Universidad Nacional Experimental del Táchira

DEPARTAMENTO DE MATEMÁTICA Y FÍSICA

MATEMÁTICA I (0826101) - 2016-I

ÚLTIMA REVISIÓN: JUNIO 2016

Unidad II

Ejercicios de Funciones

Actividad 1.3

En los ejercicios del 1 al 10 trace la gráfica que determina el conjunto indicado. Aplique el criterio de la recta vertical para determinar si dicho conjunto representa una función, en caso de serlo indique su dominio y rango:

1. $\{(x,y): x^2 + y^2 = 4\}.$

R: El conjunto $\{(x,y): x^2+y^2=4\}$ no representa una función porque no cumple el criterio de la recta vertical.

2. $\{(x,y): 4x - y^2 = 0\}.$

R: El conjunto $\{(x,y): 4x-y^2=0\}$ no representa una función porque no cumple el criterio de la recta vertical.

3. $\{(x,y): 6y = x^2\}.$

R: El conjunto $\{(x,y): 6y=x^2\}$ representa una función porque cumple el criterio de la recta vertical. Dom $f=\mathbb{R}$ y Rgo $f=[0,\infty]$.

4. $\{(x,y): 2x + 3y = 6\}.$

R: El conjunto $\{(x,y): 2x+3y=6\}$ representa una función porque cumple el criterio de la recta vertical. Dom $f=\mathbb{R}$ y Rgo $f=\mathbb{R}$.

5. $\{(x,y): 9x^2 - 4y^2 = 36\}.$

R: El conjunto $\{(x,y): 9x^2-4y^2=36\}$ no representa una función porque no cumple el criterio de la recta vertical.

6. $\{(x,y): y = \sqrt{1-x^2}\}.$

R: El conjunto $\{(x,y):y=\sqrt{1-x^2}\}$ representa una función porque cumple el criterio de la recta vertical. Dom f=[-1,1] y Rgo f=[0,1].

7. $\{(x,y): x = \sqrt{4-y^2}\}.$

R: El conjunto $\{(x,y): x=\sqrt{4-y^2}\}$ no representa una función porque no cumple el criterio de la recta vertical.

8. $\{(x,y): y=4\}.$

R: El conjunto $\{(x,y):y=4\}$ representa una función porque cumple el criterio de la recta vertical. Dom $f=\mathbb{R}$ y Rgo $f=\{4\}$.

9. $\{(x,y): x^2 + 4y^2 = 20\}.$

R: El conjunto $\{(x,y): x^2+4y^2=20\}$ no representa una función porque no cumple el criterio de la recta vertical.

10. $\{(x,y): y = \sqrt{20 - 4x^2}\}.$

R: El conjunto $\{(x,y): y=\sqrt{20-4x^2}\}$ representa una función porque cumple el criterio de la recta vertical. Dom $f=[-\sqrt{5},\sqrt{5}]$ y Rgo $f=[0,\sqrt{20}]$.

11. Dado f(x) = 2x - 1 hallar (a) f(0), (b) f(3), (c) f(-2), (d) f(a+1), (e) f(x+1), (f) f(2x), (g) 2f(x), (h) f(x+h), (i) f(x) + f(h), (j) $\frac{f(x+h) - f(x)}{h}$ con $h \neq 0$.

R: (a) -1; (b) 5; (c) -5; (d) 2a+1; (e) 2x+1; (f) 4x-1; (g) 4x-2; (h) 2x+2h-1;

(i) 2x + 2h - 2; (j) 2.

12. Dado $f(x) = \frac{3}{x}$ hallar (a) f(1), (b) f(-3), (c) f(-2), (d) f(a+1), (e) f(x+1), (f) f(2x), (g) 2f(x), (h) f(x+h), (i) f(x) + f(h), (j) $\frac{f(x+h) - f(x)}{h}$ con $h \neq 0$.

 $R: (a) \ 3; (b) \ -1; (c) \ -\frac{3}{2}; (d) \ \frac{3}{a+1}; (e) \ \frac{3}{x+1}; (f) \ \frac{3}{2x}; (g) \ \frac{6}{x}; (h) \ \frac{3}{x+h}; (i) \ \frac{3h+3x}{xh}; (j) \ \frac{-3}{x(x+h)}.$

13. Dado $g(x) = 2x^2 + 5x - 3$ hallar (a) g(-2), (b) g(-1), (c) g(0), (d) g(h+1), (e) $g(2x^2)$, (f) $g(x^2-3)$, (g) g(x+h), (h) $\frac{g(x+h)-g(x)}{h}$ con $h \neq 0$.

R: (a) -5; (b) -6; (c) -3; (d) $2h^2 + 9h + 4;$ (e) $8x^4 + 10x^2 - 3;$ (f) $2x^4 - 7x^2;$ (g) $2x^2 + (4h + 5)x + (2h^2 + 5h - 3);$ (h) 4x + 2h + 5.

14. Dado $F(x) = \sqrt{x+9}$ hallar (a) F(x+9), (b) $F(x^2-9)$, (c) $F(x^2+6x)$, (d) $F(x^4-9)$, (e) $F(x^4-6x^2)$, (f) $\frac{F(x+h)-F(x)}{h}$ con $h \neq 0$.

R: (a) $\sqrt{x+18}$; (b) |x|; (c) |x+3|; (d) x^2 ; (e) $|x^2-3|$; (f) $\frac{1}{\sqrt{x+h+9}+\sqrt{x+9}}$.

En las gráficas dadas en 15 al 20 determine intersecciones con los ejes, dominio y rango.

15.

R:

Dom $f = (a, b) \cup (b, \infty),$

Rgo $f = (c, d) \cup (d, \infty),$

No existe intersección con los ejes coordenados.

R:

Dom f = [a, b],

Rango f = [0, c],

Intersección con los ejes: x = a y x = b.

R:

 $\mathrm{Dom}\ f = (-\infty, b)\ \cup\ (b, \infty)\ \circ\ \mathbb{R} - \{b\},$

Rgo $f = (-\infty, d) \cup (d, \infty)$ ó $\mathbb{R} - \{d\}$,

Intersección con los ejes: x = a, y = c.

R:

Dom
$$f = (-\infty, b) \cup (b, \infty)$$
 ó $\mathbb{R} - \{b\}$,

Rgo
$$f = (-\infty, d) \cup (d, \infty)$$
 ó $\mathbb{R} - \{d\}$,

Intersección con los ejes: x = a, y = c.

