Refigeracion

- 1. . <u>China</u> es el primer país donde se usó el hielo para refrigeración
- 2. . El ciclo de refrigeración mecánica se empleó en los primeros años de: **D.** (**Ninguna de las anteriores**)
- 3. Los sistemas de refrigeración y aire acondicionado representan una de las mayores industrias norteamericanas y mundiales. (Verdadero)
- 4. . Por cada 1.000.000 de dólares de valor instalado de equipo cuantos técnicos de refrigeración y aire acondicionado se necesitan: <u>C. (13)</u>
- 5. . El calor es la ausencia del frío. (Falso)
- 6. El "cero absoluto" es 0ºF en la escala Fahrenheit. (FALSO)
 7. Citar los cuatro elementos principales de un ciclo de refrigeración mecánica. A. (Compresor, Condensador, control de flujo, evaporador)
- 8. Citar las cuatro tuberías de conexión en un sistema de refrigeración

Tubo de <u>SUCCION</u>, tubo de gas <u>CALIENTE</u>, tubo de <u>LIQUIDO</u>, tubo de <u>RETORNO LIQUIDO</u>

9. La definición de el efecto de refrigeración es:

Transmisión de presión por cambio de estado de un líquido (FALSO)

- 10. El tubo que une al evaporador con el compresor de se llama: <u>TUBO DE SUCCION</u>
- 11. El tubo que une al compresor con el condensador se llama: <u>TUBO DE GAS CALIENTE</u>

- 12. El tubo que une al condensador con dispositivo reductor de presión se llama: **TUBO DE LIQUIDO**
- 13. Si se usa un recibidor de líquido en el sistema, el tubo que va del condensador al recibidor se llama: <u>TUBO DE</u>
 <u>RETORNO DE LIQUIDO</u>
- 14. Cuáles son los dos tipos de serpentines que se usan en sistemas de refrigeración: D) (A Y B) (ES DECIR: TUBO DESNUDO Y TUBO ALETADO)
- 15. La materia puede existir en tres formas. Dé los nombres de esas formas

SOLIDO, LIQUIDO, GASEOSO.

- 16 Cuál es la parte más pequeña de la materia: C) LA
- 17. Es la temperatura una medida de la cantidad o intensidad de calor. <u>INTENSIDAD</u>
- 18. Que quiere decir "cero absoluto"
 - B) Es el punto en el que teóricamente hay una ausencia completa de calor y actividad molecular
- 19. Enunciar la primera ley de la termodinámica:

"LA ENERGÍA NO SE CREA NI SE DESTRUYE, SE TRANSFORMA"

20. Enunciar la segunda ley de la termodinámica:

PARA QUE EL CALOR PASE, DEBE EXISTIR UNA DIFERENCIA DE TEMPERATURA

21. La unidad térmica británica (BTU) es: La cantidad de calor necesaria para cambiar en un 1ºF la temperatura de 1 lb de agua sobre el nivel del mar. (verdadero)

- 22. Convertir 68ºF a ºC: a) (20ºC)
- 23. Cuánto calor se necesita para elevar la temperatura de 100lb de agua de 70ºF a 120ºF: <u>d.5000 BTU</u>
- 24. Si pasan 750 Btu a 15 lb de agua que se encontraba a 72ºF ¿Cuál será la temperatura final del agua? d. Ninguna de las anteriores
- 25. Cuál es el valor del calor específico del agua: a) 1
- 26. El calor latente se puede medir con un termómetro. **(FALSO)**
- 27. La energía térmica se transmite mediante uno o más mecanismos. Cite esos mecanismos:

(CONDUCCION, CONVECCION Y RADIACION)

- 28. El calor que hace variar la temperatura de una sustancia se llama: (CALOR SENSIBLE)
- 29. El calor que hace variar el estado de una sustancia se llama: (CALOR LATENTE)
- 30. El paso de una sustancia en estado sólido directamente
- al estado gaseoso se llama: (SUBLIMACIÓN)
 31. El calor que hace cambiar el estado líquido al estado de vapor se llama calor

LATENTE de **EVAPORIZACION**

32. La definición de la "ton" de efecto refrigeración es: La cantidad de BTU necesarias para fundir una tonelada de hielo en 24 horas <u>(VERDADERO)</u> 33. Cuántas BTU hay en una ton normal de efecto refrigeración:

D) 12.000 BTU/Hora

- 34. Los aislamientos son buenos conductores de calor. **(FALSO)**
- 35. La definición de "presión de un fluido" es:

ES LA FUERZA POR UNIDAD DE VOLUMEN QUE EJERCE UN GAS O UN LIQUIDO (VERDADERA)

- 36. Qué unidad se usa para expresar la presión de un fluido: A) **PSI**
- 37. Definir el término "fuerza" que se emplea al describir la presión de un fluido: **PESO TOTAL DE LA SUSTANCIA**
- 38. Calcular la fuerza total, y también la presión, que se ejerce sobre el fondo de un tanque lleno de agua. Las dimensiones del tanque son 3 pies x 3 pies x 1 pie de altura 561.6 Lb y 0.433 PSI
- 39. Definir la altura de un fluido:

(a) LA PROFUNDIDAD DE UN CUERPO DE AGUA Ó LÍQUIDO

40. Si se llena de agua un tanque de base plana hasta alcanzar un nivel de 8 pies, ¿Cuál es la presión que se ejerce sobre el fondo del tanque?

a) 3.464 PSI

41. Qué presión se ejerce a media altura entre el fondo del tanque y la superficie del agua: (3.464 PSI)

b) 1.732 PSI

- 42. Calcular la presión que se ejerce sobre el techo de una construcción sobre el que se encuentra una torre de enfriamiento. La torre pesa 1580Lb llena de agua y trabajando. El tamaño de la base de la torre es 3 pies x 4 pies. a) 0.914 PSI
- 43. En una prensa hidráulica, ¿Qué fuerza debe ejercer en el pistón pequeño que tiene un área de 2 pulg² si se debe soportar un peso de 600 Lb en el pistón mayor, que tiene un área de 16 pulg²?

a) <u>75 PSI</u>

- 44. ¿Cuál sería la presión del líquido en la prensa del problema de la pregunta 9:
- 45. Definir densidad: **PESO DE UNA SUSTANCIA POR UNIDAD DE VOLUMEN**
- 46. La densidad del agua es: 62.4 Lb/pie³
- 47. La definición de la gravedad específica es: EL PESO DE UNA SUSTANCIA EN COMPARACION DEL PESO DE UNA SUSTANCIA DE REFERENCIA (VERDADERO)
- 48. La definición de volumen específico es: EL NÚMERO DE METROS CÚBICOS OCUPADOS POR UNA LB DE UNA SUSTANCIA (FALSO)
- 49. Qué factor afecta el volumen específico de un vapor: <u>C. Temperatura</u>
- 50. Qué factores afectan al volumen específico de un vapor:
 <u>a) Temperatura y presión</u>

- 51. La ley de Boyle dice: EL VOLUMEN DE UN GAS VARIA EN RAZON INVERSA A SU PRESION SI LA TEMPERATURA DEL GAS PERMANECE CONSTANTE: (VERDADERO)
- 52. Si se va a comprimir 10 pies³ de un gas a una presión de 25 psig para tener 2 pies³ siendo iguales las temperaturas inicial y final, ¿Cuál será la nueva presión en psig?

