Applications of duality

15.093: Optimization

Dimitris Bertsimas Alexandre Jacquillat

MANAGEMENT SLOAN SCHOOL

Sloan School of Management Massachusetts Institute of Technology

Duality as a proof technique: Farkas lemma

Farkas lemma: geometric view

Theorem

Exactly one of the following alternatives is true:

- There exists $x \ge 0$ such that Ax = b
- There exists p such that $p^{\top}A \geq 0^{\top}$ and $p^{\top}b < 0$

Farkas lemma: algebraic view

Theorem

Exactly one of the following alternatives is true:

- There exists $x \ge 0$ such that Ax = b
- There exists p such that $p^{\top}A > 0^{\top}$ and $p^{\top}b < 0$

$$\implies$$
 If $\exists x \geq 0: Ax = b$, and if $m{p}^ op A \geq m{0}^ op$, then $m{p}^ op m{b} = m{p}^ op Ax \geq 0$

Otherwise, the following primal problem (P) is infeasible:

Primal problem
$$(P)$$
 max 0 min $p^{\top}b$ s.t. $Ax = b$ s.t. $p^{\top}A \ge 0^{\top}$

Hence, the dual problem (D) is either infeasible or unbounded. (D) is feasible, because p = 0 is dual feasible. Hence, (D) is unbounded: $\exists p : p^{\top}A \ge 0^{\top}$ and $p^{\top}b < 0$.

Farkas lemma: application to asset pricing

- n different assets with m possible outcomes (or scenarios)
- Return matrix R: $r_{si} = \text{return of asset } i \text{ in scenario } s$
- x_i : amount of asset i in portfolio, with price $p_i x_i$ and return $r_{si} x_i$
 - $x_i > 0$: long position
 - $x_i < 0$: short position
- Absence of arbitrage: no investor can get a guaranteed non-negative return $Rx \ge 0$ out of a negative investment $p^{\top}x < 0$, i.e.:

If
$$\boldsymbol{R}\boldsymbol{x} \geq \boldsymbol{0}$$
 then $\boldsymbol{p}^{\top}\boldsymbol{x} \geq 0$

Theorem

No arbitrage if and only if there exists a nonnegative vector $\mathbf{q}=(q_1,\cdots,q_m)$ such that $p_i=\sum_{s=1}^m q_s r_{si}$ for all assets $i=1,\cdots,n$.

- Consequence of Farkas lemma
 - Arbitrage: $\mathbf{R}\mathbf{x} \geq \mathbf{0}$ and $\mathbf{p}^{\top}\mathbf{x} < 0$, that is, $\mathbf{x}^{\top}\mathbf{R}^{\top} \geq \mathbf{0}^{\top}$ and $\mathbf{x}^{\top}\mathbf{p} < 0$
 - ullet No arbitrage: There exists $oldsymbol{q} \geq oldsymbol{0}$ such that $oldsymbol{R}^ op oldsymbol{q} = oldsymbol{p}$
- Core of asset pricing in finance theory and in practice

The dual simplex algorithm

Feasibility and optimality conditions

Primal problem

$$egin{array}{ll} \min & oldsymbol{c}^ op oldsymbol{x} \\ ext{s.t.} & oldsymbol{A} oldsymbol{x} = oldsymbol{b} \\ & oldsymbol{x} \geq oldsymbol{0} \end{array}$$

Basic solution:

$$\boldsymbol{x} = [\boldsymbol{x}_B \ \boldsymbol{x}_N]$$

Feasibility condition:

$$B^{-1}b \ge 0$$

Optimality condition:

$$\overline{oldsymbol{c}}^ op = oldsymbol{c}^ op - oldsymbol{c}_B^ op oldsymbol{B}^{-1} oldsymbol{A} \geq oldsymbol{0}^ op$$

→ The simplex algorithm maintains primal feasibility and works toward dual feasibility

Dual problem

$$egin{array}{ll} \max & oldsymbol{p}^{ op} oldsymbol{b} \ & ext{s.t.} & oldsymbol{p}^{ op} oldsymbol{A} \leq oldsymbol{c}^{ op} \end{array}$$

