IC TESTER

Submitted by: Group 67

	Group Members:
Aaranya Prasad	2019A7PS0107G
Aaryan Lad	2019AAPS0255G
Mansi Doshi	2019A8PS0493G
Mitali Doshi	2019A7PS0064G
Sarvesh Garge	2019AAPS0233G
Svadhi Jain	2019A8PS0573G

A7PS0107G AAPS0255G A8PS0493G A7PS0064G APS0233G A8PS0573G

Date: 19/4/2021

Contents

Design Problem	
Assumptions	
User Guide	
Components used with justification wherever required	
Address Map	
Memory Map	
I/O Map	
Design	
Flow Chart	16
Main Program	16
Variations in Proteus Implementation with Justification	17
Firmware	17
List of Attachments	17

Design Problem

Design a Microprocessor based Tester to test the logical functioning of the following chips

- 1. 7400
- 2. 7408
- 3. 7432
- 4. 7486
- 5. 747266

The IC to be tested will be inserted in a 14 pin ZIF socket.

The IC number is to be entered via a keyboard.

The keyboard has keys 0-9, backspace, enter and test.

The user places the IC in the ZIF socket, closes it – then enters the IC No, followed by the enter key.

The IC No. is displayed on the 7-segment display.

The testing will start once the user presses the "TEST" key.

After Test the result PASS/FAIL must be displayed on the 7-segment display.

Assumptions

- 1. Only the test key can be pressed after the enter key.
- 2. No key can be pressed while testing the IC.
- 3. No key can be pressed while the display shows PASS/FAIL

User Guide

- 1. Attach the IC in the ZIF Socket properly and lock it.
- 2. Enter the IC number via the keypad.
- 3. Press the Enter Key after the IC number is entered via the keypad.
- 4. The IC Number will be displayed on the 7-segment display.
- 5. Press the Test key for testing the IC working.
- 6. If the IC number entered is the same as the IC attached and the IC working properly, PASS shall be displayed.
- 7. For all the other cases, FAIL shall be displayed.
- 8. The backspace key can be used in case any wrong digit is typed via the keypad.

Components used with justification wherever required

<u>No</u>	COMPONENT	DESCRIPTION	QUANTITY
1.	8086	Microprocessor	1 unit
2.	8255A	1 unit for interfacing with the keyboard input and 7 segment display	2 units
		1 unit for interfacing with the ZIF socket	
3.	8284A		1 unit
4.	2716	(2K ROM chips) We would need 2k even bank and 2k odd bank ROM in the starting and then a 2k even bank and 2k odd bank ROM at the end.	4 units
5.	6116	(2K RAM chips) We would need a 2k odd and 2k even bank for RAM. We need RAM for stack and temporary storage of data	2 units
6.	LS138	(Active low DMUX 3X8) Selecting between even and odd banks of RAM and ROM.	2 unis
7.	NL7SZ19	(Active low DMUX 1X2) Selecting between the 2 8255As	1 unit
8.	LS245	System Data bus	2 unit
9.	LS244	System Control bus	1 unit
10.	LS373	System Address bus	3 unit
11.	7 segment anode display	To display digits and PASS/ FAIL	6 units
12.	14 pin ZIF Socket	To insert the chip to be tested	1 unit
13.	7400	IC of Quadruple 2-input positive NAND Gates	1 unit

14.	7408	IC of Quadruple 2-input positive AND Gates	1 unit
15.	7432	IC of Quadruple 2-input positive OR Gates	1 unit
16.	7486	IC of Quadruple 2-input positive XOR Gates	1 unit
17.	747266	IC of Quadruple 2-input positive XNOR Gates	1 unit
18.	10k ohm resistor	Keyboard Interface	4 units
19.	150 ohm resistor	Display interface for the input	7 units
20.	690 ohm resistor	Display Interface for the enable	6 units
21.	2N2905	(PNP BJT) 7 Segment Display Interface	6 units
22.	SPST Push Buttons	Keyboard	16 units
23.	Switch (SW-SPDT-MOM)	Interactive SPDT Switch with Momentary Action	1 unit
24.	2 Input Positive OR gate	For control signal	4 units
25.	NOT gate	For control signals	2 units

Address Map Memory Map

Minimum available size of ROM chip = 2k Minimum available size of RAM chip = 2k

Since 8086 has a 16-bit data bus and the chips have an 8-bit data bus, we require even and odd banks for memory addressing

 $ROM1 - 00000_H - 00FFF_H$

RAM $1-01000_{H}-01FFF_{H}$

 $ROM2-FF000_{H}-FFFFF_{H} \\$

Number of Chips

2K ROM Chips (chip number) = 4

2K RAM Chips (chip number) = 2

Memory Allocation

ROM 1	even	00000h, 00002h 00FFEh
	odd	00001h, 00003h 00FFFh
RAM 1	even	01000h, 01002h 01FFEh
	odd	01001h, 01003h 01FFFh
ROM 2	even	FF000h, FF002h FFFFEh
	odd	FF001h, FF003h FFFFFh

ROM1- 00000h-00FFFh

A19	A18	A17	A16	A15	A14	A13	A12	A11	 A0
0	0	0	0	0	0	0	0	0	 0
0	0	0	0	0	0	0	0	1	 1

RAM1- 01000h-01FFFh

	A19	A18	A17	A16	A15	A14	A13	A12	A11	 A0
	0	0	0	0	0	0	0	1	0	 0
ſ	0	0	0	0	0	0	0	1	1	 1

ROM2-FF000h-FFFFFh

A19	A18	A17	A16	A15	A14	A13	A12	A11	 A0
1	1	1	1	1	1	1	1	0	 0
1	1	1	1	1	1	1	1	1	 1

We see that address lines A12, A13 and A14 are unique for every component. Hence, we use these lines as select lines to our decoders for the memory banks

I/O Map

We have two 8255's being used, for interfacing with the I/O Devices. One of them is used for keyboard and 7 segment display interfacing and the other is used for ZIF Socket interfacing.

The address allocation for the 2 8255A's are as follows:

1. 8255A-1

PORT A: 00HPORT B: 02HPORT C: 04H

• CONTROL REGISTER: 06H

The table below shows the address of the ports of 8255A-1 in binary:

A7	A6	A5	A4	A3	A2	A1	A0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0
0	0	0	0	0	1	1	0

2. 8255A-2

PORT A: 10HPORT B: 12HPORT C: 14H

• CONTROL REGISTER: 16H

The table below shows the address of the ports of 8255A-2 in binary:

A7	A6	A5	A4	A3	A2	A1	A0
0	0	0	1	0	0	0	0
0	0	0	1	0	0	1	0
0	0	0	1	0	1	0	0
0	0	0	1	0	1	1	0

From the above two tables, we can clearly see that A4 input is different for the different 8255's but remains the same internally. This can be used as input signal to a 1:2 decoder to differentiate the 8255's.

Port Allocation:

8255A-1:

- PORT A: 8 pins as output pins which are inputs to the 7-segment display
- PORT B: 6 pins as output pins which are the enable inputs for the 7-segment display.
- PORT C:
- 1. UPPER PORT C: 4 pins as output pins which are input to the keyboard as the column inputs.
- 2. LOWER PORT C: 4 pins as input pins from the keyboard as the row outputs.

8255A-2:

- PORT A: 6 pins as output pins which are inputs to the ZIF Socket pins: P1, P2, P12, P13, P5, and P9.
- PORT B: 2 pins as input pins which are output from P3 and P11 from the ZIF Socket.
- PORT C:

UPPER PORT C: 2 pins: P6 and P8.
 LOWER PORT C: 2 pins: P4 and P10

I/O pins of IC's to be tested:

IC	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7400	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	VCC
7408	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	VCC
7432	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	VCC
7486	1A	1B	1Y	2A	2B	2Y	GND	3Y	3A	3B	4Y	4A	4B	VCC
747266	1A	1B	1Y	2Y	2A	2B	GND	3A	3B	3Y	4Y	4A	4B	VCC

^{**}nA,nB ---> Input pins, nY ----> Output pin

- From the above table, we can see that pins P1, P2, P9, P5, P12, P13 are always input to the logic gates, and hence these pins are connected to the Port A of the 8255A-2.
- Pins P3 and P11 are always output from the gates, hence they are connected to Port B of 8255A-2.
- The pins P4 and P10 are input pins for the IC chips 7400, 7408, 7432, 7486 and they are output pins for the IC 747266. Hence, these pins are connected to the Upper Port C of the 8255A-2 (As individual bits of port C can be reconfigured via the BSR Mode).
- The pins P6 and P8 are output pins for the IC chips 7400, 7408, 7432, 7486 and they are input pins for the IC 747266. Hence, these pins are connected to the Lower Port C of the 8255A-2 (As individual bits of port C can be reconfigured via the BSR Mode).

System Bus of 8086 (Address)

System Bus of 8086 (Data + Control)

M/Ió	RD'	wr'	Bus Cycle
١	0	t	MRD'
1	. 1.	0	MWR'
0	0	ı	IORD'
٥	1	O	IOWR'

Here, MRD' and MWR' correspond to the memory read (MEMR') and memory write (MEMW') bus cycles, IORD' and IOWR' correspond to I/O read (IOR') and I/O write (IOW') bus cycles respectively

I/O Interfacing Diagrams

IC's Used

IC -7400

2 Input NAND GOTE IC

1C-7408

2 input AND gates

IC 7432

2 input OR gates

IC 7486

2 input xOR gates

2 INPUT X NOR gates

Flow Chart Main Program

Variations in Proteus Implementation with Justification

- 1. Since Proteus does not have working modules of 2K ROM(2716), 4K ROM(2732) modules are used in it. Therefore, it has 16K ROM in total compared to 8 K used in the paper design, with A15, A14 and A13 used accordingly for selection of chip compared to A14, A13 and A12 used in the paper design.
- 2. Using a gate-based circuit for memory does the same as LS 138 here.
- 3. There is no ZIF socket in Proteus, therefore the pins of the IC are directly connected to the corresponding pins in the 8255.

Firmware

Implemented using emu8086 attached.

List of Attachments

- 1. Complete Hardware Real World Design ictesterdesign.pdf
- 2. Manuals
 - a. IC 7400
 - b. IC 7408
 - c. IC 7432
 - d. IC 7486
 - e. IC 747266
 - f. 8255A
 - g. 8284A
 - h. 8086
 - i. 2716EPROM
 - j. 6716RAM
 - k. 2N2905
 - I. 7 segment display
 - m. LS138
 - n. LS244
 - o. LS245
 - p. LS373
 - q. NL7SZ19
 - r. Single 2 input positive OR gate
 - s. Single Inverter gate
 - t. ZIF Socket
- 3. Proteus File ictesterdes.dsn
- 4. EMU8086 ASM File finalictester_asm.asm
- 5. Binary File after assembly finalictester.bin