Databázové systémy, zápočtový test č. 2a 2000/2001

Dá	tum:
s Krú <i>ci</i>	známka: s t_skupina má tvar "5PA31"Fakulta Pracovisko Odbor_Zameranie Ročník úžok islo_predmetu má tvar "A602" Povinný/Alernatívny/Voliteľný Semester Číslo edmetu Číslo predmetu
1.	Definujte pomocou príkazov jazyka SQL indexy pre PK a FK vo všetkých reláciách. Pre reláciu <i>prerušenia</i> (os_cislo, sk_rok, dovod) určite PK a FK, napíšte SQL príkaz na vytvorenie tabuľky a indexov pre PK a FK (2)
	Vyjadrite nasledujúce operácie pomocou príkazov jazyka SQL: vložte nového študenta do tabuľky <i>študent</i> - osobné číslo = 1, meno = Dalibor Učený, rodne číslo = 750522/8569, adresu nepoznáme (1)
b)	zmeňte počet kreditov na 15 predmetu, ktorý je najčastejšie opakovaný (2)
c)	zmažte všetky predmety, ktoré v žiadnom školskom roku nemalo zapísaných viac ako 10 študentov (3)
d)	vypíšte menný zoznam všetkých študentov, ktorí majú všetky zapísané predmety absolvované (2)
e)	vypíšte osobné čísla študentov, ktorý nemajú zapísaný ani jeden predmet (2)
f)	vypíšte názvy predmetov, ktoré nik neopakuje (1)

- g) vypíšte menný zoznam študentov, ktorých učí učiteľ s cislom uciteľa = 100 (2)
- h) vypíšte počet študentov na jednotlivých pracoviskách (1)
- i) kaskádovite zmeňte číslo predmetu z V602 na A602(2)
- j) vložte terajším prvákom všetky povinné druhácke predmety pre nový školský rok 2001.
 (3)

Databázové systémy, zápočtový test č. 2b 2000/2001

Dá	tum:
s Krú <i>ci</i>	známka: st_skupina má tvar "5PA31"Fakulta Pracovisko Odbor_Zameranie Ročník sižok sislo_predmetu má tvar "A602" Povinný/Alernatívny/Voliteľný Semester Číslo sedmetu Číslo predmetu
1.	Definujte pomocou príkazov jazyka SQL indexy pre PK a FK hore uvedených relácií. Napíšte SQL príkaz pre vytvorenie tabuľky <i>stipendium(os_cislo, sk_rok, suma, typ)</i> , definujte pomocou SQL indexy pre PK a FK (2)
2. a)	Vyjadrite nasledujúce operácie pomocou príkazov jazyka SQL: vložte nového učiteľy do tabuľky <i>učiteľ</i> - osobné číslo = 1, meno = Dalibor Učený, katedra = KMME , adresu nepoznáme (1)
b)	zrušte učiteľov, ktorí nič neučia (1)
c)	vypíšte názvy predmetov, ktoré nik neučí (1)
d)	vypíšte osobné čísla študentov, ktorí majú zapísaný nejaký predmet a pritom sa ich údaje nenachádzajú v tabuľke <i>student</i> , alebo <i>os_udaje</i> (3)
e)	kaskádovite zmeňte číslo študenta z 500 na 1000 (2)
f)	vypíšte menný zoznam študentov, ktorí majú absolvované všetky povinné predmety od 1. ročníka až po aktuálny (to je jedno, či ten predmet opakoval, alebo nie, ale hlavná vec – má ho urobený) (2)

- g) vypíšte mená študentov s ich bodovou úspešnosťou (1 = 3*kredity, 2=2*kredity, 3=kredity, inak = - kredity)
 - (2)
- h) vypíšte priemery známok podľa školských rokov študenta s osobným číslom 5204 (2)
- zmažte (kaskádovite) všetky údaje o študentovi s rodným číslom = 805511/2247
- j) vypíšte čísla učiteľov, ktorí učia v tomto školskom roku (2000) nejakého prváka (2)

Databázové systémy, zápočtový test č. 2c 2000/2001

Dá	tum:
Krú c i	známka: s t_skupina má tvar "5PA31"Fakulta Pracovisko Odbor_Zameranie Ročník úžok islo_predmetu má tvar "A602" Povinný/Alernatívny/Voliteľný Semester Číslo edmetu Číslo predmetu
	Definujte pomocou príkazov jazyka SQL indexy pre PK a FK pre hore uvedené tabuľky Pomocou príkazov SQL definujte tabuľku <i>opakovania_rocnikov(sk_rok, os_cislo_rocnik)</i> , PK a FK. (2)
a)	Vyjadrite nasledujúce operácie pomocou príkazov jazyka SQL: vložte nový predmet do tabuľky <i>predmet</i> - číslo predmetu = P751, nazov = Objektové databázy, počet kreditov = 8, ranta nepoznáme (1)
b)	zrušte zapísané predmety, ktoré učil učiteľ "Peter Novotný" (1)
c)	vypíšte mená učiteľov, ktorí nič neučia (1)
d)	vypíšte osobné čísla učiteľov, ktorí niečo učia a pritom sa ich údaje nenachádzajú v tabuľke <i>učiteľ</i> (3)
e)	kaskádovite zmeňte číslo predmetu z V606 na A707 (2)
f)	vypíšte mená študentov a ich vek (v rokoch) (1)

- yypíšte priemery známok podľa povinnosti predmetov (povinné, alternatívne, voliteľné) u študenta s osobným číslom 5204
 (2)
- h) vypíšte menný zoznam všetkých študentov, ktorí majú priemer do 1.5 a majú maximálne jeden opakovaný predmet (ak je predmet neabsolvovaný rátajte ho za známku 4)
 (3)
- i) zmažte (kaskádovite) všetky údaje o predmete s číslom = P111(2)
- yypíšte čísla a názvy povinných predmetov pre jednotlivé ročníky
 (2)

Databázové systémy 2000/2001 - zápočtový test č.1a.

Meno:	Študijna
skupina:	Dátum :

- Definujte nasledujúce pojmy:
 (2b)
- databáza
- systém riadenia bázy dát
- entita
- relačná schéma, relácia
- 2. Definujte tri úrovne architektúry databázového systému a popíšte ich. (2b)
- Majme dané dva entitné typy ET1 a ET2. Medzi týmito typmi existuje vzťah ET1 ISA ET2. Aké sú možné kardinality vzťahu medzi ET1 a ET2? Odôvodnite. nakreslite entitný diagram pre entity Osoba, Študent, Učiteľ
 (2b)
- 4. Čo musí platiť pre kľúče dvoch entitných typov ET1 a ET2, aby kardinalita vzťahu ET1:ET2 bola 1:N?
 + nakreslite výskytový diagram (2b)
- 5. Je daná nasledujúca relačná schéma: student(<u>cislo_studenta</u>, meno, rocnik), predmet (<u>cislo_predmetu</u>, nazov, pocet_kreditov) a studium(<u>cislo_studenta, cislo_predmetu</u>, znamka). Primárne kľúče sú v definícii schémy podčiarknuté. Relácia studium reprezentuje vzťah, ktorý vyjadruje, ktoré predmety daný študent študuje a aké známky získal. Databáza bude obsahovať nasledujúce údaje:

Student

cislo_stude nta	Meno	rocnik
S1	Karolína Krátka	5
S2	Marek Sartoris	3
S3	Tomáš Chrenka	1
S2	Jana Pisárová	1

Sti	10	li i	ım

Stadiam			
cislo_stude	Cislo_predm	znamka	
nta	etu		
S1	P2	3	
S1	P1	1	

predmet

cislo_predm	nazov	pocet_kredit
etu		OV
P1	Operačná	8
	analýza	
P2	Databázové	6
	systémy	
P3	Operačná	6
	analýza	

S2	P1	1
S2	P1	1
S3	Р3	2
S3	P4	2

Ukážte, v ktorých miestach databázy sú porušené pravidlá integrity a navrhnite príslušné integritné obmedzenia atribútov a vzťahov, aby daná situácia nemohla nastať.

(3b)

6. Určite kardinalitu a povinné členstvo vo vzťahu dvoch entít *učiteľ* a *predmet*, ktorý vyjadruje vzťah medzi entitami *uciteľ*(os_cislo, rod_cislo, meno, priezvisko, adresa, cis_katedry) a úväzok(os_cislo,cis_predmet, sk_rok) , ktorý vyjadruje výučbu.

