AFRL-SN-RS-TR-2001-146 Vol IV (of VI) Final Technical Report July 2001

KNOWLEDGE BASE APPLICATIONS TO ADAPTIVE SPACE-TIME PROCESSING, VOLUME IV: KNOWLEDGE-BASED TRACKING

ITT Systems

Technology Service Corporation

Charles Morgan and Lee Moyer

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20011109 058

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

AFRL-SN-RS-TR-2001-146 Vol IV (of VI) has been reviewed and is approved for publication.

APPROVED: Markel Wicks

MICHAEL C. WICKS Project Engineer

FOR THE DIRECTOR:

ROBERT G. POLCE, Chief Rome Operations Office Sensors Directorate

If your address has changed or if you wish to be removed from the Air Force Research Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by your organization, please notify AFRL/SNRT, 26 Electronic Pky, Rome, NY 13441-4514. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arignot, VA 22202-4302, and to the Office of Management and Budget, Pepersyvork Reduction Project (1070-40188). Washington, D.C 20503.

Operations and Reports, 1215 Jefferson Davis Highway, Suite 1. AGENCY USE ONLY (Leave blank)	1204, Arlington, VA 22202-4302, and to the Office of Manag	ement and Budget, Paperwork Reduction Project (C	Durden, to Washington Headquarters Services, Directorate for Information 1704-0188), Washington, DC 20503.
1. Addition out one i feebre blank)	JULY 2001		
4. TITLE AND SUBTITLE	JULY 2001		inal Aug 95 - Jul 99 5. Funding numbers
KNOWLEDGE BASE APPLIC	CATIONS TO ADAPTIVE SPA	ACE-TIME	C - F30602-95-C-0041
PROCESSING, VOLUME IV:			PE - 62702F
TROOLSON (O, VOLUME IV.	INTO WEED OF BROKE TRA	CKING	PR - 4506
6. AUTHOR(S)	777.000		
Charles Morgan and Lee Moye	r		TA - 11
	-		WU - 2B
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
Prime: ITT Systems	Sub:Technology Service Corp	oration	REPORT NUMBER
775 Daedalian Drive	6515 Main Street		
Rome New York 13441			TSC-CT109-22
1.0	1141110411 01 00011		
9. SPONSORING/MONITORING AGENCY N	AME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING
Air Force Research Laboratory	/SNRT		AGENCY REPORT NUMBER
26 Electronic Pky			AFRL-SN-RS-TR-2001-146
Rome New York 13441-4514			Vol IV (of VI)
			(01 11)
11. SUPPLEMENTARY NOTES			
Air Force Research Laboratory	Project Engineer: Michael C.	Wicks/SNRT/(315) 330-2	2556
12a. DISTRIBUTION AVAILABILITY STATEM		I II (IMED	12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RE	ELEASE; DISTRIBUTION UN	LIMITED.	
13. ABSTRACT (Maximum 200 words)			
This report describes a knowled	ge-based tracking canability the	at will support a space tin	na adaptiva processing (STAD)
			arget tracker and the design and
		veropment of a multiple t	arget tracker and the design and
testing of several knowledge-base	sed rules.		
TDI			
Three types of tracking filters as	re described:		
1. An uncoupled two-state alph			
2. An uncoupled three-state Ka	-	•	•
3. An extended four-state Kalm	nan filter with both x and y posi	ition and velocity compor	ent states.
			sition component. The extended
Kalman filters uses a three-dime	ensional measurement vector co	ontaining x and y report p	osition and "pseudo" Doppler, the
latter defined as range times ran	ige rate.		
14. SUBJECT TERMS			15. NUMBER OF PAGES
Radar, Algorithms, Tracking, K	Inowledge Base Tracking		84
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT

UNCLASSIFIED

UNCLASSIFIED

UL

UNCLASSIFIED

Table of Contents

1.0	Introd	uction a	and Overview	1
2.0	Tracke	er Descr	iption	2
	2.1	Basic	Tracker	2
	2.2	Knowl	ledge Based Rules	4
		2.2.1	Tracking Legend	5
		2.2.2	Maneuver/Obstacle Rules	5
		2.2.3	Shadow Rule	9
		2.2.4	Discrete Rule 10	0
3.0	Softwa	are Desc	eription	1
	Modul	le Name	: Tracker_GUI_7	3
			Setup_Tracker_614	4
			Run_Tracker_81	7
			put_Table_R_218	3
			get_Table_R_2)
			put_Table_Trk_42	1
			get_Table_Trk_423	3
			add_Table_Trk_424	1
			Cleanup_Table_Trk25	5
			print_Table_T	5
			Display_Trk_Data_5	7
			set_Trackstate	3
			set_TrackHM_stat29)
			set_Track_gates)

Table of Contents con't

Shadow_Update	31
set_Track_Shadow	32
Predict_shlx_x	33
Kal_b_pred	35
Kal_c_pred	36
smooth_shlx	37
Kal_b_smth	39
Kal_c_smth	40
first_smooth_shlx	42
abtrack_init	43
track_init_2	44
track_init_c	45
Assign_Cov_manu	46
get_def_Cov_manu	48
Get_Semiaxes_3	49
E_Gate_Semiaxes_3	50
get_sig_track	53
Scale_Shadow_Gates	54
Rotate_xy2xpyp	55
Test_E_Gate	56
Test_Smile_Gate	57
Pred_Shadow_Test	59
Test_In_Shadow	60

Table of Contents con't

Discrete_Test	61
E_Discrete_Test	62
TR_Assoc_Max_T	63
TR_Assoc_Min_D	
cmp_track_age	65
get_track_ang	
get_pred_ang	67
update_error	68
Load_P_DET	69
Load_dBuf_4	70
plot_dBuf	71

Table of Figures

Figure 1-1	Tracker GUI Options	2
Figure 2-1	High Level Tracker Flow	3
Figure 2-2	Uncompensated Tracker Response for Maneuvering Target	6
Figure 2-3	Compensated Tracker Response for Maneuvering Target Track Oriented	
	Elliptical Gates used with 0.5g Across-Track Acceleration Allowance	7
Figure 2-4	Compensated Tracker Response for Maneuvering Target "Smile"	
	Shaped Centripetal Gates used with (0.0 – 0.5)g Across-Track	
	Acceleration Allowance	8
Figure 2-5	Tracker Response for Target Flying through Shadow	
	No Shadow Rule Applied	9
Figure 2-6	Tracker Response for Target Flying through Shadow	
	Shadow Rule Applied	10
Figure 2-7	Tracker Response for Target Passing Near a Discrete	
	Discrete Rule Applied	11

1.0 Introduction and Overview

The purpose of this effort has been to provide ITT Systems & Sciences with a knowledge based tracking capability that will support a space time adaptive processing (STAP) environment. This has included the development of a basic multiple target tracker and the design and testing of several knowledge based rules. A rule book containing 25 potential knowledge based rules was developed and is presented in Volume V.

For the purpose of ITT's application, the main elements of the tracker software can be imbedded in a larger STAP simulation by removing the GUI. The key tracking modules are setup_Tracker_6 and Run_Tracker_8.

The Run_Tracker_module allows the use of three types of tracking filters. These include:

- 1. an uncoupled two state alpha beta filter with position and velocity component states,
- 2. an uncoupled three state Kalman filter with position, velocity, and acceleration component states, and
- 3. an extended four Kalman filter with both x and y position and velocity component states.

The first two filters use a one dimensional measurement vector containing the report position component. The extended Kalman filter uses a three dimensional measurement vector containing x and y report position and "pseudo" Doppler, the latter defined as range times range rate.

The tracking software as delivered has been imbedded in a GUI structure that makes it easy to exercise the tracker under a variety of conditions. Using the GUI, the user can interactively select existing or new target scenarios and tracking options prior to tracker execution. Figure 1-1 shows the list of available options.

Figure 1-1: Tracker GUI Options

2.0 Tracker Description

The first part of this section contains a narrative description of the basic multiple target tracker. Detailed documentation has been provided in Section 3. This is followed by a discussion of three knowledge based tracking rules that can be used to support the STAP processor. Simple tracking simulations have been provided to illustrate the use of these rules.

