CLAIMS

 A compound of the following formula (I) or a pharmaceutically acceptable salt thereof:

[Formula 11]

wherein R_1 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heterocyclic group;

 A_1 and A_2 each independently represent a single bond or an alkylene group having 1 to 6 carbon atoms:

 Q_1 represents -Y₁-A₃-R₂, an aromatic ring compound group Q_3 , a heteroaromatic ring compound group Q_3 , or a saturated cyclic compound group Q_4 ;

 Y_1 represents -O-, -S-, -NR₃-, -CONR₃-, -NR₃CO-, -NR₃COO-, -NR₃CONR₄-, -NR₄SO₂-, or -NR₄SO₂NR₄-;

A₃ represents a single bond or an alkylene group having 1 to 6 carbon atoms;

R₂ represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heterocyclic group;

 R_3 and R_4 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, a saturated heterocyclic group, or a group selected from the group consisting of an aryl or heteroaryl group and an alkylene group having 1 to 3 carbon atoms; R_2 and R_3 optionally bond together to form a ring;

Q₂ is a group of the following formula (II-a): Formula 121

$$\left(R_{6}\right)_{n}$$
 (II-a)

wherein R_5 represents a nitro group, a cyano group, or $-Y_2$ - A_3 - R_2 ;

n represents an integer of 0 to 4;

Y₂ represents a single bond, -O-, -S-, -NR₃-, -CONR₃-, -NR₃CO-, -NR₃COO-, -NR₃COOR₄-, -NR₃SO₂-, or -NR₃SO₂NR₄-;

R₆s are each independently optionally substituted at any carbon atom on the ring, each independently represent a halogen atom, an alkyl group, a nitro group, a cyano group, -OR₇, -COOR₇, or -CONR₇R₈, and optionally form a ring; and

 R_7 and R_8 each independently represent an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, a saturated heterocyclic group, or a group selected from the group consisting of an aryl or heteroaryl group and an alkylene group having 1 to 3 carbon atoms:

 Q_3 represents a group selected from groups of the following formula (II-b): [Formula 13]

wherein X_1 represents -O- or -N(- Y_3 - A_3 - R_2)-; X_2 and X_3 each represent N or CH; Y_3 represents a single bond -CO- or -SO₂-; and

 Q_4 represents a 3- to 10-membered hydrocarbon optionally substituted in any position or a cyclic compound containing 1 to 3 nitrogen, oxygen, or sulfur atoms;

provided that the following cases are excluded in which: R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene or ethylene, Q_1 is Q_2 , R_3 is Y_2 - Y_2 - Y_2 is an oxygen atom, Y_3 is methylene, and Y_2 is phenyl;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, Q_1 is Y_1 - A_3 - R_2 , Y_1 is S, and A_3 is ethylene;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Q_1 is Y_1 - A_3 - R_2 , Y_1 is S_1 , and A_3 is a single bond, and R_2 is ethyl; and

A2 is methylene, Q1 is -Y1-A3-R2, Y1 is NR3CO, A3 is ethylene, and R2 is phenyl.

2. A compound of the following formula (III) or a pharmaceutically acceptable salt thereof:

[Formula 14]

$$\begin{array}{c} R_1 \\ A_1 \\ \end{array} \begin{array}{c} N \\ A_2 \\ \end{array} \begin{array}{c} OH \\ N \\ Y_3 \\ \end{array} \begin{array}{c} A_3 \\ R_2 \end{array} \end{array} (III)$$

wherein R_1 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heteroeyclic group:

 A_1 and A_2 each independently represent a single bond or an alkylene group having 1 to 6 carbon atoms;

 R_{6} s are each independently optionally substituted at any carbon atom on the ring, each independently represent a halogen atom, an alkyl group, a nitro group, a cyano group, $-OR_{7}$, $-COOR_{7}$, or $-CONR_{7}R_{8}$, and optionally form a ring;

 R_7 and R_8 each independently represent an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, a saturated heterocyclic group, or a group selected from the group consisting of an aryl or heteroaryl group and an alkylene group having 1 to 3 carbon atoms:

n represents an integer of 0 to 4;

Y₃ represents a single bond, -CO- or -SO₂-;

 A_3 represents a single bond or an alkylene group having 1 to 6 carbon atoms; and R_2 represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having

2 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heterocyclic group.

