

ශී ලංකා විභාග දෙපාර්තමේන්තුව අ.පො.ස. (උ.පෙළ) විභාගය - 2018

10 - සංයුක්ත ගණිතය l

ලකුණු දීමේ පටිපාටිය

මෙය උත්තරපතු පරිකෘකවරුන්ගේ පුයෝජනය සඳහා සකස් කෙරිණි. පරිකෘක සාකච්ඡා පැවැත්වෙන අවස්ථාවේදී ඉදිරිපත්වන අදහස් අනුව මෙහි වෙනස්කම් කරනු ලැබේ.

ව්යුහ්ගත රචනා හා රචනා උත්තරපතු :

- අයදුම්කරුවන් විසින් උත්තරපතුයේ හිස්ව තබා ඇති පිටු හරහා රේඛාවක් ඇඳ කපා හරින්න. වැරදි හෝ තුසුදුසු පිළිතුරු යටින් ඉරි අඳින්න. ලකුණු දිය හැකි ස්ථානවල හරි ලකුණු යෝගමන් එය පෙන්වන්න.
- 2. ලකුණු සටහන් කිරීමේදී ඕවර්ලන්ඩ් කඩදාසියේ දකුණු පස තී්රය යොදා ගත යුතු වේ.
- 3. සැම ප්‍රශ්නයකටම දෙන මුළු ලකුණු උත්තරපත්‍රයේ මුල් පිටුවේ ඇති අදාළ කොට්‍රව තුළ ප්‍රශ්න අංකය ඉදිරියෙන් අංක දෙකකින් ලියා දක්වන්න. ප්‍රශ්න පත්‍රයේ දී ඇති උපදෙස් අනුව ප්‍රශ්න තෝරා ගැනීම කළ යුතුවේ. සියලු ම උත්තර ලකුණු කර ලකුණු මුල් පිටුවේ සටහන් කරන්න. ප්‍රශ්න පත්‍රයේ දී ඇති උපදෙස්වලට පටුහැනිව වැඩි ප්‍රශ්න ගණනකට පිළිතුරු ලියා ඇත්නම් අඩු ලකුණු සහිත පිළිතුරු කපා ඉවත් කරන්න.
- 4. පරීකෂාකාරීව මුළු ලකුණු ගණන එකතු කොට මුල් පිටුවේ නියමිත ස්ථානයේ ලියන්න. උත්තරපතුයේ සෑම උත්තරයකටම දී ඇති ලකුණු ගණන උත්තරපතුයේ පිටු පෙරළමින් නැවත එකතු කරන්න, එම ලකුණ ඔබ විසින් මුල් පිටුවේ එකතුව ලෙස සටහන් කර ඇති මුළු ලකුණට සමාන දයි නැවත පරීකෂා කර වලත්න.

ලකුණු ලැයිස්තු සකස් කිරීම :

12,

මෙවර සියලු මී විසයන්හි අවසාන ලකුණු ඇගයීම් මණ්ඩලය තුළදී ගණනය කරනු නොලැබේ. එමැවිස් එස් එස් ප්‍රයට අදාළ අවසාන ලකුණු වෙන වෙනම ලකුණු ලැයිස්තුවලට ඇතුළත් කළ සුතු ය. I පතුයට අදාළ සමණු පකුණු ලැයිස්තුවේ "I වන පතුය" කි්රුවේ ඇතුළත් කර අකුරෙන් ද පියන්නා අදාළ විස්තර ලකුණු ඇතුළත් කර II වන පතුය" තී්රුවේ II පතුයේ අවසාන ලකුණු ඇතුළත් කරන්න. 51 චිතු විෂයයේ I, II හා III පතුවලට අදාළ ලකුණු වෙන වෙනම ලකුණු ලැයිස්තුවල ඇතුළත් කර අකුරෙන් ද ලිවිය යුතු වේ. 1. ශනීත අගසුගත මූලධර්මය භාවිතයෙන්, සියලු $n\in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n r^2 = \frac{1}{4}n^2(n+1)^2$ බව සාධනය කරන්න.

$$n=1$$
 විට, ව:පැ: $=1^3=1$ හා ද:පැ: $=\frac{1}{4}\cdot 1^2(1+1)^2=1$.

 \therefore n=1 විට පුතිඵලය සතා වේ.

෯නෑම $p \in \mathbb{Z}^+$ ගෙන n=p විට පුකිඵලය සතාා යැයි සිකමු.

එනම,
$$\sum_{r=1}^{p} r^3 = \frac{1}{4} p^2 (p+1)^2$$
. 5

$$\varsigma_{l} \text{ and } \sum_{r=1}^{p+1} r^{3} = \sum_{r=1}^{p} r^{3} + (p+1)^{3} \qquad 5$$

$$= \frac{1}{4} p^{2} (p+1)^{2} + (p+1)^{3}$$

$$= (p+1)^{2} \frac{[p^{2} + 4p + 4]}{4}$$

$$= \frac{1}{4} (p+1)^{2} (p+1)^{2} \qquad 5$$

එනයින් n=p සඳහා පුතිඵලය සතා වේ නම්, n=p+1 සඳහා ද පුතිඵලය සතා වේ. අපි දැනටමත් n=1 සඳහා පුතිඵලය සතා බව පෙන්වා ඇත. එනයින් ගණිත අභ්ඩුහන මුලධර්මය මගින් සියලු $n\in\mathbb{Z}^+$ සඳහා පුතිඵලය සතා වේ.

2. එක ම රූප සටහනක y=3+|x| හා y=|x-1| හි පුක්කාරවල දළ සටහන් අඳින්න. ඒ සහිස් හෝ අත් අලුරහින් හෝ. $|x|+|x-1|\leq 3$ අතමානකාව සසුරාලන x හි සියලු ම නාන්ත්වික අගයන් සොයන්න.

ලේදන ලක්ෂාය වලදී -x+1=3+x හෝ x-1=3-x

එනම්,
$$x = -1$$
 ගෙන් $x = 2$.

තවද,
$$|x|+|x-1| \le 3$$

$$\Leftrightarrow |x-1| \le 3-|x|$$
 5

එනයින්, පුස්තාරයෙන්, විසඳුම් $-1 \le x \le 2$ කෘප්ත කරන x අගයන් වේ.

