

Checkpoint1

O(1)	O(log(log(n)))	O(logn)	O(log^2(n))	O(n)	O(nlog(n))	O(n ⁴
O(1),O(4)	O(log(log(n)))	O(log(n))	O(log^2(n))	O(n),O(4n+3)	O(nlog(n))	O(n^2),O(n^2+20

Checkpoint2

证明

要证

$$n^3 + 300n \in O(n^3)$$

设 $f(n)=n^3+300n, g(n)=n^3, c=301$,求解 $f(n_0)\leq c\times g(n_0)$,可得 $n_0=1$,所以存在 $c=301, n_0=1$,使得 $\forall n\geq n_0$,有 $f(n)\leq cg(n)$,证毕

Checkpoint3

证明

$$\therefore f(n) \in O(g(n)) \tag{1}$$

$$\therefore \exists c \in R^+, n_0 \in Z^+, \text{s.t.} \forall n \ge n_0, f(n) \le cg(n) \tag{2}$$

$$\therefore k \ge 0 \tag{3}$$

$$\therefore \exists c \in R^+, n_0 \in Z^+, \text{s.t.} \forall n \ge n_0, kf(n) \le ckg(n) \tag{4}$$

$$\therefore kf(n) \in O(kg(n)) \tag{5}$$

$$\therefore kg(n) \in O(g(n)) \tag{6}$$

$$\therefore kf(n) \in O(g(n)) \tag{7}$$