGGTCT CGTGCTTGTGGCAGCTCTGTCTTCAGTTCTGGGATATGTGCCCGTGTGGATGCTTCATTCCA GCCTCAGGGAAGCCTGCCCACTGCCCAACGTGAGCCAGAGGAAGGCTGAGTACTTGGTT CCCAGAAGGAGATACTGGGTGGGAAAAAGATGGGGCAAAGCGGTATGATGCCTGGCAAAGGG CCTGCATGGCTATCCTCATTGCTACCTAATGTGCTTGCAAAAGCTCCATGTTTCCTAACAGA TTCAGACTCCTGGCCAGGTGTGGTGGCCCACACCTGTAATTCTAGCACTTTGGGAGGCCAAG GTGGGCAGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACTCCAT CTCTACTAAAAAAAAAAAAATACAAAAATTAGCTGGGTGCGCTAGTGCATGCCTGTAATCTC ATCTACTCGGGAGGCTAAGACAGGAGACTCTCACTTCAACCCAGGAGGTGGAGGTTGCGGTG AGCCAAGATTGTGCCTCTGCACTCTAGCGTGGGTGACAGAGTAAGCGAGACTCCATCTCAAA AATAATAATAATAATTCAGACTCCTTATCAGGAGTCCATGATCTGGCCTGGCACAGTAA CTCATGCCTGTAATCCCAACATTTTGGGAGGCCAACGCAGGAGGATTGCTTGAGGTCTGGAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57039</pre>

><subunit 1 of 1, 124 aa, 1 stop

><MW: 13352, pI: 5.99, NX(S/T): 1

MELPFVTHLFLPLVFLTGLCSPFNLDEHHPRLFPGPPEAEFGYSVLQHVGGGQRWMLVGAPW DGPSGDRRGDVYRCPVGGAHNAPCAKGHLGDYQLGNSSHPAVNMHLGMSLLETDGDGGFMVS

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 70-73

N-glycosylation site.

amino acids 98-101

Integrins alpha chain proteins

amino acids 67-81

AAAGTTACATTTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTG GGCAGAAAGGAGGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACA GAGATGGACAGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGAGTCTACCA $\mathtt{A} \underline{\mathbf{ATG}}\mathtt{CAGACTTTCACAATGGTTCTAGAAGAATCTGGACAAGTCTTTTCATGTGGTTTTTCT$ TCTGTACTCTCAACCAACATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGA AACAGTGTACTATTCTGTCGAATACCAGGGGGGAGTACGAGGCCTGTACACGAGCCACATCT GGATCCCCAGCAGCTGGTGCTCACTCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATC ACGGCCACTGTGCCATACAACCTTCGTGTCAGGGCCACATTGGGCTCACAGACCTCAGCCTG GAGCATCCTGAAGCATCCCTTTAATAGAAACTCAACCATCCTTACCCGACCTGGGATGGAGA TCACCAAAGATGGCTTCCACCTGGTTATTGAGCTGGAGGACCTGGGGCCCCAGTTTGAGTTC CTTGTGGCCTACTGGAGGAGGGAGCCTGGTGCCGAGGAACATGTCAAAATGGTGAGGAGTGG GGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGGCTGCATACTGTGTGAAGGCCCAGA GGAGAGGCCATTCCCCTGGTACTGGCCCTGTTTGCCTTTGTTGGCTTCATGCTGATCCTTGT GGTCGTGCCACTGTTCGTCTGGAAAATGGGCCGGCTGCTCCAGTACTCCTGTTGCCCCGTGG TGGTCCTCCCAGACACCTTGAAAATAACCAATTCACCCCAGAAGTTAATCAGCTGCAGAAGG GAGGAGGTGGATGCCTGTGCCACGGCTGTGATGTCTCCTGAGGAACTCCTCAGGGCCTGGAT ${\tt CTCA} \underline{{\tt TAG}} {\tt GTTTGCGGAAGGGCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGGAAACC}$ ATGAGGGGACAAGTTGTGTTTCTGTTTTCCGCCACGGACAAGGGATGAGAGAAGTAGGAAGA GCCTGTTGTCTACAAGTCTAGAAGCAACCATCAGAGGCAGGGTGGTTTGTCTAACAGAACAC CTGGGAAAAGTGACTTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACC TGTTTCTGGAGAGCAGGACATAAATGTATGATGAGAATGATCAAGGACTCTACACACTGGGT GGCTTGGAGAGCCCACTTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGG TGTTGAGTTCACTTCAAGCCCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGT AGGTGACCTGGAGGAAGGTCACAGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATC TGTTGGTAAAGTACAGAATTCAGCAAATAAAAAGGGCCACCCTGGCCAAAAGCGGTAAAAAA AAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57033</pre>

<subunit 1 of 1, 311 aa, 1 stop

<MW: 35076, pI: 5.04, NX(S/T): 2

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGE TVYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAW SILKHPFNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSG GIPVHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILV VVPLFVWKMGRLLQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation site.

amino acids 40-43 and 134-137

Tissue factor proteins.

amino acids 92-119

Integrins alpha chain proteins

amino acids 232-262

GGAGGTGAAGAAGGAGAGAGGGAGAAGAGGCAGGAGCTGGAAAGGAGAGAGGAGGAGGAG GAGGAGATGCGGGAGGCCTGGAGTTAGGTGGCTTGGGAGAGCTTAATGAAAAGAGAAC GGAGAGGAGGTGTGGGTTAGGAACCAAGAGGTAGCCCTGTGGGCAGCAGAAGGCTGAGAGGA GTAGGAAGATCAGGAGCTAGAGGGAGACTGGAGGGTTCCGGGAAAAGAGCAGAGGAAAGAGG AAAGACACAGAGAGACGGGAGAGAGAAGAGGGGTTTTGAAGGGCGGATCTCAGTCCCTG GCTGCTTTGGCATTTGGGGAACTGGGACTCCCTGTGGGGAGGAGGAGAGCTGGAAGTCCT GGAGGGACAGGGTCCCAGAAGGAGGGGGACAGAGGAGCTGAGAGAGGGGGGGCAGGGCGTTGGG CAGGGGTCCCTCGGAGGCCTCCTGGGGATGGGGGCTGCAGCTCGTCTGAGCGCCCCTCGAGC GCTGGTACTCTGGGCTGCACTGGGGGCAGCAGCTCACATCGGACCAGCACCTGACCCCGAGG ACTGGTGGAGCTACAAGGATAATCTCCAGGGAAACTTCGTGCCAGGGCCTCCTTTCTGGGGC CTGGTGAATGCAGCGTGGAGTCTGTGTGCTGTGGGGAAGCGGCAGAGCCCCGTGGATGTGGA GCTGAAGAGGGTTCTTTATGACCCCTTTCTGCCCCCATTAAGGCTCAGCACTGGAGGAGAGA GTGGTCAATGTGTCTGGAGGTCCCCTCCTTTACAGCCACCGACTCAGTGAACTGCGGCTGCT GTTTGGAGCTCGCGACGGAGCCGGCTCGGAACATCAGATCAACCACCAGGGCTTCTCTGCTG AGGTGCAGCTCATTCACCTACAGCAGGAACTCTACGGGAATTTCAGCGCTGCCTCCCGCGGC CCCAATGGCCTGGCCATTCTCAGCCTCTTTGTCAACGTTGCCAGTACCTCTAACCCATTCCT CAGTCGCCTCCTTAACCGCGACACCATCACTCGCATCTCCTACAAGAATGATGCCTACTTTC TTCAAGACCTGAGCCTGGAGCTCCTGTTCCCTGAATCCTTCGGCTTCATCACCTATCAGGGC TCTCTCAGCACCCCGCCCTGCTCCGAGACTGTCACCTGGATCCTCATTGACCGGGCCCTCAA TATCACCTCCCTTCAGATGCACTCCCTGAGACTCCTGAGCCAGAATCCTCCATCTCAGATCT TCCAGAGCCTCAGCGGTAACAGCCGGCCCCTGCAGCCCTTGGCCCACAGGGCACTGAGGGGC AACAGGGACCCCCGGCACCCCGAGAGGCGCTGCCGAGGCCCCAACTACCGCCTGCATGTGGA CCCACAAGGCGAGGGGAGTTACCCCTAAAACAAAGCTATTAAAGGGACAGAATACTTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34353</pre>

<subunit 1 of 1, 328 aa, 1 stop</pre>

<MW: 36238, pI: 9.90, NX(S/T): 3

MGAAARLSAPRALVLWAALGAAAHIGPAPDPEDWWSYKDNLQGNFVPGPPFWGLVNAAWSLC AVGKRQSPVDVELKRVLYDPFLPPLRLSTGGEKLRGTLYNTGRHVSFLPAPRPVVNVSGGPL LYSHRLSELRLLFGARDGAGSEHQINHQGFSAEVQLIHFNQELYGNFSAASRGPNGLAILSL FVNVASTSNPFLSRLLNRDTITRISYKNDAYFLQDLSLELLFPESFGFITYQGSLSTPPCSE TVTWILIDRALNITSLQMHSLRLLSQNPPSQIFQSLSGNSRPLQPLAHRALRGNRDPRHPER RCRGPNYRLHVDGVPHGR

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 177-199

N-glycosylation site.

amino acids 118-121, 170-173 and 260-263

Eukaryotic-type carbonic anhydrases proteins

amino acids 222-270, 128-164 and 45-92

GGCGCCTGGTTCTGCGCGTACTGGCTGTACGGAGCAGGAGCAAGAGGTCGCCGCCAGCCTCCGCCGCCGAGCCTC GTTCGTGTCCCCGCCCCTCGCTCCTGCAGCTACTGCTCAGAAACGCTGGGGCGCCCACCCTGGCAGACTAACGAA $\tt CGCAGAGGCGGAGGCTCGCGTATTCCTGCAGTCAGCACCCACGTCGCCCCCGGACGCTCGGTGCTCAGGCCCTTC$ CACCTCTCCCAGGAAACTTCACACTGGAGAGCCCAAAAGGAGTGGAAGAGCCTGTCTTGGAGATTTTCCTGGGGAA ${\tt ATCCTGAGGTCATTCATT} \underline{{\tt ATG}} {\tt AAGTGTACCGCGCGCGGGAGTGGCTCAGAGTAACCACAGTGCTGTTCATGGCTAGA}$ GCAATTCCAGCCATGGTGGTTCCCAATGCCACTTTATTGGAGAAACTTTTTGGAAAAATACATGGATGAGGATGGT GAGTGGTGGATAGCCAAACAACGAGGGAAAAGGGCCATCACAGACAATGACATGCAGAGTATTTTGGACCTTCAT AATAAATTACGAAGTCAGGTGTATCCAACAGCCTCTAATATGGAGTATATGACATGGGATGTAGAGCTGGAAAGA TTGGGAGCACACTGGGGAAGATATAGGCCCCCGACGTTTCATGTACAATCGTGGTATGATGAAGTGAAAGACTTT CAGGTCGTGTGGCCAACTAGTAACAGAATCGGTTGTGCCATTAATTTGTGTCATAACATGAACATCTGGGGGCAG $\hbox{ATATGGCCCAAAGCTGTCTACCTGGTGTGCAATTACTCCCCAAAGGGAAACTGGTGGGGCCATGCCCCTTACAAA}$ CATGGGCGGCCCTGTTCTGCCTGCCCACCTAGTTTTGGAGGGGGGCTGTAGAGAAAATCTGTGCTACAAAGAAGGG TCAGACAGGTATTATCCCCCTCGAGAAGAGGAAACAAATGAAATGAACGACAGCAGCAGTCACAAGTCCATGACACC CATGTCCGGACAAGATCAGATGATAGTAGCAGAAATGAAGTCATAAGCGCACAGCAAATGTCCCAAATTGTTTCT TGTGAAGTAAGATTAAGAGATCAGTGCAAAGGAACAACCTGCAATAGGTACGAATGTCCTGCTGGTTTTGGAT AGTAAAGCTAAAGTTATTGGCAGTGTACATTATGAAATGCAATCCAGCATCTGTAGAGCTGCAATTCATTATGGT ATAATAGACAATGATGGTGGCTGGGTAGATATCACTAGACAAGGAAGAAGCATTATTTCATCAAGTCCAATAGA AATGGTATTCAAACAATTGGCAAATATCAGTCTGCTAATTCCTTCACAGTCTCTAAAGTAACAGTTCAGGCTGTG ACTTGTGAAACAACTGTGGAACAGCTCTGTCCATTTCATAAGCCTGCTTCACATTGCCCAAGAGTATACTGTCCT CGTAACTGTATGCAAGCAAATCCACATTATGCTCGTGTAATTGGAACTCGAGTTTATTCTGATCTGTCCAGTATC TGCAGAGCAGCAGTACATGCTGGAGTGGTTCGAAATCACGGTGGTTATGTTGATGTAATGCCTGTGGACAAAAGA ${\tt AGAGTGTTTGCTGTTGTG} \underline{\textbf{TGA}} {\tt AACTGAATACTTGGAAGAGGACCATAAAGACTATTCCAAATGCAATATTTCTGA}$ ATTTTGTATAAAACTGTAACATTACTGTACAGAGTACATCAACTATTTTCAGCCCAAAAAGGTGCCAAATGCATA TAAATCTTGATAAACAAAGTCTATAAAATAAAACATGGGACATTAGCTTTGGGAAAAGTAATGAAAATATAATGG TTTTAGAAATCCTGTGTTAAATATTGCTATATTTTCTTAGCAGTTATTTCTACAGTTAATTACATAGTCATGATT GTTCTACGTTTCATATATTATTGTGTGCTTTGTATATGCCACTAATAAAATGAATCTAAACATTGAATGTGAATG TGTTAATTTAGGCATATAGAATATTAAATTCTGATATTGCACTTCTTATTTTATATAAAATAATCCTTTAATATC ${\tt ATGAAAACATTCCTAGTGATCATGTAGTAAATGTAGGGTTAAGCATGGACAGCCAGAGCTTTCTATGTACTGTTA}$ AAATTGAGGTCACATATTTTCTTTTGTATCCTGGCAAATACTCCTGCAGGCCAGGAAGTATAATAGCAAAAAGTT ATATTGCCATATCATGGTACCTATAATGGTGATATATTTGTTTCTATGAAAAATGTATTGTGCTTTGATACTAAA AATCTGTAAAATGTTAGTTTTTGGTAATTTTTTTTTCTGCTGGTGGATTTACATATTAAATTTTTTCTGCTGGTGGA TAAACATTAAAATTAATCATGTTTCAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45417</pre>

<subunit 1 of 1, 500 aa, 1 stop

<MW: 56888, pI: 8.53, NX(S/T): 2

MKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDNDM QSILDLHNKLRSQVYPTASNMEYMTWDVELERSAESWAESCLWEHGPASLLPSIGQNLGAHW GRYRPPTFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIGCAINLC HNMNIWGQIWPKAVYLVCNYSPKGNWWGHAPYKHGRPCSACPPSFGGGCRENLCYKEGSDRY YPPREEETNEIERQQSQVHDTHVRTRSDDSSRNEVISAQQMSQIVSCEVRLRDQCKGTTCNR YECPAGCLDSKAKVIGSVHYEMQSSICRAAIHYGIIDNDGGWVDITRQGRKHYFIKSNRNGI QTIGKYQSANSFTVSKVTVQAVTCETTVEQLCPFHKPASHCPRVYCPRNCMQANPHYARVIG TRVYSDLSSICRAAVHAGVVRNHGGYVDVMPVDKRKTYIASFQNGIFSESLQNPPGGKAFRV FAVV

Important features:

Signal peptide:

amino acids 1-20

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 protein amino acids 165-186, 196-218, 134-146, 96-108 and 58-77

N-glycosylation site

amino acids 28-31

GCGGAGACAAGCGCAGAGCGCACGGCCACAGACAGCCCTGGGCATCCACCGACGGCG CAGCCGGAGCCAGCAGAGCCGGAGCGCCCCGGGCAGAGAAAGCCGAGCAGAGCTGGGT GGCGTCTCCGGGCCGCTCCGACGGCCCAGCGCCCTCCCCATGCTCCCACGCCG CGCCCTCCGGTCAGCATGAGGCTCCTGGCGGCCGCGCTGCTCCTGCTGCTGCTGCCGCTGT ACACCGCGCGTGTGGACGGGTCCAAATGCAAGTGCTCCCGGAAGGGCCCAAGATCCGCTAC AGCGACGTGAAGAAGCTGGAAATGAAGCCAAAGTACCCGCACTGCGAGGAGAAGATGGTTAT AGAGCACCAAGCGCTTCATCAAGTGGTACAACGCCTGGAACGAGAAGCGCAGGGTCTACGAA GAATAGGTGAAAAACCTCAGAAGGGAAAACTCCAAACCAGTTGGGAGACTTGTGCAAAGGA TTTCTCACAGGCATAAGACACAAATTATATATTGTTATGAAGCACTTTTTACCAACGGTCAG TTTTTACATTTTATAGCTGCGTGCGAAAGGCTTCCAGATGGGAGACCCATCTCTTGTGCT ${\tt CCAGACTTCATCACAGGCTGCTTTTTATCAAAAAGGGGAAAACTCATGCCTTTCCTTTTTAA}$ AAAATGCTTTTTTGTATTTGTCCATACGTCACTATACATCTGAGCTTTATAAGCGCCCGGGA GGAACAATGAGCTTGGTGGACACATTTCATTGCAGTGTTGCTCCATTCCTAGCTTGGGAAGC TTCCGCTTAGAGGTCCTGGCGCCTCGGCACAGCTGCCACGGGCTCTCCTGGGCTTATGGCCG GTCACAGCCTCAGTGTGACTCCACAGTGGCCCCTGTAGCCGGGCAAGCAGGAGCAGGTCTCT CTGCATCTGTTCTCTGAGGAACTCAAGTTTGGTTGCCAGAAAAATGTGCTTCATTCCCCCCT GGTTAATTTTTACACACCCTAGGAAACATTTCCAAGATCCTGTGATGGCGAGACAAATGATC CTTAAAGAAGGTGTGGGGTCTTTCCCAACCTGAGGATTTCTGAAAGGTTCACAGGTTCAATA TTTAATGCTTCAGAAGCATGTGAGGTTCCCAACACTGTCAGCAAAAACCTTAGGAGAAAACT TAAAAATATATGAATACATGCGCAATACACAGCTACAGACACACTTCTGTTGACAAGGGAA AACCTTCAAAGCATGTTTCTTTCCCTCACCACAACAGAACATGCAGTACTAAAGCAATATAT TTGTGATTCCCCATGTAATTCTTCAATGTTAAACAGTGCAGTCCTCTTTCGAAAGCTAAGAT GACCATGCGCCCTTTCCTCTGTACATATACCCTTAAGAACGCCCCCTCCACACACTGCCCCC CAGTATATGCCGCATTGTACTGCTGTTTATATGCTATGTACATGTCAGAAACCATTAGCAT TGCATGCAGGTTTCATATTCTTTCTAAGATGGAAAGTAATAAAATATATTTGAAATGTAAAA AAAAAAAAAA

MSLLPRRAPPVSMRLLAAALLLLLLALYTARVDGSKCKCSRKGPKIRYSDVKKLEMKPKYPH CEEKMVIITTKSVSRYRGQEHCLHPKLQSTKRFIKWYNAWNEKRRVYEE

Signal sequence:

amino acids 1-34

 $\texttt{GCCCCAGGGACTGCTATGGCTTCTTTGTTGTTCACCCCGGTCTGCGTC} \textbf{\underline{ATG}} \textbf{TTAAACTCCAATGTCCTCTGTG}$ $\overline{\texttt{GTTAACTGCTCTTGCCATCAAGTTCACCCTCATTGACAGCCAAGCACGTATCCAGTTGTCAACACAAATTATGG}$ TGCCTCACCCCCACTGGAGAGGGGGGTTTCAGCCCCCAGAACCCCCGTCCTCCTGGACTGGCATCCGAAATAC TACTCAGTTTGCTGCTGTGTGCCCCCAGCACCTGGATGAGAGATCCTTACTGCATGACATGCTGCCCATCTGGTT TACCGCCAATTTGGATACTTTGATGACCTATGTTCAAGATCAAAATGAAGACTGCCTTTACTTAAACATCTACGT GCCCACGGAAGATGGAGCCAACACAAAGAAAAACGCAGATGATATAACGAGTAATGACCGTGGTGAAGACGAAGA TATTCATGATCAGAACAGTAAGAAGCCCGTCATGGTCTATATCCATGGGGGATCTTACATGGAGGGCACCGGCAA CATGATTGACGGCAGCATTTTGGCAAGCTACGGAAACGTCATCGTGATCACCATTAACTACCGTCTGGGAATACT AGGGTTTTTAAGTACCGGTGACCAGGCAGCAAAAGGCAACTATGGGCTCCTGGATCAGATTCAAGCACTGCGGTG GATTGAGGAGAATGTGGGAGCCTTTGGCGGGGACCCCAAGAGAGTGACCATCTTTGGCTCGGGGGCTGGGGCCTC ${\tt CCTGTCCAGCTGGGCAGTGAACTACCAGCCGGCCAAGTACACTCGGATATTGGCAGACAAGGTCGGCTGCAACAT}$ GCTGGACACCACGGACATGGTAGAATGCCTGCGGAACAAGAACTACAAGGAGCTCATCCAGCAGACCATCACCCC GCAAGGCGAGTTCCTCAACTACGACATCATGCTGGGCGTCAACCAAGGGGAAGGCCTGAAGTTCGTGGACGGCAT CGTGGATAACGAGGACGTGTGACGCCCAACGACTTTGACTTCTCCGTGTCCAACTTCGTGGACAACCTTTACGG GGCAGATTCGGCCCATGGTGATGAGGTCCCCTATGTCTTCGGCATCCCCATGATCGGTCCCACCGAGCTCTTCAG TTGTAACTTTTCCAAGAACGACGTCATGCTCAGCGCCGTGGTCATGACCTACTGGACGAACTTCGCCAAAACTGG GTCCAAGTATAATCCCAAAGACCAGCTCTATCTGCATATTGGCTTGAAACCCAGAGTGAGAGATCACTACCGGGC ${\tt AACGAAAGTGGCTTTCTGGTTGGAACTCGTTCCTCATTTGCACAACTTGAACGAGATATTCCAGTATGTTTCAAC}$ AACCACAAAGGTTCCTCCACCAGACATGACATCATTTCCCTATGGCACCCGGCGATCTCCCGCCAAGATATGGCC AACCACCAAACGCCCAGCAATCACTCCTGCCAACAATCCCAAACACTCTAAGGACCCTCACAAAACAGGGCCTGA GGACAACTGTCCTCATTGAAACCAAACGAGATTATTCCACCGAATTAAGTGTCACCATTGCCGTCGGGGCGTC GCTCCTCTTCCTCAACATCTTAGCTTTTGCGGCGCTGTACTACAAAAAGGACAAGAGGCGCCATGAGACTCACAG GCGCCCAGTCCCCAGAGAAACACCACAAATGATATCGCTCACATCCAGAACGAAGAGATCATGTCTCTGCAGAT GAAGCAGCTGGAACACGATCACGAGTGTGAGTCGCTGCAGGCACACGACACTGAGGCTCACCTGCCCGCCAGA CTACACCCTCACGCTGCGCCGGTCGCCAGATGACATCCCACTTATGACGCCAAACACCATCACCATGATTCCAAA CACACTGACGGGGATGCAGCCTTTGCACACTTTTAACACCTTCAGTGGAGGACAAAACAGTACAAATTTACCCCA $\tt CGGACATTCCACCACTAGAGTA{\color{blue}{\textbf{TAG}}} CTTTGCCCTATTTCCCTTTCCTATCCCTCTGCCCTACCCGCTCAGCAACAT$ AGAAGAGGGAAGGAAAGAGAAAGAGAGAGAGAGAAAGAAGTCTCCAGACCAGGAATGTTTTTGTCCCACT AAGATCAACTTCTGACCCTGTGAAATGTGAGAAGTACACATTTCTGTTAAAATAACTGCTTTAAGATCTCTACCA GACACTTCTGAAACTCAGCCAAGGACACTTGATATTTTTTAATTACAATGGAAGTTTAAACATTTCTTTTCTGTGC GTGTTTTGCCAGCCTGAACTATATTTAAGAGACTTTGT

MLNSNVLLWLTALAIKFTLIDSQAQYPVVNTNYGKIRGLRTPLPNEILGPVEQYLGVPYASP
PTGERRFQPPEPPSSWTGIRNTTQFAAVCPQHLDERSLLHDMLPIWFTANLDTLMTYVQDQN
EDCLYLNIYVPTEDGANTKKNADDITSNDRGEDEDIHDQNSKKPVMVYIHGGSYMEGTGNMI
DGSILASYGNVIVITINYRLGILGFLSTGDQAAKGNYGLLDQIQALRWIEENVGAFGGDPKR
VTIFGSGAGASCVSLLTLSHYSEGLFQKAIIQSGTALSSWAVNYQPAKYTRILADKVGCNML
DTTDMVECLRNKNYKELIQQTITPATYHIAFGPVIDGDVIPDDPQILMEQGEFLNYDIMLGV
NQGEGLKFVDGIVDNEDGVTPNDFDFSVSNFVDNLYGYPEGKDTLRETIKFMYTDWADKENP
ETRRKTLVALFTDHQWVAPAVAADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYV
FGIPMIGPTELFSCNFSKNDVMLSAVVMTYWTNFAKTGDPNQPVPQDTKFIHTKPNRFEEVA
WSKYNPKDQLYLHIGLKPRVRDHYRATKVAFWLELVPHLHNLNEIFQYVSTTTKVPPPDMTS
FPYGTRRSPAKIWPTTKRPAITPANNPKHSKDPHKTGPEDTTVLIETKRDYSTELSVTIAVG
ASLLFLNILAFAALYYKKDKRRHETHRRPSPQRNTTNDIAHIQNEEIMSLQMKQLEHDHECE
SLQAHDTLRLTCPPDYTLTLRRSPDDIPLMTPNTITMIPNTLTGMQPLHTFNTFSGGQNSTN
LPHGHSTTRV

Signal sequence:

amino acids 1-24

Transmembrane domains:

amino acids 189-204, 675-692

 $\tt GGGAAAG{\color{red} ATG} GCGGCGACTCTGGGACCCCTTGGGTCGTGGCAGCAGTGGCGGCGATGTTTGT$ CAGCAAGTCGGGGCGGGTCAAACGTTCGAGTACTTGAAACGGGAGCACTCGCTGTCGAAGCC CTACCAGGGTGTGGGCACAGGCAGTTCCTCACTGTGGAATCTGATGGCCATGCTGA TGACCCAGTATATCCGCCTTACCCCAGATATGCAAAGTAAACAGGGTGCCTTGTGGAACCGG GTGCCATGTTTCCTGAGAGACTGGGAGTTGCAGGTGCACTTCAAAATCCATGGACAAGGAAA GAAGAATCTGCATGGGGATGGCTTGGCAATCTGGTACACAAAGGATCGGATGCAGCCAGGGC CTGTGTTTGGAAACATGGACAAATTTGTGGGGCTGGGAGTATTTGTAGACACCTACCCCAAT GAGGAGAAGCAGCAAGAGCGGGTATTCCCCTACATCTCAGCCATGGTGAACAACGGCTCCCT CAGCTATGATCATGAGCGGGATGGGCGGCCTACAGAGCTGGGAGGCTGCACAGCCATTGTCC GCAATCTTCATTACGACACCTTCCTGGTGATTCGCTACGTCAAGAGGCATTTGACGATAATG ATGGATATTGATGGCAAGCATGAGTGGAGGGACTGCATTGAAGTGCCCGGAGTCCGCCTGCC CCGCGGCTACTACTTCGGCACCTCCTCCATCACTGGGGATCTCTCAGATAATCATGATGTCA TTTCCTTGAAGTTGTTTGAACTGACAGTGGAGAGACCCCAGAAGAGGAAAAGCTCCATCGA GATGTGTTCTTGCCCTCAGTGGACAATATGAAGCTGCCTGAGATGACAGCTCCACTGCCGCC CCTGAGTGGCCTGGCCCTCTTCCTCATCGTCTTTTTCTCCCTGGTGTTTTTCTGTATTTGCCA TAGTCATTGGTATCATACTCTACAACAAATGGCAGGAACAGAGCCGAAAGCGCTTCTAC<u>TGA</u> GCCCTCCTGCTGCCACCACTTTTGTGACTGTCACCCATGAGGTATGGAAGGAGCAGGCACTG GCCTGAGCATGCAGCCTGGAGAGTGTTCTTGTCTCTAGCAGCTGGTTGGGGGACTATATTCTG TCACTGGAGTTTTGAATGCAGGGACCCCGCATTCCCATGGTTGTGCATGGGGACATCTAACT $\tt CTGGTCTGGGAAGCCACCCACGCGGGCAATGCTGCTGTGATGTGCCTTTCCCTGCAGTCC$ TTCCATGTGGGAGCAGAGGTGTGAAGAGAATTTACGTGGTTGTGATGCCAAAATCACAGAAC AGAATTTCATAGCCCAGGCTGCCGTGTTGTTTGACTCAGAAGGCCCTTCTACTTCAGTTTTG TCTTCCCTGCCTTACCTTCCTTTCACTCCATTCATTGTCCTCTCTGTGTGCAACCTGAGCTG GGAAAGGCATTTGGATGCCTCTCTGTTGGGGCCTGGGGCTGCAGAACACCCTGCGTTTCAC TGGCCTTCATTAGGTGGCCCTAGGGAGATGGCTTTCTGCTTTGGATCACTGTTCCCTAGCAT GGGTCTTGGGTCTATTGGCATGTCCATGGCCTTCCCAATCAAGTCTCTTCAGGCCCTCAGTG AAGTTTGGCTAAAGGTTGGTGTAAAAATCAAGAGAAGCCTGGAAGACATCATGGATGCCATG GATTAGCTGTGCAACTGACCAGCTCCAGGTTTGATCAAACCAAAAGCAACATTTGTCATGTG GTCTGACCATGTGGAGATGTTTCTGGACTTGCTAGAGCCTGCTTAGCTGCATGTTTTGTAGT TACGATTTTTGGAATCCCACTTTGAGTGCTGAAAGTGTAAGGAAGCTTTCTTCTTACACCTT TGCTGTTCTCATGTTCCAAGTCTGAGAGCAACAGACCCTCATCATCTGTGCCTGGAAGAGTT CACTGTCATTGAGCAGCACAGCCTGAGTGCTGGCCTCTGTCAACCCTTATTCCACTGCCTTA TTTGACAAGGGGTTACATGCTGCTCACCTTACTGCCCTGGGATTAAATCAGTTACAGGCCAG AGTCTCCTTGGAGGGCCTGGAACTCTGAGTCCTCCTATGAACCTCTGTAGCCTAAATGAAAT TCTTAAAATCACCGATGGAACCAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCG ACCTGCAGTAGGGATAACAGGGTAATAAGCTTGGCCGCCATGG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50911</pre>

