Effect of tilt on zone plate performance

Sajid Ali¹ & Chris Jacobsen²

¹Applied Physics Northwestern University ²X-ray Science Divison Argonne National Lab

October 28, 2019

Introduction

Analytic limits

Implementation

Results

Introduction

Introduction

Introduction

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Parameters

Results

Soft x-ray

Hard x-ray

Focusing X-Rays

- ightharpoonup Ref. indexightharpoonup complex,slightly < 1
- ➤ Zone plates→ monochromatic diffractive optics.
- Alternate rings of low/high ref. index materials placed such that outgoing waves interfere constructively.

Factors affecting efficiency & resolution

- Spatial resolution limited to finest, outermost zone width.²
- Zones must be thick enough along beam direction to produce a phase shift of π, several um at hard x-ray energy.³

Efficiency & resolution for first order focus⁴

²Baez [1952]; Myers Jr. [1951]

³Kirz [1974]

⁴ Jacobsen [2019]

Scalar theory is not enough

- Scalar approximation assumption → interaction between x-rays and the optic can be treated as one-step diffraction.
- ► Klein-Cook param. : Q_{K-C} indicator of "diffraction regime" ⁵.

Volume effects in 1d gratings

Introduction

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Parameters

Results

Soft x-ray

Hard x-ray

Need for tilt misalignment study ⁸

- As aspect ratios of zone plates go up⁶, degredation of performance due to tilt misalignment becomes more prominent.
- ► Analytic limits⁷ from literature do not account for volume diffraction effects.

⁶Chang und Sakdinawat [2014]; Li et al. [2017a]; Parfeniukas et al. [2017]

⁷Myers Jr. [1951]; Young [1972]

⁸Tilting zones to local bragg angle is not considered here.

Analytic limits

Analytic limits

Analytic limits

- ▶ Based on path length deviation (from no tilt) between marginal, axial ray⁹ $\rightarrow \ell'_u, \ell'_l$.
- Simplified expressions for path length deviation

$$\ell_I = (\ell_0) + \ell_c \theta + \ell_a \theta^2$$

▶ ℓ_0 → convergence to focus, ℓ_c → coma, ℓ_a → astigmatism & field curvature¹⁰.

Path length schematic.

⁹Myers Jr. [1951]; Young [1972]

¹⁰ referred to hereafter as astigmatism only.

Expected behavior

- \blacktriangleright $\frac{\ell_2 \theta^2}{\ell_2 \theta} \propto \frac{\theta}{N.A}$, N.A. \rightarrow numerical aperture.
- ▶ RQW limit¹¹: $\theta_c < \frac{1}{2NN.A.} \mid \theta_a < \frac{1}{\sqrt{3N}}, N \rightarrow \text{number of zones}.$

Implementation

Implementation

Introduction

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Parameters

Results

Soft x-ray

Hard x-ray

Partial Filling

▶ Binary fill on a smaller pixel grid, then downsample!

Partial fill

Introduction

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Parameters

Results

Soft x-ray

Hard x-ray

Multislice

- ▶ "Slice" the object into multiple thin sections¹².
- ► Agrees with rigorous coupled wave theory¹³.

 $^{^{12}}$ Cowley und Moodie [1957], Ishizuka und Uyeda [1977], also known as beam prop. meth. Van Roey et al. [1981]

¹³Li et al. [2017b]

¹⁴ Jacobsen [2019]

PropLong(f)

```
Algorithm 1: Optic simulation using
```

```
\begin{array}{lll} & \text{the multislice method.} \\ * & \text{initialize} & */ \\ \psi(x,y) \leftarrow 1 & \\ * & \text{diffraction within optic} & */ \\ \text{for } n=1, \text{N do} & \\ & \text{SliceDiff}(n) & \\ & \text{PropShort}(\Delta_2) & \\ \text{end} & \\ * & \text{Propagate exit wave by a focal} \\ & \text{length } f \text{ to the focal plane} & */ \end{array}
```

```
Procedure SliceDiff(n)
     /* Apply refractive effect of slice using
     \psi(x,y) = \psi(x,y) \odot \exp\left[i\frac{2\pi\Delta_x}{\lambda}\left(\delta(x,y) + i\beta(x,y)\right)\right];
     return:
Procedure PropShort (\Delta_z)
     /* Free space propagation from source s to
          destination d plane
                                                                                    */
     \psi_s(x,y) \xrightarrow{\mathcal{F}} \Psi(u,v):
     \Psi(u,v) = \Psi(u,v) \odot \exp\left[-i\frac{2\pi\Delta_x}{\lambda}\sqrt{1-\lambda^2(u^2+v^2)}\right];
     \Psi(u,v) \xrightarrow{\mathcal{F}^{-1}} \psi_d(x,v):
     return:
Procedure PropLong(f)
     /* Free space propagation from source s to
         destination d plane
     \psi'(x,y) = \psi_s(x,y) \odot \exp\left[-i\frac{2\pi f}{\lambda}\sqrt{x_s^2 + x_s^2 + f^2}\right];
     \psi'(x, y) \xrightarrow{\mathcal{F}} \Psi'(x, y):
     \Psi_d(x,y) = \Psi'(x,y) \odot \exp\left[-i\frac{2\pi f}{\lambda}\sqrt{x_d^2 + x_d^2 + f^2}\right];
     \psi_d(x,y) = \frac{i\Delta_x^2}{\sqrt{f}} \Psi_d(x,y);
     return:
```

