

- given information -

Load and linear guide

Total mass of loads and table

Friction coefficient of the guide

$$\mu = 0.1$$

Drive pulley specifications

Drive pulley diameter

$$D_p = 5$$
 [mm]

Drive pulley mass

$$m_p =$$
___[kg/pc]

Drive pulley length

$$L_p = 45$$
 [mm]

Drive pulley material

$$p = 2800 \text{ [kg/m}^3\text{]}$$

Number of drive pulleys

Efficiency

$$\eta$$
 = 98 [%]

External force

Transmission belt and pulleys or gears

D_{p1} = 5 [mm] pitch circle diameter (PCD)

Secondary pulley (gear)

D_{p2} = _____5 [mm]

 $m_{p1} =$ ____[kg] mass

 $m_{p2} =$ [kg]

thickness $L_{p1} = 45$ [mm]

 $L_{p2} = 45$ [mm]

material $\rho_{p1} = 2800 \text{ [kg/m}^3\text{]}$ $\rho_{p2} = 2800 \text{ [kg/m}^3]$

Aluminum

Primary pulley (gear)

Aluminum

Mechanism Placement

Other requirement(s)

Is it necessary to hold the load even after the power supply is turned off?

 \rightarrow NO

Is it necessary to hold the load after the motor is stopped, but not necessary to hold after the power supply is turned off?

 \rightarrow YES

Operating conditions

Variable speed operation

Operating speed

V₁ = <u>250</u> [mm/s]

 $V_2 = 0$ [mm/s]

Acceleration / deceleration time

t₁ = <u>1</u> [s]

Stopping accuracy

Stopping accuracy

 $\Delta I = 3$ [mm]

Safety factor

Safety factor

S·F = 1.5

- calculated result -

Load Inertia

$$J_m = m \times ((D_p \times 10^{-3})/2)^2$$

$$=$$
 _____ × ((____ 5 ___ × 10⁻³) / 2)²

= 3.1250e-6 [kg·m²]

 $J_{Dp} = (\pi/32) \rho L_p D_p^4 n$

= 1.546e-7 [kg·m²]

$$J_{Dp1} = (\pi/32) \rho_{p1} (L_{p1} \times 10^{-3}) (D_{p1} \times 10^{-3})^4$$

$$= (3.14/32) \times \underline{2800} \times (\underline{45} \times 10^{-3}) \times (\underline{5} \times 10^{-3})^{4}$$

= 7.731e-9 [kg·m 2]

$$J_{Dp2} = (\pi/32) \rho_{p2} (L_{p2} \times 10^{-3}) (D_{p2} \times 10^{-3})^4$$

$$= (3.14/32) \times 2800 \times (45 \times 10^{-3}) \times (5 \times 10^{-3})^{4} = 7.731e-9 \text{ [kg·m}^{2}]$$

$$J_L = (J_m + J_{Dp} + J_{Dp2}) (D_{p1} / D_{p2})^2 + J_{Dp1}$$

$$= (\underline{3.1250e-6} + \underline{1.546e-7} + \underline{7.731e-9}) \times (\underline{5} / \underline{5})^2 + \underline{7.731e-9}$$

$$= \underline{3.2951e-6} [kg \cdot m^2]$$

Required Speed

$$V_{m1} = V_1 (60 / (\pi D_p)) (D_{p2} / D_{p1})$$

$$= \underline{250} \times (60 / (3.14 \times \underline{5})) \times (\underline{5} / \underline{5}))$$

$$= \underline{954.9} [r/min]$$

$$V_{m2} = V_2 (60 / \pi D_p) (D_{p2} / D_{p1})$$

$$= \underline{0} \times (60 / (3.14 \times \underline{5})) \times (\underline{5} / \underline{5}))$$

$$= \underline{0} [r/min]$$

Required Torque

$$T = (T_a + T_L) (Safety Factor)$$

$$= (_3.2948e-4 _ + _ _ 0.1160 _) \times _ _ 1.5 _ = _ _ 0.1746 _ [N·m]$$

Acceleration Torque

$$T_{a} = J_{L} (V_{m} / (9.55 \times t_{1}))$$

$$= 3.2951e-6 \times (954.9 / (9.55 \times 1))$$

$$= 3.2948e-4 [N·m]$$

Load Torque

$$F = F_A + (m \times 9.8) (\sin \alpha + \mu \cos \alpha)$$

$$= \underline{45} + (\underline{0.5} \times 9.8) (\sin \underline{0} + \underline{0.1} \times \cos \underline{0})$$

$$= \underline{45.49} [N]$$

$$T_L = (F \times D_p \times 10^{-3}) / (2 \eta \times 0.01) (D_{p1} / D_{p2})$$

$$= (\underline{45.49} \times 5 \times 10^{-3}) / (2 \times 98 \times 0.01) \times (\underline{5} / 5)) = \underline{0.1160} [N \cdot m]$$

Required Stopping Accuracy

$$\Delta \theta = \Delta I (360^{\circ} / \pi D_{p}) (D_{p2} / D_{p1})$$

$$= \underline{3} \times (360 / (3.14 \times \underline{5})) \times (\underline{5} / \underline{5}))$$

$$= \underline{68.75} [deg]$$

Other requirement(s)

Holding Torque

- end of the report -