1)Дискретная математика. Высказывания. Логические операции над высказываниями.

Дискре́тная матема́тика — область математики, занимающаяся изучением дискретных структур, которые возникают как в пределах самой математики, так и в её приложениях.

Высказывание — это выражение, относительно которого можно сделать вывод о его истинности или ложности. Высказывания могут быть истинными, ложными или содержащими истину и ложь в разных соотношениях. Операции.

Отрицание - унарная логическая операция (применяется к одному высказыванию), соответствующая конструкциям: «Не...,», «Не верно, что...». О. Отрицание высказывания a — высказывание, обозначаемое $\neg A$, $\sim A$, A.

$$\begin{array}{c|c}
\widehat{a} & \widehat{\overline{a}} \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Операция логического сложения (дизъюнкция)-

Соединение двух высказываний A и B в одно с помощью союза "ИЛИ", употребляемого в неисключающем смысле, называется логическим сложением (дизьюнкцией), а полученное составное высказывание - логической суммой. Пример дизьюнктивного высказывания: "Председателем кооператива "Аметист" будет избран Иванов, или председателем кооператива "Аметист" будет избран Петров". Дизьюнкция обозначается знаком "+" или знаком " \checkmark " (A + B или A \checkmark B). Дизюнкция ложна тогда, когда ложны оба входа в нее высказывания. Законы:

$$a \lor d \equiv b \lor a$$
, $a \lor a \equiv a$, $a \lor 0 \equiv a$, $a \lor 1 \equiv 1$.

Операция логического умножения (конъюнкция)-

Соединение двух высказываний А и В в одно с помощью союза "И", называется логическим умножением (конъюнкцией).

Результат умножения (составное высказывание) называется логическим произведением. Обозначение: А· В или А ^ В Пример: Пусть даны два простых высказывания: А: "Вильнюс - столица Литвы." В: "В Вильнюсе проживает 1 млн. жителей." Получим конъюнкцию: Вильнюс - столица Литвы и в Вильнюсе проживает 1млн. жителей. Законы: Закон анпотенции-

 $a \wedge b \equiv b \wedge a$, $a \wedge a \equiv a$. Закон нуля и единицы- $a \wedge 1 \equiv 0$, $a \wedge 0 \equiv a$.

Эквиваленция- логическая операция, соответствующая союзу "тогда и только тогда, когда" называется эквиваленцией.

Введем для обозначения эквиваленции символ \approx или \Leftrightarrow . Запись А \Leftrightarrow читается так: "А тогда и только тогда, когда В". Когда мы говорим "А тогда и только тогда, когда В", то имеем в виду, что оба предложения А и В одновременно истинны, либо одновременно ложны. Например, "Я поеду в Ленинград тогда и только тогда, когда ты поедешь в Киев." . Св-ва: $a \approx b \equiv b \approx a$,

$$a \approx 1 \equiv a$$
, $a \approx 0 \equiv a$, $a \approx b \equiv \overline{a} \approx b$.

Импликация- логическая операция, соответствующая союзу "если ..., то ..." называется импликацией. Будем обозначать эту операцию символом \rightarrow . Запись $A \rightarrow B$ читается так: "если A, то B", либо "А имплицирует В". С - "Если число п делится на 4 , то оно делится на 2" D - "Если Иванов увлечен математикой, то Петров ничем, кроме хоккея, не интересуется." Импликация высказываний ложна лишь в случае, когда A истинно, а В ложно. Св-ва: $a \rightarrow b \neq b \rightarrow a$, $a \rightarrow a \equiv 1$,

$$0 \rightarrow a \equiv 1, 1 \rightarrow a \equiv a, a \rightarrow 1 \equiv 1, a \rightarrow 0 \equiv \overline{a}$$
.

3)Формулы алгебры высказываний. Теорема о

2).Логические операции. Зависимости между операциями.

