THERMODYNAMICS

PROPERTIES OF SINGLE-COMPONENT SYSTEMS

Nomenclature

- 1. Intensive properties are independent of mass.
- 2. Extensive properties are proportional to mass.
- Specific properties are lowercase (extensive/mass).

State Functions (properties)

(lbf/in² or Pa) Absolute Pressure, P (°R or K) Absolute Temperature, T $(ft^3 \text{ or } m^3)$ Volume, V Specific Volume, v = V/m(ft³/lbm or m³/kg) Internal Energy, U (Btu or kJ)

Specific Internal Energy,

$$u = U/m$$
 (usually in Btu/lbm or kJ/kg)
Enthalpy, H (Btu or KJ)

Specific Enthalpy,

$$h = u + Pv = H/m$$
 (usually in Btu/lbm or kJ/kg)
Entropy, S (Btu/°R or kJ/K)

Specific Entropy, s = S/m[Btu/(lbm- $^{\circ}$ R) or kJ/(kg $^{\bullet}$ K)] Gibbs Free Energy, g = h - Ts(usually in Btu/lbm or kJ/kg)

Helmholz Free Energy,

$$a = u - Ts$$
 (usually in Btu/lbm or kJ/kg)

Heat Capacity at Constant Pressure, $c_p = \left(\frac{\partial h}{\partial T}\right)_p$

Heat Capacity at Constant Volume,
$$c_v = \left(\frac{\partial u}{\partial T}\right)_v$$

Quality x (applies to liquid-vapor systems at saturation) is defined as the mass fraction of the vapor phase:

$$x = m_g / (m_g + m_f)$$
, where

 $m_{\sigma} = \text{mass of vapor, and}$

 $m_f = \text{mass of liquid.}$

Specific volume of a two-phase system can be written:

$$v = xv_g + (1 - x)v_f$$
 or $v = v_f + xv_{fg}$, where

 v_f = specific volume of saturated liquid,

 v_g = specific volume of saturated vapor, and

 v_{fg} = specific volume change upon vaporization.

$$= v_{g} - v_{f}$$

Similar expressions exist for u, h, and s:

$$u = xu_g + (1 - x) u_f$$
 or $u = u_f + xu_{fg}$
 $h = xh_g + (1 - x) h_f$ or $h = h_f + xh_{fg}$
 $s = xs_o + (1 - x) s_f$ or $s = s_f + xs_{fo}$

For a simple substance, specification of any two intensive, independent properties is sufficient to fix all the rest.

For an ideal gas, Pv = RT or PV = mRT, and

$$P_1 v_1 / T_1 = P_2 v_2 / T_2$$
, where

= pressure,

v = specific volume,

m = mass of gas,

= gas constant, and

T = absolute temperature.

V = volume

R is specific to each gas but can be found from

$$R = \frac{\overline{R}}{(mol. wt)}$$
, where

 \overline{R} = the universal gas constant

=
$$1,545 \text{ ft-lbf/(lbmol-}^{\circ}\text{R}) = 8,314 \text{ J/(kmol} \cdot \text{K}).$$

For ideal gases, $c_n - c_v = R$

Also, for *ideal gases*:

$$\left(\frac{\partial h}{\partial P}\right)_T = 0 \qquad \left(\frac{\partial u}{\partial v}\right)_T = 0$$

For cold air standard, heat capacities are assumed to be constant at their room temperature values. In that case, the following are true:

$$\begin{split} \Delta u &= c_v \Delta T; \quad \Delta h = c_p \, \Delta T \\ \Delta s &= c_p \ln \, (T_2/T_1) - R \ln \, (P_2/P_1); \text{ and } \\ \Delta s &= c_v \ln \, (T_2/T_1) + R \ln \, (v_2/v_1). \end{split}$$

For heat capacities that are temperature dependent, the value to be used in the above equations for Δh is known as the mean heat capacity (\overline{c}_p) and is given by

$$\overline{c}_p = \frac{\int_{T_1}^{T_2} c_p dT}{T_2 - T_1}$$

Also, for constant entropy processes:

$$\frac{P_2}{P_1} = \left(\frac{v_1}{v_2}\right)^k; \qquad \frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$$

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1}, \text{ where } k = c_p/c_v$$

For real gases, several equations of state are available; one such equation is the van der Waals equation with constants based on the critical point:

$$\left(P + \frac{a}{\overline{v}^2}\right)(\overline{v} - b) = \overline{R}T$$

where
$$a = \left(\frac{27}{64}\right) \left(\frac{\overline{R}^2 T_c^2}{P_c}\right)$$
, $b = \frac{\overline{R} T_c}{8P_c}$

where P_c and T_c are the pressure and temperature at the critical point, respectively, and \overline{v} is the molar specific volume.

FIRST LAW OF THERMODYNAMICS

The *First Law of Thermodynamics* is a statement of conservation of energy in a thermodynamic system. The net energy crossing the system boundary is equal to the change in energy inside the system.

Heat Q is energy transferred due to temperature difference and is considered positive if it is inward or added to the system.

Closed Thermodynamic System

No mass crosses system boundary

$$Q - W = \Delta U + \Delta KE + \Delta PE$$

where

 ΔKE = change in kinetic energy, and

 ΔPE = change in potential energy.

