NAE12S20-C 电源模块

技术手册

文档版本 1.1

发布日期 2022-06-15

版权所有 © 华为数字能源技术有限公司 2022。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

nuawe和其他华为商标均为华为技术有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受华为数字能源技术有限公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为数字能源技术有限公司对本文档内容不做任何明示或暗示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

华为数字能源技术有限公司

地址: 深圳市福田区华为数字能源安托山基地 邮编: 518043

网址: https://www.huawei.com

客户服务邮箱: support@huawei.com

客户服务电话: 4008302118

前言

概述

本文档主要介绍NAE12S20-C电源模块的物理结构、电气特性和简单应用。 本文图片仅供参考,具体以实际为准。

读者对象

本文档主要适用于以下工程师:

- 硬件工程师
- 软件工程师
- 系统工程师
- 技术支持工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
▲ 危险	表示如不避免则将会导致死亡或严重伤害的具有高等级风险的危害。
▲ 警告	表示如不避免则可能导致死亡或严重伤害的具有中等级风险的危害。
<u></u> 注意	表示如不避免则可能导致轻微或中度伤害的具有低等级风险的危害。
须知	用于传递设备或环境安全警示信息。如不避免则可能会导致设备 损坏、数据丢失、设备性能降低或其它不可预知的结果。 "须知"不涉及人身伤害。
□ 说明	对正文中重点信息的补充说明。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害信 息。

修改记录

修改记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 1.1 (2022-06-15)

新增3原理框图。

更新5 推荐应用电路, 6.2 引脚分布, 6.3 引脚应用和12 产品包装。

文档版本 1.0 (2021-08-05)

第一次正式发布。

目录

前言	i
1 安全注意事项	1
1.1 通用安全	1
1.2 人员要求	2
1.3 电气安全	
2 产品概述	4
3 原理框图	5
4 电气规格	6
4.1 绝对额定最大值	6
4.2 输入特性	7
4.3 输出特性	7
4.4 保护特性	g
4.5 动态特性	10
4.6 效率特性	10
4.7. H. W. H. M. H	10
4.7 其他特性	
5 推荐应用电路	13
5 推荐应用电路	13 15
5 推荐应用电路	13 15
5 推荐应用电路	13 15 15
5 推荐应用电路	13151515
5 推荐应用电路	1315171718
5 推荐应用电路	131515171818
5 推荐应用电路	
5 推荐应用电路 6 引脚描述和应用 6.1 封装尺寸图 6.2 引脚分布 6.3 引脚应用 6.3.1 EN 6.3.2 FB 6.3.3 PG 6.3.4 CS 6.3.5 MODE	
5 推荐应用电路 6 引脚描述和应用 6.1 封装尺寸图 6.2 引脚分布 6.3 引脚应用 6.3.1 EN 6.3.2 FB 6.3.3 PG 6.3.4 CS 6.3.5 MODE	
5 推荐应用电路	
5 推荐应用电路 6 引脚描述和应用 6.1 封装尺寸图 6.2 引脚分布 6.3 引脚应用 6.3.1 EN 6.3.2 FB 6.3.3 PG 6.3.4 CS 6.3.5 MODE 6.3.6 VREF 7 特性曲线	
5 推荐应用电路 6 引脚描述和应用 6.1 封装尺寸图 6.2 引脚分布 6.3 引脚应用 6.3.1 EN 6.3.2 FB 6.3.3 PG 6.3.4 CS 6.3.5 MODE 6.3.6 VREF 7 特性曲线	

NAE12S20-C 电源模块

技术手册	目录
8.3 输出电压动态响应	34
9 保护特性	35
10 二次组装	36
11 存储要求	37
12 产品包装	38
A 可靠性	40

安全注意事项

1.1 通用安全

声明

在安装、操作和维护设备时,请先阅读本手册,并遵循设备上标识及手册中所有安全注意事项。

手册中提到的事项,并不代表所应遵守的所有安全事项,只作为所有安全注意事项的 补充。本公司不承担任何因违反通用安全操作要求或违反设计、生产和使用设备安全 标准而造成的责任。

本电源模块应在符合设计规格要求的环境下使用,否则可能造成电源模块故障,由此引发的电源模块功能异常、部件损坏、人身安全事故或财产损失等不在电源模块质量保证范围之内。

安装、操作和维护电源模块时应遵守当地法律法规和规范。手册中的安全注意事项仅 作为当地法律法规和规范的补充。

发生以下任一情况时,本公司不承担责任。

- 虽然设备已经过安全性和兼容性测试,但从电子设备发射的射频和磁场可能对其他电子设备的操作造成负面影响,从而可能会影响植入式医疗设备或个人医用设备的正常工作,如起搏器、植入耳蜗、助听器等。若您使用了这些医用设备,请向其制造商咨询本设备的限制条件。
- 不在本手册说明的使用条件中运行。
- 安装和使用环境超出相关国际或国家标准中的规定。
- 未经授权擅自拆卸、更改产品或者修改软件代码。
- 未按产品及文档中的操作说明及安全警告操作。
- 非正常自然环境(不可抗力,如地震、火灾、暴风等)引起的设备损坏。
- 客户自行运输导致的运输损坏。
- 存储条件不满足产品文档要求引起的损坏。
- 请勿跌落、挤压或刺穿电源模块。避免让产品遭受外部大的压力,从而导致电源模块内部短路和过热。

