

Earthquake Early Warning System

Presented by

Sumit Bhagat (16900323166)
Sourik Banerjee (16900323143)
Subhabrata Mondal (16900323152)
3rd Sem ECE

Problem Statement

- One of the central challenges contributing to the problem was low quality of monitoring and presence of pseudo values.
- Also the challenge stands in the affordability of sensing devices and a centralized network of the sensors located in different regions.
- The critical problem definition revolves around the need for a holistic and technologically empowered approach to enhance the efficiency and effectiveness of an early warning system for earthquakes.

Solution Overview

- Collection of data from a network of nodes containing an ESP32 and a MPU6050 digital accelerometer/gyroscope by detection of the p-wave.
- The esp32 will take the input and send the magnitude of the vibrations recorded to the main backend server.
- A dedicated progressive web application will cater the people and spread the information on the quake in case of the condition the safe threshold limit fails notified by backend and send a notification alert to all the connected users along with the location of the node location.
- Storing the data history for at least for 1 month to analyze the data for later events.

Block Diagram

Data transfer to ESP32 and calculation of magnitude

Passing on the calculated value to backend server

Saving the history of data for at least 1 month

Sending notification to all the users of incoming quake with the location and range of the certain ESP32 node

Calculation of risk and analyzing the probability

Circuit Diagram

https://github.com/sumit-bhagat-2004/Pookie_EEWS.git

Hardware Description

MPU6050 accelerometer/gyroscope:

- The MPU6050 combines a 3-axis accelerometer and a 3-axis gyroscope on a single chip. In the context of an earthquake warning system, the MPU6050 can be used to detect ground motion by measuring acceleration along X, Y, and Z axis.
- The MPU6050 uses the I2C communication protocol allows it to interface easily with ESP32.
- In an earthquake warning system, multiple MPU6050 sensors can be deployed across a region to form a network of monitoring stations.

• ESP32 Devkit:

- The ESP32 is a powerful and versatile microcontroller widely used in IoT applications due to its rich feature set and cost-effectiveness.
- he ESP32 features integrated Wi-Fi (802.11 b/g/n) with support for both station and access point modes.

Implementation Details

- Simulate and get the details of the X,Y & Z axis from the mpu6050 accelerometer and send it to esp32 through I2C protocol.
- ESP gets the data and performs the formula to get the magnitude of the vibrations or supposedly p- waves.
- It then sends the data to the server through websocket as it connects real time and stays connected.
- The flask backend receives the data over websockets and calculate the impact range and epicenter based on it.
- It stores it in MySQL database for future uses from frontend and sends formatted data to frontend via websockets
- Frontend connects to the websocket and receives the data from backend.

Implementation Details

- It parses the payload to get the epicenter longitude and latitude, magnitude and range.
- It uses service worker to send notification to the users enabled notifications for the progressive web app mentioning magnitude.
- It uses Google map api to locate and show the epicenter on the map.
- The view history button triggers the js function that fetches the data from servers api gateway of SQL table and displays it to the user.

Earthquake Notification System

Earthquake detected! Magnitude: 6.5, Location: Adisaptagram, West Bengal

© 2024 Earthquake Early Warning System

Conclusion

- Used the MPU6050 accelerometer to detect seismic vibrations with mcu ESP32 to process sensor data and communicate with the server using WebSocket protocol for real-time updates.
- Analyze sensor data on the ESP32 to identify high-magnitude P-waves.
- Minimize false alarms by distinguishing between normal vibrations and potential earthquakes.
- Frontend Develop using HTML and CSS for a responsive design that provides real-time updates and alerts and use JavaScript to enhance interactivity and real-time updates on the web app.
- Backend Implement with Flask to handle data processing and server-client communication and use Flask to process incoming data from ESP32 nodes and manage alert notifications.
- Store historical seismic data and user settings for customized alerts.
- Send real-time alerts when significant seismic activity is detected, with options for user customization.
- Deploy multiple ESP32 sensor nodes for wide geographic coverage.

Thank You!