ES 200 ENVIRONMENTAL STUDIES

Module-C

Anthropogenic effects on ecosystem, water quality & health, water & wastewater treatment

Lecture-2

Amritanshu Shriwastav CESE, IIT Bombay amritan@iitb.ac.in

Learning Objectives

Water Resources

- Why is water so important?
- Hydrologic cycle
- Major water compartments
- Major water issues
- Water management

https://static.ncmyus.com/imag es/pub/www/upl oads/image/fdf4 9f3f5bc94699ba9 fd4838f56fa05/w orld-waterinfograph.jpg

• 10 Facts About the World's Water Celebrate World Water Day on 22 March by learning more about this most precious of natural resources. With members around the world, global eCommerce shipper MyUS offers insights on how important-and fragile-the Earth's water resources are becoming. Water covers about 70% of the Earth's The Nile River is the longest surface river in the world at 6,650 km (4,132 mi) long. 780 million people lack access to an improved 82% of those who lack water source-about access to improved water one in nine people live in rural areas, while just 18% live in urban areas Today, more people own a mobile phone than have access to a toilet Just 33% of what the world spends on bottled water every year would pay to provide clean water for the 780 million without it Less than 10 countries possess 60% of the world's available freshwater supply Since 1940, the world's water use has quadrupled, while the world's population has only doubled 70% of the world's water resources are needed for food production It takes about 37 10 gallons of water to

grow and process the coffee beans to make one cup of coffee http://oregon state.edu/inst ruct/css/330/f our/images/k 7577-1iLongGrainRi ce2ARS_USDA .jpg

What is Water?

http://www.crystalblueent.com/uploads/5/9/9/6/59962767/water-molecule-polarity-1024x406_orig.jpg

Why is Water so Important?

Density

- Maximum density at 4 °C sustains the aquatic life in frozen waters
- Expands when freezes resulting in weathering of rocks and recycling of minerals in significant amount

Melting and Boiling Points

- Unusually high boiling and freezing temperatures for a compound having such a low molecular weight
- > Enables it to stay in liquid form over most of the globe

Specific Heat

- Very high heat capacity (4.184 kJ/kg °C)
- Takes longer for water to heat up and cool down than almost anything else
- This makes oceans the major moderating factor in maintaining the temperature of the Earth's surface

6

Why is Water so Important?

Heat of Vaporization

- The heat required to vaporize water (2258 kJ/kg) is one of the highest of all liquids
- ➤ It means that water vapor stores an unusually large amount of energy, which is released when it condenses
- This is important in redistributing the heat across the globe and is a major factor affecting the Earth's climate

Universal Solvent

- > Water dissolves more substances than any other common solvent
- Effective medium for transporting dissolved nutrients to organs in the living things as well as eliminating their wastes
- Water also transports dissolves substances throughout the biosphere

Greenhouse Effect

- Water molecule absorbs both incoming solar radiation and infrared radiation leaving Earth's surface
- Such absorptions are the major factors governing the Earth's temperature
- > Water vapor is the most important green house gas in the atmosphere

Hydrologic Cycle

The Hydrologic Cycle (also called the Water Cycle) is the continuous movement of water in the air, on the surface of and below the Earth.

Human activities that alter the water cycle: · Agriculture

- · Alteration of Atmosphere
- . Construction of Dams
- . Deforestation and Afforestation · Water Abstraction from Rivers
- Industry Urbanization

Sublimation Sun's Heat Causes Evaporation Deposition Condensation Storage in Snow & Ice Clouds & Water Vapor Precipitation **Transportation Transpiration** Snowmelt **Evaporation** River Discharge Lake Infiltration & Percolation **Ocean** Subsurface Salty/Brackish Water Zone Soil/Porous The hydrologic cycle Earth is the exchange of energy which influences climate. When **Ground Water** water condenses, it releases energy Zone and warms the environment. When water evaporates it takes energy Non-Porous

http://th umbnails. visually.n etdnacdn.com /thewatercycle_52 3b5e9dd 38c6_w1 500.png

Process Definitions:

Condensation

The transformation of water vapor to liquid water droplets in the air, creating clouds and fog

Deposition

Also known as desublimation, is a thermodynamic process, a phase transition in which gas (vapor) transforms into

Evaporation

Bedrock

The transformation of water from liquid to gas phases as it moves from the ground or bodies of water into the overlying atmosphere.

