

Dada la función $f: \mathbb{R} \to \mathbb{R}/f(x) = x^2 + x$ Completemos:

x tiende a 1 por la izquierda

x tiende a 1 por la derecha

X	0	0,5	0,8	0,99	1	1,01	1,2	1,5	1,8	2
f(x)	0	0,75	1,44	1,97		2,03	2,64	3,75	5,04	6

f(x) tiende a

f(x) tiende a

$\lim_{x\to 1}(x^2+x)=2$

Sea la función
$$f(x) = \frac{3x^2 - 3}{x - 1}$$
 cuyo dominio es:
 $D = \{x/x \in \mathbb{R} \land x \neq 1\}$

¿A qué valores se acerca f(x) cuando x se aproxima a 1?

$$f(x) = \frac{3x^2 - 3}{x - 1}$$

x < 1

Х	f(x)
0,9	5,7
0,95	5,85
0,99	5,97
0,995	5,985
0,999	5,997

x > 1

х	f(x)		
1,1	6,3		
1,05	6,15		
1,01	6,03		
1,005	6,015		
1,001	6,003		

$$\lim_{x \to 1} \frac{3x^2 - 3}{x - 1} = 6$$

Sea la función:
$$f: \mathbb{R} \to \mathbb{R}/f(x) = \begin{cases} -1 & si & x < 0 \\ 0 & si & x = 0 \\ 1 & si & x > 0 \end{cases}$$

$$\lim_{x \to 0^+} f(x) = 1$$

$$\lim_{x\to 0^-} f(x) = -1$$

$$\Rightarrow \lim_{x \to 0} f(x) = No \ existe$$

Ejemplo 2:

Sea la función :
$$f: \mathbb{R} - \{2\} \rightarrow \mathbb{R}/f(x) = \begin{cases} x - 1 & \text{si } x < 2 \\ 3 - x & \text{si } x > 2 \end{cases}$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (3 - x) = 1$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x - 1) = 1$$

$$\implies \lim_{x \to 2} f(x) = 1$$

Ejemplo. Sea la función $h: R \to R \ / \ h(x) = \begin{cases} 1-x^2 & \text{si} \quad x < 1 \\ 3 & \text{si} \quad x = 1 \text{. Grafique la} \\ 2x-2 & \text{si} \quad x > 1 \end{cases}$

función y determine la imagen del 1 y los límites cuando $x \to 1^+$ y $x \to 1^-$.

Ejemplo. Sea la función m : R \rightarrow R / m(x) = $\begin{cases} 2+x & \text{si} & x \leq 3 \\ 5 & \text{si} & x > 3 \end{cases}$. Grafique la función y halle la imagen del 3 y los límites cuando $x \rightarrow 3^+$ y $x \rightarrow 3^-$.

EJERCICIO

Observe las funciones definidas gráficamente y calcule, si existen, los límites pedidos para cada una:

b)

c)

$$\lim_{x \to \infty} f(x)$$

$$x\rightarrow 2^+$$

$$x\rightarrow 2^{-}$$

$$\lim_{x\to 2} f(x)$$

$$\lim_{x \to a} g(x)$$

$$x\rightarrow 1^+$$

$$x\rightarrow 1^{-}$$

$$\lim_{x\to 1} g(x)$$

$$x\rightarrow -3^+$$

$$x \rightarrow -3^-$$

$$\lim_{x\to -3} h(x)$$

$$\label{eq:energy} \textit{Ejemplo}. \mbox{ Sea la función } f: R \rightarrow R \ / \ x \rightarrow \begin{cases} 1-2x & \text{si} \quad x \leq 1 \\ x-2 & \text{si} \quad 1 < x \leq 3 \ . \ \text{Calcule los} \\ 4 & \text{si} \quad x > 3 \end{cases}$$

siguientes límites y compruebe gráficamente:

a)
$$\lim_{x \to 1^{-}} f(x)$$
 b) $\lim_{x \to 1^{+}} f(x)$ **c)** $\lim_{x \to 1} f(x)$

d)
$$\lim_{x \to 3^{-}} f(x)$$
 e) $\lim_{x \to 3^{+}} f(x)$ **f)** $\lim_{x \to 3} f(x)$

e)
$$\lim_{x \to 0} f(x)$$

f)
$$\lim_{x\to 3} f(x)$$

Sea la función
$$f(x) = \begin{cases} x+2 & \text{si } x < 0 \\ x^3 & \text{si } x \ge 0 \end{cases}$$
, calcule, si existe:

a)
$$\lim_{x \to 0^+} f(x)$$
 b) $\lim_{x \to 0^-} f(x)$ **c)** $\lim_{x \to 0} f(x)$

b)
$$\lim_{x\to 0^-} f(x)$$

c)
$$\lim_{x\to 0} f(x)$$

Sea g(x) =
$$\begin{cases} x^3 - 3x^2 + 2 & \text{si } x \neq 2 \\ 8 & \text{si } x = 2 \end{cases}$$
, encuentre, si existe:

a)
$$\lim_{x\to 2^+} g(x)$$

b)
$$\lim_{x\to 2^-} g(x)$$

c)
$$\lim_{x\to 2} g(x)$$

Para cada una de las siguientes gráficas de funciones, determine si existe o no el límite para x tendiendo a 2. Justifique la respuesta. En caso de existir, halle el valor.

Dada la función $f: R \to R / f(x) = \begin{cases} -x-1 & \text{si } x < 0 \\ x-1 & \text{si } 0 \le x < 3 \end{cases}$ grafique y determine: $2x+1 & \text{si } x \ge 3$

a) $\lim_{x\to 0^-} f(x)$

b) $\lim_{x\to 0^+} f(x)$

c) $\lim_{x\to 0} f(x)$

d) $\lim_{x\to 3^-} f(x)$

e) $\lim_{x \to 3^{+}} f(x)$

f) $\lim_{x\to 3} f(x)$

EJEMPLO

Demuestre que
$$\lim_{x\to 0} |x| = 0$$
.

EJEMPLO

Demuestre que
$$\lim_{x\to 0} \frac{|x|}{x}$$
 no existe.

EJEMPLO Si

$$f(x) = \begin{cases} \sqrt{x - 4} & \text{si } x > 4 \\ 8 - 2x & \text{si } x < 4 \end{cases}$$

determine si $\lim_{x\to 4} f(x)$ existe.

Límites infinitos

Analizaremos, a partir de sus gráficas, la existencia de los siguientes límites:

a)
$$\lim_{x\to 0}\frac{1}{x}$$

b)
$$\lim_{x \to 1} \frac{-1}{x-1}$$

c)
$$\lim_{x\to 0} \left(\frac{1}{x^2} + 1\right)$$

a) $\lim_{x\to 0}\frac{1}{x}$

- Si $x \to 0^+$ los valores de la función crecen indefinidamente.
- Si x → 0⁻ los valores de la función decrecen indefinidamente.

Observamos que: $\lim_{x\to 0} \frac{1}{x}$ No existe

$$\lim_{x\to 1}\frac{-1}{x-1}$$

- Si $x \to 1^+$ los valores de la función decrecen indefinidamente.
- Si $x \to 1^-$ los valores de la función crecen indefinidamente.

Observamos que: $\lim_{x\to 1} \frac{-1}{x-1}$ No existe

Las dos ramas de la curva se aproximan cada vez más a la recta x=1 a medida que x se aproxima a ese valor. Para esta gráfica la recte x=1 es una asíntota vertical

$$\lim_{x\to 0}\left(\frac{1}{x^2}+1\right)$$

- Si $x \to 0^+$ los valores de la función crecen indefinidamente.
- Si $x \to 0^-$ los valores de la función crecen indefinidamente.

Observamos que: $\lim_{x\to 0} \left(\frac{1}{x^2} + 1\right)$ No existe

El comportamiento de estas funciones no puede describirse con la idea y el concepto de límite estudiado hasta ahora.

Analizando, por ejemplo, la gráfica de la función $f(x) = \frac{1}{x}$ se observa que cuando $x \to 0^+$ los valores de la función crecen más allá de todo tope.

Decimos que no tiene límite cuando $x \to 0^+$, sin embargo es conveniente decir que f(x) tiende a $+\infty$ cuando $x \to 0^+$.

Esta afirmación se escribe:
$$\lim_{x\to 0+} f(x) = +\infty$$

Esto no significa que el límite exista ni que $+\infty$ sea un número real sino que la función se hace tan grande como se desee tomando x suficientemente cercano a cero.