Nakreslite a vysvetlite všetky prípustné možnosti (2b)

7. Je daný návrh schémy databázy definovaný entitno-relačným diagramom. Z daného diagramu vytvorte dátový diagram. Definujte v ňom pre všetky tabuľky : primárne kľúče, cudzie kľúče. (5b)

- 8. Koľko primárnych kľúčov obsahuje daná relácia Zamestnanec(os_cislo, rod_cislo, meno, priezvisko, pracovisko, funkcia, dátum_nástupu) (2b)
 - 2. jeden PK PK = os_cislo
 - 3. dva PK PK₁= os_cislo, PK₂= rod_cislo, dátum_nástupu
 - 4. tri PK PK₁=os_cislo, PK₂=rod_cislo, dátum_nástupu, PK₃= os_cislo, dátum_nástupu
 - 5. viac ako tri PK napíšte aké

Databázové systémy 2000/2001 - zápočtový test č.1b.

Meno:	Študijna
skupina :	Dátum :

- Definujte nasledujúce pojmy:
 (2b)
- redundancia dát
- · perzistentné dáta
- Systém riadenia bázy dát
- relačná schéma, relácia
- Popíšte konceptuálnu úroveň architektúry DBS a popíšte zobrazenia medzi úrovňami architektúry.
 (2b)
- Majme dané dva entitné typy ET1 a ET2. Medzi týmito typmi existuje vzťah ET1 ISA ET2. Aké sú možné kardinality vzťahu medzi ET1 a ET2? Odôvodnite

 + nakreslite entitný diagram pre entity Univerzita, Fakulta, Katedra

 (2b)
- 4. Čo musí platiť pre kľúče dvoch entitných typov ET1 a ET2, aby kardinalita vzťahu ET1:ET2 bola 1:N ?

 + nakreslite výskytový diagram

 (2b)
- 5. Je daná nasledujúca relačná schéma: student(<u>cislo_studenta</u>, meno, rocnik), predmet (<u>cislo_predmetu</u>, nazov, pocet_kreditov) a studium(<u>cislo_studenta, cislo_predmetu</u>, znamka). Primárne kľúče sú v definícii schémy podčiarknuté. Relácia studium reprezentuje vzťah, ktorý vyjadruje, ktoré predmety daný študent študuje a aké známky získal. Databáza bude obsahovať nasledujúce údaje:

Student

cislo_stude nta	meno	rocnik
S1	Karolína Krátka	5
S2	Marek Sartoris	3
S3	Tomáš Chrenka	1
S4	Marek Sartoris	5
S3	Jana Pisárová	1
S4	Marek Sartoris	

Studium

predmet

cislo_predm	nazov	pocet_kredit
etu		ov
P1	Operačná	8
	analýza	
P2	Databázové	6
	systémy	
P3	Údajové	6
	štruktúry	
P4	Databázové	18
	systémy	
P1	Programovanie	2
	C	

cislo_stude	Cislo_predm	znamka
nta	etu	
S1	P2	3
S1	P1	1
S2	P1	1
S2	P1	1
S3	P3	2
S3	P5	2

Ukážte, v ktorých miestach databázy sú porušené pravidlá integrity a navrhnite príslušné integritné obmedzenia atribútov a vzťahov, aby daná situácia nemohla nastať. (3)

Určite kardinalitu a povinné členstvo vo vzťahu dvoch entít *učiteľ* a *predmet*, ktorý vyjadruje vzťah medzi entitami *uciteľ*(os_cislo, rod_cislo, meno, priezvisko, adresa, cis_katedry) a predmet(os_cislo,cis_predmet, sk_rok), ktorý reprezentuje výučbu. Nakreslite a vysvetlite všetky prípustné možnosti (2b)

7. Je daný návrh schémy databázy definovaný entitno-relačným diagramom. Z daného diagramu vytvorte dátový diagram. Definujte v ňom pre všetky tabuľky : primárne kľúče, cudzie kľúče.

(5b)

- 8. Koľko primárnych klúčov má daná relácia Telefonny_hovor(id_hovoru, datum, cas, cislo_kto, cislo_komu, dlzka_hovoru) (2b)
 - jeden PK PK =id_hovoru a.
 - b. dva PK $PK_1 = id_hovoru,$

 $PK_2 = cislo_kto, datum, cas$

 $PK_1 = id_hovoru,$ c. tri PK

PK₂= cislo_kto, datum, cas

PK₃= id_hovoru, cislo_komu, datum

d. viac PK napíšte aké sú

Databázové systémy 2000/2001 - zápočtový test č.1c.

Meno:	Študijna
skupina :	Dátum :

- Definujte nasledujúce pojmy (2b)
- doména
- typ entity
- atribút
- · relačná schéma, relácia
- Popíšte internú úroveň architektúry DBS a popíšte zobrazenia medzi úrovňami architektúry.
 (2b)
- Majme dané dva entitné typy ET1 a ET2. Medzi týmito typmi existuje vzťah ET1 ISA ET2. Aké sú možné kardinality vzťahu medzi ET1 a ET2? Odôvodnite nakreslite entitný diagram pre entity Geometrický útvar, Kocka, Štvorec (2b)
- 4. Čo musí platiť pre kľúče dvoch entitných typov ET1 a ET2, aby kardinalita vzťahu ET1:ET2 bola 1:N? Nakreslite výskytový diagram

(2b)

5. Je daná nasledujúca relačná schéma: student(<u>cislo_studenta</u>, meno, rocnik), predmet (<u>cislo_predmetu</u>, nazov, pocet_kreditov) a studium(<u>cislo_studenta</u>, <u>cislo_predmetu</u>, znamka). Primárne kľúče sú v definícii schémy podčiarknuté. Relácia studium reprezentuje vzťah, ktorý vyjadruje, ktoré predmety daný študent študuje a aké známky získal. Databáza bude obsahovať nasledujúce údaje:

student predmet

cislo_stude nta	meno	rocnik
S1	Karolína Krátka	5
S2	Petra Krátka	5
S5	Karolína Krátka	1
S4	Marek Sartoris	5
S5	Petra Handlovská	1
	studium	

	preamet	
cislo_predm	nazov	pocet_kredit
etu		ov
P1	Operačná	8
	analýza	
P3	Databázové	6
	systémy	
P1	Údajové	6
	štruktúry	
P4	Databázové	18
	systémy	
P2	Programovanie	2
	С	

cislo_stude	cislo_predme	znamka
nta	tu	
S1	P5	3
S1	P1	1
S2	P1	1
S2	P1	1
S4	P3	2
S3	P1	2

Ukážte, v ktorých miestach databázy sú porušené pravidlá integrity a navrhnite príslušné integritné obmedzenia atribútov a vzťahov, aby daná situácia nemohla nastať. (3b)

6 Určite kardinalitu a povinné členstvo vo vzťahu dvoch entít *učiteľ* a *predmet*, ktorý vyjadruje vzťah medzi entitami *ucitel(os_cislo, rod_cislo, meno, priezvisko, adresa, cis_katedry)* a *predme(os_cislo,cis_predmet, sk_rok)*, ktorý vyjadruje vzťah výuky. Nakreslite a vysvetlite všetky prípustné možnosti (2b)

7. Je daný návrh schémy databázy definovaný entitno-relačným diagramom. Z daného diagramu vytvorte dátový diagram. Definujte v ňom pre všetky tabuľky : primárne kľúče, cudzie kľúče (5b)

- 8. Koľko primárnych klúčov má daná relácia Rezervacia_izby(cislo_rezervacia, objednavatel, cislo_izby, rezervacia_od, rezervacia_do, datum_rezervacie,zaloha) (2b)
 - a. jeden PK PK =cislo_rezervacie
 - b. dva PK PK₁= cislo_rezervacie,

PK₂= objednavatel, cislo_izby, datum_rezervacie

c. tri PK PK₁= cislo_rezervacie,

PK₂= objednavatel, cislo_izby, datum_rezervacie PK₃= objednavatel, cislo_izby, rezervacia_od

d. viac PK napíšte aké sú

Databázové systémy 1999/2000 - zápočtový test č.1a.

