Lecture 9: Hardware and Software

Assignment 3 Released

We released Assignment 3 last night

We had a few hotfixes today; check Piazza for details

Modular backprop API
Fully-connected networks
Dropout
Convolutional Networks
Batch Normalization

Due **Monday, October 14, 11:59pm**Remember to validate your submission

Deep Learning Hardware

Inside a computer

Inside a computer

GPU: "Graphics Processing Unit"

This image is in the public domain

This image copyright 2017, Justin Johnson

Inside a computer

CPU: "Central Processing Unit"

This image is licensed under CC-BY 2.0

GPU: "Graphics Processing Unit"

This image is in the public domain

This image copyright 2017, Justin Johnson

NVIDIA

VS

AMD

NVIDIA

VS

AMD

GigaFLOPs per Dollar

CPU vs GPU

	Cores	Clock Speed (GHz)	Memory	Price	TFLOP/sec
CPU Ryzen 9 3950X	16 (32 threads with hyperthreading)	3.5 (4.7 boost)	System RAM	\$749	~4.8 FP32
GPU NVIDIA Titan RTX	4608	1.35 (1.77 boost)	24 GB GDDR6	\$2499	~16.3 FP32

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks

12x 2GB memory modules

12x 2GB memory modules

Processor

72 Streaming multiprocessors (SMs)

72 Streaming multiprocessors (SMs)

72 Streaming multiprocessors (SMs)

64 FP32 cores per SM

Justin Johnson Lecture 8 - 17 October 2, 2019

(72 SM) * (64 FP32 core per SM) * (2 FLOP/cycle)

* (1.77 Gcycle/sec) = **16.3 TFLOP/sec**

72 Streaming multiprocessors (SMs)

64 FP32 cores per SM

Justin Johnson Lecture 8 - 18 October 2, 2019

(72 SM) * (64 FP32 core per SM) * (2 FLOP/cycle)

* (1.77 Gcycle/sec) = **16.3 TFLOP/sec**

Tensor cores use **mixed precision**: Multiplication is done in FP16, and addition is done in FP32

72 Streaming multiprocessors (SMs)

64 FP32 cores per SM

8 Tensor Core per SM

Tensor core: Special hardware!

Let A,B,C be 4x4 matrices; computes AB+C in one clock cycle! (128 FLOP)

(72 SM) * (64 FP32 core per SM) * (2 FLOP/cycle)

* (1.77 Gcycle/sec) = **16.3 TFLOP/sec**

(72 SM) * (8 tensor core per SM)

* (128 FLOP/cycle) * (1.77 Gcycle/sec)

= 130 TFLOP/sec!

72 Streaming multiprocessors (SMs)

64 FP32 cores per SM

8 Tensor Core per SM

Tensor core: Special hardware!

Let A,B,C be 4x4 matrices; computes AB+C in one clock cycle! (128 FLOP)

CPU vs GPU

	Cores	Clock Speed (GHz)	Memory	Price	TFLOP/sec
CPU Ryzen 9 3950X	16 (32 threads with hyperthreading)	3.5 (4.7 boost)	System RAM	\$749	~4.8 FP32
GPU NVIDIA Titan RTX	4608	1.35 (1.77 boost)	24 GB GDDR6	\$2499	~16.3 FP32 ~ 130 with Tensor Cores

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks

GigaFLOPs per Dollar

Example: Matrix Multiplication

Programming GPUs

- CUDA (NVIDIA only)
 - Write C-like code that runs directly on the GPU
 - NVIDIA provides optimized APIs: cuBLAS, cuFFT, cuDNN, etc
- OpenCL
 - Similar to CUDA, but runs on anything
 - Usually slower on NVIDIA hardware
- EECS 598.009: Applied GPU Programming

Scaling up: Typically 8 GPUs per server

NVIDIA DGX-1: 8x V100 GPUs

Special hardware for matrix multiplication, similar to NVIDIA Tensor Cores; also runs in mixed precision (bfloat16)

Cloud TPU v2
180 TFLOPs
64 GB HBM memory
\$4.50 / hour
(free on Colab!)

Cloud TPU v2
180 TFLOPs
64 GB HBM memory
\$4.50 / hour
(free on Colab!)

