# Chapter 18 (AIAMA)

# Learning From Examples-02

Sukarna Barua Associate Professor, CSE, BUET

### **Decision Tree**

#### A decision tree:

- Represents a function that takes as input a vector of attribute values
- Returns a "decision"—a single output value.
- The input and output values can be discrete or continuous.
- For now we will concentrate on problems where
  - Inputs have discrete values
  - Output has exactly two possible values; this is Boolean classification,
    where each example input will be classified as *true* (a **positive** example) or
    false (a **negative** example).

### **Decision Tree**

- A decision tree for rain forecasting.
  - Input: {Outlook=Sunny, Humidity=Normal, Wind=Strong}
  - Output: Yes [Rainy]



### Decision Tree

#### • In a decision tree:

- Each **internal node** in the tree corresponds to a test of the value of one of the input attributes,  $A_i$
- The **branches** from the node are labeled with the possible values of the attribute,  $A_i = v_{ik}$ .
- Each **leaf node** in the tree is marked with a outcome to be returned by the function.

• **Problem:** Build a decision tree to decide whether to wait at a restaurant.

#### Learning Goal:

- WillWait to decide whether to wait for a table at a restaurant.
- Goal is binary valued (i.e., binary classification task)
  - Values: {Yes, No}

#### Input Attributes

- 1. *Alternate*: whether there is a suitable alternative restaurant nearby.
- 2. Bar: whether the restaurant has a comfortable bar area to wait in.
- 3. Fri/Sat: true on Fridays and Saturdays, false otherwise.
- 4. *Hungry*: whether we are hungry.
- 5. *Patrons*: how many people are in the restaurant (values are None, Some, and Full ).
- 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).

#### Input Attributes

- 7. Raining: whether it is raining outside.
- 8. *Reservation*: whether we made a reservation.
- 9. *Type*: the kind of restaurant (French, Italian, Thai, or burger).
- 10. WaitEstimate: the wait estimated by the host (0–10 minutes, 10–30, 30–60, or >60).
- Note that every variable has a small set of possible values; the value of *WaitEstimate*, for example, is not an integer, rather it is one of the four discrete values 0–10, 10–30, 30–60, or >60.

An example decision tree for the restaurant problem



- In a Boolean decision tree, the goal attribute is true if and only if the input attributes satisfy one of the paths leading to a leaf with value true.
- $Goal \Leftrightarrow (Path1 \lor Path2 \lor \cdots)$ , where each Path is a conjunction of attribute-value tests required to follow that path.
- Thus, the whole expression is equivalent to *disjunctive normal form*, which means that any function in propositional logic can be expressed as a decision tree.

- Any Boolean function can be represented by a decision tree.
  - Consider the following Boolean function: f(A, B) = A + B.
  - Draw a decision tree for the function:

- For a wide variety of problems, the decision tree format yields a nice, concise result.
- But some functions cannot be represented concisely:
  - For example, the majority function, which returns true if and only if more than half of the inputs are true, requires an exponentially large decision tree.
- Decision trees are good for some kinds of functions and bad for others.

- How many different decision trees can be obtained for a Boolean function with n variables?
  - A truth table over n attributes has  $2^n$  rows, one for each combination of values of the attributes.
  - There are  $2^{2^n}$  different functions.
  - Each function can be represented by a decision tree. Hence, number of decision trees at least 2<sup>2<sup>n</sup></sup> [why more?]

- How many different decision trees can be obtained for a Boolean function with n variables?
  - For 10 Boolean attributes of our restaurant problem there are 2<sup>1024</sup> or about 10<sup>308</sup> different functions to choose from.
  - Number of possible decision trees  $\geq 10^{308}$

• Training data: A set of examples where  $\alpha$  ach example a pair (x, y) pair where  $\alpha$ is a vector of values for the input attributes, y is a single Boolean output value.

