

STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2018/2019

PCM0035 - GENERAL CHEMISTRY

(Foundation in Engineering)

13 OCTOBER 2018 2.30 p.m – 4.30 p.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 3 pages with 3 Questions only, excluding the cover page.
- 2. Attempt ALL questions. Distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.

QUESTION 1 [20 MARKS]

(a)	Sketch	the	orbital	diagrams	for	the	foll	owing	atom	or i	on.
-----	--------	-----	---------	----------	-----	-----	------	-------	------	------	-----

(i) Cr²⁺ [1 mark] (ii) Cu [1 mark] (iii) Cl [1 mark]

[Atomic number: Cr = 24; Cu = 29; Cl = 17]

- (b) Determine if the following combinations of quantum numbers (n, l, m_l, m_s) are acceptable. Explain your answer if the combination of quantum numbers is unacceptable.
 - (i) $(3, 3, 2, +\frac{1}{2})$
 - (ii) $(3, 0, 0, +\frac{1}{2})$
 - (iii) $(4, 2, -3, +\frac{1}{2})$
 - (iv) $(3, 2, -1, -\frac{1}{2})$

[4 marks]

- (c) For the following pairs of ions, identify the ion with smaller ionic radius. Explain your answer.
 - (i) Cl⁻ or Br⁻ [1½ marks] (ii) Na⁺ or Al³⁺ [1½ marks]

[Atomic number: Cl = 17; Br = 35; Na = 11; Al = 13]

(d) Bonding is a result from combining a minimum of two types of atoms. State the type of bonding (ionic, covalent or metallic) in the following compounds.

(i) K(s) [1 mark] (ii) $N_2O(g)$ [1 mark] (iii) MgCl(s) [1 mark] [Atomic number: K = 19; N = 7; O = 8; Mg = 12; Cl = 17]

(e) Draw the Lewis structures for

(i) As [1 mark] (ii) Se [1 mark] (iii) NO₂ [2 marks]

[Atomic number: As = 33; Se = 34]

(f) Use the VSEPR model to predict the geometry and give the AB_mE_n classification for OF_2 . Provide the Lewis structure for this molecule.

[Atomic number: F = 9]

[3 marks]

Continued...

QUESTION 2 [15 MARKS]

(a) Define phase change.

[1 mark]

- (b) What processes are involved with the phase changes if
 - (i) I₂ vapor comes in contact with a cold surface?

[1 mark]

(ii) solid vaporized directly?

[1 mark]

(iii) dew appears on a grass in the morning?

[1 mark]

(c) (i) What is the difference between the intermolecular forces and intramolecular forces?

[1 mark]

(ii) Determine the possible types of crystal for the following compounds:

ZnS, SO₂, CaF₂, Ba and SiO₂.

 $[2\frac{1}{2} \text{ marks}]$

[Atomic number: Zn = 30; S = 16; O = 8; Ca = 20; F = 9; Ba = 56; Si = 14]

(d) Referring to the reaction below, answer the following.

$$A(g) \longrightarrow \frac{3}{2}B(g) + \frac{5}{2}C(g)$$

(i) Express the rate of reaction in term of changing in concentration of each of the reactants and products.

 $[1\frac{1}{2} \text{ marks}]$

- (ii) What is the rate of C if the rate of B is increasing at 0.025 M/s? [1½ marks]
- (iii) What is the reaction order if the rate law for $A(g) = k [A]^{2/3}$?
- (iv) If the rate constant k is 6.60×10^{-2} min⁻¹, determine the half-life of this decomposition.

[1 mark]

- (e) Sometimes catalyst is preferred to be used in the reaction.
 - (i) What is catalyst?

[1 mark]

(ii) What are the types of catalyst? Briefly discuss the difference between them.

[1½ marks]

Continued...

QUESTION 3 [15 MARKS]

(a)	Acids and	bases	are	classified	in	terms	of	their	formulas	and	their	behavior	in
	solvent water (based on Arrhenius definition).												

(i) What is the main characteristic of acids? [1 mark](ii) What is the main characteristic of bases? [1 mark]

(b) Write the acid-dissociated constant (K_a) for the following acids.

(i) HNO₂ (ii) HCO₃

(c) Calculate the pH of (i) and (ii), and pOH of (iii).

(i) 5.04 × 10⁻³ M HI [½ mark] (ii) 0.0111 M NAOH [1 mark] (iii) 0.125 M Ba(OH)₂ [½ mark]

(d) Rank the following acids in the order of decreasing acid strength (Higher strength first):

HCl HI HBr HF

 $[2\frac{1}{2} \text{ marks}]$

[½ mark]

[½ mark]

(e) Define the following.

(i) Redox reaction [1 mark]
(ii) Electrochemistry [1 mark]

- (f) Consider the electrolysis of molten barium chloride, BaCl₂.
 - (i) Write the balanced half-reactions at cathode and anode.

[2 marks]

(ii) How many grams of Ba metal can be produced by supplying 0.50 A for 30 min?

[3½ marks]

[Atomic mass of Ba = 137.3; Faraday constant = 96,500 C/mol e⁻]