Практическое задание по теме «Байесовские рассуждения»

Солоткий Михаил, 417 группа ВМК МГУ

25 сентября 2018 г.

1 Вывод формул в модели посещаемости

Модель (1) 1.1

Рассмотрим вероятностную модель

$$P(a, b, c, d) = P(d|c) P(c|a, b) P(a) P(b),$$

$$d|c \sim c + Bin(c, p_3),$$

$$c|a, b \sim Bin(a, p_1) + Bin(b, p_2),$$

$$a \sim Unif[a_{min}, a_{max}],$$

$$b \sim Unif[b_{min}, b_{max}].$$

В варианте \mathbb{N}^2 задания предлагается вычислить следующие распределения: $\mathsf{P}(a)$, $\mathsf{P}(b)$, $\mathsf{P}(c)$, $\mathsf{P}(d)$, $\mathsf{P}(b|a)$, P(c|a), P(c|b), P(b|d), P(b|a,d).

$$\bullet \ \mathsf{P}(a) = \frac{1}{a_{max} - a_{min} + 1}$$

$$\bullet \ \mathsf{P}(b) = \frac{1}{b_{max} - b_{min} + 1}$$

•
$$P(c) = \sum_{a,b} P(c|a,b) \cdot P(a,b) = \sum_{a,b} P(c|a,b) \cdot P(a) \cdot P(b)$$

$$P(c = k|a, b) = \sum_{i=0}^{k} P(Bin(a, p_1) = i) \cdot P(Bin(b, p_2) = k - i)$$

$$P(c = k) = \sum_{a = a_{min}}^{a_{max}} \sum_{b = b}^{b_{max}} \sum_{i=0}^{k} P(Bin(a, p_1) = i) \cdot P(Bin(b, p_1) = k - i) \cdot P(a) \cdot P(b)$$

$$P(c = k) = \sum_{a = a_{min}}^{a_{max}} \sum_{b = b_{min}}^{b_{max}} \left[\sum_{i=0}^{k} {a \choose i} \cdot p_1^i \cdot (1 - p_1)^{a-i} \cdot {b \choose k-i} \cdot p_2^i \cdot (1 - p_2)^{b-k+i} \right] P(b) P(a)$$

•
$$P(d) = \sum_{c} \cdot P(d|c) \cdot P(c)$$

$$P(d = k | c) = P(Bin(c, p_3) = k - c)$$

$$P(d = k | c) = P(Bin(c, p_3) = k - c)$$

$$P(d = k) = \sum_{c=0}^{a_{max} + b_{max}} P(Bin(c, p_3) = k - c) \cdot P(c)$$

•
$$P(b|a) = P(b)$$

•
$$P(c|a) = \sum_{b} P(c|a,b) \cdot P(b|a) = \sum_{b} P(c|a,b) \cdot P(b)$$

$$P(c = k|a) = \sum_{b=b_{min}}^{b_{max}} \left[\sum_{i=0}^{k} P(Bin(a, p_1) = i) \cdot P(Bin(b, p_2) = k - i) \right] \cdot P(b)$$

•
$$P(c|b) = \sum_{a} P(c|a,b) \cdot P(a|b) = \sum_{a} P(c|a,b) \cdot P(a)$$

$$P(c = k|b) = \sum_{a=a_{min}}^{a_{max}} \left[\sum_{i=0}^{k} P(Bin(a, p_1) = i) \cdot P(Bin(b, p_2) = k - i) \right] \cdot P(a)$$

$$\bullet \ \mathsf{P}(b|d) = \frac{\mathsf{P}(d|b) \cdot \mathsf{P}(b)}{\mathsf{P}(d)} = \frac{\left[\sum\limits_{c} \mathsf{P}(d|b,c) \cdot \mathsf{P}(c|b)\right] \cdot \mathsf{P}(b)}{\mathsf{P}(d)} = \frac{\left[\sum\limits_{c} \mathsf{P}(d|c) \cdot \mathsf{P}(c|b)\right] \cdot \mathsf{P}(b)}{\mathsf{P}(d)}$$

$$\bullet \ \mathsf{P}(b|a,d) = \frac{\sum\limits_{c} \mathsf{P}(d|c) \cdot \mathsf{P}(c|a,b) \cdot \mathsf{P}(a) \cdot \mathsf{P}(b)}{\sum\limits_{b,c} \mathsf{P}(d|c) \cdot \mathsf{P}(c|a,b) \cdot \mathsf{P}(a) \cdot \mathsf{P}(b)}$$

