

දේවි බාලිකා විදපාලය - කොළඹ DEVI BALIKA VIDYALAYA - COLOMBO

12 වන ශේණිය - තෙවන චාර පර්යෂණය - 2021 දෙසැම්බර් Grade 12 - 3rd Term Test - December 2021

රසායන විදහාව I Chemistry I

පැය 1 විනාඩි 30 1 hour and 30 min,

- 💠 මෙම පුශ්න පනුය පිටු 09 කින් යුක්ත වේ.
- සියලම පුශ්නවලට පිළිතුරු සපයන්න.
- 💠 ගණන යන්නු භාවිතයට ඉඩ දෙනු නොලැබේ.
- 💠 උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ නම, විෂයය, පන්තිය සහ අංකය සඳහන් කරන්න.
- 💠 1 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා (1) (2) (3) (4) (5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමන් ගැළපෙන හෝ පිළිතුර තෝරාගෙන, එහි අංකය දී ඇති උපදෙස් අනුව උත්තර පතුයේ ලකුණු කරන්න.

ආලෝකයේ පුවේගය C = 3 x 108 ms⁻¹

සර්වනු වායු නියනය $R=8.314~\mathrm{J}~\mathrm{K}^{-1}~\mathrm{mol}^{-1}$ ඇවගාඩ්රෝ නියනය $N_{\mathrm{A}}\!=-6.022~\mathrm{x}~10^{23}~\mathrm{mol}^{-1}$ ප්ලාන්ක් නියනය h = 6.626 x 10⁻³⁴ Js

- කැතෝඩ කිරණ ඉලෙක්ටෝන වලින් සමන්විත බව පෙන්වා දුන් විදහාඥයා වන්නේ,
 - 1) ස්ටෝනි

- 2) ජේ. ජේ. තොමසන් 3) රදර්ෆර්ඩ්

- 4) ගෝල්ඩ්ස්ටයින්
- 5) ප්ලාත්ක්
- 2. කැල්සියම් පරමාණුවේ (Ca Z=20) l=1 සහ $\mathbf{m}_l=0$ ක්වොත්ටම අංක ඇති ඉලෙක්ටෝන සංඛාා පිළිවෙලින්.
 - 1) 12 , 12

2) 6, 3

3) 8 . 1

4) 8, 3

- 5) 2, 1
- 3. ආවර්තයක් ඔස්සේ වමේ සිට දකුණට යන විට පහත සඳහන් ගුණ විචලනයන් අතරින් අසනය පුකාශනය වතුයේ.
 - 1) විදසුත් සාණතාව කුමයෙන් වැඩිවේ.
 - 2) පරමාණුක අරය කුමයෙන් අඩු වේ.
 - 3) ලෝහ ගුණ අඩු වී අලෝහ ගුණ වැඩි වේ.
 - 4) පරමාණුක කුමාංකයක් සමග පුථම අයනීකරණ ශක්තිය කුමිකව වැඩිවේ.
 - 5) ආන්තරික ලෝහවල අයනීකරණ ශක්තිය වැඩිවන්නේ මද වශදෙනි.
- 4. පහත සඳහන් පුතිකියා ඇසුරින් අසතා වන්නේ.
 - 1) NCl₃ + 4H₂O → NH₄OH + 3HOCl
 - 2) $H_2S_2O_3 \rightarrow S + SO_2 + H_2O$
 - 3) $2H_2SO_4 + 2Cu \rightarrow SO_2 + 2CuS + 2H_2O$
 - 4) $(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + 2H_2O$
 - 5) $8NH_3 + 3Cl_2 \rightarrow N_2 + 6NH_4Cl$

5. වාණිජ H₂SO₄ අමල දුාවණයක පුතිශත සංශුද්ධතාවය 98% (w/w) වේ. 25 °C දී එහි සනස්වැ $2.0~{
m g~cm}^{-3}$ කි. මෙම උෂ්ණත්වයේදී මෙම දුාවණයේ මඩුලිකතාවය වන්නේ, (mol dm $^{-3}$) (H-1 , S-32, O-

16)

1) 20

2) 10

3) 5

4) 25

5) 30

- 6. පහත පුකාශ වලින් සතා වන්නේ,
 - a) ශූත්ත පෙළ පුතිකිුියාවේදී කාලයන් සමග පුතිකියකයේ සාන්දුණය අඩු වන්නේ සරල ජේඛීයවය.
 - b) පළමු පෙළ පුනිකිුයාවකදී කාලයන් සමග පුනිකිුයා සීසුතාවය අඩුවන්නේ සරල රේඛීයවය.
 - c) ඉතා සීසුයෙන් සිදුවන පුතිකිුයාවල සීඝුතා නියනය අඩු අගයක් ගනී.

