Department of AI, University of Seoul Machine Learning and Artificial Intelligence Lab

Deep Learning

Machine Learning Basic

Deep Learning Book Bishop: Pattern Recognition and Machine Learning Machine Learning: a Probabilistic Perspective

Learning from data

Kyungwoo Song

Kyungwoo Song, Department of AI, University of Seoul

Contents

- 5.1 Learning Algorithm
- 5.2 Capacity, Overfitting and Underfitting
- 5.3 Hyper-parameters and Validation Sets
- 5.4 Estimators, Bias and Variance
- 5.5 Maximum Likelihood Estimation
- 5.6 Bayesian Statistics
- 5.9 Stochastic Gradient Descent
- 5.11 Challenges Motivating Deep Learning

5.1 Learning Algorithms

- A machine learning algorithm is an algorithm that is able to learn from data.
- But what do we mean by learning?
 - Mitchell (1997) provides the definition "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
- Task
 - Learning is our means of attaining the ability to perform the task.
 - Example) If we want a robot to be able to walk, then walking is the task
 - Machine learning tasks are usually described in terms of how the machine learning system should process an example.
 - **Example:** collection of features, $x \in \mathbb{R}^n$ where each entry x_i of the vector is another feature

Source: Machine Learning, Tom Mitchell, McGraw Hill, 1997

5.1 Learning Algorithms

- Task
 - Classification
 - $All f: \mathbb{R}^n \to \{1, \dots, k\}$
 - x = f(x), the model assigns an input described by vector x to a category identified by numeric code y
 - Classification with missing inputs
 - the computer program is not guaranteed that every measurement in its input vector will always be provided
 - This kind of situation arises frequently in medical diagnosis
 - ❖When some of the inputs may be missing, rather than providing a single classification function, the learning algorithm must learn a set of functions.
 - Regression
 - $f: \mathbb{R}^n \to \mathbb{R}$
 - Transcription
 - Observe an unstructured representation of data and transcribe it into discrete, textual form
 - OCR (optical character recognition), Speech recognition, ...

5.1 Learning Algorithms

- Task
 - Machine Translation
 - Structured output
 - Broad category
 - The program output several values that are all tightly inter-related
 - Subsumes the transcription and translation
 - Example) Parsing
 - ➤ Mapping a natural language into a tree that describes its grammatical structure
 - Example) pixel-wise segmentation of image

ource.

https://www.cs.bgu.ac.il/~elhadad/nlp13/nlp03.html https://www.researchgate.net/figure/Example-cases-of-pixel-wise-segmentation-performed-by-SegNet-on-real-road-scenarios_fig2_30478924

5.1 Learning Algorithms

- Task
 - Anomaly detection
 - Sifts through a set of events or objects as being unusual or atypical
 - Example) credit card
 - > By modeling your purchasing habits, a credit card company can detect misuse of your cards
 - Synthesis and Sampling
 - In this type of task, the machine learning algorithm is asked to generate new examples that are similar to those in the training data.
 - Imputation of missing values
 - \diamond Some entries x_i of x is missing
 - The algorithm provide a prediction of the values of the missing entries
 - Denoising
 - *****Corrupted example $\tilde{x} \in \mathbb{R}^n$ obtained by an unknown corruption process from a clean example $x \in \mathbb{R}^n$
 - Predict the clean example $p(x|\tilde{x})$

Source: nttps://www.cs.bgu.ac.ii/~einadad/nip

5.1 Learning Algorithms

- Task
 - Density estimation or probability mass function estimation
 - **The machine learning algorithm is asked to learn a function** $p_{model}: R^n \to R$
 - $p_{model}(x)$: probability density function (for continuous x) or a probability mass function (for discrete x)
 - It must know where examples cluster tightly and where they are unlikely to occur
 - *Example) we can use the distribution to solve the missing value imputation task
 - If a value x_i is missing and all of the other values, denoted x_{-1} , we know the distribution over it is given by $p(x_i|x_{-i})$
 - \bullet In practice, p(x) are computationally intractable

