A ssignment - 3

Due date: Wednesday, 18 Oct.

1. Compute the column space CCA) and null space N(A) of the following matrixes:

(i)
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 0 & 0 & 3 \\ 1 & 2 & 3 \end{bmatrix}$

$$(iii) C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Also white down a basis for ((A), N(A) in each case.

2. The trace of a morterix is defined to be the sum of its drogonal elements.

eg. there of
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = 1+4=5$$
. There $7\begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} = 1+3+4$

(a) Consider the set of matrices in $M_3(R)$ with trace = 0. i.e., $W = \begin{cases} A \in M_3(R) : Trace(A) = 0 \end{cases}$.

Show that W is a subspace of M3(R). (b) Write down a basis for W. What's its dimension?

- 3. Compute the mateix of the following linear teams formations:
- (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, using the basis $\{(1,2),(1,1)\}$ of \mathbb{R}^2 . $(\alpha, y) \mapsto (\alpha + 2y, 3\alpha + 7y)$
- (b) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, using the standard basis for \mathbb{R}^2 , \mathbb{R}^3 .

 (1,y) \longmapsto (1,+y, y, 32)
- 4. Consider a pentogon in R² with vertices (1,1), (3,1), (4,2), (2,4) and (1,3). For each of the following transformations on the plane, find the 3×3 matrix that describes the transformation with respect to homogeneous coordinates, and use it to find the image of the pentagon:

- a) reflection across the line y=x
- b) translation by the fixed vector (3,-2)