# New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode



#### Clémence Bouvier 1,2



joint work with Pierre Briaud<sup>1,2</sup>, Pyrros Chaidos<sup>3</sup>, Léo Perrin<sup>2</sup>, Robin Salen<sup>4</sup>. Vesselin Velichkov<sup>5,6</sup> and Danny Willems<sup>7,8</sup>



<sup>2</sup>Inria Paris. <sup>1</sup>Sorbonne Université.

<sup>3</sup>National & Kapodistrian University of Athens, <sup>4</sup>Toposware Inc., Boston, <sup>8</sup>Inria and LIX. CNRS <sup>5</sup>University of Edinburgh. <sup>6</sup>Clearmatics, London. <sup>7</sup>Nomadic Labs, Paris.

CRYPTO, August 22nd, 2023

















\* Anemoi: Greek gods of winds



\* Anemoi: Greek gods of winds



\* Anemoi: Greek gods of winds



\* Anemoi: Family of ZK-friendly Hash functions



#### Content

# New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode

- A need for new primitives
  - Emerging uses
  - Our approach
- 2 Anemoi
  - CCZ-equivalence...
    - Definition and properties
    - New S-box: Flystel
  - ... for good performances!
    - SPN structure
    - New mode: Jive
    - Some benchmarks



# Comparison with "usual" case

#### A new environment

#### "Usual" case

- ⋆ Field size:
  - $\mathbb{F}_{2^n}$ , with  $n \simeq 4,8$
- ★ Operations: logical gates/CPU instructions

#### Arithmetization-friendly

- ⋆ Field size:
  - $\mathbb{F}_q$ , with  $q \in \{2^n, p\}, p \simeq 2^n$ ,  $n \geq 64$
- \* Operations: large finite-field arithmetic

# Comparison with "usual" case

#### A new environment

#### "Usual" case

⋆ Field size:

 $\mathbb{F}_{2^n}$ , with  $n \simeq 4,8$ 

★ Operations: logical gates/CPU instructions

Ex: Field of AES:  $\mathbb{F}_{2^n}$  where n=8

#### Arithmetization-friendly

\* Field size:

 $\mathbb{F}_q$ , with  $q \in \{2^n, p\}, p \simeq 2^n$ ,  $n \ge 64$ 

\* Operations: large finite-field arithmetic

Ex: Scalar Field of Curve BLS12-381:  $\mathbb{F}_p$  where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

# Comparison with "usual" case

#### A new environment

#### "Usual" case

\* Field size:

 $\mathbb{F}_{2^n}$ , with  $n \simeq 4,8$ 

 Operations: logical gates/CPU instructions

Ex: Field of AES:  $\mathbb{F}_{2^n}$  where n=8

#### New properties

#### "Usual" case

$$y \leftarrow E(x)$$

Optimized for: implementation in software/hardware

#### Arithmetization-friendly

\* Field size:

 $\mathbb{F}_q$ , with  $q \in \{2^n, p\}, p \simeq 2^n$ ,  $n \ge 64$ 

\* Operations: large finite-field arithmetic

Ex: Scalar Field of Curve BLS12-381:  $\mathbb{F}_p$  where

p = 0x73eda753299d7d483339d80809a1d805 53bda402fffe5bfefffffff00000001

#### Arithmetization-friendly

$$y \leftarrow E(x)$$
 and  $y == E(x)$ 

 Optimized for: integration within advanced protocols

What does "efficient" mean for Zero-Knowledge Proofs?

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

#### What does "efficient" mean for Zero-Knowledge Proofs?

#### "It depends"

Example: Minimize the number of multiplications (R1CS)

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$
  $t_3 = t_2 \times t_1$   $t_1 = t_0 + b$   $t_4 = c \cdot x$   $t_2 = t_1 \times t_1$   $t_5 = t_4 + d$ 

$$t_7 = e \cdot x$$

 $t_6 = t_3 \times t_5$ 

$$t_8=t_6+t_7$$

#### What does "efficient" mean for Zero-Knowledge Proofs?

#### "It depends"

Example: Minimize the number of multiplications (R1CS)

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$
  $t_3 = t_2 \times t_1$   $t_6 = t_3 \times t_5$   $t_1 = t_0 + b$   $t_4 = c \cdot x$   $t_7 = e \cdot x$   $t_8 = t_6 + t_7$ 

#### 3 constraints

**Need:** verification using few multiplications.

**Need:** verification using few multiplications.

\* First approach: evaluation also using few multiplications (Poseidon)

$$y \leftarrow E(x)$$

 $\sim$  *E*: low degree

$$y == E(x)$$

 $\sim$  E: low degree

**Need:** verification using few multiplications.

\* First approach: evaluation also using few multiplications (Poseidon)

$$y \leftarrow E(x)$$

 $\sim$  *E*: low degree

$$y == E(x)$$

→ E: low degree

★ Rescue approach: using inversion

$$y \leftarrow E^{-1}(x)$$

 $y \leftarrow E^{-1}(x)$   $\sim E^{-1}$ : high degree

$$x == E(y)$$

 $\sim$  *E*: low degree

**Need:** verification using few multiplications.

\* First approach: evaluation also using few multiplications (Poseidon)

$$y \leftarrow E(x)$$

 $\sim$  *E*: low degree

$$y == E(x)$$

y == E(x)  $\sim E$ : low degree

★ Rescue approach: using inversion

$$y \leftarrow E^{-1}(x)$$

 $y \leftarrow E^{-1}(x)$   $\sim E^{-1}$ : high degree

$$x == E(y)$$

 $\sim$  *E*: low degree

**\star Our approach:** using  $(u, v) = \mathcal{L}(x, y)$ 

$$y \leftarrow F(x)$$

 $\sim$  *F*: high degree

$$v == G(u)$$

 $\sim$  G: low degree

# Design of Anemoi

Construction of Anemoi permutations:

- ★ Substitution-Permutation Network (SPN)
- ★ relying on the CCZ-equivalence

Using a new non-linear layer: the Flystel

### CCZ-equivalence

Example: the inverse

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left( F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\textit{F}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\textit{F}^{-1}} \ .$$

## CCZ-equivalence

Example: the inverse

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left( F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\digamma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\digamma^{-1}} \ .$$

#### Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_a \to \mathbb{F}_a$  and  $G: \mathbb{F}_a \to \mathbb{F}_a$  are CCZ-equivalent if

$$\Gamma_F = \mathcal{L}(\Gamma_G) + c$$
.

If 
$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and  $G : \mathbb{F}_q \to \mathbb{F}_q$  are **CCZ-equivalent**. Then

 $\star$  Differential properties are the same:  $\delta_{\it F} = \delta_{\it G}$  .

Differential uniformity: maximum value of the DDT

$$\delta_{\mathsf{F}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(x+a) - \mathsf{F}(x) = b\}|$$

If  $F : \mathbb{F}_q \to \mathbb{F}_q$  and  $G : \mathbb{F}_q \to \mathbb{F}_q$  are **CCZ-equivalent**. Then

 $\star$  Differential properties are the same:  $\delta_{\it F} = \delta_{\it G}$  .

Differential uniformity: maximum value of the DDT

$$\delta_{\mathsf{F}} = \max_{\mathsf{a} \neq 0, b} |\{x \in \mathbb{F}_q^m, \mathsf{F}(\mathsf{x} + \mathsf{a}) - \mathsf{F}(\mathsf{x}) = b\}|$$

 $\star$  Linear properties are the same:  $W_F = W_G$ .

Linearity: maximum value of the LAT

$$\mathcal{W}_{\mathit{F}} \ = \ \max_{a,b 
eq 0} \left| \sum_{\mathsf{x} \in \mathbb{F}_{2^n}^m} (-1)^{a \cdot \mathsf{x} + b \cdot \mathit{F}(\mathsf{x})} \right|$$

If 
$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and  $G : \mathbb{F}_q \to \mathbb{F}_q$  are **CCZ-equivalent**. Then

