Anemia Sense: Leveraging Machine Learning for Precise Anemia Recognitions

Team ID: SWTID1720078683

Team Members:

- 1. Dinesh. R
- 2. G. Achuth
- 3. Lakshmanan. L
- 4. Agash. JP

Project Initialization and Planning Phase

Date	10 July 2024
Team ID	SWTID1720078683
Project Name	Anemia Sense: Leveraging Machine Learning for Precise Anemia Recognitions

Define Problem Statements:

Developing an anemia prediction system aimed at health-conscious individuals who seek to assess their health status based on detailed blood reports. The system must accurately classify the presence of anemia using key blood parameters such as Hemoglobin, MCH, MCHC, and MCV. This initiative addresses the need for reliable health insights, ensuring users can make informed decisions about their well-being promptly and effectively.

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
Anemia Prediction	A health- conscious individual	Predict if I have anemia	The prediction model lacks accuracy	I need reliable health insights based on my blood report	Concerned about my health

Project Proposal (Proposed Solution)

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview	
Objective	The objective of Anemia sense is to develop a machine learning-based system for the accurate detection and management of anemia. By
Scope	The Anemia sense project will focus on developing a machine learning system for accurate anemia detection and management. This includes
Problem Statement	
Description	Anemia, marked by a deficiency of red blood cells or hemoglobin, often goes undetected or is diagnosed late due to traditional, time-consuming
Impact	Solving the problem of timely and accurate anemia detection with Anemia sense will enable early diagnosis and prompt treatment, reducing health
Proposed Solution	
Approach	To detect the presence of anemia using patient data, we will develop a Gradient Boosting model utilizing features such as Gender, Hemoglobin
Key Features	Our approach includes thorough data preprocessing, emphasizing under sampling to handle class imbalance effectively. Critical features such as

Resource Requirements

Resource Type	Description	Specification/Allocation	
Hardware			
Computing Resources	CPU/GPU specifications, number of cores	Integrated GPUs	
Memory	RAM specifications	8 GB	
Storage	Disk space for data, models, and logs	512 GB SSD	
Software			

Frameworks	Python frameworks	Flask						
Libraries	Additional libraries Matplotlib, Seaborn, Sci pandas, NumPy							
Development Environment	IDE, version control	Jupyter Notebook, Git						
Data								
Data	Source, size, format	Smart Wallet Platform, 1421 rows of data, CSV file						

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional	User	User Story	Story	Priority	Team	Sprint	Spri
	Requirement	Story	/ Task	Points		Membe	Start Date	nt
	(Epic)	Number				rs		End
								Date
								(Plan
								ned)
Sprint-1	Project	AS-2	Define	3	High	G.Achu	7-07-2024	8-07-
	Initialization		Problem			th		2024
	and Planning		Statements					
	Phase							
Sprint-1	Project	AS-3	Project	2	Medium	Lakshma	7-07-2024	8-07-
	Initialization		Proposal			nan.L		2024
	and Planning							
	Phase							
Sprint-1	Project	AS-4	Initial	2	Medium	Dinesh	7-07-2024	8-07-
	Initialization		Project			.R		2024
	and Planning		Planning					
	Phase		Report					
					_			

Sprint-1	Data Collection	AS-6	Data	2	Medium	G.Achu	7-07-2024	8-07-	
	and		Quality			th		2024	
	Preprocessing		Report						l
	Phase								l

Sprin t-1	Data Collection and Preprocessi	AS-7	Data Collection Plan and Raw Data Sources Identification Report	2	Medi um	Lakshman an.L	7-07- 2024	8-07- 2024
Sprin t-1	Data Collection and Preprocessi	AS-8	Data Exploration and Preprocessing Report	2	Medi um	Agash.JP	7-07- 2024	8-07- 2024
Sprin t-2	Model Developme nt Phase	AS-10	Initial Model Training Code, Model Validation and	3	High	G.Achuth	8-07- 2024	9-07- 2024
Sprin t-2	Model Developme nt Phase	AS-11	Model Selection Report	3	High	Dinesh.R	8-07- 2024	9-07- 2024
Sprin t-2	Model Developme nt Phase	AS-12	Model Optimization and Tuning Report	3	High	Agash.JP	8-07- 2024	9-07- 2024
Sprin t-3	Project Executable Files	AS-14	Model Training File	3	High	Dinesh.R	10-07- 2024	11-07- 2024
Sprin t-3	Project Executable Files	AS-15	Model Testing File	3	High	Lakshman an.L	10-07- 2024	11-07- 2024
Sprin t-3	Project Executable Files	AS-16	Flask Files	2	Medi um	G.Achuth	10-07- 2024	11-07- 2024
Sprin t-3	Documenta tion and Demonstrat	AS-18	Project Documentation	3	High	Dinesh.R	10-07- 2024	11-07- 2024

