Parametric settings of functional projections in diachrony: Romance clefts and wh-interrogatives

Caterina Bonan^{1,*} and Giuseppe Samo²

ABSTRACT

This paper is an extract from a study that utilises data from ten Romance corpora to determine how the functional projections responsible for nominal clefting and for interrogative wh-movement have changed from earlier stages of Romance to present times. The data are assessed through the lens of Rizzi's (2017) parameters. Here, we present our preliminary French data.

Introduction

Rizzi's (2017; see also Samo 2022) study of parameters: functional projections either require overt movement (IM=1) or they don't (IM=0). This, along with parameters as Spell Out, allows a fine understanding of the way languages function, and evolve.

In this work:

- we utilise Rizzi's parameters to evaluate the existing understandings of cleft structure and interrogative wh-movement in Romance:
- we investigate the parametric settings of the projections involved in these structures, and their evolution over time.

1. Rizzi's (2017) parameters

Rizzi (2017: 165): Parameter: "an instruction for the triggering of a syntactic operation, expressed as a morphosyntactic feature associated to a functional head".

Move:

- complex operation (à la Chomsky 2001);
- involves either a head or a phrase;
- encompasses the establishment of a probe-goal search followed by (internal) merge of the goal.

For Rizzi, a functional head that acts as a trigger of movement may have distinct pairs of features responsible for (1) and (2):

- (1) PHRASAL MOVEMENT (Rizzi 2017: 171 (20))
 - a. A search feature at the phrasal level.
 - b. The corresponding internal merge feature at the phrasal level (IM) ('EPP feature').
- (2) HEAD MOVEMENT (Rizzi 2017: 171 (21))
 - a. A search feature at the lex level (Search_{lex} Feature)
 - b. The corresponding internal merge feature, again at the lex level (IM_{lex} Feature)

Syntactic operations:

- simple;
- highly learnable;
- restricted to an extremely reduced set for reasons of learnability.

When a functional element enters the syntax and becomes a functional head in the relevant configuration, it triggers one syntactic operation on the structure which is built. The available operations are those in (3):

¹University of Cambridge, United Kingdom.

²Beijing Language and Culture University, People's Republic of China.

^{*}Corresponding author: cb2098@cam.ac.uk

(3) SYNTACTIC OPERATIONS

- a. Merge
- b. Move
 - i. Search: Probe-goal relation at the phrasal level
 - ii. IM: Internal merge of phrases; or:
 - iii. Search_{lex} Probe-goal relation at the head level
 - iv. IM_{lex} Internal merge of heads
- c. Spellout

Spell-out ('null subject parameter' etc.):

• deal with "variation in the obligatory, optional or impossible pronunciation of certain heads and of their immediate dependents" (Rizzi 2017: 175).

2. Explaining language variability

Cartography of syntactic structures (on this, see Cinque & Rizzi 2010, Rizzi & Cinque 2016):

- the functional spine of human language is universal;
- the functional spine comprises of numerous rigidly ordered functional projections;
- nonetheless, languages vary to the extent in which they:
 - i. activate the functional heads of the spine;
 - ii. realise these projections using different strategies.

FocusP (HLP) is not realised/exploited in the same way by all languages. Samo (2019): Focus⁰ triggers movement of an XP that bears a relevant focus feature and:

- in languages such as Gungbe this head is phonetically realised (Aboh 2004), as in (4);
 - (4) Gungbe (adapted from Aboh 2007: 85(9c))

'I called KOFI (as opposed to, for example, Enoch)'

- in languages like Italian, the head is silent (Rizzi 1997 and related), as in (5);
 - (5) Italian (adapted from Samo 2019: 146 (8))

```
[_{FocusP} \ IL \ LIBRO_i \ [_{Focus^0} \ \emptyset \quad [ \ Gianni \ ha \ \ letto \_\_\__i \ ]]]!
                        foc Gianni has read ____
```

'Gianni read THE BOOK (as opposed to, for example, the article)'

- in V2 languages, the head is activated by moving an already merged head, as in the German example in (6):
 - (6) German (adapted from Samo 2019: 146 (8))

```
[SpecFoc DIESES FRESKO [Focus<sup>0</sup> malte
                                    [Giotto]]]
                       painted.3sg Giotto
```

'Giotto painted THIS FRESCO (as opposed to, for example, the one over there)'

The variability of syntactic strategies adopted by different languages thus stems from different combinations of the syntactic operations of Merge, Move and Spell Out:

- Gungbe merges FocusP and spells out Focus°;
- Italian merges FocusP but **does not** spell out Focus⁰;
- German requires both head movement and phrasal movement.

The parametrisation of the observed phenomena can be viewed as in TABLE I:

	Merge	Spell Out	Search	IM	Search _{lex}	IM _{lex}
Italian	1	0	1	1	0	0
Gungbe	1	1	1	1	0	0
German	1	0	1	1	1	1

Table 1. Language variability in activating FocusP (Samo 2019: 147 (10)).

The factorial combinations of the boolean operators result in fine cross-linguistic analyses of typological variations.

Conceptual challenges

Belletti's (2015) cartography of clefts derives these structures utilising, depending on the nature of the structure, either Rizzi's (1997) FocusP or Belletti's (2004) Foc. In both cases, the involved projections require overt movement, i.e. IM=1.

(7) Involved functional projections diagram

FocusP has traditionally been considered responsible for the attraction of either wh-elements or contrastive foci. However, while the former are systematically attracted into SpecFocusP in Standard Italian, which suggests a setting as IM=1, the latter can surface either fronted or in situ (Bianchi 2013), rather suggesting an IM=1/0 setting.

- (8) Italian wh-questions
- (9) Italian contrastive foci

Clefts are present in the language but require certain context conditions to be met to be licensed (Larrivée 2022).

Languages like European French, on the other hand, have both shifted and in situ wh-elements (IM=1/0) but no prosodic foci, and productive clefts.

(10) French wh-interrogatives

The different contexts in which clefts can be licansed in the two languages have been singled out by Larrivée as:

- French:
- Italian:

The existence of Foc was originally posited to account for the existence of VS structures in Standard Italian (Belletti 2004) but many pieces of research have suggested that Italian low foci are always unmoved (Cardinaletti 2001, Samek-Lodovici 2015, Bonan 2021), thus suggesting an IM=0 setting for the language.

- (11) VS structure
- (12) Low focus in Italian (no low movement)
- (13) Low focus in Trevisan (shows low movement)

According to Bonan (2022), the different parametric settings for the low Foc in Italian vs Trevisan can be understood as in Table II:

	Merge	Spell Out	Search	IM	Search _{lex}	IM _{lex}
Italian	1	0	1	0	0	0
Trevisan	1	0	1	1	0	0

Table 2. Language variability in activating FocP.

In French, the low focus position is not exploited in any known structure.

These facts, coupled with numerous other empiric considerations, question the validity of the classification of the FPs exploited in clefts as FocusP and Foc.

The functional projections investigated in this study are thus, minimally, Rizzi's (1997), Belletti's (2004) Foc, and the higher FPs exploited in inversed and interrogative clefts.

(14)

Working hypotheses

The working hypotheses behind the present study are as follows:

- The parametrisation of functional projections evolves in the direction of no movement (IM=0 in Rizzi's 2017 terms, see works on the diachrony of Chinese interrogatives, Aldridge 2010, or Japanese, Aldridge 2009, but also Roberts Roussou 2003, Dadan 2019, a.o.).
- Diachronically, one functional projection can display different settings for the same parameter at different stages. Synchronically, this ought to be disallowed;
- When what is commonly considered as one single projection displays different parametrisations across structures (e.g., IM=1 in clefts vs IM=0 in interrogatives), the existence of two separate projections ought to be posited instead.

Methodology

Our hypotheses are being tested utilising corpus linguistics techniques. As a preliminary assessment of the theory, we have limited the scope of the present investigation to the study of three standard Romance languages: Italian, French and European Portuguese.

The corpora chosen for this study are:

- Archivio Datini:
- Corpus Epistolare Ottocentesco Digitale;
- Archivio del parlato italiano;
- Banca dati dell'italiano parlato;
- Base de français medieval;
- Groupe d'Observation et de Recherche sur les Documents Epistolaires du Seizième siècle;
- ESLO 1-2;
- 88milSMS;
- Tycho Brahe Parsed Corpus of Historical Portuguese;
- Reference Corpus of Contemporary Portuguese;
- CORP-ORAL: Spontaneous Speech Corpus.

The data, which we classify utilising a parametrisation à la Rizzi (2017), are starting to shed light on the diachronic evolution of the functional projections under consideration, and especially Rizzi's (1997) FocusP and Belletti's (2004) Foc. We shall also discuss the consequences of our innovative classification for the received cartography of clefts and the role of FocusP in the theory of interrogatives.

The case of French

- interrogative strategies;
- ex situ-in situ alternation:
- regular and inversed clefts (with examples of inversed declaratives from portuguese and trevisan).

Preliminary results for French

Conclusions

Acknowledgements

Acknowledgements should be brief, and should not include thanks to anonymous referees and editors, or effusive comments. Grant or contribution numbers may be acknowledged.

Figure 1. Legend (350 words max). Example legend text.

Figures and tables can be referenced in LaTeX using the ref command, e.g. Figure ?? and Table ??.

Condition	n	p
A	5	0.1
В	10	0.01

Table 3. Legend (350 words max). Example legend text.