Lecture # 18 CHE331A

Introduction & Design equations for IDEAL reactors

(BR, CSTR, PFR, PBR)

Basic Concepts in Chemical kinetics & Design/Analysis of Isothermal Reactors Collection & Analysis of Data; Isothermal Reactor Design for Multiple Reactions

Nonelementary
Homogeneous
Reactions: Active
intermediates, PSSH
and Chain Reactions

Nonelementary Homogeneous Reactions:

Reactions involving Enzymes

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

Enzymes are bio-catalysts

- ► High-molecular weight protein or protein-like material
- Present in small quantities (usually) and are not consumed in the reaction
- ► Act on substrate (reactants) to chemically transform them at much faster rates then when not present → greater than 10³ times faster
- Provide an alternate pathway, which lowers the activation energy
 - Formation of Active Intermediate
- ▶ They are very specific catalyze one type of reaction
 - Undesirable products are less

Enzymes are produced by living organisms

- Work under mild conditions
 - pH 4 to 9 and temperatures 23 to 71 °C
 - Extreme temps or pH environments
 → enzymes are denatured
- ▶ Named in terms of the reaction they catalyze
 - Urease decomposes urea
 - Exception: α-amylase catalyzes starch → 1st step in HFCS production
- 6 classes of enzymes:

Enzyme	Reaction	Enzyme	Reaction
Oxidoreductase	$AH_2+B+E \rightarrow A + BH_2 + E$	Transferases	AB+C+E → AC+B+E
Hydrolases	AB+H ₂ O+E → AH+BOH+E	Isomerases	A+E → isoA+E
Lyases	AB+E → A+B+E	Ligases	A+B+E → AB+E

Formation of Enzyme-Substrate complex is key to enzymatic reactions

- Form enzyme-substrate complex by Lock-and-key or induced-fit models
 - Used to explain specific action of enzyme
- Interactions that stabilize the enzyme-substrate complex are hydrogen bonding, and hydrophobic, ionic and London van der Waals forces
- Lock-and-Key model was preferred due to the stereospecific effects of one enzyme acting on one substrate
- ► Induced-fit model is useful since it better explains the transformation of the substrate to form the products

Mechanism of enzymatic reactions and the formation of active intermediates

- Example: Artificial kidney (Levine & LaCourse) to remove uric acid and creatinine
- Scheme proposed using urease enzyme to convert urea from the bloodstream $NH_2CONH_2 + H_2O \xrightarrow{urease} 2NH_3 + CO_2$
- ► Reaction mechanism proposed:
 - Urease (E) reacts with urea (S) forming enzyme-substrate (E.S)
 - The E.S complex can decomposes back to the urea(S) and urease (E)
 - The E.S can also react with water (W) to give products $(P = 2NH_3 + CO_2)$

Enzymatic action helps in the decomposition of Urea

► Reaction steps:

(i)
$$NH_2CONH_2(S) + Urease(E) \xrightarrow{k_1} [NH_2CONH_2.Urease]^*(E.S)$$

(ii) $E.S \xrightarrow{k_2} E + S$ (iii) $E.S + H_2O(W) \xrightarrow{k_3} P(=2NH_3 + CO_2) + E$

► The net rate of substrate disappearance and product formation can be determined by previous developments for multiple reactions (here 3)

$$-r_S = \sum r_{i,S} = k_1 C_E C_S - k_2 C_{E,S}$$
 $r_P = \sum r_{i,P} = k_3 C_{E,S} C_W$

- ▶ These rate laws are not very useful since they require finding $C_{E,S}$
 - $_{\circ}$ Put $\overline{\mathit{C}_{E.S}}$ in measurable quantities using $\overline{\mathit{PSSH}}$

Applying *PSSH* for this enzymatic reaction

- ▶ Need to determine $C_{E.S}$ since $-r_S = k_1 C_E C_S k_2 C_{E.S}$ could also find r_P
- Active intermediate formed is E.S and we can apply PSSH

$$ightharpoonup r_{E.S} = \sum r_{i,E.S} = k_1 C_E C_S - k_2 C_{E.S} - k_3 C_W C_{E.S} = 0$$

► Thus,
$$C_{E.S} = \frac{k_1 C_E C_S}{k_2 + k_3 C_W}$$
 \Rightarrow $-r_S = k_1 C_E C_S - k_2 \frac{k_1 C_E C_S}{k_2 + k_3 C_W}$ $-r_S = \frac{k_1 k_3 C_E C_S C_W}{k_2 + k_3 C_W}$

- ightharpoonup Still can not use the rate law since C_E is still not measurable
- ▶ Some E binds with S to form E.S, $C_{E.S}$, and some are free as E, $C_{E.S}$
- ▶ Total E concentration (C_{E_t}) is measurable and is a constant

Since the enzyme is assumed not to deactivate (denature) C_{E_t} is a constant

▶ Balance can be carried out for the enzyme amount, which is a constant

▶
$$C_{E_t} = C_E + C_{E.S}$$
 and $C_{E_t} = C_E + \frac{k_1 C_E C_S}{k_2 + k_3 C_W}$

► Thus,
$$C_E = \frac{c_{E_t}(k_2 + k_3 c_W)}{k_1 c_S + k_2 + k_3 c_W}$$
 Substituting into $-r_S = \frac{k_1 k_3 c_E c_S c_W}{k_2 + k_3 c_W}$
$$-r_S = \frac{k_1 k_3 c_{E_t} c_S c_W}{k_1 c_S + k_2 + k_3 c_W}$$

► Water is in excess $\Rightarrow k_{cat} = k_3 C_W$ Further, $K_M = \frac{k_{cat} + k_2}{k_1}$ $-r_S = \frac{k_{cat} C_{E_t} C_S}{C_S + K_V}$

