

Uniformization of Principal Bundles

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology

Plan of talk:

- 1. Overview
- 2. Gluing
- 3. Generic Trivialization
- 4. Smoothness

Sources:

- Beauville–Laszlo, « Un lemme de descente \dots »
- Beauville–Laszlo, "Conformal Blocks..."
- Drinfeld–Simpson, "B-Structures..."
- Heinloth, "Uniformization..."

§1 Overview

k algebraically closed

G connected reductive algebraic group / k

X smooth projective curve / k

 $\mathcal{B}un$ moduli of (fppf) G-torsors over X

Weil observed $\mathcal{B}un(k) \simeq G(F_X) \backslash G(\mathbf{A}_X) / G(\mathbf{O}_X)$.

For $k = \bar{\mathbf{F}}_q$ and G simply-connected semisimple and $v \in X(k)$, strong approximation says

$$G(F_X)G(\hat{F}_v)$$
 is dense in $G(\mathbf{A}_X)$,

which implies the surjectivity of

$$G(\hat{F}_v)/G(\hat{\mathcal{O}}_v) \to \mathcal{B}un(k).$$

1

$$L_v G(R) := G(R \, \hat{\otimes} \, \hat{F}_v), \qquad L_v^+ G(R) := G(R \, \hat{\otimes} \, \hat{\mathcal{O}}_v)$$

Affine Grassmannian: $\mathcal{G}r_v := (L_v G/L_v^+ G)^{\sharp}$

Thm For simply-connected semisimple G, the map

$$\mathcal{G}r_v o \mathcal{B}un$$

is étale-surjective. (Also ind-smooth.)

Two steps:

- 1. Beauville–Laszlo: $\mathcal{G}r_v \simeq \mathcal{G}r_v^{glob}$ as functors.
- 2. Drinfeld–Simpson: $\mathcal{G}r_v^{glob} \to \mathcal{B}un$ is étale-surjective.

$$\Delta_{v,R} := \operatorname{Spec}(R \otimes \hat{\mathcal{O}}_v), \qquad \Delta_{v,R}^{\times} := \operatorname{Spec}(R \otimes \hat{F}_v)$$

$$\mathcal{G}r_v(R) = \left\{ (E, \alpha) \middle| \begin{array}{c} E \to \Delta_{v,R} \text{ is a G-torsor,} \\ \alpha \in \Gamma(\Delta_{v,R}^{\times}, E) \end{array} \right\}$$

On k-points, $gG(\hat{\mathcal{O}}_v) \leadsto (E, \alpha) = (G \times \Delta_v, g)$.

$$X_R := X \times \operatorname{Spec}(R), \qquad X_R^{\times} := (X - v) \times \operatorname{Spec}(R)$$

$$\mathcal{G}r_v^{glob}(R) := \left\{ (E, \alpha) \left| \begin{array}{c} E \to X_R \text{ is a G-torsor,} \\ \alpha \in \Gamma(X_R^{\times}, E) \end{array} \right. \right\}$$

$$\mathcal{G}r_v^{glob} \to \mathcal{G}r_v$$
 is restricting to Δ_v .
 $\mathcal{G}r_v^{glob} \to \mathcal{B}un$ is forgetting α .

§2 Gluing

Want to show $\mathcal{G}r_v^{glob} \to \mathcal{G}r_v$ is an isomorphism.

Intuitively, if $(E, \alpha) \in \mathcal{G}r_v(R)$, then we use α to glue E to the trivial torsor on X_R^{\times} .

That is, descent along:

$$(*) X_R^{\times} \sqcup \Delta_{v,R} \to X_R$$

Objections:

- 1. If R is not noetherian, then $\Delta_{v,R} \to X_R$ may not be flat,* so (*) may not be fpqc.
- 2. Not clear that a gluing map over $\Delta_{v,R}^{\times}$ provides a descent datum for (**).

A 2010 solution by Heinloth:

- 1. $\mathcal{G}r_v$ and $\mathcal{G}r_v^{glob}$ being of ind-finite type, they are determined by their restrictions to noetherian R.
- 2. Descent datum for (*) is an element of

$$G(X_R^\times) \times G(\Delta_{v,R}^\times) \times G(\Delta_{v,R}^\times) \times G(\Delta_{v,R} \times_{X_R} \Delta_{v,R})$$

satisfying a cocycle condition.