 A) 183.8 PSIG
- 53. Si se van a comprimir 2 pies³ de un gas a una presión de 183.8 psi para tener 1 pies³ siendo iguales las temperaturas inicial y final, ¿Cuál será la nueva presión en psig?

 b) 382.3 PSIG
- PRESION SE MANTIENE CONSTANTE Y LA PRESION
 ABSOLUTA DE UN GAS ESTA EN PROPORCION DIRECTA A SU
 TEMPERATURA ABSOLUTA, SI EL VOLUMEN SE MANTIENE
 CONSTANTE (VERDADERO)
- 55. Si la presión permanece constante, calcular el nuevo volumen de 4 pies³ de gas cuando su temperatura aumenta

de 60ºF a 250ºF: **a) 5.46 Pies** 56. Escribir la fórmula general de la ley del gas perfecto:

P1.V1.T2 = V2.P2.T1

57. Si se comprimieran 10 pies³ de gas a una temperatura inicial de 60°F y presión inicial de 57.7 psig, hasta llegar a 5 pies³ y la temperatura se elevará a 127°F, ¿Cuál sería su nueva presión? **C) 148.7 PSIG**

- 58. Cuál sería el nuevo volumen de 20 pies³ de gas a 70ºF y 70.2 psig iníciales, si se pasara de tener 115ºF y 146.8 psig:

 a) 11.4 Pies³
- 59. El sobrecalentamiento es: CALOR AGREGADO QUE DISMINUYE LA TEMPERATURA DE UN VAPOR SOBRE LA DE SU PUNTO DE EBULLICION (FALSO)
- 60. El subenfriamiento es: **CUANDO UN LIQUIDO SE ENCUENTRA A UNA TEMPERATURA MENOR QUE LA DEL PUNTO DE EBULLICION.** (VERDADERO)
- 61. Es la diferencia entre un líquido saturado y un vapor saturado: **ES CUANDO EL LIQUIDO SATURADO ESTA A SU**

PARTO PER VAPORACION FER VAPOR SATURADO ESTA AR MISMO PUNTO DE EBULLICION DESPUES DE HABER AGREGADO CALOR LATENTE DE EVAPORACION (VERDADERO)

- **62.** La llave especial que se usa en trabajos de refrigeración es la de <u>TUERCA DE CAMPANA</u>
- 63. Las llaves de estrías se pueden conseguir con bocas de

distintas puntas **(VERDADERO)** 64. Cuál es el número mas común de puntas:

d) a y b ES DECIR 6 Y 8

- 65. Mientras más puntos tenga una llave de estrías, más difícil será de usar en una zona restringida (**FALSO**)
- 66. Los prisioneros de un eje de ventilador se hacen girar mediante llaves de <u>ALLEN</u>

- 67. Dar el nombre de dos tipos comunes de puntas de destornillador: **PLANO Y PHILIPS**
- 68. Cuáles son los dos tipos en que se fabrican las limas: **B) MUSA Y BASTANDA**
- 69. Un tornillo de banco mecánico sirve también para sujetar tubos de cobre: **(FALSO)**
- 70. Los micrómetros normales y los calibradores precisos indican hasta el **0.001** DE PULGADA
- 71. La gasolina y el tetracloruro de carbono se recomiendan como solventes de limpieza. **(FALSO)**
- **72.** Qué quiere decir "OSHA"
- 73. A) ACTA DE SEGURIDAD Y SALUD EN EL TRABAJO Cuál es el material mas común que se usa en las tuberías de refrigeración: c) cobre
- 74. El "tubing" de cobre se diferencia del tubo de hierro porque tiene una pared más gruesa **(FALSO)**
- 75. El "tubing" de cobre se consigue en tres clasificaciones, de acuerdo a su espesor de pared. ¿Cuál son esas clasificaciones? (K,L,M)
- 76. Para las instalaciones de refrigeración y aire acondicionado se aprueban dos de las clasificaciones de espesor de pared del "tubing". ¿Cuáles son esas dos? (K,L)
- 77. Cómo se llaman las dos formas de "tubing" de cobre:
 - A) Extruido suave y Extruido duro
- **78.** Dar el nombre de tres métodos de unir "tubing":
 - A) Acople mecánico, campana, compresión

- 79. Qué ángulo tienen los avellanes del "tubing" que se usa en trabajos de refrigeración: **B)** 45⁰
- 80. Al doblar el "tubing", ¿Cuál es el radio mínimo de doblez que se puede usar? **A. 5 veces el diámetro del mismo**
- 81. Cuál es el único tipo de llave que se debería usar en las uniones de compresión: **D) llave Española**
- 82. Es el nombre del procedimiento para fijar dos extremos de tubo sin usar un cople: <u>SOLDADURA A TOPE (VERDADERO)</u>
- 83. Son las cuatro etapas de preparación al latonar "tubing": CORTAR Y AJUSTAR EL TUBO, LIMPIAR EL TUBO Y SUS CONEXIONES, EMPLEO DEL FUNDENTE ADECUADO Y
- SOPORTE ADECUADO (**VERDADERO**) 84. La flama de oxiacetileno correcta para latonar es la flama **NEUTRA**
- 85. Estos son los nombres de los cuatro elementos principales del ciclo de refrigeración por compresión:
 EVAPORADOR COMPRESOR DISPOSITIVO REDUCTOR DE PRESION CONDENSADOR (VERDADERO)
- para compensar las pérdidas por conducción debidas a una capa de hielo que rodea los tubos del serpentín de evaporación: AUMENTO DE LA SUPERFICIE DEL SERPENTIN AL AGREGAR ALETAS O EMPLEO DE UN VENTILADOR O SOPLADOR PARA AUMENTAR EL MOVIMIENTO DEL AIRE A TRAVES DEL SERPENTIN (VERDADERO)
- 87. Bajo qué condiciones deben instalarse serpentines de evaporación sin escarchamiento: **CUANDO EL EVAPORADOR**

