Human Activity Recognition and Study of Dynamic-Filter-Networks for Position-aware Detection Master Thesis

Yuvaraj Govindarajulu

Supervisor: Mario Doebler

Institute of Signal Processing and System Theory

Master of Science, INFOTECH University of Stuttgart

19.11.2019

Table of Contents

Motivation

Human Activity Recognition

Datasets Sliding window

Architecture

Position-aware activity Recognition

Existing Work

Dynamic Filter Networks

Filter Generating Networks for LSTM Weights

1D convolution based sequence transformation

Results

Table of Contents

Motivation

Human Activity Recognition

Datasets

Sliding window

Architecture

Position-aware activity Recognition

Existing Work

Dynamic Filter Networks

Filter Generating Networks for LSTM Weights

1D convolution based sequence transformation

Results

Motivation

- Increase in global average life expectancy
 - \square By 5.5years between 2000 and 2016 (GHO data from WHO [2])
 - Percentage of population aged over 65years will double between 2019 and 2050 [4]

Figure: Age distribution of world population - 1950-2050 [4]

Motivation

Figure: Placement of body worn sensors [3]

Figure: Classification of HAR systems

Table of Contents

Motivation

Human Activity Recognition

Datasets
Sliding window
Architecture

Position-aware activity Recognition

Existing Work

Dynamic Filter Networks

Filter Generating Networks for

Results

Datasets

- Datasets:
 - □ Human Activities and Postural Transition Dataset (HAPT)
 - □ RealWorld (HAR) Dataset

Table: Comparison of HAPT and RealWorld (HAR) datasets

	HAPT	RealWorld (HAR)
Number of activities	12	8
Number of subjects	30	15
Age group	19 to 48 years	19 to 44 years
Number of sequences	3126	54592
Train/test/validation ratio	2126/625/375	38720/10512/5360
Number of positions	1	7
Postural transitions	Yes	No
Number of sensors recorded	2	6
Environment setting	Indoor	Real world scenario

Sliding window

Figure: Example of sliding window with overlap

Types of Classification tasks

Sequence-to-Sequence (S2S) and Sequence-to-Label Classification tasks (S2L)

Figure: Classification task types

Architecture

- Architecture used for
 - □ Position specific activity recognition
 - □ Comparison of S2S and S2L classification tasks
 - Position recognition

Figure: LSTM based architecture

Table of Contents

Motivation

Human Activity Recognition

Sliding window

Position-aware activity Recognition

Existing Work
Dynamic Filter Networks
Filter Generating Networks for LSTM Weights
1D convolution based sequence transformation

Results

Existing Work

- Feature extraction methods
- Multi-level classification
- Identification of static and dynamic activities
- Random Forest Classifier

Figure: Multi-level classification [3]

Dynamic Filter Networks

- Framework where filters are generated dynamically depending on the input
- Contains two parts
 - □ Filter-Generating network
 - Dynamic Filtering layer
- Generated filters can be applied
 - □ Globally (Dynamic convolution)
 - □ Locally (Dynamic local filtering)

Figure: Block Diagram of Dynamic filter network [1]

Filter Generating Networks for LSTM Weights

Figure: FGNs for LSTM Internal Weights

Filter Generating Networks for LSTM Weights

Figure: Structure of LSTM cell

1D convolution based sequence transformation

Figure: 1D convolution transformation

Figure: Sequence transformation using 1D convolution

Table of Contents

Motivation

Human Activity Recognition

Datasets

Sliding window

Architecture

Position-aware activity Recognition

Existing Work

Dynamic Filter Networks

Filter Generating Networks for LSTM Weights

1D convolution based sequence transformation

Results

Results - Position specific HAR

Table: HAR for various classification types (Position-shin)

Parameters	S2S-WinSize- 250,Shift-125	S2S-WinSize- 125,Shift-62	S2L-WinSize- 250,Shift-125
Training Bal. Accuracy(%)	99.14	97.67	97.45
Test Accuracy(%)	80.81	77.99	73.95

Table: Results for S2S classification - position wise

Parameters	Chest	Head	Shin	Upperarm	Waist
Final Training Accuracy(%) Test Accuracy(%)	87.88	73.66	86.09	75.43	85.91
	65.1	69.14	83.4	68.2	79.51

Results - Position specific HAR

Figure: Confusion matrix - Shin Position

Results - Position aware HAR

Table: Position-aware HAR using FGN for LSTM weights

Parameters	Baseline (NoFGN)	FGN for Hidden init.	FGN for output gate
Training Bal. Accuracy(%)	77.15	67.13	72.06
Test Accuracy(%)	49.56	45.82	46.65

Table: Position-aware HAR using 1D conv sequence transformation

Parameters	Baseline (NoFGN)	with FGN for trans- formation
Training Bal. Accuracy(%) Test Accuracy(%)	87.68 67.80	91.50 68.21

Conclusion and Future work

- Position-specific Human activity recognition
 - □ Sliding window with overlap of 50% show the best results
 - Sitting and Standing activities are commonly mis-classified (for all positions)
- Position-aware Human activity recognition
 - Generating position-index based weights for LSTM internal gates inhibits the cell from learning temporal dependencies
 - FGN with 1D input transformation has improved accuracy than the equivalent network without FGN
- Future Work
 - $\hfill \square$ Use of gravitational features to initialize hidden state of LSTM
 - Appending position information as part of the latent vector output of the LSTM layer

References

- Bert De Brabandere et al. "Dynamic Filter Networks". In:

 Proceedings of the 30th International Conference on Neural
 Information Processing Systems. URL:

 http://dl.acm.org/citation.cfm?id=3157096.3157171.
- World Health Organization. Global Health Observatory (GHO) data. https://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends_text/en/. [accessed 01-11-2019]. 2019.
- Timo Sztyler and Heiner Stuckenschmidt. "On-body Localization of Wearable Devices: An Investigation of Position-Aware Activity Recognition". In: 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom). 2016.
- Department of Economic United Nations and Population Division (2019) Social Affairs. "World Population Prospects 2019: Press Release". In: (2019).

Human Activity Recognition and Study of Dynamic-Filter-Networks for Position-aware Detection

Thank you

Distribution of subjects

Figure: Distribution of subjects based on fitness and physical characteristics

Backup: LSTM Implementation

 $f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$

 $\tilde{C}_t = tanh(W_{rc}x_t + W_{hc}h_{t-1})$

 $C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t$

 $o_t = \sigma(W_{ro}x_t + W_{ho}h_{t-1} + b_0)$

 $h_t = tanh(C_t) \circ o_t$

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i) \tag{1}$$

(2)

(3)

(4)

(5)

(6)

< = > < □ > < 両 >

Backup: Variants of LSTM

- Sepp Hochreiter and Jurgen Schmidhuber. Long Short-Term Memory http://www.bioinf.iku.at/publications/older/2604.pd
 - http://www.bioinf.jku.at/publications/older/2604.pdf, 1997
- Felix A. Gers, Jurgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with LSTM, 1999
- Felix A. Gers and Jurgen Schmidhuber. Recurrent nets -that time and count, 2000
- Alex Graves and Jurgen Schmidhuber, Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures, 2005
- Klaus Greff et. al, LSTM: A Search Space Odyssey https://arxiv.org/pdf/1503.04069.pdf, 2017

Backup: Data preprocessing

Figure: Timestamp based alignment -before and after

Backup: Z-Score Normalization

Z-Score Normalization:

Resulting time-series after normalization will have zero mean and unit variance

$$x_i' = \frac{x_i - \mu_x}{\sigma_x}, \forall i$$