><subunit 1 of 1, 348 aa, 1 stop

><MW: 39711, pI: 8.70, NX(S/T): 1

MAATLGPLGSWQQWRRCLSARDGSRMLLLLLLLGSGQGPQQVGAGQTFEYLKREHSLSKPYQ GVGTGSSSLWNLMGNAMVMTQYIRLTPDMQSKQGALWNRVPCFLRDWELQVHFKIHGQGKKN LHGDGLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVFPYISAMVNNGSLSY DHERDGRPTELGGCTAIVRNLHYDTFLVIRYVKRHLTIMMDIDGKHEWRDCIEVPGVRLPRG YYFGTSSITGDLSDNHDVISLKLFELTVERTPEEEKLHRDVFLPSVDNMKLPEMTAPLPPLS GLALFLIVFFSLVFSVFAIVIGIILYNKWQEQSRKRFY

Signal sequence:

amino acids 1-38

Transmembrane domain:

amino acids 310-329

 $\tt CCGAGCCGGGCGCGAGCGAGCTGGGGCCGGCCTGGGACCATGGGCGTGAGTGCAATCTACGGATCAGTCT$ GACATGTTCCCGATTTGAGGTGAAACCATGAAGAGAAAATAGAATACTTAATAATCTTTTCCGCAACCGCTTCT TGCTGCTGCCTGGCCTGCCTGCCTGCCTTTGTGAGCCTCAGCCTGCAGTTCTTCCACCTGATCCCGGTGT CGACTCCTAAGAATGGAATGAGTAGCAAGAGTCGAAAGAGAATCATGCCCGACCCTGTGACGGAGCCCCTGTGA CAGACCCCGTTTATGAAGCTCTTTTGTACTGCAACATCCCCAGTGTGGCCGAGCGCAGCATGGAAGGTCATGCCC CGCATCATTTAAGCTGGTCTCAGTGCATGTGTTCATTCGCCACGGAGACAGGTACCCACTGTATGTCATTCCCA TTAGTCACATGTCAAAAGGATCCGGAGCCTCTTTCGAAAGCCCCTTGAACTCCTTGCCTCTTTACCCAAATCACC CATTGTGTGAGATGGGAGAGCTCACACAGACAGGAGTTGTGCAGCATTTGCAGAACGGTCAGCTGCTGAGGGATA TCTATCTAAAGAAACACAAACTCCTGCCCAATGATTGGTCTGCAGACCAGCTCTATTTAGAGACCACTGGGAAAA GGCACCAGCCAAGTGCGCTGTTCTGCTCTGGAAGCTGCTATTGCCCGGTAAGAAACCAGTATCTGGAAAAGGAGC A G C G T C G T C C T A C G T T G A A A A A C A G C C A G C T G G A G A G A T C G T G G G G A G A T C G T G G G G A G A T C G T G G G G A G A T C G T G G G G A G A T C G T G G G G A G A T C G T G G G G A G A T C G T G G G G A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T C G T G G G G A G A T G G C A G A T G G ${\tt ATGTCCCCACCAAGCAGCTTAGAGCTGCCAACCCCATAGACTCCATGCTCTGCCACTTCTGCCACAATGTCAGCT}$ ${\tt TTCCCTGTACCAGAAATGGCTGTTGACATGGAGGAGCACTTCAAGGTAATTAAGACCCATCAGATCGAGGATGAAA}$ GGGAAAGACGGGAGAAAATTGTACTTCGGGTATTCTCTCTGGGTGCCCACCCCATCCTGAACCAAACCATCG GCCGGATGCAGCGTGCCACCGAGGGCAGGAAAGAAGAGCTCTTTGCCCTCTACTCTGCTCATGATGTCACTCTGT ${\tt CACCAGTTCTCAGTGCCTTGGGCCTTTCAGAAGCCAGGTTCCCAAGGTTTGCAGCCAGGTTGATCTTTGAGCTTT}$ ${\tt GGCAAGACAGAGAAAAGCCCAGTGAACATTCCGTCCGGATTCTTACAATGGCGTCGATGTCACATTCCACACCT}$ CTTTCTGCCAAGACCACACAAGCGTTCTCCCAAGCCCATGTGCCCGCTTGAAAACTTGGTCCGCTTTGTGAAAA TATGCAGTACAGCAGTATAGAATCCATGCCAATACAGAGCATAGGGAAAGGTCCACTTCTAGTTTTGTCTGTTAC AAGCACATTGCTGCAATGTGGTACGTGAATTGCTTGGTACAAAATGGCCAGTTCACAGAGGAATAGAAGGTACTT TATCATAGCCAGACTTCGCTTAGAATGCCAGAATAATATAGTTCAAGACCTGAAGTTGCCAATCCAAGTTTGCAC TTTACCTTGTCCTTGTTAAGAATTTCTTGAAGTGATTTATCTAAAATAAAGGTTGGCAAACTTTTTCTGTAAAGG GCCAGATTGTAAATATTTCAGACTGTGTGGACCAAAAGGCCACATACAGTCTCTGTCATAACTACTCAACTCTGT TTCTGAAGCAGGAAAGCCACCACAGACAGTACATAAAGGAATATGTGTAGCTGGGTTCCCAGGCCAGACAAAACA ACTTCCAGCACTTTGAGAACGAGTTGAATACCAAGAATTATTCAATGGTTCCTCCAGTAACTTCTGCTAGAAACA AACTGATTAGAAGAATACTTGATGTTTATGATGATTGTTGTACAAGATAGTTTTAAGTATGTTCTAAATATTTGT $\tt CTGCTGTAGTCTATTTGCTGTATATGCTGAAATTTTTGTATGCCATTTAGTATTTTTATAGTTTTAGGAAAATATT$ TTCTAAGACCAGTTTTAGATGACTCTTATTCCTGTAGTAATATTCAATTTGCTGTACCTGCTTGGTGGTTAGAAG ${\tt GAGGCTAGAAGATGAATTCAGGCACTTTCTTCCAATAAAACTAATTATGGCTCATTCCCTTTGACAAGCTGTAGA}$ AGAACTTTGCTATTAGGTAGTTTACAGATCTTTATAAGGTGTTTTATATATTAGAAGCAATTATAATTACATCTG TGATTTCTGAACTAATGGTGCTAATTCAGAGAAATGGAAAGTGAAAGTGAGATTCTCTGTTGTCATCGGCATTCC AACTTTTTCTCTTTGTTTTTTTTTTAAGAATAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48329</pre>

><subunit 1 of 1, 480 aa, 1 stop

><MW: 55240, pI: 9.30, NX(S/T): 2

MLFRNRFLLLLALAALLAFVSLSLQFFHLIPVSTPKNGMSSKSRKRIMPDPVTEPPVTDPVY
EALLYCNIPSVAERSMEGHAPHHFKLVSVHVFIRHGDRYPLYVIPKTKRPEIDCTLVANRKP
YHPKLEAFISHMSKGSGASFESPLNSLPLYPNHPLCEMGELTQTGVVQHLQNGQLLRDIYLK
KHKLLPNDWSADQLYLETTGKSRTLQSGLALLYGFLPDFDWKKIYFRHQPSALFCSGSCYCP
VRNQYLEKEQRRQYLLRLKNSQLEKTYGEMAKIVDVPTKQLRAANPIDSMLCHFCHNVSFPC
TRNGCVDMEHFKVIKTHQIEDERERREKKLYFGYSLLGAHPILNQTIGRMQRATEGRKEELF
ALYSAHDVTLSPVLSALGLSEARFPRFAARLIFELWQDREKPSEHSVRILYNGVDVTFHTSF
CQDHHKRSPKPMCPLENLVRFVKRDMFVALGGSGTNYYDACHREGF

Signal sequence:

amino acids 1-18

AAAAAAGCTCACTAAAGTTTCTATTAGAGCGAATACGGTAGATTTCCATCCCCTTTTGAAGAACAGTACTGTGGA GCTATTTAAGAGATAAAAACGAAATATCCTTTCTGGGAGTTCAAGATTGTGCAGTAATTGGTTAGGACTCTGAGC GCCGCTGTTCACCAATCGGGGAGAGAAAGCGGAGATCCTGCTCGCCTTGCACGCCCTGAAGCACAAAGCAGAT AGCTAGGAATGAACCATCCCTGGGAGTATGTGGAAACAACGGAGGAGCTCTGACTTCCCAACTGTCCCATTCTAT $\tt GGGCGAAGGAACTGCTCCTGACTTCAGTGGTTAAGGGCAGAATTGAAAATAATTCTGGAGGAAGATAAGA{\color{red}{\textbf{ATG}}} ATT{\color{red}{\textbf{ATG}}} TT{\color{red}{\textbf{ATG}}} TT{\color{red}{\textbf{ATG}$ TCCTGCGCGACTGCACCGGGACTACAAAGGGCTTGTCCTGCGGGAATCCTCCTGGGGACTCTGTGGGAGACCGG ${\tt ATGCACCCAGATACGCTATTCAGTTCCGGAAGAGCTGGAGAAAGGCTCTAGGGTGGGCGACATCTCCAGGGACCT}$ GGGGCTGGAGCCCCGGGAGCTCGCGGAGCGCGGAGTCCGCATCATCCCCAGAGGTAGGACGCAGCTTTTCGCCCT GAATCCGCGCAGCGGCAGCTTGGTCACGGCGGGCAGGATAGACCGGGAGGAGCTCTGTATGGGGGCCCATCAAGTG TCAATTAAATCTAGACATTCTGATGGAGGATAAAGTGAAAATATATGGAGTAGAAGTAGAAGTAAGGGACATTAA $\tt CGACAATGCGCCTTACTTTCGTGAAAGTGAATTAGAAATTAGAAATTAGTGAAAATGCAGCCACTGAGATGCGGTT$ CCCTCTACCCCACGCCTGGGATCCGGATATCGGGAAGAACTCTCTGCAGAGCTACGAGCTCAGCCCGAACACTCA CGAAGAAAAGGCTGCTCACCACCTGGTCCTTACGGCCTCCGACGGGGGCGACCCGGTGCGCACAGGCACCGCGCG $\tt GGAGAATCTGGCCTTGGGCACGCAGCTGCTTGTAGTCAACGCTACCGACCCTGACGAAGGAGTCAATGCGGAAGT$ GAGGTATTCCTTCCGGTATGTGGACGACAAGGCGGCCCAAGTTTTCAAACTAGATTGTAATTCAGGGACAATATC TTCTGCGCGAGCCAAAGTCCTGATCACTGTTCTGGACGTGAACGACAATGCCCCAGAAGTGGTCCTCACCTCTCT $\tt CGCCAGCTCGGTTCCCGAAAACTCTCCCAGAGGGACATTAATTGCCCTTTTAAATGTAAATGACCAAGATTCTGA$ GGAAAACGGACAGGTGATCTGTTTCATCCAAGGAAATCTGCCCTTTAAATTAGAAAAATCTTACGGAAATTACTA TAGTTTAGTCACAGACATAGTCTTGGATAGGGAACAGGTTCCTAGCTACAACATCACAGTGACCGCCACTGACCG GGGAACCCCGCCCTATCCACGGAAACTCATATCTCGCTGAACGTGGCAGACACCAACGACAACCCGCCGGTCTT $\tt CCCTCAGGCCTCCTATTCCGCTTATATCCCAGAGAACAATCCCAGAGGAGTTTCCCTCGTCTCTGTGACCGCCCA$ GTCCTACGTGTCCATCAACTCCGACACTGGGGTACTGTATGCGCTGAGCTCCTTCGACTACGAGCAGTTCCGAGA CTTGCAAGTGAAAGTGATGGCGCGGGACAACGGGCACCCGCCCTCAGCAGCAACGTGTCGTTGAGCCTGTTCGT GGCTCCCCGCTCCGCAGAGCCCGGCTACCTGGTGACCAAGGTGGTGGCGGTGGACAGAGACTCCGGCCAGAACGC $\tt CTGGCTGTCCTACCGTCTGCTCAAGGCCAGCGAGCCGGGACTCTTCTCGGTGGGTCTGCACACGGGCGAGGTGCG$ $\tt CCTCGAGTCTCCAGCTAACTCTGAAACCTCAGACCTCACTCTGTACCTGGTGGTAGCGGTGGCCGCGGTCTCCTG$ CGTCTTCCTGGCCTTCGTCATCTTGCTGCTGGCGCTCAGGCTGCGGCGCTGGCACAAGTCACGCCTGCTGCAGGC CATGCTCGTCAGCCAGGAGAGCTTTGAAAAAAGCGAGCCCCTTTTGCTGTCAGGTGATTCGGTATTTTCTAAAGA TGGAGTGCAGCGGTACGATCATAGCTCACTGCGGCCTCAAACTCCTAGGCTCAAGCAATTATCCCACCTTTGCCT $\tt CTATCTATCTATCTATTACTTTCTTGTACAGACGGGAGTCTCACGCCTGTAATCCCAGTACTTTGGGAGGC$ $ext{AAAAATACAAAATTAGCCGGGCGTGGTGGTGCATGTCTGTAATCCCAGCTACTTGGGAGGCTGAGTCAGGAGAAT}$ TGCTTTAACCTGGGAGGTTGCAATGAGCTGAGATTGTGCCATTGCACTCCAGCCTGGGCAACAAGAGTG AAACTCTATCTCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48306</pre>

><subunit 1 of 1, 916 aa, 1 stop

><MW: 100204, pI: 4.92, NX(S/T): 4

MIPARLHRDYKGLVLLGILLGTLWETGCTQIRYSVPEELEKGSRVGDISRDLGLEPRELAER
GVRIIPRGRTQLFALNPRSGSLVTAGRIDREELCMGAIKCQLNLDILMEDKVKIYGVEVEVR
DINDNAPYFRESELEIKISENAATEMRFPLPHAWDPDIGKNSLQSYELSPNTHFSLIVQNGA
DGSKYPELVLKRALDREEKAAHHLVLTASDGGDPVRTGTARIRVMVLDANDNAPAFAQPEYR
ASVPENLALGTQLLVVNATDPDEGVNAEVRYSFRYVDDKAAQVFKLDCNSGTISTIGELDHE
ESGFYQMEVQAMDNAGYSARAKVLITVLDVNDNAPEVVLTSLASSVPENSPRGTLIALLNVN
DQDSEENGQVICFIQGNLPFKLEKSYGNYYSLVTDIVLDREQVPSYNITVTATDRGTPPLST
ETHISLNVADTNDNPPVFPQASYSAYIPENNPRGVSLVSVTAHDPDCEENAQITYSLAENTI
QGASLSSYVSINSDTGVLYALSSFDYEQFRDLQVKVMARDNGHPPLSSNVSLSLFVLDQNDN
APEILYPALPTDGSTGVELAPRSAEPGYLVTKVVAVDRDSGQNAWLSYRLLKASEPGLFSVG
LHTGEVRTARALLDRDALKQSLVVAVQDHGQPPLSATVTLTVAVADSIPQVLADLGSLESPA
NSETSDLTLYLVVAVAAVSCVFLAFVILLLALRLRRWHKSRLLQASGGGLTGAPASHFVGVD
GVQAFLQTYSHEVSLTTDSRKSHLIFPQPNYADMLVSQESFEKSEPLLLSGDSVFSKDSHGL
IEVSLYQIFFLFFFNCSVSQAGVQRYDHSSLRPQTPRLKQLSHLCLRCNRDYRCKPPTVCLS
IYLSIYLSIYLSIYLLISCTDGSLTPVIPVLWEAEAGGSPEVGSLRPA

Signal sequence:

amino acids 1-30

Transmembrane domains:

amino acids 693-711, 809-823, 869-888

GCTCCAGAATCGTGTACCAGGCAGAGAACTGAAGTACTGGGGCCTCCTCCACTGGGTCCGAA TCAGTAGGTGACCCCGCCCTGGATTCTGGAAGACCTCACCATGGGACGCCCCCGACCTCGT GCGGCCAAGACGTGGATGTTCCTGCTCTTGCTGGGGGGAGCCTGGGCAGGACACTCCAGGGC ACAGGAGGACAAGGTGCTGGGGGGTCATGAGTGCCAACCCCATTCGCAGCCTTGGCAGGCGG CCTTGTTCCAGGGCCAGCAACTACTCTGTGGCGGTGTCCTTGTAGGTGGCAACTGGGTCCTT ACAGCTGCCCACTGTAAAAAACCGAAATACACAGTACGCCTGGGAGACCACAGCCTACAGAA TAAAGATGGCCCAGAGCAAGAAATACCTGTGGTTCAGTCCATCCCACACCCCTGCTACAACA GCAGCGATGTGGAGGACCACAACCATGATCTGATGCTTCTTCAACTGCGTGACCAGGCATCC CTGGGGTCCAAAGTGAAGCCCATCAGCCTGGCAGATCATTGCACCCAGCCTGGCCAGAAGTG CACCGTCTCAGGCTGGGGCACTGTCACCAGTCCCCGAGAGAATTTTCCTGACACTCTCAACT GTGCAGAAGTAAAAATCTTTCCCCAGAAGAAGTGTGAGGATGCTTACCCGGGGCAGATCACA GATGGCATGGTCTGTGCAGGCAGCAGCAAAGGGGCTGACACGTGCCAGGGCGATTCTGGAGG CCCCCTGGTGTGTGATGGTGCACTCCAGGGCATCACATCCTGGGGCTCAGACCCCTGTGGGA GGTCCGACAACCTGGCGTCTATACCAACATCTGCCGCTACCTGGACTGGATCAAGAAGATC ${\tt ATAGGCAGCAAGGGC} \underline{{\tt TGA}} {\tt TTCTAGGATAAGCACTAGATCTCCCTTAATAAACTCACAACTCT}$ CTGGTTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48336</pre>

<subunit 1 of 1, 260 aa, 1 stop

<MW: 28048, pI: 7.87, NX(S/T): 1

MGRPRPRAAKTWMFLLLLGGAWAGHSRAQEDKVLGGHECQPHSQPWQAALFQGQQLLCGGVL VGGNWVLTAAHCKKPKYTVRLGDHSLQNKDGPEQEIPVVQSIPHPCYNSSDVEDHNHDLMLL QLRDQASLGSKVKPISLADHCTQPGQKCTVSGWGTVTSPRENFPDTLNCAEVKIFPQKKCED AYPGQITDGMVCAGSSKGADTCQGDSGGPLVCDGALQGITSWGSDPCGRSDKPGVYTNICRY LDWIKKIIGSKG

Important Features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 51-71

N-glycosylation site.

amino acids 110-113

Serine proteases, trypsin family, histidine active site.

amino acids 69-74 and 207-217

Tyrosine kinase phosphorylation site.

amino acids 182-188

Kringle domain proteins motif

amino acids 205-217

GGCGCCGGTGCACCGGGCGGGCTGAGCGCCTCCTGCGGCCCGGCCTGCGCGCCCGGCCCGG CCCCGGCCGGCGGGAACCGGCGGATTCCTCGCGCGTCAAACCACCTGATCCCATAAAAC ATTCATCCTCCGGCGGCCGCGCTGCGAGCGCCCGCCAGTCCGCGCCGCCGCCCCTCG TGCGGACCCGGCGGGGGGAGACGGCCCCCCCGAAACGACTTTCAGTCCCCGACGCGC CTGTGGCTGCAGGCCGGGTGCCAGCCCCATGCCCAGGTGCCTGCGTATGCTACAATGA GCCCAAGGTGACGACAAGCTGCCCCCAGCAGGGCCTGCAGGCTGTGCCCGTGGGCATCCCTG CTGCCAGCCAGCGCATCTTCCTGCACGGCAACCGCATCTCGCATGTGCCAGCTGCCAGCTTC CGTGCCTGCCGCAACCTCACCATCCTGTGGCTGCACTCGAATGTGCTGGCCCGAATTGATGC GGCTGCCTTCACTGGCCTGGCCCTCCTGGAGCAGCTGGACCTCAGCGATAATGCACAGCTCC GGTCTGTGGACCCTGCCACATTCCACGGCCTGGGCCGCCTACACACGCTGCACCTGGACCGC TGCGGCCTGCAGGAGCTGGGCCCGGGGCTGTTCCGCGGCCTGGCTGCCCTGCAGTACCTCTA CCTGCAGGACAACGCGCTGCAGGCACTGCCTGATGACACCTTCCGCGACCTGGGCAACCTCA CACACCTCTTCCTGCACGGCAACCGCATCTCCAGCGTGCCCGAGCGCGCCTTCCGTGGGCTG CACAGCCTCGACCGTCTCCTACTGCACCAGAACCGCGTGGCCCATGTGCACCCGCATGCCTT CCGTGACCTTGGCCGCCTCATGACACTCTATCTGTTTGCCAACAATCTATCAGCGCTGCCCA CTGAGGCCCTGCGTGCCCTGCAGTACCTGAGGCTCAACGACAACCCCTGGGTG TGTGACTGCCGGGCACGCCCACTCTGGGCCTGGCTGCAGAAGTTCCGCGGCTCCTCCTCCGA GGTGCCCTGCAGCCTCCCGCAACGCCTGGCTGGCCGTGACCTCAAACGCCTAGCTGCCAATG ACTGGAGCCTGGAAGACCAGCTTCGGCAGGCAATGCGCTGAAGGGACGCGTGCCGCCCGGTG ACAGCCCGCCGGCAACGCCTCTGGCCCACGGCACATCAATGACTCACCCTTTGGGACTCTG CCTGGCTCTGCTGAGCCCCCGCTCACTGCAGTGCGGCCCGAGGGCTCCGAGCCACCAGGGTT CCCCACCTCGGGCCCTCGCCGGAGGCCAGGCTGTTCACGCAAGAACCGCACCCGCAGCCACT GCCGTCTGGGCCAGGCAGCGGGGGGTGGCGGGACTGGTGACTCAGAAGGCTCAGGTGCC CTACCCAGCCTCACCTGCAGCCTCACCCCCTGGGCCCTGGCGCTGGTGCTGTGGACAGTGCT GGGGTCTCTCTCCACGCCGCCAAGCCAGCCGGGCGGCCGACCCGTGGGGCAGGCCAGGCCAG GTCCTCCCTGATGGACGCCTGCCGCCCCCCCCCCCATCTCACCCCCATCATGTTTACAGGG GCATTTTATTTTACTTGTGTAAAAATATCGGACGACGTGGAATAAAGAGCTCTTTTCTTAAA AAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44184</pre>

><subunit 1 of 1, 473 aa, 1 stop

><MW: 50708, pI: 9.28, NX(S/T): 6

MKRASAGGSRLLAWVLWLQAWQVAAPCPGACVCYNEPKVTTSCPQQGLQAVPVGIPAASQRI FLHGNRISHVPAASFRACRNLTILWLHSNVLARIDAAAFTGLALLEQLDLSDNAQLRSVDPA TFHGLGRLHTLHLDRCGLQELGPGLFRGLAALQYLYLQDNALQALPDDTFRDLGNLTHLFLH GNRISSVPERAFRGLHSLDRLLLHQNRVAHVHPHAFRDLGRLMTLYLFANNLSALPTEALAP LRALQYLRLNDNPWVCDCRARPLWAWLQKFRGSSSEVPCSLPQRLAGRDLKRLAANDLQGCA VATGPYHPIWTGRATDEEPLGLPKCCQPDAADKASVLEPGRPASAGNALKGRVPPGDSPPGN GSGPRHINDSPFGTLPGSAEPPLTAVRPEGSEPPGFPTSGPRRRPGCSRKNRTRSHCRLGQA GSGGGGTGDSEGSGALPSLTCSLTPLGLALVLWTVLGPC

Important features:

Signal peptide:

amino acids 1-26

Leucine zipper pattern.

amino acids 135-156

Glycosaminoglycan attachment site.

amino acids 436-439

N-glycosylation site.

amino acids 82-85, 179-183, 237-240, 372-375 and 423-426

VWFC domain

amino acids 411-425

GGAAGTCCACGGGGAGCTTGGATGCCAAAGGGAGGACGGCTGGGTCCTCTGGAGAGGACTAC TCACTGGCATATTTCTGAGGTATCTGTAGAATAACCACAGCCTCAGATACTGGGGACTTTAC ${\tt AGTCCCACAGAACCGTCCTCCCAGGAAGCTGAATCCAGCAAGAACA{\color{red} {\bf ATG}} GAGGCCAGCGGGA}$ AGCTCATTTGCAGACAAAGGCAAGTCCTTTTTTCCTTTTCTCTTTTTGGGCTTATCTCTGGCG ${\tt CAATTTAGCAAAGGACCTGGGTCTGGAGCAGAGGGAATTCTCCAGGCGGGGGGTTAGGGTTG}$ TTTCCAGAGGGAACAACTACATTTGCAGCTCAATCAGGAGACCGCGGATTTGTTGCTAAAT GAGAAATTGGACCGTGAGGATCTGTGCGGTCACACAGAGCCCTGTGTGCTACGTTTCCAAGT GTTGCTAGAGAGTCCCTTCGAGTTTTTTCAAGCTGAGCTGCAAGTAATAGACATAAACGACC ACTCTCCAGTATTTCTGGACAAACAAATGTTGGTGAAAGTATCAGAGAGCAGTCCTCCTGGG ACTACGTTTCCTCTGAAGAATGCCGAAGACTTAGATGTAGGCCAAAACAATATTGAGAACTA TATAATCAGCCCCAACTCCTATTTTCGGGTCCTCACCCGCAAACGCAGTGATGGCAGGAAAT ACCCAGAGCTGGTGCTGGACAAAGCGCTGGACCGAGAGGAAGAAGCTGAGCTCAGGTTAACA $\tt CTCACAGCACTGGATGGTGGCTCTCCGCCCAGATCTGGCACTGCTCAGGTCTACATCGAAGT$ CCTGGATGTCAACGATAATGCCCCTGAATTTGAGCAGCCTTTCTATAGAGTGCAGATCTCTG AGGACAGTCCGGTAGGCTTCCTGGTTGTGAAGGTCTCTGCCACGGATGTAGACACAGGAGTC AACGGAGAGATTTCCTATTCACTTTTCCAAGCTTCAGAAGAGATTGGCAAAACCTTTAAGAT CAATCCCTTGACAGGAGAAATTGAACTAAAAAAACAACTCGATTTCGAAAAAACTTCAGTCCT ATGAAGTCAATATTGAGGCAAGAGATGCTGGAACCTTTTCTGGAAAATGCACCGTTCTGATT CAAGTGATAGATGTGAACGACCATGCCCCAGAAGTTACCATGTCTGCATTTACCAGCCCAAT ACCTGAGAACGCGCCTGAAACTGTGGTTGCACTTTTCAGTGTTTTCAGATCTTGATTCAGGAG AAAATGGGAAAATTAGTTGCTCCATTCAGGAGGATCTACCCTTCCTCCTGAAATCCGCGGAA AACTTTTACACCCTACTAACGGAGAGACCACTAGACAGAGAAAGCAGAGCGGAATACAACAT CACTATCACTGTCACTGACTTGGGGACCCCTATGCTGATAACACAGCTCAATATGACCGTGC TGATCGCCGATGTCAATGACAACGCTCCCGCCTTCACCCCAAACCTCCTACACCCTGTTCGTC CACCAACGCCCAGGTCACCTACTCGCTGCCGCCCCCAGGACCCGCACCTGCCCCTCACAT CCCTGGTCTCCATCAACGCGGACAACGGCCACCTGTTCGCCCTCAGGTCTCTGGACTACGAG GCCCTGCAGGGGTTCCAGTTCCGCGTGGGCGCTTCAGACCACGGCTCCCCGGCGCTGAGCAG $\tt CGAGGCGCTGGTGCTGGTGCTGGACGCCAACGACAACTCGCCCTTCGTGCTGTACC$ CGCTGCAGAACGGCTCCGCGCCCTGCACCGAGCTGGTGCCCCGGGCCGAGCCGGGCTAC $\tt CTGGTGACCAAGGTGGTGGCGGTGGACGGCGACTCGGGCCAGAACGCCTGGCTGTCGTACCA$ GCTGCTCAAGGCCACGGAGCTCGGTCTGTTCGGCGTGTGGGCGCACAATGGCGAGGTGCGCA AATGGCGAGCCTCCGCGCCACCGCCACGCTGCACGTGCTCCTGGTGGACGGCTTCTC CCAGCCTACCTGCCTCTCCCGGAGGCGGCCCCGACCCAGGCCCAGGCCGACTTGCTCACCG TCTACCTGGTGGCGTTGGCCTCGGTGTCTTCGCTCTTTTCGGTGCTCCTGTTC GTGGCGGTGCGGTGTGTAGGAGGAGCAGGCCGCCTCGGTGGGTCGCTGCTTGGTGCCCGA GGGCCCCCTTCCAGGGCATCTTGTGGACATGAGCGGCACCAGGACCCTATCCCAGAGCTACC AGTATGAGGTGTGTCTGGCAGGAGGCTCAGGGACCAATGAGTTCAAGTTCCTGAAGCCGATT ATCCCCAACTTCCCTCCCCAGTGCCCTGGGAAAGAAATACAAGGAAATTCTACCTTCCCCAA ${ t TAACTTTGGGTTCAATATTCAG{ t TGA} \\ { t CCATAGTTGACTTTTACATTCCATAGGTATTTTATTT }$ TTACTCTTGATTTTTCTCATGTTCTTTCTCCCTTTGTTTTAAAGTGAACATTTACCTTTATT CCTGGTTCTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48314</pre>

<subunit 1 of 1, 798 aa, 1 stop

<MW: 87552, pI: 4.84, NX(S/T): 5

MEASGKLICRQRQVLFSFLLLGLSLAGAAEPRSYSVVEETEGSSFVTNLAKDLGLEQREFSR RGVRVVSRGNKLHLQLNQETADLLLNEKLDREDLCGHTEPCVLRFQVLLESPFEFFQAELQV IDINDHSPVFLDKQMLVKVSESSPPGTTFPLKNAEDLDVGQNNIENYIISPNSYFRVLTRKR SDGRKYPELVLDKALDREEEAELRLTLTALDGGSPPRSGTAQVYIEVLDVNDNAPEFEQPFY RVQISEDSPVGFLVVKVSATDVDTGVNGEISYSLFQASEEIGKTFKINPLTGEIELKKQLDF EKLQSYEVNIEARDAGTFSGKCTVLIQVIDVNDHAPEVTMSAFTSPIPENAPETVVALFSVS DLDSGENGKISCSIQEDLPFLLKSAENFYTLLTERPLDRESRAEYNITITVTDLGTPMLITQ LNMTVLIADVNDNAPAFTQTSYTLFVRENNSPALHIRSVSATDRDSGTNAQVTYSLLPPQDP HLPLTSLVSINADNGHLFALRSLDYEALQGFQFRVGASDHGSPALSSEALVRVVVLDANDNS PFVLYPLQNGSAPCTELVPRAAEPGYLVTKVVAVDGDSGQNAWLSYQLLKATELGLFGVWAH NGEVRTARLLSERDAAKHRLVVLVKDNGEPPRSATATLHVLLVDGFSQPYLPLPEAAPTQAQ ADLLTVYLVVALASVSSLFLFSVLLFVAVRLCRRSRAASVGRCLVPEGPLPGHLVDMSGTRT LSQSYQYEVCLAGGSGTNEFKFLKPIIPNFPPQCPGKEIQGNSTFPNNFGFNIO

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 685-712

Cadherins extracellular repeated domain signature.

amino acids 122-132, 231-241, 336-346, 439-449 and 549-559

ATP/GTP-binding site motif A (P-loop).

amino acids 285-292

N-glycosylation site.

amino acids 418-421, 436-439, 567-570 and 786-789

ACCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGCGCGTAGCCGTGC GCCGATTGCCTCTCGGCCTGGGCAATGGTCCCGGCTGCCGGTCGACGACCGCCCCGCGTCAT GCGGCTCCTCGGCTGGCAAGTATTGCTGTGGGTGCTGGGACTTCCCGTCCGCGGCGTGG AGGTTGCAGAGGAAAGTGGTCGCTTATGGTCAGAGGAGCAGCCTGCTCACCCTCTCCAGGTG GGGGCTGTGTACCTGGGTGAGGAGGAGCTCCTGCATGACCCGATGGGCCAGGACAGGGCAGC AGAAGAGGCCAATGCGGTGCTGGGGCTGGACACCCAAGGCGATCACATGGTGATGCTGTCTG TGATTCCTGGGGAAGCTGAGGACAAAGTGAGTTCAGAGCCTAGCGGCGTCACCTGTGGTGCT GGAGGAGCGGAGGACTCAAGGTGCAACGTCCGAGAGAGCCTTTTCTCTCTGGATGGCGCTGG AGCACACTTCCCTGACAGAGAGAGGGGGTATTACACAGAGCCAGAAGTGGCGGAATCTGACG CAGCCCCGACAGAGGACTCCAATAACACTGAAAGTCTGAAATCCCCAAAGGTGAACTGTGAG GAGAGAAACATTACAGGATTAGAAAATTTCACTCTGAAAATTTTAAATATGTCACAGGACCT TATGGATTTTCTGAACCCAAACGGTAGTGACTGTACTCTAGTCCTGTTTTACACCCCGTGGT GCCGCTTTTCTGCCAGTTTGGCCCCTCACTTTAACTCTCTGCCCCGGGCATTTCCAGCTCTT CACTTTTTGGCACTGGATGCATCTCAGCACAGCATTTCTACCAGGTTTGGCACCGTAGC TGTTCCTAATATTTTATTATTTCAAGGAGCTAAACCAATGGCCAGATTTAATCATACAGATC GAACACTGGAAACACTGAAAATCTTCATTTTTAATCAGACAGGTATAGAAGCCAAGAAGAAT GTGGTGGTAACTCAAGCCGACCAAATAGGCCCTCTTCCCAGCACTTTGATAAAAAGTGTCGA $\tt CTGAGAGTATTCGGTGGCTAATTCCAGGACAAGAGCAGGAACATGTGGAG{\color{red}{\textbf{TAG}}} TGATGGTCT$ GAAAGAAGTTGGAAAGAGGAACTTCAATCCTTCGTTTCAGAAATTAGTGCTACAGTTTCATA CATTTTCTCCAGTGACGTGTTGACTTGAAACTTCAGGCAGATTAAAAGAATCATTTGTTGAA CAACTGAATGTATAAAAAATTATAAACTGGTGTTTTAACTAGTATTGCAATAAGCAAATGC AAAAATATTCAATAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48333</pre>

><subunit 1 of 1, 360 aa, 1 stop

>< MW: 39885, pI: 4.79, NX(S/T): 7

MVPAAGRRPPRVMRLLGWWQVLLWVLGLPVRGVEVAEESGRLWSEEQPAHPLQVGAVYLGEE ELLHDPMGQDRAAEEANAVLGLDTQGDHMVMLSVIPGEAEDKVSSEPSGVTCGAGGAEDSRC NVRESLFSLDGAGAHFPDREEEYYTEPEVAESDAAPTEDSNNTESLKSPKVNCEERNITGLE NFTLKILNMSQDLMDFLNPNGSDCTLVLFYTPWCRFSASLAPHFNSLPRAFPALHFLALDAS QHSSLSTRFGTVAVPNILLFQGAKPMARFNHTDRTLETLKIFIFNQTGIEAKKNVVVTQADQ IGPLPSTLIKSVDWLLVFSLFFLISFIMYATIRTESIRWLIPGQEQEHVE

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 321-340

Homologous region to dilsufide isomerase

amino acids 212-302

N-glycosylation site.

amino acids 165-168, 181-184, 187-190, 194-197, 206-209, 278-281 and 293-296

Thioredoxin domain

amino acids 211-227

 $\texttt{CCCGGCTCCGCTCTGCCCCTCGGGGTCGCGCCCACG} \underline{\textbf{ATG}} \texttt{CTGCAGGGCCCTGGCT}$ CGCTGCTGCTCTCCTCGCCTCGCACTGCTGCCTGGGCTCGGCGCGCGGGCTCTTCCTC TTTGGCCAGCCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCATCCCGGTCAACCTGCA GCTGTGCCACGGCATCGAATACCAGAACATGCGGCTGCCCAACCTGCTGGGCCACGAGACCA TGAAGGAGGTGCTGGAGCAGGCCGGCGTTGGATCCCGCTGGTCATGAAGCAGTGCCACCCG GACACCAAGAAGTTCCTGTGCTCGCTCTTCGCCCCCGTCTGCCTCGATGACCTAGACGAGAC CATCCAGCCATGCCACTCGCTCTGCGTGCAGGTGAAGGACCGCTGCGCCCCGGTCATGTCCG CCTTCGGCTTCCCCTGGCCCGACATGCTTGAGTGCGACCGTTTCCCCCAGGACAACGACCTT TGCATCCCCTCGCTAGCAGCGACCACCTCCTGCCAGCCACCGAGGAAGCTCCAAAGGTATG TGAAGCCTGCAAAAATAAAAATGATGATGACAACGACATAATGGAAACGCTTTGTAAAAATG ATTTTGCACTGAAAATAAAAGTGAAGGAGATAACCTACATCAACCGAGATACCAAAATCATC CTGGAGACCAAGAGCAATTTACAAGCTGAACGGTGTCCGAAAGGGACCTGAAGAA ATCGGTGCTGTGGCTCAAAGACAGCTTGCAGTGCACCTGTGAGGAGATGAACGACATCAACG CGCCCTATCTGGTCATGGGACAGAAACAGGGTGGGGGGGCTGGTGATCACCTCGGTGAAGCGG TGGCAGAAGGGGCAGAGAGAGTTCAAGCGCATCTCCCGCAGCATCCGCAAGCTGCAGTGCTA **G**TCCCGGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGCACGGCTGACCATTTCTGCTCC GGGATCTCAGCTCCCGTTCCCCAAGCACACTCCTAGCTGCTCCAGTCTCAGCCTGGGCAGCT TCCCCCTGCCTTTTGCACGTTTGCATCCCCAGCATTTCCTGAGTTATAAGGCCACAGGAGTG GATAGCTGTTTTCACCTAAAGGAAAAGCCCACCCGAATCTTGTAGAAATATTCAAACTAATA AAATCATGAATATTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50920</pre>

><subunit 1 of 1, 295 aa, 1 stop

><MW: 33518, pI: 7.74, NX(S/T): 0

MLQGPGSLLLLFLASHCCLGSARGLFLFGQPDFSYKRSNCKPIPVNLQLCHGIEYQNMRLPN LLGHETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSLCVQVKDR CAPVMSAFGFPWPDMLECDRFPQDNDLCIPLASSDHLLPATEEAPKVCEACKNKNDDDNDIM ETLCKNDFALKIKVKEITYINRDTKIILETKSKTIYKLNGVSERDLKKSVLWLKDSLQCTCE EMNDINAPYLVMGQKQGGELVITSVKRWQKGQREFKRISRSIRKLQC

Important features:

Signal peptide:

amino acids 1-20

Cysteine rich domain, homolgous to frizzled N terminus amino acids 6-153

GTGGAGGCCGCGACGATGCCGGGGCCGACGGGGCCGAGACGGGGTTGGCCGAGCCCCGGG CCCTGTGCGCGCAGCGGGCCACCGCACCTACGCGCGCCGCTGGGTGTTCCTGCTCGCGATC AGCCTGCTCAACTGCTCCAACGCCACGCTGTGGCTCAGCTTTGCACCTGTGGCTGACGTCAT TGCTGAGGACTTGGTCCTGTCCATGGAGCAGATCAACTGGCTGTCACTGGTCTACCTCGTGG TATCCACCCCATTTGGCGTGGCGGCCATCTGGATCCTGGACTCCGTCGGGCTCCGTGCGGCG ACCATCCTGGGTGCGTGGCTGAACTTTGCCGGGAGTGTGCTACGCATGGTGCCCTGCATGGT TGTTGGGACCCAAAACCCATTTGCCTTCCTCATGGGTGGCCAGAGCCTCTGTGCCCTTGCCC AGAGCCTGGTCATCTTCTCCCAGCCAAGCTGGCTGCCTTGTGGTTCCCAGAGCACCAGCGA GCCACGGCCAACATGCTCGCCACCATGTCGAACCCTCTGGGCGTCCTTGTGGCCAATGTGCT GTCCCCTGTGCTGGTCAAGAAGGGTGAGGACATTCCGTTAATGCTCGGTGTCTATACCATCC CTGCTGGCGTCGTCTGCTGTCCACCATCTGCCTGTGGGAGAGTGTGCCCCCCACCCG CCCTCTGCCGGGGCTGCCAGCTCCACCTCAGAGAAGTTCCTGGATGGGCTCAAGCTGCAGCT CATGTGGAACAAGGCCTATGTCATCCTGGCTGTGTGCTTGGGGGGAATGATCGGGATCTCTG CCAGCTTCTCAGCCCTCCTGGAGCAGATCCTCTGTGCAAGCGGCCACTCCAGTGGGTTTTCC GGCCTCTGTGGCGCTCTCTTCATCACGTTTGGGATCCTGGGGGCACTGGCTCTCGGCCCCTA TGTGGACCGGACCAAGCACTTCACTGAGGCCACCAAGATTGGCCTGTGCCTGTTCTCTCTGG $\verb|CCTGCGTGCCCTTGCCCTGGTGTCCCAGCTGCAGGGACAGACCCTTGCCCTGGCTGCCACC| \\$ TGCTCGCTGCTCGGGCTGTTTGGCTTCTCGGTGGGCCCCGTGGCCATGGAGTTGGCGGTCGA GTGTTCCTTCCCCGTGGGGGGGGGGCTGCCACAGGCATGATCTTTGTGCTGGGGCAGGCCG AGGGAATACTCATCATGCTGGCAATGACGGCACTGACTGTGCGACGCTCGGAGCCGTCCTTG TCCACCTGCCAGCAGGGGGAGGATCCACTTGACTGGACAGTGTCTCTGCTGCTGATGGCCGG CCTGTGCACCTTCTTCAGCTGCATCCTGGCGGTCTTCTTCCACACCCCATACCGGCGCCTGC AGGCCGAGTCTGGGGAGCCCCCCTCCACCCGTAACGCCGTGGGCGGCGCAGACTCAGGGCCG GGTGTGGACCGAGGGGGGCAGGAAGGGCTGGGGTCCTGGGGCCCAGCACGCGACTCCGGA GCCACCGAGCGACTCCCCGTGCGCAAGGCCCAGCAGCACCGACGCGCCCTCCCGCCCCGGC AGACTCGCAGGCAGGGTCCAAGCGTCCAGGTTTATTGACCCGGCTGGGTCTCACTCCTT CTCCTCCCGTGGGTGATCACGTAGCTGAGCGCCTTGTAGTCCAGGTTGCCCGCCACATCGA CCGGGAGCGAATTACAAGCGCGCACCTGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50988</pre>

><subunit 1 of 1, 560 aa, 1 stop

><MW: 58427, pI: 6.86, NX(S/T): 2

MAGPTEAETGLAEPRALCAQRGHRTYARRWVFLLAISLLNCSNATLWLSFAPVADVIAEDLV
LSMEQINWLSLVYLVVSTPFGVAAIWILDSVGLRAATILGAWLNFAGSVLRMVPCMVVGTQN
PFAFLMGGQSLCALAQSLVIFSPAKLAALWFPEHQRATANMLATMSNPLGVLVANVLSPVLV
KKGEDIPLMLGVYTIPAGVVCLLSTICLWESVPPTPPSAGAASSTSEKFLDGLKLQLMWNKA
YVILAVCLGGMIGISASFSALLEQILCASGHSSGFSGLCGALFITFGILGALALGPYVDRTK
HFTEATKIGLCLFSLACVPFALVSQLQGQTLALAATCSLLGLFGFSVGPVAMELAVECSFPV
GEGAATGMIFVLGQAEGILIMLAMTALTVRRSEPSLSTCQQGEDPLDWTVSLLLMAGLCTFF
SCILAVFFHTPYRRLQAESGEPPSTRNAVGGADSGPGVDRGGAGRAGVLGPSTATPECTARG
ASLEDPRGPGSPHPACHRATPRAQGPAATDAPSRPGRLAGRVQASRFIDPAGSHSSFSSPWVIT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 61-79, 98-112, 126-146, 169-182, 201-215, 248-268, 280-300, 318-337, 341-357, 375-387, 420-441

N-glycosylation site.

amino acids 40-43 and 43-46

Glycosaminoglycan attachment site.

amino acids 468-471

GTCCCACATCCTGCTCAACTGGGTCAGGTCCCTCTTAGACCAGCTCTTGTCCATCATTTGCTGAAGTGGACCAAC TAGTTCCCCAGTAGGGGGTCTCCCCTGGCAATTCTTGATCGGCGTTTTGGACATCTCAGATCGCTTCCAATGAAGA TGGCCTTGCCTTGGGGTCCTGCTTGTTTCATAATCATCTAACTATGGGACAAGGTTGTGCCGGCAGCTCTGGGGG CTACTTATTCTTTTAGGGGATTGTCAGGAGGTGACCACTCTCACGGTGAAATACCAAGTGTCAGAGGAAGTGCC GGCTCTGATCCATGTGGAGATCCAAGTGCTGGACATCAATGACCACCAGCCACGGTTTCCCAAAGGCGAGCAGGA GCTGGAAATCTCTGAGAGCGCCTCTCTGCGAACCCGGATCCCCCTGGACAGAGCTCTTGACCCAGACACAGGCCC TAACACCCTGCACACCTACACTCTGTCTCCCCAGTGAGCACTTTGCCTTGGATGTCATTGTGGGCCCTGATGAGAC $\verb|CCCTGCGTTTGCTGAGAGTTCACTGGCACTGGAAATCCAAGAAGATGCTGCACCTGGTACGCTTCTCATAAAACT| \\$ ${\tt GACCGCCACAGACCCTGACCAAGGCCCCAATGGGGAGGTGGAGTTCTTCCTCAGTAAGCACATGCCTCCAGAGGT}$ GCTGGACACCTTCAGTATTGATGCCAAGACAGGCCAGGTCATTCTGCGTCGACCTCTAGACTATGAAAAGAACCC ${\tt TGCCTACGAGGTGGATGTTCAGGCAAGGGACCTGGGTCCCAATCCTATCCCAGCCCATTGCAAAGTTCTCATCAA}$ GGTTCTGGATGTCAATGACAACATCCCAAGCATCCACGTCACATGGGCCTCCCAGCCATCACTGGTGTCAGAAGC TCTTCCCAAGGACAGTTTTATTGCTCTTGTCATGGCAGATGACTTGGATTCAGGACACAATGGTTTGGTCCACTG CACACTGGACAGAGAGCAGTGGCCCAAATATACCCTCACTCTGTTAGCCCAAGACCAAGGACTCCAGCCCTTATC AGCCAAGAAACAGCTCAGCATTCAGATCAGTGACATCAACGACAATGCACCTGTGTTTTGAGAAAAGCAGGTATGA AGTCTCCACGCGGGAAAACAACTTACCCTCTCTTCACCTCATTACCATCAAGGCTCATGATGCAGACTTGGGCAT TAATGGAAAAGTCTCATACCGCATCCAGGACTCCCCAGTTGCTCACTTAGTAGCTATTGACTCCAACACAGGAGA GGTCACTGCTCAGAGGTCACTGAACTATGAAGAGATGGCCGGCTTTGAGTTCCAGGTGATCGCAGAGGACAGCGG GCAACCCATGCTTGCATCCAGTGTCTCTGTGTGGGTCAGCCTCTTGGATGCCCAATGATAATGCCCCAGAGGTGGT CCAGCCTGTGCTCAGCGATGGAAAAGCCAGCCTCTCCGTGCTTGTGAATGCCTCCACAGGCCACCTGCTGGTGCC ${\tt CATCGAGACTCCCAATGGCTTGGGCCCAGCGGGCACTGACACCTCCACTGGCCACTCACAGCTCCCGGCCATT}$ CCTTTTGACAACCATTGTGGCAAGAGTGCAGACTCGGGGGGCAAATGGAGAGCCCCTCTACAGCATCCGCAATGG AAATGAAGCCCACCTCTTCAYCCTCAACCCTCATACGGGGCAGCTGTTCGTCAATGTCACCAATGCCAGCAGCCT CATTGGGAGTGAGTGGAGATAGTAGTAGTAGAGGACCAGGGAAGCCCCCCTTACAGACCCGAGCCCTGTT GAGGGTCATGTTTGTCACCAGTGTGGACCACCTGAGGGGACTCAGCCCGCAAGCCTGGGGCCTTGAGCATGTCGAT ${\tt GCTGACGGTGATCTGCCTGGCTGTACTGTTGGGCATCTTCGGGTTGATCCTGGCTTTGTTCATGTCCATCTGCCG}$ GACAGAAAAGAAGGACAACAGGGCCTACAACTGTCGGGAGGCCGAGTCCACCTACCGCCAGCAGCCCAAGAGGCC $\verb|CCACCTCACCCCGACCCTGTACAGGACGCTGCGTAATCAAGGCAACCAGGGAGGCACCGGGGGAGAGCCGAGAGGT| \\$ GCTGCAAGACACGGTCAACCTCCTTTTCAACCATCCCAGGCAGAGGAATGCCTCCCGGGAGAACCTGAACCTTCC TGGAGACCAGGGCAGTGAGGAAGCCCCACAGAGGCCACCAGCCTCCTCTGCAACCCTGAGACGGCAGCGACATCT AGGGCCTTTGGATCCTGAAGAGGACCTCTCTGTGAAGCAACTGCTAGAAGAAGAGCTGTCAAGTCTGCTGGACCC ${\tt CAAGGCAGAGCCCAGAGCCCAACAGGCACGAGGCTGGCCAGCACCTTTGTCTCGGAGATGAGCTCACT}$ GCTGGAGATGCTGCTGGAACAGCGCTCCAGCATGCCCGTGGAGGCCGCTCCGAGGCGCTGCGGCGCTCTCGGT CTGCGGGAGGACCCTCAGTTTAGACTTGGCCACCAGTGCAGCCTCAGGCATGAAAGTGCAAGGGGACCCAGGTGG ${\tt AAAGACGGGGACTGAGGGCAGCAGCAGCAGCAGCAGCAGCAGCTGCTG} \underline{{\tt TGA}} {\tt ACATACCTCAGACGCCT}$ CGGCGGCCTGAGAACTTTAGGGTGACTGATGCTACCCCCACAGAGGGGGCAAGAGCCCCAGGACTAACAGCTGAC ${\tt TGACCAAAGCAGCCCCTTGTAAGCAGCTCTGAGTCTTTTGGAGGACAGGGACGGTTTGTGGCTGAGATAAGTGTT}$ ${\tt AAAGGGTGGCCTTCTTGGGTAGCAGGAGTCAGGGGGGCTGTACCCTGGGGGGTGCCAGGAAATGCTCTCTGACCTAT}$

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48331</pre>

<subunit 1 of 1, 1184 aa, 1 stop</pre>

<MW: 129022, pI: 5.20, NX(S/T): 5

MMQLLQLLLGLLGPGGYLFLLGDCQEVTTLTVKYQVSEEVPSGTVIGKLSQELGREERRRQA GAAFQVLQLPQALPIQVDSEEGLLSTGRRLDREOLCROWDPCLVSFDVLATGDLALIHVEIO VLDINDHQPRFPKGEQELEISESASLRTRIPLDRALDPDTGPNTLHTYTLSPSEHFALDVIV GPDETKHAELIVVKELDREIHSFFDLVLTAYDNGNPPKSGTSLVKVNVLDSNDNSPAFAESS LALEIQEDAAPGTLLIKLTATDPDQGPNGEVEFFLSKHMPPEVLDTFSIDAKTGQVILRRPL DYEKNPAYEVDVQARDLGPNPIPAHCKVLIKVLDVNDNIPSIHVTWASQPSLVSEALPKDSF IALVMADDLDSGHNGLVHCWLSQELGHFRLKRTNGNTYMLLTNATLDREQWPKYTLTLLAQD QGLQPLSAKKQLSIQISDINDNAPVFEKSRYEVSTRENNLPSLHLITIKAHDADLGINGKVS YRIQDSPVAHLVAIDSNTGEVTAQRSLNYEEMAGFEFQVIAEDSGQPMLASSVSVWVSLLDA NDNAPEVVQPVLSDGKASLSVLVNASTGHLLVPIETPNGLGPAGTDTPPLATHSSRPFLLTT IVARDADSGANGEPLYSIRNGNEAHLFILNPHTGQLFVNVTNASSLIGSEWELEIVVEDQGS PPLQTRALLRVMFVTSVDHLRDSARKPGALSMSMLTVICLAVLLGIFGLILALFMSICRTEK KDNRAYNCREAESTYRQQPKRPQKHIQKADIHLVPVLRGQAGEPCEVGOSHKDVDKEAMMEA GWDPCLQAPFHLTPTLYRTLRNQGNQGAPAESREVLQDTVNLLFNHPRQRNASRENLNLPEP QPATGQPRSRPLKVAGSPTGRLAGDQGSEEAPQRPPASSATLRRQRHLNGKVSPEKESGPRQ ILRSLVRLSVAAFAERNPVEELTVDSPPVQQISQLLSLLHQGQFQPKPNHRGNKYLAKPGGS RSAIPDTDGPSARAGGQTDPEQEEGPLDPEEDLSVKQLLEEELSSLLDPSTGLALDRLSAPD PAWMARLSLPLTTNYRDNVISPDAAATEEPRTFQTFGKAEAPELSPTGTRLASTFVSEMSSL LEMLLEQRSSMPVEAASEALRRLSVCGRTLSLDLATSAASGMKVQGDPGGKTGTEGKSRGSS SSSRCL

Important features:

Signal peptide:

amino acids 1-13

Transmembrane domain:

amino acids 719-739

N-glycosylation site.

amino acids 415-418, 582-585, 659-662, 662-665 amd 857-860

Cadherins extracellular repeated domain signature.

