lab09

Nate Tran

Exploring the PDB

```
data <- read.csv("Data_Export_Summary.csv")
knitr::kable(data)</pre>
```

Molecular.Type	X.ray	EM	NMR	${\bf Multiple.methods}$	Neutron	Other	Total
Protein (only)	152914	9495	12121	191	72	32	174825
Protein/Oligosaccharide	9008	1663	32	7	1	0	10711
Protein/NA	8069	2949	282	6	0	0	11306
Nucleic acid (only)	2602	78	1434	12	2	1	4129
Other	163	9	31	0	0	0	203
Oligosaccharide (only)	11	0	6	1	0	4	22

```
## Creating function for removing commas and summing numbers
sum_clean <- function(x){
   sum(as.numeric(gsub(",", "", x)))
}
sum_clean(data$X.ray) ## test of sum_clean returns correct value</pre>
```

[1] 172767

Q1

85.9% of the PDB structures are solved by X-ray and 7.1% are solved by EM.

```
100*(sum_clean(data$X.ray)/sum_clean(data$Total))
```

```
[1] 85.87

100*(sum_clean(data$EM)/sum_clean(data$Total))

[1] 7.054812

Q2

86.9% of structures are protein only.

100*(data$Total[1]/sum_clean(data$Total))

[1] 86.89288
Q3
```

There are 1286 HIV-1 protease structures in the PDB.

Mol* Practice

Q4

We only see one atom per water molecule because the resolution of the structure is not high enough to capture hydrogen atoms.

Q5

Water molecule 308

Q6

Intro to Biod3D

```
library(bio3d)
```


Figure 1: A snapshot of HIV-1 protease (PDB code: 1HSG) highlighting two D25 residues and water molecule 308

```
pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file

pdb

Call: read.pdb(file = "1hsg")

Total Models#: 1
   Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)

Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

Non-protein/nucleic Atoms#: 172 (residues: 128)
   Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]</pre>
```

Protein sequence:

PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF

```
+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call
```

Q7

There are 198 residues.

Q8

MK1 is a non-protein residue.

Q9

There are 2 protein chains.

Normal Mode Analysis (NMA)

```
adk <- read.pdb("6s36")

Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE

adk

Call: read.pdb(file = "6s36")

Total Models#: 1
   Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
   Protein Atoms#: 1654 (residues/Calpha atoms#: 214)</pre>
```

```
Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

Non-protein/nucleic Atoms#: 244 (residues: 244)
Non-protein/nucleic resid values: [CL (3), HOH (238), MG (2), NA (1)]

Protein sequence:
    MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
    DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
    VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
    YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG

+ attr: atom, xyz, seqres, helix, sheet,
    calpha, remark, call

## performing NMA on adk
    nma_adk <- nma(adk)

Building Hessian... Done in 0.04 seconds.
Diagonalizing Hessian... Done in 0.29 seconds.

## plotting results of NMA
    plot(nma_adk)
```



```
mktrj(nma_adk, file="adk_nma.pdb")
```

Comparative Structure Analysis of ADK

Q10

"msa" is only found on BioConductor

Q11

"bio3d-view" is not found on BioConductor or CRAN

Q12

True

```
library(bio3d)
aa <- get.seq("1AKE_A")</pre>
```

```
Fetching... Please wait. Done.
  aa
                                                                        60
pdb|1AKE|A
            \tt MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
                                                                        60
            61
                                                                        120
            DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDRI
                                                                        120
           121
                                                                        180
           VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
pdb|1AKE|A
           121
                                                                        180
           181
                                              214
pdb|1AKE|A
            YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
                . . . . . . 214
           181
Call:
  read.fasta(file = outfile)
Class:
  fasta
Alignment dimensions:
  1 sequence rows; 214 position columns (214 non-gap, 0 gap)
+ attr: id, ali, call
Q13
There are 214 amino acids in this sequence.
  ##b <- blast.pdb(aa)
  ##b
```

Warning in get.seq("1AKE_A"): Removing existing file: seqs.fasta

```
##hits <- plot(b)
  ##hits
  ##hits
  hits <- NULL
  hits$pdb.id <- c('1AKE_A','6S36_A','6RZE_A','3HPR_A','1E4V_A','5EJE_A','1E4Y_A','3X2S_A','
  files <- get.pdb(hits$pdb.id, path="pdbs", split=TRUE, gzip=TRUE)</pre>
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/1AKE.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/6S36.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/6RZE.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/3HPR.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/1E4V.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/5EJE.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/1E4Y.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/3X2S.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/6HAP.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/6HAM.pdb exists. Skipping download
```

```
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/4K46.pdb exists. Skipping download

Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/3GMT.pdb exists. Skipping download

Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/4PZL.pdb exists. Skipping download
```

```
| | 0% | 0% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15%
```

```
pdbs <- pdbaln(files, fit=T, exefile="msa")</pre>
```

```
Reading PDB files:
pdbs/split_chain/1AKE_A.pdb
pdbs/split_chain/6S36_A.pdb
pdbs/split_chain/6RZE_A.pdb
pdbs/split chain/3HPR A.pdb
pdbs/split_chain/1E4V_A.pdb
pdbs/split_chain/5EJE_A.pdb
pdbs/split_chain/1E4Y_A.pdb
pdbs/split_chain/3X2S_A.pdb
pdbs/split_chain/6HAP_A.pdb
pdbs/split_chain/6HAM_A.pdb
pdbs/split_chain/4K46_A.pdb
pdbs/split_chain/3GMT_A.pdb
pdbs/split_chain/4PZL_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
     PDB has ALT records, taking A only, rm.alt=TRUE
       PDB has ALT records, taking A only, rm.alt=TRUE
    PDB has ALT records, taking A only, rm.alt=TRUE
```

Extracting sequences

```
name: pdbs/split_chain/1AKE_A.pdb
pdb/seq: 1
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 2
             name: pdbs/split_chain/6S36_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 3
             name: pdbs/split_chain/6RZE_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 4
             name: pdbs/split_chain/3HPR_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 5
             name: pdbs/split_chain/1E4V_A.pdb
             name: pdbs/split chain/5EJE A.pdb
pdb/seq: 6
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 7
             name: pdbs/split_chain/1E4Y_A.pdb
pdb/seq: 8
             name: pdbs/split_chain/3X2S_A.pdb
pdb/seq: 9
             name: pdbs/split_chain/6HAP_A.pdb
pdb/seq: 10
              name: pdbs/split_chain/6HAM_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
              name: pdbs/split_chain/4K46_A.pdb
pdb/seq: 11
   PDB has ALT records, taking A only, rm.alt=TRUE
```

```
pdb/seq: 12     name: pdbs/split_chain/3GMT_A.pdb
pdb/seq: 13     name: pdbs/split_chain/4PZL_A.pdb
```

```
ids <- basename.pdb(pdbs$id)
##plot(pdbs, labels=ids)
anno <- pdb.annotate(ids)
unique(anno$source)</pre>
```

- [1] "Escherichia coli"
- [2] "Escherichia coli K-12"
- [3] "Escherichia coli 0139:H28 str. E24377A"
- [4] "Escherichia coli str. K-12 substr. MDS42"
- [5] "Photobacterium profundum"
- [6] "Burkholderia pseudomallei 1710b"
- [7] "Francisella tularensis subsp. tularensis SCHU S4" $\,$

```
pc.xray <- pca(pdbs)
plot(pc.xray)</pre>
```


Trajectory visualization

```
pc1 <- mktrj(pc.xray, pc=1, file="pc_1.pdb")</pre>
```