

We can avoid Russell's paradox using simple types.

We can avoid Russell's paradox using simple types. Simple Types:

o Base type of propositions

We can avoid Russell's paradox using simple types. Simple Types:

- o Base type of propositions

We can avoid Russell's paradox using simple types. Simple Types:

- o Base type of propositions
- Δ Base type of individuals
- $(\alpha\beta)$ (or $(\beta \to \alpha)$) Type of functions from β to α

We can avoid Russell's paradox using simple types. Simple Types:

- o Base type of propositions
- Δ Base type of individuals
- $(\alpha\beta)$ (or $(\beta \to \alpha)$) Type of functions from β to α

One may include arbitrarily many base types $\iota^1, \ldots, \iota^n, \ldots$

We can avoid Russell's paradox using simple types. Simple Types:

- o Base type of propositions
- L Base type of individuals
- \bullet $(\alpha\beta)$ (or $(\beta \to \alpha)$) Type of functions from β to α

We often omit parenthesis in types. $(\alpha\beta\gamma)$ means $((\alpha\beta)\gamma)$

We can avoid Russell's paradox using simple types. Simple Types:

- o Base type of propositions
- $(\alpha\beta)$ (or $(\beta \to \alpha)$) Type of functions from β to α

We often omit parenthesis in types. $(\alpha\beta\gamma)$ means $((\alpha\beta)\gamma)$ Likewise $(\gamma \to \beta \to \alpha)$ means $(\gamma \to (\beta \to \alpha))$

We can avoid Russell's paradox using simple types. Simple Types:

- o Base type of propositions
- $(\alpha\beta)$ (or $(\beta \to \alpha)$) Type of functions from β to α

We often omit parenthesis in types. $(\alpha\beta\gamma)$ means $((\alpha\beta)\gamma)$ Likewise $(\gamma \to \beta \to \alpha)$ means $(\gamma \to (\beta \to \alpha))$ Note that the type $(\alpha\beta\gamma)$ (or $(\gamma \to \beta \to \alpha)$) is the type of a (Curried) function of two arguments which returns a value of type α .

■ Typed Variables x_{α}

- Typed Variables x_{α}
- Typed Constants and Parameters P_{α}

- Typed Variables x_α
- Typed Constants and Parameters P_{α}
- Application $[F_{\alpha\beta}B_{\beta}]_{\alpha}$ or $[F_{\beta\rightarrow\alpha}B_{\beta}]_{\alpha}$

- Typed Variables x_{α}
- Typed Constants and Parameters P_{α}
- Application $[F_{\alpha\beta}B_{\beta}]_{\alpha}$ or $[F_{\beta\to\alpha}B_{\beta}]_{\alpha}$
- λ -abstraction $[\lambda y_{\beta}. A_{\alpha}]_{\alpha\beta}$ or $[\lambda y_{\beta}. A_{\alpha}]_{\beta \to \alpha}$

- Typed Variables x_α
- Typed Constants and Parameters P_α
- Application $[F_{\alpha\beta}B_{\beta}]_{\alpha}$ or $[F_{\beta\rightarrow\alpha}B_{\beta}]_{\alpha}$
- λ -abstraction $[\lambda y_{\beta}. A_{\alpha}]_{\alpha\beta}$ or $[\lambda y_{\beta}. A_{\alpha}]_{\beta \to \alpha}$

Examples:

 $[\lambda x_{\alpha}, x_{\alpha}]$ term of type $(\alpha \alpha)$ – identity on type α

- Typed Variables x_α
- Typed Constants and Parameters P_α
- Application $[F_{\alpha\beta}B_{\beta}]_{\alpha}$ or $[F_{\beta\rightarrow\alpha}B_{\beta}]_{\alpha}$
- λ -abstraction $[\lambda y_{\beta}. A_{\alpha}]_{\alpha\beta}$ or $[\lambda y_{\beta}. A_{\alpha}]_{\beta \to \alpha}$

Examples:

- $[\lambda x_{\alpha}. x_{\alpha}]$ term of type $(\alpha \alpha)$ identity on type α
- $[\lambda y_{\beta}. x_{\alpha}]$ term of type $(\alpha \beta)$ constant x-valued function

Consider the untyped term

$$[\lambda x.x^2 - 1]$$

Consider the untyped term

$$[\lambda x.x^2 - 1]$$

This is shorthand for

$$[\lambda x. [MINUS [SQUARE x] 1]]$$

where MINUS, SQUARE and 1 are constants.

