Introduction to Reinforcement Learning

Vladimir Zlobin

vladimir.zlobin@intel.com

CV Summer Camp, July 2020

Branches of Machine Learning

Many faces of Reinforcement Learning

RL Mechanics

Reinforcement Learning Peculiarities

- What makes RL domain different from other machine learning approaches?
 - There is no external supervisor, only reward signal
 - Feedback can be delayed not right now!
 - Time matters sequential, not i.i.d. data
 - Agent's actions affect future data it receives

Sequential Decision Making

- Goal: select actions to maximize total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
 - A financial investment (may take months to mature)
 - Refueling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

RL Basics

An RL agent may include one or more of these components:

- Policy: agent's behavior function
- Value function: how good is each state and/or action
- Model: agent's representation of the environment

Rat Example

- What if agent state = last 3 items in sequence?
- What if agent state = counts for lights, bells?
- What if agent state = complete sequence?

Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - Policy: agent's behavior function
 - Value function: how good is each state and/or action
 - Model: agent's representation of the environment

Policy

- A policy is the agent's behavior
- It is a map from state to action, e.g.
- Deterministic policy: $\alpha = \pi(s)$
- Stochastic policy: $\pi(\alpha \mid s) = P[A_t = \alpha \mid S_t = s]$

Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions, e.g.

$$V_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

Model

- A model predicts what the environment will do next
- P predicts the next state
- Predicts the next (immediate) reward, e.g.

$$P_{ss'}^{a} = P[S_{t+1} = s' | S_{t} = s, A_{t} = a]$$

 $R_{s}^{a} = E[R_{t+1} | S_{t} = s, A_{t} = a]$

Rewards hypothesis

- \blacksquare A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward

Reinforcement Learning is based on the reward hypothesis.

The reward hypothesis:

All goals can be described by the maximization of expected cumulative reward.

Exploration & Exploitation

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way

Exploration & Exploitation

- Exploration finds more information about the environment
- Exploitation exploits known information to maximize reward
- It is usually important to explore as well as exploit

Examples:

- Bar Selection
 - Exploitation: Go to your favorite bar
 - Exploration: Try a new bar
- Online Banner Advertisements
 - Exploitation: Show the most successful advert
 - Exploration: Show a different advert
- Oil Drilling
 - Exploitation: Drill at the best known location
 - Exploration: Drill at a new location
- Game Playing
 - Exploitation: Play the move you believe is best
 - Exploration: Play an experimental move

Markov Processes Family

- Markov Processes (Markov Chain)
- Markov Reward Processes

- Markov Decision Processes
- Extensions to MDPs:
 - Infinite & Continuous MDP
 - POMDP
 - Undiscounted MDP

Introduction to MDPs

- Markov decision processes formally describe an environment for reinforcement learning
- Where the environment is fully observable
- i.e. The current *state* completely characterizes the process
- Almost all RL problems can be formalized as MDPs, e.g.
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state

Markov Property

• Definition: a state S_t is Markov if and only if

$$P[S_{t+1} | S_t] = P[S_{t+1} | S_1, ..., S_t]$$

- "The future is independent of the past given the present"
 - The state captures all relevant information from the history
 - Once the state is known, the history may be thrown away
 - i.e. The state is a sufficient statistic of the future

Markov Process

• Markov process is a memoryless random process, i.e. a sequence of random states $S_1, ..., S_t$ with the Markov property.

- A Markov Process (or Markov Chain) is a tuple (S, P)
 - **S** is a (finite) set of states
 - P is a state transition probability matrix

•
$$p_{ss'} = P[S_{t+1} = s' | S_t = s]$$

$$\mathbf{P} = \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{pmatrix}$$

Markov Process: Student Example

Markov Process: Episodes Sampling

Sample episodes for Student
 Markov Chain starting from
 S₁=C1

$$S_1, ..., S_t$$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB
 FB FB C1 C2 C3 Pub C2 Sleep

Markov Process: Transition Probabilities

Markov Reward Process

- A Markov reward process is a Markov chain with values.
- A Markov Reward Process is a tuple (S, P, R, y)
 - **S** is a (finite) set of states
 - $p_{ss'}$ is a state transition probability matrix
 - $p_{ss'} = P[S_{t+1} = s' | S_t = s]$
 - R is a reward function, $R_s = E[R_{t+1} | S_t = s]$
 - γ is a discount factor, $\gamma \in [0, 1]$

MRP: Student Example

Return

• The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{t=0}^{\infty} y^t R_{t+1}$$

- The discount $y \in [0, 1]$ is the present value of future rewards
- The value of receiving reward R after k + 1 time-steps is $y^k R$.
- This values immediate reward above delayed reward.
 - y close to o leads to "myopic" evaluation
 - y close to 1 leads to "far-sighted" evaluation

Discount intuition

Most Markov reward and decision processes are discounted. Why?