3. The compound of the formula (III) or a pharmaceutically acceptable salt thereof according to claim 2, wherein A_2 represents methylene or ethylene; R_1 represents a hydrogen atom, an alkyl group, or an aryl group; A_1 represents a single bond, methylene,

or ethylene; Y_3 represents a single bond; and R_6 represents a hydrogen atom, a halogen atom, or an alkyl group.

- 4. The compound of the formula (III) or a pharmaceutically acceptable salt thereof according to claim 3, wherein A₂ represents ethylene; A₁ represents a single bond; and R₁ represents a hydrogen atom.
- 5. The compound of the formula (III) or a pharmaceutically acceptable salt thereof according to claim 3, wherein R₁ is a hydrogen atom, A₁ is a single bond, A₂ is ethylene, n is 0, Y₁ and A₃ are each a single bond, and R₂ is a propyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 is a single bond, A_3 is ethylene, and R_2 is a phenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 4-nitrophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a pentyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 is a single bond. A_3 is methylene, and R_2 is a 2-methoxyphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 is a single bond. A_3 is methylene, and R_2 is a pyridin-2-yl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a butyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is an octyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a cyclohexyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a 2,2-dimethylpropyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is an isobutyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 4-fluorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a t-butyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_3 is a cyclohexyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a tetrahydropyran-4-yl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a 1-methylpiperidin-4-yl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a 2-methylbutyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a hexyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a heptyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 is a single bond, A_3 is 2-methylpropylen-2-yl, and R_2 is a 4-t-butylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a naphthalen-1-yl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 5-chlorothiophen-2-yl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 and A_3 are each a single bond, and R_2 is a cyclohexyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a 4-t-butylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a 4-fluorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a 4-methoxybenzyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a methyl group;

 R_1 is a propyl group, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a propyl group;

 R_1 is a cyclohexyl group, A_1 is methylene, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a methyl group:

 R_1 is a propyl group, A_1 is methylene, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a methyl group;

 R_1 is an octyl group, A_1 is methylene, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a methyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a propyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are chlorine atoms present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a propyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are chlorine atoms present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a pentyl group;

 R_1 is a cyclohexyl group, A_1 is methylene, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a propyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 2,3,5,6-tetrafluoro-4-methoxyphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a cyclohexyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, in is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a 3,4-diffuorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a phenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 and A_3 are each a single bond, and R_2 is a phenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 and A_3 are each a single bond, and R_2 is a 4-methylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 and A_3 are each a single bond, and R_2 is a 4-methoxyphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 and A_3 are each a single bond, and R_2 is a 4-fluorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a 4-methylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a 3-fluorophenyl group:

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 and A_3 are each a single bond, and R_2 is a 3-nitrophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a 4-trifluoromethylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are chlorine atoms present at the 5-and 6-positions, Y_3 and A_3 are each a single bond, and R_2 is a phenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are chlorine atoms present at the 5-and 6-positions, Y_3 is a single bond, A_3 is methylene, and R_2 is a phenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a pentyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a 4-methylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 4-t-butylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 and A_3 are each a single bond, and R_2 is a pentyl group; or

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, n is 2, R_6 s are methyl groups present at the 5-and 6-positions, Y_3 and A_3 are each a single bond, and R_2 is a 2,2-dimethylpropyl group.

