

● CONTENTS ●

- 8.1 热学的研究对象和研究方法
- 8.2 平衡态 理想气体状态方程
- 8.3 功 热量 内能 热力学第一定律
- 8.4 准静态过程中功和热量的计算
- 8.5 理想气体的内能和 C_v, C_p
- 8.6 热力学第一定律对理想气体 在典型准静态过程中的应用
- 8.7 绝热过程
- 8.8 循环过程
- 8.9 热力学第二定律
- 8.10 可逆过程与不可逆过程
- 8.11 卡诺循环 卡诺定理

● CONTENTS ●

■ 8.1 热学的研究对象和研究方法

- □ 8.2 平衡态 理想气体状态方程
- □ 3.3 功 热量 內能 热力学第一定律
- □ 8.4 准静态过程中功和热量的计算
- 3.5 理想气体的内能和 C_0 , C_0
- □ 8.5 热力学第一定律对理想气体

在典型准静态过程中的应用

- □ 3.7 绝热过程
- □ 8.8 循环过程
- □ 8.9 热力学第二定律
- □ 3.10 可逆过程与不可逆过程
- □ 8.11 卡诺循环 卡诺定型

8.1 热学的研究对象和研究方法

> 热学的研究对象

热现象: 与温度有关的物理性质及状态的变化。

热学是研究与热现象有关的规律的科学。

- □特点:
 - (1) 热现象是组成物质的大量分子无规则运 动的集中表现。
- (2)热现象是组成物质的分子热运动的结果。

> 热学的研究方法

1.微观法 ——统计物理学

研究大量数目的粒子系统的热运动,应用模型假设和统计方法.

2.宏观法 ——热力学

以实验为基础,给出宏观物体热现象的规律, 从能量观点出发,分析研究物态变化过程中热功转 换的关系和条件.

统计物理学 热力学 宏观理论 微观理论 研究对象 热现象 微观量 宏观量 物理量 (温度、压强) (质量、动量) 出发点 观察和实验 微观粒子 统计平均方法 总结归纳 方法 逻辑推理 力学规律 二者关系 相互补充、渗透 大量粒子的运动遵循统计规律性。

● CONTENTS ●

□ 8.1 热学的研究对象和研究方法

■ 8.2 平衡态 理想气体状态方程

- □ 8.3 功 热量 內能 热力学第一定律
- □ 8.4 准静态过程中功和热量的计算
- □ 8.5 理想气体的内能和 C,, C,
- □ 8.6 热力学第一定律对理想气体 在典型推静态过程中的应用
- □ 8.7 绝热过程
- □ 8.8 循环过程
- □ 8.9 热力学第二定律
- □ 8.10 可逆过程与不可逆过程
- □ 8.11 卡诺循环 卡诺定理

8.2 平衡态 理想气体状态方程

> 气体的状态参量

状态参量:用以描述物体系统运动状态的物理量。 (几何参量,力学参量,化学参量,电磁参量)

V p T ho, M_{mol} $ec{E},$ $ec{P},...$

气体的状态参量: 温度、体积、压强、内能等

	体积V	压强p	温度T
宏观上	气体所能达到的 空间。 (容器大小)	气体作用于容器器壁单位面积的正压力,即 $p=F/S$ 。	物体的冷热程度。
微观上	体积是由于分子 作无规热运动所 能 达到的空间。	大量分子作无规热 运动,对器壁的撞 击力。	大量分子作 热运动的剧 烈程度。
单位:	m ³ 或 L 1L=10 ⁻³ m ³	Pa(帕斯卡) 1Pa = 1Nm ⁻² 1标准大气压 = 760 mmHg = 1.013×10 ⁵ Pa	K (开尔文) ℃ (摄氏度) 0℃ = 273.15K

t = T - 273.15

平衡态:不受外界影响的条件下,系统宏观性质均匀一致、不随时间变化的状态。

- (1) 不受外界影响是系统与外界没有能量和质量交换。
- (2) 平衡态 是一种近似的、理想的宏观状态。
- (3) 热力学中的平衡 是一种动的平衡. 热动平衡
- (4)一个平衡态可用一组状态参量值(p,V,T)表示。