amino acids 123-133, 232-242, 340-350, 448-458 and 553-563

CGGACGCGTGGGCGACGCGTGGGGGAGAGCCGCAGTCCCGGCTGCAGCACCTGGGAGAAGG CAGACCGTGTGAGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAGTGGGAAGTGGAG GCAGGAGCCTTCCTTACACTTCGCCATGAGTTTCCTCATCGACTCCAGCATCATGATTACCT CCCAGATACTATTTTTTGGATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTAT GAGATACGTCAGTATGTTGTACAGGTGATCTTCTCCGTGACGTTTTGCATTTTCTTGCACCAT GTTTGAGCTCATCTTTGAAATCTTAGGAGTATTGAATAGCAGCTCCCGTTATTTTCACT GGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTTTCATGGTGCCTTTTTACATTGGC TATTTTTTTTTTTCCTGTCTTTTTTTCCTGTCTTTTTTTCCTGTCTCTT ATGGCTGACCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCCCATTCTCAGCCCAA AACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGATTGGAGTGACTCTC ATGGCTCTTCTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTCCT CAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATA TGATCATAAGCAAAAAGAAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGAA GTGCATAACAAACCATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGG TTTTTCTGGAAACAGCTGATCTATATGCTACCAAGGAGAGAATAGAATACTCCAAAACCTTC AAGGGGAAATATTTTAATTTTCTTGGTTACTTTTTCTCTATTTACTGTGTTTCGAAAATTTT CATGGCTACCATCAATATTGTTTTTGATCGAGTTGGGAAAACGGATCCTGTCACAAGAGGCA TTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGTGAAGTTTTGGTCCCAACACATT TCCTTCATTCTTGTTGGAATAATCATCGTCACATCCATCAGAGGATTGCTGATCACTCTTAC CAAGTTCTTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTGCTATTAGCAC AGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGATCCGAATGAGTATGCCTTTAGAA TACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTT TGATGTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAAC AGGCACCAGAGAAGCAAATGGCACCT**TGA**ACTTAAGCCTACTACAGACTGTTAGAGGCCAGT GGTTTCAAAATTTAGATATAAGAGGGGGGAAAAATGGAACCAGGGCCTGACATTTTATAAAC AAACAAAATGCTATGGTAGCATTTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATA GCAGAGAGCATCCCGTGTGGATATGAGGCTGGTGTAGAGGCGGAGAGGAGCCAAGAAACTAA AGGTGAAAAATACACTGGAACTCTGGGGCAAGACATGTCTATGGTAGCTGAGCCAAACACGT AGGATTTCCGTTTTAAGGTTCACATGGAAAAGGTTATAGCTTTGCCTTGAGATTGACTCATT ACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEI
LGVLNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFF
WKLGDPFPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDI
LALERRLLQTMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQ
QEVDALEELSRQLFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVF
DRVGKTDPVTRGIEITVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISS
SKSSNVIVLLLAQIMGMYFVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSA
LSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

CATGGGAAGTGGAGCCGGAGCCTTCCTTACACTCGCCATGAGTTTCCTCATCGACTCCAGCA
TCATGATTACCTCCCNGANACTATTTTTTGGATTTGGGTGGCTTTTCTTCNGCGCCAATGTT
TAAAGACTATGAGATACGTCAGTATGTTGTACNGGTGATCTTCTCCGTGACGTTTGCCATTT
CTTGCACCATGTTTGAGCTCATCATCTTTGAAATCTTNGGAGTATTGAATAGCAGCTCCCGT
TATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTNTCATGGTGCCTTT
TTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTT
CCTGTCTCTTATGGCTGACCTTTATGTATTTCCAG

GTGTTGCCCTTGGGGAGGGGAAGGGGAGCCNGGCCCTTTCCTAAAATTTGGCCAAGGGTTTC
TTTNTTGAATTCCGGGTTNNGNATACCTTCCCAGAAAATATTTTTTTGGATTTGGGTAGNTT
TTTTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAGGTGATNTT
NTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATNTTTGAAATNTTAGGAG
TATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATC
CTGGTTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCA
TAAACAACGACTGCTTTTTTCCTGTCTNTTATGGCTGACCTTTTATGTATTTNTTNTGGAAAN
TAGGAGATCCCTTTCCCATTCTC

 $\tt CTCGCGCAGGGATCGTCCC\underline{\textbf{ATG}} GCCGGGGCTCGGAGCCGCGACCCTTGGGGGGCCTCCGGGATTTGCTACCTTTT$ TGGCTCCCTGCTCGAACTGCTCTTCTCACGGGCTGTCGCCTTCAATCTGGACGTGATGGGTGCCTTGCGCAA GGAGGGCGAGCCAGCCTCTTCGGCTTCTCTGTGGCCCTGCACCGGCAGTTGCAGCCCCGACCCCAGAGCTG GCTGCTGGTGGTGCTCCCCAGGCCCTGGCTCTTCCTGGGCAGCAGCCGAATCGCACTGGAGGCCTCTTCGCTTG CCCGTTGAGCCTGGAGGAGACTGACTGCTACAGAGTGGACATCGACCAGGGAGCTGATATGCAAAAGGAAAGCAA GGAGAACCAGTGGTTGGGAGTCAGTGTTCGGAGCCAGGGGCCTGGGGGCAAGATTGTTACCTGTGCACACCGATA ${\tt CCTGGCCATCCGGGATGGGTGGGGGAATGGAAGTTCTGTGAGGGACGCCCCCAAGGCCATGAACAATT}$ CTATAATTGGAAGGCCACGGCCAGGGTGGAGCTCTGTGCACAGGGCTCAGCGGACCTGGCACACCTGGACGACGG TCCCTACGAGGCGGGGGGAGAAGGAGCAGGACCCCCGCCTCATCCCGGTCCCTGCCAACAGCTACTTTGGCTT CTCTATTGACTCGGGGAAAGGTCTGGTGCGTGCAGAAGAGCTGAGCTTTGTGGCTGGAGCCCCCGCGCCAACCA GGCTGGGATCTCCCCTCTCCGGCTCTGCGGCTCCCCTGACTCCATGTTCGGGATCAGCCTGGCTGTCCTGGGGGA $\verb|CCTCAACCAAGATGGCTTTCCAGATATTGCAGTGGGTGCCCCCTTTGATGGTGATGGGAAAGTCTTCATCTACCA| \\$ $\tt CGCAGTGCTCTTCAGGGCCAGACCCATCCTCCATGTCTCCCATGAGGTCTCTATTGCTCCACGAAGCATCGACCT$ GGAGCAGCCCAACTGTGCTGGCGGCCACTCGGTCTGTGTGGACCTAAGGGTCTGTTTCAGCTACATTGCAGTCCC TCCCCGTGTGACGTTCCTGAGCCGTAACCTGGAAGAACCCAAGCACCAGGCCTCGGGCACCGTGTGGCTGAAGCA ${\tt CCAGCATGACCGAGTCTGTGGAGACGCCATGTTCCAGCTCCAGGAAAATGTCAAAGACAAGCTTCGGGCCATTGT}$ AGTGACCTTGTCCTACAGTCTCCAGACCCCTCGGCTCCGGCGACAGGCTCCTGGCCAGGGGCTGCCTCCAGTGGC CCCCATCCTCAATGCCCACCAGCCCAGCACCCAGCGGGCAGAGATCCACTTCCTGAAGCAAGGCTGTGGTGAAGA CAAGATCTGCCAGAGCAATCTGCAGCTGGTCCACGCCCGCTTCTGTACCCGGGTCAGCGACACGGAATTCCAACC TCTGCCCATGGATGTGGATGGAACAACAGCCCTGTTTGCACTGAGTGGGCAGCCAGTCATTGGCCTGGAGCTGAT ${\tt GGTCACCAACCTGCCATCGGACCCAGCCCCAGCCCCAGGCTGATGGGGATGATGCCCATGAAGCCCAGCTCCTGGT}$ ${\tt CATGCTTCCTGACTCACTGCACTACTCAGGGGTCCGGGGCCCTGGACCCTGCGGAGAAGCCACTCTGCCTGTCCAA}$ TGAGAATGCCTCCCATGTTGAGTGTGAGCTGGGGAACCCCATGAAGAGAGGTGCCCAGGTCACCTTCTACCTCAT ${\tt GGAGCTGCATCCAGTCTCTGCACGAGCCCGTGTCTTCATTGAGCTGCCACTGTCCATTGCAGGAATGGCCATTCCCATTCCATTGCAGGAATGGCCATTCCCATTGCAGGAATGGCCATTCCCATTGCAGGAATGGCCATTCCCATTCCATTGCAGGAATGGCCATTCCCATTCCATTGCAGGAATGGCCATTCCCATTCCATTGCAGGAATGGCCATTCCCATTCATTCCATTCCATTCCATTCCATTCCATTCCATTCCATTCCATTCCATTCCATTCCATTCCATTCATTCCATTCATTCATTCATTCCATT$ CAAGTATGAGGTCACGGTTTCCAACCAAGGCCAGTCGCTCAGAACCCTGGGCTCTGCCTTCCTCAACATCATGTG GCCTCATGAGATTGCCAATGGGAAGTGGTTGCTGTACCCAATGCAGGTTGAGCTGGAGGGCGGGAGGGGCCTGG GCAGAAAGGGCTTTGCTCTCCCAGGCCCAACATCCTCCACCTGGATGTGGACAGTAGGGATAGGAGGCGGCGGGA ${\tt TGAGAAGAAAAACATCACCCTGGACTGCGCCCGGGGCACGGCCAACTGTGTGGTGTTCAGCTGCCCACTCTA}$ TGTGAAGTCCCTGGAAGTGATTGTCCGGGCCAACATCACAGTGAAGTCCTCCATAAAGAACTTGATGCTCCGAGA ${\tt CAAACGGGCGAAGCACCCCGAGGCCACCGTGCCCCAGTACCATGCGGTGAAGATTCCTCGGGAAGACCGACAGCA}$ GTTCAAGGAGGAGAAGACGGGCACCATCCTGAGGAACAACTGGGGCAGCCCCCGGCGGGAGGGCCCGGATGCACA ${\tt CCCCATCCTGGCTGCTGACGGGCATCCCGAGCTGGGCCCCGATGGGCATCCAGGGCCAGGCACCGCC}$ CATGTCCCAGCCTGGCCTGTGGCTGCCCTCCATCCCTTCCCCAGAGATGGCTCCTTGGGATGAAGAGGGTAGAGT ${\tt TCCTCCCACCCAACTTCCCCTTAGAGTGCTGTGAGATGAGAGTGGGTAAATCAGGGACAGGGCCATGGGGTAGGG}$ ${ t TGAGAAGGGCAGGGTGTCCTGATGCAAAGGTGGGGAGAAGGGATCCTAATCCCTTCCTCTCCCATTCACCCTGT}$ $\tt CTCAGGCTGCTCTCTAGTTTCCCCTCTCATCTGACCTTAGTTTGCTGCCATCAGTCTAGTGGTTTCGTGGT$

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA55737</pre>

><subunit 1 of 1, 1141 aa, 1 stop

><MW: 124671, pI: 5.82, NX(S/T): 5

MAGARSRDPWGASGICYLFGSLLVELLFSRAVAFNLDVMGALRKEGEPGSLFGFSVALHRQL QPRPQSWLLVGAPQALALPGQQANRTGGLFACPLSLEETDCYRVDIDOGADMOKESKENOWL GVSVRSQGPGGKIVTCAHRYEARQRVDQILETRDMIGRCFVLSQDLAIRDELDGGEWKFCEG RPQGHEQFGFCQQGTAAAFSPDSHYLLFGAPGTYNWKGTARVELCAQGSADLAHLDDGPYEA GGEKEQDPRLIPVPANSYFGFSIDSGKGLVRAEELSFVAGAPRANHKGAVVILRKDSASRLV PEVMLSGERLTSGFGYSLAVADLNSDGWPDLIVGAPYFFERQEELGGAVYVYLNQGGHWAGI SPLRLCGSPDSMFGISLAVLGDLNQDGFPDIAVGAPFDGDGKVFIYHGSSLGVVAKPSOVLE GEAVGIKSFGYSLSGSLDMDGNQYPDLLVGSLADTAVLFRARPILHVSHEVSIAPRSIDLEO PNCAGGHSVCVDLRVCFSYIAVPSSYSPTVALDYVLDADTDRRLRGQVPRVTFLSRNLEEPK HQASGTVWLKHQHDRVCGDAMFQLQENVKDKLRAIVVTLSYSLQTPRLRRQAPGQGLPPVAP ILNAHQPSTQRAEIHFLKQGCGEDKICQSNLQLVHARFCTRVSDTEFQPLPMDVDGTTALFA LSGQPVIGLELMVTNLPSDPAQPQADGDDAHEAQLLVMLPDSLHYSGVRALDPAEKPLCLSN ENASHVECELGNPMKRGAQVTFYLILSTSGISIETTELEVELLLATISEOELHPVSARARVF IELPLSIAGMAIPQQLFFSGVVRGERAMQSERDVGSKVKYEVTVSNQGQSLRTLGSAFLNIM WPHEIANGKWLLYPMQVELEGGQGPGQKGLCSPRPNILHLDVDSRDRRRRELEPPEQOEPGE RQEPSMSWWPVSSAEKKKNITLDCARGTANCVVFSCPLYSFDRAAVLHVWGRLWNSTFLEEY SAVKSLEVIVRANITVKSSIKNLMLRDASTVIPVMVYLDPMAVVAEGVPWWVILLAVLAGLL VLALLVLLLWKMGFFKRAKHPEATVPQYHAVKIPREDRQQFKEEKTGTILRNNWGSPRREGP DAHPILAADGHPELGPDGHPGPGTA

Important features:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 1040-1062

N-glycosylation sites.

amino acids 86-89, 746-749, 949-952, 985-988 and 1005-1008

Integrins alpha chain proteins.

amino acids 1064-1071, 384-408, 1041-1071, 317-346, 443-465, 385-407, 215-224, 634-647, 85-99, 322-346, 470-479, 442-466, 379-408 and 1031-1047

AAGCAGCGAGTTGGCAGAGCAGGGCTGCATTTCCAGCAGGAGCTGCGAGCACAGTGCTGGCT TGGATGATAAACAATGGCTCACCACAATCTCTCAGTATGACAAGGAAGTCGGACAGTGGAAC AAATTCCGAGACGAAGTAGAGGATGATTATTTCCGCACTTGGAGTCCAGGAAAACCCTTCGA TCAGGCTTTAGATCCAGCTAAGGATCCATGCTTAAAGATGAAATGTAGTCGCCATAAAGTAT GCATTGCTCAAGATTCTCAGACTGCAGTCTGCATTAGTCACCGGAGGCTTACACACAGGATG AAAGAAGCAGGAGTAGACCATAGGCAGTGGAGGGGTCCCATATTATCCACCTGCAAGCAGTG CCCAGTGGTCTATCCCAGCCCTGTTTGTGGTTCAGATGGTCATACCTACTCTTTTCAGTGCA AACTAGAATATCAGGCATGTGTCTTAGGAAAACAGATCTCAGTCAAATGTGAAGGACATTGC CCATGTCCTTCAGATAAGCCCACCAGTACAAGCAGAAATGTTAAGAGAGCATGCAGTGACCT GGAGTTCAGGGAAGTGGCAAACAGATTGCGGGACTGGTTCAAGGCCCTTCATGAAAGTGGAA GTCAAAACAAGAAGACAAAAACATTGCTGAGGGCCTGAGAGAAGCAGATTCGATACCAGCATC TTGCCAATTTGCAAGGACTCACTTGGCTGGATGTTTAACAGACTTGATACAAACTATGACCT GCTATTGGACCAGTCAGAGCTCAGAAGCATTTACCTTGATAAGAATGAACAGTGTACCAAGG CATTCTTCAATTCTTGTGACACATACAAGGACAGTTTAATATCTAATAATGAGTGGTGCTAC TGCTTCCAGAGACAGCAAGACCCACCTTGCCAGACTGAGCTCAGCAATATTCAGAAGCGGCA AGGGGTAAAGAAGCTCCTAGGACAGTATATCCCCCTGTGTGATGAAGATGGTTACTACAAGC CAACACAATGTCATGGCAGTGTTGGACAGTGTGTGTTGACAGATATGGAAATGAAGTC ATGGGATCCAGAATAAATGGTGTTGCAGATTTGTGCTATAGATTTTGAGATCTCCGGAGATTT TGCTAGTGGCGATTTTCATGAATGGACTGATGATGAGGATGATGAAGACGATATTATGAATG CATGATGTATACATT**TGA**TTGATGACAGTTGAAATCAATAAATTCTACATTTCTAATATTTA CAAAAATGATAGCCTATTTAAAATTATCTTCTTCCCCAATAACAAAATGATTCTAAACCTCA CATATATTTTGTATAATTTTGAAAAATTGCAGCTAAAGTTATAGAACTTTATGTTTAAAT AAGAATCATTTGCTTTGAGTTTTTATATTCCTTACACAAAAAGAAAATACATATGCAGTCTA GTCAGACAAATAAAGTTTTGAAGTGCTACTATAATAAATTTTTCACGAGAACAAACTTTGT AAATCTTCCATAAGCAAAATGACAGCTAGTGCTTGGGATCGTACATGTTAATTTTTTGAAAG ATAATTCTAAGTGAAATTTAAAATAAATTATTTTAATGACCTGGGTCTTAAGGATTTAGG AAAAATATGCATGCTTTAATTGCATTTCCAAAGTAGCATCTTGCTAGACCTAGATGAGTCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49829</pre>

><subunit 1 of 1, 436 aa, 1 stop

><MW: 49429, pI: 4.80, NX(S/T): 0

MLKVSAVLCVCAAAWCSQSLAAAAAVAAAGGRSDGGNFLDDKQWLTTISQYDKEVGQWNKFR
DEVEDDYFRTWSPGKPFDQALDPAKDPCLKMKCSRHKVCIAQDSQTAVCISHRRLTHRMKEA
GVDHRQWRGPILSTCKQCPVVYPSPVCGSDGHTYSFQCKLEYQACVLGKQISVKCEGHCPCP
SDKPTSTSRNVKRACSDLEFREVANRLRDWFKALHESGSQNKKTKTLLRPERSRFDTSILPI
CKDSLGWMFNRLDTNYDLLLDQSELRSIYLDKNEQCTKAFFNSCDTYKDSLISNNEWCYCFQ
RQQDPPCQTELSNIQKRQGVKKLLGQYIPLCDEDGYYKPTQCHGSVGQCWCVDRYGNEVMGS
RINGVADCAIDFEISGDFASGDFHEWTDDEDDEDDIMNDEDEIEDDDEDEGDDDDGGDDHDVYI

Important features:

Signal peptide:

amino acids 1-16

Leucine zipper pattern.

amino acids 246-267

N-myristoylation sites.

amino acids 357-362, 371-376 and 376-381

Thyroglobulin type-1 repeat proteins

amino acids 353-365 and 339-352

CAGACTCCAGATTTCCCTGTCAACCACGAGGAGTCCAGAGAGGAAACGCGGAGCGAGACAACAGTACCTGACGC GCTCTGCCTCCGGTGCTGCCTGGGGCGGCCGCCTTCACACCTTCCCTCGATAGCGACTTCACCTTTACCCTT CCCGCCGGCCAGAAGGAGTGCTTCTACCAGCCCATGCCCCTGAAGGCCTCGCTGGAGATCGAGTACCAAGTTTTA GATGGAGCAGGATTAGATATTGATTTCCATCTTGCCTCTCCAGAAGGCAAAACCTTAGTTTTTGAACAAAGAAAA TCAGATGGAGTTCACACTGTAGAGACTGAAGTTGGTGATTACATGTTCTGCTTTGACAATACATTCAGCACCATT TCTGAGAAGGTGATTTTCTTTGAATTAATCCTGGATAATATGGGAGAACAGGCACAAGAACAAGAAGATTGGAAG AAATATATTACTGGCACAGATATATTGGATATGAAACTGGAAGACATCCTGGAATCCATCAACAGCATCAAGTCC AGACTAAGCAAAAGTGGGCACATACAAATTCTGCTTAGAGCATTTGAAGCTCGTGATCGAAACATACAAGAAAGC AACTTTGATAGAGTCAATTTCTGGTCTATGGTTAATTTAGTGGTCATGGTGGTGGTGTCAGCCATTCAAGTTTAT ATGCTGAAGAGTCTGTTTGAAGATAAGAGGAAAAGTAGAACTTAAAACTCCAAACTAGAGTACGTAACATTGAAA AATGAGGCATAAAAATGCAATAAACTGTTACAGTCAAGACCATTAATGGTCTTCTCCAAAATATTTTGAGATATA AAAGTAGGAAACAGGTATAATTTTAATGTGAAAATTAAGTCTTCACTTTCTGTGCAAGTAATCCTGCTGATCCAG AGTCTGTTTTTAACAGGTTCTATTACCCAGAACTTTTTTGTAAATGCGGCAGTTACAAATTAACTGTGGAAGTTT TCAGTTTTAAGTTATAAATCACCTGAGAATTACCTAATGATGGATTGAATAAATCTTTAGACTACAAAAGCCCAA CTTTTCTCTATTTACATATGCATCTCTCTATAATGTAAATAGAATAATAGCTTTGAAATACAATTAGGTTTTTG AGATTTTTATAACCAAATACATTTCAGTGTAACATATTAGCAGAAAGCATTAGTCTTTGTACTTTGCTTACATTC CCAAAAGCTGACATTTTCACGATTCTTAAAAACACAAAGTTACACTTACTAAAATTAGGACATGTTTTCTCTTTG AAATGAAGAATATAGTTTAAAAGCTTCCTCCATAGGGACACATTTTCTCTAACCCTTAACTAAAGTGTAGGA TTTTAAAATTAAATGTGAGGTAAAATAAGTTTATTTTTAATAGTATCTGTCAAGTTAATATCTGTCAACAGTTAA TAATCATGTTATGTTAATTTTAACATGATTGCTGACTTGGATAATTCATTATTACCAGCAGTTATGAAGGAAATA TTGCTAAAATGATCTGGGCCTACCATAAATAAATATCTCCTTTTCTGAGCTCTAAGAATTATCAGAAAACAGGAA ${\tt AAACTTTGGCTGTAGGTTTTATTTTCTACAAGAATTCTGGTTTGAATTATTTTTTGTAAGCAGGTACATTTTATA}$ TAAAATGGCCTTTCTGAACACTTTATTTATTGATGTTGAAGTAAGGATTAGAAACATAGACTCCCAAGTTTTAAA CACCTAAATGTGAATAACCCATATATACAACAAAGTTTCTGCCATCTAGCTTTTTGAAGTCTATGGGGGTCTTAC TCAAGTACTAGTAATTTAACTTCATCATGAATGAACTATAATTTTTAAGTTATGCCCATTTATAACGTTGTTTAT GACTACATTGTGAGTTAGAAACTTAAAATTTGGGGTATAGAACCCCTCAACAGGTTAGTAATGCTGGAATT CTTGATGAGCAATAATGATAACCAGAGAGTGATTTCATTTACACTCATAGTAGTATAAAAAGAGATACATTTCCC TCTTAGGCCCCTGGGAGAAGAGCAGCTTAGATTTCCCTACTGGCAAGGTTTTTAAAAATGAGGTAAATGCCGTAT ATGATCAATTACCTTAATTGGCCAAGAAAATGCTTCAGGTGTCTAGGGGGTATCCTCTGCAACACTTGCAGAACAA AGGTCAATAAGATCCTTGCCTATGAATACCCCTCCCTTTTGCGCTGTTAAATTTGCAATGAGAAGCAAATTTACA $\tt GTACCATAACTAATAAAGCAGGGTACAGATATAAACTACTGCATCTTTTCTATAAAACTGTGATTAAGAATTCTA$ CCTCTCCTGTATGGCTGTTACTGTACTGTACTCTCTGACTCCTTACCTAACAATGAATTTGTTACATAATCTTCT ACATGTATGATTTGTGCCACTGATCTTAAACCTATGATTCAGTAACTTCTTACCATATAAAAACGATAATTGCTT TATTTGGAAAAGAATTTAGGAATACTAAGGACAATTATTTTTATAGACAAAGTAAAAAGACAGATATTTAAGAGG ${\tt CATAACCAAAAAGCAAAACTTGTAAACAGAGTAAAAATCTTTAATATTTCTAAAGACATACTGTTTATCTGCTT}$ CATATGCTTTTTTAATTTCACTATTCCATTTCTAAATTAAAGTTATGCTAAATTGAGTAAGCTGTTTATCACTT AACAGCTCATTTTGTCTTTTTCAATATACAAATTTTTAAAAATACTACAATATTTAACTAAGGCCCAACCGATTTC CATAATGTAGCAGTTACCGTGTTCACCTCACACTAAGGCCTAGAGTTTGCTCTGATATGCATTTGGATGATTAAT GTTATGCTGTTCTTCATGTGAATGTCAAGACATGGAGGGTGTTTGTAATTTTATGGTAAAATTAATCCTTCTTA CACATAATGGTGTCTTAAAATTGACAAAAAATGAGCACTTACAATTGTATGTCTCCTCAAATGAAGATTCTTTAT $\tt GTGAAATTTTAAAAGACATTGATTCCGCATGTAAGGATTTTTCATCTGAAGTACAATAATGCACAATCAGTGTTG$ CTCAAACTGCTTTATACTTATAAACAGCCATCTTAAATAAGCAACGTATTGTGAGTACTGATATGTATATAATAA AAATTATCAAAGGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52196</pre>

><subunit 1 of 1, 229 aa, 1 stop

><MW: 26017, pI: 4.73, NX(S/T): 0

MGDKIWLPFPVLLLAALPPVLLPGAAGFTPSLDSDFTFTLPAGQKECFYQPMPLKASLEIEY QVLDGAGLDIDFHLASPEGKTLVFEQRKSDGVHTVETEVGDYMFCFDNTFSTISEKVIFFEL ILDNMGEQAQEQEDWKKYITGTDILDMKLEDILESINSIKSRLSKSGHIQILLRAFEARDRN IQESNFDRVNFWSMVNLVVMVVVSAIQVYMLKSLFEDKRKSRT

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 195-217

N-myristoylation site.

amino acids 43-48

Tyrosine kinase phosphorylation site.

amino acids 55-62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56965</pre>

<subunit 1 of 1, 175 aa, 1 stop</pre>

<MW: 19330, pI: 7.25, NX(S/T): 1

MLPPMALPSVSWMLLSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKSWM DADLACQKRPSGKLVSVLSGAEGSFVSSLVRSISNSYSYIWIGLHDPTQGSEPDGDGWEWSS TDVMNYFAWEKNPSTILNPGHCGSLSRSTGFLKWKDYNCDAKLPYVCKFKD

Important features:

Signal peptide:

amino acids 1-26

C-type lectin domain signature.

amino acids 146-171

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56405</pre>

<subunit 1 of 1, 125 aa, 1 stop

<MW: 13115, pI: 5.90, NX(S/T): 1

 ${\tt MRGTRLALLALVLAACGELAPALRCYVCPEPTGVSDCVTIATCTTNETMCKTTLYSREIVYP} \\ {\tt FQGDSTVTKSCASKCKPSDVDGIGQTLPVSCCNTELCNVDGAPALNSLHCGALTLLPLLSLRL} \\$

Important features:

Signal peptide:

amino acids 1-17

N-glycosylation site.

amino acids 46-49

CTGCAGTCAGGACTCTGGGACCGCAGGGGGCTCCCGGACCCTGACTCTGCAGCCGAACCGGC ${\tt ACGGTTTCGTGGGGACCCAGGCTTGCAAAGTGACGGTCATTTTCTCTTTTCTTCTCCCTCTT}$ GAGTCCTTCTGAGATGATGGCTCTGGGCGCAGCGGGAGCTACCCGGGTCTTTGTCGCGATGG TAGCGGCGGCTCTCGGCGGCCACCCTCTGCTGGGAGTGAGCGCCACCTTGAACTCGGTTCTC AATTCCAACGCTATCAAGAACCTGCCCCCACCGCTGGGCGCGCTGCGGGGCACCCAGGCTC TGCAGTCAGCGCCGCGCGGGAATCCTGTACCCGGGCGGGAATAAGTACCAGACCATTGACA ACTACCAGCCGTACCCGTGCGCAGAGGACGAGGAGTGCGCCACTGATGAGTACTGCGCTAGT CCCACCGCGGAGGGGACGCAGGCGTGCAAATCTGTCTCGCCTGCAGGAAGCGCCGAAAACG CTGCATGCGTCACGCTATGTGCTGCCCCGGGAATTACTGCAAAAATGGAATATGTGTGTCTT CTGATCAAAATCATTTCCGAGGAGAAATTGAGGAAACCATCACTGAAAGCTTTGGTAATGAT CATAGCACCTTGGATGGGTATTCCAGAAGAACCACCTTGTCTTCAAAAATGTATCACACCAA AGGACAAGAAGGTTCTGTTTGTCTCCGGTCATCAGACTGTGCCTCAGGATTGTGTTGTGCTA GACACTTCTGGTCCAAGATCTGTAAACCTGTCCTGAAAGAAGGTCAAGTGTGTACCAAGCAT AGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTTGTTACTGTGGAGAAGGTCTGTC TTGCCGGATACAGAAAGATCACCATCAAGCCAGTAATTCTTCTAGGCTTCACACTTGTCAGA GACAC**TAA**ACCAGCTATCCAAATGCAGTGAACTCCTTTTATATAATAGATGCTATGAAAACC TTTTATGACCTTCATCAACTCAATCCTAAGGATATACAAGTTCTGTGGTTTCAGTTAAGCAT TCCAATAACACCTTCCAAAAACCTGGAGTGTAAGAGCTTTGTTTCTTTATGGAACTCCCCTG TGATTGCAGTAAATTACTGTATTGTAAATTCTCAGTGTGGCACTTACCTGTAAATGCAATGA AACTTTTAATTATTTTCTAAAGGTGCTGCACTGCCTATTTTTCCTCTTGTTATGTAAATTT TTGTACACATTGATTGTTATCTTGACTGACAAATATTCTATATTGAACTGAAGTAAATCATT TCAGCTTATAGTTCTTAAAAGCATAACCCTTTACCCCATTTAATTCTAGAGTCTAGAACGCA AGGATCTCTTGGAATGACAAATGATAGGTACCTAAAATGTAACATGAAAATACTAGCTTATT TTCTGAAATGTACTATCTTAATGCTTAAATTATATTTCCCTTTAGGCTGTGATAGTTTTTGA AATAAAATTTAACATTTAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57530</pre>

