$P\check{r}iklad$ (4. – Fredholm alternative vs Lax-Milgram lemma vs minimum principe) Consider $\Omega \subset \mathbb{R}^d$ a Lipschitz domain. Let $\mathbb{A}: \Omega \to \mathbb{R}^d$ be an elliptic matrix. Assume that $\mathbf{c} \in L^{\infty}(\Omega, \mathbb{R}^d)$ and $b \geq 0$. Consider the problem

$$-\operatorname{div}(\mathbb{A}\nabla u) + bu + \mathbf{c} \cdot \nabla u = f \text{ in } \Omega, \qquad u = u_0 \text{ on } \partial\Omega.$$

a) Consider the case b = 0, $\mathbf{c} = \mathbf{o}$ and $f \in L^2(\Omega)$ fulfilling $f \ge 0$. Let $u_0 \in W^{1,2}(\Omega)$ and denote $m := \operatorname{essinf}_{\partial\Omega} u_0$. Show that the unique weak solution u satisfies $u \ge m$ almost everywhere in Ω .

Důkaz

Jak nám napovídá hint, definujeme $\varphi(x):=(u(x)-m)_-=\min(u(x)-m,0)$. Chceme $\varphi\in W_0^{1,2}$. Víme, že $u\in W^{1,2}$. Nejprve ukážeme " $\varphi\in L_2$ ": (φ je zřejmě měřitelná, neboť u je měřitelná a min(měřitelná, měřitelná) je měřitelná)

$$\int_{\Omega} |\varphi|^2 = \int_{\Omega} |(u-m)_-|^2 \le \int_{\Omega} |u-m|^2 \le \int_{\Omega} |u|^2 + |m|^2 = ||u||_2^2 + |m|^2 \cdot \lambda^d(\Omega) \le \infty,$$

jelikož $u \in L^2$ a Ω je omezená (protože je lipschitzovská).

Na další stráně ukážeme $\nabla \varphi = \chi_{\{u < m\}} \nabla u$. Tedy $\|\nabla \varphi\|_2 = \|\chi \nabla u\|_2 \le \|\nabla u\|_2$ a $\varphi \in W^{1,2}$. Následně "tr $((u-m)_-) = 0$ ": můžeme si všimnout, že tr $(\min(a,b)) = \min(\operatorname{tr}(a),\operatorname{tr}(b))$ (platí pro $W^{1,2} \cap C(\overline{\Omega})$, a spojitostí tr a min rozšíříme na $W^{1,2}$), tedy

$$\operatorname{tr}((u-m)_{-}) = \min(\operatorname{tr}(u-m), \operatorname{tr}(0)) = \min(\operatorname{tr}(u) - \operatorname{tr}(m), 0) = \min(\operatorname{tr}(u_{0}) - \operatorname{tr}(m), 0) \stackrel{\operatorname{tr}(u_{0}) \ge m}{=} 0.$$

Nyní můžeme použít φ jako testovací funkci:

$$0 \geqslant \int_{\Omega} \underbrace{f}_{\geq 0} \underbrace{\varphi}_{\leq 0} = \int_{\Omega} \mathbb{A} \nabla u \nabla \varphi = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}}^2 \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}}^2 \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}}^2 \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}}^2 \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}}^2 \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla u \left(\chi_{\{u < m\}}$$

$$= \int_{\Omega} \mathbb{A} \left(\chi_{\{u < m\}} \nabla u \right) \left(\chi_{\{u < m\}} \nabla u \right) = \int_{\Omega} \mathbb{A} \nabla \varphi \nabla \varphi \geqslant \int_{\Omega} C_1 |\nabla \varphi|^2 = C_1 \|\nabla \varphi\|_2^2 \overset{\text{Poincar\'e s } \alpha_i = 0}{\geqslant} c \|\varphi\|_{1,2} \geqslant 0.$$

Tedy $\|\varphi\|_{1,2}=0$, tudíž $\|\varphi\|_2=0$, tj. $\varphi=0$ skoro všude, a proto $u\geqslant m$ skoro všude.