1) a පමණි 2) a, b 3) b පමණි 4) a, b, c

5) b. c

7. පහත රසායනික පුතිකියා සලකන්න.

 $4y(g) \longrightarrow y_4(g)$; -200 kJ mol^{-1}

Ay(e) - 9 4 (e) $y(l) \longrightarrow y(g)$; 40 kJ mol⁻¹

 $y_4(l) \longrightarrow y_4(g)$;

84 kJ mol⁻¹

පහත පුතිකියාවේ එන්තැල්පි විපර්යාසය වන්නේ,

1) 224 kJ mol-1

2) -156 kJ mol⁻¹ 3) 156 kJ mol⁻¹

4) -244 kJ mol

5) -124 kJ mol-1

- 8. ජලීය CoCl₂ දාවණයකට සාන්දු HCl අම්ලය එකතු කළ විට ලැබෙන දාවණයේ පැහැයට සමාන වර්ණයක් ලබා දෙන්නේ,
 - 1) Ni(NO3)2 ජලීය දාවණයකට සාන්දු HCl එකතු කිරීමේදී
 - 2) CuSO₄ දුංචණයකට වැඩිපුර NaOH එකතු කිරීමේදී
 - 3) NiSO4 දාවණයකට වැඩිපුර NH4OH එකතු කිරීමේදී
 - 4) $FeCl_2$ දාවණයක $K_4Fe(CN)_6$ එකතු කිරීමේදී
 - 5) Mn(NO3)2 දාවණයකට සාන්දු HCl අම්ල දාවණයක් එකතු කිරීමේදී
- 9. පහත පුස්තාර අතුරින් පරිපූර්ණ වායුවක නියත පුමාණයක් සම්බන්ධයෙන් නිවැරදි ඒවා වන්නේ,

(b)

(c)

(d)

1) a හා b පමණි.

2) b හා c පමණි.

3) c හා d පමණි.

4) b, c හා d පමණි. 5) a, b හා c පමණි.

- තාප අවශෝෂක පුතිකියාව සැමවීටම ස්වයංසිද්ධ නොවේ.
- 2) තාපදායක පුතිකිුිිිිිිිිිිි සැමවිටම ස්වයංසිද්ධ වේ.
- 3) තාපදායක පුතිකිුයාවක එන්ටුොපි විපර්යාසය ධන නම් එම පුතිකිුයාව ස්වයංසිද්ධ වේ.
- 4) ස්වයංසිද්ධ පුතිකුියාවක එන්නැල්පිය සැමවිටම ධන වේ.
- 5) පුතිකුියාවක් සිදුවන විට විභව ශක්තිය අඩු වීම ස්වයංසිද්ධතාවයට බලපාන එකම සාධකය වේ.
- 11. X අවර්ණ ජලීය දාවණයේ ලෝහ ලවණයක් දිය වී ඇත. X සඳහා කරන ලද පරිකෘණ හා ලද නිරීකෘන පහත දක්වේ.
 - i) X හි කොටසකට ජලීය HCl දුාවණයක් එකතු කරන ලදී. වායු පිටවීමක් නොමැත.
 - ii) X හි තවත් කොටසකට K2CrO4 දුාවණයක් එකතු කරන ලදී. කහ පැහැති දුාවණයක් ලැබුණි.
 - iii) X හි තවත් කොටසක් Al කුඩු හා ජලීය NaOH සමග රත් කළ විට නෙස්ලර් පුතිකාරකය දුඹුරු පැහැයට හරවන වායුවක් පිට විය.

