Всероссийская олимпиада школьников по физике

11 класс, региональный этап, 2013/14 год

Задача 1. Как-то теоретик Баг, гуляя по берегу моря, увидел, как отдыхающий строил замок из песка (см. рисунок). Он решил узнать, какой максимальной высоты колонну можно построить из влажного песка. В одной из работ Леонарда Эйлера он обнаружил, что максимальная высота цилиндрической колонны, изготовленной из однородного и изотропного материала, может быть рассчитана по формуле

$$H = 1.25 \cdot E^{\alpha} R^{\beta} \rho^{\gamma} g^{\lambda},$$

где α , β , γ и λ — некоторые числовые коэффициенты, R — радиус колонны, ρ — плотность материала, из которого она изготовлена, g — ускорение свободного падения, E — модуль Юнга. Баг рассчитал, что если колонну сделать из влажного песка, то при её радиусе $R_1=5$ см высота колонны окажется 1,0 м. Друг Бага, экспериментатор Глюк, решил собрать более «солидную» колонну. Он сделал радиус её основания $R_2=15$ см. Колонна какой высоты получилась у Глюка?

Плотность влажного песка $\rho=1500~{\rm kr/m^3},$ его модуль Юнга $E=3.0\cdot 10^6~{\rm \Pi a},$ ускорение свободного падения $q=9.8~{\rm m/c^2}.$

Примечание. Модуль Юнга — это коэффициент пропорциональности между давлением (или растяжением), действующим на плоскую поверхность исследуемого образца и его относительным сжатием (удлинением).

м
$$80,2 \approx \frac{\epsilon/2}{[H]} \int IH = 2H$$

ЗАДАЧА 2. Вблизи края гладкой горизонтальной полуплоскости лежат два одинаковых груза, соединённые лёгкой нерастянутой пружиной, длина которой равна l_0 , а жёсткость — k. К грузу, ближайшему к краю плоскости, с помощью нерастяжимой нити, перекинутой через лёгкий блок, прикреплён ещё один такой же груз массой m (см. рисунок). Его удерживают так, что участок нити, идущий от блока к этому грузу, вертикален. Нижний груз отпускают.

Через какое минимальное время au удлинение Δl пружины станет максимальным? Найдите это удлинение.

$$\boxed{\frac{gm\Omega}{48} = \min_{X \in \mathcal{X}} l \Delta \cdot \frac{\overline{m\Omega}}{48} \sqrt{\pi = \tau}}$$

Задача 3. На промышленных предприятиях для охлаждения больших объёмов воды используют градирни (рисунок справа). Рассмотрим идеализированную градирню, представляющую собой широкий цилиндр диаметром D=15 м, в котором на некоторой высоте H от основания через специальные форсунки (1) распыляется горячая вода, температура которой $t_1=50\,^{\circ}\mathrm{C}$. По мере падения она остывает до температуры $t_2=28\,^{\circ}\mathrm{C}$. Посредством вентилятора навстречу падающим каплям снизу со скоростью u=2,0 м/с поднимается воздух при температуре $t_0=29\,^{\circ}\mathrm{C}$. Считайте, что его температура на протяжении всего пути остаётся неизменной, а влажность меняется от $\varphi=40\%$ на входе до $\varphi_1=100\%$ на выходе из градирни.

Какова производительность q градирни, то есть сколько тонн воды охлаждается в ней за один час?

Справочные данные для воды: удельная теплоёмкость $c=4200~\rm Дж/(кг\cdot ^{\circ}C)$; удельная теплота парообразования $L=2,3\cdot 10^6~\rm Дж/кг$, температурная зависимость давления насыщенных паров приведена на графике (рисунок внизу).

и/т 046 = э/ти 061
$$\approx \frac{L(\varphi-1)_{\rm sen}q\mu u^2 G_{\pi}}{4 L^3 T R 4} = p$$

Задача 4. Параметры электрической цепи указаны на схеме (см. рисунок). Вначале ключ K разомкнут.

- 1) Определите напряжение на конденсаторе ёмкостью C.
- 2) Определите силу тока, который потечёт через резистор сопротивлением 3R сразу после замыкания ключа K.
- 3) Какое напряжение установится на конденсаторе ёмкостью C после того, как переходные процессы в цепи завершатся?

$$\mathcal{S}_{\frac{1}{6}}^{\frac{1}{2}} = U \left(\mathcal{E} ; \frac{\mathcal{S}_{7}}{H_{\frac{1}{4}}} \right) = 0 I \left(\mathcal{I} ; \mathcal{S}_{\frac{1}{4}}^{\frac{2}{6}} \right) = 0 U \left(\mathcal{I} \right)$$

Задача 5. Шесть идеальных катушек индуктивности соединили в электрическую цепь так, что катушки образовали рёбра тетраэдра (см. рисунок). К вершинам A и B подсоединили последовательно соединённые резистор сопротивлением R=100 Ом, батарейку с ЭДС $\mathscr{E}=4,6$ В, миллиамперметр и ключ. Индуктивность катушки L=1 мГн. Взаимной индуктивностью катушек пренебречь.

- 1) Вычислите силу тока I_{60} , протекающего через миллиамперметр спустя 1 минуту после замыкания ключа.
- 2) Вычислите силу тока, протекающего через каждую из катушек в тот момент, когда сила тока, протекающего через миллиамперметр, равна $I_{\rm A}=23~{\rm mA}.$

 $\boxed{0=6 \text{ Am A} : \text{Am B} = 1 \text{ Bm A} : \text{Am B} : \text{Am B} = 1 \text{ Bm A} : \text{Am B} = 1 \text{ Bm A} : \text{Am B} = 1 \text{ B$