PROVA 1 = MAT 241

Hugo Marinho

2021

- TRANSCREVA AS EQUAÇÕES DA QUESTÃO PARA A FOLHA DE RESOLUÇÃO
- IDENTIFIQUE COM CLAREZA QUAL QUESTÃO VOCÊ ESTÁ RESOLVENDO
- ENVIE A PROVA EM UM ÚNICO ARQUIVO E EM PDF
- JUSTIFIQUE BEM SUAS RESPOSTAS
- AO TRANSFORMAR SUA PROVA EM PDF CERTIFIQUE-SE DE QUE ESTÁ LEGÍVEL
- 1. 40 pontos Em cada item faça o que se pede:
 - a) 10 pontos Determine a área do triângulo formado por estes pontos A=(1,3,2), B=(5,3,2) e C=(2,2,2)
 - b) 10 pontos Seja \vec{u} um vetor ortogonal a \vec{v} e \vec{w} . Sabendo-se que \vec{v} e \vec{w} formam um ângulo de 30° e que $\|\vec{u}\| = 3, \|\vec{v}\| = 5$ e $\|\vec{w}\| = 2$. Calcule $\langle \vec{u}, \vec{v} \times \vec{w} \rangle$
 - c) 10 pontos Sejam $\vec{u} = (k, \vec{2}, 1)$ e $\vec{v} = (1, 1, -2)$. Sabendo-se que o ângulo entre \vec{u} e \vec{i} é agudo, determine o valor de k de modo que a área do triângulo formado por \vec{u} e \vec{v} seja $\sqrt{57}$.
 - d) 10 pontos Determine a posição relativa entre as retas:

$$r: \frac{x-2}{4} = \frac{y+3}{3} = z-1$$

$$s: \begin{cases} x = -2+3t \\ y = -3-t \\ z = 1+3t \end{cases}$$

2. 20 pontos - Determine um plano α , de tal forma que, α forma um ângulo de 30° com o plano x=2, forma 60° com o plano xz e contenha o ponto A=(3,2,1). Considere também que a norma do vetor normal de α seja igual a 8.

3. 20 pontos - Considere a seguinte esfera:

$$S: x^2 + y^2 + z^2 + 2x + 2y - 4z = -2$$

Determine um plano tangente a essa esfera e que seja perpendicular à reta $r: \frac{x-\frac{5}{2}}{3} = \frac{y+\frac{5}{2}}{2} = z-4$

- 4. 20 pontos Considere os planos $\alpha: x+y+z \equiv 2$ e $\beta: x-2y-z \equiv 1.$
 - a) Determine a reta \boldsymbol{r} dada pela interseção dos planos.
 - b) Escreva a equação da esfera que tem centro no ponto da reta r quando t=1 e é tangente à reta s:x-1=y+1=z-2

DICA SHOW: Se queremos calcular a distância de um ponto P_0 do espaço até uma reta r, utilizamos a seguinte fórmula

$$d(P,r) = \frac{\|\overrightarrow{P_0P_r} \times \overrightarrow{v_r}\|}{\|\overrightarrow{v_r}\|}$$

Aonde P_r é um ponto qualquer da reta r e $\vec{v_r}$ é o vetor diretor da reta r.

Para encontrar o plano da sua vida você precisa de um vetor normal e um ponto