Discrete Mathematics Midterm 2

2017-03-30

- **Statements**: declarative sentences that are either true or false, but not both.
- Non-primitive statements: negation (¬, not), conjunction (∧, and), disjunction (∨, or), implication (→, only if), biconditional (↔, if and only if).
- Truth table for \rightarrow :

p	q	p o q
0	0	1
0	1	1
1	0	0
1	1	1

- **Logical connectives**: combine two or more statements into a compound statement, e.g. \land , \lor , \rightarrow , \leftrightarrow .
- Proof based on $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
- Proof by **contradiction**: $(p \to q) \leftrightarrow (\neg p \lor q) \leftrightarrow \neg (p \land \neg q)$
- **Tuple**: an r-tuple is (a_1, a_2, \ldots, a_r) , where a_i is the i-th coordinate (component).
- Cartesian product: $A_1 imes A_2 imes \ldots imes A_r = \{(a_1, a_2, \ldots, a_r) | a_i \in A_i, 1 \leq i \leq r \}$
- ullet **Ary relation**: a subset of $A_1 imes A_2 imes \ldots imes A_r$ is called an r-ary relation on A_1, A_2, \ldots, A_r
- Binary relations can be represented as a *relation matrix* or a *graph*.
- A *binary* relation on A can be $(\forall x, y, z \in A)$:
 - \circ reflexive: xRx
 - irreflexive: $\neg(xRx)$
 - symmetric: $(xRy) \rightarrow (yRx)$
 - \circ asymmetric: $(xRy) \rightarrow \neg (yRx)$
 - \circ anti-symmetric: $(xRy) \wedge (yRx) o (x=y)$
 - transitive: $(xRy) \land (yRz) \rightarrow (xRz)$
- If $(x,y) \in R^k$, there is a path (or cycle as x=y) of length k from x to y in the graph representation of R
- Composition of relations:
 - $\circ \ R^0$: $\{(x,x)|x\in A\}$, identity relation.
 - $R^+: \bigcup_{i=1}^{\infty} R^i$, transitive closure.
 - $R^*: \bigcup_{i=0}^{\infty} R^i$, reflexive transitive closure.

$$\circ \ R^+ = R \circ R^* = R^* \circ R$$

- $\circ R^* = R^0 \bigcup R^+$
- $R = R^+$ if R is transitive.
- $R = R^*$ if R is both *reflexive* and *transitive*.
- Equivalence relation: a binary relation R on A is an equivalence relation iff it is reflexive, symmetric and transitive.
- A subset $E \subseteq A$ is an **equivalence class** with respect to R and A iff:
 - $\circ \ (xRy) \forall x,y \in E$
 - $\circ \neg (xRy) \forall x \in E, y \in A E$
- The set of equivalence classes with respect to $m{R}$ and $m{A}$ forms a partition of $m{A}$
- **Minimization** process of a *finite state machine (FSM)*:
 - The concept of FSM is widely used in software design (e.g. compiler design), logic circuit design, probability analysis (e.g. Markov model), etc.
 - \circ An FSM can be represented by a *state table*, where u denotes a state transition function and ω denotes an output function.
 - \circ Step 1: partition the set of states so that s_i and s_j belong to the same subset iff $\omega(s_i,x)=\omega(s_j,x)$, where $x\in\{0,1\}$
 - \circ *Step 2*: partition each subset so that s_i and s_j belong to the same subset iff $u(s_i,x)$ and $u(s_j,x)$ fall into the same subset of the current partition, where $x\in\{0,1\}$
- Partial ordering: a relation R on A is called a partial ordering iff it is reflexive, anti-symmetric and transitive, where A is called a partially ordered set (poset).
- Hasse diagram: when A is finite, a partial ordering on A can be conveniently represented by an
 ordering diagram, called Hasse diagram.
 - Each element is a vertex.
 - \circ A vertex a_i appears below another vertex a_j iff $a_i \preceq a_j$
 - $\circ~$ An edge connects a_i with a_j iff $a_i \preceq a_j$ and there is no a_k such that $a_i \preceq a_k \preceq a_j$
- [x] Homework: #5-1, #5-2, #5-3, #5-4, #5-5, #5-6, #5-7, #5-8, #5-9
- Solutions: Solutions5.pdf

- Lattice: every two elements of \boldsymbol{A} have upper bounds and lower bounds in \boldsymbol{A}
- **Topological order**: a linear presentation that preserves all *partial ordering*, or descending paths in *Hasse diagram*.
- Total ordering: a partial ordering \prec on A is called a total ordering if for all $ai, aj \in A$, either

 $ai \leq aj$ or $aj \leq ai$. The Hasse diagram for a total ordering is a *chain*.

- Properties of algebra:
 - **Closure** under + and $: a + b \in R$ and $a \cdot b \in R$
 - **Complement** for + and : a + a' = 1 and $a \cdot a' = 0$
 - **Identity** for + and \cdot : a + 0 = a and $a \cdot 1 = a$.
 - Identity for +: a + 0 = a, where 0 is called **zero** or **additive identity**.
 - Identity for $: a \cdot 1 = a$, where 1 is called **unity** or **multiplicative identity**.
 - Inverse for + and $a \cdot a + (-a) = 0$ and $a \cdot a^{-1} = 1$.
 - Inverse for +: a + (-a) = 0, where a and -a are called **additive inverses**.
 - Inverse for $: a \cdot a^{-1} = 1$, where a and a^{-1} are called **multiplicative inverses** or **units**.
 - **Proper divisor of zero**: $a \cdot b = 0$ given $a \neq 0$ and $b \neq 0$
 - Associativity of + and $a \cdot (b+c) = (a+b) + c$ and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - Commutativity of + and : a + b = b + a and $a \cdot b = b \cdot a$
 - **Distributivity** of + and ·:
 - $a + (b \cdot c) = (a+b) \cdot (a+c)$
 - $\bullet a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
- Properties of **Boolean algebra** $(K, \cdot, +)$:
 - Closure under + and ·
 - Complement for + and ·
 - Identity for + and ·
 - Associativity of + and ·
 - Commutativity of + and ·
 - Distributivity of + and ·
- Duals: $(K, 0, 1, \cdot, +) \leftrightarrow (K, 1, 0, +, \cdot)$
- Principle of duality: If S is a theorem about a Boolean algebra, and can be proved, then its dual is likewise a theorem.
- Properties of Ring $(R, +, \cdot)$:
 - Closure under + and ·
 - Identity for +
 - Inverse for +
 - Associativity of + and ·
 - Commutativity of +
 - Distributivity of ·
- Ring with *commutativity* of \cdot is called **commutative ring**.

- [x] Homework: #6-1, #6-2, #6-3, #6-4, #6-5, #6-6
- Solutions: Solutions6.pdf

- **Integral domain** is a ring with:
 - Identity for ·
 - *No* zero divisor ↔ **The cancellation law of multiplication**
 - Commutativity of ·
- **Field** is a ring with:
 - Identity for ·
 - Inverse for $\cdot \rightarrow$ The cancellation law of multiplication
 - Commutativity of ·
- Inverse under $\cdot \rightarrow$ The cancellation law of multiplication \leftrightarrow No zero divisor.
 - \mathbb{N} and \mathbb{Z} are integral domains, but not fields.
 - \mathbb{Q} , \mathbb{R} and \mathbb{C} are both integral domains and fields.
- Theorems of rings, integral domain, and field $(R, +, \cdot)$:
 - The zero **z** is unique.
 - The additive inverse of each $a \in R$ is unique.
 - The cancellation law of addition
 - \circ -(-a)=a
 - $\circ \ a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$
 - $\circ (-a) \cdot (-b) = a \cdot b$
 - If \mathbf{R} has a unity \mathbf{u} , then it is unique.
 - If \boldsymbol{x} is a unit in ring \boldsymbol{R} , then the multiplicative inverse of \boldsymbol{x} is unique.
 - If \boldsymbol{x} is a unit in ring \boldsymbol{R} , then \boldsymbol{x} cannot be a zero divisor.
 - No zero divisor ↔ The cancellation law of multiplication
 - Inverse under $\cdot \rightarrow$ The cancellation law of multiplication
 - If $(R, +, \cdot)$ is a field, then it is an integral domain.
 - A finite integral domain $(R, +, \cdot)$ is a field.
- Subring: $(S, +, \cdot)$ is said to be a *subring* of a ring $(R, +, \cdot)$ if S is nonempty and $(S, +, \cdot)$ is also a ring.
- Given a ring $(R, +, \cdot)$, a nonempty subset S of R is a subring of R iff:
 - (1) $a + b \in S$ and $a \cdot b \in S$ for all $a, b \in S$, and (2) S is finite.
 - \circ (1) $a + b \in S$ and $a \cdot b \in S$ for all $a, b \in S$, and (2) $-a \in S$ for all $a \in S$