DEBE TRABAJAR EN UN LUGAR DONDE SE DEBEN MANTENER **ALTA LA HUMEDAD (VERDADERO)**

- 88. Estos son algunos de los tipos de serpentines de enfriamiento que se usan para enfriar líquidos: SUMERGIDOS **DE TUBO ENVOLVENTE, TUBOS CONCENTRICOS Y ENFRIADORES HERMETICOS (FALSO)**
- Cuáles son las tres clasificaciones principales de 89. compresores, por el método de compresión:
 - A) alternativos-rotativos-centrífugos
- .Cuáles son los dos tipos de lengüetas de válvulas para 90. compresor alternativo? C) A Y B ES DECIR LENGÜETA Y
- 91. La diferencia entre un compresor hermético y uno abierto es: QUE EN EL HERMÉTICO EL COMPRESOR Y EL MOTOR ESTAN SELLADOS EN LA MISMA CAJA HERMÉTICA Y EL COMPRESOR ABIERTO ESTA IMPULSADO POR BANDAS **CON UN MOTOR SEPARADO (VERDADERO)**
- Cuáles son los dos tipos principales de compresores 92. rotatorios que se usan en el campo de la refrigeración:

- **PISTON RODANTE** y **ASPAS ROTARIAS** . Cuántas válvulas se usan en la operación de compresión de un compresor centrífugo: ninguna
- Es el objetivo principal del condensador: DISIPAR EL 94. CALOR QUE TOMA EL REFRIGERANTE EN EL EVAPORADOR (Verdadero)
- Son los tipos principales de condensadores: 95. **CONDENSADOR ENFRIADO POR AIRE; POR LIQUIDO Y**

CONDENSADOR CON ENFRIAMIENTO EVAPORATIVO (Verdadero)

96. Son los tipos principales de dispositivos de reducción de presión que se usan para controlar el flujo de refrigerante al evaporador:

VALVULA AUTOMATICA DE EXPANSION
VALVULA TERMOSTATICA DE EXPANSION
TUBO CAPILAR
FLOTADOR DE LADO DE BAJA
FLOTADOR DE LADO DE ALTA (VERDADERO)

- 97. Cuál dispositivo de reducción de presión es el más sencillo: <u>C) tubo capilar</u>
- 98. Es el objetivo de una válvula de retención:

 PERMITIR EL FLUJO DE UN LIQUIDO Ó VAPOR A TRAVES DE
 UN TUBO EN SOLO UNA DIRECCION (VERDADERO)
- 99. Es el objetivo de una válvula solenoide: PERMITIR EN CONTROL DE FLUJO DE UN LÍQUIDO O VAPOR EN DIRECCION DE UN CIRCUITO ELECTRICO Ó ALGÚN OTRO MEDIO DE

ACCIONAMIENTO (VERDADERO)

100. El papel principal de un refrigerante es: EXPANDIR EL

CALOR QUE SE ENCUENTRA EN UN CUERPO, SUSTANCIA O

LUGAR DONDE NO ES DESEADO (FALSO)

- 101. El calor que absorbe un refrigerante que se evapora se llama **CALOR LATENTE DE EVAPORACION**
- 102. En que categorías se pueden clasificar las propiedades de un refrigerante: FISICAS Y QUIMICAS

- 103. De qué color arderá la flama de un soplete de halógeno cuando haya refrigerantes hologenados: **B)** (VERDE)
- 104. Qué detectores de fugas se pueden usar en vez de un soplete de halógeno: **D) A Y B (ES DECIR DETECTOR ELECTRONICO, SOLUCION DE JABON)**
- 105. Los cilindros de refrigerante nunca deben llenarse a más del **80** % de su volumen.
- 106. Los cilindros de refrigerante no deben calentarse a una temperatura mayor que **125** ⁰F
- 107. Son los colores que identifican al R-12, R-22 y R-502: BLANCO ROSADO AMARILLO (FALSO)
- 108. Con la tabla de bolsillo de presión necesaria para mantener un punto de ebullición de 45 F en un evaporador, empleando R-22: 76 PSI
- 109. Cuál es la temperatura de condensación en un sistema de refrigeración que usa R-12 y trabaja a una presión de descarga de 146.8 psig: 116°F
- 110. El siguiente enunciado define el "efecto neto de refrigeración": LA CANTIDAD DE CALOR EN BTU QUE

ABSORBE CADA LIBRA DE REFRIGERANTE EN EL EVAPORADOR (VERDADERO)

111. Estos son los dos factores que intervienen para calcular el NRE: CONTENIDO CALORIFICO DEL LIQUIDO QUE ENTRA AL DISPOSITIVO REDUCTOR DE PRESION .

CONTENIDO TOTAL DE CALOR QUE SALE DEL EVAPORADOR (VERDADERO)

- 112. Esta es la ecuación que se usa para calcular el peso del refrigerante que debe circular para cada determinada carga: W= CAPACIDAD CALORIFICA / EPQ (FALSO)
- 113. El siguiente enunciado define "sobrecalentamiento" ES EL CALOR QUE SE AGREGA A UN VAPOR Y QUE ELEVA SU TEMPERATURA SOBRE EL PUNTO DE EBULLICION (VERDADERO)
- 114. La siguiente es la diferencia entre vapor saturado y vapor sobrecalentado: VAPOR SATURADO ES VAPOR A SU PUNTO DE EBULLICION. VAPOR SOBRECALENTADO ES AL QUE SE LE HA AGREGADO CALOR SENSIBLE PARA ELEVAR SU
- TEMPERATURA SOBRE SU PUNTO EBULLICION (VERDADERO)
 115. De que factores depende la capacidad de un compresor:
 (TODAS LAS ANTERIORES)
- 116. El enunciado define lo que es una gráfica *p-h* de un sistema: **ES UNA REPRESENTACION GRAFICA EN UN DIAGRAMA MOLLIER DE LOS DIVERSOS PROCESOS DE UN CICLO DE REFRIGERACION (VERDADERO)**
- 117. Estas son las escalas que aparecen en el diagrama p-h:

(FALSO)

118. Complete la siguiente lista de las propiedades del refrigerante que se puedan determinar empleando el diagrama *p-h*:

Control de calor

- * ENTROPIA
- * Temperatura

- * PRESION
- * Volumen
- 119. Son los tipos principales de evaporadores:

TUBO DESNUDO – TUBO ALETADO - TUBO PLACAS (VERDADERO)

- 120. La siguiente es la ventaja de un evaporador de tubo aletado en comparación con uno de tubo desnudo:
 - LAS ALETAS DAN UNA MAYOR RAPIDEZ DE TRASMISION DE CALOR AUMNETANDO ASI LA CAPACIDAD DEL SERPENTIN (VERDADERO)
- 121. Por medio de la compresión se puede pasar el calor al
- refrigerante en un evaporador: (FALSO)
 122. Es deseable utilizar un ventilador o soplador para
 proporcionar circulación de aire forzado sobre o a través de
 un serpentín del evaporador: CUANDO LA CONVECCION
 NATURAL DEL AIRE QUE PASA POR EL SERPENTIN NO
 PRODUCE BUENA CIRCULACION (VERDADERO)
- 123. Cuáles son los factores que determinan la capacidad de un serpentín de expansión directa: D) **TODAS LAS**