准静态过程/平衡过程

准静态过程:每一时刻系统都无 限接近于平衡态的过程。

当外界条件改变时,系统状态变化。

平衡态1 热力学过程 平衡态2

更快时,

非静态过程: 是对 "无限缓慢" 的实际过 程的近似描述。

准静态/平衡过程: 若过程足够缓慢,则过程中 每一时刻系统都无限接近于平衡态。

p~V图上表示平衡态。

❖ 理想气体状态方程

实验表明:处于平衡态的系统的三个参量 p,V,T之间存在一定的关系。

气体的状态方程:

反映气体的p, V, T之间的关系式。

$$f(p, V, T) = 0.$$

对于一般气体:在密度不太高、压强不太大、温度不太低的情况下,有范围的遵守三条实验定律(玻意耳定律,盖一吕萨克定律,查理定律)。

$$pV = C.$$
 $V = V_0(1 + a_v T),$ $p_1/p_2 = T_1/T_2$

◆ 理想气体(抽象化的理想模型)

(认为理想气体无条件的满足3条实验定律)

理想气体的状态方程:

$$pV = \nu RT$$

(克拉伯龙方程)

$$\nu$$
: 摩尔数, $\nu = \frac{M}{M_{\text{mol}}}$

R: 摩尔气体常量, 8.31 J/(mol·K)。

T: 热力学温度(K, 开尔文)

T不变

玻—马定律 PV = constant

克拉伯龙方程 $PV = \nu RT$

 ν =1mol

PV/T = R

P不变

盖—吕萨克定律 V/T = constant

V不变

查理定律 P/T = constant

注意

- 1、理想气体是抽象出来的理想化模型
- 2、对于一般气体,在密度不太高、压强不太 大、温度不太低的情况下,可近似视为理想 气体。
- 3、理想气体状态方程在质量不变的情况下有

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

● CONTENTS ●

- □ 8.1 热学的研究对象和研究方法
- □ 8.2 平衡态 理想气体状态方程

■ 8.3 功 热量 内能 热力学第一定律

- □ 8.4 准静态过程中功和热量的计算
- □ 8.5 理想气体的内能和 C₁, C₂
- □ 8.6 热力学第一定律对理想气体 在典型推静态过程中的应用
- □ 8.7 绝热过程
- □ 8.8 循环过程
- □ 8.9 热力学第二定律
- □ 8.10 可逆过程与不可逆过程
- □ 8.11 卡诺循环 卡诺定理

❖ 内能

状态量,描述状态的物理量,是状态参量的函数。 (如 P、V、T都是状态量)

气体的内能

$$E = \frac{M}{M_{mol}} \frac{i}{2} RT$$

(内能是状态量!)

状态量的特征. 状态量的增量只取决于初始状态和末了状态,与过程无关!

$$\Delta E = \frac{M}{M_{mol}} \frac{i}{2} R \Delta T$$

❖功 热量

改变内能的方法

外界对系统作功(或反之)。

外界对系统传热(或反之)。

计算系统在准静态膨胀过程中所作的功:

$$dA = P \cdot S \cdot dl$$

当活塞移动一段有限距离时

压强作功

注意:

1) 此过程所作的功反映在P-V 图上,就是曲线下的面积。

符号法则:

系统对外界作功,A为正。

外界对系统作功,A为负。

- 2) 如图:系统对外界作了功,系统的状态变了, 内能也变了。
 - "功"是系统内能变化的量度,

功不仅与初、末态有关,还与过程有关是过程量。

❖热量

在单纯的传热过程中,系统内能的增量,等于它从外界吸收的热量。

$$Q = E_2 - E_1$$

符号法则:

