COMP 5630/6630:Machine Learning

Lecture 3: Linear Regression

- ML
 - Learn a "mapping" from input to output h: X → Y
 - Fitting a function, f, from input to output using the dataset
- Supervised Learning
 - Training Data
 - Used to learn a "mapping" from input to output, f: X → Y
 - Hypothesis, h
 - Learned "mapping", h: X → Y using the training data
 - Test data
 - Use the hypothesis, h to predict new, unseen data

 \triangleright Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

 \triangleright Task: if a residence has x square feet, predict its price?

 \triangleright Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

 \rightarrow Task: if a residence has x square feet, predict its price?

Is this the best way to learn a mapping from $x \rightarrow y$?

 \triangleright Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

 \triangleright Task: if a residence has x square feet, predict its price?

• Linear vs quadratic fit

How to choose between different mapping?

- Supervised Learning
 - Given a training dataset, learn a mapping (hypothesis, h) from x→ y, where y is labelled
 - Goal: Given a new datapoint, x (test data), predict the most accurate output, y, using the learned hypothesis, h
 - learned mapping = trained model

Predicting House Price: Learn a Mapping from $x \rightarrow y$

Dataset of the living areas, bedrooms, and prices of 47 houses

Living area (ft²)	# bedrooms	Price (1000\$s)
1643	4	256
1356	3	202
1678	3	287
•••	•••	•••
3000	4	400

Predicting House Price: Learn a Mapping from $X \rightarrow y$

Dataset of the living areas, bedrooms, and prices of 47 houses

Living area (ft²)	# bedrooms	Price (1000\$s)
1643	4	256
1356	3	202
1678	3	287
•••	•••	
3000	4	400
	_	T .
)	(У

Recap: Linear Classifier

- Black and white circles are different labels. H₁, H₂, ...
 represent different decision boundaries i.e. linear
 functions that best map the classification process.
 - Goal: find the best linear function that has highest accuracy

Idea

Repeat

- 1. Draw a line to separate two classes
- 2. Calculate accuracy
- 3. Stop if accuracy can't be improved

Linear function to fit the data is a line y = mx+c

Recap: Linear Classifier Example

Predicting House Price: Learn a Mapping from $X \rightarrow y$

Dataset of the living areas, bedrooms, and prices of 47 houses

Living area (ft²)	# bedrooms	Price (1000\$s)
1643	4	256
1356	3	202
1678	3	287
•••		
3000	4	400
		Y
X	,	У

Predict y from one feature, living area

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1$$

 Predict y from two features, living area and # bedrooms

$$x_1$$
 = Living area x_2 = # bedrooms

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

- θ_i = the **parameters** or **weights** of the linear model characterizing $X \rightarrow Y$
- A more generic model is $h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x$,

Linear Regression (cntd.)

• **Learning:** Given this formulation, we will need to identify a way to find the values of θ .

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$$

 We will need to use the training data to learn these parameters. This process is called learning

What do we need to achieve this?

Linear Regression (cntd.)

• **Learning:** Given this formulation, we will need to identify a way to find the values of θ .

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$$

- We will need to use the training data to learn these parameters. This process is called learning
- What do we need to achieve this?
- We will define a function that measures the quality of predictions for each value of θ .
- This is called the cost function or objective function

How to Define the Cost or Objective Function

• Idea: Minimize the **squared** difference between the hypothesis, $h_{\theta}(x)$ and y

1.
$$h_{\theta}(x) - y$$

2.
$$(h_{\theta}(x) - y)^2$$

3.
$$\min_{\Theta} (h_{\Theta}(x) - y)^2$$

4.
$$\min_{\theta} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

5.
$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

difference between the hypothesis, $h_{\theta}(x)$ and y

squared difference between $h_{\theta}(x)$ and y

3. $\min_{\theta} (h_{\theta}(x) - y)^2$ choose θ values to minimize the squared difference between $h_{\theta}(x)$ and y4. $\min_{\theta} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ take the summation of squared difference of Step 3 for all training examples, m
5. $\min_{\theta} \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ Multiply by a constant, ½, for convention

$$J(\Theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\Theta}(x^{(i)}) - y^{(i)})^{2}$$

Objective function to minimize

Ordinary least squares regression model

Learning: Gradient Descent

- Goal: To find a set of parameters θ that will minimize the cost function $J(\theta)$.
- Common approach: gradient descent
- What does the gradient descent do?
 - Start with an initial "guess" for θ
 - Update values of θ that will gradually move towards the "optimal solution"
 - What is the optimal solution?
 - The value of θ that minimizes the cost function
- How do we do it computationally?

Gradient Descent

How do we do it computationally?

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- α is the learning rate
 - Modulates how much of the change that we need to propagate at each instant
- Each update of θ will be a step in the steepest decrease of the cost function $J(\theta)$
- How to compute the derivative of the cost function $J(\theta)$?

