

CUSTOMER APPROVAL SHEET

С	ompany Name	
	MODEL	A050VVN01.0
	CUSTOMER	Title :
	APPROVED	Name :
		FIONS ONLY (Spec. Ver. <u>0.0)</u> FIONS AND ES SAMPLE (Spec. Ver. <u>0.0)</u> FIONS AND CS SAMPLE (Spec. Ver. <u>0.0)</u>
	CUSTOMER REMARK:	· ·

AUO PM:

P/N: 97.05A16.000

Comment:

Doc. version :	0.0
Total pages :	27

Date: 2011/10/19

Product Specification 5" COLOR TFT-LCD MODULE/PANEL

Model Name: A050VVN01.0

Planned Lifetime: From 2010/Oct To 2012/Dec
Phase-out Control: From 2012/July To 2012/Dec
EOL Schedule: 2012/ Dec

<->>Preliminary Specification

< >Final Specification

Note: The content of this specification is subject to change.

© 2011 AU Optronics All Rights Reserved, Do Not Copy.

Version:	0	٥.)
----------	---	----	---

Page: 1/26

Record of Revision

Version	Revise Date	Page	Content
0.0	20111019		First Draft

Page: 2/26

Contents

Α.	General Information	3
В.	Outline Dimension	
C.	Electrical Specifications	5
	1. TFT LCD Panel Pin Assignment	
	2. Absolute Maximum Ratings	8
3. E	Electrical DC Characteristics	8
	4. Electrical AC Characteristics	
	5. Power On / Off Characteristics	16
	6. Command Descriptions	17
D.		
E.	Reliability Test Items	22
G.	Packing and Marking	
	1. Packing Form	24
Н.	Application Circuit	25
ı F	Precautions	26

Page: 3/26

A. General Information

This product is for PND application.

NO.	ltem	Unit	Specification	Remark
1	Screen Size	inch	5(Diagonal)	
2	Display Resolution	dot	480RGB(H)×800(V)	
3	Overall Dimension	mm	71.2(H)X119.5(V)X2.61(T)	Note 1
4	Active Area	mm	64.8(H)×108.0(V)	
5	5 Pixel Pitch		0.045(H)×0.135(V)	
6	6 Color Configuration		R. G. B. Stripe	Note 2
7	7 Color Depth		16.7M Colors	
8	8 NTSC Ratio		50	
9	9 Display Mode		Normally Black	
11	Weight	g	46.5±5	
12	Power Consumption	mW	878(typ)	Note 3
13	Interface		24 bit RGB	

Note 1: Not include blacklight cable and FPC. Refer next page to get further information.

Note 2: Below figure shows dot stripe arrangement.

Note 3: Please refer to Electrical Characteristics chapter.

Page: 4/26

B. Outline Dimension

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 5/26

C. Electrical Specifications

1. TFT LCD Panel Pin Assignment

Recommended connector: FH29B-90S-0.2SHW

Pin no	Symbol	I/O	Description	Remark
1	VCOM	С	Stabilizing capacitor	
2	VGL	С	Stabilizing capacitor	
3	C51N	С	Booster capacitor	
4	C51P	С	Booster capacitor	
5	VGH	С	Stabilizing capacitor	
6	C41N	С	Booster capacitor	
7	C41P	С	Booster capacitor	
8	DVDD	С	Stabilizing capacitor	
9	C32N	С	Booster capacitor	
10	C32P	С	Booster capacitor	
11	C31N	С	Booster capacitor	
12	C31P	С	Booster capacitor	
13	VCL	С	Stabilizing capacitor	
14	VCI	Р	Power supply for DC-DC circuit	
15	C24N	С	Booster capacitor	
16	C24P	С	Booster capacitor	
17	C23N	С	Booster capacitor	
18	C23P	С	Booster capacitor	
19	C22N	С	Booster capacitor	
20	C22P	С	Booster capacitor	
21	C21N	С	Booster capacitor	
22	C21P	С	Booster capacitor	
23	AVEE	С	Stabilizing capacitor	
24	AVDD	С	Stabilizing capacitor	
25	C14N	С	Booster capacitor	
26	C14P	С	Booster capacitor	
27	C13N	С	Booster capacitor	
28	C13P	С	Booster capacitor	
29	C12N	С	Booster capacitor	
30	C12P	С	Booster capacitor	
31	C11N	С	Booster capacitor	
32	C11P	С	Booster capacitor	
33	VREFCP	С	Stabilizing capacitor	
34	VCI	Р	Power supply for DC-DC circuit	

