ゲージ理論の覚え書き

宮根 一樹

最終更新: 2024年5月1日

目次

1	はじめに	2
2	ゲージ理論の古典論	3
2.1	相対論的な場の理論とローレンツ群・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2

1 はじめに

2 ゲージ理論の古典論

2.1 相対論的な場の理論とローレンツ群

相対論的な場の理論を構成するためには、ローレンツ変換に対して共変的な場を用意しておくと見通しがよい。特に、ローレンツ群の代数の表現を調べておけば、そのような場を構成することができる。この節では、そういった観点から場の理論を構成する。

ローレンツ群とは、次のような内積

$$A^{\mu}B_{\mu} \equiv -A^{0}B^{0} + A^{1}B^{1} + A^{2}B^{2} + A^{3}B^{3}$$
(2.1)

を保存するような変換 $A^{\mu} \to \Lambda^{\mu}_{\nu} A^{\nu}$ のなす群のことであり、SO(3,1) と表すこととする。

参考文献

- [1] M. E. Peskin and D. V. Schroeder, *An Introduction to Quantum Field Theory*. Addison-Wesley Pub. Co, Reading, Mass, 1995.
- [2] 佐藤光, **群と物理**. 丸善出版, 東京, 2016.
- [3] 茂木勇・伊藤光弘, **復刊 微分幾何学とゲージ理論**. 共立出版, 復刊版 ed., 2001.