Algorithms (2IL15) – Lecture 2 THE GREEDY METHOD

Optimization problems

- for each instance there are (possibly) multiple valid solutions
- goal is to find an optimal solution
 - minimization problem:
 associate cost to every solution, find min-cost solution
 - maximization problem:
 associate profit to every solution, find max-profit solution

Techniques for optimization

optimization problems typically involve making choices

backtracking: just try all solutions

- can be applied to almost all problems, but gives very slow algorithms
- try all options for first choice,
 for each option, recursively make other choices

greedy algorithms: construct solution iteratively, always make choice that seems best

- can be applied to few problems, but gives fast algorithms
- only try option that seems best for first choice (greedy choice),
 recursively make other choices

dynamic programming

in between: not as fast as greedy, but works for more problems

Algorithms for optimization: how to improve on backtracking

for greedy algorithms

- 1. try to discover structure of optimal solutions: what properties do optimal solutions have ?
 - what are the choices that need to be made?
 - do we have optimal substructure?
 optimal solution = first choice + optimal solution for subproblem
 - do we have greedy-choice property for the first choice ?
- 2. prove that optimal solutions indeed have these properties
 - prove optimal substructure and greedy-choice property
- 3. use these properties to design an algorithm and prove correctness
 - proof by induction (possible because optimal substructure)

Today: two examples of greedy algorithms

Activity-Selection

Optimal text encoding

Activity-Selection Problem

Input: set $A = \{a_1, ..., a_n\}$ of n activities for each activity a_i : start time $start(a_i)$, finishing time $end(a_i)$

Valid solution: any subset of non-overlapping activities

Optimal solution: valid solution with maximum number of activities

What are the choices? What properties does optimal solution have?

for each activity, do we select it or not?
 better to look at it differently ...

What are the choices? What properties does optimal solution have?

what is first activity in optimal solution, what is second activity, etc. do we have optimal substructure? optimal solution = first choice + optimal solution for subproblem?

yes!

optimal solution = first activity + optimal selection from activities that do not overlap first activity

proof of optimal substructure

Lemma: Let a_i be the first activity in an optimal solution OPT for A. Let B be the set of activities in A that do not overlap a_i . Let S be an optimal solution for the set B. Then S U $\{a_i\}$ is an optimal solution for A.

Proof. First note that $S \cup \{a_i\}$ is a valid solution for A. Second, note that $OPT \setminus \{a_i\}$ is a subset of non-overlapping activities from B. Hence, by definition of S we have $size(S) \ge size(OPT \setminus \{a_i\})$, which implies that $S \cup \{a_i\}$ is an optimal solution for A.

What are the choices? What properties does optimal solution have?

do we have greedy-choice property: can we select first activity "greedily" and still get optimal solution?

yes!

 $A = \{a_1, ..., a_n\}$: set of n activities

Lemma: Let a_i be an activity in A that ends first. Then there is an optimal solution to the Activity-Selection Problem for A that includes a_i .

Proof. General structure of all proofs for greedy-choice property:

- take optimal solution
- if OPT contains greedy choice, then done
- otherwise modify OPT so that it contains greedy choice, without decreasing the quality of the solution

Lemma: Let a_i be an activity in A that ends first. Then there is an optimal solution to the Activity-Selection Problem for A that includes a_i .

Proof. Let OPT be an optimal solution for A. If OPT includes a_i then the lemma obviously holds, so assume OPT does not include a_i . We will show how to modify OPT into a solution OPT* such that

- (i) OPT* is a valid solution
- (ii) OPT* includes a_i
- (iii) size(OPT*) ≥ size(OPT)
 quality OPT* ≥ quality OPT

Thus OPT* is an optimal solution including a_i , and so the lemma holds. To modify OPT we proceed as follows.

here comes the modification, which is problem-specific

How to modify OPT?

replace first activity in OPT by greedy choice

Lemma: Let a_i be an activity in A that ends first. Then there is an optimal solution to the Activity-Selection Problem for A that includes a_i .

Proof. [...] We show how to modify OPT into a solution OPT* such that

- (i) OPT* is a valid solution
- (ii) OPT* includes a_i
- (iii) size(OPT*) ≥ size(OPT)

[...] To modify OPT we proceed as follows.

Let a_k be activity in OPT ending first, and let OPT* = (OPT\ $\{a_k\}$) U $\{a_i\}$. Then OPT* includes a_i and size(OPT*) = size(OPT).

We have $\operatorname{end}(a_i) \leq \operatorname{end}(a_k)$ by definition of a_i , so a_i cannot overlap any activities in OPT \ $\{a_k\}$. Hence, OPT* is a valid solution.

And now the algorithm:

Algorithm Greedy-Activity-Selection (A)

- 1. **if** A is empty
- 2. then return A
- 3. **else** $a_i \leftarrow$ an activity from A ends first
- 4. $B \leftarrow \text{all activities from } A \text{ that do not overlap } a_i$
- 5. return {a_i} U Greedy-Activity-Selection (B)

Correctness:

by induction, using optimal substructure and greedy-choice property

Running time:

- $O(n^2)$ if implemented naively
- O(n) after sorting on finishing time, if implemented more cleverly

Today: two examples of greedy algorithms

Activity-Selection

Optimal text encoding

Optimal text encoding

Standard text encoding schemes: fixed number of bits per character

- ASCII: 7 bits (extended versions 8 bits)
- UCS-2 (Unicode): 16 bits

Can we do better using variable-length encoding?

Idea: give characters that occur frequently a short code and give characters that do not occur frequently a longer code

The encoding problem

Input: set C of n characters $c_1, ..., c_n$; for each character c_i its frequency $f(c_i)$

Output: binary code for each character $- \operatorname{code}(c_1) = 01001$, $- \operatorname{code}(c_2) = 010$, not a prefix-code

Variable length encoding: how do we know where characters end?

text = 0100101100 ... Does it start with c_1 = 01001 or c_2 = 010 or ... ??

