# Topics in Operator Algebras: Algebraic Conformal Field Theory

### BIN GUI

### Current page of writing

### **Contents**

| 0  | Notations                                                       | 2          |
|----|-----------------------------------------------------------------|------------|
| 1  | Introduction: PCT symmetry, Bisognano-Wichmann, Tomita-Takesaki | 4          |
| 2  | 2d conformal field theory                                       | 16         |
| 3  | Local fields and chiral algebras                                | 25         |
| 4  | Energy-bounded fields and their smeared fields                  | 40         |
| 5  | Methods of unbounded operators                                  | <b>5</b> 4 |
| In | index                                                           |            |
| Re | References                                                      |            |

### 0 Notations

 $\mathbb{N} = \{0, 1, 2, \dots\}. \ \mathbb{Z}_+ = \{1, 2, 3, \dots\}. \ \mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}. \ \mathbb{D}_r = \{z \in \mathbb{C} : |z| < r\}.$  $\overline{\mathbb{D}}_r = \{z \in \mathbb{C} : |z| \le r\}. \ \mathbb{D}_r^{\times} = \{z \in \mathbb{C} : 0 < |z| < r\}.$ 

If X is a complex manifold, we let  $\mathscr{O}(X)$  denote the set of holomorphic functions  $f:X\to\mathbb{C}.$ 

Unless otherwise stated, an **unbounded operator**  $T:\mathcal{H}\to\mathcal{K}$  (where  $\mathcal{H},\mathcal{K}$  are Hilbert spaces) denotes a linear map from a dense linear subspace  $\mathscr{D}(T)\subset\mathcal{H}$  to  $\mathcal{H}$ .  $\mathscr{D}(T)$  is called the **domain** of T. We let  $T^*$  be the adjoint of T. In practice, we are also interested in  $T^*$  defined on a dense subspace of its domain  $\mathscr{D}(T^*)$ . We call its restriction a **formal adjoint** of T and denote it by  $T^{\dagger}$ .

Given a Hilbert space  $\mathcal{H}$ , its inner product is denoted by  $(\xi, \eta) \in \mathcal{H}^2 \mapsto \langle \xi | \eta \rangle$ . We assume that it is linear on the first variable and antilinear on the second one. (Namely, we are following mathematician's convention.)

Whenever we write  $\langle \xi, \eta \rangle$ , we understand that it is linear on both variables. E.g.  $\langle \cdot, \cdot \rangle$  denotes the pairing between a vector space and its dual space.

If  $\mathcal{H}, \mathcal{K}$  are Hilbert spaces, we let

$$\mathfrak{L}(\mathcal{H}, \mathcal{K}) = \{ \text{Bounded linear maps } \mathcal{H} \to \mathcal{K} \} \qquad \mathfrak{L}(\mathcal{H}) = \mathfrak{L}(\mathcal{H}, \mathcal{H})$$
 (0.1)

If V, W are vector spaces, we let

$$\operatorname{Hom}(V, W) = \{ \operatorname{Linear \ maps} V \to W \} \qquad \operatorname{End}(V) = \operatorname{Hom}(V, V) \qquad (0.2)$$

An unbounded operator  $T:\mathcal{H}\to\mathcal{H}$  denotes a linear map  $\mathscr{D}(T)\to\mathcal{H}$  where  $\mathscr{D}(T)$  is a dense linear subspace of  $\mathcal{H}$ . We say that an unbounded operator T is **continuous** if it is continuous with respect to the norms on the domain and the codomain. Thus, "bounded" means continuous and  $\mathscr{D}(T)=\mathcal{H}$ .

If  $z_{\bullet} = (z_1, \dots, z_k)$  are mutually commuting formal variables, for each  $n_{\bullet} = (n_1, \dots, n_k) \in \mathbb{Z}^k$  we let

$$z_{\bullet}^{n_{\bullet}} = z_1^{n_1} \cdots z_k^{n_k}$$

For each vector space W, we let

$$W[[z_{\bullet}]] = \left\{ \sum_{n_{\bullet} \in \mathbb{Z}^k} w_{n_{\bullet}} z_{\bullet}^{n_{\bullet}} \right\} \qquad W[[z_{\bullet}^{\pm 1}]] = \left\{ \sum_{n_{\bullet} \in \mathbb{Z}^k} w_{n_{\bullet}} z_{\bullet}^{n_{\bullet}} \right\}$$
$$W((z_{\bullet})) = \left\{ \sum_{n_{\bullet} \in \mathbb{Z}^k} w_{n_{\bullet}} z_{\bullet}^{n_{\bullet}} : w_{n_{\bullet}} = 0 \text{ when } n_1, \dots, n_k \ll 0 \right\}$$

 $W[z_{\bullet}] = W((z_{\bullet})) \cap W((z_{\bullet}^{-1})) = \text{polynomials of } z_{\bullet} \text{ with } W\text{-coefficients}$ 

where  $w_{n_{\bullet}} \in W$ .

If *X* is a set, the *n*-fold **configuration space**  $Conf^n(X)$  is

$$\operatorname{Conf}^{n}(X) = \{(x_{1}, \dots, x_{n}) \in X : x_{i} \neq x_{j} \text{ if } i \neq j\}$$
 (0.3)

**Definition 0.1.** A map of complex vector spaces  $T:V\to V'$  is called **antilinear** or **conjugate linear** if  $T(a\xi+b\eta)=\overline{a}T\xi+\overline{b}T\eta$  for all  $\xi,\eta\in V$  and  $a,b\in\mathbb{C}$ . If V and V' are (complex) inner product spaces, we say that T is **antiunitary** if it is am antiliear surjective and satisfies  $\|T\xi\|=\|\xi\|$  for all  $\xi\in V$ , equivalently,

$$\langle T\xi|T\eta\rangle = \overline{\langle \xi|\eta\rangle} \equiv \langle \eta|\xi\rangle$$
 (0.4)

for all  $\xi, \eta \in V$ .

For each  $n \in \mathbb{Z}$ , we let  $\mathfrak{e}_n \in C^{\infty}(\mathbb{S}^1)$  be  $\mathfrak{e}_n(z) = z^n$ .

### 1 Introduction: PCT symmetry, Bisognano-Wichmann, Tomita-Takesaki

Algebraic quantum field theory (AQFT) is a mathematically rigorous approach to QFT using the language of functional analysis and operator algebras. The main subject of this course is 2d **algebraic conformal field theory (ACFT)**, namely, 2d CFT in the framework of AQFT.

### 1.1

Let  $d \in \mathbb{Z}_+$ . We first sketch the general picture of an (1 + d) dimensional Poincaré invariant QFT in the spirit of **Wightman axioms**. We consider Bosonic theory for simplicity.

We let  $\mathbb{R}^{1,d}$  be the (1+d)-dimensional **Minkowski space**. So it is  $\mathbb{R}^{1+d}$  but with metric tensor

$$ds^{2} = (dx^{0})^{2} - (dx^{1})^{2} - \dots - (dx^{d})^{2}$$
(1.1)

Here  $x^0$  denotes the time coordinate, and  $x^1, \ldots, x^d$  denote the spatial coordinates. The (restricted) **Poincaré group** is

$$P^{+}(1,d) = \mathbb{R}^{1,d} \times SO^{+}(1,d)$$

Here,  $\mathbb{R}^{1,d}$  acts by translation on  $\mathbb{R}^{1,d}$ .  $\mathrm{SO}^+(1,d)$  is the (restricted) **Lorentz group**, the identity component of the (full) Lorentz group  $\mathrm{O}(1,d)$  whose elements are invertible linear maps on  $\mathbb{R}^{1,d}$  preserving the Minkowski metric.

**Remark 1.1.** Any  $g \in O(1,d)$  must have determinent  $\pm 1$ . One can show that  $SO^+(1,d)$  is precisely the elements  $g \in O(1,d)$  such that  $\det g = 1$ , and that g does not change the direction of time (i.e., if  $\mathbf{v} = (v_0, \dots, v_d) \in \mathbb{R}^{1,d}$  satisfies  $v_0 > 0$ , then the first component of  $g\mathbf{v}$  is > 0). See [Haag, Sec. I.2.1].

**Definition 1.2.** We say that  $\mathbf{x} = (x_0, \dots, x_d), \mathbf{y} = (y_0, \dots, y_d) \in \mathbb{R}^{1,d}$  are **spacelike** (separated) if their Minkowski distance is negative, i.e.,

$$(x_0 - y_0)^2 < (x_1 - y_1)^2 + \dots + (x_d - y_d)^2$$

### 1.2

A Poincaré invariant QFT consists of the following data:

(1) We have a Hilbert space  $\mathcal{H}$ .

- (2) There is a (strongly continuous) projective unitary representation U of  $P^+(1,d)$  on  $\mathcal{H}$ . In particular, its restriction to the translation on the k-th component (where  $k=0,1,\ldots,d$ ) gives a one parameter unitary group  $x^k \in \mathbb{R} \mapsto \exp(\mathbf{i} x^k P_k)$  where  $P_k$  is a self-adjoint operator on  $\mathcal{H}$ .
- (3) (Positive energy) The following are positive operators:

$$P_0 \geqslant 0$$
  $(P_0)^2 - (P_1)^2 - \dots - (P_d)^2 \geqslant 0$ 

The operator  $P_0$  is called the **Hamiltonian** or the **energy operator**.  $P_1, \ldots, P_d$  are the momentum operators.  $(P_0)^2 - (P_1)^2 - \cdots - (P_d)^2$  is the mass.

- (4) We have a collection of **(quantum) fields**  $\mathcal{Q}$ , where each  $\Phi \in \mathcal{Q}$  is an operator-valued function on  $\mathbb{R}^{1,d}$ . For each  $\mathbf{x} \in \mathbb{R}^{1,d}$ ,  $\Phi(x)$  is a "linear operator on  $\mathcal{H}$ ".
- (5) (Locality) If  $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^{1,d}$  are spacelike and  $\Phi_1, \Phi_2 \in \mathcal{Q}$ , then

$$[\Phi_1(x_1), \Phi_2(x_2)] = 0 (1.2)$$

(6) (\*-invariance) For each  $\Phi \in \mathcal{Q}$ , there exists  $\Phi^{\dagger} \in \mathcal{Q}$  such that

$$\Phi(\mathbf{x})^{\dagger} = \Phi^{\dagger}(\mathbf{x}) \tag{1.3}$$

Moreover,  $\Phi^{\dagger\dagger} = \Phi$ .

(7) (Poincaré invariance) There is a distinguished unit vector  $\Omega$ , called the **vacuum vector**, such that

$$U(g)\Omega = \Omega \qquad \forall g \in \mathbf{P}^+(1,d)$$

Moreover, for each  $g \in P^+(1,d)$  and  $\Phi \in \mathcal{Q}$ , we have

$$U(g)\Phi(\mathbf{x})U(g)^{-1} = \Phi(g\mathbf{x})$$
(1.4)

(8) (Cyclicity) Vectors of the form

$$\Phi_1(\mathbf{x}_1)\cdots\Phi_n(\mathbf{x}_n)\Omega\tag{1.5}$$

(where  $n \in \mathbb{N}$ ,  $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^{1,d}$  are mutually spacelike, and  $\Phi_1, \dots, \Phi_n \in \mathcal{Q}$ ) span a dense subspace of  $\mathcal{H}$ .

**Remark 1.3.** In some QFT, there is a factor (a function of  $\mathbf{x}$ ) before  $\Phi(g\mathbf{x})$  in the Poincaré invariance relation (1.4). Similarly, there is a factor before  $\Phi^{\dagger}(\mathbf{x})$  in the \*-invariance formula (1.3). We will encounter these more general covariance property later. In this section, we content ourselves with the simplest case that the factors are 1.

