A Book of Abstract Algebra | (2nd Edition)

Chapter 32, Problem 1EC

Bookmark

Show all steps: (

ON

Problem

Show that $(\sqrt[3]{2}, \sqrt[3]{3})$ is the root field of $x^3 - 2$ over $(\sqrt[3]{2}, \sqrt[3]{2})$ designates the *real* cube root of 2. (HINT: Compute the complex cube roots of unity.)

Step-by-step solution

Step 1 of 2

The objective is to show that $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$ is the root field of $x^3 - 2$ over \mathbb{Q} , where $\sqrt[3]{2}$ designates the real cube root of 2.

Comment

Step 2 of 2

Consider $x^3 - 2 = 0$

$$\Rightarrow x = 2^{\frac{1}{3}}$$

$$\Rightarrow x = 2^{\frac{1}{3}} (1)^{\frac{1}{3}}$$

$$\Rightarrow x = 2^{\frac{1}{3}} \left(\cos 0 + i \sin 0\right)^{\frac{1}{3}}$$

By De Moivre's theorem , $x=2^{\frac{1}{3}}\bigg(\cos\bigg(\frac{2k\pi}{3}\bigg)+i\sin\bigg(\frac{2k\pi}{3}\bigg)\bigg)$ where k=0,1,2.

Therefore , all roots of x^3-2 are:

$$2^{\frac{1}{3}}$$
, $2^{\frac{1}{3}} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i \right)$, $2^{\frac{1}{3}} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i \right)$, $i = \sqrt{-1}$

The smallest field containing \mathbb{Q} and the above roots is $\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})$.

Hence $\mathbb{Q}\left(\sqrt[3]{2},i\sqrt{3}\right)$ is the root field of	x^3-2 over \mathbb{Q} .
Comment	