数据科学与创新第三次作业

任务一

代码

first=subset(offline,posX==2&posY==12&mac!=unique(offline\$mac)[7]) ggplot(first,aes(x=factor(angle),y=signal))+geom_boxplot()+facet_wrap(vars(first\$mac),nrow=3)

结果发现有依赖性,信号的强度随着角度变化是一个周期差不多为pi的函数,应该是和坐标点与mac 的相对位置有关。

任务二

代码

second=subset(offline,posX==24&posY==4&mac!=unique(offline\$mac)[7]) ggplot(second,aes(x=signal))+geom_density()+facet_grid(angle~mac,scales = "free_x")

跟上一个一样啊。。看不出其他啥了。

任务三

代码一

third=subset(offline,posX==1&posY==1&mac!=unique(offline\$mac)[7]) c<-ggplot(third,aes(x=factor(angle),y=rawTime))+geom_boxplot() +facet_wrap(vars(third\$mac),nrow=3)

这里可以明显的看出时长和角度的某些关系。

代码二

fourth=subset(offline,mac!=unique(offline\$mac)[7]) c<-ggplot(fourth,aes(x=signal,y=rawTime,color=angle))+geom_point(size=0.5)

这里看到了一些奇怪的关系,整不明白啊,把三条单独拿出来看。

代码三

cluster<-kmeans(fourth\$rawTime,3)
fourth\$cluster=cluster[[1]]
fourth1=subset(fourth,cluster==1)
ggplot(fourth1,aes(x=signal,y=rawTime,color=angle))+geom_point(size=0.5)</pre>

哈哈, 没啥用, 散了散了