R:

$$Dom f = (-\infty, a) \cup [b, \infty),$$

Rgo
$$f = (d, \infty) \cup \{e\},\$$

Intersección con los ejes: x = c,

No hay intersección con el eje y.

R:

$$Dom f = (-\infty, a) \cup [b, \infty),$$

Rgo
$$f = (-\infty, k],$$

Intersección con los ejes: x = c, y = d.

Actividad 1.4

Dadas las funciones del 21 al 61, trace su gráfica, determine intersecciones con los ejes coordenados, asíntotas (de ser el caso) dominio y rango ($\llbracket x \rrbracket$ representa el símbolo de parte entera, c.x indica corte en x, c.y indica corte en y).

21.
$$f(x) = \frac{5}{2}$$
.

$$R: \text{Dom } f = \mathbb{R}, \text{ Rgo } f = \left\{\frac{5}{2}\right\}, c.x \text{ no hay, } c.y = \frac{5}{2}.$$

22.
$$g(x) = -\sqrt{2}$$
.

$$R$$
: Dom $f = \mathbb{R}$, Rgo $f = \{-\sqrt{2}\}$, $c.x$ no hay, $c.y = -\sqrt{2}$.

23.
$$h(x) = x$$
.

R: Dom
$$f = \text{Rgo } f = \mathbb{R}, c.x = 0, c.y = 0.$$

24.
$$f(x) = -2x$$
.

$$R: \text{Dom } f = \text{Rgo } f = \mathbb{R}, c.x = 0, c.y = 0.$$

25.
$$f(x) = \frac{13}{5}x - 7$$
.

R: Dom
$$f = \mathbb{R}$$
, Rgo $f = \mathbb{R}$, $c.x = \frac{35}{13} \approx 2,692$, $c.y = -7$.

26.
$$f(x) = 8x + \frac{9}{4}$$
.

R: Dom
$$f = \mathbb{R}$$
, Rgo $f = \mathbb{R}$, $c.x = -\frac{9}{32} \approx 0,2813$, $c.y = \frac{9}{4} \approx 2,25$.

27.
$$f(x) = x^2$$
.

R: Dom
$$f = \mathbb{R}$$
, Rgo $f = [0, \infty)$, $c.x = 0$, $c.y = 0$.

28.
$$f(x) = -3x^2$$
.

R: Dom
$$f = \mathbb{R}$$
, Rgo $f = (-\infty, 0]$, $c.x = 0$, $c.y = 0$.

29.
$$f(x) = 3x^2 - 18x + 15$$
.

R: Dom
$$f = \mathbb{R}$$
, Rgo $f = [-12, \infty)$, $c.x = 1$, $c.x = 5$, $c.y = 15$.

30.
$$f(x) = -4x^2 + 5x - 2$$
.

R: Dom
$$f = \mathbb{R}$$
, Rgo $f = \left(-\infty, -\frac{7}{16}\right]$, c.x no hay, $c.y = -2$.

31.
$$f(x) = \left(x + \frac{3}{2}\right) \left(x - \frac{19}{4}\right)$$
.

R: Dom
$$f = \mathbb{R}$$
, Rgo $f = \left[-\frac{625}{64}, \infty \right)$, $c.x = -\frac{3}{2} \approx -1, 5$, $c.x = \frac{19}{4} \approx 4, 75$, $c.y = -\frac{57}{8} \approx -7, 125$.

32.
$$f(x) = 5x^2 + x$$
.

R: Dom
$$f = \mathbb{R}$$
, Rgo $f = \left[-\frac{1}{20}, \infty \right)$, $c.x = 0$, $c.x = -\frac{1}{5} \approx 0, 20$, $c.y = 0$.

33.
$$f(x) = -\frac{5}{2}x^3$$
.

$$R$$
: Dom $f = \mathbb{R}$, Rgo $f = \mathbb{R}$, $c.x = 0$, $c.y = 0$.

34.
$$f(x) = x^4 + 3$$
.

R: Dom
$$f = \mathbb{R}$$
, Rgo $f = [3, \infty)$, $c.x$ no hay, $c.y = 3$.

35.
$$f(x) = (x-2)^7$$
.

R: Dom $f = \mathbb{R}$, Rgo $f = \mathbb{R}$, c.x = 2, c.y = -128.

36.
$$f(x) = \left(x + \frac{7}{2}\right)^5 - \frac{9}{2}$$
.

R: Dom $f = \mathbb{R}$, Rgo $f = \mathbb{R}$, $c.x = \sqrt[5]{\frac{9}{2}} - \frac{7}{2} \approx -2{,}1490, c.y = \left(\frac{7}{2}\right)^5 - \frac{9}{2} \approx 520{,}7188.$

37.
$$f(x) = \frac{3}{x^2} + 1$$
.

R: Dom $f = \mathbb{R} - \{0\}$, Rgo $f = (1, \infty)$, c.x no hay, c.y no hay, asíntotas la recta x = 0 y la recta y = 1.

38.
$$f(x) = \frac{-5}{2(x+1)^3}$$
.

R: Dom $f = \mathbb{R} - \{-1\}$, Rgo $f = \mathbb{R} - \{0\}$, c.x no hay, $c.y = -\frac{5}{2}$, asíntotas la recta x = -1 y la recta y = 0.

39.
$$f(x) = \frac{1}{(4x - \frac{8}{2})^6} - \frac{20}{3}$$
.

R: Dom $f = \mathbb{R} - \left\{\frac{2}{3}\right\}$, Rgo $f = \left(-\frac{20}{3}, \infty\right)$, $c.x = \pm \frac{\sqrt[6]{\frac{3}{20}}}{4} + \frac{2}{3} \approx c.x = 0.4844, c.x = 0.8489,$ $c.y = \frac{1}{\left(-\frac{8}{3}\right)^6} - \frac{20}{3} \approx -6,664, \text{ asíntotas la recta } x = \frac{2}{3} \text{ y la recta } y = -\frac{20}{3}.$

40.
$$f(x) = \frac{3}{x^2 - 18x + 81}$$
.

R: Dom $f = \mathbb{R} - \{9\}$, Rgo $f = (0, \infty)$, c.x no hay, $c.y = \frac{1}{27} \approx 0,0370$, asíntotas la recta x = 9 y la recta y = 0.

41.
$$f(x) = \frac{5}{3-x} + 2$$
.

R: Dom $f = \mathbb{R} - \{3\}$, Rgo $f = \mathbb{R} - \{2\}$, $c.x = \frac{11}{2} \approx 5,50$, $c.y = \frac{11}{3} \approx 3,66$, asíntotas la recta x = 3 y la recta y = 2.