**Remark 1.4.** By the Poincaré invariance and the cyclicity, the action of  $P^+(1,d)$  is uniquely determined by  $\mathcal Q$  by

$$U(g)\Phi_1(\mathbf{x}_1)\cdots\Phi_n(\mathbf{x}_n)\Omega = \Phi_1(g\mathbf{x}_1)\cdots\Phi_n(g\mathbf{x}_n)\Omega$$
(1.6)

 $<sup>^1\</sup>mathrm{A}$  unit vector denotes a vector with length 1

Technically speaking,  $\Phi(\mathbf{x})$  can not be viewed as a linear operator on  $\mathcal{H}$ . It cannot be defined even on a sufficiently large subspace of  $\mathcal{H}$ . One should think about **smeared fields** 

$$\Phi(f) = \int_{\mathbb{R}^{1,d}} \Phi(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$
 (1.7)

where  $f \in C_c^{\infty}(\mathbb{R}^{1,d})$ . (In contrast, we call  $\Phi(\mathbf{x})$  a **pointed field**.) Then  $\Phi(f)$  is usually a closable unbounded operator on  $\mathcal{H}$  with dense domain  $\mathscr{D}(\Phi(f))$ . Moreover,  $\mathscr{D}(\Phi(f))$  is preserved by any smeared operator  $\Psi(g)$ . Therefore, for any  $f_1, \ldots, f_n \in C_c^{\infty}(\mathbb{R}^{1,d})$  the following vector can be defined in  $\mathcal{H}$ :

$$\Phi_1(f_1)\cdots\Phi_n(f_n)\Omega\tag{1.8}$$

The precise meaning of cyclicity in Subsec. 1.2 means that vectors of the form (1.8) span a dense subspace of  $\mathcal{H}$ . Locality means that for  $f_1, f_2 \in C_c^{\infty}(\mathbb{R}^{1,d})$  compactly supported in spacelike regions, on a reasonable dense subspace of  $\mathcal{H}$  (e.g., the subspace spanned by (1.8)) we have

$$[\Phi_1(f_1), \Phi_2(f_2)] = 0 (1.9)$$

The \*-invariance means that

$$\langle \Phi(f)\xi|\eta\rangle = \langle \xi|\Phi^{\dagger}(f)\eta\rangle$$
 (1.10)

for each  $\xi$ ,  $\eta$  in the this good subspace.

### 1.4

In the remaining part of this section, if possible, we also understand  $\Phi(\mathbf{x})$  as a smeared operator  $\Phi(f)$  where  $f \in C_c^\infty(\mathbb{R}^{1,d})$  satisfies  $\int f = 1$  and is supported in a small region containing  $\mathbf{x}$ . Thus,  $\Phi(\mathbf{x})$  can almost be viewed as a closable operator. Hence the expression (1.5) makes sense in  $\mathcal{H}$ .

We now explore the consequences of positive energy. As we will see, it implies that  $\Phi_1(\mathbf{x}_1)\cdots\Phi_n(\mathbf{x}_n)\Omega$ , a function of  $\mathbf{x}_{\bullet}$ , can be analytically continued.

The fact that  $P_0 \ge 0$  implies that when  $t \le 0$ ,  $e^{tP_0}$  is a bounded linear operator with operator norm  $\le 1$ . Therefore, if  $\tau$  belongs to

$$\mathfrak{I} = \{ \operatorname{Im} \tau \geqslant 0 \}$$

then  $e^{\mathbf{i}\tau P_0}=e^{\mathbf{i}\mathrm{Re}\tau}\cdot e^{-\mathrm{Im}\tau}$  is bounded. Indeed,  $\tau\in\mathfrak{I}\mapsto e^{\mathbf{i}\tau P_0}$  is continuous, and is holomorphic on  $\mathrm{Int}\mathfrak{I}$ .

Let  $\mathbf{e}_0 = (1, 0, \dots, 0)$ . Let  $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^{1,d}$  be distinct. By the Poincaré covariance, the relation

$$e^{\mathbf{i}\tau P_0}\Phi_1(\mathbf{x}_1)\cdots\Phi_n(\mathbf{x}_n)\Omega = \Phi_1(\mathbf{x}_1 + \tau e_0)\cdots\Phi_n(\mathbf{x}_n + \tau e_0)\Omega \tag{1.11}$$

holds for all real  $\tau$ . Moreover, the LHS is continuous on  $\mathfrak I$  and holomorphic on Int $\mathfrak I$ . This suggests that the RHS of (1.11) can also be defined as an element of  $\mathcal H$  when  $\tau \in \mathfrak I$ .

### 1.5

We shall further explore the question: for which  $\mathbf{x}_i$  is in  $\mathbb{C}^d$  can  $\Phi_1(\mathbf{x}_1)\cdots\Phi_n(\mathbf{x}_n)\Omega$  be reasonably defined as an element of  $\mathcal{H}$ ?

**Remark 1.5.** We expect that the smeared fields should be defined on any  $P_0$ -**smooth vectors**, i.e., vectors in  $\bigcap_{k\geqslant 0} \mathscr{D}(P_0^k)$ . For each r>0, since one can find  $C_{k,r}\geqslant 0$  such that  $\lambda^{2k}\leqslant C_{k,r}e^{2r\lambda}$  for all  $\lambda\geqslant 0$ , we conclude that

$$\operatorname{Rng}(e^{-rP_0}) \equiv \mathscr{D}(e^{rP_0}) \subset \bigcap_{k \ge 0} \mathscr{D}(P_0^k) \tag{1.12}$$

The above remark shows that  $\Phi_1(\mathbf{x}_1)$ , viewed as a smeared operator localized on a small neighborhood of  $\mathbf{x}_1$ , is definable on  $e^{\mathbf{i}\zeta_2P_0}\Phi_2(\mathbf{x}_2)\Omega = \Phi_2(\zeta_2\mathbf{e}_0 + \mathbf{x}_2)\Omega$  whenever  $\mathrm{Im}\zeta_2 > 0$ . Thus, heuristically,  $(\zeta_1,\zeta_2) \mapsto e^{\mathbf{i}\zeta_1P_0}\Phi_1(\mathbf{x}_1)e^{\mathbf{i}\zeta_2P_0}\Phi_2(\mathbf{x}_2)\Omega$  should also be holomorphic on

$$\{(\zeta_1, \zeta_2) \in \mathbb{C}^2 : \operatorname{Im}\zeta_1, \operatorname{Im}\zeta_2 > 0\}$$

Repeating this procedure, we see that the holomorphicity holds for

$$e^{\mathbf{i}\zeta_1 P_0} \Phi_1(\mathbf{x}_1) e^{\mathbf{i}\zeta_2 P_0} \Phi_2(\mathbf{x}_2) \cdots e^{\mathbf{i}\zeta_n P_0} \Phi_n(\mathbf{x}_n) \Omega$$

when  $\text{Im}\zeta_i > 0$ . By Poincaré covariance, the above expression equals

$$\Phi_1(\mathbf{x}_1 + \zeta_1 \mathbf{e}_0)\Phi_2(\mathbf{x}_2 + (\zeta_1 + \zeta_2)\mathbf{e}_0)\cdots\Phi_n(\mathbf{x}_n + (\zeta_1 + \cdots + \zeta_n)\mathbf{e}_0)\Omega$$

Therefore,

$$(\zeta_1, \dots, \zeta_n) \mapsto \Phi_1(\mathbf{x}_1 + \zeta_1 \mathbf{e}_0) \cdots \Phi_n(\mathbf{x}_n + \zeta_n \mathbf{e}_0) \in \mathcal{H}$$
 (1.13)

should be holomorphic on  $\{\zeta_{\bullet} \in \mathbb{C}^n : 0 < \operatorname{Im} \zeta_1 < \cdots < \operatorname{Im} \zeta_n\}$ .

By the locality axiom, the order of products of quantum fields can be exchanged. Thus, our expectation for a reasonable QFT includes the following condition:

**Conclusion 1.6.** Let  $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^{1,d}$ . Then (1.13) is holomorphic on

$$\{(\zeta_1, \dots, \zeta_n) \in \mathbb{C}^n : \operatorname{Im}\zeta_i > 0, \text{ and } \operatorname{Im}\zeta_i \neq \operatorname{Im}\zeta_j \text{ if } i \neq j\}$$
 (1.14a)

Moreover, since (1.13) is also definable and continuous on

$$\{(\zeta_1, \dots, \zeta_n) \in \mathbb{R}^n : \mathbf{x}_1 + \zeta_1 \mathbf{e}_1, \dots, \mathbf{x}_n + \zeta_n \mathbf{e}_0 \text{ are mutually spacelike}\}$$
 (1.14b)

we expect that the function (1.13) is continuous on the union of (1.14a) and (1.14b).

We have (informally) derived some consequences from the positivity of  $P_0$ . Note that since  $P_0 \ge 0$ , we have  $U(g)P_0U(g)^{-1} \ge 0$  for each  $g \in SO^+(1,d)$ . Since  $P_0$  is the generator of the flow  $t \in \mathbb{R} \mapsto t\mathbf{e}_0 \in \mathbb{R}^{1,d} \subset P^+(1,d)$ ,  $U(g)P_0U(g)^{-1}$  is the generator of the flow

$$t \in \mathbb{R} \mapsto g(t\mathbf{e}_0)g^{-1} = t \cdot g\mathbf{e}_0 \tag{1.15}$$

Therefore, if  $g\mathbf{e}_0 = (a_0, \dots, a_n)$ , then

$$U(g)P_0U(g)^{-1} = a_0P_0 + \dots + a_nP_n$$
(1.16)

Hence the RHS must be positive. But what are all the possible  $ge_0$ ?

**Remark 1.7.** One can show that the orbit of  $\mathbf{e}_0 = (1, 0, \dots, 0)$  under  $\mathrm{SO}^+(1, d)$  is the upper hyperbola with diameter 1, i.e., the set of all  $(a_0, \dots, a_n) \in \mathbb{R}^{1,d}$  satisfying

$$a_0 > 0$$
  $(a_0)^2 - (a_1)^2 - \dots - (a_n)^2 = 1$  (1.17)

Thus  $\sum_i a_i P_i \ge 0$  for all such  $a_{\bullet}$ . What are the consequences of this positivity?

### 1.7

To simplify the following discussions, we set d = 2 and

$$t = x^0 \qquad x = x^1$$

We further set

$$u = t - x \qquad v = t + x \tag{1.18}$$

so that

$$t = \frac{u+v}{2} \qquad x = \frac{-u+v}{2} \tag{1.19}$$

The Minkowski metric becomes

$$(dt)^2 - (dx)^2 = du \cdot dv$$
(1.20)

Then

$$(u, v)$$
 is spacelike to  $(u', v')$   $\iff$   $(u - u')(v - v') < 0$  (1.21)

For each  $\Phi \in \mathcal{Q}$ , we write

$$\widetilde{\Phi}(u,v) := \Phi(t,x) = \Phi\left(\frac{u+v}{2}, \frac{-u+v}{2}\right) \tag{1.22}$$

We let  $H_0$  and  $H_1$  be the self-adjoint operators such that

$$H_0 = P_0 - P_1 \qquad H_1 = P_0 + P_1$$

so that they are the generators of the flow  $t \mapsto (t, -t)$  and  $t \mapsto (t, t)$ .