$$\lim_{x\to 0^+}\frac{1}{x}=+\infty$$

$$\lim_{x\to 0^-}\frac{1}{x}=-\infty$$

$$\lim_{x\to 1^+}\frac{-1}{x-1}=-\infty$$

$$\lim_{x\to 1^-}\frac{-1}{x-1}=+\infty$$

$$\lim_{x\to 0^+} \left(\frac{1}{x^2} + 1\right) = +\infty$$

$$\lim_{x\to 0^-} \left(\frac{1}{x^2} + 1\right) = +\infty$$

$$\lim_{x\to 0} \left(\frac{1}{x^2} + 1\right) = +\infty$$

Ejemplo. Determine los siguientes límites:

a)
$$\lim_{x\to 3^+} \frac{x-5}{x^2-9}$$

b)
$$\lim_{x\to 3^{-}} \frac{x-5}{x^2-9}$$

c)
$$\lim_{x\to 3} \frac{x-5}{x^2-9}$$

Límites en el infinito

Vamos a discutir ahora el comportamiento de algunas funciones definidas gráficamente cuando \boldsymbol{x} crece indefinidamente y cuando \boldsymbol{x} decrece indefinidamente.

$f(x) = \frac{1}{x}$

Escribimos:

• Si x crece indefinidamente f(x) se acerca a 0.

• Si x decrece indefinidamente f(x) se acerca a 0.

La recta y = 0 es la asíntota horizontal de la función.

$$\lim_{x\to+\infty}f(x)=\lim_{x\to-\infty}f(x)=0$$

- Si x crece indefinidamente f(x) se acerca a 1.
- Si x decrece indefinidamente f(x) se acerca a 1.

La recta y = 1 es la asíntota horizontal de la función.

Escribimos:

$$\lim_{x\to+\infty}f(x)=\lim_{x\to-\infty}f(x)=1$$

- Si x crece indefinidamente f(x) se acerca a 2.
- Si x decrece indefinidamente f(x) se acerca a -4.

Las rectas y = 2 e y = -4 son las asíntotas horizontales de la función.

Escribimos:

$$\lim_{x\to +\infty} f(x) = 2$$
, $\lim_{x\to -\infty} f(x) = -4$

Ejemplo. Calcule
$$\lim_{x\to\infty} \left(3-\frac{1}{x}\right)$$
.

<u>Problema</u>

Se proyecta que dentro de t años, la población de cierto pueblo será $p(t) = 20 - \frac{6}{t+1}$ miles de personas. ¿Qué se espera que suceda con la población a medida que el tiempo transcurre indefinidamente?

Límites infinitos en el infinito

Muchas funciones no tienden a un límite finito cuando x crece o decrece indefinidamente. Por ejemplo, ninguna función polinomial tiene límite finito cuando x tiende a infinito

Escribimos:

$$\lim_{x\to+\infty}f(x)=+\infty$$

$$\lim_{x\to-\infty}f(x)=+\infty$$

EJERCICIOS

1) Observe las funciones definidas gráficamente y calcule los límites indicados:

a)

$$\lim_{x\to -1^+} p(x)$$

 $\lim_{x\to 3^+} m(x)$

lím m(x)

 $\lim_{x\to 3} m(x)$

x→3⁻

$$\lim_{x\to -1^{-}} p(x)$$

$$\lim_{x\to -1} p(x)$$

c)

$$\lim_{x\to +\infty} q(x)$$

$$\lim_{x\to -\infty} q(x)$$

2) Halle los siguientes límites:

a)
$$\lim_{x \to 1^{+}} \frac{x}{x^2 - 1}$$

b)
$$\lim_{x \to 1^{-}} \frac{x}{x^2 - 1}$$

c)
$$\lim_{x\to -\infty} \left(x^5 - 3x^3\right)$$

d)
$$\lim_{x \to 0^{+}} \frac{1}{x}$$

e)
$$\lim_{x \to 0^{-}} \frac{1}{x}$$

f)
$$\lim_{x\to+\infty} \left(-x+x^4+x^3\right)$$

g)
$$\lim_{x \to 4^{-}} \frac{3-x}{x^2-16}$$

h)
$$\lim_{x \to 4^+} \frac{3-x}{x^2-16}$$

i)
$$\lim_{x\to +\infty} \left(2x-x^2-4x^3\right)$$

RESPUESTAS

1)a)
$$\lim_{x\to 3^+} m(x) = +\infty$$
,

b)
$$\lim_{x \to -1^{+}} p(x) = -\infty,$$

c)
$$\lim_{x\to +\infty} q(x) = 2$$

f) +∞

$$\lim_{x\to 3^{-}} m(x) = +\infty, \quad \lim_{x\to 3} m(x) = +\infty$$

$$\lim_{x\to -1^{-}} p(x) = +\infty$$

$$\lim_{x\to -\infty} q(x) = -2$$

c)
$$-\infty$$
 d) $+\infty$

$$\lim_{x\to 3} m(x) = +\infty$$

$$\lim_{x\to -1^-} p(x) = +\infty$$
, $\lim_{x\to -1} p(x)$ no existe

Problema

Un tanque contiene 5000 litros de agua pura. Se bombea al tanque salmuera que contiene 30 gramos de sal por litro de agua, a razón de

$$25\frac{I}{min}$$
 . La concentración de sal después de t minutos es: $C(t) = \frac{30t}{200+t}$

(en
$$\frac{grs}{I}$$
).

a) ¿Cuánto tiempo tiene que transcurrir para que la concentración sea de

$$10 \frac{grs}{I}$$

b) ¿Qué sucede con la concentración cuando el tiempo transcurre indefinidamente?