2.1 Basic Tracker

A high level description of the multiple target tracker function is shown below in Figure 2-1. The tracker processes reports on a per scan basis and makes use of a track table that contains several track attributes as well as kinematic information. The key attributes include the tracks identification number, its state value, which is a measure of track quality, and its status. Track status can be *dropped*, *tentative*, or *firm*. In the current software, a dropped status is assigned to a track whose state has been demoted to zero, a tentative status is assigned to a new

track formed by an unused report with a state value initialized to one, and a firm status is given to any track with a state value greater than one. The tracker's function consists of a correlation section together with association and track maintenance sections.

Figure 2-1: High Level Tracker Flow

The correlation section is performed by testing for inclusion each current report against each extrapolated track gate and forming a binary correlation matrix with ones in the capture positions. Tentative track gates formed from unassociated reports are extrapolated by centering a circle of kinematically-determined maximum radium about the report, whereas firm track gates are extrapolated by using the track filter prediction equations. Track gate sizes are typically a function of both the measurement and prediction uncertainties, as well as the track's maneuver status. A distance matrix of the same size as the correlation matrix is also formed containing the report-to-gate center distances.

The association and maintenance section uses the above correlation and distance error arrays to assign reports and tracks in a unique manner. In the even that multiple reports are common to a given track gate, or multiple tracks capture a common report, the association logic will resolve the conflict. Furthermore, any reports that are not assigned to an existing track will be used to spawn a new track designated to have a tentative status. Two simple association logics are currently available. There is a "nearest neighbor" logic that assigns the closest captured report to a given track and there is a "venerable track" logic that associates the oldest common track to a given report.

After all tracks and reports have been associated, the track state promotion logic is applied. Track states are updated using either a "hit" or a "miss" table, depending on whether they correlate with a report. These state tables are usually designed to require specified numbers of successive hits and misses before a track is declared as firm or dropped. Two examples are given below. In Case 1, tables Hit1 and Miss1 allow a tentative track to build up to firm status at state level 4 after three successive this, and to demote with each miss until it reaches state 0 where it is dropped. In Case 2, tables Hit2 and Miss2 show a more complex strategy. A tentative track promotes up to a firm status of 3 after two hits. However, there are hold states 4,5 and 6 which allow the track to recover its firm status more quickly after a single miss.

Case 1						
State	1	2	3	4		
Hit1	2	3	4	4		
Miss1	0	1	2	3		

			Case 2			
State	1	2	3	4	5	6
Hit2	2	3	3	5	3	3
Miss2	4	6	5	0	4	0

Once track state logic has been applied, the track table is updated. All tracks with state values of 0 are removed from the table. Furthermore, all reports that were not associated with extant tracks are used to spawn new tentative tracks that are added to the table.

2.2 Knowledge Based Rules

Knowledge based rules make use of extended map and intelligence information, and are used to improve the tracker's ability to support STAP processing requirements. Key issues include the tracking of targets in regions adjacent to large discretes, and in shadow zones that are blocked from the radar-s line of sight. Using map information the tracker should also be able to anticipate a target maneuver that will be required to avoid obstacles. Queued with this information, the tracker will apply appropriately shaped track gates that enhance its capability of capturing reports while maintaining reasonable gate sizes. Four rules are discussed below, along with simple tracking simulations.

In the following examples single target tracks are displayed graphically with the following conventions:

2.2.1 Tracking Legend:

- + Predicted gate center position
- * Measured report position
- o Coasted track position
- Extrapolated position of a missed detection
- d Dropped tentative track
- D# Dropped firm track
- # Corresponds to age (scans) of dropped track

In addition, all the results were obtained using an uncoupled Kalman tracking filter and all simulations assumed a ten second scan period.

2.2.2 Maneuver/Obstacle Rules:

Both alpha beta and Kalman tracking filters do a good job with targets that move along a constant heading with a fixed speed. Deviations from a straight path cause prediction errors to occur and can ultimately result in a dropped track. Therefore it is important, whenever possible, to anticipate target maneuvers by several scans. This allows time to make such adjustments as increasing the gate size and track gain, or using a shaped gate to allow for across track deviations caused by target turning.

If a track approaches an obstacle whose across track extent is H, a maneuver can be anticipated to occur within a time extent no longer than T_{max} . For this discussion, assuming a constant target speed v and a maximum possible acceleration A_{max} , this extent is given by:

$$T_{\text{max}} = \frac{\rho}{v} \cos^{-1} (1 - H / \rho)$$

where

$$\rho = v^2 / A_{\text{max}}$$

denotes the radius of curvature of the target turn required to clear the obstacle. Somewhere within this time period the tracker should apply its maneuver logic.

Figures 2-2 to 2-4 use the same section of track to illustrate the effect of different gating strategies on the tracker's ability to handle a maneuvering target. Performance is computed for a constant speed (250 meters/sec), high SNR (20 dB at mid range) Swerling 1 target, as it approaches an obstacle (shaded rectangular region) from below and begins to turn after the twenty third scan.

Figure 2-2 shows the response of an uncompensated tracking filter using a standard track gate centered on the predicted gate center, and oriented along and across range with a size dependent on both the measurement and prediction errors. No target acceleration has been

assumed and no maneuver noise has been added. While the straight line section is handled adequately, the initial track begins to lose the target after the turn begins, whereupon it is demoted to a dropped status on the next four scans. The three kilometer circular gates indicate newly spawned tentative tracks that were subsequently updated to firm status.

Figure 2-2: Uncompensated Tracker Response for Maneuvering Target

The first maneuvering target rule specifies the use of shaped elliptical gates. Figure 2-3 shows the same target as tracked using a combination of two gates, both centered on the predicted gate center. One gate is oriented along and across range, with a size determined by range and angle measurement uncertainties. The second gate is oriented along and across the targets instantaneous track and its size is a function of the maximum turning acceleration of the target, assumed here to be 0.5g units. Reports capture occurs if the measurement falls within either gate. Except for a missed report early in the linear part of the trajectory, causing the gate to swell initially and then settle down, the track is maintained throughout the maneuver. Each lower case d symbol indicates a dropped tentative track. This occurs when such a track fails to capture a report on the following scan. The large three kilometer circles denote tentative tracks that were successfully promoted to firm status. Finally, the dots occurring in both Figures 2-2 and 2-3, shown extrapolated from the straight line section of the approaching track, represent missed detections. While actual gates existed for these cases, they have been drawn here only or situations in which reports were captured.

Figure 2-3: Compensated Tracker Response for Maneuvering Target.

Track Oriented Elliptical Gates used with 0.5g Across-Track Acceleration Allowance

The second maneuvering target rule specifies the use of a gate whose shape is determined solely by centripetal turning mechanics. Figure 2-4 shows the target being tracked using a "smile shaped" gate whose shape is determined by the kinematic constraints imposed on a constant speed target undergoing a centripetal maneuver. Let t range over the time interval from the last track update till the next predicted report acquisition, T_{scan} seconds later. The maneuver envelope is given by the xy locus of points, oriented along and across the track, and generated by the equations:

$$x = vt + \rho \sin \theta$$
$$y = \rho (1 - \cos \theta)$$
$$\theta = v(T_{scan} - t)/\rho$$

where the radius of curvature ρ is defined as above. For this gate, a track capture occurs if the measurement ellipse, centered on the measured report and oriented along and across range, intersects the smile locus. As in the previous example, this gate is able to maintain the track throughout the target maneuver. One advantage of this gate is that is has a relatively small area as compared with other maneuver gates and this makes it less likely to capture any false alarms.

Figure 2-4: Compensated Tracker Response for Maneuvering Target. "Smile" Shaped Centripetal Gates used with (0.0-0.5) g Range of Across-Track Acceleration Allowance

2.2.3 Shadow Rule:

The shadow rule provides a means of preserving firm tracks that enter regions shadowed from the radar line of sight. If the predicated track gate center falls within a designed shadow region, both the track state and gate size will be frozen. Upon emerging from the shadow, state promotion resumes and the gate size will not be allowed to exceed a maximum value. In the tracker scenario used in Figures 2-5 and 2-6, only a minimal amount of acceleration noise, 0.05 g units, was used in order to maintain a straight line coasting of the track through the shadow. As previously, the target has a speed of 250 meters per second and the update scan time is 10 seconds.

