O quê é Química Moderna?

Introdução à Química Moderna

Prof. Guilherme Duarte, Ph. D.

1 Partícula na caixa unidimensional

Considere uma partícula com movimento livre entre as posições x=0 e x=L. Em x=0, há uma barreira de potencial infinita, assim como em x=L. Da mesma forma que tratamos a partícula livre na presença de intervalos com potenciais não-nulos, fazemos o mesmo com a partícula na caixa. A diferença entre o caso da partícula livre e a partícula na caixa é que a equação de Schrödinger não é definida nas regiões em que $V \to \infty$ e somente precisamos lidar com a região 0 < x < L:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) = E\psi(x) \tag{1}$$

Como os $V \to \infty$ em x < 0 e x > 0, as condições de contorno do problema são $\psi(0) = \psi(L) = 0$.

Figura 1: O problema da partícula na caixa é definido por uma região onde a partícula se move livremente entre duas barreiras de potencial infinito.

Conforme vimos nas aulas anteriores, a solução geral desse problema é:

$$\psi(x) = Ae^{ikx} + Be^{-ikx}, \tag{2}$$

onde $k = \sqrt{2mE}/\hbar$. Sabemos que $e^{i\theta} = \cos\theta + i\sin\theta$ e, para simplicar o tratamento desse problema específico, optaremos por representar as funções de onda com funções trigonométricas:

$$\psi(x) = C\cos kx + D\sin kx. \tag{3}$$

Aplicando a primeira condição de contorno, $\psi(0) = 0$, temos imediatamente que C = 0 e:

$$\psi(x) = D\sin kx. \tag{4}$$

Para que $\psi(L)=0$, temos que fazer $kL=n\pi\implies k=n\pi/L,\, n=1,2,\ldots$ e a função de onda se torna:

$$\psi(x) = D\sin\left(\frac{n\pi x}{L}\right). \tag{5}$$

A determinação de D se dá via normalização:

$$\int_{0}^{L} \psi^{*}(x)\psi(x)dx = D^{2} \int_{0}^{L} \sin^{2}\left(\frac{n\pi x}{L}\right)dx = 1.$$
 (6)

Fazendo a substituição $n\pi x/L=u\implies dx=(L/n\pi)du$, usando a identidade trigonométrica abaixo:

$$\cos 2\theta = 1 - 2\sin^2 \theta \implies \sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

alterando os limites de integração para u=0 e $u=n\pi$, temos que:

$$\int_0^L \psi^*(x)\psi(x)dx = D^2 \frac{L}{n\pi} \int_0^{n\pi} \left(\frac{1-\cos 2u}{2}\right) du$$

$$= \frac{D^2 L}{2n\pi} \left[n\pi - \int_0^{n\pi} \cos 2u du\right].$$
(7)

Fazendo uma segunda substituição, $2u=w \implies du=dw/2, \ u=0 \implies w=0$ e $u=n\pi \implies w=2n\pi$:

$$\int_{0}^{L} \psi^{*}(x)\psi(x)dx = \frac{D^{2}L}{2n\pi} \left[n\pi - \frac{1}{2} \int_{0}^{2n\pi} \cos w dw \right]$$

$$= \frac{D^{2}L}{2n\pi} \left[n\pi - \frac{1}{2} (\sin 2n\pi - \sin 0) \right]$$

$$= \frac{D^{2}L}{2} = 1.$$
(8)

A constante de normalização, então, deve ser:

$$D = \sqrt{\frac{2}{L}} \tag{9}$$

e a função de onda normalizada deve ser:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right), \quad n = 1, 2, 3, \dots$$
 (10)

Observe que foi adicionado um índice n em ψ_n sinalizando que cada n define uma autofunção diferente do operador Hamiltoniano da partícula na caixa. n é chamado de número quântico e os estados da partícula na caixa frequentemente são simbolizados por $|n\rangle$, onde $n = 1, 2, \ldots$

Os autovalores podem ser encontrados facilmente aplicando as funções de onda na equação de Schrödinger ou lembrando que:

$$k = \frac{\sqrt{2mE}}{\hbar} \implies k^2 = \frac{2mE}{\hbar^2}$$

 $\implies E = \frac{k^2\hbar^2}{2m}.$

Como $k = n\pi/L$, os autovalores são:

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2} = \frac{n^2 h^2}{8mL^2} \tag{11}$$

2 As autofunções e os autovalores da partícula na caixa

Algumas autofunções da partícula na caixa e as respectivas distribuições de probabilidade podem ser visualizadas na figura 2. Observe que a energia cresce com n^2 e o espaçamento entre os níveis aumenta. Se calcularmos $E_{n+1} - E_n$:

Figura 2: Autofunções e distribuições de probabilidade dos quatro primeiros níveis de energia da partícula na caixa.

$$E_{n+1} - E_n = [(n+1)^2 - n^2] \frac{\pi^2 \hbar^2}{2mL^2} = (2n+1) \frac{\pi^2 \hbar^2}{2mL^2}$$
(12)

As autofunções (figura 2) são idênticas a modos normais de vibração de uma corda com as extremidades presas. Se na mecânica clássica, uma partícula pode oscilar entre as paredes com qualquer energia E>0, na mecânica quântica, o espectro de energia nesse sistema é quantizado e somente pode assumir os valores dados pela equação 11. O espectro discreto é uma propriedade característica do confinamento e esse comportamento se repete em diversos sistemas e modelos de interesse químico.

