?s pn=jp 2002124655

S2 1 PN=JP 2000124655

?t s2/5

2/5/1

DIALOG(R) File 347: JAPIO

(c) 2005 JPO & JAPIO. All rts. reserv.

07256196 **Image available**

SYSTEM FOR CONVERTING ELECTROMAGNETIC WAVES INTO ELECTRICAL SIGNAL, AND

IMAGE SENSOR

PUB. NO.: \$20

\$2002-124655 [*JP 2002124655* A]

PUBLISHED: April 26, 2002 (20020426)

INVENTOR(s): KAMESHIMA TOSHIO

APPLICANT(s): CANON INC

APPL. NO.: 2000-316763 [JP 2000316763] FILED: October 17, 2000 (20001017)

INTL CLASS: H01L-027/14; G01R-029/08; H01L-027/146; H01L-031/0264;

H01L-031/10; H04N-005/32

ABSTRACT

PROBLEM TO BE SOLVED: To increase the area size of the light-receiving area, i.e., the effective pixel region of a system for converting electromagnetic wavers into electrical signals, by altering the disposing places of its read equipment and its gate drive equipment.

SOLUTION: The system for converting electromagnetic waves into electrical signals has a conversion array, where there are arranged in a two-dimensional way plural conversion elements 5 for converting electromagnetic waves into electrical signals and plural switching elements 6, a read device 1 for reading out the electrical signals, and a drive device 2 for driving the switching elements. In this system, the read device 1 and the driving device 2 are both disposed on the side of the conversion array, or respectively on the two counterposing sides of the conversion array.

COPYRIGHT: (C) 2002, JPO

?

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-124655 (P2002-124655A)

(43)公開日 平成14年4月26日(2002.4.26)

(51) Int.Cl.7		識別記号		ΓI			ŕ	-7]-ド(参考)
H01L	27/14			G 0 1	R 29/08		F	4M118
G01R	29/08			H 0 4	N 5/32			5 C O 2 4
H01L	27/146			H 0 1	L 27/14		К	5 F O 4 9
	31/0264						С	5F088
	31/10				31/08		L	
•			審査請求	未請求	請求項の数8	OL	(全 7 頁)	最終頁に続く

(21)出願番号 特願2000-316763(P2000-316763)

(22)出願日 平成12年10月17日(2000.10.17)

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 亀島 登志男

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 100065385

弁理士 山下 穣平

最終頁に続く

(54) 【発明の名称】 電磁波電気信号変換システム及びイメージセンサ

(57)【要約】

(修正有)

【課題】 読み出し装置及びゲート駆動装置の配置場所を変え、受光エリアすなわち有効画素領域を大面積化することを課題とする。

【解決手段】 電磁波を電気信号に変換する変換素子 5 及びスイッチ素子 6 を 2 次元的に複数配列した変換アレーと、前記電気信号を読み出す読み出し装置 1 と、前記スイッチ素子を駆動する駆動装置 2 とを備える電磁波電気信号変換システムにおいて、前記読み出し装置 1 及び前記駆動装置 2 は、前記変換アレーの 1 辺或いは対向する 2 辺に配置する。

10

20

30

【特許請求の範囲】

【請求項1】 電磁波を電気信号に変換する変換素子及 びスイッチ素子を2次元的に複数配列した変換アレー と、前記電気信号を読み出す読み出し装置と、前記スイ ッチ素子を駆動する駆動装置とを備える電磁波電気信号 変換システムにおいて、

前記読み出し装置及び前記駆動装置は、前記変換アレー の1辺或いは対向する2辺に配置することを特徴とする 電磁波電気信号変換システム。

【請求項2】 前記変換素子は、アモルファスシリコン からなることを特徴とする請求項1に記載の電磁波電気 信号変換システム。

【請求項3】 前記変換素子は、フォトダイオードであ ることを特徴とする請求項1に記載の電磁波電気信号変 換システム。

【請求項4】 前記変換素子は、第1の電極層と、絶縁 層と、前記電磁波を前記電気信号へ変換する変換層と、 第2の電極層と、前記変換層と前記第2の電極層との間 のオーミックコンタクト層とを備えることを特徴とする 請求項1に記載の電磁波電気信号変換システム。

【請求項5】 前記変換素子は、アモルファスセレンを 主材料とすることを特徴とする請求項1に記載の電磁波 電気信号変換システム。

【請求項6】 前記変換素子は、沃化鉛、沃化水銀、ガ リウム砒素、CdZn、CdZnTeのいずれかを主材 料とすることを特徴とする請求項1に記載の電磁波電気 信号変換システム。

【請求項7】 前記変換アレーは駆動に必要な配線とし て少なくともデータライン、バイアスライン、ゲートラ インを有することを特徴とする請求項1~8のいずれか 1項に記載の電磁波電気信号変換システム。

【請求項8】 複数の請求項1~8のいずれか1項に記 載の電磁波電気信号変換システムを貼り合わせたイメー ジセンサにおいて前記読み出し装置及び前記駆動装置を 貼り合わせる辺を、貼り合わせ方向の辺以外の1辺或い は対向する2辺とすることを特徴とするイメージセン

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電磁波電気信号変 換システム及びそれを備えるイメージセンサに関し、特 に、電磁波を電気信号に変換する変換素子及びスイッチ 素子を2次元的に複数配列した変換アレーと、前記電気 信号を読み出す読み出し装置と、前記スイッチ素子を駆 動する駆動装置とを備える電磁波電気信号変換システム 及びそれを備えるイメージセンサに関するものである。

[0002]

【従来の技術】従来の技術について図面を用いて説明す る。図6は従来の電磁波電気信号変換システムの回路図

成図である。図6に示すように従来の電磁波電気信号変 換システムの光電変換アレーの各画素はフォトダイオー ド5と薄膜トランジスタ(TFT)6により構成されて いる。フォトダイオード5のカソード電極はバイアスラ インVs7に接続されバイアス電圧が印加されている。 TFT6のソース電極はデータラインSig9に、ゲー ト電極はゲートラインVg8にそれぞれ接続されてい る。これらは、光電変換アレーの駆動のために配線され ている。

【0003】また、フォトダイオード5のアノード電極 とTFT6のドレイン電極は各画素で相互に接続されて いる。この例ではバイアスラインVs7とデータライン Sig9は垂直方向に、ゲートラインVg8は水平方向 に引き回されている。さらにバイアスラインVs7と奇 数番目のデータラインSig9は第1の読み出し装置1 1に、偶数番目のデータラインSig9は第2の読み出 し装置12に接続されている。一般的に、第1の読み出 し装置11、第2の読み出し装置12は図示しない電 源、アンプを含む集積回路(IC)、プリント基板(P CB) などを備えている。

【0004】一方、奇数番目のゲートラインVg8は、 第1のゲート駆動装置13に、偶数番目のゲートライン Vg8は第2のゲート駆動装置14に接続される。一般 的に第1のゲート駆動装置13, 第2のゲート駆動装置 14は図示しないシフトレジスタを含むIC、PCBな どにより構成される。

【0005】図7に示すように従来の電磁波電気信号変 換システムに用いられる光電変換アレー10は、駆動に 必要な配線(バイアスラインVs7、データラインSi g9、ゲートラインVg)を4辺から引き出し、各辺に 第1の読み出し装置11、第2の読み出し装置12、第 1のゲート駆動装置13、第2のゲート駆動装置14を 接続して構成されており、これにより光電変換動作を行 っている。

[0006]

【発明が解決しようとする課題】しかし、一般に従来の 電磁波電気信号変換システムでは、光電変換アレーの4 辺に、読み出し装置およびゲート駆動装置を有するた め、受光エリアすなわち有効画素領域が制限を受け大面 積化が困難である。有効画素領域の大きさが制限される と、たとえば光電変換装置を小型化することが困難とな る。

【0007】そこで、本発明は、読み出し装置及びゲー ト駆動装置の配置場所を変え、受光エリアすなわち有効 画素領域を大面積化することを課題とする。

[0008]

【課題を解決するための手段】上記課題を解決するため に、本発明は、電磁波を電気信号に変換する変換素子及 びスイッチ素子を2次元的に複数配列した変換アレー である。図7は従来の電磁波電気信号変換システムの構 50 と、前記電気信号を読み出す読み出し装置と、前記スイ

20

ッチ素子を駆動する駆動装置とを備える電磁波電気信号 変換システムにおいて、前記読み出し装置及び前記駆動 装置は、前記変換アレーの1辺或いは対向する2辺に配 置する。

【0009】また、本発明は、上記電磁波電気信号変換 システムを貼り合わせたイメージセンサにおいて、前記 読み出し装置及び前記駆動装置を貼り合わせる辺を、貼 り合わせ方向の辺以外の1辺或いは対向する2辺とす る。

[0010]

【発明の実施の形態】以下、本発明の実施形態について 図面を用いて説明する。

【0011】〈実施形態1〉図1は、本発明の実施形態 1の電磁波電気信号変換システムの回路図である。図1 において、図6に示した部材と同様のものには同一の符 号を付しているが、読み出し装置1は、第1の読み出し 装置11及び第2の読み出し装置12を合わせた構造と しており、ゲート駆動装置3は、第1のゲート駆動装置 13及び第2のゲート駆動装置14を合わせた構造とし ている。

【0012】図1に示すように、本実施形態の電磁波電 気信号変換システムは、読み出し装置1及びゲート駆動 装置3を図面上方及び下方に配置し、光電変換アレー1 0の駆動に必要な配線、すなわちバイアスラインVs7 及びデータラインSig9、ゲートラインVg8は、す べて垂直方向に引き出され、バイアスラインVs7及び データラインSig9は、読み出し装置1に接続され、 ゲートラインVg8は、ゲート駆動装置3に接続されて

【0013】なお、光電変換アレー10はたとえばアモ ルファスシリコンやアモルファスセレンを主材料として いる。また、光電変換アレー10を構成する光電変換素 子には、たとえばPIN型フォトダイオード又はMIS 型センサを用い、スイッチ素子には、たとえばTFTを 用いている。

【0014】図2は、図1に示す電磁波電気信号変換シ ステムを複数備えたイメージセンサの構成図である。図 2に示すように、本実施形態のイメージセンサは、読み 出し装置1およびゲート駆動装置3を対向する2辺に配 置しているので、光電変換アレー10を連続して配置す ることにより、有効画素領域を大きくすることができ る。これにより、たとえば、有効画素領域を撮影目的に 応じて大面積化することもできる。

【0015】図3は、本実施形態の電磁波電気信号変換 システムの光電変換アレー及びその周辺図である。図3 に示すように、本実施形態にかかる光電変換アレーは、 ゲートラインVg8とバイアスラインVs7およびデー タラインSig9とを平行に引き出している。なお、バ イアスラインVs7は、フォトダイオード5の上部でな く、TFT6の上部に設ければ、さらに、有効画素領域 50 備えた光電変換アレーを示している。なお、図10にお

を増やすことができる。

【0016】<実施形態2>図4は、本発明の実施形態 2の電磁波電気信号変換システムの回路図である。図4 において、図1に示した部材と同様のものには同一の符 号を付している。

【0017】図4に示すように、本実施形態の電磁波電 気信号変換システムは、読み出し装置1及びゲート駆動 装置3を図面上方に配置し、光電変換アレー10の駆動 に必要な配線、すなわちバイアスラインVs7及びデー 10 タラインSig9、ゲートラインVg8は、すべて図面 上方に引き出され、バイアスラインVs7およびデータ ラインSig9は読み出し装置1に接続され、ゲートラ インVg8はゲート駆動装置3に接続されている。

【0018】図5は、図4に示す電磁波電気信号変換シ ステムを複数備えたイメージセンサの構成図である。図 5に示すように、本実施形態のイメージセンサは、読み 出し装置1およびゲート駆動装置3を一辺に配置してい るので、光電変換アレー10を連続して配置することに より、有効画素領域を大きくすることができる。これに より、たとえば、有効画素領域を撮影目的に応じて大面 積化することもできる。

【0019】<実施形態3>図8は、本発明の実施形態 3のイメージセンサを用いたX線撮像システムの構成図 である。図8には、患者などの被写体を透過したX線を 電気信号に変換して読み出す図5などに示したイメージ センサ18と、患者などの被写体に対して照射するX線 を生成する X 線発生装置 17と、患者の情報を入力した り生成するX線情報を入力する端末装置15と、X線発 生装置17やイメージセンサ18の動作を制御する制御 装置16とを示している。

【0020】図8に示すX線撮像システムは、複数の電 磁波電気変換装置を貼り合わせてなるイメージセンサを 備えているので、人体胸部などのように被写体が大面積 であっても撮影を行うことができる。

【0021】<実施形態4>図9は、本発明の実施形態 4の電磁波電気信号変換システムに備えられている光電 変換アレーの断面図である。図9に示しているように、 本実施形態の電磁波電気信号変換システムは、ガラス基 板100上にたとえばアモルファスシリコンを主材料と しp層103、半導体層104、n層105を有するP IN型のフォトダイオード101及び絶縁層109、半 導体層104、n層105を有する薄膜トランジスタ (TFT) 102とを備える光電変換アレーを有してお り、さらに保護層106を介して、X線を可視光などの 光に変換する蛍光体層107を形成している。

