

有待解决的问题

注意:每次被访问的主存块,一定会被立即调入Cache

主存的地址共22位:

块号	块内地址	
12位	10位	

4M=2²²,1K=2¹⁰ 整个主存被分为 2¹² = 4096 块

- 如何区分 Cache 与 主存 的数据块对应关系?
- Cache 很小,主存很大。如果Cache满了怎么办?
- CPU修改了Cache中的数据副本,如何确保主存中数据母本的一致性?
- ——Cache和主存的映射方式
- ——替换算法
- ——Cache写策略

本节总览

如何区分Cache中存 放的是哪个主存块?

主存块可以放在 Cache的任意位置

每个主存块只能放到一个特定的位置: Cache块号=主存块号% Cache总块数 Cache块分为若干组,每个主存块可放 到特定分组中的任意一个位置 组号=主存块号%分组数

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

256M=228 主存的地址共28位:

主存块号	块内地址	
22位	6位	

	Cache	
0	-200	
1		
2		
2 3 4	(20) * C	
	3/1/20	,
5 6 7		
6	***	
7	(

Cache: $8 \times 64B = 512B$

块号	<u></u> 主存	
0	- 2	
1	. (2)	
2	a diff	
2 ²² -3 2 ²² -2		

2 ²² -1	C	

每个主存块的地址范围
0...00000000000~ 0...0000111111
0...0001000000~ 0...0001111111
0...001000000~ 1...110111111
1...1110000000~ 1...111111111
1...11110000000~ 1...111111111

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

256M=228 主存的地址共28位:

主存块号		块内地址	
	22位	6位	

	Cache	
0	64B	
1	64B	
2	64B	
3	64B	以"块"为交换单位
4	64B	父换事位
5	64B	
6	64B	
7	64B	

Cache:	$8 \times 64B = 512B$
--------	-----------------------

块号) 主存	每个主存块的地址范围
0	64B	0000000000000000000000000000000000
1	64B	$00001000000 \sim 000011111111$
2	64B	$00010000000 \sim 00010111111$
2^{22} -3	64B	$111010000000 \sim 111011111111$
2^{22} -2	64B	$111100000000 \sim 111101111111$
2 ²² -1	64B	$11111000000 \sim 11111111111$

每个主存块的地址范围
0000000000000000000000000000000000
$00001000000 \sim 00001111111$
$00010000000 \sim 00010111111$
11101000000~ 11101111111
$111010000000 \sim 1110111111111111111$

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

有效位	标记(22位)		Cache
0		0	-12
0		1	
0	× ,	2	
0	~ ·	3	
0	North 1	4	
0		5	
0		6	**
0		7	

Cache: $8 \times 64B = 512B$

块号) 主存	
0		0
1		0
2		0
		N
2^{22} -3 2^{22} -2		1
$2^{22}-2$	***	1
2 ²² -1	C.	1.
		1

每个主存块的地址范围
0...00000000000~ 0...0000111111
0...0001000000~ 0...0001111111
0...0010000000~ 1...110111111
1...1110000000~ 1...111111111
1...11110000000~ 1...111111111

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

主存块号	块内地址
22位	6位

有效位	标记(22位)	Cache		块号 主存	每个主存块的地址范围
0	0	-1/2/2019		0	000000000000000000000000000000000000
0	1			1	00001000000~ 00001111111
0	2		≪ '	2	00010000000~ 00010111111
0	3	3)			
0	4	100			
0	5			2 ²² -3	11101000000~ 11101111111
0	6	**	**	2 ²² -2	11110000000~11110111111
0	7			2 ²² -1	1111110000000~ 111111111111
	Cach	e: 8×64B =	512B	主存: 25	MB M

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

主存块号	块内地址
22位	6位

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

主存块号	块内地址
22位	6位

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

	TELLEDICTI
主存块号	块内地址
22位	6位

"全相联映射"如何访存?

