Reconstrucción de Superficies por Nube de Puntos

Sebastián Sánchez

2023

Tabla de Contenidos

Introducción

Complejos Simpliciales Complejo de Delaunay Complejo de Čech Complejo de Rips

Algoritmos Complejo de Čech Complejo de Rips

Introducción

Dada una muestra finita de puntos P en \mathbb{R}^N que viven sobre una superficie $M \subset \mathbb{R}^N$:

- ¿Es posible reconstruir la superficie?
- ¿Qué entendemos por reconstruir?
- ¿Qué tipo de superficies y bajo qué condiciones?

Ambigüedades

Definición (Muestra Densa y Ruidosa)

P es ϵ -densa si $M \subset P^{\oplus \epsilon}$ y δ -ruidosa si $P \subset M^{\oplus \delta}$.

Ambigüedades

Definición (Muestra Densa y Ruidosa)

P es ϵ -densa si $M \subset P^{\oplus \epsilon}$ y δ -ruidosa si $P \subset M^{\oplus \delta}$.

Complejos Simpliciales

Un símplice es la generalización de un triángulo.

Y un complejo simplicial es la generalización de una triangulación.

Definición (Reconstrucción Fidedigna)

Un complejo simplicial K con conjunto de vértices en $P \subset \mathbb{R}^N$ reconstruye a un espacio $X \subset \mathbb{R}^N$ de manera fidedigna si

- 1. K es geometricamente realizable.
- 2. $\bigcup K := \bigcup_{\sigma \in K} \operatorname{conv} \sigma$ está contenido en una región tubular de X.
- 3. La proyección de $\bigcup K$ a X es un homeomorfismo.

De ahora en adelante M es una d-subvariedad compacta, orientable, suave incrustada en \mathbb{R}^N (con o sin borde) y P es una muestra ϵ -densa δ -ruidosa de M.

Definición (Reconstrucción Fidedigna)

Un complejo simplicial K con conjunto de vértices en $P \subset \mathbb{R}^N$ reconstruye a un espacio $X \subset \mathbb{R}^N$ de manera fidedigna si

- 1. K es geometricamente realizable.
- 2. $\bigcup K := \bigcup_{\sigma \in K} \operatorname{conv} \sigma$ está contenido en una región tubular de X.
- 3. La proyección de $\bigcup K$ a X es un homeomorfismo.

De ahora en adelante M es una d-subvariedad compacta, orientable, suave incrustada en \mathbb{R}^N (con o sin borde) y P es una muestra ϵ -densa δ -ruidosa de M.

Figura: No es una reconstrucción fidedigna.

Tabla de Contenidos

Introducción

Complejos Simpliciales Complejo de Delaunay Complejo de Čech Complejo de Rips

Algoritmos Complejo de Čech Complejo de Rips

¿Cómo construir complejos?

- Queremos unir los puntos considerando su cercanía
- Idea natural: considerar bolas centradas en los puntos de muestra

¿Cómo construir complejos?

- Queremos unir los puntos considerando su cercanía
- Idea natural: considerar bolas centradas en los puntos de muestra

Voronoi

Una celda Voronoi V_p consiste en los puntos que están más cercanos a p que a cualquier otro punto q de P.

$$V_p := \left\{ x \in \mathbb{R}^N \colon |xp| \le |xq| \quad \forall q \ne p \right\}.$$

 El diagrama de Voronoi de un conjunto de puntos, V_P, es la colección de celdas de Voronoi de sus elementos.

$$V_P := \{V_p \colon p \in P\}.$$

Figura: Diagrama de Voronoi de 3 puntos en el plano.

Voronoi

■ Una celda Voronoi V_p consiste en los puntos que están más cercanos a p que a cualquier otro punto q de P.

$$V_p := \left\{ x \in \mathbb{R}^N \colon |xp| \le |xq| \quad \forall q \ne p \right\}.$$

 El diagrama de Voronoi de un conjunto de puntos, V_P, es la colección de celdas de Voronoi de sus elementos.

$$V_P := \{V_p \colon p \in P\}$$
.

Figura: Diagrama de Voronoi de 10 puntos en el plano.

Complejo de Delaunay

Definición (Complejo de Delaunay)

$$\mathsf{Del}(P) = \{Q \subset P \colon \bigcap_{p \in Q} V_p \neq \emptyset\}$$

Figura: No es un complejo de Delaunay.

¿Cómo reconstruye Del(P)?