- $\circ \ a + (-b) \in S$ and $a \cdot b \in S$ for all $a, b \in S$
- Integer modulo n: $a \equiv b \pmod{n}$ iff a b is a multiple of n
- The relation aRb iff $a\equiv b\ (\mathrm{mod}\ n)$ is an equivalence relation on $\mathbb Z$ and partition $\mathbb Z$ into $\mathbb Z_n=\{[0],[1],[2],\ldots,[n-1]\},$ where $[i]=\{i+nx|x\in Z\}$
- Theorems of \mathbb{Z}_n :
 - \circ For $n\in\mathbb{Z}^+$ and $n\geq 2$, $(\mathbb{Z}_n,+,\cdot)$ is a commutative ring with unity [1]
 - \mathbb{Z}_n is a field iff n is a prime.
 - $\circ \ [a] \in \mathbb{Z}_n$ has a multiplicative inverse iff $\gcd(a,n) = 1$
 - For each integer 0 < a < n, (1) $\gcd(a,n) = 1 \leftrightarrow [a]^{-1}$ exist, and (2) $\gcd(a,n) > 1 \leftrightarrow [a]$ is a zero divisor of \mathbb{Z}_n
- [x] Homework: #7-3, #7-4
- Solutions: Solutions7.pdf

- The Chinese remainder theorem: find all x satisfying $x \equiv a_i \pmod{m_i}$ for all $1 \leq i \leq k$.
 - \circ Define $M=m_1m_2\dots m_{k-1}m_k$
 - $\circ~$ Compute $M_i=M/m_i$ for all $1\leq i\leq k$
 - \circ Find x_i satisfying $M_i x_i \equiv 1 \ (\mathrm{mod} \ m_i)$ for all $1 \leq i \leq k$
 - $\circ \ [x] = [a_1 M_1 x_1 + \ldots + a_k M_k x_k]$ in \mathbb{Z}_M is the set of solutions.
- A cryptosystem based on the Chinese remainder theorem:
 - Alice generates k relatively prime integers $m_1, m_2, \ldots, m_{k-1}, m_k$ (decryption keys)
 - Alice broadcasts M and $e_1, e_2, \ldots, e_{k-1}, e_k$ (encryption keys) to Bob as follows:
 - $\bullet \quad M=m_1m_2\dots m_{k-1}m_k$
 - $ullet e_i = M_i x_i$ such that $M_i x_i \equiv 1 \pmod{m_i}$ for all $1 \leq i \leq k$
 - \circ Bob *encrypts* p (**plaintext**) with M and e, and then broadcasts C (**ciphertext**) to Alice as follows: $C \equiv p_1 e_1 + \ldots + p_k e_k \pmod{M}$
 - \circ Alice *decrypts* C to get p as follows: $p_i \equiv C \pmod{m_i}$ for all $1 \leq i \leq k$
 - \circ It is extremely time-consuming for Trudy to obtain decryption keys from M
- Ring homomorphism: Let $(R,+,\cdot)$ and (S,\oplus,\odot) be two rings. A function $f:R\to S$ is a ring homomorphism if $f(a+b)=f(a)\oplus f(b)$ and $f(a\cdot b)=f(a)\odot f(b)$ for all $a,b\in R$
- If $f:(R,+,\cdot) o (S,\oplus,\odot)$ is a ring homomorphism, then
 - $\circ f(z_R) = z_S$ where z_R and z_S are the zeros of R and S
 - $\circ f(-a) = -f(a)$ for any $a \in R$
 - $\circ f(na) = nf(a)$ for any $a \in R$ and $n \in \mathbb{Z}$