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

有效	位 标记(2	2位)	Cache
0		0	-107
1	1110	01 1	
0		2	
1	0000	00 3	2 0 **
0		4	
0		5	
0		6	**
0		7	

CPU 访问主存地址 1...1101001110:

①主存地址的前22位,对比Cache中所有块的标记;

②若标记匹配且有效位=1,则Cache命中,访问块内地址为001110的单元。

③若未命中或有效位 =0,则正常访问主存

每个主存块的地址范围

 $0...0001000000 \sim 0...0001111111$

 $0...00100000000 \sim 0...00101111111$

 $1...1101000000 \sim 1...1101111111$

 $1...1110000000 \sim 1...11101111111$

 $1...1111000000 \sim 1...1111111111$

Cache: $8 \times 64B = 512B$

假设某个计算机的主存地址空间大小为256MB,按字节编 址, 其数据Cache有8个Cache行, 行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

256M=228 主存的地址共28位:

主存块号	块内地址	
22位	6位	

	Cache
0	-277 MIN
1	
2	
2 3 4 5 6 7	(2) (S)
4	-3/1/10
5	
6	***
7	

Cache: $8 \times 64B = 512B$

块号	主存
0	- 20
1	
2	
2 ²² -3 2 ²² -2	
2^{22} -2	***
2 ²² -1	C

每个主存块的地址范围 $0...00010000000 \sim 0...00011111111$ $0...00100000000 \sim 0...00101111111$ $1...11010000000 \sim 1...11011111111$ $1...11100000000 \sim 1...11101111111$

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

主存块号	块内地址
22位	6位

有效位	标记(22位)	Cache		块号 主存	每个主存块的地址范围
1	00000 0	-200		0	000000000000000000000000000000000000
0	1			1	00001000000~ 00001111111
0	2		× '	2	00010000000~ 00010111111
0	3	3)			
0	4	- NO.			
0	5			2 ²² -3	11101000000~11101111111
0	6		**	2 ²² -2	11110000000~11110111111
0	7			2 ²² -1	111110000000~11111111111
	Cache	e: 8×64B =	512B	主存: 256	6MB

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

主存块号	块内地址
22位	6位

假设某个计算机的主存地址空间大小为256MB,按**字节**编 址, 其数据Cache有8个Cache行, 行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

每个主存块的地址范围 $0...000000000000 \sim 0...00001111111$ $0...0001000000 \sim 0...00011111111$ $0...00100000000 \sim 0...00101111111$

 $1...11010000000 \sim 1...11011111111$ $1...11100000000 \sim 1...11101111111$ $1...11110000000 \sim 1...11111111111$

假设某个计算机的主存地址空间大小为256MB,按**字节**编 址, 其数据Cache有8个Cache行, 行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

256M=228 主存的地址共28位:

块内地址

主存块号

主存

假设某个计算机的主存地址空间大小为256MB,按字节编 址, 其数据Cache有8个Cache行, 行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

256M=228 主存的地址共28位:

块内地址

主存块号

主存

"直接映射"如何访存

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

Cache: $8 \times 64B = 512B$

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

有效位	标记(19位	Z)	Cache
1	001	0	000
0		1	001
0		2	010
0		3	011
0		4	100
0		5	101
0		6	110
0		7	111

CPU 访问主存地址
0...01000 001110:
①根据主存块号的后3位确定Cache行
②若主存块号的前19位与Cache标记匹配且有效位=1,则Cache命中,访问块内地址为001110的单元。
③若未命中或有效位=0,则正常访问主存

块号 主存 0 $2^{22}-3$ $2^{22}-2$ $2^{22}-1$

主存: 256MB

256M=228 主存的地址共28位:

主存块号		块内地址
22位		6位
19位	3位	6位块内
标记	行号	地址

Cache 共2³ 行

每个主存块的地址范围

 $0...0001000000 \sim 0...00011111111$

 $0...00100000000 \sim 0...00101111111$

 $1...1101000000 \sim 1...1101111111$

 $1...11100000000 \sim 1...11101111111$

 $1...1111000000 \sim 1...1111111111$

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射,所属分组=主存块号%分组数

	Cache	
0	-277	10
1		
2		
2 3 4	(2) * C	
	-11/10	7
5 6 7		
6	**	
7		

Cache: $8 \times 64B = 512B$

2路组相联映射——2块为一组,分四组

256M=228 主存的地址共28位:

主存块号	块内地址	
22位	6位	ĺ

块号	主存	每个主存块的地址范围
0		0000000000000000000000000000000000
1		$000010000000 \sim 000011111111$
2		$00010000000 \sim 00010111111$
2 ²² -3		$111010000000 \sim 111011111111$
$2^{22}-2$	***	$111100000000 \sim 111101111111$
2 ²² -1	C	$11111000000 \sim 11111111111$

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射,所属分组=主存块号%分组数

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

Cache: $8 \times 64B = 512B$

2路组相联映射——2块为一组,分四组

块号	主存	每个主存块的地址范围
0		0000000000000000000000000000000000
1		$00001000000 \sim 00001111111$
2		$00010000000 \sim 00010111111$
2 ²² -3		$11101000000 \sim 11101111111$
2 ²² -2	***	$111100000000 \sim 111101111111$
2 ²² -1	(.	$111110000000 \sim 111111111111$
		- _0~

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射, 所属分组=主存块号%分组数

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

2路组相联映射——2块为一组,分四组

王道考研/CSKAOYAN.COM

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

2路组相联映射——2块为一组,分四组

组相联映射, 所属分组=主存块号%分组数

主存块号	块内地址
22位	6位

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射, 所属分组=主存块号%分组数

主存块号	块内地址
22位	6位

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

2路组相联映射——2块为一组,分四组

组相联映射, 所属分组=主存块号%分组数

主存块号	块内地址
22位	6位

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射, 所属分组=主存块号%分组数

2路组相联映射——2块为一组,分四组

256M=228 主存的地址共28位:

主存	块号	块内地址
22	位	6位
20 位 标记	2 位 组号	6位块内 地址

Cache 分为2²组

每个主存块的地址范围

 $0...0001000000 \sim 0...00011111111$

 $0...0010000000 \sim 0...00101111111$

 $1...1101000000 \sim 1...1101111111$

 $1...11100000000 \sim 1...11101111111$

 $1...1111000000 \sim 1...1111111111$

"组相联映射"如何访存

块号

0

2

 $2^{22}-3$

 $2^{22}-2$

 $2^{22}-1$

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射, 所属分组=主存块号%分组数

有效位	标记(20位)	Cache
0	0	00
0	1	00
1	111 2	01
1	000 3	01
0	4	10
0	5	10
0	6	11
0	7	11

CPU 访问主存地址

1...11<mark>01</mark>001110:

①根据主存块号的后 2位确定所属分组号 ②若主存块号的前20 位与分组内的某个标记匹配且有效位=1,则Cache命中,访问块内地址为 001110 的单元。

③若未命中或有效位 =0,则正常访问主存

主存: 256MB

主存

256M=228 主存的地址共28位:

主存	块号	块内地址
22	位	6位
20 位 标记	2 位 组号	6位块内 地址

Cache 分为2²组

每个主存块的地址范围

 $0...0001000000 \sim 0...00011111111$

 $0...0010000000 \sim 0...00101111111$

 $1...1101000000 \sim 1...1101111111$

 $1...11100000000 \sim 1...11101111111$

 $1...1111000000 \sim 1...1111111111$

Cache: $8 \times 64B = 512B$

2路组相联映射——2块为一组,分四组

知识回顾

结合每种地址映射方式的地址结构思考:给定一个主存地址,如何拆分地址,并查找Cache、访存?

△ 公众号: 王道在线

b站: 王道计算机教育

计 抖音: 王道计算机考研