Teorema (Edelsbrunner, H., Shah, N. R. (1994, June))

Si P es tal que V_P satisface:

- 1. M no intersecta solamente a la frontera de V_Q y
- 2. $V_{Q,M}$ es una bola dimensión $d-\dim Q$ o una semibola de dimensión $d-\dim Q-1$

para todo $Q \subset P$, entonces $\bigcup Del_M(P)$ es homeomorfo¹ M.

 $^{^1}X$ y Y son homemorfos si existe funciones continuas $f\colon X\to Y$ y $g\colon Y\to X$ tales que $f\circ g=id_Y$ y $g\circ f=id_X$.

Figura: No satisface ninguna hipótesis del teorema.

¿Y si en vez de hacer crecer las bolas les damos un tamaño fijo?

Complejo de Čech

Definición (Complejo de Čech)

El complejo de Čech a escala ϵ se define por:

$$Q\in \check{\mathsf{C}}(P,\epsilon)$$
 si y solo si $\bigcap_{q\in Q}B(q,\epsilon)
eq \varnothing.$

Figura: Complejo de Čech de 7 puntos en el plano.

¿Cómo reconstruye Čech?

Teorema (Nervio)

 $\check{\mathsf{C}}(P,\epsilon)$ es homotópicamente equivalente² a $\bigcup_{p\in P}B(p,\epsilon)=P^{\oplus\epsilon}.$

 $^{^2}X$ y Y son homotópicamente equivalentes si existen funciones continuas $f:X\to Y$ y $g\colon Y\to X$ tales que $f\circ g\sim id_Y$ y $g\circ f\sim id_X$

¿Cómo reconstruye Čech?

Teorema (Niyogi, P., Smale, S., Weinberger, S. (2008))

Si P es una muestra $\epsilon/2$ -densa 0-ruidosa de M y $\epsilon<\sqrt{3/5}\,\mathcal{R}$ entonces $P^{\oplus \epsilon}$ y M son homotópicamente equivalentes.

El alcance de un conjunto X es

$$\mathcal{R} := \inf_{x \in X} d(x, \mathsf{medialAxis}(X))$$

donde medialAxis(X) son los $y \in \mathbb{R}^N$ que tienen al menos 2 puntos más cercanos a X.

¿Podemos relajar las condiciones?

Complejo de Rips

Definición (Complejo de Rips)

El complejo de Vietoris-Rips a escala ϵ se define por:

$$Q \in VR(P, \epsilon)$$
 si y solo si diam $Q \le \epsilon$.

Figura: El complejo de Rips de 7 puntos en el plano.

Observaciones

■ El complejo está determinado por sus aristas.

 Solo se requiere información espacial para computar las aristas el resto es combinatorial.

Figura: Eliyahu Rips. Matemático Israelí.

Observaciones

■ El complejo está determinado por sus aristas.

 Solo se requiere información espacial para computar las aristas el resto es combinatorial.

Figura: Leopold Vietoris. Matemático Austro-Húngaro.

¿Qué tanto se parece Čech y Rips?

Figura: Č(*P*, 0.45)

Figura: VR(*P*, 0.45)

Figura: $\check{C}(P, 0.5)$

Figura: VR(P, 0.5)

Proposición (a veces, Rips se parece a Čech)

$$\check{\mathsf{C}}(P,\epsilon)\subset\mathsf{VR}(P,2\epsilon)\subset\check{\mathsf{C}}(P,2\epsilon\rho_N)$$

donde
$$\rho_N := \sqrt{\frac{2N}{N+1}}$$
.

Tabla de Contenidos

Introducción

Complejos Simpliciales Complejo de Delaunay Complejo de Čech Complejo de Rips

Algoritmos Complejo de Čech Complejo de Rips

Observaciones

Antes de crear un algoritmo debemos establecer la interfaz:

- La entrada son puntos en posición general y un parámetro de escala.
- La salida son los símplices maximales.

Observación

 $Q \in \check{\mathsf{C}}(P,\epsilon)$ si y solo sí la bola de cobertura mínima de Q tiene radio menor a ϵ .

Figura: Eduard Čech. Matemático Austro-Húngaro.

Idea

Buscar todas las posibles bolas de cobertura mínima de radio menor a ϵ .

¿Complejidad? hay que buscar la bola de cobertura mínima en cada dimensión:

$$\sum_{k=1}^{N+1} \binom{n}{k} = \sum_{k=1}^{N+1} \mathcal{O}(n^k) \le \mathcal{O}((N+1) n^{N+1})$$

¿Cuánto toma computar la bola de cobertura mínima?

Idea

Buscar todas las posibles bolas de cobertura mínima de radio menor a ϵ .

