$\mathrm{ULB} \\ 2018/2019$

MATHF3001 - Théorie de la mesure

Assistant : Robson Nascimento Titulaire : Céline Esser

LISTE 1 - ESPACES MESURABLES

Exercice 1. Soient (X, \mathcal{A}) un espace mesurable et Y un sous-ensemble de X. Montrer que

$$\mathcal{A}_Y = \{ A \cap Y : A \in \mathcal{A} \}$$

est une σ -algèbre sur Y.

Exercice 2.

- 1. Soit X un ensemble infini. Décrire la σ -algèbre engendrée par la classe des parties finies de X. Que peut-on dire si X est fini?
- 2. Dans $X = \{0, \dots, n\}$ on considère $\mathcal{A} = \{0\}$ et $\mathcal{B} = \{\{0\}, \{1, 2\}\}$. Décrire la σ -algèbre engendrée par \mathcal{A} et celle engendrée par \mathcal{B} .

Exercice 3. Soient X et Y des ensembles et $f: X \mapsto Y$ une application.

- 1. Montrer que si \mathcal{A}' est une σ -algèbre sur Y, alors $\{f^{-1}(B): B \in \mathcal{A}'\}$ est une σ -algèbre sur X.
- 2. Soit \mathcal{A} une σ -algèbre sur X.
 - (a) Montrer que $\{B \subset Y : f^{-1}(B) \in A\}$ est une σ -algèbre sur Y.
 - (b) Que pouvez-vous dire de l'ensemble $\{f(A): A \in A\}$?

Exercice 4. Soient (X, \mathcal{A}_1) et (Y, \mathcal{A}_2) deux espaces mesurables. On dit que $f: X \to Y$ est mesurable si $f^{-1}(B) \in \mathcal{A}_1$ pour chaque $B \in \mathcal{A}_2$. Montrer que si \mathcal{A}_2 est la σ -algèbre engendrée par une famille $\mathcal{F} \subset \mathcal{P}(Y)$, alors f est mesurable si et seulement si $f^{-1}(B) \in \mathcal{A}_1$ pour chaque $B \in \mathcal{F}$.

Exercice 5. Soit X un ensemble. Une collection \mathcal{D} de parties de X est une classe de Dynkin si $-X \in \mathcal{D}$,

- si $A \in \mathcal{D}$, alors $A^c \in \mathcal{D}$,
- si $(A_n)_{n\in\mathbb{N}}$ est une suite d'éléments de \mathcal{D} deux à deux disjoints, alors $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{D}$.
- 1. Montrer que toute intersection non-vide de classes de Dynkin est une classe de Dynkin.
- 2. En déduire que pour tout $\mathcal{F} \subseteq \mathcal{P}(X)$, il existe une plus petite (au sens de l'inclusion) classe de Dynkin contenant \mathcal{F} . On la note $\lambda(\mathcal{F})$.
- 3. Montrer que si \mathcal{D} est une classe de Dynkin stable par intersection finie, alors \mathcal{D} est une σ -algèbre.
- 4. Si $\mathcal{F} \subseteq \mathcal{P}(X)$ est stable par intersection finie, montrer que $\lambda(\mathcal{F}) = \sigma(\mathcal{F})$. Suggestion : Pour $D \in \lambda(\mathcal{F})$, montrer que $\mathcal{D}_D = \{Q \in \lambda(\mathcal{F}) : Q \cap D \in \lambda(\mathcal{F})\}$ est une classe de Dynkin. Ensuite utiliser les points 2 et 3.