HIGH POWER SWITCHING USE
INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

APPLICATION

Traction drives, High Reliability Converters / Inverters, DC choppers

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

MAXIMUM RATINGS

Symbol	Item	Conditions	Ratings	Unit
Vces	Collector-emitter voltage	$V_{GE} = 0V, T_j = 25$ °C	1700	٧
VGES	Gate-emitter voltage	$V_{CE} = 0V, T_j = 25^{\circ}C$	± 20	V
Ic	Collector current	DC, Tc = 80°C	1200	Α
Ісм	Collector current	Pulse (Note 1)	2400	Α
ΙE	Emitter current (Note 2)	DC	1200	Α
ІЕМ	Ellitter current (Note 2)	Pulse (Note 1)	2400	Α
Pc	Maximum power dissipation (Note 3)	T _c = 25°C, IGBT part	8600	W
Viso	Isolation voltage	RMS, sinusoidal, f = 60Hz, t = 1 min.	4000	V
Tj	Junction temperature		-40 ~ +150	°C
Тор	Operating temperature		-40 ~ +125	°C
Tstg	Storage temperature		-40 ~ +125	°C
tpsc	Maximum short circuit pulse width	$Vcc = 1000V$, $VcE \le VcEs$, $VgE = 15V$, $T_j = 125$ °C	10	μs

ELECTRICAL CHARACTERISTICS

Cumbal	lkama	Conditions		Limits			Unit
Symbol	Item	Conditions		Min	Тур	Max	Unit
Ices	Collector cutoff current	Vce = Vces, Vge = 0V	Tj = 25°C	5	5	mA	
ICES		VCE = VCES, VGE = UV	T _j = 125°C	_	— 4.0 10	10] IIIA
V _{GE(th)}	Gate-emitter threshold voltage	V CE = 10 V , I C = 120 m A, T $_{j}$ = 25 $^{\circ}$ C		5.5	6.5	7.5	V
Iges	Gate leakage current	$V_{\text{GE}} = V_{\text{GES}}, V_{\text{CE}} = 0V, T_j = 25^{\circ}C$		_	_	0.5	μΑ
Cies	Input capacitance			_	220	_	nF
Coes	Output capacitance	$V_{\text{CE}} = 10 \text{ V}, V_{\text{GE}} = 0 \text{ V}, f = 100 \text{ kHz}, T_{j} = 0 \text{ KHz}$	25°C	_	12	_	nF
Cres	Reverse transfer capacitance			_	3.5	_	nF
Qg	Total gate charge	$Vcc = 900 \text{ V}, \text{ Ic} = 1200 \text{ A}, \text{ VgE} = \pm 15 \text{ V},$	$T_j = 25^{\circ}C$	_	15.2	_	μС
VCE(sat)	Collector-emitter saturation	Ic = 1200 A (Note 4)	$T_j = 25^{\circ}C$	_	2.05	2.70	V
V CE(Sai)	voltage	VgE = 15 V	T _j = 125°C	_	2.30	_	, v
td(on)	Turn-on delay time	$Vcc = 900 \text{ V, } Ic = 1200 \text{ A, } Vge = \pm 15 \text{ V}$		_	_	1.50	μs
tr	Turn-on rise time	$R_{G(on)} = 1.1 \Omega$, $T_i = 125^{\circ}C$, $L_s = 100 \text{ nH}$	_	_	0.60	μs	
Eon(10%)	Turn-on switching energy (Note 5)	Inductive load		_	0.43	_	J/P
td(off)	Turn-off delay time	Vcc = 900 V, lc = 1200 A, VgE = ± 15 V Rg(off) = 2.0 Ω , Tj = 125°C, Ls = 100 nH Inductive load	_	_	3.00	μs	
tf	Turn-off fall time		_	_	0.60	μs	
Eoff(10%)	Turn-off switching energy (Note 5)		_	0.32	_	J/P	
VEC	Emitter-collector voltage	IE = 1200 A (Note 4)	T _j = 25°C	_	2.20	3.00	V
VEC	(Note 2)	$V_{GE} = 0 V$	Tj = 125°C	_	1.85	_	7 °
trr	Reverse recovery time (Note 2)	V 000 V I- 1000 A V 115 V		_	_	1.50	μs
Qrr	Reverse recovery charge (Note 2)	Vcc = 900 V, Ie = 1200 A, VGE = ± 15 V RG(on) = 1.1 Ω , Tj = 125°C, Ls = 100 nH Inductive load	_	410	_	μC	
Erec(10%)	Reverse recovery energy (Note 2), (Note 5)			_	0.29	_	J/P

