DYNAMIC ROUTE PLANNING	FOR MULTIPLE ROBOT COORDINATION
	DYNAMIC ROUTE PLANNING FOR MULTIPLE
	Technical Documentation and IP Rights
	1. OVERVIEW AND SCOPE
	This document describes the proprietary dynamic route planning sy
	2. The System encompasses the algorithms, methodologies, and tech
	2. TECHNICAL SPECIFICATIONS

- 1. Core Components
- a) Distributed Computing Architecture
- b) Real-time Position Tracking System
- c) Dynamic Path Generation Algorithm
- d) Collision Prediction Module
- e) Traffic Management Protocol
- 2. System Architecture

The System utilizes a three-tier architecture:

- a) Local Robot Control Layer
- b) Central Coordination Layer
- c) Strategic Planning Layer
- 3. Key Algorithms

- a) NaviEloor Predictive Path Planning(TM) (Patent Pending, App. No.
- b) Multi-Agent Collision Avoidance System
- c) Adaptive Speed Control Protocol
- d) Dynamic Priority Assignment Method

3. INTELLECTUAL PROPERTY RIGHTS

1. Proprietary Rights

All intellectual property rights, including but not limited to patents, copyrights, trade secrets, and know-how related to the System are ex owned by NaviFloor Robotics, Inc.

- 2. Protected Components
- a) Source code implementations
- b) Algorithm specifications

- c) System architecture designs
- d) Technical documentation
- e) Training materials
- f) Configuration parameters
- 3. Patent Applications

-

US Patent Application No. 16/789,432

_

PCT Application No. PCT/US2022/123456

-

European Patent Application No. EP22987654

4. IMPLEMENTATION SPECIFICATIONS

- 1. Hardware Requirements
- a) Minimum Processing Capabilities

-

CPU: Intel i7 or equivalent

-

RAM: 16GB minimum

-

Storage: 256GB SSD

- 2. Software Dependencies
- a) NaviFloor Core Framework v3.2 or higher
- b) ROS2 Humble or newer
- c) Custom middleware components
- 3. Network Requirements

- a) Ultradow latency network infrastructure
- b) Redundant communication channels
- c) Minimum bandwidth: 1Gbps

5. SECURITY MEASURES

- 1. Data Protection
- a) End-to-end encryption of all robot communications
- b) Secure boot mechanisms
- c) Encrypted storage of configuration data
- 2. Access Control
- a) Role-based access management
- b) Multi-factor authentication

c) Auditdogging of all system access

6. PERFORMANCE METRICS

1. System Capabilities

-

Maximum number of simultaneous robots: 100

-

Path recalculation frequency: 10Hz

-

Collision prediction window: 5 seconds

-

Maximum supported facility area: 100,000 sq ft

2. Reliability Standards

- -7-

System uptime: 99.99%

-

Mean time between failures: 5000 hours

-

Recovery time objective: <1 second

7. CONFIDENTIALITY

- 1. All information contained herein is strictly confidential and constitute
- 2. Disclosure of any portion of this document to third parties is strictly

8. CERTIFICATION

The undersigned hereby certifies that this document accurately represented technical specifications and intellectual property rights of the Dynamic Planning System as of the date below.

NAVIFLOOR ROBOTICS, INC.

By:

Dr. Elena Kovacs

Chief Research Officer

Date: January 11, 2024

By:

Marcus Depth

Chief Technology Officer

Date: January 11, 2024

9. DOCUMENT CONTROL

Document Number: IP-DRP-2024-001

Version: 3.1

Last Updated: January 11, 2024

Classification: CONFIDENTIAL

Distribution: Authorized Personnel Only