- $\circ \ f(a^n) = f(a)^n$ for any $a \in R$ and $n \in \mathbb{Z}^+$
- If A is a subring of R, then f(A) is a subring of S
- Ring isomorphism: Let $f:(R,+,\cdot) \to (S,\oplus,\odot)$ be a ring homomorphism. A function $f:R \to S$ is a *ring isomorphism* if f is one-to-one and onto. R and S are said to be two **isomorphic rings**.
- If $f:(R,+,\cdot) o (S,\oplus,\odot)$ is a ring homomorphism and onto, then
 - If R has a unity u_R , then $f(u_R)$ is the unity of S
 - \circ If R has a unity u_R and $a^{-1} \in R$, then $f(a^{-1}) = f(a)^{-1}$
 - If \boldsymbol{R} is commutative, then \boldsymbol{S} is commutative.
- ullet $[n_1]\cdot [n_2]\in \mathbb{Z}_M$ can be computed as $f^{-1}f([n_1]\cdot [n_2])$ where
 - $\circ M = m_1 m_2 \dots m_{k-1} m_k$
 - $\circ f: (\mathbb{Z}_M, +, \cdot) \to (\mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_k}, \oplus, \odot)$, which is a ring isomorphism.
 - $\circ \ \ ([a_1],\ldots,[a_k]) \oplus ([b_1],\ldots,[b_k]) = ([x_1+y_1] \in \mathbb{Z}_{m_1},\ldots,[x_k+y_k] \in \mathbb{Z}_{m_k})$
 - $\circ \ \ ([a_1], \ldots, [a_k]) \odot ([b_1], \ldots, [b_k]) = ([x_1 \cdot y_1] \in \mathbb{Z}_{m_1}, \ldots, [x_k \cdot y_k] \in \mathbb{Z}_{m_k})$
- [x] Homework: #7-5, #7-6
- Solutions: <u>Solutions7.pdf</u>

- Properties of **Group** (G, \cdot) :
 - · Closure under ·
 - Identity for ·
 - Inverse for ·
 - Associativity of ·
- Goup with commutativity of \cdot is called **abelian group**.
- Given a group, the identity is denoted as $e \ (= a^0)$, and inverse is denoted as a^{-1}
- **Subgroup**: (H, \cdot) is said to be a *subgroup* of a group (G, \cdot) if H is nonempty and (H, \cdot) is also a group.
- Given a group (G, \cdot) , a nonempty subset H of G is a subgroup of G iff:
 - (1) $a \cdot b \in H$ for all $a, b \in H$, and (2) H is *finite*.
 - $\circ~~(1)~a\cdot b\in H$ for all $a,b\in H$, and $(2)~a^{-1}\in H$ for all $a\in H$
 - $\circ \ ab^{-1} \in H$ for all $a,b \in H$
- Group homomorphism: Let (G,\cdot) and (H,\odot) be two groups. A function f:R o S is a group homomorphism if $f(a\cdot b)=f(a)\odot f(b)$ for all $a,b\in G$
- If $f:(G,\cdot) o (H,\odot)$ is a group homomorphism, then
 - $\circ \ \ f(e_G) = e_H$ where e_G and e_H are the identities of G and H

