Iteração de Funções

Eduardo Sodré

August 2019

1 Uma definição formal de iteração

Seja $S = \mathcal{O}(i, s)$ uma órbita, e considere \mathcal{I}_s o conjunto das iteradas de S. Vimos que há um isomorfismo canônico entre as iteradas de s e os elementos de S por meio da avaliação em i:

$$\operatorname{av}_i: \mathcal{I}_s \longrightarrow \mathcal{O}(i,s)$$

 $f \longmapsto f(i)$

de modo que $\operatorname{av}_i(\operatorname{id}_S) = i$ e $\operatorname{av}_i(\hat{s}(f)) = s(\operatorname{av}_i(f))$. Lembra-se que $\hat{s}: S^S \longrightarrow S^S$ é tal que $\hat{s}(f) = sf$. Não é difícil verificar também que tal isomorfismo é o único a ter essas propreidades.

Como é isomorfismo, há uma função inversa bem definida:

$$\psi: \mathcal{O}(i,s) \longrightarrow \mathcal{I}_s$$

$$n \longmapsto s^n$$

em que, previamente, definiu-se s^n como $+_n$, e deduz-se $s^i = \mathrm{id}_S$ e $s \circ s^n = s^{s(n)}$.

Deseja-se agora utilizar a aparente universalidade do comportamento dos modelos de Peano para induzir em conjuntos arbitrários ideias de iterações. De fato, como todos os modelos de Peano são isomorfos sob a estrutura de iteradas e iterações, e capturam tais ideias fundamentalmente, projeta-se suas estruturas na combinação de um conjunto arbitrário X dado e uma função $f: X \longrightarrow X$.

Seja então (N, i, s) um modelo de Peano, X um conjunto arbitrário não-vazio, e $x \in X$ um elemento distinto de X.

Teorema 1.1. Existe uma única função $\varphi: N \longrightarrow X$ tal que $\varphi(i) = x$ e de modo que o sequinte diagrama comuta:

$$\begin{array}{cccc} N & \stackrel{s}{\longrightarrow} & N \\ \varphi & \downarrow & & \downarrow & \varphi \\ & X & \stackrel{f}{\longrightarrow} & X \end{array}$$

ou seja, tal que $\varphi(i) = x$ e $\varphi \circ s = f \circ \varphi$.

Demonstração. Primeiro demonstremos existir tal função. Considere o conjunto $N \times X$ dos pares ordenados de elementos de N e de X, a função

$$s \times f: N \times X \longrightarrow N \times X$$

 $(m,y) \longmapsto (s(m), f(y))$

e a órbita $\varphi = \mathcal{O}((i, x), s \times f)$. Mostra-se que φ é uma função de N em X, no sentido de conjunto de pares ordenados de N e X tal que, para todo $m \in N$, existe um único $y \in X$ tal que $(m, y) \in X$.

Seja $N' = \{m \in N \mid \exists ! y \in X : (m, y) \in \varphi\} \subset N$ o subconjunto de N para cujos elementos φ atua como função, e mostremos que N' = N ao ser indutivo e $i \in N'$.

De fato, $(i,x) \in \varphi$, e supondo $(i,y) \in \varphi$, quer-se achar que x=y. De fato, como $\mathcal{O}((i,x),s\times f)=\{(i,x)\}\cup(s\times f)[\mathcal{O}((i,x),s\times f)]$, deve-se ter que (i,y)=(i,x) ou que (i,y) está na imagem de $s\times f$ na órbita. Nesse último caso, teria-se que um $(m,z)\in \varphi$ tal que $(i,y)=(s\times f)((m,z))=(s(m),f(z))$, o que não pode ocorrer pois i não está na imagem de s. Daí, x=y, e portanto $i\in N'$.

Suponha agora que $m \in N'$, ou seja, existe um único $y \in X$ tal que $(m, y) \in \varphi$. Então $(s(m), f(y)) \in \varphi$. Basta mostrar que se $(s(m), z) \in \varphi$, então z = f(y). Como todos os elementos de uma órbita são comparáveis, deve-se ter que $(s(m), f(y)) \in \mathcal{O}((s(m), z), s \times f)$ ou que $(s(m), z) \in \mathcal{O}((s(m), f(y)), s \times f)$. Sem muita perda de generalidade, repete-se o argumento para i feito acima e demonstra-se facilmente que z = f(y).

Assim, tem-se que $s(m) \in N'$, de modo que N' é um conjunto indutivo contendo i, portanto N' = N e conclui-se rapidamente que \hat{s} é uma função para a qual o diagrama comuta e $\varphi(i) = x$.

Mostremos então que φ é a única função satisfazendo tais propriedades: se $\psi: N \longrightarrow X$ é uma outra tal função, considere o conjunto $N'' = \{m \in N \mid \varphi(m) = \psi(m)\} \subset N$, e mostremos que N'' = N, de modo que $\psi = \varphi$. Mas claramente $\psi(i) = x = \varphi(i)$, e se $\varphi(m) = \psi(m)$, então $\varphi(s(m)) = f(\varphi(m)) = f(\psi(m)) = \psi(s(m))$, concluindo que N'' = N.

