

AMERICAN SOCIETY OF ANIMAL SCIENCE

Python computational pipeline for predictive machine learning modelling of livestock data

Dan Tulpan, Associate Professor

dtulpan@uoguelph.ca

University of Guelph, Ontario, Canada

IMPROVE LIFE.

Summary

What you get from this workshop

- Some (hopefully functional) Python code ... for regression problems (due to time constraints)
 - The code relies on the Python scikit-learn library https://scikit-learn.org/
- Some information and explanations of what the code does and why

Assumptions

- You know a bit about machine learning
 - If not, read this: Greener et al. (2021): A guide to machine learning for biologists

(https://www.nature.com/articles/s41580-021-00407-0)

You can operate a computer

Warnings / Disclaimers

- Python code is not optimized or comprehensive
 - It is built to (hopefully) facilitate understanding
 - Sacrificed performance and best programming practices
- Input datasets are assumed to be ready and clean
 - Your job
- The code should only be used for good causes
- If you make money with this code my share is 10% (cash, check or plastic is fine)

Python Use

• Follow the instructions provided in the "Python_usage_instructions.pdf" file

Data formatting

- Expectations:
 - Tabular format
 - Last column contains the predictor variable
 - Data was cleaned prior to using the Python script
 - Data includes only numeric values

- Recommended reading:
 - Browman and Woo (2018) Data Organization in Spreadsheets (https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1375989)

Data sets (for this workshop)

2 subsets of the data from:

Marshall et al. (2023): A farmer-friendly tool for estimation of weights of pigs kept by smallholder farmers in Uganda

- Article: ttps://link.springer.com/article/10.1007/s11250-023-03561-z
- Data:

https://data.mel.cgiar.org/dataset.xhtml?persistentId=hdl:20.50 0.11766.1/FK2/IWXZQH

MarshallEtAl2023_more_selected_measurements.csv

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205837/

Records

754 pigs from Uganda

Variables

6 input variables:

- household_id
- age_months
- heartgirth
- height
- length
- body_condition_score

1 output variable:

exact_weight

MarshallEtAl2023_more_selected_measurements

	household_id	age_months	heartgirth	height	length	body_condition_score	exact_weight
	PBM-KML-113	34	140	901	141	4	205
	PBM-MSK-138	24	0	0	0	4	200
	PBM-MSK-107	15	130	80	138	4	193.2
	PBM-MSK-106	41	140	76	141	4	177.2
	PBM-WKS-401	27	128	85	140	4	170
	PBM-KML-106	30	121	72	140	4	160
	PBM-MSK-137	19	124	76	142	4	148
	PBM-WKS-401	24	122	81	136	3	137.7
-	PBM-MSK-139	18	134	89	147	3	134
	PBM-MSK-102	20	117	81	149	4	132.9
	PBM-MSK-142	13	121	80	140	4	131.5
	PBM-WKS-416	43	120	72	145	3	131.1
	PBM-HMA-240	12	113	90	137	3	129.5
	PBM-MSK-107	12	112	78	136	4	127.3
	PBM-MSK-102	20	122	77	135	4	126.5

10

12

13

14

16

KabululuEtAl2023_selection.csv

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295433

Records

400 pigs from Tanzania

Variables

- 6 input variables (all numeric):
 - Heart_girth
 - Body_length
 - Age_months
 - Sex
 - District
 - Village
- 1 output variable:
 - Weight_kg_by_scale

HEART_GIRTH	BODY_LENGTH	AGE_MONTHS	SEX	DISTRICT	VILLAGE	WEIGHT_KG_BY_SCALI		
118	137	24	Female	Mbeya	Mshewe	9		
69	95	6	Female	Mbeya	Njelenje	3:		
65	97	8	Female	Mbeya	Njelenje	2		
66	71	9	Female	Mbeya	Njelenje	2		
72	90	12	Male	Mbeya	Njelenje	3		
67	93	17	Female	Mbeya	Njelenje	3		
78	89	12	Female	Mbeya	Njelenje	42.		
80	90	8	Male	Mbeya	Mjele	3		
61	74	7	Female	Mbeya	Mjele	2		
60	80	8	Female	Mbeya	Mjele	2		
86	115	14	Female	Mbeya	Mjele	5		
80	94	9	Male	Mbeya	Mjele	4		
72	91	8	Female	Mbeya	Mjele	2		
70	90	12	Female	Mbeya	Mjele	2		
55	69	8	Female	Mbeya	Mjele	1		
76	86	8	Female	Mbeya	Mjele	3		
71	79	8	Female	Mbeya	Mjele	3		
63	78	8	Female	Mbeya	Mjele	2		
57	62	8	Female	Mbeya	Mjele	1		
68	80	8	Female	Mbeya	Mjele	2		
52	70	6	Female	Mbeya	Mjele	1		
63.5	78	10	Male	Mbeya	Mjele	2		

