Noisy Integration of Value Differences

Silvio Ravaioli Columbia University

Micro Theory Colloquium

March 27, 2019

Today's Presentation

- Experimental project
- Simple setting: binary choice, multidimensional options
- Motivation and Background literature
- Experimental design
- Descriptive results
- Model fitting

Evaluate two options that differ across multiple dimensions

$$i \in \{L, R\}$$
 $X_i \equiv \{x_{i,t}\}_{t=1}^T$ $x_{i,t} \sim F(\cdot) \ \forall i, t$

$$v(X_i) = \frac{1}{T} \sum_{t=1}^{T} x_{i,t}$$

- ► The *perceived* value may be different from the true one (measurement error, perceptual noise, imperfect memory, etc.)
- ► Comparison by dimension: sequence of pairs $\{(x_{L,t}, x_{R,t})\}_t$
- ► How do agents evaluate the vectors of dimensions?

Evaluate two options that differ across multiple dimensions

$$i \in \{L, R\}$$
 $X_i \equiv \{x_{i,t}\}_{t=1}^T$ $x_{i,t} \sim F(\cdot) \ \forall i, t$

$$v(X_i) = \frac{1}{T} \sum_{t=1}^{T} x_{i,t}$$

- ► The *perceived* value may be different from the true one (measurement error, perceptual noise, imperfect memory, etc.)
- ► Comparison by dimension: sequence of pairs $\{(x_{L,t}, x_{R,t})\}_t$
- ▶ How do agents evaluate the vectors of dimensions?

Evaluate two options that differ across multiple dimensions

$$i \in \{L, R\}$$
 $X_i \equiv \{x_{i,t}\}_{t=1}^T$ $x_{i,t} \sim F(\cdot) \ \forall i, t$

$$v(X_i) = \frac{1}{T} \sum_{t=1}^T x_{i,t}$$

- ► The *perceived* value may be different from the true one (measurement error, perceptual noise, imperfect memory, etc.)
- ► Comparison by dimension: sequence of pairs $\{(x_{L,t}, x_{R,t})\}_t$
- ► How do agents evaluate the vectors of dimensions?

Evaluate two options that differ across multiple dimensions

$$i \in \{L, R\}$$
 $X_i \equiv \{x_{i,t}\}_{t=1}^T$ $x_{i,t} \sim F(\cdot) \ \forall i, t$

$$v(X_i) = \frac{1}{T} \sum_{t=1}^T x_{i,t}$$

- ► The *perceived* value may be different from the true one (measurement error, perceptual noise, imperfect memory, etc.)
- ► Comparison by dimension: sequence of pairs $\{(x_{L,t}, x_{R,t})\}_t$
- How do agents evaluate the vectors of dimensions?

Preview of Main Results

- Laboratory experiment design to explore:
 - Noisy integration of values under "full information"
 - ► Integration of available and *shrouded* values
 - Endogenous searching
- Stochastic choice and violation of stochastic transitivity
- Similarity increases accuracy
- Systematic bias in information integration and search
- ► Context effect consistent with *salience*
- Biased choice pattern determined by prior value distribution and varying perceptual error

Preview of Main Results

- Laboratory experiment design to explore:
 - Noisy integration of values under "full information"
 - ► Integration of available and *shrouded* values
 - Endogenous searching
- Stochastic choice and violation of stochastic transitivity
- Similarity increases accuracy
- Systematic bias in information integration and search
- ► Context effect consistent with *salience*
- Biased choice pattern determined by prior value distribution and varying perceptual error

Motivation and Background Literature

Multidimensional pricing strategy

► Ellison (2005), Spiegler (2006), Brown, Hossain & Morgan (2010), Gabaix & Laibson (2006) [shrouded attributes]

Noisy integration of decision information

► Human bias in averaging tasks: Tsetsos et al. (2016), Spitzer, Waschke & Summerfield (2017), Li et al. (2018)

► Context effect and Violation of stochastic transitivity

- Stochastic transitivity violation would not occur if information was encoded in isolation
- ► Vast and discordant literature: Tversky & Simonson (1993), Kivetz et al. (2004), Soltani, de Martino & Camerer (2012), Bordalo, Gennaioli & Shleifer (2013), Koszegi & Szeidl (2013), Bushong et al. (2017), Natenzon (2018), Landry & Webb (2019)

Motivation and Background Literature

Multidimensional pricing strategy

► Ellison (2005), Spiegler (2006), Brown, Hossain & Morgan (2010), Gabaix & Laibson (2006) [shrouded attributes]

Noisy integration of decision information

► Human bias in averaging tasks: Tsetsos et al. (2016), Spitzer, Waschke & Summerfield (2017), Li et al. (2018)