42.
$$f(x) = -\sqrt{-x}$$

R: Dom $f = (-\infty, 0]$, Rgo $f = (-\infty, 0]$, c.x = 0, c.y = 0.

43.
$$f(x) = \sqrt[5]{x-4} + \frac{3}{2}$$
.

R: Dom $f = \mathbb{R}$, Rgo $f = \mathbb{R}$, $c.x = \left(-\frac{3}{2}\right)^5 + 4 \approx -3,59$, $c.y = \sqrt[5]{-4} + \frac{3}{2} \approx 0,18$.

44.
$$f(x) = 3\sqrt[4]{2-x} - \frac{5}{3}$$
.
 $R: \text{Dom } f = (-\infty, 2], \text{ Rgo } f = \left[-\frac{5}{3}, \infty\right), c.x = 2 - \left(\frac{5}{9}\right)^4 \approx 1,905, c.y = 3\sqrt[4]{2} - \frac{5}{3} \approx 1,901$.

45.
$$f(x) = -16\sqrt[6]{\frac{5+2x}{64}} + 8.$$

 $R: \text{Dom } f = \left[-\frac{5}{2}, \infty\right), \text{ Rgo } f = (-\infty, 8], c.x = -2, c.y = -8(\sqrt[6]{5} - 1) \approx 2,461.$

46.
$$f(x) = -|x+5|$$
.
 $R: \text{Dom } f = \mathbb{R}, \text{ Rgo } f = (-\infty, 0], c.x = -5, c.y = -5.$

47.
$$f(x) = |2x - 3|$$
.
 $R: \text{Dom } f = \mathbb{R}, \text{ Rgo } f = [0, \infty], c.x = \frac{3}{2}, c.y = 3.$

48.
$$f(x) = |5 - 4x| + 3$$
.
R: Dom $f = \mathbb{R}$, Rgo $f = [3, \infty)$, c.x no hay, c.y = 8.

49.
$$f(x) = |-6 - 3x| - \frac{7}{2}$$
.
R: Dom $f = \mathbb{R}$, Rgo $f = \left[-\frac{7}{2}, \infty\right)$, $c.x = -\frac{5}{6} \approx -0,8333$, $c.x = -\frac{19}{6} \approx -3,167$, $c.y = \frac{5}{2}$.

50.
$$f(x) = [x-4]$$
.
R: Dom $f = \mathbb{R}$, Rgo $f = \mathbb{Z}$, $c.x = [4,5)$, $c.y = -4$.

51.
$$f(x) = [x] + 4$$
.
R: Dom $f = \mathbb{R}$, Rgo $f = \mathbb{Z}$, $c.x = [-4, -3)$, $c.y = 4$.

52.
$$f(x) = [2x]$$
.
 $R: \text{Dom } f = \mathbb{R}, \text{ Rgo } f = \mathbb{Z}, c.x = [0, \frac{1}{2}), c.y = 0.$

53.
$$f(x) = 5^x - \frac{3}{2}$$
.

R: Dom $f = \mathbb{R}$, Rgo $f = \left(-\frac{3}{2}, \infty\right)$, $c.x = \log_5\left(\frac{3}{2}\right) \approx 0,252$, $c.y = -\frac{1}{2}$, asíntota horizontal por la izquierda la recta $y = -\frac{3}{2}$.

54.
$$f(x) = \log_5 x + \frac{5}{2}$$
.
 $R: \text{Dom } f = (0, \infty), \text{ Rgo } f = \mathbb{R}, c.x = 5^{-5/2} \approx 0,017, c.y \text{ no hay, asíntota vertical la recta } x = 0.$

55. $f(x) = \frac{2^{2x}}{3} - 1$. R: Dom $f = \mathbb{R}$, Rgo $f = (-1, \infty)$, c.x = 0, c.y = 0, asíntota horizontal por la derecha la recta y = -1.

56. $f(x) = \log_{\frac{1}{2}}(x-4) + \frac{1}{2}$. R: Dom $f = (4, \infty)$, Rgo $f = \mathbb{R}$, $c.x = 4 + \sqrt{2} \approx 5, 41$, c.y no hay, asíntota vertical la recta x = 4.

57. $f(x) = e^{3-x} - \frac{11}{3}$. R: Dom $f = \mathbb{R}$, Rgo $f = \left(-\frac{11}{3}, \infty\right)$, $c.x = 3 - \ln\left(\frac{11}{3}\right) \approx 1,701$, $c.y = e^3 - \frac{11}{3} \approx 16,4$, asíntota horizontal por la derecha la recta $y = -\frac{11}{3}$.

58. $f(x) = \ln(5 - 3x) - 2$. $R: \text{Dom } f = \left(-\infty, \frac{5}{3}\right)$, Rgo $f = \mathbb{R}$, $c.x = \frac{e^2 - 5}{-3} \approx -0,796$, $c.y = \ln(5) - 2 \approx -0,39$, asíntota vertical la recta $x = \frac{5}{3}$.

59. $f(x) = 5\left(\frac{1}{2}\right)^{1-2x} + 3$. $R: \text{Dom } f = \mathbb{R}, \text{ Rgo } f = (3, \infty), c.x \text{ no hay, } c.y = \frac{11}{2}, \text{ as intota horizontal por la izquierda la recta}$ y = 3.

60. $f(x) = \frac{7}{2} - \frac{log(-x)}{2}$. $R: \text{Dom } f = (-\infty, 0), \text{ Rgo } f = \mathbb{R}, c.x = -10^7, c.y \text{ no hay, asíntota vertical la recta } x = 0$.

61. $f(x) = \frac{5}{2} - \ln \sqrt{5 - 2x}$. $R: \text{Dom } f = \left(-\infty, \frac{5}{2}\right)$, Rgo $f = \mathbb{R}$, $c.x = \frac{e^5 - 5}{-2} \approx -71,71$, $y = \frac{5}{2} - \frac{1}{2}ln(5) \approx 1,695$, asíntota vertical la recta $x = \frac{5}{2}$.

Actividad 1.5

Considere las gráficas dadas en 62 al 69. (a) Identifique la función básica que las genera. (b) Indique los principios de graficación aplicados a la función básica. (c) Escriba la ecuación que representa a la gráfica.

63.

64.

 $R: y = (x-1)^n + 1$ con n impar y $n \neq 1$.

R: y = - |x + 1| + 2.

 $R: y = \frac{1}{2-x} - 2.$

66.

