```
In [8]:
```

import matplotlib.pyplot as plt

In [9]:

%matplotlib inline

In [10]:

```
import pandas as pd
```

In [11]:

mtcars = pd.read_csv("https://gist.githubusercontent.com/ZeccaLehn/4e06d2575eb9589dbe8c365d61cb056c/raw/64f1660f38ef523b2a1a13be77b002b986

1

In [12]:

mtcars.dtypes

Out[12]:

```
Unnamed: 0
               object
mpg
              float64
cyl
                int64
disp
              float64
                int64
hp
drat
              float64
              float64
wt
              float64
qsec
                int64
٧S
                int64
am
                int64
gear
                int64
carb
dtype: object
```

In [13]:

mtcars.columns

Out[13]:

In [14]:

```
plt.plot(mtcars["mpg"],mtcars["disp"])
```

Out[14]:

[<matplotlib.lines.Line2D at 0x1eb60879780>]

In [15]:

```
mtcars.dtypes
```

Out[15]:

Unnamed: 0 object float64 mpg cyl int64 disp float64 hp int64 drat float64 float64 wt qsec float64 int64 ٧S int64 am int64 gear carb int64 dtype: object

In [16]:

```
plt.bar(mtcars["gear"],mtcars["mpg"])
```

Out[16]:

<BarContainer object of 32 artists>

In [17]:

```
plt.scatter(mtcars['wt'],mtcars['mpg'])
```

Out[17]:

<matplotlib.collections.PathCollection at 0x1eb62b68c70>

In [18]:

```
plt.scatter(mtcars['wt'],mtcars['mpg'],mtcars['hp'])
```

Out[18]:

<matplotlib.collections.PathCollection at 0x1eb62becd30>

In [19]:

plt.boxplot(mtcars["hp"],vert=True)

Out[19]:

In [20]:

import seaborn as sns

In [21]:

```
tips = sns.load_dataset("tips")
```

In [22]:

tips.head()

Out[22]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

In [23]:

```
sns.countplot(x=tips["smoker"])
```

Out[23]:

<AxesSubplot:xlabel='smoker', ylabel='count'>

In [24]:

```
sns.stripplot(x=tips['time'],y=tips['tip'])
```

Out[24]:

<AxesSubplot:xlabel='time', ylabel='tip'>

In [25]:

sns.swarmplot(x=tips['day'],y=tips['tip'])

Out[25]:

<AxesSubplot:xlabel='day', ylabel='tip'>

In [36]:

correlate = tips.corr()

In [37]:

sns.heatmap(correlate)

Out[37]:

<AxesSubplot:>

In [41]:

```
sns.violinplot(x='total_bill',y='tip',data=tips)
plt.show()
```


In [42]:

```
sns.jointplot(x='total_bill',y='tip',data=tips)
plt.show()
```


sns.pairplot(tips)
plt.show()