Consider the untyped term

$$[\lambda x.x^2 - 1]$$

This is shorthand for

$$[\lambda x. [MINUS [SQUARE x] 1]]$$

where MINUS, SQUARE and 1 are constants. Is there a corresponding typed term?

Consider the untyped term

$$[\lambda x.x^2 - 1]$$

This is shorthand for

$$[\lambda x. [MINUS [SQUARE x] 1]]$$

where MINUS, SQUARE and 1 are constants.

Is there a corresponding typed term?

Assume the type of individuals ι corresponds to real numbers.

Consider the untyped term

$$[\lambda x.x^2 - 1]$$

This is shorthand for

$$[\lambda x. [MINUS [SQUARE x] 1]]$$

where MINUS, SQUARE and 1 are constants.

Is there a corresponding typed term?

Assume the type of individuals ι corresponds to real numbers.

 \sim x and 1 should be real numbers (type ι)

Consider the untyped term

$$[\lambda x.x^2 - 1]$$

This is shorthand for

$$[\lambda x. [MINUS [SQUARE x] 1]]$$

where MINUS, SQUARE and 1 are constants.

Is there a corresponding typed term?

Assume the type of individuals ι corresponds to real numbers.

- \sim and 1 should be real numbers (type ι)
- **SQUARE** should take a real number to a real number (type $(\iota\iota)$)

Consider the untyped term

$$[\lambda x.x^2 - 1]$$

This is shorthand for

$$[\lambda x. [MINUS [SQUARE x] 1]]$$

where MINUS, SQUARE and 1 are constants.

Is there a corresponding typed term?

Assume the type of individuals ι corresponds to real numbers.

- \sim and 1 should be real numbers (type ι)
- **SQUARE** should take a real number to a real number (type $(\iota\iota)$)
- **MINUS** should take two real numbers to a real number (type $(\iota\iota\iota)$)

Consider the untyped term

$$[\lambda x.x^2 - 1]$$

This is shorthand for

$$[\lambda x. [MINUS [SQUARE x] 1]]$$

where MINUS, SQUARE and 1 are constants.

Is there a corresponding typed term?

Assume the type of individuals ι corresponds to real numbers.

Typed Term:

$$[\lambda x_{\iota}. [MINUS_{\iota\iota\iota} [SQUARE_{\iota\iota} x_{\iota}] 1_{\iota}]]$$

Consider the untyped term

$$[\lambda x.x^2 - 1]$$

This is shorthand for

$$[\lambda x. [MINUS [SQUARE x] 1]]$$

where MINUS, SQUARE and 1 are constants.

Is there a corresponding typed term?

Assume the type of individuals ι corresponds to real numbers.

Typed Term:

$$[\lambda \mathsf{x}_{\iota}. [\mathsf{MINUS}_{\iota\iota\iota} [\mathsf{SQUARE}_{\iota\iota} \, \mathsf{x}_{\iota}] \, 1_{\iota}]]$$

This term has type $(\iota\iota)$.

Consider the untyped term

$$[\lambda x. [x^2 - 1 = 0]]$$

Consider the untyped term

$$[\lambda x. [x^2 - 1 = 0]]$$

This is shorthand for

$$[\lambda x.[=[MINUS[SQUAREx]1]0]]$$

where =, MINUS, SQUARE, 0 and 1 are constants.

