### GROUP 3: STORE AND ORGANIZE DATA

Wyatt Priddy

Suraj Kunthu

Mohammad Atif Siddiqui

DS 5110 | Spring 2024



SCHOOL of DATA SCIENCE

#### Introduction Use Case #2: Store and Organize Data

- Data Engineering focused project
  - Setting up ETL pipeline for data scientists
  - Compare query processes for optimal performance when working with Big Data sets



## Importance of Storage And Organization

#### **Improved Performance:**

- Faster query execution: Organized data with proper partitioning and indexing allows data processing tools to locate relevant information quickly, leading to faster query execution times.
- Reduced processing overhead: Compressed data files require less storage space, which translates to less data to transfer and process during data pipelines. This reduces the overall processing overhead and improves efficiency.

#### **Reduced Storage Costs:**

- Efficient storage utilization: Organized data often eliminates redundancy and allows for optimized storage formats, significantly reducing the amount of physical storage needed.
- Compression benefits: Compressed data files occupy less space, leading to lower storage costs on AWS services like S3. This is especially beneficial for large datasets.

#### **Enhanced Scalability:**

- Easier data management: Organized data with clear structure facilitates adding new data or scaling existing datasets efficiently. This makes it easier to handle growing data volumes without performance degradation.
- **Cost-effective scaling:** Lower storage requirements from compression allow for scaling your data processing pipelines with minimal impact on storage costs.

#### **Improved Data Quality:**

- **Reduced errors:** Organized data structures help mitigate errors during data ingestion and processing due to inconsistencies or ambiguity.
- **Data validation:** Organizing data allows for easier implementation of data validation checks to ensure the integrity and accuracy of your data before processing.

### The Data

- Court records data available from across Virginia
- Formed from existing real world court data:
  - Hope to predict outcome of misdemeanor and felony court cases
  - o General district court
  - Utilizing case type and demographics surrounding the defendant
- subsection of the data 2010 2020
- $\sim$ 95 different files Merged together used for feature Engineering .

### The Data

- 7,196,322 data points
- ll variables
- CSV format

| Variable          | Description                                                            | Data Type |
|-------------------|------------------------------------------------------------------------|-----------|
| Final Disposition | The outcome of the court case.                                         | str       |
| Court             | The court system within Virginia where the case was heard.             | str       |
| Complanaint       | The arrest officers in the case.                                       | str       |
| Public Defender   | Whether a public defender was assigned to the case                     | bool      |
| Gender            | Gender of the defendant                                                | str       |
| Race              | Race of the defendant                                                  | str       |
| Case Type         | Indication of whether the case was a mideameanor or felony             | str       |
| Class             | The level of misdemeanor or felony committed                           | str       |
| CodeSection       | A reference to the law that was violated — can be state or local law   | str       |
| ChargeAmended     | Whether the original charge was amended                                | bool      |
| SentenceTime      | The duration of a jail or prison sentence from the outcome of the case | int       |

## Data Preprocessing

#### Feature Engineering Highlights:

#### Public Defender Variable:

Manipulation of free-form text entry of the *Defense Attorney* field in the raw data to discern whether a defendant was assigned a public defender.

Example Entries: "Public Defender", "Public Def", "P Def", "Pub Def", "PD"

#### Court Variable:

Distinction by court was given in the Federal Information Processing Standard (FIPS) format. <u>Supplemental data</u> from the Federal Communication Commission was used to map FIPS code to court name

Example Conversion: "51540" -> "Charlottesville Citγ"

## Data Preprocessing

#### Data Cleaning Highlights:

#### Final Disposition:

The response variable for a potential classification model had  $\sim$ 89k records with null values representing 1.2% of the dataset. These values were removed from the dataset.

#### SentenceTime:

The response variable for a regression model had  $\sim$ 447k records with null values representing 6.2% of the dataset. 0 values were input to represent no sentence time for the case.

#### Charge Class:

The Class feature had numerous entries ( $\sim$ 2.4 million) with null values. It is not always applicable that a charge has a class therefore a value of "None" was inputed for these values.



## Data Processing



# Processing

| Data Preprocessing | SageMaker / Notebooks | Clean and Merge source files                              |
|--------------------|-----------------------|-----------------------------------------------------------|
|                    |                       |                                                           |
| Data Processing    | Glue                  | Job to Compress and Load data into different File formats |
|                    | Glue Crawlers         | Schema definition for all different formats               |
|                    | Lambda                | Execute Automated crawlers whenever S3 event is created   |
|                    | Athena                | Read data from S3 and Glue Catalog                        |
|                    | Redshift Spectrum     | Read data from S3 as external objects                     |
|                    | Redshift              | Load data into different formats for experimentation      |
|                    | SageMaker / Notebooks | Experimental Analysis                                     |
|                    | Quicksight            | Dashboard for Result visualization                        |

### Experimental Design

• Measure Performance of big data reports based on the different file and compression formats supported by AWS

| Format                              | File extension (optional) | Extensions for compressed files            |
|-------------------------------------|---------------------------|--------------------------------------------|
| Comma-separated values              | .CSV                      | .gz<br>.snappy<br>.lz4<br>.bz2<br>.deflate |
| Microsoft Excel workbook            | .xlsx                     | No compression support                     |
| JSON (JSON document and JSON lines) | .json, .jsonl             | .gz<br>.snappy<br>.lz4<br>.bz2<br>.deflate |
| Apache ORC                          | .orc                      | .zlib<br>.snappy                           |
| Apache Parquet                      | .parquet                  | .gz<br>.snappy<br>.lz4                     |