Energy can cross the boundary only in the form of heat or work. Work can be boundary work, w_b , or other work forms (electrical work, etc.)

Work $W\left(w = \frac{W}{m}\right)$ is considered positive if it is outward or work done by the system.

Reversible boundary work is given by $w_b = \int P dv$.

Special Cases of Closed Systems

Constant Pressure (Charles' Law):

$$W_{\rm b} = P\Delta v$$

(ideal gas) T/v = constant

Constant Volume:

$$w_b = 0$$

(ideal gas) T/P = constant

Isentropic (ideal gas):

$$Pv^k = \text{constant}$$

$$w = (P_2 v_2 - P_1 v_1)/(1 - k)$$

= $R(T_2 - T_1)/(1 - k)$

Constant Temperature (Boyle's Law):

(ideal gas)
$$Pv = constant$$

$$w_b = RT \ln (v_2 / v_1) = RT \ln (P_1 / P_2)$$

Polytropic (ideal gas):

$$Pv^n = constant$$

$$w = (P_2 v_2 - P_1 v_1)/(1 - n)$$

Open Thermodynamic System

Mass crosses the system boundary

There is flow work (Pv) done by mass entering the system.

The reversible flow work is given by:

$$W_{\text{rev}} = -\int v \, dP + \Delta ke + \Delta pe$$

First Law applies whether or not processes are reversible. *FIRST LAW* (energy balance)

$$\Sigma \dot{m}_i \Big[h_i + V_i^2 / 2 + g Z_i \Big] - \Sigma \dot{m}_e \Big[h_e + V_e^2 / 2 + g Z_e \Big]$$

 $+ \dot{Q}_{in} - \dot{W}_{net} = d(m_s u_s) / dt$, where

 \dot{W}_{net} = rate of net or shaft work transfer,

 m_s = mass of fluid within the system,

 u_s = specific internal energy of system, and

 \dot{Q} = rate of heat transfer (neglecting kinetic and potential energy of the system).

Special Cases of Open Systems

Constant Volume:

$$w_{rev} = -v (P_2 - P_1)$$

Constant Pressure:

$$W_{rev} = 0$$

Constant Temperature:

(ideal gas)
$$Pv = constant$$

$$w_{rev} = RT \ln (v_2/v_1) = RT \ln (P_1/P_2)$$

Isentropic (ideal gas):

$$Pv^k = \text{constant}$$

$$w_{rev} = k (P_2 v_2 - P_1 v_1)/(1 - k)$$

$$= kR (T_2 - T_1)/(1 - k)$$

$$w_{rev} = \frac{k}{k-1} R T_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{(k-1)/k} \right]$$

Polytropic:

$$Pv^n = constant$$

$$W_{rev} = n (P_2 v_2 - P_1 v_1)/(1 - n)$$

Steady-State Systems

The system does not change state with time. This assumption is valid for steady operation of turbines, pumps, compressors, throttling valves, nozzles, and heat exchangers, including boilers and condensers.

$$\Sigma \dot{m} \Big(h_i \, + \, V_i^2 / 2 \, + \, g Z_i \Big) - \Sigma \dot{m}_e \Big(h_e \, + \, V_e^2 / 2 \, + \, g Z_e \Big) \, + \, \dot{Q}_{in} - \dot{W}_{out} = 0$$

and

$$\Sigma \dot{m}_i = \Sigma \dot{m}_o$$

where

 \dot{m} = mass flow rate (subscripts i and e refer to inlet and exit states of system),

g = acceleration of gravity,

Z = elevation,

V = velocity, and

 \dot{W} = rate of work.

Special Cases of Steady-Flow Energy Equation

Nozzles, Diffusers: Velocity terms are significant. No elevation change, no heat transfer, and no work. Single mass stream.

$$h_i + V_i^2/2 = h_e + V_e^2/2$$

Isentropic Efficiency (nozzle) = $\frac{V_e^2 - V_i^2}{2(h_i - h_{es})}$, where

 h_{es} = enthalpy at isentropic exit state.

Turbines, Pumps, Compressors: Often considered adiabatic (no heat transfer). Velocity terms usually can be ignored. There are significant work terms and a single mass stream.

$$h_i = h_o + w$$

Isentropic Efficiency (turbine) = $\frac{h_i - h_e}{h_i - h_{es}}$

Isentropic Efficiency (compressor, pump) = $\frac{h_{es} - h_i}{h_e - h_i}$

Throttling Valves and Throttling Processes: No work, no heat transfer, and single-mass stream. Velocity terms are often insignificant.

$$h_i = h_e$$

Boilers, Condensers, Evaporators, One Side in a Heat Exchanger: Heat transfer terms are significant. For a single-mass stream, the following applies:

$$h_i + q = h_a$$

Heat Exchangers: No heat or work. Two separate flow rates \dot{m}_1 and \dot{m}_2 :

$$\dot{m}_1(h_{1i}-h_{1e})=\dot{m}_2(h_{2e}-h_{2i})$$

See MECHANICAL ENGINEERING section.

