Appendix:

Risk =
$$1 - (1 - p)^N = 1 - \left(1 - \frac{1}{T}\right)^N$$

$$Z = \frac{(\overline{x} - \mu_o)}{\sigma_{\overline{x}}}$$

$$t = \frac{(\overline{x} - \mu_o)}{s_{\overline{x}}}$$

$$z = \frac{(\bar{x}_1 - \bar{x}_2 - \delta)}{\sqrt{(\sigma_1^2 / n_1 + \sigma_2^2 / n_2)}}$$

$$t = \frac{(\overline{x}_1 - \overline{x}_2 - \delta)}{\sqrt{(s_1^2 / n_1 + s_2^2 / n_2)}}$$

$$t_c = \frac{w_1 t_1 + w_2 t_2}{w_1 + w_2}$$

where:
$$w_1 = \frac{s_1^2}{n}$$

$$w_2 = \frac{s_2^2}{n}$$

$$t_1 = t_{1-\alpha/2, n_1 - 1}$$

$$t_2 = t_{1-\alpha/2, n_2-1}$$

$$\chi_c^2 = \sum_{j=1}^n \frac{(O_j - E_j)^2}{E_j}$$

NORMAL DISTRIBUTION TABLE

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

t-Distribution Table

The shaded area is equal to α for $t = t_{\alpha}$.

df	$t_{.100}$	$t_{.050}$	$t_{.025}$	$t_{.010}$	$t_{.005}$
1	3.078	6.314	12.706	31.821	63.657
$\mid 2 \mid$	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
$\begin{vmatrix} 1 & 4 \end{vmatrix}$	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
32	1.309	1.694	2.037	2.449	2.738
34	1.307	1.691	2.032	2.441	2.728
36	1.306	1.688	2.028	2.434	2.719
38	1.304	1.686	2.024	2.429	2.712
∞	1.282	1.645	1.960	2.326	2.576

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

			I					T		
df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

F distribution critical value landmarks

Table entries are critical values for F^* with probably p in right tail of the distribution.

Figure of *F* distribution (like in Moore, 2004, p. 656)

Degrees of freedom in numerator (df1)	Degrees of freedom in numerator (df1)								
p 1 2 3 4 5 6 7 8	12	24	1000						
1 0.100 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44		62.00	63.30						
0.050 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9		249.1	254.2						
0.025 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.6		997.3	1017.8						
0.010 4052 4999 5404 5624 5764 5859 5928 5981		6234	6363						
0.001 405312 499725 540257 562668 576496 586033 593185 597954	610352	623703	636101						
2 0.100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37	9.41	9.45	9.49						
0.050 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37	19.41	19.45	19.49						
0.025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37	39.41	39.46	39.50						
0.010 98.50 99.00 99.16 99.25 99.30 99.33 99.36 99.38	99.42	99.46	99.50						
0.001 998.38 998.84 999.31 999.31 999.31 999.31 999.31	999.31	999.31	999.31						
3 0.100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25	5.22	5.18	5.13						
0.050 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85	8.74	8.64	8.53						
0.025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54		14.12	13.91						
0.010 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49		26.60	26.14						
0.001 167.06 148.49 141.10 137.08 134.58 132.83 131.61 130.62	128.32	125.93	123.52						
4 0.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95	3.90	3.83	3.76						
0.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04		5.77	5.63						
0.025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98		8.51	8.26						
0.010 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80		13.93	13.47						
0.001 74.13 61.25 56.17 53.43 51.72 50.52 49.65 49.00	47.41	45.77	44.09						
5 0.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34	3.27	3.19	3.11						
0.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82	4.68	4.53	4.37						
0.025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76		6.28	6.02						
0.010 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29		9.47	9.03						
0.001 47.18 37.12 33.20 31.08 29.75 28.83 28.17 27.65	26.42	25.13	23.82						
6 0.100 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98	2.90	2.82	2.72						
0.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15		3.84	3.67						
0.025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60		5.12	4.86						
0.010 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10		7.31	6.89						
0.001 35.51 27.00 23.71 21.92 20.80 20.03 19.46 19.03	17.99	16.90	15.77						
7 0.100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75	2.67	2.58	2.47						
0.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73		3.41	3.23						
0.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90		4.41	4.15						
0.010 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84		6.07	5.66						
0.001 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63	13.71	12.73	11.72						
8 0.100 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59		2.40	2.30						
0.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44		3.12	2.93						
0.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43		3.95	3.68						
0.010 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03		5.28	4.87						
0.001 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05	11.19	10.30	9.36						
9 0.100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47		2.28	2.16						
0.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23		2.90	2.71						
0.025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10		3.61	3.34						
0.010 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47	5.11	4.73	4.32						
0.001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37	9.57	8.72	7.84						