<subunit 1 of 1, 266 aa, 1 stop

<MW: 28672, pI: 8.85, NX(S/T): 1

MMALGAAGATRVFVAMVAAALGGHPLLGVSATLNSVLNSNAIKNLPPPLGGAAGHPGSAVSA
APGILYPGGNKYQTIDNYQPYPCAEDEECGTDEYCASPTRGGDAGVQICLACRKRRKRCMRH
AMCCPGNYCKNGICVSSDQNHFRGEIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEG
SVCLRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCGEGLSCRIQ
KDHHQASNSSRLHTCQRH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 256-259

Fungal Zn(2)-Cys(6) binuclear cluster domain

amino acids 110-126

GAGGAACCTACCGGTACCGCCGCGCGCGCTGGTAGTCGCCGGTGTGGCTGCACCTCACCAATCCCGTGCGCCGCG GGGTTTGAGGATGGGGGAGTAGCTACAGGAAGCGACCCCGCGATGGCAAGGTATATTTTTTGTGGAATGAAAAGGA A GTATTAGAAATGAGCTGAAGACCATTCACAGATTAATATTTTTTGGGGACAGATTTGTGATGCTTGATTCACCCTTGAAGTAATGTAGACAGAAGTTCTCAAATTTGCATATTACATCAACTGGAACCAGCAGTGAATCTTAATGTTCAC GATCATTCTCTGTTTTCTGATAGTGTATATGGCCATTTTAGTGGGCACAGATCAGGATTTTTACAGTTTACTTGG AGTGTCCAAAACTGCAAGCAGTAGAGAAATAAGACAAGCTTTCAAGAAATTGGCATTGAAGTTACATCCTGATAA TCTACGGAAAAGTATGACAAATATGGAGAAAAGGGACTTGAGGATAATCAAGGTGGCCAGTATGAAAGCTGGAA CTATTATCGTTATGATTTTTGGTATTTATGATGATCCTGAAATCATAACATTGGAAAGAAGAAGATTTGATGC TGCTGTTAATTCTGGAGAACTGTGGTTTGTAAATTTTTACTCCCCAGGCTGTTCACACTGCCATGATTTAGCTCC CACATGGAGAGACTTTGCTAAAGAAGTGGATGGGTTACTTCGAATTGGAGCTGTTAACTGTGGTGATGATAGAAT ${\tt GCTTTGCCGAATGAAAGGAGTCAACAGCTATCCCAGTCTCTTCATTTTTCGGTCTGGAATGGCCCCAGTGAAATA}$ TCATGGAGACAGATCAAAGGAGAGTTTAGTGAGTTTTGCAATGCAGCATGTTAGAAGTACAGTGACAGAACTTTG AGGAGGAGATTGTTTGACTTCACAGACACGACTCAGGCTTAGTGGCATGTTGTTTCTCAACTCATTGGATGCTAA AGAAATATTTTGGAAGTAATACATAATCTTCCAGATTTTGAACTACTTTCGGCAAACACACTAGAGGATCGTTT GGCTCATCATCGGTGGCTGTTATTTTTCATTTTGGAAAAAATGAAAATTCAAATGATCCTGAGCTGAAAAAACT AAAAACTCTACTTAAAAATGATCATATTCAAGTTGGCAGGTTTGACTGTTCCTCTGCACCAGACATCTGTAGTAA TCTGTATGTTTTTCAGCCGTCTCTAGCAGTATTTAAAGGACAAGGAACCAAAGAATATGAAATTCATCATGGAAA GAAGATTCTATATGATATACTTGCCTTTGCCAAAGAAAGTGTGAATTCTCATGTTACCACGCTTGGACCTCAAAA TTTTCCTGCCAATGACAAGAACCATGGCTTGTTGATTTCTTTGCCCCCTGGTGTCCACCATGTCGAGCTTTACT ACCAGAGTTACGAAGAGCATCAAATCTTCTTTATGGTCAGCTTAAGTTTGGTACACTAGATTGTACAGTTCATGA GGGACTCTGTAACATGTATAACATTCAGGCTTATCCAACAACAGTGGTATTCAACCAGTCCAACATTCATGAGTA TGAAGGACATCACTCTGCTGAACAAATCTTGGAGTTCATAGAGGATCTTATGAATCCTTCAGTGGTCTCCCTTAC ACCCACCACCTTCAACGAACTAGTTACACAAAGAAAACACAACGAAGTCTGGATGGTTGATTTCTATTCTCCGTG GTGTCATCCTTGCCAAGTCTTAATGCCAGAATGGAAAAGAATGGCCCGGACATTAACTGGACTGATCAACGTGGG $\hbox{\it CAGTATAGATTGCCAACAGTATCATTCTTTTGTGCCCAGGAAAACGTTCAAAGATACCCTGAGATAAGATTTTT}$ TCCCCCAAAATCAAATAAAGCTTATCAGTATCACAGTTACAATGGTTGGAATAGGGATGCTTATTCCCTGAGAAT CTGGGGTCTAGGATTTTTACCTCAAGTATCCACAGATCTAACACCTCAGACTTTCAGTGAAAAAGTTCTACAAGG GAAAAATCATTGGGTGATTGATTTCTATGCTCCTTGGTGTGGACCTTGCCAGAATTTTGCTCCAGAATTTGAGCT CTTGGCTAGGATGATTAAAGGAAAAGTGAAAGCTGGAAAAGTAGACTGTCAGGCTTATGCTCAGACATGCCAGAA AGCTGGGATCAGGGCCTATCCAACTGTTAAGTTTTATTTCTACGAAAGAGCAAAGAGAAATTTTCAAGAAGAGCA GATAAATACCAGAGATGCAAAAGCAATCGCTGCCTTAATAAGTGAAAAATTGGAAACTCTCCGAAATCAAGGCAA ${\tt GAGGAATAAGGATGAACTT} \underline{{\tt TGA}} {\tt TAATGTTGAAGATGAAGAAAAAGTTTAAAAGAAATTCTGACAGATGACATCAG$ AAGACACCTATTTAGAATGTTACATTTATGATGGGAATGAACATTATCTTAGACTTGCAGTTGTACTGCCA GAATTATCTACAGCACTGGTGTAAAAGAAGGGTCTGCAAACTTTTTCTGTAAAGGGCCGGTTTATAAATATTTTTA GACTTTGCAGGCTATAATATATGGTTCACACATGAGAACAAGAATAGAGTCATCATGTATTCTTTGTTATTTGCT TTTAACAACCTTTAAAAAATATTAAAACGATTCTTAGCTCAGAGCCATACAAAAGTAGGCTGGATTCAGTCCATG GACCATAGATTGCTGTCCCCCTCGACGGACTTATAATGTTTCAGGTGGCTTGGACATGAGTCTGCTGTGCT ATCTACATAAATGTCTAAGTTGTATAAAGTCCACTTTCCCTTCACGTTTTTTGGCTGACCTGAAAAGAGGGTAACT TAGTTTTTGGTCACTTGTTCTCCTAAAAATGCTATCCCTAACCATATATTTATATTTCGTTTTAAAAAACACCCAT AAATTTGAGCAACAGTAAGTGCACAAATTCTGTAGTTTGCTGTATCATCCAGGAAAAACCTGAGGGAAAAAAATTA TAGCAATTAACTGGGCATTGTAGAGTATCCTAAATATGTTATCAAGTATTTAGAGTTCTATATTTTAAAGATATA TGTGTTCATGTATTTCTGAAATTGCTTTCATAGAAATTTTCCCACTGATAGTTGATTTTTTGAGGCATCTAATAT TTTTTCACTCCTGTCCAGTCTATTTATTATTCAAATAGGAAAAATTACTTTACAGGTTGTTTTACTGTAGCTTAT AATGATACTGTAGTTATTCCAGTTACTAGTTTACTGTCAGAGGGCTGCCTTTTTCAGATAAATATTGACATAATA ${\tt ACTGAAGTTATTTTATAAGAAAATCAAGTATATAAATCTAGGAAAGGGATCTTCTAGTTTCTGTGTTTTTAGA}$ CTCAAAGAATCACAAATTTGTCAGTAACATGTAGTTGTTTAGTTATAATTCAGAGTGTACAGAATGGTAAAAATT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56439</pre>

<subunit 1 of 1, 747 aa, 1 stop</pre>

<MW: 86127, pI: 7.46, NX(S/T): 2

MGVWLNKDDYIRDLKRIILCFLIVYMAILVGTDQDFYSLLGVSKTASSREIRQAFKKLALKL
HPDKNPNNPNAHGDFLKINRAYEVLKDEDLRKKYDKYGEKGLEDNQGGQYESWNYYRYDFGI
YDDDPEIITLERREFDAAVNSGELWFVNFYSPGCSHCHDLAPTWRDFAKEVDGLLRIGAVNC
GDDRMLCRMKGVNSYPSLFIFRSGMAPVKYHGDRSKESLVSFAMQHVRSTVTELWTGNFVNS
IQTAFAAGIGWLITFCSKGGDCLTSQTRLRLSGMLFLNSLDAKEIYLEVIHNLPDFELLSAN
TLEDRLAHHRWLLFFHFGKNENSNDPELKKLKTLLKNDHIQVGRFDCSSAPDICSNLYVFQP
SLAVFKGQGTKEYEIHHGKKILYDILAFAKESVNSHVTTLGPQNFPANDKEPWLVDFFAPWC
PPCRALLPELRRASNLLYGQLKFGTLDCTVHEGLCNMYNIQAYPTTVVFNQSNIHEYEGHHS
AEQILEFIEDLMNPSVVSLTPTTFNELVTQRKHNEVWMVDFYSPWCHPCQVLMPEWKRMART
LTGLINVGSIDCQQYHSFCAQENVQRYPEIRFFPPKSNKAYQYHSYNGWNRDAYSLRIWGLG
FLPQVSTDLTPQTFSEKVLQGKNHWVIDFYAPWCGPCQNFAPEFELLARMIKGKVKAGKVDC
QAYAQTCQKAGIRAYPTVKFYFYERAKRNFQEEQINTRDAKAIAALISEKLETLRNOGKRNKDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 744-747

Cytochrome c family heme-binding site signature.

amino acids 158-163

Nt-dnaJ domain signature.

amino acids 77-96

N-glycosylation site.

amino acids 484-487

GCCATGAACATCATCCTAGAAATCCTTCTGCTTCTGATCACCATCATCTACTCCTACTTGGA GTCGTTGGTGAAGTTTTTCATTCCTCAGAGGAGAAAATCTGTGGCTGGGGAGATTGTTCTCA TTACTGGAGCTGGGCATGGAATAGGCAGGCAGACTACTTATGAATTTGCAAAACGACAGAGC ATATTGGTTCTGTGGGATATTAATAAGCGCGGTGTGGAGGAAACTGCAGCTGAGTGCCGAAA ACTAGGCGTCACTGCGCATGCGTATGTGGTAGACTGCAGCAACAGAGAAGAGATCTATCGCT CTCTAAATCAGGTGAAGAAGAAGTGGGTGATGTAACAATCGTGGTGAATAATGCTGGGACA GTATATCCAGCCGATCTTCTCAGCACCAAGGATGAAGAGATTACCAAGACATTTGAGGTCAA CATCCTAGGACATTTTTGGATCACAAAAGCACTTCTTCCATCGATGATGGAGAGAAATCATG GCCACATCGTCACAGTGGCTTCAGTGTGCGGCCACGAAGGGATTCCTTACCTCATCCCATAT TGTTCCAGCAAATTTGCCGCTGTTGGCTTTCACAGAGGTCTGACATCAGAACTTCAGGCCTT GGGAAAAACTGGTATCAAAACCTCATGTCTCTGCCCAGTTTTTGTGAATACTGGGTTCACCA AAAATCCAAGCACAAGATTATGGCCTGTATTGGAGACAGATGAAGTCGTAAGAAGTCTGATA GATGGAATACTTACCAATAAGAAAATGATTTTTGTTCCATCGTATATCAATATCTTTCTGAG ACTACAGAAGTTTCTTCCTGAACGCGCCTCAGCGATTTTAAATCGTATGCAGAATATTCAAT TATGCATGATAATGATATGAATAGTTTCGAATCAATGCTGCAAAGCTTTATTTCACATTTTT TCAGTCCTGATAATATTAAAAACATTGGTTTGGCACTAGCAGCAGTCAAACGAACAAGATTA ATTACCTGTCTTCCTGTTTCTCAAGAATATTTACGTAGTTTTTCATAGGTCTGTTTTTCCTT TCATGCCTCTTAAAAACTTCTGTGCTTACATAAACATACTTAAAAGGTTTTCTTTAAGATAT TTTATTTTCCATTTAAAGGTGGACAAAAGCTACCTCCCTAAAAGTAAATACAAAGAGAACT TATTTACACAGGGAAGGTTTAAGACTGTTCAAGTAGCATTCCAATCTGTAGCCATGCCACAG ATCTCAACCTGGACATATTTTAAGATTCAGCATTTGAAAGATTTCCCTAGCCTCTTCCTTTT TCATTAGCCCAAAACGGTGCAACTCTATTCTGGACTTTATTACTTGATTCTGTCTTCTGTAT AACTCTGAAGTCCACCAAAAGTGGACCCTCTATATTTCCTCCCTTTTTATAGTCTTATAAGA TACATTATGAAAGGTGACCGACTCTATTTTAAATCTCAGAATTTTAAGTTCTAGCCCCATGA TAACCTTTTCTTTGTAATTTATGCTTTCATATATCCTTGGTCCCAGAGATGTTTAGACAAT TTTAGGCTCAAAAATTAAAGCTAACACAGGAAAAGGAACTGTACTGGCTATTACATAAGAAA CAATGGACCCAAGAGAAGAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56409</pre>

<subunit 1 of 1, 300 aa, 1 stop

<MW: 33655, pI: 9.31, NX(S/T): 1

MNIILEILLLITIIYSYLESLVKFFIPQRRKSVAGEIVLITGAGHGIGRQTTYEFAKRQSI LVLWDINKRGVEETAAECRKLGVTAHAYVVDCSNREEIYRSLNQVKKEVGDVTIVVNNAGTV YPADLLSTKDEEITKTFEVNILGHFWITKALLPSMMERNHGHIVTVASVCGHEGIPYLIPYC SSKFAAVGFHRGLTSELQALGKTGIKTSCLCPVFVNTGFTKNPSTRLWPVLETDEVVRSLID GILTNKKMIFVPSYINIFLRLQKFLPERASAILNRMQNIQFEAVVGHKIKMK

Important features:

Signal peptide:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 30-33 and 58-61

Short-chain alcohol dehydrogenase family protein amino acids 165-202, 37-49, 112-122 and 210-219

CGGCGGCGCGCGAGGTGAGGGGCGCGAGGTTCCCAGCAGG AGGATGACCAAGGCCCGGCTGTTCCGGCTGTGGCTGGTGCTGGGGTGTTCATGATCCT GCTGATCATCGTGTACTGGGACAGCGCAGGCGCGCGCACTTCTACTTGCACACGTCCTTCT $\tt CTAGGCCGCACACGGGGCCGCCCGCCCCGGGCCGGACAGGGACAGGGAGCTCACG$ GCCGACTCCGATGTCGACGAGTTTCTGGACAAGTTTCTCAGTGCTGGCGTGAAGCAGAGCGA CCTTCCCAGAAAGGAGACGGAGCAGCCGCCTGCGCCGGGGAGCATGGAGGAGAGCGTGAGAG CGGAGGAGCGTGCTGCGGGGCTTCTGCGCCAACTCCAGCCTGGCCTTCCCCACCAAGGAGCG CGCATTCGACGACATCCCCAACTCGGAGCTGAGCCACCTGATCGTGGACGACCGGCACGGGG CCATCTACTGCTACGTGCCCAAGGTGGCCTGCACCAACTGGAAGCGCGTGATGATCGTGCTG AGCGGAAGCCTGCTGCACCGCGGTGCGCCCTACCGCGACCCGCTGCGCATCCCGCGCGAGCA $\tt CGTGCACAACGCCAGCGCGCACCTGACCTTCAACAAGTTCTGGCGCCGCTACGGGAAGCTCT$ $\verb|CCCGCCACCTCATGAAGGTCAAGCTCAAGAAGTACACCAAGTTCCTCTTCGTGCGCGACCCC|\\$ TTCGTGCGCCTGATCTCCGCCTTCCGCAGCAAGTTCGAGCTGGAGAACGAGGAGTTCTACCG CAAGTTCGCCGTGCCCATGCTGCGGCTGTACGCCAACCACCAGCCTGCCCGCCTCGGCGC GCGAGGCCTTCCGCCTCAAGGTGTCCTTCGCCAACTTCATCCAGTACCTGCTGGAC CCGCACACGGAGAAGCTGGCGCCCTTCAACGAGCACTGGCGGCAGGTGTACCGCCTCTGCCA AGCTGCTGCAGCTACTCCAGGTGGACCGGCAGCTCCGCTTCCCCCCGAGCTACCGGAACAGG ACCGCCAGCAGCTGGGAGGAGGACTGGTTCGCCAAGATCCCCCTGGCCTGGAGGCAGCAGCT GTATAAACTCTACGAGGCCGACTTTGTTCTCTTCGGCTACCCCAAGCCCGAAAACCTCCTCC AGTTTTTTTATGACCTACGATTTTGCAATCTGGGCTTCTTGTTCACTCCACTGCCTCTATCC ATTGAGTACTGTATCGATATTGTTTTTTAAGATTAATATTTCAGGTATTTAATACGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56112</pre>

<subunit 1 of 1, 414 aa, 1 stop

<MW: 48414, pI: 9.54, NX(S/T): 4

MTKARLFRLWLVLGSVFMILLIIVYWDSAGAAHFYLHTSFSRPHTGPPLPTPGPDRDRELTA DSDVDEFLDKFLSAGVKQSDLPRKETEQPPAPGSMEESVRGYDWSPRDARRSPDQGRQQAER RSVLRGFCANSSLAFPTKERAFDDIPNSELSHLIVDDRHGAIYCYVPKVACTNWKRVMIVLS GSLLHRGAPYRDPLRIPREHVHNASAHLTFNKFWRRYGKLSRHLMKVKLKKYTKFLFVRDPF VRLISAFRSKFELENEEFYRKFAVPMLRLYANHTSLPASAREAFRAGLKVSFANFIQYLLDP HTEKLAPFNEHWRQVYRLCHPCQIDYDFVGKLETLDEDAAQLLQLLQVDRQLRFPPSYRNRT ASSWEEDWFAKIPLAWRQQLYKLYEADFVLFGYPKPENLLRD

Important features:

Signal peptide:

amino acids 1-31

N-glycosylation sites.

amino acids 134-137, 209-212, 280-283 and 370-373

TNFR/NGFR family cysteine-rich region protein amino acids 329-332

TCGGGCCAGAATTCGGCACGAGGCGACGAGGGCGACGGCCTCACGGGGCTTTGGAGGTGA AAGAGGCCCAGAGTAGAGAGAGAGAGAGACCGACGTACACGGG<mark>ATG</mark>GCTACGGGAACGCGCT ATGCCGGGAAGGTGGTCGTGACCGGGGGCGCGCGCGCATCGGAGCTGGGATCGTGCGC GCCTTCGTGAACAGCGGGGCCCGAGTGGTTATCTGCGACAAGGATGAGTCTGGGGGCCGGGC CCTGGAGCAGGAGCTCCCTGGAGCTGTCTTTATCCTCTGTGATGTGACTCAGGAAGATGATG TGAAGACCCTGGTTTCTGAGACCATCCGCCGATTTGGCCGCCTGGATTGTGTTGTCAACAAC GCTGGCCACCACCCCCCACAGAGGCCTGAGGAGACCTCTGCCCAGGGATTCCGCCAGCT GCTGGAGCTGAACCTACTGGGGACGTACACCTTGACCAAGCTCGCCCTCCCCTACCTGCGGA AGAGTCAAGGGAATGTCATCAACATCTCCAGCCTGGTGGGGGCAATCGGCCAGGCCCAGGCA GTTCCCTATGTGGCCACCAAGGGGGCAGTAACAGCCATGACCAAAGCTTTGGCCCTGGATGA AAGTCCATATGGTGTCCGAGTCAACTGTATCTCCCCAGGAAACATCTGGACCCCGCTGTGGG AGGAGCTGGCAGCCTTAATGCCAGACCCTAGGGCCACAATCCGAGAGGGCATGCTGGCCCAG CCACTGGGCCGCATGGGCCAGCCCGCTGAGGTCGGGGCTGCGGCAGTGTTCCTGGCCTCCGA $\texttt{GCAAGGCCAGTCGGAGCACCCCGTGGACGCCCCCGATATCCCTTCC} \underline{\textbf{TGA}} \texttt{TTTCTCTCATTT}$ CTACTTGGGGCCCCCTTCCTAGGACTCTCCCACCCCAAACTCCAACCTGTATCAGATGCAGC $\tt CCCCAAGCCCTTAGACTCTAAGCCCAGTTAGCAAGGTGCCGGGTCACCCTGCAGGTTCCCAT$ AAAAACGATTTGCAGCC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56045</pre>

<subunit 1 of 1, 270 aa, 1 stop</pre>

<MW: 28317, pI: 6.00, NX(S/T): 1

MATGTRYAGKVVVVTGGGRGIGAGIVRAFVNSGARVVICDKDESGGRALEQELPGAVFILCD VTQEDDVKTLVSETIRRFGRLDCVVNNAGHHPPPQRPEETSAQGFRQLLELNLLGTYTLTKL ALPYLRKSQGNVINISSLVGAIGQAQAVPYVATKGAVTAMTKALALDESPYGVRVNCISPGN IWTPLWEELAALMPDPRATIREGMLAQPLGRMGQPAEVGAAAVFLASEANFCTGIELLVTGG AELGYGCKASRSTPVDAPDIPS

Important features:

N-glycosylation site.

amino acids 138-141

Short-chain alcohol dehydrogenase family protein

amino acids 10-22, 81-91, 134-171 and 176-185

AGGCGGCAGCAGCTGCAGCTGACCTTGCAGCTTGGCGGAATGGACTGGCCTCACAACCTG
CTGTTTCTTCTTACCATTTCCATCTTCCTGGGGCTGGGCCAGCCCAGGAGCCCCAAAAGCAA
GAGGAAGGGCCAAGGGCCGCCTGGCCCCTGGCCCTCACCAGGTGCCACTGGACC
TGGTGTCACGGATGAAACCGTATGCCCGCATGGAGGAGTATGAGAGGAACATCGAGGAGATG
GTGGCCCAGCTGAGGAACAGCTCAGAGCTGGCCCAGAGAAAGTGTGAGGTCAACTTGCAGCT
GTGGATGTCCAACAAGAGGAGCCTGTCTCCCTGGGGCTACAGCATCAACCACGACCCCAGCC
GTATCCCCGTGGACCTGCCGGAGGCACGGTGCCTGTGTCTGGGCTGTTTCACC
ATGCAGGAGGACCGCAGCATGGTGAGCGTGCCTGTTCAGCCAGGTTCCTTGTGCGCCGCCG
CCTCTGCCCGCCACCGCCCCGCACAGGGCCTTTCCCGCCAGAAGCCAGGCCCAGCACCCCAGA
CCATCCTCCTTGCACCTTTCTCTGAAAAGGCCTATGAAAAGTAAACACTGACTTTTGAAA
GCAAG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59294</pre>

<subunit 1 of 1, 180 aa, 1 stop</pre>

<MW: 20437, pI: 9.58, NX(S/T): 1

MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRPGPLAPGPHQVPLDLVSRMKPYARMEEY ERNIEEMVAQLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVDLPEARCLCL GCVNPFTMQEDRSMVSVPVFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 75-78

Homologous region to IL-17

amino acids 96-180.

GCGCCGCCAGGCGTAGGCGGGGGGCCCTTGCGTCTCCCGCTTCCTTGAAAAACCCGGCGG GCGCCCAAC<u>ATG</u>GCGGGTGGGCGCTGCGGCCCGCAGCTAACGGCGCTCCTGGCCGCCTGGAT CGCGGCTGTGGCGGCGACGCCAGGCCCCGAGGAGCCGCGCGCCGCCGGAGCAGAGCCGGG TCCAGCCCATGACCGCCTCCAACTGGACGCTGGTGATGGAGGGCGAGTGGATGCTGAAATTT TACGCCCCATGGTGTCCATCCTGCCAGCAGACTGATTCAGAATGGGAGGCTTTTGCAAAGAA TGGTGAAATACTTCAGATCAGTGTGGGGAAGGTAGATGTCATTCAAGAACCAGGTTTGAGTG GCCGCTTCTTTGTCACCACTCTCCCAGCATTTTTTCATGCAAAGGATGGGATATTCCGCCGT TATCGTGGCCCAGGAATCTTCGAAGACCTGCAGAATTATATCTTAGAGAAGAAATGGCAATC AGTCGAGCCTCTGACTGGCTGGAAATCCCCAGCTTCTCTAACGATGTCTGGAATGGCTGGTC TTTTTAGCATCTCTGGCAAGATATGGCATCTTCACAACTATTTCACAGTGACTCTTGGAATT TCTGGTCTTGGTGGTAATATCAGAATGTTTCTATGTGCCACTTCCAAGGCATTTATCTGAGC GTTCTGAGCAGAATCGGAGATCAGAGGAGGCTCATAGAGCTGAACAGTTGCAGGATGCGGAG GAGGAAAAAGATGATTCAAATGAAGAAGAAAACAAAGACAGCCTTGTAGATGATGAAGAAGA GAAAGAAGATCTTGGCGATGAGGATGAAGCAGAGGAAGAAGAGGAGGAGGACAACTTGGCTG CTGGTGTGGATGAGGAGAGAGTGAGGCCAATGATCAGGGGCCCCCAGGAGAGGACGGTGTG ACCCGGGAGGAAGTAGAGCCTGAGGAGGCTGAAGAAGGCATCTCTGAGCAACCCTGCCCAGC TGACACAGAGGTGGTGGAAGACTCCTTGAGGCAGCGTAAAAGTCAGCATGCTGACAAGGGAC ${\tt TG}{\tt TAG}{\tt ATTTAATGATGCGTTTTCAAGAATACACACCAAAACAATATGTCAGCTTCCCTTTGG}$ CCTGCAGTTTGTACCAAATCCTTAATTTTTCCTGAATGAGCAAGCTTCTCTTAAAAGATGCT CTCTAGTCATTTGGTCTCATGGCAGTAAGCCTCATGTATACTAAGGAGAGTCTTCCAGGTGT GACAATCAGGATATAGAAAAACAAACGTAGTGTTGGGATCTGTTTGGAGACTGGGATGGGAA CAAGTTCATTTACTTAGGGGTCAGAGAGTCTCGACCAGAGGGGGCCATTCCCAGTCCTAATC AGCACCTTCCAGAGACAAGGCTGCAGGCCCTGTGAAATGAAAGCCAAGCAGGAGCCTTGGCT CCTGAGCATCCCCAAAGTGTAACGTAGAAGCCTTGCATCCTTTTCTTGTGTAAAGTATTTAT TTTTGTCAAATTGCAGGAAACATCAGGCACCACAGTGCATGAAAAATCTTTCACAGCTAGAA ATTGAAAGGGCCTTGGGTATAGAGAGCAGCTCAGAAGTCATCCCAGCCCTCTGAATCTCCTG TGCTATGTTTATTTCTTACCTTTAATTTTTCCAGCATTTCCACCATGGGCATTCAGGCTCT CCACACTCTTCACTATTATCTCTTGGTCAGAGGACTCCAATAACAGCCAGGTTTACATGAAC TGTGTTTGTTCATTCTGACCTAAGGGGTTTAGATAATCAGTAACCATAACCCCTGAAGCTGT GACTGCCAAACATCTCAAATGAAATGTTGTGGCCATCAGAGACTCAAAAGGAAGTAAGGATT AAGTTTTCTAAGCAATATTTTTCAAGCCAGAAGTCCTCTAAGTCTTGCCAGTACAAGGTAGT CTTGTGAAGAAAGTTGAATACTGTTTTGTTTTCATCTCAAGGGGTTCCCTGGGTCTTGAAC TACTTTAATAATAACTAAAAAACCACTTCTGATTTTCCTTCAGTGATGTGCTTTTGGTGAAA GAATTAATGAACTCCAGTACCTGAAAGTGAAAGATTTGATTTTGTTTCCATCTTCTGTAATC TTCCAAAGAATTATATCTTTGTAAATCTCTCAATACTCAATCTACTGTAAGTACCCAGGGAG GCTAATTTCTTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56433</pre>

