

Learning

Lesson Preview

- Learning by recording cases
- Nearest neighbor method
- · Cases in the real world

- k-Nearest Neighbor

Black

Given existing case at (x_c, y_c) and new problem at (x_n, y_n)

$$d = \sqrt{(y_c - y_n)^2 + (x_c - x_n)^2}$$

Given existing case at (x_c, y_c) and new problem at (x_n, y_n)

$$d = \sqrt{(y_c - y_n)^2 + (x_c - x_n)^2}$$

Block	x_c	y_c	x_n	y_n	d
Blue	0.5	2.0	1.1	1.6	0.72
Red	0.5	0.5	1.1	1.6	1.25
Black	1.0	1.5	1.1	1.6	0.14
Green	1.5	1.5	1.1	1.6	0.41
Orange	1.5	0.5	1.1	1.6	1.17
Purple	2.0	1.0	1.1	1.6	1.08

Height

?

Width = 0.8 Height = 0.8

Block	x_c	y_c	x_n	y_n	d
Blue	0.5	2.0	8.0	8.0	1.24
Red	0.5	0.5	8.0	8.0	0.42
Black	1.0	1.5	8.0	8.0	0.72
Green	1.5	1.5	0.8	8.0	0.98
Orange	1.5	0.5	8.0	8.0	0.76
Purple	2.0	1.0	0.8	0.8	1.22

What route is most similar to this new problem?

		Origin		Destination			
Route	x_{o}	$y_{\rm o}$	d_o	x_d	y_d	d_d	
Α	0	6	1.41	7	9	10.00	
В	1	8	1.00	9	8	10.63	
С	3	8	2.24	8	2	7.07	
D	4	8	3.16	4	1	3.00	
Е	8	3	8.06	2	1	1.00	
F	8	2	8.60	9	0	8.06	
Q	1	7	-	1	1	(= 1	

Given existing case at (x_c, y_c) and new problem at (x_n, y_n)

$$d = \sqrt{(y_c - y_n)^2 + (x_c - x_n)^2}$$

Given existing case at (x_c, y_c) and new problem at (x_n, y_n)

$$d = \sqrt{(y_c - y_n)^2 + (x_c - x_n)^2}$$

Given existing case at $(c_1, c_2 ... c_k)$ and new problem at $(p_1, p_2 ... p_k)$

$$d = \sqrt{\sum_{i=1}^k (c_i - p_i)^2}$$

Route	c_1	c_2	c_3	c_4	d_k
Α	0	6	7	9	10.10
В	1	8	9	8	10.68
С	3	8	8	2	7.42
D	4	8	4	1	4.36
Е	8	3	2	1	8.12
F	8	2	9	0	11.80
Q	1	7	1	1	-

Assignment

How would you use recording cases to design an agent that could answer Raven's Progressive Matrices?

To recap...

Recording and using cases

- Nearest neighbor method

- Nearest neighbor in k-dimensional problems

- Cases in real-world problems

						Block	x_c	y_c	x_n	y_n	d
Finding	Blue	0.5	2.0	1.1	1.6	0.72					
				,	Red	0.5	0.5	1.1	1.6	1.25	
Giv an	Black	1.0	1.5	1.1	1.6	0.14					
and new problem at (x_n, y_n)						Green	1.5	1.5	1.1	1.6	0.41
$d = \frac{d}{d}$	$\sqrt{(y_c)}$	$-y_n$		$x_c - x$	$\frac{1}{n^2}$	Orange	1.5	0.5	1.1	1.6	1.17
Block	x_c	y_c	x_n	y_n	d	Purple	2.0	1.0	1.1	1.6	1.08
Blue	0.5	2.0	1.1	1.6	0.72	Blue	0.5	2.0	0.8	8.0	1.24
Red	0.5	0.5	1.1	1.6	1.25	Red	0.5	0.5	8.0	8.0	0.42
Black	1.0	1.5	1.1	1.6	0.14	Black	1.0	1.5	8.0	8.0	0.72
Green	1.5	1.5	1.1	1.6	0.41	Green	1.5	1.5	8.0	8.0	0.98
Orange	1.5	0.5	1.1	1.6	1.17	Orange	1.5	0.5	8.0	8.0	0.76
Purple	2.0	1.0	1.1	1.6	1.08	Purple	2.0	1.0	0.8	8.0	1.22

Route	c_1	c_2	c_3	c_4	d_k							
Α	0	6	7	9	10.10							
В	1	8	9	8	10.68							
С	3	8	8	2	7.42							
D	4	8	4	1	4.36			Origin		D	estinat	ion
Е	8	3	2	1	8.12	Route	$x_{\rm o}$	y_{o}	d_o	x_d	y_d	d_d
F	8	2	9	0	11.80	А	0	6	1.41	7	9	10.00
Q	1	7	1	1	-	В	1	8	1.00	9	8	10.63
						C	3	8	2.24	8	2	7.07
						D	4	8	3.16	4	1	3.00
						Е	8	3	8.06	2	1	1.00
						F	8	2	8.60	9	0	8.06
						Q	1	7	-	1	1	-

Given existing case at (x_c, y_c) and new problem at (x_n, y_n)

Given existing case at $(c_1, c_2 \dots c_k)$

and new problem at $(p_1, p_2 \dots p_k)$

Origin Route
$$x_{
m o}$$
 $y_{
m o}$

0

1.41

1.00

2.24

3.16

8.06

8.60

 x_d

9

Destination

 y_d

9

8

 d_d

10.00

10.63

7.07

3.00

1.00

8.06

and new problem at
$$(x_n, y_n)$$

$$d = \sqrt{(y_c - y_n)^2 + (x_c - x_n)^2}$$

D

Q

8

8

3