Authentication

Introduction

- Basics
- Passwords
- Challenge-Response
- Biometrics
- Location
- Multiple Methods

Basics

- Authentication: binding of identity to subject
 - Identity is that of external entity (e.g., Bob)
 - Subject is computer entity (e.g.,process)

Establishing Identity

- One or more of the following
 - What entity knows (password)
 - What entity has (badge, smart card)
 - Who entity is (fingerprints, retinal characteristics)
- Other approaches
 - Where entity is (In front of a particular terminal)

Password System

Password System

- Password system, with passwords stored
 - A set of strings making up passwords
 - Verify input = stored password
 - Single equality test function
 - Function to set/change password

Storage

- Store as cleartext
 - If password file compromised, all passwords revealed
- Encipher file
 - Need to have decipherment, encipherment keys in memory
 - Reduces to previous problem
- Store one-way hash of password
 - If file read, attacker must still guess passwords or invert the hash

Examples

- The UNIX method
 - /etc/passwd
 - crypt()
 - Use DES to encipher 0 message with password as key
 - Iterate 25 times
 - The final 64 bits are unpacked into a string of 11 printable characters
 - Recent versions use bigcrypt(), crypt16(), Blowfish and MD5

Attacks and Countermeasures

Dictionary Attacks

- Trial-and-error from a list of potential passwords
 - Off-line: know the password function, and repeatedly try different guesses until the list is done or passwords guessed
 - Examples: crack, john-the-ripper
 - On-line: have access to functions and try guesses g until some I(g) succeeds
 - Examples: trying to log in by guessing a password

Using Time

- P probability of guessing a password in specified period of time
- G number of guesses tested in 1 time unit
- T number of time units
- N number of possible passwords (|A|)
- Then P ≥ TG/N

Salting

- Goal: slow dictionary attacks
- Method: perturb hash function so that:
 - Parameter controls which hash function is used
 - Parameter differs for each password
 - E.g., the DES salt is a 12-bit number, between 0 and 4,095
 - So given n password hashes, and therefore n salts, need to hash guess n

Password Aging

- Force users to change passwords after some time has expired
 - How do you force users not to re-use passwords?
 - Record previous passwords
 - Block changes for a period of time
 - Give users time to think of good passwords
 - Don't force them to change before they can log in
 - Warn them of expiration days in advance

Password Selection

Password Selection

- Random selection
 - Any password from A equally likely to be selected
- Pronounceable passwords
- User selection of passwords

Pronounceable Passwords

- Generate phonemes randomly
 - Phoneme is unit of sound, eg. cv, vc, cvc, vcv
 - Examples: helgoret, juttelon are; przbazdfl, zxrptglfn are not
- Problem: too few
- Solution: key crunching
 - Run long key through hash function and convert to printable sequence
 - Use this sequence as password

User Selection

- Problem: people pick easy to guess passwords
 - Based on account names, user names, computer names, place names
 - Dictionary words (also reversed, odd capitalizations, control characters, "elite-speak", conjugations or declensions, swear words, Torah/Bible/Koran/... words)
 - Too short, digits only, letters only
 - License plates, acronyms, social security numbers
 - Personal characteristics or foibles (pet names, nicknames, job characteristics, etc.

Proactive Password Checking

- Analyze proposed password for "goodness"
 - Always invoked
 - Can detect, reject bad passwords for an appropriate definition of "bad"
 - Discriminate on per-user, per-site basis
 - Needs to do pattern matching on words
 - Needs to execute subprograms and use results
 - Easy to set up and integrate into password selection system

Challenge-Response

Challenge-Response

• User, system share a secret function f (in practice, f is a known function with unknown parameters, such as a cryptographic key)

One-time Passwords

One-Time Passwords

- Password that can be used exactly once
 - After use, it is immediately invalidated
- Challenge-response mechanism
 - Challenge is number of authentications;
 - response is password for that particular number
- Problems
 - Synchronization of user, system
 - Generation of good random passwords
 - Password distribution problem

S/Key

- One-time password scheme
- h one-way hash function (MD5 or SHA-1, for example)
- User chooses initial seed k
- System calculates:

$$h(k) = k_1, h(k_1) = k_2, ..., h(k_{n-1}) = k_n$$

Passwords are reverse order:

$$p_1 = k_n, p_2 = k_{n-1}, ..., p_{n-1} = k_2, p_n = k_1$$

S/Key Protocol

System stores maximum number of authentications n, number of next authentication i, last correctly supplied password p_{i-1} .

If match with what is stored, system replaces p_{i-1} with p_i and increments i.

Biometrics

Biometrics

- Automated measurement of biological, behavioral features that identify a person
 - Fingerprints: optical or electrical techniques
 - Maps fingerprint into a graph, then compares with database
 - Measurements imprecise, so approximate matching algorithms used
 - Voices: speaker verification or recognition
 - Verification: uses statistical techniques to test hypothesis that speaker is who is claimed (speaker dependent)
 - Recognition: checks content of answers (speaker independent)

Other Characteristics

- Can use several other characteristics
 - Eyes: patterns in irises unique
 - Measure patterns, determine if differences are random; or correlate images using statistical tests
 - ► Faces: image, or specific characteristics like distance from nose to chin
 - Lighting, view of face, other noise can hinder this
 - Keystroke dynamics: believed to be unique
 - Keystroke intervals, pressure, duration of stroke, where key is struck
 - Statistical tests used

Cautions

- These can be fooled!
 - Assumes biometric device accurate in the environment it is being used in!
 - Transmission of data to validator is tamperproof, correct

What You Have

What You Have

Location

Location

- If you know where user is, validate identity by seeing if person is where the user is
 - Requires special-purpose hardware to locate user
 - GPS (global positioning system) device gives location signature of entity
 - Host uses LSS (location signature sensor) to get signature for entity

Multiple Methods

Multiple Methods

- Example: "where you are" also requires entity to have LSS and GPS, so also "what you have"
- Can assign different methods to different tasks
- As users perform more and more sensitive tasks, must authenticate in more and more ways (presumably, more stringently) File describes authentication required
- Includes controls on access (time of day, etc.), resources, and requests to change passwords

Key Points

Key Points

- For authentication, consider system requirements and components
- Passwords are here to stay
- One-time passwords
- Biometrics
- What you have
- Protocols are important
- Authentication methods can be combined