Mixers, Separators, Open or Closed Feedwater Heaters:

$$\Sigma \dot{m}_i h_i = \Sigma \dot{m}_e h_e$$
 and $\Sigma \dot{m}_i = \Sigma \dot{m}_e$

BASIC CYCLES

Heat engines take in heat Q_H at a high temperature T_H , produce a net amount of work W, and reject heat Q_L at a low temperature T_I . The efficiency η of a heat engine is given by:

$$\eta = W/Q_H = (Q_H - Q_L)/Q_H$$

The most efficient engine possible is the *Carnot Cycle*. Its efficiency is given by:

$$\eta_c = (T_H - T_I)/T_H$$
, where

 T_H and T_I = absolute temperatures (Kelvin or Rankine).

The following heat-engine cycles are plotted on *P-v* and *T-s* diagrams (see later in this chapter):

Carnot, Otto, Rankine

Refrigeration cycles are the reverse of heat-engine cycles. Heat is moved from low to high temperature requiring work, *W*. Cycles can be used either for refrigeration or as heat pumps.

Coefficient of Performance (COP) is defined as:

$$COP = Q_H/W$$
 for heat pumps, and as

 $COP = Q_I/W$ for refrigerators and air conditioners.

Upper limit of COP is based on reversed Carnot Cycle:

$$COP_c = T_H/(T_H - T_L)$$
 for heat pumps and

$$COP_c = T_L/(T_H - T_L)$$
 for refrigeration.

1 ton refrigeration = 12,000 Btu/hr = 3,516 W

IDEAL GAS MIXTURES

i = 1, 2, ..., n constituents. Each constituent is an ideal gas. Mole Fraction:

$$x_i = N_i/N; N = \sum N_i; \sum x_i = 1$$

where N_i = number of moles of component i.

Mass Fraction: $y_i = m_i/m$; $m = \sum m_i$; $\sum y_i = 1$

Molecular Weight: $M = m/N = \sum x_i M_i$

Gas Constant: R = R/M

To convert *mole fractions* x_i to *mass fractions* y_i :

$$y_i = \frac{x_i M_i}{\sum (x_i M_i)}$$

To convert *mass fractions* to *mole fractions*:

$$x_i = \frac{y_i / M_i}{\sum (y_i / M_i)}$$

Partial Pressures: $P = \Sigma P_i$; $P_i = \frac{m_i R_i T}{V}$

Partial Volumes: $V = \sum V_i, V_i = \frac{m_i R_i T}{P}$, where

P, V, T = the pressure, volume, and temperature of the mixture.

$$x_i = P_i/P = V_i/V$$

Other Properties:

 $u = \sum (y_i u_i)$; $h = \sum (y_i h_i)$; $s = \sum (y_i s_i)$ u_i and h_i are evaluated at T, and s_i is evaluated at T and P_i .

PSYCHROMETRICS

We deal here with a mixture of dry air (subscript a) and water vapor (subscript v):

$$P = P_a + P_v$$

Specific Humidity (absolute humidity, humidity ratio) ω:

$$\omega = m_v/m_a$$
, where

 $m_{y} = \text{mass of water vapor and}$

 $m_a = \text{mass of dry air.}$

$$\omega = 0.622 P_{y}/P_{q} = 0.622 P_{y}/(P - P_{y})$$

Relative Humidity (rh) ϕ :

$$\phi = P_v/P_g$$
, where

 P_{g} = saturation pressure at T.

Enthalpy h: $h = h_a + \omega h_y$

Dew-Point Temperature T_{dn} :

$$T_{dp} = T_{sat}$$
 at $P_g = P_v$

Wet-bulb temperature T_{wb} is the temperature indicated by a thermometer covered by a wick saturated with liquid water and in contact with moving air.

Humid Volume: Volume of moist air/mass of dry air.

Psychrometric Chart

A plot of specific humidity as a function of dry-bulb temperature plotted for a value of atmospheric pressure. (See chart at end of section.)

PHASE RELATIONS

Clapeyron Equation for Phase Transitions:

$$\left(\frac{dP}{dT}\right)_{sat} = \frac{h_{fg}}{Tv_{fg}} = \frac{s_{fg}}{v_{fg}}, \text{ where}$$

 h_{fg} = enthalpy change for phase transitions,

 v_{fo} = volume change,

 s_{f_0} = entropy change,

T = absolute temperature, and

 $(dP/dT)_{sat}$ = slope of phase transition (e.g.,vapor-liquid) saturation line.

Clausius-Clapeyron Equation

This equation results if it is assumed that (1) the volume change (v_{fg}) can be replaced with the vapor volume (v_g) , (2) the latter can be replaced with $P/\overline{R}T$ from the ideal gas law, and (3) h_{fg} is independent of the temperature (T).

$$\ln_e\left(\frac{P_2}{P_1}\right) = \frac{h_{fg}}{\overline{R}} \cdot \frac{T_2 - T_1}{T_1 T_2}$$

Gibbs Phase Rule (non-reacting systems)

P + F = C + 2, where

P = number of phases making up a system

F = degrees of freedom, and

C = number of components in a system

COMBUSTION PROCESSES

First, the combustion equation should be written and balanced. For example, for the stoichiometric combustion of methane in oxygen:

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

Combustion in Air

For each mole of oxygen, there will be 3.76 moles of nitrogen. For stoichiometric combustion of methane in air:

$$CH_4 + 2 O_2 + 2(3.76) N_2 \rightarrow CO_2 + 2 H_2O + 7.52 N_2$$

Combustion in Excess Air

The excess oxygen appears as oxygen on the right side of the combustion equation.