Blue: True density

Red: samples generated from the true distribution

Dashed black: estimated density

5.1 Learning Algorithms

- Performance
 - Accuracy: proportion of examples for which the model produces the correct output
 - Error rate: proportion of incorrect output
 - Recall: $\frac{TP}{TP+FN}$, Precision: $\frac{TP}{TP+FP}$, F1: $2 \times \frac{1}{\frac{1}{Precision} + \frac{1}{Recall}}$
 - ❖Recall: 실제 positive 인 것 중에서, 우리 모델이 positive 로 잘 예측한 비율
 - ❖Precision: 우리 모델이 positive 라고 예측한 것 중에서, 실제로 positive 인 비율

- ROC-AUC
 - *❖TPR*: $\frac{TP}{TP+FN}$ (Recall)
 - $rightharpoonup FPR: rac{FP}{FP+TN}$

		Predicted condition	
	Total population = P + N	Positive (PP)	Negative (PN)
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation
	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN),

- ❖항상 Positive로 예측: TPR ↑, FPR ↑
- ❖항상 Negative로 예측: TPR ↓, FPR ↓

5.1 Learning Algorithms

- Performance
 - For tasks such as density estimation,
 - Log-likelihood: the average log-likelihood the model assigns to some examples
 - Inception Score
 - > Fidelity, Diversity
 - $\triangleright \exp E_{x \sim p_q} [D_{KL}(p(y|x) || p(y))]$
 - ✓ Inception v3 model (2048 dim)
 - $\checkmark p(y|x)$: conditional class distribution
 - $\checkmark p(y) = \int_{x} p(y|x)p_{g}(x) dx$: marginal class distribution
 - $\triangleright p(y|x)$ should be low entropy (Fidelity)
 - $\triangleright p(y)$ should be high entropy (Diversity)
 - Fréchet inception distance (FID)
 - > FID compares the distribution of generated images with the distribution of real images
 - > 2-Wasserstein metric between two Gaussian distributions
 - For univariate normal, $(\mu_x \mu_y)^2 + (\sigma_x \sigma_y)^2$
 - For multivariate normal, $\|\mu_x \mu_y\|^2 tr(\Sigma_x + \Sigma_Y 2\Sigma_x \Sigma_y)$
 - ✓ Inception v3 model (2048 dim)

Source:

내보낸다면?

UDM (RVE) + ST

Likelihood-based Models CR-NVAE [26]

DenseFlow-74-10 [4] VDM [8]

Likelihood-free Models StyleGAN2-ADA+Tuning [28] 48×48 TD IS

7.71 13.43

<u>15.17</u> <u>11.01</u>

18.28 10.43

8.03

FID

 $NLL(\downarrow)$ $FID(\downarrow)$ $IS(\uparrow)$ NLL FID

5.1 Learning Algorithms

- Experience
 - Most of the learning algorithms in this book can be understood as being allowed to experience an entire dataset
 - ❖ Dataset: collection of examples
 - Unsupervised learning algorithm: learn useful properties of the structure of dataset
 - * Entire probability distribution that generated a dataset, Clustering, ...
 - * implicitly or explicitly learn the probability distribution p(x),
 - Supervised learning algorithm: each example is associated with a label or target
 - Classification, Regression, ...
 - \Rightarrow Estimate p(y|x)

Source:

- It is note that unsupervised learning and supervised learning are not formally defined terms.
 - $p(x) = \prod_{i=1}^{n} p(x_i|x_1,...,x_{i-1})$
 - \diamond Unsupervised problem of modeling p(x) can be splitted into N supervised learning problems
- Semi-supervised learning, multi-instance learning, reinforcement learning, self-supervised learning, ...
 - * multi-instance learning: an entire collection of examples is labeled as containing or not containing an example of a class, but the individual members of the collection are not labeled serge's key-chain sarrious key-chain are not labeled serge's key-chain sarrious key-chain sarrious key-chain sarrious key-chain serge's key-chain sarrious key-chain serge's key-chain se

erge **cannot** enter the *Secret Room* Sanjoy **can** enter the *Secret Room*

10

Generalization error

5.2 Capacity, Overfitting and Underfitting

- The central challenge in ML
 - we must perform well on new, previously unseen inputs, not just those on which our model was trained
 - The ability to perform well on previously unobserved inputs is called generalization.
- Generalization error
 - Expected value of the error on a new input
 - We typically estimate the generalization error on a test set
 - Training error: $\frac{1}{m^{(train)}} \|X^{(train)}w y^{(train)}\|_2^2$
 - Test error: $\frac{1}{m^{(test)}} \|X^{(test)}w y^{(test)}\|_2^2$
 - How can we affect performance on the test set when we get to observe only the training set?
 - Statistical learning theory

