机器学习算法之常用的评价指标

目录

- ☞ 评价指标的概念
- 分类指标
- ◎ 回归指标
- 排序指标
- ◎ 总结

评价指标的概念

- 什么是评价指标
 - _ 灯塔之于大海上的轮船
 - _ 星空之于仰望的人类
- ◎ 常见的机器学习评价指标有哪些
 - Precision, Recall, ROC, AUC, F1, Logloss, CrossEntropy, MAE, MAPE, RMSE, MAP, NDCG
- 如何选择评价指标
 - 根据算法的任务类型
 - 根据实际业务的关注点

分类指标

- 精确度(Precision)和召回率(Recall)
- @ ROC曲线和AUC(Aera Under Curve)
- 对数损失(Logloss)

分类指标之 精确率和召回率

◎ 混淆矩阵

	预测结果		
		正(P)	负(N)
真实结果	正(P)	TP	FN
	负(N)	FP	TN

● 精确率和召回率

- 精确度:选择的正样本中真实正样本的概率

$$P(recision) = \frac{TP}{TP + FP}$$

_ 召回率:真实正样本中预测为正样本的概率

$$R(ecall) = \frac{TP}{TP + FN}$$

● 准确率和错误率

$$A(ccuracy) = \frac{TP + TN}{TP + TN + FP + FN}$$

o F_alpha Score:

$$\frac{1}{F_{\alpha}} = \frac{\alpha^2}{1 + \alpha^2} \, \frac{1}{R} + \frac{1}{1 + \alpha^2} \, \frac{1}{P}$$

分类指标之にのに、AUC

● ROC曲线

- 一假正率:副样本中预测错误的概率 $\frac{FP}{EP+TN}$

● AUC(对排序敏感)

- 定义式: ROC曲线下面积,积分 $AUC = \sum_{i \in (P+N)}$

$$AUC = \sum\nolimits_{i \in (P+N)} \frac{(\text{TPR}_i + \text{TPR}_{i-1}) \cdot (\text{FPR}_i - \text{FPR}_{i-1})}{2}$$

概率式:概率排序,考虑两种极端情况

$$AUC = \frac{\sum_{i \in P} \operatorname{rank}_{i} - \frac{|P| \cdot (|P| + 1)}{2}}{|P| \cdot |N|}$$

分类指标之对数损失

对数损失(对概率敏感)

- 二分类损失函数
- 多分类损失函数

$$logloss = -\frac{1}{N} \sum_{i=1}^{N} (y \log p_i + (y - 1) \log (1 - p_i))$$

$$logloss = -\frac{1}{N} \cdot \frac{1}{C} \cdot \sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \cdot log p_{ij}$$

回归指标

- MAE(Mean Absolute Error)—平均绝对误差, 上1范数损失
- MAPE(Mean Absolute Percentage Error)—平均相对误差 $\max_{MAPE = \frac{100}{N} \cdot \sum_{i=1}^{N} \left| \frac{y_i p_i}{y_i} \right|, y_i \neq 0}$
- © RMSE(Rook of Mean Squared Error)均方根误差 $RMSE = \sqrt{\frac{1}{N} \cdot \sum_{i=1}^{N} (y_i p_i)^2}$

排序指标

- MAP(Mean Average Precision)-平均准确
 率均值
- NDCG(Normalized Distributed

 Cumulative Gain)—归一化累计贴现补贴

排序指标之MAP

- MAP的计算分为两步:
 - 计算第K次结果的准确率
 - 计算0次准确率的平均值

$$AP@K = \frac{\sum_{k=1}^{\min(M,K)} P(k) \cdot rel(k)}{\min(M,K)}$$

$$MAP@K = \sum_{q=1}^{Q} \frac{AP_q@K}{Q}$$

◎ 举个栗子●

下面举个例子说明,其中,黑色代表相关,白色代表不相关。 案例1: 案例2:

● 缺点: 无相关权重信息

排序指标之NDCC

● NDCG的计算分3步

- 计算完美排序分数
- 计算预测排序分数
- 预测排序/完美排序

IDCG@
$$K = \sum_{k=1}^{|REL|} \frac{2^{rel_k} - 1}{\log_2(k+1)}$$

DCG@K =
$$\sum_{k=1}^{K} \frac{2^{\text{rel}_k} - 1}{\log_2(k+1)}$$

$$NDCG@K = \frac{DCG@K}{IDCG_K}$$

◎ 举个栗子●

文档最佳排序	doc1	doc2	doc3	doc4
最佳排序相应文档相关性rel _k	2	1	1	0
模型排序	doc3	doc2	doc1	doc4

总结

- @ AUC vs Logloss
- @ MAE VS MAPE
- @ MAE VS RMSE
- @ MAP VS NDCG