

- Data compression is often used in data storage and transmission. Suppose you want to use data compression
 in conjunction with encryption. Does it make more sense to:
 - O The order does not matter -- either one is fine.
 - O Encrypt then compress.
 - Compress then encrypt.
 - O The order does not matter -- neither one will compress the data.
- 2. Let $G:\{0,1\}^s \to \{0,1\}^n$ be a secure PRG. Which of the following is a secure PRG (there is more than one correct answer):
 - $G'(k_1, k_2) = G(k_1) \parallel G(k_2)$

(here | denotes concatenation)

- G'(k) = G(0)
- $G'(k) = G(k) \bigoplus 1^n$
- \square $G'(k) = G(k) \parallel 0$

(here | denotes concatenation)

- G'(k) = reverse(G(k)) where reverse(x) reverses the string x so that the first bit of x is the last bit of reverse(x), the second bit of x is the second to last bit of reverse(x), and so on.
- \square $G'(k) = G(k) \parallel G(k)$

(here denotes concatenation)

3. Let $G:K o\{0,1\}^n$ be a secure PRG.

Define $G'(k_1,k_2)=G(k_1) \ \bigwedge \ G(k_2)$ where \bigwedge is the bit-wise AND function. Consider the following statistical test A on $\{0,1\}^n$:

A(x) outputs LSB(x), the least significant bit of x.

What is $Adv_{PRG}[A, G']$?

You may assume that $\mathrm{LSB}(G(k))$ is 0 for exactly half the seeds k in K.

Note: Please enter the advantage as a decimal between 0 and 1 with a leading 0. If the advantage is 3/4, you should enter it as 0.75

4.	Let (E,D) be a (one-time) semantically secure cipher with key space $K=\{0,1\}^\ell$. A bank wishes to split a decryption key $k\in\{0,1\}^\ell$ into two pieces p_1 and p_2 so that both are needed for decryption. The piece p_1 can be given to one executive and p_2 to another so that both must contribute their pieces for decryption to proceed.
	The bank generates random k_1 in $\{0,1\}^\ell$ and sets $k_1' \leftarrow k \oplus k_1$. Note that $k_1 \oplus k_1' = k$. The bank can give k_1 to one executive and k_1' to another. Both must be present for decryption to proceed since, by itself, each piece contains no information about the secret key k (note that each piece is a one-time pad encryption of k).
	Now, suppose the bank wants to split k into three pieces p_1,p_2,p_3 so that any two of the pieces enable decryption using k . This ensures that even if one executive is out sick, decryption can still succeed. To do so the bank generates two random pairs (k_1,k_1') and (k_2,k_2') as in the previous paragraph so that $k_1\oplus k_1'=k_2\oplus k_2'=k$.

How should the bank assign pieces so that any two pieces enable decryption using k, but no single piece can decrypt?

$$\bigcirc p_1 = (k_1, k_2), \quad p_2 = (k'_1), \quad p_3 = (k'_2)$$

$$\bigcirc p_1 = (k_1, k_2), \quad p_2 = (k_2, k_2'), \quad p_3 = (k_2')$$

$$\bigcirc p_1 = (k_1, k_2), \quad p_2 = (k_1, k_2), \quad p_3 = (k'_2)$$

$$igotimes p_1 = (k_1, k_2), \quad p_2 = (k_1', k_2), \quad p_3 = (k_2')$$

$$\bigcap p_1 = (k_1, k_2), \quad p_2 = (k'_1, k'_2), \quad p_3 = (k'_2)$$

5. Let
$$M=C=K=\{0,1,2,\dots,255\}$$

and consider the following cipher defined over (K,M,C):

$$E(k, m) = m + k \pmod{256}$$
; $D(k, c) = c - k \pmod{256}$.

Does this cipher have perfect secrecy?

- O No, only the One Time Pad has perfect secrecy.
- O No, there is a simple attack on this cipher.
- Yes.

7.	Suppose you are told that the one time pad encryption of the message	"attack at dawn"	is
	6c73d5240a948c86981bc294814d		

(the plaintext letters are encoded as 8-bit ASCII and the given ciphertext is written in hex [2]). What would be the one time pad encryption of the message "attack at dusk" under the same OTP key?

09e1c5f70a65ac519458e7f13b33

	6.	6. Let (E,D) be a (one-time) semantically secure cipher where the																	
		message and ciphertext space is $\{0,1\}^n$. Which of the following																	
		encryption schemes are (one-time) semantically secure?																	
		E'(k,m) = reverse(E(k,m))																	
		$\square E'(k,m) = E(k,m) \parallel k$																	
		$E'(k,m)=0 \parallel E(k,m)$ (i.e. prepend 0 to the ciphertext)																	
		$E'(k,m) = 0 \parallel E(k,m) \parallel E(k',m)$ $E'(k,k'), m) = E(k,m) \parallel E(k',m)$																	
	\square $E'(k,m) = E(k,m) \parallel \text{LSB}(m)$																		
	\square $E'(k,m)=E(0^n,m)$																		
•	Cantin		الد بالدن				_ :fab		DV	D alas		-4:-4			f l		bi.ab	46.0	
9.	Continuing with the previous question, if there are n DVD players, what is the number of keys under which the content key k must be encrypted if exactly one DVD player's key needs to be revoked?																		
	$\odot \log_2 n$																		
	\bigcirc $n/2$																		
	$\bigcirc n-1$																		
	O_{2}	$\bigcirc \sqrt{n}$ $\bigcirc 2$																	