МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по домашнему заданию №3 по дисциплине «Элементы функционального анализа» тема: продолжение функционала

Студент гр. 8383	 Ларин А.
Преподаватель	Коточигов А.М

Санкт-Петербург 2021

Задание.

$$L \subset R^4, L = \{(x_1, x_2, x_3, x_4) : a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 0\}$$
 $a_1 = 8; a_2 = 3; a_3 = 1; a_4 = -1$ $g - функционал на $L: y \in L, g(y) = y_1 + y_2 + y_3 + y_4$ $K = \{y \in L: g(y) = 0\} -$ ядро функционала g $g^{(0)} \in L; g^{(0)} \perp K, \|g^{(0)}\| = 1 \rightarrow (?)\|g\| = |(g, g^{(0)})|$ Найти $g^{(1)}, g^{(2)} \in L$ $g^{(0)}, g^{(1)}, g^{(2)} -$ о. н. б. в L Найти $g^{(3)} \perp L$ $f \sim (f_1, f_2, f_3, f_4) : f(g^{(0)}) = g(g^{(0)}), f(g^{(k)}) = 0, k = 1,2,3$ Найти $f_k, f(y) = g(y), y \in L, \|f\| = \|g\|$$

Выполнение работы.

Линейный функционал - линейное отображение линейного пространства в множество вещественных или комплексных чисел.

Однородная гиперплоскость - замкнутое линейное пространство Y, содержащееся в банаховом пространстве X, при чем не существует линейного пространства Z такого, что $Z \neq X$ и $Z \neq Y$ и $Y \subset Z \subset X$.

Норма функционала: $||f|| = \sup ||x|| = 1|f(x)|$.

Ядро функционала: $\ker f = \{x \in X : f(x) = 0\}.$

По определению $K = \{y \in L : g(y) = 0\}$ найдем K как пересечение гиперплоскости L с гиперплоскостью, в которой функционал обращается в 0:

$$\begin{cases} 8y_1 + 3y_2 + 1y_3 - 1y_4 = 0 \\ y_1 + y_2 + y_3 + y_4 = 0 \end{cases}$$

Получим базис К:

$$(0,1,0.8,-1.8)^T$$
, $(1,0,0.4,-1.8)^T$

Найдем $g^{(0)}$. Известно, что $g^{(0)} \in L$ и $g^{(0)} \perp K$.

$$\begin{cases} x_2 + 0.8x_3 - 1.8x_4 = 0 \\ x_1 + 0.4x_3 - 1.8x_4 = 0 \\ 8x_1 + 3x_2 + 1x_3 - 1x_4 = 0 \end{cases}$$

Получим $g^{(0)}=(1,-21,78,23)$. Отнормируем его и получим $g^{(0)}=(0.0119,-0.2500,0.9286,0.2738)^T$

Набор базисных векторов ядра и вектор, перпендикуялрный им образуют базис: $(0,1,0.8,-1.8)^T$, $(1,0,0.4,-1.8)^T$, $(0.0119,-0.2500,0.9286,0.2738)^T$

Превратим его в о.н.б. базис:

$$(-0.0119,0.2500, -0.9286, -0.2738)^T$$

 $(0.0000, -0.4527, -0.3621,0.8148)^T$
 $(0.7482, -0.5656, -0.0612, -0.3414)^T$

Данный набор векторов является онб в L и значениями $g^{(0)}$, $g^{(1)}$, $g^{(2)}$

Проверим, что $||g|| = |(g, g^{(0)})|$

Разложим $g(x): x \in L$ на базисные вектора:

$$x = a(g^{(0)}) + b(g^{(1)}) + c(g^{(2)})$$
$$g(x) = ag(g^{(0)}) + bg(g^{(1)}) + cg(g^{(2)})$$

Здесь $bg(g^{(1)}) + cg(g^{(2)}) = 0$ т.к. $g^{(1)}$ и $g^{(2)}$ – базисные вектора ядра К.

След. g(x): ||x|| = 1 будет максимальными если $b, c = 0, x = ag^{(0)}$, ||x|| = 1.

$$||g^{(0)}|| = 1$$
, $\sup_{||x||=1} |g(x)| = ||g(x)|| = |g(g^{(0)})|$.

Найдем $g^{(3)} \perp L$. Гиперплоскость задается как линейная комбинация компонент с коэффицентами равными компонентам нормали. Т.о. a_1, a_2, a_3, a_4 будут являться компонентами нормали и следовательно $g^{(3)} = (8,3,1,-1)^T$

Рассмотрим линейный функционал $f: f(g^{(0)}) = g(g^{(0)}), f(g^{(k)}) = 0, k = 1,2,3$ Ядром f будет линейная оболочка векторов $g^{(k)}, k = 1,2,3$.

Вектор $g^{(0)}$ ортогонален этому базису т.е. является вектором нормали к ядру функционала.

$$f_1=0.0119*\lambda, f_2=-0.2500*\lambda, f_3=0.9286*\lambda, f_4=0.2738*\lambda$$
 Подберем λ : $f\left(g^{(0)}\right)=g\left(g^{(0)}\right)$
$$\left(\left(f_1,f_2,f_3,f_4\right)^T,g^{(0)}\right)=g\left(g(0)\right),=>\lambda=0.9644$$

$$f=(0.0115,-0.2411,0.8955,0.2641)$$
 Докажем, что $f\left(y\right)=g\left(y\right),y\in L,\|f\|=\|g\|$ $g^{(0)},g^{(1)},g^{(2)}$ – базис L.

$$f(g^{(1)}), f(g^{(2)}) = 0$$
 по условию

 $gig(g^{(1)}ig), gig(g^{(2)}ig) = 0$ т. к. $g^{(1)}, g^{(2)}$ входят в базис ядра функционала g Так же $fig(g^{(0)}ig) = g(g^{(0)}ig)$ по условию

Следовательно для $g^{(k)}$: k=1,2,3 $f(g^{(k)})=g(g^{(k)})$

Разложим вектор из L по базису $\{g^{(k)}: k=1,2,3\}$ и возьмем его функционал

$$g(x) = ag\big(g^{(0)}\big) + bg\big(g^{(1)}\big) + cg\big(g^{(2)}\big) = af\big(g^{(0)}\big) + bf\big(g^{(1)}\big) + cf\big(g^{(2)}\big) = f(x), \blacksquare$$