Μεταθετική Άλγεβρα Εργασία 1

Ονομ/νο: Νούλας Δ ημήτριος AM: 1112201800377 email: dimitriosnoulas@gmail.com

Άσκηση 1.1) Θεωρούμε τα ιδεώδη I=(m) και J=(n) του \mathbb{Z} . Δείξτε τις εξής ισότητες:

- (1) I + J = (d), d = gcd(m, n).
- (2) $I \cap J = (e), e = lcm(m, n).$
- (3) IJ = (mn).
- (4) (I:J) = (c), c = m/d.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

- (1) Έστω $a\in (d)$, δηλαδή a=dk. Υπάρχουν $x,y\in\mathbb{Z}$ έτσι ώστε mx+ny=d. Συνεπώς $a=(kx)m+(ky)n\in (m)+(n)$. Αντίστροφα, έστω $a\in (m)+(n)$. Δηλαδή $a=km+\lambda n$. Έχουμε $d|m,n\implies d|a\iff a=dk\iff a\in (d)$.
- (2) Έστω $a \in I \cap J$, δηλαδή $a \in (m)$, (n) από όπου παίρνουμε $n, m|a \implies e|a \iff a = ek \iff a \in (e)$. Αντίστροφα, έστω $a \in (e)$. Δηλαδή a = ke και από τις σχέσεις m, n|e παίρνουμε m, n|a δηλαδή $a \in (m)$, (n) και άρα $a \in I \cap J$.
- (3) Έστω $a \in IJ$, δηλαδή $a = mkn\lambda = (k\lambda)mn \in (mn)$. Αντίστροφα, αν $a \in (mn)$ τότε $a = mnk = (km)n \in IJ$ αφού το I είναι ιδεώδες και άρα $km \in I$.
- (4) Εστω $a \in (c)$, δηλαδή a = ck = (m/d)k. Έστω τυχόν $b \in J$, δηλαδή $b = \lambda n$. Τότε $ab = (m/d)kn\lambda = ((n/d)\lambda k)\,m \in I$ εφόσον το n/d είναι ακέραιος. Άρα από τον ορισμό του μεταφορέα $(c) \subseteq (I:J)$.

Αντίστροφα, έστω $a\in (I:J)=\{x\in\mathbb{Z}: x(n)\subseteq (m)\}$. Τότε $a(n)\subseteq (m)$ δηλαδή υπάρχει $k\in\mathbb{Z}$ τέτοιο ώστε an=km. Παίρνουμε a(n/d)=k(m/d) και $\gcd(n/d,m/d)=1$ συνεπώς $\frac{n}{d}|k$. Άρα $y=\frac{k}{n/d}\in\mathbb{Z}$ και $a=cy\in (c)$.

Άσκηση 1.3) Έστω μηδενοδύναμο στοιχείο $r \in R$. Δείξτε ότι $1 + r \in U(R)$. Συμπεράνατε ότι $u + r \in U(R)$ για κάθε $u \in U(R)$.

 $A\pi\delta\delta\epsilon i\xi \eta$.

Το r είναι μηδενοδύναμο συνεπώς υπάρχει $n\in\mathbb{N}$ τέτοιο ώστε $r^n=0$. Αν το n είναι άρτιος διαλέγουμε το n+1 και έχουμε $r^{n+1}=0$ και έτσι μπορούμε να υποθέσουμε ότι το n είναι περιττός. Συνεπώς για $x,y\in R$ ισχύει η ταυτότητα για το περιττό n:

$$x^{n} + y^{n} = (x + y)(x^{n-1} - x^{n-2}y + x^{n-3}y^{2} - \dots - xy^{n-2} + y^{n-1})$$

εφόσον δεν υπάρχει πρόβλημα με τις πράξεις και την μεταθετικότητα στον δακτύλιο.

$$1 = 1 + r^{n} = (1+r)(r^{n-1} - r^{n-2} + r^{n-3} - \dots - r + 1)$$

Το στοιχείο $(r^{n-1}-r^{n-2}+r^{n-3}-\ldots-r+1)$ είναι διάφορο του 0 καθώς το πρώτο μέρος $r^{n-1}-r^{n-2}+r^{n-3}-\ldots-r$ είναι μηδενοδιαιρέτης εφόσον το r είναι μηδενοδύναμο, άρα δεν μπορεί να είναι ίσο με 1. Συνεπώς το (1+r) είναι αντιστρέψιμο.

