Лекции по ДГМА

Павел Петров Семестр 4

1 Теория поверхностей

Определение 1. Отображение f области G плоскости на область \widetilde{G} трёхмерного пространства называется *гомеоморфным*, если f взаимно однозначно и непрерывно.

Определение 2. Множество Φ точек трёхмерного пространства называется элементарной поверхностью, если это множество является образом открытого круга G при гомеоморфном отображении f в пространство.

!
$$G = \{(x,y) \mid x^2 + y^2 < R^2\}$$
 - открытый круг.

Определение 3. Множество G точек плоскости называется элементарной областью, если это множество является образом открытого круга G при гомеоморфном отображении f на плоскость.

Определение 4. Окрестностью точки M множества Φ называется общая часть множества Φ и пространственной окрестности M.

Определение 5. Множество называется *связным*, если любые две его точки можно соединить непрерывной кривой, целиком состоящей из точек этого множества.

Определение 6. Множество точек пространства Φ называется *простой поверхностью*, это множество связно и любая точка этого множества имеет окрестность, являющейся элементарной поверхностью.

! Элементарная повехность является простой повехностью. Обратное неверно. Пример: сфера.

Определение 7. Отображение f простой поверхности G называется *покально-гомеоморфным*, если у каждой точки G есть окрестность, которая гомеоморфно отображается на свой образ.

Определение 8. Множество точек пространства Φ называется *общей поверхностью*, если оно является образом простой поверхности при локальногомеоморфном отображении.

Замечания к определению 8:

1. Окрестность точки общей поверхности - образ окрестности точки на простой поверхности.

2. Простая поверхность - это поверхность без самопересечений и без самоналяганий Общая поверхность может иметь их.

Определение 9. Поверхность Φ называется регулярной (k раз дифференцируемой), если при некотором $k \ge 1$ у каждой точки Φ есть окрестность, допускающая k раз дифференцируемую параметризацию.

То есть окрестность представляет собой гомеоморфное отображение некоторой элементарной области G в плоскость переменных (u, v) при помощи соотношений (1),

$$x = x(u, v) \quad y = y(u, v) \quad z = z(u, v) \tag{1}$$

являющимися k раз дифференцируемыми функциями в области G. Если k=1, то поверхность называется $\epsilon na\partial \kappa o\check{u}$.

- ! Будем говорить, что с помощью соотношений (1) в окрестности точки на поверхности вводится регулярная параметризация с помощью параметров u, v.
- ! Если вся поверхность Φ представляет отображение области G при помощи соотношений (1), то говорят, что на Φ введена единая параметризация.

Определение 10. Точка регулярной поверхности называется *обыкновенной*, если существует такая регулярная параметризация некоторой её окрестности, что в этой точке

$$rank \begin{pmatrix} x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{pmatrix} = 2 \tag{2}$$

Если это не так, то точка называется особой.

Определение 11. $f(u,v) \in C^k(G)$, если f(u,v) k раз дифференцируема и все её частные производные порядка k непрерывны в G.