Consider the untyped term

$$[\lambda x. [x^2 - 1 = 0]]$$

This is shorthand for

$$[\lambda x.[=[MINUS[SQUAREx]1]0]]$$

where =, MINUS, SQUARE, 0 and 1 are constants.

Already know types of MINUS, SQUARE and 1.

Consider the untyped term

$$[\lambda x. [x^2 - 1 = 0]]$$

This is shorthand for

$$[\lambda x.[=[MINUS[SQUAREx]1]0]]$$

where =, MINUS, SQUARE, 0 and 1 are constants.

- Already know types of MINUS, SQUARE and 1.
- \bullet 0 should be a real number (type ι)

Consider the untyped term

$$[\lambda x. [x^2 - 1 = 0]]$$

This is shorthand for

$$[\lambda x.[=[MINUS[SQUAREx]1]0]]$$

where =, MINUS, SQUARE, 0 and 1 are constants.

- Already know types of MINUS, SQUARE and 1.
- = takes two real numbers and returns a truth value (type $(o\iota\iota)$)

Consider the untyped term

$$[\lambda x. [x^2 - 1 = 0]]$$

This is shorthand for

$$[\lambda x.[=[MINUS[SQUAREx]1]0]]$$

where =, MINUS, SQUARE, 0 and 1 are constants. Typed Term:

$$[\lambda x_{\iota}. [=_{o\iota\iota} [MINUS_{\iota\iota\iota} [SQUARE_{\iota\iota} x_{\iota}] 1_{\iota}] 0_{\iota}]$$

Consider the untyped term

$$[\lambda x. [x^2 - 1 = 0]]$$

This is shorthand for

$$[\lambda x.[=[MINUS[SQUAREx]1]0]]$$

where =, MINUS, SQUARE, 0 and 1 are constants. Typed Term:

$$[\lambda x_{\iota}. [=_{o\iota\iota} [MINUS_{\iota\iota\iota} [SQUARE_{\iota\iota} x_{\iota}] 1_{\iota}] 0_{\iota}]$$

This term has type $(o\iota)$.

Typed λ -Calculus: Assigning Types _

General algorithm for assigning types to terms (when this is possible) – see Hindley97.

Typed λ -Calculus: Assigning Types $_$

Typed λ -Calculus: Assigning Types $_$

$$C: \alpha \in \Gamma$$
 C variable, parameter or constant $\Gamma \vdash_{\mathsf{TA}} \mathsf{C}: \alpha$

Typed λ -Calculus: Assigning Types

$$\frac{\mathsf{C}:\alpha\in\Gamma\quad\mathsf{C}\;\mathsf{variable,\;parameter\;or\;constant}}{\Gamma\vdash_{\mathsf{TA}}\mathsf{C}:\alpha}\;\mathsf{Hyp}$$

$$\frac{\Gamma, \mathsf{y} : \beta \vdash_{\mathsf{TA}} \mathsf{A} : \alpha}{\Gamma \vdash_{\mathsf{TA}} [\lambda \mathsf{y} . \, \mathsf{A}] : \alpha \beta} \, \mathsf{Lam}$$

Typed λ -Calculus: Assigning Types

$$C: \alpha \in \Gamma$$
 C variable, parameter or constant $\Gamma \vdash_{\mathsf{TA}} \mathsf{C}: \alpha$

$$\frac{\Gamma, \mathsf{y} : \beta \vdash_{\mathsf{TA}} \mathsf{A} : \alpha}{\Gamma \vdash_{\mathsf{TA}} [\lambda \mathsf{y} . \mathsf{A}] : \alpha \beta} \mathsf{Lam}$$

$$\frac{\Gamma \vdash_{\mathsf{TA}} \mathsf{F} : \alpha\beta \quad \Gamma \vdash_{\mathsf{TA}} \mathsf{B} : \beta}{\Gamma \vdash_{\mathsf{TA}} [\mathsf{FB}] : \alpha} \mathsf{App}$$