Dual basic solution:

$$\boldsymbol{p}^{\top} = \boldsymbol{c}_B^{\top} \boldsymbol{B}^{-1}$$

• Feasibility condition

$$\overline{\boldsymbol{c}}^\top = \boldsymbol{c}^\top - \boldsymbol{c}_B^\top \boldsymbol{B}^{-1} \boldsymbol{A} \geq \boldsymbol{0}^\top$$

Optimality condition:

$$B^{-1}b \geq 0$$

→ The dual simplex algorithm maintains dual feasibility and works toward primal feasibility

Geometry of primal simplex vs. dual simplex

- → Primal simplex: from solutions that are primal feasible and dual infeasible to a solution that is primal feasible and dual feasible
- → Dual simplex: from solutions that are primal infeasible and dual feasible to a solution that is primal feasible and dual feasible
- No visit to solutions that are primal infeasible and dual infeasible

Primal simplex

- $\bullet \ \boldsymbol{x} = [\boldsymbol{x}_B \ \boldsymbol{x}_N]$
- Requires $oldsymbol{x}_B = oldsymbol{B}^{-1} oldsymbol{b} \geq oldsymbol{0}$
- Cost: $c^{\top}x = c_B^{\top}x_B$
- $\bullet \ \overline{\boldsymbol{c}}^{\top} = \boldsymbol{c}^{\top} \boldsymbol{c}_B \boldsymbol{B}^{-1} \boldsymbol{b}$
- If $\overline{c} \geq \mathbf{0}$, STOP; else, $\overline{c}_j < 0$, and $m{u}$: j^{th} column of $m{B}^{-1}m{A}$
- If $u \leq 0$, cost unbounded
- Else, $l \in \operatorname*{arg\,min}_{i:u_i>0} \frac{x_{B(i)}}{u_{B(i)}}$
- ullet $oldsymbol{A}_j$ enters the basis, $oldsymbol{A}_{B(l)}$ exits.

Dual simplex

- $oldsymbol{p}^{ op} = oldsymbol{c}_{\scriptscriptstyle B}^{ op} oldsymbol{B}^{-1}$
- ullet Requires $ar{oldsymbol{c}}^ op = oldsymbol{c}^ op oldsymbol{p}^ op oldsymbol{A} \geq oldsymbol{0}^ op$
- Cost: $\boldsymbol{p}^{\top}\boldsymbol{b} = \boldsymbol{c}_B^{\top}\boldsymbol{x}_B$
- $x_B = B^{-1}b$
- If $x_B \geq \mathbf{0}$, STOP; else, $x_{B(l)} < 0$, and $oldsymbol{v}$: l^{th} row of $oldsymbol{B}^{-1}oldsymbol{A}$
- If $v \geq 0$, cost unbounded
- Else, $j \in \operatorname*{arg\,min}_{k:v_k < 0} \frac{\overline{c}_k}{|v_k|}$
- A_j enters the basis, $A_{B(l)}$ exits.

