Modelos lineales y aditivos en ecología

Facundo X. Palacio

2022-04-28

Introducción a los modelos lineales

Definición de modelo lineal

Correlación lineal simple

Matrices de correlación

Regresión lineal simple

Relación entre regresión y correlación

Matrices de gráficos de dispersión

Regresión lineal multiple

Variables categóricas (= dummies)

Test de t

Test de t pareado

Análisis de la varianza

Supuestos

Colinealidad

Análisis de residuos

Transformaciones

Actividades

Ejercicios de repaso

Ejercicio 1.2

Ejercicio 1.3

Ejercicio 1.4

Modelos lineales generalizados

Datos de presencia-ausencia

GLM binomial

Diagnósticos

Bondad del ajuste

Gráfico del modelo

Interpretación de los coeficientes

Ecuación

Capacidad predictiva

Conteos I

GLMs Poisson y quasi-Poisson

GLM Poisson

GLM quasi-Poisson

Diagnósticos

Bondad del ajuste

Ecuación

Gráfico del modelo

GLM binomial negativo

Chequear sobredispersión

Validación del modelo quasi-Poisson

Modelo binomial negativo

Validación del modelo binomial negativo

Bondad del ajuste

Ecuación

Comparaciones múltiples

Incluyendo un offset

Gráficos de los modelos

Modelo lineal general

Modelos no lineales

Regresión no paramétrica

Regresión polinómica

Funciones a trozos

Splines de regresión

Polinomios a trozos

Splines de suavizado

Modelos aditivos generalizados

GAM con otras distribuciones e interacciones

Comparación de modelos

Validación

Modelo con variables continuas (efectos principales + interacciones)

Actividades

Ejercicio 4.1

Ejercicio 4.2

Ejercicio 4.3

Modelos mixtos

Dependencia temporal

```
set.seed(101)
tiempo <- seq(1, 20, length = 30)
a <- 20
b <- 5
c <- 0.3
peso <- a - (a - b)*exp(-c*tiempo) + rnorm(n = 30, mean = 0, sd = 0.5)
plot(tiempo, peso)</pre>
```



```
# Gráfico de residuos
m.crec <- lm(log(peso) ~ log(tiempo))
plot(log(tiempo), log(peso))
abline(m.crec, lwd = 2, col = "blue")</pre>
```


plot(log(tiempo), resid(m.crec), xlab = "log(tiempo)", ylab = "Residuos")

Función de autocorrelación
plot(acf(peso))

Series peso

Dependencia espacial

Ubicación (coordenadas) y concentración de metales pesados en el río Mosa (Europa).

```
library(sp)
library(gstat)
library(ggplot2)
data(meuse)
coordinates(meuse) = ~x+y
bubble(meuse, "zinc", col = "#00ff0088", main = "zinc concentrations (ppm)")
```

zinc concentrations (ppm)


```
m.espacial <- lm(zinc ~ x + y, data = meuse)
plot(meuse$x, resid(m.espacial))
abline(a = 0, b = 0, lty = 2)</pre>
```



```
plot(meuse$y, resid(m.espacial))
abline(a = 0, b = 0, lty = 2)
```



```
data(meuse)
meuse$residuos <- resid(m.espacial)
ggplot(meuse, aes(x = x, y = y, col = residuos)) +
   geom_point(size = 4) +
   scale_color_gradient(low = "yellow", high = "red")</pre>
```



```
# Semivariograma
coordinates(meuse) = ~x+y
zinc.variog <- variogram(zinc ~ 1, meuse)
plot(zinc.variog)</pre>
```


Introducción a los modelos mixtos

A partir de 8 plantas, se contaron el número de flores en 3 inflorescencias por planta y se midió la longitud de los pedicelos. Analizar la relación entre la longitud del pedicelo y el número de flores/inflorescencia.

```
##
      id long.pedicelo nflores
## 1
                     1.0
                                2
       1
## 2
       1
                     1.3
                                2
## 3
                     1.4
                                3
       1
## 4
       2
                     2.0
                                4
       2
                     2.2
                                5
## 5
##
   6
       2
                     2.1
                                4
                                5
## 7
                     2.9
       3
## 8
       3
                     3.0
                                6
```

```
## 9
       3
                    2.8
                                7
## 10
                    3.5
                                8
                    3.4
                                7
## 11
## 12
                    3.7
                               10
                    4.5
                               10
## 13
       5
## 14
       5
                    4.7
                               12
## 15
       5
                    4.7
                               11
## 16
                    5.5
                               11
       6
                    5.7
## 17
                               13
       6
## 18
                    6.0
                               12
       6
## 19
       7
                    7.2
                               13
## 20
                    7.3
                               11
## 21
                    7.5
                               14
## 22
                    8.4
                               14
       8
## 23
                    8.8
                               17
       8
                    8.6
## 24
                               15
```


Opción 1: asumimos que las observaciones son independientes
m1 <- lm(nflores ~ long.pedicelo, data = plantas)
summary(m1)</pre>

```
## Call:
## lm(formula = nflores ~ long.pedicelo, data = plantas)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -2.7697 -0.9116 -0.1089 0.7718 2.6725
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
                   1.2973
                              0.5926
                                       2.189 0.0395 *
## (Intercept)
## long.pedicelo
                   1.7085
                              0.1159 14.739 6.99e-13 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.368 on 22 degrees of freedom
## Multiple R-squared: 0.908, Adjusted R-squared: 0.9039
## F-statistic: 217.2 on 1 and 22 DF, p-value: 6.986e-13
# Opción 2: una media por unidad
xlong.pedicelo <- tapply(long.pedicelo, id, mean)</pre>
xnflores <- tapply(nflores, id, mean)</pre>
```


plot(xlong.pedicelo, xnflores, pch = 19, cex = 2)

```
m2 <- lm(xnflores ~ xlong.pedicelo)</pre>
summary(m2)
##
## Call:
## lm(formula = xnflores ~ xlong.pedicelo)
##
## Residuals:
     Min
               1Q Median
                               3Q
                                      Max
## -1.1378 -0.7432 -0.4178 0.9354 1.7874
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   1.3328
                              0.8834
                                       1.509
                                               0.182
## xlong.pedicelo
                   1.7007
                              0.1729
                                       9.837 6.36e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.176 on 6 degrees of freedom
## Multiple R-squared: 0.9416, Adjusted R-squared: 0.9319
## F-statistic: 96.78 on 1 and 6 DF, p-value: 6.359e-05
# Opción 3: incluir el efecto de la unidad
m3 <- lm(nflores ~ long.pedicelo + id, data = plantas)
summary(m3)
##
## Call:
## lm(formula = nflores ~ long.pedicelo + id, data = plantas)
## Residuals:
               10 Median
                               3Q
                                      Max
## -1.5294 -0.4657 -0.1177 0.6667 1.4118
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  -2.745
                              1.832 -1.498
                                              0.1548
                   4.118
                              1.417
                                      2.907
## long.pedicelo
                                              0.0108 *
## id2
                  -1.569
                              1.454 -1.079
                                              0.2977
## id3
                  -3.196
                              2.486 -1.286
                                              0.2181
                  -3.471
## id4
                              3.350 -1.036
                                              0.3166
## id5
                  -5.333
                              4.879 -1.093
                                             0.2916
## id6
                  -8.863
                              6.422 -1.380 0.1878
## id7
                 -14.784
                              8.677 -1.704 0.1090
```

```
## id8
                 -17.333
                            10.465 -1.656 0.1184
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9538 on 15 degrees of freedom
## Multiple R-squared: 0.9695, Adjusted R-squared: 0.9533
## F-statistic: 59.68 on 8 and 15 DF, p-value: 5.532e-10
# Opción 4: modelo mixto de intercepto aleatorio
library(lme4)
## Loading required package: Matrix
library(lmerTest)
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
##
      lmer
## The following object is masked from 'package:stats':
##
##
      step
m4 <- lmer(nflores ~ long.pedicelo + (1|id), data = plantas)
summary(m4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: nflores ~ long.pedicelo + (1 | id)
##
     Data: plantas
##
## REML criterion at convergence: 79.4
##
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -1.8940 -0.4662 -0.1966 0.4627 1.6150
##
## Random effects:
## Groups Name
                        Variance Std.Dev.
## id
          (Intercept) 1.050 1.025
```

```
## Residual
                       1.015
                              1.007
## Number of obs: 24, groups: id, 8
##
## Fixed effects:
               Estimate Std. Error
                                      df t value Pr(>|t|)
##
## (Intercept)
                 1.1887 0.8804 6.0833 1.35
                                                   0.225
## long.pedicelo
                  1.7326
                            ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Correlation of Fixed Effects:
##
              (Intr)
## long.pedicl -0.881
ranef(m4)
## $id
## (Intercept)
## 1 -0.7505424
## 2 -0.3735793
## 3 -0.1613717
## 4 0.7734991
## 5
     1.3489226
## 6 0.6637327
## 7 -0.9288334
## 8 -0.5718278
##
## with conditional variances for "id"
rand(m4) # Significancia de efectos aleatorios
## ANOVA-like table for random-effects: Single term deletions
##
## Model:
## nflores ~ long.pedicelo + (1 | id)
                              LRT Df Pr(>Chisq)
          npar logLik
                        AIC
            4 -39.679 87.357
## <none>
             3 -42.174 90.349 4.9912 1
## (1 | id)
                                          0.02548 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
long.pedicelo.new <- seq(min(plantas$long.pedicelo), max(plantas$long.pedicelo), lengt
newdata <- expand.grid(long.pedicelo.new, plantas$id)</pre>
colnames(newdata) <- c("long.pedicelo", "id")</pre>
```

```
newdata$predy.fixed <- predict(m4, newdata = newdata, re.form = NA)
newdata$predy.rand <- predict(m4, newdata = newdata, re.form = NULL)

ggplot(data = plantas, aes(x = long.pedicelo, y = nflores, col = id)) +
    geom_point(size = 2) +
    geom_line(data = newdata, aes(x = long.pedicelo, y = predy.rand)) +
    geom_line(data = newdata, aes(x = long.pedicelo, y = predy.fixed), col = "black", size = 2) + g
    xlab("Longitud del pedicelo") + ylab("Numero de flores") +
    theme_bw()</pre>
```