【0022】<実施形態5>図10は、本発明の実施形 態5の電磁波電気信号変換システムに備えられている光 電変換アレーの断面図である。図10には、図9のフォ トダイオード101に代えて、MIS型センサ108を

40

5

いて図9に示した部分と同様の部分には、同一符号を付している。

【0023】<実施形態6>図11は、本発明の実施形態6の電磁波電気信号変換システムに備えられている光電変換アレーの断面図である。図11には、図9のフォトダイオード101に代えて、直接型X線センサ110を備えた光電変換アレーを示している。直接型X線センサ110は、p型沃化鉛層111、沃化鉛半導体層112、n型沃化鉛層113とを有している場合を例示しているが、アモルファスセレン、沃化水銀、ガリウム砒素、CdZn、CdZnTeなどのX線を吸収して電荷を発生するようなものであればこれに限定されない。

【0024】以上、電磁波電気信号変換システムを例に本発明の各実施形態について説明したが、本発明は、たとえば、X線などの放射線を含む電磁波を電気信号に変換する電磁波電気信号システムにも適用することができる。また、上記光電変換装置と蛍光体又はシンチレータとを組み合わせると、有効画素領域の大きい放射線電気信号変換システムを製造することができる。

[0025]

【発明の効果】以上説明したように、本発明は、光電変換素子に蓄積された電荷を読み出す読み出し装置と、スイッチ素子を駆動する駆動装置とを光電変換アレーの1辺或いは対向する2辺に配置するため、受光エリアすなわち有効画素領域を大面積化することができる。したがって、たとえば光電変換装置を小型化することができる。

【図面の簡単な説明】

【図1】本発明の実施形態1の電磁波電気信号変換システムの回路図である。

【図2】図1に示す電磁波電気信号変換システムを複数 備えたイメージセンサの構成図である。

【図3】本実施形態の電磁波電気信号変換システムの光 電変換アレー及びその周辺図である。

【図4】本発明の実施形態2の電磁波電気信号変換システムの回路図である。

【図5】図4に示す電磁波電気信号変換システムを複数 備えたイメージセンサの構成図である。

【図6】従来技術の電磁波電気信号変換システムの回路

図である。

【図7】従来技術の電磁波電気信号変換システムの構成 図である。

【図8】本発明の実施形態3のイメージセンサを用いた X線撮像システムの構成図である。

【図9】本発明の実施形態4の電磁波電気信号変換システムに備えられている光電変換アレーの断面図である。

【図10】本発明の実施形態5の電磁波電気信号変換システムに備えられている光電変換アレーの断面図であ
10 る。

【図11】本発明の実施形態6の電磁波電気信号変換システムに備えられている光電変換アレーの断面図である。

【符号の説明】

- 1 読み出し装置
- 3 ゲート駆動装置
- 5,101 フォトダイオード
- 6, 102 TFT
- 7 バイアスラインVs
- 20 8 ゲートラインVg
 - 9 データラインSig
 - 10 光電変換アレー
 - 11 第1の読み出し装置
 - 12 第2の読み出し装置
 - 13 第1のゲート駆動装置
 - 14 第2のゲート駆動装置
 - 100 ガラス基板
 - 103 p屬
 - 104 半導体層
 - 105 n層
 - 106 保護層
 - 107 蛍光体層
 - 108 MIS型センサ
 - 109 絶縁層
 - 110 直接型X線センサ
 - 111 p型沃化鉛層
 - 112 沃化鉛半導体層
 - 113 n型沃化鉛層

[図9]

【図10】

【図1】

【図 3】

【図2】

【図11】

【図8】

フロントページの続き

(51) Int.CI.⁷

識別記号

H 0 4 N 5/32

H 0 1 L 31/10

FΙ

テーマコード(参考)

Fターム(参考) 4M118 AA10 AB01 BA05 CA05 CA07

CB05 CB06 CB11 FB09 FB13

FB30 GA10 HA21 HA22

5C024 AX11 CX41 CY49 GX00 GX03

GX16 GY31 HX02

5F049 MA01 MB01 MB07 NA19 NB03

RA02 RA06 SS01 UA01 WA07

5F088 AA11 AB07 AB09 BB10 KA08