Start coding or generate with AI.

Here's a **complete workflow** for your **Diabetes Prediction using Machine Learning** project based on your dataset. This end-to-end guide covers **Data Understanding** \rightarrow **Preprocessing** \rightarrow **EDA** \rightarrow **Model Building** \rightarrow **Evaluation** \rightarrow **Deployment-ready output**.

✓ PROJECT TITLE

Disease Classification: Predicting Diabetes using Machine Learning

★ STEP 1: Problem Definition

© Objective:

To predict whether an individual has diabetes (1) or not (0) using machine learning models based on demographic, lifestyle, and clinical attributes.

Goal:

- · Build a classification model.
- · Analyze important risk factors.
- · Achieve high accuracy, precision, and recall.

🖈 STEP 2: Import Libraries & Load Dataset

★ STEP 3: Data Understanding

Check dimensions, data types, nulls, basic stats:

🖈 STEP 4: Data Cleaning & Preprocessing

a. Handle Missing Values

Drop or impute if any:

- b. Encode Categorical Features
- c. Feature Scaling (optional for tree models, required for SVM/KNN/Logistic)

★ STEP 5: Exploratory Data Analysis (EDA)

Q Univariate & Bivariate Analysis

Focus on how features like age, BMI, and glucose level vary by diabetes status.

* STEP 6: Feature Selection (Optional but Recommended)

Use correlation matrix, feature importance from Random Forest:

* STEP 7: Train-Test Split

★ STEP 8: Model Building

Try different models:

- Logistic Regression
- · Random Forest
- XGBoost
- KNN
- SVM

Example with Random Forest:

★ STEP 9: Model Evaluation

- Use ROC AUC Score, Precision, Recall for imbalanced datasets.
- · Apply cross-validation to test stability.

STEP 10: Hyperparameter Tuning (optional but helpful)

STEP 11: Save the Model (for deployment)

BONUS: Visualizing Prediction Results

Summary of Key Skills Applied

Area	Techniques Used			
Data Preprocessing	Label Encoding, Scaling			
EDA	Countplot, Correlation, Boxplot			
Feature Engineering	Feature Importance			
Modeling	Random Forest, GridSearchCV			
Evaluation	Accuracy, Confusion Matrix, Classification Report			
Deployment (optional)	Pickle, Streamlit			

Start coding or generate with AI.

Start coding or generate with AI.

1. Problem Understanding

- Objective: Predict whether a person has diabetes (diabetes column: 0 or 1) based on demographic and medical information.
- Type: Binary classification problem
- Target Variable: diabetes
- Evaluation Metrics: Accuracy, Precision, Recall, F1-Score, ROC-AUC

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
```

Data Collection

Load the data set using pandas.

df = pd.read_csv('/content/diabetes_prediction_dataset.csv')
df

<u>→</u>		gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes
	0	Female	80.0	0	1	never	25.19	6.6	140	0
	1	Female	54.0	0	0	No Info	27.32	6.6	80	0
	2	Male	28.0	0	0	never	27.32	5.7	158	0
	3	Female	36.0	0	0	current	23.45	5.0	155	0
	4	Male	76.0	1	1	current	20.14	4.8	155	0
	99995	Female	80.0	0	0	No Info	27.32	6.2	90	0
	99996	Female	2.0	0	0	No Info	17.37	6.5	100	0
	99997	Male	66.0	0	0	former	27.83	5.7	155	0
	99998	Female	24.0	0	0	never	35.42	4.0	100	0
	99999	Female	57.0	0	0	current	22.43	6.6	90	0
1	00000	rows × 9 c	olumns	S						

Start coding or generate with AI.

Start coding or generate with AI.

Data Preprocessing & Cleaning

```
# Check for missing values
df.isnull().sum()
\overline{\Rightarrow}
                        0
           gender
                        0
                        0
                        0
        hypertension
        heart_disease
       smoking_history
                        0
            bmi
                        0
         HbA1c_level
                        0
     blood_glucose_level 0
           diabetes
     dtype: int64
df.info()
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 100000 entries, 0 to 99999
    Data columns (total 9 columns):
     # Column
                             Non-Null Count Dtype
         gender
     0
                             100000 non-null object
     1
                             100000 non-null float64
         age
     2 hypertension
                             100000 non-null int64
     3 heart disease
                             100000 non-null int64
     4 smoking_history
                             100000 non-null object
     5 bmi
                             100000 non-null float64
     6 HbA1c_level
                             100000 non-null float64
     7 blood_glucose_level 100000 non-null int64
     8 diabetes
                             100000 non-null int64
     dtypes: float64(3), int64(4), object(2)
    memory usage: 6.9+ MB
```

print("\n\n Data Describe..")

df.describe()

Data Describe..

	age	hypertension	heart_disease	bmi	HbA1c_level	blood_glucose_level	diabetes
count	100000.000000	100000.00000	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000
mean	41.885856	0.07485	0.039420	27.320767	5.527507	138.058060	0.085000
std	22.516840	0.26315	0.194593	6.636783	1.070672	40.708136	0.278883
min	0.080000	0.00000	0.000000	10.010000	3.500000	80.000000	0.000000
25%	24.000000	0.00000	0.000000	23.630000	4.800000	100.000000	0.000000
50%	43.000000	0.00000	0.000000	27.320000	5.800000	140.000000	0.000000
75%	60.000000	0.00000	0.000000	29.580000	6.200000	159.000000	0.000000
max	80.000000	1.00000	1.000000	95.690000	9.000000	300.000000	1.000000

b. Encode Categorical Features

