The Geometry of Polygon Spaces

Victor Piercey and Matthew Thomas

December 6, 2007

Moduli Spaces

Moduli spaces are parameter spaces of algebraic varieties. Moduli spaces of polygons are examples with a clear geometric meaning.

The moduli space of a given polygon with fixed side lengths is defined as the space of deformations in 3-dimensional Euclidean space.

The trivial case is the moduli space of a triangle. Since a triangle cannot be deformed while keeping side lengths fixed, the moduli space of a triangle is a point.

A simple example to keep in mind is a generic quadrilateral, shown below. The dotted line represents a diagonal. We refer to the length of this diagonal as the diameter and use the diameter as a parameter for the moduli space.

Given a specific diameter between the minimum and maximum, we may rotate the upper right point around the diameter, allowing a degree of freedom. Graphing the parameter space, we see that \mathbb{S}^2 is the parameter space of the quadrilateral shown.

• In general, a polygon which has one side significantly longer than the others will have moduli space \mathbb{CP}^{n-3} .

- In general, a polygon which has one side significantly longer than the others will have moduli space \mathbb{CP}^{n-3} .
- To make this precise would require a bit of work, so we will specify this to mean that one side length is equal to the sum of the other side lengths minus a small number, ϵ , as shown.

- In general, a polygon which has one side significantly longer than the others will have moduli space \mathbb{CP}^{n-3} .
- To make this precise would require a bit of work, so we will specify this to mean that one side length is equal to the sum of the other side lengths minus a small number, ϵ , as shown.

We will consider our points to be on the Riemann sphere and will specfiy without loss of generality that:

ullet our first vertex will be placed at ∞

We will consider our points to be on the Riemann sphere and will specfiy without loss of generality that:

- ullet our first vertex will be placed at ∞
- the second will be placed at the origin.

We will consider our points to be on the Riemann sphere and will specfiy without loss of generality that:

- ullet our first vertex will be placed at ∞
- the second will be placed at the origin.

This will require our first side to lie along the *z*-axis.

- Each side is a vector in \mathbb{R}^3 that can be translated to the origin and normalized.
- Each side corresponds to a point on the Riemann sphere.
- We specify without loss of generality that our first such point is located at ∞ (the North pole) and the second at the origin (the South pole).
- Require that our first side length is the longest side.
- As a consequence, in order for our polygon to be closed, no other side can be parallel to the first side.

Overview

- Symplectic Geometry
- Geometric Invariant Theory
- The Kirwan-Kempf-Ness Theorem
- Polygon Spaces
- Stable Polygons/Curves
- Results

Symplectic Forms

• A symplectic form is a nondegenderate closed 2-form.

Symplectic Forms

- A *symplectic form* is a nondegenderate closed 2-form.
- A symplectic manifold is a manifold M with a symplectic form ω such that for each $p \in M$, $\omega_p : T_pM \times T_pM \to \mathbb{R}$ is skew-symmetric and bilinear.

Symplectic Geometry

A useful example here is \mathbb{S}^2 in \mathbb{R}^3 .

The symplectic form is induced by the map

$$\omega_p(u,v) := \langle p, u \times v \rangle$$
.

- This is a top degree form, hence closed.
- It is nondegenerate because if $u \neq 0$, then for $v = u \times p$, $< p, u \times v > \neq 0$.

- Let (M, ω) be a symplectic manifold
- G be a Lie group acting symplectically on (M, ω) (This means that the group action preserves the symplectic form ω .)
- g be its Lie algebra, and
- \mathfrak{g}^* be the dual vector space of \mathfrak{g} .

- Let (M, ω) be a symplectic manifold
- G be a Lie group acting symplectically on (M, ω) (This means that the group action preserves the symplectic form ω .)
- g be its Lie algebra, and
- g* be the dual vector space of g.
- In our case, it will suffice to think of the Lie group and its Lie algebra as matrix spaces.

For each $a \in \mathfrak{g}$, there is an associated vector field on (M, ω) which we will denote by $x \mapsto a_x$.

For each $a \in \mathfrak{g}$, there is an associated vector field on (M, ω) which we will denote by $x \mapsto a_x$.

• The moment map for the action of G on (M, ω) is a map $\mu: (M, \omega) \to \mathfrak{g}^*$ which is G equivariant with respect to the action of G on M and the coadjoint action of G on \mathfrak{g}^* and satisfies:

$$\langle d\mu(x)(\xi), a \rangle = \omega_x(\xi, a_x) \ \forall x \in M, \xi \in T_x M.$$

For each $a \in \mathfrak{g}$, there is an associated vector field on (M, ω) which we will denote by $x \mapsto a_x$.

• The moment map for the action of G on (M, ω) is a map $\mu: (M, \omega) \to \mathfrak{g}^*$ which is G equivariant with respect to the action of G on M and the coadjoint action of G on \mathfrak{g}^* and satisfies:

$$\langle d\mu(x)(\xi), a \rangle = \omega_x(\xi, a_x) \ \forall x \in M, \xi \in T_x M.$$

• As an example, consider the action of SO(3) on \mathbb{S}^2 . The moment map is the inclusion of \mathbb{S}^2 into \mathbb{R}^3 .

An Example of the Moment Map

- An application: moment maps tell us that angular momentum is preserved in a mechanical system.
- Note that not all actions admit moment maps.

An Example of the Moment Map

- An application: moment maps tell us that angular momentum is preserved in a mechanical system.
- Note that not all actions admit moment maps.
- Actions that do admit moment maps are called Hamiltonian actions.

• Consider a moment map:

$$\Phi_{\omega}: X \to k^*$$
.

Consider a moment map:

$$\Phi_{\omega}: X \to k^*$$
.

• k is the Lie algebra of K, a compact Lie group which acts symplectically on X.

Consider a moment map:

$$\Phi_{\omega}: X \to k^*$$
.

- k is the Lie algebra of K, a compact Lie group which acts symplectically on X.
- K acts freely on $\Phi_{\omega}^{-1}(0)$.

Consider a moment map:

$$\Phi_{\omega}: X \to k^*$$
.

- k is the Lie algebra of K, a compact Lie group which acts symplectically on X.
- K acts freely on $\Phi_{\omega}^{-1}(0)$.
- The orbit space $\Phi_\omega^{-1}(0)/K$ is naturally a symplectic manifold by the Marsden-Weinstein-Meyer theorem

Symplectic Geometry on the Moduli Space of Polygons

- An n-gon will be determined by a set of n points in 3-dimensional Euclidean space, $v_1, v_2, ..., v_n$ which form the vertices of the polygon.
- The edges $e_1,e_2,...,e_n$ will be formed be cyclically connecting the vertices. (For $1 \le i \le n-1$, e_i connects v_i and v_{i+1} and e_n connects v_n and v_1 .)

Basic Definitions

ullet If we consider the edges to be vectors in \mathbb{R}^3 , then we require

$$\sum_{i=1}^n e_i = 0$$

so that the polygon is closed.

Basic Definitions

ullet If we consider the edges to be vectors in \mathbb{R}^3 , then we require

$$\sum_{i=1}^n e_i = 0$$

so that the polygon is closed.

- We identify polygons which can be obtained from each other by orientation-preserving isometries of \mathbb{E}^3 .
- ullet To do so, we first translate so that v_1 lies at the origin.
- The remaining idendifications come from the natural action of SO(3) on \mathbb{R}^3 .

- side lengths are said to be parallel if they point in exactly the same direction and
- anti-parallel if they point in opposite directions.

- side lengths are said to be parallel if they point in exactly the same direction and
- anti-parallel if they point in opposite directions.
- We can assume that parallel edges are adjacent, since we can always permute the edges and use the inverse of the permutation to return to where we started.

- side lengths are said to be parallel if they point in exactly the same direction and
- anti-parallel if they point in opposite directions.
- We can assume that parallel edges are adjacent, since we can always permute the edges and use the inverse of the permutation to return to where we started.
- We will also say that a set of edges is degenerate if that set of edges is a maximal set which is parallel in the polygon.

• $r=(r_1,\ldots,r_n)\in\mathbb{R}^n_+$ is an *n*-tuple of positive real numbers

- $r = (r_1, \ldots, r_n) \in \mathbb{R}^n_+$ is an *n*-tuple of positive real numbers
- define M_r to be the space of n-gons with side lengths r_1, \ldots, r_n modulo SO(3).

