Portfolio

Michael da Silva

Cordelia

A biomimetic fish to monitor ocean temperature

Overview

- Cordelia is a robotic fish designed using a novel "wavespring" geometry.
- Modular geometric design enables oscillation and undulation locomotion gaits.
- The robots are 3D-printed using TPU with a shore-hardness of 85A and wrapped with latex to maintain buoyancy.
- Project Videos:
 - https://vimeo.com/850378372
 - https://vimeo.com/795958609

Latex-Wrapped for Compliance and Waterproofing

Electrohydraulic Haptic Muscles

Toroidal haptic muscles for kinesthetic feedback

Overview

- Developed electrohydraulic haptic muscles integrating electrostatic actuation with hydraulic force, providing an alternative to traditional pneumatic muscles.
- Designed an actuator system
 that mimics human tendon
 motion, utilizing electrostatic
 forces to move dielectric liquid
 within a hermetic, flexible pouch.

Fabrication Steps

Zipping Actuation

At rest, actuators take on an airfoil shape

Upon complete actuation, all the fluid is pushed into the area not covered by the electrode.

Zipping Actuation

Voltage vs. Force

Force depends on Maxwell's stress $F \propto \epsilon_0 \epsilon_r E^2$

Voltage (V) vs. Force (N) - Polynomial Fit

The fit indicates an almost linear relation between voltage and force

Transient Analysis

- Rise time = 52 ms
- Settling time = 258 ms
- Critically damped system

Toroidal Haptic Muscle

Toroidal Haptic Muscle

Side View

Haptic Muscle upon actuation

Restoration Force

Voltage controlled force feedback

Origami-inspired continuum arm

Inverse kinematics solver

Origami-inspired continuum arm

- Continuum arms are robotic arms that are more flexible and safer than traditional stiff arms. They can reach tight spaces and move around obstacles easily.
- This innovation opens up new possibilities for robotic applications in confined and populated environments, enhancing safety and operational efficiency.
- The creation of an analytical solver for the continuum arm was recognized through publication at the 18th International Symposium on Experimental Robotics (ISER 2023).
- Project Video:
 - https://vimeo.com/918966883