JP7074926

Publication Title:

PICTURE REPRODUCING DEVICE

Abstract:

Abstract of JP7074926

PURPOSE:To write a tracking dot pattern always at a fixed level and to prevent analysis from being disabled by correcting various parameters for picture reproducing conditions before impressing a dot pattern for a forgery preventing counterplan on a photosensitive body. CONSTITUTION:A signal read out by a CCD sensor 14 is processed by correcting processing for prescribed picture stabilization through an image processing part 22, an MTF processing part 25 and a gamma correcting part 28, the processed signal is D/A converted, amplified and supplied to a laser driving circuit 36 and a laser 37 is controlled by a printer control part 201 to expose the photosensitive body. In the case of impressing tracking dots stored in impressing pattern ROM 206, a dot level in a ROM 206 is switched to a prescribed level, data are simultaneously switched to photographing mode gradation correcting data stored in a gamma data ROM 24 and dots are impressed at the same size in each reference mode picture element. Even at the time of executing picture stabilizing processing, a dot pattern can be stably impressed and pattern analysis can surely be executed.

Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-74926

(43)公開日 平成7年(1995)3月17日

(51) Int.Cl.⁶

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 4 N 1/387 B41J 2/525

B41J 3/00

В

審査請求 未請求 請求項の数8 OL (全 23 頁)

(21)出願番号

特顧平5-215662

(71)出顧人 000006079

ミノルタ株式会社

(22)出願日

平成5年(1993)8月31日

大阪府大阪市中央区安土町二丁目3番13号

大阪国際ビル

(72)発明者 山田 孝信

大阪府大阪市中央区安土町二丁目3番13号・

大阪国際ピル ミノルタカメラ株式会社内

(72) 発明者 木下 健

大阪府大阪市中央区安土町二丁目3番13号

大阪国際ピル ミノルタカメラ株式会社内

(74)代理人 弁理士 青山 葆 (外2名)

(54) 【発明の名称】 画像再現装置

(57)【要約】

【目的】 カラー画像再現装置において、偽造防止対策 としての微細な追跡データを再現画像に書き込む際に、 階調再現パターンの選択や画像安定化処理などにより再 現される画像の画質を向上させつつ、解析不可やノイズ となることのないように常に一定のレベルで追跡データ を書き込む。

【構成】 各種の画像再現に影響する因子、たとえば、 感光体を露光するパターンや階調カーブ、を選択し設定 するときや、あるいは、各種の画像再現に影響する因 子、たとえば、基準トナー濃度、ピーム形状、感光体耐 久度、現像剤耐久度などを検出して画像安定化処理を行 うときに、微細なドットパターンの感光体上への打ち込 みの前に、画像再現条件の各種パラメータの補正を行 い、ドットパターンの打ち込みデータを切り換える。

【特許請求の範囲】

・【請求項1】 デジタル画像データに基づき感光体上に 静電潜像を形成し、現像剤でトナー像を形成し、用紙に トナー像を転写する画像再現部、

目では識別しにくい追跡用パターンのデータを発生し、 上記のデジタル画像データに追加するデータ発生手段、

画像再現部による画像再現に影響する画像再現因子を選 択する選択手段、

再現画像を安定化させるように画像再現部の画像再現条 件を設定する画像再現条件設定手段、および選択手段に 10 より選択された階調再現モードに対応して、画像再現条 件設定手段により設定された画像再現条件を、追跡用バ ターンを常に一定のレベルで画像に書き込めるように補 正する補正手段を備えた画像再現装置。

【請求項2】 請求項1に記載された画像再現装置にお いて、

上記の選択手段は、上記の画像再現因子として、静電港 像を形成するために感光体を露光するパターンを選択す ることを特徴とする画像再現装置。

【請求項3】 請求項1に記載された画像再現装置にお 20 いて、

上記の選択手段は、上記の画像再現因子として、階調力 ープを選択することを特徴とする画像再現装置。

【請求項4】 デジタル画像データに基づき感光体上に 静電潜像を形成し、現像剤でトナー像を形成し、用紙に トナー像を転写する画像再現部、

目では識別しにくい追跡用パターンのデータを発生し、 上記のデジタル画像データに追加するデータ発生手段、 画像再現部における画像再現に影響する因子を検出する

画像再現部において再現画像を安定化させるように画像 再現条件を設定する画像再現条件設定手段、および輸出 手段により得られた因子に対応して、画像再現条件設定 手段により設定された画像再現条件を、追跡用パターン を常に一定のレベルで画像に書き込めるように補正する 補正手段を備えた画像再現装置。

【請求項5】 請求項4に記載された画像再現装置にお

上記の検出手段により検出される因子は、感光体上に形 成された基準トナー像のトナー濃度であることを特徴と する画像再現装置。

【請求項6】 請求項4に記載された画像再現装置にお いて、

上記の検出手段により検出される因子は、ビーム形状で あることを特徴とする画像再現装置。

【請求項7】 請求項4に記載された画像再現装置にお いて、

上記の検出手段により検出される因子は、感光体の耐久 度であることを特徴とする画像再現装置。

【請求項8】

いて、

上記の検出手段により検出される因子は、現像剤の耐久 度であることを特徴とする画像再現装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、複写機、プリンタなど のフルカラー画像再現装置における偽造防止技術に関す る。

[0002]

【従来の技術】最近のフルカラー複写機は、デジタル化 とプロセス材料の改良により、画質が飛躍的に向上して きた。それに伴い、フルカラー複写機を使用した偽造犯 罪が多発してきており、複写機製造メーカーとしても何 らかの対策を迫られている。偽造防止のため、具体的に は、認識技術(紙幣を判断して複写できなくすること) や追跡技術(複写に特殊な暗号を付加することにより複 写機の特定を行うこと)の2方式の搭載が検討されてい る。偽造を防止するため、全世界の紙幣、旅行小切手、 小切手、切手、収入印紙、有価証券、公文書などの、偽 造を防止したい原稿に対して、これらの特徴をすべて記 憶して、パターンマッチングを行い、複写を禁止するこ とが考えられるが、これは、記憶容量、処理時間、新札 対応などの問題により不可能である。そこで、複写その ものは禁止はできないが、複写されたコピーそのもの に、通常では目に見えない特殊な暗号を打ち込む追跡技 術の検討が進められている。すなわち、この追跡技術に おいては、違法複写された機械の商品名、シリアル番号 などを特定するために、コピー中に人間の日には見えに くいパターンを打ち込む。たとえば、イエロートナーを 用いて、小さなイエロードットを打ち込み、これによ り、コピーを解析して、イエロードットの配置形状によ ってコピーに使用された機械のメーカー機種名、シリア ル番号、コピーした日時、管理カード番号などや、その 一部を特定することができ、偽造事件の解決に役立つ。 また、この追跡による偽造防止対策機能が搭載されてい ることが広く一般に知らされていれば、犯罪に対する牽 **制効果も同時に期待できる。**

【0003】イエローのドットを打ち込む範囲として は、原稿が違法に複写される際に、原稿が複写において コピー用紙のどの位置に置かれるか分からないことを考 慮する必要がある。そこで、複写用紙の全面もしくは原 稿サイズ検出によって得られた画像エリア全域にイエロ ードットを打ち込む。また、複写したものの一部分を切 り取って使用することも考えられ、また、切手、収入印 紙などの小さな原稿は、切り取って使用される。このよ うな場合にも解析が可能なように、ドットの配置の1単 位、つまり、機種名、シリアル番号などが特定できるブ ロックの面積をかなり小さく設定する必要がある。この 小さいプロックサイズの中に、機種名、シリアル番号な 請求項3に記載された画像再現装置にお 50 どを暗号化したドットが配置されており、また、前述し

40

たように、このプロックを複写用紙全面もしくは画像エリア全面に配置してイエロードットを打ち込むために、 全体としては非常に多くのイエロードットが存在することになる。

