Principal Component Analysis and Clustering

PSC 8185: Machine Learning for Social Science

Iris Malone

April 4, 2022

Announcements

- Problem Set 6 Released: Due April 18
- Problem Set 7 Released April 17 (Due April 27)
- Next Week: Jupyter Notebook (Python)

Recap

Where We've Been:

- Supervised learning used for prediction problems
- Parametric and non-parametric approaches navigate bias-variance tradeoff
- Deep learning often performs better than traditional ML algorithms

2

Recap

Where We've Been:

- · Supervised learning used for prediction problems
- Parametric and non-parametric approaches navigate bias-variance tradeoff
- Deep learning often performs better than traditional ML algorithms

New Terminology:

- · Stochastic Gradient Descent
- Neurons
- Backpropagation

Agenda

1. Unsupervised Learning

2. PCA

3. Clustering

Unsupervised Learning

- 1. Supervised Learning
 - 1.1 Regression and Classification
 - 1.2 Random Forests, Boosting, Bagging
 - 1.3 SVM
 - 1.4 Deep Learning and Neural Nets
- 2. Unsupervised Learning
 - 2.1 Principal Component Analysis and Clustering (This Week)
 - 2.2 Sentiment Analysis (April 18)
 - 2.3 Topic Modeling (April 25)

Supervised Learning:

- · Predicts a given outcome
- Data includes x and y
- Evaluate accuracy

Unsupervised Learning:

- · Descriptive data analysis
- Data includes x
- No standard evaluation

Main Idea: Supervised learning includes information about an outcome of interest; unsupervised learning does not.

Main Idea: Supervised learning includes information about an outcome of interest; unsupervised learning does not.

Unsupervised Learning

- Main Idea: Describe relationship between observations in a data matrix
- · Common Objectives:
 - Simplify high-dimensional data to explain variation in as few dimensions as possible
 - Identify meaningful groupings of the data

Unsupervised Learning

Real-World Applications:

- Describe sociological trends across groups
- · Anomaly Detection
- · Hand-Writing Analysis
- Defining 'Nationalism' or 'State Capacity'

Types of Unsupervised Learning

- Principal Component Analysis (PCA)
- Clustering
 - · K-Means Clustering
 - · Hierarchical Clustering
- · Sentiment Analysis
- Topic Modeling

PCA

Recall: High-Dimensional Data

- p >> n is pretty common due to experimental advances and cheaper computers
- · Need method to summarize high-dimensional data

Principal Component Analysis

- · This is the most popular unsupervised procedure ever
- First theorized by Karl Pearson (1901)
- Developed by Harold Hotelling (1933)
- Provides a way to visualize and summarize information about high-dimensional data

Principal Component Analysis

Main Idea: Define a small set of M dimensions which summarize the information in all p predictors.

Figure 1: Example Dimensionality Reduction

Principal Components

- Each of the n observations live in p-dimensional space, but not all dimensions equally interesting.
- PCA seeks to find the most interesting dimensions, meaning the dimensions with the largest amount of variation among observations

The Most Interesting Man in the World

Principal Components Procedure

Procedure:

- · Pre-process the data
- Identify similarities between groups of predictors X_1, X_2, \dots, X_p
- Transform groups of predictors into M linear combination known as **principal component** Z

$$Z_m = \sum_{i=1}^p \phi_{jm} X_j$$

Pre-Processing the Data: Centering and Scaling

 Centering is key to ensure dimensions look at variance and not mean of predictors

Pre-Processing the Data: Centering and Scaling

- Centering is key to ensure dimensions look at variance and not mean of predictors
- Scale the variance to have mean zero and look for the linear combination with the largest sample variance

Pre-Processing the Data: Centering and Scaling

- Centering is key to ensure dimensions look at variance and not mean of predictors
- Scale the variance to have mean zero and look for the linear combination with the largest sample variance
- · Scaling is key to good interpretation
- Unscaled data means the PCA loading vector will have a very large loading for the variable with the highest variance

Transform Groups Predictors

Procedure:

- · Pre-process the data
- Identify similarities between groups of predictors X_1, X_2, \dots, X_p
- Transform groups of predictors into M linear combination known as **principal component** Z

$$Z_m = \sum_{i=1}^p \phi_{jm} X_j$$

Principal Component Characteristics

- Solution to an optimization problem where the first two principal components span a plane which is closest to the data
- First and second principal components must be orthogonal (i.e., they don't explain the same types of variation)

PCA Loss Function

Let X be the data matrix with n samples and p variables. From each variable, we subtract the mean of the column (i.e. we center the variables).

PCA Loss Function

Let X be the data matrix with n samples and p variables. From each variable, we subtract the mean of the column (i.e. we center the variables).

