### Univariate Multiple Imputation Stats Camp 2018: Missing Data Analysis



Kyle M. Lang

Department of Methodology & Statistics Tilburg University

19-21 October 2018

#### Outline

- Build up the basis for MI from linear regression.
- Demonstrate each step with examples in R.
- Show how to manually implement a simple MI in R.



### Brief Regression Refresher

Ordinary least squares (OLS) regression estimates the following model:

$$Y = \mathbf{X}\beta + \varepsilon$$

By minimizing the residual sum of squared errors, we get the following estimated regression coefficients:

$$\hat{\beta} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T Y$$

We can predict the values of unobserved outcome data by applying the fitted  $\beta$ s to new predictor data:

$$\hat{Y} = \mathbf{X}_{new} \hat{\beta}$$

These predicted values are the basis for nearly all imputation methods.

### **OLS Example**

```
## Create some data:
X \leftarrow cbind(1, rnorm(100))
beta \leftarrow matrix(c(0.25, 0.5))
y < -X %*% beta + rnorm(100, 0.0, 0.1)
## R's built-in solution:
rFit <-lm(y ~ X - 1)
coef(rFit) # R's fitted coefficients
## X1 X2
## 0.2515459 0.4961789
## Least squares by hand:
betaHat <- solve(t(X) %*% X) %*% t(X) %*% y
t(betaHat) # Our hand-fitted coefficients
## [,1] [,2]
## [1,] 0.2515459 0.4961789
```

### **OLS Example**

```
## What about prediction?
X2 <- cbind(1, rnorm(100))
yHat <- X2 %*% betaHat</pre>
```



### Prediction

Train a model to predict BMI from diet-related and exercise-related features.

 Plug-in new feature values corresponding to an experimental diet program to see the expected BMI for a hypothetical patient treated with the new program.

Predict future gasoline prices based on geo-political events in oil-producing countries.

• If conflict escalates in the Middle East, adjust the appropriate features and project likely changes in gasoline prices.

### **Prediction Example**

To fix ideas, let's consider the *diabetes* data and the following model:

$$Y_{LDL} = \beta_0 + \beta_1 X_{BP} + \beta_2 X_{gluc} + \beta_3 X_{BMI} + \varepsilon$$

Training this model on the first N = 400 patients' data produces the following fitted model:

$$Y_{LDL} = 22.135 + 0.089X_{BP} + 0.498X_{gluc} + 1.48X_{BMI}$$



### **Prediction Example**

To fix ideas, let's consider the *diabetes* data and the following model:

$$Y_{LDL} = \beta_0 + \beta_1 X_{BP} + \beta_2 X_{gluc} + \beta_3 X_{BMI} + \varepsilon$$

Training this model on the first N = 400 patients' data produces the following fitted model:

$$Y_{LDL} = 22.135 + 0.089X_{BP} + 0.498X_{gluc} + 1.48X_{BMI}$$

Suppose a new patient presents with BP = 121, gluc = 89, and BMI = 30.6. We can predict their LDL score by:

$$\hat{Y}_{LDL} = 22.135 + 0.089(121) + 0.498(89) + 1.48(30.6)$$
$$= 122.463$$

# MISSING DATA IMPUTATION



### Levels of Uncertainty Modeling

Van Buuren (2012) provides a very useful classification of different imputation methods:

#### 1. Simple Prediction

- The missing data are naively filled with predicted values from some regression equation.
- All uncertainty is ignored.

#### 2. Prediction + Noise

- A random residual error is added to each predicted value to create the imputations.
- o Only uncertainty in the predicted values is modeled.
- The imputation model itself is assumed to be correct and error-free.

#### 3. Prediction + Noise + Model Error

- Uncertainty in the imputation model itself is also modeled.
- Only way to get fully proper imputations in the sense of Rubin (1987).

### Do we really need to worry?

The arguments against single imputation can seem archaic and petty. Do we really need to worry about this stuff?

# Do we really need to worry?

The arguments against single imputation can seem archaic and petty. Do we really need to worry about this stuff?

• YES!!! (At least if you care about inference)

The following are results from a simple Monte Carlo simulation:

|              | Complete Data | Conditional Mean | Stochastic | MI    |
|--------------|---------------|------------------|------------|-------|
| cor(X, Y)    | 0.500         | 0.563            | 0.498      | 0.497 |
| Type I Error | 0.052         | 0.138            | 0.120      | 0.054 |

Table: Mean Correlation Coefficients and Type I Error Rates

### Do we really need to worry?

The arguments against single imputation can seem archaic and petty. Do we really need to worry about this stuff?

