1 Úkol

- 1. Ze změřeného ohybového obrazce zobrazeného na milimetrovém papíru určete mřížkovou konstantu mřížky.
- 2. Pomocí aparatury proměřte ohybové obrazce: mřížky, 2 vybraných štěrbin, 2 vybraných dvojštěrbin. Zpracováním měření určete parametry použitých difrakčních prvků.
- 3. Okalibrujte mikroskopový okulár metodou postupných měření a lineární regresí, odhadněte relativní chybu kalibrace.
- 4. Mikroskopem změřte parametry všech použitých difrakčních prvků.
- 5. Výsledky měření v úkolech č.1, č.2 a č.4 srovnejte a diskutujte, v kterém případě jsou spočtené parametry zatíženy nejmenší chybou.

2 Teorie

2.1 Oprická mřížka

Optická mřížka je optická součástka sloužící k ohybu světla. Tento ohyb je svázán rovnicí

$$\sin \varphi = \frac{k\lambda}{a},\tag{1}$$

kde φ je úhel pod kterým vychází kolmo dopadající paprsek, k přiroené číslo a a vzálenost mezi vrypy na mřížce. Mřížková konstanta se definuje jako převrácená hodnota a.

2.2 Štěrbina a dvojstěrbina

Dle [3] dochází na stětbinách také k ohybu. Vlivem drahových rozdílů následně vzniká na stínítku interferenční obrazec. Pro štěrbinu platí

$$I = I_0 \frac{\sin^2(\frac{\pi b}{\lambda}\sin\varphi)}{(\frac{\pi b}{\lambda}\sin\varphi)^2},\tag{2}$$

kde I_0 je maximum, které nastává pro úhel $\varphi = 0$, b je šířka stěrbiny.

Pro dvojštěrbinu výraz podobný

$$I = I_0 \frac{\sin^2(\frac{\pi b}{\lambda}\varphi)}{(\frac{\pi b}{\lambda}\varphi)^2} \cos^2(\frac{\pi a}{\lambda}\varphi), \qquad (3)$$

kde a je vzdálenost středů stěrbin.

k	x_{k1}/mm	$-x_{k2}/\mathrm{mm}$	x_k/mm	a^{-1}/mm^{-1}
1	13.0 ± 0.5	12.0 ± 0.5	13 ± 1	20 ± 2
2	25.5 ± 0.5	25.0 ± 0.5	25 ± 1	20 ± 2
3	38.0 ± 0.5	37.0 ± 0.5	38 ± 1	20 ± 2
4	50.5 ± 0.5	49.0 ± 0.5	50 ± 1	20 ± 2
5	63.0 ± 0.5	62.0 ± 0.5	63 ± 1	20 ± 2
6	75.0 ± 0.5	75.0 ± 0.5	75 ± 1	20 ± 2
7	88.0 ± 0.5	87.0 ± 0.5	88 ± 1	20 ± 2
8	100.0 ± 0.5	100.0 ± 0.5	100 ± 1	20 ± 2
9	103.0 ± 0.5	103.0 ± 0.5	103 ± 1	18 ± 2
10	116.0 ± 0.5	115.0 ± 0.5	116 ± 1	18 ± 2

Tabulka 1: Výsledky měření mřížky s pomocí milimetrového papíru.

3 Měření

3.1 Mřížková konstanta

Po nastavení stínítka do ohniska čočky v aparatuře (f = 1 m) jsem na milimetrový papír zanesl ohybový obrazec vzniklý ze mnou požité mřížky. Odečtené hodnoty jsou vzhledem k bodu nultého řádu v tabulce 1 včetně dopočteného průberu a odpovídající mřížkové konstantě ($\lambda = 632.8$ nm).

Po statistickém vyhodnocení a vypuštěním dvou posledních naměřených hodnot (z důvodu vyšší nepřesnosti při odečítání) jsem získal mřížkovou konstantu

$$a^{-1} = (20 \pm 1) \text{mm}^{-1} \tag{4}$$

Dominantní složka chyby byla nepřesnost milimetrového papíru.

Dále jsem k měření použil čidla, které jsem opět umístil do ohniska použité čočky. Data byla zanamenávána za pomoci počítače. Výsledný graf je na obrázku 1. Z něj jsem za pomoci programu gnuplot odečetl maximální hodnoty a opět vyhodnotil mřížkovou konstantu. V tomto případě mi vyšlo

$$a^{-1} = (19.24 \pm 0.02) \text{mm}^{-1}$$
 (5)

Dle šířky píků jsem chybu odhadl na 0.1 %.

3.2 Stěrbina

Čidlo jsem dále použil pro měření dvou štěrbin různé šířky. Výsledky jsou na obrázku 2 a 3. Na naměřené hodnoty jsem nafitoval křivky odpovídající předpisům z rovnic 2 a 3. Z toho jsem získal parametry štěrbin. Grafy jsou také posunuty, aby bylo maximum v bodě

x/mm	x/d. mik.
0.0	0.48
0.1	1.08
0.2	1.78
0.3	2.38
0.4	2.98
0.5	3.59
0.6	4.15
0.7	4.79
0.8	5.37
0.9	5.98
1.0	6.60
1.1	7.17
1.2	7.78
1.3	8.38
1.4	9.00
1.5	9.62

Tabulka 2: Hodnoty z kalibrace mikroskopu

nula. Konkrétně rozměr štěrbin A a C

$$b_{StA} = (0.1227 \pm 0.0001) \text{mm}$$
 (6)

$$b_{StC} = (0.4514 \pm 0.0008) \text{mm}$$
 (7)

