CS1231

AY22/23 sem 2 aithub.com/NeoHW

01. Propositional Logic

sets of numbers

C: complex numbers

 \mathbb{N} : natural numbers ($\mathbb{Z}_{\geq 0}$) \mathbb{Z} : integers ① : rational numbers R: real numbers

basic properties of integers

```
closure (under addition and multiplication)
           x + y \in \mathbb{Z} \land xy \in \mathbb{Z}
               commutativity
         a + b = b + a \wedge ab = ba
                associativity
a + b + c = a + (b + c) = (a + b) + c
           abc = a(bc) = (ab)c
                distributivity
           a(b+c) = ab + ac
                 trichotomy
       (a < b) \lor (a > b) \lor (a = b)
               transitive law
     (a < b) \land (b < c) \implies (a < c)
```

definitions

even/odd n is even $\leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k$ $n \text{ is odd} \leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k+1$ prime/composite n is prime $\leftrightarrow n > 1$ and $\forall r, s \in \mathbb{Z}^+, n = rs \to (r = rs)$ $n) \vee (r = s)$ n is composite $\leftrightarrow n > 1$ and $\exists r, s \in \mathbb{Z}^+ s.t.n =$ rs and 1 < r < n and 1 < s < ndivisibility (d divides n) $d \mid n \leftrightarrow \exists k \in \mathbb{Z} \mid n = kd$ rationality r is rational $\leftrightarrow \exists a,b \in \mathbb{Z} \mid r = \frac{a}{b}$ and $b \neq 0$

floor/ceiling

|x|: largest integer y such that y < x

[x]: smallest integer y such that y > xrules of inference

generalisation $p, : p \vee q$ specialisation $p \wedge q$, :. p

elimination $p \vee q$; $\sim q$, $\therefore p$ transitivity $p \to q; \ q \to r; \ \therefore p \to r$

03. PROOFS

Proof by Exhaustion/Cases

1. list out possible cases 1.1. Case 1: n is odd OR If n = 9, ...

1.2. Case 2: n is even OR If n = 16. ...

2. therefore ...

Proof by Contradiction

 Suppose that ... 1.1. ¡proof¿

1.2. ... but this contradicts ...

2. Therefore the assumption that ... is false. Hence

Proof by Contraposition

1. Contrapositive statement: $\sim q \rightarrow \sim p$

2. let $\sim q$

2.1. ¡proof¿ 2.2. hence $\sim p$

3. $p \rightarrow q$

Proof by Construction

1. Let x = 3, y = 4, z = 5.

2. Then $x, y, z \in \mathbb{Z}_{\geq 1}$ and $x^{2} + y^{2} = 3^{2} + \overline{4^{2}} = 9 + 16 = 25 = 5^{2}$.

3. Thus $\exists x, y, z \in \mathbb{Z}_{\geq 1}$ such that $x^2 + y^2 = z^2$.

Proof by Induction

1. For each $n \in \mathbb{Z}_{\geq 1}$, let P(n) be the proposition "..."

2. (base step) P(1) is true because imanual method.

3. (induction step)

3.1. let $k \in \mathbb{Z}_{\geq 1}$ s.t. P(k) is true

3.2. Then ...

3.3. proof that P(k+1) is true - e.g. $P(k+1) = P(k) + term_{k+1}$

3.4. So P(k + 1) is true.

4. Hence $\forall n \in \mathbb{Z}_{\geq 1} P(n)$ is true by MI.

INDUCTION

mathematical induction

to prove that $\forall n \in \mathbb{Z}_{\geq m}(P(n))$ is true,

• base step: show that P(m) is true

• induction step: show that $\forall k \in \mathbb{Z}_{\geq m}(P(k) \Rightarrow P(k+1))$

• induction hypothesis: assumption that P(k) is true

strong MI

to prove that $\forall n \in \mathbb{Z}_{\geq 0}(P(n))$ is true,

• base step: show that P(0), P(1) are true

• induction step: show that

 $\forall k \in \mathbb{Z}_{\geq 0}(P(0) \cdots \wedge P(k+1) \Rightarrow P(k+2))$ is true. iustification:

• $P(0) \wedge P(1)$ by base case

• $P(0) \wedge P(1) \rightarrow P(2)$ by induction with k=0

• $P(0) \wedge P(1) \wedge P(2) \rightarrow P(3)$ by induction with k=1

• we deduce that $P(0), P(1), \ldots$ are all true by a series of modus ponens

Proofs for Sets

Equality of Sets (A=B)

 $1. (\Rightarrow)$ 1.1. Take any $z \in A$. 1.2. . . . 1.3. $\therefore z \in B$. 2. (\(\phi\)) 2.1. Take any $z \in B$. 2.2. ...

```
2.3. \therefore z \in A.
```

Element Method

```
1. A \cap (B \setminus C) = \{x : x \in A \land x \in (B \setminus C)\} (by def. of \cap)
```

2. = $\{x : x \in A \land (x \in B \land x \notin C)\}$ (by def. of \) 3. . . .

4. = $(A \cap B) \setminus C$ (by def. of \)

Other Proofs

iff $(A \leftrightarrow B)$

1. (\Rightarrow) Suppose A.

1.1. ... ¡proof¿ ...

1.2. Hence $A \rightarrow B$

2. (\Leftarrow) Suppose B.

2.1. ... ¡proof; ...

2.2. Hence $B \rightarrow A$

02. PREDICATE LOGIC

operations

 $1 \sim$: negation (not)

2 ∧ : conjunction (and)

 $2 \lor$: disjunction (or) - coequal to \land

 $3 \rightarrow : if-then$

logical equivalence

identical truth values in truth table

definitions

· to show non-equivalence:

• truth table method (only needs 1 row)

· counter-example method

conditional statements

hypothesis → conclusion

 $antecedent \rightarrow consequent$

· vacuously true : hypothesis is false

• implication law : $p \rightarrow q \equiv \sim p \vee q$

common if/then statements:

• if p then q: $p \rightarrow q$

• p if q: $q \rightarrow p$

• p only if q: $p \rightarrow q$

• p iff q: $p \leftrightarrow q$

• contrapositive : $\sim q \rightarrow \sim p$ converse = inverse statement = contrapositive

• inverse : $\sim p \rightarrow \sim q$

• converse : $q \rightarrow p$

• r is a **necessary** condition for s: $\sim r \rightarrow \sim s$ and $s \rightarrow r$

• r is a **sufficient** condition for s: $r \rightarrow s$

necessary & sufficient : ↔

valid arguments

determining validity: construct truth table

valid
 ↔ conclusion is true when premises are true

• syllogism: (argument form) 2 premises, 1 conclusion

• modus ponens : $p \rightarrow q$; p; $\therefore q$ • modus tollens : $p \rightarrow q$; $\sim q$; $\therefore \sim p$

sound argument: is valid & all premises are true

fallacies

converse error inverse error $p \rightarrow q$ $p \rightarrow q$ q $\sim p$.. p $\therefore \sim q$

QUANTIFIED STATEMENTS

```
• truth set of P(x) = \{x \in D \mid P(x)\}
```

• $P(x) \Rightarrow Q(x) : \forall x (P(x) \rightarrow Q(x))$

• $P(x) \Leftrightarrow Q(x) : \forall x (P(x) \leftrightarrow Q(x))$

relation between \forall , \exists , \land , \lor

• $\forall x \in D, Q(x) \equiv Q(x_1) \land Q(x_2) \land \cdots \land Q(x_n)$ • $\exists x \in D \mid Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \cdots \lor Q(x_n)$

04. SETS

notation

• set roster notation [1]: $\{x_1, x_2, \ldots, x_n\}$ • set roster notation [2]: $\{x_1, x_2, x_3, \dots\}$

• set-builder notation: $\{x \in \mathbb{U} : P(x)\}$

• replacement notation: $\{t(x): x \in A\}$

definitions

• equal sets : $A = B \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$ • $A = B \leftrightarrow (A \subseteq B) \land (A \supseteq B)$

· order and repetition does not matter

• subset : $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$

• proper subset : $A \subseteq B \leftrightarrow (A \subseteq B) \land (A \neq B)$ • power set of A : $\mathcal{P}(A) = \{X \mid X \subseteq A\}$

• $|\mathcal{P}(A)| = 2^{|A|}$, given that A is a finite set

• $\mathcal{P}(\emptyset) = \{\emptyset\}$; $\mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\}$ • $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