Cloud TPU v2 Pod 64 TPU-v2 11.5 PFLOPs \$384 / hour

Cloud TPU v3
420 TFLOPs
128 GB HBM memory
\$8 / hour

PU-v3 image is released under a CC-SA 4.0 International license

Cloud TPU v3
420 TFLOPs
128 GB HBM memory
\$8 / hour

Cloud TPU v3 Pod 256 TPU-v3 107 PFLOPs

U-v3 imageis released under a CC-SA 4.0 International licens

In order to use TPUs, you have to use TensorFlow

In order to use TPUs, you have to use TensorFlow

... For now!

Add XLA / TPU device type, backend type and type id (#16585) #16763

Deep Learning Software

A zoo of frameworks!

Caffe Caffe2
(UC Berkeley) (Facebook)

Theano _____ TensorFlow (U Montreal) (Google)

PaddlePaddle Chainer (Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,

Developed by U Washington, CMU, MIT, Hong Kong U, etc but main framework of choice at CNTK (Microsoft)

JAX (Google)

A zoo of frameworks!

Justin Johnson Lecture 8 - 34 October 2, 2019

Recall: Computational Graphs

Justin Johnson Lecture 8 - 35 October 2, 2019

The point of deep learning frameworks

- 1. Allow rapid prototyping of new ideas
- 2. Automatically compute gradients for you
- 3. Run it all efficiently on GPU (or TPU)

PyTorch

PyTorch: Versions

For this class we are using **PyTorch version 1.2** (Released August 2019)

Be careful if you are looking at older PyTorch code – the API changed a lot before 1.0 (0.3 to 0.4 had big changes!)

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Autograd: Package for building computational graphs out of Tensors, and automatically computing gradients

Module: A neural network layer; may store state or learnable weights

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU A1, A2, A3

Autograd: Package for building computational graphs out of Tensors, and automatically computing gradients

Module: A neural network layer; may store state or learnable weights

44, A5, A6

Justin Johnson Lecture 8 - 40 October 2, 2019

Running example: Train a two-layer ReLU network on random data with L2 loss

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range (500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Justin Johnson Lecture 8 - 41 October 2, 2019

Create random tensors for data and weights

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)
learning rate = 1e-6
for t in range (500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Forward pass: compute predictions and loss

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Backward pass: manually compute gradients

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range (500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Justin Johnson Lecture 8 - 44 October 2, 2019

Gradient descent step on weights

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range (500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Justin Johnson Lecture 8 - 45 October 2, 2019

To run on GPU, just use a different device!

```
import torch
device = torch.device('cuda:0')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad wl = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Justin Johnson Lecture 8 - 46 October 2, 2019

Creating Tensors with requires_grad=True enables autograd

Operations on Tensors with requires_grad=True cause PyTorch to build a computational graph

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no_grad():
        w1 -= learning rate * w1.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

We will not want gradients (of loss) with respect to data

Do want gradients with respect to weights

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
 = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Forward pass looks exactly the same as before, but we don't need to track intermediate values - PyTorch keeps track of them for us in the graph

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no_grad():
        w1 -= learning rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Computes gradients with respect to all inputs that have requires_grad=True!

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Justin Johnson Lecture 8 - 50 October 2, 2019

Every operation on a tensor with requires_grad=True will add to the computational graph, and the resulting tensors will also have requires_grad=True

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```


Every operation on a tensor with requires_grad=True will add to the computational graph, and the resulting tensors will also have requires_grad=True

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y_{pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```



```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y \text{ pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```



```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```



```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

```
w2
         w1
X
    mm
   clamp
    mm
  y pred
          pow
                         sum
                                  loss
```

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```


X

w1

w2

У

After backward finishes, gradients are accumulated into w1.grad and w2.grad and the graph is destroyed

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y \text{ pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no_grad():
        w1 -= learning rate * w1.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

x | w1

w2

У

After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

Make gradient step on weights

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no_grad():
        w1 -= learning rate * w1.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Justin Johnson Lecture 8 - 59 October 2, 2019

x w1

w2

У

After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

Set gradients to zero – forgetting this is a common bug!