Зависимость между операциями. Все операции не являются независимыми. Одни из них могут быть выражены через других. Справедливо следующее-

$$a \rightarrow b \equiv \overline{a} \vee b$$

 $a \approx b \equiv (a \rightarrow b)(b \rightarrow a) \equiv (\bar{a} \lor b)(\bar{b} \lor a) \equiv (ab) \lor (\bar{a}\bar{b})$

Т. Справедливы следующие 19 равносильностей для булевых операций алгебры высказываний:

$$0, \overline{a} \equiv a$$
 - закон двойного отрицания

1.
$$a \lor b \equiv b \lor a$$
 — коммутативные законы 2. $a \land b \equiv b \land a$

$$3. \ a \lor (b \lor c) \equiv (a \lor b) \lor c$$
 4. $a \land (b \land c) \equiv (a \land b) \land c$ — ассоциативные законы

$$5. \ a \lor (b \land c) \equiv (a \lor b) \land (a \lor c)$$
 $6. \ a \land (b \lor c) \equiv (a \land b) \lor (a \land c)$ — дистрибутивные законы

7.
$$a \lor a \equiv a$$
 3аконы идемпотентности 8. $a \land a \equiv a$

9.
$$\overline{a \lor b} \equiv \overline{a} \land \overline{a}$$
 10. $\overline{a \land b} \equiv \overline{a} \lor \overline{b}$ — законы де Моргана²

$$11. a \lor 1 \equiv 1$$
 $12. a \land 0 \equiv 0$
 $13. a \lor 0 \equiv a$
 $14. a \land 1 \equiv a$
 $3a$ коны нуля и единицы

$$15. \ a \lor (a \land b) \equiv a$$
 $16. \ a \land (a \lor b) \equiv a$
 $3a$ соны поелощения

17. а
$$\vee \overline{a} \equiv 1$$
 — закон исключенного третьего

18.
$$a \wedge \overline{a} \equiv 0$$
 — закон противоречия

4)Ранг формул. Булевы формулы. Теорема о

фиксации значений. Теорема о равносильной подстановки.

Формулой алгебры высказываний называются: 1) сами высказывания и символы высказывательных переменных; 2) выражения вида $\overline{F_1}$, $(F_1 \wedge F_2)$, $(F_1 \vee F_2)$, $(F_1 \to F_2)$, $(F_1 \to F_2)$, $(F_1 \to F_2)$, где F_1 , F_2 - формулы алгебры высказываний.

Теорема. Теорема о фиксации значений в формуле. Если $F(x_1,x_2,...,x_n)$ - формула в алгебре высказываний, где $x_1,x_2,...,x_n$ - высказывательные переменные формулы, то при фиксации значений всех высказывательных переменных (т. е. при подстановке вместо них высказываний) формула алгебры высказываний превращается в высказывание. Т.е. формула алгебры высказываний является отображением множества наборов значений высказывательных переменных в высказывания.

Теорема. Теорема о равносильной подстановке. *Пусть* $F(y_1, y_2,..., y_m) \equiv G(y_1, y_2,..., y_m), \ f_l(x_l, x_2,..., x_n) \equiv g_l(x_l, x_2,..., x_n), \ f_2(x_l, x_2,..., x_n) \equiv g_2(x_l, x_2,..., x_n), ... f_m(x_l, x_2,..., x_n) \equiv g_m\{x_1, x_2,..., x_n\}$ - равносильные формулы алгебры высказываний. *Тогда*

 $F(f_1(x_1,x_2,...,x_n),...,f_m(x_1, x_2,...,x_n)) = G(g_1(x_1, x_2,...,x_n),...,g_m(x_1, x_2,...,x_n)).$

существовании равносильной булевой формулы.

