高级语言程序设计 实验四程序测试&计算机辅助教学系统

实验目的

程序测试

实验内容

程序的缩进: 在程序编辑区,全选(CTRL+A)→右键→Format use AStyle

可以把整个程序的格式调整,有利于看清楚程序结构,检查是否有遗漏{}

程序测试

- > 程序测试是确保程序质量的一种有效手段
- > 测试的过程实质是发现错误的过程
- > 程序测试的目的是尽可能多地发现程序中的错误

程序测试——测试用例的设计

举个栗子!!

选取测试用例的出发点是尽量让测试用例覆盖程序中的<u>每条语句、每</u>个分支、每个条件判断,减少重复覆盖。

体型判断程序

从键盘输入你的身高h(米)和 体重w(干克),根据公式: BMI=w/h² 计算体质指数 然后判断你

计算体质指数,然后判断你的体型属于哪种:

当BMI<18时,为低体重; 当BMI介于18和25之间时, 为标准体重; 当BMI介于25和27之间时, 为超重体重; 当BMI≥27时,为肥胖。

程序测试——测试用例的设计

测试用例是否完备?

"边界测试:选取测试用例时,应选择一些不合理的以及某些特殊的输入数据或者临界的点。

体型判断程序

从键盘输入你的身高h和体重w,根据公式: BMI=体重w/(身高h)² 计算体质指数,然后判断你的体型属于哪种:

当BMI<18时,为低体重; 当BMI介于18和25之间时, 为标准体重; 当BMI介于25和27之间时, 为超重体重; 当BMI≥27时,为肥胖。

核心代码

float BMI, w, h;
scanf("%f%f" , &h, &w);
BMI = w / (h * h);
if (BMI < 18)
 printf("低体重");
else if (BMI > 18 && BMI < 25)
 printf("标准体重");
else if (BMI > 25 && BMI < 27)
 printf("超重体重");
else
 printf("肥胖");

测试用例				
身高h (米)	体重w (千克)	BMI	体型	
1. 7	46. 24	16	低体重	
1. 7	66. 47	23	标准体重	
1.7	75. 14	26	超重体重	
1.7	80. 92	28	肥胖	
1. 7	52.02	18	标准体重	
1.7	72. 25	25	超重体重	
1. 7	78.03	27	肥胖	

举个栗子!!

体型判断程序

从键盘输入你的身高h和体重w,根据公式: BMI=体重w/(身高h)² 计算体质指数,然后判断你的体型属于哪种:

当BMI<18时,为低体重; 当BMI介于18和25之间时, 为标准体重; 当BMI介于25和27之间时, 为超重体重; 当BMI≥27时,为肥胖。

核心代码

float BMI, w, h;
scanf("%f%f" , &h, &w);
BMI = w / (h * h);
if (BMI < 18)
 printf("低体重");
else if (BMI > 18 && BMI < 25)
 printf("标准体重");
else if (BMI > 25 && BMI < 27)
 printf("超重体重");
else
 printf("肥胖");

测试用例				
身高h (米)	体重w (千克)	BMI	体型	
1.7	46. 24	16	低体重	
1.7	66. 47	23	标准体重	
1. 7	75. 14	26	超重体重	
1.7	80. 92	28	肥胖	
1. 7	52.02	18	标准体重	
1. 7	72. 25	25	超重体重	
1. 7	78.03	27	肥胖	

举个栗子!!

测试用例是否完备?

体型判断程序

从键盘输入你的身高h和体重w,根据公式: BMI=体重w/(身高h)² 计算体质指数,然后判断你的体型属于哪种:

当BMI<18时,为低体重; 当BMI介于18和25之间(包含18)时,为标准体重; 当BMI介于25和27之间(包含25)时,为超重体重; 当BMI≥27时,为肥胖。

核心代码

```
float BMI, w, h;
scanf( "%f%f" , &h, &w);
BMI = w / (h * h );
if (BMI < 18)
    printf( "低体重" );
else if (BMI > = 18 && BMI < 25)
    printf( "标准体重" );
else if (BMI > = 25 && BMI < 27)
    printf( "超重体重" );
else
    printf( "肥胖" );
```

测试用例				
身高h (米)	体重w (千克)	BMI	体型	
1. 7	46. 24	16	低体重	
1. 7	66. 47	23	标准体重	
1.7	75. 14	26	超重体重	
1.7	80. 92	28	肥胖	
1. 7	52. 02	18	标准体重	
1. 7	72. 25	25	超重体重	
1.7	78. 03	27	肥胖	

异常测试: 要求程序能识别输入的异常数据,给出适当的提示,保证程序不因输入异常而崩溃。

测试用例					
身高h (米)	体重 w (千克)	BMI	体型		
1.7	46. 24	16	低体重		
1.7	66. 47	23	标准体重		
1.7	75. 14	26	超重体重		
1.7	80. 92	28	肥胖		
1.7	52.02	18	标准体重		
1.7	72. 25	25	超重体重		
1.7	78. 03	27	肥胖		
-1	50		输入错误,身高在0-3之间 (不包含0)		
1	-10		输入错误,体重应>0		
0	40		输入错误,身高在0-3之间 (不包含0)		
-4	-30		输入错误,身高在0-3之间 (不包含0)且体重应>0		

提示信息 要友好

程序测试—测试用例设计

- ➢测试用例的选择
 - ✓尽量覆盖所有分支(路径)
 - ✓应考虑到合法的输入和边界条件
 - ✓考虑到各种不合法的输入,给出友好的提示

实验目的

- > 熟悉函数设计、模块化程序设计的方法
- > 熟悉常用的程序测试方法

编写两个个程序来帮助小学生学习乘法和四则运算

要求:

- 1、需要使用函数进行模块化程序设计;
- 2、使用循环语句来实现逻辑的循环跳转。

参考教材介绍的猜数游戏

实验内容 (1)

CAI-V1.0:小学生乘法学习系统

通过计算机随机产生两个1~10之间的正整数,并在屏幕上打印出问题,例如:

6*7=?

然后让学生输入该乘法题目的答案,程序检查学生输入的答案是否正确。

要求:

- 1、最多给3次答题机会,若学生回答正确,则显示"Right!";当学生回答错误,前2次错误显示"Wrong! Please try again.",第3次仍回答错误时,则显示"Wrong! Try next subject!";
- 2、学生连续做10道乘法题,10道题全部做完后,按每题10分统计并输出总分(每个题目3次答题机会内回答正确,即算回答正确),再输出学生的回答正确率(即答对题数除以总题数得到的百分比)。

实验内容 (2)

CAI-V2.0:小学生四则运算学习系统

随机产生10道四则运算题,两个操作数为1-10之间的随机数,运算类型为随机产生的加、减、乘、除中的任意一种。在屏幕上打印出问题,例如:

9+6=?

然后让学生输入答案,程序检查学生输入的答案是否正确。

要求:

- 1、每道题目只有1次答题机会;
- 2、若回答正确,在 "Well done!","Excellent!","Good job!","Great!"这4种提示信息中随机选择一个显示;

若回答错误,在"Keep trying!","Be careful!","Don't give up!"这3种提示信息中随机选择一个显示;

3、在学生完成10道运算题后,若回答正确率低于75%,则重新做10道题, 直到回答正确率高于75%时才退出。

实验内容 (2)—补充说明

这里的除法:

1. 基础版: 理解为整除, 比如: 7/3=2, 2/3=0

2. 进阶版: 要求结果四舍五入到小数点后2位, 比如: 7/3=2.33, 2/3=0.67

浮点数的比较,可参照如下:

浮点数比较大小由于精度问题,如果直接比较可能会出错,所以在比较的时候可以设定一个很小的数值(精度),当二者差小于设定的精度时,就认为二者是相等的。

精度的设置由计算过程中需求而定。

比如:设置精度为1E-2,也就是0.01。对于两个浮点数a、b,如果fabs(a-b)<1E-2,那么就是相等了;类似的判断大于的时候,就是if(a>b && fabs(a-b)>1E-2);判断小于的时候,就是if(a<b&&fabs(a-b)>1E-2)。

注意:选择尽可能完备的测试用例测试你的程序,截图报告不限3组用例。

实验内容——附加题

- 1、实现除法的进阶版
- 2、升级方案:
- 通过计算机随机产生两个1-10之间的正数,并在频幕上打印出问题,例如:

6.87*7.03 = ?

然后让学生输入该乘法题目的答案,程序检查学生输入的答案是否正确,其他要求参考CAI-V1.0:小学生乘法学习系统

说明:本页内容不是必做内容,供有兴趣的同学选做。

谢谢

YOU ON

从未停止