Chimica

Paolo Bettelini

Contents

1	\mathbf{Chi}	mica		2
	1.1	Notaz	zione scientifica	4
	1.2	Sistem	na Internazionale	2
		1.2.1	Grandezze fondamentali	2
		1.2.2	Grandezze derivate	2
		1.2.3	Misure	•
2	Tra	sforma	azioni	4
3	Cla	ssificaz	zione	Ę
	3.1	Defini	izione	ļ
	3.2	Soluzi	ioni (miscugli omogenei)	(
	3.3		che di separazione	
4	Pol	arità		7
5	Lga	mi sec	condari (forze intermolecolari)	7
	5.1		luzione del sale nell'acqua	7
	5.2		deboli nell'H2O	
	5.3		ppo del calore nelle reazioni	
6	Isot	topi de	ell'idrogeno	ę
	6.1	Deute	erio	Ç
	6.2			
7	Acc	qua cor	n deuterio e trizio	ę
		Densit		(

1 Chimica

Sistema \subseteq Ambiente \subseteq Universo.

Un sistema può essere:

- Aperto: se scambia materia/energia con l'ambiente.
- Chiuso: se scambia solo energia con l'ambiente.
- Isolato: se non scambia nè energia nè material con l'ambiente.

Studiare un sistema significa descrivere le sue proprietà

- Qualitative: possono essere definite senza avvalersi di misure.
- Quantitative: richiedono delle misure.

Le priorità misurabili sono delle $\mathit{grandezze}.$

1.1 Notazione scientifica

La notazione scientifica viene espressa come

$$a \cdot 10^k, \quad a \in [1, 10)$$

1.2 Sistema Internazionale

1.2.1 Grandezze fondamentali

Grandezza fisica	Simbolo della grandezza fisica	Nome dell'unità di misura	Simbolo dell'unità di misura
Lunghezza	1	metro	m
Massa	m	kilogrammo	kg
Tempo	t	secondo	S
Corrente elettrica	1	ampere	Α
Temperatura	T	kelvin	K
Quantità di sostanza	n	mole	mol
Intensità luminosa	i _v	candela	cd

1.2.2 Grandezze derivate

Grandezza fisica	Nome dell'unità di misura	Simbolo dell'unità di misura	Definizione dell'unità di misura SI
Area	metro quadrato	m²	
Volume	metro cubo	m³	
Densità	kilogrammo al metro cubo	kg/m³	
Forza	newton	N	$N = kg \cdot m/s^2$
Pressione	pascal	Pa	Pa = N/m²
Energia, lavoro, calore	joule	J	$J = N \cdot m$
Velocità	metri al secondo	m/s	

1.2.3 Misure

Sottomultiplo	Prefisso	Simbolo	Multiplo	Prefisso	Simbolo
10 ⁻¹	deci-	d-	10	deca-	da-
10-2	centi-	C-	10 ²	etto-	h-
10-3	milli-	m-	10 ³	kilo-	k-
10 ⁻⁶	micro-	μ-	10 ⁶	mega-	M-
10 ⁻⁹	nano-	n-	10 ⁹	giga-	G-
10 ⁻¹²	pico-	p-	10 ¹²	tera-	T-

2 Trasformazioni

Le trasformazioni possono essere classificate come chimiche o fisiche.

Definizione Trasformazione chimica

Una $trasformazione\ chimica\ modifica\ la\ sostanza.$

Nelle trasformazioni chimiche, gli atomi sono gli stessi ma gli elementi sono diversi. Le particelle quindi mutano.

Definizione Trasformazione fisica

Una trasformazione fisica non modifica la materia ma il suo stato.

Nelle trasformazioni fisiche, la materia mantiene le sue proprietà e rimane invariata.

Esempio Trasformazioni chimiche

- Combustione di una candela (anche fisica).
- Cottura di un uovo (le proteine cambiano).
- Formazione della ruggina.

Esempio Trasformazioni fisica

- Combustione di una candela (anche chimica).
- Sbucciare una mela.
- Scaldare il tisolfato di sofio.
- Dissoluzione dello zucchero nell'acqua.

3 Classificazione

3.1 Definizione

Definizione Sostanza pura elementare

Una sostanza pura elementare è composta da un solo tipo di elemento.

Definizione Sostanza pura composta

Una sostanza pura composta è composta da un solo tipo di composto.

Definizione Soluzione

Una soluzione è una sostanza composta da diversi tipi di composti in maniera omogenea.

Esempio Sostanza pura composta

Acqua (H_2O)

Esempio Sostanza pura elementare

Azoto (N)

Esempio Soluzione

 $50\%N + 50\%H_2$

- La materia può essere classificata come materia eterogenea e materia omogenea.
- La materia omogenea può essere classificata come miscuglio omogeneo (soluzione) oppure come sostanza pura.
- Le sostanze pure possono essere classificati come elementi oppure composti.

3.2 Soluzioni (miscugli omogenei)

Ogni soluzione è caratterizzata da un soluto ed un solvente.

Definizione Solubilità

La solubilità è la quantità massima che una sostanza può essere sciolta da una determinata quantità di solvente.

La solubilità dipende dalle proprietà chimica e altri fattori come la temperatura. La solubilità dei gas diminuisce con l'aumento della temperatura.

Una soluzione è detta satura o insatura se ha raggiunto il suo quantitativo massimo o meno.

Quando un soluto viene sciolto in un solvente, il volume della soluzione aumenta, ma meno della somma dei due volumi. Questo è dato dal fatto che il soluto prende spazio fra le molecole del solvente.