 x_2

 x_2 x_1

Example

$$\min_{\mathbf{x} \ge \mathbf{0}} \quad x_1 + x_2$$

s.t.
$$x_1 + 2x_2 - x_3 = 2$$

 $x_1 - x_4 = 1$

Primal

min $x_1 + x_2$

$$x \ge 0$$

$$x + x_1 + 2x_2 > 2$$

s.t.
$$x_1 + 2x_2 \ge 2$$

 $x_1 > 1$

Dual

$$\max_{\mathbf{p} \ge \mathbf{0}} \quad 2p_1 + p_2$$

s.t.
$$p_1 + p_2 \le 1$$

 $2p_1 \le 1$

Dual simplex

First iteration

		x_1	x_2	x_3	x_4
	0	1	1	0	0
x_3	-2	-1	-2	1	0
x_4	-1	-1	0	0	1

Second iteration

	x_1	x_2	x_3	x_4
-1	1/2	0	1/2	0
1	1/2	1	-1/2	0
-1	-1	0	0	1

Third iteration

	x_1	x_2	x_3	x_4
-3/2	0	0	1/2	1/2
1/2	0	1	-1/2	1/2
1	1	0	0	-1

The dual simplex algorithm

Algorithm

- 1. Basis $B = [A_{B(1)}, \cdots, A_{B(m)}]$ with $\overline{c}^{\top} = c^{\top} c_R^{\top} B^{-1} A \ge 0^{\top}$.
 - If $B^{-1}b > 0$, STOP: Return primal optimal solution $x = [x_B | x_N]$ with $m{x}_B = m{B}^{-1}m{b}$ and $m{x}_N = m{0}$; and dual optimal solution $m{p}^ op = m{c}_B^ op m{B}^{-1}$
 - Else select l such that $x_{B(l)} < 0$; PROCEED.
- 2. Compute $oldsymbol{v} \in \mathbb{R}^n$ as the l^{th} row of the tableau
 - If v > 0, then the dual cost is unbounded; STOP. Else, PROCEED.
- 3. $\theta^* = \min_{k=1,\dots,n,v_k<0} \frac{\overline{c}_k}{|v_k|}$. Let j be such that $\theta^* = \frac{\overline{c}_j}{|v_j|}$
- **4**. Form new basis: $[A_{B(1)}\cdots A_{B(l-1)}A_jA_{B(l+1)}\cdots A_{B(m)}]$
- 5. Perform pivot operations to update the tableau. In particular, update $\bar{c}_k \leftarrow \bar{c}_k + \theta^* v_k \text{ for } k = 1, \cdots, n$
- 6. Go back to Step 2.
- \rightarrow The dual simplex algorithm proceeds iteratively, by increasing the cost and maintaining non-negative reduced costs until primal feasibility

Simplex and dual simplex: summary

- The variables with zero reduced costs ($\bar{c}_i = 0$) correspond to active constraints in the dual $(\mathbf{p}^{\top} \mathbf{A}_i = c_i)$
- ullet Every basis $oldsymbol{B}$ determines a basic primal solution $oldsymbol{x} = [oldsymbol{x}_B \ oldsymbol{x}_N]$ with $m{x}_B = m{B}^{-1}m{b}$ and $m{x}_N = m{0}$; and a basic dual solution $m{p}^{ op} = m{c}_B^{ op} m{B}^{-1}$
 - If x is non-degenerate, it is associated with a unique dual variable
- The basis induces primal feasibility and/or dual feasibility
 - ullet $m{x}$ is primal feasible if and only if it is non-negative: $m{x}_B = m{B}^{-1} m{b} \geq m{0}$
 - p is dual feasible if and only if all reduced costs are non-negative: $\overline{\boldsymbol{c}}^{\top} = \boldsymbol{c}^{\top} - \boldsymbol{c}_{\scriptscriptstyle P}^{\top} \boldsymbol{B}^{-1} \boldsymbol{A} \geq \boldsymbol{0}^{\top}$
- Primal simplex and dual simplex both iterate from one extreme point to an adjacent one
 - Primal simplex maintains primal feasibility, works toward dual feasibility
 - Dual simplex maintains dual feasibility, works toward primal feasibility
- Degeneracy can happen in the primal and the dual
 - Primal degeneracy: some basic variable is equal to zero
 - Dual degeneracy: some non-basic variable has a zero reduced cost

When to use primal simplex vs. dual simplex?

 Primal simplex: when we have a feasible primal solution and we need to work toward an optimal primal solution. Example: change in c:

- If Δ is "large", the primal solution x is feasible but no longer optimal → Use of primal simplex to restore dual feasibility, or primal optimality
- Dual simplex: when we have a feasible dual solution and we need to work toward a feasible primal solution. Example: change in b:

$$\begin{array}{ccccccccc} (P) & & \min & \boldsymbol{c}^{\top}\boldsymbol{x} & \longrightarrow & (P') & & \min & \boldsymbol{c}^{\top}\boldsymbol{x} \\ & & \text{s.t.} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} & & & \text{s.t.} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} + \Delta\boldsymbol{e}_{l} \\ & & & \boldsymbol{x} \geq \boldsymbol{0} & & & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

- ullet If Δ is "too large", the primal solution $oldsymbol{x}$ is no longer feasible but satisfies optimality conditions
- → Use of dual simplex to restore primal feasibility

Duality toward sensitivity analysis

$\begin{array}{ccccccc} (P) & & \min & \boldsymbol{c}^{\top}\boldsymbol{x} & \longrightarrow & (P') & & \min & \boldsymbol{c}^{\top}\boldsymbol{x} \\ & & \text{s.t.} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} & & & \text{s.t.} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} + \boldsymbol{\varepsilon} \\ & & & \boldsymbol{x} \geq \boldsymbol{0} & & & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

• Consider x^* an optimal (non-degenerate) solution of (P)

$$\boldsymbol{x}^* = \begin{bmatrix} \boldsymbol{x}_B = \boldsymbol{B}^{-1} \boldsymbol{b} > 0 \end{bmatrix} \qquad \boldsymbol{x}_N = \boldsymbol{0}$$

- ullet x^* no longer optimal for (P'), and not even feasible: Ax=b
 eq b+arepsilon
- But B may still be an optimal basis for (P') if ε is small enough

$$oldsymbol{B}^{-1}(oldsymbol{b}+oldsymbol{arepsilon})>0? \hspace{1cm} oldsymbol{x}_N=oldsymbol{0}$$

- What is the impact on the optimal cost?
 - Cost of (P): $\boldsymbol{c}_{B}^{\top}\boldsymbol{B}^{-1}\boldsymbol{b} = \boldsymbol{c}_{B}^{\top}\boldsymbol{x}_{B}$
 - Cost of (P'): $c_B^{\top} B^{-1} (b + \varepsilon) = c_B^{\top} x_B + p^{\top} \varepsilon$
- $\rightarrow p_i$: marginal cost, or "shadow price", of constraint $i=1,\cdots,m$

Change in b: constraint perturbation

$$\begin{array}{cccccccc} (P) & & \min & \boldsymbol{c}^{\top}\boldsymbol{x} & \longrightarrow & (P') & & \min & \boldsymbol{c}^{\top}\boldsymbol{x} \\ & & \text{s.t.} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} & & & \text{s.t.} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} + \Delta \cdot \boldsymbol{e}_{l} \\ & & & \boldsymbol{x} \geq \boldsymbol{0} & & & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

- Consider an optimal basis B for (P); is it still optimal for (P')?
 - ullet No impact on optimality: $ar{oldsymbol{c}}^ op = oldsymbol{c}^ op oldsymbol{c}_B^ op oldsymbol{B}^{-1} oldsymbol{A} \geq oldsymbol{0}^ op$
 - The solution remains feasible if $B^{-1}(b + \Delta \cdot e_l) \geq 0$, i.e.:

$$\max_{j:\beta_{jl}>0}\left(-\frac{\bar{b}_j}{\beta_{jl}}\right)\leq \Delta \leq \min_{j:\beta_{jl}<0}\left(-\frac{\bar{b}_j}{\beta_{jl}}\right), \text{ where } \boldsymbol{B}^{-1}=[\beta_{jk}] \text{ and } \boldsymbol{B}^{-1}\boldsymbol{b}=[\bar{b}_j]$$

- → If perturbation is "small enough", the solution remains optimal and the cost increases by $\Delta \cdot p_l$:
 - Cost of (P): $\boldsymbol{c}_{B}^{\top}\boldsymbol{B}^{-1}\boldsymbol{b}$
 - Cost of (P'): $c_P^{\top} B^{-1} (b + \Delta \cdot e_l) = c_P^{\top} x_B + \Delta \cdot p_l$
- → Dual variable: "shadow price" of a constraint

Change in c: cost perturbation

$$\begin{array}{ccccccccc} (P) & & \min & \boldsymbol{c}^{\top}\boldsymbol{x} & \longrightarrow & (P') & & \min & (\boldsymbol{c} + \Delta \cdot \boldsymbol{e}_k)^{\top}\boldsymbol{x} \\ & & \text{s.t.} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} & & & \text{s.t.} & \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \\ & & & \boldsymbol{x} \geq \boldsymbol{0} & & & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

