- 1. (Sauer $\S 0.2, \# 4$) Convert the following base 10 numbers to binary. Use overbar notation for nonterminating binary numbers.
 - (a) 11.25
 - (b) 2/3
 - (c) 3/5
 - (d) 3.2
 - (e) 30.6
 - (f) 99.9
- 2. (Sauer §0.2, #8) Convert the following binary numbers to base 10.
 - (a) 11011
 - (b) 110111.001
 - (c) $111.\overline{001}$
 - (d) $1010.\overline{01}$
 - (e) $10111.1\overline{0101}$
 - (f) $1111.010\overline{001}$
- 3. (Sauer $\S 0.3, \# 2$) Convert the following base 10 numbers to binary and express each as a floating point number $\mathrm{fl}(x)$ by using the Rounding to Nearest Rule.
 - (a) 9.5
 - (b) 9.6
 - (c) 100.2
 - (d) 44/7
- 4. (Sauer $\S 0.3$, #4) Find the largest integer k for which $\mathrm{fl}(19+2^{-k})>\mathrm{fl}(19)$ in double precision floating point arithmetic.
- 5. (Sauer $\S 0.3, \# 11$) Does the associative law hold for IEEE computer addition? Explain your response.
- 6. (Sauer $\S 0.4$, # 1) Identify for which values of x there is subtraction of nearly equal numbers, and find an alternate form that avoids the problem.
 - (a) $\frac{1 \sec(x)}{\tan^2(x)}$
 - (b) $\frac{1 (1 x)^3}{x}$
 - (c) $\frac{1}{1+x} \frac{1}{1-x}$