OPAKOVANIE Šírenie svetla

Zdenka Baková

ZŠ J. Lipského s MŠ Trenč<u>ianske Stankovce</u> Fyzikálna podstata svetla

Zdroje svetla

Svetelný lúč a svetelný zväzok

Optické prostredia

Šírenie svetla

Tieň a polotieň

Svetlo

- je elektromagnetické žiarenie
- je nositeľom energie

Slnečné svetlo

Slnečné žiarenie, ktoré sa dostane na Zem obsahuje približne:

48 % - viditeľné svetlo

45 % - infračervené (tepelné) žiarenie

7 % - ultrafialové žiarenie

Navrhni spôsob, ako môžeme dokázať, že viditeľné svetlo je nositeľom energie.

Svetlo je nosič informácií – odráža sa od okolitých predmetov a umožňuje ich vidieť

Zdroje svetla

Zdroj svetla je teleso, v ktorom svetlo vzniká a šíri sa do okolia všetkými smermi.

Podľa pôvodu žiarenia rozlišujeme zdroje:

- a) prirodzené Slnko, hviezdy, svätojánska muška, blesk
- b) umelé žiarovka, obrazovka televízora, sviečka

Podľa veľkosti rozlišujeme zdroj:

- a) bodový (rozbiehavé svetelné zväzky lúčov) veľmi malé rozmery v porovnaní so vzdialenosťou pozorovania (svietiaci bod) malá žiarovka, hviezda
- b) plošný (rovnobežné svetelné zväzky lúčov) javí sa ako svietiaca plocha Slnko, reflektor, výbojová trubica, monitor

Pomenuj osvetlené telesá na obrázkoch a uveď zdroje svetla, ktoré ich osvetľujú.

ÚLOHA

Priraď k sebe správne dvojice.

televízor

horiace drevo

zrkadlo

Venuša

kométa

svetluška

Mesiac

diamant

Zem

osvetlené teleso

zdroj svetla

Svetelný lúč

- je veľmi úzky zväzok svetla
- znázorňujeme ho ako priamku, pozdĺž ktorej sa šíri svetlo

Svetelný zväzok

Svetelný zväzok (svetelný kužeľ) je širší pruh svetla, ktorý preniká otvorom väčších rozmerov.

Svetelný zväzok

Svetelný zväzok

Rozbiehavý zväzok svetla

Zo svetelného zdroja sa šíria svetelné lúče všetkými smermi **rozbiehavo**. Ak v blízkosti zdroja umiestnime nepriehľadnú dosku s otvorom (**clona**), získame **rozbiehavý zväzok** - svetelná stopa na stene bude väčšia ako otvor v clone.

Rovnobežný zväzok svetla

Zväzok lúčov zo vzdialeného zdroja (napr. zo Slnka) považujeme za **rovnobežný** - svetelná stopa na stene je rovnako veľká ako otvor v clone.

Slnko je vzdialené od Zeme 150 miliónov km – lúče dopadajúce na povrch Zeme môžeme preto považovať za rovnobežné.

Optické prostredie

Čo sa môže stať so svetelným lúčom? Svetlo sa vždy šíri nejakým optickým prostredím:

priehľadnépriesvitnénepriehľadnévákuummliečne sklobetónvzduchhmladrevovodapergamenkovy

Takéto rozdelenie nie je presné:

- tenká vrstva nepriehľadného prostredia môže byť priehľadná alebo priesvitná
- hrubá vrstva priehľadného prostredia sa stáva nepriehľadnou (voda v oceáne)

Šírenie svetla

V rovnorodom prostredí sa svetlo šíri priamočiaro.

Priamočiare šírenie svetla využívame napr. pri vytyčovaní priameho smeru, zameriavaní pri zememeračských prácach.

Priamočiare šírenie svetla sa využíva napr. aj v mieridlách športových i bojových zbraní.

Koľko špendlíkov uvidí pozorovateľ A, B, C?

Rýchlosť svetla

vo vákuu sa svetlo šíri rýchlosťou

v = 300 000 km/s v = 300 000 000 m/s

- rýchlosť svetla vo vákuu je najvyššia dosiahnuteľná rýchlosť v reálnom svete (vesmíre)
- v hmotnom prostredí (sklo, voda, vzduch) sa svetlo šíri menšou rýchlosťou (nájdeme vo fyzikálnych tabuľkách)

Rýchlosť svetla

Rýchlosť svetla často porovnávame s rýchlosťou zvuku. Rýchlosť zvuku je asi miliónkrát menšia, preto pri búrke počujeme úder hromu až niekoľko sekúnd po záblesku.

Koľko času by potrebovali na prekonanie vzdialenosti, ktorú svetlo prekoná za 1 sekundu:

- a) chodec pri priemernej rýchlosti 5 km/h
- b) lietadlo pri priemernej rýchlosti 1 000 km/h?

RIEŠENIE

Svetlo prekoná za 1 sekundu vzdialenosť 300 000 km.

- a) chodec prejde vzdialenosť 300 000 km za čas:
 - 300 000 km : 5 km/h = 60 000 h = 6 rokov 310 dní
- b) lietadlo prejde vzdialenosť 300 000 km za čas:

300 000 km : 1 000 km/h = 300 h = 12 dní 12 hodín

Tieň je priestor za nepriehľadnou prekážkou, kam neprenikajú svetelné lúče zo zdroja. Na premietacej stene vzniká tmavá stopa – vrhnutý tieň.

Vrhnutý tieň

Veľkosť vrhnutého tieňa závisí od vzájomnej polohy zdroja svetla,

nepriehľadného telesa a premietacej steny.

VIDEO

Polotieň

Polotieň vzniká za prekážkou, ktorá je osvetlená plošným zdrojom väčších rozmerov alebo aspoň 2 bodovými zdrojmi.

Vznik polotieňa pri osvetlení nepriehľadného telesa dvomi svetelnými zdrojmi.

Ostré tiene môžu byť pre človeka nepríjemné a nebezpečné pri práci alebo v doprave – preto sa snažíme zmierniť ich vznik vhodným osvetlením priestorov alebo usporiadaním nepriehľadných prekážok.

Ako sa mení veľkosť vrhnutého tieňa, keď sa približuješ k svietiacej lampe ? Vyznač na obrázku.

RIEŠENIE

Veľkosť (dĺžku) vrhnutého tieňa určuje okrajový lúč, ktorý ešte dopadne na chodník.

Ktorá z lôpt vrhne na premietaciu stenu väčší tieň? Vyznač na obrázku.

RIEŠENIE

Veľkosť tieňa vrhnutého na zvislú stenu závisí nielen od veľkosti telesa, ale aj jeho vzdialenosti od zdroja svetla.

Vyznač na obrázku hranice tieňa a polotieňa, ktoré vzniknú pri osvetlení lavice dvomi lampami.

Hranice tieňa a polotieňa opäť vymedzujú okrajové lúče, ktoré dopadnú zo zdroja na podlahu.

Vierka vysoká 150 cm vrhá tieň 2 m dlhý. Továrenský komín vrhá v tom istom čase tieň dlhý 50 m. Aký vysoký je komín ? Na výpočet použi náčrtok.

2 m

RIEŠENIE

Výšky Vierky a komína sú v rovnakom pomere ako dĺžky ich tieňov (podobnosť trojuholníkov).

ZDROJE

Lapitková, Koubek, Morková: Fyzika pre 8. ročník ZŠ, 2012

Janovič, Chalupková, Lapitková: Fyzika pre 9. ročník ZŠ, 2000

Video: Langmaster - Fyzika, youtube.com

Obrázky: Google