【0004】暗号化されたイエロードットは、人間の日に見えにくいものではあるが、ある程度濃度が濃くなったりするし、全面にイエロードットが打ち込まれていると、ノイズや地肌の黄色っぽさが目立ってしまう。また、イエロードット単独では見にくくても、減法混色によって他の色のトナーと混ざり合えば可視化されてしまりことがある。しかし、ノイズが目立ってしまうからといって、打ち込むドットの数をむやみに少なくすることは、本来の目的(複写されたコピーからシリアル番号などを特定し、偽造事件の解決を図る)である社会的責任からいって、検出能力の低下を招くために好ましくない。これらのことから、イエロードットパターンの大きさ、配置密度、および、濃度レベルの設定は、解析が確実にでき、かつ、目視ではノイズとならないようにかなり精密に設定されている。

[0005]

【発明が解決しようとする課題】印字モードや環境によ って最適な画質が得られるように、近年の複写装置では 画像安定化のためのさまざまな補正がなされている。た とえば、電子写真方式を用いた複写機、プリンタなどに おいては、静電気現象を利用しているため、環境や耐久 枚数などによって、画像特性(階調特性など)が大きく 影響を受ける。特に感光体、現像剤などは、温度湿度な どによって特性が変化したり、耐久によって特性が変化 してしまう。さらに、デジタル複写機においては、階調 再現方式として多数の方式が検討、採用されている。そ 30 の中でも、各モードによって同じ方式でも画像再現条件 の定数を変化させて対応している場合が多い。たとえ ば、強度変調方式を採用し、写真画像の滑らかさと文字 再現の両立を図るものや、さらに強度変調方式におい て、周期的に発光しない期間を設け、さらに画像の粒状 性(滑らかさ)を高めたものがある。たとえば、特開平 2-74365号公報では、文字モード/写真モードに 応じてレーザ発光の基準信号の周波数を変えることが開 示されている。また、本出願人も、写真モードにおいて 最適なレーザ強度変調方式を提案している(特開平5-124260号公報)。また、色調整に応じて階調特性 を切り換える方式も提案されている(特開平2-815 9 4 号公報)。

【0006】しかし、最適な画質を得るためのこれらの画像安定化制御や画像再現方式を追跡用のドットパターンの打ち込み時にもそのまま適用するわけにはいかない。上述の画像安定化制御などは、いかにして画像を向上するかという点に主目的があるのに対して、追跡技術は、いかにしてノイズにならずかつ解析が確実にできるデータを書き込むかに主目的がある。先に説明したよう

4

に、イエローのドットパターンの大きさ、配置密度、および、濃度レベルは、精密に設定されている。しかし、複写機において、用紙上に画像を作成する条件は、常に一定とは限らない。すなわち、画像安定化などのための各種補正を行うと、同じレベルでイエローパターンを打ち込んでも、処理のため、濃度が変化してしまう場合があり、したがって、画像安定化制御などをドット打ち込み時にも行うと、ドットの大小や濃淡レベルが変動し、複写用紙上でノイズとなって現れるか、解析不可となってしまうおそれがあった。そこで、打ち込みパターンをいつも安定して打ち込み、確実に解析ができ、かつ、画像ノイズを感じさせないようにすることが望まれる。

【0007】本発明の目的は、再現される画像の画質を向上させるとともに、解析不可やノイズとなることのないように常に一定のレベルで追跡データを書き込むことのできるカラー画像再現装置を提供することである。

[0008]

【課題を解決するための手段】本発明に係る第1のカラ 一画像再現装置は、デジタル画像データに基づき感光体 上に静電潜像を形成し、現像剤でトナー像を形成し、用 20 紙にトナー像を転写する画像再現部、目では識別しにく い追跡用パターンのデータを発生し、上記のデジタル画 像データに追加するデータ発生手段、画像再現部による 画像再現に影響する画像再現因子を選択する選択手段、 再現画像を安定化させるように画像再現部の画像再現条 件を設定する画像再現条件設定手段、および、選択手段 により選択された階調再現モードに対応して、画像再現 条件設定手段により設定された画像再現条件を、追跡用 パターンを常に一定のレベルで画像に書き込めるように 補正する補正手段を備える。好ましくは、上記の選択手 段により選択される画像再現因子は、静電潜像を形成す るために感光体を露光するパターン、または、階調カー プである。本発明に係る第2のカラー画像再現装置は、 デジタル画像データに基づき感光体上に静電潜像を形成 し、現像剤でトナー像を形成し、用紙にトナー像を転写 する画像再現部、目では識別しにくい追跡用パターンの データを発生し、上記のデジタル画像データに追加する データ発生手段、画像再現部における画像再現に影響す る因子を検出する検出手段、画像再現部において再現画 像を安定化させるように画像再現条件を設定する画像再 現条件設定手段、および、検出手段により得られた因子 に対応して、画像再現条件設定手段により設定された画 像再現条件を、追跡用パターンを常に一定のレベルで画 像に書き込めるように補正する補正手段を備える。好ま しくは、上記の検出手段により検出される囚子は、感光 体上に形成された基準トナー像のトナー濃度、ビーム形 状、感光体の耐久度、または、現像剤の耐久度である。

[0009]

は、いかにしてノイズにならずかつ解析が確実にできる 【作用】カラーデジタル複写機などにおける偽造防止対 データを書き込むかに主目的がある。先に説明したよう 50 策として目に見えない暗号を打ち込む技術において、目

20

に見えない暗号を構成するドットパターンなどをコピー 中に打ち込む。このため、再現すべきデジタル画像デー 夕に、データ手段により発生された追跡用ドットパター ンのデータを追加する。ここで、追跡ドットパターン は、微細なドットからなるため、べた画像部分とは各種 パラメータに対する変動量が異なる。そこで、変動する パラメータに対応して打ち込みレベルなどを切り換える 必要がある。各種の画像再現に影響する因子、たとえ ば、感光体を露光するパターンや階調カーブ、を選択し 設定するときや、あるいは、各種の画像再現に影響する 因子、たとえば、基準トナー濃度、ビーム形状、感光体 耐久度、現像剤耐久度など、を検出して画像安定化処理 を行うときにも、常に安定したドットパターンを打っ て、ノイズの発生や解析能力低下を防ぐ必要がある。そ こで、これらの各種の画像再現において、ドットパター ンの感光体上への打ち込みの前に、画像再現条件の各種 パラメータの補正を行い、追跡用ドットパターンの打ち 込みデータを切り換える。これにより、追跡用ドットパ ターンを常に一定のレベルで画像に書き込める。

[0010]

【実施例】以下、添付の図面を参照して本発明の実施例 について説明する。

(A)デジタルカラー複写機の構成

図1は、本発明の実施例に係るデジタルカラー複写機の 全体構成を示す断面図である。デジタルカラー複写機 は、原稿画像を読み取るイメージリーダ部100と、イ メージリーダ部100で読み取った画像を再現する複写 部200とに大きく分けられる。イメージリーダ部10 0の構成は従来と同様である。ここに、スキャナ10 は、原稿を照射する露光ランプ12と、原稿からの反射 30 光を集光するロッドレンズアレー13、及び集光された 光を電気信号に変換する密着型のCCDカラーイメージ センサ14を備えている。スキャナ10は、原稿読取時 にはモータ11により駆動されて、矢印の方向(副走査 方向)に移動し、プラテン15 hに載置された原稿を走 査する。露光ランプ12で照射された原稿面の画像は、 イメージセンサ14で光電変換される。イメージセンサ 14により得られたR,G,Bの3色の多値電気信号は、 読取信号処理部20により、イエロー(Y)、マゼンタ (M)、シアン(C)、ブラック(K)のいずれかの8ピット 40 の階調データに変換され、同期用パッファ(FIFOメ モリ) 30に記憶される。

