Circuiti Elettrici

Capitolo 4 Circuiti con amplificatori operazionali

Amplificatori operazionali – Cap. 4

- 4.1 Che cosa è un amplificatore operazionale (OP-AMP)?
- 4.2 L'amplificatore reale e ideale
- 4.3 Configurazioni dell'operazionale
- 4.4 Operazionali in cascata
- 4.5 Circuito Integratore e Derivatore
- 4.6 Circuiti con OP-AMP (D/A, i/v, IA)
- 4.7 Riepilogo configurazioni con OP-AMP

4.1 Che cos'è un un OP-AMP?

- L'amplificatore operazionale è un utilissimo elemento resistivo a quattro morsetti (quadrupolo) realizzato con circuito integrato
- Elettricamente si comporta come un generatore di tensione controllato in tensione
- E' un <u>elemento circuitale attivo</u> progettato per eseguire <u>operazioni matematiche</u> di somma, sottrazione, moltiplicazione, divisione, derivata e integrale (da cui il nome <u>operazionale</u>)

4.1 Che cos'è un un OP-AMP?

- Circuito integrato analogico realizzato con un gran numero di resistori e transistori
- Svariati tipi di OP-AMP con differenti contenitori (e.g. Dual In-line Package o DIP) da cui escono i diversi piedini (pin) o connessioni
- Vedremo le caratteristiche dell'OP-AMP reale e ideale con applicazioni nei principali circuiti basati sull'operazionale

4.1 Aspetto e simbolo circuitale

Simbolo per l'amplificatore operazionale. E_+ ed E_- (o V^+ e V^- o ancora $\pm V_{cc}$) sono le alimentazioni in tensione ($\pm 5, \pm 12, \pm 18$ V)

Ingresso invertente

6 terminali principali

4.1 Immagini di Op Amp

4.1 Modello elettrico a 4 terminali

Per semplificare l'analisi dei circuiti con operazionali, conviene immaginare le alimentazioni incluse in un unico elemento (>) con 4 terminali esterni

4.1 Simbolo dell'OP-AMP a 4 terminali

Tutti i valori/livelli di tensione sono riferiti rispetto alla terra che fa da riferimento di potenziale nullo

- v_{+} è la tensione tra l'ingresso non invertente e la terra
- v_{\perp} è la tensione tra l'ingresso invertente e la terra
- $v_d = (v_+ v_-)$ è la tensione differenziale (o d'ingresso)
- v_o è la tensione d'uscita

4.1 Caratteristica ingresso-uscita

Andamento tipico della tensione d'uscita v_0 in funzione della tensione differenziale v_d

Regione **lineare** $v_o \propto v_d$ $v_o = A v_d$ (typ. -10 μ V < v_d < 10 μ V) **A guadagno** ad anello aperto

Due regioni di **saturazione**, positiva e negativa, con $v_o = \pm v_{\text{max}}$ indipendente da v_{d} ($v_{\text{max}} \leq E$)

4.2 Modello dell'OP-AMP reale

 R_i Op-Amp → ideale R_i ideale R_i con R_o → 0

 $v_{+} \cong v_{-}$ v_{0} da circuito

Parametro	Valori tipici	Valori ideali
Guadagno ad anello aperto, <i>A</i>	10^5 to $10^8\Omega$	8
Resistenza d'ingresso, R _i	10^5 to $10^{13}\Omega$	∞ Ω
Resistenza d'uscita, R _o	10 to 100 Ω	0 Ω
Tensione di alimentazione, $V_{ m CC}$	5 to 24 V	

OP-AMP reale vs OP-AMP ideale Inseguitore di tensione (buffer)

corto-circuito tra l'uscita e l'ingresso invertente

Circuito ideale

$$v_{-}=v_{+}=v_{s}$$

$$v_0 = v_1 = v_s$$

Errore 0.001 %

Inseguitore di tensione (buffer)

Collegamento di R_L a una sorgente reale di tensione

$$v_{\rm L} = v_{\rm o} = \frac{R_{\rm L}}{R_{\rm L} + R_{\rm s}} v_{\rm s} < v_{\rm s}$$

effetto di carico

Collegamento di R_L tramite buffer

Indipendenza dai valori di R_s e di R_L

$$v_{\rm L} = v_{\rm o} \equiv v_{\rm s}$$

Generatore non eroga corrente e non vede R_1

4.2 OP-AMP ideale

Esempio

Se la tensione del generatore è v_s = 1 V, si calcoli la corrente d'uscita i_o .

