Chapter 4 Network Layer: Data Plane

James F. Kurose | Keith W. Ross COMPUTER A TOP-DOWN APPROACH P

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - Match+action
 - OpenFlow: match+action in action
- Middleboxes

Generalized forwarding: match plus action

Review: each router contains a forwarding table (aka: flow table)

- "match plus action" abstraction: match bits in arriving packet, take action
 - destination-based forwarding: forward based on dest. IP address
 - generalized for Warding
 - many header fields can determine action
 - many action possible: drop/copy/modify/log packet

Flow table abstraction

- flow: defined by header field values (in link-, network-, transport-layer fields)
- generalized forwarding: simple packet-handling rules
 - match: pattern values in packet header fields
 - actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - priority: disambiguate overlapping patterns
 - counters: #bytes and #packets

Flow table abstraction

- flow: defined by header fields
- generalized forwarding: simple packet-handling rules
 - match: pattern values in packet header fields
 - actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - priority: disambiguate overlapping patterns
 - counters: #bytes and #packets

forward(2) drop send to controller

*: wildcard

OpenFlow: flow table entries

OpenFlow: examples

Destination-based forwarding:

					VLAN Pri		IP Dst	IP Prot	IP ToS	TCP s-port	TCP d-port	Action
*	*	*	*	*	*	*	51.6.0.8	*	*	*	*	port6

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:

Block (do not forward) all datagrams destined to TCP port 22 (ssh port #)

Block (do not forward) all datagrams sent by host 128.119.1.1

OpenFlow: examples

Layer 2 destination-based forwarding:

Switch	MAC	MAC	Eth	VLAN	VLAN	IP	IP	IP	IP	TCP	TCP	Action
Port	src	dst	type	ID	Pri	Src	Dst	Prot	ToS	s-port	d-port	
*	*	22:A7:23: 11:E1:02	*	*	*	*	*	*	*	*	*	port3

layer 2 frames with destination MAC address 22:A7:23:11:E1:02 should be forwarded to output port 3

OpenFlow abstraction

match+action: abstraction unifies different kinds of devices

Router

- match: longest destination IP prefix
- action: forward out a link

Switch

- match: destination MAC address
- action: forward or flood

Firewall

- match: IP addresses and TCP/UDP port numbers
- action: permit or deny

NAT

- match: IP address and port
- action: rewrite address and port

OpenFlow example

OpenFlow example

Generalized forwarding: summary

- "match plus action" abstraction: match bits in arriving packet header(s) in any layers, take action
 - matching over many fields (link-, network-, transport-layer)
 - local actions: drop, forward, modify, or send matched packet to controller
 - "program" network-wide behaviors
- simple form of "network programmability"
 - programmable, per-packet "processing"
 - historical roots: active networking
 - *today:* more generalized programming: P4 (see p4.org).