【0011】次いで、複写部200において、プリント ヘッド部31は、入力される階調データに対して感光体 の階調特性に応じた階調補正(γ補正)を行った後、補正 後の画像データをD/A変換して半導体レーザ駆動信号 を生成して、この駆動信号により半導体レーザを発光さ せる。階調データに対応して発光強度を変調してプリン トヘッド部31から発生されるレーザビームは、反射鏡 する。感光体ドラム41は、1複写ごとに露光を受ける 前にイレーサランプ42で照射され、帯電チャージャ4 3により一様に帯電されている。この状態で露光をうけ ると、感光体ドラム41上に原稿の静電潜像が形成され る。シアン、マゼンタ、イエロー、プラックのトナー現 像器45a~45dのうちいずれか一つだけが選択され、 感光体ドラム41上の静電潜像を現像する。現像された トナー像は、転写チャージャ46により転写ドラム51 上に巻きつけられた複写紙に転写される。この印字過程 は、イエロー (Y)、マゼンタ (M)、シアン (C) 及 びブラック(K)の4色について繰り返して行われる。 このとき、感光体ドラム41と転写ドラム51の動作に 同期してスキャナ10はスキャン動作を繰り返す。その 後、複写紙は、分離爪47を作動させることによって転 **写ドラム51から分離され、定着装置48を通って定着** され、排紙トレー49に排紙される。なお、複写紙は用 紙力セット50より給紙され、転写ドラム51上のチャ ッキング機構52によりその先端がチャッキングされ、

【0012】(B) イエローパターンの打ち込み 次に、追跡用のイエローパターンの原稿画像への打ち込 みを説明する。イメージリーダ部(IR)100からの 読み取りデータに対して、打ち込みレベルや打ち抜きレ ベルを設定する。ここで、画像の低イエロー濃度部分は 打ち込みによって追跡用のイエローパターンを形成し、 高イエロー濃度部は、打ち込みを行っても見えないた め、打ち抜きによって認識する。このイエローパターン は、本複写機の機械名、シリアル番号などを特定できる 暗号である。機械名やシリアル番号の判別は、小さいマ トリックスサイズの中に配置された打ち込みドットと打 ち抜きドットとの2ドットペアの配置形態で行われるよ うになっている。図2は、複写機の図を含む原稿のカラ ーコピー1の中に、破線で示す複数のマトリクスの中に 所定の複数位置にイエロードット2の2ドットペアのパ ターンが配置された様子を示す。 図2の右 Lの図は、左 側のカラーコピー1の一部を拡大したものであり、図中 の点が小さなイエロードット2を示す。 さらに図2の右 下の図は、イエロードットの2ドットペアを拡大して示 したものである。

転写時に位置ずれが生じないようにしている。

【0013】図3は、打ち込み時と打ち抜き時の露光デ ータの補正を説明するための図である。上側に示す打ち 抜き(イエローデータ強調)の場合は、左側に示すイメ ージリーダーからの画像データ(シアン(C)、マゼン 夕(M)、イエロー(Y)、プラック(K))に対し て、中央に示す所定の打ち込みレベルのイエロー (Y) データが加算され、左側に示すように、レーザーダイオ ードを駆動するための出力画像データが得られる。な お、この例では、イエローの画像データ(80)と打ち 込みレベル(180)の和が最大値255を越えるた 3.9を介して、回転駆動される感光体ドラム4.1を露光 50 め、イエローの出力画像データは最大値2.5.5をとる。

一方、下側に示す打ち抜き(イエローデータ削除)の場 合は、左側に示すイメージリーダーからの画像データ (シアン(C)、マゼンタ(M)、イエロー(Y)、ブ ラック(K))に対して、中央に示す所定の打ち込みレ ベルのイエロー(Y)データが減算され、左側に示す出 力画像データが得られる。なお、この例では、イエロー の画像データ(80)と打ち込みレベル(180)の差 が最小値0より小さいため、イエローの出力画像データ は最小値0をとる。ここで、イエロードットの打ち込み と打ち抜きのレベルは、かなり精密に設定されている が、この状態は画像安定化処理においても維持する必要 がある。すなわち、画像安定化のため各種の処理が行わ れる場合にも、画像安定化を図りつつ打ち込みパターン をいつも安定して打ち込み、確実に打ち込みパターンの 解析ができ、かつ、打ち込みパターンを画像ノイズとし て感じさせないようにする必要がある。

【0014】(C)画像安定化処理に対する補正、 以下の実施例においては、ドットの打ち込みについて説 明しているが、逆にドットの打ち抜きを行う場合も同様 に処理すればよい。

(a) 階調再現切り換えによる補正

デジタル複写機においては、階調再現方式として多数の 方式が検討、採用されている。その中でも、各モードに よって同じ方式でも定数を変化させて対応している場合 が多い。たとえば、本実施例では、強度変調方式におい て、スムーズレベル(N, X)(ここに、N:発光期間 のドット数、X:デューティ比(%)) を設定可能であ り、写真画像の滑らかさと文字再現の両立を図る標準モ ード (N=1, X=100%) や、さらに強度変調方式 において、周期的に発光しない期間を設けた写真モード 30 がある。 N≠1の場合は、Nドットからなる1周期にお いて発光信号が処理され、たとえばNドットの平均値が 出力される。周期的に発光しない期間を設けると、人の 目には周期的な縦状のパターンが強く感じられ、ランダ ムノイズが月立ちにくくなり、さらに画像の粒状性(滑 らかさ)が高められる。これらの発光パターンを切り換 えると、同じレベルでイエローパターンを打ち込んで も、処理上、濃度が変化してしまう場合があり、これら についても配慮が必要である。

【0015】 (a-1) 強度変調と周期的発光とを組み 合わせた方式の場合

本実施例では、強度変調方式の標準 (文字) モード (N =1, X=100%) と写真モード (その他のスムーズ レベル)とを選択でき、操作部で設定されたスムーズレ ベル(N, X)とゲインデータROM203のデータと 該打ち込みデータレベルROM205のデータとによっ て発光強度が制御される。操作部202(図6参照)に は、たとえばNとXをそれぞれ設定できるキーを設けて あり、ユーザがNとXを設定する。周期的に発光しない め、最高画像濃度が低下してしまう。そこで、低下分を 補償し同じ濃度になるように、デューティー比Xに反比 例してレーザパワーを大きくする。

【0016】この構成を用いる場合、次の3つの問題が

(1) レーザパワーが強いことによる影響

偽造防止用のイエローパターンを打ち込んだ場合、標準 モードによって設定された画像再現条件を、写真モード に採用すると、レーザパワーが強いために、イエローパ ターンが目立ってしまうことがある。

(2) より小さい面積に対して、レーザの発光エネルギ ーを集中しているために、階調再現特性の観点では、立 ち上がりが早く、濃度飽和が遅くなる。そのため必然的 に階調補正カーブ (テーブル) を切り換える必要があ る。凶4は、同じ階調補正テーブルを用いた場合の階調 再現特性を示す。ここに、デューティ比が100%でな い場合の階調再現特性51は、デューティ比が100% の場合の階調再現特性52に比べて、リニアな特性に近 くなる。すなわち、同じ発光データを出力しても、再現 20 濃度が変化してしまう。

(3) 画素サイズが異なることによる影響

写真モードでは、イメージリーダからのデータは、周期 Nによる平均値が送られて来ており、プリンタのレーザ 駆動部もNドットを1単位として処理しているため、イ エローパターンがNの整数倍でない場合は、狙いのサイ ズよりも大きく打ち込むか、または、小さく打ち込んで しまうことになる。これにより、イエローパターンは、 先に説明したようにかなり精密に設定しなくてはならな いのに、問題が生じてしまう。

【0017】そこで、(1)に対処するために、イエロ ーパターン打ち込み時(打ち込みドット時)に、リアル タイムにレーザパワーを切り換える。また、レーザパワ 一切り換えにより、イエローパターンが最高濃度ならば 問題がなくなるが、中間調画像では中間濃度では階調特 性の変化により打ち込みパターン濃度が変化する。そこ で、(2) に対処するために、ァデータROM204に 標準モード用と写真モード(複数)用の階調補正データ を格納し、階調補正データも同時に切り換える。また、