\* Verification is the same: if  $y \leftarrow F(x)$ ,  $v \leftarrow G(u)$  and  $(u, v) = \mathcal{L}(x, y)$ 

$$y == F(x)? \iff v == G(u)?$$

If 
$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and  $G : \mathbb{F}_q \to \mathbb{F}_q$  are **CCZ-equivalent**. Then

 $\star$  Verification is the same: if  $y \leftarrow F(x)$ ,  $v \leftarrow G(u)$  and  $(u, v) = \mathcal{L}(x, y)$ 

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

#### Example: in $\mathbb{F}_p$ where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

if 
$$F(x) = x^5$$
 then  $F^{-1}(x) = x^{5^{-1}}$  where

 $5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd$ 

If 
$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and  $G : \mathbb{F}_q \to \mathbb{F}_q$  are **CCZ-equivalent**. Then

\* Verification is the same: if  $y \leftarrow F(x)$ ,  $v \leftarrow G(u)$  and  $(u, v) = \mathcal{L}(x, y)$ 

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

Example: in  $\mathbb{F}_p$  where

 $p = 0 \times 73 \\ eda \\ 753299 \\ d7d483339 \\ d80809 \\ a1d80553 \\ bda402 \\ fffe5 \\ bfefffffff00000001 \\ data \\$ 

if 
$$F(x) = x^5$$
 then  $F^{-1}(x) = x^{5^{-1}}$  where

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd

### The Flystel

$$\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \mathsf{Flystel}$$

A 3-round Feistel-network with

$$Q_\gamma: \mathbb{F}_q o \mathbb{F}_q$$
 and  $Q_\delta: \mathbb{F}_q o \mathbb{F}_q$  two quadratic functions, and  $E: \mathbb{F}_q o \mathbb{F}_q$  a permutation

#### High-degree permutation



Low-degree function



Closed Flystel  $\mathcal{V}$ .

### The Flystel

$$Butterfly + Feistel \Rightarrow Flystel$$

A 3-round Feistel-network with

$$Q_\gamma: \mathbb{F}_q o \mathbb{F}_q$$
 and  $Q_\delta: \mathbb{F}_q o \mathbb{F}_q$  two quadratic functions, and  $E: \mathbb{F}_q o \mathbb{F}_q$  a permutation

# High-degree permutation



Open Flystel  $\mathcal{H}$ .

# Low-degree function



Closed Flystel  ${\cal V}$ .

$$\Gamma_{\mathcal{H}} = \mathcal{L}(\Gamma_{\mathcal{V}})$$
 s.t.  $((x, y), (\underline{u}, v)) = \mathcal{L}(((v, y), (x, \underline{u})))$ 

\* High Degree Evaluation.

# **High-degree** permutation



Open Flystel  $\mathcal{H}$ .

$$p = 0x73eda753299d7d483339d80809a1d805$$
 
$$53bda402fffe5bfeffffffff00000001$$
 then  $E^{-1}: x \mapsto x^{5^{-1}}$  where 
$$5^{-1} = 0x2e5f0fbadd72321ce14a56699d73f002$$

217f0e679998f19933333332ccccccd

Ex: if  $E: x \mapsto x^5$  in  $\mathbb{F}_p$  where

- \* High Degree Evaluation.
- \* Low Cost Verification.

$$(u, v) == \mathcal{H}(x, y) \Leftrightarrow (x, u) == \mathcal{V}(y, v)$$

# **High-degree** permutation



Open Flystel  $\mathcal{H}$ .

# Low-degree function



Closed Flystel  $\mathcal{V}$ .

### Flystel in $\mathbb{F}_{2^n}$

$$Q_{\gamma}(x) = \gamma + \beta x^3$$
,  $Q_{\delta}(x) = \delta + \beta x^3$ , and  $E(x) = x^3$ 



Open Flystel<sub>2</sub>.



Closed Flystel<sub>2</sub>.

# Properties of Flystel in $\mathbb{F}_{2^n}$



Degenerated Butterfly.

Introduced by [Perrin et al. 2016].