 A compound of the following formula (IV) or a pharmaceutically acceptable salt thereof:

[Formula 15]

$$\begin{pmatrix} R_{1} & A_{1} & A_{2} & A_{2} \\ R_{0} & N_{1} & A_{3} & R_{2} \end{pmatrix}$$

$$(IV)$$

wherein R_1 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heterocyclic group:

 A_1 and A_2 each independently represent a single bond or an alkylene group having 1 to 6 carbon atoms:

 R_{cS} are each independently optionally substituted at any carbon atom on the ring, each independently represent a halogen atom, an alkyl group, a nitro group, a cyano group, $-OR_{7}$, $-COOR_{7}$, or $-COOR_{7}R_{8}$, and optionally form a ring;

 R_7 and R_8 each independently represent an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, a saturated heterocyclic group, or a group selected from the group consisting of an aryl or heteroaryl group and an alkylene group having 1 to 3 carbon atoms:

n represents an integer of 0 to 4; Y3 represents a single bond -CO- or -SO2-; and

 A_3 represents a single bond or an alkylene group having 1 to 6 carbon atoms; and R_2 represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heterocyclic group.

- 7. The compound of the formula (IV) or a pharmaceutically acceptable salt thereof according to claim 6, wherein R_6 represents a hydrogen atom.
- 8. The compound of the formula (IV) or a pharmaceutically acceptable salt thereof according to claim 7, wherein R_1 represents a hydrogen atom and A_1 represents a single bond.
- The compound of the formula (IV) or a pharmaceutically acceptable salt thereof according to claim 8, wherein Y₃ represents a single bond.
- 10. The compound of the formula (IV) or a pharmaceutically acceptable salt thereof according to claim 6, wherein R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 2,4-difluorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 is a single bond. A_3 is methylene, and R_2 is a 4-trifluorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 4-nitrophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 is a single bond, A_3 is ethylene, and R_2 is a phenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 2,3,4,5,6-pentafluorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a pentyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 4-t-butylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 4-cyanophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 is a single bond, A_3 is methylene, and R_2 is a 3,4-difluorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a methyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is an ethyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a propyl group:

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a butyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a hexyl group; or

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, Y_3 and A_3 are each a single bond, and R_2 is a 3-methylbutyl group.

11. A compound of the following formula (V) or a pharmaceutically acceptable salt thereof:

[Formula 16]

wherein R_1 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heterocyclic group; A_1 and A_2 each independently represent a single bond or an alkylene group having 1 to 6 carbon atoms; R_5 represents a nitro group, a cyano group, or Y_2 - A_3 - R_2 ; n represents an integer of 0 to 4; Y_2 represents a single bond, -O-, -S-, -NR₃-, - $CONR_{17}$ -, -NR₃COO-, -NR₃COO-, -NR₃CONR₄-, -NR₃SO₂-, or -NR₃SO₂NR₄-;

R₆s are each independently optionally substituted at any carbon atom on the ring, each independently represent a halogen atom, an alkyl group, a nitro group, a cyano group, -OR₇, -COOR₇, or -CONR₇R₈, and optionally form a ring; and

 R_7 and R_8 each independently represent an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, a saturated heterocyclic group, or a group selected from the group consisting of an aryl or heteroaryl group and an alkylene group having 1 to 3 carbon atoms.

12. The compound of the formula (V) or a pharmaceutically acceptable salt thereof according to claim 11, wherein A₂ represents methylene and R₆ represents a hydrogen atom.

٠.

