MATRIČNA NORMA, POROJENA IZ VEKTORSKE NORME

Trditev 0.1. Naj bo $\|\cdot\|_*$ vektorska norma na \mathbb{C}^n . Potem predpis

(0.1)
$$||A||_* := \max_{\|x\|=1} ||Ax||_* = \max_{x \neq 0} \frac{||Ax||_*}{\|x\|_*}.$$

določa matrično normo na $\mathbb{C}^{n\times n}$.

Dokaz. Preverimo najprej drugo enakost v (0.1):

$$\max_{x \neq 0} \frac{\|Ax\|_*}{\|x\|_*} = \max_{x \neq 0} \left\| A\left(\frac{x}{\|x\|_*}\right) \right\| = \max_{\|x\|=1} \|Ax\|_*,$$

kjer smo v prvi enakosti upoštevali pozitivno homogenost vektorske norme $\|\cdot\|_*$.

Preveriti moramo vse štiri zahteve za matrične norme:

Pozitivna definitnost: Če je $A \neq 0$, potem obstaja $x' \in \mathbb{C}^n$, da velja ||x'|| = 1 in $Ax' \neq 0$. Zato je $||A||_* = \max_{||x||=1} ||Ax||_* \geq ||Ax'|| > 0$. Če je A = 0, potem je očitno $||A||_* = 0$.

Homogenost: Velja

$$\|\alpha A\|_* = \max_{\|x\|=1} \|\alpha Ax\|_* = |\alpha| \max_{\|x\|=1} \|Ax\|_* = |\alpha| \|A\|_*,$$

kjer smo v drugi enakosti upoštevali, da je $\|\cdot\|_*$ vektorska norma.

Trikotnišna neenakost: Velja

$$||A + B||_* = \max_{\|x\|=1} ||(A + B)x||_* = \max_{\|x\|=1} ||Ax + Bx||_*$$

$$\leq \max_{\|x\|=1} (||Ax||_* + ||Bx||_*) \leq \max_{\|x\|=1} ||Ax||_* + \max_{\|x\|=1} ||Bx||_*$$

$$= ||A||_* + ||B||_*,$$

kjer smo v prvi neenakosti upoštevali, da je $\|\cdot\|_*$ vektorska norma iz zato izpolnjuje trikotniško neenakost.

Submultiplikativnost: Velja

$$\begin{split} \|AB\|_* &= \max_{x \neq 0} \frac{\|ABx\|_*}{\|x\|_*} = \max_{x \neq 0, Bx \neq 0} \left(\frac{\|ABx\|_*}{\|Bx\|_*} \frac{\|Bx\|_*}{\|x\|_*} \right) \leq \max_{Bx \neq 0} \frac{\|ABx\|_*}{\|Bx\|_*} \cdot \max_{x \neq 0} \frac{\|Bx\|_*}{\|x\|_*} \\ &\leq \max_{x \neq 0} \frac{\|Ax\|_*}{\|x\|_*} \cdot \max_{x \neq 0} \frac{\|Bx\|_*}{\|x\|_*} = \|A\|_* \|B\|_*, \end{split}$$

kjer smo v drugi enakosti upoštevali, da za Bx = 0 velja $||ABx||_* = 0$.

1