综述:??? *

Yyz (23333) 指导老师: xxx

摘 要 这里写你的摘要。

关键词 这里写上你的关键词。当然,非正式的论文可以将这两行注释掉

Summery: Emission, Propagation and Scattering of Electromagnetic Wave

Yuzhe Yang

(Dept. EECS, Peking University, Beijing 100871, China)

Abstract You can write your Abstract here.

Key Words You can write your key words here.

1 引言

这里写你的引言。

2 电磁波概述

$$\begin{cases}
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \\
\nabla \cdot \vec{B} = 0, \\
\nabla \times \vec{B} = \mu_0 \vec{\mathcal{J}} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}, \\
\nabla \cdot \vec{E} = \frac{\rho}{c}
\end{cases} \tag{1}$$

某个 section。

3 电磁波的辐射

另一个 section。

3.1 推迟势

某个 subsection。

在非静态的情况下,引入磁矢势 \vec{A} ($\vec{B} = \nabla \times \vec{A}$),带入麦克斯韦方程组可知

$$\vec{E} + \frac{\partial \vec{A}}{\partial t} = -\nabla \varphi \tag{2}$$

此时 \vec{E} 不再是保守场,我们采用 \vec{A} 和 φ 来描述 电磁场。引入 Lorentz 规范 ^[?],可以推导出在此 规范下有:

$$\begin{cases}
\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \mathcal{J}, \\
\nabla^2 \varphi - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = -\frac{\rho}{\varepsilon_0}.
\end{cases}$$
(3)

上述方程 3被称作 d'Alembert 方程,是一个非齐次的波动方程。我们通过描述 \vec{A} 、 φ 的波动性来描述 \vec{E} 、 \vec{B} 的波动性,以此来描述电磁场。考虑源为变化的电荷/电流,解上述方程可得

$$\begin{cases}
\varphi(\vec{x},t) = \frac{1}{4\pi\epsilon_0} \int_{V} \frac{\rho(\vec{x},t-\frac{r}{c})}{r} dV', \\
\vec{A}(\vec{x},t) = \frac{\mu_0}{4\pi} \int_{V} \frac{\mathcal{J}(\vec{x},t-\frac{r}{c})}{r} dV'.
\end{cases} (4)$$

3.2 辐射场分布

另一个 subsection。

^{*}本文为 xxxxxx 课程第一阶段论文

$$\vec{A}(\vec{x},t) = \vec{A}(\vec{x}) \exp(-i\omega t),$$
 where
$$\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int_V \frac{\mathcal{J}(\vec{x}') \exp(-ikr)}{r} dV'.$$
 (5)

3.3 天线

最后一个 subsection。

$$P_{rad} = \int U(\theta, \phi) d\Omega = \int_0^{2\pi} \int_0^{\pi} U(\theta, \phi) \sin \theta d\theta d\phi.$$

$$F = \left| \frac{\sin(\frac{N}{2}kl\cos\theta)}{\sin(\frac{1}{2}kl\cos\theta)} \right|^2 \tag{6}$$

令 $\psi = \frac{\pi}{2} - \theta$,则第一零点对应的主瓣半角宽度为

$$\psi = \sin^{-1}(\frac{\lambda}{Nl}) \simeq \frac{\lambda}{Nl}$$
(7)

当 $Nl \gg \lambda$ 时,便可以获得高度定向的辐射。 懒得把公式删掉了。

4 电磁波的传播

itemize 用法。

- 距离衰减(波束扩散)
- 大气吸收衰减
- 陆地/海洋边界
- 大气分层边界
- 地形和建筑物

电磁波传播的主要途径有:

* 天波传播: 主要是利用电离层反射进行传播, 波传播距离可超过 1 万千米。

- * 地波传播: 沿陆地/海洋表面传播, 距离几百千米至几千千米。
- * 视距传输: 传播距离约为 $r = \sqrt{2R}(\sqrt{H_1} + \sqrt{H_2})$,易受地面反射干扰。
- * 超视距传播: 利用低层大气的分层特征通过 反射和折射实现超视距传播。

5 电磁波的散射

5.1 电波散射概述

懒得删了。

5.2 数值求解: 计算电磁学

一行行删有点麻烦。

$$\varphi_O = \frac{1}{4} \left(\varphi_A + \varphi_B + \varphi_C + \varphi_D + l^2 \frac{\rho(O)}{\varepsilon(O)} \right), \quad (8)$$

终于弄完勒。

6 总结

在这里写上你的总结。你会发现这篇文章中 有很多地方没有被改动,因为我比较懒。

最后,由于报告中需要加入部分数学表达式,本文档使用了 LaTeX 来编写报告,以获得更优的排版效果 1 。

References

- [1] https://zh.wikipedia.org/wiki.
- [2] 郭硕鸿. 电动力学 (第三版), 高等教育出版社, 2008.6.
- [3] Newton. Philosophiæ Naturalis Principia Mathematica. Jul. 1686.
- [4] 引用的格式根据要求自行定义。

¹You can add some footnotes here.