Cheatsheet APA

Quack

Questo file non è esaustivo e potrebbe contenere errori. Ringrazio Fagadau Daniel per i suoi appunti.

Sommario

PD	2
Teoria	2
Pratica	3
FW	5
Teoria	5
Pratica	6
BFS	8
Teoria	8
Pratica	9
DFS	12
Teoria	12
Pratica	13
Greedy e Matroidi	17
Teoria	17
Pratica	18
Insiemi Disgiunti	19
MST	20
Kruskal	21
Prim	22
Diikstra (CMSU)	23

PD

Teoria

Dimostrazione Sottostruttura Ottima LCS: Siano $X = \langle x_1, ..., x_m \rangle$ e $Y = \langle y_1, ..., y_n \rangle$ due sequenze e sia $Z = \langle z_1, ..., z_k \rangle$ una LCS di X e Y.

- 1. Se $x_m = y_n$ allora $x_m = y_n = z_k e Z_{k-1} = LCS(X_{m-1}, Y_{n-1})$:
 - o **Per assurdo**: $x_m \neq z_k$, allora esiste $Z = Z + \langle x_m \rangle$ tale che Z è sottosequenza comune di X e Y e |Z| > |Z| e quindi Z non può essere la LCS
 - o **Per assurdo**: $Z_{k-1} \neq LCS(X_{m-1}, Y_{n-1})$, allora esiste Z_{k-1} sottosequenza comune a X_{m-1} e Y_{n-1} tale che $|Z_{k-1}| > |Z_k|$
- 2. Se $x_m \neq y_n$ allora $z_k \neq x_m$ implica che $Z = LCS(X_{m-1}, Y_n)$
 - o **Per assurdo**: $Z \neq LCS(X_{m-1}, Y_n)$ allora esiste Z sottosequenza comune a X_{m-1} e Y_n tale che |Z| > k. Z non può essere LCS
- 3. Se $x_m \neq y_n$ allora $z_k \neq y_n$ implica che $Z = LCS(X_m, Y_{n-1})$
 - **Per assurdo**: $Z \neq LCS(X_m, Y_{n-1})$ allora esiste Z sottosequenza comune a X_m e Y_{n-1} tale che |Z| > k. Z non può essere LCS

Dimostrazione Sottostruttura Ottima LIS: Sia $X = \langle x_1, ..., x_m \rangle$ una sequenza e sia X_i un suo prefisso di lunghezza i. Sia Z_i una tra le più lunghe sottosequenze crescenti di X_i e che termina con x_i . Allora vale che $Z^i = Z^* | x_i, Z^* \in W_i, |Z^*| = max\{|W| \ tc \ W \in W_i\}$ dove W_i è l'insieme di tutte le sottosequenze crescenti di X_j e che finiscono con x_j a cui accodabile x_i . Per assurdo: $Z^i \neq Z^* | x_i$ allora vale $Z^i = Z | x_i \in |Z^i| > |Z^*|$ dove Z^i è una sottosequenza crescente di prefisso inferiore a X_i . Sia Z^i l'ultimo elemento di Z^i , vale che $Z^i < x_i$. Sia $X^i < X^i$ più grande indice tale che $X_i = Z^i$. Si ottiene che $X^i \in W_i$ ma ciò porta ad una contraddizione: $|Z^i| > |Z^i|$ è contro l'ipotesi $|Z^i| = max\{|W| \ tc \ W \in W_i\}$

Dimostrazione Sottostruttura Ottima LICS: Siano X sequenza di m interi e X_i un suo prefisso, e Y sequenza di n interi e Y_j suo prefisso. Sia Z^{ij} una LICS di X_i e Y_j e che termina con x_i e y_j . Allora vale che $Z^{ij} = Z^* | x_{i'} | Z^* \in W_{ij'} | Z^* | = max\{|W|| tc |W|| tc |W||\}$ dove W_{ij} è l'insieme di tutte le sottosequenze crescenti comuni a x_h e y_k a cui è accodabile x_i . **Per assurdo:** $Z^{ij} \neq Z^* | x_{i'}$ allora vale $Z^{ij} = Z^* | x_i | e | Z^* | > |Z^* | dove Z^*$ è una sottosequenza comune crescente di prefisso inferiore a X_i e Y_i . Sia Z^* l'ultimo elemento di Z^* , vale che

 $z < x_i$. Siano r < i e s < j i più grandi indici tali che $x_r = y_s = z$. Si ottiene che $Z \in W_{ij}$ ma ciò porta ad una contraddizione: |Z| > |Z| è contro l'ipotesi $|Z| = max\{|W| tc W \in W_{ij}\}$

Dimostrazione Sottostruttura Ottima WIS: Sia $i \in \{2, ..., n\}$ (sottoproblemi del passo ricorsivo). Assumo di aver già risolto i sottoproblemi più piccoli: i-1, i-2, ..., 2, 1, ossia di conoscere S_{i-1} , S_{i-2} , ..., S_{2} , S_{1} . Allora vale l'equazione di ricorrenza:

$$S_{i} = \left\{S_{i-1} \text{ se } OPT_{i-1} \ \geq \ OPT_{P(i)} \ + \ v_{i} \right\} \\ S_{i} = \left\{S_{P(i)} \cup \{i\} \ altrimenti \right\}$$

- $i \notin S_i$. Per assurdo S_{i-1} non è la soluzione del problema i-esimo. In particolare $S_i \neq S_{i-1}$ e $v(S_i) > v(S_{i-1})$. $S_i \subseteq \{1, ..., i-1\}$ e $COMP(S_i) = true$. Allora S_{i-1} non è soluzione del problema i-1-esimo.
- $i \in S_i$. Per assurdo $S_{P(i)} \cup \{i\}$ non è la soluzione del problema i-esimo. In particolare $S_i \neq S_{P(i)} \cup \{i\}$ e $v(S_i) > v(S_{P(i)}) + v_i$. $S_i = S \cup \{i\}$ e $COMP(S_i) = true$. Allora $S \subseteq \{1, ..., p(i)\}$ e COMP(S) = true. Posso riscrivere come $v(S) + v_i > v(S_{P(i)}) + v_i$ ovvero $v(S) > v(S_{P(i)})$ e quindi $S_{P(i)}$ non può essere soluzione del problema P(i)-esimo

Dimostrazione Sottostruttura Ottima Hateville: Sia $i \in \{2, ..., n\}$ (sottoproblemi del passo ricorsivo). Assumo di aver già risolto i sottoproblemi più piccoli: i-1, i-2, ..., 2, 1, ossia di conoscere S_{i-1} , S_{i-2} , ..., S_{2} , S_{1} . Allora vale l'equazione di ricorrenza:

$$\begin{split} S_i &= \left\{S_{i-1} \ se \ OPT_{i-1} \ \geq \ OPT_{i-2} \ + \ d_i \right\} S_i = \left\{S_{i-2} \cup \{i\} \ altrimenti \right\} \\ i &\notin S_i \ \text{Per assurdo} \ S_{i-1} \ \text{non \`e la soluzione del problema i-esimo. In particolare } S_i \neq S_{i-1} \ \text{e} \ D(S_i) \ > \ D(S_{i-1}). \ S_i \subseteq X_{i-1} \ \text{e} \ COMP(S_i) \ = \ true. \ \text{Allora} \ S_{i-1} \ \text{non \`e soluzione del problema i-l-esimo} \end{split}$$

• $i \in S_i$. Per assurdo $S_{i-2} \cup \{i\}$ non è la soluzione del problema i-esimo. In particolare $S_i \neq S_{i-2} \cup \{i\} \in D(S_i) > D(S_{i-2}) + d_i \cdot S_i = S \cup \{i\} \in COMP(S_i) = true$. Allora $S \subseteq X_{i-2} \in COMP(S) = true$. Posso riscrivere come $D(S) + d_i > D(S_{i-2}) + d_i$ ovvero $D(S) > D(S_{i-2})$ e quindi S_{i-2} non può essere soluzione del problema i-2-esimo

Pratica

Tutti gli esercizi di PD del tipo "Date due sequenze trovare sequenza comune crescente/decrescente/alternante con qualche vincolo" sono facilmente risolvibili in questo modo:

- 1. **Introduzione Problema Ausiliario**: riscrivere il sottoproblema di dimensione (i,j) ed aggiungere alla fine "e che termina con x_m e y_n se questi coincidono". Esempio:
 - a. Sottoproblema P' LICS: date due sequenze X e Y , rispettivamente di m ed n numeri interi, si determini la lunghezza di una tra le più lunghe sottosequenze crescenti comuni al prefisso X_i e al prefisso Y_j e che termina con x_m e y_n se questi coincidono
- 2. **Calcolo Coefficiente**: è la lunghezza del sottoproblema del problema ausiliario + specificare lunghezza prefissi. Esempio:

- a. Coefficiente P': $c_{ij}=$ lunghezza di una tra le più lunghe sottosequenze crescenti comuni a X_i e a Y_j , con $i\in\{1,...,m\}$ e $j\in\{1,...,n\}$ e che termina con x_m e y_n se questi coincidono
- 3. Caso Base: $c_{ij} = 0 se x_i \neq y_j$
- 4. **Passo Ricorsivo**: $c_{ij} = 1 + max\{c_{hk} | 1 \le h < i, 1 \le k < j | condizioni\}$ dove in condizioni inseriamo la condizione del problema. Esempi:

```
a. LCS Crescente: x_h < x_i
```

- b. LCS Decrescente: $x_h > x_i$
- c. LCS Alternante: $x_h \neq x_i$
- d. LCS Pari/Dispari: $x_{h} \mod 2 \neq x_{i} \mod 2$
- e. LCS Alterna Qualcosa (es. Colore): $f(x_i) \neq f(x_i)$
- f. LCS No 2 cons: $x_h! = qualcosa \lor x_i! = qualcosa$
- 5. **Valore Ottimo**: $c_{mn} = max\{c_{ij} | 1 \le i \le m, 1 \le j \le n\}$
- 6. Algoritmo DP:

```
Unset
procedure L-CS(X, Y)
max = 0
for i=1 to m
      for j=1 to n
             if x[i] != y[j]
                    C[i,j] = 0
              else
                     tmp = 0
                     for h = 1 to i - 1
                           for k = 1 to j - 1
                                  if condizione AND C[h,k] > tmp
                                         tmp = C[h,k]
                                         H[i,j] = (h,k)
                    C[i,j] = tmp + 1
                     if C[i,j] > max
                           max = C[i,j]
return max
```

7. Algoritmo Ricostruzione:

```
Unset
procedure print-L-CS(i,j)
    if H[i,j] != (0,0)
        print-L-CS(H[i,j])
    append x[i]
```

Osservazione: Per altri esercizi PD non risolvibili in questo modo, come LCS, LIS, Knapsack ed altri, consiglio di guardare il file del Prof. Dennunzio.

