Oblig 1 Matte 3

Adam Aske

24. januar 2022

Innhold

1	Github	2
2	Del 1	2
3	Lese og skrive til fil	2
4	Del 2	3
5	A	3
6	B)	3
7	Resultat	4

1 Github

 $Link\ til\ min\ branch: https://github.com/Hedmark-University-College-SPIM/3Dprog22/tree/AdamA$

2 Del 1

Jeg har valgt funksjonen; $f(x, y) = \sin(PI^*x)^*\sin(PI^*y)$. Omerådet 0 < x < 1, 0 < y < 3 og steg = 0.2. Funkjsonen tar inn en array og en størrelse. Først blir arrayen fylt med tilfeldige tall.

Listing 1: trianglesurface.cpp

Listing 2: trianglesurface.hh

```
static float func(float x, float y){
    //Matte oblig funksjon
    return pow(x, 3) * y;
}
```

3 Lese og skrive til fil

Listing 3: trianglesurface.cpp

4 Del 2

5 A

Analytisk utregning for volumet av funksjonen. $\int_0^1 \int_0^1 x^3 * y \, dy = x^3 \int y \, dy = x^3 * (y^2/2) = x^3 y^2/2 = x^3 * 1^2/2 = x^3/2$ $\int x^3/2 = 1/2 \int x^3 \, dx = 1/2 * x^4/4 = x^4/8$ $\int_0^1 \int_0^1 x^3 * y \, dy, dx = 1/2$

6 B)

For å regne integralet numerisk lagde jeg en funksjon i trianglesurface.cpp og skriver resultatene til en fil. Funksjoner gjør det 4 ganger og halverer steg lengden for hver iterasjon. Resultatene blir lagret i Numerisk.txt.

Listing 4: trianglesurface.cpp

```
}
else
{
     std::cout << "Failed_to_write_to_file.\n";
}
file.close();
}
</pre>
```

Resultatene ble: h
1 = 0.091125, h2 = 0.198297, h3 = 0.332908, h4 =
0.462652

7 Resultat

Den numeriske utregningen går nærmere og nærmere svaret jeg fikk fra manuell utergning; 1/2.