Assignment-4 - Apply-Naive Bayes-On-Amazon-Review-Dataset

March 30, 2019

1 Assignment-4: Apply Naive Bayes On Amazon Fine Food Reviews DataSet

1.1 Introduction

- (i). Naive Bayes is a simple, yet effective and commonly-used, machine learning classifier. It is a probabilistic classifier that makes classifications using the Maximum A Posteriori decision rule in a Bayesian setting
- (ii). Naive Bayes classifiers have been especially popular for text classification, and are a traditional solution for problems such as spam detection.

1.2 Objective

To Predict the Polarity of Amazon Fine Food Review Using Naive Bayes Algorithm.

1.3 Importing All Required Library

```
In [1]: %matplotlib inline
    import sqlite3
    import pandas as pd
    import numpy as np
    import nltk
    import string
    import matplotlib.pyplot as plt
    import seaborn as sns
    import math

from sklearn.model_selection import GridSearchCV
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import classification_report
    from sklearn.feature_extraction.text import TfidfTransformer
    from sklearn.feature_extraction.text import TfidfVectorizer
```

```
from sklearn.metrics import confusion_matrix
        from sklearn import metrics
        from sklearn.metrics import roc_curve, auc
        from sklearn.model_selection import cross_val_score
        from sklearn import preprocessing
        import pickle
        from tqdm import tqdm
        import os
        import warnings
        warnings.filterwarnings("ignore")
1.4 Importing Amazon Fine Food Review Dataset
In [2]: if os.path.isfile("final.sqlite"):
            conn=sqlite3.connect("final.sqlite")
            Data=pd.read_sql_query("select * from NaiveBayes where Score!=3",conn)
            conn.close()
        else :
            print("Error Importing the file")
1.5 Taking 150K Random Points
In [ ]: Data=Data.sample(n=150000)
In [3]: # Printing some data of DataFrame
        Data['Score'].value_counts()
Out[3]: 1
             126439
              23561
        Name: Score, dtype: int64
1.6 Information About DataSet
In [4]: print("\nNumber of Reviews: ",Data["Text"].count())
        print("\nNumber of Users: ",len(Data["UserId"].unique())) # Unique returns 1-D array of
        print("\nNumber of Products: ",len(Data["ProductId"].unique()))
        print("\nShape of Data: ", Data.shape)
        print("\nColumn Name of DataSet : ",Data.columns)
        print("\n\nNumber of Attributes/Columns in data: 12")
        print("\nNumber of Positive Reviews : ", Data['Score'].value_counts()[1])
        print("\nNumber of Negative Reviews : ", Data['Score'].value_counts()[0])
Number of Reviews: 150000
```

from sklearn.model_selection import TimeSeriesSplit

```
Number of Users: 115632
Number of Products: 43130
Shape of Data: (150000, 12)
Column Name of DataSet : Index(['index', 'Id', 'ProductId', 'UserId', 'ProfileName',
       'HelpfulnessNumerator', 'HelpfulnessDenominator', 'Score', 'Time',
       'Summary', 'Text', 'CleanedText'],
      dtype='object')
Number of Attributes/Columns in data: 12
Number of Positive Reviews: 126439
Number of Negative Reviews :
In [5]: print("\nNumber of Reviews: ",Data["Text"].count())
Number of Reviews: 150000
1.7 Attribute Information About DataSet
1.Id - A unique value starts from 1
   2.ProductId - A unique identifier for the product
   3.UserId - A ungiue identifier for the user
   4.ProfileName - Name of user profile
   5.HelpfulnessNumerator - Number of users who found the review helpful
   6.HelpfulnessDenominator - Number of users who indicated whether they found the review
helpful or not
   7.Score - Rating 0 or 1
   8.Time - Timestamp for the review
   9.Summary - Brief summary of the review
   10.Text - Text of the review
   11. Cleaned Text - Text that only alphabets
In [6]: # Sorting on the basis of Time Parameter
        Data.sort_values('Time',inplace=True)
In [7]: Y = Data['Score'].values
        X = Data['CleanedText'].values
```

1.8 Splitting DataSet into Train and Test Data

```
In [8]: from sklearn.model_selection import train_test_split
    # X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, shuffle=Fl
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33) # this is ra
    print("Shape of Train and Test Dataset for 50k points")
    print(X_train.shape, Y_train.shape)
    print(X_test.shape, Y_test.shape)

Shape of Train and Test Dataset for 50k points
(100500,) (100500,)
(49500,) (49500,)
```