Αν έχουμε $u \in U(R)$ τότε υπάρχει $b \neq 0$ τέτοιο ώστε ub = 1. Έχουμε:

$$u^{n} = u^{n} + r^{n} = (u+r)(u^{n-1} - u^{n-2}r + u^{n-3}r^{2} - \dots - ur^{n-2} + r^{n-1})$$

πολλαπλασιάζοντας και τα δύο μέλη με b^n παίρνουμε:

$$1 = (u+r)b^{n}(u^{n-1} - u^{n-2}r + u^{n-3}r^{2} - \dots - ur^{n-2} + r^{n-1})$$

και το $(u^{n-1}-u^{n-2}r+u^{n-3}r^2-\ldots-ur^{n-2}+r^{n-1})$ είναι διάφορο του 0 καθώς το κομμάτι $-u^{n-2}r+u^{n-3}r^2-\ldots-ur^{n-2}+r^{n-1}$ είναι μηδενοδιαιρέτης και δεν μπορεί να είναι ίσο με u^{n-1} . Άρα το u+r είναι αντιστρέψιμο.

Άσκηση 1.6) Έστω k σώμα ή ο δακτύλιος \mathbb{Z} . Θεωρούμε σημείο $P=(a_1,...,a_n)\in k^n=k\times\cdots\times k$ και τον ομομορφισμό εκτίμησης

$$\phi_P: k[x_1,..,x_n] \to k, f(x_1,...,x_n) \mapsto f(a_1,...,a_n).$$

Δείξτε ότι $ker\phi_P = (x_1 - a_1, ..., x_n - a_n)$ και $k[x_1, ..., x_n]/ker\phi_P \simeq k$.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Ο ομομορφισμός εκτίμησης είναι επιμορφισμός καθώς για κάθε $a \in k$ και σταθερό πολυώνυμο $f(x_1, \ldots x_n) = a$ έχουμε $\phi_p(f(x_1, \ldots, x_n)) = a$.

Έστω $x=(x_1,\ldots,x_n)$ και $f(x)\in (x_1-a_1,\ldots x_n-a_n),$ δηλαδή

$$f(x) = \sum_{i=1}^{n} f_i(x)(x_i - a_i)$$

τότε από τις ιδιότητες του ομομορφισμού παίρνουμε:

$$\phi_p(f(x)) = \sum_{i=1}^n f_i(P)(a_i - a_i) = 0$$

άρα $f(x) \in ker \phi_p$.

Αντίστροφα, θα χρησιμοποιήσουμε επαγωγή στον αριθμό των μεταβλητών n. Για n=1 είναι γνωστό ότι $ker\phi_{a_1}=(x_1-a_1)$. Έστω ότι ισχύει για τους φυσικούς που είναι μικρότεροι του n και $f(x)\in ker\phi_P$.

Θέτουμε ως $R=k[x_1,\dots,x_{n-1}]$ το οποίο είναι ακέραια περιοχή είτε το k είναι σώμα είτε $k=\mathbb{Z}$. Σαφώς είναι και το $R[x_n]$ ακέραια περιοχή και σε αυτόν τον δακτύλιο θα εφαρμόσουμε Ευκλείδεια διαίρεση του f(x) με το $g(x)=x_n-a_n$ το οποίο έχει αντιστρέψιμο μεγιστοβάθμιο συντελεστή. Παίρνουμε:

$$f(x) = q(x)(x_n - a_n) + r$$

με $deg(r) < deg(x_n - a_n) = 1$ όπου ο βαθμός είναι ως προς την μεταβλητή x_n και άρα $r \in R$. Το πολυώνυμο r είναι στις n-1 μεταβλητές και επειδή $f(x) \in ker\phi_P$:

$$0 = \phi_P(f(x)) = \phi_P(g(x)) \cdot 0 + \phi_P(r)$$

ωστόσο στο πολυώνυμο r η εκτίμηση γίνεται στο σημείο $P'=(a_1,\ldots,a_{n-1})$ και έτσι $r\in \ker\phi_{P'}=(x_1-a_1,\ldots,x_{n-1}-a_{n-1})$ από την επαγωγική υπόθεση. Άρα έχουμε:

$$f(x) = q(x)(x_n - a_n) + \sum_{i=1}^{n-1} r_i(x_1, \dots, x_{n-1})(x_i - a_i) = \sum_{i=1}^n f_i(x)(x_i - a_i)$$