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

THERMAL CHARACTERISTICS

Symbol	Item	Conditions	Limits			Unit
		Conditions	Min	Тур	Тур Мах	Unill
Rth(j-c)Q	Thermal resistance	Junction to Case, IGBT part	_	_	14.0	K/kW
Rth(j-c)R	Thermal resistance	Junction to Case, FWDi part	_	_	21.0	K/kW
Rth(c-f)	Contact thermal resistance	Case to Fin, λgrease = 1W/m·K, D(c-f) = 100 μm	_	10.0	_	K/kW

MECHANICAL CHARACTERISTICS

Symbol	Item	Conditions	Limits		Limit	
		Conditions	Min	Тур	Max	Unit
Mt	Mounting torque	M8: Main terminals screw	7.0	_	13.0	N⋅m
Ms		M6: Mounting screw	3.0	_	6.0	N⋅m
Mt		M4: Auxiliary terminals screw	1.0	_	2.0	N⋅m
m	Mass		_	1.5	_	kg
CTI	Comparative tracking index		600	_	_	_
da	Clearance		19.5	_	_	mm
ds	Creepage distance		32.0	_	_	mm
LP CE	Parasitic stray inductance		_	15	_	nH
Rcc'+EE'	Internal lead resistance	Tc = 25°C	_	0.21	_	mΩ

Note 1. Pulse width and repetition rate should be such that junction temperature (Tj) does not exceed Topmax rating (125°C).

2. The symbols represent characteristics of the anti-parallel, emitter to collector free-wheel diode (FWDi).

3. Junction temperature (Tj) should not exceed Tjmax rating (150°C).

4. Pulse width and repetition rate should be such as to cause negligible temperature rise.

- 5. Eon(10%) / Eoff(10%) / Erec(10%) are the integral of 0.1VcE x 0.1lc x dt.

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

PERFORMANCE CURVES

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 2500 VGE = 15V 1500 1000 1000 Tj = 25°C --- Tj = 125°C --- Tj = 125°C COLLECTOR-EMITTER SATURATION VOLTAGE (V)

HIGH POWER SWITCHING USE INSULATED TYPE

HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL) 1.8 VCC = 900V, $VGE = \pm 15V$ RG (on) = $1.1\Omega,\ RG$ (off) = 2.0Ω 1.6 $T_j = 125^{\circ}C$, Inductive load † SWITCHING ENERGIES (J/P) 1.2 1.0 0.8 0.6 0.4 0.2 1000 2000 2500 500 1500 COLLECTOR CURRENT (A)

CHARACTERISTICS (TYPICAL) 10 $VCC = 900V, VGE = \pm 15V$ $RG (on) = 1.1\Omega, RG (off) = 2.0\Omega$ 5 Tj = 125°C, Inductive load td(off) 2 SWITCHING TIMES (µs) 10⁰ td(on) 7 5 2 10⁻¹ tr 5 3 10⁻² L 3 4 5 7 10³ COLLECTOR CURRENT (A)

HALF-BRIDGE SWITCHING TIME

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS 1.2 Rth(j-c)Q = 14.0K/kW Rth(j-c)R = 21.0K/kW 0.8 0.8 0.4 0.4 0.2 0.0 0.3 2 3 5710⁻² 2 3 5710⁻¹ 2 3 5710⁰ 2 3 5710¹ TIME (s)

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

FREE-WHEEL DIODE REVERSE RECOVERY SAFE OPERATING AREA (RRSOA) 1600 Vcc ≤ 1200V, di/dt ≤ 6500A/μs Ti = 125°C 1400 REVERSE RECOVERY CURRENT (A) 1200 1000 800 600 400 200 0 L 1000 COLLECTOR-EMITTER VOLTAGE (V)

HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

Sep. 2009