CNNs를 통한 이륜차 사고다발지 예측

연구 동기

늘어난 배달과 이륜차 사고

구	분	주중	주말	전 체
	1월	0.740	0.583	0.795
	2월	0.697	0.523	0.685
	3월	0.640	0.656	0.733
201013	4월	0.757	0.565	0.811
2018년 (서 울)	5월	0.608	0.590	0.708
(시 길)	6월	0.632	0.576	0.666
	7월	0.764	0.224	0.793
	8월	0.788	0.422	0.772
	9월	0.581	0.708	0.692
전체 (2018	8년 1~9월)	0.653	0.536	0.699

구분		주중	주말	전 체
	1월	0.832	0.589	0.841
	2월	0.889	0.797	0.909
	3월	0.886	0.731	0.933
201013	4월	0.809	0.670	0.823
2019년 (서 울)	5월	0.794	0.722	0.843
(시 절)	6월	0.817	0.611	0.846
	7월	0.740	0.457	0.776
	8월	0.789	0.758	0.830
	9월	0.843	0.630	0.854
전체 (2019	9년 1~9월)	0.764	0.610	0.783

(2018년 배달과 이륜차 사고의 연관관계)

〈2019년 배달과 이륜차 사고의 연관관계〉

2018 - 2019 배달과 이륜차 사고의 연관관계

연구 동기

사회적 이슈가 심각하다

시사 > 전체기사

"오토바이 지상 출입 거부한 아파트, 배달 안 갑니다"

라이더 유니온 인천송도지회, 인천 송도 한 아파트단지 배달 중단키로 앞서 해당 아파트단지, 배달 지상 출입 막으려 '세대호출' 제한 등

입력: 2021-09-26 17:45 / 수정: 2021-09-26 17:58

소음에 난폭 운전까지…배달 오토바이, 이대로 괜찮나

【 전문가 "제도 변화"·"이륜차 규제"·"전면 번호판 부착" 등 제언

인터넷 | 입력:2021/09/26 08:30 수정: 2021/09/27 08:40

김성현 기자 ┃ 🔀 🔃 기자 페이지 구독 🔳 기자의 다른기사 보기

[이벤트] 삼성SDS Brity RPA 개발자 컨퍼런스 참여 시 갤럭시 Z플립, 갤럭시 버즈 등 증정!

오토바이의 위험성이 증가함에 따른 기사

안전 시설물이 과연 잘 작동하고 있는가? 오토바이에 대한 사회적 이슈가 심각

연구 목적

- 사고는 여러가지 요인에 의해 발생
- 운전자의 부주의가 일어날 수 있는 환경을 제공하는 도로 형태를 분석 및 위험도 예측
- 특히 공간정보가 담긴 이미지를 활용

=> 더 안전한 도로를 만들 수 있을 것

이륜차 사고다발지 예측 관련 연구1 차이점

• 회귀 모델 대신 CNN 모델사용

이륜차사고 영향요인 종합분석을 통한 위험지역 도출 - 서울시 강남구를 중심으로

Identification of hazardous areas through comprehensive analysis of factors influencing two-wheeled veh

디지털문화아카이브지

약어: JDCA

2021, vol.4, no.2, pp. 136-152 (17 pages) DOI: 10.23089/jdca.2021.4.2.010

발행기관 : 전북대학교 문화융복합아카이빙연구소

연구분야: 공학 > 교통공학

이한빈 /Hanbin Lee 1 , 김휘언 /HwiEon Kim 2 , 김세영 /Seyoung Kim 3 , 정승환 /Seung Hwan Jeong 4 , 소현기 /Hyeon-Gi So 5 , 김태영 /Taeyoung Kim 6 , 박광헌 /Gwanghun park 7

 1 공주대학교 도시 \cdot 교통공학

²전북대학교 문화융복합아카이빙연구소

~

이륜차 사고다발지 예측 관련 연구2 차이점

- 동일하게 CNN 모델사용
- 하지만, 하나의 이미지
- 하나의 모델

그림1.4 도로가 나무에 의해 가려진 위성 이미지 ↩

나) Combining Satelite Imagery and Open Data to Map Road Safety(2017)⁴ 니

City B City A Open data ConvNet Learned model Predicted map

그림1.1 관련연구 나)의 시스템←

이륜차 사고다발지 예측 관련 연구3 차이점

- 동일하게 CNN 알고리즘 사용
- 하지만, 본 프로젝트는 분류문제
- 관련연구는 회귀 문제
- 국내에서 얻기 힘든 데이터 사용

라) Inferring high-resolution traffic accident risk maps based on satellite imagery and GPS trajectories (2021)⁶ 니

구현 환경

환경↩	이름근	↩
운영체제↩	Windows 11 (버전: 22H2)↩	4
개발언어↩	Python 3.8.11←	Ų
인공지능 프레임워크↩	Tensorflow 2.9.1 (cuda 11.2)	Ţ
GPU₽	GTX 1660 super 6.0g€	Ą

.