Incomplete Combustion

Some carbon is burned to create carbon monoxide (CO).

Air-Fuel Ratio (A/F):
$$A/F = \frac{\text{mass of air}}{\text{mass of fuel}}$$

Stoichiometric (theoretical) air-fuel ratio is the air-fuel ratio calculated from the stoichiometric combustion equation.

Percent Theoretical Air =
$$\frac{(A/F)_{\text{actual}}}{(A/F)_{\text{stoichiometric}}} \times 100$$

Percent Excess Air =
$$\frac{(A/F)_{\text{actual}} - (A/F)_{\text{stoichiometric}}}{(A/F)_{\text{stoichiometric}}} \times 100$$

SECOND LAW OF THERMODYNAMICS

Thermal Energy Reservoirs

$$\Delta S_{\text{reservoir}} = Q/T_{\text{reservoir}}$$
, where

Q is measured with respect to the reservoir.

Kelvin-Planck Statement of Second Law

No heat engine can operate in a cycle while transferring heat with a single heat reservoir.

COROLLARY to Kelvin-Planck: No heat engine can have a higher efficiency than a Carnot Cycle operating between the same reservoirs.

Clausius' Statement of Second Law

No refrigeration or heat pump cycle can operate without a net work input.

COROLLARY: No refrigerator or heat pump can have a higher COP than a Carnot Cycle refrigerator or heat pump.

VAPOR-LIQUID MIXTURES

Henry's Law at Constant Temperature

At equilibrium, the partial pressure of a gas is proportional to its concentration in a liquid. Henry's Law is valid for low concentrations; i.e., $x \approx 0$.

$$P_i = Py_i = hx_i$$
, where

h = Henry's Law constant,

 P_i = partial pressure of a gas in contact with a liquid,

 x_i = mol fraction of the gas in the liquid,

 y_i = mol fraction of the gas in the vapor, and

P = total pressure.

Raoult's Law for Vapor-Liquid Equilibrium

Valid for concentrations near 1; i.e., $x_i \approx 1$.

$$P_i = x_i P_i^*$$
, where

 P_i = partial pressure of component i,

 x_i = mol fraction of component i in the liquid, and

 P_i^* = vapor pressure of pure component *i* at the temperature of the mixture.

ENTROPY

$$ds = (1/T) \delta Q_{\text{rev}}$$

$$s_2 - s_1 = \int_1^2 (1/T) \delta Q_{\text{rev}}$$

Inequality of Clausius

$$\oint (1/T) \delta Q_{\text{rev}} \le 0$$

$$\int_{1}^{2} (1/T) \delta Q \le s_{2} - s_{1}$$

Isothermal, Reversible Process

$$\Delta s = s_2 - s_1 = Q/T$$

Isentropic Process

$$\Delta s = 0$$
; $ds = 0$

A reversible adiabatic process is isentropic.

Adiabatic Process

$$\delta Q = 0$$
; $\Delta s \ge 0$

Increase of Entropy Principle

$$\Delta s_{\text{total}} = \Delta s_{\text{system}} + \Delta s_{\text{surroundings}} \ge 0$$

$$\Delta \dot{s}_{\text{total}} = \Sigma \dot{m}_{\text{out}} s_{\text{out}} - \Sigma \dot{m}_{\text{in}} s_{\text{in}} - \Sigma \left(\dot{Q}_{\text{external}} / T_{\text{external}} \right) \ge 0$$

Temperature-Entropy (T-s) Diagram

Entropy Change for Solids and Liquids

$$ds = c (dT/T)$$

$$s_2 - s_1 = \int c (dT/T) = c_{\text{mean}} \ln (T_2/T_1),$$

where c equals the heat capacity of the solid or liquid.

Irreversibility

$$I = w_{\rm rev} - w_{\rm actual}$$

EXERGY

Exergy is the portion of total energy available to do work.

Closed-System Exergy (Availability)

(no chemical reactions)

$$\phi = (u - u_0) - T_0(s - s_0) + p_0(v - v_0)$$

where the subscript o designates environmental conditions

$$w_{\text{reversible}} = \phi_1 - \phi_2$$

Open-System Exergy (Availability)

$$\Psi = (h - h_{o}) - T_{o}(s - s_{o}) + V^{2}/2 + gz$$

$$w_{\text{reversible}} = \Psi_{1} - \Psi_{2}$$

Gibbs Free Energy, ΔG

Energy released or absorbed in a reaction occurring reversibly at constant pressure and temperature.

Helmholtz Free Energy, ΔA

Energy released or absorbed in a reaction occurring reversibly at constant volume and temperature.

