

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
22 September 2005 (22.09.2005)

PCT

(10) International Publication Number
WO 2005/086614 A2

(51) International Patent Classification: Not classified

(21) International Application Number:

PCT/US2004/028887

(22) International Filing Date:

7 September 2004 (07.09.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/500,435	5 September 2003 (05.09.2003)	US
60/585,370	2 July 2004 (02.07.2004)	US
60/598,020	2 August 2004 (02.08.2004)	US
60/600,679	11 August 2004 (11.08.2004)	US
60/601,502	13 August 2004 (13.08.2004)	US

(71) Applicant (for all designated States except US): EN-VENTURE GLOBAL TECHNOLOGY, LLC [US/US]; 16200 A Park Row, Houston, TX 77084 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SHUSTER, Mark [US/US]; 19115 Prospect Ridge Lane, Houston, TX 77094 (US). WADDELL, Kevin [US/US]; 11007 Sprucedale, Houston, TX 77070 (US). ZWALD, Edwin [US/US]; 12625 Memorial Drive, Number 110, Houston, TX 77024 (US). DIDYK, Vladimir [US/US]; 5823 Hummingbird Street, Houston, TX 77010 (US). GRAY, Malcolm [US/US]; 9025 Briar Forest, Houston, TX 77024 (US). COSTA, Scott [US/US]; 25614 Broadcrest Court, Katy, TX 77494 (US). GRINBERG, Grigoriy [US/US]; 4758 Mount Airy, Sylvania, OH 43560 (US).

(74) Agents: MATTINGLY, Todd et al.; Haynes and Boone, LLP, 901 Main Street, Suite 3100, Dallas, TX 75202 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, IE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

{Continued on next page}

(54) Title: EXPANDABLE TUBULAR

(57) Abstract: An expandable tubular member.

WO 2005/086614 A2

BEST AVAILABLE COPY

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— *of inventorship (Rule 4.17(iv)) for US only*

Published:

— *without international search report and to be republished
upon receipt of that report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

- (84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,

EXPANDABLE TUBULAR

Cross Reference To Related Applications

[001] This application claims the benefit of the filing date of US provisional patent application serial number 60/600679, attorney docket number 25791.194, filed on 8/11/2004, the disclosure which is incorporated herein by reference. This application claims the benefit of the filing date of US provisional patent application serial number 60/585370, attorney docket number 25791.299, filed on 7/2/2004, the disclosure which is incorporated herein by reference. This application claims the benefit of the filing date of US provisional patent application serial number 60/500435, attorney docket number 25791.304, filed on 9/5/2003, the disclosure which is incorporated herein by reference. This application claims the benefit of the filing date of US provisional patent application serial number 60/598020, attorney docket number 25791.329, filed on 8/2/2004, the disclosure which is incorporated herein by reference. This application claims the benefit of the filing date of US provisional patent application serial number 60/601502, attorney docket number 25791.338, filed on 8/13/2004, the disclosure which is incorporated herein by reference.

[002] This application is related to the following co-pending applications: (1) U.S. Patent Number 6,497,289, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, which claims priority from provisional application 60/121,702, filed on 2/25/99, (3) U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, which claims priority from provisional application 60/119,611, filed on 2/11/99, (4) U.S. patent no. 6,328,113, which was filed as U.S. Patent Application serial number 09/440,338, attorney docket number 25791.9.02, filed on 11/15/99, which claims priority from provisional application 60/108,558, filed on 11/16/98, (5) U.S. patent application serial no. 10/169,434, attorney docket no. 25791.10.04, filed on 7/1/02, which claims priority from provisional application 60/183,546, filed on 2/18/00, (6) U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, which claims priority from provisional application 60/124,042, filed on 3/11/99, (7) U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (8) U.S. patent number 6,575,240, which was filed as patent application serial no. 09/511,941, attorney docket no. 25791.16.02, filed on

2/24/2000, which claims priority from provisional application 60/121,907, filed on 2/26/99, (9) U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99, (10) U.S. patent application serial no. 09/981,916, attorney docket no. 25791.18, filed on 10/18/01 as a continuation-in-part application of U.S. patent no. 6,328,113, which was filed as U.S. Patent Application serial number 09/440,338, attorney docket number 25791.9.02, filed on 11/15/99, which claims priority from provisional application 60/108,558, filed on 11/16/98, (11) U.S. patent number 6,604,763, which was filed as application serial no. 09/559,122, attorney docket no. 25791.23.02, filed on 4/26/2000, which claims priority from provisional application 60/131,106, filed on 4/26/99, (12) U.S. patent application serial no. 10/030,593, attorney docket no. 25791.25.08, filed on 1/8/02, which claims priority from provisional application 60/146,203, filed on 7/29/99, (13) U.S. provisional patent application serial no. 60/143,039, attorney docket no. 25791.26, filed on 7/9/99, (14) U.S. patent application serial no. 10/111,982, attorney docket no. 25791.27.08, filed on 4/30/02, which claims priority from provisional patent application serial no. 60/162,671, attorney docket no. 25791.27, filed on 11/1/1999, (15) U.S. provisional patent application serial no. 60/154,047, attorney docket no. 25791.29, filed on 9/16/1999, (16) U.S. provisional patent application serial no. 60/438,828, attorney docket no. 25791.31, filed on 1/9/03, (17) U.S. patent number 6,564,875, which was filed as application serial no. 09/679,907, attorney docket no. 25791.34.02, on 10/5/00, which claims priority from provisional patent application serial no. 60/159,082, attorney docket no. 25791.34, filed on 10/12/1999, (18) U.S. patent application serial no. 10/089,419, filed on 3/27/02, attorney docket no. 25791.36.03, which claims priority from provisional patent application serial no. 60/159,039, attorney docket no. 25791.36, filed on 10/12/1999, (19) U.S. patent application serial no. 09/679,906, filed on 10/5/00, attorney docket no. 25791.37.02, which claims priority from provisional patent application serial no. 60/159,033, attorney docket no. 25791.37, filed on 10/12/1999, (20) U.S. patent application serial no. 10/303,992, filed on 11/22/02, attorney docket no. 25791.38.07, which claims priority from provisional patent application serial no. 60/212,359, attorney docket no. 25791.38, filed on 6/19/2000, (21) U.S. provisional patent application serial no. 60/165,228, attorney docket no. 25791.39, filed on 11/12/1999, (22) U.S. provisional patent application serial no. 60/455,051, attorney docket no. 25791.40, filed on 3/14/03, (23) PCT application US02/2477, filed on 6/26/02, attorney docket no. 25791.44.02, which claims priority from U.S. provisional patent application serial no. 60/303,711, attorney docket no. 25791.44, filed on 7/6/01, (24) U.S. patent application serial no. 10/311,412, filed on 12/12/02, attorney docket no. 25791.45.07, which claims priority from provisional patent application serial no. 60/221,443, attorney docket no. 25791.45, filed on 7/28/2000, (25) U.S. patent application serial no. 10/, filed on 12/18/02,

attorney docket no. 25791.46.07, which claims priority from provisional patent application serial no. 60/221,645, attorney docket no. 25791.46, filed on 7/28/2000, (26) U.S. patent application serial no. 10/322,947, filed on 1/22/03, attorney docket no. 25791.47.03, which claims priority from provisional patent application serial no. 60/233,638, attorney docket no. 25791.47, filed on 9/18/2000, (27) U.S. patent application serial no. 10/406,648, filed on 3/31/03, attorney docket no. 25791.48.06, which claims priority from provisional patent application serial no. 60/237,334, attorney docket no. 25791.48, filed on 10/2/2000, (28) PCT application US02/04353, filed on 2/14/02, attorney docket no. 25791.50.02, which claims priority from U.S. provisional patent application serial no. 60/270,007, attorney docket no. 25791.50, filed on 2/20/2001, (29) U.S. patent application serial no. 10/465,835, filed on 6/13/03, attorney docket no. 25791.51.06, which claims priority from provisional patent application serial no. 60/262,434, attorney docket no. 25791.51, filed on 1/17/2001, (30) U.S. patent application serial no. 10/465,831, filed on 6/13/03, attorney docket no. 25791.52.06, which claims priority from U.S. provisional patent application serial no. 60/259,486, attorney docket no. 25791.52, filed on 1/3/2001, (31) U.S. provisional patent application serial no. 60/452,303, filed on 3/5/03, attorney docket no. 25791.53, (32) U.S. patent number 6,470,966, which was filed as patent application serial number 09/850,093, filed on 5/7/01, attorney docket no. 25791.55, as a divisional application of U.S. Patent Number 6,497,289, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98, (33) U.S. patent number 6,561,227, which was filed as patent application serial number 09/852,026 , filed on 5/9/01, attorney docket no. 25791.56, as a divisional application of U.S. Patent Number 6,497,289, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98, (34) U.S. patent application serial number 09/852,027, filed on 5/9/01, attorney docket no. 25791.57, as a divisional application of U.S. Patent Number 6,497,289, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98, (35) PCT Application US02/25608, attorney docket no. 25791.58.02, filed on 8/13/02, which claims priority from provisional application 60/318,021, filed on 9/7/01, attorney docket no. 25791.58, (36) PCT Application US02/24399, attorney docket no. 25791.59.02, filed on 8/1/02, which claims priority from U.S. provisional patent application serial no. 60/313,453, attorney docket no. 25791.59, filed on 8/20/2001, (37) PCT Application US02/29856, attorney docket no. 25791.60.02, filed on 9/19/02, which claims priority from U.S. provisional patent application serial no. 60/326,886, attorney docket no. 25791.60, filed on 10/3/2001, (38) PCT Application US02/20256, attorney docket no. 25791.61.02, filed on 6/26/02, which claims

priority from U.S. provisional patent application serial no. 60/303,740, attorney docket no. 25791.61, filed on 7/6/2001, (39) U.S. patent application serial no. 09/962,469, filed on 9/25/01, attorney docket no. 25791.62, which is a divisional of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, which claims priority from provisional application 60/124,042, filed on 3/11/99, (40) U.S. patent application serial no. 09/962,470, filed on 9/25/01, attorney docket no. 25791.63, which is a divisional of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, which claims priority from provisional application 60/124,042, filed on 3/11/99, (41) U.S. patent application serial no. 09/962,471, filed on 9/25/01, attorney docket no. 25791.64, which is a divisional of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, which claims priority from provisional application 60/124,042, filed on 3/11/99, (42) U.S. patent application serial no. 09/962,467, filed on 9/25/01, attorney docket no. 25791.65, which is a divisional of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, which claims priority from provisional application 60/124,042, filed on 3/11/99, (43) U.S. patent application serial no. 09/962,468, filed on 9/25/01, attorney docket no. 25791.66, which is a divisional of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, which claims priority from provisional application 60/124,042, filed on 3/11/99, (44) PCT application US 02/25727, filed on 8/14/02, attorney docket no. 25791.67.03, which claims priority from U.S. provisional patent application serial no. 60/317,985, attorney docket no. 25791.67, filed on 9/6/2001, and U.S. provisional patent application serial no. 60/318,386, attorney docket no. 25791.67.02, filed on 9/10/2001, (45) PCT application US 02/39425, filed on 12/10/02, attorney docket no. 25791.68.02, which claims priority from U.S. provisional patent application serial no. 60/343,674 , attorney docket no. 25791.68, filed on 12/27/2001, (46) U.S. utility patent application serial no. 09/969,922, attorney docket no. 25791.69, filed on 10/3/2001, which is a continuation-in-part application of U.S. patent no. 6,328,113, which was filed as U.S. Patent Application serial number 09/440,338, attorney docket number 25791.9.02, filed on 11/15/99, which claims priority from provisional application 60/108,558, filed on 11/16/98, (47) U.S. utility patent application serial no. 10/516,467, attorney docket no. 25791.70, filed on 12/10/01, which is a continuation application of U.S. utility patent application serial no. 09/969,922, attorney docket no. 25791.69, filed on 10/3/2001, which is a continuation-in-part application of U.S. patent no. 6,328,113, which was filed as U.S. Patent Application serial number 09/440,338, attorney docket number 25791.9.02, filed on 11/15/99, which claims priority from provisional application 60/108,558, filed on 11/16/98, (48) PCT application US 03/00609, filed on 1/9/03, attorney docket no. 25791.71.02, which claims priority from U.S. provisional patent application serial no. 60/357,372 , attorney docket no. 25791.71, filed on 2/15/02, (49) U.S.

patent application serial no. 10/074,703, attorney docket no. 25791.74, filed on 2/12/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (50) U.S. patent application serial no. 10/074,244, attorney docket no. 25791.75, filed on 2/12/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (51) U.S. patent application serial no. 10/076,660, attorney docket no. 25791.76, filed on 2/15/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (52) U.S. patent application serial no. 10/076,661, attorney docket no. 25791.77, filed on 2/15/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (53) U.S. patent application serial no. 10/076,659, attorney docket no. 25791.78, filed on 2/15/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (54) U.S. patent application serial no. 10/078,928, attorney docket no. 25791.79, filed on 2/20/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (55) U.S. patent application serial no. 10/078,922, attorney docket no. 25791.80, filed on 2/20/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (56) U.S. patent application serial no. 10/078,921, attorney docket no. 25791.81, filed on 2/20/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (57) U.S. patent application serial no. 10/261,928, attorney docket no. 25791.82, filed on 10/1/02, which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99, (58) U.S. patent application serial no. 10/079,276, attorney docket no. 25791.83, filed on 2/20/02, which is a divisional of U.S. patent number 6,568,471, which was

filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (59) U.S. patent application serial no. 10/262,009, attorney docket no. 25791.84, filed on 10/1/02, which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99, (60) U.S. patent application serial no. 10/092,481, attorney docket no. 25791.85, filed on 3/7/02, which is a divisional of U.S. patent number 6,568,471, which was filed as patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, which claims priority from provisional application 60/121,841, filed on 2/26/99, (61) U.S. patent application serial no. 10/261,926, attorney docket no. 25791.86, filed on 10/1/02, which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99, (62) PCT application US 02/36157, filed on 11/12/02, attorney docket no. 25791.87.02, which claims priority from U.S. provisional patent application serial no. 60/338,996, attorney docket no. 25791.87, filed on 11/12/01, (63) PCT application US 02/36267, filed on 11/12/02, attorney docket no. 25791.88.02, which claims priority from U.S. provisional patent application serial no. 60/339,013, attorney docket no. 25791.88, filed on 11/12/01, (64) PCT application US 03/11765, filed on 4/16/03, attorney docket no. 25791.89.02, which claims priority from U.S. provisional patent application serial no. 60/383,917, attorney docket no. 25791.89, filed on 5/29/02, (65) PCT application US 03/15020, filed on 5/12/03, attorney docket no. 25791.90.02, which claims priority from U.S. provisional patent application serial no. 60/391,703, attorney docket no. 25791.90, filed on 6/26/02, (66) PCT application US 02/39418, filed on 12/10/02, attorney docket no. 25791.92.02, which claims priority from U.S. provisional patent application serial no. 60/346,309, attorney docket no. 25791.92, filed on 1/7/02, (67) PCT application US 03/06544, filed on 3/4/03, attorney docket no. 25791.93.02, which claims priority from U.S. provisional patent application serial no. 60/372,048, attorney docket no. 25791.93, filed on 4/12/02, (68) U.S. patent application serial no. 10/331,718, attorney docket no. 25791.94, filed on 12/30/02, which is a divisional U.S. patent application serial no. 09/679,906, filed on 10/5/00, attorney docket no. 25791.37.02, which claims priority from provisional patent application serial no. 60/159,033, attorney docket no. 25791.37, filed on 10/12/1999, (69) PCT application US 03/04837, filed on 2/29/03, attorney docket no. 25791.95.02, which claims priority from U.S. provisional patent application serial no. 60/363,829, attorney docket no. 25791.95, filed on 3/13/02, (70) U.S. patent application serial no. 10/261,927, attorney docket no. 25791.97, filed on 10/1/02, which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no.

25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99, (71) U.S. patent application serial no. 10/262,008, attorney docket no. 25791.98, filed on 10/1/02, which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99, (72) U.S. patent application serial no. 10/261,925, attorney docket no. 25791.99, filed on 10/1/02, which is a divisional of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99, (73) U.S. patent application serial no. 10/199,524, attorney docket no. 25791.100, filed on 7/19/02, which is a continuation of U.S. Patent Number 6,497,289, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98, (74) PCT application US 03/10144, filed on 3/28/03, attorney docket no. 25791.101.02, which claims priority from U.S. provisional patent application serial no. 60/372,632, attorney docket no. 25791.101, filed on 4/15/02, (75) U.S. provisional patent application serial no. 60/412,542, attorney docket no. 25791.102, filed on 9/20/02, (76) PCT application US 03/14153, filed on 5/6/03, attorney docket no. 25791.104.02, which claims priority from U.S. provisional patent application serial no. 60/380,147, attorney docket no. 25791.104, filed on 5/6/02, (77) PCT application US 03/19993, filed on 6/24/03, attorney docket no. 25791.106.02, which claims priority from U.S. provisional patent application serial no. 60/397,284, attorney docket no. 25791.106, filed on 7/19/02, (78) PCT application US 03/13787, filed on 5/5/03, attorney docket no. 25791.107.02, which claims priority from U.S. provisional patent application serial no. 60/387,486 , attorney docket no. 25791.107, filed on 6/10/02, (79) PCT application US 03/18530, filed on 6/11/03, attorney docket no. 25791.108.02, which claims priority from U.S. provisional patent application serial no. 60/387,961, attorney docket no. 25791.108, filed on 6/12/02, (80) PCT application US 03/20694, filed on 7/1/03, attorney docket no. 25791.110.02, which claims priority from U.S. provisional patent application serial no. 60/398,061, attorney docket no. 25791.110, filed on 7/24/02, (81) PCT application US 03/20870, filed on 7/2/03, attorney docket no. 25791.111.02, which claims priority from U.S. provisional patent application serial no. 60/399,240, attorney docket no. 25791.111, filed on 7/29/02, (82) U.S. provisional patent application serial no. 60/412,487, attorney docket no. 25791.112, filed on 9/20/02, (83) U.S. provisional patent application serial no. 60/412,488, attorney docket no. 25791.114, filed on 9/20/02, (84) U.S. patent application serial no. 10/280,356, attorney docket no. 25791.115, filed on 10/25/02, which is a continuation of U.S. patent number 6,470,966, which was filed as patent application serial number 09/850,093, filed on 5/7/01, attorney docket no. 25791.55, as a divisional application of U.S.

Patent Number 6,497,289, which was filed as U.S. Patent Application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, which claims priority from provisional application 60/111,293, filed on 12/7/98, (85) U.S. provisional patent application serial no. 60/412,177, attorney docket no. 25791.117, filed on 9/20/02, (86) U.S. provisional patent application serial no. 60/412,653, attorney docket no. 25791.118, filed on 9/20/02, (87) U.S. provisional patent application serial no. 60/405,610, attorney docket no. 25791.119, filed on 8/23/02, (88) U.S. provisional patent application serial no. 60/405,394, attorney docket no. 25791.120, filed on 8/23/02, (89) U.S. provisional patent application serial no. 60/412,544, attorney docket no. 25791.121, filed on 9/20/02, (90) PCT application US 03/24779, filed on 8/8/03, attorney docket no. 25791.125.02, which claims priority from U.S. provisional patent application serial no. 60/407,442, attorney docket no. 25791.125, filed on 8/30/02, (91) U.S. provisional patent application serial no. 60/423,363, attorney docket no. 25791.126, filed on 12/10/02, (92) U.S. provisional patent application serial no. 60/412,196, attorney docket no. 25791.127, filed on 9/20/02, (93) U.S. provisional patent application serial no. 60/412,187, attorney docket no. 25791.128, filed on 9/20/02, (94) U.S. provisional patent application serial no. 60/412,371, attorney docket no. 25791.129, filed on 9/20/02, (95) U.S. patent application serial no. 10/382,325, attorney docket no. 25791.145, filed on 3/5/03, which is a continuation of U.S. patent number 6,557,640, which was filed as patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, which claims priority from provisional application 60/137,998, filed on 6/7/99, (96) U.S. patent application serial no. 10/624,842, attorney docket no. 25791.151, filed on 7/22/03, which is a divisional of U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, which claims priority from provisional application 60/119,611, filed on 2/11/99, (97) U.S. provisional patent application serial no. 60/431,184, attorney docket no. 25791.157, filed on 12/5/02, (98) U.S. provisional patent application serial no. 60/448,526, attorney docket no. 25791.185, filed on 2/18/03, (99) U.S. provisional patent application serial no. 60/461,539, attorney docket no. 25791.186, filed on 4/9/03, (100) U.S. provisional patent application serial no. 60/462,750, attorney docket no. 25791.193, filed on 4/14/03, (101) U.S. provisional patent application serial no. 60/436,106, attorney docket no. 25791.200, filed on 12/23/02, (102) U.S. provisional patent application serial no. 60/442,942, attorney docket no. 25791.213, filed on 1/27/03, (103) U.S. provisional patent application serial no. 60/442,938, attorney docket no. 25791.225, filed on 1/27/03, (104) U.S. provisional patent application serial no. 60/418,687, attorney docket no. 25791.228, filed on 4/18/03, (105) U.S. provisional patent application serial no. 60/454,896, attorney docket no. 25791.236, filed on 3/14/03, (106) U.S. provisional patent application serial no. 60/450,504, attorney docket no. 25791.238, filed on 2/26/03, (107) U.S. provisional patent application serial no. 60/451,152, attorney docket no. 25791.239, filed on 3/9/03, (108) U.S. provisional

patent application serial no. 60/455,124, attorney docket no. 25791.241, filed on 3/17/03, (109) U.S. provisional patent application serial no. 60/453,678, attorney docket no. 25791.253, filed on 3/11/03, (110) U.S. patent application serial no. 10/421,682, attorney docket no. 25791.256, filed on 4/23/03, which is a continuation of U.S. patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, which claims priority from provisional application 60/124,042, filed on 3/11/99, (111) U.S. provisional patent application serial no. 60/457,965, attorney docket no. 25791.260, filed on 3/27/03, (112) U.S. provisional patent application serial no. 60/455,718, attorney docket no. 25791.262, filed on 3/18/03, (113) U.S. patent number 6,550,821, which was filed as patent application serial no. 09/811,734, filed on 3/19/01, (114) U.S. patent application serial no. 10/436,467, attorney docket no. 25791.268, filed on 5/12/03, which is a continuation of U.S. patent number 6,604,763, which was filed as application serial no. 09/559,122, attorney docket no. 25791.23.02, filed on 4/26/2000, which claims priority from provisional application 60/131,106, filed on 4/26/99, (115) U.S. provisional patent application serial no. 60/459,776, attorney docket no. 25791.270, filed on 4/2/03, (116) U.S. provisional patent application serial no. 60/461,094, attorney docket no. 25791.272, filed on 4/8/03, (117) U.S. provisional patent application serial no. 60/461,038, attorney docket no. 25791.273, filed on 4/7/03, (118) U.S. provisional patent application serial no. 60/463,586, attorney docket no. 25791.277, filed on 4/17/03, (119) U.S. provisional patent application serial no. 60/472,240, attorney docket no. 25791.286, filed on 5/20/03, (120) U.S. patent application serial no. 10/619,285, attorney docket no. 25791.292, filed on 7/14/03, which is a continuation-in-part of U.S. utility patent application serial no. 09/969,922, attorney docket no. 25791.69, filed on 10/3/2001, which is a continuation-in-part application of U.S. patent no. 6,328,113, which was filed as U.S. Patent Application serial number 09/440,338, attorney docket number 25791.9.02, filed on 11/15/99, which claims priority from provisional application 60/108,558, filed on 11/16/98, (121) U.S. utility patent application serial no. 10/418,688, attorney docket no. 25791.257, which was filed on 4/18/03, as a division of U.S. utility patent application serial no. 09/523,468, attorney docket no. 25791.11.02, filed on 3/10/2000, which claims priority from provisional application 60/124,042, filed on 3/11/99, (122) PCT patent application serial no. PCT/US04/06246, attorney docket no. 25791.238.02, filed on 2/26/2004, (123) PCT patent application serial number PCT/US04/08170, attorney docket number 25791.40.02, filed on 3/15/04, (124) PCT patent application serial number PCT/US04/08171, attorney docket number 25791.236.02, filed on 3/15/04, (125) PCT patent application serial number PCT/US04/08073, attorney docket number 25791.262.02, filed on 3/18/04, (126) PCT patent application serial number PCT/US04/07711, attorney docket number 25791.253.02, filed on 3/11/2004, (127) PCT patent application serial number PCT/US04/_____, attorney docket number 25791.260.02, filed on 3/26/2004, (128)

PCT patent application serial number PCT/US04/_____, attorney docket number 25791.270.02, filed on 4/2/2004, (129) PCT patent application serial number PCT/US04/_____, attorney docket number 25791.272.02, filed on _____, (130) PCT patent application serial number PCT/US04/_____, attorney docket number 25791.273.02, filed on _____, (131) PCT patent application serial number PCT/_____/_____, attorney docket number 25791.277.02, filed on _____, (132) U.S. provisional patent application serial number _____, attorney docket number 25791.301, filed on 8/14/2003, and (133) U.S. provisional patent application serial number _____, attorney docket number 25791.194, filed on _____, the disclosures of which are incorporated herein by reference.

Background of the Invention

[003] This invention relates generally to oil and gas exploration, and in particular to forming and repairing wellbore casings to facilitate oil and gas exploration.

Summary Of The Invention

[004] According to one aspect of the present invention, a method of forming a tubular liner within a preexisting structure is provided that includes positioning a tubular assembly within the preexisting structure; and radially expanding and plastically deforming the tubular assembly within the preexisting structure, wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly.

[005] According to another aspect of the present invention, an expandable tubular member is provided that includes a steel alloy including: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr.

[006] According to another aspect of the present invention, an expandable tubular member is provided that includes a steel alloy including: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr.

[007] According to another aspect of the present invention, an expandable tubular member is provided that includes a steel alloy including: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr.

[008] According to another aspect of the present invention, an expandable tubular member is provided that includes a steel alloy including: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr.

[009] According to another aspect of the present invention, an expandable tubular member is provided, wherein the yield point of the expandable tubular member is at most about 46.9 ksi prior to a radial expansion and plastic deformation; and wherein the yield point of the expandable tubular member is at least about 65.9 ksi after the radial expansion and plastic deformation.

[0010] According to another aspect of the present invention, an expandable tubular member is provided, wherein a yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 40 % greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation.

[0011] According to another aspect of the present invention, an expandable tubular member is provided, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.48.

[0012] According to another aspect of the present invention, an expandable tubular member is provided, wherein the yield point of the expandable tubular member is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the expandable tubular member is at least about 74.4 ksi after the radial expansion and plastic deformation.

[0013] According to another aspect of the present invention, an expandable tubular member is provided, wherein the yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 28 % greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation.

[0014] According to another aspect of the present invention, an expandable tubular member is provided, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.04.

[0015] According to another aspect of the present invention, an expandable tubular member is provided, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.92.

[0016] According to another aspect of the present invention, an expandable tubular member is provided, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.34.

[0017] According to another aspect of the present invention, an expandable tubular member is provided, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92.

[0018] According to another aspect of the present invention, an expandable tubular member is provided, wherein the yield point of the expandable tubular member, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi.

[0019] According to another aspect of the present invention, an expandable tubular member is provided, wherein the expandability coefficient of the expandable tubular member, prior to the radial expansion and plastic deformation, is greater than 0.12.

[0020] According to another aspect of the present invention, an expandable tubular member is provided, wherein the expandability coefficient of the expandable tubular member is

greater than the expandability coefficient of another portion of the expandable tubular member.

[0021] According to another aspect of the present invention, an expandable tubular member is provided, wherein the tubular member has a higher ductility and a lower yield point prior to a radial expansion and plastic deformation than after the radial expansion and plastic deformation.

[0022] According to another aspect of the present invention, a method of radially expanding and plastically deforming a tubular assembly including a first tubular member coupled to a second tubular member is provided that includes radially expanding and plastically deforming the tubular assembly within a preexisting structure; and using less power to radially expand each unit length of the first tubular member than to radially expand each unit length of the second tubular member.

[0023] According to another aspect of the present invention, a system for radially expanding and plastically deforming a tubular assembly including a first tubular member coupled to a second tubular member is provided that includes means for radially expanding the tubular assembly within a preexisting structure; and means for using less power to radially expand each unit length of the first tubular member than required to radially expand each unit length of the second tubular member.

[0024] According to another aspect of the present invention, a method of manufacturing a tubular member is provided that includes processing a tubular member until the tubular member is characterized by one or more intermediate characteristics; positioning the tubular member within a preexisting structure; and processing the tubular member within the preexisting structure until the tubular member is characterized one or more final characteristics.

[0025] According to another aspect of the present invention, an apparatus is provided that includes an expandable tubular assembly; and an expansion device coupled to the expandable tubular assembly; wherein a predetermined portion of the expandable tubular assembly has a lower yield point than another portion of the expandable tubular assembly.

[0026] According to another aspect of the present invention, an expandable tubular member is provided, wherein a yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 5.8 % greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation.

[0027] According to another aspect of the present invention, a method of determining the expandability of a selected tubular member is provided that includes determining an anisotropy value for the selected tubular member, determining a strain hardening value for the selected tubular member; and multiplying the anisotropy value times the strain hardening value to generate an expandability value for the selected tubular member.

[0028] According to another aspect of the present invention, a method of radially expanding and plastically deforming tubular members is provided that includes selecting a tubular member; determining an anisotropy value for the selected tubular member; determining a strain hardening value for the selected tubular member; multiplying the anisotropy value times the strain hardening value to generate an expandability value for the selected tubular member; and if the anisotropy value is greater than 0.12, then radially expanding and plastically deforming the selected tubular member.

[0029] According to another aspect of the present invention, a radially expandable tubular member apparatus is provided that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; and a sleeve overlapping and coupling the first and second tubular members at the joint; wherein, prior to a radial expansion and plastic deformation of the apparatus, a predetermined portion of the apparatus has a lower yield point than another portion of the apparatus.

[0030] According to another aspect of the present invention, a radially expandable tubular member apparatus is provided that includes: a first tubular member; a second tubular member engaged with the first tubular member forming a joint; a sleeve overlapping and coupling the first and second tubular members at the joint; the sleeve having opposite tapered ends and a flange engaged in a recess formed in an adjacent tubular member; and one of the tapered ends being a surface formed on the flange; wherein, prior to a radial expansion and plastic deformation of the apparatus, a predetermined portion of the apparatus has a lower yield point than another portion of the apparatus.

[0031] According to another aspect of the present invention, a method of joining radially expandable tubular members is provided that includes: providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve; mounting the sleeve for overlapping and coupling the first and second tubular members at the joint; wherein the first tubular member, the second tubular member, and the sleeve define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly.

[0032] According to another aspect of the present invention, a method of joining radially expandable tubular members is provided that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange; mounting the sleeve for overlapping and coupling the first and second tubular members at the joint, wherein the flange is engaged in a recess formed in an adjacent one of the tubular members; wherein the first tubular member, the second tubular

member, and the sleeve define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly.

[0033] According to another aspect of the present invention, an expandable tubular assembly is provided that includes a first tubular member; a second tubular member coupled to the first tubular member; a first threaded connection for coupling a portion of the first and second tubular members; a second threaded connection spaced apart from the first threaded connection for coupling another portion of the first and second tubular members; a tubular sleeve coupled to and receiving end portions of the first and second tubular members; and a sealing element positioned between the first and second spaced apart threaded connections for sealing an interface between the first and second tubular member; wherein the sealing element is positioned within an annulus defined between the first and second tubular members; and wherein, prior to a radial expansion and plastic deformation of the assembly, a predetermined portion of the assembly has a lower yield point than another portion of the apparatus.

[0034] According to another aspect of the present invention, a method of joining radially expandable tubular members is provided that includes: providing a first tubular member; providing a second tubular member; providing a sleeve; mounting the sleeve for overlapping and coupling the first and second tubular members; threadably coupling the first and second tubular members at a first location; threadably coupling the first and second tubular members at a second location spaced apart from the first location; sealing an interface between the first and second tubular members between the first and second locations using a compressible sealing element, wherein the first tubular member, second tubular member, sleeve, and the sealing element define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly.

[0035] According to another aspect of the present invention, an expandable tubular member is provided, wherein the carbon content of the tubular member is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the tubular member is less than 0.21.

[0036] According to another aspect of the present invention, an expandable tubular member is provided, wherein the carbon content of the tubular member is greater than 0.12 percent; and wherein the carbon equivalent value for the tubular member is less than 0.36.

[0037] According to another aspect of the present invention, a method of selecting tubular members for radial expansion and plastic deformation is provided that includes selecting a tubular member from a collection of tubular member; determining a carbon content of the

selected tubular member; determining a carbon equivalent value for the selected tubular member; and if the carbon content of the selected tubular member is less than or equal to 0.12 percent and the carbon equivalent value for the selected tubular member is less than 0.21, then determining that the selected tubular member is suitable for radial expansion and plastic deformation.

[0038] According to another aspect of the present invention, a method of selecting tubular members for radial expansion and plastic deformation is provided that includes selecting a tubular member from a collection of tubular member; determining a carbon content of the selected tubular member; determining a carbon equivalent value for the selected tubular member; and if the carbon content of the selected tubular member is greater than 0.12 percent and the carbon equivalent value for the selected tubular member is less than 0.36, then determining that the selected tubular member is suitable for radial expansion and plastic deformation.

[0039] According to another aspect of the present invention, an expandable tubular member is provided that includes a tubular body; wherein a yield point of an inner tubular portion of the tubular body is less than a yield point of an outer tubular portion of the tubular body.

[0040] According to another aspect of the present invention, a method of manufacturing an expandable tubular member has been provided that includes: providing a tubular member; heat treating the tubular member; and quenching the tubular member; wherein following the quenching, the tubular member comprises a microstructure comprising a hard phase structure and a soft phase structure.

[0041] According to another aspect of the present invention, an expandable tubular member has been provided that includes a steel alloy comprising: 0.07% Carbon, 1.64% Manganese, 0.011% Phosphor, 0.001% Sulfur, 0.23% Silicon, 0.5% Nickel, 0.51% Chrome, 0.31% Molybdenum, 0.15% Copper, 0.021% Aluminum, 0.04% Vanadium, 0.03% Niobium, and 0.007% Titanium.

[0042] According to another aspect of the present invention, an expandable tubular member has been provided that includes a collapse strength of approximately 70 ksi comprising: 0.07% Carbon, 1.64% Manganese, 0.011% Phosphor, 0.001% Sulfur, 0.23% Silicon, 0.5% Nickel, 0.51% Chrome, 0.31% Molybdenum, 0.15% Copper, 0.021% Aluminum, 0.04% Vanadium, 0.03% Niobium, and 0.007% Titanium, wherein, upon radial expansion and plastic deformation, the collapse strength increases to approximately 110 ksi.

[0043] According to another aspect of the present invention, an expandable tubular member has been provided that includes an outer surface and means for increasing the collapse strength of a tubular assembly when the expandable tubular member is radially expanded and plastically deformed against a preexisting structure, the means coupled to the outer surface.

[0044] According to another aspect of the present invention, a preexisting structure for accepting an expandable tubular member has been provided that includes a passage defined by the structure, an inner surface on the passage and means for increasing the collapse strength of a tubular assembly when an expandable tubular member is radially expanded and plastically deformed against the preexisting structure, the means coupled to the inner surface.

[0045] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and means for increasing the collapse strength of the assembly when the expandable tubular member is radially expanded and plastically deformed against the structure, the means positioned between the expandable tubular member and the structure.

[0046] According to another aspect of the present invention, a tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 20% greater than the collapse strength without the interstitial layer.

[0047] According to another aspect of the present invention, a tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 30% greater than the collapse strength without the interstitial layer.

[0048] According to another aspect of the present invention, a tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 40% greater than the collapse strength without the interstitial layer.

[0049] According to another aspect of the present invention, a tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 50% greater than the collapse strength without the interstitial layer.

[0050] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes an outer tubular member comprising a steel alloy and defining a passage, an inner tubular member comprising a steel alloy and positioned in the passage and an interstitial layer between the inner tubular member and the outer tubular member, the interstitial layer comprising an aluminum material lining an inner surface of the

outer tubular member, whereby the collapse strength of the assembly with the interstitial layer is greater than the collapse strength of the assembly without the interstitial layer.