Generalization error

5.2 Capacity, Overfitting and Underfitting

- We sample the training set, then use it to choose the parameters to reduce training set error, then sample the test set
 - The expected test error is greater than or equal to the expected value of training error
 - The factors determining how well a machine learning algorithm will perform
 - ➤ Make the training error small
 - ➤ Make the gap between training and test error small
 - Underfitting: model is not able to obtain a sufficiently low error value on the training
 - Overfitting: gap between the training error and test error is too large
 - We can control whether a model is more likely to overfit or underfit by altering its capacity
 - ❖Models with low capacity may struggle to fit the training set
 - Models with high capacity can overfit by memorizing properties of the training set

Occam's razor

5.2 Capacity, Overfitting and Underfitting

- Occam's razor
 - Among competing hypotheses that explain known observations equally well, one should choose the "simplest" one.
 - How to measure the model capacity?
 - Vapnik-Chervonenkis dimension (VC dimension)
 - ❖VC dimension 을 알아보기 위해, 잠시 돌아가도록 하겠습니다.

We pick N marbles independently

- v: 무작위로 구술을 N 개뽑았을 때,
 그 구술 중 빨간색의 비율
- μ: 전체에서,빨간색 구술의 비율

Hoeffding's Inequality

5.2 Capacity, Overfitting and Underfitting

We pick *N* marbles independently

- v: 무작위로 구술을 N 개뽑았을 때,
 그 구술 중 빨간색의 비율
- μ: 전체에서,빨간색 구술의 비율

- Hoeffding's Inequality
 - Provides an upper bound on the probability that sum of bounded independent r.v. deviates from its expected value
 - Let $Y_1, ... Y_n$ be iid observations such that $E[Y_i] = \mu$ and $a \le Y_i \le b$. Then, for any $\epsilon > 0$, $P(|\bar{Y} \mu| \ge \epsilon) \le 2e^{-2n\epsilon^2/(b-a)^2}$
 - $\blacksquare \Rightarrow P[|v \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- ML과 연결시킨다면, 빨간색 구슬을 뽑는것은 Hypothesis h가 잘못 분류한 데이터, 초록색은 정확하게 분류한 데이터로 생각

Generalization

5.2 Capacity, Overfitting and Underfitting

- 1개의 bin으로 생각 했을 때: 1개의 hypothesis, h, 만을 고려 했을 때
 - $P[|v \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- 하지만 우리는, hypothesis set $h \in \mathcal{H}$ 을 고려하고자 함
 - Assumption: H has a finite number of hypotheses
 - $\mathcal{H} = \{h_1, ..., h_M\}$
 - $E_{in}(h_i)$: In sample error
 - ❖앞에서의 µ 에 대응
 - $E_{in}(h_i) = \frac{1}{N} \sum_{n=1}^{N} I_{h(x_n) \neq f(x_n)}$
 - $E_{out}(h_i)$: Out of sample error
 - \diamond 앞에서의 v 에 대응
 - $E_{out}(h_i) = P[h(x) \neq f(x)]$
 - g: Final hypothesis
 - $P[|E_{in}(g) E_{out}(g)| > \epsilon]$???

Generalization

5.2 Capacity, Overfitting and Underfitting

- 하지만 우리는, hypothesis set $h \in \mathcal{H}$ 을 고려하고자 함
 - g: Final hypothesis
 - $P[|E_{in}(g) E_{out}(g)| > \epsilon]$???