- 请勿拆解、改装产品或向电源模块中插入异物,请勿将产品浸入水或其它液体中,以免引起产品短路、过热、起火或造成触电危险。
- 请在规格书规定的温度范围内使用本产品和存放本产品。
- 请勿将电源模块暴露在高温处或发热产品的周围,如日照、取暖器、微波炉、烤箱或热水器等。
- 如果电源模块外观有破损、开裂、进水等情况,请停止使用。继续使用可能会导致触电、短路、起火等危险。
- 请按当地规定处理设备,不可将电源模块作为生活垃圾处理。请遵守本电源模块 及其附件处理的本地法令,并支持回收行动。
- 请保持电源模块干燥。请勿在多灰、潮湿的地方使用电源模块,以免引起电源模块故障。请勿对电源模块进行泼水。电源模块应远离火源,不能对电源模块点火。
- 人手潮湿的时候请不要操作模块,这样会导致触电危险。

常规要求

▲ 危险

- 在设备上执行作业前,先关断电源,防止带电工作发生意外。
- 切勿改装或维修本产品。
- 由于内部有高压,切勿打开本产品。
- 谨慎防止任何异物进入壳体。
- 切勿在潮湿地点或可能会出现湿气或冷凝的区域使用本产品。
- 电源接通时及刚刚关断后,切勿触碰。灼热的表面可能造成烫伤。
- 禁止使用经过跌落、撞击等大机械应力后的电源模块。
- 本电源模块应由具有相关资质的人员安装和操作。
- 如果安装或运行过程中发生损坏或故障,立即关断电源,并将产品返回厂家检验或 维修。
- 严格遵守当地规范,确保接线正确。
- 本电源模块使用过程中不允许冷凝或结霜。
- 本电源模块运行时,切勿超环境温度或基板温度范围使用。

人身安全

- 请勿改装、拆解或取下产品外壳。
- 在电源模块操作过程中,如发现可能导致人身伤害或电源模块损坏的故障时,应立即终止操作,向负责人进行报告,并采取行之有效的保护措施。
- 电源模块未完成安装或未经专业人员确认,请勿给电源模块上电。

1.2 人员要求

● 负责安装、操作和维护电源模块的人员,必须先经严格培训,了解各种安全注意 事项,掌握正确的操作方法。

- 电源模块的安装、操作和维护过程中,不允许撞件或跌落。
- 在电源模块的二次组装过程中,禁止引入导电异物。

1.3 电气安全

操作要求

企警告

不按操作规程操作,可能会造成人身伤害,甚至危及人的生命。

- 安装、拆除电源模块之前,必须先断开电源模块前级供电源。
- 接通电源模块之前,必须确保电源模块接线已连接正确。
- 若电源模块有多路输入,应断开电源模块所有输入,待电源模块完全下电后方可对电源模块进行操作。
- 操作必须由取得专业资格的人员进行,以防触电。
- 电源模块在电气连接之前,如可能碰到带电部件,必须断开电源模块前级供电源。
- 切勿打开、改装或维修本产品。
- 禁止裸手操作电源模块,以免导致触电危险。
- 如果安装或运行过程中发生损坏或故障,立即关断电源,并将产品返回厂家检验或维修。
- 遇到紧急情况时,立即切断电源。

防静电要求

- 安装、操作和维护电源模块时,请遵守静电防护规范,应穿防静电工作服,佩戴 防静电手套和腕带。
- 手持电源模块时,必须持电源模块边缘不含元器件的部位,禁止用手触摸元器件。
- 拆卸下来的电源模块必须用防静电包材进行包装后,方可储存或运输。

2 产品概述

产品概述

NAE12S20-C是一款封装级(PSiP)DC-DC电源模块,输入电压范围为3V~14V,最大输出电流为20A,输出电压可在0.6V~5.5V范围内调节。

型号说明

 $\frac{\text{NAE}}{1} \frac{12}{2} \frac{S}{3} \frac{20}{4} - \frac{C}{5}$

1 一 非隔离,模拟,封装类型

2 一 输入电压: 12V

3一单路输出

4 - 输出电流: 20A

5一扩展码

关键特性

- 效率: 92% (V_{in}=5.4V, V_{out}=1.8V, I_{out}=10A)
- 尺寸(长×宽×高): 11.00mm× 11.00mm×4.00mm(0.43in.×0.43in.× 0.16in.)
- 重量: 1.6g
- 輸入欠压保护、輸出过流保护(打嗝模式) 輸出短路保护(打嗝模式)、过温保护(自 恢复)
- 符合RoHS 2.0标准
- 使能开关机(EN)
- 输出电压调节(FB)