• cardinality of a set, |A|: number of distinct elements

• singleton : sets of size 1

• disjoint : $A \cap B = \emptyset$

methods of proof for sets

· direct proof

· element method

truth table

boolean operations

• union: $A \cup B = \{x : x \in A \lor x \in B\}$

• intersection: $A \cap B = \{x : x \in A \land x \in B\}$

• complement (of B in A): $A \setminus B = \{x : x \in A \land x \notin B\}$

• complement (of B): \bar{B} or $B^c = U \backslash B$ • set difference law: $A \setminus B = A \cap \bar{B}$

ordered pairs and cartesian products

• ordered pair : (x, y)

• $(x, y) = (x', y') \leftrightarrow x = x'$ and y = y'

· Cartesian product :

 $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$ • $|A \times B| = |A| \times |B|$

• ordered tuples: expression of the form (x_1, x_2, \dots, x_n)

05. RELATIONS

relations

Let R be a relation from A to B and $(x, y) \in A \times B$. Then: xRy for $(x,y) \in R$ and xRy for $(x,y) \notin R$

• a relation from A to B is a subset of $A \times B$.

• a (binary) relation on set A is a relation from A to A. • subset of A^2

• inverse relation: $xR^{-1}y \Leftrightarrow yRx$

06. EQUIVALENCE RELATIONS AND **PARTIAL ORDERS**

reflexivity, symmetry, transitivity

Let A be a set and R be a relation on A.

reflexive $\forall x \in A (xRx)$ symmetric $\forall x, y \in A (xRy \Rightarrow yRx)$ transitive $\forall x, y, z \in A (xRy \land yRz \Rightarrow xRz)$

- equivalence relation: a relation that is reflexive. symmetric and transitive
- equivalence class: the set of all things equivalent to x

equivalence classes

Let A be a set and R be an equivalence relation on A.

- $[x]_R$: equivalence class of x with respect to R $\forall x \in A, [x]_R = \{y \in A : xRy\}$
- A/R: The set of all equivalent classes

$$A/R = \{[x]_R : x \in A\}$$
$$xRy \Rightarrow [x] = [y] \Rightarrow [x] \cap [y] \neq \emptyset$$

partitions

• a partition of a set A is a set \mathscr{C} of non-empty subsets of A such that

$$(\geq 1) \ \forall x \in A, \ \exists S \in \mathscr{C}(x \in S)$$

$$(\leq 1) \ \forall x \in A, \ \forall S, S' \in \mathscr{C}(x \in S \land x \in S' \Rightarrow S = S')$$

- · components : elements of a partition
- every partition comes from an equivalence relation

partial orders

Let A be a set and R be a relation on A.

- R is antisymmetric if $\forall x, y \in A \ (xRy \land yRx \rightarrow x = y)$
- includes vacuously true cases (e.g. $xRy \Leftrightarrow x < y$)
- x and y are comparable if $\forall x, y \in A (xRy \vee yRx)$
- R is a (non-strict) partial order if R is reflexive, antisymmetric and transitive.

 - $x \prec y \Leftrightarrow x \preccurlyeq y \land x \neq y$ (NOT a partial order)
 - · Hasse diagram
- R is a (non-strict) total order if R is a partial order and xand y are comparable

well-ordering principle

- every nonempty subset of $\mathbb{Z}_{\geq 0}$ has a smallest element.
- application: recursion has a base case

07. FUNCTIONS

definitions

- function/map from A to B : assignment of each element of A to exactly one element of B.
 - $f: A \to B$: "f is a function from A to B"
 - $f: x \rightarrow y$: "f maps x to y"
 - domain of f = A
 - codomain of f = B
 - range/image of f = $\{f(x): x \in A\}$ $= \{ y \in B \mid y = f(x) \text{ for some } x \in A \}$
- identity function on A, $id_A : A \rightarrow A$