FW

Teoria

Dato un grafo orientato e pesato G= (V,E) con W matrice dei pesi, vogliamo calcolare il peso del cammino minimo da i a j, per ogni coppia di vertici (i,j). Algoritmo di Programmazione Dinamica.

```
Unset
Floyd-Warshall(V, E, W)
D[0] = W
\Pi[0] = matrix (n x n) of NIL values
for i = 1 to n
       for j = 1 to n
              if i != j and w[i,j] != \infty
                     \Pi[0][i,j] = i
for k = 1 to n
       for i = 1 to n
              for j = 1 to n
                     D[k][i,j] = D[k-1][i,j]
                     \Pi[k][i,j] = \Pi[k-1][i,j]
                     if i != k and k != j
                             if D[k][i,j] > D[k-1][i,k] + D[k-1][k,j]
                                    D[k][i,j] = D[k-1][i,k] + D[k-1][k,j]
                                    \Pi[k][i,j] = \Pi[k-1][k,j]
```

Tempo di Esecuzione FW: $\Theta(n^3)$

Costruzione cammini minimi: un possibile metodo consiste nel costruire la matrici D dei pesi dei cammini minimi e da questa ricavare la matrice dei predecessori Π:

- Quando k = 0, un cammino minimo da i a j non ha alcun vertice intermedio, quindi il predecessore di k è o NIL se i=j o arco infinito oppure è i.
- Per k ≥ 1, se prendiamo i cammini i → j e k → j, dove k! = j, allora il predecessore di j che scegliamo è uguale al predecessore di j che avevamo scelto in un cammino minimo da k con tutti i vertici in {1, ..., k 1}. Altrimenti, scegliamo lo stesso predecessore di j che avevamo scelto in un cammino minimo da i con tutti i vertici intermedi in {1, ..., k 1}.

Caratterizzazione cammini minimi: La caratterizzazione della struttura di cammino minimo di Floyd-Warshall si base sul concetto di vertice intermedio. Dato un cammino $p=\{v_1,...,v_l\}$ si considera vertice intermedio qualunque vertice dell'insieme $\{v_2,...,v_{l-1}\}$ Consideriamo un sottoinsieme $\{1,...,k\}$ di vertici. Per una coppia di vertici qualsiasi i, $j\in V$, consideriamo tutti i cammini i cui vertici intermedi sono tutti in $\{1,...,k\}$ e sia p un cammino minimo fra di essi.

• Se k non è vertice intermedio di p, allora tutti i vertici intermedi di p sono nell'insieme $\{1, ..., k-1\}$. Quindi, un cammino minimo dal i a j con tutti i vertici

intermedi in $\{1, ..., k-1\}$ è anche un cammino minimo da i a j con tutti i vertici intermedi in $\{1, ..., k\}$.

- Se k è un vertice intermedio di p allora spezziamo p in p1:i → k e p2:k → j.
 - o pl è un cammino minimo da i a k con tutti i vertici nell'insieme $\{1, ..., k\}$. Poiché k non è vertice intermedio di pl, allora pl è un cammino minimo da i a k con tutti i vertici intermedi in $\{1, ..., k - 1\}$.
 - Vale lo stesso ragionamento per p2

Chiusura transitiva di un grafo orientato G=(N,A) è un grafo orientato $G_+ = (N, A_+)$, tale che un arco (i,j) è in A_+ se e solo se esiste un cammino da i a j in G. Un modo per calcolare la chiusura transitiva di un grafo consiste nell'assegnare l a ogni arco in E e nell'eseguire l'algoritmo di Floyd-Warshall. Se esiste un cammino dal vertice i al vertice j, si ha $d_{ij} < n$, altrimenti $d_{ij} = \infty$.

Chiusura transitiva in FW: si possono modificare le equazioni di ricorrenza di Floyd-Warshall in questo modo:

- si sostituisce a min un V
- si sostituisce a + un Λ

Le variabili assumono valori True o False, in base a se esiste o meno il cammino minimo.

Pratica

Tutti gli esercizi che non richiedono un problema ausiliario sono risolvibili nel seguente modo:

- Definizione Coefficiente:
 - a. Richiede cammino minimo: $d^{(k,...)}(i,j)$ è il peso di un cammino minimo dal vertice i al vertice j, i cui vertici intermedi appartengono all'insieme $\{1, ..., k\}$ e che **condizione**.
 - b. Richiede esistenza cammino minimo: $d^{(k,...)}(i,j)$ vale True di un cammino minimo dal vertice i al vertice j, i cui vertici intermedi appartengono all'insieme $\{1, ..., k\}$ e che **condizione**, altrimenti False.
- 2. Caso Base: Il passo più difficile. Si ha per k = 0, ovvero quando abbiamo solo un nodo (i = j) o due nodi (i !=j). Bisogna innanzitutto vedere se è necessario mantenere una nuova variabile per tenere conto di qualcosa (numero vertici-archi cammino, pari-dispari, massimo numero vertici-archi che soddisfano una condizione ecc..). Bisogna controllare se la condizione è =, ≥ o ≤, bisogna controllare se richiede il controllo su archi o sui vertici. Purtroppo non so come sintetizzare.
- 3. Passo Ricorsivo: Si ha per k > 0. Quasi sempre basta comportarsi così:
 - a. $k \notin cammino\ minimo:\ d^{(k,\ldots)}(i,j) = d^{(k-1,\ldots)}(i,j) = e_0$
 - b. $k \in cammino\ minimo:$ $d^{(k,\ldots)}(i,j) = min\{\ d^{(k-1,\ldots)}(i,k) + d^{(k-1,\ldots)}(k,j)\}\ tc\ controllo\ =\ e1,\ dove\ il\ controllo\ e\ sulle\ altre\ variabili,\ esempio:$
 - i. $d^{(k,h)}(i,j) = min\{d^{(k-1,h1)}(i,k) + d^{(k-1,h2)}(k,j)\} tc h1 + h2 = h = e_1$ il seguente codice controlla che la somma dei due cammini sia esattamente quella del cammino originale.

c.
$$d^{(k,...)}(i,j) = min\{e_0, e_1, ..., e_n\}$$

- d. Se richiede esistenza cammino: sostituisci il + con un AND e sostituisci il min con V.
- 4. Valore Ottimo: $d^{(n)}(i,j)$

Gli esercizi che richiedono il problema ausiliario sono tendenzialmente quelli in cui si chiede una condizione tra archi adiacenti. Dato che bisogna controllare l'ultimo arco prima k e il primo arco dopo k ma non abbiamo a disposizione tale informazioni, si introducono le variabili (c,d) che rappresentano il primo arco e l'ultimo arco del grafo. Di seguito un esempio:

Esistenza di cammini senza archi consecutivi rossi:

- 1. **Definizione Coefficiente**: $d^{(k)}(i, j, a, b)$ vale True se esiste un cammino minimo dal vertice i al vertice j, con vertici intermedi appartenenti all'insieme $\{1, ..., k\}$, senza due archi consecutivi di colore rosso, con il primo arco di colore a, e l'ultimo arco di colore b, False altrimenti.
- 2. Caso Base:

$$k=0,\,d^{(0)}(i,\,j,\,a,\,b)=True\,se\,i\,\neq\,j\,\,\wedge\,\,(i,\,j)\,\epsilon\,E\,\,\wedge\,\,a\,\,=\,\,b\,\,=\,\,col(i,j),\,False\,altrimenti$$

- 3. Passo Ricorsivo: k > 0:
 - a. $k \notin cammino minimo: d^{(k)}(i, j, a, b) = \{d^{(k-1)}(i, j, a, b)\} = e_0$
 - b. $k \in cammino\ minimo:$ $d^{(k)}(i, j, a, b) = \{d^{(k-1)}(i, k, a, c) \land d^{(k-1)}(k, j, d, b) \ tc \ c \neq R \lor d \neq R\} = e_1$
 - c. In conclusione: $d^{(k)}(i, j, a, b) = e_0 \lor e_1$
- 4. Valore Ottimo: $d^{(n)}(i,j)$

BFS

Teoria

```
Unset
BFS(G, s) {
for all u in V - \{s\}
        u.col = WHITE
        u.d = ∞
        u. = NIL
s.col = GREY
s.d = 0
s.\pi = NIL
enqueue(Q, s)
while Q \neq \emptyset
        u = dequeue(Q)
        for all v Adj[u]
                if v.col == WHITE
                        v.col = GREY
                        v.d = u.d + 1
                         v.\pi = u
                        enqueue(Q, v)
        u.col = BLACK
}
```

Tempo di Esecuzione: l'inizializzazione richiede O(V), Le operazioni di enqueue e dequeue richiedono tempo costante e sono eseguite una volta per ogni vertice, quindi O(V) in totale. La scansione delle liste di adiacenza avviene una volta per ogni vertice. La lunghezza totale è $\Theta(E)$ quindi il tempo è O(E). In totale il tempo è: O(V)

Colori Vertici: I vertici di un grafo possono assumere durante l'esecuzione di una BFS, tre colori:

- 1. bianco: il nodo non è ancora stato scoperto
- 2. grigio: il nodo è stato scoperto ma la sua lista di adiacenza non è stata esplorata del tutto
- 3. nero: il nodo è stato scoperto e la lista di adianceza è stata completamente esplorata

Osservazione: Se mi serve sapere solo i nodi raggiungibili dalla sorgente, ovviamente non ho bisogno dei **colori** o dei **predecessori**. Queste sono informazioni che ci servono per ulteriori implementazioni dell'algoritmo.

Il **grafo dei predecessori**, è definito formalmente come $G_{\pi} = (V_{\pi}, E_{\pi})$ dove:

```
\bullet \quad V_{_{\scriptstyle{\pi}}} \ = \ \{ \ v \in V \colon \ v \colon \pi \ \neq \ NIL \} \ \cup \ \{s\}
```

```
• E_{\pi} = \{(v.\pi, v): v \in V - \{s\}\}
```

Il grado dei predecessori contiene quindi tutti i vertici raggiungibili dal vertice sorgente e, per ognuno di essi, il cammino minimo dal vertice sorgente ad esso.

Pratica

Contare vertici raggiungibili: Basta che chiamo BFS, e scorro tutti i vertici, per ogni vertice che ha distanza diversa da infinito incremento il contatore.

Stabilire se un grafo non orientato è albero: sapendo che è non orientato, per essere albero manca aciclico e connesso:

- connesso: come prima, BFS visita solo i nodi raggiungibili, quindi se trovo almeno un nodo che ha colore bianco, allora non è connesso
- aciclico: presa la lista di adiacenza di un nodo, se trovo un vertice grigio, vuol dire che l'ho visitato in precedenza e quindi ho ciclo.

```
Unset
...
for all v Adj[u]
...
    if v.col == GREY
        return FALSE
    return TRUE
```

Variante grafo non orientato è albero: sapendo che il grafo è connesso, questo sarà un

albero se |E| = |V| - 1. Possiamo allora usare una variabile che conta gli archi e viene incrementata per ogni vertice della lista di adiacenza, mentre il numero di vertici viene fornito da "Adj.lenght". Bisogna dividere e/2 perchè grafo è non orientato e quindi conta 2 volte.

```
Unset
...
for all v Adj[u]
    ne++
    ...
if isConnected(G) AND ne/2 == Adj.length -1
    return TRUE
return FALSE
```

Stabilire se cc è albero: dobbiamo solo contare il numero di vertici e archi in quanto sappiamo già che la componente è connessa. In questo caso però il numero di vertici non è dato da Adj.length, ma bisogna usare una variabile che viene incrementata ogni volta che effettuo una dequeue.

