Probabilistic Latent Maximal Marginal Relevance

Shengbo Guo, Scott Sanner (Statistical Machine Learning Group, NICTA)

Highlight

Objective The first fully principled derivation of a criterion that balances relevance versus diversity of search results in information retrieval.

Given a query \vec{q} and a corpus D, we want to find a set of documents S^* ,

$$S^* = \underset{S}{\operatorname{argmax}} P(\bigvee_{i=1}^k r_i = 1 | s_1, \dots, s_k, \vec{q})$$

Approach 1: Set relevance objective to optimize,

2: Take a greedy approach like maximal marginal relevance (MMR).

Set-based Results benefiting from Diversity

- Text Summarization
- Recommender Systems
- Books, Music, Movies
- Real Estate / Apartments
- Many other products
- Standard IR
- Search Engine Results
- Ad Serving
- Investing
- Stock Market

Graphical Model of Relevance

 s_i : document selection $i = 1, \dots, k$

 t_i : topic for *i*-th document

 r_i : *i*-th document relevant?

 \vec{q} : query

t': topic for \vec{q}

Conditional probability tables for topic distributions of document and query, $P(t_i|s_i)$ and $P(t'|\vec{q})$, can be learnt via latent Dirichlet allocation.

Relevance Definition

The relevance of each document depends on the topics for this document and query. Specifically, we define

$$P(r_i|t',t_i) = \begin{cases} 1 & \text{if } t_i = t', \\ 0 & \text{otherwise} \end{cases}$$

Objective to Optimize

Set Relevance Objective to Optimize

The optimization objective is to maximize the set relevance of the query \vec{q} with a set of documents S, given as below:

$$S^* = \underset{S = \{s_1, \dots, s_k\}}{\operatorname{argmax}} P(\bigvee_{i=1}^k r_i = 1 | s_1, \dots, s_k, \vec{q})$$

$$= P(r_1 = 1 \lor [r_1 = 0 \land r_2 = 1] \lor [r_1 = 0 \land r_2 = 0 \land r_3 = 1] \lor |s_1, \dots, s_k, \vec{q})$$

$$= \sum_{i=1}^k P(r_i = 1, r_1 = 0, \dots, r_{i-1} = 0 | s_1, \dots, s_k, \vec{q})$$

$$= \sum_{i=1}^k P(r_i = 1 | r_1 = 0, \dots, r_{i-1} = 0 | s_1, \dots, s_k, \vec{q}) \underbrace{P(r_1 = 0, \dots, r_{i-1} = 0 | s_1, \dots, s_k, \vec{q})}_{s_k \text{ D-separated from } r_1, \dots, r_{k-1}}$$

We thus can be greedy when selecting s_i^* using

$$s_i^* = \underset{s_i}{\operatorname{argmax}} P(r_i = 1 | r_1 = 0, \dots, r_{i-1} = 0, s_1^*, \dots, s_{i-1}^*, s_i, \vec{q})$$

Objective to Optimize: s_1^*

- Take a greedy approach (like MMR)
- Choose s_1^* first

$$s_{1}^{*} = P(r_{1}|s_{1}, \vec{q})$$

$$= \underset{s_{1}}{\operatorname{argmax}} \sum_{t_{1}, t'} I[t' = t_{1}] P(t'|\vec{q}) P(t_{1}|s_{1})$$

$$= \underset{s_{1}}{\operatorname{argmax}} \sum_{t'} P(t'|\vec{q}) P(t_{1} = t'|s_{1})$$

- Note that $\sum_{t'} P(t'|\vec{q}) P(t_1 = t'|s_1)$ is actually in the form of a dot product, $[:] \cdot [:]$
- Binary relevance derivation of LSI kernel

Objective to Optimize: s_2^*

Choose s_2^* via Accumulated Relevance (AccRel) next, conditioning on s_1 and $r_1 = 0$:

$$s_{2}^{*} = \underset{s_{2}}{\operatorname{argmax}} P(r_{2}|r_{1} = 0, s_{1}^{*}, s_{2}, \vec{q})$$

$$= \underset{s_{2}}{\operatorname{argmax}} \sum_{t_{1}, t_{2}, t'} I[t_{2} = t'] I[t_{1} \neq t'] P(t_{1}|s_{1}^{*}) P(t_{2}|s_{2}) P(t'|\vec{q})$$

$$= \underset{s_{2}}{\operatorname{argmax}} \sum_{t_{2}, t'} I[t_{2} = t'] P(t_{2}|s_{2}) P(t'|\vec{q}) \sum_{t_{1}} I[t_{1} \neq t'] P(t_{1}|s_{1}^{*})$$

$$= \underset{s_{2}}{\operatorname{argmax}} \sum_{t'} (1 - P(t_{1} = t'|s_{1}^{*})) P(t'|\vec{q}) \sum_{t_{2}} I[t_{2} = t'] P(t_{2}|s_{2})$$

$$= \underset{s_{2}}{\operatorname{argmax}} \left[\sum_{t'} P(t'|\vec{q}) P(t_{2} = t'|s_{2}) \right] - \underbrace{\left[\sum_{t'} P(t'|\vec{q}) P(t_{1} = t'|s_{1}^{*}) P(t_{2} = t'|s_{2}) \right]}_{\text{Query topic-weighted diversity}}$$

which suggests the title Probabilistic Latent Maximal Marginal Relevance.

Experimental Results

Evaluate using weighted subtopic loss (WSL) of three methods using all words and first 10 words on a subset of TREC 6-8 data focusing on diversity. Standard error estimates are shown for PLMMR-LDA.

Method	WSL (first 10 words)	WSL (all words)
MMR-TF	0.555	0.534
MMR-TFIDF	0.549	0.493
PLMMR-LDA	$\textbf{0.458} \pm \textbf{0.0058}$	$\textbf{0.468} \pm \textbf{0.0019}$

Summary

We proposed a binary set-relevance model of diversity, which derived

- LSI kernel
- LSI diversity kernel
- Probabilistic variant and justification of MMR

Acknowledgement

We thank Thore Graepel for important derivations and interesting discussions, and thank the anomalous reviewers for their comments.