

# Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190514603

# FCC REPORT

**Applicant:** Autel Intelligent Technology Corp., Ltd.

Address of Applicant: 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili,

Nanshan, Shenzhen, China

**Equipment Under Test (EUT)** 

Product Name: ADVANCED DIAGNOSTIC & ANALYSIS SYSTEM

Model No.: MaxiSys MS909, MaxiSys MS919

Trade mark: AUTEL

FCC ID: WQ8MAXISYSMS909

**Applicable standards:** FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 28 May, 2019

**Date of Test:** 29 May, to 21 Nov., 2019

Date of report issued: 21 Nov., 2019

Test Result: PASS\*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





# 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 21 Nov., 2019 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Tested by:

| Cong Date: 21 Nov., 2019
| Test Engineer

Reviewed by: Winner thang Date: 21 Nov., 2019

Project Engineer



# 3 Contents

|   |       |                                  | Page |
|---|-------|----------------------------------|------|
| 1 | COV   | /ER PAGE                         | 1    |
| 2 | VER   | SION                             | 2    |
| 3 |       | ITENTS                           |      |
| 4 | TES   | T SUMMARY                        | 4    |
| 5 | GEN   | IERAL INFORMATION                | 5    |
|   | 5.1   | CLIENT INFORMATION               | 5    |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T.    |      |
|   | 5.3   | TEST ENVIRONMENT AND TEST MODE   | 8    |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS     | 9    |
|   | 5.5   | MEASUREMENT UNCERTAINTY          | 9    |
|   | 5.6   | RELATED SUBMITTAL(S) / GRANT (S) | 9    |
|   | 5.7   | LABORATORY FACILITY              |      |
|   | 5.8   | LABORATORY LOCATION              |      |
|   | 5.9   | TEST INSTRUMENTS LIST            | 10   |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA   | 11   |
|   | 6.1   | ANTENNA REQUIREMENT              | 11   |
|   | 6.2   | CONDUCTED EMISSION               | 12   |
|   | 6.3   | CONDUCTED OUTPUT POWER           | 15   |
|   | 6.4   | OCCUPY BANDWIDTH                 | 40   |
|   | 6.5   | POWER SPECTRAL DENSITY           | 70   |
|   | 6.6   | BAND EDGE                        |      |
|   | 6.7   | Spurious Emission                |      |
|   | 6.7.1 |                                  |      |
|   | 6.7.2 |                                  |      |
|   | 6.8   | FREQUENCY STABILITY              | 182  |
| 7 | TES   | T SETUP PHOTO                    | 185  |
| R | FUT   | CONSTRUCTIONAL DETAILS           | 186  |





# **Test Summary**

| Test Item                                                               | Section in CFR 47             | Test Result |  |  |  |
|-------------------------------------------------------------------------|-------------------------------|-------------|--|--|--|
| Antenna requirement                                                     | 15.203 & 15.407 (a)           | Pass        |  |  |  |
| AC Power Line Conducted Emission                                        | 15.207                        | Pass        |  |  |  |
| Conducted Peak Output Power                                             | 15.407 (a) (1) (iv) & (a) (3) | Pass        |  |  |  |
| 26dB Occupied Bandwidth                                                 | 15.407 (a) (5)                | Pass        |  |  |  |
| 6dB Emission Bandwidth                                                  | 15.407(e)                     | Pass        |  |  |  |
| Power Spectral Density                                                  | 15.407 (a) (1) (iv) & (a) (3) | Pass        |  |  |  |
| Band Edge                                                               | 15.407(b)                     | Pass        |  |  |  |
| Spurious Emission                                                       | 15.407 (b) & 15.205 & 15.209  | Pass        |  |  |  |
| Frequency Stability                                                     | 15.407(g)                     | Pass        |  |  |  |
| Pass: The EUT complies with the essential requirements in the standard. |                               |             |  |  |  |

N/A: Not Applicable.



# **5** General Information

# **5.1 Client Information**

| Applicant/ Manufacturer: | Autel Intelligent Technology Corp., Ltd.                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Address:                 | 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili, Nanshan, Shenzhen, China                                               |
| Factory1:                | Autel Intelligent Technology Corp., Ltd.                                                                                          |
| Address:                 | 6th Floor, Building 1, Yanxiang Zhigu, NO.11 Gaoxin West Rd,<br>Guangming New District, Shenzhen City, Guangdong Province, China. |
| Factory2:                | AUTEL VIETNAM COMPANY LIMITED                                                                                                     |
| Address:                 | 4th Floor, Factory#6, Land#CN1, An Duong Industrial Zone, Hong Phong Township, An Duong County, Hai Phong, VietNam                |

# 5.2 General Description of E.U.T.

| Product Name:                          | ADVANCED DIAGNOSTIC & ANALYSIS SYSTEM                                                                                                                                                                                  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:                             | MaxiSys MS909, MaxiSys MS919                                                                                                                                                                                           |
| Operation Frequency:                   | Band 1: 5150MHz-5250MHz, Band 4: 5725MHz-5825MHz                                                                                                                                                                       |
| Channel numbers:                       | Band 1: 802.11a/802.11n20/802.11ac20: 4, 802.11n40/802.11ac40: 2, 802.11ac80: 1 Band 4: 802.11a/802.11n20/802.11ac20: 4, 802.11n40/802.11ac40: 2, 802.11ac80: 1                                                        |
| Channel separation:                    | 802.11a/802.11n20/802.11ac20: 20MHz,<br>802.11n40/802.11ac40: 40MHz,<br>802.11ac80: 80MHz                                                                                                                              |
| Modulation technology (IEEE 802.11a):  | BPSK, QPSK, 16-QAM, 64-QAM                                                                                                                                                                                             |
| Modulation technology (IEEE 802.11n):  | BPSK, QPSK, 16-QAM, 64-QAM                                                                                                                                                                                             |
| Modulation technology (IEEE 802.11ac): | BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM                                                                                                                                                                                    |
| Data speed (IEEE 802.11a):             | 6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps                                                                                                                                                             |
| Data speed<br>(IEEE 802.11n20):        | MCS0: 6.5Mbps, MCS1:13Mbps,MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps                                                                                                            |
| Data speed<br>(IEEE 802.11n40):        | MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps                                                                                                              |
| Data speed (IEEE 802.11ac):            | Up to 866.6Mbps                                                                                                                                                                                                        |
| Antenna Type:                          | Internal Antenna                                                                                                                                                                                                       |
| Antenna gain:                          | Left module: ANT 1: 5.2G Wi-Fi: 3.3 dBi, 5.8G Wi-F: 3.4 dBi ANT 2: 5.2G Wi-Fi: 2.6 dBi, 5.8G Wi-F: 5.2 dBi Right module: ANT 3: 5.2G Wi-Fi: 2.4 dBi, 5.8G Wi-F: 4.8 dBi ANT 4: 5.2G Wi-Fi: 2.5 dBi, 5.8G Wi-F: 3.3 dBi |
| Power supply:                          | Rechargeable Li-ion Battery DC3.8V, 15000mAh                                                                                                                                                                           |





