Formale Grundlagen der Informatik II 2. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach
Davorin Lešnik, Daniel Günzel, Daniel Körnlein

SoSe 2014 18. Juni 2014

Gruppenübung

Aufgabe G4 (Resolutionsverfahren)

Seien φ und ψ AL-Formeln. Wie kann man das Resolutionsverfahren benutzen, um zu überprüfen, ob

- (a) φ unerfüllbar ist;
- (b) φ erfüllbar ist;
- (c) φ allgemeingültig ist;
- (d) φ nicht allgemeingültig ist;
- (e) $\varphi \models \psi$;
- (f) eine endliche Menge Φ von AL-Formeln unerfüllbar ist;
- (g) eine unendliche Menge Φ von AL-Formeln unerfüllbar ist?

Lösung:

- (a) $\Box \in \text{Res}^*(K(\varphi))$ $(K(\varphi))$ bezeichnet die Klauselmenge zu φ .)
- (b) $\Box \notin \operatorname{Res}^*(K(\varphi))$
- (c) $\Box \in \operatorname{Res}^*(K(\neg \varphi))$
- (d) $\Box \notin \operatorname{Res}^*(K(\neg \varphi))$
- (e) $\Box \in \operatorname{Res}^*(K(\varphi \land \neg \psi))$
- (f) $\Box \in \operatorname{Res}^*(K(\bigwedge \Phi))$
- (g) $\Box \in \text{Res}^*(K(\bigwedge \Phi_0))$ für ein endliches $\Phi_0 \subseteq \Phi$.

Aufgabe G5 (Sequenzenkalkül)

Finden Sie mittels Beweissuche im Sequenzenkalkül SK für folgende Sequenzen eine Herleitung.

- (a) $\vdash p \lor q \lor \neg p$
- (b) $p, q \lor r \vdash (p \land q) \lor (p \land r)$

Lösung:

(a)

$$\frac{\overline{p \vdash p, q}}{\frac{p \vdash p \lor q}{\vdash p \lor q}} (\lor R)$$

$$\frac{\vdash p \lor q, \neg p}{\vdash p \lor q \lor \neg p} (\lor R)$$

(b)
$$\frac{\overline{p,q \vdash p,p \land r}}{\frac{p,q \vdash p, \wedge q, p \land r}{p, q \vdash p, \wedge q, p \land r}}} \underset{(\land R)}{(\land R)} \frac{\overline{p,r \vdash p \land q,p}}{\frac{p,r \vdash p \land q,p \land r}{p,r \vdash p \land q,p \land r}}} \underset{(\land R)}{(\land R)} \frac{\overline{p,r \vdash p \land q,p \land r}}{p,r \vdash p \land q,p \land r}} \underset{(\lor L)}{(\lor L)}$$

Aufgabe G6 (Kompaktheitssatz)

Für Formelmengen Φ und Ψ schreiben wir

$$\bigwedge \Phi \models \bigvee \Psi$$
,

wenn jedes Modell, das alle Formeln $\phi \in \Phi$ wahr macht, auch mindestens eine Formel $\psi \in \Psi$ wahr macht. Zeigen Sie, dass $\bigwedge \Phi \models \bigvee \Psi$ impliziert, dass es endliche Teilmengen $\Phi_0 \subseteq \Phi$ und $\Psi_0 \subseteq \Psi$ gibt, so dass $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

Lösung:

Wenn $\bigwedge \Phi \models \bigvee \Psi$ gilt, dann hat die Menge $\Phi \cup \neg \Psi$ keine Modelle, wobei $\neg \Psi = \{ \neg \psi : \psi \in \Psi \}$. Der Kompaktheitssatz impliziert dann, dass schon eine endliche Teilmenge $\Gamma \subseteq \Phi \cup \neg \Psi$ keine Modelle hat. Setzen wir $\Phi_0 = \{ \phi \in \Phi : \phi \in \Gamma \}$ und $\Psi_0 = \{ \psi \in \Psi : \neg \psi \in \Gamma \}$, dann heißt das, dass $\Gamma = \Phi_0 \cup \neg \Psi_0$ keine Modelle hat, also $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

Hausübung

Aufgabe H4 (Resolutionsverfahren)

(12 Punkte)

Seien

$$\varphi := (p \lor q) \land (q \lor \neg r) \land (p \lor \neg q \lor r)$$

$$\psi := (\neg p \land r) \lor (p \land \neg r) \lor (p \land q \land r).$$

Zeigen Sie mit Hilfe des Resolutionsverfahrens, dass

- (a) φ erfüllbar ist;
- (b) $\varphi \models \psi$ gilt.