ANTERIORES

- 124. En las siguientes aplicaciones se usan serpentines de tubos desnudos: EN APLICACIONES A BAJAS TEMPERATURAS DONDE SE TIENE MUCHO ESCARCHAMIENTO DEL SERPENTIN (VERDADERO)
- 125. Por qué se debe quitar la escarcha cuando se acumula en los serpentines de enfriamiento: **PORQUE LA ESCARCHA**TRABAJA COMO AISLADOR REDUCIENDO LA TRANSFERENCIA

DE CALOR ENTRE EL AIRE Y EL REFRIGERANTE EN EL SERPENTIN Y CON ELLO REDUCE LA EFICIENCIA DEL SISTEMA (VERDADERO)

- 126. La siguiente es la desventaja de usar un sistema de desescarchado con gas caliente en una aplicación donde sólo haya un serpentín de enfriamiento: UN DESHIELO CON GAS CALIENTE QUITA LA ESCARCHA DEL SERPENTIN MIENTRAS TRABAJA EL COMPRESOR, CUANDO EL GAS CALIENTE CEDE SU CALOR EN EL PROCESO Y SE CONDENSA A LIQUIDO, PUEDE PASAR UNA GRAN CANTIDAD DE LIQUIDO AL COMPRESOR Y ESTO PUEDE PROVOCAR DAÑOS
- 127. Por qué es esencial que el aceite de refrigeración que se desplaza con el refrigerante en el sistema sea regresado al cárter del compresor:
 - a. Para seguridad de una buena lubricación al compresor
- 128. Este será el resultado de que permanezca demasiado aceite en el evaporador: EL ACEITE EN EL EVAPORADOR REDUCE LA RAPIDEZ DE TRANSFERENCIA DE CALOR EN EL

SERPENTIN Y TAMBIEN REDUCE EL VOLUMEN QUE QUEDA PARA MANEJO DEL REFRIGERANTE (VERDADERO)

129. Son los tipos principales de dispositivos de reducción de presión que se usan para controlar el flujo de refrigerante al evaporador:

VALVULA AUTOMATICA DE EXPANSION VALVULA TERMOSTATICA DE EXPANSION TUBO CAPILAR

FLOTADOR DE LADO DE BAJA FLOTADOR DE LADO DE ALTA (VERDADERO)

130. Esta puede ser una desventaja de una válvula automática de expansión

SE DEBE USAR EN CARGA CONSTANTE (VERDADERO)

- 131. Una válvula termostática de expansión en el punto de ebullición del refrigerante según la carga y el serpentín, manteniendo un **SOBRECALENTAMIENTO** bastante constante
- 132. Cuáles son las tres fuerzas que se usan para hacer trabajar una válvula termostática de expansión:
 d. a, b y c ES DECIR (Presión del resorte, Presión del cuerpo, Presión del bulbo)
- 133. De las tres fuerzas que hacen trabajar una válvula termostática de expansión, estas dos fuerzas son las que se oponen a la tercera (<u>VERDADERO</u>)
- 134. El bulbo sensor de la válvula termostática de expansión siempre debe colocarse en el tubo de succión entre las direcciones de la 4 y las 8 horas: **(FALSO)**
- 135. Estas son dos ventajas principales de usar tubos capilares como dispositivos de reducción de presión:
 - *COSTO INICIAL
 - *EQUILIBRIO DE PRESIONES EN EL SISTEMA DURANTE EL
 - *CICLO APAGADO QUE OCASIONA MENOR PAR DE ARRANQUE NECESARIO (VERDADERO)

136. Estas son dos desventajas de usar tubos capilares como dispositivos de reducción de presión:

NO PUEDEN REGULAR EL FLUJO DEL REFRIGERANTE EN UN CAMBIO DE CARGA NECESITAN UNA CARGA CRITICA DE REFRIGERANTE

(VERDADERO)

- 137. Complete los cuatro nombres de los tipos de compresores: <u>ALTERNATIVOS</u>, ROTATIVOS, CENTRIFUGOS Y <u>HELICOIDALES</u>
- 138. Un compresor centrífugo es una máquina de desplazamiento positivo: (FALSO)
- 139. Estos son dos tipos de compresores alternativos: **1.HERMETICO**

2. ABIERTO (VERDADERO)

140. Los compresores herméticos sellados necesitan menos aire para su ventilación que los compresores abiertos:

(VERDADERO)

- 141. .Cuáles son tipos de compresores herméticos C) A Y B ES DECIR ROTATIVOS, PISTON.
- 142. Casi todos los motores que se usan en los compresores para aplicaciones de refrigeración, ¿De qué tipo son?:

(INDUSSION)

143. El objetivo del separador de aceite es: EL REGRESO POSITIVO DE ACEITE AL CARTER DEL COMPRESOR (VERDADERO)

- 144. La palabra "viscosidad" en un aceite quiere decir: RESISTENCIA DE UN FLUIDO A SER VERTIDO O VACIADO (VERDADERO)
- 145. Estos son los métodos principales de lubricación de los compresores: **SALPICADURA Y GOTEO (FALSO)**
- 146. Estas son algunas de las propiedades esenciales del aceite de refrigeración:
 - 1.fluidez a baja temperatura
 - 2.estable a alta temperatura
 - 3.no debe descomponerse ni dar carbón (VERDADERO)
- 147. Qué es el "punto de vertido" de un aceite: A) La menor temperatura a la que fluye
- 148. Es importante la fuerza dieléctrica de un aceite porque pasa por el devanado del motor, terminales y cables: (¿?)
- 149. Cuál es el principal enemigo del devanado de un motor:B) CALOR
- 150. El cableado de un compresor debe dimensionarse para limitar la caída de voltaje a <u>3</u>%
- 151. La tolerancia de voltaje de operación para un motor de un solo voltaje es más 10 % y menos 10 %
- 152. La tolerancia de voltaje de operación para un motor de voltaje dual es <u>10</u>% de más y <u>5</u>% de manos.
- 153. EER" quiere decir <u>relación eficiencia energía</u>
- 154. Los descargadores de los compresores alternativos controlan: <u>la capacidad</u>

155. Son necesarios compresores de dos etapas para la relación de compresión en aplicaciones a baja temperatura:

A) ALTA

- 156. El mantenimiento de un compresor es función importante de sus **COMPONENTES**
- 157. Completar los nombres de los tres tipos de condensadores:

enfriado por Aire, enfriado por agua y evaporativos

- 158. Los siguientes son tipos de condensadores enfriados por agua:
 - 1.DE DOBLE TUBO 2. ENVOLVENTE Y TUBOS VERTICAL
 - **3.ENVOLVENTE Y TUBOS HORIZONTAL**
 - 4. ENVOLVENTE Y SERPENTIN (verdadero)
- 159. Cuál es un tipo de condensador enfriado por aire:

A) <u>ACTIVO</u>

- 160. En un condensador evaporativo, la mayor parte del calor eliminado es sensible: **(FALSO)**
- 161. Es la capacidad de una torre de enfriamiento básicamente una función de la temperatura de bulbo húmedo: (VERDADERO)
- 162. Complete los dos nombres de torres de enfriamiento: TIRO <u>NATURAL</u> y <u>TIRO</u> FORZADO
- 163. Se usa la purga para controlar **SUSTANCIAS INDESEADAS**
- 164. La cantidad de agua de reposición o relleno a una torre depende de tres factores:

- 1. Evaporación
- 2. Purga
- 3. Arrastre (VERDADERO)
- 165. En una torre de enfriamiento, ¿qué quiere decir "rango de enfriamiento"? NUMERO DE GRADOS ºf QUE SE ENFRIA EL AGUA EN LA TORRE Y LA DIFERENCIA DE LA TEMPERATURA DEL AGUA QUE ENTRA Y SALE DE LA TORRE (VERDADERO)
- 166. En una torre de enfriamiento, ¿qué quiere decir "acercamiento"? DIFERENCIA DE TEMPERATURA ENTRE EL AGUA QUE SALE DE LA TORRE Y LA TEMPERATURA DEL BULBO HUMEDO DEL AIRE QUE ENTRA A LA TORRE
- 167. La cantidad normal de agua que se suministra a la torre por cada 12.000 BTU/hr de carga es de _3_ a _4_ galones por minuto
- 168. La velocidad del agua en la tubería no debe ser mayor que <u>5</u> pies por segundo
- 169. La temperatura mínima ambiente exterior para un sistema enfriado por aire con capilar es <u>65</u> ºF
- 170. Se pueden agregar recibidores a sistemas que usen tubos capilares: **(FALSO)**
- 171. La capacidad de líquido es ¿qué porcentaje del volumen total? **B. 80%**
- 172. La tubería que conecta los cuatro componentes principales del sistema tiene dos funciones principales:

 CONDUCTO PARA CIRCULACION DEL REFRIGERANTE

 CONDUCTO DE REGRESO PARA EL ACEITE (VERDADERO)

173. Estas pueden ser reglas básicas para la práctica correcta de dimensionamiento de tuberías:

MANTENERLA LIMPIA
DIMENSIONARLA EN FORMA CORRECTA
USAR POCAS CONEXIONES
PRECAUCION PARA HACER CONEXIONES (VERDADERO)

174.	El vapor de refrigerante, es un <u>MAL</u> medio de
arra	astre del aceite
175.	Las velocidades mínimas de gas por tubos horizontales y
ver	ticales de succión son:150 M/MIN y _305M/MIN
176.	Cuáles son las caídas de presión máximas recomendadas
en	el tubo de succión para sistemas que usen R-12, R-22, R-
502	2: <u>a) 2PSI, 3PSI, 3PSI</u>

- 177. Se necesitan trampas en el tubo de succión en todos los serpentines de expansión seca que usan válvulas termostáticas de expansión: (<u>VERDADERO</u>)
- 178. En esta caso se necesitan trampas adicionales en el tubo de succión: CUANDO SE INSTALA LA UNIDAD DE CONDENSACION A MAS DE 5 METROS SOBRE EL SERPENTIN DE ENFRIAMENTO (VERDADERO)
- 179. Se deben usar también las trampas en sistemas con tubo capilar: **(FALSO)**
- 180. El aislamiento del tubo de succión es una necesidad absoluta: **(VERDADERO)**

- 181. La caída máxima de presión permisible en los tubos de gas caliente es <u>6</u> psig
- 182. Se necesita aislamiento para el tubo de gas caliente (FALSO)
- 183. Cuál es la caída de presión máxima permisible en el tubo de líquido: <u>4PSI</u>
- 184. La siguiente es la definición de "gas de pre expansión instantánea" GAS QUE SE FORMA EN EL TUBO DE LIQUIDO ANTES DEL DISPOSITIVO DE REDUCCION DE PRESION (VERDADERO)
- 185. Esta es la causa del gas de pre expansión instantánea:

SUBJENDO LA TEMPERATURA DEL LIQUIDO Y SU PUNTO DE EBULLICION ESTE POR DEBAJO D ELA PRESION QUE RODEA AL TUBO DE LIQUIDO (FALSO)

- 186. Cuando se necesita aislamiento en el tubo de líquido:
 - CUANDO EL TUBO DE LIQUIDO ESTEA MAYOR
 TEMPERATURA QUE LA DE LA CONDENSACION DEL LIQUIDO
 (VERDADERO)
- 187. Un separador de aceite remediara todos los problemas de retorno de aceite: (FALSO)
- 188. A veces los silenciadores se pueden necesitar. ¿en qué tipo de compresor? <u>b. alternativo</u>
- 189. Los silenciadores sólo se deben instalar en dos posiciones: <u>vertical y horizontal</u>
- 190. Estos serán dos objetivos principales de un intercambiador de calor: REDUCIR LA TEMPERATURA AL

REFRIGERANTE LIQUIDO Y AUMENTAR LA TEMPERATURA AL GAS EN SUCCION (verdadero)

- 191. Reducir la cantidad humedad y filtrar partículas sólidas son los dos objetivos de funcionamiento del colador secador: (verdadero)
- 192. Dar el nombre de dos tipos de coladores-secadores: <u>a)</u>
 <u>liquido Y valor</u>
- 193. . El objetivo principal de una acumulador es: EVITAR QUE EL REFRIGERANTE LIQUIDO ENTRE AL COMPRESOR (verdadero)
- 194. Complete los tres tipos de calentadores de cárter tipo
- resistencia: CONTACTO, insercion , ENVOLTURA 195. Este es el objetivo del calentador de cárter: PERMITE QUE SE ACUMULE REFRIGERANTE LIQUIDO EN EL CONDENSADOR (falso)
- 196. Un indicador de humedad revela la presencia de agua en el sistema al cambiar de <u>color</u>
- 197. La válvula de regulación de agua controla la presión del refrigerante en el lado de descarga. **VERDADERO**
- 198. Una válvula solenoide se puede instalar solamente junto al evaporador: **FALSO**
- 199. Un regulador de contrapresión se usa para:

d) Evitar que la temperatura de funcionamiento del serpentín sea demasiado baja

- 200. Cuál es la diferencia entre un regulador de contrapresión y un regulador de presión de evaporador:
 - a. Ninguna, son iguales

201. El objetivo de instalar una válvula de alivio es:
ALIVIAR LA PRESION DEL SISTEMA (VERDADERO)
202. El objetivo de instalar un tapón fusible es aliviar la
<u>TEMPERATURA</u> del sistema
203. Cuál es la diferencia de funcionamiento entre una
válvula de alivio de presión y un tapón fusible:
a. Presión y temperatura
204. La diferencia entre una válvula de alivio de presión y un
disco de ruptura es que la válvula de alivio se restablece y el
disco de ruptura se daña: <u>(VERDADERO)</u>
205. Las unidades de refrigeración por absorción emplean
CALOR como fuente de energía 206. En el equipo de absorción, los niveles de ruido y
vibración sonMENORES que en los sistemas
convencionales de refrigeración
207. Que refrigerante se usa en las unidades de absorción:
A) AGUA
208. El absorbente más común es BROMURO DE LITIO
209. los cuatro componentes principales de un enfriador por
absorción: GENERADOR, ABSORBEDOR, EVAPORADOR Y CONDENSADOR (<u>VERDADERO)</u>
210. El absorbedor contiene al EVAPORADOR
211. El condensador está dentro del GENERADOR
212. La función de la unidad de purga es eliminar
gases: NO CONDENSABLE
213. La operación de la unidad de purga, normalmente es
<u>MANUAL</u>