| AC adapter:            | Adapter 1:                                                                                                                                                                        |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                        | Model.: GME36A-120300FDS                                                                                                                                                          |  |
|                        | Input: 100-240V, 50/60Hz, 1.2A                                                                                                                                                    |  |
|                        | Output: 12V, 3A                                                                                                                                                                   |  |
|                        | Adapter 2:                                                                                                                                                                        |  |
|                        | Model.: A361-1203000DI                                                                                                                                                            |  |
|                        | Input: 100-240V, 50/60Hz, 1.5A                                                                                                                                                    |  |
|                        | Output:12V,3000mA                                                                                                                                                                 |  |
|                        | Adapter 3:                                                                                                                                                                        |  |
|                        | Model.: j361-1203000DI                                                                                                                                                            |  |
|                        | Input: 100-240V, 50/60Hz, 1.5A                                                                                                                                                    |  |
|                        | Output:12V,3000mA                                                                                                                                                                 |  |
| Remark:                | Model No.: MaxiSys MS909, MaxiSys MS919 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name. |  |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects.                                                                                                     |  |





| Operation Frequency each of channel |             |         |            |            |           |  |  |  |
|-------------------------------------|-------------|---------|------------|------------|-----------|--|--|--|
|                                     | Band 1      |         |            |            |           |  |  |  |
| 802.11a/80                          | 02.11n/ac20 | 80      | 2.11n/ac40 | 80         | 2.11ac80  |  |  |  |
| Channel                             | Frequency   | Channel | Frequency  | Channel    | Frequency |  |  |  |
| 36                                  | 5180MHz     | 38      | 5190MHz    | 42         | 5210MHz   |  |  |  |
| 40                                  | 5200MHz     | 46      | 5230MHz    |            |           |  |  |  |
| 44                                  | 5220MHz     |         |            |            |           |  |  |  |
| 48                                  | 5240MHz     |         |            |            |           |  |  |  |
|                                     |             | E       | Band 4     |            |           |  |  |  |
| 802.11a/80                          | 02.11n/ac20 | 80      | 2.11n/ac40 | 802.11ac80 |           |  |  |  |
| Channel                             | Frequency   | Channel | Frequency  | Channel    | Frequency |  |  |  |
| 149                                 | 5745MHz     | 151     | 5755MHz    | 155        | 5775MHz   |  |  |  |
| 153                                 | 5765MHz     | 159     | 5795MHz    |            |           |  |  |  |
| 157                                 | 5785MHz     |         |            |            |           |  |  |  |
| 161                                 | 5805MHz     |         |            |            |           |  |  |  |
| 165                                 | 5825MHz     |         |            |            |           |  |  |  |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Band 1          |                      |                         |                 |            |           |  |
|-----------------|----------------------|-------------------------|-----------------|------------|-----------|--|
| 802.11a         | 802.11a/802.11n/ac20 |                         | 2.11n/ac40      | 802.11ac80 |           |  |
| Channel         | Frequency            | Channel                 | Frequency       | Channel    | Frequency |  |
| Lowest          | 5180MHz              | Lowest                  | 5190MHz         | Middle     | 5210MHz   |  |
| Middle          | 5200MHz              | Highest                 | Highest 5230MHz |            |           |  |
| Highest         | 5240MHz              |                         |                 |            |           |  |
|                 |                      | ļ                       | Band 4          |            |           |  |
| 802.11a         | a/802.11n/ac20       | 802                     | 2.11n/ac40      | 802.11ac80 |           |  |
| Channel         | Frequency            | Channel                 | Frequency       | Channel    | Frequency |  |
| Lowest          | 5745MHz              | Lowest 5755MHz          |                 | Middle     | 5775MHz   |  |
| Middle          | 5785MHz              | 5785MHz Highest 5795MHz |                 |            |           |  |
| Highest 5825MHz |                      |                         |                 |            |           |  |





# 5.3 Test environment and test mode

| Operating Environment:                                                         |                                                                                                                                                                                                              |                                            |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|
| Temperature:                                                                   | 24.0 °C                                                                                                                                                                                                      | 24.0 °C                                    |  |  |
| Humidity:                                                                      | 54 % RH                                                                                                                                                                                                      |                                            |  |  |
| Atmospheric Pressure:                                                          | 1010 mbar                                                                                                                                                                                                    |                                            |  |  |
| Test mode:                                                                     |                                                                                                                                                                                                              |                                            |  |  |
| Continuously transmitting mode                                                 | Keep the EUT in 100                                                                                                                                                                                          | % duty cycle transmitting with modulation. |  |  |
|                                                                                | We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows: |                                            |  |  |
| Per-scan all kind of data rate, and found the follow list were the worst case. |                                                                                                                                                                                                              |                                            |  |  |
| Mode Data rate                                                                 |                                                                                                                                                                                                              |                                            |  |  |
| 802.11a                                                                        |                                                                                                                                                                                                              | 6 Mbps                                     |  |  |
| 802.11n20                                                                      | 802.11n20 6.5 Mbps                                                                                                                                                                                           |                                            |  |  |
| 802.11n40 13 Mbps                                                              |                                                                                                                                                                                                              |                                            |  |  |
| 802.11ac80 29.3 Mbps                                                           |                                                                                                                                                                                                              |                                            |  |  |
| Remark: 802.11a support SISO, 80                                               | 02.11n20/n40/ac20/ac                                                                                                                                                                                         | 40/ac80 support MIMO                       |  |  |

Feport No: CCISE190514603

## 5.4 Description of Support Units

The EUT has been tested as an independent unit.

