Numerical Analysis & Scientific Computing II

Module 2 Initial Value Problems

- 2.5 Stiffness
- 2.6 Linear Multistep Method
- 2.7 Non-Linear Methods
 - Runge-Kutta methods

The Tayler series methods require evaluation of partial derivatives of f; can we develop high-order one step methods that depends only on evaluation of f and not its derivatives?

Akash Anand MATH, IIT KANPUR

Initial Value Problems: Non-Linear Methods

The Tayler series methods require evaluation of partial derivatives of f; can we develop high-order one step methods that depends only on evaluation of f and not its derivatives?

For motivation, let's look at the predictor-corrector Heun's method

$$y_{n+1} = y_n + h(f(t_n, y_n) + f(t_{n+1}, y_n + h_n f(t_n, y_n)))/2.$$

The Tayler series methods require evaluation of partial derivatives of f; can we develop high-order one step methods that depends only on evaluation of f and not its derivatives?

For motivation, let's look at the predictor-corrector Heun's method

$$y_{n+1} = y_n + h(f(t_n, y_n) + f(t_{n+1}, y_n + h_n f(t_n, y_n)))/2.$$

If we describe a general one step method

$$y_{n+1} = y_n + h\Psi(f; t_n, y_n, h)$$

in terms of the relative increment function Ψ , then for the Heun's method, we have

$$\Psi(f; t_n, y_n, h) = (f(t_n, y_n) + f(t_{n+1}, y_n + h_n f(t_n, y_n)))/2.$$

The Tayler series methods require evaluation of partial derivatives of f; can we develop high-order one step methods that depends only on evaluation of f and not its derivatives?

For motivation, let's look at the predictor-corrector Heun's method

$$y_{n+1} = y_n + h(f(t_n, y_n) + f(t_{n+1}, y_n + h_n f(t_n, y_n)))/2.$$

If we describe a general one step method

$$y_{n+1} = y_n + h\Psi(f; t_n, y_n, h)$$

in terms of the relative increment function Ψ , then for the Heun's method, we have

$$\Psi(f; t_n, y_n, h) = (f(t_n, y_n) + f(t_{n+1}, y_n + h_n f(t_n, y_n)))/2.$$

If we expand Ψ , we get

$$\Psi = \left(f + f + hf_t + hff_y + O(h^2)\right)/2 = f + \frac{h}{2}\left(f_t + ff_y\right) + O(h^2).$$

The Tayler series methods require evaluation of partial derivatives of f; can we develop high-order one step methods that depends only on evaluation of f and not its derivatives?

For motivation, let's look at the predictor-corrector Heun's method

$$y_{n+1} = y_n + h(f(t_n, y_n) + f(t_{n+1}, y_n + h_n f(t_n, y_n)))/2.$$

If we describe a general one step method

$$y_{n+1} = y_n + h\Psi(f; t_n, y_n, h)$$

in terms of the relative increment function Ψ , then for the Heun's method, we have

$$\Psi(f; t_n, y_n, h) = (f(t_n, y_n) + f(t_{n+1}, y_n + h_n f(t_n, y_n)))/2.$$

If we expand Ψ , we get

$$\Psi = \left(f + f + hf_t + hff_y + O(h^2)\right)/2 = f + \frac{h}{2}\left(f_t + ff_y\right) + O(h^2).$$

Comparing with the Taylor series method, we see that the Heun's method is second order.

The Tayler series methods require evaluation of partial derivatives of f; can we develop high-order one step methods that depends only on evaluation of f and not its derivatives?

For motivation, let's look at the predictor-corrector Heun's method

$$y_{n+1} = y_n + h(f(t_n, y_n) + f(t_{n+1}, y_n + h_n f(t_n, y_n)))/2.$$

If we describe a general one step method

$$y_{n+1} = y_n + h\Psi(f; t_n, y_n, h)$$

in terms of the relative increment function Ψ , then for the Heun's method, we have

$$\Psi(f; t_n, y_n, h) = (f(t_n, y_n) + f(t_{n+1}, y_n + h_n f(t_n, y_n)))/2.$$

If we expand Ψ , we get

$$\Psi = \left(f + f + hf_t + hff_y + O(h^2)\right)/2 = f + \frac{h}{2}\left(f_t + ff_y\right) + O(h^2).$$

Comparing with the Taylor series method, we see that the Heun's method is second order.

Backtracking this calculation, we see that

$$\Psi = \frac{1}{2}k_1 + \frac{1}{2}k_2$$

where

$$k_1 = f(t_n, y_n), \qquad k_2 = f(t_n + h, y_n + hk_1).$$

Comparing with the Taylor series method, we see that the Heun's method is second order.

