厦门大学高等代数教案 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

习题 1.1 数域

1. 求包含 $\sqrt{3}$ 的最小数域, 并证明.

证明: 可证 $P = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}$ 为所求.

先证 P 是数域. 显然 $P\subseteq\mathbb{C},\,0+0\sqrt{3}=0,1+\sqrt{3}=1\in P,$ 且对于任意的 $a+b\sqrt{3},c+d\sqrt{3}\in P,$ 其中 $a,b,c,d\in\mathbb{Q},$

$$(a + b\sqrt{3}) \pm (c + d\sqrt{3}) = (a \pm c) + (b \pm d)\sqrt{3} \in P$$

$$(a + b\sqrt{3})(c + d\sqrt{3}) = (ac + 3bd) + (ad + bc)\sqrt{3} \in P.$$

对于 $c+d\sqrt{3}\neq 0$, 其中 c,d 不同时为零,有 $c-d\sqrt{3}\neq 0$ 且

$$\frac{(a+b\sqrt{3})}{c+d\sqrt{3}} = \frac{ac-3bd}{c^2-3d^2} + \frac{bc-ad}{c^2-3d^2} \in P.$$

再证 P 是包含 $\sqrt{3}$ 的最小数域。假设还存在一个数域 F 包含 $\sqrt{3}$,往证 $P\subseteq F$,即证明对任意 $a+b\sqrt{3}\in F$,其中 $a,b\in\mathbb{Q}$,总有 $a+b\sqrt{3}\in P$.事实上,因 \mathbb{Q} 是最小数域,故 $\mathbb{Q}\subseteq F$,从而 $a,b\in F$;其次由假设 $\sqrt{3}\in F$,且 F 是数域,因此 $b\sqrt{3}\in F$,进而 $a+b\sqrt{3}\in F$.命题得证. \square

2. 证明 $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$ 是一个数域.

证明: $\mathbb{Q}(i)$ 是 \mathbb{C} 的子集. 且因为 $1=1+0i,\,0=0+0i,$ 所以 $0,1\in\mathbb{Q}(i)$.

对于任意的 $a+bi, c+di \in \mathbb{Q}(i)$, 其中 $a,b,c,d \in \mathbb{Q}$, 成立

$$(a+bi) \pm (c+di) = (a \pm c) + (b \pm d)i \in \mathbb{Q}(i),$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i \in \mathbb{Q}(i),$$

对 $c + di \neq 0$, 且 c, d 不同时为零, 有 $c - di \neq 0$ 且

$$\frac{(a+bi)}{(c+di)} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i \in \mathbb{Q}(i).$$

综上即得 $\mathbb{Q}(i)$ 是一个数域. \square

(李小凤解答)