## 5.5 Measurement Uncertainty

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | ±1.60 dB (k=2)       |
| Radiated Emission (9kHz ~ 30MHz)    | ±3.12 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.38 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±3.36 dB (k=2)       |

# 5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

# 5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

# 5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



# 5.9 Test Instruments list

| Test Equipment    | Manufacturer                          | Model No.      | Serial No.      | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
|-------------------|---------------------------------------|----------------|-----------------|-------------------------|-----------------------------|
| 3m SAC            | SAEMC                                 | 9m*6m*6m       | 966             | 07-22-2017              | 07-21-2020                  |
| BiConiLog Antenna | SCHWARZBECK                           | VULB9163       | 497             | 03-18-2019              | 03-17-2020                  |
| Biconical Antenna | SCHWARZBECK                           | VUBA9117       | 359             | 06-22-2017              | 06-21-2020                  |
| Horn Antenna      | SCHWARZBECK                           | BBHA9120D      | 916             | 03-18-2019              | 03-17-2020                  |
| Horn Antenna      | SCHWARZBECK                           | BBHA9120D      | 1805            | 06-22-2017              | 06-21-2020                  |
| Horn Antenna      | SCHWARZBECK                           | BBHA 9170      | BBHA9170582     | 11-21-2018              | 11-20-2019                  |
| Tiom Antenna      | OOTWARZBEOK                           | DDITA 3170     | DDI 1A3 17 0302 | 11-21-2019              | 11-20-2020                  |
| EMI Test Software | AUDIX                                 | E3             | \               | ersion: 6.110919b       | )                           |
| Pre-amplifier     | HP                                    | 8447D          | 2944A09358      | 03-18-2019              | 03-17-2020                  |
| Pre-amplifier     | CD                                    | PAP-1G18       | 11804           | 03-18-2019              | 03-17-2020                  |
| Spectrum analyzer | Rohde & Schwarz                       | FSP30          | 101454          | 03-18-2019              | 03-17-2020                  |
| Spectrum analyzer | Rohde & Schwarz                       | FSP40          | 100363          | 11-21-2018              | 11-20-2019                  |
| Spectrum analyzer | Konde & Schwarz                       | F3F40          | 100303          | 11-21-2019              | 11-20-2020                  |
| EMI Test Receiver | Rohde & Schwarz                       | ESRP7          | 101070          | 03-18-2019              | 03-17-2020                  |
| Spectrum Analyzer | Agilent                               | N9020A         | MY50510123      | 11-10-2018              | 11-09-2019                  |
| Spectrum Analyzer | Agilent                               | NOOZOA         | W1130310123     | 11-10-2019              | 11-09-2020                  |
| Signal Generator  | Rohde & Schwarz                       | SMX            | 835454/016      | 03-18-2019              | 03-17-2020                  |
| Signal Generator  | R&S                                   | SMR20          | 1008100050      | 03-18-2019              | 03-17-2020                  |
| RF Switch Unit    | MWRFTEST                              | MW200          | N/A             | N/A                     | N/A                         |
| Test Software     | MWRFTEST                              | MTS8200        |                 | Version: 2.0.0.0        |                             |
| Cable             | ZDECL                                 | Z108-NJ-NJ-81  | 1608458         | 03-18-2019              | 03-17-2020                  |
| Cable             | MICRO-COAX                            | MFR64639       | K10742-5        | 03-18-2019              | 03-17-2020                  |
| Cable             | SUHNER                                | SUCOFLEX100    | 58193/4PE       | 03-18-2019              | 03-17-2020                  |
| DC Power Supply   | XinNuoEr                              | WYK-10020K     | 1409050110020   | 10-31-2018              | 10-30-2019                  |
| DC Power Supply   | AIIINUOEI                             | W TK-10020K    | 1409050110020   | 10-31-2019              | 10-30-2020                  |
| Temperature       | HengPu                                | HPGDS-500      | 20140828008     | 09-24-2018              | 09-23-2019                  |
| Humidity Chamber  | пенуғи                                | HPGD3-500 2014 | 20140020000     | 09-24-2019              | 09-23-2020                  |
| Simulated Station | Rohde & Schwarz                       | CMW500         | 140493          | 07-16-2018              | 07-15-2019                  |
| Simulatoa Station | Station Ronde & Schwarz Civiv/500 140 |                | 1 10 100        | 07-16-2019              | 07-15-2020                  |

| Conducted Emission: |                 |            |              |                         |                             |  |
|---------------------|-----------------|------------|--------------|-------------------------|-----------------------------|--|
| Test Equipment      | Manufacturer    | Model No.  | Serial No.   | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| EMI Test Receiver   | Rohde & Schwarz | ESCI       | 101189       | 03-18-2019              | 03-17-2020                  |  |
| Pulse Limiter       | SCHWARZBECK     | OSRAM 2306 | 9731         | 03-18-2019              | 03-17-2020                  |  |
| LISN                | CHASE           | MN2050D    | 1447         | 03-18-2019              | 03-17-2020                  |  |
| LISN                | Rohde & Schwarz | ESH3-Z5    | 0.420624/040 | 07-21-2018              | 07-20-2019                  |  |
| LISIN               | Ronde & Schwarz | ESH3-Z3    | 8438621/010  | 07-21-2019              | 07-20-2020                  |  |
| Cable               | HP              | 10503A     | N/A          | 03-18-2019              | 03-17-2020                  |  |
| EMI Test Software   | AUDIX           | E3         | \            | /ersion: 6.110919b      | )                           |  |