[0051] According to another aspect of the present invention, a method for increasing the collapse strength of a tubular assembly has been provided that includes providing a preexisting structure defining a passage therein, providing an expandable tubular member, coating the expandable tubular member with an interstitial material, positioning the expandable tubular member in the passage defined by the preexisting structure and expanding the expandable tubular member such that the interstitial material engages the preexisting structure, whereby the collapse strength of the preexisting structure and expandable tubular member with the interstitial material is greater than the collapse strength of the preexisting structure and expandable tubular member without the interstitial material.

[0052] According to another aspect of the present invention, a method for increasing the collapse strength of a tubular assembly has been provided that includes providing a preexisting structure defining a passage therein, providing an expandable tubular member, coating the preexisting structure with an interstitial material, positioning the expandable tubular member in the passage defined by the preexisting structure and expanding the expandable tubular member such that the interstitial material engages the expandable tubular member, whereby the collapse strength of the preexisting structure and expandable tubular member with the interstitial material is greater than the collapse strength of the preexisting structure and expandable tubular member without the interstitial material.

[0053] According to another aspect of the present invention, an expandable tubular member has been provided that includes an outer surface and an interstitial layer on the outer surface, wherein the interstitial layer comprises an aluminum material resulting in a required expansion operating pressure of approximately 3900 psi for the tubular member.

[0054] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes an outer surface and an interstitial layer on the outer surface, wherein the interstitial layer comprises an aluminum/zinc material resulting in a required expansion operating pressure of approximately 3700 psi for the tubular member.

[0055] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes an outer surface and an interstitial layer on the outer surface, wherein the interstitial layer comprises an plastic material resulting in a required expansion operating pressure of approximately 3600 psi for the tubular member.

[0056] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 0.05 inches to 0.15 inches.

[0057] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 0.07 inches to 0.13 inches.

[0058] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 0.06 inches to 0.14 inches.

[0059] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 1.6 mm to 2.5 mm between the structure and the expandable tubular member.

[0060] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 2.6 mm to 3.1 mm between the structure and the expandable tubular member.

[0061] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 1.9 mm to 2.5 mm between the structure and the expandable tubular member.

[0062] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage, an interstitial layer positioned between the expandable tubular member and the structure and a collapse strength greater than approximately 20000 psi.

[0063] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage, an interstitial layer positioned

between the expandable tubular member and the structure and a collapse strength greater than approximately 14000 psi.

[0064] According to another aspect of the present invention, a method for determining the collapse resistance of a tubular assembly has been provided that includes measuring the collapse resistance of a first tubular member, measuring the collapse resistance of a second tubular member, determining the value of a reinforcement factor for a reinforcement of the first and second tubular members and multiplying the reinforcement factor by the sum of the collapse resistance of the first tubular member and the collapse resistance of the second tubular member.

[0065] According to another aspect of the present invention, an expandable tubular assembly has been provided that includes a structure defining a passage therein, an expandable tubular member positioned in the passage and means for modifying the residual stresses in at least one of the structure and the expandable tubular member when the expandable tubular member is radially expanded and plastically deformed against the structure, the means positioned between the expandable tubular member and the structure.

Brief Description of the Drawings

[0066] Fig. 1 is a fragmentary cross sectional view of an exemplary embodiment of an expandable tubular member positioned within a preexisting structure.

[0067] Fig. 2 is a fragmentary cross sectional view of the expandable tubular member of Fig. 1 after positioning an expansion device within the expandable tubular member.

[0068] Fig. 3 is a fragmentary cross sectional view of the expandable tubular member of Fig. 2 after operating the expansion device within the expandable tubular member to radially expand and plastically deform a portion of the expandable tubular member.

[0069] Fig. 4 is a fragmentary cross sectional view of the expandable tubular member of Fig. 3 after operating the expansion device within the expandable tubular member to radially expand and plastically deform another portion of the expandable tubular member.

[0070] Fig. 5 is a graphical illustration of exemplary embodiments of the stress/strain curves for several portions of the expandable tubular member of Figs. 1-4.

[0071] Fig. 6 is a graphical illustration of the an exemplary embodiment of the yield strength vs. ductility curve for at least a portion of the expandable tubular member of Figs. 1-4.

[0072] Fig. 7 is a fragmentary cross sectional illustration of an embodiment of a series of overlapping expandable tubular members.

[0073] Fig. 8 is a fragmentary cross sectional view of an exemplary embodiment of an expandable tubular member positioned within a preexisting structure.

[0074] Fig. 9 is a fragmentary cross sectional view of the expandable tubular member of Fig. 8 after positioning an expansion device within the expandable tubular member.

[0075] Fig. 10 is a fragmentary cross sectional view of the expandable tubular member of

Fig. 9 after operating the expansion device within the expandable tubular member to radially expand and plastically deform a portion of the expandable tubular member.

[0076] Fig. 11 is a fragmentary cross sectional view of the expandable tubular member of Fig. 10 after operating the expansion device within the expandable tubular member to radially expand and plastically deform another portion of the expandable tubular member.

[0077] Fig. 12 is a graphical illustration of exemplary embodiments of the stress/strain curves for several portions of the expandable tubular member of Figs. 8-11.

[0078] Fig. 13 is a graphical illustration of an exemplary embodiment of the yield strength vs. ductility curve for at least a portion of the expandable tubular member of Figs. 8-11.

[0079] Fig. 14 is a fragmentary cross sectional view of an exemplary embodiment of an expandable tubular member positioned within a preexisting structure.

[0080] Fig. 15 is a fragmentary cross sectional view of the expandable tubular member of Fig. 14 after positioning an expansion device within the expandable tubular member.

[0081] Fig. 16 is a fragmentary cross sectional view of the expandable tubular member of Fig. 15 after operating the expansion device within the expandable tubular member to radially expand and plastically deform a portion of the expandable tubular member.

[0082] Fig. 17 is a fragmentary cross sectional view of the expandable tubular member of Fig. 16 after operating the expansion device within the expandable tubular member to radially expand and plastically deform another portion of the expandable tubular member.

[0083] Fig. 18 is a flow chart illustration of an exemplary embodiment of a method of processing an expandable tubular member.

[0084] Fig. 19 is a graphical illustration of the an exemplary embodiment of the yield strength vs. ductility curve for at least a portion of the expandable tubular member during the operation of the method of Fig. 18.

[0085] Fig. 20 is a graphical illustration of stress/strain curves for an exemplary embodiment of an expandable tubular member.

[0086] Fig. 21 is a graphical illustration of stress/strain curves for an exemplary embodiment of an expandable tubular member.

[0087] Fig. 22 is a fragmentary cross-sectional view illustrating an embodiment of the radial expansion and plastic deformation of a portion of a first tubular member having an internally threaded connection at an end portion, an embodiment of a tubular sleeve supported by the end portion of the first tubular member, and a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member and engaged by a flange of the sleeve. The sleeve includes the flange at one end for increasing axial compression loading.

[0088] Fig. 23 is a fragmentary cross-sectional view illustrating an embodiment of the radial expansion and plastic deformation of a portion of a first tubular member having an internally

threaded connection at an end portion, a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member, and an embodiment of a tubular sleeve supported by the end portion of both tubular members. The sleeve includes flanges at opposite ends for increasing axial tension loading.

[0089] Fig. 24 is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of a first tubular member having an internally threaded connection at an end portion, a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member, and an embodiment of a tubular sleeve supported by the end portion of both tubular members. The sleeve includes flanges at opposite ends for increasing axial compression/tension loading.

[0090] Fig. 25 is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of a first tubular member having an internally threaded connection at an end portion, a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member, and an embodiment of a tubular sleeve supported by the end portion of both tubular members. The sleeve includes flanges at opposite ends having sacrificial material thereon.

[0091] Fig. 26 is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of a first tubular member having an internally threaded connection at an end portion, a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member, and an embodiment of a tubular sleeve supported by the end portion of both tubular members. The sleeve includes a thin walled cylinder of sacrificial material.

[0092] Fig. 27 is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of a first tubular member having an internally threaded connection at an end portion, a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member, and an embodiment of a tubular sleeve supported by the end portion of both tubular members. The sleeve includes a variable thickness along the length thereof.

[0093] Fig. 28 is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of a first tubular member having an internally threaded connection at an end portion, a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member, and an embodiment of a tubular sleeve supported by the end portion of both tubular members. The sleeve includes a member coiled onto grooves formed in the sleeve for varying the sleeve thickness.

[0094] Fig. 29 is a fragmentary cross-sectional illustration of an exemplary embodiment of an expandable connection.

[0095] Figs. 30a-30c are fragmentary cross-sectional illustrations of exemplary embodiments of expandable connections.

[0096] Fig. 31 is a fragmentary cross-sectional illustration of an exemplary embodiment of an expandable connection.

[0097] Figs. 32a and 32b are fragmentary cross-sectional illustrations of the formation of an exemplary embodiment of an expandable connection.

[0098] Fig. 33 is a fragmentary cross-sectional illustration of an exemplary embodiment of an expandable connection.

[0099] Figs. 34a, 34b and 34c are fragmentary cross-sectional illustrations of an exemplary embodiment of an expandable connection.

[0100] Fig. 35a is a fragmentary cross-sectional illustration of an exemplary embodiment of an expandable tubular member.

[0101] Fig. 35b is a graphical illustration of an exemplary embodiment of the variation in the yield point for the expandable tubular member of Fig. 35a.

[0102] Fig. 36a is a flow chart illustration of an exemplary embodiment of a method for processing a tubular member.

[0103] Fig. 36b is an illustration of the microstructure of an exemplary embodiment of a tubular member prior to thermal processing.

[0104] Fig. 36c is an illustration of the microstructure of an exemplary embodiment of a tubular member after thermal processing.

[0105] Fig. 37a is a flow chart illustration of an exemplary embodiment of a method for processing a tubular member.

[0106] Fig. 37b is an illustration of the microstructure of an exemplary embodiment of a tubular member prior to thermal processing.

[0107] Fig. 37c is an illustration of the microstructure of an exemplary embodiment of a tubular member after thermal processing.

[0108] Fig. 38a is a flow chart illustration of an exemplary embodiment of a method for processing a tubular member.

[0109] Fig. 38b is an illustration of the microstructure of an exemplary embodiment of a tubular member prior to thermal processing.

[0110] Fig. 38c is an illustration of the microstructure of an exemplary embodiment of a tubular member after thermal processing.

[0111] Fig. 39 is a schematic view illustrating an exemplary embodiment of a method for increasing the collapse strength of a tubular assembly.

[0112] Fig. 40 is a perspective view illustrating an exemplary embodiment of an expandable tubular member used in the method of Fig. 39.

[00113] Fig 41a is a perspective view illustrating an exemplary embodiment of the expandable tubular member of Fig. 40 coated with a layer of material according to the method of Fig. 39.

[00114] Fig 41b is a cross sectional view taken along line 41b in Fig. 41a illustrating an exemplary embodiment of the expandable tubular member of Fig. 40 coated with a layer of material according to the method of Fig. 39.

[00115] Fig 41c is a perspective view illustrating an exemplary embodiment of the expandable tubular member and layer of Fig. 41a where the coating layer is plastic according to the method of Fig. 39.

[00116] Fig 41d is a perspective view illustrating an exemplary embodiment of the expandable tubular member and layer of Fig. 41a where the coating layer is aluminum according to the method of Fig. 39.

[00117] Fig 42 is a perspective view illustrating an exemplary embodiment of the expandable tubular member and layer of Fig. 41a positioned within a preexisting structure according to the method of Fig. 39.

[00118] Fig 43 is a perspective view illustrating an exemplary embodiment of the expandable tubular member and layer within the preexisting structure of Fig. 42 with the expandable tubular member being expanded according to the method of Fig. 39.

[00119] Fig 44 is a perspective view illustrating an exemplary embodiment of the expandable tubular member and layer within the preexisting structure of Fig. 42 with the expandable tubular member expanded according to the method of Fig. 39.

[00120] Fig 45 is a schematic view illustrating an exemplary embodiment of a method for increasing the collapse strength of a tubular assembly.

[00121] Fig 46 is a perspective view illustrating an exemplary embodiment of a preexisting structure used in the method of Fig. 45.

[00122] Fig 47a is a perspective view illustrating an exemplary embodiment of the preexisting structure of Fig. 46 being coated with a layer of material according to the method of Fig. 45.

[00123] Fig 47b is a cross sectional view taken along line 47b in Fig. 47a illustrating an exemplary embodiment of the preexisting structure of Fig. 46 coated with a layer of material according to the method of Fig. 45.

[00124] Fig 48 is a perspective view illustrating an exemplary embodiment of an expandable tubular member positioned within the preexisting structure and layer of material of Fig. 47a according to the method of Fig. 45.

[00125] Fig 49 is a perspective view illustrating an exemplary embodiment of the expandable tubular member within the preexisting structure and layer of Fig. 48 with the expandable tubular member being expanded according to the method of Fig. 45.

[00126] Fig 50 is a perspective view illustrating an exemplary embodiment of the expandable tubular member within the preexisting structure and layer of Fig. 48 with the expandable tubular member expanded according to the method of Fig. 45.

[00127] Fig 51a is a perspective view illustrating an exemplary embodiment of the expandable tubular member of Fig 40 coated with multiple layers of material according to the method of Fig. 39.

[00128] Fig 51b is a perspective view illustrating an exemplary embodiment of the preexisting structure of Fig. 46 coated with multiple layers of material according to the method of Fig. 39.

[00129] Fig 52a is a perspective view illustrating an exemplary embodiment of the expandable tubular member of Fig 40 coated by winding a wire around its circumference according to the method of Fig. 39.

[00130] Fig 52b is a perspective view illustrating an exemplary embodiment of the expandable tubular member of Fig 40 coated by winding wire around its circumference according to the method of Fig. 39.

[00131] Fig 52c is a cross sectional view taken along line 52c of Fig. 52b illustrating an exemplary embodiment of the expandable tubular member of Fig 40 coated by winding wire around its circumference according to the method of Fig. 39.

[00132] Fig 53 is a chart view illustrating an exemplary experimental embodiment of the energy required to expand a plurality of tubular assemblies produced by the methods of Fig. 39 and Fig. 45.

[00133] Fig 54a is a cross sectional view illustrating an exemplary experimental embodiment of a tubular assembly produced by the method of Fig. 39.

[00134] Fig 54b is a cross sectional view illustrating an exemplary experimental embodiment of a tubular assembly produced by the method of Fig. 39.

[00135] Fig 54c is a chart view illustrating an exemplary experimental embodiment of the thickness of the interstitial layer for a plurality of tubular assemblies produced by the method of Fig. 39.

[00136] Fig 55a is a chart view illustrating an exemplary experimental embodiment of the thickness of the interstitial layer for a plurality of tubular assemblies produced by the method of Fig. 39.

[00137] Fig 55b is a chart view illustrating an exemplary experimental embodiment of the thickness of the interstitial layer for a plurality of tubular assemblies produced by the method of Fig. 39.

[00138] Fig 56 is a cross sectional view illustrating an exemplary experimental embodiment of a tubular assembly produced by the method of Fig. 39 but omitting the coating with a layer of material.

- [00139] Fig 56a is a close up cross sectional view illustrating an exemplary experimental embodiment of a tubular assembly produced by the method of Fig. 39 but omitting the coating with a layer of material.
- [00140] Fig 57a is a graphical view illustrating an exemplary experimental embodiment of the collapse strength for a tubular assembly produced by the method of Fig. 39 but omitting the coating with a layer of material.
- [00141] Fig 57b is a graphical view illustrating an exemplary experimental embodiment of the thickness of the air gap for a tubular assembly produced by the method of Fig. 39 but omitting the coating with a layer of material.
- [00142] Fig 58 is a graphical view illustrating an exemplary experimental embodiment of the thickness of the air gap and the collapse strength for a tubular assembly produced by the method of Fig. 39 but omitting the coating with a layer of material.
- [00143] Fig 59 is a graphical view illustrating an exemplary experimental embodiment of the thickness of the interstitial layer and the collapse strength for a tubular assembly produced by the method of Fig. 39.
- [00144] Fig 60a is a graphical view illustrating an exemplary experimental embodiment of the thickness of the air gap for a tubular assembly produced by the method of Fig. 39 but omitting the coating with a layer of material.
- [00145] Fig 60b is a graphical view illustrating an exemplary experimental embodiment of the thickness of the interstitial layer for a tubular assembly produced by the method of Fig. 39.
- [00146] Fig 60c is a graphical view illustrating an exemplary experimental embodiment of the thickness of the interstitial layer for a tubular assembly produced by the method of Fig. 39.
- [00147] Fig 61a is a graphical view illustrating an exemplary experimental embodiment of the wall thickness of an expandable tubular member for a tubular assembly produced by the method of Fig. 39 but omitting the coating with a layer of material.
- [00148] Fig 61b is a graphical view illustrating an exemplary experimental embodiment of the wall thickness of an expandable tubular member for a tubular assembly produced by the method of Fig. 39.
- [00149] Fig 61c is a graphical view illustrating an exemplary experimental embodiment of the wall thickness of an expandable tubular member for a tubular assembly produced by the method of Fig. 39.
- [00150] Fig 62a is a graphical view illustrating an exemplary experimental embodiment of the wall thickness of a preexisting structure for a tubular assembly produced by the method of Fig. 39 but omitting the coating with a layer of material.

[00151] Fig 62b is a graphical view illustrating an exemplary experimental embodiment of the wall thickness of a preexisting structure for a tubular assembly produced by the method of Fig. 39.

[00152] Fig 62c is a graphical view illustrating an exemplary experimental embodiment of the wall thickness of a preexisting structure for a tubular assembly produced by the method of Fig. 39.

[00153] Fig 63 is a graphical view illustrating an exemplary experimental embodiment of the collapse strength for a tubular assembly produced by the method of Fig. 39.

Detailed Description of the Illustrative Embodiments

[00154] Referring initially to Fig. 1, an exemplary embodiment of an expandable tubular assembly 10 includes a first expandable tubular member 12 coupled to a second expandable tubular member 14. In several exemplary embodiments, the ends of the first and second expandable tubular members, 12 and 14, are coupled using, for example, a conventional mechanical coupling, a welded connection, a brazed connection, a threaded connection, and/or an interference fit connection. In an exemplary embodiment, the first expandable tubular member 12 has a plastic yield point YP_1 , and the second expandable tubular member 14 has a plastic yield point YP_2 . In an exemplary embodiment, the expandable tubular assembly 10 is positioned within a preexisting structure such as, for example, a wellbore 16 that traverses a subterranean formation 18.

[00155] As illustrated in Fig. 2, an expansion device 20 may then be positioned within the second expandable tubular member 14. In several exemplary embodiments, the expansion device 20 may include, for example, one or more of the following conventional expansion devices: a) an expansion cone; b) a rotary expansion device; c) a hydroforming expansion device; d) an impulsive force expansion device; d) any one of the expansion devices commercially available from, or disclosed in any of the published patent applications or issued patents, of Weatherford International, Baker Hughes, Halliburton Energy Services, Shell Oil Co., Schlumberger, and/or Enventure Global Technology L.L.C. In several exemplary embodiments, the expansion device 20 is positioned within the second expandable tubular member 14 before, during, or after the placement of the expandable tubular assembly 10 within the preexisting structure 16.

[00156] As illustrated in Fig. 3, the expansion device 20 may then be operated to radially expand and plastically deform at least a portion of the second expandable tubular member 14 to form a bell-shaped section.

[00157] As illustrated in Fig. 4, the expansion device 20 may then be operated to radially expand and plastically deform the remaining portion of the second expandable tubular member 14 and at least a portion of the first expandable tubular member 12.

[00158] In an exemplary embodiment, at least a portion of at least a portion of at least

one of the first and second expandable tubular members, 12 and 14, are radially expanded into intimate contact with the interior surface of the preexisting structure 16.

[00159] In an exemplary embodiment, as illustrated in Fig. 5, the plastic yield point $Y\!P_1$ is greater than the plastic yield point $Y\!P_2$. In this manner, in an exemplary embodiment, the amount of power and/or energy required to radially expand the second expandable tubular member 14 is less than the amount of power and/or energy required to radially expand the first expandable tubular member 12.

[00160] In an exemplary embodiment, as illustrated in Fig. 6, the first expandable tubular member 12 and/or the second expandable tubular member 14 have a ductility D_{PE} and a yield strength YS_{PE} prior to radial expansion and plastic deformation, and a ductility D_{AE} and a yield strength YS_{AE} after radial expansion and plastic deformation. In an exemplary embodiment, D_{PE} is greater than D_{AE} , and YS_{AE} is greater than YS_{PE} . In this manner, the first expandable tubular member 12 and/or the second expandable tubular member 14 are transformed during the radial expansion and plastic deformation process. Furthermore, in this manner, in an exemplary embodiment, the amount of power and/or energy required to radially expand each unit length of the first and/or second expandable tubular members, 12 and 14, is reduced. Furthermore, because the YS_{AE} is greater than YS_{PE} , the collapse strength of the first expandable tubular member 12 and/or the second expandable tubular member 14 is increased after the radial expansion and plastic deformation process.

[00161] In an exemplary embodiment, as illustrated in Fig. 7, following the completion of the radial expansion and plastic deformation of the expandable tubular assembly 10 described above with reference to Figs. 1-4, at least a portion of the second expandable tubular member 14 has an inside diameter that is greater than at least the inside diameter of the first expandable tubular member 12. In this manner a bell-shaped section is formed using at least a portion of the second expandable tubular member 14. Another expandable tubular assembly 22 that includes a first expandable tubular member 24 and a second expandable tubular member 26 may then be positioned in overlapping relation to the first expandable tubular assembly 10 and radially expanded and plastically deformed using the methods described above with reference to Figs. 1-4. Furthermore, following the completion of the radial expansion and plastic deformation of the expandable tubular assembly 20, in an exemplary embodiment, at least a portion of the second expandable tubular member 26 has an inside diameter that is greater than at least the inside diameter of the first expandable tubular member 24. In this manner a bell-shaped section is formed using at least a portion of the second expandable tubular member 26. Furthermore, in this manner, a mono-diameter tubular assembly is formed that defines an internal passage 28 having a substantially constant cross-sectional area and/or inside diameter.

[00162] Referring to Fig. 8, an exemplary embodiment of an expandable tubular assembly

100 includes a first expandable tubular member 102 coupled to a tubular coupling 104. The tubular coupling 104 is coupled to a tubular coupling 106. The tubular coupling 106 is coupled to a second expandable tubular member 108. In several exemplary embodiments, the tubular couplings, 104 and 106, provide a tubular coupling assembly for coupling the first and second expandable tubular members, 102 and 108, together that may include, for example, a conventional mechanical coupling, a welded connection, a brazed connection, a threaded connection, and/or an interference fit connection. In an exemplary embodiment, the first and second expandable tubular members 12 have a plastic yield point YP_1 , and the tubular couplings, 104 and 106, have a plastic yield point YP_2 . In an exemplary embodiment, the expandable tubular assembly 100 is positioned within a preexisting structure such as, for example, a wellbore 110 that traverses a subterranean formation 112.

[00163] As illustrated in Fig. 9, an expansion device 114 may then be positioned within the second expandable tubular member 108. In several exemplary embodiments, the expansion device 114 may include, for example, one or more of the following conventional expansion devices: a) an expansion cone; b) a rotary expansion device; c) a hydroforming expansion device; d) an impulsive force expansion device; d) any one of the expansion devices commercially available from, or disclosed in any of the published patent applications or issued patents, of Weatherford International, Baker Hughes, Halliburton Energy Services, Shell Oil Co., Schlumberger, and/or Enventure Global Technology L.L.C. In several exemplary embodiments, the expansion device 114 is positioned within the second expandable tubular member 108 before, during, or after the placement of the expandable tubular assembly 100 within the preexisting structure 110.

[00164] As illustrated in Fig. 10, the expansion device 114 may then be operated to radially expand and plastically deform at least a portion of the second expandable tubular member 108 to form a bell-shaped section.

[00165] As illustrated in Fig. 11, the expansion device 114 may then be operated to radially expand and plastically deform the remaining portion of the second expandable tubular member 108, the tubular couplings, 104 and 106, and at least a portion of the first expandable tubular member 102.

[00166] In an exemplary embodiment, at least a portion of at least a portion of at least one of the first and second expandable tubular members, 102 and 108, are radially expanded into intimate contact with the interior surface of the preexisting structure 110.

[00167] In an exemplary embodiment, as illustrated in Fig. 12, the plastic yield point YP_1 is less than the plastic yield point YP_2 . In this manner, in an exemplary embodiment, the amount of power and/or energy required to radially expand each unit length of the first and second expandable tubular members, 102 and 108, is less than the amount of power and/or energy required to radially expand each unit length of the tubular couplings, 104 and 106.

[00168] In an exemplary embodiment, as illustrated in Fig. 13, the first expandable tubular member 12 and/or the second expandable tubular member 14 have a ductility D_{PE} and a yield strength YS_{PE} prior to radial expansion and plastic deformation, and a ductility D_{AE} and a yield strength YS_{AE} after radial expansion and plastic deformation. In an exemplary embodiment, D_{PE} is greater than D_{AE} , and YS_{AE} is greater than YS_{PE} . In this manner, the first expandable tubular member 12 and/or the second expandable tubular member 14 are transformed during the radial expansion and plastic deformation process. Furthermore, in this manner, in an exemplary embodiment, the amount of power and/or energy required to radially expand each unit length of the first and/or second expandable tubular members, 12 and 14, is reduced. Furthermore, because the YS_{AE} is greater than YS_{PE} , the collapse strength of the first expandable tubular member 12 and/or the second expandable tubular member 14 is increased after the radial expansion and plastic deformation process.

[00169] Referring to Fig. 14, an exemplary embodiment of an expandable tubular assembly 200 includes a first expandable tubular member 202 coupled to a second expandable tubular member 204 that defines radial openings 204a, 204b, 204c, and 204d. In several exemplary embodiments, the ends of the first and second expandable tubular members, 202 and 204, are coupled using, for example, a conventional mechanical coupling, a welded connection, a brazed connection, a threaded connection, and/or an interference fit connection. In an exemplary embodiment, one or more of the radial openings, 204a, 204b, 204c, and 204d, have circular, oval, square, and/or irregular cross sections and/or include portions that extend to and interrupt either end of the second expandable tubular member 204. In an exemplary embodiment, the expandable tubular assembly 200 is positioned within a preexisting structure such as, for example, a wellbore 206 that traverses a subterranean formation 208.

[00170] As illustrated in Fig. 15, an expansion device 210 may then be positioned within the second expandable tubular member 204. In several exemplary embodiments, the expansion device 210 may include, for example, one or more of the following conventional expansion devices: a) an expansion cone; b) a rotary expansion device; c) a hydroforming expansion device; d) an impulsive force expansion device; d) any one of the expansion devices commercially available from, or disclosed in any of the published patent applications or issued patents, of Weatherford International, Baker Hughes, Halliburton Energy Services, Shell Oil Co., Schlumberger, and/or Enventure Global Technology L.L.C. In several exemplary embodiments, the expansion device 210 is positioned within the second expandable tubular member 204 before, during, or after the placement of the expandable tubular assembly 200 within the preexisting structure 206.

[00171] As illustrated in Fig. 16, the expansion device 210 may then be operated to radially expand and plastically deform at least a portion of the second expandable tubular

member 204 to form a bell-shaped section.

[00172] As illustrated in Fig. 16, the expansion device 20 may then be operated to radially expand and plastically deform the remaining portion of the second expandable tubular member 204 and at least a portion of the first expandable tubular member 202.

[00173] In an exemplary embodiment, the anisotropy ratio AR for the first and second expandable tubular members is defined by the following equation:

$$AR = \ln (WT_f/WT_0)/\ln (D_f/D_0);$$

where AR = anisotropy ratio;

where WT_f = final wall thickness of the expandable tubular member following the radial expansion and plastic deformation of the expandable tubular member;

where WT_0 = initial wall thickness of the expandable tubular member prior to the radial expansion and plastic deformation of the expandable tubular member;

where D_f = final inside diameter of the expandable tubular member following the radial expansion and plastic deformation of the expandable tubular member; and

where D_0 = initial inside diameter of the expandable tubular member prior to the radial expansion and plastic deformation of the expandable tubular member.

[00174] In an exemplary embodiment, the anisotropy ratio AR for the first and/or second expandable tubular members, 204 and 204, is greater than 1.

[00175] In an exemplary experimental embodiment, the second expandable tubular member 204 had an anisotropy ratio AR greater than 1, and the radial expansion and plastic deformation of the second expandable tubular member did not result in any of the openings, 204a, 204b, 204c, and 204d, splitting or otherwise fracturing the remaining portions of the second expandable tubular member. This was an unexpected result.

[00176] Referring to Fig. 18, in an exemplary embodiment, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 are processed using a method 300 in which a tubular member in an initial state is thermo-mechanically processed in step 302. In an exemplary embodiment, the thermo-mechanical processing 302 includes one or more heat treating and/or mechanical forming processes. As a result, of the thermo-mechanical processing 302, the tubular member is transformed to an intermediate state. The tubular member is then further thermo-mechanically processed in step 304. In an exemplary embodiment, the thermo-mechanical processing 304 includes one or more heat treating and/or mechanical forming processes. As a result, of the thermo-mechanical processing 304, the tubular member is transformed to a final state.

[00177] In an exemplary embodiment, as illustrated in Fig. 19, during the operation of the method 300, the tubular member has a ductility D_{PE} and a yield strength YS_{PE} prior to the final thermo-mechanical processing in step 304, and a ductility D_{AE} and a yield strength YS_{AE} after final thermo-mechanical processing. In an exemplary embodiment, D_{PE} is greater than

D_{AE} , and YS_{AE} is greater than YS_{PE} . In this manner, the amount of energy and/or power required to transform the tubular member, using mechanical forming processes, during the final thermo-mechanical processing in step 304 is reduced. Furthermore, in this manner, because the YS_{AE} is greater than YS_{PE} , the collapse strength of the tubular member is increased after the final thermo-mechanical processing in step 304.

[00178] In an exemplary embodiment, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204, have the following characteristics:

Characteristic	Value
Tensile Strength	60 to 120 ksi
Yield Strength	50 to 100 ksi
Y/T Ratio	Maximum of 50/85 %
Elongation During Radial Expansion and Plastic Deformation	Minimum of 35 %
Width Reduction During Radial Expansion and Plastic Deformation	Minimum of 40 %
Wall Thickness Reduction During Radial Expansion and Plastic Deformation	Minimum of 30 %
Anisotropy	Minimum of 1.5
Minimum Absorbed Energy at -4 F (-20 C) in the Longitudinal Direction	80 ft-lb
Minimum Absorbed Energy at -4 F (-20 C) in the Transverse Direction	60 ft-lb
Minimum Absorbed Energy at -4 F (-20 C) Transverse To A Weld Area	60 ft-lb
Flare Expansion Testing	Minimum of 75% Without A Failure
Increase in Yield Strength Due To Radial Expansion and Plastic Deformation	Greater than 5.4 %

[00179] In an exemplary embodiment, one or more of the expandable tubular members,

12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204, are characterized by an expandability coefficient f:

- i. $f = r \times n$
- ii. where f = expandability coefficient;
 - 1. r = anisotropy coefficient; and
 - 2. n = strain hardening exponent.

[00180] In an exemplary embodiment, the anisotropy coefficient for one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 is greater than 1. In an exemplary embodiment, the strain hardening exponent for one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 is greater than 0.12. In an exemplary embodiment, the expandability coefficient for one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 is greater than 0.12.

[00181] In an exemplary embodiment, a tubular member having a higher expandability coefficient requires less power and/or energy to radially expand and plastically deform each unit length than a tubular member having a lower expandability coefficient. In an exemplary embodiment, a tubular member having a higher expandability coefficient requires less power and/or energy per unit length to radially expand and plastically deform than a tubular member having a lower expandability coefficient.

[00182] In several exemplary experimental embodiments, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204, are steel alloys having one of the following compositions:

Steel Alloy	Element and Percentage By Weight								
	C	Mn	P	S	Si	Cu	Ni	Cr	
A	0.065	1.44	0.01	0.002	0.24	0.01	0.01	0.02	
B	0.18	1.28	0.017	0.004	0.29	0.01	0.01	0.03	
C	0.08	0.82	0.006	0.003	0.30	0.16	0.05	0.05	
D	0.02	1.31	0.02	0.001	0.45	-	9.1	18.7	

[00183] In exemplary experimental embodiment, as illustrated in Fig. 20, a sample of an expandable tubular member composed of Alloy A exhibited a yield point before radial expansion and plastic deformation YP_{BE} , a yield point after radial expansion and plastic deformation of about 16 % $YP_{AE16\%}$, and a yield point after radial expansion and plastic deformation of about 24 % $YP_{AE24\%}$. In an exemplary experimental embodiment, $YP_{AE24\%} > YP_{AE16\%} > YP_{BE}$. Furthermore, in an exemplary experimental embodiment, the ductility of the

sample of the expandable tubular member composed of Alloy A also exhibited a higher ductility prior to radial expansion and plastic deformation than after radial expansion and plastic deformation. These were unexpected results.

[00184] In an exemplary experimental embodiment, a sample of an expandable tubular member composed of Alloy A exhibited the following tensile characteristics before and after radial expansion and plastic deformation:

	Yield Point ksi	Yield Ratio	Elongation %	Width Reduction %	Wall Thickness Reduction %	Anisotropy
Before Radial Expansion and Plastic Deformation	46.9	0.69	53	-52	55	0.93
After 16% Radial Expansion	65.9	0.83	17	42	51	0.78
After 24% Radial Expansion	68.5	0.83	5	44	54	0.76
% Increase	40% for 16% radial expansion 46% for 24% radial expansion					

[00185] In exemplary experimental embodiment, as illustrated in Fig. 21, a sample of an expandable tubular member composed of Alloy B exhibited a yield point before radial expansion and plastic deformation YP_{BE} , a yield point after radial expansion and plastic deformation of about 16 % $YP_{AE16\%}$, and a yield point after radial expansion and plastic deformation of about 24 % $YP_{AE24\%}$. In an exemplary embodiment, $YP_{AE24\%} > YP_{AE16\%} > YP_{BE}$. Furthermore, in an exemplary experimental embodiment, the ductility of the sample of

the expandable tubular member composed of Alloy B also exhibited a higher ductility prior to radial expansion and plastic deformation than after radial expansion and plastic deformation. These were unexpected results.

[00186] In an exemplary experimental embodiment, a sample of an expandable tubular member composed of Alloy B exhibited the following tensile characteristics before and after radial expansion and plastic deformation:

	Yield Point ksi	Yield Ratio	Elongation %	Width Reduction %	Wall Thickness Reduction %	Anisotropy
Before Radial Expansion and Plastic Deformation	57.8	0.71	44	43	46	0.93
After 16% Radial Expansion	74.4	0.84	16	38	42	0.87
After 24% Radial Expansion	79.8	0.86	20	36	42	0.81
% Increase	28.7% increase for 16% radial expansion 38% increase for 24% radial expansion					

[00187] In an exemplary experimental embodiment, samples of expandable tubulars composed of Alloys A, B, C, and D exhibited the following tensile characteristics prior to radial expansion and plastic deformation:

Steel Alloy	Yield ksi	Yield Ratio	Elongation %	Anisotropy	Absorbed Energy ft-lb	Expandability Coefficient
A	47.6	0.71	44	1.48	145	
B	57.8	0.71	44	1.04	62.2	
C	61.7	0.80	39	1.92	268	
D	48	0.55	56	1.34	-	

[00188] In an exemplary embodiment, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 have a strain hardening exponent greater than 0.12, and a yield ratio is less than 0.85.

[00189] In an exemplary embodiment, the carbon equivalent C_e , for tubular members having a carbon content (by weight percentage) less than or equal to 0.12%, is given by the following expression:

$$C_e = C + Mn/6 + (Cr + Mo + V + Ti + Nb)/5 + (Ni + Cu)/15$$

- where C_e = carbon equivalent value;
- a. C = carbon percentage by weight;
 - b. Mn = manganese percentage by weight;
 - c. Cr = chromium percentage by weight;
 - d. Mo = molybdenum percentage by weight;
 - e. V = vanadium percentage by weight;
 - f. Ti = titanium percentage by weight;
 - g. Nb = niobium percentage by weight;
 - h. Ni = nickel percentage by weight; and
 - i. Cu = copper percentage by weight.