**Remark 1.8.** Since  $\mathbb{R}^{1,d}$  is an abelian group, we know that  $P_i$  commutes with  $P_j$ . Hence  $H_0$  commutes with  $H_1$ .



Figure 1.1. The coordinates u, v

The orbit of  $e_0$  under  $SO^+(1,1)$  is the unit upper hyperbola  $(x^0)^2 - (x_1)^2 = 1, x^0 > 0$ . Equivalently, it is uv = 1, u > 0. According to Subsec. 1.6, we conclude that  $b_0H_0 + b_1H_1 \ge 0$  for each  $b_0, b_1$  satisfying  $b_0b_1 = 1, b_0 > 0$  (equivalently, for each  $b_0 > 0, b_1 > 0$ ). This implies

$$H_0 \geqslant 0 \qquad H_1 \geqslant 0 \tag{1.23}$$

Therefore, similar to the argument in Subsec. 1.5 (and specializing to the special case that  $\mathbf{x}_1 = \cdots = \mathbf{x}_n = 0$ ), the holomorphicity of

$$(\zeta_{\bullet}, \gamma_{\bullet}) \mapsto e^{\mathbf{i}\zeta_1 H_0 + \mathbf{i}\gamma_1 H_1} \widetilde{\Phi}_1(0) e^{\mathbf{i}\zeta_2 H_0 + \mathbf{i}\gamma_2 H_1} \widetilde{\Phi}_2(0) \cdots e^{\mathbf{i}\zeta_n H_0 + \mathbf{i}\gamma_n H_1} \widetilde{\Phi}_n(0) \Omega$$

on the region  $\text{Im}\zeta_i > 0$ ,  $\text{Im}\gamma_i > 0$ , together with locality, implies:

**Conclusion 1.9.** Let  $\Phi_1, \ldots, \Phi_n \in \mathcal{Q}$ . Then

$$(u_1, v_1, \dots, u_n, v_n) \mapsto \widetilde{\Phi}_1(u_1, v_1) \cdots \widetilde{\Phi}(u_n, v_n) \Omega$$
(1.24)

is holomorphic on

$$\{(u_{\bullet}, v_{\bullet}) \in \mathbb{C}^{2n} : \operatorname{Im} u_i > 0, \operatorname{Im} v_i > 0, \operatorname{Im} u_i \neq \operatorname{Im} u_j, \operatorname{Im} v_i \neq \operatorname{Im} v_j \text{ if } i \neq j\}$$
 (1.25a)

and can be continuously extended to

$$\{(u_{\bullet}, v_{\bullet}) \in \mathbb{R}^{2n} : (u_i - u_j) \cdot (v_i - v_j) < 0 \text{ if } i \neq j\}$$
 (1.25b)

Rigorously speaking, the above mentioned "continuity" of the extension should be understood in terms of distributions. Here, we ignore such subtlety and view pointed fields as smeared field in a small region.

### 1.9

We note that  $\operatorname{diag}(-1,\pm 1)$  is not inside  $\operatorname{SO}^+(1,1)$ , since it reverses the time direction. Neither is  $\operatorname{diag}(1,-1)$  in  $\operatorname{SO}^+(1,1)$  because its determinant is negative. Consequently, the QFT is not necessarily symmetric under the following operations:

- Time reversal  $t \mapsto -x$ .
- Parity transformation  $x \mapsto -x$ .
- **PT transformation**  $(t, x) \mapsto (-t, -x)$ , the combination of time and parity inversions.

Mathematically, this means that the maps

$$\Phi_{1}(t_{1}, x_{1}) \cdots \Phi_{n}(t_{n}, x_{n}) \Omega \quad \mapsto \quad \Phi_{1}(-t_{1}, x_{1}) \cdots \Phi_{n}(-t_{n}, x_{n}) \Omega 
\Phi_{1}(t_{1}, x_{1}) \cdots \Phi_{n}(t_{n}, x_{n}) \Omega \quad \mapsto \quad \Phi_{1}(t_{1}, -x_{1}) \cdots \Phi_{n}(t_{n}, -x_{n}) \Omega 
\Phi_{1}(t_{1}, x_{1}) \cdots \Phi_{n}(t_{n}, x_{n}) \Omega \quad \mapsto \quad \Phi_{1}(-t_{1}, -x_{1}) \cdots \Phi_{n}(-t_{n}, -x_{n}) \Omega$$

(where  $(t_1, x_1), \ldots, (t_n, x_n)$  are mutually spacelike) are not necessarily unitary. (Compare Rem. 1.4.) Simiarly, the QFT is not necessarily symmetric under **Charge conjugation**  $\Phi \mapsto \Phi^{\dagger}$ , which means that the map

$$\Phi_1(t_1, x_1) \cdots \Phi_n(t_n, x_n) \Omega \quad \mapsto \quad \Phi_n(t_n, x_n)^{\dagger} \cdots \Phi_1(t_1, x_1)^{\dagger} \Omega$$
$$= \Phi_1^{\dagger}(t_1, x_1) \cdots \Phi_n^{\dagger}(t_n, x_n) \Omega$$

is not necessarily (anti)unitary. However, as we shall explain, the combination of PCT transformations is actually unitary, and hence is a symmetry of the QFT. This is called the PCT theorem.

### 1.10

To prove the PCT theorem, we shall first prove that the PT transformation, though not implemented by a unitary operator, is actually implemented by the analytic continuation of a one parameter unitary group.

**Definition 1.10.** The one parameter group  $s \mapsto \Lambda(s) \in SO^+(1,1)$  defined by

$$\Lambda(s)(u,v) = (e^{-s}u, e^s v) \tag{1.26}$$

is called the Lorentz boost. Equivalently,

$$\Lambda(s) \begin{bmatrix} t \\ x \end{bmatrix} = \begin{bmatrix} \cosh s & \sinh s \\ \sinh s & \cosh s \end{bmatrix} \begin{bmatrix} t \\ x \end{bmatrix}$$
 (1.27)

Define the (open) **right wedge** W and **left wedge** -W by

$$\mathcal{W} = \{(u, v) \in \mathbb{R}^2 : v > 0, u < 0\} = \{(t, x) \in \mathbb{R}^{1, 1} : -x < t < x\}$$
(1.28)



Figure 1.2.

**Theorem 1.11 (PT theorem).** Let  $(u_1, v_1), \ldots, (u_n, v_n) \in \mathcal{W}$  be mutually spacelike (i.e. satisfying  $(u_i - u_j)(v_i - v_j) < 0$  if  $i \neq j$ ), cf. Fig. 1.2. Let  $\Phi_1, \ldots, \Phi_n \in \mathcal{Q}$ . Let K be the self-adjoint generator of the Lorentz boost, i.e.,

$$U(\Lambda(s)) = e^{\mathbf{i}sK}$$

Then  $\Phi_1(\mathbf{x}_1)\cdots\Phi_n(\mathbf{x}_n)\Omega$  belongs to the domain of  $e^{-\pi K}$ , and

$$e^{-\pi K}\Phi_1(\mathbf{x}_1)\cdots\Phi_n(\mathbf{x}_n)\Omega = \Phi_1(-\mathbf{x}_1)\cdots\Phi_n(-\mathbf{x}_n)\Omega$$
(1.29)

Equivalently,  $\widetilde{\Phi}_1(u_1,v_1)\cdots \widetilde{\Phi}_n(u_n,v_n)\Omega$  belongs to the domain of  $e^{-\pi K}$ , and

$$e^{-\pi K}\widetilde{\Phi}_1(u_1, v_1) \cdots \widetilde{\Phi}_n(u_n, v_n)\Omega = \widetilde{\Phi}_1(-u_1, -v_1) \cdots \widetilde{\Phi}_n(-u_n, -v_n)\Omega$$
 (1.30)

Note that the requirement that  $(u_1, v_1), \dots, (u_n, v_n) \in \mathcal{W}$  are spacelike means, after relabeling the subscripts, that

$$0 < v_1 < \dots < v_n$$
  $0 < -u_1 < \dots < -u_n$ 

*Proof.* This theorem relies on the following fact that we shall prove rigorously in the future:

\* Let  $T \ge 0$  be a self-adjoint operator on  $\mathcal{H}$  with  $\mathrm{Ker}(T) = 0$ . Let r > 0. Then  $\xi \in \mathcal{H}$  belongs to  $\mathscr{D}(T^r)$  iff the function  $s \in \mathbb{R} \mapsto T^{\mathbf{i}s}\xi \in \mathcal{H}$  can be extended to a continuous function F on

$$\{z \in \mathbb{C} : -r \leqslant \operatorname{Im} z \leqslant 0\}$$

and holomorphic on its interior. Moreover, for such  $\xi$  we have  $F(-ir) = T^r \xi$ .

In fact, the function F(z) is given by  $z \mapsto T^z \xi$ .

We shall apply this result to  $T=e^{-K}$  and  $r=\pi$ . For that purpose, we must show that the  $\mathcal{H}$ -valued function of  $s \in \mathbb{R}$  defined by

$$e^{\mathbf{i}\pi s}\widetilde{\Phi}_1(u_1,v_1)\cdots\widetilde{\Phi}_n(u_n,v_n)\Omega = \widetilde{\Phi}_1(e^{-s}u_1,e^sv_1)\cdots\widetilde{\Phi}_n(e^{-s}u_n,e^sv_n)\Omega$$

can be extended to a continuous function on

$$\{z \in \mathbb{C} : 0 \leqslant \mathrm{Im} z \leqslant \pi\}$$

and holomorphic on its interior.

In fact, we can construct this  $\mathcal{H}$ -valued function, which is

$$z \mapsto \widetilde{\Phi}_1(e^{-z}u_1, e^zv_1) \cdots \widetilde{\Phi}_n(e^{-z}u_n, e^zv_n)\Omega$$

noting that the conditions in Conc. 1.9 are fulfilled. In particular, the condition  $0 < \operatorname{Im} < \pi$  is used to ensure that, since  $u_i < 0, v_i > 0$ , we have  $\operatorname{Im}(e^{-z}u_i) > 0$  and  $\operatorname{Im}(e^zv_i) > 0$  as required by (1.25a). The value of this function at  $z = i\pi$  equals the RHS of (1.30). Therefore the theorem is proved.

### 1.11

**Theorem 1.12 (PCT theorem).** We have an antiunitary map  $\Theta : \mathcal{H} \to \mathcal{H}$ , called the *PCT operator*, such that

$$\Theta \cdot \Phi_1(\mathbf{x}_1) \cdots \Phi_n(\mathbf{x}_n) \Omega = \Phi_1(-\mathbf{x}_1)^{\dagger} \cdots \Phi_n(-\mathbf{x}_n)^{\dagger} \Omega$$
(1.31)

for any  $\Phi_1, \ldots, \Phi_n \in \mathcal{Q}$  and mutually spacelike  $\mathbf{x}_1, \ldots, \mathbf{x}_n$ .

