# Enriching Word Vectors with Subword Information Piotr Bojanowski and Edouard Grave and Armand Joulin and Tomas Mikolov - Facebook AI Research 2017

Louis (Yiqing) Luo

July 13th, 2018

### Continuous Representation of Words

- Previously largely based on occurrence of words
- Recently employed FF-NN to learn embeddings.
- However, all methods ignore the internal structure of words.
  - Because many word formations follow rules, it is possible to improve vector representations for morphologically rich languages by using character level information. level information

## Word2vec Skipgram (Mikolov et al 2013)

- Framed as binary classification problem with negative sampling
- maximizes score function s(w,c) between words and their context

$$s(w,c) = w^T c$$

note that it ignores morphology of words

#### Subword Model

Represent a word as bag of character n-grams

$$\mathsf{skiiing} = \{ \land \mathsf{skiing\$,} \land \mathsf{skii,} \mathsf{skii,} \mathsf{kiin,} \mathsf{iing,} \mathsf{ing\$} \}$$

• With  $G_w$  being the set of n-grams appearing in word w union with the original word w:

$$s(w,c) = \Sigma_{g \in G_w} g^T c$$



#### Technical details

- n-grams between 3 and 6 characters used
- Hashing to map n-grams to integers
- SGD to min log-likelihood
- Subsampling of frequent words
- Less than 2 times slower than word2vec skipgram model

# Experiments - Word Analogy (A is to B as C is to ?)

All models are trained on Wikipedia data

|    |           | sg   | cbow | sisg |
|----|-----------|------|------|------|
| Cs | Semantic  | 25.7 | 27.6 | 27.5 |
|    | Syntactic | 52.8 | 55.0 | 77.8 |
| DE | Semantic  | 66.5 | 66.8 | 62.3 |
|    | Syntactic | 44.5 | 45.0 | 56.4 |
| En | Semantic  | 78.5 | 78.2 | 77.8 |
|    | Syntactic | 70.1 | 69.9 | 74.9 |
| Im | Semantic  | 52.3 | 54.7 | 52.3 |
| IT | Syntactic | 51.5 | 51.8 | 62.7 |

Table 2: Accuracy of our model and baselines on word analogy tasks for Czech, German, English and Italian. We report results for semantic and syntactic analogies separately.

## Comparison to State-of-the-Art

|                          | D      | Е     | EN    |    | Es    | FR   |  |
|--------------------------|--------|-------|-------|----|-------|------|--|
|                          | Gur350 | ZG222 | WS353 | RW | WS353 | RG65 |  |
| Luong et al. (2013)      | 150    | 50    | 64    | 34 | -     | 570  |  |
| Qiu et al. (2014)        | _      | _     | 65    | 33 | _     | -    |  |
| Soricut and Och (2015)   | 64     | 22    | 71    | 42 | 47    | 67   |  |
| sisg                     | 73     | 43    | 73    | 48 | 54    | 69   |  |
| Botha and Blunsom (2014) | 56     | 25    | 39    | 30 | 28    | 45   |  |
| sisg                     | 66     | 34    | 54    | 41 | 49    | 52   |  |

Table 3: Spearman's rank correlation coefficient between human judgement and model scores for different methods using morphology to learn word representations. We keep all the word pairs of the evaluation set and obtain representations for out-of-vocabulary words with our model by summing the vectors of character *n*-grams. Our model was trained on the same datasets as the methods we are comparing to (hence the two lines of results for our approach).

## Experiments - Language Modeling

|             | Cs  | DE  | Es  | FR  | RU  |
|-------------|-----|-----|-----|-----|-----|
| Vocab. size | 46k | 37k | 27k | 25k | 63k |
| CLBL        | 465 | 296 | 200 | 225 | 304 |
| CANLM       | 371 | 239 | 165 | 184 | 261 |
| LSTM        | 366 | 222 | 157 | 173 | 262 |
| sg          | 339 | 216 | 150 | 162 | 237 |
| sisg        | 312 | 206 | 145 | 159 | 206 |

Table 5: Test perplexity on the language modeling task, for 5 different languages. We compare to two state of the art approaches: CLBL refers to the work of Botha and Blunsom (2014) and CANLM refers to the work of Kim et al. (2016).

