Análisis Léxico Autómatas de estados Finitos

Autómatas Finitos

- Expresiones regulares proveen la especificación
- Autómatas Finitos proveen la implementación
- Componentes de un Automáta Finito:
 - Un alfabeto de entrada Σ
 - Un conjunto de estados
 - Un estado inicial n
 - Un conjunto de estados de aceptación F C C
 - Un conjunto de transiciones estado → input Estado

Autómatas Finitos

Transición

$$s_1 \rightarrow^a s_2$$

- Se lee: Desde el estado S¹ usando la entrada a vaya al estado S².
- Si se encontró el fin de la entrada y se encuentra en estado de aceptación => Aceptado
- Caso contrario => Rechazado

Autómatas Finitos

Notación alternativa

Un estado

- El estado inicial
- Un estado de aceptación
 - Una transición

Autómatas Finitos

• Un autómata que solamente acepta '1'

Estado	Entrada
А	1
В	1

Estado	Entrada	
Α	0	
	RECH	MEABO

Estado	Entrada
А	10
В	10

 El lenguaje de un autómata finito es igual al conjunto de sus caracteres aceptados.

Autómatas Finitos

- Un autómata finito que acepta <u>cualquier cantidad de 1's</u> seguido por un 0.
- Alfabeto= {0,1}

Estado	Entrada
А	110
Α	110
Α	110
В	110

Estado	Entrada
А	100
А	100
В	100

Autómatas Finitos

Otra clase de transición son los movimientos ε (epsilon)

• La máquina puede hacer una transición de estado sin necesidad de consumir una entrada.

Estado	Entrada
Α	X1 X2 X3
В	X1 X2 X3

• La máquina no necesariamente tiene que hacer el movimiento épsilon, es una posibilidad de escogencia.

Autómatas Finitos Determinístico Deterministic Finite Automata (DFA)

- Una transición por entrada por estado
- No hay movimientos ε (epsilon)
- Eso significa:
- 1. Todo movimiento consume una entrada.
- Nunca podría haber dos posibles movimientos para la misma entrada

Autómatas Finitos No Determinístico

NonDeterministic Finite Automata (NFA)

- Puede tener múltiples transiciones para una entrada en un determinado estado.
- Puede tener movimientos ε (epsilon) (suficiente para ser NoDeterministico)
- Eso significa:
- 1. Puede escoger moverse sin consumir entradas
- 2. Puede además múltiples transiciones

- Un DFA toma únicamente un camino a traves de los estados del grafo.
 - Por cada entrada

- Un NFA puede escoger
 - Genera aceptación si alguna selección lleva a un estado de aceptación
- NFA y DFA reconocen el mismo conjunto de lenguajes
- DFA son más rápidos para ejecutar (no hay selecciones)
- NFA generalmente son más pequeños (en tamaño).

Un NFA puede generar múltiples estados.

Estado	Entrada
А	1
В	0

Entrada	1	0	0
Estado	{A}	{A,B}	{A,B,C}

Compiladores...

Proceso

Expresiones Regulares \rightarrow **NFA**

- Para cada tipo de expresión regular se debe definir un autómata de estados finitos No determinístico equivalente.
- Acepta exactamente el mismo lenguaje.

Notación

Un NFA para la expresión regular M

Para épsilon ε

Para la entrada a

Notación

Para AB

Para A + B

Notación

Para A*

Considere la siguiente expresión regular:

Ejercicio: Encuentre el automata de la siguiente expresion regular

$$(a+b)^*$$
 abb

Ejercicio: Encuentre el automata de la siguiente expresion regular

$$(a+b)^*$$
 abb

NFA -> DFA

NFA a DFA...

• **E**-Closure (cierre de epsilón) de un estado: capacidad de moverse un estado sin consumir la entrada.

- ε-closure (B) = {B,C,D}
- ε-closure(G) = {A, B, C,D, G, H, I}

NFA a DFA... Conversión del autómata

Iniciaremos el proceso de conversión

NFA a DFA...

E -Closure	а	b
{1}		

NFA a DFA...

E -Closure	а	b
$\{1\} = \{1,2,6\} \rightarrow A$	Mover(A,a) = $\{3,7\}$	Mover(A,b) = {}
$\{3,7\} = \{3,4,7,8\} \rightarrow B$	Mover(B,a) = {}	$Mover(B,b) = \{5\}$
$\{5\} = \{5,8\} \rightarrow C$	Mover(C,a) = {}	Mover(C,b) = {}

Estado	а	b
Α	В	
В		С
С		

NFA a DFA... Conversión del autómata

 Convierta el siguiente automata de estados finitos No Deterministico a un automata de estados finitos Deterministico.

Iniciaremos el proceso de conversión

Tabla Transicion del Automata

0 1

A U {H, I, B, C, D}	F U {G,H,I,A,B,C,D}	E,J U {G,H,I,A,B,C,D}
F U {G,H,I,A,B,C,D}	F U {G,H,I,A,B,C,D}	E,J U {G,H,I,A,B,C,D}
E,J U {G,H,I,A,B,C,D}	F U {G,H,I,A,B,C,D}	E,J U {G,H,I,A,B,C,D}

Etiquetar

A U {H, I, B, C, D}

F U {G,H,I,A,B,C,D}

E,J U {G,H,I,A,B,C,D}

	0	1
Α	В	С
В	В	С
С	В	С

NFA a DFA...

Conversión del autómata

NFA

Análisis Léxico Autómatas de estados Finitos