Show that $\Delta_{v,R} \times_{X_R} \Delta_{v,R}$ is the pushout of $\Delta_{v,R}$ along the diagonal $\Delta_{v,R}^{\times} \to \Delta_{v,R}^{\times} \times_{X_R} \Delta_{v,R}^{\times}$.

$$\begin{split} g \in G(\Delta_{v,R}^{\times}) \leadsto g^{-1} \boxtimes g \in G(\Delta_{v,R}^{\times} \times_{X_R} \Delta_{v,R}^{\times}) \\ \leadsto g^{-1} \boxtimes g \in G(\Delta_{v,R} \times_{X_R} \Delta_{v,R}) \end{split}$$

The datum is $(1, g, g^{-1}, g^{-1} \boxtimes g)$.

^{*} Stacks Project Tag OAL8

The 1995 solution by Beauville–Laszlo:

Reduce to
$$G = \operatorname{GL}_n$$
. Replace $X_R^{\times} \sqcup \Delta_{v,R} \to X_R$ with $\operatorname{Spec}(A[\frac{1}{t}]) \sqcup \operatorname{Spec}(\hat{A}) \to \operatorname{Spec}(A)$

where $t \in A$ is a non-zerodivisor and $\hat{A} = \lim_n A/(t^n)$.

Thm (BL) Fix
$$M' \in \operatorname{Mod}(A[\frac{1}{t}])$$
, $M'' \in \operatorname{Mod}(\hat{A})$,
$$\varphi : M' \otimes_A \hat{A} \xrightarrow{\sim} M'' \otimes_A A[\frac{1}{t}].$$

If M'' has no t-torsion, then there exist $N \in \operatorname{Mod}(A)$, $\psi' : N \otimes_A A[\frac{1}{4}] \xrightarrow{\sim} M'$, $\psi'' : N \otimes_A \hat{A} \xrightarrow{\sim} M''$

all essentially unique, such that φ results from $\psi',\psi''.$ No noetherian hypotheses.

Proof of existence Let N be the kernel of:

 $(\star\star)$ $0 \to N \to M' \to (M'' \begin{bmatrix} \frac{1}{7} \end{bmatrix})/M'' \to 0$

(*)
$$M' \to M' \otimes \hat{A} \xrightarrow{\varphi} M''[\frac{1}{t}] \to (M''[\frac{1}{t}])/M''.$$

Tensoring up to $A[\frac{1}{t}] \times \hat{A}$ shows (*) is surjective, so

is exact.

Tensoring
$$(\star\star)$$
 up to $A[\frac{1}{t}]$, resp. \hat{A} , gives ψ' , resp. ψ'' .

Hard part is ψ'' because $A\to \hat{A}$ may not be flat. But
$$\operatorname{Tor}_1^A(\hat{A},(M''[\frac{1}{t}])/M'') = \varinjlim_n \operatorname{Tor}_1^A(\hat{A},(\frac{1}{t^n}M'')/M'')$$

vanishes, using injectivity of $M'' \xrightarrow{t^n} M''$.

§3 Generic Trivializations

Want to show $\mathcal{G}r_v^{glob} \to \mathcal{B}un$ is étale-surjective.

Fix a Borel $B\subseteq G$. A B-reduction of a G-torsor E is an isomorphism

$$(F \times G)/B \xrightarrow{\sim} E,$$

where F is a B-torsor and $(f,g) \cdot b = (fb,b^{-1}g)$.

Thm (DS) For any G-torsor $E \to X_R$, there is an étale map $R \to R'$ such that $E|_{X_{R'}}$ has a B-reduction.

Thm (DS) Take G simply-connected semisimple. For any $v \in X(R)$ and G-torsor $E \to X_R$, there is an

For any $v \in X(R)$ and G-torsor $E \to X_R$, there is an étale map $R \to R'$ such that $E|_{X_{R'}-v_{R'}}$ trivializes.

Lem A B-reduction of $E \to Y$ is equivalent to a section of the associated bundle

$$E/B := (E \times G/B)/G.$$

Explicitly, if s is such a section, then $F \to Y$ defined by the fiber product

$$F \xrightarrow{\tilde{s}} E$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y \xrightarrow{s} E/E$$

is the B-torsor.

The map $(F \times G)/B \xrightarrow{\sim} E$ sends $[f,g] \mapsto \tilde{s}(f)g$.

5

Thm A For any *G*-torsor $E \to X_R$, there is an étale map $R \to R'$ such that $E|_{X_{R'}}$ has a *B*-reduction.