- $r = (r_1, \ldots, r_n) \in \mathbb{R}^n_+$ is an *n*-tuple of positive real numbers
- define M_r to be the space of n-gons with side lengths r_1, \ldots, r_n modulo SO(3).
- We can always rescale r since $\forall \lambda \in \mathbb{R}_+$, there is an isomorphism $M_r \cong M_{\lambda r}$.

- $r = (r_1, \dots, r_n) \in \mathbb{R}^n_+$ is an *n*-tuple of positive real numbers
- define M_r to be the space of n-gons with side lengths r_1, \ldots, r_n modulo SO(3).
- We can always rescale r since $\forall \lambda \in \mathbb{R}_+$, there is an isomorphism $M_r \cong M_{\lambda r}$.
- We make the choice to normalize r so that

$$\sum_{i=1}^n r_i = 2.$$

• set \mathcal{P}_n to be the space of all n-gons

- set \mathcal{P}_n to be the space of all n-gons
- define $\pi: \mathcal{P} \to \mathbb{R}^n_+$ by assigning an *n*-gon *P* the vector whose components correspond to the lengths of the edges of *P*

- set \mathcal{P}_n to be the space of all n-gons
- define $\pi: \mathcal{P} \to \mathbb{R}^n_+$ by assigning an *n*-gon P the vector whose components correspond to the lengths of the edges of P
- The image of π lies in the hypersimplex

$$\mathbb{D}_2^n = \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n : 0 \leq x_i \leq 1, \sum_i x_i = 2 \right\}.$$

- set \mathcal{P}_n to be the space of all n-gons
- define $\pi: \mathcal{P} \to \mathbb{R}^n_+$ by assigning an *n*-gon P the vector whose components correspond to the lengths of the edges of P
- ullet The image of π lies in the hypersimplex

$$\mathbb{D}_2^n = \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n : 0 \leq x_i \leq 1, \sum_i x_i = 2 \right\}.$$

• M_r is the fiber $\pi^{-1}(r)$ for $r \in \mathbb{D}_2^n$.

- set \mathcal{P}_n to be the space of all n-gons
- define $\pi: \mathcal{P} \to \mathbb{R}^n_+$ by assigning an *n*-gon *P* the vector whose components correspond to the lengths of the edges of *P*
- ullet The image of π lies in the hypersimplex

$$\mathbb{D}_2^n = \left\{ (x_1, \ldots, x_n) \in \mathbb{R}^n : 0 \le x_i \le 1, \sum_i x_i = 2 \right\}.$$

- M_r is the fiber $\pi^{-1}(r)$ for $r \in \mathbb{D}_2^n$.
- We assume for the rest of the talk that the side-length vector r is in the interior of the hypersimplex \mathbb{D}_2^n .

• We now have the tools to define a complex analytic structure on M_r .

- We now have the tools to define a complex analytic structure on M_r .
- Define the following subspace of $(\mathbb{S}^2)^n$:

$$\tilde{\mathcal{M}}_r = \left\{ \vec{u} \in (\mathbb{S}^2)^n : \sum_{i=1}^n r_i u_i = 0 \right\}.$$

- We now have the tools to define a complex analytic structure on M_r .
- Define the following subspace of $(\mathbb{S}^2)^n$:

$$\tilde{\mathcal{M}}_r = \left\{ \vec{u} \in (\mathbb{S}^2)^n : \sum_{i=1}^n r_i u_i = 0 \right\}.$$

• Define $\mathcal{M}_r = \tilde{\mathcal{M}}_r/\mathrm{SO}(3)$.

- We now have the tools to define a complex analytic structure on M_r .
- Define the following subspace of $(\mathbb{S}^2)^n$:

$$\tilde{\mathcal{M}}_r = \left\{ \vec{u} \in (\mathbb{S}^2)^n : \sum_{i=1}^n r_i u_i = 0 \right\}.$$

- Define $\mathcal{M}_r = \tilde{\mathcal{M}}_r/\mathrm{SO}(3)$.
- If $P \in M_r$, normalizing the edges gives a collection $u_i = e_i/r_i \in \mathbb{S}^2$.

- We now have the tools to define a complex analytic structure on M_r .
- Define the following subspace of $(\mathbb{S}^2)^n$:

$$\tilde{\mathcal{M}}_r = \left\{ \vec{u} \in (\mathbb{S}^2)^n : \sum_{i=1}^n r_i u_i = 0 \right\}.$$

- Define $\mathcal{M}_r = \tilde{\mathcal{M}}_r/\mathrm{SO}(3)$.
- If $P \in M_r$, normalizing the edges gives a collection $u_i = e_i/r_i \in \mathbb{S}^2$.
- The closing condition for P to be a polygon requires

$$\sum_{i=1}^n r_i u_i = 0.$$

- We now have the tools to define a complex analytic structure on M_r .
- Define the following subspace of $(\mathbb{S}^2)^n$:

$$\tilde{\mathcal{M}}_r = \left\{ \vec{u} \in (\mathbb{S}^2)^n : \sum_{i=1}^n r_i u_i = 0 \right\}.$$

- Define $\mathcal{M}_r = \tilde{\mathcal{M}}_r/\mathrm{SO}(3)$.
- If $P \in M_r$, normalizing the edges gives a collection $u_i = e_i/r_i \in \mathbb{S}^2$.
- The closing condition for P to be a polygon requires

$$\sum_{i=1}^n r_i u_i = 0.$$

This gives a homeomorphism

$$\epsilon: M_r \to \mathcal{M}_r$$

called the Gauss map.

• We will define a complex analytic structure on M_r by recognizing \mathcal{M}_r as a symplectic quotient.

- We will define a complex analytic structure on M_r by recognizing \mathcal{M}_r as a symplectic quotient.
- Let ω be the standard volume form on \mathbb{S}^2 , normalized so that

$$\int_{\mathbb{S}^2}\omega=4\pi.$$

- We will define a complex analytic structure on M_r by recognizing \mathcal{M}_r as a symplectic quotient.
- Let ω be the standard volume form on \mathbb{S}^2 , normalized so that

$$\int_{\mathbb{S}^2}\omega=4\pi.$$

 This is a Kähler form with respect to the standard complex analytic structure and Riemannian metric.

- We will define a complex analytic structure on M_r by recognizing \mathcal{M}_r as a symplectic quotient.
- Let ω be the standard volume form on \mathbb{S}^2 , normalized so that

$$\int_{\mathbb{S}^2}\omega=4\pi.$$

- This is a Kähler form with respect to the standard complex analytic structure and Riemannian metric.
- For each $i=1,\ldots,n$ let $p_i:(\mathbb{S}^2)^n\to\mathbb{S}^2$ be the projection onto the i^{th} component. We then obtain a symplectic form (that is a Kähler form) Ω on $(\mathbb{S}^2)^n$ by

$$\Omega = \sum_{i=1}^n r_i p_i^*(\omega_i).$$

The space $(\mathbb{S}^2)^n$ with the symplectic form Ω is sometimes called the weighted configuration space.

• The diagonal action of the group SO(3) on $((\mathbb{S}^2)^n, \Omega)$ is symplectic and Hamiltonian, giving rise to a moment map

$$\mu: (\mathbb{S}^2)^n \to \operatorname{so}(3)^*.$$

• The diagonal action of the group SO(3) on $((\mathbb{S}^2)^n, \Omega)$ is symplectic and Hamiltonian, giving rise to a moment map

$$\mu: (\mathbb{S}^2)^n \to \mathrm{so}(3)^*.$$

• Since we have a Lie algebra isomorphism $so(3) \cong \mathbb{R}^3$, where the Lie bracket on \mathbb{R}^3 is the cross product, we can identify $so(3)^*$ with $(\mathbb{R}^3)^* \cong \mathbb{R}^3$.

• The diagonal action of the group SO(3) on $((\mathbb{S}^2)^n, \Omega)$ is symplectic and Hamiltonian, giving rise to a moment map

$$\mu: (\mathbb{S}^2)^n \to \mathrm{so}(3)^*.$$

- Since we have a Lie algebra isomorphism $so(3) \cong \mathbb{R}^3$, where the Lie bracket on \mathbb{R}^3 is the cross product, we can identify $so(3)^*$ with $(\mathbb{R}^3)^* \cong \mathbb{R}^3$.
- With this identification, the moment map is given by

$$\mu(\vec{u}) = r_1 u_1 + \cdots + r_n u_n,$$

thus $\tilde{M}_r = \mu^{-1}(0)$.

