```
Markov Inequality
      For RV X s.t. Pr(X≥0)=1,
                        Pr(X>t) < F(x)/t
Chebysher Inequality
     If Var(X) < 00,
               Pr(|X-EX)| \ge t) \le \frac{Var(X)}{t^2}
     Proof: Pr ((x-E(x))) > t) < E((x-E(x)))/t= Var (x)
Sample Mean
       tor n RV X, in Xn, sample mean Xn = \( \sum \in Xi \)
       If X ... In random sample from distr w/
       mean \mu and variance 6^2, \overline{X}_n is sample mean, \overline{F}(\overline{X}_n) = \mu, \overline{V}_n(\overline{X}_n) = 6^2/n
      (By Chebysher, Pr(|\bar{X}_n - H| \ge t) \le 6^{1/n4^2}
```

Convergence of RV
- Convergence in distribution
Sequence of RV Z., Zz. W/ CDF F., tz.
converge to RV Z n/ CDF F if:
converge to RV Z n/ CDF F if: Lim Fn(x) = F(x), for every x s.t. F continuous n>x
- Convergence in Probability
Sequence of $RV Z_1, Z_2 = converges to b in prob if:$ for every $\epsilon > 0$, $\lim_{n \to \infty} \Pr(Z_n - b < \epsilon) = 1$ $\lim_{n \to \infty} (Z_n P_{>b})$ only need Z_n be chose
for every $\xi>0$, $\lim_{n\to\infty} \tau(\xi_n-b <\xi)=1$
- (myergence with Popolities 1 (almost augus)
- Convergence with Probability I (almost swely) need any sequence converges to b if: $Pr(\lim Z_n = b) = 1$ of $\{Z_n\}$ converge to b $\{Z_n\}$
$n \rightarrow \infty \left(Z_n \xrightarrow{\alpha.s.} b \right)$
Almost sure convergence => Convergence in prob => Convergence in distr
Xample of converge in distribut not up prob 1:
Example of converge in distribut not up prob 1: Let Zn= {1 with Pr h} 1-h
Then $Z_n \to 0$ in prob.
However, since $\sum_{n\geq 1} \Pr(Z_i=1) = +\infty$, events $\{Z_i=1\}$ independent,
However, since $\sum_{n\geq 1} \Pr(Z_i=1) = +\infty$, and events $\{Z_i=1\}$
by Second Borel-Cantelli lenna, Pr (lim Zn = b) + 1.

Weak Law of Large Numbers
Suppose Xi Xn form a random sample from a distr w/ mean H,
and finite variance. Let In be sample mean,
then, $\overline{X}_n \xrightarrow{P} \mu$.
• If $Z_n \xrightarrow{P} b$, $g(Z_n)$ is a function continuous at b , $g(Z_n) \xrightarrow{P} g(b)$.
$g(Z_n) \xrightarrow{P} g(b)$.
Strong Law of Large Numbers
Chernoff Bounds
Idea: Wout to generate a family of bounds for Pr(X).
Consider in Chebysher, we applied Markor on [X-#CX)]
We can repeat that with a functional family of X
with parameter 1. This will give a family of bounds
parameterized by A. Then optimize over A to get the best bound.

Derivation: for
$$t \in \mathbb{R}$$
, $E(e^{\lambda X}) = At \times At = e^{\lambda t}$
 $P_{r}(X \ge t) = P_{r}(e^{\lambda X} \ge e^{\lambda t}) \le e^{\lambda t} = e^{\lambda t} + (\lambda)$, $\forall \lambda > 0$.

Take union bound: $P_{r}(X \ge t) \le \min_{\lambda > 0} e^{-\lambda t} \psi(\lambda)$.

Central Limit Theorem (Lindberg & Lévy)
If RV X1Xn form a random sample from a given distr w)
If RV X1Xn form a random sample from a given distr w) mean μ , var $\sigma < \omega$, then for each fixed number χ ,
$\lim_{n\to\infty} \Pr\left(\frac{\overline{x}_{n}-\mu}{6/\sqrt{n}} \leq x\right) = \overline{\Phi}(x) \text{ cut of } N(0,1)$
(Standardized sample mean un N(o(1))
Interpretation: The distribution of standardized sample mean
Converges in distribution to normal.
Usage: Estimate $P_{Y}(\bar{X}-EX \leq e) \simeq \sqrt{\frac{e}{6/m}} - \sqrt{\frac{e}{6/m}}$

The Delta Method
[Computing approx distr for function of RV, esp. function of sample mean Let $Y_1, Y_2 \cdots$ be sequence of RV, F^* be a colf. Let $O \in \mathbb{R}$, $S = a_1 = a_1 = a_1 = a_2 = a_1 = a_2 = a_2 = a_1 = a_2 = a_2 = a_1 = a_2 = a_2 = a_2 = a_1 = a_2 = a_2 = a_2 = a_1 = a_2 = a$
Let $\alpha(\cdot)$ be a function $n/$ continuous derivative s.t. $\alpha/\theta) \neq 0$ then, $\alpha n \left[\alpha(n) - \alpha(\theta) \right] / \alpha'(\theta)$ Converges in distr to f^{\pm} .
Proof outline:
an > w, an (yn - o) => F*, then yn dose to p as n > w
(Because for any CDF, $F^*(N) \rightarrow 0$ as $N \rightarrow \infty$. Thus if f_n not close to θ , F^* will have non-negligible mass at ∞ ,)
Use Taylor Exp of a (Yn) around 0: a(Yn) y a(0) + a'(0) (Yn - 0)
$\Rightarrow \alpha(f_n) - \alpha(0) \approx \alpha'(0)(f_n - 0)$
$= \frac{\alpha_n}{\alpha'(19)} \left(2(n) - \alpha(0) \right) = \alpha_n (n - 0)$
Thus, CDF of LHS=CDF of RHS=FX
Distribution of Function of Sample Mean
Consider & (Xn).
By CLT, $\frac{\sqrt{n}}{6}(\overline{x}_n - \mu) \xrightarrow{d} \overline{\Phi}$.
Thus, $\frac{\sqrt{m}}{6}(\alpha(\overline{X_n}) - \alpha(\mu))/\alpha'(\mu) \rightarrow \overline{p}$
Thus, $\frac{\sqrt{n}}{6} \left(\alpha(\overline{X_n}) - \alpha(\mu) \right) / \alpha'(\mu) \rightarrow \overline{p}$ (By Delta Method, $\overline{Y_n} = \overline{X_n}$, $\theta = \mu$, $\alpha_n = \frac{\sqrt{n}}{6}$, $\overline{F} = \overline{p}$)