JHD162A SERIES

CHARACTERISTICS:

DISPLAY CONTENT: 16 CHAR x 2ROW

CHAR. DOTS: 5 x 8
DRIVING MODE: 1/16D

AVAILABLE TYPES:

 TN_{\star} $STN(\mbox{yellow green. grey. b/w})$ reflective. With El or led backlight

EL/100VAC, 400HZ

LED/4.2VDC

PARAMETER $(V_{DD}=5.0V\pm10\%, V_{SS}=0V, T_a=25^{\circ}C)$

Parameter		Testing	Star			
	Symbol	Criteria	Min.	Тур.	Max	Unit
Supply voltage	V _{DD} -V	-	4.5	5.0	5.5	V
	SS					
Input high voltage	VIH	-	2.2	-	V _{DD}	V
Input low voltage	VIL	-	-0.3	-	0.6	V
Output high voltage	Voh	-Iон=02mA	2.4	-	-	V
Output low voltage	Vol	IoL=1.2mA	-	-	0.4	V
Operating voltage	Idd	VDD=5.0V	-	1.5	3.0	mA

APPLICATION CIRCUIT

DIMENSIONS/DISPLAY CONTENT

PIN CONFIGURATION

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
VSS	VCC	VEE	RS	R/W	Е	DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	LED+	LED-

■ AC Characteristics Read Mode Timing Diagram

Table 12. AC Characteristics (V_{DD} = 4.5V ~ 5.5V, Ta = -30 ~ +85°C)

Mode	Characteristic	Symbol	Min.	Тур.	Max.	Unit
	E Cycle Time	tc	500			
	E Rise / Fall Time	t_R, t_F		-	20	
N. 180 (180 (180 (180 (180 (180 (180 (180	E Pulse Width (High, Low)	tw	230	-	-	
Write Mode (Refer to Fig-6)	R/W and RS Setup Time	tsu1	40	-	-	ns
(Italia to Fig o)	R/W and RS Hold Time	t _{H1}	10	-	-	
	Data Setup Time	tsu2	80	-	-	
	Data Hold Time	t _{H2}	10	1-	-	Š.
	E Cycle Time	tc	500	1 -		
	E Rise / Fall Time	t_R, t_F		-	20	
	E Pulse Width (High, Low)	tw	230	-	(-	
Read Mode (Refer to Fig-7)	R/W and RS Setup Time	tsu	40	-	-	ns
(Indies to Fig-1)	R/W and RS Hold Time	t _H	10			
	Data Output Delay Time	t _D	-	-	120	i i
	Data Hold Time	t _{DH}	5	-	-	

Table 13. AC Characteristics (V_{DD} =2.7V ~ 4.5V, Ta = -30 ~ +85°C)

Mode	Characteristic	Symbol	Min.	Тур.	Max.	Unit	
	E Cycle Time	tc	1000				
	E Rise / Fall Time	t _R t _F	-	-	25		
	E Pulse Width (High, Low)	tw	450	-	-		
Write Mode (Refer to Fig-6)	R/W and RS Setup Time	tsu1	60	-	-	ns	
(Ivelet to Fig-o)	R/W and RS Hold Time	t _{H1}	20	-	-		
	Data Setup Time	tsu2	195				
	Data Hold Time	t _{H2}	10				
	E Cycle Time	tc	1000	-	-		
	E Rise / Fall Time	t_R, t_F	-	-	25		
	E Pulse Width (High, Low)	tw	450	-	-		
Read Mode	R/W and RS Setup Time	tsu	60	-	-	ns	
(Refer to Fig-7)	R/W and RS Hold Time	t _H	20		-		
	Data Output Delay Time	t _D	-	-	360		
	Data Hold Time	t _{DH}	5	-	-		

Write Mode Timing Diagram

Timing

Interface with 8-bit MPU
 When interfacing data length are 8-bit, transfer is performed at a time through 8 ports, from DB0 to DB7.
 Example of timing sequence is shown below.

CGROM

Table 5. Relationship between Character Code (DDRAM) and Character Pattern (CGRAM)

Ch	arac	ter (Code	e (DI	DRA	M da	ita)	(CGR	AM	Add	res	s			C	GRA	M Da	ata			Pattern
D7	D6	D5	D4	D3	D2	D1	D0	A5	A4	A3	A2	A1	A0	Р7	P6	P5	P4	Р3	P2	P1	P0	number
0	0	0	0	×	0	0	0	0	0	0	0	0	0	×	×	×	0	1	1	1	0	pattern 1
											0	О	1				1	0	0	0	1	
											0	1	0				1	0	0	0	1	
			25						100		0	1	1		35		1	1	1	1	1	
											1	C	0				1	0	0	0	1	
			100								1	C	1		20		1	0	0	0	1	
			- 15								1	1	0		•		1	0	0	0	1	
											1	1	1				0	0	0	0	0	
											-							· -			\neg	- : -
																						i
0	0	0	0		1	1	1	0	0	0	0	С	0	×			4	0	0	0	1	nottorn 9
U	U	U	U	×	31		598	0	U	U		100	1,112	×	×	×	4	0	0	0	31	pattern 8
											0	0	1				1	0	23.0	0		
				til							0	1	0		253		3	0	0	0	1	
				•					10		0	1	1				1	1	1	1	1	
											1	0	0				1	0	0	0	1	
				\$50					120		1	С	1				1	0	0	0	1	
											1	1	0				1	0	0	0	1	
											1	1	1				0	0	0	0	0	

```
Example
#include < reg51.h >
#include <intrins.h>
                          LCD 的
                   /*P2.0
                                   21*/
sbit dc=0xa0;
                          RS
sbit rw=0xa1;
                   /*P2.1 LCD 的R/W 22*/
                          LCD 的
                   /*P2.4
sbit cs=0xa4;
                                   25*/
                  /*p0LCD 数据 D0=P0.0*/
sfr lcdbus=0x80;
unsigned int sys10mscounter;
unsigned char syslimitcounter;
char path1[8]={0x00,0x1f,0x00,0x1f,0x00,0x1f,0x00,0x1f};/*自定义符号
                                                                 横1*/
                                                                   横
char path2[8]={0x1f,0x00,0x1f,0x00,0x1f,0x00,0x1f,0x00};/*自定义符号
                                                                  2*/
char pats1[8]={0x15,0x15,0x15,0x15,0x15,0x15,0x15,0x15};/*自定义符号
                                                                 坚1*/
                                                                   꾶
2*/
void soft_nop(){}
void soft_10ms()/*******12MHZ 提供10MS 软件延时********/
{ register int i;
for(i=0;i<711;i++);
```

```
}
void soft_20ms()/********12MHZ 提供20MS 软件延时********/
   soft_10ms();
soft_10ms();
}
void hard_10ms(unsigned int delaytime) /*基于10MS 的硬件延时*/
   sys10mscounter=delaytime;
while(sys10mscounter);
unsigned char data lcdcounter;
bit lcdusing1,lcdusing2;
bit lcd_checkbusy()/*检查LCD 忙*/
{ register lcdstate;
                         /*dc=1为数据,=0 为命令.*/
   dc=0;
                         /*rw=1为读,=0 为写.*/
   rw=1;
                         /*cs=1选通.*/
   cs=1;
soft_nop();
lcdstate=lcdbus;
cs=0;
return((bit)(lcdstate&0x80));
void lcd_wrcmd(unsigned char lcdcmd) /*写LCD 命令*/
{ | lcdusing1=1;
while(lcd_checkbusy());
lcdbus=lcdcmd;
                  /*dc=1为数据,=0 为命令.*/
     dc=0:
                  /*rw=1为读,=0 为写.*/
     rw=0:
                  /*cs=1选通.*/
     cs=1;
soft_nop();
    cs=0;
    lcdbus=0xff;
    lcdusing1=0;
}
           void lcd_moveto(char position) /*移动光标到指定位.0-79*/