Page: 6/26

٥٥	LED DIAMA		PWM type control signal for brightness of the LED	If not used, please
35	LED_PWM	0	backlight	open this pin.
36	VDDI	Р	Power supply for interface system	
37	VS	I	Vertical sync input	
38	GND	Р	Ground	
39	HS	ı	Horizontal sync input	
40	GND	Р	Ground	
41	PCLK	I	Data clock Input	
42	GND	Р	Ground	
43	DE	I	Data enable input. Active level is high.	Please connect to GND, if do not use.
44	GND	Р	Ground	
45	DB0	I	Blue Data input; LSB	
46	DB1	ı	Blue Data input	
47	DB2	I	Blue Data input	
48	DB3	ı	Blue Data input	
49	DB4	ı	Blue Data input	
50	DB5	ı	Blue Data input	
51	DB6	ı	Blue Data input	
52	DB7	ı	Blue Data input; MSB	
53	DG0	I	Green Data input; LSB	
54	DG1	I	Green Data input	
55	DG2	I	Green Data input	
56	DG3	I	Green Data input	
57	DG4	I	Green Data input	
58	DG5	ı	Green Data input	
59	DG6	ı	Green Data input	
60	DG7	I	Green Data input ; MSB	
61	DR0	I	Red Data input; LSB	
62	DR1	I	Red Data input	
63	DR2	I	Red Data input	
64	DR3	I	Red Data input	
65	DR4	I	Red Data input	
66	DR5	I	Red Data input	
67	DR6	I	Red Data input	
68	DR7	I	Red Data input; MSB	
69	GND	Р	Ground	
70	VDDI	Р	Power supply for interface system	

Page: 7/26

71	RESX	I	Reset pin. (Low active)	
72	csx	I	Chip select (Low active) of SPI	
73	SCL	I	Clock input of SPI	
74	SDI	I	Data input of SPI	
75	GND	Р	Ground	
76	GND	Р	Ground	
77	GND	Р	Ground	
78	GND	Р	Ground	
79	VREF_PWR	С	Stabilizing capacitor	
80	VLED-	Р	LED backlight cathode	
81	VLED+	Р	LED backlight anode	
82	dummy	NC	No connection	Please open this pin.
83	TP1	I/O	TP1 control signal	If not used, please open this pin.
84	TP2	I/O	TP2 control signal	If not used, please open this pin.
85	TP3	I/O	TP3 control signal	If not used, please open this pin.
86	TP4	I/O	TP4 control signal	If not used, please open this pin.
87	TP5	I/O	TP5 control signal	If not used, please open this pin.
88	TP6	I/O	TP6 control signal	If not used, please open this pin.
89	TP7	I/O	TP7 control signal	If not used, please open this pin.
90	TP8	I/O	TP8 control signal	If not used, please open this pin.

Note 1: I: Input pin; O: Output pin; P: Power pin; G: Ground pin; C: Capacitor; NC: No connection

Page: 8/26

2. Absolute Maximum Ratings

ltome	Symbol	V	/alues	Unit	
Items	Symbol	Min.	Max.	Unit	
Supply Voltage	VCI	-0.3	+5.5	V	
Supply Voltage	VDDI	-0.3	+5.5	V	

Note: If the module exceeds the absolute maximum ratings, it may be damaged permanently. Also, if the module operates with the absolute maximum ratings for a long time, the reliability may drop.

3. Electrical DC Characteristics

a. Typical Operation Condition (GND = 0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Analog operating voltage	VCI	2.6	2.8	3.3	V	
Logic operating voltage	VDDI	1.65	2.8	3.3	V	
Logic high level input voltage	VIH	0.7VDDI	-	VDDI	V	
Logic low level input voltage	VIL	GND	-	0.3 VDDI	V	

b. Power Consumption (GND=0V)

Mode	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Normal	P _N	VCI = 2.8V VDDI = 2.8V	-	110	130	mW	Note 1,2
Sleep	Ps		-	30	35	mW	

Note 1: Test Condition is under typical Electrical DC and AC characteristics.

Note 2: Test pattern is the following picture (color bar).

c. Backlight Driving Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Supply Current	IL		20	22	mA	single serial
Power Consumption	PBL		768	937	mW	
LED Life Time	LL	10,000			Hr	Note 2

Note 1: LED backlight is 12 LEDs serial type. Suggestion is driven by current 20mA for each LED string.