Proof Fix R and $E \to X_R$. For any R-algebra R', let $S_{R,E}(R') = \Gamma(X_{R'}, (E/B)|_{X_{R'}}).$

Want to trivialize $p: \mathcal{S}_{R,E} \to \operatorname{Spec}(R)$ étale-locally. Let $\mathcal{S}_{R,E}^{\circ} \subseteq \mathcal{S}_{R,E}$ be the locus where p is smooth. Suffices to show $p|_{\mathcal{S}_{R-E}^{\circ}}$ is surjective.

- 1. Check that p is surjective on k-points.
- 2. For any $x \in \operatorname{Spec}(R)(k)$, give $y \in p^{-1}(x)$ such that

$$s_y \in \Gamma(x^*(X_R), x^*(E/B)) = \Gamma(X, (x^*E)/B)$$
 satisfies $\mathrm{H}^1(X, s_x^*T_{(x^*E)/B \to X}) = 0$.

Claim (1) Equivalent to R = k case of **Thm A**, with R' = k as well.

Take a G-torsor over X. By Steinberg, it trivializes at the generic point η , hence over a dense open $U \subseteq X$.

Pick a section over U. Since G/B is proper, the valuative criterion says it extends to a section over X.

Rem The proof above generalizes to smooth affine algebraic $\mathcal{G} \to X$ with \mathcal{G}_{η} connected reductive. See Lurie's Math 282y S14 notes.

Rem We can prove Steinberg's theorem using the regular centralizer scheme over $\mathfrak{g} /\!\!/ G$. See Gaitsgory's 2009 seminar notes.

Claim (2) Suppose we have

$$E \in \mathcal{B}un(R)$$
 $x \in \operatorname{Spec}(R)(k)$ $y \in \mathcal{S}_{R,E}(k)$ lifting x $s_y \in \Gamma(X, (x^*E)/B)$ defined by y

The relative tangent bundle $T_{(x^*E)/B\to X}$ is a vector bundle on $(x^*E)/B$.

$$\mathrm{H}^1(X, s_y^* T_{(x^*E)/B \to X})$$
 controls deformations of s_y :

$$\mathrm{H}^1(X, s_y^* T_{(x^*E)/B \to X}) = 0 \iff y \in \mathcal{S}_{R,E}^{\circ}(k).$$

For fixed x, must modify y such that LHS holds.

Now we can forget R.

$$E_{\circ} = X \times G, \qquad E_{\bullet} = x^* E.$$

Start with any y and set $s = s_y \in \Gamma(X, E_{\bullet}/B)$.

Since the *B*-reduction s^*E_{\bullet} is generically trivial, can find a dense open $U\subseteq X$ and an isomorphism

$$\beta: (E_{\circ}/B)|_{U} \xrightarrow{\sim} (E_{\bullet}/B)|_{U}$$

such that $\beta \circ \mathbf{1}|_U = s|_U$, where **1** is the zero section.

Lem There exist $E_{\circ}/B \stackrel{\phi}{\leftarrow} M \stackrel{\beta}{\rightarrow} E_{\bullet}/B$ and a divisor D supported on X-U such that:

- 1. ϕ restricts to an isomorphism $(E_{\circ}/B)|_{U} \stackrel{\sim}{\leftarrow} M|_{U}$.
- 2. If $\sigma \in \Gamma(X, E_{\circ}/B)$ satisfies $\sigma|_{D} = \mathbf{1}|_{D}$, then $\sigma = \phi \circ \tilde{\sigma}$ for some unique lift $\tilde{\sigma} \in \Gamma(X, M)$.
- 3. $T_{M\to X} \simeq \phi^* T_{E_{\circ}/B\to X}(-D)$.
- 4. β factors through $\tilde{\beta}$.

M is the dilitation of E_{\circ}/B along $(\mathbf{1}, D)$.

If $D = \emptyset$, then set $M_{\emptyset} = E_{\circ}/B$ and $\mathbf{1}_{\emptyset} = \mathbf{1}$.

If D = [p] + D', then lift $\mathbf{1}_{D'}$ to $\mathbf{1}_D \in \Gamma(M_{D'})$ and set

$$M_D = \operatorname{Blowup}_{\mathbf{1}_D(p)}(M_{D'}) - \operatorname{Blowup}_{\mathbf{1}_D(p)}(M_{D',p}).$$

The map $M = M_D \to X$ remains smooth.

