Zachary Seymour MATH 506 Presentation Notes May 6, 2014

The space R^{∞} is complete.

Proof. Let $\{x^n\}$ be a Cauchy sequence in R^{∞} , where $x^n=(x_1^n,x_2^n,\dots)$. Our goal is to find an $x=(x_1,x_2,\dots)\in R^{\infty}$ such that $x^n\to x$. Let $\varepsilon>0$. Because each x^n is Cauchy, we have $\exists N>0$ such that $d(x^n,x^m)<\varepsilon, \forall n,m>N$. Therefore, for all i and all n,m>N, we have $|x_i^n-x_i^m|<\varepsilon$. Furthermore, this means, for each i we have (x_i^1,x_i^2,\dots) a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, we have a limit x_i : $x_i=\lim_{n\to\infty}x_i^n$.

Now, choose $\varepsilon > 0$ and replace ε above with $\frac{\varepsilon}{2}$. Again, we can find an N > 0 such that $|x_i^n - x_i^m| < \frac{\varepsilon}{2}$, for all k and n, m > N. Now take the limit as $m \to \infty$, we have $|x_i^n - x_i| < \frac{\varepsilon}{2}$. If we take supremum, we have $\sup_{k=1}^{\infty} |x_i^n - x_i| \le \frac{\varepsilon}{2}$. This implies $d(x^n - x) \le \frac{\varepsilon}{2} < \varepsilon$ and thus x^n converges to x.

If $P_n \rightharpoonup P$ in (M, \mathcal{B}_M) and $P_n(M_0) = P(M_0) = 1$, then $(P_n)^r \rightharpoonup P^r$ in (M_0, \mathcal{B}_{M_0}) .

Lemma 0.1. For any open set $G \subseteq M$, $\liminf_{n \to infty} P_n(G) \ge P(G)$.

Proof. Let G be an open set and let $H = G^c$. Consider a sequence of functions $f_m(s) = \min(1, m \cdot d(s, F))$. Then, each f_m is a bounded continuous function, $0 \le f_m \le 1$ and $f_m \to 1$. From the weak convergence of P_n , we have

$$\int f_m dP = \liminf_m \int f_m dP_n \le \liminf_n P_n(G).$$

Letting, $m \to \infty$, we get $\liminf_n P_n(G) \ge P(G)$.

Also note, by taking the complement of everything above, we get $\limsup P_n(H) \leq P(H)$ for closed set H.

1