Dilhara Jayasundara

Cambridge, MA

 $\begin{tabular}{l} \blacksquare (240)274-6885 & | & \boxtimes dilharajayasundara@gmail.com & | & \square Linkedin & | & \square Google Scholar & \square GitHub & | & \square Portfolio \\ \end{tabular}$

Experience

Aeroacoustics Engineer

September 2023 - present

Maglev Aero Inc., Boston, MA

- Conducted the aerodynamic design of an electric ducted fan propulsion system for eVTOL aircraft.
- Improved duct augmentation effects and developed novel rotor designs to increase performance in mid to high disk loading regimes using high-fidelity CFD analyses.
- Analyzed open and ducted rotor aerodynamics and acoustics using low- and high-fidelity aerodynamic solvers such as BEMT, VPM, LBM, and RANS, coupled with the Ffowcs Williams –Hawkings solver and the Brooks, Pope, and Marcolini (BPM) model.
- Developed a low-fidelity Blade Wake Interaction (BWI) noise prediction model by analyzing vortex missed distance data obtained from LBM.
- Performed **rotor design optimizations** to reduce noise emissions and increase performance using **genetic algorithms** and **artificial neural networks**.

Graduate Research Assistant

May 2019 - August 2023

University of Maryland, College Park, MD

- Investigated the aerodynamic and aeroacoustic characteristics of a wing-mounted propeller configuration, focusing on the aerodynamic interaction between the propeller, propeller wake, and wing.
- Simulated the aeroacoustics of a propeller transitioning from hover to forward flight.
- Analyzed a **six-tiltrotor eVTOL** configuration and a **quadrotor biplane** model in hover and forward flight modes using 3D RANS-based CFD and computational aeroacoustics.
- Collaborated with Advanced Rotorcraft Technology, Inc. (ART) to develop a unified comprehensive aircraft modelling and acoustic analysis toolkit to support eVTOL design and optimization.
- Developed an acoustic post-processing tool to simulate atmospheric attenuation and human perception of noise.
- Implemented a **meshing algorithm** to develop robust boundary layer meshes of complex geometries involving concave regions.

Aeroacoustics Engineering Intern

March - April 2023

Maglev Aero Inc., Boston, MA

- Aircraft noise estimation using low- to high-fidelity aerodynamic solvers and Ffowcs Williams–Hawkings based acoustic solver.
- Rotor blade optimization to reduce aircraft noise by performing parametric studies using low- to mid-fidelity tools.

Graduate Teaching Assistant

August 2018 - May 2019

University of Maryland, College Park, MD

- Courses TA'ed: Aerodynamics and Vibration and Aeroelasticity.
- Conducted occasional lectures, tutorial classes, office hours, and graded assignments of around 50 students in each class.

Education

Ph.D. in Aerospace Engineering

August 2023

University of Maryland, College Park, MD, USA

M.S. in Aerospace Engineering

May 2021 GPA: 3.71

University of Maryland, College Park, MD, USA

October 2017

B.Sc. in Civil Engineering University of Peradeniya, Sri Lanka

GPA: 4.00

AdvDip. in Management Accounting

May 2015

Charted Institute of Management Accountants (CIMA), UK

Awards and Honors

• 2 nd place at the Vertical Flight Society (VFS) 3 rd Annual Design-Build-Vertical	2023
Flight Competition	
• 1 st place at the VFS 38 th Annual Student Design Competition – Graduate Category	2021
• Dean's Fellowship, University of Maryland	2018
• J.B. Dissanayake Prize for Industrial Training , University of Peradeniya	2017
• Bartholomeusz Prize for Engineering Mathematics , University of Peradeniya	2017
• E.O.E. Pereira Prize for Structures , University of Peradeniya	2017
• M.P. Ranaweera Prize for Finite Element Methods in Solid Mechanics , University of Peradeniya	2017
• Ceylon Development Engineering Prize for the Best Performance in Civil Engineering , University of Peradeniya	2017