Figure 2-5 shows a section of tracker response, when no shadow rule is in effect, for a target approaching a shadow zone (shaded rectangle) from below. The three dots denote extrapolated positions of the initial track where no reports were captured. After four demotions the firm track that initially entered the shadow was dropped, as indicated by the D14 symbol. A new tentative track was spawned, and promoted, once the predicted gate positions moved beyond the shadow. Note that the D symbol has been placed at the last updated track position, just prior to entering the shadow, where the track was 14 scans old.

Figure 2-5: Tracker Response for Target Flying through Shadow No Shadow Rule Applied

Figure 2-6 shows the track history for the same target-shadow scenario when the shadow rule was in place. The circles in the shadow denote coasted track positions at which the track state was held fixed. Once the predicted gate position emerged from the shadow, there was a

moderate increase in gate size, after which it settled down, and the original firm track continued undisturbed.

Figure 2-6: Tracker Response for Target Flying through Shadow Shadow Rule Applied

2.2.4 Discrete Rule:

By tagging large radar returns, or discretes, the STAP processor can exclude regions containing them from its covariance matrix element formation and thereby not use up limited degrees of freedom on their cancellation. The discrete rule allows the tracker to coast through any region containing one of these tagged returns and to essentially ignore it. If a known discrete falls within a track gate, that track will be treated as if in a shadow and will not be updated.

In Figure 2-7, the same target speed, update time, and acceleration noise have been used as in the shadow rule examples. A discrete has been inserted in the target trajectory as shown. As indicated, the tracker preserves the state value of 4 as the predicted gate positions passes through the discrete.

Figure 2-7: Tracker Response for Target Passing Near a Discrete Discrete Rule Applied

The previous discussion looked at the implementation of four specific tracking rules. However, many more rules that were considered relevant to the STAP problem were developed during the course of this tracking study. In addition to the rule topics discussed here, issues regarding the assignment of target priority, detection threshold, state promotion logic, and other features were considered. A collection of twenty-five such rules are presented in the "Knowledge-Based Tracker Rule Book" that is included in Volume V of this report. Included with each rule is a discussion of its rationale, its impact on the overall knowledge based system and interface requirements that might exist between the tracker, controller and radar.

3.0 Software Description

All tracking software used in this effort has been written in Matlab 5.1. A total of 49 modules are listed and documented below. These can be subdivided into three groupings consisting of user interface, main tracker, and tracker utilities. The first two modules belong to the user interface group. These are Tracker_GUI_7, which provides the graphical user interface for the overall tracking simulation, and Setup_Tracker_6, which sets up the interface between the tracker and the scenario generator. The main tracker group contains the multiple target tracking module, Run_Tracker_8, which carries out all prediction, smoothing, and association operations on report data on a per scan basis. Finally, the tracker utilities group contains all of the support modules that are used by the tracker. It should be noted that some of the modules supporting the user interface group have not been documented since that portion of the software is going to be removed by the customer and replaced with their own hooks into the STAP simulation software.

User Interface Modules

Tracker_GUI_7
Setup_Tracker_6

Main Tracker Module Run_Tracker_8

Tracker Utility Modules put_Table_R_2 get_Table_R_2 put_Table_Trk_4 get_Table_Trk_4 add_Table_Trk_4 Cleanup_Table_Trk print_Table_Trk Display_Trk_Data_5 State_Update set_Trackstate set_TrackHM_stat set_Track_gates Shadow_Updates set_Track_Shadow predict_shlx_x Kal_b_pred Kal_c_pred smooth_shlx

Kal_b_smth Kal_c_smth

first_smooth_shlx abtrack_init track_init_2

Tracker_GUI_7

Calling Module:

None

Called Modules:

All_Defaults_4
Demo_Defaults_4
Read_Scenario_2
Write_Scenario_2
Track_Data_Gen_4
Radar_menu_3
Tracker_Opt_menu_2
Setup_Tracker_6
Run_Tracker_8

Inputs:

None

Outputs:

None

Globals:

****Radar_menu_3***

first_in_Radar

f_Ghz N_hits SNR0_dB Prf_kHz DRng_m Az_mrad_3dB Dop_hz

Pfa SNR_fa_dB

Scenario_menu

script_name

Tracker_Opt_resp

Track_Filter_menu

Tfilt_resp

Tracker_param_menu

first_in_Tr_parm

Tfilt_resp

Mult_LP Mult_HP radius_TENT_LP radius_TENT_HP

Man_amt alpha beta Pri_T

Turn_int gate_case

Tracker_prom_menu

first_in_Tr_prom

Hit_Tbl_LP Miss_Tbl_LP Hit_Tbl_HP Miss_Tbl_HP

*** ***

fig_no_T

Time X-meas Y_meas pDop_meas report_ID

X_tru Y_trum pDop_tru S11 S12 S13 S22 S23 S33

Angle (radians) of prediction point ang_pred Angle (radians) of track ang_trk Draw track gate flag (1=> yes) gate_on Print track gate flag (1=> yes) print_Trk_Tbl Label track with text (1=> yes) text_on Number of shadow zones in scenario N_shadow Array of low x shadow tile values x_sh_LO Array of high x shadow tile values x_sh_HI Array of low y shadow tile values y_sh_LO Array of high y shadow tile values y_sh_HI In shadow flag (1=> yes) In_Shadow Number of consecutive dwells in shadow Nshadow_dwells

Globals:

Mult Table_R Table_T

DROPPED TENT FIRM

LP HP

SUM1_ERROR SUM2_ERROR

P_DET HP_Buf dBuf

Display_cnt

Description:

Initializes and sets up variables to be used by the Run_Tracker_8 program. Puts scenario generator outputs in a form usable by tracker. Also adds false alarms to scenario generation data.

Run_Tracker_8

Calling Modules:

None (script file)

Called Modules:

put_Table_R_2 get_Table_R_2 get_Table_Trk_4 put_Table_Trk_4 add_Table_Trk_4 predict_shlx_x first_smooth_shlx smooth_shlx Get_Semiaxes_3 Test_E_Gate Test_Smile_Gate get_def_Cov_manu Assign Cov manu State_Update set_Trackstate set TrackHM stat Pred_Shadow_Test Shadow_Update Discrete_Test set Track Shadow get_track_ang get_pred_ang update_error TR_Assoc_Max_T Display_Trk_Data_5 print_Table_T Load_dBuf_4 plot_dBuf Cleanup_Table_Trk

Inputs:

setup by Tracker_GUI_7 and

Setup_Tracker_6

Outputs:

None

Globals:

None

Description:

The multiple target tracker processes report data collected during each scan and performs three basic functions: track-report correlation, association, and maintenance.

put_Table_R_2

Calling Module:

Run_Tracker

Called Modules:

None

Inputs:

Time

Time of radar blips

X meas, Y_meas

Measured position (km)

FDop meas

Measured pseudo Doppler (km*km/sec)

X tru, Y_tru

True position (km)

FDop_tru

Truer pseudoDoppler (km*km/sec)

S11, ..., S33

Measurement Covariance

sig_Rng_km

Range Measurement error (km)

sig_Az_rad sig_Rdot_kmps

Azimuth measurement error (radians) Range rate measurement error (km/sec)

freq_GHz

Radio frequency of radar (gHz)

Det Level

Detection level

Prior intel

Priority status Maneuver status

Manu_intel

Trajectory ID of report

report_ID

Number of reports calling Module: Run_Tracker

Nrep

Called Modules:

None

Inputs:

Time

Time of radar blips (sec)

X_meas, Y_meas

Measured position (km)

FDop_meas

Measured pseudo Doppler (km*km/sec)

X_tru, Y_tru

True position (km)

FDop_tru

True pseudoDoppler (km*km/sec)

S11, ..., S33

Measurement Covariance

sig_Rng_km sig_Az_rad

Range Measurement error (km) Azimuth measurement error (radians)

sig_Rdot_kmps

Range rate measurement error (km/sec)

freq_GHz

Radio frequency of radar (gHz) Detection level

Det_Level

Priority status

Prior_intel Manu intel

Maneuver status

report_ID

Trajectory ID of report

Nrep

Number of reports calling Module: Run_Tracker

scan

Current scan index

Outputs:

Table_R

Globals:

Table_R

Description:

Load the report table buffer for the current scan. All arrays are indexed as (report, scan) and were created by a scenario generator.

get_Table_R_2

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

rep

report index

Outputs:

T_m

Blip time (sec)

X_m, Y_m

Measured position (km)

FDop_m

Measured Doppler (km*km/sec)

Cov_m_vec sig_rng_km_m Measured covariance vector

sig_crng_km_m

Range measurement error (km) Cross range measurement error (km)

sig_Rdot_kmps_m

Range rate measurement error (km?sec)

freq_GHz

Radar rf frequency (gHz)

Det_m priority_in

Detection level Priority Status

maneuver_in report_source

Maneuver status Trajectory ID

X_tru_m, Y_tru_m

True position (km)

FDop_tru_m

True pseudoDoppler (km*km/sec)

error_status

not used

Globals:

Table_R

Description:

Fetch report table data for current scan.

put_Table_Trk_4

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

trk Track index
TID Track ID number

status (drop, tentative, firm)

state Track state (quality index; $0 \Rightarrow dropped$)

report Captured report index

scan1 Scan index when track became firm

trk_type Tracker type (alpha beta, unc/extd Kalman)

Z m Measurement state vector

Cov_m_vec Measurement covariance vector

T_m Measurement of time of captured report

priority Priority status of track
maneuver Maneuver status of track
Z_p Prediction state vector

Cov_p_vec Prediction covariance vector Z_s Smoothed state vector

Cov_s_vec Smoothed covariance vector

HM_flg Track capture flag $(0 \Rightarrow miss, 1 + hit)$

ang_trk Track angle (radians)
x_s_2LST Last track x position (km)
y_s_2LST Last track y position (km)
T_s_2LST Last track time (sec)

semi_rng_T along range semi axis (km)
semi_crng_T cross range semi axis (km)
semi_trk_T along track semi axis (km)
semi_ctrk_T cross track semi axis (km)
In-Shadow Shadow status flag (0 => not in)

Nshadow_dwells Number of successive dwells in shadow

gate_case Track gating choice (0:3)

Accel_max Maximum acceleration (km/sec*sec)

sig_rng_km range measurement error (km)

sig_crng_km cross range measurement error (km)
sig_Rdot_kmps2 range rate meas error (km*km/sec)

Outputs:

error_status
Table_T

Globals:

Table_T

Description:

Updates track table data for current scan and report index.

get_Table_Trk_4

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

trk

Outputs:

same as inputs to put_Table_Trk_4

TID

same as inputs to put_Table_Trk_4

.
sig_Rdot_kmps2

Globals:

Table_T

Description:

Fetch track table data for current scan and report index.

add_Table_Trk_4

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

Ntrk

num_new_trks

TID_New

same as inputs to put_Table_Trk4

•

•

sig_Rdot_kmps2

Outputs:

error_status

Table_T

Globals

Table_T

Description:

Insert new tentative tracks into track table.

Cleanup_Table_Trk

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

None

Outputs:

Ntrk

Number of valid tracks

Globals:

Table_T

Description:

Updates track table for next scan. Sorts Table_T by column 3 (state) and removes all zero states. Counts number of remaining valid tracks and returns this value.

print_Table_T

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

Ntrk

Number of track sets to be printed (max = 10)

sup

vector of Table_T indices to be printed

Outputs:

prints to command tool

Globals:

Table_T

Description:

Prints track table information as columns (one per track). Support vector sup is subset of {1:86} corresponding to fields in Table_T.

Display_Trk_Data_5

Calling Module:

Run Tracker 8

Called Modules:

Draw_Grid

get Table Trk 4 get_Table_R_2 Assign Cov manu predict_shlx_x get sig track get_pred_ang E Gate Semiaxes Draw_Smile_Gate Draw_E_Gate_2

Inputs:

Ntrk

Number of tracks to be plotted

scan scan_period current scan index scan time (sec)

sig_rng_km_nom sig_Az_rad_nom

not used not used

plot_vec

plot scale: (xmin, xmax, ymin, ymax)

x_v, y_v dx, dy

x and y grid point sets x and y grid spacing

gate_on

Draw track gate flag $(1 \Rightarrow yes)$

text_on fig_no

Print Text gate plot figure number

symbol_1 symbol_2 rng-cross rng aligned gate symbol trk-cross trk aligned gate symbol

semi-max

maximum gate size allowed

Outputs:

graphical display in figure (fig_no)

Globals:

Display_cnt

Table_R Table_T

DROPPED TENT FIRM LP HP

Mult_LP Mult_HP radius_TENT_LP radius_TENT_HP

sig_trk_km sig_ctrk_km gate_case

Cov_man20 Cov_man30 Cov_man_acc_x Cov_man_acc_y

Description:

The module serves as a diagnostic and display tool for the multi target tracker. It displays predicted and measured positions prior to track table cleanup and draws track gates centered on predicted positions.

set_Trackstate

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

state

trk

Outputs:

None

Globals:

Table_T

Description:

Inputs state value into track table at index trk.

set_TrackHM_stat

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

HM_flg

Capture/shadow status of track

trk

Track index

Outputs:

None

Globals:

Table_T

Description:

Inputs the track capture/shadow status into track table.

set_Track_gates

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

semi_rng_T

Along range semi axis of ellipse gate

semi_crng_T semi_trk_T Cross range semi axis Along track semi axis

semi_ctrk_T

Cross track semi axis

trk

Track table index

Outputs:

None

Globals:

Table_T

Description:

Inputs ellipse gate semi axes into track table corresponding to index trk.

Shadow_Update

Calling Module:

Run_Tracker_8

Called Modules:

set_Track_Shadow set_TrackHM_stat

Inputs:

trk

Track index into Table_T

In Shadow

Shadow status flag $(1 \Rightarrow \text{in shadow})$

Nshadow_dwells_last Number of scans input trk in shadow

HM_flg_last

Capture/shadow status of input trk

Outputs:

None

Globals:

Table_T

Description:

Updates track shadow status corresponding to index trk. If track is in a shadow, the number of shadow dwells is incremented and the capture status is set to the number 2. Otherwise, the number of dwells is et to zero and the capture status maintained.

set_Track_Shadow

Calling Module:

Run_Tracker_8 Shadow_Update

Called Modules:

None

Inputs:

Nshadow_dwells

Number of consecutive dwells in shadow

In_Shadow

in shadow status flag

trk

Index into Table_T

Outputs:

None

Globals:

Table_T

Description:

Inputs shadow parameters into track table corresponding to index trk. These include (1) the # of consecutive dwells of track in a shadow, and (2) the in-shadow status flag (0 => not in shadow, $1 \Rightarrow$ in shadow).

predict_shlx_x

Calling Module:

Run_Tracker_8

Called Modules:

Kal_b_pred Kal_c_pred

Inputs:

type

Tracking filter type (1:3 +. alpha beta, uncoupled Kalman, and

extended Kalman)

Z_s_last

Smoothed state vector at last scan

Cov_s_last_vec

Smoothed covariance array at last scan

Cov man x Cov_man_y Cov man

Maneuver covariance matrix of x component Maneuver covariance matrix of y component

Maneuver covariance matrix of extended Kal

dΤ

Time interval from last update to present

Outputs:

Z-P

Prediction state vector

Cov_p_vec

Prediction covariance matrix

Globals:

None

Description:

Computes predicted state vector and Covariance array, Z_p and Cov_p_vec, respectively. The method used depends on the tracking filter type specified. The maneuver covariance matrices provide a means for inputting acceleration noise to increase track gate size for the Kalman filter cases

Equations:

alpha beta:

 $X_p = x_s_{last} + vx_s_{last} * dT$

 $Y_p = y_s_{last} + vy_s_{last} * dT$

 $Vx_p = vx_s_{last}$

 $Vy_p = vy_s_{last}$

where the components X_p, Vx_p, etc., are related to the state vectors Z_p, Z_s_last, etc. by stacking the x and y components of position, velocity, and acceleration

Z=[X;Vx;Ax;Y;Vy;Ay]

Uncoupled Kalman: see Kal_b_pred

Extended Kalman:

see Kal_c_pred

Kal_b_pred

Calling Module:

predict_shlx_x

Called Modules:

None

Inputs:

Z_s_in

3 x 1 Smoothed input state vector (either component)

[Position; Velocity; Acceleration]

dt_in

Time since last update

Cov_manu

3 x 3 Covariance matrix of maneuver noise

Cov_s_in

3 x 3 Smoothed input covariance matrix (either component)

[Position; Velocity; Acceleration]

Outputs:

Z_p_out

3 x 1 Prediction state vector (corresponding component)

Cov_p

3 x 3 Prediction covariance matrix

Globals:

Table_T

Description:

Computes 3 x 1 prediction state vector and 3 x 3 prediction covariance matrix for the case of an uncoupled Kalman filter. All input and output state vectors are assumed to be 3 x 1, and all covariance matrices are 3×3 .

