NATIONAL UNIVERSITY OF SINGAPORE

ST2334 Probability and Statistics

(SEMESTER NN: AY YYYY-YYYY)

MMM YYYY — Time allowed: 2 hours

SAMPLE PAPER

Suggested solutions will be uploaded by the Wednesday of the reading week.

INSTRUCTIONS TO CANDIDATES

- 1. This paper contains SIX (6) questions and comprises FIFTEEN (15) printed pages.
- 2. Answer **ALL** questions. Marks for each question are indicated. The total marks for this paper is 60.
- 3. Please show workings and answers in the space provided for each question or part. Answers should be given in complete English sentences.
- 4. Non-programmable calculators may be used. However, candidates should lay out systematically the various steps in the calculations.
- 5. This is a CLOSED BOOK examination. Candidates may bring in **ONE** (1) A4-size help sheets with hand-written notes on both sides.
- 6. Write down your matriculation number and seat number neatly in the boxes provided below. **Do not write your name.** This booklet will be collected at the end of the examination.

Matricula	tion Num	ber :						
Seat Num	ber	: [
Question	1	2	3	4	5	6	Total	7
Score								

PAGE 2 ST2334

Question 1 [10 marks]

(a) A radio show host asks listeners whether they believe that human activity is altering the global climate. Of those calling in, only 20% responded by saying yes. Is it safe to infer that only 20% of the general population believes that human activity is altering the global climate? Explain.

(b) There are 18 first year, 15 second year, 10 third year and 5 fourth year students in the course TS4332. They are allocated randomly into 4 classes of 12 each. If there are a total of 6 first year and 8 second year students in classes A and B, what is the probability that class D has 4 first year and 4 second year students?

PAGE 3 ST2334

(c)	A gambler has a fair coin and a two-headed coin in his pocket. He selects one of the coins at random.
	(i) When he flips the coin, it shows heads. What is the probability that it is the fair coin?
	(ii) Suppose that he fline the same pain two more times, and it shows heads and tails in
	(ii) Suppose that he flips the same coin two more times, and it shows heads and tails, in that order. Now what is the probability that it is the fair coin?

PAGE 4 ST2334

Question 2 [10 marks]

- (a) Let X denote the minimum of the two numbers when two fair dice are rolled.
 - (i) What is the probability that *X* is equal to 2?

(ii) What is the expected value of X?

PAGE 5 ST2334

(b) Let Y be a nonnegative random variable with var(Y) = 7 and E(Y(Y - 1)) = 9. What is the value of E(Y)?

PAGE 6 ST2334

Question 3 [10 marks]

(a) Assume that while Larry is walking in the Gardens by the Bay, the time X, in minutes, between him seeing two people taking photographs using a camera has a density function of the form

$$f(x) = \begin{cases} cxe^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}.$$

(i) What is the value of c?

(ii) Find the cumulative distribution function F of X and use it to compute the probability that Larry, who has just seen a person taking photographs using a camera, will see another person taking photographs using a camera in 2 to 5 minutes.

PAGE 7 ST2334

(b) The daily production of electric motors at a certain factory averaged 120 with a standard deviation of 10. Use the Chebyshev's Inequality to find an interval that contains at least 90% of the daily production levels.

Question 4 [10 marks]

Let the joint probability mass function of discrete random variables *X* and *Y* be given by

$$p(x,y) = \begin{cases} \frac{1}{25}(x^2 + y^2), & \text{if } x = 1, 2, y = 0, 1, 2\\ 0, & \text{otherwise} \end{cases}.$$

(i) Find P(X > Y) and $P(X + Y \le 2)$.

(ii) Find the marginal distributions of X and Y. Are X and Y independent? Why or why not?

PAGE 9 ST2334

(iii) Find the conditional distribution of X given Y = 1.

(iv) Find E(X|Y = 1).

PAGE 10 ST2334

Question 5 [10 marks]

(a) A company packages powdered soap in "6-pound" boxes. The sample mean and standard deviation of the soap in these boxes are currently 6.09 pounds and 0.02 pound, respectively. Every 0.01 pound lowered for the mean fill saves the company \$14,000 per year. Adjustments were made in the filling equipment.

(i)	How	large a	sample i	is needed	so that th	e maximu	um erroi	of the	e estimate	of t	he i	new
	mean	μ is E	= 0.001	with 90%	confide	nce?						

(ii) A random sample of size n = 1219 yielded $\bar{x} = 6.048$ and s = 0.022. Calculate a 90% confidence interval for the new mean μ .

PAGE 11 ST2334

((iii)	Estimate th	e savings i	per vear with	h these new	adjustments.
٠,	,	Doulline til	0 500,111,20	per jear min	1 111000 110 11	aajastiiteit

(b) Candidate DT believes that he can win a city election if he receives at least 55% of the votes from precinct I. Unknown to the candidate, 50% of the registered voters in the precinct favor him. If n = 100 voters show up to vote at precinct I, what is the probability that candidate DT will receive at least 55% of that precinct's votes?

PAGE 12 ST2334

Question 6 [10 marks]

(a) An investigator suspects that the mean concentration of suspended particles, measured in $\mu g/m^3$, in the city center of City A is lower than that in City B. To verify that, n=13 observations are collected from City A and m=16 observations are collected from City B. The following summary statistics based on the samples are obtained.

$$\bar{x} = 72.9$$
, $s_x = 25.6$, $\bar{y} = 81.7$, $s_y = 28.3$.

(i) Conduct a suitable test at $\alpha = 0.05$ level to determine if there is evidence to support the investigator's claim. State any assumptions made.

