FCC TEST REPORT(Bluetooth)

for

TI Precision Shanghai Co.,Ltd.

Total Station

Model Number: LGP-302N,LGP-305N,W-1502N,W-1505N,TS-802W

FCC ID: 2ACP2LGP302N

Prepared for : TI Precision Shanghai Co.,Ltd.

Address : No.158 Beiyang Road, Songjiang District,

Shanghai, China

Prepared by : Keyway Testing Technology Co., Ltd.

Address : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

Tel: 86-769-8718 2258 Fax: 86-769-8718 1058

Report No. : 14KWE07152701F Date of Test : Jul. 2~5, 2014 Date of Report : Jun. 6, 2014

TABLE OF CONTENTS

T	Test Report Declaration					
1.	TES	ST SUMMARY	4			
2.	GEN	NERAL PRODUCT INFORMATION	4			
	2.1.	Product Function	4			
	2.2.	Description of Device (EUT)				
	2.3.	Difference between Model Numbers				
	2.4.	Independent Operation Modes				
	2.5.	Test Supporting System				
3.	TES	ST SITES	5			
	3.1.	Test Facilities				
	3.2.	List of Test and Measurement Instruments	_			
4.	TES	ST SET-UP AND OPERATION MODES	7			
	4.1.	Principle of Configuration Selection	7			
	4.2.	Block Diagram of Test Set-up				
	4.3.	Test Operation Mode and Test Software				
	4.4.	Special Accessories and Auxiliary Equipment				
_	4.5.	Countermeasures to Achieve EMC Compliance				
5.		SSION TEST RESULTS				
	5.1.	Radiated Emission Test				
6.	20D	B OCCUPY BANDWIDTH				
	6.1.	Limits				
	6.2.	Test setup				
7.	BAN	ND EDGE COMPLIANCE TEST	16			
	7.1.	Limits	16			
	7.2.	Test setup	16			
8.	ANT	FENNA REQUIREMENTS	17			
	8.1.	Limits	17			
	8.2.	Result	17			
9.	PHC	DTOGRAPHS OF TEST SET-UP	18			
10). P	HOTOGRAPHS OF THE EUT	19			

Keyway Testing Technology Co., Ltd.

Applicant: TI Precision Shanghai Co.,Ltd.

Address: No.158 Beiyang Road, Songjiang District, Shanghai, China

Manufacturer: TI Precision Shanghai Co.,Ltd.

Address: No.158 Beiyang Road, Songjiang District, Shanghai, China

E.U.T: Total Station

Model Number: LGP-302N,LGP-305N,W-1502N,W-1505N,TS-802W

Trade Name: ----- Serial No.: -----

Date of Receipt: Jul. 2, 2014 Date of Test: Jul. 2~5, 2014

Test Specification: FCC Part 15, Subpart C Section 15.249: Oct. 1, 2013

ANSI C63.4:2009

Test Result: The equipment under test was found to be compliance with the

requirements of the standards applied.

Issue Date: Jul. 6, 2014

Tested by:

Reviewed by:

Approved by:

Andy Gao / Engineer

Jade Yang/ Supervisor

Chris Du / Manager

Other Aspects:

None.

Abbreviations: OK/P=passed

fail/F=failed

n.a/N=not applicable

E.U.T=equipment under tested

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Keyway Testing Technology Co., Ltd.

1. TEST SUMMARY

Test Items	Test Requirement	Result	
Conducted Emissions	15.207	N/A	
Radiated Emissions	15.209 15.249(a)(d)	PASS	
20dB Bandwidth	15.249	PASS	
Emissions from out of band	15.249(d)	PASS	
Antenna Requirement	15.203	PASS	

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Product Name:	Total Station
Model No.:	LGP-302N,LGP-305N,W-1502N,W-1505N,TS-802W
Operation Frequency:	2402~2480MHz
Channel numbers:	79 Channels
Channel separation:	1M
Modulation technology:	GFSK, Pi/4DQPSK, 8-DQPSK
Antenna Type:	Integral Antenna
Antenna gain:	0.5dBi (declare by Applicant)
Power supply:	DC 7.4V
BT version:	3.0

2.3. Difference between Model Numbers

Note: The products are different for the outlook color, operation system and use's language.

2.4. Independent Operation Modes

The basic operation modes are:

2.4.1. EUT work continues TX mode and frequency as below:

Modulation	Channel	Frequency		
	Low	2402MHz		
GFSK	Middle	2441MHz		
	High	2480MHz		

Note: Bluetooth signal has 3 packages DH1, DH3, DH5, DH5 package is largest; we are testing DH5 in the report.

2.5. Test Supporting System

None.

3. TEST SITES

3.1. Test Facilities

Lab Qualifications: 944 Shielded Room built by ETS-Lindgren, USA

Date of completion: March 28, 2011

966 Chamber built by ETS-Lindgren, USA

Date of completion: March 28, 2011

Certificated by TUV Rheinland, Germany.

Registration No.: UA 50207153 Date of registration: July 13, 2011

Certificated by UL, USA

Registration No.: 100567-237

Date of registration: September 1, 2011

Certificated by Intertek

Registration No.: 2011-RTL-L1-31 Date of registration: October 11, 2011

Certificated by Industry Canada

Registration No.: 9868A

Date of registration: December 8, 2011

Certificated by FCC, USA Registration No.: 370994

Date of registration: February 21, 2012

Certificated by CNAS China Registration No.: CNAS L5783 Date of registration: August 8, 2012

Name of Firm : Keyway Testing Technology Co., Ltd.

Site Location : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

3.2. List of Test and Measurement Instruments

3.2.1. For radiated emission test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	Apr. 27,14	Apr. 27,15
System Simulator	Agilent	E5515C	GB43130245	Apr. 30,14	Apr. 30,15
Power Splitter	Weinschel	1506A	NW425	Apr. 30,14	Apr. 30,15
Bilog Antenna	ETS-LINDGREEN	3142D	135452	Apr. 27,14	Apr. 27,15
Spectrum Analyzer	Agilent	E4411B	MY4511304	Apr. 27,14	Apr. 27,15
3m Semi-anechoic Chamber	ETS-LINDGREEN	966	KW01	Apr. 27,14	Apr. 27,15
Signal Amplifier	SONOMA	310	187016	Apr. 27,14	Apr. 27,15
Signal Amplifier	Agilent	8449B	3008A00251	Apr. 27,14	Apr. 27,15
RF Cable	IMRO	IMRO-400	966 Cable 1#	N/A	N/A
MULTI-DEVICE Controller	ETS-LINDGREEN	2090	126913	N/A	N/A
Horn Antenna	DAZE	ZN30701	11003	Apr. 27,14	Apr. 27,15
Horn Antenna	SCHWARZBECK	BBHA9170	9170-068	Apr. 27,14	Apr. 27,15
Spectrum Analyzer	Agilent	8593E	3911A04271	Apr. 27,14	Apr. 27,15
Spectrum Analyzer	Agilent	E4408B	MY44211125	Apr. 30,14	Apr. 30,15
Signal Amplifier	DAZE	ZN3380C	11001	Apr. 27,14	Apr. 27,15
High Pass filter	Micro	HPM50111 324216		Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C836.5-25-X	KW032	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C1747.5-75-X2	KW035	Apr. 30,14	Apr. 30,15
Filter	COM-MW	ZBSF-C1880-60-X2	KW037	Apr. 30,14	Apr. 30,15
DC Power Supply	LongWei	PS-305D	010964729	Apr. 27,14	Apr. 27,15
Constant temperature and humidity box	GF	GTH-800-40-1P	MAA9906-005	Apr. 27,14	Apr. 27,15
Universal radio communication tester		CMU200	3215420	Apr. 27,14	Apr. 27,15
Splitter	Agilent	11636B	0025164	Apr. 27,14	Apr. 27,15

4. TEST SET-UP AND OPERATION MODES

4.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

4.2. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

EUT

(EUT: Total Station)

Note:1 By preliminary testing three modulation of EUT transmitted status, it was found that "GFSK" modulation was the worst, then the final test was executed the worst condition and test data were recorded in this report. Test data as below.

