

construction robotics

international M.Sc.programme

Introduction and motivation

Material examination and classification using computer vision

Solution Strategy: In this master thesis the student should explore the newest and more important material detection CNN architectures for material detection and classification using Computer Vision.

The possibility to propose a new CNN architecture for solving the same task must be considered. Real data can be gathered on a real construction site by using a mobile platform with real RGB cameras and sensors.

Very good programming skills (Python and PyTorch) are a must.

Experience with ROS2 is a must as well.

The knowledge of the ROS2 control and navigation packages is a plus.

State of the art: The material recognition and classification by using Computer Vision is still in development. Nevertheless, there is a lot of potential behind this procedure especially in the construction sector.

Problem definition: Piles of material are often delivered on the construction site using construction machines. In the process of digitization of construction sites, the student should explore and exploit the possibility of using traditional RGB and infrared cameras for material classification in absence of digital information.

Suggested solution: Development and testing of A.I. architectures using RGB and infrared camera streams.

Tutor: Davide Picchi picchi@ip.rwth-aachen.de

- 1 Introduction
- 2 Research methods
- 3 Dataset
- 4 Particle Size Detection Approaches
- 5 Result
- 6 Implementation Plan
- 7 Schedule

- 1 Introduction
 - 1.1 Task description
 - 1.2 Motivation and Problem Statement
 - 1.3 Objectives
- 2 Research methods
- 3 Dataset
- 4 Particle Size Detection Approaches
- 5 Result
- 6 Implementation Plan
- 7 Schedule

Task Description

Material examination and classification using computer vision

- Granular material recognition and classification
- Integration of robots with RGB-D cameras
- Unmanned intelligent construction management

Technical Implementation:

- Convolutional Neural Networks (CNN)
- Segment Anything Model (SAM)
- Machine learning and computer vision

Goals and Applications:

- Particle size and distribution prediction
- Particle shape and type recognition
- Enhancing construction efficiency and accuracy

https://en.wikipedia.org/wiki/Convolutional_neural_network https://image-net.org/challenges/LSVRC/

Objectives & Workflow

Material examination and classification using computer vision

Automated Particle Size Detection Workflow

Slide by Baiyi

Research methods

Material examination and classification using computer vision

- Segmentation-Based Method
- Segment materials into individual particles using a segmentation model (e.g., SAM).
- Extract features from each particle.

- Regression-Based Method
- Use a CNN model to extract features from each image.
- Map features to numerical values.
- Training set results correlate features with specific numerical outcomes.

Grain Size: μ=x.xx σ=x.xx

- Classification-Based Method
- Train a CNN model to extract features from each image.
- Map features to corresponding labels.

Categories: x

Conducted on a custom dataset to evaluate the effectiveness of each method.

The dataset is crucial and plays a decisive role in the usability of the trained models.

Slide by Baiyi

Dataset

Material examination and classification using computer vision

Dataset Preparation

- **Source:** Collected from Aachen Bauhaus and OBI, including 20 types of construction granular materials.
- **Diversity:** Ranges from 1-3mm gravel to 40-60mm marble chips.
- **Sampling:** Products displayed as samples, representing the construction industry with low particle size variance for easier feature extraction and learning.

- Image Specifications:
- Manual photography
- Consistent lighting conditions
- Fixed camera distance: 30mm
- Image resolution: 3024x4032 pixels

- Introduction
- **Research methods**
- **Dataset**
- **Particle Size Detection Approaches**
 - **Segmentation-based Approach**
 - **Regression-based Approach**
 - **Classification-based Approach**

Material examination and classification using computer vision | Construction & Robotics

- Result
- **Implementation Plan**
- **Schedule**

Particle size detection approachs

Material examination and classification using computer vision

Segmentation-Based Method

- Segment materials into individual particles using a segmentation model (e.g., SAM).
- Extract features from each particle using OpenCV.
- Estimate particle size distribution.

Limitations:

- Accuracy depends on segmentation quality.
- Small particles (<3mm) may appear larger due to image resolution limits.
- Large particles (>30mm) may be over-segmented due to shadows and occlusions.
- Best suited for particles sized 3-30mm.
- Segment Anything Model (SAM) is computationally intensive and time-consuming.

Particle size detection approachs

Material examination and classification using computer vision

- Regression-Based Method
- Use a CNN model to extract features from each image.
- Map features to numerical values.
- Training set results correlate features with specific numerical outcomes.

input

Particle size detection approachs

Material examination and classification using computer vision

- Classification-Based Method
- Train a CNN model to extract features from each image.
- Map features to corresponding labels.

	smooth to medium roughness	Marmorkiesel_Weiss_15-25mm, Marmorkiesel_Gruen_15-25mm, Quarzkies_Rund_Hell_8-16mm, Kies_2-8mm, Kies_8-16mm, Kies_1-3mm
Medium Pebbles and Gravel	Medium size, rounded to semi- rounded, smooth to medium roughness	Marmorkiesel_Weiss_25-40mm, Marmorkiesel_Weiss_40-60mm, Marmorkiesel_Schwarz_40-60mm, Quarzkies_Rund_Hell_16-32mm, Kies_16-32mm, Marmorsplitt_7-12mm, Splitt_2-5mi
Large Pebbles and Broken Stones	Large size, irregular shape, rough texture	Bruchsteine_Veronarot_30-60mm, Schieferplaettchen_22-40mm, Marmorsplitt_Veronarot_9-12mm, Marmorsplitt_Donaublau_8-12mm, Basaltsplitt_8-12mm, Granitsplitt_8-12mm, Marmorkiesel_Weiss_15-25mm
Classification Criteria:		

Small size, rounded to semi-rounded,

Characteristics

Categories: x

Combines particle size, shape, and smoothness.

Three categories:

1 Small particles

Category

Fine Pebbles and Gravel

- 2 Medium-sized particles (aesthetic, suitable for decoration and outdoor paving)
- 3 Large and rough particles (suitable for construction, providing higher friction)

Challenges: Overfitting issues during training. Current training paused to explore alternative methods.

Product Names

Marmorkiesel_Weiss_7-15mm,

Result

Material examination and classification using computer vision

Method	Key Characteristics	Advantages	Limitations
Segmentation-Based	Segments images into individual particles, extracts features (e.g., diameter, area)	Detailed particle size distribution (average size, variance)	Dependent on segmentation quality, less effective for very small (<3mm) or large (>30mm) particles
Regression-Based	Uses CNN to extract features, maps to numerical values	High accuracy with consistent conditions, faster than segmentation, adjustable labeling	Dependent on consistent testing conditions, potential overfitting issues
Classification-Based	Combines size, shape, and smoothness into categories	Broad applicability, practical for varied uses	Overfitting during training, further optimization needed

Implementation plan

Material examination and classification using computer vision

Step 2

Ensure the camera is positioned at the optimal 30mm distance.

Step 4

Utilize a pretrained CNN model to process the images.

Step 6

Display and analyze the results for construction site management.

Deploy the robot to navigate to the material pile.

Step 3

Capture RGB images under controlled lighting conditions.

Step 5

Predict the particle size using the model.

Schedule

Sources

https://paperswithcode.com/task/material-recognition/codeless https://www.cs.columbia.edu/CAVE/software/curet/ https://www.csc.kth.se/cvap/databases/kth-tips/index.html https://www.fmdsa.org/research-network/ http://opensurfaces.cs.cornell.edu/ https://en.wikipedia.org/wiki/Convolutional_neural_network https://image-net.org/challenges/LSVRC/ https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e https://arxiv.org/abs/1312.6229 https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/ http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf https://arxiv.org/abs/2304.07193

Thanks for listening. Any Question?

construction robotics

international M.Sc.programme