► Context effect and Violation of stochastic transitivity

- Stochastic transitivity violation would not occur if information was encoded in isolation
- ► Vast and discordant literature: Tversky & Simonson (1993), Kivetz et al. (2004), Soltani, de Martino & Camerer (2012), Bordalo, Gennaioli & Shleifer (2013), Koszegi & Szeidl (2013), Bushong et al. (2017), Natenzon (2018), Landry & Webb (2019)

Motivation and Background Literature

Multidimensional pricing strategy

► Ellison (2005), Spiegler (2006), Brown, Hossain & Morgan (2010), Gabaix & Laibson (2006) [shrouded attributes]

Noisy integration of decision information

Human bias in averaging tasks: Tsetsos et al. (2016), Spitzer,
 Waschke & Summerfield (2017), Li et al. (2018)

Context effect and Violation of stochastic transitivity

- Stochastic transitivity violation would not occur if information was encoded in isolation
- ► Vast and discordant literature: Tversky & Simonson (1993), Kivetz et al. (2004), Soltani, de Martino & Camerer (2012), Bordalo, Gennaioli & Shleifer (2013), Koszegi & Szeidl (2013), Bushong et al. (2017), Natenzon (2018), Landry & Webb (2019)

Experimental Design - Main Task

Experimental Design

- Binary choice: compound lottery L(eft) vs R(ight)
- Six simple lotteries (dimensions) equally likely to be selected
- ► Each sub-lottery is a 10-90% probability of winning one point
- Lab experiment at CELSS (Columbia University)
- ▶ 800 trials in a session (\sim 80 min), including 2 ancillary tasks
- Incentive: collect victories (points) across the experiment
- ► Payment: (# points 300) · 20 ¢ Avg. payment \$23.60

Experimental Design

Treatments - Upward/Downward distributions

Upward and Downward triangular distributions

Value distributions used to generate data in the two treatments

Result 0. Stochastic Choice

Choice probability in trials with different difficulty

Noisy perception models (1)

At time $t \in 1, ..., 6$ two values x_t^L and x_t^R are observed

Model 1 - Constant noise level

- ► Mental representation of each value $\hat{x}|x \sim N(x, s^2)$
- lacktriangleright Leaking memory: discount previous dimensions by δ
- ► The perceived value of X_i is $\sum_{t=1}^{T} \delta^{T-t} \cdot \hat{x}_{i,t}$
- ► The agent chooses the option with the highest perceived value
- ► Calculate $Pr(Choose\ L|X_L,X_R,\delta,s^2)$

Calibrated model: BIC: 15,972 (all data), 15,969 (separate treatments) Rescaled variance s^2 = 0.094, leaking memory δ = 0.84 < 1

Noisy perception models (2)

At time $t \in 1, ..., 6$ two values x_t^L and x_t^R are observed

Model 2 - Varying noise level

- ► Mental representation of each value $\hat{x}|x \sim N(m(x), s(x))$
- m(x) and s(x) are degree 3 polynomia
- ▶ Leaking memory: discount previous attributes by $\delta < 1$
- ► The perceived value of X_i is $\sum_{t=1}^{T} \delta^{T-t} \cdot \hat{x}_{i,t}$
- ► The agent chooses the option with the highest perceived value

Calibrated model [see next slide]
BIC: 17,929 (all data), 17,900 (separate T1/T2) [high BIC = worse fit]

Noisy Perception Models (2)

- \blacktriangleright m(x) transformation in the figure is a polynomial of degree 3
- Apparent focusing in favor of high values
- Standard deviation is increasing in x

Result 1. Similarity improves Accuracy

Choice probability, after controlling for similarity

Result 1. Similarity improves Accuracy

Choice probability, after controlling for similarity

Result 1. Similarity improves Accuracy

Choice probability, after controlling for similarity

Noisy Perception Models (3)

At time $t \in 1, ..., 6$ two values x_t^L and x_t^R are observed

Model 3 - Noisy encoding of difference $\Delta x_t := x_{L,t} - x_{R,t}$

- ► Mental representation of value difference $\Delta \hat{x} | \Delta x \sim N(m(\Delta x), s(\Delta x))$
- ► $m(\Delta x)$ and $s(\Delta x)$ are degree 3 polynomia
- ▶ Leaking memory: discount previous attributes by $\delta < 1$
- ► The perceived difference for $v(X_L) v(X_R)$ is $\sum_{t=1}^{T} \delta^{T-t} \cdot \Delta \hat{x}_t$
- ► The agent chooses the option with the highest perceived value

Calibrated model [see next slide] BIC: 15,801 (all data), 15,826 (separate treatments)

Noisy Perception Models (3)

- $ightharpoonup m(\Delta x)$ transformation in the figure is a polynomial of degree 3
- ▶ Standard deviation is increasing in the Δx

Result 2. Decision Weights

Decision weight $Pr(L|x^L, x^R)$ for different magnitudes \bar{x} and differences Δx

Result 2. Decision Weights

Decision weight $Pr(L|x^L, x^R)$ for different magnitudes \bar{x} and differences Δx

