演習 2

Exposure-Response (ER) 解析を用いた用量設定

- Introduction -

本演習のゴール

• Phase 1/2試験の結果得られたER関係から、Phase 3で用いるべき用量を提案する

午後には発表会を実施いたします

本演習の題材

• 非小細胞肺がん治療薬としてのT-cell engagerの開発

最もバランスの優れる用量は?

本演習の内容

Modeling

1. Phase I/II試験のExpansionパートのデータを用いて,有効性・安全性の両方に関するER解析を実施

Simulation

2. 構築したERモデルを基に、任意の用量を投与したときの有効性、安全性の関係をシミュレーションし、最適な用量を提案

Drug XのPhase I/IIデザイン: 概要

Drug XのPhase I/IIデザイン: 概要

項目	内容
デザイン	Open-label, multiple dose, dose-escalation + parallel group comparison (Dose expansion)
対象	非小細胞肺がん(NSCLC)患者
被験者数	Dose escalation: 15 (3~6 patients/cohort) + Dose expansion 120 (40 patients/cohort)
用法•用量	 Dose escalation: Day 1/Day 4/Day 7~C1-3 QW, C4-6 Q2W, C7~ Q3W 3/6/10 mg 3/6/30 mg 3/6/60 mg Dose expansion: Day 1/Day 4/Day 7~C1-3 QW, C4-6 Q2W, C7~ Q3W) 3/6/10 mg 3/6/30 mg 3/6/60 mg 全て皮下投与
評価項目	 主要評価項目 奏効率: RECIST v1.1 基準による完全奏効(CR) +部分奏効(PR)の割合 副次評価項目 安全性プロファイル(CTCAE 評価による有害事象) 奏効期間(Duration of Response; DOR),無増悪生存期間(Progression-Free Survival; PFS), 全生存期間(Overall Survival; OS),疾病制御率(Disease Control Rate; DCR)

Observed PK profiles at Dose expansion

PK Profile (Median and 5th-95th Percentile) at by Cycle

SC後の血中濃度は緩やかに立ち上がり、Cycle 2の最終投与で定常状態に達した

Summary of PK parameters

	Maintenance Dose (mg)		
	10	30	60
Cmax at Cycle 1 (µg/mL)			
Mean (SD)	1.69 (1.16)	4.92 (3.38)	7.9 (5.18)
Median [Min, Max]	1.43 [0.435, 5.48]	3.54 [1.41, 15.3]	6.83 [1.43, 28.8]
Cmin at Cycle 1 (µg/mL)			
Mean (SD)	1.08 (0.805)	2.9 (2.05)	4.74 (3.1)
Median [Min, Max]	0.905 [0.25, 3.9]	2.4 [0.779, 11.8]	4.29 [0.772, 17.5]
AUC at Cycle 1 (μg*hr/mL)			
Mean (SD)	501 (325)	1232 (876)	1883 (1168)
Median [Min, Max]	429 [124, 1373]	904 [367, 3912]	1590 [388, 6209]

		Maintenance Dose (n	ng)
	10	30	60
Cmax at Cycle 2 (μg/mL)			
Mean (SD)	2.16 (1.58)	6.88 (4.61)	11.4 (7.8)
Median [Min, Max]	1.85 [0.508, 8.1]	5.02 [1.6, 19.9]	8.91 [1.76, 42.3]
Cmin at Cycle 2 (µg/mL)			
Mean (SD)	1.3 (1.06)	4.13 (2.63)	6.76 (5.07)
Median [Min, Max]	0.91 [0.252, 5.59]	3.76 [0.912, 9.94]	5.34 [1.22, 24.9]
AUC at Cycle 2 (μg*hr/mL)			
Mean (SD)	904 (661)	2824 (1917)	4603 (3133)
Median [Min, Max]	760 [207, 3284]	2111 [701, 8965]	3802 [754, 17186]
Cmax at Cycle 3 (µg/mL)			
Mean (SD)	2.31 (1.7)	7.76 (5.44)	12.7 (8.83)
Median [Min, Max]	2.02 [0.467, 8.66]	5.41 [1.74, 23.5]	9.82 [1.82, 44.7]
Cmin at Cycle 3 (µg/mL)			
Mean (SD)	1.34 (1.04)	4.75 (3.68)	7.14 (5.05)
Median [Min, Max]	1.06 [0.239, 4.77]	3.93 [0.692, 16.9]	5.51 [1.37, 25]
AUC at Cycle 3 (μg*hr/mL)			
Mean (SD)	981 (741)	3253 (2237)	5319 (3752)
Median [Min, Max]	823 [208, 3779]	2436 [730, 10060]	4124 [795, 19483]

CRS rate by Dose at Each Cohort

CRS Occurrence Percentage by Dose and Cycle (CRS only)

※Cycle 1はstep-up dosingを含むため、総投与量は以降のCycleと異なる

用量反応が見える。Cycleが進むにつれて発現率が低下する傾向

Response Rate by Dose at Each Cohort

有効性も用量反応が見られ、頭打ちは認められない

検討ポイント1: ER解析のExposure Metricsの選択

- Cmax at each Cycle
 - 各サイクルでのCmax
- Cmin at each Cycle
 - 各サイクル最終投与後のCmin
- AUC at each Cycle
 - 各サイクルの総AUC(4~5回投与分)

※PPK解析からのPOSTHOC推定で推定済み

考え方の例:

- パラメータ間の相関は?
- Responseの特性から考えるとどれが適切?
- Responseとの相関は?