# 6 Test results and Measurement Data

# 6.1 Antenna requirement

## **Standard requirement:** FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

#### E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 5.2 dBi.





# 6.2 Conducted Emission

| Test Requirement:     | FCC Part15 C Section 15.2                                                                                                                                                                                       | 07                                                                                                                                                                                                                                                                                   |                                                                                                                                            |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:          | ANSI C63.10: 2013                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      |                                                                                                                                            |  |  |  |  |
| Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |                                                                                                                                            |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |                                                                                                                                            |  |  |  |  |
| Receiver setup:       | RBW=9kHz, VBW=30kHz                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                      |                                                                                                                                            |  |  |  |  |
| Limit:                | ,                                                                                                                                                                                                               | Limit (dRuV)                                                                                                                                                                                                                                                                         |                                                                                                                                            |  |  |  |  |
| Limit.                | Frequency range (MHz)                                                                                                                                                                                           | Quasi-peak                                                                                                                                                                                                                                                                           |                                                                                                                                            |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                        | 66 to 56*                                                                                                                                                                                                                                                                            | 0.15-0.5                                                                                                                                   |  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                   | 0.5-5                                                                                                                                      |  |  |  |  |
|                       | 5-30                                                                                                                                                                                                            | 60                                                                                                                                                                                                                                                                                   | 5-30                                                                                                                                       |  |  |  |  |
|                       | * Decreases with the logarit                                                                                                                                                                                    | hm of the frequency.                                                                                                                                                                                                                                                                 |                                                                                                                                            |  |  |  |  |
| Test procedure        | line impedance stabiliz 50ohm/50uH coupling 2. The peripheral devices LISN that provides a 50 termination. (Please re photographs). 3. Both sides of A.C. line interference. In order to positions of equipment | ors are connected to the nation network (L.I.S.N.). It impedance for the measure are also connected to the Dohm/50uH coupling impeder to the block diagram of are checked for maximum of find the maximum emiss and all of the interface cast 10: 2013 on conducted maximum emisser. | provides a ring equipment. e main power through a dance with 50ohm f the test setup and a conducted ion, the relative bles must be changed |  |  |  |  |
| Test setup:           | Referen                                                                                                                                                                                                         | ce Plane                                                                                                                                                                                                                                                                             |                                                                                                                                            |  |  |  |  |
|                       | AUX Equipment E.U  Test table/Insulation plan  Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Test table height=0.8m                                                                      | EMI<br>Receiver                                                                                                                                                                                                                                                                      | — AC power                                                                                                                                 |  |  |  |  |
| Test Instruments:     | Refer to section 5.9 for deta                                                                                                                                                                                   | nils                                                                                                                                                                                                                                                                                 |                                                                                                                                            |  |  |  |  |
| Test mode:            | Refer to section 5.3 for deta                                                                                                                                                                                   | nils.                                                                                                                                                                                                                                                                                |                                                                                                                                            |  |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                                                                                            |  |  |  |  |



#### **Measurement Data:**

| Product name:   | ADVANCED DIAGNOSTIC & ANALYSIS SYSTEM | Product model: | MaxiSys MS909         |
|-----------------|---------------------------------------|----------------|-----------------------|
| Test by:        | YT                                    | Test mode:     | 5G Wi-Fi Tx mode      |
| Test frequency: | 150 kHz ~ 30 MHz                      | Phase:         | Line                  |
| Test voltage:   | AC 120 V/60 Hz                        | Environment:   | Temp: 22.5℃ Huni: 55% |



Limit

Over

|                                      | Freq  | rever | Factor | Loss  | Level | Line  | Limit  | Remark  |
|--------------------------------------|-------|-------|--------|-------|-------|-------|--------|---------|
| -                                    | MHz   | dBu∀  | d₿     | ₫B    | dBu∀  | dBu∜  | ₫B     |         |
| 1                                    | 0.150 | 49.93 | -0.45  | 10.78 | 60.26 | 66.00 | -5.74  | QP      |
| 2                                    | 0.150 | 39.56 | -0.45  | 10.78 | 49.89 | 56.00 | -6.11  | Average |
| 3                                    | 0.192 | 44.28 | -0.42  | 10.76 | 54.62 | 63.93 | -9.31  | QP      |
| 4                                    | 0.194 | 34.74 | -0.41  | 10.76 | 45.09 | 53.84 | -8.75  | Average |
| 5                                    | 0.249 | 38.34 | -0.40  | 10.75 | 48.69 | 61.78 | -13.09 | QP      |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.249 | 31.77 | -0.40  | 10.75 | 42.12 | 51.78 | -9.66  | Average |
| 7                                    | 0.289 | 35.22 | -0.39  | 10.74 | 45.57 |       | -14.97 |         |
| 8                                    | 0.474 | 37.29 | -0.39  | 10.75 | 47.65 | 56.45 | -8.80  | QP      |
| 9                                    | 0.481 | 30.37 | -0.39  | 10.75 | 40.73 | 46.32 | -5.59  | Average |
| 10                                   | 0.739 | 20.09 | -0.38  | 10.79 | 30.50 | 46.00 | -15.50 | Average |
| 11                                   | 4.049 | 20.96 | -0.46  | 10.89 | 31.39 |       |        | Average |
| 12                                   | 4.454 | 35.51 | -0.47  | 10.87 | 45.91 |       | -10.09 |         |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Cable Loss.
- Test all adapters and modes to reflect only the worst mode



