Mergesort: Estratégia e Análise

1. Introdução

O **Mergesort** é um algoritmo de ordenação baseado na estratégia **dividir para conquistar**. Criado por **John von Neumann em 1945**, ele divide recursivamente a lista em partes menores até obter sublistas unitárias e, em seguida, as combina de forma ordenada. É um algoritmo **estável**, mantendo a ordem relativa de elementos iguais, e possui complexidade **O(n log n)** em todos os casos.

2. Funcionamento

O algoritmo segue três etapas principais:

- **Dividir:** a lista é separada em duas metades até alcançar sublistas unitárias.
- Conquistar: cada sublista é considerada ordenada.
- **Combinar:** as sublistas ordenadas são mescladas comparando elementos sucessivos.

A fusão ocorre utilizando ponteiros que percorrem ambas as sublistas, sempre inserindo o menor elemento na lista final.

3. Exemplo de Execução

Dada a lista [7, 5, 1, 8, 4, 9], o Mergesort a divide até obter [1], [5], [7], etc., e então as combina ordenadamente até resultar em [1, 4, 5, 7, 8, 9].

Este método também pode ordenar **strings**, como ["zebra", "macaco", "elefante", "banana"], retornando ["banana", "elefante", "macaco", "zebra"].

4. Comparativo com Outros Algoritmos

Algoritmo	Melhor Caso	Caso Médio	Pior Caso	Espaço Extra	Estável?
Mergesort	O(n log n)	O(n log n)	O(n log n)	O(n)	Sim
Bubblesort	O(n)	O(n ²)	O(n ²)	O(1)	Sim
Insertionsor	t O(n)	O(n ²)	O(n ²)	O(1)	Sim
Quicksort	O(n log n)	O(n log n)	O(n ²)	O(log n)	X Não

O Mergesort é mais previsível que o Quicksort, pois sempre tem complexidade O(n log n), independentemente do caso. No entanto, requer espaço extra O(n), enquanto o Quicksort pode ser implementado in-place com O(log n) de espaço adicional.

5. Complexidade

- Tempo: O(n log n) no melhor, médio e pior caso.
- **Espaço:** O(n), devido à necessidade de armazenamento auxiliar para a fusão.

Apesar do consumo extra de memória, sua **estabilidade** e **eficiência garantida** tornam o Mergesort uma escolha ideal para ordenação de grandes volumes de dados e para casos onde a preservação da ordem relativa é essencial.