Package 'iterbi'

April 8, 2022

Title A iteratively bifurcated clustering strategy for single-cell sequencing data.

Type Package

Version 0.4.9	
Author Zhixin Li	
Maintainer zxlee@connect.hku.hk	
Description A iteratively bifurcated clustering strategy for single-cell sequencing data.	
License GPL-3	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.1.1	
R topics documented:	
dataframe_to_vector	 2
draw_GO_barplot	
draw_iterbi_cluster_tree	 3
draw_marker_chain_dotplot	
draw_marker_chain_heatmap	
find_bifurcation_resolution	
get.iterbi.colors	
get_marker_GO_chain	
get_test_data	
get_unique_marker	
hello	 8
identify_binary_markers	
iterbi.bifucation.graph	
iterbi.bifucation.hclust	
iterbi.bifucation.kmeans	
iterbi_GO_annotation	10 11
prepare_expression_matrix_heatmap	
remove_duplicated_GO	
remove_duplicate_marker_chain	
rename.iterbi	
run.iterbi	
subset_seuratObj_bycells	 14
write iterbi to couret	1/

2 draw_GO_barplot

Index 15

Description

transform dataframe to vector

Usage

```
dataframe_to_vector(df)
```

Arguments

df

A dataframe from Seuratobj[["attr"]]

Value

A vector with names

draw_GO_barplot

 $Draw\ barplot\ for\ GO\ annotation$

Description

Draw barplot for GO annotation

Usage

```
draw_GO_barplot(barplot_df, cluster.chain)
```

Arguments

barplot_df

A GO annotation dataframe from clusterProfiler

cluster.chain cluster.chain from iterbi

Value

A ggplot barplot

```
draw_iterbi_cluster_tree
```

Draw cluster tree/chain by clustree

Description

Draw cluster tree/chain by clustree

Usage

```
draw_iterbi_cluster_tree(
   seuratObj,
   iterbi.cellMeta,
   node_text_size = 7,
   node_size = 8
)
```

Arguments

```
seurat0bj A Seurat object
iterbi.cellMeta
iterbi.cellMeta from iterbi

node_text_size see node_text_size in clustree function
node_size see node_size in clustree function
```

Value

clustree object

```
draw_marker_chain_dotplot
```

Draw cluster tree/chain by clustree

Description

Draw cluster tree/chain by clustree

Usage

```
draw_marker_chain_dotplot(
    seuratObj,
    iterbi.marker.chain,
    rmDup = T,
    top_n = 3,
    rel_heights = c(0.5, 9, 1.5),
    rel_widths = c(1, 4)
)
```

Arguments

rmDup

seuratObj A Seurat object

iterbi.marker.chain

iterbi.marker.chain from iterbi remove duplicated genes or not

top_n top n genes for dotplot (sort by P-value)

rel_heights relative heights for plot_grid(), the first and last control the height of top and

bottom margin, the middle one controls the height of tree

rel_widths relative widths for plot_grid(), the first one controls the widths of tree, the second

one controls the widths of dotplot

Value

A plot_grid integrated tree and dotplot

```
draw_marker_chain_heatmap
```

Draw heatmap by ComplexHeatmap

Description

Draw heatmap by ComplexHeatmap

Usage

```
draw_marker_chain_heatmap(
   seuratObj,
   iterbi.cellMeta,
   iterbi.marker.chain,
   compare_anno = "",
   known_markers = c()
)
```

Arguments

seuratObj A Seurat object

iterbi.cellMeta

iterbi.cellMeta from iterbi

iterbi.marker.chain

iterbi.marker.chain from iterbi

compare_anno select a annotation in seurat object for comparision (e.g. previous annotation)

known_markers the genes to include in the heatmap (like known markers)

Value

ComplexHeatmap object

find_bifurcation_resolution

Find the best resolution for bifurcation in graph-based clustering

Description

Find the best resolution for bifurcation in graph-based clustering

Usage

```
find_bifurcation_resolution(seuratObj, res_sets = 50)
```

Arguments

seurat0bj A Seurat object

res_sets The number of resolution for searching

Value

The best resolution which can bifurcate all cells

get.iterbi.colors

Colors for iterbi

Description

Colors for iterbi

Usage

```
get.iterbi.colors()
```

Value

A color vector

```
get_initial_bifurcation_of_two_clusters

Find initial bifurcation event of any two clusters in iterbi.cellMeta
```

Description

Find initial bifurcation event of any two clusters in iterbi.cellMeta

Usage

```
get_initial_bifurcation_of_two_clusters(
  iterbi.cellMeta,
  cluster_1,
  cluster_2,
  balance_cells = T
)
```