(3) に対応するために、写真モード時に、イエローパ 40 ターンを打ち込む時は、打ち込み部分の単位は、標準モ ード画素単位(1例では1画素)に切り換え、打ち込 む。これにより同一サイズで打ち込める。

【0018】図5は、発光レベルの1例を示す。最も上 に示すようなデータ (a) が階調補正部27から出力さ れたとする。イエロー以外の場合、このときの発光レベ ルD1, D2, D3, D4, …は、標準モード (N= 1、X=100%) (b1) では、そのまま、半導体レ ーザの発光レベルとなるが、写真モード(ここではN= 2、X=75%の設定)では(b2)、2ドット周期 期間を設けると、トナーを付着させない部分ができるた 50 で、各周期での平均レベルが、75%のデューティ比で

出力される。イエローの場合は、発光レベルは、標準モ ード(c1)では、所定ドットにおいて打ち込みデータ レベルROM205 (図6参照) からの打ち込みレベル 100が加算される。また、写真モード (N=2、X= 75%) (c2) ではデューティ比が100%ではない が、1画素単位で打ち込みレベルが加算される。

【0019】図6は、本実施例における画像信号処理部 20とプリントヘッド部31の画像信号処理系とプリン 夕制御系のプロック図を示す。画像読取部(IR)にお いて、原稿は、CCDセンサ14により読み取られ、光 10 電変換により電気信号に変換される。この電気信号は、 A/D変換器21により多値デジタル値に変換された。 後、カラー画像処理部22においてシェーディング補 正、マスキング処理、濃度補正処理などがなされる。こ の読取データは、編集処理部23で各種編集処理がなさ れ、第1FIFOメモリ24に記憶される。次に、第1 FIFOメモリ24から読み出されたデータは、MTF 処理部25で平滑化やエッジ強調などの公知の空間フィ ルタ処理がなされ、第2FIFOメモリ26に記憶され る。第2FIFOメモリ26から読み出されたデータ は、7補正部28において、プリンタ制御部201が7 データROM204から読み出したγ補正データに基づ き、各画像濃度データに応じた画像出力データに変換さ れる。なお、アデータROM204は、文字モードと写 真モード(各スムーズレベル(N, X))のそれぞれに 対応してγ補正データを記憶していて、γ補正データ は、入力画像データを発光レベルに変換するデータであ る。一方、プリンタ制御部201には、打ち込みパター ンROM206が接続されており、イエローパターンを 打ち込む場合には、打ち込みパターンROM206に格 納されているパターンを読み出して、打ち込みパターン 発生部30にて打ち込み用のパターンを発生する。ま た、打ち込み時の発光強度を示す打ち込みレベルが、打 ち込みデータレペルROM206に格納されているが、 この打ち込みレベルも、文字モードと写真モード(各ス ムーズレベル (N, X)) のそれぞれに対応して記憶さ れる。写真モード時には、スムーズレベル(N. X)、 ゲインデータROM203のデータ、および、打ち込み データレベルROM205のデータによって半導体レー ザ37が発光され、感光体ドラム41がレーザピームで 40

【0020】 γ補正されたデータ(および打ち込みパタ ーンが発生された場合には打ち込みパターンデータが加 算されたデータ)は、次にデジタルアナログ変換回路3 3において、アナログ電圧に変換される。このアナログ 電圧は、ゲイン切換回路34において設定ゲイン値で増 幅され、ドライプI/O回路35を介して半導体レーザ 駆動回路36に送られる。ゲイン切換回路34において は、入力電圧をスイッチを切換えて分割することにより ゲインが変換できる。そこで、ゲイン設定回路 $\mathbf{3}$ 4での $\mathbf{50}$ スムーズレベル (\mathbf{N} , \mathbf{X}) に対応した発光信号が出力さ

10

ゲインの設定は、プリンタ制御部201から出力される ゲイン切換信号に対応してゲイン切換信号発生回路20 6 がゲイン設定回路34のスイッチSW1、SW2、… を切換えることにより行われる。レーザ光の発光につい ては、強度変調方式を用い、レーザ光の発光時間は一定 であるが、発光強度が変調される。半導体レーザ駆動部 36は、ドライブI/O回路35を介して入力される量 圧に比例した強度で半導体レーザ37を発光させる。従 って、ゲイン設定回路34のゲインは半導体レーザ37 の発光強度P1、P2、…に対応する。

【0021】プリンタ部200において、操作部202 は、文字モードと写真モードを選択する選択キーを備 え、写真モードの場合は、さらにパターンのスムーズレ ベル(N, X)がプリンタ制御部201に入力される。 プリンタ制御部201は、ァデータROM204のデー タを用いて、γ補正部28に階調補正データを送る。こ の階調補正データは、文字モードと写真モードに対応し て個別に設定される。さらに、スムーズレベル(N, X)とゲインデータROM203のデータにより、半導 体レーザ34の発光強度Pを制御するゲイン切換信号を ゲイン切換信号発生回路206に送り、発光強度を切り 換え、また発光信号の周期Nとデューティ比Xを制御す るクロック切換信号を発光信号発生回路207に送り、 発光信号のタイミングを変える。これにより、イメージ リーダ部100からの画像データは、所定のレーザ強度 および発光時間の変調を用いて、感光体上に露光され る。イエロードット打ち込み時には、さらに、プリンタ 制御部201は、打ち込みパターンROM206に格納 した打ち込みパターンを用いてパターンを発生するが、 イエロードットの発光強度は、打ち込みデータレベルR OM205のレベルに基づいて変えられる。

【0022】プリンタ制御部201は、発光信号発生回 路207に、操作部202から入力されるスムーズレベ ル (N, X) (ここに、N:発光期間のドット数、X: デューティ比(%))に対応した切換信号を送る。この スムーズレベルは、1 画素の基本周期 (N=1) のN倍 の周期で発光がなされ、また、Xの期間に発光がなされ ることを意味する。強度変調法において、周期的に発光 しない期間を設け、画像の粒状性(滑らかさ)を高めて いる。発光信号発生回路207は、パラレルI/O回路 を介して、スムーズレベル (N. X) に対応したクロッ ク切換信号により切換えたクロックに基づく発光信号を 半導体レーザ駆動部36に送る。発光信号発生回路20 7の発生する発光信号は、クロック切換信号に対応した デューティ比を有するクロックに基づいて発生される。 半導体レーザ駆動部36は、発光信号が入力されている ときにのみ半導体レーザ37の駆動電流を発生する。従 って、この発光信号(クロック)によりデューティ比X と周期Nが切換えられる。半導体レーザ駆動部36は、

れているときに、ドライプ I / O回路35から入力され る画像信号を出力し、半導体レーザ37を駆動する。な お、先に説明したように、写真モード時には、スムーズ レベル(N, X)とゲインデータROM203のデータ と打ち込みデータレベルROM205のデータとによっ て発光強度が制御されるようになっている。なお、図6 では簡単のために具体的な図示を省略したが、各種セン サ210、各種設定用スイッチ211などがプリンタ制 御部201に入力される。また、イレーサランプ42の ドライバ、帯電チャージャ43のグリッド電圧、トナー 10 現像器45a~45dの現像パイアス電圧、転写チャージ ャ46の転写電圧などを発生する高圧ユニットなどもプ リンタ制御部201に接続される。

【0023】図7は、プリンタ制御部201の複写制御 のフローを示す。電源が投入されると、まず、初期設定 がなされる(ステップS2)。次に、キー入力を受け付 ける (ステップS2)。ここで、ユーザは、スムーズレ ベル(N, X)を設定できる。スタートキーのキー入力 が受け付けられると(ステップS6でYES)、次に、 各種センサ入力およびスイッチ入力を受け付ける(ステ 20 ップS8、S10)。次に、ブラック、マゼンタ、ブル 一、イエローの4色について順次複写を行う(ステップ S12).

