IPv6 Ready Logo Phase-2 Interoperability Test Scenario IKEv2 **Technical Document** Revision 1.0.1 http://www.ipv6forum.org/ http://www.ipv6ready.org/ IPv6 Forum IPv6 Ready Logo Committee

MODIFICATION RECORD

Version 1.0.1 May 26, 2009

- Corrected Acknowledgment
- Removed IKEv2Interop.1.7 (Identification Type) by mandating to support only ID_IPV6_ADDR
- Updated Requirements, Tests performed on End-Node/SGW according to the removal of IKEv2Interop.1.7

Version 1.0.0 Nov. 28, 2008

Initial release

ACKNOWLEDGMENTS

The IPv6 Forum would like to acknowledge the efforts of the following organizations in the development of this test scenario.

Authors:

Yokogawa Electric Corporation Nippon Telegraph and Telephone Corporation (NTT)

Commentators:

NTT Advanced Technology Corporation (NTT-AT) University of New Hampshire - InterOperability Lab IRISA-INRIA

Note:

Development of this document was supported in part by a grant from NICT.

INTRODUCTION

Overview

The IPv6 forum plays a major role to bring together industrial actors, to develop and deploy the new generation of IP protocols. Contrary to IPv4, which started with a small closed group of implementers, the universality of IPv6 leads to a huge number of implementations. Interoperability has always been considered as a critical feature in the Internet community.

Due to the large number of IPv6 implementations, it is important to provide the market a strong signal proving the level of interoperability across various products.

To avoid confusion in the mind of customers, a globally unique logo programme should be defined. The IPv6 logo will give confidence to users that IPv6 is currently operational. It will also be a clear indication that the technology will still be used in the future. To summarize, this logo programme will contribute to the feeling that IPv6 is available and ready to be used.

The IPv6 Logo Program consists of three phases:

Phase I

In a first stage, the Logo will indicate that the product includes IPv6 mandatory core protocols and can interoperate with other IPv6 implementations.

Phase II

The "IPv6 ready" step implies a proper care, technical consensus and clear technical references. The IPv6 ready logo will indicate that a product has successfully satisfied strong requirements stated by the IPv6 Ready Logo Committee (v6RLC).

To avoid confusion, the logo "IPv6 Ready" will be generic. The v6LC will define the test profiles with associated requirements for specific functionalities.

Phase III

Same as Phase 2 with IPsec mandated.

Abbreviations and Acronyms

IKE: Internet Key Exchange (IKEv2) Protocol

EN: End-Node

SGW: Security-Gateway PSK: Pre-Shared Key

ESN: Extended Sequence Numbers PFS: Perfect Forward Secrecy

TAR-EN: Target End-Node

TAR-SGW: Target Security-Gateway

REF-Host: Reference Host REF-Router: Reference Router

TEST ORGANIZATION

Requirements:

This document organizes tests by Section based on related test methodology or goals. Each group begins with a brief set of comments pertaining to all tests within that group. This is followed by a series of description blocks; each block describes a single test. The format of the description block is as follows:

Test Label: The test label and title comprise the first line of the test block. The test label is

composed by concatenating the short test suite name, the section number, the group number, and the test number within the group. These elements are separated by periods. The Test Number is the section, group and test number,

also separated by periods.

Purpose: The Purpose is a short statement describing what the test attempts to achieve. It

is usually phrased as a simple assertion of the feature or capability to be tested.

References: The References section lists cross-references to the scenarios and documentation

that might be helpful in understanding and evaluating the test and results.

Resource The Resource Requirements section specifies the software, hardware, and test

equipment that will be needed to perform the test.

Test Setup: The Test Setup section describes the configuration of all devices prior to the start

of the test. Different parts of the procedure may involve configuration steps that deviate from what is given in the test setup. If a value is not provided for a protocol parameter, then the protocol's default is used for that parameter.

Procedure: This section of the test description contains the step-by-step instructions for

carrying out the test. These steps include such things as enabling interfaces, unplugging devices from the network, or sending packets from a test station. The test procedure also cues the tester to make observations, which are interpreted in accordance with the observable results given for that test part.

Observable This section lists observable results that can be examined by the tester to verify

Results: that the target device is operating properly. When multiple observable results are possible, this section provides a short discussion on how to interpret them. The determination of a pass or fail for each test is usually based on how the

behavior of target device compares to the results described in this section.

Possible This section contains a description of known issues with the test procedure, which

Problems: may affect test results in certain situations.

REFERENCES

The following documents are referenced in this text:

[IKEV2] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December

2005.

[RFC4307] Schiller, J., "Cryptographic Algorithms for Use in the Internet Key Exchange

Version 2 (IKEv2)", RFC 4307, December 2005.

[Clarif] Eronen, P. and P. Hoffman, "IKEv2 Clarifications and Implementation

Guidelines", RFC 4718, October 2006.

TABLE OF CONTENTS

MODIFICATION RECORD	1
ACKNOWLEDGMENTS	2
INTRODUCTION	3
TEST ORGANIZATION	4
REFERENCES	5
TABLE OF CONTENTS	6
Requirements	8
EQUIPMENT TYPE	8
FUNCTION LIST	8
Tests performed on End-Node/SGW	10
Common Topology	12
COMMON TOPOLOGY 1: END-NODE TO END-NODE TRANSPORT MODE	12
COMMON TOPOLOGY 2: SGW TO SGW TUNNEL MODE	13
COMMON TOPOLOGY 3: END-NODE TO SGW/SGW TO END-NODE TUNNEL MODE	14
Common Configuration	15
COMMON CONFIGURATION 1: END-NODE TO END-NODE TRANSPORT MODE	
Common Configuration 1.1: TAR-EN1 Common Configuration 1.2: TAR-EN2	
COMMON CONFIGURATION 2: SGW TO SGW TUNNEL MODE	
Common Configuration 2.1: TAR-SGW1	
Common Configuration 3: End-Node to SGW/SGW to End-Node Tunnel Mode	
Common Configuration 3.1: TAR-EN1	19
Common Configuration 3.2: TAR-SGW1	
IKEv2Interop.1.1: The Initial Exchanges	
IKEv2Interop.1.2: Rekeying CHILD_SA	24
IKEv2Interop.1.3: Rekeying IKE_SA	27
IKEv2Interop.1.4: Cryptographic Algorithm Negotiation for IKE_SA	30
IKEv2Interop.1.5: Cryptographic Algorithm Negotiation for CHILD_SA	33
IKEv2Interop.1.6: Reuse of Diffie-Hellman Exponentials	36
IKEv2Interop.1.8: Multiple Proposals for IKE_SA	38
IKEv2Interop.1.9: Multiple Transforms for IKE_SA	41
IKEv2Interop.1.10: Multiple Proposals for CHILD_SA	45
IKEv2Interop.1.11: Multiple Transforms for CHILD_SA	48
IKEv2Interop.1.12: Requesting an Internal Address on a Remote Network	51
IKEv2Interop.1.13: RSA Digital Signature	53

Α.	Appendi	<i>tx A</i>	56	
	1.	REQUIRED DATA		5′.
	1.1.	Test Data	58	
	1.2.	Data file name syntax	62	
		Data Archive		
	1.4.	Network Traffic Application	66	

Requirements

To obtain the IPv6 Ready Logo Phase-2 for IKEv2, the target device must satisfy all of the following requirements.

Equipment Type

There are two possibilities for equipment types:

End-Node:

A node who can use IKEv2 (IPsec transport mode and tunnel mode) only for itself. Host and Router can be an End-Node

SGW (Security Gateway):

A node who can provide IKEv2 (IPsec tunnel mode) for nodes behind it. Router can be a SGW

Function List

Basic/Advanced Functionality table

This interoperability test scenario consists following BASIC/ADVANCED functions. The tests for ADVANCED functions may be omitted if the target device does not support the ADVANCED function.

All target devices are required to support BASIC. ADVANCED is required for all target devices which support ADVANCED function.

