STATISTICAL LEARNING. PART II

Tree based methods and (Deep) Neural Networks

Alex Sanchez (E. Vegas and F. Reverter)

OUTLINE

- Professor
- What this second part is about (Contents)
- Methodology
- Evaluation
- References

TEACHER

Statistics and Bioinformatics

Integrative analysis of omics data

Alex Sánchez-Pla

Full Professor of Statistics.

Faculty of Biology Universitat de Barcelona

UB Director MSc of Statistics & Bioinformatics

Nutrition and Metabolomics

Software development

Vall d'Hebron Institut de Recerca

CONTENTS

- Tree-based Methods (10.5 h \sim , 3-4 week)
 - 1. The Basics of Decision Trees. Regression Trees. Classification Trees.
 - 2. Ensemble Learning. Bagging. Random Forests. Boosting.
- Artificial Neural networks (10.5 h \sim , 3-4 week)
 - 1. Feed-Forward Network Functions.
 - 2. Network Training.
 - 3. Error Backpropagation.
 - 4. Deep Learning models.
 - 5. Convolutional Neural Networks.

CONTENTS (1) DECISION TREES

- A type of non-parametric classifiers
- Very successful because of
 - Interpretability,
 - Flexibility,
 - Decent Accuracy.
- Also some cons
 - Not very robusts
 - Tend to overfit

By Gilgoldm - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=90405437

CONTENTS (2) ENSEMBLE METHODS

- Build predictions combining multiple models
- Addres some limitations of Trees:
 - improve accuracy and robustness
 - reduce overfitting.
 - capture complex relationships.

An example of random forest

https://static.javatpoint.com/tutorial/machine-learning/images/

CONTENTS (3) NEURAL NETWORKS

- ML models, inspired in brain, that simulate neuron behavior
 - Receive input
 - Processes it
 - Output predictions.
- For long time limited applications
 - Black box criticism
 - Not very powerful
 - Hard to interpret

CONTENTS (4) DEEP NEURAL NETWORKS

- ANN with multiple hidden layers.
- Improves on ANN
- Automatic tuning
- Complex tasks
 - Computer vision
 - Natural Language Processing
 - Recommender systems

METHODOLOGY

- Main concepts will be presented in class based on slides and blackboard.
- Practical applications will be demonstrated/followed using notebooks provided in campus.
- Exercises for practice will be provided and their solution discussed in class.
- Two compulsory tasks will be provided. Students work them and submit their work in time planned.
- Student participation is encouraged, either by presenting their work in class and/or contributing to the forum.

GRADING

- As indicated in the course guide
- Each part of the course: 50%
- For each part:
 - A final examen is done with weight of 50%
 - Remaining 50% is the average of scoring of submitted tasks.

REFERENCES AND RESOURCES

REFERENCES (1): TREE BASED METHODS

- Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.
- Brandon M. Greenwell (202) Tree-Based Methods for Statistical Learning in R. 1st Edition. Chapman and Hall/CRC DOI: https://doi.org/10.1201/9781003089032
 Web site
- Efron, B., Hastie T. (2016) Computer Age Statistical Inference. Cambridge University Press. Web site
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer. <u>Web site</u>

REFERENCES (2): NEURAL NETWORKS

- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 1). MIT press.
 Web site
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
- Chollet, F. (2018). Deep learning with Python. Manning Publications.
- Chollet, F. (2023). Deep learning with R . 2nd edition. Manning Publications.

ONLINE RESOURCES

- Applied Data Mining and Statistical Learning (Penn Statte-University)
- R for statistical learning
- An Introduction to Recursive Partitioning Using the RPART Routines
- Introduction to Artificial Neural Networks