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented
- If the reward is financial, immediate rewards may earn more interest than delayed rewards
- Animal/human behavior shows preference for immediate reward
- It is sometimes possible to use *undiscounted* Markov reward processes (i.e. y=1), e.g. if all sequences terminate

Value Function

- The value function v(s) gives the long-term value of state s
- The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathsf{E}[G_t \mid S_t = s]$$

Student MRP returns

Sample returns for Student MRP with:

- $S_1 = C1$
- y = 0.5

$$G_1 = R_2 + \gamma R_3 + \dots + \gamma^{T-2} R_T$$

$$v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 10 * \frac{1}{8}$$

$$v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16}$$

$$v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 1 * \frac{1}{8} - 2 * \frac{1}{16} \dots$$

$$v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} \dots$$

$$= -3.20$$

State-Value function for student MRP

State-Value function for student MRP

Markov Decision Process

 A Markov decision process (MDP) is a Markov reward process with decisions. It is an *environment* in which all states are Markov.

- A Markov reward process is a Markov chain with values.
- A Markov Decision Process is a tuple (S, A, P, R, γ)
 - **S** is a (finite) set of states
 - A is a finite set of actions
 - $p_{ss'}^a$ is a state transition probability matrix
 - $p_{ss'}^{a} = P[S_{t+1} = s' | S_t = s, A_t = a]$
 - R is a reward function, $R_s^a = E[R_{t+1} \mid S_t = s, A_t = \alpha]$
 - y is a discount factor, $y \in [0, 1]$

Markov Decision Process: Example

MDP Policies

A policy π is a distribution over actions given states

$$\pi(a \mid s) = P[A_t = a \mid S_t = s]$$

- A policy fully defines the behavior of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are *stαtionary* (time-independent),

$$A_t \sim \pi(\cdot | S_t); \forall t > 0$$

Updated Value functions

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$V_{\pi}(s) = \mathsf{E}_{\pi}[G_t \mid S_t = s]$$

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s, \alpha) = \mathsf{E}_{\pi}[G_t \mid S_t = s, A_t = \alpha]$$

Optimal Value Function

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} (v_{\pi}(s))$$

 The optimal action-value function q*(s; a) is the maximum action-value function over all policies

$$q_*(s, a) = \max_{\pi} (q_{\pi}(s, a))$$

- The optimal value function specifies the best possible performance in the MDP.
- An MDP is "solved" when we know the optimal value function.

Optimal Policy

Define a partial ordering over policies:

$$\pi \ge \pi'$$
 if $V_{\pi}(s) \ge V_{\pi'}(s) \ \forall s$

Theorem: For any Markov Decision Process

- There exists an optimal policy π* that is better than or equal to all other policies: π* ≥ π ∀π
- All optimal policies achieve the optimal value function,

$$V_{\pi}*(S)=V*(S)$$

All optimal policies achieve the optimal action-value function

$$q_{\pi}*(s, a) = q*(s, a)$$

Recap: Dynamic Programming

- $V_{\pi}(s), V_{*}(s)$
- If you know $v_*(s)$, $p(r, s' | s, a) \rightarrow \text{know optimal policy}$
- We can learn $v_*(s)$ with Dynamic Programming:

$$v_*(s) = \max_{a} \sum_{r,s'} p(r,s' \mid s,a) [r + \gamma v_*(s')]$$

 $q_{\pi}(s, a), q_{*}(s, a)$

$$q_*(s, a) = \sum_{r,s'} p(r, s' | s, a) [r + \gamma \max_{a'} q_*(s', a')]$$

Decision making: reality check

Decision making: reality check

Model-Free Setup

We don't know internal environment representation, e.g.

$$p(r, s' \mid s, a)$$
 - unknown

What should we do?

Learning from trajectories

 $s_1 -> a_1 -> r_1 -> s_2 -> \dots -> s_n - trajectory$

- Model-based setup:
 - you can apply Dynamic Programming
 - you can plan (!)
- Model-free setup:
 - you can experiment with different actions
 - no guaranties (!!!)

Learning from trajectories

$$s_1 -> a_1 -> r_1 -> s_2 -> \dots -> s_n - trajectory$$

We can sample trajectories (a lot of trajectories!)