【0024】図8は、複写(図7512)のフローを示 す。まず写真モードか否か判定される(ステップS2 0)。写真モードでなければ (ステップS20でN O)、通常の画像作成処理を行い、イエロートナーにつ いても通常のイエロードット打ち込み処理を行う(ステ ップS22)。一方、写真モードであれば(ステップS 20でYES)、まず、現像色がイエローか否かが判定 30 される (ステップS24) 。プラック、シアン、マゼン タである場合(ステップS24でNO)、次に、通常の 画像作成処理がなされ(ステップS26)、現像が終了 すると(ステップS28)、現像色が切り換えられる (ステップS30)。現像色がイエローであると判定さ れるときは(ステップS24でYES)、次に、暗証番 **号打ち込みドットであるか否かが判定される(ステップ** S32)。 暗証番号打ち込みドットでなければ (ステッ プS32でNO)、通常のイエロードット画像が作成さ れる(ステップS34)。暗証番号打ち込みドットであ 40 れば (ステップS32でYES)、次に、γ補正部28 からの読み取りデータと打ち込みパターン発生部30か らのデータが加算される(ステップS36)。次に、半 導体レーザ37のパワーゲインが切り換えられ(ステッ プS38)、イエロードットの打ち込みが行われる(ス テップS40)。そして、イエロードットの現像が終了 したかが判定され(ステップS42)、イエロードット の現像が終了していなければ、ステップS32に戻り、 次のドットの処理を行う。イエロードットの現像が終了 していれば、複写処理を終了する。

12

【0025】また、別の方式では、モードによってパタ ーン打ち込みサイズが異なった場合でも、人間の目で見 た場合や、機械による解析能力が標準モードで設定した レベルと同じ程度となるように、各モードで定数を変更 してもよい。この方法を用いると、(1)、(2)で述 べたパワー切り換えも含めて統合的に設定することが可 能になる。この方式によれば、アデータROM204に 標準モードと各写真モードの階調補正データを格納する とともに、打ち込みレベルデータROM205中にも、 標準モード用と各写真モード用の発光レベルデータを格 納し、操作パネル202からの指示により発光レベルデ 一夕を切り換える。ここに、打ち込みサイズを変化させ て、人間の目で見た場合や、機械による解析能力を一定 にするためには、幅広い範囲での画像安定化が必要にな り、その点に留意して打ち込みデータレベルを設定する 必要がある。この方法では、写真モードの場合は、標準 モードに比べてレーザパワーが強いため、発光レベルの データを標準モードの場合に比べて変化させる。ここ で、発光レベルのデータは、レーザパワーの増加分を比 例的に減らして設定してもよいが、さらに、階調特性の 変化分を見越して設定してもよい。

【0026】(a-2)パルス幅変調と周期的発光を組 み合わせた方式の場合

レーザ発光において、発光強度を一定に保ちパルス幅を 変調するパルス幅変調方式の場合も、同様に対応でき る。このパルス幅変調方式では、標準モードでは、一般 的には2ドット周期のパルスを基準として用いており、 この場合、グレーの文字部は縦線状に再現されるため に、文字モードの場合には、1ドット周期のパルスを基 準としている。パルス幅変調方式の場合は、べた部では 発光しない部分を作っていないため、レーザパワーを切 り換える必要はないが、階調再現特性は変化するため、 それぞれに対応して階調補正テーブルが必要になり、ま た、周期も変化するために1画素サイズが変化する点は 同様である。

【0027】(b)階調カープ切り換えによる打ち込み レベルの切り換え

カラー複写機においては、すべてのカラー原稿に対し て、深い色合いや階調性を表現することは大変困難なこ とである。特に原稿が銀塩写真の場合には、画像濃度領 域が、電子写真で得られる領域よりも広いために、電子 写真では階調の圧縮を行う必要がある。階調の圧縮によ ってショートレンジの中にカラー階調情報を閉じ込めな くてはならない。そこで、一般的に原稿のハイライト部 分とシャドー部分を設定し、これらが複写濃度再現範囲 いっぱいに収まるように再現濃度域の設定を行ってい る。また、人間の目がハイライト部分から中間濃度にか けての変化に敏感であり、シャドー部分の変化に鈍いこ とから、ハイライト部分から中間濃度にかけてより多く 50 の情報を割り当てて、視覚的に影響力の少ないシャドー

部分を切り捨てている。このような制限の中で、より原 稿に忠実な再現ができるような設定がなされている。し かし、これらの設定は、数多くある原稿の平均値に対す るものであり、原稿の種類によっては階調を変化させた 方がよい場合が多くある。そこで、階調カープを切り換 えることが提案されている。階調カーブは、入力画像デ ータと出力濃度データの関係を表すカープである。本実 施例では、操作パネル202から、図9に示すように、 標準のリニア特性9aの他に、低濃度強調型9b、高濃 度強調型9 c、中間調強調型9 d、中間調非強調型9 e の4つの形状が設定できる。低濃度強調型9 bの階調力 ープは、ハイライト部から中間濃度までを強調させて、 一般的に見栄えのよい画像を得ることができる。高濃度 強調型9cの階調カーブは、シャドー部の再現性を十分 確保して、かつ全体的に明るい感じを与えることができ る。中間調強調型9dの階調カープは、中間部を強調さ せ、ハイライト部とシャド一部を滑らかにして、めりは りのある画像にできる。中間調非強調型9 e の階調カー ブは、ハイライト部とシャド一部を強調し、中間部を滑 らかに再現する。それぞれの階調カープの形状におい て、リニア特性からの変化の大きさ (レベル) の異なる 例えば3レベルの階調カーブが用意される。これらの階 調カーブから希望の階調カーブを選択することにより、 原稿に息づくニュアンスを、それにふさわしい質感で表 現することが可能になる。

【0028】そこで、偽造防止のために、この階調カー プの切り換えに対してもイエロードット打ち込みレベル を一定に保つことが必要である。本実施例では、階調力 ープの切り換えに対応して、同時に偽造防止用のイエロ ードットパターンの打ち込みレベルを切り換える。図1 0は、本実施例のプリンタ制御系を示す。操作部202 には、階調カーブ選択用のキーが設けられる。具体的に は、標準リニア特性および4種の階調カープを選択する キーと、3つのレベルを選択するキーが設けられる。4 種のキーのいずれかが押された時には、次に、3つのい ずれかのレベルの入力が受け付けられる。この階調カー プの形状とレベルを選択することにより、希望の階調力 ープが選択できる。また、プリンタ制御部201には、 AIDCセンサ201aが接続されるが、簡単のため、 AIDCセンサ210a以外のセンサの図示は省略し た。このプリンタ制御系では、データROM214、2 15、216には、表1、表2、表3に1例を示すAI DCテーブル、階調補正テーブル、イエロードット打ち 込みゲインテーブルが格納される。データROM214 のAIDCテーブルは、AIDCセンサ210aの検出 値に対応したAIDCレベル、グリッド電位Vgおよび 現像パイアス電位 V゚ が記憶される。 データROM21 5の階調補正テーブルには、AIDCレベルと種々の階 調カープに対応した階調補正データ(700、701、 γ 0 2. · · · ; γ 1 0. γ 1 1. γ 1 2. · · · ; γ 50 14

20、 $\gamma 21$ 、 $\gamma 22$ 、・・・)が記憶される (簡単の ために、3つの階調カープA, B, Cについてのみ記載 した)。また、データROM216のイエロードット打 ち込みゲインテーブルには、AIDCレベルと各階調力 ープに対応したイエロードット打ち込みゲインが記憶さ れる。したがって、プリンタ制御部201は、AIDC センサ210aの検出値を受け取ると、データROM2 14のAIDCテーブル(表1)を参照して、AIDC レベル(最左欄)、グリッド電位Vc、現像パイアス電 位Vsを決定するとともに、AIDCレベルと階調カー プに対応して、データROM215、216 (表2、表 3)を参照して、階調補正データおよび打ち込みレベル を決定する。すなわち、AIDCセンサ210aの検出 値と選択された階調カープに応じてイエロードットパタ ーンの打ち込みレベルと階調補正データが切り換えられ る。なお、データROM216のイエロードット打ち込 みゲインテーブルは、イエロートナーに対応するもので あり、他の色のトナーの場合には、このデータは使用さ れない。

20 [0029]

【表1】

	AIDCセンサ				
	センサ	V (v)	V ₃ (v)		
1	0. 2	800	600		
2	0. 5	750	550		
3	0. 7	700	500		
4	0. 9	650	450		
5	1. 1	600	400		
•	•	•	•		

【表2】

	階調補正テーブル			
	形状A	形状B	形状C	
1	700	710	720	
2	701	r11	721	
3	702	r 1 2	722	
4	703	713	723	
5	704	714	724	
•	•	•	•	

【表3】

【0030】図11は、プリンタ制御部201の複写制 御のフローを示す。電源が投入されると、まず、初期設 定がなされる(ステップS102)。次に、キー入力が 受け付けられる(ステップS104)。ここで、オペレ ータが希望する階調カープが選択される。本実施例で は、操作パネル202において、まず、4種の階調カー プの形状から希望の形状が選択され、次に選択された形 状における形状変化のレベル(1~3)が選択される。 スタートキーが押されると(ステップS106でYE S)、次に、各種センサ入力およびスイッチ入力を受け 付ける (ステップS108、S110)。次に、AID C処理を行い(ステップS114、図12参照)、AI DCセンサ210aの検出値を求め、関連する画像再現 条件の定数を定める。次に、ブラック、シアン、マゼン タ、イエローの4色について順次複写を行う(S11 6)。図12は、AIDC処理(図11ステップS11 2) のフローを示す。まず、AIDC動作を行う (ステ ップS120)。すなわち、感光体上に基準トナー像を 形成し、AIDCセンサ210aによりトナー濃度検出 30 値を求める。そして、各色の検出値に応じたグリッド電 位Vc、現像パイアス電位V®をAIDCテーブル (表 1) より選択し(ステップS122)、階調補正テープ ルをデータROM235 (表2) より選択する (ステッ プS124)。また、イエロートナーの複写の場合に は、イエロードットの打ち込みレベルをデータROM2 36のイエロードット打ち込みゲインテーブル (表3) より選択する(ステップS126)。このように、選択 された階調カープに応じて階調補正テーブルとイエロー ドット打ち込みレベルが選択される。複写処理(ステッ プS116)は、これらの選択された画像再現条件を用 いて実行される。

【0031】図13は、AIDC動作のフローを示す (図12ステップS120)。まず、トナーが付着して いない状態の感光体上のトナー濃度をAIDCセンサ2 10 aで検出する(ステップS140)。次に、最大の V₆、V₈、最大光量レベルで潜像パターンを感光体上に 形成し、シアンのトナーで現像し、AIDCセンサ21 0 a によりトナー濃度(べた濃度)を検出する(ステッ

16

検出値が飽和する条件である。これにより、センサ感度 を求めることができる。次に、シアン、マゼンタ、イエ ローおよびプラックの4色について、順次、最大露光レ ベルの1/2の光量で露光して潜像を形成し、トナーで 現像し、得られた基準トナー像の濃度をAIDCセンサ 210aで検出する(ステップS144~S150)。 これにより、各色での現在の現像能力が検出される。そ して、メインフローに戻る。

【0032】 (B) 電子写真特性の変動への対応 電子写真系のプロセスにおいては、複写機の各種電子写 真特性のばらつきに対応して適正な複写を行うために、 自動濃度調整(AIDC)、階調補正などが行われてい る。これらの画像安定化システムにおいては、主にべた 画像部について条件設定がなされており、今回の偽造防 止技術におけるイエローパターン打ち込みのように微小 サイズの画像の濃度については必ずしも一定条件でよい とは限らない。

【0033】(b-1)環境(AIDC)に対応した打

ち込みレベルの切り換え 自動濃度調整(AIDC)では、所定条件で作成したト ナー像の濃度をAIDCセンサで検出し、この検出値に 応じて感光体を帯電するグリッド電位V。とトナーを帯 電する現像パイアス電位V®を切り換え、最大画像濃度 を一定に保つ。さらに、同時に階調補正テーブルを切り 換え、常に安定した濃度階調再現ができるようにする。 しかし、この自動濃度調整では、ミクロ的なドットに関 しては、必ずしも狙いの濃度が再現できるとは限らな い。一般的なカラー原稿は、写真、グラフ、カタログな どの面積画像が主流である。ミクロ的な部分(文字部) に関しては、人間の目の感度が低いとともに、写真など のように色再現性に関しては厳しくはいわれない。その ため、AIDC制御による画像再現特性は、上記の理由 により主に面積部分の再現に重点が置かれて設計されて おり、偽造防止用の打ち込みドットの濃度再現の安定性 については、べた部(而積画像)とはかならずしも一定 にはならない。その理由は、べた部は、レーザ露光した ときの干渉部分が多く、独立部分が少ないため、レーザ ピームの裾の影響を受けにくいのに対し、ドット部は、 干渉部分が少ないからである。図14は、1ドットの場 合と、4連続ドット(べた部)の場合の潜像のパターン を図式的に示したものであるが、後者の面積は前者の面 積の4倍ではなく、3倍に低下していて、べた部では干 渉部分が多いことが分かる。このために、ドット部は、 どうしてもべた部に比べて再現面積が多く、濃度的に濃 く再現されてしまう。これらの理由により、同じ条件で 画像を再現しても、ドット部とべた部とでは再現性が異 なってしまうわけである。画像部とドット部の再現性が 異なっているため、偽造防止用のイエローバターンの打 ち込みレベルを、打ち込みサイズに合わせて切り換え プS142)。この条件は、AIDCセンサ210aの 50 て、狙いの濃度を得ることができると考えられる。しか

し、このように打ち込みレベルを打ち込みサイズに合わせて切り換えたとしても、ドットの再現は同じレベルでも変化してしまう。その理由は、自動濃度調整でグリッド電位V。と現像パイアス電位V。を切り換え、さらに階調補正テーブルを切り換えたとき、帯電チャージャにより帯電された感光体の表面電位と現像パイアス電位V。の差に対する現像パイアス電位V。と光減衰電位(最大レベルでの露光後の感光体の表面電位)の差の比率が変化するからである。そこで、本実施例では、AIDCセンサの検出値に応じてイエロードットパターンの打ち込のレベルを切り換える。

【0034】図15は、本実施例のプリンタ制御系を示す。プリンタ制御部には、トナー濃度を検出するAID Cセンサ210aが接続される。図15では、簡単のため、他のセンサの図示は省略した。また、図6に示したプリンタ制御系におけるァデータROM204と打ち込みデータROM205の代わりにデータROM224を*

*備え、データROM224には、表4に1例を示すAIDCテーブルが格納される。このAIDCテーブルは、AIDCセンサ210aの検出値に対応したAIDCレベル、グリッド電位V。、現像パイアス電位V。、階調電正データ(γ1、γ2、・・・)および打ち込みレベルが記憶される。したがって、ブリンタ制御部201は、AIDCセンサ210aの検出値を受け取ると、データROM224のAIDCテーブルを参照して、AIDCレベル(最左欄)、グリッド電位V。、現像パイアス電位Va、階調補正データおよび打ち込みレベルを決定する。すなわち、AIDCセンサ210aの検出値に応じてイエロードットパターンの打ち込みレベルを切り換えられる。なお、このAIDCテーブルは、イエロートナーに対応するものであり、他の色のトナーの場合には、打ち込みレベルは含まれない。

18

[0035]

【表4】

	A I DCテーブル				
	センサ検出値	V ₅(∇)	V _B (v)	ィテーブル	打込レベル
1	0. 2	800	600	700	1. 0
2	0.5	750	550	701	1. 1
3	0. 7	700	500	702	1. 2
4	0. 9	650	450	703	1. 3
5	1. 1	6 0 0	400	704	1. 4
Ŀ	•	•	•		