• The diagonal action of the group SO(3) on $((\mathbb{S}^2)^n, \Omega)$ is symplectic and Hamiltonian, giving rise to a moment map

$$\mu: (\mathbb{S}^2)^n \to \mathrm{so}(3)^*.$$

- Since we have a Lie algebra isomorphism $so(3) \cong \mathbb{R}^3$, where the Lie bracket on \mathbb{R}^3 is the cross product, we can identify $so(3)^*$ with $(\mathbb{R}^3)^* \cong \mathbb{R}^3$.
- With this identification, the moment map is given by

$$\mu(\vec{u}) = r_1 u_1 + \cdots + r_n u_n,$$

- thus $\tilde{M}_r = \mu^{-1}(0)$.
- The condition $\mu(r) = 0$ is precisely what is required for the polygon to be closed.

• The diagonal action of the group SO(3) on $((\mathbb{S}^2)^n, \Omega)$ is symplectic and Hamiltonian, giving rise to a moment map

$$\mu: (\mathbb{S}^2)^n \to \mathrm{so}(3)^*.$$

- Since we have a Lie algebra isomorphism $so(3) \cong \mathbb{R}^3$, where the Lie bracket on \mathbb{R}^3 is the cross product, we can identify $so(3)^*$ with $(\mathbb{R}^3)^* \cong \mathbb{R}^3$.
- With this identification, the moment map is given by

$$\mu(\vec{u}) = r_1 u_1 + \cdots + r_n u_n,$$

thus $\tilde{M}_r = \mu^{-1}(0)$.

- The condition $\mu(r) = 0$ is precisely what is required for the polygon to be closed.
- Since SO(3) is a compact group, it follows that $\mathcal{M}_r = \mu^{-1}(0)/\mathrm{SO}(3)$ is the symplectic reduction of $(\mathbb{S}^2)^n$ via the action of SO(3).

• Let Σ be the singularities of \mathcal{M}_r .

- Let Σ be the singularities of \mathcal{M}_r .
- $\mathcal{M}_r \setminus \Sigma$ is a smooth symplectic reduction of a complex analytic manifold.

- Let Σ be the singularities of \mathcal{M}_r .
- $\mathcal{M}_r \setminus \Sigma$ is a smooth symplectic reduction of a complex analytic manifold.
- The complex structure on $(\mathbb{S}^2)^n$ is compatible with the symplectic form Ω .

- Let Σ be the singularities of \mathcal{M}_r .
- $\mathcal{M}_r \setminus \Sigma$ is a smooth symplectic reduction of a complex analytic manifold.
- The complex structure on $(\mathbb{S}^2)^n$ is compatible with the symplectic form Ω .
- As a consequence, the symplectic reduction $\mathcal{M}_r \setminus \Sigma$ is complex analytic.

• Under ϵ^{-1} , the singularities of \mathcal{M}_r correspond to degenerate polygons (line-gon) in M_r .

- Under ϵ^{-1} , the singularities of \mathcal{M}_r correspond to degenerate polygons (line-gon) in M_r .
- It follows that away from line-gons, M_r has a complex analytic structure.

- Under ϵ^{-1} , the singularities of \mathcal{M}_r correspond to degenerate polygons (line-gon) in M_r .
- It follows that away from line-gons, M_r has a complex analytic structure.
- The singularities are isolated, there are finitely many, and are contained in compatible complex analytic neighborhoods.

- Under ϵ^{-1} , the singularities of \mathcal{M}_r correspond to degenerate polygons (line-gon) in M_r .
- It follows that away from line-gons, M_r has a complex analytic structure.
- The singularities are isolated, there are finitely many, and are contained in compatible complex analytic neighborhoods.
- This makes the moduli space M_r into a complex analytic space that is obtained as a result of symplectic reduction.

 The algebraic side of this story comes in the form of Mumford's geometric invariant theory.

- The algebraic side of this story comes in the form of Mumford's geometric invariant theory.
- The setting is an algebraic group (such as a matrix Lie group) G
 acting on an algebraic variety X.

- The algebraic side of this story comes in the form of Mumford's geometric invariant theory.
- The setting is an algebraic group (such as a matrix Lie group) G acting on an algebraic variety X.
- We would like to find a way of taking a quotient of X by the action of G and having the orbit space be an algebraic variety.

- The algebraic side of this story comes in the form of Mumford's geometric invariant theory.
- The setting is an algebraic group (such as a matrix Lie group) G
 acting on an algebraic variety X.
- We would like to find a way of taking a quotient of X by the action of G and having the orbit space be an algebraic variety.
- The problem is that the ordinary quotient may not be an algebraic variety - it may not even be Hausdorff.

GIT, An Example

• Suppose $X=\mathbb{C}^2$ and $G=\mathbb{C}^*$ where the action is

$$\lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda^{-1} z_2).$$

GIT, An Example

• Suppose $X=\mathbb{C}^2$ and $G=\mathbb{C}^*$ where the action is

$$\lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda^{-1} z_2).$$

- If $z_1 \neq 0$ and $z_2 \neq 0$, the orbits have the form $z_1 z_2 = c$ where $c \in \mathbb{C}^*$.
- For $z_1z_2=0$, there are three orbits the orbit of $(0,z_2)$ where $z_2\neq 0$, the orbit of $(z_1,0)$ where $z_1\neq 0$ and the orbit of (0,0).
- The latter consists of the single point $\{(0,0)\}$ whereas the other two orbits are the z_2 and z_1 -axes minus the origin, respectively.

GIT, An Example

• Suppose $X=\mathbb{C}^2$ and $G=\mathbb{C}^*$ where the action is

$$\lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda^{-1} z_2).$$

- If $z_1 \neq 0$ and $z_2 \neq 0$, the orbits have the form $z_1 z_2 = c$ where $c \in \mathbb{C}^*$.
- For $z_1z_2=0$, there are three orbits the orbit of $(0,z_2)$ where $z_2\neq 0$, the orbit of $(z_1,0)$ where $z_1\neq 0$ and the orbit of (0,0).
- The latter consists of the single point $\{(0,0)\}$ whereas the other two orbits are the z_2 and z_1 -axes minus the origin, respectively.
- Any open neighborhood of the orbit of (0,0) in the orbit space must intersect other orbits, and the orbit space is therefore not Hausdorff.

• Geometric invariant theory constructs another form of quotient to get around such problems.

- Geometric invariant theory constructs another form of quotient to get around such problems.
- As a matter of notation, the GIT quotient is denoted by X//G.

- Geometric invariant theory constructs another form of quotient to get around such problems.
- As a matter of notation, the GIT quotient is denoted by X//G.
- ullet In the example above, the GIT quotient is simply ${\mathbb C}.$

- Geometric invariant theory constructs another form of quotient to get around such problems.
- As a matter of notation, the GIT quotient is denoted by X//G.
- ullet In the example above, the GIT quotient is simply ${\mathbb C}.$
- The basic construction involves identifying the ring of G-invariants of X.

- Geometric invariant theory constructs another form of quotient to get around such problems.
- As a matter of notation, the GIT quotient is denoted by X//G.
- ullet In the example above, the GIT quotient is simply $\mathbb C.$
- The basic construction involves identifying the ring of G-invariants of X.
- We begin with the affine case.

• Suppose X is an affine variety defined by polynomials p_1, \ldots, p_k in n complex variables.

- Suppose X is an affine variety defined by polynomials p_1, \ldots, p_k in n complex variables.
- Let \mathcal{R} be the ring of functions on X:

$$\mathcal{R}=\mathbb{C}[z_1,\ldots,z_n]/(p_1,\ldots,p_k).$$

This gives us a natural embedding $X \hookrightarrow \mathbb{C}^n$ as the space of all points $z \in \mathbb{C}^n$ where $p_i(z) = 0$ for all i = 1, ..., k.

- Suppose X is an affine variety defined by polynomials p_1, \ldots, p_k in n complex variables.
- Let \mathcal{R} be the ring of functions on X:

$$\mathcal{R}=\mathbb{C}[z_1,\ldots,z_n]/(p_1,\ldots,p_k).$$

This gives us a natural embedding $X \hookrightarrow \mathbb{C}^n$ as the space of all points $z \in \mathbb{C}^n$ where $p_i(z) = 0$ for all i = 1, ..., k.

ullet In this setting, X is called the spectrum of $\mathcal R$ and we write

$$X = \operatorname{Spec}(\mathcal{R}).$$

(This is equivalent to the set of all prime ideals of \mathcal{R} .)