应用

- 服务器
- 电信和数通应用

3 原理框图

图 3-1 原理框图

4 电气规格

4.1 绝对额定最大值

表 4-1 绝对额定最大值

项目	最小值	典型值	最大值	单位	说明
输入电压(持续24小时)	-	-	15	V	 当V_{in}≤18V,t≤100ms,电源模块不受损坏。 当V_{in}≥14V,并非所有特性参数都符合规格。
工作环境温度(T _A)	-40	-	85	$^{\circ}$	-
结温(T _j)	-40	-	150	${\mathbb C}$	绝对最大值,详见 说明1 。
	-40	-	125	$^{\circ}$	工作结温,详见 说明2 。
存储温度	-55	-	125	$^{\circ}$	-
工作湿度	5	-	95	%RH	无凝露
应用于EN的外部电压	-	-	4	٧	-
重量	-	1.6	-	g	-
海拔	-	-	3000	m	-

山 说明

- 1. 电源模块在绝对最大值或者超过绝对最大值使用时可能会对其造成永久性损坏,且长时间暴露在绝对最大值条件下可能会影响其可靠性。
- 2. 不保证电源模块在这个工作范围之外使用时的工作性能。

4.2 输入特性

表 4-2 输入特性

项目	最小值	典型值	最大值	单位	说明
工作输入电压	8.0	12.0	14.0	V	-
	4.5	5.4	6.0	V	-
	3.0	3.3	3.6	V	-
最大输入电流	-	-	25	Α	V _{in} =0V~14V; I _{out} =I _{onom}
空载功率	-	0.50	0.95	W	V _{in} =12V; V _{out} =0.6V, I _{out} =0A, Freq=600kHz
	-	0.75	1.25	W	V _{in} =12V; V _{out} =0.9V, I _{out} =0A, Freq=600kHz
	-	1.00	1.50	W	V _{in} =12V; V _{out} =1.2V, I _{out} =0A, Freq=600kHz
	-	2.00	2.50	W	V _{in} =12V; V _{out} =3.3V, I _{out} =0A, Freq=1000kHz
输入电容	30+100	-	-	μF	30μF陶瓷电容+100μF聚合铝电容

4.3 输出特性

表 4-3 输出特性

项目	最小值	典型值	最大值	单位	说明
输出整定电压	-1.0	-	1.0	%V _{oset}	V _{in} =3.3V/5.4V/12.0V; I _{out} =50% I _{onom} ;不包含调压电 阻精度所引入的偏差。
输出电压	0.6	-	3.7	V	V _{in} =8V~14V,包括3.7V
	3.7	-	5.5	V	V _{in} =9V~14V,不包括3.7V
	0.6	-	2.1	V	V _{in} =4.5V~6.0V
	0.6	-	1.2	V	V _{in} =3.0V~3.6V
输出电流	0	-	20	А	-
电压调整率	-1	-	1	%	I _{out} =I _{onom}

项目	最小值	典型值	最大值	单位	说明
负载调整率	-1	-	1	%	I _{out} =I _{omin} -I _{onom}
稳压精度	-2	-	2	%	I _{out} =I _{omin} -I _{onom}
温度系数	-0.02	-	0.02	%/℃	T _A =-40°C∼+85°C
容性负载	5×47	-	6000	μF	V _{out} ≤3.7V; 47µF陶瓷电容;6000µF陶瓷电容;6000µF聚合铝电容; 3000µF聚合铝电容+3000µF陶 瓷电容
	15×22	-	6000	μF	V _{out} > 3.7V; 22μF陶瓷电容; 6000μF陶瓷电容; 6000μF聚合铝电容; 3000μF聚合铝电容+3000μF陶 瓷电容
输出纹波和噪声 (峰峰值)	-	10	20	mV	V _{out} ≤1.8V; 示波器带宽: 20MHz
	-	30	50	mV	V _{out} > 1.8V; 示波器带宽: 20MHz
输出电压过冲	-	-	5	%	满足V _{in、} I _{out} 、T _A 全范围
输出电压延迟时间	-	1.5	5.0	ms	-
输出电压上升时间	-	2.3	5.0	ms	-
开关频率	-	600	-	kHz	V _{in} =8V~14V, V _{out} ≤1.8V, I _{out} =50%I _{onom}
	-	1000	-	kHz	V _{in} =8V~14V, V _{out} > 1.8V, I _{out} =50%I _{onom}
	-	600	-	kHz	V _{in} =4.5V~6.0V, V _{out} ≤2.1V, I _{out} =50%I _{onom}
	-	600	-	kHz	V _{in} =3.0V~3.6V,I _{out} =50%I _{onom}