25

වෙනත් කුමයක්

$$|x| + |x-1| \le 3$$

(i) අවස්ථාව
$$x \le 0$$
: $|x| + |x-1| \le 3 \Leftrightarrow -x - (x-1) \le 3$

$$\Leftrightarrow$$
 $-2x+1 \le 3$

$$\Leftrightarrow x \ge -1$$

මෙම අවස්ථාව සඳහා විසඳුම් $-1 \le x \le 0$ තෘප්ත කරන x අගයන් වේ.

(ii) අවස්ථාව $0 < x \le 1$

$$|x| + |x-1| \le 3$$

$$\Leftrightarrow x - (x - 1) \le 3$$

$$\Leftrightarrow x-(x-1) \leq 3$$

මෙම අවස්ථාව සඳහා විසඳුම් $0 < x \le 1$ වේ.

(iii) අවස්ථාව 1 < x

$$|x| + |x-1| \le 3$$

$$\Leftrightarrow x+x-1 \leq 3$$

$$\Leftrightarrow 2x \le 4$$

$$\Leftrightarrow x \le 2$$

 \therefore මෙම අවස්ථාව සඳහා විසඳුම් $1 < x \le 2$ වේ.

එනයින් විසඳුම් $-1 \le x \le 2$ කෘප්ත කරන x අගයන් වේ.

3. ආහත්ව සවහනක, ${\rm Arg}(z-3i)=-rac{\pi}{3}$ සසුජාලන z සංකීර්ණ සංඛන නිරූපණය කරන ලක්ෂාවල පථයෙහි දළ සවහනක් අදින්න. ඒ සම්ශ් හෝ අන් අතුරකින් හෝ, ${\rm Arg}(\overline{z}+3i)=rac{\pi}{3}$ වන පරිදි |z-1| හි අවම අගය සොයන්න.

$$\operatorname{Arg}(\bar{z}+3i) = \frac{\pi}{3}$$

$$\Leftrightarrow \operatorname{Arg}(\overline{z+3i}) = -\frac{\pi}{3}$$

$$\Leftrightarrow$$
 Arg $(z-3i) = -\frac{\pi}{3}$.

එනයින්,
$$\operatorname{Arg}(\bar{z}+3i)=\frac{\pi}{3}$$
 වන පරිදි $|z-1|$ හි අවම අගය NM දෙනු ලබයි. $\boxed{5}$

ෙමහි
$$NM = (\sqrt{3} - 1)\sin\frac{\pi}{3} = \frac{(3 - \sqrt{3})}{2}$$

4. $\left(\chi^2 + \frac{3k}{x} \right)^2$ හි දවිපද පුසාරණයේ x හා x^4 හි භංගුණක සමාන වේ. k නියකයෙහි අපය සොයන්න.

$$\left(x^{2} + \frac{3k}{x}\right)^{8} = \sum_{r=0}^{8} {}^{8}C_{r}(x^{2})^{r} \left(\frac{3k}{x}\right)^{8-r}$$

$$= \sum_{r=0}^{8} {}^{8}C_{r}(3k)^{8-r}x^{3r-8}$$

$$x^{1}:3r-8=1 \Leftrightarrow r=3.$$

 $x^{4}:3r-8=4 \Leftrightarrow r=4.$

දක්කයෙන්
$${}^{8}C_{r}(3k)^{5} = {}^{8}C_{4}(3k)^{4}$$
 5

$$\frac{8!}{3! \, 5!} 3^5 k = \frac{8!}{4! \, 4!} 3^4 \qquad 5$$

$$k = \frac{5}{12} \, . \qquad 5$$

5.
$$\lim_{x\to 0} \frac{1-\cos\left(\frac{\pi x}{4}\right)}{x^2(x+1)} = \frac{\pi^2}{32}$$
 and equilibrium.

$$\lim_{x \to 0} \frac{1 - \cos\left(\frac{\pi x}{4}\right)}{x^2(x+1)} = \lim_{x \to 0} \frac{2\sin^2\left(\frac{\pi x}{8}\right)}{x^2(x+1)}$$

$$= \lim_{x \to 0} 2\left[\frac{\sin\left(\frac{\pi x}{8}\right)}{\left(\frac{\pi x}{8}\right)}\right]^2 \cdot \frac{\pi^2}{64} \cdot \frac{1}{x+1}$$

$$= 2 \cdot 1 \cdot \frac{\pi^2}{64} \cdot \frac{1}{1} \qquad 5$$

$$= \frac{\pi^2}{32}. \qquad 5$$

$$\lim_{x \to 0} \frac{1 - \cos\left(\frac{\pi x}{4}\right)}{x^2(x+1)} = \lim_{x \to 0} \frac{1 - \cos\left(\frac{\pi x}{4}\right)}{x^2(x+1)} \cdot \frac{1 + \cos\left(\frac{\pi x}{4}\right)}{1 + \cos\left(\frac{\pi x}{4}\right)}$$

$$= \lim_{x \to 0} \frac{\sin^2\left(\frac{\pi x}{4}\right)}{x^2(x+1)(1 + \cos\left(\frac{\pi x}{4}\right))} \cdot \frac{1}{1 + \cos\left(\frac{\pi x}{4}\right)}$$

$$= \lim_{x \to 0} \left[\frac{\sin\left(\frac{\pi x}{4}\right)}{\left(\frac{\pi x}{4}\right)}\right]^2 \cdot \frac{\pi^2}{16} \cdot \frac{1}{x+1} \cdot \frac{1}{1 + \cos\left(\frac{\pi x}{4}\right)}$$

$$= 1 \cdot \frac{\pi^2}{16} \cdot \frac{1}{1} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

6. $y = e^{2x}$, $y = e^{3-x}$, x = 0, x = 3 හා y = 0 වනු මහින් ආවසන පෙළේදයෙහි වර්ගඵලය, වර්ග එකළු $\frac{3}{2} (e^2 - 1)$ බව පෙන්වන්න.

25

7. $\frac{\pi}{2} < t < \pi$ හඳහා $x = \ln\left(\tan\frac{t}{2}\right)$ හා $y = \sin t$ පරාමිනික සම්කරණ මගින් C වනුයක් දෙනු ලැබේ. $\frac{\mathrm{d}y}{\mathrm{d}x} = \cos t \sin t$ බව පෙන්වන්න.