Typed λ -Calculus: Assigning Types

The basis for such an algorithm is the following deduction system:

$$\frac{\mathsf{C}:\alpha\in\Gamma\quad\mathsf{C}\;\mathsf{variable,\;parameter\;or\;constant}}{\Gamma\vdash_{\mathsf{TA}}\mathsf{C}:\alpha}\;\mathsf{Hyp}$$

$$\frac{\Gamma, \mathsf{y} : \beta \vdash_{\mathsf{TA}} \mathsf{A} : \alpha}{\Gamma \vdash_{\mathsf{TA}} [\lambda \mathsf{y} . \mathsf{A}] : \alpha \beta} \, \mathsf{Lam} \qquad \qquad \frac{\Gamma \vdash_{\mathsf{TA}} \mathsf{F} : \alpha \beta \quad \Gamma \vdash_{\mathsf{TA}} \mathsf{B} : \beta}{\Gamma \vdash_{\mathsf{TA}} [\mathsf{F} \, \mathsf{B}] : \alpha} \, \mathsf{App}$$

We can assign the type α to a term A in context Γ whenever we can derive

$$\Gamma \vdash_{\mathsf{TA}} \mathsf{A} : \alpha$$

Untyped Term: $[\lambda x. [SQUARE x]]$

Goal: Find a type α such that

SQUARE : $(\iota\iota) \vdash_{\mathsf{TA}} [\lambda \mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \alpha$


```
Untyped Term: [\lambda x. [SQUARE x]]
```

Goal: Find a type α such that

```
\mathsf{SQUARE}: (\iota\iota) \vdash_{\mathsf{TA}} [\lambda \mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \alpha
```

```
\mathsf{SQUARE} : (\iota\iota) \vdash_{\mathsf{TA}} [\lambda \mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \alpha
```

```
472
10H
```

```
Untyped Term: [\lambda x. [SQUARE x]]
```

Goal: Find a type α such that

```
SQUARE : (\iota\iota) \vdash_{\mathsf{TA}} [\lambda \mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \alpha
```

 α is $(\gamma\beta)$

```
\frac{\mathsf{SQUARE}: (\iota\iota), \mathsf{x}: \beta \vdash_{\mathsf{TA}} [\mathsf{SQUARE}\,\mathsf{x}]: \gamma}{\mathsf{SQUARE}: (\iota\iota) \vdash_{\mathsf{TA}} [\lambda\mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]]: \gamma\beta} \,\mathsf{Lam}
```



```
Untyped Term: [\lambda x. [SQUARE x]]
```

Goal: Find a type α such that

```
SQUARE : (\iota\iota) \vdash_{\mathsf{TA}} [\lambda \mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \alpha
```

```
\frac{\mathsf{SQUARE}: (\iota\iota), \mathsf{x}: \beta \vdash_{\mathsf{TA}} \mathsf{SQUARE}: (\gamma\delta) \quad \mathsf{SQUARE}: (\iota\iota\iota), \mathsf{x}: \beta \vdash_{\mathsf{TA}} \mathsf{x}: \delta}{\mathsf{SQUARE}: (\iota\iota\iota), \mathsf{x}: \beta \vdash_{\mathsf{TA}} [\mathsf{SQUARE}x]: \gamma} \mathsf{Lam}} \, \mathsf{App}
\frac{\mathsf{SQUARE}: (\iota\iota) \vdash_{\mathsf{TA}} [\lambda\mathsf{x}. [\mathsf{SQUARE}x]]: \gamma}{\mathsf{SQUARE}: (\iota\iota\iota) \vdash_{\mathsf{TA}} [\lambda\mathsf{x}. [\mathsf{SQUARE}x]]: \gamma\beta} \, \mathsf{Lam}}
```



```
Untyped Term: [\lambda x. [SQUARE x]]
```

Goal: Find a type α such that

```
SQUARE : (\iota\iota) \vdash_{\mathsf{TA}} [\lambda \mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \alpha
```

