Math40002 Analysis 1

Problem Sheet 6

1. Let $a_1 = 1$ and $a_{n+1} = \sqrt{2a_n}$. Prove that (a_n) converges and compute the limit.

A graph, or a few examples and a little experimentation (if you didn't do any, hang your head in shame!) seems to show that a_n is monotonic increasing. So we try to prove that:

Since $a_n > 0$ we have $a_{n+1} > a_n \iff \sqrt{2}a_n > a_n \iff 2a_n > a_n^2 \iff 2 > a_n$ so we want to show inductively that $a_n < 2$. True for n = 1, so assume true for n. Then $a_{n+1} = \sqrt{2a_n} < \sqrt{2 \times 2} = 2$ so true for n + 1, so true for all n.

Therefore a_n is indeed a monotonic increasing sequence, bounded above by 2. It therefore converges to a limit $a = \sup\{a_n : n \in \mathbb{N}\}$. By the algebra of limits, the identity

$$a_{n+1}^2 = 2a_n$$

converges to the identity

$$a^2 = 2a$$
.

But a > 0 so we see that a = 2. Notice we did NOT take limits in $a_{n+1} = \sqrt{2a_n}$ to give $a = \sqrt{2a}$ because we have not proved this!!

2. Fix r > 1. By the ratio test prove that $n/r^n \to 0$ as $n \to \infty$.

$$\frac{(n+1)/r^{n+1}}{n/r^n}=\frac{1+1/n}{r}\to 1/r<1.$$
 So by the ratio test, $n/r^n\to 0$.

Conclude that $n^{1/n} < r$ for sufficiently large n. Hence prove $n^{1/n} \to 1$ as $n \to \infty$. Taking $\epsilon = 1$ we find $\exists N \in \mathbb{N}$ such that $n \ge N \Rightarrow n/r^n < 1 \Rightarrow n^{1/n} < r$.

Fix $\epsilon > 0$. Then putting $r = 1 + \epsilon$ in the above we find $N \in \mathbb{N}$ such that $n \ge N \implies 1 < n^{1/n} < 1 + \epsilon \implies |n^{1/n} - 1| < \epsilon$. Therefore $n^{1/n} \to 0$.

3. Fix $M \in \mathbb{R}$. Prove $M^n/n! \to 0$. Hence show the sequence $(n!)^{1/n}$ is unbounded.

Ratio test:
$$\frac{M^{n+1}/(n+1)!}{M^n/n!} = \frac{M}{n+1} \to 0$$
 as $n \to \infty$. Therefore $M^n/n! \to 0$.

In particular $\exists N_M \in \mathbb{N}$ such that $M^n/n! < 1$ for all $n \ge N$. Thus $(n!)^{1/n} > M$. Since M was arbitrary we find that $(n!)^{1/n}$ is unbounded.

4.* Which of the statements (a)-(d) imply (*) and which are implied by (*)?

$$\exists a \in \mathbb{R} \text{ such that } \forall \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \geq N, \ |a_n - a| < \epsilon.$$
 (*)

- (a) $\exists a \in \mathbb{R}$ such that $\forall \epsilon > 0 \ \exists N \in \mathbb{N}$ such that $\forall n \geq N, \ |a_n a| < \epsilon$.
- (b) $\exists a \in \mathbb{R}$ and $\exists \epsilon > 0$ such that $\forall N \in \mathbb{N} \ \forall n \geq N, \ |a_n a| < \epsilon$.
- (c) $\forall a \in \mathbb{R} \ \exists \epsilon > 0 \text{ such that } \forall N \in \mathbb{N} \ \forall n \geq N, \ |a_n a| < \epsilon.$
- (d) $\exists a \in \mathbb{R}$ such that $\exists N \in \mathbb{N}$ such that $\forall \epsilon > 0, \forall n > N, |a_n a| < \epsilon$.
- (*) is equivalent to the existence of a convergent subsequennce of (a_n) (exercise!) whereas the listed statements are
 - (a) a_n is convergent
 - (b) a_n is bounded
 - (c) a_n is bounded
 - (d) a_n is a constant sequence beyond some point a_N

By the Bolzano-Weierstrass theorem, all 4 imply (*), but none are implied by it.

5. We saw in lectures that the series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ diverges. What about $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots$? Prove your answer.

Diverges: call it $\sum_{n=1}^{\infty} a_n$ where $a_n = \frac{1}{2n-1} \ge \frac{1}{2n} =: b_n$.