### Experimentation

- For tables created, execution time was retrieved from CloudWatch Logs
- Leveraged Athena to query different compression formats in S3 buckets
  - o <u>3 READ queries performed of varying sizes</u>, <u>3 times each</u>:
    - 10 records <-- (ex: `head` or `tail` of data)</li>
    - 10,000 records <-- (ex: sampling)
    - All records <-- (ex: full data query)</li>
  - o Query times (seconds) and Data Scanned (MB) was recorded
- Data was then averaged, exported as a .csv, and loaded onto QuickSight for visualization









## Results Compression – S3

| Source Data Size                          | Data Format | Compression | Comp S3 Size    | Redshift Size |
|-------------------------------------------|-------------|-------------|-----------------|---------------|
| after Data<br>cleaning and<br>preparation | CSV         | gzip        | $63\mathrm{MB}$ | 388 MB        |
|                                           | CSV         | snappy      | 129 MB          | 360MB         |
|                                           | json        | gzip        | 78 MB           | 224MB         |
| 1 GB                                      | json        | snappy      | 80 MB           | 224MB         |
|                                           | orc         | snappy      | 54.5 MB         | 210MB         |
|                                           | orc         | zlib        | 41.1. MB        | 224MB         |
|                                           | parquet     | Gzip        | 38.7 MB         | 224MB         |
|                                           | parquet     | lz4         | 50.4 MB         |               |
|                                           | parquet     | lzo         | 49.9 MB         |               |
|                                           | parquet     | snappy      | 50.3. MB        | 220MB         |
|                                           | parquet     | zstd        | 39.1 MB         | 210MB         |
|                                           |             |             |                 |               |

<sup>\*\*</sup>Lz compression is not supported with Athena for Csv and Json
\*\*Redshift Deflates the data and then stores it in its cluster – Until Unless column level compression is defined.



#### Table Creation

| Count of Records by Format and Name |       |
|-------------------------------------|-------|
| Rows                                | Count |
| ⊞ Apache ORC                        | 2     |
| ⊞ Apache Parquet                    | 5     |
| ⊞ Comma-separated values            | 3     |
| ⊞ JSON                              | 3     |
|                                     |       |











# Results – 10 records



# Results – 10000 records





Name

# Results – 10000 records

Average of Data Scanned (MB) and Read Time (s) - 10K records



# Results – All records

Trial 2: Read... Trial 1: Read..





# Results – All records



### Results – Cost Estimation

194.53

Obtained from AWS Cost Estimator

\$0.00



**■UVA DATA SCIENCE** 



### Results – Cost Estimation



### Cost Estimation - Project



### Conclusion – Athena & S3

Monitor and Analyze

|              | Data format and Compression   | Select appropriate data formats (e.g., Parquet, ORC) and compression types (e.g., Snappy, Zstandard) based on your data characteristics and query patterns. |
|--------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Organize Data in S3           | Organize data in Amazon S3 using partitioning and bucketing techniques to improve query performance and reduce query costs.                                 |
|              | Define Schema                 | Define the schema for your data in Athena either through AWS Glue Data Catalog or by creating tables using CREATE TABLE AS queries.                         |
| <i>(</i> 71) | Optimize Query Performance    | Optimize query performance by leveraging partition pruning, predicate pushdown, and column projection to reduce data scanned by queries.                    |
| <u></u>      | Optimize Data Access Patterns | Optimize data access patterns by using AWS Glue Crawlers, updating partitions, and leveraging the AWS Glue Data Catalog for metadata management.            |

Monitor and analyze query performance using AWS CloudWatch metrics and Athena query execution plans to identify bottlenecks and areas for optimization.

### Conclusion – Redshift



Data format and Compression

Choose Data Format and Compression: Select appropriate data formats (e.g., CSV, Parquet) and compression types (e.g., GZIP, ZSTD) based on your data characteristics and query patterns.



Load Data (Glue, COPY, Python)

Load Data to Amazon Redshift: Load data into Redshift using preferred methods such as COPY command, INSERT statements, or Glue from S3 for large datasets.



Optimize Data Distribution & sorting

Optimize Data Distribution & Sorting: Utilize appropriate distribution and sort keys (DISTKEY, SORTKEY) to optimize data distribution and storage on Redshift.

F/1

Analyze and Regular Vacuum

Perform Regular Vacuum and Analyze: Schedule regular Vacuum and Analyze operations to reclaim disk space and update statistics for query optimization.

<u>....</u>

Optimize Query Performance (Tuning)

Optimize Query Performance: Fine-tune and optimize queries for better performance, including indexing, query structure, and data distribution strategies.

Monitor and Analyze

Monitor and Analyze Query Performance: Continuously monitor query performance metrics and analyze query execution plans to identify bottlenecks and areas for improvement.

# APPENDIX

## S5 – Compressed Data Snapshot



### Athena – External Database



### Redshift Database



## QuickSight Reports



## Sagemaker notebooks - Experiments



Thank you!