Pick $\sigma \in \Gamma(X, E_{\circ}/B)$ as in the lemma.

$$\mathrm{By}\;(3),\ \ \, \mathrm{H}^1(\tilde{\sigma}^*T_{M\to X})\simeq \mathrm{H}^1({\color{blue}\sigma^*T_{E_{\circ}/B\to X}(-D)}).$$

$$\mathrm{By}\ (4),\quad \mathrm{H}^1(\tilde{\sigma}^*T_{M\to X})\twoheadrightarrow \mathrm{H}^1(\tilde{\sigma}^*\tilde{\beta}^*T_{E_{\bullet}/B\to X}).$$

(Use the fact that
$$(\tilde{\sigma}^*T_{M\to X})|_U \simeq (\tilde{\beta}^*T_{E_{\bullet}/B\to X})|_U$$
.)

Remains to pick σ so that $\mathrm{H}^1(\sigma^*T_{E_{\circ}/B\to X}(-D))=0$. Then $\tilde{s}=\tilde{\beta}\circ\tilde{\sigma}\in\Gamma(X,E_{\bullet}/B)$ is our modification of s. The section $\sigma \in \Gamma(X, E_{\circ}/B)$ is equivalent to a map $g: X \to G/B$.

Lem For any divisor $D \subseteq X$, there is $g: X \to G/B$ such that g(p) = B for all $p \in D$ and

$$H^1(X, g^*T_{G/B}(-D)) = 0.$$

Proof sketch Let $T \subseteq B$ be a maximal torus.

Let $deg(g) \in X_*(T) = Hom(X^*(T), \mathbf{Z})$ be the map

$$X^*(T) = \operatorname{Pic}(pt/B) \xrightarrow{L} \operatorname{Pic}(G/B) \xrightarrow{g^*} \operatorname{Pic}(X) \xrightarrow{\operatorname{deg}} \mathbf{Z}.$$

Via filtering, reduce from $T_{G/B}$ to $L(\lambda)$ with $\lambda \in \Phi_-$.

Reduce to finding g_n such that $\langle \deg(g_n), \lambda \rangle > n$ for all n and $\lambda \in \Phi_-$.

Via a branched cover, reduce to $X = \mathbf{P}^1$ and n = 0.

Thm B Take G simply-connected semisimple.

For any $v \in X(R)$ and G-torsor $E \to X_R$, there is an étale map $R \to R'$ such that $E|_{X_{R'}-v_{R'}}$ trivializes.

Etale-locally over Spec(R), pick a B-reduction F.

Let F' be the extension of F along $B \twoheadrightarrow T \hookrightarrow B$.

Write $B = T \ltimes U$. As $X_R - v$ is affine and U is filtered by copies of \mathbf{G}_a , we can show $F'|_{X_R - v} \simeq F|_{X_R - v}$.

So we can assume F has a T-reduction.

Since T is commutative, T-torsors form a group stack. Suppose that $\check{\lambda} \in \mathcal{X}_*(T)$ and two T-torsors differ by the $\check{\lambda}$ -extension of some \mathbf{G}_m -torsor.

Suffices to show that the associated G-torsors must be isomorphic étale-locally on $\operatorname{Spec}(R)$.

Since G is simply-connected, it suffices to assume λ^{\vee} is a simple coroot $\check{\alpha}.$

So it suffices to take G generated by T and $r_{\check{\alpha}}(\mathrm{SL}_2)$.

Such a group is the product of SL_2 or GL_2 with some smaller torus.

"In the first case it suffices to show that the restriction [to $X_R - v$] of an SL_2 -bundle on X is trivial locally [over R]. In the second case it is enough to show that that the restriction... of two GL_2 -bundles on X with the same determinant are isomorphic locally..."

In fact, Beauville–Laszlo did the SL_n case by induction on n, and the GL_2 case is similar.

Key Idea A high-enough twist at v of the associated vector bundle can be split locally over $\mathrm{Spec}(R)$.

§4 Smoothness

Thm The map $\mathcal{G}r_v^{glob} \to \mathcal{B}un$ is (formally) smooth.

That is: Suppose $R \to R'$ is a square-zero extension of k-algebras and $E \in \mathcal{B}un(R)$ and $E' = E|_{X_{R'}}$. Then

$$\Gamma(X_{v,R}^{\times}, {\color{red} E}) \to \Gamma(X_{v,R'}^{\times}, {\color{red} E'})$$
 is surjective.

Key idea Below, $X_{v,R'}^{\times} \to X_{v,R}^{\times}$ is square-zero and $E|_{X_{v,R}^{\times}} \to X_{v,R}^{\times}$ is smooth:

Thank you for listening.