Now $\sum_{n=1}^{\infty} b_n = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ diverges to ∞ , so since all terms are positive and $a_n \geq b_n$ then by comparison $\sum_{n=1}^{\infty} a_n$ diverges to ∞ also.

6.† Let $\sum_{n\geq 1} a_n$ be the series obtained from $\sum_{n\geq 1} \frac{1}{n}$ deleting all the terms $\frac{1}{n}$ such that the base 10 expansion of n contains the digit 4. Prove this series converges.

Consider the positive integers n with exactly k digits in their base 10 expansion. We have 9 choices for their first digit (which cannot be 0) and 10 for each of the others, i.e. 9.10^{k-1} overall.

But for the numbers without a 4 in their base 10 expansion, we have 8.9^{k-1} choices, by the same reasoning.

Each of these numbers n is $\geq 10^{k-1}$ (the smallest number with k digits). So the sum of 1/n over all n with k digits, none of them 4, is

$$< 8.9^{k-1}/10^{k-1} = 8(0.9)^{k-1}.$$

Summing over all k = 1, 2, ... we find that any partial sum of the series in the question is bounded above by 8/(1-0.9) = 80. Since these partial sums are monotonically increasing they converge.

7. Prove from first principles that you can multiply a series by a constant $c \in \mathbb{R}$ term by term, i.e. if $\sum_{n=1}^{\infty} a_n$ is convergent then $\sum_{n=1}^{\infty} ca_n$ is convergent to $c \sum_{n=1}^{\infty} a_n$. Let $s_n = \sum_{i=1}^n a_i$ be the nth partial sum of $\sum a_n$. Then by definition, saying it converges to $A := \sum_{n=1}^{\infty} a_n$ says that if we fix any $\epsilon > 0$,

$$\exists N \in N \text{ such that } \forall n \geq N, |s_n - A| < \epsilon.$$

Applying this to $\frac{\epsilon}{c} > 0$ gives

$$\exists N \in N \text{ such that } \forall n \geq N, |s_n - A| < \epsilon/c \implies |cs_n - cA| < \epsilon.$$

But cs_n is the *n*th partial sum of $\sum ca_n$, so this says that $cs_n \to cA$, i.e. $\sum ca_n$ converges to $cA = c \sum a_n$.

- 8. Given a real sequence (a_n) , define a new sequence $b_n := \frac{1}{n} \sum_{i=1}^n a_i$ by averaging.
 - (a) For any $a \in \mathbb{R}$, N > 1 and $n \ge N$, let $A(N) := \sum_{i=1}^{N-1} |a_i a|$. Show that

$$|b_n - a| \le \frac{A(N)}{n} + \frac{\sum_{i=N}^n |a_i - a|}{n}.$$

$$|b_n - a| = \left| \frac{1}{n} \left(\sum_{i=1}^n a_i - na \right) \right| = \frac{1}{n} \left| \sum_{i=1}^n (a_i - a) \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^{N-1} |a_i - a| + \frac{1}{n} \sum_{i=N}^n |a_i - a| \tag{*}$$

by the triangle inequality.

(b) Suppose that $a_n \to a$. Prove carefully that $b_n \to a$. Proving $b_n \to a$ is now easy if we get the order of the argument right. Fixing ϵ first, we can make the second term $< \epsilon$ for fixed $N = N_{\epsilon}$. Then we tend $n \to \infty$ in the first term with N fixed to make that term $\to 0$. If you do it in another order, it won't work... So: suppose that $a_n \to a$. That is, fixing any $\epsilon > 0$,

$$\exists N \in \mathbb{N} \text{ such that } (n \ge N \Rightarrow |a_n - a| < \epsilon).$$

This controls the right hand term in (1):

$$\frac{1}{n}\sum_{i=N}^{n}|a_i-a| < \frac{1}{n}\sum_{i=N}^{n}\epsilon = \frac{1}{n}(n-N+1)\epsilon < \epsilon \tag{**}$$

for all $n \geq N$.

Now fixing N we know that $A(N)/n \to 0$ as $n \to \infty$. In fact take $M \in \mathbb{N}$ such that $M > A(N)/\epsilon$. Then for all $n \ge M$ we have

$$n > \frac{A(N)}{\epsilon} \Rightarrow \frac{A(N)}{n} < \epsilon.$$
 (***)

Plugging (**), (***) into (*) gives

$$|b_n - a| < \epsilon + \epsilon = 2\epsilon$$

for $n \ge \max(N, M)$. Therefore $b_n \to a$, as required.