Pa	arameter	BASIC	ADVANCED
Exchange Type		Initial Exchanges (IKE_INIT, IKE_AUTH)	-
Exchange Type		CREATE_CHILD_SA	-
		INFORMATIONAL	-
	Encryption Algorithm	ENCR_3DES	ENCR_AES_CBC ENCR_AES_CTR
IKE_SA	Pseudo-random Function	PRF_HMAC_SHA1	PRF_AES128_XCBC
	Integrity Algorithm	AUTH_HMAC_SHA1_96	AUTH_AES_XCBC_96
	Diffie-Hellman Group	2 (1024 MODP Group)	14 (2048 MODP Group)
CHILD SA	Encryption Algorithm	ENCR_3DES	ENCR_AES_CBC ENCR_AES_CTR ENCR_NULL
CHLD_SA	Integrity Algorithm	AUTH_HMAC_SHA1_96	AUTH_AES_XCBC_96 NONE
	ESN	Disable	Enable
Authentication Method		PSK	RSA Digital Signature
Security Protocol		ESP	-
Encapsulation mode	End-Node	Transport	Tunnel
Encapsulation mode	SGW	Tunnel	-
Multiple Proposals		Receiving	Sending and Receiving
Multiple Transforms		Receiving	Sending and Receiving
Liveness Check		Support	-
Cookies		-	Support
Rekeying		Support	-
Traffic Selector Negotia	tion	Support	-
Requesting an Internal	Address on a Remote Network	-	Support

PFS	-	Support				
Closing SAs	Support	-				
ID Type	ID_IPV6_ADDR	-				

Tests performed on End-Node/SGW

The tests under the End-Node/SGW column marked by a "(BASIC)" must be performed as specified below. If the End-Node/SGW supports the particular ADVANCED function, the corresponding tests under the End-Node/SGW column marked by a "(ADVANCED)" must be performed. If there is no "(BASIC)" or "(ADVANCED)" listed under the End-Node/SGW column, this test may be omitted.

	Part	End-Nodes	SGWs	Required ADVANCED function
	A	(BASIC)	-	
	В	(BASIC)	-	
IKEv2Interop.1.1	С	-	(BASIC)	
IKEVZIIIteIOp.1.1	D	-	(BASIC)	
	Е	(ADVANCED)	-	End-Node Tunnel Mode
	F	(ADVANCED)	-	End-Node Tunnel Mode
	Α	(BASIC)	-	
IKEv2Interop.1.2	В	(BASIC)	-	
TKEV2IIIte10p.1.2	С	-	(BASIC)	
	D	-	(BASIC)	
	Α	(BASIC)	-	
IVErralintarion 1.2	В	(BASIC)	-	
IKEv2Interop.1.3	С	-	(BASIC)	
	D	-	(BASIC)	
	A	(ADVANCED)	-	ENCR_AES_CBC for IKE_SA Encryption Algorithm
	В	(ADVANCED)	-	ENCR_AES_CTR for IKE_SA Encryption Algorithm
	С	(ADVANCED)	-	PRF_AES128_CBC for IKE_SA PRF
	D	(ADVANCED)	-	AUTH_AES_XCBC_96 for IKE_SA Integrity Algorithm
	Е	(ADVANCED)	-	14 (2048 MODP Group) for IKE_SA DH Group
	F	(ADVANCED)	-	ENCR_AES_CBC for IKE_SA encryption algorithm
	G	(ADVANCED)	-	ENCR_AES_CTR for IKE_SA encryption algorithm
	Н	(ADVANCED)	-	PRF_AES128_CBC for IKE_SA PRF
	I	(ADVANCED)	-	AUTH_AES_XCBC_96 for IKE_SA Integrity Algorithm
HZE OL . 1.4	J	(ADVANCED)	-	14 (2048 MODP Group) for IKE_SA DH Group
IKEv2Interop.1.4	K	-	(ADVANCED)	ENCR_AES_CBC for IKE_SA Encryption Algorithm
	L	-	(ADVANCED)	ENCR_AES_CTR for IKE_SA Encryption Algorithm
	M	-	(ADVANCED)	PRF_AES128_CBC for IKE_SA PRF
	N	-	(ADVANCED)	AUTH_AES_XCBC_96 for IKE_SA Integrity Algorithm
	О	-	(ADVANCED)	14 (2048 MODP Group) for IKE_SA DH Group
	P	-	(ADVANCED)	ENCR_AES_CBC for IKE_SA encryption algorithm
	Q	-	(ADVANCED)	ENCR_AES_CTR for IKE_SA encryption algorithm
	R	-	(ADVANCED)	PRF_AES128_CBC for IKE_SA PRF
	S	-	(ADVANCED)	AUTH_AES_XCBC_96 for IKE_SA Integrity Algorithm
	T	-	(ADVANCED)	14 (2048 MODP Group) for IKE_SA DH Group
IKEv2Interop.1.5	Α	(ADVANCED)	-	ENCR_AES_CBC for CHILD_SA Encryption Algorithm
•	В	(ADVANCED)	-	ENCR_AES_CTR for CHILD_SA Encryption Algorithm
	С	(ADVANCED)	-	ENCR_NULL for CHILD_SA Encryption Algorithm
	D	(ADVANCED)	-	AUTH_AES_XCBC_96 for IKE_SA encryption algorithm
	Е	(ADVANCED)	-	NONE for IKE SA encryption algorithm
	F	(ADVANCED)	-	Enabling ESN
	G	(ADVANCED)	-	ENCR_AES_CBC for CHILD_SA Encryption Algorithm
	H	(ADVANCED)	_	ENCR AES CTR for CHILD SA Encryption Algorithm
	I	(ADVANCED)	-	ENCR_NULL for CHILD_SA Encryption Algorithm
				AUTH_AES_XCBC_96 for IKE_SA encryption
	J	(ADVANCED)	-	algorithm
	K	(ADVANCED)	-	NONE for IKE_SA encryption algorithm
	L	(ADVANCED)	-	Enabling ESN
	M	-	(ADVANCED)	ENCR_AES_CBC for CHILD_SA Encryption Algorithm
		-		
	N O	-	(ADVANCED) (ADVANCED)	ENCR_AES_CTR for CHILD_SA Encryption Algorithm ENCR_NULL for CHILD_SA Encryption Algorithm