X ජලීය දාවණයේ අඩංගු ලවණය වන්නේ,

1) Sr(NO₃)₂

- 2) Sr(NO2)2
- 3) Ca(NO₃)₂

- 4) Ca(NO2)2
- 5) CaSO₃
- 12. පහත පුකාශ අතරින් සතා පුකාශය වන්නේ,
 - 1) s ගොනුවේ මුලදුවන සියල්ල N2 සමග පුතිකියා කර ලෝහ නයිටුයිඩ සාදයි.
 - 2) නයිටුජන් සාදන උපරිම ඔක්සිකරණ අංකය සහිත ස්ථායීම ක්ලෝරයිඩය NCIs වේ.
 - 3) HNO3 අම්ලය පුබල ආම්ලික ගුණ හා ඔක්සිහාරක ගුණ සහිත අම්ලයකි.
 - 4) නයිටේට් ජලිය දුාවණයකට NaOH එක් කිරීමේදී NH3 වායුව පිට වේ.
 - 5) වැඩිපුර Cl2 වායුව සමග NH3 පුතිකියා කළ විට NCl3 හා HCl එල ලෙස ලැබේ.
- 13. මධා පරමාණුව වටා බන්ධන කෝණය ආරෝහණය වන පිළිවෙල වනුයේ,

 - 1) $NH_4^+ < NO_3^- < NO_2 < N_2O$ 2) $NH_4^+ < N_2O < NO_3^- < NO_2$
 - 3) $NH_4^+ < NO_2 < NO_1^- < N_2O$
- 4) $NO_2 < NH_4^+ < NO_3^- < N_2O$
- 5) $N_2O < NO_2 < NH_4^* < NO_5^*$
- 14. TK දී හා P පීඩනයේදී O_2 වායුව පමණක් අඩංගු බඳුනකට විදයුත් විසර්ජනය කිරීමෙන් ඉන් කොටසක් ${
 m O_3}$ බවට පත් වේ. මිශුණය නැවත ${
 m TK}$ හා ${
 m P}$ පීඩනයට ගෙන අා විට පරිමාව ආරම්භක පරිමාවට වඩා 20% අඩක් අඩු වී ඇති බව නිරීක්ෂණය වේ. අවසන් වායු මිශුණයේ ඇති O_3 මවුල භාගය වන්නේ.
 - 1) -

- 3) $\frac{2}{5}$ 4) $\frac{1}{3}$ 5) $\frac{1}{2}$

19. තරංග ආයාමය 500 nm වන තරංගයක ෆෝටෝන මවුලයක ශක්තිය වන්නේ kJ,

1) 200

2) 350

3) 200 x 10².

4) 3.31 x 10⁻¹⁰

5) 3.31 x 10⁻¹²

20. පහත පුකාශ අතරින් සතා පුකාශය වන්නේ,
1) NO ₂ වායුව NaOH සමග පුතිකියාවෙන් එල ලෙස
2) Cl ₂ O ₇ ජලය සමග පුතිකිුයා කර HClO ₄ පුබල අම්ලය සාදයි.
3) NO වර්ණවත් උදාසීන ඕක්සයිඩයකි.
.4) s ගොනුවේ සියළුම ඔක්සයිඩ භාෂ්මික වේ.
5) ආම්ලික ඔක්සයිඩ වන CO2 හා CO ජලයේ දිය වීමෙන් දුබල H2CO3 අම්ලය සෑදේ.
The state of the s
21. පහත සඳහන් ලෝහ කාබනෝටයන්ගේ තාප වියෝජන උෂ්ණත්වයේ නිවැරදි ආරෝහණ අනුපිළිවෙල
වනුයේ.
1) BeCO ₃ < MgCO ₃ < CaCO ₃ < BaCO ₃ 2) BeCO ₃ < CaCO ₃ < MgCO ₃ < BaCO ₃
3) BeCO ₃ < CaCO ₃ < BaCO ₃ < MgCO ₃ 4) CaCO ₃ < BeCO ₃ < MgCO ₃
5) BaCO ₃ < CaCO ₃ < MgCO ₃ < BeCO ₃
the trace of the part benefit from the trace of the later
2. එක්තරා ඇනායනයක් සහිත ජලීය දාවණයකට AgNO3 දාවණයක් එකතු කළ විට කළු පැහැති
අවසෝපයක් ලැබුණි.තනුක HNO3 එකතු කර උණුසුම් කළ විට කළු පැහැති අවසෝපය බුබුළු දමමින්
දිය විය. එම ඇතායනය වන්නේ,
1) SO_3^{2-} 2) OH 3) NO_2^{-} 4) I' 5) S^{2-}
The same of the sa
3. NaOH : Na ₂ CO ₃ 2:1 මවුල අනුපාතයෙන් මිලු වූ දුාවණයකින් 30.00 cm³ ක්, 0.1 mol dm³ HCl
දාවණයක් බියුරෙට්ටුවට ගෙන පිනොප්තලීන් දමා අනුමාපනය කල විට අන්තලක්ෂයේදී වැයවන HCl
පරිමාව 20.00 cm³ විය. ඉහත HCl දුාවණයෙන් 20.00 cm³ ක් අනුමාපන ප්ලාස්කුවට ගෙන NaOH හා
Na ₂ CO ₃ අඩංගු මිශුණය බ්යුරෙව්ටුවට ගෙන අනුමාපනය සිදු කළ විට අන්තලක්ෂායේදී බ්යුරට් පාඨාංකය
වන්නේ, (පිනොප්තලීන් දර්ශකය ඇති 🏕 Na ₂ CO ₃ : HCl ස්ටොයිකියෝමිකිය 1:1 වේ.)
1) 20 cm ³ 2) 30 cm ³ 3) 40 cm ³ 4) 15 cm ³ 5) 25 cm ³
3d ගොනුවේ X නම් මූලදුවසයේ කැටායනය අඩංගු ජලීය දාවණය ලා රෝස පැහැති වේ. දුාවණයේ
කොටසකට තනුක NaOH එකතු කළ විට කහ-සුදු අවකේපයක් ලැබේ. මෙම අවකේපයට $\mathrm{H_2O_2}$ එකතු
කිරීමේදී දුඹුරු සනයක් ලබා දේ. දුාවණයේ තවත් කොටසකට සාන්දු HCl එකතු කළ විට කොළ - කහ
දුාවණයක් ලබා දේ. කැටායනය විය හැක්කේ,
1) Co^{2+} 2) Zn^{2+} 3) Mn^{2+} 4) Fe^{2+} 5) Co^{3+}
4/10

