平成 18 年 8 月 21 日(月)

10:00~12:00

平成 19 年度大学院前期課程入学試験

回路理論

入試問題

【注意事項】

問題の数は5問である。解答は

問題1を1枚目(白色)の解答用紙

問題2を2枚目(赤色)の解答用紙

問題3を3枚目(青色)の解答用紙

問題4を4枚目(黄色)の解答用紙

問題5を5枚目(水色)の解答用紙

に記入すること。

問1 (20点)

図1の回路において、t<0でスイッチ SW は閉じており、定常状態にある。t=0でスイッチ SW を開くものとする。ただし、R, r, L, Eは、全て正の実数である。

- (1) スイッチ SW を開く直前 (t=0-) での図示の電流 i(t)の値 i(0-)を求めよ。
- (2) 図示の電流 *i(t)* (t≥0)のラプラス変換 *I(s)*を求めよ。
- (3) 図示の電流 i(t) (t≥0)を求めよ。

問2 (20点)

角周波数ωの図2に示す正弦波交流回路について以下の問いに答えよ。

- (1) AB間のインピーダンスが角周波数 ω に無関係に一定となるためにはL,
- R, Cにはどのような関係が必要か?
- (2) また、そのときのインピーダンスを求めよ。

問3(20点)

角周波数 $\omega=1$ の図 3a の正弦波交流回路において、R=1 $[\Omega]$, L=1 [H], C=C [F] とした時に以下の設問に答えよ。なお、電流源フェーザ \dot{Is} の 絶対値 $|\dot{Is}|=1$ とする。

- (1) 電流源ポートİsを開放除去した時の a-b における駆動点アドミタンスを 求めよ。
- (2) ポート a-b から見たノートン等価回路を示せ。
- (3) ポート a-b に図 3b のようにインピーダンス Z' の負荷を接続した。Z' = 1/5 + (3/5)j の時、電源から負荷 Z' に供給される有効電力 P を最大にするための C の値と、その時の最大有効電力 P_{max} を求めよ。

Is C ≠ Z' b

図 3b

問4 (20点)

RLCからなる 2 ポート回路の各ポートに電圧源と抵抗を接続して 2 通りの電流測定を行った。図 4 a の回路において正弦波定常状態における電流フェーザは $I_1^{(a)} = \frac{1}{10}(2+j)$, $I_2^{(a)} = \frac{1}{10}(-1+2j)$ であった。また、図 4 b の回路における電流フェーザは $I_1^{(b)} = \frac{1}{10}(-1+2j)$, $I_2^{(b)} = \frac{1}{10}(3-j)$ であった。

ただし、 $V=\sin 2t$ [V], $R_1=1$ [Ω], $R_2=2$ [Ω]である。以下の問に答えよ。

- (1) この 2 ポート回路の $\omega=2$ におけるインピーダンス行列 2を求めよ。
- (2) 2 ポート回路を図4cのT型回路により実現する場合、R, L, C の値を求めよ。

図 4 a

図 4 b

図 4 c

問5(20点)

図 5a に示す回路について、下記の間に答えよ。

(1) 次の文章の() に当てはまる言葉を下の【 】の中の言葉から一つ 選び、解答用紙に該当番号を付して答えよ。

この回路は、(1:)と呼ばれており、入力信号は図中の点 a、e の (2:)で入力される。また、出力信号は図中の点 b、c の (3:)として取り出され、このような入出力は、(4:)入力、(4:)入力、(4:)出力と呼ばれる。この回路の性能を表す指標 γ は、(5:)と呼ばれ、差動電圧利得 A_1 と同相電圧利得 A_2 の比 $\gamma = A_1/A_2$ で与えられる。また、 γ を高めるために、図中の R_2 は、(6:)特性を有するように大きく設計されるが、等価的に R_2 を大きくする方法としてトランジスタを使用した(7:)が用いられる。

【雑音指数、スルーレート、同相除去比、コレクタ損失、電力効率、和、差、 差動、同相、定電流、定電圧、平衡、不平衡、差動増幅回路、カレントミラー 回路、ダーリントン回路、エミッタホロワ回路、帰還増幅回路、演算増幅回路】

(2)この回路の差動電圧利得 A_1 、同相電圧利得 A_2 を、図 5b に示したトランジスタの等価回路を用いて導出し、(1)の文中における γ を求めよ。ただし、図 5b の β はエミッタ接地電流増幅率であり、 Tr_1 と Tr_2 は、同一の特性を持つものとする。

