Etapas para o Desenvolvimento e Análise de um Programa Paralelo

- I Desenvolvimento de um Algoritmo Paralelo
 - Abordagem do Algoritmo
 - Identificação do Algoritmo e Divisão dos Processos
 - Organização do Trabalho
- II Desenvolvimento do Programa Paralelo
- III Mapeamento de Processos
- IV Teste e Depuração
- V Avaliação de Desempenho

Desenvolvimento do Algoritmo Paralelo

Abordagem do Algoritmo Identificação do Algoritmo e Divisão dos Processos Organização do Trabalho

- Especifica o modelo de concorrência a ser utilizado;
- Depende da arquitetura considerada:
 - SIMD (Single Instruction Multiple Data)
 - MIMD (Multiple Instruction Multiple Data)
 - Memória compartilhada
 - Memória distribuída
 - Duas Abordagens:
 - Paralelismo por Dado;
 - Paralelismo por Controle.

- Paralelismo por Dado:
 - Executa as mesmas instruções simultaneamente em um conjunto de dados distintos.
- Paralelismo por Controle:
 - Executa instruções diferentes sobre dados diferentes.
- Exemplo: Silve of Eratosthenes
 - Algoritmo para procurar números primos em um conjunto de números naturais.

- Algoritmo *Silve of Eratosthenes*Marcar os múltiplos de um conjunto de números até n;
 - Termina a execução quando for atingir um número maior que

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30

Silve of Eratosthenes: Paralelismo por Controle

Silve of Eratosthenes: Paralelismo por Controle

Silve of Eratosthenes: Paralelismo por Dado

Modelos de concorrência:

- Dados X Controle
- Depende da arquitetura
- Diversas classificações:
 - Cada autor uma proposta
 - Diferentes nomes mesmo modelos

- Classificação de Hey: Job Farm;
 - Abordagem *Processor Farm*;
 - Abordagem Pipeline ou Especialista;
 - Abordagem Geométrica ou Resultado.

- Abordagem Job Farm:
 - Diversos processadores executando diversas tarefas em paralelo sem nenhuma forma de colaboração

- Abordagem Processor Farm:
 - Cada processador é designado para ajudar no atual item da pauta;
 - Geralmente, há um processador mestre que envia o item para cada processador participante;
 - Problema: Sobrecarga para o processador mestre;
 - Exemplos:
 - Gerar uma tela
 - Multiplicação de Matrizes A[n][k] * B[k][m].

Abordagem *Processor Farm*:

- Abordagem Processor Farm:
 - Mestre: envia aos escravos ociosos a próxima posição da matriz produto a ser calculada;
 - Escravo: solicita posição ao mestre, determina produto, envia resposta ao mestre.

- Vantagens:
 - Flexibilidade quanto ao número de processadores;
 - Balanceamento de carga automático.

- Abordagem Pipeline ou Especialista:
 - Cada processador é responsável por um tipo específico de trabalho;
 - → Para uma tarefa → Nenhum paralelismo!
 - Sincronismo é essencial, pois tarefas posteriores dependem das anteriores;
 - Eficiência: Depende do tamanho da tarefa;
 - Exemplo:
 - Gerar uma tela
 - Regra do Trapézio
 - Resolução de N Integrais → N tarefas;

Abordagem Pipeline ou Especialista:

Abordagem Pipeline ou Especialista:

As integrais da Regra do Trapézio são formadas pela equação:

$$\int_{a}^{b} f(x) dx \cong \begin{array}{c} 2^{\circ} \operatorname{Estágio} \\ 1^{\circ} \operatorname{Estágio} \\ (b-a) \left[f(a) + f(b) \right] \\ 2 \end{array}$$
 3° Estágio

Abordagem Pipeline ou Especialista:

$$\int_{a}^{b} f(x) dx \cong \frac{b-a \left[f(a)+f(b)\right]}{2}$$

Com isso, o *pipeline* pode ser organizado conforme:

- Problemas:
 - Pouco flexível;
 - Tempo de latência.

- Abordagem Geométrica ou pelo Resultado:
 - Cada processador é designado para produzir um pedaço do produto final;
 - Deve-se ponderar: Comunicação, Sincronismo e Balanceamento;
 - Exemplo:
 - Geração de uma Tela
 - Multiplicação das Matrizes: A[n][k] * B[k][m]
 - Cada processador pode ser responsável por um elemento da matriz resultante;
 - Os valores utilizados na multiplicação são enviados para outros processadores.

Abordagem Geométrica ou pelo Resultado:

Abordagem Geométrica ou pelo Resultado:

- Obtenção de um alto grau de paralelismo;
- São necessários NxM processadores;
- Sobrecarga na comunicação;
- Granulação fina.

- Classificação de Kung:
 - Computação Local
 - Pipeline
 - Pipeline Multifunção
 - Ring
 - Dividir e Conquistar
 - Filas de Tarefas
 - Particionamento de domínio
 - Recursiva

Problema - Muitos itens sem hierarquia Subdivisões da classificação de Hey

- Subdivisões da classificação de Hey:
 - Pipeline e Pipeline Multifunção Pipeline ou Especialista
 - Filas de Tarefas e Computação Local Mestre e Escravo
 - Particionamento de domínio Geométrico

- Classificação de Kung:
 - Computação Local
 - Pipeline
 - Pipeline Multifunção
 - Ring
 - Dividir e Conquistar
 - Filas de Tarefas
 - Particionamento de domínio
 - Recursiva

Dividir e Conquistar

- Repete Recursivamente:
 - dividir o problema
 - resolve em paralelo
- Muito Utilizado
- Sistemas lineares, computação gráfica, simulação
- Ex: Determinação do valor máximo ou mínimo de um vetor