Searching PAS

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-310455

(43) Date of publication of application: 09.11.1999

(51)Int.CI.

CO4B 35/46 CO4B 35/495 H01B 3/12 H01G HO1G H₀₁P HO1P H01P 11/00 H03H 7/075

(21)Application number: 10-360397

(71)Applicant: MURATA MFG CO LTD

(22)Date of filing:

18.12.1998

(72)Inventor: SUGIMOTO YASUTAKA

TAKAGI HIROSHI

(30)Priority

Priority number: 10 63978

Priority date: 27.02.1998

Priority country: JP

(54) DIELECTRIC PORCELAIN COMPOSITION AND CERAMIC ELECTRONIC PART USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a composition having high dielectric constant and Q value and temperature stability and capable of sintering at relatively low temperatures by mixing a BaO-TiO2-ReO3/2-Bi2O3-based first porcelain composition with a glass composition containing SiO2, B2O3, an alkaline earth oxide and Li2O at a specific ratio.

SOLUTION: A glass composition comprising 13-50 wt.% SiO2, 3-30 wt.% B2O3, 40-80 wt.% alkali earth oxide and 0.1-10 wt.% Li2O is used. Rare earth element (Re) can be used alone or in combination. A first porcelain composition preferably comprises xBaO−yTiO2−zReO3/2 [5≤x≤20, 52.5≤y≤70 and 15≤z≤42.5 (mol.%)] as a main component and Bi2O3 in an amount of 3-30 wt.% based on 100 pts.wt. main component. The content of the first porcelain composition is preferably 75-95 wt.% and the content of the glass composition is preferably 2-20 wt.%. Although CuO may be contained as a subsidiary component, the content is preferably ≤5 wt.%.

LEGAL STATUS

[Date of request for examination]

10.08.2000

[Date of sending the examiner's decision of rejection]

01.04.2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平11-310455

(43) 公開日 平成11年 (1999) 11月9日

(51) Int. Cl. 6		識別記号		FI			
C 0 4 B	35/46			C 0 4 B	35/46	D	
	35/495			H 0 1 B	3/12	3 0 3	
H01B	3/12	3 0 3		H 0 1 G	4/12	3 5 8	
H01G	4/12	3 5 8		H 0 1 P	1/203		
	4/40				1/205	В	
	審査請求	未請求 請求項の数9	OL			(全15頁)	最終頁に続く
(21) 出願番号	特願	· [平10-360397		(71) 出願人		231 社村田製作所	
(22) 出願日	ΣΖ π ί	210年 (1998) 12月18日				長岡京市天神二]	1月26番10号
(24) CINA CI	-11	(10		(72) 発明者			HOVEL 1
(31) 優先権主引	長番号 特魔	5 ₩10-63978		(, ,,			「目26番10号 株式
(32) 優先日		0 (1998) 2月27日			会社村	田製作所内	
(33) 優先権主引	長国 日本	(JP)		(72) 発明者	鷹木	洋	
					京都府	長岡京市天神二丁	「目26番10号 株式
					会社村	田製作所内	
				(74) 代理人	、弁理士	岡田 全啓	
	•						
					•		

(54) 【発明の名称】誘電体磁器組成物およびそれを用いたセラミック電子部品

(57) 【要約】

【課題】 誘電率やQ値が高く、また所望の温度安定性 を有し、しかも比較的低温で焼結可能な誘電体磁器組成 物を提供する。

【解決手段】 本発明にかかる誘電体磁器組成物は、B $aO-TiO_2-R_eO_{3/2}-BiO_3$ (但し、 R_e は 希土類元素) 系磁器組成物とガラス組成物との混合体か らなり、ガラス組成物は、13~50重量%のSiO2 と、3~30重量%のB2O3と、40~80重量%の アルカリ土類酸化物と、0.1~10重量%以下のLi 2 0とを含む。

【特許請求の範囲】

【請求項1】 $BaO-TiO_2-R_eO_{3/2}-Bi_2$ O₃ (但し、 R_e は希土類元素) 系第1磁器組成物とガラス組成物との混合体からなり、

1

前記ガラス組成物は、 $13\sim50$ 重量%のSiO₂と、 $3\sim30$ 重量%のB₂O₃と、 $40\sim80$ 重量%のアルカリ土類酸化物と、 $0.1\sim10$ 重量%のLi₂Oとを含む、誘電体磁器組成物。

【請求項2】 副成分として、CuOを含む、請求項1 に記載の誘電体磁器組成物。

【請求項3】 前記第1磁器組成物は、x BaO-y TiO₂-z ReO_{3/2} (但し、x, y, z はモル%であり、 $5 \le x \le 20$ 、52. $5 \le y \le 70$ 、 $15 \le z \le 42$. 5 x +y +z = 100) を主成分として、主成分100重量部に対し、 $3 \sim 30$ 重量%のBi₂O₃を含む、請求項1または請求項2に記載の誘電体磁器組成物。

【請求項4】 前記ガラス組成物に含まれるアルカリ土 類酸化物は、SrO、CaOおよびMgOの内から選ばれる少なくとも一種と、BaOとからなり、

かつこれらの比率は、SrOが35重量%以下、CaOが35重量%以下、MgOが20重量%以下、およびBaOが $40\sim95$ 重量%の範囲内にある、請求項1ないし請求項3のいずれかに記載の誘電体磁器組成物。

【請求項5】 前記各成分の混合比率は、前記第1磁器組成物が75~95重量%、前記ガラス組成物が2~20重量%、およびCuOが5重量%以下である、請求項1ないし請求項4のいずれかに記載の誘電体磁器組成物。

【請求項6】 前記ガラス組成物の前記L i_2 Oは0. $5\sim10$ 重量%の範囲内であり、

さらに、 TiO_2 、 $CaTiO_3$ 、 $SrTiO_3$ および Nd_2 Ti_2 O_7 の内から選ばれる少なくとも1種の第 2 磁器組成物を含む、請求項1ないし請求項4のいずれかに記載の誘電体磁器組成物。

【請求項7】 前記各成分の混合比率は、前記第1磁器組成物が50~98重量%、前記ガラス組成物が2~20重量%、前記第2磁器組成物が30重量%以下、およびCuOが3重量%以下である、請求項6に記載の誘電体磁器組成物。

【請求項8】 請求項1ないし請求項7のいずれかに記載の誘電体磁器組成物を用いた、セラミック電子部品。

【請求項9】 請求項1ないし請求項7のいずれかに記載の誘電体磁器組成物を用いてLC複合部品とした、セラミック電子部品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は誘電体磁器組成物お b, Dy, よびそれを用いたセラミック電子部品に関し、特にたと これらを通 えば、マイクロ波用共振器、フィルタ、積層コンデンサ 50 ができる。

等に用いられる誘電体や多層回路基板用セラミック素材 として用いられる誘電体磁器組成物およびそれを用いた セラミック電子部品に関する。

[0002]