Arguments

Value

A list. subset_seuratObj is the subset cells in cluster 1 and cluster 2 diff_marker_1 is the marker of cluster 1, diff_marker_2 is the marker of cluster 2

```
get_marker_GO_chain Get GO chain corresponding to a cluster chain
```

Description

Get GO chain corresponding to a cluster chain

Usage

```
get_marker_GO_chain(iterbi.GO.anno, cluster.chain, top_n = 3)
```

Arguments

```
iterbi.GO.anno A GO annotation dataframe from clusterProfiler cluster.chain from iterbi top_n top n GO terms for barplot (sort by P-value)
```

Value

A ggplot barplot showed GO chain

get_test_data 7

get_test_data

Download raw single-cell matrix for testing

Description

Download raw single-cell matrix for testing

Usage

```
get_test_data()
```

Value

dowloaded single-cell dataset

get_unique_marker

filter uniquely expressed markers by expression percentage

Description

filter uniquely expressed markers by expression percentage

Usage

```
get_unique_marker(
   seuratObj,
   iterbi.marker.chain,
   assay = "RNA",
   slot = "data",
   min_cluster_pct = 0.3,
   max_bcg_pct = 0.1,
   min_diff = 0.3
)
```

Arguments

seuratObj A Seurat object iterbi.marker.chain

iterbi.marker.chain dataframe contains all the markers

assay Assay used for prediction slot used for prediction

min_cluster_pct

Minimal expression percentage of target cluster

max_bcg_pct Maximum expression percentage of the background cells (non-target cells)
min_diff Minimal difference (expression percentage) between target cluster and back-

ground cells

Value

Uniquely expressed iterbi.marker.chain

hello

Hello, World!

Description

```
Prints 'Hello, world!'.
```

Usage

hello()

Examples

hello()

```
identify_binary_markers
```

Identify binary markers

Description

Identify binary markers

Usage

```
identify_binary_markers(
  seuratObj,
  p_value = 0.01,
  min_avg_logFC = 0.1,
  min_correlation = 0.3
)
```

Arguments

seuratObj A Seurat object

p_value The number of resolution for searching

min_avg_logFC Minimal threshold for logFC to pick markers

min_correlation

Minimal threshold for correlation to pick markers

Value

A list. b1 is the positive marker of cluster 0, b2 is the positive marker of cluster 1.

iterbi.bifucation.graph 9

```
iterbi.bifucation.graph
```

Bifurcation based on graph-based clustering

Description

Bifurcation based on graph-based clustering

Usage

```
iterbi.bifucation.graph(seuratObj, res_sets = 50)
```

Arguments

seuratObj A Seurat object

res_sets The number of resolution for searching

Value

A bifurcated Seurat object (see active.ident).

```
iterbi.bifucation.hclust
```

Bifurcation based on hierarchical clustering

Description

Bifurcation based on hierarchical clustering

Usage

```
iterbi.bifucation.hclust(seuratObj, method = "euclidean")
```

Arguments

seurat0bj A Seurat object

method The distance measurement method "euclidean or correlation"

Value

A bifurcated Seurat object (see active.ident).

10 iterbi_GO_annotation

```
iterbi.bifucation.kmeans
```

Bifurcation based on K-means clustering

Description

Bifurcation based on K-means clustering

Usage

```
iterbi.bifucation.kmeans(seuratObj, method = "euclidean")
```

Arguments

seuratObj A Seurat object

method The distance measurement method "euclidean or correlation"

Value

A bifurcated Seurat object (see active.ident).

Description

Perform GO annotation of iterbi.marker.chain dataframe

Usage

```
iterbi_GO_annotation(
  iterbi.marker.chain,
  organism = "hs",
  pvalueCutoff = 0.05,
  min_count = 5
)
```

Arguments

```
iterbi.marker.chain
```

terbi.marker.chain dataframe contains all the markers

organism "hs" for Homo sapiens, or "mm" for Mus musculus

pvalueCutoff cut off P-value for GO annotations

min_count Minimal count of genes for GO annotations

Value

GO annotation dataframe labeled with cluster

```
ora.go.kegg.clusterProfiler

GO KEGG ORA analysis by clusterProfiler
```

Description

GO KEGG ORA analysis by clusterProfiler

Usage

```
ora.go.kegg.clusterProfiler(geneList = markerList, organism = "hs")
```

Arguments

geneList a gene list

organism "hs" for Homo sapiens, or "mm" for Mus musculus

Value

a list with GO and KEGG annotation result (clusterProfiler format)

```
prepare_expression_matrix_heatmap
```