Modifica BFS tale che considera nodi a distanza minore uguale a k: semplicemente faccio la enqueue dei soli vertici a distanza minore di k

```
Unset

for all v Adj[u]

if v.d == \infty

v.d = u.d + 1

if v.d < k

enqueue(Q, v)
```

Stabilire se cc siano grafi completi:

- se il grafo è non orientato deve valere la seguente proprietà: $|E| = \frac{(n-1)\cdot n}{2}$.
- ullet se il grafo è orientato, deve valere la seguente proprietà: $|E|=n\cdot(n-1)$ Mi comporto allo stesso modo del problema dell'albero e cambio il controllo.

```
Unset
while Q ≠ Ø
    u = dequeue(Q)
    nv++
    for all v Adj[u]
        ne++
        ...
if "controllo numeri archi"
    return TRUE
return FALSE
```

DFS

Teoria

```
Unset
DFS(G)
for all v in V
       v.col = WHITE
       v.\pi = NIL
time = 0
for all v in V
       if v.col == WHITE
              DFS_Visit(G, v)
DFS_Visit(G, u)
time++
u.d = time
u.col = GREY
for all w in Adj[u]
       if w.col == WHITE
              w.\pi = u
              DFS_Visit(G, w)
u.col = BLACK
time++
u.f = time
```

Tempi di Esecuzione: la procedura DFS, avviene per ogni vertice, quindi $\Theta(V)$. La procedura DFS-VISIT è chiamata per ogni vertice, e il ciclo interno viene eseguito tante volte quanto la lunghezza della lista di adiacenza, ovvero $\Theta(E)$. In totale quindi $\Theta(V+E)$

Osservazione: Il numero di chiamate a DFS-VISIT da DFS corrisponde al numero di componenti connesse di un grafo non orientato. Questo perchè, per come è strutturata una DFS, DFS-VISIT viene chiamata da DFS in modo da formare un albero DF disgiunto dagli altri delle foresta DF

Il **grafo dei predecessori** prodotto da una visita DF è definito formalmente come $G_{\pi}=~(V,~E_{\pi})$ dove:

```
• E_{\pi} = \{(v.\pi, v): v \in V \land v.\pi \neq NIL\}
```

Il sottografo è una foresta DF composta da vari alberi DF. Gli archi in E_π sono archi dell'albero.

Classificazione Archi: definiamo quattro tipi di archi in un grafo orientato:

- Arco Tree: sono gli archi nella foresta DF. Sono gli archi tale che la destinazione ha colore White.
- Archi Backward: sono gli archi che collegano un vertice u ad un suo antenato v in un albero DF. Sono gli archi tali che la destinazione ha colore Grey.

- Archi Forward: sono gli archi che collegano un vertice u ad un discendente v in un albero DF. Sono gli archi tali che la destinazione ha colore Black e u.d < v.d
- Archi trasversali: tutti gli altri archi, ovvero quelli tali che la destinazione ha colore Black e u.d ≥ v.d

Teorema delle parentesi: Dopo una visita in profondità, uno solo dei tre casi seguenti si può verificare per due vertici u e v:

- 1. [d[u],f[u]] contiene [d[v],f[v]] ovvero v è discendente di u in un albero della visita
- 2. [d[v],f[v]] contiene [d[u],f[u]] ovvero u è discendente di v in un albero della visita
- 3. [d[u],f[u]] e [d[v],f[v]] sono disgiunti ovvero u e v non sono discendenti l'uno dell'altro in un albero della visita

Dimostrazione Teorema parentesi:

- 1. Caso 1: d[u] < d[v]
 - a. d[v] < f[u]
 - i. verranno ispezionati tutti gli archi uscenti da v prima di riprendere l'ispezione degli archi uscenti da u
 - ii. v è discendente di u in un albero della visita
 - iii. f[v] < f[u]
 - iv. [d[u], f[u]] contiene [d[v], f[v]]
 - b. f[u] < d[v]
 - i. sicuramente d[u] < f[u] e d[v] < f[v] allora d[u] < f[u] < d[v] < f[v]
 - ii. nessuno dei due vertici è stato scoperto mentre l'altro era grigio
 - iii. nessuno dei due vertici è discendente dell'altro nello stesso albero della visita
 - iv. $[d[u],f[u]] \in [d[v],f[v]]$ sono disgiunti
- 2. Caso 2: d[u] > d[v] si ripete scambiando i ruoli dei due vertici

Ordinamento Topologico: avviene su un DAG, ovvero un grafo orientato aciclico. Rappresenta un ordinamento lineare dei suoi vertici, tale per cui se nel grafo esiste un arco (u,v) allora u comparirà prima di v nell'ordinamento. Per ottenere un ordinamento topologico possiamo sfruttare DFS:

```
Unset

procedure topological-sort(G)

DFS(G)

una volta completata ispezione vertice, inserire vertice in testa a lista concatenata

ritornare la lista concatenata
```

Pratica

Contare i vertici: nell'iterazione, quando setto un nuovo vertice a grey, incremento la variabile che salva il numero di vertici.

```
Unset
DFS_Visit(G, u)
time++
u.d = time
u.col = GREY
nv++
```

Contare le cc di un grafo: Ogni volta che effettuiamo la visita, stiamo esplorando una nuova CC, quindi la incremento prima di effettuare una nuova procedura.

Contare quante cc sono alberi: come prima essendo non orientati e connessi basta che siano aciclico. Possiamo anche, invece di controllare che sia ciclico, usare la proprietà di vertici ed archi. P

Contare quante cc sono grafi completi: stesso principio di prima ma cambia il controllo.

Etichettare archi grafo orientato: se il nodo è bianco è un T, se il nodo è grigio è un B, se il nodo di partenza è stato scoperto prima del nodo di arrivo è F, altrimenti C.

```
Unset
for all w in Adj[u]
    if w.col == WHITE
        print 'Tree-Edge'
        w.π = u
        DFS_Visit(G, w)
    else if w.col == GREY
        print 'Back-Edge'
    else if u.d < w.d
        print 'Forward-Edge'
    else
        print 'Cross-Edge'</pre>
```

Osservazione: se il grafo è non orientato, nello scorrimento non considero il parent di u, ed etichetto solo con T e B.