1.9 Defining Some Function

1.9.1 Train Data Confusion Matrix Plot

1.9.2 Test Data Confusion Matrix Plot

1.9.3 ROC-AUC Curve Plot

```
cv_auc=Res['mean_test_score']
                               cv_auc_std=Res['std_test_score']
                               log_alpha=[math.log10(x) for x in Alpha ]
                               plt.plot(log_alpha, train_auc, label='Train AUC')
                               plt.gca().fill_between(log_alpha,train_auc - train_auc_std,train_auc + train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_auc_std,train_a
                               plt.plot(log_alpha, cv_auc, label='CV AUC')
                               plt.gca().fill_between(log_alpha,cv_auc - cv_auc_std,cv_auc + cv_auc_std,alpha=0.
                               plt.legend()
                               plt.xlabel("Log(Alpha): hyperparameter")
                               plt.ylabel("AUC")
                               plt.title("Plot Between AUC & Log(Alpha)")
                               plt.show()
1.9.4 GridSearchCV
In [13]: def Grid_SearchCV(X_train,Y_train,alpha):
                               tscv = TimeSeriesSplit(n_splits=10)
                               M_NB = MultinomialNB()
                               gsv=GridSearchCV(M_NB,alpha,cv=tscv,verbose=1,scoring='roc_auc')
                               gsv.fit(X_train,Y_train)
                               return gsv
1.9.5 30 Informative Feature
In [36]: def show_30_informative_feature(vectorizer,model,n=30):
                                # For Negative Class
                               neg_class_prob_sorted = model.feature_log_prob_[0, :].argsort()
                               neg_feat=[vectorizer.get_feature_names()[x] for x in neg_class_prob_sorted[-n:]]
                               neg_prob=[model.feature_log_prob_[0, :][x] for x in neg_class_prob_sorted[-n:]]
                               neg_zip=list(zip(neg_feat,neg_prob))
                               neg_zip.sort()
                                # For Positive Class
                               pos_class_prob_sorted = model.feature_log_prob_[1, :].argsort()
                               pos_feat=[vectorizer.get_feature_names()[x] for x in pos_class_prob_sorted[-n:]]
                               pos_prob=[model.feature_log_prob_[0, :][x] for x in pos_class_prob_sorted[-n:]]
                               pos_zip=list(zip(pos_feat,pos_prob))
                               pos_zip.sort()
```

train_auc_std=Res['std_train_score']

```
top=zip(pos_zip,neg_zip)
print("{0:20}{1:55}{2:20}".format("S.N","Positive","Negative"))
print("_"*90)
i=1
for (fn_1,coef_1), (fn_2,coef_2) in top:
    print("%d.\t\t%.3f\t%-30s\t\t%.3f\t%s" % (i,coef_1, fn_1, coef_2, fn_2))
    i+=1
```

1.10 Bags of Words

```
In [15]: vectorizer = CountVectorizer()
    vectorizer.fit(X_train) # fit has to happen only on train data

# we use the fitted CountVectorizer to convert the text to vector
    X_train_bow = vectorizer.transform(X_train)
    X_train_bow=preprocessing.normalize(X_train_bow)

X_test_bow = vectorizer.transform(X_test)
    X_test_bow=preprocessing.normalize(X_test_bow)

print("Shape of Train and Test Data After vectorizations")
    print(X_train_bow.shape, Y_train.shape)
    print(X_test_bow.shape, Y_test.shape)

Shape of Train and Test Data After vectorizations
(100500, 38189) (100500,)
(49500, 38189) (49500,)
```

1.10.1 Finding the best value Of hyperparameter (Alpha)

In [71]: plot(Alpha['alpha'],gsv)

1.10.2 Training the model

Out[72]: MultinomialNB(alpha=0.05, class_prior=None, fit_prior=True)

1.10.3 Evaluating the performance of model

In [73]: trainconfusionmatrix(model_FBOW,X_train_bow,Y_train)

Confusion Matrix for Train set

In [74]: testconfusionmatrix(model_FBOW,X_test_bow,Y_test)

Confusion Matrix for Test set

In [75]: plot_auc_roc(model_FBOW,X_train_bow,X_test_bow,Y_train,Y_test)


```
In [76]: print("Classification Report: \n")
        y_pred=model_FBOW.predict(X_test_bow)
        print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.92	0.19	0.31	7990
	1	0.86	1.00	0.93	41510
micro a	vg	0.87	0.87	0.87	49500
macro a		0.89	0.59	0.62	49500
weighted a		0.87	0.87	0.83	49500

1.10.4 Displaying 30 most informative feature

In [77]: show_30_informative_feature(vectorizer,model_FBOW)

S.N	Positive		Negative
1.	-5.943	also	
2.	-5.412	amazon	-5.505 b
3.	-6.689	best	-5.319 b
4.	-5.004	buy	-5.004 b
5.	-5.043	coffe	-5.043 c
6.	-5.238	dont	-5.536 d
7.	-5.507	eat	-5.238 d
8.	-6.103	find	-5.507 e
9.	-4.750	flavor	-5.372 e
10.	-5.395	food	-4.750
11.	-5.145	get	-5.395
12.	-5.004	good	-5.145
13.	-5.886	great	-5.004
14.	-4.260	like	-4.260
15.	-6.045	littl	-5.588
16.	-5.524	love	-5.524
17.	-5.544	make	-5.544
18.	-5.474	much	-5.474
19.	-4.746	one	-4.746
20.	-5.065	order	-5.065
21.	-5.688	price	-5.579
22.	-4.366	product	-4.366

23.	-5.509	realli	-5.609	рı
24.	-5.986	store	-5.509	re
25.	-4.148	tast	-4.148	ta
26.	-5.423	tea	-5.423	te
27.	-5.485	time	-5.485	t:
28.	-4.885	tri	-4.885	t:
29.	-5.072	use	-5.072	u
30.	-4.857	would	-4.857	W

1.11 TF-IDF

```
In [83]: vectorizer_tfidf=TfidfVectorizer()
         vectorizer_tfidf.fit(X_train)
Out[83]: TfidfVectorizer(analyzer='word', binary=False, decode_error='strict',
                 dtype=<class 'numpy.float64'>, encoding='utf-8', input='content',
                 lowercase=True, max_df=1.0, max_features=None, min_df=1,
                 ngram_range=(1, 1), norm='12', preprocessor=None, smooth_idf=True,
                 stop_words=None, strip_accents=None, sublinear_tf=False,
                 token_pattern='(?u)\\b\\w+\\b', tokenizer=None, use_idf=True,
                 vocabulary=None)
In [84]: X_Train_Tfidf=vectorizer_tfidf.transform(X_train)
         {\tt X\_Train\_Tfidf=preprocessing.normalize(X\_Train\_Tfidf)}
         X_Test_Tfidf=vectorizer_tfidf.transform(X_test)
         X_Test_Tfidf=preprocessing.normalize(X_Test_Tfidf)
In [85]: print("Shape of Train and Test Data After vectorizations")
        print(X_Train_Tfidf.shape, Y_train.shape)
         print(X_Test_Tfidf.shape, Y_test.shape)
Shape of Train and Test Data After vectorizations
(100500, 38440) (100500,)
(49500, 38440) (49500,)
```

1.11.1 Finding the best value of hyperparameter(Alpha)

Fitting 10 folds for each of 15 candidates, totalling 150 fits

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 150 out of 150 | elapsed: 15.3s finished

Best HyperParameter: {'alpha': 0.1}

Best Accuracy: 89.89%

In [87]: plot(Alpha['alpha'],gsv)

1.11.2 Training the model

Out[88]: MultinomialNB(alpha=0.1, class_prior=None, fit_prior=True)

1.11.3 Evaluating the performance of model

In [89]: trainconfusionmatrix(model_Tfidf,X_Train_Tfidf,Y_train)

Confusion Matrix for Train set

In [90]: $testconfusionmatrix(model_Tfidf,X_Test_Tfidf,Y_test)$

Confusion Matrix for Test set

In [91]: plot_auc_roc(model_Tfidf,X_Train_Tfidf,X_Test_Tfidf,Y_train,Y_test)


```
In [92]: print("Classification Report: \n")
        y_pred=model_Tfidf.predict(X_Test_Tfidf)
        print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.89	0.24	0.37	7990
	1	0.87	0.99	0.93	41510
micro	avg	0.87	0.87	0.87	49500
macro	avg	0.88	0.61	0.65	49500
weighted	avg	0.87	0.87	0.84	49500

1.11.4 Displaying 30 most informative feature

In [93]: show_30_informative_feature(vectorizer_tfidf,model_Tfidf)

S.N Positive		N Positive		
1.	-5.902	amazon	-5.902	ama
2.	-7.158	best	-5.850	bac
3.	-5.529	buy	-5.856	bag
4.	-5.401	coffe	-5.951	boı
5.	-5.940	dog	-5.642	bo
6.	-6.222	drink	-5.529	bu
7.	-5.965	eat	-5.401	CO
8.	-6.562	find	-5.657	di
9.	-5.409	flavor	-5.940	dog
10.	-5.827	food	-5.711	do
11.	-5.749	get	-5.965	ea
12.	-5.729	good	-5.813	e
13.	-6.584	great	-5.409	f
14.	-5.054	like	-5.827	f
15.	-6.489	littl	-5.749	ge
16.	-6.247	love	-5.729	g
17.	-6.146	make	-5.054	1:
18.	-5.945	much	-5.953	1
19.	-5.428	one	-5.968	m
20.	-5.528	order	-5.945	m
21.	-6.138	price	-5.428	0
22.	-5.048	product	-5.528	0