Meno:	Študijna
skupina :	Dátum :

- Definujte nasledujúce pojmy:
 (2b)
- databáza
- systém riadenia bázy dát
- databázový systém
- 6. Definujte tri úrovne architektúry databázového systému a popíšte ich. (2b)
- 7. Majme dané dva entitné typy ET1 a ET2. Medzi týmito typmi existuje vzťah ET1 ISA ET2. Aké sú možné kardinality vzťahu medzi ET1 a ET2? Odôvodnite (2b)
- 8. Čo musí platiť pre kľúče dvoch entitných typov ET1 a ET2, aby kardinalita vzťahu ET1:ET2 bola 1:N? (2b)
- 9. Je daná nasledujúca relačná schéma: student(<u>cislo_studenta</u>, meno, rocnik), predmet (<u>cislo_predmetu</u>, nazov, pocet_kreditov) a studium(<u>cislo_studenta</u>, <u>cislo_predmetu</u>, znamka). Primárne kľúče sú v definícii schémy podčiarknuté. Relácia studium reprezentuje vzťah, ktorý vyjadruje, ktoré predmety daný študent študuje a aké známky získal. Databáza bude obsahovať nasledujúce údaje:

Student predmet

cislo_stude nta	Meno	rocnik
S1	Karolína Krátka	5
S2	Marek Sartoris	3
S3	Tomáš Chrenka	1
S3	Jana Pisárová	1

cislo_predm	nazov	pocet_kredit
etu		ov
P1	Operačná	8
	analýza	
P2	Databázové	6
	systémy	
P3	Údajové	6
	štruktúry	

Studium

cislo_stude	cislo_predme	znamka
nta	tu	
S1	P2	3
S1	P1	1
S2	P1	1
S2	P1	1
S3	P3	2
S3	P4	2

Ukážte, v ktorých miestach databázy sú porušené pravidlá integrity a navrhnite príslušné integritné obmedzenia atribútov a vzťahov, aby daná situácia nemohla nastať.

(3b)

7. Určite povinné členstvo vo vzťahu dvoch entít *učiteľ* a *úväzok*, ktorý vyjadruje vzťah *ucitel(os_cislo, rod_cislo, meno, priezvisko, adresa, cis_katedry)* má *úväzok(os_cislo,cis_predmet, sk_rok)*Nakreslite a vysvetlite všetky prípustné možnosti
(2b)

7. Je daný návrh schémy databázy definovaný entitno-relačným diagramom. Z daného diagramu vytvorte dátový diagram. Definujte v ňom pre všetky tabuľky : primárne kľúče, cudzie kľúče a príkazmi SQL DDL definujte indexy. (7b)

Databázové systémy 1999/2000 - zápočtový test č.1b.

Meno:					Študijna				
sk	up	ina	ı :	 			Dá	tum :	
_	_	٠.			. ,				

- Definujte nasledujúce pojmy:
 (2b)
- redundancia dát
- perzistentné dáta
- Systém riadenia bázy dát
- Popíšte konceptuálnu úroveň architektúry DBS a popíšte zobrazenia medzi úrovňami architektúry.
 (2b)
- 6. Majme dané dva entitné typy ET1 a ET2. Medzi týmito typmi existuje vzťah ET1 ISA ET2. Aké sú možné kardinality vzťahu medzi ET1 a ET2? Odôvodnite (2b)
- 7. Čo musí platiť pre kľúče dvoch entitných typov ET1 a ET2, aby kardinalita vzťahu ET1:ET2 bola 1:N ? (2b)
- 8. Je daná nasledujúca relačná schéma: student(<u>cislo_studenta</u>, meno, rocnik), predmet (<u>cislo_predmetu</u>, nazov, pocet_kreditov) a studium(<u>cislo_studenta, cislo_predmetu</u>, znamka). Primárne kľúče sú v definícii schémy podčiarknuté. Relácia studium reprezentuje vzťah, ktorý vyjadruje, ktoré predmety daný študent študuje a aké známky získal. Databáza bude obsahovať nasledujúce údaje:

student

cislo_stude nta	meno	rocnik
IIIa		
S1	Karolína Krátka	5
S2	Marek Sartoris	3
S3	Tomáš Chrenka	1
S4	Marek Sartoris	5
S3	Jana Pisárová	1

predmet

cislo_predm	nazov	pocet_kredit
etu		ov
P1	Operačná	8
	analýza	
P2	Databázové	6
	systémy	
P3	Údajové	6
	štruktúry	
P4	Databázové	18
	systémy	
P1	Programovanie	2
	С	

studium

cislo_stude	cislo_predme	znamka
nta	tu	
S1	P2	3
S1	P1	1
S2	P1	1
S2	P1	1

S3	Р3	2
S3	P5	2

Ukážte, v ktorých miestach databázy sú porušené pravidlá integrity a navrhnite príslušné integritné obmedzenia atribútov a vzťahov, aby daná situácia nemohla nastať. (3)

6 Určite povinné členstvo vo vzťahu dvoch entít učiteľ a úväzok, ktorý vyjadruje vzťah uciteľ(os_cislo, rod_cislo, meno, priezvisko, adresa, cis_katedry) má úväzok (os_cislo,cis_predmet, sk_rok) Nakreslite a vysvetlite všetky prípustné možnosti (2b)

7. Je daný návrh schémy databázy definovaný entitno-relačným diagramom. Z daného diagramu vytvorte dátový diagram. Definujte v ňom pre všetky tabuľky : primárne kľúče, cudzie kľúče a príkazmi SQL DDL definujte indexy. (7b)

Databázové systémy 1999/2000 - zápočtový test č.1d.

Meno:	Študijna
skupina :	Dátum :

- Definujte nasledujúce pojmy (2b)
- doména
- typ entity
- atribút
- Popíšte konceptuálnu úroveň architektúry DBS a popíšte zobrazenia medzi úrovňami architektúry.
 (2b)
- 7. Majme dané dva entitné typy ET1 a ET2. Medzi týmito typmi existuje vzťah ET1 ISA ET2. Aké sú možné kardinality vzťahu medzi ET1 a ET2? Odôvodnite (2b)
- 8. Čo musí platiť pre kľúče dvoch entitných typov ET1 a ET2, aby kardinalita vzťahu ET1:ET2 bola 1:N ?

 (2b)
- 9. Je daná nasledujúca relačná schéma: student(<u>cislo_studenta</u>, meno, rocnik), predmet (<u>cislo_predmetu</u>, nazov, pocet_kreditov) a studium(<u>cislo_studenta, cislo_predmetu</u>, znamka). Primárne kľúče sú v definícii schémy podčiarknuté. Relácia studium reprezentuje vzťah, ktorý vyjadruje, ktoré predmety daný študent študuje a aké známky získal. Databáza bude obsahovať nasledujúce údaje:

student predmet

cislo_stude	meno	rocnik
nta		
S1	Karolína Krátka	5
S2	Petra Krátka	5
S3	Karolína Krátka	1
S4	Marek Sartoris	5
S3	Petra Handlovská	1

cislo_predm	nazov	pocet_kredit
etu		OV
P1	Operačná	8
	analýza	
P3	Databázové	6
	systémy	
P1	Údajové	6
	štruktúry	
P4	P4 Databázové	
	systémy	
P2	Programovanie	2
	С	

studium

cislo_stude	cislo_predme	znamka
nta	tu	
S1	P5	3
S1	P1	1

S2	P1	1
S2	P1	1
S3	P3	2
S3	P1	2

Ukážte, v ktorých miestach databázy sú porušené pravidlá integrity a navrhnite príslušné integritné obmedzenia atribútov a vzťahov, aby daná situácia nemohla nastať. (3b)

6 Určite povinné členstvo vo vzťahu dvoch entít *učiteľ* a *úväzok*, ktorý vyjadruje vzťah *ucitel(os_cislo, rod_cislo, meno, priezvisko, adresa, cis_katedry)* má *úväzok (os_cislo,cis_predmet, sk_rok)* Nakreslite a vysvetlite všetky prípustné možnosti (2b)

7. Je daný návrh schémy databázy definovaný entitno-relačným diagramom. Z daného diagramu vytvorte dátový diagram. Definujte v ňom pre všetky tabuľky : primárne kľúče, cudzie kľúče a príkazmi SQL DDL definujte indexy. (7b)

Databázové systémy, zápočtový test č. 2a 99/MM

Dá	deno: átum: de daná databáza obsahujúca nasledujúce relácie : student(<u>cislo_studenta</u> , meno, adresa, st_skupi ucitel(<u>cislo_ucitela</u> , meno, katedra, adresa) predmet(<u>cislo_predmetu</u> , nazov, pocet_kreditov vyuka(<u>cislo_studenta, cislo_predmetu</u> , sk_rok,	ina v)	
Kri C i	oznámka: st_skupina má tvar "5PA31"Fakulta Pracov rúžok cislo_predmetu má tvar "A602" Povinný/Alernat redmetu Číslo predmetu		ko Odbor_Zameranie Ročník ny/Voliteľný Semester Číslo
3.	. Nakreslite dátový diagram a definujte pomocou pr FK. (2)	ſĺk	azov jazyka SQL indexy pre PK a
4. k)	 Vyjadrite nasledujúce operácie pomocou príkazov j vložte nového učiteľa do tabuľky uciteľ - osobné čí katedra = KI, adresu nepoznáme (1) 		
1)	zmeňte počet kreditov pre predmet A602 na 10 (1)		
m)) zmažte všetky zapísané predmety, ktoré učia učite (2)	lia	ı KI
n)	vypíšte zoznam študentov, ktorí majú priemer zná (2)	m	ok lepší ako 2
o)	vypíšte zoznam študentov, ktorý nemajú zapísaný (2)	ar	ni jeden predmet
p)	vypíšte zoznam predmetov, ktoré niekto opakuje (2)		
q)	vypíšte zoznam študentov, ktorých učí učiteľ s cislo (2)	om	uciteľa = 100

