

TÓPICOS EM ESTATÍSTICA I

Prof° Guilherme Rodrigues

REDES NEURAIS RECORRENTES

Allan Faria
Davi Guerra
Gustavo Garcia

O QUE É.

Uma Recurrent Neural Network (RNN) é uma arquitetura de Rede Neural que processa dados sequenciais, como palavra por palavra em uma frase ou informações através do tempo.

Algo notável na RNN é que o tamanho das sequências processadas é independente, não precisando ter um tamanho fixo para poder ajustar a rede.

TIPOS DE DADOS.

Séries temporais: finanças, previsão climática.

Textuais: tokenização, one-hot encoding, embedding.

Sons: reconhecimento de fala.

Outros, como dados biológicos (eletrocardiogramas, sequenciamento genético)

TIPOS DE ARQUITETURA.

one to many many to one many to many many to many one to one Legendas Análise de Tradução Sintetização para imagens de voz sentimento

POR DENTRO DA RNN.

RNN State Update and Output

Compartilhamento de parâmetros

FEEDFOWARD.

RNNs: Computational Graph Across Time

BACKPROPAGATION.

RNNs: Backpropagation Through Time

Vanilla RNN Gradient Flow

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

GRADIENTS ISSUES.

explosion

- 1. ato de explodir, expansão muito alta. na matemática, multiplicação de matrizes podem resultar em explosão dos valores.
- 2. pode ser solucionado usando gradients clipping

vanish

ato de limpar, encolher, diminuir até ser insignificante.
na matemática, multiplicação de matrizes podem
resultar em limpeza dos valores.

g <- c *g/||g||

Aqui em Curitiba faz ...

Short term dependency

Nasci no Brasil, sou negro, tenho 19 anos, gosto de pizza, minha língua materna é o

Long term dependency

- 1 Mudar a função de ativação
- 2 Parâmetros de Inicialização
- 3 Gates

LSTM & GRU.

LONG-SHORT TERM MEMORY

Cell State

Avenida. Memória.

Gates

Esquecer. Renovar. Absorver. Transmitir.

FORGET GATED

- C_{ist} previous cell state
- forget gate output

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

UPDATE GATED

- c₁₀₁ previous cell state
- forget gate output
- input gate output
- c candidate

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

CELL STATE

- previous cell state
- forget gate output
- input gate output
- candidate
- new cell state

OUTPUT GATE

- previous cell state
- forget gate output
- input gate output
- candidate
- new cell state
- output gate output
- hidden state

$$o_t = \sigma\left(W_o\left[h_{t-1}, x_t\right] + b_o\right)$$

$$h_t = o_t * \tanh(C_t)$$

GRU

- 1. quem vai e quem fica.
- 2. treinamento gera inclusão, não exclusão.

ALGORITMOS DE RNN.

- Arquiteturas de RNNs em problemas generalizados: NLP, Distribuições em relação ao tempo...
- Aprendizado da rede conforme a arquitetura

RNN LAYER ESTADO.

Retorna estado

RNN LAYER SEQUÊNCIA.

Retorna SEQUÊNCIA.

SEQUENCE TO VALUE.

SEQ-2-VALUE

SEQUENCE TO SEQUENCE. Recursive RNN

Recursive RNN

SEQUENCE TO SEQUENCE Encoder-Decoder.

Encoder-Decoder

RNN LAYER BIDIRECIONAL.

BIDIRECIONAL

ATENÇÃO.

 Mecanismo de rankeamento de sequências. Mais usados em Encoder-Decoder

 Performance nas relações e no aprendizado

Sem atenção

Com atenção

Attention is all you need

Attention is all you need

$$oldsymbol{c}_t = \sum_s lpha_{ts} ar{oldsymbol{h}}_s$$

$$\alpha_{ts} = \frac{\exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s)\right)}{\sum_{s'=1}^{S} \exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_{s'})\right)}$$

$$\operatorname{score}(m{h}_t, ar{m{h}}_s) = egin{cases} m{h}_t^ op m{W} ar{m{h}}_s \ m{v}_a^ op anh \left(m{W}_1m{h}_t + m{W}_2ar{m{h}}_s
ight) \end{cases}$$

TEACHER FORCING.

TEACHER FORCING

• Melhor desempenho em aprender

"Start na vida do neurônio"

Teacher forcing **DECODER** <G0> Output RNN (Input) **ENCODER**

LAB

