From Data To Understanding

- In machine learning, maintain critical perspective
 - Making predictions is only part of the story
 - Also try to get some <u>understanding</u> of the domain
- Example
 - True statement: palm size negatively correlates with life expectancy
 - The larger your palm size, the shorter your life (on average)
 - Why?
 - Women have smaller palms than men on average
 - Women live 5 years longer than men on average
 - Sometimes you need better model of your domain!

Bayesian Networks

- Bayesian Network
 - Graphical representation of joint probability distribution

- Node: random variable
- Arc (X, Y): variable X has direct influence on variable Y
 - Call X a "parent" of Y
- Each node X has conditional probability: P(X | parents(X))
- Graph has no cycles (loops by following arcs)
 - Called "Directed Acyclic Graph" (DAG)

Network Shows Conditional Independence

- Conditional independence encoded in network
 - Each node (variable) is conditionally independent of its non-descendants, given its parents
 - In network above, Palm Size (PS) and Life Expectancy (LE) are conditionally independent, given Gender (G)
 - \circ Formally: P(PS, LE | G) = P(PS | G) P(LE | G)
- Network structure provides insight about domain

Conditional Probability Tables

- Each node has conditional probability table (CPT)
 - For node X: P(X | Parents(X))
 - Conditional independence modularizes joint probability:

$$P(X_1, X_2, ..., X_m) = \prod_{i=1}^{m} P(X_i | \text{Parents}(X_i))$$

Efficient Representation

- Each node has conditional probability table (CPT)
 - Reduces number of parameters needed in model
 - Normally, need $2 \times 3 \times 3 1 = 18 1 = 17$ parameters
 - Here, need (2-1) + (6-2) + (6-2) = 9 parameters

Bayesian Network for Naïve Bayes

- Welcome back, Naïve Bayes...
 - Now with new and improved "Bayesian Network" flavor!

Network structure encodes assumption:

$$P(X | Y) = P(X_1, X_2, ..., X_m | Y) = \prod_{i=1}^{m} P(X_i | Y)$$

Full joint distribution can be computed as:

$$P(X,Y) = P(Y)P(X | Y) = P(Y)\prod_{i=1}^{m} P(X_i | Y)$$

"Evidence" in Bayesian Networks

- In many machine learning examples:
 - We observe all X₁, X₂, ..., X_m input variables and predict single output variable Y
- In general case of probabilistic inference:
 - Have a set of random variables X₁, X₂, ..., X_m
 - Subset of the variables X₁, X₂, ..., X_m are observed
 - Call observed variables E₁, E₂, ..., E_k (E for "evidence")
 - Want to determine probability of some set of unobserved variables given the observed evidence
 - Call unobserved variables we care about Y₁, Y₂, ..., Y_c
 - Formally, want: $P(Y_1, Y_2, ..., Y_c | E_1, E_2, ..., E_k)$

Evaluation of Evidence

Consider the following Bayes Net:

- Determine P(A = T | B = T, R = T)
- Sum over unseen variables:

$$P(A = T \mid B = T, R = T) = \frac{P(A = T, B = T, R = T)}{P(B = T, R = T)} = \frac{\sum_{E = T, F} P(A = T, B = T, R = T, E)}{\sum_{E = T, F} P(B = T, R = T, E)}$$

Evaluation of Evidence

Consider the following Bayes Net:

- Determine P(A = T | B = T, R = T)
- Note that joint probability decomposes as:

$$P(A, B, E, R) = P(E)P(B | E)P(R)P(A | E, R)$$

Plug in values from CPTs to compute joint probabilities

Probability Tree

Model outcomes of probabilistic events with tree

Useful for modeling decisions

• Expected payoff: yes = p(1000000 - 1) + (1 - p)(-1)no = 0

Let's Play a Game

Which choice would you make?

- For what value of X are you indifferent to playing?
 - X = 3
 - X = 7
 - X = 9
 - X = 10
- Certain equivalent is value of game to <u>you</u>

Utility

Utility U(x) is "value" you derive from x

- Can be monetary, but often includes intangibles
 - E.g., quality of life, life expectancy, personal beliefs, etc.

Utility Curves

- Utility curve determines your "risk preference"
 - Can be different in different parts of the curve

Non-Linear Utility of Money

These two choices are different for most people

Risk Premium

A slightly different game:

- Expected monetary value (EMV) = expected dollar value of game (here = \$10,000)
- Risk premium = EMV − CE = \$3,000
 - How much you would pay (give up) to avoid risk
- This is what insurance is all about 0.02 -\$30,000 -\$600 Insure car? 0.98 -\$1000

Exponential Utility Curves

Many people have exponential utility curves

$$U(x) = 1 - e^{-x/R}$$

- R is your "risk tolerance"
- Larger R = less risk aversion
 - Makes utility function more "linear"

• R ≈ highest value of Y for which you would play:

How Rational Are You?

Which option would you choose?

How many chose A and D?

How Rational Are You?

Which option would you choose?

Choice D preferred: 1.00 U(1,000,000) < 0.89 U(1,000,000) + 0.01 U(0) + 0.10 U(5,000,000)

Choice A preferred: 1.00 U(1,000,000) > 0.89 U(1,000,000) + 0.01 U(0) + 0.10 U(5,000,000)

Add 0.89 U(1,000,000) to both sides

Choice D preferred: 0.11 U(1,000,000) < 0.01 U(0) + 0.10 U(5,000,000) Subtract 0.89 U(0) from both sides

Choice D preferred: 0.89 U(0) + 0.11 U(1,000,000) < 0.90 U(0) + 0.10 U(5,000,000)

- You are inconsistent with utility theory (Allais Paradox)
 - For any choice of utility function

How Rational Are You?

Which option would you choose?

Human behavior is not always axiomatically consistent

Micromort

- A micromort is 1 in 1,000,000 chance of death
 - How much would you need to be paid to take on the risk of a micromort?
 - How much would you pay to avoid a micromort?
 - 。 P(die in plane crash) ≈ 1 in 1,500,000
 - o P(killed by lightning) ≈ 1 in 1,400,000
 - How much would you need to be paid to take on a decimort (1 in 10 chance of death)?
 - If you think this is morbid, companies actually do this
 - Car manufacturers
 - Insurance companies

Let's Do a Real Test

- Game set-up
 - I will flip a fair coin
 - If "heads", you win \$50. If "tails", you win \$0
 - How much would you be willing to pay me to play?
 - 。\$1?
 - 。\$10?
 - 。\$20?
 - 。\$24.99?
 - 。\$25.01?
 - 。\$35?
 - Maximal value?
 - o Come on down!
 - o How did you determine that value?