PRL 2016/2017: Projekt 3 Mesh Multiplication

Dávid Mikuš xmikus15@stud.fit.vutbr.cz

26. apríla 2017

1 Mesh Multiplication

Mesh Multiplication je paralelný algoritmus pre násobenie matic. Využiva na to sieť procesorov ktoré si postupne posielajú hodnoty. Každý procesor obsahuje hodnotu c ktorú na konci posiela radiacemu procesoru.

1.1 Princíp

Vytvorí sa mriežka procesorov. Procesory na hornom kraji posielajú svoju hodnotu c na procesory pod nimi. Procesory na ľavom kraji posielajú svoju hodnotu susedom na pravo. Krajně procesory získavaju hodnotu z bufferu ktorý naplnil radiaci procesor. Tieto hodnoty sa medzi sebou násobia a následne posielaju ďalej. Na konci algoritmu, každy procesor pošle svoj výsledok na radiaci procesor, ktorý výsledky vyzbiera a vypíše.

1.2 Teoretická zložitosť

Prvý rozmer matice definujeme ako m:n a druhý ako n:k. Pre každý prvok výslednej matice je potrebný procesor, teda je nutných n^2 procesorov. $p(n) = \theta(n^2)$

Prvky a_{m1} a b_{1k} potrebujú m + k + n - 2 krokov aby sa dostali k poslednému procesoru. Teda asymptotická zložitost algoritmu je lineárna $t(n) = \theta(n)$.

Celková zložitosť je $t(n) * p(n) = \theta(n) * \theta(n^2) = \theta(n^3)$

$$c(n) = \theta(n^3) \tag{1}$$

Algoritmus nie je optimálny.

2 Implementácia

Algoritmus bol implementovaný v jazyku C++ spolu s knižnicou OpenMPI¹ ktorý bol využitý pre paralelizáciu výpočtu. Ako podklad pre implementáciu bol použitý formálny algoritmus z https://www.fit.vutbr.cz/study/courses/PDA/private/www/h005.pdf str. 18.

¹https://www.open-mpi.org/

Komunikáciu procesorov simuluje knižnica OpenMPI pomocou funkcii MPI_Send a MPI_Recv ktoré slúžia pre zasielanie správ medzi procesormi.

Radiaci procesor nazačiatku načíta matice zo súboru a uloží ich do vektora. Následne hodnot z vektora začne odosielať na krajné procesory, ktoré si ich ukladajú do svojho vektora. Krajné procesy začnu odosielať hodnoty svojim susedom.

3 Experimenty

Výkonosť algoritmu sa merala v kode po zaslaní prveho prvku a po prijatí posledného prvku. Testy boli vykonavane pre rozny pocet prvkov. Pre kazdu sadu sa vykonalo niekolko merani.

Obr. 1: Graf meraní

4 Diagram

Obr. 2: Sekvenčný diagram zasielania správ cez MPI Send

5 Záver

Experimenty v kapitole 3 napriek menšími odchylkami potvrdzujú lineárnu asymptotickú zložitosť.