I		ı	FURU	AUTH_AES_XCBC_96 for IKE_SA encryption
	P	-	(ADVANCED)	algorithm
	Q	_	(ADVANCED)	NONE for IKE_SA encryption algorithm
	R	_	(ADVANCED)	Enabling ESN
	S	-	(ADVANCED)	ENCR_AES_CBC for CHILD_SA Encryption Algorithm
	T	_	(ADVANCED)	ENCR_AES_CTR for CHILD_SA Encryption Algorithm
	U	-	(ADVANCED)	ENCR_NULL for CHILD_SA Encryption Algorithm
	V	_	(ADVANCED)	AUTH_AES_XCBC_96 for IKE_SA encryption
_	***			algorithm
_	W	-	(ADVANCED)	NONE for IKE_SA encryption algorithm
	X	(ADMANGED)	(ADVANCED)	Enabling ESN
-	A	(ADVANCED)	-	Enabling PFS
IKEv2Interop.1.6	B C	(ADVANCED)	(ADVANCED)	Enabling PFS
· -		-	(ADVANCED)	Enabling PFS
	D	- (+ DII + NGED)	(ADVANCED)	Enabling PFS
_	A	(ADVANCED)	-	Sending Multiple Proposals for IKE_SA
IKEv2Interop.1.8	В	(BASIC)	- (4.5744.14.0555)	
_	C	-	(ADVANCED)	Sending Multiple Proposals for IKE_SA
	D	-	(BASIC)	
	A	(ADVANCED)	-	Sending Multiple Transforms for IKE_SA
	В	(ADVANCED)	-	Sending Multiple Transforms for IKE_SA
_	C	(ADVANCED)	-	Sending Multiple Transforms for IKE_SA
	D	(ADVANCED)	-	Sending Multiple Transforms for IKE_SA
	E	(BASIC)	-	
	F	(BASIC)	-	
	G	(BASIC)	-	
IVEv2Interes 1.0	Н	(BASIC)	-	
IKEv2Interop.1.9	I	-	(ADVANCED)	Sending Multiple Transforms for IKE_SA
	J	-	(ADVANCED)	Sending Multiple Transforms for IKE_SA
	K	-	(ADVANCED)	Sending Multiple Transforms for IKE_SA
	L	-	(ADVANCED)	Sending Multiple Transforms for IKE_SA
	M	-	(BASIC)	
	N	-	(BASIC)	
	О	-	(BASIC)	
	P	-	(BASIC)	
	Α	(ADVANCED)	-	Sending Multiple Proposals for CHILD_SA
110	В	(BASIC)	-	
IKEv2Interop.1.10	С	-	(ADVANCED)	Sending Multiple Proposals for CHILD_SA
	D	_	(BASIC)	
	A	(ADVANCED)	-	Sending Multiple Transforms for CHILD_SA
	В	(ADVANCED)	-	Sending Multiple Transforms for CHILD_SA
	C	(ADVANCED)	-	Sending Multiple Transforms for CHILD_SA
	D	(BASIC)	-	<u> </u>
	E	(BASIC)	-	
	F	(BASIC)	_	
IKEv2Interop.1.11	G	-	(ADVANCED)	Sending Multiple Transforms for CHILD_SA
	Н	_	(ADVANCED)	Sending Multiple Transforms for CHILD_SA
	I	-	(ADVANCED)	Sending Multiple Transforms for CHILD_SA Sending Multiple Transforms for CHILD_SA
	J	-	(BASIC)	Senong muliple muliforms for Child_5/1
	K	-	(BASIC)	
	L	-	(BASIC)	
IKEv2Interop.1.12	L	(ADVANCED)	(ADVANCED)	Requesting/Replying an Internal Address on a Remote Network
•			,	
	A	(ADVANCED)	-	RSA Digital Signature
IKEv2Interop.1.13	В	(ADVANCED)	-	RSA Digital Signature
r		1	(ADI/A::~-:	DG 1 D1 1 1 1 G1
	C D	-	(ADVANCED) (ADVANCED)	RSA Digital Signature RSA Digital Signature

Common Topology

Common Topology 1: End-Node to End-Node Transport Mode

The transport mode is used in this topology.

12

The common topology involves End-Node and Router devices on each link.

*1 TAR-EN1 Applicant Implementation TAR-EN2 Vendor A/B End-Node

REF-Router1 Any Router

^{*1)} Must have an ability to use a ping6 application and print out results indicating the receipt of an ICMPv6 Echo Reply

Common Topology 2: SGW to SGW Tunnel Mode

The tunnel mode is used in this topology.

The common topology involves SGW, Router and Host devices on each link.

TAR-SGW1 Applicant Implementation TAR-SGW2 Vendor C/D SGW

REF-Router1 Any Router

REF-Host1 Any Host *1 REF-Host2 Any Host *1

^{*1)} Must have an ability to use a ping6 application and print out results indicating the receipt of an ICMPv6 Echo Reply

Common Topology 3: End-Node to SGW/SGW to End-Node Tunnel Mode

The tunnel mode is used in this topology.

The common topology involves End-Node, SGW, Router and Host devices on each link.

TAR-EN1 Applicant Implementation (if End-Node) or Vendor A/B End-Node *1

TAR-SGW1 Applicant Implementation (if SGW) or Vendor C/D SGW

REF-Router1 Any Router

REF-Host1 Any Host *1

^{*1)} Must have an ability to use a ping6 application and print out results indicating the receipt of an ICMPv6 Echo Reply

Common Configuration

Common Configuration 1: End-Node to End-Node Transport Mode

Common Configuration 1.1: TAR-EN1

IKE Peer

Ī		Address	Port	Auth	nentication	ID		PFS
		Address	Port	Method	Key Value	Type	Data	rrs
ſ	Local	TAR-EN1	500	PSK	IKETEST123!	ID_IPV6_ADDR	TAR-EN1	Disable
ſ	Remote	TAR-EN2	500	PSK	IKETEST456!	ID IPV6 ADDR	TAR-EN2	Disable

IKE_SA

	Lifetime			
Encryption	PRF	Integrity	Diffie-Hellman	Lifetime
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)	600 seconds

When TAR -EN1 is the initiator, above proposal must be included. Otherwise, TAR-EN1 must select above proposal.

CHILD_SA

	Security	Mode		Lifetime		
	Protocol	Mode	Encryption	Integrity	ESN	Liieume
Inbound	ESP	Transport	ENCR 3DES	AUTH HMAC SHA1 96	Dicable	450 seconds
Outbound	ESP	Transport	ENCK_SDES	AUTH_HMAC_SHAT_90	Disable	430 seconds

When TAR-EN1 is the initiator, above proposal must be included. Otherwise, TAR-EN1 must select above proposal.

	Traffic Selector							
		Source		Destination				
	Address	Next Layer	Port	Address	Next Layer	Port		
	Range	Protocol	Range	Range	Protocol	Range		
Inbound	TAR-EN2	ANY	ANY	TAR-EN1	ANY	ANY		
Outbound	TAR-EN1	ANY	ANY	TAR-EN2	ANY	ANY		

When TAR-EN1 is the initiator, TAR-EN1 must propose Traffic Selector covering above address range. Otherwie, TAR-EN1 must narrow Traffic Selector to above address range.

Common Configuration 1.2: TAR-EN2

IKE Peer

	Address	Port	Autl	nentication	ID		PFS
	Address	Port	Method	Key Value	Type	Data	rrs
Local	TAR-EN2	500	PSK	IKETEST456!	ID_IPV6_ADDR	TAR-EN2	Disable
Remote	TAR-EN1	500	PSK	IKETEST123!	ID_IPV6_ADDR	TAR-EN1	Disable

IKE_SA

	Algorithms					
Encryption	PRF	Integrity	Diffie-Hellman	Lifetime		
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)	600 seconds		

When TAR-EN2 is the initiator, above proposal must be included. Otherwise, TAR-EN2 must select above proposal.

CHILD_SA

	Security	Mode			Lifetime	
	Protocol	Mode	Encryption	Integrity	ESN	Lifetime
Inbound	ESP	Transport	ENCR 3DES	AUTH HMAC SHA1 96	Disable	450 seconds
Outbound	ESI	Transport	ENCK_SDES	AUTI_IIMAC_SHAT_90	Disable	450 seconds

When TAR-EN2 is the initiator, above proposal must be included. Otherwise, TAR-EN2 must select above proposal.

		Traffic Selector							
		Source		Destination					
	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range			
	Kange	FIOLOCOI	Kange	Kange	Frotocol	Kange			
Inbound	TAR-EN1	ANY	ANY	TAR-EN2	ANY	ANY			
Outbound	TAR-EN2	ANY	ANY	TAR-EN1	ANY	ANY			

When TAR-EN2 is the initiator, TAR-EN2 must propose Traffic Selector covering above address range. Otherwie, TAR-EN2 must narrow Traffic Selector to above address range.

Common Configuration 2: SGW to SGW Tunnel Mode

Common Configuration 2.1: TAR-SGW1

IKE Peer

	Address Port		Auth	nentication	ID		PFS
			Method	Key Value	Type	Data	113
Local	TAR-SGW1	500	PSK	IKETEST123!	ID_IPV6_ADDR	TAR-SGW1	Disable
Remote	TAR-SGW2	500	PSK	IKETEST456!	ID_IPV6_ADDR	TAR-SGW2	Disable

IKE_SA

	Lifetime					
Encryption	Encryption PRF Integrity Diffie-Hellman					
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)	600 seconds		

When TAR-SGW1 is the initiator, above proposal must be included. Otherwise, TAR-SGW1 must select above proposal.

CHILD_SA

	Security	Mode		Algorithms		Lifetime
	Protocol	Mode	Encryption	Incryption Integrity		Lifetiffe
Inbound	ECD	Tunnal	ENCR 3DES	AUTH HMAC SHA1 06	Disable	450 seconds
Outbound	ESP Tunnel		ENCK_SDES	AUTII_IIWAC_SHAT_90	AUTH_HMAC_SHA1_96 Disable 450	450 seconds

When TAR-SGW1 is the initiator, above proposal must be included. Otherwise, TAR-SGW1 must select above proposal.