Stabilire se un grafo è foresta con k alberi: come nel contare le cc di un grafo, ma chiamo la visita solo se è ancora aciclico e il numero di cc è < k.

```
Unset

DFS(G)

for all v V

v.col = WHITE

v. = NIL
```

```
DFS(G)
. . .
CC = 0
while all v in V AND CC < k AND Acyclic
      if v.col == WHITE AND CC < k
            DFS_Visit(G, v)
            CC++
      else if v.col == WHITE
            CC++
if CC == k AND Acyclic
      Return TRUE
else
      Return FALSE
DFS_Visit(G, u)
if w.col == WHITE
     else
            Acyclic = FALSE
. . .
```

Greedy e Matroidi

Teoria

Una coppia (S, F), dove S è un insieme finito di elementi e F famiglia di sottoinsiemi di S, è definita **Sistema di Indipendenza** se preso $A \in F$, allora un qualsiasi $B \subseteq A$, $B \in F$

```
Un sistema di indipendenza è un Matroide se \forall A, B \in F \ tc \ |B| = |A| + 1 allora \exists b \in B - A \ tc \ A \cup \{b\} \in F
```

Dato un grafo G = (V, E) non orientato e connesso, $M_G = (S, F)$ è il **matroide grafico di G**, tale che S è l'insieme degli archi E, e F tutti i sottoinsiemi di S aciclici.

Dato un matroide M = (S, F), $s \in S$ è detto **estensione** di $A \in F$ se $A \cup \{s\} \in F$

Dato un matroide M = (S, F), $A \in F$ è detto **massimale** se non ha estensioni

Teorema di Rado: la coppia (S, F) è matroide sse per ogni funzione peso W, l'algoritmo greedy standard fornisce la soluzione ottima

Tempo di Esecuzione: $O(n \log n)$

Osservazione: Il problema associato ad una coppia costituita da un SI e una funzione peso su esso è un insieme $M \in F$ tale che il suo peso sia massimo. L'algoritmo procede così:

```
Unset Greedy(E,F,w) S = \emptyset Q = E while(Q \neq \emptyset) determina elemento m di peso massimo in Q <math display="block">Q = Q - \{m\} if S \cup \{m\} \in F S = S \cup \{m\}
```

Dimostrazione Matroide Grafico è Matroide: M_c è un matroide:

- 1. $A \in F, B \subseteq A \Rightarrow B \in F$
 - a. Se $A \in F$, allora anche $B \subseteq A$ sarà aciclico e appartiene quindi a F
- 2. $\forall A, B \in F \ tc \ |B| = |A| + 1 \ allora \exists b \in B A \ tc \ A \cup \{b\} \in F$
 - a. Sino A, $B \in F$ tali che |B| = |A| + 1 ovvero
 - i. G_A = foresta di |V| |A| alberi
 - ii. G_B = foresta di |V| |B| alberi
 - b. G_B ha un albero in meno di G_A e quindi in G_B esiste arco (u,v) che connette due vertici u e v che in G_A stanno in due alberi diversi: $\{(u,v)\}\ \cup\ A\in F$

Pratica

S insieme dei primi 1000 interi positivi, F famiglia dei sottoinsiemi A di S tale che la somma dei numeri è multiplo di 3.

- (S, F) è Sistema di Indipendenza, ovvero $A \in F, B \subseteq A$ allora $B \in F$? **No**, controesempio $A = \{2, 4, 3\}, B = \{4, 3\}$
- Conclusione: (S, F) non è matroide

E insieme finito di vettori in V, F sottoinsieme di E formato dai vettori linearmente indipendenti.

- (S, F) è Sistema di Indipendenza? **Si**, se ho un insieme indipendente e ne prendo un sottoinsieme, saranno ancora tra loro indipendenti.
- (S, F) è Matroide, ovvero vale la proprietà di scambio ∀A, B ∈ F tc |B| = |A| + 1 allora ∃ b ∈ B A tc A ∪ {b} ∈ F? Si, se prendo un sottoinsieme di n vettori linearmente indipendenti e uno di n+1, deve esistere un vettore da aggiungere al più piccolo che non fa parte di questo, in quanto altrimenti l'insieme più grande sarebbe ottenibile dai n vettori del gruppo minore e quindi linearmente dipendente.
- Conclusione: (S, F) è matroide

Knapsack

- (S, F) è Sistema di Indipendenza? **Si**, perchè se A non supera il limite, sicuramente un sottoinsieme non lo farà
- Per (S, F) vale la proprietà di scambio? No, controesempio:
 - a. valore 10 peso 50
 - b. valore 20 peso 30
 - c. valore 15 peso 40
- con limite a 70 e A = {a} e B = {b, c} non posso aggiungere nessun elemento ad A
- Conclusione: **Knapsack non è matroide**, infatti abbiamo dimostrato che se si prende come funzione peso il valore, knapsack non fornisce la soluzione ottima

Insiemi Disgiunti

Una Struttura per Insiemi Disgiunti è una collezione $S = \langle S_1, S_2, ..., S_k \rangle$ di insiemi disgiunti. Ogni insieme è identificato da un rappresentante, uno tra i membri dell'insieme stesso. Le operazioni supportate sono:

- MakeSet(x): Crea un nuovo insieme con un singolo membro
- Union(x, y): Unisce i due insiemi contenenti x ed y
- FindSet(x): Ritorna il rappresentante dell'insieme in cui x è contenuto

Implementazioni: è possibile rappresentare una struttura dati per insieme disgiunti in due modi:

- Lista, in cui ogni elemento ha: valore, puntatore alla testa, puntatore a next, puntatore alla coda (solo il rappresentante). Complessità:
 - Make-set(x): O(1)
 - Union(x,y): O(n)
 - Find-set(x): O(1)
- Foresta, in cui gli elementi di ogni albero hanno solo un puntatore al proprio genitore. La radice contiene in più un puntatore al rappresentante. Complessità:
 - Make-set(x): O(1)
 - Union(x,y): O(1)
 - o Find-set(x): O(n)

Euristica Unione Pesata (Liste): Ogni lista conterrà anche un attributo con la sua lunghezza, così che quando faccio la Union la lista più corta viene aggiunta a quella più lunga. Allora m operazioni vengono fatte in $O(m + n \cdot log n)$: dato che un singolo elemento può aggiornare il suo rappresentante log n volte e che ci sono n elementi, arriviamo a tale tempo.