- Suppose X is an affine variety defined by polynomials p_1, \ldots, p_k in n complex variables.
- Let \mathcal{R} be the ring of functions on X:

$$\mathcal{R}=\mathbb{C}[z_1,\ldots,z_n]/(p_1,\ldots,p_k).$$

This gives us a natural embedding $X \hookrightarrow \mathbb{C}^n$ as the space of all points $z \in \mathbb{C}^n$ where $p_i(z) = 0$ for all i = 1, ..., k.

ullet In this setting, X is called the spectrum of $\mathcal R$ and we write

$$X = \operatorname{Spec}(\mathcal{R}).$$

(This is equivalent to the set of all prime ideals of \mathcal{R} .)

• If $f: \mathcal{R} \to \mathcal{S}$ is a ring homomorphism and $\mathfrak{p} \subset \mathcal{S}$ is a prime ideal, $f^{-1}(\mathfrak{p})$ is a prime ideal of \mathcal{R} , which induces a map from $\operatorname{Spec}(\mathcal{S})$ to $\operatorname{Spec}(\mathcal{R})$.

• Now suppose G is a complex Lie group that acts on our ring $\mathcal R$ by ring automorphisms.

- Now suppose G is a complex Lie group that acts on our ring \mathcal{R} by ring automorphisms.
- The action preserves prime ideals and hence acts on $\operatorname{Spec}(\mathcal{R})$, so G acts on X.

- Now suppose G is a complex Lie group that acts on our ring $\mathcal R$ by ring automorphisms.
- The action preserves prime ideals and hence acts on $\operatorname{Spec}(\mathcal{R})$, so G acts on X.
- A function $f \in \mathcal{R}$ on X is G-invariant if $g \cdot f(x) = f(x)$ for all $g \in G$ and $x \in X$.

- Now suppose G is a complex Lie group that acts on our ring \mathcal{R} by ring automorphisms.
- The action preserves prime ideals and hence acts on $\operatorname{Spec}(\mathcal{R})$, so G acts on X.
- A function $f \in \mathcal{R}$ on X is G-invariant if $g \cdot f(x) = f(x)$ for all $g \in G$ and $x \in X$.
- Denote the set of all G-invariant functions on X by \mathcal{R}^G .

- Now suppose G is a complex Lie group that acts on our ring $\mathcal R$ by ring automorphisms.
- The action preserves prime ideals and hence acts on $\operatorname{Spec}(\mathcal{R})$, so G acts on X.
- A function $f \in \mathcal{R}$ on X is G-invariant if $g \cdot f(x) = f(x)$ for all $g \in G$ and $x \in X$.
- ullet Denote the set of all G-invariant functions on X by \mathcal{R}^G .
- \mathcal{R}^G forms a ring (with operations inherited from \mathcal{R}) called the ring of invariants. We define $\operatorname{Spec}(\mathcal{R}^G)$ to be the GIT quotient of X by G:

$$X//G = \operatorname{Spec}(\mathcal{R}^G).$$

- Let us return to the example above where $X=\mathbb{C}^2$ and $G=\mathbb{C}^*$.
- Since X is an affine variety defined solely by the zero polynomial, the ring of functions is $\mathcal{R} = \mathbb{C}[z_1, z_2]$, and the ring of invariants is \mathcal{R}^G , generated by the polynomial z_1z_2 .

- Let us return to the example above where $X = \mathbb{C}^2$ and $G = \mathbb{C}^*$.
- Since X is an affine variety defined solely by the zero polynomial, the ring of functions is $\mathcal{R} = \mathbb{C}[z_1, z_2]$, and the ring of invariants is \mathcal{R}^G , generated by the polynomial z_1z_2 .
- If we let $w = z_1 z_2$:

$$\mathcal{R}^G = \mathbb{C}[w].$$

- Let us return to the example above where $X = \mathbb{C}^2$ and $G = \mathbb{C}^*$.
- Since X is an affine variety defined solely by the zero polynomial, the ring of functions is $\mathcal{R} = \mathbb{C}[z_1, z_2]$, and the ring of invariants is \mathcal{R}^G , generated by the polynomial z_1z_2 .
- If we let $w = z_1 z_2$:

$$\mathcal{R}^G = \mathbb{C}[w].$$

• It follows that $X//G = \mathbb{C}$.

- Let us return to the example above where $X = \mathbb{C}^2$ and $G = \mathbb{C}^*$.
- Since X is an affine variety defined solely by the zero polynomial, the ring of functions is $\mathcal{R} = \mathbb{C}[z_1, z_2]$, and the ring of invariants is \mathcal{R}^G , generated by the polynomial z_1z_2 .
- If we let $w = z_1 z_2$:

$$\mathcal{R}^G = \mathbb{C}[w].$$

- It follows that $X//G = \mathbb{C}$.
- What has happened geometrically is the orbits where $z_1z_2 \neq 0$ have been left unaltered, but we have identified the three orbits where $z_1z_2 = 0$.

• To see why this construction isn't sufficient for the projective case, let $X = \mathbb{C}^2$ and $G = \mathbb{C}^*$ as above, but let the action be given by

$$\lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda z_2).$$

• To see why this construction isn't sufficient for the projective case, let $X=\mathbb{C}^2$ and $G=\mathbb{C}^*$ as above, but let the action be given by

$$\lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda z_2).$$

• The ring of functions $\mathcal{R}=\mathbb{C}[z_1,z_2]$, but the only invariant polynomials are constants and therefore $\operatorname{Spec}(\mathcal{R}^G)=X//G$ is just a single point.

• To see why this construction isn't sufficient for the projective case, let $X=\mathbb{C}^2$ and $G=\mathbb{C}^*$ as above, but let the action be given by

$$\lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda z_2).$$

- The ring of functions $\mathcal{R} = \mathbb{C}[z_1, z_2]$, but the only invariant polynomials are constants and therefore $\operatorname{Spec}(\mathcal{R}^G) = X//G$ is just a single point.
- The obvious quotient *should* be \mathbb{CP}^1 , but projective space is not $\operatorname{Spec}(\mathcal{S})$ for any ring \mathcal{S} .

• To see why this construction isn't sufficient for the projective case, let $X=\mathbb{C}^2$ and $G=\mathbb{C}^*$ as above, but let the action be given by

$$\lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda z_2).$$

- The ring of functions $\mathcal{R} = \mathbb{C}[z_1, z_2]$, but the only invariant polynomials are constants and therefore $\operatorname{Spec}(\mathcal{R}^G) = X//G$ is just a single point.
- The obvious quotient *should* be \mathbb{CP}^1 , but projective space is not $\operatorname{Spec}(\mathcal{S})$ for any ring \mathcal{S} .
- We need to do more work to obtain a GIT quotient for a projective variety.

• Suppose X is a projective variety. The first construction involves an embedding of X into \mathbb{CP}^n for some sufficiently large n.

- Suppose X is a projective variety. The first construction involves an embedding of X into \mathbb{CP}^n for some sufficiently large n.
- In the affine case, the corresponding embedding was handled using the ring of functions on *X*.

- Suppose X is a projective variety. The first construction involves an embedding of X into \mathbb{CP}^n for some sufficiently large n.
- In the affine case, the corresponding embedding was handled using the ring of functions on *X*.
- We don't have that at our disposal in the projective case, since such functions would have to be constant.

- Let \mathcal{L} be a line bundle over X.
- Let $\Gamma(X, \mathcal{L})$ be the space of sections of \mathcal{L} .
- Let (s_0, \ldots, s_n) be a set of its sections.

- Let \mathcal{L} be a line bundle over X.
- Let $\Gamma(X, \mathcal{L})$ be the space of sections of \mathcal{L} .
- Let (s_0, \ldots, s_n) be a set of its sections.
- We say that \mathcal{L} is *very ample* if for every $x \in X$ there is i such that $s_i(x) \neq 0$.

- Let \mathcal{L} be a line bundle over X.
- Let $\Gamma(X,\mathcal{L})$ be the space of sections of \mathcal{L} .
- Let (s_0, \ldots, s_n) be a set of its sections.
- We say that \mathcal{L} is *very ample* if for every $x \in X$ there is i such that $s_i(x) \neq 0$.
- This allows us to construct a closed embedding

$$X \hookrightarrow \mathbb{P}(\Gamma(X,\mathcal{L})^*).$$

- Let \mathcal{L} be a line bundle over X.
- Let $\Gamma(X,\mathcal{L})$ be the space of sections of \mathcal{L} .
- Let (s_0, \ldots, s_n) be a set of its sections.
- We say that \mathcal{L} is *very ample* if for every $x \in X$ there is i such that $s_i(x) \neq 0$.
- This allows us to construct a closed embedding

$$X \hookrightarrow \mathbb{P}(\Gamma(X,\mathcal{L})^*).$$

• Given $x \in X$ we map

$$x \mapsto [f_x] = [s_0(x) : s_1(x) : \cdots : s_n(x)].$$

• This is well defined since there is some i such that $s_i(x) \neq 0$.