Theorems in [Li et al. 2018] state that if  $\beta \neq 0$ :

⋆ Differential properties

$$\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$$

⋆ Linear properties

$$W_{\mathcal{H}} = W_{\mathcal{V}} = 2^{n+1}$$

- ⋆ Algebraic degree
  - \* Open Flystel<sub>2</sub>:  $deg_{\mathcal{H}} = n$
  - \* Closed Flystel<sub>2</sub>:  $deg_{\mathcal{V}} = 2$

# Flystel in $\mathbb{F}_p$

$$Q_{\gamma}(x) = \gamma + \beta x^2$$
,  $Q_{\delta}(x) = \delta + \beta x^2$ , and  $E(x) = x^{\alpha}$ 



Open Flystel,

 $\begin{array}{l} \text{usually} \\ \alpha = \text{3 or 5}. \end{array}$ 



Closed Flystel<sub>p</sub>.

# Properties of Flystel in $\mathbb{F}_{p_1}$

⋆ Differential properties Flystel<sub>p</sub> has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \leq \frac{\alpha - 1}{\alpha}$$



(a) If p = 11 and  $\alpha = 3$ .



(b) If p = 13 and  $\alpha = 5$ . DDT of Flystel<sub>p</sub>.



(c) If 
$$p = 17$$
 and  $\alpha = 3$ .

# Properties of Flystel in $\mathbb{F}_p$

★ Differential properties Flystel<sub>p</sub> has a differential uniformity:

$$\delta_{\mathcal{H}} = \max_{a \neq 0, b} |\{x \in \mathbb{F}_p^2, \mathcal{H}(x+a) - \mathcal{H}(x) = b\}| \leq \frac{\alpha - 1}{\alpha}$$



(a) If p = 11 and  $\alpha = 3$ .



(b) If p = 13 and  $\alpha = 5$ . DDT of Flystel<sub>p</sub>.



(c) If 
$$p = 17$$
 and  $\alpha = 3$ .

Solving the open problem of finding an APN permutation over  $\mathbb{F}_p^2$ 

#### The SPN Structure

The internal state of Anemoi and its basic operations.



(a) Internal state.



(b) The constant addition.



(c) The diffusion layer.



(d) The PHT.



(e) The S-box layer.

#### The SPN Structure



### Number of rounds

$$Anemoi_{q,\alpha,\ell} = \mathcal{M} \circ \mathsf{R}_{n_r-1} \circ ... \circ \mathsf{R}_0$$

★ Choosing the number of rounds

$$n_r \geq \max \left\{ 8, \underbrace{\min(5, 1 + \ell)}_{\text{security margin}} + \underbrace{2 + \min \left\{ r \in \mathbb{N} \mid \left( \frac{4\ell r + \kappa_{\alpha}}{2\ell r} \right)^2 \geq 2^s \right\}}_{\text{to prevent algebraic attacks}} \right\}.$$

| $\alpha$ $(\kappa_{\alpha})$ | 3 (1) | 5 (2) | 7 (4) | 11 (9) |
|------------------------------|-------|-------|-------|--------|
| $\ell=1$                     | 21    | 21    | 20    | 19     |
| <b>ℓ</b> = 2                 | 14    | 14    | 13    | 13     |
| <b>ℓ</b> = 3                 | 12    | 12    | 12    | 11     |
| <b>ℓ</b> = 4                 | 12    | 12    | 11    | 11     |

Number of rounds of Anemoi (s = 128).

## Purposes of Anemoi

### The 2 purposes of Anemoi:

- \* a hash function to emulate a random oracle
- \* a compression function within a Merkle-tree

Using different functions for the different purposes

## Sponge construction

★ Hash function (random oracle):

★ input: arbitrary length★ ouput: fixed length



## New Mode: Jive

★ Compression function (Merkle-tree):

\* input: fixed length

★ output: (input length) /2

Dedicated mode: 2 words in 1

$$(x, y) \mapsto x + y + \mathbf{u} + \mathbf{v}$$
.





