数据分析与可视化

python数据分析与可视化

1

pandas数据分析

基础知识

统计分析基础

Jupyter notebook介绍

数据预处理

达内教育研究院

2. 创建透视表与交叉表

使用groupby方法拆分数据

groupby方法的参数及其说明

该方法提供的是分组聚合步骤中的拆分功能,能根据索引或字段对数据进行分组。其常用参数与使用格式如下。

DataFrame.groupby(by=None, axis=0, level=None, as index=True, sort=True, group keys=True,

参数名称	说明
by	接收list,string,mapping或generator。用于确定进行分组的依据。无默认。
axis	接收int。表示操作的轴向,默认对行进行操作。默认为0。
level	接收int或者索引名。代表标签所在级别。默认为None。
as_index	接收boolearn。表示聚合后的聚合标签是否以DataFrame索引形式输出。默认为True。
sort	接收boolearn。表示是否对分组依据分组标签进行排序。默认为True。
group_keys	接收boolearn。表示是否显示分组标签的名称。默认为True。
squeeze	接收boolearn。表示是否在允许的情况下对返回数据进行降维。默认为False。

groupby方法的参数及其说明——by参数的特别说明

- > 如果传入的是一个数组则对其进行计算并分组。
- ➤如果传入的是一个字典或者Series 则字典或者Series的值用来做分组依据。
- ➤如果传入一个NumPy数组则数据的元素作为分组依据。
- ▶如果传入的是列名,字符串或者字符串列表,则使用这些字符串 所代表的字段
- > 作为分组依据。
- ➤ 打开group.py练习

GroupBy对象常用的描述性统计方法

用groupby方法分组后的结果并不能直接查看,而是被存在内存中,输出的是内存地址。 实际上分组后的数据对象GroupBy类似Series与DataFrame,是pandas提供的一种对象。 GroupBy对象常用的描述性统计方法如下。

方法名称	说明	方法名称	说明
count	计算分组的数目,包括缺失值。	cumcount	对每个分组中组员的进行标记,0至 n-1。
head	返回每组的前n个值。	size	返回每组的大小。
max	返回每组最大值。	min	返回每组最小值。
mean	返回每组的均值。	std	返回每组的标准差。
median	返回每组的中位数。	sum	返回每组的和。

1.在group_practice.py文件中给定以下数组,

states = np.array(['Ohio', 'California', 'California', 'Ohio', 'Ohio'])

years = np.array([2005, 2005, 2006, 2005, 2006])

按照states, years传入数组的方式对data1列数据分组后进行平均值计算

2. 创建以下数据,并按照 mapping = {'a':'red', 'b':'red', 'c':'blue', 'd':'blue', 'e':'red'} 进行分组求和计算 提示: 计算时需要指定轴

```
      key1
      key2
      data1
      data2

      0
      a one
      1.071446 -1.340262

      1
      a two
      1.125852 1.727092

      2
      b one
      0.342136 0.202296

      3
      b two
      -0.488568 -0.188095

      4
      a one
      1.031421 0.019024
```

```
a b c d e

Joe 1.550826 0.103725 -0.475930 -0.519439 0.163914

Steve 0.595992 -0.845790 1.111299 -1.279929 -1.540709

Wes 0.202888 1.031555 -1.659072 1.468362 0.828954

Jim 0.440928 0.785941 -0.536841 0.167377 0.936588

Travis -1.668387 0.289039 0.824654 -0.468110 -1.294456
```


agg方法求统计量

可以使用agg方法一次求出当前数据中所有菜品销量和售价的总和与均值,如detail[['counts','amounts']].agg([np.sum,np.mean]))。

对于某个字段希望只做求均值操作,而对另一个字段则希望只做求和操作,可以使用字典的方式,将两个字段名分别作为key,然后将NumPy库的求和与求均值的函数分别作为value,如detail.agg({'counts':np.sum,'amounts':np.mean}))

在某些时候还希望求出某个字段的多个统计量,某些字段则只需要求一个统计量,此时只需要将字典对应key的value变为列表,列表元素为多个目标的统计量即可,如detail.agg({'counts':np.sum,'amounts':[np.mean,np.sum]}))

使用agg方法聚合数据

agg和aggregate函数参数及其说明

agg, aggregate方法都支持对每个分组应用某函数,包括Python内置函数或自定义函数同时这两个方法能够也能够直接对DataFrame进行函数应用操作。

在正常使用过程中,agg函数和aggregate函数对DataFrame对象操作时功能几乎完全相同,因此只需要掌握其中一个函数即可。它们的参数说明如下表。

DataFrame.agg(func, axis=0, *args, **kwargs)

DataFrame.aggregate(func, axis=0, *args, **kwargs)

参数名称	说明
func	接收list、dict、function。表示应用于每行 / 每列的函数。无默认。
axis	接收0或1。代表操作的轴向。默认为0。

课堂练习

在agg.py文件中进行操作,按照A列分组后聚合后对B列求最小值和最大值,C列求和

使用apply方法聚合数据

使用apply方法对GroupBy对象进行聚合操作其方法和agg方法也相同,不同之处在于apply方法相比agg方法传入的函数只能够作用于整个DataFrame或者Series,而无法像agg一样能够对不同字段应用不同函数获取不同结果。

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

参数名称	说明
func	接收functions。表示应用于每行 / 列的函数。无默认。
axis	接收0或1。代表操作的轴向。默认为0。
broadcast	接收boolearn。表示是否进行广播。默认为False。
raw	接收boolearn。表示是否直接将ndarray对象传递给函数。默认为False。
reduce	接收boolearn或者None。表示返回值的格式。默认None。