検討ポイント2: 共変量の影響

考え方の例:

- Responseとの相関
- 用量間でIn-balanceな共変量は?
- 交絡の可能性

	Maintenance Dose (mg)		
	10	30	60
Age (yrs)			
Mean (SD)	59.8 (16.2)	65.7 (16.1)	61 (16.6)
Median [Min, Max]	60.5 [21, 89]	67 [28, 90]	62 [22, 90]
BSA (m²)			
Mean (SD)	1.87 (0.255)	1.92 (0.225)	1.94 (0.231)
Median [Min, Max]	1.83 [1.35, 2.48]	1.95 [1.49, 2.38]	1.95 [1.35, 2.43]
Sex			
Female	15 (37.5%)	16 (40%)	14 (35%)
Male	25 (62.5%)	24 (60%)	26 (65%)
Ethnicity			
African American	2 (5%)	2 (5%)	3 (7.5%)
Asian	1 (2.5%)	2 (5%)	0 (0%)
Caucasian	32 (80%)	32 (80%)	32 (80%)
Hispanic	4 (10%)	4 (10%)	3 (7.5%)
Other/Unknown	1 (2.5%)	0 (0%)	2 (5%)
Initial Tumor Size			
Mean (SD)	94.4 (36.6)	86.8 (45.3)	93 (38.9)
Median [Min, Max]	94.6 [1.83, 169]	90.8 [1.83, 162]	84.8 [26.2, 166]

検討ポイント3: Phase 3用量の設定

考え方の例:

• TPPを満たす用量はどれか

本剤のTPP

- 標準治療の有効性を上回る
- 許容可能な安全性プロファイルを示す

NSCLCに対する標準治療

- 1. プラチナ製剤を用いた化学療法
- ・ 一般的なORR: 17-30%程度(ヒストリカルデータ) <u>tlcr.amegroups.org</u>
- **Nonsquamous 例(Pemetrexed+プラチナ)**: 37.8%(95% CI 31.7-44.3) <u>PMC</u>
- 2. 免疫チェックポイント阻害剤 (PD-1/PD-L1 阻害剤)
- 2.1 モノセラピー (PD-L1 高発現例)
- · Pembrolizumab 単剤(PD-L1 TPS ≥ 50%)

ORR: 44.8% (95% CI 37.1–51.8) PMCCancer Science Journal

- 2.2 併用療法(全PD-L1 発現症例)
- ・ Pembrolizumab + Pemetrexed + プラチナ(非扁平上皮)

ORR: 48.3% vs 19.9% (placebo+化学療法) ASC Publications

演習用データセット

Variable	Description
ID	ID number
Cmax_X	Cmax at Cycle X (µg/mL)
Tmax_X	Tmax at Cycle X (day)
Cmin_X	Cmin at Cycle X (drug concentration at end of cycle) (µg/mL)
AUC_X	AUC at Cycle X (μg*day/mL)
CYKmax_X	Maximum IL-6 at Cycle X (pg/mL)
Tmax_CYK_X	Tmax of IL-6 at Cycle X (day)
CRS onset_X	Onset of ≥Grade 2 CRS at Cycle X: 0 = none, 1 = onset
CRS_grade_X	GRS grade at Cycle X: 0 = none, 1 = Grade 1, 2 = grade 2
CRS_onset_time_X	≥Grade 2 CRS onset time at Cycle X (day)
Initial_tumor	Initial tumor burden (standardized to 100)
response	Tumor response at end of treatment: $0 = \text{none}$, $1 = \text{responder}$
Dose	Maintenance dose (mg)
age	Age (years)
gender	0 = Male, 1 = Female
ethnicity	1 = Caucasian, 2 = African American, 3 = Asian, 4 = Hispanic, 5 = Other/Unknown
bsa	Body surface area (m ²)
route	0 = iv, 1 = sc

演習手順

Preparation/Exploratory Data Analysis

1. 解析対象データの内容の把握・モデリング方針の決定

Modeling

2. Phase I/II試験のExpansionパートのデータを用いて,有効性・安全性の両方に関するER解析を実施

Simulation

3. 構築したERモデルを基に、任意の用量を投与したときの有効性、安全性の関係をシミュレーションし、最適な用量を提案

Preparation/ Exploratory Data Analysis

- ・ 解析対象データの内容の把握・検討方針の決定
 - Expansionパートはどういう結果だったか
 - 何をどういうモデルでモデリングするのか
 - 各検討ポイントへの対応は
 - どんな有効性・安全性を示す用量を目指すのか

時間が限られていますので無駄なく検討できるように計画を立て, (必要に応じて) 分担しましょう

分担例

方針·検討内容議論 (全員)

取りまとめ・発表資料作成(担当A)

有効性解析(担当B)

安全性解析(担当C)

発表(担当A)

Modeling

• Expansionパートのデータを用いて,有効性・安全性の両方に関するER 解析を実施

ロジスティック回帰によるモデリング

$$logit = log \left(\frac{P}{1 - P} \right) = intercept + slope \times exposure metrics$$

Cmax, Cmin, AUC

有効性: Response rate

安全性: CRS発現率

二値エンドポイント(割合)をLogitに変換:ロジスティック回帰

• モデリングの対象(P)は0から1(100%)までの値しかとらないという特性を持ち、実際には扱いにくい (モデリングしにくい)値である。

例) P = TVP + EMAX*CONC/(EC50+CONC) + ETA(1)

とすると、右辺の値が0~1に納まるように各パラメータを推定する必要がある

そこで、仮想的な変数Logitを用いる。

$$Logit(p) = \log \frac{p}{1-p} \qquad p = \frac{1}{1+e^{-Logit}} \qquad \text{in a position}$$

Logitであれば-∞~∞で値を扱える。 ここからPに逆変換すれば良い。

例) LOGIT = LOG(PR/(1-PR)) + EMAX*CONC/(EC50+CONC) + ETA(1) P = 1/(1+EXP(-LOGIT))

演習用プログラム

プログラム名	内容	用途
ex2_01_er_graphic.R	Exposure metricsとエンドポイントの関係(ER関係)図示	EDA
ex2_02_exposure_matrix.R	Exposure metrics間の相関を図示	EDA
ex2_03_covariate_matrix.R	共変量間の相関を図示	EDA
ex2_04_covariate_er.R	共変量のER関係への影響を図示	EDA
ex2_05_exposure_covariate.R	共変量間のExposure metricsの違いを図示	EDA
ex2_06_logit_reg.R	Exposure metricsとエンドポイントのlogistic回帰実施	Modeling
ex2_07_logit_reg_cov.R	共変量で調整したExposure metricsとエンドポイントのlogistic回帰実施	Modeling
ex2_08_logit_reg_matched.R	共変量でマッチングしたExposure metricsとエンドポイントのlogistic回帰実施	Modeling
ex2_09_aic_compare.R	logistic回帰モデルのAICを比較	Modeling
ex2_10_er_compare.R	logistic回帰モデルのER curveを比較	Modeling
ex2_11_simulaiton.R	logistic回帰モデルを用いたシミュレーションの実施	Simulation

プログラム実行手順

実行環境

🗌 📋 code

プログラムが保存されているフォルダ

🗌 📋 data

解析用データセットが保存されているフォルダ

プログラム実行後の出力が保存されているフォルダ

codeフォルダ内の実行したいプログラムを右クリック →プログラムから開くRstudioを選択

実行プログラム例

```
# PROGRAM NAME
                   : ex2 covariate er.R
                   : To explore the impact of covariate on ER
# DESCRIPTION
# COMPOUND NAME
                   : Not Applicable
# PROGRAM VERSION
                   : 01
# CREATION DATE
                   : 28-July-2025
# PROGRAMMER
                   : pkpd seminor
# EXTERNAL FILES USED : erdat.csv (er analysis dataset)
# specify the path for analysis
# specity the path for analysis path = "~/JuliaHub/Personal/pkpd_seminor" ←パス(左記環境へのパス)の指定
# specify the name of analysis dataset ←解析用データセットの指定(原則このまま)
dat = "erdat.csv"
# specify the endpoint for eda
endpoint = "CRS onset 1" #"CRS onset 1", "CRS onset 2", "CRS onset 3", "response"
                                                                            検討したい内容
# specify the name of exposure metrics for eda
                     #"Cmax_1", "Cmax_2", "Cmax_3", "AUC_1", "AUC_2", "AUC_3",
                                                                            に応じて指定
# specify the covaraite(s)
covariates = c("age", "bsa") #"ethnicity", "initial tumor", "gender"
### program code #################
  source(paste0(path, "/Source.R"))
                                                                             これ以降は
  if (!dir.exists(paste0(path, "/output"))) dir.create(paste0(path, "/output"))
                                                                             原則編集不要
  # Prepare data: binary outcome for CRS onset at Cycle 1
  er_data <- read_csv(paste0(path, "/data/", dat)) %>% filter(route == 1) %>%
   rename(resp binary := !!sym(endpoint))
```


編集完了後Ctrl + S(保存) → Ctrl + A(全選択)→ Ctrl + Enterで実行