Equivalently,  $\Theta$  is defined by

$$\Theta \cdot \widetilde{\Phi}_1(u_1, v_1) \cdots \widetilde{\Phi}_n(u_n, v_n) = \widetilde{\Phi}_1(-u_1, -v_1)^{\dagger} \cdots \widetilde{\Phi}_n(-u_n, -v_n)^{\dagger} \Omega$$
 (1.32)

*Proof.* The existence of an antilinear isometry  $\Theta$  satisfying (1.32) is equivalent to showing that (cf. (0.4))

$$\begin{array}{l}
\langle \widetilde{\Phi}_{1}(\mathbf{u}_{1}) \cdots \widetilde{\Phi}_{n}(\mathbf{u}_{n}) \Omega | \widetilde{\Psi}_{1}(\mathbf{u}_{1}') \cdots \widetilde{\Psi}_{k}(\mathbf{u}_{k}') \Omega \rangle \\
= \langle \widetilde{\Psi}_{1}(-\mathbf{u}_{1}')^{\dagger} \cdots \widetilde{\Psi}_{k}(-\mathbf{u}_{k}')^{\dagger} \Omega | \widetilde{\Phi}_{1}(-\mathbf{u}_{1})^{\dagger} \cdots \widetilde{\Phi}_{n}(-\mathbf{u}_{n})^{\dagger} \Omega \rangle
\end{array} \tag{*}$$

if  $\mathbf{u}_1, \dots \mathbf{u}_n$  are spacelike, and  $\mathbf{u}_1', \dots \mathbf{u}_k'$  are spacelike. (We do not assume that, say,  $\mathbf{u}_1$  and  $\mathbf{u}_1'$  are spacelike.)

It suffices to prove this in the special case that  $\mathbf{u}_1, \dots, \mathbf{u}_n, \mathbf{u}_1', \dots, \mathbf{u}_k'$  are mutually spacelike. Then the general case will follow that both sides of the above relation can be analytically continued to suitable regions as functions of  $\mathbf{u}_1, \dots, \mathbf{u}_n$ . For example, the fact that  $H_0, H_1 \geqslant 0$  implies that

$$e^{i\zeta H_0 + i\gamma H_1} \widetilde{\Phi}_1(\mathbf{u}_1) \cdots \widetilde{\Phi}_n(\mathbf{u}_n) \Omega = \widetilde{\Phi}_1(\mathbf{u}_1 + (\zeta, \gamma)) \cdots \widetilde{\Phi}_n(\mathbf{u}_n + (\zeta, \gamma)) \Omega$$

is continuous on  $\{(\zeta, \gamma) \in \mathbb{C}^2 : \operatorname{Im} \zeta \geqslant 0, \operatorname{Im} \gamma \geqslant 0\}$  and holomorphic on its interior. Set  $\Gamma_i = \Psi_i^{\dagger}$ . Then (\*) is equivalent to

$$\langle \widetilde{\Phi}_{1}(\mathbf{u}_{1}) \cdots \widetilde{\Phi}_{1}(\mathbf{u}_{n}) \widetilde{\Gamma}_{1}(\mathbf{u}_{1}') \cdots \widetilde{\Gamma}_{k}(\mathbf{u}_{k}') \Omega | \Omega \rangle$$

$$= \langle \widetilde{\Phi}_{1}(-\mathbf{u}_{1}) \cdots \widetilde{\Phi}_{1}(-\mathbf{u}_{n}) \widetilde{\Gamma}_{1}(-\mathbf{u}_{1}') \cdots \widetilde{\Gamma}_{k}(-\mathbf{u}_{k}') \Omega | \Omega \rangle$$

By the PT Thm. 1.11, this relation is equivalent to

$$\langle \widetilde{\Phi}_{1}(\mathbf{u}_{1}) \cdots \widetilde{\Phi}_{1}(\mathbf{u}_{n}) \widetilde{\Gamma}_{1}(\mathbf{u}'_{1}) \cdots \widetilde{\Gamma}_{k}(\mathbf{u}'_{k}) \Omega | \Omega \rangle$$
$$= \langle e^{-\pi K} \widetilde{\Phi}_{1}(\mathbf{u}_{1}) \cdots \widetilde{\Phi}_{1}(\mathbf{u}_{n}) \widetilde{\Gamma}_{1}(\mathbf{u}'_{1}) \cdots \widetilde{\Gamma}_{k}(\mathbf{u}'_{k}) \Omega | \Omega \rangle$$

But this of course holds since  $e^{-\pi K}\Omega=\Omega$  by Poincaré invariance.

Combining the PT Thm. 1.11 with the PCT Thm. 1.12, we conclude that  $e^{-\pi K}$  is an injective positive operator,  $\Theta$  is antinitary, and

$$\Theta e^{-\pi K} A \Omega = A^{\dagger} \Omega \tag{1.33a}$$

where A is a product of spacelike separated field in W. The rigorous statement should be that

$$A = \Phi_1(f_1) \cdots \Phi_n(f_n)$$

where  $\Phi_1, \ldots, \Phi_n \in \mathcal{Q}$ , and  $f_i \in C_c^{\infty}(O_i)$  where  $O_1, \ldots, O_n \subset \mathcal{W}$  are open and mutually spacelike. If we let  $\mathscr{A}(\mathcal{W})$  be the \*-algebra generated by all such A, then by the Poincaré invariance, for each  $g \in P^+(1,d)$  we have

$$U(g)\mathscr{A}(\mathcal{W})U(g)^{-1} = \mathscr{A}(g\mathcal{W})$$

In particular, since for the Lorentz boost  $\Lambda$  we have  $\Lambda(s)W = W$ , we therefore have

$$e^{\mathbf{i}sK} \mathscr{A}(\mathcal{W})e^{-\mathbf{i}sK} = \mathscr{A}(\mathcal{W})$$
 (1.33b)

for all  $s \in \mathbb{R}$ . Since the PT transformation sends W to -W, the definition of  $\Theta$  clearly also implies

$$\Theta \mathscr{A}(\mathcal{W})\Theta^{-1} = \mathscr{A}(-\mathcal{W}) \tag{1.33c}$$

Note that since W is local to -W, we have  $[\mathscr{A}(W), \mathscr{A}(-W)] = 0$ . Therefore,  $\Theta \mathscr{A}(W)\Theta$  is a subset of the (in some sense) commutant of  $\mathscr{A}(W)$ .

#### 1.13

The set of formulas (1.33) is reminiscent of the Tomita-Takesaki theory, one of the deepest theories in the area of operator algebras. The setting is as follows.

Let  $\mathcal{M}$  be a von Neumann algebra on a Hilbert space  $\mathcal{H}$ . Namely,  $\mathcal{M}$  is a \*-subalgebra of  $\mathfrak{L}(\mathcal{H})$  closed under the "strong operator topology". (We will formally introduce von Neumann algebras in a later section.) Let  $\Omega \in \mathcal{H}$  be a unit vector. Assume that  $\Omega$  is **cyclic** (i.e.  $\mathcal{M}\Omega$  is dense) and **separating** (i.e., if  $x \in \mathcal{M}$  and  $x\Omega = 0$  then x = 0) under  $\mathcal{M}$ . Then the **Tomita-Takesaki theorem** says that the linear map

$$S: \mathcal{M}\Omega \to \mathcal{M}\Omega \qquad x\Omega \mapsto x^*\Omega$$

is antilinear and closable. Denote its closure also by S, and consider its polar decomposition  $S=J\Delta^{\frac{1}{2}}$  where  $\Delta$  is a positive closed operator, and J is an antiunitary map. Then  $\Delta$  is injective, we have  $J^{-1}=J^*=J$ , and

$$\Delta^{\mathbf{i}s} \mathcal{M} \Delta^{-\mathbf{i}s} = \mathcal{M} \qquad J \mathcal{M} J = \mathcal{M}'$$

where  $\mathcal{M}'$  is the commutant  $\{y \in \mathfrak{L}(\mathcal{H}) : xy = yx \ (\forall x \in \mathcal{M})\}$ . We call  $\Delta$  and J respectively the **modular operator** and the **modular conjugation**.

To relate the Tomita-Takesaki theory to QFT, one takes  $\mathcal{M}$  to be  $\mathfrak{A}(\mathcal{W})$ , the von Neumann algebra generated by  $\mathscr{A}(\mathcal{W})$ . Note that the elements of  $\mathscr{A}(\mathcal{W})$  are typically unbounded operators, whereas those of  $\mathfrak{A}(\mathcal{W})$  are bounded. Thus, the meaning of "the von Neumann algebra generated by a set of closed/closable operators" should be clarified. This is an important notion, and we will study it in a later section.

To apply the setting of Tomita-Takesaki, one should first show that the vacuum vector is cyclic and separating under  $\mathfrak{A}(\mathcal{W})$ . This is not an easy task, although it is relatively easier to show that  $\Omega$  is cyclic and separating under  $\mathscr{A}(\mathcal{W})$ . Moreover, we have

**Theorem 1.13 (Bisognano-Wichmann).** Let  $\Delta$  and J be the modular operator and the modular conjugation of  $(\mathfrak{A}(\mathcal{W}), \Omega)$ . Then  $J = \Theta$  and  $\Delta^{\frac{1}{2}} = e^{-\pi K}$ .

Since (1.33c) easily implies  $\Theta\mathfrak{A}(\mathcal{W})\Theta^{-1}=\mathfrak{A}(-\mathcal{W})$ , together with  $J\mathcal{M}J^{-1}=\mathcal{M}'$  we obtain

$$\mathfrak{A}(\mathcal{W})' = \mathfrak{A}(-\mathcal{W}) \tag{1.34}$$

a version of **Haag duality**.

One of the main goals of this course is to give a rigorous and self-contained proof of the PCT theorem, the Bisognano-Wichmann theorem, and the Haag duality for 2d chiral conformal field theories.

#### 1.15

For a general odd number d>0, the above results should be modified as follows. Let K be the generator of the **Lorentz boost** 

$$\Lambda(s) = \begin{pmatrix} \cosh s & \sinh s & 0 \\ \frac{\sinh s & \cosh s}{} & 0 \\ 0 & \ddots & 1 \end{pmatrix}$$

Let  $\Lambda(i\pi) = \operatorname{diag}(-1, -1, 1, \dots, 1)$ , which does not belong to  $P^+(1, d)$  since it reverses the time direction (although it has positive determinant). Then the PT Thm. 1.11 should be modified by replacing (1.29) with

$$e^{-\pi K} \Phi_1(\mathbf{x}_1) \cdots \Phi_n(\mathbf{x}_n) \Omega = \Phi_1(\Lambda(\mathbf{i}\pi)\mathbf{x}_1) \cdots \Phi_n(\Lambda(\mathbf{i}\pi)\mathbf{x}_n) \Omega$$
 (1.35)

Let  $\rho = \text{diag}(1, 1, -1, \dots, -1)$ , which has determinant 1 (since d is odd) and hence belongs to  $SO^+(1, d)$ . Then the PCT Thm. 1.12 still holds verbatim. Let

$$W = \{(a_0, \dots, a_n) \in \mathbb{R}^{1,d} : -a_1 < a_0 < a_1\}$$
(1.36)

Then the **Bisognano-Wichmann theorem** says that  $e^{-\pi K}$  is the modular operator of  $(\mathfrak{A}(\mathcal{W}),\Omega)$ , and  $\Theta U(\rho)$  is the modular conjugation.

We refer the readers to [Haag, Sec. V.4.1] and the reference therein for a detailed study.