 $t=rac{2\pi}{3}$ ව අනුරුප ලක්ෂායෙන් දී C වනුයට ඇදි ස්පර්ශ රේඛාවෙන් අනුනුමණය $-rac{\sqrt{3}}{4}$ බව අපේර්ණය කරන්න.

$$x = \ln\left(\tan\frac{t}{2}\right) \qquad y = \sin t$$

$$\frac{dx}{dt} = \frac{1}{\tan\frac{t}{2}} \times \sec^2\frac{t}{2} \times \frac{1}{2} \qquad \frac{dy}{dt} = \cos t$$
5

$$= \frac{1}{2\cos\frac{t}{2}\sin\frac{t}{2}}$$

$$= \frac{1}{\sin t}$$

$$\cot \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \cos t \sin t \qquad \boxed{5}$$

$$\frac{dy}{dx}\bigg|_{t=\frac{2\pi}{3}} = \cos\frac{2\pi}{3}\sin\frac{2\pi}{3} = -\frac{1}{2} \times \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{4}$$

8. l_1 යනු x+y-5=0 සරල ජේඛාව යැයි ගනිමු. $P\equiv (3,4)$ ලක්ෂාය හරහා යන හා l_1 ව ලම්බ වූ l_2 සරල ජේඛාවෙහි සම්කරණය සොයන්න.

Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු PQ:QR=1:2 වන පරිදි l_2 මන වූ ලක්ෂාය යැයි ද ගනිමු. R හි බණ්ඩාංක භොයන්න.

$$l_2$$
 හි අනුකුමණය = $-\frac{1}{-1}$ = 1

 l_2 සමීකරණය : y-4=1(x-3)

$$x - y + 1 = 0$$

$$5$$

$$Q \equiv (2,3)$$

 $R\equiv (x_0,y_0)$ යයි ගනිමු.

එව්ට,

$$2 = \frac{x_0 + 6}{3}$$
 ws $3 = \frac{y_0 + 8}{3}$

$$Q \equiv (2,3)$$
. මවනත් නුමයක් $\frac{QR}{RP} = -\frac{2}{3} \, a_{7}$ වින් $R \equiv \left(\frac{-2 \times 3 + 2 \times 3}{3 - 2}, \frac{-2 \times 4 + 3 \times 3}{3 - 2}\right)$ $= (0,1)$

$$=4\left[\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\geq 0 \text{ for all } a,b\in\mathbb{R}.$$

ඒ නයින්, මූල තාත්ත්වික වේ. (

25

$$\alpha + \beta = \frac{2}{3}(a+b) \qquad \alpha\beta = \frac{ab}{3}$$

$$\beta = \alpha + 2 \Longrightarrow (\beta - \alpha)^2 = 4$$

$$\Longrightarrow (\beta + \alpha)^2 - 4 \alpha \beta = 4$$
5

$$\Rightarrow \frac{4}{9}(a+b)^2 - \frac{4}{3}ab = 4$$
 5

$$\Rightarrow a^2 + 2ab + b^2 - 3ab = 9$$
$$\Rightarrow a^2 - ab + b^2 = 9$$

$$b^2 - ab + a^2 = 9$$

$$\Rightarrow \left(b - \frac{a}{2}\right)^2 = \frac{a^2}{4} - a^2 + 9$$

$$=-\frac{3a^2}{4}+9$$

$$=\frac{3}{4}(12-a^2)$$

$$\Rightarrow 12 - a^2 \ge 0$$

$$\Rightarrow$$
 $|a| \le \sqrt{12}$

$$b = \frac{a}{2} \pm \frac{\sqrt{3}}{2} \sqrt{12 - a^2}.$$
 10

(b)
$$f(x) = x^3 + 4x^2 + cx + d$$

 $f(-c) = -c^3 + 4c^2 - c^2 + d = -c^3$ 5
 $\Rightarrow 3c^2 + d = 0$ -----(1)
 $f(c) = c^3 + 4c^2 + c^2 + d = 0$
 $\Rightarrow c^3 + 5c^2 + d = 0$ -----(2)
(2) - (1) vari $c^3 + 2c^2 = 0$ Cross.
 $\Rightarrow c^2(c+2) = 0$
 $c \neq 0$, shess $c = -2$.

දැන්
$$f(x) = x^3 + 4x^2 - 2x - 12$$
.

 $f(x)$ යන්න $x^2 - 4$ මහින් බෙදු විට ශේෂය $\lambda x + \mu$ ආකාරය ගනී.

එනම $f(x) = (x^2 - 4)q(x) + \lambda x + \mu$.

 $\Rightarrow f(x) = (x - 2)(x + 2)q(x) + \lambda x + \mu$.

 $f(2) = 8 = 2\lambda + \mu$ හා $f(-2) = 0 = -2\lambda + \mu$
 $\Rightarrow \mu = 4$ හා $\lambda = 2$.

 $\Rightarrow \mu = 4$ හා $\lambda = 2$.

- 12. (a) එක එකත පිරිමි ළමයින් සිදෙනකු හා ගැහැනු ළමයින් දෙදෙනකු සිටින කණ්ඩායම් දෙකක සාමාජ්කයන් අතුරෙන්, සාමාජිකයන් හයදෙනකුගෙන් යුත් කම්වුවත් තෝරා ගත යුතුව ඇත්තේ කම්වුවේ සිටින ගැහැනු ළමයින් සංඛාාව වැඩි කරමින් දෙදෙනකු වන පරිදි ය.
 - (i) කම්වුවට එක් එක් කණ්ඩායමෙක් සාමාජිකයන් ඉරට්ටේ සංඛ්යාවක් සෝජා ගත යුතු කම.
 - (ii) කම්වුවට එක් ගැහැනු ළමයක් පමණක් පෙන්න ගත යුතු නම්,

(b)
$$r \in \mathbb{Z}^*$$
 degree $f(r) = \frac{1}{(r+1)^2} = 0$ $U_r = \frac{(r+2)}{(r+1)^2(r+3)^2} = 0$ so \mathbb{R}^n .

$$r \in \mathbb{Z}^+$$
 we can $f(r) - f(r+2) = 4U_r$ and a constant.