RemusEtAl2020_lysine_requirements.csv

https://www.sciencedirect.com/science/article/pii/S1751731119002660

Records

40 pigs from Canada

Variables

- 8 input variables:
 - Pig_identification
 - Methionine intake
 - Met+Cys_intake
 - Cys_intake
 - ADG (avg. daily gain)
 - ADFI (avg. daily feed intake)
 - BW_initial
 - BW_final
- 1 output variable:
 - Lys_intake

RemusEtAl2020_lysine_requirements									
PIG_identification	Methionine_ inta	Met_Cys_intal	Cys_intak	ADG	ADFI	BW initia	BWfina	Lysine_inta	
1	5.56	8.92	3.36	0.85	1.65	25.10	45.60	18.50	
2	9.51	13.93	4.42	0.96	2.15	27.50	50.45	24.3	
4	3.06	5.47	2.41	0.45	1.30	24.85	35.65	14.5	
7	6.97	11.18	4.21	1.01	2.08	27.70	51.95	23.2	
8	4.52	8.08	3.56	0.91	1.92	25.55	47.46	21.5	
9	5.45	8.75	3.30	1.02	2.09	25.00	49.45	18.1	
14	8.85	12.97	4.12	1.08	2.04	25.10	50.90	22.7	
15	5.62	10.03	4.41	1.10	2.36	25.20	51.60	26.7	
16	6.00	8.79	2.79	0.69	1.36	22.20	38.70	15.3	
17	6.18	9.92	3.74	0.85	1.81	22.95	43.45	20.6	
18	7.71	11.30	3.58	1.01	1.77	22.30	46.65	19.7	
19	4.46	7.97	3.51	1.03	1.88	25.85	50.45	21.2	
21	6.40	10.28	3.87	1.01	1.90	25.95	50.25	21.3	
23	6.40	9.48	3.07	0.99	2.21	25.80	45.05	16.4	
25	4.48	7.20	2.71	0.79	1.35	23.75	42.60	14.9	
26	5.86	8.70	2.84	0.94	2.15	30.15	45.75	15.0	
27	5.10	9.11	4.01	1.08	2.15	27.35	53.25	24.2	
29	8.83	12.94	4.11	1.04	2.01	24.80	49.80	22.6	
31	6.25	10.02	3.78	0.88	1.84	27.40	48.50	20.8	
33	4.37	7.80	3.43	0.90	1.86	24.60	46.10	20.8	

- 1. Data cleaning
- Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

1. Data cleaning

- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Data cleaning

- Remove rows with missing values
- Remove duplicate rows
- Remove duplicate columns
- Remove single value columns
- Find and remove outliers (Z-score method)
- Change categorical columns to numeric
- Save cleaned dataset

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Overall look at the data

- Check the size of the dataset
 - Number of records (rows)
 - Number of variables/features (columns)
- Look at the first few records

- Look at descriptive statistics
 - Check for obvious outliers or extreme values

- 1. Data cleaning
- 2. Data summarization

3. Data visualization

- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Explore the data visually first

If feasible/applicable

- Check the distribution of the variables
 - Histograms
 - Scatter-plots
- Check correlations among variables/features

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization

4. Data splitting

- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Prepare data for modelling

- Separate data into training (80%) and testing (20%)
 - The percentages depend on data size, available time, goals
- Training set:
 - Model construction
 - Model validation
 - Hyper-parameter optimization
- Testing set:
 - Testing the final models

Golden Rule of Machine Learning

NEVER EVER use the testing set during the construction/validation/optimization stage of a model.

