Funciones - IIC1253

Marcelo Arenas

Sean A y B conjuntos no vacíos.

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a,b) \in f$.

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplo

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplo

Sea
$$A = \{1, 2, 3\}$$
 y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_1 = \{(3,c), (1,a), (2,b), (3,d)\}$$

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplo

Sea
$$A = \{1, 2, 3\}$$
 y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_1 = \{(3,c), (1,a), (2,b), (3,d)\}$$

$$1 \longrightarrow a$$

$$2 \longrightarrow b$$

$$3 \longrightarrow c$$

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplo

Sea
$$A = \{1, 2, 3\}$$
 y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_1 = \{(3,c), (1,a), (2,b), (3,d)\} \times 1 \longrightarrow a$$

$$2 \longrightarrow b$$

$$3 \longrightarrow a$$

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplo

Sea
$$A = \{1, 2, 3\}$$
 y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_2 = \{(1,a), (3,b)\}$$

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplo

Sea
$$A = \{1, 2, 3\}$$
 y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_2 = \{(1, a), (3, b)\}$$

1

2

3

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplo

Sea
$$A = \{1, 2, 3\}$$
 y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_2 = \{(1, a), (3, b)\} \times 1$$

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplo

Sea
$$A = \{1, 2, 3\}$$
 y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_3 = \{(1,c), (3,c), (2,a)\}$$

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplo

Sea
$$A = \{1, 2, 3\}$$
 y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_3 = \{(1,c), (3,c), (2,a)\}$$

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplo

Sea
$$A = \{1, 2, 3\}$$
 y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_3 = \{(1,c), (3,c), (2,a)\} \checkmark$$

$$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$$

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Si $f \subseteq A \times B$ es una función, entonces escribiremos:

▶ $f: A \rightarrow B$ para decir que f es una función de A a B.

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Si $f \subseteq A \times B$ es una función, entonces escribiremos:

- $f: A \rightarrow B$ para decir que f es una función de A a B.
- f(a) = b para decir que $(a, b) \in f$.

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Si $f \subseteq A \times B$ es una función, entonces escribiremos:

- $f: A \rightarrow B$ para decir que f es una función de A a B.
- f(a) = b para decir que $(a, b) \in f$.
 - \blacktriangleright b es **la imagen** de *a* en f.

Sean A y B conjuntos no vacíos.

Definición

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Si $f \subseteq A \times B$ es una función, entonces escribiremos:

- $f: A \rightarrow B$ para decir que f es una función de A a B.
- f(a) = b para decir que $(a, b) \in f$.
 - \blacktriangleright b es **la imagen** de *a* en f.
 - a es **una preimagen** de *b* en *f*.

Sean A y B conjuntos no vacíos.

Sean A y B conjuntos no vacíos.

Definición

Una relación $f \subseteq A \times B$ es una función parcial si para todo elemento $a \in A$, si existe un elemento $b \in B$ tal que $(a,b) \in f$, entonces b es único.

Sean A y B conjuntos no vacíos.

Definición

Una relación $f \subseteq A \times B$ es una función parcial si para todo elemento $a \in A$, si existe un elemento $b \in B$ tal que $(a,b) \in f$, entonces b es único.

Sean A y B conjuntos no vacíos.

Definición

Una relación $f \subseteq A \times B$ es una función parcial si para todo elemento $a \in A$, si existe un elemento $b \in B$ tal que $(a, b) \in f$, entonces b es único.

Si $f \subseteq A \times B$ es una función parcial, entonces escribiremos:

▶ $f: A \rightarrow B$ para decir que f es una función parcial de A a B.

(notar la diferencia en la flecha)

• f(a) = b para decir que $(a, b) \in f$.

Sean A y B conjuntos no vacíos y $f:A \rightarrow B$ una función parcial.

Sean A y B conjuntos no vacíos y $f:A \rightharpoonup B$ una función parcial.

Definición

Se define el dominio e imagen de f como:

$$dom(f) = \{a \in A \mid existe \ b \in B \ tal \ que \ (a,b) \in f\}$$
$$img(f) = \{b \in B \mid existe \ a \in A \ tal \ que \ (a,b) \in f\}$$

Sean A y B conjuntos no vacíos y $f:A \rightharpoonup B$ una función parcial.

