Estructuras de Datos Avanzadas

Adriana Ramirez Vigueras Fhernanda Montserrat Romo Olea Marco Antonio Velasco Flores

Tarea 1

Natalia Abigail Pérez Romero

FACULTAD DE CIENCIAS

Semestre 2024-1

Entrega: 16 Octubre 2023 - 11:59 PM

Decimos que un árbol binario de búsqueda T_1 puede ser RIGHT-CONVERTED a un árbol binario de búsqueda T_2 si es posible obtener T_2 de T_1 por a tráves de una serie de llamadas a la operación RIGHT-ROTATE.

- Da un ejemplo de dos árboles T_1 y T_2 tal que T_1 no pueda ser RIGHT-CONVERTED en T_2 .
- Demuestra que si un árbol T_1 puede ser RIGHT-CONVERTED a T_2 , entonces T_1 puede ser RIGHT-CONVERTED usando $O(n^2)$ operaciones RIGHT-ROTATE.

Respuesta

■ Da un ejemplo de dos árboles T_1 y T_2 tal que T_1 no pueda ser RIGHT-CONVERTED en T_2 . T_1 es un árbol inclinado hacia la derecha y T_2 es un árbol balanceado de forma que la única forma de transformar

■ Demuestra que si un árbol T_1 puede ser RIGHT-CONVERTED a T_2 , entonces T_1 puede ser RIGHT-CONVERTED usando $O(n^2)$ operaciones RIGHT-ROTATE.

Sea u un vértice en T_1 el cual tiene un vértice u' el cual tiene un vértice u' en T_2 de forma que despues de un número de operaciones RIGHT-ROTATE u se encuentra en la posición de u', esto le tomara en el peor de los casos n (el número de vértices) por que ocupará el lugar de todos los vértices en T_1 antes de llegar a la posición de u'. En la figura siguiente podemos observar un ejemplo del movimiento.

Lo anterior es verdad para todos los n vértices por ende si un árbol T_1 puede ser RIGHT-CONVERTED a T_2 , entonces T_1 puede ser RIGHT-CONVERTED usando $O(n^2)$ operaciones RIGHT-ROTATE.

Pregunta 2

Muestra que dado un conjunto T de n nodos x_1, x_2, \ldots, x_n con valores y prioridades distintas, el árbol treap asociado a T es único. Hint: utiliza inducción sobre n.

Respuesta

Demostración por contradicción: Suponer que para T tenemos más de un árbol treap asociado. Entonces G y G' son árboles asociados a T, entonces V(G)

Pregunta 3

Se pueden utilizar las estructuras de búsqueda de rangos ortogonales para determinar si un punto particular (a, b) está en un conjunto dado, haciendo una consulta al rango $[a : a] \times [b : b]$.

- 1. Prueba que hacer una consulta así en un árbol KD toma tiempo $O(\log n)$.
- 2. ¿Cuál es la complejidad para una consulta así en un árbol de rangos?

Respuesta

<Tu respuesta aquí>

Pregunta 4

Describe una secuencia de accesos a un árbol splay T de n nodos, con $n \ge 5$ impar, que resulte en T siendo una sola cadena de nodos en la que el camino para bajar en el árbol alterne entre hijo izquierdo e hijo derecho.

Respuesta

Describe cómo modificar una skip-list L para poder realizar las siguientes dos operaciones en tiempo esperado $O(\log n)$:

- lacksquare Dado un índice i, obtener el elemento de L en la posición i.
- \blacksquare Dado un valor x, obtener la cantidad de elementos en L menores a x.

Respuesta

<Tu respuesta aquí>

Pregunta 6

Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane that have at least one point in P both above and to the right.

- 1. Describe an algorithm to compute the staircase of a set of n points in $O(n \log n)$ time.
- 2. Describe and analyze a data structure that stores the staircase of a set of points, and an algorithm ABOVE? (x, y) that returns TRUE if the point (x, y) is above the staircase, or FALS otherwise. Your data structure should use O(n) space, and your ABOVE? algorithm should run in $O(\log n)$ time.

Respuesta

Sea S un conjunto de n segmentos de línea sin cruces entre ellos. Queremos responder rápidamente a consultas del tipo: dado un punto p encontrar al primer segmento en S por el que pasa el rayo vertical con origen en p y dirección hacia arriba. Da una estructura de datos para resolver este problema. Acota el tiempo de consulta y el espacio requerido por tu estructura. ¿Cuál es el tiempo de pre-procesamiento?

Respuesta

<Tu respuesta aquí>

Pregunta 8

En algunas aplicaciones solo nos interesa el número de puntos que caen dentro de un rango y no reportar cada uno de ellos. En este caso nos gustaría evitar el término O(k) en el tiempo de consulta.

- 1. Describe cómo un árbol de rangos de una dimensión puede adaptarse para que una consulta así se pueda realizar en tiempo $O(\log n)$.
- 2. Usando la solución al problema para una dimensión, describe cómo se pueden responder consultas de conteo en rangos de d dimensiones en tiempo $O(\log^d n)$.
- 3. Describe cómo se puede usar la técnica de cascada para mejorar el tiempo de consulta en un factor $O(\log n)$ para dos y más dimensiones.

Respuesta

<Tu respuesta aquí>

Pregunta 9

Diseña e implementa una versión de un Treap que incluya la operación get(i), que regrese la llave con rank i en el Treap. (Hint: Haz que cada nodo, u, mantenga un registro del tamaño del subárbol enraizado en u.

Respuesta

Implementa un TreapList, una implementación de la interfaz lista como un Treap. Cada nodo en el Treap debería almacenar un elemento de la lista. Todas las operaciones de la Lista como get(i), set(i,x), add(i,x) y remove(i) deben tener una complejidad de $O(\log n)$ esperado.

Respuesta