2019年度

只木進一

グラフ・ネットワーク Graphs and Networks

- ■要素が結ばれたものの総称
 - ■頂点(node)と弧(edge)
- → グラフ理論ではグラフとネットワークを区別
 - ■ネットワーク:弧に値がついているもの

様々なネットワーク Various Networks

- The Internet
- ■交通網:道路、鉄道、航空、etc.
- ▶人の繋がり
- ●食物連鎖

グラフ・ネットワークの定義 Defining graphs/networks

- 頂点の集合V、弧の集合A
- ■弧から頂点への写像
- ■頂点から弧
 - $\delta^+:V\to 2^A$:始点
- 弧から値(ネットワーク)
 - $\longrightarrow w: A \rightarrow R$

$$\partial^+ a = v, \quad \partial^- a = w$$

$$\delta^+ v = \{a, b\}$$

グラフ・ネットワークのクラス Network classes

- <u>https://github.com/modeling-and-simulation-mc-saga/Network</u>
- networkパッケージ
 - ■Edgeクラス
 - ■Nodeクラス
 - ■AbstractNetworkクラス
- AbstractNetwork.main()がサンプル

グラフアルゴリズム Graph Algorithms

- ■グラフの探索等のアルゴリズム総称
- ■例:幅優先探索

L: すでにチェックした 点のリスト: 初期 $L=\phi$ Q: 調査すべき点の キュー: 初期Q=[r]

```
L = \emptyset
0 = [r]
while (Q \neq \emptyset) {
    v = Q. poke//先頭
    forall(a \in \delta^+ v) {
        w = \partial^- a
        if (w \notin L \&\& w \notin Q) {
            Q \leftarrow w
    L \leftarrow L \cup \{v\}
```

- ■graphAlgorithmsパッケージ
 - AbstractSearchクラス
 - Breadth First Search クラス
 - ▶ほぼ、アルゴリズム通り

Erdös-Rényi Random Graph

- →一定数Nの節を用意する
- ■一定数Lの弧をランダムに選んだ節の組に接続する $L=p\frac{N(N-1)}{2}$
- ▶単純グラフであることは求めない
 - ■頂点vから頂点vへの弧:孤立弧
 - ■頂点vから頂点wへの弧が複数:並列弧

N = 100

p = 0.03

Giant Component

- 辺を持つ確率pが小さい
 - 連結されていない小さいネットワークに分かれている
 - ▶ 平均距離は短い:連結の場合だけを考える
- 辺を持つ確率pが非常に大きい
 - 全体が連結されている
 - ▶ 多くの頂点と直接結ばれている:平均距離は短い
- **→** 中間のpで何が起こる?
- 全頂点とほぼ同じサイズの連結成分をgiant componentと呼ぶ

- ►任意の頂点がgiant componentに属していない確率u
- ●節iとjを考える
 - ■節iとjがつながっていない確率:1-p
 - ●節*iとj*が節*j*を通じてgiant component につながっていない確率: *pu*

$$u = (1 - p + pu)^{N-1} = \left[1 - \frac{c}{N-1}(1-u)\right]^{N-1}$$
$$c = (N-1)p$$

$$\ln u = (N-1) \ln \left[1 - \frac{c}{N-1} (1-u) \right]$$

$$\approx (N-1) \left[-\frac{c}{N-1} (1-u) + O((N-1)^2) \right] = -c(1-u)$$

$$u = e^{-c(1-u)}$$

- Giant componentに入っている節の比:S=1-u $S=1-e^{-cS}$
- S に対する方程式に対して、自己無撞着(self-consistent)に 数値的解を得る

c>1で曲線と直線の交点が発生

突然giant componentが出現

Simulation

- ■頂点を連結した頂点の集合に分類する
- →一番大きな集合のサイズがpに対して 変化する様子を調べる

- analysis/GiantClusterクラス
- analysisSamples/ERGiantClusterクラス

頂点を連結集合(クラスタ)へ 分割:幅優先探索の応用

- $U \subseteq V : 未分類の頂点の集合。初期値は<math>U = V$
- $C \subseteq 2^V : クラスタの集合。初期値は <math> C = \emptyset$

```
while (U \neq \emptyset){ w \in U //Uから選ぶ L = BSF(U,w) //wから到達可能な頂点の集合 U \leftarrow U \setminus L //UからLの要素を削除 C \leftarrow C \cup \{L\}
```