Backtracking this calculation, we see that

$$\Psi = \frac{1}{2}k_1 + \frac{1}{2}k_2$$

where

$$k_1 = f(t_n, y_n), \qquad k_2 = f(t_n + h, y_n + hk_1).$$

More generally,

$$\Psi = b_1 k_1 + b_2 k_2 + \dots + b_q k_q$$

where $k_i = f(t_n + c_i h, p_i)$ and

$$p_{1} = y_{n}$$

$$p_{2} = y_{n} + h(a_{21}k_{1})$$

$$p_{3} = y_{n} + h(a_{31}k_{1} + a_{32}k_{2})$$

$$\vdots$$

$$p_{q} = y_{n} + h(a_{q1}k_{1} + a_{q2}k_{2} + \dots + a_{q,q-1}k_{q-1})$$

Comparing with the Taylor series method, we see that the Heun's method is second order.

Backtracking this calculation, we see that

$$\Psi = \frac{1}{2}k_1 + \frac{1}{2}k_2$$

where

$$k_1 = f(t_n, y_n), \qquad k_2 = f(t_n + h, y_n + hk_1).$$

More generally,

$$\Psi = b_1 k_1 + b_2 k_2 + \dots + b_q k_q$$

where $k_i = f(t_n + c_i h, p_i)$ and

$$p_{1} = y_{n}$$

$$p_{2} = y_{n} + h(a_{21}k_{1})$$

$$p_{3} = y_{n} + h(a_{31}k_{1} + a_{32}k_{2})$$

$$\vdots$$

$$p_{q} = y_{n} + h(a_{q1}k_{1} + a_{q2}k_{2} + \dots + a_{q,q-1}k_{q-1})$$

A method in this form are known as q-stage Runge-Kutta (RK) method.

Comparing with the Taylor series method, we see that the Heun's method is second order.

Backtracking this calculation, we see that

$$\Psi = \frac{1}{2}k_1 + \frac{1}{2}k_2$$

where

$$k_1 = f(t_n, y_n), \qquad k_2 = f(t_n + h, y_n + hk_1).$$

More generally,

$$\Psi = b_1 k_1 + b_2 k_2 + \dots + b_q k_q$$

where $k_i = f(t_n + c_i h, p_i)$ and

$$p_{1} = y_{n}$$

$$p_{2} = y_{n} + h(a_{21}k_{1})$$

$$p_{3} = y_{n} + h(a_{31}k_{1} + a_{32}k_{2})$$

$$\vdots$$

$$p_{q} = y_{n} + h(a_{q1}k_{1} + a_{q2}k_{2} + \dots + a_{q,q-1}k_{q-1})$$

A method in this form are known as q-stage Runge-Kutta (RK) method.

To specify a particular method of this form we must specify the coefficients b_i , c_i , $1 \le i \le q$, and a_{ij} , $1 \le i \le q$, $1 \le j \le i$. The b_i are called weights, the c_i (or the points $t_n + c_i h$) the nodes, and p_i or, sometimes, the k_i , are called the stages.

A Runge-Kutta method is often recorded in a tableau of the form

For example, the tableau for Heun's method is

$$\begin{array}{c|cccc}
0 & & & \\
1 & 1 & & \\
& \frac{1}{2} & \frac{1}{2} & \\
\end{array}$$

where we have omitted the zeros in the upper triangle of A. The other well known RK methods are given below:

$$\begin{array}{c|cccc}
0 & & & \\
\frac{1}{2} & \frac{1}{2} & & \\
\hline
& 0 & 1 & \\
\end{array}$$

Modified Euler method (order 2) Heun's 3-stage method (order 3) Runge-Kutta-Simpson 4-stage method (the RK method) (order 4)

Numerical Analysis & Scientific Computing II

Module 2 Initial Value Problems

- 2.5 Stiffness
- 2.6 Linear Multistep Method
- 2.7 Non-Linear Methods
 - Consistency and Convergence of one step methods

Remark

1. We assume that Ψ is defined for $t \in [t_0, T], y \in \mathbb{R}, h \in [0, T - t_0]$, and is continuous there. Moreover, we assume the uniform Lipschitz condition

$$|\Psi(f;t,y,h) - \Psi(f;t,\hat{y},h)| \le K|y - \hat{y}|,$$

whenever (t, y, h) and (t, \hat{y}, h) belong to the domain of Ψ .

Remark

1. We assume that Ψ is defined for $t \in [t_0, T], y \in \mathbb{R}, h \in [0, T - t_0]$, and is continuous there. Moreover, we assume the uniform Lipschitz condition

$$|\Psi(f;t,y,h) - \Psi(f;t,\hat{y},h)| \le K|y - \hat{y}|,$$

whenever (t, y, h) and (t, \hat{y}, h) belong to the domain of Ψ .

2. Note that a single step method $y_{n+1} = y_n + h\Psi(f; t_n, y_n, h)$ is consistent if

$$0 = \lim_{h \to 0} \left| \frac{\ell_{n+1}(y, h)}{h} \right|$$

Remark

1. We assume that Ψ is defined for $t \in [t_0, T], y \in \mathbb{R}, h \in [0, T - t_0]$, and is continuous there. Moreover, we assume the uniform Lipschitz condition

$$|\Psi(f;t,y,h) - \Psi(f;t,\hat{y},h)| \le K|y-\hat{y}|,$$

whenever (t, y, h) and (t, \hat{y}, h) belong to the domain of Ψ .