```
# Label Encoding for binary target and categorical columns
le = LabelEncoder()
df['gender'] = le.fit_transform(df['gender'])  # male=1, female=0, other=2 (if any)
df['smoking_history'] = le.fit_transform(df['smoking_history'])
```

c. Feature Scaling (optional for tree models, required for SVM/KNN/Logistic)

```
scaler = StandardScaler()
cols_to_scale = ['age', 'bmi', 'HbA1c_level', 'blood_glucose_level']
df[cols_to_scale] = scaler.fit_transform(df[cols_to_scale])
```

Start coding or generate with AI.

STEP 5: Exploratory Data Analysis (EDA)

Univariate & Bivariate Analysis

```
sns.countplot(data=df, x='diabetes')
sns.boxplot(x='diabetes', y='bmi', data=df)
sns.heatmap(df.corr(), annot=True)
```

→ <Axes: >

Start coding or generate with AI.

STEP 6: Feature Selection (Optional but Recommended)

Use correlation matrix, feature importance from Random Forest:

```
from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(df.drop('diabetes', axis=1), df['diabetes'])
feat_importances = pd.Series(model.feature_importances_, index=df.drop('diabetes', axis=1).columns)
feat importances.nlargest(10).plot(kind='barh')
```


Start coding or generate with AI.

STEP 7: Train-Test Split

```
X = df.drop('diabetes', axis=1)
y = df['diabetes']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Start coding or generate with AI.
```

STEP 8: Model Building

```
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from xgboost import XGBClassifier

models = {
    'Logistic Regression': LogisticRegression(max_iter=1000),
    'Random Forest': RandomForestClassifier(),
    'Gradient Boosting': GradientBoostingClassifier(),
    'XGBoost': XGBClassifier(use_label_encoder=False, eval_metric='logloss'),
    'SVM': SVC(probability=True),
    'KNN': KNeighborsClassifier()
}
```

```
from sklearn.metrics import accuracy score, precision score, recall score, f1 score
results = []
for name, model in models.items():
   model.fit(X_train, y_train)
   y pred = model.predict(X test)
   acc = accuracy_score(y_test, y_pred)
   prec = precision_score(y_test, y_pred)
   rec = recall_score(y_test, y_pred)
   f1 = f1_score(y_test, y_pred)
   results.append({
        'Model': name,
        'Accuracy': acc,
       'Precision': prec,
       'Recall': rec,
        'F1-Score': f1
    })
/wsr/local/lib/python3.11/dist-packages/xgboost/core.py:158: UserWarning: [09:22:54] WARNING: /workspace/src/learner.cc:740:
     Parameters: { "use_label_encoder" } are not used.
      warnings.warn(smsg, UserWarning)
results_df = pd.DataFrame(results)
results_df = results_df.sort_values(by='F1-Score', ascending=False)
print(results_df)
                    Model Accuracy Precision Recall F1-Score
       Gradient Boosting 0.97245 0.987363 0.686183 0.809672
                   XGBoost 0.97090 0.952572 0.693794 0.802846
    3
             Random Forest 0.97045 0.952227 0.688525 0.799185
                       KNN 0.96095 0.897172 0.612998 0.728348
    4
                       SVM 0.96220 0.989712 0.563232 0.717910
    0 Logistic Regression 0.95875 0.864575 0.612998 0.717369
plt.figure(figsize=(10, 6))
sns.barplot(x='F1-Score', y='Model', data=results_df, palette='viridis')
plt.title('Model Comparison based on F1 Score')
plt.xlabel('F1 Score')
plt.ylabel('Model')
plt.show()
```

→ <ipython-input-16-67d9c37b0b33>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='F1-Score', y='Model', data=results_df, palette='viridis')