COMMON THERMODYNAMIC CYCLES

Otto Cycle (Gasoline Engine)

$$\eta = 1 - r^{1-k}$$

$$r = v_1/v_2$$

Rankine Cycle

$$\eta = \frac{\left(h_3 - h_4\right) - \left(h_2 - h_1\right)}{h_3 - h_2}$$

Refrigeration

(Reversed Rankine Cycle)

$$COP_{ref} = \frac{h_1 - h_4}{h_2 - h_1}$$
 $COP_{HP} = \frac{h_2 - h_3}{h_2 - h_1}$

STEAM TABLES Saturated Water - Temperature Table												
Temp.	Sat.	Specific V	Volume		ernal Ene kJ/kg		Enthalpy kJ/kg		Entropy kJ/(kg·K)			
°C T	Press. kPa	Sat. liquid	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat. liquid	Evap.	Sat. vapor	Sat. liquid	Evap.	Sat. vapor
	p_{sat}	V_f	v_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
0.01	0.6113	0.001 000	206.14	0.00	2375.3	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	9.1562
5	0.8721	0.001 000 0.001 000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.0257
10 15	1.2276 1.7051	0.001 000	106.38 77.93	42.00 62.99	2347.2 2333.1	2389.2 2396.1	42.01 62.99	2477.7 2465.9	2519.8 2528.9	0.1510 0.2245	8.7498 8.5569	8.9008 8.7814
20	2.339	0.001 002	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	0.2966	8.3706	8.6672
25	3.169	0.001 003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	0.3674	8.1905	8.5580
30	4.246	0.001 004	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	0.4369	8.0164	8.4533
35 40	5.628 7.384	0.001 006 0.001 008	25.22 19.52	146.67 167.56	2276.7 2262.6	2423.4 2430.1	146.68 167.57	2418.6 2406.7	2565.3 2574.3	0.5053 0.5725	7.8478 7.6845	8.3531 8.2570
45	9.593	0.001 008	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	0.6387	7.5261	8.1648
50	12.349	0.001 012	12.03	209.32	2234.2	2443.5	209.33	2382.7	2592.1	0.7038	7.3725	8.0763
55	15.758	0.001 015	9.568	230.21	2219.9	2450.1	230.23	2370.7	2600.9	0.7679	7.2234	7.9913
60 65	19.940 25.03	0.001 017	7.671 6.197	251.11 272.02	2205.5 2191.1	2456.6 2463.1	251.13 272.06	2358.5	2609.6 2618.3	0.8312 0.8935	7.0784 6.9375	7.9096 7.8310
70	31.19	0.001 020 0.001 023	5.042	292.95	2191.1 2176.6	2569.6	272.06 292.98	2346.2 2333.8	2618.3 2626.8	0.8933	6.8004	7.7553
75	38.58	0.001 026	4.131	313.90	2162.0	2475.9	313.93	2321.4	2635.3	1.0155	6.6669	7.6824
80	47.39	0.001 029	3.407	334.86	2147.4	2482.2	334.91	2308.8	2643.7	1.0753	6.5369	7.6122
85	57.83	0.001 033	2.828	355.84	2132.6	2488.4	355.90	2296.0	2651.9	1.1343	6.4102	7.5445
90 95	70.14 84.55	0.001 036 0.001 040	2.361 1.982	376.85 397.88	2117.7 2102.7	2494.5 2500.6	376.92 397.96	2283.2 2270.2	2660.1 2668.1	1.1925 1.2500	6.2866 6.1659	7.4791 7.4159
73	MPa	0.001 040	1.702	377.00	2102.7	2300.0	397.90	22/0.2	2000.1	1.2300	0.1039	7.4139
100	0.101 35	0.001 044	1.6729	418.94	2087.6	2506.5	419.04	2257.0	2676.1	1.3069	6.0480	7.3549
105	0.101 33	0.001 044	1.4194	440.02	2072.3	2512.4	440.15	2243.7	2683.8	1.3630	5.9328	7.2958
110	0.143 27	0.001 052	1.2102	461.14	2057.0	2518.1	461.30	2230.2	2691.5	1.4185	5.8202	7.2387
115	0.169 06	0.001 056	1.0366	482.30	2041.4	2523.7	482.48	2216.5	2699.0	1.4734	5.7100	7.1833
120	0.198 53	0.001 060	0.8919	503.50	2025.8	2529.3	503.71	2202.6	2706.3	1.5276	5.6020	7.1296
125 130	0.2321 0.2701	0.001 065 0.001 070	0.7706 0.6685	524.74 546.02	2009.9 1993.9	2534.6 2539.9	524.99 546.31	2188.5 2174.2	2713.5 2720.5	1.5813 1.6344	5.4962 5.3925	7.0775 7.0269
135	0.3130	0.001 070	0.5822	567.35	1977.7	2545.0	567.69	2159.6	2727.3	1.6870	5.2907	6.9777
140	0.3613	0.001 080	0.5089	588.74	1961.3	2550.0	589.13	2144.7	2733.9	1.7391	5.1908	6.9299
145	0.4154	0.001 085	0.4463	610.18	1944.7	2554.9	610.63	2129.6	2740.3	1.7907	5.0926	6.8833
150	0.4758	0.001 091	0.3928	631.68	1927.9 1910.8	2559.5 2564.1	632.20	2114.3 2098.6	2746.5 2752.4	1.8418 1.8925	4.9960 4.9010	6.8379
