Predictive models for P&C insurance

Himchan Jeong

University of Connecticut

Data Science in Action

6 March, 2018

What is Actuarial Science?

- "Actuarial science is the discipline that applies mathematical and statistical methods to assess risk in insurance, finance and other industries and professions." (Wikipedia)
- In short, We need to PRICE given risk for the transaction.
- Thus, actuaries need well-developed predictive model both with high predictability and interpretability.

Interpretability Issue on Actuarial Science

There are a lot of reasons why the interpretability is important in Actuarial Science.

- Tradition
- Internal/External Communication
- Regulation
- Robustness

Purpose of the Project

- Introduce current practice done by property and casualty (P&C) insurance company
- Suggest the more sophisticated predictive model which can outperform the benchmarks

P&C Insurance Claim Data Structure

ullet For ratemaking in P&C, we have to predict the cost of claims

$$S = \sum_{k=1}^{N} C_k.$$

- Policyholder *i* is followed over time $t = 1, ..., T_i$ years.
- Unit of analysis "it" an insured driver i over time t (year)
- For each "it", could have several claims, $k = 0, 1, ..., N_{it}$
- Have available information on: number of claims n_{it} , amount of claim c_{itk} , exposure e_{it} and covariates (explanatory variables) x_{it}
 - covariates often include age, gender, vehicle type, building type, building location, driving history and so forth

Current Approches for Claim Modeling

- (1) Two-parts model for frequency and severity
- (2) Tweedie model

Two-parts Model

• Total claim is represented as following;

Total Cost of Claims = Frequency \times Average Severity

 The joint density of the number of claims and the average claim size can be decomposed as

$$f(N, \overline{C}|\mathbf{x}) = f(N|\mathbf{x}) \times f(\overline{C}|N, \mathbf{x})$$

joint = frequency × conditional severity.

• In general, it is assumed $N \sim \mathsf{Pois}(e^{X\alpha})$, and $C_i \sim \mathsf{Gamma}(\frac{1}{\phi}, e^{X\beta}\phi)$.

Tweedie Model

 Instead of dividing the total cost into two parts, Tweedie model directly entertain the distribution of compound loss S where

$$S = \sum_{k=1}^{N} C_k, \quad N \sim \mathsf{Pois}(\mathsf{e}^{Xlpha})$$
 $C_k \sim \mathsf{Gamma}(rac{1}{\phi}, \mathsf{e}^{Xeta}\phi), \quad C_k \perp N \;\; orall k$

• It has point mass probability on $\{S=0\}$ and has the following property.

$$\mathbb{E}[S] = \mu, \quad Var(S) = \Phi \mu^p, \quad p \in (1,2)$$

Pitfalls in Current Practices

- (1) Dependence between the frequency and the severity
- (2) Longitudinal property of data structure.
 - For example, if we observed a policyholder i for T_i years, then we have following observation $N_{i1}, N_{i2}, \ldots, N_{iT_i}$, which may not be identically and independently distributed.

Premium for Compound Loss under Independence

• If we assume that N and C_1, C_2, \ldots, C_n are independent, then we can calculate the premium for compound loss as

$$\mathbb{E}[S] = \mathbb{E}\left[\sum_{k=1}^{N} C_{k}\right] = \mathbb{E}\left[\mathbb{E}\left[\sum_{k=1}^{N} C_{k} | N\right]\right]$$
$$= \mathbb{E}\left[\mathbb{E}\left[C_{1} + \dots + C_{N} | N\right]\right] = \mathbb{E}\left[N\mathbb{E}\left[C_{1} | N\right]\right]$$
$$= \mathbb{E}\left[N\mathbb{E}\left[C\right]\right] = \mathbb{E}\left[N\right]\mathbb{E}\left[C\right]$$

In other words, we just multiply the expected values from frequency model and the average severity model.

• In general, $\mathbb{E}[S] \neq \mathbb{E}[N]\mathbb{E}[C]$.

Why is the Dependence Important?

• If we have positive correlation between N and C, then

$$\mathbb{E}[S] > \mathbb{E}[N]\mathbb{E}[C]$$

so the company suffers from the higher loss relative to earned premium.

• If we have negative correlation between N and C, then

$$\mathbb{E}\left[S\right] < \mathbb{E}\left[N\right]\mathbb{E}\left[C\right]$$

so the company confronts the loss of market share due to higher premium.

Possible Alternatives for the Benchmarks

- For dependence between the frequency and severity
 - Set $\mathbb{E}\left[\overline{C}|N\right] = e^{X\beta + N\theta}$
 - Copula for \overline{N} and \overline{C}
- For longitudinal property
 - Random effects model
 - Copula for multiple claim observation
- Non-traditional approaches
 - Neural networks
 - Regression for each group classified by decision tree

Data Description

- Here I use a public dataset on insurance claim, provided by Wisconsin Propery Fund. (https://sites.google.com/a/wisc.edu/jed-frees/)
- It consists of 5,677 observation in training set and 1,098 observation in test set.
- It is a longitudinal data with more or less 1,234 policyholder, followed for 5 years.
- Although the dataset includes information one multi-line insurance, here I only used building and contents (BC) claim information.

Observable Policy Characteristics used as Covariates

Categorical	Description		Pro	portions
variables				
TypeCity	Indicator for city entity:	Y=1	14 %	
TypeCounty	Indicator for county entity:	Y=1	5.78 %	
TypeMisc	Indicator for miscellaneous entity:	Y=1	11.04 %	
TypeSchool	Indicator for school entity:	Y=1	28.17 %	
TypeTown	Indicator for town entity:	Y=1	17.28 %	
TypeVillage	Indicator for village entity:	Y=1	23.73 %	
NoClaimCreditBC	No BC claim in prior year:	Y=1	32.83 %	
Continuous		Minimum	Mean	Maximum
variables				
CoverageBC	Log coverage amount of BC claim in mm	0	37.05	2444.8
InDeductBC	Log deductible amount for BC claim	0	7.14	11.51
FreqBC	number of BC claim in a year	0	0.88	231
log(yAvgBC)	(log) avg size of claim in a year	5.17	8.76	16.37

Future Works for this Project

- Deal with 'outliers' on the observations for claim frequency.
- Provide methodologies for modelling the claim and compare their performance with those of the benchmark models.
- If possible, suggest a model with higher predictability and interpretability which can be used in P&C insurance company.