[00190] In an exemplary embodiment, the carbon equivalent value C_e , for tubular members having a carbon content less than or equal to 0.12% (by weight), for one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 is less than 0.21.

[00191] In an exemplary embodiment, the carbon equivalent C_e , for tubular members having more than 0.12% carbon content (by weight), is given by the following expression:

$$C_e = C + Si/30 + (Mn + Cu + Cr)/20 + Ni/60 + Mo/15 + V/10 + 5 * B$$

- where C_e = carbon equivalent value;
- a. C = carbon percentage by weight;
 - b. Si = silicon percentage by weight;
 - c. Mn = manganese percentage by weight;

- d. Cu = copper percentage by weight;
- e. Cr = chromium percentage by weight;
- f. Ni = nickel percentage by weight;
- g. Mo = molybdenum percentage by weight;
- h. V = vanadium percentage by weight; and
- i. B = boron percentage by weight.

[00192] In an exemplary embodiment, the carbon equivalent value C_e , for tubular members having greater than 0.12% carbon content (by weight), for one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 is less than 0.36.

[00193] Referring to Fig. 22 in an exemplary embodiment, a first tubular member 2210 includes an internally threaded connection 2212 at an end portion 2214. A first end of a tubular sleeve 2216 that includes an internal flange 2218 having a tapered portion 2220, and a second end that includes a tapered portion 2222, is then mounted upon and receives the end portion 2214 of the first tubular member 2210. In an exemplary embodiment, the end portion 2214 of the first tubular member 2210 abuts one side of the internal flange 2218 of the tubular sleeve 2216, and the internal diameter of the internal flange 2218 of the tubular sleeve 2216 is substantially equal to or greater than the maximum internal diameter of the internally threaded connection 2212 of the end portion 2214 of the first tubular member 2210. An externally threaded connection 2224 of an end portion 2226 of a second tubular member 2228 having an annular recess 2230 is then positioned within the tubular sleeve 2216 and threadably coupled to the internally threaded connection 2212 of the end portion 2214 of the first tubular member 2210. In an exemplary embodiment, the internal flange 2218 of the tubular sleeve 2216 mates with and is received within the annular recess 2230 of the end portion 2226 of the second tubular member 2228. Thus, the tubular sleeve 2216 is coupled to and surrounds the external surfaces of the first and second tubular members, 2210 and 2228.

[00194] The internally threaded connection 2212 of the end portion 2214 of the first tubular member 2210 is a box connection, and the externally threaded connection 2224 of the end portion 2226 of the second tubular member 2228 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2216 is at least approximately .020" greater than the outside diameters of the first and second tubular members, 2210 and 2228. In this manner, during the threaded coupling of the first and second tubular members, 2210 and 2228, fluidic materials within the first and second tubular members may be vented from the tubular members.

[00195] As illustrated in Fig. 22, the first and second tubular members, 2210 and 2228, and the tubular sleeve 2216 may be positioned within another structure 2232 such as,

for example, a cased or uncased wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating a conventional expansion device 2234 within and/or through the interiors of the first and second tubular members. The tapered portions, 2220 and 2222, of the tubular sleeve 2216 facilitate the insertion and movement of the first and second tubular members within and through the structure 2232, and the movement of the expansion device 2234 through the interiors of the first and second tubular members, 2210 and 2228, may be, for example, from top to bottom or from bottom to top.

[00196] During the radial expansion and plastic deformation of the first and second tubular members, 2210 and 2228, the tubular sleeve 2216 is also radially expanded and plastically deformed. As a result, the tubular sleeve 2216 may be maintained in circumferential tension and the end portions, 2214 and 2226, of the first and second tubular members, 2210 and 2228, may be maintained in circumferential compression.

[00197] Sleeve 2216 increases the axial compression loading of the connection between tubular members 2210 and 2228 before and after expansion by the expansion device 2234. Sleeve 2216 may, for example, be secured to tubular members 2210 and 2228 by a heat shrink fit.

[00198] In several alternative embodiments, the first and second tubular members, 2210 and 2228, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization, hydroforming, and/or roller expansion devices and/or any one or combination of the conventional commercially available expansion products and services available from Baker Hughes, Weatherford International, and/or Enventure Global Technology L.L.C.

[00199] The use of the tubular sleeve 2216 during (a) the coupling of the first tubular member 2210 to the second tubular member 2228, (b) the placement of the first and second tubular members in the structure 2232, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 2216 protects the exterior surfaces of the end portions, 2214 and 2226, of the first and second tubular members, 2210 and 2228, during handling and insertion of the tubular members within the structure 2232. In this manner, damage to the exterior surfaces of the end portions, 2214 and 2226, of the first and second tubular members, 2210 and 2228, is avoided that could otherwise result in stress concentrations that could cause a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 2216 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 2228 to the first tubular member 2210. In this manner, misalignment that could result in damage to the threaded connections, 2212 and 2224, of the first and second tubular members, 2210 and 2228, may

be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 2216 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 2216 can be easily rotated, that would indicate that the first and second tubular members, 2210 and 2228, are not fully threadably coupled and in intimate contact with the internal flange 2218 of the tubular sleeve. Furthermore, the tubular sleeve 2216 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 2210 and 2228. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 2214 and 2226, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 2210 and 2228, the tubular sleeve 2216 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve 2216 and the exterior surfaces of the end portions, 2214 and 2226, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 2212 and 2224, of the first and second tubular members, 2210 and 2228, into the annulus between the first and second tubular members and the structure 2232. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 2210 and 2228, the tubular sleeve 2216 may be maintained in circumferential tension and the end portions, 2214 and 2226, of the first and second tubular members, 2210 and 2228, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.

[00200] In several exemplary embodiments, one or more portions of the first and second tubular members, 2210 and 2228, and the tubular sleeve 2216 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00201] Referring to Fig. 23, in an exemplary embodiment, a first tubular member 210 includes an internally threaded connection 2312 at an end portion 2314. A first end of a tubular sleeve 2316 includes an internal flange 2318 and a tapered portion 2320. A second end of the sleeve 2316 includes an internal flange 2321 and a tapered portion 2322. An externally threaded connection 2324 of an end portion 2326 of a second tubular member 2328 having an annular recess 2330, is then positioned within the tubular sleeve 2316 and threadably coupled to the internally threaded connection 2312 of the end portion 2314 of the first tubular member 2310. The internal flange 2318 of the sleeve 2316 mates with and is received within the annular recess 2330.

[00202] The first tubular member 2310 includes a recess 2331. The internal flange 2321 mates with and is received within the annular recess 2331. Thus, the sleeve 2316 is coupled to and surrounds the external surfaces of the first and second tubular members 2310 and 2328.

[00203] The internally threaded connection 2312 of the end portion 2314 of the first tubular member 2310 is a box connection, and the externally threaded connection 2324 of the end portion 2326 of the second tubular member 2328 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2316 is at least approximately .020" greater than the outside diameters of the first and second tubular members 2310 and 2328. In this manner, during the threaded coupling of the first and second tubular members 2310 and 2328, fluidic materials within the first and second tubular members may be vented from the tubular members.

[00204] As illustrated in Fig. 23, the first and second tubular members 2310 and 2328, and the tubular sleeve 2316 may then be positioned within another structure 2332 such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device 2334 through and/or within the interiors of the first and second tubular members. The tapered portions 2320 and 2322, of the tubular sleeve 2316 facilitates the insertion and movement of the first and second tubular members within and through the structure 2332, and the displacement of the expansion device 2334 through the interiors of the first and second tubular members 2310 and 2328, may be from top to bottom or from bottom to top.

[00205] During the radial expansion and plastic deformation of the first and second tubular members 2310 and 2328, the tubular sleeve 2316 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2316 may be maintained in circumferential tension and the end portions 2314 and 2326, of the first and second tubular members 2310 and 2328, may be maintained in circumferential compression.

[00206] Sleeve 2316 increases the axial tension loading of the connection between tubular members 2310 and 2328 before and after expansion by the expansion device 2334. Sleeve 2316 may be secured to tubular members 2310 and 2328 by a heat shrink fit.

[00207] In several exemplary embodiments, one or more portions of the first and second tubular members, 2310 and 2328, and the tubular sleeve 2316 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00208] Referring to Fig. 24, in an exemplary embodiment, a first tubular member 2410 includes an internally threaded connection 2412 at an end portion 2414. A first end of a tubular sleeve 2416 includes an internal flange 2418 and a tapered portion 2420. A second end of the sleeve 2416 includes an internal flange 2421 and a tapered portion 2422.

An externally threaded connection 2424 of an end portion 2426 of a second tubular member 2428 having an annular recess 2430, is then positioned within the tubular sleeve 2416 and threadably coupled to the internally threaded connection 2412 of the end portion 2414 of the first tubular member 2410. The internal flange 2418 of the sleeve 2416 mates with and is received within the annular recess 2430. The first tubular member 2410 includes a recess 2431. The internal flange 2421 mates with and is received within the annular recess 2431. Thus, the sleeve 2416 is coupled to and surrounds the external surfaces of the first and second tubular members 2410 and 2428.

[00209] The internally threaded connection 2412 of the end portion 2414 of the first tubular member 2410 is a box connection, and the externally threaded connection 2424 of the end portion 2426 of the second tubular member 2428 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2416 is at least approximately .020" greater than the outside diameters of the first and second tubular members 2410 and 2428. In this manner, during the threaded coupling of the first and second tubular members 2410 and 2428, fluidic materials within the first and second tubular members may be vented from the tubular members.

[00210] As illustrated in Fig. 24, the first and second tubular members 2410 and 2428, and the tubular sleeve 2416 may then be positioned within another structure 2432 such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device 2434 through and/or within the interiors of the first and second tubular members. The tapered portions 2420 and 2422, of the tubular sleeve 2416 facilitate the insertion and movement of the first and second tubular members within and through the structure 2432, and the displacement of the expansion device 2434 through the interiors of the first and second tubular members, 2410 and 2428, may be from top to bottom or from bottom to top.

[00211] During the radial expansion and plastic deformation of the first and second tubular members, 2410 and 2428, the tubular sleeve 2416 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2416 may be maintained in circumferential tension and the end portions, 2414 and 2426, of the first and second tubular members, 2410 and 2428, may be maintained in circumferential compression.

[00212] The sleeve 2416 increases the axial compression and tension loading of the connection between tubular members 2410 and 2428 before and after expansion by expansion device 2424. Sleeve 2416 may be secured to tubular members 2410 and 2428 by a heat shrink fit.

[00213] In several exemplary embodiments, one or more portions of the first and second tubular members, 2410 and 2428, and the tubular sleeve 2416 have one or more of

the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00214] Referring to Fig. 25, in an exemplary embodiment, a first tubular member 2510 includes an internally threaded connection 2512 at an end portion 2514. A first end of a tubular sleeve 2516 includes an internal flange 2518 and a relief 2520. A second end of the sleeve 2516 includes an internal flange 2521 and a relief 2522. An externally threaded connection 2524 of an end portion 2526 of a second tubular member 2528 having an annular recess 2530, is then positioned within the tubular sleeve 2516 and threadably coupled to the internally threaded connection 2512 of the end portion 2514 of the first tubular member 2510. The internal flange 2518 of the sleeve 2516 mates with and is received within the annular recess 2530. The first tubular member 2510 includes a recess 2531. The internal flange 2521 mates with and is received within the annular recess 2531. Thus, the sleeve 2516 is coupled to and surrounds the external surfaces of the first and second tubular members 2510 and 2528.

[00215] The internally threaded connection 2512 of the end portion 2514 of the first tubular member 2510 is a box connection, and the externally threaded connection 2524 of the end portion 2526 of the second tubular member 2528 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2516 is at least approximately .020" greater than the outside diameters of the first and second tubular members 2510 and 2528. In this manner, during the threaded coupling of the first and second tubular members 2510 and 2528, fluidic materials within the first and second tubular members may be vented from the tubular members.

[00216] As illustrated in Fig. 25, the first and second tubular members 2510 and 2528, and the tubular sleeve 2516 may then be positioned within another structure 2532 such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device 2534 through and/or within the interiors of the first and second tubular members. The reliefs 2520 and 2522 are each filled with a sacrificial material 2540 including a tapered surface 2542 and 2544, respectively. The material 2540 may be a metal or a synthetic, and is provided to facilitate the insertion and movement of the first and second tubular members 2510 and 2528, through the structure 2532. The displacement of the expansion device 2534 through the interiors of the first and second tubular members 2510 and 2528, may, for example, be from top to bottom or from bottom to top.

[00217] During the radial expansion and plastic deformation of the first and second tubular members 2510 and 2528, the tubular sleeve 2516 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2516 may be maintained in circumferential tension and the end portions 2514 and 2526, of the first and

second tubular members, 2510 and 2528, may be maintained in circumferential compression.

[00218] The addition of the sacrificial material 2540, provided on sleeve 2516, avoids stress risers on the sleeve 2516 and the tubular member 2510. The tapered surfaces 2542 and 2544 are intended to wear or even become damaged, thus incurring such wear or damage which would otherwise be borne by sleeve 2516. Sleeve 2516 may be secured to tubular members 2510 and 2528 by a heat shrink fit.

[00219] In several exemplary embodiments, one or more portions of the first and second tubular members, 2510 and 2528, and the tubular sleeve 2516 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00220] Referring to Fig. 26, in an exemplary embodiment, a first tubular member 2610 includes an internally threaded connection 2612 at an end portion 2614. A first end of a tubular sleeve 2616 includes an internal flange 2618 and a tapered portion 2620. A second end of the sleeve 2616 includes an internal flange 2621 and a tapered portion 2622. An externally threaded connection 2624 of an end portion 2626 of a second tubular member 2628 having an annular recess 2630, is then positioned within the tubular sleeve 2616 and threadably coupled to the internally threaded connection 2612 of the end portion 2614 of the first tubular member 2610. The internal flange 2618 of the sleeve 2616 mates with and is received within the annular recess 2630.

[00221] The first tubular member 2610 includes a recess 2631. The internal flange 2621 mates with and is received within the annular recess 2631. Thus, the sleeve 2616 is coupled to and surrounds the external surfaces of the first and second tubular members 2610 and 2628.

[00222] The internally threaded connection 2612 of the end portion 2614 of the first tubular member 2610 is a box connection, and the externally threaded connection 2624 of the end portion 2626 of the second tubular member 2628 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2616 is at least approximately .020" greater than the outside diameters of the first and second tubular members 2610 and 2628. In this manner, during the threaded coupling of the first and second tubular members 2610 and 2628, fluidic materials within the first and second tubular members may be vented from the tubular members.

[00223] As illustrated in Fig. 26, the first and second tubular members 2610 and 2628, and the tubular sleeve 2616 may then be positioned within another structure 2632 such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device 2634 through and/or within the interiors of the first and second tubular members. The tapered portions 2620 and 2622, of the tubular

sleeve 2616 facilitates the insertion and movement of the first and second tubular members within and through the structure 2632, and the displacement of the expansion device 2634 through the interiors of the first and second tubular members 2610 and 2628, may, for example, be from top to bottom or from bottom to top.

[00224] During the radial expansion and plastic deformation of the first and second tubular members 2610 and 2628, the tubular sleeve 2616 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2616 may be maintained in circumferential tension and the end portions 2614 and 2626, of the first and second tubular members 2610 and 2628, may be maintained in circumferential compression.

[00225] Sleeve 2616 is covered by a thin walled cylinder of sacrificial material 2640. Spaces 2623 and 2624, adjacent tapered portions 2620 and 2622, respectively, are also filled with an excess of the sacrificial material 2640. The material may be a metal or a synthetic, and is provided to facilitate the insertion and movement of the first and second tubular members 2610 and 2628, through the structure 2632.

[00226] The addition of the sacrificial material 2640, provided on sleeve 2616, avoids stress risers on the sleeve 2616 and the tubular member 2610. The excess of the sacrificial material 2640 adjacent tapered portions 2620 and 2622 are intended to wear or even become damaged, thus incurring such wear or damage which would otherwise be borne by sleeve 2616. Sleeve 2616 may be secured to tubular members 2610 and 2628 by a heat shrink fit.

[00227] In several exemplary embodiments, one or more portions of the first and second tubular members, 2610 and 2628, and the tubular sleeve 2616 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00228] Referring to Fig. 27, in an exemplary embodiment, a first tubular member 2710 includes an internally threaded connection 2712 at an end portion 2714. A first end of a tubular sleeve 2716 includes an internal flange 2718 and a tapered portion 2720. A second end of the sleeve 2716 includes an internal flange 2721 and a tapered portion 2722. An externally threaded connection 2724 of an end portion 2726 of a second tubular member 2728 having an annular recess 2730, is then positioned within the tubular sleeve 2716 and threadably coupled to the internally threaded connection 2712 of the end portion 2714 of the first tubular member 2710. The internal flange 2718 of the sleeve 2716 mates with and is received within the annular recess 2730.

[00229] The first tubular member 2710 includes a recess 2731. The internal flange 2721 mates with and is received within the annular recess 2731. Thus, the sleeve 2716 is coupled to and surrounds the external surfaces of the first and second tubular members 2710 and 2728.

[00230] The internally threaded connection 2712 of the end portion 2714 of the first tubular member 2710 is a box connection, and the externally threaded connection 2724 of the end portion 2726 of the second tubular member 2728 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2716 is at least approximately .020" greater than the outside diameters of the first and second tubular members 2710 and 2728. In this manner, during the threaded coupling of the first and second tubular members 2710 and 2728, fluidic materials within the first and second tubular members may be vented from the tubular members.

[00231] As illustrated in Fig. 27, the first and second tubular members 2710 and 2728, and the tubular sleeve 2716 may then be positioned within another structure 2732 such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device 2734 through and/or within the interiors of the first and second tubular members. The tapered portions 2720 and 2722, of the tubular sleeve 2716 facilitates the insertion and movement of the first and second tubular members within and through the structure 2732, and the displacement of the expansion device 2734 through the interiors of the first and second tubular members 2710 and 2728, may be from top to bottom or from bottom to top.

[00232] During the radial expansion and plastic deformation of the first and second tubular members 2710 and 2728, the tubular sleeve 2716 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2716 may be maintained in circumferential tension and the end portions 2714 and 2726, of the first and second tubular members 2710 and 2728, may be maintained in circumferential compression.

[00233] Sleeve 2716 has a variable thickness due to one or more reduced thickness portions 2790 and/or increased thickness portions 2792.

[00234] Varying the thickness of sleeve 2716 provides the ability to control or induce stresses at selected positions along the length of sleeve 2716 and the end portions 2724 and 2726. Sleeve 2716 may be secured to tubular members 2710 and 2728 by a heat shrink fit.

[00235] In several exemplary embodiments, one or more portions of the first and second tubular members, 2710 and 2728, and the tubular sleeve 2716 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00236] Referring to Fig. 28, in an alternative embodiment, instead of varying the thickness of sleeve 2716, the same result described above with reference to Fig. 27, may be achieved by adding a member 2740 which may be coiled onto the grooves 2739 formed in sleeve 2716, thus varying the thickness along the length of sleeve 2716.

[00237] Referring to Fig. 29, in an exemplary embodiment, a first tubular member 2910 includes an internally threaded connection 2912 and an internal annular recess 2914 at an end portion 2916. A first end of a tubular sleeve 2918 includes an internal flange 2920, and a second end of the sleeve 2916 mates with and receives the end portion 2916 of the first tubular member 2910. An externally threaded connection 2922 of an end portion 2924 of a second tubular member 2926 having an annular recess 2928, is then positioned within the tubular sleeve 2918 and threadably coupled to the internally threaded connection 2912 of the end portion 2916 of the first tubular member 2910. The internal flange 2920 of the sleeve 2918 mates with and is received within the annular recess 2928. A sealing element 2930 is received within the internal annular recess 2914 of the end portion 2916 of the first tubular member 2910.

[00238] The internally threaded connection 2912 of the end portion 2916 of the first tubular member 2910 is a box connection, and the externally threaded connection 2922 of the end portion 2924 of the second tubular member 2926 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 2918 is at least approximately .020" greater than the outside diameters of the first tubular member 2910. In this manner, during the threaded coupling of the first and second tubular members 2910 and 2926, fluidic materials within the first and second tubular members may be vented from the tubular members.

[00239] The first and second tubular members 2910 and 2926, and the tubular sleeve 2918 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.

[00240] During the radial expansion and plastic deformation of the first and second tubular members 2910 and 2926, the tubular sleeve 2918 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 2918 may be maintained in circumferential tension and the end portions 2916 and 2924, of the first and second tubular members 2910 and 2926, respectively, may be maintained in circumferential compression.

[00241] In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 2910 and 2926, and the tubular sleeve 2918, the sealing element 2930 seals the interface between the first and second tubular members. In an exemplary embodiment, during and after the radial expansion and plastic deformation of the first and second tubular members 2910 and 2926, and the tubular sleeve 2918, a metal to metal seal is formed between at least one of: the first and second tubular members 2910 and 2926, the first tubular member and the tubular

sleeve 2918, and/or the second tubular member and the tubular sleeve. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.

[00242] In several exemplary embodiments, one or more portions of the first and second tubular members, 2910 and 2926, the tubular sleeve 2918, and the sealing element 2930 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00243] Referring to Fig. 30a, in an exemplary embodiment, a first tubular member 3010 includes internally threaded connections 3012a and 3012b, spaced apart by a cylindrical internal surface 3014, at an end portion 3016. Externally threaded connections 3018a and 3018b, spaced apart by a cylindrical external surface 3020, of an end portion 3022 of a second tubular member 3024 are threadably coupled to the internally threaded connections, 3012a and 3012b, respectively, of the end portion 3016 of the first tubular member 3010. A sealing element 3026 is received within an annulus defined between the internal cylindrical surface 3014 of the first tubular member 3010 and the external cylindrical surface 3020 of the second tubular member 3024.

[00244] The internally threaded connections, 3012a and 3012b, of the end portion 3016 of the first tubular member 3010 are box connections, and the externally threaded connections, 3018a and 3018b, of the end portion 3022 of the second tubular member 3024 are pin connections. In an exemplary embodiment, the sealing element 3026 is an elastomeric and/or metallic sealing element.

[00245] The first and second tubular members 3010 and 3024 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.

[00246] In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 3010 and 3024, the sealing element 3026 seals the interface between the first and second tubular members. In an exemplary embodiment, before, during and/or after the radial expansion and plastic deformation of the first and second tubular members 3010 and 3024, a metal to metal seal is formed between at least one of: the first and second tubular members 3010 and 3024, the first tubular member and the sealing element 3026, and/or the second tubular member and the sealing element. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.

[00247] In an alternative embodiment, the sealing element 3026 is omitted, and during and/or after the radial expansion and plastic deformation of the first and second tubular members 3010 and 3024, a metal to metal seal is formed between the first and second tubular members.

[00248] In several exemplary embodiments, one or more portions of the first and second tubular members, 3010 and 3024, the sealing element 3026 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00249] Referring to Fig. 30b, in an exemplary embodiment, a first tubular member 3030 includes internally threaded connections 3032a and 3032b, spaced apart by an undulating approximately cylindrical internal surface 3034, at an end portion 3036. Externally threaded connections 3038a and 3038b, spaced apart by a cylindrical external surface 3040, of an end portion 3042 of a second tubular member 3044 are threadably coupled to the internally threaded connections, 3032a and 3032b, respectively, of the end portion 3036 of the first tubular member 3030. A sealing element 3046 is received within an annulus defined between the undulating approximately cylindrical internal surface 3034 of the first tubular member 3030 and the external cylindrical surface 3040 of the second tubular member 3044.

[00250] The internally threaded connections, 3032a and 3032b, of the end portion 3036 of the first tubular member 3030 are box connections, and the externally threaded connections, 3038a and 3038b, of the end portion 3042 of the second tubular member 3044 are pin connections. In an exemplary embodiment, the sealing element 3046 is an elastomeric and/or metallic sealing element.

[00251] The first and second tubular members 3030 and 3044 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.

[00252] In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 3030 and 3044, the sealing element 3046 seals the interface between the first and second tubular members. In an exemplary embodiment, before, during and/or after the radial expansion and plastic deformation of the first and second tubular members 3030 and 3044, a metal to metal seal is formed between at least one of: the first and second tubular members 3030 and 3044, the first tubular member and the sealing element 3046, and/or the second tubular member and the sealing element. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.

[00253] In an alternative embodiment, the sealing element 3046 is omitted, and during and/or after the radial expansion and plastic deformation of the first and second tubular members 3030 and 3044, a metal to metal seal is formed between the first and second tubular members.

[00254] In several exemplary embodiments, one or more portions of the first and second tubular members, 3030 and 3044, the sealing element 3046 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00255] Referring to Fig. 30c, in an exemplary embodiment, a first tubular member 3050 includes internally threaded connections 3052a and 3052b, spaced apart by a cylindrical internal surface 3054 including one or more square grooves 3056, at an end portion 3058. Externally threaded connections 3060a and 3060b, spaced apart by a cylindrical external surface 3062 including one or more square grooves 3064, of an end portion 3066 of a second tubular member 3068 are threadably coupled to the internally threaded connections, 3052a and 3052b, respectively, of the end portion 3058 of the first tubular member 3050. A sealing element 3070 is received within an annulus defined between the cylindrical internal surface 3054 of the first tubular member 3050 and the external cylindrical surface 3062 of the second tubular member 3068.

[00256] The internally threaded connections, 3052a and 3052b, of the end portion 3058 of the first tubular member 3050 are box connections, and the externally threaded connections, 3060a and 3060b, of the end portion 3066 of the second tubular member 3068 are pin connections. In an exemplary embodiment, the sealing element 3070 is an elastomeric and/or metallic sealing element.

[00257] The first and second tubular members 3050 and 3068 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.

[00258] In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 3050 and 3068, the sealing element 3070 seals the interface between the first and second tubular members. In an exemplary embodiment, before, during and/or after the radial expansion and plastic deformation of the first and second tubular members, 3050 and 3068, a metal to metal seal is formed between at least one of: the first and second tubular members, the first tubular member and the sealing element 3070, and/or the second tubular member and the sealing element. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.

[00259] In an alternative embodiment, the sealing element 3070 is omitted, and during and/or after the radial expansion and plastic deformation of the first and second tubular members 950 and 968, a metal to metal seal is formed between the first and second tubular members.

[00260] In several exemplary embodiments, one or more portions of the first and second tubular members, 3050 and 3068, the sealing element 3070 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00261] Referring to Fig. 31, in an exemplary embodiment, a first tubular member 3110 includes internally threaded connections, 3112a and 3112b, spaced apart by a non-threaded internal surface 3114, at an end portion 3116. Externally threaded connections, 3118a and 3118b, spaced apart by a non-threaded external surface 3120, of an end portion 3122 of a second tubular member 3124 are threadably coupled to the internally threaded connections, 3112a and 3112b, respectively, of the end portion 3122 of the first tubular member 3124.

[00262] First, second, and/or third tubular sleeves, 3126, 3128, and 3130, are coupled the external surface of the first tubular member 3110 in opposing relation to the threaded connection formed by the internal and external threads, 3112a and 3118a, the interface between the non-threaded surfaces, 3114 and 3120, and the threaded connection formed by the internal and external threads, 3112b and 3118b, respectively.

[00263] The internally threaded connections, 3112a and 3112b, of the end portion 3116 of the first tubular member 3110 are box connections, and the externally threaded connections, 3118a and 3118b, of the end portion 3122 of the second tubular member 3124 are pin connections.

[00264] The first and second tubular members 3110 and 3124, and the tubular sleeves 3126, 3128, and/or 3130, may then be positioned within another structure 3132 such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device 3134 through and/or within the interiors of the first and second tubular members.

[00265] During the radial expansion and plastic deformation of the first and second tubular members 3110 and 3124, the tubular sleeves 3126, 3128 and/or 3130 are also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeves 3126, 3128, and/or 3130 are maintained in circumferential tension and the end portions 3116 and 3122, of the first and second tubular members 3110 and 3124, may be maintained in circumferential compression.

[00266] The sleeves 3126, 3128, and/or 3130 may, for example, be secured to the first tubular member 3110 by a heat shrink fit.

[00267] In several exemplary embodiments, one or more portions of the first and second tubular members, 3110 and 3124, and the sleeves, 3126, 3128, and 3130, have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00268] Referring to Fig. 32a, in an exemplary embodiment, a first tubular member 3210 includes an internally threaded connection 3212 at an end portion 3214. An externally threaded connection 3216 of an end portion 3218 of a second tubular member 3220 are threadably coupled to the internally threaded connection 3212 of the end portion 3214 of the first tubular member 3210.

[00269] The internally threaded connection 3212 of the end portion 3214 of the first tubular member 3210 is a box connection, and the externally threaded connection 3216 of the end portion 3218 of the second tubular member 3220 is a pin connection.

[00270] A tubular sleeve 3222 including internal flanges 3224 and 3226 is positioned proximate and surrounding the end portion 3214 of the first tubular member 3210. As illustrated in Fig. 32b, the tubular sleeve 3222 is then forced into engagement with the external surface of the end portion 3214 of the first tubular member 3210 in a conventional manner. As a result, the end portions, 3214 and 3218, of the first and second tubular members, 3210 and 3220, are upset in an undulating fashion.

[00271] The first and second tubular members 3210 and 3220, and the tubular sleeve 3222, may then be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.

[00272] During the radial expansion and plastic deformation of the first and second tubular members 3210 and 3220, the tubular sleeve 3222 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 3222 is maintained in circumferential tension and the end portions 3214 and 3218, of the first and second tubular members 3210 and 3220, may be maintained in circumferential compression.

[00273] In several exemplary embodiments, one or more portions of the first and second tubular members, 3210 and 3220, and the sleeve 3222 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00274] Referring to Fig. 33, in an exemplary embodiment, a first tubular member 3310 includes an internally threaded connection 3312 and an annular projection 3314 at an end portion 3316.

[00275] A first end of a tubular sleeve 3318 that includes an internal flange 3320 having a tapered portion 3322 and an annular recess 3324 for receiving the annular projection 3314 of the first tubular member 3310, and a second end that includes a tapered portion 3326, is then mounted upon and receives the end portion 3316 of the first tubular member 3310.

[00276] In an exemplary embodiment, the end portion 3316 of the first tubular member 3310 abuts one side of the internal flange 3320 of the tubular sleeve 3318 and the

annular projection 3314 of the end portion of the first tubular member mates with and is received within the annular recess 3324 of the internal flange of the tubular sleeve, and the internal diameter of the internal flange 3320 of the tubular sleeve 3318 is substantially equal to or greater than the maximum internal diameter of the internally threaded connection 3312 of the end portion 3316 of the first tubular member 3310. An externally threaded connection 3326 of an end portion 3328 of a second tubular member 3330 having an annular recess 3332 is then positioned within the tubular sleeve 3318 and threadably coupled to the internally threaded connection 3312 of the end portion 3316 of the first tubular member 3310. In an exemplary embodiment, the internal flange 3332 of the tubular sleeve 3318 mates with and is received within the annular recess 3332 of the end portion 3328 of the second tubular member 3330. Thus, the tubular sleeve 3318 is coupled to and surrounds the external surfaces of the first and second tubular members, 3310 and 3328.

[00277] The internally threaded connection 3312 of the end portion 3316 of the first tubular member 3310 is a box connection, and the externally threaded connection 3326 of the end portion 3328 of the second tubular member 3330 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 3318 is at least approximately .020" greater than the outside diameters of the first and second tubular members, 3310 and 3330. In this manner, during the threaded coupling of the first and second tubular members, 3310 and 3330, fluidic materials within the first and second tubular members may be vented from the tubular members.

[00278] As illustrated in Fig. 33, the first and second tubular members, 3310 and 3330, and the tubular sleeve 3318 may be positioned within another structure 3334 such as, for example, a cased or uncased wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating a conventional expansion device 3336 within and/or through the interiors of the first and second tubular members. The tapered portions, 3322 and 3326, of the tubular sleeve 3318 facilitate the insertion and movement of the first and second tubular members within and through the structure 3334, and the movement of the expansion device 3336 through the interiors of the first and second tubular members, 3310 and 3330, may, for example, be from top to bottom or from bottom to top.

[00279] During the radial expansion and plastic deformation of the first and second tubular members, 3310 and 3330, the tubular sleeve 3318 is also radially expanded and plastically deformed. As a result, the tubular sleeve 3318 may be maintained in circumferential tension and the end portions, 3316 and 3328, of the first and second tubular members, 3310 and 3330, may be maintained in circumferential compression.

[00280] Sleeve 3316 increases the axial compression loading of the connection between tubular members 3310 and 3330 before and after expansion by the expansion device 3336. Sleeve 3316 may be secured to tubular members 3310 and 3330, for

example, by a heat shrink fit.

[00281] In several alternative embodiments, the first and second tubular members, 3310 and 3330, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization, hydroforming, and/or roller expansion devices and/or any one or combination of the conventional commercially available expansion products and services available from Baker Hughes, Weatherford International, and/or Enventure Global Technology L.L.C.

[00282] The use of the tubular sleeve 3318 during (a) the coupling of the first tubular member 3310 to the second tubular member 3330, (b) the placement of the first and second tubular members in the structure 3334, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 3318 protects the exterior surfaces of the end portions, 3316 and 3328, of the first and second tubular members, 3310 and 3330, during handling and insertion of the tubular members within the structure 3334. In this manner, damage to the exterior surfaces of the end portions, 3316 and 3328, of the first and second tubular members, 3310 and 3330, is avoided that could otherwise result in stress concentrations that could cause a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 3318 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 3330 to the first tubular member 3310. In this manner, misalignment that could result in damage to the threaded connections, 3312 and 3326, of the first and second tubular members, 3310 and 3330, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 3318 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 3318 can be easily rotated, that would indicate that the first and second tubular members, 3310 and 3330, are not fully threadably coupled and in intimate contact with the internal flange 3320 of the tubular sleeve. Furthermore, the tubular sleeve 3318 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 3310 and 3330. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 3316 and 3328, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 3310 and 3330, the tubular sleeve 3318 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve 3318 and the exterior surfaces of the end portions, 3316 and 3328, of the first and second tubular members. In this manner, fluidic

materials are prevented from passing through the threaded connections, 3312 and 3326, of the first and second tubular members, 3310 and 3330, into the annulus between the first and second tubular members and the structure 3334. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 3310 and 3330, the tubular sleeve 3318 may be maintained in circumferential tension and the end portions, 3316 and 3328, of the first and second tubular members, 3310 and 3330, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.

[00283] In several exemplary embodiments, one or more portions of the first and second tubular members, 3310 and 3330, and the sleeve 3318 have one or more of the material properties of one or more of the tubular members 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204.

[00284] Referring to Figs. 34a, 34b, and 34c, in an exemplary embodiment, a first tubular member 3410 includes an internally threaded connection 3412 and one or more external grooves 3414 at an end portion 3416.

[00285] A first end of a tubular sleeve 3418 that includes an internal flange 3420 and a tapered portion 3422, a second end that includes a tapered portion 3424, and an intermediate portion that includes one or more longitudinally aligned openings 3426, is then mounted upon and receives the end portion 3416 of the first tubular member 3410.

[00286] In an exemplary embodiment, the end portion 3416 of the first tubular member 3410 abuts one side of the internal flange 3420 of the tubular sleeve 3418, and the internal diameter of the internal flange 3420 of the tubular sleeve 3416 is substantially equal to or greater than the maximum internal diameter of the internally threaded connection 3412 of the end portion 3416 of the first tubular member 3410. An externally threaded connection 3428 of an end portion 3430 of a second tubular member 3432 that includes one or more internal grooves 3434 is then positioned within the tubular sleeve 3418 and threadably coupled to the internally threaded connection 3412 of the end portion 3416 of the first tubular member 3410. In an exemplary embodiment, the internal flange 3420 of the tubular sleeve 3418 mates with and is received within an annular recess 3436 defined in the end portion 3430 of the second tubular member 3432. Thus, the tubular sleeve 3418 is coupled to and surrounds the external surfaces of the first and second tubular members, 3410 and 3432.