67.

$$R: y = \frac{1}{x^n} + 2 \text{ con n par.}$$

$$R: y = (x+1)^2 - 4.$$

$$R: y = [x-1] \text{ ó } y = [x] - 1.$$

$$R: y = 2^x - 2.$$

$$R: y = log_3(x+3).$$

69.

En los ejercicios del 70 al 81, trace la gráfica de la función trigonométrica dada, halle dominio, rango, período y cortes con los ejes coordenados. Indicar amplitud o ecuaciones de las asíntotas cuando sea el caso. (c.x indica corte en x, c.y indica corte en y).

70.
$$f(x) = 2sen(x + \pi)$$
.
 $R: \text{Dom } f = \mathbb{R}, \text{ rgo } f = [-2, 2], \text{ período} = 2\pi, c.x = (n - 1)\pi \text{ con } n \in \mathbb{Z} \text{ } (c.x = ..., -2\pi, -\pi, 0, ...),$
 $c.y = 0, \text{ amplitud} = 2.$

71.
$$g(x) = \frac{1}{2}sen\left(\frac{\pi}{2} - 2x\right).$$

$$R: \text{Dom } f = \mathbb{R}, \text{rgo } f = \left[-\frac{1}{2}, \frac{1}{2}\right], \text{ período} = \pi, c.x = \frac{(2n+1)\pi}{4} \text{ con } n \in \mathbb{Z}\left(c.x = ..., -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}, ...\right),$$

$$c.y = \frac{1}{2}, \text{ amplitud} = \frac{1}{2}.$$

72.
$$h(x) = -\cos(\pi + 3x)$$
.
 $R: \text{Dom } f = \mathbb{R}, \text{ rgo } f = [-1, 1], \text{ período} = \frac{2\pi}{3}, c.x = \frac{(2n-1)\pi}{6} \cos n \in \mathbb{Z} \left(c.x = ..., -\frac{\pi}{2}, -\frac{\pi}{6}, \frac{\pi}{6}, ...\right),$
 $c.y = \frac{1}{2}, c.y = 1, \text{ amplitud} = 1.$

73.
$$f(x) = \frac{3}{2}\cos\left(\frac{\pi}{4} - \frac{x}{2}\right)$$
.
R: Dom $f = \mathbb{R}$, rgo $f = \left[-\frac{3}{2}, \frac{3}{2}\right]$, período $= 4\pi$, $c.y = \frac{(3\sqrt{2})}{4}$, $c.x = \frac{(4n+3)\pi}{2}$ con $n \in \mathbb{Z}$ $\left(c.x = ..., -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, ...\right)$, amplitud $= \frac{3}{2}$.

74.
$$g(x) = \tan\left(\frac{x}{2} + \pi\right)$$
.
 $R: \text{ Dom } f = \mathbb{R} - \{x = (2n-1)\pi : n \in \mathbb{Z}\}, \text{ rgo } f = \mathbb{R}, \text{ período} = 2\pi, c.x = 2(n-1)\pi \text{ con } n \in \mathbb{Z} \text{ } (c.x = ..., -4\pi, -2\pi, 0, ...), c.y = 0, \text{ asíntotas las rectas } x = (2n-1)\pi \text{ con } n \in \mathbb{Z} \text{ } (x = ..., -3\pi, -\pi, \pi, ...).$

75.
$$h(x) = -3\tan\left(\frac{x}{2}\right)$$
.
 $R: \text{ Dom } f = \mathbb{R} - \{x = (1+2n)\pi : n \in \mathbb{Z}\}, \text{ rgo } f = \mathbb{R}, \text{ periodo} = 2\pi, c.x = 2n\pi \text{ con } n \in \mathbb{Z}$
 $(c.x = ..., -2\pi, 0, 2\pi, ...), c.y = 0, \text{ asintotas las rectas } x = (1+2n)\pi \text{ con } n \in \mathbb{Z} \ (x = ..., -\pi, \pi, 3\pi, ...).$

76.
$$f(x) = -2\cot\left(2x + \frac{\pi}{4}\right)$$
.
 $R: \text{ Dom } f(x) = \mathbb{R} - \left\{x = \frac{(4n-1)\pi}{8} : n \in \mathbb{Z}\right\}, \text{ rgo } f = \mathbb{R}, \text{ periodo} = \frac{\pi}{2}, c.x = \frac{(1+4n)\pi}{8} \text{ con } n \in \mathbb{Z} \left(c.x = ..., -\frac{3\pi}{8}, \frac{\pi}{8}, \frac{5\pi}{8}, ...\right), c.y = -2, \text{ asíntotas las rectas } x = \frac{(4n-1)\pi}{8} \text{ con } n \in \mathbb{Z} \left(x = ..., -\frac{5\pi}{8}, -\frac{\pi}{8}, \frac{3\pi}{8}, ...\right).$

77.
$$f(x) = -\cot\left(\frac{\pi}{4} - x\right)$$
.
 $R: \text{Dom } f(x) = \mathbb{R} - \left\{x = \frac{(4n+1)\pi}{4} : n \in \mathbb{Z}\right\}, \text{ rgo } f = \mathbb{R}, \text{ período} = \pi, c.x = \frac{(3+4n)\pi}{4} \text{ con } n \in \mathbb{Z} \left(c.x = ..., -\frac{\pi}{4}, \frac{3\pi}{4}, \frac{7\pi}{4}, ...\right), c.y = -1, \text{ asíntotas las rectas } x = \frac{(4n+1)\pi}{4} \text{ con } n \in \mathbb{Z}$

$$\left(x = ..., -\frac{3\pi}{4}, \frac{\pi}{4}, \frac{5\pi}{4}, ...\right)$$
.

78.
$$h(x) = -\frac{2}{3}\csc\left(\frac{1}{2}x + \frac{\pi}{4}\right)$$
.

R: Dom $f(x) = \mathbb{R} - \left\{x = \frac{(4n-1)\pi}{2} : n \in \mathbb{Z}\right\}$, rgo $\left(-\infty, -\frac{2}{3}\right] \cup \left[\frac{2}{3}, \infty\right)$, período $= 4\pi$, $c.x$ no hay, $c.y = -\frac{2\sqrt{2}}{3}$, asíntotas las rectas $x = \frac{(4n-1)\pi}{2}$ con $n \in \mathbb{Z}$ $\left(x = ..., -\frac{5\pi}{2}, -\frac{\pi}{2}, \frac{3\pi}{2}, ...\right)$.

