Redescription Mining

An Introduction

Esther Galbrun

2009-2013

2014

- Canada
- L Chile
- China

- France
- **#** United Kingdom
- Mexico

- Mozambique
- Russia
- United States

 Countries outside the Americas with land area above 8 billion square kilometers

- Canada
- L Chile
- China

- France
- **#** United Kingdom
- Mexico

- Mozambique
- Russia
- United States

Countries outside the Americas with land area above
 8 billion square kilometers

Canada

Chile

China

France

Tance

United Kingdon

Mexico

Mozambique

Russia

United States

 Permanent members of the UN Security Council with a history of state communism

- Canada
- L Chile
- China

- France
- **#** United Kingdom
- Mexico

- Mozambique
- Russia
- United States

 Permanent members of the UN Security Council with a history of state communism

Canada

* Chile

China

France

United Kingdom

I Market Tungdon

Mexico

Mozambique

Russia

United State

- Countries outside the Americas with land area above 8 billion square kilometers
- Permanent members of the UN Security Council with a history of state communism

Canada

* Chile

China

France

United Kingdom

orilled Kingdor

Mexico

Mozambique

Russia

United States

Redescription Mining

- Countries outside the Americas with land area above 8 billion square kilometers
- Permanent members of the UN Security Council with a history of state communism

Finding different ways to characterize the same things ...

Redescription Mining

...finding multiple things that share common characterizations

Let's get a bit more specific...

Geographic attributes

- South Hemisphere
- A Border to the Atlantic Ocean
- Border to the Indian Ocean
- P. Border to the Pacific Ocean
- Continent
- 🖒 Land area
- Highest elevation

Geographic attributes

Canada

South Hemisphere

A Border to the Atlantic Ocean

Border to the Indian Ocean

P Border to the Pacific Ocean

Continent

Land area

M Highest elevation

No

Yes

No

Yes

Americas

9985M km²

5959 m

Geographic attributes

Α

Countries bordering the Atlantic Ocean

Countries with highest elevation between 2400 and 5600 meters

Countries in the North hemisphere bordering the Atlantic Ocean

Geopolitical attributes

- ★ History of state communism
- History of colonialism
- Permanent member of the UNSC
- **m** Type of government
- Population

Geopolitical attributes

Countries with a history of colonialism members of UNSC

Two views on the objects

Redescriptions

- Countries outside the Americas with land area above 8 billion square kilometers
- Permanent members of the UN Security Council with a history of state communism

Russia

Redescriptions

Redescription Given two datasets with identity between the rows, a **redescription** is a pair of queries (q_L, q_R) over the columns characterizing approximately the same sets of rows.

Redescription Mining Given such a pair of datasets and a set of constraints, find the best redescriptions satisfying the constraints.

Dataset Two data matrices

Dataset Two data matrices

Queries Logical formulae

Dataset Two data matrices
Queries Logical formulae
Accuracy Jaccard coefficient

$$\mathsf{J}(q_{\mathsf{L}},q_{\mathsf{R}}) = \frac{|\mathsf{supp}(q_{\mathsf{L}}) \cap \mathsf{supp}(q_{\mathsf{R}})|}{|\mathsf{supp}(q_{\mathsf{L}}) \cup \mathsf{supp}(q_{\mathsf{R}})|}$$

Dataset Two data matrices
Queries Logical formulae
Accuracy Jaccard coefficient
Constraints Support, accuracy,
length of the query,
p-value, ...

Special Cases

Only conjunctive queries:

bi-directional association rules

Special Cases

One query given: classification task

Special Cases

Exploration Strategies

How do we find redescriptions?

. . .

. . .

. . .

. . .

$$(\neg \mathbf{A} \land \mathsf{AND} \neg \mathbf{L}) \land \mathsf{OR} (\mathbf{A} \land \mathsf{AND} \mathbf{P})$$

$$(\neg \mathbf{A} \land \mathsf{AND} \neg \mathbf{L}) \land \mathsf{OR} (\mathbf{A} \land \mathsf{AND} \mathbf{P})$$

★ OR ¬ 🐠

Redescription mining for Boolean data

Related work Geopolitical Boolean attributes

Turning CARTwheels: An Alternating Algorithm for Mining Redescriptions.

N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. F. Helm. In *KDD*, 2004.

Redescription Mining: Algorithms and Applications in Bioinformatics.

D. Kumar. PhD Thesis, Virginia Tech, 2007.

Query Languages

Redescription Mining: Structure Theory and Algorithms.

L. Parida and N. Ramakrishnan. In *AAAI*, 2005.

Query Languages

Reasoning About Sets Using Redescription Mining.