		Traffic Selector								
		Source		Destination						
	Address	Next Layer	Port	Address	Next Layer	Port				
	Range	Protocol	Range	Range	Protocol	Range				
Inbound	Network4	ANY	ANY	Network1	ANY	ANY				
Outbound	Network1	ANY	ANY	Network4	ANY	ANY				

When TAR-SGW1 is the initiator, TAR-SGW1 must propose Traffic Selector covering above address range. Otherwie, TAR-SGW1 must narrow Traffic Selector to above address range.

Common Configuration 2.2: TAR-SGW2

IKE Peer

	Address Port		Address Port Authentication		ID	PFS	
			Method	Key Value	Type	Data	IIS
Local	TAR-SGW2	500	PSK	IKETEST456!	ID_IPV6_ADDR	TAR-SGW2	Disable
Remote	TAR-SGW1	500	PSK	IKETEST123!	ID_IPV6_ADDR	TAR-SGW1	Disable

IKE_SA

	Lifetime					
Encryption	Encryption PRF Integrity Diffie-Hellman					
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)	600 seconds		

When TAR-SGW2 is the initiator, above proposal must be included. Otherwise, TAR-SGW2 must select above proposal.

CHILD_SA

	Security	Mode		Algorithms		Lifetime
	Protocol	Mode	Encryption	n Integrity		Lifetime
Inbound	ESP	Tunnel	ENCR 3DES	AUTH HMAC SHA1 96	Disable	450 seconds
Outbound	LOI	1 uilliei	ENCK_SDES	AUTII_IIWAC_SHAT_90	Disable	450 seconds

When TAR-SGW2 is the initiator, above proposal must be included. Otherwise, TAR-SGW2 must select above proposal.

		Traffic Selector								
		Source		Destination						
	Address Next Layer Port Range Protocol Range			Address Range	Next Layer Protocol	Port Range				
Inbound	Network1	ANY	ANY	Network4	ANY	ANY				
Outbound	Network4	ANY	ANY	Network1	ANY	ANY				

When TAR-SGW2 is the initiator, TAR-SGW2 must propose Traffic Selector covering above address range. Otherwie, TAR-SGW2 must narrow Traffic Selector to above address range.

Common Configuration 3: End-Node to SGW/SGW to End-Node Tunnel Mode

Common Configuration 3.1: TAR-EN1

IKE Peer

	Address Port		Autl	nentication	ID		PFS
	Audiess	SS Port Method		Key Value	Type	Type Data	
Local	TAR-EN1	500	PSK	IKETEST123!	ID_IPV6_ADDR	TAR-EN1	Disable
Remote	TAR-SGW1	500	PSK	IKETEST456!	ID_IPV6_ADDR	TAR-SGW1	Disable

IKE_SA

	Lifetime					
Encryption	Encryption PRF Integrity Diffie-Hellman					
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)	600 seconds		

When TAR-EN1 is the initiator, above proposal must be included. Otherwise, TAR-EN1 must select above proposal.

CHILD_SA

	Security	Mode			Lifetime	
	Protocol	Mode	Encryption	Integrity	ESN	Lifetime
Inbound	ESP	Tunnel	ENCR 3DES	AUTH HMAC SHA1 96	Disable	450 seconds
Outbound	LOI	1 uilliei	ENCK_SDES	AUTII_IIWAC_SHAT_90	Disable	450 seconds

When TAR-EN1 is the initiator, above proposal must be included. Otherwise, TAR-EN1 must select above proposal.

		Traffic Selector					
	Source Destination						
	Address	Next Layer	Port	Address	Next Layer	Port	
	Range	Protocol	Range	Range	Protocol	Range	
Inbound	Network3	ANY	ANY	TAR-EN1	ANY	ANY	
Outbound	TAR-EN1	ANY	ANY	Network3	ANY	ANY	

When TAR-EN1 is the initiator, TAR-EN1 must propose Traffic Selector covering above address range. Otherwie, TAR-EN1 must narrow Traffic Selector to above address range.

Common Configuration 3.2: TAR-SGW1

IKE Peer

	Address Port		Authentication		ID		PFS
	Address	FOIT	Method	Key Value	Type	Data	IFS
Local	TAR-SGW1	500	PSK	IKETEST456!	ID_IPV6_ADDR	TAR-SGW1	Disable
Remote	TAR-EN1	500	PSK	IKETEST123!	ID_IPV6_ADDR	TAR-EN1	Disable

IKE_SA

	Lifetime			
Encryption PRF Integrity		Integrity	Diffie-Hellman	Lifetime
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)	600 seconds

When TAR-SGW1 is the initiator, above proposal must be included. Otherwise, TAR-SGW1 must select above proposal.

CHILD_SA

	Security	Mode		Algorithms		
	Protocol	Mode	Encryption	Integrity	ESN	Lifetime
Inbound	ESP	Tunnel	ENCR 3DES	AUTH HMAC SHA1 96	Disable	450 seconds
Outbound	LSI	1 unite	ENCK_3DES	AUTI_IIMAC_SIIA1_90	Disable	450 seconds

When TAR-SGW1 is the initiator, above proposal must be included. Otherwise, TAR-SGW1 must select above proposal.

		Traffic Selector					
	Source				Destination		
	Address	Next Layer	Port	Address	Next Layer	Port	
	Range	Protocol	Range	Range	Protocol	Range	
Inbound	TAR-EN1	ANY	ANY	Network3	ANY	ANY	
Outbound	Network3	ANY	ANY	TAR-EN1	ANY	ANY	

When TAR-SGW1 is the initiator, TAR-SGW1 must propose Traffic Selector covering above address range. Otherwie, TAR-SGW1 must narrow Traffic Selector to above address range.

IKEv2Interop.1.1: The Initial Exchanges

Purpose:

To verify that a successful Initial Exchange can be achieved in two directions.

References:

• [IKEv2] – Section 1.2

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

- Part A BCommon Topology 1
- Part C DCommon Topology 2
- ➤ Part E F
 Common Topology 3
- Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

- Part A B
 - Common Configuration 1
- *▶ Part C D*
 - Common Configuration 2
- Part E F
 - Common Configuration 3

Procedure:

Part A: End-Node to End-Node #1 (BASIC)

- 1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 2. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2.
- 3. Observe the packets transmitted on Network1 and Network2.

Part B: End-Node to End-Node #2 (BASIC)

- 4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 5. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1.
- 6. Observe the packets transmitted on Network1 and Network2.

Part C: SGW to SGW #1 (BASIC)

- 7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 8. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2.
- 9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part D: SGW to SGW #2 (BASIC)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part E: End-Node to SGW (ADVANCED)

- 13. Initialize TAR-EN1 and TAR-SGW1 making sure they have cleared their Security Associations.
- 14. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of REF-Host1.
- 15. Observe the packets transmitted on Network1, Network2 and Network3.

Part F: SGW to End-Node (ADVANCED)

- 16. Initialize TAR-EN1 and TAR-SGW1 making sure they have cleared their Security Associations.
- 17. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of TAR-EN1.
- 18. Observe the packets transmitted on Network1, Network2 and Network3.

Observable Results:

Part A

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part B

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part C

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Part D

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Part E

Step 15:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network1 and Network2, and they are decrypted on Network3. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Part F

Step 18:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network1 and Network2, and they are decrypted on Network3. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Possible Problems:

None.

IKEv2Interop.1.2: Rekeying CHILD_SA

Purpose:

To verify that a successful Rekeying can be achieved in two directions for CHILD_SAs.