 γ and δ are both ι

```
\frac{\overline{\mathsf{SQUARE} : (\iota\iota), \mathsf{x} : \beta \vdash_{\mathsf{TA}} \mathsf{SQUARE} : (\iota\iota)} \; \mathsf{Hyp}}{\underline{\mathsf{SQUARE} : (\iota\iota), \mathsf{x} : \beta \vdash_{\mathsf{TA}} \mathsf{x} : \iota}}{\underline{\mathsf{SQUARE} : (\iota\iota), \mathsf{x} : \beta \vdash_{\mathsf{TA}} [\mathsf{SQUARE} \mathsf{x}] : \iota}} \mathsf{Lam}} \mathsf{App}
```



```
Untyped Term: [\lambda \times . [SQUARE \times]]
```

Goal: Find a type α such that

```
SQUARE : (\iota\iota) \vdash_{\mathsf{TA}} [\lambda \mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \alpha
```

 β is ι

```
\frac{\overline{\mathsf{SQUARE}: (\iota\iota), \mathsf{x}: \iota \vdash_{\mathsf{TA}} \mathsf{SQUARE}: (\iota\iota)}}{\mathsf{SQUARE}: (\iota\iota), \mathsf{x}: \iota \vdash_{\mathsf{TA}} \mathsf{x}: \iota} \frac{\mathsf{Hyp}}{\mathsf{App}}
```

 $\frac{\mathsf{SQUARE} : (\iota\iota), \mathsf{x} : \iota \vdash_{\mathsf{TA}} [\mathsf{SQUARE}\,\mathsf{x}] : \iota}{\mathsf{SQUARE} : (\iota\iota) \vdash_{\mathsf{TA}} [\lambda\mathsf{x}.[\mathsf{SQUARE}\,\mathsf{x}]] : \iota\iota} \mathsf{Lam}$


```
Untyped Term: [\lambda \times . [SQUARE \times]]
          Goal: Find a type \alpha such that
          SQUARE: (\iota\iota) \vdash_{\mathsf{TA}} [\lambda \mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \alpha
          \beta is \iota
\frac{\overline{\mathsf{SQUARE}: (\iota\iota), \mathsf{x}: \iota \vdash_{\mathsf{TA}} \mathsf{SQUARE}: (\iota\iota)}}{\mathsf{SQUARE}: (\iota\iota), \mathsf{x}: \iota \vdash_{\mathsf{TA}} \mathsf{x}: \iota} \underbrace{\mathsf{Hyp}}_{\mathsf{App}}
                                          \frac{\mathsf{SQUARE} : (\iota\iota), \mathsf{x} : \iota \vdash_{\mathsf{TA}} [\mathsf{SQUARE}\,\mathsf{x}] : \iota}{\mathsf{SQUARE} : (\iota\iota) \vdash_{\mathsf{TA}} [\lambda\mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \iota\iota} \mathsf{Lam}
               So [\lambda x. [SQUARE x]] can be assigned the type (\iota \iota) in context
          SQUARE : (\iota\iota)
```

Corresponding Typed Term: $[\lambda x_{\iota}. [SQUARE_{\iota\iota} x_{\iota}]]$


```
Untyped Term: [\lambda \times . [SQUARE \times]]
          Goal: Find a type \alpha such that
          SQUARE: (\iota\iota) \vdash_{\mathsf{TA}} [\lambda \mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \alpha
          \beta is \iota
\frac{\overline{\mathsf{SQUARE}: (\iota\iota), \mathsf{x}: \iota \vdash_{\mathsf{TA}} \mathsf{SQUARE}: (\iota\iota)}}{\mathsf{SQUARE}: (\iota\iota), \mathsf{x}: \iota \vdash_{\mathsf{TA}} \mathsf{x}: \iota} \frac{\mathsf{Hyp}}{\mathsf{App}}
                                         \frac{\mathsf{SQUARE} : (\iota\iota), \mathsf{x} : \iota \vdash_{\mathsf{TA}} [\mathsf{SQUARE}\,\mathsf{x}] : \iota}{\mathsf{SQUARE} : (\iota\iota) \vdash_{\mathsf{TA}} [\lambda\mathsf{x}. [\mathsf{SQUARE}\,\mathsf{x}]] : \iota\iota} \mathsf{Lam}
               So [\lambda x. [SQUARE x]] can be assigned the type (\iota \iota) in context
          SQUARE : (\iota\iota)
```