25. නයිටුජන් පරමාණුවේ විදසුත් සාණනාවයේ ආරෝහණ පටිපාටිය සම්බන්ධයෙන් සතා වනුයේ,

1) NH₂ < NH₃ < NH₄

24

2) NH₃ < NH₂ - < NH₄

3) NH₂ < NH₄ < NH₃

4) $NO_2 < NO_2^- < NO_2^+$

5) $NO_2^- < NO_2^+ < NO_2$

26. NH4NO3 හා Pb(NO3)2 අඩංගු මහුණයක 0.742 g ක් නියන ස්කන්ධයක් ලැබෙනතුරු රන් කරන ලද අවකෝපයේ ස්කන්ධය 0.223 g ක් විය. ආරම්භක මිශුණයේ Pb(NO3)2 : NH4NO3 මවුල අනුපාසය වන්නේ. (Pb - 207, Na - 23, O - 16, N - 14, H - 1)

1) 1 : 1 2) 1 : 2 3) 2 : 1 4) 2 : 3

27. 0.1 mol dm⁻³ Na₂S₂O₃ 20 cm³, 0.1 mol dm⁻³ HCl 10 cm³ මිල කළ විට තත්පර 20 කදී සැදුණු 5 3×10 mel වේ. සැදුනු Na2S2O3 මවුල ගණන හා Na2S2O3 වැයවීමේ මධානාව සීභුකාවය වන්නේ, (mol/mol dm⁻³ s⁻¹)

1) 3 x 10⁻⁴ so 5 x 10⁻⁵ 2) 2 x 10⁻⁴ so 5 x 10⁻⁴

3) 3 x 10⁻⁴ so 1.5 x 10⁻⁵

4) 5 x 10⁻⁴ soo 3 x 10⁻⁵ 5) 2 x 10⁻⁴ soo 2 x 10⁻⁴

- 28. මිනිරන් හා දියමන්හි සම්බන්ධ පහත පුකාශවලින් අසතා වන්නේ,
 - 1) මිනිරන් හා දියමන්නි යෝධ සහසංයුජ ජාල ස්එටික ආකාර වේ.
 - 2) දියමන්ති වල දෘඩතාවය මිනිරත් වලට වඩා වැඩිය.
 - 3) විදයුතය සන්නයනය කළ හැක්කේ මිනිරත් වලට පමණී.
 - 4) මිනිරන් හා දියමන්ති වල සියලුම කාබන් sp³ මුහුම්කරණය වී පවතී.
 - 5) දියමන්ති හා මිනිරන් අතරින් ඉහළ දුවාංකයක් ඇත්තේ දියමන්ති වලටය.
- 29. ඉහළම වාෂ්පශීලීතාවයක් ඇති සංයෝගය වන්නේ,

1) CH₃OH 2) CCl₄ 3) CH₄ 4) He 5) NH₃

 $30.\ X_2$ යන ජලයේ දිය නොවන වායුවක මවුලික ස්කන්ධය සෙවීම සඳහා කල පරීකෘණයක ඇටවුම පහත දක්වේ. භාවිත කළ ආරම්භක සංයෝගයේ ස්කන්ධය m_1 වන අතර එය තාප වියෝජනයෙන් X_2 පමණක් වායු ලෙස පිට වේ. පුතිකිුයාවෙන් පසු ඉතිරි වූ ශේෂය m_2 වේ.