Equations:

$$\phi = \begin{bmatrix} 1 & dT & 0.5(dT)^2 \\ 0 & 1 & dT \\ 0 & 0 & 1 \end{bmatrix}; 3 \times 3 \text{ state transition matrix}$$

 $Z_p_out=\phi*Z_s_in$

Cov_p=\phi*Cov_s_in*\phi'+Cov_manu

 $(\phi'$ denotes the transpose of $\phi)$

Kal_c_pred

Calling Modules:

predict_shlx_x

Called Modules:

None

Inputs:

Z_s_in	4 x 1	Smoothed input state vector
		[X_s_in; Vx_s_in; Vy_s_in]
dt_in		Time since last update
Cov_manu	4 x 4	Covariance matrix of maneuver noise
Cov_s_in	4 x 4	Smoothed input covariance matrix

Outputs:

Z_p_out	4 x 1	Prediction state vector
		[X_p_out; Vx_p_out; Y_p_out; Vy_p_out
Cov_p	4 x 4	Prediction covariance matrix

Globals:

None

Description:

Computes 4 x 1 prediction state vector and 4 x 4 prediction covariance matrix for the case of an extended Kalman filter. All input and output state vectors are assumed to be 4 x 1, and all covariance matrices are 4 x 4.

Equations:

$$\phi = \begin{bmatrix} 1 & dT & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & dT \\ 0 & 0 & 0 & 1 \end{bmatrix}; 4 \times 4 \text{ state transition matrix}$$

$$Z_p_out = \phi * Z_s_in$$

 $Cov_p = \phi * Cov_s_in * \phi' + Cov_man$

 $(\phi'$ denotes the transpose of $\phi)$

smooth_shlx

Calling Module:

Run_Tracker_8

Called Modules:

Kal_b_smth Kal_c_smth

Inputs:

type

Tracking filter type (1:3 => alpha beta, uncoupled Kalman, and

extended Kalman)

 Z_m

Measurement vector (x;y;pDop)

 Z_p

Prediction state vector (X;Vx;Ax;Y;Vy;Ay)

Cov_p_vec

Prediction cov array (Cov_p_x;Cov_p_y)reshaped to 1 x 18

Cov m vec

Meas cov array 1 x 9

dT

Time interval from last update to present

Outputs:

 Z_s

Smoothed state vector (X;Vx;Ax;Y;Vy;Ay)

Cov_s_vec

Smoothed cov array (Cov_s_x;Cov_s_y)reshaped to 1 x 18

Gain_mat

Gain matrix (not used by tracker)

Globals:

alpha beta

Description:

Computes smoothed state vector and Covariance array, Z_s and Cov_s_vec, respectively. Also returns a gain matrix (not normally used) which can be used for diagnostic purposes. The smoothing method used depends on the tracking filter type specified.

Equations:

alpha beta:

 $Dx = x_m - X_p$

 $x_s = X_p + alpha * Dx$

 $Vx_s = Vx_p + beta * Dx/dT$

 $Dy = y_m - Y_p$

 $y_s = Y_p + alpha * Dy$

 $Vy_s = Vy_p + beta * Dy/dT$

where

 $Z_m = [x_m; y_m; pDop_m)$

and Z_p and Z_s are 6 x 1 vectors of the position, velocity and acceleration components

Uncoupled Kalman:

see Kal_b_smth

Extended Kalman:

see Kal_c_smth

Kal_b_smth

Calling Module:

smooth_shlx

Called Modules:

var_meas

None

Inputs:

Z_m	3 x 1	Measurement vector [x_m;y_m;pDop_m]
Z_p_out	3 x 1	Prediction state vector (either component)
		[Position; Velocity; Acceleration]
Cov_p	3 x 3	Covariance matrix of maneuver noise
Cov_s_in		Prediction covariance matrix

Outputs:

Z_s_out	3 x 1	Smoothed output state vector (either component) [Position; Velocity; Acceleration]
Cov_s_out Res dist_Res_2 S	3 x 1	Smoothed output covariance matrix Residual error vector (Innovations) Statistical distance Gain matrix

Measurement variance

Globals:

None

Description:

Computes 3 x 1 smoothed state vector and 3 x 3 smoothed covariance matrix for the case of an uncoupled Kalman filter. All input and output prediction and smoothed state vectors are assumed to be 3 x 1, and all covariance matrices are 3 x 3.

Equations:

```
(for either x or y component)

M = [1 0 0]; Measurement Matrix (1 Measurement x 3 states)

I_Cov_Res = 1/(M * Cov_p * M' + var_meas)

S = Cov_p * M' * I_Cov_Res; Gain Matrix (3 states x 1 measurement)

Z_s_out = Z_p_out + S * (Z_m - M * Z_p_out)

Cov_s_out = (I - S * M) * Cov_p

Res = (Z_m - M * Z_p); Innovations

dist_Res_2 = Res * I_Cov_Res * Res'; Statistical distance
```

Kal_c_smth

Calling Modules:

 $smooth_shlx$

Called Modules:

None

Inputs:

Z_m	3 x 1	Measurement vector (3 x 1) [x_m;y_m;pDop_m]
Z_p_out	4 x 1	Prediction state vector [X; Vx; Y; Vy]
Cov_p	4 x 4	Prediction covariance matrix
Cov_meas	3 x 3	Measurement Covariance

Outputs:

Z_s_out	4 x 1	Smoothed output state vector [X; Vx; Y; Vy]
Cov_s_out	4 x 4	Smoothed output covariance matrix
Res	3 x 1	Residual error vector (Innovations)
dist_Res_2		Statistical distance
S	4 x 3	Gain Matrix

Globals:

None

Description:

Computes 4 x 1 smoothed state vector and 4 x 4 smoothed covariance matrix for the case of an extended Kalman filter. All input and output prediction and smoothed state vectors are assumed to be 4 x 1, and all covariance matrices are 4 x 4.

Equations:

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ M_{31} & M_{32} & M_{33} & M_{34} \end{bmatrix}; \text{Measurement matrix (3 Measurements x 4 states)}$$

where

$$M_{31} = 0.5 * Z_p_out (2)$$

$$M_{32} = 0.5 * Z_p_out (1)$$

$$M_{33} = 0.5 * Z_p_out (4)$$

$$M_{34} = 0.5 * Z_p_out(3)$$

Note that

$$(pDop)_{est} = M_{31} * X_p + M_{32} * Vx_p + M_{33} * Y_p + M_{34} * Vy_p$$
 $I_Cov_Res = (M * Cov_p * M' + Cov_meas) - 1$
 $S = Cov_p * M' * I_Cov_Res ; 4 x 3 Gain Matrix (4 states x 3 measurements)$
 $Res = (Z_m - M * Z_p_out) ; 3 x 1 Innovations$
 $Z_s_out = Z_p_out + S * Res 4 x 1$
 $Cov_s_out = (I - S * M) * Cov_p 4 x 4$
 $dist_Res_2 = Res; * (I_Cov_Res) * Res$

first_smooth_shlx

Calling Module:

Run_Tracker_8

Called Modules:

abtrack_init_track_init_c

Inputs:

type

Track filter type (1:3 => alpha beta, Uncoupled Kalman, and

extended Kalman

Z_m_last

Measured vector (last update) Measured vector (current)

 Z_m

Meas Covariance array (current)

Cov_m_vec dT

Time interval (sec) from last update

Outputs:

Z_s_out

Smoothed state vector

Cov_s_vec

Smoothed covariance array

Globals:

None

Description:

Performs smoothing of tentative tracks

Equations:

alpha beta:

see abtrack_init

Uncoupled Kalman:

see track_init_2

Extended Kalman:

see track_init_c

abtrack_init

Calling Module:

first_smooth_shlx

Called Modules:

None

Inputs:

(x1,y1) (x2, y2) dT12 Last updated track position

Current track position

Time interval (sec)

Outputs:

(x_s, y_s) (vx_s, vy_s) ang_trk Smoothed track position Smoothed tracked velocity

Track angle (radians)

Globals:

None

Description:

Does a two point initialization of an alpha beta tracker using current and last track positions and their time interval.