О. рангом формулы алгебры высказываний называют число логических операций встречаемых в формуле, причем каждая операция считается столько раз сколько встречается. Т. Для любой формулы AB существуют равносильное и булевы формула AB. ДОК-ВО. По методу индукции начинаем с какого то начального числа. ФОРМУЛА РАНГА НОЛЬ. Все формулы ранга ноль из формул: $\overline{F_1}$, $(F_1 \wedge F_2)$, $(F_1 \vee F_2)$, $(F_1 \vee F_2)$, ($F_1 \sim F_2$), все это булевы формулы. ФОРМУЛА РАНГА ОДИН. Если A и B формулы 0 ранга (булевы), то $\neg A$, $\neg B$, $A \wedge B$, $A \vee B$, $A \sim B$, $A \to B$ формулы ранга 1. Первые 4 булевы формулы, последние 2 можно преобразовать: $A \sim B \equiv (A \wedge B) \vee (\overline{B} \wedge A)$,

$$A \rightarrow B \equiv \overline{A} \vee B$$

5)Двойственность. Закон двойственности.

О. Пусть $f(x_1,x_2,...,x_n)$ – формула алгебры высказываний. Двойственной к ней будем называть формулу $f^*(x_1,x_2,...,x_n)$, определенную следующим:

 $f^*(x1,x2,...,x_n) \equiv \overline{f(\overline{x}_1,\overline{x}_2,...,\overline{x}_n)}$. Из закона двойного отрицания следует, что $(f^*)^* \equiv f$

Т. Закон двойственности. Формулы f_1 ($x1,x2,...,x_n$) и f_2 ($x1,x2,...,x_n$) равносильны тогда, когда равносильны Формулы f_1^* ($x1,x2,...,x_n$) и f_2^* ($x1,x2,...,x_n$) , т.е.

$$f_1(x_1, x_2,..., x_n) \equiv f_2(x_1, x_2,..., x_n) \Leftrightarrow f_1^*(x_1, x_2,..., x_n) \equiv f_2^*(x_1, x_2,..., x_n).$$

6)Двойственность. Принцип двойственности для булевых формул.

Т. принцип двойственности для булевых формул. Двойственная к булевой формуле может быть полученная заменой констант 0 на 1, 1 на 0.

 \vee на \wedge , \wedge на \vee и сохранением структуры формулы (т.е. соответствующего порядка действий).

Док-во. Доказательство проведем индукцией по рангу формулы. 0-й шаг (случай ранга 0). Все формулы 0 –го ранга - $\overline{F_1}$, $(F_1 \wedge F_2)$, $(F_1 \vee F_2)$, $(F_1 \to F_2)$, $(F_1 \to F_2)$. Это

формулы 0, 1, х. Мы знаем, что $0^* \equiv 1$, $1^* \equiv 0$,

 $x^*\equiv x$, т.е. утверждение теоремы выполнено. 1-й шаг. (случай ранга 1). Все булевы формулы имеют вид $\neg A$, $A \land B$, $A \lor B$, где A, B – булевы формулы ранга 0. Применим общий принцип двойственности

$$(\neg A)^* \equiv \left(\neg y_1|_{y_1 \leftarrow B}\right)^* \equiv \neg y_1|_{y_1 \leftarrow A^*} \equiv \neg A^*;$$

$$(A \lor B)^* \equiv \left(y_1 \lor y_2|_{y_1 \leftarrow A}\right)^* \equiv y_1 \land y_2|_{y_1 \leftarrow A^*} \equiv A^* \land B^*;$$

$$(A \land B)^* \equiv \left(y_1 \land y_2|_{y_1 \leftarrow A}\right)^* \equiv y_1 \lor y_2|_{y_1 \leftarrow A^*} \equiv A^* \lor B^*.$$

$$(A \land B)^* \equiv \left(y_1 \land y_2|_{y_1 \leftarrow A}\right)^* \equiv y_1 \lor y_2|_{y_1 \leftarrow A^*} \equiv A^* \lor B^*.$$

7)Нормальные формы. Лемма о разложении переменных.

О. Пусть $\sigma_i \in \{0,1\}$, x – высказывательная переменная.

