Problem 1. Let G be an abelian group of order 1200.

- (a) List its isomorphism classes in the form $\bigoplus_{i=1}^k \mathbb{Z}_{m_i}$ where each m_i is a prime-power
- (b) List its isomorphism classes in the form $\bigoplus_{i=1}^k \mathbb{Z}_{m_i}$ in which $m_{i+1} \mid m_i$ for $1 \leq i \leq k-1$
- (c) If G contains an element a of order at least 300, what could it be isomporphic to? Explain! Express the answers in the form specified in (b).

Solution:

- (a) Since $|G| = 1200 = 2^4 \cdot 3^1 \cdot 5^2$, the isomorphism classes are:
 - $\cdot \mathbb{Z}_{16} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{25}$
 - $\cdot \mathbb{Z}_{16} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$
 - $\cdot \mathbb{Z}_8 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{25}$
 - $\cdot \mathbb{Z}_8 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$
 - $\cdot \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{25}$
 - $\cdot \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$
 - $\cdot \ \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$
 - $\cdot \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{25}$
 - $\cdot \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{25}$
 - $\cdot \ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_5$
- (b) $\cdot \mathbb{Z}_{1200}$
 - $\cdot \mathbb{Z}_{600} \oplus \mathbb{Z}_2$
 - $\cdot \mathbb{Z}_{300} \oplus \mathbb{Z}_4$
 - $\cdot \mathbb{Z}_{300} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$
 - $\cdot \mathbb{Z}_{240} \oplus \mathbb{Z}_5$
- (c) If G contains an element of order at least 300, that means that the order of each group in the isomorphism classes must be at least 300. This is when $G \cong \mathbb{Z}_{16} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{25}$, and $G \cong \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{25}$.

Problem 2. How many isomorphism classes are there for an abelian group of order p^6 , where p is a prime? List them explicitly.

Solution:

The isomorphism classes for an abelian group of order p^6 are, $\mathbb{Z}_{p^6}, \mathbb{Z}_{p^5} \oplus \mathbb{Z}_p, \mathbb{Z}_{p^4} \oplus \mathbb{Z}_{p^2}$, and $\mathbb{Z}_{p^3} \oplus \mathbb{Z}_{p^3}$.

Problem 3. Consider the subgroup $H = \left\langle \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \right\rangle$ of the group.

$$G = \left\{ \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \mid k \in \mathbb{Z}_{24} \right\}.$$

Describe its left cosets by naming them with proper notation, and listing their elements explicitly.

Solution:

It can be shown that $G \cong \mathbb{Z}_{24}$ so |G| = 24 and $\operatorname{ord}_{\mathbb{Z}_{24}}(\langle 4 \rangle) = 6 = \operatorname{ord}_{G}(\langle \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \rangle)$. Using this, I know that the index, $(G:H) = \frac{|G|}{|H|} = \frac{24}{6} = 4$. Those 4 elements are:

$$\begin{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} H = \{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 8 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 12 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 16 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 20 \\ 0 & 1 \end{bmatrix} \},$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} H = \{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 9 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 13 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 17 \\ 0 & 1 \end{bmatrix} \},$$

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} H = \{ \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 14 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 18 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 22 \\ 0 & 1 \end{bmatrix} \},$$

$$\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} H = \{ \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 7 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 11 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 15 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 9 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 22 \\ 0 & 1 \end{bmatrix} \}.$$

Problem 4. List the cosets of $H = \langle (4,2), (2,3) \rangle$ in $\mathbb{Z}_6 \oplus \mathbb{Z}_4$. Display the elements in the lexicographic or dictionary order. Be sure to use proper notation.

Solution:

$$H = \{(4, 2), (2, 0), (0, 2), (4, 0), (2, 2), (0, 0), (2, 3), (0, 1), (4, 3), (2, 1), (0, 3), (4, 1)\}$$

and there is one other coset which is:

$$(1,0)H = \{(5,2), (3,0), (1,2), (5,0), (3,2), (1,0), (3,3), (1,1), (5,3), (3,1), (1,3), (5,1)\}.$$

Problem 5. Find the left cosets of the subgroup $K = \{R_0, F_1\}$ in D_4 . Write each coset with R_i first if it can be found in the coset. Arrange the elements in the Cayley table of D_4 according to the order in which they appear in the cosets, and shade the table as it was done in the textbook.

Solution:

The order of a dihedral group D_n is 2n. So the order of D_4 is 8. Also, F_1 generates K with order 2. So, $(D_4:K)=\frac{8}{2}=4$. So there are 4 left cosets. They are represented as so.

0	R_0	F_1	R_{90}	E_2	R_{180}	F_2	R_{270}	E_1
R_0	R_0	F_1	R_{90}	E_2	R_{180}	F_2	R_{270}	E_1
F_1	F_1	R_0	E_1	R_{270}	F_2	R_{180}	E_2	R_{90}
R_{90}	R_{90}	E_2	R_{180}	F_2	R_{270}	E_1	R_0	F_1
E_2	E_2	R_{90}	F_1	R_0	E_1	R_{270}	F_2	R_{180}
R_{180}	R_{180}	F_2	R_{270}	E_1	R_0	F_1	R_{90}	E_2
F_2	F_2	R_{180}	E_2	R_{90}	F_1	R_0	E_1	R_{270}
R_{270}	R_{270}	E_1	R_0	F_1	R_{90}	E_2	R_{180}	F_2
E_1	E_1	R_{270}	F_2	R_{180}	E_2	R_{90}	F_1	R_0

Problem 6. Find the right cosets of the subgroup $K = \{R_0, F_1\}$ in D_3 . Write each coset with R_i first if it can be found in the coset. Arrange the elements in the Cayley table of D_3 according to the order in which they appear in the cosets, and shade the table as it was done in the textbook.

