Aprendizado de Máquina: Support Vector Machines (SVM)

Prof. Arnaldo Candido Junior UTFPR – Medianeira

Introdução

- Método supervisionado de aprendizado de máquina
- Classificação em dois grupos
 - Classificação de múltiplas classes não é uma limitação, pois pode-se construir uma SVM para cada classe
- Apresenta resultados melhores que muitos métodos populares de classificação

Introdução ₍₂₎

- [Vapnik et al, 1992] Primeiro artigo
- [Vapnik et al, 1998] Definição detalhada
- 1968: base matemática (teoria de Lagrange)

Motivação da SVM

Como separar as duas classes?

 Como separar as duas classes?

Motivação da SVM (2)

Reta / Plano / Hiperplano?

Qual o hiperplano ótimo?
 Menor erro de classificação

Conceitos de SVM

- Qual o hiperplano ótimo?
 - Menor erro de classificação
 - Maior margem
 - Distância entre vetores de suporte e o hiperplano

Conceitos de SVM (2)

- Qual o hiperplano ótimo?
 - Menor erro de classificação
 - Maior margem
 - Distância entre vetores de suporte e o hiperplano

Casos a tratar (2)

- B1 ainda é o melhor separador !
- Mas B2 é o que seria produzido usando uma técnica própria para dados "separáveis"
- Enfoque Soft Margin:
 Produz fronteira que tolera algumas "exceções" na separação.

Como Funciona para Dados Linearmente Separáveis?

- Dados de treinamento
 - Tuplas no formato (x₁, x₂, ..., x_n, y)
 - Atributos x_i
 - Classe y (+1, -1)
- Conjunto dito linearmente separável, se existir um hiperplano H (no espaço de entrada) que separe as tuplas de classes diferentes
- Determinar os vetores de suporte
- Encontrar o hiperplano ótimo
 - Com maior margem

O Hiperplano (H)

 Pontos que pertencem a h satisfazem a equação

$$\hat{\mathbf{w}} \cdot \hat{\mathbf{x}} + \mathbf{b} = 0$$

ŵ: vetor normal a h
 ŵ = w₁, w₂, ..., w_n

 Convenção: pontos no hiperplano separador pertencem a classe positiva

O Hiperplano (H) (2)

A distância r entre um ponto x e o hiperplano H é

•
$$d = (\hat{w} \cdot \hat{x} + b) / ||\hat{w}||$$

||w|| é a norma euclidiana de w

•
$$\sqrt{(\hat{\mathbf{w}} \cdot \hat{\mathbf{w}})} = \sqrt{(\hat{\mathbf{w}}_1^2 + ... + \hat{\mathbf{w}}_n^2)}$$

 |b|/||w|| é a distância perpendicular de H até a origem

O Hiperplano (H) (3)

- Orientação de ŵ
 - Define o lado do plano em que os pontos pertencem a classe +1
- b > 0 (origem no lado positivo)
- b < 0 (origem no lado negativo)
- b = 0 (origem pertence ao plano)

Hiperplano

• H:
$$\hat{\mathbf{w}} \cdot \hat{\mathbf{x}} + \mathbf{b} = 0$$

H: $\mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \mathbf{b} = 0$

Aplicando os pontos (5,0) e (0,5)
 5w₁ + b = 0
 5w₂ + b = 0

- Isolando b $5w_1 = 5w_2 (w_1 = w_2)$
- Escolhendo arbitrariamente w₁ = 1; b = -5

Hiperplano ₍₂₎

- Norma de ŵ
 - $||\hat{\mathbf{w}}|| = \sqrt{(\mathbf{w}_1^2 + \mathbf{w}_2^2)} = \sqrt{2}$
- Distância da origem
 - $|b| / ||\hat{w}|| = 5/\sqrt{2}$
- Distância de um ponto x = (5,2) até H

•
$$r = (\hat{w} \cdot \hat{x} + b) / ||\hat{w}||$$

 $r = (5w_1 + 2w_2 - 5) / \sqrt{2}$
 $r = (5+2-5) / \sqrt{2}$
 $r = \sqrt{2}$

Hiperplano Ótimo

 Objetivo da SVM é encontrar ŵ e b para a maior margem

Hiperplano Ótimo (2)

•
$$h_0$$
: $\hat{w} \cdot \hat{x} + b = 0$

•
$$h_1$$
: $\hat{w} \cdot \hat{x} + b = 1$

• h_2 : $\hat{w} \cdot \hat{x} + b = -1$

- Obs: existem infinitas formas de representar os três hiperplanos
- Estamos escolhendo uma conveniente

Hiperplano Ótimo (3)

- Hiperplano ótimo, r⁺ = r⁻
 - $r = 1 / ||\hat{w}||$
 - Margem = 2 / ||ŵ||
 - É aquele que possui maior margem
 - É aquele que possui menor ||ŵ||

Hiperplano Ótimo (4)

