Amendments to the Specification:

Please replace the paragraph beginning at page 24, lines 8 through 11, with the following amended paragraph:

Following the procedures outlined in Example 1, the following oligonucleotides were synthesized:

Oligo#	Sequence (5'> 3') and Modification ^a
SEQ ID NO:	
1	d(CTATCTGA CG TTCTCTGT)
2	d(CTATCTGA C * G TTCTCTGT)
3	d(CTATCTGA CC *TTCTCTGT)
4	d(CTATCTGA C * G TTCTCTGT)
5	d(CTATCTGA CC *TTCTCTGT)

^a CpG-motif is shown in bold. C* represents 5-hydroxycytosine (oligos 2 and 3) or N4-ethylcytosine (oligos 4 and 5).

Please replace the paragraph beginning at page 29, line 9 through page 30, line 8 with the following amended paragraph:

The CpG-PS-oligos shown in Figure 17 were synthesized using an automated synthesizer and phosphoramidite approach. Oligo 1 (16-mer) was synthesized using nucleoside-5'-β-cyanoethylphosphoramidites. Oligo 2, a 32-mer, was synthesized using nucleoside-3'-β-cyanoethylphosphor-amidites cyanoethylphosphoramidites and controlled pore glass support (CPG-solid support) with a 3'-linked nucleoside in which 16-mer sequence of Oligo 1 was repeated twice; therefore, Oligo 2 had two 16-mers (Oligo 1) linked by a normal 3'-5'-linkage. Oligo 3, a 32-mer, was synthesized with two 16-mers (Oligo 1) linked by a 5'-5'-linkage, so Oligo 3 had two 3'-ends and no 5'-end. Synthesis of Oligo 3 was carried out in two steps: the first 16-mer was synthesized using nucleoside-3'-β-cyanoethylphosphoramidites and solid

Application No. 10/694,207 Reply to Office Action of August 24, 2006 Page 3 of 4

support with a 3'-linked nucleoside, and then synthesis of the second 16-mer segment was continued using nucleoside-5'-\beta-cyanoethylphosphoramidites. Oligo 4, a 32-mer, comprised two 16-mers (Oligo 1) linked by a 3'-3'-linkage, so Oligo 4 had two 5'-ends and no 3'-end. Synthesis of Oligo 4 was carried out in two steps: the first 16-mer was synthesized using nucleoside-5'-β-cyanoethylphosphoramidites and solid support with a 5'-linked nucleoside, and the synthesis of the second 16-mer segment was continued using nucleoside-3'-β-cyanoethylphosphoramidites. Synthesis of Oligos 5-8 was carried out by using the same nucleoside-βcyanoethylphosphoramidites as for Oligos 1-4, respectively. At the end of the synthesis, Oligos 1-8 were deprotected with concentrated ammonia solution, purified by reversed phase HPLC, detritylated, desalted and dialyzed. The purity of each PS-oligo was checked by CGE and the molecular weight was confirmed by MALDI-TOF mass spectral analysis (Table 1). The sequence integrity and directionality of 5'-CpG motif in Oligos 1-8 were confirmed by recording melting temperatures (T_ms) of the duplexes with their respective DNA complementary strands (5'-AAGGTCGAGCGTTCTC-3' (SEQ ID NO: 6) for Oligos 1-4, and 5'-ATGGCGCACGCTGGGAGA-3' (SEQ ID NO: 7) for Oligos 5-8). The T_ms of these duplexes were 53.9 ± 0.9 °C (Oligos 1-4), 61.8 °C (Oligo 5), and 58.8 ± 0.6 °C (Oligos 6-8) (note that Oligo 5 was a 18-mer and Oligos 6-8 were 32-mers but not 36-mers).