Equations:

$$Dx = (x2 - x1)$$

$$x_s = x_2$$

$$vx_s = Dx/dT12$$

$$\mathbf{D}\dot{\mathbf{y}} = (\mathbf{y}\mathbf{2} - \mathbf{y}\mathbf{1})$$

$$y_s = y2$$

$$vy_s = Dy/dT12$$

 $ang_{trk} = arctan (Dy/Dx)$

track_init_2

Calling Module:

first_smooth_shlx

Called Modules:

None

Inputs:

Delt

Time (sec) between current and last update

z_pos_1

Last position component update (x or y)

z_pos_2

Current position component (x or y)

var_pos_m_2

Measurement variance of position component

Outputs:

 Z_s_{in}

Smoothed state vector (3 x 1)

P_s_in

Smoothed covariance matrix (3 x 3)

Globals:

None

Description:

Does a two point initialization of an uncoupled Kalman tracker. This routine is applied separately to both the x and y components of target motion.

Equations:

$$pos_s = z_pos_2$$

 $vel_s = (z_pos_2 - z_pos_1)/Delt$

 $Z_s_{in} = [pos_s; vel_s; 0]$

$$P_{s}in = \begin{bmatrix} Px_{11} & Px_{12} & 0 \\ Px_{12} & Px_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

where

$$Px_{11} = var_pos_m_2$$

$$Px_{12} = Px_{11}/Delt$$

$$Px_{22} - Px_{11}/(Delt)2$$

track_init_c

Calling Module:

first_smooth_shlx

Called Modules:

None

Inputs:

Delt Time (sec) between current and last update (x1, y1) Last position update (x2, Y2) Current position sig_xx Measurement covariance xx comp sig_yy Measurement covariance yy comp

sig_xy

Measurement covariance xy comp

Outputs:

Z_s_in 4 x 1 Smoothed state vector P_s_in 4 x 4 Smoothed covariance matrix

Globals:

None

Description:

Does a two point initialization to be used with the extended Kalman track filter.

Equations:

Let T = Delt, T2 = T²

$$sig_x = \sqrt{sig_xx}$$
, $sig_y = \sqrt{sig_yy}$

pos_sx = x2, pos_sy = y2; smoothed positions vel_sx = (x2 - x1)/T, vel_sy = (y2 - y1)/T; smoothed velocities Z_s_in = [pos_sx; vel_sx; pos_sy; vel_sy]

$$P_s_in = \begin{matrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{12} & P_{22} & P_{23} & P_{24} \\ P_{13} & P_{23} & P_{33} & P_{34} \\ P_{14} & P_{24} & P_{34} & P_{44} \end{matrix}$$

where

$$\begin{split} P_{11} &= sig_xx, \, P_{12} = 1.5 * P_{11}/T, \, P_{13} = sig_xy; \, P_{14} = 1.5 * sig_x * sig_y/T, \, P_{22} = 6.5 \, P_{11}/T2; \, P_{23} = P_{14}, \, P_{24} = sig_xy/T2 \\ P_{33} &= sig_yy, \, P_{34} = 1.5 * P_{33}/T \\ P_{44} &= 6.5 * P_{33}/T2 \end{split}$$

Assign_Cov_manu

Calling Module:

Run_Tracker_8

Called Modules:

get_def_Cov_manu

Inputs:

trk_type

Track filter type

scan

Current scan

manu_rep

Maneuver anticipation status flag

rep_source

Maneuver anticipation interval (scan lo, scan hi)

Outputs:

Cov_man

Maneuver covariance matrix

Cov_man_x

Cov_man_y

Globals:

Cov_man20

Cov_man30

Cov_man_acc_x

Cov_man_acc_y

Turn_int

Description:

Sets up the maneuver covariance matrix. If a maneuver has been anticipated for the current scan then maneuver noise is applied. Otherwise a small value (essentially zero) is loaded into the matrix.

Equations:

Accel_max = Maximum maneuver acceleration (km/s^2)

 $var_acc = (Accel_max)^2$

 $var_vel = (Accel_max * scan_period)^2$

 $var_pos = (0.5 * Accel_max * (scan_period)^2)^2$

 $Cov_man = \begin{bmatrix} \mathbf{var} pos & 0 & 0 \\ 0 & \mathbf{var} vel & 0 \\ 0 & 0 & \mathbf{var} acc \end{bmatrix}; trk_type \neq 3$

$$Cov_man = \begin{bmatrix} var_pos & 0 & 0 & 0 \\ 0 & var_vel & 0 & 0 \\ 0 & 0 & var_pos & 0 \\ 0 & 0 & 0 & var_vel \end{bmatrix}; trk_type = 3$$

$$Cov_man_x = Cov_man_y = Cov_man$$

get_def_Cov_manu

Calling Module:

Assign_Cov_manu

Called Modules:

None

Inputs:

trk_type

Track filter type

Outputs:

Cov_man

Maneuver covariance matrix

Cov_man_x Cov_man_y

Globals:

Cov_man20

Cov_man30

Description:

Loads default values into maneuver covariance matrices.

Equations:

Cov_man = Cov_man20;

trk_type ≠ 3

Cov_man = Cov_man30;

 $trk_type = 3$

Cov_man_x = Cov_man_y = Cov_man;

where

 $Cov_man20 = le-10 * eye (3)$

 $Cov_{man 30} = le-6 * eye (4)$

Get_Semiaxes_3

Calling Module:

Run_Tracker_8

Called Modules:

E_Gate_Semiaxes_3

get_sig_track

Scale_Shadow_gates

Inputs:

In_Shadow

Current in shadow flag $(1 \Rightarrow yes)$

In Shadow last

Last update in shadow flag

Nshadow_dwells_last Number of successive dwells in shadow as of last update

gate_case

Gate type flag (0:3) Track filter type (1:3)

trk_type Mult

Gate size multiplier

Maximum assumed acceler

Accel_max dT

Maximum assumed acceleration Time (sec) since last update

ang_pred

Angle (rad) of predicted point wrt radar cs

ang_trk

Angle (rad) of track wrt radar cs Range measurement error (km)

sig_rng_km_m sig_crng_km_m Z_s_last

Cross range measurement error (km)
Smoothed state vector (last update)
Prediction state vector (current)

Z_p Cov_p_vec

prediction covariance array (current)

semi_rng_T_last semi_crng_T_last Along range semi axes (last) Cross range semi axes (last)

semi_trk_T_last semi_ctrk_T_last Along track semi axes (last) Cross track semi axes (last)

semi_max

Maximum allowed semi axis size

Outputs:

semi_rng_T semi_crng_T Along range semi axes (current) Cross range semi axes (current) Along track semi axes (current)

semi_trk_T semi_ctrk_T

Cross track semi axes (current)

Globals:

None

Description:

Computes the semi axes for the two orientations of elliptical gates used. The first type is oriented along and across range and the second is oriented along and across track. Tracks that are in a shadow have their gate sizes frozen. Otherwise, track gates sizes are determined as a function of the gate case and track filter type selected. This function is done by the routine E_Gate_Semiaxes_3.

