Possible Choices of Complex Co-ordinates for a Surface Moduli Spaces of Riemann Surfaces

Zhaoshen Zhai

Graduate mentor: Kaleb Ruscitti

April 26, 2023

Refined question

Refined question

How many complex coordinates on \mathbb{R}^2 ? How many complex coordinates on \mathbb{R}^2 up to biholomorphism?

Surfaces

Recall that a surface is a connected 2-dimensional real manifold.

Surfaces

Recall that a surface is a connected 2-dimensional real manifold.

Definition

A <u>Riemann surface</u> is a surface with a choice of complex structure.

Compact surfaces

Theorem (Classification of Surfaces)

For each natural number g, there exists exactly one compact orientable surface up to homeomorphism. We call g the \underline{genus} of the surface.

Compact surfaces

Theorem (Classification of Surfaces)

For each natural number g, there exists exactly one compact orientable surface up to homeomorphism. We call g the <u>genus</u> of the surface.

Topological torus

Theorem

Every torus is a quotient $\mathbb{C}/(\mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2)$ for some \mathbb{R} -linearly independent $\omega_1, \omega_2 \in \mathbb{C}$.

Topological torus

Theorem

Every torus is a quotient $\mathbb{C}/(\mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2)$ for some \mathbb{R} -linearly independent $\omega_1, \omega_2 \in \mathbb{C}$.

Theorem

Every complex tori is the quotient $X_{\tau} := \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$ for some $\tau \in \mathbb{H}$. Indeed, for all linearly independent $\omega_1, \omega_2 \in \mathbb{C}$,

$$\mathbb{C}/(\mathbb{Z}\omega_1\oplus\mathbb{Z}\omega_2)\cong X_\tau$$

for
$$\tau := \omega_2/\omega_1 \in \mathbb{H}$$
.

Definition

The <u>modular group</u> $\operatorname{PSL}_2(\mathbb{Z})$ is the group of functions $\gamma: \mathbb{H} \to \mathbb{H}$ mapping

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}$$

for some $a, b, c, d \in \mathbb{Z}$ with ad - bc = 1.

Definition

The <u>modular group</u> $\operatorname{PSL}_2(\mathbb{Z})$ is the group of functions $\gamma: \mathbb{H} \to \mathbb{H}$ mapping

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}$$

for some $a, b, c, d \in \mathbb{Z}$ with ad - bc = 1.

Theorem

For any $\tau, \tau' \in \mathbb{H}$, the tori X_{τ} and X_{τ} are biholomorphic iff there exists some $\gamma \in \mathrm{PSL}_2(\mathbb{Z})$ such that $\tau' = \gamma(\tau)$.

Definition

The <u>modular group</u> $\operatorname{PSL}_2(\mathbb{Z})$ is the group of functions $\gamma: \mathbb{H} \to \mathbb{H}$ mapping

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}$$

for some $a, b, c, d \in \mathbb{Z}$ with ad - bc = 1.

Theorem

For any $\tau, \tau' \in \mathbb{H}$, the tori X_{τ} and X_{τ} are biholomorphic iff there exists some $\gamma \in \mathrm{PSL}_2(\mathbb{Z})$ such that $\tau' = \gamma(\tau)$.

Corollary

The moduli space of complex tori is $\mathbb{H}/\operatorname{PSL}_2(\mathbb{Z})$.

Theorem (Uniformization)

 $There\ is\ a\ unique\ choice\ of\ complex\ coordinates\ on\ the\ sphere.$

Theorem (Uniformization)

There is a unique choice of complex coordinates on the sphere.

Proof. Hard!

Theorem (Uniformization)

There is a unique choice of complex coordinates on the sphere.

Theorem (Uniformization)

There is a unique choice of complex coordinates on the sphere.

Proof. Hard! Fix a sphere $\hat{\mathbb{C}}$, which is equipped with a particular complex coordinate. Let X be another sphere.

• Covering space theory: We defined the degree of a holomorphic map and proved that if X is compact and if there exists a meromorphic function on X with a single simple pole, then $X \cong \hat{\mathbb{C}}$.

Theorem (Uniformization)

There is a unique choice of complex coordinates on the sphere.

- Covering space theory: We defined the degree of a holomorphic map and proved that if X is compact and if there exists a meromorphic function on X with a single simple pole, then $X \cong \hat{\mathbb{C}}$.
- Analytic continuation: We attempted to find such a meromorphic function, but our techniques weren't powerful enough.

Theorem (Uniformization)

There is a unique choice of complex coordinates on the sphere.

- Covering space theory: We defined the degree of a holomorphic map and proved that if X is compact and if there exists a meromorphic function on X with a single simple pole, then $X \cong \hat{\mathbb{C}}$.
- Analytic continuation: We attempted to find such a meromorphic function, but our techniques weren't powerful enough.
- Čech cohomology: We used tools from differential forms and cohomology to prove the existence of such a meromorphic function.

Theorem (Uniformization)

There is a unique choice of complex coordinates on the sphere.

- Covering space theory: We defined the degree of a holomorphic map and proved that if X is compact and if there exists a meromorphic function on X with a single simple pole, then $X \cong \hat{\mathbb{C}}$.
- Analytic continuation: We attempted to find such a meromorphic function, but our techniques weren't powerful enough.
- Čech cohomology: We used tools from differential forms and cohomology to prove the existence of such a meromorphic function.

Thank you!

Thank you!