 $D\mathring{u}kaz \ (\nabla \varphi = \chi_{\{u < m\}} \nabla u)$

Z charakterizace sobolevovských funkcí víme $\exists u_n \in C^{\infty}(\Omega) : u_n \stackrel{W^{1,2}}{\to} u$. Tedy $\nabla u_n \stackrel{L^2}{\to} \nabla u$ a $u_n \stackrel{L^2}{\to} u$. Navíc z omezenosti Ω a Hölderovi nerovnosti můžeme konvergenci v L^2 nahradit konvergencí v L^1 .

Označme $\varphi_n = (u_n - m)_-$. Potom

$$|\varphi_n - \varphi| = |(u_n - m)_- - (u - m)_-| \le |(u_n - m) - (u - m)| = |u_n - u|$$

(třeba rozebráním všech čtyř možností), tedy $\varphi_n \stackrel{L_1}{\to} 0$. Tudíž

$$\forall \psi \in C_0^{\infty}(\Omega) : \int_{\Omega} \varphi_n \nabla \psi \to \int_{\Omega} \varphi \nabla \psi \iff \left| \int_{\Omega} (\varphi_n - \varphi) \nabla \psi \right| \leqslant \|\varphi_n - \varphi\|_1 \cdot \|\nabla \psi\|_{\infty}.$$

Nyní použijeme na tento integrál per partes (ze spojitosti u_n jsou $\{u_n < m\}$ otevřené a $\partial \{u_n < m\} \subseteq \{u_n = m\}$):

$$\int_{\Omega} \varphi_n \nabla \psi \leftarrow \int_{\Omega} \varphi_n \nabla \psi = \int_{\Omega} (u_n - m)_- \nabla \psi = \int_{\{u_n < m\}} (u_n - m) \nabla \psi + 0 \stackrel{\text{pp}}{=}$$

$$= \int_{\partial \{u_n < m\}} (u_n - m) \psi - \int_{\{u_n < m\}} \nabla u_n \psi - \int_{\Omega} \nabla m \psi = 0 - \int_{\Omega} \chi_{\{u_n < m\}} \nabla u_n \psi - 0 =$$

$$= -\int_{\Omega} \chi_{u < m} \nabla u_n \psi + \int_{\Omega} \chi_{\{u < m \wedge u_n \geqslant m\}} \nabla u \psi - \int_{\Omega} \chi_{\{u < m \wedge u_n \geqslant m\}} (\nabla u - \nabla u_n) \psi.$$

Poslední integrál konverguje k 0, neboť

$$\left| \int_{\Omega} \chi_{\{u < m \wedge u_n \geqslant m\}} (\nabla u - \nabla u_n) \psi \right| \leqslant \int_{\Omega} |(\nabla u - \nabla u_n) \psi| \leqslant ||\nabla u - \nabla u_n||_1 \cdot ||\psi||_{\infty} \to 0,$$

druhý jde k 0, protože $u_n \stackrel{L^1}{\to} u$ nám dává, že pro každé ε je $\lambda^d(\{u_n \geqslant m \land u < m - \varepsilon\}) \to 0$. Ale protože $\lambda^d(\{u_n \geqslant m \land u < m - \varepsilon\}) \stackrel{\varepsilon \to 0}{\to} \lambda^d(\{u_n \geqslant m \land u < m\})$, tak dostáváme, že $\lambda^d(\{u < m \land u_n \geqslant m\}) \to 0$. Tedy integrujeme přes "mizející" množinu.

Nakonec třetí z těch integrálů konverguje k $-\int_{\Omega} \chi_{u < m} \nabla u \psi$, tedy $\nabla \varphi = \chi_{u < m} \nabla u$, protože

$$\left| \int_{\Omega} \chi_{u < m} (\nabla u - \nabla u_n) \psi \right| \leq \int_{\Omega} \left| (\nabla u - \nabla u_n) \psi \right| \leq \|\nabla u - \nabla u_n\|_1 \cdot \|\psi\|_{\infty}$$

b) Consider b > 0 and **c** arbitrary. Prove that for any $u_0 \in W^{1,2}(\Omega)$ and any $f \in L^2(\Omega)$ there exists a weak solution.

