Лекция 1. ПРОСТРАНСТВО R^n

- 1. Определение n-мерного пространства.
- 2. Сходимость последовательности точек в n-мерном пространстве.
- 3. Основные подмножества пространства \mathbf{R}^n
- 4. Предельные точки. Замкнутые множества.

1. Определение *n*-мерного пространства.

При изучении многих физических процессов часто приходиться иметь дело с такими функциональными зависимостями, в которых числовые значения одной из них полностью определяется значениями нескольких других.

Примеры.

- **1.** Температура T тела в данный момент времени t может меняться от точки к точке. Каждая точка определяется тремя координатами x, y, z. Если при этом учитывать время, то температура в общем случае зависит от четырех переменных T = T(x, y, z, t).
- **2.** При изучении звуковых колебаний газа плотность ρ и его давление P определяются значениями переменных x,y,z,t.
- **3.** Объем параллелепипеда есть функция трех переменных x, y, z, т.е. V = V(x, y, z).

Для изучения таких закономерностей вводится понятие функции нескольких переменных и рассматривается аппарат для исследования таких функций.

Определение 1. n-мерным арифметическим точенным пространством называется множество всех упорядоченных наборов $(x_1; x_2; ...; x_n)$ действительных чисел $x_1, x_2, ..., x_n$ и обозначается \mathbf{R}^n , а его элементы — точками или векторами пространства \mathbf{R}^n (n-мерными точками или n-мерными векторами). Числа $x_1, x_2, ..., x_n$ называются координатами точки (вектора) $(x_1; x_2; ...; x_n)$.

Точки пространства \mathbf{R}^n обозначаются $M(x_1; x_2; ...; x_n)$ или

 $x = (x_1, x_2, ..., x_n)$. Точка O(0;0;...;0) называется **началом координат**. Для n-мерного пространства (n — произвольное) вводится понятие расстояния между двумя точками.

Определение 2. Расстоянием (метрикой) $\rho(x,x')$ между двумя точками $x=(x_1;x_2;...;x_n)$ и $x'=(x_1';x_2';...;x_n')$ n-мерного пространства называется число

$$\rho(x;x') = \sqrt{(x_1 - x_1')^2 + (x_2 - x_2')^2 + \dots + (x_n - x_n')^2} = \sqrt{\sum_{i=1}^n (x_i - x_i')^2}.$$

Расстояние $\rho(x;x')$ между двумя точками $x = (x_1; x_2; ...; x_n)$ и $x' = (x'_1; x'_2; ...; x'_n)$ n-мерного пространства \mathbf{R}^n обладает **свойст-**вами:

- 1) $pe\phi$ лективность: $\rho(x;x')=0$ тогда и только тогда, когда x=x';
 - 2) симметричность: $\rho(x; x') = \rho(x'; x);$
 - 3) транзитивность: $\rho(x;x') \leq \rho(x;x') + \rho(x';x'')$.

Если положить n=1, то получается формула расстояния между двумя точками на прямой (в пространстве \mathbf{R}^1): $\rho(x,x')=\left|x_1-x_1'\right|$, при n=2 — формула для вычисления расстояния между двумя точками на плоскости (в пространстве \mathbf{R}^2):

$$\rho(x;x') = \sqrt{(x_1 - x_1')^2 + (x_2 - x_2')^2}$$
,

при n=3 – в пространстве \mathbb{R}^3 :

$$\rho(x;x') = \sqrt{(x_1 - x_1)^2 + (x_2 - x_2)^2 + (x_3 - x_3)^2}.$$

Арифметическое n-мерное пространство, в котором определено расстояние между двумя точками, называют метрическим пространством R^n (евклидовым пространством).

При n=1,2,3 между точками пространства \mathbf{R}^n и числовой прямой \mathbf{R} (координатной плоскостью \mathbf{R}^2 , координатным пространством \mathbf{R}^3) установлено взаимно однозначное соответствие, которое позволяет изучать реальные геометрические объекты

2. Сходимость последовательности точек в n-мерном пространстве.

Пусть $(x_m)_{m=1}^{\infty}$, $x_m = (x_1^m; x_2^m; ...; x_n^m)$, — последовательность точек метрического пространства \mathbf{R}^n .

Определение 3. Говорят, что последовательность точек $(x_m)_{m=1}^\infty$ *сходится* к точке a, $a=(a_1;a_2;...;a_n)$ (имеет *предел* a), если $\lim_{m\to\infty} \rho(x_m;a)=0$.

Обозначается: $\lim_{m\to\infty} x_m = a$.

Определение 4. Последовательность точек $(x_m)_{m=1}^{\infty}$ называется *ограниченной*, если $\exists C \in \mathbf{R}$ и $\exists a \in X$ такие, что для любого $m \in \mathbf{N}$ выполнено неравенство $\rho(x_m; a) \leq C$.