References:

• [IKEv2] – Section 2.8

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

- Part A B
 - Common Topology 1
- Part C D

Common Topology 2

Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

- > Part A
 - ♦ TAR-EN1

Common Configuration 1.1 with CHILD_SA lifetime of 30 seconds

♦ TAR-EN2

Common Configuration 1.2

- Part B
 - ♦ TAR-EN1

Common Configuration 1.1

♦ TAR-EN2

Common Configuration 1.2 with CHILD_SA lifetime of 30 seconds

- ➤ Part C
 - ♦ TAR-SGW1

Common Configuration 2.1 with CHILD_SA lifetime of 30 seconds

♦ TAR-SGW2

Common Configuration 2.2

- Part D
 - ♦ TAR-SGW1

Common Configuration 2.1

♦ TAR-SGW2

Common Configuration 2.2 with CHILD_SA lifetime of 30 seconds

Procedure:

Part A: End-Node to End-Node #1 (BASIC)

1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.

- 2. Initiate IKEv2 exchange and transmit continuous ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2 for 60 seconds.
- 3. Observe the packets transmitted on Network1 and Network2.

Part B: End-Node to End-Node #2 (BASIC)

- 4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 5. Initiate IKEv2 exchange and transmit continuous ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1 for 60 seconds.
- 6. Observe the packets transmitted on Network1 and Network2.

Part C: SGW to SGW #1 (BASIC)

- 7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 8. Initiate IKEv2 exchange and transmit continuous ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2 for 60 seconds.
- 9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part D: SGW to SGW #2 (BASIC)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit continuous ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1 for 60 seconds.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Observable Results:

Part A

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Before 30 seconds pass, TAR-EN1 initiates the rekeying for CHILD_SA and SAs are updated. Then each SPI in ESP is updated. The ping6 application result on TAR-EN1 keeps indicating the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part B

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Before 30 seconds pass, TAR-EN2 initiates the rekeying for CHILD_SA and SAs are updated. Then each SPI in ESP is updated. The ping6 application result on TAR-EN2 keeps indicating the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part C

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are

decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Before 30 seconds pass, TAR-SGW1 initiates the rekeying for CHILD_SA and SAs are updated. Then each SPI in ESP is updated. The ping6 application result on REF-Host1 keeps indicating the receipt of ICMPv6 Echo Reply from REF-Host2.

Part D

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Before 30 seconds pass, TAR-SGW2 initiates the rekeying for CHILD_SA and SAs are updated. Then each SPI in ESP is updated. The ping6 application result on REF-Host2 keeps indicating the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

• None.

IKEv2Interop.1.3: Rekeying IKE_SA

Purpose:

To verify that a successful Rekeying can be achieved in two directions for IKE_SA.

References:

• [IKEv2] – Section 2.18

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

- Part A B
 - Common Topology 1
- *▶ Part C D*
 - Common Topology 2
- Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

- > Part A
 - ♦ TAR-EN1

Common Configuration 1.1 with IKE_SA lifetime of 40 seconds and CHILD SA lifetime of 30 seconds

- ♦ TAR-EN2
 - Common Configuration 1.2
- ➤ Part B
 - ♦ TAR-EN1

Common Configuration 1.1

♦ TAR-EN2

Common Configuration 1.2 with IKE_SA lifetime of 40 seconds and CHILD_SA lifetime of 30 seconds

- ➤ Part C
 - ♦ TAR-SGW1

Common Configuration 2.1 with IKE_SA lifetime of 40 seconds and CHILD_SA lifetime of 30 seconds

♦ TAR-SGW2

Common Configuration 2.2

- Part D
 - ♦ TAR-SGW1

Common Configuration 2.1

♦ TAR-SGW2

Common Configuration 2.2 with IKE_SA lifetime of 40 seconds and CHILD_SA lifetime of 30 seconds

Procedure:

Part A: End-Node to End-Node #1 (BASIC)

- 1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 2. Initiate IKEv2 exchange and transmit continuous ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2 for 60 seconds.
- 3. Observe the packets transmitted on Network1 and Network2.

Part B: End-Node to End-Node #2 (BASIC)

- 4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 5. Initiate IKEv2 exchange and transmit continuous ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1 for 60 seconds.
- 6. Observe the packets transmitted on Network1 and Network2.

Part C: SGW to SGW #1 (BASIC)

- 7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 8. Initiate IKEv2 exchange and transmit continuous ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2 for 60 seconds.
- 9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part D: SGW to SGW #2 (BASIC)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit continuous ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1 for 60 seconds.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Observable Results:

Part A

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Before 40 seconds pass, TAR-EN1 initiates the rekeying for IKE_SA and SAs are updated independently of the rekeying for CHILD_SA. Then both SPIs in IKE header are updated. The ping6 application result on TAR-EN1 keeps indicating the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part B

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Before 40 seconds pass, TAR-EN2 initiates the rekeying for CHILD_SA and SAs are updated independently of the rekeying for CHILD_SA. Then both SPIs in IKE header are updated. The ping6 application result on TAR-EN2 keeps indicating the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part C

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Before 40 seconds pass, TAR-SGW1 initiates the rekeying for CHILD_SA and SAs are updated independently of the rekeying for CHILD_SA. Then both SPIs in IKE header are updated. The ping6 application result on REF-Host1 keeps indicating the receipt of ICMPv6 Echo Reply from REF-Host2.

Part D

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Before 40 seconds pass, TAR-SGW2 initiates the rekeying for CHILD_SA and SAs are updated independently of the rekeying for CHILD_SA. Then both SPIs in IKE header are updated. The ping6 application result on REF-Host2 keeps indicating the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

None.

IKEv2Interop.1.4: Cryptographic Algorithm Negotiation for IKE_SA

Purpose:

To verify that a successful Initial Exchange can be achieved in two directions with various combination of cryptographic algorithms for IKE SA.

References:

• [IKEv2] – Section 2.7

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

• Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

Part A - J

Common Topology 1

Part K - TCommon Topology 2

• Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

Part A - J Common Configuration 1 with configuring IKE_SA crypto graphic algorithms as describing below

	Encryption	PRF	Integrity	Diffie-Hellman
Part A, F	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part B, G	ENCR_AES_CTR	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part C, H	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part D, I	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	2 (1024 MODP Group)
Part E, J	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	14 (2048 MODP Group)

➤ Part K - T Common Configuration 2 with configuring IKE_SA crypto graphic algorithms as describing below

	Encryption	PRF	Integrity	Diffie-Hellman
Part K, P	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part L, Q	ENCR_AES_CTR	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part M, R	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part N, S	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	2 (1024 MODP Group)
Part O, T	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	14 (2048 MODP Group)

Procedure:

Part A - E: End-Node to End-Node #1 (ADVANCED)

1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.

- 2. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2.
- 3. Observe the packets transmitted on Network1 and Network2.

Part F - J: End-Node to End-Node #2 (ADVANCED)

- 4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 5. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1.
- 6. Observe the packets transmitted on Network1 and Network2.

Part K - O: SGW to SGW #1 (ADVANCED)

- 7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 8. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2.
- 9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part P - T: SGW to SGW #2 (ADVANCED)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Observable Results:

Part A - E

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part F - J

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part K - O

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Part P - T

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

• None.

IKEv2Interop.1.5: Cryptographic Algorithm Negotiation for CHILD_SA

Purpose:

To verify that a successful Initial Exchange can be achieved in two directions with various combination of cryptographic algorithms for CHILD_SA.

References:

• [IKEv2] – Section 2.7

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

• Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

Part A - L

Common Topology 1

▶ Part M - X

Common Topology 2

Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

Part A - L

Common Configuration 1 with configuring CHILD_SA crypto graphic algorithms as describing below

	Encryption	Integrity	ESN
Part A, G	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	Disable
Part B, H	ENCR_AES_CTR	AUTH_HMAC_SHA1_96	Disable
Part C, I	ENCR_NULL	AUTH_HMAC_SHA1_96	Disable
Part D, J	ENCR_3DES	AUTH_AES_XCBC_96	Disable
Part E, K	ENCR_3DES	NONE	Disable
Part F, L	ENCR_3DES	AUTH_HMAC_SHA1_96	Enable

Part M - X

Common Configuration 2 with configuring CHILD_SA crypto graphic algorithms as describing below

	Encryption	Integrity	ESN
Part M, S	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	Disable
Part N, T	ENCR_AES_CTR	AUTH_HMAC_SHA1_96	Disable
Part O, U	ENCR_NULL	AUTH_HMAC_SHA1_96	Disable
Part P, V	ENCR_3DES	AUTH_AES_XCBC_96	Disable
Part Q, W	ENCR_3DES	NONE	Disable
Part R, X	ENCR_3DES	AUTH HMAC SHA1 96	Enable

Procedure:

Part A - F: End-Node to End-Node #1 (ADVANCED)

- 1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 2. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2.
- 3. Observe the packets transmitted on Network1 and Network2.