- 13. The compound of the formula (V) or a pharmaceutically acceptable salt thereof according to claim 12, wherein R_1 represents a hydrogen atom, A_1 represents a single bond, R_5 represents a nitro group, -NR₉R₁₀, or -OR₉, R_9 and R_{10} each represent -Y₄-R₁₁, Y₄ represents a single bond, -CO-, -COO-, -CONR₁₂-, or SO₂-, and R_{11} and R_{12} each independently represent an alkyl group having 1 to 10 carbon atoms, an aryl group, a heteroaryl group, a saturated heterocyclic group, or a group selected from the group consisting of an aryl or heteroaryl group and an alkylene group having 1 to 3 carbon atoms, provided that the following cases are excluded in which: R_5 represents -OR₉, R_9 represents -Y₄R₁₁, and Y₄ represents 0; or R_{11} represents a benzyl group.
- 14. The compound of the formula (V) or a pharmaceutically acceptable salt thereof according to claim 12, wherein R₅ is a nitro group.
- 15. The compound of the formula (V) or a pharmaceutically acceptable salt thereof according to claim 11, wherein R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_3 is $-Y_2$ - A_3 - R_2 , Y_2 is -NR₃CO-, R_3 is a hydrogen atom, A_3 is a single bond, and R_2 is a methyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_5 is $-Y_2-A_3-R_2$, Y_2 is $-NR_3CO$ -, R_3 is a hydrogen atom, A_3 is a single bond, and R_2 is a 4-methylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_5 is $-Y_2-A_3-R_2$, Y_2 is $-NR_3CO-$, R_3 is a hydrogen atom, A_3 is a single bond, and R_2 is a butyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is $-NR_3$ CO-, R_3 is a hydrogen atom, A_3 is a single bond, and R_2 is a t-butyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_5 is $-Y_2-A_3-R_2$, Y_2 is $-NR_3CO-$, R_3 is a hydrogen atom, A_3 is methylene, and R_2 is a 4-fluorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is $-NR_3$ SO₂-, R_3 is a hydrogen atom, A_3 is a single bond, and R_2 is a 4-methylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_5 is $-Y_2-A_3-R_2$, Y_2 is $-NR_3CONR_4$ -, R_3 and R_4 are each a hydrogen atom, A_3 is a single bond, and R_2 is a 4-trifluoromethylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_5 is $-Y_2-A_3-R_2$, Y_2 is $-NR_3COO_2$, R_3 is a hydrogen atom, A_3 is a single bond, and R_2 is a methyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is $-NR_3$ CONR₄-, R_3 is a hydrogen atom, A_3 is a single bond, and R_2 and R_4 are each a methyl group:

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_5 is -Y₂-A₃-R₂, Y₂ is -NR₃-, A₃ is a single bond, and R₂ and R₃ are each a propyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, R_5 is $-Y_2-A_3-R_2$, Y_2 is $-NR_3-$, A_3 is methylene, R_2 is a hydrogen atom, and R_3 is a 4-methylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is a nitro group;

 R_1 is a phenyl group, A_1 is methylene, A_2 is methylene, n is 0, and R_5 is a nitro group;

 R_1 is a pyridin-2-yl group, A_1 is methylene, A_2 is methylene, n is 0, and R_5 is a nitro group;

 R_1 is a propyl group, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is a nitro group;

 R_1 is a cyclohexyl group, A_1 is methylene, A_2 is methylene, n is 0, and R_3 is a nitro group;

 R_1 is a 2-propyl group, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is a nitro group;

 R_1 is a cyclohexyl group, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is a nitro group;

 R_1 is a 1-methylpiperazin-4-yl group, A_1 is a single bond, A_2 is methylene, n is 0, and R_3 is a nitro group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is -O-, A_3 is ethylene, and R_2 is a 4-phenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is -O-, A_3 is a single bond, and R_2 is a propyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is -Y₂-A₃-R₂, Y₂ is -O-, A₃ is ethylene, and R₅ is a morpholin-4-yl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_3 is $-Y_2$ - A_3 - R_2 , Y_2 is $-O_2$, A_3 is a single bond, and R_2 is a butyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is -O-, A_3 is a single bond, and R_2 is a pentyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is -O-, A_3 is methylene, and R_2 is a 4-fluorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is $-O_2$, A_3 is methylene, and R_2 is a naphthalen-2-yl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_3 is $-Y_2$ - A_3 - R_2 , Y_2 is -O-, A_3 is methylene, and R_2 is a 2-chlorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is $-O_2$, A_3 is methylene, and R_2 is a 4-trifluoromethylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_3 is $-Y_2$ - A_3 -R₂, Y_2 is $-O_2$ -A₃ is methylene, and R_2 is a 2,3,4,5,6-pentafluorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is - Y_2 - A_3 - R_2 , Y_2 is -O-, A_3 is methylene, and R_2 is a 4-t-butylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is -Y₂-A₃-R₂, Y₂ is -O-, A₃ is methylene, and R₂ is a 2-biphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is $-O_7$, A_3 is methylene, and R_2 is a 4-nitrophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is $-O_2$, A_3 is methylene, and R_2 is a 2,4-difluorophenyl group; or