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning rate * w1.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

X

w1

w2

٧

After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

X

Tell PyTorch not to build a graph for these operations

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Can define new operations using Python functions

```
def sigmoid(x):
   return 1.0 / (1.0 + (-x).exp())
```

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
  y pred = sigmoid(x.mm(w1)).mm(w2)
  loss = (y pred - y).pow(2).sum()
  loss.backward()
  if t % 50 == 0:
    print(t, loss.item())
  with torch.no grad():
    w1 -= learning_rate * w1.grad
   w2 -= learning rate * w2.grad
   wl.grad.zero ()
   w2.grad.zero ()
```

Can define new operations using Python functions

```
def sigmoid(x):
  return 1.0 / (1.0 + (-x).exp())
```



```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
  y pred = sigmoid(x.mm(w1)).mm(w2)
  loss = (y pred - y).pow(2).sum()
  loss.backward()
  if t % 50 == 0:
    print(t, loss.item())
  with torch.no grad():
    w1 -= learning_rate * w1.grad
   w2 -= learning rate * w2.grad
   wl.grad.zero ()
   w2.grad.zero ()
```

Can define new operations using Python functions

```
def sigmoid(x):
   return 1.0 / (1.0 + (-x).exp())
```


Define new autograd operators by subclassing Function, define forward and backward

```
class Sigmoid(torch.autograd.Function):
  @staticmethod
  def forward(ctx, x):
    y = 1.0 / (1.0 + (-x).exp())
    ctx.save for backward(y)
    return y
  @staticmethod
  def backward(ctx, grad y):
    y, = ctx.saved tensors
    grad x = grad y * y * (1.0 - y)
    return grad x
def sigmoid(x):
  return Sigmoid.apply(x)
```

Recall:
$$\frac{\partial}{\partial x} \Big[\sigma(x) \Big] = (1 - \sigma(x)) \sigma(x)$$

Can define new operations using Python functions

```
def sigmoid(x):
   return 1.0 / (1.0 + (-x).exp())
```


Justin Johnson

Define new autograd operators by subclassing Function, define forward and backward

```
class Sigmoid(torch.autograd.Function):
              @staticmethod
              def forward(ctx, x):
                y = 1.0 / (1.0 + (-x).exp())
                ctx.save for backward(y)
                return y
              @staticmethod
              def backward(ctx, grad_y):
    y, = ctx.saved_tensors
                grad x = grad y * y * (1.0 - y)
                return grad x
            def sigmoid(x):
              return Sigmoid.apply(x)
Now when our function runs,
                                            Sigmoid
it adds one node to the graph!
```

Lecture 8 - 65 October 2, 2019

Can define new operations using Python functions

```
def sigmoid(x):
   return 1.0 / (1.0 + (-x).exp())
```


Define new autograd operators by subclassing Function, define forward and backward

```
class Sigmoid(torch.autograd.Function):
  @staticmethod
  def forward(ctx, x):
    y = 1.0 / (1.0 + (-x).exp())
    ctx.save for backward(y)
    return y
  @staticmethod
  def backward(ctx, grad_y):
    y, = ctx.saved tensors
    grad x = grad y * y * (1.0 - y)
    return grad x
def sigmoid(x):
  return Sigmoid.apply(x)
```

In practice this is pretty/rare—in most cases Python functions are good enough

Higher-level wrapper for working with neural nets

Use this! It will make your life easier

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

Object-oriented API: Define model object as sequence of layers objects, each of which holds weight tensors

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

Forward pass: Feed data to model and compute loss

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

Forward pass: Feed data to model and compute loss

torch.nn.functional has useful helpers like loss functions

```
Criterion.
```

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

Backward pass: compute gradient with respect to all model weights (they have requires_grad=True)

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

Make gradient step on each model parameter (with gradients disabled)

PyTorch: optim

Use an **optimizer** for different update rules

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(),
                              lr=learning rate)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```

PyTorch: optim

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(),
                              lr=learning rate)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

After computing gradients, use optimizer to update and zero gradients

Justin Johnson Lecture 8 - 74 October 2, 2019

A PyTorch **Module** is a neural net layer; it inputs and outputs Tensors

Modules can contain weights or other modules

Very common to define your own models or layers as custom Modules

```
import torch
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Define our whole model as a single Module

```
import torch
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Justin Johnson Lecture 8 - 76 October 2, 2019

Initializer sets up two children (Modules can contain modules)

```
import torch
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init_()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Define forward pass using child modules and tensor operations

No need to define backward - autograd will handle it

```
import torch
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Justin Johnson Lecture 8 - 78 October 2, 2019

Very common to mix and match custom Module subclasses and Sequential containers

build blocks.