[00287] The first and second tubular members, 3410 and 3432, and the tubular sleeve 3418 may be positioned within another structure such as, for example, a cased or uncased wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating a conventional expansion device within and/or through the interiors of the first and second tubular members. The tapered portions, 3422 and 3424, of the tubular sleeve 3418 facilitate the insertion and movement of the first and second tubular members within and

through the structure, and the movement of the expansion device through the interiors of the first and second tubular members, 3410 and 3432, may be from top to bottom or from bottom to top.

[00288] During the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432, the tubular sleeve 3418 is also radially expanded and plastically deformed. As a result, the tubular sleeve 3418 may be maintained in circumferential tension and the end portions, 3416 and 3430, of the first and second tubular members, 3410 and 3432, may be maintained in circumferential compression.

[00289] Sleeve 3416 increases the axial compression loading of the connection between tubular members 3410 and 3432 before and after expansion by the expansion device. The sleeve 3418 may be secured to tubular members 3410 and 3432, for example, by a heat shrink fit.

[00290] During the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432, the grooves 3414 and/or 3434 and/or the openings 3426 provide stress concentrations that in turn apply added stress forces to the mating threads of the threaded connections, 3412 and 3428. As a result, during and after the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432, the mating threads of the threaded connections, 3412 and 3428, are maintained in metal to metal contact thereby providing a fluid and gas tight connection. In an exemplary embodiment, the orientations of the grooves 3414 and/or 3434 and the openings 3426 are orthogonal to one another. In an exemplary embodiment, the grooves 3414 and/or 3434 are helical grooves.

[00291] In several alternative embodiments, the first and second tubular members, 3410 and 3432, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization, hydroforming, and/or roller expansion devices and/or any one or combination of the conventional commercially available expansion products and services available from Baker Hughes, Weatherford International, and/or Enventure Global Technology L.L.C.

[00292] The use of the tubular sleeve 3418 during (a) the coupling of the first tubular member 3410 to the second tubular member 3432, (b) the placement of the first and second tubular members in the structure, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 3418 protects the exterior surfaces of the end portions, 3416 and 3430, of the first and second tubular members, 3410 and 3432, during handling and insertion of the tubular members within the structure. In this manner, damage to the exterior surfaces of the end portions, 3416 and 3430, of the first and second tubular members, 3410 and 3432, is avoided that could otherwise result in stress concentrations that could cause a catastrophic

failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 3418 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 3432 to the first tubular member 3410. In this manner, misalignment that could result in damage to the threaded connections, 3412 and 3428, of the first and second tubular members, 3410 and 3432, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 3416 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 3418 can be easily rotated, that would indicate that the first and second tubular members, 3410 and 3432, are not fully threadably coupled and in intimate contact with the internal flange 3420 of the tubular sleeve. Furthermore, the tubular sleeve 3418 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 3416 and 3430, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432, the tubular sleeve 3418 may provide a fluid and gas tight metal-to-metal seal between interior surface of the tubular sleeve 3418 and the exterior surfaces of the end portions, 3416 and 3430, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 3412 and 3430, of the first and second tubular members, 3410 and 3432, into the annulus between the first and second tubular members and the structure. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 3410 and 3432, the tubular sleeve 3418 may be maintained in circumferential tension and the end portions, 3416 and 3430, of the first and second tubular members, 3410 and 3432, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.

[00293] In several exemplary embodiments, the first and second tubular members described above with reference to Figs. 1 to 34c are radially expanded and plastically deformed using the expansion device in a conventional manner and/or using one or more of the methods and apparatus disclosed in one or more of the following: The present application is related to the following: (1) U.S. patent application serial no. 09/454,139, attorney docket no. 25791.03.02, filed on 12/3/1999, (2) U.S. patent application serial no. 09/510,913, attorney docket no. 25791.7.02, filed on 2/23/2000, (3) U.S. patent application serial no. 09/502,350, attorney docket no. 25791.8.02, filed on 2/10/2000, (4) U.S. patent application serial no. 09/440,338, attorney docket no. 25791.9.02, filed on 11/15/1999, (5) U.S. patent application serial no. 09/523,460, attorney docket no. 25791.11.02, filed on

3/10/2000, (6) U.S. patent application serial no. 09/512,895, attorney docket no. 25791.12.02, filed on 2/24/2000, (7) U.S. patent application serial no. 09/511,941, attorney docket no. 25791.16.02, filed on 2/24/2000, (8) U.S. patent application serial no. 09/588,946, attorney docket no. 25791.17.02, filed on 6/7/2000, (9) U.S. patent application serial no. 09/559,122, attorney docket no. 25791.23.02, filed on 4/26/2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on 7/9/2000, (11) U.S. provisional patent application serial no. 60/162,671, attorney docket no. 25791.27, filed on 11/1/1999, (12) U.S. provisional patent application serial no. 60/154,047, attorney docket no. 25791.29, filed on 9/16/1999, (13) U.S. provisional patent application serial no. 60/159,082, attorney docket no. 25791.34, filed on 10/12/1999, (14) U.S. provisional patent application serial no. 60/159,039, attorney docket no. 25791.36, filed on 10/12/1999, (15) U.S. provisional patent application serial no. 60/159,033, attorney docket no. 25791.37, filed on 10/12/1999, (16) U.S. provisional patent application serial no. 60/212,359, attorney docket no. 25791.38, filed on 6/19/2000, (17) U.S. provisional patent application serial no. 60/165,228, attorney docket no. 25791.39, filed on 11/12/1999, (18) U.S. provisional patent application serial no. 60/221,443, attorney docket no. 25791.45, filed on 7/28/2000, (19) U.S. provisional patent application serial no. 60/221,645, attorney docket no. 25791.46, filed on 7/28/2000, (20) U.S. provisional patent application serial no. 60/233,638, attorney docket no. 25791.47, filed on 9/18/2000, (21) U.S. provisional patent application serial no. 60/237,334, attorney docket no. 25791.48, filed on 10/2/2000, (22) U.S. provisional patent application serial no. 60/270,007, attorney docket no. 25791.50, filed on 2/20/2001, (23) U.S. provisional patent application serial no. 60/262,434, attorney docket no. 25791.51, filed on 1/17/2001, (24) U.S. provisional patent application serial no. 60/259,486, attorney docket no. 25791.52, filed on 1/3/2001, (25) U.S. provisional patent application serial no. 60/303,740, attorney docket no. 25791.61, filed on 7/6/2001, (26) U.S. provisional patent application serial no. 60/313,453, attorney docket no. 25791.59, filed on 8/20/2001, (27) U.S. provisional patent application serial no. 60/317,985, attorney docket no. 25791.67, filed on 9/6/2001, (28) U.S. provisional patent application serial no. 60/3318,386, attorney docket no. 25791.67.02, filed on 9/10/2001, (29) U.S. utility patent application serial no. 09/969,922, attorney docket no. 25791.69, filed on 10/3/2001, (30) U.S. utility patent application serial no. 10/016,467, attorney docket no. 25791.70, filed on December 10, 2001, (31) U.S. provisional patent application serial no. 60/343,674, attorney docket no. 25791.68, filed on 12/27/2001; and (32) U.S. provisional patent application serial no. 60/346,309, attorney docket no. 25791.92, filed on 01/07/02, the disclosures of which are incorporated herein by reference.

[00294] Referring to Fig. 35a an exemplary embodiment of an expandable tubular member 3500 includes a first tubular region 3502 and a second tubular portion 3504. In an exemplary embodiment, the material properties of the first and second tubular regions, 3502

and 3504, are different. In an exemplary embodiment, the yield points of the first and second tubular regions, 3502 and 3504, are different. In an exemplary embodiment, the yield point of the first tubular region 3502 is less than the yield point of the second tubular region 3504. In several exemplary embodiments, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202 and/or 204 incorporate the tubular member 3500.

[00295] Referring to Fig. 35b, in an exemplary embodiment, the yield point within the first and second tubular regions, 3502a and 3502b, of the expandable tubular member 3502 vary as a function of the radial position within the expandable tubular member. In an exemplary embodiment, the yield point increases as a function of the radial position within the expandable tubular member 3502. In an exemplary embodiment, the relationship between the yield point and the radial position within the expandable tubular member 3502 is a linear relationship. In an exemplary embodiment, the relationship between the yield point and the radial position within the expandable tubular member 3502 is a non-linear relationship. In an exemplary embodiment, the yield point increases at different rates within the first and second tubular regions, 3502a and 3502b, as a function of the radial position within the expandable tubular member 3502. In an exemplary embodiment, the functional relationship, and value, of the yield points within the first and second tubular regions, 3502a and 3502b, of the expandable tubular member 3502 are modified by the radial expansion and plastic deformation of the expandable tubular member.

[00296] In several exemplary embodiments, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202, 204 and/or 3502, prior to a radial expansion and plastic deformation, include a microstructure that is a combination of a hard phase, such as martensite, a soft phase, such as ferrite, and a transitional phase, such as retained austenite. In this manner, the hard phase provides high strength, the soft phase provides ductility, and the transitional phase transitions to a hard phase, such as martensite, during a radial expansion and plastic deformation. Furthermore, in this manner, the yield point of the tubular member increases as a result of the radial expansion and plastic deformation. Further, in this manner, the tubular member is ductile, prior to the radial expansion and plastic deformation, thereby facilitating the radial expansion and plastic deformation. In an exemplary embodiment, the composition of a dual-phase expandable tubular member includes (weight percentages): about 0.1% C, 1.2% Mn, and 0.3% Si.

[00297] In an exemplary experimental embodiment, as illustrated in Figs. 36a-36c, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202, 204 and/or 3502 are processed in accordance with a method 3600, in which, in step 3602, an expandable tubular member 3602a is provided that is a steel alloy having following material composition (by weight percentage): 0.065% C, 1.44% Mn, 0.01% P, 0.002% S,

0.24% Si, 0.01% Cu, 0.01% Ni, 0.02% Cr, 0.05% V, 0.01%Mo, 0.01% Nb, and 0.01% Ti. In an exemplary experimental embodiment, the expandable tubular member 3602a provided in step 3602 has a yield strength of 45 ksi, and a tensile strength of 69 ksi.

[00298] In an exemplary experimental embodiment, as illustrated in Fig. 36b, in step 3602, the expandable tubular member 3602a includes a microstructure that includes martensite, pearlite, and V, Ni, and/or Ti carbides.

[00299] In an exemplary embodiment, the expandable tubular member 3602a is then heated at a temperature of 790 °C for about 10 minutes in step 3604.

[00300] In an exemplary embodiment, the expandable tubular member 3602a is then quenched in water in step 3606.

[00301] In an exemplary experimental embodiment, as illustrated in Fig. 36c, following the completion of step 3606, the expandable tubular member 3602a includes a microstructure that includes new ferrite, grain pearlite, martensite, and ferrite. In an exemplary experimental embodiment, following the completion of step 3606, the expandable tubular member 3602a has a yield strength of 67 ksi, and a tensile strength of 95 ksi.

[00302] In an exemplary embodiment, the expandable tubular member 3602a is then radially expanded and plastically deformed using one or more of the methods and apparatus described above. In an exemplary embodiment, following the radial expansion and plastic deformation of the expandable tubular member 3602a, the yield strength of the expandable tubular member is about 95 ksi.

[00303] In an exemplary experimental embodiment, as illustrated in Figs. 37a-37c, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202, 204 and/or 3502 are processed in accordance with a method 3700, in which, in step 3702, an expandable tubular member 3702a is provided that is a steel alloy having following material composition (by weight percentage): 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, 0.03% Cr, 0.04% V, 0.01%Mo, 0.03% Nb, and 0.01% Ti. In an exemplary experimental embodiment, the expandable tubular member 3702a provided in step 3702 has a yield strength of 60 ksi, and a tensile strength of 80 ksi.

[00304] In an exemplary experimental embodiment, as illustrated in Fig. 37b, in step 3702, the expandable tubular member 3702a includes a microstructure that includes pearlite and pearlite striation.

[00305] In an exemplary embodiment, the expandable tubular member 3702a is then heated at a temperature of 790 °C for about 10 minutes in step 3704.

[00306] In an exemplary embodiment, the expandable tubular member 3702a is then quenched in water in step 3706.

[00307] In an exemplary experimental embodiment, as illustrated in Fig. 37c, following the completion of step 3706, the expandable tubular member 3702a includes a microstructure that includes ferrite, martensite, and bainite. In an exemplary experimental embodiment, following the completion of step 3706, the expandable tubular member 3702a has a yield strength of 82 ksi, and a tensile strength of 130 ksi.

[00308] In an exemplary embodiment, the expandable tubular member 3702a is then radially expanded and plastically deformed using one or more of the methods and apparatus described above. In an exemplary embodiment, following the radial expansion and plastic deformation of the expandable tubular member 3702a, the yield strength of the expandable tubular member is about 130 ksi.

[00309] In an exemplary experimental embodiment, as illustrated in Figs. 38a-38c, one or more of the expandable tubular members, 12, 14, 24, 26, 102, 104, 106, 108, 202, 204 and/or 3502 are processed in accordance with a method 3800, in which, in step 3802, an expandable tubular member 3802a is provided that is a steel alloy having following material composition (by weight percentage): 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.06% Cu, 0.05% Ni, 0.05% Cr, 0.03% V, 0.03%Mo, 0.01% Nb, and 0.01% Ti. In an exemplary experimental embodiment, the expandable tubular member 3802a provided in step 3802 has a yield strength of 56 ksi, and a tensile strength of 75 ksi.

[00310] In an exemplary experimental embodiment, as illustrated in Fig. 38b, in step 3802, the expandable tubular member 3802a includes a microstructure that includes grain pearlite, widmanstatten martensite and carbides of V, Ni, and/or Ti.

[00311] In an exemplary embodiment, the expandable tubular member 3802a is then heated at a temperature of 790 °C for about 10 minutes in step 3804.

[00312] In an exemplary embodiment, the expandable tubular member 3802a is then quenched in water in step 3806.

[00313] In an exemplary experimental embodiment, as illustrated in Fig. 38c, following the completion of step 3806, the expandable tubular member 3802a includes a microstructure that includes bainite, pearlite, and new ferrite. In an exemplary experimental embodiment, following the completion of step 3806, the expandable tubular member 3802a has a yield strength of 60 ksi, and a tensile strength of 97 ksi.

[00314] In an exemplary embodiment, the expandable tubular member 3802a is then radially expanded and plastically deformed using one or more of the methods and apparatus described above. In an exemplary embodiment, following the radial expansion and plastic deformation of the expandable tubular member 3802a, the yield strength of the expandable tubular member is about 97 ksi.

[00315] In an exemplary embodiment, as illustrated in Fig. 39 and 40, a method 3900 for increasing the collapse strength of a tubular assembly begins with step 3902 in which an

expandable tubular member 3902a is provided. The expandable tubular member 3902a includes an inner surface 3902b having an inner diameter D_1 , an outer surface 3902c having an outer diameter D_2 , and a wall thickness 3902d. In an exemplary embodiment, expandable tubular member 3902a may be, for example, the tubular member 12, 14, 24, 26, 102, 108, 202, 204, 2210, 2228, 2310, 2328, 2410, 2428, 2510, 2528, 2610, 2628, 2710, 2728, 2910, 2926, 3010, 3024, 3030, 3044, 3050, 3068, 3110, 3124, 3210, 3220, 3310, 3330, 3410, 3432, or 3500. In an exemplary embodiment, the expandable tubular member 3902a may be, for example, the tubular assembly 10, 22, 100, or 200.

[00316] Referring now to Figs. 39, 41a, 41b, 41c and 41d, the method 3900 continues at step 3904 in which the expandable tubular member 3902a is coated with a layer 3904a of material. In an exemplary embodiment, the layer 3904a of material includes a plastic such as, for example, a PVC plastic 3904aa as illustrated in Fig. 41c, and/or a soft metal such as, for example, aluminum 3904ab as illustrated in Fig. 41d, an aluminum/zinc combination, or equivalent metals known in the art, and/or a composite material such as, for example, a carbon fiber material, and substantially covers the outer surface 3902c of expandable tubular member 3902a. In an exemplary embodiment, the layer 3904a of material is applied using conventional methods such as, for example, spray coating, vapor deposition, adhering layers of material to the surface, or a variety of other methods known in the art.

[00317] Referring now to Figs. 39, 40 and 42, the method 3900 continues at step 3906 in which the expandable tubular member 3902a is positioned within a passage 3906a defined by a preexisting structure 3906b which includes an inner surface 3906c, an outer surface 3906d, and a wall thickness 3906e. In an exemplary embodiment, the preexisting structure 3906b may be, for example, the wellbores 16, 110, or 206. In an exemplary embodiment, the preexisting structure 3906b may be, for example, the tubular member 12, 14, 24, 26, 102, 108, 202, 204, 2210, 2228, 2310, 2328, 2410, 2428, 2510, 2528, 2610, 2628, 2710, 2728, 2910, 2926, 3010, 3024, 3030, 3044, 3050, 3068, 3110, 3124, 3210, 3220, 3310, 3330, 3410, 3432, or 3500. In an exemplary embodiment, preexisting structure 3906b may be, for example, the tubular assembly 10, 22, 100, or 200. In an exemplary embodiment, the cross sections of expandable tubular member 3902a and preexisting structure 3906b are substantially concentric when the expandable tubular member 3902a is positioned in the passage 3906a defined by preexisting structure 3906b.

[00318] Referring now to Figs. 39, 43, and 44, the method continues at step 3908 in which the expandable tubular member 3902a is radially expanded and plastically deformed. In an exemplary embodiment, a force F is applied radially towards the inner surface 3902b of expandable tubular member 3902a, the force F being sufficient to radially expand and plastically deform the expandable tubular member 3902a and the accompanying layer 3904a on its outer surface 3902c. The force F increases the inner diameter D_1 and the outer

diameter D₂ of expandable tubular member 3902a until the layer 3904a engages the inner surface 3906c of preexisting structure 3906b and forms an interstitial layer between the expandable tubular member 3902a and the preexisting structure 3906b. In several exemplary embodiments, the expandable tubular member 3902a is radially expanded and plastically deformed using one or more conventional commercially available devices and/or using one or more of the methods disclosed in the present application.

[00319] In an exemplary embodiment, following step 3908 of method 3900, the layer 3904a forms an interstitial layer filling some or all of the annulus between the expandable tubular member 3902a and the preexisting structure 3906b. In an exemplary embodiment, the interstitial layer formed from the layer 3904a between the expandable tubular member 3902a and the preexisting structure 3906b results in the combination of expandable tubular member 3902a, the layer 3904a, and the preexisting structure 3906b exhibiting a higher collapse strength than would be exhibited without the interstitial layer. In an exemplary embodiment, the radial expansion and plastic deformation of expandable tubular member 3902a with layer 3904a into engagement with preexisting structure 3906b results in a modification of the residual stresses in one or both of the expandable tubular member 3902a and the preexisting structure 3906b. In an exemplary embodiment, the radial expansion and plastic deformation of expandable tubular member 3902a with layer 3904a into engagement with preexisting structure 3906b places at least a portion of the wall thickness of preexisting structure 3906b in circumferential tension.

[00320] In an alternative embodiment, as illustrated in Fig. 45 and 46, a method 4000 for increasing the collapse strength of a tubular assembly begins with step 4002 in which a preexisting structure 4002a is provided. The preexisting structure 4002a defines a substantially cylindrical passage 4002b and includes an inner surface 4002c. In an exemplary embodiment, the preexisting structure 4002a may be, for example, the wellbores 16, 110, or 206. In an exemplary embodiment, the preexisting structure 4002a may be, for example, the tubular member 12, 14, 24, 26, 102, 108, 202, 204, 2210, 2228, 2310, 2328, 2410, 2428, 2510, 2528, 2610, 2628, 2710, 2728, 2910, 2926, 3010, 3024, 3030, 3044, 3050, 3068, 3110, 3124, 3210, 3220, 3310, 3330, 3410, 3432, or 3500. In an exemplary embodiment, the preexisting structure 4002a may be, for example, the tubular assembly 10, 22, 100, or 200.

[00321] Referring now to Figs. 45, 47a and 47b, the method 4000 continues at step 4004 in which the inner surface 4002c in passage 4002b of preexisting structure 4002a is coated with a layer 4004a of material. In an exemplary embodiment, the layer 3904a of material includes a plastic, and/or a soft metal such as, for example, aluminum, aluminum and zinc, or equivalent metals known in the art, and/or a composite material such as, for example, carbon fiber, and substantially covers the inner surface 4002c of preexisting

structure 4002a. In an exemplary embodiment, the layer 3904a of material is applied using conventional methods such as, for example, spray coating, vapor deposition, adhering layers of material to the surface, or a variety of other methods known in the art.

[00322] Referring now to Figs. 40, 45 and 48, the method 4000 continues at step 4006 in which expandable tubular member 3902a including inner surface 3902b, outer surface 3902c, and wall thickness 3902d, is positioned within passage 4002b defined by preexisting structure 4002a. In an exemplary embodiment, the cross sections of expandable tubular member 3902a and preexisting structure 4002a are substantially concentric when the expandable tubular member 3902a is positioned in the passage 4002b defined by preexisting structure 4002a.

[00323] Referring now to Figs. 45, 49, and 50, the method 4000 continues at step 4008 in which the expandable tubular member 3902a is radially expanded and plastically deformed. In an exemplary embodiment, a force F is applied radially towards the inner surface 3902b of expandable tubular member 3902a, the force F being sufficient to radially expand and plastically deform the expandable tubular member 3902a. The force F increases the inner diameter D_1 and the outer diameter D_2 of expandable tubular member 3902a until the outer surface 3902c of expandable tubular member 3902a engages layer 4004a on preexisting structure 4002a and forms an interstitial layer between the expandable tubular member 3902a and the preexisting structure 4002a. In several exemplary embodiments, the expandable tubular member 3902a is radially expanded and plastically deformed using one or more conventional commercially available devices and/or using one or more of the methods disclosed in the present application.

[00324] In an exemplary embodiment, following step 4008 of method 4000, the layer 4004a forms an interstitial layer filling some or all of the annulus between the expandable tubular member 3902a and the preexisting structure 4002a. In an exemplary embodiment, the interstitial layer formed from the layer 4004a between the expandable tubular member 3902a and the preexisting structure 4002a results in the combination of the expandable tubular member 3902a, the layer 3904a, and the preexisting structure 4002a exhibiting a higher collapse strength than would be exhibited without the interstitial layer. In an exemplary embodiment, the radial expansion and plastic deformation of expandable tubular member 3902a into engagement with preexisting structure 4002a with layer 4004a results in a modification of the residual stresses in one or both of the expandable tubular member 3902a and the preexisting structure 4002a. In an exemplary embodiment, the radial expansion and plastic deformation of expandable tubular member 3902a with layer 4004a into engagement with preexisting structure 4002a places at least a portion of the wall thickness of the preexisting structure 4002a in circumferential tension.

[00325] In an alternative embodiment, as illustrated in Fig. 51a, step 3904 of method 3900 may include coating multiple layers of material such as, for example, layers 3904a and 4100, on tubular member 3902a, illustrated in Fig. 40. In an exemplary embodiment, the layers 3904a and/or 4100 may be applied using conventional methods such as, for example, spray coating, vapor deposition, adhering layers of material to the surface, or a variety of other methods known in the art.

[00326] In an alternative embodiment, as illustrated in Fig. 51b, step 4004 of method 4000 may include coating multiple layers of material such as, for example, layers 4002c and 4200, on tubular member 4002a. In an exemplary embodiment, the layers 4002c and 4200 may be applied using conventional methods such as, for example, spray coating, vapor deposition, adhering layers of material to the surface, or a variety of other methods known in the art.

[00327] In an exemplary embodiment, steps 3904 of method 3900 and step 4004 of method 4000 may include coating the expandable tubular member 3902a with a layer 3904a of varying thickness. In an exemplary embodiment, step 3904 of method 3900 may include coating the expandable tubular member 3902a with a non uniform layer 3904a which, for example, may include exposing portions of the outer surface 3902c of expandable tubular member 3902a. In an exemplary embodiment, step 4004 of method 4000 may include coating the preexisting structure 4002a with a non uniform layer 4004a which, for example, may include exposing portions of the inner surface 4002c of preexisting structure 4002a.

[00328] In an alternative embodiment, as illustrated in Fig. 52a, 52b, and 52c, step 3904 of method 3900 may be accomplished by laying a material 4300 around an expandable tubular member 4302, which may be the expandable tubular member 3902a in Fig. 40. In an alternative embodiment, step 4004 of method 4000 may be accomplished by using the material 4300 to line the inner surface of the preexisting structure such as, for example, the inner surface 4002c of preexisting structure 4002a. In an exemplary embodiment, the material 4300 may be a plastic, and/or a metal such as, for example, aluminum, aluminum/zinc, or other equivalent metals known in the art, and/or a composite material such as, for example, carbon fiber. In an exemplary embodiment, the material 4300 may include a wire that is wound around the expandable tubular member 4302 or lined on the inner surface 4002c of preexisting structure 4002a. In an exemplary embodiment, the material 4300 may include a plurality of rings placed around the expandable tubular member 4302 or lined on the inner surface 4002c of preexisting structure 4002a. In an exemplary embodiment, the material 4300 may be a plurality of discrete components placed on the expandable tubular member 4302 or lined on the inner surface 4002c or preexisting structure 4002a.

[00329] In an exemplary experimental embodiment EXP₁ of method 3900, as illustrated in Fig. 53, a plurality of tubular members 3902a were provided, as per step 3902 of method 3900, which had a 7 5/8 inch diameter. Each tubular member 3902a was coated, as per step 3904 of method 3900, with a layer 3904a. The tubular member 3902a was then radially expanded and plastically deformed and the energy necessary to radially expand and plastically deform it such as, for example, the operating pressure required to radially expand and plastically deform the tubular member 3902a, was recorded. In EXP_{1A}, the layer 3904a was aluminum, requiring a maximum operating pressure of approximately 3900 psi to radially expand and plastically deform the tubular member 3902a. In EXP_{1B}, the layer 3904a was aluminum/zinc, requiring a maximum operating pressure of approximately 3700 psi to radially expand and plastically deform the tubular member 3902a. In EXP_{1C}, the layer 3904a was PVC plastic, requiring a maximum operating pressure of approximately 3600 psi to radially expand and plastically deform the tubular member 3902a. In EXP_{1D}, the layer 3904a was omitted resulting in an air gap, and requiring a maximum operating pressure of approximately 3400 psi to radially expand and plastically deform the tubular member 3902a.

[00330] In an exemplary experimental embodiment EXP₂ of method 3900, as illustrated in Fig. 54a, 54b, and 54c, a plurality of expandable tubular members 3902a were provided, as per step 3902 of method 3900. Each tubular member 3902a was coated, as per step 3904 of method 3900, with a layer 3904a. Each tubular member 3902a was then positioned within a preexisting structure 3906b as per step 3906 of method 3900. Each tubular member 3902a was then radially expanded and plastically deformed 13.3% and the thickness of layer 3904a between the tubular member 3902a and the preexisting structure 3906b was measured. In EXP_{2A}, the layer 3904a was aluminum and had a thickness between approximately 0.05 inches and 0.15 inches. In EXP_{2B}, the layer 3904a was aluminum/zinc and had a thickness between approximately 0.07 inches and 0.13 inches. In EXP_{2C}, the layer 3904a was PVC plastic and had a thickness between approximately 0.06 inches and 0.14 inches. In EXP_{2D}, the layer 3904a was omitted which resulted in an air gap between the tubular member 3902a and the preexisting structure 3906b between approximately 0.02 and 0.04 inches.

[00331] In an exemplary experimental embodiment EXP₃ of method 3900, illustrated in Fig. 55a and 55b, a plurality of expandable tubular members 3902a were provided, as per step 3902 of method 3900. Each tubular member 3902a was coated, as per step 3904 of method 3900, with a layer 3904a. Each tubular member 3902a was then positioned within a preexisting structure 3906b as per step 3906 of method 3900. Each tubular member 3902a was then radially expanded and plastically deformed in a preexisting structure 3906b and the thickness of layer 3904a between the tubular member 3902a and the preexisting structure 3906b was measured. In EXP_{3A}, the layer 3904a was plastic with a thickness between

approximately 1.6 mm and 2.5 mm. In EXP_{3B}, the layer 3904a was aluminum with a thickness between approximately 2.6 mm and 3.1 mm. In EXP_{3C}, the layer 3904a was aluminum/zinc with a thickness between approximately 1.9 mm and 2.5 mm. In EXP_{3D}, the layer 3904a was omitted, resulting in an air gap between the tubular member 3902a and the preexisting structure 3906b between approximately 1.1 mm and 1.7 mm. Fig. 55b illustrates the distribution of the gap thickness between the tubular member and the preexisting structure for EXP_{3A}, EXP_{3B}, EXP_{3C}, and EXP_{3D}, illustrating that combinations with an layer between the tubular member 3902a and the preexisting structure 3906b exhibit a more uniform gap distribution.

[00332] In an exemplary experimental embodiment EXP₄ of method 3900, a plurality of expandable tubular members 3902a were provided, as per step 3902 of method 3900. Each tubular member 3902a was coated, as per step 3904 of method 3900, with a layer 3904a. Each tubular member 3902a was then positioned within a preexisting structure 3906b as per step 3906 of method 3900. Each tubular member 3902a was then radially expanded and plastically deformed in a preexisting structure 3906b, and conventional collapse testing was performed on the tubular assembly comprised of the tubular member 3902a, layer 3904a and preexisting structure 3906b combination. For the testing, the preexisting structure 3906b was composed of a P-110 Grade pipe with an inner diameter of approximately 9 5/8 inches. The expandable tubular member 3902a was composed of an LSX-80 Grade pipe with an inner diameter of approximately 7 5/8 inches. The tubular member assemblies exhibited the following collapse strengths:

EXP ₄	<u>Layer 3904a</u>	Collapse Strength (psi)	Remarks
EXP _{4A}	plastic	14230	This was an unexpected result.
EXP _{4B}	aluminum/zinc	20500	This was an unexpected result.
EXP _{4C}	air	14190	This was an unexpected result.
EXP _{4D}	aluminum	20730	This was an unexpected result.

EXP_{4A}, EXP_{4B}, EXP_{4C}, and EXP_{4D} illustrate that using a soft metal such as, for example aluminum and or aluminum/zinc, as layer 3904a in method 3900 increases the collapse strength of the tubular assembly comprising the expandable tubular member 3902a, layer 3904a, and preexisting structure 3906b by approximately 50% when compared to using a layer 3904a of plastic or omitting the layer 3904a. This was an unexpected result.

[00333] In an exemplary experimental embodiment EXP₅ of method 3900, as illustrated in Fig. 56 and 56a, an expandable tubular member 3902a was provided, as per

step 3902 of method 3900. The coating of step 3904 with a layer 3904a was omitted. The tubular member 3902a was then positioned within a preexisting structure 3906b as per step 3906 of method 3900. The tubular member 3902a was then radially expanded and plastically deformed in a preexisting structure 3906b, resulting in an air gap between the tubular member 3902a and the preexisting structure.

[00334] In an exemplary embodiment, the collapse resistance of a tubular assembly that includes a pair of overlapping tubular members coupled to each other may be determined using the following equation:

$$P_d = K(P_{co} + P_{ci})$$

P_{co} is the collapse resistance of an outer casing such as, for example, the preexisting structure 3906b or 4002a, or the wellbores 16, 110, or 206. P_{ci} is the collapse resistance of an inner casing such as, for example, the tubular member 12, 14, 24, 26, 102, 108, 202, 204, 2210, 2228, 2310, 2328, 2410, 2428, 2510, 2528, 2610, 2628, 2710, 2728, 2910, 2926, 3010, 3024, 3030, 3044, 3050, 3068, 3110, 3124, 3210, 3220, 3310, 3330, 3410, 3432, 3500, or 3902a, or the tubular assembly 10, 22, 100, or 200. K is a reinforcement factor provided by a coating such as, for example, the coating 3904a or 4004a. In an exemplary embodiment, the reinforcement factor K increases as the strength of the material used for the coating increases.

[00335] In an exemplary experimental embodiment EXP_b of method 3900, as illustrated in Figs. 58a, 58b, a computer simulation was run for an expandable tubular member 3902a provided, as per step 3902 of method 3900, positioned within a preexisting structure 3906b, as per step 3906 of method 3900, and radially expanded and plastically deformed in the preexisting structure 3906b. The coating of step 3904 with a layer 3904a was omitted. The radial expansion and plastic deformation of expandable tubular member 3902a resulted in an air gap distribution between the expanded tubular member 3902a and the preexisting structure 3906b, illustrated in Fig. 58b. The tubular member 3902a was a LSX-80 Grade pipe with a 7 5/8 inch inner diameter and the preexisting structure 3906b was a P110 Grade pipe with a 9 5/8 inch inner diameter. The tubular member 3902a was radially expanded and plastically deformed 13.3% from its original diameter. After expansion, the maximum air gap was approximately 2 mm. The expandable tubular member 3902a and preexisting structure 3906b combination exhibited a collapse strength of approximately 13200 psi. This was an unexpected result.

[00336] In an exemplary experimental embodiment EXP_c of method 3900, as illustrated in Figs. 58, a computer simulation was run for an expandable tubular members 3902a provided, as per step 3902 of method 3900, positioned within a preexisting structure 3906b, as per step 3906 of method 3900, and radially expanded and plastically deformed in the preexisting structure 3906b. The coating of step 3904 with a layer 3904a was omitted.

The radial expansion and plastic deformation of expandable tubular member 3902a resulted in an air gap distribution between the expanded tubular member 3902a and the preexisting structure 3906b, illustrated. The tubular member 3902a was a LSX-80 Grade pipe with a 7 5/8 inch inner diameter and the preexisting structure 3906b was a P110 Grade pipe with a 9 5/8 inch inner diameter. The tubular member 3902a was radially expanded and plastically deformed 14.9% from its original diameter. After expansion, the maximum air gap was approximately 1.55 mm. The expandable tubular member 3902a and preexisting structure 3906b combination exhibited a collapse strength of approximately 13050 psi. This was an unexpected result.

[00337] In an exemplary experimental embodiment EXP₈ of method 3900, as illustrated in Figs. 59, a computer simulation was run for an expandable tubular member 3902a provided, as per step 3902 of method 3900, coated with a layer 3904a of soft metal, as per step 3904 of method 3900, positioned within a preexisting structure 3906b as per step 3906 of method 3900, and radially expanded and plastically deformed in a preexisting structure 3906b. The tubular member 3902a was a LSX-80 Grade pipe with a 7 5/8 inch inner diameter and the preexisting structure 3906b was a P110 Grade pipe with a 9 5/8 inch inner diameter. In an exemplary embodiment, the soft metal distribution between the tubular member 3902a and the preexisting structure 3906b included aluminum. In an exemplary embodiment, the soft metal distribution between the tubular member 3902a and the preexisting structure 3906b included aluminum and zinc. The tubular member 3906 was radially expanded and plastically deformed 13.3% from its original diameter. After expansion, the soft metal layer 3904a included a maximum thickness of approximately 2 mm. The expandable tubular member 3902a, preexisting structure 3906b, and soft metal layer 3904a combination exhibited a collapse strength of greater than 20000 psi. This was an unexpected result.

[00338] In an exemplary experimental embodiment EXP_{9A} of method 3900, as illustrated in Fig. 60a, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The coating of step 3904 with a layer 3904a was omitted. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure 3906b, resulting in an air gap distribution between the expandable tubular member 3902a and the preexisting structure 3906b, which was then measured. A minimum air gap of approximately 1.2 mm and a maximum air gap of approximately 3.7 mm were exhibited.

[00339] In an exemplary experimental embodiment EXP_{9B} of method 3900, as illustrated in Fig. 60b, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then coated with a layer

3904a of soft metal, as per step 3904 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure 3906b and the soft metal layer 3904a between the expandable tubular member 3902a and the preexisting structure 3906b was measured. A minimum soft metal layer 3904a thickness of approximately 3.2 mm and a maximum soft metal layer 3904a thickness 5202b of approximately 3.7 mm were exhibited.

[00340] In an exemplary experimental embodiment EXP_{9C} of method 3900, as illustrated in Fig. 60c, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then coated with a layer 3904a of plastic, as per step 3904 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure 3906b and the plastic layer 3904a between the expandable tubular member 3902a and the preexisting structure 3906b was measured. A minimum plastic layer 3904a thickness 5204a of approximately 1.7 mm and a maximum plastic layer 3904a thickness 5204b of approximately 2.5 mm were exhibited.