79.
$$f(x) = -3\csc\left(\frac{\pi}{2} - \frac{x}{3}\right)$$
.
 $R: \text{Dom } f(x) = \mathbb{R} - \left\{x = \frac{(6n+3)\pi}{2} : n \in \mathbb{Z}\right\}, \text{ rgo } (-\infty, -3] \cup [3, \infty), \text{ período} = 6\pi, c.x \text{ no hay,}$

$$c.y = -3, \text{ asíntotas las rectas } x = \frac{(6n+3)\pi}{2} \text{ con } n \in \mathbb{Z} \left(x = ..., -\frac{3\pi}{2}, \frac{3\pi}{2}, \frac{9\pi}{2}, ...\right).$$

80.
$$g(x) = \sec\left(x + \frac{\pi}{4}\right)$$
.

 $R: \text{Dom } f(x) = \mathbb{R} - \left\{x = \frac{(1+4n)\pi}{4} : n \in \mathbb{Z}\right\}, \text{ rgo } (-\infty, -1] \cup [1, \infty), \text{ período} = 2\pi, c.x \text{ no hay,}$

$$c.y = \sqrt{2}, \text{ asíntotas las rectas } x = \frac{(1+4n)\pi}{4} \text{ con } n \in \mathbb{Z} \left(x = ..., -\frac{3\pi}{4}, \frac{\pi}{4}, \frac{5\pi}{4}, ...\right).$$

81.
$$h(x) = -2\sec\left(\pi - \frac{x}{2}\right)$$
.
 $R: \text{Dom } f(x) = \mathbb{R} - \{x = (3+2n)\pi : n \in \mathbb{Z}\}, \text{ rgo } (-\infty, -2] \cup [2, \infty), \text{ período} = 4\pi, c.x \text{ no hay,}$
 $c.y = 2$, asíntotas las rectas $x = (3+2n)\pi \text{ con } n \in \mathbb{Z} \ (x = ..., \pi, 3\pi, 5\pi, ...)$.

Dadas las funciones del 82 al 89, trace su gráfica, determine intersecciones con los ejes coordenados, dominio y rango.

82.

$$f(x) = \begin{cases} (x+3)^2 + 1 & si & x < -2 \\ -x + 1 & si & -2 \le x \le 2 & R: Dom \ f = \mathbb{R}, Rgo \ f = [-1, \infty), c.x = 1, c.y = 1. \end{cases}$$

$$f(x) = \begin{cases} |x+2| & si & x \le -1 \\ x^3 - 2 & si & -1 < x \le 2 \\ x - 4 & si & x > 2 \end{cases}$$

 $R: Dom \ f = \mathbb{R}, Rgo \ f = (-3, \infty), c.x = -2, c.x = 4, c.x = \sqrt[3]{2}, c.y = -2.$

84.

$$f(x) = \begin{cases} \sqrt[3]{x+1} & si \ x \le -1 \\ (x-1)^4 - 2 & si \ |x| < 1 \end{cases}$$
$$e^{-x} \quad si \ x \ge 1$$

 $R: Dom \ f = \mathbb{R}, Rgo \ f = (-\infty, 14), c.x = -1, c.x = -\sqrt[4]{2} + 1, c.y = -1.$

85.

$$f(x) = \begin{cases} \frac{1}{x+1} & si \quad x < -1 \\ log_{\frac{1}{2}}(x+1) & si \quad -1 < x \le 1 \end{cases} \quad R: Dom \ f = \mathbb{R} - \{-1\}, Rgo \ f = \mathbb{R}, c.x = 0, c.y = 0.$$

$$\sqrt{x} + 2 \quad si \quad x > 1$$

86.

$$f(x) = \begin{cases} 2x - 1 & si & x < 1 \\ x^2 - \frac{1}{2} & si & 1 \le x < 2 \end{cases} \quad R: Dom \ f = \mathbb{R}, Rgo \ f = \mathbb{R}, c.x = \frac{1}{2}, c.x = 3, c.y = -1.$$
$$|x - 3| \quad si \quad x \ge 2$$

$$f(x) = \begin{cases} [x] & si \quad x < -2 \\ |x+1| & si \quad -2 \le x < 0 \\ & \text{Rgo } f = \mathbb{R}, \\ \sqrt{x+3} & si \quad 0 \le x < 4 \\ x^2 - 4 & si \quad x \ge 4 \end{cases} \quad \begin{cases} -2x - 1 \quad si \quad x \le -3 \end{cases} \cup [0,1] \cup [\sqrt{3}, \sqrt{7}) \cup [12, \infty), \\ x \ge 4 \end{cases}$$

$$f(x) = \begin{cases} -2x - 1 & si & x \le -3 \\ |2x + 3| & si & -3 < x \le 0 \\ 2x - x^2 & si & 0 < x < 3 \end{cases} R: \text{Dom } f = \mathbb{R}, \text{Rgo } f = (-\infty, 4] \cup [5, \infty), \\ c.x = -\frac{3}{2}, c.x = 2, c.x = 7, c.y = 3. \end{cases}$$

$$f(x) = \begin{cases} 2^{1-x} - 8 & si & x \le -2 \\ 3\log_{1/2}(x+2) & si & -2 < x < 1 \\ 2 - 2^{3-x} & si & 1 \le x < 3 \end{cases}$$

$$R: \text{Dom } f = \mathbb{R}, \text{Rgo } f = (-3\log_{\frac{1}{2}}(3), \infty) \approx (-4, 75, \infty),$$

$$c.x = 2, c.x = -2, c.x = -1, c.y = -3.$$
Actividad 1.8

En los ejercicios del 90 al 107, halle en forma analítica el dominio de la función dada:

90.
$$f(x) = x^2 - 2x - 3$$
.
 $R: \text{Dom } f = \mathbb{R}$.

91.
$$f(x) = -x^2 - 2x + 8$$
.

$$R: \text{Dom } f = \mathbb{R}.$$

92.
$$f(x) = \sqrt[3]{x}$$
.

$$R: \text{Dom } f = \mathbb{R}.$$

93.
$$f(x) = \sqrt{2x - 5}$$
.

$$R: \text{Dom } f = [5/2, \infty].$$

94.
$$f(x) = \sqrt{x^2 - 2x - 3}$$
.

$$R: \text{Dom } f = (-\infty, -1] \cup [3, \infty).$$

95.
$$f(x) = \frac{1}{\sqrt{x^2 - 2x - 3}}$$
.

$$R: \operatorname{Dom} f = (-\infty, -1) \cup (3, \infty).$$

96.
$$f(x) = \sqrt{\frac{-3}{5x + 15}}$$
.

$$R: \text{Dom } f = (-\infty, -3).$$

97.
$$f(x) = \sqrt[4]{\frac{4x - x^3}{x^2 - 2x + 1}}$$
.

$$R: \text{Dom } f = (-\infty, -2] \cup [0, 1) \cup (1, 2].$$

98.
$$f(x) = \log(-x^2 + 2x + 24)$$
.

$$R: \text{Dom } f = (-4, 6).$$

99.
$$f(x) = \log\left(\frac{4x - 8}{-2x + 6}\right)$$
.

$$R: \text{Dom } f = (2,3).$$

100.
$$g(x) = \sqrt[4]{12 - \sqrt{2 - x}}$$
.

$$R: \text{Dom } g = [-142, 2].$$

101.
$$g(x) = 7x^4\sqrt{5 + \sqrt{x - 1}}$$
.

$$R: \text{Dom } g = [1, \infty).$$

102.
$$h(x) = \left(\frac{2}{3}\right)^{\frac{3}{\sqrt{3-x}}} - sen(7x - 6).$$

$$R: \text{Dom } h = \mathbb{R}.$$

103.
$$g(x) = \ln(x^2 + 2x + 1) + \cos(6x - 5)$$
.
 $R: \text{Dom } g = \mathbb{R} - \{-1\}$.

104.
$$f(x) = \log_{(1/2)}(x^2 + 4x - 5) + [x + 5].$$

R: Dom $f = (-\infty, -5) \cup (1, \infty).$

105.
$$f(x) = \frac{\log(x^2 - 5x + 6)}{\sqrt{x - 1}}$$
.
 $R: \text{Dom } f = (1, 2) \cup (3, +\infty)$.

106.
$$f(x) = tan\left(4x - \frac{\pi}{2}\right)$$
.
 $R: \text{Dom } f = \mathbb{R} - \left\{x = \frac{(n+1)\pi}{4} : n \in \mathbb{Z}\right\}$.

107.
$$h(x) = \csc\left(\frac{x}{3} + \frac{\pi}{4}\right)$$
.
 $R: \text{Dom } h = \mathbb{R} - \left\{x = \frac{3\pi(4n-1)}{4} : n \in \mathbb{Z}\right\}$.

 $\mathbb{R} - \{-1, 0, 1\}.$

En los ejercicios del 108 al 115, defina las siguientes funciones y determine el dominio de la función resultante:

(a)
$$f + g$$
, (b) $f - g$, (c) $f \cdot g$, (d) f/g y (e) g/f .

108.
$$f(x) = x - 5$$
 y $g(x) = x^2 - 1$.
 $R: (f+g)(x) = x^2 + x - 6, (f-g)(x) = -x^2 + x - 4, (f.g)(x) = x^3 - 5x^2 - x + 5, \left(\frac{f}{g}\right)(x) = \frac{x - 5}{x^2 - 1}, \left(\frac{g}{f}\right)(x) = \frac{x^2 - 1}{x - 5}.$
 $Dom (f+g) = Dom (f-g) = Dom (f.g) = \mathbb{R}, Dom (f/g) = \mathbb{R} - \{-1, 1\}, Dom (g/f) = \mathbb{R} - \{5\}.$

109.
$$f(x) = \frac{x+1}{x-1}$$
 y $g(x) = \frac{1}{x}$.
 $R: (f+g)(x) = \frac{x^2+2x-1}{x(x-1)}, (f-g)(x) = \frac{x^2+1}{x(x-1)}, (f.g)(x) = \frac{x+1}{x(x-1)}, \left(\frac{f}{g}\right)(x) = \frac{x^2+x}{x-1}, \left(\frac{g}{f}\right)(x) = \frac{x-1}{x(x+1)}$.
Dom $(f+g) = \text{Dom } (f-g) = \text{Dom}(f.g) = \mathbb{R} - \{0,1\}, \text{ Dom } \left(\frac{f}{g}\right) = \mathbb{R} - \{0,1\}, \text{ Dom } \left(\frac{g}{f}\right) = \mathbb{R}$

110.
$$f(x) = \sqrt{x-1}$$
 y $g(x) = \sqrt{x^2-4}$.
 $R: (f+g)(x) = \sqrt{x-1} + \sqrt{x^2-4}, (f-g)(x) = \sqrt{x-1} - \sqrt{x^2-4}, (f.g)(x) = \sqrt{x-1}.\sqrt{x^2-4},$

$$\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x-1}}{\sqrt{x^2-4}}, \left(\frac{g}{f}\right)(x) = \frac{\sqrt{x^2-4}}{\sqrt{x-1}}.$$
 Dom $(f+g) = \text{Dom } (f-g) = \text{Dom}(f.g) = [2,\infty), \text{ Dom } \left(\frac{f}{g}\right) = (2,\infty), \text{ Dom } \left(\frac{g}{f}\right) = [2,\infty).$

111.
$$f(x) = \frac{1}{x+1}$$
 y $g(x) = \frac{x}{x-2}$.
 $R: (f+g)(x) = \frac{x^2 + 2x - 2}{(x+1)(x-2)}, (f-g)(x) = \frac{-x^2 - 2}{(x+1)(x-2)}, (f.g)(x) = \frac{x}{(x+1)(x-2)}, \left(\frac{f}{g}\right)(x) = \frac{x}{x^2 + 2x - 2}$.
 $\frac{x-2}{x(x+1)}, \left(\frac{g}{f}\right)(x) = \frac{x(x+1)}{x-2}$.
 $Dom (f+g) = Dom (f-g) = Dom(f.g) = \mathbb{R} - \{-1, 2\}, Dom \left(\frac{f}{g}\right) = \mathbb{R} - \{-1, 0, 2\}, Dom \left(\frac{g}{f}\right) = \mathbb{R} - \{-1, 2\}.$

$$\begin{aligned} &112.\ \ f(x) = \cos(x) \ \ y \ \ g(x) = \operatorname{sen}(x). \\ &R\colon (f+g)(x) = \cos(x) + \operatorname{sen}(x), \ (f-g)(x) = \cos(x) - \operatorname{sen}(x), \ (f.g)(x) = \cos(x).\operatorname{sen}(x), \ \left(\frac{f}{g}\right)(x) = \frac{\cos(x)}{\operatorname{sen}(x)}, \ \left(\frac{g}{f}\right)(x) = \frac{\operatorname{sen}(x)}{\cos(x)}. \\ &\operatorname{Dom}\ (f+g) = \operatorname{Dom}\ (f-g) = \operatorname{Dom}(f.g) = \mathbb{R}, \ \operatorname{Dom}\ \left(\frac{f}{g}\right) = \mathbb{R} - \{x = n\pi : n \in \mathbb{Z}\}, \ \operatorname{Dom}\ \left(\frac{g}{f}\right) = \mathbb{R} - \{x = n\pi + \frac{\pi}{2} : n \in \mathbb{Z}\}. \end{aligned}$$

