Lab 8 Deliverables

Akaash Chikarmane and Milan Feliciello

Section: 16085

Spring 2016

Schematic

Time Measurements (like Figure 8.6)

ADC execution time

LCD execution time

Calibration Data

		ADC
Position (cm)	Analog Input (V)	Sample
0	0.01	13
0.25	0.12	150
0.5	0.62	700
0.75	1.07	1250
1	1.6	1900
1.25	2.08	2500
1.5	2.53	3100
1.75	3.03	3750
2	3.28	4095

Final Distance Meter

```
void SysTick_Handler(void){
    GPIO_PORTF_DATA_R ^= 0x0C;
```

```
ADCMail = ADC In();
        ADCStatus = 0x00000001;
        GPIO PORTF DATA R ^{\sim} 0x0C;
        return;
}
uint32 t delay;
// ADC initialization function
// Input: none
// Output: none
void ADC Init(void){
                                                                //1) activate PORTE clock
        SYSCTL RCGC2 R \mid= 0x10;
        while(SYSCTL_RCGC2_R == 0){
                                                //null
        }
        GPIO_PORTE_DIR_R &= \sim 0x04;
                                               //2) make PE2 input
        GPIO PORTE AFSEL R = 0x04;
                                               //3) enable alternate function for PE2
        GPIO PORTE DEN R &= \sim 0x04;
                                               //4) disable digital I/O for PE2
        GPIO PORTE AMSEL R = 0x04;
                                                       //5) enable analong function on PE2
        SYSCTL RCGCADC R = 0x01;
                                                       //6) activate ADC0
        delay = SYSCTL_RCGCADC_R;
                                                       //null
        delay = SYSCTL RCGCADC R;
                                                       //null
        delay = SYSCTL RCGCADC R;
                                                       //null
        delay = SYSCTL RCGCADC R;
                                                       //null
        ADC0 PC R = 0x01;
                                                                               //7) configure for 125k
        ADC0 SSPRI R &= \sim 0 \times 0.0123;
                                                       //8) Seq3 is highest priority
        ADC0 ACTSS R &= \sim 0 \times 00008;
                                                       //9) disable sample sequencer 3
                                                                //10) seq3 is software trigger
        ADC0 EMUX R &= \sim 0xF000;
        ADC0 SSMUX3 R = (ADC0 SSMUX3 R \& 0xFFFFFFF0) + 1;
                                                                               //11) Ain1 (PE2)
        ADC0 SSCTL3 R = 0x0006;
                                                                //12) no TS0D0, yes IE0 END0
        ADC0 IM R &= \sim 0x0008;
                                                                        //13) disable SS3 interrupts
        ADC0 ACTSS R = 0x0008;
                                                                //14) enable sample sequencer 3
}
//-----ADC In-----
```

```
// Busy-wait Analog to digital conversion
// Input: none
// Output: 12-bit result of ADC conversion
uint32_t ADC_In(void){
        uint32 t result;
        ADC0_PSSI_R = 0x0008;
                                                           //1) initiate SS3
        while((ADC0 RIS R & 0x08) == 0){
                                                           //2) wait for conversion to finish
        }
        result = ADC0_SSFIFO3_R & 0xFFF;
                                                  //3) read 12-bit result
        ADC0_ISC_R = 0x0008;
                                                           //4) acknowledge completion
        return(result);
}
uint32 t Convert(uint32 t input){
 uint32 t converted;
        converted = input*100;
        converted = (converted + 29203);
        converted = (converted/223);
        return(converted);
}
int main(void){
 TExaS_Init();
                   // Bus clock is 80 MHz
 ST7735 InitR(INITR REDTAB);
 PortF_Init();
 ADC Init();
                  // turn on ADC, set channel to 1
        SysTick_Init();
 while(1){
                if(ADCStatus == 1){
                         ADCStatus = 0;
                         measurement = Convert(ADCMail);
                         ST7735_SetCursor(0,0);
```

```
LCD_OutFix(measurement);

ST7735_OutChar(0x20);

ST7735_OutChar(0x63);

ST7735_OutChar(0x6D);

}
```

Sampling Rate of 40 Hz (Figure 8.8)

Accuracy Data and Accuracy Calculation

True	Measured	
Values	values	Errors
0	0.136	-0.136
0.5	0.444	0.056
1	0.982	0.018
1.5	1.521	-0.021

2	1.967	0.033
---	-------	-------

Average error

0.053