Page: 9/26

Note 2: Define "LED Lifetime": brightness is decreased to 50% of the initial value. LED Lifetime is restricted under normal condition, ambient temperature = 25°C and LED lightbar current = 20 mA.

Note 3: If it uses larger LED lightbar voltage/ current more than 22mA, it maybe decreases the LED lifetime

Page: 10/26

4. Electrical AC Characteristics

a. SPI Interface Characteristics

(a) Signal AC Characterics

VDDI=1.65~3.3V, VCI=2.6~3.3V, TA=25℃

Signal	Symbol	Parameter	Min.	Max.	Unit	Description
	t _{SCYCW}	Serial clock cycle (Write)	100	-	ns	
	t _{shw}	SCL "H" pulse width (Write)	40	-	ns	
	t _{SLW}	SCL "L" pulse width (Write)	40	-	ns	
	t _{SCYCR}	Serial clock cycle (Read GRAM)	300	-	ns	
SCL	t _{SHR}	SCL "H" pulse width (Read GRAM)	140	-	ns	
	t _{SLR}	SCL "L" pulse width (Read GRAM)	140	-	ns	
	t _{SCYCR}	Serial clock cycle (Read ID)	300	-	ns	
	t _{shr}	SCL "H" pulse width (Read ID)	140	-	ns	
	t _{SLR}	SCL "L" pulse width (Read ID)	140	-	ns	
SDI	t _{SDS}	DE setup time	20	-	ns	
ועכ	t _{SDH}	DE hold time	20	-	ns	
	t _{CHW}	Chip select "H" pulse width	45	-	ns	
CSX	t _{CSS}	Chip select setup time	20	-	ns	
	t _{CSH}	Chip select hold time	50	-	ns	

Page: 11/26

(b) Write Mode

Page: 12/26

b. RGB Interface Characteristics

(a) Signal AC Characterics

VDDI=1.65~3.3V, VCI=2.6~3.3V, TA=25℃

Signal	Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{VSYNS}		VSYNC setup time	10			ns
VS	t _{VSYNH}	VSYNC hold time	10			ns
	t _{HSYNS}	HSYNC setup time	10			ns
HS	t _{SCYCR}	HSYNC hold time	10			ns
	t _{HVPD}	HSYNC to VSYNC falling edge	400			ns
	t _{DCYC}	PCLK cycle time	36.5	-	46.1	ns
DOLK	t _{DFREQ}	PCLK frequency	21.7	-	27.4	MHz
PCLK	t _{DLW}	PCLK "L" pulse width	11			ns
	t _{DHW}	PCLK "H" pulse width	11			ns
55	t _{DCSS}	DE setup time	10			ns
DE	t _{DCSH}	DE hold time	10			ns
D0 D00	t _{DDS}	RGB Data setup time	10			ns
D0~D23	t _{DDH}	RGB Data hold time	10			ns

Note 1: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

Note 2: Measuring of input signals are 0.30 x VDDI for low state and 0.7 x VDDI for high state.

Page: 13/26

(b) RGB Interface Mode Set

RGB I/F Mode	PCLK	DE	D23-D0	vs	нѕ	Register VFP[7:0], VBP[7:0]
RGB Mode 1 (SYNC + DE)	Used	Used	Used	Used	Used	Not used
RGB Mode 2 (SYNC Only)	Used	Not used	Used	Used	Used	Used

In RGB Mode 1, writing data to line buffer is done by PCLK and Video Data Bus (D23 to D0), when DE is high state. The external clocks (PCLK, VS and HS) are used for internal displaying clock. So, controller must always transfer PCLK, VS and HS signal to IC DDI.

In RGB Mode 2, back porch of Vsync VBP is defined by VBP[7:0] of RGBCTR command. And back porch of Hsync HBP is defined by HBP[7:0] of RGRCTR command. Front porch of Vsync VFP is defined by VFP[7:0] of RGBCTR command. And front porch of Hsync HFP is defined by HFP[7:0] of RGBCTR command.

