Multi-variable Functions

Question 1:

Draw the domains of the following multi-variable functions. For curves, use solid lines to include the curve as part of the domain, and use dashed lines to exclude the curve from the domain.

•
$$f(x,y) = \frac{\sqrt{-x^2+4x}}{\sqrt{9-x^2-y^2}}$$

•
$$f(x,y) = \ln(x+y-x^2)$$

•
$$f(x,y) = \frac{\ln(x)}{xy + 2x - 3y - 6}$$

Question 2:

Compute the following limits:

•
$$\lim_{t\to -1} \begin{bmatrix} \sqrt{t+3} \\ \frac{t^2}{t+2} \\ \ln(t+5) \end{bmatrix}$$

•
$$\lim_{(x,y)\to(-1,-2)} \frac{\sqrt{x+y+5}}{x+y+4}$$

Question 3:

Define the two-variable function $f(x,y) = \frac{xy}{x^2+y^2}$.

part 3a:

Compute the following partial derivatives:

$$\frac{\partial f}{\partial x}$$
 $\frac{\partial f}{\partial y}$ $\frac{\partial^2 f}{\partial x^2}$ $\frac{\partial^2 f}{\partial y^2}$ $\frac{\partial^2 f}{\partial y \partial x}$

part 3b:

Compute the gradient ∇f at the point $(x_0, y_0) = (3, 1)$. Compute the equation of the tangent plane to the surface z = f(x, y) that passes through the point $(x_0, y_0, f(x_0, y_0))$. Given a direction of $\mathbf{v} = \langle 3, -4 \rangle$, what is the "directional derivative" of f(x, y) at (x_0, y_0) in the direction of \mathbf{v} ?

Question 4:

In the flow-chart (arithmetic circuit) above, the output quantity s is being computed from input quantities t_1 and t_2 . There are the internal variables u_1 , u_2 , u_3 , and u_4 .

part 4a:

Build expressions for u_1 , u_2 , u_3 , u_4 , and s from the input parameters t_1 and t_2 , and the functions a(x), b(x,y), and c(x,y).

part 4b:

Without any knowledge of a(x), b(x,y), or c(x,y), derive expressions for the following partial derivatives: $\frac{\partial u_1}{\partial t_1}$, $\frac{\partial u_2}{\partial t_2}$, $\frac{\partial u_2}{\partial t_1}$, and $\frac{\partial u_2}{\partial t_2}$.

Derive expressions for the following partial derivatives: $\frac{\partial u_3}{\partial t_1}$, $\frac{\partial u_3}{\partial t_2}$, $\frac{\partial u_4}{\partial t_1}$, and $\frac{\partial u_4}{\partial t_2}$ in terms of the partial derivatives computed previously.

Derive expressions for the following partial derivatives: $\frac{\partial s}{\partial t_1}$, and $\frac{\partial s}{\partial t_2}$ in terms of the partial derivatives computed previously.

part 4c:

Now let a(x) = 1 - x, b(x,y) = xy, and c(x,y) = x + y - xy. Compute all first-order derivatives: $\frac{da}{dx}$, $\frac{\partial b}{\partial x}$, $\frac{\partial c}{\partial y}$, and $\frac{\partial c}{\partial y}$.

part 4d:

From the results of the previous sections, compute at $(t_1, t_2) = (3/4, 1/4)$ the output s, as well as the partial derivatives $\frac{\partial s}{\partial t_1}$ and $\frac{\partial s}{\partial t_2}$.

Question 5:

For each of the following two variable functions f(x,y), find and classify all of the critical points:

•
$$f(x,y) = -11x^2 + 6xy - 19y^2 + 78x - 94y - 211$$

- $f(x,y) = \frac{1}{3}x^3 \frac{7}{18}x^2 \frac{2}{3}xy + y^2 \frac{10}{9}x \frac{8}{3}y + \frac{16}{9}$
- $f(x,y) = \frac{1}{3}x^3 + \frac{7}{16}x^2 \frac{3}{2}xy y^2 \frac{3}{8}x + \frac{7}{2}y \frac{49}{16}$
- $f(x,y) = \frac{1}{3}y^3 x^2 \frac{3}{2}xy + \frac{7}{16}y^2 \frac{5}{2}x \frac{39}{8}y \frac{25}{16}$
- $f(x,y) = \frac{5}{4}x^4 \frac{1}{3}x^3 2x^2y 2x^2 + y^2 + 4x$