<subunit 1 of 1, 349 aa, 1 stop</pre>

<MW: 38952, pI: 4.34, NX(S/T): 1

MAGGRCGPQLTALLAAWIAAVAATAGPEEAALPPEQSRVQPMTASNWTLVMEGEWMLKFYAP WCPSCQQTDSEWEAFAKNGEILQISVGKVDVIQEPGLSGRFFVTTLPAFFHAKDGIFRRYRG PGIFEDLQNYILEKKWQSVEPLTGWKSPASLTMSGMAGLFSISGKIWHLHNYFTVTLGIPAW CSYVFFVIATLVFGLFMGLVLVVISECFYVPLPRHLSERSEQNRRSEEAHRAEQLQDAEEEK DDSNEEENKDSLVDDEEEKEDLGDEDEAEEEEEEDNLAAGVDEERSEANDQGPPGEDGVTRE EVEPEEAEEGISEQPCPADTEVVEDSLRQRKSQHADKGL

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 191-211

N-glycosylation site.

amino acids 46-49

Thioredoxin family proteins. (homologous region to disulfide isomerase) amino acids 56-72

Flavodoxin proteins

amino acids 173-187

ATCTGGTTGAACTACTTAAGCTTAATTTGTTAAACTCCGGTAAGTACCTAGCCCACATGATT ${\tt CAAATGCTATTCTATTCAGGGGCTCTCAAGAACA} {\color{red} {\bf ATG}} {\tt GAATATCATCCTGATTTAGAAAAT}$ TTGGATGAAGATGGATATACTCAATTACACTTCGACTCTCAAAGCAATACCAGGATAGCTGT TGTTTCAGAGAAAGGATCGTGTGCTGCATCTCCTCCTTGGCGCCTCATTGCTGAATTTTGG GAATCCTATGCTTGGTAATACTGGTGATAGCTGTGGTCCTGGGTACCATGGGGGTTCTTTCC AGCCCTTGTCCTCCTAATTGGATTATATATGAGAAGAGCTGTTATCTATTCAGCATGTCACT AAATTCCTGGGATGGAAGTAAAAGACAATGCTGGCAACTGGGCTCTAATCTCCTAAAGATAG ACAGCTCAAATGAATTGGGATTTATAGTAAAACAAGTGTCTTCCCAACCTGATAATTCATTT CTCTTCTAACTTATTTCAGATCAGAACCACAGCTACCCAAGAAAACCCATCTCCAAATTGTG TATGGATTCACGTGTCAGTCATTTATGACCAACTGTGTAGTGTGCCCTCATATAGTATTTGT GAGAAGAGTTTTCAATG<u>TAA</u>GAGGAAGGGTGGAGAAGGAGAGAAATATGTGAGGTAGTA AGGAGGACAGAAAACAGAAAAAGAGTAACAGCTGAGGTCAAGATAAATGCAGAAAATG TTTAGAGAGCTTGGCCAACTGTAATCTTAACCAAGAAATTGAAGGGAGAGGCTGTGATTTCT CACTTTGTTACCCAGGCTGGAGTGCAGTGGCACAATCTCGACTCACTGCAGCTATCTCTCGC CTCAGCCCTCAAGTAGCTGGGACTACAGGTGCATGCCACCATGCCAGGCTAATTTTTGGTG TTTTTTGTAGAGACTGGGTTTTGCCATGTTGACCAAGCTGGTCTCTAACTCCTGGGCTTAAG TGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGATGTGAGCCACCACACCTGGC CCCAAGCTTGAATTTTCATTCTGCCATTGACTTGGCATTTACCTTGGGTAAGCCATAAGCGA ATCTTAATTTCTGGCTCTATCAGAGTTGTTTCATGCTCAACAATGCCATTGAAGTGCACGGT GTGTTGCCACGATTTGACCCTCAACTTCTAGCAGTATATCAGTTATGAACTGAGGGTGAAAT ATATTTCTGAATAGCTAAATGAAGAAATGGGAAAAAATCTTCACCAC>CAGAGCAATTTT ATTATTTTCATCAGTATGATCATAATTATGATTATCATCTTAGTAAAAAGCAGGAACTCCTA CTTTTTCTTTATCAATTAAATAGCTCAGAGAGTACATCTGCCATATCTCTAATAGAATCTTT TTTTTTTTTTTTTTTTGAGACAGAGTTTCGCTCTTGTTGCCCAGGCTGGAGTGCAACGG CACGATCTCGGCTCACCGCAACCTCCGCCCCCTGGGTTCAAGCAATTCTCCTGCCTCAGCCT CCCAAGTAGCTGGGATTACAGTCAGGCACCACCACCCGGCTAATTTTGTATTTTTTAGT AGAGACAGGGTTTCTCCATGTCGGTCAGGGTAGTCCCGAACTCCTGACCTCAAGTGATCTGC CTGCCTCGGCCTCCCAAGTGCTGGGATTACAGGCGTGAGCCACTGCACCCAGCCTAGAATCT TGTATAATATGTAATTGTAGGGAAACTGCTCTCATAGGAAAGTTTTCTGCTTTTTAAATACA ACAAGTATTAACATTTTGGAATATGTTTTATTAGTTTTTGTGATGTACTGTTTTACAATTTTT ACCATTTTTTCAGTAATTACTGTAAAATGGTATTATTGGAATGAAACTATATTTCCTCATG TGCTGATTTGTCTTATTTTTTCATACTTTCCCACTGGTGCTATTTTTATTTCCAATGGATA TTTCTGTATTACTAGGGAGGCATTTACAGTCCTCTAATGTTGATTAATATGTGAAAAGAAAT TGTACCAATTTTACTAAATTATGCAGTTTAAAATGGATGATTTTATGTTATGTGGATTTCAT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53912</pre>

<subunit 1 of 1, 201 aa, 1 stop

<MW: 22563, pI: 4.87, NX(S/T): 1

MEYHPDLENLDEDGYTQLHFDSQSNTRIAVVSEKGSCAASPPWRLIAVILGILCLVILVIAV VLGTMGVLSSPCPPNWIIYEKSCYLFSMSLNSWDGSKRQCWQLGSNLLKIDSSNELGFIVKQ VSSQPDNSFWIGLSRPQTEVPWLWEDGSTFSSNLFQIRTTATQENPSPNCVWIHVSVIYDQL CSVPSYSICEKKFSM

Important features:

Type II transmembrane domain:

amino acids 45-65

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 197-200

N-myristoylation sites.

amino acids 35-40 and 151-156

Homologous region to LDL receptor amino acids 34-67 and 70-200.

GGAAGGGGAGGACCACACAGGCACAGGCCGGTGAGGGACCTGCCCAGACCTGGAGGGTCTCGCTCTGTCA ${\tt TCAGCCTCCGAGTAGCTGGGATTACAGGTGGTGACTTCCAAGAGTGACTCCGTCGGAGGAAA {\tt ATG} {\tt ACTCCCCAGGTCGCGAGGAAA {\tt ATG} {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCCCAGGAGGAAA {\tt ACTCCCAGGAGGAAA {\tt ACTCCAGGAGAAA {\tt ACTCAGGAGAAA {\tt ACTCAGGAGAAAA {\tt ACTCAGGAGAA$ TCGCTGCTGCAGACGACACTGTTCCTGCTGAGTCTGCTCTTCCTGGTCCAAGGTGCCCACGGCAGGGGCCACAGG GAAGACTTTCGCTTCTGCAGCCAGCGGAACCAGACACAGGAGCAGCCTCCACTACAAACCCACACCAGACCTG CGCATCTCCATCGAGAACTCCGAAGAGGCCCTCACAGTCCATGCCCCTTTCCCTGCAGCCCACCCTGCTTCCCGA TCCTTCCCTGACCCCAGGGGCCTCTACCACTTCTGCCTCTACTGGAACCGACATGCTGGGAGATTACATCTTCTC TATGGCAAGCGTGACTTCTTGCTGAGTGACAAAGCCTCTAGCCTCCTCTGCTTCCAGCACCAGGAGGAGAGCCTG GCCAGCTTCACCTTCTCCTTCCACAGTCCTCCCCACACGCCGCTCACAATGCCTCGGTGGACATGTGCGAGCTC AAAAGGGACCTCCAGCTGCTCAGCCAGTTCCTGAAGCATCCCCAGAAGGCCTCAAGGAGGCCCTCGGCTGCCCC GCCAGCCAGCAGTTGCAGAGCCTGGAGTCGAAACTGACCTCTGTGAGATTCATGGGGGACATGGTGTCCTTCGAG GAGGACCGGATCAACGCCACGGTGTGGAAGCTCCAGCCCACAGCCGGCCTCCAGGACCTGCACATCCACTCCCGG ${\tt CAGGAGGAGCAGAGCGAGATCATGGAGTACTCGGTGCTGCTGCTCGAACACTCTTCCAGAGGACGAAAGGC}$ CGGAGCGGGGAGGCTGAGAAGAGCTCCTCCTGGTGGACTTCAGCAGCCCAAGCCCTGTTCCAGGACAAGAATTCC AGCCAAGTCCTGGGTGAGAAGGTCTTGGGGATTGTGGTACAGAACACCAAAGTAGCCAACCTCACGGAGCCCGTG GTGCTCACTTCCAGCACCAGCTACAGCCGAAGAATGTGACTCTGCAATGTGTGTCTGGGTTGAAGACCCCACA TTGAGCAGCCCGGGGCATTGGAGCAGTGCTGGGTGTGAGACCGTCAGGAGAGAAACCCAAACATCCTGCTTCTGC AACCACTTGACCTACTTTGCAGTGCTGATGGTCTCCTCGGTGGAGGTGGACGCCGTGCACAAGCACTACCTGAGC GTGCCCTGCCGTGCAGGAGGAAACCTCGGGACTACACCATCAAGGTGCACATGAACCTGCTGCTGGCCGTCTTC $\tt CTGCTGGACACGAGCTTCCTGCTCAGCGAGCCGGTGGCCCTGACAGGCTCTGAGGCTGCCGAGCCAGTGCCGAGCCAGTGCCGAGCCAGTGCCGAGCCAGTGCCGAGCCAGTGCCAGGCTGACAGGCTGGCGAGCCAGTGCCAGTGCCAGGCTGACAGGCTGAGGCTGCCGAGCCAGTGCCAGTGCCAGGCTGACAGGCTGAGGCTGCCAGGCCAGTGCCAGGCTGACAGGCTGAGGCTGCCAGGCCAGGCCAGTGCCAGGCTGACAGGCTGAGAGCTGAGGCTGCCAGGCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCAGGCCAGGCCAGGCAGGCAGGCAGGCCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCA$ ATCTTCCTGCACTTCTCCCTGCTCACCTGCCTTTCCTGGATGGGCCTCGAGGGGGTACAACCTCTACCGACTCGTG GTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTACTCAAGCTGAGCGCCATGGGCTGGGGCTTCCCCATCTTT AAGTGGTCACATGTGCTGACACTGCTGGGCCTCAGCCTGGTCCTTGGCCTGGGCCTTGATCTTCTTCTCCC TTCATCTGGTACTGGTCCATGCGGCTGCAGGCCCGGGGTGGCCCCTCCCCTCTGAAGAGCAACTCAGACAGCGCC ${\tt AGGCTCCCCATCAGCTCGGGCAGCACCTCGTCCAGCCGCATC\underline{TAG}{\tt GCCTCCAGCCCACCTGCCCATGTGATGAAG}}$ ${\tt CAGAGATGCGGCCTCGTCGCACACTGCCTGTGGCCCCCGAGCCAGGCCCAGGCCCAGGCCAGTCAGCCGCAGACTCAGCCCAGACTCAGACTCAGCCCAGACTCAGCCCAGACTCAGCCCAGACTAGACTC$ TCCCCACATCTGTCCCAACCCAGCTGGAGGCCTGGTCTCTCCTTACAACCCCTGGGCCCAGCCCTCATTGCTGGG GTTGCTCTGTCTCTCGTGGTCACCCTGAGGGCACTCTGCATCCTCTGTCATTTTAACCTCAGGTGGCACCCAGGG GTGGTTTCCAGGAGCTGCCTGGTGTCTGCTGTAAATGTTTGTCTACTGCACAAGCCTCGGCCTGCCCCTGAGCCA GGCTCGGTACCGATGCGTGGGCTGGGCTAGGTCCCTCTGTCCATCTGGGCCTTTGTATGAGCTGCATTGCCCTTG CTCACCCTGACCAAGCACGCCTCAGAGGGGCCCTCAGCCTCTCCTGAAGCCCTCTTGTGGCAAGAACTGTGGA GAGCCTGACACTCTCCTAAGAGGTTCTCTCCAAGCCCCCAAATAGCTCCAGGCGCCCTCGGCCGCCCATCATGGT GGGAGCCATCATTCCTGCCTGGGAATCCTGGAAGACTTCCTGCAGGAGTCAGCGTTCAATCTTGACCTTGAAGAT GGGAAGGATGTTCTTTTACGTACCAATTCTTTTGTCTTTTGATATTAAAAAGAAGTACATGTTCATTGTAGAGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50921</pre>

<subunit 1 of 1, 693 aa, 1 stop

<MW: 77738, pI: 8.87, NX(S/T): 7

MTPQSLLQTTLFLLSLLFLVQGAHGRGHREDFRFCSQRNQTHRSSLHYKPTPDLRISIENSE
EALTVHAPFPAAHPASRSFPDPRGLYHFCLYWNRHAGRLHLLYGKRDFLLSDKASSLLCFQH
QEESLAQGPPLLATSVTSWWSPQNISLPSAASFTFSFHSPPHTAAHNASVDMCELKRDLQLL
SQFLKHPQKASRRPSAAPASQQLQSLESKLTSVRFMGDMVSFEEDRINATVWKLQPTAGLQD
LHIHSRQEEEQSEIMEYSVLLPRTLFQRTKGRSGEAEKRLLLVDFSSQALFQDKNSSQVLGE
KVLGIVVQNTKVANLTEPVVLTFQHQLQPKNVTLQCVFWVEDPTLSSPGHWSSAGCETVRRE
TQTSCFCNHLTYFAVLMVSSVEVDAVHKHYLSLLSYVGCVVSALACLVTIAAYLCSRVPLPC
RRKPRDYTIKVHMNLLLAVFLLDTSFLLSEPVALTGSEAGCRASAIFLHFSLLTCLSWMGLE
GYNLYRLVVEVFGTYVPGYLLKLSAMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPEGVIY
PSMCWIRDSLVSYITNLGLFSLVFLFNMAMLATMVVQILRLRPHTQKWSHVLTLLGLSLVLG
LPWALIFFSFASGTFQLVVLYLFSIITSFQGFLIFIWYWSMRLQARGGPSPLKSNSDSARLP
ISSGSTSSSRI

Important features:

Signal peptide:

amino acids 1-25

Putative transmembrane domains:

amino acids 382-398, 402-420, 445-468, 473-491, 519-537, 568-590 and 634-657

Microbodies C-terminal targeting signal.

amino acids 691-693

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 198-201 and 370-373

N-glycosylation sites.

amino acids 39-42, 148-151, 171-174, 234-237, 303-306, 324-327 and 341-344

G-protein coupled receptors family 2 proteins

amino acids 475-504

TGCCTGGCCTGCCTTGTCAACAATGCCGCTTACTCTGCTTCCAGGTTGCCCTGCCTTGCAGA
GGAAANCNTCGGGACTACACCNTCAAGTGCACATGAACCTGCTGCTGGCCGTCTTCCTGCTG
GACACGAGCTTCCTGCTCAGCGNAGCCGGTGGCCCTGACAGGCTCTGAAGGCTGGCTGCCGA
GCCAGTGCCATCTTCCTGCACTTCTCCTGCTCACCTGCCTTTCCTGGATGGGCCTCGAGGGG
TACAACCTCTACCGACTCGTGGTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTCAA
GCTGAGCGCCATGGGCTGGGGGCTTCCCCATCTTTCTGGTGACGCTGGTGGCCCTGGTGGATG
TGGACAACTATGGCCCCATCATCTTGGCTGTGCATAGGACTCCAGAGGGCGTCATCTACCCT
TCCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATCACCCAACCTGGGCCTCTTCAGCCT
GGTGTTTCTGTTCAACATGG

TCCTTTTCAAAAACTGGAGACACAGAAGAGGGCTCTAGGAAAAAGTTTTGGATGGGATTATGTGGAAACTACCCT GCGATTCTCTGCTGCCAGAGCAGGCTCGGCGCTTCCACCCCAGTGCAGCCTTCCCCTGGCGGTGGTGAAAGAGAC ${\tt TCGGGAGTCGCTGCTTCCAAAGTGCCCGCCGTGAGTGAGCTCTCACCCCAGTCAGCCAA} \underline{{\tt ATG}} {\tt AGCCTCTTCGGGC}$ TTCTCCTGCTGACATCTGCCCTGGCCGGCCAGAGACAGGGGGACTCAGGCGGAATCCAACCTGAGTAGTAAATTCC AGTTTTCCAGCAACAAGGAACAGAACGGAGTACAAGATCCTCAGCATGAGAGAATTATTACTGTGTCTACTAATG GAAGTATTCACAGCCCAAGGTTTCCTCATACTTATCCAAGAAATACGGTCTTGGTATGGAGATTAGTAGCAGTAG AGGAAAATGTATGGATACAACTTACGTTTGATGAAAGATTTGGGCTTGAAGACCCAGAAGATGACATATGCAAGT ATGATTTTGTAGAAGTTGAGGAACCCAGTGATGGAACTATATTAGGGCGCTGGTGTGGTTCTGGTACTGTACCAG GAAAACAGATTTCTAAAGGAAATCAAATTAGGATAAGATTTGTATCTGATGAATATTTTCCTTCTGAACCAGGGT TCTGCATCCACTACAACATTGTCATGCCACAATTCACAGAAGCTGTGAGTCCTTCAGTGCTACCCCCTTCAGCTT TGCCACTGGACCTGCTTAATAATGCTATAACTGCCTTTAGTACCTTGGAAGACCTTATTCGATATCTTGAACCAG GAAAATCCAGAGTGGTGGATCTGAACCTTCTAACAGAGGAGGTAAGATTATACAGCTGCACACCTCGTAACTTCT CAGTGTCCATAAGGGAAGAACTAAAGAGAACCGATACCATTTTCTGGCCAGGTTGTCTCCTGGTTAAACGCTGTG ${\tt ACCATGAGGAGTGTGACTGTGTGCAGAGGGAGGACACAGGAGGATCACCACCAGCAGCAGCTCTTGCCCA}$ ${\tt GAGCTGTGCAGTGCAGTGCTGATTCTATTAGAGAACGTATGCGTTATCTCCATCCTTAATCTCAGTTGTTTGCT}$ TAAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTC GATACGGCTTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTAAC ATGTAAACCAGAACATTCTATGTACTACAAACCTGGTTTTTAAAAAGGAACTATGTTGCTATGAATTAAACTTGT GTCATGCTGATAGGACAGACTGGATTTTCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAGAACTACA TTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGTGGCCTTATCTTCACTTTATCGATAAGTCAGTTTATTTG TTTCATTGTGTACATTTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTTCTAATCTTGTTAAATATATCT ATTTTTACCAAAGGTATTTAATATTCTTTTTTATGACAACTTAGATCAACTATTTTTTAGCTTGGTAAATTTTTCT AAACACAATTGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCA TTCTCGTATGGTGCTAGAGTTAGATTAATCTGCATTTTAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAA GACTTTTTGAAAATAATTAAATTATCATATCTTCCATTCCTGTTATTGGAGATGAAAATAAAAAGCAACTTATGA AAGTAGACATTCAGATCCAGCCATTACTAACCTATTCCTTTTTTTGGGGAAATCTGAGCCTAGCTCAGAAAAACAT AAAGCACCTTGAAAAAGACTTGGCAGCTTCCTGATAAAGCGTGCTGTGCTGTGCAGTAGGAACACATCCTATTTA TTGTGATGTTGTGGTTTTATTATCTTAAACTCTGTTCCATACACTTGTATAAATACATGGATATTTTTATGTACA ${\tt GAAGTATGTCTCTTAACCAGTTCACTTATTGTACTCTGGCAATTTAAAAGAAAATCAGTAAAATATTTTGCTTGT}$ AAAATGCTTAATATNGTGCCTAGGTTATGTGGTGACTATTTGAATCAAAAATGTATTGAATCATCAAATAAAAGA

MSLFGLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERIITVSTNGSIHSPR FPHTYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPEDDICKYDFVEVEEPSDGTILGRWC GSGTVPGKQISKGNQIRIRFVSDEYFPSEPGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLL NNAITAFSTLEDLIRYLEPERWQLDLEDLYRPTWQLLGKAFVFGRKSRVVDLNLLTEEVRLY SCTPRNFSVSIREELKRTDTIFWPGCLLVKRCGGNCACCLHNCNECQCVPSKVTKKYHEVLQ LRPKTGVRGLHKSLTDVALEHHEECDCVCRGSTGG

Signal sequence:

amino acids 1-14

CCCATCTCAAGCTGATCTTGGCACCTCTCATGCTCTCTTCAACCAGACCTCTACATTCCATTTTGGAAGA AAACTCCTTGGGGCTAGATGGTTTCCTAAAACTCTGCCCTGTGATGTCACTCTGGATGTTCCAAAGAACCATGTG ATCGTGGACTGCACAGACAAGCATTTGACAGAAATTCCTGGAGGTATTCCCACGAACACCACGAACCTCACCCTC ACCATTAACCACATACCAGACATCTCCCCAGCGTCCTTTCACAGACTGGACCATCTGGTAGAGATCGATTTCAGA TGCAACTGTGTACCTATTCCACTGGGGTCAAAAAACAACATGTGCATCAAGAGGCTGCAGATTAAACCCAGAAGC $\verb|CCTAGCTTACAGCTTCTCAGCCTTGAGGCCAACAACATCTTTTCCATCAGAAAAGAGAATCTAACAGAACTGGCC| \\$ AACATAGAAATACTCTACCTGGGCCAAAACTGTTATTATCGAAATCCTTGTTATGTTTCATATTCAATAGAGAAA GATGCCTTCCTAAACTTGACAAAGTTAAAAGTGCTCTCCCTGAAAGATAACAATGTCACAGCCGTCCCTACTGTT TTGCCATCTACTTTAACAGAACTATATCTCTACAACAACATGATTGCAAAAATCCAAGAAGATGATTTAATAAC CTCAACCAATTACAAATTCTTGACCTAAGTGGAAATTGCCCTCGTTGTTATAATGCCCCATTTCCTTGTGCGCCG TGTAAAAATAATTCTCCCCTACAGATCCCTGTAAATGCTTTTGATGCGCTGACAGAATTAAAAGTTTTACGTCTA CACAGTAACTCTCTTCAGCATGTGCCCCCAAGATGGTTTAAGAACATCAACAAACTCCAGGAACTGGATCTGTCC ${\tt CAAAACTTCTTGGCCAAAGAAATTGGGGATGCTAAATTTCTGCATTTTCTCCCCAGCCTCATCCAATTGGATCTG}$ TCTTTCAATTTTGAACTTCAGGTCTATCGTGCATCTATGAATCTATCACAAGCATTTTCTTCACTGAAAAGCCTG AAAATTCTGCGGATCAGAGGATATGTCTTTAAAGAGTTGAAAAGCTTTAACCTCTCGCCATTACATAATCTTCAA AATCTTGAAGTTCTTGATCTTGGCACTAACTTTATAAAAATTGCTAACCTCAGCATGTTTAAACAATTTAAAAGA CTGAAAGTCATAGATCTTTCAGTGAATAAAATATCACCTTCAGGAGATTCAAGTGAAGTTGGCTTCTGCTCAAAT ${\tt GCCAGAACTTCTGTAGAAAGTTATGAACCCCAGGTCCTGGAACAATTACATTATTTCAGATATGATAAGTATGCA}$ AGGAGTTGCAGATTCAAAAACAAAGAGGCTTCTTTCATGTCTGTTAATGAAAGCTGCTACAAGTATGGGCAGACC AATCTGTCAGGAAATCTCATTAGCCAAACTCTTAATGGCAGTGAATTCCAACCTTTAGCAGAGCTGAGATATTTG GACTTCTCCAACAACCGGCTTGATTTACTCCATTCAACAGCATTTGAAGAGCTTCACAAACTGGAAGTTCTGGAT ${\tt ATAAGCAGTAATAGCCATTATTTTCAATCAGAAGGAATTACTCATATGCTAAACTTTACCAAGAACCTAAAGGTT}$ ACTCTGGAATTCAGAGGAAATCACTTAGATGTTTTATGGAGAGAGGTGATAACAGATACTTACAATTATTCAAG AATCTGCTAAAATTAGAGGAATTAGACATCTCTAAAAATTCCCTAAGTTTCTTGCCTTCTGGAGTTTTTTGATGGT ATGCCTCCAAATCTAAAGAATCTCTCTTTTGGCCAAAAATGGGCTCAAATCTTTCAGTTGGAAGAAACTCCAGTGT AGAAGCCTCAAGAATCTGATTCTTAAGAATAATCAAATCAGGAGTCTGACGAAGTATTTTCTACAAGATGCCTTC CAGTTGCGATATCTGGATCTCAGCTCAAATAAATCCAGATGATCCAAAAAGACCAGCTTCCCAGAAAATGTCCTC GTTAACCATACGGAGGTGACTATTCCTTACCTGGCCACAGATGTGACTTGTGTGGGGCCAGGAGCACACAAGGGC ${\tt CAAAGTGTGATCTCCCTGGATCTGTACACCTGTGAGTTAGATCTGACTAACCTGATTCTGTTCTCACTTTCCATA}$ ${\tt TCTGTATCTCTTTTCTCATGGTGATGATGACAGCAAGTCACCTCTATTTCTGGGATGTGTGTATATTTACCAT}$ TTCTGTAAGGCCAAGATAAAGGGGTATCAGCGTCTAATATCACCAGACTGTTGCTATGATGCTTTTATTGTGTAT GACACTAAAGACCCAGCTGTGACCGAGTGGGTTTTGGCTGAGCTGGTGGCCAAACTGGAAGACCCAAGAGAGAAA $\hbox{\tt CATTTAATTTATGTCTCGAGGAAAGGGACTGGTTACCAGGGCAGCCAGTTCTGGAAAACCTTTCCCAGAGCATA}$ ${\tt CAGCTTAGCAAAAAGACAGTGTTTGTGATGACAGACAAGTATGCAAAGACTGAAAATTTTAAGATAGCATTTTAC}$ TTGTCCCATCAGAGGCTCATGGATGAAAAAGTTGATGTGATTATCTTGATATTTCTTGAGAAGCCCTTTCAGAAG TCCAAGTTCCTCCAGCTCCGGAAAAGGCTCTGTGGGAGTTCTGTCCTTGAGTGGCCAACAAACCCGCAAGCTCAC CCATACTTCTGGCAGTGTCTAAAGAACGCCCTGGCCACAGACAATCATGTGGCCTATAGTCAGGTGTTCAAGGAA $\texttt{ACGGTC} \underline{\textbf{TAG}} \texttt{CCCTTCTTTGCAAAACACAACTGCCTAGTTTACCAAGGAGAGGCCTGGC}$