```
import torch
class ParallelBlock(torch.nn.Module):
    def init (self, D in, D out):
        super(ParallelBlock, self). init ()
        self.linear1 = torch.nn.Linear(D in, D out)
        self.linear2 = torch.nn.Linear(D in, D out)
    def forward(self, x):
        h1 = self.linearl(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
            ParallelBlock(D in, H),
            ParallelBlock(H, H),
            torch.nn.Linear(H, D out))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Define network component as a Module subclass

import torch

```
class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)

def forward(self, x):
    h1 = self.linear1(x)
    h2 = self.linear2(x)
    return (h1 * h2).clamp(min=0)
```

Stack multiple instances of the component in a sequential

Very easy to quickly build complex network architectures!


```
import torch
class ParallelBlock(torch.nn.Module):
    def init (self, D in, D out):
        super(ParallelBlock, self). init ()
        self.linear1 = torch.nn.Linear(D in, D out)
        self.linear2 = torch.nn.Linear(D in, D out)
    def forward(self, x):
        h1 = self.linearl(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
            ParallelBlock(D in, H),
            ParallelBlock(H, H),
            torch.nn.Linear(H, D out))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

PyTorch: DataLoaders

A DataLoader wraps a Dataset and provides minibatching, shuffling, multithreading, for you

When you need to load custom data, just write your own Dataset class

```
import torch
from torch.utils.data import TensorDataset, DataLoader
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
loader = DataLoader(TensorDataset(x, y), batch_size=8)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
for epoch in range(20):
    for x batch, y batch in loader:
        y pred = model(x batch)
        loss = torch.nn.functional.mse loss(y pred, y batch)
        loss.backward()
        optimizer.step()
        optimizer.zero grad()
```

PyTorch: DataLoaders

Iterate over loader to form minibatches

```
import torch
from torch.utils.data import TensorDataset, DataLoader
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
loader = DataLoader(TensorDataset(x, y), batch size=8)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
for epoch in range(20):
    for x batch, y batch in loader:
        y pred = model(x batch)
        loss = torch.nn.functional.mse loss(y pred, y batch)
        loss.backward()
        optimizer.step()
        optimizer.zero grad()
```

PyTorch: DataLoaders

Iterate over loader to form minibatches

```
import torch
from torch.utils.data import TensorDataset, DataLoader
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
loader = DataLoader(TensorDataset(x, y), batch size=8)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
for epoch in range(20):
    for x batch, y batch in loader:
        y pred = model(x batch)
        loss = torch.nn.functional.mse loss(y pred, y batch)
        loss.backward()
        optimizer.step()
        optimizer.zero grad()
```

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision https://github.com/pytorch/vision

```
import torch
import torchvision

alexnet = torchvision.models.alexnet(pretrained=True)
vgg16 = torchvision.models.vgg16(pretrained=True)
resnet101 = torchvision.models.resnet101(pretrained=True)
```

Justin Johnson Lecture 8 - 85 October 2, 2019

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

x w1 w2 y

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

Create Tensor objects


```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

Build graph data structure AND perform computation


```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

Build graph data structure AND perform computation


```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

Perform backprop, throw away graph

x w1 w2 y

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

Perform backprop, throw away graph


```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

Build graph data structure AND perform computation


```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

Build graph data structure AND perform computation


```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
```

Perform backprop, throw away graph

Dynamic graphs let you use regular Python control flow during the forward pass!

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2a = torch.randn(H, D out, requires grad=True)
w2b = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
prev loss = 5.0
for t in range(500):
 w2 = w2a if prev loss < 5.0 else w2b
  y pred = x.mm(w1).clamp(min=0).mm(w2)
  loss = (y pred - y).pow(2).sum()
  loss.backward()
  prev loss = loss.item()
```

Dynamic graphs let you use regular Python control flow during the forward pass!

Initialize two different weight matrices for second layer

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2a = torch.randn(H, D_out, requires_grad=True)
w2b = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
prev loss = 5.0
for t in range(500):
  w2 = w2a if prev loss < 5.0 else w2b
  y pred = x.mm(w1).clamp(min=0).mm(w2)
  loss = (y pred - y).pow(2).sum()
  loss.backward()
  prev loss = loss.item()
```

Dynamic graphs let you use regular Python control flow during the forward pass!