¿Complejidad? hay que buscar la bola de cobertura mínima en cada dimensión:

$$\sum_{k=1}^{N+1} \binom{n}{k} = \sum_{k=1}^{N+1} \mathcal{O}(n^k) \le \mathcal{O}((N+1) \, n^{N+1})$$

¿Cuánto toma computar la bola de cobertura mínima?

Idea

Buscar todas las posibles bolas de cobertura mínima de radio menor a $\epsilon.$

¿Complejidad? hay que buscar la bola de cobertura mínima en cada dimensión:

$$\sum_{k=1}^{N+1} \binom{n}{k} = \sum_{k=1}^{N+1} \mathcal{O}(n^k) \le \mathcal{O}((N+1) n^{N+1})$$

¿Cuánto toma computar la bola de cobertura mínima?

Bola de Cobertura Mínima

Definición (Bola de Cobertura Mínima)

La bola de cobertura mínima, MB(P), es la bola de menor radio tal que $P \subset MB(P)$.

Observaciones:

- MB(P) existe y es única.
- MB(P) está determinada por a lo más
 N + 1 puntos de P.

Figura: Bola de Cobertura Mínima de 11 puntos en el plano.

Algoritmo de Welzl

```
1: function MinBall(P,S)
2: if P = \emptyset or card S = N + 1 then
3: return SphereThrough(S)
4: pick p \in P
5: B \leftarrow \text{MinBall}(P - p, S)
6: if p \in B then
7: return B
8: return MinBall(P - p, S + p)
```

¿Complejidad? Caso esperado de $\mathcal{O}(n)$, pero peor caso de $\mathcal{O}(n^3)$.

Figura: Emo Welzl. Científico Computacional Austriaco.

Computar todo el complejo de Čech debería tomar $\mathcal{O}((N+1)\,n^{N+4})$

- Podemos verificar que los símplices más chicos no estén en símplices más grandes (Top-Down).
- Podemos construir los símplices más grandes a partir de los símplices más chicos (Bottom-up).

Computar todo el complejo de Čech debería tomar $\mathcal{O}((N+1) \, n^{N+4})$ Recordar debemos retornar sólo los símplices maximales.

- Podemos verificar que los símplices más chicos no estén en símplices más grandes (Top-Down).
- Podemos construir los símplices más grandes a partir de los símplices más chicos (Bottom-up).

¿Complejidad? Peor caso de $\mathcal{O}(dim \cdot n^{dim+4})$.

```
1: function computeCechSkeleton(P,\epsilon,dim)
 2:
          L \leftarrow P
          for d \leftarrow 1, \ldots, dim do
 3:
               H \leftarrow \varnothing
 4:
               for each simplex \sigma \in L of dim \sigma = d - 1 do
 5:
                    for each p \in P not in \sigma do
 6:
                        if radius of MB(\sigma \cup \{p\}) < \epsilon then
 7:
                     H \leftarrow H \cup \{\sigma \cup \{p\}\}\
 8:
               H \leftarrow H \cup \text{simplices in } L \text{ that weren't previously merged}
 9.
               I \leftarrow H
10:
          return L
11:
```

Computar el Complejo de Rips

¿Complejidad? Peor caso de $\mathcal{O}(dim^2 \cdot n^{dim+1})$.

```
1: function computeRipsSkeleton(P,\epsilon,dim)
 2:
          L \leftarrow P
          for d \leftarrow 1, \ldots, dim do
 3:
               H \leftarrow \varnothing
 4:
               for each simplex \sigma \in L of dim \sigma = d - 1 do
 5:
                    for each p \in P not in \sigma do
 6:
                 if diam(\sigma \cup \{p\}) < \epsilon then
 7:
                   H \leftarrow H \cup \{\sigma \cup \{p\}\}\
 8:
               H \leftarrow H \cup \text{simplices in } L \text{ that weren't previously merged}
 9.
               I \leftarrow H
10:
          return L
11:
```

Fin

Referencias

- De Silva, V., & Ghrist, R. (2007). Coverage in sensor networks via persistent homology. Algebraic & Geometric Topology, 7(1), 339-358.
- Edelsbrunner, H., & Shah, N. R. (1994, June). Triangulating topological spaces. In Proceedings of the tenth annual symposium on Computational geometry (pp. 285-292).
- Niyogi, P., Smale, S., Weinberger, S. (2008). Finding the homology of submanifolds with high confidence from random samples. Discrete & Computational Geometry, 39, 419-441.
- Welzl, E. (2005, June). Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends in Computer Science: Graz, Austria, June 20–21, 1991 Proceedings (pp. 359-370). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Dantchev, S., & Ivrissimtzis, I. (2012). Efficient construction of the Čech complex. Computers & graphics, 36(6), 708-713.