PAGE 13

ST2334

(ii) Write down the (approximate) p-value of your test in the previous part.

(b) A random sample of size 25 gives $\bar{x} = 104$. We are interested to test

$$H_0: \mu = 100$$
 vs $H_1: \mu \neq 100$.

The significance level of the test is $\alpha = 0.05$ and the *p*-value of the test is 0.057.

Consider the following statement:

"The probability that $\bar{x} = 104$ if H_0 is true equals to 0.057."

Do you agree with it? Why or why not?

PAGE 14 ST2334

APPENDIX A: DISTRIBUTION FUNCTION OF THE NORMAL DISTRIBUTION

The function tabulated is
$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{1}{2}u^2} du$$
.

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.999767	0.999776	0.999784	0.999792	0.999800	0.999807	0.999815	0.999822	0.999828	0.999835
3.6	0.999841	0.999847	0.999853	0.999858	0.999864	0.999869	0.999874	0.999879	0.999883	0.999888
3.7	0.999892	0.999896	0.999900	0.999904	0.999908	0.999912	0.999915	0.999918	0.999922	0.999925
3.8	0.999928	0.999931	0.999933	0.999936	0.999938	0.999941	0.999943	0.999946	0.999948	0.999950
3.9	0.999952	0.999954	0.999956	0.999958	0.999959	0.999961	0.999963	0.999964	0.999966	0.999967

PAGE 15 ST2334

APPENDIX B: CRITICAL VALUES FOR STUDENT'S t DISTRIBUTION

	two-tail	0.5	0.2	0.1	0.05	0.02	0.01	0.005	0.002	0.001
	one-tail	0.25	0.2	0.05	0.025	0.02	0.005	0.003	0.002	0.0005
	df = 1	1.000	3.078	6.314	12.706	31.821	63.657	127.321	318.309	636.619
	2	0.816	1.886	2.920	4.303	6.965	9.925	14.089	22.327	31.599
/ \	3	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.215	12.924
/ \	4	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
α/2	5	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
X	6	0.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
$-t_{\alpha/2}$ 0 $t_{\alpha/2}$	7	0.711	1.415	1.895	2.365	2.998	3.499	4.029 3.833	4.785	5.408
	8 9	0.706 0.703	1.397 1.383	1.860 1.833	2.306 2.262	2.896 2.821	3.355 3.250	3.833 3.690	4.501 4.297	5.041 4.781
	10	0.703	1.372	1.833	2.228	2.764	3.169	3.581	4.144	4.781
Two-tail area	11	0.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
1wo tan area	12	0.695	1.356	1.790	2.201	2.718	3.100	3.428	3.930	4.437
	13	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
	14	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
	15	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
	16	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
	17	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
	18	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
	19	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
α	20	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
	21	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
0 t _α	22	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
	23	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.768
	24 25	0.685 0.684	1.318 1.316	1.711 1.708	2.064 2.060	2.492 2.485	2.797 2.787	3.091 3.078	3.467 3.450	3.745 3.725
0 1										
One-tail area	26 27	0.684 0.684	1.315 1.314	1.706 1.703	2.056 2.052	2.479 2.473	2.779 2.771	3.067 3.057	3.435 3.421	3.707 3.690
	28	0.683	1.314	1.703	2.032	2.473	2.763	3.037	3.421	3.674
	29	0.683	1.313	1.699	2.045	2.462	2.756	3.038	3.396	3.659
	30	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
	32	0.682	1.309	1.694	2.037	2.449	2.738	3.015	3.365	3.622
α	34	0.682	1.307	1.691	2.032	2.441	2.728	3.002	3.348	3.601
	36	0.681	1.306	1.688	2.028	2.434	2.719	2.990	3.333	3.582
	38	0.681	1.304	1.686	2.024	2.429	2.712	2.980	3.319	3.566
	40	0.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
	42	0.680	1.302	1.682	2.018	2.418	2.698	2.963	3.296	3.538
	44	0.680	1.301	1.680	2.015	2.414	2.692	2.956	3.286	3.526
	46	0.680	1.300	1.679	2.013	2.410	2.687	2.949	3.277	3.515
	48 50	0.680 0.679	1.299 1.299	1.677 1.676	2.011 2.009	2.407 2.403	2.682 2.678	2.943 2.937	3.269 3.261	3.505 3.496
	60 70	0.679 0.678	1.296 1.294	1.671 1.667	2.000 1.994	2.390 2.381	2.660 2.648	2.915 2.899	3.232 3.211	3.460 3.435
	80	0.678	1.294	1.664	1.994	2.374	2.639	2.899	3.195	3.433
	90	0.677	1.291	1.662	1.987	2.368	2.632	2.878	3.183	3.402
1-α	100	0.677	1.290	1.660	1.984	2.364	2.626	2.871	3.174	3.390
	120	0.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
	140	0.676	1.288	1.656	1.977	2.353	2.611	2.852	3.149	3.361
$-t_{\alpha/2}$ 0 $t_{\alpha/2}$	160	0.676	1.287	1.654	1.975	2.350	2.607	2.846	3.142	3.352
	180	0.676	1.286	1.653	1.973	2.347	2.603	2.842	3.136	3.345
	200	0.676	1.286	1.653	1.972	2.345	2.601	2.839	3.131	3.340
$1-\alpha$ confidence	confidence	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291
level	level	0.5	0.8	0.9	0.95	0.98	0.99	0.995	0.998	0.999
	10.01	1 0.0	0.0	0.,	2.,0	2.70		,,,	,,,	