【従来の技術】従来、マイクロ波用の共振器やフィルタ 等の電子部品の小型化を図るため、空胴共振器を高い誘 電率を有するセラミック誘電体に置き換える努力がなさ れてきた。これは誘電体の誘電率を ϵ とすると、誘電体 内部では電磁波の持つ波長が自由空間での波長の1/ε 10 1/2 に短縮される効果を利用し、共振器やフィルタ等の 小型化を図るものである。ところが、誘電体共振器とし て使用できる温度係数を持つセラミック誘電体材料の比 誘電率 ε はこれまでのところ100以下に限定されてい て、最近のさらなる小型化の要求には応えられなくなっ てきた。一方、セラミック誘電体材料の比誘電率 ε の値 の制約の下でこの要求に応えるために、従来よりマイク 口波回路で知られるLC共振器を用いる方法は有効であ り、積層コンデンサや多層基板などで実用化されている 積層工法をLC回路の構成に応用すれば、より一層の小 20 型化と高い信頼性を合わせもつ電子部品を作製すること ができる。

[0003]

【発明が解決しようとする課題】しかしながら、積層工法によってマイクロ波帯域で高いQ値を持つLC共振器を得るためには、積層コンデンサや多層回路基板に内蔵する内部電極の導電率が高いことが必要とされる。すなわち、誘電体や多層回路基板と同時焼成される内部電極には金、銀または銅などの導電率の高い金属材料を使用することが必要となる。このため、誘電体材料は、高誘電率、高Q値、高温度安定性に加えて融点の低い金属材料からなる内部電極と同時に焼成できる低温焼結材料であることが必要となるが、このような要求をすべて満たす誘電体材料は見出されていない。

【0004】それゆえに、本発明の主たる目的は、誘電率やQ値が高く、また所望の温度安定性を有し、しかも比較的低温で焼結可能な誘電体磁器組成物およびそれを用いたセラミック電子部品を提供することにある。

[0005]

【課題を解決するための手段】本発明にかかる誘電体磁 40 器組成物は、BaO-TiO2-ReO3/2-Bi2O3 (但し、Reは希土類元素)系第1磁器組成物とガラス組成物との混合体からなり、ガラス組成物は、13~50重量%のSiO2と、3~30重量%のB2O3と、40~80重量%のアルカリ土類酸化物と、0.1~10重量%のLi2Oとを含む、誘電体磁器組成物である。なお、希土類元素Reとしては、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,YbおよびLuがあり、これらを適宜、単独であるいは組み合わせて用いること ができる

【0006】また、本発明にかかる誘電体磁器組成物 は、副成分として、CuOを含んでもよい。

【0007】さらに、本発明にかかる誘電体磁器組成物 において、第1磁器組成物は、x BaO-y TiO2z R_e O_{3/2} (但し、x , y , z はモル%であり、5≦ $x \le 20$, 52. $5 \le y \le 70$, $15 \le z \le 42$. 5. x + y + z = 100) を主成分として、主成分100重 量部に対し、3~30重量%のBi₂O₃を含むことが 好ましい。

【0008】また、本発明にかかる誘電体磁器組成物に 10 おいて、ガラス組成物に含まれるアルカリ土類酸化物 は、SrO、CaOおよびMgOの内から選ばれる少な くとも一種と、BaOとからなり、かつこれらの比率 は、SrOが35重量%以下、CaOが35重量%以 下、MgOが20重量%以下、およびBaOが40~9 5重量%の範囲内にあることが好ましい。

【0009】さらに、本発明にかかる誘電体磁器組成物 において、各成分の混合比率は、第1磁器組成物が75 ~95重量%、ガラス組成物が2~20重量%、および CuOが5重量%以下であることが好ましい。

【0010】また、本発明にかかる誘電体磁器組成物 は、ガラス組成物のLi₂ Oを0. 5~10重量%の範 囲内にして、さらに、TiO₂、CaTiO₃、SrT i OsおよびNd2 Ti2 O7 の内から選ばれる少なく とも1種の第2磁器組成物を含んでもよい。その場合に おいて、各成分の混合比率は、第1磁器組成物が50~ 98重量%、ガラス組成物が2~20重量%、第2磁器 組成物が30重量%以下、およびCuOが3重量%以下 であることが好ましい。

【0011】また、本発明にかかるセラミック電子部品 は、本発明にかかる誘電体磁器組成物を用いた、セラミ ック電子部品である。さらに、本発明にかかるセラミッ ク電子部品は、本発明にかかる誘電体磁器組成物を用い てLC複合部品とした、セラミック電子部品である。

【0012】上述のように、BaO-TiO2-ReO 3/2 (Reは希土類元素) 系第1磁器組成物と、SiO 2 - B₂ O₃ - アルカリ土類酸化物 - L i O₂ 系ガラス 組成物との混合体で誘電体磁器組成物を構成すると、比 抵抗の小さい銀や金あるいは銅のいずれかを主成分とす る導体の融点より低い温度で焼結することができる。し 40 かも、髙周波域、特にマイクロ波、ミリ波領域において 比誘電率が高く、温度安定性に優れた誘電体磁器組成物 を得ることができる。また、磁器組成物とガラス組成物 との混合物に副成分としてCuOを添加すれば、さらに 焼結温度を下げることができ、Q値や誘電率を高くする ことができる。さらに、TiO2、CaTiO3、Sr TiO₃ は負の誘電率温度特性を有し、Nd₂ Ti₂ O 7 は正の誘電率温度特性を有するので、これらを適当な 量だけ添加することにより、得られる誘電体磁器組成物 ないしセラミック電子部品の誘電率の温度係数を所望の 50 15≤ z ≤42.5

値に調整することができる。したがって、このような誘 電体磁器組成物を用いることにより、金、銀、銅などの 比抵抗の小さい内部電極との同時焼成が可能となり、こ れらの内部電極を内蔵した髙周波特性に優れ、望ましい 誘電率の温度係数を持った誘電体や多層回路基板などを 得ることが可能となる。また、この誘電体磁器組成物を 用いれば、積層工法により高Q値をもつLC共振器やL Cフィルタ、積層コンデンサなどの電子部品をさらに小 型化することが可能になる。

【0013】次に、本発明の組成範囲が好ましいとする 理由について説明する。まず、ガラス組成物は、13重 量%以上50重量%以下のSiO2、3重量%以上30 重量%以下のB2 O3、40重量%以上80重量%以下 のアルカリ土類酸化物(BaO、SrO、CaO、Mg O)、0. 1重量%以上10重量%以下のLi₂Oから なる。これらの内、SiO2は、ガラス組成物全体の5 0 重量%を超えるとガラス組成物の軟化温度が高くなり すぎ、誘電体磁器組成物に添加したとき焼結しない。ま た、13重量%を下まわると耐湿性に問題が生じる。ま た、B2O3は、ガラス粘度を低下させる働きを有し、 誘電体磁器組成物の焼結を促す。しかし、30重量%を 超えると耐湿性に問題が生じる。また3重量%以下では 1000℃以下では焼結しない。

【0014】さらに、アルカリ土類酸化物は、磁器組成 物とガラス組成物との反応を促進させガラス組成物の軟 化点を下げる働きがある。しかし、ガラス組成物中のア ルカリ土類酸化物が40重量%を下回ると焼結性が下が り1000℃以下での焼結が困難になる。一方、80重 量%を上回ると耐湿性に問題が生ずる。また、アルカリ 土類酸化物中のBaO量が95重量%を上回ると耐湿性 に問題が生じ、40重量%を下回ると焼結性が困難とな る。さらに、SrO、CaO、MgOの内少なくとも1 つを5重量%含まなければ、耐湿性に問題が生ずる。ま た、Li2Oはガラスの軟化点を下げる働きをするが、 0. 1重量%未満では軟化点が高くなりすぎ焼結せず、 10重量%を上回ると耐湿性に問題が生じる。さらに、 TiO2, CaTiO3, SrTiO3, Nd2 Ti2 O₇ は、添加量が30重量%を超えると焼結性が悪くな るので、30重量%以下の範囲で添加される。

