1

2

2.1

We first construct a weighted directed graph H from G. Then we can find maxflow on graph H to see whether there is a perfect matching in G.

Firstly, we let all the edges in G point from V_1 to V_2 in H, and we assign them a weight of $+\infty$.

Then we add a source vertex s and add an edge with weight 1 from s to all vertices in V_1 . Finally we add a sink vertex t and add an edge with weight 1 from all vertices in V_2 to t. Now we have constructed the graph H, we can run the Network Flow algorithm to find a maxflow of H. If the maxflow of H, denoted by f, turns out to be $f = |V_1| = |V_2|$, then there exists a perfect matching in G. And the perfect matching contains exactly the edges in G used by us to construct the maxflow of H.

2.2

Proof of Necessity:

This part is very straightforward.

Suppose there is a perfect matching M from V_1 to V_2 . Then for any $S \subset V_1$, for every vertex $v \in S$, there is an edge in M connecting v to a vertex in V_2 . This means that there are at least as many vertices in V_2 that are neighbors of vertices in V_1 as there are vertices in V_1 . That is to say, for any $S \subset V_1$, $|N(S)| \geq |S|$.

Proof of Sufficiency:

Following the hint, we would like to prove by showing that the mincut of the graph we construct is exactly $|V_1|$ (or $|V_2|$ if you like).

Firstly, any mincut can only contain the edges in H which are not in G because we assign edges in G with a weight of $+\infty$.

Then there is a cut with capacity $|V_1|$ if we make our S-T cut to be $S = \{s\}$, the singleton. So the capacity of mincut of H is at most $|V_1|$.

Suppose there is another minimum S-T cut where $S \setminus V_2 = \{s\} \cup (V_1 \setminus V_1')$ and $T \setminus V_1 = \{t\} \cup (V_2 \setminus V_2')$, since this is a mincut, there are no edges from $V_1 \setminus V_1'$ to $V_2 \setminus V_2'$. This means that all the neighbors of $V_1 \setminus V_1'$ must be in V_2' . Then by the property that $|N(S)| \geq |S|$ for any $S \subset V_1$, $|V_1 \setminus V_1'| \leq |V_2'|$.

Finally the capacity of this cut is $|V_1'| + |V_2'|$, $|V_1'| + |V_2'| \ge |V_1'| + |V_1 \setminus V_1'| = |V_1|$. This means that the capacity of any S-T cut is at least $|V_1|$. Then by our instance where $S = \{s\}$, the mincut is indeed $|V_1|$. Finally by the Maxflow-Mincut Theorem, the maxflow of H equals its mincut $|V_1|$, which means that there is a perfect matching in G.

3

4 Comments

- 4.1
- 4.2
- 4.3