What is claimed is:

0 101	>
July C)	1 2
(2
	3
	4
	5
	1
	2
	3
	1
13	2

2

3

1

2

1

2

1

2 3

4

1.	Α	method	compri#	ina
				,

- streaming at least two independent video sources for display on a video display screen; and
- causing said sources to be displayed at separate 4 regions of said display screen. 5
- The method of claim 1 including forming said 2. 1 sources into packets in a first device and transporting 2 said packets to a second device. 3
 - 3. The method of claim 2 including depacketizing said packets in said second device.
- The method of claim 1 including transmitting said 1 video sources from a processor-based system to a display 2 device including said display screen. 3
 - 5. The method of claim 4 including transmitting said video sources over a wireless connection between said processor-based system and said display device.
 - The method of claim 1, wherein said display 6. screen indudes a pixel array and a memory array, refreshing said memory array and said pixel array in the same ref‡esh cycle.

6

Video streams.

	/
1	7. The method of claim 6 including displaying said
2	sources on a display that uses liquid crystal over
3	semiconductor technology.
1	8. The method of claim $ egthinspace 1$ including streaming video
2	sources for display on said display screen at different
3	frame rates.
1	9. The method of caim 1 wherein one of said video
2	sources includes televiston programming and the other of
3	said video sources includes graphical information.
1	10. The method of claim 1 including streaming a first
2	video source that includes television programming
3	information and a second video source that includes an
4	electronic programming guide information.
1 &	b 01. A system comprising: a processor;
2	a processor;
3	storage coupled to said processor;
4	a video control er coupled to said processor;
5	a packetization device coupled to said video

controller which independently packetizes at least two

1	12.	The syste	m of	claim	11	inclu	ıding	a	modulation
2	device to	modulate	and	transpo	ort	aid	inder	er	ndently
3	packetized	d streams.			/	/			

- 1 13. The system of claim 11 wherein each of said video 2 streams has a different frame rate and is packetized to be 3 de-packetized at the original frame rate in a display 4 device.
 - 14. An article comprising a medium storing instructions that cause a processor-based system to:

 receive two independent video sources; and packetize each of said video sources so that they may be displayed in separate regions of a display screen.
 - 15. The article of claim 14 further storing instructions that cause a processor-based system to transmit said video sources from said processor-based system to a display device including a display screen.
 - 16. The article of claim 15 further storing instructions that cause the processor-based system to transmit said video sources over a wireless connection between said processor-based system and said display device.

2

3

	/
1	17. The article of claim 1/6 further storing
2	instructions that cause the processor-based system to
3	transmit said video sources for display on said display
4	screen at different frame rates.
1	18. A system comprising:
2	a semiconductor substrate;
3	a liquid crystal over semiconductor pixel array
4	formed in said substrate;
5	a memory coupled to said array, said memory also
6	formed in said substrate; and
7	a device for receiving a signal made up of a
8	plurality of independent video sources and driving each of
9	said video sources for display on a different portion of
10	said pixel array.
	1

- 19. The system of claim 18 wherein said system includes a device that de-packetizes said signal to form independent video sources for display on said pixel array.
- 1 20. The system of claim 19 wherein said pixel array 2 includes a plurality of pixels including a memory cell.
- 1 21. The system of claim 20 wherein said memory cells 2 are static random access memory cells.

	1
1	22. The system of claim 19 wherein said pixel array
2	is coupled to said memory by a digital to analog converter
1	23. The system of clarm 19 wherein said memory
2	includes a cell associated with each of a plurality of
3	pixels of said pixel array.
1	24. A system comprising:
2	an imaging device having a plurality of imaging
3	elements;
4	a memory that receives and stores at least two
5	independent video sources; and
6	a controller that drives said video sources onto
7	separate portions of said imaging device.
1	25. The system of claim 24 wherein said imaging
2	device is a thin film transistor imaging device.
2	device is a chin/lim clansistor imaging device.
1	26 The statem of alaim 24 chargin and imaging
1	26. The system of claim 24 wherein said imaging
2	device is a cathode ray tube.
1	27. The system of claim 24 wherein said imaging
2	device uses liquid crystal over semiconductor technology.

28. The system of claim 24 including a device to receive packetized video information, de-packetize said

- 3 information and provide said de-packetized information to
- 4 said memory as independent/video sources.