山 说明

此为A级产品,在生活环境中,该产品可能会造成无线电干扰。在这种情况下,可能需要用户对 其干扰采取切实可行的措施。

4.4 保护特性

表 4-4 输入保护特性

项目	最小值	典型值	最大值	单位	说明
输入欠压保护点	5.00	6.00	7.00	V	V _{in} =8V~14V,V _{out} ≤3.7V
输入欠压恢复点	6.00	7.00	8.00	V	
输入欠压保护回差	0.50	1.00	2.00	V	
输入欠压保护点	6.00	7.00	8.00	V	V _{in} =9V~14V,V _{out} >3.7V
输入欠压恢复点	7.00	8.00	9.00	V	
输入欠压保护回差	0.50	1.00	2.00	V	
输入欠压保护点	3.30	3.55	3.80	V	V _{in} =4.5V~6.0V
输入欠压恢复点	4.00	4.25	4.50	V	
输入欠压保护回差	0.40	0.70	1.00	V	
输入欠压保护点	2.20	2.40	2.70	V	V _{in} =3.0V~3.6V
输入欠压恢复点	2.65	2.85	3.00	V	
输入欠压保护回差	0.20	0.40	0.60	V	

🗀 说明

EN下拉电阻阻值详见表6-2。

表 4-5 输出保护特性

项目	最小值	典型值	最大值	单位	说明
输出过流保护	110	-	200	%	打嗝模式
输出短路保护	-	-	-	-	打嗝模式
过温保护点	140	160	170	\mathbb{C}	自恢复
过温保护回差	-	30	-	$^{\circ}$	过温保护基于电源模块结温 实现。

4.5 动态特性

表 4-6 动态特性

项目	最小值	典型值	最大值	单位	说明
过冲幅度	-	-	5	%V _{out}	电流变化率: 5A/μs
恢复时间	-	-	200	μs	负载变化率: 25%~50%~25%; 50%~75%~50%

4.6 效率特性

表 4-7 效率特性

项目	最小值	典型值	最大值	单位	说明
50%负载	77.5	78.5	-	%	V _{in} =12V; V _{out} =0.6V; T _A =25℃ (77℉)
	78.5	79.5	-	%	V _{in} =12V; V _{out} =0.7V; T _A =25℃ (77°F)
	79.5	80.5	-	%	V _{in} =12V; V _{out} =0.8V; T _A =25℃ (77℉)
	80.5	81.5	-	%	V _{in} =12V; V _{out} =0.9V; T _A =25℃ (77°F)
	81.0	82.0	-	%	V _{in} =12V; V _{out} =1.0V; T _A =25℃ (77°F)
	82.5	83.5	-	%	V _{in} =12V; V _{out} =1.2V; T _A =25℃ (77°F)
	85.5	86.5	-	%	V _{in} =12V; V _{out} =1.5V; T _A =25℃ (77°F)
	86.0	87.0	-	%	V _{in} =12V; V _{out} =1.8V; T _A =25℃ (77°F)
	86.0	87.0	-	%	V _{in} =12V; V _{out} =2.5V; T _A =25℃ (77°F)
	87.5	88.5	-	%	V _{in} =12V; V _{out} =3.3V; T _A =25℃ (77℉)
	89.0	90.0	-	%	V _{in} =12V; V _{out} =3.7V; T _A =25℃ (77°F)
	90.0	91.0	-	%	V _{in} =12V; V _{out} =5.0V; T _A =25℃ (77°F)
	90.5	91.5	-	%	V _{in} =12V; V _{out} =5.5V; T _A =25℃ (77°F)
	84.5	85.5	-	%	V _{in} =5.4V; V _{out} =0.6V; T _A =25℃ (77°F)
	85.5	86.5	-	%	V _{in} =5.4V; V _{out} =0.7V; T _A =25℃ (77°F)
	86.5	87.0	-	%	V _{in} =5.4V; V _{out} =0.8V; T _A =25℃ (77°F)
	87.5	88.0	-	%	V _{in} =5.4V; V _{out} =0.9V; T _A =25°C (77°F)