To find the first principal component we minimize variance of the n samples projected onto ϕ_1 :

$$max_{\phi_{11}...\phi_{p1}} \frac{1}{n} \sum_{i=1}^{n} (\sum_{j=1}^{p} \phi_{j1} x_{ij})^2$$
 subject to $\sum_{j=1}^{p} \phi_{j1}^2 = 1$

PCA Loss Function

Let X be the data matrix with n samples and p variables. From each variable, we subtract the mean of the column (i.e. we center the variables).

To find the first principal component we minimize variance of the n samples projected onto ϕ_1 :

$$max_{\phi_{11}...\phi_{p1}} \frac{1}{n} \sum_{i=1}^{n} (\sum_{j=1}^{p} \phi_{j1} x_{ij})^2$$
 subject to $\sum_{j=1}^{p} \phi_{j1}^2 = 1$

Projection of the i^{th} sample onto ϕ_1 is the score Z_{i1}

Finding the second principal component

Let X be the data matrix with n samples and p variables. From each variable, we subtract the mean of the column (i.e. we center the variables).

To find the second principal component we solve:

$$max_{\phi_{11}...\phi_{p2}} \frac{1}{n} \sum_{i=1}^{n} (\sum_{j=1}^{p} \phi_{j2} x_{ij})^2$$
 subject to $\sum_{j=1}^{p} \phi_{j2}^2 = 1 \& \sum_{j=1}^{p} \phi_{j1} \phi_{j2} = 1$

Loadings

• Loadings: Aspects of the vector which passes the closest to a cloud of observations in terms of squared Euclidean distance

Loadings

- Loadings: Aspects of the vector which passes the closest to a cloud of observations in terms of squared Euclidean distance
- The loading make up an element of the principal component loading vector ($\phi_1 = (\phi_{11}, \phi_{21}, \dots)$)

$$Z_m = \sum_{i=1}^p \phi_{jm} X_j$$

Loadings

- Loadings: Aspects of the vector which passes the closest to a cloud of observations in terms of squared Euclidean distance
- The loading make up an element of the principal component loading vector $(\phi_1 = (\phi_{11}, \phi_{21}, \dots))$

$$Z_m = \sum_{i=1}^p \phi_{jm} X_j$$

- Loadings:
 - <u>Size</u> describes how much a variable contributes to a particular principal component
 - Sign explains correlation between elements

What is the first principal component?

The first principal component (the most interesting dimension) is the vector which passes the closest to a cloud of samples in terms of squared **Euclidean distance**.

$$d(x_{i'j}, x_{ij}) = \sqrt{\sum_{i=1}^{n} (x_{ij} - x_{i'j})^2}$$

Interpretation:

- We expect some observations to be 'closer' (more similar) to each other
- When distance is small, observation pairs are more similar
- When distance is larger, observation pairs are more dissimilar

Example Euclidean Distance

Vector which passes the closest to a cloud of samples in terms of squared **Euclidean distance**, i.e. the green line minimizing the average squared length of the dotted lines

What does this look like with 3 variables?

Figure 2: PC spans the plane that best fits the data (like SVM hyperplane)

What is PCA Good For?

Example: US Arrests data contains info on 3 crime statistics (assault, murder, rape) and population (p = 3) for 50 states (n = 50).

Potential Research Questions:

- · Do crimes correlate with each other?
- Do states with larger urban populations see more crime?

What is PCA Good For?

US Arrests data contains info on 3 crime statistics (assault, murder, rape) and population (p=3) for 50 states (n=50).

Example Euclidean Distance

- Compare how similar states are based on crime statistics
- When distance is small, observation pairs are more similar (red)
- When distance is larger, observation pairs are more dissimilar (blue)

Interp: PC pairs states with similar crime rates

Figure 3: A **biplot** of the first two principal component scores and loading vectors.

A second interpretation

Another way to explain the first principal component is that it is the dimension with the highest variance between variables

Interp: PC explains variation in crime levels

Example: USArrests Interpretation

- States with high levels of rape also have high levels of assault and murder
- Urban population is orthogonal (unrelated) to crime rates
- Different types of states have different crime rates

How many principal components are enough?

Rule of Thumb: 2 Principal Components capture most of the relevant information.

How many principal components are enough?

Rule of Thumb: 2 Principal Components capture most of the relevant information.

More Precise Answer:

- Proportion of Variance Explained (PVE): tells us sum of the variance explained by the m-th principal component over the total variance
- Can assess how much variation in data: low PVE = noisy data;
 high PVE = highly separable data

 First principal component explains the direction in space in which the data vary the most

- First principal component explains the direction in space in which the data vary the most
- Second principal component explains the direction in space in which the data vary the second most, etc.

