Vertex of the Quadratic

 $z_1 = -\frac{b}{2a}$ namely $j(z_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $z_{1^+} h$, namely

Given a quadratic $j(z) = a z^2 + b z + c$ compute its value at

 $j(z_1+h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = j(z_1 + h) - j(z_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1. $j(z) = 4z^2 - 24z + 66$ 1000 800 600

-400

-500