E_Gate_Semiaxes_3

Calling Module:

Get_Semiaxes_3

Called Modules:

Rotate_xy2xpyp

Inputs:

gate_case Gate type flag (0:3)
trk_type Track filter type (1:3)
Mult Gate size multiplier

Z_p Prediction state vector (current)
Cov_p_vec prediction covariance array (current)
Angle (rad) of predicted point wrt radar cs

sig_rng
sig_crng
Range measurement error (km)
sig_crng
Cross range measurement error (km)
ang_trk
Angle (rad) of track wrt radar cs
sig_trk
Along track measurement error (km)

sig_ctrk Cross track measurement error (km) semi_max Maximum allowed semi axes size

Outputs:

semi_rng Along range semi axes (km)
semi_crng Cross range semi axes (km)
semi_trk Along track semi axes (km)
semi_ctrk Cross track semi axes (km)

Globals:

None

Description:

Computes semi axes for elliptical gates oriented along/cross range, and oriented along/cross track. Results depend on which of three gate cases are chosen (cases 1 and 2 require a Kalman filter). In each case the along/cross track gate sizes are computed as scaled versions of the along/cross track measurement errors. However, the along/cross range oriented gate sizes are case dependent. Gate case 1 combines in an rss fashion (1) range and cross range measurement errors from the last track update, and, (2) current prediction covariance estimates in x and y, projected onto the range/cross range axes. The composite gate is formed by multiplying this result by a scale factor. Gate case 2 uses only the scaled prediction covariance estimates in x and y to form the gate. Gate case 3 uses the scaled along/cross range measurement errors to form this gate.

Equations:

The quantities sig_rng and sig_crng are measurement errors along range and cross range computed from the last report captured by a given track and stored in the track table. The quantities sig_trk and sig_ctrk are based on kinematical assumptions and are computed in get_sig_track.

alpha beta filter:

Kalman filters:

Get prediction uncertainty along x and y directions (σ_{px} , σ_{py}) from the covariance array Cov_p_vec.

 $(gate_case = 1)$

 $\Delta\theta = (ang_pred - ang_trk)$

Compute projections of σ_{px} and σ_{py} onto the range-cross range axes.

$$\begin{bmatrix} \sigma_{px'} \\ \sigma_{py'} \end{bmatrix} = \begin{bmatrix} \cos(\Delta\theta) & \sin(\Delta\theta) \\ -\sin(\Delta\theta) & \cos(\Delta\theta) \end{bmatrix} \begin{bmatrix} \sigma_{px} \\ \sigma_{py} \end{bmatrix}$$

Form the "root sum square" (Rss) of $\sigma_{px'}$ and $\sigma_{py'}$ with the measurement errors

semi_rng = Mult *
$$\sqrt{(\sigma px')^2 + (\text{sig_rng})^2}$$

semi_crng = Mult * $\sqrt{(\sigma px')^2 + (\text{sig_crng})^2}$
semi_trk = Mult * sig_trk
semi_ctrk = Mult * sig_ctrk
(gate_case = 2)
 θ = ang_trk

Compute projections of σ_{px} and σ_{py} onto track-cross track axes.

$$\begin{bmatrix} \sigma_{px''} \\ \sigma_{y''} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \sigma_{px} \\ \sigma_{py} \end{bmatrix}$$

$$\begin{bmatrix} semi_rng \\ semi_crng \\ semi_trk \\ semi_ctrk \end{bmatrix} = Mult * \begin{bmatrix} sig_rng \\ sig_crng \\ |\sigma_{px''}| \\ |\sigma_{py''}| \end{bmatrix}$$

$$(gate_case = 3)$$

get_sig_track

Calling Module:

Get_Semiaxes_3

Called Modules:

None

Inputs:

 Z_s

Smoothed state vector

Accel max

Maximum allowed acceleration (km/s*s)

dT

Time (sec) since last update

Outputs:

sig_trk_km

Along track uncertainty (km)

sig_ctrk_km

Cross track uncertainty (km)

Globals:

None

Description:

Computes along/cross track uncertainties. The along track uncertainty is computed as $0.5*A*(dT)^2$ with the along track acceleration A assumed bounded by 0.5g. The across track uncertainty is assumed to be due to constant speed turning only.

Equations:

Define the following quantities:

Acc_at = along track acceleration ≤ Accel_max

V_kmps = estimated track speed

 ρ_{km} = radius of curvature of turn (km)

Ang = angle of turn voer time dT (radians)

 $\rho_{km} = (V_kmps)^2/Accel_max$

ang = $V_kmps * dT/\rho_{km}$

 $sig_{trk}km = 0.5 Acc_{at} (dT)^{2}$

 $sig_ctrk_km = \rho_{km} (1 - cos (Ang))$

Scale_Shadow_Gates

Calling Module:

Get_Semiaxes_3

Called Modules:

None

Inputs:

gate_scale semi-rng_T_in semi_crng_T_in Gate size multiplier

semi_crng_T_in semi_trk_T_in semi_ctrk_T_in Along range semi axis (input) Cross range semi axis (input) Along track semi axis (input) Cross track semi axis (input)

Outputs:

semi_rng_T_out semi_crng_T_out semi_trk_T_out semi_ctrk_T_out Along range semi axis (output) Cross range semi axis (output) Along track semi axis (output) Cross track semi axis (output)

Globals:

None

Description:

Multiplies input gate semi axes by a scale factor.

Rotate_xy2xpyp

Calling Module:

E_Gate_Semiaxes_3

Called Modules:

None

Inputs:

ang_rad

Rotation angle (rad)

 \mathbf{Z}

Input two component vector

Outputs:

Rotated two component vector

Globals:

None

Description:

Rotates the two component vector Z through angle ang_rad.

Equations:

 $\theta = ang_rad$

and

Let Rot = $\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$

 $Z_p = Rot * Z$

Test_E_Gate

Calling Module:

Run_Tracker_8

Called Modules:

Rotate_xy2xpyp

Inputs:

 Z_m

Measurement state vector (x;y;pDop)

 Z_p

Prediction state vector (x;vx;ax;y;vy;ay)

ang_rotn

Rotation angle wrt radar cs (radians)

semi_along semi across Semi axis length along rotated x Semi axis length along rotated y

Outputs:

In E_Gate

Inclusion test flag (1 => inclusion)

Globals:

None

Description:

Tests if measured point Z_m lies within an ellipse which is (1) oriented at an angle "ang_rotn" with respect to the radar coordinate system, (2) centered on the predicted position, Z_p, and, (3) has semi axes of length semi_along and semi_across. Returns a value of zero if test fails, and a value of one if test passes.

Equations:

Let (X_m, Y_m) and (X_p, Y_p) denote the measured predicted points, respectively. Transform the predicted-measurement position error into the local coordinate system of the ellipse, centered on the predicted point. The transformed residual errors $(\Delta X', \Delta Y')$ are

$$\begin{bmatrix} \Delta X' \\ \Delta Y' \end{bmatrix} = \text{Rot } * \begin{bmatrix} X_p - X_m \\ Y_p - Y_m \end{bmatrix}$$

where

$$Y_e = semi_across * \sqrt{1 - (\Delta X' / semi_along)^2}$$

The condition for inclusion of (X_m, Y_m) within the ellipse is

$$|\Delta Y'| \le Y_e$$
 and

$$|\Delta X'| \le \text{semi_along}$$

Test_Smile_Gate

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

 T_s

Scan period (sec)

 Z_m

Measurement state vector (x;y;pDop)

 Z_p

Prediction state vector (x;vx;ax;y;vy;ay)

 Z_s_{last}

Smoothed state vector (last update)

x_last_km y_last_km x position (last update) y position (last update)

ag_HI

Maximum turn acceleration (g units)

semi_rng

Measurement ellipse semi axis along range

semi_crng

Measurement ellipse semi axis cross range

Outputs:

In_gate_m

Inclusion test flag (1 => included)

Globals:

None

Description:

Tests if measurement ellipse intersects centripetal maneuver "smile" shaped gate.

Equations:

The smile gate envelope is defined by two equations that are parameterized by the time t, ranging from the current report time to one scan period later. Let v denote the constant target speed and ρ be the radius of curvature of the turn. Then

$$\rho = v^2/(9.8 * ag_HI)$$
 and
Ang = v (T_s - t)/ ρ .

With these the equations for the maneuver envelope in the local track coordinate system, centered on the last smoothed position, are

$$x'_s = vt + \rho \sin(ang)$$

 $y'_s = \rho(1 - \cos(ang))$

The gate test is performed by:

(1) Transforming the boundary points (x'_s, y'_s) to the radar coordinate system

$$\begin{bmatrix} x_s \\ y_s \end{bmatrix} = \begin{bmatrix} x_{last_km} \\ y_{last_km} \end{bmatrix} + \begin{bmatrix} \cos(\theta_{trk}) & -\sin(\theta_{trk}) \\ \sin(\theta_{trk}) & \cos(\theta_{trk}) \end{bmatrix} \begin{bmatrix} x_s' \\ y_s' \end{bmatrix}$$

where θ_{trk} denotes the instantaneous track angle.