Modelo de intercepto aleatorio

REML criterion at convergence: 77.1

Opción 5: modelo mixto de intercepto y pendiente aleatorios
m5 <- lmer(nflores ~ long.pedicelo + (long.pedicelo|id), data = plantas)
boundary (singular) fit: see help('isSingular')
summary(m5)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: nflores ~ long.pedicelo + (long.pedicelo | id)
Data: plantas
##</pre>

```
##
## Scaled residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -1.8626 -0.5465 -0.1193 0.5507 1.6903
##
## Random effects:
## Groups Name
                         Variance Std.Dev. Corr
## id
            (Intercept) 0.8215 0.9064
            long.pedicelo 0.1895 0.4353
##
                                           -1.00
## Residual
                         0.9006 0.9490
## Number of obs: 24, groups: id, 8
## Fixed effects:
##
               Estimate Std. Error
                                        df t value Pr(>|t|)
## (Intercept) 0.03828 0.66573 5.38487 0.057 0.956222
## long.pedicelo 2.08596 0.21792 4.77122 9.572 0.000271 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Correlation of Fixed Effects:
              (Intr)
## long.pedicl -0.889
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
ranef(m5)
## $id
##
    (Intercept) long.pedicelo
## 1 -0.20606623 0.098969626
## 2 -0.02342207
                  0.011249167
## 3 0.10951121 -0.052596116
## 4 -0.82313657 0.395336576
## 5 -0.86260770 0.414293794
## 6 0.00184916 -0.000888116
## 7 0.99686885 -0.478776830
## 8 0.80700335 -0.387588101
## with conditional variances for "id"
rand(m5)
## ANOVA-like table for random-effects: Single term deletions
##
```

```
## Model:
## nflores ~ long.pedicelo + (long.pedicelo | id)
##
                                          npar logLik
                                                                LRT Df Pr(>Chisq)
                                                          AIC
                                             6 -38.527 89.054
## long.pedicelo in (long.pedicelo | id)
                                             4 -39.679 87.357 2.303 2
                                                                            0.3162
newdata$predy.fixed <- predict(m5, newdata = newdata, re.form = NA)</pre>
newdata$predy.rand <- predict(m5, newdata = newdata, re.form = NULL)</pre>
ggplot(data = plantas, aes(x = long.pedicelo, y = nflores, col = id)) +
  geom_point(size = 2) +
  ggtitle("Modelo de intercepto y pendiente aleatorios") +
  geom\_line(data = newdata, aes(x = long.pedicelo, y = predy.rand)) +
  geom_line(data = newdata, aes(x = long.pedicelo, y = predy.fixed), col = "black", size = 2) +
  xlab("Longitud del pedicelo") + ylab("Numero de flores") +
  theme_bw()
```

Modelo de intercepto y pendiente aleatorios

Un caso especial

```
library(data.table)
library(nlme)
```

```
## Attaching package: 'nlme'
## The following object is masked from 'package:lme4':
##
       lmList
##
url <- "https://raw.githubusercontent.com/hauselin/rtutorialsite/master/data/simpsonsPa</pre>
df <- fread(url)</pre>
head(df)
##
            iq grades class
## 1:
       94.5128 67.9295
## 2:
       95.4359 82.5449
## 3:
       97.7949 69.0833
                            a
## 4:
       98.1026 83.3141
## 5: 96.5641 99.0833
                            a
## 6: 101.5897 89.8526
plot(df$grades, df$iq)
```



```
model.class <- lme(iq ~ grades, random = ~1|class, data = df)
predy.fixed <- predict(model.class, level = 0)</pre>
```

```
ggplot(df, aes(grades, iq, col = class)) + geom_point(size = 2.5) +
ggtitle("Paradoja de Simpson") +
geom_smooth(method = "lm", se = FALSE) +
geom_line(data = data.frame(x = df$grades, y = predy.fixed), aes(x, y), col = "black", size = 3)
theme_bw()
```

'geom_smooth()' using formula 'y ~ x'

Modelos lineales generalizados mixtos

Palacio et al. (2014) estudiaron la selección natural mediada por aves frugívoras sobre rasgos de los frutos de *Celtis tala* (frutos Celtis 2013.txt), incluyendo el diametro (diam), peso (peso), concentración de azúcares (az), peso de pulpa (pulpa), peso de semilla (sem) y relación peso de pulpa/peso de semilla (pulpa.sem). Para esto se midieron 4-10 frutos por árbol en 24 árboles y 4 parches de bosque.

Diseño anidado

```
library(glmmTMB)
library(lme4)
library(MuMIn)
library(sjPlot)
## Registered S3 method overwritten by 'parameters':
##
    method
                                    from
##
    format.parameters_distribution datawizard
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
library(equatiomatic)
celtis <- read.delim("frutos Celtis 2013.csv", sep = ";")</pre>
table(celtis$planta)
##
##
   D1-145 D1-146 D1-147 D1-148
                                    P1-10
                                            P1-11
                                                    P1-12
                                                             P1-13
                                                                      P1-2 P1-5(1)
        26
               23
                       19
                               16
                                       29
                                                30
                                                        30
                                                                        27
                                                                                27
                                                                14
## P1-5(2)
             P1-7
                      P1-8
                             P1-9 P2-150 P2-151 P2-152 P2-153 P2-154 P2-155
##
       30
               28
                       13
                               30
                                        27
                                                28
                                                        30
                                                                31
                                                                        30
##
      P3-1
             P3-2
                      P3-6
                             P3-7
##
        9
               30
                       30
                                30
```

table(celtis\$planta, celtis\$parche) # Es un diseño anidado?

```
##
           D1 P1 P2 P3
##
    D1-145 26 0 0 0
##
##
    D1-146 23 0 0 0
##
    D1-147
           19 0 0 0
    D1-148 16 0 0 0
##
##
    P1-10
            0 29 0
            0 30 0 0
##
    P1-11
##
    P1-12
            0 30 0 0
##
    P1-13
            0 14 0 0
##
    P1-2
            0 27 0 0
##
    P1-5(1) 0 27 0 0
##
    P1-5(2) 0 30 0 0
            0 28 0 0
    P1-7
##
##
    P1-8
            0 13 0 0
##
    P1-9
            0 30 0 0
   P2-150 0 0 27 0
##
```

```
P2-151 0 0 28 0
##
##
    P2-152 0 0 30 0
##
    P2-153 0 0 31 0
    P2-154
            0 0 30 0
##
    P2-155 0 0 30 0
##
##
    P3-1
             0 0 0 9
##
    P3-2
             0 0 0 30
    P3-6
            0 0 0 30
##
    P3-7 0 0 0 30
##
lmm.m0 <- lm(sem ~ diam, data = celtis)</pre>
lmm.m1 <- glmmTMB(sem ~ diam + (1|planta), family = gaussian, data = celtis)</pre>
lmm.m2 <- glmmTMB(sem ~ diam + (1|parche/planta), family = gaussian, data = celtis)</pre>
# Comparación de modelos
AIC(lmm.m0, lmm.m1, lmm.m2)
##
         df
                  AIC
## 1mm.m0 3 -3832.245
## lmm.m1 4 -4215.268
## lmm.m2 5 -4214.188
r.squaredGLMM(lmm.m1)
## Warning: 'r.squaredGLMM' now calculates a revised statistic. See the help page.
## Warning in r.squaredGLMM.glmmTMB(lmm.m1): the effects of zero-inflation and
## dispersion model are ignored
             R2m
                       R2c
## [1,] 0.3126432 0.6709598
summary(lmm.m1)
## Family: gaussian (identity)
## Formula:
                    sem ~ diam + (1 | planta)
## Data: celtis
##
##
                BIC logLik deviance df.resid
       AIC
## -4215.3 -4197.6 2111.6 -4223.3
                                           612
## Random effects:
##
```

Conditional model:

```
## Groups
            Name
                        Variance Std.Dev.
            (Intercept) 5.899e-05 0.00768
## planta
## Residual
                        5.417e-05 0.00736
## Number of obs: 616, groups: planta, 24
## Dispersion estimate for gaussian family (sigma^2): 5.42e-05
##
## Conditional model:
                Estimate Std. Error z value Pr(>|z|)
##
## diam
               ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
# Gráfico
diam.new <- seq(min(celtis$diam, na.rm = TRUE), max(celtis$diam, na.rm = TRUE), length
newdata <- expand.grid(diam.new, celtis$planta, stringsAsFactors = TRUE)</pre>
colnames(newdata) <- c("diam", "planta")</pre>
newdata$parche <- substr(newdata$planta, 1, 2)</pre>
newdata$predy.fixed <- predict(lmm.m2, newdata = newdata, re.form = NA) # poblacional
newdata$predy.rand1 <- predict(lmm.m2, newdata = newdata, re.form = NULL) # planta
rand2 <- ranef(lmm.m2)$cond$parche</pre>
rand2.parche <- rand2[match(newdata$parche, rownames(rand2)), 1]</pre>
a <- fixef(lmm.m2)$cond[1]
b <- fixef(lmm.m2)$cond[2]
newdata$predy.rand2 <- a + b*newdata$diam + rand2.parche</pre>
# Efecto planta
library(ggplot2)
ggplot(data = celtis, aes(x = diam, y = sem, col = planta)) +
 geom_point(size = 2) +
  ggtitle("Modelo con factores aleatorios anidados") +
 geom_line(data = newdata, aes(x = diam, y = predy.rand1)) +
 geom_line(data = newdata, aes(x = diam, y = predy.fixed), col = "black", size = 2) +
 xlab("Diametro del fruto (mm)") + ylab("Masa de semilla (g)")
```

Warning: Removed 1 rows containing missing values (geom_point).

