Julián García

Sorting

Input:

A sequence of *n* elements

$$\langle a_1, a_2, ..., a_n \rangle$$

Output:

A permutation of the input sequence

$$\langle a_1', a_2', ..., a_n' \rangle$$

do it efficiently.

such that
$$a_1' \leq a_2' \leq \ldots \leq a_n'$$

• <u>Divide and conquer</u> algorithm.

- <u>Divide and conquer</u> algorithm.
- Recursive

- Divide and conquer algorithm.
- Recursive
- Sorts in place (no extra arrays!).

- Divide and conquer algorithm.
- Recursive
- Sorts in place (no extra arrays!).
- Popular: Top-10 algorithms 20th century (SIAM).

<u>Input:</u> A: _____ m

<u>Input:</u> A: _____ m

Divide:

(partition step)

<u>Input:</u> A: ______ m

Conquer: Recursively solve two smaller problems.

<u>Input:</u> A: ______ m

Conquer: Recursively solve two smaller problems.

Combine: In-place! so we are done.

4 1 5 3 7 2 6 p


```
Quicksort(A, p, r)

1 if p < r

2 q = \text{Partition}(A, p, r)

3 Quicksort(A, p, q)

4 Quicksort(A, q + 1, r)
```

A: _____ p r

Quicksort(A, p, r)

- 1 if p < r
- 2 q = PARTITION(A, p, r)
- 3 Quicksort(A, p, q)
- 4 Quicksort(A, q + 1, r)

Quicksort(A, q + 1, r)

A: p Is it non-trivial? (exit door) Quicksort(A, p, r) $q = \text{PARTITION}(A, p, r) \longrightarrow A$: Quicksort(A, p, q)q Quicksort(A, q + 1, r)

A: p Is it non-trivial? (exit door) Quicksort(A, p, r)if p < r $q = \text{PARTITION}(A, p, r) \longrightarrow A$: QUICKSORT(A, p, q)q Quicksort(A, q + 1, r)

A: p Is it non-trivial? (exit door) Quicksort(A, p, r)if p < r $q = \text{PARTITION}(A, p, r) \longrightarrow A$: Quicksort(A, p, q)q Quicksort(A, q + 1, r)

QUICKSORT
$$(A, p, r)$$
 [s it non-trivial?]

1 if $p < r$

2 $q = \text{PARTITION}(A, p, r)$ \Rightarrow A: $extit{A} = extit{A} = exti$

partition really does all the work!

p r
4 1 5 3 7 2 6


```
Partition(A, p, r)
 1 \quad x = A[p]
 2 \quad i = p - 1
 3 \quad j = r + 1
 4 while TRUE
 5
         repeat
 6
             j = j - 1
         until A[j] \leq x
 8
         repeat
             i = i + 1
         until A[j] \ge x
10
         if i < j
11
               exchange A[i] with A[j]
12
13
          else return j
```

```
Partition(A, p, r)
 1 x = A[p] -----
2 \quad i = p - 1
3 \quad j = r + 1
 4 while TRUE
 5
        repeat
 6
          j = j - 1
        until A[j] \leq x
 8
        repeat
           i = i + 1
        until A[j] \geq x
10
        if i < j
11
             exchange A[i] with A[j]
12
13
        else return j
```

```
Partition(A, p, r)
 1 x = A[p] -----
 2 \quad i = p - 1 \longrightarrow
 3 \quad j = r + 1 \longleftarrow
 4 while TRUE
 5
         repeat
 6
            j = j - 1
         until A[j] \leq x
 8
         repeat
            i = i + 1
         until A[j] \geq x
10
         if i < j
11
              exchange A[i] with A[j]
12
13
         else return j
```

```
Partition(A, p, r)
 1 x = A[p] .....
 2 \quad i = p - 1 \longrightarrow
 3 \quad j = r + 1 \longleftarrow
 4 while TRUE
 5
         repeat
 6
            j = j - 1
         until A[j] \leq x
                                     A:
 8
         repeat
 9
            i = i + 1
         until A[j] \ge x
10
         if i < j
11
12
              exchange A[i] with A[j]
13
         else return j
```

```
Partition(A, p, r)
 1 x = A[p] ....
 2 \quad i = p - 1 \longrightarrow
 3 \quad j = r + 1 \longleftarrow
 4 while TRUE
 5
         repeat
 6
            j = j - 1
         until A[j] \leq x
                                    A:
 8
         repeat
 9
            i = i + 1
         until A[j] \ge x
10
         if i < j
11
              exchange A[i] with A[j]
12
         else return j ..... A:
                                                \leq x
13
```

 Several ways to do the partition (<u>check lecture handout</u>, <u>experiment</u>)

 Several ways to do the partition (<u>check lecture handout</u>, <u>experiment</u>)

- Several ways to do the partition (check lecture handout, experiment)
- Number of comparisons depends on the choice of the pivot, i.e., data.
 - Best case: we partition in halves all along
 - Worst case: ordered list (partition sizes: I, n-I)

- Several ways to do the partition (check lecture handout, experiment)
- Number of comparisons depends on the choice of the pivot, i.e., data.
 - Best case: we partition in halves all along
 - Worst case: ordered list (partition sizes: I, n-I)
- The best case is to be expected. On average quicksort is very efficient.

- Divide and conquer
 - <u>Divide</u>: Partition in-place
 - Conquer: Order each partition recursively

- Divide and conquer
 - <u>Divide</u>: Partition in-place
 - Conquer: Order each partition recursively
- Partition algorithms <u>vary</u>, and affect the process dramatically

- Divide and conquer
 - <u>Divide</u>: Partition in-place
 - Conquer: Order each partition recursively
- Partition algorithms <u>vary</u>, and affect the process dramatically
- Efficient on average

Thank you.

More info: lecture handout

Literature:

- Leiserson, Charles E., Ronald L. Rivest, and Clifford Stein.
 Introduction to algorithms. Edited by Thomas H. Cormen.
 The MIT press, 2001.
- Sedgewick, Robert. and Wayne, Kevin. Algorithms. Pearson Education, 2011.

garcia@evolbio.mpg.de

http://garciajulian.com