De fato, mostrou-se então que existe uma função

$$\Delta: \begin{array}{ccc} X^X \times X & \longrightarrow & X^N \\ (f, x) & \longmapsto & \varphi \end{array}$$

com $\Delta(f,x)$ a (única) função de N em X tal que $\Delta(f,x)(i) = x$ e $\Delta(f,x) \circ s = f \circ \Delta(f,x)$. Isso ainda mostra que Δ é única como função de $X^X \times X$ em X^N que associa a cada $f \in X^X$ e cada $x \in X$ a única função $\Delta(f,x)$ de N em X satisfazendo as propriedades já ditas. Afinal, se houvesse outra Δ' , então $\Delta'(f,x) = \Delta(f,x)$ para todos f,x, em função da unicidade de $\varphi = \Delta(f,x) = \Delta'(f,x)$ para todos $f \in X^X$, $x \in X$. Portanto tem-se $\Delta' = \Delta$.

Abstraindo o contexto, supõe-se uma função $g:A\times B\longrightarrow C$. Então determina-se unicamente uma função $h:A\longrightarrow C^B$ tal que h(a)(b)=g(a,b), e vice-versa. Assim, há uma correspondência biunívoca entre $C^{A\times B}$ e $(C^B)^A$.

Isto pode ser visto no subconjunto $h \subset A \times C^B$ dos pares ordenados (a,f) tais que f(b) = g(a,b) para todo $b \in B$. De fato, h será função, pois para todo $a \in A$, considera-se a função $f_a : B \longrightarrow C$ tal que $f_a(b) = g(a,b)$ (explicitamente, $(b,c) \in f_a \iff c = g(a,b)$, configurando função), de modo que $(a,f_a) \in h$, e se $(a,u),(a,v) \in h$, então u(b) = g(a,b) = v(b) para todo $b \in B$, daí u = v. A unicidade de h é vista facilmente de que, supondo outra h', tem-se que para todo $a \in A$ e $b \in B$, h(a)(b) = g(a,b) = h'(a)(b), daí h(a) = h'(a) para todo $a \in A$, e por fim h = h'.

A volta é vista também em argumentos similares: supondo $h:A\longrightarrow C^B$, toma-se $g\subset A\times B\longrightarrow C$ tal que $((a,b),c)\in g\iff h(a)(b)=c$. Que g é função é visto de que, para todo par $(a,b)\in A\times B$, $((a,b),h(a)(b))\in g$, e se g' também satisfaz as condições, tem-se g(a,b)=h(a)(b)=g'(a,b) para todo par $(a,b)\in A\times B$, daí g=g'.

De posse dessas novas ferramentas, toma-se $\Delta: X^X \times X \longrightarrow X^N$, em que $\Delta(f,x)$ é a única função de N em X tal que $\Delta(f,x)(i) = x$ e $\Delta(f,x) \circ s = f \circ \Delta(f,x)$; Daí tem-se

$$\Gamma: \ X^X \times X \times N \ \longrightarrow \ X \\ (f, x, n) \ \longmapsto \ \Delta(f, x)(n)$$

em que $\Gamma(f,x,i)=x$, e $\Gamma(f,x,s(m))=f(\Gamma(f,x,m))$. Ainda, Γ é única satisfazendo tais propriedades, devido ao fato de sua correspondência biunívoca com Δ e Δ ser única. Similarmente, tem-se

$$\Gamma^*: N \times X^X \times X \longrightarrow X$$

 $(n, f, x) \longmapsto \Delta(f, x)(n)$

igualmente única e satisfazendo propriedades análogas, e daí temos então

$$\begin{array}{cccc} \Lambda: & N \times X^X & \longrightarrow & X^X \\ & (n,f) & \longmapsto & f^n \end{array}$$

em que Λ é única com $\Lambda(n,f)(x)=f^n(x)=\Gamma(f,x,n)$, implicando em $f^i=\operatorname{id}_X$ e $f^{s(n)}=f\circ f^n$. Assim, Λ é a única função de $N\times X^X$ em X^X tal que $\Lambda(i,f)=\operatorname{id}_X$ e $\Lambda(s(n),f)=f\circ \Lambda(n,f)$.

Há algumas maneiras de ver isso: a mais explícita, desconsiderando as unicidades já vistas de Γ e Δ , é assumir outra Δ' e tomar $N' = \{n \in N \mid \Delta'(n, f) = \Delta(n, f) \ \forall f \in X^X\} \subset N$ e ver que N' = N, em argumentos já vistos.

Finalmente, ao repetir o processo anterior, obtêm-se a função

$$\wedge: N \longrightarrow (X^X)^{(X^X)}$$

$$n \longmapsto \wedge (n)$$

em que $\wedge(n)(f) = f^n$, e $\wedge(n)(f)(x) = \Gamma^*(n, f, x) = \Delta(f, x)(n)$.

A unicidade de \wedge com as propriedades de que $\wedge(i)(f) = \mathrm{id}_X$ e $\wedge(s(n))(f) = f \circ \wedge(n)(f)$ vem novamente das unicidades das funções anteriores, mas novamente pode ser demosntrada independentemente: com \wedge' outra tal função, considera-se $N' = \{n \in N \mid \wedge'(n) = \wedge(n)\}$, de tal forma que o resultado de $\wedge' = \wedge$ segue naturalmente.

Efetivamente, conlui-se que todo modelo de Peano age globalmente em todas as funções cujos domínios são também os contradomínios, com essa ação sendo feita de maneira única, formalizando a ideia de composição repetidas vezes pela mesma função. A situação clara é a compatibilidade entre s^n como definida no isomorfismo inicial entre \mathcal{I}_s e N e como definida a partir de Λ .

Ainda mais, como entre quaisquer dois modelos de Peano há um único isomorfismo canônico entre eles, não importa qual modelo de Peano foi tomado para definir a composição repetida, pois todos produzem o mesmo efeito e geram as mesmas funções.