Warszawa, dnia 6 grudnia 2022 r.

Systemy Cyfrowe i Komputerowe, Projekt Indywidualny 1 – wariant 48.

Spis Treści:

- 1. Założenia projektu;
- 2. Realizacja poszczególnych modułów wewnętrznych, opisy realizacji testbenchów i raporty z syntez logicznych;
 - 2.1. Moduł dodawania,
 - 2.2. Moduł porównywania,
 - 2.3. Moduł ustawiania bitu,
 - 2.4. Moduł konwersji,
- 3. Realizacja głównego modułu ALU oraz testbencha ALU;
- 4. Graficzny model realizacji ALU;

Ad 1.

Realizowany przeze mnie projekt ma na celu zrealizowanie jednostki arytmetycznej ALU złożonej z czterech wewnętrznych modułów na dwóch danych argumentach wejściowych, w moim przypadku sygnały wejściowe i sygnał wyjściowy przyjmują wartości maksymalnie 32-bitowe. Listy wejść i wyjść poszczególnych modułów oraz jednostki arytmetyczno-logicznej znajdują się w adnotacjach poniżej.

Ad 2.1

Moduł dodawania – dodawanie argumentu A i B.

Wejścia i Wyjścia:

- i_argA 32-bitowe wejście argumentu A;
- i_argB 32-bitowe wejście argumentu B;
- o_result 32-bitowy wynik operacji;
- o_carry bit przepełnienia, równy 1, gdy wynik operacji przekracza zakres 32 bitów.

Parametry wewnetrzne:

• WIDTH – ma przypisaną wartość 32 i jest parametrem wielkości danych wejściowych;

Synteza modułu przebiegła bez błędów, w testbenchu została sprawdzona zgodność działania modułów przed syntezą (modelu) i po syntezie (plik z końcówką _rtl). Na grafice poniżej znajduje się zrzut ekranu pokazujący działanie testbencha, wyniki działań modułów przed i po syntezie, kolejno: s_o_model, s_o_synthesis są zgodne.

-Signals	-Waves						
Time) 16) sec 20	sec 30	sec	40	sec 50	sec 60 sec
s i argA[31:0] =-2034664691	Θ	-1844103900	75814409	-26	034664691	851608677	-2131500287
s i argB[31:0]=-958424691	Θ	1082744449	837834339	- 95	58424691	154620434	-2032677619
s o carry model=1							
s o carry synthesis=1							
s o model[31:0] =1301877914	Θ	-761359451	913648748	136	01877914	1006229111	130789390
s o synthesis[31:0] =1301877914	Θ	-761359451	913648748	136	01877914	1006229111	130789390

Ad 2.2

Moduł porównywania – porównywanie argumentu A i B – operacja sprawdzania, czy A<=B – jeśli warunek jest spełniony, wówczas wynikiem jest 1 w przeciwnym wypadku jest to 0;

Wejścia i Wyjścia:

- i_argA 32-bitowe wejście argumentu A;
- i_argB 32-bitowe wejście argumentu B;
- o_result 1-bitowy wynik operacji;

Parametry wewnetrzne:

• WIDTH – ma przypisaną wartość 32 i jest parametrem wielkości danych wejściowych;

Synteza modułu przebiegła bez błędów, w testbenchu została sprawdzona zgodność działania modułów przed syntezą (modelu) i po syntezie (plik z końcówką _rtl). Na grafice poniżej znajduje się zrzut ekranu pokazujący działanie testbencha, wyniki działań modułów przed i po syntezie, kolejno: s_o_model, s_o_synthesis są zgodne.

-Signals	-Waves							
Time) 10	sec 20	sec 30	sec	40	sec 50	sec	60 sec
s i argA[31:0] =-203466469	Θ	-1844103900	75814409	-2034664691		851608677	-2131500287	X
s i argB[31:0] =-958424691	θ	1082744449	837834339	-958424691		154620434	-2032677619	
s o model =1								
s o synthesis=1								
'								

Ad 2.3

Moduł ustawiania – ustawienie bitu w argumencie A na wartość 1; numer bitu jest określony w argumencie B; zgłoszenie błędu jeśli wartość w B jest ujemna lub przekracza liczbę bitów w A.

Wejścia i Wyjścia:

- i_argA 32-bitowe wejście argumentu A;
- i_argB 32-bitowe wejście argumentu B;
- o_result 32-bitowy wynik operacji;
- o_error bit błędu, równy 1, gdy wartość podana w argumencie B jest większa od 31 lub mniejsza od 0.

Parametry wewnętrzne:

- BITS ma przypisaną wartość 32 i jest parametrem wielkości danych wejściowych i wyniku;
- tymczasowy_rejestr zmienna lokalna przechowująca wynik operacji, na której możliwe będzie dokonanie operacji wielobitowej alternatywy.

Synteza modułu przebiegła bez błędów, w testbenchu została sprawdzona zgodność działania modułów przed syntezą (modelu) i po syntezie (plik z końcówką _rtl). Na grafice poniżej znajduje się zrzut ekranu pokazujący działanie testbencha, wyniki działań modułów przed i po syntezie, kolejno: s_o_model, s_o_synthesis, s_o_error_model, s_o_error_synthesis są zgodne. Ostatnie dwie wartości zostały tak dobrane w testbenchu, by podnieść flagę o_error;

Ad 2.4

Moduł konwersji - konwersja liczby z kodu U2 na kod ZNAK-MODUŁ; jeśli konwersja nie może zostać poprawnie wykonana to ma zostać zgłoszony błąd a wynik konwersji jest nieokreślony.

Wejścia i Wyjścia:

- i_argA 32-bitowe wejście argumentu A;
- o_result 32-bitowy wynik operacji;
- o_error bit błędu, równy 1, gdy konwersja nie może zostać poprawnie wykonana; Parametry wewnętrzne:
 - WIDTH ma przypisaną wartość 32 i jest parametrem wielkości danych weiściowych;

Synteza modułu przebiegła bez błędów, w testbenchu została sprawdzona zgodność działania modułów przed syntezą (modelu) i po syntezie (plik z końcówką _rtl). Na grafice poniżej znajduje się zrzut ekranu pokazujący działanie testbencha, wyniki działań modułów przed i po syntezie, kolejno: s_o_model, s_o_synthesis, s_o_error_model, s_o_error_synthesis są zgodne. Ostatnia wartość i_argA została tak dobrana, by została podniesiona flaga o_error.

	Signals———	-Waves
ı		63 sec 70 sec 77 sec
ı	Time	
ı	s i argA[31:0]=	100001101011+ (1100011011111111001100110011011 (100000000
ı	s_o_error_synthesis=1	
ı	s o error model =:	
ı	s o synthesis[31:0] =	111110010100+)10111001001000000110011001
ı	s o model[31:0]=	111110010100+)10111001001000000110011001
ı		

Ad 3.

Moduł exe_unit_w48 – jednostka arytmetyczno-logiczna realizująca wszystkie operacje opisane powyżej na 32-bitowych danych wejściowych.

Wejścia i Wyjścia:

Rodzaj wykonywanej operacji jest określony przez n-bitowe wejście sterujące i_oper. Dane m-bitowe, na których wykonywane są operacje są pobierane z dwóch wejść i argA i i argB. Wynik jest podawany na m-bitowe wyjście o result.

 i_oper - n-bitowe wejście sterujące (kombinacyjne) określające rodzaj operacji do wykonania na argumentach A i B:

Lista kodów i przypisanych do nich operacji:

- 1'b00 dodawanie
- 1'b01 porównywanie
- 1'b10 ustawianie
- 1'b11 konwersja
- i_argA m-bitowe wejście argumentu A
- i_argB m-bitowe wejście argumentu B
- i_clk wejście zegara (aktywne zbocze narastające)
- i_rsn wejście resetu synchronicznego (wartość logiczna 0 ustawia wszystkie rejestry modułu exe_unit_w48 na wartość 0)
- o_result wyjście synchroniczne (z rejestru) wyniku operacji, zmiana wyjścia następuje na zboczu narastającym zegara i_clk
- o_carry bit przepełnienia, równy 1, gdy wynik operacji przekracza zakres 32 bitów
- o_error_ust bit błędu, równy 1, gdy wybrana została operacja ustawiania i wartość podana w argumencie B jest większa od 31 lub mniejsza od 0
- o_error_konw bit błędu, równy 1, gdy konwersja nie może zostać poprawnie wykonana;

Jednostka exe_unit_w48 ma dodatkowe synchroniczne (z rejestru) wyjście statusu o_status (zmiana wyjścia następuje na zboczu narastającym zegara i_clk), którego kolejno bity określają znaczniki:

- ERROR operacja nie została wykonana; wartość o_result jest nieokreślona występuje tylko dla modułów konwersji i ustawiania, gdy flaga ta jest równa 1, wtedy wynik jest nieokreślony, w przeciwnym wypadku flaga jest równa 0;
- \bullet ZERO wszystkie bity wyniku są ustawione na 0 flaga jest równa 1, gdy wynik składa się z samych zer, w przeciwnym wypadku flaga jest równa 0;
- NEG wynik jest liczbą ujemną flaga jest równa 1, gdy najstarszy bit jest równy 1, w przeciwnym wypadku flaga jest równa 0;
- EVEN w wyniku jest parzysta liczba jedynek flaga jest równa 1, gdy po dokonaniu operacji XOR na parach bitów wyniku, wynik tej operacji pozostanie 0, w przeciwnym wypadku, flaga jest równa 0;

Synteza modułu przebiegła bez błędów, w testbenchu została sprawdzona zgodność działania modułów przed syntezą (modelu) i po syntezie (plik z końcówką _rtl). Na grafice poniżej znajduje się zrzut ekranu pokazujący działanie testbencha, wyniki działań modułów przed i po syntezie są zgodne

-Signals	Waves				
Time) sec	360 sec	370 sec	380 sec	390 sec 4
clk=1					
i argA[31:0]=78D99BF1	B+ 78D99BF1	31230762	4FA1559F	7C6DA9F8	CFC4569F
i_argB[31:0] =6C9C4BD9	0+)6C9C4BD9	2635FB4C	47B9A18F	DBCD60B7	AE7D945C
i oper[1:0] =01	11 01		00		
liczba bledow=0	0				
liczba testow=18	18	19		20	
o_carry_model=0					
o_carry_synthesis=0					
o_result_gates[31:0] =C0DCCD82	C0DCCD82		00000000		583B0AAF
o result model[31:0] =C0DCCD82	C0DCCD82		00000000		583B0AAF
o status gates[3:0]=1101	1101		1011		1001
o status model[3:0] =1101	1101		1011		1001

Ad. 4 Graficzny model realizacji ALU