Definición

Se define el dominio e imagen de f como:

$$dom(f) = \{a \in A \mid existe \ b \in B \ tal \ que \ (a,b) \in f\}$$
$$img(f) = \{b \in B \mid existe \ a \in A \ tal \ que \ (a,b) \in f\}$$

Ejemplo

Sea
$$A = \{1, 2, 3\}$$
 y $B = \{a, b, c, d\}$.

.

Sean A y B conjuntos no vacíos y $f:A \rightharpoonup B$ una función parcial.

Definición

Se define el dominio e imagen de f como:

$$dom(f) = \{a \in A \mid existe \ b \in B \ tal \ que \ (a,b) \in f\}$$
$$img(f) = \{b \in B \mid existe \ a \in A \ tal \ que \ (a,b) \in f\}$$

Ejemplo Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$.

$$\begin{array}{ccc}
1 & \longrightarrow a & \text{dom}(f) = \{1, 3\} \\
2 & \longrightarrow b & \text{img}(f) = \{a, b\} \\
3 & & c & & d
\end{array}$$

Sean A y B conjuntos no vacíos y $f:A \rightharpoonup B$ una función parcial.

Definición

Se define el dominio e imagen de f como:

$$dom(f) = \{a \in A \mid existe \ b \in B \ tal \ que \ (a,b) \in f\}$$
$$img(f) = \{b \in B \mid existe \ a \in A \ tal \ que \ (a,b) \in f\}$$

Proposición

Sea $f: A \rightarrow B$ una función parcial. Entonces:

$$f$$
 es una función si y sólo si $dom(f) = A$

Ejemplos de funciones

Ejemplos

Sea
$$A = B = \mathbb{R}$$
.

$$f_1(x) = x^2$$

$$f_2(x) = \lfloor x + \sqrt{x} \rfloor$$

$$f_3(x) = 0$$

$$f_4(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

Algunas preguntas

¿Es necesario definir funciones de más "dimensiones"?

 $\blacktriangleright \ \ \, \text{Por ejemplo:} \ \ \, f:\mathbb{R}\times\mathbb{R}\to\mathbb{R} \quad \text{o} \quad g:\mathbb{R}\times\mathbb{R}\to\mathbb{R}\times\mathbb{R}$

Algunas preguntas

¿Es necesario definir funciones de más "dimensiones"?

 $\blacktriangleright \ \ \, \text{Por ejemplo:} \ \ \, f:\mathbb{R}\times\mathbb{R}\to\mathbb{R} \quad \text{o} \quad g:\mathbb{R}\times\mathbb{R}\to\mathbb{R}\times\mathbb{R}$

Si $f: \mathbb{R} \times \mathbb{R} \rightharpoonup \mathbb{R}$, ¿Qué es dom(f)?

Algunas preguntas

¿Es necesario definir funciones de más "dimensiones"?

▶ Por ejemplo: $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ o $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$

Si $f : \mathbb{R} \times \mathbb{R} \rightharpoonup \mathbb{R}$, ¿Qué es dom(f)?

Tanto el **dominio** como la **imagen** de una función pueden ser números, conjuntos, relaciones, grafos,...

Mas ejemplos de funciones

Ejemplos

Las siguientes son funciones de A en $\mathcal{P}(A)$:

Mas ejemplos de funciones

Ejemplos

Las siguientes son funciones de A en $\mathcal{P}(A)$:

$$g_1: A \rightarrow 2^A$$
 $g_1(a) = \{a\}$
 $g_2: A \rightarrow 2^A$ $g_2(a) = A \setminus \{a\}$
 $g_3: A \rightarrow 2^A$ $g_3(a) = \emptyset$

Sea A un conjunto.

Sea A un conjunto.

Definición

Una secuencia S sobre A es una función S : $\mathbb{N} \to A$.

Sea A un conjunto.

Definición

Una secuencia S sobre A es una función $S: \mathbb{N} \to A$.