Introduction

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Parameters

Results

Soft x-ray

Hard x-ray

Approaches to simulating tilt misalignment

- ► Two methods to simulating tilt.
 - Optic aligned.
 - ► Wavefiled aligned.
- ▶ Optic aligned → simple, but limited to cases where output grid can capture focus.
- Wavefiled aligned → time consuming but no limit on tilt angle.

Tilt schematic

Optic aligned approach

▶ Apply a phase of $\frac{2\pi}{\lambda}x\tan(\theta)$ at each pixel.

```
Algorithm 2: Optic-aligned approach.
/* For each angle in range of interest
                                                                     */
for i=1,K do
    /* initialize
                                                                     */
    AddPhase(\theta)
    /* diffraction within optic
                                                                     */
    for n=1,N do
        SliceDiff(n)
        PropShort (\Delta_z)
    end
    /* Propagate exit wave by a focal length f to the focal
       plane
    PropLong(f)
end
Procedure AddPhase(\theta)
    /* Apply phase to mimic tilt misalignment
                                                                     */
    \psi(x,y) \leftarrow 1
    \varphi_X = \frac{2\pi\Delta_z}{\lambda} \tan(\theta) x
   \psi(x,y) = \psi(x,y) \odot \exp[i\varphi_x]
    return
```

Wavefield aligned approach

- ▶ Reduce the size of 2D grid to essential area.
- Duplicate slices along propagation direction to create isotropic grid.
- ► Rotate zone plate relative to grid.
- Collapse the grid back along the propagation direction.

```
-Implementation
```

end

Simulating tilt misalignment

```
Algorithm 3: Wavefield-aligned ap-
proach.
/* Reduce the pattern down to
   essential area.
                                 */
Reduce (pattern)
/* For each angle in range of
   interest
                                 */
for i=1.K do
   Rotate (pattern_reduced)
   /* For each slice in a zone
      plate at a given tilt
      misalignment perform
      multislice simulation
                                 */
   for n=1.N do
       Extract (pattern_reduced)
       SliceDiff(n)
       PropShort (\Delta z)
   end
   PropLong(f)
```

```
Procedure Reduce (pattern)
   /* Extract relevant part of zone plate
   /* choose and save appropriate parameters viz.
       number of slices, step size along propagation
       direction
   pattern →pattern_reduced;
   return:
Procedure Rotate (pattern_reduced)
   /* Rotate zone plate pattern
                                                        */
   /* Expand the number of slices along direction of
       propagation to form an isotropic three
      dimensional grid.
   pattern_reduced \xrightarrow{\text{Expand}} pattern_isometric:
   /* Rrotate along axis of rotation
   pattern_isometric Rotation pattern_isometric;
   /* reduce number of slices to number of slices for
      propagation.
   pattern_isometric \xrightarrow{\text{Collapse}} pattern_reduced:
   return:
Procedure Extract (pattern_reduced)
   /* Extract zone plate pattern at slice, expand back
      to grid size neede for propagation.
   pattern_reduced →pattern;
   return:
```

Introduction

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Parameters

Results

Soft x-ray

Hard x-ray

Regime Parameter	Soft X ray	Hard X ray
Photon energy	0.5 keV	10 keV
Outermost zone width dr _N	21.09 nm	21.07 nm
Diameter 2r _N	58.90 μm	58.88 μm
Pixels N _x	55,296	55,296
Input array pixel size Δ_x	4.73 nm	4.73 nm
Output array pixel size Δ_x'	4.73 nm	4.74 nm
Focal length f	0.5 mm	10 mm
Numerical aperture N.A.	3.372°	0.168°
Bragg tilt angle $^{15} heta_{ m B}(r_N)$	1.687°	0.084°
Aberration tilt limit θ_I	0.548°	1.191°
Max tilt θ_f for optic-alig. approach	10.90°	0.75°
Optimum thickness $t_{ m zp,opt}$	0.098 μm	1.975 μm
$t_{\rm zp}$ for $Q=0.333$	0.038 μm	0.759 μm
$t_{\rm zp}$ for $Q=3.333$	0.381 μm	7.594 μm
$t_{ m zp}$ for $Q=10$	1.142 μm	22.782 μm

Results

Results

```
Introduction
```

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Parameters

Results

Soft x-ray

Hard x-ray

└Soft x-ray

Qualitative performance

► Coma predicted.