ජ සායිස්,
$$n\in\mathbb{Z}^+$$
 සඳහා $\sum_{r=1}^n U_r = \frac{13}{144} - \frac{1}{4(n+2)^2} - \frac{1}{4(n+3)^2}$ සිහි පෙන්වන්න.

$$\sum_{t=1}^n U_t$$
 අපරම්භ ලේඛය අභිකාරී බව අපේකයෙ කර එහි දේශාය ගොයන්න.

$$H \subset \mathbb{Z}^+$$
 words $t_{\mu} = \sum_{i=1}^{2n} U_i$ with which

(a) (i)

තේරීය හැකි වෙද	ගස් ආකාර ගණන	කම්ට ගණන	
1 කණ්ඩායම	2 කණ්ඩායම		
2	4		
IG IB	1G 3B	$2 \times 3 \times 2 \times 1 = 12$	
2B	IG 3B	$^{3}C_{2} \times 2 \times 1 = 6$	
2B	2G 2B	$C_2 \times {}^2C_2 \times {}^3C_2 = 9$	
		27	

$$= 54$$

45

(ii) IG 5B

$$^{4}C_{1} \times ^{6}C_{5} = 24.$$
 (5)

1 කණ්ඩායම		2 කණ්ඩායම		කමිටු ගණන
M(3)	F(2)	M(3)	F(2)	
2		2	2	${}^{3}C_{2} \times {}^{3}C_{2} \times {}^{2}C_{2} = 9$
2		3	1	${}^3C_2 \times {}^3C_3 \times {}^2C_1 = 6$
1	1	3	1	${}^{3}C_{1} \times {}^{2}C_{1} \times {}^{3}C_{3} \times {}^{2}C_{1} = 12$
2	2	2		9 10
3	1	2		6
3	1	1	1_	12

(b) $f(r) - f(r+2) = \frac{1}{(r+1)^2} - \frac{1}{(r+3)^2}$ $= \frac{4(r+2)}{(r+1)^2(r+3)^2}$ $= 4U_r$ = 5

එව්ට

$$r = 1;$$
 $4U_1 = f(1) - f(3)$
 $r = 2;$ $4U_2 = f(2) - f(4)$

$$r = 3;$$
 $4U_3 = f(3) - f(5)$

÷

$$r = n - 2$$
; $4U_{n-2} = f(n-2) - f(n)$
 $r = n - 1$; $4U_{n-1} = f(n-1) - f(n+1)$

$$r = n;$$
 $4U_n = f(n) - f(n+2)$

10

$$4\sum_{r=1}^{n} U_r = f(1) + f(2) - f(n+1) - f(n+2)$$

$$= \frac{1}{4} + \frac{1}{9} - \frac{1}{(n+2)^2} - \frac{1}{(n+3)^2}$$

$$\therefore \sum_{r=1}^{n} U_r = \frac{13}{144} - \frac{1}{4(n+2)^2} - \frac{1}{4(n+3)^2}.$$

40

 $n \to \infty$ විට ද. පැ. හි සීමාව $\frac{13}{144}$.

5

$$\therefore \sum_{r=1}^{\infty} U_r$$
 අභිසාරී වන අතර එකතුව $\frac{13}{144}$.

$$t_n = \sum_{r=n}^{2n} U_r$$

$$= \sum_{r=1}^{2n} U_r - \sum_{r=1}^{n-1} U_r$$

$$\sum_{r=1}^{\infty} U_r$$
 අභිසාරි බැවින්

$$\lim_{n \to \infty} t_n = \lim_{n \to \infty} \sum_{r=1}^{2n} U_r - \lim_{n \to \infty} \sum_{r=1}^{n-1} U_r$$

$$= \frac{13}{144} - \frac{13}{144}$$

$$= 0.$$

$$5$$

13. (a)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & -1 \end{pmatrix}$$
 හා $B = \begin{pmatrix} 3 & 2a \\ -1 & 0 \\ 1 & 3a \end{pmatrix}$ පැති හෙහිමු; මෙහි යෙඹ වෙ.

 ${f P}={f AB}$ මගින් අර්ථ දැක්වෙන ${f P}$ නාකසය සොයා, a හි කිසිදු අගයකට ${f P}^{-1}$ සොපවසීය බව පෙන්වන්න.

$$P\left(\begin{array}{c} 1 \\ 2 \end{array}\right)=5\left(\begin{array}{c} 2 \\ 1 \end{array}\right)$$
 හම, $a=2$ බව පෙන්වන්න.

a සඳහා මෙම අගය සහිත ව, $\mathbf{Q} = \mathbf{P} + \mathbf{I}$ යැයි ගනිමු; මෙහි \mathbf{I} යනු ගණය 2 වන ඒකක තාහසයයි.

$$\mathbf{Q}^{-1}$$
ලියා දක්වා $\mathbf{A}\mathbf{A}^{\mathrm{T}} - \frac{1}{2}\,\mathbf{R} = \left(\frac{1}{5}\,\mathbf{Q}\right)^{-1}$ වන පරිදි \mathbf{R} නාහසය සොයන්න.

- (b) Z=x+iy යැයි ගනිමු; මෙහි x,y∈ \Re මේ. Z හි, මාදාංකය |Z| හා පුනිබද්ධය \overline{Z} අර්ථ දක්වන්න.
 - (i) $z\overline{z} = |z|^2$,
 - (ii) $z + \overline{z} = 2 \operatorname{Re} z$ so $z \overline{z} = 2i \operatorname{Im} z$
 - බව පෙන්වන්න

$$z \neq 1$$
 හා $w = \frac{1+z}{1-z}$ ගැනි ගනිළි. $\text{Re } w = \frac{1-\left|z\right|^2}{\left|1-z\right|^2}$ හා $\text{Im } w = \frac{2 \text{ Im } z}{\left|1-z\right|^2}$ බව පෙන්වන්න.

 $z=\cos \alpha+i\sin \alpha\;(0<\alpha<2\pi)$ නම්, $w=i\cot \frac{\alpha}{2}$ බව නව දුරටක් පොන්වන්න.