Свойства сходящихся последовательностей

- **1.** Если последовательность $(x_m)_{m=1}^{\infty}$, $x_m = (x_1^m; x_2^m; ...; x_n^m)$, имеет предел, то она ограничена.
- **2.** Последовательность $(x_m)_{m=1}^{\infty}$, $x_m = (x_1^m; x_2^m; ...; x_n^m)$, не может сходиться к двум различным точкам.
- **3.** Для того чтобы последовательность точек $(x_m)_{m=1}^{\infty}$, $x_m = (x_1^m; x_2^m; ...; x_n^m)$, сходилась к пределу $a = (a_1; a_2; ...; a_n) \in \mathbf{R}^n$, необходимо и достаточно, чтобы выполнялись равенства

$$\lim_{m \to \infty} x_1^m = a_1, \ \lim_{m \to \infty} x_2^m = a_2, \ \dots, \ \lim_{m \to \infty} x_n^m = a_n.$$

4. Если последовательность точек $(x_m)_{m=1}^{\infty}$ метрического пространства \mathbf{R}^n еходится, то она является фундаментальной.

Замечание. Обратное утверждение для произвольного метрического пространства неверно. Фундаментальная последовательность может и не быть сходящейся.

Определение 5. Метрическое пространство \mathbb{R}^n называется *полным*, если любая фундаментальная последовательность его точек сходится.

В силу критерия Коши сходимости числовой последовательности пространство \boldsymbol{R} действительных чисел является полным.

Теорема 1. Пространство \mathbb{R}^n – полное.

▶ Пусть $(x_m)_{m=1}^{\infty}$, $x_m = (x_1^m; x_2^m; ...; x_n^m)$, — фундаментальная последовательность точек в \mathbf{R}^n . По определению фундаментальной последовательности $\forall \varepsilon > 0 \quad \exists N(\varepsilon)$ такое, что для любых $l, m > N(\varepsilon)$ выполнено неравенство $\rho(x_l, x_m) < \varepsilon$.

Рассмотрим числовые последовательности $(x_k^m)_{m=1}^\infty$, k=1,2,...,n. Тогда $\left|x_k^l-x_k^m\right| \leq \rho(x_l,x_m) < \varepsilon$, k=1,2,...,n. Значит, числовые последовательности $(x_k^m)_{m=1}^\infty$, k=1,2,...,n, являются фундаментальными. В силу критерия Коши они являются сходящимися. По свойству 3 сходится и последовательность точек $(x_m)_{m=1}^\infty$ в \mathbf{R}^n .

3. Основные подмножества пространства \mathbb{R}^n

Определение 6. Множество точек $x = (x_1; x_2; ...; x_n) \in \mathbb{R}^n$, расстояние от каждой из которых до фиксированной точки $x^0 = (x_1^0; x_2^0; ...; x_n'^0)$ не превосходит положительного числа r, называется n-мерным замкнутым шаром радиусом r c центром e точке x_0 .

Обозначается:

$$B_{[x_0,r]} = \left\{ x \in \mathbf{R}^n \middle| (x_1 - x_1^0)^2 + (x_2 - x_2^0)^2 + \dots + (x_n - x_n^0)^2 \le r^2 \right\},$$

или $B_{[x_0,r]} = \left\{ x \in \mathbf{R}^n \middle| \rho(x,x_0) \le r \right\}.$

В частности,

1) при n = 1 имеем

$$B_{[x_0,r]} = \left\{ x \middle| |x - x_0| \le r \right\} = \left\{ x_0 - r \le x \le x_0 + r \right\},\,$$

т.е. *одномерный* замкнутый шар — это *отрезок* длиной 2r с центром в точке x_0 ;

2) при n = 2 имеем

$$B_{[x_0,y_0;r]} = \{(x,y) | (x-x_0)^2 + (y-y_0)^2 \le r^2 \},\,$$

т.е. это множество является *кругом* радиусом r с центром в точке $P_0(x_0; y_0)$;

3) при n = 3

$$B_{[M_0,r]} = \{ M(x,y,z) | (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 \le r^2 \},$$

т.е. это множество является *шаром* радиуса r с центром в точке $M_0(x_0;y_0;z_0)$.

Определение 7. Открытым n-мерным шаром c центром e точке x_0 называется множество точек x пространства \mathbf{R}^n , расстояние от каждой из которых до точки x_0 меньше r: $\rho(x,x_0) < r$.

Обозначается:
$$B_{(M_0,r)} = \{ x \in \mathbf{R}^n | \rho(x,x_0) < r \}.$$

Определение 8. Множество точек $x \in \mathbb{R}^n$, удовлетворяющих условию $\rho(x,x_0)=r$, называется n-мерной сферой радиусом r с центром в точке x_0 .