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is methylene, n is 0, and R_5 is $-Y_2$ - A_3 - R_2 , Y_2 is -O-, A_3 is methylene, and R_2 is a 4-cyanophenyl group.

16. A compound of the following formula (VI) or a pharmaceutically acceptable salt thereof:

[Formula 17]

wherein R_1 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heterocyclic group;

 A_1 and A_2 each independently represent a single bond or an alkylene group having 1 to 6 carbon atoms:

 R_2 represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heterocyclic group;

 Y_5 represents a single bond or a carbonyl group; Y_6 represents a single bond, -CO-, -COO-, -CONR₄-, or -SO₂-; and

 R_3 and R_4 each represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, a saturated heterocyclic group, or a group selected from the group consisting of an aryl or heteroaryl group and an alkylene group having 1 to 3 carbon atoms.

- 17. The compound of the formula (VI) or a pharmaceutically acceptable salt thereof according to claim 16, wherein A_2 represents ethylene or propylene.
- 18. The compound of the formula (VI) or a pharmaceutically acceptable salt thereof according to claim 17, wherein R_1 represents a hydrogen atom and A_1 represents a single bond.
- 19. The compound of the formula (VI) or a pharmaceutically acceptable salt thereof according to claim 16, wherein R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_5 is a carbonyl group, Y_6 is a single bond, R_3 is a hydrogen atom, and R_2 is a naphthalenlylmethyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_5 is a carbonyl group, Y_6 is a single bond. R_3 is a hydrogen atom, and R_2 is a 4-t-butylphenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_5 is a carbonyl group, Y_6 is a single bond. R_3 is a hydrogen atom, and R_2 is a 4-fluorobenzyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_5 is a carbonyl group, Y_6 is a single bond, R_3 is a hydrogen atom, and R_2 is a 4-t-butylbenzyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_5 is a carbonyl group, Y_6 is a single bond, R_1 is a hydrogen atom, and R_2 is a cyclohexyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_5 is a carbonyl group, Y_6 is a single bond, R_3 is a hydrogen atom, and R_2 is a 2,2-diphenylethyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_5 is a carbonyl group, Y_6 is a single bond, R_3 is a hydrogen atom, and R_2 is a pyridin-2-ylmethyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_5 is a carbonyl group, Y_6 is a single bond, R_3 is a methyl group, and R_2 is a benzyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_3 is a carbonyl group, Y_6 is a single bond, R_3 is an ethyl group, and R_2 is an ethyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_5 is a carbonyl group, Y_6 is a single bond, and R_2 and R_3 are each a pentylene group and form a ring;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_5 is a carbonyl group, Y_6 is a single bond, R_3 is a hydrogen atom, and R_2 is an adamantan-1-yl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is ethylene, Y_3 is a carbonyl group, Y_6 is a single bond, R_3 is a hydrogen atom, and R_2 is a benzyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_3 is a hydrogen atom, and R_2 is a methyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-. R_1 is a hydrogen atom, and R_2 is a phenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_1 is a hydrogen atom, and R_2 is a 4-nitrophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_3 is a hydrogen atom, and R_2 is a 4-nitrobenzyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_3 is a hydrogen atom, and R_2 is a naphthalen-1-yl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_1 is a hydrogen atom, and R_2 is a naphthalen-2-yl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_3 is a hydrogen atom, and R_2 is a cyclohexylmethyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_3 is a hydrogen atom, and R_2 is a 4-chlorophenyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_3 is a hydrogen atom, and R_2 is a benzhydryl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_3 is a hydrogen atom, and R_2 is a 2-phenylbenzyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_3 is a hydrogen atom, and R_2 is a 3,5-di-t-butylbenzyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is -CO-, R_3 is a hydrogen atom, and R_2 is a t-butyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is a single bond, R_3 is a propyl group, and R_2 is a propyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is a single bond, R_3 is a pentyl group, and R_2 is a pentyl group;