Άσχηση 1.7) Έστω I,J ιδεώδη του δαχτυλίου με I+J=R. Δείξτε ότι $I^m+J^n=R$ για χάθε m,n>0.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

 $1 \in R = I + J$ συνεπώς υπάρχουν $a \in I, b \in J$ τέτοια ώστε a + b = 1.

$$1 = a + b = (a + b)^{m+n-1} = \sum_{i=0}^{m+n-1} {m+n-1 \choose i} a^{m+n-1-i} b^{i}$$

για να έχουμε a^mx+b^ny θέλουμε οι εχθέτες των a και b που θα μένουν αφού βγάλουμε τους κοινούς παράγοντες να είναι θετικοί. Δηλαδή n-1-i>0 και i-n>0 και αυτό το πετυχαίνουμε ως εξής:

$$(a+b)^{m+n-1} = \left(\sum_{i=0}^{n-1} \binom{m+n-1}{i} a^{m+n-1-i} b^i\right) + \left(\sum_{i=n}^{m+n-1} \binom{m+n-1}{i} a^{m+n-1-i} b^i\right)$$

$$= a^m \left(\sum_{i=0}^{n-1} \binom{m+n-1}{i} a^{n-1-i} b^i\right) + b^n \left(\sum_{i=n}^{m+n-1} \binom{m+n-1}{i} a^{m+n-1-i} b^{i-n}\right)$$

$$= a^m x + b^n y \in I^m + J^n$$

και εφόσον το 1 ανήκει στο ιδεώδες I^m+J^n έχουμε ότι $I^m+J^n=R.$

Άσκηση 1.11) Έστω k σώμα και I ιδεώδες του πολυωνυμικού δακτυλίου $k[x_1,...,x_n]$. Ο-ρίζουμε:

$$V(I) = \{ P = (a_1, ..., a_n) \in k^n : f(P) = 0 \ \forall f(x_1, ..., x_n) \in I \} \}.$$

Το V(I) είναι το σύνολο των κοινών ριζών όλων των πολυωνύμων του I.

 Γ ια $k=\mathbb{R}$ και n=2 σχεδιάστε το V(I) στις εξής περιπτώσεις.

- $I = (x^2 + y^2 1)$.
- $I = (x 1, x^2 y)$.
- $I = ((x-1)(x^2-y)).$

Έστω I,J ιδεώδη του $k[x_1,...,x_n]$. Δείξτε τα εξής.

- (1) $V(I + J) = V(I) \cap V(J)$.
- (2) $V(IJ) = V(I) \cup V(J)$.

Στη συνέχεια δώστε μια διαισθητική γεωμετρική ερμηνεία του αποτελέσματος της άσκησης 1.8ii).

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

(1) Έστω $P \in V(I+J)$, δηλαδή f(P) = 0 για κάθε $f(x_1, \ldots, x_n) \in I+J$. Έστω τώρα $g(x_1, \ldots, x_n) \in I$. Το ιδεώδες J περιέχει το μηδενικό πολυώνυμο, συνεπώς $g(x_1, \ldots, x_n) + 0 \in I+J$ και από την υπόθεση g(P) = 0. Άρα $P \in V(I)$ και όμοια στο V(J).

Έστω $P \in V(I) \cap V(J)$ και $f(x_1, \ldots, x_n) \in I + J$. Τότε f = g + h με $g \in I$ και $h \in J$. Από την υπόθεση g(P) = h(P) = 0 και άρα f(P) = 0 δηλαδή $P \in V(I + J)$.

(2) Έστω $P \in V(I) \cup V(J)$, δηλαδή $P \in V(I)$ ή $P \in V(J)$ και έστω $f \in IJ$. Τότε f = gh με $g \in I, h \in J$. Έχουμε g(P) = 0 ή h(P) = 0 και άρα f(P) = 0, συνεπώς $P \in V(IJ)$.

Αντίστροφα, έστω $P \in V(IJ)$ και $P \notin V(J)$, τότε υπάρχει $h \in J$ τέτοιο ώστε $h(P) \neq 0$. Έστω τυχόν $g \in I$. Τότε από την υπόθεση:

$$g(P)h(P) = 0$$

και επειδή είμαστε σε περιοχή g(P)=0, άρα $P\in V(I)$. Όμοια αν $P\not\in V(I)\implies P\in V(J)$. Άρα $P\in V(I)\cup V(J)$.

