Préparation à l'agrégation externe de Sciences Sociales

Statistique inférentielle - Estimateurs et Intervalles de confiance 2021-2022

Exercice 1 (2009)

- 1. Lors des élections européennes, une des listes présentée dans le Grand Ouest a obtenu 32% des voix. Lors du dépouillement dans un bureau de vote de Nantes, on compte 925 bulletins.
 - (a) On appelle X la variable aléatoire qui compte le nombre de bulletins en faveur de cette liste. Donner la loi de probabilité suivie par X et ses paramètres.
 - (b) On admet qu'elle peut être approchée par une loi normale. Quels sont les paramètres de cette loi ?
 - (c) Quelle est la probabilité que cette liste ait obtenu entre 30% et 40% des voix dans ce bureau?
- 2. La tête de liste envisage de se présenter aux élections législatives de 2012. Pour donner du poids à sa candidature, elle fait effectuer un sondage. Sur 200 personnes, 46 se disent prêtes à voter pour elle.
 - (a) Quelle estimation de son score peut-on lui proposer? Quel est l'estimateur associé?
 - (b) Déterminer un intervalle de confiance à 95% de l'estimation précédente?

Exercice 2 (2015)

On cherche à estimer la proportion p inconnue de ménages possédant un bien d'équipement donné, puis son évolution au cours du temps. A cet effet, on réalise deux enquêtes. Pour la première enquête, on choisit au hasard et de façon indépendante n_1 foyers dans la population totale dont l'effectif est beaucoup plus grand. On appelle S_1 la variable aléatoire correspondant au nombre de foyers possédant le bien d'équipement dans ce premier échantillon. Pour la deuxième enquête, on choisit au hasard et de façon indépendante n_2 foyers (n_2 pouvant être différent de n_1). On appelle S_2 la variable aléatoire correspondant au nombre de foyers possédant le bien d'équipement dans ce deuxième échantillon.

- 1. Quelles sont les lois de S_1 et de S_2 Donner leur espérance et leur variance.
- 2. On définit les variables aléatoires F_1 et F_2 par $F_1 = \frac{S_1}{n_1}$ et $F_2 = \frac{S_2}{n_2}$. Calculer l'espérance et la variance de F_1 et F_2 .
- 3. Montrer que F_1 et F_2 sont des estimateurs sans bias de p.
- 4. On pose $G = \frac{F_1 + F_2}{2}$. Calculer l'espérance de G. Que peut-on en déduire pour G?
- 5. Calculer la variance de l'estimateur G.
- 6. On suppose $n_1 > n_2$. A quelle condition G est-il un meilleur estimateur de p que F_1 et F_2 ?
- 7. De manière générale, on s'intéresse aux estimateurs de p de la forme $uF_1 + vF_2$. Déterminer une condition sur les coefficients réels u et v pour que $uF_1 + vF_2$ soit un estimateur sans biais de p et $uF_1 + vF_2$ soit de variance minimum parmi les estimateurs de cette forme. Interpréter le résultat obtenu.