

MM74HC123A Dual Retriggerable Monostable Multivibrator

General Description

The MM74HC123A high speed monostable multivibrators (one shots) utilize advanced silicon-gate CMOS technology. They feature speeds comparable to low power Schottky TTL circuitry while retaining the low power and high noise immunity characteristic of CMOS circuits.

Each multivibrator features both a negative, A, and a positive, B, transition triggered input, either of which can be used as an inhibit input. Also included is a clear input that when taken low resets the one shot. The MM74HC123A can be triggered on the positive transition of the clear while A is held LOW and B is held HIGH.

The MM74HC123A is retriggerable. That is it may be triggered repeatedly while their outputs are generating a pulse and the pulse will be extended.

Pulse width stability over a wide range of temperature and supply is achieved using linear CMOS techniques. The output pulse equation is simply: $PW = (R_{EXT}) \; (C_{EXT}); \; where PW \; is \; in \; seconds, \; R \; is \; in \; ohms, \; and \; C \; is \; in \; farads. \; All inputs are protected from damage due to static discharge by diodes to <math display="inline">V_{CC}$ and ground.

Features

- Typical propagation delay: 25 ns
- Wide power supply range: 2V-6V
- Low guiescent current: 80 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads
- Simple pulse width formula T = RC
- Wide pulse range: 400 ns to ∞ (typ)
- Part to part variation: ±5% (typ)
- Schmitt Trigger A & B inputs allow rise and fall times to be as slow as one second

Connection Diagram

Timing Component

Note: Pin 6 and Pin 14 must be hard-wired to GND

Rochester Ordering Guide

*Most products can also be offered as RoHS compliant, designated by a -G suffix. Please contact factory for more information.

Rochester Part Number	Fairchild Part Number	Package	Temperature	
MM74HC123AN	MM74HC123AN	PDIP-16	-40° to +85°C	
MM74HC123AM MM74HC123AM		SOP-16, Plastic	-40° to +85°C	
MM74HC123AMTC	MM74HC123AMTC	TSSOP-16, Plastic	-40° to +85°C	
MM74HC123ASJ	MM74HC123ASJ	SOP-16, Plastic	-40° to +85°C	

Please contact factory for specific package availability and Military/Aerospace specifications/availability.

Rochester Electronics guarantees performance of its semiconductor products to the original OEM specifications. "Typical" values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. Rochester Electronics reserves the right to make changes without further notice to any specification herein.

Truth Table

Inputs			Outputs			
Clear	Α	В	Q	Ια		
L	Х	Χ	L	Н		
X	Н	Х	L	Н		
X	Х	L	L	Н		
Н	L	1	九	고		
Н	\downarrow	Н	九	고		
1	L	Н	<u>.</u>	ъ		

H = HIGH Level

L = LOW Level

L = LOW Level

↑ = Transition from LOW-to-HIGH

↓ = Transition from HIGH-to-LOW

¬ = One HIGH Level Pulse

¬ = One LOW Level Pulse

X = Irrelevant

Logic Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

Supply Voltage (V _{CC})	-0.5V to $+7.0V$
DC Input Voltage (V _{IN})	$-1.5V$ to V_{CC} +1.5V
DC Output Voltage (V _{OUT})	$-0.5V$ to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
(Clear Input)			
(t_r, t_f) $V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation Temperature Derating: Plastic "N" Package: –

Note 3: Power Dissipation Temperature Derating: Plastic "N" Package: $-12mW/^{\circ}C$ from $65^{\circ}C$ to $85^{\circ}C$

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		T _A = -40 to 85°C	T _A = -55 to 125°C	Units
			*CC	Тур		Guaranteed L	Onito	
V _{IH}	Minimum HIGH Level Input		2.0V		1.5	1.5	1.5	V
	Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level Input		2.0V		0.3	0.3	0.3	V
	Voltage		4.5V		0.9	0.9	0.9	V
			6.0V		1.2	1.2	1.2	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						V
		I _{OUT} ≤ 4.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤ 5.2 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						V
		$ I_{OUT} \le 4 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤ 5.2 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current (Pins 7, 15)	$V_{IN} = V_{CC}$ or GND	6.0V		±0.5	±5.0	±5.0	μА
I _{IN}	Maximum Input Current (all other pins)	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μА
I _{CC}	Maximum Quiescent Supply	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μΑ
	Current (standby)	$I_{OUT} = 0 \mu A$						
I _{CC}	Maximum Active Supply	V _{IN} = V _{CC} or GND	2.0V	36	80	110	130	μΑ
	Current (per	$R/C_{EXT} = 0.5V_{CC}$	4.5V	0.33	1.0	1.3	1.6	mA
	monostable)	23	6.0V	0.7	2.0	2.6	3.2	mA
Note 4: E	for a power supply of 5V ±10% the	worst-case output volta						

Note 4: For a power supply of 5V \pm 10% the worst-case output voltages (V_{OH} , V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst-case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Limit	Units
t _{PLH}	Maximum Trigger Propagation Delay		22	33	ns
	A, B or Clear to Q				
t _{PHL}	Maximum Trigger Propagation Delay		25	42	ns
	A, B or Clear to \overline{Q}				
t _{PHL}	Maximum Propagation Delay, Clear to Q		20	27	ns
t _{PLH}	Maximum Propagation Delay, Clear to $\overline{\mathbb{Q}}$		22	33	ns
t _W	Minimum Pulse Width, A, B or Clear		14	26	ns
t _{REM}	Minimum Clear Removal Time			0	ns
t _{WQ(MIN)}	Minimum Output Pulse Width	C _{EXT} = 28 pF	400		ns
		$R_{EXT} = 2 k\Omega$			
t _{WQ}	Output Pulse Width	C _{EXT} = 1000 pF	10		μs
		$R_{EXT} = 10 \text{ k}\Omega$			

AC Electrical Characteristics

 $\text{C}_\text{L} = 50 \text{ pF } t_\text{r} = t_\text{f} = \text{6 ns} \text{ (unless otherwise specified)}$

Symbol	Parameter	Conditions		v _{cc}	T _A = 25°C		T _A = −40 to 85°C	T _A = -55 to 125°C	Units
Symbol	Parameter				Тур		Guaranteed Limits		Units
t _{PLH}	Maximum Trigger Propagation			2.0V	77	169	194	210	ns
	Delay, A, B or Clear to Q			4.5V	26	42	51	57	ns
				6.0V	21	32	39	44	ns
t _{PHL}	Maximum Trigger Propagation			2.0V	88	197	229	250	ns
	Delay, A, B or Clear to Q			4.5V	29	48	60	67	ns
				6.0V	24	38	46	51	ns
t _{PHL}	Maximum Propagation Delay			2.0V	54	114	132	143	ns
	Clear to Q			4.5V	23	34	41	45	ns
				6.0V	19	28	33	36	ns
t _{PLH}	Maximum Propagation Delay			2.0V	56	116	135	147	ns
	Clear to Q			4.5V	25	36	42	46	ns
				6.0V	20	29	34	37	ns
t _W	Minimum Pulse Width			2.0V	57	123	144	157	ns
	A, B, Clear			4.5V	17	30	37	42	ns
				6.0V	12	21	27	30	ns
t _{REM}	Minimum Clear			2.0V		0	0	0	ns
	Removal Time			4.5V		0	0	0	ns
				6.0V		0	0	0	ns
t _{TLH} , t _{THL}	Maximum Output			2.0V	30	75	95	110	ns
	Rise and Fall Time			4.5V	8	15	19	22	ns
				6.0V	7	13	16	19	ns
t _{WQ(MIN)}	Minimum Output	C _{EXT} = 28 pF		2.0V	1.5				μs
(/	Pulse Width	$R_{EXT} = 2 k\Omega$		4.5V	450				ns
		$R_{EXT} = 6 k\Omega (V$	_{CC} = 2V)	6.0V	380				ns
t _{WQ}	Output Pulse Width	$C_{EXT} = 0.1 \mu F$		5.0V	1	0.9	0.86	0.85	ms
		$R_{EXT} = 10 \text{ k}\Omega$	Max	5.0V	1	1.1	1.14	1.15	ms
C _{IN}	Maximum Input				12	20	20	20	pF
	Capacitance (Pins 7 & 15)								
C _{IN}	Maximum Input				6	10	10	10	pF
	Capacitance (other inputs)								
C _{PD}	Power Dissipation	(Note 5)			70				pF
ο Ρ <u>υ</u>	Capacitance								

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC} 2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} f + I_{CC}$.

Rochester Electronics guarantees performance of its semiconductor products to the original OEM specifications. "Typical" values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. Rochester Electronics reserves the right to make changes without further notice to any specification herein.