$$\sum\limits_{b,c} \mathsf{P}(d|c) \cdot \mathsf{P}(c|a,b) \cdot \mathsf{P}(a) \cdot \mathsf{P}(b) = \sum\limits_{c} \mathsf{P}(d|c) \left[\sum\limits_{b} \mathsf{P}(c|a,b) \cdot \mathsf{P}(a) \cdot \mathsf{P}(b) \right] = \sum\limits_{c} \mathsf{P}(d|c) \left[\sum\limits_{b} \mathsf{P}(a,b,c) \right] = \sum\limits_{c} \mathsf{P}(d|c) \, \mathsf{P}(a,c) = \sum\limits_{c} \mathsf{P}(d|c) \cdot \mathsf{P}(c|a) \cdot \mathsf{P}(a)$$

$$= \sum\limits_{c} \mathsf{P}(d|c) \cdot \mathsf{P}(c|a) \cdot \mathsf{P}(a)$$

$$\mathsf{P}(b|a,d) = \frac{\sum\limits_{c} \mathsf{P}(d|c) \cdot \mathsf{P}(c|a,b) \cdot \mathsf{P}(a) \cdot \mathsf{P}(b)}{\sum\limits_{c} \mathsf{P}(d|c) \cdot \mathsf{P}(c|a) \cdot \mathsf{P}(a)} = \frac{\sum\limits_{c} \mathsf{P}(d|c) \cdot \mathsf{P}(c|a,b) \cdot \mathsf{P}(b)}{\sum\limits_{c} \mathsf{P}(d|c) \cdot \mathsf{P}(c|a)}$$

1.2 Модель (2)

Теперь изменим немного модель: заменим распределение c|a,b на $Poiss(ap_1 + bp_2)$. Тогда поменяются формулы для P(c), P(c|a), P(c|b).

•
$$P(c = k|a, b) = P(Poiss(ap_1 + bp_2) = k) = \frac{e^{-ap_1 + bp_2} \cdot (ap_1 + bp_2)^k}{k!}$$

 $P(c = k) = \sum_{a=a_{min}}^{a_{max}} \sum_{b=b_{min}}^{b_{max}} \frac{e^{-ap_1 + bp_2} \cdot (ap_1 + bp_2)^k}{k!} \cdot P(b) \cdot P(a)$

•
$$P(c|a) = \sum_{b} P(c|a,b) \cdot P(b|a) = \sum_{b} P(c|a,b) \cdot P(b)$$

$$P(c=k|a) = \sum_{b=b_{min}}^{b_{max}} P(Poiss(ap_1 + bp_2) = k) \cdot P(b)$$

•
$$P(c|b) = \sum_{a} P(c|a,b) \cdot P(a|b) = \sum_{a} P(c|a,b) \cdot P(a)$$

 $P(c=k|b) = \sum_{a=a_{min}}^{a_{max}} P(Poiss(ap_1 + bp_2) = k) \cdot P(a)$

2 Вывод математических ожиданий и дисперсий случайных величин

$$\begin{split} \bullet & \ \mathsf{E}(a) = \sum_{a} \left[a \cdot \mathsf{P}(a) \right] = \sum_{a=a_{min}}^{a_{max}} a \cdot \frac{1}{a_{max} - a_{min} + 1} = \frac{1}{a_{max} - a_{min} + 1} \cdot \sum_{a=a_{min}}^{a_{max}} a = \\ & = \frac{1}{a_{max} - a_{min} + 1} \cdot \left(\sum_{a=1}^{a_{max}} a - \sum_{a=1}^{a_{min} - 1} a \right) = \frac{1}{a_{max} - a_{min} + 1} \cdot \left(\frac{a_{max} \cdot (a_{max} + 1)}{2} - \frac{(a_{min} - 1) \cdot a_{min}}{2} \right) = \\ & = \frac{1}{a_{max} - a_{min} + 1} \cdot \left(\frac{a_{max}^2}{2} + \frac{a_{max}}{2} - \frac{a_{min}^2}{2} + \frac{a_{min}}{2} \right) = \frac{1}{a_{max} - a_{min} + 1} \cdot \\ & \cdot \left(\frac{(a_{max} - a_{min}) \cdot (a_{max} + a_{min})}{2} + \frac{a_{max} + a_{min}}{2} \right) = \frac{a_{max} + a_{min}}{2 \cdot (a_{max} - a_{min} + 1)} \cdot (a_{max} - a_{min} + 1) = \\ & \frac{a_{max} + a_{min}}{2} \\ & \mathsf{D}(a) = \mathsf{E}(a^2) - \mathsf{E}(a)^2 = \frac{1}{a_{max} - a_{min} + 1} \cdot \sum_{a=a_{min}}^{a_{max}} a^2 - \frac{1}{(a_{max} - a_{min} + 1)^2} \cdot \left(\sum_{a=a_{min}}^{a_{max}} a \right)^2 = \\ & = \frac{(a_{max} - a_{min} + 1)^2 - 1}{12} \end{aligned}$$

