Analysis of Covariance

Cathy Maugis-Rabusseau

INSA Toulouse / IMT GMM 116 cathy.maugis@insa-toulouse.fr

2023-2024

Outline

- 1 Introduction
- 2 Modelings
- Parameter estimation
- Testing procedures

Context and notation

- ANCOVA= Analysis of covariance
- We want to explain a quantitative response variable Y using qualitative and quantitative variables together
- ullet Here we only consider one covariate z and one factor T with I levels
- n_i = number of observations for the *i*-th level of T, $n = \sum_{i=1}^{I} n_i$.
- ullet $Y_{ij}=$ value of the response Y for $j=1,\ldots,n_i,\ i=1,\ldots,I$
- z_{ij} = value of the covariate z for $j = 1, ..., n_i$, i = 1, ..., I

We want to find if temperature and oxygenation conditions influence the evolution of oyster weight. We have n=20 bags of 10 oysters. We place, during a month, these 20 bags randomly in I=5 different locations of a channel cooling of a power station at the rate of $n_i=4$ bags per location. These locations are differentiated by their temperature and oxygenation.

For each bag, we have

- its weight after the experiment ($Final\ weight$) = the response Y
- its weight before the experiment ($Init\ weight$) = the explanatory variable z
- ullet the location (*Treatment* 1 to 5) = the qualitative variable T

print(oyster)

	${\tt InitWeight}$	${\tt FinalWeight}$	${\tt Treatment}$
1	27.2	32.6	1
2	32.0	36.6	1
3	33.0	37.7	1
4	26.8	31.0	1
5	28.6	33.8	2
6	26.8	31.7	2
7	26.5	30.7	2
8	26.8	30.4	2
9	28.6	35.2	3
10	22.4	29.1	3
11	23.2	28.9	3
12	24.4	30.2	3
13	29.3	35.0	4
14	21.8	27.0	4
15	30.3	36.4	4
16	24.3	30.5	4
17	20.4	24.6	5
18	19.6	23.4	5
19	25.1	30.3	5
20	18.1	21.8	5

Outline

- Introduction
- 2 Modelings
- 3 Parameter estimation
- Testing procedures

Regular model

Model:

$$(\textit{MR}): \left\{ \begin{array}{l} Y_{ij} = \textit{a}_i + \textit{b}_i \ \textit{z}_{ij} + \epsilon_{ij}, \ \forall i = 1, \cdots, \textit{I}, \, \forall j = 1, \cdots, \textit{n}_i \\ \epsilon_{ij} \ \mathrm{i.i.d} \ \sim \mathcal{N}(0, \sigma^2) \end{array} \right.$$

 \Leftrightarrow Estimating a linear regression of Y on z for each level i of the factor T.

$$\underbrace{\begin{pmatrix} Y_{(1)} \\ \vdots \\ Y_{(I)} \end{pmatrix}}_{Y} = \underbrace{\begin{pmatrix} X_{(1)} \\ & X_{(2)} \\ & & \ddots \\ & & X_{(I)} \end{pmatrix}}_{X} \underbrace{\begin{pmatrix} a_1 \\ b_1 \\ \vdots \\ a_I \\ b_I \end{pmatrix}}_{\theta} + \underbrace{\begin{pmatrix} \varepsilon_{(1)} \\ \vdots \\ \varepsilon_{(I)} \\ \vdots \\ \varepsilon_{(I)} \end{pmatrix}}_{\varepsilon}$$

with
$$Y_{(i)} = (Y_{i1}, \dots, Y_{in_i})', X_{(i)} = (\mathbb{1}_{n_i}, z_{(i)}).$$

Singular model

$$(\textit{MS}): \left\{ \begin{array}{l} Y_{ij} = (\mu + \alpha_i) + (\beta + \gamma_i)z_{ij} + \epsilon_{ij}, \ \forall i = 1, \cdots, I, \, \forall j = 1, \cdots, n_i. \\ \epsilon_{ij} \ \mathrm{i.i.d} \ \sim \mathcal{N}(0, \sigma^2) \end{array} \right.$$

- In this parametrization,
 - interaction effect between the covariate z and the factor T: γ_i
 - differential effect of the factor T on Y: α_i
 - differential effect of the covariate z on Y: β
- 2I + 2 parameters $\Rightarrow 2$ constraints are required to model identifiability

Outline

- Introduction
- 2 Modelings
- 3 Parameter estimation
- Testing procedures

Estimation in regular model (MR)

In a regular model, $\hat{\theta} = (X'X)^{-1}X'Y$.