### 2 2d conformal field theory

### 2.1

We look at a 2d unitary full conformal field theory (unitary full CFT)  $\mathcal Q$  on the space-compactified Minkowski space

$$\mathbb{R}^{1,1}_{\mathbf{c}} = \mathbb{R} \times \mathbb{S}^1$$
 with metric tensor  $(dt)^2 - (dx)^2 = dudv$ 

The space  $\mathbb{R}^{1,1}_c$  describes the propagation of the closed string  $\{0\} \times \mathbb{S}^1$ . Here, as in Subsec. 1.7, we write a general element of  $\mathbb{R}^{1,1}_c$  as  $\mathbf{x} = (t,x)$ , and write

$$u = t - x$$
  $v = t + x$  so that  $t = \frac{u + v}{2}$   $x = \frac{-u + v}{2}$ 

The field operators are of the form  $\Phi(\mathbf{x}) = \Phi(t, x)$ . Recall that

$$\widetilde{\Phi}(u,v) := \Phi(t,x) = \Phi(\frac{u+v}{2}, \frac{-u+v}{2})$$

Identifying  $\mathbb{R}/2\pi\mathbb{Z} = \mathbb{S}^1$  via  $\exp$ , a field  $\Phi$  can be viewed as an "operator valued function" on  $\mathbb{R}^{1,1}$  satisfying

$$\Phi(t, x + 2\pi) = \Phi(t, x)$$
 equivalently  $\widetilde{\Phi}(u, v) = \widetilde{\Phi}(u - 2\pi, v + 2\pi)$  (2.1)

The field operators are "acting on" a Hilbert space  $\mathcal{H}$  with vacuum vector  $\Omega$ .

Compared to the axioms for Poincaré invariant QFT in Subsec. 1.2, some changes should be made to describe a CFT. We still have the locality (1.2). Instead of considering  $P^+(1,1)$  we must consider the group of orientation-preserving, time-direction preserving, and conformal (i.e. angle-preserving) transforms on  $\mathbb{R}^{1,1}_c$ . "Conformal" means that the diffeomorphism  $g:\mathbb{R}^{1,1}_c\to\mathbb{R}^{1,1}_c$  satisfies

$$g^*(dudv) = \lambda(u, v)dudv$$

for a smooth function  $\lambda: \mathbb{R}^{1,1}_c \to \mathbb{R}_{>0}$ . Our next goal is to classify such g.

### 2.2

**Definition 2.1.** We let  $\mathrm{Diff}^+(\mathbb{S}^1)$  be the group of orientation-preserving diffeomorphisms of  $\mathbb{S}^1$ . Equivalently, it is the group of smooth functions  $f:\mathbb{S}^1\to\mathbb{S}^1$  whose lift  $\widetilde{f}:\mathbb{R}\to\mathbb{R}$  satisfies for all  $x\in\mathbb{R}$  that

$$\widetilde{f}(x+2\pi) = \widetilde{f}(x) + 2\pi \qquad \widetilde{f}'(x) > 0 \tag{2.2}$$

Note that by the basics of covering spaces, any element of  $\mathrm{Diff}^+(\mathbb{S}^1)$  can be lifted to  $\widetilde{f}$  satisfying (2.2). Conversely, if  $\widetilde{f}$  satisfies (2.2), then  $\widetilde{f}$  gives rise to an injective smooth map  $f:\mathbb{S}^1\to\mathbb{S}^1$ . (Note that  $\widetilde{f}'>0$  implies that  $\widetilde{f}$  is strictly increasing.) Since  $\widetilde{f}'(x)>0$ , the function f is injective, and the inverse function theorem shows that the compact set  $f(\mathbb{S}^1)$  is open, and hence equals  $\mathbb{S}^1$ . Thus  $f\in\mathrm{Diff}^+(\mathbb{S}^1)$ .

**Remark 2.2.** Note that f uniquely determines  $\widetilde{f}$  up to an  $2\pi\mathbb{Z}$ -addition, i.e., both  $\widetilde{f}$  and  $\widetilde{f} + 2n\pi$  (where  $n \in \mathbb{Z}$ ) correspond to f. Therefore, if we let  $\widetilde{\text{Diff}}^+(\mathbb{S}^1)$  be the topological group formed by all  $\widetilde{f}$  satisfying (2.2),<sup>2</sup> then we have an exact sequence

$$1 \longrightarrow \mathbb{Z} \longrightarrow \widetilde{\mathrm{Diff}^+}(\mathbb{S}^1) \longrightarrow \mathrm{Diff}^+(\mathbb{S}^1) \longrightarrow 1 \tag{2.3}$$

where  $\mathbb{Z}$  is freely generated by  $x \in \mathbb{R} \mapsto x + 2\pi$ .

Note that the map  $(\widetilde{f},t) \in \widetilde{\mathrm{Diff}^+}(\mathbb{S}^1) \times [0,1] \mapsto \widetilde{f_t} \in \widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)$  defined by

$$\widetilde{f}_t(x) = (1-t)\widetilde{f}(x) + tx$$

shows that  $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)$  is contractible (to the identity element) and hence simply-connected. (Therefore  $\mathrm{Diff}^+(\mathbb{S}^1)$  is connected.) We conclude that  $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)$  is the universal cover of  $\mathrm{Diff}^+(\mathbb{S}^1)$ .

### 2.3

**Theorem 2.3.** Under the coordinates (u, v), an orientation-preserving time-direction-preserving conformal transform g of  $\mathbb{R}^{1,1}_c$  is precisely of the form

$$g(u,v) = (\alpha(u), \beta(v)) \tag{2.4}$$

where  $\alpha, \beta : \mathbb{R} \to \mathbb{R}$  belong to  $\widetilde{\mathrm{Diff}}^+(\mathbb{S}^1)$ .

*Proof.* Step 1. First, suppose that g is of the form (2.4). Then g gives a well-defined smooth map  $\mathbb{R}^{1,1}_c \to \mathbb{R}^{1,1}_c$  because

$$g(u - 2\pi, v + 2\pi) = g(u, v) + (-2\pi, 2\pi)$$
(2.5)

One checks easily that g is a diffeomorphism (with inverse given by  $(\alpha^{-1}(u), \beta^{-1}(v))$ ) preserving the orientation and the time direction. Since  $g^*dudv = \alpha'(u)\beta'(v)dudv$ , g is conformal.

<sup>&</sup>lt;sup>2</sup>The topology is defined such that a net  $\widetilde{f}_{\alpha}$  converges to  $\widetilde{f}$  iff the n-th derivative  $\widetilde{f}_{\alpha}^{(n)}$  converges uniformly to  $\widetilde{f}^{(n)}$  for all  $n \in \mathbb{N}$ .

Step 2. Conversely, choose an orientation preserving conformal transform g. We lift g to a smooth conformal map  $\mathbb{R}^{1,1} \to \mathbb{R}^{1,1}$  also denoted by  $g = (\alpha, \beta)$ . So  $\alpha, \beta : \mathbb{R}^{1,1} \to \mathbb{R}$ . Then, besides (2.5), g also satisfies:

$$\partial_u \alpha \partial_u \beta = 0 \qquad \partial_v \alpha \partial_v \beta = 0 \tag{a}$$

$$\partial_u \alpha \partial_v \beta + \partial_v \alpha \partial_u \beta > 0 \tag{b}$$

$$\partial_u \alpha \partial_v \beta - \partial_v \alpha \partial_u \beta > 0 \tag{c}$$

Here, (a) and (b) are due to the fact that

$$g^*(dudv) = (\partial_u \alpha du + \partial_v \alpha dv)(\partial_u \beta du + \partial_v \beta dv)$$

equals  $\lambda(u,v)dudv$  for some smooth  $\lambda: \mathbb{R}^{1,1} \to \mathbb{R}_{>0}$ . (So  $\lambda$  is the LHS of (b).) Since g is orientation preserving, (c) follows from the computation

$$g^*(du \wedge dv) = (\partial_u \alpha \partial_v \beta - \partial_v \alpha \partial_u \beta) du \wedge dv$$

Step 3. By (a), at a given  $p \in \mathbb{R}^{1,1}$ , if  $\partial_u \alpha \neq 0$ , then  $\partial_u \beta = 0$ . Conversely, if at p we have  $\partial_u \beta = 0$ , then (b) shows that  $\partial_u \alpha \partial_v \beta > 0$ , and hence  $\partial_u \alpha \neq 0$ . Thus

$$\partial_u \alpha|_p \neq 0$$
  $\iff$   $\partial_u \beta|_p = 0$   
 $\partial_v \alpha|_p \neq 0$   $\iff$   $\partial_v \beta|_p = 0$ 

where the second equivalence follows from the same argument. Therefore, the set of p at which  $\partial_v \alpha = 0$  is both open and closed, and hence must be either  $\mathbb{R}^{1,1}$  or  $\emptyset$ . Similarly, either  $\partial_u \beta = 0$  everywhere, or  $\partial_u \beta \neq 0$  everywhere.

Let us prove that

$$\partial_v \alpha = 0 \qquad \partial_u \beta = 0$$

everywhere. Suppose the first is not true. Then by the previous paragraph, we have  $\partial_v \alpha \neq 0$  and  $\partial_v \beta = 0$  everywhere. Then (b) implies  $\partial_v \alpha \partial_u \beta > 0$ , and (c) implies  $-\partial_v \alpha \partial_u \beta > 0$ , impossible. So the first (and similarly the second) is true.

Step 4. Therefore, we can write  $\alpha = \alpha(u)$  and  $\beta = \beta(v)$ , and we have  $\alpha' \neq 0$  and  $\beta' \neq 0$  everywhere. (b) implies that  $\alpha'(u)\beta'(v) > 0$  for all u,v. Thus, either  $\alpha' > 0$  and  $\beta' > 0$  everywhere, or  $\alpha' < 0$  and  $\beta' < 0$  everywhere. The latter cannot happen, since g preserves the direction of time. Thus  $\alpha' > 0$  and  $\beta' > 0$  everywhere. Since g satisfies (2.5), we see that  $\alpha$  satisfies (2.2). Similarly  $\beta$  satisfies (2.2). This finishes the proof.

We let  $\mathbf{Cf^+}(\mathbb{R}^{1,1}_{\mathbf{c}})$  be the group of diffeomorphisms of  $\mathbb{R}^{1,1}_{\mathbf{c}}$  preserving the orientation and the time-direction. Then Thm. 2.3 says that any  $g \in \mathrm{Cf^+}(\mathbb{R}^{1,1}_{\mathbf{c}})$  can be represented by some  $(\alpha,\beta) \in \widetilde{\mathrm{Diff^+}}(\mathbb{S}^1)^2$ .

However,  $(\alpha, \beta)$  is not uniquely determined by g. Indeed, in Step 2 of the proof of Thm. 2.3 we have lifted g to a smooth map on  $\mathbb{R}^{1,1}$ . This lift is unique up to addition by  $(-2\pi, 2\pi)\mathbb{Z}$  in the (u, v) coordinates (or  $(0, 2\pi)\mathbb{Z}$  in the (t, x) coordinates). Thus,  $(\alpha, \beta)$  are unique up to addition by  $(-2\pi, 2\pi)\mathbb{Z}$ . This non-uniqueness can be ignored once we pass to  $(\check{\alpha}, \check{\beta})$ , the projection of  $(\alpha, \beta)$  into  $\mathrm{Diff}^+(\mathbb{S}^1)^2$ . Thus, we have a well-defined (continuous) surjective group homomorphism  $\Gamma: \mathrm{Cf}^+(\mathbb{R}^{1,1}_c) \to \mathrm{Diff}^+(\mathbb{S}^1) \times \mathrm{Diff}^+(\mathbb{S}^1)$  sending g to  $(\check{\alpha}, \check{\beta})$ .