项目	最小值	典型值	最大值	单位	说明
	88.5	89.0	-	%	V _{in} =5.4V; V _{out} =1.0V; T _A =25℃ (77℉)
	89.0	89.5	-	%	V _{in} =5.4V; V _{out} =1.2V; T _A =25℃ (77℉)
	90.0	90.5	-	%	V _{in} =5.4V; V _{out} =1.5V; T _A =25℃ (77°F)
	91.5	92.0	-	%	V _{in} =5.4V; V _{out} =1.8V; T _A =25℃ (77℉)
	90.5	91.0	-	%	V _{in} =5.4V; V _{out} =2.1V; T _A =25°C (77°F)
	85.0	86.5	-	%	V _{in} =3.3V; V _{out} =0.6V; T _A =25℃ (77°F)
	86.0	87.0	-	%	V _{in} =3.3V; V _{out} =0.7V; T _A =25℃ (77°F)
	86.5	87.5	-	%	V _{in} =3.3V; V _{out} =0.8V; T _A =25℃ (77°F)
	87.0	88.0	-	%	V _{in} =3.3V; V _{out} =0.9V; T _A =25℃ (77°F)
	87.5	88.5	-	%	V _{in} =3.3V; V _{out} =1.0V; T _A =25°C (77°F)
	88.0	89.0	-	%	V _{in} =3.3V; V _{out} =1.2V; T _A =25℃ (77°F)
100%负载	71.5	73.0	-	%	V _{in} =12V; V _{out} =0.6V; T _A =25℃ (77℉)
	73.0	74.0	-	%	V _{in} =12V; V _{out} =0.7V; T _A =25℃ (77℉)
	74.5	75.5	-	%	V _{in} =12V; V _{out} =0.8V; T _A =25℃ (77℉)
	75.5	76.5	-	%	V _{in} =12V; V _{out} =0.9V; T _A =25℃ (77°F)
	78.0	79.0	-	%	V _{in} =12V; V _{out} =1.0V; T _A =25℃ (77℉)
	80.5	81.5	-	%	V _{in} =12V; V _{out} =1.2V; T _A =25℃ (77℉)
	83.0	83.5	-	%	V _{in} =12V; V _{out} =1.5V; T _A =25℃ (77°F)
	84.0	84.5	-	%	V _{in} =12V; V _{out} =1.8V; T _A =25℃ (77℉)
	85.0	85.5	-	%	V _{in} =12V; V _{out} =2.5V; T _A =25℃ (77℉)
	86.5	87.0	-	%	V _{in} =12V; V _{out} =3.3V; T _A =25℃ (77°F)
	87.5	88.0	-	%	V _{in} =12V; V _{out} =3.7V; T _A =25℃ (77℉)
	88.5	89.0	-	%	V _{in} =12V; V _{out} =5.0V; T _A =25℃ (77℉)
	89.0	91.5	-	%	V _{in} =12V; V _{out} =5.5V; T _A =25°C (77°F)
	76.0	78.5	-	%	V _{in} =5.4V; V _{out} =0.6V; T _A =25℃ (77℉)
	77.5	78.5	-	%	V _{in} =5.4V; V _{out} =0.7V; T _A =25℃ (77℉)
	79.5	80.5	-	%	V _{in} =5.4V; V _{out} =0.8V; T _A =25℃ (77℉)
	80.0	81.0	-	%	V _{in} =5.4V; V _{out} =0.9V; T _A =25℃ (77°F)

项目	最小值	典型值	最大值	单位	说明
	82.0	83.0	-	%	V _{in} =5.4V; V _{out} =1.0V; T _A =25℃ (77°F)
	83.5	84.5	-	%	V _{in} =5.4V; V _{out} =1.2V; T _A =25℃ (77°F)
	84.5	85.5	-	%	V _{in} =5.4V; V _{out} =1.5V; T _A =25℃ (77℉)
	86.5	87.5	-	%	V _{in} =5.4V; V _{out} =1.8V; T _A =25℃ (77℉)
	88.5	89.0	-	%	V _{in} =5.4V; V _{out} =2.1V; T _A =25℃ (77°F)
	74.5	76.0	-	%	V _{in} =3.3V; V _{out} =0.6V; T _A =25℃ (77℉)
	75.5	76.5	-	%	V _{in} =3.3V; V _{out} =0.7V; T _A =25℃ (77℉)
	77.5	78.5	-	%	V _{in} =3.3V; V _{out} =0.8V; T _A =25℃ (77°F)
	79.0	80.0	-	%	V _{in} =3.3V; V _{out} =0.9V; T _A =25℃ (77°F)
	80.0	81.0	-	%	V _{in} =3.3V; V _{out} =1.0V; T _A =25℃ (77°F)
	81.0	82.0	-	%	V _{in} =3.3V; V _{out} =1.2V; T _A =25℃ (77℉)

4.7 其他特性

表 4-8 其他特性

项目	最小值	典型值	最大值	单位	说明
SENSE+	-	-	100	mV	-
SENSE-	-	-	-	mV	-

5 推荐应用电路

图 5-1 推荐应用电路

表 5-1 推荐应用电路元器件规格

元器件	推荐规格	备注
C1	16V,100μF,±20%,聚合物,6.3mm× 5.9mm,低ESR(24mΩ)	固体SMD铝电容
C2、C3、C4	25V, 10μF, ±20%, X7T, 1206	陶瓷电容
C5	50V, 100nF, ±10%, X7R, 0603	陶瓷电容
C6	50V, 1μF, ±10%, X7R, 0805	SMD陶瓷电容
C7	50V, 0.1nF, ±5%, NPO, 0402	SMD陶瓷电容
C8	16V, 10nF, ±10%, X7R, 0402	SMD陶瓷电容
C9	16V, 100nF, ±10%, X7R, 0402	陶瓷电容

元器件	推荐规格	备注
R1	0.125W,2.2Ω,±1%,0805	V _{in} =3.0V~3.6V,片式厚 膜电阻。 仅3.3V母线使用,其他母 线禁止使用。
R2	0.0625W, 10kΩ, ±1%, 0402	片式厚膜电阻
R3	具体参考 表6-2	片式厚膜电阻
R4	具体参考 表6-4	片式厚膜电阻
R5	具体参考 表6-5	片式厚膜电阻
C10	50V, 100nF, ±10%, X7R, 0603	陶瓷电容
C11~C15	4V, 47μF, ±20%, X7S, 1206	V _{out} ≤3.7V,SMD陶瓷电 容
	10V, 22μF, ±10%, X7S, 1206	V _{out} >3.7V,SMD陶瓷电 容

🗀 说明

图中未给出具体数值的元器件,须根据实际需求参考主要功能引脚使用说明进行配置,其余器件参数不建议修改。

6 引脚描述和应用

6.1 封装尺寸图

封装尺寸

测量单位: mm (in.)

