National Institute of Technology Mizoram Mid – Semester Examination, Odd Semester (2022) LINEAR ALGEBRA AND APPLICATION (MAL 1303)

IIIrd Sem CSE

Full Marks: 30 marks

Duration: 1:30 hours

Answer all 3 (Three) Questions. All Questions Carry Same Marks (3 * 10 = 30 Marks)

1(a) If operation defined by $x * y = \frac{x+y}{1+xy}$ where x, y are real number. Find $\{[(2*3)*4]*...\}*2021$

OR

Find at least three different ways to express vector $B = \begin{bmatrix} 2 & -1 \\ -2 & 1 \end{bmatrix}$ as linear combination of matrices $A_1 = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $A_3 = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$ (b) Check whether the set of 2 × 2 Matrices of determinant zero is subspace of the

OR

Let α_1 , α_2 , α_3 be linearly independent vector. For what values of k are the vector $\alpha_{1-}\alpha_{3}$, $\alpha_{2}-\alpha_{1}$, $k\alpha_{3}-\alpha_{2}$ are linearly independent.

2. Find all-real number x for which there is linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that T(1,1,1) = (1,x,1), T(1,0,-1) = (1,0,1), T(-1,-1,0) = (1,2,3) and T(1,-1,-1) = (1,x,-2).

OR

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ is linear transformation such that $T(x, y, z) = (-3x + 2y + 3z, x - \alpha y + z, -4x + 4y + \alpha z)$. Find α so the nullity of T is equal to 1.

3.Let R^+ be the set of all positive real numbers. List all the vector space axioms which fail to hold with respect to following operations

$$x + y = xy$$
 and $c. x = x^c$

space of all 2×2 Matrices.

OR

Let R^+ be the set of all positive real numbers. List all the vector space axioms which fail to hold with respect to following operations

$$x + y = xy$$
 and $c. x = c^x$

NATIONAL INSTITUTE OF TECHNOLOGY MIZORAM

End Semester Re-Examination, Odd Semester (2022-23)

Linear Algebra & Application (MAL 1302)

3rd Semester (CSE)

Maximum Marks: 50

Time: 3:00 hrs

(Answer all questions. All questions are compulsory.)

R and C denote Real and Complex Number Systems, respectively.

- 1. (a) Let V be a set of ordered pairs (a, b) of real numbers. Show that V is not a vector space over \mathbb{R} with addition and scalar multiplication defined by (a, b) + (c, d) = (a + c, b + d) and k(a, b) = (a, b). [10M]
- 2. (a) Suppose the mapping $f: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by f(x,y) = (x+y,x). Show that f is linear. [3M]
 - Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear mapping for which f(1,2) = (2,3) and f(0,1) = (1,4). Find a formula for f(x,y) if $\{(1,2),(0,1)\}$ is a basis of \mathbb{R}^2 .
 - (c) Let $G: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined by G(x, y, z) = (x + 2y z, y + z, x + y 2z). Find a basis and the dimension of the kernel of map G.
- 3. (a) Determine whether $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (2x 4y, 3x 6y) is non-singular? [4M]
 - (b) If $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ and $B' = \{(1,0,1), (2,1,2), (1,2,2)\}$ are two bases, find the change-of-basis matrix P from B to the basis B'.
 - (c) If T is a linear operator on \mathbb{R}^2 defined by T(x,y)=(2x+y,3x+2y), show that T is invertible. [2M]
- 4. (a) If u = (2, 3, 5), v = (1, -4, 3) are vectors in \mathbb{R}^3 , then find the angle between the vectors u and v using inner products.
 - (b) Let V be the vector space of polynomials f(t) with inner product < f, g >= ∫₋₁¹ f(t)g(t)dt. Apply the Gram-Schmidt orthogonalization process to {1,t,t²,t³} to find an orthogonal basis {f₀, f₁, f₂, f₃} with integer coefficients for P₃(t).
 [6M]
- 5. (a) If characteristic and minimal polynomials of an operator T are , respectively, $F(x) = (x-2)^4(x-5)^3$ and $m(x) = (x-2)^2(x-5)^3$, then write down the possible Jordon canonical forms. [4M]
 - (b) If $A = \begin{pmatrix} 1 & 1 \\ i & 3+2i \end{pmatrix}$ is a matrix of linear operator T, then show that T is normal. [3M]
 - (c) Find the adjoint of $T: \mathbb{C}^3 \to \mathbb{C}^3$ defined by T(x, y, z) = (2x + (1 i)y, (3 + 2i)x 4iz, 2ix + (4 3i)y 3z). Find adjoint operator T^* of T.

13

NATIONAL INSTITUTE OF TECHNOLOGY MIZORAM

End Semester Examination, Odd Semester (2022-23)

Linear Algebra & Application (MAL 1302)

3rd Semester (CSE)

Maximum Marks 50

Time: 3:00 hrs

(Answer all questions. All questions are compulsory.)

R and C denote Real and Complex Number Systems, respectively.

- (a) Consider the subspaces U, V of R⁴ defined by U = {(x, y, z, w) ∈ R⁴ : y + z + w = 0} and V = {(x, y, z, w) ∈ R⁴ : x = -y, z = 2w}. Find the basis for each of U, V and U ∩ V.
- (a) Consider f: R³ → R² defined by f(x, y, z) = (|x|, 0). Show that f is not linear.
 - (b) If f: R⁴ → R³ be a linear mapping defined by f(x, y, s, t) = (x y + s + t, x + 2s t, x + y + 3s 3t), find
 - (i) basis and the dimension of the kernel of map f. [4M]
 - (ii) basis and the dimension of the range of map f.
 [3M]
- 3. (a) If a linear operator T on \mathbb{R}^3 is defined by T(x,y,z)=(2x,4x-y,2x+3y-z), then
 - (i) show that T is invertible, [4M]
 - (ii) find $T^{-1}(2, 4, 6)$, [3M]
 - (iii) find a formula for T^{-2} . [3M]
- (a) If u = (x₁, x₂), v = (y₁, y₂), then verify whether < u, v >= x₁y₁ − x₁y₂ − x₂y₁ + 3x₂y₂ is an inner product in ℝ²?
 - (b) Let V be a vector space of polynomials over ℝ with inner product defined by < f, g >= ∫₀¹ f(t)g(t)dt. Given f(t) = t + 2, g(t) = 3t - 2, find ≤ f, g > and ||f||.
 [2M]
 - (c) If W consists of vectors u = (1, 2, 3, −1, 2), v = (2, 4, 7, 2, −1) in R⁵, find a basis of orthogonal compliment W[±] of W.
 [3M]
- (a) Find an orthonormal basis for the subspace U of R⁴ spanned by vectors v₁ = (1, 1, 1, 1), v₂ = (1, 2, 4, 5), v₃ = (1, -3, -4, -2).
 - (b) Find all possible Jordon canonical forms for a transformation with characteristic polynomial (x − 7)⁴ and find minimal polynomial in each case [4M]
 - (c) Let T be a linear operator on C³ defined by T(x, y, z) = (2x + iy, y − 5iz, x + (1 − i)y + 3z). Find adjoint operator T* of T.
 [2M]

__..._