BDR: R-Trees

Samir Bazout Aniela Bazire Yuksel Adali Ahmed Tidiane Balde

Informatique Université Pierre et Marie Curie

11 juin 2018

Table of Contents

- 1. Introduction
- 2. Recherche, Insertion
- 3. Suppression R-Tree
- 4. Création d'un Index Sous Oracle
- 5. Conclusion

PRÉSENTATION

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

 Adaptation du mécanisme B+ tree au cas multidimensionnel

- Adaptation du mécanisme B+ tree au cas multidimensionnel
- La méthode la plus utilisée pour indexer les données spatiales

- Adaptation du mécanisme B+ tree au cas multidimensionnel
- La méthode la plus utilisée pour indexer les données spatiales
- Principe de l'indexation R-Tree

- Adaptation du mécanisme B+ tree au cas multidimensionnel
- La méthode la plus utilisée pour indexer les données spatiales
- Principe de l'indexation R-Tree
- Avantages

- Adaptation du mécanisme B+ tree au cas multidimensionnel
- La méthode la plus utilisée pour indexer les données spatiales
- Principe de l'indexation R-Tree
- Avantages
- Inconvénients

Table Monument

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

Nom du monument	Latitude	Longitude	Code Postal	Ville
Notre-Dame	48.853	2.35	75004	Paris
Sainte-Chapelle	48.8554	2.345	75001	Paris
Panthéon	48.8463	2.3461	75005	Paris
Musée des Plans-Reliefs	48.8565	2.3127	75007	Paris
Hôtel de Béthune-Sully	48.8547	2.3639	75004	Paris
Palais-Royal	48.865	2.3377	75001	Paris
Conciergerie	48.8558	2.346	75001	Paris
Chapelle expiatoire	48.8737	2.3227	75008	Paris
Château de Vincennes	48.8427	2.4357	94300	Vincennes
Maison des Jardies à Sèvres	48.8272	2.1986	92310	Sèvres
Domaine National de Saint- Cloud	48.8368	2.2182	92210	Saint-Cloud

FIGURE - Monument(nom, latitude, longitude, code postal, ville)

INDEXMONUMENT

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

Nom du monument	Latitude	Longitude
Notre-Dame	48.853	2.35
Sainte-Chapelle	48.8554	2.345
Panthéon	48.8463	2.3461
Musée des Plans-Reliefs	48.8565	2.3127
Hôtel de Béthune-Sully	48.8547	2.3639
Palais-Royal	48.865	2.3377
Conciergerie	48.8558	2.346
Chapelle expiatoire	48.8737	2.3227
Château de Vincennes	48.8427	2.4357
Maison des Jardies à Sèvres	48.8272	2.1986
Domaine National de Saint-Cloud	48.8368	2.2182

FIGURE - IndexMonument en fonction de (latitude, longitude)

STRUCTURE EN GRILLE

Un arbre R est un arbre équilibré de dégré n fixé, avec :

- Le noeud racine possède entre 2 et *n* fils
- Tout noeud interne a entre m et n fils, avec m < n/2

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

RECHERCH Insertion

EN ARBRE

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

RECHERCHI

Dans la suite, nous étudierons le cas d'un index bi-dimensionnel. Pour chaque noeud, le nombre d'entrée est compris entre m=2 et n=5.

RECHERCHE DANS L'INDEX

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

Recherch

La recherche dans un R-Tree est similaire à celle dans un arbre $\mathsf{B}+.$

Algorithme – ARecherche Soit R le rectangle de la recherche (les conditions d'une requette)

- Soit T la racine du R-Tree
 - On recherche tous les noeuds tels que les rectangles s'intersectent avec le rectangle R.
- Si T n'est pas une feuille :
 - Appliquer ARecherche pour tous les fils de T tels qu'ils s'intersectent avec S.
- Si T est une feuille :
 - Retourner toutes les entrées qui appartiennent à S.

EXEMPLE

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

RECHERCH

Question Tous les monuments dont l'attitude est entre 48.856 et 48.871 et la longitude est entre 2.27 et 2.40 ? **Requête SQL**

```
Select *
From Monument
Where att > 48.856 and att < 48.871 and
lont > 2.27 and lont < 2.40;
```

EXEMPLE

Question Tous les monuments dont l'attitude est entre 48.856 et 48.871 et la longitude est entre 2.27 et 2.40?

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

RECHERCH Insertion

EXEMPLE

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

RECHERCHE Insertion **Question** Tous les monuments dont l'attitude est entre 48.856 et 48.871 et la longitude est entre 2.27 et 2.40?

Insertion R-Tree

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

RECHERCHE

Construction dynamique de l'arbre R – Ajout d'un nouvel élément à l'index.

Suppression R-Tree

- Rechercher le rectangle (MBR) dans lequel se trouve l'élément à supprimer
- Si le rectangle (MBR) est trouvé, supprimer l'élément
- Ensuite, ajuster les rectangles (MBRs) de manière à les rendre plus petit
- Si le noeud a moins de *m* entrées (underflow) :
 - Supprimer le noeud récursivement chez son parent
 - Insérer toutes les entrées des noeuds supprimés dans l'arbre en utilisant donc l'algorithme d'insertion

Suppression simple – Réajustement du rectange (MBR) avec les entrées restantes.

Admettons qu'on veut supprimer le monument Palais-royal :

Suppression simple – Réajustement du rectange (MBR) avec les entrées restantes.

Admettons qu'on veut supprimer le monument Palais-royal :

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE **Suppression (underflow)** – Supprimer le noeud déficient récursivement et insérer toutes les entrées des noeuds supprimés avec l'algorithme d'*insertion* Admettons qu'on veut supprimer le monument **Maison des Jardies à Sèvres** :

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE **Suppression (underflow)** – Supprimer le noeud déficient récursivement et insérer toutes les entrées des noeuds supprimés avec l'algorithme d'*insertion* Admettons qu'on veut supprimer le monument **Maison des Jardies à Sèvres** :

Création d'un Index sous Oracle

Les méthodes d'indexation traditionnelles données multidimensionnelles

SAMIR BAZOUT ANIELA BAZIRE Yuksel ADALI AHMED TIDIANE BALDE

type d'index R-Tree solution d'Oracle : le développeur peut définir de nouveaux types d'objets, de nouveaux opérateurs ou encore de nouveaux types d'index à l'aide de l'interface **ODCIIndex**

particulière

une nouvelle structure d'indexation

- spécification des composants comme un
- Définir une structure d'index
- Déterminer la stockage dans la base
- Déterminer le comportement de l'index :
 - Création/Suppression
 - Modification des données indexées
 - Récupération de données lors d'une requête

ODCIcreate() ODCIalter() ODCItruncate(ODCIdrop()

ODCTinsert()

ODCIdelete() ODCIupdate()

ODCIstart() ODCIfetch() ODCIclose()

CONCLUSION

- R-Tree
- Avantages et Inconvénients
- Méthodes / Algorithmes d'Indexation (Recherche, Insertion, Suppression)
- Indexation Oracle
- Différents variantes de R-Tree
 - R+-Tree: ils évitent le chevauchement des nœuds internes en insérant un objet dans plusieurs feuilles si nécessaire.
 - Hilbert R-Tree: un index pour les objets multidimensionnels tels que les lignes, les régions, les fractales, les objets à 3D.
 - R*-Tree: coût de construction légèrement plus élevé mais mais l'arbre résultant aura généralement une meilleure performance de requête. (minimisation de la couverture et du chevauchement)

Conclusion

SAMIR BAZOUT ANIELA BAZIRE YUKSEL ADALI AHMED TIDIANE BALDE

Merci de votre attention!