The Discrete-Time Fourier Transform

1. Representation of Aperiodic Signals: the Discrete-Time Fourier Transform

the discrete-time Fourier transform pair

$$x[n] = rac{1}{2\pi} \int_{2\pi} X(\mathrm{j}\omega) \mathrm{e}^{\mathrm{j}\omega n} \,\mathrm{d}\omega$$

$$X(\mathrm{e}^{\mathrm{j}\omega}) = \sum_{n=-\infty}^{+\infty} x[n] \mathrm{e}^{-\mathrm{j}\omega n}$$

The function $X(j\omega)$ is referred to as the **discrete-time Fourier transform**, and will often be referred to as the **spectrum** of x[n].

 $X(\mathrm{\,j}\omega)$ is periodic with period 2π

If
$$\sum_{n=-\infty}^{+\infty}|x[n]|<\infty$$
 or $\sum_{n=-\infty}^{+\infty}|x[n]|^2<\infty$, then $X(\mathrm{\,j}\omega)$ will converge.

2. The Fourier Transform For Periodic Signals

consider a periodic sequence x[n] with period Nand with the Fourier series representation

$$x[n] = \sum_{k=\langle N
angle} a_k \mathrm{e}^{\mathrm{j} k rac{2\pi}{N} n}$$

the Fourier transform is

$$X(\mathrm{e}^{\mathrm{j}\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - rac{2\pi k}{N})$$

3. Properties of the Discrete-Time Fourier Transform

it will be convenient to adopt notation $x[n] \overset{\mathcal{F}}{\longleftrightarrow} X(\mathrm{e}^{\mathrm{j}\omega})$ Periodicity of the Discrete-Time Fourier Transform $X(\mathrm{e}^{\mathrm{j}(\omega+2\pi)}) = X(\mathrm{e}^{\mathrm{j}\omega})$ Linearity of the Fourier Transform $ax_1[n] + bx_2[n] \overset{\mathcal{F}}{\longleftrightarrow} aX_1(\mathrm{e}^{\mathrm{j}\omega}) + bX_2(\mathrm{e}^{\mathrm{j}\omega})$

Time Shifting and Frequency Shifting $x[n-n_0] \overset{\mathcal{F}}{\longleftrightarrow} \mathrm{e}^{-\mathrm{j}\omega n_0} X(\mathrm{e}^{\mathrm{j}\omega})$ and $\mathrm{e}^{\mathrm{j}\omega_0 n} x[n] \overset{\mathcal{F}}{\longleftrightarrow}$ $X(\mathrm{e}^{\mathrm{j}(\omega-\omega_0)})$

Conjugation and Conjugate Symmetry $x^*[n] \buildrel {\mathcal F} \buildrel X^*(\mathrm{e}^{-\mathrm{j}\omega})$ if x[n] is real valued, then $X(\mathrm{e}^{\mathrm{j}\omega})=X^*(\mathrm{e}^{-\mathrm{j}\omega})$

Differencing and Accumulation $x[n]-x[n-1] \stackrel{\mathcal{F}}{\longleftrightarrow} (1-\mathrm{e}^{-\mathrm{j}\omega})X(\mathrm{e}^{\mathrm{j}\omega})$ and $\sum_{m=-\infty}^{+\infty} x[m] \overset{\mathcal{F}}{\longleftrightarrow} rac{1}{1-\mathrm{e}^{-\mathrm{j}\omega}} X(\mathrm{e}^{\mathrm{j}\omega}) + \pi X(\mathrm{e}^{\mathrm{j}0}) \sum_{k=-\infty}^{+\infty} \delta(\omega-2\pi k)$

Time Reversal $x[-n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(\mathrm{e}^{-\mathrm{j}\omega})$

Time Expansion let k be a positive integer, and define the signal

$$x_{(k)}[n] = egin{cases} x \Big[rac{n}{k}\Big] \,, & ext{if n is a multiple of k,} \ 0, & ext{if n is not a multiple of k.} \end{cases}$$

then $x_{(k)}[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(\mathrm{e}^{\mathrm{j}k\omega})$

Differentiation in Frequency $nx[n] \overset{\mathcal{F}}{\longleftrightarrow} \mathrm{j} \frac{\mathrm{d} X(\mathrm{e}^{\mathrm{j}\omega})}{\mathrm{d}\omega}$ Parseval's Relation $\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\mathrm{e}^{\mathrm{j}\omega})|^2 \, \mathrm{d}\omega$

 $|X(\mathrm{e}^{\mathrm{j}\omega})|^2$ is referred to as the **energy-density spectrum** of the signal x[n].

4. The Convolution Property

$$y[n] = x[n] * h[n] \stackrel{\mathcal{F}}{\longleftrightarrow} Y(\mathrm{e}^{\mathrm{j}\omega}) = X(\mathrm{e}^{\mathrm{j}\omega})H(\mathrm{e}^{\mathrm{j}\omega})$$

As in continuous time, it maps the convolution of two signals to the simple algebraic operation of multiplying their Fourier transforms.

5. The Multiplication Property

$$y[n] = x_1[n] x_2[n] \overset{\mathcal{F}}{\longleftrightarrow} Y(\mathrm{e}^{\hspace{1pt}\mathrm{j}\omega}) = rac{1}{2\pi} \int_{2\pi} X_1(\mathrm{e}^{\hspace{1pt}\mathrm{j} heta}) X_2(\mathrm{e}^{\hspace{1pt}\mathrm{j}(\omega- heta)}) \,\mathrm{d} heta$$

It corresponds to a **periodic convolution** of $X_1(\mathrm{e}^{\mathrm{j}\omega})$ and $X_2(\mathrm{e}^{\mathrm{j}\omega})$.

6. Basic Discrete-Time Fourier Transform Pairs

$$\mathrm{e}^{\mathrm{j}\omega_0 n} \overset{\mathcal{F}}{\longleftrightarrow} 2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$$

$$\cos(\omega_{0}n) \stackrel{\mathcal{F}}{\longleftrightarrow} \pi \sum_{l=-\infty}^{+\infty} \left[\delta(\omega - \omega_{0} - 2\pi l) + \delta(\omega + \omega_{0} - 2\pi l)\right]$$

$$\sin(\omega_{0}n) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{\pi}{\mathbf{j}} \sum_{l=-\infty}^{+\infty} \left[\delta(\omega - \omega_{0} - 2\pi l) - \delta(\omega + \omega_{0} - 2\pi l)\right]$$

$$\delta[n] \stackrel{\mathcal{F}}{\longleftrightarrow} 1$$

$$\sum_{k=-\infty}^{+\infty} \delta[n - kN] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta(\omega - \frac{2\pi k}{N})$$

$$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right), \qquad 0 < W < \pi \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega) = \begin{cases} 1, & 0 \le |\omega| \le W, \\ 0, & W < |\omega| \le \pi, \end{cases}$$

$$u[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{1 - e^{-j\omega}} + \sum_{k=-\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$$

$$a^{n}u[n], \quad |a| < 1 \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{1 - ae^{-j\omega}}$$

7. Duality

Duality in the Discrete-Time Fourier Series

if
$$f[m] = rac{1}{N} \sum_{r=\langle N \rangle} g[r] \mathrm{e}^{-\mathrm{j} r rac{2\pi}{N} m}$$
, then $g[n] \overset{\mathcal{FS}}{\longleftrightarrow} f[k]$ and $f[n] \overset{\mathcal{FS}}{\longleftrightarrow} rac{1}{N} g[-k]$

Duality between the Discrete-Time Fourier Transform and the Continuous-Time Fourier Series

$$x[n] = rac{1}{2\pi} \int_{2\pi} X(\mathrm{e}^{\mathrm{j}\omega}) \mathrm{e}^{\mathrm{j}\omega n} \,\mathrm{d}\omega \longleftrightarrow a_k = rac{1}{T} \int_T x(t) \mathrm{e}^{-\mathrm{j}k\omega_0 t} \,\mathrm{d}t$$
 $X(\mathrm{e}^{\mathrm{j}\omega}) = \sum_{n=-\infty}^{+\infty} x[n] \mathrm{e}^{-\mathrm{j}\omega n} \longleftrightarrow x(t) = \sum_{k=-\infty}^{+\infty} a_k \mathrm{e}^{\mathrm{j}k\omega_0 t}$

8. Systems Characterized by Linear Constant-Coefficient Difference Equations

A general linear constant-coefficient difference equation for an LTI system with input x[n] and output y[n] is of the form

$$\sum_{k=0}^N a_k y[n-k] = \sum_{k=0}^M b_k x[n-k]$$

we have

$$H(\mathrm{e}^{\mathrm{j}\omega}) = rac{Y(\mathrm{e}^{\mathrm{j}\omega})}{X(\mathrm{e}^{\mathrm{j}\omega})} = rac{\sum_{k=0}^M b_k \mathrm{e}^{-\mathrm{j}k\omega}}{\sum_{k=0}^N a_k \mathrm{e}^{-\mathrm{j}k\omega}}$$