One checks easily that the kernel of this homomorphism is freely generated by  $(2\pi,0)$  (equivalently, by  $(0,2\pi)$ ) under the (u,v) coordinates, equivalently, by  $(\pi,\pi)$  under the (t,x) coordinates. Therefore, we have an exact sequence of groups

$$1 \longrightarrow \mathbb{Z} \longrightarrow \mathrm{Cf}^{+}(\mathbb{R}^{1,1}_{c}) \stackrel{\Gamma}{\longrightarrow} \mathrm{Diff}^{+}(\mathbb{S}^{1})^{2} \longrightarrow 1$$
 (2.6)

Since  $\Gamma$  is a covering map, we also have a covering map  $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)^2 \twoheadrightarrow \mathrm{Cf}^+(\mathbb{R}^{1,1}_c)$  such that the following diagram commutes

$$\widetilde{\mathrm{Diff}^{+}}(\mathbb{S}^{1})^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad (2.7)$$

$$\mathrm{Cf}^{+}(\mathbb{R}^{1,1}_{c}) \xrightarrow{\Gamma} \mathrm{Diff}^{+}(\mathbb{S}^{1})^{2}$$

### 2.5

Since we require that Q is a CFT with Hilbert space  $\mathcal{H}$ , we must have a **strongly continuous projective unitary representation**  $\mathcal{U}$  of  $\mathrm{Cf}^+(\mathbb{R}^{1,1}_c)$ . Namely,

$$\mathcal{U}: \mathrm{Cf}^+(\mathbb{R}^{1,1}_c) \to \mathrm{PU}(\mathcal{H})$$

is a continuous group homomorphism. Here,  $\operatorname{PU}(\mathcal{H})$  is the quotient group (with quotient topology)  $U(\mathcal{H})/\sim$  where  $U(\mathcal{H})$  is the group of unitary operators of  $\mathcal{H}$  (equipped with the strong operator topology), and  $U_1\simeq U_2$  iff  $U_1=\lambda U_2$  for some  $\lambda\in\mathbb{C}$  such that  $|\lambda|=1$ . We suppress the adjectives "strongly continuous" when no confusion arises.

By (2.7),  $\mathcal{U}$  can be lifted to a projective unitary representation of  $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)^2$  on  $\mathcal{H}$ . Since  $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)^2$  is simply connected, its projective unitary representations are (roughly) equivalent to the projective unitary representations of the Lie algebra of

 $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1) \times \widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)$ , which is  $\mathrm{Vec}(\mathbb{S}^1) \oplus \mathrm{Vec}(\mathbb{S}^1)$  where  $\mathrm{Vec}(\mathbb{S}^1)$  is the Lie algebra of smooth real vector fields of  $\mathbb{S}^1$ .

The elements of  $\operatorname{Vec}(\mathbb{S}^1)$  are of the form  $f\partial_\theta$  where  $f\in C^\infty(\mathbb{S}^1,\mathbb{R})$  and  $\partial_\theta$  is the unique vector field on  $\mathbb{S}^1$  that is pulled back by  $\exp(\mathbf{i}\cdot):\mathbb{R}\to\mathbb{S}^1$  to  $\partial_\theta\in\operatorname{Vec}(\mathbb{R}^1)$  where  $\theta$  is the standard coordinate of  $\mathbb{R}$  (sending x to x). The Lie bracket of  $\operatorname{Vec}(\mathbb{S}^1)$  is the negative of the Lie derivative, i.e.

$$[f_1\partial_{\theta}, f_2\partial_{\theta}]_{\text{Vec}(\mathbb{S}^1)} = (-f_1\partial_{\theta}f_2 + f_2\partial_{\theta}f_1)\partial_{\theta}$$

The negative choice is due to the fact that the group action of  $g \in \text{Diff}^+(\mathbb{S}^1)$  on  $h \in C^\infty(\mathbb{S}^1)$  is given by  $h \circ g^{-1}$ ; however, the Lie derivative is defined by differentiating  $g \mapsto h \circ g$ .

### 2.6

The complexification  $\mathrm{Vec}_{\mathbb{C}}(\mathbb{S}^1)$  of  $\mathrm{Vec}(\mathbb{S}^1)$  is the Lie algebra of all  $f\partial_{\theta}$  where  $f \in C^{\infty}(\mathbb{S}^1) \equiv C^{\infty}(\mathbb{S}^1,\mathbb{C})$ . Let  $z = e^{\mathrm{i}\theta} \in C^{\infty}(\mathbb{S}^1)$ , which is the inclusion map  $\mathbb{S}^1 \hookrightarrow \mathbb{C}$ . Then we can define  $\partial_z \in \mathrm{Vec}_{\mathbb{C}}(\mathbb{S}^1)$  by

$$\partial_z = \frac{1}{\mathbf{i}z}\partial_\theta$$
 so that  $\partial_\theta = \mathbf{i}z\partial_z = \mathbf{i}e^{\mathbf{i}\theta}\partial_z$  (2.8)

Then  $\mathrm{Vec}_{\mathbb{C}}(\mathbb{S}^1)$  is a \*-Lie algebra, i.e., a complex Lie algebra equipped with an involution  $\dagger$ . For  $\mathrm{Vec}_{\mathbb{C}}(\mathbb{S}^1)$ , the involution is defined by

$$(f\partial_{\theta})^{\dagger} = -\overline{f}\partial_{\theta}$$

so that  $\operatorname{Vec}(\mathbb{S}^1)$  is precisely the set of all  $\mathfrak{x} \in \operatorname{Vec}_{\mathbb{C}}(\mathbb{S}^1)$  satisfying  $\mathfrak{x}^{\dagger} = -\mathfrak{x}$ . In particular, noting  $\overline{z} = z^{-1}$  on  $\mathbb{S}^1$ , we have

$$(\partial_z)^{\dagger} = z^2 \partial_z \tag{2.9}$$

 $\mathrm{Vec}_{\mathbb{C}}(\mathbb{S}^1)$  contains a "sufficiently large" \*-Lie subalgebra, the Witt algebra  $\mathrm{Witt} = \mathrm{Span}_{\mathbb{C}}\{l_n : n \in \mathbb{Z}\}$ , where

$$l_n = z^n \partial_z \tag{2.10}$$

One easily computes that  $l_n^{\dagger} = l_{-n}$ , and that

$$[l_m, l_n] = (m-n)l_{m+n}$$

Projective unitary representations of  $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)$  correspond to (honest) unitary representations of central extensions of  $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)$ , which (roughly) correspond to unitary representations of central extensions of Witt.

It can be shown that the central extensions of Witt are equivalent to the **Virasoro algebra Vir**. As a vector space, Vir has basis  $\{C, L_n : n \in \mathbb{Z}\}$ . These basis elements satisfy

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{C}{12}(m^3 - m)\delta_{m+n,0} \qquad [L_n, C] = 0$$
 (2.11a)

$$L_n^{\dagger} = L_{-n} \qquad C^{\dagger} = C \tag{2.11b}$$

Thus, the projective unitary representation of  $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1) \times \widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)$  on  $\mathcal{H}$  can be described by a unitary representation of  $\mathrm{Vir} \oplus \widehat{\mathrm{Vir}}$ . Here,  $\widehat{\mathrm{Vir}} = \{\widehat{C}, \widehat{L}_n : n \in \mathbb{Z}\}$  is isomorphic to  $\mathrm{Vir}$ .

One can decompose a (unitary full) CFT  $\mathcal Q$  into a "direct sum" of CFTs such that C and  $\widehat C$  act as scalars  $c,\widehat c\in\mathbb R$ . (In fact, one can show that  $c,\widehat c\geqslant 0$ .) We call  $(c,\widehat c)$  the **central charge** of the CFT  $\mathcal Q$ . Since  $L_0^\dagger=L_0$  and  $\widehat L_0^\dagger=\widehat L_0$ , one usually assume that  $L_0,\widehat L_0$  act as self-adjoint operators on  $\mathcal H$ .

### 2.8

In a Poincaré invariant QFT, the vacuum vector is fixed by  $P^+(1,d)$ . However, in our CFT  $\mathcal{Q}$ , the vacuum vector  $\Omega$  is not fixed by  $Cf^+(\mathbb{R}^{1,1}_c)$ . In terms of Vir, then  $L_n\Omega$  is not necessarily zero for all n. This phenomenon is related to the fact that an arbitrary one-parameter subgroup  $t \in \mathbb{R} \mapsto g_t \in \widetilde{Diff}^+(\mathbb{S}^1)$ , when each  $g_t$  acts on  $\mathbb{S}^1$  and hence can be viewed as a map  $g_t : \mathbb{S}^1 \to \mathbb{P}^1$ , does not have a sufficiently large domain for the analytic continuation  $z \mapsto g_z$ .

On the other hand, we do have

$$L_n\Omega = 0$$
 if  $n = -1, 0, 1$  (2.12)

(and similarly  $\hat{L}_0\Omega = \hat{L}_{\pm 1}\Omega = 0$ ). These  $L_0, L_{\pm 1}$  span a Lie \*-subalgebra

$$\mathfrak{sl}(2,\mathbb{C}) = \operatorname{Span}_{\mathbb{C}}\{L_0, L_{+1}\}$$

with skew-symmetric part

$$\mathfrak{su}(2) := \{ \mathfrak{x} \in \mathfrak{sl}(2, \mathbb{C}) : \mathfrak{x}^{\dagger} = -\mathfrak{x} \} = \operatorname{Span}_{\mathbb{R}} \left\{ \mathbf{i} l_0, \frac{l_1 - l_{-1}}{2}, \frac{\mathbf{i} (l_1 + l_{-1})}{2} \right\}$$
(2.13)

As we will see in the future, the one-parameter group generated by  $(l_1 - l_{-1})/2$  is related to the PCT symmetry of the CFT.

The Lie subgroup of  $\mathrm{Diff}^+(\mathbb{S}^1)$  with Lie algebra  $\mathfrak{su}(2)$  is  $\widetilde{\mathrm{PSU}}(1,1)$ , , the universal cover of the Möbius group  $\mathrm{PSU}(1,1)$  whose elements are linear fractional transforms

$$z \in \mathbb{P}^1 \mapsto \frac{\alpha z + \beta}{\overline{\beta}z + \overline{\alpha}}$$
 where  $\alpha, \beta \in \mathbb{C}, |\alpha|^2 - |\beta|^2 = 1$ 

The condition  $|\alpha|^2 - |\beta|^2 = 1$  is to ensure that the transform sends  $\mathbb{S}^1$  to  $\mathbb{S}^1$ . The exact sequence (2.3) restricts to

$$1 \longrightarrow \mathbb{Z} \longrightarrow \widetilde{\mathrm{PSU}}(1,1) \longrightarrow \mathrm{PSU}(1,1) \longrightarrow 1$$
 (2.14)

where  $\mathbb{Z}$  is freely generated by "the anticlockwise rotation by  $2\pi$ ". Thus, the projective action  $\mathcal{U}(g)$  of any g in  $\widetilde{\mathrm{PSU}}(1,1) \times \widetilde{\mathrm{PSU}}(1,1) \subset \widetilde{\mathrm{Diff}^+}(\mathbb{S}^1) \times \widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)$  fixes  $\Omega$  up to  $\mathbb{S}^1$ -multiplications. Now we choose  $\mathcal{U}(g)$  to be the unique one such that  $\mathcal{U}(g)\Omega = \Omega$ . Then  $\mathcal{U}$  gives an (honest) strongly-continuous unitary representation of  $\widetilde{\mathrm{PSU}}(1,1) \times \widetilde{\mathrm{PSU}}(1,1)$  on  $\mathcal{H}$  fixing  $\Omega$ .

### 2.9

A field  $\Phi \in \mathcal{Q}$  is called **chiral** (resp. **antichiral**) if  $\widetilde{\Phi}$  depends only on u (resp. v) but not on v (resp. u). We let  $\mathcal{V}$  resp.  $\widehat{\mathcal{V}}$  be the set of chiral resp. anti chiral fields. They can be viewed as algebraic structures. (We will say more about such structures in the future.)

