Question 1	/1
En notant	
Baleine(x): x est une baleine	
Mammifere(x): x est un mammifère	
Poisson(x): x est un poisson	
Animal(x): x est animal Nage(x): x sait nager	
rage(ty The Carriege)	
Une formulation en calcul des prédicats de :	
Les poissons savent nager	
est $\bigcirc (\forall x Poisson(x)) \land Nage(x)$	
$\bigcirc \forall_{x \ (Poisson(x))} \Rightarrow_{Nage(x))}$	
$\bigcirc (\forall x \ Poisson(x)) \Rightarrow Nage(x)$	
$\bigcirc \forall x (Poisson(x) \land Nage(x))$	
Question 2	/1
En notant	
Baleine(x): x est une baleine	
Mammifere(x): x est un mammifère	
Poisson(x): x est un poisson	
Animal(x) : x est animal	
Nage(x): x sait nager	
Une formulation en calcul des prédicats de :	
Tous les poissons savent nager et d'autres mammifères que les baleines aussi	
est : $\bigcirc (\forall x (\neg Poisson(x) \lor Nage(x)) \land \exists x (Mammifere(x) \land Nage(x) \land \neg Baleine(x))$	
$\bigcirc (\forall x \text{ (Poisson(x)} \land \text{Nage(x)}) \land \exists x \text{ (Mammifere(x)} \land \text{Nage(x)} \land \neg \text{Baleine(x)})$	
$\bigcirc (\forall x \ (\text{Nage}(x)) \ \forall (\text{Nage}(x)) \ \forall (\text{Nage}(x)) \ \forall (\text{Nammifere}(x) \ \land \neg \text{Baleine}(x)))$	
O rien de tout ça	
Question 3	/1
En notant	
Baleine(x): x est une baleine	
Mammifere(x) : x est un mammifère	
Poisson(x): x est un poisson	
Animal(x): x est animal	
Nage(x): x sait nager	
Une formulation en calcul des prédicats de :	
Si des poissons ne savent pas nager alors des baleines ne sont pas des mammifères	
est : $\bigcirc (\exists x (Poisson(x) \land \neg Nage(x))) \Rightarrow (\exists x (Baleine(x) \land \neg Mammifere(x)))$	
$\bigcirc (\exists x (Poisson(x) \land \neg Nage(x))) \land (\exists x (Baleine(x) \land \neg Mammifere(x)))$	
$\bigcirc (\ \ \ \ \ \ \ \)) \Rightarrow \neg \text{Nage}(x))) \Rightarrow (\ \ \ \ \ \ \ \ \ \) \Rightarrow \neg \text{Mammifere}(x)))$	
O rien de tout ca	

/ 1

Controle logique SI3

Question 4

On considère les symboles suivants :

Symboles de variables {x,y}

Symboles de prédicats {P (0-aire), Q (0-aire), p (2-aire), q (2-aire), r (3-aire))

Symboles de fonctions {a (0-aire), b(0-aire), f (3-aire), g(2-aire)}

parmi les expressions suivantes, trouver si elle existe celle qui est une formule syntaxiquement correcte

- $\bigcirc p(x,y) \Leftrightarrow_{(\neg q(x,a)} \bigvee_{r(x,y))}$
- $O \exists_{x P(x)}$
- $\bigcirc p(x,y) \Leftrightarrow (f(x,y,a) \lor a=b)$
- $\bigcirc \exists_{x g(x,a)}$
- O il n'y en a pas

Question 5

/1

On considère un graphe, c'est à dire un ensemble de sommets et d'arêtes.

Une arête relie deux sommets distincts ou non.

Un sommetest isolé s'il n'est relié à aucun sommet.

Le predicat binaire p(x,y) est vrai si et seulementsi il y a une arête entre x et y

Tous les sommets sont reliés entre eux • . $\exists x \exists y p(x,y)$

Le graphe n'est pas sans arêtes • $\exists x \forall y p(x,y)$

Aucun sommet n'est isolé • $\forall x \exists y p(x,y)$

Un des sommets est relié à tous les sommets • $\forall x \forall y p(x,y)$

Question 6

/ 1

Soit le langage suivant :

- variable:{x,y,z}
- fonctions: {a (arité 0), s (arité 1), f (arité 2)}
- prédicats {p (arité 2), q (arité 2)}

Et l'interprétation l₂

- DomaineD₂: les entiers naturels impairs
- $F_2:\{f(y,z) \xrightarrow{z} y \times z; a \rightarrow 1; s(x) \rightarrow x+2\}$
- R_2 : {p(x,y) \to x=y; q(x,y) \to x<y}

Cette interprétation est elle un modèle pour les axiomes suivants :

$$\begin{array}{c} \forall \ x \ \forall \ y \ p(f(x,y),f(y,x)) \\ \exists \ x \ [(\ \forall \ y \ p(x,s(y))) \ \bigvee \ p(x,a)] \\ \forall \ x \ \forall \ y \ p(x,y) \ \bigvee \ q(x,y) \ \bigvee \ q(y,x) \end{array}$$

- O oui
- O non

Question 7	/1
Quelles sont les variables liées de la formule; $ [\forall x \ (p(x) \Rightarrow_{\neg} q(y))] \ \bigvee [p(x) \ \bigwedge \ \forall \ y \ p(y)] $ $\bigcirc \{x,y\}$ $\bigcirc \{x\}$	
O aucune	
O {y}	
Question 8	/1
Quelles sont les variables libres et liées de la formule; $ [\forall_{X} (p(x) \Rightarrow_{\neg q(y))}] \ \bigvee[(\exists_{X} q(x) \land \forall_{y} p(y))] $	
O {x,y}	
O {x}	
O aucune	
O {y}	
Question 9	/1
Trouver l'erreur	
O il est possible qu'une formule soit un atome	
O il est posible qu'un atome soit une formule	
O il est possible qu'un terme soit un atome	
O il est possible qu'une proposition soit un atome	
Question 10	
Combieny a t il de variables libres dans la formule suivante : $\{\forall y \ [(\ \exists \ x \ p(x))) \Rightarrow (\ \neg \ q(y) \ \lor \ r(x,y))]\} \ \land (p(z) \ \land \forall u \ \forall v \ q(u,v))$	
Réponse :	
Question 11	/1
Combieny a t il de variables liées dans la formule suivante :	
$\{\forall y [(\exists x p(x))] \xrightarrow{\Rightarrow} (\neg q(y) \lor r(x,y))]\} \land p(z)$	
Réponse :	
Question 12	/1
Quelles sont les variables libres de la formule;	
$\forall_{x (p(x)} \Rightarrow_{\neg q(y))} \bigvee_{(\exists x q(x)} \land \forall_{y p(y))}$	
O {x,y}	
O {x}	
O aucune	
O {y}	

