Python

Airbnb Data Analysis

How Covid 19 affect Covid 19

Data Resource: Airbnb open data source – 04 December 2021, New York

Date Select: 2021/10 -2022/9

Structure of the data: total 3 csv file

Reviews.csv (all detailed customer review data of London)

Calendar.csv (all booking data of London)

Listing.csv (all Airbnb house of London)

Python: simpleplot.py

Analysis 1: Find the booking situation in different month (plot chart)

If there is already book, the busy is 1, if available for booking, the busy value is 0. In the 2021/12, the covid 19 situation has been increase, therefore the data is match our expectation that there are dropping demand on December 2021. After the covid 19 case decrease, the demand on house rent has been increase in March 2022.

Python: natural language.py

Analysis 2: Find the frequency keyword(Natural Language)

In the result, we can see that most of the people will focus on the location, clean, comfortable, close. If people want to invest household, they should focus on the house venue which is convenience, clean and comfortable design.

SAS Analysis 3: find out what feature affect the price change(Regression Predictive)

Y = Price

X: date, room_type, neighbourhood, number_of_reviews, review_scores_rating, calculated_host_listings_count, instant_bookable

Hypothesis Testing for Coefficients Price Prediction Function Price = 5.3117 + 0.0530 × TI Instant Bookable1 + 0.0251 × TI neighbourhood cleansed2 - 0.1526 × TI_room_type1+ 0.1958 × TI_room_type3 + 0.4914 × TI_room_type4 - 0.00393 × demand - 0.00316 × host_total_listings_count - 0.00110 × number_of_reviews + 0.00833 × reviews_scores_rating Analysis of Maximum Likelihood Estimates At 95% confidence level, we fail reject the null for predictors Estimate with P-value > 0.05 5.3117 Intercept **Conclusion:** TI_month2, TI_month3, TI_month4, TI neighbourhood cleansed 3 are no longer significant and do not help predict the Y variable (Price). demand host_total_listings_count number_of_reviews review_scores_rating 0.000417 0.000116 0.000047 0.000388 Remove these predictors from our equation

Select the P value have 99% confidence level, therefore TI_month2, TI_month3, TI_month4, TI neighbourhood cleansed 3 are no longer significant and do not help predict the Y variable (Price). We need remove these predictors from our equation.

Interpretation

Price on Instant_bookable1 (instant_bookable: f) will be 0.0530 more expensive than our base Instant_bookable2 (instant_bookable: t), while holding other variables constant.

							•
89	Analys	is of	f Maxi	mum Likelih	ood Estimates		
90							
91					Standard		
92	Parameter		DF	Estimate	Error	t Value	Pr > t
93							
94	Intercept		1	5.3117	0.0380	139.78	<.0001
	TI_instant_bookable1	0	1	0.0530	0378	14.03	<.0001
96	TI_month2	0	1	-0.00380	0.00487	-0.78	0.4359
97	TI_month3	0	1	-0.00395	0.00489	-0.81	0.4201
98	TI_month4	0	1	-0.00646	0.00480	-1.35	0.1780
99	TI_neighbourhood_cleansed2	0	1	0.0251	0.00426	5.89	<.0001
100	TI_neighbourhood_cleansed3	0	1	0.00541	0.00600	0.90	0.3670
101	TI_room_type1	0	1	-0.1526	0.00872	-17.51	<.0001
102	TI_room_type3	0	1	0.1958	0.00849	23.06	<.0001
103	TI_room_type4	0	1	0.4914	0.0119	41.18	<.0001
104	demand		1	-0.00393	0.000417	-9.42	<.0001
105	host_total_listings_count		1	-0.00316	0.000116	-27.35	<.0001
106	number_of_reviews		1	-0.00110	0.000047	-23.16	<.0001
107	review_scores_rating		1	0.00833	0.000388	21.49	<.0001
108							
100							

The significant attribute we base on the estimate value to do the analysis, if the estimate value is positive, then this attribute will increase the price. If the estimate value is negative, then this attribute will decrease the price.

Tableau:Airbnb.twb Analysis 4: The price in different area

Airbnb location and price

Use Tableau to generate the map, then set the price attribute to colour and size element. The biggest size of point, the price of house is expensive. The darker colour of the point, the price of house more expensive.