Ejemplo

 $ightharpoonup S_1: \mathbb{N} \to \mathbb{Q}$

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots, \frac{(-1)^n}{n+1}, \ldots$$

Sea A un conjunto.

Definición

Una secuencia S sobre A es una función $S: \mathbb{N} \to A$.

Ejemplo

 $\blacktriangleright \ S_1: \mathbb{N} \to \mathbb{Q}$

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots, \frac{(-1)^n}{n+1}, \ldots$$

- \triangleright $S_2: \mathbb{N} \to \mathbb{N}$
- $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$

Secuencias infinitas (otro ejemplo de funciones)

Sea A un conjunto.

Definición

Una secuencia S sobre A es una función $S: \mathbb{N} \to A$.

Ejemplo

- $\blacktriangleright \ S_1: \mathbb{N} \to \mathbb{Q}$
- $1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots, \frac{(-1)^n}{n+1}, \ldots$
- \triangleright $S_2: \mathbb{N} \to \mathbb{N}$
- $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$
- ► $S_3 : \mathbb{N} \to \{0, 1, 2 \dots, 9\}$
 - $3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9, \dots$

Sean A y B dos conjuntos no vacíos.

Sean A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

g

Sean A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

1. inyectiva si no existen dos elementos distintos en A con la misma imagen.

g

Sean A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

1. inyectiva si no existen dos elementos distintos en A con la misma imagen.

Ejercicios

Sean A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

1. inyectiva si no existen dos elementos distintos en A con la misma imagen.

Sean A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

1. inyectiva si no existen dos elementos distintos en A con la misma imagen.

(

Sean A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

- 1. inyectiva si no existen dos elementos en A con la misma imagen.
- 2. sobreyectiva si todo elemento en B tienen una preimagen.

Sean A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

- 1. inyectiva si no existen dos elementos en A con la misma imagen.
- 2. sobreyectiva si todo elemento en B tienen una preimagen.

Ejercicios

Sean A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

- 1. inyectiva si no existen dos elementos en A con la misma imagen.
- 2. sobreyectiva si todo elemento en B tienen una preimagen.

Sea A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

- 1. inyectiva si no existen dos elementos en A con la misma imagen.
- 2. sobreyectiva si todo elemento en B tienen una preimagen.
- 3. biyectiva si es inyectiva y sobreyectiva.

Sea A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

- 1. inyectiva si no existen dos elementos en A con la misma imagen.
- 2. sobreyectiva si todo elemento en B tienen una preimagen.
- 3. biyectiva si es inyectiva y sobreyectiva.

La siguiente notación es muy común:

Sea A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

- 1. inyectiva si no existen dos elementos en A con la misma imagen.
- 2. sobreyectiva si todo elemento en B tienen una preimagen.
- 3. biyectiva si es inyectiva y sobreyectiva.

La siguiente notación es muy común:

▶ Una función inyectiva es llamada 1-a-1.

Sea A y B dos conjuntos no vacíos.

Definición

Una función $f: A \rightarrow B$ se dice:

- 1. inyectiva si no existen dos elementos en A con la misma imagen.
- 2. sobreyectiva si todo elemento en B tienen una preimagen.
- 3. biyectiva si es inyectiva y sobreyectiva.

La siguiente notación es muy común:

- Una función inyectiva es llamada 1-a-1.
- Una función sobreyectiva es llamada sobre.

▶ Sea $f_1: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

▶ Sea $f_1: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

¿Es f_1 una función inyectiva?

▶ Sea $f_1: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

¿Es f_1 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_1: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

¿Es f_1 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_2: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_2(a) = A \setminus \{a\}$$

▶ Sea $f_1: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

¿Es f_1 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_2: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_2(a) = A \setminus \{a\}$$

¿Es f_2 una función inyectiva?

▶ Sea $f_1: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

¿Es f_1 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_2: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_2(a) = A \setminus \{a\}$$

¿Es f_2 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_1: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

¿Es f_1 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_2: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_2(a) = A \setminus \{a\}$$

¿Es f_2 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_3 : \mathbb{R} \to \mathbb{N}$ tal que para todo $r \in \mathbb{R}$:

$$f_3(r) = |\lfloor r \rfloor|$$

▶ Sea $f_1: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

¿Es f_1 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_2: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_2(a) = A \setminus \{a\}$$

¿Es f_2 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_3 : \mathbb{R} \to \mathbb{N}$ tal que para todo $r \in \mathbb{R}$:

$$f_3(r) = |\lfloor r \rfloor|$$

¿Es f₃ una función inyectiva?

