Text Categorization: Generative Probabilistic Models

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Overview

- What is text categorization?
- Why text categorization?
- How to do text categorization?
 - Generative probabilistic models
 - Discriminative approaches
- How to evaluate categorization results?

Document Clustering Revisited

Which cluster does d belong to? \rightarrow Which θ_i was used to generate d?

Text Categorization with Naïve Bayes Classifier

 $d=x_1x_2...x_L$ where $x_i \in V$

IF θ_i represents category i accurately, then...

How can we make this happen?

category(d) = $arg max_i p(\theta_i | d)$

= $\operatorname{arg\,max}_{i} p(d \mid \theta_{i}) p(\theta_{i})$

 $= \underset{\sim}{\text{arg max}}_{i} \prod_{w \in V} p(w | \theta_{i})^{c(w,d)} p(\theta_{i})$

category (d) = arg max_i log p(θ_i) + $\sum_{w \in V} c(w, d) log p(w | \theta_i)$

Learn from the Training Data

How to Estimate $p(w|\theta_i)$ and $p(\theta_i)$

Naïve Bayes Classifier: $p(\theta_i)=?$ and $p(w|\theta_i)=?$

Category 1

$$T_1 = \{d_{11}, d_{12}, ..., d_{1N_1}\}$$

Category 2

$$T_2 = \{d_{21}, d_{22}, ..., d_{2N_2}\}$$

Category k

$$T_k = \{d_{k1}, d_{k2}, ..., d_{kN_k}\}$$

Which category is most popular?

$$p(\theta_i) = \frac{N_i}{\sum_{j=1}^k N_j} \propto |T_i|$$

$$p(w \mid \theta_i) = \frac{\sum_{j=1}^{N_i} c(w, d_{ij})}{\sum_{w' \in V} \sum_{j=1}^{N_i} c(w', d_{ij})} \propto c(w, T_i)$$

Which word is most frequent in category i?

What are the constraints on $p(\theta_i)$ and $p(w|\theta_i)$?

Smoothing in Naïve Bayes

- Why smoothing?
 - Address data sparseness (training data is small → zero prob.)
 - Incorporate prior knowledge
 - Achieve discriminative weighting (i.e., IDF weighting)
- How?

$$\begin{aligned} &p(\theta_i) = \frac{N_i + \delta}{\sum_{j=1}^k N_j + k\delta} & \delta \geq 0 \end{aligned} \quad \text{What if } \delta \rightarrow \infty? \quad \stackrel{\rho(\theta_i) = \frac{1}{k}}{\sum_{j=1}^k c(w, d_{ij}) + \mu p(w \mid \theta_B)} \\ &p(w \mid \theta_i) = \frac{\sum_{j=1}^{N_i} c(w, d_{ij}) + \mu p(w \mid \theta_B)}{\sum_{w' \in V} \sum_{j=1}^{N_i} c(w', d_{ij}) + \mu} \qquad \qquad \mu \geq 0 \quad \text{What if } \mu \rightarrow \infty? \\ &\rho(w \mid \theta_i) = \rho(w \mid \theta_B) = 1/|V|? \end{aligned}$$

Anatomy of Naïve Bayes Classifier

Two categories: θ_1 and θ_2

$$score(d) = log \frac{p(\theta_1 \mid d)}{p(\theta_2 \mid d)} = log \frac{p(\theta_1) \prod_{w \in V} p(w \mid \theta_1)^{c(w,d)}}{p(\theta_2) \prod_{w \in V} p(w \mid \theta_2)^{c(w,d)}}$$

$$= \log \frac{p(\theta_1)}{p(\theta_2)} + \sum_{w \in V} \underline{c(w,d)} \log \frac{p(w \mid \theta_1)}{p(w \mid \theta_2)}$$
 Weight on each word (feature) β_i

Sum over all words (features {f_i})

Feature value: f_i=c(w,d)

doesn't depend on d!

$$d = (f_1, f_2, ..., f_M), f_i \in \Re$$

$$\begin{aligned} &d = (f_1, f_2, ..., f_M), \ \ f_i \in \Re \\ &score(d) = \beta_0 + \sum\nolimits_{i=1}^M f_i \beta_i \quad \ \beta_i \in \Re \end{aligned} = \text{Logistic Regression!}$$

$$\beta_i \in \mathfrak{P}$$