Bad event

•
$$|E_{in}(g) - E_{out}(g)| > \epsilon$$

•
$$\Rightarrow |E_{in}(h_1) - E_{out}(h_1)| > \epsilon$$

- or $|E_{in}(h_2) E_{out}(h_2)| > \epsilon$
- ...
- or $|E_{in}(h_M) E_{out}(h_M)| > \epsilon$

•
$$P(|E_{in}(g) - E_{out}(g)| > \epsilon) \le P(|E_{in}(h_1) - E_{out}(h_1)| > \epsilon \text{ or } |E_{in}(h_2) - E_{out}(h_2)| > \epsilon \dots \text{ or } |E_{in}(h_M) - E_{out}(h_M)| > \epsilon)$$

≤ $\sum_{m=1}^{M} P(|E_{in}(h_m) - E_{out}(h_m)| > \epsilon)$

•
$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2N} \Rightarrow E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$$
 with probability $\ge 1 - \delta$

- ❖where $δ = 2Me^{2Nε^2}$
- ❖만약 $M \gg 0$ 라면, $2Me^{-2\epsilon^2N}$ 는 1보다 큰 값이 되고, 그럼 유의미하지 않음

Source: ❖단순 sum (disjoint) 으로 loose bound 를 구한 것

Dichotomy and Growth Function

5.2 Capacity, Overfitting and Underfitting

- $P[|E_{in}(g) E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2N} \Rightarrow E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$ with probability $\ge 1 \delta$
 - 만약 $M\gg 0$ 라면, $2Me^{-2\epsilon^2N}$ 는 1보다 큰 값이 되고, 그럼 유의미하지 않음
- 좋은데, M (The number of hypothesis)에 depend 하네.
 - 만약 \mathcal{H} 가 infinite 하다면?
 - \blacksquare Unfortunately, almost all interesting learning models have infinite ${\mathcal H}$
 - ❖h끼리 비슷한것들이 많지 않을까? m개로 grouping 할 수 있다면?
- We would like to replace M
 - 만약 N에 polynomial 로 bound를 할 수 있다면, 유의미할텐데...
- Dichotomy and growth function (For given N points) (데이터 관점에서 보자)
 - Definition) Let $x_1, ..., x_N \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are defined by $\mathcal{H}(x_1, ..., x_N) = \{h(x_1), ..., h(x_N) | h \in \mathcal{H}\}$
 - Definition) growth function $m_H(N)$: maximum number of dichotomies
 - For binary case, $m_H(N) \leq 2^N$

$$\mathcal{H}(x_1, \dots, x_N) \subset \{-1, +1\}^N$$

Dichotomy and Growth Function

5.2 Capacity, Overfitting and Underfitting

- Dichotomy and growth function (For given N points)
 - Definition) Let $x_1, ..., x_N \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are defined by $\mathcal{H}(x_1, ..., x_N) = \{h(x_1), ..., h(x_N) | h \in \mathcal{H}\}$
 - Definition) growth function $m_H(N)$: maximum number of dichotomies

Dichotomy and Growth Function

5.2 Capacity, Overfitting and Underfitting

- Positive rays
 - \mathcal{H} consists of all hypotheses $h: R \to \{-1, +1\}$ of the form h(x) = sign(x-a)
 - $\blacksquare m_{\mathcal{H}}(N) = N + 1$

Positive Intervals

N+1 구간에서 2개의 점 + 동일한 점 2개 선택

- \mathcal{H} : one dimension that return +1 within some interval
- $\bullet m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1$

- Convex sets
 - Convex set: A set is convex if the line segment connecting any two points in the set lies entirely within the set
 - \mathcal{H} : set of $h: \mathbb{R}^2 \to \{-1, +1\}$ that are positive inside some convex set
 - $m_{\mathcal{H}}(N) = 2^N$

Break point and VC dimension

5.2 Capacity, Overfitting and Underfitting

- $P[|E_{in}(g) E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$
- $E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$ with probability $\ge 1 \delta$
 - 만약 $M = m_H(N)$ 으로 바꿔끼운다고 생각하면, $m_H(N)$ 이 polynomial 일 때, 유의미
 - 다만, 이전 장에서 확인할 수 있었듯이, $m_H(N)$ 자체를 구하기가 쉽지 않음
 - $\Rightarrow m_H(N)$ 의 bound를 구하자
 - Break point 가 존재하면, $m_H(N)$ 은 k-1 차의 polynomial로 bound가 된다.
 - ❖Minimum break point: k (더 이상 shattering이 안되는 지점)
 - \bullet VC dimension: k-1