- r) vypíšte počet študentov na jednotlivých pracoviskách (2)
- s) kaskádovite zmeňte číslo predmetu z V602 na A602 (2)
- t) priraďte všetkým študentom povinné predmety pre nový školský rok 2000. (2)

Databázové systémy, zápočtový test č. 2b 99/MM

_	eno: St. skupina:
	tum:
Kri C i	známka: s t_skupina má tvar "5PA31"Fakulta Pracovisko Odbor_Zameranie Ročník úžok islo_predmetu má tvar "A602" Povinný/Alernatívny/Voliteľný Semester Číslo edmetu Číslo predmetu
3.	Nakreslite dátový diagram a definujte pomocou príkazov jazyka SQL indexy pre PK FK. (2)
k)	Vyjadrite nasledujúce operácie pomocou príkazov jazyka SQL: vložte nového študenta do tabuľky <i>student -</i> osobné číslo = 1, meno = Dalibor Učený, štúdijná skupina = 5P011, adresu poznáme (1)
1)	zrušte učiteľov, ktorí nič neučia (1)
m)	vypíšte zoznam predmetov, ktoré nik neučí (1)
n)	vypíšte osobné čísla študentov, ktorí majú zapísaný nejaký predmet a pritom sa ich údaje nenachádzajú v tabuľke <i>student</i> (3)
o)	kaskádovite zmeňte číslo učiteľa z 500 na 1000 (2)
p)	vypíšte zoznam všetkých študentov, ktorí majú samé jednotky a všetky zapísané predmety majú absolvované (2)

- q) vypíšte mená študentov s ich bodovou úspešnosťou (1 = 3*kredity, 2=2*kredity, 3=kredity, inak = kredity)
 - (2)

- r) vypíšte priemery svojich známok podľa školských rokov (2)
- s) zmažte (kaskádovite) všetky údaje o študentovi s osobným číslom = 1000 (2)
- t) vypíšte zoznam učiteľov, ktorí učia v tomto školskom roku (1999) nejakého prváka (2)

Databázové systémy, zápočtový test č. 2c 99/MM

Me	eno:	St.	skupina:
Dá	átum: daná databáza obsahujúca nasledujúce relácie : student(<u>cislo_studenta</u> , meno, adresa, st_sku ucitel(<u>cislo_ucitela</u> , meno, katedra, adresa) predmet(<u>cislo_predmetu</u> , nazov, pocet_kredit vyuka(<u>cislo_studenta, cislo_predmetu</u> , sk_rok	ipin	a, rod_cislo) garant)
Kri C i	<i>známka:</i> st_skupina má tvar "5PA31"Fakulta Pracúžok tislo_predmetu má tvar "A602" Povinný/Alern edmetu Číslo predmetu		
3.	Nakreslite dátový diagram a definujte pomocou FK. (2)	prík	kazov jazyka SQL indexy pre PK a
k)	Vyjadrite nasledujúce operácie pomocou príkazov vložte nový predmet do tabuľky <i>predmet</i> - číslo predmetu = P751, nazov = Objektové d ranta nepoznáme		
1)	zrušte študentov, ktorí nemajú v tomto šk. roku (1)	(19	99) nič zapísané
m)	vypíšte zoznam učiteľov, ktorí nič neučia (1)		
n)	vypíšte osobné čísla učiteľov, ktorí niečo učia a p tabuľke <i>učiteľ</i> (3)	rito	m sa ich údaje nenachádzajú v
o)	kaskádovite zmeňte číslo študenta z 500 na 1000 (2))	
p)	vypíšte mená študentov a ich vek (v rokoch) (2)		
q)	vypíšte priemery svojich známok podľa povinnos voliteľné) (2)	sti p	predmetov (povinné, alternatívne,

- r) vypíšte zoznam všetkých študentov, ktorí majú samé jednotky a všetky zapísané predmety majú absolvované
 (2)
- s) zmažte (kaskádovite) všetky údaje o predmete s číslom = P111 (2)
- t) vypíšte zoznam povinných predmetov pre jednotlivé ročníky(2)

Databázové systémy, opravný test a 99 / MM

	no: tum:			•••••	S	St.	skupina:		
1.	Definuj (2)	ite nasledujúce	pojm	y:					
•	redund	ancia							
•	perzistencia								
•	nezávis	slosť							
•	integrit	:a							
2.	Majme dané dva entitné typy ET1 a ET2. Medzi týmito typmi existuje vzťah ET1 ISA ET2. Aké sú možné kardinality vzťahu medzi ET1 a ET2? Odôvodnite. (2)								
3.	 Dekomponujte vzťah M:N medzi entitami Študent, Predmet a nakreslite výsledný výskytový diagram. (4) 								
4.	 Aké dáta budú obsahovať systémové tabuľky SYSMENUS a SYSMENUITEMS, ak požadujeme nasledujúcu štruktúru menu: (4) 								
INF	1.	ČNÝ SYSTÉM KN ČITATEĽ 1. EVIDENCIA KNIHY 1. EVIDENCIA 2. HĽADAJ NA podľa zada	ČITA PÔŽI ZOV -	TEĽOV - spus ČIEK - spust · spustenie re	enie form	ulá	ra f_pozic , ¡	ore zadá	ávanie pôžičky
nen m	iuna	title		imenunam e	itemnu m		mtext	mtyp e	progname
111					111				
						-			

Je daná databáza obsahujúca nasledujúce relácie : student(cislo studenta, meno, adresa, st skupina, rod cislo) ucitel(<u>cislo_ucitela</u>, meno, katedra, adresa) predmet(cislo_predmetu, nazov, pocet_kreditov, garant) zap_predmety(cislo_studenta, cislo_predmetu, sk_rok, znamka, cislo_ucitela) Poznámka: *st_skupina* má tvar "5PA31" ...Fakulta | Pracovisko | Odbor Zameranie | Ročník | Krúžok cislo_predmetu má tvar "A602"... Povinný/Alernatívny/Voliteľný | Semester | Číslo predmetu| Číslo predmetu 5. definujte pomocou príkazov jazyka SQL indexy pre PK a FK tabuľku zap_predmety 6. Vyjadrite nasledujúce operácie pomocou príkazov jazyka SQL: a) zrušte študentov, ktorí nemajú v tomto šk. roku (1999) nič zapísané (2) b) vypíšte osobné čísla študentov, ktorí majú niečo zapísané a pritom sa ich údaje nenachádzajú v tabuľke *študent* (2) c) vypíšte mená študentov a ich vek (v rokoch ku dňu 31.12.2000) (2) d) vypíšte zoznam všetkých študentov, ktorí majú samé jednotky a všetky zapísané predmety majú absolvované (3) e) zmažte (kaskádovite) všetky údaje o predmete s číslom = P111 (4) f) zapíšte všetkým prvákom povinné predmety pre nasledujúci školský rok 2000 (4)

Databázové systémy, opravný test b 99 / MM

	no: tum:		•••••		S	t.	skupina:		
1.	Defir (2) atrib	nujte nasledujúce út	pojm	y:					
•	dome	éna							
•	nezá	vislosť							
•	relác	ia							
2.	. Majme dané dva entitné typy ET1 a ET2. Medzi týmito typmi existuje vzťah ET1 ISA ET2. Aké sú možné kardinality vzťahu medzi ET1 a ET2? Odôvodnite. (2)								
3.	 Dekomponujte vzťah M:N medzi entitami Študent, Predmet a nakreslite výsledný výskytový diagram. (4) 								
	 Aké dáta budú obsahovať systémové tabuľky SYSMENUS a SYSMENUITEMS, ak požadujeme nasledujúcu štruktúru menu: (4) INFORMAČNÝ SYSTÉM KNIŽNICE 								
	_	. ČITATEĽ 1. EVIDENCIA . KNIHY 1. EVIDENCIA 2. HĽADAJ NA podľa zada	PÔŽI ZOV -	ČIEK - spust - spustenie re	enie formı	лlá	ra f_pozic , p	ore zada	ávanie pôžičky
nen m	una	title		imenunam e	itemnu m		mtext	mtyp e	progname
• • •	-			<u> </u>					

