

Background

- Research: Understanding sequence—phenotype relationships using novel analytical methods.
- Bioinformatics (analysis, pipeline development & optimization, etc.); computational biology problems (gene expression, immune/antibody analysis, etc.); methods development.
- community building (nf-core), training/teaching, and mentorship!

Little bit about MemVerge...

Raised ~\$100M of investment

Headquarters in San Jose, CA

Founders created \$B product lines

Software is used by genomics customers in four continents

Launched Memory Machine for AWS at re:Invent 2022

Award winning solution helps automate & lower the cost of running genomics workloads on AWS

Europe

USA

Running pipelines at scale while optimizing resources

Running multiple pipelines at scale, given lots of sequence samples and limited resources can be a bottleneck for R&D.

Have you used EC2 Spot instances?

First the benefits...

Spot instances introduce unpredictability

Costs can end up being higher than just running with ondemand instances

Runtimes can be much longer when jobs are interrupted, 2-minute warning

Pain Point: Spot reclamations & long runtimes

Use case example:

Molecular diagnostics startup working on cell free mRNA assay for Alzheimer's

- running nf-core rnaseq pipeline on samples
- need fast turnaround times for bioinformatics analysis + results
- analysis informs further iterations of assay
- without results, subsequent experiments are delayed
- pipeline runs monitored on Seqera, spot reclamations led to increased runtimes
 - hybrid strategy of switching to OnDemand (Nextflow config) reduced failures.
- cost & time optimization was key

```
aws {
batch {
    maxSpotAttempts = 2
}

process {
    errorStrategy = { (task.attempt <= process.maxRetries) ? 'retry': 'ignore' }
    maxRetries = 3
    queue = { task.attempt == 1 ? 'TowerForge-SpotInStance TowerForge-Ondemand }
}</pre>
```


Pain Point: Cloud Costs

"Stuck between a rock and a hard place"

On-Demand no commit	\$\$\$		
Reserved Instances	\$\$	long term	
Cloud Savings Plans	\$\$	long term	

"Savings vs. On-Demand vs. Interruption Frequency"

Instance Type ▼	vCPU ♥	Memory GiB ▲	Savings over On-Demand ▼	Frequency of interruption 7
m6i.2xlarge	8	32	57%	>20%
g5g.4xlarge	16	32	59%	>20%
r7iz.xlarge	4	32	60%	<5% =======
a1.metal	16	32	59%	<5%
c6in.4xlarge	16	32	57%	<5%
c6i.4xlarge	16	32	53%	5-10%
c6gd.4xlarge	16	32	56%	>20%
m7gd.2xlarge	8	32	57%	15-20%
c6gn.4xlarge	16	32	55%	<5%
r7i.xlarge	4	32	60%	>20%

We make running on Spot simple...and...

Memory Machine = Spot Reclaim Immunity

Sample: Axolotl Runtime: 38hrs, 49 secs **EC2 Instances:** 37 Spot

Instances

How is my Nextflow pipeline run going?

Use the right file system for various workloads without getting vendor locked

Nextflow on MM Cloud

Design Matrix

No. of datasets (n)

Jupyter notebooks that can EC2 Spot-Surf

72 days running

How does it work?

Memory Machine provides an automated checkpoint recovery service called **SpotSurfer** that enables long-running batch and even stateful apps to run on low-cost Spot instances

Deploy job on Spot instance

Spot Reclaim Notice

Create AppCapsule

Provision a new Spot instance

Restore on new Spot instance

Automated

If no Spot instances are available SpotSurfer can recover using on-demand instances

Have you ever run out of memory?

Memory Machine provides an automated service called **WaveRider** that migrates workloads to larger or smaller instances based on real-time CPU & memory utilization

Running Alphafold on AWS for less than \$2

Alphafold is an open-source workflow developed by Google Deepmind. Its purpose is to predict protein structure base on the provided protein sequence. Alphafold can be considered as two parts: MSA search(rely on CPU) and inference prediction(heavily rely on GPU)

khgqgllqxuez42g7jl wiv 🕽	7ktt.fasta_inference _prediction	admin	Completed	2024-03-15 19:38:49	2024-03-15 22:47:30	3h8m41s	0.9439 USD	П	Þ	3 8
35tb9c5crauyb5t3n rrdr	7ktt.fasta_msa_sea rch	admin	Completed	2024-03-15 18:27:30	2024-03-15 19:38:18	1h10m47s	0.2723 USD	П	Þ	? 8
vn9ucfhrc2kjug8j8x w2r	7FC7.fasta_inferenc e_prediction	admin	Completed	2024-03-17 19:01:12	2024-03-17 19:26:55	25m43s	0.1288 USD	П	Þ	? 8
1hae2l9fi2u09fvolp 9pi	7FC7.fasta_msa_se arch	admin	Completed	2024-03-17 18:08:57	2024-03-17 19:01:00	52m2s	0.2017 USD	П	Þ	8 ×

- 7ktt -- 1142 residues
- 7FC7 -- 96 residues

Cost per run = \$1.22 using MMCloud

85-90% less than alternative options...

Benchmarking nf-core/rnaseq

- MemVerge delivered equal or better rnaseq performance and cost without the use of a commercial file system called Fusion from Segera
- MemVerge's superior EC2 automation and selection logic outperformed AWS Batch when comparing both "OD" On-Demand runs and Spot runs
- The cost of using MemVerge managed Spot instances for rnaseq was 78.7% lower than using AWS Batch managed On-Demand instances
- MemVerge SpotSurfer can guarantee consistent CPU hours and cost per run on Spot instances at scale while AWS Batch cannot (see next slide)

78.7% Savings

Benchmarking nf-core cont'd...

