Electronics and Communication Systems Electronics Systems

Master Degree in Computer Engineering

https://computer.ing.unipi.it/ce-lm

Luca Fanucci

Dipartimento Ingegneria dell'Informazione

Via Caruso 16 - I-56122 - Pisa - Italy

Phone: +39 050 2217 668

Fax: +39 050 2217 522

Mobile: +39 347 5013837

Email: luca.fanucci@unipi.it

MicroProcessor

Outline

- ☐ MOS Transistor Switch Model
- ☐ Pass Gate
- ☐ Inverter
- ☐ Review of IC Manufacturing

The MOS Transistor

The NMOS Transistor Cross Section

The NMOS – Power Supply Voltage

- GND = 0 V
- In 1980's, $V_{DD} = 5 \text{ V}$
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny transistors
 - Lower V_{DD} saves power
- $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, 0.8, 0.7, ...$
 - Gradually scaling down as transistors shrink

Switch Model of NMOS Transistor

Switch Model of PMOS Transistor

CONTROLLED SWITCH

$$V_C = V_H$$
 CONDUCT

$$V_C = V_L$$
 BLOCK

CONTROLLED SWITCH

$$V_C = V_H$$
 CLOSE

$$V_C = V_L$$
 OPEN

PASS GATE

♦ Three-state logic gates: high (H), low (L) and highimpedance (Z)

PASS TRANSISTOR Equivalent Resistance

Equivalent Resistance Graph

PASS GATE Equivalent Resistance

Equivalent Resistance Graph

INVERTER

♦ Implementation of the logic NOT Function

Logic Symbol

Truth Table

IN	OUT
0	1
1	0

INVERTER Circuit

INVERTER Voltage Transfer Curve

IDEAL

REAL

Current Transfer Curve

Driving Capacitive Loads

Capacitance

- ♦ Input Capacitance of driven Gates
- ♦ Drain-Sub and Source-Sub Juction Capacitance

♦ Routing Capacitance

Propagation Delay

Propagation Delay

$$t_{pHL} \propto \frac{KC}{\beta_n} \frac{1}{V_{DD} - V_{Tn}}$$

$$t_{pLH} \propto \frac{KC}{\beta_p} \frac{1}{V_{DD} + V_{Tp}}$$

$$\beta_n = \mu_n C_{ox} \frac{W_n}{L_n} \quad \beta_p = \mu_p C_{ox} \frac{W_p}{L_p}$$

Power Consumption

- ♦ Charge: Capacitor store energy E_C = ½ CV²
- ♦ Power Supply provides energy $E_f = CV^2$
- ♦ Discharge: Capacitor gives its energy to the inverter
- \Rightarrow In one cycle the inverter consumes an energy equal to $E_n = CV^2$
- ♦ In the time T the inverter consumes a power cosuption of $P_D = E_D/T = P_D = C V^2 / T = C V^2 f$

The MOS Transistor

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Patterning - Photolithography

8. Photoresist removal (ashing)

Example of Patterning of SiO2

Si-substrate

Silicon base material

1&2. After oxidation and deposition of negative photoresist

3. Stepper exposure

4. After development and etching of resist, chemical or plasma etch of SiO₂

5. After etching

8. Final result after removal of resist

Diffusion and Ion Implantation

Area to be doped is exposed (photolithography)

2. Diffusion

or

Ion implantation

Deposition and Etching

 Pattern masking (photolithography)

Deposit material over entire wafer

> CVD (Si₃N₄) chemical deposition (polysilicon) sputtering (Al)

3. Etch away unwanted material

wet etching dry (plasma) etching

Inverter fabrication

Inverter Cross-section

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors
 - □ So pMOS p-type source/drain doesn't short to p-type substrate

Well and Substrate Taps

- \Box Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly doped semiconductor forms poor connection called Schottky
 Diode
- Use heavily doped well and substrate contacts/taps

Inverter Mask Set

- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - □ n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Fabrication

- Chips are built in huge factories called fabs
- Contain clean rooms as large as football fields, costing billions of dollars

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

Grow SiO₂ on top of Si wafer

 $_{\square}$ 900 – 1200 °C with H_2O or O_2 in oxidation furnace

p substrate

SiO₂

Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etch

- Etch oxide with hydrofluoric acid (HF)
- Only attacks oxide where resist has been exposed

Strip Photoresist

- Strip off remaining photoresist
 - □ Use a mixture of acids called piranha etch
- Resist doesn't melt in the next step

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implantation
 - Blast wafer with a beam of As ions
 - □ Ions blocked by SiO₂, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

Polysilicon

- Deposit very thin layer of gate oxide
 - □ < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

Use the same lithography process to pattern polysilicon

Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

N-diffusion cont.

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion cont.

Strip off oxide to complete patterning step

P-Diffusion

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metallization

- Sputter on aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

Layout Editor: *max* **Design Frame**

max Layer Representation

CMOS Inverter *max* Layout

Simplified Layouts in max

- Online design rule checking (DRC)
- Automatic fet generation (just overlap poly and diffusion and it creates a transistor)
- Simplified via/contact generation
 - □ v12, v23, v34, v45
 - ct, nwc, pwc

Design Rule Checker

Design Rules

- Interface between the circuit designer and process engineer
- Guidelines for constructing process masks
- Unit dimension: minimum line width
 - scalable design rules: lambda parameter
 - absolute dimensions: micron rules
- Rules constructed to ensure that design works even when small fab errors (within some tolerance) occur
- A complete set includes
 - set of layers
 - intra-layer: relations between objects in the same layer
 - inter-layer: relations between objects on different layers

Why Have Design Rules?

- To be able to tolerate some level of fabrication errors such as
- Mask misalignment

2. Dust

3. Process parameters (e.g., lateral diffusion)

4. Rough surfaces

Intra-Layer Design Rule Origins

- Minimum dimensions (e.g., widths) of objects on each layer to maintain that object after fab
 - minimum line width is set by the resolution of the patterning process (photolithography)
- Minimum spaces between objects (that are *not* related) on the same layer to ensure they will not short after fab

Intra-Layer Design Rules

Inter-Layer Design Rule Origins

 Transistor rules – transistor formed by overlap of active and poly layers

Transistor Layout

Select Layer

Inter-Layer Design Rule Origins, Con't

2. Contact and via rules

Vias and Contacts

End, Questions?

MOS Transistor Switch Model

☐ Pass Gate

☐ Inverter

□ Review of IC Manufacturing

