Fiche pratique : Conductimétrie

I. Présentation générale

La conductimétrie est l'étude quantitative de la conductivité des électrolytes, c'est-à-dire des solutions conductrices du courant électrique. Cette méthode permet de suivre une cinétique, réaliser des dosages, ... Comme la spectrophotométrie, c'est une méthode non destructive.

II. Conductance et conductivité

Dans les solutions aqueuses diluées, on peut montrer que la loi d'Ohm s'applique à un échantillon de solution sous la forme : I = GU, où G est la conductance de l'échantillon (qui s'exprime en Siemens, symbole S), I l'intensité du courant le traversant et U la tension à ses bornes. Cette conductance s'exprime selon la relation :

$$G = \frac{\sigma}{K} \tag{1}$$

dans laquelle K est un facteur géométrique homogène à l'inverse d'une longueur et caractéristique de la cellule de mesure, et où σ représente la conductivité de l'électrolyte (σ s'exprime en $S \cdot m^{-1}$).

Pour des solutions suffisamment diluées, la conductivité de l'électrolyte s'écrit :

$$\sigma = \sum_{i} \lambda_i c_i \tag{2}$$

la somme portant sur tous les ions présents en solution, avec c_i la concentration molaire de l'ion i dans la solution et λ_i la conductivité ionique molaire de l'ion i (en $S \cdot m^2 \cdot mol^{-1}$). On trouve les valeurs des conductivités ioniques molaires dans des tables. Par exemple, à $25^{\circ}C$:

espèce	H_3O^+	HO^-	Na^{+}
$\lambda (\mathrm{mS} \cdot \mathrm{m}^2 \cdot \mathrm{mol}^{-1})$	35,0	19,9	5,01

III. Le conductimètre

Le **conductimètre** est un ohmmètre. Il mesure R=1/G mais est conçu pour afficher σ . Il est alimenté en courant alternatif, afin que les mesures ne soient pas perturbées par des réactions d'électrolyses. La cellule de mesure est constituée par deux plaques de platine platiné (c'est-à-dire recouvert de platine finement divisé) parallèles (cf. figure ci-contre). Ces plaques de surface s sont distantes de ℓ . La constante de cellule s introduite dans la relation 1 ne dépend que des dimensions de la cavité constituée par les deux plaques : s (en m⁻¹).

Comme ℓ et s ne sont pas parfaitement connues, si on veut avoir accès à la valeur précise de σ , il faut étalonner l'appareil. Pour ce faire on mesure la conductance G('etalon) d'une solution étalon, généralement une solution de KCl à $0,100 \text{ mol} \cdot \text{L}^{-1}$ dont la conductivité $\sigma(\text{\'etalon})$ est connue. On a alors $K = \sigma(\text{\'etalon})/G(\text{\'etalon})$.

Si les variations de σ suffisent à accéder à la grandeur recherchée, l'étalonnage décrit ci-dessus n'est pas nécessaire. C'est fréquemment le cas quand on recherche la valeur d'un coefficient directeur ou à la présence d'une rupture de pente dans un graphe incluant σ .