Selected Publications

- Jayasundara, D., and Baeder, J., "Aerodynamic and Aeroacoustic Analysis of a Quadrotor Biplane Tailsitter" Journal of the American Helicopter Society (under review).
- Arias, P., **Jayasundara**, **D.** and Baeder, J., "Aeroacoustic Analysis of a Quadrotor Biplane Tailsitter in Climb and Synchrophased Hover", 6th Decennial VFS Aeromechanics Specialists' Conference, Santa Clara, CA, February 2024.
- Jayasundara, D., Arias, P. and Baeder, J.D., "Multi-Fidelity Investigation of Noise Control Mechanisms for a Quadrotor Biplane Tailsitter in Forward Flight", AIAA SCITECH Forum, Orlando, FL, January 2024.
- Jayasundara, D. and Baeder, J., "Aerodynamic and Aeroacoustic Analysis of a Quadrotor Biplane Tailsitter in Forward Flight", Proceedings of the 79th Annual Forum, West Palm Beach, FL, May 2023.
- Yang, S., Ware, C., Batther, J., He, C., **Jayasundara, D.**, and Baeder, J., "eVTOL Rotor Performance and Acoustic Noise Study Using Unified Comprehensive Modeling and Acoustic Analysis", Proceedings of the 79th Annual Forum, West Palm Beach, FL, May 2023.
- Jayasundara, D. and Baeder, J. "Aerodynamic and Aeroacoustic Analysis of a Hovering Quadrotor Biplane Tailsitter", 10th Biennial Autonomous VTOL Technical Meeting and 10th Annual Electric VTOL Symposium, Mesa, AZ, January 2023.
- Jayasundara, D., Lee, B., Baeder, J., Goericke, J., Habana, Z., "Aerodynamic and Acoustic Analysis of a Multi-Rotor eVTOL Configuration", AIAA SCITECH Forum, National Harbor, MD, January 2023.
- Jayasundara, D., Jung, Y.S., and Baeder, J., "Aerodynamic and Aeroacoustic Investigation of Wingtip-Mounted Tractor Propeller" Journal of the American Helicopter Society, 2022.
- Jayasundara, D. and Baeder, J., "Aeroacoustic Analysis of Non-Periodic Propeller Motions", Aeromechanics for Advanced Vertical Flight Technical Meeting 2022, held at Transformative Vertical Flight Meeting 2022, San Jose, CA, January 2022.
- Jayasundara, H.M.A.D., Koliyabandara, S.M.N.H. and Wijesundara, K.K., "Wind Loads on Tall Buildings: A Comparative Study of the International Wind Codes and Numerical Simulation" Engineer: Journal of the Institution of Engineers, Sri Lanka, 51(3), 2018, pp.31–45
- Koliyabandara, S.M.N.H., **Jayasundara, H.M.A.D.** and Wijesundara, K.K., "Evaluation of Different Turbulence Models in Determining Wind Loads on Tall buildings" Society of Structural Engineers, Sri Lanka-Annual Sessions, 2018.

Projects

Collision Detection and Avoidance tool - CODA

2023

- Developed a surface node normal generation tool that avoids collisions between neighboring normal vectors preventing the formation of negative cell volumes in boundary layer volume meshes.
- Upgraded the nearbody volume mesh generator to improve mesh quality near concave surfaces using the CLOVIS algorithm.

VFS Design-Build-Vertical Flight Competition - AMAV

2023

- Designed a quadrotor tailsitter with delta wings to achieve higher maneuverability and optimum cruise performance.
- Conducted the winglet design to increase the performance of the aircraft.

VFS Graduate Student Design Competition - Alicorn

2021

- Led a five-person team to design a tandem rotor aircraft for medical equipment delivery for the 38th Annual VFS Student Design Competition graduate category.
- Streamlined the fuselage using an extensive CFD analysis to reduce the original aircraft drag by about 50%.
- Conducted the **rotor aerodynamic design** and performed an **aeroacoustic analysis of the aircraft** to ensure low noise emission.

Aeroacoustic Solver Development - ACUM-3

2020

- Developed a **computational aeroacoustic solver** to simulate **long duration non-periodic aircraft maneuvers** such as take-off, landing, flyover, and transition between hover and cruise modes.
- Parallelized the solver across multiple CPUs and GPUs using CUDA and MPI for optimum utilization of computing resources.
- Developed a **new algorithm to parallelize the time dimension** in the Ffowcs Williams Hawkings acoustic wave propagation equation.

Professional Activities/Affiliations

- Associate member (former) VFS Aeroacoustics Technical Committee
- Paper reviewer VFS Forum 2021, 2022, 2023
- Member Vertical Flight Society (VFS)
- Associate member Institute of Engineers, Sri Lanka (IESL)
- Student member Charted Institute of Management Accountants (CIMA)

Skills and Proficiencies

• Areas of Expertise Aerodynamics, Aeroacoustics, CFD, Rotorcraft Design, Open and Ducted Rotor

Design, Structural Mechanics, Structural Dynamics, Fluid-Structure Interactions,

Finite Element Method, Management Accounting

• **Programming** MATLAB, Python, C/C++, Fortran, CUDA, MPI, Julia

• Software and Tools Altair Ultra FluidX, ANSYS Fluent, SU2, SOLIDWORKS, CATIA, OpenVSP,

DUST, FLOWUnsteady, Ducted Fan Design Code (DFDC), XFOIL, Gmsh, Par-

aView, Tecplot-360, Blender, Pointwise, FLIGHTLAB

• Miscellaneous Linux, Shell (Bash/Zsh), Latex, Bitbucket, Git, High-performance computing