Decide which one to use at each layer based on loss at previous iteration

(this model doesn't makes sense! Just a simple dynamic example)

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2a = torch.randn(H, D out, requires grad=True)
w2b = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
prev loss = 5.0
for t in range(500):
  w2 = w2a if prev loss < 5.0 else w2b
  y pred = x.mm(w1).clamp(min=0).mm(w2)
  loss = (y pred - y).pow(2).sum()
  loss.backward()
  prev loss = loss.item()
```

Alternative: Static Computation Graphs

Alternative: **Static** graphs

Step 1: Build computational graph describing our computation (including finding paths for backprop)

Step 2: Reuse the same graph on every iteration


```
graph = build_graph()

for x_batch, y_batch in loader:
   run_graph(graph, x=x_batch, y=y_batch)
```

Define model as a Python function

```
import torch
def model(x, y, w1, w2a, w2b, prev loss):
  w2 = w2a if prev loss < 5.0 else w2b
  y pred = x.mm(w1).clamp(min=0).mm(w2)
  loss = (y pred - y).pow(2).sum()
  return loss
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires grad=True)
w2a = torch.randn(H, D out, requires grad=True)
w2b = torch.randn(H, D out, requires grad=True)
graph = torch.jit.script(model)
prev loss = 5.0
learning rate = 1e-6
for t in range(500):
  loss = graph(x, y, w1, w2a, w2b, prev_loss)
  loss.backward()
  prev loss = loss.item()
```

Just-In-Time compilation: Introspect the source code of the function, **compile** it into a graph object.

Lots of magic here!

```
import torch
def model(x, y, w1, w2a, w2b, prev loss):
  w2 = w2a if prev loss < 5.0 else w2b
  y pred = x.mm(w1).clamp(min=0).mm(w2)
  loss = (y pred - y).pow(2).sum()
  return loss
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2a = torch.randn(H, D out, requires grad=True)
w2b = torch.randn(H, D out, requires grad=True)
graph = torch.jit.script(model)
prev loss = 5.0
learning rate = 1e-6
for t in range(500):
  loss = graph(x, y, w1, w2a, w2b, prev loss)
  loss.backward()
  prev_loss = loss.item()
```



```
import torch
def model(x, y, w1, w2a, w2b, prev loss):
  w2 = w2a if prev loss < 5.0 else w2b
  y pred = x.mm(w1).clamp(min=0).mm(w2)
  loss = (y pred - y).pow(2).sum()
  return loss
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2a = torch.randn(H, D out, requires grad=True)
w2b = torch.randn(H, D out, requires grad=True)
graph = torch.jit.script(model)
prev loss = 5.0
learning rate = 1e-6
for t in range(500):
  loss = graph(x, y, w1, w2a, w2b, prev loss)
  loss.backward()
  prev loss = loss.item()
```

Use our compiled graph object at each forward pass

```
import torch
def model(x, y, w1, w2a, w2b, prev loss):
  w2 = w2a if prev loss < 5.0 else w2b
  y pred = x.mm(w1).clamp(min=0).mm(w2)
  loss = (y pred - y).pow(2).sum()
  return loss
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2a = torch.randn(H, D out, requires grad=True)
w2b = torch.randn(H, D out, requires grad=True)
graph = torch.jit.script(model)
prev loss = 5.0
learning rate = 1e-6
for t in range(500):
 loss = graph(x, y, w1, w2a, w2b, prev_loss)
  loss.backward()
  prev loss = loss.item()
```

Even easier: add **annotation** to function, Python function compiled to a graph when it is defined

Calling function uses graph