8

Diametro del fruto (mm)

0.000 -

10

```
# Efecto parche
ggplot(data = celtis, aes(x = diam, y = sem, col = parche)) +
  geom_point(size = 2) +
  ggtitle("Modelo con factores aleatorios anidados") +
  geom_line(data = newdata, aes(x = diam, y = predy.rand2, col = parche)) +
  geom_line(data = newdata, aes(x = diam, y = predy.fixed), col = "black", size = 2) +
  xlab("Diametro del fruto (mm)") + ylab("Masa de semilla (g)")
```

Warning: Removed 1 rows containing missing values (geom_point).

Modelo con factores aleatorios anidados


```
# Tabla resumen
# tab_model(lmm.m2)

# Ecuaciones del modelo

lmm.m1 <- lmer(sem ~ diam + (1|planta), data = celtis)

lmm.m2 <- lmer(sem ~ diam + (1|parche/planta), data = celtis)
# extract_eq(lmm.m1)
# extract_eq(lmm.m2)</pre>
```

Diseño cruzado

##

diameter

plate

```
data(Penicillin)

## 'data.frame': 144 obs. of 3 variables:
## $ diameter: num 27 23 26 23 23 21 27 23 26 23 ...
## $ plate : Factor w/ 24 levels "a","b","c","d",..: 1 1 1 1 1 1 2 2 2 2 ...
## $ sample : Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 5 6 1 2 3 4 ...
summary(Penicillin)
```

sample

Min. :18.00 a : 6 A:24

##

Data: Penicillin

```
## 1st Qu.:22.00 b
                       : 6 B:24
                       : 6 C:24
## Median :23.00 c
## Mean :22.97 d
                       : 6 D:24
## 3rd Qu.:24.00 e
                       : 6 E:24
                       : 6 F:24
## Max. :27.00 f
##
                 (Other):108
table(Penicillin$plate, Penicillin$sample) # Es un diseño cruzado?
##
##
      ABCDEF
   a 1 1 1 1 1 1
##
## b 1 1 1 1 1 1
## c 1 1 1 1 1 1
##
   d 1 1 1 1 1 1
## e 1 1 1 1 1 1
## f 1 1 1 1 1 1
## g 1 1 1 1 1 1
## h 1 1 1 1 1 1
## i 1 1 1 1 1 1
## j 1 1 1 1 1 1
## k 1 1 1 1 1 1
##
   1 1 1 1 1 1 1
## m 1 1 1 1 1 1
## n 1 1 1 1 1 1
## o 1 1 1 1 1 1
## p 1 1 1 1 1 1
## q 1 1 1 1 1 1
## r 1 1 1 1 1 1
   s 1 1 1 1 1 1
##
## t 1 1 1 1 1 1
## u 1 1 1 1 1 1
## v 1 1 1 1 1 1
##
   w 1 1 1 1 1 1
## x 1 1 1 1 1 1
lmm.pen <- lmer(diameter ~ 1 + (1|plate) + (1|sample), data = Penicillin)</pre>
summary(lmm.pen)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: diameter ~ 1 + (1 | plate) + (1 | sample)
```

```
##
## REML criterion at convergence: 330.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.07923 -0.67140 0.06292 0.58377 2.97959
##
## Random effects:
                Variance Std.Dev.
## Groups Name
## plate (Intercept) 0.7169 0.8467
## sample (Intercept) 3.7311 1.9316
## Residual
                     0.3024 0.5499
## Number of obs: 144, groups: plate, 24; sample, 6
##
## Fixed effects:
##
            Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 22.9722 0.8086 5.4866 28.41 3.62e-07 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

```
# Tabla resumen
# tab_model(lmm.pen)

# Gráfico de efectos aleatorios
plot_model(lmm.pen, type = "re")
```


[[2]]

Modelos mixtos con estructura espacial

Palacio et al. (2017) estudiaron el consumo de frutos por aves en *Psychotriacarthagenensis* en un bosque secundario pedemontano de las Yungas (Psychotria_El_Corte_2012.txt). Se quiere analizar si el peso del fruto (x.peso) se relaciona con el número de infrutescencias (n.infrut).

```
library(glmmTMB)
psycho <- read.table("Psychotria_El_Corte_2012.txt", header = TRUE)
hist(psycho$x.diam, xlab = "Diametro promedio del fruto", ylab = "Frecuencia")</pre>
```

Histogram of psycho\$x.diam


```
plot(psycho$x, psycho$y, pch = 19)
```



```
psycho$pos <- numFactor(psycho$x, psycho$y)</pre>
psycho$group <- factor(rep(1, nrow(psycho)))</pre>
lm.no_espacial <- lm(x.diam ~ n.infrut, data = psycho)</pre>
glmm.espacial <- glmmTMB(x.diam ~ n.infrut + exp(pos + 0|group), family = gaussian, data = psycho</pre>
summary(glmm.espacial)
## Family: gaussian (identity)
## Formula:
                     x.diam ~ n.infrut + exp(pos + 0 | group)
## Data: psycho
##
##
        AIC
                 BIC
                       logLik deviance df.resid
                        -80.9
                                              67
##
      171.8
               183.2
                                  161.8
##
## Random effects:
##
## Conditional model:
    Groups
             Name
                                           Variance Std.Dev. Corr
##
             pos(3566146.557,7036311.599) 0.4442
##
    group
                                                     0.6665
##
             pos(3566158.168,7036313.385) 0.4442
                                                     0.6665
                                                              0.83
##
             pos(3566086.945,7036321.145) 0.4442
                                                     0.6665
                                                              0.39 0.33
##
             pos(3566078.659,7036321.188) 0.4442
                                                     0.6665
                                                              0.35 0.29 0.88
             pos(3566083.65,7036324.855) 0.4442
                                                     0.6665
                                                              0.37 0.31 0.93 0.91
##
##
             pos(3566154.94,7036330.023) 0.4442
                                                     0.6665
                                                              0.73 0.77 0.35 0.31
```