| Product name:   | ADVANCED DIAGNOSTIC & ANALYSIS SYSTEM | Product model: | MaxiSys MS909         |
|-----------------|---------------------------------------|----------------|-----------------------|
| Test by:        | YT                                    | Test mode:     | 5G Wi-Fi Tx mode      |
| Test frequency: | 150 kHz ~ 30 MHz                      | Phase:         | Neutral               |
| Test voltage:   | AC 120 V/60 Hz                        | Environment:   | Temp: 22.5℃ Huni: 55% |



|                                           | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|-------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|                                           | MHz   | dBu∜          | ₫₿             | ₫B            | dBu₹  | dBu∀          |               |         |
| 1                                         | 0.150 | 47.08         | -0.68          | 10.78         | 57.18 | 66.00         | -8.82         | QP      |
| 2                                         | 0.150 | 35.44         | -0.68          | 10.78         | 45.54 | 56.00         | -10.46        | Average |
| 3                                         | 0.190 | 44.06         | -0.69          | 10.76         | 54.13 | 64.02         | -9.89         | QP      |
| 4                                         | 0.198 | 34.58         | -0.69          | 10.76         | 44.65 | 53.71         | -9.06         | Average |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.246 | 30.45         | -0.66          | 10.75         | 40.54 |               |               | Average |
| 6                                         | 0.249 | 38.23         | -0.66          | 10.75         | 48.32 |               | -13.46        |         |
| 7                                         | 0.334 | 36.01         | -0.63          | 10.73         | 46.11 | 59.35         | -13.24        | QP      |
| 8                                         | 0.479 | 38.12         | -0.65          | 10.75         | 48.22 | 56.36         | -8.14         | QP      |
| 9                                         | 0.486 | 28.33         | -0.65          | 10.76         | 38.44 | 46.23         | -7.79         | Average |
| 10                                        | 0.751 | 23.63         | -0.64          | 10.79         | 33.78 | 46.00         | -12.22        | Average |
| 11                                        | 4.158 | 21.55         | -0.70          | 10.88         | 31.73 |               |               | Average |
| 12                                        | 4.525 | 35.64         | -0.71          | 10.87         | 45.80 |               | -10.20        |         |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.
- 4. Test all adapters and modes to reflect only the worst mode



# **6.3 Conducted Output Power**

| Test Requirement: | FCC Part15 E Section 15.407 (a) (1) (iv) & (a) (3)                    |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10: 2013, KDB789033                                          |  |  |  |  |
| Limit:            | Band 1: 24dBm<br>Band 4: 30dBm                                        |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                      |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |





#### **Measurement Data:**

#### Left module:

|            |           |            | Band 1                      |                   |                |        |
|------------|-----------|------------|-----------------------------|-------------------|----------------|--------|
| Mode       | Test CH   | Ant. Port  | Conducted Output power(dBm) | Total power (dBm) | Limit<br>(dBm) | Result |
|            | Lowest    | TX1        | 11.58                       | /                 |                | Pass   |
|            | Lowest    | TX2        | 11.55                       | /                 | 24.0           | Pa55   |
| 802.11a    | Middle    | TX1        | 11.65                       | /                 | 24.2           | Pass   |
| 002.11a    | Middle    | TX2        | 11.65                       | /                 | 24.0           | F a55  |
|            | Highest   | TX1        | 12.19                       | /                 | 24.2           | Pass   |
|            | riigiiest | TX2        | 12.06                       | /                 | 24.0           | F a55  |
|            | Lowest    | TX1        | 11.57                       | 14.56             | 0.4.0          | Pass   |
|            | Lowest    | TX2        | 11.53                       | 14.50             | 24.0           | F a55  |
| 802.11n20  | Middle    | TX1        | 11.52                       | 14.51             | 04.0           | Pass   |
| 002.111120 | Wildale   | TX2        | 11.47                       | 14.51             | 24.0           | 1 033  |
|            | Highest   | TX1        | 11.91                       | 14.96             | 04.0           | Pass   |
|            | riigiioot | TX2        | 11.98                       |                   | 24.0           | 1 455  |
|            | Lowest    | TX1        | 6.46                        | 9.61              | 24.0           | Pass   |
| 802.11n40  | 2011001   | TX2        | 6.74                        |                   |                |        |
| 002        | Highest   | TX1        | 6.97                        | 9.92              | 24.0           | Pass   |
|            | riigiioot | TX2        | 6.84                        | 0.02              | 24.0           | . 455  |
|            | Lowest    | TX1        | 11.55                       | 14.50             | 24.0           | Pass   |
|            |           | TX2        | 11.42                       |                   | 24.0           |        |
| 802.11ac20 | Middle    | TX1        | 11.53                       | 14.58             | 24.0           | Pass   |
|            |           | TX2        | 11.61                       |                   | 24.0           |        |
|            | Highest   | TX1        | 12.00                       | 15.05             | 24.0           | Pass   |
|            | 9         | TX2        | 12.07                       |                   | 24.0           |        |
|            | Lowest    | TX1        | 6.41                        | 9.67              | 24.0           | Pass   |
| 802.11ac40 |           | TX2        | 6.90                        | -                 | ۷٦.0           |        |
|            | Highest   | TX1        | 6.77                        | 9.85              | 24.0           | Pass   |
|            |           | TX2        | 6.91                        |                   | 24.0           |        |
| 802.11ac80 | Middle    | TX1<br>TX2 | 6.55<br>6.54                | 9.56              | 24.0           | Pass   |

#### Remark:

<sup>1.</sup> Because transmit signals are correlated, Directional gain =  $10 \log[(10^{(GI/20)} + 10^{(G2/20)} + ... + 10_{GN/20})^2]$ /Nant] ,So the Directional gain= $10 \log[(10^{(3.3/20)} + 10^{(2.6/20)})^2/2] = 5.97dBi$ 

<sup>2.</sup> The directional Gain of antenna is not greater than 6 dBi, so the limit of power is 24 dBm.