23.	-5.980	realli	-5.914	pa
24.	-6.387	store	-5.048	pı
25.	-4.916	tast	-5.938	рı
26.	-5.728	tea	-4.916	ta
27.	-5.999	time	-5.728	te
28.	-5.528	tri	-5.528	t
29.	-5.754	use	-5.754	us
30.	-5.390	would	-5.390	w

1.12 Addition of another column length

```
In [16]: Train_len=[]
         Test_len=[]
         for i in X_train:
             Train_len.append(len(i))
         for i in X_test:
             Test_len.append(len(i))
In [17]: Train_len=np.array(Train_len)
         Test_len=np.array(Test_len)
In [18]: Train_len=Train_len[:,np.newaxis]
         Test_len=Test_len[:,np.newaxis]
1.13 Bag Of Words
In [19]: X_Train_BOW=X_train_bow.todense()
In [20]: X_Train_New=np.append(X_Train_BOW,Train_len,axis=1)
In [21]: from scipy.sparse import csr_matrix
         X_Train_New= csr_matrix(X_Train_New)
In [22]: print("Shape of Train Data Before Adding length column ")
         print(X_train_bow.shape)
         print("\nShape of Train Data After Adding length column ")
         print(X_Train_New.shape)
Shape of Train Data Before Adding length column
(100500, 38189)
Shape of Train Data After Adding length column
(100500, 38190)
```

1.13.1 Finding the best value of hyperparameter (Alpha)

In [24]: plot(Alpha['alpha'],gsv1)


```
In [25]: X_Test_Bow=X_test_bow.todense()
In [26]: X_Test_New=np.append(X_Test_Bow,Test_len,axis=1)
```

1.13.2 Training the model

Out[29]: MultinomialNB(alpha=0.05, class_prior=None, fit_prior=True)

1.13.3 Evaluating the performance of model

In [30]: trainconfusionmatrix(model_New_Bow,X_Train_New,Y_train)

Confusion Matrix for Train set

In [31]: testconfusionmatrix(model_New_Bow,X_Train_New,Y_train)
Confusion Matrix for Test set

In [32]: plot_auc_roc(model_New_Bow,X_Train_New,X_Test_New,Y_train,Y_test)

Classification Report:

		precision	recall	f1-score	support
	0	0.88	0.20	0.33	7793
	1	0.87	0.99	0.93	41707
micro	avø	0.87	0.87	0.87	49500
macro	•	0.88	0.60	0.63	49500
weighted	avg	0.87	0.87	0.83	49500

In [37]: show_30_informative_feature(vectorizer,model_New_Bow)

S.N	Positive		Negative	
1.	 -9.346	amazon	-9.346	
2.	-10.598	best	-9.371	

am

```
3.
                    -8.908
                                     buy
                                                                                          -9.238
                                                                                                          bo:
4.
                    -8.942
                                     coffe
                                                                                          -8.908
                                                                                                          bu'
5.
                    -9.124
                                     dont
                                                                                          -8.942
                                                                                                          CO
6.
                    -9.384
                                     eat
                                                                                          -9.453
                                                                                                          di
7.
                                     find
                                                                                          -9.124
                    -9.974
                                                                                                          do:
8.
                    -8.649
                                     flavor
                                                                                          -9.384
                                                                                                          ea<sup>·</sup>
9.
                    -9.312
                                     food
                                                                                          -9.299
                                                                                                          ev
10.
                     -9.031
                                      get
                                                                                           -8.649
                                                                                                           f
11.
                     -8.871
                                                                                           -9.312
                                      good
                                                                                                           f
12.
                     -9.765
                                      great
                                                                                           -9.031
                                                                                                           g
13.
                     -8.148
                                      like
                                                                                           -8.871
                                                                                                           g
14.
                     -9.913
                                                                                           -8.148
                                      littl
                                                                                                           1
15.
                     -9.423
                                      love
                                                                                           -9.468
                                                                                                           1
                     -9.437
                                                                                           -9.423
16.
                                      make
                                                                                                           1
17.
                     -9.363
                                      much
                                                                                           -9.437
                                                                                                           m
18.
                     -8.635
                                                                                           -9.363
                                      one
                                                                                                           m
19.
                     -8.943
                                      order
                                                                                           -8.635
                                                                                                           0
20.
                     -9.581
                                                                                           -8.943
                                      price
                                                                                                           0
21.
                     -8.261
                                                                                           -9.479
                                      product
                                                                                                           p
22.
                     -9.392
                                      realli
                                                                                           -8.261
                                                                                                           p:
                     -9.897
23.
                                      store
                                                                                           -9.490
                                                                                                           p
24.
                     -8.042
                                      tast
                                                                                           -9.392
                                                                                                           r
25.
                     -9.262
                                      tea
                                                                                           -8.042
                                                                                                           t
26.
                     -9.397
                                                                                           -9.262
                                      time
                                                                                                           t
27.
                     -8.790
                                      tri
                                                                                           -9.397
                                                                                                           t
28.
                     -8.961
                                                                                           -8.790
                                      use
                                                                                                           t:
29.
                     -9.922
                                                                                           -8.961
                                      well
30.
                     -8.746
                                      would
                                                                                           -8.746
                                                                                                           W
```