【0015】次に、主成分の組成範囲について説明す る。図1に示すものは、本発明に係る誘電体磁器組成物 に用いる磁器組成物の主成分であるBaO-TiO2-ReO3/2 系磁器組成物の組成範囲を表した組成図(B i₂O₃:10wt%外添加)である。このBaO-T iO₂ - R_e O_{3/2}系磁器組成物の組成比は、xBaO - y T i O₂ - z R_e O_{3/2} と表したとき、モル%で表 すx、y、zが、

 $5 \le x \le 20$

52. 5 ≤ y ≤ 70

x + y + z = 100

となる範囲であって、図1の斜線を施した領域内にあ る。図1に示すA領域にあっては焼結が困難となって、 通常焼結に必要な温度である1400℃になっても多孔 質の磁器しか得られなくなる。B領域にあっては温度特 性、すなわち多層回路基板の内部に形成されたキャパシ 夕の静電容量の温度変化率がマイナス側に大きくなりす ぎる。C領域においては比誘電率が小さくなりすぎると ともに、焼結性も不安定になる。また、D領域にあって ってくる。

5

【0016】また、本発明にかかる誘電体磁器組成物 は、Bi₂O₃を含む。Bi₂O₃を含有することによ って、より安定した特性を有する高周波誘電体磁器組成 物が得られ、焼結温度も低下する。しかし、Bi₂O₃ を30重量%を超えて添加するとQ値が下がってしま う。そこで、Bi₂O₃は、図1の斜線を施した組成範 囲内にあるBaO-TiO₂-ReO₃/2 系磁器組成物 に対し、3重量%以上、30重量%以下の範囲で添加す ることが好ましい。

【0017】また、ガラス組成物の添加量が2重量%を 下回ると焼結が困難になる。逆に20重量%を上回ると 耐湿性が低下し、比誘電率が低下する。

【0018】さらに、CuOも焼結助材として働くが、 5重量%を上回ると絶縁抵抗が下がり、Q値が低下し、

誘電率の温度係数が正側に大きくなりすぎる。

【0019】本発明の上述の目的、その他の目的、特徴 および利点は、図面を参照して行う以下の発明の実施の 形態の詳細な説明から一層明らかとなろう。

[0020]

【発明の実施の形態】 (実施例1) 最初に磁器組成物を 作製した。まず、BaOとTiO2とReO3/2 (Re は希土類元素)のモル比が表1の主成分の欄に示す組成 比となるようにBaCO3、TiO2、ReO3/2を秤 は温度変化率がプラス側に大きくなり、比誘電率も下が 10 量混合した。次に、 Bi_2O_3 の粉末を表1の副成分の 欄に示す組成比(主成分100重量部に対する重量比) となるように混合物中に添加し、十分に混合した後、1 150℃で1時間仮焼した。ついで、この仮焼物を粉砕 して混合した後、1300℃で焼成した。この焼成物を 再び粉砕して、表1に示すように第1磁器組成物として の高周波用磁器組成物S1~S25を作製した。つい で、S1~S25までの各磁器組成物の比誘電率、Q値 及び誘電率の温度係数(ppm/℃)を測定した。この 測定結果を表1に併せて示す。これらを以下に示す誘電 20 体磁器組成物の調整に用いた。なお、表1において、R eO_{3/2}の欄には、Reとして使用した希土類元素の元 素記号を示した。また、Bi₂O₃量は、主成分100 重量部に対する重量%である。

[0021]

【表1】

第1磁器組成	Ė	成分組成	え(モル比)	副成分	比誘電率	Q	誘電率の温 度係数
物 No.	Ba.O	TiO:	Re0 _{2/2}	Bi ₂ O ₂	E	at 1GHz	(ppm/ °C)
S I	13	61	Nd:26	15	105	4000	+35
S 2	15	70	Nd:15	15	· 9 5	2000	-60
S 3	20	55	Nd:25	15	90	2500	-80
S 4	5	70	Nd:25	15	75	3000	-50
S 5	5	55	Nd:40	15	64	2000	+40
Sß	20	60	Nd:20	15	110	3000	-90
S 7	10	75	Nd:15	15	82	2500	-100
S 8	2	65	Nd:33	15	60	2000	+30
S 9	10	50	Nd:40	10	57	2000	+60
S 1 0	13	61	Nd:26	0	65	3500	-10
S11	13	61	Nd:26	3	82	3800	-10
S 1 2	13	61	Nd:26	30	101	3000	+60
S 1 3	13	61	Nd:26	35	95	500	+80
S14	13	65	Nd:22	3	79	3000	-5
S 1 5	13	60	Nd:27	3	6 5	3200	+30
S 1 6	25	60	Nd:20	3	79	1800	-90
\$17	2	5	Nd:93	3	39	2000	+50
\$18	13	61	La:28	15	105	3000	0
S19	13	61	Pr:28	15	99	4000	-5
S 2 0	13	61	Sm:26	15	97	4500	+5
S 2 1	13	61	26 (La/Nd=0. 5/0. 5)	15	88	4000	0
S 2 2	13	61	26 (Pr/Nd=0. 25/0. 75)	15	99	4000	0
S 2 3	13	65	22 (Pr/Nd=0, 25/0, 75)	15	105	3000	-5
S 2 4	13	65	22 (Pr/Nd=0, 5/0, 5)	15	103	4000	+5
S 2 5	13	61	26 (Sm/Nd=0.5/0.5)	15	96	4500	+10
S 4 2	15	75	Nd:10	15	85	2000	-120

【0022】ガラス組成物に関しては、表2に示す組成比(重量比)になるように、BaO, SrO, CaO, MgO, B_2O_3 , SiO_2 , Li_2O をそれぞれ秤量し十分混合した後、1100 C \sim 1400 C o $label{label}$ の温度で溶融させ、水中投入して急冷後、湿式粉砕してガラス組成物 $G1\sim G30$ をそれぞれ作製した。なお、表2 におい

7

て、Rはアルカリ土類金属を示す。また、RO総量、B $_2$ O $_3$ 、S $_i$ O $_2$ 、L $_i$ $_2$ Oの量は、それぞれのガラス組成物中の重量%である。

[0023]