Prepare expression matrix for heatmap visualization, estimate the overall expression of marker modules

Description

Prepare expression matrix for heatmap visualization, estimate the overall expression of marker modules

Usage

```
prepare_expression_matrix_heatmap(
  seuratObj,
  iterbi.marker.chain,
  assay = "RNA",
  slot = "scale.data",
  known_markers = c()
)
```

Arguments

seuratObj A Seurat object iterbi.marker.chain

iterbi.marker.chain from iterbi

assay Assay used for prediction slot slot used for prediction

known_markers the genes to include in the heatmap (like known markers)

Value

A expression matrix contain the average expression of marker modules and known markers

remove_duplicated_GO remove duplicated GO terms based on overlaps of genes

Description

remove duplicated GO terms based on overlaps of genes

Usage

```
remove_duplicated_GO(tmp.GO.df, max.overlap = 0.6)
```

Arguments

 $tmp. GO. df \\ GO \ annotation \ data frame \ from \ cluster Profiler \ package$

max.overlap Maximum overlapped percentage of genes

Value

GO annotation dataframe without duplications

```
remove_duplicate_marker_chain

*Remove duplicated markers from last level*
```

Description

Remove duplicated markers from last level

Usage

```
remove_duplicate_marker_chain(iterbi.marker.chain)
```

Arguments

```
iterbi.marker.chain iterbi.marker.chain from iterbi
```

Value

iterbi.marker.chain without duplicated genes

rename.iterbi 13

rename.iterbi

rename the clusters inside the iterbi result

Description

rename the clusters inside the iterbi result

Usage

```
rename.iterbi(iterbi.result)
```

Arguments

```
iterbi.result A result file from run.iterbi() function
```

Value

A renamed list. cellMeta contains the final bifurcation for each level marker_chain contains all the significant markers for each cluster bifucation contains the bifurcation details (parent, child1, child2)

run.iterbi

The main function to perform iteratively bifurcation clustering

Description

The main function to perform iteratively bifurcation clustering

Usage

```
run.iterbi(
   seuratObj,
   method = "graph",
   min.marker.num = 100,
   max.level.num = 20,
   min.cell.count = 50,
   res_sets = 30,
   verbose = T
)
```

Arguments

seuratObj	A Seurat object
method	The method to perform bifurcation clustering "graph (default), helust or kmeans" $$
min.marker.num	Minimal number of markers to confirm a bifurcation
max.level.num	Maximum number of level for bifurcation
min.cell.count	Minimal number of cells to perform bifurcation (must bigger than PC number: 50)
res_sets	The number of resolution for searching
verbose	Print detail processing messages

14 write_iterbi_to_seurat

Value

A list. cellMeta contains the preliminary bifurcation for each level marker_chain contains all the significant markers for each cluster bifucation contains the bifurcation details (parent, child1, child2)

```
subset_seuratObj_bycells
```

Subset seurat object by cell names

Description

Subset seurat object by cell names

Usage

```
subset_seuratObj_bycells(seuratObj, tmp.cells)
```

Arguments

seuratObj A Seurat object tmp.cells cells for subseting

Value

A subset of seurat object

```
write_iterbi_to_seurat
```

Write iterbi result to Seurat object

Description

Write iterbi result to Seurat object

Usage

```
write_iterbi_to_seurat(seuratObj, iterbi.result)
```

Arguments

```
seurat0bj A Seurat object iterbi.result iterbi.result
```

Value

A Seurat object contains iterbi.result. iterbi will be stored in assay data region of Seurat object ("seuratObj@assays\$iterbi")

Index

```
dataframe\_to\_vector, 2
draw_GO_barplot, 2
draw_iterbi_cluster_tree, 3
draw_marker_chain_dotplot, 3
draw_marker_chain_heatmap, 4
find_bifurcation_resolution, 5
get.iterbi.colors, 5
get_initial_bifurcation_of_two_clusters,
        6
{\tt get\_marker\_GO\_chain}, {\tt 6}
get_test_data, 7
get_unique_marker, 7
hello, 8
{\tt identify\_binary\_markers, 8}
iterbi.bifucation.graph, 9
iterbi.bifucation.hclust,9
iterbi.bifucation.kmeans, 10
iterbi\_GO\_annotation, 10
\verb"ora.go.kegg.clusterProfiler", 11
prepare_expression_matrix_heatmap, 11
remove_duplicate_marker_chain, 12
remove_duplicated_GO, 12
rename.iterbi, 13
run.iterbi, 13
subset_seuratObj_bycells, 14
write\_iterbi\_to\_seurat, 14
```