- $id_{\Delta}: x \to x$
- range = domain = codomain = A
- (E6.1.24) $f \circ id_A = f$ and $id_A \circ f = f$
- · well-defined function : every element in the domain is assigned to exactly one element in the codomain

equality of functions

- · same codomain and domain
- for all $x \in \text{codomain}$, same output

function composition

- $(g \circ f)(x) = g(f(x))$
- for $(g \circ f)$ to be well defined, codomain of f must be equal to the domain of q
- x commutative
- \checkmark associative (T6.1.26) $f \circ (g \circ h) = (f \circ g) \circ h$

image & pre-image

for $f: A \to B$

- if $X \subseteq A$, image of X,
- $f(X) = \{ y \in B : y = f(x) \text{ for some } x \in X \}$
- if $Y \subseteq B$, pre-image of Y,
- $f^{-1}(Y) = \{x \in A : y = f(x) \text{ for some } y \in Y\}$

injection & surjection

- surjective (onto) : codomain = range
 - $\forall y \in B, \exists x \in A (y = f(x))$
 - surjective test: $\forall Y \subseteq B, Y \subseteq f(f^{-1}(Y))$
- injective : one-to-one
 - $\forall x, x' \in A(f(x) = f(x') \Rightarrow x = x')$
 - injective test: $\forall X \subseteq A, X \subseteq f^{-1}(f(X))$
- bijective: both surjective & injective
- bijective ⇔ has an inverse (T6.2.28)

inverse

- $\forall x \in A, \forall y \in B(f(x) = y \Leftrightarrow g(y) = x)$
- uniqueness of inverses (P2.6.16)
- if q, q' are inverses of $f: A \to B$, then q = q'

8. CARDINALITY

pigeonhole principle

For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if $k < \frac{n}{m}$, then there is some $y \in Y$ such that y is the image of at least k+1 distinct elements of X.

- · A function from a finite set to a smaller finite set cannot be iniective.
- presentation:
 - There are m jobject M_i (pigeons) and n jobject N_i.
 - Thus, by Pigeonhole Principle, ...

same cardinality

9. COUNTABILITY

10. COUNTING

permutations

$$P(n,r) = \frac{n!}{(n-r)!} \quad (also _n P_r, P_r^n)$$

- multiplication/product rule: An operation of k steps can be performed in $n_1 \times n_2 \times \cdots \times n_k$ ways.
- addition/sum rule: Suppose a finite set A equals the union of k distinct mutually disjoint subsets A_1, A_2, \ldots, A_k . Then

 $|A| = |A_1| + |A_2| + \cdots + |A_k|$

- difference rule: if A is a finite set and $B \subseteq A$, then $|A \backslash B| = |A| = |B|$
- complement: $P(\bar{A}) = 1 P(A)$
- inclusion/exclusion rule: $|A \cup B \cup C| =$ $|A|+|B|+|C|-|A\cap B|-|B\cap C|-|C\cap A|+|A\cap B\cap C|$

permutations with indistinguishable objects

For n objects with n_k of type k indistinguishable from each other, the total number of distinguishable permutations

$$= \frac{n!}{n_1!n_2!\dots n_k!}$$

combinations

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} \text{ (also } C(n,r), \, {}_{n}C_{r}, \, C_{n,r}, \, {}^{n}C_{r} \text{)}$$

$$r\text{-combinations from } n \text{ elements with } \mathbf{repetition}$$

$$= \binom{r+n-1}{r}$$

pascal's formula

Suppose
$$n, r \in \mathbb{Z}^+$$
 with $r \le n$. Then $\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$

binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

binomial coefficient: $\binom{n}{k}$

11. GRAPHS

 mathematical structures used to model pairwise relations between objects

types of graphs

undirected graph

undirected graph

v and w

- denoted by G = (V, E), comprising
- nonempty set of *vertices/nodes*, $V = \{v_1, v_2, \dots, v_n\}$ • a set of *edges*, $E = \{e_1, e_2, \cdots, e_k\}$
- $e = \{v, w\}$ for an undirected edge E incident on vertices

directed graph

- denoted by G = (V, E), comprising
 - nonempty set V of vertices
 - a set E of directed edges (ordered pair of vertices)
- e = (v, w): an directed edge E from vertex v to vertex w

simple graph

· undirected graph with no loops or parallel edges

complete graph

• a complete graph on n vertices, n > 0, denoted K_n , is a simple graph with n vertices and exactly one edge connecting each pair of distinct vertices

subgraph of a graph

H is a subgraph of $G \Leftrightarrow$

- every vertex in H is also a vertex in G
- every edge in H is also an edge in G
- ullet every edge in H has the same endpoints as it has in G

paths and walks

Let G be a graph; let v and w be vertices of G.