Frequency	Avia	Field Strength	Antenna		
(MHz)	Axis	(dBuV/m)	Polarization		
2402	GFSK	102.97	VERTICAL		
2402	Pi/4DQPSK	101.37	VERTICAL		
2402	8-DQPSK	101.28	VERTICAL		

4.3. Test Operation Mode and Test Software None.

4.4. Special Accessories and Auxiliary Equipment None.

4.5. Countermeasures to Achieve EMC Compliance None.

4.6. Test Environment:

Ambient conditions in the test laboratory:

Items	Actual
Temperature (°C)	21~23
Humidity (%RH)	50~65

5. EMISSION TEST RESULTS

5.1. Radiated Emission Test

5.1.1. Limit 15.209 limits

FREQUENCY	DISTANCE FIELD STREN		NGTHS LIMIT	
MHz	Meters	$\mu V/m$	dB(μV)/m	
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
960 ~ 1000	3	500	54.0	
Above 1000	3	74.0 dB(μV)/m (Peak)		
		$54.0 \text{ dB}(\mu\text{V})/\text{m} \text{ (Average)}$		

5.1.2. Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

5.1.3. Test setup

The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The EUT was tested in the Chamber Site. It was pre-scanned with a Peak detector from the spectrum, and all the final readings from the test receiver were measured with the Quasi-Peak detector below 1GHz.

The bandwidth of the EMI test receiver is set at 120kHz for frequency range from 30MHz to 1000 MHz.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure above 1GHz.

The frequency range from 30MHz to 10th harmonic (25GHz) are checked. and no any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Notes: 1. Emission Level = Antenna Factor + Cable Loss + Meter Reading-Preamp Factor.

- 2. Measurement Uncertainty: ±3.2 dB at a level of confidence of 95%.
- 3. For emissions above 1GHz, if peak level comply with average limit, then the average level is deemed to comply with average limit.
- 4. For emissions below 1GHz, pretest for all mode, The test data of the worst case condition(s) was reported on the following pages.

Below 1GHz
BT Mode Horizontal polarizations

		Freq	Preamp Factor			Antenna Factor		Limit Line	Over Limit	Remark
	P. S.	MHz	——dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	· · · · ·
1		138.64	31.21	57.11	1.22	8.39	35.51	43.50	-7.99	QP
2		187.14	31.13	54.40	1.39	10.19	34.85	43.50	-8.65	QP
3		332.64	30.76	53.58	2.02	14.81	39.65	46.00	-6.35	QP
4	!	367.56	30.61	54.86	2.18	16.15	42.58	46.00	-3.42	QP
5		885.54	30.15	40.84	4.76	23.71	39.16	46.00	-6.84	QP
6	!	936.95	29.73	40.23	4.89	24.65	40.04	46.00	-5.96	QP

BT Mode Vertical polarizations

			Preamp	Read	Cable	Antenna		Limit	Over	
		Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	i de	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	, , , , , ,
1		105.66	31.33	53.96	1.03	9.43	33.09	43.50	-10.41	QP
2		138.64	31.21	55.53	1.22	8.39	33.93	43.50	-9.57	QP
3	!	367.56	30.61	53.55	2.18	16.15	41.27	46.00	-4.73	QP
4	!	398.60	30.63	52.09	2.37	16.29	40.12	46.00	-5.88	QP
5		677.96	30.75	42.26	3.80	21.99	37.30	46.00	-8.70	QP
6		988.36	29.27	40.80	4.94	24.80	41.27	54.00	-12.73	QP

Above 1GHz GFSK 2402MHz Horizontal polarizations

	Preamp		Preamp Read Ca				Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	()
1	2402.00	26.32	80.24	7.34	28.72	89.98	94.00	-4.02	Average
2	2402.00	26.32	93.24	7.34	28.72	102.98	114.00	-11.02	Peak
3	4804.00	27.49	32.57	11.96	32.94	49.98	74.00	-24.02	Peak
4	8582.00	28.27	15.60	16.78	36.90	41.01	74.00	-32.99	Peak
5	10928.00	28.89	13.21	17.15	39.46	40.93	74.00	-33.07	Peak
6	13104.00	29.22	12.19	18.34	41.18	42.49	74.00	-31.51	Peak

GFSK 2402MHz Vertical polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	2402.00	26.32	79.93	7.34	28.72	89.67	94.00	-4.33	Average
2	2402.00	26.32	93.23	7.34	28.72	102.97	114.00	-11.03	Peak
3	4804.00	27.49	31.85	11.96	32.94	49.26	74.00	-24.74	Peak
4	7086.00	27.92	14.88	16.60	37.23	40.79	74.00	-33.21	Peak
5	9602.00	28.64	16.11	16.93	38.08	42.48	74.00	-31.52	Peak
6	12883.00	29.18	14.03	18.11	40.42	43.38	74.00	-30.62	Peak

GFSK 2441MHz Horizontal polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	(3 - 3
1	2441.00	26.33	79.68	7.48	28.76	89.59	94.00	-4.41	Average
2	2441.00	26.33	92.06	7.48	28.76	101.97	114.00	-12.03	Peak
3	4882.00	27.53	31.62	12.14	33.11	49.34	74.00	-24.66	Peak
4	8990.00	28.39	18.83	16.88	37.38	44.70	74.00	-29.30	Peak
5	10758.00	28.88	16.00	17.12	39.36	43.60	74.00	-30.40	Peak
6	13342.00	29.27	13.66	18.61	42.29	45.29	74.00	-28.71	Peak

GFSK 2441MHz Vertical polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	2441.00	26.33	80.06	7.48	28.76	89.97	94.00	-4.03	Average
2	2441.00	26.33	93.57	7.48	28.76	103.48	114.00	-10.52	Peak
3	4882.00	27.53	32.31	12.14	33.11	50.03	74.00	-23.97	Peak
4	7341.00	27.97	16.69	16.62	37.34	42.68	74.00	-31.32	Peak
5	10588.00	28.86	17.75	17.08	39.25	45.22	74.00	-28.78	Peak
6	12441.00	29.09	18.32	17.74	39.49	46.46	74.00	-27.54	Peak

GFSK 2480MHz Horizontal polarizations

		Preamp	Read	Cablei	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	2480.00	26.34	79.90	7.57	28.79	89.92	94.00	-4.08	Average
2	2480.00	26.34	93.47	7.57	28.79	103.49	114.00	-10.51	Peak
3	4960.00	27.58	31.53	12.36	33.32	49.63	74.00	-24.37	Peak
4	7443.00	27.99	16.32	16.62	37.38	42.33	74.00	-31.67	Peak
5	10061.00	28.81	12.24	16.98	38.51	38.92	74.00	-35.08	Peak
6	13002.00	29.20	12.67	18.22	40.70	42.39	74.00	-31.61	Peak

GFSK 2480MHz Vertical polarizations

		Preamp	Read	Cable	Antenna		Limit	Over	
	Freq	Factor	Level	Loss	Factor	Level	Line	Limit	Remark
	MHz	dB	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	()
1	2480.00	26.34	79.47	7.57	28.79	89.49	94.00	-4.51	Average
2	2480.00	26.34	93.59	7.57	28.79	103.61	114.00	-10.39	Peak
3	4960.00	27.58	31.77	12.36	33.32	49.87	74.00	-24.13	Peak
4	7103.00	27.92	16.43	16.60	37.24	42.35	74.00	-31.65	Peak
5	11421.00	28.94	13.58	17.25	39.83	41.72	74.00	-32.28	Peak
6	15484.00	29.62	15.56	20.31	38.40	44.65	74.00	-29.35	Peak

6. 20DB OCCUPY BANDWIDTH

6.1. Limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

6.2. Test setup

- 1. Set the RBW =30kHz.
- 2. Set the VBW = 300kHz
- 3. Span=3MHz
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Allow trace to fully stabilize, and view the plot.
- 7. Measure and record the result in the test report.

Test data:

	Channel Frequency (MHz)	20dB Bandwidth (MHz)	Result
	2402	1.236	Pass
GFSK	2441	1.236	Pass
	2480	1.236	Pass

Test plot as follows:

Page 14 of 24

GFSK

2402MHz

2441 MHz

2480 MHz

7. BAND EDGE COMPLIANCE TEST

7.1. Limits

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

7.2. Test setup

The EUT was placed on a turn table which was 0.8 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure.

Test plot as follows:

	Frequency (MHz) Antenna polarization		Emission (dBuV/m)		Band edge Limit (dBuV/m)	
		(H/V)	PK	PK	AV	Pass
	<2400	Н	50.35	74.00	54.00	Pass
Hopping	<2400	V	50.03	74.00	54.00	Pass
Поррінд	>2483.5	Н	50.14	74.00	54.00	Pass
	>2483.5	V	49.93	74.00	54.00	Pass
	<2400	Н	50.24	74.00	54.00	Pass
Unhopping	<2400	V	49.73	74.00	54.00	Pass
Оппоррину	>2483.5	Н	50.11	74.00	54.00	Pass
	>2483.5	V	49.84	74.00	54.00	Pass

If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

8. ANTENNA REQUIREMENTS

8.1. Limits

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.2. Result

The antennas used for this product are integral Antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 0.5dBi.

Page 17 of 24

9. PHOTOGRAPHS OF TEST SET-UP

Radiated Emission

10. PHOTOGRAPHS OF THE EUT

-----end-----