# Experiments - Size of Training Data (German and English)





#### Experiments - Size of n-gram

|   | 2  | 3      | 4              | 5    | 6  |     | 2  | 3      | 4   | 5     | 6  | 3 | 2  | 3    | 4     | 5    | 6  |
|---|----|--------|----------------|------|----|-----|----|--------|-----|-------|----|---|----|------|-------|------|----|
| 2 | 57 | 64     | 67             | 69   | 69 | 2   | 59 | 55     | 56  | 59    | 60 | 2 | 45 | 50   | 53    | 54   | 55 |
| 3 |    | 65     | 68             | 70   | 70 | 3   |    | 60     | 58  | 60    | 62 | 3 |    | 51   | 55    | 55   | 56 |
| 4 |    |        | 70             | 70   | 71 | 4   |    |        | 62  | 62    | 63 | 4 |    |      | 54    | 56   | 56 |
| 5 |    |        |                | 69   | 71 | 5   |    |        |     | 64    | 64 | 5 |    |      |       | 56   | 56 |
| 6 |    |        |                |      | 70 | 6   |    |        |     |       | 65 | 6 |    |      |       |      | 54 |
|   |    | (a) Di | E- <b>G</b> UI | R350 |    |     | 0  | (b) DE | Sem | antic |    |   | (0 | ) DE | Synta | ctic |    |
| _ | 2  | 3      | 4              | 5    | 6  | ()- | 2  | 3      | 4   | 5     | 6  | _ | 2  | 3    | 4     | 5    | 6  |
| 2 | 41 | 42     | 46             | 47   | 48 | 2   | 78 | 76     | 75  | 76    | 76 | 2 | 70 | 71   | 73    | 74   | 73 |
| 3 |    | 44     | 46             | 48   | 48 | 3   |    | 78     | 77  | 78    | 77 | 3 |    | 72   | 74    | 75   | 74 |
| 4 |    |        | 47             | 48   | 48 | 4   |    |        | 79  | 79    | 79 | 4 |    |      | 74    | 75   | 75 |
| 5 |    |        |                | 48   | 48 | 5   |    |        |     | 80    | 79 | 5 |    |      |       | 74   | 74 |
| 6 |    |        |                |      | 48 | 6   | )  |        |     |       | 80 | 6 |    |      |       |      | 72 |
|   |    | (d)    | En-R           | W    |    | -   | i  | (e) En | Sem | antic |    |   | (1 | EN   | Synta | ctic |    |

Table 4: Study of the effect of sizes of n-grams considered on performance. We compute word vectors by using character n-grams with n in  $\{i, \ldots, j\}$  and report performance for various values of i and j. We evaluate this effect on German and English, and represent out-of-vocabulary words using subword information.

#### Discussion

- Possible to compute word vector for out-of-vocabulary words
- Learn better representation from small amount of data
- Short n-gram (n = 4) good to capture syntatic information
- Longer n-gram (n=6) good to capture semantic information

#### Experiments - Difference in Attention Paid to n-grams

|                                                                                        | n-grams                                                          |                                              | word          |    |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|---------------|----|
| auto                                                                                   | fahrer                                                           | fahr                                         | autofahrer    |    |
| <freun< td=""><td>kreis&gt;</td><td>kreis</td><td>freundeskreis</td><td></td></freun<> | kreis>                                                           | kreis                                        | freundeskreis |    |
| grund                                                                                  | wort>                                                            | wort                                         | grundwort     | DE |
| sprach                                                                                 | hschul                                                           | schul                                        | sprachschule  |    |
| tages                                                                                  | gesl                                                             | licht                                        | tageslicht    |    |
| narchy                                                                                 | <anar< td=""><td>chy</td><td>anarchy</td><td></td></anar<>       | chy                                          | anarchy       |    |
| <monar< td=""><td>chy</td><td>monarc</td><td>monarchy</td><td></td></monar<>           | chy                                                              | monarc                                       | monarchy      |    |
| kind                                                                                   | ness                                                             | ness>                                        | kindness      |    |
| eness>                                                                                 | ness>                                                            | polite                                       | politeness    |    |
| nlucky                                                                                 | cky>                                                             | <un< td=""><td>unlucky</td><td>EN</td></un<> | unlucky       | EN |
| time                                                                                   | <li>life</li>                                                    | life                                         | lifetime      |    |
| star                                                                                   | fish>                                                            | fish                                         | starfish      |    |
| marin                                                                                  | sub                                                              | marine                                       | submarine     |    |
| form                                                                                   | <trans< td=""><td>trans</td><td>transform</td><td></td></trans<> | trans                                        | transform     |    |
| fini                                                                                   | nir                                                              | ais>                                         | finirais      |    |
| <finis< td=""><td>finiss</td><td>ent&gt;</td><td>finissent</td><td>FR</td></finis<>    | finiss                                                           | ent>                                         | finissent     | FR |
| sions>                                                                                 | finiss                                                           | ions>                                        | finissions    |    |

Table 6: Illustration of most important character *n*-grams for selected words in three languages. For each word, we show the *n*-grams that, when removed, result in the most different representation.

## Experiments - Examples

| query | tiling    | tech-rich        | english-born | micromanaging | eateries    | dendritic  |  |
|-------|-----------|------------------|--------------|---------------|-------------|------------|--|
| sisg  | tile      | tech-dominated   | british-born | micromanage   | restaurants | dendrite   |  |
|       | flooring  | tech-heavy       | polish-born  | micromanaged  | eaterie     | dendrites  |  |
| sg    | bookcases | technology-heavy | most-capped  | defang        | restaurants | epithelial |  |
|       | built-ins | .ixic            | ex-scotland  | internalise   | delis       | p53        |  |

Table 7: Nearest neighbors of rare words using our representations and skipgram. These hand picked examples are for illustration.

#### Pretrained models

• available online at www.fasttext.cc