$\mathbf{ULB} \\ \mathbf{2018/2019}$

MATHF3001 - Théorie de la mesure

Assistant : Robson Nascimento Titulaire : Céline Esser

LISTE 4 - FONCTIONS MESURABLES

Exercice 1. Soit f une fonction réelle sur un espace mesurable (X, A). Montrer que si l'ensemble $\{x \in X : f(x) > r\}$ est mesurable pour tout $r \in \mathbb{Q}$, alors f est mesurable.

Exercice 2. Dans l'espace mesurable $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ on considère les fonctions f et g définies par

$$f(x) = \begin{cases} x^2, & \text{si } 0 \le x \le 1, \\ 1, & \text{si } 1 < x < 2, \\ 0, & \text{ailleurs}; \end{cases}$$

et

$$g(x) = \begin{cases} x^2, & \text{si } 0 \le x \le 1 \text{ et } x \notin \mathbb{Q}, \\ 0, & \text{ailleurs.} \end{cases}$$

Montrer que f et g sont mesurables.

Exercice 3. Soit (X, \mathcal{A}) un espace mesurable. Pour une suite $f_k : X \to \mathbb{R}$ de fonctions mesurables où $k \in \mathbb{N}$, montrer que

$$A = \{ x \in X : \lim_{k \to \infty} f_k(x) \text{ existe dans } \mathbb{R} \}$$

est mesurable.

Exercice 4. Soient $f: \mathbb{R} \to \mathbb{R}$ borélienne et $g: \mathbb{R} \to \mathbb{R}$ telle que g(x) = f(x) pour tout $x \in \mathbb{R} \setminus D$, où D est un ensemble au plus dénombrable. Montrer que g est borélienne.

Exercice 5. Soit (X, A) une espace mesurable. Montrer que $\mathbb{1}_A$ est une fonction mesurable si, et seulement si, $A \in A$.

Exercice 6. Soit (X, A) une espace mesurable. Montrer que les parties positives et négatives d'une fonction mesurable $f: X \to \mathbb{R}$ sont mesurables.

Remarque: $f^+(x) = \max\{f(x), 0\}$ et $f^-(x) = \min\{f(x), 0\}$.

Exercice 7. Soit f définie sur [0,1] par

$$f(x) = \begin{cases} 2x, & \text{si } 0 \le x < \frac{1}{2}, \\ 2x - 1, & \text{si } \frac{1}{2} \le x < 1. \end{cases}$$

Montrer que f est mesurable au sens de Lebesgue et que

$$m(f^{-1}(E)) = m(E)$$

pour tout $E \subset [0,1[$ mesurable.

Exercice 8 (Vrai ou Faux). Justifier les affirmations suivantes :

- a) Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction telle que $f\circ f$ est mesurable. Alors f est mesurable.
- b) Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction telle que |f| est mesurable. Alors f est mesurable.
- c) Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction mesurable et $g: \mathbb{R} \to \mathbb{R}$ une application continue. Alors, $g \circ f$ est mesurable.
- d) Si $f: \mathbb{R} \to \mathbb{R}$ est continue presque partout, alors f est mesurable.