Problem 9: Loop Antenna. An electromagnetic wave propagating in air has a magnetic field given by

$$B_x = 0$$
 $B_y = 0$ $B_z = B_0 \cos(\omega t - kx)$.

It encounters a circular loop antenna of radius a centered at the origin (x, y, z) = (0, 0, 0) and lying in the x-y plane. The radius of the antenna $a << \lambda$ where λ is the wavelength of the wave. So you can assume that at any time t the magnetic field inside the loop is approximately equal to its value at the center of the loop.

a) What is the magnetic flux, $\Phi_{mag}(t) \equiv \iint_{disk} \vec{\mathbf{B}} \cdot d\vec{\mathbf{a}}$, through the plane of the loop of the antenna?

The loop has a self-inductance L and a resistance R. Faraday's law for the circuit is

$$IR = -\frac{d\Phi_{mag}}{dt} - L\frac{dI}{dt}$$
.

- b) Assume a solution for the current of the form I(t) = I₀ sin(ωt φ) where ω is the angular frequency of the electromagnetic wave, I₀ is the amplitude of the current, and φ is a phase shift between the changing magnetic flux and the current. Find expressions for the constants φ and I₀.
- c) What is the magnetic field created at the center of the loop by this current I(t)?