```
import torch
@torch.jit.script
def model(x, y, w1, w2a, w2b, prev loss):
  w2 = w2a if prev loss < 5.0 else w2b
 y pred = x.mm(w1).clamp(min=0).mm(w2)
  loss = (y pred - y).pow(2).sum()
  return loss
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
w1 = torch.randn(D in, H, requires grad=True)
w2a = torch.randn(H, D out, requires grad=True)
w2b = torch.randn(H, D out, requires grad=True)
prev loss = 5.0
learning rate = 1e-6
for t in range(500):
  loss = model(x, y, w1, w2a, w2b, prev loss)
  loss.backward()
  prev loss = loss.item()
```

Static vs Dynamic Graphs: Optimization

With static graphs, framework can **optimize** the graph for you before it runs!

The graph you wrote

Conv

ReLU

Conv

ReLU

Conv

ReLU

Equivalent graph with **fused operations**

Conv+ReLU

Conv+ReLU

Conv+ReLU

Static vs Dynamic Graphs: Serialization

Static

Once graph is built, can serialize it and run it without the code that built the graph!

e.g. train model in in

Python, deploy in C++ C++ mithan python

Dynamic

Graph building and execution are intertwined, so always need to keep code around

popular every sime

Static vs **Dynamic Graphs**: Debugging

Static

Lots of indirection between the code you write and the code that runs – can be hard to debug, benchmark, etc

Dynamic

The code you write is the code that runs! Easy to reason about, debug, profile, etc

Dynamic Graph Applications

difference

Model structure depends on the input:

- Recurrent Networks

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015

Dynamic Graph Applications

Model structure depends on the input:

- Recurrent Networks
- Recursive Networks

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015

Dynamic Graph Applications

Model structure depends on the input:

- Recurrent Networks
- Recursive Networks
- Modular Networks

Andreas et al, "Neural Module Networks", CVPR 2016

Andreas et al, "Learning to Compose Neural Networks for Question Answering", NAACL 2016

Johnson et al, "Inferring and Executing Programs for Visual Reasoning", ICCV 2017

Dynamic Graph Applications

Model structure depends on the input:

- Recurrent Networks
- Recursive Networks
- Modular Networks
- (Your idea here!)

Andreas et al, "Neural Module Networks", CVPR 2016
Andreas et al, "Learning to Compose Neural Networks for Question Answering", NAACL 2016
Johnson et al, "Inferring and Executing Programs for Visual Reasoning", ICCV 2017

TensorFlow

TensorFlow Versions

TensorFlow 1.0

- Final release: 1.15.0-rc2
 - Released yesterday!
- Default: static graphs
- Optional: dynamic graphs (eager mode)

TensorFlow 2.0

- Released Monday 9/30!
- Default: dynamic graphs
- Optional: static graphs

Justin Johnson Lecture 8 - 112 October 2, 2019

TensorFlow 1.0: **Static Graphs**

import numpy as np
import tensorflow as tf

(Assume imports at the top of each snippet)

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))
h = tf.maximum(tf.matmul(x, w1), 0)
y pred = tf.matmul(h, w2)
diff = y pred - y
loss = tf.reduce mean(tf.reduce sum(diff ** 2, axis=1))
grad w1, grad w2 = tf.gradients(loss, [w1, w2])
with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
              wl: np.random.randn(D, H),
              w2: np.random.randn(H, D),
              y: np.random.randn(N, D),}
    out = sess.run([loss, grad w1, grad w2],
                   feed dict=values)
    loss val, grad wl val, grad w2 val = out
```

TensorFlow 1.0: **Static Graphs**

First **define** computational graph

Then **run** the graph many times

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))
h = tf.maximum(tf.matmul(x, w1), 0)
y pred = tf.matmul(h, w2)
diff = y pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
grad w1, grad w2 = tf.gradients(loss, [w1, w2])
with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
              wl: np.random.randn(D, H),
              w2: np.random.randn(H, D),
              y: np.random.randn(N, D),}
    out = sess.run([loss, grad w1, grad w2],
                   feed dict=values)
    loss_val, grad_wl_val, grad_w2_val = out
```

Create TensorFlow Tenssors for data and weights

Weights need to be wrapped in tf.Variable so we can mutate them

```
import tensorflow as tf
N, Din, H, Dout = 16, 1000, 100, 10
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
w1 = tf.Variable(tf.random.normal((Din, H)))
w2 = tf.Variable(tf.random.normal((H, Dout)))
learning rate = 1e-6
for t in range(1000):
  with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
    y pred = tf.matmul(h, w2)
    diff = y pred - y
    loss = tf.reduce mean(tf.reduce sum(diff ** 2, axis=1))
  grad w1, grad w2 = tape.gradient(loss, [w1, w2])
  w1.assign(w1 - learning rate * grad w1)
  w2.assign(w2 - learning rate * grad w2)
```

Scope forward pass under a GradientTape to tell TensorFlow to start building a graph

```
import tensorflow as tf
N, Din, H, Dout = 16, 1000, 100, 10
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
w1 = tf.Variable(tf.random.normal((Din, H)))
w2 = tf.Variable(tf.random.normal((H, Dout)))
learning rate = 1e-6
for t in range(1000):
  with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
    y pred = tf.matmul(h, w2)
    diff = y pred - y
    loss = tf.reduce mean(tf.reduce sum(diff ** 2, axis=1))
  grad w1, grad w2 = tape.gradient(loss, [w1, w2])
  w1.assign(w1 - learning rate * grad w1)
  w2.assign(w2 - learning rate * grad w2)
```

Ask the tape to compute gradients