```
Start coding or generate with AI.
# from sklearn.model selection import GridSearchCV
\# params = {
      'n estimators': [100, 200],
      'max_depth': [5, 10, None],
# }
# grid = GridSearchCV(RandomForestClassifier(), param grid=params, cv=5)
# grid.fit(X_train, y_train)
# print(grid.best_params_)
Start coding or generate with AI.
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import GradientBoostingClassifier
import pandas as pd
import joblib
```

```
# Sample dataset
df = pd.read_csv("/content/diabetes_prediction_dataset.csv") # replace with your dataset
X = df.drop('diabetes', axis=1)
y = df['diabetes']
# Categorical and numeric features
cat_features = ['gender', 'smoking_history']
num_features = ['age', 'hypertension', 'heart_disease', 'bmi', 'HbA1c_level', 'blood_glucose_level']
# Preprocessing
preprocessor = ColumnTransformer(transformers=[
   ('num', StandardScaler(), num_features),
    ('cat', OneHotEncoder(handle unknown='ignore'), cat features)
])
# Final pipeline
pipeline = Pipeline(steps=[
   ('preprocessor', preprocessor),
    ('classifier', GradientBoostingClassifier())
1)
# Fit the pipeline
pipeline.fit(X, y)
# Save the fitted pipeline
joblib.dump(pipeline, 'diabetes_pipeline.pkl')
['diabetes_pipeline.pkl']
import pandas as pd
import joblib
pipeline = joblib.load('diabetes_pipeline.pkl')
print("Welcome to the Diabetes Prediction System.\nPlease provide the following health details:")
user_data = {
    'gender': input("Enter Gender (Male/Female/Other): "),
    'age': float(input("Enter Age (0 to 80): ")),
    'hypertension': int(input("Do you have Hypertension? (0 = No, 1 = Yes): ")),
    'heart_disease': int(input("Do you have any Heart Disease? (0 = No, 1 = Yes): ")),
    'smoking_history': input("Smoking History (never/former/current/ever/not current/No Info): "),
    'bmi': float(input("Enter your BMI (10.16 - 71.55): ")),
    'HbA1c level': float(input("Enter HbA1c level (3.5 - 9.0): ")),
    'blood_glucose_level': float(input("Enter Blood Glucose Level (80 - 300): "))
input_df = pd.DataFrame([user_data])
# Make prediction
prediction = pipeline.predict(input_df)
result = "Diabetic" if prediction[0] == 1 else "Non-Diabetic"
```

```
Welcome to the Diabetes Prediction System.
Please provide the following health details:
Enter Gender (Male/Female/Other): Male
Enter Age (0 to 80): 60

Do you have Hypertension? (0 = No, 1 = Yes): 1

Do you have any Heart Disease? (0 = No, 1 = Yes): 1

Smoking History (never/former/current/ever/not current/No Info): former
Enter your BMI (10.16 - 71.55): 30
Enter HbA1c level (3.5 - 9.0): 6.3
Enter Blood Glucose Level (80 - 300): 200
```

Start coding or generate with AI.

V. Disease Classification: Diabetes Prediction Using Machine Learning

✓ Project Overview

This project aims to build a machine learning model that accurately predicts whether a patient is diabetic based on medical and demographic information. The dataset contains 100,000 records with 9 features including gender, age, hypertension, heart disease, smoking history, BMI, HbA1c level, blood glucose level, and the target variable—diabetes (1 = diabetic, 0 = non-diabetic).

Dataset Description

Feature	Description				
gender	Biological sex of the individual (Male, Female, Other)				
age	Age of the individual (0-80 years)				
hypertension	Presence of hypertension (0 = No, 1 = Yes)				
heart_disease	Presence of heart disease (0 = No, 1 = Yes)				
smoking_history	Smoking status (never, former, current, not current, No Info, ever)				
bmi	Body Mass Index (10.16 to 71.55)				
HbA1c_level	Average blood sugar level over 2-3 months				
blood_glucose_level	Glucose level in blood at a point in time				
diabetes	Target variable (0 = Non-diabetic, 1 = Diabetic)				

***** Methodology

- 1: Data Preprocessing+
- --- Handled missing values if present
- --- Encoded categorical variables using One-Hot Encoding (gender, smoking_history)
- --- Scaled continuous features (e.g., age, bmi, HbA1c_level, blood_glucose_level) using StandardScaler
 - Step 2: Feature Engineering
- -- Created dummy variables
- -- Ensured no multicollinearity

- Step 3: Data Splitting
- ---Split the dataset into training (80%) and testing (20%) sets using train_test_split()
 - Step 4: Model Training
- --- Trained 6 different models:
 - 1. Logistic Regression
 - 2. Random Forest
 - 3. Gradient Boosting
 - 4. XGBoost
 - 5. SVM
 - 6. K-Nearest Neighbors (KNN)
 - Step 5: Model Evaluation
- --- Evaluated using Accuracy, Precision, Recall, and F1-Score