Prathmesh Savale

https://praths007.github.io/ prathmesh.savale@gmail.com | +91 8087744932

Data Science aficionado with hands-on experience in predictive modeling and insight generation using applied statistics, machine learning, and data mining. Adept in using big data tools for building data pipelines. Experienced in open source contribution.

SKILLS

PROGRAMMING

Python and PySpark C and C++ R SQL and HiveQL Bash

MACHINE LEARNING

Regression
Decision Tree and Ensembles
Support Vector Machines
Cluster Analysis
Time Series Analysis
Neural Networks
Reinforcement Learning

TOOLS

Teradata Spark and Hadoop Git and Github Latex Jenkins Jira

EDUCATION

PUNE UNIVERSITY

BACHELORS IN COMPUTER ENGINEERING July 2015 First Class with Distinction

CERTIFICATIONS

Coursera:// Machine Learning Mu Sigma:// Decision Scientist Udemy:// Hands-On Data Science

LINKS

Github:// praths007 LinkedIn:// prathmeshsavale

EXPERIENCE

KIEWIT CORPORATION | Data Analyst | Oct 2018 - Present

- Predicting unplanned breakdown of haul trucks Predictive Maintenance
 - Built a classification framework using LSTM networks to predict unplanned breakdown of Caterpillar haul trucks at coal mines.
 - This translated to save additional cost of repairs for unplanned breakdowns and increase throughput of the mining facility.
- Forecasting gasoline and electricity consumption for private vehicles
 - Estimated depreciation of gasoline consumption and subsequent increase of electricity consumption due to the introduction of electric vehicles across all states in the US, using ARIMA and random walk models.
 - Accurate estimates of gasoline and electricity consumption helped decision-makers find the appropriate value of tax to be collected per gallon of gasoline and kilo-watt hour electricity across all states.
- Optimizing the fleet size of vehicles at construction sites
 - Built a system that uses regression and linear reward inaction to determine the optimum fleet size of vehicles used at construction sites.
 - This translated to a reduction in vehicle idle time and maintenance costs.

MU SIGMA INC. | Decision Scientist | Sep 2015 - Oct 2018

- Building sales forecasting framework | Client UK's largest retailer
 - Built a forecasting framework using ARIMA with seasonal adjustment which translated to a 5.6% increase in company level forecast accuracy.
 - The framework is responsible for producing forecasts at multiple levels (company, store, product level etc.) and is used by the commercial and finance teams for inventory, budgeting and payroll management.
 - Parallelized model building, scoring, and forecasting for ~2500 stores and ~3600 products using PySpark.
- Reducing device failure rates | Client Fortune 3 technology giant
 - Created a boosted trees ensemble to predict electronic device failures leading to a 3% reduction (9% to 6%) in failure rate.
 - Reduction in failure rate translates to cost reduction of ~1.8 million USD annually in logistics and inventory management.
 - Implemented cascading classifiers to decrease collateral damage while predicting device failures.
 - Completely automated and deployed the analytical solution using bash and Jenkins saving ~40 man-hours each week.

PERSISTENT SYSTEMS | Engineering Intern | Jun 2014 - May 2015

- Developing CUDA based image processing application
 - Developed an application using CUDA C++ to execute a content-aware image resizing algorithm called seam carving on GPUs.
 - Achieved ~7.5X acceleration in execution time using GPUs due to the high degree of parallelism of CUDA architecture.

AWARDS

2017 Top 10% of 2500 Spot Award, Mu Sigma
 2016 Top 3% of 2500 Impact Award, Mu Sigma
 2015 3rd/180 Undergraduate Engineering Class Rank