Wednesday, October 21, 2020

3:31 PM

Matching problem

FI https://eduassistpro.github.io/

vertices: a source s and a sink t. Each edge $(u, v) \in E$ has a nonnegative capacity

Assignment Project Exam Help

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.githushovlersqual to the flow goes out from that vertex out from that vertex

Add WeChat edu_assist_pro

• The flow should not have any "leaks"

Flow conservation (like Kirchoff's current law):

- Flow into *u* is 2 + 1 = 3.
- Flow out of *u* is 0 + 1 + 2 = 3.

The value of this flow is 1 - 0 + 2 = 3.

- The positive flow is not greater than the capacity
- Flow conservation: in == out
- Sink vertex doesn't need to have flow conservation
- The nature of the problem: at some edges we are wasting our capacity
- > Find the maximum assignment

Maximum-flow problem: Given a flow network G, find a flow of maximum value on G.

Flow cancellation

https://eduassistpro.github.io/

Assignment Project Exam Help

Notational simplification at edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Equivalence of definitions

Theorem. The two definitions are equivalent.

Proof. (\Rightarrow) Let f(u, v) = p(u, v) - p(v, u).

- Capacity constraint: Since $p(u, v) \le c(u, v)$ and $p(v, u) \ge 0$, we have $f(u, v) \le c(u, v)$.
- Flow conservation:

$$\sum_{v \in V} f(u, v) = \sum_{v \in V} (p(u, v) - p(v, u))$$
$$= \sum_{v \in V} p(u, v) - \sum_{v \in V} p(v, u)$$

Skew symmetry:

$$f(u, v) = p(u, v) - p(v, u)$$

= - (p(v, u) - p(u, v))
= - f(v, u).

• If given a network flow, can we create a flow that satisfies its two properties

https://eduassistpro.github.io/

> From summation notation to set notation

Assignment Project Exam Help

Add WeChat edu_assistopro

Assignment Project Exam Help

all vortices except some and sink

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

• Whatever we send to the network should end up in the sink

Cuts

Definition. A cut (S, T) of a flow network G = (V, E) is a partition of V such that $S \in S$ and $S \in T$. If $S \in S$ and $S \in T$ is a flow on $S \in S$, then the flow across the cut is $S \in S$.

• Split the graph to two side: source to one side, and sink to another side

Another characterization of flow value

Lemma. For any flow f and any cut (S, T), we have |f| = f(S, T).

Proof.

$$f(S, T) = f(S, V) - f(S, S)$$

 $= f(S, V)$
 $= f(s, V) + f(S - s, V)$
 $= f(s, V)$

cahttps://eduassistpro.github.io/

Assignment Project Exam Help

Add WeChat edu_assist_pro

Assignment Project Exam Help

Upper bound on the maximum flow value

he capacity of any cut.

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Residual network

Definition. Let f be a flow on G = (V, E). The residual network $G_f(V, E_f)$ is the graph with strictly positive residual capacities

$$c_f(u, v) = c(u, v) - f(u, v) > 0.$$

Edges in E_f admit more flow.

Example:

Lemma. $|E_f| \le 2|E|$.

Augmenting paths

https://eduassistpro.github.io/

• The graph above is not entire graph, therefore there are some node without

Assignment Project Exam Help

Max-flow, min-cut theorem

Theorem. The following are equivalent

African axin white hat edu_assist_pro

3. | f | = c(S, T) for some cut (S, T).

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro