Possible applications

Used as a rough model in the absence of data (see Sec. 6.9); distribution of a random proportion, such as the proportion of defective items in a shipment; time to complete a task, e.g., in a PERT network

Density (see Fig. 6.7)

$$f(x) = \begin{cases} \frac{x^{\alpha_1 - 1}(1 - x)^{\alpha_2 - 1}}{B(\alpha_1, \alpha_2)} & \text{if } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

where $B(\alpha_1, \alpha_2)$ is the beta function, defined by

$$B(z_1,z_2) = \int_0^1 t^{z_1-1} (1-t)^{z_2-1} dt$$

for any real numbers $z_1 > 0$ and $z_2 > 0$. Some properties of the beta function:

$$B(z_1,z_2) = B(z_2,z_1)$$
, $B(z_1,z_2) = \frac{\Gamma(z_1)\Gamma(z_2)}{\Gamma(z_1+z_2)}$

Distribution

No closed form, in general. If either α_1 or α_2 is a positive integer, a binomial expansion can be used to obtain F(x), which will be a polynomial in x, and the powers of x will be, in general, positive real numbers ranging from 0 through $\alpha_1 + \alpha_2 - 1$

Parameters Range Shape parameters $\alpha_1 > 0$ and $\alpha_2 > 0$ [0,1]

Pearson type V

$PT5(\alpha, \beta)$

Possible applications

Time to perform some task (density takes on shapes similar to lognormal, but can have a larger "spike" close to x = 0)

Density (see Fig. 6.8)

$$f(x) = \begin{cases} \frac{x^{-(\alpha+1)}e^{-\beta/x}}{\beta^{-\alpha}\Gamma(\alpha)} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Distribution

$$F(x) = \begin{cases} 1 - F_G\left(\frac{1}{x}\right) & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

where $F_G(x)$ is the distribution function of a gamma $(\alpha, 1/\beta)$ random

Parameters

Shape parameter $\alpha > 0$, scale parameter $\beta > 0$

Range

Mean

for $\alpha > 1$

FIGURE 6.8 PT5(α ,1) density functions.