Je daná databáza obsahujúca nasledujúce relácie : student(cislo studenta, meno, adresa, st skupina, rod cislo) ucitel(<u>cislo_ucitela</u>, meno, katedra, adresa) predmet(cislo_predmetu, nazov, pocet_kreditov, garant) zap_predmety(cislo_studenta, cislo_predmetu, sk_rok, znamka, cislo_ucitela) Poznámka: *st_skupina* má tvar "5PA31" ...Fakulta | Pracovisko | Odbor Zameranie | Ročník | Krúžok cislo_predmetu má tvar "A602"... Povinný/Alernatívny/Voliteľný | Semester | Číslo predmetu| Číslo predmetu 5. definujte pomocou príkazov jazyka SQL indexy pre PK a FK tabuľku zap_predmety 6. Vyjadrite nasledujúce operácie pomocou príkazov jazyka SQL: a) zrušte predmety, ktoré nemá v tomto šk. roku (1999) nik zapísané (2) b) vypíšte osobné čísla učiteľov, ktorí niečo učia a pritom sa ich údaje nenachádzajú v tabuľke *učiteľ* (2) c) vypíšte mená študentov a ich vek (v rokoch ku dňu 31.12.2000) (2) d) vypíšte zoznam všetkých študentov, ktorí majú samé jednotky a všetky zapísané predmety majú absolvované (3) e) zmažte (kaskádovite) všetky údaje o študentovi s osobným číslom = 5201 (4) f) zapíšte všetkým druhákom povinné predmety pre nasledujúci školský rok 2000 (4)

TEST KU SKÚŠKE Z DBS 1998 - 1999

Všeobecne

Perzistentné dáta (1 bod)

- a. sú dáta, ktoré existujú aj po ukončení programu
- b. množina výstupných dát
- c. programové vybavenie pre vstup a výstup dát

Redundancia (1 Bod)

- a. je viacnásobný výskyt rovnakých dát. objektov
- b. je súčasný prístup dvoch užívateľov k dát. objektu
- c. ukladanie dát v B stromoch

Nezávislosť dát (1 Bod)

- a. znamená vzájomnú nezávislosť uloženia dát
- znamená nezávislosť programu a prístupových metód od zmien dátových štruktúr
- c. znovupoužiteľnosť dát

Konzistencia databázy (1 Bod)

- a. znamená, že DB je v každom okamihu správna *
- b. znamená opakované spracovanie
- c. typovú kontrolu vstupujúcich dát
- Systém riadenia dát je (1 Body): je množina programov zabezpečujúcich manipuláciu s dátami, ochranu dát, paralelné spracovanie, a pod., musí mat DDL,DML.
- Databázový systém je (1 Body) : DB+SRBD, švorica:Data,SW,HW,Users

Architektúra DBS

- Vymenujte úrovne architektúry DBS (1 Bod) Externá, konceptualna, interná
- Koncetuálna schéma obsahuje množinu dát(2 Body):
 - a. implementačne nezávislú popisujúcu dátový model aplikácie
 - b. implementačne závislú popisujúcu dátový model aplikácie
 - c. implementačne závislú popisujúcu dátový užívateľské požiadavky aplikácie

Interná úroveň (1 Bod)

- a. predstavuje pohľad užívateľov na dáta
- b. predstavuje prístupové metódy k dátam
- c. predstavuje organizáciu uloženia dát a prístupové metódy k dátam

Logická nezávislosť sa pri v architektúre zabezpečuje:(1 Bod)

- a. medzi externou a konceptuálnou úrovňou
- b. medzi konceptuálnou a internou úrovňou
- c. nedá sa zabezpečiť

ERA

Entita (1)

- a. je objekt reálneho sveta schopný nezávislej existencie *
- b. vviadruje vzťah medzi atribútmi
- c. je dátová štruktúra reprezentujúca typ objektu popísaného v DB

• Povinné členstvo entity vo vzťahu vyjadruje IO(1)

- a. nutnosť existencie entity pri priradení do vzťahu
- b. vviadruje vzťah medzi dvomi entitami
- c. reprezentuje množinu prípustných hodnôt

Kardinalita vzťahu (1)

- a. je integritné obmedzenie pre vzťahy
- b. je počet entít v ERA modeli

- c. je minimálny počet atribútov entity
- Dekompozícia (2) Nakreslite a dekomponujte vzťah medzi entitnými typmi STUDENT a PREDMET s kardinalitou M:N
- Nakreslite príklad výskytového diagramu pre uvedené dva entitné typy (2)
- Nakreslite ERA diagram pre vzťah STUDENT KNIHA a uvedte možnú kardinalitu s uvedením slovného popisu integritného obmedzenia vyplývajúceho zo vzťahu (2 body)
- Nakreslite ERA diagram pre vzťah 1:1 a uveďte slovný popis integritného obmedzenia (2 body)

Relačný model

• Relácia (1)

- a. je podmnožinou kartézskeho súčinu množiny domén Di na množine atribútov Ai.
- b. je množina mien atribútov a ich typov
- c. je zjednotením množiny prípustných hodnôt atribútov

Primárny kľúč (1)

- a. je množina atribútov, pre ktorú platí pravidlo jednoznačnosti
- b. je množina atribútov, ktorá nejednoznačne určuje n-ticu relácie
- e. je množina atribútov, pre ktorú platí pravidlo jednoznačnosti a minimálnosti

Doména (1)

- a. je vybraný atribút
- b. množina prípustných hodnôt atribútu
- c. iný termín pre primárny kľúč

• Vymenujte VLASTNOSTI relácie (1):

Relačná integrita

Integrita entít (1)

- a. atribút primárneho kľúča môže nadobúdať NULL hodnoty
- b. atribút primárneho kľúča nesmie nadobúdať NULL hodnoty
- c. atribút primárneho kľúča musí nadobúdať NULL hodnotu

Foreign key (Cudzí kľúč) je (1)

- a. množina atribútov definovaný v relácii R2, musí byť v inej relácii R1 definovaná ako
 - primárny kľúč PK *
- množina atribútov definovaná v relácii R2, nesmie byť v inej relácii R1 definovaná ako primárny kľúč PK
- množina atribútov definovaná v relácii R2, môže byť v inej relácii R1 definovaná ako primárny kľúč PK
- Uveďte príklad užívateľskej integrity (1) Create table TAB (OC

Datum_nar)
CHECK Datum_nar <=

Today

RDBS

- Každý RDBS musí mať (1)
 - a. DML alebo DDL
 - b. DML a DDL *
 - c. DDL a DIS

- d. DDL a DAS
- DIS (Data integrity statements) = Príkazy pre ochranu integrity sú (1)
 - a. pre prácu s transakciami
 - b. pre určenie prístupových prác
 - c. pre prácu s indexmi
- Úplný RDBS obsahuje: (1)
 - a. len DDL
 - b. len DDL a DML
 - c. DDL, DML, DAS a DIS

Relačná algebra

- Nech r(A,B,C) a s(B,C,D) sú relácie a nech ad om(A) a b dom(B). Ktoré z nasledujúcich výrazov sú korektné výrazy relačnej algebry ?
 - a. $_{B}(r) _{B}(s)$ (1) A
 b. $_{A=a,B=b}(s)$ (1) (1)
 c. r s (1) A
 d. r s (1) A
 - x(y) znamená projekciu relácie y na množinu atribútov X
 - podm(y) znamená výber tých riadkov relácie y, ktoré spĺňajú podmienku *podm* v z znamená zjednotenie relácií v a z
 - y z znamená prienik relácií y a z
- Operáciu prienik relácií R1 a R2 vieme vyjadriť pomocou operácie .. rozdielu... uveďte príklad: (1)
 - R3=R1-(R1-R2)
- Operáciu spojenie môžeme vyjadriť pomocou operácií(1):
- Vymenujte binárne operácie relačnej algebry(2): zjednotenie, rozdiel, prienik, kartezsky sucin, spojenie, delenie
- 8.SQL Je daná databáza obsahujúca nasledujúce relácie :

student(<u>cislo_studenta</u>, meno, adresa, st_skupina) predmet(<u>cislo_predmetu</u>, nazov, pocet_kreditov) zap_predmety(cislo_studenta, cislo_predmetu, skrok, znamka)

- Vviadrite nasledujúce operácie pomocou príkazov jazvka SOL:
- a. zvýšte všetkým študentov ročník o 1, upravte tiež 4. znak v študijnej skupine, ktorý vyjadruje ročník študenta (napr. rocnik =1, st_skupina = 5Z011; rocnik = 2. st skupina = 5Z021). (2)
- b. zmažte všetky dáta o študentoch piateho ročníka (t.j. z tabuliek *student* i *zap_predmety*). Zachovajte poradie vykonávania príkazov.
- c. vypíšte menný zoznam študentov, ktorí majú zapísané najviac predmetov (2)
- d. vypíšte menný zoznam študentov a všetkých ich opakujúcich predmetov, ktorí opakujú nejaký predmet
 (2)
- e. vypíšte názvy predmetov, ktoré má zapísané aspoň jeden študent
 (2)

Normalizácia

ZADANIE:

Použijeme relácie z časti SOL

- Úveďte a zdôvodnite najvyššiu NF relácie Student: (2)
- Determinant v relácii ZapPredmety je : (2)
 - a. cislo studenta
 - b. cislo predmetu, skrok

- c. cislo_studenta, cislo_predmetu, skrok
- Je daná relácia ZapPredmety v BCNF: (2)
 - a. áno
 - b. nie
- Je relácia ZapPredmety v 3NF : (2)
 - a. áno
 - b. nie
- V relácii A(OC, MENO, CisPredmetu, NazovPredmetu, OCUcitela, MenoUcitela)

sú determinanty: - zdôvodnite (2)

OC

OC,OCUcitela,CisPredmetu, NazovPredmetu OC.OCUcitela.CisPredmetu

- Závislosť OC NazovPredmetu v relácii A je: (2)
 - a. funkčná
 - b. vzájomná *
 - c. tranzitívna

Transakcie :

- Transakcia je postupnosť operácií Oi i=1,...n, ktorá sa (2):
 - a. vykoná ako jedna operácia tak, že sa udrží konzistencia DB.
 - b. vykoná ako jedna operácia tak, že sa nemusí udržať konzistencia DB.
 - c. vykoná v ľubovoľnom poradí tak, že sa nemusí udržať konzistencia DB.
- Vymenujte vlastnosti transakcie :(1) atomickost, konzistencia, izolovanost(nezavislost), trvanlivost
- Logický žurnál obsahuje: (1)
 - a. kópiu DB
 - b. informácie o zmenách DB (syst. inf., pôvodné záznamy, zmenené záznamy resp. stránky)
 - c. systémové informácie
- Pri potvrdzovacom protokole s priamym zápisom (LOG AHEAD) sa: (1)
 - a. DB modifikuje v 1.fáze
 - DB modifikuje v 2.fáze
 - c. DB modifikuje súčasne s log, žurnálom
- Metóda kontrolného bodu sa používa pri: (1)
 - a. chybách systému
 - b. poškodení média s BD
 - c. pri chybách aplikácie

Paralelizmus

- Dve transakcie môžu uviaznuť len pri (Ak váhate, tak si to nakreslite)(2)
 - a. práci s jedným objektom
 - b. práci s viacerými obiektmi
 - c práci s jedným objektom alebo vjacerými objektmi
- Pri použití zdieľaného zámku na objekt X (2)
 - a. je možné sprístupniť objekt inej transakcii len pre operáciu READ
 - b. iná transakcia nesmie používať objekt
 - c. iná transakcia smie používať len na operáciu WRITE
- Pri zamykaní môže nastať uviaznutie, ktoré (2)
 - a. môžeme predchádzať
 - b. môžeme detekovať

- Pri predchádzaní uviaznutiu metódou čas. pečiatok WAIT DIE pri práci s tým istým objektom DB zruší
 - a. staršia transakcia mladšiu(2)
 - b. mladšia transakcia staršiu
 - c. mladšia sama seba
- Sérializovateľný rozvrh je : (2)
- Uviaznutie nastane ak v čakacom grafe (2)
 - a. existuje cyklus
 - b. neexistuje cyklus
 - c. ex. orientovaná cesta medzi všetkými bežiacimi transakciami

DDBS

- Fragmentujte reláciu Student z časti SQL pomocou príkazov relačnej algebry :
 - a. Horizontálne podľa fakulty aspoň na tri fragmenty (1
 - b. Vertikálne podľa Vami definovanej projekcie na dva fragmenty (2)
 - c. Pre dané relácie navrhnite horizontálne vertikálnu fragmentáciu (2)
- Fragmentujte reláciu ZapPredmety z časti SQL pomocou SQL :
 - a. Horizontálne podľa ročníka aspoň na dva fragmenty (2
 - b. Pre dve udalosti v distribuovanom systéme platí (2) :
 - c. Nakreslite model distribuovanej transakcie (2)
- Homogénny DDBS je systém: (1)
 - a. s rovnakými SRBD
 - b. s rôznymi SRBD
 - c. s rôznymi DB
 - d. s rovnakými DB
- Uviaznutie v DDBS: (2)
 - a. nemôže vzniknúť
 - b. nevieme detekovať
 - c. vieme detekovať pomocou dodatočného prenosu čakacieho grafu
- Metódu časových pečiatok v DDBS (2):
 - a. je možné použiť
 - b. nie je možné použiť

TEST KU SKÚŠKE Z DBS 1999 - 2000 (A)

Všeobecne

Redundancia (1 Bod)

- a. je viacnásobný výskyt rovnakých dát. objektov
- b. je súčasný prístup dvoch užívateľov k dát. objektu
- c. ukladanie dát v B stromoch

Perzistentné dáta (1 bod)

- sú dáta, ktoré existujú aj po ukončení programu
- b. množina výstupných dát
- c. programové vybavenie pre vstup a výstup dát

Nezávislosť dát (1 Bod)

- a. znamená vzájomnú nezávislosť uloženia dát
- znamená nezávislosť programu a prístupových metód od zmien dátových štruktúr
- c. znovupoužiteľnosť dát

Konzistencia databázy (1 Bod)

- a. znamená, že DB je v každom okamihu správna
- b. znamená opakované spracovanie
- c. typovú kontrolu vstupujúcich dát
- Systém riadenia dát je (1 Body) :
- Databázový systém je (1 Body) :

Architektúra DBS

- Vymenujte úrovne architektúry DBS (1 Bod)
- Koncetuálna schéma obsahuje množinu dát(2 Body) :
 - a. implementačne nezávislú popisujúcu dátový model aplikácie
 - b. implementačne závislú popisujúcu dátový model aplikácie
 - c. implementačne závislú popisujúcu dátové užívateľské požiadavky aplikácie
- Interná úroveň (1 Bod)
 - a. predstavuje pohľad užívateľov na dáta
 - b. predstavuje prístupové metódy k dátam
 - c. predstavuje organizáciu uloženia dát a prístupové metódy k dátam
- Fyzická nezávislosť sa pri v architektúre zabezpečuje:(1 Bod)
 - a. medzi externou a konceptuálnou úrovňou
 - b. medzi konceptuálnou a internou úrovňou
 - c. nedá sa zabezpečiť

ERA

- Typ entity (1)
 - a. je objekt reálneho sveta schopný nezávislej existencie
 - b. vyjadruje väzbu medzi entitami
 - c. je množina vlastností objektov rovnakého typu
- Povinné členstvo entity vo vzťahu vyjadruje IO(1)
 - a. nutnosť existencie entity pri priradení do vzťahu
 - b. vviadruje vzťah medzi dvomi entitami
 - c. reprezentuje množinu prípustných hodnôt
- Kardinalita vzťahu (1)

- a. je integritné obmedzenie pre vzťahy
- b. je počet entít v ERA modeli
- c. je minimálny počet n-tíc entít
- Dekompozícia (2) Nakreslite a dekomponujte vzťah medzi entitnými typmi STUDENT a PREDMET s kardinalitou M:N
- Nakreslite príklad výskytového diagramu pre uvedené dva entitné typy (2)
- Nakreslite ERA diagram pre vzťah STUDENT KNIHA a uveďte možnú kardinalitu s uvedením slovného popisu integritného obmedzenia vyplývajúceho zo vzťahu (2 body)
- Nakreslite ERA diagram pre vzťah 1:1 a uveďte slovný popis integritného obmedzenia (2 body)

Relačný model

• Relácia (2)

- a. je podmnožinou kartézskeho súčinu množiny domén D_i na množine atribútov A_i.
- b. je množina mien atribútov a ich typov
- c. je zjednotením množiny prípustných hodnôt atribútov

Primárny kľúč (2)

- a. je množina atribútov, ktorá nejednoznačne určuje n-ticu relácie
- b. je množina atribútov, pre ktorú platí pravidlo jednoznačnosti
- je množina atribútov, pre ktorú platí pravidlo jednoznačnosti a neredukovateľnosti

Doména (2)

- a. je vybraný atribút
- b. iný termín pre primárny kľúč
- c. množina prípustných hodnôt atribútu
- Vvmenuite a popíšte VLASTNOSTI relácie (4) :

Relačná integrita

Integrita entít (2)

- a. atribút primárneho kľúča môže nadobúdať NULL hodnoty
- b. atribút primárneho kľúča nesmie nadobúdať NULL hodnoty
- c. atribút primárneho kľúča musí nadobúdať NULL hodnotu
- Popíšte doménovú integritu (2)

Referenčná integrita hovorí: (2)

- a. FK je množina atribútov definovaná v relácii R2, ktorá môže byť v inej relácii R1 definovaná ako primárny kľúč PK alebo kandidát PK
- b. hodnota FK v relácii R2 sa môže rovnať hodnote PK z relácie R1
- c. hodnota FK v relácii R2 sa musí rovnať hodnote PK z relácie R1, alebo NULL
- Uveďte príklad užívateľskej integrity (2)

Popíšte stĺpcová integritu: (2) Pre každý stĺpec tabuľky je nutné definovať doménu a prípadné dodatočná integritné obmedzenia. Stĺpcové IO sú:

Dodatočné IO pre rozsah hodnôt, ktoré sú podmnožinou príslušnej domény
NULL alebo NOT NULL

DISTINCT alebo DUPLICATE

Relačná algebra

Nech r(A,B,C) a s(B,C,A) sú relácie a nech a dom(A) a b dom(B). Ktoré z nasledujúcich výrazov sú korektné výrazy relačnej algebry ?