주 사용 라이브러리 및 API←	설명↩
Osmnx 1.2.2←	도로 이미지 수집 (도로 네트워크)↩ ←
Folium 0.12.1₽	도로 이미지 수집 및 시각화(위성)↩ ←
Google Earth Engine API₽	도로 이미지 수집(높이)↩ ←
Pandas 1.4.3₽	CSV 파일 처리↩ ←
Opency-python 4.5.3.56₽	이미지 읽기← ←
Matplotlib₽	데이터 시각화~ ←
geopandas 0.11.0₽	도로 geoison 처리← ←
Clean-fid 0.1.32₽	상관성 평가를 위한 FID 계산← ←

최종 시스템 구성도

구현 내용

데이터 수집

가) CSV 데이터 수집←

데이터 이름~	제공 기관←	URL←
이륜차사고다발지	도로교통공단↩	https://www.data.go.kr/data/15105
2016~2021↩		<u>286/openapi.do</u> ←
서울시 CCTV ⁽⁾	Local Data←	https://www.localdata.go.kr/lif/lifeCt
		acDataView.do?opnEtcSvcId=12_04
		_08_E
서울시 과속방지	Local Data⊖	https://www.localdata.go.kr/lif/lifeCt
턱↩		acDataView.do?opnEtcSvcId=12_04
		<u>_06_E</u> ↩
서울시 횡단보도~	서울 <u>열린데이터</u> 광장	http://data.seoul.go.kr/dataList/OA-
		<u>15554/S/1/datasetView.do</u> ←
서울시 신호등↩	서울 <u>열린데이터</u> 광장	http://data.seoul.go.kr/dataList/OA-
		15554/S/1/datasetView.do:jsessionid
		=4B75D6E2529334747BAE40CC7FB
		013D5.new_portal-svr-11€

데이터 수집: CSV

좌표 데이터 약 1,000개 오버 샘플링 적용하여 10,000개로

가) CSV 데이터 수집←

데이터 이름~	제공 기관←	URL←	4
이륜차사고다발지	도로교통공단↩	https://www.data.go.kr/data/15105	۲
2016~2021↩		286/openapi.do	
서울시 CCTV4	Local Data←	https://www.localdata.go.kr/lif/lifeCt	_
		acDataView.do?opnEtcSvcId=12_04	
		<u>_08_E</u> ↩	
서울시 과속방지	Local Data⊖	https://www.localdata.go.kr/lif/lifeCt	Ç
턱↩		acDataView.do?opnEtcSvcId=12_04	
		<u>_06_E</u> ←	
서울시 횡단보도~	서울 <u>열린데이터</u> 광장	http://data.seoul.go.kr/dataList/OA-	Ę
		15554/S/1/datasetView.do	
서울시 신호등↩	서울 <u>열린데이터</u> 광장수	http://data.seoul.go.kr/dataList/OA-	_
		15554/S/1/datasetView.do;jsessionid	
		=4B75D6E2529334747BAE40CC7FB	
		013D5.new_portal-svr-11€	

데이터 수집: 이미지

데이터 수집: CSV 데이터 처리

그림2.3 QGIS 화면, 사고다발지 데이터↔

그림2.4 QGIS 화면, 사고다발지 데이터, cctv, 과속방지턱, 횡단보도, 신호등 데이터←

데이터 수집: CSV 데이터 처리

 \leftarrow

	사망자수	중상자수	경상자수	부상신고자수	bumps	cctvs	walk	light	Ţ
사고다발지FID									
104688	0	19	27	7	0	0	7	69	
104683	0	6	16	11	0	2	8	35	
104684	0	6	13	9	0	0	12	47	
104573	0	9	12	3	2	1	7	62	
104773	0	12	16	3	2	2	7	46	

그림2.5 합친 CSV 결과←

 Δ

데이터 탐색: CSV 데이터 상관분석

```
1년 Import seaborn as sb년
2년 sb.heatmap(df2.corr(),년
3년 annot = True, 린
4년 cmap = 'Greens', #색상린
5년 vmin = -1, vmax=1 린
6린 )린

코드 2.4 df2 의 상관분석 결과를 <u>히트맵으로</u> 시각화린
```

Matplotlib기반 패키지인 Seaborn을 사용, Pandas의 dataframe의 corr 멤버 함수를 사용하여 상관계수를 시각화 하였다. ←

