ID:	Name:

Ch1. Intervals and Functions

- 1. Set Notation of a set:
- (1) Let V be a set including all the five main vowels in English alphabet. $V = \underbrace{2a, e, \dot{c}, o, \dot{d}}_{2}$
- (2) Let O be a set with all the odd positive numbers. $O = \underbrace{\frac{3}{3}, \frac{3}{5}, \frac{5}{7}, \frac{9}{9}, \cdots \frac{3}{5}}_{\text{Such that}}$.

 In general, we have $S = \{x | \text{ either list all the elements or give a description}\}$.
- 2. Number systems:

$$N = \underbrace{\frac{5(0)}{1}, \frac{2}{3}, \cdots \frac{3}{5}}, \underbrace{Natural Number}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}, \frac{2}{5}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}, \cdots \frac{3}{5}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}, \cdots \frac{3}{5}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}, \cdots \frac{3}{5}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}, \cdots \frac{3}{5}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}, \cdots \frac{3}{5}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}, \cdots \frac{3}{5}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}, \cdots \frac{3}{5}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}, \cdots \frac{3}{5}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}, \cdots \frac{3}{5}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N = \underbrace{\frac{3}{2}, \cdots \frac{3}{5}}, \underbrace{Integers}_{N$$

$$\mathbb{R} = All real numbers$$

$$C = \frac{x}{2} = a + ib | a \in \mathbb{R}, b \in \mathbb{R}^2; Complex numbers$$

3. The Intervals: sets of all real numbers between two numbers

Let a and b be real numbers with $a \le b$. We have

	•	
$[a,b] = \{x \alpha \leq X \leq b \},$	<u> </u>	b
$(a,b] = \{x \alpha \leq X \leq b \},$		<u> </u>
$[a,b) = \{x \mid 0 \leqslant \mathbf{X} < \mathbf{b} \},$	2	<u></u>
$(a,b) = \{x 0 < \mathbf{x} < \mathbf{b} \}.$		→
$(-\infty,b) = \{x \mid - \bowtie \langle x \langle b \rangle \},$	- 1	
$(-\infty, b] = \{x \mid - $	-	b
$[a,\infty) = \{x \ \bigcirc \leq X < \bowtie \ \},$	<u> </u>	
$(a, \infty) = \{x 0 < x < \infty \}.$		

4. Complete the table

Inequality notation	Number line	Interval notation
-3 < x < 5	-3 5	(-3,5)
-1<× <2	7	(-1,2]
$-\infty < x < 3$	3	(-00,3)

_	701	1 ~	• . •	C	_	. •
`	The	defin	11110n	$\alpha t a$	Hiin	CTION

Let A and B be nonempty sets. A <u>function</u> f from A to B is an assignment of <u>exactly own</u> element of B to each element of A, denoted by $f: A \to B$ which is read as f maps A to B. Then we say that A is the <u>compath</u> of f and B is the <u>compath</u>

6. If f(a) = b, we say that b is the <u>image</u> of a and the <u>range</u> of f is the set of all images of elements of A.

7. Suppose that each student in 1375 is assigned a letter grade from the set $G = \{A, B, C, D, F\}$. And suppose that grades are A for Adams, C for Chou, B for Goodman, A for Rod, and F for Stevens.

Let $S = \{Adams, Chou, Goodman, Rod, Stevens\}$ be the set of the students.

(a) Is
$$f: S \to G$$
 a function?

(b) What is the <u>domain</u>, range, and codomain of f?

(c) Is $g: G \to S$ a function?

(a) Adams A Fes.
Chou B It's
Goodman D a function
Rod

(b) £Adams, Chou, Goodman, Rod, Stevens}

Codomain = £ A, B, C,D, F3

range = £ A, B, C, IX, F3

range is smaller than Codomain

8. The tables below describe assignments between inputs *x* and outputs *y*. Determine which of the given tables describe a function. If they do, determine their domain and range. Describe which outputs are assigned to which inputs.

b)

a)	X	19	7	6	-2	3	-11
	у	3	3	3	3	3	3

X	1	2	3	4	4	5
у	5.3	9	13	17	15	$\sqrt{19}$