- 214. La válvula de control modula el flujo de vapor o de agua caliente al generador. **(VERDADERO)**
- 215. Un átomo se compone de: <u>Protones-electrones-</u> neutrones
- 216. El electrón tiene carga **NEUTRA**
- 217. La corriente o flujo de electrones, va del negativo al positivo: **VERDADERO**
- 218. El siguiente enunciado define "electricidad estática": ES EL ESTADO CUANDO LOS ELECTRONES ESTAN EN REPOSO, PERO TIENE POTENCIAL PARA MOVERSE (VERDADERO)
- 219. El siguiente enunciado define "electricidad dinámica":

ELE 220.	CTRONES EN Las cargas _	MOVIMIENTO (VERDA <u>DIFERENTES</u>	ADERO) _ se atraen y las ca	rgas
	<u>IGUALES</u>	se repelen		
221.	Las batería:	s se dividen en dos:	PRIMARIAS	٧

222. Los acumuladores producen: A) CD

SECUNDARIAS

- 223. Un acumulador produce electricidad por acción **QUIMICA**
- 224. Se funden los extremos de dos conductores distintos, para unirlos, y se calienta el extremo fundido para producir energía eléctrica. A esto se le llama <u>TERMOPAR</u>
- 225. Entre que límites se produce voltaje en un solo termopar: <u>a. 0.15 a 0.35 volt</u>
- 226. Cuando se conectan varios termopares en serie para producir un mayor voltaje de salida, se forma una TERMOPILA

227.	Una unidad que convierte à la luz en energia electrica se
llama	a <u>Efecto fotovoltaico</u>
228.	La compresión de algunos materiales como el cuarzo o el
titan	io de bario una diferencia de voltaje en el material. A
esto	se llama efecto dupler (<u>FALSO)</u>
229.	La generación de energía eléctrica en un turbogenerador
es ur	n proceso <u>ELECTROMECANICO</u>
230.	Qué quiere decir "fem": Fuerza Electro Motriz
<u>(VER</u>	DADERO)
231.	Cuál es el termino que utiliza en lugar del "fem" <u>B</u>)
<u>VOL</u>	<u>ΓΑJΕ</u>
222	
	La resistencia se opone al flujo de electrones: DADERO)
233.	La unidad de medida de la resistencia es el
	DHM
234.	La tasa de flujo de electrones, o corriente se llama
<u>P</u>	MPERE
235.	Complete el nombre de los tipos básicos de circuitos
eléct	ricos <u>SERIE</u> <u>PARALELO</u>
236. elem	Todos los circuitos eléctricos deben tener tres ientos básicos:
FUE	NTE DE <u>PODER</u> , CRAGA Y <u>CONDUCTOR</u> .
	Representar la fórmula de la ley de Ohm:
<u>I = V</u>	OLTAJE / RESISTENCIA

- 238. El elemento calefactor de un horno eléctrico emplea 20 A cuando se le aplican 240 V. ¿Cuál es la resistencia del elemento? **B) 12 VOLT**
- 239. En los circuitos en serie la resistencia total es la suma de todas las resistencias individuales: (**VERDADERO**)
- 240. En los circuitos en paralelo, la resistencia total es la suma de todas resistencias individuales (FALSO)
- 241. La resistencia al paso de la corriente en un dispositivo de inducción (por ejemplo un motor) se llama:

 RESISTENCIA	INDUCTIVA	
•		

- 242. La unidad de medida de la inductancia se llama HENRY
- 243. La capacitancia se opone a cualquier cambio de **VOLTAJE**
- 244. Un dispositivo que agrega capacitancia a una línea se llama ____CAPACITOR _____
- 245. La unidad de medida de capacitancia es el microfaradio
- 246. El siguiente enunciado define "factor de potencia" RELACION CONSUMIDA A POTENCIA SUMINISTRADA (verdadero)
- 247. El factor potencia promedio de los motores de los compresores de refrigeración es __90%__
- 248. En el tubo de succión, es normal esperar una caída de temperatura. (falso)
- 249. Para que un condensador enfriado por aire ceda calor a la atmósfera, debe ser la temperatura de condensación

 ________ que la temperatura del medio ambiente extior

250. A la diferencia entre la temperatura de condensación y
la del aire que entra al condensador se le llama
DISPERSION
251. El subenfriamento en un condensador enfriado por aire se lleva a cabo en las filas superiores del serpentin: (<u>FALSO</u>)
252. En general, el subenfriamiento del liquido se presenta en
las filas2 Y 3 ultimas del condensador.
253. Los problemas en un sistema de refrigeración se
clasifican en dos grupos:
ELECTRICAS yMECANICAS
254. Un condensador sucio, producirá diferencia de
mmo sie mass. ALTAC
presionesALTAS Los problemas en el sistema del refrigerante se pueden
deber a dos causas principales: Cantidad de refrigerante y
flujo de refrigerante
256. El principio básico por el que opera un sistema de
refrigeración es <u>control</u> del <u>Punto de ebullición</u>
257. Un flujo restringido de aire por el evaporador, produce
presión de succión alta <u>(FALSO)</u>
258. En un evaporador con válvula termostática de expansión, si se reduce el flujo de aire, el sobrecalentamiento
del serpentín: <u>c. queda igual</u>
259. En un evaporador con tubo capilar, si se reduce el flujo
de aire, el sobrecalentamiento del serpentín: b. Disminuye
260. Si falla una válvula de expansión a causa de que se
pierde la carga del bulbo sensor, la presión de succión: d. baja

- 261. La ubicación del bulbo sensor de la válvula de expansión no tiene efectos sobre la operación de esa válvula: **(FALSO)**
- 262. La causa más común de alta diferencia de presiones es:

FERBARANDO LA UNITADA REVISAR SYLVADOR RETITOS DEL SERPENTIN SE ESCARCHAN (VERDADERO)

- 263. Un filtro obstruido es la causa más común de baja presión en la succión: **(VERDADERO)**
- **264.** Cuál es el modo más fácil de ver si hay un tubo capilar tapado en los serpentines con varios capilares: **a. soplando**
- 265. La carga adecuada del refrigerante en un sistema con válvula termostática de expansión con recibidor es 1/3 a 1/2 de la altura del recibidor.
- 266. Estando parada la unidad y el sistema a temperatura ambiente, la presión en el sistema debe ser igual a la **PRESION EQUIVALENTE DE SATURACION**
- 267. Un subenfriamiento excesivo del liquido que sale del condensador puede ocasionarse por <u>Demasiada carga de gas</u> <u>refrigerante</u> o por tubo líquido <u>obstruido</u>
- 268. La tolerancia de voltaje para sistemas monofásicos de refrigeración es + _10 ___% y _10 __%
 269. La tolerancia de voltaje para sistemas trifásicos de refrigeración es + _5 ___% y _10 __%
 270. En las unidades trifásicas el voltaje de los tres pares de terminales de la fuente de poder debe ser igual con una variación menor que _3 __% entre ellas.

- 271. El limite de resistencia para los contactos cerrados es
 <u>1</u> OHM para los d alto voltaje y <u>0.5</u> OHM para los de bajo voltaje
- 272 El fusible o interruptor termomagnético para motores ¿De que tipo debe ser?: d. Ninguna de las anteriores
- 273. Si la carga conectada nunca es mayor que la capacidad del fusible es posible que este se encuentre quemado porque el porta fusible esta flojo: (VERDADERO)
- 274. Estos son tres distintos arreglos que se han empleado para la protección de sobrecarga con restablecimiento automático en los conjuntos de motor y compresor:

Ayuda de presión en montaje externo Elemento calefactor de termostato interno en la línea principal

Desconexión interna de la línea (FALSO)

275. Que cosas tiene un "kit de arranque difícil":

capacitor de **ARRANQUE** y un **ELEVADOR** de capacitor

- **276.** Cuál es la tolerancia de valores, alto y bajo de voltaje de entrada para una unidad monofásica de 240 V: **d. Ninguna de las anteriores**
- 277. Cual es la tolerancia de valores, alto y bajo de voltaje de entrada para una unidad trifásica de 208/230V:

a. 253 y 198 Vol.

278. Donde se debe medir el voltaje cuando se pone en marcha y se hace trabajar una unidad:

EN LAS <u>TERMINALES</u> DEL <u>CONTACTOR</u>	
279. Cuando se aplica bajo voltaje, esta puede ser una caus	a
muy frecuente de ruido y quemado de la bobina del relevador: (<u>VERDADERO)</u>	
280. Para el motor del ventilador de hélice cuando aumenta	a
la resistencia al movimiento del aire la corriente: c. Se queda	
igual	
281. Para motor del ventilador del soplador cuando aumen	ta
la resistencia al movimiento del aire la corriente:	
(DISMINUYE)	
-	
282. Se puede emplear un sistema de ductos con una unida	d
que tenga ventilador de hélice: <u>(FALSO)</u>	
283. Se puede emplear aceite automotriz con buenos	
resultados para lubricar motores eléctricos: (FALSO)	
284. Los relevadores que usan en unidades de refrigeración	0
de aire acondicionado son de dos tipos:	
DE <u>CORRIENTE</u> Y DE <u>POTENCIAL</u> 285. El voltaje de funcionamiento de un relevador de	
corriente esta entre: d. Ninguna de las anteriores	
286. Los relevadores de arranque se ajustan con facilidad:	
<u>(Falso)</u>	
287. La tolerancia de valores nominales de voltaje, para	
cambiar un capacitor, es de	
+ _10 a - <u>_5</u> %	

288. La tolerancia de valores nominales de voltaje, para
cambiar un capacitor, es de
+ 0 % a _10 %
289. Cuando se emplea un amperímetro y un voltímetro para determinar la capacidad de un capacitor, ¿Que formula
se usaría? <u>µf= AMPERES X 2650 / VOLTAJE A TRAVES DEL</u>
<u>CAPACITOR</u>
290. Todos los capacitores de marcha tienen fusibles
internos: <u>(verdadero)</u>
291. La carga de refrigeración generalmente viene de cuatro
fuentes:
1. Transmisión de <u>calor</u> 2. Infiltración de <u>aire</u>
3. <u>carga</u> de producto
4. Calor <u>suplementario</u>
292. Las cargas de producto pueden ser calor
<u>SENSIBLE</u> o <u>LATENTE</u> o ambos
293. El aislamiento tiene resistencia: ALTA
294. Cuánto calor se transmite a través de 10 pies² de una
pared de ladrillo común de 4 pulg de espesor sin aislamiento, si la diferencia de temperatura es 70ºF: b. 875 Btu/Hr
295. Estas son tres formas diferentes de conseguir un
aislamiento:
Relleno del suelo
Flexible
Volátil (VERDADERO)

296. La siguiente es la Definición de "temperatura de diseño": LA TEMPERATURA SOLO SE REBASA EL % DEL TIEMPO DURANTE EL INVIERNO (Falso)

297. Abrir y cerrar la puerta del refrigerador, crea una carga de INFILTRACION DE AIRE
298. La rapidez de remoción de calor de un producto está
determinada por el <u>calor</u>
especifico del producto.
299. El calor especifico de un producto es el mismo sobre y
bajo el punto de congelamiento: (falso)
300. La carga de calor latente de un producto está
relacionada al porcentaje de su contenido de <u>humedad</u>
301. Estos fueron algunos de los modos con los cuales los
antiguos trataron de controlar el medio ambiente:
FUEGO, <u>VESTIDOS</u> , CAVERNAS Y <u>HIELO</u>
302. Quién patento por primera vez una máquina de
refrigeración: <u>JHON GORRIE</u>
303. Quién se cree que fue la primera persona en usar la "máquina de refrigeración" para enfriar aire: W. CARRIER
304. La compañía Du Pont desarrolló el primer refrigerante
"seguro", llamado clorofluor: (FALSO)
305. Los compresores herméticos para aire acondicionado se
comenzaron a usar aproxidamente en el año 1935
306. ARI quiere decir: Instituto de Aire Acondicionado y
Refrigeración (VERDADERO)

- El ARI está formado por fabricantes de equipos de aire 307. acondicionado y **REFIGERANTES**
- "ACKA" quiere decir: Asociación de Contratista en Aire 308.
- Acondicionado: (Falso) 309. La ACCA esta formada por contratistas en el área de electricidad: (falso)
- El potencial de crecimiento de la industria está limitado 310. por: Personal calificado técnicamente
- 311. Cuales son las 5 funciones de control del aire acondicionado:

temperatura, HUMEDAD, CIRCULAR aire, LIMPIEZA Y

- <u>ventilación</u> 312. Cual es Cual es la temperatura normal del cuerpo: 37ºC
- El agua en el aire se llama _humedad_ 313.
- 314. La zona de confort es la combinación de temperatura y humedad a la cual la gente se siente bien: (Verdadero)
- Cuál es la temperatura interior recomendada para la 315. calefacción: a) 24-28°C
- Cuales son la temperatura y la humedad relativa 316. recomendada para el enfriamiento:
 - d. Ninguna de las anteriores
- El movimiento del aire se mide en **C.F.M** 317.
- La velocidad del aire, para evitar corrientes, es: 50 318. pies/min
- El termómetro que se usa para medir la temperatura del 319. aire se llama: Bulbo seco

tern	nómetro que se llama: <u>bulbo hume</u>	edo
321.	El instrumento que se usa para m	edir al mismo tiempo
tem <u>(fals</u>	peratura y humedad se llama psicr	ómetro helicoidal
322.	A la diferencia de indicaciones de	los termómetros se le
llam	na: Disminución de temperatura de	<u>el bulbo húmedo</u>
323.	La gráfica que muestra las combir	naciones de
tem	peratura y humedad a las que sien	te a gusto la gente se
llam	na gráfica Zona de confort	
324.	Una persona respira36 libr	as de aire cada día
325. _ po	La contaminación normal del aire len, humos, polvo, <u>sustancias</u>	está formada por químicas
326.	La psicometría es la ciencia de la	comprensión de las
prop	piedades del aire <u>(verdadero)</u>	
327.	La atmosfera esta compuesta de	: <u>a. Nitrógeno,</u>
<u>Oxi</u> g	geno, otros gases	
328.	El vapor de agua se mide en Lb/P	Pies ² <u>(falso)</u>
329.	La temperatura de bulbo seco mi	de con un termómetro
ordi	inario	
330.	La temperatura de bulbo húmedo	mide la
_ <u>ra</u> r	<u>pidez</u> de <u>evaporacion</u>	con un
tern	nómetro ordinario con su bulbo cei	ntro de una mecha
moj	ada.	
331.	Un instrumento que mide al misn	no tiempo las
tem	peraturas de bulbo ,seco y bulbo h	úmedo es un

El nivel de humedad en el aire se mide con un

320.

Psicrómetro honda

332. A la diferencia de indicaciones de los termómetros se le
llama: Disminución de temperatura del bulbo húmedo
333. la temperatura de rocío es la temperatura a la cual el
yapor de agua se condensa (verdadero) 334. La humedad específica es una medida del peso real del
vapor de agua mediad en libras o pies/libra de aire seco:
<u>(falso)</u>
335. Cuantos granos hay por libra de humedad: c) 7000
336. La definición de humedad relativa es: PORCENTAJE REAL
DE VAPOR DE AGUA EN EL AIRE COMPARADO CON LA
CANTIDAD TOTAL QUE PODRIA TENER DETERMINADA
TENADEDATUDA (V/EDINADEDA)
TEMPERATURA (VERDADERO) 337. La humedad relativa es 100 % en la saturación
338El calor total del aire es compuesto deCALOR
338El calor total del aire es compuesto deCALOR y deCALOR LATENTE
•
SENCIBLE y de <u>CALOR LATENTE</u>
SENCIBLE y de <u>CALOR LATENTE</u> 339. El "volumen específico" es el numero de pies cúbicos
SENCIBLE y de <u>CALOR LATENTE</u> 339. El "volumen específico" es el numero de pies cúbicos ocupados por una libra de la mezcla de aire y vapor de agua.
SENCIBLE y de <u>CALOR LATENTE</u> 339. El "volumen específico" es el numero de pies cúbicos ocupados por una libra de la mezcla de aire y vapor de agua. (VERDADERO)
SENCIBLE y de <u>CALOR LATENTE</u> 339. El "volumen específico" es el numero de pies cúbicos ocupados por una libra de la mezcla de aire y vapor de agua. (VERDADERO) 340. "Entalpía" es el contenido total de <u>CALOR</u> del
SENCIBLE y de <u>CALOR LATENTE</u> 339. El "volumen específico" es el numero de pies cúbicos ocupados por una libra de la mezcla de aire y vapor de agua. (VERDADERO) 340. "Entalpía" es el contenido total de <u>CALOR</u> del aire y del <u>EVAPOR</u> de agua
SENCIBLE y de <u>CALOR LATENTE</u> 339. El "volumen específico" es el numero de pies cúbicos ocupados por una libra de la mezcla de aire y vapor de agua. (VERDADERO) 340. "Entalpía" es el contenido total de <u>CALOR</u> del aire y del <u>EVAPOR</u> de agua 341. Cómo se expresa la entalpía: a) BTU x LB aire
SENCIBLE y deCALOR LATENTE 339. El "volumen específico" es el numero de pies cúbicos ocupados por una libra de la mezcla de aire y vapor de agua. (VERDADERO) 340. "Entalpía" es el contenido total de _CALOR del aire y delEVAPOR de agua 341. Cómo se expresa la entalpía: a) BTU x LB aire 342. Las líneas horizontales de la carta psicrométrica indican
SENCIBLE y de <u>CALOR LATENTE</u> 339. El "volumen específico" es el numero de pies cúbicos ocupados por una libra de la mezcla de aire y vapor de agua. (VERDADERO) 340. "Entalpía" es el contenido total de <u>CALOR</u> del aire y del <u>EVAPOR</u> de agua 341. Cómo se expresa la entalpía: a) BTU x LB aire 342. Las líneas horizontales de la carta psicrométrica indican relación de <u>HUMEDAD</u> expresada en libras de

344.	La li	ínea curva en el limite de la carta psicrométrica se
llam	a la _	LINEA DE SATURACION
345.	La e	escala que corre a lo largo de la línea curva de la

izquierda de la carta psicrométrica indica la temperatura de **BULBO HUMEDO**

- 346. Las líneas que corren paralelas a la curva de la izquierda indican <u>HUMEDAD RELATIVA</u>
- 347. Los cambios de condiciones a lo largo de una recta horizontal en la carta indican cambios en calor **SENCIBLE**
- 348. Los cambios de condiciones a lo largo de una recta vertical en la carta indican cambios en calor **LATENTE**
- 349. El flujo de fluidos puede ser causado por cambios en diferencia de presiones o variaciones de <u>TEMPERATURAS</u>
- 350. Las pérdidas por fricción en los ductos son causadas por turbulencia, cambios de forma o de dirección y dispositivos de control de aire (VERDADERO)
- 351. El instrumento para medir la presión del aire se llama **Manómetro inclinado**
- 352. La presión total es la suma de la presión manométrica y la presión atmosférica (FALSO)
- 353. El instrumentos para medir la velocidad del aire se llama: d. Ninguna de las anteriores
- 354. El instrumento que se conecta a un manómetro para medir la presión total y la presión estática se llama <u>TUBO</u>
 PITOT

- 355. Una gráfica que da la resistencia que presentan los ductos rectos al paso de diversas cantidades de aire se llama gráfica de: **FRICCION DE AIRE**
- 356. La resistencia al flujo del aire que tienen diversas conexiones de ductos se basa en su LONGITUD equivalente de __TUBO RECTO_____
- 357. Cuáles son las velocidades recomendadas en ductos principales y ramales para sistemas residenciales:

d. Ninguna de las anteriores

- 358. La mayor parte de los acondicionadores paquete de aire emplean un impulsor de soplador aspas rectangulares
- 359. Reducción de velocidad, igual fricción y regulación estática son los tres métodos utilizados para dimensionar ductería: (VERDADERO)