Since $X = diag(X_{(1)}, \dots, X_{(I)})$, we have

$$(X'X)^{-1} = \mathsf{diag}((X'_{(1)}X_{(1)})^{-1}, \dots, (X'_{(I)}X_{(I)})^{-1})$$

and

$$X'Y = \mathsf{diag}(X'_{(1)}Y_{(1)}, \dots, X'_{(I)}Y_{(I)})$$

Thus

$$\hat{\theta} = \begin{pmatrix} (X'_{(1)}X_{(1)})^{-1}X'_{(1)}Y_{(1)} \\ \vdots \\ (X'_{(I)}X_{(I)})^{-1}X'_{(I)}Y_{(I)} \end{pmatrix}$$

Using results in simple linear regression, we deduce

$$\begin{cases} \hat{b_i} = \text{cov}(Y_{(i)}, z_{(i)})/\text{var}(z_{(i)}) \\ \\ \hat{a_i} = \bar{Y}_{(i)} - \bar{z}_{(i)}\hat{b_i} \end{cases}$$

Estimation in singular model (MS)

- Identifiability constraints: by default in R $\alpha_1 = \gamma_1 = 0$
- Using the link between the parameters in (MR) and (MS), we can easily deduce

$$\begin{cases} \widehat{\mu} = \widehat{a}_1 \\ \widehat{\alpha}_i = \widehat{a}_i - \widehat{a}_1 \end{cases}$$

$$\widehat{\beta} = \widehat{b}_1 \\ \widehat{\gamma}_i = \widehat{b}_i - \widehat{b}_1 \end{cases}$$


```
complet<-lm(FinalWeight~InitWeight * Treatment,data=oyster)
summary(complet)</pre>
```

```
Call:
lm(formula = FinalWeight ~ InitWeight * Treatment, data = oyster)
Residuals:
    Min
             10 Median
                             30
                                     Max
-0.68699 -0.28193 0.02184 0.10425 0.63075
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     5.24126
                               2 86473 1 830
                                                0.0972
InitWeight
                     0.98265 0.09588 10.249 1.27e-06 ***
Treatment2
                   -14.39058 9.15971 -1.571 0.1472
                   -0.42330 3.97747 -0.106 0.9174
Treatment3
Treatment4
                   -0.94550 3.50725 -0.270 0.7930
Treatment5
                   -5.67309 3.57150 -1.588 0.1433
InitWeight:Treatment2 0.51871 0.33406 1.553 0.1515
InitWeight: Treatment3 0.07342 0.14699 0.499 0.6282
InitWeight:Treatment4 0.07428 0.12229 0.607 0.5571
InitWeight:Treatment5 0.24124 0.13980 1.726 0.1151
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.5324 on 10 degrees of freedom Multiple R-squared: 0.9921, Adjusted R-squared: 0.985 F-statistic: 139.5 on 9 and 10 DF, p-value: 2.572e-09


```
import statsmodels.api as sm
from statsmodels.formula.api import ols
oysterpy=r.oyster;
completpy = ols('FinalWeight ~ InitWeight * Treatment', data=oysterpy).fit();
completpy.summary()
```

<class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	FinalWeight	R-squared:	0.992					
Model:	OLS	Adj. R-squared:	0.985					
Method:	Least Squares	F-statistic:	139.5					
Date:	Mar, 22 aoû 2023	Prob (F-statistic):	2.57e-09					
Time:	09:35:50	Log-Likelihood:	-8.8384					
No. Observations:	20	AIC:	37.68					
Df Residuals:	10	BIC:	47.63					
Df Model:	9							
Covariance Type:	nonrobust							

	coef	std err	t	P> t	[0.025	0.975]			
Intercept	5.2413	2.865	1.830	0.097	-1.142	11.624			
Treatment[T.2]	-14.3906	9.160	-1.571	0.147	-34.800	6.019			
Treatment[T.3]	-0.4233	3.977	-0.106	0.917	-9.286	8.439			
Treatment[T.4]	-0.9455	3.507	-0.270	0.793	-8.760	6.869			
Treatment[T.5]	-5.6731	3.572	-1.588	0.143	-13.631	2.285			
InitWeight	0.9826	0.096	10.249	0.000	0.769	1.196			
InitWeight:Treatment[T.2]	0.5187	0.334	1.553	0.152	-0.226	1.263			
<pre>InitWeight:Treatment[T.3]</pre>	0.0734	0.147	0.499	0.628	-0.254	0.401			
InitWeight:Treatment[T.4]	0.0743	0.122	0.607	0.557	-0.198	0.347			
InitWeight:Treatment[T.5]	0.2412	0.140	1.726	0.115	-0.070	0.553			

Outline

- Introduction
- 2 Modelings
- 3 Parameter estimation
- Testing procedures

Absence of any effect

• We want to compare the "null model"

(M0):
$$Y_{ij} = \mu + \varepsilon_{ij}, \forall i = 1, \dots, I, \forall j = 1, \dots, n_i$$

against the full model (MS)

$$(MS): Y_{ij} = (\mu + \alpha_i) + (\beta + \gamma_i)z_{ij} + \varepsilon_{ij}, \forall i = 1, \dots, I, \forall j = 1, \dots, n_i.$$

Fisher's test statistics:

$$F = \frac{SSE/(2I-1)}{SSR/n-2I} \underset{\mathcal{H}_0}{\sim} \mathcal{F}(2I-1, n-2I)$$

with
$$\mathit{SSR} = \|Y - \widehat{Y}\|^2$$
 and $\mathit{SSE} = \|\widehat{Y} - \overline{Y}\mathbb{1}_n\|^2$

With R:

```
MO<-lm(FinalWeight-1,data=oyster)
anova(MO,complet)
```

```
Analysis of Variance Table

Model 1: FinalWeight ~ 1

Model 2: FinalWeight ~ InitWeight * Treatment

Res.Df RSS Df Sum of Sq F Pr(>F)

1 19 358.67

2 10 2.83 9 355.84 139.51 2.572e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

With Python:

```
from statsmodels.stats.anova import anova_lm
MOpy = ols('FinalWeight-1', data=oysterpy).fit()
anova_lm(MOpy,completpy)
```

Test of non-interaction between factor and covariate

• We want to test the null hypothesis:

$$\mathcal{H}_0^{(SI)}: b_1 = b_2 = \cdots = b_I \Longleftrightarrow \gamma_1 = \gamma_2 = \cdots = \gamma_I = 0$$

- Fisher's test to compare
 - the full model

(MS):
$$Y_{ij} = (\mu + \alpha_i) + (\beta + \gamma_i)z_{ij} + \varepsilon_{ij}, \forall i = 1, \dots, I, \forall j = 1, \dots, n_i$$

(MR): $Y_{ij} = a_i + b_i z_{ij} + \varepsilon_{ij}, \forall i = 1, \dots, I, \forall j = 1, \dots, n_i$

• the sub-model with non-interaction

(MSnonI):
$$Y_{ij} = \mu + \alpha_i + \beta z_{ij} + \varepsilon_{ij}, \forall i = 1, \dots, I, \forall j = 1, \dots, n_i.$$

(MRnonI): $Y_{ii} = a_i + bz_{ii} + \varepsilon_{ii}, \forall i = 1, \dots, I, \forall j = 1, \dots, n_i.$

Test statistics:

$$F = \frac{SSR_{nonI} - SSR/(I-1)}{SSR/(n-2I)} \underset{\mathcal{H}_0}{\sim} \mathcal{F}(I-1, n-2I)$$

Test of non-interaction between factor and covariate

Model with non-interaction

nonI<-lm(FinalWeight~InitWeight+Treatment) summary(nonI)

```
Call:
lm(formula = FinalWeight ~ InitWeight + Treatment)
Residuals:
   Min 10 Median 30 Max
-0.8438 -0.3154 -0.2171 0.4863 0.8871
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.25040 1.44308 1.559 0.141205
InitWeight 1.08318 0.04762 22.746 1.87e-12 ***
Treatment2 -0.03581 0.40723 -0.088 0.931169
Treatment3 1.89922 0.45802 4.147 0.000988 ***
Treatment4 1.35157 0.41937 3.223 0.006135 **
Treatment5 0.24446 0.57658 0.424 0.678022
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5492 on 14 degrees of freedom
Multiple R-squared: 0.9882, Adjusted R-squared: 0.984
F-statistic: 235 on 5 and 14 DF, p-value: 5.493e-13
```


With R:

anova(nonI.complet)

```
Analysis of Variance Table
```

```
Model 1: FinalWeight ~ InitWeight + Treatment
Model 2: FinalWeight ~ InitWeight * Treatment
Res.Df RSS Df Sum of Sq F Pr(>F)
14 4.2223
2 10 2.8340 4 1.3883 1.2247 0.3602
```

With Python:

```
nonIpy = ols('FinalWeight - InitWeight + Treatment', data=oysterpy).fit()
from statsmodels.stats.anova import anova_lm
anova_lm(nonIpy,completpy)
```

```
df_resid ssr df_diff ss_diff F Pr(>F)
0 14.0 4.22323 0.0 NaN NaN NaN
1 10.0 2.834009 4.0 1.388314 1.224691 0.360175
```

ANCOVA with non-interaction

- If the model with non-interaction between the factor and the covariate is retained
 - Singular model:

(MSnonl):
$$Y_{ij} = \mu + \alpha_i + \beta \ z_{ij} + \varepsilon_{ij}, \ \forall i = 1, \cdots, I, \ \forall j = 1, \cdots, n_i.$$

• Regular model:

(MRnon1):
$$Y_{ij} = a_i + b z_{ij} + \varepsilon_{ij}$$
, $\forall i = 1, \dots, I, \forall j = 1, \dots, n_i$.