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_5 is a single bond, Y_6 is a single bond, R_3 is a hydrogen atom, and R_2 is a cyclohexyl group; or

 R_1 is a hydrogen atom, A_1 is a single bond, A_2 is propylene, Y_3 is a single bond, Y_6 is a single bond, R_3 is a 4-methylbenzyl group, and R_2 is a 4-methylbenzyl group.

20. An AGE generation inhibitor comprising a compound of the following formula (VII) or a pharmaceutically acceptable salt thereof:
[Formula 18]

$$R_{13} \xrightarrow{A_4} H \xrightarrow{O} H$$
 (VII)

wherein R_{13} represents an alkyl group having 1 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heterocyclic group;

 A_4 and A_5 each independently represent a single bond or an alkylene group having 1 to 6 carbon atoms;

 Q_5 represents - Y_7 - A_6 - R_{14} , an aromatic ring compound group Q_6 , a heteroaromatic ring compound group Q_7 , or a saturated cyclic compound group Q_8 :

 Y_7 represents a single bond, -O-, -S-, -NR₁₅-, -CONR₁₅-, -NR₁₅CO-, -NR₁₅COO-, -NR₁₅CONR₁₆-, -NR₁₅SO₂-, or -NR₁₅SO₂NR₁₆-;

As represents a single bond or an alkylene group having 1 to 6 carbon atoms;

 R_{14} represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group, a heteroaryl group, or a saturated heterocyclic group;

 R_{15} and R_{16} each represent an alkyl group having 1 to 6 carbon atoms, an aryl group, a heteroaryl group, a saturated heterocyclic group, or a group selected from the group consisting of an aryl or heteroaryl group and an alkylene group having 1 to 3 carbon atoms; R_{14} and R_{15} optionally bond together to form a ring;

 Q_6 is a group of the following formula (VIII-a): [Formula 19]

$$(VIII-a)$$

wherein R_{16} represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, or - Y_{7} - A_{6} - R_{14} ;

m represents an integer of 0 to 4;

 R_{17} may be each independently substituted at any atom on the ring, each independently represents a halogen atom, an alkyl group, a nitro group, a cyano group, - OR_{18} , - $COOR_{18}$, or - $CONR_{18}R_{19}$, and optionally form a ring; and

 R_{18} and R_{19} each represent an alkyl group having 1 to 6 carbon atoms, an aryl group, a heteroaryl group, a saturated heterocyclic group;

 Q_7 is any of groups of the following formula (VIII-b): [Formula 20]

$$X_{6} = X_{5} (R_{17})_{m}$$
 $X_{5} = X_{4} (R_{17})_{m}$
 $X_{5} = X_{6} (R_{17})_{m}$
 $X_{7} = X_{7} (R_{17})_{m}$
 $X_{8} = X_{17} (R_{17})_{m}$

wherein X_4 represents -O-, -S-, or -N(-Y₇-A₆-R₁₄)-; X_5 and X_6 each represent N or CH; and

 Q_8 represents a 3- to 10-membered hydrocarbon optionally substituted in any position or a cyclic compound group which can contain 1 to 3 nitrogen, oxygen, and/or sulfur atoms.

- A medicinal composition comprising the AGE generation inhibitor according to claim 20.
- A food additive composition comprising the AGE generation inhibitor according to claim 20.
- 23. A cosmetic additive composition comprising the AGE generation inhibitor according to claim 20.
- 24. A cosmetic comprising the AGE generation inhibitor according to claim 20.