Pipeline	MMCloud-OnDemand	MMCloud-Spot	AWSBatch-OnDemand	AWS8atch-Spot
atacseq	10.70	5.45	17.70	6.20
maseq	40.66	21.77	100.34	37.60
sarek	11.21	6.94	29.73	34.33

- MemVerge's superior EC2 automation and selection logic outperformed AWS Batch when comparing both "OD" On-Demand runs and Spot runs
- The cost of using MemVerge managed Spot instances for ranged from 69% to 78% lower vs AWS Batch managed On-Demand instances
- MemVerge SpotSurfer can guarantee consistent CPU hours and cost per run on Spot instances at scale while AWS Batch cannot (see Sarek data)

69-78% Savings

Have you ever had AWS billing surprises?

Memory Machine **SurfZone** is a service that minimizes the risk of runaway compute spend by cancelling or suspending jobs when a user's "quota" is exceeded

Thank you!

If you have questions or want to collaborate, problem solve, etc., please reach out!

saba.nafees@memverge.com

Interested? Here's how to get started!

Email Jing for more info: jing.xie@memverge.com

Quick start guides: www.mmcloud.io

Sign up for a free trial

Slack support is available to all users https://www.mmcloud.io/customer/register

Supplementary

Pain Point: Cloud Skills

Cloud Computing comes with a learning curve

- -How do I "submit a job" on AWS, GCP?
- -How do I know I'm using the right compute?
- -How can I optimize and run this job for less?
- -How do I monitor my lab's job(s) and user(s)?
- -How can I do the above in a more automated way?

How MemVerge MMCloud Cuts Cloud Costs

MemVerge

Easily run containerized apps, tools on AWS

Customer testimonials

"MMCloud has helped our team in the Computational Biology Core at MDI Biological Laboratory better utilize AWS Spot EC2 instances to save cloud computing costs. In addition, the WaveWatcher tool has let us observe resource usage in real time, providing new insights into optimizing resource allocations for our work with Nextflow pipelines"

-Joel Graber, Director of the Computational Biology and Bioinformatics Core

"We have been impressed by the performance of the WaveRider for Sentieon solution. Early testing shows 4-5x speed-ups out-of-the-box and we expect to improve the results as we fine tune the solution. Faster processing coupled with leveraging Spot instances is dramatically lowering our cloud costs too. This solution enables us to complete our NGS more efficiently than ever and will help elevate our research to a new level."

-Remco Ursem, Program Leader of Bioinformatics

"I was getting up to 80% batch failure rates with Spot EC2, now with SpotSurfer we have already brought failure rates due to Spot reclaims to below 1%, and we are just getting started. WaveRider picks the most appropriate VM for each of the thousands of jobs launched by Nextflow. That is giving me more efficiency than ever. Very cool."

-Vince Pagano, Senior Scientific Programmer

Full Stack Solution or Embeddable

Case Study: Leading Genomics Research Institute (TGen)

Background:

Large 501(c)(3) research institution focused on accelerating genetic research was struggling to cost-effectively run Nextflow on AWS

Pain Points:

- Huge # of worker nodes, > 20K+ VMs per workflow
- ~75% failure rate using when using Spot EC2

Solution:

Memory Machine Cloud on AWS

Results:

70% EC2 savings

Reduced Failure Rate to Zero

Real-time automated EC2 optimization

nextflow Integration

SpotSurfer Spot Protection

WaveRider Resource Rightsizing Memory Machine Differentiators

Current implementation supports scaling to 1,000 concurrent worker nodes per Memory Machine Op Center, larger solutions can be supported via multiple Memory Machine Op Centers.

Case Study: Leading Genomic Medicines Company

Background:

Large biotech pioneering the future of genomic medicine with multiple clinical and pre-clinical product pipelines

Pain Points:

- Limited IT budget, multiple days to get compute spun up for researchers
- No easy way to refactor pipelines and cost-optimize for running in the cloud

Solution:

Memory Machine Cloud on AWS

Results:

- >35% cost savings w/ On-Demand EC2
- >80% cost savings w/ Spot EC2

AWS resource provisioning in seconds vs. days

		Memory Machine CE	Memory Machine CE		
Leading Genomics Company	BAU On-Demand	WaveRider Spot	WaveRider On-Demand		
Total Compute Time (Hours)	7.5	7.72	7.72		
Instance(s)	r5.24xlarge	r5.large to r5.24xlarge (multiple)	r5.large to r5.24xlarge (multiple)		
EC2 Cost / Hour	\$6.048	\$0.126 to \$6.048	\$0.126 to \$6.048		
Cost Per Job	\$45.36	\$8.32	\$28.45		
% Savings vs. BAU		-82%	-37%		
EC2 Instance(s) WaveRider Managed		Duration			
r5.large		0:06:49			
r5.xlarge		0:08:25			
r5.large		0:07:27			
r5.xlarge		0:12:41			
r5.2xlarge		0:10:57			
r5.4xlarge		0:13:47			
r5.12xlarge		3:18:18			
r5.24xlarge		2:32:29			
r5.12xlarge		0:	52:24		

Optimizing AWS resources

- Reduce the # of spot attempts under the hood
- Error strategy
 - Retry
 - Ignore
- Tell nextflow to go from spot to ondemand after 1 attempt so that resource consuming tasks can be done via ondemand