$$v_2 = v_s$$
 $v_1 = v_o \times (5/45) = v_o/9$
 $v_1 = v_2 = v_s \implies v_o = 9v_s$
volendo si possono ricavare i_{45} e i_{20} che sommate danno i_o ma con il parallelo di $45 \text{ k}\Omega$ e $20 \text{ k}\Omega$ si fa prima: $i_o = v_o/R_{//}$

 $i_o = v_o / (20 / /45) = v_o \times (65 / 9000000)$ v_s $i_o = v_s \times 9 \times (6.5 / 9) \times 10^{-4}$ $i_o = 0.65 \text{ mA}$

<u>Risposta</u>

$$i_0 = 0.65 \text{ mA}$$

Svolgere in classe...

4.3 Amplificatore invertente

$$v_o = -\frac{R_f}{R_1} v_i$$

$$v_o = -\frac{R_2}{R_1} v_{in}$$

4.3 Amplificatore invertente

$$v_{\text{in}} = \sin(\omega t)$$

$$v_{\text{in}}(t)$$

$$v_{\text{o}}(t)$$

$$v_{\text{o}}(t)$$

$$v_{\text{o}}(t)$$

$$v_{\text{o}}(t)$$

$$v_{\text{o}}(t)$$

$$v_{\text{o}}(t)$$

Per qualsiasi tensione, o forma d'onda, d'ingresso l'<u>uscita è una replica invertita di polarità e amplificata rispetto all'ingresso</u> con **GUADAGNO** $G=v_{\rm o}/v_{\rm in}=-R_{\rm 2}/R_{\rm 1}$

Esempio di calcolo con OP-AMP invertente

Esempio

Se la tensione d'ingresso è v_i = 0.5 V, si calcoli la tensione d'uscita v_0 la corrente i nel resistore da $10~\mathrm{k}\Omega$.

Svolgere in classe...

Risposta

$$v_{\rm o} = -1.25 \, {\rm V} \quad i = 50 \, {\rm \mu A}$$

4.3 Amplificatore non invertente

$$v_{o} = \left(1 + \frac{R_f}{R_1}\right)v_{i}$$

$$G_{\text{NON-INV}} = \\ = (1+R_2/R_1)$$

$$= (1+R_2/R_1)$$

$$v_o = v_{in} \left(1 + \frac{R_2}{R_1} \right)$$

L'<u>uscita è una replica con lo stesso segno e amplificata</u> rispetto all'ingresso con **GUADAGNO** $G=v_{\rm o}/v_{\rm in}=(1+R_{\rm 2}/R_{\rm 1})$

Esempio di calcolo con OP-AMP

<u>Esempio</u>

Per il circuito con OP-AMP mostrato in figura, si calcoli la tensione d'uscita v_0 e la corrente i_0 .

Svolgere in classe...

((con sovrapp. effetti e calcolando le correnti e tensioni))

Risposta

$$v_{\rm o} = -8 \text{ V}$$

 $i_{\rm o} = -4.8 \text{ mA}$

4.3 Amplificatore sommatore

L'<u>amplificatore sommatore</u> ricava l'<u>uscita come</u> somma pesata $(-R_f/R_k)$ degli ingressi in tensione v_k

(rivedi esempio precedente e risolvi con i due guadagni e somma pesata)

Esempio di calcolo con OP-AMP

Esempio

Per il circuito con OP-AMP mostrato in figura, si calcoli la tensione d'uscita v_0 e la corrente i_0 .

Svolgere in classe...

((con OP-AMP sommatore))

Risposta

$$v_{\rm o} = -8 \text{ V}$$

$$i_0 = -4.8 \text{ mA}$$

4.3 Amplificatore differenziale

$$G_{\text{DIFF}} = R_2/R_1$$

$$v_o = \frac{R_2}{R_1}(v_1 - v_2)$$

L'<u>uscita</u> è proporzionale, con guadagno $G=R_2/R_1$, alla <u>differenza di tensione tra i due ingressi (v_1-v_2)</u> Questo consente di <u>eliminare eventuali tensioni di disturbo comuni ai due ingressi (modo commune)</u>

4.3 Cancellazione modo comune

Amp. differenziale con $G=R_2/R_1=1$. A ciascuno dei due ingressi è sovrapposto uno stesso disturbo qui sinusoidale (modo comune) che viene eliminato

Il disturbo o comunque la tensione di modo comune (offset, seno, andamento qualsiasi purchè uguale sui due ingressi) viene "idealmente" cancellato. Idealmente perchè le "tolleranze" sui resistori sono importanti $(R_1 \neq R_1')$ e $R_2 \neq R_2'$)

Esempio di calcolo con OP-AMP

Example 5

Considering $R_1 = R_3 = 10 \text{k}\Omega$, determine R_2 and R_4 so that $v_0 = -5v_1 + 3v_2$ for the circuit shown below.