【表2】

成物 RO RO中の各成分の重量分 Ba0、Si0a Liaの RO No. 総量 Ba0、Sr0 Ca0 Mg0						r			
No. #8± BaO Sr0 CaO MgO MgO G 1 61 82 11 5 2 14 23 2 G 2 30 82 11 5 2 29 39 2 G 3 40 82 11 5 2 25 33 2 G 4 80 82 11 5 2 25 33 2 G 5 90 82 11 5 2 3 5 2 G 6 67 82 11 5 2 3 29 2 G 6 67 82 11 5 2 30 18 2 G 7 66 82 11 5 2 30 18 2 G 8 50 82 11 5 2 40 14 2 G 1 0 70 82 11 <td>ガラス組</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ガラス組								
G 1 61 82 11 5 2 14 23 2 G 2 30 82 11 5 2 29 39 2 G 3 40 82 11 5 2 25 33 2 G 4 80 82 11 5 2 5 13 2 G 5 90 82 11 5 2 3 5 2 G 6 67 82 11 5 2 1 30 2 G 7 66 82 11 5 2 30 18 2 G 8 50 82 11 5 2 30 18 2 G 9 44 82 11 5 2 40 14 2 G 1 0 70 82 11 5 2 17 13 2 G 1 1 68 82	成物	RO	RC	中の各成	分の重量	196	B ₂ O ₃	SiO ₂	Li 20
G 2 30 82 11 5 2 29 39 2 G 3 40 82 11 5 2 25 33 2 G 4 80 82 11 5 2 5 13 2 G 5 90 82 11 5 2 3 5 2 G 6 67 82 11 5 2 1 30 2 G 7 66 82 11 5 2 3 29 2 G 8 50 82 11 5 2 30 18 2 G 9 44 82 11 5 2 40 14 2 G 1 0 70 82 11 5 2 20 8 2 G 1 1 68 82 11 5 2 8 50 2 G 1 3 30 82	No.	総量	BaO	Sr0	Ca0	MgO			
G 3 40 82 11 5 2 25 33 2 G 4 80 82 11 5 2 5 13 2 G 5 90 82 11 5 2 3 5 2 G 6 67 82 11 5 2 1 30 2 G 7 66 82 11 5 2 3 29 2 G 8 50 82 11 5 2 30 18 2 G 9 44 82 11 5 2 40 14 2 G 1 0 70 82 11 5 2 20 8 2 G 1 1 68 82 11 5 2 17 13 2 G 1 2 40 82 11 5 2 8 60 2 G 1 3 30 82	G 1	61	82	11	5	2	14	23	2
G4 80 82 11 5 2 5 13 2 G5 90 82 11 5 2 3 5 2 G6 67 82 11 5 2 1 30 2 G7 66 82 11 5 2 3 29 2 G8 50 82 11 5 2 30 18 2 G9 44 82 11 5 2 40 14 2 G1 0 70 82 11 5 2 20 8 2 G1 68 82 11 5 2 17 13 2 G1 40 82 11 5 2 8 50 2 G1 4 63 82 11 5 2 14 23 0 1 G1	G 2	30	82	11	5	2	29	39	2
G 5 90 82 11 5 2 3 5 2 G 6 67 82 11 5 2 1 30 2 G 7 66 82 11 5 2 3 29 2 G 8 50 82 11 5 2 30 18 2 G 9 44 82 11 5 2 40 14 2 G 1 0 70 82 11 5 2 20 8 2 G 1 1 68 82 11 5 2 17 13 2 G 1 2 40 82 11 5 2 17 13 2 G 1 3 30 82 11 5 2 8 60 2 G 1 4 63 82 11 5 2 14 23 0.1 G 1 5 62.9 82	G 3	40	82	11	5	2	25	33	2
G 6 67 82 11 5 2 1 30 2 G 7 66 82 11 5 2 3 29 2 G 8 50 82 11 5 2 30 18 2 G 9 44 82 11 5 2 40 14 2 G 1 0 70 82 11 5 2 20 8 2 G 1 1 68 82 11 5 2 20 8 2 G 1 2 40 82 11 5 2 17 13 2 G 1 3 30 82 11 5 2 8 60 2 G 1 4 63 82 11 5 2 8 60 2 G 1 5 62.9 82 11 5 2 14 23 0.1 G 1 6 57	G 4	80	82	11	5	2	5	13	2
G 7 66 82 11 5 2 3 29 2 G 8 50 82 11 5 2 30 18 2 G 9 44 82 11 5 2 40 14 2 G 1 0 70 82 11 5 2 20 8 2 G 1 1 68 82 11 5 2 20 8 2 G 1 2 40 82 11 5 2 17 13 2 G 1 3 30 82 11 5 2 8 60 2 G 1 4 63 82 11 5 2 8 60 2 G 1 5 62.9 82 11 5 2 14 23 0.1 G 1 6 57 82 11 5 2 12 10 G 1 7 55 82	G 5	90	82	11	5	2	3	5	2
G 8 50 82 11 5 2 30 18 2 G 9 44 82 11 5 2 40 14 2 G 1 0 70 82 11 5 2 20 8 2 G 1 1 68 82 11 5 2 17 13 2 G 1 2 40 82 11 5 2 8 50 2 G 1 3 30 82 11 5 2 8 60 2 G 1 4 63 82 11 5 2 8 60 2 G 1 5 62.9 82 11 5 2 14 23 0 G 1 6 57 82 11 5 2 12 21 10 G 1 7 55 82 11 5 2 11 19 15 G 1 8 61	G 6	67	82	11	5	2	1	30	2
G 9 44 82 11 5 2 40 14 2 G 1 0 70 82 11 5 2 20 8 2 G 1 1 68 82 11 5 2 17 13 2 G 1 2 40 82 11 5 2 8 50 2 G 1 3 30 82 11 5 2 8 60 2 G 1 4 63 82 11 5 2 8 60 2 G 1 5 62.9 82 11 5 2 14 23 0 G 1 6 57 82 11 5 2 12 21 10 G 1 7 55 82 11 5 2 11 19 15 G 1 8 61 30 35 25 10 14 23 2 G 2 0 61	G 7	66	82	11	5	2	3	29	2
G 1 0 70 82 11 5 2 20 8 2 G 1 1 68 82 11 5 2 17 13 2 G 1 2 40 82 11 5 2 8 50 2 G 1 3 30 82 11 5 2 8 60 2 G 1 4 63 82 11 5 2 14 23 0 G 1 5 62.9 82 11 5 2 14 23 0.1 G 1 6 57 82 11 5 2 12 21 10 G 1 7 55 82 11 5 2 12 21 10 G 1 8 61 30 35 25 10 14 23 2 G 1 9 61 40 33 24 3 14 23 2 G 2 0 61 </td <td>G 8</td> <td>50</td> <td>82</td> <td>11</td> <td>5</td> <td>2</td> <td>30</td> <td>18</td> <td>2</td>	G 8	50	82	11	5	2	30	18	2
G 1 1 68 82 11 5 2 17 13 2 G 1 2 40 82 11 5 2 8 50 2 G 1 3 30 82 11 5 2 8 60 2 G 1 4 63 82 11 5 2 14 23 0 G 1 5 62.9 82 11 5 2 14 23 0 G 1 6 57 82 11 5 2 12 21 10 G 1 7 55 82 11 5 2 12 21 10 G 1 8 61 30 35 25 10 14 23 2 G 1 9 61 40 33 24 3 14 23 2 G 2 0 61 95 2 2 1 14 23 2 G 2 1 61 <td>G 9</td> <td>44</td> <td>82</td> <td>11</td> <td>5</td> <td>2</td> <td>40</td> <td>14</td> <td>2</td>	G 9	44	82	11	5	2	40	14	2
G 1 2 40 82 11 5 2 8 50 2 G 1 3 30 82 11 5 2 8 60 2 G 1 4 63 82 11 5 2 14 23 0 G 1 5 62.9 82 11 5 2 14 23 0.1 G 1 6 57 82 11 5 2 12 21 10 G 1 7 55 82 11 5 2 11 19 15 G 1 8 61 30 35 25 10 14 23 2 G 1 9 61 40 33 24 3 14 23 2 G 2 0 61 95 2 2 1 14 23 2 G 2 1 61 100 0 0 0 14 23 2 G 2 3 61 </td <td>G10</td> <td>70</td> <td>82</td> <td>11</td> <td>5</td> <td>2</td> <td>20</td> <td>8</td> <td>2</td>	G10	70	82	11	5	2	20	8	2
G 1 3 30 82 11 5 2 8 60 2 G 1 4 63 82 11 5 2 14 23 0 G 1 5 62.9 82 11 5 2 14 23 0.1 G 1 6 57 82 11 5 2 12 21 10 G 1 7 55 82 11 5 2 11 19 15 G 1 8 61 30 35 25 10 14 23 2 G 1 9 61 40 33 24 3 14 23 2 G 2 0 61 95 2 2 1 14 23 2 G 2 1 61 100 0 0 0 14 23 2 G 2 2 61 85 0 13 2 14 23 2 G 2 3 61<	G11	68	82	11	5	2	17	13	2
G 1 4 63 82 11 5 2 14 23 0 G 1 5 62.9 82 11 5 2 14 23 0.1 G 1 6 57 82 11 5 2 12 21 10 G 1 7 55 82 11 5 2 11 19 15 G 1 8 61 30 35 25 10 14 23 2 G 1 9 61 40 33 24 3 14 23 2 G 2 0 61 95 2 2 1 14 23 2 G 2 1 61 100 0 0 0 14 23 2 G 2 2 61 85 0 13 2 14 23 2 G 2 3 61 45 35 18 2 14 23 2 G 2 5 6	G12	40	82	11	5	2	8	50	2
G 1 5 62.9 82 11 5 2 14 23 0.1 G 1 6 57 82 11 5 2 12 21 10 G 1 7 55 82 11 5 2 11 19 15 G 1 8 61 30 35 25 10 14 23 2 G 1 9 61 40 33 24 3 14 23 2 G 2 0 61 95 2 2 1 14 23 2 G 2 1 61 100 0 0 0 14 23 2 G 2 2 61 85 0 13 2 14 23 2 G 2 3 61 45 35 18 2 14 23 2 G 2 4 61 40 45 13 2 14 23 2 G 2 5	G13	30	82	11	5	2	8	60	2
G 1 6 57 82 11 5 2 12 21 10 G 1 7 55 82 11 5 2 11 19 15 G 1 8 61 30 35 25 10 14 23 2 G 1 9 61 40 33 24 3 14 23 2 G 2 0 61 95 2 2 1 14 23 2 G 2 1 61 100 0 0 0 14 23 2 G 2 2 61 85 0 13 2 14 23 2 G 2 3 61 45 35 18 2 14 23 2 G 2 4 61 40 45 13 2 14 23 2 G 2 5 61 85 13 0 2 14 23 2 G 2 6 61 50 12 35 2 14 23 2 G 2 7	G14	63	82	11	5	2	14	23	0
G 1 7 55 82 11 5 2 11 19 15 G 1 8 61 30 35 25 10 14 23 2 G 1 9 61 40 33 24 3 14 23 2 G 2 0 61 95 2 2 1 14 23 2 G 2 1 61 100 0 0 0 14 23 2 G 2 2 61 85 0 13 2 14 23 2 G 2 3 61 45 35 18 2 14 23 2 G 2 4 61 40 45 13 2 14 23 2 G 2 5 61 85 13 0 2 14 23 2 G 2 6 61 50 12 35 2 14 23 2 G 2 7 61 40 13 45 2 14 23 2 G 2 8	G15	62. 9	82	11	5	2	14	23	0.1
G 1 8 61 30 35 25 10 14 23 2 G 1 9 61 40 33 24 3 14 23 2 G 2 0 61 95 2 2 1 14 23 2 G 2 1 61 100 0 0 0 14 23 2 G 2 2 61 85 0 13 2 14 23 2 G 2 3 61 45 35 18 2 14 23 2 G 2 4 61 40 45 13 2 14 23 2 G 2 5 61 85 13 0 2 14 23 2 G 2 6 61 50 12 35 2 14 23 2 G 2 7 61 40 13 45 2 14 23 2 G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 60 15 5 20 14 23 2	G16	57	82	11	5	2	12	21	10
G 1 9 61 40 33 24 3 14 23 2 G 2 0 61 95 2 2 1 14 23 2 G 2 1 61 100 0 0 0 14 23 2 G 2 2 61 85 0 13 2 14 23 2 G 2 3 61 45 35 18 2 14 23 2 G 2 4 61 40 45 13 2 14 23 2 G 2 5 61 85 13 0 2 14 23 2 G 2 6 61 50 12 35 2 14 23 2 G 2 7 61 40 13 45 2 14 23 2 G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 <td>G17</td> <td>55</td> <td>82</td> <td>11</td> <td>5</td> <td>2</td> <td>11</td> <td>19</td> <td>15</td>	G17	55	82	11	5	2	11	19	15
G 2 0 61 95 2 2 1 14 23 2 G 2 1 61 100 0 0 0 14 23 2 G 2 2 61 85 0 13 2 14 23 2 G 2 3 61 45 35 18 2 14 23 2 G 2 4 61 40 45 13 2 14 23 2 G 2 5 61 85 13 0 2 14 23 2 G 2 6 61 50 12 35 2 14 23 2 G 2 7 61 40 13 45 2 14 23 2 G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 60 15 5 20 14 23 2	G18	61	30	35	25	10	14	23	2
G 2 1 61 100 0 0 0 14 23 2 G 2 2 61 85 0 13 2 14 23 2 G 2 3 61 45 35 18 2 14 23 2 G 2 4 61 40 45 13 2 14 23 2 G 2 5 61 85 13 0 2 14 23 2 G 2 6 61 50 12 35 2 14 23 2 G 2 7 61 40 13 45 2 14 23 2 G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 60 15 5 20 14 23 2	G19	61	40	33	24	3	14	23	2
G 2 2 61 85 0 13 2 14 23 2 G 2 3 61 45 35 18 2 14 23 2 G 2 4 61 40 45 13 2 14 23 2 G 2 5 61 85 13 0 2 14 23 2 G 2 6 61 50 12 35 2 14 23 2 G 2 7 61 40 13 45 2 14 23 2 G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 60 15 5 20 14 23 2	G 2 0	61	95	2	2	1	14	23	2
G 2 3 61 45 35 18 2 14 23 2 G 2 4 61 40 45 13 2 14 23 2 G 2 5 61 85 13 0 2 14 23 2 G 2 6 61 50 12 35 2 14 23 2 G 2 7 61 40 13 45 2 14 23 2 G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 60 15 5 20 14 23 2	G 2 1	61	100	0	0	0	14	23	2
G 2 4 61 40 45 13 2 14 23 2 G 2 5 61 85 13 0 2 14 23 2 G 2 6 61 50 12 35 2 14 23 2 G 2 7 61 40 13 45 2 14 23 2 G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 60 15 5 20 14 23 2	G 2 2	61	85	0	13	2	14	23	2
G 2 5 61 85 13 0 2 14 23 2 G 2 6 61 50 12 35 2 14 23 2 G 2 7 61 40 13 45 2 14 23 2 G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 60 15 5 20 14 23 2	G 2 3	61	45	35	18	2	14	23	2
G 2 6 61 50 12 35 2 14 23 2 G 2 7 61 40 13 45 2 14 23 2 G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 60 15 5 20 14 23 2	G 2 4	61	40	45	13	2	14	23	2
G 2 7 61 40 13 45 2 14 23 2 G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 60 15 5 20 14 23 2	G 2 5	61	85	13	0	2	14	23	2
G 2 8 61 83 12 5 0 14 23 2 G 2 9 61 60 15 5 20 14 23 2	G 2 6	61	50	12	35	2	14	23	2
G 2 9 61 60 15 5 20 14 23 2	G 2 7	61	40	13	45	2	14	23	2
	G 2 8	61	83	12	5	0	14	23	2
G 3 0 61 55 15 5 25 14 23 2	G 2 9	61	60	15	5	20	14	23	2
	G 3 0	61	55	15	5	25	14	23	2

【0024】次に、磁器組成物 $S1\sim S25$ にそれぞれ表3および表4に示す組成比で $G1\sim G30$ のガラス組成物およびCuO粉末を加えて十分に混合して調合原料とした。さらにこの調合原料に対して適当量のバインダ、可塑材、溶剤を加え、混練してスラリーを得た。こうして得たスラリーをドクタープレード法により厚さ 50μ mのシート状に成形し、成形されたセラミックグリーンシートを縦30mm横10mmの大きさにカットして、0.5mmの厚さに圧着した。この後、大気中、950

00℃の温度で1時間焼成し、試料No. $1\sim67$ の板状の誘電体磁器組成物を得た。そして、これらの試料について、比誘電率、Q値、誘電率の温度係数(ppm/℃)の各特性について測定した。これらの結果を表3および表4に併せて示す。なお、表3および表4における各成分量は、それぞれの誘電体磁器組成物中の重量%である。また、比誘電率は1MHzで測定した。

[0025]

【表3】

1	n
-1	1.

	第1磁器 ガラ		7.7		烧成	比誘		誘電率の	12	
試料	組成		粗质		CuO	温度	電率	Q	温度保数	備 考
No	Na	1	No.	量	1	°C	ε	-	ppm/°C	
1	S1	88.5	G1	10	1.5	900	78	3700	-5	
2	\$2	88.5	G1	10	1.5	900	67	1900	-40	
3	\$3	88.5	G1	10	1.5	900	62	2000	-55	
4	S4	8 8. 5	G1	10	1.5	900	58	2500	-54	
5	S 5	88. 5	G1	10	1.5	900	52	1800	+10	
6	Se	88. 5	G1	10	1.5	900	82	2500	-110	
7	\$7	88.5	G1	10	1.5	900	58	1700	-130	
8	S8	88. 5	G1	10	1.5	900	40	1300	0	
9	S 9	88.5	G1	10	1.5	900	35	1000	+25	
* 10	S10	8 8. 5	G1	10	1.5	900	1	_	_	未烧結
11	\$11	88.5	G1	10	1.5	900	67	3000	-20	
12	S12	88.5	G1	10	1.5	900	82	1500	+25	
13	S13	8 8.5	G1	10	1.5	800	73	800	+40	
*14	SI	88.5	G2	10	1.5	900		_		未焼枯
15	S1	88.5	ෂ	10	1.5	800	69	3500	-15	
16	S1	88.5	G4	10	1.5	900	78	3000	-20	
*17	S1	88.5	G 5	10	1.5	900	80	2500	-30	耐湿不良
*18	S1	88.5	G6	10	1.5	900	_			未烧結
19	S1	88.5	G7	10	1.5	900	72	4000	-5	
20	S1	88.5	G8	10	1.5	800	76	2500	-10	
*21	S1	88. 5	G9	10	1.5	800	77	2400	-20	耐湿不良
*22	S1	88. 5	G10	10	1.5	900	81	2100	-20	耐湿不良
23	S1	88.5	G11	10	1.5	900	79	2700	-10	
24	S1	88.5	G12	10	1.5	800	75	3000	+5	
*25	S 1	88.5	G13	10	1.5	900				未烧結
*26	SI	88.5	G14	10	1.5	900				未烧結
27	SI	88.5	G15	10	1.5	800	73	3800	+10	
28	SI	88.5	G18	10	1.5	900	79	2800	-20	
*29	S1	88.5	G17	10	1.5	900	80	2000	-20	耐湿不良
30	S1	88.5	GI8	10	1.5	900	_		_	焼結不十分
31	S1	88.5	G19	10	1.5	900	69	3000	+15	<u> </u>
32	S1	88.5	G20	10	1.5	900	80	3200	-10	
33	S1	88.5	G21	10	1.5	900	81	3100	-5	耐湿性不十分
34	SI	88.5	G22	10	1.5	900	79	320	-5	
3 5	S1	88.5	G23	10	1.5	800	70	8000	+15	

		13								14
試料	第1	进器	ガラ	ス	CuO	烧成	比談		誘電率の	
	組成	物	組成	組成物		温度	電率	Q	温度保数	備 考
No.	No.	±	No	重	2	°C	ε		ppm/°C	
36	S1	88.5	G24	10	1.5	900				焼結不十分
37	S1	88.5	G25	10	1.5	900	77	3200	0	
38	S1	88.5	G26	10	1.5	900	68	2800	+20	
39	\$1	88. 5	G27	10	1.5	900		1		焼結不十分
40	S1	88.5	G28	10	1.5	900	79	3000	+5	
41	SI	88.5	G29	10	1.5	900	63	3300	0	
42	SI	88.5	G30	10	1.5	900	1			烧結不十分
43	S1	90.0	G1	10	C	900	63	2000	+15	
44	S1	8 9. 8	G1	10	0.2	900	72	3000	+5	
45	S1	87. 0	G1	10	3. 0	800	79	2400	-10	
46	SI	87.0	G1	10	5. 0	900	85	100	+210	
47	SI	97.0	G1	1.5	1.5	900	_	-		烧結不十分
48	S1	95.5	G1	2	2.5	900	82	3000	-50	
49	S1	78.5	G1	20	1.5	900	55	1200	+30	
50	S1	68.5	G1	30	1.5	900	43	500	+60	耐湿性不十分
51	S14	88.5	G1	10	1.5	900	52	2000	- 5	
52	S15	88.5	G1	10	1.5	900	46	2700	+85	
53	S16	88.5	G1	10	1.5	800	58	1500	-110	
54	S17	88.5	G1	10	1.5	900	25	1200	+45	
55	S18	88.5	G1	10	1.5	900	80	3000	-20	
56	S19	88.5	G1	10	1.5	900	77	3300	-15	
57	S20	88.5	G1	10	1.5	800	75	3500	+15	
58	S21	88.5	G1	10	1.5	900	78	3600	-10	<u></u>
59	S22	88. 5	G1	10	1.5	900	77	3400	-15	
60	\$23	88. 5	G1	10	1.5	900	82	3000	-10	
61	\$24	88. 5	G1	10	1.5	900	81	3000	-5	
62	\$25	88. 5	G1	10	1.5	800	76	3000	+5	
63	S1	90.0	G4	10	0	900	64	1300	-15	
64	S1	96.0	G7	4	0	900	-			焼結不十分
65	S1	87.5	G12	12	0.5	800	66	3000	-10	
66	\$1	87.0	G16	12	1.0	900	73	2000	-10	
67	SI	88.0	G4	12	0	900	65	1300	-20	
119	\$42	88.5	G1	10	1, 5	900	63	1000	-150	