•
$$V(x^2 + y^2 - 1) =$$

- $V(x-1, x^2-y) = V(x-1) \cap V(x^2-y) = \{(1, y) : y \in \mathbb{R}\} \cap \{(x, x^2) : x \in \mathbb{R}\} = \{(1, 1)\}$
- $V(x-1, x^2-y) = V(x-1) \cup V(x^2-y) = \{(1, y) : y \in \mathbb{R}\} \cup \{(x, x^2) : x \in \mathbb{R}\} = \{(x, y) : y \in \mathbb{R}\}$

Αλγεβρικά έχουμε $x^2=y$ στον παρακάτω δακτύλιο και άρα:

$$\frac{\mathbb{R}[x,y]}{(x^2 - y, x - x^3 + xy)} \simeq \frac{\mathbb{R}[x,x^2]}{(x - x^3 + x^3)} = \frac{\mathbb{R}[x]}{(x)} \simeq \mathbb{R}$$

Γεωμετρικά, επειδή στο δεξί μέλος έχουμε ένα αντίγραφο του $\mathbb R$ αυτό σημαίνει ότι οι περιορισμοί των δύο πολυωνύμων στο 0 είναι ένα συγκεκριμένο σημείο. Αυτό μπορούμε να το δούμε και ως:

$$V(x^2 - y, x - x^3 + xy) = V(x^2 - y) \cap V(x - x^3 + xy) = \{(0, 0)\}\$$

Τα σχέδια έγιναν με το λογισμικό SageMath που ζει πάνω στην γλώσσα προγραμματισμού Python:

Άσκηση 1.12) Έστω $\phi: R \to S$ ένας ομομορφισμός δακτυλίων.

- (1) Δείξτε ότι αν I είναι ιδεώδες του R και ο ϕ είναι επί, τότε το σύνολο $\phi(I)$ είναι ιδεώδες του S.
- (2) Δείξτε με παράδειγμα ότι ο προηγούμενος ισχυρισμός δεν αληθεύει γενικά χωρίς την υπόθεση περί επί.
- (3) Δείξτε ότι αν K είναι ιδεώδες του S, τότε το σύνολο $\phi^{-1}(K)$ είναι ιδεώδες του R. Aπόδειξη.
 - (1) Έστω $y_1, y_2 \in \phi(I)$, τότε υπάρχουν $x_1, x_2 \in I$ τέτοια ώστε $y_1 = \phi(x_1), y_2 = \phi(x_2)$.

$$y_1 - y_2 = \phi(x_1) - \phi(x_2) = \phi(x_1 - x_2)$$

και $x_1-x_2\in I$, αφού το I είναι ιδεώδες, άρα $y_1-y_2\in\phi(I)$. Έστω $s\in S$, τότε αφού ϕ επί υπάρχει ένα $x_0\in X$ τέτοιο ώστε $s=\phi(x_0)$.

$$sy_1 = \phi(x_0)\phi(x_1) = \phi(x_0x_1)$$

και $x_0x_1 \in I$, αφού το I είναι ιδεώδες, άρα $sy_1 \in \phi(I)$.

(2) Θεωρούμε την εμφύτευση δαχτυλίων $\mathbb{Z} \stackrel{i}{\hookrightarrow} \mathbb{Q}$ με i(x)=x. Είναι ομομορφισμός δαχτυλίων αλλά δεν είναι επί και ενώ το $2\mathbb{Z}$ είναι ιδεώδες του \mathbb{Z} το $i(2\mathbb{Z})$ δεν είναι ιδεώδες του \mathbb{Q} καθώς:

$$\frac{1}{2} \cdot 2 = 1 \not\in i(2\mathbb{Z}) = 2\mathbb{Z}$$

το $\mathbb Q$ είναι σώμα εξάλλου και έχει μόνο τον εαυτό του και το τετριμμένο ιδεώδες.

(3) Έστω $x_1, x_2 \in \phi^{-1}(K)$, τότε $\phi(x_1), \phi(x_2) \in K$, δηλαδή

$$\phi(x_1 - x_2) = \phi(x_1) - \phi(x_2) \in K$$

αφού το K είναι ιδεώδες. Άρα $x_1 - x_2 \in \phi^{-1}(K)$.

Έστω $r \in R$, τότε $\phi(rx_1) = \phi(r)\phi(x_1) \in K$, αφού το K είναι ιδεώδες. Άρα $rx_1 \in \phi^{-1}(K)$.