•
$$E(b) = \frac{b_{max} + b_{min}}{2}$$

$$D(b) = \frac{(b_{max} - b_{min} + 1)^2 - 1}{12}$$

•
$$c_{max} = a_{max} + b_{max}$$

$$\mathsf{E}(c) = \sum_{c=0}^{c_{max}} c \cdot \mathsf{P}(c)$$

$$\mathsf{D}(c) = \mathsf{E}(c^2) - \mathsf{E}(c)^2 = \sum_{c=0}^{c_{max}} \left[c^2 \cdot \mathsf{P}(c) \right] - \left(\sum_{c=0}^{c_{max}} c \cdot \mathsf{P}(c) \right)^2$$

•
$$d_{max} = 2 \cdot c_{max}$$

$$\mathsf{E}(d) = \sum_{d=0}^{d_{max}} d \cdot \mathsf{P}(d) = \sum_{d=0}^{d_{max}} \sum_{c=0}^{c_{max}} d \cdot \mathsf{P}(\mathrm{Bin}(c, p_3) = d - c) \cdot \mathsf{P}(c)$$

$$\mathsf{D}(d) = \mathsf{E}(d^2) - \mathsf{E}(d)^2 = \sum_{d=0}^{d_{max}} \left[d^2 \cdot \mathsf{P}(d) \right] - \left(\sum_{d=0}^{d_{max}} d \cdot \mathsf{P}(d) \right)^2$$

3 Влияние косвенной информации на прогноз величиины b

Ниже приведены графики распределений величины b.

Распределения P(b) и P(b|a) не отличаются, так как величины a и b независимы. Распределения P(b|d=E(d)) и P(b|a=E(a),d=E(d)) отличаются не сильно, как можно видеть на графиках. Различия в вероятностях при одинаковых значениях b между ними порядка 10^{-5} . Как видно, само по себе наличие косвенной информации (зависимой) чуть-чуть меняет вид распределения, то есть более ярко выражаются наиболее правдоподобные значения b. Уточнение происходит относительно небольшое, такой же вывод можно сделать по значениям дисперсии — она не сильно уменьшилась. Ещё можно заметить, что для каждой отдельной модели добавление величины a в качестве условия уменьшает дисперсию и меняет мат. ожидание.

Величина	Модель	Мат. ожидание	Дисперсия
b	1, 2	550	850
$b \mid d = E(d)$	1	550.07	848.037
$b \mid d = E(d)$	2	550.09	848.128
$b \mid a = E(a), d = E(d)$	1	550.03	848.031
$b \mid a = E(a), d = E(d)$	2	550.06	848.123

4 Влияние параметров вероятностей на относительную важность параметров а и b для оценки велчины с

Проведём вычисление значений $D(c \mid b = E(b))$ и $D(c \mid a = E(a))$ при различных значениях параметров p_1, p_2 вероятностей бинмиальных распределений в модели (1). На равномерной сетке квадрата $[0,1] \times [0,1]$ (по 100 значений для каждой размерности). Ниже приведены графики соотношений дисперсий, белым обозначена область, где условие выполняется. По графикам кажется, что множества линейно разделимы.