(c) ආගන්ඩ සටහනක, A හා B ලක්ෂා පිළිවෙළින් -3i හා 4 සංකීර්ණ සංවත නිරූපණය කරයි. C හා D ලක්ෂා පළමුවන වෘත්ත පාදකයේ පිහිටන්නේ ABCD රොම්බසයක් හා $B\hat{A}D = \theta$ වන පරිදි ය; මෙහි $\theta = \sin^{-1}\left(\frac{7}{25}\right)$ වේ. C හා D ලක්ෂා මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛන සොයන්න.

(a)
$$P = AB = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & -1 \end{pmatrix} \begin{pmatrix} 3 & 2a \\ -1 & 0 \\ 1 & 3a \end{pmatrix} = \begin{pmatrix} 2 & 2a \\ 1 & a \end{pmatrix}.$$

$$\begin{vmatrix} 2 & 2a \\ 1 & a \end{vmatrix} = 2a - 2a = 0.$$

 \therefore a හි කිසිම අගයක් සඳහා P^{-1} නොපවස්,

10

<u>වෙනත් කුමයක්</u>

 P^{-1} පැවතීම සඳහා

$$\begin{pmatrix} 2 & 2a \\ 1 & a \end{pmatrix}\begin{pmatrix} b & c \\ d & e \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $b, c, d, e \in \mathbb{R}$ වන පරිදි පැවතිය යුතුය.

$$\Leftrightarrow 2b + 2ad = 1$$
, $b + ad = 0$, $2c + 2ae = 0$ we $c + ae = 1$,

මෙය විසංවාදයකි.

 \therefore a හි කිසිම අගයක් සඳහා P^{-1} නොපවතී.

10

If
$$P\begin{pmatrix}1\\2\end{pmatrix} = 5\begin{pmatrix}2\\1\end{pmatrix}$$
 නම $\begin{pmatrix}2+4a\\1+2a\end{pmatrix} = \begin{pmatrix}10\\5\end{pmatrix}$.

$$\Leftrightarrow 2 + 4a = 10$$
 ww $1 + 2a = 5$.

$$\Leftrightarrow a \simeq 2$$
.

10

 $\alpha = 2$.

$$Q = P + I = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 1 & 3 \end{pmatrix}.$$
 $\boxed{5}$

$$\therefore Q^{-1} = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ -1 & 3 \end{pmatrix}.$$

15

$$AA^{T} - \frac{1}{2}R = \left(\frac{1}{5}Q\right)^{-1}$$

$$= 5Q^{-1}. \qquad 5$$

$$\Leftrightarrow R = 2AA^{T} - 10Q^{-1}$$

$$= 2\left(\frac{1}{2} \quad \frac{1}{4} \quad 0\right) \begin{pmatrix} 1 & 2\\ 1 & 4\\ 0 & -1 \end{pmatrix} - 10\left(\frac{1}{5}\right) \begin{pmatrix} 3 & -4\\ -1 & 3 \end{pmatrix}$$

$$= 2\left(\frac{2}{6} \quad 6\\ 6 \quad 21\right) - \begin{pmatrix} 6 & -8\\ -2 & 6 \end{pmatrix}.$$

$$= \left(\frac{-2}{14} \cdot \frac{20}{36}\right).$$

(b) z = x + iy $x, y \in \mathbb{R}$

10

- (i) $z\bar{z} = (x + iy)(x iy) = x^2 + y^2 = |z|^2$
- 5

(ii)
$$z + \bar{z} = (x + iy) + (x - iy) = 2x = 2 \operatorname{Re} z$$
 $\varpi \varpi$ 5

$$z - \bar{z} = (x + iy) - (x - iy) = 2iy = 2i \text{ Im } z.$$

15

$$z \neq 1 \text{ and } w = \frac{1+z}{1-z} \times \frac{1-\bar{z}}{1-\bar{z}} = \frac{1-z\,\bar{z}+z-\bar{z}}{|1-z|^2} = \frac{1-|z|^2+2i\,\mathrm{Im}\,z}{|1-z|^2}$$

$$\Rightarrow \mathrm{Re}\,w = \frac{1-|z|^2}{|1-z|^2} \text{ and } \mathrm{Im}\,w = \frac{2\mathrm{Im}\,z}{|1-z|^2}$$

⇒ Re
$$w = \frac{1 - |z|^2}{|1 - z|^2}$$
 ⇔ Im $w = \frac{2 \text{Im } z}{|1 - z|^2}$

20

 $z = \cos \alpha + i \sin \alpha \, (0 < \alpha < 2\pi),$

එවිට
$$|z| = 1 \Leftrightarrow \text{Re } w = 0.$$

$$\therefore w = \frac{2i \operatorname{Im} z}{|1 - z|^2} = \frac{2i \sin \alpha}{(1 - \cos \alpha)^2 + \sin^2 \alpha} = \frac{2i \sin \alpha}{2(1 - \cos \alpha)} = i \frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{2\sin^2 \frac{\alpha}{2}} = i \cot \frac{\alpha}{2}.$$

20

(c)

 $\sin\theta = \frac{7}{25}, \left(0 < \theta < \frac{\pi}{2}\right)$

$$\Rightarrow \cos \theta = \frac{24}{25}$$

 $D \cong (a,b)$ යයි ගනිමු

A වටා AB වාමාවර්තව භුමණය කිරීමෙන් AD ගත හැක.

$$a + i(b+3) = (4+3i)(\cos\theta + i\sin\theta)$$

$$= (4+3i)\left(\frac{24}{25}+i\frac{7}{25}\right)$$

 $\Leftrightarrow a + i(b+3) = 3 + 4i$.

 $\Leftrightarrow a = 3 \text{ so } b = 1.$

: D මගින් 3 + i නිරුපණය කරයි.

$$\mathcal{C} \equiv (p,q)$$
, නම, $\frac{p+0}{2} = \frac{3+4}{2}$ හා $\frac{q-3}{2} = \frac{1+0}{2}$.

$$\Rightarrow p = 7 \text{ to } a = 4.$$

: C මගින් 7+4i නිරූපණය කරයි.

30

 $x \neq -1, \frac{1}{3}$ සඳහා f(x)හි වනුසාපන්නය, f'(x) යන්න $f'(x) = \frac{-32x(3x-5)}{(x+1)^3(3x-1)^2}$ මගින් දෙනු ලබන

බව පෙන්වන්න.

