MECH 503 MT Feb. 29th Jincong Li bossagasa The statement is correct. $E^* = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right)$

121

b) $\cos \theta = \frac{\underline{\zeta} \cdot \underline{m} \cdot \underline{n}}{(\underline{\zeta} \cdot \underline{m} \cdot \underline{n})^{h}} = -0.8$ so not perpendicular

c) dl = lo (\(\text{No no} \) \(\text{No the element stretches} \) d) $E = \frac{1}{2} (E - I) = \begin{bmatrix} -5 & 5 & 0 \\ 5 & -5 & 0 \end{bmatrix}$

 $\vec{E}_{E} = \frac{7}{7} \left(\vec{J} - \vec{C}_{1} \right) = \begin{bmatrix} 0.05 - 0.05 & 0 \\ 0.05 & 0.00 & 0 \\ 0 & 0 & 0.00 & 0 \end{bmatrix}$

e) $U^2 = C$ and by SVD, so $U = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is symmetric. $R = F \cdot U^1 = \begin{bmatrix} 0.0067 & 0.3333 & 0.0067 \\ 0.33533 & 0.0067 & -0.0067 \end{bmatrix}$

L-0.6667 0.6667 by churcing RT = R-1 and det LR)=1, R is orthonormal

the principle strosses are computed from eigen values of U

so the priviple stresses are [3, 1, 3] and their directions one

[0.707] [-0.707] [0] awardingly

a)
$$n = [1, 0, 0.5]$$
 | sqn[1+0.5]
$$t = \underline{G} \cdot \underline{n} = [-13.4164]$$

$$44.7214$$

$$-33.4149$$

b) components of t in b direction means the traction in D direction can be olcomposed into three minable value ti, te, ts, which represent the decomposed traction components in each orthogonal direction such as x, y, z.

 $dA_0 \underline{m} = d\underline{r}_1 \times d\underline{r}_2$ $dA_1 \underline{n} = d\underline{r}_1' \times d\underline{r}_2'$

$$dAn = Eijk \quad Fill \quad Fjm \quad dr_{1}l \quad dr_{2}m$$

$$= J/F^{T}$$

$$40 \quad dAn = JF^{-T} \quad dA_{0}m$$

Qs
$$F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 considering a simple fiber $(0,0,1)$ from $(0,0,0)$ $m' = F \cdot m = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ m' is the deformed fiber.

Y 0 is the angle between so $\theta = \arctan(r)$ it is a simple shear.