113.
$$f(x) = \ln(x+4)$$
 y $g(x) = \ln(x-3)$.
 $R: (f+g)(x) = \ln(x+4) + \ln(x-3) = \ln[(x+4)(x-3)], (f-g)(x) = \ln(x+4) - \ln(x-3) = \ln\left[\frac{x+4}{x-3}\right],$
 $(f.g)(x) = \ln(x+4) \cdot \ln(x-3), \left(\frac{f}{g}\right)(x) = \frac{\ln(x+4)}{\ln(x-3)}, \left(\frac{g}{f}\right)(x) = \frac{\ln(x-3)}{\ln(x+4)}.$
 $\operatorname{Dom}(f+g) = \operatorname{Dom}(f-g) = \operatorname{Dom}(f.g) = (3, \infty), \operatorname{Dom}\left(\frac{f}{g}\right) = (3, 4) \cup (4, \infty), \operatorname{Dom}\left(\frac{g}{f}\right) = (3, \infty).$

114.
$$f(x) = e^{3x-1}$$
 y $g(x) = x - 5$.
 $R: (f+g)(x) = e^{3x-1} + x - 5$, $(f-g)(x) = e^{3x-1} - x + 5$, $(f.g)(x) = e^{3x-1}(x - 5)$, $\left(\frac{f}{g}\right)(x) = \frac{e^{3x-1}}{x-5}$, $\left(\frac{g}{f}\right)(x) = \frac{x-5}{e^{3x-1}}$.
Dom $(f+g) = \text{Dom } (f-g) = \text{Dom}(f.g) = \mathbb{R}$, $\text{Dom } \left(\frac{f}{g}\right) = \mathbb{R} - \{5\}$, $\text{Dom } \left(\frac{g}{f}\right) = \mathbb{R}$.

115.
$$f(x) = |x|$$
 y $g(x) = |x - 3|$.
 $R: (f + g)(x) = |x| + |x - 3|, (f - g)(x) = |x| - |x - 3|, (f.g)(x) = |x(x - 3)|, \left(\frac{f}{g}\right)(x) = \left|\frac{x}{x - 3}\right|, \left(\frac{g}{f}\right)(x) = \left|\frac{x - 3}{x}\right|.$

$$\operatorname{Dom}\ (f+g) = \operatorname{Dom}\ (f-g) = \operatorname{Dom}(f.g) = \mathbb{R}, \ \operatorname{Dom}\ \left(\frac{f}{g}\right) = \mathbb{R} - \{3\}, \ \operatorname{Dom}\ \left(\frac{g}{f}\right) = \mathbb{R} - \{0\}.$$

En los ejercicios del 116 al 120, exprese la función h como la composición de dos funciones f y g.

116.
$$h(x) = ln(x^2 + 2x)$$
.

117.
$$h(x) = \sqrt{|x| + 4}$$
.

118.
$$h(x) = cos(\sqrt{x+1})$$
.

119.
$$h(x) = \sqrt{\cos x + 1}$$
.

120.
$$h(x) = \left(\frac{1}{x-3}\right)^3$$
.

En los ejercicios del 121 al 126, dadas las funciones f y g, encuentre el dominio y una fórmula para $f \circ g$ y $g \circ f$.

121.
$$f(x) = \frac{x-3}{2}$$
 y $g(x) = \sqrt{x}$.
 $R: (f \circ g)(x) = \frac{\sqrt{x-3}}{2}$, $Dom(f \circ g) = [0, \infty)$, $(g \circ f)(x) = \sqrt{\frac{x-3}{2}}$, $Dom(g \circ f) = [3, \infty)$.

122.
$$f(x) = \frac{x}{x-1}$$
 y $g(x) = \sqrt{1+x^2}$.
 $R: (f \circ g)(x) = \frac{\sqrt{1+x^2}}{\sqrt{1+x^2}-1}$, $Dom(f \circ g) = R - \{0\}$, $(g \circ f)(x) = \sqrt{\frac{(x-1)^2+x^2}{(x-1)^2}}$, $Dom(g \circ f) = \mathbb{R} - \{1\}$.

123.
$$f(x) = ln(x^2 - 1)$$
 y $g(x) = e^x$.
 $R: (f \circ g)(x) = ln(e^{2x} - 1)$, $Dom(f \circ g) = (0, \infty)$, $(g \circ f)(x) = x^2 - 1$, $Dom(g \circ f) = (-\infty, -1) \cup (1, \infty)$.

124.
$$f(x) = x + \frac{1}{x}$$
 y $g(x) = \frac{x+1}{x+2}$.
 $R: (f \circ g)(x) = \frac{(x+1)^2 + (x+2)^2}{(x+1)(x+2)}$, $Dom(f \circ g) = R - \{-2, -1\}$, $(g \circ f)(x) = \frac{x^2 + x + 1}{x^2 + 2x + 1}$, $Dom(g \circ f) = \mathbb{R} - \{-1, 0\}$.

125.
$$f(x) = sec(2x)$$
 y $g(x) = x - \pi$.
 $R: (f \circ g)(x) = sec(2x - 2\pi), \text{ Dom}(f \circ g) = R - \left\{ x = \frac{(2n+5)\pi}{4} : n \in Z \right\}, (g \circ f)(x) = sec(2x) - \pi$,
 $\text{Dom}(g \circ f) = \mathbb{R} - \left\{ x = \frac{(2n+1)\pi}{4} : n \in Z \right\}$.

126.
$$f(x) = x^2 + 2x - 4$$
 y $g(x) = x^2$.
 $R: (f \circ g)(x) = x^4 + 2x^2 - 4$, $Dom(f \circ g) = \mathbb{R}$, $(g \circ f)(x) = (x^2 + 2x - 4)^2$, $Dom(g \circ f) = \mathbb{R}$.

En los ejercicios del 127 al 138, indique cuales de las siguientes funciones son inyectivas, justifique su respuesta.

