Lista de Exercícios

Disciplina de Redes Complexas - PESC - COPPE - UFRJ Vinícius W. Salazar, Prof. Daniel R. Figueiredo

Novembro de 2019

Questão 1

Vamos supôr o seguinte grafo e sua respectiva matriz de adjacência A:

##		[,1]	[,2]	[,3]	[,4]
##	[1,]	0	1	1	1
##	[2,]	1	0	0	0
##	[3,]	1	0	0	1
##	[4,]	1	0	1	0

1.1) Para uma matriz $B^{(k)}$ onde k representa alcançabilidade em exatamente k passos, é fácil notar que para $k=1, B^{(k)}=A$, ou seja, a matriz de adjacência codifica alcançabilidade em exatamente 1 passo. Logo, $B^{(k)}$ codifica alcançabilidade em exatamente k passos. Podemos verificar isso multiplicando a matriz por ela mesma para k=2. Observemos $B^{(2)}$

##		[,1]	[,2]	[,3]	[, 4]
##	[1,]	3	0	1	1
##	[2,]	0	1	1	1
##	[3,]	1	1	2	1

[4,] 1 1 1 2

1.2) O caminho entre V_1 e V_2 é o único que não pode ser alcançado em 2 passos. Para codificar a matriz $C^{(k)}$ onde k representa alcançabilidade em k ou menos passos, basta somar as matrizes anteriores, ou seja $C^{(k)} = \sum_{i=1}^{k} B^{(k)}$. Por exemplo, para k = 3, $C^3 = B^3 + B^2 + A$.

1.3) Assumindo um algoritmo ingênuo para a multiplicação de matrizes, para $B^{(k)}$, $\mathcal{O}(n^3)$, onde n a dimensão da matriz. Para $C^{(k)}$, $\mathcal{O}(kn^3)$, pois a operação de multiplicação de matrizes é realizada k vezes.

1.4) Para diminuir significativamente o tempo de computação, podemos aproveitar as contas que fizemos antes, criando uma solução de programação dinâmica. Por exemplo, digamos que precisamos calcular $C^{(8)}$. Podemos começar calculando B^2 . Para B^4 , fazemos $B^4 = B^2 \times B^2$, assim aproveitando a operação do B^2 , e sucessivamente para $C^{(8)} = B^4 \times B^4$. Aproveitando as operações, o custo computacional baixa significativamente, para $\mathcal{O}(\log(kn^3))$.

Questão 2

Sim, é possível! Em redes pequenas e altamente conectadas, é perfeitamente possível ter um grau médio pequeno $\overline{g} = 3$ e densidade $\rho = 1$:

No entanto, em redes reais, com um número muito grande de vértices, é mais fácil que o contrário aconteça: o grau médio aumente e a densidade diminua.

Podemos definir o grau médio como $\overline{g}=2m/n$ e a densidade do grafo como $\rho=\frac{2m}{n(n-1)}$. Logo, existe uma relação analítica entre essas duas medidas, com a densidade aumentando em função do grau médio (\overline{g}) e diminuindo em função do número de vértices (n) pois $\rho=\overline{g}\times(n-1)^{-1}$. Logo, se o grau médio não aumentar junto com o número de vértices, a densidade diminui.

${\bf Quest\~{a}o~3}$

- **3.1.a)** Clusterização local determinada por $C_i = \frac{2E_i}{d_i(d_i-1)}$ para cada vértice a,b,c,d,e,f respectivamente:
- **##** [1] 1.0000000 0.3333333 0.3333333 1.0000000 0.3333333 0.0000000
- **3.1.b)** Clusterização média:
- ## [1] 0.5
- 3.2) Clusterização global:
- ## [1] 0.4

 $Cglobal < \overline{C_i}$

- 3.3) Densidade:
- ## [1] 0.5333333

Questão 4