Part G - L: End-Node to End-Node #2 (ADVANCED)

- 4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 5. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1.
- 6. Observe the packets transmitted on Network1 and Network2.

Part M - R: SGW to SGW #1 (ADVANCED)

- 7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 8. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2.
- 9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part S - X: SGW to SGW #2 (ADVANCED)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Observable Results:

Part A - F

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part G - L

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part M - R

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Part S - X

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

• None.

IKEv2Interop.1.6: Reuse of Diffie-Hellman Exponentials

Purpose:

To verify that a successful Initial Exchange can be achieved in two directions using PFS.

References:

• [IKEv2] – Section 2.12

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

- Part A BCommon Topology 1
- Part C DCommon Topology 2
- Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

- ➤ Part A B
 Common Configuration 1 with enabling PFS
- Part C DCommon Configuration 2 with enabling PFS

Procedure:

Part A: End-Node to End-Node #1 (ADVANCED)

- 1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 2. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2.
- 3. Observe the packets transmitted on Network1 and Network2.

Part B: End-Node to End-Node #2 (ADVANCED)

- 4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 5. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1.
- 6. Observe the packets transmitted on Network1 and Network2.

Part C: SGW to SGW #1 (ADVANCED)

- 7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 8. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2.

9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part D: SGW to SGW #2 (ADVANCED)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Observable Results:

Part A

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part B

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part C

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Part D

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

• None.

IKEv2Interop.1.8: Multiple Proposals for IKE_SA

Purpose:

To verify that a successful Initial Exchange can be achieved in two directions by initiating multiple proposals for IKE_SA.

References:

• [IKEv2] – Section 2.7

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

Part A - B

Common Topology 1

Part C - D

Common Topology 2

Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

- > Part A
 - ♦ TAR-EN1

Common Configuration 1.1 with configuring IKE_SA crypto graphic algorithms as describing below

Proposal	Encryption	PRF	Integrity	Diffie-Hellman
Proposal #1	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Proposal #2	ENCR_AES_CBC	PRF_AES128_CBC	AUTH_AES_XCBC_96	14 (2048 MODP Group)

- ➤ Part B
 - ♦ TAR-EN1

Common Configuration 1.1

♦ TAR-EN2

Common Configuration 1.2 with configuring IKE_SA crypto graphic algorithms as describing below

Proposal	Encryption	PRF	Integrity	Diffie-Hellman
Proposal #1	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Proposal #2	ENCR AES CBC	PRF AES128 CBC	AUTH AES XCBC 96	14 (2048 MODP Group)

➤ Part C

♦ TAR-SGW1

Common Configuration 2.1 with configuring IKE_SA crypto graphic

algorithms as describing below

Proposal	Encryption	PRF	Integrity	Diffie-Hellman
Proposal #1	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Proposal #2	ENCR_AES_CBC	PRF_AES128_CBC	AUTH_AES_XCBC_96	14 (2048 MODP Group)

Part D

♦ TAR-SGW1

Common Configuration 2.1

♦ TAR-SGW2

Common Configuration 2.2 with configuring IKE_SA crypto graphic algorithms as describing below

Proposal	Encryption	PRF	Integrity	Diffie-Hellman
Proposal #1	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Proposal #2	ENCR_AES_CBC	PRF_AES128_CBC	AUTH_AES_XCBC_96	14 (2048 MODP Group)

Procedure:

Part A: End-Node to End-Node #1 (ADVANCED)

- 1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 2. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2.
- 3. Observe the packets transmitted on Network1 and Network2.

Part B: End-Node to End-Node #2 (BASIC)

- 4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 5. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1.
- 6. Observe the packets transmitted on Network1 and Network2.

Part C: SGW to SGW #1 (ADVANCED)

- 7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 8. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2.
- 9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part D: SGW to SGW #2 (BASIC)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Observable Results:

Part A

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part B

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part C

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Part D

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

None.

IKEv2Interop.1.9: Multiple Transforms for IKE_SA

Purpose:

To verify that a successful Initial Exchange can be achieved in two directions by initiating multiple transforms for IKE_SA.

References:

• [IKEv2] – Section 2.7

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

• Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

- Part A H
 - Common Topology 1
- Part I P

Common Topology 2

Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

- Part A D
 - ♦ TAR-EN1

Common Configuration 1.1 with configuring IKE_SA crypto graphic algorithms as describing below

	Encryption	PRF	Integrity	Diffie-Hellman
Part A	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part B	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	2 (1024 MODP Group)
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group) 14 (2048 MODP Group)

- *▶ Part E H*
 - ♦ TAR-EN1

Common Configuration 1.1

♦ TAR-EN2

Common Configuration 1.2 with configuring IKE_SA crypto graphic algorithms as describing below

Encryption	PRF	Integrity	Diffie-Hellman

Part E	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part F	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part G	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	2 (1024 MODP Group)
Part H	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group) 14 (2048 MODP Group)

Part I - L

♦ TAR-SGW1

Common Configuration 2.1 with configuring IKE_SA crypto graphic algorithms as describing below

	Encryption	PRF	Integrity	Diffie-Hellman
Part I	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part J	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part K	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	2 (1024 MODP Group)
Part L	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group) 14 (2048 MODP Group)

▶ Part M - P

♦ TAR-SGW1

Common Configuration 2.1

♦ TAR-SGW2

Common Configuration 2.2 with configuring IKE_SA crypto graphic algorithms as describing below

	Encryption	PRF	Integrity	Diffie-Hellman
Part M	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part N	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)
Part O	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	2 (1024 MODP Group)
Part P	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group) 14 (2048 MODP Group)

Procedure:

Part A - D: End-Node to End-Node #1 (ADVANCED)

- 1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 2. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2.
- 3. Observe the packets transmitted on Network1 and Network2.

Part E - H: End-Node to End-Node #2 (BASIC)

4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.

- 5. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1.
- 6. Observe the packets transmitted on Network1 and Network2.

Part I - L: SGW to SGW #1 (ADVANCED)

- 7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 8. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2.
- 9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part M - P: SGW to SGW #2 (BASIC)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Observable Results:

Part A - D

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part E - H

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part I - L

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Part M - P

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

• None.

IKEv2Interop.1.10: Multiple Proposals for CHILD_SA

Purpose:

To verify that a successful Initial Exchange can be achieved in two directions by initiating multiple proposals for CHILD_SA.

References:

• [IKEv2] – Section 2.7

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

Part A - B

Common Topology 1

Part C - D

Common Topology 2

Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

- > Part A
 - ♦ TAR-EN1

Common Configuration 1.1 with configuring CHILD_SA crypto graphic algorithms as describing below

	Encryption	Integrity	ESN
Proposal #1	ENCR_3DES	AUTH_HMAC_SHA1_96	Disable
Proposal #2	ENCR_AES_CBC	AUTH_AES_XCBC_96	Enable

♦ TAR-EN2

Common Configuration 1.2

- Part B
 - ♦ TAR-EN1

Common Configuration 1.1

♦ TAR-EN2

Common Configuration 1.2 with configuring CHILD_SA crypto graphic algorithms as describing below

	Encryption	Integrity	ESN
Proposal #1	ENCR_3DES	AUTH_HMAC_SHA1_96	Disable
Proposal #2	ENCR_AES_CBC	AUTH_AES_XCBC_96	Enable

➤ Part C

♦ TAR-SGW1

Common Configuration 2.1 with configuring CHILD_SA crypto graphic algorithms as describing below

	Encryption	Integrity	ESN
Proposal #1	ENCR_3DES	AUTH_HMAC_SHA1_96	Disable
Proposal #2	ENCR_AES_CBC	AUTH_AES_XCBC_96	Enable

➤ Part D

♦ TAR-SGW2

Common Configuration 2.2 with configuring CHILD_SA crypto graphic algorithms as describing below

	Encryption	Integrity	ESN
Proposal #1	ENCR_3DES	AUTH_HMAC_SHA1_96	Disable
Proposal #2	ENCR_AES_CBC	AUTH_AES_XCBC_96	Enable

Procedure:

Part A: End-Node to End-Node #1 (ADVANCED)

- 1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 2. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2.
- 3. Observe the packets transmitted on Network1 and Network2.