Percolation

Water flows horizontally through the soil and rocks under the influence of gravity.

Precipitation

Condensed water The state change vapor that falls to directly from solid the Earth's surface. water (snow or ice) Most precipitation to water vapor. occurs as rain, but also includes snow hail, fog drip,

graupel, and sleet.

Sublimation Transpiration

The release of water vapor from plants and soil into the air. Water vapor is a gas that cannot be seen.

from the surrounding environment,

dropping temperatures.

Copyright © h2odistributors.com

Distribution of World's Water

Residence Time of a Water Molecule

Reservoir	Residence Time
Living organisms	Hours to days
Atmosphere	5 - 15 days
Rivers	2 weeks
Soil moisture	Months
Large lakes	10 years
Shallow groundwater	10s – 100s of years
World oceans	3000 years
Deep groundwater	Up to 10,000 years
Antarctic ice cap	10,000 – 200,000 years

Major Water Compartments The Oceans

https://s-media-cache-ak0.pinimg.com/originals/60/4b/1a/604b1af14e7004825cccc95e0b9f0c2b.gif

5 Oceans

Major Water Compartments

The Oceans

Oceans are salty!

https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Water_salinity_diagram.png/1200px-Water_salinity_diagram.png

brine pools
50+ ppt

saline water

seawater, salt lakes 30-50 ppt

brackish water

estuaries, mangrove swamps, brackish seas and lake, brackish swamps

.5-30 ppt

fresh water

ponds, lakes, rivers, streams, aquifers

0-.5 ppt

Major Water Compartments The Oceans

Salinity of the Oceans

Major Water Compartments

The Oceans

http://slideplayer.co m/slide/6410121/22/i mages/34/Salinity+V ariation+with+Depth. jpg

Major Water Compartments The Oceans

COMPARISON BETWEEN OCEAN WATER AND RIVER WATER

	Percentage of Total Salt		
Chemical	Con	Content	
Constituent	Ocean Water	River Water	
Silica (SiO ₂)	_	14.51	
Iron (Fe)	_	0.74	
Calcium (Ca)	1.19	16.62	
Magnesium (Mg)	3.72	4.54	
Sodium (Na)	30.53	6.98	
Potassium (K)	1.11	2.55	
Bicarbonate (HCO ₃)	0.42	31.90	
Sulfate (SO ₄)	7.67	12.41	
Chloride (CI)	55.16	8.64	
Nitrate (NO ₃)	_	1.11	
Bromide (Br)	0.20	-	
TOTAL	100.00	100.00	

http://ponce.sdsu. edu/usgs_why_is_t he_ocean_salty/c harts.gif

Major Water Compartments

The Great Ocean Conveyer Belt

http://stempreacademy.hawaii.edu/sites/default/files/c-more/ocean-conveyor-belt-light_375px.jpg

Major Water Compartments

The Groundwater

12 THINGS YOU SHOULD KNOW ABOUT GROUNDWATER:

Aquifers hold

times more fresh water than rivers, lakes, and streams.

(Shiklomanov, 1993)

2

Groundwater provides

percent of global water for agriculture.

(Doll, 2012)

California withdraws more fresh groundwater than any U.S. state, roughly

12.3

billion gallons per day.

(U.S. Geological Survey, 2010)

Groundwater is the primary drinking water source for

1.5 to 3

(Kundzewicz, 2009)

India irrigates more farmland with groundwater – some

39 million hectares –

than any country.

1/4 & 1/3

of sea level rise is attributed to groundwater pumping.

(Taylor 2013)

7

Groundwater
pumping in the
current drought is
causing parts of
California's Central
Valley to sink at
a rate of

centimeters per month.

(NASA Jet Propulsion Laboratory, 2015)

Twenty-one of the world's

largest aquifers are being depleted.

(Richev. 2015)

Saudi Arabia will halt domestic wheat production by

> 2016 because of groundwater

> > depletion. (Karam, 2009)

Groundwater pumping dried up or degraded

percent of Arizona's desert streams.

(Glennon, 2002)

Lecture 2 : ES 200 Module C

India withdraws more groundwater than any country – more than double the volume of China, the

2nd biggest groundwater user.