Soft x-ray

Quantitative performance


```
Introduction
```

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Parameters

Results

Soft x-ray

Hard x-ray

Hard x-ray

Qualitative performance

Astigmatism predicted.

Quantitative performance

Summary

- Systematic study of tilt misalignment conducted.
- Simple analytic models can predict misalignment limits and behavior for thin zone plates.
- ▶ Waveguide effects are important for thick zone plates.

Acknowledgements

- Kenan Li SLAC
- ► Michael Wojcik APS,ANL.
- ► NIMH U01 MH109100

References I

- [Baez 1952] BAEZ, Albert V.: A study in diffraction microscopy with special reference to X-rays. In: Journal of the Optical Society of America 42 (1952), Nr. 10, S. 756–762. – ISBN 0030-3941
- [Chang und Sakdinawat 2014] CHANG, Chieh; SAKDINAWAT, Anne: Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics. In: Nature Communications 5 (2014), Juni, S. 4243
- [Cowley und Moodie 1957] COWLEY, J M.; MOODIE, A F.: The scattering of electrons by atoms and crystals. I. A new theoretical approach. In: Acta Crystallographica 10 (1957), Oktober, Nr. 10, S. 609–619
- [Ishizuka und Uyeda 1977] ISHIZUKA, K.; UYEDA, N.: A new theoretical and practical approach to the multislice method. In: *Acta Crystallographica A* 33 (1977), September, Nr. 5, S. 740–749
- [Jacobsen 2019] JACOBSEN, Chris: X-ray Microscopy. Cambridge, UK: Cambridge University Press, 2019. – ISBN 9781107076570
- [Kirz 1974] KIRZ, J: Phase zone plates for X-rays and the extreme UV. In: Journal of the Optical Society of America 64 (1974), Nr. 3, S. 301–309. – ISBN 0030-3941

References II

- [Klein und Cook 1967] KLEIN, W R.; COOK, B D.: Unified Approach to Ultrasonic Light Diffraction. In: IEEE Transactions on Sonics and Ultrasonics 14 (1967), Juli, Nr. 3, S. 123–134
- [Li et al. 2017a] LI, Kenan; WOJCIK, Michael J.; DIVAN, Ralu; OCOLA, Leonidas E.; SHI, Bing; ROSENMANN, Daniel; JACOBSEN, Chris: Fabrication of hard x-ray zone plates with high aspect ratio using metal-assisted chemical etching. In: Journal of Vacuum Science & Technology B 35 (2017), Nr. 6, S. 06G901. – ISSN 2166-2746
- [Li et al. 2017b] LI, Kenan; WOJCIK, Michael J.; JACOBSEN, Chris: Multislice does it all: calculating the performance of nanofocusing x-ray optics. In: Optics Express 25 (2017), Nr. 3, S. 185–194. – ISSN 1094-4087
- [Myers Jr. 1951] MYERS JR., Ora E.: Studies of Transmission Zone Plates. In: American Journal of Physics 19 (1951), Nr. 6, S. 359–365. – ISSN 00029505
- [Parfeniukas et al. 2017] Parfeniukas, Karolis ; Giakoumidis, Stylianos ; Vogt, Ulrich ; Akan, Rabia: High-aspect ratio zone plate fabrication for hard x-ray nanoimaging. In: *Proceedings SPIE* 10386 (2017), S. 103860S. ISBN 9781510612297

References III

[Van Roey et al. 1981] VAN ROEY, J.; DONK, J. van der; LAGASSE, P. E.: Beam-propagation method: analysis and assessment. In: Journal of the Optical Society of America 71 (1981), Jul, Nr. 7, S. 803–810

[Young 1972] YOUNG, M: Zone Plates and Their Aberrations. In: Journal of the Optical Society of America 62 (1972), Nr. 8, S. 972–976 Backup

Programming details

- Implemented in Python3 using the scientific python stack : NumPy,SciPy
- ► FFT's via pyFFTW
- numexpr for pointwise multiplication
- libvips for 3D rotations
- ► HDF5 for I/O

Waveguide effects at no tilt

