Algorithm Analysis and Design (CS1.301)

Monsoon 2021, IIIT Hyderabad 28 August, Saturday (Lecture 4)

Divide and Conquer

This technique has been used to solve the problem of integer multiplication (lecture 3). Other examples of this are merge sort, Strassen's matrix multiplication and order statistics.

Master Theorem

If

$$T(n) = aT\left(\left\lceil\frac{n}{b}\right\rceil\right) + O(n^d)$$

for some $a > 0, b > 1, and d \ge 0$, then

$$T(n) = \begin{cases} O(n^d) & d > \log_b a \\ O(n^d \log n) & d = \log_b a \\ O(n^{\log_b a}) & d < \log_b a \end{cases}$$

To prove this, consider the branches of computation. Each node splits into a branches of size $\frac{n}{b}$ each. Thus, the tree has a height of $\log_b n$ and a width of $a^{\log_b n}$.

Therefore, at the k^{th} level, there are a^k nodes and the work done is

$$a^k \times O\left(\left(\frac{n}{b^k}\right)^d\right),$$

which is the same as

$$O(n^d) \times \left(\frac{a}{b^d}\right)^k$$
.

The total work done is then a summation of a geometric sequence with first term n^d and common ratio $\frac{a}{h^d}$.

Figure 1: Branching

If the ratio is less than 1, the sum remains $O(n^d)$. If the ratio is greater than one, the sum is given by its last term

$$n^d \times \left(\frac{a}{b^d}\right)^{\log_b n} = n^{\log_b a}.$$

If the ratio is exactly 1, all $O(\log n)$ terms are $O(n^d)$.

Merge Sort

This algorithm splits the list into two equal halves, recursively sorts each half and then merges the two sorted sub-lists.

We know that merging is linear in n and there are two recursive calls. Therefore $T(n) = 2T\left(\frac{n}{2}\right) + O(n)$, which by the Master Theorem gives us $T(n) \in O(n \log n)$.

Merge sort can be recursive or iterative. Its recursive implementation is

```
function mergesort(a[1..n])
  if n = 1: return a
  else: return merge(mergesort(a[1..(n/2)]), mergesort(a[(n/2)..n]))
```

To convert this to an iterative solution, we use a queue:

```
Q = []
for i = 1 to n: inject(Q, [a[i]])
while |Q| > 1: inject(Q, merge(eject(Q), eject(Q)))
return eject(Q)
```

It is provable that no comparison-based sorting algorithm can be faster than $O(n \log n)$, *i.e.*, comparison-based sorting algorithms all have time complexities in $\Omega(n \log n)$.

Note that there are n! permutations of a list of n numbers. Let them be ordered from 0 to n!-1. If a sorting algorithm does k comparisons to sort the numbers, then k bits can be used to represent a number between 0 and n!-1. Hence k is at least $\log_2(n!)$. This, in turn, is bounded below by $n \log n$.

Matrix Multiplication

The naïve matrix multiplication takes $O(n^3)$ time, but this is not optimal. Strassen's algorithm allows us to achieve $O(n^{\log 7})$.

To multiply two $n \times n$ matrices X and Y, we first divide them into four $\frac{n}{2} \times \frac{n}{2}$ sub-matrices;

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}.$$

Then we know that

$$XY = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}.$$

This tells us that $T(n) = 8T(\frac{n}{2}) + O(n^2)$, which is $O(n^3)$.

However, not all eight products need to be calculated. Strassen showed how to find all terms of the product with 7 multiplications:

$$XY = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P1 + P_5 - P_3 - P_7 \end{bmatrix},$$

$$P_1 = A(F - H)$$

$$P_2 = (A + B)H$$

$$P_3 = (C+D)E$$

$$P_4 = D(G - E$$

$$P_5 = (A+D)(E+H)$$

$$P_6 = (B - D)(G + H)$$

$$\begin{aligned} F_3 &= (C+D)E \\ P_4 &= D(G-E) \\ P_5 &= (A+D)(E+H) \\ P_6 &= (B-D)(G+H) \\ P_7 &= (A-C)(E+F). \end{aligned}$$

Thus, we get $T(n) \in O(n^{\log_2 7})$.

Finding Median

Clearly, it is possible to sort the input in $O(n \log n)$ time and identify the median. However, it is possible to find the median in O(n) time.

We will generalise this problem to the order statistics problem – given a list of S numbers and an integer k, output the k^{th} ranked element of S.

For any number v, let S be split into three categories – elements smaller than v (S_L) , elements equal to $v(S_v)$, and elements greater than $v(S_R)$. Now, clearly we can say that

$$\operatorname{selection}(S,k) = \begin{cases} \operatorname{selection}(S_L,k) & k \leq |S_L| \\ v & |S_L| < k \leq |S_L| + |S_v| \\ \operatorname{selection}(S_R,k-|S_L|-|S_v|) & k > |S_L| + |S_v| \end{cases}.$$

The effect of the split is to reduce the number of elements from |S| to This depends on the value of v, which there are two $\max\{|S_L|, |S_R|\}.$ approaches to choosing – a deterministic and a randomised approach.

The deterministic choice of n relies on finding the median of medians; divide the n elements into groups of 5, find the median of each of these groups and find the median x of these $\frac{n}{5}$ medians (recursively). Let this number be v.

Half of the $\frac{n}{5}$ medians are greater than x; this allows us to conclude that at least

$$3\left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil - 2\right) \ge \frac{3n}{10} - 6$$

numbers are greater than x in the array.

From this, we get

$$T(n) = \begin{cases} O(1) & n < 140 \\ T\left(\left\lceil \frac{n}{5} \right\rceil \right) + T\left(\left\lceil \frac{7n}{10} \right\rceil + 6 \right) + O(n) & n \ge 140 \end{cases}.$$

Instead of 140, any number greater than 70 can be used as the lower bound for the second case. This number can be derived from the constraint that $T(n) \leq T\left(\left\lceil\frac{n}{5}\right\rceil\right) + T\left(\left\lceil\frac{7n}{10}\right\rceil + 6\right) + O(n)$.