```
pos(3566176.494,7036331.757) 0.4442
                                                    0.6665
                                                              0.57 0.67 0.25 0.22
##
##
             pos(3566082.032,7036332.251) 0.4442
                                                     0.6665
                                                              0.35 0.30 0.83 0.84
             pos(3566140.074,7036339.335) 0.4442
                                                              0.64 0.61 0.42 0.37
##
                                                     0.6665
             pos(3566186.495,7036342.785) 0.4442
                                                     0.6665
                                                              0.46 0.53 0.21 0.18
##
##
             pos(3566171.58,7036342.863)
                                                    0.6665
                                                              0.54 0.61 0.26 0.23
##
             pos(3566176.562,7036344.684) 0.4442
                                                    0.6665
                                                              0.50 0.57 0.24 0.21
                                                              0.47 0.54 0.23 0.20
##
             pos(3566178.238,7036348.369) 0.4442
                                                    0.6665
             pos(3566082.128,7036350.719) 0.4442
                                                              0.31 0.27 0.63 0.63
##
                                                     0.6665
                                                              0.40 0.46 0.19 0.17
##
             pos(3566189.858,7036352.001) 0.4442
                                                     0.6665
             pos(3566209.764,7036355.591) 0.4442
                                                              0.31 0.36 0.14 0.12
##
                                                    0.6665
             pos(3566208.107,7036355.599) 0.4442
                                                     0.6665
                                                              0.31 0.37 0.14 0.13
##
             pos(3566083.814,7036356.25)
                                                    0.6665
                                                              0.31 0.27 0.58 0.58
##
             pos(3566208.117,7036357.446) 0.4442
                                                     0.6665
                                                              0.31 0.36 0.14 0.13
##
                                                              0.33 0.29 0.57 0.55
             pos(3566090.453,7036358.062) 0.4442
                                                    0.6665
##
             pos(3566208.127,7036359.293) 0.4442
                                                     0.6665
                                                              0.30 0.35 0.14 0.13
##
                                                              0.30 0.26 0.55 0.55
             pos(3566085.491,7036359.935) 0.4442
                                                    0.6665
##
             pos(3566075.557,7036361.834) 0.4442
                                                              0.26 0.23 0.52 0.53
##
                                                     0.6665
             pos(3566178.335,7036366.836) 0.4442
                                                     0.6665
                                                              0.37 0.41 0.21 0.18
##
##
             pos(3566176.678,7036366.845) 0.4442
                                                     0.6665
                                                              0.38 0.42 0.21 0.19
             pos(3566178.345,7036368.683) 0.4442
                                                              0.37 0.40 0.20 0.18
##
                                                     0.6665
##
             pos(3566171.716,7036368.718) 0.4442
                                                    0.6665
                                                              0.38 0.42 0.22 0.20
             pos(3566165.087,7036368.752) 0.4442
                                                              0.40 0.42 0.24 0.22
##
                                                    0.6665
##
             pos(3566158.487,7036374.327) 0.4442
                                                     0.6665
                                                              0.37 0.39 0.25 0.23
                                                              0.38 0.39 0.26 0.23
##
             pos(3566156.83,7036374.336) 0.4442
                                                     0.6665
             pos(3566077.301,7036378.446) 0.4442
                                                     0.6665
                                                              0.23 0.20 0.41 0.41
##
##
             pos(3566070.692,7036382.174) 0.4442
                                                     0.6665
                                                              0.20 0.18 0.38 0.39
##
             pos(3566069.035,7036382.183) 0.4442
                                                    0.6665
                                                              0.20 0.18 0.38 0.39
             pos(3566095.56,7036383.891)
                                                     0.6665
                                                              0.26 0.23 0.38 0.37
##
             pos(3566074.016,7036384.003) 0.4442
                                                              0.21 0.18 0.37 0.38
##
                                                    0.6665
##
             pos(3566095.57,7036385.737) 0.4442
                                                     0.6665
                                                              0.25 0.23 0.37 0.36
                                                              0.25 0.23 0.37 0.36
             pos(3566093.912,7036385.746) 0.4442
                                                     0.6665
##
##
             pos(3566097.237,7036387.575) 0.4442
                                                     0.6665
                                                              0.25 0.23 0.36 0.35
             pos(3566137.117,7036407.682) 0.4442
                                                              0.23 0.23 0.21 0.20
                                                    0.6665
##
             pos(3566178.596,7036416.698) 0.4442
                                                              0.18 0.20 0.13 0.12
##
                                                     0.6665
             pos(3566176.939,7036416.707) 0.4442
                                                     0.6665
                                                              0.19 0.20 0.13 0.12
##
             pos(3566085.829,7036424.571) 0.4442
                                                              0.14 0.13 0.20 0.20
##
                                                    0.6665
             pos(3566176.987,7036425.941) 0.4442
##
                                                     0.6665
                                                              0.16 0.17 0.12 0.11
##
             pos(3566085.839,7036426.418) 0.4442
                                                     0.6665
                                                              0.14 0.13 0.20 0.20
                                                              0.13 0.12 0.20 0.20
             pos(3566077.553,7036426.461) 0.4442
                                                    0.6665
##
                                                              0.13 0.12 0.18 0.18
##
             pos(3566089.182,7036431.941) 0.4442
                                                     0.6665
                                                              0.11 0.11 0.18 0.18
##
             pos(3566072.61,7036432.027)
                                                     0.6665
             pos(3566077.591,7036433.848) 0.4442
                                                     0.6665
                                                              0.12 0.11 0.18 0.18
##
##
             pos(3566084.23,7036435.66)
                                           0.4442
                                                     0.6665
                                                              0.12 0.11 0.17 0.17
             pos(3566084.249,7036439.354) 0.4442
                                                              0.11 0.11 0.16 0.16
##
                                                    0.6665
             pos(3566071.001,7036441.27) 0.4442
                                                     0.6665
                                                              0.10 0.09 0.15 0.16
##
##
             pos(3566077.639,7036443.082) 0.4442
                                                     0.6665
                                                              0.10 0.10 0.15 0.15
```

```
##
             pos(3566183.771,7036455.454) 0.4442
                                                    0.6665
                                                             0.10 0.11 0.08 0.07
##
             pos(3566177.171,7036461.029) 0.4442
                                                    0.6665
                                                             0.10 0.10 0.08 0.07
                                                    0.6665
                                                             0.09 0.10 0.07 0.07
##
             pos(3566185.467,7036462.832) 0.4442
##
             pos(3566183.81,7036462.841)
                                          0.4442
                                                    0.6665
                                                             0.09 0.10 0.07 0.07
##
             pos (3566185.564,7036481.3)
                                          0.4442
                                                    0.6665
                                                             0.07 0.07 0.06 0.05
##
             pos(3566190.545,7036483.12)
                                          0.4442
                                                    0.6665
                                                             0.07 0.07 0.05 0.05
                                                    0.6665
##
             pos(3566192.212,7036484.959) 0.4442
                                                             0.06 0.07 0.05 0.05
##
             pos(3566187.24,7036484.985)
                                          0.4442
                                                    0.6665
                                                             0.06 0.07 0.05 0.05
##
             pos(3566099.502,7036503.912) 0.4442
                                                    0.6665
                                                             0.05 0.05 0.06 0.06
             pos(3566097.845,7036503.921) 0.4442
                                                    0.6665
                                                             0.05 0.05 0.06 0.06
##
##
             pos(3566096.188,7036503.929) 0.4442
                                                    0.6665
                                                             0.05 0.05 0.06 0.06
##
             pos(3566099.512,7036505.759) 0.4442
                                                    0.6665
                                                             0.05 0.05 0.06 0.06
##
             pos(3566099.531,7036509.452) 0.4442
                                                    0.6665
                                                             0.04 0.04 0.05 0.05
##
             pos(3566217.332,7036534.69)
                                          0.4442
                                                    0.6665
                                                             0.03 0.03 0.02 0.02
             pos(3566237.229,7036536.433) 0.4442
                                                    0.6665
                                                             0.02 0.03 0.02 0.02
##
##
             pos(3566228.943,7036536.476) 0.4442
                                                    0.6665
                                                             0.03 0.03 0.02 0.02
                                                    0.6665
##
             pos(3566202.426,7036536.615) 0.4442
                                                             0.03 0.03 0.02 0.02
##
             pos(3566119.612,7036546.283) 0.4442
                                                    0.6665
                                                             0.03 0.03 0.03 0.03
##
             pos(3566134.546,7036549.898) 0.4442
                                                    0.6665
                                                             0.03 0.03 0.03 0.03
             pos(3566108.088,7036561.118) 0.4442
                                                             0.02 0.02 0.02 0.02
##
                                                    0.6665
##
   Residual
                                          0.3628
                                                    0.6023
##
##
##
##
##
##
##
   0.33
##
   0.24 0.72
## 0.89 0.33 0.23
   0.41 0.76 0.56 0.41
   0.20 0.59 0.80 0.20 0.49
   0.25 0.72 0.83 0.25 0.61 0.79
##
## 0.23 0.67 0.82 0.23 0.57 0.86 0.92
## 0.22 0.63 0.77 0.22 0.55 0.86 0.88 0.94
   0.67 0.31 0.23 0.75 0.40 0.20 0.25 0.23 0.23
## 0.18 0.53 0.69 0.18 0.45 0.86 0.73 0.79 0.83 0.19
## 0.14 0.39 0.53 0.14 0.33 0.66 0.54 0.58 0.61 0.14 0.73
## 0.14 0.40 0.54 0.14 0.34 0.68 0.55 0.60 0.62 0.14 0.75 0.97
   0.62 0.31 0.23 0.69 0.40 0.20 0.25 0.24 0.23 0.91 0.20 0.14 0.15
## 0.14 0.40 0.53 0.14 0.34 0.67 0.55 0.59 0.62 0.14 0.75 0.96 0.97 0.15
## 0.59 0.34 0.25 0.66 0.44 0.22 0.28 0.26 0.26 0.84 0.22 0.16 0.16 0.90 0.16
## 0.14 0.39 0.52 0.14 0.34 0.66 0.54 0.59 0.61 0.14 0.74 0.94 0.94 0.15 0.97
## 0.58 0.31 0.23 0.65 0.41 0.21 0.26 0.24 0.24 0.86 0.20 0.15 0.15 0.94 0.15
## 0.56 0.27 0.20 0.63 0.35 0.18 0.22 0.21 0.20 0.82 0.17 0.13 0.13 0.86 0.13
## 0.20 0.51 0.58 0.21 0.48 0.68 0.68 0.71 0.75 0.22 0.75 0.60 0.61 0.23 0.62
```