Обозначается: $\left\{x \in \mathbf{R}^n \middle| \rho(x, x_0) = r\right\}$

Определение 9. ε -окрестностью точки $x_0 = \left(x_1^0; x_2^0; ...; x_n^0\right)$ называется открытый n -мерный шар радиусом ε с центром в точке x_0 .

Обозначается:

$$U(\varepsilon,x_0) = \{x \mid \rho(x,x_0) < \varepsilon\}.$$

В частности.

- 1) при n=1 ε -окрестность $U(\varepsilon,x_0)=\{x\,|\,x_0-\varepsilon< x< x_0+\varepsilon\},$ т.е. окрестностью точки x_0 является интервал $(x_0-\varepsilon;x_0+\varepsilon);$
 - 2) при n=2 ε -окрестность

$$U(\varepsilon, M_0) = \left\{ M(x; y) \in \mathbb{R}^2 \middle| \sqrt{(x - x_0)^2 + (y - y_0)^2} < r \right\},$$

т.е. ε -окрестностью точки M_0 будет множество точек открытого круга радиусом ε с центром в этой точке.

Определение 10. Множество точек $x = (x_1; x_2; ...; x_n)$ пространства \mathbf{R}^n , координаты которых удовлетворяют неравенствам $\left|x_1 - x_1^0\right| \le d_1$, $\left|x_2 - x_2^0\right| \le d_2$, ..., $\left|x_n - x_n^0\right| \le d_n$, называется *п*-мерным замкнутым параллелепипедом с центром в точке $x_0 = \left(x_1^0; x_2^0; ...; x_n^0\right)$.

Обозначается:

$$P_{[d_1,d_2,...,d_n;x_0]} = \left\{ (x_1, x_2,...,x_n) \in \mathbf{R}^n \middle| |x_1 - x_1^0| \le d_1, |x_2 - x_2^0| \le d_2,..., |x_n - x_2^0| \le d_n \right\}$$

Аналогично открытому n-мерному параллелепипеду определяется *открытый* n-мерный параллелепипед.

Определение 11. Множество точек $x = (x_1; x_2; ...; x_n)$ пространства \mathbf{R}^n , координаты которых удовлетворяют неравенствам $\left|x_1 - x_1^0\right| \leq d$, $\left|x_2 - x_2^0\right| \leq d$, ..., $\left|x_n - x_n^0\right| \leq d$, называется *п*-мерным открытым кубом с центром в точке $x_0 = \left(x_1^0; x_2^0; ...; x_n^0\right)$.

Обозначается:

$$P_{(d;x_0)} = \left\{ \left(x_1, x_2, ..., x_n \right) \in \mathbf{R}^n \middle| \left| x_1 - x_1^0 \right| < d, \left| x_2 - x_2^0 \right| < d, ..., \left| x_n - x_2^0 \right| < d \right\}$$

Определение 12. Всякий n-мерный открытый параллелепипед

$$P_{(d_1,d_2,...,d_n;x_0)} = \\ = \left\{ \left(x_1,x_2,...,x_n \right) \in \pmb{R}^n \middle| \left| x_1 - x_1^0 \middle| < d_1, \left| x_2 - x_2^0 \middle| < d_2,..., \left| x_n - x_2^0 \middle| < d_n \right. \right\} \right. \\ \text{ называется} \qquad \pmb{nрямоугольной} \qquad \pmb{окрестностью} \qquad \text{точки} \\ x_0 = \left(x_1^0; x_2^0; ...; x_n^0 \right).$$

Лемма 1. Любая ε -окрестность $U(\varepsilon, x_0)$ точки $x_0 = (x_1^0; x_2^0; ...; x_n^0)$ содержит некоторую прямоугольную окрестность $P_{[d_1, d_2, ..., d_n; x_0]}$ и наоборот.

Без доказательства.

Определение 13. Проколотой ε -окрестностью точки $x_0 \in \mathbf{R}^n$ радиусом ε называется множество точек $x \in \mathbf{R}^n$, удовлетворяющих неравенству $0 < \rho(x, x_0) < \varepsilon$.

Обозначается:

$$\overset{\circ}{U}(\varepsilon,x_0) = \{x \in \mathbf{R}^n | 0 < \rho(x,x_0) < \varepsilon \}.$$

Из определения проколотой окрестности точки $x_0 \in \mathbf{R}^n$ следует, что эта окрестность состоит из множества точек открытого n-мерного шара, исключая его центр.

4. Предельные точки. Замкнутые множества.

Пусть G – некоторое множество пространства \mathbf{R}^n .

Определение 14. Точка $x = (x_1; x_2; ...; x_n)$ называется внутренней точкой множества G, если существует ε -окрестность $U(\varepsilon, x)$ точки x, целиком принадлежащая множеству G.