           { register cmd=0x80;
     lcdcounter=position;
          if (position > 59)
          position += 0x18;
          else
```

```
{ if (position  > 39 )position  - = 0x14 ;
             else
             {
                           if (position > 19)position += 0x2c;
             }
        }
    cmd=cmd|position;
    lcd_wrcmd(cmd); } void lcd_wrdata(char lcddata) /*在当前显示位置显示数据*/ { char i;
    lcdusing2=1;
    while(lcd_checkbusy());
    if(lcdcounter==20){
        lcd_moveto(20);
        while(lcd_checkbusy());
        }
    if(lcdcounter==40){
        lcd_moveto(40);
        while(lcd_checkbusy());
        }
    if(lcdcounter==60){
        lcd_moveto(60);
        while(lcd_checkbusy());
        }
    if(lcdcounter==80){
        lcd_moveto(0);
        while(lcd_checkbusy());
        lcdcounter=0;
        }/*为通用而如此*/
    lcdcounter++;
    lcdbus=lcddata;
    dc=1; /*dc=1为数据,=0 为命令.*/
    rw=0; /*rw=1为读,=0 为写.*/
    cs=1; /*cs=1选通.*/
    soft_nop();
    cs=0;
    lcdbus=0xff;
    lcdusing2=0; } void lcd_string(char *strpoint) /*在当前显示位置显示LCD 字符串*/
{ register i=0;
    while(strpoint[i]!=0){
```

```
lcd_wrdata(strpoint[i]);
        i++;
        }
} void lcd_init()/*初始化*/
{ lcd_wrcmd(0x38);
                        /*设置8 位格式,2 行,5*7*/
                       /*整体显示,关光标,不闪烁*/
  lcd_wrcmd(0x0c);
                       /*设定输入方式,增量不移位*/
  lcd_wrcmd(0x06);
  lcd_wrcmd(0x01);
                       /*清除显示*/
  lcdcounter=0;
}
void lcd_cls()/*清除显示*/ { lcd_wrcmd(0x01);
    lcdcounter=0;} void timer0(void) interrupt 1 /*T0 中断*/{ TH0=0xd8; /*12M,10ms*/
    TL0=0xf6;
    TR0=1;
    if(sys10mscounter!=0)sys10mscounter--;/*定时器10ms*/
    if(syslimitcounter!=0)syslimitcounter--;/*定时器10ms*/
}
           main()
           unsigned char j;
           IE=0;P0=0xff;P1=0xff;P2=0xff;P3=0xff; /*初始化T*/
           lcd_init();soft_20ms();
           TMOD=0x51;
           TH0=0xd8; /*12M,10ms*/
           TL0=0xf6;
           TR0=1;ET0=1;EA=1;
    while(1)
    /*全黑横一横二竖一竖二U Q ABCD... */
    lcd_init(); /*全黑*/
    for(j=0; j < 80; j + +)\{lcd_wrdata(0xff);\}
    hard_10ms(50);
    lcd_init(); /*横一可参考自行设计符号*/
    lcd_wrcmd(0x40);
    for(j=0;j<8;j++)lcd_wrdata(path1[j]);
    for(j=0; j < 100; j + +)lcd_wrdata(0);
    hard_10ms(50);
    lcd_init(); /*横二*/
```

```
lcd_wrcmd(0x40);
   for(j=0; j<8; j++)lcd_wrdata(path2[j]);
   for(j=0; j < 100; j + +)lcd_wrdata(0);
   hard_10ms(50);
   lcd_init(); /*竖一*/
   lcd_wrcmd(0x40);
   for(j=0;j<8;j++)lcd_wrdata(pats1[j]);
   for(j=0; j<100; j++)lcd_wrdata(0);
   hard_10ms(50);
   lcd_init(); /*竖二*/
   lcd_wrcmd(0x40);
   for(j=0;j<8;j++)lcd_wrdata(pats2[j]);
   for(j=0; j < 100; j + +)lcd_wrdata(0);
   hard_10ms(50);
   lcd_init();
   UUUUU"); hard_10ms(50); lcd_init();
   QQQQQQQQQQQQQQQQQQQ
QQQQQ"); hard_10ms(50); lcd_init();
   lcd_string("ABCDEFGHJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwx
   yz0123456789+-!
#$%&?"); hard_10ms(50); }
}
```