(World Water Assessment Program, 2012)

Overpumping of coastal aquifers allows the ocean to push inland. Salt water has been detected in wells

miles from the coast.

(California Water Foundation, 2014) /upload s/2016/ 01/12factsaboutground water1. png

http://w ww.circl

eofblue.

org/wp-

content

Major Water Compartments The Groundwater

Major Water Compartments The Groundwater

Physical Properties That Affect Groundwater

Porosity:

The ratio of voids in a rock or sediment to the total volume of material is referred to as porosity and is a measure of the amount of groundwater that may be stored in the material.

LOW TO HIGH POROSITY

Permeability:

- It measures the transmission property of the media and the interconnection of the pores.
- It is related to hydraulic conductivity and transmissivity.

Examples of porosity in sediments and rocks

e.slideshare cdn.com/int roductionto groundwate rhydrology-15031601283 conversiongate01/95/i ntroductionto-groundwaterhydrology-13-638.jpg?cb= 1426469370

https://imag

13

Major Water Compartments The Groundwater: Aquifers

Major Water Compartments The Groundwater: Major Aquifers

https://w ww.natur e.com/a rticleassets/n pg/nclim ate/journ al/v3/n4/ images/ nclimate 1744f1.jpg

Major Water Compartments The Groundwater: Flow

Darcy's Law

$$Q = KA\left(\frac{dh}{dL}\right)$$

where

 $Q = \text{flow rate } (\text{m}^3/\text{day})$

K = hydraulic conductivity, or coefficient of permeability (m/day)

A = cross-sectional area (m²)

$$\left(\frac{dh}{dI}\right)$$
 = the hydraulic gradient

Darcy Velocity,
$$v = \frac{Q}{A} = \frac{KA\left(\frac{dh}{dL}\right)}{A} = K\frac{dh}{dL}$$

http://butane.chem. uiucledu/pshapley/e nvironmental/l23/3b.j pg

Masters & Ela

Area of voids filled with water = A' Solid

Total area = A' Lecture 2 : ES 200 Module C

Total volume = AL

Average linear velocity

$$v' = \frac{Darcy\ velocity}{Porosity} = \frac{v}{\Phi} = \frac{K}{\Phi} \left(\frac{dh}{dL}\right)$$

Major Water Compartments The Rivers

Rank	River		Drainage Area		Average Discharge	
		Country	Square kilometers	Square miles	Cubic meters per sec.	Cubic feet per sec.
1	Amazon	Brazil	5,778,000	2,231,000	212,400	7,500,000
2	Congo	Rep. of Congo	4,014,500	1,550,000	39,650	1,400,000
3	Yangtze	China	1,942,500	750,000	21,800	770,000
4	Brahmaputra	Bangladesh -	935,000	361,000	19,800	700,000
5	Ganges	India —	1,059,300	409,000	18,700	660,000
6	Yenisei	Russia	2,590,000	1,000,000	17,400	614,000
7	Mississippi	United States	3,222,000	1,244,000	17,300	611,000
8	Orinoco	Venezuela	880,600	340,000	17,000	600,000
9	Lena	Russia	2,424,000	936,000	15,500	547,000
10	Parana	Argentina	2,305,000	890,000	14,900	526,000

© 2011 Pearson Education, Inc.

http://images.slideplayer.com/26/8542705/slides/slide_11.jpg

Major Water Compartments

The Rivers

http://p m22100. net/pag es/enerc oop/01_ dossiers/ unepwater/04 -majorbasins.jp g

Major River Basins of the World 11 10 UNEP

North America

- 1 Yukon
- 2 Mackenzie
- 3 Nelson
- 4 Mississippi
- 5 St. Lawrence

South America

- 6 Amazon
- 7 Paraná

Europe

25 Danube

Africa and West Asia

- 8 Niger
- 9 Lake Chad Basin
- 10 Congo
- 11 Nile
- 12 Zambezi
- 26 Orange
- 24 Euphrates and Tigris

Asia and Australia

DELPHINE DIGOUT

- 13 Volga
- 14 Ob
- 15 Yenisey
- 16 Lena
- 17 Kolyma
- 18 Amur
- 19 Ganges and Brahmaputra
- Yangtze
- 21 Murray Darling
- 22 Huang He
- 23 Indus

Source: United Nations Environment Programme (UNEP); World Conservation Monitoring Centre (WCMC); World Resources Institute (WRI); American Association for the Advancement of Science (AAAS); Atlas of Population and Environment, 2001.

