Université de Lorraine Analyse complexe

TD 6: Formule de Cauchy, principe du maximum

Dans cette feuille, « fonction entière » signifie « fonction holomorphe sur \mathbb{C} . » D'après le cours, une fonction entière est développable en série entière en n'importe quel point du plan, avec rayon de convergence infini.

Exercice 1. Soit f une fonction entière. Montrer qu'elle est constante si l'une des conditions suivantes est satisfaite :

- 1. Il existe m > 0 tel que $\forall z \in \mathbb{C}, |f(z)| > m$.
- 2. L'image de f est incluse dans \mathbb{H} , le demi-plan supérieur.
- 3. L'image de f n'est pas dense dans \mathbb{C} .
- 4. L'image de f est incluse dans $\mathbb{C} \setminus \mathbb{R}_{-}$.

Exercice 2. [Fonctions à croissance polynomiale] Soit f une fonction entière. On suppose qu'il existe $d \ge 0$, $M \in \mathbb{R}$ et $R \in \mathbb{R}_+^*$ tels que pour tout z de module $\ge R$, on ait $|f(z)| \le M|z|^d$. Montrer que f est un polynôme de degré $\le d$.

Exercice 3. Soit $f: \overline{\mathbb{D}} \to \mathbb{C}$ continue et holomorphe sur \mathbb{D} .

- 1. Montrer que pour tout $z \in \mathbb{D}$, on a $f(z) = \frac{1}{2i\pi} \int_{\mathscr{C}(0,1)} \frac{f(w)}{w-z} dw$.
- 2. La question précédente montre que si f est nulle sur le cercle unité, elle est nulle dans le disque. Montrer que si' l'on suppose seulement que f est nulle sur un arc du cercle unité, alors f est nulle.

Exercice 4. [Principe « du minimum »] Soit $U \subseteq \mathbb{C}$ un ouvert connexe et $f \in \mathcal{O}(U)$. Montrer que si |f| admet un minimum strictement positif en $z_0 \in U$, alors la fonction f est constante.

Exercice 5. Soit $U \subseteq \mathbb{C}$ un ouvert et $f \in \mathcal{O}(U)$. On suppose que pour tout $z \in U$, on a $|\operatorname{Im}(f(z))| = 2 |\operatorname{R\'e}(f(z))|$. Que peut-on dire de f?

Exercice 6. Soit $f: \overline{\mathbb{D}} \to \mathbb{C}$ continue et holomorphe sur \mathbb{D} . On suppose qu'il existe M>0 (resp. N>0) tel que si z est de module un et partie imaginaire positive (resp. négative), alors $|f(z)| \le M$ (resp. $\le N$). Montrer que $|f(0)| \le \sqrt{MN}$.

Exercice 7. [Lemme de Schwarz] Soit $f: \mathbb{D} \to \mathbb{D}$ une fonction holomorphe s'annulant en zéro à l'ordre $\leq d$.

- 1. Montrer que pour tout $z \in \mathbb{D}$, $|f(z)| \le |z|^d$.
- 2. Montrer que s'il existe $z \in \mathbb{D}^*$ tel que $|f(z)| = |z|^d$, alors il existe $\theta \in \mathbb{R}$ tel que pour tout $z \in \mathbb{D}$, $f(z) = e^{i\theta}z^d$.

Exercice 8. [Biholomorphismes du disque] Pour tout $a \in \mathbb{D}$, on considère l'application

$$\phi_a:\mathbb{C}\setminus 1/\bar{a}\to\mathbb{C}, z\mapsto \frac{z-a}{1-\bar{a}z}.$$

Montrer qu'elle se restreint en un biholomorphisme de $\mathbb D$. Montrer que toutes les applications biholomorphes de $\mathbb D$ dans lui-même sont de la forme

$$z \mapsto e^{i\theta} \phi_a(z),$$

avec $a \in \mathbb{D}$ et $\theta \in \mathbb{R}$.