- walk (from v to w): a finite alternating sequence of adjacent vertices and edges of G.
 - e.g. $v_0e_1v_1e_2\dots v_{n-1}e_nv_n$
 - **length** of walk: the number of edges, *n*
- path (from v to w): a trail that does not contain a repeated
- · closed walk: walk that starts and ends at the same vertex

cycles

- circuit/cycle: an undirected graph G(V, E) where
 - $V = \{x_1, x_2, \dots, x_n\}$
 - $E = \{\{x_1, x_2\}, \{x_2, x_3\}, \dots, \{x_{n-1}, x_n\}, \{x_n, x_1\}\}$

 - aka a closed walk that does not contain a repeated
- · simple circuit/cycle: does not have any other repeated vertex except the first and last
- (an undirected graph is) cyclic if it contains a loop/cycle

connectedness

- vertices v and w are connected $\Leftrightarrow \exists$ a walk from v to w
- graph G is connected $\Leftrightarrow \forall$ vertices $v, w \in V, \exists$ a walk from v to w

connected component

- a connected subgraph of the largest possible size
- graph H is a connected component of graph $G \Leftrightarrow$
 - 1. H is a subgraph of G
 - 2. *H* is connected
 - 3. no connected subgraph of G has H as a subgraph and contains vertices or edges that are not in H

Hamiltonian circuit

- Hamiltonian circuit (for G): a simple circuit that includes every vertex of G.
- does not need to include all the edges of G (unlike Euler circuit)
- · Hamilton(ian) graph: contains a Hamiltonian circuit

- If G is a Hamiltonian circuit, then G has subgraph H where:
- 1. H contains every vertex of G
- 2. *H* is connected
- 3. H has the same number of edges as vertices
- 4. every vertex of *H* has degree 2

counting walks of length N

number of walks of length n from v_i to v_j = the ij-th entry of A^n

isomorphism

graph isomorphism (≅) is an equivalence relation.

Let $G=(V_G,E_G)$ and $G'=(V_{G'},E_{G'})$ be two graphs. $G\cong G'\Leftrightarrow$ there exist bijections $g:V_G\to V_G'$ and $h:E_G\to E_G'$ that preserve the edge-edgepoint functions of G and G' in the sense that $\forall v\in V_G$ and $e\in E_G$, v is an endpoint of $e\Leftrightarrow g(v)$ is an endpoint of h(e).

11. TREES

- tree is a connected acyclic undirected graph
 - (L10.5.4) If G is a connected graph with n vertices and n-1 edges, then G is a tree.
- trivial tree: graph that comprises a single vertex
- forest ⇔ graph is circuit-free and not connected

- a group of trees
- terminal vertex: a vertex of degree 1
- internal vertex: a vertex of degree greater than 1

rooted trees

- rooted tree: a tree in which there is one vertex that is distinguished from the others and is called the root.
- level (of a vertex): the number of edges along the unique path between it and the root
- height (of a rooted tree): the maximum level of any vertex of the tree
- · children, parent, siblings, ancestor, decendant

binary tree

- binary tree: a rooted tree in which every parent has at most 2 children
 - at most one left child and at most one right child
- full binary tree: a binary tree in which every parent has exactly 2 children
- (left/right) subtree: Given any parent v in a binary tree T, the binary tree whose root is the (left/right) child of v, whose vertices consist of the left child of v and all its

descendants, and whose edges consist of all those edges of ${\cal T}$ that connect the vertices of the left subtree.

