Binary Tree Properties & Representation

Minimum Number Of Nodes

- Minimum number of nodes in a binary tree whose height is h.
- At least one node at each of first h levels.

minimum number of nodes is h

Maximum Number Of Nodes

• All possible nodes at first h levels are present.

Maximum number of nodes

$$= 1 + 2 + 4 + 8 + \dots + 2^{h-1}$$
$$= 2^{h} - 1$$

Number Of Nodes & Height

- Let n be the number of nodes in a binary tree whose height is h.
- $h \le n \le 2^h 1$
- $\log_2(n+1) \le h \le n$

Full Binary Tree

• A full binary tree of a given height h has $2^h - 1$ nodes.

Height 4 full binary tree.

Numbering Nodes In A Full Binary Tree

- Number the nodes 1 through $2^h 1$.
- Number by levels from top to bottom.
- Within a level number from left to right.

Node Number Properties

- Parent of node i is node i / 2, unless i = 1.
- Node 1 is the root and has no parent.

Node Number Properties

- Left child of node i is node 2i, unless 2i > n, where n is the number of nodes.
- If 2i > n, node i has no left child.

Node Number Properties

- Right child of node i is node 2i+1, unless 2i+1
 > n, where n is the number of nodes.
- If 2i+1 > n, node i has no right child.

Complete Binary Tree With n Nodes

• Start with a full binary tree that has at least n nodes.

Number the nodes as described earlier.

• The binary tree defined by the nodes numbered 1 through n is the unique n node complete binary tree.

• Complete binary tree with 10 nodes.

Binary Tree Representation

- Array representation.
- Linked representation.

Array Representation

• Number the nodes using the numbering scheme for a full binary tree. The node that is numbered i is stored in tree[i].

Right-Skewed Binary Tree

• An n node binary tree needs an array whose length is between n+1 and 2^n .

Linked Representation

• Each binary tree node is represented as an object whose data type is BinaryTreeNode.

• The space required by an n node binary tree is n * (space required by one node).

The Class BinaryTreeNode

```
public class BinaryTreeNode
 Object element;
 BinaryTreeNode leftChild; // left subtree
 BinaryTreeNode rightChild;// right subtree
 // constructors and any other methods come here
```

Linked Representation Example

Some Binary Tree Operations

- Determine the height.
- Determine the number of nodes.
- Make a clone.
- Determine if two binary trees are clones.
- Display the binary tree.
- Evaluate the arithmetic expression represented by a binary tree.
- Obtain the infix form of an expression.
- Obtain the prefix form of an expression.
- Obtain the postfix form of an expression.

Binary Tree Traversal

- Many binary tree operations are done by performing a traversal of the binary tree.
- In a traversal, each element of the binary tree is visited exactly once.
- During the visit of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken.

Binary Tree Traversal Methods

- Preorder
- Inorder
- Postorder
- Level order