在apply.py文件中进行操作

计算各列数据总和并作为新列添加到末尾

计算各行数据总和并作为新行添加到末尾

```
      A
      B
      C
      D
      E
      Col_sum

      0
      0.610764 -1.096924
      0.856870
      0.017334 -0.945760 -0.557716
      -0.557716

      1
      0.689502
      2.188957 -1.565911 -1.339480
      1.120758 1.093826

      2
      0.425448
      0.589814 0.531356 -1.579106
      1.856440 1.823953

      3
      -1.470899 0.740575 -1.276242 1.471284 -0.658182 -1.193465

      Row_sum 0.254815 2.422421 -1.453927 -1.429967 1.373256 1.166598
```


2. 创建数据透视表与交叉表

使用povit_table函数创建透视表

pivot_table函数常用参数及其说明

利用pivot_table函数可以实现透视表,pivot_table()函数的常用参数及其使用格式如下。

pands.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

参数名称	说明
data	接收DataFrame。表示创建表的数据。无默认。
values	接收字符串。用于指定想要聚合的数据字段名,默认使用全部数据。默认为None。
index	接收string或list。表示行分组键。默认为None。
columns	接收string或list。表示列分组键。默认为None。
aggfunc	接收functions。表示聚合函数。默认为mean。
margins	接收boolearn。表示汇总(Total)功能的开关,设为True后结果集中会出现名为"ALL" 的行和列。默认为True。
dropna	接收boolearn。表示是否删掉全为NaN的列。默认为False。

案例:查看每一部电影不同性别的平均评分

М	F	Gender
		Title
2.761905	3.375000	\$1,000,000 Duck (1971)
3.352941	3.388889	'Night Mother (1986)
2.733333	2.675676	'Til There Was You (1997)
2.962085	2.793478	'burbs, The (1989)
3.689024	3.828571	And Justice for All (1979)
3.000000	2.000000	1-900 (1994)
3.311966	3.646552	10 Things I Hate About You (1999)
3.500000	3.791444	101 Dalmatians (1961)
2.911215	3.240000	101 Dalmatians (1996)
4.328421	4.184397	12 Angry Men (1957)
3.168000	3.112000	13th Warrior, The (1999)

对分布在三个表的数据进行分析同时进行分析很难,那必须将所有的数据都合并到一个表中进行分析。采用什么方法呢?

下面,用pandas的merge函数将ratings跟users合并到一起,然后再将movies也合并进去。
data = pd.merge(pd.merge(ratings,users),movies)
pandas会根据列名的重叠情况推断出哪些列是合并(或连接)键

使用povit_table函数创建透视表-pivot_table函数常用参数及其说明

利用pivot_table函数可以实现透视表,pivot_table()函数的常用参数及其使用格式如下。

pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None,

margins=False, dropna=True, margins_name='All')

参数名称	说明
data	接收DataFrame。表示创建表的数据。无默认。
values	接收字符串。用于指定想要聚合的数据字段名,默认使用全部数据。默认为None。
index	接收string或list。表示行分组键。默认为None。
columns	接收string或list。表示列分组键。默认为None。
aggfunc	接收functions。表示聚合函数。默认为mean。
margins	接收boolearn。表示汇总(Total)功能的开关,设为True后结果集中会出现名为 "ALL"的行和列。默认为True。
dropna	接收boolearn。表示是否删掉全为NaN的列。默认为False。

pivot_table函数主要的参数调节

#index表示透视表的行

#columns表示透视表的列

#values 表示聚合的数据

#aggfunc表示对分析对象进行的分析,一般默认为求平均值,可以指定

#margins表示添加每行每列求和的值,默认不添加。

2. 创建数据透视表与交叉表

使用crosstab函数创建交叉表

交叉表是一种特殊的透视表,主要用于计算分组频率。利用pandas提供的crosstab函数可以制作交叉表,crosstab函数的常用参数和使用格式如下。

由于交叉表是透视表的一种,其参数基本保持一致,不同之处在于crosstab函数中的index, columns, values填入的都是对应的从Dataframe中取出的某一列。

pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)

2. 创建数据透视表与交叉表

使用crosstab函数创建交叉表

crosstab的常用参数及其说明

参数名称	说明		
index	接收string或list。表示行索引键。无默认。		
columns	接收string或list。表示列索引键。无默认。		
values	接收array。表示聚合数据。默认为None。		
aggfunc	接收function。表示聚合函数。默认为None。		
rownames	表示行分组键名。无默认。		
colnames	表示列分组键名。无默认。		
dropna	接收boolearn。表示是否删掉全为NaN的。默认为False。		
	接收boolearn。默认为True。汇总(Total)功能的开关,设为True后结果集中会出现名为		
margins	"ALL"的行和列。		
normalize	接收boolearn。表示是否对值进行标准化。默认为False。		

数据如下图所示 打开crosstab.py文件练习

我们想要直观的看到此样本数据中,按照性别分组后统计他们用手习惯的次数,如右图所示,

请使用pivot_table,crosstab分别完成

	Sample	Gender	Handedness
0	1	Female	Right-handed
1	2	Male	Left-handed
2	3	Female	Right-handed
3	4	Male	Right-handed
4	5	Male	Left-handed
5	6	Male	Right-handed
6	7	Female	Right-handed
7	8	Female	Left-handed
8	9	Male	Right-handed
9	10	Female	Right-handed

Handedness	Left-handed	Right-handed	A11
Gender			
Female	1	4	5
Male	2	3	5
A11	3	7	10

谢谢