Single Phase Heat Transfer

Fourier's
$$Law:$$

$$\frac{1}{5}''(W/m^2) = -k \frac{\partial T}{\partial n} \vec{n} + (W/m^2k)$$

Newton's Law:
$$\overline{q}''(W/m^2) \equiv h(Tw-T_b)\overline{n}$$

h(W/m20K)

$$Nu = \frac{hD_H}{k} = fCRe, Po, Gr, MW/Mb)$$

$$D_{H} = \frac{4A_{F}}{P_{H}}$$
 PH-heated perimeter.

Table 10-2 Typical h values.

2. Turbulant Flows

Table 10-2 Typical values of the heat-transfer coefficient for various processes

	Heat-transfer coefficient (h)		
Process	Btu/hr ft ² °F	W/m² °K	
Natural convection			
Low pressure gas	1–5	6–28	
Liquids	10-100	60-600	
Boiling water	100-2000	60-12,000	
Forced convection in pipes			
Low pressure gas	1-100	6-600	
Liquids			
Water	50-2000	250-12,000	
Sodium	500-5000	2,500-25,000	
Boiling water	500-10,000	2,500-50,000	
Condensation of steam	1,000-20,000 5,000-100,000		

Table 10-4 Nusselt number for laminar fully developed velocity and temperature profiles in tubes of various cross sections

Cross-sectional shape	b/a	Nu* $q'' = constant$	$T_{\rm w} = {\rm constant}$
	_	4.364	3.66
$a \square b$	1.0	3.63	2.98
a	1.4	3.78	
a	2.0	4.11	3.39
a	3.0	4.77	
a	4.0	5.35	4.44
a	8.0	6.60	5.95
	∞	8.235	7.54
///////////// (insulated)	∞	5.385	4.86
\triangle		3.00	2.35

Source: From Kays [22].

^{*}The constant-heat-rate solutions are based on constant axial heat rate but with constant temperature around the tube periphery. Nusselt numbers are averages with respect to tube periphery.

Figure 10-6 Nusselt numbers for fully developed laminar flow parallel to an array of circular tubes.

Figure 10-7 Local Nusselt number determined by Kays [23] for simultaneous velocity and temperature development for laminar flow in a circular tube (Pr = 0.7).

i) Seider and Tate: NUp = 0.023 Re Pr (MW) Circular Tubes: (bulk temp. except MW) 07/2 Pr 2 120, Re>10,000 ii) Dithus - Boetter! Nu=0.023 Re Pr fluid is heated No = 0.023 Re 0.8 Pr 1, " Called. (bulk temp.) (11) Colburn (1tigh viscosity) -0.2 5+ Pr3/2 = 0.023 Re St= Nu/(Re.Pr) (Incap film temp.)

Up but bulk temp Red bundles: Fig. 10-12, 10-13. Nu= 4 (Nx)c+ 2.4.P/D-1) 4 = 0.9090 + 0.0783 P/D - 0.1283 e Triangular Garay: 4=0.9217 +0.1478P/D - 0.1130 e 1.05 € Pb € 1.9. B Metallic Fluids : N' Nhy = A+BPe; Pe=RePri-Peclet no. 1 Circular Tuke NUm = 7 + 0.025 Pe - constant heat flux Nun= 5.0 +0.025 Pe - Constant wall temp.

Figure 10-12 Fully developed turbulent flow parallel to a bank of circular tubes or rods. Reynolds number influence is small, and Nusselt number behavior is virtually the same as friction behavior.

Figure 10-13 Variation of Nusselt number for fully developed turbulent flow with rod spacing for Prandtl number < 0.01. (From Nijsing [34].)

2 Parallel plate.

Num = 5-8 +0.02 Pc - constant heat flux

3. Concentric Parauli $D_2/D_1 > 1.4$ $Nu_8 = 5.25 + 0.0188$ Pe $\frac{P_2}{P_1}$

Rod Bundles.

Fig. 10-16.

Figure 10-16 Comparison to predicted and experimental results of Nu for liquid metals in rod bundles for P/D = 1.3. (From Kazimi and Carelli [25].)

Figure 10-17 Comparison of predicted and experimental results of Nu for metals in rod bundles for P/D = 1.15. (From Kazimi and Carelli [25].)