Lecture #4

Lexical Analysis - II

Finite Automata

- Language of a $FA \equiv Set$ of all accepted strings
 - Eg: Any number of 1's followed by a '0'
 - Alphabet: {0, 1}

• Another kind of transition: ε -moves

$$S_0 \xrightarrow{\mathcal{E}} S_1$$

• Control can move to S_1 on all input symbols that takes control to S_0

DFA and NFA

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε -moves
- Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input at a given state
 - Can have ε -moves
 - eg: (0| 1)* 01

DFAs and NFAs

- DFA takes only one path the state space graph
- NFA accepts a string if there exists at least one path through the graph that leads to an accepting state.
 - DFA is a special case of NFA
- DFAs can lead to faster recognisers but are exponentially bigger than NFAs.

- Automation steps
 - RE \rightarrow NFA \rightarrow DFA \rightarrow Table-Driven Implementation
- For each kind of RE, an equivalent NFA can be designed

RE to NFA (Thompson's Construction)

For each kind of RE, an equivalent NFA can be designed

NFA for a*

NFA Construction for the RE a(b/c)*

Step 2: NFA for b/c

Key Idea:

- Design NFA pattern for each symbol and/or operator
- Join them in precedence order

NFA to DFA

•Two key functions:

- $move(s_i, a)$: The (union of the) set of states to which there is a transition on input symbol a from state s_i
- ϵ -closure(s_i): The (union of the) set of states reachable by ϵ from s_i .
- Example: ε -closure(2)={2,3,4}; ε -closure({2,1})={2,3,4,1};
 - move(ε -closure($\{2,1\}$), a) =5;

• The Algorithm:

Start with the ε -closure of s_0 from NFA.

Do for each unmarked state until there are no unmarked states: for each symbol take their ε-closure(move(state,symbol))

NFA to DFA

Initially, \(\epsilon\)-closure is the only state in Dstates and it is unmarked. **while** there is an unmarked state T in Dstates

mark T

for each input symbol a

 $U:=\varepsilon$ -closure(move(T,a))

if U is not in Dstates then add U as unmarked to Dstates

Dtable[T,a]:=U

- From Dstates (set of states for DFA) and Dtable form the DFA.
- Each state of DFA corresponds to a set of NFA states that NFA could be in after reading some sequences of input symbols.
- Given an NFA with n states, the corresponding DFA may have up to 2^n states

NFA to DFA: for RE (a | b)*abb

- $A = \varepsilon closure(0) = \{0, 1, 2, 4, 7\}$
- for each input symbol (that is, a and b):
 - B= ϵ -closure(move(A, a))= ϵ -closure({3, 8})={1,2,3,4,6,7,8}
 - C= ϵ -closure(move(A, b))= ϵ -closure({5})={1,2,4,5,6,7}
 - Dtable [A, a] = B; Dtable [A, b] = C
- B and C are unmarked. Repeating the above we end up with:
 - $C=\{1,2,4,5,6,7\}; D=\{1,2,4,5,6,7,9\}; E=\{1,2,4,5,6,7,10\}; and$
 - Dtable [B, a] = B; Dtable [B, b] = D; Dtable [C, a] = B; Dtable [C, b] = C; Dtable [D, a] = B; Dtable [D, b] = E; Dtable [E, a] = B; Dtable [E, b] = C;
 - No more unmarked sets at this point!

NFA to DFA: for RE (a | b)*abb