图 6-1 封装尺寸图

结构尺寸图

图 6-2 结构尺寸图

符号	最小值	典型值	最大值		
-	单位为mm(in.)	单位为mm(in.)			
А	-	-	4.00 (0.16)		
A1	0.520 (0.020)	0.577 (0.023)	0.634 (0.025)		
D	10.90 (0.429)	11.00 (0.433)	11.10 (0.437)		
D1	8.55 (0.337)	8.60 (0.339)	8.65 (0.340)		
E	10.90 (0.429)	11.00 (0.433)	11.10 (0.437)		
E1	10.45 (0.411)	10.50 (0.413)	10.55 (0.415)		
f	0.10 (0.004)	0.15 (0.005)	0.20 (0.007)		
aaa	0.08 (0.0031) BSC				
ddd	0.08 (0.0031) BSC				

山 说明

- 1. 所有尺寸单位均为mm(in.)。公差: x.x±0.1mm(x.xxx±0.003in.); x.xx±0.05mm(x.xxx±0.002in.)。
- 2. 角度公差: ±1°

6.2 引脚分布

图 6-3 引脚分布

表 6-1 引脚说明

引脚编号	引脚名称	功能描述
1	V _{sense}	输出电压远端反馈引脚。若不使用远端反馈功能时,V _{sense} 直接与 V _{out} 短接。
2	V _{out}	输出引脚。将输出引脚连接到负载,并将输出滤波电容放置在输出 引脚和PGND引脚之间。
3、16、17	PGND	输入输出电源地引脚。将这些引脚接到输入和输出滤波器电容的接地。
4	VCC	内部LDO输出。驱动器和控制电路由该电压供电。用至少1μF陶瓷电容去耦,尽可能靠近PGND,推荐使用X7R级介质陶瓷电容。
5、18	SW	电路的开关节点。
6	воот	内部自举电路输出引脚,悬空使用。
7	AGND	信号地引脚。

引脚编号	引脚名称	功能描述
8	CS	输出过流调整引脚。通过CS与AGND之间的电阻值可以调节输出过流保护点。
9	MODE	频率调整引脚。通过60.4kΩ内部电阻接地。默认悬空,对应频率为 1MHz。
10	VREF	软启动设置引脚。模块电源中嵌入了一个软启动电容。默认情况 下,此引脚保持悬空。
11	RGND	信号地引脚,环路采样、调节专用引脚。
12	FB	输出电压调节引脚。从输出到RGND的外部电阻分压器设置输出电压。建议将电阻分压器放置在尽可能靠近FB的地方。FB走线上应避免过孔。
13	EN	使能引脚。EN引脚内部通过10kΩ电阻上拉到V _{in} ,EN引脚外部必须 通过电阻连接到地。其他内容详见 6.3.1 EN 。
14	PG	电源状态指示信号引脚,该引脚为悬空信号,必须通过电阻上拉才能正常指示。如不使用,请保持悬空。
15、19、20	V _{in}	电源模块输入引脚。接输入电源模块,输入滤波电容放在这些引脚和PGND引脚之间。

6.3 引脚应用

6.3.1 EN

EN起机电压范围为1.15V~1.27V,回滞电压为0.24V。推荐使用集电极开路晶体管或类似器件来控制EN引脚。

图 6-4 EN 引脚控制方式推荐图

□ 说明

如果EN引脚采用三极管或光耦隔离控制方式,且外加电压控制时,禁止输入电压先于EN引脚下电。

图 6-5 EN 功能电路配置图

表 6-2 EN 下拉电阻配置表

V _{in} (V)	R3 (kΩ)	输出电压
3.30	7.50	0.6V~1.2V
5.50	4.02	0.6V~2.1V
12.00	2.00	0.6V~3.7V,包含3.7V
12.00	1.69	3.7V~5.0V,不包含3.7V

6.3.2 FB

输出电压可以通过在FB引脚和RGND引脚之间连接外部电阻来调节。

图 6-6 R_{trim} 外部连接

R_{trim}和V_{out}关系式如下:

$$R_{\text{trim}} = \frac{1.2}{V_{\text{out}} - 0.6} (k\Omega)$$

□ 说明

输出电压随R_{trim}变化。微调电阻公差直接影响输出电压的精度。

表 6-3 R_{trim} 电阻配置表

V _{out} (V)	R _{trim} (kΩ)
0.6	-
0.7	12.000
0.8	6.000
0.9	4.000
1.0	3.000
1.2	2.000
1.5	1.333
1.8	1.000
2.5	0.632
3.3	0.444
3.7	0.387
5.0	0.273
5.5	0.245