Определим
$$x^{\sigma}$$
 $\begin{cases} x, ecnu\sigma = 1 \\ \overline{x}, ecnu\sigma = 0 \end{cases}$

Лемма о разложении переменных.

Пусть $f(x_1,x_2,...,x_n)$ – формула алгебры высказываний, $1 \leq i \leq n$, тогда

$$f(x_1,x_2,...,x_n) \equiv x_i \ f(x_1, x_2...x_{i-1}, x_{i+1}... x_n) \lor \overline{x}_i f(x_1, x_2...x_{i-1}, 0, x_{i+1}... x_n) \equiv$$

8)Нормальные формы. Теорема о существовании СЛНФ и СКНФ.

СДНФ (совершенная дизъюнктивная нормальная форма)

Теорема: Для любой Формулы алгебры высказываний, отличной от тождественно ложной существует ее представление в виде

$$f(x_1, x_2, ...x_n) \equiv \vee x^{\sigma_1}, x^{\sigma_2}, ...x^{\sigma_n}$$
.

(под дизьюнкцией - $\sigma_i \in \{0;\!1\}; \hat{f}(\sigma_1,\sigma_2,\!...,\sigma_n) = 1)$

Которое называется совершенной дизъюнктивной нормальной формой.

СКНФ (совершенная конъюнктивная нормальная форма)

 $\vee x_i^6 f(x_1, x_2...x_{i-1}, \sigma_i . x_{i+1}... x_n) . \sigma_i \in \{0,1\}.$

где x_i — неизвестиые, σ_i — параметры.

Теорема: Для любой отличной от тождественно истиной формулы алгебры высказываний существует и единственное ее представление в виде СКНФ конъюнкций полных совершенных элементарных дизъюнкций (сомножителей вида($x_1^{\sigma 1} \lor x_2^{\sigma 2} \lor ... \lor x_n^{\sigma n}$)).

 $f(x_1,x_2,...,x_n) \equiv \land (x_1^{\sigma 1} \lor x_2^{\sigma 2} \lor ... \lor x_n^{\sigma n})$ снизу конъюнкции $[(\sigma_1,\sigma_2,...,\sigma_n)\ ;\ f(\sigma_1,\sigma_2,...,\sigma_n)\equiv 0]$ - СКНФ данной формулы.

9)Типы конъюнкции и дизъюнкции. Теорема о существовании равносильных ДНФ и КНФ. КНФ, ДНФ

O. Пусть
$$V_n=\{x_1,\ \overline{x}_1,x_2,\ \overline{x}_2,...,x_n,\ \overline{x}_n\}$$
 и пусть $\mathcal{U}(\varnothing)\subset V_n$.

Элементарной коньюнкцией, порожденной подмножеством υ , называется коньюнкция всех элементов υ .

- О. Элементарная конъюнкция называется совершенной, если в нее не входит никакая из переменных одновременно с отрицанием этой переменной.
- О. Элементарная конъюнкция называется полной, если в ней представлены все переменные.
- О. Дизъюнктивной нормальной формой ($\mathcal{L}H\Phi$) называется дизъюнкция элементарных конъюнкций.
- О. Конъюнктивной нормальной формой ($KH\Phi$) называется конъюнкция элементарных дизьюнкций.
- Т. Для любой формулы алгебры высказываний существуют равносильные ей ДНФ и КНФ. Док-во. Опишем алгоритм перехода к ДНФ. Рассмотрим отдельно случай формул ранга 0:

$$I \equiv x \lor \overline{x} \equiv (x \lor \overline{x}), \quad 0 \equiv x \cdot \overline{x} \equiv (x) \cdot (\overline{x}).$$
ЛНФ КНФ ДНФ КНФ

Формула x является одновременно и ДНФ и КНФ. Случай формулы $r \ge 1$ Опишем шаги алгоритма, приводящие к цели: 1. Пользуясь формулами

 $x \to y \equiv \overline{x} \lor y$ и $x \sim y \equiv x \cdot y \lor \overline{x} \cdot \overline{y}$, перейти к равносильной булевой формуле. 2.Пользуясь законами де Моргана, перейти к формуле с тесными отрицаниями, т.е. содержащей отрицание не выше чем над переменными (пропустить отрицание внутрь формулы). 3. Пользуюясь дистрибутивными законами, сделать дизэюнкцию (конъюнкцию) внешней операцией.

