

Departamento de Matemática

FORMULÁRIO

Estatísticas de Teste/Distribuições Amostrais e Intervalos de Confiança (para Populações Normais ou aproximadamente Normais)

• Para a Média (μ)

- Com σ conhecido

Estatística e Distribuição Amostral	Intervalo de Confiança	
$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$	$\left] \bar{x} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}; \bar{x} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right[$	

- Com σ desconhecido

*
$$n \ge 30$$

Estatística e Distribuição Amostral	Intervalo de Confiança
$Z = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$	$\left] \bar{x} - z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}; \bar{x} + z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \right[$

$$* n < 30$$

Estatística e Distribuição Amostral	Intervalo de Confiança
$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{(n-1)}$	$\left] \bar{x} - t_{(n-1);1-\frac{\alpha}{2}\frac{s}{\sqrt{n}}; \bar{x} + t_{(n-1);1-\frac{\alpha}{2}\frac{s}{\sqrt{n}}} \right[$

ullet Para a Proporção (p)

	Intervalo de Confiança	Teste de Hipóteses
	Distribuição Amostral	Estatística de Teste
$n \ge 30$	$Z = \frac{p^* - p}{\sqrt{\frac{p^* q^*}{n}}} \dot{\sim} \mathcal{N}(0, 1)$	$Z = \frac{p^* - p}{\sqrt{\frac{pq}{n}}} \dot{\sim} \mathcal{N}(0, 1)$

- Para a Variância $(\boldsymbol{\sigma}^2)$

- Com μ conhecido

Estatística e Distribuição Amostral	Intervalo de Confiança
$X^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \mu)^{2}}{\sigma^{2}} \sim \chi_{(n)}^{2}$	$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{(n);1-\frac{\alpha}{2}}^2}, \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{(n);\frac{\alpha}{2}}^2}$

-Com μ desconhecido

Estatística e Distribuição Amostral	Intervalo de Confiança
$X^{2} = (n-1)\frac{S^{2}}{\sigma^{2}} \sim \chi^{2}_{(n-1)}$	$\left[\frac{(n-1)s^2}{\chi^2_{(n-1);1-\frac{\alpha}{2}}}, \frac{(n-1)s^2}{\chi^2_{(n-1);\frac{\alpha}{2}}} \right]$

- \bullet Para a diferença de médias $(\boldsymbol{\mu}_1 {-} \boldsymbol{\mu}_2)$
 - Com σ_1 e σ_2 conhecidos

]	Est. e Distrib. Amostral	Intervalo de Confiança
Z	$=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\sim\mathcal{N}\left(0,1\right)$	$\left] \bar{x}_1 - \bar{x}_2 - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \bar{x}_1 - \bar{x}_2 + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right[$

— Com σ_1 e σ_2 desconhecidos

*
$$n_1 \ge 30 e n_2 \ge 30$$

Est. e Distrib. Amostral	Intervalo de Confiança
$Z = \frac{\left(\bar{X}_1 - \bar{X}_2\right) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim \mathcal{N}(0, 1)$	$\left[\right] \bar{x}_1 - \bar{x}_2 - z_{1-\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \bar{x}_1 - \bar{x}_2 + z_{1-\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \left[\right]$

*
$$n_1 < 30$$
 ou $n_2 < 30~({\rm com}~\sigma_1 = ~\sigma_2)$

Est. e Distrib. Amostral	Intervalo de Confiança
$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2}) \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sim t_{(n_1 + n_2 - 2)}$	$\left[(\bar{x}_1 - \bar{x}_2) \mp t_{(n_1 + n_2 - 2); 1 - \frac{\alpha}{2}} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \right]$

- \bullet Para a diferença de proporções $(\mathbf{p}_1 \mathbf{p}_2)$
 - $-n_1 \ge 30 \text{ e } n_2 \ge 30$

Est. e Distrib. Amostral	Intervalo de Confiança
$Z = \frac{\left(p_1^* - p_2^*\right) - (p_1 - p_2)}{\sqrt{\frac{p_1^* q_1^*}{n_1} + \frac{p_2^* q_2^*}{n_2}}} \dot{\sim} \mathcal{N}\left(0, 1\right)$	$\left[(p_1^* - p_2^*) - z_{1-\frac{\alpha}{2}} \sqrt{\frac{p_1^* q_1^*}{n_1} + \frac{p_2^* q_2^*}{n_2}}, (p_1^* - p_2^*) + z_{1-\frac{\alpha}{2}} \sqrt{\frac{p_1^* q_1^*}{n_1} + \frac{p_2^* q_2^*}{n_2}} \right] $

• Para a razão de variâncias $(\frac{\sigma_1^2}{\sigma_2^2})$

Estatística e Distrib. Amostral	Intervalo de Confiança
$F = \frac{S_1^2}{S_2^2} \times \frac{\sigma_2^2}{\sigma_1^2} \sim F_{(n_1 - 1, n_2 - 1)}$	