MVFPMWTLKRQILILFNIILISKLLGARWFPKTLPCDVTLDVPKNHVIVDCTDKHLTEIPGG I PTNTTNLTLTINHI PDISPASFHRLDHLVEIDFRCNCVPI PLGSKNNMCI KRLOI KPRSFS GLTYLKSLYLDGNQLLEIPQGLPPSLQLLSLEANNIFSIRKENLTELANIEILYLGQNCYYR NPCYVSYSIEKDAFLNLTKLKVLSLKDNNVTAVPTVLPSTLTELYLYNNMIAKIQEDDFNNL NQLQILDLSGNCPRCYNAPFPCAPCKNNSPLQIPVNAFDALTELKVLRLHSNSLQHVPPRWF KNINKLQELDLSQNFLAKEIGDAKFLHFLPSLIQLDLSFNFELQVYRASMNLSQAFSSLKSL KILRIRGYVFKELKSFNLSPLHNLQNLEVLDLGTNFIKIANLSMFKQFKRLKVIDLSVNKIS PSGDSSEVGFCSNARTSVESYEPQVLEQLHYFRYDKYARSCRFKNKEASFMSVNESCYKYGO TLDLSKNSIFFVKSSDFQHLSFLKCLNLSGNLISQTLNGSEFQPLAELRYLDFSNNRLDLLH STAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLKVLQKLMMNDNDISSSTSRTMESES LRTLEFRGNHLDVLWREGDNRYLQLFKNLLKLEELDISKNSLSFLPSGVFDGMPPNLKNLSL AKNGLKSFSWKKLQCLKNLETLDLSHNQLTTVPERLSNCSRSLKNLILKNNQIRSLTKYFLQ DAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLLHHNRFLCTCDAVWFVWWVNHTEVTIP YLATDVTCVGPGAHKGQSVISLDLYTCELDLTNLILFSLSISVSLFLMVMMTASHLYFWDVW YIYHFCKAKIKGYQRLISPDCCYDAFIVYDTKDPAVTEWVLAELVAKLEDPREKHFNLCLEE RDWLPGQPVLENLSQSIQLSKKTVFVMTDKYAKTENFKIAFYLSHQRLMDEKVDVIILIFLE KPFQKSKFLQLRKRLCGSSVLEWPTNPQAHPYFWQCLKNALATDNHVAYSQVFKETV

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 840-860

 ${\tt GGGTACCATTCTGCGCTGCTGCAAGTTACGGAATGAAAAATTAGAACAACAGAAAC} {\color{red} \underline{\textbf{ATG}}} {\tt GAAAACATGTTCCTTC}$ AGTCGTCAATGCTGACCTGCATTTTCCTGCTAATATCTGGTTCCTGTGAGTTATGCGCCGAAGAAAATTTTTCTA CATTTCAAGGGCTGCAAAATCTCACTAAAATCAAACCACAACCCCAATGTACAGCACCAGAACGGAAATC CCGGTATACAATCAAATGGCTTGAATATCACAGACGGGGCATTCCTCAACCTAAAAAACCTAAGGGAGTTACTGC TTGAAGACAACCAGTTACCCCCAAATACCCTCTGGTTTGCCAGAGTCTTTGACAGAACTTAGTCTAATTCAAAACA ATATATACAACATAACTAAAGAGGGCATTTCAAGACTTATAAACTTGAAAAATCTCTATTTGGCCTGGAACTGCT ATTTTAACAAAGTTTGCGAGAAAACTAACATAGAAGATGGAGTATTTGAAACGCTGACAAATTTGGAGTTGCTAT CACTATCTTTCAATTCTCTTTCACACGTGCCACCCAAACTGCCAAGCTCCCTACGCAAACTTTTTCTGAGCAACA CCCAGATCAAATACATTAGTGAAGAAGATTTCAAGGGGATTGATAAATTTAACATTACTAGATTTAAGCGGGAACT GTCCGAGGTGCTTCAATGCCCCATTTCCATGCGTGCCTTGTGATGGTGGTGCTTCAATTAATATAGATCGTTTTG CTTTTCAAAACTTGACCCAACTTCGATACCTAAACCTCTCTAGCACTTCCCTCAGGAAGATTAATGCTGCCTGGT TTAAAAATATGCCTCATCTGAAGGTGCTGGATCTTGAATTCAACTATTTAGTGGGAGAAATAGTCTCTGGGGCAT TTTTAACGATGCTGCCCCGCTTAGAAATACTTGACTTGTCTTTTAACTATAAAAGGGGAGTTATCCACAGCATA TCAGAGAGATGATTTCCAGCCCCTGATGCAGCTTCCAAACTTATCGACTATCAACTTGGGTATTAATTTTATTA AGCAAATCGATTTCAAACTTTTCCAAAATTTCTCCAATCTGGAAATTATTTACTTGTCAGAAAACAGAATATCAC CGTTGGTAAAAGATACCCGGCAGAGTTATGCAAATAGTTCCTCTTTTCAACGTCATATCCGGAAACGACGCTCAA CAGATTTTGACCCACATTCGAACTTTTATCATTTCACCCGTCCTTTAATAAAGCCACAATGTGCTGCTT ATGGAAAAGCCTTAGATTTAAGCCTCAACAGTATTTTCTTCATTGGGCCAAACCAATTTGAAAATCTTCCTGACA TTGCCTGTTTAAATCTGTCTGCAAATAGCAATGCTCAAGTGTTAAGTGGAACTGAATTTTCAGCCATTCCTCATG TCAAATATTTGGATTTGACAAACAATAGACTAGACTTTGATAATGCTAGTGCTCTTACTGAATTGTCCGACTTGG AAGTTCTAGATCTCAGCTATAATTCACACTATTTCAGAATAGCAGGCGTAACACATCATCTAGAATTTATTCAAA ATTTCACAAATCTAAAAGTTTTAAACTTGAGCCACAACAACATTTATACTTTAACAGATAAGTATAACCTGGAAA GCAAGTCCCTGGTAGAATTAGTTTTCAGTGGCAATCGCCTTGACATTTTGTGGAATGATGATGACAACAGGTATA TCTCCATTTCAAAGGTCTCAAGAATCTGACACGTCTGGATTTATCCCTTAATAGGCTGAAGCACATCCCAAATG AAGCATTCCTTAATTTGCCAGCGAGTCTCACTGAACTACATATAAATGATAATATGTTAAAGTTTTTTAACTGGA TATCTGACTTTACATCTTCCCTTCGGACACTGCTGCTGAGTCATAACAGGATTTCCCACCTACCCTCTGGCTTTC TTTCTGAAGTCAGTAGTCTGAAGCACCTCGATTTAAGTTCCAATCTGCTAAAAACAATCAACAAATCCGCACTTG AAACTAAGACCACCAAATTATCTATGTTGGAACTACACGGAAACCCCTTTGAATGCACCTGTGACATTGGAG ATTTCCGAAGATGGATGGATGAACATCTGAATGTCAAAATTCCCAGACTGGTAGATGTCATTTGTGCCAGTCCTG GGGATCAAAGAGGGAAGAGTATTGTGAGTCTGGAGCTAACAACTTGTGTTTTCAGATGTCACTGCAGTGATATTAT $\tt TTTTCTTCACGTTCTTTATCACCACCATGGTTATGTTGGCTGCCCTGGCTCACCATTTGTTTTACTGGGATGTTT$ GGTTTATATATAATGTGTGTTTTAGCTAAGGTAAAAGGCTACAGGTCTCTTTCCACATCCCAAACTTTCTATGATG AGAGCCGAGACAAAACGTTCTCCTTTGTCTAGAGGAGGGGATTGGGACCCGGGGATTGGCCATCATCGACAACC TCATGCAGAGCATCAACCAAAGCAAGAAAACAGTATTTGTTTTAACCAAAAAATATGCAAAAAGCTGGAACTTTA AAACAGCTTTTTACTTGGCTTTGCAGAGGCTAATGGATGAGAACATGGATGTGATTATATTTATCCTGCTGGAGC CAGTGTTACAGCATTCTCAGTATTTGAGGCTACGGCAGCGGATCTGTAAGAGCTCCATCCTCCAGTGGCCTGACA ACCCGAAGGCAGAAGGCTTGTTTTGGCAAACTCTGAGAAATGTGGTCTTGACTGAAAATGATTCACGGTATAACA ATATGTATGTCGATTCCATTAAGCAATAC<u>TAA</u>CTGACGTTAAGTCATGATTTCGCGCCATAATAAAGATGCAAAG GAATGACATTTCTGTATTAGTTATCTATTGCTATGTAACAAATTATCCCAAAACTTAGTGGTTTAAAACAACACA TTTGCTGGCCCACAGTTTTTGAGGGTCAGGAGTCCAGGCCCAGCATAACTGGGTCCTCTGCTCAGGGTGTCTCAG AGGCTGCAATGTAGGTGTTCACCAGAGACATAGGCATCACTGGGGTCACACTCATGTGGTTGTTTTCTGGATTCA ATCAGAGCTAGCAAAAAAGAGAGGTTGCTAGCAAGATGAAGTCACAATCTTTTGTAATCGAATCAAAAAAGTGAT ATCTCATCACTTTGGCCATATTCTATTTGTTAGAAGTAAACCACAGGTCCCACCAGCTCCATGGGAGTGACCACC TCAGTCCAGGGAAAACAGCTGAAGACCAAGATGGTGAGCTCTGATTGCTTCAGTTGGTCATCAACTATTTTCCCT ATCTTAGCAGTTGACCTAACACATCTTCTTTTCAATATCTAAGAACTTTTGCCACTGTGACTAATGGTCCTAATA ${\tt TTAAGCTGTTGTTTATATTTATCATATCTATGGCTACATGGTTATATTATGCTGTGGTTGCGTTCGGTTTTAT}$ TTACAGTTGCTTTTACAAATATTTGCTGTAACATTTGACTTCTAAGGTTTAGATGCCATTTAAGAACTGAGATGG ATAGCTTTTAAAGCATCTTTTACCTTCTTACCATTTTTTAAAAGTATGCAGCTAAATTCGAAGCTTTTGGTCTATA

MENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKQNDSVIAECSNRRLQEVPQTVG KYVTELDLSDNFITHITNESFQGLQNLTKINLNHNPNVQHQNGNPGIQSNGLNITDGAFLNL KNLRELLLEDNQLPQIPSGLPESLTELSLIQNNIYNITKEGISRLINLKNLYLAWNCYFNKV CEKTNIEDGVFETLTNLELLSLSFNSLSHVPPKLPSSLRKLFLSNTQIKYISEEDFKGLINL TLLDLSGNCPRCFNAPFPCVPCDGGASINIDRFAFONLTQLRYLNLSSTSLRKINAAWFKNM PHLKVLDLEFNYLVGEIVSGAFLTMLPRLEILDLSFNYIKGSYPQHINISRNFSKLLSLRAL HLRGYVFQELREDDFQPLMQLPNLSTINLGINFIKQIDFKLFQNFSNLEIIYLSENRISPLV KDTRQSYANSSSFQRHIRKRRSTDFEFDPHSNFYHFTRPLIKPQCAAYGKALDLSLNSIFFI GPNQFENLPDIACLNLSANSNAQVLSGTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEV LDLSYNSHYFRIAGVTHHLEFIQNFTNLKVLNLSHNNIYTLTDKYNLESKSLVELVFSGNRL DILWNDDDNRYISIFKGLKNLTRLDLSLNRLKHIPNEAFLNLPASLTELHINDNMLKFFNWT LLQQFPRLELLDLRGNKLLFLTDSLSDFTSSLRTLLLSHNRISHLPSGFLSEVSSLKHLDLS SNLLKTINKSALETKTTTKLSMLELHGNPFECTCDIGDFRRWMDEHLNVKIPRLVDVICASP GDQRGKSIVSLELTTCVSDVTAVILFFFTFFITTMVMLAALAHHLFYWDVWFIYNVCLAKVK GYRSLSTSQTFYDAYISYDTKDASVTDWVINELRYHLEESRDKNVLLCLEERDWDPGLAIID NLMQSINQSKKTVFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPVLQHSQYLRL RQRICKSSILQWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKOY

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 826-848

CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGGATCCTCTAGAGATCCCT CGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA CAGGCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCCTGAGGCCCCAGC AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCGGCGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGGGCACAGGTGGCCCCCACCACCCGGAGGA GCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAA $\tt GGCCACCCGCCTGGAGGCACAGGCC{\color{blue} \textbf{ATG}} AGGGGCTCTCAGGAGGTGCTGATGTGGCTT$ ${\tt CCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCA}$ CCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGC CGCAGCCCTGGGCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGAC CAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGA GCTGTGTCCAGCCTGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCA GATGTGGATGAATGCAGTGCTAGGAGGGGGGGCTGTCCCCAGCGCTGCATCAACACCGCCGG CAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGC CCAAGGGAGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAA GAAGTGCAGAGGCTGCAGGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGC CCCACTGCACAGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCC ${\tt GAGGAGCAGCTGGGGTCCTGCTGCAAGAAAGACTCG{\tt TGA}CTGCCCAGCGCCCCAGGCTG}$ GACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCAACATGCTGGGGGTCCAG AAGCCACCTCGGGGTGACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTCCTCCTCCCCC TTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCAC CCCTGGCTACCCCACCCTGGCTACCCCAACGCCATCCCAAGGCCAGGTGGGCCCTCAGCTG AGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCCCGGAG GCTGGGTGGGGCCTCAGTGGGGGGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTGA CGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAAT

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC
STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR
CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA
PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG
RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

GCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAG GGCTAGGGTCCATCTCCAGTCCCAGGACACAGCGGCCACCATGGCCACGCCTGGGCTCC AGCAGCATCAGAGCAGCCCCTGTGGTTGGCAGCAAAGTTCAGCTTGGCTGGGCCCGCTGTGA GGGGCTTCGCGCTACGCCCTGCGGTGTCCCGAGGGCTGAGGTCTCCTCATCTTCTCCCTAGC AAAGCCACATCTGTAGCCAGGATGAGCAGTGTGAATCCAGGCAGCCCCCAGGACCGGGGAGG CACAGGTGGCCCCACCACCGGAGGAGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTC TCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCCGCCTGGAGGCACAGGCCATGAGGGGC TCTCAGGAGGTGCTGATGTGGCTTCTGGTGTTGGCAGTGGGCGGCACAGAGCACGCCTA CCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCG TGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTAC CGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCTGCCAGGCCTCGCTA CGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATAT GCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGGCCGCTGCCCTGCA GGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGGGGCGGCTG TCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCC TGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCG ACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCT GGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGC ATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGAC CTCG<u>TGA</u>CTGCCCAGCGCTCCAGGCTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATG CCCCTGCCCAACATGCTGGGGGTCCAGAAGCCACCTCGGGGTGACTGAGCGGAAGGCCAGGC AGGGCCTTCCTCCTCCTCCCCCTTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGAT GGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCCCCACCCTGGCTACCCCAACGGCA TCCCAAGGCCAGGTGGACCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGAC CCATGGCACAGGCCAGCCCGGAGGCTGGGTGGGGCCTCAGTGGGGGCTGCTGAC CCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC
STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR
CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA
PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG
RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

CCCACGCGTCCGAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGACAGGCCAGGCA GGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAGGG ${\tt TCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCCATGGCCACGCCTGGGCTCCAGCAGCAT}$ CCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCGC $\tt CTGGAGGCACAGGCC{\color{blue}ATG}AGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTTCTGGTGTTGGC{\color{blue}CTGGAGGCACAGGCC} \\$ AGTGGGCGGCACAGAGCACGCCTACCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACG GGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGAC GGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGG GCTGGCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTC CCTGGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGA ATGCAGTGCTAGGAGGGGGGGCTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGT GCTGCAGTCCAGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACA GCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCC GGGGTCCTGCTGCAAGAAGACTCGTGACTGCCCAGCGCCCCAGGCTGGACTGAGCCCC TCACGCCGCCCTGCAGCCCCATGCCCCTGCCCAACATGCTGGGGGTCCAGAAGCCACCTCG GGGTGACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTCTCCTCCCCCTTCCTCGGGAG GCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACC CCCACCTGGCTACCCCAACGCCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGGTAC CCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC
STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR
CPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA
PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG
RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

GGTTGCCACAGCTGGTTTAGGGCCCCGACCACTGGGGCCCCTTGTCAGGAGAGACAGCCTCCCGGCCCGGGGAG AGTTGGGTCTCCGTGTTTCAGGCCGGCTCCCCCTTCCTGGTCTCCCCGCTGGGCCGGTTTATCGGGAGG AGATTGTCTTCCAGGGCTAGCAATTGGACTTTTGATGATGTTTTGACCCAGCGCAGGAATAGCAGGCAACGTGAT ATGGCCGCGTCATGATGGCCCGGCAAAAGGGCATTTTCTACCTGACCCTTTTCCTCATCCTGGGGACATGTACAC TCTTCTTCGCCTTTGAGTGCCGCTACCTGGCTGTTCAGCTGTCTCCTGCCATCCCTGTATTTGCTGCCATGCTCT TCCTTTTCTCCATGGCTACACTGTTGAGGACCAGCTTCAGTGACCCTGGAGTGATTCCTCGGGCGCTACCAGATG AAGCAGCTTTCATAGAAATGGAGATAGAAGCTACCAATGGTGCGGTGCCCCAGGGCCAGCGACCACCGCCTCGTA TCAAGAATTTCCAGATAAACAACCAGATTGTGAAACTGAAATACTGTTACACATGCAAGATCTTCCGGCCTCCCC ATGGCAATATTGTGAAGAACTGCTGTGAAGTGCTGTGTGGCCCCTTGCCCCCAGTGTGCTGGATCGAAGGGGTA TTTTGCCACTGGAGGAAAGTGGAAGTCGACCTCCCAGTACTCAAGAGACCAGTAGCAGCCTCTTGCCACAGAGCC CAGCCCCCACAGAACACCTGAACTCAAATGAGATGCCGGAGGACAGCACCTCCCGAAGAGATGCCACCTCCAG TAATTAGGGCTATGAGAGATTTCAGGTGAGAAGTTAAACCTGAGACAGAGAGCAAGTAAGCTGTCCCTTTTAACT ${\tt GTTTTTCTTTGGTCTTTAGTCACCCAGTTGCACACTGGCATTTTCTTGCTGCAAGCTTTTTTTAAATTTCTGAACT}$ CAAGGCAGTGGCAGAAGATGTCAGTCACCTCTGATAACTGGAAAAATGGGTCTCTTGGGCCCTGGCACTGGTTCT TGGTCTCATTCTGGGGCTAAAAGTTTTTGAGACTGGCTCAAATCCTCCCAAGCTGCTGCACGTGCTGAGTCCAGA GGCAGTCACAGAGACCTCTGGCCAGGGGATCCTAACTGGGTTCTTGGGGTCTTCAGGACTGAAGAGAGGAGGAGAG ${\tt TGGGGTCAGAAGATTCTCCTGGCCACCAAGTGCCAGCATTGCCCACAAATCCTTTTAGGAATGGGACAGGTACCT}$ TCCACTTGTTGTANNNNNNNNNNNNNNNNNNNNNNNNTTGTTTTCCTTTTGACTCCTGCTCCCATTAGGAG CAGGAATGGCAGTAATAAAAGTCTGCACTTTGGTCATTTCTTTTCCTCAGAGGAAGCCCGAGTGCTCACTTAAAC ACTATCCCCTCAGACTCCCTGTGTGAGGCCTGCAGAGGCCCTGAATGCACAAATGGGAAACCAAGGCACAGAGAG CGGCTGAGTGAGGGAAAGCCCAGCACTGCTGCCCTCTCGGGTAACTCACCCTAAGGCCTCGGCCCACCTCTGGCT ATGGTAACCACACTGGGGGCTTCCTCCAAGCCCCGCTCTTCCAGCACTTCCACCGGCAGAGTCCCAGAGCCACTT ${\tt CACCCTGGGGGTGGGCCCCCAGTCAGCTCTGCTCAGGACCTGCTCTATTTCAGGGAAGAAGATTTATGT}$ ATTATATGTGGCTATATTTCCTAGAGCACCTGTGTTTTCCTCTTTCTAAGCCAGGGTCCTGTCTGGATGACTTAT GCGGTGGGGGAGTGTAAACCGGAACTTTTCATCTATTTGAAGGCGATTAAACTGTGTCTAATGCA

MSVMVVRKKVTRKWEKLPGRNTFCCDGRVMMARQKGIFYLTLFLILGTCTLFFAFECRYLAV QLSPAIPVFAAMLFLFSMATLLRTSFSDPGVIPRALPDEAAFIEMEIEATNGAVPQGQRPPP RIKNFQINNQIVKLKYCYTCKIFRPPRASHCSICDNCVERFDHHCPWVGNCVGKRNYRYFYL FILSLSLLTIYVFAFNIVYVALKSLKIGFLETLKETPGTVLEVLICFFTLWSVVGLTGFHTF LVALNQTTNEDIKGSWTGKNRVQNPYSHGNIVKNCCEVLCGPLPPSVLDRRGILPLEESGSR PPSTQETSSSLLPQSPAPTEHLNSNEMPEDSSTPEEMPPPEPPPEPPQEAAEAEK

Putative transmembrane domains:

amino acids 36-55 (type II TM), 65-84, 188-208, 229-245

AAAACCCTGTATTTTTTACAATGCAAATAGACAATNANCCTGGAGGTCTTTGAATTAGGTAT
TATAGGGATGGTGGGGTTGATTTTTNTTCCTGGAGGCTTTTGGCTTTTGGACTCTCNCTTTCT
CCCACAGAGCNCTTCGACCATCACTGCCCCTGGGTGGGGAATTGTGTTGGAAAGAGGAACTA
CCGCTANTTCTACCTCTTCATCCTTTNTCTCTCCCNCCTCACAATCTATGTCTTCGCCTTCA
ACATCGT

GTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCTTGCACAAGCTTGAGAGCAACACAA AAAAAAATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTTGGGCAATCTTCAC GGGGCTGCTCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCC CCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGGGAGAGCGCCACCCTCAGGTGCACTATT GACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAATGA CAAGTGGTGCCTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCATCG CACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATTTC TTCAGATATCTCCATTAATGAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAGAC GAATACTTGGAAATTCAGGGCATCACCCGGGAGCAGTCAGGGGACTACGAGTGCAGTGCCTC CAATGACGTGGCCGCCCGTGGTACGGAGAGTAAAGGTCACCGTGAACTATCCACCATACA TTTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGGACAAAAGGGGACACTGCAGTGTGAAGCC TCAGCAGTCCCCTCAGCAGAATTCCAGTGGTACAAGGATGACAAAAGACTGATTGAAGGAAA GAAAGGGGTGAAAGTGGAAAACAGACCTTTCCTCTCAAAACTCATCTTCTAATGTCTCTG AACATGACTATGGGAACTACACTTGCGTGGCCTCCAACAAGCTGGGCCACACCAATGCCAGC ATCATGCTATTTGGTCCAGGCGCCGTCAGCGAGGTGAGCAACGGCACGTCGAGGAGGCAGG $\tt CTGCGTCTGGCTGCTTCTTGGTCTTGCACCTGCTTCTCAAATTT{\color{red}{TGA}} TGTGAGTGCC$ ACTTCCCCACCGGGAAAGGCTGCCGCCACCACCACCACCACAACACAGCAATGGCAACAC CGACAGCAACCAATCAGATATATACAAATGAAATTAGAAGAAACACAGCCTCATGGGACAGA AATTTGAGGGAGGGAACAAGAATACTTTGGGGGGAAAAGAGTTTTAAAAAAAGAATTGAA AATTGCCTTGCAGATATTTAGGTACAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACACC ACACCCGGCTTGGACCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCAGTGTGGGCAA GGGCTCAGCCTCTCTGCCCACAGAGTGCCCCCACGTGGAACATTCTGGAGCTGGCCATCCCA AATTCAATCAGTCCATAGAGACGAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGG GCACTTTGGTAGACTGTGCCACCACGGCGTGTGTTGTGAAACGTGAAATAAAAAGAGCAAAA AAAA

MKTIQPKMHNSISWAIFTGLAALCLFQGVPVRSGDATFPKAMDNVTVRQGESATLRCTIDNR VTRVAWLNRSTILYAGNDKWCLDPRVVLLSNTQTQYSIEIQNVDVYDEGPYTCSVQTDNHPK TSRVHLIVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVTWRHISPKAVGFVSEDEYL EIQGITREQSGDYECSASNDVAAPVVRRVKVTVNYPPYISEAKGTGVPVGQKGTLQCEASAV PSAEFQWYKDDKRLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNKLGHTNASIML FGPGAVSEVSNGTSRRAGCVWLLPLLVLHLLKF

Signal peptide:

amino acids 1-28

GAAAAAAATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTC
ACGGGGCTGGCTGCTCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTT
CCCCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGGAGAGCGCCACCCTCAGGTGCACTA
TTGACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAAT
GACAAGTGGTGCCTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCCAAACGCAGTACAGCAT
CGAGATCCAGAACGTGGATGTATGACGAGGGCCCTTACACCTGCTCGGTGCAGACACA
ACCACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATT
TCTTCAGATATCTCCATTAATGAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAG
ACCAGAG

ATGGCTGGTGACGGCGGGCCGGGCAGGGGACCGGGGCCGGGAGCGGGCCAGCTGCCGGGAGCCCTGA ATCACCGCCTGGCCCGACTCCACCATGAACGTCGCGCTGCAGGAGCTGGCAGCAGCAACGTGGGATTCCAG AAGGGGACAAGACAGCTGTTAGGCTCACGCACGCAGCTGGAGCTGGTCTTAGCAGGTGCCTCTACTGCTGGCT GCACTGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCATCCCACAGCACCTGCCTTACA GAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCTGGACCGAGGGGTGAGCCCCTGTGAGGACTTTTAC CAGTTCTCCTGTGGGGGCTGGATTCGGAGGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGC CTCTGGGACCAAAACCAGGCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAG CAGAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCCAGCCACTGAGA GACCTCATTGAGAAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAGGACAACTTTATGGAGGTGTTGAAG GCAGTAGCAGGGCCCTACAGGGCCACCCCATTCTTCACCGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGC AATGTTATCCAGGTGGACCAGTCTGGGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAG GAGCAGATGCAGCAGGTGCTGGAGTTGGAGATACAGCTGGCCAACATCACAGTGCCCCAGGACCAGCGCGGCGCGAC GAGGAGAAGATCTACCACAAGATGAGCATTTCGGAGCTGCAGGCTCTGGCGCCCTCCATGGACTGGCTTGAGTTC ACAACCTCAAGCCTGGACCGACGCTTTGAGTCTGCACAAGAGAGCTGCTGGAGACCCTCTATGGCACTAAGAAG GTGAAGGCCACGTTTGACCGGCAAAGCAAAGAAATTGCAGAGGGGATGATCAGCGAAATCCGGACCGCATTTGAG GAGGCCCTGGGACAGCTGGTTTGGATGGATGAGAAGACCCGCCAGGCAGCCAAGGAGAAAGCAGATGCCATCTAT GATATGATTGGTTTCCCAGACTTTATCCTGGAGCCCAAAGAGCTGGATGATGTTTATGACGGGTACGAAATTTCT GAAGATTCTTTCTTCCAAAACATGTTGAATTTGTACAACTTCTCTGCCAAGGTTATGGCTGACCAGCTCCGCAAG CCTCCCAGCCGAGACCAGTGGAGCATGACCCCCCAGACAGTGAATGCCTACCTTCCAACTAAGAATGAGATC GTCTTCCCCGCTGGCATCCTGCAGGCCCCCTTCTATGCCCGCAACCACCCCCAAGGCCCTGAACTTCGGTGGCATC GGTGTGGTCATGGGCCATGAGTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAACCTG CGGCCCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACACGGCCTGCATGGAGGAACAGTACAATCAA TACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGAGAACATTACTGACAACGGGGGGCTGAAG GCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATGGGGAGGAGCAGCAACTGCCAGCCGTGGGGCTCACC CTGGTGACCGACCCCCACAGCCCTGCCCGCTTCCGCGTGCTGGCCACTCTCTCCAACTCCCGTGACTTCCTGCGG GAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGTTTGCTCTTGGGTTGGGAGGAAGCAA ATGCAAGCTGGGCTGGGTCTAGTCCCTCCCCCCACAGGTGACATGAGTACAGACCCTCCTCAATCACCACATTG $\tt TGCCTCTGCTTTGGGGGTGCCCCTGCCTCCAGCAGAGCCCCCACCATTCACTGTGACATCTTTCCGTGTCACCCT$

MNVALQELGAGSNVGFQKGTRQLLGSRTQLELVLAGASLLLAALLLGCLVALGVQYHRDPSH
STCLTEACIRVAGKILESLDRGVSPCEDFYQFSCGGWIRRNPLPDGRSRWNTFNSLWDQNQA
ILKHLLENTTFNSSSEAEQKTQRFYLSCLQVERIEELGAQPLRDLIEKIGGWNITGPWDQDN
FMEVLKAVAGTYRATPFFTVYISADSKSSNSNVIQVDQSGLFLPSRDYYLNRTANEKVLTAY
LDYMEELGMLLGGRPTSTREQMQQVLELEIQLANITVPQDQRRDEEKIYHKMSISELQALAP
SMDWLEFLSFLLSPLELSDSEPVVVYGMDYLQQVSELINRTEPSILNNYLIWNLVQKTTSSL
DRRFESAQEKLLETLYGTKKSCVPRWQTCISNTDDALGFALGSLFVKATFDRQSKEIAEGMI
SEIRTAFEEALGQLVWMDEKTRQAAKEKADAIYDMIGFPDFILEPKELDDVYDGYEISEDSF
FQNMLNLYNFSAKVMADQLRKPPSRDQWSMTPQTVNAYYLPTKNEIVFPAGILQAPFYARNH
PKALNFGGIGVVMGHELTHAFDDQGREYDKEGNLRPWWQNESLAAFRNHTACMEEQYNQYQV
NGERLNGRQTLGENITDNGGLKAAYNAYKAWLRKHGEEQQLPAVGLTNHQLFFVGFAQVWCS
VRTPESSHEGLVTDPHSPARFRVLGTLSNSRDFLRHFGCPVGSPMNPGQLCEVW