|              |          |           | Band 4                      |                   |                |        |
|--------------|----------|-----------|-----------------------------|-------------------|----------------|--------|
| Mode         | Test CH  | Ant. Port | Conducted Output power(dBm) | Total power (dBm) | Limit<br>(dBm) | Result |
|              | Lowest   | TX1       | 10.23                       | /                 |                | Door   |
|              | Lowest   | TX2       | 9.70                        | /                 | 28.65          | Pass   |
| 802.11a      | Middle   | TX1       | 10.23                       | /                 |                | Door   |
| 602.11a      | ivildale | TX2       | 10.29                       | /                 | 28.65          | Pass   |
|              | Lighoot  | TX1       | 10.14                       | /                 |                | Pass   |
|              | Highest  | TX2       | 10.29                       | /                 | 28.65          | Pass   |
|              | Lowest   | TX1       | 10.18                       | 12.98             |                | Pass   |
|              | Lowest   | TX2       | 9.74                        | 12.90             | 28.65          | Pass   |
| 802.11n20    | Middle   | TX1       | 10.14                       | 13.20             | 28.65          | Pass   |
| 602. I III20 | Middle   | TX2       | 10.23                       |                   |                |        |
|              | Llighoot | TX1       | 10.15                       | 13.16             |                | Pass   |
|              | Highest  | TX2       | 10.15                       |                   | 28.65          |        |
|              | Lowest   | TX1       | 10.84                       | 13.78             |                | Pass   |
| 802.11n40    | Lowest   | TX2       | 10.70                       |                   | 28.65          |        |
| 602. I III40 | Lighoot  | TX1       | 10.71                       | 13.81             | 28.65          | Door   |
|              | Highest  | TX2       | 10.88                       | 13.01             |                | Pass   |
|              | Lowest   | TX1       | 10.23                       | 13.26             |                | Pass   |
|              | Lowest   | TX2       | 10.26                       | 13.20             | 28.65          | Pass   |
| 802.11ac20   | Middle   | TX1       | 10.18                       | 13.23             |                | Pass   |
| 002.11ac20   | Middle   | TX2       | 10.25                       | 13.23             | 28.65          | rass   |
|              | Highoot  | TX1       | 10.14                       | 13.22             |                | Pass   |
|              | Highest  | TX2       | 10.27                       | 13.22             | 28.65          | rass   |
|              | Lowest   | TX1       | 10.76                       | 13.66             |                | Pass   |
| 802.11ac40   | Lowest   | TX2       | 10.54                       | 13.00             | 28.65          |        |
| 002.118040   | Lighost  | TX1       | 10.76                       | 13.78             |                | Pooc   |
|              | Highest  | TX2       | 10.78                       | 13.78             | 28.65          | Pass   |
| 802.11ac80   | Middle   | TX1       | 10.37                       | 12.04             |                | Dooc   |
| 002.11ac60   | ivildale | TX2       | 9.44                        | 12.94             | 28.65          | Pass   |

#### Remark:

<sup>1.</sup> Because transmit signals are correlated, Directional gain =  $10 \log[(10^{(GI/20)} + 10^{(G2/20)} + ... + 10_{GN/20})^2]$ /Nant] ,So the Directional gain= $10 \log[(10^{(3.4/20)} + 10^{(5.2/20)})^2/2]$ =7.35dBi

<sup>2.</sup> The directional Gain of antenna is greater than 6 dBi, so the limit of power is 28.65 dBm.





### Right module:

|             |           |           | Band 1                      |                   |                |         |
|-------------|-----------|-----------|-----------------------------|-------------------|----------------|---------|
| Mode        | Test CH   | Ant. Port | Conducted Output power(dBm) | Total power (dBm) | Limit<br>(dBm) | Result  |
|             | Lowest    | TX3       | 10.62                       | /                 |                | Dees    |
|             | Lowest    | TX4       | 10.83                       | /                 | 24.0           | Pass    |
| 802.11a     | Middle    | TX3       | 10.83                       | /                 |                | Pass    |
| 002.11a     | Middle    | TX4       | 10.79                       | /                 | 24.0           | F a 5 5 |
|             | Highest   | TX3       | 10.89                       | /                 |                | Pass    |
|             | riignest  | TX4       | 10.86                       | /                 | 24.0           | F a 5 5 |
|             | Lowest    | TX3       | 11.62                       | 14.14             | 0.4.0          | Pass    |
|             | Lowest    | TX4       | 10.57                       | 14.14             | 24.0           | rass    |
| 802.11n20   | Middle    | TX3       | 11.28                       | 13.99             | 0.4.0          | Pass    |
| 002.111120  | Wildale   | TX4       | 10.65                       | 10.99             | 24.0           |         |
|             | Highest   | TX3       | 12.04                       | 14.38             | 0.4.0          | Pass    |
|             | riigiiest | TX4       | 10.57                       |                   | 24.0           | 1 033   |
|             | Lowest    | TX3       | 6.58                        | 9.56              | 04.0           | Pass    |
| 802.11n40   | Lowest    | TX4       | 6.51                        |                   | 24.0           | 1 455   |
| 002.111140  | Highest   | TX3       | 6.71                        | 9.72              | 24.0           | Pass    |
|             | riigiioot | TX4       | 6.70                        | 0.72              | 24.0           | 1 400   |
|             | Lowest    | TX3       | 10.53                       | 13.62             | 24.0           | Pass    |
|             | 2011001   | TX4       | 10.69                       | 10.02             | 24.0           | 1 400   |
| 802.11ac20  | Middle    | TX3       | 11.99                       | 14.39             | 24.0           | Pass    |
| 002.1.10020 | maaro     | TX4       | 10.66                       | 1 1100            | 24.0           | . 400   |
|             | Highest   | TX3       | 10.31                       | 13.54             | 24.0           | Pass    |
|             | riigiroot | TX4       | 10.74                       | 10.01             | 24.0           | . 400   |
|             | Lowest    | TX3       | 6.50                        | 9.52              | 24.0           | Pass    |
| 802.11ac40  |           | TX4       | 6.52                        | 0.02              | 24.0           |         |
| 20200.0     | Highest   | TX3       | 6.69                        | 9.71              | 24.0           | Pass    |
|             |           | TX4       | 6.71                        | · · ·             | 24.0           | 1 033   |
| 802.11ac80  | Middle    | TX3       | 6.24                        | 9.25              | 24.0           | Pass    |
|             | Mildaio   | TX4       | 6.23                        | 0.20              | 24.0           | Pass    |