- First principal component explains the direction in space in which the data vary the most
- Second principal component explains the direction in space in which the data vary the second most, etc.
- Total variance of the score vectors is the same as the total variacne of the original variables:

$$\sum_{i=1}^{p} \frac{1}{n} \sum_{j=1}^{n} z_{ji}^{2} = \sum_{k=1}^{p} Var(x_{k})$$

The variance of the m^{th} score variable is:

$$\frac{1}{n}\sum_{i=1}^{n}z_{im}^{2}=\frac{1}{n}\sum_{i=1}^{n}(\sum_{j=1}^{p}\phi_{jm}x_{ij})^{2}$$

Figure 5: Scree plot showing proportion variance explained by each principal component

Clustering

Clustering

Main Idea: Partition the data into distinct groups based on intra-group similarities (or inter-group differences)

PCA vs Clustering

- PCA: Simplify multiple predictors into small number of principal components to explain variance
- Clustering: Find subgroups among observations based on individual or combination of predictors

Types of Clustering

 K-Means Clustering: Partition observations into pre-set number of clusters

Types of Clustering

- K-Means Clustering: Partition observations into pre-set number of clusters
- 2. **Hierarchical Clustering:** Partition observations, but with no pre-set number of clusters

Main Idea: Partition observations into pre-set number of clusters

Main Idea: Partition observations into pre-set number of clusters

- Goal:
 - Maximize the similarity of samples within each cluster
 - · Minimize within-cluster variation
- · Loss Function:

$$min_{C_1,...,C_k} \sum_{l=1}^K W(C_l)$$

• $\mathit{W}(\mathit{C}_l)$ is measure of similarity between pairs of observations

$$W(C_l) = \frac{1}{|C_l|} \sum_{i,j \in C_l} \mathsf{Distance}^2(x_i, x_j)$$

- · K is the number of clusters and must be fixed in advance
- Distance (x_i, x_j) is Euclidean distance between observations

K-Means Procedure

- Assign each sample to a cluster from 1 to K arbitrarily, e.g. at random
- · Assign obs. to closest centroid
 - Find the centroid of each cluster , i.e. the average \bar{x} of all the samples in the cluster

$$x_{l,j} = \frac{1}{|C_l|} \sum_{i,j \in C_l} x_{i,j}$$
for $j = 1, \dots, p$

- · Reassign each sample to the nearest centroid
- · Reposition centroids to new center
- Iterate until centroid position becomes static

Limits to K-Means Procedure

 As iterations increase, clustering will improve until a local optimum has been reached

Limits to K-Means Procedure

- As iterations increase, clustering will improve until a local optimum has been reached
- **Problem:** Algorithm focuses on minimizing local differences rather than global ones (like CART greedy algorithm)

Limits to K-Means Procedure

- As iterations increase, clustering will improve until a local optimum has been reached
- **Problem:** Algorithm focuses on minimizing local differences rather than global ones (like CART greedy algorithm)
- Significance: Different initializations → different clusters

Example: K-Means Output with Different Initializations

Figure 6: Value above each plot is minimum; 3 different values, 1 common minimum

Example: K-Means Output with Different Initializations

Figure 7: In practice we start from many random initializations and choose the output which minimizes the loss function

Advantages and Disadvantages to K-Means Clustering

Advantages

Disadvantages

Advantages and Disadvantages to K-Means Clustering

Advantages

- Guaranteed convergence
- Good scalability for large-p multi-dimensional data
- ullet If large p, then faster than hierarchical clustering

Disadvantages

Advantages and Disadvantages to K-Means Clustering

Advantages

- Guaranteed convergence
- Good scalability for large-p multi-dimensional data
- If large p, then faster than hierarchical clustering

Disadvantages

- · Need to specify number of clusters
- Different initializations → different results

Hierarchical Clustering

Main Idea: Partition observations, but with no pre-set number of clusters

Hierarchical Clustering

Main Idea: Partition observations, but with no pre-set number of clusters

Types of Hierarchical Clustering:

- Agglomerative: Bottom-up approach; cluster starting from leaves and build up to trunk (most common method)
- Divisive: Top-down approach; cluster starting from root node and build down to leaves

• Intuition: Look at Euclidean distance between observations and cluster similar observations (small distance)

- Intuition: Look at Euclidean distance between observations and cluster similar observations (small distance)
- Find families of cluster based on links (distance lengths) between observations
- · Iterate until all data organized and nested

Intuition: Look at Euclidean distance between observations and cluster similar observations

Intuition: Look at Euclidean distance between observations and cluster similar observations

Intuition: Look at Euclidean distance between observations and cluster similar observations

Agglomerative Clustering

Intuition: Look at Euclidean distance between observations and cluster similar observations

Agglomerative Clustering

Intuition: Look at Euclidean distance between observations and cluster most similar observations

Dendogram

We visualize the clusters using a **dendogram**.