O oui O non

Question 13	/1
Soit le langage suivant : • variable:{x,y,z} • fonctions: {a (arité 0), b (arité 0), g (arité 1), h (arité 1)} • prédicats {p (arité 2), q (arité 2)}	
Et l'interprétation I_1 • Domaine D_1 : les entiers naturels • F_1 :{ $a \rightarrow 0$; $b \rightarrow 1$; $f(x) \rightarrow x + x$; $g(x) \rightarrow x + 3$;} • R1:{ $p(x,y) \rightarrow x = y$; $q(x,y) \rightarrow x < y$ }	
Cette interprétation est elle dans FIN (c'est à dire le domaine est-il finiment engendré)? Rappel : elle l'est si et seulement si tous les éléments du domaine sont des termes sans variable du langage. O oui	
O non	
Question 14	/1
Soit le langage suivant : • variable:{x,y,z} • fonctions: {a (arité 0), b (arité 0), g (arité 1), f (arité 2)} • prédicats {p (arité 2), q (arité 2)}	
Et l'interprétation l₁ • DomaineD₁ : les entiers naturels • F₁:{f(x, y)→x+y; a→0;b→1 :g(x)→x+x} • R1:{p(x,y)→x=y; q(x,y)→x <y}< td=""><td></td></y}<>	
Cette interprétation est elle dans FIN (c'est à dire le domaine est-il finiment engendré)? Rappel : elle l'est si et seulement si tous les éléments du domaine sont des termes sans variable du langage. O oui O non	
Question 15	/1
Soit le langage suivant : • variable:{x,y,z} • fonctions: {a (arité 0), s (arité 1), f (arité 2)} • prédicats {p (arité 2), q (arité 2)}	
Et l'interprétation I_2 • Domaine D_2 : les entiers naturels pairs • F_2 : { $f(x, y) \rightarrow x + x + y$; $a \rightarrow 0$; $s(x) \rightarrow x + 2$ } • R_2 : { $p(x, y) \rightarrow x = y$; $q(x, y) \rightarrow x < y$ }	
Cette interprétation est elle un modèle pour les axiomes suivants : $\forall_x \exists_y p(f(x,y),f(y,x))$ $\forall_x \exists_y p(x,s(y)) \lor_{p(x,a)}$ $\forall_x \forall_y p(x,y) \lor_{q(x,y)} \lor_{q(y,x)}$	

Question 16		/ 2
Associer à chacune des phrases ci-dessous, la formule qui en est une fo • pauvre(x) : x est une personne pauvre • riche(x) : x est une personne riche • mDroits(x, y) : x et y ont légalementles mêmes droits • gLoto(x) : x est un gagnant du loto • imafa(x) : x a fait IMAFA	rmulation en utilisant les prédicats suivants :	
Certains gagnants du loto sont pauvres et ont fait IMAFA • Certaines personnes qui ont fait IMAFA ne sont ni riches ni pauvres • Les riches sont des gagnants du loto ou ont fait IMAFA • Tous les riches qui ont gagné au loto ont fait IMAFA • Les riches sont des gagnants au loto qui ont fait IMAFA •	 ∀x (riche(x) ⇒ (gLoto(x) ∧ IMAFA(x)) ∃x (IMAFA(x) ∧ ¬ riche(x) ∧ ¬ pauvre(x)) ∃x (gLoto(x) ∧ pauvre(x) ∧ IMAFA(x)) ∀x ((riche(x) ⇒ (gLoto(x) ∨ IMAFA(x)) ∀x (riche(x) ∧ gLoto(x)) ⇒ IMAFA(x)) 	
Question 17		/ 2
 En utilisant les prédicats suivants : pauvre(x) : x est une personne pauvre riche(x) : x est une personne riche mDroits(x, y) : x et y ont légalementles mêmes droits 		
quelle(s) formule(s) est(sont) une formulation de la phrase suivante :		
Les pauvres et les riches ont légalementles mêmes droits		
Question 18		/1
Soit la formule :		
$\forall_{x} \forall_{y} \forall_{z [\{p(x,y) \land p(y,z)\}} \Rightarrow_{p(x,z)]}$		
elle signifie que la relation P est : Symétrique Antisymétrique Transitive Réflexive rien de tout cela		

ECOLE POLYTECH NICE SOPHIA 13/10/2016 07:35 - Page 6

Question 19	/ /1
Soit la formule :	
$(\forall_{x}\forall_{y}\forall_{z[\{p(x,y) \bigwedge p(y,z)\}} \Rightarrow_{p(x,z)]} \bigwedge \forall_{x}\forall_{y[p(x,y)} \Rightarrow_{p(y,x)])} \Rightarrow_{(} \forall_{x}p(x,x))$	
est-elle:	
☐ Universellement Valide (i.e. Vraie dans toutes les interprétations)	
☐ Valide mais pas Universellement Valide (i.e. Vraie dans certaines interprétations, mais pas dans toutes)	
☐ Fausse (Vrai dans aucune interprétation)	