Type II Transmembrane domain:

amino acids 32-57

CAAGCCCGTCCCCGCAGGCTGCACCTTCGGCGGGAAGGTCTATGCCTTGGACGAGACGTGGCACCCGGACCTAGG GGAGCCATTCGGGGTGATGCGCTGCGTGCTGTGCGCCTGCGAGGCGCAGTGGGGTCGCCGTACCAGGGGCCCTGG CAGGGTCAGCTGCAAGAACATCAAACCAGAGTGCCCAACCCCGGCCTGTGGGCAGCCGCCCAGCTGCCGGGACA AGTCTCGCTGCTGCGCTCTAGCCTCCGCTTCTCTATCTCCTACAGGCGGCTGGACCGCCCTACCAGGATCCGCTT $\tt CTCAGACTCCAATGGCAGTGTCCTGTTTGAGCACCCTGCAGCCCCAAGATGGCCTGGTCTGTGGGGTGTG$ CCCTTCAGGGGAGGTCTGGGGGCCTCTCATCCGGCACCGGGCCCTGTCCCCAGAGACCTTCAGTGCCATCCTGAC TCTAGAAGGCCCCCACCAGCAGGGCGTAGGGGGCATCACCCTGCTCACTCTCAGTGACACAGAGGACTCCTTGCA TTTTTTGCTGCTCTTCCGAGGCCTTGCAGGACTAACCCAGGTTCCCTTGAGGCTCCAGATTCTACACCAGGGGCA GCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGAACCAGGCTTTGCTGAGGTGCTGCCCAACCTGACAGT CCAGGAGATGGCTGGTGCTGGGGGAGCTGCAGATGGCCCTGGAGTGGGCAGGCCAGGCCAGGCTGCGCAT CAGTGGACACATTGCTGCCAGGAAGAGCTGCGACGTCCTGCAAAGTGTCCTTTTGTGGGGCTAATGCCCTGATCCC ${\tt GGTAGGGACAACCAGTGAGGTGGCCATGACACTGGAAACCAAGCCTCAGCGGAGGGATCAGCCCACTGTCCT}$ GTGCCACATGGCTGGCCTATCCTCCCCTGCCCCCAGGCCGTGGGTATCTGCCCTGGGCTGGGTGCCCGAGGGGC ACGTGGCTGCCCTACTGTGGGGCATAGCGCCCGCCCTGCCCGTGCCCCTAGCAGGAGCCCTGGTGCTACC $\tt CCCTGTGAAGAGCCAAGCAGGCAGGCCTGGCTTTCCTTGGATACCCACTGTCACCTGCACTATGAAGTGCT$ GCACCTGGCAAAAGGCATGGCTTCCCTGATGATCACCACCAAGGTAGCCCCAGAGGGGAGCTCCGAGGGCAGCCT GCGGGCGCTGGGGGCTCCGGATACAGCCTCTGCTGCGCCGCCTGTGGTGCCTGGTCTCCCGGCCCTAGCGCCCGC ${\tt TCGCTGGGCGCCCAACTACGACCCGCTCTGCTCACTCTGCACCTGCCAGAGACGAACGGTGATCTGTGACCCGGT}$ GGTGTGCCCACCGCCCAGCTGCCCACACCCGGTGCAGGCTCCCGACCAGTGCTGCCTGTTTGCCCTGGCTGCTA GTGTGCTGTCTGCACCTGCAAGCAGGGGGGCACTGGAGAGGTGCACTGTGAGAAGGTGCAGTGTCCCCGGCTGGC $\tt CTGTGCCCAGCCTGTGCGACCCCACCGACTGCTGCAAACAGTGTCCAGGTGAGGCCCACCCCCAGCTGGG$ GGACCCCATGCAGGCTGATGGGCCCCGGGGCTGCCGTTTTGCTGGGCAGTGGTTCCCAGAGAGTCAGAGCTGGCA $\verb|CCCTCAGTGCCCCGTTTGGAGAGATGAGCTGTATCACCTGCAGATGTGGGGTAAGTGGGGAGCAGAGGCTTGT||$ GTGAGGTGGGTACTGGGAGCCTGGTCTGGAGTAGGGAGACCTTCCCAGGGAGGTCCCTGAAGAAGCTGAAGGTCA GGGATGACTGTTCACTGCCACTGTCCTGTGGCTCGGGGAAGGAGGTCGATGCTGTTCCCGCTGCACGGCCCACC ACCTGGTGGAATTGTTATTATGACCTTTTCTTTACAAATGAGATTTCTGAAGCTCAGAGAAATTAAGCAACGAG ${\tt ATGAAGGTCACCCAGCTGTGTGCACTGACCTGTTTAGAAAATACTGGCCTTTCTGGGACCAAGGCAGGGATGCTT}$ AAGTGACCAAGAGGATGGGGCCTGAGCTGGGGAAGGGGTGGCATCGAGGACCTTCTTGCATTCTCCTGTGGGAAG $\tt CCCAGTGCCTTTGCTCCTGCCTCTACTCCCACCCCCACTACCTCTGGGAACCACAGCTCCACAAGGGG$ GAGAGGCAGCTGGGCCAGACCGAGGTCACAGCCACTCCAAGTCCTGCCCTGCCACCCTCGGCCTCTGTCCTGGAA GCCCCACCCTTTCTTCCTGTACATAATGTCACTGGCTTGTTGGGATTTTTAATTTATCTTCACTCAGCACCAAG ${\tt ATTTCTTTTCAGTCTTTGGGCATGAGGTTGGCTCTTTGTGGCCAGGAACCTGAGTGGGGCCTGGTGGAGAAGGG}$ GCNGAGAGTAGGAGGTGAGAGAGGAGGTCTGACACTTGGGGAGCTGAAAGAGACCTGGAGAGGAGGATAG $\hbox{\tt AATTTAGGGAAGTAGAAGCAGGATTTTGACTCAAGTTTAGTTTCCCACATCGCTGGCCTGTTTGCTGACTTCATG}$ ${\tt TTTGAAGTTGCTCCAGAGAGAGAATCAAAGGTGTCACCAGCCCCTCTCTCCCTTCCCTTCCCTTTCT}$ TTCCCTCCCCTCCCCTCCCCTCC

GGCCGAGCGGGGTGCTGCGCGGCGGCCGTGATGGCTGACGGCGGGGCCGGGCAGGGGA CCGGGGCCGGGCCCGGGAGCGGCCAGCTGCCGGGAGCCCTGAATCACCGCCTGGCCCGAC TCCACCATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAACGTGGGATTCCAGAAGGG GACAAGACAGCTGTTAGGCTCACGCACGCAGCTGGAGCTGGTCTTAGCAGGTGCCTCTCTAC TGCTGGCTGCACTGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCA ${\tt TCCCACAGCACCTGCCTTACAGAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCT}$ GGACCGAGGGGTGAGCCCCTGTGAGGACTTTTACCAGTTCTCCTGTGGGGGCTGGATTCGGA GGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGCCTCTGGGACCAAAAC CAGGCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAGCA GAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCC AGCCACTGAGAGACCTCATTGAGAAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAG GACAACTTTATGGAGGTGTTGAAGGCAGTAGCAGGGACCTACAGGGCCACCCCATTCTTCAC CGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGCAATGTTATCCAGGTGGACCAGTCTG GGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAGAAAGTAAGGAAC ATCTTCCGAACCCCCATCCCTACCCCTGGCTGAGCTGGGCTGATCCCTGTTGACTTTTCCCT TTGCCAAGGGTCAGAGCAGGGAAGGTGAGCCTATCCTGTCACCTAGTGAACAAACTGCCCCT CCTTTCTTCTTCTTCCTCCCTCCCTCCCTTTCTTCCCCTTTCCTTCCTTCC TCTTATTCTTCTAGTAGGTTTCATAGACACCTACTGTGTGCCAGGTCCAGTGGGGGAATTCG GAGATATAAGTTTCCGAGCCATTGCCACAGGAAGCGTTCAGTGTCGATGGGTTCATGGACCT AGATAGGCTGATAACAAAGCTCACAAGAGGGTCCTGAGGATTCAGGAGAGACTTATGGAGCC AGCAAAGTCTTCCTGAAGAGATTGCATTTGAGCCAGGTCCTGTAG

ATGCCTACTACCTTCCAACTAAGAATGAGATCGTCTTCCCCGCTGGCATCCTGCAGGCCCCC TTCTATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCATCGGTGTGGTCATGGGCCA TGAGTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGAACCTGCGGC CCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACACGGCCTGCATGGAGGAACAG TGCTGACAACGGGGGGCTGAAGGCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATG GGGAGGAGCACCACCAGCCGTGGGGCTCACCAACCACCAGCTCTTCTTCGTGGGATTT $\tt CCACAGCCCTGCCCGCTTCCGCGTGCTGGGCACTCTCTCCAACTCCCGTGACTTCCTGCGGC$ ACTTCGGCTGCCCTGTCGGCTCCCCCATGAACCCAGGGCAGCTGTGTGAGGTGTGGTAGACC TGGATCAGGGGAGAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGT GGTGACATGAGTACAGACCCTCCTCAATCACCACATTGTGCCTCTGCTTTGGGGGGTGCCCCT GTCTGGGTGGGGAGGCCAGTTCCCATAGGAAGGAGTCTGCCTCTTCTGTCCCCAGGCTCACT CAGCCTGGCGGCCATGGGGCCTGCCGTGCCCCACTGTGACCCACAGGCCTGGGTGGTG TACCTCCTGGACTTCTCCCCAGGCTCACTCAGTGCGCACTTAGGGGTGGACTCAGCTCTGTC TGGCTCACCCTCACGGGCTACCCCCACCTCACCCTGTGCTCCTTGTGCCACTGCTCCCAGTG CTGCTGCTGACCTTCACTGACAGCTCCTAGTGGAAGCCCAAGGGCCTCTGAAAGCCTCCTGC TGCCCACTGTTTCCCTGGGCTGAGAGGGGAAGTGCATATGTGTAGCGGGTACTGGTTCCTGT GTCTTAGGGCACAAGCCTTAGCAAATGATTGATTCTCCCTGGACAAAGCAGGAAAGCAGATA GAGCAGGGAAAAGGAAGAACAGAGTTTATTTTTACAGAAAAGAGGGTGGGAGGGTGTGGTCT TGGCCCTTATAGGACC

CCCACGCGTCCGAGCCCCCGAGAATTAGACACACTCCGGACGCGGCCAAAAGCAACCGAGA AAAAAAAAAATCCTGTGGCGCGCCGCCTGGTTCCCGGGAAGACTCGCCAGCACCAGGGGG $\tt TGGGGGAGTGCGAGCTGAAAGCTGCTGGAGAGTGAGCAGCCCTAGCAGGGATGGAC{\bf ATG}{\bf AT$ $\tt CTGCCTGCTCCTGCCTCCCGGCTGGACAGAGTGTGGACTTCCCCTGGGCGGCCGTGG$ ACAACATGATGGTCAGAAAAGGGGACACGGCGGTGCTTAGGTGTTATTTGGAAGATGGAGCT ${\tt TCAAAGGGTGCCTGAACCGGTCAAGTATTATTTTTGCGGGAGGTGATAAGTGGTCAGT}$ GGATCCTCGAGTTTCAACATTGAATAAAAGGGACTACAGCCTCCAGATACAGAATG ATGCAGGTGCATCTAACTGTGCAAGTTCCTCCTAAGATATATGACATCTCAAATGATATGAC CGTCAATGAAGGAACCAACGTCACTCTTACTTGTTTGGCCACTGGGAAACCAGAGCCTTCCA TTTCTTGGCGACACATCTCCCCATCAGCAAAACCATTTGAAAATGGACAATATTTGGACATT TATGGAATTACAAGGGACCAGGCTGGGGAATATGAATGCAGTGCGGAAAATGCTGTCATT CCCAGATGTGAGGAAAGTAAAAGTTGTTGTCAACTTTGCTCCTACTATTCAGGAAATTAAAT CTGGCACCGTGACCCCGGACGCAGTGGCCTGATAAGATGTGAAGGTGCAGGTGTGCCGCCT CCAGCCTTTGAATGGTACAAAGGAGAGAAGAAGCTCTTCAATGGCCAACAAGGAATTATTAT TCAAAATTTTAGCACAAGATCCATTCTCACTGTTACCAACGTGACACAGGAGCACTTCGGCA CCAAGTACAGCCCAGTATGGAATTACCGGGAGCGCTGATGTTCTTTTCTCCTGCTGGTACCT TGTGTTGACACTGTCCTCTTTCACCAGCATATTCTACCTGAAGAATGCCATTCTACAA**TAA**A TTCAAAGACCCATAAAAGGCTTTTAAGGATTCTCTGAAAGTGCTGATGGCTGGATCCAATCT GGTACAGTTTGTTAAAAGCAGCGTGGGATATAATCAGCAGTGCTTACATGGGGATGATCGCC TTCTGTAGAATTGCTCATTATGTAAATACTTTAATTCTACTCTTTTTTTGATTAGCTACATTA CCTTGTGAAGCAGTACACATTGTCCTTTTTTTAAGACGTGAAAGCTCTGAAATTACTTTTAG AGGATATTAATTGTGATTTCATGTTTGTAATCTACAACTTTTCAAAAGCATTCAGTCATGGT CTGCTAGGTTGCAGGCTGTAGTTTACAAAAACGAATATTGCAGTGAATATGTGATTCTTTAA GGCTGCAATACAAGCATTCAGTTCCCTGTTTCAATAAGAGTCAATCCACATTTACAAAGATG CATTTTTTTTTTTTTGATAAAAAAGCAAATAATATTGCCTTCAGATTATTTCTTCAAAATA TAACACATATCTAGATTTTTCTGCTTGCATGATATTCAGGTTTCAGGAATGAGCCTTGTAAT ATAACTGGCTGTGCAGCTCTGCTTCTCTTTCCTGTAAGTTCAGCATGGGTGTGCCTTCATAC AATAATATTTTTCTCTTTGTCTCCAACTAATATAAAATGTTTTGCTAAATCTTACAATTTGA AAGTAAAAATAAACCAGAGTGATCAAGTTAAACCATACACTATCTCTAAGTAACGAAGGAGC TATTGGACTGTAAAAATCTCTTCCTGCACTGACAATGGGGTTTGAGAATTTTGCCCCACACT AACTCAGTTCTTGTGATGAGAGACAATTTAATAACAGTATAGTAAATATACCATATGATTTC TTTAGTTGTAGCTAAATGTTAGATCCACCGTGGGAAATCATTCCCTTTAAAATGACAGCACA GTCCACTCAAAGGATTGCCTAGCAATACAGCATCTTTTCCTTTCACTAGTCCAAGCCAAAAA TTTTAAGATGATTTGTCAGAAAGGGCACAAAGTCCTATCACCTAATATTACAAGAGTTGGTA AGCGCTCATCATTAATTTTATTTTGTGGCAGGTATTATGACAGTCGACCTGGAGGGTATGGA TATGGATATGGACGTTCCAGAGACTATAATGGCAGAAACCAGGGTGGTTATGACCGCTACTC AGGAGGAAATTACAGAGACAATTATGACAACTGAAATGAGACATGCACATAATATAGATACA CAAGGAATAATTTCTGATCCAGGATCGTCCTTCCAAATGGCTGTATTTATAAAGGTTTTTTGG AGCTGCACTGAAGCATCTTATTTTATAGTATATCAACCTTTTGTTTTTAAATTGACCTGCCA

MMLLVQGACCSNQWLAAVLLSLCCLLPSCLPAGQSVDFPWAAVDNMMVRKGDTAVLRCYLED GASKGAWLNRSSIIFAGGDKWSVDPRVSISTLNKRDYSLQIQNVDVTDDGPYTCSVQTQHTP RTMQVHLTVQVPPKIYDISNDMTVNEGTNVTLTCLATGKPEPSISWRHISPSAKPFENGQYL DIYGITRDQAGEYECSAENAVSFPDVRKVKVVVNFAPTIQEIKSGTVTPGRSGLIRCEGAGV PPPAFEWYKGEKKLFNGQQGIIIQNFSTRSILTVTNVTQEHFGNYTCVAANKLGTTNASLPL NPPSTAQYGITGSADVLFSCWYLVLTLSSFTSIFYLKNAILQ

Important features of the protein:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 326-345

N-glycosylation sites.

amino acids 71-75, 153-157, 273-277, 284-288, 292-296, 305-309

Casein kinase II phosphorylation site.

amino acids 147-151, 208-212, 224-228

Tyrosine kinase phosphorylation site.

amino acids 178-186

N-myristoylation sites.

amino acids 7-13, 63-70, 67-73, 151-157, 239-245, 291-297, 302-308, 319-325

Myelin P0 protein:

amino acids 92-121

AGTGGTTCGATGGGAAGGATCTTTCTCCAAGTGGTTCCTCTTGAGGGGAGCATTTCTGCTGG CTCCAGGACTTTGGCCATCTATAAAGCTTGGCA**ATG**AGAAATAAGAAAATTCTCAAGGAGGA CGAGCTCTTGAGTGAGACCCAACAAGCTGCTTTTCACCAAATTGCAATGGAGCCTTTCGAAA TCAATGTTCCAAAGCCCAAGAGGAGAAATGGGGTGAACTTCTCCCTAGCTGTGGTGGTCATC ${\tt TACCTGATCCTGCTCACCGCTGGCGCTGGGCTGCTGGTGGTCCAAGTTCTGAATCTGCAGGC}$ GCGGCTCCGGGTCCTGGAGATGTATTTCCTCAATGACACTCTGGCGGCTGAGGACAGCCCGT CCTTCTCCTTGCTGCAGTCAGCACACCCTGGAGAACACCTGGCTCAGGGTGCATCGAGGCTG CAAGTCCTGCAGGCCCAACTCACCTGGGTCCGCGTCAGCCATGAGCACTTGCTGCAGCGGGT AGACAACTTCACTCAGAACCCAGGGATGTTCAGAATCAAAGGTGAACAAGGCGCCCCAGGTC TTCAAGGTCACAAGGGGGCCATGGGCATGCCTGGTGCCCCTGGCCCGCGGGACCACCTGCT GAGAAGGGAGCCAAGGGGGCTATGGGACGAGATGGAGCAACAGGCCCCTCGGGACCCCAAGG CCCACCGGGAGTCAAGGGAGGCGGGCCTCCAAGGACCCCAGGGTGCTCCAGGGAAGCAAG GAGCCACTGGCACCCCAGGACCCCAAGGAGAAGGCCAGCAAAGGCGATGGGGGTCTCATT GGCCCAAAAGGGGAAACTGGAACTAAGGGAGAGAAAGGAGACCTGGGTCTCCCAGGAAGCAA AGGGGACAGGGGCATGAAAGGAGATGCAGGGGTCATGGGGCCCTCCTGGAGCCCAGGGGAGTA AAGGTGACTTCGGGAGGCCAGGCCCACCAGGTTTGGCTGGTTTTCCTGGAGCTAAAGGAGAT CAAGGACAACCTGGACTGCAGGGTGTTCCGGGCCCTCCTGGTGCAGTGGGACACCCAGGTGC CAAGGGTGAGCCTGGCAGTGCTCCCCTGGGCGAGCAGGACTTCCAGGGAGCCCCGGGA GTCCAGGAGCCACAGGCCTGAAAGGAAGCAAAGGGGACACAGGACTTCAAGGACAGCAAGGA AGAAAAGGAGAATCAGGAGTTCCAGGCCCTGCAGGTGTGAAGGGAGAACAGGGGAGCCCAGG GCTGGCAGGTCCCAAGGGAGCCCCTGGACAAGCTGGCCAGAAGGGAGACCAGGGAGTGAAAG GATCTTCTGGGGAGCAAGGAGTAAAGGGAGAAAAAGGTGAAAGAGGTGAAAACTCAGTGTCC GTCAGGATTGTCGGCAGTAGTAACCGAGGCCGGGCTGAAGTTTACTACAGTGGTACCTGGGG GACAATTTGCGATGACGAGTGGCAAAATTCTGATGCCATTGTCTTCTGCCGCATGCTGGGTT GTTCAGTGTCGGGGCACGGAGAGTACCCTGTGGAGCTGCACCAAGAATAGCTGGGGCCATCA TGACTGCAGCCACGAGGAGGACGCAGGCGTGGAGTGCAGCGTC**TGA**CCCGGAAACCCTTTCA CTTCTCTGCTCCGAGGTGTCCTCGGGCTCATATGTGGGAAGGCAGAGGATCTCTGAGGAGT TCCCTGGGGACAACTGAGCAGCCTCTGGAGAGGGGCCATTAATAAAGCTCAACATCATTGA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA68886</pre>

><subunit 1 of 1, 520 aa, 1 stop

><MW: 52658, pI: 9.16, NX(S/T): 3

MRNKKILKEDELLSETQQAAFHQIAMEPFEINVPKPKRRNGVNFSLAVVVIYLILLTAGAGL LVVQVLNLQARLRVLEMYFLNDTLAAEDSPSFSLLQSAHPGEHLAQGASRLQVLQAQLTWVR VSHEHLLQRVDNFTQNPGMFRIKGEQGAPGLQGHKGAMGMPGAPGPPGPPAEKGAKGAMGRD GATGPSGPQGPPGVKGEAGLQGPQGAPGKQGATGTPGPQGEKGSKGDGGLIGPKGETGTKGE KGDLGLPGSKGDRGMKGDAGVMGPPGAQGSKGDFGRPGPPGLAGFPGAKGDQGQPGLQGVPG PPGAVGHPGAKGEPGSAGSPGRAGLPGSPGSPGATGLKGSKGDTGLQGQQGRKGESGVPGPA GVKGEQGSPGLAGPKGAPGQAGQKGDQGVKGSSGEQGVKGEKGERGENSVSVRIVGSSNRGR AEVYYSGTWGTICDDEWQNSDAIVFCRMLGYSKGRALYKVGAGTGQIWLDNVQCRGTESTLW SCTKNSWGHHDCSHEEDAGVECSV

Transmembrane domain:

amino acids 47-66 (type II)

N-glycosylation sites.

amino acids 43-47, 83-87, 136-140

Tyrosine kinase phosphorylation site.

amino acids 432-440

N-myristoylation sites.

amino acids 41-47, 178-184, 253-259, 274-280, 340-346, 346-352, 400-406, 441-447, 475-481, 490-496, 515-521

Amidation site.

amino acids 360-364

Leucine zipper pattern.

amino acids 56-78

Speract receptor repeat

amino acids 422-471, 488-519

Clq domain proteins.

amino acids 151-184, 301-334, 316-349

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52758</pre>

<subunit 1 of 1, 98 aa, 1 stop</pre>

<MW: 11081, pI: 6.68, NX(S/T): 1

 ${\tt MKLMVLVFTIGLTLLLGVQAMPANRLSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDG} \\ {\tt KGCEMICYCNFSELLCCPKDVFFGPKISFVIPCNNQ}$

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 72-76

Tyrosine kinase phosphorylation site.

amino acids 63-71

CCCACGCGTCCGCGGACGCTGGGCTGGACCCCAGGTCTGGAGCGAATTCCAGCCTGCAGGG TAAAATCCTCCAATGAAGCTACTAACATTACTCCAAAGCATAATATGAAAGCATTTTTGGAT GAATTGAAAGCTGAGAACATCAAGAAGTTCTTACATAATTTTACACAGATACCACATTTAGC AGGAACAGAACAAAACTTTCAGCTTGCAAAGCAAATTCAATCCCAGTGGAAAGAATTTGGCC TGGATTCTGTTGAGCTAGCTCATTATGATGTCCTGTTGTCCTACCCAAATAAGACTCATCCC AACTACATCTCAATAATTAATGAAGATGGAAATGAGATTTTCAACACATCATTATTTGAACC ACCTCCTCCAGGATATGAAAATGTTTCGGATATTGTACCACCTTTCAGTGCTTTCTCTCCTC AAGGAATGCCAGAGGGCGATCTAGTGTATGTTAACTATGCACGAACTGAAGACTTCTTTAAA TTGGAACGGGACATGAAAATCAATTGCTCTGGGAAAATTGTAATTGCCAGATATGGGAAAGT TTTCAGAGGAAATAAGGTTAAAAATGCCCAGCTGGCAGGGGCCAAAGGAGTCATTCTCTACT CCGACCCTGCTGACTACTTTGCTCCTGGGGTGAAGTCCTATCCAGACGGTTGGAATCTTCCT GGAGGTGGTCCAGCGTGGAAATATCCTAAATCTGAATGGTGCAGGAGACCCTCTCACACC AGGTTACCCAGCAAATGAATATGCTTATAGGCGTGGAATTGCAGAGGCTGTTGGTCTTCCAA GTATTCCTGTTCATCCAATTGGATACTATGATGCACAGAAGCTCCTAGAAAAAATGGGTGGC TCAGCACCACCAGATAGCAGCTGGAGAGGAAGTCTCAAAGTGCCCTACAATGTTGGACCTGG CTTTACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATCCACTCTACCAATGAAGTGA CTGGGAGGTCACCGGGACTCATGGGTGTTTGGTGGTATTGACCCTCAGAGTGGAGCAGCTGT CAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTGGTCTTCTTGGTTCTACTGAGTGGGCA GAGGAGAATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAATGCTGACTCATCTAT AGAAGGAAACTACACTCTGAGAGTTGATTGTACACCGCTGATGTACAGCTTGGTACACAACC TAACAAAAGAGCTGAAAAGCCCTGATGAAGGCTTTGAAGGCAAATCTCTTTATGAAAGTTGG ACTAAAAAAGTCCTTCCCCAGAGTTCAGTGGCATGCCCAGGATAAGCAAATTGGGATCTGG AAATGATTTTGAGGTGTTCTTCCAACGACTTGGAATTGCTTCAGGCAGAGCACGGTATACTA AAAATTGGGAAACAAATTCAGCGGCTATCCACTGTATCACAGTGTCTATGAAACATAT GAGTTGGTGGAAAAGTTTTATGATCCAATGTTTAAATATCACCTCACTGTGGCCCAGGTTCG AGGAGGGATGGTGTTTGAGCTAGCCAATTCCATAGTGCTCCCTTTTGATTGTCGAGATTATG CTGTAGTTTTAAGAAAGTATGCTGACAAAATCTACAGTATTTCTATGAAACATCCACAGGAA ATGAAGACATACAGTGTATCATTTGATTCACTTTTTTCTGCAGTAAAGAATTTTACAGAAAT TGCTTCCAAGTTCAGTGAGAGACTCCAGGACTTTGACAAAAGCAACCCAATAGTATTAAGAA TGATGAATGATCAACTCATGTTTCTGGAAAGAGCATTTATTGATCCATTAGGGTTACCAGAC AGGCCTTTTTATAGGCATGTCATCTATGCTCCAAGCAGCCACAACAAGTATGCAGGGGAGTC ATTCCCAGGAATTTATGATGCTCTGTTTGATATTGAAAGCAAAGTGGACCCTTCCAAGGCCT ${\tt TTGAGTGAAGTAGCC}{ extbf{TAA}{ extbf{GAGATTTTTTAGAGAATCCGTATTGAATTTGTGTGTGTTGTCA}$ CTCAGAAAGAATCGTAATGGGTATATTGATAAATTTTAAAATTTGGTATATTTGAAATAAAGT TGAATATTATATAA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA52756</pre>

><subunit 1 of 1, 750 aa, 1 stop

><MW: 84305, pI: 6.93, NX(S/T): 10

MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNMKAFL
DELKAENIKKFLHNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTH
PNYISIINEDGNEIFNTSLFEPPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFF
KLERDMKINCSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNL
PGGGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMG
GSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYV
ILGGHRDSWVFGGIDPQSGAAVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEW
AEENSRLLQERGVAYINADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYES
WTKKSPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYET
YELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQ
EMKTYSVSFDSLFSAVKNFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLGLP
DRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAE
TLSEVA

Signal sequence:

amino acids 1-40

N-glycosylation sites.

amino acids 76-80, 121-125, 140-144, 153-157, 195-199, 336-340, 459-463, 476-480, 638-642

Tyrosine kinase phosphorylation sites.

amino acids 363-372, 605-613, 606-613, 617-626

N-myristoylation sites.

amino acids 85-91, 168-174, 252-258, 256-262, 282-288, 335-341, 360-366, 427-433, 529-535, 707-713