

Certamen 3

Nicolás Gómez Morgado

Administración y programación de base de datos

18 de julio de 2024

1. Ejercicios

1. Supongamos que estamos utilizando un sistema de disco donde el tiempo para mover la cabeza de lectura/escritura a un bloque de 15ms, y el tiempo de transferencia de un bloque es de 0.4ms. Supongamos que queremos calcular el join de R con S, y tenemos que B(R)=1000, B(S)=500 y M=101. Para acelerar el join, queremos leer y escribir tantos bloques como podamos en posiciones consecutivas del disco, y usar buffers que puedan ser múltiplos de un bloque. Responda las siguientes preguntas.

Tiempo en mover cabeza a un bloque: 15ms.

Tiempo transferencia de un bloque: 0.4ms

$$R\bowtie S$$

$$B(R) = 1000$$

$$B(S) = 500$$

 $M = 101 \rightarrow 100$ (Se deja uno para la salida)

a) ¿Cuantas E/S de disco se requieren para realizar esta operación join?

1 ^{er} pasada	Leer M bloques de R en MP[Memoria principal] (ordenar, escribir contenido ordenando)	2B(R) crear sublistas ordenadas
2^{da} pasada	El atributo de ordenación y unión	B(R) leer cada sublista
	Total	3B(R)

Que para R son 3B(R), por lo tanto para S, es lo mismo 3B(S). Se rquiere B(R) + B(S).

Total:

Lo mismo para $S \to 3B(S)$ App. requerimientos $\sqrt{B(R) + B(S)}$

Disco E/S =
$$3(B(R) + B(S))$$

= $3(1000 + 500)$
= 4500

Por lo tanto son necesarias 4500 E/S de disco para realizar la union.

b) ¿Cuanto tiempo toma un join basado en ordenamiento (sort-merge join), suponiendo que escribimos sublistas ordenadas en bloques consecutivos del disco?

Sublista de R =
$$\frac{B(R)}{100} = \frac{1000}{100} = 10$$

Sublista de S = $\frac{B(S)}{100} = \frac{500}{100} = 5$

1 ^{er} pasada	R (Lectura y escritura) y S (Lectura y escritura): misma pista de lectura/escritura secuenciales			
	$ \begin{bmatrix} 15 + 800 \end{bmatrix} + [15 + 400] \\ 815 + 415 $			
	1230 ms.			

2^{da} pasada	Original	Nueva: 15 buffers c/u con 6 blo-	
2 pasada	15 buffers c/u con 1 bloque	ques	
	$15 \text{ buffers} \cdot 15 \text{ ms}$	$17 \text{ times} \cdot 15 \text{ buffers} \cdot 15 \text{ ms}$	
	$= 100 ext{ times} \cdot 15 ext{ buffers} \cdot 15 ext{ ms}$	$\sim 3825 \text{ ms}$	
	= 25500 ms = 22.5 seg	$\sim 3.825 \text{ seg}$	

1 buffer
$$-1$$
 bloque $= 1230ms + 22500ms = 23730ms \approx 23,7seg.$
1 buffer -6 bloques $= 1230ms + 3825ms = 5055ms \approx 5,05seg.$

2. Supongamos que tenemos las relaciones R(a,b) , S(b,c) , T(c,d) , U(d,e) con las siguientes características:

$$\begin{array}{lll} T(R) = 100 & T(T) = 100 \\ V(R,b) = 100 & V(T,c) = 10 \\ T(S) = 100 & V(T,d) = 100 \\ V(S,b) = 100 & T(U) = 100 \\ V(S,c) = 10 & V(U,d) = 100 \end{array}$$

Computar un orden de Join de R
 sobre S Sobre T Sobre U $[R\bowtie S\bowtie T\bowtie U],$ utilizando:

a) Dinámica (Dynamic Programming method)

R	S	Т	U
100	100	100	100
0	0	0	0
R	S	Т	U

Considerando los pares:

- 1) $R \bowtie S = 100$
- 2) $R \bowtie T = 10000$
- 3) $R \bowtie U = 10000$
- 4) $S \bowtie T = 1000$
- 5) $S \bowtie U = 10000$
- 6) $T \bowtie U = 100$

	R,S	R,T	R,U	S,T	S,U	T,U
Size	100	10000	10000	1000	10000	100
Cost.						
Best plan						

Ahora considerar la unión de 3 de las 4 relaciones. Elegir 2 para unir primero.