#### Remark:

<sup>1.</sup> Because transmit signals are correlated, Directional gain =  $10 \log[(10^{(GI/20)} + 10^{(G2/20)} + ... + 10_{GN/20})^2]$  /Nant] ,So the Directional gain= $10 \log[(10^{(2.4/20)} + 10^{(2.5/20)})^2/2] = 5.46dBi$ 

<sup>2.</sup> The directional Gain of antenna is not greater than 6 dBi, so the limit of power is 24 dBm.



|                         |           |           | Band 4                      |                   |                |        |
|-------------------------|-----------|-----------|-----------------------------|-------------------|----------------|--------|
| Mode                    | Test CH   | Ant. Port | Conducted Output power(dBm) | Total power (dBm) | Limit<br>(dBm) | Result |
|                         | Lowest    | TX3       | 9.98                        | /                 |                | Door   |
|                         | Lowest    | TX4       | 10.09                       | /                 | 28.91          | Pass   |
| 802.11a                 | Middle    | TX3       | 9.73                        | /                 |                | Door   |
| 002.11a                 | Middle    | TX4       | 10.00                       | /                 | 28.91          | Pass   |
|                         | Highest   | TX3       | 9.82                        | /                 |                | Pass   |
|                         | nignest   | TX4       | 9.83                        | /                 | 28.91          | Pa55   |
|                         | Lowest    | TX3       | 10.04                       | 12.95             |                | Pass   |
|                         | Lowest    | TX4       | 9.83                        | 12.95             | 28.91          | Fa55   |
| 802.11n20               | Middle    | TX3       | 10.03                       | 13.06             | 28.91          | Pass   |
| 002.111120              | Middle    | TX4       | 10.07                       |                   |                |        |
|                         | Highest   | TX3       | 9.89                        | 12.87             | 00.04          | Pass   |
|                         | nignest   | TX4       | 9.83                        |                   | 28.91          | Fa55   |
|                         | Lowest    | TX3       | 10.28                       | 13.26             | 28.91          | Pass   |
| 802.11n40               | Lowest    | TX4       | 10.21                       |                   |                |        |
| 002.111140              | Highest   | TX3       | 10.11                       | 13.12             | 28.91          | Pass   |
|                         | riigilest | TX4       | 10.10                       | 10.12             |                | Fa55   |
|                         | Lowest    | TX3       | 9.83                        | 12.82             | 20.04          | Pass   |
|                         | Lowest    | TX4       | 9.78                        | 12.02             | 28.91          | 1 033  |
| 802.11ac20              | Middle    | TX3       | 9.79                        | 12.78             | 00.04          | Pass   |
| 002.114020              | Wildaic   | TX4       | 9.74                        | 12.70             | 28.91          | 1 433  |
|                         | Highest   | TX3       | 10.12                       | 13.09             | 00.04          | Pass   |
|                         | riigiiost | TX4       | 10.03                       | 10.00             | 28.91          | 1 433  |
|                         | Lowest    | TX3       | 10.18                       | 13.18             | 00.04          | Pass   |
| 802.11ac40              | LOWCSI    | TX4       | 10.16                       | 10.10             | 28.91          | 1 433  |
| 002.11a0 <del>1</del> 0 | Highest   | TX3       | 10.18                       | 13.18             | 00.04          | Pass   |
|                         | riigiiest | TX4       | 10.15                       | 13.10             | 28.91          | 1 033  |
| 802.11ac80              | Middle    | TX3       | 9.75                        | 12.70             | 00.04          | Pass   |
| 802.11ac80              | iviidale  | TX4       | 9.63                        | 12.70             | 28.91          | Fa55   |

#### Remark:

<sup>1.</sup> Because transmit signals are correlated, Directional gain =  $10 \log[(10^{(G_1/20)} + 10^{(G_2/20)} + ... + 10_{GN/20})^2]$ /Nant] ,So the Directional gain= $10 \log[(10^{(4.3/20)} + 10^{(3.3/20)})^2/2]$ =7.09dBi

<sup>2.</sup> The directional Gain of antenna is greater than 6 dBi, so the limit of power is 28.91 dBm.



#### Test plot as follows: Left module: Band 1























#### Band 4:



























Right module: Band1



























#### Band 4:



























6.4 Occupy Bandwidth

| Test Requirement: | FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)                                       |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB 789033                                                                  |  |  |  |  |  |  |
| Limit:            | Band 1/4: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz (6dB Bandwidth) |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table                                                    |  |  |  |  |  |  |
|                   | Ground Reference Plane                                                                           |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                 |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                 |  |  |  |  |  |  |
| Test results:     | Passed                                                                                           |  |  |  |  |  |  |

## **Measurement Data:**

Left module: Band 1: ANT 1

|                 |                            | 26                |                   |                    |                    |                    |       |        |
|-----------------|----------------------------|-------------------|-------------------|--------------------|--------------------|--------------------|-------|--------|
| Test<br>Channel | 802.11a                    | 802.11n<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT20) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit | Result |
| Lowest          | 21.92                      | 22.16             | 40.40             | 22.24              | 40.08              |                    |       |        |
| Middle          | 21.92                      | 22.16             |                   | 22.08              |                    | 79.76              | N/A   | PASS   |
| Highest         | 18.63                      | 20.16             | 39.52             | 19.90              | 39.84              |                    |       |        |
|                 | 99% Occupy Bandwidth (MHz) |                   |                   |                    |                    |                    |       |        |
| Test<br>Channel | 802.11a                    | 802.11n<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT20) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit | Result |
| Lowest          | 17.36                      | 18.40             | 37.12             | 18.40              | 37.12              |                    |       |        |
| Middle          | 17.36                      | 18.40             |                   | 18.40              |                    | 76.16              | N/A   | PASS   |
| Highest         | 17.36                      | 18.40             | 37.12             | 18.32              | 37.12              |                    |       |        |

Remark: The ANT 1 and ANT 2 are the same chip control, pre-scan ANT 1 and ANT 2, found ANT 1 was worse case mode. The report only reflects the worst mode.