[00341] In an exemplary experimental embodiment EXP_{10A} of method 3900, as illustrated in Fig. 61a, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The coating of step 3904 with a layer 3904a was omitted. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure, resulting in an air gap between the expandable tubular member 3902a and the preexisting structure 3906b. The wall thickness of the expandable tubular member 3902a was then measured. A minimum wall thickness for the expandable tubular member 3902a of approximately 8.6 mm and a maximum wall for the expandable tubular member 3902a of approximately 9.5 mm were exhibited.

[00342] In an exemplary experimental embodiment EXP_{10B} of method 3900, as illustrated in Fig. 61b, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then coated with a layer 3904a of plastic, as per step 3904 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure 3906b. The wall thickness of the expandable tubular member 3902a was then measured. A minimum wall thickness for the expandable tubular member

3902a of approximately 9.1 mm and a maximum wall thickness for the expandable tubular member 3902a of approximately 9.6 mm were exhibited.

[00343] In an exemplary experimental embodiment EXP_{10c} of method 3900, as illustrated in Fig. 61c, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then coated with a layer 3904a of soft metal, as per step 3904 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure 3906b. The wall thickness of the expandable tubular member 3902a was then measured. A minimum wall thickness for the expandable tubular member 3902a of approximately 9.3 mm and a maximum wall thickness for the expandable tubular member 3902a of approximately 9.6 mm were exhibited.

[00344] In an exemplary experimental embodiment EXP_{11A} of method 3900, as illustrated in Fig. 62a, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The coating of step 3904 with a layer 3904a was omitted. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure, resulting in an air gap between the expandable tubular member 3902a and the preexisting structure 3906b. The wall thickness of the preexisting structure 3906b was then measured. A minimum wall thickness for the preexisting structure 3906b of approximately 13.5 mm and a maximum wall thickness for the preexisting structure 3906b of approximately 14.6 mm were exhibited.

[00345] In an exemplary experimental embodiment EXP_{11B} of method 3900, as illustrated in Fig. 62b, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then coated with a layer 3904a of soft metal, as per step 3904 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure 3906b. The wall thickness of the preexisting structure 3906b was then measured. A minimum wall thickness for the preexisting structure 3906b of approximately 13.5 mm and a maximum wall thickness for the preexisting structure 3906b of approximately 14.3 mm were exhibited.

[00346] In an exemplary experimental embodiment EXP_{11C} of method 3900, as illustrated in Fig. 62c, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then coated with a layer 3904a of plastic, as per step 3904 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900.

The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure 3906b. The wall thickness of the preexisting structure 3906b was then measured. A minimum wall thickness for the preexisting structure 3906b of approximately 13.5 mm and a maximum wall thickness for the preexisting structure 3906b of approximately 14.6 mm were exhibited.

[00347] In an exemplary experimental embodiment EXP₁₂ of method 3900, as illustrated in Fig. 63, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then coated with a layer 3904a, as per step 3904 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure 3906b. The expandable tubular member 3902a was radially expanded and plastically deformed 13.3% from its original inner diameter against the preexisting structure 3906b. The expandable tubular member 3902a was an LSX-80 Grade pipe with a 7 5/8 inch inner diameter and the preexisting structure 3906b was a P110 Grade pipe with a 9 5/8 inch inner diameter. The collapse strength of the expandable tubular member 3902a with layer 3904a and preexisting structure 3906b was measured at approximately 6300 psi. This was an unexpected result.

[00348] In an exemplary experimental embodiment of method 3900, an expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then coated with a layer 3904a, as per step 3904 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure 3906b. An expandable tubular member 3902a was provided, as per step 3902 of method 3900. The expandable tubular member 3902a was then coated with a layer 3904a, as per step 3904 of method 3900. The expandable tubular member 3902a was then positioned within a preexisting structure 3906b, as per step 3906 of method 3900. The expandable tubular member 3902a was then radially expanded and plastically deformed in the preexisting structure 3906b, expanding the preexisting structure 3906b by approximately 1mm. The measurements and grades for the expandable tubular member 3902a and preexisting structure 3906b where:

	Outside diameter (mm)	Wall thickness (mm)	Grade
Preexisting structure	219.1	13.58	X65

Expandable tubular member	178.9	2.5	316L
---------------------------	-------	-----	------

The collapse strength of the expandable tubular member 3902a and the preexisting structure 3906b combination was measure before and after expansion and found to increase by 21%.

[00349] In an exemplary experimental embodiment, an expandable tubular member was provided which had a collapse strength of approximately 70 ksi and included, by weight percent, 0.07% Carbon, 1.64% Manganese, 0.011% Phosphor, 0.001% Sulfur, 0.23% Silicon, 0.5% Nickel, 0.51% Chrome, 0.31% Molybdenum, 0.15% Copper, 0.021% Aluminum, 0.04% Vanadium, 0.03% Niobium, and 0.007% Titanium. Upon radial expansion and plastic deformation of the expandable tubular member, the collapse strength of the expandable tubular member increased to approximately 110 ksi.

[00350] In several exemplary embodiments, the teachings of the present disclosure are combined with one or more of the teachings disclosed in FR 2 841 626, filed on 6/28/2002, and published on 1/2/2004, the disclosure of which is incorporated herein by reference.

[00351] A method of forming a tubular liner within a preexisting structure has been described that includes positioning a tubular assembly within the preexisting structure; and radially expanding and plastically deforming the tubular assembly within the preexisting structure, wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly. In an exemplary embodiment, the method further includes positioning another tubular assembly within the preexisting structure in overlapping relation to the tubular assembly; and radially expanding and plastically deforming the other tubular assembly within the preexisting structure, wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the other tubular assembly has a lower yield point than another portion of the other tubular assembly. In an exemplary

embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the tubular assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes an end portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a plurality of predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a plurality of spaced apart predetermined portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes an end portion of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes a plurality of other portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes a plurality of spaced apart other portions of the tubular assembly. In an exemplary embodiment, the tubular assembly includes a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings include the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly. In an exemplary embodiment, one or more of the tubular couplings include the predetermined portions of the tubular assembly. In an exemplary embodiment, one or more of the tubular members include the predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly defines one or more openings. In an exemplary embodiment, one or more of the openings include slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the tubular assembly is a first steel alloy including: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic

deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a second steel alloy including: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a third steel alloy including: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a fourth steel alloy including: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion

of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly. In an exemplary embodiment, the tubular assembly includes a wellbore casing, a pipeline, or a structural support. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.21. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.36. In an exemplary embodiment, a yield point of an inner tubular portion of at least a portion of the tubular assembly is less than a yield point of an outer tubular portion of the portion of the tubular assembly. In an exemplary embodiment, yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body.

body varies as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body. In an exemplary embodiment, prior to the radial expansion and plastic deformation, at least a portion of the tubular assembly comprises a microstructure comprising a hard phase structure and a soft phase structure. In an exemplary embodiment, prior to the radial expansion and plastic deformation, at least a portion of the tubular assembly comprises a microstructure comprising a transitional phase structure. In an exemplary embodiment, the hard phase structure comprises martensite. In an exemplary embodiment, the soft phase structure comprises ferrite. In an exemplary embodiment, the transitional phase structure comprises retained austenite. In an exemplary embodiment, the hard phase structure comprises martensite; wherein the soft phase structure comprises ferrite; and wherein the transitional phase structure comprises retained austenite. In an exemplary embodiment, the portion of the tubular assembly comprising a microstructure comprising a hard phase structure and a soft phase structure comprises, by weight percentage, about 0.1% C, about 1.2% Mn, and about 0.3% Si.

[00352] An expandable tubular member has been described that includes a steel alloy including: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni,

and 0.02 % Cr. In an exemplary embodiment, a yield point of the tubular member is at most about 46.9 ksi prior to a radial expansion and plastic deformation; and a yield point of the tubular member is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the tubular member after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the tubular member prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00353] An expandable tubular member has been described that includes a steel alloy including: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr. In an exemplary embodiment, a yield point of the tubular member is at most about 57.8 ksi prior to a radial expansion and plastic deformation; and the yield point of the tubular member is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, a yield point of the tubular member after a radial expansion and plastic deformation is at least about 28 % greater than the yield point of the tubular member prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00354] An expandable tubular member has been described that includes a steel alloy including: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr. In an exemplary embodiment, the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00355] An expandable tubular member has been described that includes a steel alloy including: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr. In an exemplary embodiment, the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00356] An expandable tubular member has been described, wherein the yield point of the expandable tubular member is at most about 46.9 ksi prior to a radial expansion and plastic deformation; and wherein the yield point of the expandable tubular member is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00357] An expandable tubular member has been described, wherein a yield point of the

expandable tubular member after a radial expansion and plastic deformation is at least about 40 % greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00358] An expandable tubular member has been described, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00359] An expandable tubular member has been described, wherein the yield point of the expandable tubular member is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the expandable tubular member is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00360] An expandable tubular member has been described, wherein the yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 28 % greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00361] An expandable tubular member has been described, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00362] An expandable tubular member has been described, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00363] An expandable tubular member has been described, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00364] An expandable tubular member has been described, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00365] An expandable tubular member has been described, wherein the yield point of the expandable tubular member, prior to the radial expansion and plastic deformation,

ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00366] An expandable tubular member has been described, wherein the expandability coefficient of the expandable tubular member, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00367] An expandable tubular member has been described, wherein the expandability coefficient of the expandable tubular member is greater than the expandability coefficient of another portion of the expandable tubular member. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00368] An expandable tubular member has been described, wherein the tubular member has a higher ductility and a lower yield point prior to a radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00369] A method of radially expanding and plastically deforming a tubular assembly including a first tubular member coupled to a second tubular member has been described that includes radially expanding and plastically deforming the tubular assembly within a preexisting structure; and using less power to radially expand each unit length of the first tubular member than to radially expand each unit length of the second tubular member. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00370] A system for radially expanding and plastically deforming a tubular assembly including a first tubular member coupled to a second tubular member has been described that includes means for radially expanding the tubular assembly within a preexisting structure; and means for using less power to radially expand each unit length of the first tubular member than required to radially expand each unit length of the second tubular member. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00371] A method of manufacturing a tubular member has been described that includes processing a tubular member until the tubular member is characterized by one or more intermediate characteristics; positioning the tubular member within a preexisting structure; and processing the tubular member within the preexisting structure until the tubular member is characterized one or more final characteristics. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support. In an exemplary embodiment, the preexisting structure includes a wellbore that traverses a subterranean formation. In an exemplary embodiment, the characteristics are selected from a group

consisting of yield point and ductility. In an exemplary embodiment, processing the tubular member within the preexisting structure until the tubular member is characterized one or more final characteristics includes: radially expanding and plastically deforming the tubular member within the preexisting structure.

[00372] An apparatus has been described that includes an expandable tubular assembly; and an expansion device coupled to the expandable tubular assembly; wherein a predetermined portion of the expandable tubular assembly has a lower yield point than another portion of the expandable tubular assembly. In an exemplary embodiment, the expansion device includes a rotary expansion device, an axially displaceable expansion device, a reciprocating expansion device, a hydroforming expansion device, and/or an impulsive force expansion device. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility and a lower yield point than another portion of the expandable tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility than another portion of the expandable tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly has a lower yield point than another portion of the expandable tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes an end portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a plurality of predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a plurality of spaced apart predetermined portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes an end portion of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes a plurality of other portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly includes a plurality of spaced apart other portions of the tubular assembly. In an exemplary embodiment, the tubular assembly includes a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary

embodiment, the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a first steel alloy including: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is about 1.48. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a second steel alloy including: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is about 1.04. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a third steel alloy including: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is about 1.92. In an exemplary embodiment, the predetermined portion of the tubular assembly includes a fourth steel alloy including: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is at least about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly. In an exemplary embodiment, the tubular assembly

includes a wellbore casing, a pipeline, or a structural support. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.21. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.36. In an exemplary embodiment, a yield point of an inner tubular portion of at least a portion of the tubular assembly is less than a yield point of an outer tubular portion of the portion of the tubular assembly. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body.

tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body. In an exemplary embodiment, at least a portion of the tubular assembly comprises a microstructure comprising a hard phase structure and a soft phase structure. In an exemplary embodiment, prior to the radial expansion and plastic deformation, at least a portion of the tubular assembly comprises a microstructure comprising a transitional phase structure. In an exemplary embodiment, wherein the hard phase structure comprises martensite. In an exemplary embodiment, wherein the soft phase structure comprises ferrite. In an exemplary embodiment, wherein the transitional phase structure comprises retained austenite. In an exemplary embodiment, the hard phase structure comprises martensite; wherein the soft phase structure comprises ferrite; and wherein the transitional phase structure comprises retained austenite. In an exemplary embodiment, the portion of the tubular assembly comprising a microstructure comprising a hard phase structure and a soft phase structure comprises, by weight percentage, about 0.1% C, about 1.2% Mn, and about 0.3% Si. In an exemplary embodiment, at least a portion of the tubular assembly comprises a microstructure comprising a hard phase structure and a soft phase structure. In an exemplary embodiment, the portion of the tubular assembly comprises, by weight percentage, 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, 0.02% Cr, 0.05% V, 0.01% Mo, 0.01% Nb, and 0.01% Ti. In an exemplary embodiment, the portion of the tubular assembly comprises, by weight percentage, 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, 0.03% Cr, 0.04% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti. In an exemplary embodiment, the portion of the tubular assembly comprises, by weight percentage, 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.06% Cu, 0.05% Ni, 0.05% Cr, 0.03% V, 0.03% Mo, 0.01% Nb, and 0.01% Ti. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: martensite, pearlite, vanadium carbide, nickel carbide, or titanium carbide. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: pearlite or pearlite striation. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: grain pearlite, widmanstatten martensite, vanadium carbide, nickel carbide, or titanium carbide. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: ferrite, grain pearlite, or martensite. In an

exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: ferrite, martensite, or bainite. In an exemplary embodiment, the portion of the tubular assembly comprises a microstructure comprising one or more of the following: bainite, pearlite, or ferrite. In an exemplary embodiment, the portion of the tubular assembly comprises a yield strength of about 67 ksi and a tensile strength of about 95 ksi. In an exemplary embodiment, the portion of the tubular assembly comprises a yield strength of about 82 ksi and a tensile strength of about 130 ksi. In an exemplary embodiment, the portion of the tubular assembly comprises a yield strength of about 60 ksi and a tensile strength of about 97 ksi.

[00373] An expandable tubular member has been described, wherein a yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 5.8 % greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00374] A method of determining the expandability of a selected tubular member has been described that includes determining an anisotropy value for the selected tubular member, determining a strain hardening value for the selected tubular member; and multiplying the anisotropy value times the strain hardening value to generate an expandability value for the selected tubular member. In an exemplary embodiment, an anisotropy value greater than 0.12 indicates that the tubular member is suitable for radial expansion and plastic deformation. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support.

[00375] A method of radially expanding and plastically deforming tubular members has been described that includes selecting a tubular member; determining an anisotropy value for the selected tubular member; determining a strain hardening value for the selected tubular member; multiplying the anisotropy value times the strain hardening value to generate an expandability value for the selected tubular member; and if the anisotropy value is greater than 0.12, then radially expanding and plastically deforming the selected tubular member. In an exemplary embodiment, the tubular member includes a wellbore casing, a pipeline, or a structural support. In an exemplary embodiment, radially expanding and plastically deforming the selected tubular member includes: inserting the selected tubular member into a preexisting structure; and then radially expanding and plastically deforming the selected tubular member. In an exemplary embodiment, the preexisting structure includes a wellbore that traverses a subterranean formation.

[00376] A radially expandable multiple tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; a sleeve overlapping and coupling the first and second tubular

members at the joint; the sleeve having opposite tapered ends and a flange engaged in a recess formed in an adjacent tubular member; and one of the tapered ends being a surface formed on the flange. In an exemplary embodiment, the recess includes a tapered wall in mating engagement with the tapered end formed on the flange. In an exemplary embodiment, the sleeve includes a flange at each tapered end and each tapered end is formed on a respective flange. In an exemplary embodiment, each tubular member includes a recess. In an exemplary embodiment, each flange is engaged in a respective one of the recesses. In an exemplary embodiment, each recess includes a tapered wall in mating engagement with the tapered end formed on a respective one of the flanges.

[00377] A method of joining radially expandable multiple tubular members has also been described that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange; and mounting the sleeve for overlapping and coupling the first and second tubular members at the joint, wherein the flange is engaged in a recess formed in an adjacent one of the tubular members. In an exemplary embodiment, the method further includes providing a tapered wall in the recess for mating engagement with the tapered end formed on the flange. In an exemplary embodiment, the method further includes providing a flange at each tapered end wherein each tapered end is formed on a respective flange. In an exemplary embodiment, the method further includes providing a recess in each tubular member. In an exemplary embodiment, the method further includes engaging each flange in a respective one of the recesses. In an exemplary embodiment, the method further includes providing a tapered wall in each recess for mating engagement with the tapered end formed on a respective one of the flanges.

[00378] A radially expandable multiple tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; and a sleeve overlapping and coupling the first and second tubular members at the joint; wherein at least a portion of the sleeve is comprised of a frangible material.

[00379] A radially expandable multiple tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; and a sleeve overlapping and coupling the first and second tubular members at the joint; wherein the wall thickness of the sleeve is variable.

[00380] A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve comprising a frangible

material; and mounting the sleeve for overlapping and coupling the first and second tubular members at the joint.

[00381] A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve comprising a variable wall thickness; and mounting the sleeve for overlapping and coupling the first and second tubular members at the joint.

[00382] An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for increasing the axial compression loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.

[00383] An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for increasing the axial tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.

[00384] An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for increasing the axial compression and tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.

[00385] An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for avoiding stress risers in the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.

[00386] An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for inducing stresses at selected portions of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.

[00387] In several exemplary embodiments of the apparatus described above, the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.

[00388] In several exemplary embodiments of the method described above, the method further includes maintaining the sleeve in circumferential tension; and maintaining

the first and second tubular members in circumferential compression before, during, and/or after the radial expansion and plastic deformation of the first and second tubular members.

[00389] An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, a first threaded connection for coupling a portion of the first and second tubular members, a second threaded connection spaced apart from the first threaded connection for coupling another portion of the first and second tubular members, a tubular sleeve coupled to and receiving end portions of the first and second tubular members, and a sealing element positioned between the first and second spaced apart threaded connections for sealing an interface between the first and second tubular member, wherein the sealing element is positioned within an annulus defined between the first and second tubular members. In an exemplary embodiment, the annulus is at least partially defined by an irregular surface. In an exemplary embodiment, the annulus is at least partially defined by a toothed surface. In an exemplary embodiment, the sealing element comprises an elastomeric material. In an exemplary embodiment, the sealing element comprises a metallic material. In an exemplary embodiment, the sealing element comprises an elastomeric and a metallic material.

[00390] A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, providing a sleeve, mounting the sleeve for overlapping and coupling the first and second tubular members, threadably coupling the first and second tubular members at a first location, threadably coupling the first and second tubular members at a second location spaced apart from the first location, and sealing an interface between the first and second tubular members between the first and second locations using a compressible sealing element. In an exemplary embodiment, the sealing element includes an irregular surface. In an exemplary embodiment, the sealing element includes a toothed surface. In an exemplary embodiment, the sealing element comprises an elastomeric material. In an exemplary embodiment, the sealing element comprises a metallic material. In an exemplary embodiment, the sealing element comprises an elastomeric and a metallic material.

[00391] An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, a first threaded connection for coupling a portion of the first and second tubular members, a second threaded connection spaced apart from the first threaded connection for coupling another portion of the first and second tubular members, and a plurality of spaced apart tubular sleeves coupled to and receiving end portions of the first and second tubular members. In an exemplary embodiment, at least one of the tubular sleeves is positioned in opposing relation to the first threaded connection; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded connection. In an

exemplary embodiment, at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded connections.

[00392] A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, threadably coupling the first and second tubular members at a first location, threadably coupling the first and second tubular members at a second location spaced apart from the first location, providing a plurality of sleeves, and mounting the sleeves at spaced apart locations for overlapping and coupling the first and second tubular members. In an exemplary embodiment, at least one of the tubular sleeves is positioned in opposing relation to the first threaded coupling; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded coupling. In an exemplary embodiment, at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded couplings.

[00393] An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, and a plurality of spaced apart tubular sleeves coupled to and receiving end portions of the first and second tubular members.

[00394] A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, providing a plurality of sleeves, coupling the first and second tubular members, and mounting the sleeves at spaced apart locations for overlapping and coupling the first and second tubular members.

[00395] An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, a threaded connection for coupling a portion of the first and second tubular members, and a tubular sleeves coupled to and receiving end portions of the first and second tubular members, wherein at least a portion of the threaded connection is upset. In an exemplary embodiment, at least a portion of tubular sleeve penetrates the first tubular member.

[00396] A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, threadably coupling the first and second tubular members, and upsetting the threaded coupling. In an exemplary embodiment, the first tubular member further comprises an annular extension extending therefrom, and the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member. In an exemplary embodiment, the first tubular member further comprises an annular extension extending therefrom; and the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member.

[00397] A radially expandable multiple tubular member apparatus has been described that includes a first tubular member, a second tubular member engaged with the first tubular member forming a joint, a sleeve overlapping and coupling the first and second tubular members at the joint, and one or more stress concentrators for concentrating stresses in the joint. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve.

[00398] A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, engaging a second tubular member with the first tubular member to form a joint, providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange, and concentrating stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the second tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member and the second tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the second tubular member and the sleeve to concentrate stresses

within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member, the second tubular member, and the sleeve to concentrate stresses within the joint.

[00399] A system for radially expanding and plastically deforming a first tubular member coupled to a second tubular member by a mechanical connection has been described that includes means for radially expanding the first and second tubular members, and means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members.

[00400] A system for radially expanding and plastically deforming a first tubular member coupled to a second tubular member by a mechanical connection has been described that includes means for radially expanding the first and second tubular members; and means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members.

[00401] A system for radially expanding and plastically deforming a first tubular member coupled to a second tubular member by a mechanical connection has been described that includes means for radially expanding the first and second tubular members; means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members; and means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members.

[00402] A radially expandable tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; and a sleeve overlapping and coupling the first and second tubular members at the joint; wherein, prior to a radial expansion and plastic deformation of the apparatus, a predetermined portion of the apparatus has a lower yield point than another portion of the apparatus. In an exemplary embodiment, the carbon content of the predetermined portion of the apparatus is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the apparatus is less than 0.21. In an exemplary embodiment, the carbon content of the predetermined portion of the apparatus is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the apparatus is less than 0.36. In an exemplary embodiment, the apparatus further includes means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second

tubular members. In an exemplary embodiment, the apparatus further includes means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members; and means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes one or more stress concentrators for concentrating stresses in the joint. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, the first tubular member further comprises an annular extension extending therefrom; and wherein the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member. In an exemplary embodiment, the apparatus further includes a threaded connection for coupling a portion of the first and second tubular members; wherein at least a portion of the threaded connection is upset. In an exemplary embodiment, at least a portion of tubular sleeve penetrates the first tubular member. In an exemplary embodiment, the apparatus further includes means for increasing the axial compression loading capacity of the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes means for increasing the axial tension loading capacity of the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular

members. In an exemplary embodiment, the apparatus further includes means for increasing the axial compression and tension loading capacity of the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes means for avoiding stress risers in the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the apparatus further includes means for inducing stresses at selected portions of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the means for increasing the axial compression loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the means for increasing the axial tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the means for increasing the axial compression and tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the means for avoiding stress risers in the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the means for inducing stresses at selected portions of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, at least a portion of the sleeve is comprised of a frangible material. In an exemplary embodiment, the wall thickness of the sleeve is variable. In an exemplary embodiment, the predetermined portion of the apparatus has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a higher ductility

prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly. In an exemplary embodiment, the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed. In an exemplary embodiment, the apparatus further includes positioning another apparatus within the preexisting structure in overlapping relation to the apparatus; and radially expanding and plastically deforming the other apparatus within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the apparatus, a predetermined portion of the other apparatus has a lower yield point than another portion of the other apparatus. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the apparatus is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises an end portion of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises a plurality of predetermined portions of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises a plurality of spaced apart predetermined portions of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises an end portion of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises a plurality of other portions of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises a plurality of spaced apart other portions of the apparatus. In an exemplary embodiment, the apparatus comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the apparatus; and wherein the tubular members comprise the other portion of the apparatus. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the apparatus. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1. In an exemplary

embodiment, the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12. In an exemplary embodiment, the predetermined portion of the apparatus comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the apparatus comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the apparatus comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the apparatus comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic

deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the apparatus is greater than the expandability coefficient of the other portion of the apparatus. In an exemplary embodiment, the apparatus comprises a wellbore casing. In an exemplary embodiment, the apparatus comprises a pipeline. In an exemplary embodiment, the apparatus comprises a structural support.

[00403] A radially expandable tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; a sleeve overlapping and coupling the first and second tubular members at the joint; the sleeve having opposite tapered ends and a flange engaged in a recess formed in an adjacent tubular member; and one of the tapered ends being a surface formed on the flange; wherein, prior to a radial expansion and plastic deformation of the apparatus, a predetermined portion of the apparatus has a lower yield point than another portion of the apparatus. In an exemplary embodiment, the recess includes a tapered wall in

mating engagement with the tapered end formed on the flange. In an exemplary embodiment, the sleeve includes a flange at each tapered end and each tapered end is formed on a respective flange. In an exemplary embodiment, each tubular member includes a recess. In an exemplary embodiment, each flange is engaged in a respective one of the recesses. In an exemplary embodiment, each recess includes a tapered wall in mating engagement with the tapered end formed on a respective one of the flanges. In an exemplary embodiment, the predetermined portion of the apparatus has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the apparatus has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly. In an exemplary embodiment, the apparatus further includes positioning another apparatus within the preexisting structure in overlapping relation to the apparatus; and radially expanding and plastically deforming the other apparatus within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the apparatus, a predetermined portion of the other apparatus has a lower yield point than another portion of the other apparatus. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the apparatus is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises an end portion of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises a plurality of predetermined portions of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus comprises a plurality of spaced apart predetermined portions of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises an end portion of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises a plurality of other portions of the apparatus. In an exemplary embodiment, the other portion of the apparatus comprises a plurality of spaced apart other portions of the apparatus. In an exemplary embodiment, the apparatus comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the apparatus; and wherein the tubular members comprise the other portion of the apparatus. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the apparatus. In an

exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the apparatus. In an exemplary embodiment, the predetermined portion of the apparatus defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the apparatus is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12. In an exemplary embodiment, the predetermined portion of the apparatus comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the apparatus comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the apparatus comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the apparatus comprises a fourth steel alloy comprising: 0.02 %

C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the apparatus is greater than the expandability coefficient of the other portion of the apparatus. In an exemplary embodiment, the apparatus comprises a wellbore casing. In an exemplary embodiment, the apparatus comprises a pipeline. In an exemplary embodiment, the apparatus comprises a structural support.

[00404] A method of joining radially expandable tubular members has been provided that includes: providing a first tubular member; engaging a second tubular member with the

first tubular member to form a joint; providing a sleeve; mounting the sleeve for overlapping and coupling the first and second tubular members at the joint; wherein the first tubular member, the second tubular member, and the sleeve define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.21. In an exemplary embodiment, the carbon content of the predetermined portion of the tubular assembly is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.36. In an exemplary embodiment, the method further includes: maintaining portions of the first and second tubular member in circumferential compression following a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the method further includes: concentrating stresses within the joint during a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the method further includes: maintaining portions of the first and second tubular member in circumferential compression following a radial expansion and plastic deformation of the first and second tubular members; and concentrating stresses within the joint during a radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the method further includes: concentrating stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the second tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member and the second tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the second tubular member and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member, the second tubular member, and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, at least a portion of the sleeve is comprised of a frangible material. In an exemplary embodiment, the sleeve comprises a variable wall thickness. In an exemplary embodiment, the method further includes maintaining the sleeve

in circumferential tension; and maintaining the first and second tubular members in circumferential compression. In an exemplary embodiment, the method further includes maintaining the sleeve in circumferential tension; and maintaining the first and second tubular members in circumferential compression. In an exemplary embodiment, the method further includes: maintaining the sleeve in circumferential tension; and maintaining the first and second tubular members in circumferential compression. In an exemplary embodiment, the method further includes: threadably coupling the first and second tubular members at a first location; threadably coupling the first and second tubular members at a second location spaced apart from the first location; providing a plurality of sleeves; and mounting the sleeves at spaced apart locations for overlapping and coupling the first and second tubular members. In an exemplary embodiment, at least one of the tubular sleeves is positioned in opposing relation to the first threaded coupling; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded coupling. In an exemplary embodiment, at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded couplings. In an exemplary embodiment, the method further includes: threadably coupling the first and second tubular members; and upsetting the threaded coupling. In an exemplary embodiment, the first tubular member further comprises an annular extension extending therefrom; and wherein the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a larger inside diameter after the radial expansion and plastic deformation than the other portion of the tubular assembly. In an exemplary embodiment, the method further includes: positioning another tubular assembly within the preexisting structure in overlapping relation to the tubular assembly; and radially expanding and plastically deforming the other tubular assembly within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the other tubular assembly has a lower yield point than another portion of the other tubular assembly. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the tubular assembly is equal to the inside diameter of the radially expanded and plastically deformed

other portion of the other tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of spaced apart predetermined portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of other portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of spaced apart other portions of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and

plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined

portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a wellbore casing. In an exemplary embodiment, the tubular assembly comprises a pipeline. In an exemplary embodiment, the tubular assembly comprises a structural support.

[00405] A method of joining radially expandable tubular members has been described that includes: providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange; mounting the sleeve for overlapping and coupling the first and second tubular members at the joint, wherein the flange is engaged in a recess formed in an adjacent one of the tubular members; wherein the first tubular member, the second tubular member, and the sleeve define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly. In an exemplary embodiment, the method further includes: providing a tapered wall in the recess for mating engagement with the tapered end formed on the flange. In an exemplary embodiment, the method further includes: providing a flange at each tapered end wherein each tapered end is formed on a respective flange. In an exemplary embodiment, the method further includes: providing a recess in each tubular member. In an exemplary embodiment, the method further includes: engaging each flange in a respective one of the recesses. In an exemplary embodiment, the method further includes: providing a tapered wall in each recess for mating engagement with the tapered end formed on a respective one of the flanges. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility and a lower yield point prior to the radial expansion and

plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a larger inside diameter after the radial expansion and plastic deformation than the other portion of the tubular assembly. In an exemplary embodiment, the method further includes: positioning another tubular assembly within the preexisting structure in overlapping relation to the tubular assembly; and radially expanding and plastically deforming the other tubular assembly within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the other tubular assembly has a lower yield point than another portion of the other tubular assembly. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the tubular assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of spaced apart predetermined portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of other portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of spaced apart other portions of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the anisotropy for the

predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the

tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a wellbore casing. In an exemplary embodiment, the tubular assembly comprises a pipeline. In an exemplary embodiment, the tubular assembly comprises a structural support.

[00406] An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; a first threaded connection for coupling a portion of the first and second tubular members; a second threaded connection spaced apart from the first threaded connection for coupling

another portion of the first and second tubular members; a tubular sleeve coupled to and receiving end portions of the first and second tubular members; and a sealing element positioned between the first and second spaced apart threaded connections for sealing an interface between the first and second tubular member; wherein the sealing element is positioned within an annulus defined between the first and second tubular members; and wherein, prior to a radial expansion and plastic deformation of the assembly, a predetermined portion of the assembly has a lower yield point than another portion of the apparatus. In an exemplary embodiment, the predetermined portion of the assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the assembly has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly. In an exemplary embodiment, the assembly further includes: positioning another assembly within the preexisting structure in overlapping relation to the assembly; and radially expanding and plastically deforming the other assembly within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the assembly, a predetermined portion of the other assembly has a lower yield point than another portion of the other assembly. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other assembly. In an exemplary embodiment, the predetermined portion of the assembly comprises an end portion of the assembly. In an exemplary embodiment, the predetermined portion of the assembly comprises a plurality of predetermined portions of the assembly. In an exemplary embodiment, the predetermined portion of the assembly comprises a plurality of spaced apart predetermined portions of the assembly. In an exemplary embodiment, the other portion of the assembly comprises an end portion of the assembly. In an exemplary embodiment, the other portion of the assembly comprises a plurality of other portions of the assembly. In an exemplary embodiment, the other portion of the assembly comprises a plurality of spaced apart other portions of the assembly. In an exemplary embodiment, the assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the assembly; and wherein the tubular members comprise the other portion of the assembly. In an exemplary embodiment, one or more of the tubular

couplings comprise the predetermined portions of the assembly. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the assembly. In an exemplary embodiment, the predetermined portion of the assembly defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the assembly is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the assembly is greater than 0.12. In an exemplary embodiment, the predetermined portion of the assembly comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the assembly comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the assembly comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment,

the predetermined portion of the assembly comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the assembly is greater than the expandability coefficient of the other portion of the assembly. In an exemplary embodiment, the assembly comprises a wellbore casing. In an exemplary embodiment, the assembly comprises a pipeline. In an exemplary embodiment, the assembly comprises a structural support. In an exemplary embodiment, the annulus is at least partially defined by an irregular surface. In an exemplary embodiment, the annulus is at least partially defined by a

toothed surface. In an exemplary embodiment, the sealing element comprises an elastomeric material. In an exemplary embodiment, the sealing element comprises a metallic material. In an exemplary embodiment, the sealing element comprises an elastomeric and a metallic material.

[00407] A method of joining radially expandable tubular members is provided that includes providing a first tubular member; providing a second tubular member; providing a sleeve; mounting the sleeve for overlapping and coupling the first and second tubular members; threadably coupling the first and second tubular members at a first location; threadably coupling the first and second tubular members at a second location spaced apart from the first location; sealing an interface between the first and second tubular members between the first and second locations using a compressible sealing element, wherein the first tubular member, second tubular member, sleeve, and the sealing element define a tubular assembly; and radially expanding and plastically deforming the tubular assembly; wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly. In an exemplary embodiment, the sealing element includes an irregular surface. In an exemplary embodiment, the sealing element includes a toothed surface. In an exemplary embodiment, the sealing element comprises an elastomeric material. In an exemplary embodiment, the sealing element comprises a metallic material. In an exemplary embodiment, the sealing element comprises an elastomeric and a metallic material. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation. In an exemplary embodiment, the predetermined portion of the tubular assembly has a larger inside diameter after the radial expansion and plastic deformation than the other portion of the tubular assembly. In an exemplary embodiment, the method further includes: positioning another tubular assembly within the preexisting structure in overlapping relation to the tubular assembly; and radially expanding and plastically deforming the other tubular assembly within the preexisting structure; wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the other tubular assembly has a lower yield point than another portion of the other tubular assembly. In an exemplary embodiment, the inside diameter of the radially expanded and plastically deformed other portion of the tubular assembly is equal to the inside diameter of the radially expanded and

plastically deformed other portion of the other tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a plurality of spaced apart predetermined portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises an end portion of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of other portions of the tubular assembly. In an exemplary embodiment, the other portion of the tubular assembly comprises a plurality of spaced apart other portions of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings. In an exemplary embodiment, the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly. In an exemplary embodiment, one or more of the tubular couplings comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, one or more of the tubular members comprise the predetermined portions of the tubular assembly. In an exemplary embodiment, the predetermined portion of the tubular assembly defines one or more openings. In an exemplary embodiment, one or more of the openings comprise slots. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1. In an exemplary embodiment, the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12. In an exemplary embodiment, the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly,

prior to the radial expansion and plastic deformation, is about 1.48. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92. In an exemplary embodiment, the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation. In an

exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34. In an exemplary embodiment, the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92. In an exemplary embodiment, the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12. In an exemplary embodiment, the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly. In an exemplary embodiment, the tubular assembly comprises a wellbore casing. In an exemplary embodiment, the tubular assembly comprises a pipeline. In an exemplary embodiment, the tubular assembly comprises a structural support. In an exemplary embodiment, the sleeve comprises: a plurality of spaced apart tubular sleeves coupled to and receiving end portions of the first and second tubular members. In an exemplary embodiment, the first tubular member comprises a first threaded connection; wherein the second tubular member comprises a second threaded connection; wherein the first and second threaded connections are coupled to one another; wherein at least one of the tubular sleeves is positioned in opposing relation to the first threaded connection; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded connection. In an exemplary embodiment, the first tubular member comprises a first threaded connection; wherein the second tubular member comprises a second threaded connection; wherein the first and second threaded connections are coupled to one another; and wherein at least one of the tuular sleeves is not positioned in opposing relation to the first and second threaded connections. In an exemplary embodiment, the carbon content of the tubular member is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the tubular member is less than 0.21. In an exemplary embodiment, the tubular member comprises a wellbore casing.

