# Requirements Engineering and Software Architecture Fundamentals of Software Architecture

Emmanuel Letier http://letier.cs.ucl.ac.uk/

1

# Reference

N. Rozanski and E. Woods, *Software Systems Architecture : Working With Stakeholders Using Viewpoints and Perspectives,* 2<sup>nd</sup> *Ed.,* Addison-Wesley, 2012 [Chapters 1 to 14]



http://www.viewpoints-and-perspectives.info/

### Software Architecture

(Woods & Rozanski, Software Systems Architecture, 2011)

A software system's architecture is *the set of principal design decisions* made about the system. It includes decisions about the system's

- externally visible behaviours (functionalities) and quality properties (e.g. performance, availability)
- static structures (its internal design elements and their arrangement)
- dynamic structures (its run-time elements and their interactions)
- · implementation and evolution principles

3

# Why care about software architecture?

Every system has an architecture, whether or not it is documented and understood

A good architecture makes it easier to

- · satisfy the functional and quality requirements
- · understand how the software work
- analyze the software properties
- · test the software
- maintain and evolve the software

A bad architecture makes all these things much harder, and sometimes impossible

# Architecture influences qualities

- A same set of functional requirements can be implemented using many different architectures
  - e.g. a small online auction system vs ebay
- · Different architectures have different qualities
  - Performance
  - Evolvability
  - Availability
  - Security
  - Cost
- A good architecture is one that successfully addresses the concerns of its stakeholders and, when those concerns are in conflict, balances them in a way that is acceptable to the stakeholders

5

# Architecture as guide rails

- An architecture imposes constraints on what the system's internal elements can and must do
  - E.g.
  - components must use a given component for authentication
  - components of layer i can only use components of layer i+1
- Architecture constraints act as guide rails: developers' freedom is purposefully restricted in order to facilitate
  - satisfaction of quality requirements
  - coordination between developers
  - understanding and analysis of the whole system
  - testing and debugging

# Architecture descriptions as a guidebook

An architecture description is like a guidebook for people who need to work on or with the software code base: clients, developers (current and future), testers, sysadmins, ...

A good architectural description is one that effectively and consistently communicates key aspects of the architecture to the appropriate stakeholders

Different sections (viewpoints) address different stakeholders' concerns

7

# Kruchten's 4+1 Architecture Viewpoints (1995)





## Role of the Software Architect

## Four main responsibilities

- 1. identify and engage stakeholders
- 2. understand and capture their concerns
- 3. create and take ownership of the architectural description
- 4. take a leading role in the realisation of the architecture

Rozanski and Woods, Software Systems Architecture, Addison Wesley, 2012

# The Architecture Definition Process









# 1. Identify Architecturally Significant Requirements

# Architecturally significant requirement (ASR): a

requirement that has a significant impact on architectural decisions; the outcome of the architectural decisions would be very different if the requirement was missing or different

By contraposition, a requirement is **not** architecturally significant if the presence or absence of this requirement does not affect the outcome of architectural decisions

#### **Exercise**

Which of these requirements for an air pollution monitoring system are architecturally significant?

- The system shall be able to display air temperature in Celsius or Fahrenheit according to the user preference
- The system shall record air pollution levels at all 10,000 monitoring stations every 0.1 seconds
- 3. User Story: search for monitoring stations by postcode

As a visitor on the air pollution website

I want to find monitoring stations close to my postcode

So that I can view past and current pollution levels close to where I live

17

#### **ASR Characteristics**

- During requirements elaboration, we can only predict
  whether a requirement will be architecturally significant
  or not. Predicting architectural significance is difficult
  and requires judgement and expertise.
- · ASR are those than can "break" an architecture
  - A missing core functionality that requires major changes to the existing architecture
  - A missing quality requirement that cannot be met with the existing architecture

# Heuristics: Likely ASR are those that refer to ...

Chen et al. Characterizing Architecturally Significant Requirements.

IEEE Software, 2013

#### 1. Core features

- Features essential to the project's main goals

#### 2. Quality requirements

- Performance, availability, security, evolution, etc.

#### 3. Constraints

- Budget and schedule constraints
- Legacy systems
- Implementation and technology constraints

#### 4. Application environment

- Internet, corporate network, embedded hardware, virtual machines, mobile devices, etc.
- Systems running in different environments often have vastly different architectures

10

## **Observations**

- For a given system, only a small subset of requirements are architecturally significant
- In many requirements documents, ASR tend to be neglected, described vaguely, or hidden within other requirements



# 2. Produce Candidate Architectures

- Decompose the system into functional elements (a.k.a. components) with well-defined responsibilities
- Identify architectural choices and create models for one or more candidate architectures



#### 3-4. Evaluate and Rework Architecture

## Architectural perspectives =

- guidelines for defining perspective-specific requirements (e.g. performance, availability, security, evolution, etc.)
- techniques for evaluating architecture against these perspective-specific requirements
- architecture tactics for modifying an architecture to satisfy the perspective-specific requirements

## **Next Lectures**

- How to model candidate architectures using viewpoints
  - context viewpoint
  - functional viewpoint
  - development viewpoint
  - deployment viewpoint
- How to evaluate and improve candidate architectures using perspectives
  - the security perspective
  - the performance and scalability perspective
  - the availability and resilience perspective
  - the evolution perspective
  - the cost perspective