Untyped Term: $[\lambda \times . \neg [\times \times]]$

Untyped Term: $[\lambda \times . \neg [\times \times]]$

```
\neg: (oo) \vdash_{\mathsf{TA}} [\lambda \mathsf{x}. \neg [\mathsf{x}\,\mathsf{x}]] : \alpha
```



```
Untyped Term: [\lambda x . \neg [xx]]
```

Goal: Find a type α such that $\neg : (oo) \vdash_{TA} [\lambda x. \neg [xx]] : \alpha$

 α is $(\gamma\beta)$

$$\frac{\neg:(oo), \mathbf{x}:\beta \vdash_{\mathsf{TA}} [\neg[\mathbf{x}\,\mathbf{x}]]:\gamma}{\neg:(oo) \vdash_{\mathsf{TA}} [\lambda\mathbf{x}.\neg[\mathbf{x}\,\mathbf{x}]]:\gamma\beta} \,\mathsf{Lam}$$

Untyped Term: $[\lambda \times . \neg [\times \times]]$

```
\frac{\neg:(oo), x:\beta \vdash_{\mathsf{TA}} \neg:(\gamma\delta) \qquad \neg:(oo), x:\beta \vdash_{\mathsf{TA}} [xx]:\delta}{\neg:(oo), x:\beta \vdash_{\mathsf{TA}} [\neg[xx]]:\gamma} \operatorname{App} \\ \frac{\neg:(oo), x:\beta \vdash_{\mathsf{TA}} [\neg[xx]]:\gamma}{\neg:(oo) \vdash_{\mathsf{TA}} [\lambda x. [\neg[xx]]:\gamma\beta} \operatorname{Lam}
```


Untyped Term: $[\lambda x . \neg [xx]]$

Goal: Find a type α such that $\neg : (oo) \vdash_{\mathsf{TA}} [\lambda x. \neg [xx]] : \alpha$

 γ and δ are both \circ

$$\frac{\neg : (oo), x : \beta \vdash_{\mathsf{TA}} \neg : (oo)}{\neg : (oo), x : \beta \vdash_{\mathsf{TA}} [xx] : o} \vdash_{\mathsf{TA}} [xx] : o} \vdash_{\mathsf{TA}} [oo), x : \beta \vdash_{\mathsf{TA}} [\neg [xx]] : o} \vdash_{\mathsf{TA}} [oo) \vdash_{\mathsf{TA}} [\lambda x. [\neg [xx]] : o\beta} \vdash_{\mathsf{TA}} [am]$$


```
Untyped Term: [\lambda \times . \neg [\times \times]]
```

```
\neg: (oo), x: \beta \vdash_{\mathsf{TA}} [xx]: o
```


Untyped Term: $[\lambda \times . \neg [\times \times]]$

```
\frac{\neg:(oo), x:\beta \vdash_{\mathsf{TA}} x:(o\epsilon) \qquad \neg:(oo), x:\beta \vdash_{\mathsf{TA}} x:\epsilon}{\neg:(oo), x:\beta \vdash_{\mathsf{TA}} [xx]:o} \mathsf{App}
```



```
Untyped Term: [\lambda x. \neg [xx]]
Goal: Find a type \alpha such that \neg : (oo) \vdash_{TA} [\lambda x. \neg [xx]] : \alpha
\beta is (o\epsilon)
```

$$\frac{\neg : (oo), x : (o\epsilon) \vdash_{\mathsf{TA}} x : (o\epsilon)}{\neg : (oo), x : (o\epsilon) \vdash_{\mathsf{TA}} x : \epsilon} \mathsf{App}$$

$$\neg : (oo), x : (o\epsilon) \vdash_{\mathsf{TA}} [xx] : o$$

Untyped Term: $[\lambda \times . \neg [\times \times]]$

Goal: Find a type α such that $\neg : (oo) \vdash_{TA} [\lambda x. \neg [xx]] : \alpha$

