1. Calculations of "sliding RMS":

Let's say our sliding window is of size n and currently we are at $data[n+i] = x_{n+i}$.

Define R_i as the RMS of size n from x_{i+1} to our current value x_{n+i} . This means:

$$R_i^2 = \frac{1}{n} \sum_{k=i+1}^{n+i} x_k^2 = \frac{1}{n} \times \left[x_{i+1}^2 + x_{i+2}^2 + \dots + x_{n+i-1}^2 + x_{n+i}^2 \right]$$

And with the new datum coming in from the queue **Q** as $data[n+i+1] = x_{n+i+1}$, in which we perform

Enqueue at the same time as calculating the new RMS value R_{i+1} , the square of which is:

$$R_{i+1}^2 = \frac{1}{n} \sum_{k=i+2}^{n+i+1} x_k^2 = \frac{1}{n} \times \left[x_{i+2}^2 + x_{i+3}^2 + \dots + x_{n+i}^2 + x_{n+i+1}^2 \right]$$

$$= \frac{1}{n} \times \left[x_{i+1}^2 + x_{i+2}^2 + x_{i+3}^2 + \dots + x_{n+i}^2 \right] + \frac{1}{n} \times \left[-x_{i+1}^2 + x_{n+i+1}^2 \right]$$

$$= R_i^2 - \frac{x_{i+1}^2}{n} + \frac{x_{n+i+1}^2}{n}$$

Hence
$$R_{i+1} = \sqrt{R_i^2 - \frac{x_{i+1}^2}{n} + \frac{x_{n+i+1}^2}{n}}$$

To generalize, as the new datum **Newest** comes in, we can *Enqueue* to **Q** as we calculate the new RMS value.

The oldest data in the queue **Q** is x_{i+1} , which we can pop out as: **Oldest** = **Q**. *Dequeue*.

So we can calculate the current RMS value $RMS_{current}$ from the previous $RMS_{previous}$, and the

scaled newest squared
$$NSq = \frac{Newest^2}{n}$$
 and the scaled oldest squared $OSq = \frac{Oldest^2}{n}$ as:
$$RMS_{current} = \sqrt{RMS_{previous}^2 - OSq + NSq}$$

2. Calculations of STFT and considerations:

Let's say we want to calculate the Fourier Transform (**F**)of an epoch size N as $X = \{x_i\}$ with $i = \overline{1, N}$.

Define taper operator as W with a given taper window w. Applying the taper window means:

$$A \stackrel{\mathbf{W}}{\Rightarrow} \mathbf{W}(A) = \{a_i \times w_i\}$$
 with any given signal array size $N: A = \{a_i\}, \qquad i = \overline{1, N}$.

Define normalization operator as **Z** similar to calculation of the standard score:

$$A \stackrel{\mathbf{Z}}{\Rightarrow} \mathbf{Z}(A) = \left\{ \frac{a_i - \mu_A}{\sigma_A} \right\}$$
 with μ_A and σ_A is the mean and standard deviation of A , respectively.

Calculating the STFT of the signal *X* can be done by applying the operator in this order: $\mathbf{S} \stackrel{\text{def}}{=} \mathbf{W} \to \mathbf{Z} \to \mathbf{F}$

$$X \stackrel{\mathbf{S}}{\Rightarrow} \mathbf{S}(X) = \mathbf{F}\{\mathbf{Z}[\mathbf{W}(X)]\}$$

In other words: apply the taper, then normalize, then calculate the Fourier Transform.

Note: I also did $\mathbf{Z} \to \mathbf{W} \to \mathbf{F}$ but the total power of some band was less stable than $\mathbf{W} \to \mathbf{Z} \to \mathbf{F}$

(per recommendation of Wim van Drongelen)

After STFT we obtain the frequency magnitude spectrum S = S[f] = |S(X)| with f as frequency.

Then we calculate the power spectral density (PSD) $P = P[f] = \alpha \times \{S[f]\}^2 = \alpha \times S^2$

with scaling (optional) factor
$$\alpha = \frac{1}{F_s \times \sum W^2} = \frac{1}{F_s \times \sum_{i=1}^N w_i^2}$$
 and F_s as sampling rate of X .

Then to calculate the power of a limited band (LBP) of a frequency band $\boldsymbol{b} = [f_l, f_h]$:

$$\mathbf{LBP}_{b} = \sum_{f=f_{l}}^{f=f_{h}} P[f]$$

3. Evaluation of alarm:

For a certain calculation **C** of the signal like RMS or LBP applied on signal epoch *X* to result in **c**,

we predefine the alarm thresholds $\mathbf{w_{th}^C} = [w_L, w_U]$ and $\mathbf{d_{th}^C} = [d_L, d_U]$

for instantaneous update of alarm level $L = \{Normal, Warning, Danger\}$

and the requirement of the threshold range is (strict order): $d_L < w_L < w_U < d_U$

Then the instantanous alarm level is:

$$\begin{cases} \textit{Danger} & \text{if } \mathbf{c} < d_L \text{ or if } \mathbf{c} > d_U \\ \textit{Warning} & \text{if } d_L < \mathbf{c} < w_L \text{ or if } w_U < \mathbf{c} < d_U \\ \textit{Normal} & \text{otherwise } (w_L < \mathbf{c} < w_U) \end{cases}$$