11)Критерий тождественной истинности.

- Т1. Для того чтобы формула алгебры высказываний была тождественно истинной, необходимо и достаточно, чтобы в равносильной ей КНФ были тождественно истинны все элементарные дизьюнкции.
- T2. Для того чтобы элементарная дизъюнкция была тождественно истинная, достаточно чтобы в ней существовала хотя бы для одной переменной пара состоящей из этой переменной и ее отрицания

Достаточность - $\cdots \lor x \lor \overline{x} \lor \cdots \equiv 1$.

10)Основные проблемы алгебры высказываний.

В алгебре высказываний выделяют 3 основные проблемы: 1) разрешение, 2) равносильности, 3) представления. 1. Проблема разрешения. Существует ли алгоритм позволяющий с помощью равносильных преобразований для произвольной формулы алгебры высказываний выяснить является ли она тождественно истинной или ложной или нетривиально невыполнимой? 2. Проблема равносильности. Существует ли алгоритм, позволяющий с помощью равносильных преобразований для произвольных формул выяснить, равносильны ли они? 3. Проблема представления. Можно ли двузначную 0-1 функцию п двузначных переменных $f(x_1...x_n)$ реализовать формулой алгебры высказываний $F(x_1...x_n)$ так что $f(x_1...x_n) = F(x_1...x_n)$?

12)Предикаты. Логические операции над предикатами. Операции, уменьшающие местность.

Существует 2 операции уменьшающие местность. 1) фиксация значения переменных и 2)навешивание кванторов (квантификация).

Фиксация значения переменных.

Пусть $P(x_1...x_n) - n$ местный предикат определенный на

 Ω . Зафиксируем x_i=a, $1 \le i \le n$. Обозначим Ω_a^i - множество значений переменных x₁...x_{i-1}, x_{i+1}....x_n определяемое следующим.

$$\{x_1,...,x_{i-1},x_{i+1},...,x_n\} \in \Omega_a^i \Leftrightarrow \{x_1,...,x_{i-1},a,x_{i+1},...,x_n\} \in \Omega.$$