- a. $_{B}(r) _{A}(s)$ (1) b. $_{A=a,B=b}(s)$ (1) c. r s (1) d. r s (1)
 - (y) znamená projekciu relácie y na množinu atribútov X podm(y) znamená výber tých riadkov relácie y, ktoré spĺňajú podmienku *podm*
 - y z znamená zjednotenie relácií y a z v z znamená prienik relácií y a z
- Operáciu prienik relácií R1 a R2 vieme vyjadriť pomocou operácie uveďte príklad: (2)
- Operáciu spojenie môžeme vyjadriť pomocou operácií (2):
- Vymenujte relačné operácie relačnej algebry (2):
- SQL Je daná databáza obsahujúca nasledujúce relácie:
 student(cislo_studenta, meno, adresa, st_skupina, ročník)
 predmet(cislo_predmetu, nazov, pocet_kreditov)
 zap_predmety(cislo_studenta, cislo_predmetu, skrok, znamka, prednasa)
 ucitel (cislo_ucitela, meno, katedra)
- Pomocou príkazov jazyka SQL definujte indexy pre všetky PK a FK (5)
- Vyjadrite nasledujúce operácie pomocou príkazov jazyka SQL:
 - a. zvýšte všetkým študentov ročník o 1, upravte teda 4. znak v študijnej skupine, ktorý vyjadruje ročník študenta (napr. rocnik =1, st_skupina = 5Z011; rocnik = 2, st skupina = 5Z021).
 - b. zmažte (kaskádovite) všetky dáta o študentoch piateho ročníka. Zachovajte poradie vykonávania príkazov. (2)
 - c. vypíšte zoznam predmetov, ktoré nik neopakuje (2)
 - d. vypíšte menný zoznam študentov a ich priemery známok (2
 - e. vložte študentovi s osobným číslom 10 predmet A602 na školský rok 2000 (1)
 - f. vypíšte mená učiteľov, ktorí neučia ani jeden predmet (2)
 - g. výpíšte ku každému predmetu, koľko ľudí ho má v tomto šk. roku (1999) zapísaných (2)

Normalizácia

ZADANIE: Použijeme relácie z časti SQL

- Uveďte a zdôvodnite najvyššiu NF relácie Student: (1)
- Determinant v relácii ZapPredmety je : (1)
 - a. cislo predmetu
 - b. cislo studenta, cislo predmetu
 - c. cislo_studenta, cislo_predmetu, skrok
- Je daná relácia ZapPredmety v BCNF: (1)
 - a. áno
 - b. nie
- Je relácia ZapPredmety v 3NF : (1)
 - a. áno
 - b. nie
- V relácii A(OC, MENO, CisPredmetu, NazovPredmetu, OCUcitela, MenoUcitela)

sú determinanty: - zdôvodnite (1)

OC

OC,OCUcitela,CisPredmetu, NazovPredmetu OC,OCUcitela,CisPredmetu

- Závislosť OC NazovPredmetu v relácii A je : (1)
 - . funkčná
 - b. vzájomná
 - c. tranzitívna

Transakcie:

- Transakcia je postupnosť operácií Oi i=1,...n, ktorá sa (1):
 - a. vykoná ako jedna operácia tak, že sa udrží konzistencia DB.
 - b. vykoná ako jedna operácia tak, že sa nemusí udržať konzistencia DB.
- c. vykoná v ľubovoľnom poradí tak, že sa nemusí udržať konzistencia DB.
- Vymenujte vlastnosti transakcie: (2)
- Logický žurnál obsahuje: (1)
 - a. kópiu DB
 - b. informácie o zmenách DB (syst. inf., pôvodné záznamy, zmenené záznamy resp. stránky)
 - c. systémové informácie
- Pri potvrdzovacom protokole s priamym zápisom (LOG AHEAD) sa: (1)
 - a. DB modifikuje pred zápisom do log. žurnálom
 - b. DB modifikuje po zápise do log. žurnálu
- Vysvetlite Metódu kontrolného bodu (2)

Paralelizmus

- Podmienka serializovateľnosti je: (1)
- Dve transakcie môžu uviaznuť len pri (Ak váhate, tak si to nakreslite)(1)
 - a. práci s jedným objektom
 - b. práci s viacerými objektmi
 - c. práci s jedným objektom alebo viacerými objektmi
- Vyplňte maticu zamykania (1)

	Χ	S	-
Χ			
S			
-			

X- exclusive S - share - - bez zámku

- Pri zamykaní môže nastať uviaznutie, ktoré (1)
 - a. môžeme predchádzať
 - b. môžeme detekovať
 - c nemôžeme detekovať
- Pri predchádzaní uviaznutiu metódou čas. pečiatok WAIT DIE pri práci s tým istým objektom DB zruší (1)
 - a. staršia transakcia mladšiu
 - b. mladšia transakcia staršiu
 - c. mladšia sama seba
- Sérializovateľný rozvrh je: (1)
- Uviaznutie nastane ak v čakacom grafe (1)
 - a. existuje cyklus
 - b. neexistuje cyklus
 - c. ex. orientovaná cesta medzi všetkými bežiacimi transakciami

DDBS

- Fragmentujte reláciu Student z časti SQL pomocou príkazov relačnej algebry :
 - a. Horizontálne podľa fakulty aspoň na tri fragmenty

- b. Vertikálne podľa Vami definovanej projekcie na dva fragmenty (1)
- Pre dané relácie navrhnite horizontálne vertikálnu fragmentáciu (2)
- Fragmentujte reláciu ZapPredmety z časti SQL pomocou SQL:
- a. Horizontálne podľa ročníka aspoň na dva fragmenty (3)

 Pre časové pečiatky dvoch udalostí v distribuovanom systéme platí (1):
- Homogénny DDBS je systém: (1) a. s rovnakými SRBD

 - b. s rôznymi SRBD
 - c. s rôznymi DB
 - d. s rovnakými DB

TEST KU SKÚŠKE Z DBS 1999 - 2000 (B)

Všeobecne

- Redundancia (1 Bod)
- je viacnásobný výskyt rovnakých dát. objektov
 - b. je súčasný prístup dvoch užívateľov k dát. objektu
 - c. ukladanie dát v B stromoch
- Perzistentné dáta (1 bod)
- a. sú dáta, ktoré existujú aj po ukončení programu
 - b. množina výstupných dát
 - c. programové vybavenie pre vstup a výstup dát
- Nezávislosť dát (1 Bod)
 - a. znamená vzájomnú nezávislosť uloženia dát
 - znamená nezávislosť programu a prístupových metód od zmien dátových štruktúr
 - c. znovupoužiteľnosť dát
- Konzistencia databázy (1 Bod)
 - a. znamená, že DB je v každom okamihu správna
 - b. znamená opakované spracovanie
 - c. typovú kontrolu vstupujúcich dát
- Systém riadenia dát je (1 Body) :
- Databázový systém je (1 Body) :

Architektúra DBS

- Vymenujte úrovne architektúry DBS (1 Bod)
- Koncetuálna schéma obsahuje množinu dát(2 Body) :
 - a. implementačne závislú popisujúcu dátové užívateľské požiadavky aplikácie
 - b. implementačne závislú popisujúcu dátový model aplikácie
 - c. implementačne nezávislú popisujúcu dátový model aplikácie
- Interná úroveň (1 Bod)
 - a. predstavuje pohľad užívateľov na dáta
 - b. predstavuje prístupové metódy k dátam
 - c. predstavuje organizáciu uloženia dát a prístupové metódy k dátam
- Logická nezávislosť sa pri v architektúre zabezpečuje:(1 Bod)
 - a medzi externou a konceptuálnou úrovňou
 - b. medzi konceptuálnou a internou úrovňou
 - nedá sa zabezpečiť