그림2.6 상관분석 결과←

데이터 탐색: FID 로 상관관계 판단

나) 1차 모델 학습~

그림2.10 클래스 2개, 이미지 한 개가 인풋으로 들어가는 모델↩

다) 결과 (30 epoch)←

그림2.11 1차 모델학습 결과←

₽	Train←	Validation∈	Test←	
Accuracy∈	99.2%↩	70.6%↩	69.8%↩	4

99%의 정확도를 보이는 Train 데이터에 <u>과적합</u> 문제가 발생하였다.↩

간단한 CNN 모델 => 과적합 문제 발생

나) 2차 모델 학습←

그림2.12 33,573,601에서 21,217 로 파라미터의 수를 줄임↩

다) 결과 (30 epoch)↔

데이터 증강, Max Pooling, GAP => 여전히 과적합 문제 발생

가) 3차 모델 학습↔

그림2.14 3차 모델 8~

CNNs 모델을 VGG16 사전 모델로 교체한 후 모델을 학습시켰다.↔

나) 결과 (30 epoch)←

그림2.15 3차 모델 학습 결과↩

₽	Train←	Validation∈	Test←	₽
Accuracy	82.91%↩	82.36%↩	83.66%↩	₽

모델 학습 결과 2개의 클래스를 분류 정확도 83.66%로 유의미한 정확도가 나왔다. 또한 이전에 있었던 <u>과적합</u> 문제가 해결되어 Train 데이터와 함께 학습이 진 행된 결과를 확인할 수 있었다.

사전학습 모델 VGG 16=> 과적합되지 않고 학습이 진행됨, 유의미한 결과

가) 라벨링: 3개의 클래스←

- 1: 비 사고 다발지역 ←

- 2: 사고 다발지역 약 ~ 중↩

- 3: 사고 다발지역 강↩

나) 결과 (100 epoch)[←]

그림2.17 4차 모델 학습 결과↔

4	Train←	Validation∈	Test←	↩
Accuracy∈	81.13%↩	78.38%	77.17%↩	₽

2개의 클래스를 분류하는 3차 모델보다 정확도가 떨어진 것을 확인할 수 있 었다.⁴

클래스를 3개로 증가 => 2개 클래스 보다 떨어진 정확도

최종 모델 학습

가) 최종 모델 학습←

그림2.18 최종 모델 구조 4개의 CNN을 통해 위험 정도(클래스 3개)를 예측한다.↩ ↩

그림2.20 4차 모델 학습 결과↔

₽	Train←	Validation∈	Test←	₽
Accuracy	Accuracy 94.52%		84.37%↩	₽

클래스를 3개로 증가, 3개의 이미지 사용=> 정확도 84%

시각화

2.4.8 시각화: 광주광역시 이륜차 사고다발지 예측↔

84%의 정확도의 모델을 사용하여 광주광역시 도로의 이륜차 사고다발지 예

측을 QGIS, Folium 라이브러리, GeoPandas를 사용하여 해보았다. ←

그림2.21 QGIS를 사용하여 도로 데이터 추출↔

그림2.22 추출한 도로 데이터←

 \leftarrow

QGIS로 도로 데이터 추출 => GeoJson

시각화

```
1년 for idx, row in df3.iterrows():은
2년 lat, lon = row['lat'], row['lon']은
3년 filename = f'{lat}_{lon}'은
4년 imgs = get_image(filename)은
5년 if len(imgs) = 3:은
6년 print(-1)은
1atlon_dict[filename] = 0은
8년 else:은
9년 pred = model_predict(imgs)은
10은 latlon_dict[filename] = np_argmax(pred, axis= 1)[0]은
11은 print('Predicted: ', latlon_dict[filename])은

코드 2.7 모델을 사용하여 해당 좌표의 위험 정도 (사고다발지)를 예측은
```


그림2.23 광주 광역시 이륜차 사고 다발지 예측 결과 시각화관

모델을 사용하여 광주 광역시 이륜차 사고다발지 예측

결론

프로젝트	정확도	클래 스 수	해상도
Combining Satellite Imagery and Open Data to Map Road Safety	78%	3	Google Static Maps API 256×256 pixels, zoom levels (18, 19, and 20).
RoadAccidents	78%	2	200m x 200m
NYC_Traffic_Safety_Project	74.29%	5	?
Traffic-Accidents	82%	2	?

CNN을 사용하여 이륜차 사고 다발지역을 예측할 수 있었음.

정확도 84% 로 다른 프로젝트보다 성능이 더 좋게 나타남

기대효과

- 위험한 도로를 피할 수 있게 해주는 응용 프로그램 개발 가능

- 도로 공사, 도로 정비시 도로의 형태를 보고 사전에 위험한지 예측 가능