- $\circ f(a^{-1}) = f(a)^{-1}$ for any $a \in G$
- $\circ \ \ f(a^n) = f(a)^n$ for any $a \in G$ and $n \in \mathbb{Z}$
- If A is a subgroup of G, then f(A) is a subgroup of H
- **Group isomorphism**: Let $f:(G,\cdot)\to (H,\odot)$ be a group homomorphism. A function $f:G\to H$ is a *group isomorphism* if f is one-to-one and onto. G and H are said to be two **isomorphic groups**.
- Cyclic groups: A group G is cyclic if there is a **generator** $a \in G$ such that for all $x \in G$, $x = a^k$ for some $k \in \mathbb{Z}$. G is denoted as $\langle a \rangle = \{a^i | i \in \mathbb{Z}\}$
- If G is a group and $a \in G$, the **order** of a, denoted by o(a), is $|\langle a \rangle|$. If $|\langle a \rangle|$ is infinite, we say that a has **infinite order**.
- Theorems of groups, and cyclic groups:
 - \circ The identity of G is unique.
 - \circ The inverse of each element of $m{G}$ is unique.
 - \circ If $a,b,c\in G$ and $a\cdot b=a\cdot c$, then b=c
 - \circ If $a,b,c\in G$ and $b\cdot a=c\cdot a$, then b=c
 - $\circ \ G$ is abelian iff $(ab)^2=a^2\cdot b^2$ for all $a,b\in G$
 - \circ Let G be a group. If for some $a\in G$ and $S=\{a^k|k\in Z\}$, then S is a subgroup of G and denoted as $\langle a
 angle$
 - Let a be an element in a group G, and suppose $a^n = e$ for some positive integer n. If m is the least positive integer such that $a^m = e$, then
 - lacktriangledown $\langle a
 angle = \{e, a^1, a^2, \ldots, a^{m-1}\}$
 - $\quad \quad a^s = a^t \text{ iff } s \equiv t \text{ (mod } m)$
 - If (G,\cdot) is a cyclic group, then G is abelian.
 - \circ Let ${m G}$ be a cyclic group.
 - If G is *infinite*, then G is isomorphic to $(\mathbb{Z}, +)$.
 - If |G| = n, then G is isomorphic to $(\mathbb{Z}_n, +)$.
 - Any subgroup of a cyclic group is cyclic.
- Examples of *groups* and *cyclic groups*:
 - Under ordinary addition, each of \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} is an *abelian group*, but none of them are groups under multiplication.
 - If $(R,+,\cdot)$ is a ring, then (R,+) is an abelian group, and (R,\cdot) is a semigroup.
 - For each $n \in \mathbb{Z}^+$ and n > 1, $(\mathbb{Z}_n, +)$ is an abelian group. If n is a prime number, then $(\mathbb{Z}_n [0], \cdot)$ is an abelian group.
 - U_n defined as $\{[a]|[a]\in\mathbb{Z}_n,[a]^{-1}\in\mathbb{Z}_n\}=\{[a]|[a]\in\mathbb{Z}_n,\gcd(a,n)=1\}$ is an abelian group, where $(\mathbb{Z}_n,+,\cdot)$ is a ring.

- (U_9, \cdot) is a cyclic group with two generators [2] and [5].
- $\circ \ (U_9,\cdot)$ is isomorphic to $(\mathbb{Z}_6,+)$
- The group $(\mathbb{Z}, +)$ is cyclic and denoted as $\langle 1 \rangle$ or $\langle -1 \rangle$.
- $G = \{\pi_0, \pi_1, \pi_2, r_1, r_2, r_3\}$ is not cyclic.
- Lagrange's theorem: If H is a subgroup of a finite group G, then |H| divides |G|.
- Coset: Suppose H is a subgroup of G. For any $a \in G$, the set $a \cdot H = \{a \cdot h | h \in H\}$ is a left coset, and $H \cdot a = \{h \cdot a | h \in H\}$ is a right coset of H in G.

2017-05-04

- If H is a subgroup of a finite group G, then for any $a, b \in G$,
 - $\circ |aH| = |H|$
 - \circ |Ha|=|H|
 - aH = bH or $aH \cap bH = \emptyset$
 - Ha = Hb or $Ha \cap Hb = \emptyset$
- Let *H* be a subgroup of a finite group *G*:
 - The distinct left cosets of H in G form a partition of G.
 - The distinct right cosets of *H* in *G* form a partition of *G*.
- If G is finite and $a \in G$, then o(a) divides |G|.
- If |G| is prime, then G is cyclic.
- **RSA** cryptosystem:
 - Alice arbitrarily generates two prime integers p,q and calculates $\varphi(pq)$, where φ is the Euler's phi function.
 - \circ Alice arbitrarily generates a pair of e (encryption key) and d (decryption key) and broadcasts pq and e as follows:
 - e is relatively prime to $\varphi(pq)$.
 - $ed \equiv 1 \pmod{\varphi(pq)}$
 - \circ Bob encrypts L (plaintext) with pq and e, and then broadcasts C (ciphertext) to Alice as follows: $C \equiv L^e \pmod{pq}$
 - \circ Alice decrypts C to get L as follows: $L \equiv C^d \pmod{pq}$
- [x] Homework: #7-1, #7-2, #8
- Solutions: Solutions7.pdf, Solutions8.pdf