| Example                                         | Input Attributes |     |     |     |      |        |      |     |         |       | Goal           |
|-------------------------------------------------|------------------|-----|-----|-----|------|--------|------|-----|---------|-------|----------------|
|                                                 | Alt              | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | WillWait       |
| $\mathbf{x}_1$                                  | Yes              | No  | No  | Yes | Some | \$\$\$ | No   | Yes | French  | 0–10  | $y_1 = Yes$    |
| $\mathbf{x}_2$                                  | Yes              | No  | No  | Yes | Full | \$     | No   | No  | Thai    | 30–60 | $y_2 = No$     |
| $\mathbf{x}_3$                                  | No               | Yes | No  | No  | Some | \$     | No   | No  | Burger  | 0–10  | $y_3 = Yes$    |
| $\mathbf{x}_4$                                  | Yes              | No  | Yes | Yes | Full | \$     | Yes  | No  | Thai    | 10-30 | $y_4 = Yes$    |
| $\mathbf{x}_5$                                  | Yes              | No  | Yes | No  | Full | \$\$\$ | No   | Yes | French  | >60   | $y_5 = No$     |
| <b>x</b> <sub>6</sub>                           | No               | Yes | No  | Yes | Some | \$\$   | Yes  | Yes | Italian | 0–10  | $y_6 = Yes$    |
| <b>X</b> 7                                      | No               | Yes | No  | No  | None | \$     | Yes  | No  | Burger  | 0–10  | $y_7 = No$     |
| <b>X</b> 8                                      | No               | No  | No  | Yes | Some | \$\$   | Yes  | Yes | Thai    | 0–10  | $y_8 = Yes$    |
| <b>X</b> 9                                      | No               | Yes | Yes | No  | Full | \$     | Yes  | No  | Burger  | >60   | $y_9 = No$     |
| ${\bf x}_{10}$                                  | Yes              | Yes | Yes | Yes | Full | \$\$\$ | No   | Yes | Italian | 10-30 | $y_{10} = No$  |
| $x_{11}$                                        | No               | No  | No  | No  | None | \$     | No   | No  | Thai    | 0–10  | $y_{11} = No$  |
| $x_{12}$                                        | Yes              | Yes | Yes | Yes | Full | \$     | No   | No  | Burger  | 30–60 | $y_{12} = Yes$ |
| Figure 18.3 Examples for the restaurant domain. |                  |     |     |     |      |        |      |     |         |       |                |

#### Build a decision tree that is -

- Consistent with the examples [Not always expected though, generalization may suffer]
- Is as small as possible. [Occam's razor]

- Question: Can we always find a consistent decision tree given a set of training examples?.
- Answer: Yes.
  - However, if two training examples (x, y) and (x', y') have different outputs but same input attributes (x = x'), then a consistent decision tree is not possible.

- Unfortunately, it is an intractable problem to find the smallest consistent tree; there is no way to efficiently search through *hypotheses space*.
  - An NP-hard problem!
  - What can we do if cannot find the smallest decision tree?
  - **Solution**: Use heuristics to find a closest one.
    - With some simple heuristics, we can find a good approximate solution: a small (*but not the smallest*) consistent tree.
    - This is a greedy approach. [Remember what is *greedy*]

# Decision Tree Learning

- Greedy approach to build a decision tree:
  - Start with empty decision tree.
  - Select an attribute to test at the next level [node]:
    - Always select the most important attribute to test first. [greedy strategy]
  - The test creates new branches and divides the problem into smaller subproblems.
  - Recurse on each child (created for each branch)

## Decision Tree Learning

- Greedy strategy: Always select the most important attribute to test first.
  - *Most important attribute* implies the one that makes the most difference to the classification of an example. [*Get leaves as early as possible*]
    - Get correct classification with a small number of test
    - All paths in the tree will be short
    - Tree as a whole will be shallow.
  - Above greedy strategy is a local optimal choice, may not necessarily leads to the globally smallest tree!

# Decision Tree Learning

- Which attribute to test at root? Type vs Patron?
  - Type: all subsets (i.e., branches) needs further exploration.
  - Patron: two branches become leaves, only one needs further exploration.



#### Decision tree construction:

- Step 1: Test an attribute at each node.
- Step 2: Partition the examples according to values and create child nodes with relevant examples.



■ Step 3: Now consider child node for further tests of attributes except the one which have already been tested in the hierarchy (*recursive operation*)

#### Four cases to consider at a child node:

- Case 1: All examples are positive (or all negative)  $\rightarrow$  we are done; we can answer Yes or No. [e.g., Patron=None]
- Case 2: Some positive and some negative examples  $\rightarrow$  then choose the best attribute to split them recursively. [e.g., Patron=Full]



#### Four cases to consider at a child node:

- Case 3: No examples left  $\rightarrow$  No example has been observed for this combination of attribute values, and we return a default value (e.g., *plurality of parent node*)
- <u>Case 4:</u> No attributes left, but both positive and negative examples remain → These examples have exactly the same description, but different classifications. This can happen because there is an error or **noise** in the data.
  - *In this case return the plurality classification of the remaining examples.* [tree will not be consistent]

#### Algorithm pseudocode

Function PLURAITY-VALUE selects the most common class/output among the examples

### Choosing the Most Important Attribute

- Which attribute is the most important now?
  - **Perfect attribute**: One that splits into subsets where each subset contain either all positive or all negative examples. [all branches become leaf nodes]
  - Useless attribute: One that splits into subsets where each subset contain fairly equal mix of positive and negative examples. [all branches need recursive exploration]

### Choosing the Most Important Attribute

#### Perfect vs. useless? How to measure?

- A formal measure of perfect vs useless: Entropy
- The fundamental quantity in information theory (*Shannon and Weaver, 1949*).
- Entropy is a measure of the uncertainty of a random variable.
- Acquisition of information corresponds to a reduction in entropy.
- A random variable with only one value—a coin that always comes up heads—has no uncertainty and thus its entropy is defined as zero; thus, we gain no information by observing its value.