(2) Transforming (x_s, y_s) to local coordinate system centered on the measured point and oriented at the angle of the measured point θ_m .

$$\begin{bmatrix} \Delta X_s'' \\ \Delta Y_s'' \end{bmatrix} = \begin{bmatrix} \cos \theta_m & \sin \theta_m \\ -\sin \theta_m & \cos(\theta_m) \end{bmatrix} \begin{bmatrix} x_s - x_m \\ y_s - y_m \end{bmatrix}$$

(3) Test each maneuver envelope point for inclusion within the measurement ellipse

$$|\Delta X_s''| \le \text{semi_rng}$$

 $|\Delta Y_s''| \le Y_e$
 $Y_e = \text{semi_crng} \sqrt{1 - (\Delta X_s'' / \text{semi_rng})^2}$

Pred_Shadow_Test

Calling Module:

Run_Tracker_8

Called Modules:

get_def_Cov_manu predict_shlx_x Test_In_Shadow

Inputs:

trk_type

Type of tracking filter (1:3)

Z s last

Smoothed state vector (last update) Smoothed covariance array (last update)

Cov_s_last_vec

Time interval (sec) since last update

Outputs:

Prediction state vector

In_Shadow

Shadow status flag $(1 \Rightarrow in shadow)$

Globals:

Cov_man20 Cov_man30

x_sh_LO x_sh_HI y_sh_LO y_sh_HI

Description:

Tests if predicted position falls within a shadow region. Sets flag to 1 if in shadow. [The shadow zones were specified as a set of rectangular tiles by the scenario generator. The array x_sh_LO, x_sh_HI, y_sh_LO, and, y_sh_HI specify low and high positions of each time.]

Test_In_Shadow

Calling Module:

Shadow_Test

Called Modules:

None

Inputs:

Prediction state vector (x;vx;ax;y;vy;ay) Z_p Array specifying low x position of shadow tiles x_sh_LO Array specifying high x position of shadow tiles x_sh_HI Array specifying low y position of shadow tiles y_sh_LO

y_sh_HI

Array specifying high y position of shadow tiles

Outputs:

In_Shadow

In shadow status flag $(1 \Rightarrow in shadow)$

Globals:

None

Description:

Tests if predicted position falls within any of the shadow tiles that were specified by the scenario generator.

Discrete_Test

Calling Module:

Run_Tracker_8

Called Modules:

E_Discrete_Test

Inputs:

Z_p gate_case

Prediction state vector Gate case flag (1:3)

ang_pred

Angle (rad) of predicted point

semi_rng_T semi_crng_T

Semi axis length of along range ellipse Semi axis length of cross range ellipse

ang_trk

Angle (rad) of track

semi_trk_T semi_ctrk_T

Semi axis length of along track ellipse Semi axis length of cross track ellipse

Outputs:

In_Discrete

Discrete capture flag (1 => discrete present)

Globals:

None

Description:

Tests if discrete point falls within either of two gates oriented along/across range or along/cross track.

Equations:

```
(gate\_case = 1)
```

Each discrete point is tested for inclusion in a single ellipse, centered on the predicted point, and oriented along range/cross range. The semi axes are given by semi_rng_T and semi_cross_T.

```
(gate\_case > 1)
```

Each discrete point is tested for inclusion if either of two ellipses, both centered on the predicted point. The first ellipse is the same as defined above. The second ellipse is oriented along track/cross track and has semi axes given by semi_trk_T and semi_ctrk_T.

E_Discrete_Test

Calling Module:

Discrete_test

Called Modules:

Test_E_Gate

Inputs:

 Z_p

Prediction state vector (x;vx;ax;y;vy;ay)

ang_rotn

Rotation angle (rad) of ellipse gate wrt radar cs

semi_along semi_across Semi axis length of gate along rotated x Semi axis length of gate along rotated y

Outputs:

In_Discrete

Discrete inclusion flag (1 => discrete in)

Globals:

Ndiscrete X_D_Vec Y_D_Vec

Description:

Tests if any of a set of discrete points falls within an elliptical gate: (1) centered on the predicted point, (2) oriented at an angle "ang_rotn" wrt radar coordination system, (3) having semi axes lengths of semi_along along the rotated x axis and of length semi_across along the rotated y axis.

The discrete locations were specified by the scenario generator and given here by the arrays X_D_Vec and Y_D_Vec.

TR_Assoc_Max_T

Calling Module:

Run_Tracker_8

Called Modules:

cmp_track_age

Inputs:

Corr

Binary correlation matrix (trks, reps)

Dist

Distance matrix (trks, reps)

NAT_in

Number of active tracks in Table_T Number of reports from current scan

Nrep_in scan

Current scan

Outputs:

Update

Binary array of updated tracks $(1 \Rightarrow \text{updated})$

unAssoc

Binary array of unassociated tracks

unused

Binary array of unused reports

Asgn_Reps

Array of reports assigned to each track

Globals:

Table_T

Description:

Assigns unique reports to corresponding track. If a report is common to multiple tracks then it is assigned to the oldest track.

TR_Assoc_Min_D

Calling Module:

Run_Tracker_8

Called Modules:

cmp_track_age

Inputs:

Corr

Binary correlation matrix (trks, reps)

Dist

Distance matrix (trks, reps)
Number of active tracks in Table_T

NAT_in Nrep_in

Number of reports from current scan

scan

Current scan

Outputs:

Update

Binary array of updated tracks (1 => updated)

unAssoc

Binary array of unassociated tracks

unused

Binary array of unused reports

Asgn_Reps

Array of reports assigned to each track

Globals:

Table_T

Description:

Assigns unique reports to corresponding track. If multiple reports are common to a given track then the closest is assigned to the track.

cmp_track_age

Calling Module:

TR_Assoc_Max_T

Called Modules:

None

Inputs:

trk

Track index into Table_T

scan

Current scan

Outputs:

age

Track age since first became firm

Globals:

Table_T

Description:

Computes age of a track in scan units. Age is defined as time since track became firm.

get_track_ang

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

Z_p

Prediction state vector

Z_s_last

Smoothed state vector (last update)

Outputs:

ang_trk

Angle of track (radians)

Globals:

None

Description:

Computes track angle in radians with respect to the radar coordinate system.

get_pred_ang

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

 Z_p

Prediction state vector

Outputs:

ang_pred

Prediction of Angle

Globals:

None

Description:

Computes angle of predicted point with respect to the radar coordinate system.

update_error

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

N_Hits

Number of times track captured a report

Z_tru

True state vector

Z_uu Z_p

Prediction state vector

TID

Track ID number

Outputs:

mean_error

Position error (predicted - true) averaged over N_Hits

sigma_error

Standard deviation of position error

Globals:

SUM1_ERROR SUM2_ERROR

Description:

Computes running mean and standard deviation of position error between predicted and true values as a function of track ID number. Stores running first and second moments in global buffers SUM1_ERROR and SUM2_ERROR.

Load_P_DET

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

Ntk_max

Number of tracks in P_DET buffer

scan

Current scan index

N_HITS

Number of captures for track

N_EVENTS

Number of captures plus misses for track

Outputs:

None

Globals:

Table_T_P_DET

Description:

Computes fraction of captures for specific track over its evolution. Stores results in global buffer P_DET.

Load_dBuf_4

Calling Module:

Run_Tracker_8

Called Modules:

get_Table_Trk_4

Inputs:

Ntrk

Current number of tracks

dBuf_last_cnt

Number of dropped HP tracks in buffer dBuf at last scan

Outputs:

dBuf_cnt

Number of dropped HP tracks in buffer dBuf currently

Globals:

dBuf

Table_T

DROPPED TENT FIRM

DP LP

Description:

Updates the high priority dropped track buffer each scan. The buffer dBuf has three components: (time, x position, y position)

plot_dBuf

Calling Module:

Run_Tracker_8

Called Modules:

None

Inputs:

dBuf_new

Counter in dropped track buffer

plot_vec

Min and max s and y values of plot space

Outputs:

None

Globals:

dBuf

Description:

Plots dropped high priority tracks each scan.