T10.6.1: Full Binary Tree Theorem If T is a full binary tree with k internal vertices, then T has a total of 2k+1 vertices and has k+1 terminal vertices.

binary tree traversal

Breadth-First Search (BFS)

- · starts at the root
- visits its adjacent vertices
- · visits the next level

Depth-First Search (DFS)

- pre-order
 - $\bullet \ \text{current vertex} \to \text{left subtree} \to \text{right subtree}$
- in-order
 - left subtree \rightarrow current vertex \rightarrow right subtree
- post-order
 - left subtree → right subtree → current vertex

spanning trees

- **spanning tree** (for a graph *G*): a subgraph of *G* that contains every vertex of *G* and is a tree.
 - w(e) weight of edge e
 - w(G) total weight of G

- weighted graph: each edge has an associated positive real number weight
 - total weight: sum of the weights of all edges
- minimum spanning tree: least possible total weight compared to all other spanning trees

Kruskal's algorithm

For a connected weighted graph G with n vertices:

- 1. initialise T to have all the vertices of G and no edges.
- 2. Let E be the set of all edges in G: Let m=0
- 3. while (m < n 1)
- 3.1. find and remove the edge e in E of least weight
- 3.2. if adding e to the edge set of T does not produce a circuit:
 - i. add e to the edge set of T
 - ii. set m=m+1

Prim's algorithm

For a connected weighted graph G with n vertices:

- 1. pick any vertex v of G and let T be the graph with this vertex only
- 2. let V be the set of all vertices of G except v
- 3. for (i = 0 to n 1)
- 3.1. find the edge e in G with the least weight of all the edges connected to T. let w be the endpoint of e.
- 3.2. add e and w to the edge and vertex sets of T
- 3.3. delete w from v

LOGICAL EQUIVALENCES			SET IDENTITIES		
commutative laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$	commutative laws	$A \cap B = B \cap A$	$A \cup B = B \cup A$
associative laws	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	associative laws	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
distributive laws	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	distributive laws	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
identity laws	$p \wedge true \equiv p$	$p \lor false \equiv p$	identity laws	$A \cap U = A$	$A \cup \emptyset = A$
idempotent laws	$p \land p \equiv p$	$p \lor p \equiv p$	idempotent laws	$A \cap A = A$	$A \cup A = A$
annihilators laws	$p \lor true \equiv true$	$p \land p = p$ $p \land false \equiv false$	annihilators laws	$A \cap \emptyset = \emptyset$	$A \cup U = U$
negation laws	$p \lor rac = trac$ $p \lor \sim p \equiv true$	$p \land \neg p \equiv false$	complement laws	$A \cap \overline{A} = \emptyset$	$A \cup \overline{A} = U$
double negation law	$\sim (\sim p) \equiv p$		double complement law	$\overline{(\overline{A})} = A$	<u> </u>
absorption laws	$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) \equiv p$	absorption laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
De Morgan's Laws	$\sim (p \lor q) \equiv \sim p \land \sim q$	$\sim (p \land q) \equiv \sim p \lor \sim q$	De Morgan's Laws	$\overrightarrow{A \cup B} = \overrightarrow{A} \cap \overline{B}$	$\overrightarrow{A \cap B} = \overrightarrow{A} \cup \overline{B}$
Implication law	$p o q \equiv \sim p \lor q$	-	Set difference	$A \backslash B = A \cap \overline{B}$	<u>.</u>

proven:

number theory

- E1.1 the product of 2 consecutive odd numbers is always odd.
- E1.5 the difference between 2 consecutive squares is always odd
- E1.4 the sum of any 2 even integers is even
- T4.6.1 there is no greatest integer
- T8.2.8 there are infinitely many prime numbers
- T4.3.1 for all positive integers a and b, if a|b, then $a \le b$.
- P4.6.4 for all integers n, if n^2 is even then n is even
- T4.2.1 all integers are rational numbers
- T4.2.2 the sum of any 2 rational numbers is rational
- E1.7 there exist irrational numbers p and q such that p^q is rational
- T4.7.1 $\sqrt{2}$ is irrational.
- T4.3.2 the only divisors of 1 are 1 and -1.

divisibility

- L8.1.5 Let $d, n \in \mathbb{Z}$ with $d \neq 0$. Then $d \mid n \Leftrightarrow n/d \in \mathbb{Z}$
- L8.1.9 Let $d, n \in \mathbb{Z}$. If $d \mid n$, then $-d \mid n$ and $d \mid -n$ and $-d \mid -n$
- L8.1.10 Let $d, n \in \mathbb{Z}$. If $d \mid n$ and $d \neq 0$, then $|d| \leq |n|$
- L8.2.5 Prime Divisor Lemma (non-standard name):
 - Let $n \in \mathbb{Z}_{\geq 2}$. Then n has a prime divisor.
- P8.2.6 sizes of prime divisors:
 - Let n be a composite positive integer. Then n has a prime divisor $p \leq \sqrt{n}$.

