

Pontifícia Universidade Católica do Paraná

Plano de Ensino

1. Ementa:

Escola/ Câmpus:	Politécni	ca					
Curso:	BES, BS	BES, BSI, BCC, BCS			Ano/Semestre	2022/2	
Código/Nome da	Conectiv	Conectividade em Sistemas Ciberfísicos					
disciplina:	Concour	nadao om oic	nomae elberner	000			
Carga Horária:	80 h.a.	30 h.a.					
Requisitos:	Fundam	Fundamentos de Sistemas Ciberfísicos					
Créditos:		Período: 4	Turma:	Turno:			
Professor Responsável:	Ricardo	C Nabhen					

Os estudantes projetam e desenvolvem aplicações que se comunicam através de redes IP, como a Internet, utilizando de forma eficiente os recursos de gerenciamento de processos, memória e armazenamento disponibilizados pelo sistema operacional. Eles também utilizam as interfaces de monitoramento e configuração dos sistemas operacionais para diagnosticar e resolver problemas de desempenho, permissões de acesso e conectividade das aplicações. Ao final da disciplina, os estudantes são capazes de projetar, desenvolver, testar, diagnosticar e resolver problemas de aplicações com conectividade IP em diversos contextos.

2. Relação com disciplinas precedentes e posteriores

2º - Fundamentos de Sistemas Ciberfísicos:

A disciplina de Conectividade em Sistemas Ciberfísicos necessita das aprendizagens de programação, arquitetura de sistemas ciberfísicos e comunicação, dos RAs das disciplinas de Raciocínio Algoritmo, Resolução de Problemas Estruturados em Computação e Fundamentos de Sistemas Ciberfísicos. As aprendizagens dessa disciplina servem de suporte às disciplinas de Performance em Sistemas Ciberfísicos, Redes Convergentes e Segurança da Informação.

3. Temas de estudo

TE1: Arquitetura de sistemas operacionais;

TE2: Gerência de processos, memória, armazenamento e dispositivos de E/S;

TE3: Modelo de redes em camadas, protocolos e suas funções;

TE4: Desenvolvimento de aplicações baseadas em TCP/UDP usando a interface de soquete de rede;

TE5: Protocolos de aplicação padronizados: web (http), nomes (dns), email (smtp), etc.

4. Competências, Temas de Estudo e Resultados de Aprendizagem.

Tabela 1: Correlação entre Resultados de Aprendizagem e Temas de Estudo

RA1: Desenvolver soluções de software utilizando as funções do sistema operacional adequadas ao contexto	TE1: Arquitetura de sistemas operacionais; TE2: Gerência de processos, memória e armazenamento e dispositivos de E/S.
RA2: Criar aplicações de software com recursos de comunicação utilizando a pilha TCP/IP	TE3: Modelo de redes em camadas, protocolos e suas funções; TE4: Desenvolvimento de aplicações usando a interface de soquete de rede; TE5: Protocolos de aplicação padronizados: web (http), nomes (dns), email (smtp), etc.
RA3: Gerenciar os recursos de hardware e software de maneira eficiente por meio do sistema operacional	, , , , , , , , , , , , , , , , , , , ,

Tabela 2: Correlação entre Competências, Elementos de Competências e RAs para Bacharelado em Ciência da Computação

Competências e Elementos de Competência	RA 1	RA 2	RA 3
C1.1 Integrar sistemas computacionais, considerando a documentação, as políticas e as diretrizes organizacionais, em prol da preservação dos critérios de dependabilidade, de forma cooperativa e negociada.			
EC 1.1.1. Integrar arquiteturas, redes, sistemas operacionais e nuvem computacional para suportar aplicações diversas	Х	Х	Х
C1.2 Projetar infraestrutura computacional sustentável, com segurança e dependabilidade, considerando tecnologias, estrutura organizacional e plano diretor de tecnologia da informação, implantando e monitorando sua execução de forma ética e resiliente.			
EC 1.2.1. Selecionar configuração adequada de hardware e software na solução de problemas computacionais			Х

Tabela 3: Correlação entre Competências, Elementos de Competências e RAs para Bacharelado em Engenharia de Software

Competências e Elementos de Competência	RA 1	RA 2	RA 3
C2. Conceber soluções computacionais para cenários diversos, combinando métodos e técnicas			
apropriados ao contexto de forma precisa, crítica e inovadora (Especificação)			
Elemento C2.8 Planejar arquiteturas inovadoras de software baseadas em padrões e	\	V	
normas	^	^	
Elemento C2.9 Selecionar configuração adequada de hardware e software na solução de			Х
problemas computacionais			^
Elemento C2.10 Aplicar mecanismos de segurança a diferentes contextos computacionais de			V
forma ética			^

Tabela 4: Correlação entre Competências, Elementos de Competências e RAs para Bacharelado em Sistemas de Informação

