

Professora: Aline de Oliveira

Contagem, 2020

 O modelo de Rutherford não explicava porque os elétrons não perdiam energia e colidiam com o núcleo;

Não explicava também o espectro de emissão de ondas eletromagnéticas pelos átomos.

Os postulados de Bohr

- **1.** Os elétrons se movem ao redor do núcleo em um número limitado de órbitas bem definidas, que são denominadas órbitas estacionárias;
- **2.** Movendo-se em uma órbita estacionária, o elétron não emite nem absorve energia;
- **3.** Ao saltar de uma órbita estacionária para outra, o elétron emite ou absorve uma quantidade bem definida de energia chamada de quantum de energia.

Camadas eletrônicas

Número máximo de elétrons
2
8
18
32
32
18
8

Número quântico principal (n):

1, 2, 3, 4, 5, 6 e 7

Orbital: é a região do espaço ao redor do núcleo onde é máxima a probabilidade de encontrar um determinado elétron.

Configuração eletrônica por níveis e subníveis

- ☐ As camadas eletrônicas correspondem a **níveis energéticos**.
- Os níveis energéticos apresentam **subníveis energéticos**, caracterizados pelos números quânticos secundários ou azimutal (l), que assume os valores 0, 1, 2 e 3, mas que são habitualmente designados pelas letras s, p, d e f, respectivamente. Números máximos de elétrons: s (2); p (6); d (10) e f (14)
- □ Cada subnível comporta um número de orbitais. Os orbitais são identificados pelo número quântico magnético (m), o qual pode assumir os valores -3, -2, -1, 0, +1, +2 e +3.
- ☐ Cada orbital comporta no máximo dois elétrons com número de spin (s) diferente (valores possíveis -1/2 ou +1/2.

Cada elétron da eletrosfera é identificado por seus quatro números quânticos.

Números quânticos que determinam um orbital em um átomo

Número quântico
principal
(n)

Número quântico secundário (l)

Número quântico magnético (m) Número quântico de spin (s)

-1

Número quântico magnético (m)

0(s)

0

1 (p)

-1 0 +1

2 (*d*)

-2 -1 0 +1 +2

3 *(f)*

-3 | -2 | -1 | 0 | +1 | +2 | +3

Princípio da exclusão de Pauli

Em um átomo, não existem dois elétrons com os quatro número quânticos iguais.

Regra de Hund ou da máxima multiplicidade

Em um mesmo subnível, de início, todos os orbitais devem receber seu primeiro elétron, e só depois cada orbital irá receber seu segundo elétron.

Exemplo: distribuição de elétrons em subnível p.

Distribuição eletrônica

Diagrama de Pauling

Os elétrons recebidos ou perdidos pelos átomos para formarem os íons são recebidos ou retirados da última camada eletrônica.

Camada de valência

É a última camada de elétrons de um elemento químico (camada com maior número quântico principal)

Distribuição eletrônica

Exemplos:

₁H: 1s¹

₁₁Na: 1s² 2s² 2p⁶ 3s¹

₁₁Na⁺: 1s² 2s² 2p⁶

₂₀Ca: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²

₁₇Cl: 1s² 2s² 2p⁶ 3s² 3p⁵

₁₇Cl⁻: 1s² 2s² 2p⁶ 3s² 3p⁶