

MIPS based MCU Architecture and Design

שמות המגישים והעורכים:

נועם פרץ, נעם וקנין

המחלקה להנדסת חשמל – קורס מעבדת ארכיטקטורת מעבדים מתקדמת ומאיצי חומרה

תאריך הגשת הדו"ח: 08.08.23

תוכן עניינים

3	MCU Top level block	.1
4	Blocks in top level design	.2
15	Critical Path and Fmax	.3
16	Waveform ModelSim	.4
18	Waveform Quartus Signal Tan	5

MCU block diagram

MCU RTL: 2 Figure

Flow Summary	
< <filter>></filter>	
Flow Status	Successful - Tue Aug 8 05:06:12 2023
Quartus Prime Version	21.1.0 Build 842 10/21/2021 SJ Lite Edition
Revision Name	FPGA_interface
Top-level Entity Name	MCU
Family	Cyclone V
Device	5CSXFC6D6F31C6
Timing Models	Final
Logic utilization (in ALMs)	1,446 / 41,910 (3 %)
Total registers	1173
Total pins	107 / 499 (21 %)
Total virtual pins	0
Total block memory bits	98,304 / 5,662,720 (2 %)
Total DSP Blocks	2 / 112 (2 %)
Total HSSI RX PCSs	0/9(0%)
Total HSSI PMA RX Deserializers	0/9(0%)
Total HSSI TX PCSs	0/9(0%)
Total HSSI PMA TX Serializers	0/9(0%)
Total PLLs	0 / 15 (0 %)
Total DLLs	0/4(0%)

MCU Logic Usage :3 Figure

MIPS block diagram

Figure 4 :MIPS RTL

נבחין ברכיבים של הControl, Dmemory, Idecode, Execute, Iftech כפי שראינו במעבדה 5.

	Compilation Hierarchy Node	Combinational ALUTs	Dedicated Logic Registers	Block Memory Bits	SP Block
1	▼ MCU	1931 (83)	1169 (0)	98304	2
1	BasicTimer:TimerMap	216 (213)	109 (106)	0	0
2	▶ GPIO:GPOmap	52 (10)	32 (32)	0	0
3	InterruptController:ICmap	42 (42)	25 (25)	0	0
4	► MIPS:MIPSmap	1533 (0)	1003 (0)	98304	2

Figure 5 :MIPS Logic Usage

MIPS Graphical description :6 Figure

מודול זה זהו הליבה של המעבד (CPU Core), אחראית לרכיבים שתיארנו למעלה תוך גישה ל2 מרחבי זיכרון, של הפקודות (program mem) ושל המידע (data mem). מוציאה החוצה את ערך הdata הנוכחי בעת כתיבה לרכיבים הפריפריילים.

יחד עם זאת כל הרכיבים מאזינים לכתובת שיוצאת מרכיב ולאותות הבקרה של כתיבה וקריאה.

:Port Table

Port Name	Direction	Size	Functionality
PC	OUT	10 bit	Program Counter
			output
ALU_result_out	OUT	32 bit	ALU output
Read_data_1_out	OUT	32 bit	Output read data 1
Read_data_2_out	OUT	32 bit	Output read data 2
Write_data_out	OUT	32 bit	Output of data to be
			written
Instruction_out	OUT	32 bit	Output of
			instruction
reset	IN	bit	reset
clock	IN	bit	clock
Branch_out	OUT	bit	Output indicating
			branch condition
Zero_out	OUT	bit	Zero condtion

המחלקה להנדסת חשמל ומחשבים אוניברסיטת בן-גוריון בנגב

Memwrite_out	OUT	bit	Memory write
_			operation
Regwrite_out	OUT	bit	Register write
			operation
PC_ENA	IN	bit	Enable signal for PC
MemRead_out	OUT	bit	Indicating memory
			read operation
Data_input	IN	32 bits	Input data from the
			bus
GIE_read	OUT	Bit	Output indicating
			GIE status
INTR	IN	Bit	Interrupt request
			input
INTA	OUT	1 bit	Interrupt
			acknowledge output
Finish_timer_routine	OUT	bit	Output indicating
			completion of timer
			routine

MIPS Port Table :Figure 7

GPIO block diagram

GPIO RTL: 8 Figure

	Compilation Hierarchy Node	Combinational ALUTs	Dedicated Logic Registers	Block Memory Bits	,
1	▼ MCU	1931 (83)	1169 (0)	98304	;
1	BasicTimer:TimerMap	216 (213)	109 (106)	0	(
2	▼ GPIO:GPOmap	52 (10)	32 (32)	0	(
	111 6 1 11 61	_ /_\	- (-)	_	Τ.

Figure 9 :GPIO Logic Usage

Figure 10 :GPIO Graphical description

בעזרת רכיב זה נכתוב להקסות (בעזרת HexDecoder) וללדים ע"י צ'יפ סלקט כפי שתואר במטלה.