系统吸热, Q为正。

系统放热, Q为负。

注意:

- (1) 作功和传热对改变系统的内能效果是一样的。 (要提高一杯水的温度,可加热,也可搅拌)
- (2) 国际单位制中,功、热、内能单位:焦耳(J)。 (1卡 = 4.18 焦耳)

(3) 功和热量都是系统内能变化的量度,但功和热本身绝不是内能。

内能: 状态量,系统每个状态都对应着一定内能的数值。

功、热量:过程量,只有在状态变化过程中才有意义,状态不变,无功、热可言。

(4) 作功、传热在改变内能效果上一样,但有本质区别

作功:通过物体宏观位移来完成,是系统外物体的有规则运动与系统内分子无规则运动之间的转换。

传热:通过分子间的相互作用来完成,是系统外、 内分子无规则运动之间的转换。

❖ 热力学第一定律

1. 数学表式

$$Q = \Delta E + A$$

对微小变化过程

$$dQ = dE + dA$$

系统从外界吸热 ΔQ为正 符号法则 系统对外界作功 ΔA为正 系统内能增加 ΔE为正

2. 热力学第一定律的物理意义

- (1) 外界对系统所传递的热量ΔQ一部分用于系统对外作功,一部分使系统内能增加。
- (2) 热一律是包括热现象在内的能量转换和守恒 定律。

经一循环过程不要任何能量供给不断地对外作功,或较少的能量供给,作较多的功行吗?

以汉少的配里伏箔, 作汉多的划门吗;

热一律可表述为:

第一类永动机是不可能制成的!

适用范围:任何热力学系统的任何热力学过程。 (平衡过程可计算 ΔQ 、 ΔA)

● CONTENTS ●

- □ 热学的研究对象和研究方法
- □ 平衡态 理想气体状态方程
- □ 功 热量 內能 热力学第一定律

■ 准静态过程中功和热量的计算

- □ 理想气体的内能和 C_v
- 熱力学第一定律对理想气体在典型推静态过程中的 应用
- □ 绝热过程
- □ 热力学第二定律
- □ 可逆过程与不可逆过程
- □ 卡诺循环 卡诺定理

一、准静态过程

1. 准静态过程

热力学过程: 热力学系统(大量微观粒子组成的气体、固体、液体) 状态随时间变化的过程。

系统从平衡态1到平衡态 2,经过一个过程: 平衡态 1 必首先被破坏,系统变为非平衡态, 从非平衡态到新的平衡态所需的时间为弛豫 时间。

非静态过程

当系统宏观变化比弛豫更快时,这个过程中每一状态都是非平衡态。

准静态过程

在过程中每一时刻,系统 都处于平衡态,这是一种 理想过程。

当系统弛豫比宏观变化快得多时,这个过程中每一状态都可近似看作平衡态,该过程就可认为是准静态过程。

准静态过程: 在过程 进行的每一时刻,系统都 无限地接近平衡态。

准静态过程是实际过程 "无限缓慢"进行时的极限。

准静态过程是一种理想的极限。

准静态过程和非静态过程

例:系统(初始温度 T_1)从外界吸热

❖ P-V 图与准静态过程

状态图中任何一点都代表系统的一个平衡态,故准静态过程可以用系统的状态图,如P-V图(或P-T图,V-T图)中一条曲线表示,反之亦如此。

二、准静态过程功的计算

当活塞移动微小位移dl时,气体对外所作的元功:

$$dA = Fdl = pSdl = pdV$$

S为活塞面积,dV是系统体积增量。

系统体积由 $V_1 \rightarrow V_2$,系统对外界作的总功:

$$A = \int_{V_1}^{V_2} p \mathrm{d}V$$

注意:作功与过程有关。

功的图示
$$A = \int_{V_1}^{V_2} p dV$$

功的大小等于 $p \sim V$ 图中过程曲线 下的面积。

比较 A, B下的面积可知, 功的数值不仅与初态和末态有关, 而且还依赖于所经历的中间状态, 功与过程的路径有关。

功是过程量。

功有正负之分

三、准静态过程中热量的计算 热容

1. 热量计算

$$Q = \Delta E + \int_{V_1}^{V_2} p \mathrm{d}V$$

等体过程 气体体积不变,对外界不做功, 吸收的热量等于内能的增量。

$$Q_V = \Delta E$$

等压过程 气体压强不变,气体体积变化时, 对外界做功为

$$A = p\Delta V$$
 $\therefore Q_p = \Delta E + p\Delta V$

2. 热容

质量为m的物体, 外界吸收热量为 当其温度从 T_1 变到 T_2 时,从

 $Q = cm\Delta T$

比热容c

单位质量的物体在温度升高(或降低)1K时所吸收(或放出)的热量。

热容mc

质量为m的物体温度升高1K 所吸收的热量。

摩尔热容

1mol物质的热容,也就是1mol物质温度升高1K所吸收的热量。

实验表明,不同物质的比热容值不同。 对于同一物质,在温度变化范围不太大的时候,

$$Q/\Delta T = 常数$$

而对于一定质量的同种<u>气体</u>, $Q/\Delta T \neq 常数$

- (1)有相同的温度变化时,吸收或放出的<u>热量随</u>过程不同而异,所以其<u>热容值不再是常量</u>,且<u>与过</u>程有关。
- (2) 只有在指明了具体的过程以后,热容值才能 唯一的确定。在某些特定过程中,热容值才是常量。

气体摩尔热容

设:1mol 理想气体,经某一过程 x,吸热 Q,温度变化 ΔT 。

在吸收 ΔT 的过程中,C不再是常量,当 $\Delta T \rightarrow 0$ 时,可得到气体摩尔热容定义式

$$C_{x} \equiv \lim_{\Delta T \to 0} \frac{Q}{\Delta T} = \frac{\mathrm{d}Q_{x}}{\mathrm{d}T}$$

注意:

- (1)不同的热力学过程,摩尔热容是不同的。常用的摩尔热容有等体过程 C_v ,等压过程 C_p 。
 - (2) 热容是过程量。

定体摩尔热容
$$C_{V}$$
 $Q_{V} = \Delta E$

$$Q_V = \Delta E$$

1mol 理想气体,在等体过程中的热容。

$$C_{V} = \lim_{\Delta T \to 0} \frac{Q_{V}}{\Delta T} = \lim_{\Delta T \to 0} \frac{\Delta E}{\Delta T} = \left(\frac{dE}{dT}\right)_{V}$$

定压摩尔热容 C_p $Q_p = \Delta E + p\Delta V$

$$Q_p = \Delta E + p\Delta V$$

1mol 理想气体,在等压过程中的热容。

$$C_{p} \equiv \lim_{\Delta T \to 0} \frac{Q_{p}}{\Delta T} = \lim_{\Delta T \to 0} \frac{\Delta E + p\Delta V}{\Delta T} = \left(\frac{\mathrm{d}E}{\mathrm{d}T}\right)_{p} + p\left(\frac{\mathrm{d}V}{\mathrm{d}T}\right)_{p}$$

● CONTENTS ●

- □ 热学的研究对象和研究方法
- □ 平衡态 理想气体状态方程
- □ 功 热量 內能 热力学第一定律
- □ 准静态过程中功和热量的计算

■ 理想气体的内能和 C_v C_p

- □ 热力学第一定律对理想气体在典型准静态过程中的 应用
- □ 绝热过程
- □ 热力学第二定律
- □ 可逆过程与不可逆过程
- □ 卡诺循环 卡诺定理

❖ 理想气体的内能和热容 C_v

1. 摩尔等体热容 C_V

等体过程, 外界对系统不做功

$$Q = \Delta E + A$$

$$C_V = \lim_{\Delta T \to 0} \frac{Q_V}{\Delta T} = \left(\frac{dE}{dT}\right)_V$$

内能E与p、V、T 关系如何?

焦耳实验 (1845年) 膨胀前后气体温度不变

$$T_2 = T_1$$

气体绝热自由膨胀过程中

$$Q = 0 \qquad A = 0$$

$$Q = (E_2 - E_1) + A$$

$$\therefore E = E(T)$$

理想气体的内能仅是其温度的单值函数。

理想气体内能是温度单值函数 E = E(T) 的意义

$$C_V = \lim_{\Delta T \to 0} \frac{Q_V}{\Delta T} = \left(\frac{dE}{dT}\right)_V$$

$$(dE)_{V} = C_{V}dT$$

由于理想气体内能是温度的单值函数 E = E(T)

$$C_V = \left(\frac{dE}{dT}\right)_V = \left(\frac{dE}{dT}\right)_p = \frac{dE}{dT}$$

$$(dE)_V = \left(dE\right)_p = \left(dE\right)... = C_V dT$$

$$E(T) = E(T_0) + \int_{T_0}^T v C_V dT$$

由于 C_V , C_P 都近似为常量,则可得温度与热 量关系

$$C_{x} = \frac{\mathrm{d}Q_{x}}{\mathrm{d}T}$$
(1 mol)

等压过程
$$Q_p = \nu C_p(T_2 - T_1)$$

(v mol)

$$Q_{\rm V} = \nu \ C_{\rm V} (T_2 - T_1)$$

$$\Delta E \equiv \nu \ C_{\rm V} (T_2 - T_1)$$

几种分子的 $C_{\rm V}$ 、 $C_{\rm p}$ 和 γ

物理量 分子	定体摩尔热容	定压摩尔热容	比热容比
单原子分子	3R / 2	5R / 2	5/3
刚性双原子分子	5R / 2	7R / 2	7/5
刚性多原子分子	3 <i>R</i>	4 <i>R</i>	4/3

● CONTENTS ●

- □ 热学的研究对象和研究方法
- □ 平衡态 理想气体状态方程
- □ 功 热量 內能 热力学第一定律
- □ 推静态过程中功和热量的计算
- □ 理想气体的内能和 Cv Cp
- 热力学第一定律对理想气体在典型准 静态过程中的应用
- □ 绝热过程
- □ 热力学第二定律
- □ 可逆过程与不可逆过程
- □ 卡诺循环 卡诺定理

• 等体过程

1 特征: dV=0, V=恒量, 参量关系 P/T = 恒量

2 热一律表达式:

$$\begin{cases} dQ = dE \\ (\Delta Q)_V = \Delta E \quad \text{对有限变化过程} \end{cases}$$

意义:

系统吸收的热量全部用来增加系统本身的内能,系统对外不做功。

1. 过程曲线

平行于p 轴的等体线。

$$A = \int_{V_1}^{V_2} dA = \int_{V_1}^{V_2} p dV = 0$$

3. 热量

$$Q_{\rm V} = \nu \ C_{\rm V} (T_2 - T_1)$$

$$\therefore pV = \nu RT$$

$$\therefore \nu T = \frac{pV}{r}$$

$$PV = VRI$$

$$\therefore VT = \frac{pV}{R}$$

$$Q_{V} = \frac{V}{R}C_{V}(p_{2} - p_{1})$$

4. 内能变化 (适应于理想气体的一切过程)

$$dE = dQ + pdV \implies dE = dQ$$

$$\Delta E = Q_V = \nu C_V (T_2 - T_1)$$

• 等压过程

1 特征: dP = 0, P=恒量, 参量关系 V/T = 恒量。

上上一个 上上上
$$V_1$$
 V_2 从一律表达式 V_1 V_2 $Q = dE + dA$ $\Delta Q_1 = \Delta E + \int_{V_1}^{V_2} P dV$ 有限的变化过程

意义:

系统吸收的热量,一部分对外作功,一部 分增加自身的内能。

1. 过程曲线 平行于V轴的等压线。

2. 功 (A 等于等压线下的面积)

$$A = \int p dV = p \int_{V_1}^{V_2} dV = p \Delta V$$

$$\therefore pV = vRT$$

$$A = p(V_2 - V_1) = \nu R(T_2 - T_1)$$

3. 热量

$$:: C_P = \frac{\mathrm{d}Q_P}{\mathrm{d}T} \quad \Rightarrow \quad \mathrm{d}Q_p = C_p \mathrm{d}T$$

v mol理想气体

$$Q_p = \nu C_p (T_2 - T_1)$$

4. 内能变化

$$\Delta E = Q_{p} - A = \nu C_{p} (T_{2} - T_{1}) - \nu R (T_{2} - T_{1})$$

$$= \nu (C_{p} - R) (T_{2} - T_{1})$$

$$\Delta E = \nu C_{\rm V} (T_2 - T_1)$$

(适应于理想气体的一切过程)

例1 水蒸气的 C_p =3.62J/(mol·K)。今将1.50kg 温度100°C的水蒸气,在标准大气压下缓慢加热,使其温度上升到400°C,试求此过程中水蒸气吸收的热量、对外所作的功和内能的改变。水蒸气的摩尔质量 $M=18\times10^{-3}$ kg/mol。

解由于在标准大气压下加热,这是一等压过程。 把水蒸气看成理想气体,注意到其v=m/M,上升的温度为 T_2 - T_1 =300K,则过程中吸收的热量为

$$Q_{p} = v C_{p}(T_{2} - T_{1}) = \frac{m}{M} C_{p}(T_{2} - T_{1})$$
$$= \frac{1.50}{18 \times 10^{-3}} \times 36.2 \times 300 = 9.05 \times 10^{5} J$$

所作的功为

$$A = \nu R(T_2 - T_1) = \frac{m}{M} R(T_2 - T_1)$$

$$= \frac{1.50}{18 \times 10^{-3}} \times 8.31 \times 300 = 2.08 \times 10^5 \text{ J}$$

内能增量为

$$\Delta E = E_2 - E_1 = Q_p - A$$

$$= 9.05 \times 10^5 - 2.08 \times 10^5 = 6.97 \times 10^5 \text{ J}$$

• 等温过程

- 1 特征: d T = 0 , T = 恒量, 参量关系PV = 恒量

意义:系统吸收的热量全部用来对外作功。

3 计算等温过程

$$V_1$$
 V_2

功:
$$A = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} (\frac{1}{V} \frac{M}{\mu} RT) dV = \frac{M}{\mu} RT \ln \frac{V_2}{V_1}$$

 $\therefore P_1 V_1 = P_2 V_2 \quad \therefore A = \frac{M}{\mu} RT \ln \frac{P_1}{P_2}$

 $(\Delta Q)_T = \Delta A$ 内能的改变: $\Delta E = 0$

理想气体的等体、等压、等温过程

内 过 程	特征	过程方程	内能增量 ΔE	系统作功 A	吸收热量 Q	摩尔热容 C
等体	V= 恒量	$\frac{p}{T}$ =恒量		0	$\nu C_{ m V} \Delta T$	$C_{\rm V} = \frac{i}{2}R$
等压	p= 恒量	$\frac{V}{T}$ =恒量	$V C_{V} \Delta T$	pΔV 或 ν R ΔΤ	$ u C_{ m p} \Delta T$	$C_{p} = C_{V} + R$ $= \frac{i+2}{2}R$
等温	T= 恒量	pV = 恒量	0	$vRT \ln \frac{V_2}{V_1}$ 或 $vRT \ln \frac{p_1}{p_2}$		∞

作业:

8.13 8.14

THANKS FOR YOUR ATTENTION