- (c) Give (without proof) an example with a_n divergent but b_n convergent. Eg take $a_n = (-1)^n$. Then $a_n \neq 0$, but $b_{2n} = 0$ and $b_{2n+1} = -(2n+1)^{-1}$, so $b_n \to 0$.
- (d) Suppose $\sum_{n=1}^{\infty} a_n$ is convergent, does it follow that $\sum_{n=1}^{\infty} b_n$ is also convergent, and to the same value? Hint: consider the sequence $a_n = \begin{cases} 1 & n=1, \\ 0 & n>1. \end{cases}$ For the example given in the hint we have $\sum_{n=1}^{\infty} a_n = 1$ but $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges to infinity (lectures). So the answer is "no".
- 9. For which values of $a, b \in \mathbb{R}$ does $\sum_{n=1}^{\infty} n^a/b^n$ converge or diverge? (Give a proof in the MATH40004 sense, and a proof in the proof sense when $a \in \mathbb{Z}$, $b \in \mathbb{R}$.)

Ratio test: $\frac{(n+1)^a/b^{n+1}}{n^a/b^n} = \frac{(1+1/n)^a}{b} \to 1/b$ as $n \to \infty$. So it converges for |b| > 1 and diverges for |b| < 1.

[Note: we used $(1+1/n)^a \to 1$ as $n \to \infty$, which we haven't proved for arbitrary $a \in \mathbb{R}$. So in this sense it's all a bit MATH40004. But we have proved this for $a \in \mathbb{Z}$, by the algebra of limits.]

When b=1 we have $\sum_{n=1}^{\infty} n^a$ which we have seen in lectures is convergent for a<-1 and divergent for $a\geq -1$.

When b=-1 we have $\sum_{n=1}^{\infty} (-1)^n n^a$ which we have seen in lectures is absolutely convergent for a<-1. For $a\geq 0$ it is divergent because $(-1)^n n^a \not\to 0$. For a=-1 we have seen in lectures that it converges (but not absolutely).

This just leaves $a \in (-1,0), b = -1$, i.e. $\sum_{n=1}^{\infty} (-1)^n n^a$ for $a \in (-1,0)$. By the alternating series test these all converge, but not absolutely.

10. **MATH40004 question for fun.** Write down the unique degree d+1 polynomial p(x) with roots $0, \lambda_1, \lambda_2, \ldots, \lambda_d$ and p'(0) = 1.

It is
$$p(x) = x \prod_{n=1}^{d} \left(1 - \frac{x}{\lambda_n}\right)$$
.

"Apply" your formula to $d = \infty$ and $p(x) = \sin x$, and compare coefficients of x^3 or x^5 on both sides to evaluate

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 (b) \dagger $\sum_{n=1}^{\infty} \frac{1}{n^4} = ?$

We get

$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x}{n\pi} \right) \left(1 + \frac{x}{n\pi} \right) = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right).$$

(a) Taking coefficients of x^3 on both sides gives

$$-\frac{1}{3!} = \sum_{n=1}^{\infty} -\frac{1}{n^2 \pi^2}.$$

Multiplying both sides by $-\pi^2$ gives the result.

(b) Taking coefficients of x^5 on both sides instead gives

$$\frac{1}{5!} \; = \; \sum_{m>n} \left(\frac{-1}{n^2\pi^2}\right) \left(\frac{-1}{m^2\pi^2}\right) \; = \; \frac{1}{2} \sum_{n=1}^{\infty} \sum_{m \neq n} \frac{1}{m^2n^2\pi^4} \; = \; \sum_{n=1}^{\infty} \frac{1}{2n^2\pi^4} \left(\frac{\pi^2}{6} - \frac{1}{n^2}\right) \; = \; \frac{1}{72} - \sum_{n=1}^{\infty} \frac{1}{2n^4\pi^4}.$$

Here for the second = we have used the symmetry of $\frac{1}{m^2n^2}$ under $m \leftrightarrow n$, while in the final = we have used $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Rearranging gives $\sum_{n=1}^{\infty} \frac{1}{n^4} = 2\pi^4 \left(\frac{1}{72} - \frac{1}{120}\right) = \frac{\pi^4}{90}$.