- Consider an optimal basis B for (P); is it still optimal for (P')?
 - No impact on feasibility: $B^{-1}b > 0$
 - Impact on optimality, if x_k is a non-basic variable:

$$c_k + \Delta \ge \boldsymbol{c}_B^{\mathsf{T}} \boldsymbol{B}^{-1} \boldsymbol{A}_k \iff \Delta \ge -\overline{c}_k$$

Impact on optimality, if x_k is a basic variable:

$$\begin{split} c_j &\geq (\boldsymbol{c}_B + \Delta \cdot \boldsymbol{e}_k)^\top \boldsymbol{B}^{-1} \boldsymbol{A}_j, \text{ or } \overline{c}_j \geq \Delta \cdot \alpha_{kj} \ \forall j \neq k \\ &\iff \max_{j: \alpha_{kj} < 0} \left(\frac{\overline{c}_j}{\alpha_{kj}} \right) \leq \Delta \leq \min_{j: \alpha_{kj} > 0} \left(\frac{\overline{c}_j}{\alpha_{kj}} \right), \text{ where } \boldsymbol{B}^{-1} \boldsymbol{A} = [\alpha_{kj}] \end{split}$$

 \rightarrow If perturbation is "small enough", primal solution x remains optimal

Back to manufacturing: formulation

Formulation (Primal problem)

$$\max x_{1}x_{1} + \dots + x_{n}x_{n}$$
s.t. $a_{11}x_{1} + \dots + a_{1n}x_{n} \leq b_{1}$

$$a_{21}x_{1} + \dots + a_{2n}x_{n} \leq b_{2}$$

$$\dots$$

$$a_{m1}x_{1} + \dots + a_{mn}x_{n} \leq b_{m}$$

$$x_{1}, \dots, x_{n} > 0$$

Formulation (Dual problem)

min
$$b_1p_1 + \cdots + b_mp_m$$

s.t. $a_{11}p_1 + \cdots + a_{m1}p_m \ge \pi_1$
 $a_{12}p_1 + \cdots + a_{m2}p_m \ge \pi_2$
...

$$a_{1n}p_1 + \dots + a_{mn}p_m \ge \pi_n$$

$$p_1, \dots, p_m \ge 0$$

- n products, m materials
- Decision x_i : quantity of product $j = 1, \dots, n$ to manufacture
- Formulation: maximizing profit given limited resource availability
- Dual variable p_i : additional profit gained by increasing the supply of material $i=1,\cdots,m$ by one (small) unit

Back to manufacturing: changes in resource availability

- Top row: additional resources help the company increase its profits
- Bottom row: additional resources do not lead to higher profits

Back to manufacturing: dual variables and shadow prices

Resource utilization decisions

Dual variables

- Complementary slackness: additional resources provide gains only if the corresponding resource has already been depleted
- Dual variable: marginal benefits from added resources
- → Shadow prices guide investments in extra resources, for instance

Back to manufacturing: primal variables and reduced costs

Reduced costs

- Optimality conditions: reduced-costs are non-zero only if the variable is not part of the optimal solution
- Reduced cost: loss induced by producing "suboptimal" products
- → Reduced costs guide product design decisions, for instance

Conclusion

Summary

Primal problem

$$\min \ \boldsymbol{c}^{\top} \boldsymbol{x}$$

s.t.
$$oldsymbol{A}oldsymbol{x}=oldsymbol{b}$$

$$oldsymbol{x} \geq oldsymbol{0}$$

Dual problem

 $\max p^{\top} b$

s.t.
$$oldsymbol{p}^ op oldsymbol{A} \leq oldsymbol{c}^ op$$

Takeaway

Duality as proof technique: Farkas lemma

Takeaway

Duality for algorithms: dual simplex moves from a dual BFS to an adjacent one, maintaining non-negative reduced cost until primal feasibility.

Takeaway

Duality for sensitivity analysis: interpretation of the dual variables as the "shadow price" of the constraints.