[00408] An expandable tubular member has been described, wherein the carbon content of the tubular member is greater than 0.12 percent; and wherein the carbon equivalent value for the tubular member is less than 0.36. In an exemplary embodiment, the tubular member comprises a wellbore casing.

[00409] A method of selecting tubular members for radial expansion and plastic deformation has been described that includes: selecting a tubular member from a collection of tubular member; determining a carbon content of the selected tubular member; determining a carbon equivalent value for the selected tubular member; and if the carbon content of the selected tubular member is less than or equal to 0.12 percent and the carbon equivalent value for the selected tubular member is less than 0.21, then determining that the selected tubular member is suitable for radial expansion and plastic deformation.

[00410] A method of selecting tubular members for radial expansion and plastic deformation has been described that includes: selecting a tubular member from a collection of tubular member; determining a carbon content of the selected tubular member; determining a carbon equivalent value for the selected tubular member; and if the carbon content of the selected tubular member is greater than 0.12 percent and the carbon equivalent value for the selected tubular member is less than 0.36, then determining that the selected tubular member is suitable for radial expansion and plastic deformation.

[00411] An expandable tubular member has been described that includes: a tubular body; wherein a yield point of an inner tubular portion of the tubular body is less than a yield point of an outer tubular portion of the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the outer tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body.

point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body. In an exemplary embodiment, the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body.

[00412] A method of manufacturing an expandable tubular member has been described that includes: providing a tubular member; heat treating the tubular member; and quenching the tubular member; wherein following the quenching, the tubular member comprises a microstructure comprising a hard phase structure and a soft phase structure. In an exemplary embodiment, the provided tubular member comprises, by weight percentage, 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, 0.02% Cr, 0.05% V, 0.01% Mo, 0.01% Nb, and 0.01% Ti. In an exemplary embodiment, the provided tubular member comprises, by weight percentage, 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, 0.03% Cr, 0.04% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti. In an exemplary embodiment, the provided tubular member comprises, by weight percentage, 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.06% Cu, 0.05% Ni, 0.05% Cr, 0.03% V, 0.03% Mo, 0.01% Nb, and 0.01% Ti. In an exemplary embodiment, the provided tubular member comprises a microstructure comprising one or more of the following: martensite, pearlite, vanadium carbide, nickel carbide, or titanium carbide. In an exemplary embodiment, the provided tubular member comprises a microstructure comprising one or more of the following: pearlite or pearlite striation. In an exemplary embodiment, the provided tubular member comprises a microstructure comprising one or more of the following: grain pearlite, widmanstatten martensite, vanadium carbide, nickel carbide, or titanium carbide. In an exemplary embodiment, the heat treating comprises heating the provided tubular member for about 10 minutes at 790 °C. In an exemplary embodiment, the quenching comprises quenching the heat treated tubular member in water. In an exemplary embodiment, following the quenching, the tubular member comprises a microstructure comprising one or more of the following: ferrite, grain pearlite, or martensite. In an

exemplary embodiment, following the quenching, the tubular member comprises a microstructure comprising one or more of the following: ferrite, martensite, or bainite. In an exemplary embodiment, following the quenching, the tubular member comprises a microstructure comprising one or more of the following: bainite, pearlite, or ferrite. In an exemplary embodiment, following the quenching, the tubular member comprises a yield strength of about 67 ksi and a tensile strength of about 95 ksi. In an exemplary embodiment, following the quenching, the tubular member comprises a yield strength of about 82 ksi and a tensile strength of about 130 ksi. In an exemplary embodiment, following the quenching, the tubular member comprises a yield strength of about 60 ksi and a tensile strength of about 97 ksi. In an exemplary embodiment, the method further includes: positioning the quenched tubular member within a preexisting structure; and radially expanding and plastically deforming the tubular member within the preexisting structure.

[00413] An expandable tubular member has been described that includes: a steel alloy comprising: 0.07% Carbon, 1.64% Manganese, 0.011% Phosphor, 0.001% Sulfur, 0.23% Silicon, 0.5% Nickel, 0.51% Chrome, 0.31% Molybdenum, 0.15% Copper, 0.021% Aluminum, 0.04% Vanadium, 0.03% Niobium, and 0.007% Titanium.

[00414] An expandable tubular member has been described that includes: a collapse strength of approximately 70 ksi and comprising: 0.07% Carbon, 1.64% Manganese, 0.011% Phosphor, 0.001% Sulfur, 0.23% Silicon, 0.5% Nickel, 0.51% Chrome, 0.31% Molybdenum, 0.15% Copper, 0.021% Aluminum, 0.04% Vanadium, 0.03% Niobium, and 0.007% Titanium, wherein, upon radial expansion and plastic deformation, the collapse strength increases to approximately 110 ksi.

[00415] An expandable tubular member has been described that includes: an outer surface and means for increasing the collapse strength of a tubular assembly when the expandable tubular member is radially expanded and plastically deformed against a preexisting structure, the means coupled to the outer surface. In an exemplary embodiment, the means comprises a coating comprising a soft metal. In an exemplary embodiment, the means comprises a coating comprising aluminum. In an exemplary embodiment, the means comprises a coating comprising aluminum and zinc. In an exemplary embodiment, the means comprises a coating comprising plastic. In an exemplary embodiment, the means comprises a material wrapped around the outer surface of the tubular member. In an exemplary embodiment, the material comprises a soft metal. In an exemplary embodiment, the material comprises aluminum. In an exemplary embodiment, the means comprises a coating of varying thickness. In an exemplary embodiment, the means comprises a non uniform coating. In an exemplary embodiment, the means comprises a coating having multiple layers. In an exemplary embodiment, the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof.

[00416] A preexisting structure for accepting an expandable tubular member has been described that includes: a passage defined by the structure, an inner surface on the passage and means for increasing the collapse strength of a tubular assembly when an expandable tubular member is radially expanded and plastically deformed against the preexisting structure, the means coupled to the inner surface. In an exemplary embodiment, the means comprises a coating comprising a soft metal. In an exemplary embodiment, the means comprises a coating comprising aluminum. In an exemplary embodiment, the coating comprises aluminum and zinc. In an exemplary embodiment, the means comprises a coating comprising a plastic. In an exemplary embodiment, the means comprises a coating comprising a material lining the inner surface of the tubular member. In an exemplary embodiment, the material comprises a soft metal. In an exemplary embodiment, the material comprises aluminum. In an exemplary embodiment, the means comprises a coating of varying thickness. In an exemplary embodiment, the means comprises a non uniform coating. In an exemplary embodiment, the means comprises a coating having multiple layers. In an exemplary embodiment, the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof.

[00417] An expandable tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and means for increasing the collapse strength of the assembly when the expandable tubular member is radially expanded and plastically deformed against the structure, the means positioned between the expandable tubular member and the structure. In an exemplary embodiment, the structure comprises a wellbore casing. In an exemplary embodiment, the structure comprises a tubular member. In an exemplary embodiment, the means comprises an interstitial layer comprising a soft metal. In an exemplary embodiment, the means comprises an interstitial layer comprising aluminum. In an exemplary embodiment, the means comprises an interstitial layer comprising aluminum and zinc. In an exemplary embodiment, the means comprises an interstitial layer comprising a plastic. In an exemplary embodiment, the means comprises an interstitial layer comprising a material wrapped around an outer surface of the expandable tubular member. In an exemplary embodiment, the material comprises a soft metal. In an exemplary embodiment, the material comprises aluminum. In an exemplary embodiment, the means comprises an interstitial layer comprising a material lining an inner surface of the structure. In an exemplary embodiment, the material comprises a soft metal. In an exemplary embodiment, the material comprises aluminum. In an exemplary embodiment, the means comprises an interstitial layer of varying thickness. In an exemplary embodiment, the means comprises a non uniform interstitial layer. In an exemplary embodiment, the means comprises an interstitial layer having multiple layers. In an exemplary embodiment, the multiple layers are

selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof. In an exemplary embodiment, the structure is in circumferential tension.

[00418] A tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 20% greater than the collapse strength without the interstitial layer. In an exemplary embodiment, the structure comprises a wellbore casing. In an exemplary embodiment, the structure comprises a tubular member. In an exemplary embodiment, the interstitial layer comprises aluminum. In an exemplary embodiment, the interstitial layer comprises aluminum and zinc. In an exemplary embodiment, the interstitial layer comprises plastic. In an exemplary embodiment, the interstitial layer has a varying thickness. In an exemplary embodiment, the interstitial layer is non uniform. In an exemplary embodiment, the interstitial layer comprises multiple layers. In an exemplary embodiment, the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof. In an exemplary embodiment, the structure is in circumferential tension.

[00419] A tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 30% greater than the collapse strength without the interstitial layer. In an exemplary embodiment, the structure comprises a wellbore casing. In an exemplary embodiment, the structure comprises a tubular member. In an exemplary embodiment, the interstitial layer comprises aluminum. In an exemplary embodiment, the interstitial layer comprises aluminum and zinc. In an exemplary embodiment, the interstitial layer comprises plastic. In an exemplary embodiment, the interstitial layer has a varying thickness. In an exemplary embodiment, the interstitial layer is non uniform. In an exemplary embodiment, the interstitial layer comprises multiple layers. In an exemplary embodiment, the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof. In an exemplary embodiment, the structure is in circumferential tension.

[00420] A tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 40% greater than the collapse strength without the interstitial layer. In an exemplary embodiment, the structure comprises a wellbore casing. In an exemplary embodiment, the structure comprises a

tubular member. In an exemplary embodiment, the interstitial layer comprises aluminum. In an exemplary embodiment, the interstitial layer comprises aluminum and zinc. In an exemplary embodiment, the interstitial layer comprises plastic. In an exemplary embodiment, the interstitial layer has a varying thickness. In an exemplary embodiment, the interstitial layer is non uniform. In an exemplary embodiment, the interstitial layer comprises multiple layers. In an exemplary embodiment, the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof. In an exemplary embodiment, the structure is in circumferential tension.

[00421] A tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 50% greater than the collapse strength without the interstitial layer. In an exemplary embodiment, the structure comprises a wellbore casing. In an exemplary embodiment, the structure comprises a tubular member. In an exemplary embodiment, the interstitial layer comprises aluminum. In an exemplary embodiment, the interstitial layer comprises aluminum and zinc. In an exemplary embodiment, the interstitial layer comprises plastic. In an exemplary embodiment, the interstitial layer has a varying thickness. In an exemplary embodiment, the interstitial layer is non uniform. In an exemplary embodiment, the interstitial layer comprises multiple layers. In an exemplary embodiment, the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof. In an exemplary embodiment, the structure is in circumferential tension.

[00422] An expandable tubular assembly has been described that includes: an outer tubular member comprising a steel alloy and defining a passage, an inner tubular member comprising a steel alloy and positioned in the passage and an interstitial layer between the inner tubular member and the outer tubular member, the interstitial layer comprising an aluminum material lining an inner surface of the outer tubular member, whereby the collapse strength of the assembly with the interstitial layer is greater than the collapse strength of the assembly without the interstitial layer.

[00423] A method for increasing the collapse strength of a tubular assembly has been described that includes: providing a preexisting structure defining a passage therein, providing an expandable tubular member, coating the expandable tubular member with an interstitial material, positioning the expandable tubular member in the passage defined by the preexisting structure and expanding the expandable tubular member such that the interstitial material engages the preexisting structure, whereby the collapse strength of the preexisting structure and expandable tubular member with the interstitial material is greater than the collapse strength of the preexisting structure and expandable tubular member

without the interstitial material. In an exemplary embodiment, the preexisting structure comprises a wellbore casing. In an exemplary embodiment, the preexisting structure comprises a tubular member. In an exemplary embodiment, the coating comprises applying a soft metal layer on an outer surface of the expandable tubular member. In an exemplary embodiment, the coating comprises applying an aluminum layer on an outer surface of the expandable tubular member. In an exemplary embodiment, the coating comprises applying an aluminum/zinc layer on an outer surface of the expandable tubular member. In an exemplary embodiment, the coating comprises applying a plastic layer on an outer surface of the expandable tubular member. In an exemplary embodiment, the coating comprises wrapping a material around an outer surface of the expandable tubular member. In an exemplary embodiment, the material comprises a soft metal. In an exemplary embodiment, the material comprises aluminum. In an exemplary embodiment, the expanding results in the expansion of the preexisting structure. In an exemplary embodiment, the expansion places the preexisting structure in circumferential tension.

[00424] A method for increasing the collapse strength of a tubular assembly has been described that includes: providing a preexisting structure defining a passage therein, providing an expandable tubular member, coating the preexisting structure with an interstitial material, positioning the expandable tubular member in the passage defined by the preexisting structure and expanding the expandable tubular member such that the interstitial material engages the expandable tubular member, whereby the collapse strength of the preexisting structure and expandable tubular member with the interstitial material is greater than the collapse strength of the preexisting structure and expandable tubular member without the interstitial material. In an exemplary embodiment, the preexisting structure is a wellbore casing. In an exemplary embodiment, the preexisting structure is a tubular member. In an exemplary embodiment, the coating comprises applying a soft metal layer on a surface of the passage in the preexisting structure. In an exemplary embodiment, the coating comprises applying an aluminum layer on a surface of the passage in the preexisting structure. In an exemplary embodiment, the coating comprises applying an aluminum/zinc layer on a surface of the passage in the preexisting structure. In an exemplary embodiment, the coating comprises applying a plastic layer on a surface of the passage in the preexisting structure. In an exemplary embodiment, the coating comprises lining a material around a surface of the passage in the preexisting structure. In an exemplary embodiment, the material comprises a soft metal. In an exemplary embodiment, the material comprises aluminum. In an exemplary embodiment, the expanding results in the expansion of the preexisting structure. In an exemplary embodiment, the expanding places the preexisting structure in circumferential tension.

[00425] An expandable tubular member has been described that includes: an outer surface and an interstitial layer on the outer surface, wherein the interstitial layer comprises an aluminum material resulting in a required expansion operating pressure of approximately 3900 psi for the tubular member. In an exemplary embodiment, the expandable tubular member comprises an expanded 7 5/8 inch diameter tubular member.

[00426] An expandable tubular assembly has been described that includes: an outer surface and an interstitial layer on the outer surface, wherein the interstitial layer comprises an aluminum/zinc material resulting in a required expansion operating pressure of approximately 3700 psi for the tubular member. In an exemplary embodiment, the expandable tubular member comprises an expanded 7 5/8 inch diameter tubular member.

[00427] An expandable tubular assembly has been described that includes: an outer surface and an interstitial layer on the outer surface, wherein the interstitial layer comprises an plastic material resulting in a required expansion operating pressure of approximately 3600 psi for the tubular member. In an exemplary embodiment, the expandable tubular member comprises an expanded 7 5/8 inch diameter tubular member.

[00428] An expandable tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 0.05 inches to 0.15 inches. In an exemplary embodiment, the interstitial layer comprises aluminum.

[00429] An expandable tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 0.07 inches to 0.13 inches. In an exemplary embodiment, the interstitial layer comprises aluminum and zinc.

[00430] An expandable tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 0.06 inches to 0.14 inches. In an exemplary embodiment, the interstitial layer comprises plastic.

[00431] An expandable tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 1.6 mm to 2.5 mm between the structure and the expandable tubular member. In an exemplary embodiment, the interstitial layer comprises plastic.

[00432] An expandable tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 2.6 mm to 3.1 mm between the structure and the expandable tubular member. In an exemplary embodiment, the interstitial layer comprises aluminum.

[00433] An expandable tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 1.9 mm to 2.5 mm between the structure and the expandable tubular member. In an exemplary embodiment, the interstitial layer comprises aluminum and zinc.

[00434] An expandable tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage, an interstitial layer positioned between the expandable tubular member and the structure and a collapse strength greater than approximately 20000 psi. In an exemplary embodiment, the structure comprises a tubular member comprising a diameter of approximately 9 5/8 inches. In an exemplary embodiment, the expandable tubular member comprises diameter of approximately 7 5/8 inches. In an exemplary embodiment, the expandable tubular member has been expanded by at least 13%. In an exemplary embodiment, the interstitial layer comprises a soft metal. In an exemplary embodiment, the interstitial layer comprises aluminum. In an exemplary embodiment, the interstitial layer comprises aluminum and zinc.

[00435] An expandable tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage, an interstitial layer positioned between the expandable tubular member and the structure and a collapse strength greater than approximately 14000 psi. In an exemplary embodiment, the structure comprises a tubular member comprising a diameter of approximately 9 5/8 inches. In an exemplary embodiment, the expandable tubular member comprises diameter of approximately 7 5/8 inches. In an exemplary embodiment, the expandable tubular member has been expanded by at least 13%. In an exemplary embodiment, the interstitial layer comprises a plastic.

[00436] A method for determining the collapse resistance of a tubular assembly has been described that includes: measuring the collapse resistance of a first tubular member, measuring the collapse resistance of a second tubular member, determining the value of a reinforcement factor for a reinforcement of the first and second tubular members and

multiplying the reinforcement factor by the sum of the collapse resistance of the first tubular member and the collapse resistance of the second tubular member.

[00437] An expandable tubular assembly has been described that includes: a structure defining a passage therein, an expandable tubular member positioned in the passage and means for modifying the residual stresses in at least one of the structure and the expandable tubular member when the expandable tubular member is radially expanded and plastically deformed against the structure, the means positioned between the expandable tubular member and the structure. In an exemplary embodiment, the structure comprises a wellbore casing. In an exemplary embodiment, the structure comprises a tubular member. In an exemplary embodiment, the means comprises an interstitial layer comprising a soft metal. In an exemplary embodiment, the means comprises an interstitial layer comprising aluminum. In an exemplary embodiment, the means comprises an interstitial layer comprising aluminum and zinc. In an exemplary embodiment, the means comprises an interstitial layer comprising a plastic. In an exemplary embodiment, the means comprises an interstitial layer comprising a material wrapped around an outer surface of the expandable tubular member. In an exemplary embodiment, the material comprises a soft metal. In an exemplary embodiment, the material comprises aluminum. In an exemplary embodiment, the means comprises an interstitial layer comprising a material lining an inner surface of the structure. In an exemplary embodiment, the material comprises a soft metal. In an exemplary embodiment, the material comprises aluminum. In an exemplary embodiment, the means comprises an interstitial layer of varying thickness. In an exemplary embodiment, the means comprises a non uniform interstitial layer. In an exemplary embodiment, the means comprises an interstitial layer having multiple layers. In an exemplary embodiment, the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof. In an exemplary embodiment, the structure is in circumferential tension.

[00438] It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the teachings of the present illustrative embodiments may be used to provide a wellbore casing, a pipeline, or a structural support. Furthermore, the elements and teachings of the various illustrative embodiments may be combined in whole or in part in some or all of the illustrative embodiments. In addition, one or more of the elements and teachings of the various illustrative embodiments may be omitted, at least in part, and/or combined, at least in part, with one or more of the other elements and teachings of the various illustrative embodiments.

[00439] Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be

employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.

What is claimed is:

1. A method of forming a tubular liner within a preexisting structure, comprising:
positioning a tubular assembly within the preexisting structure; and
radially expanding and plastically deforming the tubular assembly within the
preexisting structure;
wherein, prior to the radial expansion and plastic deformation of the tubular
assembly, a predetermined portion of the tubular assembly has a lower yield
point than another portion of the tubular assembly.
2. The method of claim 1, wherein the predetermined portion of the tubular assembly
has a higher ductility and a lower yield point prior to the radial expansion and plastic
deformation than after the radial expansion and plastic deformation.
3. The method of claim 1, wherein the predetermined portion of the tubular assembly
has a higher ductility prior to the radial expansion and plastic deformation than after the
radial expansion and plastic deformation.
4. The method of claim 1, wherein the predetermined portion of the tubular assembly
has a lower yield point prior to the radial expansion and plastic deformation than after the
radial expansion and plastic deformation.
5. The method of claim 1, wherein the predetermined portion of the tubular assembly
has a larger inside diameter after the radial expansion and plastic deformation than other
portions of the tubular assembly.
6. The method of claim 5, further comprising:
positioning another tubular assembly within the preexisting structure in overlapping
relation to the tubular assembly; and
radially expanding and plastically deforming the other tubular assembly within the
preexisting structure;
wherein, prior to the radial expansion and plastic deformation of the tubular
assembly, a predetermined portion of the other tubular assembly has a lower
yield point than another portion of the other tubular assembly.
7. The method of claim 6, wherein the inside diameter of the radially expanded and
plastically deformed other portion of the tubular assembly is equal to the inside diameter of

the radially expanded and plastically deformed other portion of the other tubular assembly.

8. The method of claim 1, wherein the predetermined portion of the tubular assembly comprises an end portion of the tubular assembly.

9. The method of claim 1, wherein the predetermined portion of the tubular assembly comprises a plurality of predetermined portions of the tubular assembly.

10. The method of claim 1, wherein the predetermined portion of the tubular assembly comprises a plurality of spaced apart predetermined portions of the tubular assembly.

11. The method of claim 1, wherein the other portion of the tubular assembly comprises an end portion of the tubular assembly.

12. The method of claim 1, wherein the other portion of the tubular assembly comprises a plurality of other portions of the tubular assembly.

13. The method of claim 1, wherein the other portion of the tubular assembly comprises a plurality of spaced apart other portions of the tubular assembly.

14. The method of claim 1, wherein the tubular assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings.

15. The method of claim 14, wherein the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly.

16. The method of claim 14, wherein one or more of the tubular couplings comprise the predetermined portions of the tubular assembly.

17. The method of claim 14, wherein one or more of the tubular members comprise the predetermined portions of the tubular assembly.

18. The method of claim 1, wherein the predetermined portion of the tubular assembly defines one or more openings.

19. The method of claim 18, wherein one or more of the openings comprise slots.

20. The method of claim 18, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1.

21. The method of claim 1, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1.

22. The method of claim 1, wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.

23. The method of claim 1, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.

24. The method of claim 1, wherein the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr.

25. The method of claim 24, wherein the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation.

26. The method of claim 24, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

27. The method of claim 24, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.48.

28. The method of claim 1, wherein the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr.

29. The method of claim 28, wherein the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic

deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation.

30. The method of claim 28, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

31. The method of claim 28, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04.

32. The method of claim 1, wherein the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr.

33. The method of claim 32, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92.

34. The method of claim 1, wherein the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr.

35. The method of claim 34, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34.

36. The method of claim 1, wherein the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation.

37. The method of claim 1, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

38. The method of claim 1, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about

1.48.

39. The method of claim 1, wherein the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation.

40. The method of claim 1, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

41. The method of claim 1, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04.

42. The method of claim 1, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92.

43. The method of claim 1, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34.

44. The method of claim 1, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92.

45. The method of claim 1, wherein the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi.

46. The method of claim 1, wherein the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12.

47. The method of claim 1, wherein the expandability coefficient of the predetermined

portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly.

48. The method of claim 1, wherein the tubular assembly comprises a wellbore casing.

49. The method of claim 1, wherein the tubular assembly comprises a pipeline.

50. The method of claim 1, wherein the tubular assembly comprises a structural support.

51. An expandable tubular member comprising a steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr.

52. The tubular member of claim 51, wherein a yield point of the tubular member is at most about 46.9 ksi prior to a radial expansion and plastic deformation; and wherein a yield point of the tubular member is at least about 65.9 ksi after the radial expansion and plastic deformation.

53. The tubular member of claim 51, wherein the yield point of the tubular member after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the tubular member prior to the radial expansion and plastic deformation.

54. The tubular member of claim 51, wherein the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.48.

55. The tubular member of claim 51, wherein the tubular member comprises a wellbore casing.

56. The tubular member of claim 51, wherein the tubular member comprises a pipeline.

57. The tubular member of claim 51, wherein the tubular member comprises a structural support.

58. An expandable tubular member comprising a steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr.

59. The tubular member of claim 58, wherein a yield point of the tubular member is at most about 57.8 ksi prior to a radial expansion and plastic deformation; and wherein the

yield point of the tubular member is at least about 74.4 ksi after the radial expansion and plastic deformation.

60. The tubular member of claim 58, wherein a yield point of the of the tubular member after a radial expansion and plastic deformation is at least about 28 % greater than the yield point of the tubular member prior to the radial expansion and plastic deformation.

61. The tubular member of claim 58, wherein the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.04.

62. The tubular member of claim 58, wherein the tubular member comprises a wellbore casing.

63. The tubular member of claim 58, wherein the tubular member comprises a pipeline.

64. The tubular member of claim 58, wherein the tubular member comprises a structural support.

65. An expandable tubular member comprising a steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr.

66. The tubular member of claim 65, wherein the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.92.

67. The tubular member of claim 65, wherein the tubular member comprises a wellbore casing.

68. The tubular member of claim 65, wherein the tubular member comprises a pipeline.

69. The tubular member of claim 65, wherein the tubular member comprises a structural support.

70. An expandable tubular member comprising a steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr.

71. The tubular member of claim 70, wherein the anisotropy of the tubular member, prior to a radial expansion and plastic deformation, is about 1.34.

72. The tubular member of claim 70, wherein the tubular member comprises a wellbore casing.

73. The tubular member of claim 70, wherein the tubular member comprises a pipeline.

74. The tubular member of claim 70, wherein the tubular member comprises a structural support.

75. An expandable tubular member, wherein the yield point of the expandable tubular member is at most about 46.9 ksi prior to a radial expansion and plastic deformation; and wherein the yield point of the expandable tubular member is at least about 65.9 ksi after the radial expansion and plastic deformation.

76. The tubular member of claim 75, wherein the tubular member comprises a wellbore casing.

77. The tubular member of claim 75, wherein the tubular member comprises a pipeline.

78. The tubular member of claim 75, wherein the tubular member comprises a structural support.

79. An expandable tubular member, wherein a yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 40 % greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation.

80. The tubular member of claim 79, wherein the tubular member comprises a wellbore casing.

81. The tubular member of claim 79, wherein the tubular member comprises a pipeline.

82. The tubular member of claim 79, wherein the tubular member comprises a structural support.

83. An expandable tubular member, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.48.

84. The tubular member of claim 83, wherein the tubular member comprises a wellbore casing.
85. The tubular member of claim 83, wherein the tubular member comprises a pipeline.
86. The tubular member of claim 83, wherein the tubular member comprises a structural support.
87. An expandable tubular member, wherein the yield point of the expandable tubular member is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the expandable tubular member is at least about 74.4 ksi after the radial expansion and plastic deformation.
88. The tubular member of claim 87, wherein the tubular member comprises a wellbore casing.
89. The tubular member of claim 87, wherein the tubular member comprises a pipeline.
90. The tubular member of claim 87, wherein the tubular member comprises a structural support.
91. An expandable tubular member, wherein the yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 28 % greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation.
92. The tubular member of claim 91, wherein the tubular member comprises a wellbore casing.
93. The tubular member of claim 91, wherein the tubular member comprises a pipeline.
94. The tubular member of claim 91, wherein the tubular member comprises a structural support.
95. An expandable tubular member, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.04.

96. The tubular member of claim 95, wherein the tubular member comprises a wellbore casing.

97. The tubular member of claim 95, wherein the tubular member comprises a pipeline.

98. The tubular member of claim 95, wherein the tubular member comprises a structural support.

99. An expandable tubular member, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.92.

100. The tubular member of claim 99, wherein the tubular member comprises a wellbore casing.

101. The tubular member of claim 99, wherein the tubular member comprises a pipeline.

102. The tubular member of claim 99, wherein the tubular member comprises a structural support.

103. An expandable tubular member, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, is at least about 1.34.

104. The tubular member of claim 103, wherein the tubular member comprises a wellbore casing.

105. The tubular member of claim 103, wherein the tubular member comprises a pipeline.

106. The tubular member of claim 103, wherein the tubular member comprises a structural support.

107. An expandable tubular member, wherein the anisotropy of the expandable tubular member, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92.

108. The tubular member of claim 107, wherein the tubular member comprises a wellbore casing.

109. The tubular member of claim 107, wherein the tubular member comprises a pipeline.
110. The tubular member of claim 107, wherein the tubular member comprises a structural support.
111. An expandable tubular member, wherein the yield point of the expandable tubular member, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi.
112. The tubular member of claim 111, wherein the tubular member comprises a wellbore casing.
113. The tubular member of claim 111, wherein the tubular member comprises a pipeline.
114. The tubular member of claim 111, wherein the tubular member comprises a structural support.
115. An expandable tubular member, wherein the expandability coefficient of the expandable tubular member, prior to the radial expansion and plastic deformation, is greater than 0.12.
116. The tubular member of claim 115, wherein the tubular member comprises a wellbore casing.
117. The tubular member of claim 115, wherein the tubular member comprises a pipeline.
118. The tubular member of claim 115, wherein the tubular member comprises a structural support.
119. An expandable tubular member, wherein the expandability coefficient of the expandable tubular member is greater than the expandability coefficient of another portion of the expandable tubular member.
120. The tubular member of claim 119, wherein the tubular member comprises a wellbore casing.

121. The tubular member of claim 119, wherein the tubular member comprises a pipeline.
122. The tubular member of claim 119, wherein the tubular member comprises a structural support.
123. An expandable tubular member, wherein the tubular member has a higher ductility and a lower yield point prior to a radial expansion and plastic deformation than after the radial expansion and plastic deformation.
124. The tubular member of claim 123, wherein the tubular member comprises a wellbore casing.
125. The tubular member of claim 123, wherein the tubular member comprises a pipeline.
126. The tubular member of claim 123, wherein the tubular member comprises a structural support.
127. A method of radially expanding and plastically deforming a tubular assembly comprising a first tubular member coupled to a second tubular member, comprising:
 - radially expanding and plastically deforming the tubular assembly within a preexisting structure; and
 - using less power to radially expand each unit length of the first tubular member than to radially expand each unit length of the second tubular member.
128. The method of claim 127, wherein the tubular member comprises a wellbore casing.
129. The method of claim 127, wherein the tubular member comprises a pipeline.
130. The method of claim 127, wherein the tubular member comprises a structural support.
131. A system for radially expanding and plastically deforming a tubular assembly comprising a first tubular member coupled to a second tubular member, comprising:
 - means for radially expanding the tubular assembly within a preexisting structure; and
 - means for using less power to radially expand each unit length of the first tubular member than to radially expand each unit length of the second tubular member.

132. The system of claim 131, wherein the tubular member comprises a wellbore casing.
133. The system of claim 131, wherein the tubular member comprises a pipeline.
134. The system of claim 131, wherein the tubular member comprises a structural support.
135. A method of manufacturing a tubular member, comprising:
processing a tubular member until the tubular member is characterized by one or more intermediate characteristics;
positioning the tubular member within a preexisting structure; and
processing the tubular member within the preexisting structure until the tubular member is characterized one or more final characteristics.
136. The method of claim 135, wherein the tubular member comprises a wellbore casing.
137. The method of claim 135, wherein the tubular member comprises a pipeline.
138. The method of claim 135, wherein the tubular member comprises a structural support.
139. The method of claim 135, wherein the preexisting structure comprises a wellbore that traverses a subterranean formation.
140. The method of claim 135, wherein the characteristics are selected from a group consisting of yield point and ductility.
141. The method of claim 135, wherein processing the tubular member within the preexisting structure until the tubular member is characterized one or more final characteristics comprises:
radially expanding and plastically deforming the tubular member within the preexisting structure.
142. An apparatus, comprising:
an expandable tubular assembly; and
an expansion device coupled to the expandable tubular assembly;

wherein a predetermined portion of the expandable tubular assembly has a lower yield point than another portion of the expandable tubular assembly.

143. The apparatus of claim 142, wherein the expansion device comprises a rotary expansion device.

144. The apparatus of claim 142, wherein the expansion device comprises an axially displaceable expansion device.

145. The apparatus of claim 142, wherein the expansion device comprises a reciprocating expansion device.

146. The apparatus of claim 142, wherein the expansion device comprises a hydroforming expansion device.

147. The apparatus of claim 142, wherein the expansion device comprises an impulsive force expansion device.

148. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly has a higher ductility and a lower yield point than another portion of the expandable tubular assembly.

149. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly has a higher ductility than another portion of the expandable tubular assembly.

150. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly has a lower yield point than another portion of the expandable tubular assembly.

151. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly comprises an end portion of the tubular assembly.

152. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly comprises a plurality of predetermined portions of the tubular assembly.

153. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly comprises a plurality of spaced apart predetermined portions of the tubular assembly.

154. The apparatus of claim 142, wherein the other portion of the tubular assembly comprises an end portion of the tubular assembly.

155. The apparatus of claim 142, wherein the other portion of the tubular assembly comprises a plurality of other portions of the tubular assembly.

156. The apparatus of claim 142, wherein the other portion of the tubular assembly comprises a plurality of spaced apart other portions of the tubular assembly.

157. The apparatus of claim 142, wherein the tubular assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings.

158. The apparatus of claim 157, wherein the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly.

159. The apparatus of claim 157, wherein one or more of the tubular couplings comprise the predetermined portions of the tubular assembly.

160. The apparatus of claim 157, wherein one or more of the tubular members comprise the predetermined portions of the tubular assembly.

161. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly defines one or more openings.

162. The apparatus of claim 161, wherein one or more of the openings comprise slots.

163. The apparatus of claim 161, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1.

164. The apparatus of claim 142, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1.

165. The apparatus of claim 142, wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.

166. The apparatus of claim 142, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.

167. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr.

168. The apparatus of claim 167, wherein the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi.

169. The apparatus of claim 167, wherein the anisotropy of the predetermined portion of the tubular assembly is about 1.48.

170. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr.

171. The apparatus of claim 170, wherein the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi.

172. The apparatus of claim 170, wherein the anisotropy of the predetermined portion of the tubular assembly is about 1.04.

173. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr.

174. The apparatus of claim 173, wherein the anisotropy of the predetermined portion of the tubular assembly is about 1.92.

175. The apparatus of claim 142, wherein the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr.

176. The apparatus of claim 175, wherein the anisotropy of the predetermined portion of the tubular assembly is at least about 1.34.

177. The apparatus of claim 142, wherein the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi.

178. The apparatus of claim 142, wherein the anisotropy of the predetermined portion of the tubular assembly is at least about 1.48.

179. The apparatus of claim 142, wherein the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi.

180. The apparatus of claim 142, wherein the anisotropy of the predetermined portion of the tubular assembly is at least about 1.04.

181. The apparatus of claim 142, wherein the anisotropy of the predetermined portion of the tubular assembly is at least about 1.92.

182. The apparatus of claim 142, wherein the anisotropy of the predetermined portion of the tubular assembly is at least about 1.34.

183. The apparatus of claim 142, wherein the anisotropy of the predetermined portion of the tubular assembly ranges from about 1.04 to about 1.92.

184. The apparatus of claim 142, wherein the yield point of the predetermined portion of the tubular assembly ranges from about 47.6 ksi to about 61.7 ksi.

185. The apparatus of claim 142, wherein the expandability coefficient of the predetermined portion of the tubular assembly is greater than 0.12.

186. The apparatus of claim 142, wherein the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly.

187. The apparatus of claim 142, wherein the tubular assembly comprises a wellbore casing.

188. The apparatus of claim 142, wherein the tubular assembly comprises a pipeline.

189. The apparatus of claim 142, wherein the tubular assembly comprises a structural support.

190. An expandable tubular member, wherein a yield point of the expandable tubular member after a radial expansion and plastic deformation is at least about 5.8 % greater than the yield point of the expandable tubular member prior to the radial expansion and plastic deformation.

191. The tubular member of claim 190, wherein the tubular member comprises a wellbore casing.

192. The tubular member of claim 190, wherein the tubular member comprises a pipeline.

193. The tubular member of claim 190, wherein the tubular member comprises a structural support.

194. A method of determining the expandability of a selected tubular member, comprising:
determining an anisotropy value for the selected tubular member;
determining a strain hardening value for the selected tubular member; and
multiplying the anisotropy value times the strain hardening value to generate an expandability value for the selected tubular member.