Theorem 2.4. If $m_{\mathcal{H}}(k) < 2^k$ for some value k, then

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$
 VC generalization bound $E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_H(2N)}{\delta}}$ with probability $\geq 1 - \delta$ momial in N of degree $k-1$.

for all N. The RHS is polynomial in N of degree k-1

Source:

VC generalization bound

5.2 Capacity, Overfitting and Underfitting

Generalization

5.2 Capacity, Overfitting and Underfitting

- We must remember that while simpler functions are more likely to generalize (to have a small gap between training and test error) we must still choose a sufficiently complex hypothesis to achieve low training error
- To reach the most extreme case of arbitrarily high capacity, we introduce non-parametric model
 - Parametric model: learn a function described by a parameter vector whose size is finite and fixed
 - non-parametric models have no such limitation

Example) nearest neighbor regression, nested Chinese Restaurant

Processes (nCRP)

Source: Hierarchically Clustered Representation Learning

Hyperparameters

5.3 Hyperparameters and Validation Sets

- Most machine learning algorithms have several settings that we can use to control the behavior of the learning algorithm
 - Hyperparameters
 - Example) In the polynomial regression, the degree of the polynomial is a hyperparameter
 - Example) The λ value used to control the strength of weight decay
- 만약 training error 를 minimize 하는 것으로 hyper-parameter 잡는다면?
 - We can always fit the training set better with a higher degree polynomial and a weight decay setting of $\lambda = 0$
 - To solve the problem, we need a validation set

Source.

AIC and BIC

5.3 Hyperparameters and Validation Sets

- Another model selection method
 - Information criteria: correct for the bias of maximum likelihood by the addition of a penalty term to compensate for the over-fitting or more complex models
 - AIC: Akaike information criterion
 - $legthing \ln p(D|\theta_{MLE}) M$
 - ❖M: the number of adjustable parameters
 - \bullet ln $p(D|\theta_{MLE})$: best-fit log likelihood
 - BIC: Bayesian information criterion
 - $rac{1}{2} \ln p(D|\theta_{MAP}) \frac{1}{2} M \ln N$
 - > M: the number of adjustable parameters
 - > N: the number of data points
 - $> \ln p(D) \approx \ln p(D|\theta_{MAP}) \frac{1}{2}M \ln N$

K fold Cross-Validation

5.3 Hyperparameters and Validation Sets

- K fold Cross-Validation
 - For example, in 5-fold cross-validation, we would split the training data into 5 equal folds, use 4 of them for training, and 1 for validation
 - We would then iterate over which fold is the validation fold, evaluate the performance, and finally average the performance across the different folds.
 - K = N: leave-one-out cross validation
 - *We always train on N-1 items and validate on the remaining one

Common data splits. A training and test set is given. The training set is split into folds (for example 5 folds here). The folds 1-4 become the training set. One fold (e.g. fold 5 here in yellow) is denoted as the Validation fold and is used to tune the hyperparameters. Cross-validation goes a step further and iterates over the choice of which fold is the validation fold, separately from 1-5. This would be referred to as 5-fold cross-validation. In the very end once the model is trained and all the best hyperparameters were determined, the model is evaluated a single time on the test data (red).

Source: https://cs231n.github.io/classification/

Unbiased Estimator

5.4 Estimators, Bias and Variance

Definition

Let $\hat{\theta}$ be a point estimator for a parameter θ . Then $\hat{\theta}$ is an unbiased estimator if $E(\hat{\theta}) = \theta$. If $E(\hat{\theta}) \neq \theta$, $\hat{\theta}$ is said to be biased

Example

• If X_i is a Bernoulli r.v. with parameter p, then: $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is an unbiased estimator of p

• Why?
$$E(\hat{p}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_i) = \frac{1}{n}\sum_{i=1}^{n}p = p$$

• NOTE: $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is the maximum likelihood estimator (MLE) of p

Unbiased Estimator

5.4 Estimators, Bias and Variance

Definition

The bias of a point estimator $\hat{\theta}$ is given by $B(\hat{\theta}) = E(\hat{\theta}) - \theta$

• $B(\hat{\theta}) = E(\hat{\theta}) - \theta > 0$: Positively biased point estimator

Definition

Average of the square of the distance

Unbias, low variance (ex. MVUE)

