Integrated Systems Design

Course Overview, Semester 1 22/23

Introduction

Dr. Libin K Mathew

- Over 4 years of Experience in Research and Development.
- Started career at Panasonic R&D Center Singapore
- Then works as a Scientist at A*STAR Singapore as Scientst.
- Questions are encouraged.
- Currently working as Teaching Fellow, Trinity College Dublin

Course Overview

- ISD (4C1, 5M01) builds on digital design fundamentals from 3C7
- Digital design module is a pre-requisite
 - Revise course material if rusty!
- ISD takes a systems perspective
 - Top level specification with focus on design choices
 - Anticipate impact of decisions on overall design performance verses cost.
- Learning outcomes:
 - Understand and develop system specifications
 - Implement designs using Verilog HDL on Basys3 Boards
 - Develop automated testbenches
 - Assess system cost and performance

Course Content

- 1. Overview of Digital Design principles and Verilog Language
- 2. Advanced Testbench Design
- 3. Digital Arithmetic: Signed numbers and Finite Precision Effects
- 4. FIR Filter: Design and Implementation
- 5. Digital System Interfaces
- 6. Digital Performance: Synthesis, Power and Timing
- 7. FPGA Resources
- 8. Industry Review

Assessment

- 5 ECTS course: ~150 hours student effort
- 30%: Continuous Assessment
 - 3 graded lab assignments
- 70%: End of Semester Exam
 - Focus will be on demonstrating understanding of topics covered, not repetition of information

Lectures

- Notes uploaded to Blackboard prior to lectures
- Skeleton notes only
 - Additional detail and examples explored during class
- Two 1 hour lectures per week (Thursdays 11-12am and Fridays 9-10 am)

Labs

- Weekly lab session
- Xilinx Vivado software: Download link: https://www.xilinx.com/support/download.html
- Will be using a Xilinx PYNQ board
- System Verilog (.sv files)
 - Very little change from Verilog 2001 (.v files)
 - Remember to use . sv suffix when creating RTL files!
- Labs all take place on Wednesday evenings
- Must have Vivado (v2018.2) installed and ready for first lab
- Mac issues: Contact Cormac Molloy

Labs

- First submission is ungraded
 - FSM design
 - Code submitted for feedback
- Three graded labs (30% CA)
 - Automated Testbench for FSM, Design and Implementation of FIR, Calculator Design
 - Submit code and complete assessment for each lab
- Good comments are essential!
 - Structural comments divide code into different sections e.g. g. "Variable
 - Explain purpose of code blocks
 - Detail needed for more complex code

Late Assignment Policy

- If a deadline is problematic for entire class, flag this early
- Late assignments will be accepted up to 1 week following a deadline, but marks will be halved.
- No marks available if assignment is more than 1 week late

Plagiarism

- Plagiarism is taken extremely seriously
- All work must be your own
- All assignment material is examined and compared
- Having the same code/solution as someone else and passing it off as your own is plagiarism
- Any instances of plagiarism is UNACCEPTABLE and will result in loss of ALL marks for all parties

Useful Resources

- PYNQ board reference library
 - http://www.pynq.io/board.html
- Verilog 2001 Reference
 - http://Sutherland-hdl.com/pdfs/verilog_2001_ref_guide.pdf
- Other resources:
 - Stack Overflow
 - Conference papers (Cliff Cummings (http://www.sunburst-design.com/papers/) and Stuart Sutherland (https://www.sutherland-hdl.com/papers.html) are notable authors)
 - Asic World

Questions?

- Post questions about lectures topics or labs on Blackboard Forum
- Can also contact me or Dr. Shreejith directly via trinity email,
 Libin.mathew@tcd.ie, shankers@tcd.ie