(c) Video signal data writing method in RGB Mode 1 Interface

Notes:

1. Constraint:

V-Back Porch (Vsync+VBP) ≥ 5 HS lines, V-Front-Borch (VFP) ≥ 5 HS lines H-Back Porch (Hsync+HBP) $\square 5$ PCLK clocks, H-Front-Porch (HFP) $\square 2$ PCLK clocks

- 2. t VHS□ 400ns
- 3. D[23:0] (DR[7:0], DG[7:0], DB[7:0])

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 14/26

(d) Video signal data writing method in RGB Mode 2 Interface

Notes:

1. Constraint:

V-Back Porch (VBP[7:0]) \square 5 HS lines, V-Front Porch (VFP[7:0]) \square 5 HS lines H-Back Porch (HBP[7:0]) \square 5 PCLK clocks, H-Back Porch (HFP[7:0]) \square 2 PCLK clocks

- 2. t VHS≧ 400ns
- 3. D[23:0] (DR[7:0], DG[7:0], DB[7:0])

Page: 15/26

(e) Vertical and horizontal timing

VDDI=1.65~3.3V, VCI=2.6~3.3V, TA=25℃

	Veritcal Timing										
ltem	Symbol	Min.	Тур.	Max.	Unit	Remark					
Vertical cycle period	T _{VP}	810	832	930	HS						
Vertical low pulse width	T _{VS}	2	-	-	HS						
Vertical front porch	T _{VFP}	5	-	64	HS	VFP[5:0]					
Vertical back porch	T_{VBP}	3	-	64	HS						
Vertical data start line	T _{VS} + T _{VBP}	5	-	128	HS	VBP[5:0]					
Vertical blanking period	$T_{VBL} = T_{VS} + T_{VBP} + T_{VFP}$	10	32	-	HS						
Vertical active area	T _{VDISP}	-	800	ı	HS						
Vertical refresh rate	T _{VRR}	55	60	70	Hz						
	Horizontal Tir	ning									
ltem	Symbol	Min.	Тур.	Max.	Unit						
Horizontal cycle period	T _{HP}	487	512	610	PCLK	Note 2					
Horizontal low pulse width	T _{HS}	2	-	-	PCLK						
Horizontal front porch	T _{HFP}	2	-	64	PCLK	HFP[5:0]					
Horizontal back porch	T _{HBP}	3	-	64	PCLK						
Horizontal data start point	T _{HS} + T _{HBP}	5	-	128	PCLK	HBP[5:0]					
Horizontal blanking period	$T_{HBL} = T_{HS} + T_{HBP} + T_{HFP}$	7	32	-	PCLK						
Horizontal active area	T _{HDISP}	-	480	1	PCLK						
Pixel clock cycle	F _{PCLKCYC}	21.7	25.6	27.4	MHz						

Page: 16/26

5. Power On / Off Characteristics

a. Recommended Power On/Off Sequence

The LCD adopts high voltage driver IC, so it could be permanently damaged under a wrong power on/off sequence. The suggested LCD power sequence is below:

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 17/26

6. Command Descriptions

a. User Command Set

Instruction	Address	D7	D6	D5	D4	D3	D2	D1	D0	Function		
SLPIN	10h	No Argument						No Argument Sleep in & boos				Sleep in & booster off
SLPOUT	11h		No Argument							Sleep out & booster on		
DISPOFF	28h	No Argument						Display off				
DISPON	29h		No Argument				Display on					

Page: 18/26

b. Recommended Power On Register Setting

Number	Address	Data	Description	
1	F000h	55h		
2	F001h	AAh	Enable Manufacture Command	
3	F002h	52h	for Page 0	
4	F003h	08h	ioi Fage 0	
5	F004h	00h		
6	B100h	0Ch	Display Option Control	
7	B101h	00h	ызріаў Орцоп Сопцоі	
8	BC00h	05h		
9	BC01h	05h	Inversion Driving Control	
10	BC02h	05h		
11	F000h	55h		
12	F001h	AAh	Enable Manufacture Command	
13	F002h	52h	for Page1	
14	F003h	08h	ioi ragei	
15	F004h	01h		
16	TBD	TBD	Power Control	
17	TBD	TBD	Gamma Correction	
18	1100h	-	EXIT_SLEEP_MODE	
	W	ait for more than 120ms	S	
19	2900h	-	SET_DISPLAY_ON	

c. Recommended Power Off Register Setting

Number	Address	Data Description			
1	2800h	-	SET_DISPLAY_OFF		
2	1000h	-	ENTER_SLEEP_MODE		