Lösung:

(a)

$$\begin{split} & \operatorname{Res}^0(K) = \left\{ \{p,q\}, \ \{q, \neg r\}, \ \{p, \neg q, r\} \right\} \\ & \operatorname{Res}^1(K) = \operatorname{Res}^0(K) \cup \left\{ \{p,r\}, \ \{p,r, \neg r\}, \{p,q, \neg q\} \right\} \\ & \operatorname{Res}^2(K) = \operatorname{Res}^1(K) \cup \left\{ \{p,q, \neg r\} \right\} \\ & \operatorname{Res}^3(K) = \operatorname{Res}^2(K) \end{split}$$

(b) Klauseln: $\{p,q\}, \{q,\neg r\}, \{p,\neg q,r\}, \{p,\neg r\}, \{\neg p,r\}, \{\neg p,\neg q,\neg r\}$

Aufgabe H5 (Beweiskalküle)

(12 Punkte)

Wir betrachten folgenden Beweiskalkül von Shoenfield (1967) für das System {¬,∨} :

Axiome:
$$\neg \phi \lor \phi$$

Regeln: $\frac{\phi}{\phi \lor \psi}$ $\frac{\phi \lor \phi}{\phi}$ $\frac{\phi \lor (\psi \lor \chi)}{(\phi \lor \psi) \lor \chi}$ $\frac{\phi \lor \psi \quad \neg \phi \lor \chi}{\psi \lor \chi}$

Wir schreiben $\Phi \vdash \psi$, falls es einen Beweisbaum gibt, dessen Blätter Axiome oder Aussagen in Φ sind und dessen Wurzel ψ ist. Beweisen Sie:

- (a) $\phi \lor \psi \vdash \psi \lor \phi$.
- (b) $\phi, \phi \to \psi \vdash \psi$ (wie üblich betrachten wir $\phi \to \psi$ als eine Abkürzung für $\neg \phi \lor \psi$).
- (c) $\phi \lor \psi, \neg \phi \vdash \psi$.
- (d) $\neg \neg \phi \vdash \phi$.

Lösung:

(a)

$$\frac{\phi \lor \psi \qquad \neg \phi \lor \phi}{\psi \lor \phi}$$

(b)

$$\frac{\frac{\phi}{\phi \vee \psi} \quad \neg \phi \vee \psi}{\frac{\psi \vee \psi}{\psi}}$$

(c)

$$\frac{\frac{\neg \phi}{\neg \phi \lor \psi}}{\frac{\psi \lor \psi}{\psi}}$$

(d) Aus $\neg \phi \lor \phi$ und $\neg \neg \phi$ folgt mit (c) ϕ .

Aufgabe H6 (Kompaktheitssatz)

(12 Punkte)

Eine Interpretation $\mathscr{I}: \mathscr{V} = \{p_1, p_2, \dots\} \to \mathbb{B}$ kann aufgefasst werden als eine unendliche Bit-Sequenz. P sei irgendeine Teilmenge aller solchen Sequenzen, \overline{P} das Komplement von P. Wir betrachten ein P, so dass sowohl P als auch \overline{P} durch (unendliche) AL-Formelmengen spezifiziert werden können, in dem Sinne, dass

$$\begin{array}{rcl} P & = & \{\mathscr{I} : \mathscr{I} \models \Phi\} \\ \overline{P} & = & \{\mathscr{I} : \mathscr{I} \models \Psi\} \end{array}$$

für geeignete $\Phi, \Psi \subseteq AL(\mathcal{V})$.

Zeigen Sie, dass dann sowohl P als auch \overline{P} sogar schon durch einzelne AL-Formeln ϕ und ψ spezifiziert werden können (und also nur von endlichen Abschnitten der Sequenzen abhängen können).

Lösung: Die Vereinigung $\Phi \cup \Psi$ kann keine Modelle haben, da solche Modelle sowohl zu P als auch zu \overline{P} gehören würden. Der Kompaktheitssatz sagt jetzt, dass schon eine endliche Teilmenge $\Gamma \subseteq \Phi \cup \Psi$ keine Modelle hat. Da jede Formel in Γ entweder zu Φ oder zu Ψ gehört, muss Γ von der Form

$$\Gamma = \{\phi_1, \phi_2, \dots, \phi_m, \psi_1, \psi_2, \dots, \psi_n\}$$

sein, wobei $\phi_i \in \Phi$ und $\psi_i \in \Psi$. Wenn wir schreiben $\phi = \phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_m$ und $\psi = \psi_1 \wedge \psi_2 \wedge \ldots \wedge \psi_n$, dann sind die Modelle von ϕ genau die Elemente von P und die Modelle von ψ genau die Elemente von \overline{P} . Diese Behauptung folgt aus den folgenden drei Tatsachen:

- 1. Elemente von P sind Modelle von ϕ und Elemente von \overline{P} sind Modelle von ψ .
- 2. Es gibt keine Modellen die gleichzeitig ϕ und ψ wahr machen.
- 3. Jedes Modell gehört entweder zu P oder zu \overline{P} .