 $D\mathring{u}kaz$

Nejprve si podle hintu převedeme úlohu na důkaz tvrzení, že

$$-\operatorname{div}(\mathbb{A}\nabla u) + bu + \mathbf{c} \cdot \nabla u = 0 \ \text{v} \ \Omega$$

má pouze jedno řešení $u \in W_0^{1,2}(\Omega), u = 0.$

Doplňme si do zadání $a_{ij}, b \in L^{\infty}$. Pak $f - bu_0 - \mathbf{c} \cdot \nabla u_0 + \operatorname{div}(\mathbb{A}\nabla u) \in L^2$ (z Höldera a $u_0 \in W^{1,2}$, tj. $u_0 \in L^2$ a $\nabla u_0 \in L^2$).

Potom z Fredholmovy alternativy a z tvrzení (pokud tedy platí, což si dokážeme dále) plyne, že problém

$$-\operatorname{div}(\mathbb{A}\nabla u) + bu + \mathbf{c} \cdot \nabla u = f - bu_0 - \mathbf{c} \cdot \nabla u_0 + \operatorname{div}(\mathbb{A}\nabla u) \vee \Omega, \qquad u = 0 \text{ na } \partial\Omega,$$

má (právě jedno) řešení $u \in W_0^{1,2}(\Omega)$. Pokud tedy zvolíme $\tilde{u} = u + u_0$, pak \tilde{u} je slabé řešení problému

$$-\operatorname{div}(\mathbb{A}\nabla \tilde{u}) + b\tilde{u} + \mathbf{c} \cdot \nabla \tilde{u} = f \vee \Omega, \qquad \tilde{u} = u_0 \text{ na } \partial\Omega,$$

neboť "všechno" je zde lineární, takže "přičtením" u_0 k u na levé straně se přičtou odpovídající členy na pravé.

 $D\mathring{u}kaz$

Mějme u řešící $-\operatorname{div}(\mathbb{A}\nabla u) + bu + \mathbf{c} \cdot \nabla u = 0 \text{ v } \Omega.$

Nyní dokážeme, že pro nějaké M je |u| < M skoro všude, tedy $u \in L^{\infty}(\Omega)$ a $||u||_{L^{\infty}} \le M$. Pokud d = 1, tak je z věty o vnoření u spojité, takže se omezenost může "rozbíjet" pouze na hranici Ω , ale my víme, že tru = 0. Pro tuto část důkazu tedy předpokládejme d > 1.

Ať M>0 a $\varphi_M:=(u-M)_+$. Protože je $u\in W^{1,2}_0(\Omega)$, tak $\varphi_M\in W^{1,2}(\Omega)$ ze stejných důvodů jako v a), $\nabla\varphi_M=\nabla u\cdot\chi_{u\geqslant M}$, a navíc $\varphi_M\in W^{1,2}_0$, neboť u zůstává 0 tam, kde 0 bylo.

Tedy ho můžeme použít jako testovací funkci: $\int \mathbb{A} \nabla u \cdot \nabla \varphi_M + bu\varphi_M + \mathbf{c} \cdot \nabla u\varphi_M = \int 0 \cdot \varphi_M$. První a třetí člen už je na u < M stejně nulový, tedy můžeme psát

$$\int \mathbb{A} \nabla \varphi_M \cdot \nabla \varphi_M + bu \varphi_M = -\int \mathbf{c} \cdot \nabla \varphi_M \varphi_M.$$

Levou stranu můžeme zezdola odhadnout pomocí toho, že $b>0, \varphi_M\geqslant 0$ a tam, kde $\varphi_M\neq 0, u\geqslant M>0$. Navíc A je eliptické, takže

$$c_1 \|\nabla \varphi_M\|_2^2 = \int c_1 \|\nabla \varphi_M\|_{\mathbb{R}^d}^2 \leqslant \int \mathbb{A} \nabla \varphi_M \cdot \nabla \varphi_M + bu\varphi_M = -\int \mathbf{c} \cdot \nabla \varphi_M \varphi_M.$$