3.3 Tecniche di separazione

Definizione Decantazione

La decantazione si usa di solito per separare due liquidi di densità diversa sfruttando la gravità.

Esempio Decantazione

la separazione dell'olio e l'acqua.

Definizione Distillazione

La distillazione sfrutta i diversi punti di ebollizione di due liquidi per separarli. La miscela viene riscaldata fino a quando solo uno delle due componenti diventa vapore, per poi spostarla e riaffreddarla.

Definizione Cromatografia

La cromatografia sfrutta la tendenza delle sostanze a sciogliersi o interagire con diverse specie chimiche.

Definizione Estrazione

L'estrazione si basa sulla maggiore o minore solubilità di un componente di un miscuglio in una certa miscela.

Definizione Filtrazione

TODO

Definizione Centrifugazione

TODO

4 Polarità

Definizione Polarità

Una molecola è polare (non pura) se vi è una carica parziale.

Il legale ionico è quello più polare perché strappa un elettrone.

La differenza di elettronegatività deve essere da 0 a 0.45 per essere puro (il valore 0.45 è scelto per considerare il legame CH come apolare).

Quando una molecola è fatta solo da 2 atomi, se il legame è polare, la molecola è polare. Quando ci sono più legami, è necessario almeno un legame polare ma la molecola non deve essere simmetrica, altrimenti le cariche parziali si annullano.

Le sostanze apolari si sciolgono in solventi apolari, e quelli polari in quelli polari. Di conseguenza, oer essere solubile in acqua una moecola deve essere polare.

5 Lgami secondari (forze intermolecolari)

Definizione Forza forte

Legame covalente, metallico o ionico.

Definizione Forza debole

Forze di Van der Walls, forze di Londom, ponte a idrogeno.

I legami secondari (deboli, intermolecolari) sono responsabili delle interazioni fra molecole uguali o diverse tra loro, o anche fra parti diverse della stessa molecola.

Se il legame non è un ponte idrogeno ma è lo stesso principio, di dice dipolo-dipolo. Infatti, il legame ponte idrogeno è dipolo-dipolo ma ha un nome speicfico. Le forze di Van der Walls sono i legami dipolo-dipolo. Quando le interazioni non sono polari si parla di forze di London.

5.1 Dissoluzione del sale nell'acqua

L'acqua ed il sale Na⁺Cl⁻ inducono un polo. Le cariche positive dell'acqua (idrogeno) vengono attratte da quelle negative del cloruro, mentre quelle negative dell'acqua (ossigeno) vengono attratti da quelle negative del sale (Na). Il cristallo del sale viene quindi separato dalle forze esercitate dai dipoli dell'acqua.

Il motivo per cui il cristallo si spacca e non le molecole di acqua è dato dal fatto che l'energia delle interazioni deboli è più che sufficiente per compensare l'energia necessaria per rompere le interazioni ione-ione nel cristallo e alcuni legami idrogeno acqua-acqua.

5.2 Forze deboli nell'H2O

I ponti a idrogeno creano una struttura esagonale con le molecole d'acqua, formando il ghiaccio. Questo è il motivo per cui la struttura dei giocchi di neve è esagonale. Quando l'acqua è gassosa non ci sono queste forze debole, e quando sono liquide ce ne sono poche e casuali. Il motivo è che l'energia aumuenta con l'aumentare della temperatura, e per cui con temperature troppe alte, questa energia spacca i legami deboli.

Il sale nell'acqua salata rende più difficile la creazione di ponti a idrogeno.

5.3 Sviluppo del calore nelle reazioni

XXXXXXXX

6 Isotopi dell'idrogeno

6.1 Deuterio

Il primo isotopo dell'idrogeno è il deuterio, indicato con D o 2H . A differenza dell'idrogeno comune, il deuterio possiede un neutrone nel nucleo oltre al protone. A causa di questa caratteristica, il deuterio ha una massa atomica leggermente superiore rispetto all'idrogeno normale. Il deuterio è utilizzato in varie applicazioni, come nei reattori nucleari per la produzione di energia e come tracciatore in studi scientifici e biologici.

6.2 Trizio

Il secondo isotopo dell'idrogeno è è il trizio, indicato con T o 3H . A differenza dell'idrogeno comune, il deuterio possiede due neutroni nel nucleo oltre al protone. A causa di questa composizione nucleare, il trizio ha una massa atomica maggiore rispetto agli altri isotopi dell'idrogeno. Il trizio è radioattivo e decade nel tempo con una emivita di circa 12,3 anni, emettendo particelle beta.

7 Acqua con deuterio e trizio

È possibile ottenere dell'acqua, H_2O , utilizzando gli isotopi D e T al posto di H.

Queste sostanze sono chiamate acqua pesante (D_2O) e acqua superpesante (T_2O) .

7.1 Densità

	Acqua	Acqua pesante	Acqua Superpesante
Liquido (g/cm ³)	0.997	1.11	1.20
Solido (g/cm ³)	0.9168	1.105	?

Normalmente, le molecole dell'acqua che ghiaccia si organizzano, e creano molti spazi (caso unico). Questo implica che il ghiaccio abbia una densità minore dell'acqua, per cui esso galleggia se immerso nell'acqua.

Possiamo quindi notare dalla tabella come la versione solida dell'acqua pesante galleggi nell'acqua normale [1].

References

[1] 1.1 The Density of Deuterated Water. Purdue University Chemistry Education. URL: https://chemed.chem.purdue.edu/demos/main_pages/1.1.html.