195. The method of claim 194, wherein an anisotropy value greater than 0.12 indicates that the tubular member is suitable for radial expansion and plastic deformation.

196. The method of claim 194, wherein the tubular member comprises a wellbore casing.

197. The method of claim 194, wherein the tubular member comprises a pipeline.

198. The method of claim 194, wherein the tubular member comprises a structural support.

199. A method of radially expanding and plastically deforming tubular members, comprising:

selecting a tubular member;
determining an anisotropy value for the selected tubular member;
determining a strain hardening value for the selected tubular member;

multipling the anisotropy value times the strain hardening value to generate an expandability value for the selected tubular member; and if the anisotropy value is greater than 0.12, then radially expanding and plastically deforming the selected tubular member.

200. The method of claim 199, wherein the tubular member comprises a wellbore casing.
201. The method of claim 199, wherein the tubular member comprises a pipeline.
202. The method of claim 199, wherein the tubular member comprises a structural support.
203. The method of claim 199, wherein radially expanding and plastically deforming the selected tubular member comprises:
inserting the selected tubular member into a preexisting structure; and
then radially expanding and plastically deforming the selected tubular member.
204. The method of claim 203, wherein the preexisting structure comprises a wellbore that traverses a subterranean formation.
205. A radially expandable tubular member apparatus comprising:
a first tubular member;
a second tubular member engaged with the first tubular member forming a joint; and
a sleeve overlapping and coupling the first and second tubular members at the joint;
wherein, prior to a radial expansion and plastic deformation of the apparatus, a predetermined portion of the apparatus has a lower yield point than another portion of the apparatus.
206. The apparatus of claim 205, wherein the predetermined portion of the apparatus has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.
207. The apparatus of claim 205, wherein the predetermined portion of the apparatus has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.
208. The apparatus of claim 205, wherein the predetermined portion of the apparatus has

a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.

209. The apparatus of claim 205, wherein the predetermined portion of the apparatus has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly.

210. The apparatus of claim 209, further comprising:

positioning another apparatus within the preexisting structure in overlapping relation to the apparatus; and
radially expanding and plastically deforming the other apparatus within the preexisting structure;
wherein, prior to the radial expansion and plastic deformation of the apparatus, a predetermined portion of the other apparatus has a lower yield point than another portion of the other apparatus.

211. The apparatus of claim 210, wherein the inside diameter of the radially expanded and plastically deformed other portion of the apparatus is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other apparatus.

212. The apparatus of claim 205, wherein the predetermined portion of the apparatus comprises an end portion of the apparatus.

213. The apparatus of claim 205, wherein the predetermined portion of the apparatus comprises a plurality of predetermined portions of the apparatus.

214. The apparatus of claim 205, wherein the predetermined portion of the apparatus comprises a plurality of spaced apart predetermined portions of the apparatus.

215. The apparatus of claim 205, wherein the other portion of the apparatus comprises an end portion of the apparatus.

216. The apparatus of claim 205, wherein the other portion of the apparatus comprises a plurality of other portions of the apparatus.

217. The apparatus of claim 205, wherein the other portion of the apparatus comprises a plurality of spaced apart other portions of the apparatus.

218. The apparatus of claim 205, wherein the apparatus comprises a plurality of tubular members coupled to one another by corresponding tubular couplings.

219. The apparatus of claim 218, wherein the tubular couplings comprise the predetermined portions of the apparatus; and wherein the tubular members comprise the other portion of the apparatus.

220. The apparatus of claim 218, wherein one or more of the tubular couplings comprise the predetermined portions of the apparatus.

221. The apparatus of claim 218, wherein one or more of the tubular members comprise the predetermined portions of the apparatus.

222. The apparatus of claim 205, wherein the predetermined portion of the apparatus defines one or more openings.

223. The apparatus of claim 222, wherein one or more of the openings comprise slots.

224. The apparatus of claim 222, wherein the anisotropy for the predetermined portion of the apparatus is greater than 1.

225. The apparatus of claim 205, wherein the anisotropy for the predetermined portion of the apparatus is greater than 1.

226. The apparatus of claim 205, wherein the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12.

227. The apparatus of claim 205, wherein the anisotropy for the predetermined portion of the apparatus is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12.

228. The apparatus of claim 205, wherein the predetermined portion of the apparatus comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr.

229. The apparatus of claim 228, wherein the yield point of the predetermined portion of

the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation.

230. The apparatus of claim 228, wherein the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation.

231. The apparatus of claim 228, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.48.

232. The apparatus of claim 205, wherein the predetermined portion of the apparatus comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr.

233. The apparatus of claim 232, wherein the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation.

234. The apparatus of claim 232, wherein the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation.

235. The apparatus of claim 232, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.04.

236. The apparatus of claim 205, wherein the predetermined portion of the apparatus comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr.

237. The apparatus of claim 236, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.92.

238. The apparatus of claim 205, wherein the predetermined portion of the apparatus

comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr.

239. The apparatus of claim 238, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.34.

240. The apparatus of claim 205, wherein the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation.

241. The apparatus of claim 205, wherein the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation.

242. The apparatus of claim 205, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.48.

243. The apparatus of claim 205, wherein the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation.

244. The apparatus of claim 205, wherein the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation.

245. The apparatus of claim 205, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.04.

246. The apparatus of claim 205, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.92.

247. The apparatus of claim 205, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.34.

248. The apparatus of claim 205, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92.

249. The apparatus of claim 205, wherein the yield point of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi.

250. The apparatus of claim 205, wherein the expandability coefficient of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is greater than 0.12.

251. The apparatus of claim 205, wherein the expandability coefficient of the predetermined portion of the apparatus is greater than the expandability coefficient of the other portion of the apparatus.

252. The apparatus of claim 205, wherein the apparatus comprises a wellbore casing.

253. The apparatus of claim 205, wherein the apparatus comprises a pipeline.

254. The apparatus of claim 205, wherein the apparatus comprises a structural support.

255. A radially expandable tubular member apparatus comprising:
a first tubular member;
a second tubular member engaged with the first tubular member forming a joint;
a sleeve overlapping and coupling the first and second tubular members at the joint;
the sleeve having opposite tapered ends and a flange engaged in a recess formed in
an adjacent tubular member; and
one of the tapered ends being a surface formed on the flange;
wherein, prior to a radial expansion and plastic deformation of the apparatus, a
predetermined portion of the apparatus has a lower yield point than another
portion of the apparatus.

256. The apparatus as defined in claim 255 wherein the recess includes a tapered wall in mating engagement with the tapered end formed on the flange.

257. The apparatus as defined in claim 255 wherein the sleeve includes a flange at each tapered end and each tapered end is formed on a respective flange.
258. The apparatus as defined in claim 257 wherein each tubular member includes a recess.
259. The apparatus as defined in claim 258 wherein each flange is engaged in a respective one of the recesses.
260. The apparatus as defined in claim 259 wherein each recess includes a tapered wall in mating engagement with the tapered end formed on a respective one of the flanges.
261. The apparatus of claim 255, wherein the predetermined portion of the apparatus has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.
262. The apparatus of claim 255, wherein the predetermined portion of the apparatus has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.
263. The apparatus of claim 255, wherein the predetermined portion of the apparatus has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.
264. The apparatus of claim 255, wherein the predetermined portion of the apparatus has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly.
265. The apparatus of claim 264, further comprising:
positioning another apparatus within the preexisting structure in overlapping relation to the apparatus; and
radially expanding and plastically deforming the other apparatus within the preexisting structure;
wherein, prior to the radial expansion and plastic deformation of the apparatus, a predetermined portion of the other apparatus has a lower yield point than another portion of the other apparatus.

266. The apparatus of claim 265, wherein the inside diameter of the radially expanded and plastically deformed other portion of the apparatus is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other apparatus.

267. The apparatus of claim 255, wherein the predetermined portion of the apparatus comprises an end portion of the apparatus.

268. The apparatus of claim 255, wherein the predetermined portion of the apparatus comprises a plurality of predetermined portions of the apparatus.

269. The apparatus of claim 255, wherein the predetermined portion of the apparatus comprises a plurality of spaced apart predetermined portions of the apparatus.

270. The apparatus of claim 255, wherein the other portion of the apparatus comprises an end portion of the apparatus.

271. The apparatus of claim 255, wherein the other portion of the apparatus comprises a plurality of other portions of the apparatus.

272. The apparatus of claim 255, wherein the other portion of the apparatus comprises a plurality of spaced apart other portions of the apparatus.

273. The apparatus of claim 255, wherein the apparatus comprises a plurality of tubular members coupled to one another by corresponding tubular couplings.

274. The apparatus of claim 273, wherein the tubular couplings comprise the predetermined portions of the apparatus; and wherein the tubular members comprise the other portion of the apparatus.

275. The apparatus of claim 273, wherein one or more of the tubular couplings comprise the predetermined portions of the apparatus.

276. The apparatus of claim 273, wherein one or more of the tubular members comprise the predetermined portions of the apparatus.

277. The apparatus of claim 255, wherein the predetermined portion of the apparatus

defines one or more openings.

278. The apparatus of claim 277, wherein one or more of the openings comprise slots.

279. The apparatus of claim 277, wherein the anisotropy for the predetermined portion of the apparatus is greater than 1.

280. The apparatus of claim 255, wherein the anisotropy for the predetermined portion of the apparatus is greater than 1.

281. The apparatus of claim 255, wherein the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12.

282. The apparatus of claim 255, wherein the anisotropy for the predetermined portion of the apparatus is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the apparatus is greater than 0.12.

283. The apparatus of claim 255, wherein the predetermined portion of the apparatus comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr.

284. The apparatus of claim 283, wherein the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation.

285. The apparatus of claim 283, wherein the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation.

286. The apparatus of claim 283, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.48.

287. The apparatus of claim 255, wherein the predetermined portion of the apparatus comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr.

288. The apparatus of claim 287, wherein the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation.

289. The apparatus of claim 287, wherein the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation.

290. The apparatus of claim 287, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.04.

291. The apparatus of claim 255, wherein the predetermined portion of the apparatus comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr.

292. The apparatus of claim 291, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.92.

293. The apparatus of claim 255, wherein the predetermined portion of the apparatus comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr.

294. The apparatus of claim 293, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is about 1.34.

295. The apparatus of claim 255, wherein the yield point of the predetermined portion of the apparatus is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 65.9 ksi after the radial expansion and plastic deformation.

296. The apparatus of claim 255, wherein the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation.

297. The apparatus of claim 255, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.48.

298. The apparatus of claim 255, wherein the yield point of the predetermined portion of the apparatus is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the apparatus is at least about 74.4 ksi after the radial expansion and plastic deformation.

299. The apparatus of claim 255, wherein the yield point of the predetermined portion of the apparatus after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the apparatus prior to the radial expansion and plastic deformation.

300. The apparatus of claim 255, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.04.

301. The apparatus of claim 255, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.92.

302. The apparatus of claim 255, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is at least about 1.34.

303. The apparatus of claim 255, wherein the anisotropy of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92.

304. The apparatus of claim 255, wherein the yield point of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi.

305. The apparatus of claim 255, wherein the expandability coefficient of the predetermined portion of the apparatus, prior to the radial expansion and plastic deformation, is greater than 0.12.

306. The apparatus of claim 255, wherein the expandability coefficient of the predetermined portion of the apparatus is greater than the expandability coefficient of the

other portion of the apparatus.

307. The apparatus of claim 255, wherein the apparatus comprises a wellbore casing.
308. The apparatus of claim 255, wherein the apparatus comprises a pipeline.
309. The apparatus of claim 255, wherein the apparatus comprises a structural support.
310. A method of joining radially expandable tubular members comprising:
providing a first tubular member;
engaging a second tubular member with the first tubular member to form a joint;
providing a sleeve;
mounting the sleeve for overlapping and coupling the first and second tubular
members at the joint;
wherein the first tubular member, the second tubular member, and the sleeve define
a tubular assembly; and
radially expanding and plastically deforming the tubular assembly;
wherein, prior to the radial expansion and plastic deformation, a predetermined
portion of the tubular assembly has a lower yield point than another portion of
the tubular assembly.
311. The method of claim 310, wherein the predetermined portion of the tubular assembly
has a higher ductility and a lower yield point prior to the radial expansion and plastic
deformation than after the radial expansion and plastic deformation.
312. The method of claim 310, wherein the predetermined portion of the tubular assembly
has a higher ductility prior to the radial expansion and plastic deformation than after the
radial expansion and plastic deformation.
313. The method of claim 310, wherein the predetermined portion of the tubular assembly
has a lower yield point prior to the radial expansion and plastic deformation than after the
radial expansion and plastic deformation.
314. The method of claim 310, wherein the predetermined portion of the tubular assembly
has a larger inside diameter after the radial expansion and plastic deformation than the other
portion of the tubular assembly.

315. The method of claim 314, further comprising:
positioning another tubular assembly within the preexisting structure in overlapping
relation to the tubular assembly; and
radially expanding and plastically deforming the other tubular assembly within the
preexisting structure;
wherein, prior to the radial expansion and plastic deformation of the tubular
assembly, a predetermined portion of the other tubular assembly has a lower
yield point than another portion of the other tubular assembly.

316. The method of claim 315, wherein the inside diameter of the radially expanded and
plastically deformed other portion of the tubular assembly is equal to the inside diameter of
the radially expanded and plastically deformed other portion of the other tubular assembly.

317. The method of claim 310, wherein the predetermined portion of the tubular assembly
comprises an end portion of the tubular assembly.

318. The method of claim 310, wherein the predetermined portion of the tubular assembly
comprises a plurality of predetermined portions of the tubular assembly.

319. The method of claim 310, wherein the predetermined portion of the tubular assembly
comprises a plurality of spaced apart predetermined portions of the tubular assembly.

320. The method of claim 310, wherein the other portion of the tubular assembly
comprises an end portion of the tubular assembly.

321. The method of claim 310, wherein the other portion of the tubular assembly
comprises a plurality of other portions of the tubular assembly.

322. The method of claim 310, wherein the other portion of the tubular assembly
comprises a plurality of spaced apart other portions of the tubular assembly.

323. The method of claim 310, wherein the tubular assembly comprises a plurality of
tubular members coupled to one another by corresponding tubular couplings.

324. The method of claim 323, wherein the tubular couplings comprise the predetermined
portions of the tubular assembly; and wherein the tubular members comprise the other
portion of the tubular assembly.

325. The method of claim 323, wherein one or more of the tubular couplings comprise the predetermined portions of the tubular assembly.

326. The method of claim 323, wherein one or more of the tubular members comprise the predetermined portions of the tubular assembly.

327. The method of claim 310, wherein the predetermined portion of the tubular assembly defines one or more openings.

328. The method of claim 327, wherein one or more of the openings comprise slots.

329. The method of claim 327, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1.

330. The method of claim 310, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1.

331. The method of claim 310, wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.

332. The method of claim 310, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.

333. The method of claim 310, wherein the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr.

334. The method of claim 333, wherein the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation.

335. The method of claim 333, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the

radial expansion and plastic deformation.

336. The method of claim 333, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.48.

337. The method of claim 310, wherein the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr.

338. The method of claim 337, wherein the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation.

339. The method of claim 337, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

340. The method of claim 337, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04.

341. The method of claim 310, wherein the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr.

342. The method of claim 341, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92.

343. The method of claim 310, wherein the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr.

344. The method of claim 343, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34.

345. The method of claim 310, wherein the yield point of the predetermined portion of the

tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation.

346. The method of claim 310, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

347. The method of claim 310, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48.

348. The method of claim 310, wherein the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation.

349. The method of claim 310, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

350. The method of claim 310, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04.

351. The method of claim 310, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92.

352. The method of claim 310, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34.

353. The method of claim 310, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about

1.04 to about 1.92.

354. The method of claim 310, wherein the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi.

355. The method of claim 310, wherein the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12.

356. The method of claim 310, wherein the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly.

357. The method of claim 310, wherein the tubular assembly comprises a wellbore casing.

358. The method of claim 310, wherein the tubular assembly comprises a pipeline.

359. The method of claim 310, wherein the tubular assembly comprises a structural support.

360. A method of joining radially expandable tubular members comprising:
providing a first tubular member;
engaging a second tubular member with the first tubular member to form a joint;
providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange;
mounting the sleeve for overlapping and coupling the first and second tubular members at the joint, wherein the flange is engaged in a recess formed in an adjacent one of the tubular members;
wherein the first tubular member, the second tubular member, and the sleeve define a tubular assembly; and
radially expanding and plastically deforming the tubular assembly;
wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of the tubular assembly.

361. The method as defined in claim 360 further comprising:

providing a tapered wall in the recess for mating engagement with the tapered end formed on the flange.

362. The method as defined in claim 360 further comprising:

providing a flange at each tapered end wherein each tapered end is formed on a respective flange.

363. The method as defined in claim 362 further comprising:

providing a recess in each tubular member.

364. The method as defined in claim 363 further comprising:

engaging each flange in a respective one of the recesses.

365. The method as defined in claim 364 further comprising:

providing a tapered wall in each recess for mating engagement with the tapered end formed on a respective one of the flanges.

366. The method of claim 360, wherein the predetermined portion of the tubular assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.

367. The method of claim 360, wherein the predetermined portion of the tubular assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.

368. The method of claim 360, wherein the predetermined portion of the tubular assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.

369. The method of claim 360, wherein the predetermined portion of the tubular assembly has a larger inside diameter after the radial expansion and plastic deformation than the other portion of the tubular assembly.

370. The method of claim 369, further comprising:

positioning another tubular assembly within the preexisting structure in overlapping relation to the tubular assembly; and

radially expanding and plastically deforming the other tubular assembly within the

preexisting structure;
wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the other tubular assembly has a lower yield point than another portion of the other tubular assembly.

371. The method of claim 370, wherein the inside diameter of the radially expanded and plastically deformed other portion of the tubular assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other tubular assembly.

372. The method of claim 360, wherein the predetermined portion of the tubular assembly comprises an end portion of the tubular assembly.

373. The method of claim 360, wherein the predetermined portion of the tubular assembly comprises a plurality of predetermined portions of the tubular assembly.

374. The method of claim 360, wherein the predetermined portion of the tubular assembly comprises a plurality of spaced apart predetermined portions of the tubular assembly.

375. The method of claim 360, wherein the other portion of the tubular assembly comprises an end portion of the tubular assembly.

376. The method of claim 360, wherein the other portion of the tubular assembly comprises a plurality of other portions of the tubular assembly.

377. The method of claim 360, wherein the other portion of the tubular assembly comprises a plurality of spaced apart other portions of the tubular assembly.

378. The method of claim 360, wherein the tubular assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings.

379. The method of claim 378, wherein the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly.

380. The method of claim 378, wherein one or more of the tubular couplings comprise the predetermined portions of the tubular assembly.

381. The method of claim 378, wherein one or more of the tubular members comprise the predetermined portions of the tubular assembly.

382. The method of claim 360, wherein the predetermined portion of the tubular assembly defines one or more openings.

383. The method of claim 382, wherein one or more of the openings comprise slots.

384. The method of claim 382, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1.

385. The method of claim 360, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1.

386. The method of claim 360, wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.

387. The method of claim 360, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.

388. The method of claim 360, wherein the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr.

389. The method of claim 388, wherein the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation.

390. The method of claim 388, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

391. The method of claim 388, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.48.

392. The method of claim 360, wherein the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr.

393. The method of claim 392, wherein the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation.

394. The method of claim 392, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

395. The method of claim 392, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04.

396. The method of claim 360, wherein the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr.

397. The method of claim 396, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92.

398. The method of claim 360, wherein the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr.

399. The method of claim 398, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34.

400. The method of claim 360, wherein the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation.

401. The method of claim 360, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

402. The method of claim 360, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48.

403. The method of claim 360, wherein the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation.

404. The method of claim 360, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

405. The method of claim 360, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04.

406. The method of claim 360, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92.

407. The method of claim 360, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34.

408. The method of claim 360, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92.

409. The method of claim 360, wherein the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about

47.6 ksi to about 61.7 ksi.

491. The method of claim 360, wherein the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12.

492. The method of claim 360, wherein the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly.

493. The method of claim 360, wherein the tubular assembly comprises a wellbore casing.

494. The method of claim 360, wherein the tubular assembly comprises a pipeline.

495. The method of claim 360, wherein the tubular assembly comprises a structural support.

496. The apparatus of claim 205, wherein at least a portion of the sleeve is comprised of a frangible material.

497. The apparatus of claim 205, wherein the wall thickness of the sleeve is variable.

498. The method of claim 310, wherein at least a portion of the sleeve is comprised of a frangible material.

499. The method of claim 310, wherein the sleeve comprises a variable wall thickness.

500. The apparatus of claim 205, further comprising:
means for increasing the axial compression loading capacity of the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.

501. The apparatus of claim 205, further comprising:
means for increasing the axial tension loading capacity of the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.

502. The apparatus of claim 205, further comprising:
means for increasing the axial compression and tension loading capacity of the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
503. The apparatus of claim 205, further comprising:
means for avoiding stress risers in the joint between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
504. The apparatus of claim 205, further comprising:
means for inducing stresses at selected portions of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
505. The apparatus of claim 205, wherein the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.
506. The method of claim 310, further comprising:
maintaining the sleeve in circumferential tension; and
maintaining the first and second tubular members in circumferential compression.
507. The apparatus of claim 205, wherein the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.
508. The apparatus of claim 205, wherein the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.
509. The method of claim 310, further comprising:
maintaining the sleeve in circumferential tension; and
maintaining the first and second tubular members in circumferential compression.
510. The method of claim 310, further comprising:
maintaining the sleeve in circumferential tension; and
maintaining the first and second tubular members in circumferential compression.

511. The apparatus of claim 500, wherein the means for increasing the axial compression loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.
512. The apparatus of claim 501, wherein the means for increasing the axial tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.
513. The apparatus of claim 502, wherein the means for increasing the axial compression and tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.
514. The apparatus of claim 503, wherein the means for avoiding stress risers in the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.
515. The apparatus of claim 504, wherein the means for inducing stresses at selected portions of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.
516. An expandable tubular assembly, comprising:
a first tubular member;
a second tubular member coupled to the first tubular member;
a first threaded connection for coupling a portion of the first and second tubular members;
a second threaded connection spaced apart from the first threaded connection for coupling another portion of the first and second tubular members;

a tubular sleeve coupled to and receiving end portions of the first and second tubular members; and

a sealing element positioned between the first and second spaced apart threaded connections for sealing an interface between the first and second tubular member;

wherein the sealing element is positioned within an annulus defined between the first and second tubular members; and

wherein, prior to a radial expansion and plastic deformation of the assembly, a predetermined portion of the assembly has a lower yield point than another portion of the apparatus.

517. The assembly of claim 516, wherein the predetermined portion of the assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.

518. The assembly of claim 516, wherein the predetermined portion of the assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.

519. The assembly of claim 516, wherein the predetermined portion of the assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.

520. The assembly of claim 516, wherein the predetermined portion of the assembly has a larger inside diameter after the radial expansion and plastic deformation than other portions of the tubular assembly.

521. The assembly of claim 520, further comprising:

positioning another assembly within the preexisting structure in overlapping relation to the assembly; and

radially expanding and plastically deforming the other assembly within the preexisting structure;

wherein, prior to the radial expansion and plastic deformation of the assembly, a predetermined portion of the other assembly has a lower yield point than another portion of the other assembly.

522. The assembly of claim 521, wherein the inside diameter of the radially expanded and

plastically deformed other portion of the assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other assembly.

523. The assembly of claim 516, wherein the predetermined portion of the assembly comprises an end portion of the assembly.

524. The assembly of claim 516, wherein the predetermined portion of the assembly comprises a plurality of predetermined portions of the assembly.

525. The assembly of claim 516, wherein the predetermined portion of the assembly comprises a plurality of spaced apart predetermined portions of the assembly.

526. The assembly of claim 516, wherein the other portion of the assembly comprises an end portion of the assembly.

527. The assembly of claim 516, wherein the other portion of the assembly comprises a plurality of other portions of the assembly.

528. The assembly of claim 516, wherein the other portion of the assembly comprises a plurality of spaced apart other portions of the assembly.

529. The assembly of claim 516, wherein the assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings.

530. The assembly of claim 529, wherein the tubular couplings comprise the predetermined portions of the assembly; and wherein the tubular members comprise the other portion of the assembly.

531. The assembly of claim 529, wherein one or more of the tubular couplings comprise the predetermined portions of the assembly.

532. The assembly of claim 529, wherein one or more of the tubular members comprise the predetermined portions of the assembly.

533. The assembly of claim 516, wherein the predetermined portion of the assembly defines one or more openings.

534. The assembly of claim 533, wherein one or more of the openings comprise slots.

535. The assembly of claim 533, wherein the anisotropy for the predetermined portion of the assembly is greater than 1.

536. The assembly of claim 516, wherein the anisotropy for the predetermined portion of the assembly is greater than 1.

537. The assembly of claim 516, wherein the strain hardening exponent for the predetermined portion of the assembly is greater than 0.12.

538. The assembly of claim 516, wherein the anisotropy for the predetermined portion of the assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the assembly is greater than 0.12.

539. The assembly of claim 516, wherein the predetermined portion of the assembly comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr.

540. The assembly of claim 539, wherein the yield point of the predetermined portion of the assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 65.9 ksi after the radial expansion and plastic deformation.

541. The assembly of claim 539, wherein the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation.

542. The assembly of claim 539, wherein the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.48.

543. The assembly of claim 516, wherein the predetermined portion of the assembly comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr.

544. The assembly of claim 543, wherein the yield point of the predetermined portion of

the assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 74.4 ksi after the radial expansion and plastic deformation.

545. The assembly of claim 543, wherein the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation.

546. The assembly of claim 543, wherein the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.04.

547. The assembly of claim 516, wherein the predetermined portion of the assembly comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr.

548. The assembly of claim 547, wherein the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.92.

549. The assembly of claim 516, wherein the predetermined portion of the assembly comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr.

550. The assembly of claim 549, wherein the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is about 1.34.

551. The assembly of claim 516, wherein the yield point of the predetermined portion of the assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 65.9 ksi after the radial expansion and plastic deformation.

552. The assembly of claim 516, wherein the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation.

553. The assembly of claim 516, wherein the anisotropy of the predetermined portion of

the assembly, prior to the radial expansion and plastic deformation, is at least about 1.48.

554. The assembly of claim 516, wherein the yield point of the predetermined portion of the assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the assembly is at least about 74.4 ksi after the radial expansion and plastic deformation.

555. The assembly of claim 516, wherein the yield point of the predetermined portion of the assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the assembly prior to the radial expansion and plastic deformation.

556. The assembly of claim 516, wherein the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.04.

557. The assembly of claim 516, wherein the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.92.

558. The assembly of claim 516, wherein the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is at least about 1.34.

559. The assembly of claim 516, wherein the anisotropy of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92.

560. The assembly of claim 516, wherein the yield point of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, ranges from about 47.6 ksi to about 61.7 ksi.

561. The assembly of claim 516, wherein the expandability coefficient of the predetermined portion of the assembly, prior to the radial expansion and plastic deformation, is greater than 0.12.

562. The assembly of claim 516, wherein the expandability coefficient of the predetermined portion of the assembly is greater than the expandability coefficient of the other portion of the assembly.

563. The assembly of claim 516, wherein the assembly comprises a wellbore casing.
 564. The assembly of claim 516, wherein the assembly comprises a pipeline.
 565. The assembly of claim 516, wherein the assembly comprises a structural support.
 566. The assembly of claim 516, wherein the annulus is at least partially defined by an irregular surface.
 567. The assembly of claim 516, wherein the annulus is at least partially defined by a toothed surface.
 568. The assembly of claim 516, wherein the sealing element comprises an elastomeric material.
 569. The assembly of claim 516, wherein the sealing element comprises a metallic material.
 570. The assembly of claim 516, wherein the sealing element comprises an elastomeric and a metallic material.
571. A method of joining radially expandable tubular members comprising:
 - providing a first tubular member;
 - providing a second tubular member;
 - providing a sleeve;
 - mounting the sleeve for overlapping and coupling the first and second tubular members;
 - threadably coupling the first and second tubular members at a first location;
 - threadably coupling the first and second tubular members at a second location spaced apart from the first location;
 - sealing an interface between the first and second tubular members between the first and second locations using a compressible sealing element, wherein the first tubular member, second tubular member, sleeve, and the sealing element define a tubular assembly; and
 - radially expanding and plastically deforming the tubular assembly;
 - wherein, prior to the radial expansion and plastic deformation, a predetermined portion of the tubular assembly has a lower yield point than another portion of

the tubular assembly.

572. The method as defined in claim 571 wherein the sealing element includes an irregular surface.

573. The method as defined in claim 571, wherein the sealing element includes a toothed surface.

574. The method as defined in claim 571, wherein the sealing element comprises an elastomeric material.

575. The method as defined in claim 571, wherein the sealing element comprises a metallic material.

576. The method as defined in claim 571, wherein the sealing element comprises an elastomeric and a metallic material.

577. The method of claim 571, wherein the predetermined portion of the tubular assembly has a higher ductility and a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.

578. The method of claim 571, wherein the predetermined portion of the tubular assembly has a higher ductility prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.

579. The method of claim 571, wherein the predetermined portion of the tubular assembly has a lower yield point prior to the radial expansion and plastic deformation than after the radial expansion and plastic deformation.

580. The method of claim 571, wherein the predetermined portion of the tubular assembly has a larger inside diameter after the radial expansion and plastic deformation than the other portion of the tubular assembly.

581. The method of claim 571, further comprising:
positioning another tubular assembly within the preexisting structure in overlapping
relation to the tubular assembly; and
radially expanding and plastically deforming the other tubular assembly within the

preexisting structure;
wherein, prior to the radial expansion and plastic deformation of the tubular assembly, a predetermined portion of the other tubular assembly has a lower yield point than another portion of the other tubular assembly.

582. The method of claim 581, wherein the inside diameter of the radially expanded and plastically deformed other portion of the tubular assembly is equal to the inside diameter of the radially expanded and plastically deformed other portion of the other tubular assembly.

583. The method of claim 571, wherein the predetermined portion of the tubular assembly comprises an end portion of the tubular assembly.

584. The method of claim 571, wherein the predetermined portion of the tubular assembly comprises a plurality of predetermined portions of the tubular assembly.

585. The method of claim 571, wherein the predetermined portion of the tubular assembly comprises a plurality of spaced apart predetermined portions of the tubular assembly.

586. The method of claim 571, wherein the other portion of the tubular assembly comprises an end portion of the tubular assembly.

587. The method of claim 571, wherein the other portion of the tubular assembly comprises a plurality of other portions of the tubular assembly.

588. The method of claim 571, wherein the other portion of the tubular assembly comprises a plurality of spaced apart other portions of the tubular assembly.

589. The method of claim 571, wherein the tubular assembly comprises a plurality of tubular members coupled to one another by corresponding tubular couplings.

590. The method of claim 589, wherein the tubular couplings comprise the predetermined portions of the tubular assembly; and wherein the tubular members comprise the other portion of the tubular assembly.

591. The method of claim 589, wherein one or more of the tubular couplings comprise the predetermined portions of the tubular assembly.

592. The method of claim 589, wherein one or more of the tubular members comprise the predetermined portions of the tubular assembly.

593. The method of claim 571, wherein the predetermined portion of the tubular assembly defines one or more openings.

594. The method of claim 593, wherein one or more of the openings comprise slots.

595. The method of claim 593, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1.

596. The method of claim 571, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1.

597. The method of claim 571, wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.

598. The method of claim 571, wherein the anisotropy for the predetermined portion of the tubular assembly is greater than 1; and wherein the strain hardening exponent for the predetermined portion of the tubular assembly is greater than 0.12.

599. The method of claim 571, wherein the predetermined portion of the tubular assembly comprises a first steel alloy comprising: 0.065 % C, 1.44 % Mn, 0.01 % P, 0.002 % S, 0.24 % Si, 0.01 % Cu, 0.01 % Ni, and 0.02 % Cr.

600. The method of claim 599, wherein the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation.

601. The method of claim 599, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

602. The method of claim 599, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.48.

603. The method of claim 571, wherein the predetermined portion of the tubular assembly comprises a second steel alloy comprising: 0.18 % C, 1.28 % Mn, 0.017 % P, 0.004 % S, 0.29 % Si, 0.01 % Cu, 0.01 % Ni, and 0.03 % Cr.

604. The method of claim 603, wherein the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation.

605. The method of claim 603, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

606. The method of claim 603, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.04.

607. The method of claim 571, wherein the predetermined portion of the tubular assembly comprises a third steel alloy comprising: 0.08 % C, 0.82 % Mn, 0.006 % P, 0.003 % S, 0.30 % Si, 0.16 % Cu, 0.05 % Ni, and 0.05 % Cr.

608. The method of claim 607, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.92.

609. The method of claim 571, wherein the predetermined portion of the tubular assembly comprises a fourth steel alloy comprising: 0.02 % C, 1.31 % Mn, 0.02 % P, 0.001 % S, 0.45 % Si, 9.1 % Ni, and 18.7 % Cr.

610. The method of claim 609, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is about 1.34.

611. The method of claim 571, wherein the yield point of the predetermined portion of the tubular assembly is at most about 46.9 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 65.9 ksi after the radial expansion and plastic deformation.

612. The method of claim 571, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 40 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

613. The method of claim 571, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.48.

614. The method of claim 571, wherein the yield point of the predetermined portion of the tubular assembly is at most about 57.8 ksi prior to the radial expansion and plastic deformation; and wherein the yield point of the predetermined portion of the tubular assembly is at least about 74.4 ksi after the radial expansion and plastic deformation.

615. The method of claim 571, wherein the yield point of the predetermined portion of the tubular assembly after the radial expansion and plastic deformation is at least about 28 % greater than the yield point of the predetermined portion of the tubular assembly prior to the radial expansion and plastic deformation.

616. The method of claim 571, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.04.

617. The method of claim 571, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.92.

618. The method of claim 571, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is at least about 1.34.

619. The method of claim 571, wherein the anisotropy of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about 1.04 to about 1.92.

620. The method of claim 571, wherein the yield point of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, ranges from about

47.6 ksi to about 61.7 ksi.

621. The method of claim 571, wherein the expandability coefficient of the predetermined portion of the tubular assembly, prior to the radial expansion and plastic deformation, is greater than 0.12.

622. The method of claim 571, wherein the expandability coefficient of the predetermined portion of the tubular assembly is greater than the expandability coefficient of the other portion of the tubular assembly.

623. The method of claim 571, wherein the tubular assembly comprises a wellbore casing.

624. The method of claim 571, wherein the tubular assembly comprises a pipeline.

625. The method of claim 571, wherein the tubular assembly comprises a structural support.

626. The apparatus of claim 205, wherein the sleeve comprises:
a plurality of spaced apart tubular sleeves coupled to and receiving end portions of
the first and second tubular members.

627. The apparatus of claim 626, wherein the first tubular member comprises a first threaded connection; wherein the second tubular member comprises a second threaded connection; wherein the first and second threaded connections are coupled to one another; wherein at least one of the tubular sleeves is positioned in opposing relation to the first threaded connection; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded connection.

628. The apparatus of claim 626, wherein the first tubular member comprises a first threaded connection; wherein the second tubular member comprises a second threaded connection; wherein the first and second threaded connections are coupled to one another; and wherein at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded connections.

629. The method of claim 310, further comprising:
threadably coupling the first and second tubular members at a first location;

threadably coupling the first and second tubular members at a second location
spaced apart from the first location;
providing a plurality of sleeves; and
mounting the sleeves at spaced apart locations for overlapping and coupling the first
and second tubular members.

630. The method of claim 629, wherein at least one of the tubular sleeves is positioned in opposing relation to the first threaded coupling; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded coupling.

631. The method of claim 629, wherein at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded couplings.

632. The apparatus of claim 205, further comprising:
a threaded connection for coupling a portion of the first and second tubular members;
wherein at least a portion of the threaded connection is upset.