1) (R,S,T) =
$$R \bowtie S = 100 \leftarrow R \bowtie T = 10000$$

 $S \bowtie T = 1000$

$$\begin{split} T((R\bowtie S)\bowtie T) &= \frac{T(R\bowtie S)\cdot T(T)}{\max\{V(R\bowtie S,c),V(T,c)\}} = \frac{100\cdot 100}{\max\{10,10\}} \\ &= \frac{10000}{10} = 1000 \end{split}$$

2)
$$(R,S,U) = R \bowtie S = 100 \leftarrow R \bowtie U = 10000$$

 $S \bowtie U = 10000$

NIIDEA

$$\begin{split} T((R\bowtie S)\bowtie U) &= \frac{T(R\bowtie S)\cdot T(U)}{\max\{V(R\bowtie S,c),V(U,c)\}} = \frac{1000\cdot 100}{\max\{10,10\}} \\ &= \frac{100000}{10} = 10000 \end{split}$$

3)
$$(R,T,U) = R \bowtie T = 10000$$

 $R \bowtie U = 10000$
 $T \bowtie U = 100 \leftarrow$

$$\begin{split} T((R\bowtie T)\bowtie U) &= \frac{T(R\bowtie T)\cdot T(U)}{\max\{V(R\bowtie T,d),V(U,d)\}} = \frac{10000\cdot 100}{\max\{100,100\}} \\ &= \frac{1000000}{100} = 10000 \end{split}$$

4)
$$(S,T,U) = S \bowtie T = 1000$$

 $S \bowtie U = 10000$
 $T \bowtie U = 100 \leftarrow$

$$\begin{split} T((S\bowtie T)\bowtie U) &= \frac{T(S\bowtie T)\cdot T(U)}{\max\{V(S\bowtie T,d),V(U,d)\}} = \frac{1000\cdot 100}{\max\{100,100\}} \\ &= \frac{100000}{100} = 1000 \end{split}$$

	RST	RSU	RTU	STU
S	1000	10000	10000	1000
С	100	100	100	100
Р	$(R \bowtie S) \bowtie T$	$(R \bowtie S) \bowtie U$	$(T \bowtie U) \bowtie R$	$(T \bowtie U) \bowtie S$

Tripletes.
Considerar arboles.

Agrupando:

$$(((R \bowtie S) \bowtie T) \bowtie U) = 1000 + 100 = \underbrace{1100}$$

$$(((R \bowtie S) \bowtie U) \bowtie T) = 10000 + 100 = 10100$$

$$(((R \bowtie T) \bowtie U) \bowtie S) = 10000 + 100 = 10100$$

$$(((S \bowtie T) \bowtie U) \bowtie R) = 1000 + 100 = \underbrace{1100}$$

Agrupando:

$$(T \bowtie U) \bowtie (R \bowtie S) = 100 + 100 = 200 \leftarrow$$

 $(S \bowtie U) \bowtie (R \bowtie U) = 10000 + 1000 = 11000$
 $(R \bowtie T) \bowtie (S \bowtie U) = 10000 + 10000 = 20000$

b) Greedy method

Se toma una decision sin retroceder.

<u>Base</u>: Pares de relaciones cuyo tamaño estimado es el mas pequeño (árbol actual).

$$R, S = 100$$
 (1) $S, T = 10000$
 $R, T = 10000$ $S, U = 10000$
 $R, U = 10000$ $T, U = 100$ (2)

Inducción: Encontrar todas las relaciones no includes, en este caso, T y U.

$$R\bowtie S-((R\bowtie S)\bowtie U)=10000$$

$$R\bowtie S-((R\bowtie S)\bowtie T)=1000$$

Se escoge T. Luego hay que unirse a U, no hay mas opciones.

$$(((R \bowtie S) \bowtie T) \bowtie U) = 1100$$

