

MAGEMin, an efficient Gibbs energy minimizer: application to magmatic systems

Nicolas Riel¹, Boris Kaus¹, Eleanor Green² and Nicolas Berlie¹

- 1. Johannes-Gutenberg University Mainz, Germany
- 2. Melbourne University, Melbourne, Australia

The magmatic refinery

(Modified after J. Cornet, ETH Zürich)

Schematic representation of the exposed Famatinian magmatic arc Sierra de Valle Fértil, Argentina

2

Introduction - Reactive magma transport model

- o Thermomechanical deformation
- o Two-phase flow
- Thermodynamics

(visco-elasto-plastic)
(magma segregation)
(stable phases)

Thermodynamic equilibrium – stable phases

- o Pressure
- o Temperature
- Composition
- Thermodynamic database (minerals/melt)

Gibbs free energy minimization

- o Perple_X
- o MELTS
- o Theriak-Domino

- Stable phases
- o Phase fractions
- o Solid/fluid/melt densities
- o Seismic velocities, expansivity...

Components of stable phase prediction

Why another Gibbs energy minimizer?

Available Gibbs energy Minimizer

Developed to produce phase diagrams

- Not/partially parallelized
- o Relatively slow and/or unstable (often 'crashes')
- o Cannot be directly coupled to geodynamic simulations
- o Not optimized to update solution under slight *P-T-C* changes
- o Lot of work to add new database

Why another Gibbs energy minimizer?

Available Gibbs energy Minimizer

MELTS

Developed to produce phase diagrams

- o Not/partially parallelized
- o Relatively slow and/or unstable (often 'crashes')
- o Cannot be directly coupled to geodynamic simulations
- Not optimized to update solution under slight *P-T-C* changes
- o Lot of work to add new database

Constraints on a minimizer for magmatic modelling

- o Open source and code efficient
- o Built-in database
- o Fully parallel for scalability
- o Easily callable by external software
- o Fast and stable
- o Incorporate most recent thermodynamic database e.g., Holland et al., 2018

- C language
- No input files
- MPI
- Executable or C-wrapper

Gibbs free energy minimization: a challenging optimization problem

o Given a set of minerals at given P, T and C

Minimize (at fixed P,T,C)

$$G_{\rm sys} = \sum_{\lambda=1}^{\Lambda} \alpha_{\lambda} \sum_{i=1}^{N_{\lambda}} \mu_{i(\lambda)} p_{i(\lambda)} + \sum_{\omega=1}^{\Omega} \alpha_{\omega} \mu_{\omega},$$

$$Solution \ phase \qquad Pure \ phase \qquad (e.g. \ olivine) \qquad (e.g. \ quartz)$$

where

$$\mu_{i(\lambda)} = g_{i(\lambda)}^0 + RT \log(idm_{i(\lambda)}) + g_{i(\lambda)}^{\text{ex}}$$

s.t. Mass constraint

$$\sum_{\lambda=1}^{\Lambda} \alpha_{\lambda} \sum_{i=1}^{N_{\lambda}} a_{ij} p_{i(\lambda)} + \sum_{\omega=1}^{\Omega} \alpha_{\omega} a_{\omega j} - b_{j} = 0,$$

And Gibbs-Duhem constraint

$$\mu_{i(\lambda),\omega} = \sum_{j=1}^{C} a_{i,\omega j} \Gamma_j,$$

Phase equilibria: an optimization problem

At fixed P-T conditions

Phase equilibria: an optimization problem

At fixed P-T conditions

Phase equilibria: an optimization problem

At fixed P-T conditions

Approaches to Gibbs free energy minimization

I. Pseudocompounds (Perple_X, Connolly)

- Discretized solution space (treat each point as pure phase)
- Simplex linear programming

- Avoid local minimum
- Algorithm relatively easy to implement

- Slow for large multicomponent systems
- Massive memory usage

e.g., Amphibole discretization in 11D (10 points/dim)

→ **100 billion** pseudocompounds!