- Let \mathcal{L} be a line bundle over X.
- Let $\Gamma(X,\mathcal{L})$ be the space of sections of \mathcal{L} .
- Let (s_0, \ldots, s_n) be a set of its sections.
- We say that \mathcal{L} is *very ample* if for every $x \in X$ there is i such that $s_i(x) \neq 0$.
- This allows us to construct a closed embedding

$$X \hookrightarrow \mathbb{P}(\Gamma(X,\mathcal{L})^*).$$

• Given $x \in X$ we map

$$x \mapsto [f_x] = [s_0(x) : s_1(x) : \cdots : s_n(x)].$$

- This is well defined since there is some i such that $s_i(x) \neq 0$.
- Identifying $\mathbb{P}(\Gamma(X,\mathcal{L})^*)$ with \mathbb{CP}^n , this gives us a closed embedding $X \hookrightarrow \mathbb{CP}^n$.

- Suppose we have a Lie group G acting on X.
- Suppose the action lifts to an action of G on \mathcal{L} that is linear on fibers and takes the fiber L_x to the fiber $L_{g\cdot x}$ for every $g\in G$ and $x\in X$.

- Suppose we have a Lie group G acting on X.
- Suppose the action lifts to an action of G on \mathcal{L} that is linear on fibers and takes the fiber L_x to the fiber $L_{g\cdot x}$ for every $g\in G$ and $x\in X$.
- We say that the action of G on \mathcal{L} linearizes the action of G on X, and that \mathcal{L} is a linearized line bundle.

- Suppose we have a Lie group G acting on X.
- Suppose the action lifts to an action of G on \mathcal{L} that is linear on fibers and takes the fiber L_x to the fiber $L_{g \cdot x}$ for every $g \in G$ and $x \in X$.
- We say that the action of G on \mathcal{L} linearizes the action of G on X, and that \mathcal{L} is a linearized line bundle.
- The linearization of the action preserves sections. As a consequence, we get an action of G on $\mathbb{P}(\Gamma(X,\mathcal{L})^*)$ such that the embedding $X \hookrightarrow \mathbb{P}(\Gamma(X,\mathcal{L})^*)$ is G-equivariant.

• We can thus consider G acting on X sitting inside of \mathbb{CP}^n .

- We can thus consider G acting on X sitting inside of \mathbb{CP}^n .
- If we let $\pi: \mathbb{C}^{n+1}\setminus\{0\}\to\mathbb{CP}^n$ be the natural projection, then $\pi^{-1}(X)$ is an affine variety in \mathbb{C}^{n+1} that is invariant under dilations.

- We can thus consider G acting on X sitting inside of \mathbb{CP}^n .
- If we let $\pi: \mathbb{C}^{n+1}\setminus\{0\}\to\mathbb{CP}^n$ be the natural projection, then $\pi^{-1}(X)$ is an affine variety in \mathbb{C}^{n+1} that is invariant under dilations.
- The action of G lifts to an action on $\pi^{-1}(X)$, so we can consider the ring of **homogeneous** invariants.

- We can thus consider G acting on X sitting inside of \mathbb{CP}^n .
- If we let $\pi: \mathbb{C}^{n+1}\setminus\{0\}\to\mathbb{CP}^n$ be the natural projection, then $\pi^{-1}(X)$ is an affine variety in \mathbb{C}^{n+1} that is invariant under dilations.
- The action of G lifts to an action on $\pi^{-1}(X)$, so we can consider the ring of **homogeneous** invariants.
- Taking the quotient again gives us a projective variety, and provides us with our construction of $X//\mathcal{G}$.

- In order to be able to prove anything about projective GIT quotients, we need to make this construction more concrete.
- A point $x \in X$ is called *semi-stable* (with respect to \mathcal{L}) if there is some m > 0 and G-invariant section $s \in \Gamma(X, \mathcal{L}^{\otimes m})^G$ such that $s(x) \neq 0$ and the set $X_s = \{y \in X : s(y) \neq 0\}$ is affine.
- If additionally the orbit of G through x is closed, x is said to be *stable* (with respect to \mathcal{L}).
- Note that if x is stable with $s(x) \neq 0$, the orbit of G through any point $y \in X_s$ is closed.

• $x \in X$ that is not semi-stable is *unstable* (with respect to \mathcal{L}).

- $x \in X$ that is not semi-stable is *unstable* (with respect to \mathcal{L}).
- The set of semistable, stable, and unstable points are denoted by

$$X^{\mathrm{ss}}(\mathcal{L}),\ X^{\mathrm{s}}(\mathcal{L}),\ X^{\mathrm{us}}(\mathcal{L})$$

respectively.

- $x \in X$ that is not semi-stable is *unstable* (with respect to \mathcal{L}).
- The set of semistable, stable, and unstable points are denoted by

$$X^{\mathrm{ss}}(\mathcal{L}), \ X^{\mathrm{s}}(\mathcal{L}), \ X^{\mathrm{us}}(\mathcal{L})$$

respectively.

• It is clear that $X^{\mathrm{ss}}(\mathcal{L})$ and $X^{\mathrm{s}}(\mathcal{L})$ are open subsets of X, although they may be empty.

• To construct the GIT quotient, we begin with $X \setminus X^{\mathrm{us}} = X^{\mathrm{ss}}$.

- To construct the GIT quotient, we begin with $X \setminus X^{\mathrm{us}} = X^{\mathrm{ss}}$.
- We can cover X^{ss} with the affine open subsets X_{s_i} , take the affine GIT quotient of these open subsets and "glue them together" in an appropriate manner. This gives us the GIT quotient

$$X^{\rm ss}//G$$

which is what we call X//G.

- To construct the GIT quotient, we begin with $X \setminus X^{\mathrm{us}} = X^{\mathrm{ss}}$.
- We can cover X^{ss} with the affine open subsets X_{s_i} , take the affine GIT quotient of these open subsets and "glue them together" in an appropriate manner. This gives us the GIT quotient

$$X^{\rm ss}//G$$

which is what we call X//G.

• This construction makes X//S into a projective variety. What actually happens is that the orbits of stable points in X become single points in X//G, while orbits of points in $X^{ss} \setminus X^s$ are identified whenever the intersection of their closures is nonempty.

 The Kirwan-Kempf-Ness Theorem connects GIT quotients to symplectic reduction on symplectic projective varieties.

- The Kirwan-Kempf-Ness Theorem connects GIT quotients to symplectic reduction on symplectic projective varieties.
- We suppose X is a projective variety with symplectic form ω and a line bundle $\mathcal L$ such that $c_1(\mathcal L) = [\omega]$ in $H^2_{\mathrm{dR}}(X)$, where c_1 is the first Chern class. Suppose further that G is a Lie group acting on X that linearizes $\mathcal L$.

- The Kirwan-Kempf-Ness Theorem connects GIT quotients to symplectic reduction on symplectic projective varieties.
- We suppose X is a projective variety with symplectic form ω and a line bundle $\mathcal L$ such that $c_1(\mathcal L) = [\omega]$ in $H^2_{\mathrm{dR}}(X)$, where c_1 is the first Chern class. Suppose further that G is a Lie group acting on X that linearizes $\mathcal L$.
- Let $\mathfrak g$ be the Lie algebra over G and suppose the action of G admits a moment map $\mu:X\to \mathfrak g^*.$

• The first part of the Kirwan-Kempf-Ness theorem says that $\mu^{-1}(0) \subset X^{\mathrm{ss}}$.

- The first part of the Kirwan-Kempf-Ness theorem says that $\mu^{-1}(0) \subset X^{\mathrm{ss}}$.
- Now let $K \subset G$ be a maximal compact subgroup of G.

- The first part of the Kirwan-Kempf-Ness theorem says that $\mu^{-1}(0) \subset X^{\mathrm{ss}}$.
- Now let $K \subset G$ be a maximal compact subgroup of G.
- The second part of the Kirwan-Kempf-Ness theorem says that the inclusion $\mu^{-1}(0) \hookrightarrow X^{\mathrm{ss}}$ induces a homeomorphism

$$\mu^{-1}(0)/K \cong X^{ss}//G.$$

- The first part of the Kirwan-Kempf-Ness theorem says that $\mu^{-1}(0) \subset X^{\mathrm{ss}}$.
- Now let $K \subset G$ be a maximal compact subgroup of G.
- The second part of the Kirwan-Kempf-Ness theorem says that the inclusion $\mu^{-1}(0) \hookrightarrow X^{\mathrm{ss}}$ induces a homeomorphism

$$\mu^{-1}(0)/K \cong X^{ss}//G.$$

• If $\mu^{-1}(0)/K$ is smooth, this is a diffeomorphism. If $\mu^{-1}(0)/K$ is complex analytic, this is a complex analytic equivalence.