*印は本発明の範囲外

【0027】試料No. 1~5、11~12、15、1 6, 19, 20, 23, 24, 27, 28, 31, 3 2, 34, 35, 37, 38, 40, 41, 43~4 $5, 48, 49, 51, 52, 55 \sim 63, 65 \sim 67$ に示すように、本発明の範囲内であってかつ好ましい組 成範囲内の誘電体磁器組成物は、焼成温度を900℃以 下にすることができ、また、比誘電率も高いものが得ら れ、誘電率の温度係数 (TCC:ppm/℃) の絶対値 50 十分とは耐湿性がやや低いものの特定条件下では十分に

も小さく、Q値も高くすることができた。また、試料N o. 43、63、67とそれ以外のものとの比較でわか るように、CuOを含有させた場合には、Q値や誘電率 を高めることができた。なお、表中において、未焼結と は焼結できないことを意味し、焼結不十分とは本実施例 の条件では焼結性が低かったがより適当な条件下では焼 結可能であることを意味する。さらに、耐湿性不良とは 耐湿性が不良で実用不可であることを意味し、耐湿性不

実用可能であることを意味する。

【0028】これに対して、試料No. 10、14、17、18、21、22、25、26、29に示すように、本発明の範囲外の誘電体磁器組成物では、焼結できなかったり、焼結できたとしても耐湿性が不良となった。

【0029】なお、副成分として含有するCuOは、上記実施例のように磁器組成物とガラス組成物との混合物にCuO粉末を加えて混合する方法以外に、あらかじめ表3および表4に示す割合となるようにCuOを混合したガラス組成物を作製しておき、それを表3および表4の割合となるよう高周波用磁器組成物に添加しても同様の効果が得られる。

【0030】(実施例2)次に、図2ないし図4を参照 しながら、本発明にかかるセラミック電子部品の一実施 例について説明する。この実施例では、セラミック電子 部品としてLCフィルタ10を製造した。まず、実施例 1の表3の試料No. 1に示す磁器組成物を用いて、ス ラリーを作製し、ドクタープレイドを用いたキャスティ ング法で40μm厚のセラミックグリーンシートを作製 20 した。乾燥後、これを打ち抜いて所定の大きさのセラミ ックグリーンシート12とした。次いで、これらセラミ ックグリーンシート12のそれぞれについて、図2に示 すようなコンデンサパターン14、コイルパターン16 などをAgペーストを用いてスクリーン印刷した。そし て、パンチャーによりバイアホール用の孔18を開け、 Agペーストを充填した。その後、これらのグリーンシ ートを積み重ねて圧着して積層体とした後、900℃で 焼成し、外部電極21,22,23および24を形成し

て、図3に斜視図を、図4に等価回路図を示すLCフィルタを得た。同様にして実施例1の表4の試料番号43に示す磁器組成物を用いてLCフィルタを製造した。以上のようにして、いずれの場合も、積層工法により、高誘電率、高Q値を持つLC複合部品を得ることができた。なお、同様にして、本発明にかかる誘電体磁器組成物を用いて他のLC複合部品その他のセラミック電子部品を製造することができる。

【0031】 (実施例3) 次に、本発明にかかる磁器組 成物の別の実施例を説明する。まず、BaOとTiO2 成分の欄に示す組成比となるようにBaCOョ、TiO 2、R_eO_{3/2} を秤量混合した。次に、Bi₂O₃ の粉 末を表5の副成分の欄に示す組成比(主成分100重量 部に対する重量比)となるように混合物中に添加し、十 分に混合した後、1150℃で1時間仮焼した。つい で、この仮焼物を粉砕して混合した後、1300~14 00℃で焼成した。この焼成物を再び粉砕して、表5に 示す第1磁器組成物としての高周波用磁器組成物S26 ~S41を作製した。ついで、S26~S41までの各 磁器組成物の比誘電率、Q値及び誘電率の温度係数(p pm/℃)を測定した。この測定結果を表5に併せて示 す。これらを以下に示す誘電体磁器組成物の調整に用い た。なお、表5において、Re O3/2の欄には、Re と して使用した希土類元素の元素記号を示した。また、B i₂ O₃ 量は、主成分100重量部に対する重量%であ る。

【0032】 【表5】

第1磁器組成	Ė	成分組成	え(モル比)	副成分 重量比	比誘 電率	Q	誘電率の温 度保数
物 No.	Ba0	TiO ₂	ReO./2	Bi 203	£	at 1GHz	(ppm/°C)
S 2 6	13	61	Nd:26	10	105	4000	+35
\$27	15	70	Nd:15	10	95	2000	-60
S 2 8	15	55	Nd:30	10	90	2500	-80
S 2 9	5	70	Nd:25	15	75	3000	-50
\$30	5	55	Nd: 40	10	64	2000	+40
S 3 1	20	60	Nd:20	10	110	3000	-80
\$32	10	75	Nd: 15	10	82	2500	-100
S 3 3	2	65	Nd:33	10	60	2000	+30
S 3 4	10	50	Nd:40	10	57	2000	+60
S 3 5	13	61	Nd:28	0	65	3500	+40
S 3 6	13	61	Nd:26	3	82	3800	+40
S 3 7	13	61	Nd:26	20	101	3000	-20
\$38	13	61	Nd:26	35	95	500	-80
S 3 9	13	61	Pr:26	10	99	4000	- 5
\$40	13	61	Sm:28	10	97	4500	+5
S 4 1	13	65	22 (Pr/Nd=0.5/0.5)	10	103	4000	+5

【0033】ガラス組成物に関しては、表6に示す組成 比 (重量比) になるように、BaO, SrO, CaO, MgO, B₂O₃, SiO₂, Li₂Oをそれぞれ秤量 30 ス組成物中の重量%である。 し十分混合した後、1100℃~1400℃の温度で溶 融させ、水中投入して急冷後、湿式粉砕してガラス組成 物G31~G44をそれぞれ作製した。なお、表6にお

いて、Rはアルカリ土類金属を示す。また、RO総量、 B_2 O_3 、S i O_2 、L i $_2$ O の量は、それぞれのガラ

[0034]

【表6】

ガラス組		アルカリ	土類酸(比物RO	. `			
成物	RO	RC)中の各層	及分の重量	£ %	B ₂ O ₃	SiO ₂	Li ₂ 0
No.	総量	Ba0	Sr0	CaO	MgO			
G 3 1	61	82	11	5	2	14	23	2
G 3 2	30	82	11	5	2	29	39	2
G 3 3	40	82	11	5	2	25	33	2
G 3 4	80	82	11	5	2	5	13	2
G 3 5	90	82	11	5	2	3	5	2
G 3 6	67	82	11	5	2	1	30	2
G 3 7	50	82	11	5	2	30	18	2
G 3 8	44	82	11	5	2	40	14	2
G 3 9	40	82	11	5	2	8	50	2
G 4 0	30	82	11	5	2	8	60	2
G 4 1	63	82	11	5	2	14	23	0
G 4 2	62.5	82	11	5	2	14	23	0.5
G 4 3	57	82	11	5	2	12	21	10
G 4 4	55	82	11	5	2	11	19	15