155 160	0.5431 0.6178	0.001 096 0.001 102	0.3468 0.3071	653.24 674.87	1893.5	2568.4	653.84 675.55	2098.6	2752.4	1.8923	4.9010	6.7935 6.7502
165	0.7005	0.001 102	0.2727	696.56	1876.0	2572.5	697.34	2066.2	2763.5	1.9925	4.7153	6.7078
170	0.7917	0.001 114	0.2428	718.33	1858.1	2576.5	719.21	2049.5	2768.7	2.0419	4.6244	6.6663
175	0.8920	0.001 121	0.2168	740.17	1840.0	2580.2	741.17	2032.4	2773.6	2.0909	4.5347	6.6256
180 185	1.0021 1.1227	0.001 127 0.001 134	0.194 05 0.174 09	762.09 784.10	1821.6 1802.9	2583.7 2587.0	763.22 785.37	2015.0 1997.1	2778.2 2782.4	2.1396 2.1879	4.4461 4.3586	6.5857 6.5465
190	1.2544	0.001 134	0.174 09	806.19	1783.8	2590.0	807.62	1978.8	2782.4	2.2359	4.2720	6.5079
195	1.3978	0.001 149	0.141 05	828.37	1764.4	2592.8	829.98	1960.0	2790.0	2.2835	4.1863	6.4698
200	1.5538	0.001 157	0.127 36	850.65	1744.7	2595.3	852.45	1940.7	2793.2	2.3309	4.1014	6.4323
205	1.7230	0.001 164	0.115 21	873.04	1724.5	2597.5	875.04	1921.0	2796.0	2.3780	4.0172	6.3952
210 215	1.9062 2.104	0.001 173 0.001 181	0.104 41 0.094 79	895.53 918.14	1703.9 1682.9	2599.5 2601.1	897.76 920.62	1900.7 1879.9	2798.5 2800.5	2.4248 2.4714	3.9337 3.8507	6.3585 6.3221
220	2.318	0.001 190	0.086 19	940.87	1661.5	2602.4	943.62	1858.5	2802.1	2.5178	3.7683	6.2861
225	2.548	0.001 199	0.078 49	963.73	1639.6	2603.3	966.78	1836.5	2803.3	2.5639	3.6863	6.2503
230	2.795	0.001 209	0.071 58	986.74	1617.2	2603.9	990.12	1813.8	2804.0	2.6099	3.6047	6.2146
235 240	3.060 3.344	0.001 219 0.001 229	0.065 37 0.059 76	1009.89 1033.21	1594.2 1570.8	2604.1 2604.0	1013.62 1037.32	1790.5 1766.5	2804.2 2803.8	2.6558 2.7015	3.5233 3.4422	6.1791 6.1437
240	3.648	0.001 229	0.059 76	1055.21	1546.7	2603.4	1037.32	1766.3	2803.8	2.7472	3.3612	6.1083
250	3.973	0.001 251	0.050 13	1080.39	1522.0	2602.4	1085.36	1716.2	2801.5	2.7927	3.2802	6.0730
255	4.319	0.001 263	0.045 98	1104.28	1596.7	2600.9	1109.73	1689.8	2799.5	2.8383	3.1992	6.0375
260 265	4.688	0.001 276 0.001 289	0.042 21	1128.39	1470.6 1443.9	2599.0	1134.37	1662.5	2796.9	2.8838 2.9294	3.1181	6.0019
270	5.081 5.499	0.001 289	0.038 77 0.035 64	1152.74 1177.36	1416.3	2596.6 2593.7	1159.28 1184.51	1634.4 1605.2	2793.6 2789.7	2.9294	3.0368 2.9551	5.9662 5.9301
275	5.942	0.001 317	0.032 79	1202.25	1387.9	2590.2	1210.07	1574.9	2785.0	3.0208	2.8730	5.8938
280	6.412	0.001 332	0.030 17	1227.46	1358.7	2586.1	1235.99	1543.6	2779.6	3.0668	2.7903	5.8571
285	6.909	0.001 348	0.027 77	1253.00	1328.4	2581.4	1262.31	1511.0	2773.3	3.1130	2.7070	5.8199
290 295	7.436 7.993	0.001 366 0.001 384	0.025 57 0.023 54	1278.92 1305.2	1297.1 1264.7	2576.0 2569.9	1289.07 1316.3	1477.1 1441.8	2766.2 2758.1	3.1594 3.2062	2.6227 2.5375	5.7821 5.7437
300	8.581	0.001 404	0.023 54	1332.0	1231.0	2563.0	1344.0	1404.9	2749.0	3.2534	2.4511	5.7045
305	9.202	0.001 425	0.019 948	1359.3	1195.9	2555.2	1372.4	1366.4	2738.7	3.3010	2.3633	5.6643
310	9.856	0.001 447	0.018 350	1387.1	1159.4	2546.4	1401.3	1326.0	2727.3	3.3493	2.2737	5.6230
315 320	10.547 11.274	0.001 472 0.001 499	0.016 867 0.015 488	1415.5 1444.6	1121.1 1080.9	2536.6 2525.5	1431.0 1461.5	1283.5 1238.6	2714.5 2700.1	3.3982 3.4480	2.1821 2.0882	5.5804 5.5362
330	12.845	0.001 499	0.015 488	1505.3	993.7	2525.5	1525.3	1140.6	2665.9	3.4480	1.8909	5.5362 5.4417
340	14.586	0.001 638	0.010 797	1570.3	894.3	2464.6	1594.2	1027.9	2622.0	3.6594	1.6763	5.3357
350	16.513	0.001 740	0.008 813	1641.9	776.6	2418.4	1670.6	893.4	2563.9	3.7777	1.4335	5.2112
360	18.651	0.001 893	0.006 945	1725.2	626.3	2351.5	1760.5	720.3	2481.0	3.9147	1.1379	5.0526
370 374.14	21.03 22.09	0.002 213 0.003 155	0.004 925 0.003 155	1844.0 2029.6	384.5 0	2228.5 2029.6	1890.5 2099.3	441.6 0	2332.1 2099.3	4.1106 4.4298	0.6865 0	4.7971 4.4298
3/4.14	22.07	0.003 133	0.003 133	2027.0		2027.0	2077.3		2077.3	7.7270		7.7270