• We would like to find a complex-analytic equivalence between the moduli space M_r and the weighted configuration space $((\mathbb{S}^2)^n, \Omega)$.

- We would like to find a complex-analytic equivalence between the moduli space M_r and the weighted configuration space $((\mathbb{S}^2)^n, \Omega)$.
- We will do this using the Kirwan-Kempf-Ness theorem.
- Denote $((\mathbb{S}^2)^n, \Omega)$ by M.

- We would like to find a complex-analytic equivalence between the moduli space M_r and the weighted configuration space $((\mathbb{S}^2)^n, \Omega)$.
- We will do this using the Kirwan-Kempf-Ness theorem.
- Denote $((\mathbb{S}^2)^n, \Omega)$ by M.
- The underlying space is a product of copies of \mathbb{CP}^1 , M is a projective variety

- We would like to find a complex-analytic equivalence between the moduli space M_r and the weighted configuration space $((\mathbb{S}^2)^n, \Omega)$.
- We will do this using the Kirwan-Kempf-Ness theorem.
- Denote $((\mathbb{S}^2)^n, \Omega)$ by M.
- The underlying space is a product of copies of \mathbb{CP}^1 , M is a projective variety
- We will form a GIT quotient structure on M. The construction will depend on our choice of r.

- We would like to find a complex-analytic equivalence between the moduli space M_r and the weighted configuration space $((\mathbb{S}^2)^n, \Omega)$.
- We will do this using the Kirwan-Kempf-Ness theorem.
- Denote $((\mathbb{S}^2)^n, \Omega)$ by M.
- The underlying space is a product of copies of \mathbb{CP}^1 , M is a projective variety
- We will form a GIT quotient structure on M. The construction will depend on our choice of r.
- ullet We need to assume $r\in \mathbb{Q}^n_+$

• $G = \mathrm{PSL}(2,\mathbb{C})$ acts on \mathbb{S}^2 , and thus extends to a diagonal action on M by

$$A \cdot (u_1, \ldots, u_n) = (A \cdot u_1, \ldots, A \cdot u_n).$$

• $G = \operatorname{PSL}(2, \mathbb{C})$ acts on \mathbb{S}^2 , and thus extends to a diagonal action on M by

$$A \cdot (u_1, \ldots, u_n) = (A \cdot u_1, \ldots, A \cdot u_n).$$

• Given the action and $r \in \mathbb{D}_2^n$, the semi-stable points in M are the points $\vec{u} \in (\mathbb{S}^2)^n$ such that

$$\sum_{u_i=v} r_j \le 1$$

for every $v \in \mathbb{S}^2$.

 stable points in M are those that satisfy the same condition with a strict inequality.

- stable points in M are those that satisfy the same condition with a strict inequality.
- Let $Q = M^{ss}//\mathrm{PSL}(2,\mathbb{C})$.

- stable points in *M* are those that satisfy the same condition with a strict inequality.
- Let $Q = M^{ss}//PSL(2, \mathbb{C})$.
- Q is the GIT quotient M//G and is therefore a projective variety.

• Define the cusp points to be $M^{\mathrm{cusp}} = M^{\mathrm{ss}} \setminus M^{\mathrm{s}}$.

- Define the cusp points to be $M^{\text{cusp}} = M^{\text{ss}} \setminus M^{\text{s}}$.
- Every point in M^{cusp} is determined by a partition of $S = \{1, \ldots, n\}$ into two disjoint sets $S_1 = \{i_1, \ldots, i_j\}$ and $S_2 = \{j_1, \ldots, j_{n-k}\}$ such that $r_{i_1} + \cdots + r_{i_k} = 1$ (and whence $r_{j_1} + \cdots + r_{j_{n-k}} = 1$).

- Define the cusp points to be $M^{\text{cusp}} = M^{\text{ss}} \setminus M^{\text{s}}$.
- Every point in M^{cusp} is determined by a partition of $S = \{1, \ldots, n\}$ into two disjoint sets $S_1 = \{i_1, \ldots, i_j\}$ and $S_2 = \{j_1, \ldots, j_{n-k}\}$ such that $r_{i_1} + \cdots + r_{i_k} = 1$ (and whence $r_{j_1} + \cdots + r_{j_{n-k}} = 1$).
- In the quotient, the cusp points are *uniquely* determined by the corresponding partition. Therefore, the subspace $Q^{\mathrm{cusp}} = M^{\mathrm{cusp}}/G \subset Q$ is in one-to-one correspondence with a subset of partitions of n, which in turn is finite.
- Thus, in the quotient, there are at most finitely many cusp points.

• The closing condition

$$\sum_{i=1}^n r_i u_i = 0$$

implies that $\tilde{\mathcal{M}}_r \subset M^{\mathrm{ss}}$.

• The closing condition

$$\sum_{i=1}^n r_i u_i = 0$$

implies that $\tilde{\mathcal{M}}_r \subset M^{\mathrm{ss}}$.

• This is the first part of Kirwan-Kempf-Ness: $\mu^{-1}(0) \subset M^{ss}$.

• $SO(3) \subset PSL(2,\mathbb{C})$ is a maximal compact subgroup so there is a complex analytic equivalence

$$\mathcal{M}_r \cong Q$$

from the second part of the Kirwan-Kempf-Ness, which induces, via the Gauss map ϵ , a complex analytic equivalence

$$M_r \cong Q$$
.

• $SO(3) \subset PSL(2,\mathbb{C})$ is a maximal compact subgroup so there is a complex analytic equivalence

$$\mathcal{M}_r \cong Q$$

from the second part of the Kirwan-Kempf-Ness, which induces, via the Gauss map ϵ , a complex analytic equivalence

$$M_r\cong Q$$
.

• Under ϵ , the cusp points Q^{cusp} correspond to the degenerate polygons in M_r .

• $SO(3) \subset PSL(2,\mathbb{C})$ is a maximal compact subgroup so there is a complex analytic equivalence

$$\mathcal{M}_r \cong Q$$

from the second part of the Kirwan-Kempf-Ness, which induces, via the Gauss map ϵ , a complex analytic equivalence

$$M_r \cong Q$$
.

- Under ϵ , the cusp points Q^{cusp} correspond to the degenerate polygons in M_r .
- It follows that M_r , and hence \mathcal{M}_r , have at most finitely many singularities.

• Consider the moduli spaces for special vectors $r \in \mathbb{D}_2^n$.

- Consider the moduli spaces for special vectors $r \in \mathbb{D}_2^n$.
- The hypersimplex is divided into chambers by walls of the form

$$W_J = \left\{ (x_1, \ldots, x_n) \in \mathbb{D}_2^n : \sum_{i \in J} x_i = 1 \right\}$$

where J runs over all proper subsets of $\{1, \ldots, n\}$.

The chambers are polytopes

- The chambers are polytopes
- Two points x and y are in the same chamber if and only if for every proper subset $J \subset \{1, \dots, n\}$

$$\sum_{J} x_{j} \le 1 \iff \sum_{J} y_{j} \le 1$$

- The chambers are polytopes
- Two points x and y are in the same chamber if and only if for every proper subset $J \subset \{1, \dots, n\}$

$$\sum_{J} x_{j} \le 1 \iff \sum_{J} y_{j} \le 1$$

 If the chamber is maximal (with respect to inclusion), the inequalities are strict

• For each $i=1,\ldots,n$, consider the wall $W_{\{i\}}$.

- For each $i=1,\ldots,n$, consider the wall $W_{\{i\}}$.
- Let Δ_i be the unique maximal chamber in \mathbb{D}_2^n containing $W_{\{i\}}$.

- For each i = 1, ..., n, consider the wall $W_{\{i\}}$.
- Let Δ_i be the unique maximal chamber in \mathbb{D}_2^n containing $W_{\{i\}}$.
- A theorem of Hu states that if r is in the interior of Δ_i , the moduli space M_r is isomorphic to \mathbb{CP}^{n-3} .
- The quadrilateral example in the introduction is a moduli space isomorphic to \mathbb{CP}^{n-3} . Since n=4 for a quadrilateral, this is the same as \mathbb{CP}^1 , which is isomorphic to \mathbb{S}^2 .

