Source: |KBhPHYS201CircuitsIndex

1 | Calculations Surrounding a Circuit

There are two ways to calculate the resistance within a circuit. In reality, they are all based on the same set of rules — but one way applies them directly and the other uses a higher-level abstraction that is often easier.

Kirkoff's Laws

These are the basic rules of circut calculation: [KBhPHYS201KirkoffsLaws]

Series

If you have two resisters...

With the first having a resistance of $A\Omega$ and the second $B\Omega$.

The total resistance would simply be $(A + B)\Omega$.

· Same as equivalent of "electricity!" go through the first then the second

#disorganized

Parallel

Smaller area |--|||-- | Bigger area |===|||====

$$R_2 = R_1 \times \frac{A_1}{A_2}$$

$$R_{eq} = R_1 \times \frac{A_1}{A_1 + A_2}$$

$$\frac{1}{R_{eq}} = \frac{A_1 + A_2}{A_1 R_1}$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{A_2}{A_1 R_1}$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Resistance equation for series :pointup:

#disorganized

Calculate resistsance

Calculating Current in a Circut.

Traditional Kickoff's's Laws approach

A circut!

Figure 1: Screen Shot 2020-09-14 at 10.38.44 AM.png

Kirkoff's First Law Sum of voltage in any closed loop should add up to 0

As in, the sum of all voltage changes from Start => Start will add up to 0.

Kirkoff's Second law Net current flowing into a node is 0

With a current i_0 , when it flows into a junction like B, the current i_0 splits into i_2 and i_3 So, to calculate the resistance and current at every point o START at start

- +12 • $-I_1*10$ (per $I=\frac{\Delta V}{resistance}$) • $-I_2 * 20$ • $-I_1 * 15$
- $\bullet = 0$

 $I_1 - I_2 - I_3 = 0$, per Kirerbab's Second Law.

Through a resistor, the Current does NOT change, the Voltage drops.

"Combine Resistors" Method

Figure 2: Screen Shot 2020-09-14 at 11.02.45 AM.png

Parallel Resistors as Single Resistors Per the previous resisters rules, that $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R^2}$, we could treat the 20Ω and 30Ω in parallel as a single resistor of 12Ω .

Now the circut becomes even simpler:

Figure 3: Screen Shot 2020-09-14 at 11.05.49 AM.png

Sequence Resistors as Single Resistors Per the sequence resisters rules, that total resistance is $(A + B)\Omega$, we could combine these three resistors as a 37Ω resistor.

Combined Current We know that $12V/37\Omega=0.324Amps$ is the current that returns to the battery and what the battery starts with, for if we treat the circuit as a single resistor, the 12 volts would only be working against.

From there, once we have a current for beginning and end, we could work our way up backwards by calculating the final voltage.

- · Multiples battries can't be solved with the combined resistor method
- · So, first guess the current flow
 - · Each batteries' current will flow back to itself
 - · When currents meet, they will combine

- Use currents identified before + Kirkoff's second law
- Use Kirkoff's first law to find loops (and hence equations) that, together, covers all components
- If resulting currents is negative, that means that you drew the current in the wrong direction, or you are charging a battery
 - Either way, if the signs are preserved to solve the rest of the equation, you should be fine numerically
 - Just update your graph to reflect the actual currents' directions

LED longer leg is positive