```
0.21\ 0.52\ 0.58\ 0.21\ 0.49\ 0.67\ 0.69\ 0.71\ 0.75\ 0.23\ 0.74\ 0.58\ 0.60\ 0.24\ 0.60
   0.20 0.50 0.57 0.20 0.48 0.66 0.66 0.69 0.73 0.22 0.73 0.59 0.61 0.23 0.61
##
   0.22 0.52 0.56 0.23 0.51 0.63 0.67 0.69 0.72 0.24 0.68 0.54 0.55 0.25 0.56
   0.24 0.54 0.55 0.25 0.55 0.60 0.66 0.66 0.69 0.27 0.63 0.49 0.50 0.28 0.50
   0.25 0.50 0.49 0.26 0.54 0.52 0.59 0.59 0.61 0.29 0.55 0.43 0.44 0.31 0.45
   0.26 0.51 0.49 0.27 0.55 0.51 0.59 0.58 0.60 0.30 0.54 0.42 0.43 0.31 0.44
   0.44 0.24 0.18 0.49 0.32 0.17 0.21 0.20 0.20 0.65 0.17 0.13 0.13 0.70 0.13
   0.40 0.22 0.16 0.45 0.28 0.15 0.19 0.18 0.18 0.60 0.15 0.11 0.12 0.64 0.12
    0.40\ 0.21\ 0.16\ 0.45\ 0.28\ 0.15\ 0.18\ 0.17\ 0.17\ 0.59\ 0.15\ 0.11\ 0.11\ 0.63\ 0.11
##
   0.40 0.29 0.23 0.44 0.38 0.22 0.26 0.25 0.25 0.58 0.22 0.16 0.17 0.63 0.17
##
   0.40\ 0.22\ 0.17\ 0.45\ 0.29\ 0.16\ 0.20\ 0.18\ 0.18\ 0.59\ 0.16\ 0.12\ 0.12\ 0.64\ 0.12
   0.38 0.29 0.22 0.43 0.37 0.21 0.26 0.25 0.25 0.56 0.21 0.16 0.17 0.61 0.17
    0.39 0.28 0.22 0.43 0.37 0.21 0.26 0.24 0.24 0.57 0.21 0.16 0.16 0.62 0.16
   0.37\ 0.29\ 0.22\ 0.41\ 0.37\ 0.21\ 0.26\ 0.25\ 0.25\ 0.54\ 0.22\ 0.17\ 0.17\ 0.59\ 0.17
   0.22 0.29 0.27 0.24 0.35 0.28 0.32 0.32 0.33 0.30 0.31 0.25 0.26 0.32 0.26
   0.13\ 0.25\ 0.27\ 0.14\ 0.26\ 0.32\ 0.32\ 0.33\ 0.35\ 0.17\ 0.36\ 0.35\ 0.35\ 0.18\ 0.36
##
    0.13 0.25 0.27 0.14 0.27 0.32 0.32 0.33 0.35 0.17 0.36 0.34 0.35 0.18 0.36
   0.22\ 0.16\ 0.14\ 0.24\ 0.21\ 0.14\ 0.16\ 0.16\ 0.16\ 0.32\ 0.14\ 0.11\ 0.12\ 0.35\ 0.12
   0.12 0.22 0.23 0.13 0.23 0.28 0.28 0.29 0.30 0.16 0.31 0.30 0.31 0.17 0.31
   0.21 \ 0.16 \ 0.13 \ 0.23 \ 0.21 \ 0.13 \ 0.16 \ 0.15 \ 0.16 \ 0.31 \ 0.14 \ 0.11 \ 0.11 \ 0.34 \ 0.12
##
   0.21 0.15 0.12 0.23 0.19 0.12 0.14 0.14 0.14 0.31 0.13 0.10 0.10 0.34 0.10
   0.19 0.15 0.13 0.21 0.20 0.13 0.15 0.15 0.15 0.29 0.14 0.11 0.11 0.31 0.12
   0.19 0.13 0.11 0.21 0.17 0.11 0.13 0.12 0.13 0.28 0.11 0.09 0.09 0.31 0.09
   0.19\ 0.14\ 0.11\ 0.21\ 0.17\ 0.11\ 0.13\ 0.13\ 0.13\ 0.28\ 0.12\ 0.09\ 0.10\ 0.30\ 0.10
##
   0.18\ 0.14\ 0.12\ 0.20\ 0.18\ 0.12\ 0.14\ 0.14\ 0.14\ 0.27\ 0.13\ 0.10\ 0.10\ 0.29\ 0.10
   0.17 0.13 0.11 0.19 0.17 0.11 0.13 0.13 0.26 0.12 0.10 0.10 0.28 0.10
   0.16 0.12 0.10 0.19 0.15 0.10 0.11 0.11 0.11 0.25 0.10 0.08 0.08 0.27 0.08
    0.16 0.12 0.10 0.18 0.16 0.10 0.12 0.12 0.12 0.24 0.11 0.09 0.09 0.26 0.09
   0.08 0.14 0.15 0.09 0.15 0.18 0.17 0.18 0.19 0.11 0.20 0.20 0.21 0.11 0.21
   0.08 0.13 0.14 0.09 0.14 0.16 0.16 0.17 0.18 0.11 0.18 0.18 0.18 0.12 0.19
   0.07 0.12 0.13 0.08 0.13 0.16 0.16 0.16 0.17 0.10 0.18 0.18 0.19 0.10 0.19
##
    0.07 0.12 0.13 0.08 0.13 0.16 0.16 0.16 0.17 0.10 0.18 0.18 0.18 0.11 0.19
##
   0.06 0.09 0.10 0.06 0.10 0.12 0.12 0.12 0.13 0.08 0.14 0.14 0.14 0.08 0.14
    0.05 0.09 0.10 0.06 0.10 0.12 0.11 0.12 0.12 0.07 0.13 0.14 0.14 0.08 0.14
   0.05\ 0.09\ 0.09\ 0.06\ 0.09\ 0.11\ 0.11\ 0.11\ 0.12\ 0.07\ 0.13\ 0.13\ 0.13\ 0.07\ 0.14
    0.05 0.09 0.09 0.06 0.09 0.11 0.11 0.11 0.12 0.07 0.13 0.13 0.13 0.08 0.14
   0.06\ 0.06\ 0.05\ 0.07\ 0.07\ 0.06\ 0.07\ 0.07\ 0.09\ 0.09\ 0.06\ 0.06\ 0.10\ 0.06
   0.06 0.06 0.05 0.07 0.07 0.06 0.07 0.06 0.07 0.09 0.06 0.06 0.06 0.10 0.06
   0.06 0.06 0.05 0.07 0.07 0.06 0.06 0.06 0.07 0.09 0.06 0.06 0.06 0.10 0.06
##
    0.06 0.06 0.05 0.07 0.07 0.06 0.06 0.06 0.07 0.09 0.06 0.06 0.06 0.10 0.06
##
   0.06 0.06 0.05 0.06 0.07 0.06 0.06 0.06 0.06 0.09 0.06 0.05 0.06 0.09 0.06
   0.02 0.04 0.04 0.02 0.04 0.05 0.05 0.05 0.05 0.03 0.06 0.06 0.06 0.03 0.07
   0.02 0.03 0.04 0.02 0.03 0.05 0.04 0.05 0.05 0.02 0.05 0.06 0.06 0.03 0.06
   0.02 0.03 0.04 0.02 0.04 0.05 0.04 0.05 0.05 0.03 0.05 0.06 0.06 0.03 0.06
   0.02 0.04 0.04 0.03 0.04 0.05 0.05 0.05 0.05 0.03 0.06 0.06 0.06 0.04 0.06
```

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
## 0.16
## 0.92 0.15
## 0.79 0.13 0.86
## 0.26 0.62 0.24 0.21
## 0.26 0.61 0.24 0.21 0.97
## 0.26 0.62 0.24 0.20 0.97 0.96
## 0.28 0.56 0.26 0.23 0.90 0.92 0.90
   0.31 0.51 0.29 0.25 0.81 0.83 0.82 0.90
## 0.34 0.45 0.32 0.27 0.72 0.74 0.73 0.80 0.88
## 0.35 0.44 0.33 0.28 0.70 0.72 0.71 0.78 0.86 0.97
## 0.69 0.13 0.73 0.77 0.21 0.21 0.21 0.23 0.26 0.29 0.29
   0.62 0.12 0.66 0.72 0.19 0.19 0.19 0.21 0.23 0.26 0.26 0.89
## 0.61 0.11 0.65 0.72 0.18 0.19 0.18 0.20 0.22 0.25 0.26 0.87 0.97
## 0.67 0.17 0.67 0.63 0.27 0.28 0.27 0.30 0.33 0.38 0.38 0.75 0.68 0.66
## 0.62 0.12 0.66 0.71 0.20 0.20 0.20 0.22 0.24 0.27 0.28 0.91 0.94 0.92 0.72
   0.65 0.17 0.65 0.62 0.27 0.28 0.27 0.30 0.33 0.37 0.38 0.74 0.68 0.66 0.97
## 0.65 0.16 0.66 0.63 0.26 0.27 0.27 0.29 0.32 0.36 0.37 0.76 0.70 0.68 0.96
## 0.63 0.17 0.63 0.60 0.28 0.28 0.28 0.31 0.34 0.38 0.39 0.71 0.66 0.64 0.94
## 0.35 0.27 0.34 0.31 0.41 0.42 0.42 0.45 0.48 0.54 0.55 0.36 0.33 0.33 0.48
## 0.20 0.37 0.19 0.17 0.46 0.46 0.48 0.47 0.46 0.49 0.48 0.19 0.17 0.17 0.25
## 0.20 0.37 0.19 0.17 0.46 0.46 0.48 0.48 0.47 0.49 0.49 0.19 0.18 0.17 0.26
## 0.36 0.12 0.37 0.38 0.19 0.19 0.19 0.21 0.22 0.26 0.26 0.49 0.50 0.50 0.53
```

```
0.35 0.12 0.36 0.37 0.18 0.19 0.19 0.20 0.22 0.25 0.26 0.47 0.49 0.48 0.51
##
  0.34 0.10 0.36 0.37 0.16 0.17 0.17 0.18 0.20 0.23 0.23 0.48 0.50 0.50 0.49
  0.32 0.12 0.33 0.33 0.18 0.19 0.19 0.20 0.22 0.25 0.25 0.43 0.44 0.44 0.47
  0.31 0.09 0.32 0.34 0.15 0.15 0.15 0.16 0.18 0.20 0.21 0.44 0.46 0.46 0.44
  0.31 0.10 0.32 0.33 0.16 0.16 0.16 0.17 0.19 0.21 0.22 0.43 0.45 0.45 0.44
  0.30 0.11 0.31 0.32 0.17 0.17 0.17 0.18 0.20 0.23 0.23 0.41 0.43 0.42 0.44
  0.29 0.10 0.29 0.30 0.16 0.16 0.16 0.18 0.19 0.22 0.22 0.39 0.40 0.40 0.42
##
  0.27 0.09 0.28 0.29 0.13 0.14 0.14 0.15 0.16 0.18 0.19 0.38 0.40 0.40 0.38
##
  0.27 0.09 0.28 0.29 0.14 0.15 0.15 0.16 0.17 0.20 0.20 0.37 0.39 0.39 0.39
  0.13 0.22 0.12 0.11 0.25 0.25 0.26 0.26 0.26 0.27 0.27 0.13 0.13 0.12 0.17
  0.13\ 0.19\ 0.12\ 0.11\ 0.23\ 0.23\ 0.24\ 0.24\ 0.24\ 0.26\ 0.25\ 0.14\ 0.13\ 0.13\ 0.18
##
   0.11 0.20 0.11 0.10 0.23 0.23 0.23 0.23 0.24 0.24 0.12 0.12 0.11 0.16
  0.12\ 0.19\ 0.11\ 0.10\ 0.23\ 0.23\ 0.23\ 0.23\ 0.24\ 0.24\ 0.12\ 0.12\ 0.12\ 0.16
##
  0.09 0.15 0.09 0.08 0.17 0.17 0.18 0.17 0.18 0.18 0.18 0.10 0.10 0.09 0.13
  0.08 0.15 0.08 0.08 0.17 0.16 0.17 0.17 0.16 0.17 0.17 0.09 0.09 0.09 0.12
##
   0.08 0.14 0.08 0.07 0.16 0.16 0.16 0.16 0.16 0.17 0.17 0.09 0.09 0.08 0.12
  0.09\ 0.14\ 0.08\ 0.08\ 0.16\ 0.16\ 0.17\ 0.16\ 0.16\ 0.17\ 0.17\ 0.09\ 0.09\ 0.09\ 0.12
  ##
##
   0.10 0.06 0.10 0.10 0.08 0.08 0.08 0.09 0.09 0.10 0.10 0.13 0.13 0.13 0.14
  0.04\ 0.07\ 0.03\ 0.03\ 0.07\ 0.07\ 0.07\ 0.07\ 0.07\ 0.07\ 0.07\ 0.04\ 0.04\ 0.04\ 0.05
##
   0.03 0.06 0.03 0.03 0.07 0.07 0.07 0.07 0.06 0.07 0.07 0.03 0.03 0.03 0.04
##
  0.04\ 0.07\ 0.04\ 0.04\ 0.07\ 0.07\ 0.07\ 0.07\ 0.08\ 0.07\ 0.04\ 0.04\ 0.04\ 0.06
##
   ##
   ##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
```