Dendogram

We visualize the clusters using a **dendogram**.

- Dendogram clusters data according to given linkage algorithm
- Clusters obtained by cutting dendogram at given height
- Cutting data exploits nested structure data

Dendogram

We visualize the clusters using a **dendogram**.

- Dendogram clusters data according to given linkage algorithm
- · Clusters obtained by cutting dendogram at given height
- Cutting data exploits nested structure data

Reading a Dendogram

- Dendogram has leaves and branches
- Branches measure dissimilarity (larger Eucl. distance)
 - · Y-axis measures degree of dissimilarity
 - The height of the branches shows how different observations are.
- Each leaf represents an observation.
 - Leaves fuse into branches around other observations that are similar to them
 - · Re-ordering leaves on a branch doesn't affect their meaning

Reading a Dendogram: Similarities

- Read as moving from leaves → branches
- · Fusions lower in the tree indicate greater similarity
- · Fusions higher in the tree indicate less similarity
- <u>Cannnot</u> draw inferences about similarity based on horizontal proximity

Reading a Dendogram: Similarities

- · Observations 5 and 7 are quite similar
- Observation 9 is not necessarily similar to observation 2
- Observation 9 is as similar to obs. 2 as it is to obs. 8, 5, 7

Reading a Dendogram: Number Clusters

- Identify clusters by making horizontal cut in data
- Distinct set observations below cut are each a cluster
- Different cut positions lead to differnt cuts

Reading a Dendogram: Number Clusters

- Far Left: No cut → one cluster
- Center: Cut at height 9 (dashed line) → two clusters
- Far Right: Cut at height $5 \rightarrow 3$ clusters

Hierarchical Clustering Procedure

• Begin with n observations and a measure (normally Euclidean distance) of all $\binom{n}{2}$ pairwise dissimilarities

Hierarchical Clustering Procedure

- Begin with n observations and a measure (normally Euclidean distance) of all $\binom{n}{2}$ pairwise dissimilarities
- For $i = 1, n, n 1, \dots, 2$:
 - Examine all pairwise inter-cluster dissimilarities among the i clusters and identify pair of clusters that are least dissimilar (most similar)
 - Calculate height dendogram based on dissimilarity (less dissimilar lower on tree)
 - · Fuse least dissimilar clusters together
 - Compute the new pairwise inter-cluster dissimilarities among the $\it i-1$ remaining clusters

Hierarchical Clustering Procedure

- Sometimes we have pair of groups of observations (instead of pair of observations),
- Describe dissimilarity between groups as linkage.
- Types of Linkages
 - Complete
 - Average
 - Single
 - · Centroid

Complete Linkage:
 Maximal inter-cluster
 dissimilarity. Record the largest of the dissimilarities.

 Single Linkage: Minimal inter-cluster dissimilarity. Record the smallest of these dissimilarities.

 Average Linkage: Mean inter cluster dissimilarity. Record the average of dissimilarities across all pairwise dissimilarities.

Centroid Linkage:
 Dissimilarity between the centroid for cluster A and the centroid for cluster B.

Different Linkages

Correlation Distance

Rule of Thumb: Cluster using Euclidean Distance to measure similarities and dissimilarities

Alternative Approach: Correlation Distance

 Considers 2 observations similar if their features are highly correlated

Correlation Distance

Example: Suppose that we want to cluster customers at a store for market segmentation.

- · Samples are customers
- Each variable corresponds to a specific product and measures the number of items bought by the customer during the years

Approaches:

- Euclidean distance would cluster all customers who purchase few things (quantity)
- But we might want to cluster customers who purchase similar things (category)
- Here, correlation distance may be more appropriate dissimilarity between samples

Correlation Distance

Figure 13: Observations 1 and 3 have similar values so there is small Euclidean distance, but large correlation; observations 1 and have different values so large Euclidean distance, but highly correlated

Advantages and Disadvantages to Hierarchical Clustering

Advantages

Disadvantages

Advantages and Disadvantages to Hierarchical Clustering

Advantages

- Attractive visualization of clusters
- · Captures highly flexible relationships

Disadvantages

Advantages and Disadvantages to Hierarchical Clustering

Advantages

- · Attractive visualization of clusters
- · Captures highly flexible relationships

Disadvantages

- · Not suitable for large data
- If large p, performs worse than k-means clustering
- Many different ways to cut the cluster → different results

Problems in Clustering

- 1. Is clustering appropriate? Could a sample belong to more than one cluster?
- 2. How many clusters are appropriate?
- 3. Are the clusters robust?

Conclusion

- · Unsupervised learning effective tool for data analysis
- PCA good at exploring trends across multi-dimensional data
- Clustering good at identifying similarities between groups of observations
- · Clustering effective, but subjective to different user inputs