ස්පර්ශෝන්මුව හා හැරුම ලක්ෂා දක්වමින් y=f(x) හි පුස්කාරයේ දළ සටහනක් අදින්න.

පුස්තාරය භාවිතයෙන්, $k(x+1)^2(3x-1)=16(x+1)$ සම්කරණයට තරියටම එක් මූලයක් පවතින පරිදි $k\in\mathbb{R}$ හි අගයන් සොයන්න.

(b) අර්ය 3r cm හා උස 5k cm වන සංවෘත සුහර සාජු වගේන සිලින්වරයක උඩත් මුනුණගින් අර්ය r cm වන නැවියක් ඉවත් කර, අර්ය r cm හා උස h cm වන විවෘත කුහර සාජු වෘත්න සිලින්ඩරයක් රුපයේ දැක්වෙන පරිදි සවීකර 391π cm³ ක පරිමාවක් සහිත අභිර්ගලයක් සාදා ගත යුතුව ඇත. අභිරාලයේ මුළු පෘෂ්ඨ වර්ගඵලය S cm² යන්න $S = \pi r (32h + 17r)$ බව දී අනෙ. S අවම වන පරිදි r සි අගය සොයන්න.

(a)
$$x \neq -1, \frac{1}{3}$$
 we can; $f(x) = \frac{16(x-1)}{(x+1)^2(3x-1)}$

රිපිර

$$f'(x) = \frac{16(x+1)^2(3x-1) - 16(x-1)[2(x+1)(3x-1) + 3(x+1)^2]}{(x+1)^4(3x-1)^2}$$

$$= \frac{16(x+1)[(x+1)(3x-1) - 2(x-1)(3x-1) - 3(x-1)(x+1)]}{(x+1)^4(3x-1)^2}$$

$$=\frac{-32x(3x-5)}{(x+1)^3(3x-1)^2};\ \left(x\neq -1,\frac{1}{3}\right).$$

25

තිරස් ස්පර්ශෝන්මුබ : $\lim_{x \to \pm \infty} f(x) = 0$, එවිට y = 0. 5

$$\lim_{x\to -1^{\pm}} f(x)\to \infty \quad , \quad \lim_{x\to \frac{1}{3}^-} f(x)\to \infty \text{ as } \lim_{x\to \frac{1}{3}^+} f(x)\to -\infty.$$

සිරස් ස්පර්ශෝන්මුඛ:
$$x=-1$$
 සහ $x=\frac{1}{3}$.

හැරැම් ලක්ෂා වලදී $f^{'}(x)=0$. $\iff x=0$ හෝ $x=\frac{5}{3}$.

-00	o < x < -1	-1 < x < 0	$0 < x < \frac{1}{3}$	$\frac{1}{3} < x < \frac{5}{3}$	$\frac{5}{3} < x < \infty$
f'(x) ලකුණ (-	(+)	(-)	(+)	(+)	(-)
fe	්කවිධ ලෙස වැඩිවේ	f ඒකවිධ ලෙස අඩුවේ	f ඒකවිධ ලෙස වැබිවේ	f ඒකවිධ ලෙස වැඩිවේ	f ඒකවිධ ලෙස අඩුවේ
	වැඩිවේ	අඩුවේ	වැඩිමේ	වැඩිවේ	අඩු(5

හැරුම් ලක්ෂාා: (0,16) ස්ථානීය අවමයක් සහ $\left(\frac{5}{3},\frac{3}{8}\right)$ ස්ථානීය උපරිමයක්.

60

$$k(x+1)^2(3x-1) = 16(x-1).$$

$$\Leftrightarrow k = \frac{16(x-1).}{(x+1)^2(3x-1)}.$$

 $k \leq 0$ හෝ $\frac{3}{8} < k < 16$ මනම් පමණක් දෙන ලද සමීකරණයට හරියටම එක් මූලයක්

15

පමණක් පවතී.

$$\frac{dS}{dr} = 17\pi \left(-\frac{16}{r^2} + 2r \right) = \frac{34\pi (r^3 - 8)}{r^2}$$
 5

$$\frac{dS}{dr}=0 \Leftrightarrow r=2.$$
 $\int 0 < r < 2$ විටදී $\frac{dS}{dr} < 0$ සහ $r>2$ විටදී $\frac{dS}{dr}>0.$

 \therefore r=2 විටදී S අවම වේ.

15. (a) (i) x², x² හා xº හි සංගුණක හැසඳිමෙන්,

සියලු $x \in \mathbb{R}$ සඳහා $Ax^2(x-1) + Bx(x-1) + C(x-1) - Ax^3 = 1$ වන පරිදී A, B හා C නියගවල අගයන් භොයන්න.

ර සමස්, $\frac{1}{x^3(x-1)}$ යන්න මන්න හාග වලින් ලියා දක්වා $\int \frac{1}{x^3(x-1)} \, \mathrm{d}x$ කොයන්න.

- (ii) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int x^2 \cos 2x \, \mathrm{d}x$ සොයන්න.
- (b) $\theta = \tan^{-1}(\cos x)$ ආදේශය භාවිතයෙන්, $\int_0^\pi \frac{\sin x}{\sqrt{1+\cos^2 x}} \, \mathrm{d}x = 2\ln\left(1+\sqrt{2}\right)$ බව පොඩන්න.

a නියනයක් වන $\int_0^{\pi} f(x) dx = \int_0^{\pi} f(a-x) dx$ සුනුය භාවිතයෙන්, $\int_0^{\pi} \frac{A \sin A}{\sqrt{1 + \cos^2 x}} dx$ සොයන්න.