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting

5. Data scaling

- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Scaling your data

- How
 - Transform data to a standardized range
 - StandardScaler, MinMaxScaler, RobustScaler
- Why
 - Reduces the impact of extreme values
 - ... for algorithms sensitive to outliers or for those relying on normality assumptions
 - Reduces differences in value scales among variables
 - Speeds up convergence and provides equal opportunities for features to influence the outcome variable
 - Helps making more robust models

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling

6. Model initialization (default params)

- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

ML Models

- Select models from different categories
 - Tree-based: Decision Tree, AdaBoost, Random Forest
 - Artificial Neural Networks: Multi Layer Perceptron
 - Lazy estimators: K-Nearest Neighbour
 - Linear: Linear Model, LASSO, Ridge
 - Gradient-based: Gradient Boost
- Select more than 2 models
 - Different strengths and weaknesses
 - Different data representations

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)

7. Preliminary model evaluation

- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Model evaluation strategies

- K-fold cross-validation
 - Choose K as a function of data size and computing time
 - High K values: small-medium datasets
 - Low K values: large datasets
- Choose your measures/"metrics"
 - Regression
 - Errors: MAE, MSE, RMSE, MAPE, ...
 - Correlation coefficients: Pearson, Spearman, Kendal, Concordance (CCC)
 - R²
 - Classification
 - Confusion matrix-based: F1-score, precision, recall (TPR, sensitivity), accuracy, ... [NOT USED IN THE CURRENT CODE -- NA]

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation

8. Overfitting analysis of default models

- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Overfitting analysis

- Use learning curves
 - training vs. validation scores for increasing training set sizes

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models

9. Hyper-parameter optimization

- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Hyper-parameter optimization

• Hyper-parameter = user-tunable parameter

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization

10. Update model hyper-parameters

- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Hyper-parameters' update

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters

11. Evaluate optimized models

- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Model evaluation (same as for 7)

- K-fold cross-validation
 - Choose K as a function of data size and computing time
 - High K values: small-medium datasets
 - Low K values: large datasets
- Choose your measures/"metrics"
 - Regression
 - Errors: MAE, MSE, RMSE, MAPE, ...
 - Correlation coefficients: Pearson, Spearman, Kendal, Concordance (CCC)
 - R²
 - Classification
 - Confusion matrix-based: F1-score, precision, recall (TPR, sensitivity), accuracy, ... [NOT USED IN THE CURRENT CODE -- NA]

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models

12. Overfitting analysis of optimized models

- 13. Save optimized models
- 14. Investigate feature importance
- 15. Evaluate models on test sets

Overfitting analysis (same as for 8)

- Use learning curves
 - training vs. validation scores for increasing training set sizes

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models

13. Save optimized models

- 14. Investigate feature importance
- 15. Evaluate models on test sets

Saving models

- Backup all optimized models
- Can be used later for deployment
- Save time on re-training and re-optimizing hyper-parameters

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models

14. Investigate feature importance

15. Evaluate models on test sets

Feature importance

- Use a model-agnostic process
- Permutation Feature Importance (PFI)
 - Shuffle one variable at a time
 - Evaluate each algorithm
 - Idea: if an important variable is shuffled it would hurt the model significantly (poor predictions)
- Other options: <u>SHAPley values</u>

- 1. Data cleaning
- 2. Data summarization
- 3. Data visualization
- 4. Data splitting
- 5. Data scaling
- 6. Model initialization (default params)
- 7. Preliminary model evaluation
- 8. Overfitting analysis of default models
- 9. Hyper-parameter optimization
- 10. Update model hyper-parameters
- 11. Evaluate optimized models
- 12. Overfitting analysis of optimized models
- 13. Save optimized models
- 14. Investigate feature importance

15. Evaluate models on test sets

Model evaluation on test sets

- Use various evaluation measures
 - Error-based: MAE, MSE, RMSE, MAPE
 - Correlations: Pearson Product-Moment, Concordance, Spearman
 - (Adjusted) Coefficient of determination

Note: no single evaluation measure captures everything

- Use visual analysis, too
 - Scatter plots (predicted versus true values)
 - QQ plots for prediction errors

Thank you