0.18 0.32 0.18 0.16 0.40 0.40 0.41 0.41 0.41 0.43 0.43 0.18 0.17 0.17 0.24

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
## 0.72
## 0.74 0.97
## 0.70 0.96 0.94
##
   0.35 0.49 0.47 0.50
## 0.19 0.26 0.25 0.26 0.52
## 0.19 0.26 0.26 0.27 0.53 0.97
## 0.52 0.54 0.54 0.55 0.44 0.24 0.24
## 0.18 0.25 0.24 0.26 0.51 0.87 0.87 0.25
## 0.51 0.53 0.53 0.54 0.43 0.24 0.24 0.97 0.25
## 0.52 0.50 0.51 0.51 0.38 0.21 0.21 0.88 0.22 0.88
   0.46 0.49 0.49 0.50 0.44 0.25 0.25 0.88 0.26 0.91 0.82
##
   0.48 0.45 0.46 0.46 0.35 0.19 0.20 0.79 0.20 0.80 0.89 0.77
## 0.46 0.45 0.46 0.46 0.37 0.21 0.21 0.83 0.22 0.84 0.89 0.83 0.92
## 0.44 0.45 0.46 0.46 0.40 0.23 0.23 0.84 0.24 0.87 0.84 0.91 0.83 0.90
   0.42 0.43 0.43 0.44 0.39 0.22 0.23 0.80 0.24 0.82 0.80 0.87 0.81 0.88 0.94
## 0.41 0.39 0.40 0.40 0.32 0.18 0.19 0.71 0.19 0.72 0.78 0.73 0.87 0.86 0.80
## 0.40 0.40 0.40 0.40 0.34 0.20 0.21 0.73 0.21 0.75 0.77 0.78 0.83 0.87 0.86
## 0.13 0.18 0.17 0.18 0.36 0.55 0.55 0.21 0.63 0.21 0.18 0.22 0.17 0.19 0.21
   0.14 0.18 0.18 0.19 0.36 0.51 0.51 0.22 0.58 0.22 0.20 0.24 0.19 0.20 0.23
## 0.12 0.16 0.16 0.17 0.32 0.49 0.49 0.19 0.56 0.20 0.17 0.21 0.17 0.18 0.20
## 0.12 0.16 0.16 0.17 0.33 0.49 0.49 0.20 0.56 0.20 0.18 0.22 0.17 0.18 0.20
## 0.10 0.13 0.13 0.14 0.26 0.37 0.37 0.17 0.42 0.17 0.15 0.19 0.15 0.16 0.18
## 0.09 0.12 0.12 0.13 0.24 0.35 0.35 0.16 0.40 0.16 0.14 0.17 0.14 0.15 0.17
## 0.09 0.12 0.12 0.12 0.23 0.34 0.34 0.15 0.39 0.15 0.14 0.17 0.13 0.14 0.16
## 0.10 0.12 0.12 0.13 0.24 0.35 0.35 0.16 0.40 0.16 0.15 0.18 0.14 0.16 0.17
```

##

```
0.15 0.16 0.16 0.17 0.20 0.16 0.16 0.29 0.18 0.30 0.29 0.33 0.31 0.33 0.34
   0.15 0.16 0.16 0.17 0.20 0.16 0.16 0.29 0.18 0.30 0.29 0.33 0.31 0.33 0.34
   0.15 0.16 0.16 0.16 0.20 0.16 0.16 0.28 0.18 0.29 0.28 0.32 0.30 0.31 0.33
   0.14 0.15 0.15 0.15 0.19 0.15 0.16 0.27 0.17 0.27 0.27 0.30 0.28 0.30 0.31
   0.04 0.05 0.05 0.05 0.10 0.15 0.15 0.07 0.17 0.07 0.07 0.08 0.07 0.07 0.08
   0.03 0.04 0.04 0.04 0.08 0.13 0.13 0.06 0.14 0.06 0.05 0.06 0.05 0.05 0.06
   0.04 0.05 0.04 0.05 0.09 0.14 0.13 0.06 0.15 0.06 0.06 0.07 0.06 0.06 0.07
   0.05 0.06 0.06 0.06 0.11 0.15 0.15 0.08 0.17 0.08 0.08 0.09 0.08 0.08 0.09
##
   0.07 0.08 0.08 0.08 0.12 0.11 0.11 0.14 0.13 0.15 0.14 0.16 0.15 0.16 0.17
##
    0.07 0.07 0.07 0.08 0.11 0.12 0.12 0.13 0.13 0.13 0.12 0.14 0.13 0.14 0.15
##
    0.06\ 0.07\ 0.07\ 0.07\ 0.09\ 0.08\ 0.09\ 0.12\ 0.10\ 0.12\ 0.12\ 0.13\ 0.13\ 0.13\ 0.14
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
```

0.15 0.16 0.16 0.17 0.20 0.16 0.17 0.29 0.18 0.30 0.29 0.33 0.31 0.32 0.34

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
   0.81
##
## 0.89 0.90
## 0.21 0.17 0.19
## 0.23 0.19 0.21 0.88
## 0.20 0.17 0.18 0.89 0.88
## 0.21 0.17 0.19 0.89 0.90 0.97
   0.18 0.15 0.17 0.67 0.71 0.75 0.75
##
## 0.17 0.14 0.16 0.65 0.67 0.72 0.72 0.92
## 0.16 0.14 0.15 0.62 0.65 0.70 0.69 0.89 0.96
## 0.18 0.15 0.16 0.63 0.67 0.71 0.71 0.94 0.94 0.93
## 0.36 0.35 0.37 0.22 0.26 0.23 0.24 0.25 0.24 0.23 0.25
## 0.36 0.35 0.37 0.22 0.25 0.23 0.23 0.25 0.23 0.23 0.24 0.97
## 0.36 0.35 0.38 0.21 0.24 0.22 0.23 0.24 0.23 0.22 0.24 0.95 0.97
   0.35 0.34 0.36 0.22 0.25 0.23 0.23 0.25 0.24 0.23 0.25 0.97 0.96 0.94
## 0.33 0.32 0.34 0.21 0.24 0.22 0.23 0.25 0.23 0.25 0.25 0.92 0.91 0.91 0.94
## 0.08 0.07 0.08 0.27 0.27 0.30 0.30 0.38 0.41 0.42 0.41 0.15 0.15 0.15 0.15
## 0.06 0.05 0.06 0.22 0.23 0.25 0.25 0.31 0.34 0.35 0.33 0.11 0.11 0.11 0.11
## 0.07 0.06 0.06 0.24 0.24 0.27 0.26 0.34 0.36 0.38 0.36 0.13 0.12 0.12 0.13
## 0.09 0.08 0.09 0.28 0.29 0.31 0.31 0.41 0.43 0.44 0.44 0.19 0.19 0.18 0.19
## 0.18 0.17 0.18 0.18 0.21 0.19 0.20 0.24 0.23 0.23 0.25 0.49 0.48 0.47 0.50
## 0.15 0.14 0.16 0.19 0.22 0.21 0.21 0.27 0.26 0.26 0.28 0.41 0.40 0.40 0.42
   0.15 0.14 0.15 0.14 0.15 0.15 0.15 0.18 0.17 0.17 0.18 0.41 0.41 0.41 0.42
##
##
##
##
##
##
##
```

