4.4 矩、协方差矩阵

4.4.1 矩

设 X 和 Y 是随机变量,若 $E(X^k)$, $k=1,2,\cdots$ 存在,称它为 X 的 k 阶原点矩,简称 k 阶矩.

若 $E\{[X-E(X)]^k\}$, $k=2,3,\cdots$ 存在,称它为X的k**阶中心矩**.

若 $E(X^kY^l)$, $k, l=1, 2, \cdots$ 存在, 称它为 X 和 Y 的 k+l 阶混合矩.

若 $E\{[X-E(X)]^k[Y-E(Y)]^l\}, k, l=1,2,\cdots$ 存在,称它为 X 和 Y 的 k+l 阶混合中心矩 .

*2、说明

- (1)以上数字特征都是随机 变量函数的数学期望;
- (2) 随机变量 X 的数学期望 E(X) 是 X 的一阶原点矩, 方差为二阶中心矩, 协方差 Cov(X,Y)是 X 与 Y 的二阶混合中心矩;
- (3) 在实际应用中,高于 4 阶的矩很少使用.
- 三阶中心矩 $E\{[X E(X)]^3\}$ 主要用来衡量随机变量的分布是否有偏.

四阶中心矩 $E\{[X - E(X)]^4\}$ 主要用来衡量随机变量的分布在均值附近 的陡峭程度如何.

4.4.2 协方差矩阵

设n维随机变量 (X_1, X_2, \dots, X_n) 的二阶混合中心矩

$$c_{ij} = \text{Cov}(X_i, X_j) = E\{[X_i - E(X_i)][X_j - E(X_j)]\}$$

 $i, j = 1, 2, \dots, n$

都存在,则称矩阵
$$C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}$$

为 n 维随机变量的 协方差矩阵.

例如 二维随机变量 (X_1, X_2) 的协方差矩阵为

$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

其中 $c_{11} = E\{[X_1 - E(X_1)]^2\},$ $c_{12} = E\{[X_1 - E(X_1)][X_2 - E(X_2)]\},$ $c_{21} = E\{[X_2 - E(X_2)][X_1 - E(X_1)]\},$ $c_{22} = E\{[X_2 - E(X_2)]^2\}.$

由于 $c_{ij} = c_{ji}$ ($i, j = 1, 2, \dots, n$), 所以协方差矩阵 为对称的非负定矩阵 .

利用协方差矩阵,可由二维正态变量的概率密度推广 得到n维正态变量的概率密度。

设 (X_1, X_2) 服从二维正态分布,其 概率密度为

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\exp\left\{\frac{-1}{2(1-\rho^2)}\left[\frac{(x_1-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2}+\frac{(x_2-\mu_2)^2}{\sigma_2^2}\right]\right\}.$$

引入
$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}, \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
 及(X₁,X₂)的协方差矩阵

$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix},$$

曲于
$$\det C = (1 - \rho^2)\sigma_1^2\sigma_2^2$$
,

$$C^{-1} = \frac{1}{\det C} \begin{pmatrix} \sigma_2^2 & -\rho\sigma_1\sigma_2 \\ -\rho\sigma_1\sigma_2 & \sigma_1^2 \end{pmatrix} = \frac{1}{\sigma_1^2\sigma_2^2(1-\rho^2)} \begin{pmatrix} \sigma_2^2 & -\rho\sigma_1\sigma_2 \\ -\rho\sigma_1\sigma_2 & \sigma_1^2 \end{pmatrix}.$$

$$(X - \mu)^{\mathrm{T}} C^{-1} (X - \mu)$$

$$= \frac{1}{\det C} (x_1 - \mu_1, x_2 - \mu_2) \begin{pmatrix} \sigma_2^2 & -\rho \sigma_1 \sigma_2 \\ -\rho \sigma_1 \sigma_2 & \sigma_1^2 \end{pmatrix} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}$$

$$= \frac{1}{1 - \rho^2} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1 \sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right].$$

于是 (X_1, X_2) 的概率密度可写成 $f(x_1, x_2)$

$$= \frac{1}{(2 \, \mathbb{I})^{2/2} (\det C)^{1/2}} \exp \left\{ -\frac{1}{2} (X - \mu)^{\mathrm{T}} C^{-1} (X - \mu) \right\}.$$

推广 n维正态分布

n 维随机变量 (X_1, X_2, \dots, X_n) 的概率密度可表示为 $f(x_1, x_2, \dots, x_n)$

$$= \frac{1}{(2 \, \mathfrak{P})^{n/2} (\det C)^{1/2}} \exp \left\{ -\frac{1}{2} (X - \mu)^{\mathrm{T}} \, C^{-1} (X - \mu) \right\}.$$

其中 $X = (x_1, x_2, \dots, x_n)^T$,

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix} = \begin{pmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_n) \end{pmatrix}, C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \cdots & \cdots & \cdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}.$$

n 维正态变量的性质

1. n 维随机变量 (X_1, X_2, \dots, X_n) 的每一个分量 X_i , $i = 1, 2, \dots, n$ 都是正态变量;

反之, 若 X_1, X_2, \dots, X_n 都是正态变量, 且相互独立, 则 (X_1, X_2, \dots, X_n) 是 n 维正态变量.

2. n 维随机变量 (X_1, X_2, \dots, X_n) 服从 n 维正态分布的充要条件是 X_1, X_2, \dots, X_n 的任意的线性组合 $l_1X_1 + l_2X_2 + \dots + l_nX_n$ 服从一维正态分布 (其中 l_1 , l_2, \dots, l_n 不全为零).

- 3. 若 (X_1, X_2, \dots, X_n) 服从 n 维正态分布,设 Y_1, \dots, Y_k 是 X_j $(j = 1, 2, \dots, n)$ 的线性函数,则 (Y_1, Y_2, \dots, Y_k) 也服 从 k 维正态分布. **线性变换不变性**
- 4. 设 (X_1, \dots, X_n) 服从 n维正态分布 ,则" X_1, X_2 , \dots, X_n 相互独立"与" X_1, X_2, \dots, X_n 两两不相关"是等价的 .