π - වෘයුගෝල පීඩනය (Pa)

R - සාර්වනු වායු නියනය

T - උෂ්ණත්වය

g - ගුරුත්ව ත්වරණය

 X_2 වායුවේ මවුලික ස්කන්ධය සඳහා නිවැරදි පුකාශය වන්නේ,

1)
$$\frac{(m_1 - m_2)RT}{(\pi - h\rho g)V}$$

$$2) \ \frac{(m_1 - m_2)RT}{\pi V}$$

3)
$$\frac{(\pi - h\rho g)V}{RT}$$

4)
$$\frac{(\pi - h\rho g)V}{RT(m_1 - m_2)}$$

$$5) \frac{(m_1 - m_2)RT}{(\pi + hog)V}$$

• 31 හා 35 පුශ්න අංක සඳහා උපදෙස්

එක් එක් පුශ්නයේ දක්වා ඇති (a), (b), (c) සහ (d) යන පුතිචාර 4 අතරෙන් එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය / පුතිචාර කවරේ දයි තෝරා ගන්න.

- (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
- (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
- (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
- (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිවාර සංඛ්‍යාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද උත්තර පතුයෙහි දක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

උපදෙස් සම්පිණ්ඩනය					
(1)	(2)	(3)	(4)	(5)	
(a) සහ (b) පමණක් නිවැරදියි	(b) සහ (c) පමණක් නිවැරදියි	(c) සහ (d) පමණක් නිවැරදියි	(d) සහ (a) පමණක් නිවැරදියි	වෙනත් පුතිචාර සංඛනවක් හෝ සංයෝජනයක් හෝ නිවැරදිය	

- 31. සංඛ්‍යාතය අනුව පෙළ ගැසී ඇති හයිඩුජන් වල පරමාණුක වීමෝචන වර්ණාවලිය සම්බන්ධව සතා පුකාශ/ය වන්නේ,
 - a) දෙන ලද ශ්ලේණියක අනුයාන රේඛා අතර පරහරය ශක්තිය වැඩිවන දිශාවට වැඩි වේ.
 - b) n=2 සිට n=1 දක්වා වන සංකුමණයට අනුරූප වීකිරණයට ඉහළම තරංග ආයාමය ඇත.
 - c) බාමර් ශේණියේ පළමු හා දෙවන රේඛා අතර පරතරය ලයිමාන් ශේණියේ දෙවන හා තෙවන රේඛා අතර පරතරයට සමානය.
 - d) වර්ණාවලියෙහි සෑම රේඛාවකටම අදාළ ශක්තිය, පරමාණුවෙහි යම් ශක්ති මට්ටමක ශක්තියට අනුරූප වේ.
- 32. පහත පුකාශ අතරින් නිවැරදි පුකාශය/පුකාශ වන්නේ,
 - a) $H_2S_2O_3$ දුබල ද්විභාෂ්මික අමලයකි.
 - b) රොම්බසීය සල්ෆර් කාමර උෂ්ණත්වයේදී ස්ථායී ආකාරයක් වන අතර ඒකානති සල්ෆර් ඉහළ උෂ්ණත්ව වලදී ස්ථායී බහුරූපී ආකාරයක් වේ.
 - c) කළිල සල්ෆර් ස්එටිකරුපී බහුරූපී ආකාරයකි.
 - d) සල්ෆර්, සාන්දු H_2SO_4 සමග පුතිකියා කොට SO_2 හා H_2O සාදයි.

- 33. පහත සඳහන් කුමන පුතිකියාව ද්වීධාකරණ පුතිකියාවක් වන්නේද?
 - a) සෝඩියම් හයිඩොක්සයිඩ් හා සල්ෆර් අතර පුතිකිුියාව
 - b) ජලීය මාධානයේදී SO_2 හා $\mathrm{H}_2\mathrm{S}$ අතර පුණිකිුයාව
 - c) තනුක HCl හා Na₂S₂O₃ අතර පුතිකිුයාව
 - d) NO2 හා H2O අතර පුකිකියාව
- 34. පහත සඳහන් වගන්හි අතුරින් නිවැරදි වගන්හිය / වගන්හි මොනවාද?
 - a) නියත උෂ්ණත්වයේ ඇති පරිපූර්ණ වායු නියැදියක අන්තර් අණුක බල නොමැති බැව්න් සෑම අණුවකම වේග සමානය.
 - b) පරිපූර්ණ වායුවක මධ්නයන චාලක ශක්තිය නිරපේකෘ උෂ්ණත්වය මත පමණක් රඳා පවතී.
 - c) පරිපූර්ණ වායු අණු දෙකක් අතර ගැටුම් පූර්ණ පුතාස්ථ වන බැවින් ගැටුමෙන් අණුවල වේග නොවෙනස්ය.
 - d) නියත උෂ්ණත්වයේදී පරිපූර්ණ වායු මවුලයක මධාායන චාලක ශක්තිය $\frac{3}{2}\frac{RT}{L}$ මගින් ලබාදේ.
- 35. පහත සඳහන් වගන්ති අතුරින් නිවැරදි වන්නේ,
 - 3) පුබල ඒක භාෂ්මික අම්ලය හා ඒක ආම්ලික පුබල හෂ්මය කුමක් වුවත් උදාසීන සඵල පුතිකියාව වෙනස් නොවේ.
 - b) සියලුම ඒක භාෂ්මික අම්ලවල උදාසීනකරණ එන්නැල්පිය එකම අගයකි.
 - c) HF දුබල අම්ලයක් බැවින් උදාසීනකරණ එන්තැල්පිය පුබල අම්ල හා පුබල භෂ්ම වලට වඩා අඩුය.
 - d) උදාසීනකරණ එන්තැල්පිය සෘණ අගයකි.
- * අංක 36 සිට 40 නෙක් පුශ්නවලට උපදෙස්

අංක 36 සිට 40 තෙක් එක් එක් පුග්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැලපෙනුයේ පහත වගුවේ දක්වෙන පරිදි (1) (2) (3) (4) හා (5) යන පුකිචාරවලින් කවර පුතිචාරය දයි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි වගන්තිය	දෙවැනි වගන්තිය
(1)	සතාග	සතා වන අතර පළමුවැන්න නිවැරදිව පහදා දෙයි
(2)	සතාවය	සතා වන නමුත් පළමුවැන්න නිවැරදිව පහදා නොදෙයි
(3)	සත්හය	අසතායයි
(4)	අසතායයි	සතාසය
(5)	අසතාපයයි	අසතහයයි

පළමු පුකාශය	දෙවන පුකාශය
36. ඕනෑම තාත්වික වායුවකට ඉහළ උෂ්ණත්වයේදී හා අඩු පීඩනයේදී පමණක් වැන්ඩවාල් සමීකරණය යේදීය හැක.	ඕනෑම තාත්වික වායුවක ඉහළ උෂ්ණත්වයේදී හා අඩු පීඩනයේදී වැන්ඩවාල් නියත නොසලකා හැරිය හැක.
37. SO ₂ මෙන්ම H ₂ O ද කෝණික වේ.	අණුක හැඩ සමාන වන විට මධ්‍ය පරමාණුවේ මුහුම්කරණ සමාන වේ.
38. ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ සල්ෆේට වල ජල දාවාතාව කාණ්ඩයේ පහළට අඩුවේ.	ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ කැටායන වල සජලන එන්තැල්පිය කාණ්ඩයේ පහළට අඩු වේ.
39. ක්ලෝරීන් සිසිල් තනුක NaOH සමග පුතිකියාවේදී ද්වීධාකරණයට ලක් වී Cl හා OCl සාදයි.	HOCI ඔක්සි අම්ලයට විෂබීජ නාශකයක් ලෙස කිුයා කළ හැක.
40. Cr(OH)3(s) හා Zn(OH)2(s) වැඩිපුර NaOH හමුවේදී දුාවන තත්ත්වයට පත් වේ.	Zn හා Cr වල හයිඩොක්සයිඩ උභය ගුණී වේ.

