Review Questions

Q1. [Rizzoni Problem 2.13]

Use KCL to determine the unknown currents in the following circuit given that I_0 = -2A, I_1 = -4A, I_S = 8A and V_S = 12V.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure P2.13

Q2. [Rizzoni Problem 2.24]

Apply KVL to Figure P2.24 to find the power dissipated or supplied for each element. Hence determine the amount of power dissipated and supplied overall.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure P2.24

Q3. [Alexander Problem 2.12]

With reference to the circuit in Fig 2.76, find v₁, v₂, and v₃ by applying KVL.

Q4. [Rizzoni Problem 2.21]

In the circuit of Figure P2.21, determine the power absorbed by the resistor R and the power delivered by the current source.

Q5. [Modified from Rizzoni Problem 2.49]

For the circuit shown in Figure P2.49, find the equivalent resistance across the terminals. Let $R_1 = 5 \Omega$, $R_2 = 6 \Omega$, $R_3 = 4 \Omega$, $R_4 = 10 \Omega$, $R_5 = 7 \Omega$ and $R_6 = 10 \Omega$.

Intermediate Level

Q6. [Rizzoni Problem 2.47]

Find the equivalent resistance between terminals *a-b* in the circuit of Figure P2.47.

Figure P2.47

Q7. [Rizzoni Problem 2.64]

In the circuit of Figure P2.64, find the equivalent resistance:

- a) Across a-b when (i) terminals c-d are open and (ii) when terminals c-d are shorted together.
- b) Across c-d when (i) terminals a-b are open and (ii) when terminals a-b are shorted together.

Q8. [Alexander Problem 2.18]

Apply KVL and Ohm's law to find I and V_{ab} in the circuit of Fig 2.82.

10 V 3Ω 5Ω a

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Q9. [Rizzoni Problem 2.46]

In the circuit shown in Figure P2.46, the power absorbed by the 15Ω resistor is 15W. Find R. (Hint: Find the voltage across the 15Ω resistor. Then find the equivalent resistance across the terminals of 15Ω . If we denote this resistance by R_{eq} , next use voltage divider rule with R and R_{eq} in series).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure P2.46

Numerical solutions

Q1. [Rizzoni Problem 2.13]

 $I_2 = 6A, I_3 = 2A$

Q2. [Rizzoni Problem 2.24]

A = 20 W (dissipating), B = 12 W (generating), C = 4 W (dissipating), D= 12 W (generating)

Q3. [Alexander Problem 2.12]

Unknown voltage differences: $v_1 = 70 \text{ V}$, $v_2 = 10 \text{ V}$, $v_3 = 60 \text{ V}$

Q4. [Rizzoni Problem 2.21]

Power consumed by resistor R: 30 W Power supplied by current source: 36 W

Hint: You would need to find V_1 and V_2 first by applying KVL around any mesh or loop (V_1 = 12 V, V_2 = 2 V)

Q5. [Modified from Rizzoni Problem 2.49]

 7Ω

Q6. [Rizzoni Problem 2.47]

 5Ω

Q7. [Rizzoni Problem 2.64]

Part (a)(i) 400Ω

Part (a)(ii) 390 Ω

Part (b)(i) 360Ω

Part (b)(ii) 351 Ω

Q8. [Rizzoni Alexander Problem 2.18]

I = 4 A

 $V_{ab}=28\ V$

Q9. [Rizzoni Problem 2.46]

 $R = 4 \Omega$