2. Note that a single step method $y_{n+1} = y_n + h\Psi(f; t_n, y_n, h)$ is consistent if

$$0 = \lim_{h \to 0} \left| \frac{\ell_{n+1}(y,h)}{h} \right| = \lim_{h \to 0} \left| \frac{y(t_n) + h\Psi(f;t_n,y,h) - y(t_{n+1})}{h} \right|$$

Remark

1. We assume that Ψ is defined for $t \in [t_0, T], y \in \mathbb{R}, h \in [0, T - t_0]$, and is continuous there. Moreover, we assume the uniform Lipschitz condition

$$|\Psi(f;t,y,h) - \Psi(f;t,\hat{y},h)| \le K|y - \hat{y}|,$$

whenever (t, y, h) and (t, \hat{y}, h) belong to the domain of Ψ .

2. Note that a single step method $y_{n+1} = y_n + h\Psi(f; t_n, y_n, h)$ is consistent if

$$0 = \lim_{h \to 0} \left| \frac{\ell_{n+1}(y,h)}{h} \right| = \lim_{h \to 0} \left| \frac{y(t_n) + h\Psi(f;t_n,y,h) - y(t_{n+1})}{h} \right| = \lim_{h \to 0} \left| \Psi(f;t_n,y,h) - \frac{y(t_{n+1}) - y(t_n)}{h} \right|$$

Remark

1. We assume that Ψ is defined for $t \in [t_0, T], y \in \mathbb{R}, h \in [0, T - t_0]$, and is continuous there. Moreover, we assume the uniform Lipschitz condition

$$|\Psi(f;t,y,h) - \Psi(f;t,\hat{y},h)| \le K|y - \hat{y}|,$$

whenever (t, y, h) and (t, \hat{y}, h) belong to the domain of Ψ .

2. Note that a single step method $y_{n+1} = y_n + h\Psi(f; t_n, y_n, h)$ is consistent if

$$0 = \lim_{h \to 0} \left| \frac{\ell_{n+1}(y,h)}{h} \right| = \lim_{h \to 0} \left| \frac{y(t_n) + h\Psi(f;t_n,y,h) - y(t_{n+1})}{h} \right| = \lim_{h \to 0} \left| \Psi(f;t_n,y,h) - \frac{y(t_{n+1}) - y(t_n)}{h} \right|,$$

for all $y \in C^1$.

Remark

1. We assume that Ψ is defined for $t \in [t_0, T], y \in \mathbb{R}, h \in [0, T - t_0]$, and is continuous there. Moreover, we assume the uniform Lipschitz condition

$$|\Psi(f;t,y,h) - \Psi(f;t,\hat{y},h)| \le K|y-\hat{y}|,$$

whenever (t, y, h) and (t, \hat{y}, h) belong to the domain of Ψ .

2. Note that a single step method $y_{n+1} = y_n + h\Psi(f; t_n, y_n, h)$ is consistent if

$$0 = \lim_{h \to 0} \left| \frac{\ell_{n+1}(y,h)}{h} \right| = \lim_{h \to 0} \left| \frac{y(t_n) + h\Psi(f;t_n,y,h) - y(t_{n+1})}{h} \right| = \lim_{h \to 0} \left| \Psi(f;t_n,y,h) - \frac{y(t_{n+1}) - y(t_n)}{h} \right|,$$
 for all $y \in C^1$.

3. In view of the continuity, consistency condition is equivalent to $\Psi(f;t_n,y,0)=f(t_n,y)$.

Remark

1. We assume that Ψ is defined for $t \in [t_0, T], y \in \mathbb{R}, h \in [0, T - t_0]$, and is continuous there. Moreover, we assume the uniform Lipschitz condition

$$|\Psi(f;t,y,h) - \Psi(f;t,\hat{y},h)| \le K|y-\hat{y}|,$$

whenever (t, y, h) and (t, \hat{y}, h) belong to the domain of Ψ .

2. Note that a single step method $y_{n+1} = y_n + h\Psi(f; t_n, y_n, h)$ is consistent if

$$0 = \lim_{h \to 0} \left| \frac{\ell_{n+1}(y,h)}{h} \right| = \lim_{h \to 0} \left| \frac{y(t_n) + h\Psi(f;t_n,y,h) - y(t_{n+1})}{h} \right| = \lim_{h \to 0} \left| \Psi(f;t_n,y,h) - \frac{y(t_{n+1}) - y(t_n)}{h} \right|,$$

for all $y \in C^1$.

- 3. In view of the continuity, consistency condition is equivalent to $\Psi(f;t_n,y,0)=f(t_n,y)$.
- 4. The method has order p if

$$\left| \Psi(f;t,y_n,h) - \frac{y(t_{n+1}) - y(t_n)}{h} \right| \le Ch^p$$

for all $h \le h_0$ for some constants $C, h_0 > 0$, for all $y \in C^{p+1}$.