Sprin	Documenta	AS-19	Project Demonstration	2	Medi	Lakshman	10-07-	11-07-
t-3	tion and				um	an.L	2024	2024
	Demonstrat							

Screenshots:

Data Collection and Preprocessing Phase

Data Exploration and Preprocessing

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Descrip	Description							
]: data.d	escribe()	Hemoglobin	мсн	мснс	MCV	Result		
		1421.000000	1421.000000	1421.000000	1421.000000	1421.000000	1421.000000		
	mean	0.520760	13.412738	22.905630	30.251232	85.523786	0.436312		
	std	0.499745	1.974546	3.969375	1.400898	9.636701	0.496102		
	min	0.000000	6.600000	16.000000	27.800000	69.400000	0.000000		
	25%	0.000000	11.700000	19.400000	29.000000	77.300000	0.000000		
ata Overview	50%	1.000000	13.200000	22.700000	30.400000	85.300000	0.000000		
	75%	1.000000	15.000000	26.200000	31.400000	94.200000	1.000000		
	max	1.000000	16.900000	30.000000	32.500000	101.600000	1.000000		
	data.s								

sns.pairplot(data) Multivariate Analysis

Data Preprocessing Code Screenshots

Loading Data	<pre>data = pd.read_csv('anemia.csv')</pre>
	<pre>data.isnull().any()</pre>
Handling Missing Data	data.isnull().sum()

Data Quality Report

The Data Quality Report will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

Data Source	Data Quality Issue	Severity	Resolution Plan
https://drive.google.com /file/d/1KMJFNFGwoaQ oAoulPabMEHcT1bvqE Xau/view?usp=sharing	Data Imbalance in the Gender Column.	Low	Used under sampling technique to balance the dataset.

Data Collection Plan & Raw Data Sources Identification

Elevate your data strategy with the Data Collection plan and the Raw Data Sources report, ensuring meticulous data curation and integrity for informed decision-making in every analysis and decision-making endeavor.

Data Collection Plan

Section	Description
Project Overview	Anemia sense leverages machine learning algorithms to provide precise recognition and management of anemia, a condition characterized by a
Data Collection Plan	Skill Wallet Platform
Raw Data Sources	File Name: anemia.csv
Identified	File Size: 33.8 KB

Raw Data Sources

Source Name	Description	Location/ URL	Format	Size	Access Permissions
Dataset 1	The dataset contains 1,421 entries with 6 columns: Gender, Hemoglobin, MCH, MCHC, MCV, and Result, all with non-null values. It includes information on blood parameters and the presence or absence of anemia. Gender is likely encoded as 0 and 1, while Result indicates anemia status, with 0 for no anemia and 1 for anemia.	https://drive. google.com/f ile/d/1KMJF NFGwoaQo AoulPabME HcT1bvqEX au/view?usp =sharing	CSV	33.8 KB	Public

Feature Selection Report

In the forthcoming update, each feature will be accompanied by a brief description. Users will indicate whether it's selected or not, providing reasoning for their decision. This process will streamline decision-making and enhance transparency in feature selection.

Feature	Description	Selected (Yes/No)	Reasoning
Gender	Binary indicator of gender (0: Male, 1: Female)	Yes	Relevant for potential gender differences in anemia
Hemoglobin	Hemoglobin level	Yes	Primary indicator of anemia
МСН	Mean Corpuscular Hemoglobin is a measure of the average amount of hemoglobin per red blood cell	Yes	Indicator for red blood cell characteristics

Mean Corpuscular	Yes	Indicator for red blood cell
Hemoglobin		concentration
Concentration		
indicates the		
concentration of		
hemoglobin in a given		
volume of		
packed red blood cells		
	Hemoglobin Concentration indicates the concentration of hemoglobin in a given volume of	Hemoglobin Concentration indicates the concentration of hemoglobin in a given

MCV	Mean Corpuscular	Yes	Indicator for red blood cell volume
	Volume measures the		
	average volume of red		
	blood cells		

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
log = LogisticRegression()

log.fit(x_train,y_train)

* LogisticRegression
LogisticRegression()
```

```
rf = RandomForestClassifier()

rf.fit(x_train,y_train)

rRandomForestClassifier
RandomForestClassifier()
```

```
dec = DecisionTreeClassifier()

dec.fit(x_train,y_train)

* DecisionTreeClassifier

DecisionTreeClassifier()
```

```
NB = GaussianNB()

NB.fit(x_train,y_train)