• YES!!! (At least if you care about inference)

The following are results from a simple Monte Carlo simulation:

|              | Complete Data | Conditional Mean | Stochastic | MI    |
|--------------|---------------|------------------|------------|-------|
| cor(X, Y)    | 0.500         | 0.563            | 0.498      | 0.497 |
| Type I Error | 0.052         | 0.138            | 0.120      | 0.054 |

Table: Mean Correlation Coefficients and Type I Error Rates

- Conditional mean substitution overestimates the correlation effect.
- Both single imputation methods inflate Type I error rates.
- MI provides unbiased point estimates and accurate Type I error rates.

### Simulate Some Toy Data

```
nObs <- 1000 # Sample Size
pm <- 0.3 # Proportion Missing
sigma \leftarrow matrix(c(1.0, 0.5, 0.0,
                   0.5, 1.0, 0.3,
                   0.0.0.3.1.0).
                 ncol = 3
simData \leftarrow as.data.frame(rmvnorm(nObs, c(0, 0, 0), sigma))
colnames(simData) <- c("v", "x", "z")</pre>
## Impose MAR Nonresponse:
misData <- simData
rVec <- pnorm(misData$x,
                  mean = mean(misData$x),
                  sd = sd(misData$x)) < pm</pre>
misData[rVec, "v"] <- NA
## Subset the data:
yMis <- misData[rVec, ]; yObs <- misData[!rVec, ]</pre>
 11 of 42
```

### Look at the incomplete data.

### **Expected Imputation Model Parameters**

```
## Get the imputation model moments:
lsFit <-lm(y ~x + z, data = yObs)
beta <- coef(lsFit)
sigma <- summary(lsFit)$sigma
beta
## (Intercept) x
## 0.03510861 0.55476584 -0.15346474
sigma
## [1] 0.8595465
```

#### Conditional Mean Substitution

```
## Get deterministic imputations:
imp1 \leftarrow beta[1] + beta[2] * yMis[, "x"] +
   beta[3] * vMis[, "z"]
## Fill missing cells in Y:
impData1
        <- misData
impData1[rVec, "y"] <- imp1</pre>
head(impData1, n = 5)
##
              V
## 1 -0.1215031 -0.625895673 -1.2420694
## 2 -0.1448488 -0.001578954 0.4701091
## 3 1.2017766 1.069733846 -0.7550419
## 4 1.0424014 -0.192959605 -1.4458352
## 5 1.5970164 -0.249389277 -0.7206223
```

# Stochastic Regression Imputation

```
## Get stochastic imputations:
imp2 \leftarrow beta[1] + beta[2] * yMis[, "x"] +
   beta[3] * yMis[ , "z"] + rnorm(nrow(yMis), 0, sigma)
## Fill missing cells in Y:
        <- misData
impData2
impData2[rVec, "y"] <- imp2</pre>
head(impData2, n = 5)
##
              V
## 1 1.0827485 -0.625895673 -1.2420694
## 2 -0.1448488 -0.001578954 0.4701091
## 3 1.2017766 1.069733846 -0.7550419
## 4 1.0424014 -0.192959605 -1.4458352
## 5 1.5970164 -0.249389277 -0.7206223
```

### Flavors of MI

MI simply repeats a single regression imputation M times.

• The specifics of the underlying regression imputation are important.

#### Flavors of MI

MI simply repeats a single regression imputation *M* times.

• The specifics of the underlying regression imputation are important.

Simply repeating the stochastic regression imputation procedure described above won't suffice.

Still produces too many Type I errors

|              | Complete Data | PN-Type | PNE-Type |
|--------------|---------------|---------|----------|
| cor(X, Y)    | 0.499         | 0.499   | 0.498    |
| Type I Error | 0.040         | 0.066   | 0.046    |

Table: Mean Correlation Coefficients and Type I Error Rates

 Type I error rates for PN-Type MI are much better than they were for single stochastic regression imputation, but they're still too high.

### Proper MI

The problems on the previous slide arise from using the same regression coefficients to create each of the *M* imputations.

- Implies that you're using the "correct" coefficients.
- This assumption is plainly ridiculous.
  - If we don't know some values of our outcome variable, how can we know the "correct" coefficients to link the incomplete outcome to the observed predictors?



### Proper MI

The problems on the previous slide arise from using the same regression coefficients to create each of the *M* imputations.

- Implies that you're using the "correct" coefficients.
- This assumption is plainly ridiculous.
  - If we don't know some values of our outcome variable, how can we know the "correct" coefficients to link the incomplete outcome to the observed predictors?
- Proper MI also models uncertainty in the regression coefficients used to create the imputations.
  - A different set of of coefficients is randomly sampled (using Bayesian simulation) to create each of the M imputations.
  - The tricky part about implemented MI is deriving the distributions from which to sample these coefficients.

### Setting Up Proper MI

Our imputation model is simply a linear regression model:

$$Y = \mathbf{X}\beta + \varepsilon$$

To fully account for model uncertainty, we need to randomly sample both  $\beta$  and  $var(\varepsilon) = \sigma^2$ .

• QUESTION: Why do we only sample  $\sigma^2$  and not  $\varepsilon$ ?



### Setting Up Proper MI

Our imputation model is simply a linear regression model:

$$Y = \mathbf{X}\beta + \varepsilon$$

To fully account for model uncertainty, we need to randomly sample both  $\beta$  and  $var(\varepsilon) = \sigma^2$ .

• Question: Why do we only sample  $\sigma^2$  and not  $\varepsilon$ ?

For a simple imputation model with a normally distributed outcome and uninformative priors, we need to specify two distributions:

- 1. The marginal posterior distribution of  $\sigma^2$
- 2. The conditional posterior distribution of  $\beta$

### Marginal Distribution of $\sigma^2$

We first specify the marginal posterior distribution for the noise variance,  $\sigma^2$ .

This distribution does not depend on any other parameters.

$$\sigma^{2} \sim \text{Inv-}\chi^{2} (N - P, MSE)$$
with  $MSE = \frac{1}{N - P} \left( Y - \mathbf{X} \hat{\beta}_{ls} \right)^{T} \left( Y - \mathbf{X} \hat{\beta}_{ls} \right)$ 
(1)

•  $\sigma^2$  follows a scaled inverse  $\chi^2$  distribution.

### Conditional Distribution of $\beta$

We then specify the conditional posterior distribution for  $\beta$ .

• This distribution is conditioned on a specific value of  $\sigma^2$ .

$$\beta \sim \text{MVN}\left(\hat{\beta}_{ls}, \ \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}\right)$$
 (2)

•  $\beta$  (conditionally) follows a multivariate normal distribution.



### PPD of the Missing Data

Once we've sampled our imputation model parameters, we can construct the posterior predictive distribution of the missing data.

- This is the distribution from which we sample our imputed values.
- In practice, we directly compute the imputations based on the simulated imputation model parameters.

$$Y_{imp} = \mathbf{X}_{mis}\tilde{\beta} + \tilde{\varepsilon}$$
with  $\varepsilon \sim N\left(0, \tilde{\sigma^2}\right)$ 

### General Steps for Basic MI

With all of the elements in place, we can execute a basic MI by following these steps:

- 1. Find the least squares estimates of  $\beta$ ,  $\hat{\beta}_{ls}$ , by regressing the observed portion of Y onto the the analogous rows of X.
- 2. Use  $\hat{\beta}_{ls}$  to parameterize the posterior distribution of  $\sigma^2$ , given by Equation 1, and draw M samples of  $\sigma^2$  from this distribution.
- 3. For each of the  $\sigma_m^2$ , sample a corresponding value of  $\beta$  from Equation 2.
- 4. Plug the M samples of  $\beta$  and  $\sigma^2$  into Equation 3 to create the M imputations.

### Manual MI Example

First, we need to sample from the marginal posterior distribution of  $\sigma^2$ .

```
## Define iteration numbers:
nImps <- 100
nSams <- 5000
## Get the expected betas:
fit0 <-lm(y^{-}., data = yObs)
beta0 <- coef(fit0)
## Sample sigma:
sigScale <- (1 / fit0$df) * crossprod(resid(fit0))</pre>
sigmaSams <-
    rinvchisq(nSams, df = fit0$df, scale = siqScale)
```

### Manual MI Example

Then we need to use those samples of  $\sigma^2$  to parameterize the conditional posterior distribution of  $\beta$  and sample from it.

### Manual MI Example

Finally, we use the sampled imputation model moments to construct the missing data's posterior predictive distribution:

```
nMis <- sum(rVec)
impMat <- matrix(NA, nMis, nSams)</pre>
for(i in 1 : nSams) {
    impMat[ , i] <- misX %*% matrix(betaSams[i, ]) +</pre>
        rnorm(nMis, 0, sqrt(sigmaSams[i]))
## Fill the missing cells with the M imputations:
impList <- list()</pre>
ind <- sample(1 : nSams)
for(m in 1 : nImps) {
    impList[[m]]
                          <- misData
    impList[[m]][rVec, "y"] <- impMat[ , ind[m]]</pre>
```

### What do we get?



### Doing MI-Based Analysis

#### An MI-based data analysis consists of three phases:

- 1. The imputation phase
  - Replace missing values with M plausible estimates.
  - Produce *M* completed datasets.
- 2. The analysis phase
  - Estimate *M* replicates of your analysis model.
  - Fit the same model to each of the *M* datasets from Step 1.
- 3. The pooling phase
  - Combine the M sets of parameter estimates and standard errors from Step 2 into a single set of MI estimates.
  - Use these pooled parameter estimates and standard errors for inference.

### Pooling MI Estimates

Rubin (1987) formulated a simple set of pooling rules for MI estimates.

• The MI point estimate of some interesting quantity,  $Q^*$ , is simply the mean of the M estimates,  $\{\hat{Q}_m\}$ :

$$Q^* = \frac{1}{M} \sum_{m=1}^{M} \hat{Q}_m$$



### Pooling MI Estimates

The MI variability estimate, T, is a slightly more complex entity.

• A weighted sum of the *within-imputation* variance, *W*, and the *between-imputation* variance, *B*.

$$W = \frac{1}{M} \sum_{m=1}^{M} \widehat{SE}_{Q,m}^2$$

$$B = \frac{1}{M-1} \sum_{m=1}^{M} (\hat{Q}_m - Q^*)^2$$

$$T = W + (1 + M^{-1}) B$$

$$= W + B + \frac{B}{M}$$

#### Inference with MI Estimates

After computing  $Q^*$  and T, we combine them in the usual way to get test statistics and confidence intervals.

$$t = \frac{Q^* - Q_0}{\sqrt{T}}$$

$$CI = Q^* \pm t_{crit}\sqrt{T}$$

We must take care with our *df*, though.

$$df = (M - 1) \left[ 1 + \frac{W}{(1 + M^{-1}) B} \right]^2$$

### Fraction of Missing Information

In Lecture 4, we briefly discussed a very desirable measure of nonresponse: *fraction of missing information* (FMI).

$$FMI = \frac{r + \frac{2}{(df+3)}}{r+1} \approx \frac{(1+M^{-1})B}{(1+M^{-1})B+W} \to \frac{B}{B+W}$$

where

$$r = \frac{(1 + M^{-1})B}{W}$$

The FMI gives us a sense of how much the missing data (and their treatment) have influence our parameter estimates.

 We should report the FMI for an estimated parameter along with other ancillary statistics (e.g., t-tests, p-values, effect sizes, etc.).

## **Example: Analysis & Pooling**

#### Analyze the multiply imputed datasets and pool results:

```
## Use each dataset to estimate the analysis model:
fits1 <- lapply(impList,
               function (dat) lm(z \sim x + y, data = dat)
## Pool the results:
pool1 <- MIcombine(fits1)</pre>
summary (pool1, digits = 3)
## Multiple imputation results:
##
        MIcombine.default(fits1)
##
               results se (lower upper) missInfo
## (Intercept) 0.000765 0.0304 -0.0587
                                       0.0603 3 %
## x
               0.366918 0.0378 0.2928 0.4410 12 %
## v
            -0.182703 0.0407 -0.2626 -0.1028
                                                  29 %
```

#### Model-Based vs. Donor-Based Methods

They types of MI we've discussed above are all model-based.

 The imputations are randomly sampled from an estimated distribution of the missing values (i.e., a probability model of the missing data).

Model-based methods are theoretically ideal when the missing data truly follow the chosen distribution.

• If the missing data do not follow the model, performance suffers.

Sometimes, the solution is to employ a different probability model.

We'll see this approach when we discuss MI for categorical variables.

### Model-Based vs. Donor-Based Methods

If we're not able to choose a sensible distribution for the missing data, we can use *Donor-Based Methods*.

- Imputations are sampled from a pool of matched observed cases.
- The empirical distribution of the observed data is preserved.

One particularly useful donor-based method is *Predictive Mean Matching* (Little, 1988).

 The cases that make up the donor pool are matched based on their predicted outcome values.

### Predictive Mean Matching: Procedure

Suppose we want to generate M imputations for an incomplete variable, Y, using some set of predictors, X.

- 1. Regress  $Y_{obs}$  onto  $\mathbf{X}_{obs}$  and compute the conditional mean of  $Y_{obs}$ :
  - $\hat{\mu} = \mathbf{X}_{obs} \hat{\beta}$
- 2. Do a Bayesian linear regression of  $Y_{obs}$  onto  $\mathbf{X}_{obs}$  and sample M values of the posterior predicted mean of  $Y_{mis}$ :
  - $\circ \ \widetilde{\mu}_m = \mathbf{X}_{mis}\widetilde{\beta}_m.$
- 3. Compute *M* sets of the matching distances:
  - o  $d(i,j)_m = (\tilde{\mu}_{mi} \hat{\mu}_j)^2$ ,  $i = 1, 2, ..., N_{mis}$ ,  $j = 1, 2, ..., N_{obs}$ .

# Predictive Mean Matching: Procedure

- 4. Use each  $d(i, j)_m$  to construct  $N_{mis}$  donor pools.
  - Find the K (e.g.,  $K \in \{3, 5, 10\}$ ) cases with the smallest values of  $d(1, j)_m, d(2, j)_m, \ldots, d(N_{mis}, j)_m$ .
- 5. For m = 1, 2, ..., M, select the final donor cases by randomly sampling a single observation from each of the  $N_{mis}$  donor pools defined in Step 4.
- 6. For each of the *M* imputations replace the missing values in *Y* with the donor data selected in Step 5.

#### Compute/sample the appropriate conditional means:

```
## Define donor pool size:
K <- 5

## Conditional mean of Y_mis:
mu0 <- predict(fit0)

## Posterior predicted means of Y_mis:
mu1 <- as.data.frame(
    misX %*% t(betaSams[sample(1 : nSams, nImps), ])
)</pre>
```

#### Define a function to find donor cases:

```
getDonors <- function(x, y, K) {
    ## Compute distances:
    d <- (x - y)^2

## Indices of the K smallest distances:
    ind <- which(order(d) %in% 1 : K)

## Return a randomly sampled index:
    sample(ind, 1)
}</pre>
```

#### Implement the imputation:

```
impList2 <- list()</pre>
for(m in 1 : nImps) {
    ## Find donor cases:
    d0 \leftarrow sapply(mu1[, m], getDonors, y = mu0, K = K)
    ## Impute the missing values:
    impData <- misData
    impData[rVec, "y"] <- yObs$y[d0]</pre>
    ## Save the imputed dataset:
    impList2[[m]] <- impData</pre>
```

```
## Use each dataset to estimate the analysis model:
fits2 <- lapply(impList2,
               function (dat) lm(z \sim x + y, data = dat)
## Pool the results:
pool2 <- MIcombine(fits2)</pre>
summary(pool2, digits = 3)
## Multiple imputation results:
##
        MIcombine.default(fits2)
##
         results se (lower
                                      upper) missInfo
## (Intercept) 0.0277 0.0323 -0.0357
                                      0.0910 4 %
               0.2805 0.0313 0.2191
## x
                                     0.3419 1 %
## V
            -0.0940 0.0330 -0.1589 -0.0292 32 %
```

# Pros and Cons of Predictive Mean Matching

PMM tends to work well with continuous, non-normal variables.

- Relatively robust to misspecification of the imputation model
- Imputed values are always valid

PMM does have some important limitations.

- In small samples, the same donor cases can be re-used many times.
- PMM cannot extrapolate beyond the observed range of the data.
- PMM cannot be used with some variable types.
  - Nominal variables
- PMM may perform poorly when the number of predictor variables is small.

### References

- Little, R. J. A. (1988). Missing-data adjustments in large surveys. Journal of Business & Economic Statistics, 6(3), 287–296. doi: 10.1080/07350015.1988.10509663
- Rubin, D. B. (1987). *Multiple imputation for nonresponse in surveys* (Vol. 519). New York, NY: John Wiley & Sons.
- Van Buuren, S. (2012). Flexible imputation of missing data. Boca Raton, FL: CRC Press. doi: 10.1201/b11826