Problem 1: Sketch the following curves.

1.
$$\vec{r}(t) = t \hat{i} + (2 - t) \hat{j} + (1 + t) \hat{k}, t \le 1$$

2.
$$\vec{r}(t) = (2+t)\hat{i} + (1+t)\hat{j} + (1-t)\hat{k}, 1 \le t \le 2.$$

Problem 2: Sketch the graphs of the following functions of two variables. Use the knowledge quadric surfaces if needed.

1.
$$f(x,y) = x^2$$

2.
$$f(x,y) = 10 - 4x - 5y$$

3.
$$f(x,y) = 2 - x^2 - y^2$$

4.
$$f(x,y) = \sqrt{4x^2 + y^2}$$

5.
$$f(x,y) = \sqrt{4 - 4x^2 - y^2}$$

Problem 3: Sketch the level curves (also called contour curves) of the following functions of two variables for the level values k = -2, -1, 0, 1, 2.

1.
$$f(x,y) = \sqrt{x} + y$$

2.
$$f(x, y) = xy$$

3.
$$f(x,y) = x^2 - y^2$$

$$4. \ f(x,y) = ye^x$$

5.
$$f(x,y) = y - \tan^{-1}(x)$$

Problem 4: Convert the following Cartesian coordinates into cylindrical and spherical coordinates.

$$(-1,1,1)$$
 $(-\sqrt{2},\sqrt{2},1)$ $(1,0,\sqrt{3})$ $(\sqrt{3},-1,2\sqrt{3})$

Problem 5: Convert the following cylinderical coordinates into Cartesian and Spherical coordinates.

$$(4, \pi/3, -2)$$
 $(2, -\pi/2, 1)$ $(\sqrt{2}, 3\pi/4, 2)$

Problem 6: Convert the following spherical coordinates into Cartesian and cylinderical coordinates.

$$(6, \pi/3, \pi/6)$$
 $(3, \pi/2, 3\pi/4)$ $(2, \pi/2, \pi/2)$

Problem 7: Describe and sketch the surface whose equation in cylinderical coordinates is the following

1.
$$r = z$$

$$2. r = 2$$

3.
$$\theta = \pi/6$$

4.
$$r^2 + z^2 = 4$$

5.
$$r = 2\sin\theta$$

Problem 8: Describe and sketch the surface whose equation in spherical coordinates is the following

1.
$$\rho \cos \phi = 1$$

2.
$$\rho = \cos \phi$$

3.
$$\phi = \pi/3$$

4.
$$\rho = \cos \theta \cos \phi$$

5.
$$\theta = \pi$$

Problem 9: Write following Cartesian equations in cylinderical and spherical coordinates.

1.
$$x^2 - x + y^2 + z^2 = 1$$

2.
$$z = x^2 - y^2$$

3.
$$z = x^2 + y^2$$

4.
$$x^2 - y^2 - z^2 = 1$$

Problem 10: Identify and Sketch the surfaces with the following parametric/vector equations.

1.
$$\vec{r}(u,v) = (u+v)\hat{i} + (3-v)\hat{j} + (1+4u+5v)\hat{k}$$

2.
$$x = u^2$$
, $y = u \cos v$, $z = u \sin v$

3.
$$x = (\cos t)(\sec s)$$
, $y = 3(\sin t)(\sec s)$, $z = \tan s$

4.
$$x = 3 \cos t$$
, $y = s$, $z = \sin t$, $-1 \le s \le 1$.

Problem 11: Find the parametric equation for the following surfaces

- 1. The plane through the origin that contains the vectors $\hat{i} \hat{j}$ and $\hat{j} \hat{k}$.
- 2. The part of the hyperboloid $4x^2 4y^2 z^2 = 4$ that lies in front of the yz-plane.
- 3. The part of the ellipsoid $x^2 + 2y^2 + 3z^2 = 1$ that lies to the left of the xz-plane.
- 4. The part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$.
- 5. The part of the cylinder $x^2 + z^2 = 9$ that lies above the xy-plane and between the planes y = -4 and y = 4.