> DC Biasing:

- $V_i = V_I + v_i$ (V_I : *DC bias voltage*, v_i : *ac small-signal voltage*)
- $I_c = I_C + i_c$ (I_C : *DC bias current*, i_c : *ac small-signal current*)
- The ideal DC bias point should be $V_{I1} = V_{I2}$ $\Rightarrow I_{C1} = I_{C2} = I_{FF}/2$
- Thus, any arbitrary DC voltage can be applied at the bases of Q_1 - Q_2 , provided they are same
 - ⇒ Ideal choice: ground
 - ⇒ Necessitates a negative power supply for proper biasing

• Under this condition:

$$V_{01} = V_{02} = V_{CC} - I_{EE}R_C/2$$
 and $V_{0d} = 0$

The simplest DC biasing scheme is to attach a resistor R_{EE} from the common emitter point to V_{EE} :

$$\Rightarrow I_{EE} = (-0.7 - V_{EE})/R_{EE}$$
and $I_{C1} = I_{C2} = I_{EE}/2$

 \Rightarrow Both Q_1 and Q_2 have same g_m , r_E , r_{π} and r_0

Simplest DC Biasing Scheme for npn DA

• To improve performance, any of the current sources discussed earlier could be used in place of $R_{\rm FE}$

- A check is needed to see that Q_1 and Q_2 are biased in the forward active region
- For this circuit, for *best biasing*:

$$V_{CE1} = V_{CE2} = (V_{CC} + |V_{EE}|)/3$$
 (3-element o/p branch)

> ac Analysis:

- Balanced DAs have perfect symmetry around the vertical cut-line going through the middle of the circuit
- Can be analyzed using heuristics
 - * Known as the *Half-Circuit Technique*
- This technique is based on an algorithm (Understand it thoroughly to get a clear grasp!)

> Algorithm for the Half-Circuit Technique:

- Apply inputs v_{i1} and v_{i2} at the bases of Q_1 and Q_2 respectively
- Outputs v_{o1} and v_{o2} taken from the collectors of Q_1 and Q_2 respectively
- Define $v_{id} = (v_{i1} v_{i2})$ as the *pure differential-mode input*
- Define $v_{ic} = (v_{i1} + v_{i2})/2$ as the *pure common-mode* input
- Thus:

$$v_{i1} = v_{id}/2 + v_{ic}$$
$$v_{i2} = -v_{id}/2 + v_{ic}$$

- Define $v_{od} = (v_{o1} v_{o2})$ as the *pure differential-mode output*
- Define $v_{oc} = (v_{o1} + v_{o2})/2$ as the *pure common-mode output*
- Thus:

$$v_{o1} = v_{od}/2 + v_{oc}$$
$$v_{o2} = -v_{od}/2 + v_{oc}$$

- Now, assuming that pure differential-mode and pure common-mode signals are completely noninteracting:
 - ❖ Pure differential-mode output can only be caused by a pure differential-mode input
 - ❖ Pure common-mode output can only be caused by a pure common-mode input

- Based on these, define:
 - ***** Differential-Mode Gain: $A_{dm} = v_{od}/v_{id}$
 - ***** Common-Mode Gain: $A_{cm} = v_{oc}/v_{ic}$
- Thus, from the *principle of superposition*:

$$v_{o1} = (A_{dm}/2)v_{id} + A_{cm}v_{ic}$$

$$v_{o2} = -(A_{dm}/2)v_{id} + A_{cm}v_{ic}$$

- Thus, each output carries both differential- and common-mode signals, however, the differential-mode signals are out of phase, whereas the common-mode ones are in phase
- Hence, the difference between the two outputs carries only the differential-mode signal, with a gain double that of a single output