МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 3.4.2 Закон Кюри-Вейса

Автор: Тихонов Дмитрий Романович, студент группы Б01-206

1 Введение

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

2 Теоретические сведения

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотичным образом. При повышении температуры Т возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает по закону Кюри – обратно пропорционально температуре:

$$\chi \propto \frac{1}{T}$$
. (1)

Некоторые парамагнетики при понижении температуры испытывают фазовый переход в ферромагнитное состояние. При малых температурах тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. Благодаря обменному взаимодействию, имеющему электростатическую природу, в ферромагнетиках самопроизвольное упорядочение магнитных моментов возможно при довольно высоких температурах. Температуру фазового перехода парамагнетик-ферромагнетик называют *температурой Кюри* Θ_K . Температурная зависимость магнитной восприимчивости у ферромагнетиков выше точки Кюри с удовлетворительной точностью описывается *законом Кюри-Вейсса*:

$$\chi \propto \frac{1}{T - \Theta_p},\tag{2}$$

где Θ_p – параметр с размерностью температуры, называемый иногда *парамагнитной точкой Кюри*. Величина Θ_p близка к Θ_K , но не совпадает с ней.

Непосредственно вблизи Θ_K закон Кюри-Вейсса (2) нарушается. На практике наблюдается зависимость, изображённая на рис. 1.

Рис. 1: Теоретическая зависимость обратной магнитной восприимчивости от температуры

ФРКТ МФТИ, 2023

3 Методика измерений и экспериментальная установка

Схема установки для проверки закона Кюри-Вейсса показана на рис. 2. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного конутра, входящего в состав LC-автогенератора.

Рис. 2: Схема экспериментальной установки

Магнитная воосприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом, а L_0 – её самоиндукцию в отсутствие образца, получим

$$(L - L_0) \propto \mu - 1 = \chi. \tag{3}$$

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},\tag{4}$$

где C – ёмкость контура автогенератора. Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}. (5)$$

Остюда находим

$$L - L_0 \propto \tau^2 - \tau_0^2 \Rightarrow \chi \propto \tau^2 - \tau_0^2. \tag{6}$$

Из формул (2) и (6) следует, что закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\tau^2 - \tau_0^2} \propto T - \Theta_p. \tag{7}$$

Температура исследуемого образца всегда несколько отличается от температуры воды в термостате. После того как вода достигла заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медно-константановой термопары 6, один из спаев которой находится в тепловом контакте с образцом, а другой погружён в воду. Измерение периода колебаний автогенератора проводились в тот момент, когда указанная разность температур становилась меньше $0,5\,^{\circ}\mathrm{C}$, т.к. более точному измерению температур мешают паразитные $9\mathcal{I}C$, возникающие в цепи термопары.

ФРКТ МФТИ, 2023

4 Результаты измерений и обработка данных

- 1. Подготовим приборы к работе. Оценим допустимую ЭДС термопары: $\Delta U = \frac{\Delta T}{k} = 0,0208$ мВ, где k = 24 °С/мВ и $\Delta T = 0.5$ °С.
- 2. Исследуем зависимость периода колебания генератора от температуры образца, отмечая период колебаний τ по частотомеру, а температуру T по показаниям дисплея и цифровому вольтметру. Занесём в таблицу 1 измеренные и рассчитанные значения.

T', °C	τ , MKC	τ_0 , MKC	ΔU , мВ	ΔT , °C	$1/(\tau^2 - \tau_0^2)$, MKC ⁻²	T, °C
14,12	10,789	9,045	-0,0118	-0,28	0,029	13,84
16,09	10,692		-0,0105	-0,25	0,031	15,84
18,09	10,527		-0,0109	-0,26	0,034	17,83
20,10	10,225		-0,0086	-0,21	0,044	19,89
22,11	9,926		-0,0153	-0,37	0,060	21,74
24,10	9,617		-0,0195	-0,47	0,094	23,63
26,00	9,455		-0,0159	-0,38	0,132	25,62
28,16	9,366		-0,0155	-0,37	0,169	27,79
30,02	9,322		-0,0175	-0,42	0,197	29,60
32,03	9,286		-0,0161	-0,39	0,226	31,64
34,01	9,261		-0,0184	-0,44	0,253	33,57
36,12	9,241		-0,0181	-0,43	0,279	35,69
38,05	9,226		-0,0187	-0,45	0,302	37,60
40,07	9,212		-0,0065	-0,16	0,328	39,91

Таблица 1: Результаты исследования зависимости периода колебания генератора от температуры образца

3. Построим график зависимости $\frac{1}{(\tau^2-\tau_0^2)}=f(T)$. Прямую ферромагнитного участка экстраполируем к оси абсцисс, полученное значение – экспериментальное значение точки Кюри для исследуемого образца.

Рис. 3: Зависимость $\frac{1}{(\tau^2 - \tau_0^2)} = f(T)$

ФРКТ МФТИ, 2023

4. Аппроксимируя полученные данные при помощи программы OriginPro~2023b, получим значение парамагнитной точки Кюри для гадолиния $\Theta_p = (17, 5 \pm 0, 8)$ °C и значение температуры Кюри для гадолиния $\Theta_p \approx 20$ °C.

5 Заключение

- 1. В ходе работы был экспериментально подтвержден закон Кюри-Вейсса для металла гадолиния.
- 2. Была найдена *температура Кюри*: $\Theta_K \approx 20$ °C. Полученное значение отличается от табличного $\Theta_n^{\text{табл}} = 20, 2$ °C на 1%.
- 3. Была найдена парамагнитная температура Кюри: $\Theta_p = (17, 5 \pm 0, 8)$ °C. Заметим, что парамагнитная температура Кюри меньше температуры Кюри ($\Theta_p < \Theta_K$).
- 4. Основной вклад в погрешность внесла неточность данных, полученных при температурах, близких к температуре Кюри.
- 5. Анализ погрешностей показал, что измерения были проведены с достаточной точностью.

 Φ РКТ М Φ ТИ, 2023 4