Euristica Unione per Rango (Foreste): L'idea è di fare in modo di unire un albero 'corto' in subordine alla radice di uno lungo piuttosto che il contrario. Ad ogni nodo è associato un rango, ovvero il limite superiore per l'altezza del nodo, vale a dire il numero di archi del cammino più lungo fra sé ed una foglia.

Compressione dei Cammini: Visto che 'perdiamo tempo' a scorrere l'albero, possiamo modificarlo intanto per migliorare le findSet future.

```
Unset
findSet(x)
if x != P(x)
    P(x) = findSet(P(x))
Return P(x)
```

Ad ogni nodo viene assegnato come parent il rappresentante del proprio parent e questo permette di modificarlo per ottenere una struttura che migliorerà le findSet future

Tempi di Calcolo: l'unione per rango porta ad un tempo $O(m \cdot log n)$. Se aggiungiamo la nuova findSet arriviamo ad un tempo $O(m \cdot \alpha(m,n))$, $\alpha \leq 4$ ovvero un tempo lineare.

MST

MST:

- Input: grafo connesso non orientato pesato G = (V, E) con funzione peso tale che W(u,v) è il peso dell'arco (u,v=
- Output: $T \subseteq E$ aciclico tale che:
 - a. $\forall v \in V$, $\exists (u, v) \in T$
 - b. $W(T) = \sum_{(u,v) \in T} W(u,v)$ è minimo.

Algoritmo Generico:

- 1. Inizializza un insieme A vuoto
- 2. Aggiunge ad ogni passo un arco (u,v) in modo tale che unito ad A è sottoinsieme dell'insieme T degli archi di MST.
- 3. L'algoritmo termina non appena A = T, ovvero G_{Λ} è MST.

```
Unset

GENERIC-MST(G,w)

A = ∅

while A != MST

trova (u,v) arco sicuro per A

A = A ∪ {(u, v)}

return A
```

Si dice **taglio** una partizione di un grafo non orientato (S, V - S).

Si dice che un **arco (u,v) attraversa un taglio** se una delle due estremità si trova in S e l'altra in V - S.

Si dice che un **taglio rispetta un sottoinsieme di archi** se nessun arco del sottoinsieme lo attraversa.

Si dice arco leggero per un taglio l'arco di peso minimo tra quelli che lo attraversano.

Teorema dell'arco sicuro: Sia

- 1. G = (V, E) un grafo connesso non orientato con una funzione peso w a valori reali definita in E.
- 2. Sia A un sottoinsieme di E che è contenuto in qualche MST per G
- 3. Sia (S, V S) un taglio qualsiasi di G che rispetta A
- 4. Sia (u, v) un arco leggero che attraversa (S, V S).

Allora, l'arco (u, v) è sicuro per A.

Dimostrazione arco sicuro: Sia T un MST che include A e non contiene arco leggero (u,v). Costruiamo $T = A \cup \{(u,v)\}$. L'arco (u,v) forma un ciclo con gli archi del cammino p da u a

Costrulamo $T = A \cup \{(u,v)\}$. L'arco (u,v) forma un ciclo con gli archi del cammino p da u a v in T. Dato che u e v sono sui lati opposti del taglio (S, V - S) almeno un arco in T nel cammino p attraverso il taglio. Sia (x,y) quest'arco. L'arco (x,y) non è in A, perchè il taglio rispetta A. Dato che (x,y) è sul cammino da u a v in T, rimuovendolo rompe T in due componenti. Aggiungendo (u,v) le riconnettiamo formando un nuovo spanning tree

 $T^{'} = (T - \{(x, y)\}) \cup \{(u, v)\}$. Dato che (u,v) è arco leggero che attraversa (S, V - S) e anche

(x,y) attraversa questo taglio, $w(u, v) \leq w(x, y)$ e quindi $w(T') \leq w(T)$. Ma dato che T è MST, allora anche T' deve esserlo. Rimane da dimostrare che (u,v) è veramente sicuro per A. Abbiamo

```
1. A \subseteq T

2. A \subseteq T

3. (x,y) \notin A

4. A \cup \{(u,v)\} \subseteq T
```

Dato che $T^{'}$ è MST allora (u,v) è sicuro per A.

Corollario: Sia

- 1. G = (V, E) connesso e non orientato con funzione peso w a valori reali in E.
- 2. Sia $A \subseteq E$ che include qualche MST per G
- 3. Sia $C = (V_C, E_C)$ una componente connessa di $G_A = (V, A)$.

Se (u,v) è un arco leggero che connette C a qualche altra componente in G_A , allora (u,v) è sicuro per A.

Dimostrazione: Il taglio $(V_{C'} V - V_{C})$ rispetta A, e (u,v) è arco leggero per questo taglio, quindi è sicuro per A.

Kruskal

L'idea chiave dell'algoritmo di Kruskal è di selezionare gli archi più leggeri che non creano cicli, garantendo così che il MST risultante sia di peso minimo attraverso una approccio greedy. Come strutture, utilizza strutture per insiemi disgiunti.

