Composite Spectral Energy Distribution and Clustering Methods

Ming-Feng Ho¹

¹Department of Physics and Astronomy, University of California, Riverside; email: mho026@ucr.edu

Xxxx. Xxx. Xxx. Xxx. YYYY. AA:1-3

This article's doi: 10.1146/((please add article doi))

Copyright © YYYY by Annual Reviews. All rights reserved

Keywords

galaxies: evolution, methods: data analysis, methods: Bayesian non-parametric

Abstract

Composite SEDs and Bayesian non-parametric clustering. Photometry and medium bands: surveys Spectral Energy Distribution fitting template, FAST, EAZY Composite SEDs: evolution from grouing methods Bayesian non-parametric on functional data: 1. Dirichl Processes for clustering 2. Gaussian Processes on Spectral data 3. Clutering on functional data

Contents	
1. INTRODUCTION	2
2. GALAXY EVOLUTION IN TERMS OF COMPOSITE SPECTRAL ENERGY DISTRIBU-	
TIONS (SEDs)	2
2.1. Medium-Band Photometry	2
2.2. Fitting Template of Spectral Energy Distributions (SEDs)	2
2.3. Composite Spectral Energy Distributions (SEDs)	2
3. BAYESIAN MACHINE LEARNING FOR MODELING SPECTRAL DATA	2
3.1. Gaussian Processes for Modeling Spectra	2
3.2. Bayesian Model Selection with Different Types of Galaxies	2
3.3. Dirichlet Processes for Clustering	2
3.4. Possibility: Dirichlet Processes combined with Gaussian Process for Modeling Composite SEDs	2

1. INTRODUCTION

improvement of Photometry data on redshift rage 3-4

2. GALAXY EVOLUTION IN TERMS OF COMPOSITE SPECTRAL ENERGY DISTRIBUTIONS (SEDs)

2.1. Medium-Band Photometry

This is dummy text.

2.2. Fitting Template of Spectral Energy Distributions (SEDs)

This is dummy text. This is dummy text. This is dummy text. This is dummy text.

- 2.3. Composite Spectral Energy Distributions (SEDs)
- 3. BAYESIAN MACHINE LEARNING FOR MODELING SPECTRAL DATA
- 3.1. Gaussian Processes for Modeling Spectra
- 3.2. Bayesian Model Selection with Different Types of Galaxies
- 3.3. Dirichlet Processes for Clustering
- 3.4. Possibility: Dirichlet Processes combined with Gaussian Process for Modeling Composite SEDs

SUMMARY POINTS

1. Summary point 1. These should be full sentences.

FUTURE ISSUES

1. Future issue 1. These should be full sentences.

ACKNOWLEDGMENTS

Acknowledgements, general annotations, funding.

LITERATURE CITED

Acevedo & Fitzjarrald(2001). Acevedo O, Fitzjarrald D. 2001. J. Atmos. Sci. 58:2650-67