Engineering Program: EMBEDDED SYSTEMS ENGINEERING



# Subject: Advance Programming Syllabus

PROFESSOR: Luis Gerardo Cámara Salinas Engineering Program: EMBEDDED SYSTEMS ENGINEERING

| LEARNING PURPOSE OF THE SUBJECT | The student will develop software, implementing models, development methodologies, test methodologies, for its application to embedded systems. |              |   |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|
| QUARTER                         | Third                                                                                                                                           |              |   |
| TOTAL HOURS                     | 90                                                                                                                                              | WEEKLY HOURS | 6 |

| LEARNING UNITS              | TOTAL<br>HOURS | PICE<br>SUBMISSION<br>DEADLINE |
|-----------------------------|----------------|--------------------------------|
| Software Development Models | 11             | 17/05/2021                     |
| Software Development        | 30             | 25/07/21                       |
| Software Quality Methods    | 25             | 06/08/2021                     |
| Software Implementation     | 24             |                                |
| TOTAL                       | 90             |                                |

# Grading Policy (From Doc.: Academic Guidelines)

- ✓ Evaluation scale is twofold:
  - I. Competent (approved):
    - a) Competent
    - b) Independent
    - c) Advanced Basic
    - d) Basic
  - II. Not Competent (not approved).

Engineering Program: EMBEDDED SYSTEMS ENGINEERING



# According to the next criteria:

| Achieved Grade | Registered Grade      |
|----------------|-----------------------|
| 0.0 to 6.99    | 6 Not Competent (NC)  |
| 7.0 to 7.49    | 7 Basic (BU)          |
| 7.50 to 8.49   | 8 Advanced Basic (BA) |
| 8.50 to 9.49   | 9 Independent (I)     |
| 9.50 to 10.00  | 10 Competent (C)      |

- ✓ The student must approve every single learning unit in order to approve the subject.
- ✓ Types of Assessment
  - Ordinary;
  - II. Extemporaneous;
  - **III.** Extraordinary;
  - **IV.** Special.

# Teacher's contact information

E-mail: <u>luis.camara@upy.edu.mx</u>

Red Virtual UPY: Icamara

#### Schedule

| Class Schedule | Monday           | Tuesday                  | Thursday                 |
|----------------|------------------|--------------------------|--------------------------|
|                | 9:50 – 11:30 hrs | <b>12:30</b> – 14:10 hrs | <b>12:30</b> – 14:10 hrs |

Engineering Program: EMBEDDED SYSTEMS ENGINEERING



# **LEARNING UNITS**

| LEARNING UNIT    | I. Software Development Models                                          |  |
|------------------|-------------------------------------------------------------------------|--|
| EXPECTED OUTCOME | The student will adapt development models to outline software projects. |  |
| HOURS            | 11                                                                      |  |

| TOPICS                                | KNOWLEDGE                                                                                                                                                                                                                        | KNOW-HOW                                                          | SESSION DATES |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|
| Software<br>development<br>life cycle | Define the concept of life cycle. Describe the elements of the life cycle: requirements analysis, design, implementation, verification and maintenance                                                                           | Outline software development projects.                            | Week 1        |
| Software<br>development<br>models     | Describe the characteristics of software development models. Explain the characteristics of software development models: Prototype model Spiral model Development model by stages Incremental or iterative model Waterfall model | Adapt project development schemes to software development models. | Week 2        |

| ASSESSMENT PROCESS                            |    |                  |  |
|-----------------------------------------------|----|------------------|--|
| PERFORMANCE EVIDENCE % ASSESSMENT INSTRUMENTS |    |                  |  |
| Portfolio                                     | 30 | Rubric Checklist |  |
| Project                                       | 50 | Rubric Checklist |  |



| Quiz  | 20   | Rubric Checklist |
|-------|------|------------------|
| TOTAL | 100% |                  |

| LEARNING UNIT    | II. Software Development                                                       |  |
|------------------|--------------------------------------------------------------------------------|--|
| EXPECTED OUTCOME | The student will plan the development of the software, for its implementation. |  |
| HOURS            | 30                                                                             |  |