▶ Sea $f_1: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

¿Es f_1 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_2: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_2(a) = A \setminus \{a\}$$

¿Es f_2 una función inyectiva? ¿Es sobreyectiva?

▶ Sea $f_3 : \mathbb{R} \to \mathbb{N}$ tal que para todo $r \in \mathbb{R}$:

$$f_3(r) = |\lfloor r \rfloor|$$

¿Es f_3 una función inyectiva? ¿Es sobreyectiva?

Operaciones entre relaciones

Definición

▶ Inverso: dada una relación R de A en B, la relación R⁻¹ de B en A se define como

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

Operaciones entre relaciones

Definición

► Inverso: dada una relación R de A en B, la relación R⁻¹ de B en A se define como

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

▶ Composición: dada una relación R_1 de A en B y una relación R_2 de B en C, la relación $R_1 \circ R_2$ de A en C se define como

$$R_1 \circ R_2 = \{(x,y) \mid \text{ existe } z \in B \text{ tal que } (x,z) \in R_1 \text{ y } (z,y) \in R_2\}$$

Dado que f:A o B es una relación, ¿qué significa f^{-1} ?

▶ Dado que $f: A \rightarrow B$ es una relación,

¿qué significa f^{-1} ?

La relación inversa, no necesariamente una función.

▶ Dado que $f: A \rightarrow B$ es una relación,

¿qué significa
$$f^{-1}$$
?

La relación inversa, no necesariamente una función.

▶ Dado que $f_1: A \rightarrow B$ y $f_2: B \rightarrow C$ son relaciones,

¿qué significa
$$f_1 \circ f_2$$
?

▶ Dado que $f: A \rightarrow B$ es una relación,

¿qué significa
$$f^{-1}$$
?

La relación inversa, no necesariamente una función.

▶ Dado que $f_1: A \rightarrow B$ y $f_2: B \rightarrow C$ son relaciones,

¿qué significa
$$f_1 \circ f_2$$
?

La composición de dos funciones.

▶ Dado que $f: A \rightarrow B$ es una relación,

¿qué significa
$$f^{-1}$$
?

La relación inversa, no necesariamente una función.

▶ Dado que $f_1: A \rightarrow B$ y $f_2: B \rightarrow C$ son relaciones,

¿qué significa
$$f_1 \circ f_2$$
?

La composición de dos funciones.

Ejercicio

Sea $f_1:A\to B$ y $f_2:B\to C$, entonces para todo $a\in A$ y $c\in C$:

$$(a,c) \in f_1 \circ f_2$$
 si y sólo si $f_2(f_1(a)) = c$

Teorema

Sea $f: A \rightarrow B$ una función. Entonces:

1. f es inyectiva si y sólo si f^{-1} es una función parcial de B en A.

Teorema

Sea $f: A \rightarrow B$ una función. Entonces:

- 1. f es inyectiva si y sólo si f^{-1} es una función parcial de B en A.
- 2. f es sobreyectiva si y sólo si img(f) = B.

Teorema

Sea $f: A \rightarrow B$ una función. Entonces:

- 1. f es inyectiva si y sólo si f^{-1} es una función parcial de B en A.
- 2. f es sobreyectiva si y sólo si img(f) = B.

Ejercicio

Demuestre el teorema.

Corolario

Sea $f: A \rightarrow B$ una función. Entonces:

f es biyectiva si y sólo si f^{-1} es una función.

Composición de funciones

Teorema

Sea $f_1: A \rightarrow B$ y $f_2: B \rightarrow C$. Entonces:

▶ Si f_1 y f_2 son inyectivas, entonces $f_1 \circ f_2$ es inyectiva.

