中国科学技术大学微分几何期中考试 2019年11月9日

1. (20分) 设 $S: \vec{r} = \vec{r}(u,v) = (u,v,f(u,v))^T, (u,v) \in D$ 为 \mathbb{R}^3 中的光滑参数曲面。 其中, D 为 \mathbb{R}^2 上的的单连通区域。计算曲面 S 的 Gauss 曲率和平均曲率。

2. (20分) 考虑 \mathbb{R}^3 中的参数曲面 $S: \vec{r} = \vec{r}(u,v) = (u,v,f(u,v))^T, u,v \in (-\pi/2,\pi/2).$ 其中, $f(u, v) = \log \cos(u) - \log \cos(v)$.

- (i) 计算曲面 S 的第一基本形式和第二基本形式。
- (ii) 证明 S 是极小曲面。

3.~(15分) 设 $C: \vec{r}=\vec{r}(s), s\in [c,d]\subset (a,b)$ 为 \mathbb{R}^2 中的正则光滑曲线,其中 s 为弧长参 数。记 $\vec{t}(s)=\vec{r}'(s)$,并记 $\vec{n}(s)$ 为 \mathbb{R}^2 上由 $\vec{t}(s)$ 逆时针旋转 $\pi/2$ 得到的向量。我们知道:

$$\vec{t}'(s) = \kappa(s) \, \vec{n}(s).$$

其中, $\kappa(s)$ 为平面曲线 C 的曲率。如下定义函数 $\theta=\theta(s), s\in [c,d]$:

$$\theta(s) = \int_c^s \kappa(u) \, du.$$

试证: $\forall s_1, s_2 \in [c, d]$,

$$\begin{pmatrix} \vec{t}(s_2), \ \vec{n}(s_2) \end{pmatrix} = \begin{pmatrix} \vec{t}(s_1), \ \vec{n}(s_1) \end{pmatrix} \begin{pmatrix} \cos(\theta(s_2) - \theta(s_1)) & -\sin(\theta(s_2) - \theta(s_1)) \\ \sin(\theta(s_2) - \theta(s_1)) & \cos(\theta(s_2) - \theta(s_1)) \end{pmatrix}.$$

- 4. (15分) 设 $C: \vec{r}=\vec{r}(s), s\in (a,b)$ 为 \mathbb{R}^3 中的正则光滑曲线,其中 s 为弧长参数。记 $\kappa(s)$, $\tau(s)$ 为 C 的曲率和挠率。假定 C 落在某个半径为 R 的球面上并且 $\tau(s)$ 处处非零。 (i) 试证 $\kappa(s)$ 处处非零。(ii) 试证 $\frac{\kappa}{\tau}$ $\frac{1}{6}(\frac{1}{\kappa^2\tau}\frac{4\pi}{6s})$ 为常数, 并求出这个常数。
- 5. (30分) 给定 \mathbb{R}^3 中的正则光滑曲线 $C: \vec{\rho} = \vec{\rho}(u), u \in (u_0,u_1)$. 这里,u 为弧长参数。 记 $\kappa(u)$ 为曲线 C 的曲率。假定 $\forall u \in (u_0,u_1)$ 有 $0<\kappa(u)<1/a$,其中 a 是一个正实数。 记 $\vec{N} = \vec{N}(u)$ 和 $\vec{B} = \vec{B}(u)$ 为曲线 C 的主法向量和副法向量。考察参数曲面

$$S: \vec{r} = \vec{r}(u,v) = \vec{\rho}(u) + a\vec{N}(u)\cos v + a\vec{B}(u)\sin v, \quad u \in (u_0,u_1), v \in (0,2\pi).$$
 证明: S 为正则曲面

- i) 证明: S 为正则曲面
- ii) 判断 $ec{r}_u(u,v)$ 和 $ec{r}_v(u,v)$ 是否为 S 在点 $ec{r}(u,v)$ 处的主方向,并说明理由。
- iii, 写 6 为平面曲线时,来曲面 S 的主曲率、平均曲率,并判断该曲面是否为极小曲面。