Let  $\mathcal{H}_0$  (resp.  $\widehat{\mathcal{H}}_0$ ) be the closure of the subspace spanned by  $\varphi(f_1)\cdots\varphi(f_n)\Omega$  where each  $f_i\in C_c^\infty(\mathbb{R}^{1,1}_c)$  and  $\varphi_i\in\mathcal{V}$  (resp.  $\varphi_i\in\widehat{\mathcal{V}}$ ). Then  $\mathcal{H}_0$  can be viewed as a (unitary) representation of  $\mathcal{V}$ , called the **vacuum representation**. Clearly  $\Omega\in\mathcal{H}_0\cap\widehat{\mathcal{H}}_0$ .

A basic assumption of unitary full CFT is the existence of orthogonal decomposition

$$\mathcal{H} = \bigoplus_{i \in \mathfrak{I}} \mathcal{H}_i \otimes \widehat{\mathcal{H}}_i \qquad \supset \mathcal{H}_0 \otimes \widehat{\mathcal{H}}_0$$
 (2.15)

where each  $\mathcal{H}_i$  (resp.  $\hat{\mathcal{H}}_i$ ) is an irreducible unitary representation of  $\mathcal{V}$  (resp.  $\hat{\mathcal{V}}$ ). Here,  $\bigoplus$  could be a finite, or infinite discrete, or even continuous (i.e. a direct integral). A large class of important CFTs are called **rational CFTs**, which means that the direct sum is finite. Here,  $\mathcal{H}_0$  is identified with  $\mathcal{H}_0 \otimes \Omega$  so that it can thus be viewed as a subspace of  $\mathcal{H}$ ; similarly  $\hat{\mathcal{H}}_0 \simeq \Omega \otimes \hat{\mathcal{H}}_0$ . Therefore, with respect to the decomposition (2.15), the vacuum vector  $\Omega \in \mathcal{H}$  can be written as  $\Omega \otimes \Omega$ .

### 2.10

From now on, we slightly change our notation a bit:

**Convention 2.4.** An element of  $\widetilde{\mathrm{Diff}}^+(\mathbb{S}^1)$  is not viewed as a function  $\widetilde{f}: \mathbb{R} \to \mathbb{R}$ , but rather a multivalued smooth function  $f: \mathbb{S}^1 \to \mathbb{S}^1$  related to the original  $\widetilde{f}$  by

$$f(e^{\mathbf{i}\theta}) = \widetilde{f}(\theta)$$

Following this convention, and similar to (2.8), we define

$$f'(e^{i\theta}) \equiv \partial_z f(e^{i\theta}) = \frac{\widetilde{f}'(\theta)}{ie^{i\theta}}$$
 (2.16)

Similarly, for each  $\Phi \in \mathcal{Q}$ , we let

$$\mathring{\Phi}(e^{\mathbf{i}u}, e^{\mathbf{i}v}) \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \widetilde{\Phi}(u, v) = \Phi\left(\frac{u+v}{2}, \frac{u-v}{2}\right)$$
 (2.17)

viewing  $\Phi$  as a multivalued function on  $\mathbb{S}^1 \times \mathbb{S}^1$ .

Although the projective unitary representation  $\mathcal{U}$  of  $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)^2$  does not fix  $\Omega$  up to  $\mathbb{S}^1$ -multiplications, similar to (1.4), there is a large class of  $\Phi \in \mathcal{Q}$ , called **primary fields**, satisfying the **conformal covariance property**: For each such  $\Phi$ , there exist  $\delta, \widehat{\delta} \in \mathbb{R}_{\geqslant 0}$  (called the **conformal weights** of  $\Phi$ ) such that for all  $(g,h) \in \widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)^2$  and

$$\mathcal{U}(g,h)\mathring{\Phi}(e^{\mathbf{i}u},e^{\mathbf{i}v})\mathcal{U}(g,h)^{-1} = g'(e^{\mathbf{i}u})^{\delta}h'(e^{\mathbf{i}v})^{\hat{\delta}} \cdot \mathring{\Phi}(g(e^{\mathbf{i}u}),h(e^{\mathbf{i}v}))$$
(2.18)

in the sense of smeared operators.

### 2.11

In the special case that  $\varphi \in \mathcal{V}$ , then (2.1) says that  $\mathring{\varphi}$  is a single-valued function on  $\mathbb{S}^1$ , and hence has a Fourier series expansion

$$\mathring{\varphi}(z) = \sum_{n \in \mathbb{Z}} \mathring{\varphi}_n z^{-n-1} \tag{2.19}$$

So  $\mathring{\varphi}_n = \operatorname{Res}_{z=0} \mathring{\varphi}(z) z^n dz$ . The derivative  $\mathring{\varphi}'(z) = \partial_z \mathring{\varphi}(z)$  is understood in the usual way, i.e.,

$$\dot{\varphi}'(z) = \sum_{n} (-n-1)\dot{\varphi}_n z^{-n-2}$$

Now, writing  $\mathcal{U}(g,1)$  as  $\mathcal{U}(g)$ , then for primary chiral  $\varphi$ , (2.18) becomes

$$\mathcal{U}(g)\mathring{\varphi}(z)\mathcal{U}(g)^{-1} = g'(z)^{\delta} \cdot \mathring{\varphi}(g(z))$$
(2.20)

We simply call  $\delta$  the **conformal weight** of the chiral field  $\varphi$ . If (2.20) only holds for  $g \in \widetilde{PSU}(1,1)$ , we say that the chiral field  $\varphi$  is **quasi-primary**.

**Remark 2.5.** For each primary (resp. quasi-primary) chiral  $\varphi$ , and for each  $m \in \mathbb{Z}$  (resp.  $m = 0, \pm 1$ ), we have

$$[L_m, \mathring{\varphi}(z)] = z^{m+1} \mathring{\varphi}'(z) + \delta \cdot (m+1) z^m \mathring{\varphi}(z)$$
 (2.21a)

Equivalently, for each  $n \in \mathbb{Z}$  we have

$$[L_m, \mathring{\varphi}_n] = -(m+n+1)\mathring{\varphi}_{m+n} + \delta \cdot (m+1)\mathring{\varphi}_{m+n}$$
 (2.21b)

Heuristic proof. Let  $t\mapsto g_t$  be the one-parameter group generated by  $\mathfrak{x}=\sum_m a_m l_m$  (a finite sum) satisfying  $\mathfrak{x}^\dagger=-\mathfrak{x}$ , i.e.,  $\overline{a_m}=-a_{-m}$ . So  $g_0(z)=z$  and  $\partial_t g_t(z)\big|_{t=0}=\sum_m a_m z^{m+1}$ . Set  $X=\sum_m a_m L_m$ . Then, informally, we have

$$\frac{d}{dt}\mathcal{U}(g_t)\mathring{\varphi}(z)\mathcal{U}(g_t)^{-1}\big|_{t=0} = [X,\mathring{\varphi}(z)]$$

Also

$$\frac{d}{dt}\mathring{\varphi}(g_t(z))\big|_{t=0} = \mathring{\varphi}'(z) \cdot \partial_t g_t(z)\big|_{t=0} = \sum_m a_m z^{m+1} \mathring{\varphi}'(z)$$

Since  $\delta \cdot g_0'(z)^{\delta-1} = \delta \cdot \left(\frac{d}{dz}(z)\right)^{\delta-1} = \delta$ , we have

$$\frac{d}{dt}g_t'(z)^{\delta}\big|_{t=0} = \delta \cdot g_0'(z)^{\delta-1} \cdot \partial_t g_t'(z)\big|_{t=0} = \delta \sum_m (a_m z^{m+1})' = \delta \sum_m (m+1)a_m z^m$$

Combining the above three results with (2.20), we get (2.21a).

### 3 Local fields and chiral algebras

In this section, we introduce a rigorous approach to the algebra  $\mathcal{V}$  of chiral fields. We will give an axiomatic description of (the modes of) the chiral fields acting on  $\mathbb{V}$ , the dense subspace of  $\mathcal{H}_0$  with finite  $L_0$ -spectra. (So  $\mathcal{H}_0$  is the Hilbert space completion of  $\mathbb{V}$ .) Some of the proofs will be sketched or even omitted. But details can be found in [Gui-V] (especially Sec. 7 and 8).

### 3.1

Unless otherwise stated, we fix a complex inner product space  $\mathbb{V}$  together with a diagonalizable operator  $L_0 \in \operatorname{End}(\mathbb{V})$  such that the eigenvalues of  $L_0$  belong to  $\mathbb{N}$ . Thus, we have orthogonal decomposition  $\mathbb{V} = \bigoplus_{n \in \mathbb{N}} \mathbb{V}(n)$  where  $\mathbb{V}(n) = \{v \in \mathbb{V} : L_0v = nv\}$ . If  $v \in \mathbb{V}$ , we say that v is **homogeneous** if  $v \in \mathbb{V}(n)$  for some n; in that case we write

$$\operatorname{wt}(v) = n$$

The Hilbert space completion of  $\mathbb{V}$  is denoted by  $\mathcal{H}_{\mathbb{V}}$ . We assume that each  $\mathbb{V}(n)$  is finite-dimensional so that  $\mathbb{V}(n)^{**} = \mathbb{V}(n)$ . Define

$$\mathbb{V}^{\mathrm{ac}} = \prod_{n \in \mathbb{N}} \mathbb{V}(n)$$

the **algebraic completion** of  $\mathbb V$  . Then clearly

$$\mathbb{V} \subset \mathcal{H}_\mathbb{V} \subset \mathbb{V}^{\mathrm{ac}}$$

Note that  $L_0$  acts on  $\mathbb{V}^{\mathrm{ac}}$  in a canonical way by acting on each  $\mathbb{V}(n)$  as  $n \cdot \mathrm{id}$ . Similarly, for each  $q \in \mathbb{C}^{\times}$ ,  $q^{L_0}$  acts on  $\mathbb{V}^{\mathrm{ac}}$ .

For each  $n \in \mathbb{N}$ , we define the projection onto the n-th component

$$P_n: \mathbb{V}^{\mathrm{ac}} \to \mathbb{V}(n) \tag{3.1}$$

Then for any  $\xi \in \mathbb{V}^{ac}$ , it is clear that

$$\xi \in \mathcal{H}_{\mathbb{V}} \qquad \Longleftrightarrow \qquad \sum_{n \in \mathbb{N}} \|P_n \xi\|^2 < +\infty$$
 (3.2)

Note that  $L_0$  and  $q^{L_0}$  commute with  $P_n$ . We also let

$$P_{\leqslant n} = \sum_{k \in \mathbb{N}, k \leqslant n} P_n \tag{3.3}$$

### **Definition 3.1.** An **(homogeneous) field** on $\mathbb{V}$ is an element

$$A(z) = \sum_{n \in \mathbb{Z}} A_n z^{-n-1} \in \operatorname{End}(\mathbb{V})[[z^{\pm 1}]]$$

(where each  $A_n$  is in  $\operatorname{End}(\mathbb{V})$ ) satisfying

$$[L_0, A(z)] = \operatorname{wt}(A) \cdot A(z) + z \partial_z A(z)$$
(3.4a)

for some  $\operatorname{wt}(A) \in \mathbb{N}$  (called the **(conformal) weight)** of A(z); equivalently,

$$[L_0, A_n] = (\text{wt}(A) - n - 1)A_n$$
 (3.4b)

**Remark 3.2.** Note that by (3.4b), for each d,  $A_n$  restricts to

$$A_n: \mathbb{V}(d) \to \mathbb{V}(d + \operatorname{wt}(A) - n - 1)$$
 (3.5)

Since no nonzero homogeneous vectors can have negative weights, we see that  $A_n v = 0$  when  $n \gg 0$ , and that  $\langle A_n \cdot | v \rangle = 0$  when  $n \ll 0$ . Thus

$$A(z)v \in \mathbb{V}((z)) \tag{3.6}$$

for each homogeneous  $v \in \mathbb{V}$ , and hence for all  $v \in \mathbb{V}$ . This is called the **lower truncation property**.