			Superl	Tables					
T	v	и	h	S	v	и	h	S	
Temp.	m³/kg	kJ/kg	kJ/kg	kJ/(kg·K)	m ³ /kg	kJ/kg	kJ/kg	kJ/(kg·K)	
°C		p = 0.01 M	Pa (45.81°C)		$p = 0.05 \text{ MPa } (81.33^{\circ}\text{C})$				
Sat.	14.674	2437.9	2584.7	8.1502	3.240	2483.9	2645.9	7.5939	
50 100	14.869 17.196	2443.9 2515.5	2592.6 2687.5	8.1749 8.4479	3.418	2511.6	2682.5	7.6947	
150	19.512	2587.9	2783.0	8.6882	3.889	2585.6	2780.1	7.9401	
200	21.825	2661.3	2879.5	8.9038	4.356	2659.9	2877.7	8.1580	
250	24.136	2736.0	2977.3	9.1002	4.820	2735.0	2976.0	8.3556	
300	26.445	2812.1	3076.5	9.2813	5.284	2811.3	3075.5	8.5373	
400 500	31.063 35.679	2968.9 3132.3	3279.6 3489.1	9.6077 9.8978	6.209 7.134	2968.5 3132.0	3278.9 3488.7	8.8642 9.1546	
600	40.295	3302.5	3705.4	10.1608	8.057	3302.2	3705.1	9.4178	
700	44.911	3479.6	3928.7	10.4028	8.981	3479.4	3928.5	9.6599	
800	49.526	3663.8	4159.0	10.6281	9.904	3663.6	4158.9	9.8852	
900	54.141	3855.0	4396.4	10.8396	10.828	3854.9	4396.3	10.0967	
1000 1100	58.757 63.372	4053.0 4257.5	4640.6 4891.2	11.0393 11.2287	11.751 12.674	4052.9 4257.4	4640.5 4891.1	10.2964 10.4859	
1200	67.987	4467.9	5147.8	11.4091	13.597	4467.8	5147.7	10.4659	
1300	72.602	4683.7	5409.7	11.5811	14.521	4683.6	5409.6	10.8382	
		p = 0.10 M	Pa (99.63°C)			p = 0.20 MP	a (120.23°C)		
Sat.	1.6940	2506.1	2675.5	7.3594	0.8857	2529.5	2706.7	7.1272	
100	1.6958	2506.7	2676.2	7.3614					
150	1.9364	2582.8	2776.4	7.6134	0.9596	2576.9	2768.8	7.2795	
200 250	2.172 2.406	2658.1 2733.7	2875.3 2974.3	7.8343 8.0333	1.0803 1.1988	2654.4 2731.2	2870.5 2971.0	7.5066 7.7086	
300	2.639	2810.4	3074.3	8.2158	1.3162	2808.6	3071.8	7.8926	
400	3.103	2967.9	3278.2	8.5435	1.5493	2966.7	3276.6	8.2218	
500	3.565	3131.6	3488.1	8.8342	1.7814	3130.8	3487.1	8.5133	
600	4.028	3301.9	3704.4	9.0976	2.013	3301.4	3704.0	8.7770	
700 800	4.490 4.952	3479.2 3663.5	3928.2 4158.6	9.3398 9.5652	2.244 2.475	3478.8 3663.1	3927.6 4158.2	9.0194 9.2449	
900	5.414	3854.8	4396.1	9.7767	2.705	3854.5	4395.8	9.4566	
1000	5.875	4052.8	4640.3	9.9764	2.937	4052.5	4640.0	9.6563	
1100	6.337	4257.3	4891.0	10.1659	3.168	4257.0	4890.7	9.8458	
1200	6.799	4467.7	5147.6	10.3463	3.399	4467.5	5147.5	10.0262	
1300	7.260	4683.5	5409.5 Pa (143.63°C)	10.5183	3.630	4683.2	5409.3	10.1982	
Sat.	0.4625	p = 0.40 MH 2553.6	2738.6	6.8959	0.3157	p = 0.60 MP	2756.8	6.7600	
150	0.4708	2564.5	2752.8	6.9299	0.3137	2307.4	2/30.8	0.7000	
200	0.5342	2646.8	2860.5	7.1706	0.3520	2638.9	2850.1	6.9665	
250	0.5951	2726.1	2964.2	7.3789	0.3938	2720.9	2957.2	7.1816	
300 350	0.6548	2804.8	3066.8	7.5662	0.4344 0.4742	2801.0 2881.2	3061.6 3165.7	7.3724 7.5464	
400	0.7137 0.7726	2884.6 2964.4	3170.1 3273.4	7.7324 7.8985	0.4742	2962.1	3270.3	7.7079	
500	0.8893	3129.2	3484.9	8.1913	0.5920	3127.6	3482.8	8.0021	
600	1.0055	3300.2	3702.4	8.4558	0.6697	3299.1	3700.9	8.2674	
700	1.1215	3477.9	3926.5	8.6987	0.7472	3477.0	3925.3	8.5107	
800 900	1.2372 1.3529	3662.4 3853.9	4157.3 4395.1	8.9244 9.1362	0.8245 0.9017	3661.8 3853.4	4156.5 4394.4	8.7367 8.9486	
1000	1.4685	4052.0	4639.4	9.3360	0.9788	4051.5	4638.8	9.1485	
1100	1.5840	4256.5	4890.2	9.5256	1.0559	4256.1	4889.6	9.3381	
1200	1.6996	4467.0	5146.8	9.7060	1.1330	4466.5	5146.3	9.5185	
1300	1.8151	4682.8	5408.8	9.8780	1.2101	4682.3	5408.3	9.6906	
~			Pa (170.43°C)			p = 1.00 MP			
Sat. 200	0.2404 0.2608	2576.8 2630.6	2769.1 2839.3	6.6628 6.8158	0.194 44 0.2060	2583.6 2621.9	2778.1 2827.9	6.5865 6.6940	
250	0.2931	2715.5	2839.3	7.0384	0.2060	2709.9	2942.6	6.9247	
300	0.3241	2797.2	3056.5	7.2328	0.2579	2793.2	3051.2	7.1229	
350	0.3544	2878.2	3161.7	7.4089	0.2825	2875.2	3157.7	7.3011	
400	0.3843	2959.7	3267.1	7.5716	0.3066	2957.3	3263.9	7.4651	
500 600	0.4433 0.5018	3126.0 3297.9	3480.6 3699.4	7.8673 8.1333	0.3541 0.4011	3124.4 3296.8	3478.5 3697.9	7.7622 8.0290	
700	0.5601	3476.2	3924.2	8.3770	0.4478	3475.3	3923.1	8.0290 8.2731	
800	0.6181	3661.1	4155.6	8.6033	0.4943	3660.4	4154.7	8.4996	
900	0.6761	3852.8	4393.7	8.8153	0.5407	3852.2	4392.9	8.7118	
1000	0.7340	4051.0	4638.2	9.0153	0.5871	4050.5	4637.6	8.9119	
1100	0.7919	4255.6	4889.1	9.2050	0.6335	4255.1	4888.6	9.1017	
1200 1300	0.8497 0.9076	4466.1 4681.8	5145.9 5407.9	9.3855 9.5575	0.6798 0.7261	4465.6 4681.3	5145.4 5407.4	9.2822 9.4543	
1300	U.7U/U	7001.0	J#U1.7	1.3313	U./4UI	4001.3	3407.4	2,4343	