:Port Table

Port Name	Direction	Size	Functionality
CS	IN	12 bit	Chip select input
A0	IN	Bit	Address bit 0 input
MemRead_out	IN	Bit	Memory read signal
			input
Memwrite_out	IN	Bit	Memory write signal
			input
Data_bus	IN	32 bit	Data bus input
LEDR	OUT	8 bit	LED outputs for
			display
HEXO-HEX5	OUT	7 bits each	Seven-segment
			display outputs
Clock	IN	Bit	Clock

GPIO Port Table :Figure 11

Interrupt Controller block diagram

Interrupt Controller RTL:12 Figure

	Compilation Hierarchy Node	Combinational ALUTs	Dedicated Logic Registers	Block Memory Bits	SP Bloc
1	▼ MCU	1931 (83)	1169 (0)	98304	2
1	▶ BasicTimer:TimerMap	216 (213)	109 (106)	0	0
2	▶ GPIO:GPOmap	52 (10)	32 (32)	0	0
3	InterruptController:ICmap	42 (42)	25 (25)	0	0
	k IMIDCMIDC	4533 (0)	1002 (0)	00004	2

Interrupt Controller Logic Usage :13 Figure

InterruptController:ICmap MemRead_out finish_timer_routine GIE_read **INTAgag** KEY1rq KEY2rq interruptReg[7..0] KEY3rq **BTrq INTR** A10[1..0] Memwrite_out CSgag[11..0] clock reset databus[31..0]

Interrupt Controller Graphical description :14 Figure

רכיב זה אחראי למנגנון הפסיקות, הוצאת הביט INTR לCPU בעת פסיקה וקבלת הרכיב זה אחראי למנגנון הפסיקות, הוצאת הביט Keys. בנוסף הוא אחראי לאשר הפסיקה התקבלה. פסיקה יכולה להיות מהטיימר או מהצפיקות.

:Port Table

Port Name	Direction	Size	Functionality
Clock	IN	Bit	Clock input
Reset	IN	Bit	Reset input
CSgag	IN	12 bit	Complement of chip
			select input
BTrq	IN	Bit	BasicTimer interrupt
			request input
Key1rq	IN	Bit	KEY1 interrupt
			request input
Key2rq	IN	Bit	KEY2 interrupt
			request input
Key3rq	IN	Bit	KEY3 interrupt
			request input
INTAgag	IN	Bit	Complement of
			interrupt
			acknowledge input
INTR	OUT	Bit	Interrupt request
			output
Databus	IN	32 bit	Data bus input
A10	IN	2 bit	Address bits A1-A0
			input
GIE_read	IN	Bit	GIE read input
interruptReg	OUT	8 bit	Interrupt flag,
			interrupt enable,
			type output
MemRead_out	IN	Bit	Memory read input
Memwrite_out	IN	Bit	Memory write input
Finish_timer_routine	IN	bit	Input indicating
			completion of timer
			routine

Interrupt Controller Port Table :Figure 15

Basic Timer block diagram

Figure 16 :Basic Timer RTL

BasicTimer Logic usage :17 Figure

Basic Timer Graphical description :18 Figure

רכיב זה אחראי להוציא פסיקות ע"י הביט Set_BTIFG ולהוציא אות PWM לפי מנייה עולה כפי שתואר במטלה.

:Port Table

Port Name	Direction	Size	Functionality
Clock	IN	Bit	Clock input
Reset	IN	Bit	Reset input
CS	IN	12 bit	chip select input
BTCTL_read	OUT	8 bit	BT control register
			read output
BTCCR0_read	OUT	32 bit	BT compare register
			0 read output
BTCCR1_read	OUT	32 bit	BT compare register
			1 read output
BTCNT_read	OUT	32 bit	Current count value
			read output
MemRead_out	IN	Bit	Memory read input
Memwrite_out	IN	Bit	Memory write input
Databus	IN	32 bit	Data bus input
Output_signal	OUT	Bit	Output signal based
			on duty cycle
Set_BTIFG	OUT	bit	Output to set BTIFG
			interrupt flag

BasicTimer Port Table :Figure 19

Optimized Address Decoder block diagram

Optimized Address Decoder RTL: 20 Figure

Compilation Hierarchy Node	Combinational ALUTs	
▼ MCU	1931 (83)	11
BasicTimer:TimerMap	216 (213)	10
▶ GPIO:GPOmap	52 (10)	32
InterruptController:ICmap	42 (42)	2!
MIPS:MIPSmap	1533 (0)	10
Optimized_Adr:Decodermap	5 (5)	0

Optimized Address Decoder Logic usage :21 Figure

Optimized_Address_Decoder:Decodermap

Figure 22 :Optimized Address Decoder Graphical description

רכיב זה מקבל כתובת ומקודד אותו לצ'יפ סלקט.

:Port Table

Port Name	Direction	Size	Functionality
Address_bus	IN	5 bits	Address bus input
CS	OUT	12 bits	CS outputs

Optimized Address Decoder :Figure 23

Critical Path and fmax

Maximum clock frequency: 24 Figure

Figure 25 :MCU Critical Path

נשים לב שהמסלול הקריטי הוא במעבר בכל התחנות בMIPS ושליחת המידע למודול של הPIO (לכתיבה), קיבלנו תוצאה הגיונית.

Waveform ModelSim

המחלקה להנדסת חשמל ומחשבים אוניברסיטת בן-גוריון בנגב

ניתן לראות שאכן לאחר כל פסיקה הPC חוזר לכתובת שממנה יצא לפסיקה. וכל פסיקה מתבצעת כראוי כך שפסיקה . נראה זאת גם בSignal Tap.

Waveform Quartus Signal Tap

בנוסף נוכל להבחין בlatency של 2 מחזורי שעון מרגע לחיצת הכפתור לפסיקה ועד אחרי פקודה במוכל להבחין בlatency של מחזור אחד בחזרה בפקודת gr 27.

לסיכום, בעזרת פרויקט זה למדנו כיצד מחברים ומתפעלים רכיבים פריפריילים, IO, לליבת MIPS שבנינו. בנוסף התמקצענו במימוש פסיקות מרכיבים אלה בעזרת ה- Interrupt Controller וקווי הפסיקות INTR, INTA.