Major Water Compartments

Reading Assignment

Read about the role of Lakes and Atmosphere as Water Compartments.

- Quantity of freshwater
- Quality of freshwater
- > Inequitable distribution
- Unsustainable use

Quantity of Freshwater

Recommended per capita Water Supply Levels in India

Classification of Towns/Cities	Recommended Maximum Water Supply Levels (lpcd)
Towns provided with piped water supply without sewerage system	70
Cities provided with piped water supply where sewerage system is existing/contemplated	135
Metropolitan and Mega Cities provided with piped water supply where sewerage system is existing/contemplated	150

Central Public Health and Environmental Engineering Organisation (CPHEEO) Manual, 1999; IS:1172-1993

Quantity of Freshwater

Activity	Demand (lpcd)
Drinking	5
Cooking	5
Bathing	55
Washing of clothes	20
Washing of utensils	10
Cleaning of house	10
Flushing of toilets	30
Total	135

Quantity of Freshwater

Quantity of Freshwater

Quantity of Freshwater

https://twitter.com/ArvindKejriwal/status/701580858428231680?ref_src=twsrc%5Etfw&ref_url=http%3A%2F%2Fwww.huffingtonpost.in%2Famitangshu-acharya%2F5-blind-spots-that-are-bl_b_9483230.html

Quality of Freshwater

http://nowfoundation.org.uk/wp-content/uploads/2015/05/NOW-Foundation-Act-Now-Water-7.jpg

Lecture 2 : ES 200 Module C

https://cdn.thewaterproject.org/i mages/waterstats.jpg

https://s-media-cache-ak0.pinimg.com/originals/8c/84/a1/8c84a1c23189ac97041f497a6a70217c.jpg

Inequitable Distribution of Freshwater

http://s.wsj.net/public/resources/images/OB-TK844_water0_G_20120619080244.jpg

ts-that-are-bl_b_9483230.html

iolutions To India's Water Crisis

However, fetishizing supply is preferred over regulating demand. From desalinization plants, to interlinking rivers to the promise of 24x7 water supply, our politics legitimize solutions in the name of the common man, but in reality, supply water to the rich. The litigation and conflict surrounding the diversion of water supply from the city of Pune to the expensive real estate destination, Lavasa City, is case in point. In Delhi, the rich have cornered the bulk of the city's water supply by paying private water tankers, digging illegal bore wells and bribing officials.

The 24x7 water supply system was made

operational for some of Delhi's extremely posh colonies... people promptly switched to washing their imported cars three times a day.

Some believe that making the rich pay for their water will solve this problem. Reality disagrees. The 24x7 water supply system was made operational for some of Delhi's extremely posh colonies with the belief that regular supply and volumetric pricing would lead to better water conservation. In fact, as the buzz goes, people promptly switched to washing their imported cars three times a day and watering the lawns more frequently. Such pathology of water consumption by the rich remains unexamined and hence, untreated

http://www.huffingtonpost.in/amitangsh u-acharya/5-blind-spots-that-arebl b 9483230.html

Unsustainable Use of Freshwater

Unsustainable Use of Freshwater

http://www.un.org/waterforlifedecade/images/scarcity/2014_01_water_scarcity_eng.jpg

The Water Management

Assignment

Write an Essay on "Sustainable Water Management Practices" (1500-2000 words, typed and printed).

<u>Submission:</u> 05 Sep 2017 (Tue) or before (No late submission)

Non submission (or plagiarized assignments) will have a penalty of 4 marks from your earned marks (Quiz + Final Exam) out of 33 Marks in Module-C.

Example: If you scored 10 marks in Quiz and 20 marks in Final Exam, but did not submit the assignment; then your final marks for Module-C will be: 10+20-4 = 26 (out of 33).

<u>Important:</u> Submission of the assignment, and having a TA note down that you have actually submitted it, is **YOUR** RESPONSIBILITY!!!!

Next Lecture:

Water Quality & Pollution Sources