The mean square error of a point estimator $\hat{\theta}$ is $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$

- NOTE: $MSE(\hat{\theta}) = E[(\hat{\theta} \theta)^2] = V(\hat{\theta}) + B(\hat{\theta})^2$
- Why? $E\left[\left(\hat{\theta} \theta\right)^2\right] = E\left[\left(\hat{\theta} E\left(\hat{\theta}\right) + E\left(\hat{\theta}\right) \theta\right)^2\right]$

$$= E\left[\left(\hat{\theta} - E(\hat{\theta})\right)^{2} + 2\left(\hat{\theta} - E(\hat{\theta})\right)\left(E(\hat{\theta}) - \theta\right) + \left(E(\hat{\theta}) - \theta\right)^{2}\right]$$

$$=V(\hat{\theta})+E\left[2\left(\hat{\theta}-E(\hat{\theta})\right)\left(E(\hat{\theta})-\theta\right)\right]+B(\hat{\theta})^{2}$$

$$=V(\widehat{\theta})+B(\widehat{\theta})^2$$

Unbiased Estimator

5.4 Estimators, Bias and Variance

Example

Let $Y_1, Y_2, ..., Y_n$ be a random sample with $E(Y_i) = \mu$ and $V(Y_i) = \sigma^2$.

Show that $S'^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$ is a unbiased estimator for σ^2

Solution

$$E\left[\frac{1}{n-1}\sum_{i=1}^{n}(Y_{i}-\bar{Y})^{2}\right] = \frac{1}{n-1}E\left[\sum_{i=1}^{n}(Y_{i}-\bar{Y})^{2}\right]$$

$$= \frac{1}{n-1}\left(\sum_{i=1}^{n}E(Y_{i}^{2})-nE(\bar{Y}^{2})\right)$$

$$= \frac{1}{n-1}\left(\sum_{i=1}^{n}(\sigma^{2}+\mu^{2})-n(\frac{\sigma^{2}}{n}+\mu^{2})\right)$$

$$= \sigma^{2}$$

Trade off

5.4 Estimators, Bias and Variance

- The field of statistics gives us many tools that can be used to achieve the machine learning goal of solving a task not only on the training set but also to generalize
- Bias and variance are useful to formally characterize notions of generalization, underfitting and overfitting
- Trade of f between bias and variance to minimize MSE

The mean square error of a point estimator $\hat{\theta}$ is $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$

• NOTE:
$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right] = V(\hat{\theta}) + B(\hat{\theta})^2$$

• Why?
$$E\left[\left(\hat{\theta} - \theta\right)^2\right] = E\left[\left(\hat{\theta} - E(\hat{\theta}) + E(\hat{\theta}) - \theta\right)^2\right]$$

$$= E\left[\left(\hat{\theta} - E(\hat{\theta})\right)^{2} + 2\left(\hat{\theta} - E(\hat{\theta})\right)\left(E(\hat{\theta}) - \theta\right) + \left(E(\hat{\theta}) - \theta\right)^{2}\right]$$

$$=V(\hat{\theta})+E\left[2\left(\hat{\theta}-E(\hat{\theta})\right)\left(E(\hat{\theta})-\theta\right)\right]+B(\hat{\theta})^{2}$$

$$=V(\widehat{\theta})+B(\widehat{\theta})^2$$

Bias and Variance Tradeoff

5.4 Estimators, Bias and Variance

- As capacity increase: bias tends to decrease and variance tends to increase
- U-shaped curve for generalization error (bold red curve)
- => There is an optimal capacity

Bias and Variance Tradeoff?

5.4 Estimators, Bias and Variance

- Conventional wisdom
 - If \mathcal{H} is too small, all predictors in \mathcal{H} may under-fit the training data
 - If \mathcal{H} is too large, the empirical risk minimizer may over-fit spurious pattern
- The classical thinking is concerned with finding the "sweet spot"
 - Early Stopping
- Increasing the function class capacity beyond this point leads to decreasing risk, typically going below the risk achieved at the sweet spot in the "classical" regime

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/https://arxiv.org/pdf/1810.00736.pdf https://arxiv.org/abs/1812.11118

Bias and Variance Tradeoff?

5.4 Estimators, Bias and Variance

- * $EMC_{D,\epsilon}(T) \ll n$: any perturbation T that increases its EMC will decrease the test error
- $\star EMC_{D,\epsilon}(T) \gg n$: any perturbation T that increases its EMC will decrease the test error
- \star $EMC_{D,\epsilon}(T) \approx n$: any perturbation T that increases might decrease or increase the test error https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/bttps://arxiv.org/pdf/1810.00736.pdf bttps://arxiv.org/pdf/1810.00736.pdf bttps:/

Consistency

5.4 Estimators, Bias and Variance

- Coin toss
 - Toss n times (probability p resulting in heads)
 - Sample proportion (the estimator of p) is $\frac{Y}{n}$
 - We believe that as n gets larger, $\frac{Y}{n}$ should get closer to the true value of p

$$P(\left|\frac{Y}{n}-p\right| \le \epsilon)$$
 should be close to 1 for large n

 $\Rightarrow \frac{Y}{n}$ converges in probability to p

Consistency

5.4 Estimators, Bias and Variance

Definition 9.2

The estimator $\hat{\theta}_n$ is said to be a consistent estimator of θ if, for any positive

number
$$\epsilon$$
, $\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| \le \epsilon) = 1$ or equivalently, $\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| > \epsilon) = 0$

Unbiasedness and Consistency

- Unbiasedness: $\mathbf{E}(\hat{\theta}) = \theta$
- Consistency: $\lim_{n\to\infty} P(|\hat{\theta}_n \theta| \le \epsilon) = 1$

Example

- $X_1, \dots, X_n \sim N(\mu, \sigma^2)$
 - Unbiased but not consistent
 - X_1 ($E[X_1] = \mu$, but X_1 is not consistent)
 - Consistent but not unbiased

$$\hat{\boldsymbol{\sigma}}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

Maximum Likelihood Estimation

5.5 Maximum Likelihood Estimation

- The **likelihood** of the sample $L(y_1, ..., y_n | \theta)$, is defined to be the joint probability (density) of $y_1, ..., y_n$. $L(y_1, ..., y_n | \theta) = f(y_1, ..., y_n | \theta) = f(y_1, ..., y_n | \theta) \times ... \times f(y_n | \theta)$
- Consider a set of m examples $X = \{x^{(1)}, ..., x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(x)$
- $p_{model}(x;\theta)$: parametric family of probability distributions over the sample space
 - It maps any configuration x to a real number estimating $p_{data}(x)$
- Maximum likelihood estimator for θ and KL divergence

 - $D_{KL}(\hat{p}_{data}(x) \mid\mid p_{model}) = E_{x \sim \hat{p}_{data}(x)}[\log \hat{p}_{data}(x) \log p_{model}(x; \theta)]$
 - Any loss consisting of a negative log-likelihood: cross-entropy (MSE: cross entropy

Source: between the empirical distribution and a Gaussian model)

Kyungwoo Song, Department of AI, University of Seoul

Maximum Likelihood Estimation

5.5 Maximum Likelihood Estimation

- The **likelihood** of the sample $L(y_1, ..., y_n | \theta)$, is defined to be the joint probability (density) of $y_1, ..., y_n$. $L(y_1, ..., y_n | \theta) = f(y_1, ..., y_n | \theta) = f(y_1, ..., y_n | \theta) \times ... \times f(y_n | \theta)$
- Maximum likelihood estimator for θ and KL divergence
 - $\theta_{ML} = argmax_{\theta} E_{x \sim \hat{p}_{data}(x)} [\log p_{model}(x; \theta)]$
 - $D_{KL}(\hat{p}_{data}(x) \mid\mid p_{model}) = E_{x \sim \hat{p}_{data}(x)}[\log \hat{p}_{data}(x) \log p_{model}(x; \theta)]$
- MLE has the property of consistency under these conditions
 - The true distribution p_{data} must lie within the model family $p_{model}(\cdot;\theta)$
 - lacktriangle The true distribution p_{data} must correspond to exactly one value of heta
 - *Maximum likelihood can recover the correct p_{data}
- as the number of examples $m \to \infty$, MLE is the best estimator asymptotically

Bayesian Statistics

5.6 Bayesian Statistics

- So far we have discussed frequentist statistics
 - Single value of θ
- Another approach: consider all possible values of θ
 - Bayesian statistics
- We represent our knowledge of θ using the prior $p(\theta)$
 - $p(\theta | x^{(1)}, \dots, x^{(m)}) = \frac{p(x^{(1)}, \dots, x^{(m)} | \theta) p(\theta)}{p(x^{(1)}, \dots, x^{(m)})}$
 - \bullet Belief about θ
- Bayesian estimation offers two important differences
 - 1) make prediction using a full distribution over θ

$$p(x^{(m+1)}|x^{(1)},...,x^{(m)}) = \int p(x^{(m+1)}|\theta)p(\theta|x^{(1)},...,x^{(m)})d\theta$$

- 2) prior has an influence by shifting probability mass density towards regions of the parameter space that are preferred a priori
 - ❖The prior often expresses a preference for models that are simpler or more smooth
- However, typically it suffer from high computational cost

Bayesian Statistics

5.6 Bayesian Statistics

- $\hat{y}^{(train)} = X^{(train)} w$
 - $p(y^{(train)}|X^{(train)},w) = N(y^{(train)};X^{(train)}w,I)$

$$\propto \exp\left(-\frac{1}{2}\left(y^{(train)} - X^{(train)}w\right)^T\left(y^{(train)} - X^{(train)}w\right)\right)$$
 (MSE formulation)

- We need to specify the prior distribution
 - $p(w) = N(w; \mu_0, \Lambda_0) \propto \exp\left(-\frac{1}{2}(w \mu_0)^T \Lambda_0^{-1}(w \mu_0)\right)$
 - Gaussian prior
- $p(w|X,y) \propto p(y|X,w)p(w)$
- $\propto \exp\left(-\frac{1}{2}\left(y^{(train)} X^{(train)}w\right)^T\left(y^{(train)} X^{(train)}w\right)\right) \times \exp\left(-\frac{1}{2}(w \mu_0)^T\Lambda_0^{-1}(w \mu_0)\right)$
- $\propto \exp\left(-\frac{1}{2}(w-\mu_m)^T\Lambda_m^{-1}(w-\mu_m)\right)$, Gaussian posterior
 - $\Lambda_{\rm m} = (X^{\rm T}X + \Lambda_0^{-1})^{-1}, \ \mu_{\rm m} = (X^{\rm T}y + \Lambda_0^{-1}\mu_0)^{-1}$
- Note) Maximum A Posteriori (MAP) Estimation: point estimation
 - $\theta_{MAP} = argmax_{\theta}p(\theta|x) = argmax_{\theta}\log p(x|\theta) + \log p(\theta)$ (θ 가 만약 Gaussian이면 어떻게 될까요?)

5.9 Stochastic Gradient Descent

- The negative conditional log-likelihood of the training
 - $J(\theta) = E_{x,y \sim \hat{p}_{data}} L(x,y,\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$ $L(x,y,\theta) = -\log p(y|x;\theta)$
- $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$
 - The computational cost of this operation is O(m)
 - *As the training set size grows to billions of examples ...
- Minibatch
 - $B = \{x^{(1)}, \dots, x^{(m')}\}$ drawn uniformly from the training set
 - The estimate of the gradient

 $\bullet\theta \leftarrow \theta - \epsilon g$ where ϵ is the learning rate

SGD generalizes so well when used on large over-parameterized models

⇒ Implicit regularization

⇒ Implicit bias of SGD seems to yield a wellgeneralizing ERM

만약 K개의 동일한 data가 있다고 하면, SGD는 GD 대비 K배 빠르게 학습 가능

Source: https://openreview.net/pdf?id=jqjsLUrB8F

The curse of Dimensionality

5.11 Challenges Motivating Deep Learning

- Many machine learning problems become exceedingly difficult when the number of dimensions in the data is high
 - The curse of dimensionality
 - The number of possible distinct configurations of a set of variables increases exponentially as the number of variables increases.
- In spaces of high dimensionality, most of the volume of a sphere is concentrated in a thin shell near the surface
 - $V_D(r) = K_D r^D$, D: dimensions, r: radius of sphere, K_D : constant
 - $V_D(1) V_D(1 \epsilon) = 1 (1 \epsilon)^D$