What is claimed is:

2	1. A method for obtaining a global optimal solution of general nonlinear programming problems, comprising the steps of:
3	a) in a deterministic manner, first finding all local optimal solutions; and
4	b) then finding from said local optimal solutions a global optimal solution.
1 2	2. A method for obtaining a global optimal solution of general nonlinear programming problems, comprising the steps of:
3 4 5	 a) in a deterministic manner, first finding all stable equilibrium points of a nonlinear dynamical system that satisfies conditions (C1) and (C2); and
6	b) then finding from said points a global optimal solution.
1 2	3. A practical numerical method for reliably computing a dynamical decomposition point for large-scale systems, comprising the steps of:
3 4 5	a) moving along a search path $\varphi_t(x_s) \equiv \left\{ x_s + t \times \hat{s}, t \in \Re^+ \right\}$ starting from x_s and detecting an exit point, x_{ex} , at which said search path $\varphi_t(x_s)$ exits a stability boundary of a stable equilibrium point x_s ;
6 7	b) using said exit point x_{ex} as an initial condition and integrating a nonlinear system (4.2) to an equilibrium point x_d ; and
8 9	c) computing said dynamical decomposition point with respect to a local optimal solution x_s wherein said search direction \hat{s} is e x_d .
1 2	4. The method of claim 3, wherein a method for computing said exit point comprises the step of:
3 4 5	moving along said search path $\varphi_t(x_s) = \{x_s + t \times \hat{s}, t \in \Re^+\}$ starting from x_s and detecting said exit point x_{ex} , which is a first local maximum of an objective function $C(x)$ along said search path $\varphi_t(x_s)$.
1 2	5. The method of claim 3, wherein a method for computing a minimum distance point (MDP) comprises the steps of:

3	a) using said exit point x_{ex} as an initial condition and integrating a nonlinear
4	system (4.2) to a first local minimum of a norm $ F(x) $, where
5	F(x) is a vector of a vector field (4.2), and a local minimum point
6	is x_d^0 ;
7	b) using said MDP $x_{d,j}^{i,0}$ as an initial guess and solving a set of nonlinear
8	algebraic equations of said vector field (4.2) $F(x) = 0$, wherein a
9	solution is x_d , and a dynamical decomposition point with respect to
10	the local optimal solution x_s and said search path $\varphi_t(x_s)$ is x_d .
1	6. The method of claim 3, wherein a method for computing said exit point comprises the
2	step of computing an inner-product of said search vector and vector field at each
3	time step, by moving along said search path $\varphi_t(x_s) = \{x_s + t \times \hat{s}, t \in \Re^+\}$ starting
4	from x_s and at each time-step, computing an inner-product of said search vector \hat{s}
5	and vector field $F(x)$, such that when a sign of said inner-product changes from
6	positive to negative, said exit point is detected.
1	7. The method of claim 3, wherein a method for computing said exit point comprises the
2	step of:
3	a) moving along said search vector until an inner-product changes sign
4	between an interval $[t_1, t_2]$;
5	b) applying a linear interpolation to an interval $[t_1, t_2]$, which produces an
6	intermediate time to where an interpolated inner-product is expected
7	to be zero;
8	c) computing an exact inner-product at t_0 , such that if said value is smaller
9	than a threshold value, said exit point is obtained; and
10	d) if said inner-product is positive, then replacing t_1 with t_0 , and otherwise
11	replacing t_2 with t_0 and going to step b).
1	8. The method of claim 3, wherein a method for computing a minimum distance point
2	(MDP) comprises the steps of:
3	a) using said exit point as an initial condition and integrating a nonlinear
4	system for a few time-steps;

5	b) checking convergence criterion, and, if a norm of said exit point obtained
6	in step a) is smaller than a threshold value, then said point is
7	declared as said MDP, and otherwise, going to step b);
8	c) drawing a ray connecting a current point on a trajectory and a local
9	optimal solution, replacing said current point with a corrected exit
10	point, which is a first local maximal point of objective function
11	along said ray, starting from a stable equilibrium point, and
12	assigning this point to said exit point and going to step a).
1	9. The method of claim 3, wherein a method for computing said dynamical decomposition
2	point with respect to a stable equilibrium point x_s and a search vector \hat{s} ,
3	comprises the steps of:
4	a) moving along said search path $\varphi_t(x_s) = \{x_s + t \times \hat{s}, t \in \mathbb{R}^+\}$ starting from
5	x_s and detecting a moment that an inner-product of said search
6	vector \hat{s} and vector field $F(x)$ changes sign, between an interval
7	$\begin{bmatrix} t_1, t_2 \end{bmatrix}$, stopping this step if t_1 is greater than a threshold value and
8	reporting that there is no adjacent local optimal solution along this
9	search path, and otherwise, going to step b);
10	b) applying linear interpolation to said interval $[t_1, t_2]$, which produces an
11	intermediate time t_0 where said interpolated inner-product is
12	expected to be zero, computing an exact inner-product at t_0 , and if
13	said value is smaller than a threshold value, said exit point is
14	obtained, and going to step d);
15	c) if said inner-product is positive, then replacing t_1 with t_0 , and otherwise
16	replacing t_2 with t_0 and going to step b);
17	d) using said exit point as an initial condition and integrating a nonlinear
18	system for a few time-steps;
19	e) checking convergence criterion, and if a norm of said point obtained in
20	step d) is smaller than a threshold value, then said point is declared
21	as the MDP and going to step g), and otherwise going to step e);
22	f) drawing a ray connecting a current point on said trajectory and a local
23	optimal solution, replacing said current point with a corrected exit

24	point which is a first local maximal point of objective function
25	along said ray starting from a stable equilibrium point, and
26	assigning this point to said exit point and going to Step d); and
27	g) using said MDP as an initial guess and solving a set of nonlinear
28	algebraic equations of the vector field (4.2) $F(x) = 0$, wherein a
29	solution is t_d , such that said DDP with respect to a local optimal
30	solution x_s and vector \hat{s} is x_d .
1	10. The method of claim 3, wherein at least one effective local search method is combined
2	with said dynamical trajectory method of claim 3, comprising the steps of:
3	a) given an initial point, integrating a nonlinear dynamical system described
4	by (4.2) that satisfies condition (C1) from an initial point for a few
5	time-steps to get an end point and then updating said initial point
6	using an endpoint, before going to step b);
7	b) applying an effective local optimizer starting from said end point in step
8	a) to continue the search process., and if it converges, then
9	stopping, or otherwise, returning to step a).
1	11. The method of claim 3, wherein said method is used to accomplish a result selected
2	from the group consisting of:
3	a) escaping from a local optimal solution;
4	b) guaranteeing the existence of another local optimal solution;
5	c) avoiding re-visit of a local optimal solution of step b);
6	d) assisting in searching a local optimal solution of step b); and
7	e) guaranteeing non-existence of another adjacent local optimal solution
8	along a search path.
1	12. The method of claim 3, wherein a numerical method for performing a procedure,
2	which searches from a local optimal solution to find another local optimal solution
3	in a deterministic manner, comprises the steps of:
4	a) moving along a search path starting from x_{opt} and applying said DDP
5	search method to compute a corresponding DDP, and going to step

6	b), and if a DDP can not be found, then trying another search path
7	and repeating this step;
8	b) letting said DDP be denoted as x_d , and if x_d has previously been found
9	then going to step a), otherwise going to step c);
10	c) computing a DDP-based initial point $x_o = x_{opt} + (1 + \varepsilon)(x_d - x_{opt})$ where
11	ε is a small number, and applying a hybrid search method starting
12	from x_0 to find a corresponding adjacent local optimal solution.