Определение 15. Множество $G \subset \mathbb{R}^n$ называется *открытым*, если все его точки внутренние.

Определение 16. Точка $x = (x_1; x_2; ...; x_n)$ называется *граничной мочкой* множества G, если в любой ε -окрестности $U(\varepsilon,x)$ точки x содержатся точки, как принадлежащие множеству G, так и не принадлежащие ему. Множество граничных точек называется *границей* множества G и обозначается ∂G .

Граничная точка может как принадлежать множеству ${\it G}$, так и не принадлежать ему.

Определение 17. Точка $x = (x_1; x_2; ...; x_n)$ называется *пре- дельной точкой* множества G, если в любой ε -окрестность $U(\varepsilon, x)$ точки x содержатся точки множества G, отличные от x. Точка $x = (x_1; x_2; ...; x_n)$, не являющаяся предельной точкой

множества G , называется $\emph{usonuposanhoй}$ точкой множества G .

Если точка $x=(x_1;x_2;...;x_n)$ является изолированной точкой множества G , то существует такая ε -окрестность $U(\varepsilon,x)$ точки x , в которой нет точек множества G , отличные от x .

Определение 18. Множество $G \subset \mathbb{R}^n$ называется замкнутым, если оно содержит все свои предельные точки. Множество, которое получается, если присоединить к множеству G все его предельные точки, называется замыканием G.

Обозначается: \overline{G} .

Пример. $\overline{B_{(x_0,r)}} = B_{[x_0,r]}$.

Определение 19. Множество $G \subset \mathbb{R}^n$ называется *ограниченным*, если существует такой n-мерный шар, который содержит внутри себя все точки множества G.

Определение 20. Множество

 $L = \left\{ P(x_1; x_2; ...; x_n) \middle| x_1 = \varphi_1(t), x_2 = \varphi_2(t), ... x_n = \varphi_n(t); \alpha \leq t \leq \beta \right\},$ где $\varphi_i(t), i = 1, 2, ..., n$, непрерывные функции на отрезке $\left[\alpha; \beta\right]$, называется **непрерывной кривой** в пространстве \mathbf{R}^n , соединяющей **концы** $P_1(\varphi_1(\alpha); \varphi_2(\alpha); ...; \varphi_n(\alpha))$ и $P_2(\varphi_1(\beta); \varphi_2(\beta); ...; \varphi_n(\beta))$ кривой Γ .

Определение 21. Множество $G \subset \mathbb{R}^n$ называется линейно связным (связным), если любые две точки этого множества можно соединить непрерывной кривой Γ , целиком принадлежащей этому множеству.

Определение 22. Открытое связное множество называется *областью*, объединение области и ее границы называется *замкнутой областью*.

Определение 23. Множество $G \subset \mathbb{R}^n$ называется компактом в \mathbb{R}^n , если из любой последовательности точек $(x_m)_{m=1}^{\infty}$ можно выделить подпоследовательность, сходящуюся к точке, принадлежащей множеству G.

Пример. Отрезок [a;b] есть компакт в R, а промежуток [a;b) не является компактом в R.

На пространство $\mathbf{\textit{R}}^{n}$ обобщается теорема Больцано—Вейерштрасса.

Теорема 2. Из любой ограниченной последовательности точек пространства \mathbf{R}^n можно выделить сходящуюся подпоследовательность точек.

Следствие. Для того чтобы множество $G \subset \mathbb{R}^n$ было компактом, необходимо и достаточно, чтобы множество G было ограниченным и замкнутым.

Вопросы для самоконтроля

- 1. Дайте определения: n-мерного арифметического пространства, расстояния в пространстве \mathbf{R}^n , n-мерного евклидова пространства.
- 2. Дайте определения: n-мерного открытого шара, n-мерного замкнутого шара, n-мерной сферы, n-мерного параллелепипеда (открытого и замкнутого), n-мерного куба, ε -окрестности точки в пространстве \mathbf{R}^n .
- 3. Дайте определения внутренней точки множества. Может ли внутренняя точка не принадлежать множеству?
- 4. Дайте определение граничной точки множества. Может ли точка одновременно быть внутренней и граничной для некоторого множества?
 - 5. Какие точки множества называются предельными?
 - 6. Дайте определение открытого и замкнутого множества.
- 7. Что является границей n-мерного замкнутого шара и параллелепипеда.
- 8. Дайте определения: ограниченного множества, непрерывной кривой в пространстве \mathbf{R}^n , связного множества. Являются ли связными множествами n-мерная сфера, n-мерный шар, прямая в пространстве \mathbf{R}^n ?
- 9. Дайте определения открытой и замкнутой области. Приведите примеры.
 - 10. Дайте определение компакта в пространстве R^n .