Composición de funciones

Teorema

Sea $f_1: A \rightarrow B$ y $f_2: B \rightarrow C$. Entonces:

- ▶ Si f_1 y f_2 son inyectivas, entonces $f_1 \circ f_2$ es inyectiva.
- ▶ Si f_1 y f_2 son sobreyectivas, entonces $f_1 \circ f_2$ es sobreyectiva.

Composición de funciones

Teorema

Sea $f_1: A \rightarrow B$ y $f_2: B \rightarrow C$. Entonces:

- ▶ Si f_1 y f_2 son inyectivas, entonces $f_1 \circ f_2$ es inyectiva.
- ▶ Si f_1 y f_2 son sobreyectivas, entonces $f_1 \circ f_2$ es sobreyectiva.

Ejercicios

1. Demuestre el teorema.

Composición de funciones

Teorema

Sea $f_1: A \rightarrow B$ y $f_2: B \rightarrow C$. Entonces:

- ▶ Si f_1 y f_2 son inyectivas, entonces $f_1 \circ f_2$ es inyectiva.
- ▶ Si f_1 y f_2 son sobreyectivas, entonces $f_1 \circ f_2$ es sobreyectiva.

Ejercicios

- 1. Demuestre el teorema.
- 2. Demuestre que el inverso de cada implicación es falso.

1. En el curso hay dos estudiantes que nacieron en el mismo año.

- 1. En el curso hay dos estudiantes que nacieron en el mismo año.
- 2. En Santiago hay dos personas que tienen la misma cantidad de pelos en la cabeza.

- 1. En el curso hay dos estudiantes que nacieron en el mismo año.
- En Santiago hay dos personas que tienen la misma cantidad de pelos en la cabeza.
- 3. Si 5 elementos son seleccionados del conjunto $\{1, 2, \dots, 8\}$, tiene que haber por lo menos un par que suma 9.

- 1. En el curso hay dos estudiantes que nacieron en el mismo año.
- En Santiago hay dos personas que tienen la misma cantidad de pelos en la cabeza.
- 3. Si 5 elementos son seleccionados del conjunto $\{1,2,\ldots,8\}$, tiene que haber por lo menos un par que suma 9.
- 4. Si $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1, entonces hay dos números en S tal que uno divide al otro.
 - ightharpoonup Denotamos la cardinalidad del conjunto S como |S|

Principio del palomar

Si N palomas se distribuyen en M palomares y tengo mas palomas que palomares (N > M), entonces al menos habrá un palomar con más de una paloma.

Principio del palomar

Si N palomas se distribuyen en M palomares y tengo mas palomas que palomares (N>M), entonces al menos habrá un palomar con más de una paloma.

Principio del palomar (en nuestros términos)

Si $f:A\to B$ y |B|<|A|, entonces f no puede ser inyectiva. Vale decir, existen $a_1,a_2\in A$ tal que $a_1\neq a_2$ y $f(a_1)=f(a_2)$.

Ejemplos

► En el curso hay dos estudiantes que nacieron en el mismo año.

Ejemplos

► En el curso hay dos estudiantes que nacieron en el mismo año.

Demostración:

Ejemplos

► En el curso hay dos estudiantes que nacieron en el mismo año.

Demostración: cantidad de alumnos = 132

Ejemplos

► En el curso hay dos estudiantes que nacieron en el mismo año.

Demostración: cantidad de alumnos = 132 cantidad de años ≤ 123

Ejemplos

▶ En el curso hay dos estudiantes que nacieron en el mismo año.

Demostración: cantidad de alumnos = 132 cantidad de años < 123

En Santiago hay dos personas que tienen la misma cantidad de pelos en la cabeza.

Ejemplos

► En el curso hay dos estudiantes que nacieron en el mismo año.

Demostración: cantidad de alumnos = 132 cantidad de años < 123

En Santiago hay dos personas que tienen la misma cantidad de pelos en la cabeza.

Demostración:

Ejemplos

► En el curso hay dos estudiantes que nacieron en el mismo año.

Demostración: cantidad de alumnos = 132

cantidad de años ≤ 123

En Santiago hay dos personas que tienen la misma cantidad de pelos en la cabeza.

Demostración: cantidad de personas > 6.500.000

Ejemplos

► En el curso hay dos estudiantes que nacieron en el mismo año.