ERA

- Entity (1)
 - a. je objekt reálneho sveta schopný nezávislej existencie
 - b. vyjadruje väzbu medzi entitami
 - c. je množina vlastností objektov rovnakého typu
- Povinné členstvo entity vo vzťahu vyjadruje IO(1)
 - a. nutnosť existencie entity pri priradení do vzťahu
 - b. vyjadruje vzťah medzi dvomi entitami
 - c. reprezentuje množinu prípustných hodnôt
- Kardinalita vzťahu (1)
 - a. je integritné obmedzenie pre vzťahy

- b. je počet entít v ERA modeli
- c. je minimálny počet n-tíc entít
- Dekompozícia (2) Nakreslite a dekomponujte vzťah medzi entitnými typmi KNIHA a ČITATEĽ s kardinalitou M:N
- Nakreslite príklad výskytového diagramu pre uvedené dva entitné typy (2)
- Nakreslite ERA diagram pre vzťah STUDENT ŠTIPENDIUM a uveďte možnú kardinalitu s uvedením slovného popisu integritného obmedzenia vyplývajúceho zo vzťahu (2 body)
- Nakreslite ERA diagram pre vzťah 1:N a uveďte slovný popis integritného obmedzenia (2 body)

Relačný model

- Relácia (2)
 - a. je podmnožinou kartézskeho súčinu množiny domén D_i na množine atribútov A_i.
 - b. je množina mien atribútov a ich typov
 - c. je zjednotením množiny prípustných hodnôt atribútov
- Primárny kľúč (2)
 - a. je množina atribútov, ktorá nejednoznačne určuje n-ticu relácie
 - b. je množina atribútov, pre ktorú platí pravidlo jednoznačnosti
 - je množina atribútov, pre ktorú platí pravidlo jednoznačnosti a neredukovateľnosti
- Doména (2)
 - a. je vybraný atribút
 - b. iný termín pre primárny kľúč
 - c. množina prípustných hodnôt atribútu
- Vymenujte a popíšte VLASTNOSTI relácie (4):

Relačná integrita

- Integrita entít (2)
 - a. atribút primárneho kľúča môže nadobúdať NULL hodnoty
 - b. atribút primárneho kľúča nesmie nadobúdať NULL hodnoty
 - c. atribút primárneho kľúča musí nadobúdať NULL hodnotu
- Popíšte doménovú integritu (2)
- Referenčná integrita hovorí: (2)
 - a. FK je množina atribútov definovaná v relácii R2, ktorá môže byť v inej relácii R1 definovaná ako
 - primárny kľúč PK alebo kandidát PK
 - b. hodnota FK v relácii R2 sa môže rovnať hodnote PK z relácie R1
 - c. hodnota FK v relácii R2 sa musí rovnať hodnote PK z relácie R1, alebo NULL
- Uveďte príklad užívateľskej integrity (2)
- Popíšte stĺpcová integritu: (2)

Relačná algebra

Nech r(A,B,C) a s(B,C,D) sú relácie a nech ad om(A) a b dom(B). Ktoré z nasledujúcich výrazov sú korektné výrazy relačnej algebry ?

- a. $_{A}(r) _{B}(s)$ (1) b. $_{A=a,B=b}(r)$ (1) c. $_{r}s$ (1) d. $_{r}s$ (1)
 - x(y) znamená projekciu relácie y na množinu atribútov X nodm(y) znamená výber tých riadkov relácie y, ktoré spĺňajú podmienku *podm*
 - y z znamená zjednotenie relácií y a z v z znamená prienik relácií y a z
- Operáciu delenie relácií D a d vyjadrite pomocou operácií (4)
- Vymenujte unárne operácie relačnej algebry (2):
- SQL Je daná databáza obsahujúca nasledujúce relácie : student(cislo studenta, meno, adresa, st_skupina, ročník)

predmet(cislo predmetu, nazov, pocet kreditov)

zap_predmety(cislo_studenta, cislo_predmetu, skrok, znamka, prednasa)
ucitel (cislo_ucitela, meno, katedra)

- Pomocou príkazov jazyka SQL definujte indexy pre všetky PK a FK (5)
- Vyjadrite nasledujúce operácie pomocou príkazov jazyka SQL:
 - a. zvýšte všetkým študentov ročník o 1,a upravte teda aj 4. znak v študijnej skupine, ktorý vyjadruje ročník študenta (napr. rocnik =1, st_skupina = 5Z011; rocnik = 2, st skupina = 5Z021). (2)
 - b. zmažte (kaskádovite) všetky dáta o študentoch piateho ročníka. Zachovajte poradie vykonávania príkazov. (2)
 - c. vypíšte zoznam predmetov, ktoré nik neopakuje (2)
 - d. vypíšte menný zoznam študentov a ich priemery známok (2
 - e. vložte študentovi s osobným číslom 10 predmet A602 na školský rok 2000 (1)
 - f. vypíšte mená učiteľov, ktorí neučia ani jeden predmet (2)
 - g. vypíšte ku každému predmetu, koľko ľudí ho má v tomto šk. roku (1999) zapísaných (2)

Normalizácia

ZADANIE: Použijeme relácie z časti SQL

- Uveďte a zdôvodnite najvyššiu NF relácie Student: (1)
- Determinant v relácii ZapPredmetv ie : (1)
 - a. cislo predmetu
 - b. cislo studenta, cislo predmetu
 - c. cislo studenta, cislo predmetu, skrok
- Je daná relácia ZapPredmetv v BCNF: (1)
 - a. áno
 - b. nie
- Je relácia ZapPredmety v 3NF : (1)
 - a. áno
 - h nie
- V relácii A(OC, MENO, CisPredmetu, NazovPredmetu, OCUcitela, MenoUcitela)
- sú determinanty: zdôvodnite (1)

00

OC,OCUcitela,CisPredmetu, NazovPredmetu

OC,OCUcitela,CisPredmetu

- Závislosť OC NazovPredmetu v relácii A je : (1)
 - a. funkčná
 - b. vzájomná
 - c. tranzitívna

Transakcie :

- Transakcia je postupnosť operácií Oi i=1,...n, ktorá sa (1):
 - a. vykoná ako jedna operácia tak, že sa udrží konzistencia DB.
 - b. vykoná ako jedna operácia tak, že sa nemusí udržať konzistencia DB.
 - c. vykoná v ľubovoľnom poradí tak, že sa nemusí udržať konzistencia DB.
- Vymenujte vlastnosti transakcie: (2)
- Logický žurnál obsahuje: (1)
 - a. kópiu DB
 - b. informácie o zmenách DB (syst. inf., pôvodné záznamy, zmenené záznamy resp. stránky)
 - c. systémové informácie
- Pri dvojfázovom potvrdzovacom protokole (2PhC) sa: (1)
 - a. DB modifikuje pred zápisom do log. žurnálom
 - b. DB modifikuje po zápise do log. žurnálu
- Vysvetlite Metódu kontrolného bodu (2)

Paralelizmu:

- Dostatočná podmienka serializovateľnosti je: (1)
- Dve transakcie môžu uviaznuť len pri (Ak váhate, tak si to nakreslite)(1)
 - a. práci s jedným objektom
 - b. práci s viacerými objektmi
 - e. práci s jedným objektom alebo viacerými objektmi
- Vyplňte maticu zamykania (1)

	Χ	S	-	
Χ				
S				
-				

X- exclusive S - share - - bez zámku

- Pri časových pečiatkach môže nastať uviaznutie, ktoré (1)
 - a. môžeme predchádzať
 - b. môžeme detekovať
 - c. nemôžeme detekovať
- Metódou WOUND WAIT sa zabezpečí (1)
 - a. odstránanie uviaznutia pri metóde časových pečiatok
 - b. odstránenie uviaznutia pri zamykaní
 - c. predídenie uviaznutiu pri metóde časových pečiatok
 - d. predídenie uviaznutiu pri zamykaní
- Sériový rozvrh je: (1)
- Uviaznutie nastane ak v čakacom grafe (1)
 - a. existuje cyklus
 - b. neexistuje cyklus
 - c. ex. orientovaná cesta medzi všetkými bežiacimi transakciami

DDBS

- Fragmentujte reláciu Student z časti SQL pomocou príkazov relačnej algebry :
 - a. Horizontálne podľa fakulty aspoň na tri fragmenty (2
 - b. Vertikálne podľa Vami definovanej projekcie na dva fragmenty (1)

- c. Pre dané relácie navrhnite horizontálne vertikálnu fragmentáciu (2)
- Fragmentujte reláciu ZapPredmety z časti SQL pomocou SQL:

 a. Horizontálne podľa ročníka aspoň na dva fragmenty (3)

 Pre časové pečiatky dvoch udalostí v distribuovanom systéme platí (1):
- Homogénny DDBS je systém: (1)
 a. s rovnakými SRBD

 - b. s rôznymi SRBD
 - c. s rôznymi DB
 - d. s rovnakými DB