High Efficiency 370kW Microturbine with Integral Heat Recovery

DOE AWARD DE-EE0004258
Capstone Turbine Corporation/Oak Ridge National Laboratory/NASA
2010-2015

Daniel Vicario Sr. Program Manager Capstone Turbine Corporation

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C.

May 6-7, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objectives

- Demonstrate a Microturbine-based distributed generation system with the following:
 - 42% Electrical Efficiency
 - 85% Total System Efficiency with CHP
 - CARB-level emissions without combustion after treatment
 - Improved Customer Value: \$600/kW
- Technical Challenges
 - Higher Temperature Combustion System
 - Higher Power Density Power Electronics
 - Dual Spool Control Algorithms

Higher Efficiency & Emissions at Commercially Competitive Prices

Technical Approach

- Capstone's Current Microturbine Technology
 - C30, C65, C200
 - Air Bearing Technology
 - Lean Combustion
 - Low Emissions
 - High Reliability
- Dual Spool Approach
 - Aerodynamic Interconnect
 - Single Combustion Stage
 - Critical Technology Risk Burndown

Technical Approach

Prototype Demonstration in a Relevant **Environment**

C370 Dual Spool Combustion Design

C₃70 System Demonstration

Power Electronics Design &

C370 High Current Demonstration

Systematic Development &

Demonstration of Critical Technologies

Transition and Deployment

- Market cares about:
 - Increased system efficiency, reducing energy waste
 - Reduced energy costs
 - Reduced emissions
- Technology developed improves all market segments
 - Higher Power Density Electronics
 - Higher Electrical Efficiency
 - CARB-level Emissions
 - 1st Example: C250
 Commercialization

C370 Technology will transition to all market segments

Measure of Success

- If we are successful, Capstone and our US-based supply chain will grow:
 - Similar to successful DOE AMTS program
- Driven by benefits from:
 - CARB-level Emissions
 - Higher Efficiency
- Cost attractive green energy solution for the marketplace
 - Low Cost (<\$600/kW)

Capstone Turbine's Supply
Chain Breakdown

Highly Efficient Low Cost Distributed Power Solution

Project Management & Budget

Total Project Budget	
DOE Investment	\$5,000,000
Capstone Cost Share	\$10,025,310
Project Total	\$15,025,310

On Budget & Schedule

Results and Accomplishments

- Low Pressure Spool (C250)
 - Power: 278 kW @ 70°F
 - Electrical Efficiency: 35% @ 70°F
 - Achieved CARB Emissions Standards
- Task 1 and Task 2 Complete
 - Stage Gate 2 Decision Point
 - C250 Demonstration (TRL 5)