P-h DIAGRAM FOR REFRIGERANT HFC-134a

(metric units)

ASHRAE PSYCHROMETRIC CHART NO. 1

THERMAL AND PHYSICAL PROPERTY TABLES

(at room temperature)

GASES									
Substance	Mol wt		c_p		c_v	k	R		
Substance		kJ/(kg·K)	Btu/(lbm-°R)	kJ/(kg·K)	Btu/(lbm-°R)	K	kJ/(kg·K)		
Gases									
Air	29	1.00	0.240	0.718	0.171	1.40	0.2870		
Argon	40	0.520	0.125	0.312	0.0756	1.67	0.2081		
Butane	58	1.72	0.415	1.57	0.381	1.09	0.1430		
Carbon dioxide	44	0.846	0.203	0.657	0.158	1.29	0.1889		
Carbon monoxide	28	1.04	0.249	0.744	0.178	1.40	0.2968		
Ethane	30	1.77	0.427	1.49	0.361	1.18	0.2765		
Helium	4	5.19	1.25	3.12	0.753	1.67	2.0769		
Hydrogen	2	14.3	3.43	10.2	2.44	1.40	4.1240		
Methane	16	2.25	0.532	1.74	0.403	1.30	0.5182		
Neon	20	1.03	0.246	0.618	0.148	1.67	0.4119		
Nitrogen	28	1.04	0.248	0.743	0.177	1.40	0.2968		
Octane vapor	114	1.71	0.409	1.64	0.392	1.04	0.0729		
Oxygen	32	0.918	0.219	0.658	0.157	1.40	0.2598		
Propane	44	1.68	0.407	1.49	0.362	1.12	0.1885		
Steam	18	1.87	0.445	1.41	0.335	1.33	0.4615		

SELECTED LIQUIDS AND SOLIDS								
C L.A.		Ĉp	Density					
Substance	kJ/(kg·K)	Btu/(lbm-°R)	kg/m ³	lbm/ft ³				
Liquids								
Ammonia	4.80	1.146	602	38				
Mercury	0.139	0.033	13,560	847				
Water	4.18	1.000	997	62.4				
Solids								
Aluminum	0.900	0.215	2,700	170				
Copper	0.386	0.092	8,900	555				
Ice (0°C; 32°F)	2.11	0.502	917	57.2				
Iron	0.450	0.107	7,840	490				
Lead	0.128	0.030	11,310	705				