Pro dvojštěrbiby vyšlo

$$b_{DStA} = (0.1183 \pm 0.0006) \text{mm}$$
 (8)

$$a_{DStA} = (0.6106 \pm 0.0005) \text{mm}$$
 (9)

$$b_{DStC} = (0.2015 \pm 0.0002) \text{mm}$$
 (10)

$$a_{DStC} = (1.2049 \pm 0.0003) \text{mm}$$
 (11)

3.3 Mikroskop

Pro měření za pomoci mikroskopu se nejdříve musela provést jeho kalibrace. K tomu jsem použil přiloženou stupnici a odpovídající hodnoty odečtené na mikroskopu jsou v tabulce 2. Z nich jsem sestavil kalibrační křivku 6, z které jsem stanovil velikost jednoho dílku mikroskopu

$$d_m ik = (0.1652 \pm 0.0005) \text{mm} \tag{12}$$

a následně naměřil rozměry zkoumaných předmětů 3.

	x/d. mik.	x/mm
a_{mriz}	0.335	0.0553 ± 0.0002
b_{StA}	0.77	0.127 ± 0.001
b_{StC}	2.85	0.471 ± 0.001
b_{DStA}	0.76	0.126 ± 0.001
a_{DStA}	3.71	0.613 ± 0.001
b_{DStC}	1.30	0.215 ± 0.001
a_{DStC}	7.35	1.214 ± 0.001

Tabulka 3: Hodnoty naměřené mikroskopek

Dikuze 4

Měření za pomoci milimetrového papíru se ukázalo být vcelku přesné pro stanovení přibližné hodnoty. Jeho chyba se však od ostatních metod lišila o celý řád. Jako nejpřesnější hodnotím interferenční jevy. Fitování na naměřené hodnoty sice bylo často zdlouhavé a zejména u dvoujštěrbiny C jsem narazil na problém s rozpoznávací schopností čidla. Relativní chyba je však nejmenší. U mikroskopu navíc není zcela přesně započítána chyba způsobená nepřesností kalibrační stupnice. Největším problémem při fitování za pomoci programu gnuplot byla potřeba přibližných hodnot, kolem kterých se má fitovat, k čemuž jsem samozřejmě použil hodnoty z měření mikroskopem. Bez těchto hodnot by bylo celé fitování téměř nemožné.

Závěr 5

Změřil jsem mřížkovou konstantu ohybové mřížky třemi metodami. Hodnoty jsou v pořadí milimetrový papír, čidlo, mikroskop.

$$a^{-1} = (20 \pm 1) \text{mm}^{-1}$$
 (13)

$$a^{-1} = (19.24 \pm 0.02) \text{mm}^{-1}$$
 (14)
 $a^{-1} = (18.03 \pm 0.07) \text{mm}^{-1}$ (15)

$$a^{-1} = (18.03 \pm 0.07) \text{mm}^{-1}$$
 (15)

Změřil jsem rozměry dvou různých štěrbin a to v pořadí za pomoci čidla a mikroskopem.

$$b_{StA} = (0.1227 \pm 0.0001) \text{mm}$$
 (16)

$$b_{StC} = (0.4514 \pm 0.0008) \text{mm} \tag{17}$$

$$b_{StA} = (0.127 \pm 0.001) \text{mm}$$
 (18)

$$b_{StC} = (0.471 \pm 0.001) \text{mm}$$
 (19)

Obrázek 1: Ohybový obrzec mřížky

Změřil jsem rozměry dvou různých dvojštěrbin opět dvěmi metodami.

$b_{DStA} =$	(0.1183 ± 0.0006) mm	(20)
$a_{DStA} =$	$(0.6106 \pm 0.0005) \text{mm}$	(21)
$b_{DStC} =$	$(0.2015 \pm 0.0002) \mathrm{mm}$	(22)
$a_{DStC} =$	(1.2049 ± 0.0003) mm	(23)
$b_{DStA} =$	$(0.126 \pm 0.001) \text{mm}$	(24)
$a_{DStA} =$	(0.613 ± 0.001) mm	(25)
$b_{DStC} =$	(0.215 ± 0.001) mm	(26)
$a_{DStC} =$	(1.214 ± 0.001) mm	(27)

Nakalibroval jsem mikroskop. Kalibrační křivka je na obrázku 6.

Obrázek 2: Graf relativní intenzity na stínítku v závislosti na poloze pro štěrbinu A.

Obrázek 3: Graf relativní intenzity na stínítku v závislosti na poloze pro štěrbinu C.

Obrázek 4: Graf relativní intenzity na stínítku v závislosti na poloze pro dvojštěrbinu A.

Obrázek 5: Graf relativní intenzity na stínítku v závislosti na poloze pro dvojštěrbinu C.

Obrázek 6: Kalibrační křivka mikroskopu.

Reference

- [1] Studijní text na praktikum III http://physics.mff.cuni.cz/vyuka/zfp/txt_306.htm (8. 3. 2012)
- $[2]\ \textit{J. Englich: } \mathbf{Zpracování\ výsldků\ fyzikálních\ měření}\ \mathrm{LS}\ 1999/2000$
- [3] prof. RNDr. Petr Malý , DrSc.: Optika Univerzita Karlova v Praze, Nakladatelství Karolinum 2008, první vydání