(a) (i)
$$Ax^2(x-1) + Bx(x-1) + C(x-1) - Ax^3 = 1$$

සංගුණක සැසඳීමෙන්:

$$x^{2}$$
 : $-A + B = 0$
 x^{1} : $-B + C = 0$
 5

 $x^0 : -C = 1$

A = -1, B = -1 and C = -1

 $1 = -x^{2}(x-1) - x(x-1) - (x-1) + x^{3}$

 $\therefore \frac{1}{x^3(x-1)}$ හින්න භාග ඇසුරින්:

$$\frac{1}{x^3(x-1)} = -\frac{1}{x} - \frac{1}{x^2} - \frac{1}{x^3} + \frac{1}{x-1} \text{ odd od}.$$

එනයින් $\int \frac{1}{x^{3(x-1)}} dx = -\int \frac{1}{x} dx - \int \frac{1}{x^2} dx - \int \frac{1}{x^3} dx + \int \frac{1}{x-1} dx$ $= -\ln|x| + \frac{1}{x} + \frac{1}{2x^2} + \ln|x-1| + C, \qquad 5$

30

20

(ii) $\int x^2 \cos 2x \, dx = \frac{x^2 \sin 2x}{2} - \frac{1}{2} \int 2x \sin 2x \, dx$

$$=$$
 $\frac{x^{2} \sin 2x}{2} + \frac{x \cos 2x}{2} - \frac{\sin 2x}{4} + C$, මෙහි C යනු අභිමක නියනයක් වේ. (5)

30

(b)
$$\theta = \tan^{-1}(\cos x); -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

$$\tan \theta = \cos x \implies \sec^2 \theta \ d\theta = -\sin x \ dx \qquad 5$$

$$x = 0 \implies \theta = \tan^{-1}(1) \implies \theta = \frac{\pi}{4} \qquad 5$$

$$x = \pi \implies \theta = \tan^{-1}(-1) \implies \theta = -\frac{\pi}{4} \qquad 5$$

$$\int_0^\pi \frac{\sin x}{\sqrt{1+\cos^2 x}} dx = -\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sec^2 \theta}{\sqrt{\sec^2 \theta}} d\theta = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec^2 \theta d\theta \left(\sqrt{\sec^2 \theta} = \sec \theta \text{ as } -\frac{\pi}{2} < \theta < \frac{\pi}{2} \right)$$

$$= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sec \theta (\sec \theta + \tan \theta)}{(\sec \theta + \tan \theta)} d\theta$$

$$= \ln|\sec \theta + \tan \theta| \begin{vmatrix} \frac{\pi}{4} \\ -\frac{\pi}{4} \end{vmatrix}$$

$$= \ln(\sqrt{2} + 1) - \ln(\sqrt{2} - 1)$$

$$= \ln \left(\frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} \right)$$
$$= 2 \ln(\sqrt{2}+1).$$
 5

50

$$I = \int_0^{\pi} \frac{x \sin x}{\sqrt{1 + \cos^2 x}} dx = \int_0^{\pi} \frac{(\pi - x) \sin(\pi - x)}{\sqrt{1 + \cos^2(\pi - x)}} dx$$

$$= \pi \int_0^{\pi} \frac{\sin x}{\sqrt{1 + \cos^2 x}} dx - \int_0^{\pi} \frac{x \sin x}{\sqrt{1 + \cos^2 x}} dx$$
5

$$\Rightarrow I = \pi \left[2 \ln(\sqrt{2} + 1) \right] - I$$

$$\Rightarrow 2I = 2 \pi \ln(\sqrt{2} + 1)$$

$$\Rightarrow 2I = 2 \pi \ln(\sqrt{2} + 1)$$

$$\Rightarrow I = \pi \ln(\sqrt{2+1}).$$

16. $A \cong (-2, -3)$ හා $B \cong (4, 5)$ යැයි ගනිඹු. AB ඉර්බාව සමග I_1 හා I_2 ඉර්බා එක එකක් සාදන සුළු කෝණය $\frac{\pi}{4}$ වන පරිදි A ලක්ෂාය හරහා යන I_1 හා I_2 ඉර්බාවල සම්කරණ සොයන්න.

P හා Q ලක්ෂා පිළිවෙළින් l_1 හා l_2 මක ගෙන ඇත්තේ APBQ සමවතුරසුයක් වන පරිදි ය.

PQ හි සම්කරණය සොයා, P හා Q හි බණ්ඩාංක භොයන්න.

නව ද A,P,B හා Q ලක්ෂා හරහා යන S වෘත්තයේ සම්කරණය සොයන්න.

 $\lambda>1$ යැයි ගනිමු. $R\equiv (4\lambda,5\lambda)$ ලක්ෂෙය, S වෘත්තයට පිවතින් පිහිටන බව පෙන්වත්න.

R ලක්ෂායේ සිට S වෘත්තයට ඇදි ස්දර්ශකවල ස්පර්ශ ජනයේ සම්කරණය සොයන්න.

🖟 (> 1) විචලනය වන විට, මෙම ස්පර්ග ජනයක් අචල ලක්ෂනයක් හරහා යන බව පෙන්වන්න.

் අවශා සමීකරණ වන්නේ:

(i)
$$y+3=\frac{1}{7}(x+2) \implies x-7y-19=0$$
,

සහ

(ii)
$$y + 3 = -7(x + 2) \implies 7x + y + 17 = 0.$$
 10

45

 l_1 යනු x-7y-19=0 රේඛාව සහ අනෙක l_2 යැයි ගනිමු.

$$PQ$$
 හි සමීකරණය: $y-1=-rac{3}{4}(x-1) \Longrightarrow 3x+4y-7=0$

 l_1 සහ PQ හි ඡේදන ලක්ෂය: P=(5,-2)

 $Q = (x_0, y_0)$ zo \mathfrak{D} ,

$$\frac{5+x_0}{2}=1 \implies x_0=-3 \qquad \boxed{5}$$

$$\frac{-2+y_0}{2}=1 \implies y_0=4$$

25

 $A,\,P,\,B$ හා $\,Q\,$ ලක්ෂාා හරහා යන වෘත්තය AB විෂ්කමහය ලෙස ඇති වෘත්තය වේ.

$$(y-5)(y+3)+(x-4)(x+2)=0 \implies x^2+y^2-2x-2y-23=0$$

20

 $CR^2 = (4\lambda - 1)^2 + (5\lambda - 1)^2$ to Earline d qua 5 at.

10

$$q$$
 of $CR^2 - 25 = (4\lambda - 1)^2 + (5\lambda - 1)^2 - 25$
= $41\lambda^2 - 18\lambda - 23$

 $= (\lambda - 1)(41\lambda + 23) > 0$ as $\lambda > 1$.

5

. R ලක්ෂාය වෘත්තයට පිටතින් පිහිටයි.