Limites Indeterminados

La indeterminación —

Ejemplo. Halle
$$\lim_{x\to +\infty} \frac{x^3 + 3x^2 + x^4 + 1}{x + x^3 - 3}$$
.

La indeterminación $\frac{0}{0}$

Ejemplo. Halle
$$\lim_{x\to 3} \frac{x^2-9}{x-3}$$
.

EJERCICIOS

1) Calcule los siguientes límites:

a)
$$\lim_{x\to -3} \frac{x^2 + 2x - 3}{x + 3}$$

b)
$$\lim_{x \to 2^+} \frac{x-2}{\sqrt{x-2}}$$

c)
$$\lim_{x\to 1} \frac{x^4-1}{x-1}$$

d)
$$\lim_{x \to -5} \frac{x^2 - 25}{3x + 15}$$

e)
$$\lim_{x \to 4} \frac{\sqrt{x+5}-3}{x-4}$$

2) Calcule los siguientes límites:

a)
$$\lim_{x \to +\infty} \frac{3x+1}{2x-5}$$

b)
$$\lim_{x \to +\infty} \frac{7 - 6x^5}{x + 3}$$

c)
$$\lim_{x \to +\infty} \frac{4 - x^4}{3x^4 + 1}$$

d)
$$\lim_{x \to +\infty} \frac{3 - 2x^2}{x + 1}$$

e)
$$\lim_{x \to +\infty} \frac{4+x}{x^3+x^2+8}$$

f)
$$\lim_{x\to -\infty} \frac{x}{x^2-9}$$

Un límite importante

Se puede demostrar que $\lim_{x\to 0} \frac{\text{sen}x}{x} = 1$

Al evaluar el numerador y el denominador en x=0, se obtiene la indeterminación $\frac{0}{0}$. Para resolverlo, no pueden utilizarse las técnicas vistas

anteriormente, pero sin embargo, el $\lim_{x\to 0} \frac{\text{senx}}{x}$ existe y vale 1.

PROBLEMAS DE APLICACIÓN

- 1) La cantidad de una droga en la corriente sanguínea t horas después de inyectada intramuscularmente está dada por la función $f(t) = \frac{10 t}{t^2 + 1}$. Al pasar el
- tiempo, ¿cuál es la cantidad límite de droga en sangre?
- 2) En un experimento biológico, la población de una colonia de bacterias (en millones) después de x días está dada por: $y = \frac{4}{2 + 8e^{-2x}}$.
 - a) ¿Cuál es la población inicial de la colonia?
 - b) Resolviendo lím y , se obtiene información acerca de si la población x→+∞

crece indefinidamente o tiende a estabilizarse en algún valor fijo. ¿Cuál de estas situaciones ocurre?

¿En cuál de las siguientes gráficas f(a) no está definida pero existe lím f(x)? $_{x\rightarrow a}^{}$

a)

b)

c)

d)

¿En cuál de las siguientes gráficas f(a) está definida pero no existe lím f(x)? $_{\text{x}\rightarrow\text{a}}$

Límite de funciones trascendentes

Los límites de muchas funciones algebraicas se pueden calcular mediante la sustitución directa, es decir $\lim_{x\to a} f(x) = f(a)$. Las funciones trigonométricas, las

exponenciales y logarítmicas también tienen esta propiedad. Enunciamos algunas de ellas teniendo en cuenta que a es un número real en el dominio de la función dada.

1)
$$\lim_{x\to a} \operatorname{sen} x = \operatorname{sen} a$$

2)
$$\lim_{x\to a} \cos x = \cos a$$

3)
$$\lim_{x\to a} tg x = tg a$$

4)
$$\lim_{x\to a} \log x = \log a$$

5)
$$\lim_{x\to a} \ln x = \ln a$$

6)
$$\lim_{x\to a} 10^x = 10^a$$

7)
$$\lim_{x\to a} e^x = e^a$$

Álgebra de límites

Si
$$\lim_{x\to a} f(x) = L_1 y \lim_{x\to a} g(x) = L_2$$
 donde $L_1 \in R$, $L_2 \in R$ entonces:

1)
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L_1 + L_2$$

2)
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L_1 - L_2$$

3)
$$\lim_{x\to a} c.f(x) = c. \lim_{x\to a} f(x) = c. L_1, c \in R$$

4)
$$\lim_{x \to a} [f(x).g(x)] = \left[\lim_{x \to a} f(x) \right] \cdot \left[\lim_{x \to a} g(x) \right] = L_1.L_2$$

5)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L_1}{L_2}$$
, si $L_2 \neq 0$

6)
$$\lim_{x\to a} [f(x)]^n = \left[\lim_{x\to a} f(x) \right]^n = L_1^n$$
 si L_1^n es un número real.

7)
$$\lim_{x \to a} [f(x)]^{g(x)} = \left[\lim_{x \to a} f(x) \right]_{x \to a}^{\lim_{x \to a} g(x)} = L_1^{L_2}$$
, si $L_1^{L_2}$ es un número real.

Nota. Debemos tener en cuenta que $\lim_{x\to a} \frac{f(x)}{g(x)}$ no existe si $L_1 \neq 0$ y $L_2 = 0$.

Nota. Las propiedades anteriores nos permiten asegurar que existen límites $\lim_{x\to a} f(x)$ que pueden ser evaluados calculando f(a), es decir sustituyendo directamente x por a en la expresión de la función aún cuando f(x) es una combinación algebraica de funciones para las cuales está definida f(a).

Ejemplo. Resuelva los siguientes límites:

a)
$$\lim_{x\to 1} (\ln x + x^2)$$

b)
$$\lim_{x \to 2} (x^3 - 3^x)$$

c)
$$\lim_{x \to \frac{\pi}{2}} (-12.\text{sen } x)$$

d)
$$\lim_{x\to 4} \sqrt{x}.x^2$$

e)
$$\lim_{x \to 2} \frac{x^4 - 10}{x}$$

f)
$$\lim_{x\to 3} x^{\frac{2}{3}x}$$

Teniendo en cuenta el álgebra de los límites y las diferentes propiedades:

a)
$$\lim_{x \to 1} (\ln x + x^2) = \lim_{x \to 1} \ln x + \lim_{x \to 1} x^2 = \ln 1 + 1^2 = 0 + 1 = 1 \implies \lim_{x \to 1} (\ln x + x^2) = 1$$

b)
$$\lim_{x\to 2} \left(x^3 - 3^x\right) = \lim_{x\to 2} x^3 - \lim_{x\to 2} 3^x = 2^3 - 3^2 = 8 - 9 = -1$$

Por lo tanto:
$$\lim_{x\to 2} (x^3 - 3^x) = -1$$

c)
$$\lim_{x \to \frac{\pi}{2}} (-12.\text{sen } x) = -12$$
. $\lim_{x \to \frac{\pi}{2}} \text{sen } x = -12.\text{sen } \frac{\pi}{2} = -12.1 = -12$

Por lo tanto:
$$\lim_{x \to \frac{\pi}{2}} (-12.\text{sen } x) = -12$$

d)
$$\lim_{x \to 4} (\sqrt{x}.x^2) = \lim_{x \to 4} \sqrt{x}. \lim_{x \to 4} x^2 = \sqrt{4}.4^2 = 2.16 = 32 \implies \lim_{x \to 4} \sqrt{x}.x^2 = 32$$

e)
$$\lim_{x \to 2} \frac{x^4 - 10}{x} = \frac{\lim_{x \to 2} (x^4 - 10)}{\lim_{x \to 2} x} = \frac{\lim_{x \to 2} x^4 - \lim_{x \to 2} 10}{\lim_{x \to 2} x} = \frac{2^4 - 10}{2} = \frac{6}{2} = 3$$

Por lo tanto: $\lim_{x\to 2} \frac{x^4 - 10}{x} = 3$. Es posible resolver este límite pues $\lim_{x\to 2} x \neq 0$.

f)
$$\lim_{x \to 3} x^{\frac{2}{3}x} = \left(\lim_{x \to 3} x\right)^{\lim_{x \to 3} \frac{2}{3}x} = \left(\lim_{x \to 3} x\right)^{\frac{2}{3} \cdot \lim_{x \to 3} x} = 3^2 = 9 \implies \lim_{x \to 3} x^{\frac{2}{3}x} = 9$$

