

Deep Dive into OpNav through Image Segmentation & Object Tracking

Harsh Zaveri - New Jersey City University Dr. Moitrayee Chatterjee – New Jersey City University **Department of Computer Science**

Introduction

- OpNav NASA's emergency return system, uses image-based data to achieve navigation goals for The Orion Spacecraft.
- Reinforcement Learning makes it more convenient to achieve these kinds of goals are for agent's learning abilities.
- Image segmentation and tracking is necessary for learning efficiently. Convolutional Neural Network is fed with such image-based data.

imesteps taken: 150

Episode: 100000

Training finished.

Wall time: 1min 42s

Timesteps taken: 1

Penalties incurred:

Timesteps taken: 15

Timesteps taken: 15

Timesteps taken: 15

Timesteps taken: 15

Timesteps taken: 150

Penalties incurred:

Penalties incurred:

imesteps taken: 15

Timesteps taken: 160 Penalties incurred: 4

nalties incurred:

Timesteps taken: 15 nalties incurred:

Timesteps taken: 1

Penalties incurred:

Penalties incurred: 4

enalties incurred:

nalties incurred:

Objective

To train a model for Image Segmentation and Image Tracking.

 How Image Segmentation and Object Tracking can be leveraged for OpNav.

Research

Gym AI

 Helps understand RL, its functions, and the reward system.

Materials and Methods

- Libraries/Datasets Finding libraries and datasets
- Datasets processed by CNN.

that fit our need is essential.

Coral AI

- Reinforcement Learning, Convolutional Neural Networks, Image-based datasets.
- Edge TPU.

Google Colab and Gym

- The Gym Environments.
- Exploration, Exploitation and Qfunction.

The 'Taxi' Environment

- Random start-off point.

CPU times: user 1min 34s, sys: 7.73 s, total: 1min 42s

Average timesteps per episode: 0.01

Average penalties per episode: 12.89

Results after 100 episodes:

 Passenger drop-off at desired location gains maximum

Results

Image-based datasets

- Various libraries with huge amounts of datasets huge in size.
- Audi, ApolloScape, Neptune, Cityscapes, NVIDIA.
- Vision-based Autonomous Navigation less datasets to start off on a smaller scale.

Small Object Detection

Image segmentation

Coral's Edge TPU Accelerator The Pycoral Library.

- 4 drop-off points.
- reward.

The Edge TPU Setup.

recognition examples.

Running test datasets and different images.

Few different kinds of image segmentation and

The Taxi Environment

- Timesteps and penalties.
- Training and learning for the agent.
- Results and penalties per episodes.

Discussion and Conclusions

Edge TPU test-data

- Coral AI test-datasets were found the best to start with.
- Image-based data for autonomous driving.
- Images of low quality less accurate results.

References

Introduction to RL and Deep Q Networks: tensorflow agents. TensorFlow. (n.d.). https://www.tensorflow.org/agents/tutorials/0_intro_rl

- Examples. Coral. (n.d.). https://coral.ai/examples/ G. Humblot-Renaux, L. Marchegiani, T. B. Moeslund and R. Gade, "Navigation-Oriented Scene Understanding for Robotic Autonomy: Learning to Segment Driveability in Egocentric Images," in IEEE Robotics
- and Automation Letters, vol. 7, no. 2, pp. 2913-2920, April 2022, doi: 10.1109/LRA.2022.3144491. keywords: {Navigation;Robots;Image segmentation;Affordances;Semantics;Roads;Labeling;Computer vision for transportation;deep learning for visual perception;semantic scene understanding}, GeeksforGeeks. (2023, September 25). A beginner's Guide to Deep Reinforcement Learning. https://www.geeksforgeeks.org/a-beginners-guide-to-deep-reinforcement-learning/
- Li, J., Yin, J., & Deng, L. (2021, May 17). A robot vision navigation method using Deep Learning in Edge Computing Environment EURASIP Journal on advances in Signal Processing. SpringerOpen. https://aspeurasipjournals.springeropen.com/articles/10.1186/s13634-021-00734-6 NASA. (n.d.). Orion Optical Navigation Image Processing Software (OPNAV)(MSC-26456-1). NASA. https://software.nasa.gov/software/MSC-26456-1
- Nguyen, A. (2021, July 30). 15 best open-source autonomous driving datasets. Medium. https://medium.com/analytics-vidhya/15-best-open-source-autonomous-driving-datasets-34324676c8d7 Taxi#. Taxi - Gym Documentation. (n.d.). https://www.gymlibrary.dev/environments/toy_text/taxi/#taxi

Acknowledgements

New Jersey Space Grant Consortium. New Jersey City University, Department of Computer Science Rutgers, The State University of New Jersey, New Brunswick