Decision Networks

Alice Gao Lecture 17

Readings: RN 16.5 - 16.6. PM 9.3 - 9.4.

Outline

Learning Goals

More Decision Network Examples

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Model a one-off decision problem by constructing a decision network containing nodes, arcs, conditional probability distributions, and a utility function.
- ▶ Choose the best action by evaluating a decision network.

Learning Goals

More Decision Network Examples

Revisiting the Learning goals

Should I take my umbrella or not?

Should I take my umbrella or not?

P(Weather = rain) = 0.3

Weather	Forecast	P(Forecast Weather)
norain	sunny	0.7
norain	cloudy	0.2
norain	rainy	0.1
rain	sunny	0.15
rain	cloudy	0.25
rain	rainy	0.6

The utility function

Weather	Umbrella	u(Weather, Umbrella)
norain	takeit	20
norain	leaveit	100
rain	takeit	70
rain	leaveit	0

Should I take my umbrella or not?

P(Weather = rain) = 0.3

Weather	Forecast	P(Forecast Weather)
norain	sunny	0.7
norain	cloudy	0.2
norain	rainy	0.1
rain	sunny	0.15
rain	cloudy	0.25
rain	rainy	0.6

The utility function

Weather	Umbrella	u(Weather, Umbrella)
norain	takeit	20
norain	leaveit	100
rain	takeit	70
rain	leaveit	0

A policy

- A policy specifies what the agent should do under all contingencies.
- For each decision variable, a policy specifies a value for the decision variable for each assignment of values to its parents.

For the weather decision network, how many possible policies are there?

Forecast has 3 values. For each value of Forecast, there are 2 possible decisions. $2^3 = 8$ possible policies.

Solving the weather problem

Two approaches

- Compute the expected utility of each policy, and choose the policy that maximizes the expected utility.
- ► Use the variable elimination algorithm.

The Expected Utility of a Policy

Consider the policy π_1 below.

- ► take the umbrella if the forecast is cloudy, and
- leave the umbrella at home otherwise.

What is the expected utility of the policy π_1 ?

$$EU(\pi_i) = P(norain) * P(sunny|norain) * u(norain, leaveit)$$

EU(
$$\pi_i$$
) = $P(norain) * P(sunny|norain) * U(norain, leave it)$
+ $P(norain) * P(cloudy|norain) * U(norain, take it)$
+ $P(norain) * P(rainy|norain) * U(norain, leave it)$
+ $P(rain) * P(sunny|rain) * U(rain, leave it)$
+ $P(rain) * P(cloudy|rain) * U(rain, take it)$
+ $P(rain) * P(rainy|rain) * U(rain, leave it)$
= $0.7 * 0.7 * loo = 49 + 2.8 + 7 + 0 + 5.25 + 0$
+ $0.7 * 0.2 * 20 = 64.05$
+ $0.7 * 0.1 * loo = 49.05$

+ 0.3 * 0.25 * 70

+ 0.3 * 0.60 * 0

CQ: The Expected Utility of a Policy

- **CQ:** Consider the policy π_2 below:
 - take the umbrella if the forecast is rainy, and
 - leave the umbrella at home otherwise.

What is the expected utility of the policy π_2 ?

$$EU(\Pi_2) = P(norain) * P(sunny|norain) * U(norain, leave it)$$

$$+ P(norain) * P(cloudy|norain) * U(norain, leave it)$$

$$+ P(norain) * P(rainy|norain) * U(norain, take it)$$

$$+ P(rain) * P(sunny|rain) * U(rain, leave it)$$

$$+ P(rain) * P(cloudy|rain) * U(rain, leave it)$$

$$+ P(rain) * P(rainy|rain) * U(rain, take it)$$

$$= 0.7 * 0.7 * loo = 49 + 14 + 1.4 + 0 + 0 + 12.6$$

$$+ 0.7 * 0.2 * loo = 79$$

$$+ 0.7 * 0.1 * 20$$

$$+ 0.3 * 0.15 * 0$$

$$+ 0.3 * 0.25 * 0$$

$$+ 0.3 * 0.60 * 70$$

Variable elimination algorithm

- 1. Remove all variables that are not ancestors of the utility node.
- 2. Create factors.
- 3. While there are decision nodes remaining
 - 3.1 Sum out each random variable that is not a parent of a decision node.
 - 3.2 Find the optimal policy for the last decision.
- 4. Return the optimal policies.
- 5. Sum out all remaining random variables to get the expected utility of the optimal policy.

Step 1: Nothing to be done.

Step 2: Define three factors.

f1(Weather), f2(Forecast, Weather), f3(Weather, Umbrella).

Step 3.1: Weather is not a parent of any decision node. Sum out

Weather.

f1 * f2 * f3 = f4 (Weather, Forecast, Umbrella).

sum out Weather from f4 to produce f5.

fs (Forecast, Umbrella)

Weather	val
rain	0.3
norain	0.7

f2 (Weather, Forecast).

Weather	Forecast	P(Forecast Weather)
norain	sunny	0.7
norain	cloudy	0.2
norain	rainy	0.1
rain	sunny	0.15
rain	cloudy	0.25
rain	rainy	0.6

The utility function f3 (Weather, Umbrella)

	Weather	Umbrella	u(Weather, Umbrella)
	norain	takeit	20
(norain	leaveit	100
	rain	takeit	70
1	rain	leaveit	0

f4(Weather, Forecast, Umbrella)

Forecast val take it norain Sunny leave it norain norain take it leaveit take it norain nomin leaveit takeit rain 3.15 rain leave it min takeit 5.25 leave it takeit

fs (Forecast, Umbrella)

Forecast	Umbrella	val
Sunny	take it	12.98
sunny	leave it	49
cloudy .	take it	8.0
cloudy	leaveit	14
rainy	tokeit	14
rainy	leave it	7

Step 3.2: Find the optimal policy for Umbrella.

fs (Forecast, Umbrella)

Forecast	Umbrella	val
Sunny	take it	12.95
Sunny	leave it	49
cloudy	take it	8.05
cloudy	leave it	14
rainy	takeit	14
rainy	leave it	7

The optimal policy for Umbrella:

Forecast	Umbrella
Sunny	leave it
cloudy	leaveit
rainy	takeit

Step 3.2: Find the optimal policy for Umbrella.

fs (Forecast, Umbrella)

	Forecast	Umbrella	val
•	sunny	take it	12.95
	Sunny	leave it	49
	cloudy	take it	8.05
	cloudy	leaveit	14
	rainy	takeit	14
	rainy	leave it	ヌ

Forecast	val
Sunny	49
cloudy	14
rainy	14

The Expected Utility of the Optimal Policy

Forecast	val
Sunny	49
cloudy	14
rainy	14

The expected utility of the optimal policy is 49 + 14 + 14 = 77

What if I can observe the Weather directly?

Step 1: Nothing to be done.

Step 2 : Define 3 factors.

f, (Weather), f2 (Forecast, Weather), f3 (Weather, Umbrella)

Step 3.1: Nothing to be done.

Step 3.2: Find the optimal policy for Umbrella, f3

f3 (Weather, Umbrella)

١	Weather	Umbrella	u(Weather, Umbrella)
	norain	takeit	20
	norain	leaveit	100
	rain	takeit	70
	rain	leaveit	0

f4 (Weather)

14(1000)		
	Weather	value
	norain	100
	rain	70

The optimal policy:

Weather = norain, leaveit.

Weather = rain, take it.

Sum out all the remaining variables.

fi (Weather).

Weather	val
rain	0.3
norain	[0.7]

fa (Weather)

Weather	value
norain	100
rain	70

f2 (Weather, Forecast)

Weather	Forecast	P(Forecast Weather)
norain	sunny	0.7
norain	cloudy	0.2
norain	rainy	0.1
rain	sunny	0.15
rain	cloudy	0.25
rain	rainy	0.6

1 Sum out Forecast from f2 to get fs.

fs (Weather).

Weather				val		
·······································	٠			٠, ٠		
rain .	٠	٠	٠	./ .	٠	٠
norain				1		

2) Multiply all the factors together and sum out Weather.

fo (Weather)

f7()

Weather		val : : : :
· voeather -	· · · ·	GI -
rain	21	The expected utility
norain	1 40	of the optimal policy.

The expected utility of the optimal policy:

91

The value of getting perfect information on Weather

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Model a one-off decision problem by constructing a decision network containing nodes, arcs, conditional probability distributions, and a utility function.
- ▶ Choose the best action by evaluating a decision network.