0=5=0

b) X නම් ජලීය දාවණයේ ඇතායන 4 ක් ඇත. එම ඇතායන හඳුනාගැනීම සඳහා කරන ලද පරීකෘණයට අදාළ ගැලීම් සඳහා කරන ලද පරීකෘණයන්ට අදාළ ගැලීම් සටහනක් පහත දක්වේ.

- i) P, Q, R, S ඇතායන 4 හඳුනාගන්න.
- ii) p ඇතායනය හා ආම්ලික KMnO4 අතර සිදු වන පුතිකිුයාවේ,
 - ඔක්සිකරණ අර්ධ පුතිකුියාව
 - ll) ඔක්සිහරණ අර්ධ පුතිකිුියාව
 - III) තුලිත අයනික පුතිකිුයාව ලියන්න.

(ලකුණු 6.5)

- I) ඉහත A o K දක්වා අක්ෂර වලට අදාළ රසායනික සංශයා්ගවල සූතු ලියන්න.
- II) A o B යන කි්යාවලියට අදාළ තුලිත රසායනික පුතිකිුයාව ලියන්න.
- III) I o J+K යන කිුියාවලියට අදාළ තුලිත රසායනික සමීකරණය ලියන්න.
- ii) එක්තරා ජලීය දුාවණයක CO_3^{2-} , CrO_4^{2-} හා NO_3^{-} අයන අඩංගු වේ. මෙම අයනවල සාන්දුණය සෙවීම සඳහා පහත කිුයා පිළිවෙත අනුගමනය කරන ලදී.
 - 1) සපයා ඇති ජලීය දුාවණයෙන් $100~{
 m cm}^3$ කට වැඩිපුර ${
 m BaCl_2}$ එකතු කරන ලදී. මෙවිට ලැබුණු අවකේෂ්පය පෙරා වෙන් කර ගන්නා ලදී. වියලා ගත් සහ අවකේෂ්පයේ ස්කන්ධය $6.47~{
 m g}$.
 - 2) මෙම අවසෙෂ්පය තනුක HCl දුාවන $100~{\rm cm}^3$ දුාවණය කර ගන්නා ලදී. මින් $25~{\rm cm}^3$ ක් අනුමාපන ප්ලාස්කුවට ගෙන එයට වැඩිපුර KI එකතු කර සාන්දුණය $0.2~{\rm mol~dm}^{-3}$ වන ${\rm Na}_2{\rm S}_2{\rm O}_3$ දුාවණයක් සමග අනුමාපනය කරන ලදී. වැය වූ ${\rm Na}_2{\rm S}_2{\rm O}_3$ පරිමාව $37.5~{\rm cm}^3$ විය.
 - 3) ඉහත (1) වන පියවරෙන් ලබාගත් පෙරණයෙන් 25 cm³ ක් ගෙන Al කුඩු හා වැඩිපුර NaOH දාවණයක් සමග පුතිකුියා කිරීමේදී නිදහස් වූ වායුව, 1 mol dm³ සාන්දුණයෙන් යුත් HCl දාවණ 50cm³ කට යවන ලදී. ඉතිරි HCl උදාසීන කිරීම සඳහා සාන්දුණය 1 mol dm³ NaOH දාවණ 20 cm³ වැය විය.
 - මෙහිදී සිදුවන සෑම පුතිකි්යාවකටම අදාළ තුලිත රසායනික සමීකරණ ලියන්න.
 - II) ආරම්භක දාවණයේ අඩංගු CO_3^{2-} , CrO_4^{2-} හා NO_3^- සාන්දුණ සොයන්න. (ලකුණු 8.5)

නිෂ්කිය වායුව

Scanned with CamScanne

4. a) i) l) හෙස් නියමය ලියන්න.

- II) පහත පුතිකියාව සලකන්න. නියත උෂ්ණන්වයේදී එන්තැල්පි විපර්යාසය $40~{\rm kJ~mol^{-1}}$ වේ. $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)~;~1 \times 10^5\,Pa~,~298\,K$ $N_2(g)~,~O_2(g)~,~NO_2(g)$ වල එන්ටොපි අගයන් වන්නේ $180 {\rm J~mol^{-1}}\,{\it K^{-1}},~220~{\rm J~mol^{-1}}\,{\it K^{-1}}$ හා $240~{\rm J~mol^{-1}}\,{\it K^{-1}}$ ඉහත පුතිකියාවේ එන්ටොපි විපර්යාසය සොයන්න.
- III) ඉහත පුතිකුියාව 298 K දී ස්වයංසිද්ධව සිදුවේද නොවේද යන්න සුදුසු ගණනයකින් තීරණය කරන්න.
- ii) පහත පුතිකිුියාව සලකන්න.

$$2KHCO_3(s) \to K_2CO_3(s) + CO_2(g) + H_2O(l)$$
 ____ පුතිකියාව (A)

ඉහත පුතිකිුයාවේ එන්තැල්පි විපර්යාසය සෙවීම සඳහා පරීක්ෂණ කුම 2 ක් පහත පරිදි සිදු කරන ලදී.

