In [2]:

```
import numpy as np
import pandas as pd
```

In [3]:

```
df = pd.read_csv('heart - heart.csv')
```

In [4]:

```
df.head()
```

Out[4]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targe
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	
4														•

In [5]:

```
X = df.drop(columns=['target'])
y = df['target']
```

In [6]:

Χ

Out[6]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	

303 rows × 13 columns

```
In [7]:
У
Out[7]:
       1
0
1
       1
2
       1
3
       1
4
       1
298
       0
299
       0
300
       0
301
       0
302
       0
Name: target, Length: 303, dtype: int64
In [8]:
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=8)
In [9]:
print(X_train.shape)
(242, 13)
In [10]:
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import GradientBoostingClassifier
In [11]:
estimators = [
    ('rf', RandomForestClassifier(n_estimators=10, random_state=42)),
    ('knn', KNeighborsClassifier(n_neighbors=10)),
    ('gbdt',GradientBoostingClassifier())
]
In [12]:
from sklearn.ensemble import StackingClassifier
clf = StackingClassifier(
    estimators=estimators,
    final_estimator=LogisticRegression(),
    cv=10
)
```

In [13]: clf.fit(X_train, y_train) Out[13]: StackingClassifier knn gbdt rf KNeighborsClassifier RandomForestClassifier GradientBoostingClassifier final_estimator ▶ LogisticRegression In [14]: y_pred = clf.predict(X_test) In [15]: from sklearn.metrics import accuracy_score accuracy_score(y_test,y_pred) Out[15]: 0.8688524590163934 In []: In []: