a. Show that

$$||w_{,x}^h||_{\Omega^e} \le c_I h^{-1} ||w^h||_{\Omega^e}$$

for

- i) the two-node linear element (k = 1); and
- **ii**) the three-node quadratic element (k = 2). Assume the nodes are equally spaced; see Figure 2.25.

Determine the smallest c_I in each case.

b. Show that

$$||w_{,xx}^h||_{\Omega^e} \le c_I h^{-1} ||w_{,x}^h||_{\Omega^e}$$

for the three-node element and determine the smallest c_I .

c. Show that

$$||w_{,xx}^h||_{\Omega^e} \le c_I h^{-2} ||w^h||_{\Omega^e}$$

for the three-node element and determine the smallest c_I .