633. The apparatus of claim 632, wherein at least a portion of tubular sleeve penetrates the first tubular member.

634. The method of claim 310, further comprising:
threadably coupling the first and second tubular members; and
upsetting the threaded coupling.

635. The apparatus of claim 205, wherein the first tubular member further comprises an annular extension extending therefrom; and wherein the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member.

636. The method of claim 310, wherein the first tubular member further comprises an annular extension extending therefrom; and wherein the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member.

637. The apparatus of claim 205, further comprising:
one or more stress concentrators for concentrating stresses in the joint.

638. The apparatus as defined in claim 637, wherein one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member.
639. The apparatus as defined in claim 637, wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member.
640. The apparatus as defined in claim 637, wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve.
641. The apparatus as defined in claim 637, wherein one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member.
642. The apparatus as defined in claim 637, wherein one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve.
643. The apparatus as defined in claim 637, wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve.
644. The apparatus as defined in claim 637, wherein one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve.
645. The method of claim 310, further comprising:
concentrating stresses within the joint.
646. The method as defined in claim 645, wherein concentrating stresses within the joint comprises using the first tubular member to concentrate stresses within the joint.

647. The method as defined in claim 645, wherein concentrating stresses within the joint comprises using the second tubular member to concentrate stresses within the joint.
648. The method as defined in claim 645, wherein concentrating stresses within the joint comprises using the sleeve to concentrate stresses within the joint.
649. The method as defined in claim 645, wherein concentrating stresses within the joint comprises using the first tubular member and the second tubular member to concentrate stresses within the joint.
650. The method as defined in claim 645, wherein concentrating stresses within the joint comprises using the first tubular member and the sleeve to concentrate stresses within the joint.
651. The method as defined in claim 645, wherein concentrating stresses within the joint comprises using the second tubular member and the sleeve to concentrate stresses within the joint.
652. The method as defined in claim 645, wherein concentrating stresses within the joint comprises using the first tubular member, the second tubular member, and the sleeve to concentrate stresses within the joint.
653. The apparatus of claim 205, further comprising:
means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members.
654. The apparatus of claim 205, further comprising:
means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members.
655. The apparatus of claim 205, further comprising:
means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members; and

means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members.

656. The method of claim 310, further comprising:
maintaining portions of the first and second tubular member in circumferential compression following a radial expansion and plastic deformation of the first and second tubular members.
657. The method of claim 310, further comprising:
concentrating stresses within the joint during a radial expansion and plastic deformation of the first and second tubular members.
658. The method of claim 310, further comprising:
maintaining portions of the first and second tubular member in circumferential compression following a radial expansion and plastic deformation of the first and second tubular members; and
concentrating stresses within the joint during a radial expansion and plastic deformation of the first and second tubular members.
659. The method of claim 1, wherein the carbon content of the predetermined portion of the tubular assembly is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.21.
660. The method of claim 1, wherein the carbon content of the predetermined portion of the tubular assembly is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.36.
661. An expandable tubular member, wherein the carbon content of the tubular member is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the tubular member is less than 0.21.
662. The tubular member of claim 661, wherein the tubular member comprises a wellbore casing.
663. An expandable tubular member, wherein the carbon content of the tubular member is greater than 0.12 percent; and wherein the carbon equivalent value for the tubular member is less than 0.36.

664. The tubular member of claim 663, wherein the tubular member comprises a wellbore casing.

665. The apparatus of claim 142, wherein the carbon content of the predetermined portion of the tubular assembly is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.21.

666. The apparatus of claim 142, wherein the carbon content of the predetermined portion of the tubular assembly is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.36.

667. A method of selecting tubular members for radial expansion and plastic deformation, comprising:

selecting a tubular member from a collection of tubular member;
determining a carbon content of the selected tubular member;
determining a carbon equivalent value for the selected tubular member; and
if the carbon content of the selected tubular member is less than or equal to 0.12 percent
and the carbon equivalent value for the selected tubular member is less than 0.21,
then determining that the selected tubular member is suitable for radial expansion
and plastic deformation.

668. A method of selecting tubular members for radial expansion and plastic deformation, comprising:

selecting a tubular member from a collection of tubular member;
determining a carbon content of the selected tubular member;
determining a carbon equivalent value for the selected tubular member; and
if the carbon content of the selected tubular member is greater than 0.12 percent and the
carbon equivalent value for the selected tubular member is less than 0.36, then
determining that the selected tubular member is suitable for radial expansion and
plastic deformation.

669. The apparatus of claim 205, wherein the carbon content of the predetermined portion of the apparatus is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the apparatus is less than 0.21.

670. The apparatus of claim 205, wherein the carbon content of the predetermined portion of the apparatus is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the apparatus is less than 0.36.

671. The method of claim 310, wherein the carbon content of the predetermined portion of the tubular assembly is less than or equal to 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.21.

672. The method of claim 310, wherein the carbon content of the predetermined portion of the tubular assembly is greater than 0.12 percent; and wherein the carbon equivalent value for the predetermined portion of the tubular assembly is less than 0.36.

673. An expandable tubular member, comprising:
a tubular body;
wherein a yield point of an inner tubular portion of the tubular body is less than a yield point of an outer tubular portion of the tubular body.

674. The expandable tubular member of claim 673, wherein the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body.

675. The expandable tubular member of claim 674, wherein the yield point of the inner tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body.

676. The expandable tubular member of claim 674, wherein the yield point of the inner tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body.

677. The expandable tubular member of claim 673, wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body.

678. The expandable tubular member of claim 677, wherein the yield point of the outer tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body.

679. The expandable tubular member of claim 677, wherein the yield point of the outer tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body.

680. The expandable tubular member of claim 673,
wherein the yield point of the inner tubular portion of the tubular body varies as a
function of the radial position within the tubular body; and
wherein the yield point of the outer tubular portion of the tubular body varies as a
function of the radial position within the tubular body.

681. The expandable tubular member of claim 680, wherein the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body.

682. The expandable tubular member of claim 680, wherein the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body.

683. The expandable tubular member of claim 680, wherein the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body.

684. The expandable tubular member of claim 680, wherein the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body.

685. The expandable tubular member of claim 680, wherein the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body.

686. . The expandable tubular member of claim 680, wherein the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body.

687. The method of claim 1, wherein a yield point of an inner tubular portion of at least a portion of the tubular assembly is less than a yield point of an outer tubular portion of the portion of the tubular assembly.

688. The method of claim 687, wherein the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body.

689. The method of claim 688, wherein the yield point of the inner tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body.

690. The method of claim 688, wherein the yield point of the inner tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body.

691. The method of claim 687, wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body.

692. The method of claim 691, wherein the yield point of the outer tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body.

693. The method of claim 691, wherein the yield point of the outer tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body.

694. The method of claim 687, wherein the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body.

695. The method of claim 694, wherein the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body.

696. The method of claim 694, wherein the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body.

697. The method of claim 694, wherein the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body.

698. The method of claim 694, wherein the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body.

699. The method of claim 694, wherein the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body.

700. The method of claim 694, wherein the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body.

701. The apparatus of claim 142, wherein a yield point of an inner tubular portion of at least a portion of the tubular assembly is less than a yield point of an outer tubular portion of the portion of the tubular assembly.

702. The apparatus of claim 701, wherein the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body.

703. The apparatus of claim 702, wherein the yield point of the inner tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body.

704. The apparatus of claim 702, wherein the yield point of the inner tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body.

705. The apparatus of claim 701, wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body.

706. The apparatus of claim 705, wherein the yield point of the outer tubular portion of the tubular body varies in an linear fashion as a function of the radial position within the tubular body.

707. The apparatus of claim 705, wherein the yield point of the outer tubular portion of the tubular body varies in an non-linear fashion as a function of the radial position within the tubular body.

708. The apparatus of claim 701, wherein the yield point of the inner tubular portion of the tubular body varies as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies as a function of the radial position within the tubular body.

709. The apparatus of claim 708, wherein the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body.

710. The apparatus of claim 708, wherein the yield point of the inner tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body.

711. The apparatus of claim 708, wherein the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the

tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a linear fashion as a function of the radial position within the tubular body.

712. The apparatus of claim 708, wherein the yield point of the inner tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body; and wherein the yield point of the outer tubular portion of the tubular body varies in a non-linear fashion as a function of the radial position within the tubular body.

713. The apparatus of claim 708, wherein the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body.

714. The apparatus of claim 708, wherein the rate of change of the yield point of the inner tubular portion of the tubular body is different than the rate of change of the yield point of the outer tubular portion of the tubular body.

715. The method of claim 1, wherein prior to the radial expansion and plastic deformation, at least a portion of the tubular assembly comprises a microstructure comprising a hard phase structure and a soft phase structure.

716. The method of claim 715, wherein prior to the radial expansion and plastic deformation, at least a portion of the tubular assembly comprises a microstructure comprising a transitional phase structure.

717. The method of claim 715, wherein the hard phase structure comprises martensite.

718. The method of claim 715, wherein the soft phase structure comprises ferrite.

719. The method of claim 715, wherein the transitional phase structure comprises retained austenite.

720. The method of claim 715, wherein the hard phase structure comprises martensite; wherein the soft phase structure comprises ferrite; and wherein the transitional phase structure comprises retained austenite.

721. The method of claim 715, wherein the portion of the tubular assembly comprising a microstructure comprising a hard phase structure and a soft phase structure comprises, by weight percentage, about 0.1% C, about 1.2% Mn, and about 0.3% Si.

722. The apparatus of claim 142, wherein at least a portion of the tubular assembly comprises a microstructure comprising a hard phase structure and a soft phase structure.

723. The apparatus of claim 722, wherein prior to the radial expansion and plastic deformation, at least a portion of the tubular assembly comprises a microstructure comprising a transitional phase structure.

724. The apparatus of claim 722, wherein the hard phase structure comprises martensite.

725. The apparatus of claim 722, wherein the soft phase structure comprises ferrite.

726. The apparatus of claim 722, wherein the transitional phase structure comprises retained austenite.

727. The apparatus of claim 722, wherein the hard phase structure comprises martensite; wherein the soft phase structure comprises ferrite; and wherein the transitional phase structure comprises retained austenite.

728. The apparatus of claim 722, wherein the portion of the tubular assembly comprising a microstructure comprising a hard phase structure and a soft phase structure comprises, by weight percentage, about 0.1% C, about 1.2% Mn, and about 0.3% Si.

729. A method of manufacturing an expandable tubular member, comprising:
providing a tubular member;
heat treating the tubular member; and
quenching the tubular member;
wherein following the quenching, the tubular member comprises a microstructure comprising a hard phase structure and a soft phase structure.

730. The method of claim 729, wherein the provided tubular member comprises, by weight percentage, 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, 0.02% Cr, 0.05% V, 0.01% Mo, 0.01% Nb, and 0.01% Ti.

731. The method of claim 729, wherein the provided tubular member comprises, by weight percentage, 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, 0.03% Cr, 0.04% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti.

732. The method of claim 729, wherein the provided tubular member comprises, by weight percentage, 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.06% Cu, 0.05% Ni, 0.05% Cr, 0.03% V, 0.03% Mo, 0.01% Nb, and 0.01% Ti.

733. The method of claim 729, wherein the provided tubular member comprises a microstructure comprising one or more of the following: martensite, pearlite, vanadium carbide, nickel carbide, or titanium carbide.

734. The method of claim 729, wherein the provided tubular member comprises a microstructure comprising one or more of the following: pearlite or pearlite striation.

735. The method of claim 729, wherein the provided tubular member comprises a microstructure comprising one or more of the following: grain pearlite, widmanstatten martensite, vanadium carbide, nickel carbide, or titanium carbide.

736. The method of claim 729, wherein the heat treating comprises heating the provided tubular member for about 10 minutes at 790 °C.

737. The method of claim 729, wherein the quenching comprises quenching the heat treated tubular member in water.

738. The method of claim 729, wherein following the quenching, the tubular member comprises a microstructure comprising one or more of the following: ferrite, grain pearlite, or martensite.

739. The method of claim 729, wherein following the quenching, the tubular member comprises a microstructure comprising one or more of the following: ferrite, martensite, or bainite.

740. The method of claim 729, wherein following the quenching, the tubular member comprises a microstructure comprising one or more of the following: bainite, pearlite, or ferrite.

741. The method of claim 729, wherein following the quenching, the tubular member comprises a yield strength of about 67 ksi and a tensile strength of about 95 ksi.

742. The method of claim 729, wherein following the quenching, the tubular member comprises a yield strength of about 82 ksi and a tensile strength of about 130 ksi.

743. The method of claim 729, wherein following the quenching, the tubular member comprises a yield strength of about 60 ksi and a tensile strength of about 97 ksi.

744. The method of claim 729, further comprising:
positioning the quenched tubular member within a preexisting structure; and
radially expanding and plastically deforming the tubular member within the
preexisting structure.

745. The apparatus of claim 142, wherein at least a portion of the tubular assembly comprises a microstructure comprising a hard phase structure and a soft phase structure.

746. The apparatus of claim 745, wherein the portion of the tubular assembly comprises, by weight percentage, 0.065% C, 1.44% Mn, 0.01% P, 0.002% S, 0.24% Si, 0.01% Cu, 0.01% Ni, 0.02% Cr, 0.05% V, 0.01% Mo, 0.01% Nb, and 0.01% Ti.

747. The apparatus of claim 745, wherein the portion of the tubular assembly comprises, by weight percentage, 0.18% C, 1.28% Mn, 0.017% P, 0.004% S, 0.29% Si, 0.01% Cu, 0.01% Ni, 0.03% Cr, 0.04% V, 0.01% Mo, 0.03% Nb, and 0.01% Ti.

748. The apparatus of claim 745, wherein the portion of the tubular assembly comprises, by weight percentage, 0.08% C, 0.82% Mn, 0.006% P, 0.003% S, 0.30% Si, 0.06% Cu, 0.05% Ni, 0.05% Cr, 0.03% V, 0.03% Mo, 0.01% Nb, and 0.01% Ti.

749. The apparatus of claim 745, wherein the portion of the tubular assembly comprises a microstructure comprising one or more of the following: martensite, pearlite, vanadium carbide, nickel carbide, or titanium carbide.

750. The apparatus of claim 745, wherein the portion of the tubular assembly comprises a microstructure comprising one or more of the following: pearlite or pearlite striation.

751. The apparatus of claim 745, wherein the portion of the tubular assembly comprises a microstructure comprising one or more of the following: grain pearlite, widmanstatten martensite, vanadium carbide, nickel carbide, or titanium carbide.

752. The apparatus of claim 745, wherein the portion of the tubular assembly comprises a microstructure comprising one or more of the following: ferrite, grain pearlite, or martensite.

753. The apparatus of claim 745, wherein the portion of the tubular assembly comprises a microstructure comprising one or more of the following: ferrite, martensite, or bainite.

754. The apparatus of claim 745, wherein the portion of the tubular assembly comprises a microstructure comprising one or more of the following: bainite, pearlite, or ferrite.

755. The apparatus of claim 745, wherein the portion of the tubular assembly comprises a yield strength of about 67 ksi and a tensile strength of about 95 ksi.

756. The apparatus of claim 745, wherein the portion of the tubular assembly comprises a yield strength of about 82 ksi and a tensile strength of about 130 ksi.

757. The apparatus of claim 745, wherein the portion of the tubular assembly comprises a yield strength of about 60 ksi and a tensile strength of about 97 ksi.

758. An expandable tubular member comprising a steel alloy comprising: 0.07% Carbon, 1.64% Manganese, 0.011% Phosphor, 0.001% Sulfur, 0.23% Silicon, 0.5% Nickel, 0.51% Chrome, 0.31% Molybdenum, 0.15% Copper, 0.021% Aluminum, 0.04% Vanadium, 0.03% Niobium, and 0.007% Titanium.

759. An expandable tubular member comprising a collapse strength of approximately 70 ksi and comprising: 0.07% Carbon, 1.64% Manganese, 0.011% Phosphor, 0.001% Sulfur, 0.23% Silicon, 0.5% Nickel, 0.51% Chrome, 0.31% Molybdenum, 0.15% Copper, 0.021% Aluminum, 0.04% Vanadium, 0.03% Niobium, and 0.007% Titanium, wherein, upon radial expansion and plastic deformation, the collapse strength increases to approximately 110 ksi.

760. An expandable tubular member comprising:
an outer surface; and
means for increasing the collapse strength of a tubular assembly when the

expandable tubular member is radially expanded and plastically deformed against a preexisting structure, the means coupled to the outer surface.

761. The tubular member of claim 760 wherein the means comprises a coating comprising a soft metal.
762. The tubular member of claim 760 wherein the means comprises a coating comprising aluminum.
763. The tubular member of claim 760 wherein the means comprises a coating comprising aluminum and zinc.
764. The tubular member of claim 760 wherein the means comprises a coating comprising plastic.
765. The tubular member of claim 760 wherein the means comprises a material wrapped around the outer surface of the tubular member.
766. The tubular member of claim 765 wherein the material comprises a soft metal.
767. The tubular member of claim 765 wherein the material comprises aluminum.
768. The tubular member of claim 760 wherein the means comprises a coating of varying thickness.
769. The tubular member of claim 760 wherein the means comprises a non uniform coating.
770. The tubular member of claim 760 wherein the means comprises a coating having multiple layers.
771. The tubular member of claim 770 wherein the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof.
772. A preexisting structure for accepting an expandable tubular member comprising:
a passage defined by the structure;

an inner surface on the passage; and
means for increasing the collapse strength of a tubular assembly when an expandable tubular member is radially expanded and plastically deformed against the preexisting structure, the means coupled to the inner surface.

773. The structure of claim 772 wherein the means comprises a coating comprising a soft metal.

774. The structure of claim 772 wherein the means comprises a coating comprising aluminum.

775. The structure of claim 772 wherein the coating comprises aluminum and zinc.

776. The structure of claim 772 wherein the means comprises a coating comprising a plastic.

777. The structure of claim 772 wherein the means comprises a coating comprising a material lining the inner surface of the tubular member.

778. The structure of claim 777 wherein the material comprises a soft metal.

779. The structure of claim 777 wherein the material comprises aluminum.

780. The tubular member of claim 772 wherein the means comprises a coating of varying thickness.

781. The tubular member of claim 772 wherein the means comprises a non uniform coating.

782. The tubular member of claim 772 wherein the means comprises a coating having multiple layers.

783. The tubular member of claim 782 wherein the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof.

784. An expandable tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - means for increasing the collapse strength of the assembly when the expandable tubular member is radially expanded and plastically deformed against the structure, the means positioned between the expandable tubular member and the structure.
785. The assembly of claim 784 wherein the structure comprises a wellbore casing.
786. The assembly of claim 784 wherein the structure comprises a tubular member.
787. The assembly of claim 784 wherein the means comprises an interstitial layer comprising a soft metal.
788. The assembly of claim 784 wherein the means comprises an interstitial layer comprising aluminum.
789. The assembly of claim 784 wherein the means comprises an interstitial layer comprising aluminum and zinc.
790. The assembly of claim 784 wherein the means comprises an interstitial layer comprising a plastic.
791. The assembly of claim 784 wherein the means comprises an interstitial layer comprising a material wrapped around an outer surface of the expandable tubular member.
792. The assembly of claim 791 wherein the material comprises a soft metal.
793. The assembly of claim 791 wherein the material comprises aluminum.
794. The assembly of claim 784 wherein the means comprises an interstitial layer comprising a material lining an inner surface of the structure.
795. The assembly of claim 794 wherein the material comprises a soft metal.

796. The assembly of claim 794 wherein the material comprises aluminum.
797. The assembly of claim 784 wherein the means comprises an interstitial layer of varying thickness.
798. The assembly of claim 784 wherein the means comprises a non uniform interstitial layer.
799. The assembly of claim 784 wherein the means comprises an interstitial layer having multiple layers.
800. The assembly of claim 799 wherein the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof.
801. The assembly of claim 784 wherein the structure is in circumferential tension.
802. A tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 20% greater than the collapse strength without the interstitial layer.
803. The assembly of claim 802 wherein the structure comprises a wellbore casing.
804. The assembly of claim 802 wherein the structure comprises a tubular member.
805. The assembly of claim 802 wherein the interstitial layer comprises aluminum.
806. The assembly of claim 802 wherein the interstitial layer comprises aluminum and zinc.
807. The assembly of claim 802 wherein the interstitial layer comprises plastic.
808. The assembly of claim 802 wherein the interstitial layer has a varying thickness.
809. The assembly of claim 802 wherein the interstitial layer is non uniform.

810. The assembly of claim 802 wherein the interstitial layer comprises multiple layers.
811. The assembly of claim 810 wherein the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof.
812. The assembly of claim 802 wherein the structure is in circumferential tension.
813. A tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 30% greater than the collapse strength without the interstitial layer.
814. The assembly of claim 813 wherein the structure comprises a wellbore casing.
815. The assembly of claim 813 wherein the structure comprises a tubular member.
816. The assembly of claim 813 wherein the interstitial layer comprises aluminum.
817. The assembly of claim 813 wherein the interstitial layer comprises aluminum and zinc.
818. The assembly of claim 813 wherein the interstitial layer comprises plastic.
819. The assembly of claim 813 wherein the interstitial layer has a varying thickness.
820. The assembly of claim 813 wherein the interstitial layer is non uniform.
821. The assembly of claim 813 wherein the interstitial layer comprises multiple layers.
822. The assembly of claim 821 wherein the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof.
823. The assembly of claim 813 wherein the structure is in circumferential tension.

824. A tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 40% greater than the collapse strength without the interstitial layer.
825. The assembly of claim 824 wherein the structure comprises a wellbore casing.
826. The assembly of claim 824 wherein the structure comprises a tubular member.
827. The assembly of claim 824 wherein the interstitial layer comprises aluminum.
828. The assembly of claim 824 wherein the interstitial layer comprises aluminum and zinc.
829. The assembly of claim 824 wherein the interstitial layer comprises plastic.
830. The assembly of claim 824 wherein the interstitial layer has a varying thickness.
831. The assembly of claim 824 wherein the interstitial layer is non uniform.
832. The assembly of claim 824 wherein the interstitial layer comprises multiple layers.
833. The assembly of claim 832 wherein the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof.
834. The assembly of claim 824 wherein the structure is in circumferential tension.
835. A tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - an interstitial layer positioned between the structure and expandable tubular member, wherein the collapse strength of the assembly with the interstitial layer is at least 50% greater than the collapse strength without the interstitial layer.
836. The assembly of claim 835 wherein the structure comprises a wellbore casing.

837. The assembly of claim 835 wherein the structure comprises a tubular member.
838. The assembly of claim 835 wherein the interstitial layer comprises aluminum.
839. The assembly of claim 835 wherein the interstitial layer comprises aluminum and zinc.
840. The assembly of claim 835 wherein the interstitial layer comprises plastic.
841. The assembly of claim 835 wherein the interstitial layer has a varying thickness.
842. The assembly of claim 835 wherein the interstitial layer is non uniform.
843. The assembly of claim 835 wherein the interstitial layer comprises multiple layers.
844. The assembly of claim 843 wherein the multiple layers are selected from the group consisting of a soft metal, a plastic, a composite material, and combinations thereof.
845. The assembly of claim 835 wherein the structure is in circumferential tension.
846. An expandable tubular assembly comprising:
 - an outer tubular member comprising a steel alloy and defining a passage;
 - an inner tubular member comprising a steel alloy and positioned in the passage; and
 - an interstitial layer between the inner tubular member and the outer tubular member, the interstitial layer comprising an aluminum material lining an inner surface of the outer tubular member, whereby the collapse strength of the assembly with the interstitial layer is greater than the collapse strength of the assembly without the interstitial layer.
847. A method for increasing the collapse strength of a tubular assembly comprising:
 - providing a preexisting structure defining a passage therein;
 - providing an expandable tubular member;
 - coating the expandable tubular member with an interstitial material;
 - positioning the expandable tubular member in the passage defined by the preexisting structure; and

expanding the expandable tubular member such that the interstitial material engages the preexisting structure, whereby the collapse strength of the preexisting structure and expandable tubular member with the interstitial material is greater than the collapse strength of the preexisting structure and expandable tubular member without the interstitial material.

848. The method of claim 847 wherein the preexisting structure comprises a wellbore casing.
849. The method of claim 847 wherein the preexisting structure comprises a tubular member.
850. The method of claim 847 wherein the coating comprises applying a soft metal layer on an outer surface of the expandable tubular member.
851. The method of claim 847 wherein the coating comprises applying an aluminum layer on an outer surface of the expandable tubular member.
852. The method of claim 847 wherein the coating comprises applying an aluminum/zinc layer on an outer surface of the expandable tubular member.
853. The method of claim 847 wherein the coating comprises applying a plastic layer on an outer surface of the expandable tubular member.
854. The method of claim 847 wherein the coating comprises wrapping a material around an outer surface of the expandable tubular member.
855. The method of claim 847 wherein the material comprises a soft metal.
856. The method of claim 855 wherein the material comprises aluminum.
857. The method of claim 847 wherein the expanding results in the expansion of the preexisting structure.
858. The method of claim 847 wherein the expansion places the preexisting structure in circumferential tension.

859. A method for increasing the collapse strength of a tubular assembly comprising:
 - providing a preexisting structure defining a passage therein;
 - providing an expandable tubular member;
 - coating the preexisting structure with an interstitial material;
 - positioning the expandable tubular member in the passage defined by the preexisting structure; and
 - expanding the expandable tubular member such that the interstitial material engages the expandable tubular member, whereby the collapse strength of the preexisting structure and expandable tubular member with the interstitial material is greater than the collapse strength of the preexisting structure and expandable tubular member without the interstitial material.
860. The method of claim 859 wherein the preexisting structure is a wellbore casing.
861. The method of claim 859 wherein the preexisting structure is a tubular member.
862. The method of claim 859 wherein the coating comprises applying a soft metal layer on a surface of the passage in the preexisting structure.
862. The method of claim 859 wherein the coating comprises applying an aluminum layer on a surface of the passage in the preexisting structure.
864. The method of claim 859 wherein the coating comprises applying an aluminum/zinc layer on a surface of the passage in the preexisting structure.
865. The method of claim 859 wherein the coating comprises applying a plastic layer on a surface of the passage in the preexisting structure.
866. The method of claim 859 wherein the coating comprises lining a material around a surface of the passage in the preexisting structure.
867. The method of claim 866 wherein the material comprises a soft metal.
868. The method of claim 866 wherein the material comprises aluminum.
869. The method of claim 859 wherein the expanding results in the expansion of the preexisting structure.

870. The method of claim 859 wherein the expanding places the preexisting structure in circumferential tension.
871. An expandable tubular member comprising:
 - an outer surface; and
 - an interstitial layer on the outer surface, wherein the interstitial layer comprises an aluminum material resulting in a required expansion operating pressure of approximately 3900 psi for the tubular member.
872. The assembly of claim 871 wherein the expandable tubular member comprises an expanded 7 5/8 inch diameter tubular member.
873. An expandable tubular assembly comprising:
 - an outer surface; and
 - an interstitial layer on the outer surface, wherein the interstitial layer comprises an aluminum/zinc material resulting in a required expansion operating pressure of approximately 3700 psi for the tubular member.
874. The assembly of claim 873 wherein the expandable tubular member comprises an expanded 7 5/8 inch diameter tubular member.
875. An expandable tubular assembly comprising:
 - an outer surface; and
 - an interstitial layer on the outer surface, wherein the interstitial layer comprises an plastic material resulting in a required expansion operating pressure of approximately 3600 psi for the tubular member.
876. The assembly of claim 875 wherein the expandable tubular member comprises an expanded 7 5/8 inch diameter tubular member.
877. An expandable tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 0.05 inches to 0.15 inches.

878. The assembly of claim 877 wherein the interstitial layer comprises aluminum.
879. An expandable tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 0.07 inches to 0.13 inches.
880. The assembly of claim 879 wherein the interstitial layer comprises aluminum and zinc.
881. An expandable tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 0.06 inches to 0.14 inches.
882. The assembly of claim 881 wherein the interstitial layer comprises plastic.
883. An expandable tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 1.6 mm to 2.5 mm between the structure and the expandable tubular member.
884. The assembly of claim 883 wherein the interstitial layer comprises plastic.
885. An expandable tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 2.6 mm to 3.1 mm between the structure and the expandable tubular member.

886. The assembly of claim 885 wherein the interstitial layer comprises aluminum.
887. An expandable tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage; and
 - an interstitial layer positioned between the expandable tubular member and the structure, wherein the interstitial layer has a thickness of approximately 1.9 mm to 2.5 mm between the structure and the expandable tubular member.
888. The assembly of claim 887 wherein the interstitial layer comprises aluminum and zinc.
889. An expandable tubular assembly comprising:
 - a structure defining a passage therein;
 - an expandable tubular member positioned in the passage;
 - an interstitial layer positioned between the expandable tubular member and the structure; and
 - a collapse strength greater than approximately 20000 psi.
890. The assembly of claim 889 wherein the structure comprises a tubular member comprising a diameter of approximately 9 5/8 inches.
891. The assembly of claim 889 wherein the expandable tubular member comprises a diameter of approximately 7 5/8 inches.
892. The assembly of claim 889 wherein the expandable tubular member has been expanded by at least 13%.
893. The assembly of claim 889 wherein the interstitial layer comprises a soft metal.
894. The assembly of claim 889 wherein the interstitial layer comprises aluminum.
895. The assembly of claim 889 wherein the interstitial layer comprises aluminum and zinc.
896. An expandable tubular assembly comprising:

- a structure defining a passage therein;
an expandable tubular member positioned in the passage;
an interstitial layer positioned between the expandable tubular member and the structure; and
a collapse strength greater than approximately 14000 psi.
897. The assembly of claim 896 wherein the structure comprises a tubular member comprising a diameter of approximately 9 5/8 inches.
898. The assembly of claim 896 wherein the expandable tubular member comprises a diameter of approximately 7 5/8 inches.
899. The assembly of claim 896 wherein the expandable tubular member has been expanded by at least 13%.
900. The assembly of claim 896 wherein the interstitial layer comprises a plastic.
901. A method for determining the collapse resistance of a tubular assembly comprising:
measuring the collapse resistance of a first tubular member;
measuring the collapse resistance of a second tubular member;
determining the value of a reinforcement factor for a reinforcement of the first and second tubular members; and
multiplying the reinforcement factor by the sum of the collapse resistance of the first tubular member and the collapse resistance of the second tubular member.
902. An expandable tubular assembly comprising:
a structure defining a passage therein;
an expandable tubular member positioned in the passage; and
means for modifying the residual stresses in at least one of the structure and the expandable tubular member when the expandable tubular member is radially expanded and plastically deformed against the structure, the means positioned between the expandable tubular member and the structure.
903. The assembly of claim 902 wherein the structure comprises a wellbore casing.
904. The assembly of claim 902 wherein the structure comprises a tubular member.

905. The assembly of claim 902 wherein the means comprises an interstitial layer comprising a soft metal.
906. The assembly of claim 902 wherein the means comprises an interstitial layer comprising aluminum.
907. The assembly of claim 902 wherein the means comprises an interstitial layer comprising aluminum and zinc.
908. The assembly of claim 902 wherein the means comprises an interstitial layer comprising a plastic.
909. The assembly of claim 902 wherein the means comprises an interstitial layer comprising a material wrapped around an outer surface of the expandable tubular member.
910. The assembly of claim 909 wherein the material comprises a soft metal.
911. The assembly of claim 909 wherein the material comprises aluminum.
912. The assembly of claim 902 wherein the means comprises an interstitial layer comprising a material lining an inner surface of the structure.
913. The assembly of claim 912 wherein the material comprises a soft metal.
914. The assembly of claim 912 wherein the material comprises aluminum.
915. The assembly of claim 902 wherein the means comprises an interstitial layer of varying thickness.
916. The assembly of claim 902 wherein the means comprises a non uniform interstitial layer.
917. The assembly of claim 902 wherein the means comprises an interstitial layer having multiple layers.
918. The assembly of claim 917 wherein the multiple layers are selected from the group

consisting of a soft metal, a plastic, a composite material, and combinations thereof.

919. The assembly of claim 902 wherein the structure is in circumferential tension.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

Fig. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30a

FIG. 30b

FIG. 30c

FIG. 31

FIG. 32a

FIG. 32b

FIG. 33

FIG. 34a

Fig. 34b

Fig. 34c

FIG. 35a

FIG. 35b

FIG. 36a

Fig. 36b

Fig. 36c

FIG. 37a

Fig. 37b

Fig. 37c

FIG. 38a

Fig. 38b

Fig. 38c

3900

A single line forms an arrow that points diagonally upwards and to the right from the number 3900, which is positioned below the flowchart.

FIGURE 39

FIGURE 40

FIGURE 41a

FIGURE 41b

Different Treatments for High Collapse Application

System before expansion

PVC Plastic coated pipe

Sprayed pipe

EnviroTec Global Technology LLC. Proprietary Information

FIGURE 41 C

Different Treatments for High Collapse Application

System before expansion

Sprayed pipe

FIGURE 41 d
390°^a

PVC Plastic coated pipe

FIGURE 42

FIGURE 43

FIGURE 44

FIGURE 45

FIGURE 46

FIGURE 47a

FIGURE 47b

FIGURE 48

FIGURE 49

FIGURE 50

FIGURE 51a

FIGURE 51b

Aluminum Winding Wire to filling up the Gap
between Expandable and Base Casing Pipes

FIGURE 52a

FIGURE 52b

FIGURE 52c

*Pressure Distribution for 7-5/8 Pipe Expansion
with Different Pipe Treatments*

Enviroline Global Technology LLC, Proprietary Information

FIGURE 53

Predicted Gap (Interference) between 9-5/8
Base Casing & 7-5/8 Pipe after 13.3% Expansion

Enviro Global Technology LLC, Proprietary Information

SFT. The Standard.

ENVIRONMENTAL

Predicted Gap (Interference) between 9-5/8
Base Casing & 7-5/8 Pipe after 13.3% Expansion

FIGURE 54b

ENVENTURE

SET. The Standard.

Enventure Global Technology LLC Proprietary Information

*Predicted Gap (Interference) between 9-5/8
Base Casing & 7-5/8 Pipe after 13.3% Expansion*

FIGURE 54C
EnviroLure Global Technology LLC Proprietary Information

Gap Distribution through Expanded Pipe System

FIGURE 55a

ENVVENTURE
 THE STANDARD™
 EXP 3D
 EXP 3B
 EXP 3A
 EXP 3C

Envventuro Global Technology LLC. Proprietary Information

FIGURE 556 3904a

73/86

FIGURE 56 a
FIGURE 56

Computer Modeling for Case # 1

Gap distribution

Deformed pipe after expansion

FIGURE 57b

FIGURE 57a

Computer Modeling for Case # 2

Gap distribution

7-5/8 Lsx80 X 9-5/8 P110 pipe,

14.9 % expansion

Max air gap 1.545 mm

Collapse = 13050 psi

EXP7

Computer Modeling for Case # 3

Gap distribution

7-5/8 Lsx80 X 9-5/8 P110 pipe,
13.3% expansion
Gap 1.98 mm filled up with
soft metal

Collapse = 14200 psi

Real collapse =
20,000 + psi

EXP_b

Gap Distribution of Expanded Pipe Systems

FIGURE 60a

Enviro Global Technology LLC. Proprietary Information

Gap Distribution of Expanded Pipe Systems

Envirovent Global Technology LLC. Proprietary Information

FIGURE 60b

ENVIRONMENT
SET. The Standard.

Gap Distribution of Expanded Pipe Systems

FIGURE 60c

Enviro Global Technology LLC, Proprietary Information

Wall Thickness Distribution of Inner Pipe

FIGURE 61a

Wall Thickness Distribution of Inner Pipe

Enventure Global Technology LLC. Proprietary Information

FIGURE 616

Wall Thickness Distribution of Inner Pipe

Enventure Global Technology LLC. Proprietary Information

FIGURE 61c

Wall Thickness Distribution of Outer Pipe

Envventure Global Technology LLC. Proprietary Information

FIGURE 62c

ENVVENTURE
SET. The Standard®

Computer Modeling for Case # 4

7-5/8 Lsx80 X 9-5/8 P110 pipe,

13.3% expansion

Gap 1.98 mm after treatment

Inner pipe collapse -2600 psi

Treated pipe collapse - 6300 psi

ENVENTURE
Set The Standard™

FIGURE 63

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.