Chapter 8 Review Questions

Question 1.

Confidentiality is the property that the original plaintext message cannot be determined by an attacker who intercepts the ciphertext-encryption of the original plaintext message. Message integrity is the property that the receiver can detect whether the message sent (whether encrypted or not) was altered in transit. The two are thus different concepts, and one can have one without the other. An encrypted message that is altered in transmit may still be confidential (the attacker cannot determine the original plaintext) but will not have message integrity if the error is undetected. Similarly, a message that is altered in transit (and detected) could have been sent in plaintext and thus would not be confidential.

Ouestion 2.

(i) User's laptop and a web server; (ii) two routers; (iii) two DNS name servers.

Question 3.

One important difference between symmetric and public key systems is that in symmetric key systems both the sender and receiver must know the same (secret) key. In public key systems, the encryption and decryption keys are distinct. The encryption key is known by the entire world (including the sender), but the decryption key is known only by the receiver.

Question 9.

One requirement of a message digest is that given a message M, it is very difficult to find another message M' that has the same message digest and, as a corollary, that given a message digest value it is difficult to find a message M' that has that given message digest value. We have "message integrity" in the sense that we have reasonable confidence that given a message M and its signed message digest that the message was not altered since the message digest was computed and signed. This is not true of the Internet checksum, where we saw in Figure 8.8 that it easy to find two messages with the same Internet checksum.

Question 10.

No. This is because a hash function is a one-way function. That is, given any hash value, the original message cannot be recovered (given h such that h=H(m), one cannot recover m from h).

Question 11.

This scheme is clearly flawed. Trudy, an attacker, can first sniff the communication and obtain the shared secret s by extracting the last portion of digits from H(m)+s. Trudy can then masquerade as the sender by creating her own message t and send (t, H(t)+s).

Question 12.

Suppose Bob sends an encrypted document to Alice. To be verifiable, Alice must be able to convince herself that Bob sent the encrypted document. To be non-forgeable, Alice must be able to convince herself that only Bob could have sent the encrypted document (i.e., no one else could have guessed a key and encrypted/sent the document). To be non-reputable, Alice must be able to convince someone else that only Bob could have sent the document. To illustrate the latter distinction, suppose Bob and Alice share a secret key, and they are the only ones in the world who know the key. If Alice receives a document that was encrypted with the key, and knows that she did not encrypt the document herself, then the document is known to be verifiable and non-forgeable (assuming a suitably strong encryption system was used). However, Alice cannot convince someone else that Bob must have sent the document, since in fact Alice knew the key herself and could have encrypted/sent the document.

Question 13.

A public-key signed message digest is "better" in that one need only encrypt (using the private key) a short message digest, rather than the entire message. Since public key encryption with a technique like RSA is expensive, it's desirable to have to sign (encrypt) a smaller amount of data than a larger amount of data.

Question 16.

A nonce is used to ensure that the person being authenticated is "live." Nonces thus are used to combat playback attacks.

Question 17.

Once in a lifetime means that the entity sending the nonce will never again use that value to check whether another entity is "live".