As paredes impenetráveis da caixa confinam a partícula à região 0 < x < L, portanto $\Delta x \le L$. Pelo princípio da incerteza temos que:

$$\Delta x \Delta p_x \ge \frac{\hbar}{2} \implies \Delta p_x \ge \frac{\hbar}{2L}.$$
 (13)

Como a incerteza mínima no momentum é $\hbar/2L$, isso implica em uma energia mínima para a partícula na caixa:

$$\frac{(\Delta p_x)^2}{2m} = \frac{\hbar^2}{8mL^2}. (14)$$

Observe que E_1 é:

$$E_1 = \frac{\pi^2 n^2}{2mL^2},\tag{15}$$

o que implica que parte da energia está relacionada à incerteza e tem caráter ligeiramente desestabilizante ("positivo").

Não contando os zeros nas extremidades, as funções de onda dos estados excitados possuem nós (ou nodos), isto é, pontos em que $\psi_n = 0$. Se deslocarmos a origem para o centro da caixa, i.e., $0 < x < L \rightarrow -L/2 < x' < L/2$, os autoestados ganham uma nova forma funcional:

$$\psi_n(x) = \begin{cases} \sqrt{2/L} \cos(n\pi x/L), & n = 1, 3, 5, \dots \\ \sqrt{2/L} \sin(n\pi x/L), & n = 2, 4, 6, \dots \end{cases}$$
 (16)

Observe que as funções de onda tem uma paridade definida. Isso se deve à invariância do operador Hamiltoniano à transformação $x \to -x$. Assim, $\psi_n(-x) = \pm \psi(x)$, onde n par gera autofunções ímpares e n ímpar gera autofunções pares. A solução geral da equação de Schrödinger da partícula na caixa é representada pela soma de todas as soluções particulares:

$$\psi(x) = \sqrt{\frac{2}{L}} \sum_{n=0}^{\infty} \left\{ a_n \cos \left[\frac{(2n+1)\pi x}{L} \right] + b_n \sin \left(\frac{2n\pi x}{L} \right) \right\}$$
 (17)

Observe que a equação 17 se trata de uma superposição de autoestados:

$$|\psi\rangle = \sum_{n'=0}^{\infty} c_i |n'\rangle$$

Podemos determinar os coeficientes a_n e b_n , basta calcular $\langle n|\psi\rangle$:

$$a_{n} = \langle n | \psi \rangle_{n \text{ impar}} = \int_{-L/2}^{L/2} \psi_{n}^{*}(x) \psi(x) dx = \sqrt{\frac{2}{a}} \int_{-L/2}^{L/2} \psi(x) \cos\left[\frac{(2n+1)\pi x}{L}\right] dx$$

$$b_{n} = \langle n | \psi \rangle_{n \text{ par}} = \int_{-L/2}^{L/2} \psi_{n}^{*}(x) \psi(x) dx = \sqrt{\frac{2}{a}} \int_{-L/2}^{L/2} \psi(x) \sin\left(\frac{2n\pi x}{L}\right) dx$$
(18)

3 Partícula em um aro circular

Considere uma partícula caminhando sobre um aro circular sem o efeito de nenhuma energia potencial. A energia dessa partícula, assim como a partícula livre e a partícula na caixa, é apenas de origem cinética, assim o operador Hamiltoniano do sistema é:

$$\hat{H} = -\frac{\hat{p}^2}{2m}.\tag{19}$$

Observando a figura 3 não estamos usando o sistema de coordenadas cartesianas, mas coordenadas polares. O operador momentum desse sistema em coordenadas cartesianas seria:

$$\hat{p} = -\frac{\hbar}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right),$$

o que implicaria em uma grande quantidade desnecessária de cálculos. Enquanto as coordenadas x e y variam de acordo com a equação de um círculo $(x^2 + y^2 = r^2)$, em coordenadas polares uma

Figura 3: Partícula em um aro.

das coordenadas é fixa, o raio (r), enquanto apenas o ângulo ϕ varia. Para fazer a transformação, basta perceber que o caminho percorrido pela partícula é q:

$$q = r\phi \tag{20}$$

e o momentum associado é:

$$\hat{p}_{\phi} = -i\hbar \frac{\partial}{\partial q} = -\frac{i\hbar}{r} \frac{\partial}{\partial \phi}.$$
 (21)

ou seja, transformamos um problema de duas dimensões em um problema de uma dimensão, ϕ . O Hamiltoniano da partícula no aro é, então:

$$\hat{H} = -\frac{\hbar^2}{2mr^2} \frac{\partial^2}{\partial \phi^2}.$$
 (22)

Como o movimento ao longo do aro é periódico, as condições de contorno do problema se resumem a:

$$\psi(\phi + 2j\pi) = \psi(\phi) \quad j = 0, \pm 1, \pm 2, \dots$$
 (23)