- What should we learn?
 - p(r,s' | s,a)
 - $\mathbf{v}_{\pi}(s)$
 - $q_{\pi}(s, \alpha)$

Monte-Carlo RL

- Just like N+1 heuristic:
 - Get all trajectories containing particular (s, a)
 - Estimate G_t(s, a) for each trajectory
 - Average them to get estimation of expectation

Monte-Carlo RL

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Note: can only apply MC to episodic MDPs
 - All episodes must terminate

Temporal Difference Learning

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

Temporal Difference

- Just like in the 'incremental mean' example we can improve $q_{\pi}(s, \alpha)$ iteratively:

$$q_*(s, a) = \sum_{r,s'} p(r, s' \mid s, a) [r + \gamma \max_{a'} q_*(s', a')]$$

Temporal Difference

$$\sum_{r,s'} p(r,s'\mid s,a)[r + \gamma \max_{a'} q_*(s',a')] \approx$$

$$\approx \frac{1}{N} \sum_{i} r_{i} + \gamma \max_{a'} Q(s'_{i}, a')$$

One more trick: use incremental averaging with 1 sample

$$Q(s,a) = \alpha \left(r_t + \gamma \max_{a'} Q(s',a')\right) + (1 - \alpha) Q(s,a)$$

Q-learning

- Works on a sequence of
 - states (s)
 - actions (a)
 - rewards (r)

Q-learning

- Initialize Q(s, a) with zeros
- Cycle:
 - Sample <s, a, r, s'> from environment

Q-learning

- Initialize Q(s, a) with zeros
- Cycle:
 - Sample <s, a, r, s'> from environment
 - Compute $\widehat{Q}(s,a)=r+\gamma\max_{a_i}Q(s',ai)$ Update: $Q(s,a)=\alpha\,\widehat{Q}(s,a)$ + (1 α) Q(s,a)

MC vs TD

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Exploration/Exploitation Revisited

 Balance between using what you learned and trying to find something even better

Exploration/Exploitation Revisited

- Strategies:
 - ε-greedy
 With probability ε take random action, otherwise take optimal action.
 - Softmax
 Pick action proportional to softmax Q-values.

$$\pi(a \mid s) = softmax(Q(s,a))$$

ε- dithering
 Adding random noise to Q-values with ε probability

Exploration/Exploitation over time

If you want to converge to optimal policy you need to gradually reduce exploration.

Example:

Initialize ε -greedy ε = 0.5, then gradually reduce it

• If $\epsilon \rightarrow 0$, it's greedy in the limit

Reinforcement Learning in the Wild

- State space is usually large, sometimes continuous.
 - Backgammon: 10²⁰ states
 - Computer Go: 10¹⁷⁰ states
 - Helicopter: continuous state space

 However, states do have a structure, similar states have similar action outcomes

What are we going to do?

THE SAME THING WE DO EVERY NIGHT, PINKY

Types of Value Function Approximation

Which class of function to choose?

- There are many function approximators, e.g.
 - Linear combinations of features
 - Neural network
 - Decision tree
 - Nearest neighbor
 - Fourier / wavelet bases
 - ...

Gradient Descent

- Let J(w) be a differentiable function of parameter vector w
- Define the *gradient* of $J(\mathbf{w})$ to be

$$abla_{\mathbf{w}} J(\mathbf{w}) = egin{pmatrix} rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} \ dots \ rac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} \end{pmatrix}$$

- To find a local minimum of $J(\mathbf{w})$:
 - Adjust w in direction of -gradient

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

where α is a step-size parameter

SGD for Value Function approximation

• Goal: find parameter vector **w** minimizing mean-squared error between approximate value $v'(s, \mathbf{w})$ and true value $v_{\pi}(s)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[\left(v_{\pi}(S) - \hat{v}(S, \mathbf{w})\right)^{2}\right]$$

Gradient descent finds a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$
$$= \alpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \right]$$

Stochastic gradient descent samples the gradient

$$\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(S) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$

Expected update is equal to full gradient update

Approximate Q-learning

- Initialize W.
- Cycle:
 - Sample <s, a, r, s'> from environment
 - Compute $\widehat{Q}(s,a) = r + \gamma \max_{a_i} Q(s',ai)$
 - Objective:

$$L = [Q(s_t, at) - \widehat{Q}(s_t, at)]^2$$

SGD Update:

$$W_{t+1} = W_t - \alpha \frac{\partial L}{\partial wt}$$

RL Mechanics

From theory to practice: DQN case

DQN: Atari

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for **18** joystick/button positions
- Reward is change in score for that step

Experience Replay

- Idea: store several past interactions <s,α,r,s'>
- Train on random subsamples

DQN: under the hood

- DQN uses experience replay and fixed Q-targets:
 - Take action a_t according to e-greedy policy
 - Store transition (s, α , r, s') in replay memory D
 - Sample random mini-batch of transitions (s, α , r, s') from D
 - Compute Q-learning targets w.r.t. old, fixed parameters w
 - Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i)\right)^2\right]$$

Using variant of stochastic gradient descent

DQN results on Atari

DQN: Atari Breakout

https://www.youtube.com/watch?v=TmPfTpjtdgg

RL Literature

An Introduction to Reinforcement Learning, Sutton and Barto, 1998

Available free online!

http://incompleteideas.net/book/RLbook2020.pdf

 Algorithms for Reinforcement Learning, Szepesvari, Morgan and Claypool, 2009

Available free online!

https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf