The LIT problem and IS-CUBE

Tomoki Moriya

University of Birmingham

Isogeny club, 17th October 2023

Summary

- I propose a new computational problem named the LIT problem.
 - Problem of computing a hidden isogeny from two elliptic curves and images of torsion points of order "relatively" small.

$$(E, E', P, Q, \phi(P), \phi(Q))$$
 with $ord(P) \ll \deg \phi \quad \leadsto \quad \phi \colon E \to E'$

Summary

- I propose a new computational problem named the LIT problem.
 - Problem of computing a hidden isogeny from two elliptic curves and images of torsion points of order "relatively" small.

$$(E, E', P, Q, \phi(P), \phi(Q))$$
 with $ord(P) \ll \deg \phi \quad \rightsquigarrow \quad \phi \colon E \to E'$

- I propose a new KEM named IS-CUBE based on the LIT problem.
 - We can use a prime about $2^{8\lambda}$ for the security parameter λ .
 - We can use a random supersingular elliptic curve as the starting curve.

Contents

- Background
- The LIT problem
- 3 IS-CUBE

SIDH (1/2)

Set a prime p as $p = \ell_A^a \ell_B^b f - 1$ for small integers ℓ_A and ℓ_B such that $\gcd(\ell_A, \ell_B) = 1$.

$$(E, P_A, Q_A, P_B, Q_B) \xrightarrow{\phi_A} (E/\langle P_A + \alpha Q_A \rangle, \phi_A(P_B), \phi_A(Q_B))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

SIDH (1/2)

Set a prime p as $p = \ell_A^a \ell_B^b f - 1$ for small integers ℓ_A and ℓ_B such that $\gcd(\ell_A, \ell_B) = 1$.

$$(E, P_A, Q_A, P_B, Q_B) \xrightarrow{\phi_A} (E/\langle P_A + \alpha Q_A \rangle, \phi_A(P_B), \phi_A(Q_B))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

We could take p such that $p \approx 2^{4\lambda}$.

SIDH (1/2)

Set a prime p as $p = \ell_A^a \ell_B^b f - 1$ for small integers ℓ_A and ℓ_B such that $\gcd(\ell_A, \ell_B) = 1$.

$$(E, P_A, Q_A, P_B, Q_B) \xrightarrow{\phi_A} (E/\langle P_A + \alpha Q_A \rangle, \phi_A(P_B), \phi_A(Q_B))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

We could take p such that $p \approx 2^{4\lambda}$.

 \rightarrow One reason that SIDH was compact.

SIDH (2/2)

SIDH was broken in 2022.

- the Castryck-Decru attack "An efficient key recovery attack on SIDH"
- the Maino-Martindale attack "An attack on SIDH with arbitrary starting curve"
- the Robert attack "Breaking SIDH in polynomial time"

SIDH (2/2)

SIDH was broken in 2022.

- the Castryck-Decru attack "An efficient key recovery attack on SIDH"
- the Maino-Martindale attack "An attack on SIDH with arbitrary starting curve"
- the Robert attack "Breaking SIDH in polynomial time"

CSIDH and some isogeny-based KE/PKE schemes proposed after breaking SIDH (e.g., M-SIDH, FESTA, terSIDH, etc...) are alive.

The sizes of *p* of *most* schemes are **NOT** guaranteed to be related linearly to λ .

The sizes of *p* of *most* schemes are **NOT** guaranteed to be related linearly to λ .

For example,

Schemes	CSIDH [1,2]		M-SIDH [3]		FESTA [4]	
	bit(p)	$bit(p)/\lambda$	bit(p)	$bit(p)/\lambda$	bit(p)	$bit(p)/\lambda$
$\lambda = 128$	3, 072	24.00	5, 911	46.18	1, 292	10.09
$\lambda = 192$	8, 192	42.67	9, 382	48.86	1, 966	10.24
$\lambda = 256$	-	-	13, 000	50.78	2, 772	10.83

- [1] Castryck, Lange, Martindale, Panny and Renes "CSIDH: an efficient post-quantum commutative group action"
- [2] Jesús-Javier Chi-Domínguez, Jaques and Rodríguez-Henríquez "The SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low exponents"
- [3] Fouotsa, Moriya and Petit "M-SIDH and MD-SIDH: Countering SIDH attacks by masking information"
- [4] Basso, Maino and Pope "FESTA: Fast encryption from supersingular torsion attacks"

The exceptions:

FESTA-HD (FESTA using isogenies of dimension 4 or 8) and QFESTA [5]

[5] Nakagawa and Onuki "QFESTA: Efficient Algorithms and Parameters for FESTA using Quaternion Algebras"

The exceptions:

FESTA-HD (FESTA using isogenies of dimension 4 or 8) and QFESTA [5]

[5] Nakagawa and Onuki "QFESTA: Efficient Algorithms and Parameters for FESTA using Quaternion Algebras"

FESTA-HD:

The exceptions:

FESTA-HD (FESTA using isogenies of dimension 4 or 8) and QFESTA [5]

[5] Nakagawa and Onuki "QFESTA: Efficient Algorithms and Parameters for FESTA using Quaternion Algebras"

FESTA-HD:

The size of the prime is about 7^λ bits.

The exceptions:

FESTA-HD (FESTA using isogenies of dimension 4 or 8) and QFESTA [5]

[5] Nakagawa and Onuki "QFESTA: Efficient Algorithms and Parameters for FESTA using Quaternion Algebras"

FESTA-HD:

- The size of the prime is about 7^λ bits.
- There is no implementation (so far) due to the computation of high-dimensional isogenies.

The exceptions:

FESTA-HD (FESTA using isogenies of dimension 4 or 8) and QFESTA [5]

[5] Nakagawa and Onuki "QFESTA: Efficient Algorithms and Parameters for FESTA using Quaternion Algebras"

FESTA-HD:

- The size of the prime is about 7λ bits.
- There is no implementation (so far) due to the computation of high-dimensional isogenies.

QFESTA:

The exceptions:

FESTA-HD (FESTA using isogenies of dimension 4 or 8) and QFESTA [5]

[5] Nakagawa and Onuki "QFESTA: Efficient Algorithms and Parameters for FESTA using Quaternion Algebras"

FESTA-HD:

- The size of the prime is about 7λ bits.
- There is no implementation (so far) due to the computation of high-dimensional isogenies.

QFESTA:

• The size of the prime is about 2λ bits.

The exceptions:

FESTA-HD (FESTA using isogenies of dimension 4 or 8) and QFESTA [5]

[5] Nakagawa and Onuki "QFESTA: Efficient Algorithms and Parameters for FESTA using Quaternion Algebras"

FESTA-HD:

- The size of the prime is about 7λ bits.
- There is no implementation (so far) due to the computation of high-dimensional isogenies.

QFESTA:

- The size of the prime is about 2λ bits.
- Use the curve of *j*-invariant 1728 as the starting curve. (This is a potential risk for the security.)

Required scheme

We only me? want to a scheme with

- the prime p whose size is linearly related to λ
- a random starting curve
- computation of isogenies 2 or less

Required scheme

We only me? want to a scheme with

- the prime p whose size is linearly related to λ
- a random starting curve
- computation of isogenies 2 or less
- \rightarrow The LIT problem, IS-CUBE

Problem (The CSSI problem)

Let p be a prime such that $p = A \cdot B \cdot f - 1$, where A and B are smooth large integers such that $\gcd(A,B) = 1$, and f is a small integer. Let E, E' be supersingular elliptic curves over \mathbb{F}_{p^2} , let $\phi \colon E \to E'$ is an A-isogeny, and let $\{P,Q\}$ be a basis of E[B].

$$(E, E', P, Q, \phi(P), \phi(Q)) \longrightarrow \phi$$

Problem (The CSSI problem)

Let p be a prime such that $p = A \cdot B \cdot f - 1$, where A and B are smooth large integers such that $\gcd(A,B) = 1$, and f is a small integer. Let E, E' be supersingular elliptic curves over \mathbb{F}_{p^2} , let $\phi \colon E \to E'$ is an A-isogeny, and let $\{P,Q\}$ be a basis of E[B].

$$(E, E', P, Q, \phi(P), \phi(Q)) \rightsquigarrow \phi$$

Robert's attack solves the CSSI problem if $A \leq B^2$.

Definition (Isogeny diamond (SIDH diagram))

Let A, B be integers such that gcd(A, B) = 1, let E be an elliptic curve, and let R_A and R_B be cyclic subgroups of E of order A and B respectively. We call the following diagram an isogeny diamond or a SIDH diagram.

$$E \xrightarrow{\phi_A} E/\langle R_A \rangle$$

$$\downarrow^{\phi_B} \downarrow \qquad \qquad \downarrow^{\phi'_B}$$

$$E/\langle R_B \rangle \xrightarrow{\phi'_A} E/\langle R_A, R_B \rangle$$

Here, $\ker \phi_A = \langle R_A \rangle$, $\ker \phi_B = \langle R_B \rangle$, $\ker \phi_A' = \langle \phi_B(R_A) \rangle$, and $\ker \phi_B' = \langle \phi_A(R_B) \rangle$.

Theorem (Kani's theorem [Kani (1997)])

$$E \xrightarrow{\phi_A} E_1 = E/\langle R_A \rangle$$

$$\downarrow^{\phi_B} \downarrow$$

$$E_2 = E/\langle R_B \rangle \xrightarrow{\phi'_A} E_3 = E/\langle R_A, R_B \rangle$$

Let the above be an isogeny diamond, and let $\{P, Q\}$ be a basis of E[A + B].

Theorem (Kani's theorem [Kani (1997)])

$$E \xrightarrow{\phi_{A}} E_{1} = E/\langle R_{A} \rangle$$

$$\downarrow^{\phi_{B}} \downarrow^{\phi'_{B}}$$

$$E_{2} = E/\langle R_{B} \rangle \xrightarrow{\phi'_{A}} E_{3} = E/\langle R_{A}, R_{B} \rangle$$

Let the above be an isogeny diamond, and let $\{P,Q\}$ be a basis of E[A+B]. Then, the kernel of an isogeny $\Psi \colon E_1 \times E_2 \to E \times E_3$ of dimension 2 defined by

$$\Psi = egin{pmatrix} \hat{\phi_A} & \hat{\phi_B} \ -\phi_B' & \phi_A' \end{pmatrix}$$

is
$$\langle (\phi_A(P), \phi_B(P)), (\phi_A(Q), \phi_B(Q)) \rangle$$
.

Ompute
$$c = B^2 - A$$
.

- Ompute $c = B^2 A$.
- ② Find c_1, c_2, c_3, c_4 such that $c^2 = c_1^2 + c_2^2 + c_3^2 + c_4^2$ from the four-square theorem.

- Ompute $c = B^2 A$.
- ② Find c_1, c_2, c_3, c_4 such that $c^2 = c_1^2 + c_2^2 + c_3^2 + c_4^2$ from the four-square theorem.
- **3** Construct a 4×4 -matrix **C** over \mathbb{Z} such that ${}^t\mathbf{CC} = c \cdot I_4$ using c_1, \ldots, c_4 .

- Compute $c = B^2 A$.
- ② Find c_1, c_2, c_3, c_4 such that $c^2 = c_1^2 + c_2^2 + c_3^2 + c_4^2$ from the four-square theorem.
- **3** Construct a 4×4 -matrix **C** over \mathbb{Z} such that ${}^{t}\mathbf{CC} = c \cdot I_4$ using c_1, \ldots, c_4 .
- Onsider the SIDH diagram (of high-dimensional)

$$\begin{array}{c|c}
E^4 & \xrightarrow{\phi_A I_4} & E'^4 \\
c & & \downarrow c \\
E^4 & \xrightarrow{\phi_A I_A} & E'^4
\end{array}$$

• From Kani's theorem, the kernel of $\Psi = \begin{pmatrix} \hat{\phi_A} I_4 & \mathbf{C} \\ -\mathbf{C} & \phi_A I_4 \end{pmatrix}$ is constructed by $\phi_A(E[B^2])$ and $E[B^2]$.

- **⑤** From Kani's theorem, the kernel of $\Psi = \begin{pmatrix} \hat{\phi_A} I_4 & \mathbf{C} \\ -\mathbf{C} & \phi_A I_4 \end{pmatrix}$ is constructed by $\phi_A(E[B^2])$ and $E[B^2]$.
- **1** The kernel of $\hat{\Psi}$ is also constructed by $\phi_A(E[B^2])$ and $E[B^2]$.

- From Kani's theorem, the kernel of $\Psi = \begin{pmatrix} \hat{\phi_A} I_4 & \mathbf{C} \\ -\mathbf{C} & \phi_A I_4 \end{pmatrix}$ is constructed by $\phi_A(E[B^2])$ and $E[B^2]$.
- **⑤** The kernel of $\hat{\Psi}$ is also constructed by $\phi_A(E[B^2])$ and $E[B^2]$.
- **Outpute** Ψ by using P_B , Q_B , $\phi_A(P_B)$, $\phi_A(Q_B)$ as

$$E^4 \times E'^4 \rightarrow \text{(An abelian variety)} \leftarrow E^4 \times E'^4.$$

- **⑤** From Kani's theorem, the kernel of $\Psi = \begin{pmatrix} \hat{\phi_A} I_4 & \mathbf{C} \\ -\mathbf{C} & \phi_A I_4 \end{pmatrix}$ is constructed by $\phi_A(E[B^2])$ and $E[B^2]$.
- **1** The kernel of $\hat{\Psi}$ is also constructed by $\phi_A(E[B^2])$ and $E[B^2]$.
- **Outpute** Ψ by using P_B , Q_B , $\phi_A(P_B)$, $\phi_A(Q_B)$ as

$$E^4 \times E'^4 \rightarrow (An \text{ abelian variety}) \leftarrow E^4 \times E'^4.$$

3 Recover $φ_A$ from Ψ.

- **⑤** From Kani's theorem, the kernel of $\Psi = \begin{pmatrix} \hat{\phi_A} I_4 & \mathbf{C} \\ -\mathbf{C} & \phi_A I_4 \end{pmatrix}$ is constructed by $\phi_A(E[B^2])$ and $E[B^2]$.
- **1** The kernel of $\hat{\Psi}$ is also constructed by $\phi_A(E[B^2])$ and $E[B^2]$.
- **Outpute** Ψ by using P_B , Q_B , $\phi_A(P_B)$, $\phi_A(Q_B)$ as

$$E^4 \times E'^4 \rightarrow (An \text{ abelian variety}) \leftarrow E^4 \times E'^4.$$

③ Recover ϕ_A from Ψ.

Robert's attack solves the CSSI problem if $A \leq B^2$.

Countermeasures for SIDH attacks (1/2)

• Mask A (the degree of ϕ_A)

- Mask A (the degree of ϕ_A)
 - ← MD-SIDH [Fouotsa, M. and Petit (EUROCRYPT 2023)]

- Mask A (the degree of φ_A)
 ← MD-SIDH [Fouotsa, M. and Petit (EUROCRYPT 2023)]
- Mask $\phi_A(P_B)$ and $\phi_A(Q_B)$ by scalars

- Mask A (the degree of ϕ_A) ← MD-SIDH [Fouotsa, M. and Petit (EUROCRYPT 2023)]
- Mask $\phi_A(P_B)$ and $\phi_A(Q_B)$ by scalars
 - ← M-SIDH [F. M. P.] and FESTA [Basso, Maino and Pope (ASIACRYPT 2023)]

- Mask A (the degree of φ_A)
 ← MD-SIDH [Fouotsa, M. and Petit (EUROCRYPT 2023)]
- Mask $\phi_A(P_B)$ and $\phi_A(Q_B)$ by scalars \leftarrow M-SIDH [F. M. P.] and FESTA [Basso, Maino and Pope (ASIACRYPT 2023)]
- Set $A \gg B^2$

- Mask A (the degree of φ_A)
 ← MD-SIDH [Fouotsa, M. and Petit (EUROCRYPT 2023)]
- Mask $\phi_A(P_B)$ and $\phi_A(Q_B)$ by scalars \leftarrow M-SIDH [F. M. P.] and FESTA [Basso, Maino and Pope (ASIACRYPT 2023)]
- Set $A \gg B^2$
 - ← The LIT problem and IS-CUBE

Problem (The CIST problem [Basso, Maino and Pope (ASIACRYPT 2023)])

Let p be a prime such that $p = A \cdot B \cdot f - 1$, where A and B are smooth large integers such that $\gcd(A,B) = 1$, and f is a small integer. Let E,E' be supersingular elliptic curves over \mathbb{F}_{p^2} , let $\phi \colon E \to E'$ is an A-isogeny, and let $\{P,Q\}$ be a basis of E[B]. Let α be a random element in $(\mathbb{Z}/B\mathbb{Z})^{\times}$.

$$(E, E', P, Q, \alpha \phi(P), \alpha^{-1} \phi(Q)) \quad \rightsquigarrow \quad \varphi$$

Problem (The LIT problem (The Long Isogeny with Torsion problem))

Let p be a prime such that $p = A \cdot B \cdot f - 1$, where A and B are smooth large integers such that $\gcd(A,B) = 1$, and f is a small integer. Let E,E' be supersingular elliptic curves over \mathbb{F}_{p^2} , let $\phi \colon E \to E'$ is an A-isogeny, and let $\{P,Q\}$ be a basis of E[B]. Assume that $\deg \phi \gg B$.

$$(E, E', P, Q, \phi(P), \phi(Q)) \rightsquigarrow \phi$$

Problem (The LIT problem (The Long Isogeny with Torsion problem))

Let p be a prime such that $p = A \cdot B \cdot f - 1$, where A and B are smooth large integers such that $\gcd(A,B) = 1$, and f is a small integer. Let E,E' be supersingular elliptic curves over \mathbb{F}_{p^2} , let $\phi \colon E \to E'$ is an A-isogeny, and let $\{P,Q\}$ be a basis of E[B]. Assume that $\deg \phi \gg B$.

$$(E, E', P, Q, \phi(P), \phi(Q)) \rightsquigarrow \phi$$

$$\deg \phi \approx B^3$$
?

Problem (The LIT problem (The Long Isogeny with Torsion problem))

Let p be a prime such that $p = A \cdot B \cdot f - 1$, where A and B are smooth large integers such that $\gcd(A,B) = 1$, and f is a small integer. Let E, E' be supersingular elliptic curves over \mathbb{F}_{p^2} , let $\phi \colon E \to E'$ is an A-isogeny, and let $\{P,Q\}$ be a basis of E[B]. Assume that $\deg \phi \gg B$.

$$(E, E', P, Q, \phi(P), \phi(Q)) \rightsquigarrow \phi$$

$$\deg \phi \approx B^3$$
? $\deg \phi \approx B^2 \cdot 2^{2\lambda}$?

Problem (The LIT problem (The Long Isogeny with Torsion problem))

Let p be a prime such that $p = A \cdot B \cdot f - 1$, where A and B are smooth large integers such that $\gcd(A,B) = 1$, and f is a small integer. Let E,E' be supersingular elliptic curves over \mathbb{F}_{p^2} , let $\phi \colon E \to E'$ is an A-isogeny, and let $\{P,Q\}$ be a basis of E[B]. Assume that $\deg \phi \gg B$.

$$(E, E', P, Q, \phi(P), \phi(Q)) \rightsquigarrow \phi$$

 $\deg \phi \approx B^3$? $\deg \phi \approx B^2 \cdot 2^{2\lambda}$? $\deg \phi \approx B^{10000}$?

Problem (The LIT problem (The Long Isogeny with Torsion problem))

Let p be a prime such that $p = A \cdot B \cdot f - 1$, where A and B are smooth large integers such that $\gcd(A,B) = 1$, and f is a small integer. Let E,E' be supersingular elliptic curves over \mathbb{F}_{p^2} , let $\phi \colon E \to E'$ is an A-isogeny, and let $\{P,Q\}$ be a basis of E[B]. Assume that $\deg \phi \gg B$.

$$(E, E', P, Q, \phi(P), \phi(Q)) \rightsquigarrow \phi$$

 $\deg \phi \approx B^3$? $\deg \phi \approx B^2 \cdot 2^{2\lambda}$? $\deg \phi \approx B^{10000}$? $\deg \phi \approx B^2 \cdot 2^{100\lambda}$?

Problem (The LIT problem (The Long Isogeny with Torsion problem))

Let p be a prime such that $p = A \cdot B \cdot f - 1$, where A and B are smooth large integers such that $\gcd(A,B) = 1$, and f is a small integer. Let E,E' be supersingular elliptic curves over \mathbb{F}_{p^2} , let $\phi \colon E \to E'$ is an A-isogeny, and let $\{P,Q\}$ be a basis of E[B]. Assume that $\deg \phi \gg B$.

$$(E, E', P, Q, \phi(P), \phi(Q)) \rightsquigarrow \phi$$

Problem (The LIT problem (The Long Isogeny with Torsion problem))

Let p be a prime such that $p = A \cdot B \cdot f - 1$, where A and B are smooth large integers such that $\gcd(A,B) = 1$, and f is a small integer. Let E,E' be supersingular elliptic curves over \mathbb{F}_{p^2} , let $\phi \colon E \to E'$ is an A-isogeny, and let $\{P,Q\}$ be a basis of E[B]. Assume that $\deg \phi \gg B$.

$$(E, E', P, Q, \phi(P), \phi(Q)) \rightsquigarrow \phi$$

When does the LIT problem seem hard to solve?

Strategies to solve the LIT problem:

Strategies to solve the LIT problem:

• Find points P', Q' and $\phi(P')$, $\phi(Q')$ of order BN such that $\deg \phi \approx (BN)^2$, NP' = P and NQ' = Q.

Strategies to solve the LIT problem:

- Find points P', Q' and $\phi(P')$, $\phi(Q')$ of order BN such that $\deg \phi \approx (BN)^2$, NP' = P and NQ' = Q.
- 2 Combine Robert's attack and the meet-in-the-middle attack.

$$E^4 \times E'^4 \rightarrow V \rightsquigarrow (MitM) \iff V' \leftarrow E^4 \times E'^4$$

• Find points P', Q' and $\phi(P')$, $\phi(Q')$ of order BN such that $\deg \phi \approx (BN)^2$, NP' = P and NQ' = Q.

• Find points P', Q' and $\phi(P')$, $\phi(Q')$ of order BN such that $\deg \phi \approx (BN)^2$, NP' = P and NQ' = Q.

If we fix P', Q', then the number of the candidates for $\phi(P')$, $\phi(Q')$ is $\#PGL_2(\mathbb{Z}/N\mathbb{Z})$.

$$\#\mathrm{PGL}_2(\mathbb{Z}/N\mathbb{Z}) = N^3 \prod_{q|N \text{ prime}} \frac{1}{q^2} (q^2 - 1) > N.$$

• Find points P', Q' and $\phi(P')$, $\phi(Q')$ of order BN such that $\deg \phi \approx (BN)^2$, NP' = P and NQ' = Q.

If we fix P', Q', then the number of the candidates for $\phi(P')$, $\phi(Q')$ is $\#PGL_2(\mathbb{Z}/N\mathbb{Z})$.

$$\#\mathrm{PGL}_2(\mathbb{Z}/N\mathbb{Z}) = N^3 \prod_{q|N \text{ prime}} \frac{1}{q^2} (q^2 - 1) > N.$$

We prefer to set $N \ge 2^{\lambda}$. \rightsquigarrow We prefer to set $\deg \phi \approx B^2 \cdot 2^{2\lambda}$.

2 Combine Robert's attack and the meet-in-the-middle attack.

2 Combine Robert's attack and the meet-in-the-middle attack.

$$\underbrace{E^4 \times E'^4 \longrightarrow V} \rightsquigarrow (\mathsf{MitM}) \leftrightsquigarrow \underbrace{V' \longleftarrow E^4 \times E'^4}_{(\deg \phi, \ldots, \deg \phi) \text{-isogeny}}$$

Combine Robert's attack and the meet-in-the-middle attack.

$$\underbrace{E^4 \times E'^4 \longrightarrow V}^{\text{(B,...,B)-isogeny}} \longleftrightarrow \underbrace{V' \longleftarrow E^4 \times E'^4}_{\text{(deg ϕ,...,deg ϕ)-isogeny}}$$

We prefer to set $\deg \phi/B^2 \ge 2^{2\lambda}$.

Combine Robert's attack and the meet-in-the-middle attack.

$$\underbrace{E^4 \times E'^4 \longrightarrow V}^{\text{(B,...,B)-isogeny}} \longleftrightarrow \underbrace{V' \longleftarrow E^4 \times E'^4}_{\text{(deg ϕ,...,deg ϕ)-isogeny}}$$

We prefer to set $\deg \phi/B^2 \ge 2^{2\lambda}$. \rightsquigarrow We prefer to set $\deg \phi \approx B^2 \cdot 2^{2\lambda}$.

Why do we want the LIT problem?

We can construct parallel isogenies with a small overhead.

$$(E, P, Q) \xrightarrow{2b+2\lambda} (E', \phi(P), \phi(Q))$$

$$\downarrow b \qquad \qquad \downarrow b$$

$$E_1 \xrightarrow{2b+2\lambda} E'_1$$

Core idea

 $p = \ell_C^c \cdot \ell_A \cdot \ell_B^b \cdot f - 1$, where ℓ_A, ℓ_B, ℓ_C are small distinct primes and f is a small integer. $\ell_C^c \approx 2^{6\lambda}, \, \ell_A^a \approx 2^{6\lambda}, \, \ell_B^b \approx 2^{2\lambda}, \, p \approx 2^{8\lambda}$.

Public pamameter: (E_s, \tilde{E}_s) Public key: E_1 Ciphertext: (E'_s, E'_1) Shared key: E

Public key generation:

$$\{P_C,Q_C\}$$
: a basis of $E_s[\ell_C^c]$, $\{P_B,Q_B\}$: a basis of $E_s[\ell_B^b]$ $\deg \phi_1=\ell_A^a\approx 2^{6\lambda}$, $\deg au=\ell_C^c-\ell_A^a$

$$(E_{S}, P_{B}, Q_{B}, P_{C}, Q_{C}) \xrightarrow{\phi_{1}} (E_{1}, \phi_{1}(P_{B}), \phi_{1}(Q_{B}), \alpha\phi_{1}(P_{C}), \alpha^{-1}\phi_{1}(Q_{C}))$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Public key generation:

$$\{P_C,Q_C\}$$
: a basis of $E_s[\ell_C^c]$, $\{P_B,Q_B\}$: a basis of $E_s[\ell_B^b]$ $\deg \phi_1=\ell_A^a\approx 2^{6\lambda}$, $\deg au=\ell_C^c-\ell_A^a$

$$(E_{S}, P_{B}, Q_{B}, P_{C}, Q_{C}) \xrightarrow{\phi_{1}} (E_{1}, \phi_{1}(P_{B}), \phi_{1}(Q_{B}), \alpha\phi_{1}(P_{C}), \alpha^{-1}\phi_{1}(Q_{C}))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Public parameters: $(E_s, P_B, Q_B, P_C, Q_C)$ and $(\tilde{E}_s, \tau(P_B), \tau(Q_B), \tau(P_C), \tau(Q_C))$

Public key generation:

$$\{P_C,Q_C\}$$
: a basis of $E_s[\ell_C^c]$, $\{P_B,Q_B\}$: a basis of $E_s[\ell_B^b]$ $\deg \phi_1=\ell_A^a\approx 2^{6\lambda}$, $\deg \tau=\ell_C^c-\ell_A^a$

$$(E_{S}, P_{B}, Q_{B}, P_{C}, Q_{C}) \xrightarrow{\phi_{1}} (E_{1}, \phi_{1}(P_{B}), \phi_{1}(Q_{B}), \alpha\phi_{1}(P_{C}), \alpha^{-1}\phi_{1}(Q_{C}))$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Public parameters: $(E_s, P_B, Q_B, P_C, Q_C)$ and $(\tilde{E}_s, \tau(P_B), \tau(Q_B), \tau(P_C), \tau(Q_C))$ Public key: $(E_1, \phi_1(P_B), \phi_1(Q_B), \alpha\phi_1(P_C), \alpha^{-1}\phi_1(Q_C))$

Public key generation:

$$\{P_C,Q_C\}$$
: a basis of $E_s[\ell_C^c]$, $\{P_B,Q_B\}$: a basis of $E_s[\ell_B^b]$ deg $\phi_1=\ell_A^a\approx 2^{6\lambda}$, deg $\tau=\ell_C^c-\ell_A^a$

$$(E_{s}, P_{B}, Q_{B}, P_{C}, Q_{C}) \xrightarrow{\phi_{1}} (E_{1}, \phi_{1}(P_{B}), \phi_{1}(Q_{B}), \alpha\phi_{1}(P_{C}), \alpha^{-1}\phi_{1}(Q_{C}))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Public parameters: $(E_s, P_B, Q_B, P_C, Q_C)$ and $(\tilde{E}_s, \tau(P_B), \tau(Q_B), \tau(P_C), \tau(Q_C))$ Public key: $(E_1, \phi_1(P_B), \phi_1(Q_B), \alpha\phi_1(P_C), \alpha^{-1}\phi_1(Q_C))$ Secret key: (ϕ_1, α)

Encapsulation:

$$\ker \phi_B = \langle P_B + rQ_B \rangle, \quad \ker \phi_{0,B} = \langle \tau(P_B) + r\tau(Q_B) \rangle, \quad \ker \phi_{1,B} = \langle \phi_1(P_B) + r\phi_1(Q_B) \rangle$$

Encapsulation:

Ciphertext:
$$(F', \beta \phi_0)_{\mathcal{B}}(\tau(P_C))_{\mathcal{B}}^{-1}\phi_0|_{\mathcal{B}}(\tau(Q_C))_{\mathcal{B}}$$
 and $(F', \beta \phi_1|_{\mathcal{B}}(P_1)_{\mathcal{B}}^{-1}\phi_1|_{\mathcal{B}}(Q_1))_{\mathcal{B}}$

Ciphertext:
$$(E'_s, \beta \phi_{0,B}(\tau(P_C)), \beta^{-1}\phi_{0,B}(\tau(Q_C)))$$
 and $(E'_1, \beta \phi_{1,B}(P_1), \beta^{-1}\phi_{1,B}(Q_1))$

Encapsulation:

Shared kev: E

$$(\tilde{E}_{s}, \tau(P_{B}), \tau(Q_{B}), \tau(P_{C}), \tau(Q_{C})) \stackrel{\tau}{\longleftarrow} (E_{s}, P_{B}, Q_{B}) \stackrel{\phi_{1}}{\longrightarrow} (E_{1}, \phi_{1}(P_{B}), \phi_{1}(Q_{B}), P_{1}, Q_{1})$$

$$\downarrow \phi_{0,B} \qquad \downarrow \phi_{1} \qquad \downarrow \phi_{1}$$

Encapsulation:

Decapsulation:

From Kani's theorem, the kernel of the isogeny $E_s' \times E_1' \to E \times E'$ is $\langle (\alpha P_0', P_1'), (\alpha^{-1} Q_0', Q_1') \rangle$.

Core idea (recall)

 $p = \ell_C^c \cdot \ell_A \cdot \ell_B^b \cdot f - 1$, where ℓ_A, ℓ_B, ℓ_C are small distinct primes and f is a small integer. $\ell_C^c \approx 2^{6\lambda}, \, \ell_A^a \approx 2^{6\lambda}, \, \ell_B^b \approx 2^{2\lambda}, \, p \approx 2^{8\lambda}$.

Public pamameter: (E_s, \tilde{E}_s) Public key: E_1 Ciphertext: (E'_s, E'_1) Shared key: E

 $\deg au = \ell_{\it C}^{\it c} - \ell_{\it A}^{\it a}$ is not smooth in general.

 \rightarrow How do we construct τ ?

 $\deg au = \ell_C^{\it c} - \ell_A^{\it a}$ is not smooth in general.

 \rightarrow How do we construct τ ?

Use the structure of the endomorphism ring of the curve of *j*-invariant 1728.

 $\deg au = \ell_C^c - \ell_A^a$ is not smooth in general.

 \rightarrow How do we construct τ ?

Use the structure of the endomorphism ring of the curve of *j*-invariant 1728.

Let E_0 be the curve of *j*-invariant 1728.

Then, $\operatorname{End}(E_0) \cong \mathbb{Z}\langle \sqrt{-1}, \frac{1+\sqrt{-p}}{2} \rangle$ (an order in a quaternion algebra over \mathbb{Q}).

Let
$$N = (\ell_C^c - \ell_A^a) \cdot (\ell_B^b)^2$$
.

From the Cornacchia algorithm, we can find integers z_1, z_2, z_3, z_4 such that

$$z_1^2 + z_2^2 + p(z_3^2 + z_4^2) = N.$$

Let
$$N = (\ell_C^c - \ell_A^a) \cdot (\ell_B^b)^2$$
.

From the Cornacchia algorithm, we can find integers z_1, z_2, z_3, z_4 such that

$$z_1^2 + z_2^2 + p(z_3^2 + z_4^2) = N.$$

Set
$$\gamma := [z_1] + [z_2] \sqrt{-1} + \sqrt{-p}([z_3] + [z_4] \sqrt{-1}) \in \text{End}(E_0)$$
. Then $\deg \gamma = N$.

Let
$$N = (\ell_C^c - \ell_A^a) \cdot (\ell_B^b)^2$$
.

From the Cornacchia algorithm, we can find integers z_1, z_2, z_3, z_4 such that

$$z_1^2 + z_2^2 + p(z_3^2 + z_4^2) = N.$$

Set
$$\gamma := [z_1] + [z_2] \sqrt{-1} + \sqrt{-p}([z_3] + [z_4] \sqrt{-1}) \in \text{End}(E_0)$$
. Then $\deg \gamma = N$.

$$o$$
 We have $\gamma = \hat{\psi'} \circ \tau_0 \circ \psi$, where $\deg \psi' = \ell_B^b$, $\deg \psi = \ell_B^b$, and $\deg \tau_0 = \ell_C^c - \ell_A^a$.

 $\ker \psi = \ker \gamma \cap E[\ell_B^b]$ and $\ker \psi' = \ker \hat{\gamma} \cap E[\ell_B^b]$.

$$\ker \psi = \ker \gamma \cap E[\ell_B^b]$$
 and $\ker \psi' = \ker \hat{\gamma} \cap E[\ell_B^b]$.

Image points
$$\to \tau_0(P) = \frac{1}{\ell_p^{2D}} \psi'(\gamma(\hat{\psi}(P)))$$
 if $\gcd(\operatorname{ord}(P), \ell_B) = 1$.

$$\ker \psi = \ker \gamma \cap E[\ell_B^b]$$
 and $\ker \psi' = \ker \hat{\gamma} \cap E[\ell_B^b]$.

Image points
$$\to \tau_0(P) = \frac{1}{\ell_P^{2b}} \psi'(\gamma(\hat{\psi}(P)))$$
 if $\gcd(\operatorname{ord}(P), \ell_B) = 1$.

How do we compute image points of $E_{s,0}[\ell_B^b]$?

 $\{P_{C,0}, Q_{C,0}\}$: a basis of $E_{s,0}[\ell_C^c]$ Assume that a is even (for simplicity).

$$(E_{s,0}, P_{C,0}, Q_{C,0}) \xrightarrow{\tau_0} (\tilde{E}_{s,0}, \tau_0(P_{C,0}), \tau_0(Q_{C,0}))$$

$$\downarrow^{[\ell_A^{a/2}]} \downarrow \qquad \qquad \downarrow^{[\ell_A^{a/2}]}$$

$$(E_{s,0}, \ell_A^{a/2} P_{C,0}, \ell_A^{a/2} Q_{C,0}) \xrightarrow{\tau_0} (\tilde{E}_{s,0}, \ell_A^{a/2} \tau_0(P_{C,0}), \ell_A^{a/2} \tau_0(Q_{C,0}))$$

 $\{P_{C,0}, Q_{C,0}\}$: a basis of $E_{s,0}[\ell_C^c]$ Assume that a is even (for simplicity).

$$\begin{split} (E_{s,0}, P_{C,0}, Q_{C,0}) & \xrightarrow{\tau_0} & (\tilde{E}_{s,0}, \tau_0(P_{C,0}), \tau_0(Q_{C,0})) \\ & [\ell_A^{a/2}] \downarrow & & \downarrow [\ell_A^{a/2}] \\ (E_{s,0}, \ell_A^{a/2} P_{C,0}, \ell_A^{a/2} Q_{C,0}) & \xrightarrow{\tau_0} & (\tilde{E}_{s,0}, \ell_A^{a/2} \tau_0(P_{C,0}), \ell_A^{a/2} \tau_0(Q_{C,0})) \end{split}$$

From Kani's theorem, $\langle (\ell_A^{a/2} P_{C,0}, \tau_0(P_{C,0})), \ell_A^{a/2} Q_{C,0}, \tau_0(Q_{C,0}) \rangle$ is the kernel of

$$\Psi_0 = \begin{pmatrix} [\ell_A^{a/2}] & \hat{\tau}_0 \\ -\tau_0 & [\ell_A^{a/2}] \end{pmatrix}.$$

 $\{P_{C,0}, Q_{C,0}\}$: a basis of $E_{s,0}[\ell_C^c]$ Assume that a is even (for simplicity).

$$\begin{split} (E_{s,0}, P_{C,0}, Q_{C,0}) & \xrightarrow{\tau_0} & (\tilde{E}_{s,0}, \tau_0(P_{C,0}), \tau_0(Q_{C,0})) \\ & [\ell_A^{a/2}] \downarrow & & \downarrow [\ell_A^{a/2}] \\ (E_{s,0}, \ell_A^{a/2} P_{C,0}, \ell_A^{a/2} Q_{C,0}) & \xrightarrow{\tau_0} & (\tilde{E}_{s,0}, \ell_A^{a/2} \tau_0(P_{C,0}), \ell_A^{a/2} \tau_0(Q_{C,0})) \end{split}$$

From Kani's theorem, $\langle (\ell_A^{a/2} P_{C,0}, \tau_0(P_{C,0})), \ell_A^{a/2} Q_{C,0}, \tau_0(Q_{C,0}) \rangle$ is the kernel of

$$\Psi_0 = \begin{pmatrix} [\ell_A^{a/2}] & \hat{\tau}_0 \\ -\tau_0 & [\ell_A^{a/2}] \end{pmatrix}.$$

 \rightarrow We can compute $\tau_0(P_{B,0})$ and $\tau_0(Q_{B,0})$, where $\{P_{B,0},Q_{B,0}\}$ is a basis of $E_{s,0}[\ell_B^b]$.

Remaining problem: $E_{s,0}$ and $\tilde{E}_{s,0}$ are not random curves!

Remaining problem: $E_{s,0}$ and $\tilde{E}_{s,0}$ are not random curves!

Randomize the starting curve:

Remaining problem: $E_{s,0}$ and $\tilde{E}_{s,0}$ are not random curves!

Randomize the starting curve:

We have $(E_{s,0}, P_{C,0}, Q_{C,0}, P_{B,0}, Q_{B,0})$ and $(\tilde{E}_{s,0}, \tau_0(P_{C,0}), \tau_0(Q_{C,0}), \tau_0(P_{B,0}), \tau_0(Q_{B,0}))$.

• Compute two parallel ℓ_B^b -isogenies using $P_{B,0}$, $Q_{B,0}$ and $\tau_0(P_{B,0})$, $\tau_0(Q_{B,0})$. Obtain $(E_{s,1}, P'_{C,1}, Q'_{C,1})$ and $(\tilde{E}_{s,1}, \tau_1(P'_{C,1}), \tau_1(Q'_{C,1}))$.

Remaining problem: $E_{s,0}$ and $\tilde{E}_{s,0}$ are not random curves!

Randomize the starting curve:

- Compute two parallel ℓ_B^b -isogenies using $P_{B,0}$, $Q_{B,0}$ and $\tau_0(P_{B,0})$, $\tau_0(Q_{B,0})$. Obtain $(E_{s,1}, P'_{G,1}, Q'_{G,1})$ and $(\tilde{E}_{s,1}, \tau_1(P'_{G,1}), \tau_1(Q'_{G,1}))$.
- ② Set ${}^t\!(P_{C,1},Q_{C,1}) = \mathbf{A}^t\!(P_{C,1}',Q_{C,1}')$ for a random regular matrix \mathbf{A} over $\mathbb{Z}/\ell_C^c\mathbb{Z}$.

Remaining problem: $E_{s,0}$ and $\tilde{E}_{s,0}$ are not random curves!

Randomize the starting curve:

- Compute two parallel ℓ_B^b -isogenies using $P_{B,0}$, $Q_{B,0}$ and $\tau_0(P_{B,0})$, $\tau_0(Q_{B,0})$. Obtain $(E_{s,1}, P'_{G,1}, Q'_{G,1})$ and $(\tilde{E}_{s,1}, \tau_1(P'_{G,1}), \tau_1(Q'_{G,1}))$.
- ② Set ${}^t\!(P_{C,1},Q_{C,1}) = \mathbf{A}^t\!(P_{C,1}',Q_{C,1}')$ for a random regular matrix \mathbf{A} over $\mathbb{Z}/\ell_C^c\mathbb{Z}$.
- **3** Compute $\tau_1(P_{B,1}), \tau_1(Q_{B,1})$ for a random basis $\{P_{B,1}, Q_{B,1}\}$ of $E_{s,1}[\ell_B^b]$ from $P_{C,1}, Q_{C,1}, \tau_1(P_{C,1}), \tau_1(Q_{C,1})$ and Kani's theorem.

Remaining problem: $E_{s,0}$ and $\tilde{E}_{s,0}$ are not random curves!

Randomize the starting curve:

- Compute two parallel ℓ_B^b -isogenies using $P_{B,0}$, $Q_{B,0}$ and $\tau_0(P_{B,0})$, $\tau_0(Q_{B,0})$. Obtain $(E_{s,1}, P'_{C,1}, Q'_{C,1})$ and $(\tilde{E}_{s,1}, \tau_1(P'_{C,1}), \tau_1(Q'_{C,1}))$.
- Set ${}^t\!(P_{C,1},Q_{C,1}) = \mathbf{A}^t\!(P_{C,1}',Q_{C,1}')$ for a random regular matrix \mathbf{A} over $\mathbb{Z}/\ell_C^c\mathbb{Z}$.
- **3** Compute $\tau_1(P_{B,1}), \tau_1(Q_{B,1})$ for a random basis $\{P_{B,1}, Q_{B,1}\}$ of $E_{s,1}[\ell_B^b]$ from $P_{C,1}, Q_{C,1}, \tau_1(P_{C,1}), \tau_1(Q_{C,1})$ and Kani's theorem.
- ① Output $(E_{s,1}, P_{C,1}, Q_{C,1}, P_{B,1}, Q_{B,1})$ and $(\tilde{E}_{s,1}, \tau_1(P_{C,1}), \tau_1(Q_{C,1}), \tau_1(P_{B,1}), \tau_1(Q_{B,1}))$.

Remaining problem: $E_{s,0}$ and $\tilde{E}_{s,0}$ are not random curves!

Randomize the starting curve:

We have $(E_{s,0}, P_{C,0}, Q_{C,0}, P_{B,0}, Q_{B,0})$ and $(\tilde{E}_{s,0}, \tau_0(P_{C,0}), \tau_0(Q_{C,0}), \tau_0(P_{B,0}), \tau_0(Q_{B,0}))$.

- Compute two parallel ℓ_B^b -isogenies using $P_{B,0}$, $Q_{B,0}$ and $\tau_0(P_{B,0})$, $\tau_0(Q_{B,0})$. Obtain $(E_{s,1}, P'_{C,1}, Q'_{C,1})$ and $(\tilde{E}_{s,1}, \tau_1(P'_{C,1}), \tau_1(Q'_{C,1}))$.
- Set ${}^t\!(P_{C,1},Q_{C,1}) = \mathbf{A}^t\!(P_{C,1}',Q_{C,1}')$ for a random regular matrix \mathbf{A} over $\mathbb{Z}/\ell_C^c\mathbb{Z}$.
- **3** Compute $\tau_1(P_{B,1}), \tau_1(Q_{B,1})$ for a random basis $\{P_{B,1}, Q_{B,1}\}$ of $E_{s,1}[\ell_B^b]$ from $P_{C,1}, Q_{C,1}, \tau_1(P_{C,1}), \tau_1(Q_{C,1})$ and Kani's theorem.
- ① Output $(E_{s,1}, P_{C,1}, Q_{C,1}, P_{B,1}, Q_{B,1})$ and $(\tilde{E}_{s,1}, \tau_1(P_{C,1}), \tau_1(Q_{C,1}), \tau_1(P_{B,1}), \tau_1(Q_{B,1}))$.

Repeat the above procedure.

Parameters for IS-CUBE

Table: Parameters for IS-CUBE

λ	p (in bits)	Public key	Ciphertext	Compressed (P)	Compressed (C)
128	1,044	1,305 bytes	1,566 bytes	649 bytes	1, 104 bytes
192	1,558	1,948 bytes	2,337 bytes	969 bytes	1,649 bytes
256	2,068	2, 585 bytes	3, 102 bytes	1,289 bytes	2, 192 bytes

In any cases, $bit(p) \approx 8\lambda$.

SIKE vs IS-CUBE

Assume that the prime for SIKE has the size of 4λ bits.

Table: Comparison of IS-CUBE with SIKE

	SIKE		IS-CUBE	
	original	compressed	original	compressed
Public key	24λ	14λ	80≀	40λ
Ciphertext	25≀	17λ	96≀	68≀

The public key of IS-CUBE is about 3 times larger than that of SIKE, and the ciphertext of IS-CUBE is about 4 times larger than that of SIKE.

PoC implementation

I implemented IS-CUBE via sagemath.

Table: Computational time of IS-CUBE

Security parameter Computation	128	192	256
Public parameters generation*	38.36 sec	112.18 sec	165.75 sec
Public key generation	4.34 sec	13.99 sec	34.43 sec
Key encapsulation	0.61 sec	1.22 sec	2.10 sec
Key decapsulation	17.13 sec	39.06 sec	74.61 sec

We measured the averages of 100 run times of each algorithm of IS-CUBE except for the computational time of the public parameters generation. We used a MacBook Air with an Apple M1 CPU (3.2 GHz) to measure the computational time.