කුමය I :

 $1 \; \mathrm{mol} \; \mathrm{dm}^{-3} \; \mathrm{HCl} \; 100 \; \mathrm{cm}^{3} \; \mathrm{ar} \; \mathrm{KHCO_{3}(s)}$ මවුල $0.08 \; \mathrm{සමග} \; \mathrm{පුතිකිුයා } \; \mathrm{ar}$ රවූ විට උෂ්ණත්වය $3 \; ^{\mathrm{o}}\mathrm{C}$ කින් පහළ යයි.

කුමය II :

 $1~{
m mol~dm}^{-3}~{
m HCl~}100~{
m cm}^3$ ක් ${
m K_2CO_3(s)}$ මවුල $0.05~{
m theo}$ ග පුතිකියා කරවූ විට උෂ්ණත්වය $4~{
m ^oC}$ කින් පහළ යයි.

 9 HCl හි විශිෂ්ට තාප ධාරිතාවය $3.95~{
m kJ}$ 9 ${
m kJ}^{-1}$ වන අතර ඝනත්වය $1.0~{
m g~cm}^{-3}$ ඉව්.

- I) ඉහත දත්ත වලට අනුව පළමු කුමයට අදාළව තාප විපර්යාසය (kJ) හා එන්කැල්පි විපර්යාසය $kJ\ mol^{-1}$ වලින් සොයන්න.
- II) දෙවැනි කුමයට අදාළව තාප විපර්යාසය (kJ) එන්තැල්පි විපර්යාසය kJ mol^{-1} වලින් සොයන්න.
- III) පුතිකිුිිිිිිිිිි A හි එන්තැල්පි විපර්යාසය ගණනය කරන්න.
- IV) ඉහත පරීකෳණයේ අඩුපාඩු 2 ක් ලියන්න.

(ලකුණු 7.5)

Grade 12 - Chemistry II. Dayanha 2001

- b) i) පරිපූර්ණ වායු සමීකරණය සඳහන් කර එහි පද හඳුන්වා දෙන්න.
 - ii) පරිමාව $4.157~{
 m dm}^3$ වන රේඛනය කරන ලද දෘඩ බඳුනකට AB_3 නම් ඝනයෙන් $35.0~{
 m g}$ ක ස්කන්ධයක් ඇතුළු කර $627~{
 m ^{\circ}C}$ උෂ්ණත්වයට රත් කළ විට AB_3 ඝනය සම්පූර්ණයෙන්ම නාප ව්යෝජනය වී වායුමය A_2 හා B_2 බවට පත්වන අතර පද්ධතියේ නව පීඩනය $9 \times 10^5~{
 m Pa}$ විය.
 - වියෝජනයෙන් පසු පද්ධතියේ ඇති මුළු වායු මවුල ගණනය කරන්න.
 - II) ආරම්භක පද්ධතියට ඇතුළු කළ AB_3 මවුල ගණන හා AB_3 හි මවුලික ස්කන්ධය ගණනය කරන්න.
 - III) එක් එක් වායුවේ ආංශික පීඩන ගණනය කරන්න.
 - IV) 627 $^{\circ}$ C උෂ්ණත්වයේදී B_2 වායුවේ වර්ග මධානා මුලවේගය A_2 වායුවේ එම අගයෙන් දෙගුණයකි. A_2 හා B_2 වායුවල මවුලික ස්කන්ධ අතර අනුපාතය ගණනය කර එමගින් A_2 හා B_2 මවුලික ස්කන්ධය ගණනය කරන්න.
 - V) $627\ ^{\circ}C$ උෂ්ණත්වයේදී A_2 හා B_2 වායු දෙකෙහි මැක්ස්වෙල් බෝල්ට්ස්මාත් වේග වාාාප්ති වකු දෙකම එකම ඛණ්ඩාංක තලයක ඇඳ නම් කරන්න.

(ලකුණු 75)