Use prefix-code: no character code is prefix of another character code

Variable-length prefix encoding: can it help?

Text: "een voordeel"

Frequencies: f(e)=4, f(n)=1, f(v)=1, f(o)=2, f(r)=1, f(d)=1, f(l)=1, f(l)=1

fixed-length code:

e=000 n=001 v=010 0=011 r=100 d=101 l=110 ==111

length of encoded text: $12 \times 3 = 36$ bits

possible prefix code:

e=00 n=0110 v=0111 o=010 r=100 d=101 l=110 u=111

length of encoded text: 4x2 + 2x4 + 6x3 = 34 bits

Representing prefix codes

Text: "een □voordeel"

Frequencies: f(e)=4, f(n)=1, f(v)=1, f(o)=2, f(r)=1, f(d)=1, f(l)=1, f(l)=1

code: e=00 n=0110 v=0111 o=010 r=100 d=101 l=110 ==111

representation is binary tree *T*:

- one leaf for each character
- internal nodes always have two outgoing edges, labeled 0 and 1
- code of character: follow path to leaf and list bits

codes represented by such trees are exactly the "non-redundant" prefix codes

Representing prefix codes

Text: "een □voordeel"

Frequencies: f(e)=4, f(n)=1, f(v)=1, f(o)=2, f(r)=1, f(d)=1, f(l)=1, f(l)=1

code: e=00 n=0110 v=0111 o=010 r=100 d=101 l=110 ==111

cost of encoding represented by *T*:

 $\sum_i f(c_i) \cdot depth(c_i)$

Designing greedy algorithms

- 1. try to discover structure of optimal solutions: what properties do optimal solutions have ?
 - what are the choices that need to be made?
 - do we have optimal substructure?
 optimal solution = first choice + optimal solution for subproblem
 - do we have greedy-choice property for the first choice ?
- 2. prove that optimal solutions indeed have these properties
 - prove optimal substructure and greedy-choice property
- 3. use these properties to design an algorithm and prove correctness
 - proof by induction (possible because optimal substructure)

Bottom-up contruction of tree:

start with separate leaves, and then "merge" *n-1* times until we have the tree

choices: which subtrees to merge at every step

we do not have to merge adjacent leaves

Bottom-up contruction of tree:

start with separate leaves, and then "merge" *n-1* times until we have the tree

choices: which subtrees to merge at every step

Do we have optimal substructure?

Do we even have a problem of the same type?

Yes, we have a subproblem of the same type: after merging. replace merged leaves c_i , c_k by a single leaf b with $f(b) = f(c_i) + f(c_k)$

(other way of looking at it: problem is about merging weighted subtrees)

Lemma: Let c_i and c_k be siblings in an optimal tree for set C of characters.

Let $B = (C \setminus \{c_i, c_k\}) \cup \{b\}$, where $f(b) = f(c_i) + f(c_k)$.

Let T_B be an optimal tree for B.

Then replacing the leaf for b in T_B by an internal node with c_i , c_k as children results in an optimal tree for C.

Proof.

Do yourself.

Bottom-up contruction of tree:

start with separate leaves, and then "merge" *n-1* times until we have the tree

choices: which subtrees to merge at every step

Do we have a greedy-choice property?

Which leaves should we merge first?

Greedy choice: first merge two leaves with smallest character frequency

Lemma: Let c_i , c_k be two characters with the lowest frequency in C. Then there is an optimal tree T_{OPT} for C where c_i , c_k are siblings.

Proof. Let OPT be an optimal tree $T_{\rm OPT}$ for C. If c_i , c_k are siblings in $T_{\rm OPT}$ then the lemma obviously holds, so assume this is not the case. We will show how to modify $T_{\rm OPT}$ into a tree T^* such that

Thus T^* is an optimal tree in which c_i , c_k are siblings, and so the lemma holds. To modify T_{OPT} we proceed as follows.

now we have to do the modification

How to modify T_{OPT} ?

- take a deepest internal node v
- make c_i , c_k children of v by swapping them with current children (if necessary)

change in cost due to swapping c_i and c_s $cost (T_{OPT}) - cost (T^*)$ $= f(c_s) \cdot (d_2 - d_1) + f(c_i) \cdot (d_1 - d_2)$ $= (f(c_s) - f(c_i)) \cdot (d_2 - d_1)$ ≥ 0

Conclusion: T^* is valid tree where c_i , c_k are siblings and cost(T^*) \leq cost (T_{OPT}).

Algorithm Construct-Huffman-Tree (C: set of n characters)

- 1. **if** |C| = 1
- 2. **then return** a tree consisting of single leaf, storing the character in C
- 3. **else** c_i , $c_k \leftarrow$ two characters from C with lowest frequency
- 4. Remove c_i , c_k from C_i , and replace them by a new character b_i with $f(b) = f(c_i) + f(c_k)$. Let B denote the new set of characters.
- 5. $T_B \leftarrow Construct-Huffman-Tree(B)$
- 6. Replace leaf for b in T_B with internal node with c_i , c_k as children.
- 7. Let *T* be the new tree.
- 8. return T

Correctness:

by induction, using optimal substructure and greedy-choice property

Running time:

- $O(n^2)$?!
- O(n log n) if implemented smartly (use heap)
- Sorting + O(n) if implemented even smarter (hint: 2 queues)

Summary

- greedy algorithm: solves optimization problem by trying only one option
 for first choice (the greedy choice) and then solving subproblem recursively
- need: optimal substructure + greedy choice property
- proof of greedy-choice property: show that optimal solution can be modified such that it uses greedy choice