 We may test the effect of the factor or the effect of the covariate on the response.

Effect of the covariate z on Y

- Fisher's test to compare
 - the model with non-interaction

(MSnonl):
$$Y_{ij} = \mu + \alpha_i + \beta z_{ij} + \varepsilon_{ij}, \forall i = 1, \dots, I, \forall j = 1, \dots, n_i$$

the one-way ANOVA

$$(MT): Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \forall i = 1, \dots, I, \forall j = 1, \dots, n_i.$$

Test statistics:

$$F = \frac{SSR_T - SSR_{nonl}/1}{SSR_{nonl}/(n - (l+1))} \underset{\mathcal{H}_0}{\sim} \mathcal{F}(1, n - (l+1))$$

Effect of the covariate z on Y


```
MT<-lm(FinalWeight~Treatment)
anova(MT.nonI)
Analysis of Variance Table
Model 1: FinalWeight ~ Treatment
Model 2: FinalWeight ~ InitWeight + Treatment
 Res.Df
           RSS Df Sum of Sq F Pr(>F)
    15 160.263
     14 4.222 1 156.04 517.38 1.867e-12 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MTpy = ols('FinalWeight ~ Treatment', data=oysterpy).fit()
anova_lm(MTpy,nonIpy)
  df_resid ssr df_diff ss_diff
                                                        Pr(>F)
      15.0 160.262500 0.0
                                    NaN
                                               NaN
                                                           NaN
      14.0 4.222323 1.0 156.040177 517.383995 1.867369e-12
```

Effect of the factor T on Y

- Fisher's test to compare
 - the model with non-interaction

(MSnonl):
$$Y_{ij} = \mu + \alpha_i + \beta z_{ij} + \varepsilon_{ij}, \forall i = 1, \dots, I, \forall j = 1, \dots, n_i$$

the linear regression

(Mz):
$$Y_{ij} = \mu + \beta z_{ij} + \varepsilon_{ij}, \forall i = 1, \dots, I, \forall j = 1, \dots, n_i$$

Test statistics:

$$F = \frac{SSR_z - SSR_{nonI}/(I-1)}{SSR_{nonI}/(n-(I+1))} \underset{\mathcal{H}_0}{\sim} \mathcal{F}(I-1, n-(I+1))$$

Effect of the factor T on Y

With R:

```
Mz<-lm(FinalWeight-InitWeight)
anova(Mz,nonI)

Analysis of Variance Table
```

```
Model 1: FinalWeight - InitWeight + Treatment
Res.Df RSS Df Sum of Sq F Pr(>F)
1 18 16.3117
2 14 4.2223 4 12.089 10.021 0.0004819 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

• With Python:

```
Mzpy = ols('FinalWeight ~ InitWeight', data=oysterpy).fit()
anova_lm(Mzpy,nonIpy)
```

```
df_resid ssr df_diff ss_diff F Pr(>F)
0 18.0 16.311683 0.0 NaN NaN NaN
1 14.0 4.222323 4.0 12.089359 10.021203 0.000482
```

Summary

Summary

- Know how to write an ANCOVA model (individually and matricially), regular and singular
- Know how to distinguish a regular model from a singular model
- Know how to estimate the parameters of the ANCOVA model in the regular case and in the singular case (by adapting to the chosen constraint(s))
- Know how to construct a confidence interval for a parameter of the ANCOVA model
- Know how to construct a test to test the effect of the factor, the interaction effect, ... and know how to organize these tests
- Know how to associate a graphic representation with a sub-model of ANCOVA

References I

- [1] Jean-Marc Azais and Jean-Marc Bardet. Le modèle linéaire par l'exemple-2e éd.: Régression, analyse de la variance et plans d'expérience illustrés avec R et SAS. Dunod, 2012.
- [2] Jean-Jacques Daudin. Le modèle linéaire et ses extensions-Modèle linéaire général, modèle linéaire généralisé, modèle mixte, plans d'expériences (Niveau C). 2015.
- [3] Jean-Jacques Droesbeke, Michel Lejeune, and Gilbert Saporta. Modèles statistiques pour données qualitatives. Editions Technip, 2005.
- [4] X Guyon. "Modele linéaire et économétrie". In: Ellipse, Paris (2001).
- [5] Bernard Prum. Modèle linéaire: Comparaison de groupes et régression. INSERM, 1996.
- [6] Nalini Ravishanker, Zhiyi Chi, and Dipak K Dey. A first course in linear model theory. CRC Press, 2021.
- [7] Alvin C Rencher and G Bruce Schaalje. *Linear models in statistics*. John Wiley & Sons, 2008.