- 127. $f(x) = x^2$. R: No
- 128. $f(x) = ln(x^2 + 1)$. R: No
- 129. $f(x) = e^x$. R: Sí
- 130. f(x) = cos(x). R: No
- 131. $f(x) = e^{x^2}$. R: No
- 132. f(x) = |x|. R: No
- 133. $f(x) = log_3(2x 5)$. R: Sí
- 134. f(x) = |4 x| 2. R: No
- 135. $f(x) = sen(2x + \pi)$. R: No
- 136. f(x) = [x]. R: No

$$f(x) = \begin{cases} 3x & si \ x < 0 \\ \sqrt{x} & si \ 0 \le x \le 9 \end{cases} \quad R : \text{ Si}$$
$$x + 1 \quad si \quad x > 9$$

138.

$$f(x) = \begin{cases} x^2 & si \quad x \le 2 \\ 2x & si \quad 2 < x \le 3 \quad R : No \end{cases}$$

$$5 \quad si \quad x > 3$$

En los ejercicios del 139 al 145, demuestre que las funciones f y g son inversas la una de la otra.

139.
$$f(x) = 2x - 3$$
 y $g(x) = \frac{x+3}{2}$.

140.
$$f(x) = \frac{1}{x-1}$$
 y $g(x) = \frac{1+x}{x}$.

141.
$$f(x) = (x-1)^3$$
 y $g(x) = 1 + \sqrt[3]{x}$.

142.
$$f(x) = ln(2x - 3)$$
 y $g(x) = \frac{e^x + 3}{2}$.

143.
$$f(x) = x^2 \text{ con } x \ge 0 \text{ y } g(x) = \sqrt{x}$$
.

144.
$$f(x) = x^2 \text{ con } x < 0 \text{ y } g(x) = -\sqrt{x}$$
.

145.
$$f(x) = \sqrt{2x+1} \text{ y } g(x) = \frac{x^2-1}{2}$$
.

En los ejercicios del 146 al 152, obtenga la gráfica de la función g^{-1} a partir de la gráfica de g.

146.
$$g(x) = x^n$$
 para n par y $x \ge 0$.

147.
$$g(x) = x^n$$
 para n impar y $n \ge 3$.

148.
$$g(x) = a^x \text{ con } 0 < a < 1.$$

149.
$$g(x) = log_a(x) \text{ con } x > 0.$$

150.
$$g(x) = sen(x)$$
 para $-\pi/2 \le x \le \pi/2$.

151.
$$g(x) = cos(x)$$
 para $0 \le x \le \pi$.

152.
$$g(x) = tan(x)$$
 para $-\pi/2 \le x \le \pi/2$.

En los ejercicios del 153 al 162, determine si la función dada admite inversa (de ser necesario restrinja el dominio), encuentre la función inversa, grafique sobre un mismo plano f y f^{-1} y pruebe que $f(f^{-1}(x)) = x$ y $f^{-1}(f(x)) = x$. Indique dominio y rango de f y de f^{-1} .

153.
$$f(x) = \frac{(x-1)^3 - 4}{3}$$
.
 $R: f^{-1}(x) = \sqrt[3]{3x+4} + 1$, Dom $f = \text{Rgo } f^{-1} = \mathbb{R}$, Rgo $f = \text{Dom } f^{-1} = \mathbb{R}$.

154.
$$f(x) = 2^x - 2$$
.
 $R: f^{-1}(x) = \log_2(x+2)$, Dom $f = \text{Rgo } f^{-1} = \mathbb{R}$, Rgo $f = \text{Dom } f^{-1} = (-2, \infty)$.

155.
$$f(x) = \sqrt[3]{x+1}$$
.
 $R: f^{-1}(x) = (x-1)^3$, Dom $f = \text{Rgo } f^{-1} = \mathbb{R}$, Rgo $f = \text{Dom } f^{-1} = \mathbb{R}$.

156.
$$f(x) = \sqrt{x} + 4$$
.
 $R: f^{-1}(x) = (x - 4)^2$, Dom $f = \text{Rgo } f^{-1} = [0, \infty)$, Rgo $f = \text{Dom } f^{-1} = [4, \infty)$.

157.
$$f(x) = x^2 + 6x + 10$$
.

R:

a)
$$f^{-1}(x) = \sqrt{x-1} - 3$$
, Dom $f = \text{Rgo } f^{-1} = [-3, \infty)$, Rgo $f = \text{Dom } f^{-1} = [1, \infty)$.

b)
$$f^{-1}(x) = -(\sqrt{x-1} + 3)$$
, Dom $f = \text{Rgo } f^{-1} = (-\infty, -3]$, Rgo $f = \text{Dom } f^{-1} = [1, \infty)$

158.
$$f(x) = x^2 - 4x$$
.

R:

a)
$$f^{-1}(x) = \sqrt{x+4} - 2$$
, Dom $f = \text{Rgo } f^{-1} = [2, \infty)$, Rgo $f = \text{Dom } f^{-1} = [-4, \infty)$.

b)
$$f^{-1}(x) = 2 - \sqrt{x+4}$$
, Dom $f = \text{Rgo } f^{-1} = (-\infty, 2]$, Rgo $f = \text{Dom } f^{-1} = [-4, \infty)$.

159.
$$f(x) = 4x + 7$$
.
 $R: f^{-1}(x) = \frac{x-7}{4}$, Dom $f = \text{Rgo } f^{-1} = \mathbb{R}$, Rgo $f = \text{Dom } f^{-1} = \mathbb{R}$.

160.
$$f(x) = \frac{1}{x-3} + 2$$
.
 $R: f^{-1}(x) = \frac{1}{x-2} + 3$, Dom $f = \text{Rgo } f^{-1} = \mathbb{R} - \{3\}$, Rgo $f = \text{Dom } f^{-1} = \mathbb{R} - \{2\}$.

161.
$$f(x) = \ln(x+7) + 2$$
.
 $R: f^{-1}(x) = e^{x-2} - 7$, Dom $f = \text{Rgo } f^{-1} = (-7, \infty)$, Rgo $f = \text{Dom } f^{-1} = \mathbb{R}$.

162.
$$f(x) = |x+4| - 3$$
.

R:

a)
$$f^{-1}(x) = x - 1$$
, Dom $f = \text{Rgo } f^{-1} = [-4, \infty)$, Rgo $f = \text{Dom } f^{-1}(x) = [-3, \infty)$.

b)
$$f^{-1}(x) = -(x+7)$$
, Dom $f = \text{Rgo } f^{-1} = (-\infty, -4]$, Rgo $f = \text{Dom } f^{-1}(x) = [-3, \infty)$.