【0035】次に、磁器組成物S26~S41に、それぞれ表7および表8に示す組成比(重量比)でG31~G44のガラス組成物およびCuO粉末を加えて十分に混合した。さらに、この混合物に対して副成分(第2磁器組成物)として、表7および表8に示す重量比となるようにTiO $_2$ 、CaTiO $_3$ 、SrTiO $_3$ 、Nd $_2$ Ti $_2$ O $_7$ を加えて十分に混合して調合原料とした。さらにこの調合原料に対して適当量のバインダ、可塑材、溶剤を加え、混練してスラリーを得た。こうして得たスラリーをドクタープレード法により厚さ 50μ mのシート状に成形し、成形されたセラミックグリーンシートを

縦30mm横10mmの大きさにカットして、0.5mmの厚さに圧着した。この後、大気中、900℃以下の温度で1時間焼成し、試料No.68~118の板状の誘電体磁器組成物を得た。そして、これらの試料について、比誘電率、Q値、誘電率の温度係数(ppm/℃)の各特性について測定した。これらの結果を表7および表8に併せて示す。なお、表7および表8における各成30分量は、それぞれの誘電体磁器組成物中の重量%である。また、比誘電率は1MHzで測定した。

[0036]

【表7】

						(12)			22		
		21			,					Z	Z
試料	础		. ガ	ラス	副添加物	CuO	焼成	比誘		誘電率の温度	
No.	組	交物	趣	交物	器組成物	盘	温度	軍率	Q	係数	備考
nu	No	#	No	量	vt%		c	ε		ppm/C	
68	S26	99.0	G43 ,	0.5	TiO::0.1	0.4	900	-	_	_	挽結不 十分
69	S26	97.5	G43	2.0	TiO2:0.1	0.4	900	90	1500	+10	
70	S26	68. 5	G31	20	Ti0=:10	1.5	900	58	1200	-10	
71	S26	58.5	G31	30	TiO::10	1.5	900	47	500	+20	
72	S26	80.0	G31	10	TiO2:10	0	900	67	2000	-25	
73	\$26	77.0	G31	10	TiO::10	3.0	900	85	3500	-50	
74	\$26	75.0	G31	10	TiO::10	5.0	900	105	2000	-200	
75	S26	86.5	G31	10	Ti02: 2	1.5	900	79	3700	-15	
76	\$26	78.5	G31	10	TiO2:10	1.5	900	81	3800	-45	
77	\$26	58.5	G31	10	TiO::30	1.5	800	89	2800	-115	
78	S28	48.5	G31	10	TiO2:40	1.5	900	-	_	-	焼結不十分
79	S26	86.5	G31	10 -	CaTiO ₂ : 2	1.5	900	82	3300	-35	
80	\$26	58. 5	G31	10	CaTiO. :30	1.5	900	93	2300	-75	
81	\$26	48.5	G31	10	CaTiO ₃ :40	1.5	900	-	1	_	焼結不十分
82	S28	86.5	G 31	10	SrTiO. : 2	1.5	900	82	3200	-45	
83	\$28	58.5	G31	10	\$rTiO; :30	1.5	900	125	1800	-145	
84	S26	48.5	G31	10	SrTiO; :40	1.5	900	-		_	烧結不十分
85	\$26	78.5	G31	10	TiO ₂ +SrTiO ₃ :5+5	1.5	900	98	2500	-95	
86	S26	48.5	G31	10	TiO ₂ +SrTiO ₂ :20+20	1.5	900	_	_	-	焼結不十分
87	S26	83. 5	G31	10	Nd ₂ Ti ₂ O ₇ : 5	1.5	900	<i>7</i> 5	3200	+5	
88	\$26	78.5	C31	10	Nd.Ti.O. :10	1.5	900	73	2900	+15	
89	S26	58. 5	G31	10	Nd.Ti.O7 :30	1.5	900	ಟ	1800	+40	
90	S28	48.5	G31	10	Nd.Ti.07 :40	1.5	900	_	_	_	烧結不 十分
91	\$27	78.5	G31	10	T10::10	1.5	900	73	1700	-140	

92 | \$28

93

78.5 G31

78.5 G31

10

TiO::10

TiO::10

1.5

1.5

70

51

2000

2500

-150

-130

900

900

*印は本発明の範囲外

【0038】表7および表8に示すように、本発明の範 囲内の試料のうちNo. 69~77、79、80、8 $2, 83, 85, 87 \sim 89, 91 \sim 98, 100 \sim 1$ 05、107、108、111、113、116、11 40 たガラス組成物を作製しておき、それを表7および表8 7の誘電体磁器組成物は、焼成温度が900℃以下で、 比誘電率も高く、Q値も高くすることができた。また、 副成分としてのTiO2、CaTiO3、SrTi O₃ 、N d₂ T i₂ O₇ の種類と量を調整することによ り、誘電率の温度係数(TCC:ppm/℃)を所望の 値に調整することができた。

23

【0039】これに対して、試料No. 106、10 9、110、112、114、115、118は、表7 および表8の備考欄に示す理由で、本発明の範囲外の誘 電体磁器組成物となった。

【0040】なお、副成分として含有するCuOは、上 記実施例のように磁器組成物とガラス組成物との混合物 にCuO粉末を加えて混合する方法以外に、あらかじめ 表7および表8に示す割合となるようにCuOを混合し に示す割合となるよう高周波用磁器組成物に添加しても 同様の効果が得られることを確認した。

[0041]

【発明の効果】本発明の誘電体磁器組成物によれば、比 抵抗の小さい金、銀、銅のいずれかを主成分とする導体 の融点よりも低い温度で焼結することができる。しか も、高周波域、特にマイクロ波、ミリ波領域において比 誘電率(ε)が高く、誘電率ないし静電容量の温度安定 性に優れた誘電体磁器組成物を得ることができる。ま 50 た、第1磁器組成物とガラス組成物との混合物に副成分

25

としてCuOを添加すれば、さらに焼結温度を下げることができ、Q値や誘電率を高くすることができる。さらに、副成分として誘電率の負の温度特性を有する第2磁器組成物としての TiO_2 , $CaTiO_3$ 、 $SrTiO_3$ 、または正の温度特性を有する Nd_2 Ti_2 O_7 を含ませることにより、誘電体磁器組成物の誘電率の温度係数を所望の値に調整することができる。従って、このような誘電体磁器組成物を用いることにより、金、銀、銅などの比抵抗の低い内部電極と同時焼成が可能となり、これらの電極を内蔵化した高周波と特性に優れた誘電体や多層回路基板を得ることが可能になる。また、この誘

電体磁器組成物を用いれば、積層工法により高誘電率、 高Q値を持つLC共振器やLCフィルタ等の電子部品を さらに小型化することが可能になる。

【図面の簡単な説明】

【図1】 $BaO-TiO_2-R_eO_{3/2}$ (但し、 R_e は 希土類元素)系の磁器組成物の三元組成図である。

【図2】本発明にかかるセラミック電子部品の一実施例 としてのLCフィルタの分解斜視図である。

【図3】図2に示すLCフィルタの斜視図である。

【図4】図3に示すLCフィルタの等価回路図である。

【図1】

[図3]

【図4】

<u>10</u>

【図2】

フロントページの続き

(51) Int. Cl. 6		識別記号	FΙ		
	1/203		H 0 1 P	11/00	K
11011	1/205		H 0 3 H	7/075	Α
	11/00		C 0 4 B	35/00	J
H 0 3 H	7/075		H 0 1 G	4/40	3 2 1 A