### Choosing the Most Important Attribute

- **Entropy:** Average number of bits per symbol to encode information.
  - The roll of a fair *four*-sided die has 2 bits of entropy, because it takes two bits to describe one of four equally probable choices.
  - An unfair coin that comes up heads 99% of the time.
    - This coin has less uncertainty than the fair coin—if we guess heads we'll be wrong only 1% of the time—it's entropy measure should be close to zero, but positive.

# Entropy Measure

■ In general, the entropy H(V) of a random variable V with values  $v_k$ , each with probability  $P(v_k)$ , is defined as :

$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

### Entropy Measure

Verify that entropies measures are correct.

We can check that the entropy of a fair coin flip is indeed 1 bit:

$$H(Fair) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1$$
.

If the coin is loaded to give 99% heads, we get

$$H(Loaded) = -(0.99 \log_2 0.99 + 0.01 \log_2 0.01) \approx 0.08$$
 bits.

# Entropy Measure

• Define B(q) as the entropy of a Boolean random variable that is true with probability q:

$$B(q) = -(q \log_2 q + (1 - q) \log_2 (1 - q))$$

• If a training set contains p positive examples and n negative examples, then the entropy of the goal attribute on the whole set is:

$$H(Goal) = B\left(\frac{p}{p+n}\right).$$

### Entropy Measure in Decision Tree

- **Decision tree contest**: Entropy represents an impurity measure of the set.
  - A set with 5 positive and 5 negative examples: Most impure, entropy should be highest.
  - A set with 10 positive and 0 negative examples: Purest, entropy should be the lowest.

# Entropy Before Split

 $\blacksquare$  A set with p positive and n negative examples.

■ Entropy of the set is: 
$$B\left(\frac{p}{p+n}\right)$$

# Entropy After Splitting

- An attribute A with d distinct values divides the training set E into subsets  $E_1$ ,  $E_2$ , ...,  $E_d$ .
- Each subset  $E_k$  has  $p_k$  positive examples and  $n_k$  negative examples, with entropy of  $B(p_k/(p_k + n_k))$  bits of information.  $[E_k$  contains examples with A = kth value]
- A randomly chosen example from the training set has the kth value for the attribute with probability  $(p_k + n_k)/(p + n)$ , so the expected entropy (weighted average) of the d subsets after splitting on attribute A is:

$$Remainder(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B(\frac{p_k}{p_k + n_k})$$

### Information Gain

- **Information Gain:** The amount of information gain is the amount of entropy reduction after the split on attribute A.
- Assume  $E_{BS}$  = Entropy before split,  $E_{AS}$ = Entropy after split [weighted average]
  - Hence, information gain ( = *reduction of entropy*):

$$Gain = E_{BS} - E_{AS}$$
 [reduction of entropy]

Hence, this is simply:

$$Gain(A) = B(\frac{p}{p+n}) - Remainder(A)$$

### Information Gain

- Information Gain:  $Gain(A) = B(\frac{p}{p+n}) Remainder(A)$
- Compute the information gain for the attributes Patron and Type:

$$\begin{aligned} Gain(Patrons) &= 1 - \left[ \frac{2}{12} B(\frac{0}{2}) + \frac{4}{12} B(\frac{4}{4}) + \frac{6}{12} B(\frac{2}{6}) \right] \approx 0.541 \text{ bits,} \\ Gain(Type) &= 1 - \left[ \frac{2}{12} B(\frac{1}{2}) + \frac{2}{12} B(\frac{1}{2}) + \frac{4}{12} B(\frac{2}{4}) + \frac{4}{12} B(\frac{2}{4}) \right] = 0 \text{ bits,} \end{aligned}$$

- Patron is a better attribute than Gain! Hence, choose Patron over Type.
- Choose the attribute which gives the highest information gain!

### Final Decision Tree

• Final decision tree constructed from given examples.



**Question**: What is the information gain for Type attribute at level 3?

### Decision Tree Learning Curve

- Experiment with 100 examples: Construct decision trees
  - Split into train and test (e.g., 1 and 99, 2 and 98, etc.)
  - Random split 20 times and report average accuracy on test set
  - Note: As the training size grows, accuracy increases.



### Overfitting

- Overfitting: Too much importance on every training example
  - Complex tree
  - Suffers generalization: very low training error, but very high test error.
  - Misses important concepts
- A consistent decision tree over training data may result in a complex tree
  - Noisy data may also induce complexity in the tree

# Overfitting Solution

- **Pre-prune**: Prune the tree before it gets large
  - Early stopping: limit depth during tree construction
- **Post-pruning**: Prune the tree after construction
  - Remove irrelevant nodes
  - Replace internal nodes with most common class [Only replace if test error do not increase]

### **Decision Tree Issues**

- Missing values: Some examples have missing value in some attributes
  - Solution: Replace missing value with mean of the attribute over the entire dataset
- Continuous-valued attribute: For example, height is continuous-valued.
  - Convert to categorical attribute:
    - Height > 40cm: *Tall* and Height <40cm: *Short*