无锡学院 试卷

2023 - 2024 学年 第 2 学期

生代数 线性代数	课程试卷
试卷类型 <u>B</u> (注明 A、B 卷) 考试类型	型 <u>闭卷</u> (注明开 、闭卷)
注意: 1、本课程为必修_(注明必修或选修), 学	·时为 <u>3</u> ,学分为 <u>3</u>
2、本试卷共 <u>6</u> 页;考试时间 <u>120</u> 分钟;	出卷时间: <u>2024</u> 年 <u>6</u> 月
3、姓名、学号等必须写在指定地方;	考试时间: _2024年月
4、本考卷适用专业年级: 2023 级理工文	任课教师:
(以上内容为教师均	填写)

题号	_	11	111	四	五.	六	七	八	总 分
得 分									
评阅人									

专业	_ 年级	班级
学号	姓名	_

请仔细阅读以下内容:

- 1、 考生必须遵守考试纪律。
- 2、 所有考试材料不得带离考场。
- 3、 考生进入考场后,须将学生证或身份证放在座位的左上角。
- 4、 考场内不许抽烟、吃食物、喝饮料。
- 5、 考生不得将书籍、作业、笔记、草稿纸带入考场,主考教师允许带入的除外。
- 6、 考试过程中,不允许考生使用通讯工具。
- 7、 开考 15 分钟后不允许考生进入考场,考试进行 30 分钟后方可离场。
- 8、 考生之间不得进行任何形式的信息交流。
- 9、 除非被允许,否则考生交卷后才能离开座位。
- 10、考试违纪或作弊的同学将被请出考场,其违纪或作弊行为将上报学院。

本人郑重承诺: 我已阅读上述 10 项规定,如果考试是违反了上述 10 项规定,本人将自愿接受学校按照有关规定所进行的处理。上面姓名栏所填姓名即表示本人已阅读本框的内容并签名。

评阅人 得分

一、选择题(每题 3 分, 共 10 题, 合计 30 分)选择题答案填在下面表格 里,否则不计分.

1	2	3	4	5	6	7	8	9	10

一、选择题(每题3分,共10题,合计30分)

1. 设
$$A, B$$
均为 $_2$ 阶方阵,且 $|A| = \frac{1}{2}$, $|B| = -2$,则 $|2A^{-1}B^{-1}| =$ ().

A. 1

$$B. - 4$$

B.
$$-4$$
 C. 4 D. $\frac{1}{2}$

2. 四阶行列式
$$\begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 2 & 0 & 0 & 3 \end{vmatrix} = () .$$

A. 0

3. 设矩阵
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + 3a_{11} & a_{32} + 3a_{12} & a_{33} + 3a_{13} \end{pmatrix}$, 另有初等矩阵

$$P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, 则必有().$$

$$B. \quad AP_2P_1=B$$

C.
$$P_1 P_2 A = B$$

A.
$$AP_1P_2 = B$$
 B. $AP_2P_1 = B$ C. $P_1P_2A = B$ D. $P_2P_1A = B$

4. 设
$$D = \begin{vmatrix} 1 & 0 & 1 & 2 \\ -1 & 1 & 0 & 3 \\ 1 & 1 & 1 & 0 \\ -1 & 2 & 5 & 4 \end{vmatrix}$$
, 则 $D = ($

$$A. - A_{31} + 2A_{32} + 5A_{33} + 4A_{34}$$

$$B. A_{31} + A_{32} + A_{33}$$

$$C. A_{13} + A_{33} + A_{43}$$

$$D. - A_{14} + A_{24} - A_{34} + A_{44}$$

5. 设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 均为n维向量,下列结论正确的是().

A. 若对于任意一组不全为零的数 k_1,k_2,\cdots,k_s ,都有 $k_1\alpha_1+k_2\alpha_2+\cdots k_s\alpha_s=0$,

则 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关.

B. 若 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关,则对于任意一组不全为零的数 k_1,k_2,\cdots,k_s ,
有 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$.
C. $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关的充分必要条件是此向量组的秩为 s .
D. $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关的充分条件是其中任意两个向量线性无关.
6. 若 A 是一个 4×6 的矩阵,且 $r(A) = 3$,则齐次线性方程组 $AX = 0$ 的基础解系中含有的
解向量的个数为().
A. 1 B. 2 C. 3 D. 4
7. 设向量 b 可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示,则下列结论中错误的是().
A. 线性方程组 $AX = b$ 无解,其中 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$.
B. 线性方程组 $AX = b$ 有解,其中 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$.
C. 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 与向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n,b$ 等价.
D. 矩阵 $A=\left(\alpha_1,\alpha_2,\cdots,\alpha_n\right)$ 的秩与矩阵 $B=\left(\alpha_1,\alpha_2,\cdots,\alpha_n,b\right)$ 的秩相等.
8. 已知 3 阶矩阵 A 的各行元素之和为 -2 ,则下列正确的是().
A. A 有一个特征值 -2 ,且对应的特征向量为 $\left(1,1,1\right)^{T}$.
B. A 有一个特征值 -2 ,但不一定有对应的特征向量 $\left(1,1,1\right)^{T}$.
C. -2 不是 A 的一个特征值. D. 无法确定 A 是否有一个特征值 -2 .
9. 若 A 与 B 相似,则()
A. $\lambda E - A = \lambda E - B$ B. $ A = B $
C. 对于其相同的特征值,对应的特征向量必亦相同 D. $A = B$ 均相似于同一对角阵
10. 下面结论中正确的是() A. 若 A 为 $n \times n$ 实矩阵,且 A 有 n 个正的特征根,则 A 是正定矩阵.
B. 若 A, B 是 n 阶正定矩阵,则对任意 $k, l \in R$,矩阵 $kA + lB$ 正定.
$C.$ 若 A 为 $n \times n$ 实对称矩阵且行列式大于零,则 A 是正定矩阵.
D. 若 A 是 n 阶正定矩阵,则 A^{-1} 也是正定矩阵.

一个最高阶非零子式.

			2	1		1
评阅人	得分		1	2		1
		三、(10 分)计算 n 阶行列式	:	:	:	1
				•	•	1
			1	1	1	2

评阅人	得分

五、(10 分) 求齐次线性方程组 $\begin{cases} x_1-2x_2+x_3-3x_4=0\\ 2x_1+x_2-3x_3+4x_4=0. \text{ 的一个基础解}\\ x_1-5x_2+7x_3-9x_4=0 \end{cases}$

系,并给出通解.

评阅人	得分

六、 $(10 \ \beta)$ 求向量组 $\alpha_1 = (1,1,1,k)^T$, $\alpha_2 = (1,1,k,1)^T$, $\alpha_3 = (1,2,1,1)^T$ 的 秩和一个极大线性无关组.

ſ	`ਚਾਂ ਨੇਹਾਂ ↓	得分]		(0	2	-3		(1	-2	0)
	评阅人	伊 分	七、	(10 分) 设矩阵 A=	-1	3	-3	相似于矩阵 B=	0	b	0	,
					1	-2	a		0	3	1	

- (1) 求 a,b 的值;
- (2) 求可逆矩阵P, 使得 $P^{-1}AP$ 为对角矩阵.

评阅人	得分

八、(10分)将二次型

$$f(x_1, x_2, x_3) = -x_1^2 - x_2^2 - x_3^2 + 4x_1x_2 + 4x_1x_3 - 4x_2x_3$$

化为标准形,并写出相应的可逆线性变换.