අවශා ස්පර්ශ ජාහයේ සම්කරණය

$$x(4\lambda) + y(5\lambda) - (x + 4\lambda) - (y + 5\lambda) - 23 = 0$$

$$(-x - y - 23) + \lambda(4x + 5y - 9) = 0$$
5

 \div ස්පර්ශ ජාාය 4x+5y-9=0 හා x+y+23=0 රේඛාවල ඡේදන ලක්ෂාය හරහා යයි.

එය අවල ලක්ෂයකි.

- 17. (a) $0 \le \theta \le \pi$ සඳහා $\cos 2\theta + \cos 3\theta = 0$ වසඳහාන. $\cos \theta \exp \cos 3\theta = 4t^3 + 2t^3 3t 1$ බව පෙන්වන්න; $\cos \theta \exp t = \cos \theta$ වේ. $\cos \theta \exp t = \cos \theta$ වී. $\cos \theta \exp t = \cos \theta$
 - (b) ABC සිකෝණයක් ගැයි ද D යනු BD:DC=m:n වන පරිදි BC මත වූ ලක්ෂාය ගැයි ද හතිමු; මෙහි m, n>0 වේ. $BAD=\alpha$ හා $DAC=\beta$ බව දී ඇත. BAD හා DAC සිකෝණ සඳහා සයින් නිහිය භාවිතයෙන්, $\frac{mb}{nc}=\frac{\sin\alpha}{\sin\beta}$ බව පෙන්වන්න; මෙහි b=AC හා c=AB වේ.

 $d = d d d \frac{mb - nc}{mb + nc} = tan\left(\frac{\alpha - \beta}{2}\right) \cot\left(\frac{\alpha + \beta}{2}\right) = 0$

(c) $2 \tan^{-1} \left(\frac{1}{3}\right) + \tan^{-1} \left(\frac{4}{3}\right) = \frac{\pi}{2}$ (d) existing.

(a) $0 \le \theta \le \pi$ we cos $3\theta = -\cos 2\theta = \cos(\pi - 2\theta)$ $3\theta = 2n\pi + (\pi - 2\theta), n \in \mathbb{Z}.$

 $5\theta = 2n\pi + \pi$, $n \in \mathbb{Z}$ or $\theta = 2n\pi - \pi$, $n \in \mathbb{Z}$.

 $0 \le \theta \le \pi$ බැවින් විසඳුම $\theta = \pi$, $\frac{\pi}{5}$ හා $\frac{3\pi}{5}$

30

(5)

 $\cos 2\theta = 2\cos^2\theta - 1$ and $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$.

 $\cos 2\theta + \cos 3\theta = 4\cos^{3}\theta + 2\cos^{2}\theta - 3\cos\theta - 1$ $= 4t^{3} + 2t^{2} - 3t - 1, \quad 600 t = \cos\theta.$

$$4t^3 + 2t^2 - 3t - 1 = 0$$
 හි මුලයන් $\cos \pi \, , \cos \frac{\pi}{5}$ හා $\cos \frac{3\pi}{5}$

$$\cos \pi = -1 \implies t + 1$$
 යනු $4t^3 + 2t^2 - 3t - 1$ හි සාධකයකි.
$$\implies 4t^3 + 2t^2 - 3t - 1 = (t + 1)(4t^2 - 2t - 1) = 0$$

$$\implies 4t^2 - 2t - 1 = 0$$
 හි මූලයන් $\cos \frac{\pi}{5}$ හා $\cos \frac{3\pi}{5}$.
$$t = \frac{2 \pm \sqrt{2^2 + 4 \times 4 \times 1}}{5} = \frac{1 \pm \sqrt{5}}{5}$$

$$t = \frac{2 \pm \sqrt{2^2 + 4 \times 4 \times 1}}{2 \times 4} = \frac{1 \pm \sqrt{5}}{4}$$

 $\cos\frac{3\pi}{5} < 0$ බැවින් $\cos\frac{3\pi}{5} = \frac{1-\sqrt{5}}{4}$.

35

(b)

 $B\widehat{D}A= heta$ යැයි ගනිමු.

සයින් නීතිය භාවිතයෙන්:

$$BAD \Delta$$
: $\frac{BD}{\sin \alpha} = \frac{c}{\sin \theta}$

10

$$ADC \Delta : \frac{DC}{\sin \beta} = \frac{b}{\sin(\pi - \theta)}$$

10

$$\Rightarrow \frac{\text{(BD)}\sin\beta}{\text{(DC)}\sin\alpha} = \frac{c}{b}$$

$$\Rightarrow \frac{mb}{nc} = \frac{\sin \alpha}{\sin \beta}.$$

$$mb = nc \frac{\sin \alpha}{\sin \beta}$$

$$\Rightarrow \frac{mb - nc}{mb + nc} = \frac{nc\frac{\sin\alpha}{\sin\beta} - nc}{nc\frac{\sin\alpha}{\sin\beta} + nc}$$
5

$$= \frac{\sin \alpha - \sin \beta}{\sin \alpha + \sin \beta}$$

$$=\frac{2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)}{2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)}$$

$$=\tan\left(\frac{\alpha-\beta}{2}\right)\cot\left(\frac{\alpha+\beta}{2}\right).$$

20

(c)
$$\tan^{-1}\left(\frac{1}{3}\right) = \gamma$$
 හා $\tan^{-1}\left(\frac{4}{3}\right) = \delta$ යැයි ගන්මු. $0 < \delta, \gamma < \frac{\pi}{2}$.

$$5 2\gamma + \delta = \frac{\pi}{2} \Leftrightarrow 2\gamma = \frac{\pi}{2} - \delta$$

 $\Leftrightarrow \tan(2\gamma) = \tan\left(\frac{\pi}{2} - \delta\right)$ $\left(\frac{\pi}{2} - \delta\right)$ සුළු කෝණයක් බැවින්, 2γ ද සුළු කෝණයකි.)

$$\tan 2\gamma = \frac{2\tan \gamma}{1 - \tan^2 \gamma} = \frac{2 \times \frac{1}{3}}{1 - \frac{1}{9}} = \frac{3}{4}$$

$$\tan\left(\frac{\pi}{2} - \delta\right) = \cot\delta = \frac{3}{4} \quad \boxed{5}$$

$$\therefore 2\gamma + \delta = \frac{\pi}{2}..$$