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
## 0.16
   0.12 0.74
## 0.13 0.83 0.88
## 0.19 0.79 0.59 0.66
## 0.52 0.22 0.16 0.18 0.28
## 0.44 0.27 0.20 0.23 0.34 0.79
## 0.45 0.18 0.13 0.15 0.22 0.75 0.64
## Number of obs: 72, groups: group, 1
##
## Dispersion estimate for gaussian family (sigma^2): 0.363
##
## Conditional model:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.085923
                                            <2e-16 ***
                         0.344658 20.559
## n.infrut 0.005973
                         0.005773
                                    1.035
                                             0.301
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
AIC(lm.no_espacial, glmm.espacial)
##
                         AIC
## lm.no_espacial 3 204.1418
## glmm.espacial
                  5 171.8000
```

Modelos mixtos con filogenia

Lislevand & Thomas (2006) estudiaron la evolución del tamaño del huevo en aves playeras (data(shorebirds)). En particular, nos interesa analizar la relación

entre la masa del huevo (Egg.mass) y la masa corporal de la hembra (F.Mass).

```
library(caper)

## Loading required package: ape

## Loading required package: MASS

## Loading required package: mvtnorm

## Registered S3 method overwritten by 'caper':
## method from
## nobs.pgls MuMIn

data(shorebird)
plot(shorebird.tree)
```


shorebird <- comparative.data(phy = shorebird.tree, data = shorebird.data, names.col =
hist(shorebird.data\$Egg.Mass)</pre>

Histogram of shorebird.data\$Egg.Mass

plot(shorebird.data\$F.Mass, shorebird.data\$Egg.Mass)


```
normal.phyloglmm <- pgls(log(Egg.Mass) ~ F.Mass, data = shorebird)</pre>
summary(normal.phyloglmm)
##
## Call:
## pgls(formula = log(Egg.Mass) ~ F.Mass, data = shorebird)
##
## Residuals:
##
        Min
                    1Q
                          Median
                                        3Q
                                                 Max
## -0.194516 -0.046257 -0.005145 0.027299 0.166274
## Branch length transformations:
##
## kappa [Fix] : 1.000
## lambda [Fix]
## delta [Fix] : 1.000
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.40680667 0.28666687 8.3958 3.775e-12 ***
              0.00229913 0.00029862 7.6991 7.095e-11 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.06234 on 69 degrees of freedom
## Multiple R-squared: 0.4621, Adjusted R-squared: 0.4543
## F-statistic: 59.28 on 1 and 69 DF, p-value: 7.095e-11
normal.glm <- glm(log(Egg.Mass) ~ F.Mass, data = shorebird.data)</pre>
summary(normal.glm)
##
## Call:
## glm(formula = log(Egg.Mass) ~ F.Mass, data = shorebird.data)
## Deviance Residuals:
##
       Min
                   1Q
                        Median
                                       3Q
                                                Max
## -0.89508 -0.25844 0.03603
                                 0.29072
                                            0.68572
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3015653 0.0604762 38.06 <2e-16 ***
## F.Mass
            0.0028587 0.0002132
                                     13.41
                                              <2e-16 ***
## ---
```

```
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.1339951)
##
       Null deviance: 33.3279 on 70 degrees of freedom
##
## Residual deviance: 9.2457 on 69 degrees of freedom
## AIC: 62.754
##
## Number of Fisher Scoring iterations: 2
AIC(normal.phyloglmm, normal.glm)
                   df
                           AIC
## normal.phyloglmm 2 20.61397
## normal.glm
                    3 62.75396
library(phylolm)
## Registered S3 methods overwritten by 'phylolm':
    method
                   from
##
     logLik.phylolm MuMIn
    nobs.phylolm
                   MuMIn
##
shorebird.data$Egg.Mass.binary <- ifelse(shorebird.data$Egg.Mass > 30, 1, 0)
plot(shorebird.data$F.Mass, shorebird.data$Egg.Mass.binary)
```



```
binomial.glm <- phyloglm(Egg.Mass.binary ~ F.Mass, phy = shorebird.tree, data = shoreb
## Warning in phyloglm(Egg.Mass.binary ~ F.Mass, phy = shorebird.tree, data = shorebird
## You can increase this bound by increasing 'btol'.
summary(binomial.glm)
##
## Call:
## phyloglm(formula = Egg.Mass.binary ~ F.Mass, data = shorebird.data,
      phy = shorebird.tree, method = "logistic_MPLE", btol = 30,
##
##
       boot = 100)
         AIC
##
                 logLik Pen.logLik
##
       27.484
                 -10.742
                            -5.899
##
## Method: logistic_MPLE
## Mean tip height: 81.872
## Parameter estimate(s):
## alpha: 0.01221473
##
         bootstrap mean: 0.01221439 (on log scale, then back transformed)
##
         so possible downward bias.
##
        bootstrap 95% CI: (0.012214,0.01221667)
##
## Coefficients:
                 Estimate
                              StdErr
                                        z.value lowerbootCI upperbootCI p.value
## (Intercept) -7.3788576 2.4647338 -2.9937747 -7.3788804 -7.3788 0.002755
               0.0284749 0.0089727 3.1735091
                                                  0.0249895
                                                                 0.0373 0.001506
##
## (Intercept) **
## F.Mass
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Note: Wald-type p-values for coefficients, conditional on alpha=0.01221473
##
         Parametric bootstrap results based on 100 fitted replicates
```

Modelos aditivos generalizados mixtos

Gillibrand et al. (2007) analizaron la bioluminiscencia pelágica (Sources) a lo largo de un gradiente de profundidad (SampleDepth) en el NE del Océano Atlántico (ISIT.txt).

```
library(ggplot2)
library(mgcv)
## This is mgcv 1.8-40. For overview type 'help("mgcv-package")'.
library(itsadug)
## Loading required package: plotfunctions
##
## Attaching package: 'plotfunctions'
## The following object is masked from 'package:ggplot2':
##
##
       alpha
## Loaded package itsadug 2.4 (see 'help("itsadug")' ).
biolum <- read.table("ISIT.txt", header = TRUE)</pre>
biolum$Station <- as.factor(biolum$Station)</pre>
biolum$Year <- as.factor(biolum$Year)</pre>
ggplot(data = biolum, aes(x = SampleDepth, y = Sources)) +
  geom_point() + facet_wrap(~Station) +
  theme_bw()
```



```
ggplot(data = biolum, aes(x = SampleDepth, y = Sources)) +
geom_point() + facet_wrap(~Year) +
theme_bw()
```


Ajuste de modelos

```
# Sin efectos aleatorios
gam0 <- gam(Sources ~ Year + s(SampleDepth) + s(SampleDepth, by = Year), family = gaus:
layout(matrix(1:3, 1, 3))
plot(gam0)</pre>
```



```
## df AIC
## gam0 17.64724 5289.443
## gamm1 27.86427 5084.019
## gamm2 42.97891 4914.160
## gamm3 85.56720 4452.836
```

```
summary(gamm2)
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Sources ~ Year + s(SampleDepth) + s(Station, bs = "re") + s(SampleDepth,
      Station, bs = "re")
##
##
## Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.7423 1.4018 6.236 7.49e-10 ***
## Year2002 2.3588
                         0.8287 2.846 0.00454 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Approximate significance of smooth terms:
##
                           edf Ref.df
                                             F p-value
                         8.857 8.992 5.304e+01 <2e-16 ***
## s(SampleDepth)
                        17.250 17.000 3.501e+03 <2e-16 ***
## s(Station)
## s(SampleDepth,Station) 14.122 18.000 5.927e+10 <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Rank: 47/49
## R-sq.(adj) = 0.796 Deviance explained = 80.6\%
## GCV = 29.692 Scale est. = 28.112 n = 789
```

```
layout(matrix(1:2, 1, 2))
check_resid(gamm2, split_pred = "Station", select = 1:2, ask = F)
```


layout(1)
acf_resid(gamm2, split_pred = "Station")


```
gamtabs(gamm2, type = "HTML")
```

```
## <!-- html table generated in R 4.2.0 by xtable 1.8-4 package -->
## <!-- Thu Apr 28 13:22:27 2022 -->
## 
## <caption align="bottom">
                </caption>
    A. parametric coefficients   Estimate   Estimate 
    (Intercept)   8.7423   1.
##
    Year2002   2.3588   0.828
##
    B. smooth terms   edf   ?
    s(SampleDepth)   8.8572  
    s(Station)   17.2500   17.2500 
    s(SampleDepth, Station)   14.1217   14.1217 
   <a name=tab.gam></a>
##
##
```

Gráficos

```
# Efectos fijos
plot_smooth(gamm2, view = "SampleDepth", plot_all = "Year", rm.ranef = TRUE)
```

