HW 2.

Problem: Show $\sum_{n=1}^{\infty} \frac{1}{n^z}$ converges uniformly on compact subsets of $A := \{z \in \mathbb{C} \mid \text{Re}z > 1\}$ (where $n^{-z} = e^{-z\log n}$).

Proof. Let $K \in A$. By Heine-Borel, since K is compact, then K is closed & bounded. Then, for all $z \in K \subsetneq A$, we have that when z is written as z = a + bi, thus a > 1. Since K is bounded, there exists an $R \in \mathbb{R}$ such that $|z_1 - z_2| < R$ for all $z_1, z_2 \in K$. Since $z \in K \subsetneq A$, we get that |z| > 1 for all $z \in K$. Now, we show uniform convergence. Show that for each $\varepsilon > 0$ there exists an $M \in \mathbb{R}_{>0}$ such that if $n \ge M$, then $|f_n(z) - f(z)| < \varepsilon$ for all $z \in K$. Note that $|f_n(z) - f(z)| = |(\sum_{n=1}^M n^{-z}) - (\sum_{n=1}^\infty n^{-z})| = |\sum_{n=M+1}^\infty n^{-z}| \le \sum_{n=M+1}^\infty |n^{-z}| \le \sum_{n=M+1}^\infty |e^{-z\log n}|$. If we write z = a + bi, then $\sum_{n=M+1}^\infty |e^{-z\log n}| \le \sum_{n=M+1}^\infty |e^{-(a+bi)\log n}| \le \sum_{n=M+1}^\infty |e^{(-a\log n) + (-b\log n)i}|$ (note: $|e^{x+iy}| = |e^x \cdot e^{iy}| = |e^x||e^{iy}| = e^x$). Then, we get $\sum_{n=M+1}^\infty |e^{(-a\log n) + (-b\log n)i}| \le \sum_{n=M+1}^\infty |e^{-a\log n}| \le \sum_{n=M+1}^\infty |e^{-a$