Задание 3. Дождевые облака

Как и все природные явления, образование облаков, возникновения дождя и грады, гроз являются очень сложными и трудно описываемыми физическими явления. Физика облаков, физика атмосферы — разделы физики, которые продолжают активно развиваться.

В данной задаче Вам предстоит провести некоторые простые оценки, связанные с движением дождевых капель в облаке и под ним.

Справа показана простейшая модель мощной грозовой ячейки. Не пугайтесь - рассчитывать все ее параметры вам не придется. Этот рисунок приведен для того, чтобы показать, что движение воздуха в нем может быть направлено вверх. вниз, в стороны — в общем куда угодно!

Для решения задачи Вам понадобятся следующие характеристики воздуха и воды:

- плотность воды $\rho_0 = 1.0 \cdot 10^3 \frac{\kappa z}{M^3}$;
- плотность воздуха будем считать постоянной и равной $\rho = 1,2 \frac{\kappa z}{M^3};$
- плотность водяного пара в воздухе при температуре воздуха у поверхности земли $t=25^{\circ}C$

равна
$$\rho_{nap} = 2.3 \cdot 10^{-2} \, \frac{\kappa Z}{M^3}$$
; а при температуре $t = 0 \, ^{\circ} C$

содержанием воды в воздухе можно пренебречь;

- вязкость воды (величина, которая определяет силы сопротивления воздуха, она понадобится вам один раз,. в одной формуле) $\eta = 1.8 \cdot 10^{-5} \, \frac{\kappa c}{M \cdot c}$;
- ускорение свободного падения $g = 9.8 \frac{M}{c^2}$;

Формула для объема шара $V = \frac{4}{3}\pi R^3$, где R - его радиус. Во всех частях задания все считайте, что капли (и градины) имеют форму шара.

<u>Серьезная математическая подсказка</u>. Если скорость тела зависит от времени по закону $v = bt^{\gamma}$ то изменение координаты тела (при любых γ) описывается формулой

$$x = \frac{bt^{\gamma+1}}{\gamma+1}.$$

Например, примените эту формулу для $\gamma = 1$

Часть 1. Падение дождевых капель

В более учебниках физики можно найти формулы для силы сопротивления воздуха F , действующей на движущийся шарик:

При малых скоростях используется формула (которая называется формулой Стокса)

$$F_1 = 6\pi \eta r v \tag{1}$$

здесь r - радиус шарика, v - его скорость, η - коэффициент вязкости воздуха.

При больших скоростях сила сопротивления определяется формулой:

$$F_2 = C_x \frac{1}{2} \rho v^2 S, (2)$$

где $C_x=0.47$ безразмерный коэффициент лобового сопротивления шарика, ρ - плотность воздуха, $S=\pi\,r^2$ - площадь поперечного сечения шарика.

Сейчас Вам необходимо выбрать, какую формулу следует использовать в данной задаче. В реальности действуют обе силы (они имеют разную природу). Разумно выбирать ту силу, которая больше, меньшей силой можно пренебрегать.

- **1.1** Нарисуйте очень схематические графики зависимости силы сопротивления от скорости, описываемые формулами (1) и (2).
- **1.2** Получите формулу для «критической» скорости шарика $v_{\kappa p}$, при которой обе формулы дают одинаковые значения. Рассчитайте численное значение этой критической скорости для капли радиуса $r_0 = 1.0 \ \text{мм}$.
- **1.3** Укажите, какую формулу для силы сопротивления следует использовать при описании движения капли в воздухе. Ответ кратко обоснуйте.

Независимо от вашего ответа на вопрос 1.3, далее используйте формулу (2).

Рассмотрим каплю, падающую в воздухе. По прошествии небольшого времени с начала падения, капля продолжает двигаться с некоторой постоянной, установившейся скоростью V. Можно считать, что капля достигает установившейся скорости за очень малый промежуток времени

1.4 Покажите. что скорость установившегося движения капли радиуса r можно представить в виде

$$V = V_0 \sqrt{\frac{r}{r_0}} \tag{3}$$

где $V_{\scriptscriptstyle 0}$ - скорость установившегося движения капли радиуса $\mathit{r}_{\scriptscriptstyle 0}$.

1.5 Рассчитайте численное значение скорости V_{0} , если $r_{0}=1{,}0$ мм .

В дальнейшем используйте формулу (3), считая величины V_0, r_0 известными (даже, если вам их не удалось найти)!

Теперь Вам необходимо объяснить, почему всегда дождь начинается с падения самых крупных капель. Пусть нижняя граница облака находится на высоте $H=1,0\kappa_M$. Рассмотрим две капли, радиус одной равен $r_0=1,0\, MM$, а радиус второй $r_2=4,0\, MM$, которые одновременно начинают падать из нижней границы облака.

1.6 Рассчитайте. чему равна разность времен падения этих капель, считая, что движением воздуха под тучей можно пренебречь.

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2024-2025 учебный год

Пусть в процессе падения радиус капли незначительно уменьшается из-за ее испарения по закону

$$r = r_0 (1 - \gamma t) \tag{4}$$

где γ - малая величина.

1.7 Найдите закон движения капли испаряющейся капли z(t), где z - расстояние от нижнего края облака.

Подсказка. При малых x << 1 можно воспользоваться приближенной формулой

$$\sqrt{1+x} \approx 1 + \frac{x}{2}. ag{5}$$

Часть 2. Капля в облаке

Пусть в облаке образовался восходящий поток, движущийся вверх со скоростью $U = 30 \frac{M}{C}$.

2.1 Рассчитайте, с какой скоростью относительно земли будет подниматься капля радиуса $r_0 = 1,0 \ \text{мм}$.

Рассмотрим каплю, которая зародилась на нижней границе облака. В процессе движения капли в облаке ее радиус возрастает вследствие продолжающейся конденсации водяных паров в облаке. На некоторой высоте капля замерзнет и превратится в градину. Пренебрежем различием в плотностях воды и льда. В этом случае движение капли м замерзшей градины описываются одинаково. Теория конденсации утверждает, что скорость роста радиуса капли описывается приближенной формулой

$$r^2 \approx \alpha t$$
. (4)

где $\alpha = 3.0 \cdot 10^{-7} \, \frac{\text{M}^2}{c}$ - постоянная величина. В этой формуле предполагается, что размер зародыша, из которого начинает расти капля, пренебрежимо мал. Этот закон справедлив при движении капли, как вверх, так и вниз.

- **2.2** Рассчитайте, при каком радиусе капли r_{S} она прекратит подниматься вверх.
- **2.3** Рассчитайте, за какое время au_1 и на какую максимальную высоту z_{\max} относительно нижнего края облака поднимется эта капля.
- **2.4** Рассчитайте радиус капли (или градины) r_m при ее возвращении на нижнюю границу облака.