Only remaining subgoal:

$$\neg : (oo), x : (oe) \vdash_{\mathsf{TA}} x : e$$

Untyped Term: $[\lambda x . \neg [xx]]$

Goal: Find a type α such that $\neg : (oo) \vdash_{\mathsf{TA}} [\lambda x. \neg [xx]] : \alpha$

Only remaining subgoal:

$$\neg: (oo), x: (oe) \vdash_{\mathsf{TA}} x: e$$

This goal cannot be solved since (o_{ϵ}) cannot equal ϵ .

Untyped Term: $[\lambda \times . \neg [\times \times]]$

Goal: Find a type α such that $\neg : (oo) \vdash_{\mathsf{TA}} [\lambda x. \neg [xx]] : \alpha$

Only remaining subgoal:

$$\neg : (oo), x : (oe) \vdash_{\mathsf{TA}} x : e$$

This goal cannot be solved since (o_{ϵ}) cannot equal ϵ .

Hence $[\lambda x. [\neg [xx]]]$ cannot be typed – avoiding Russell's Paradox.

Typed λ -Calculus: $\beta\eta$ ___

 β -reduction:

$$[[\lambda \mathsf{y}_{\beta} \, . \, \mathsf{A}_{\alpha}] \; \mathsf{B}_{\beta}] \longrightarrow_{\beta} \mathsf{A}_{\alpha}[\mathsf{y}_{\beta}/\mathsf{B}_{\beta}]$$

Typed λ -Calculus: $\beta\eta$ _

 β -reduction:

$$[[\lambda \mathsf{y}_{\beta} \, . \, \mathsf{A}_{\alpha}] \; \mathsf{B}_{\beta}] \longrightarrow_{\beta} \mathsf{A}_{\alpha}[\mathsf{y}_{\beta}/\mathsf{B}_{\beta}]$$

 η -reduction:

$$[\lambda \mathsf{y}_{\beta}.\mathsf{F}_{\alpha\beta}\,\mathsf{y}_{\beta}] \longrightarrow_{\eta} \mathsf{F}_{\alpha\beta}$$

Typed λ -Calculus: $\beta\eta$ __

 β -reduction:

$$[[\lambda \mathsf{y}_{\beta} \, . \, \mathsf{A}_{\alpha}] \, \mathsf{B}_{\beta}] \longrightarrow_{\beta} \mathsf{A}_{\alpha}[\mathsf{y}_{\beta}/\mathsf{B}_{\beta}]$$

 η -reduction:

$$[\lambda \mathsf{y}_{\beta}.\mathsf{F}_{\alpha\beta}\,\mathsf{y}_{\beta}] \longrightarrow_{\eta} \mathsf{F}_{\alpha\beta}$$

Facts:

ullet $\beta\eta$ -normalization terminates for typed terms.

Typed λ -Calculus: $\beta\eta$ _

 β -reduction:

$$[[\lambda \mathsf{y}_{\beta} \, . \, \mathsf{A}_{\alpha}] \; \mathsf{B}_{\beta}] \longrightarrow_{\beta} \mathsf{A}_{\alpha}[\mathsf{y}_{\beta}/\mathsf{B}_{\beta}]$$

 η -reduction:

$$[\lambda \mathsf{y}_{\beta}.\mathsf{F}_{\alpha\beta}\,\mathsf{y}_{\beta}] \longrightarrow_{\eta} \mathsf{F}_{\alpha\beta}$$

Facts:

- $\beta\eta$ -normalization terminates for typed terms.
- Every typed term has a unique $\beta\eta$ -normal form.