 $var(c \mid b = mean(b)) < var(c \mid a = mean(a))$ $var(c \mid b = mean(b)) >= var(c \mid a = mean(a))$

5 Доказательство линейной разделимости

Формула полной дисперсии:

$$\mathsf{D}(Y) = \mathsf{E}(\mathsf{D}(Y|X)) + \mathsf{D}(\mathsf{E}(Y|X))$$

Возьмём Y = c|b, X = a|b

$$D(Y|X) = D(c|a,b) = D(Bin(a, p_1) + Bin(b, p_2)) = a \cdot p_1 \cdot (1 - p_1) + b \cdot p_2 \cdot (1 - p_2)$$

$$\mathsf{E}(Y|X) = \mathsf{E}(c|a,b) = \mathsf{E}(\mathrm{Bin}(a,p_1) + \mathrm{Bin}(b,p_2)) = p \cdot p_1 + b \cdot p_2$$

$$\mathsf{E}(\mathsf{D}(Y|X)) = \mathsf{E}(a) \cdot p_1 \cdot (1 - p_1) + b \cdot p_2 \cdot (1 - p_2)$$

 $\mathsf{D}(\mathsf{E}(Y|X)) = \mathsf{D}(a) \cdot p_1$

$$D(c|b = E(b)) = E(a) \cdot p_1 \cdot (1 - p_1) + E(b) \cdot p_2 \cdot (1 - p_2) + D(a) \cdot p_1$$

В силу симметрии:

$$D(c|a = E(a)) = E(a) \cdot p_1 \cdot (1 - p_1) + E(b) \cdot p_2 \cdot (1 - p_2) + D(b) \cdot p_2$$

Пусть
$$c_1 = D(a), c_2 = D(b)$$
, заметим, что $c_1 > 0, c_2 > 0$.

$$f(p_1, p_2) = D(c|b = \mathsf{E}(b)) - D(c|a = \mathsf{E}(a)) = c_1 \cdot p_1 - c_2 \cdot p_2$$

Если приравнять к 0, получим уравнение прямой, которая разбивает плоскость на 2 полуплоскости, причём в одной f > 0, а в другой f < 0. Заметим, что на квадрате $[0,1] \times [0,1]$ тоже есть точки, где функция f разного знака.

6 Замеры времени

Ниже приведены замеры времени вычисления распределений. Для величин, стоящих в условиях вычислялись вероятности для всех значений от минимального до максимального, то есть, к примеру $0 \le d \le 2 \cdot (a_{max} + b_{max})$. Замеры проводились с помощью утилиты **timeit** ipython notebook, которая запускает код 10 раз и оценивает по ним стандартное отклонение и среднее затраченного времени.

Распределение	c	c a	c b	b a	b d	b a,d	d
Время вычисления 1 модели: t_1	$99.2 \mathrm{\ ms}$	$111 \mathrm{\ ms}$	$108 \mathrm{\ ms}$	$2.48~\mu\mathbf{s}$	$233~\mathrm{ms}$	$2.42 \mathrm{\ s}$	$165~\mathrm{ms}$
Стандартное отклонение t_1	$1.46~\mathrm{ms}$	$2.74~\mathrm{ms}$	$1.35~\mathrm{ms}$	114 ns	$13.9~\mathrm{ms}$	198 ms	$2.18~\mathrm{ms}$
Время вычисления 2 модели: t_2	59.7 ms	58.6 ms	$63.8~\mathrm{ms}$	$2.63 \; \mu { m s}$	172 ms	2.19 s	115 ms
Стандартное отклонение t_2	$1.55~\mathrm{ms}$	$345~\mu s$	$2.31~\mathrm{ms}$	72.2 ns	$4.29~\mathrm{ms}$	$41~\mathrm{ms}$	$2.17~\mathrm{ms}$

Можно заметить, что распределние $b \mid a,d$ вычисляется сильно дольше, чем остальные, но это и понятно, ведь оно единственное выводилось по определению условной вероятности и разложению совместного распределения. В процессе вычисления появлялись трёхмерные тензоры, в которых надо поменять некоторые размерности перед умножением. Быстрее всего вычислялось $b \mid a$, так как величины a и b независимы, а b распределено равномерно, то есть достаточно было заполнить матрицу одинаковым значением. Почти все распределения второй модели вычисляются быстрее соттветствующих распределений первой модели. В одном случае получилось наоборот, но это не стат. значимый результат.

7 Сравнение моделей

Как видно из графиков распределений величины $b \mid a$ и величины $b \mid a, d$ для разных моделей разница в вероятностях незначительная, это значит, что можно не считать биномиальные распределения

и приближать их распределениями Пуассона (в случае конкретных использовавшихся в экспериментах параметрах вероятностей $p_1=0.1$ и $p_2=0.01$). Исходя из проведённых экспериментов нельзя сказать, что какая-то из моделей существенно лучше предсказывает какие-либо величины. Исходя из на практике использовать модель (2) предпочтительней (не факт, что тоже самое можно сказать в случае других значений параметров вероятностей посещения).