base-b representation

• T8.3.13 - $\forall n \in \mathbb{Z}^+, \exists ! \ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \ldots, a_\ell \in \{0, 1, \ldots, b-1\}$ such that ithe definition of base-b representations, holds.

logic

- T3.2.1 negation of a universal statement:
 - $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \mid \sim P(x)$
- T3.2.2 negation of an existential statement:

• $\sim (\exists x \in D \mid P(x)) \equiv \forall x \in D, \sim P(x)$

sets

- P4.2.7 ∅ ⊆ all sets
- T4.1.18 there exists a unique set with no element. It is denoted by ∅.
- E4.3.7 for all $A, B: (A \cap B) \cup (A \setminus B) = A$
- E4.3.9(1) $(A \cap B) \subseteq A$
- E4.3.9(2) $A \subseteq (A \cup B)$
- E4.3.10 $A \subseteq B \land B \subseteq C \rightarrow A \subseteq (B \cap C)$
- T4.6 $A \subseteq B \leftrightarrow A \cup B = B$
- T5.3.11(1) let A, B be disjoint finite sets. Then $|A \cup B| = |A| + |B|$
- T5.3.11(2) let A_1,A_2,\ldots,A_n be pairwise disjoint finite sets. Then $|A_1\cup A_2\cup\cdots\cup A_n|=|A_1|+|A_2|+\cdots+|A_n|$
- T5.3.12 Inclusion-Exclusion Principle:
 - for all finite sets A and B, $|A \cup B| = |A| + |B| |A \cap B|$

induction

- L7.3.19 If $x \in \mathsf{WFF}^+(\Sigma)$, then assigning false to all elements of Σ makes x evaluate to false.
- T7.3.20 \sim $(\forall x \in \mathsf{WFF}(\Sigma), \exists y \in \mathsf{WFF}^+(\Sigma) \ y \equiv x) \equiv \exists x \in \mathsf{WFF}(\Sigma) \ \forall y \in \mathsf{WFF}^+(\Sigma) \ y \not\equiv x \ \mathsf{aka} \sim \mathsf{(not)} \ \mathsf{must} \ \mathsf{be} \ \mathsf{included} \ \mathsf{in} \ \mathsf{the} \ \mathsf{definition} \ \mathsf{of} \ \mathsf{WFF}.$

relations

- E9.2.11 The equality relation R on a set A has equivalence classes of the form $[x] = \{y \in A : x = y\} = \{x\}$ where $x \in A$
- T9.3.4 Let R be an equivalence relation on a set A. Then A/R is a partition of A.
- T9.3.5 If $\mathscr C$ is a partition of A, then there is an equivalence relation of R on A such that $A/R=\mathscr C$.
- L9.5.5 Consider a partial order \leq on set A.

- · A smallest element is minimal.
- · There is at most one smallest element.

graphs

- L10.2.1 Let *G* be a graph.
 - L10.2.1a If G is connected, then any two distinct vertices of G can be connected by a path
 - L10.2.1b If vertices v and w are part of a circuit in G and one edge is removed from the circuit, then there still exists a trail from v to w in G.
 - L10.2.1c If G is connected and G contains a circuit, then an edge of the circuit can be removed without disconnecting G.
- L10.5.1 Any non-trivial tree has at least one vertex of degree 1.
- T10.5.2 Any tree with n vertices (n > 0) has n 1 edges.
- L10.5.3 If G is any connected graph, C is any circuit in G, and one of the edges of C is removed from G, then the graph that remains is still connected.
- L10.5.4 If G is a connected graph with n vertices and n-1 edges, then G is a tree.
- T10.6.1 If T is a full binary tree with k internal vertices, then T has a total of 2k+1 vertices and has k+1 terminal vertices.
- T10.6.2 For non-negative integers h, if T is any binary tree with height h and t terminal vertices, then $t < 2^h$.
- P10.7.1 -
 - 1. Every connected graph has a spanning tree.
 - 2. Any two spanning trees for a graph have the same number of edges

abbreviations

- L lemma
- E example
- P proposition
- T theorem