【0036】図16は、プリンタ制御部201の複写制 御のフローを示す。電源が投入されると、まず、初期設 30 定がなされる(ステップS202)。次に、スタートキ ーのキー入力が受け付けられるの待つ(ステップS20 4、S206)。次に、各種センサ入力およびスイッチ 入力を受け付ける(ステップS208、S210)。次 に、AIDC処理を行い(ステップS212)、AID Cセンサ210aの検出値を求め、関連する定数を定め る。次に、プラック、シアン、マゼンタ、イエローの4 色について順次複写を行う(ステップS214)。図1 7は、AIDC処理のフローを示す。まず、AIDC動 作を行う(ステップS220)。すなわち、感光体上に 40 基準トナー像を形成し、AIDCセンサ210aにより トナー濃度検出値を求める。このAIDC動作は、図1 3と同様に行われる。次ぎに、各色の検出値に応じたグ リッド電位Vc、現像パイアス電位Vc、階調補正テープ ルをAIDCテーブル (表4) より選択する (ステップ S222)。また、イエロートナーの複写の場合には、 イエロードットの打ち込みレベルをAIDCテーブルよ り選択する (ステップS224)。 複写処理 (図15ス テップS214)は、トナー濃度検出値に応じて選択さ れた画像再現条件を用いて行われる。

【0037】(b-2)ピーム形状に対応したドット打 り ち込みレベルの切り換え

レーザのピーム形状(ピーム径など)は、使用するレー ザダイオードの型により異なることがある。このレーザ のピーム形状 (ピーム径) の変化によってドットの打ち 込み濃度が変化する。すなわち、同じ光エネルギを感光 体に照射しても、露光レベルが0から増加するときの現 像の立ち上がり特性がピーム形状の変化により変化して しまう。この現象は、特に強度変調法を用いたときによ く観察される。これに対応するために、本実施例では、 レーザピーム径を設定するピーム径スイッチを設け、ピ 一ム径によって階調補正データを切り換えて、濃度再現 の安定化を図る。この方式以外にも、微小表面電位計を 用いた潜像解析により、ビーム径を予測して、階調補正 データを切り換えることなども考えられるが、これらの 方式では、(b-1)で先に説明したAIDCテーブル だけではドット部において狙いの濃度が得られないこと がわかる。

【0038】図18は、本実施例のプリンタ制御系を示す。ピーム径は、大、中、小に分類される。プリンタ制御部201には、トナー濃度を検出するAIDCセンサ 50210aとピーム径スイッチ211aが接続される。図

18では、簡単のため、他のセンサやスイッチの図示は 省略した。このブリンタ制御系では、図10に示したブ リンタ制御系と同様に、データROM234、235、 236には、表5、表6、表7に1例を示すAIDCテ ープル、階調補正テープル、イエロードット打ち込みゲ インテーブルが格納される。データROM234のAI DCテープルは、AIDCセンサ210aの検出値に対 応したAIDCレベル、グリッド電位Vcおよび現像バ イアス電位VIが記憶される。データROM235の階· 調補正テープルには、AIDCレベルと大、中、小のビ 10 ーム径に対応した階調補正データ (γ1、γ2、・・ ·) が記憶される。データROM236のイエロードッ ト打ち込みゲインテーブルには、AIDCレベルと大、 中、小のピーム径に対応したイエロードット打ち込みゲ インが記憶される。したがって、プリンタ制御部201 は、AIDCセンサ210aの検出値を受け取ると、デ ータROM234のAIDCテーブルを参照して、AI DCレベル(最左欄)、グリッド電位V₆、現像パイア ス電位VBを決定するとともに、AIDCレベルとピー ム径に対応して、データROM235、236を参照し 20 て、階調補正データおよび打ち込みレベルを決定する。 すなわち、AIDCセンサ210aの検山値とピーム径 に応じてイエロードットパターンの打ち込みレベルと隣 調補正データが切り換えられる。なお、データROM2 36のイエロードット打ち込みゲインテーブルは、イエ ロートナーに対応するものであり、他の色のトナーの場 合には、このデータは使用されない。

[0039]

【表5】

	AIDCテーブル			
	センサ検出値	V o(v)	V ₁ (v)	
1	0. 2	800	600	
2	0. 5	750	550	
3	0. 7	700	500	
4	0. 9	650	450	
5	1. 1	600	400	
•	•	•	•	

【表6】

階調補正テーブル				
	大	4	小	
1	700	710	γ 2 O	
2	701	711	721	
3	702	712	γ22	
4	703	γ 1 3	723	
5	704	714	724	
	•	•		

【表7】

Yドット打ち込みゲイン				
	大	#	小	
1	1. 1	1. 0	0. 9	
2	1. 2	1. 1	1. 0	
3	1. 3	1. 2	1. 1	
4	1. 4	1. 3	1. 2	
5	1. 5	1. 4	1. 3	
•	•	•	•	

【0040】図19は、プリンタ制御部201の複写制 御のフローを示す。電源が投入されると、まず、初期設 定がなされる(ステップS302)。次に、スタートキ ーのキー入力が受け付けられるの待つ(ステップS30 4、S306)。次に、各種センサ入力およびスイッチ 入力を受け付ける(ステップS308、S310)。こ 30 こで、スイッチ入力 (ステップS310) において、ビ ーム径設定スイッチ211aよりビーム径データを入力 する。次に、AIDC処理を行い(ステップS31 2) 、AIDCセンサ210aの検出値を求め、関連す る定数を定める。次に、プラック、シアン、マゼンタ、 イエローの4色について順次複写を行う(ステップS3 14)。AIDC処理(ステップS312)は、図12 と同様に処理される。ただし、上に説明したように、ビ ーム径に応じて階調補正テーブルとイエロードット打ち 込みレベルが選択される点が異なる。AIDC動作は同 40 様に行われる(ステップS120)。すなわち、感光体 上に基準トナー像を形成し、AIDCセンサ210aに よりトナー濃度検出値を求める。そして、各色の検出値 に応じたグリッド電位Vc、現像パイアス電位Ve、階調 補正テープルをデータROM234、235のAIDC テーブル(表5)と階調補正テーブル(表6)より選択 する(ステップS122、S124)。また、イエロー トナーの複写の場合には、イエロードットの打ち込みレ ベルをデータROM236のイエロードット打ち込みゲ インテーブル(表7)より選択する(ステップS12 50 6)。複写処理 (ステップS314) は、これらの選択

された画像再現条件を用いて実行される。

*【0041】 (c) 感光体耐久枚数と現像剤耐久枚数に よる切り換え

電子写真方式を用いた複写機、プリンタなどにおいて は、静電気現象を利用しているため、環境、耐久枚数な どによって特性が変化したり、現像剤耐久度によって特 性が変化してしまい、画像部とドット部へのトナー付着 状況が異なることがある。そこで、本実施例において は、感光体ライフカウンタ値に応じて、イエロードット パターンの打ち込みレベルを切り換える。図20は、本 10 実施例のプリンタ制御系を示す。このプリンタ制御系 は、感光体ライフカウンタ212と現像剤ライフカウン タ213を備える。また、データROM244、245 には、表8、表9に1例を示すAIDCテーブルとイエ ロードット打ち込みレベルテーブルが格納される。デー タROM254のAIDCテーブルは、表4と同様に、 AIDCセンサ210aの検出値に対応したAIDCレ ベル、グリッド電位Vc、現像パイアス電位Vs、階調補 正データおよび打ち込みレベルが記憶される。また、デキ