* GaussianNB
GaussianNB()
```

```
SVM = SVC()

SVM.fit(x_train,y_train)

* SVC
SVC()
```

```
GB = GradientBoostingClassifier()

GB.fit(x_train,y_train)

* GradientBoostingClassifier

GradientBoostingClassifier()
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Logistic Regression	acc_lr = accuracy_score(y_test,y_predict) acc_lr 0.9798387096774194 rep_lr = classification_report(y_test,y_predict) print(rep_lr) precision recall f1-score support 0 0.99 0.97 0.98 123 1 0.97 0.99 0.98 125 accuracy 0.98 248 macro avg 0.98 0.98 0.98 248 weighted avg 0.98 0.98 0.98 248	0.9798	<pre>confusion_matrix(y_test,y_predict) array([[119, 4],</pre>
Random Forest Classifier	acc_rf = accuracy_score(y_test,y_predict) acc_rf 1.0 rep_rf = classification_report(y_test,y_predict) print(rep_rf) precision recall f1-score support 0 1.00 1.00 1.00 123 1 1.00 1.00 1.00 125 accuracy 1.00 248 macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248	1.00	<pre>confusion_matrix(y_test,y_predict) array([[123, 0],</pre>
Decision Tree Classifier	acc_dc = accuracy_score(y_test,y_predict) acc_dc 1.0 rep_dc = classification_report(y_test,y_predict) print(rep_dc) precision recall f1-score support 0 1.00 1.00 1.00 123 1 1.00 1.00 1.00 125 accuracy 1.00 248 macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248	1.00	<pre>confusion_matrix(y_test,y_predict) array([[123, 0],</pre>

Gaussian Naïve Bayes	acc_NB = accuracy_score(y_test,y_predict) acc_NB 0.9516129032258065 rep_NB = classification_report(y_test,y_predict) print(rep_NB) precision recall f1-score support 0 0.97 0.93 0.95 123 1 0.93 0.98 0.95 125 accuracy 0.95 248 macro avg 0.95 0.95 0.95 248 weighted avg 0.95 0.95 0.95 248	0.9516	confusion_matrix(y_test,y_predict) array([[113, 10],
Support Vector Machine	acc_svm = accuracy_score(y_test,y_predict) acc_svm 0.9032258064516129 rep_svm = classification_report(y_test,y_predict) print(rep_svm) precision recall f1-score support 0 0.98 0.82 0.89 123 1 0.85 0.98 0.91 125 accuracy 0.90 248 macro avg 0.91 0.90 0.90 248 weighted avg 0.91 0.90 0.90 248	0.9032	<pre>confusion_matrix(y_test,y_predict) array([[101, 22],</pre>
Gradient Boosting Classifier	acc_GB = accuracy_score(y_test,y_predict) acc_GB 1.0 rep_GB = classification_report(y_test,y_predict) print(rep_GB) precision recall f1-score support 0 1.00 1.00 1.00 123 1 1.00 1.00 1.00 125 accuracy 1.00 248 macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248	1.00	<pre>confusion_matrix(y_test,y_predict) array([[119, 4],</pre>

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Selection Report:

Model	Description	Hyperparamet ers	Performance Metric (e.g., Accuracy, F1 Score)
Logistic Regression	Logistic regression is a statistical method for binary classification that models the probability of a binary outcome using a logistic function to constrain the output between 0 and 1.	-	Accuracy – 0.9798
Random Forest Classifier	Random Forest is an ensemble learning method that builds multiple decision trees and merges their results to improve accuracy and control over-fitting.	-	Accuracy – 1.00
Decision Tree Classifier	A decision tree is a flowchart-like structure where each internal node represents a decision based on a feature, each branch represents the outcome of the decision, and each leaf node represents a class label.	-	Accuracy – 1.00
Gaussian Naïve Bayes	Gaussian NB is a variant of the Naive Bayes classifier that assumes the features follow a Gaussian (normal) distribution, used for probabilistic classification.	-	Accuracy – 0.9516
Support Vector Machine	SVM is a supervised learning model that finds the optimal hyperplane which maximizes the margin between different classes in the feature space.	-	Accuracy – 0.9032

Gradient Boosting Classifier	Gradient Boosting is an ensemble technique that builds models sequentially, with each new model attempting to correct the errors of the previous models,	-	Accuracy – 1.00
------------------------------------	--	---	-----------------

Out of all the 6 above mentioned models, we selected the Gradient Boosting Classifier Model for our project, due to the high accuracy that we got.

