Workswand Education Society's Institute of Technology, Chembur, Mumbui,

Department of Artificial Intelligence and Data Science

Year: 1021-22 (EVENSEM)

Internal Assessment Test 2

Class: SEJ AI and D3	Division:				
Semester: IV	Subject: Engineering Mathematics-IV				
Date: 11/4/2022	Time: 1 hr				

Course Outcome	CO3	CO4	
Percentage %	44%	56%	

Q.1)		(Attempt any five of the following)	Mar ks (20)	Course Outcom es
	a)	The number of monthly breakdowns of a computer is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month with at least one breakdown.	2M	CO4
	b)	A machinist is making engine parts with axle diameters of 0.7 inch. A random sample of 10 parts shows a mean diameter 0.742 inch with a standard deviation of 0.04 inch. Test whether the work is meeting the specification. Apply 5% level of significance.	2M	CO4
	c)	In a sample of 1000 students, the mean marks of a certain test is 14 and standard deviation is 2.5. Assuming the distribution of marks in the test to be normal, find the number of students who have scored between 12 and 15?	2M	CO4
	d)	A r.v. X is normally distributed and the mean of X is 12 and standard deviation is 4. Find x_0 when $P(X > x_0) = 0.24$.	2M	CO4
	e)	Find the Z-transform of the sequence $\left(\frac{1}{2}\right)^k$, $k \ge 0$	2M	CO3

	Find the inverse Z-transform of								CO2
	f)	$\frac{z}{(z+2)}$, in the ROC $ z > 2$						2M ·	CO3
		Samples of two types of electric light bulbs were tested for					5M		
		length of life and following data were obtained. Type I:						CO4	
Q.2)		$n_1 = 8$, $\overline{x}_1 = 1234$ hrs, $s_2 = 36$ hrs							
	a)	and Type II: $n_2 = 7$, $\overline{x}_2 = 1036$ hrs, $s_2 = 40$ hrs Is the difference in the means sufficient to conclude that							
	À	type I is superior to type II. Apply 1% level of							
		significance.							
		OR							
		Investigate the association between the darkness of eye							
		colour in father and son from the following data. Apply 5%						CO4	
		level of significance.							
		Colour of father's eyes							
	h)	b) Colour of son's		Dark	Not Dark	Total		5M	
	0)		Dark	48	90	138			
			Not Dark	80	782	862			
		eyes	Total	128	872	1000			
		Let $f(k)$	$= \frac{(K+1) a^k}{K!} \text{find} Z(f(k))$				5M	002	
Q.3)	a)	a) Let $f(R) = \frac{1}{K!}$ OR						JIVI	CO3
		Find the in	nverse Z-tran	sform of	$F(z) = \frac{1}{(z-3)}$	$\frac{1}{(z-2)}$ if	ROC		002
	b)	Find the inverse Z-transform of $F(z) = \frac{1}{(z-3)(z-2)}$ if ROC (i) $ z < 2$ (ii) $2 < z < 3$						5M	CO3
	(1) [2] (1) 2 (1)								