Managing Things You Cannot Control (SOC 412)

Week 10 Lecture 7

Sherrerd Hall 306

J. Nathan Matias
@natematias
civilservant.io
jmatias@princeton.edu

What we will cover today

Cluster randomization

Block randomization

Regression adjustment

Bonferroni Adjustment

Final Projects
Experiment Plan

Conducting & Analyzing Experiments

Research Ethics Statistics of Experiment Design

Planning an
Experiment
(outcomes,
power)

PreAnalysis
Plans &
Open
Science

Analyzing & Sharing Results

Graceful Recovery from Problems

Deploying & Monitoring your Experiment

Adjustment
Strata
Clusters

Designing Experiments with Partners

Null Hypothesis Testing

revisiting basics of OLS linear regression

Error

revisiting basics of OLS linear regression

Comparing Outcomes Between Groups 2 groups, 10 observations per group

Distribution of Errors

assumption of OLS: error is normally distributed & homoscedastic

Comparing Outcomes Between Groups 2 groups, 10 observations per group

Root Mean Square Error

the estimated standard deviation of the residuals

Comparing Outcomes Between Groups 2 groups, 10 observations per group


```
m1 <- lm(outcome ~
group == 2,
data=posts)
```

```
rmse <- sqrt(
sum(m1$residuals^2) /
length(m1$residuals)
)</pre>
```

Standard Error

The standard deviation of the sampling distribution (of a particular statistic)

$$se(\hat{\beta}) = \frac{\sigma}{\sqrt{(n-1)\times Var(X)}}$$

 $\sigma = RMSE$ $n = num \ of \ observations$ $Var(X) = variance \ of \ predictor \ (TREAT)$

Null Hypothesis Testing

revisiting basics of OLS linear regression

t-statistic

revisiting basics of OLS linear regression

$$t_{obs} = \frac{\hat{\beta} - \beta}{se(\hat{\beta})}$$
 where $H_0: \beta = 0$

So t_{obs} tells us how many standard errors away from 0 our sample estimate is.

There's nothing magical about $H_0: \beta_1 = 0$, it could be anything (e.g., $H_0: \beta_1 = 1$)

t-distribution

revisiting basics of OLS linear regression

$$t_{obs} = \frac{\hat{\beta} - \beta}{se(\hat{\beta})}$$
 where $H_0: \beta = 0$

How large is large? Critical values of tobserved					
df	Two-sided probability level, p				
ai	0.10	0.05	0.01		
10	1.81	2.23	3.17		
20	1.72	2.09	2.85		
30	1.70	2.04	2.75		
50	1.68	2.01	2.68		
100	1.66	1.98	2.63		
infinite	1.64	1.96	2.58		

confidence intervals

p-value

probability of observing a coefficient this extreme if the null hypothesis were true

Clustered Randomization: Class

Clustered Randomization: Class

Clustered Randomization: School

Clustered Randomization: School

Estimating ATE from Cluster Randomization

we are estimating the ATE, not looking for correlations

Comparing Outcomes Between Groups 2 groups, 10 observations per group

Standard Error

$$se(\hat{\beta}) = \frac{\sigma}{\sqrt{(n-1)\times Var(X)}}$$

$$\sigma = RMSE$$
 $n = num \ of \ observations$
 $Var(X) = variance \ of \ predictor \ (TREAT)$

How many observations do we *really* have?
20 observations or 2?

Estimating ATE from Cluster Randomization

we are estimating the ATE, not looking for correlations

Comparing Outcomes Between Groups 2 groups, 10 observations per group

Assumptions of Linear Regression

- Linearity of residuals
- Independence of Outcomes
- Homoscedasticity
- Normality of errors

Simulating Group Randomization

(examples in R at simulated-cluster-randomization-example.R)

Comparing Outcomes Between Groups 2 groups, 10 observations per group


```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.2787 0.3599 14.666 1.88e-11 ***

group%%2 4.3698 0.5090 8.585 8.85e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.138 on 18 degrees of freedom
Multiple R-squared: 0.8037, Adjusted R-squared: 0.7928
F-statistic: 73.7 on 1 and 18 DF, p-value: 8.845e-08
```

Simulated 50x: mean treatment effect: 0.59

Simulating Group Randomization

(examples in R at simulated-cluster-randomization-example.R)


```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.0362 0.2629 26.766 <2e-16 ***
group%%2 0.9522 0.3718 2.561 0.0112 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.629 on 198 degrees of freedom
Multiple R-squared: 0.03207, Adjusted R-squared: 0.02718
F-statistic: 6.56 on 1 and 198 DF, p-value: 0.01117
```

Simulated 50x: mean treatment effect: 0.13

Estimating ATE for Group Randomization

Random Intercepts Models and Clustered Standard Errors

Comparing Outcomes Between Groups 2 groups, 10 observations per group

Strategies

- Random Intercepts model
 - Especially useful for comparing individuals <u>and</u> groups
- Clustered standard errors (useful for getting point estimates)
 - Without specifying groups
 - With specifying groups

Random Intercepts Model

Random Intercepts Models

- Very specific assumptions
- Useful when comparing blocked randomization in a cluster randomized design (such as different kinds of posts or schools)
- Multilevel & hierarchical modeling could be its own entire semester. As always, take the time to familiarize yourself with a modeling approach before using it regularly

Example R code:

```
library(lme4)
library(lmerTest)
summary(glmer(outcome ~ group.treat + (1|group), data=posts))
```

Clustered Standard Errors

Huber White Standard Errors

- Useful when you want a single point estimate & standard errors
- Ongoing discussion about the best methods to cluster standard errors (Green's lab now uses Bell & McCaffrey clustered SEs)
- Here we will use Huber White

Example code:

```
library(rms)
```

```
r1 = ols(outcome ~ group.treat, data=posts, x=TRUE)
```

r1.adjusted <- robcov(r1, cluster=factor(posts\$group), method='huber') screenreg(list(r1))

https://www.rdocumentation.org/packages/rms/versions/5.1-2/topics/robcov

Regression Adjustment

Improving the precision of standard errors

$$\ln Interactions = \beta_0 + \beta_1 TREAT + \epsilon$$

 $\ln Interactions = \beta_0 + \beta_1 TREAT + \beta_2 Weekend + \epsilon$

(n=8 experiments conducted on Facebook)
Linear models estimating effect on log-transformed interactions.
Experiment by SOC 412: github.com/natematias/SOC412

(n=8 experiments conducted on Facebook)
Linear models estimating effect on log-transformed interactions, adjusted by weekend. Experiment by SOC 412: github.com/natematias/SOC412

Regression Adjustment

Avoid conditioning on post-treatment variables

scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation.

Montgomery, J. M., Nyhan, B., & Torres, M. (2016, November). **How conditioning on post-treatment variables can ruin your experiment and what to do about it.** In Annual meeting of the Midwest Political Science Association, Chicago, IL, April.

Block Randomization

Preventing Problems From Introducing Selection Bias

Bonferroni Adjustment

Adjusting p-values for multiple comparison

Note: Bonferroni is the most conservative, so you may choose others