```
## Summary:
## * Year : factor; set to the value(s): 2001, 2002.
## * SampleDepth : numeric predictor; with 30 values ranging from 501.000000 to 4866.
## * Station : factor; set to the value(s): 14. (Might be canceled as random effect, ## * NOTE : The following random effects columns are canceled: s(Station),s(SampleDept##
```

2001 2002


```
plot_parametric(gamm2, pred = list(Year = c("2001", "2002")), rm.ranef = TRUE)
```

```
## Summary:
## * Year : factor; set to the value(s): 2001, 2002.
## * SampleDepth : numeric predictor; set to the value(s): 1969.5.
## * Station : factor; set to the value(s): 14. (Might be canceled as random effect, check below
## * NOTE : The following random effects columns are canceled: s(Station),s(SampleDepth,Station)
##
```



```
# Efectos aleatorios
plot_smooth(gamm2, view = "SampleDepth", cond = list(Year = "2001", Station = "3"), cold
```

```
## Summary:
## * Year : factor; set to the value(s): 2001.
## * SampleDepth : numeric predictor; with 30 values ranging from 501.000000 to 4866.0
## * Station : factor; set to the value(s): 3. (Might be canceled as random effect, c)
## * NOTE : The following random effects columns are canceled: s(Station),s(SampleDept
##
```

```
plot_smooth(gamm1, view = "SampleDepth", cond = list(Year = "2001", Station = "16"), c
```



```
## Summary:
## * Year : factor; set to the value(s): 2001.
## * SampleDepth : numeric predictor; with 30 values ranging from 501.000000 to 4866.000000.
## * Station : factor; set to the value(s): 16. (Might be canceled as random effect, check below
## * NOTE : The following random effects columns are canceled: s(Station)
##
```

Autocorrelación temporal

Aluja et al. (2012) estudiaron los factores que determinan la dinámica poblacional de especies de moscas de la fruta (Tephritidae) durante 11 años en Veracruz, México (Aluja_et_al_Tephritidae.txt). Las variables utilizadas son el (log) número de capturas diarias (FTD) y el sesgo sexual de captura (SBC) de distintas especies del género *Anastrepha* y los índices de oscilación del Atlántico Norte (NAOI) y Sur (SOI).

```
##
    $ SBC_A_ludens
                              0.554 0.377 NA 0.563 0.225 0.25 0.448 NA 0.25 0.333 ...
                       : num
    $ FTD_A_obliqua
                              0.067 0.0692 0.1304 0.1406 1.0201 ...
##
                       : num
                              0.688 0.639 0.417 0.328 0.273 0.358 0.334 0.556 1 NA ...
##
    $ SBC_A_obliqua
                       : num
    $ FTD_A_serpentina: num
                              0.0022 0.0201 0.25 0.9643 2.971 ...
##
                              1 0.048 0.269 0.267 0.285 0.333 0.503 0.45 NA NA ...
    $ SBC_A_serpentina: num
##
##
    $ AP.MZ
                       : num
                              69 125.4 21.2 73.5 70.8 ...
##
    $ MAT.MZ
                              15.3 17.4 18.4 22 24.7 ...
                       : num
    $ AP.JC
                              173.3 4.2 8.6 43 112.5 ...
##
                       : num
    $ MAT.JC
                              15.1 17.1 17.6 20.8 22.8 ...
##
                       : num
##
    $ SOI
                              -0.5 -0.1 -2.2 -2.9 -1.7 -1.5 -2.9 -3 -3 -2.6 ...
                       : num
##
    $ NAOI
                       : num
                              1 0.5 1.3 1.1 -0.6 1.5 1.3 0.4 -1.3 -1 ...
moscas$t <- 1:nrow(moscas)</pre>
```


plot(moscas\$t, moscas\$FTD_A_ludens)

```
gam1 <- gam(FTD_A_ludens ~ s(t, k = 60), family = gaussian, data = moscas)
summary(gam1)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## FTD_A_ludens ~ s(t, k = 60)</pre>
```

```
##
## Parametric coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.22251
                              0.02345
                                         9.488 2.41e-15 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
           edf Ref.df
                            F p-value
##
## s(t) 37.69 45.25 3.938 <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## R-sq.(adj) = 0.556
                            Deviance explained = 68.4%
## GCV = 0.1027 Scale est. = 0.072604 n = 132
gam.check(gam1)
                                               Resids vs. linear pred.
deviance residuals
                                     residuals
                                                             O
    0.5
         -0.6
               -0.2
                      0.2
                             0.6
                                             0.0
                                                     0.5
                                                             1.0
                                                                     1.5
             theoretical quantiles
                                                    linear predictor
          Histogram of residuals
                                             Response vs. Fitted Values
    9
                                     Response
Frequency
                                                             0
                                         5.
    30
              0.0
                                             0.0
                                                             1.0
        -0.5
                    0.5
                          1.0
                                                     0.5
                                                                     1.5
                 Residuals
                                                     Fitted Values
##
                   Optimizer: magic
## Method: GCV
## Smoothing parameter selection converged after 5 iterations.
## The RMS GCV score gradient at convergence was 4.207139e-08 .
## The Hessian was positive definite.
```

Model rank = 60 / 60

```
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
## k' edf k-index p-value
## s(t) 59.0 37.7 1.34 1</pre>
```

```
visreg(fit = gam1, xvar = "t")
```


Series resid(gam1)


```
gamm.ar1 <- gamm(FTD_A_ludens ~ s(t, k = 60), family = gaussian, correlation = corAR1(form = ~ t)
summary(gamm.ar1$gam)</pre>
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## FTD_A_ludens ~ s(t, k = 60)
##
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.22017
                          0.05896
                                    3.734 0.000281 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
       edf Ref.df
                      F p-value
## s(t)
                1 0.029
                         0.865
         1
## R-sq.(adj) = -0.00687
   Scale est. = 0.16172
                          n = 132
```

plot(gamm.ar1\$gam)

AIC(gam1, gamm.ar1\$lme)

```
## df AIC
## gam1 39.68512 61.98908
## gamm.ar1$lme 5.00000 109.58570
```

Actividades

Ejercicio 5.1

Las siguientes variables corresponden a de datos de actividad fotosintética bajo dos concentraciones de nutrientes aplicados a las mismas 10 plantas (la planta 1 se encuentra primera en ambos vectores, la planta 2 se encuentra segunda y así sucesivamente):

• En base al diseño experimental, identifique posibles efectos fijos y aleatorios. Justifique.

ACTIVIDADES 63

• Considere un modelo adecuado para relacionar el efecto de los tratamientos sobre la actividad fotosintética.

- Realice un gráfico que muestre los efectos aleatorios, e interprete la varianza del efecto aleatorio y la residual.
- Utilice un test de t pareado para analizar este conjunto de datos. Compare los parámetros de los efectos fijos estimados de ambos análisis ¿Qué puede concluir?
- Grafique los individuos vs la tasa fotosintética y distinga cada tratamiento con un color diferente. Conceptualmente y teniendo en cuenta este gráfico, así como el de efectos aleatorios ¿Qué piensa que pasaría si ajustara un modelo mixto de intercepto y pendiente aleatorios a este conjunto de datos? Compruebelo.

Ejercicio 5.2

Palacio et al. (2014) realizaron conteos de 44 especies de aves a lo largo de un año en 10 puntos de muestreos (id) localizados en un bosque de ligustro y arbustales circundantes (habitat.type). El set de datos corresponde a abundancia_aves.txt.

- Analice los factores que se relacionan con la abundancia total de individuos y con las siguientes dos especies: Tordo músico (agebad) y Benteveo (pitsul).
- Identifique los efectos fijos y aleatorios incluidos en cada modelo.
- Según el problema de estudio y el modelo especificado ¿A qué tipo de diseño corresponde?
- En base a los resultados obtenidos ¿Tiene sentido incluir efectos aleatorios? Justifique.
- ¿Puede hipotetizar algo sobre la distribuciones de probabilidad utilizada para cada especie y para la abundancia total?

Ejercicio 5.3

La base de datos ChickWeight (paquete datasets) contiene información sobre el peso (weight) de un grupo de pollos (Chick) versus el tiempo (Time) bajo diferentes dietas (Diet).

• Grafique la relación peso vs tiempo para cada individuo y dieta.

- Considere un modelo adecuado en base a la exploración de datos realizada para relacionar el crecimiento bajo distintas dietas.
- Muestre uno o más gráficos que represente el modelo ajustado.

Ejercicio 5.4

Johnson & Manoukis (2021) analizaron la relación entre el número de capturas de la Broca del Café (*Hypothenemus hampei*, Curculionidae) y distintas variables climáticas en cafetales de Hawai (https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257861). El archivo corresponde a Weather_CBB_flight.xls. Los metadatos están en el archivo README_JohnsonManoukisPLoSONE2021.xls.

 Ajuste un modelo que relacione el número de capturas con variables climáticas. Para esto, construya un modelo saturado y compare primero diferentes estructuras de efectos aleatorios. Luego, realice una selección de modelos considerando diferentes efectos fijos.

Ejercicio 5.5

Price et al. (2015) realizaron conteos de salamandras (count) en cursos de agua en 23 sitios (site) muestreados 4 veces cada uno (sample). En cada curso tomaron las siguientes variables (estandarizadas): minería (mined), cobertura (cover), días desde la última precipitación (DOP), temperatura del agua (Wtemp) y día del año (DOY).

La base de datos está disponible en el objeto Salamander del paquete glmmTMB.

• En base a hipótesis biológicas, construya un modelo que explique la abundancia de salamandras en sitios minados y no minados.