### New Mode: Jive

★ Compression function (Merkle-tree):

★ input: fixed length

⋆ output: (input length) /b

Dedicated mode: b words in 1

$$\mathtt{Jive}_b(P): egin{cases} (\mathbb{F}_q^m)^b & o \mathbb{F}_q^m \ (x_0,...,x_{b-1}) & \mapsto \sum_{i=0}^{b-1} (x_i + P_i(x_0,...,x_{b-1})) \end{cases}.$$



### Some Benchmarks

|       | m | $RP^1$ | Poseidon <sup>2</sup> | ${\rm Griffin^3}$ | Anemoi |
|-------|---|--------|-----------------------|-------------------|--------|
|       | 2 | 208    | 198                   | -                 | 76     |
| R1CS  | 4 | 224    | 232                   | 112               | 96     |
| KICS  | 6 | 216    | 264                   | -                 | 120    |
|       | 8 | 256    | 296                   | 176               | 160    |
|       | 2 | 312    | 380                   | -                 | 191    |
| Plonk | 4 | 560    | 832                   | 260               | 316    |
| PIONK | 6 | 756    | 1344                  | -                 | 460    |
|       | 8 | 1152   | 1920                  | 574               | 648    |
|       | 2 | 156    | 300                   | -                 | 126    |
| AIR   | 4 | 168    | 348                   | 168               | 168    |
| AII   | 6 | 162    | 396                   | -                 | 216    |
|       | 8 | 192    | 456                   | 264               | 288    |

|       | m | RP   | Poseidon | Griffin | Anemoi |
|-------|---|------|----------|---------|--------|
|       | 2 | 240  | 216      | -       | 95     |
| R1CS  | 4 | 264  | 264      | 110     | 120    |
| KICS  | 6 | 288  | 315      | -       | 150    |
|       | 8 | 384  | 363      | 162     | 200    |
|       | 2 | 320  | 344      | -       | 212    |
| Plonk | 4 | 528  | 696      | 222     | 344    |
| PIONK | 6 | 768  | 1125     | -       | 496    |
|       | 8 | 1280 | 1609     | 492     | 696    |
|       | 2 | 200  | 360      | -       | 210    |
| AIR   | 4 | 220  | 440      | 220     | 280    |
| AIK   | 6 | 240  | 540      | -       | 360    |
|       | 8 | 320  | 640      | 360     | 480    |

(a) when  $\alpha=3$  (b) when  $\alpha=5$  Constraint comparison for standard arithmetization, without optimization (s=128).

<sup>&</sup>lt;sup>1</sup>Rescue [Aly, Ashur, Ben-Sasson, Dhooghe and Szepieniec, ToSC20]

<sup>&</sup>lt;sup>2</sup>Poseidon [Grassi, Khovratovich, Rechberger, Roy and Schofnegger, USENIX21]

 $<sup>^3\</sup>mathrm{GRIFFIN}$  [Grassi, Hao, Rechberger, Schofnegger, Walch and Wang, CRYPTO23] (next session)

### Anemoi: A new family of ZK-friendly hash functions

★ Contributions of fundamental interest:

★ New S-box: Flystel
★ New mode: Jive

\* Identify a link between AO and CCZ-equivalence

### Anemoi: A new family of ZK-friendly hash functions

★ Contributions of fundamental interest:

\* New S-box: Flystel
\* New mode: Jive

\* Identify a link between AO and CCZ-equivalence

#### Related works

- \* AnemoiJive<sub>3</sub> with TurboPlonK, [Liu et al., 2022]
- \* Arion, [Roy, Steiner and Trevisani, 2023]
- \* APN permutations over prime fields, [Budaghyan and Pal, 2023]

### Anemoi: A new family of ZK-friendly hash functions

\* Contributions of fundamental interest:

\* New S-box: Flystel
\* New mode: Jive

\* Identify a link between AO and CCZ-equivalence

#### Related works

- \* AnemoiJive<sub>3</sub> with TurboPlonK, [Liu et al., 2022]
- \* Arion, [Roy, Steiner and Trevisani, 2023]
- \* APN permutations over prime fields, [Budaghyan and Pal, 2023]
  - More details on eprint.iacr.org/2022/840 or on anemoi-hash.github.io

### Anemoi: A new family of ZK-friendly hash functions

★ Contributions of fundamental interest:

\* New S-box: Flystel
\* New mode: Jive

\* Identify a link between AO and CCZ-equivalence

#### Related works

- \* AnemoiJive<sub>3</sub> with TurboPlonK, [Liu et al., 2022]
- \* Arion, [Roy, Steiner and Trevisani, 2023]
- \* APN permutations over prime fields, [Budaghyan and Pal, 2023]
  - More details on eprint.iacr.org/2022/840 or on anemoi-hash.github.io

Thanks for your attention!