Part B: End-Node to End-Node #2 (BASIC)

- 4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 5. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1.
- 6. Observe the packets transmitted on Network1 and Network2.

Part C: SGW to SGW #1 (ADVANCED)

- 7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 8. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2.
- 9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part D: SGW to SGW #2 (BASIC)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Observable Results:

Part A

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part B

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part C

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Part D

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

None.

IKEv2Interop.1.11: Multiple Transforms for CHILD_SA

Purpose:

To verify that a successful Initial Exchange can be achieved in two directions by initiating multiple transforms for CHILD_SA.

References:

• [IKEv2] – Section 2.7

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

• Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

Part A - F

Common Topology 1

Part J - L

Common Topology 2

Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

- *▶ Part A C*
 - ♦ TAR-EN1

Common Configuration 1.1 with configuring CHILD_SA crypto graphic algorithms as describing below

	Encryption	Integrity	ESN
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	Disable
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Disable
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	Disable Enable

♦ TAR-EN2

Common Configuration 1.2

- Part D F
 - ♦ TAR-EN1

Common Configuration 1.1

♦ TAR-EN2

Common Configuration 1.2 with configuring CHILD_SA crypto graphic algorithms as describing below

	Encryption	Integrity	ESN
Part D	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	Disable

Part E	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Disable
Part F	ENCR_3DES	AUTH_HMAC_SHA1_96	Disable Enable

Part G - I

♦ TAR-SGW1

Common Configuration 2.1 with configuring CHILD_SA crypto graphic algorithms as describing below

	Encryption	Integrity	ESN
Part G	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	Disable
Part H	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Disable
Part I	ENCR_3DES	AUTH_HMAC_SHA1_96	Disable Enable

♦ TAR-SGW2

Common Configuration 2.2

Part J - L

♦ TAR-SGW1

Common Configuration 2.1

♦ TAR-SGW2

Common Configuration 2.2 with configuring CHILD_SA crypto graphic algorithms as describing below

	Encryption	Integrity	ESN
Part J	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	Disable
Part K	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Disable
Part L	ENCR_3DES	AUTH_HMAC_SHA1_96	Disable Enable

Procedure:

Part A - C: End-Node to End-Node #1 (ADVANCED)

- 1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 2. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2.
- 3. Observe the packets transmitted on Network1 and Network2.

Part D - F: End-Node to End-Node #2 (BASIC)

- 4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 5. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1.
- 6. Observe the packets transmitted on Network1 and Network2.

Part G - I: SGW to SGW #1 (ADVANCED)

7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security

Associations.

- 8. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2.
- 9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part J - L: SGW to SGW #2 (BASIC)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Observable Results:

Part A - C

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part D - F

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part G - I

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Part J - L

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

None.

IKEv2Interop.1.12: Requesting an Internal Address on a Remote Network

Purpose:

To verify that a successful Initial Exchange can be achieved in two directions by using Configuration payloads.

References:

• [IKEv2] – Section 2.19

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

 Network Topology
 For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures in Common Topology 3

Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

> Part A

♦ TAR-EN1

Common Configuration 3 with the configuration to request INTERNAL_IP6_ADDRESS by CFG_REQUEST.

Traffic Selector must cover the following.

	Source			Destination			
	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range	
Inbound	Network3	ANY	ANY	TAR-EN1 (internal address given by TAR-SGW1)	ANY	ANY	
Outbound	TAR-EN1 (internal address given by TAR-SGW1)	ANY	ANY	Network3	ANY	ANY	

♦ TAR-SGW1

Common Configuration 3 with the configuration to accept CFG_REQUEST and to distribute the appropriate address (for example 2001:0db8:1:4::1/64) by CFG_REPLY.

Traffic Selector must cover the following.

Source			Destination			
	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	TAR-EN1 (internal address given by TAR-SGW1)	ANY	ANY	Network3	ANY	ANY

Outbound Network3 ANY ANY (internal address given by TAR-SGW1) ANY
--

Procedure:

Part A: End-Node to SGW (ADVANCED)

- 1. Initialize TAR-EN1 and TAR-SGW1 making sure they have cleared their Security Associations.
- 2. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of REF-Host1.
- 3. Observe the packets transmitted on Network1, Network2 and Network3.

Observable Results:

Part A

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network1 and Network2, and they are decrypted on Network3. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

• None.

IKEv2Interop.1.13: RSA Digital Signature

Purpose:

To verify that a successful Initial Exchange can be achieved in two directions using RSA Digital Signature as the authentication method.

References:

• [IKEv2] – Section 2.15

Resource Requirements:

- Monitor to capture packets
- Ping6 implementations

Test Setup:

• Network Topology

For each Part, connect End-Nodes, SGWs, Routers and Hosts as per the figures below

➤ Part A - B

Common Topology 1

Part C - D

Common Topology 2

Configuration

For each Part, configure End-Nodes and SGWs as per the configurations below

- \triangleright Part A B
 - ♦ TAR-EN1

Common Configuration 1.1 with configuring IKE peer as describing below

	Authentication			
	Method	Key Value		
Local	RSA digital signature	1		
Remote	RSA digital signature	1		

♦ TAR-EN2

Common Configuration 1.2 with configuring IKE peer as describing below

	Authentication		
	Method	Key Value	
Local	RSA digital signature	ı	
Remote	RSA digital signature	-	

\triangleright Part C-D

♦ TAR-SGW1

Common Configuration 2.1 with configuring IKE peer as describing below

	Authentication			
	Method	Key Value		
Local	RSA digital signature	-		
Remote	RSA digital signature	-		

♦ TAR-SGW2

Common Configuration 2.2 with configuring IKE peer as describing below

	Authentication	
	Method	Key Value
Local	RSA digital signature	1
Remote	RSA digital signature	1

For every case, RSA digital signature public keys can be exchanged between peers previously or can be installed into local or public CA.

Procedure:

Part A: End-Node to End-Node #1 (BASIC)

- 1. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 2. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN1 to the Global unicast address of TAR-EN2.
- 3. Observe the packets transmitted on Network1 and Network2.

Part B: End-Node to End-Node #2 (BASIC)

- 4. Initialize TAR-EN1 and TAR-EN2 making sure they have cleared their Security Associations.
- 5. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from TAR-EN2 to the Global unicast address of TAR-EN1.
- 6. Observe the packets transmitted on Network1 and Network2.

Part C: SGW to SGW #1 (BASIC)

- 7. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 8. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host1 to the Global unicast address of REF-Host2.
- 9. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Part D: SGW to SGW #2 (BASIC)

- 10. Initialize TAR-SGW1 and TAR-SGW2 making sure they have cleared their Security Associations.
- 11. Initiate IKEv2 exchange and transmit ICMPv6 Echo Requests from REF-Host2 to the Global unicast address of REF-Host1.
- 12. Observe the packets transmitted on Network1, Network2, Network3 and Network4.

Observable Results:

Part A

Step 3:

TAR-EN1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN1 indicates the receipt of ICMPv6 Echo Reply from TAR-EN2.

Part B

Step 6:

TAR-EN2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The ICMPv6 Echo Requests and ICMPv6 Echo Replies observed on Network1 and Network2 are encrypted by ESP. The ping6 application result on TAR-EN2 indicates the receipt of ICMPv6 Echo Reply from TAR-EN1.

Part C

Step 9:

TAR-SGW1 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host1 indicates the receipt of ICMPv6 Echo Reply from REF-Host2.