## Band 4:ANT 1

|                 | 26dB Emission Bandwidth (MHz) |                   |                   |                    |                    |                    |         |        |
|-----------------|-------------------------------|-------------------|-------------------|--------------------|--------------------|--------------------|---------|--------|
| Test<br>Channel | 802.11a                       | 802.11n<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT20) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit   | Result |
| Lowest          | 21.92                         | 21.84             | 40.32             | 21.92              | 40.32              |                    |         |        |
| Middle          | 21.92                         | 21.92             |                   | 21.92              |                    | 81.28              | N/A     | PASS   |
| Highest         | 22.00                         | 22.00             | 40.16             | 22.00              | 40.32              |                    |         |        |
| _               | 99% Occupy Bandwidth (MHz)    |                   |                   |                    |                    |                    |         |        |
| Test<br>Channel | 802.11a                       | 802.11n<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT20) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit   | Result |
| Lowest          | 17.28                         | 17.28             | 37.12             | 17.28              | 37.12              |                    |         |        |
| Middle          | 17.36                         | 17.36             |                   | 17.28              |                    | 76.32              | N/A     | PASS   |
| Highest         | 17.36                         | 17.36             | 36.96             | 17.36              | 37.12              |                    |         |        |
| <b>-</b> ,      |                               | 6d                | B Emission B      | andwidth (MH:      | <u>z</u> )         |                    |         |        |
| Test<br>Channel | 802.11a                       | 802.11n<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT20) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit   | Result |
| Lowest          | 16.56                         | 17.76             | 36.64             | 17.84              | 36.64              |                    |         |        |
| Middle          | 16.56                         | 17.68             |                   | 17.84              |                    | 76.48              | >500kHz | PASS   |
| Highest         | 16.56                         | 17.84             | 36.64             | 17.84              | 36.64              |                    |         |        |

Remark: The ANT 1 and ANT 2 are the same chip control, pre-scan ANT 1 and ANT 2, found ANT 1 was worse case mode. The report only reflects the worst mode.





## Right module: Band 1: ANT 3

| <b>.</b>        | 26dB Emission Bandwidth (MHz) |                   |                   |                    |                    |                    |       |        |
|-----------------|-------------------------------|-------------------|-------------------|--------------------|--------------------|--------------------|-------|--------|
| Test<br>Channel | 802.11a                       | 802.11n<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT20) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit | Result |
| Lowest          | 21.92                         | 22.08             | 40.20             | 22.08              | 39.84              |                    |       |        |
| Middle          | 21.76                         | 22.08             |                   | 22.16              |                    | 80.28              | N/A   | PASS   |
| Highest         | 18.63                         | 20.08             | 39.60             | 20.40              | 39.76              |                    |       |        |
| <b>T</b> .      | 99% Occupy Bandwidth (MHz)    |                   |                   |                    |                    |                    |       |        |
| Test<br>Channel | 802.11a                       | 802.11n<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT20) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit | Result |
| Lowest          | 17.28                         | 18.40             | 37.12             | 18.40              | 37.12              |                    |       |        |
| Middle          | 17.36                         | 18.40             |                   | 18.32              |                    | 76.16              | N/A   | PASS   |
| Highest         | 17.36                         | 18.32             | 37.12             | 18.40              | 36.96              |                    |       |        |

Remark: The ANT 3 and ANT 4 are the same chip control, pre-scan ANT 3 and ANT 4, found ANT 3 was worse case mode. The report only reflects the worst mode.



Band 4: ANT 3

|                 | 26dB Emission Bandwidth (MHz) |                   |                   |                    |                    |                    |         |        |
|-----------------|-------------------------------|-------------------|-------------------|--------------------|--------------------|--------------------|---------|--------|
| Test<br>Channel | 802.11a                       | 802.11n<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT20) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit   | Result |
| Lowest          | 21.84                         | 21.84             | 40.00             | 21.84              | 39.84              |                    |         |        |
| Middle          | 21.92                         | 21.92             |                   | 21.92              |                    | 80.96              | N/A     | PASS   |
| Highest         | 21.84                         | 21.84             | 40.16             | 21.92              | 40.16              |                    |         |        |
|                 | 99% Occupy Bandwidth (MHz)    |                   |                   |                    |                    |                    |         |        |
| Test<br>Channel | 802.11a                       | 802.11n<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT20) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit   | Result |
| Lowest          | 17.28                         | 17.28             | 37.12             | 17.28              | 36.96              |                    |         |        |
| Middle          | 17.28                         | 17.36             |                   | 17.28              |                    | 75.96              | N/A     | PASS   |
| Highest         | 17.28                         | 17.28             | 36.96             | 17.28              | 36.96              |                    |         |        |
|                 | 6dB Emission Bandwidth (MHz)  |                   |                   |                    |                    |                    |         |        |
| Test<br>Channel | 802.11a                       | 802.11n<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT20) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit   | Result |
| Lowest          | 16.56                         | 17.76             | 36.64             | 17.68              | 36.64              |                    |         |        |
| Middle          | 16.56                         | 17.76             |                   | 17.76              |                    | 76.48              | >500kHz | PASS   |
| Highest         | 16.56                         | 17.84             | 36.64             | 17.84              | 36.64              |                    |         |        |

Remark: The ANT 3 and ANT 4 are the same chip control, pre-scan ANT 3 and ANT 4, found ANT 3 was worse case mode. The report only reflects the worst mode.





Measurement Data: Left module:





