*一夕ROM255のイエロードット打ち込みレベルテー ブルには、感光体のブリント枚数を示すカウンタ値に対 応したイエロードット打ち込みレベルの係数が記憶され る。したがって、プリンタ制御部201は、AIDCセ ンサ210aの検出値を受け取ると、データROM24 4のAIDCテーブルを参照して、AIDCレベル(最 左欄)、グリッド電位Vc、現像バイアス電位Vc、階調 カープおよび打ち込みレベルを決定するとともに、デー 夕ROM245より、カウンタ値に対応した打ち込みレ ベルの係数を決定する。打ち込みレベルは、データRO M244から読み出した打ち込みレベルに、データRO M255から読み出した係数を乗算したものである。な お、データROM245のイエロードット打ち込みゲイ ンテーブルは、イエロートナーに対応するものであり、 他の色のトナーの場合には、このデータは使用されな

[0042] 【表8】

	AIDCテーブル				
	センサ検出値	V _G (V)	V _B (v)	ァテーブル	打込レベル
1	0. 2	800	600	700	1. 0
2	0. 5	750	550	701	1. 1
3	0. 7	700	500	702	1. 2
4	0. 9	650	450	γ03	1. 3
5	1. 1	600	400	704	1. 4
•	•	•	•		

【表9】

打ち込みレベル係数		
カウンタ	係数	
~3 K	1. 0	
~6 K	1.05	
~9 K	1. 1	
~12K	1. 15	
~15K	1. 2	
•	•	

【0043】図21は、プリンタ制御部201の複写制 御のフローを示す。電源が投入されると、まず、初期設 定がなされる(ステップS402)。次に、スタートキ ーのキー入力が受け付けられるの待つ(ステップS40 4、S406)。次に、各種センサ入力およびスイッチ 入力を受け付ける (ステップS408、S410)。次 に、感光体ライフカウンタ213から感光体のプリント 枚数が入力される(ステップS412)。次に、AID 50 画像再現条件を用いて実行される。

C動作を行い、AIDCセンサの検出値を求める(ステ ップS414)。次に、ブラック、シアン、マゼンタ、 イエローの4色について順次被写を行う(ステップS4 16)。AIDC処理(ステップS412)では、図1 2と同様の処理が行われる。ただし、本実施例では、 F. に説明したように、感光体の耐久変化に応じて階調補正 テーブルとイエロードット打ち込みレベルが選択される 点が異なる。AIDC動作は同様に行われる(ステップ S120)。すなわち、感光体上に基準トナー像を形成 40 し、AIDCセンサ210aによりトナー濃度検出値を 求める。そして、各色の検出値と、選択された階調補正 カーブとに応じたグリッド電位Vc、現像パイアス電位 V₈、階調補正カープおよび打ち込みレベルをデータR OM244のAIDCテーブル (表8) より選択する (ステップS122、S124)。また、イエロートナ 一の複写の場合には、イエロードットの打ち込みレベル をデータROM245のイエロードット打ち込みゲイン テープル(表9)より選択する(ステップS126)。 複写処理 (ステップS416) は、これらの選択された

【0044】次に、現像剤耐久枚数による切り換えにつ いて説明する。現像剤の耐久により、キャリアへのトナ ースペントなどにより画像部とドット部への付着状態が 異なることがある。キャリアへのトナースペント現象が 起こると、現像剤帯電量の低下を引き起こすため、かぶ りが発生しやすくなるが、キャリア自身の帯電量も変化 するため、カウンターチャージが現象し、中間調部の桶 き取りが減少する。また、ドット部は、もともとエッジ 効果のためあまり変化していない。この現象以外にも、 耐久により現像剤の流動性が変化することにより、現像 10 部への搬送量が変化し、中間調部のがさつきが発生し、 画像濃度が低下する。しかし、ドット部は、エッジ効果 のため、ほとんど低下しない。このように、べた部とド ット部とでは、再現が異なるため、自動濃度制御では、 べた部の濃度は合うが、ドット部が合わない。そのた め、設定されたイエローバターンレベルでは、目標に対 してずれが生じる。そこで、本実施例では、現像剤ライ フカウンタ値に応じて、イエロードットパターンの打ち 込みレベルを切り換える。本実施例のプリンタ制御系 は、図20に示したプリンタ制御系と同様である。ただ 20 し、このプリンタ制御系では、データROM244に は、表8と同様なAIDCテープルが記憶されるが、デ ータROM245のイエロードット打ち込みレベルテー ブルには、現像剤耐久枚数を示すカウンタ値に対応した イエロードット打ち込みレベルの係数が記憶される。し たがって、プリンタ制御部201は、AIDCセンサ2 10 aの検出値を受け取ると、データROM244のA IDCテーブルを参照して、AIDCレベル(最左 欄)、グリッド電位Ⅴε、現像パイアス電位Ⅴε、階調力 ープおよび打ち込みレベルを決定するとともに、データ 30 ROM245より、現像剤ライフカウンタ値に対応した 打ち込みレベルの係数を決定する。打ち込みレベルは、 データROM244から読み出した打ち込みレベルに、 データROM245から読み出した係数を乗算したもの である。なお、データROM245のイエロードット打 ち込みゲインテーブルは、イエロートナーに対応するも のであり、他の色のトナーの場合には、このデータは使 用されない。

【0045】この場合の制御のフローも図21の場合と ほとんど同様であるが、ただし、感光体ライフカウンタ 212の代わりに現像剤ライフカウンタ213の値が画 像再現条件の定数を決めるために用いられる点が異な る。

【0046】なお、本実施例では、イエロートナーを用 いて追跡用パターンを打ち込んでいるが、イエロートナ 一の代わりにホワイトトナーを用いてもよい。また人間 の目に見えにくい特殊な赤外トナーや紫外トナーを用い てもよい。また、追跡用パターンは、ドットの配置によ り解析を行っているが、直接S/Nを書き込むタイプで もよい。この場合は、イエロートナーは使用できないた 50 28: γ 補正部、

め、赤外トナーや紫外トナーを使用する。

[0047]

【発明の効果】複写機メーカの社会的責任である偽造防 止(追跡)技術において、偽造されたハードコピーから 確実に追跡ができるように、安定して追跡用パターンを 打ち込むことが可能になった。また、パターンがユーザ クレームとならない範囲にもパターンを打ち込むことが 可能になった。

【図面の簡単な説明】

【図1】 デジタルカラー複写機の全体構成を示す断面 図である。

【図2】 複写機の図を含むカラーコピーの中にイエロ ードットの2ドットペアが配置された様子を示す図式的 な図である。

[図3] 打ち込み時と打ち抜き時の露光データの補正 を説明するための図である。

デューティ比が異なるが同じ階調補正テープ ルを用いた場合の階調再現特性を示す図である。

【図5】 発光レベルの1例を示す図である。

【図6】 プリンタ制御系のプロック図である。

【図7】 プリンタ制御部の複写制御のフローチャート である。

【図8】 複写のフローチャートである。

【図9】 低濃度強調型、高濃度強調型、中間調強調 型、中間調非強調型の4つの型の階調カープを示す図で ある。

本実施例のプリンタ制御系を示すプロック 【図10】 図である。

【図11】 プリンタ制御部の複写制御のフローチャー トである。

【図12】 AIDC処理のフローチャートである。

【図13】 AIDC動作のフローチャートである。

【図14】 1ドットの場合と、4連続ドット(べた 部)の場合の潜像のパターンを図式的に示した図であ る。

画像信号処理部とプリントヘッド部を制御 【図15】 するプリンタ制御系のプロック図である。

【図16】 プリンタ制御部の複写制御のフローチャー トである。

AIDC処理のフローチャートである。 【図17】

[図18] 本実施例のプリンタ制御系を示すプロック 図である。

【図19】 プリンタ制御部の複写制御のフローチャー トである。

【図20】 本実施例のプリンタ制御系を示すプロック 図である。

【図21】 ブリンタ制御部の複写制御のフローチャー トである。

【符号の説明】

30:打ち込みパターン発生

部、201: プリンタ制御部、 204: γデータ ROM、205: 打ち込みデータレベルROM, 20 6: 打ち込みパターンROM、210a: AIDC

センサ、 211a: ビーム径スイッチ、214~2 16、224: データROM、244: γデータR OM、245: 打ち込みデータレベルROM。

【図15】

【図18】

t i ·