*Refer to in-class illustration, textbook

Ans:

 $R_2 = 6k\Omega$

 $R_4 = 50k\Omega$

4.4 Circuiti con OP-AMP in cascata

Per realizzare funzioni e circuiti complessi è utile collegare circuiti più semplici in cascata. ESEMPIO: cascata a 3 stadi, ciascuno con due morsetti di ingresso e due morsetti di uscita.

Si utilizza un collegamento testa-coda (in cascata) di più amplificatori operazionali, così che a partire dall'ingresso $v_{\rm in}$ l'uscita di un OP-AMP diviene l'ingresso dell'OP-AMP successivo, sino all'uscita finale $v_{\rm o}$

Ciascuno stadio avrà una bassa resistenza d'uscita, dell'OP-AMP, e non sarà caricato dalla resistenza d'ingresso dello stadio successivo Si ottiene il "disaccoppiamento" tra gli stadi e non ci sono effetti di carico

4.4 Esempio di OP-AMP in cascata

Cascata di due amplificatori invertenti ($G_{TOT}>0$)

$$G_1$$
=- R_2/R_1 e G_2 =- R_4/R_3
 G_{TOT} =(R_2R_4)/(R_1R_3)= G_1G_2

In generale con N stadi in cascata si ottiene un rapporto uscita-ingresso o funzione di trasferimento $G_{\text{TOT}} = v_{\text{o}}/v_{\text{in}} = G_1G_2...G_N$

Esempio con OP-AMP in cascata

Example 6

Find v_o and i_o in the circuit shown below.

*Refer to in-class illustration, textbook Ans: 350mV, 25µA

Esempio con OP-AMP in cascata

Example 7

If $v_1 = 1V$ and $v_2 = 2V$, find v_0 in the OP-AMP circuit shown below.

*Refer to in-class illustration, textbook

Ans: 8.667 V

4.5 Circuito Integratore

$$v_1 = v_2 = 0$$

$$i_1 = v_i / R = i_2 = i$$

$$v_0 = -(1/C) \int i(t) dt$$

$$v_{o} = -\frac{1}{RC} \int v_{i}(t) dt$$

$$G_{\text{integr.}}$$
=-(1/ RC) $\int ...$

L'<u>uscita</u> è proporzionale, con guadagno $G_{integr.}$ =-1/(RC), all'<u>integrale della tensione d'ingresso $v_{\underline{i}}(t)$ </u> E' possibile <u>integrare segnali e disturbi d'ingresso</u>, con il vantaggio di **"mediare il disturbo"**

4.5 Circuito Derivatore

$$v_1 = v_2 = 0$$

$$i_1 = C[dv_C / dt] = i_2 = i$$

$$v_0 = -Ri_2$$

$$v_{o} = -(RC) \frac{dv_{i}(t)}{dt}$$

$$G_{\text{deriv.}}$$
=-(RC) d/d t [...]

L'<u>uscita</u> è proporzionale, con guadagno $G_{\text{deriv.}}$ =-(RC), alla <u>derivata della tensione d'ingresso $v_{\underline{i}}(t)$ </u> E' possibile <u>generare "impulsi" di tensione"</u> in corrispondenza di transizioni ripide dell'ingresso

4.6 Importanti circuiti con OP-AMP

- Tre importanti circuiti elettrici di grande applicazione pratica, realizzati con OP-AMP
- Convertitore Digitale-Analogico (D/A o DAC)
 consente di trasformare una parola digitale
 (numero) in una grandezza elettrica (tensione)
- Convertitore corrente-tensione (i/v o amp. a transimpedenza) consente di trasformare una corrente in una tensione con dato guadagno
- Amplificatore per strumentazione (instrum.amp.)
 consente di amplificare la differenza tra due
 tensioni eliminando il modo comune

Convertitore D/A (DAC)

L'uscita v_o è la somma di contributi di tensione αE_i , con "guadagni" G_i =- R_o/R_i corrispondenti al peso del bit considerato. Scegliendo ER_o/R =1 V si ottiene:

$$v_o = -\left(\frac{1}{2}b_1 + \frac{1}{4}b_2 + \frac{1}{8}b_3\right) \times (1 \text{ V})$$

che è la parola binaria (numero) convertita in volt

Uso del convertitore D/A

 Conversione di un contenuto/segnale digitale in segnale elettrico che viene poi utilizzato per comandare un dispositivo fisico (altoparlante, motore, display, sistema di controllo, ...)