(11D hypercube, after Wikipedia)

Approaches to Gibbs free energy minimization

II. Levelling (Theriak-Domino, de Capitani)

- Consider Endmembers as pure phases
- \circ Simplex approach to estimate Γ
- \circ Minimize solution phases within Γ space

- Gradient based method
- Low memory usage

- Slow for complex systems
- Gibbs-Duhem contraint not coupled with mass constraint

Approaches to Gibbs free energy minimization

III. Partitioning Gibbs energy (Piro et al., 2011, 2013)

- o Coupled mass balance and Gibbs-Duhem constraint
- SLE solved with Newton-Raphson method

$$\mu_{i} = \frac{\tilde{\mu}_{i}}{RT} = g_{i(l)}^{\circ} + \ln(x_{i(l)}) + g_{i(l)}^{\text{ex}}$$

$$\mu_{i} = \sum_{j=1}^{C} a_{ij} \Gamma_{j}$$

$$x_{i(l)} = \exp\left(\sum_{j=1}^{C} a_{ij} \Gamma_{j} - g_{i(l)}^{\circ} - g_{i(l)}^{\text{ex}}\right)$$

$$b_{j} = \sum_{l=1}^{L} n_{l} \sum_{i=1}^{N_{l}} \exp\left(\sum_{j=1}^{C} a_{ij} \Gamma_{j} - g_{i(l)}^{\circ} - g_{i(l)}^{ex}\right) a_{ij} + \sum_{k=1}^{K} n_{k} a_{kj}$$

- Scales to large multicomponent systems (> 100)
- Mass balance is coupled with chemical potential
- Very efficient (developed for nuclear reactor simulations)
- Easily parallelized and memory efficient

Cannot deal with complex mineral phases (Site-Fraction based)

(Distribution of Mo5Ru3(s) in a 3D UO₂ fuel pellet, [Piro, 2011])

MAGEMin: a three step Gibbs energy minimizer

(1) Levelling using pure phases and solution endmembers

• Very low computational cost

MAGEMin: a three step Gibbs energy minimizer

(2) Discretization under the G-hyperplane

- Discretization under the G-hyperplane guess
- Avoid local minimum and computationally cheap

MAGEMin: a three step Gibbs energy minimizer

17

MAGEMin - interface

- Igneous database "from mantle to granite" (Holland et al., 2018)
- Command line single/parallel point calculation
- MATLAB based Graphic User Interface

Application to magmatic system – dry system benchmark

NCKFMASTO system, using the igneous database of Holland et al. (2018)

Peridotite

Basalt

(Riel et al., 2022)

Application to magmatic system – wet system benchmark

o NCKFMASHTCrO system, using the igneous database of Holland et al. (2018)

(Riel et al., 2022)

Computational efficiency

NCKFMASTCrO system, using the igneous database of Holland et al. (2018)

- Computed in parallel on personal laptop
- Using only 6 threads

MAGEMin: current stage and ongoing developments

Current stage

- MPI parallel C-library with built-in igneous database (Holland et al., 2018)
- Combines the best of available methods and further extend them

- Accounts for solvus
- Low memory usage < 5 Mb
- Matlab GUI
- Julia wrapper for geodynamic coupling (MAGEMin_C)
- Single core performance
 ~70 to 200 ms with no initial guess (dry-wet cases)

Ongoing development

- Algorithm upgrade to improve performances and stability
- Reduced chemical systems
- More options for the GUI (e.g., isopleth)
- Matlab wrapper (T. Keller)

Possible upcoming additions

• Adding other thermodynamic database

Contact: nriel@uni-mainz.de

https://github.com/ComputationalThermodynamics/MAGEMin

Install MAGEMin_C

Compute equilibrium

Thank you!

Mineral Assemblage Gibbs Energy Minimization: MAGEMin

MAGEMin: a two steps Gibbs energy minimizer

I. Levelling

Using solution model discretization

II. Partitioning Gibbs energy

contrained Gibbs-hyperplane rotation

MAGEMin - Vs