6.3.3 PG

PG信号通过10kΩ电阻上拉至VCC或0.8V~4.0V的固定电平。如果不使用PG功能,则引脚悬空。

图 6-7 PG 配置图

R: 推荐使用10kΩ电阻。

6.3.4 CS

输出过流调整引脚。通过CS与AGND之间的电阻值可以调节输出过流保护点。

图 6-8 限流电阻外部连接

□ 说明

限流电阻阻值精度要求为±1%。

表 6-4 限流电阻配置表

母线类型	V _{out} (V)	R4 (kΩ)	
3.3V	0.6≤V _{out} <1.2	5.60	
	V _{out} =1.2	5.76	
5.5V	0.6≤V _{out} <1.2	5.60	
	1.2≤V _{out} <1.5	5.76	
	1.5 <v<sub>out≤1.8</v<sub>	6.04	
	1.8 <v<sub>out<2.1</v<sub>	6.20	
	V _{out} =2.1	5.76	
12.0V	0.6≤V _{out} <1.2	6.04	
	1.2≤V _{out} <1.8	6.20	
	1.8≤V _{out} <2.5	6.49	
	2.5≤V _{out} ≤2.8	5.76	
	2.8≤V _{out} ≤3.7	5.76	
	3.7 <v<sub>out<5.0</v<sub>	6.49	
	5.0≤V _{out} ≤5.5	6.80	

6.3.5 **MODE**

MODE引脚用于调节电源模块开关频率,电源模块输出电压≤1.8V时,必须在外部配置 0Ω电阻至AGND。

表 6-5 MODE 电阻配置表

引脚连接方式	典型频率
悬空	1000kHz
0Ω	600kHz

6.3.6 VREF

软启动设置引脚,悬空使用。

通过VREF对AGND增加电容C9修改软启动时间,但软启动时间只能增大,不能减小(电源模块内部已有200nF电容)。

$$t_{ss} (ms) = \frac{0.6 (V) \times C_{REF} (nF)}{46 (\mu A)}$$

山 说明

- C_{REF}容值为C9容值和电源模块内部200nF容值的总和。
- 计算时间为0~100%Vout时间,软启动时间定义为10%Vout~90%Vout时间,注意差异。

了特性曲线

效率与功耗曲线

山 说明

- 条件: T_A=25℃,特殊说明除外。
- 电源模块功率损耗根据效率计算。功耗 P_d 、效率 η 、输出功率 P_o 关系式为: P_d = P_o (1 η)/ η 。

效率曲线(V_{nom}=3.3V,V_{out}=0.6V)

功耗曲线(V_{nom}=3.3V,V_{out}=0.6V)

效率曲线(V_{nom}=3.3V, V_{out}=0.7V)

效率曲线(V_{nom}=3.3V,V_{out}=0.8V)

功耗曲线(V_{nom}=3.3V,V_{out}=0.8V)

效率曲线(V_{nom}=3.3V, V_{out}=0.9V)

功耗曲线(V_{nom}=3.3V, V_{out}=0.9V)

效率曲线(V_{nom}=3.3V, V_{out}=1.0V)

功耗曲线(V_{nom}=3.3V, V_{out}=1.0V)

效率曲线(V_{nom}=3.3V, V_{out}=1.2V)

功耗曲线(V_{nom}=3.3V, V_{out}=1.2V)

效率曲线(V_{nom}=5.4V, V_{out}=0.6V)

功耗曲线(V_{nom}=5.4V,V_{out}=0.6V)

效率曲线(V_{nom}=5.4V, V_{out}=0.7V)

功耗曲线(V_{nom}=5.4V, V_{out}=0.7V)

效率曲线(V_{nom}=5.4V, V_{out}=0.8V)

功耗曲线(V_{nom}=5.4V, V_{out}=0.8V)

效率曲线(V_{nom}=5.4V, V_{out}=0.9V)

功耗曲线(V_{nom}=5.4V, V_{out}=0.9V)

效率曲线(V_{nom}=5.4V,V_{out}=1.0V)

功耗曲线(V_{nom}=5.4V, V_{out}=1.0V)

效率曲线(V_{nom}=5.4V,V_{out}=1.2V)

功耗曲线(V_{nom}=5.4V,V_{out}=1.2V)

效率曲线(V_{nom}=5.4V, V_{out}=1.5V)

功耗曲线(V_{nom}=5.4V, V_{out}=1.5V)

效率曲线(V_{nom}=5.4V,V_{out}=1.8V)

功耗曲线(V_{nom}=5.4V,V_{out}=1.8V)

效率曲线(V_{nom}=5.4V,V_{out}=2.1V)

功耗曲线(V_{nom}=5.4V,V_{out}=2.1V)

效率曲线(V_{nom}=12.0V, V_{out}=0.6V)

功耗曲线(V_{nom}=12.0V, V_{out}=0.6V)

效率曲线(V_{nom}=12.0V,V_{out}=0.7V)