Convertitore *i/v*

$$i = \frac{-v_d - v_o}{R} = \frac{-v_d - Av_d}{R}$$

$$-v_d = \frac{R}{1+A}i$$

$$R_{\text{in}} = R_{\text{eq}} = -v_{\text{d}}/i = R/(1+A) \cong R/A << R \quad \text{(typ. } R_{\text{in}} < 1 \Omega \text{)}$$

L'uscita v_o è proporzionale, con guadagno a transimpedenza G=-R, alla corrente i di ingresso.

Il circuito <u>legge correnti</u> (e.g. amperometro, fotodiodo...) <u>con una "bassa resistenza d'ingresso"</u>

Amplificatore per strumentazione (IA)

Sistemi di misura: leggere differenza tra due tensioni

L'amplificatore differenziale ($G_{DIFF}=R_2/R_1$) presenta due problemi:

- 1. modifica di due valori di resistenza (due R_1 o due R_2) per regolare G;
- 2. generatori d'ingresso (circuiti) erogano corrente.

Per risolvere entrambi i problem, ottenendo una lettura proporzionale alla differenza tra due tensioni d'ingresso, si usa l'Instrumentation Amplifier (IA). E'un circuito con due OP-AMP che ha guadagno regolabile attraverso un solo resistore e senza assorbimento di correnti in ingresso

Amplificatore per strumentazione (IA)

4.7 Riepilogo configurazioni con OP-AMP

inseguitore di tensione $v_o = v_{in}$

amplificatore invertente $v_o = -\frac{R_2}{R_1}v_{in}$

4.7 Riepilogo configurazioni con OP-AMP

amplificatore sommatore $v_o = -R_o \left(\frac{v_1}{R} + \frac{v_2}{R} + \frac{v_3}{R} \right)$

amplificatore non invertente $v_o = v_{in} \left(1 + \frac{R_2}{R_1} \right)$

4.7 Riepilogo configurazioni con OP-AMP

amplificatore differenziale $v_o = \frac{R_2}{R_1}(v_1 - v_2)$

Convertitore corrente-tensione (amp. a transimpedenza R)

Sommario

- L'amplificatore operazionale è un elemento circuitale a 4 morsetti (2 di ingresso e 2 di uscita) che genera tensione d'uscita comandata dalla tensione d'ingresso.
- L'operazionale serve a svolgere operazioni matematiche su grandezze elettriche del circuito e disaccoppiamento tra diversi blocchi circuitali.
- L'operazionale reale è molto ben approssimato dall'**operazionale ideale** (correnti d'ingresso nulle, $i_+=i_-=0$, e guadagno ad anello aperto infinito, $A=\infty$)
- ➤ Il **collegamento in cascata** di più operazionali consente di realizzare funzioni complesse garantendo il disaccoppiamento tra un blocco e l'altro. La funzione matematica risultante è il prodotto delle funzioni dei signoli blocchi.

Sommario

Le principali configurazioni con OP-AMP sono a:

- inseguitore di tensione (buffer):
$$G_{BUF}=1$$

- amplificatore invertente:
$$G_{INV}$$
=- R_2/R_1

- amplificatore non invertente:
$$G_{\text{NON-INV}} = (1 + R_2/R_1)$$

- amplificatore sommatore:
$$G_{SOM}$$
=- R/R_k =- R_f/R_k

- amplificatore differenziale:
$$G_{\rm DIFF}$$
= R_2/R_1

- amplificatore a transimpedenza:
$$G_{i \rightarrow v} = R = R_f$$

- amplificatore per strumentazione:
$$G_{IA}=2(1+R/R_{Gain})$$

$$\triangleright$$
 - circuito integratore: $G_{\text{integr.}} = -(1/RC) \int [v_i(t)] dt$

$$\succ$$
 - circuito derivatore: $G_{\text{deriv.}} = -(RC) \, d/dt[v_i(t)]$

