FURUTA PENDULUM Similar to forward Lynamics for Manipul - atom. Asseming the Arm 1, Arm 2 I nevotic temos are along the principal axis J11 J2 - inertia tensors of Arm 2,27 -1 Rotation Modrices for Arm 1,2 are defined as, $R_1 = \begin{bmatrix} coso_1 & sino_1 & o \\ -sino_1 & coso_1 & o \end{bmatrix}$ $R_2 = \begin{bmatrix} 0 & 8ino_2 & -coso_2 \\ 0 & coso_2 & Sino_2 \end{bmatrix}$ Deriving the dynamics of system by Newton-Cograngian method. -> Défine Lagrangéant Kinetic, potentiel energies? L = EK-EP classical dynamics frame of references...) Ec, Ep from the EC = EK, + EKZ EP = EP, + EP From Eules lagrange Equation- $\left(\frac{\partial L}{\partial q_i}\right) + b_i q_i - \frac{\partial L}{\partial q_i} = Q_i^2$ * 9; = [0] 02]T, $b_i^* = \begin{bmatrix} b_1 & b_2 \end{bmatrix}^T$ $D_i^* = \begin{bmatrix} c_1 & c_2 \end{bmatrix}^T$ Confidering viscous forces Torquel generated By motors. Termwise evaluation of equation (1) jedos the earnathere of motion of the system. As mentioned in the reference. (Linear And Angelan aceantities are computed) $0, -\overline{J_2}b_1$ $m_2L_1l_1 coso_2b_2$ $-J_{2}^{2}\sin 202$ $-0.5 J_{2} m_{2} L_{1} l_{2} col0_{2} sin 202$ $\int_{2}^{2} m_{2} L_{1} l_{2} sin 0_{2}$ 0_{1}^{2} (J_{2}) $-m_{2}H_{1}\cos 0_{2}$ (J_{2}) $(J_$ Jo J2 + J2 sin O2 - m2 L7 62 coso

- Les / m. j.