Homework #8: Runge-Kutta method

April 9, 2020

Q1

Show that the forth-order Runge-Kutta method when applied to the differential equation $y' = \lambda y$, can be written in the form

$$w_{i+1} = (1 + (h\lambda) + \frac{1}{2}(h\lambda)^2 + \frac{1}{6}(h\lambda)^3 + \frac{1}{24}(h\lambda)^4)w_i$$

Answer:

$$K_1 = h\lambda w_i$$

$$K_2 = h\lambda(w_i + 1/2 K_1) = h\lambda w_i + 1/2 h^2\lambda^2 w_i$$

$$K_3 = h\lambda(w_i + 1/2 K_2) = h\lambda w_i + 1/2 h^2 \lambda^2 w_i + 1/4 h^3 \lambda^3 w_i$$

$$K_4 = h\lambda w_i + h^2 \lambda^2 w_i + 1/2 h^3 \lambda^3 w_i + 1/4 h^4 \lambda^4 w_i$$

$$K_4 = h\lambda w_i + h^2\lambda^2 w_i + 1/2 h^3\lambda^3 w_i + 1/4 h^4\lambda^4 w_i$$

Let $A = h\lambda w_i$, $B = h^2\lambda^2 w_i$, $C = h^3\lambda^3 w_i$, and $D = h^4\lambda^4 w_i$, Hence we have:

$$w_{i+1} = w_i + 1/6 (A + 2(A + 1/2 B) + 2(A + 1/2 B + 1/4 C) + (A + B + 1/2 C + 1/4 D))$$

$$= w_i + 1/6 (6A + 3B + C + 1/4 D)$$

$$= (w_i + A + 1/2 B + 1/6 C + 1/24 D)$$

$$= w_i (1 + h\lambda + 1/2 h^2\lambda^2 + 1/6 h^3\lambda^3 + 1/24 h^4\lambda^4) \quad \Box$$

 $\mathbf{Q2}$

Use Runge-Kutta method of order four first with h = 0.1 and then with h = 0.2 to obtain approximations to the solution of the initial-value problem

$$y' = -100ty^2, \ 0 \le t \le 2, \ y(0) = 2$$

The exact solution is $y = 2/(1 + 100t^2)$ Compare the stability for the different step sizes.

Answer:

$$K_1 = 0.1f(0,2) = 0.1(0) = 0$$

$$K_2 = 0.1f(0+0.05, 2+0/2) = 0.1(-100 \cdot 0.05 \cdot 2^2) = -2$$

$$K_3 = 0.1f(0+0.05, 2-2/2) = 0.1(-100 \cdot 0.05 \cdot -1) = -0.5$$

$$K_4 = 0.1f(0.1, 2) = 0.1(-100 \cdot 0.1 \cdot 1.5^2) = -2.25$$

$$w_1 = 2 + 1/6(0 + 2(-2) + 2(-0.5) - 9/4) = 0.79167$$

Continuing this way for all w_i , we get:

\mathbf{t}	W	У	Error
0	2	2	0
0.1	0.79167	1	-0.20833
0.2	0.36518	0.4	-0.034824
0.3	0.19169	0.2	-0.0083111
0.4	0.11495	0.11765	-0.0026969
0.5	0.07582	0.076923	-0.0011026
0.6	0.053525	0.054054	-0.00052911
0.7	0.039716	0.04	-0.00028442
0.8	0.030603	0.030769	-0.0001662
0.9	0.024287	0.02439	-0.00010353
1	0.019734	0.019802	$-6.7814 \times 10^{-}05$
1.1	0.016347	0.016393	$-4.6261 \times 10^{-}05$
1.2	0.01376	0.013793	$-3.2633 \times 10^{-}05$
1.3	0.011741	0.011765	$-2.3676 \times 10^{-}05$
1.4	0.010135	0.010152	$-1.7592 \times 10^{-}05$
1.5	0.0088362	0.0088496	$-1.3344 \times 10^{-}05$
1.6	0.0077718	0.0077821	$-1.0304 \times 10^{-}05$
1.7	0.0068885	0.0068966	$-8.0829 \times 10^{-}06$
1.8	0.0061474	0.0061538	$-6.4293 \times 10^{-}06$
1.9	0.0055197	0.0055249	$-5.1779 \times 10^{-}06$
2	0.0049833	0.0049875	$-4.2167 \times 10^{-}06$

We can notice the error is decreasing as t increases. the algorithm is unstable since for a small change in h from 0.1 to 0.2 caused a significant error.

\mathbf{t}	W	У	Error
0	2	2	0
0.2	-27.3333	0.4	-27.7333
0.4	$-1.116954817416216 \times 10^{+}29$	0.11765	$-1.116954817416216 \times 10^{+}29$
0.6	∞	0.054054	∞
0.8	∞	0.030769	∞
1	∞	0.019802	∞
1.2	∞	0.013793	∞
1.4	∞	0.010152	∞
1.6	∞	0.0077821	∞
1.8	∞	0.0061538	∞
2	∞	0.0049875	∞