Revising Aggregations - The Count Function

Query a *count* of the number of cities in **CITY** having a *Population* larger than 100,000.

Input Format

The **CITY** table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Revising Aggregations - The Sum Function

Query the total population of all cities in **CITY** where *District* is **California**.

Input Format

The **CITY** table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Revising Aggregations -Averages

Query the average population of all cities in **CITY** where *District* is **California**.

Input Format

The **CITY** table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Average Population

Query the average population for all cities in ${f CITY}$, rounded down to the nearest integer.

Input Format

The **CITY** table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Japan Population

Query the sum of the populations for all Japanese cities in **CITY**. The *COUNTRYCODE* for Japan is **JPN**.

Input Format

The **CITY** table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

Population Density Difference

Query the difference between the maximum and minimum populations in CITY.

Input Format

The **CITY** table is described as follows:

Field	Туре
ID	NUMBER
NAME	VARCHAR2(17)
COUNTRYCODE	VARCHAR2(3)
DISTRICT	VARCHAR2(20)
POPULATION	NUMBER

The Blunder

Samantha was tasked with calculating the average monthly salaries for all employees in the **EMPLOYEES** table, but did not realize her keyboard's $\mathbf{0}$ key was broken until after completing the calculation. She wants your help finding the difference between her miscalculation (using salaries with any zeroes removed), and the actual average salary.

Write a query calculating the amount of error (i.e.: actual-miscalculated average monthly salaries), and round it up to the next integer.

Input Format

The **EMPLOYEES** table is described as follows:

Column	Туре	
ID	Integer	
Name	String	
Salary	Integer	

Note: Salary is measured in dollars per month and its value is $< 10^5$.

Sample Input

ID	Name	Salary
1	Kristeen	1420
2	Ashley	2006
3	Julia	2210
4	Maria	3000

Sample Output

2061

Explanation

The table below shows the salaries without zeroes as they were entered by Samantha:

ID	Name	Salary
1	Kristeen	142
2	Ashley	26
3	Julia	221
4	Maria	3

Samantha computes an average salary of 98.00. The *actual* average salary is 2159.00.

The resulting error between the two calculations is 2159.00 – the next integer, is 2061 .	-98.00=2061.00 which, when rounded to

Top Earners

We define an employee's $total\ earnings$ to be their monthly $salary \times months$ worked, and the $maximum\ total\ earnings$ to be the maximum total earnings for any employee in the **Employee** table. Write a query to find the $maximum\ total\ earnings$ for all employees as well as the total number of employees who have maximum total earnings. Then print these values as 2 space-separated integers.

Input Format

The **Employee** table containing employee data for a company is described as follows:

Column	Туре
employee_id	Integer
name	String
months	Integer
salary	Integer

where *employee_id* is an employee's ID number, *name* is their name, *months* is the total number of months they've been working for the company, and *salary* is the their monthly salary.

Sample Input

employee_id	name	months	salary
12228	Rose	15	1968
33645	Angela	1	3443
45692	Frank	17	1608
56118	Patrick	7	1345
59725	Lisa	11	2330
74197	Kimberly	16	4372
78454	Bonnie	8	1771
83565	Michael	6	2017
98607	Todd	5	3396
99989	Joe	9	3573

Sample Output

699521

Explanation

The table and earnings data is depicted in the following diagram:

employee_id	name	months	salary	earnings
12228	Rose	15	1968	29520
33645	Angela	1	3443	3443
45692	Frank	17	1608	27336
56118	Patrick	7	1345	9415
59725	Lisa	11	2330	25630
74197	Kimberly	16	4372	69952
78454	Bonnie	8	1771	14168
83565	Michael	6	2017	12102
98607	Todd	5	3396	16980
99989	Joe	9	3573	32157

The maximum earnings value is 69952. The only employee with earnings = 69952 is Kimberly, so we print the maximum earnings value (69952) and a count of the number of employees who have earned \$69952 (which is 1) as two space-separated values.

Query the following two values from the **STATION** table:

- 1. The sum of all values in LAT_N rounded to a scale of $\bf 2$ decimal places.
- 2. The sum of all values in $LONG_W$ rounded to a scale of 2 decimal places.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where *LAT_N* is the northern latitude and *LONG_W* is the western longitude.

Output Format

lat lon

Your results must be in the form:

where lat is the sum of all values in LAT_N and lon is the sum of all values in $LONG_W$. Both results must be rounded to a scale of 2 decimal places.

Query the sum of *Northern Latitudes* (LAT_N) from **STATION** having values greater than 38.7880 and less than 137.2345. Truncate your answer to 4 decimal places.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where LAT_N is the northern latitude and $LONG_W$ is the western longitude.

Query the greatest value of the *Northern Latitudes* (LAT_N) from **STATION** that is less than 137.2345. Truncate your answer to 4 decimal places.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where LAT_N is the northern latitude and $LONG_N$ is the western longitude.

Query the Western Longitude ($LONG_W$) for the largest Northern Latitude (LAT_N) in **STATION** that is less than 137.2345. Round your answer to 4 decimal places.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where $\textit{LAT_N}$ is the northern latitude and $\textit{LONG_W}$ is the western longitude.

Query the smallest *Northern Latitude* (LAT_N) from **STATION** that is greater than 38.7780. Round your answer to 4 decimal places.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where LAT_N is the northern latitude and $LONG_N$ is the western longitude.

Query the Western Longitude ($LONG_W$) for the smallest Northern Latitude (LAT_N) in **STATION** that is greater than 38.7780. Round your answer to 4 decimal places.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where LAT_N is the northern latitude and $LONG_N$ is the western longitude.

Consider $P_1(a,b)$ and $P_2(c,d)$ to be two points on a 2D plane.

- *a* happens to equal the minimum value in *Northern Latitude* (*LAT_N* in **STATION**).
- **b** happens to equal the minimum value in *Western Longitude* (*LONG_W* in **STATION**).
- $oldsymbol{\cdot}$ c happens to equal the maximum value in Northern Latitude (LAT_N in **STATION**).
- d happens to equal the maximum value in Western Longitude (LONG_W in STATION).

Query the Manhattan Distance between points P_1 and P_2 and round it to a scale of 4 decimal places.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where LAT N is the northern latitude and LONG W is the western longitude.

Consider $P_1(a,c)$ and $P_2(b,d)$ to be two points on a 2D plane where (a,b) are the respective minimum and maximum values of *Northern Latitude* (*LAT_N*) and (c,d) are the respective minimum and maximum values of *Western Longitude* (*LONG_W*) in **STATION**.

Query the Euclidean Distance between points P_1 and P_2 and format your answer to display 4 decimal digits.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where LAT_N is the northern latitude and LONG_W is the western longitude.