Tempi di Esecuzione: O(|E| log |E|)

- Ordinamento: O(|E| log|E|) perchè ordiniamo |E| elementi
- Makeset: O(|V|) perchè è operazione costante fatta su tutti i vertici
- Ciclo: $O(|E|\alpha)$ con $\alpha \le log|E|$ perché effettuiamo operazioni sulla struttura della foresta per tutti gli archi

Kruskal:

• Comincia dal vertice dal peso minore

- Attraversa un nodo una sola volta
- Può gestire grafi non connessi
- Più efficiente per grafi sparsi

Prim

Nell'algoritmo di Prim, viene utilizzata una coda di priorità (o heap) per mantenere traccia degli archi e dei loro pesi. Ogni vertice ha due attributi:

- Chiave: rappresenta il peso minimo dell'arco che connette quel nodo all'MST parziale. Inizialmente vale infinito.
- Predecessore: tiene traccia del nodo nel MST parziale al quale è connesso con l'arco di peso minimo. Inizialmente vale NIL

Iterativamente, estrai il nodo con la chiave minima dalla coda di priorità, esamina i suoi archi adiacenti e aggiorna le chiavi e i predecessori se trovi archi con pesi minori. Continua finché tutti i nodi sono inclusi nell'MST parziale.

```
Unset

PRIM-MST(G,W,r)

foreach v in V

v.key = ∞
v.π = NIL

r.key = 0

Aggiungi tutti i vertici di V alla coda Q

while Q != Ø

u = estrai vertice da Q

foreach v ∈ adj(u)

if v ∈ Q and W(u,v) < v.key

v.key = W(u,v)

v.π = u
```

Tempi di Esecuzione: O(|E| log |E|)

- Inizializzazione + Inserimento vertici in coda: O(|V|) poichè inizializziamo ed inseriamo tutti i vertici una volta
- While: O(|V|) poiché ogni vertice viene estratto dalla coda esattamente una volta.
- Estrai vertice: O(log|V|) per la necessità di mantenere la struttura di heap e riordinare gli elementi dopo l'estrazione
- Foreach: O(|E|) perchè dobbiamo scorrere tutta la lista di adiacenza

Prim:

- Comincia da qualsiasi vertice del grafo
- Attraversa un nodo più volte
- Grafo deve essere connesso
- Più efficiente per grafi densi

Dijkstra (CMSU)

Prova di Correttezza algoritmo di Dijkstra

Definiamo $\delta(v)$ come il cammino minimo di un vertice v dalla sorgente s.

Lemma: Se $d[v] = \delta(v)$ per ogni vertice v, ad ogni punto dell'algoritmo di Dijkstra, allora lo sarà per il resto dell'algoritmo.

Dimostrazione: Se $d[v] < \delta(v)$ allora la condizione della procedura Relax() fallirebbe sempre.

Teorema: Definiamo $< v_1 = s, \ v_2, ..., \ v_k >$ la sequenza di vertici estratti dalla coda Q dall'algoritmo di Dijkstra. Quando un vertice v_i viene estratto da Q, allora $d[v] = \delta(v)$ **Dimostrazione**: L'affermazione è valida nel caso base $v_1 = s$ in quanto $d[s] = \delta(s) = 0$ per definizione. Assumiamo sia vero per i primi k-1 vertici, ovvero assumiamo che quando essi vengono rimossi $d[v_i] = \delta(v_i)$. Prendiamo il vertice v_k al momento della rimozione dalla lista Q. Avremo che, per come lavora l'algoritmo di Dijkstra, $d[v_k] \leq d[v_j], \ j = k+1, \ldots, \ n$. Osserviamo che se il cammino minimo dalla sorgente al

vertice v_k consiste di soli vertici del set di vertici eliminati $R=\{v_1,\dots,v_{k-1}\}$, allora $d[v_k]=\delta(v_k)$.

Dimostrazione per Assurdo: Assumiamo che $d[v_k] < \delta(v_k)$, allora il suo cammino minimo coinvolge vertici del set V-R. Consideriamo il primo vertice di questo insieme v_q nel cammino dalla sorgente a v_k . Definiamo v_p il vertice prima di v_q nel cammino. Quest'ultimo viene eliminato dalla coda Q quando tutti i suoi archi sono rilassati, compreso l'arco che porta a v_q , e di conseguenza $d[v_q] = \delta(v_q)$. Dato che non ci sono archi a costo zero, $\delta(v_q) < \delta(v_k)$ e quindi $d[v_q] < d[v_k]$. Ma questo significa che v_k non può essere stato scelto prima di v_q dall'algoritmo di Dijkstra, contraddicendo la scelta di v_k come vertice per cui $d[v_k] < \delta(v_k)$ quando eliminato da Q

Confronto tempi di calcolo Dijkstra e Floyd Warshall

lDijkstra calcola i cammini minimi partendo da un'unica sorgente, impiegando un tempo di $O(|V| \log |V|)$. Floyd Warshall calcola invece i cammini minimi per ogni sorgente e verso ogni destinazione, impiegando $\theta(|V|^3)$. Se dovessimo modificare Dijkstra affinchè calcolasse tutt i percorsi, dovremmo eseguirlo per ogni vertice sorgente, ed otterremo come tempo $O(|V^2| \log |V|)$, comunque meglio di Floyd-Warshall, ma con l'ipotesi di avere solo archi positivi. Possiamo allora concludere che:

- Meglio utilizzare Dijkstra per grafi poco sparsi, ovvero con molti meno archi rispetto a vertici, in quanto algoritmo Greedy ed usa coda.
- Meglio utilizzare Floyd Warshall per grafi molto sparsi, in quanto algoritmo di Dynamic Programming.

La **procedura di rilassamento** è un passo chiave per determinare i percorsi minimi. L'algoritmo di Dijkstra utilizza la procedura di rilassamento in ogni passo per determinare le distanze minime dai nodi di partenza a tutti gli altri nodi nel grafo. A ogni iterazione, si seleziona il nodo con la distanza minima, si rilassano gli archi adiacenti, e si aggiorna la stima di distanza. Questo processo continua fino a quando tutti i nodi sono stati visitati. Nello specifico, il rilassamento, esamina se il percorso attraverso il nodo corrente è più breve del percorso precedentemente calcolato. Se è così, si aggiorna la stima di distanza per quel nodo con la somma delle distanze dal nodo di partenza al nodo selezionato e dall'arco tra il nodo selezionato e il nodo adiacente. In codice:

```
Unset

Relax(u,v, w)

if d(v) > d(u) + w(u, v)

d(v) = d(u) + w(u,v)

\pi(v) = u
```