sine basis 03

Statistics:

p-values adjusted for search volume

praise asjustes to obtain												
set-level		cluster-level				peak-level					mm mm mm	
р	С	p_{FWE-c}	g corrFDR-c	orr E	p_{uncorr}	p_{FWE-c}	<i>g</i> corrFDR-co	<i>T</i> orr	(Z_{\equiv})	$p_{ m uncorr}$		
		1.000	0.807	4	0.582	1.000	0.947	3.01	2.99	0.001	64	-30 -12
		1.000	0.807	25	0.160	1.000	0.947	3.00	2.98	0.001	2	-98 -16
		1.000	0.807 0.800	16 36	0.256 0.096	1.000 1.000	0.947 0.947	2.99	2.98 2.97	0.001	24 24	-52 -52 -72 44
		1.000	0.807	15	0.271	1.000	0.947	2.98	2.97	0.001	46	6 52
		1.000	0.807	14	0.288	1.000	0.947	2.97	2.96	0.002	58	-42 28
		1.000	0.807	2	0.711	1.000	0.947	2.96	2.95	0.002	-10	-108 4
		1.000	0.800	31	0.120	1.000	0.947	2.96	2.94	0.002	4	-8 -18
		1.000	0.807 0.807	3 19	0.640 0.217	1.000 1.000	0.947 0.947	2.95 2.94	2.94	0.002	-10 -8	-98 28 -90 2
		1.000	0.807	8	0.424	1.000	0.947	2.94	2.92	0.002	-8	-8 -18
		1.000	0.807	10	0.369	1.000	0.947	2.93	2.92	0.002	-34	42 22
		1.000	0.807	5	0.534	1.000	0.955	2.92	2.91	0.002	-10	-14 -28
		1.000	0.807	15	0.271	1.000	0.955	2.90	2.89	0.002	-40	-46 -4
		1.000	0.807 0.807	7 23	0.456 0.176	1.000	0.955 0.955	2.89 2.88	2.88 2.87	0.002	-22 -16	8 10 -76 54
		1.000	0.807	3	0.640	1.000	0.958	2.87	2.86	0.002	42	-76 54 -82 -18
		1.000	0.807	5	0.534	1.000	0.986	2.85	2.84	0.002	-24	64 14
		1.000	0.807	12	0.325	1.000	0.991	2.82	2.81	0.002	40	54 -16
		1.000	0.807	10	0.369	1.000	0.991	2.81	2.80	0.003	-28	-56 42
		1.000	0.807 0.807	3 4	0.640 0.582	1.000	0.991 0.991	2.79 2.78	2.78	0.003	-68 38	-44 -4 18 40
		1.000	0.807	*	0.564	1.000	0.991	4./0	4.//	0.003	30	10 40

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels

FWHM = 7.4 7.2 7.0 mm mm mm; 3.7 3.6 3.5 {voxels}

Expected voxels per cluster, $\langle k \rangle = 13.375$ Volume: 1709712 = 213714 voxels = 4266.5 resels

Expected number of clusters, $\langle c \rangle = 181.88$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 46.48 voxels)

FWEp: 5.062, FDRp: Inf, FWEc: 297, FDRo? 297