- Formas de determinar o hiperplano
 - Sistema de equações (nosso foco)
 - Problema de otimização restrita
 - Usado em aplicações reais
 - Fora do escopo da disciplina
 - Breve explicação a seguir

Avançado: treinamento na prática

Otimização dual ou primal :

$$\underset{\alpha}{\operatorname{argmax}} \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{j,k} \alpha_{j} \alpha_{k} y_{j} y_{k} (\mathbf{x}_{j} \cdot \mathbf{x}_{k})$$
• α_{j} : coeficientes a encontrar

- x;: vetores de suporte
- y_i: classes desejadas dos vetores de suporte
- Importante: usa produto escalar

Avançado: classificação na prática

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{j} \alpha_{j} y_{j}(\mathbf{x} \cdot \mathbf{x}_{j}) - b\right)$$

- α_i : coeficientes encontrados no passo anterior
- x: instância a ser classificada
- x_i: vetores de suporte
- y_i: classes desejadas dos vetores de suporte
- b: primeira somatória da equação anterior
- *sign*: sinal (+ ou -)
- Importante: usa produto escalar

Exemplo

- -1, 0, -1
- 0, -1, -1
- 0, 1, -1
- 1, 0, -1
- 3, -1, +1
- 3, 1, +1
- 6, -1, +1
- 6, 1, +1

Exemplo (2)

- -1, 0, -1
- 0, -1, -1
- 0, 1, -1
- 1, 0, -1
- 3, -1, +1
- 3, 1, +1
- 6, -1, +1
- 6, 1, +1

Exemplo (3)

•
$$H_1$$
: $w \cdot x + b = 1$
 H_2 : $w \cdot x + b = -1$
• $1w_1 + 0w_2 + b = -1$
 $\rightarrow b = -1 - w_1$
• $3w_1 - 1w_2 + b = 1$
 $\rightarrow w_2 = 3w_1 - 1 - w_1 - 1$
 $\rightarrow w_2 = 2w_1 - 2$
• $3w_1 + 1w_2 + b = 1$
 $\rightarrow 3w_1 + 2w_1 - 2 - 1 - w_1 = 1$
 $\rightarrow w_1 = 1$
 $\rightarrow b = -2$

 \rightarrow $W_2 = 0$

Exemplo (4)

Exemplo (5)

• H:
$$(1, 0) \cdot x - 2 = 0$$

H: $x_1 + 0x_2 - 2 = 0$

Dados de Teste

$$(4, 2), (1.5, 0.5), (0, -2)$$

Como funciona para dados linearmente inseparáveis?

- Mapeamento do espaço de características para uma dimensão maior
- Vetores de entrada são mapeados de forma não linear
- Após transformado, o novo espaço de características deve ser passível de separação linear

Exemplo

Como separar as duas classes com apenas um ponto?

X ₁	Class
0	+1
1	-1
2	-1
3	+1

Exemplo (2)

 SVM usa uma função não linear sobre os atributos do espaço de características inicial

X ₁	Class
0	+1
1	-1
2	-1
3	+1

- $\Phi(X_1) = (X_1, X_1^2)$
- Esta função torna o problema bidimensional

Exemplo (3)

 SVM usa uma função não linear sobre os atributos do espaço de características inicial

X ₁	X ₁ ²	Class
0	0	+1
1	1	-1
2	4	-1
3	9	+1

- $\Phi(X_1) = (X_1, X_1^2)$
- Esta função torna o problema bidimensional e os dados linearmente separáveis

Exemplo (4)

•
$$w.x + b = +1$$

 $w_1x_1 + w_2x_2 + b = +1$
 $0w_1 + 0w_2 + b = +1$ $\rightarrow b = 1$
 $3w_1 + 9w_2 + b = +1$

X ₁	X ₁ ²	Class
0	0	+1
1	1	-1
2	4	-1
3	9	+1

Exemplo (5)

X ₁	X ₁ ²	Class
0	0	+1
1	1	-1
2	4	-1
3	9	+1

•
$$w \cdot x + b = -1$$

 $w_1x_1 + w_2x_2 + b = -1$
 $1w_1 + 1w_2 + b = -1$
 $2w_1 + 4w_2 + b = -1$

substituindo b e após
$$w_1$$

 $\rightarrow w_1 = -2 - w_2$
 $\rightarrow -4 - 2w_2 + 4w_2 + 1 = -1$

• w.x + b = 0
$$w_2 = 1 e w_1 = -3$$

 $w_1x_1 + w_2x_2 + b = 0 \rightarrow -3x_1 + x_2 + 1 = 0$

Exemplo (6)

- H: $-3x_1 + x_2 + 1 = 0$
- Dados de Teste (1.5), (-1), (4)

Exemplo (7)

- (1.5) mapear para (1.5, 2.25)
 - $-3 \cdot 1.5 + 2.25 + 1 = -1.15 [-1]$

• (-1) mapear para (-1,1)

•
$$-3 \cdot -1 + 1 + 1 = 5 [+1]$$

- (4) mapear para (4,16)
 - Exercício

Segundo exemplo

Como separar as duas classes com apenas uma

reta?

