Bootstrap

Erik Helmers

$March\ 11,\ 2023$

Contents

1	Théorie				
	1.1	Syntaxe	1		
	1.2	Contexte	1		
	1.3	Evaluation	2		
	1.4	Typing	2		

1 Théorie

1.1 Syntaxe

where e, σ, κ represent general expressions, types and kinds respectively.

1.2 Contexte

$$\begin{array}{cccc} \Gamma & ::= & \epsilon & & \text{empty context} \\ & & \Gamma, x : \tau & & \text{adding a variable} \end{array}$$

$$\frac{1}{\operatorname{valid}(\epsilon)} \frac{\operatorname{valid}(\Gamma) \qquad \Gamma \vdash \tau \Leftarrow \star}{\operatorname{valid}(\Gamma, x : \tau)}$$

1.3 Evaluation

1.4 Typing

In the following, $e \Rightarrow \tau$ is an expression whose type synthezises to τ while $e \Leftarrow \tau$ is checkable.

$$\frac{\Gamma \vdash e \Rightarrow \tau}{\Gamma \vdash e \Leftarrow \tau} \text{ (CHK)} \qquad \frac{\Gamma \vdash \sigma \Leftarrow * \quad \sigma \Downarrow \tau \quad \Gamma \vdash e \Leftarrow \tau}{\Gamma \vdash (e : \sigma) \Rightarrow \tau} \text{ (Ann)}$$

$$\frac{\Gamma \vdash e \Rightarrow \tau}{\Gamma \vdash e \Leftarrow \tau} \text{ (STAR)} \qquad \frac{\Gamma(x) = \tau}{\Gamma \vdash x \Rightarrow \tau} \text{ (VAR)}$$

$$\frac{\Gamma \vdash e \Rightarrow \tau}{\Gamma \vdash \lambda x \mapsto e \Leftarrow \Pi(x : \tau) \cdot \tau'} \text{ (LAM)}$$

$$\frac{\Gamma \vdash e \Leftrightarrow \tau \quad \Gamma \vdash e' \Leftarrow \tau'}{\Gamma \vdash (e, e') \Leftarrow \Sigma(x : \tau) \cdot \tau'} \text{ (TUPLE)}$$

$$\frac{\Gamma \vdash e \Rightarrow \Pi(x : \tau) \cdot \tau' \quad \Gamma \vdash e' \Leftarrow \tau \quad \tau'[x \mapsto e'] \Downarrow \tau''}{\Gamma \vdash e \Leftrightarrow \tau'} \text{ (APP)}$$

$$\frac{\Gamma \vdash e \Rightarrow \Sigma(x : \tau) \cdot \tau'}{\Gamma \vdash \text{ fst } e \Rightarrow \tau} \text{ (FST)}$$

$$\frac{\Gamma \vdash e \Rightarrow \Sigma(x : \tau) \cdot \tau'}{\Gamma \vdash \text{ snd } e \Rightarrow \tau''} \text{ (SND)}$$

$$\frac{\Gamma \vdash \sigma \Leftarrow \star \quad \sigma \Downarrow \tau \quad \Gamma, x : \tau \vdash \sigma' \Leftarrow \star}{\Gamma \vdash \Pi(x : \sigma) \cdot \sigma' \Leftarrow \star} \text{ (PI)}$$

$$\frac{\Gamma \vdash \sigma \Leftarrow \star \quad \sigma \Downarrow \tau \quad \Gamma, x : \tau \vdash \sigma' \Leftarrow \star}{\Gamma \vdash \Sigma(x : \sigma) \cdot \sigma' \Leftarrow \star} \text{ (SIGMA)}$$

Une reformulation équivalentes des règles (PI) et (SIGMA), plus adaptée pour l'implémentation :

$$\frac{\Gamma \vdash \sigma \Leftarrow \star \qquad \sigma \Downarrow \tau \qquad \Gamma \vdash \sigma' \Leftarrow \Pi(x : \tau) . \star}{\Gamma \vdash \Pi(x : \sigma) . \sigma' \Leftarrow \star} \text{ (PI)}$$

$$\frac{\Gamma \vdash \sigma \Leftarrow \star \qquad \sigma \Downarrow \tau \qquad \Gamma \vdash \sigma' \Leftarrow \Pi(x : \tau) . \star}{\Gamma \vdash \Sigma(x : \sigma) . \sigma' \Leftarrow \star} \text{ (SIGMA)}$$