Critical values computed with Excel 9.0

			Degrees of freedom in numerator (df1)										
		р	1	2	3	4	5	6	7	8	12	24	1000
	10	0.100	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.28	2.18	2.06
		0.050	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.91	2.74	2.54
		0.025	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.62	3.37	3.09
		0.010	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.71	4.33	3.92
		0.001	21.04	14.90	12.55	11.28	10.48	9.93	9.52	9.20	8.45	7.64	6.78
	12	0.100	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.15	2.04	1.91
		0.050	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.69	2.51	2.30
		0.025	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.28	3.02	2.73
		0.010	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.16	3.78	3.37
		0.001	18.64	12.97	10.80	9.63	8.89	8.38	8.00	7.71	7.00	6.25	5.44
	14	0.100	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.05	1.94	1.80
		0.050	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.53	2.35	2.14
		0.025	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.05	2.79	2.50
		0.010	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	3.80	3.43	3.02
		0.001	17.14	11.78	9.73	8.62	7.92	7.44	7.08	6.80	6.13	5.41	4.62
	16	0.100	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	1.99	1.87	1.72
		0.050	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.42	2.24	2.02
		0.025	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	2.89	2.63	2.32
_		0.010	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.55	3.18	2.76
(df2)		0.001	16.12	10.97	9.01	7.94	7.27	6.80	6.46	6.20	5.55	4.85	4.08
tor (18	0.100	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	1.93	1.81	1.66
na L		0.050	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.34	2.15	1.92
Ē		0.025	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.77	2.50	2.20
ř		0.010	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.37	3.00	2.58
i A		0.001	15.38	10.39	8.49	7.46	6.81	6.35	6.02	5.76	5.13	4.45	3.69
Degrees of freedom in denominator (df2)	20	0.100	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.89	1.77	1.61
þ		0.050	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.28	2.08	1.85
<u>e</u>		0.025	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.68	2.41	2.09
ō		0.010	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.23	2.86	2.43
ees		0.001	14.82	9.95	8.10	7.10	6.46	6.02	5.69	5.44	4.82	4.15	3.40
Degr	30	0.100	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.77	1.64	1.46
_		0.050	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.09	1.89	1.63
		0.025	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.41	2.14	1.80
		0.010	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	2.84	2.47	2.02
		0.001	13.29	8.77	7.05	6.12	5.53	5.12	4.82	4.58	4.00	3.36	2.61
	50	0.100	2.81	2.41	2.20	2.06	1.97	1.90	1.84	1.80	1.68	1.54	1.33
		0.050	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	1.95	1.74	1.45
		0.025	5.34	3.97	3.39	3.05	2.83	2.67	2.55	2.46	2.22	1.93	1.56
		0.010	7.17	5.06	4.20	3.72	3.41	3.19	3.02	2.89	2.56	2.18	1.70
		0.001	12.22	7.96	6.34	5.46	4.90	4.51	4.22	4.00	3.44	2.82	2.05
	100	0.100	2.76	2.36	2.14	2.00	1.91	1.83	1.78	1.73	1.61	1.46	1.22
		0.050	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.85	1.63	1.30
		0.025	5.18	3.83	3.25	2.92	2.70	2.54	2.42	2.32	2.08	1.78	1.36
		0.010	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.37	1.98	1.45
		0.001	11.50	7.41	5.86	5.02	4.48	4.11	3.83	3.61	3.07	2.46	1.64
	1000	0.100	2.71	2.31	2.09	1.95	1.85	1.78	1.72	1.68	1.55	1.39	1.08
		0.050	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95	1.76	1.53	1.11
		0.025	5.04	3.70	3.13	2.80	2.58	2.42	2.30	2.20	1.96	1.65	1.13
		0.010	6.66	4.63	3.80	3.34	3.04	2.82	2.66	2.53	2.20	1.81	1.16
		0.001	10.89	6.96	5.46	4.65	4.14	3.78	3.51	3.30	2.77	2.16	1.22

Use StaTable, WinPepi > WhatIs, or other reliable software to determine specific p values