- For each i = 1, ..., n, consider the wall $W_{\{i\}}$.
- Let Δ_i be the unique maximal chamber in \mathbb{D}_2^n containing $W_{\{i\}}$.
- A theorem of Hu states that if r is in the interior of Δ_i , the moduli space M_r is isomorphic to \mathbb{CP}^{n-3} .
- The quadrilateral example in the introduction is a moduli space isomorphic to \mathbb{CP}^{n-3} . Since n=4 for a quadrilateral, this is the same as \mathbb{CP}^1 , which is isomorphic to \mathbb{S}^2 .
- The discussion in the introduction shows that any $r \in \mathbb{R}^n_+$ where there is some i such that r_i is sufficiently larger then the other r_j 's is contained in $\Delta_{\{i\}}$, hence $M_r \cong \mathbb{CP}^{n-3}$.

Stable Polygons and Stable Curves

• The moduli spaces M_r may have finitely many singularities, which can be resolved. There is a mechanism for resolving these singularities that applies to M_r for every r, which is the second result of Hu we use.

Stable Polygons and Stable Curves

- The moduli spaces M_r may have finitely many singularities, which can be resolved. There is a mechanism for resolving these singularities that applies to M_r for every r, which is the second result of Hu we use.
- The mechanism grows out of the notion of stable polygons, which is connected to the moduli space of stable *n*-pointed curves of genus zero.

• Start with the moduli space of n distinct points on $(\mathbb{CP}^1)^n$ modulo the action of $\mathrm{PSL}(2,\mathbb{C})$, denoted by $\mathcal{M}_{0,n}$. This will contain all the generic points in the moduli space we will construct.

- Start with the moduli space of n distinct points on $(\mathbb{CP}^1)^n$ modulo the action of $\mathrm{PSL}(2,\mathbb{C})$, denoted by $\mathcal{M}_{0,n}$. This will contain all the generic points in the moduli space we will construct.
- $\mathcal{M}_{0,n}$ is not compact, so we will add in enough points to form a compactification.

- Start with the moduli space of n distinct points on $(\mathbb{CP}^1)^n$ modulo the action of $\mathrm{PSL}(2,\mathbb{C})$, denoted by $\mathcal{M}_{0,n}$. This will contain all the generic points in the moduli space we will construct.
- $\mathcal{M}_{0,n}$ is not compact, so we will add in enough points to form a compactification.
- View a point in $\mathcal{M}_{0,n}$ as n distinct points on a single copy of \mathbb{CP}^1 and we let these points vary. As a pair of points get close to one another, introduce a new copy of \mathbb{CP}^1 intersecting the original \mathbb{CP}^1 at the point of intersection.

- Start with the moduli space of n distinct points on $(\mathbb{CP}^1)^n$ modulo the action of $\mathrm{PSL}(2,\mathbb{C})$, denoted by $\mathcal{M}_{0,n}$. This will contain all the generic points in the moduli space we will construct.
- $\mathcal{M}_{0,n}$ is not compact, so we will add in enough points to form a compactification.
- View a point in $\mathcal{M}_{0,n}$ as n distinct points on a single copy of \mathbb{CP}^1 and we let these points vary. As a pair of points get close to one another, introduce a new copy of \mathbb{CP}^1 intersecting the original \mathbb{CP}^1 at the point of intersection.
- The colliding points will then proceed along the new \mathbb{CP}^1 .

• The end result will be a collection of intersecting copies of \mathbb{CP}^1 with the extra restriction that each irreducible component (each copy of \mathbb{CP}^1) has at least three points consisting of the original points that are left on that copy of \mathbb{CP}^1 and intersections with other copies.

- The end result will be a collection of intersecting copies of \mathbb{CP}^1 with the extra restriction that each irreducible component (each copy of \mathbb{CP}^1) has at least three points consisting of the original points that are left on that copy of \mathbb{CP}^1 and intersections with other copies.
- The process stops after finitely many steps.

- The end result will be a collection of intersecting copies of \mathbb{CP}^1 with the extra restriction that each irreducible component (each copy of \mathbb{CP}^1) has at least three points consisting of the original points that are left on that copy of \mathbb{CP}^1 and intersections with other copies.
- The process stops after finitely many steps.
- The number "three" is to prevent the existence of any nontrivial linear fraction transformation that can act on our space.

- The end result will be a collection of intersecting copies of \mathbb{CP}^1 with the extra restriction that each irreducible component (each copy of \mathbb{CP}^1) has at least three points consisting of the original points that are left on that copy of \mathbb{CP}^1 and intersections with other copies.
- The process stops after finitely many steps.
- The number "three" is to prevent the existence of any nontrivial linear fraction transformation that can act on our space.
- This creates stable *n*-pointed curves of genus zero, and the moduli space of such stable curves is denoted $\overline{\mathcal{M}}_{0,n}$. "genus zero" comes from the fact that we constructed the curves out of \mathbb{CP}^1 .

- The end result will be a collection of intersecting copies of \mathbb{CP}^1 with the extra restriction that each irreducible component (each copy of \mathbb{CP}^1) has at least three points consisting of the original points that are left on that copy of \mathbb{CP}^1 and intersections with other copies.
- The process stops after finitely many steps.
- The number "three" is to prevent the existence of any nontrivial linear fraction transformation that can act on our space.
- This creates stable *n*-pointed curves of genus zero, and the moduli space of such stable curves is denoted $\overline{\mathcal{M}}_{0,n}$. "genus zero" comes from the fact that we constructed the curves out of \mathbb{CP}^1 .
- $\overline{\mathcal{M}}_{0,n}$ is a compactification of $\mathcal{M}_{0,n}$ that illustrates a general procedure called the Deligne-Mumford compactification

Stable Curves of Genus Zero, an Example

• As an example, consider four points on \mathbb{CP}^1 . A stable curve is illustrated in the cartoon below, where each line represents a copy of \mathbb{CP}^1 and each circle either represents a point or an intersection.

 We do a similar construction to build stable polygons, but our building blocks will be a little bit more sensitive so a certain amount of care must be taken.

- We do a similar construction to build stable polygons, but our building blocks will be a little bit more sensitive so a certain amount of care must be taken.
- An *n*-gon is called **generic** if it does not have any parallel edges.

- We do a similar construction to build stable polygons, but our building blocks will be a little bit more sensitive so a certain amount of care must be taken.
- An *n*-gon is called **generic** if it does not have any parallel edges.
- Denote the subspace of generic polygons by M_r^0 , which can be identified with $\mathcal{M}_{0,n}$ and so is an open complex analytic space

- We do a similar construction to build stable polygons, but our building blocks will be a little bit more sensitive so a certain amount of care must be taken.
- An *n*-gon is called **generic** if it does not have any parallel edges.
- Denote the subspace of generic polygons by M_r^0 , which can be identified with $\mathcal{M}_{0,n}$ and so is an open complex analytic space
- Compactify M_r^0 by adding in appropriate limiting objects

- We do a similar construction to build stable polygons, but our building blocks will be a little bit more sensitive so a certain amount of care must be taken.
- An *n*-gon is called **generic** if it does not have any parallel edges.
- Denote the subspace of generic polygons by M_r^0 , which can be identified with $\mathcal{M}_{0,n}$ and so is an open complex analytic space
- Compactify M_r^0 by adding in appropriate limiting objects
- The basic idea is that whenever a set of edges become parallel, we resolve by introducing a "bubble" polygon

• Suppose a polygon P is a limit of a sequence of polygons in M_r^0 and P degenerates at a subset I of cardinality k

- Suppose a polygon P is a limit of a sequence of polygons in M_r^0 and P degenerates at a subset I of cardinality k
- Pair P with a generic (k+1)-gon P' whose first k-sides inherit the lengths of the original parallel edges of P but whose last side length is $r_{i_1} + r_{i_2} + \cdots + r_{i_k} \epsilon_{i_1, \dots, i_k}$.

• Different choices of these ϵ 's will lead to equivalent complex analytic spaces, but will end up with different Kähler structures.

- Different choices of these ϵ 's will lead to equivalent complex analytic spaces, but will end up with different Kähler structures.
- It will suffice to use the same ϵ in all cases, so we let $\epsilon = \min\{r_1, \dots, r_n\}$.

• As a consequence of this choice, if we define

$$r_I = \left(r_{i_1}, \ldots, r_{i_k}, \sum_{l} r_i - \epsilon\right)$$

then r_l lies in a favorable chamber Δ_{k+1} in \mathbb{D}_2^{k+1} .

