T-Statistic (Student's T)

	,				
	Fórmula	Legenda			
	Usado quando não se possui os parâmetros da população				
T-Score	$t = \frac{\bar{x} - \mu_o}{\frac{s}{\sqrt{n}}}$	x: média da amostra µo: média da população s: desvio padrão da amostra n: tamanho da amostra	Verifica se a população com média (x) é significativamente diferente da população com média (μ_{o})		
Standard Error	$SE = \frac{s}{\sqrt{n}}$	s: desvio padrão da amostra n: tamanho da amostra			
Margin of Error	$ME = t \frac{s}{\sqrt{n}}$				
Degrees of Freedom	df = n - 1	n: tamanho da amostra			
P-Value	use <u>GraphPad</u>	Probabilidade acima do I-score (One-tailed test) Ou a soma das probabilidades de estar acima de + t-score e abaixo do - t-score (Two-tailed test) Rejeita H ₀ quando P-value < alpha level (q)			
Cohen's D	$d = \frac{\bar{x} - \mu}{s}$	x: média da amostra μ: média da população s: desvio padrão da amostra	Mede a distância entre médias em unidades de desvio padrão (a quantos desvio-padrão uma média está distante da outra)		

Dependent t-test

	Fórmula	Legenda	
	O mesmo objeto é testado	2 vezes	2 condições/tratamentos teste Pré e Pós tratamento Melhoria com o tempo
Point Estimate	$D = x_i - y_i$	x _i : resultado do 1º experimento y _i : resultado do 2º experimento	Realiza os mesmos procedimentos do T-test tradicional, porem utilizando os valores de D
T-Score	$t = \frac{\mu_1 - \mu_2}{\frac{s}{\sqrt{n}}}$ $t = \frac{s_D - 0}{\frac{s_D}{\sqrt{n}}}$	μ: média do 1° experimento μ2: média do 2° experimento s: desvio padrão da diferença das amostras n: tamanho das amostras	
	$t = \frac{\bar{x_D} - 0}{\frac{s_D}{\sqrt{n}}}$	Χ _D : μ ₁ - μ ₂	Compara se a diferença entre as médias dos experimentos é diferente de Zero. Porém é possível comparar se é diferente de algum valor específico
Desvio Padrão	$s_D = \sqrt{\frac{\sum_{i=0}^{n} (D_i - \mu_D)^2}{n-1}}$		
Cohen's D	$d = \frac{\mu_1 - \mu_2}{s_D}$	x: média da amostra μ: média da população s: desvio padrão da amostra	Mede a distância entre médias em unidades de desvio padrão (a quantos desvio-padrão uma média está distante da outra)
Confidence Interval Range	$CI = \left(\mu_D - t_{critical} \frac{s_D}{\sqrt{n}}, \mu_D + t_{critical} \frac{s_D}{\sqrt{n}}\right)$	μο: μ1 - μ2	
Medida de Correlação (r²)	$r^2 = \frac{t^2}{t^2 + df}$	t: t-score df: graus de liberdade $0 \le r^2 \le 1$	Proporção (%) que a variação em uma variável é relacionada a (explicada por) uma outra variável

Independent t-test

	Fórmula	Legenda	
	Testes são realizados em amostras de objetos diferentes. As amostras podem ter tamanhos diferentes		
Desvio Padrão	$s_D = \sqrt{s_1^2 + s_2^2}$	s ₁ : desvio padrão da amostra 1 s ₂ : desvio padrão da amostra 2	
Standard Error	$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	n ₁ : tamanho da amostra 1 n ₂ : tamanho da amostra 2	Assume que as amostras possuem tamanhos parecidos
	$SE = \sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}$		Standard Error corrigido
Pooled Variance	$S_p^2 = \frac{SS_1 + SS_2}{df_1 + df_2}$		
	$SS = \sum_{i=0}^{n} (x_i - \bar{x})^2$		
Degrees of Freedom	$df = n_1 + n_2 - 2$		
t-score	$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{SE}$ $t = \frac{\bar{x}_1 - \bar{x}_2}{SE}$	$ \mu_1 - \mu_2$: expected difference $ \mu_1 - \mu_2 = 0 \text{ (geralmente)} $	
	$t = \frac{\bar{x}_1 - \bar{x}_2}{SE}$		
Confidence Interval Range	$CI = \bar{x} \pm t_{critical}SE$ $\bar{x} = \bar{x}_1 - \bar{x}_2$		