

CMPS 460 - Spring 2022

MACHINE

LEARNING

Tamer Elsayed

Image hosted by. WittySparks.com | Image source: Pixabay.com

Prob. Modeling: Logistic Regression

Handout: Intro, 5.1, 5.2.1, 5.4, 5.5, 5.6.1

Perceptron

$$z = \left[\sum_{i=1}^{n} w_i x_i\right] + b$$

$$\hat{y} = \mathbb{I}(z > 0)$$

Probability?

$$z = \left[\sum_{i=1}^{n} w_i x_i\right] + b$$

$$\hat{y} = \sigma(z)$$

Sigmoid Function

LR Prediction

$$\hat{y} = p(y = 1|x) = \sigma(z) = \sigma(wx + b) = \frac{1}{1 + e^{-(wx + b)}}$$

$$1 - \hat{y} = p(y = 0|x) = 1 - \sigma(z) = 1 - \sigma(wx + b) = \frac{e^{-(wx + b)}}{1 + e^{-(wx + b)}}$$

BTW:
$$1 - \sigma(z) = \sigma(-z)$$

$$Predicted\ Label(x) = \begin{cases} 1 & \text{if } \hat{y} > 0.5\\ 0 & \text{otherwise} \end{cases}$$

Example

$$n = 3$$

 $x_1 = 1, x_2 = -1, x_3 = 3$
 $w_1 = -1, w_2 = 2, w_3 = 3, b = 0$
 $z = ? \hat{y} = ?$

if
$$b = -7$$
?

Learning

Choosing Parameters ...

- Goal: Maximize probability of the correct label
- Remember that

$$\hat{y} = p(y = 1|x)$$

- \rightarrow Goal: Maximize \hat{y} when y=1, and $1-\hat{y}$ when y=0
- → maximize the following function:

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

noting:

if y = 1, this simplifies to \hat{y} if y = 0, this simplifies to $1 - \hat{y}$

Choose w and b that maximize the probability of the correct labels in the training data

Cross-Entropy Loss

- **Goal**: maximize probability of the correct label p(y|x)
- Maximize: $p(y|x) = \hat{y}^y (1 \hat{y})^{1-y}$
- Maximize: $\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$ = $y \log \hat{y} + (1-y) \log (1-\hat{y})$
- Minimize:

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

Cross-Entropy loss

Parameters?

• Minimize:

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

• Minimize: **How?**

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

By Gradient Descent

- Convex and has a unique global minimum
- No closed formula, but solved by gradient descent.

Generative vs. Discriminative Models

Example!

Suppose we're distinguishing cat from dog images

imagenet

imagenet

- Build a model of what's in a cat image
 - Knows about whiskers, ears, eyes
 - Assigns a probability to any image:
 - how cat-y is this image?

Also build a model for dog images

Now given a new image:

Run both models and see which one fits better

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars! Let's ignore everything else

Generative vs Discriminative Classifier

https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-machine-learning/

CMPS 460: Machine Learning

Naïve Bayes

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(x/y) P(y)$$

Logistic Regression

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(y/x)$$