O operador de momentum comuta com o Hamiltoniano:

$$\begin{split} [\hat{H}, \hat{p}_{\phi}] &= \Big(\frac{-\hbar^2}{2mr^2} \frac{\partial^2}{\partial \phi^2}\Big) \Big(\frac{-i\hbar}{r} \frac{\partial}{\partial \phi}\Big) - \Big(\frac{-i\hbar}{r} \frac{\partial}{\partial \phi}\Big) \Big(\frac{-\hbar^2}{2mr^2} \frac{\partial^2}{\partial \phi^2}\Big) \\ &= \frac{i\hbar^3}{2mr^3} \frac{\partial^3}{\partial \phi^3} - \frac{i\hbar^3}{2mr^3} \frac{\partial^3}{\partial \phi^3} = \hat{0} \end{split}$$

logo as autofunções do operador de momentum também são autofunções do Hamiltoniano. Assim, uma solução particular é encontrada a partir da solução do problema de autovalor:

$$-\frac{i\hbar}{r}\frac{\partial\psi}{\partial\phi} = \lambda\psi(\phi). \tag{24}$$

Essa equação diferencial é bem conhecida neste ponto do curso e sua solução é:

$$\psi_{+}(\phi) = N_{+} e^{i\lambda r \phi/\hbar} \tag{25}$$

Como a equação de Schrödinger é uma equação diferencial de segunda ordem, precisa de uma segunda solução particular linearmente independente das outras soluções particulares. Neste caso, uma outra solução óbvia é:

$$\psi_{-}(\phi) = N_{-} e^{-i\lambda r \phi/\hbar}.$$
 (26)

Aplicando a condição de periodicidade, temos que:

$$\psi(\phi + 2\pi) = N_{\pm} e^{\frac{2\pi i \lambda r}{\hbar}} e^{\pm \frac{i \lambda r \phi}{\hbar}} = N_{\pm} e^{\frac{2\pi i \lambda r}{\hbar}} \psi(\phi)$$
 (27)

Assim, temos que:

$$e^{\frac{2\pi i\lambda r}{\hbar}} = 1 = e^{2\pi i m_{\ell}},\tag{28}$$

levando aos autovalores:

$$\lambda_{m_{\ell}} = \frac{m_{\ell}\hbar}{r}, \quad m_{\ell} = 0, \pm 1, \pm 2, \dots$$
 (29)

Assim, temos que:

$$\psi_{\pm}(\phi) = N_{\pm} e^{\pm i m_{\ell} \phi}. \tag{30}$$

 N_{\pm} é determinado pela normalização:

$$\int_0^{2\pi} \psi_{\pm}^*(\phi) \psi_{\pm}(\phi) d\phi = N_{\pm}^2 \int_0^{2\pi} e^{\pm im_{\ell} \phi \mp im\phi} d\phi = N_{\pm}^2 \int_0^{2\pi} d\phi = 1,$$

o que resulta em $N_{\pm}=1/\sqrt{2\pi}$ e em uma solução igual a:

$$\psi_{\pm}(\phi) = \frac{1}{\sqrt{2\pi}} e^{\pm im_{\ell}\phi}, \quad m_{\ell} = 0, \pm 1, \pm 2, \dots$$
(31)

Como o movimento se dá ao redor de um centro, é conveniente discutir o momentum angular. Se na física clássica $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, o mesmo vale para os operadores em mecânica quântica. Se considerarmos o aro no plano xy, o momentum angular estará no eixo z ("regra da mão direita") e:

$$\hat{l}_z = r\hat{p}_\phi = -i\hbar \frac{\partial}{\partial \phi}.$$
 (32)

Como nesta situação \hat{l}_z difere de \hat{p}_{ϕ} por um fator de r constante, $[\hat{l}_z, \hat{p}_{\phi}] = 0$ e as autofunções de \hat{p}_{ϕ} são autofunções de \hat{l}_z . Os autovalores do momentum angular são:

$$\hat{l}_z = m_\ell \hbar \psi(\phi), \quad m_\ell = 0, \pm 1, \pm 2, \dots$$
 (33)

A energia, por sua vez, é dada por:

$$E = \frac{l_z^2}{2I} = \frac{m_\ell^2 \hbar^2}{2I} \tag{34}$$

onde $I=mr^2$ é chamado de momento de inércia, que representa uma resistência a um movimento rotatório. Note que, além de formar um espectro discreto, $E_{m\ell}=E_{-m\ell}$, significando que cada nível de energia (exceto m=0) é duplamente degenerado com dois autoestados independentes, $|-m_{\ell}\rangle$ e $|+m_{\ell}\rangle$.

4 Referências

- [1] H. Moysés Nussenzveig, Curso de Física Básica 4: Ótica, Relatividade e Física Quântica, Editora Edgard Blücher, 1997. Capítulo 10.3
- [2] Donald A. McQuarrie e John D. Simon, *Physical Chemistry: a molecular approach*, University Science Books, 1997. Capítulos 5.8-5.9