Demostración: cantidad de alumnos = 132

cantidad de años ≤ 123

► En Santiago hay dos personas que tienen la misma cantidad de pelos en la cabeza.

Demostración: cantidad de personas > 6.500.000

cantidad de pelos en un cabeza ≤ 200.000

Ejemplo

▶ Si 5 elementos son seleccionados del conjunto $\{1, 2, ..., 8\}$, tiene que haber por lo menos un par que suma 9.

Ejemplo

▶ Si 5 elementos son seleccionados del conjunto $\{1, 2, ..., 8\}$, tiene que haber por lo menos un par que suma 9.

Demostración:

Ejemplo

▶ Si 5 elementos son seleccionados del conjunto $\{1, 2, ..., 8\}$, tiene que haber por lo menos un par que suma 9.

Demostración:

Sea a_1, a_2, a_3, a_4, a_5 los cinco números distintos seleccionados.

Ejemplo

▶ Si 5 elementos son seleccionados del conjunto $\{1, 2, ..., 8\}$, tiene que haber por lo menos un par que suma 9.

Demostración:

Sea a_1, a_2, a_3, a_4, a_5 los cinco números distintos seleccionados.

Palomas: a_1, a_2, a_3, a_4, a_5

Ejemplo

▶ Si 5 elementos son seleccionados del conjunto $\{1, 2, ..., 8\}$, tiene que haber por lo menos un par que suma 9.

Demostración:

Sea a_1, a_2, a_3, a_4, a_5 los cinco números distintos seleccionados.

Palomas: a_1, a_2, a_3, a_4, a_5

Palomares: $\{1,8\}, \{2,7\}, \{3,6\}, \{4,5\}$

Ejemplo

▶ Si 5 elementos son seleccionados del conjunto $\{1, 2, ..., 8\}$, tiene que haber por lo menos un par que suma 9.

Demostración:

Sea a_1, a_2, a_3, a_4, a_5 los cinco números distintos seleccionados.

Palomas: a_1, a_2, a_3, a_4, a_5

Palomares: $\{1,8\}, \{2,7\}, \{3,6\}, \{4,5\}$

Función: $f(a_i) = \text{el conjunto que contiene a } a_i$.

Ejemplo

▶ Si $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1, entonces hay dos números en S tal que uno divide al otro.

Ejemplo

▶ Si $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1, entonces hay dos números en S tal que uno divide al otro.

Demostración:

▶ Sea $a_1, a_2, ..., a_{n+1}$ los números seleccionados.

Ejemplo

▶ Si $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1, entonces hay dos números en S tal que uno divide al otro.

Demostración:

- Sea $a_1, a_2, \ldots, a_{n+1}$ los números seleccionados.
- Para todo $a \in A$, sea $a = 2^k \cdot m$ donde m es un número impar.

Ejemplo

▶ Si $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1, entonces hay dos números en S tal que uno divide al otro.

Demostración:

- ► Sea $a_1, a_2, \ldots, a_{n+1}$ los números seleccionados.
- Para todo $a \in A$, sea $a = 2^k \cdot m$ donde m es un número impar.

Palomas: $a_1, a_2, \ldots, a_{n+1}$

Ejemplo

▶ Si $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1, entonces hay dos números en S tal que uno divide al otro.

Demostración:

- ► Sea $a_1, a_2, ..., a_{n+1}$ los números seleccionados.
- Para todo $a \in A$, sea $a = 2^k \cdot m$ donde m es un número impar.

Palomas: $a_1, a_2, \ldots, a_{n+1}$

Palomares: 1, 3, 5, ..., 2n - 3, 2n - 1

Ejemplo

▶ Si $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1, entonces hay dos números en S tal que uno divide al otro.

Demostración:

- ► Sea $a_1, a_2, \ldots, a_{n+1}$ los números seleccionados.
- Para todo $a \in A$, sea $a = 2^k \cdot m$ donde m es un número impar.

Palomas: $a_1, a_2, \ldots, a_{n+1}$

Palomares: 1, 3, 5, ..., 2n - 3, 2n - 1

Función: $F(a_i) = m$