	Определим на Ω_{a}^{i} $\{n-1\}$ – местный предикат
	$Q(x_1,,x_{i-1},x_{i+1},,x_n)$ следующим:
	$Q(x_1,,x_{i-1},x_{i+1},,x_n) \equiv P(x_1,,x_{i-1},x_{i+1},,x_n)$
	Навешивание кванторов (квантификация).
	Переход от $P(x)$ к $\forall x P(x)$ или $\exists x P(x)$ называется
	навешиванием квантора на переменную х (или связыванием переменной х). При этом переменная х, на
	которую навешен квантор, называется связанной, в противном случае – свободной. Где $P(x)$ – одноместный
	предикат с предметной областью М. $\forall x P(x)$ бозначается высказывание, которое истинно, если $P(x)$
	тождественно истинный предикат и ложно в противном случае. называется квантором всеобщности.
	$\exists x P(x)$ обозначается высказывание, которое истинно,
	если P(x) выполнимый предикат и ложно, если P(x)
12) 17	тождественно ложный предикат. называется квантором существования.
13)Предикаты, содержащие кванторы. Теорема о равносильности содержащих кванторы.	14)Предикаты, содержащие кванторы. Кванторы как обобщение логических операций.
T1. Разноименные кванторы, вообще говоря, не коммутируют.	Теорема. (Кванторы, как обобщения логических операций). Пусть P(x) - одноместный предикат, определенный на конечном множестве
	$X = \{ x_1, x_2 x_n \}$, тогда получаем
Т2. (основные равносильности, содержащие кванторы). Имеют место следующие равносильности:	$\forall x P(x) \equiv P(x_1) \land P(x_2) \land \dots \land P(x_n)$
$1. \forall x P(x) \equiv \exists x P(x)$	$\exists x P(x) \equiv P(x_1) \lor P(x_2) \lor \dots \lor P(x_n)$
$3. \forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y)$ $4. \exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$	Π ример. Пусть $P(x) = "x ≤ 10, x ∈ [9; 12]"$
	Рисунок 1.7.7.
$ 5. \forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x) $ 6. $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x) $ - дистрибутивные законы для кванторов	
$ 7. \forall x(P(x) \lor Q(y)) \equiv \forall xP(x) \lor \forall xQ(y) \\ 8. \exists x(P(x) \land Q(y)) \equiv \exists xP(x) \land \exists xQ(y) \end{bmatrix} \text{- законы ограничения действия кванторов} $	7 89 10 11 12 13
$9.\exists y \forall x P(x, y) \rightarrow \forall x \exists y P(x, y) \equiv 1$	$\forall x P(x) \ a = "\forall x \in [9, 12] \ x \le 10", \ \hat{a} = 0$
	$P(x_1) = P(7) = "9 \le 10" \hat{P}(9) = 1$
	$P(x_2) = P(10) = "10 \le 10"$ $\hat{P}(10) = 1$ $P(x_3) = P(11) = "11 \le 10"$ $\hat{P}(11) = 0$
	$P(x_3) = P(11) = 11 \le 10$ $P(11) = 0$ $P(x_4) = P(12) = "12 \le 10"$ $\hat{P}(12) = 0$
	$\hat{\alpha} = 0 \cdot \forall x P(x) = P(x_1) \land P(x_2) \land P(x_3) \land P(x_4); 0 = 1 \cdot 1 \cdot 0 \cdot 0; 0 = 0$ $\exists x P(x) = P(x_1) \lor P(x_2) \lor P(x_3) \lor P(x_4)$
	$\exists x P(x) \ b = "\exists x \in [9; 12] \ x \le 10", \ \hat{b} = 1$
15)Типы множеств. Операции над множествами.	1 = 1 ∨ 1 ∨ 0 ∨ 0 ⇒ 1 = 1. 16)Подмножество. Теоремы о подмножестве.
Операции над множествами. Объединение: множество тех элементов х, которые	Т. Любое подмножество конечного множества само конечно. Любое надмножество бесконечного множества
принадлежат хотя бы одному множеству. A∪B={x:x∈A	само бесконечно.
или $x \in B$ 2) пересечение: $A \cap B = \{x: x \in A \land x \in B\}$.	Т.Число элементов конечного множества A и n - число элементов B . Предположим, что $n \ge m$. Так как
3) разность множеств.А\B={ $x::x∈A \land x∉B$ }	$A \supset B$, то $A \neq 0, n > 0$ и $A \sim 1, m $. Также
$A \triangle B \equiv A - B := (A \cup B) \setminus (A \cap B) = A \cap B$	$n \geq m > 0$, следовательно, $B \sim 1, n $. При взаимно
$A \cap \overline{B} + \overline{A} \cap B = \{x : (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}.$	однозначном отображении A на отрезок $ 1,m $ множество B
5) Декартовое или прямое произведение $A \times B = \{(a, b) \mid a \in A, b \in B\}.$	отображается также взаимно однозначно на некоторое собственное подмножество B отрезка $ 1,m $ таким образом, что $B \sim B$
6) Дополнение до множества x. $X^c = \mathfrak{X} - X = \{x \in \mathfrak{X} : x \notin X\}$	
I and the second	1

17) Свойства образов и прообразов. Композиция отображений. Теорема об ассоциативности композиций. Типы отображений.