X ₁	X_2	Class
1	1	-1
-1	1	-1
1	-1	-1
-1	-1	-1
2	2	+1
-2	2	+1
2	-2	+1
-2	-2	+1

Segundo exemplo (2)

$$\Phi(x_1, x_2) = \begin{cases} (4-x_2+|x_1-x_2|, 4-x_1+|x_1-x_2|), & \sqrt{(x_1^2+x_2^2)} > 2\\ (x_1, x_2) & \end{cases}$$

Esta função mantém o problema bidimensional

Segundo exemplo (3)

Vetores de Suporte

X ₁	X ₂	Class
1	1	-1
-1	1	-1
1	-1	-1
-1	-1	-1
2	2	+1
6	6	+1
10	6	+1
6	10	+1

Segundo exemplo (4)

Vetores de Suporte

X ₁	X ₂	Class
1	1	-1
2	2	+1

- Como só temos dois pontos, vamos cair em um sistema com duas equações e três incógnitas
- $w_1 + w_2 + b = -1$ $2w_1 + 2w_2 + b = +1$

Segundo exemplo (5)

- Contudo, podemos verificar que a distância euclidiana entre os pontos é √2
- Logo, a distância entre os pontos e o hiperplano deve ser √2/2
- Vamos recorrer a fórmula para calcular a distância entre reta e ponto:
- $d(p, h) = |w_1x_1 + w_2x_2 + b| / \sqrt{(w_1^2 + w_2^2)}$
- Vamos usar (1, 1) como ponto de referência e, removendo o módulo, temos -√2/2 (ponto de referência é da classe negativa)

Segundo exemplo (6)

Após os devidos ajustes:

•
$$w_1 + w_2 + b = -1$$

 $2w_1 + 2w_2 + b = +1$
 $(w_1 + w_2 + b)/\sqrt{(w_1^2 + w_2^2)} = -\sqrt{2}/2$

Resolva este sistema

Segundo exemplo (7)

•
$$h_0$$
: (1,1) . (x_1 , x_2) -3 = 0
 x_1 + x_2 -3 = 0

Segundo exemplo (7)

 Esta função realmente separa o espaço original de forma linear?

Dados de teste (5,5)

Dados de teste (4,4)

$$\Phi(5,5) = (-1, -1)$$

$$\Phi(4,4) = (0,0)$$

Erros de classificação!

Segundo exemplo (9)

Função de mapeamento não é ideal

Funções Kernel

- Informalmente, são funções em que a ordem dos parâmetros não altera o resultado.
- Exemplo $R^2 \rightarrow R^1$:
 - $k(x, y) = x^2 + 2xy + y^2$
 - k(2, 3) = k(3, 2) = 25

Funções Kernel (2)

- Exemplo $R^2 \rightarrow R^3$:
 - $f(x, y) = (x^2, 2xy, y^2)$
 - f(2, 3) = (4, 12, 9)
 - Obs: não é kernel, só foi inspirada em uma por simplicidade

Funções Kernel (3)

 Usar uma função Kernel adequada é equivalente a mapear o problema em uma dimensão maior, na qual os dados são linearmente separáveis

Avançado: kernel trick

- Kernel trick (truque kernel)
 - Nossa implementação é muito simples, baseada em sistemas de equação
 - Implementações reais de SVM usam produtos escalares
 - Kernel trick é uma maneira de usar usando produtos escalares para subir muitas dimensões sem precisar fazer o mapeamento explicitamente

Avançado: kernel trick (2)

- Suponha x = (a, b) no R² e que vamos mapear esses dados para o R³
- Temos: $f(a, b) = (a^2, ab\sqrt{2}, b^2)$
- Exemplo:
 - $p_1 = (1, 2) \rightarrow f(p_1) = (1, 2\sqrt{2}, 4)$
 - $p_2 = (3, 4) \rightarrow f(p_1) = (9, 12\sqrt{2}, 16)$

Avançado: kernel trick (2)

•
$$p_1.p_2 = (1, 2) \cdot (3, 4)$$

= $3 + 8 = 11$
• $f(p_1).f(p2) = (1, 2\sqrt{2}, 4) \cdot (9, 12\sqrt{2}, 16)$
= $9 + 48 + 64 = 121$

• Note que
$$(p_1.p_2)^2 = f(p_1).f(p_2)$$

Avançado: kernel trick (3)

- Solução simples: usamos f para mapear x para R³ e calculamos produto escalar: f(x). f(x)
- Solução otimizada: usamos um kernel equivalente a f. No exemplo: k = (x . x)²
- Conseguimos um produto escalar do R³ sem precisar ir para o R³!

Funções Kernel

- Mais usadas
 - Polinomial
 - Gaussiana
 - Sigmoid
- Sempre aumentam o número de dimensões
 - Normalmente, aumentam bastante!

Créditos

Eduardo Borges e Gabriel Simões da UFRGS