1.14 **TF-IDF**

Fitting 10 folds for each of 15 candidates, totalling 150 fits

1.14.1 Finding the best value of hyperparameter (Alpha)

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 150 out of 150 | elapsed: 24.7s finished

Best HyperParameter: {'alpha': 0.05}

Best Accuracy: 89.40%

In [34]: plot(Alpha['alpha'],gsv2)

1.14.2 Training the model

Out[38]: MultinomialNB(alpha=0.05, class_prior=None, fit_prior=True)

1.14.3 Evaluating the performance of model

In [39]: trainconfusionmatrix(model_New_Tfidf1,X_Train_New_Tf1,Y_train)

Confusion Matrix for Train set

In [40]: testconfusionmatrix(model_New_Tfidf1,X_Test_New_Tf1,Y_test)

Confusion Matrix for Test set

In [41]: plot_auc_roc(model_New_Tfidf1,X_Train_New_Tf1,X_Test_New_Tf1,Y_train,Y_test)


```
In [42]: print("Classification Report: \n")
        y_pred=model_New_Tfidf1.predict(X_Test_New_Tf1)
        print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.85	0.25	0.39	7990
	1	0.87	0.99	0.93	41510
micro a	ıvg	0.87	0.87	0.87	49500
macro a		0.86	0.62	0.66	49500
weighted a		0.87	0.87	0.84	49500

1.14.4 Displaying 30 most informative feature

In [67]: show_30_informative_feature(vectorizer_tfidf,model_New_Tfidf1)

S.N	Positive	Positive	
1.	-9.807	amazon	-9.807 a
2.	-11.064	best	-9.755
3.	-9.434	buy	-9.760 b
4.	-9.306	coffe	-9.856 b
5.	-9.845	dog	−9.547 b
6.	-10.127	drink	-9.434
7.	-9.870	eat	-9.306 c
8.	-10.467	find	-9.562
9.	-9.313	flavor	-9.845 d
10.	-9.732	food	-9.616
11.	-9.654	get	-9.870
12.	-9.634	good	-9.717
13.	-10.489	great	-9.313
14.	-8.958	like	-9.732
15.	-10.394	littl	-9.654
16.	-10.152	love	-9.634
17.	-10.050	make	-8.958
18.	-9.850	much	-9.858
19.	-9.333	one	-9.872
20.	-9.433	order	-9.850
21.	-10.043	price	-9.333
22.	-8.953	product	-9.433

23.	-9.885	realli	-9.819 p
24.	-10.292	store	-8.953
25.	-8.821	tast	-9.843 p
26.	-9.633	tea	-8.821 t
27.	-9.904	time	-9.633 t
28.	-9.433	tri	-9.433 t
29.	-9.659	use	-9.659 u
30.	-9.295	would	-9.295 w

2 Conclusion:

1.Report On Different Vectorizer Method

Vectorizer	Hyperparameter(Alpha)	Train AUC	Test AUC	F1-Score
BOW	0.05 0.1		0.93	0.83

2.Report On Different Vectorizer Method After Addition Of Length as another Column

| Vectorizer | Hyperparameter(Alpha) | Train AUC | Test AUC | F1-Score |

+		+		-		-+-		-+-		+
i	BOW	i	0.05		0.94	i	0.92	i	0.83	i
i	20	•			0.95	·		•		•
•		•				•		•		•

- 3. I have taken considerable amount of data but it did not take long time in execution .
- 4. Since data is unbalanced , i did time based splitting and used roc_auc metric as scoring parameter in GridsearchCV.
- 5. After adding Length as another column, there is no any improvement.