Solution:

The order of a dihedral group D_n is 2n. So the order of D_3 is 6. Also, F_1 generates K with order 2. So, $(D_3:K)=\frac{6}{2}=3$. So there are 3 left cosets. They are represented as so.

0	R_0	F_1	R_{120}	F_3	R_{240}	F_2
R_0	R_0	F_1	R_{120}	F_3	R_{240}	F_2
F_1	F_1	R_0	F_3	R_{120}	F_2	R_{240}
R_{120}	R_{120}	F_2	R_{240}	F_1	R_0	F_3
F_3	F_3	R_{240}	F_2	R_0	F_1	R_{120}
R_{240}	R_{240}	F_3	R_0	F_2	R_{120}	F_1
F_2	F_2	R_{120}	F_1	R_{240}	F_3	R_0

Problem 7. Find the index of $\langle 3 \rangle$ in the group \mathbb{Z}_{24} . How many different cosets does $\langle 3 \rangle$ have?

Solution:

The order of \mathbb{Z}_{24} is 24 and $\langle 3 \rangle = \{3,6,9,12,15,18,21,0\}$, so $|\langle 3 \rangle| = 8$. Therefore the index of $\langle 3 \rangle$ is $(\mathbb{Z}_{24}:\langle 3 \rangle) = \frac{24}{8} = 3$. This means that there are 3 left cosets. Since \mathbb{Z}_{24} is abelian, $a\langle 3 \rangle = \langle 3 \rangle a$, $\forall a \in \mathbb{Z}_{24}$. So, $\langle 3 \rangle$ only has 3 different cosets.

Problem 8. Let $\sigma = (1, 2, 5)(2, 3)$ in S_5 . Find the index of $\langle \sigma \rangle$ in S_5 .

Solution:

 $\begin{aligned} & |\langle (1,2,5)(2,3)\rangle| = \left|\langle (\frac{1}{2} \, \frac{2}{3} \, \frac{3}{5} \, \frac{4}{4} \, \frac{5}{1})\rangle \right| = \left|(\frac{1}{2} \, \frac{2}{3} \, \frac{3}{5} \, \frac{4}{4} \, \frac{5}{1})\right| = \text{LCM}(4,1) = 4 \text{ and } |S_5| = 5!, \text{ so the index of } |\langle (1,2,5)(2,3)\rangle| \\ & \text{is } (S_5 : \langle (1,2,5)(2,3)\rangle) = \frac{120}{4} = 30. \end{aligned}$

Problem 9. Let H be a normal subgroup of G, and let m = (G: H). Show that $\forall a \in G, a^m \in H$.

Solution:

Since H is a normal subgroup it forms the factor group G/H. The index is its order which is m. So, $(aH)^m = a^m H = H$. Using theorem 10.1.4, it is true that aH = H iff $a \in H$. Since I have shown that $a^m H = H$, this shows that $a^m \in H$.

Problem 10. Evaluate the order of the element $26 + \langle 12 \rangle$ in the factor group $\mathbb{Z}_{60}/\langle 12 \rangle$.

Solution:

 $\langle 12 \rangle = \{0, 12, 24, 36, 48\}$ and $26 + \langle 12 \rangle = \{26, 38, 50, 2, 14\}$. I need to find an n such that n26 = H. I can eliminate sets easily if they do not share any elements with H because if so, they cannot possibly be H. So, $2 \cdot 26 \pmod{60} \equiv 52$ which is not in H, $3 \cdot 26 \pmod{60} \equiv 18$ which is not in H, $4 \cdot 26 \pmod{60} \equiv 44$ which is not in H, and $5 \cdot 26 \pmod{60} \equiv 10$ which is not in H, but $6 \cdot 26 \pmod{60} \equiv 36$ which is in H, so checking to see if all elements are the same I get $6 \cdot 26 = \{36, 48, 0, 12, 24\}$. Therefore 6 is the order of $26 + \langle 12 \rangle$.

Problem 11. Find the order of the factor group $(\mathbb{Z}_{12} \oplus \mathbb{Z}_{18})/\langle (4,3) \rangle$.

Solution:

The order of a factor group is its index. The order of $\mathbb{Z}_{12} \oplus \mathbb{Z}_{18}$ is equal to $|\mathbb{Z}_{12}| \cdot |\mathbb{Z}_{18}| = 216$. $\langle (4,3) \rangle = \{(4,3),(8,6),(0,9),(4,12),(8,15),(0,0)\}$, so the order of $\langle (4,3) \rangle$ is 6. Hence, the index is $(\mathbb{Z}_{12} \oplus \mathbb{Z}_{18} : \langle (4,3) \rangle) = \frac{216}{6} = 36$ so, $|(\mathbb{Z}_{12} \oplus \mathbb{Z}_{18})/\langle (4,3) \rangle| = 36$.

Problem 12. Let H be a normal subgroup of G, and let $a \in G$. If the coset aH has order 3 in the factor group G/H, and |H| = 10, what are the possible orders of a in G?

Solution:

Since aH has order 3, $a^3H = H$. So, $a^3 \in H$. Since the order of H is 10, $h^{10} = e$. By corollary 10.2.4, it follows that $(a^3)^{10} = a^{30} = e$. So, |a| | 30 is true and 1 and 2 are not orders because |aH| = 3. So, $|a| \in \{3, 5, 6, 10, 15, 30\}$.