Levou část můžeme shora odhadnout pomocí dvakrát použité Hölderovy nerovnosti:

$$-\int \mathbf{c} \cdot
abla arphi_M arphi_M \leqslant \|\mathbf{c}\|_{\infty} \cdot \|
abla arphi_M\|_2 \cdot \|arphi_M\|_2.$$

Nyní znovu použijeme Hölderovu nerovnost, tentokrát na $\|\varphi_M\|_2$. Protože ψ je na u < M nulové, můžeme psát (jak bylo na přednášce)

$$\|\varphi_M\|_2 = \sqrt{\int \varphi_M^2} = \sqrt{\int \varphi_M^2 \chi_{u \geqslant M}} \leqslant \sqrt{\left(\int \varphi_M^{2p}\right)^{\frac{1}{p}} \cdot \left(\int \chi_{u \geqslant M}^q\right)^{\frac{1}{q}}} = \|\varphi_M\|_{2p} \cdot \left(\int \chi_{u \geqslant M}\right)^{\frac{1}{2q}}$$

kde $\frac{1}{p} + \frac{1}{q} = 1$, avšak musíme použít správné $p \neq 1$ (p = 1 nám nedává nic nového), aby $\varphi_M \in L^{2p}$. To můžeme z věty o vnoření Sobolevových prostorů: pokud d = 2, tak $W^{1,2}(\Omega) \hookrightarrow L^r$ pro r jakékoliv, takže není co řešit. Pokud d > 2, tak můžeme vybrat $2p = r = \frac{d \cdot 2}{d-2} = \frac{2}{1-(2/d)} > 2 \ (p > 1)$.

Nakonec $\infty > \int u \geqslant \int_{u>M} u \geqslant \int_{u>M} M$, tedy míra $\{u>M\}$ se musí pro rostoucí M zmenšovat k nule. Takže můžeme zvolit libovolně malé $\left(\int \chi_{u\geqslant M}\right)^{\frac{1}{2q}}$ v nerovnosti:

$$c_1 \cdot C \cdot \|\nabla \varphi_M\|_2 \cdot \|\varphi_M\|_{2p} \lesssim c_1 \|\nabla \varphi_M\|_2^2 \leqslant -\int \mathbf{c} \cdot \nabla \varphi_M \varphi_M \leqslant \|\mathbf{c}\|_{\infty} \cdot \|\nabla \varphi_M\|_2 \cdot \|\varphi_M\|_{2p} \left(\int \chi_{u \geqslant M}\right)^{\frac{1}{q}},$$

tedy $\|\nabla \varphi_M\|_2 = 0$ (nebo $\|\varphi_M\|_2 = 0$, ale to bychom byli hotovi). Tudíž se nám celá rovnost s testovací funkcí φ_M stala $\int b \cdot u \cdot \varphi_M = 0$, ale b > 0, u > 0 (kde $\varphi_M \neq 0$), takže musí být $\varphi_M = 0$ skoro všude, tedy $u \leq M$ skoro všude.

Důkaz

Úplně stejně dostaneme $u \ge -M'$ pro nějaké M' > 0 z $\varphi_{M'} = (u + M)_-$, jelikož pak

$$\int \mathbb{A} \nabla \varphi_{M'} \cdot \nabla \varphi_{M'} + b(-u)(-\varphi_{M'}) = -\int \mathbf{c} \cdot \nabla \varphi_{M'} \varphi_{M'}.$$

má úplně stejné vlastnosti jako rovnice výše, jelikož v prvním členu je druhá mocnina, v druhém je to zase kladné a vpravo omezujeme vlastně absolutní hodnotu (víme, že pravá strana je nezáporná, takže i levá musí být) normami, takže na znamínkách nezáleží.