Competências e Elementos de Competência	RA 1	RA 2	RA 3
C2. Projetar soluções computacionais de acordo com especificações de requisitos, utilizando			
diretrizes da Engenharia de Software, considerando as tecnologias atuais de forma autorregulada			
Elemento C2.1 Integrar arquiteturas, redes e sistemas operacionais e nuvem computacional	Y	Υ	Υ
para suportar aplicações diversas	^	^	^
Elemento C2.2 Selecionar configuração adequada de hardware e software na solução de			\
problemas computacionais			^

5. Mapa Mental

6. Metodologia e Avaliação

Resultado de aprendizagem	Indicadores de desempenho	Métodos ou técnicas empregadas	Processos de avaliação
RA1: Desenvolver soluções de software utilizando as funções do sistema operacional adequadas ao contexto	ID1.1: Utiliza os recursos do sistema operacional de acordo com os requisitos da aplicação; ID1.2 Desenvolve aplicações utilizando as interfaces do sistema operacional.		Resolução de exercícios (formativa) Trabalhos de implementação no formato de Roteiros de Laboratório (formativa) Questões em provas escritas (somativa) - Projeto de implementação (somativa) Desenvolvimento de exemplos práticos ilustrativos e resolução de questões formuladas sobre o resultado e as técnicas empregadas nos exemplos, com feedback coletivo em sala.
RA2: Criar aplicações de software com recursos de comunicação utilizando a pilha TCP/IP	 ID2.1: Seleciona o protocolo adequado de acordo com o cenário de aplicação; ID2.2. Desenvolve aplicações baseadas em TCP ou UDP usando a interface de sockets; ID2.3: Desenvolve aplicações utilizando protocolos padronizados da arquitetura TCP/IP. 	 PjBL Aulas expositivas dialogadas e discussão presencial. Interação através de ambiente virtual Canvas 	Resolução de exercícios (formativa) Trabalhos de implementação no formato de Roteiros de Laboratório (formativa) Questões em provas escritas (somativa) - Projeto de implementação (somativa) Desenvolvimento de exemplos práticos ilustrativos e resolução de questões formuladas sobre o resultado e as técnicas empregadas nos exemplos, com feedback coletivo em sala.
RA3: Gerenciar os recursos de hardware e software de maneira eficiente por meio do	ID3.1: Monitora as interfaces do sistema diagnosticando problemas de desempenho,		Resolução de exercícios (formativa) Trabalhos de implementação no formato de Roteiros de Laboratório (formativa) Questões em provas escritas (somativa)

sistema operacional	configuração ou	- Projeto de implementação (somativa)
	funcionamento inadequado; ID3.2: Gerencia os recursos de hardware de acordo com o contexto.	Desenvolvimento de exemplos práticos ilustrativos e resolução de questões formuladas sobre o resultado e as técnicas empregadas nos exemplos, com feedback coletivo em sala.

Tabela 5: Distribuição de pesos por ID/RA

RAs e pesos na nota semestral	Indicadores de desempenho	Nota por RA	Nota por TDE	Nota por Projeto	Avaliações Teóricas	Composição da nota semestral
RA1 (30%)	ID1.1 (50%) ID1.2 (50%)	10	TDE 1 1,0	Projeto 2 4,0	Avaliação 2 5,0	Mádia pandarada das natas das
RA2 (50%)	ID2.1 (20%) ID2.2 (40%) ID2.3 (40%)	10		Projeto 1 5,0	Avaliação 1 5,0	Média ponderada das notas dos RA:
RA3 (20%)	ID3.1 (50%) ID3.2 (50%)	10	TDE 2 1,0	Projeto 2 4,0	Avaliação 2 5,0	(0.3*RA1 + 0.5*RA2 + 0.2*RA3)

TDE: TRABALHO DISCENTE EFETIVO

- TDE 1: Gerenciamento de Processos. Monitoramento de consumo de CPU e Memória.
- TDE 2: Criação de usuários e permissões em sistemas de arquivos do Linux.

