Sprawozdanie - Laboratorium 6

Poszukiwanie zer wielomianów metodą iterowanego dzielenia (metoda Newtona)

Marta Dychała

22 kwietnia 2021

1 Wstęp teoretyczny

Metoda Newtona-Raphsona zwana także metodą stycznych jest jedną z metod znajdowania miejsc zerowych wielomianu. Polega ona na szacowaniu nowego położenia miejsca zerowego x_{j+1} na podstawie poprzedniego x_j za pomocą stycznej do wykresu funkcji poprowadzonej w punkcie $(x_j, f(x_j))$.

Rysunek 1: Graficzne przedstawienie metody Newtona-Raphsona¹

Początkowo na wykresie funkcji f(x) wybiera się przedział [a,b], w którym funkcja ma ten sam znak co jej druga pochodna. Następnie z punktu (b,f(b)) zostaje poprowadzona styczna do funkcji f, W punkcie x_1 będącego punktem przecięcia się stycznej z osią 0X sprawdzane jest czy wartość funkcji w tym punkcie jest zerem; jeżeli tak nie jest, to prowadzi się styczną do funkcji f(x) w punkcie $(x_1, f(x_1))$, która przecina oś 0X w punkcie x_2 . Omawianą procedurę powtarza się do momentu, gdy obliczane x_j jest coraz bliższe analitycznemu i kiedy wartość x_{j+1} jest zadowalającym przybliżeniem (tzn. zachodzi warunek $|x_{j+1}-x_j| \le \varepsilon$, gdzie ε może być dowolną liczbą, zwykle jest ona bardzo mała np. 10^{-7}), iteracja dla danego miejsca zerowego jest przerywana.

Ponieważ równanie stycznej do wykresu w punkcie b ma postać:

$$y - f(b) = f'(b)(x - b),$$

to równanie stycznej do wykresu w j-tym przybliżeniu jest postaci:

$$y - f(x_j) = x_j - f'(x_j)(x - x_j),$$

¹Źródło: http://galaxy.agh.edu.pl/ chwiej/mn/ukl_nieliniowe_1819.pdf [dostęp 22.04.2021 r.]

co pozwala wyznaczyć wartość kolejnego przybliżenia:

$$x_{j+1} = x_j - \frac{f(x_j)}{f'(x_j)} \tag{1}$$

1.1 Metoda iteracyjnego dzielenia

Metodę stycznych można zaimplementować w postaci zmodyfikowanej, dzieląc wejściowy wielomian iteracyjnie przez dwumian $(x - x_i)$. Zakładając, iż dany jest wielomian postaci:

$$W(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 = 0,$$
(2)

po podzieleniu przez dwumian $(x - x_j)$ otrzymany wielomian jest sumą, której składniki to iloczyn dwumianu $(x - x_j)$ i wielomianu o jeden stopień niższego oraz pewna reszta z dzielenia R_J :

$$W(x) = (x - x_i)(b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_0) + R_i$$

Współczynniki b_n oraz reszta R_j mogą być wyznaczone rekurencyjnie:

$$b_n = 0 (3)$$

$$b_k = a_{k+1} + x_j b_{k+1}, \quad k = n-1, n-2, ..., 0$$
 (4)

$$R_j = a_0 + x_j b_0 \tag{5}$$

Po kolejnym dzieleniu wielomianu (2) otrzymujemy poniższe równanie:

$$W(x) = (x - x_j)^2 (c_{n-2}x^{n-2} + c_{n-3}x^{n-3} + \dots + c_0) + R'_i(x - x_j) + R_j,$$

w którym współczynniki c_n oraz R'_j wyznacza się w identyczny sposób jak współczynniki b_n i R_j , mianowicie za pomocą wzorów (3), (4) i (5).

Stosując omawiany algorytm, kolejne przybliżenie pierwiastka danego wielomianu można wyznaczyć za pomocą wzoru:

$$x_{j+1} = x_j - \frac{R_j}{R_j'},$$

gdzie x_{j+1} to kolejne, bardziej dokładne przybliżenie miejsca zerowego, natomiast R_j oraz R'_j są wyznaczane zgodnie ze wzorem (5).

2 Zadanie do wykonania

2.1 Opis problemu

W trakcie zajęć laboratoryjnych zadaniem było wyznaczenie miejsc zerowych wielomianu $W(x)=x^5+14x^4+33x^3-92x^2-196x+240$.

Kolejne pierwiastki wielomianu W(x) można było uzyskać poprzez dzielenie wielomianu W(x) przez $(x - x_j)$, gdzie x_j jest bieżącym przybliżeniem miejsca zerowego. Modyfikację metody Newtona omówioną w punkcie 1.1 można przedstawić w postaci poniższego pseudokodu:

 $\begin{aligned} &\text{Ustalamy stopie\'n wielomianu: } N \\ &a[i] = [a_0, a_1, \cdots, a_N] \\ &for(L=1; L \leqslant N; L++) \{ \\ &n = N-L+1 \\ &x_0 = 0 \\ &for(it=1; i \leqslant IT_MAX; it++) \{ \\ &R_j = licz_r(a,b,n,x_0) \\ &R'_j = licz_r(b,c,n-1,x_0) \\ &x_1 = x_0 - \frac{R_j}{R'_j} \\ &if(|x_1-x_0| \leqslant 1e-7) \quad break \\ &x_0 = x_1 \\ & \} \\ &for(i=0; i \leqslant n-1; i++) \quad a[i] = b[i] \\ \}, \end{aligned}$

w którym:

- N stopień wielomianu (w tym przypadku N=5),
- a tablica współczynników wielomianu; początkowo jest to tablica współczynników wielomianu wejściowego, której pierwszym elementem jest wyraz wolny tego wielomianu, drugim elementem zaśwodczynnik stojący przy x w pierwszej potędze itd.
- L numer szukanego miejsca zerowego,
- n aktualny stopień tworzonego wielomianu,
- x_0 w trakcie inicjalizacji jest to punkt, do którego poprowadzona jest pierwsza styczna do wielomianu wejściowego, natomiast w trakcie iteracji jest to poprzednie przybliżenie obliczanego miejsca zerowego,
- IT_MAX maksymalna liczba iteracji dla szukanego pierwiastka (w tym przypadku przyjęto wartość $IT_MAX = 30$),
- b tablica współczynników wielomianu o stopień niższego,
- c tablica współczynników wielomianu o dwa stopnie niższego,
- R_j oraz R'_j reszty z dzielenia kolejno: wielomianu wejściowego w danej iteracji oraz wielomianu wejściowego podzielonego przez $(x-x_j)$ tamże,
- \bullet x_1 nowe przybliżenie miejsca zerowego,

Do wyznaczenia wartości R_j oraz R'_j posłużono się funkcją **licz_r**, do której utworzenia wykorzystano wzory (3), (4) oraz (5):

```
\begin{aligned} licz & r(a,b,n,x_0) \{ \\ & b_n = 0 \\ & for(k = n-1; k \geqslant 0; k++) \{ \\ & b_k = a_{k+1} + x_0 \cdot b_{k+1} \\ & \} \\ & return \quad a_0 + x_j \cdot b_0 \\ \} \end{aligned}
```

W każdej iteracji do pliku tekstowego zapisano: numer miejsca zerowego, numer iteracji, wartość przybliżenia x_j oraz reszty z dzielenia R_j oraz R'_j .

2.2 Wyniki

W tabelach na następnej stronie znajdują się otrzymane miejsca zerowe Zastosowano następujące oznaczenia:

- $\bullet \ L$ numer miejsca zerowego
- it numer iteracji wyznaczania pojedynczego miejsca zerowego
- \bullet x_{it} przybliżenie wartości pierwiastka w it-ej iteracji
- R_{it} reszta z dzielenia wielomianu wejściowego przez dwumian $(x-x_j)$ w it-ej iteracji
- R'_{it} reszta z powtórnego dzielenia wielomianu wejściowego przez dwumian $(x-x_j)$ w it-ej iteracji

$L \mid$	it	x_{it}	R_{it}	R'_{it}
1	1	1.22449	240	-196
1	2	0.952919	-43.1289	-158.813
1	3	0.999111	10.5714	-228.86
1	4	1	0.195695	-220.179
1	5	1	7.96468e-05	-220
1	6	1	1.32729e-11	-220

/	`	ъ.					-
(8	a)	Pierwsze	miejsce	zerowe:	x	=	1

$\mid L \mid$	it	x_{it}	R_{it}	R'_{it}
2	1	-5.45455	-240	-44
2	2	-4.46352	-120.975	122.071
2	3	-4.10825	-24.2755	68.3304
2	4	-4.00957	-4.31754	43.7539
2	5	-4.00009	-0.347977	36.6891
2	6	-4	-0.00323665	36.0065
2	7	-4	-2.90891e-07	36

(b) Drugie miejsce zerowe: x = -4

$\mid L \mid$	it	x_{it}	R_{it}	R'_{it}
3	1	15	-60	4
3	2	9.20218	5850	1009
3	3	5.53752	1687.53	460.488
3	4	3.38316	469.259	217.818
3	5	2.33534	118.159	112.767
3	6	2.0277	22.07	71.739
3	7	2.00021	1.67505	60.9441
3	8	2	0.0128842	60.0073
3	9	2	7.83733e-07	60

(c) Trzecie miejsce zerowe: x = 2

$\mid L \mid$	it	x_{it}	R_{it}	R'_{it}
5	1	-10	10	1
5	2	-10	0	1

(e) Piąte miejsce zerowe: x = -10

$\mid L \mid$	it	x_{it}	R_{it}	R'_{it}
4	1	-2.30769	30	13
4	2	-2.94284	5.32544	8.38462
4	3	-2.99954	0.403409	7.11433
4	4	-3	0.00321531	7.00092
4	5	-3	2.10929e-07	7
		4 1 4 2 4 3 4 4	4 1 -2.30769 4 2 -2.94284 4 3 -2.99954 4 4 -3	4 1 -2.30769 30 4 2 -2.94284 5.32544 4 3 -2.99954 0.403409 4 4 -3 0.00321531

(d) Czwarte miejsce zerowe: x = -3

Tabela 1: Kolejne kroki odnajdowania miejsc zerowych funkcji $W(x) = x^5 + 14x^4 + 33x^3 - 92x^2 - 196x + 240$ za pomocą metody Newtona-Raphsona. Do uzyskania powyższych wyników wykorzystano typ double.

3 Wnioski

Metoda Newtona-Raphsona jest wyjątkowo szybką metodą znajdowania miejsc zerowych wielomianu dla wielomianu wyrażonego wzorem $W(x)=x^5+14x^4+33x^3-92x^2-196x+240$, maksymalna liczba iteracji potrzebna do znalezienia pojedynczego miejsca zerowego wyniosła it=9, co jest znacznie mniejszą wartością niż deklarowane $IT_MAX=30$. Kolejną rzeczą wartą wspomnienia są wartości reszt R_{it} oraz R'_{it} . W początkowej fazie iteracji po danym miejscu zerowych ich wartości zachowują się niestabilnie; wraz ze wzrostem wartości it, a co za tym idzie - dokładniejszemu wyznaczeniu miejsca zerowego - wartości te sukcesywnie zmierzają do zera.