

Introduction

ACL 2019 Stats

	Area	Long	Short	Total
1.	Information Extraction, Text Mining	156	93	249
2.	Machine Learning	148	73	221
3.	Machine Translation	102	105	207
4.	Dialogue and Interactive	102	100	207
	Systems	125	57	182
5.	Generation	97	58	155
6.	Question Answering	99	55	154
7.	Sentiment Analysis, Argument			
	Mining	91	60	151
8.	Word-level Semantics	78	59	137
9.	Applications	65	72	137
10.	Resources and Evaluation	70	60	130
11.	Multidisciplinary, AC COI	70	44	114
12.	Sentence-level Semantics	70	42	112
13.	Tagging, Chunking, Syntax,			
	Parsing	50	49	99
14.	Social Media	51	42	93
15.	Summarization	48	35	83
16.	Document Analysis	48	33	81
17.	Vision, Robotics Multimodal			
	Grounding, Speech	56	23	79
18.	Multilinguality	43	32	75
19.	Textual Inference, Other Areas			
	of Semantics	44	30	74
20.	Linguistic Theories, Cognitive,			5000
	Psycholinguistics	39	21	60
21.	Discourse and Pragmatics	33	24	57
22.	Phonology, Morphology, Word	20	10	44
	Segmentation Total	26 1609	18 1085	44 2694

Statistics on submissions

APRIL 8, 2019 / PC CHAIRS / COMMENTS OFF

ACL 2019 received as many as 2906 submissions by the submission deadline. This constitutes more than a 75% increase over ACL 2018 and is an all-time record for ACL-related conferences! The huge logistics involved in handling these submissions explains our long silence. However, we can now finally give you some basic statistics:

POSTS

October 2019

M T W T F 5 S

1 2 3 4 5 6

7 8 9 10 11 12 13

Zero-shot WSD with Sense Definition Embeddings

· Milliand

Transferable Multi-Domain State Generator for TODS

× Model

- utterance encoder
- slot gate
- state generator
- all shared across domains
- Knowledge Transfer for predicting
 - o domain, slot, value
- × Madotto et al, ACL 2019
 - https://arxiv.org/pdf/1905.08743.pdf
 - https://github.com/jasonwu0731/trade-dst

A CONTRACTOR OF THE PARTY OF TH

Energy and Policy Considerations for NLP

- Cost of hardware
- × Cost of electricity
- × Cloud compute time
- × Carbon footprint
- × Cost of training
- × Cost of development
- × Emma Strubell et al
 - ACL 2019 paper
 - O https://arxiv.org/pdf/1906.02243.pdf

Consumption	CO ₂ e (lbs)		
Air travel, 1 passenger, NY↔SF	1984		
Human life, avg, 1 year	11,023		
American life, avg, 1 year	36,156		
Car, avg incl. fuel, 1 lifetime	126,000		

Training one model (GPU)

NLP pipeline (parsing, SRL)	39	
w/ tuning & experimentation	78,468	
Transformer (big)	192	
w/ neural architecture search	626,155	

Table 1: Estimated CO₂ emissions from training common NLP models, compared to familiar consumption.¹

Model	Hardware	Power (W)	Hours	kWh·PUE	CO_2e	Cloud compute cost
Transformer _{base}	P100x8	1415.78	12	27	26	\$41-\$140
Transformer _{big}	P100x8	1515.43	84	201	192	\$289-\$981
ELMo	P100x3	517.66	336	275	262	\$433-\$1472
$BERT_{base}$	V100x64	12,041.51	79	1507	1438	\$3751-\$12,571
$BERT_{base}$	TPUv2x16	—	96	_	-	\$2074-\$6912
NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
NAS	TPUv2x1	, 	32,623	_	_	\$44,055-\$146,848
GPT-2	TPUv3x32		168	_		\$12,902-\$43,008

Table 3: Estimated cost of training a model in terms of CO₂ emissions (lbs) and cloud compute cost (USD). Power and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

What does BERT Look at?

- Attention heads correspond to
 - syntaxs
 - coreference
 - direct objects of verbs or prepositions
 - determiners of nouns
- Clark, Khandelwal, Levy, Manning
 - https://arxiv.org/pdf/1906.04341.pdf
 - https://github.com/clarkkev/attention-analysis
- Alternatively see
 - Attention is not Explanation
 - Attention is not not Explanation

Head 8-10

- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation

Head 8-11

- Noun modifiers (e.g., determiners) attend
- 94.3% accuracy at the det relation

Head 7-6

[SEP]-

- Possessive pronouns and apostrophes attend to the head of the corresponding NP
- 80.5% accuracy at the poss relation

[SEP]-

- Passive auxiliary verbs attend to the verb they modify
- 82.5% accuracy at the auxpass relation

home

home

Head 9-6

- Prepositions attend to their objects

Head 5-4

- Coreferent mentions attend to their antecedents
- 65.1% accuracy at linking the head of a

Transformer Updates

- RoBERTa performs better than BERT
 - O https://arxiv.org/pdf/1907.11692.pdf
- × ALBERT shows best results
 - https://arxiv.org/pdf/1909.11942.pdf
- × **DistilBERT less parameters**, 95% performance
 - https://arxiv.org/abs/1910.01108
- × What about **lower resources** (e.g., less GPUs)?
 - VAMPIRE architecture is promising
 - https://arxiv.org/pdf/1906.02242.pdf

State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch

Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides state-of-the-art general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.

Features

- · As easy to use as pytorch-transformers
- · As powerful and concise as Keras
- · High performance on NLU and NLG tasks
- · Low barrier to entry for educators and practitioners

State-of-the-art NLP for everyone

- · Deep learning researchers
- · Hands-on practitioners
- · AI/ML/NLP teachers and educators

Lower compute costs, smaller carbon footprint

spacy-transformers

spaCy pipelines for pretrained BERT, XLNet and GPT-2

This package provides spaCy model pipelines that wrap Hugging Face's transformers </ri> you can use them in spaCy. The result is convenient access to state-of-the-art transformer architectures, such as BERT, GPT-2, XLNet, etc.

Unified Transformers

- Unified APIs for TF and PyTorch Transformers
- Includes most well-known Transformers
- Generally faster than original libraries
- SoA
- Focus on pre-trained models
- 2 libraries
 - https://github.com/huggingface/transformers
 - https://github.com/explosion/spacy-transformers

Cross Transformers

- Why should we use different Transformers?
- Cross-pollination
 - Graph (NAACL) text generation
 - **Tree (EMNLP)** composition, interpretation
 - Capsule (WS) prediction

https://arxiv.org/pdf/1908.07490.pdf