Note that  $A_n$  can be extended to  $A_n^{\text{tt}}: \mathbb{V}^{\text{ac}} \to \mathbb{V}^{\text{ac}}$ . We abbreviate  $A_n^{\text{tt}}$  to  $A_n$  when no confusion arises.

**Example 3.3.** The field  $\mathbf{1}(z) = \mathrm{id}_{\mathbb{V}}$  is called the **vacuum field**. By (3.4), we clearly have

$$\operatorname{wt}(\mathbf{1}) = 0$$

### 3.3

Let A(z) be a homogeneous field. By (3.5), we have a well defined linear map  $(A_n)^{\dagger}: \mathbb{V} \to \mathbb{V}$  being the formal adjoint of  $A_n$ , i.e.,

$$\langle A_n u | v \rangle = \langle u | (A_n)^{\dagger} v \rangle$$

This is because the restriction  $A_n: \mathbb{V}(d) \to \mathbb{V}(d+\operatorname{wt}(A)-n-1)$  has an adjoint due the finite-dimensionality. Thus  $(A_n)^{\dagger}$  restricts to

$$(A_n)^{\dagger}: \mathbb{V}(d) \to \mathbb{V}(d - \operatorname{wt}(A) + n + 1)$$
(3.7)

If z is a formal variable, we understand  $\overline{z} \equiv z^{\dagger}$  as the formal conjugate of z. So  $z, \overline{z}$  are mutually commuting formal variables.

**Definition 3.4.** Define the quasi-primary contragredient  $A^{\theta}(z)$  of A(z) to be

$$A^{\theta}(z) = (-z^{-2})^{\text{wt}(A)} A(\overline{z^{-1}})^{\dagger} = (-z^{-2})^{\text{wt}(A)} \cdot \sum_{n \in \mathbb{Z}} (A_n)^{\dagger} z^{n+1}$$
 (3.8)

One shows easily that

$$A_n^{\theta} = (-1)^{\text{wt}(A)} \cdot (A_{-n-2+2\text{wt}(A)})^{\dagger}$$
(3.9)

Comparing (3.9) with (3.7), we see that  $A_n^{\theta}$  restricts to  $\mathbb{V}(d) \to \mathbb{V}(d + \operatorname{wt}(A) - n - 1)$ . Hence  $A^{\theta}$  is homogeneous with weight

$$\operatorname{wt}(A^{\theta}) = \operatorname{wt}(A) \tag{3.10}$$

One checks easily that  $A^{\theta\theta} = A$ .

The reason we need the extra term  $(-z^{-2})^{\text{wt}(A)}$  will be clear when studying PCT symmetry for chiral CFTs in the future. At present, we at least know that part of the reasons we need  $z^{-2}$  and its power wt(A) is because we want (3.10) to be true.

### 3.4

**Remark 3.5.** The field  $A^{\theta}(z)$  can also be understood in the following way: For each  $u, v \in \mathbb{V}$  we have

$$\langle A^{\theta}(z)u|v\rangle = (-z^{-2})^{\operatorname{wt}(A)}\langle u|A(\overline{z^{-1}})v\rangle \tag{3.11}$$

as elements of  $\mathbb{C}[[z^{\pm 1}]]$ . By (3.6), the LHS resp. RHS is in  $\mathbb{C}((z))$  resp.  $\mathbb{C}((z^{-1}))$ , we conclude that (3.11) is in  $\mathbb{C}[z^{\pm 1}]$ . Similarly,

$$\langle A(z)u|v\rangle \in \mathbb{C}[z^{\pm 1}]$$

Thus,  $z \in \mathbb{C}^{\times} \to \langle A(z)u|v \rangle \in \mathbb{C}$  is a holomorphic function with finite poles at  $0, \infty$ , and (3.11) holds in  $\mathscr{O}(\mathbb{C}^{\times})$ . It follows that for each  $m, n \in \mathbb{V}$ ,

$$z \in \mathbb{C}^{\times} \mapsto P_m A(z) P_n$$

is an  $\operatorname{Hom}(\mathbb{V}(n),\mathbb{V}(m))$ -valued holomorphic function.

**Proposition 3.6.** Let  $u, v \in \mathbb{V}$ . Let A be a homogeneous field. Then for each  $z, q \in \mathbb{C}^{\times}$  we have

$$\langle q^{L_0} A(z) q^{-L_0} u | v \rangle = q^{\text{wt}(A)} \cdot \langle A(qz) u | v \rangle$$
 (3.12)

In short, we have  $q^{L_0}A(z)q^{-L_0}=q^{\mathrm{wt}(A)}A(qz)$  as linear maps  $\mathbb{V}\to\mathbb{V}^{\mathrm{ac}}$ . Compare this with Eq. (2.20).

*Proof.* For each fixed  $q \in \mathbb{C}^{\times}$ , by expanding both sides of (3.12) as Laurent series of z, we see that (3.12) is equivalent to

$$\langle q^{L_0} A_n q^{-L_0} u | v \rangle = q^{\text{wt}(A) - n - 1} \langle A_n u | v \rangle \tag{3.13}$$

By linearity, it suffices to assume that u, v are homogenous. In that case, this relation follows immediately from (3.5).

## Index

| H-bounds of order $r$ , 60                  | Spacelike (separated), 4                                                    |
|---------------------------------------------|-----------------------------------------------------------------------------|
| a.l.u.=absolute and locally uniform, 29     | Time reversal, 10                                                           |
| Algebraic completion, 25                    | Unitary Lie algebra, 38                                                     |
| Antiunitary, 3                              | Unitary virasoro field $T(z)$ , 36                                          |
| Bisognano-Wichmann theorem, 14              | Vacuum with respect to a field, 30                                          |
| Central charge, 21, 36                      | Virasoro algebra Vir, 21                                                    |
| Chiral algebra, 37                          | Witt algebra Witt, 20                                                       |
| Chiral/antichiral fields, 22                | 1, the vacuum field, 26                                                     |
| Configuration space, 2                      |                                                                             |
| Conformal chiral algebra, 38                | $A^{\theta}(z)$ , the quasi-primary contragredient                          |
| Conformal weight, 23, 26                    | of $A(z)$ , 27                                                              |
| Current algebra, 39                         | A(f), the smeared field of $A(z)$ , 44                                      |
| Current field, 39                           | $A(f)^{\dagger}$ , 47                                                       |
| Dong's lemma, 35                            | $A_k B$ where $A, B$ are local fields, 32                                   |
| Energy bounds and energy bounded, 42        | $A_{(n)}$ , 47                                                              |
| Haag duality, 14                            | antilinear, 3                                                               |
| Invariant core, 45                          | $Cf^{+}(\mathbb{R}^{1,1}_{c}), 19$                                          |
| Invariant inner product, 38                 | $\operatorname{Conf}^n(X), 2$                                               |
| Involution, 38                              | Com(X), Z                                                                   |
| Level of a current algebra, 39              | $\mathrm{Diff}^+(\mathbb{S}^1)$ , 16                                        |
| Linear energy bounds, 42                    | $\widetilde{\mathrm{Diff}^+}(\mathbb{S}^1)$ , 17                            |
| Local fields, 28                            | $dz_{\bullet}$ , 50                                                         |
| Locality, 5                                 | με•, σο                                                                     |
| Lorentz boost, 14                           | $\mathcal{H}_{\mathbb{V}}$ , the Hilbert space completion of $\mathbb{V}$ , |
| Lorentz boost $\Lambda$ , 10                | 25                                                                          |
| Lorentz group $SO^+(1,d)$ , 4               | $\mathcal{H}^r_{\mathbb{V}},\mathcal{H}^{\infty}_{\mathbb{V}}$ , 41         |
| Lower truncation property, 26               |                                                                             |
| Mobius group $PSU(1,1)$ , 21                | $I_{\bullet}=I_1\times\cdots\times I_N$ , 50                                |
| Mutually local fields, 28                   | $l_n=z^n\partial_z$ , 20                                                    |
| Parity transformation, 10                   | $v_n = z \cdot v_z$ , 20                                                    |
| PCT operator, 12                            | $o_H(h^n)$ , 63                                                             |
| Poincaré group $P^+(1, d)$ , restricted, 4  |                                                                             |
| Primary field, 38                           | PCT, 12                                                                     |
| Projective unitary representation, 19       | $P_n: \mathbb{V}^{\mathrm{ac}} \to \mathbb{V}(n), 25$                       |
| Rational CFT, 22                            | $P_{\leq n}$ , 25                                                           |
| Self-local fields, 28                       | $PSU(1,1)$ and $\widetilde{PSU}(1,1)$ , 21                                  |
| Smeared field, 6                            | ID 1.1 16                                                                   |
| Smeared field (as linear operator on        | $\mathbb{R}^{1,1}_{c}$ , 16                                                 |
| $\mathcal{H}_{\mathbb{V}}^{\infty}$ ), $47$ | $\mathfrak{su}(1,1)$ , 21                                                   |
| Smooth vectors, 41                          |                                                                             |
|                                             | $\mathbb{V}^{\mathrm{ac}}$ . 25                                             |

```
\operatorname{Vec}(\mathbb{S}^1), 20 \operatorname{Vec}_{\mathbb{C}}(\mathbb{S}^1), 20 \|\cdot\|_r, the r-th Sobolev inner product, 41 \|\cdot\|_r, the r-th Sobolev norm, 41 \int_{I_{\bullet}} F(z_{\bullet}) dz_{\bullet}, 50, 52
```

### References

- [Apo] Apostol, Tom (1974), Mathematical analysis, second edition, Addison–Wesley.
- [CKLW18] Carpi, S., Kawahigashi, Y., Longo, R., & Weiner, M. (2018). From vertex operator algebras to conformal nets and back (Vol. 254, No. 1213). American Mathematical Society.
- [FL74] Faris, W. G., & Lavine, R. B. (1974). Commutators and self-adjointness of Hamiltonian operators. Communications in Mathematical Physics, 35, 39-48.
- [GJ] Glimm, J., & Jaffe, A. (1981). Quantum physics: a functional integral point of view. Springer Science & Business Media.
- [Gui-S] Gui, B. (2021). Spectral Theory for Strongly Commuting Normal Closed Operators. See <a href="https://binguimath.github.io/">https://binguimath.github.io/</a>
- [Gui-V] Gui, B. (2022). Lectures on Vertex Operator Algebras and Conformal Blocks. See <a href="https://binguimath.github.io/">https://binguimath.github.io/</a>
- [Haag] Haag, G. Local quantum physics. Fields, particles, algebras. 2nd., rev. and enlarged ed. Berlin: Springer-Verlag (1996)
- [Tol99] Toledano-Laredo, V. (1999). Integrating unitary representations of infinite-dimensional Lie groups. Journal of functional analysis, 161(2), 478-508.
- [Was-10] Wassermann, A. (2010). Kac-Moody and Virasoro algebras. arXiv preprint arXiv:1004.1287.

YAU MATHEMATICAL SCIENCES CENTER, TSINGHUA UNIVERSITY, BEIJING, CHINA. *E-mail*: binguimath@gmail.com