M. J. Zaki and N. Ramakrishnan. In *KDD*, 2005.

Query Languages

Finding Subgroups
Having Several Descriptions:
Algorithms for Redescription Mining.

A. Gallo, P. Miettinen, and H. Mannila. In *SDM*, 2008.

Query Languages

Finding Subgroups
Having Several Descriptions:
Algorithms for Redescription Mining.

A. Gallo, P. Miettinen, and H. Mannila. In *SDM*, 2008.

Query Languages

Selecting a good set of redescriptions

"MDL for Redescription Mining"

with Matthijs van Leeuwen, Under review.

Query Languages

Extending redescription mining to non-Boolean data

Geopolitical Boolean attributes

Own work Geopolitical attributes

Finding Subgroups
Having Several Descriptions:
Algorithms for Redescription Mining.

A. Gallo, P. Miettinen, and H. Mannila. In *SDM*, 2008.

Query Languages

From Black and White to Full Color: Extending Redescription Mining Outside the Boolean World

with Pauli Miettinen,

In Statistical Analysis and Data Mining, 2012.

Query Languages

Own work

Extending redescription mining to relational data

Own work Geopolitical attributes

Own work

Geopolitical attributes and relations

Own work

Finding Relational Redescriptions

with Angelika Kimmig, In *Machine Learning*, 2013.

Query Languages

Exploration Strategies

Computer science bibliography

Researchers with multiple publications in SoCG and CCCG conferences often collaborate with Profs M. Overmars or E. D. Demaine.

- Computer science bibliography
- Political candidates profiles

Candidates to the 2011 Finnish parliamentary election below age sixty accord little importance to the question of pension indices.

- Computer science bibliography
- Political candidates profiles
- Bioclimatic niches

Scandinavia and Baltia, which are characterized by their specific cold climate, are the habitat of the European Elk.

Bioclimatic Niche Finding

Dataset: Spatial land areas of Europe (2575 entities)

- Presence/absence of mammals (194 species)
- Climatic data (48 temperature and rainfall variables)

Question: Find a query over climatic variables that describes the area inhabited by (a group of) mammal species (and vice versa)

Bioclimatic Niche Finding

European Elk

$$([-9.80 \le t_{\mathsf{Feb}}^{\mathsf{max}} \le 0.40] \land [12.20 \le t_{\mathsf{Jul}}^{\mathsf{max}} \le 24.60] \land [56.852 \le p_{\mathsf{Aug}}^{\mathsf{avg}} \le 136.46]) \lor [183.27 \le p_{\mathsf{Sep}}^{\mathsf{avg}} \le 238.78]$$

J = 0.814 supp = 582

Bioclimatic Niche Finding

Wood Mouse ∧ Natterer's Bat ∧ Eurasian Pygmy Shrew

$$([3.20 \le t_{\mathsf{Mar}}^{\mathsf{max}} \le 14.50] \land [17.30 \le t_{\mathsf{Aug}}^{\mathsf{max}} \le 25.20] \land [14.90 \le t_{\mathsf{Sep}}^{\mathsf{max}} \le 22.80]) \lor [19.60 \le t_{\mathsf{Jul}}^{\mathsf{avg}} \le 19.956]$$

$$J = 0.623$$
 supp = 681

- Computer science bibliography
- Political candidates profiles
- Bioclimatic niches

Scandinavia and Baltia, which are characterized by their specific cold climate, are the habitat of the European Elk.

- Computer science bibliography
- Political candidates profiles
- Bioclimatic niches
- Ethnology

Among Alyawarra, "Aleriya" refers to the son of a male speaker or to the child of the speaker's brother.

Dataset: Ethnographic information about Australian Alyawarra tribe

- Kinship terminology
- Genealogic, age and sex informations

Dataset: Ethnographic information about Australian Alyawarra tribe

Kinship terminology

■ Genealogic, age and sex informations

Question: Elicit the meaning of kinship terms

Aleriya is used to refer to one's father or one's brother's child

Visualizing and interactively mining redescriptions

with Pauli Miettinen,

In Instant Interactive Data Mining Workshop at ECML/PKDD, 2012. Demo at KDD 2012 and SIGMOD 2014.

Conclusion

Redescription Mining is a versatile and powerful data-mining tool, applicable in various domains.

For more details:

- galbrun@cs.helsinki.fi
- http://www.cs.helsinki.fi/u/galbrun/

Conclusion

Redescription Mining is a versatile and powerful data-mining tool, applicable in various domains.

For more details:

- galbrun@cs.helsinki.fi
- http://www.cs.helsinki.fi/u/galbrun/

Thank you!