• As a consequence of this choice, if we define

$$r_I = \left(r_{i_1}, \ldots, r_{i_k}, \sum_{l} r_i - \epsilon\right)$$

then r_l lies in a favorable chamber Δ_{k+1} in \mathbb{D}_2^{k+1} .

ullet M_{r_l} is isomorphic to \mathbb{CP}^{k-2} and no polygon in M_{r_l} degenerates at the $(k+1)^{\mathrm{st}}$ edge

• As a consequence of this choice, if we define

$$r_I = \left(r_{i_1}, \ldots, r_{i_k}, \sum_{l} r_i - \epsilon\right)$$

then r_l lies in a favorable chamber Δ_{k+1} in \mathbb{D}_2^{k+1} .

- M_{r_l} is isomorphic to \mathbb{CP}^{k-2} and no polygon in M_{r_l} degenerates at the $(k+1)^{\mathrm{st}}$ edge
- P' can degenerate at other edges, in which case we pair (P, P') with a third polygon P'' constructed similarly.

• As a consequence of this choice, if we define

$$r_l = \left(r_{i_1}, \ldots, r_{i_k}, \sum_l r_i - \epsilon\right)$$

then r_l lies in a favorable chamber Δ_{k+1} in \mathbb{D}_2^{k+1} .

- M_{r_l} is isomorphic to \mathbb{CP}^{k-2} and no polygon in M_{r_l} degenerates at the $(k+1)^{\mathrm{st}}$ edge
- P' can degenerate at other edges, in which case we pair (P, P') with a third polygon P'' constructed similarly.
- Our choice of ϵ guarantees that there are only finitely many degenerations that are possible, and hence this process terminates after a finite number of steps.

• A proper subset $I \subset \{1, \dots, n\}$ with $|I| \ge 2$ and r_I as defined above give a pair

$$(P,P')\in M_r\times M_{r_l}$$

called a **bubble pair** (We call P' a **bubble of** P if P degenerates at the edges e_I .)

• A proper subset $I \subset \{1, \dots, n\}$ with $|I| \ge 2$ and r_I as defined above give a pair

$$(P,P')\in M_r\times M_{r_l}$$

- called a **bubble pair** (We call P' a **bubble of** P if P degenerates at the edges e_I .)
- P' never degenerates at its longest edge

• A proper subset $I \subset \{1, ..., n\}$ with $|I| \ge 2$ and r_I as defined above give a pair

$$(P,P')\in M_r\times M_{r_l}$$

called a **bubble pair** (We call P' a **bubble of** P if P degenerates at the edges e_I .)

- P' never degenerates at its longest edge
- As a consequence of the triangle inequality, $(P, P') \in M_r \times M_{r_l}$ being a bubble pair implies

$$\sum_{l} r_i \le \sum_{l^c} r_i. \tag{1}$$

• A proper subset $I \subset \{1, \dots, n\}$ with $|I| \ge 2$ and r_I as defined above give a pair

$$(P,P')\in M_r\times M_{r_l}$$

called a **bubble pair** (We call P' a **bubble of** P if P degenerates at the edges e_I .)

- P' never degenerates at its longest edge
- As a consequence of the triangle inequality, $(P, P') \in M_r \times M_{r_l}$ being a bubble pair implies

$$\sum_{l} r_{i} \leq \sum_{l^{c}} r_{i}. \tag{1}$$

• We say that a proper subset $I \subset 1, ..., n$ with $|I| \ge 2$ is a **relevant** subset if r satisfies (1). The collection of all relevant subsets of $\{1, ..., n\}$ will be denoted by $\mathcal{R}(r)$.

 A stable n-gon with respect to the side length vector r is a collection of labeled (but not ordered) polygons

$$\mathbf{P} := (P_0, P_1, \dots, P_m) \in M_r \times M_{r_{l_1}} \times \dots \times M_{r_{l_m}}$$

 A stable n-gon with respect to the side length vector r is a collection of labeled (but not ordered) polygons

$$\mathbf{P} := (P_0, P_1, \dots, P_m) \in M_r \times M_{r_{l_1}} \times \dots \times M_{r_{l_m}}$$

where the I_j 's range over $\mathcal{R}(r)$

• The following two properties are satisfied:

 A stable n-gon with respect to the side length vector r is a collection of labeled (but not ordered) polygons

$$\mathbf{P} := (P_0, P_1, \dots, P_m) \in M_r \times M_{r_{l_1}} \times \dots \times M_{r_{l_m}}$$

- The following two properties are satisfied:
 - Whenever $I_t \subset I_s$, then P_t is a bubble of P_s ,

 A stable n-gon with respect to the side length vector r is a collection of labeled (but not ordered) polygons

$$\mathbf{P}:=(P_0,P_1,\ldots,P_m)\in M_r\times M_{r_{l_1}}\times\cdots\times M_{r_{l_m}}$$

- The following two properties are satisfied:
 - Whenever $I_t \subset I_s$, then P_t is a bubble of P_s ,
 - If P_h does not have a bubble, then it is generic (i.e. $P_h \in M^0_{r_{l_h}}$).

 A stable n-gon with respect to the side length vector r is a collection of labeled (but not ordered) polygons

$$\mathbf{P}:=(P_0,P_1,\ldots,P_m)\in M_r\times M_{r_{l_1}}\times\cdots\times M_{r_{l_m}}$$

- The following two properties are satisfied:
 - Whenever $I_t \subset I_s$, then P_t is a bubble of P_s ,
 - If P_h does not have a bubble, then it is generic (i.e. $P_h \in M^0_{r_{l_h}}$).
- ullet The moduli space of stable polygons is denoted $\mathfrak{M}_{r,\epsilon}.$

Results

The main results of Hu that bring all of these ideas together:

Theorem

The moduli space $\mathfrak{M}_{r,\epsilon}$ carries a natural smooth, compact complex analytic structure.

Theorem

The moduli spaces $\mathfrak{M}_{r,\epsilon}$ and $\overline{\mathcal{M}}_{0,n}$ are biholomorphic. As a consequence, the complex structure of $\mathfrak{M}_{r,\epsilon}$ is independent of r and ϵ

the Kähler structure may depend on the choices of r and ϵ . It follows that one may use the moduli spaces of stable polygons to study the Kähler cone in $H^2(\overline{\mathcal{M}}_{0,n})$.

Results

Back to our original moduli spaces of polygons M_r :

Theorem

By forgetting all the bubbles, we obtain a natural projection

$$\pi_{r,\epsilon}:\mathfrak{M}_{r,\epsilon}\to M_r$$

that is holomorphic and bimeromorphic. It is the iterated blow up of M_r along (the proper transforms of) some explicitly described subvarieties Y_α when M_r is smooth. When M_r is singular, $\pi_{r,\epsilon}:\mathfrak{M}_{r,\epsilon}\to M_r$ is the composite of a canonical resolution of singularities followed by explicit iterated blowups.

This result allows us to view the moduli spaces M_r as a single family of smooth complex-analytic spaces $\mathfrak{M}_{r,\epsilon}$ whether M_r started out as singular or not.

 \bullet Start with something simple: a polygon in \mathbb{R}^3 with prescribed edge lengths

- \bullet Start with something simple: a polygon in \mathbb{R}^3 with prescribed edge lengths
- Consider the deformation space, allowing the angles to vary: we obtain a topological space that can be realized as a symplectic reduction or as a GIT quotient, illustrating the Kirwan-Kempf-Ness theorem.

- \bullet Start with something simple: a polygon in \mathbb{R}^3 with prescribed edge lengths
- Consider the deformation space, allowing the angles to vary: we obtain a topological space that can be realized as a symplectic reduction or as a GIT quotient, illustrating the Kirwan-Kempf-Ness theorem.
- Resolving singularities and blowing up along specified subvarieties yields a space isomorphic to the Deligne-Mumford compactification of the space of n-pointed genus zero algebraic curves.

- \bullet Start with something simple: a polygon in \mathbb{R}^3 with prescribed edge lengths
- Consider the deformation space, allowing the angles to vary: we obtain a topological space that can be realized as a symplectic reduction or as a GIT quotient, illustrating the Kirwan-Kempf-Ness theorem.
- Resolving singularities and blowing up along specified subvarieties yields a space isomorphic to the Deligne-Mumford compactification of the space of n-pointed genus zero algebraic curves.
- The moduli space of *n*-gons with a prescribed length is dominated by $\overline{\mathcal{M}_{0,n}}$.

Finally, we extend a thanks and wishes for a happy birthday to our advisor, Dr. Philip Foth.