功耗曲线(V_{nom}=12.0V,V_{out}=0.7V)

效率曲线(V_{nom}=12.0V,V_{out}=0.8V)

功耗曲线(V_{nom}=12.0V,V_{out}=0.8V)

效率曲线(V_{nom}=12.0V, V_{out}=0.9V)

功耗曲线(V_{nom}=12.0V,V_{out}=0.9V)

效率曲线(V_{nom}=12.0V, V_{out}=1.0V)

功耗曲线(V_{nom}=12.0V,V_{out}=1.0V)

效率曲线(V_{nom}=12.0V,V_{out}=1.2V)

功耗曲线(V_{nom}=12.0V,V_{out}=1.2V)

效率曲线(V_{nom}=12.0V,V_{out}=1.5V)

功耗曲线(V_{nom}=12.0V,V_{out}=1.5V)

效率曲线(V_{nom}=12.0V, V_{out}=1.8V)

功耗曲线(V_{nom}=12.0V,V_{out}=1.8V)

效率曲线(V_{nom}=12.0V,V_{out}=2.5V)

功耗曲线(V_{nom}=12.0V,V_{out}=2.5V)

效率曲线(V_{nom}=12.0V, V_{out}=3.3V)

功耗曲线(V_{nom}=12.0V, V_{out}=3.3V)

效率曲线(V_{nom}=12.0V, V_{out}=3.7V)

功耗曲线(V_{nom}=12.0V,V_{out}=3.7V)

效率曲线(V_{nom}=12.0V,V_{out}=5.0V)

功耗曲线(V_{nom}=12.0V,V_{out}=5.0V)

效率曲线(V_{nom}=12.0V,V_{out}=5.5V)

功耗曲线(V_{nom}=12.0V,V_{out}=5.5V)

8 典型波形

8.1 开机/关机波形

条件: T_A=25°C, V_{in}=12.0V, 特殊说明除外。

输入源开机波形

输入源关机波形

8.2 输出电压纹波

输出电压纹波

 $(T_A=25^{\circ}C, V_{in}=12.0V, V_{out}=0.9V)$

8.3 输出电压动态响应

输出电压动态响应

负载: 25%~50%~25%, di/dt=5A/μs

输出电压动态响应

负载: 50%~75%~50%, di/dt=5A/μs

9 保护特性

输入欠压保护

当输入电压低于欠压保护点时,电源模块将关闭。当输入电压达到输入欠压恢复点时,电源模块重新开始工作。

输出过流保护

电源模块具有过流保护能力,能够提供输出过载或短路保护。如果输出电流超过输出过流保护点,电源模块进入打嗝模式。当故障消除时,电源模块将自动重启。

过温保护

电源模块内部芯片自带过温保护功能,可避免高温损坏。当温度超过过温保护点时,输出将关闭。当检测到感应位置的温度下降到过温保护恢复点时,电源模块重新启动。

10 二次组装

焊接工艺

电源模块支持回流焊工艺,不允许波峰焊和手工焊。回流过程中,任何时间峰值温度不得超过 260° 。

温度大于255℃的时间 $t_p \le 30s$,温度大于217℃(T_L)的时间 $t_L \le 120s$,回流次数不超过 3次。

图 10-1 推荐无铅焊料回流曲线

按照IPC/JEDEC J-STD-033中规定的MSL3的要求储存和运输电源模块。

焊接电源模块的表面必须清洁干燥。否则,电源模块的组装、测试甚至可靠性将受到 影响。

12 产品包装

电源模块支持卷带和卷盘封装。

卷盘封装

图 12-1 卷盘尺寸

🔲 说明

• 测量单位: mm

图中未标注公差: ±0.25mm平整度: 最大允许3mm产品数量: 700pcs/卷

卷带封装

图 12-2 卷带尺寸

项目	W	A0	В0	КО	P0	E
尺寸	24.00+0.20	11.50+0.10	11.50+0.10	4.20+0.10	4.00+0.10	1.75 +0.10
项目	F	D0	D1	P1	P2	Т
尺寸	11.50+0.05	1.55 +0.05	1.55+0.05	16.00+0.10	2.00+0.05	0.40+0.05

山 说明

- 测量单位: mm
- 载体外倾角在100mm中不超过1mm。
- 10链轮孔节距累积公差: ±0.2mm
- 材料:空白防静电PS 0.4mm厚
- 除非另有说明,所有类型和链轮孔尺寸均符合EIA-481的要求。
- A0和B0在角半径中间的一个地方测量。

平均无故障时间 (MTBF)

项目	最小值	典型值	最大值	单位	说明
平均无故障时间 (MTBF)	-	2.5	-	百万小时	Telcordia,SR332 Method 1 Case 3; 80%负载;正常额定 输入;额定输出;气 流=1.5m/s (300LFM);T _A = 40℃

可靠性测试

项目	标准
高温高湿工作实验	IPC-9592B
高温老化工作实验	IPC-9592B
高加速寿命试验	IPC-9592B
低温运行实验	IPC-9592B