Highest weight modules and Verma modules Binhe Huang

0. Notation.

- · L for dim semisimple over a algebraically closed field F of chair D.
- · L = H & N & N T, H Carlan subalg
- Φ roots system, $\Delta = 3a...a....a_1$ the set of simple roots
- · V a rep of L. $V_3 = 9$ $V \in L$: $h \cdot v = \lambda chiv$, $\forall hoth$, $\lambda \in H^*$ is called weight space

I. Weeplot Spaces.

Thun If V finite dim, V = + V2. But its may not be true for inf. dm.

Ex. Consider V = F[x] as a inf. dim sle-mod, $e \cdot x^n = -x(x+1)^n$, $f \cdot x^n = -x(x+1)^n$, $h \cdot x^n = 2x^{n+1}$

or (Denote Ta: $V \rightarrow V$; $g(x) \mapsto g(x+a)$ and x as the scalar operator) $e \longrightarrow -x \cdot \pi_{-1} , \quad f \longrightarrow -x \cdot \pi_{+1} , \quad h \longrightarrow 2x$ Then V is a rep which doesn't even have weight spaces.

II. Standard cyclic modules (Highest weight modules)

Peg. $v^+ \in V_{\lambda}$: a maximal vector (of weight λ) if $\forall x \in N$, $x : v^+ = 0$ $V = \forall x = 1$ is standard cyclic if $V = \mathcal{U}(L) v^+$, $\lambda = \alpha$ all ad the highest weight.

Ex The 1-mod U(1) & CV == D(7) is called the Verna module corresponding to 7.

U(HDN)

D(1) is standard cyclic, 18V is a maximal vector.

Thm. Simple finite din mods are standard cyclic.

Of finite din > maximal vector exists. Simplify > generated by any nonzero element

Thm.	V is standard cyclic 1-mod, with maximal vector v+e by. Let
4	======================================
1. /	13 spanned by YE Yem v+, i; EZzo; in particular, V= DVu
2. 7	The weights of Vare in $\lambda^- \Lambda_T^+$
3. ∀	MEH*, Vn fin. dim and Vn 1-dim.
4.	AWCV, W = B, V, NW
6. E	V is indecomposible, with a unique maximal submod and a corresponding unique in quevery homom image of V is also standard cyclic of weight a.
0	
U	By PBW, ML) = U(N-) UCH) U(N).
2	$Y_{e_m}^{i_m} v^+ \in V_{\lambda} = \sum_{i=1}^{m} i_i \beta_i$
3.	$y_{\mathbf{k}}^{i}$. $y_{\mathbf{k}m}^{i} v^{\dagger} \in V_{\mathcal{F}} = \sum_{j=1}^{m} i_{j} \beta_{j}$ $\forall \alpha \in \Lambda_{\mathbf{r}}^{\dagger}, \text{ there are only finite number of the sum } \sum_{k=1}^{m} k_{j} = 1$
	TWENCV, W= 4,+ 42+11+ 1/2. WLOG, let 1/4; & W, Vj. (n=1)
ير	of h st. u.(h) + lle(h) , then
T	$(h-\mu_1ch)) \omega = (\mu_2-\mu_1)(h) \mu_{\mu_2} + \cdots + (\mu_m\mu_n)(h) \nu_{\mu_n} \in W$
	he sum of (h-mh)) w is strictly shorter than w. After n-1 steps, be can get your which is a confliction.
	2 W N V2 to, then W=V.
	Let $y: V \rightarrow W$, $y(V) = y(u)y+y = u(y)y(y+y)$
	and $G(V^+)$ is still a maximal vector.
Cor.	V standard cyclic, the maximal vector is unique up to scalar. If v is imed.
70 5	ome properties of Verma modules
<u>.</u>	
Thun.	A(1) has a unique maximal submod. Thus, it has a unique simple quotient.
Pf.	Let M be the sum of all proper submode of $\Delta(\lambda)$, Since 10 1/4 M, M + D(),
U	Lot M be the sum of all proper submod of $\Delta(\lambda)$, Since $100 \text{ V}_{\lambda} \notin M$, $M \neq \Delta(\lambda)$, Therefore, M is the runge maximal submod.
	Moreover, $\Delta(\lambda)/M =: L(\lambda)$ is the unique sample quotient.

Prop.	DIN) is simple iff A#Zzo
()	" obv.
	Then $\Delta(\lambda)$ can be generated by any nonzero element in $\Delta(\lambda)$.
Rmk.	If rez, Air) has the unique maximal vector 10 by (up to scalar)
	By the corollary, D() is simple. = j'+ - ()+1) j'() ()-1-h)
	If $x \in \mathbb{Z}_{50}$, $1 \otimes V_{5}$, $f^{7+1} \otimes V_{5}$ are both movimal vectors
	Since the quotient $\Delta(\lambda)/u(sb)$ for λ is the finite dim him List,
	U(Sb) JOV2 is the maximal submodule of A(T).
V. Th	e universal property of Verma modules. (Frobinus reciprocity)
Thm. F	or all highest weight mods V of weight λ , there exists a surjective homom $\phi: \Delta(\lambda) \rightarrow V$
that is	. V is isomorphic to a quotient of $\Delta(\lambda)$.
	DIN) = ULL) & CV = U(N-) & CV (a free U(N)-mod)
	Define $\phi: \mathcal{Y}_{\mathcal{B}_{i}}^{\overline{\iota}_{i}} \dots \mathcal{Y}_{\mathcal{E}_{m}}^{\overline{\iota}_{m}} \otimes_{\mathcal{F}} \mathcal{V}_{i} \longrightarrow \mathcal{Y}_{\mathcal{B}_{i}}^{\overline{\iota}_{i}} \dots \mathcal{Y}_{\mathcal{E}_{m}}^{\overline{\iota}_{m}} \mathcal{V}_{i}$
	By the theorem abore, \$ is surj.
A Gen	eralization of the universal property is the following:
Thm.	Given an L-mod M and 26H*, denote K2(M) by the set
	$K_{\lambda}(M) := \begin{cases} v \in M : \Lambda_{+} V = 0 \text{ and } h v = \lambda(h) V, \forall hell \end{cases}$
	$Hom_{W}(\Delta(\lambda), M) \cong K_{\lambda}(M)$ (as $\mathcal{U}(H \oplus N) - mod)$
Pf. J	$tom_{u(L)}(\Delta(\lambda), M) = Hom_{u(L)}(u(L) \otimes CV_{\lambda}, M) \cong Hom_{u(L)}(CV_{\lambda}, Hom_{u(L)}(u(L), M))$
Rmk	= Hom (CV, M) = K, (M). Home (BOSA, C) & Home (B, C) U(HON) Indeed, it is the Frobenius reciprocity (more well known in group reptheory)
	Homuch (Ind uchen) (Vx, M) = Homuchen) (CVx, Resulter) (M)