## More benchmarks and

Cryptanalysis

# Comparison for Plonk (with optimizations)

|                     | m      | Constraints |
|---------------------|--------|-------------|
| Poseidon            | 3<br>2 | 110<br>88   |
| Reinforced Concrete | 3<br>2 | 378<br>236  |
| Rescue-Prime        | 3      | 252         |
| Griffin             | 3      | 125         |
| AnemoiJive          | 2      | 86          |

|                     | m      | Constraints |
|---------------------|--------|-------------|
| Poseidon            | 3<br>2 | 98<br>82    |
| Reinforced Concrete | 3<br>2 | 267<br>174  |
| Rescue-Prime        | 3      | 168         |
| Griffin             | 3      | 111         |
| AnemoiJive          | 2      | 64          |

(a) With 3 wires.

(b) With 4 wires.

Constraints comparison with an additional custom gate for  $x^{\alpha}$ . (s = 128).

# Comparison for Plonk (with optimizations)

|                     | m      | Constraints      |
|---------------------|--------|------------------|
| Poseidon            | 3<br>2 | 110<br>88        |
| Reinforced Concrete | 3<br>2 | 378<br>236       |
| Rescue-Prime        | 3      | 252              |
| Griffin             | 3      | 125              |
| AnemoiJive          | 2      | <del>86</del> 56 |

|                     | m      | Constraints |
|---------------------|--------|-------------|
| Poseidon            | 3<br>2 | 98<br>82    |
| Reinforced Concrete | 3<br>2 | 267<br>174  |
| Rescue–Prime        | 3      | 168         |
| Griffin             | 3      | 111         |
| AnemoiJive          | 2      | 64          |

(a) With 3 wires.

(b) With 4 wires.

Constraints comparison with an additional custom gate for  $x^{\alpha}$ . (s = 128).

with an additional quadratic custom gate: 56 constraints

## Native performance

| Rescue-12     | Rescue-8     | Poseidon-12  | Poseidon-8            | Griffin-12        | Griffin-8    | Anemoi-8     |
|---------------|--------------|--------------|-----------------------|-------------------|--------------|--------------|
| 15.67 $\mu$ s | 9.13 $\mu$ s | $5.87~\mu$ s | $2.69~\mu \mathrm{s}$ | $2.87~\mu { m s}$ | 2.59 $\mu$ s | 4.21 $\mu$ s |

2-to-1 compression functions for  $\mathbb{F}_p$  with  $p = 2^{64} - 2^{32} + 1$  (s = 128).

| Rescue | Poseidon    | Griffin       | Anemoi         |
|--------|-------------|---------------|----------------|
| 206 μs | 9.2 $\mu$ s | 74.18 $\mu$ s | 128.29 $\mu$ s |

For BLS12-381, Rescue, Poseidon, Anemoi with state size of 2, Griffin of 3 (s = 128).

# Algebraic attacks: 2 modelings



(a) Model 1.



(b) Model 2.

# Properties of Flystel in $\mathbb{F}_p$

\* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left( \frac{2\pi i(\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$





(a) For different  $\alpha$ .

Conjecture for the linearity.

(b) For the smallest  $\alpha$ .

# Properties of Flystel in $\mathbb{F}_p$

\* Linear properties

$$\mathcal{W}_{\mathcal{H}} = \max_{a,b \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} exp\left( \frac{2\pi i(\langle a, x \rangle - \langle b, \mathcal{H}(x) \rangle)}{p} \right) \right| \leq p \log p ?$$



(a) when p = 11 and  $\alpha = 3$ .



(b) when p = 13 and  $\alpha = 5$ . LAT of Flystel<sub>p</sub>.



(c) when 
$$p = 17$$
 and  $\alpha = 3$ .