

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 8

A. MECANICĂ

Se consideră accelerația gravitațională $g = 10 \text{ m/s}^2$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Unitatea de măsură a tensiunii dintr-un fir, exprimată în funcție de unități ale mărimilor fundamentale din SI este:

a. $m kg s^{-3}$

b. $m^{-1}kg s^{-2}$

c. $m \, kg \, s^{-2}$

d. $m^{-2} ka s^2$

2. Un cărucior cu masa $m = 10 \ kg$ se deplasează rectiliniu şi uniform cu viteza $v = 3 \ m/s$. Pe el se plasează, foarte lin, un obiect astfel încât căruciorul îşi reduce viteza la $v' = 2 \ m/s$. Masa obiectului are valoarea:

a. 5 kg

b. 10 kg

c. 15 kg

d. 20 kg

3. Un corp este aruncat pe verticală în sus, cu viteza inițială v_o . Graficul ce redă corect dependența de înălțimea h a unei mărimi fizice care descrie mișcarea corpului este:

4. O bilă cu masa $m_1 = 2 kg$ și viteza $v_1 = 3 m/s$ ciocnește perfect elastic o altă bilă aflată în repaus. Dacă prima bilă se oprește masa bilei 2 este:

a. 1 kg

b. 2 kg

c. 3 kg

d. 4 kg

5. Lucrul mecanic L efectuat asupra unui corp, de o forță constantă \vec{F} , care își deplasează punctul de aplicație pe o distanță d, (reprezentând mărimea vectorului deplasare \vec{d}) are expresia:

a. L = Fd

 $\mathbf{b.} \left| \vec{L} \right| = \vec{F} \cdot \vec{d}$

c. $L = \vec{F} \times \vec{c}$

 $\mathbf{d.}\ L = \vec{F} \cdot \vec{d}$

II. Rezolvați următoarele probleme:

- 1. Un corp de masă m=10~kg se află în repaus, pe un plan orizontal. Asupra lui acționează o forță a cărei dependență de timp este reprezentată în figură. Determinați:
- **a.** accelerația corpului la $t_1 = 2s$, dacă se neglijează orice frecări;
- **b.** accelerația corpului la $t_2=4\,s$, dacă pe toată durata mişoării, între corp şi sprijin acționează o forță de frecare caracterizată de coeficientul de frecare la alunecare $\mu=0,2$; **c.** valoarea vitezei corpului la momentul $t_3=6\,s$, în condițiile descrise la punctul **b**.

15 puncte

- **2.** Un corp cu masa m = 200 g este suspendat de un fir inextensibil, vertical, cu lungimea l = 2 m. Determinați:
- a. viteza inițială verticală v_1 care trebuie imprimată corpului pentru ca acesta să urce până la nivelul punctului de suspensie;
- b. tensiunea din fir când acesta ajunge în poziție orizontală, dacă i s-a imprimat corpului o viteză inițială orizontală $v_2 = 10 \, m/s$;
- c. înălțimea maximă la care ajunge corpul, în condițiile descrise la punctul b.

15 puncte

Varianta 8

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

- ◆ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ◆Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 8

B. ELECTRICITATE ŞI MAGNETISM

Permeabilitatea magnetică a vidului are valoarea $\mu_0 = 4\pi \cdot 10^{-7} N/A^2$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect

15 puncte

1. Unitatea de măsură a inductanței, exprimată în funcție de unitățile fundamentale din S.I. este

a. $m kg s^{-2} A^{-2}$

- **b.** $m^{-1} ka s^2 A^{-2}$
- **c.** $m^{-1} ka s^{-2} A^{-2}$
- **d.** $m^2 kq s^{-2} A^{-2}$

2. La bornele unei surse cu tensiunea electromotoare E și rezistența internă r se leagă un voltmetru ideal $(R_V \to \infty)$. Cunoscând rezistența $\it R$ a conductoarelor de legătură indicația instrumentului de măsură este:

a.
$$\frac{E}{R+r}R$$

b.
$$\frac{E}{R+R_V+r}R$$

d.
$$\frac{E}{R+r}R_V$$

3. La bornele unei surse cu $U_o = 220V$ se conectează în serie două becuri cu aceeași tensiune nominală $U = U_o/2 = 110V$ și cu puterile nominale $P_1 = 100 W$, respectiv $P_2 = 40 W$. Funcționează normal:

a. becul 1

b. becul 2

c. ambele becuri

d. nici un bec

4. Două surse identice, cu tensiunea electromotoare E și rezistența internă r, se leagă în paralel la bornele unui rezistor de rezistență R. Intensitatea curentului care trece prin rezistor este:

a.
$$\frac{E}{R+r}$$

b.
$$\frac{E/2}{B+r/2}$$

c.
$$\frac{E}{R+r/2}$$

d.
$$\frac{2E}{R+2r}$$

5. Printr-o bobină trece un curent continuu. Unui electron plasat în interiorul bobinei i se imprimă o viteză inițială $\,v_o\,$ de-a lungul axei acesteia. Considerând că asupra electronului acționează numai câmpul magnetic al bobinei, traiectoria descrisă de acesta este:

a. rectilinie

b. circulară

c. elicoidală

d. parabolică

II. Rezolvați următoarele probleme:

1. În circuitul electric, a cărui diagramă este ilustrată în figura alăturată, întrerupătoarele K₁ si K₂ sunt deschise. Se cunosc: tensiunea electromotoare E = 10 V, rezistența internă $r = 1 \Omega$, rezistența ampermetrului $r_A = r$, rezistențele rezistoarelor $R_1 = R_2 = R_3 = 6 \Omega$. Neglijând rezistența electrică a conductoarelor de legătură, determinați:

- a. valoarea intensității curentului indicat de ampermetru:
- b. variatia relativă a puterii disipate pe rezistorul cu rezistenta R₃ la închiderea întrerupătorului K₁:
- c. valoarea intensității curentului indicat de ampermetru, dacă se închide și întrerupătorul K2.

2. Printr-o bobină, fără miez magnetic ($\mu_{aer} \cong \mu_{vid}$), cu N = 1000 spire, secțiunea $S=5 cm^2$ și lungimea l=20 cm trece un curent a cărui dependență de timp este reprezentată în figura alăturată. Determinați valoarea:

a. inductanței bobinei;

b. sarcinii electrice ce parcurge bobina în intervalul $t \in [0, 4s]$;

c. tensiunii induse în solenoid în intervalul $t \in [2s, 4s]$.

15 puncte

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

- ♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ◆Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 8

C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Numărului lui Avogadro $N_A = 6{,}023 \cdot 10^{23} \, mol^{-1}$, $p_o = 1 a t m \cong 10^5 \, N/m^2$, $R \cong 8{,}31 \, J \, / \big(mol \cdot K\big)$, $T_o = 273 \, K$, $C_p = C_V + R_O + R_O$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 nuncte

1. Unitatea de măsură pentru căldura specifică este:

a.
$$\frac{J}{kg \cdot K}$$

b. *J*

c.
$$\frac{J}{kmol \cdot K}$$

d. $\frac{J}{kc}$

2. Un frigider funcționează cu ușa deschisă. Neglijând schimburile de căldură cu mediul exterior, despre evoluția temperaturii din cameră se poate afirma că:

a. este constantă

b. crește

c. scade

d. depinde de capacitatea frigiderului

3. Într-o destindere izobară a unei mase constante de gaz considerat ideal, concentrația moleculelor:

a. nu se modifică

b. crește

c scade

d. depinde de condițiile inițiale

4. In comprimarea adiabatică a unui gaz ideal, energia sa internă:

a. creste

b. scade

c. ramâne constantă

d. scade si spoi creste

5. O masă constantă de gaz ideal suferă un proces în care dependența densității de presiune este reprezentată în figura alăturată. Această transformare este:

a. izocoră

b. izobară

c. generală

d. izotermă

II. Rezolvați următoarele probleme:

1. Într-un cilindru vertical, cu piston mobil, având secțiunea $S=20~cm^2$, se află un gaz ideal ($\mu=28~g/mol$), la presiunea p=150~kPa și temperatura T=300~K. Cunoscând presiunea exterioară $p_o=10^5~Pa$, înățimea h=20~cm, determinați:

- a. masa gazului din cilindru;
- b. masa pistonului;
- **c.** distanța pe care se deplasează pistonul dacă temperatura gazului crește cu f = 20%.

Se cunoaște accelerația gravitațională $g = 10 \, m/s^2$.

15 puncte

- **2.** Considerați o cantitate $\nu=5$ *moli* de gaz ideal ($\mu=2g/mol$, $C_V=5R/2$), aflat în condiții fizice normale. Gazul suferă transformările $1 \rightarrow 2 \rightarrow 3$ reprezentate în figura alăturată, astfel încât $V_2=eV_1$ (e=2,71)
- a. Reprezentați procesele în coordonate p-V.
- b. Calculați temperatura în starea 2.
- c. Determinați căldura schimbată în transformarea 2-3.

15 puncte

Proba scrisă la Fizică

Proba E: Specializarea : matematică –informatică, știinte ale naturii

Proba F: Profil: tehnic – toate specializările

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 8

D.OPTICĂ

Viteza luminii în vid este $c = 3 \cdot 10^8 \, m/s$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. O lentilă plan convexă formează pe un ecran imaginea unui obiect luminos. Dacă jumătate din fața plană se opacizează dimensiunea imaginii:

a. crește de 2 ori

b. scade de 2 ori

c. nu se modifică

d. depinde de forma părții opacizate

2. Pentru o oglindă plană mărirea liniară β este:

a. $\beta = 1$

b. $\beta > 1$

c. $|\beta| < 1$

d. dependentă de natura obiectului

3. O lentilă divergentă crează, pentru un obiect real, o imagine:

a. reală și răsturnată

b. reală și dreaptă

c. virtuală și răsturnată

d. virtuală și dreaptă

4. O rază de lumină cade pe o lamă cu fețe plan paralele ($n = 1,41 = \sqrt{2}$), situată în aer ($n_{aer} = 1$) sub unghiul de incidență $i = \pi/4$. Unghiul de deviație dintre raza incidentă și cea emergentă este:

a. 0

b. $\pi/6$

c. $\pi/4$

d. $\pi/3$

5. Condiția ca două unde luminoase coerente să formeze un minim de interferență este ca diferența de drum δ să fie:

a. 0

b. *k*λ

c. $2k\frac{\lambda}{2}$

d. $(2k+1)\frac{\lambda}{2}$

II. Rezolvați următoarele probleme:

- 1. Între un bec şi ecranul pe care se formează imaginea sa este distanța d = 80 cm. La mijlocul distanței se află o lentilă subțire plan convexă de sticlă (n = 1,5). Dacă sistemul este situat în aer $n_{aer} \cong 1$, determinați:
- **a.** mărirea liniară β ;
- b. raza de curbură a lentilei;
- **c.** poziția imaginii dacă tot sistemul se scufundă în apă (n' = 4/3), fără a se modifica distanța de la bec la lentilă.

15 puncte

- **2.** O rețea de difracție cu lărgimea unei fante $a = 1 \mu m$ și cu distanța dintre două fante consecutive $b = 7 \mu m$ este iluminată normal cu o radiație de lungime de undă $\lambda_1 = 400 nm$.
- a. Calculați numărul franjelor care se observă.
- **b.** Determinați, în aproximația unghiurilor de difracție mici $(\alpha < 5^{\circ})$, distanța dintre maximul central și maximul de ordinul 1, dacă franjele sunt observate cu ajutorul unei lentile cu distanta focală $f = 40 \, cm$;
- **c.** Sistemul este iluminat normal cu o a doua radiație. Cât trebuie să fie lungimea de undă λ_2 a acesteia dacă maximul de ordinul $k_1 = 5$ al primei radiații se suprapune cu maximul de ordinul $k_2 = 4$ al celei de-a doua radiații ?

15 puncte

Varianta 8