ALGEBRA

- 1. $(\sec^2 \theta 1)(\csc^2 \theta 1)$ is equal to:
 - (a) -1
 - (b) 1
 - (c) 0
 - (d) 2
- 2. The roots of equation

$$x^2 + 3x - 10 = 0 ag{1}$$

are:

- (a) (2, -5)
- (b) (-2,5)
- (c) (2,5)
- (d) (-2, -5)
- 3. If α , β are zeroes of the polynomial $x^2 1$, then value of $(\alpha + \beta)$ is:
 - (a) 2
 - (b) 1
 - (c) 1
 - (d) 0

4. If α , β are the zeroes of the polynomial

$$p(x) = 4x^2 - 3x - 7 (2)$$

,then $\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$ is equal to:

- (a) $\frac{7}{3}$
- (b) $\frac{-7}{3}$
- (c) $\frac{3}{7}$
- (d) $\frac{-3}{7}$

5. Find the sum and product of the roots of the quadratic equation

$$2x^2 - 9x + 4 = 0 ag{3}$$

6. Find the discriminant of the quadratic equation

$$4x^2 - 5 = 0 (4)$$

and hence comment on the nature of roots of the equation.

7. Evaluate $2 \sec^2 \theta + 3 \csc^2 \theta - 2 \sin \theta \cos \theta$ if

$$\theta = 45^{\circ} \tag{5}$$

8. If

$$\sin\theta - \cos\theta = 0 \tag{6}$$

,then find the value of $\sin^4 \theta + \cos^4 \theta$.