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learningmodels for peakperformance. It includes optimizedmodel code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation:

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	<pre>[44]: from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import RandomizedSearchCV [45]: dec = DecisionTreeClassifier() [46]: param_grid = (</pre>	partition promotes: [financia partition]] partition promotes: [financia partition]] bet menter: [matter: here], or promotes: (financia partition), here partition (financia), here part


```
From sklearn.model_selection import GradientBoostingClassifier

from sklearn.model_selection import RandomizedSearchCV

GB = GradientBoostingClassifier()

param_grid = {
    ''a_sstimators': [50, 180, 200],
    'learning_set': [0.01, 0.1, 0.2],
    ''am__semples_split': [2, 5, 10],
    ''ain__semples_split': [2, 5, 10],
    ''ain__semples_split': [2, 2, 4],
    ''subsamples': [8.8, 1.0]

Boosting

GB = RandomizedSearchCV(GB, param_grid, cvm5)

GB.fit(x_train,y_train)

RandomizedSearchCV(GB, param_grid, cvm5)

GR.fit(x_train,y_train)

RandomizedSearchCV

estimator: GradientBoostingClassifier

FGradientBoostingClassifier
```

Performance Metrics Comparison Report:

Model		Opti	mize	d Me	tric	
	rep_dc = classi print(rep_dc)	fication_r		est,y_pred: f1-score	ict) support	
	9	1.00	1.00	1.00	123	
	1	1.00	1.00	1.00	125	
Decision Tree	accuracy macro avg weighted avg confusion_matri array([[123,			1.00 1.00 1.00	248 248 248	

	rep_rf = classi	fication_rep	ort(y_test,	y_predict)		
	<pre>print(rep_rf)</pre>					
	P	recision	recall f1	score suppo	ort	
	9	1.00	1.00			
	1	1.00	1.00	1.00		
Random Forest	accuracy				48	
Randoni Forest	macro avg weighted avg	1.00	1.00		.48 .48	
	weighted avg	1.00	1.00	1.00	.40	
	confusion_matri	x(y_test,y_p	redict)			
	455.00					
		0], 5]], dtype=i	nt64)			
	[0, 11					
			,			
	rep_GB = clas	ssification		_test,y_pred	lict)	
	rep_GB = clas print(rep_GB)	ssification)	_report(y			
		ssification	_report(y	_test,y_pred l f1-score	lict) support	
		ssification)	_report(y	l f1-score		
	print(rep_GB)	ssification) precision 1.00	_report(y	l f1-score	support	
	print(rep_GB)	ssification) precision 1.00	_report(y	1 f1-score 3 1.00	support 123 125	
Sun di aut Danatin a	print(rep_GB) 0 1 accuracy	ssification) precision 1.00	_report(y recal 1.0	l f1-score 1.00 1.00	support 123 125 248	
Gradient Boosting	print(rep_GB)	ssification) precision 1.00 1.00	_report(y_ recal 1.0 1.0	1.00 1.00 1.00 1.00	support 123 125	
Gradient Boosting	print(rep_GB) 0 1 accuracy macro avg	ssification) precision 1.00 1.00	_report(y_ recal 1.0 1.0	1.00 1.00 1.00 1.00	support 123 125 248 248	
Gradient Boosting	print(rep_GB) 0 1 accuracy macro avg weighted avg	precision 1.00 1.00 1.00	report(y, recal 1.0 1.0 1.0 1.0	1 f1-score 2 1.00 3 1.00 1.00 1.00 2 1.00 3 1.00	support 123 125 248 248	
Gradient Boosting	print(rep_GB) 0 1 accuracy macro avg	precision 1.00 1.00 1.00	report(y, recal 1.0 1.0 1.0 1.0	1 f1-score 2 1.00 3 1.00 1.00 1.00 2 1.00 3 1.00	support 123 125 248 248	
Gradient Boosting	print(rep_GB) 0 1 accuracy macro avg weighted avg	precision 1.00 1.00 1.00 trix(y_test	report(y, recal 1.0 1.0 1.0 1.0	1 f1-score 2 1.00 3 1.00 1.00 1.00 2 1.00 3 1.00	support 123 125 248 248	
Gradient Boosting	print(rep_GB) 0 1 accuracy macro avg weighted avg confusion_mat array([[123,	precision 1.00 1.00 1.00 trix(y_test	recal 1.0 1.0 1.0 1.0 1.0	1 f1-score 2 1.00 3 1.00 1.00 1.00 2 1.00 3 1.00	support 123 125 248 248	

Final Model SelectionJustification:

Final Model	Reasoning
Gradient Boosting	The Gradient Boosting model was selectedfor its superiorperformance, exhibiting high accuracy duringhyperparameter tuning. Its ability to handle complexrelationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifyingits selection as the final model