Gradient Descent Visualization Example

Finding a (local) minimum depend on the starting point and step size, α , to change direction

Gradient Descent Visualization

Gradient Descent Computation

•
$$\frac{\partial}{\partial \theta_i} J(\theta) = \frac{\partial}{\partial \theta_i} \frac{1}{2} (h_{\theta}(x) - y)^2$$

$$J(\Theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\Theta}(x^{(i)}) - y^{(i)})^{2}$$
 Assume only 1 datapoint ignoring summation

=2.
$$\frac{1}{2}$$
(h_{\theta}(x) - y) $\frac{\partial}{\partial \theta_j}$ (h_{\theta}(x) - y)

Chain rule of derivative

=
$$(h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_i} (\theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n - y)$$

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$$

=
$$(h_{\theta}(x) - y). x_j \leftarrow$$

$$\frac{\partial}{\partial \theta_{j}}(\theta_{j}x_{j}) = x_{j,} \text{ other terms are } 0$$

$$e.g., \frac{\partial}{\partial \theta_{0}}(\theta_{0}x_{0}) = x_{0,} \text{ other terms are } 0$$

Gradient Descent

Hence each update is given by

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

- This is called the **LMS** update rule or the **Least Mean Squares** update rule.
 - Also known as the *Widrow-Hoff* learning rule.

Gradient Descent

- Has several properties:
 - Magnitude of update is proportional to the error (y h(x))
 - What does this mean?
 - If we have a very good prediction i.e. $h(x) \approx y$, then the update is very small.
 - Conversely, if the prediction is very far off i.e. $h(x)\gg y$ or $h(x)\ll y$ then the update will be large.
- For learning over the complete training set, we iteratively update the parameters as below

```
Repeat until convergence { \theta_j := \theta_j + \alpha \sum_{i=1}^m \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}. }
```

Gradient Descent Update: Batch vs Stochastic

- If we use all the examples in the training set **at once**:
 - Batch gradient descent
- What if we update at every single data point?
 - Stochastic or incremental gradient descent

```
Loop { for i=1 to m, { \theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}.} }
```

Summary

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose, try $\, \alpha \,$

 $\dots, 0.001,$

 $, 0.01, , 0.1, , 1, \dots$

Normal Equations

Gradient Descent

Normal equation: Method to solve for θ analytically.

Normal Equations

• Steps:

- Set the partial derivatives of the cost function $J(\theta)$ to zero
- Then we can estimate the parameters as follows:

$$\nabla_{\theta} J(\theta) = X^T X \theta = X^T \vec{y}$$

$$\Theta = (X^T X)^{-1} X^T y$$

- Where X is the input feature vector
- y is the expected target value

Normal Equation Example

X ₀	x _{1 =} Living area (ft²)	x ₂ =#bedrooms	y= Price(1000\$s)
1	1643	4	256
1	1356	3	202
1	1678	3	287

•
$$\mathbf{X} = \begin{bmatrix} 1 & 1643 & 4 \\ 1 & 1356 & 3 \\ 1 & 1678 & 3 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 256 \\ 202 \\ 287 \end{bmatrix}$$

Dimension of X, mxn = m examples, n features Dimension of y = mx1

$$\theta = (X^T X)^{-1} X^T y$$

m training examples, n features.

Gradient Descent

- Need to choose
- Needs many iterations lpha
- Works well even when n is large

Normal Equation

- No need to choose
- Don't need to iterate α
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large.

Basis Function: Extending Linear Regression to More Complex Models

- The inputs X for linear regression:
 - Original quantitative inputs
 - Transformation of quantitative inputs
 - e.g. log, exp, square root, square, etc.
 - Polynomial transformation
 - example: $y = b_0 + b_1 \times x_1 + b_2 \times x_2 + b_3 \times x_3$

Choice of Features

Blue curve fitting
$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

Purple curve fitting
$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$

Basis Function: Extending Linear Regression to More Complex Models

- Previous
- θ_i = the **parameters** or **weights** of the linear model characterizing $X \rightarrow Y$
- A more generic model is φ

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$$

Non-linear complex models

•
$$h(x) = \sum_{i=0}^{n} \theta_i \varphi_i(x)$$

Basis function

Types of Basis Function

Linear basis function: the simplest case

$$\varphi_i(\mathbf{x}) = \mathsf{x}_i$$

Polynomial basis function

$$\varphi_i(\mathbf{x}) = x^i$$

 A small change in x affects all basis functions

Types of Basis Function

Gaussian basis functions

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

• A small change in x affects nearby basis functions. μ_j and s controls location and slope

Types of Basis Function

Sigmoidal basis functions

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

 A small change in x affects nearby basis functions. μ_j and s controls location and slope

Optional Reading

Handout uploaded on Canvas