Т.Свойства прообразов и образов. Пусть $f: X \to Y$; $A_1, A_2 \subset X$; $B_1, B_2 \subset Y$: тогда имеют место соотношения: $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$ $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$ $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$ $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$ Пусть $y \in f(x_1) \cup A_2 \Leftrightarrow f^{-1}(\{y\}) \cap (A_1 \cup A_2) \neq \emptyset$ $\Leftrightarrow y \in f(A_1) \cup f(A_2)$.

О. Композиция отображений.

Пусть $f:X\to Y,g:Y\to Z$. Композицией отображений f и g называется отображение $g\circ f:X\to Z$, определяемое следующим: $(g\circ f)(x)=g(f(x)),x\in X$ • $g\circ f\neq f\circ g,h\circ (f\circ g)=(h\circ f)\circ g$

Теорема ассоциативности композиций.

Если $f: X \to Y, g: Y \to Z, h: Z \to W$, то $\forall x (\in X)$ $(h \circ (g \circ f)(x) = ((h \circ g) \circ f)(x)$ $(h \circ (g \circ f)(x) = h((g \circ f)(x)) = h(g(f(x))).$ $((h \circ y) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$

Типы отображений

3 типа: инъективные, сурьективные, биективные. О. Отображение $f: X \to Y$ называется сюрьективным, если

 $\forall y (\in Y) \ f^{-1}(\{y\}) \neq \emptyset$.

О. Отображение $f: X \to Y$ называется инъективным, если $\forall x_1 (\in X) \forall x_2 (\in X) ((x_1 \neq x_2) \Rightarrow f(x_1) \neq f(x_2)).$

О. Отображение $f:X\to Y$ называется биективным, если оно инъективно и сюръективно.

19)Обратимость. Критерий односторонней обратимости.

Т. Критерий обратимости слева. Для того чтобы отображение $f: X \to Y$ было обратимым слева, необходимо и достаточно, чтобы f было инъективным. Т. Критерий обратимости справа. Для того чтобы отображение $f: X \to Y$ было обратимым справа, необходимо и достаточно, чтобы f было сюръективно. Т. Критерий обратимости. Для того чтобы отображение $f: X \to Y$ было обратимым, необходимо и достаточно, чтобы f было биективным.

18)Типы отображений. Теоремы о композиции.

Т.Композиция инъективных отображений.

Если $f: X \to Y$ и $g: Y \to Z$ - инъективные отображения, то $g \circ f: X \to Z$ - инъективное отображение Т. О композициях сурьективных отношений. Если $f: X \to Y$ и $g: Y \to Z$ -сюръективные отображения, то $g \circ f: x \to z$ - сюръективное отображение. Т. О композиции биективных отображений. Если $f: x \to y, y: y \to z$ биективно, то отображение $g \circ f: X \to Z$ -биективное отображение.

20)Комбинаторика. Аксиомы комбинаторики. Число элементов в конечном множестве. Декартово произведение множеств.

Аксиомы.

- 1. Отрезок натурального ряда $[1,n]_N=(1,2,3,...,n]$ содержит n элементов.
- 2. Если A и B множество и существует биективное отношение $\varphi: A \to B, mo|A| = |B|$

 $\left|A\right|$ -количество элементов в множестве.

$$3. \left| \varnothing \right| = 0.$$

Декартово произведение множества. Декартовое произведение множества x и y называют множество обозначаемое $X \times Y$ элементами которых являются упорядоченные пары (x,y), где $x \in X$ и $y \in Y$. Под равенством понимается- z_1 = (x_1,y_1) $z_1, z_2 \in X \times Y$, тогда $z_1 = z_2 \Leftrightarrow (x_1 = x_2) \land (y_1 = y_2)$

Т. Если X и Y- конечные множества, то $X \times Y$ - конечное множество и $\mid X \times Y \mid = \mid X \mid \cdot \mid Y \mid$