7. Cronograma de atividades

Período	RA	Atividades Desenvolvidas (inclusive para avaliações formativas e somativas)	Em aula/TDE	Carga horária da atividade
Semana 1 05/08	1,2,3	Apresentação da disciplina Exercício de construção de redes com Cisco Packet Tracer	Em aula	4 h/a
Semana 2 12/08	3	Exercício de configuração de rede com Cisco Packet Tracer FORMATIVA1: Configuração de Rede (Packet Tracer)	Em aula	4 h/a
Semana 3 19/08	2	Apresentação sobre TCP/UDP FORMATIVA2: Introdução a API em sockets - Exercícios de programação com sockets TCP em Python	Em aula	4 h/a
Semana 4 26/08	2	Em aula	4 h/a	
Semana 5 02/09	1,2	Apresentação sobre processos e threads FORMATIVA3: Exercícios sobre processos e threads em Python Proposição do Projeto 1. Desenvolvimento. Orientação e feedback.	Em aula	4 h/a
Semana 6 09/09	1,2	FORMATIVA4: TCP: terminal remoto Proposição do Projeto 1. Desenvolvimento. Orientação e feedback.	Em aula	4 h/a
Semana 7 16/09	2	Apresentação com exercícios sobre as diferenças entre TCP e UDP FORMATIVA5: Exercícios de programação UDP com Python	Em aula	4 h/a
Semana 8 23/09	2	AVALIAÇÃO1 : Avaliação SOMATIVA1 – Individual – escrita	Em aula	4 h/a
Semana 7-10	3	TDE 1: exercícios de gerenciamento de processos, monitoramento de CPU e memória em ambiente virtualizado Ubuntu (SOMATIVA2)	TDE	6 h/a
Semana 9 30/09	2	Desenvolvimento do Projeto 1. Orientação e feedback.	Em aula	4 h/a
Semana 10 07/10	2	Defesa do Projeto 1: Avaliação SOMATIVA3 – em Grupo – Projeto Prático	Em aula	4 h/a
Semana 11 14/10	2	Apresentação sobre sistemas de arquivos Explicação sobre o TDE2 Exercícios em Linux sobre usuários e permissões	Em aula	4 h/a

		Proposição do Projeto 2. Desenvolvimento. Orientação e feedback.		
Semana 12 21/10	1,3	Apresentação sobre protocolos de aplicação Apresentação sobre DNS FORMATIVA6: Exercícios de DNS FORMATIVA7: Exercícios de revisão sobre S.O.	Em aula	4 h/a
Semana 12-15	3	TDE2: Criação de contas e configuração de permissões de arquivos em Linux (SOMATIVA4)	TDE	6 h/a
Semana 13 28/10		SEMANA ACADÊMICA	Em aula	4 h/a
Semana 14 04/11	1	Apresentação sobre DHCP e IP Privado FORMATIVA8: Exercícios DHCP e IP Privado FORMATIVA9: Exercícios de revisão sobre TCP/IP	Em aula	4 h/a
Semana 15 11/11	1,3	AVALIAÇÃO2: Avaliação SOMATIVA5 – Individual – escrita	Em aula	4 h/a
Semana 16 18/11	1,3	Defesa Projeto 2: Avaliação SOMATIVA6 – em Grupo – Projeto Prático	Em aula	4 h/a
Semana 17 25/11	1,2,3	Feedback das Avaliações e recuperação da aprendizagem.	Em aula	4 h/a
Semana 18 02/12	1,2,3	Semana Estendida de Recuperação da Aprendizagem		

8. Bibliografia:

Básica (3):

1. SILBERSCHATZ, Abraham. Fundamentos de sistemas operacionais. 9. Rio de Janeiro LTC 2015 1 recurso online ISBN 978-85-216-3001-2. [Ebook - Minha Biblioteca]

- 2. TANENBAUM, Andrew S.; BOS, Herbert. Sistemas operacionais modernos. 4. ed. São Paulo: Pearson Education do Brasil, 2016. xviii, 758 p. ISBN 978-85-430-0567-6 (broch.) [Minha Biblioteca].
- 3. KUROSE, James F.; ROSS, Keith W. Redes de computadores e a Internet: uma abordagem top-down. 6. ed. São Paulo: Pearson Education do Brasil, 2014. xxii, 634 p. ISBN 978-85-8143-677-7 (broch.).

Complementar (5):

- 1. ROCHOL, Juergen. Sistemas de comunicação sem fio. Porto Alegre Bookman 2018 1 recurso online ISBN 9788582604564.
- 2. MACHADO, Francis B.; MAIA, Luiz Paulo. Arquitetura de sistemas operacionais. 5. ed. Rio de Janeiro: LTC, 2013. xiii, 250 p. ISBN 978-85-216-2210-9.
- 3. INTRODUÇÃO a big data e internet das coisas (IOT). Porto Alegre SAGAH 2018 1 recurso online ISBN 9788595027640.
- 4. BARRETO, Jeanine dos Santos. Fundamentos de redes de computadores. Porto Alegre SAGAH 2018 1 recurso online ISBN 9788595027138
- 5. MORAES, Alexandre Fernandes de. Redes de computadores. São Paulo Erica 2014 1 recurso online ISBN 9788536522043.

Alterações por conta da COVID19:

Não houve necessidade de alteração na bibliografia.

9. Acessibilidade**

Não houve necessidade de adaptação.

10. Adaptações para práticas profissionais**

As atividades práticas previstas nesta disciplina não terão qualquer prejuízo no modelo ONLINE. As atividades práticas utilizam alguns programas computacionais e ambientes de programação distribuídos como software livre, que exigem poucos recursos computacionais, e podem ser instalados nos computadores pessoais dos estudantes ou em máquinas virtuais, acessadas localmente ou remotamente. Os programas utilizados são os mesmos usados nas aulas presencias.