| TOPICS                                   | KNOWLEDGE                                                                                                   | KNOW-HOW                                                                                              | SESSION DATES  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------|
| Software<br>development<br>philosophies  | Explain software development philosophies:<br>Lean and<br>Agile.                                            | Develop software according to the agile philosophy. Develop software according to the lean philosophy | Week 3         |
| Software<br>Development<br>Methodologies | Explain software development methodologies: Scrum, Kanban, XP and TPS.                                      | Develop software according to software development methodologies.                                     | Week 4         |
| Software<br>development<br>cycle tools   | Explain the tools of the software development cycle: Sprints, Boards, Cohort Analysis and Pair Programming. | Implement the tools of the software development cycle.                                                | Week 5, Week 6 |



| ASSESSMENT PROCESS                            |      |                  |  |
|-----------------------------------------------|------|------------------|--|
| PERFORMANCE EVIDENCE % ASSESSMENT INSTRUMENTS |      |                  |  |
| Portfolio                                     | 30   | Rubric Checklist |  |
| Project                                       | 50   | Rubric Checklist |  |
| Quiz                                          | 20   | Rubric Checklist |  |
| TOTAL                                         | 100% |                  |  |



| LEARNING UNIT    | III. Software Quality Methods                                                                        |
|------------------|------------------------------------------------------------------------------------------------------|
| EXPECTED OUTCOME | The student will develop a program data protection, to mitigate and minimize ries g os in databases. |
| HOURS            | 25                                                                                                   |

| TOPICS                      | KNOWLEDGE                                                                                                                           | KNOW-HOW                                         | SESSION DATES |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|
| Validation<br>Techniques    | Identify software validation techniques.<br>Explain software validation<br>techniques: - Equivalent partitions - Edge               | Validate developed software                      | Week 7        |
| Software Quality<br>Testing | Explain the operation and syntax of input and output instructions of digital signals in the programming of rapid prototyping cards. | Validate the quality of the software developed . | Week 8        |
| Quality Metrics             | Explain the quality metrics: - Test plan -<br>Error analysis document -<br>Requirements matrix - Test cases                         | Validate software tests                          | Week 9        |



| ASSESSMENT PROCESS   |      |                        |  |  |  |
|----------------------|------|------------------------|--|--|--|
| PERFORMANCE EVIDENCE | %    | ASSESSMENT INSTRUMENTS |  |  |  |
| Portfolio            | 30   | Rubric Checklist       |  |  |  |
| Project              | 50   | Rubric Checklist       |  |  |  |
| Quiz                 | 20   | Rubric Checklist       |  |  |  |
| TOTAL                | 100% |                        |  |  |  |



| LEARNING UNIT    | IV. Software Implementation                                                           |  |
|------------------|---------------------------------------------------------------------------------------|--|
| EXPECTED OUTCOME | The student will implement libraries and subroutines to patent the developed software |  |
| HOURS            | 24                                                                                    |  |

| TOPICS                                       | KNOWLEDGE                                                                                    | KNOW-HOW                                       | SESSION DATES    |
|----------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|------------------|
| Specialized<br>libraries                     | Explain the characteristics of specialized libraries and subroutines.                        | Implement libraries and subroutines.           | Week 10          |
| Software licensing and intellectual property | Describe the elements of the software license. Describe the software license classification. | License software development patent processes. | Week 11, Week 12 |

Engineering Program: EMBEDDED SYSTEMS ENGINEERING



# CODE OF CONDUCT IN THE CLASSROOM

Mutual respect
Honesty
Integrity
Listen closely to classmates at exhibitions
Empathy

#### **BIBLIOGRAPHIC REFERENCES**

| AUTHOR                                  | YEAR | DOCUMENT TITLE                     | PLACE OF PUBLICATION |
|-----------------------------------------|------|------------------------------------|----------------------|
| Zed A. Shaw                             | 2005 | Learn C the Hard Way               | US                   |
| Delores etter                           | 2008 | Engineering Problem Solving with C | US                   |
| Brian W. Kernighan<br>Dennis M. Ritchie | 2003 | The C Programming Language         | US                   |
| Steve Oualline                          | 1997 | Practical C Programming            | US                   |
| Silberschatz, A.                        | 2014 | Database Fundamentals              | US                   |