

AV121: Data Structures and Algorithms

Tutorial-03

Tutorial 03 – Plan

- **■** Binary Trees
- **■** Binary Search Tree
- **■** AVL Trees
 - → Properties, Insertion
- **▼** Red-black Trees
 - → Properties, Insertion

■ Which of the following statements is true

- A. In-order traversal of a binary search tree containing numbers gives the sorted list of numbers as output
- B. A binary search tree can be re-constructed, given its preorder traversal alone
- c. Both A&B
- D. None of the above

- Which of the following statements is true
 - A. All AVL Trees are binary search trees
 - B. All Red-Black Trees are binary search trees
 - c. All binary search trees are AVL Trees
 - D. Both A&B
 - E. All of the above

- Search operation in a binary search tree always completes in O(log n) time
 - A. True
 - в. False
 - c. Can't say

- Search operation in an AVL tree always completes in O(log n) time
 - A. True
 - B. False
 - c. Can't say

- Search operation in a Red-Black tree always completes in O(log n) time
 - A. True
 - в. False
 - c. Can't say

■ Delete 10 from the BST below

- In an AVL Tree, for every node in the tree, height of the left and right sub-trees can differ by at most 1
 - A. True
 - в. False
 - c. Can't say

■ Is this an AVL Tree?

■ Insert the following numbers in to an AVL Tree

■ Insert the following numbers in to an AVL Tree

■ Insert the following numbers in to an AVL Tree

■ Insert the following numbers in to an AVL Tree

■ Insert the following numbers in to an AVL Tree

■ Insert the following numbers in to an AVL Tree

■ Insert the following numbers in to an AVL Tree

→ 10, 25, 35, 45, 55, 75, 5, 4, 3, 2, 1

■ Insert the following numbers in to an AVL Tree

- Which of the following statements about Red-Black trees is false
 - A. Every node is either red or black
 - B. A red node can have only red children
 - c. A black node cannot have black children
 - D. Every path from the root to any leaf node must contain the same number of black nodes

- In an RB Tree, path from the root to the farthest leaf is no more than twice as long as the path from the root to the nearest leaf
 - A. True
 - в. False
 - c. Can't say

- In RB Trees, balance is maintained by
 - A. Doing tree rotations
 - B. Doing color manipulation
 - c. Both A&B
 - D. None of the above

■ Construct the Huffman Tree for the character set given below:

Letter	Α	В	С	D	E	F
Frequency	45	13	12	16	9	5

■ Construct the Huffman Tree for the character set given

below:

Letter	Α	В	С	D	E	F
Frequency	45	13	12	16	9	5

5 F 9 E 12 C 13 B 16 D 45 A

■ Construct the Huffman Tree for the character set given

Letter	A	В	С	D	E	F
Frequency	45	13	12	16	9	5

■ Construct the Huffman Tree for the character set given

Letter	Α	В	С	D	E	F
Frequency	45	13	12	16	9	5

■ Construct the Huffman Tree for the character set given

Letter	Α	В	С	D	E	F
Frequency	45	13	12	16	9	5

■ Construct the Huffman Tree for the character set given

Letter	Α	В	С	D	E	F
Frequency	45	13	12	16	9	5

■ Construct the Huffman Tree for the character set given

Letter	А	В	С	D	E	F
Frequency	45	13	12	16	9	5

■ Construct the Huffman Tree for the character set given

Letter	Α	В	C	D	E	F
Frequency	45	13	12	16	9	5

■ Construct the Huffman Tree for the character set given

Letter	Α	В	С	D	E	F
Frequency	45	13	12	16	9	5

■ Construct the Huffman Tree for the character set given

below:

Letter	A	В	С	D	E	F
Frequency	45	13	12	16	9	5
Code	0	101	100	111	1101	1100

Decode 001011101

■ Construct the Huffman Tree for the character set given

Letter	Α	В	С	D	Е	F
Frequency	45	13	12	16	9	5
Code	0	101	100	111	1101	1100

■ Construct the Huffman Tree for the character set given

Letter	Α	В	С	D	E	F
Frequency	45	13	12	16	9	5
Code	0	101	100	111	1101	1100

■ Construct the Huffman Tree for the character set given

Letter	Α	В	С	D	Е	F
Frequency	45	13	12	16	9	5
Code	0	101	100	111	1101	1100

■ Construct the Huffman Tree for the character set given

below:

Letter	A	В	С	D	E	F
Frequency	45	13	12	16	9	5
Code	0	101	100	111	1101	1100

Encode DECADE

■ Construct the Huffman Tree for the character set given

Letter	Α	В	С	D	E	F
Frequency	45	13	12	16	9	5
Code	0	101	100	111	1101	1100

