RF Exposure

Test Report #:	3115787	Test Area:		Temperature:	20	°C
Test Method:	FCC CFR47 Part 1.1310	Test Date:	13-Mar-2007	Relative Humidity:	30.2	%
EUT Model #:	F series	EUT Power:	12.5-13.5 VDC vehicle	Air Pressure:	102	kPa
EUT Serial #:	1113 pager and pod			•		
Manufacturer:	Ray Allen					
EUT Description:	Tactical K9 Deployment Heat Alarm System with pager			-		
Notes: Testing for RAK9POD						

The following limit was calculated from table 1 (B) Limits for General Population/Uncontrolled Exposure in FCC part 1.1310:

L=f/1500

Using the lowest transmit frequency from the EUT of 902MHz

L=0.601mW/cm²

The following calculation was used to determine compliance to the above limit. The calculation is from FCC OET bulletin 65.

The following assumes the gain of the antenna to be ≤ 1 .

 $S=PG/4\pi R^2$

Where:

S=power density (in appropriate units, e.g. mW/cm²)

R=distance to the center of radiation of the antenna (appropriate unit, e.g., cm)

In this case 20cm will be used.

P=power input to the antenna

In this case 12.6mW will be used.

G=power gain of the antenna

In this case 1.58 will be used.

S=.0039 mW/cm²