Page: 19/26

D. Optical Specification

All optical specification is measured under typical condition (Note 1, 2)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response	Гіте							
Rise		Tr	θ=0°		20		ms	Note 3
Fall		Tf			15		ms	
Contrast ra	atio	CR	At optimized viewing angle	650	800	1		Note 4
	Тор			60	80			
Viewing Angle	Bottom		CR□10	60	80			Note 5
Viewing Angle	Left		CKITO	60	80		deg.	Note 5
	Right			60	80			
Brightnes	SS	Y_L	θ=0°	360	450	1	cd/m ²	Note 6
	White	Х	θ=0°	0.28	0.33	0.38		Tentative
	VVIIILE	Y	θ=0°	0.30	0.35	0.40		Tentative
	Red	Х	θ=0°	0.548	0.598	0.648		Tentative
Chromaticity	Reu	Y	θ=0°	0.306	0.356	0.406		Tentative
Chromaticity	Green	Х	θ=0°	0.311	0.361	0.411		Tentative
	Green	Y	θ=0°	0.536	0.586	0.636		Tentative
	Blue	Х	θ=0°	0.095	0.145	0.195		Tentative
	Diue	Y	θ=0°	0.107	0.157	0.207		Tentative
Uniformi	ty	ΔY_L	%	70	80		%	Note 7

Note 1: Measurement should be performed in the dark room, optical ambient temperature =25°C, and backlight current IL=20 mA.

Note 2: To be measured on the center area of panel with a viewing cone of 1° by Topcon luminance meter BM-5A, after 15 minutes operation.

Page: 20/26

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 4.Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR) = Photo detector output when LCD is at "White" status
Photo detector output when LCD is at "Black" status

Note 5. Definition of viewing angle, θ , Refer to figure as below.

Note 6. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 7: Luminance Uniformity of these 9 points is defined as below:

Page: 21/26

Uniformity = $\frac{\text{minimum luminance in 9 points (1-9)}}{\text{maximum luminance in 9 points (1-9)}}$

Page: 22/26

E. Reliability Test Items

No.	Test items	Condit	tions		Remark	
1	High Temperature Storage	Ta= 80°C		240Hrs	Note 1 & Note 2	
2	Low Temperature Storage	Ta= -20°C		240Hrs	Note 1 & Note 2	
3	High Temperature Operation	Ta= 70°C		240Hrs	Note 1 & Note 2	
4	Low Temperature Operation	Ta= -10°C		240Hrs	Note 1 & Note 2	
5	High Temperature & High Humidity	Ta= 60°C. 90% F	RH	240Hrs	Note 1 & Note 2	
6	Heat Shock	-20°C ~70°C, 50 cy	Non-operation			
7	Electrostatic Discharge	Contact = ± 4 Air = ± 8 k\	Note 4			
		Frequency range	: 8~33.	3Hz	Non-operation	
		Stoke	: 1.3mn	n	JIS C7021, A-10	
8	Vibration	Sweep	: 2.9G ,	33.3~400Hz		
		2 hours for each d	irection	of X,Y,Z	. 13 minutes	
		4 hours for \	Y directi	on		

Note 1: Ta: Ambient Temperature.

Note 2: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 3: All the cosmetic specification is judged before the reliability stress.

Note 4 : All test techniques follow IEC6100-4-2 standard.

Test Condition		Note
Pattern		
Procedure	Contact Discharge : 330Ω, 150pF, 1sec, 5point, 10times/point	
And	$\underline{\text{Air Discharge}}$: 330 Ω , 150pF, 1sec, 5 point, 10times/point	
Set-up		

Page: 23/26

Note 5: Operate with chess board pattern as figure and lasting time and temperature as the conditions.

Then judge with 50% gray level, the mura is less than JND 2.8

Note 6: The panel is tested as figure. The jig is ϕ 10 mm made by Cu with rubber and the loading speed is 3mm/min on position A~E. After the condition, no glass crack will be found and panel function check is OK.(no guarantee LC mura \cdot LC bubble)

Page: 24/26

G. Packing and Marking

1. Packing Form

Page: 25/26

H. Application Circuit

Page: 26/26

I. Precautions

- 1. Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with TFT display module.
- 15. Static electricity will damage the module, please do not touch the module without any grounded device.
- 16. Do not disassemble and reassemble the module by self.
- 17. Be careful do not touch the rear side directly.
- 18. No strong vibration or shock. It will cause module broken.
- 19. Storage the modules in suitable environment with regular packing.
- 20. Be careful of injury from a broken display module.
- 21. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.