 $D\mathring{u}kaz$

Nyní máme tedy dokázáno, že u je "omezená skoro všude", tedy $u \in L^{\infty}$. Tedy i $u^k \in L^{\infty}$ pro $k \in \mathbb{N}$, navíc $\nabla u^k = k \cdot u^{k-1} \nabla u$, protože $\nabla (u \cdot \ldots \cdot u) = u \nabla (u \cdot \ldots \cdot u) + (\nabla u)(u \cdot \ldots \cdot u)$ a $u^{k-1} \in L^{\infty}$, tedy $u^k \in W^{1,2}(\Omega)$. Nakonec tr $u^k|_{\partial\Omega} = 0$, neboť

$$\operatorname{tr} u^k|_{\partial\Omega} = u^k|_{\partial\Omega} = (u|_{\partial\Omega})^k = (\operatorname{tr} u|_{\partial\Omega})^k = 0^k = 0.$$

Tedy $u^k \in W_0^{1,2}$. Použijme u^k pro k liché jako testovací funkci:

$$\int \mathbb{A} \nabla u \cdot \nabla u^k = \int k \cdot u^{k-1} \mathbb{A} \nabla u \cdot \nabla u = \int -bu \cdot u^k - u^k \mathbf{c} \cdot \nabla u.$$

Na levou stranu můžeme použít elipticitu \mathbb{A} (existuje $c_1 > 0$, že $\mathbb{A}\mathbf{v}\mathbf{v} \ge c_1|\mathbf{v}|$), napravo je $-bu^{k+1}$ určitě záporné, tedy ji můžeme zvětšit přidáním absolutní hodnoty do části s \mathbf{c} (absolutní hodnotu si hned rozdělíme pro použití v Youngově nerovnosti, použitím faktu k+1 a k-1 jsou sudá):

$$\int c_1(\nabla u)^2 \cdot k \cdot u^{k-1} = \int k \cdot u^{k-1} \mathbb{A} \nabla u \cdot \nabla u \leqslant -\int b u^{k+1} + \int |\mathbf{c} \cdot \nabla u| \cdot |u^{(k-1)/2}| \cdot |u^{(k+1)/2}|.$$

Chtěli bychom se zbavit integrálu s
 \mathbf{c} , tedy použijeme Youngovu nerovnost pro koeficienty
 p=q=2, tj. $\left(|\mathbf{c}\cdot\nabla u|\cdot|u^{(k-1)/2}|/\sqrt{K}\right)\cdot|u^{(k+1)/2}|\cdot\sqrt{K}\leqslant\frac{|\mathbf{c}\cdot\nabla u|^2\cdot u^{k-1}}{2K}+\frac{K\cdot u^{k+1}}{2}$, kde K>0 libovolné: (na $\mathbf{c}\cdot\nabla u$ navíc použijeme Cauchy-Schwarze)

$$\int c_1(\nabla u)^2 \cdot k \cdot u^{k-1} \le -\int bu^{k+1} + \int |\dots| \le -\int bu^{k+1} + \int \frac{|\mathbf{c} \cdot \nabla u|^2 \cdot u^{k-1}}{2K} + \frac{u^{k+1} \cdot K}{2},$$

$$\int (c_1 \cdot k - |\mathbf{c}|^2 / 2K) (\nabla u)^2 \cdot u^{k-1} \le \int (-b + K/2) u^{k+1}.$$

Tím, že $-|\mathbf{c}|\geqslant -\|\mathbf{c}\|_{\infty}$ a $-b\leqslant -\operatorname{essinf} b$ skoro všude, a Hölderovou nerovností (pro 1, $\infty)$:

$$(c_1 \cdot k - \|\mathbf{c}\|_{\infty}^2 / 2K) \int (\nabla u)^2 \cdot u^{k-1} \le (-\operatorname{essinf} b + K/2) \int u^{k+1}.$$

Volbou $K = \frac{1}{\sqrt{k}}$ dostaneme $\sqrt{k}(c_1 \cdot \sqrt{k} - \|\mathbf{c}\|_{\infty}^2/2) \int (\nabla u)^2 \cdot u^{k-1} \leq (-\operatorname{essinf} b + 1/2\sqrt{k}) \int u^{k+1}$. Pro $k > \|\mathbf{c}\|_{\infty}^4/4c_1^2$ je levá strana nezáporná. A je-li essinf b > 0, pak pro $k > 4/(\operatorname{essinf} b)^2$ je koeficient vpravo záporný, tedy $\int u^{k+1} = 0$, takže $\|u\|_{k+1} = 0$, tedy u = 0.