Part D

Step 12:

TAR-SGW2 initiates IKEv2 negotiation and SAs are established. ICMPv6 Echo Requests and ICMPv6 Echo Replies are passed on SAs. The observed ICMPv6 Echo Requests and ICMPv6 Echo Replies are encrypted by ESP on Network2 and Network3, and they are decrypted on Network1 and Network4. The ping6 application result on REF-Host2 indicates the receipt of ICMPv6 Echo Reply from REF-Host1.

Possible Problems:

• None.

Appendix A

1. Required Data

To obtain the IPv6 Ready Logo Phase-2 IKEv2, you need to send application with the test results attached.

The test results must include both Protocol Operations and Interoperability. In this document, the "Interoperability test" result documentation is described.

There are currently two viable alternatives to obtain an interoperability results.

- Lab Test: Test results observed at a lab that is recognized by the IPv6 Ready Logo Committee.
- Self Test: Test results observed by the applicant company in their laboratory.

1.1. Test Data

As "IPv6 Ready Logo Phase-2 IKEv2" the following interoperability test result data are required.

Topology Map (Required)

Network topology figures or address list for each topology, with IPv6 addresses and MAC address of each attached interfaces, are required.

Fig. 1 and Fig. 2 are examples of topology figure.

Fig. 3 is an example of address list.

All IP addresses which are used during the test must be declared.

Fig 1 Topology figure example 1

Fig 2 Topology figure example 2

Network1

Prefix: 2001:db8:1:1::/64

MTU: 1500

Network2

Prefix: 2001:db8:1:2::/64

MTU: 1500

TAR-EN1: VendorA

Network1)

Link-Local=fe80::a1

Global=2001:db8:1:1::a1 MAC=a1:a1:a1:a1:a1

REF-Router1: VendorX

Network1)

Link-Local=fe80::x1

Global=2001:db8:1:1::x1

MAC=x1:x1:x1:x1:x1:x1

Network2)

Link-Local=fe80::x2

Global=2001:db8:1:2::x2

MAC=x2:x2:x2:x2:x2

TAR-EN2: VendorB

Network2)

Link-Local=fe80::b2

Global=2001:db8:1:2::b2

MAC=b2:b2:b2:b2:b2

Fig 3 Address List example

Command Log (Required)

Save the command files for each test on each node.

Packet Capture File (Required)

Capture all packets on each link during the test with a device that is not part of the test.

For each part of test put the captured packet into individual files within

tcpdump (pcap) format, or readable HTML format. If you run tcpdump, please specify packet size as 4096.

e.g.,) tcpdump -i if0 -s 4096 -w 1.1.A.VendorA.VendorB.Network1.dump

Test Result Table (Required)

Collect all test result tables in a file and fill the tables as required. This file must contain a table where all passes are clearly marked.

1.2. Data file name syntax

Please use following syntax in the file name.

A) Topology Map (Required)

Syntax: Chapter. Section. Parts. ON. topology

For "ON", use the vendor name of the Node which behaved as a Opposite side target

Node (ON).

e.g.,)

If your device is an End-Node, the name should be like following.

ON: End-Node [vendor: VendorA, model: rEN1, version: 1.0]

ON: SGW [vendor: VendorC, model: rSGW1, version: 3.0]

1.1.AB.VendorA.topology

1.1.EF.VendorC.topology

If your device is a SGW, the name should be like following.

ON: SGW [vendor: VendorC, model: rSGW1, version: 3.0]

ON: End-Node [vendor: VendorA, model: rEN1, version: 1.0]

1.1.CD.VendorC.topology

1.1.EF.VendorA.topology

B) Command Log (Required)

Syntax: Chapter. Section. Part. ON. result

For "ON", use the vendor name of the Node which behaved as a Opposite side target Node (ON).

e.g.,)

If your device is an End-Node, the name should be like following.

ON: End-Node [vendor: VendorA, model: rEN1, version: 1.0]

ON: SGW [vendor: VendorC, model: rSGW1, version: 3.0]

1.1.A.VendorA.result

1.1.B.VendorA.result

1.1.E.VendorC.result

1.1.F.VendorC.result

If your device is a SGW, the name should be like following.

ON: SGW [vendor: VendorC, model: rSGW1, version: 3.0]

ON: End-Node [vendor: VendorA, model: rEN1, version: 1.0]

1.1.C.VendorC.result

1.1.D.VendorC.result

1.1.E.VendorA.result

1.1.F.VendorA.result

C) Packet Capture File (Required)

Syntax: Chapter.Section.Part.ON.Network.dump

For "Network", use the captured network name.

For "ON", use the vendor name of the Node which behaved as a Opposite side target

Node (ON).

e.g.,)

If your device is an End-Node, the name should be like following. ON: End-Node [vendor: VendorA, model: rEN1, version: 1.0]

ON: SGW [vendor: VendorC, model: rSGW1, version: 3.0]

1.1.A. Vendor A. Network 1. result

1.1.A. Vendor A. Network 2. result

1.1.B.VendorA.Network1.result

1.1.B.VendorA.Network2.result

1.1.E.VendorC.Network1.result

1.1.E.VendorC.Network2.result

1.1.E.VendorC.Network3.result

1.1.F. Vendor C. Network 1. result

1.1.F.VendorC.Network2.result

1.1.F.VendorC.Network3.result

If your device is a SGW, the name should be like following. ON: SGW [vendor: VendorC, model: rSGW1, version: 3.0] ON: End-Node [vendor: VendorA, model: rEN1, version: 1.0]

1.1.C.VendorC.Network1.result

1.1.C.VendorC.Network2.result

1.1.C.VendorC.Network3.result

1.1.D. Vendor C. Network 1. result

1.1.D.VendorC.Network2.result

1.1.D. Vendor C. Network 3. result

1.1.E.VendorA.Network1.result

1.1.E. Vendor A. Network 2. result

1.1.E.VendorA.Network3.result

1.1.E.VendorA.Network4.result

1.1.F. Vendor A. Network 1. result

1.1.F.VendorA.Network2.result

1.1.F.VendorA.Network3.result

1.1.F.VendorA.Network4.result

D) Test Result Table (Required)

Syntax: *Target_Node.table*

In this file you should make table for each part.

Your device can be described hereafter as a sample whether it is a End-Node or a SGW.

ON: End-Node [vendor: VendorA, model: rEN1, version: 1.0] ON: End-Node [vendor: VendorB, model: rEN2, version: 2.0] ON: SGW [vendor: VendorC, model: rSGW1, version: 3.0] ON: SGW [vendor: VendorD, model: rSGW2, version: 4.0]

For End-Node to End-Node tests, following table is required.

	VendorA	VendorB
VendorX		

For End-Node to SGW tests, following table is required. (If your device is a End-Node)

	VendorC	VendorD
VendorX		

For SGW to End-Node tests, following table is required. (If your device is a SGW)

	VendorA	VendorB
VendorX		

For SGW to SGW tests, following table is required.

	VendorC	VendorD
VendorX		

e.g.,)

Test result of following End-Node.

TAR-EN1: End-Node [vendor: VendorX, model: rEN1, version: 5.0]

or

Test result of following SGW.

TAR-SGW1: SGW [vendor: VendorX, model: rSGW1, version: 5.0]

VendorX.table

1.3. Data Archive

Please organize your data as following directory structure.

\${Your_Device_ver}/
Conformance/
Interoperability/

Put all interoperability data file in "Interoperability" directory.

Put all Conformance Self-Test results or Conformance Lab test results in "Conformance" directory.

Make a tar.gz format archive file, and put files under "\${Your_Device_ver}" in it.

1.4. Network Traffic Application

In the test results, "ping" is the default application to send ICMP echo request. If the target device does not have "ping" application, it is possible to use any other application that behaves like the "ping" application and passes traffic through the network.

All Rights Reserved. Copyright (C) 2008
Yokogawa Electric Corporation
Nippon Telegraph and Telephone Corporation (NTT)
IPv6 Forum

No part of this documentation may be reproduced for any purpose without prior permission.