Do Diverse Social Interactions Make Us Smile More Often?

Studying Smiles and Diversity Via Social Media Photos

Motivation

- Photographs \rightarrow one of the most fundamental ways for human beings to capture social experiences.
 - Provide unique opportunity to study the social phenomena of mixing of different people and the smiles expressed by individuals in these social settings.

- Advancing the understanding of phenomena of smiles and diversity of social interactions
 - Scale to millions of individuals, not require human time, and capture the temporal dynamics

Objectives

RQ1: How can the visual content on social media (photos) be used to study the interconnections between diversity and smiles?

RQ2: What are the effects of presence of others on the smile levels of the individuals in photos?

RQ3: What are the effects of diversity of social interactions in terms of age, race, and gender on the smile levels of individuals in photos?

Novelty

What has been done:

- Understanding diversity in terms of social interactions, not residential address
- Using smile scores to judge emotion

What has not been done: Computationally (scale, automation) studying the effects of diversity on smiles.

Approach

- Collect Instagram images via Instagram's public API
- Collect Twitter images via Twitter's Stream API
- Recognize & remove nonfacial and tourist images

- Obtain variables from Face++ API of all individuals
- Validate race detection using Morph dataset
- Validate smile scores using human annotation comparison

- T-test between smile scores for photos with single and multiple people
- OLS Linear Regression model for smile score as a function of demographic (control) variables and diversity

- Obtain the number of face in each image
- Compute smile scores (dep. variable) of each image
- Compute interaction diversity metric (SEAge, SEGender, SERace) for all images

Results

- T-test between smile scores for photos with single and multiple people
 - Results across the two data sets consistently suggest that people tend to smile more in the presence of others.

	Groups	N	Mean	Std. Dev	Std. Error	Model Significance (p-value)	T-test between the two groups
Instagram	Multiple	3157	52.80	28.83	0.51	<0.001	T = 26.06
	Single	4035	33.75	33.09	0.52	<0.001	
Twitter	Multiple	3688	53.70	27.04	0.45	<0.001	T = 31.34
	Single	4380	33.07	32.10	0.49	<0.001	

- Linear regression for smile score as a function of demographic (control) variables and diversity variables
 - Results indicate that people smile MORE in DIVERSE social company

Limitations

- POSITIVE coefficients observed for MIXING
- Broad level consistencies between the datasets

Approach Overview

Smile Score: 96.41 Smile Score: 89.02 Smile Score: 88.68 Smile Score: 92.07

of Males # of Females # of Whites # of Blacks # of Asians <18 Age >18 and <35 Age >35 Age

Avg. Smile Score

Variable

Our Interpretation of Results

Value

3

- Posed and shared smiles
- Limited demographic descriptors
- Modest effect sizes

Implications

- Supports experiments in multiple social sciences
 - Scalable, automated, lower cost, "in-the-wild"
- Contextual understanding for modeling faces and their dynamics in multimedia systems
- Building blocks to a more smiling, happier society.