Vérification des performances cinématiques des systèmes Analyser, Modéliser, Résoudre

Chapitre 5– Étude des trains épicycloïdaux

Sciences
Industrielles de
l'Ingénieur

Colle 5

Transmission à variation continue - Vario Fendt.

D'après concours CCP - MP 2008.

Savoirs et compétences :

Analyser :

☐ *A3 – C6 : transmetteurs de puissance.*

Modéliser: proposer un modèle de connaissance du système.

1

Objectif Déterminer la vitesse d'un moteur pour répondre au cahier des charges.

On s'intéresse à la chaîne de transmission de puissance d'un tracteur Fendt. Cette dernière est composée d'un moteur (et d'une pompe) hydraulique (Mh) ainsi que d'un moteur thermique MAN (Mm).

Le moteur MAN a pour but de fournir de la puissance à la pompe hydraulique et au tracteur (récepteur R). On donne ci-dessous le schéma de la transmission.

Pièce i	1		2	3		Р	M		R	
Désignation	Planétaire		Satellite	Couronne		Arbre relié à la pompe	Arbre sommateur		Arbre de sortie	
Rayons	R ₁₂	R _{1M}	R ₂	R ₃₂	R _{3P}	R _P	R _M	R' _M	R _R	R' _R
des pignons (mm)	60	33	30	120	54		54	48	42	48

Question 1 Déterminer alors la fréquence de rotation que doit avoir le moteur «rel» pour respecter l'exigence 1.1.

Correction On cherche une relation entre $\omega_{\text{Mh/0}}$, $\omega_{\text{Ph/0}}$ et $\omega_{\text{Mm/0}}$ (avec Mm et 4 même classe d'équivalence). Pour cela, on va d'abord rechercher une relation entre $\omega(3/0)$, $\omega(4/0)$ et $\omega(1/0)$.

Bloquons le porte satellite 4, directement lié au moteur Mm. On est alors en présence d'un réducteur simple d'entrée $\omega(1/4)$ et de sortie $\omega(3/4)$. On a donc : $\frac{\omega(3/4)}{\omega(1/4)} = -\frac{R_{12}}{R_{32}}.$

En libérant le porte satellite, on a donc : $\frac{\omega(3/4)}{\omega(1/4)} = \frac{\omega(3/0) - \omega(4/0)}{\omega(1/0) - \omega(4/0)} = -\frac{R_{12}}{R_{32}} \iff R_{32}\omega(3/0) + R_{12}\omega(1/0) = \frac{\omega(4/0)(R_{12} + R_{32})}{\Omega(3/0)} = \frac{R_{32}\omega(3/0)}{\Omega(3/0)} + \frac{R_{12}\omega(1/0)}{\Omega(3/0)} = \frac{R_{32}\omega(3/0)}{\Omega(3/0)} + \frac{R_{12}\omega(1/0)}{\Omega(3/0)} = \frac{R_{32}\omega(3/0)}{\Omega(3/0)} + \frac{R_{32}\omega(3/0)}{\Omega(3/0)} = \frac{R_{32}\omega(3/0)}{\Omega(3/0)} + \frac{R_{32}\omega(3/0)}{\Omega(3/0)} = \frac{R_{32}\omega(3/0)}{\Omega(3/0)} = \frac{R_{32}\omega(3/0)}{\Omega(3/0)} + \frac{R_{32}\omega(3/0)}{\Omega(3/0)} + \frac{R_{32}\omega(3/0)}{\Omega(3/0)} = \frac{R_{32}\omega(3/0)}{\Omega(3/0)} + \frac{R_{32}$

 $\omega(\text{Mm/0})(R_{12} + R_{32}).$ Par ailleurs, $\frac{\omega(\text{Ph/0})}{\omega(3/4)} = -\frac{R_{3P}}{R_P}$ et $\frac{\omega(1/4)}{\omega(\text{Mh/0})} = -\frac{R_M}{R_{1M}}$