Result 2. Decision Weights

Noisy Perception Models (4)

- ▶ At time $t \in 1, ..., 6$ two values x_t^L and x_t^R are observed
- ► Mental representation of the difference $\Delta x_t := x_t^L x_t^R$
 - ▶ Noisy representation $\Delta \hat{x} | \Delta x \sim N(m(\Delta x) \cdot \bar{x}_t^{\mu+1}, s(\Delta x) \cdot \bar{x}_t^{\sigma+1})$
 - ► Transformation $m(\Delta x)$, degree 3 polynomial
 - ▶ Varying noise $s(\Delta x)$, degree 3 polynomial
- ► Choice based on $\Delta V := \sum_{t=1}^{T} \delta^{T-t} \cdot \Delta \hat{x}_t$
- \blacktriangleright Weight/accuracy may differ between high/low values: μ and σ
- Leaking memory: $\delta < 1$

Noisy Perception Models (4)

Varying noise $s(\Delta x)$

- ▶ Leaking factor δ = 0.82 < 1
- Focusing effect (mean) μ = 0.60 > 0
- Focusing effect (variance) $\sigma = 0.74 > 0$
- [0.81 in T1, 0.84 in T2]
- [-0.01 in T1, 1.18 in T2]
- [-0.21 in T1, 0.95 in T2]

Noisy Perception Models - BIC summary table

Model	Merge T1+T2	Separate T1/T2
Noisy perception $N(x, s^2)$	15,972	15,969
Transformation of x $N(m(x), s(x)^2)$	17,929	17,900
Transformation of Δx $N(m(\Delta x), s(\Delta x)^2)$	15,801	15,826
Focusing based on \bar{x} $N\left(m(\Delta x) \cdot \bar{x}^{\mu-1}, (s(\Delta x) \cdot \bar{x}^{\sigma-1})^2\right)$	15,525	15,520

Experimental Design - Task 2

Experimental Design - Task 2

- Exogenous information restriction: part of the screen is obscured by a fixed rectangle
- Two conditions: upper or lower range visible
- ▶ 400 trials, divided into 20 blocks

- Motivation: shrouded attributes
- Example: seller advertises low prices only

Result 3. Fitted Values for Missing Observations

Task 2, two conditions (high/low values hidden) - Optimal vs. data

Result 3. Fitted Values for Missing Observations

Task 2, two conditions (high/low values hidden) - Optimal vs. data

Experimental Design - Task 3

Experimental Design - Task 3

- Endogenous information restriction
- ► As in task 2, part of the screen is obscured by a fixed rectangle
- Now the participant chooses the part of the screen to observe
- ▶ Partition value $x^* \sim U[min\{x\}+10, max\{x\}-10]$
- ▶ 100 trials at the end of the session

- Motivation: searching process
- Example: consumer filtering positive/negative reviews

Result 4. Endogenous Information Acquisition

Task 3 - Probability of revealing the upper part of the screen

Result 4. Endogenous Information Acquisition

Task 3 - Probability of revealing the upper part of the screen

Summary

- Laboratory experiment designed to explore choice between multidimensional options
- Controlled environment, direct comparison and noisy evaluation
- Biased choice pattern determined by prior value distributions and varying perceptual error
- Direct comparison: no encoding of individual values
- Context effect: focusing effect consistent with salience

Next Steps

Current to-do list

- Explore individual-level heterogeneity
- Connect further the results in main and ancillary tasks
- Model fitting and comparison

More ambitious applications?

- Strategic setting: sophisticated firm and biased consumers
- ► Extension with outside option and/or N > 2 options
- Empirical application

Noisy Integration of Value Differences

Silvio Ravaioli Columbia University

Micro Theory Colloquium

March 27, 2019

Standard Errors

Choice probability in trials with different difficulty. Avg. accuracy 74%.

Treatment effect

Choice probability in trials with different difficulty. Observations are grouped by treatment. Avg. accuracy 73.03% vs 74.36%.

Learning effect

Choice probability in trials with different difficulty. Observations are divided into early (1-150) and late trials (151-300). Avg. accuracy

Violation of stochastic transitivity

Choice probability in trials with different difficulty. Trials are grouped by number and direction of Frequent Local Winners (FLWs).

Standard Errors

Choice probability, after controlling for similarity.

Standard Errors (all data)

Decision weight $Pr(L|x^L, x^R)$ for different magnitudes \bar{x} and differences Δx

Standard Errors (treatment 1)

Decision weight $Pr(L|x^L, x^R)$ for different magnitudes \bar{x} and differences Δx

Standard Errors (treatment 2)

Decision weight $Pr(L|x^L, x^R)$ for different magnitudes \bar{x} and differences Δx

Noisy Integration of Value Differences

Silvio Ravaioli Columbia University

Micro Theory Colloquium

March 27, 2019