```
import tensorflow as tf
N, Din, H, Dout = 16, 1000, 100, 10
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
w1 = tf.Variable(tf.random.normal((Din, H)))
w2 = tf.Variable(tf.random.normal((H, Dout)))
learning rate = 1e-6
for t in range(1000):
  with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
    y pred = tf.matmul(h, w2)
    diff = y pred - y
    loss = tf.reduce mean(tf.reduce sum(diff ** 2, axis=1))
  grad w1, grad w2 = tape.gradient(loss, [w1, w2])
  w1.assign(w1 - learning rate * grad w1)
  w2.assign(w2 - learning rate * grad w2)
```

Gradient descent step, update weights

```
import tensorflow as tf
N, Din, H, Dout = 16, 1000, 100, 10
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
w1 = tf.Variable(tf.random.normal((Din, H)))
w2 = tf.Variable(tf.random.normal((H, Dout)))
learning rate = 1e-6
for t in range(1000):
  with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
    y pred = tf.matmul(h, w2)
    diff = y pred - y
    loss = tf.reduce mean(tf.reduce sum(diff ** 2, axis=1))
  grad w1, grad w2 = tape.gradient(loss, [w1, w2])
  w1.assign(w1 - learning rate * grad w1)
  w2.assign(w2 - learning rate * grad w2)
```

TensorFlow 2.0: **Static Graphs**

Define a function that implements forward, backward, and update

Annotating with tf.function will compile the function into a graph! (similar to torch.jit.script)

```
@tf.function
def step(x, y, w1, w2):
 with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
    y pred = tf.matmul(h, w2)
    diff = y pred - y
    loss = tf.reduce mean(tf.reduce sum(diff ** 2, axis=1))
 grad w1, grad w2 = tape.gradient(loss, [w1, w2])
 w1.assign(w1 - learning rate * grad w1)
 w2.assign(w2 - learning rate * grad w2)
 return loss
N, Din, H, Dout = 16, 1000, 100, 10
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
w1 = tf.Variable(tf.random.normal((Din, H)))
w2 = tf.Variable(tf.random.normal((H, Dout)))
learning rate = 1e-6
for t in range(1000):
 loss = step(x, y, w1, w2)
```

TensorFlow 2.0: **Static Graphs**

Define a function that implements forward, backward, and update

Annotating with tf.function will compile the function into a graph! (similar to torch.jit.script)

(note TF graph can / include gradient computation and update, unlike PyTorch)

```
@tf.function
def step(x, y, w1, w2):
  with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
    y pred = tf.matmul(h, w2)
    diff = y pred - y
    loss = tf.reduce mean(tf.reduce sum(diff ** 2, axis=1))
  grad w1, grad w2 = tape.gradient(loss, [w1, w2])
  w1.assign(w1 - learning rate * grad w1)
  w2.assign(w2 - learning rate * grad w2)
  return loss
N, Din, H, Dout = 16, 1000, 100, 10
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
w1 = tf.Variable(tf.random.normal((Din, H)))
w2 = tf.Variable(tf.random.normal((H, Dout)))
learning rate = 1e-6
for t in range(1000):
  loss = step(x, y, w1, w2)
```

TensorFlow 2.0: **Static Graphs**

Call the compiled step function in the training loop

```
@tf.function
def step(x, y, w1, w2):
  with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
    y pred = tf.matmul(h, w2)
    diff = y pred - y
    loss = tf.reduce mean(tf.reduce sum(diff ** 2, axis=1))
  grad w1, grad w2 = tape.gradient(loss, [w1, w2])
  w1.assign(w1 - learning rate * grad w1)
  w2.assign(w2 - learning rate * grad w2)
  return loss
N, Din, H, Dout = 16, 1000, 100, 10
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
w1 = tf.Variable(tf.random.normal((Din, H)))
w2 = tf.Variable(tf.random.normal((H, Dout)))
learning rate = 1e-6
for t in range(1000):
  loss = step(x, y, w1, w2)
```

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import InputLayer, Dense
N, Din, H, Dout = 16, 1000, 10, 10
model = Sequential()
model.add(InputLayer(input shape=(Din,)))
model.add(Dense(units=H, activation='relu'))
model.add(Dense(units=Dout))
params = model.trainable variables
loss fn = tf.keras.losses.MeanSquaredError()
opt = tf.keras.optimizers.SGD(learning rate=1e-6)
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
for t in range(1000):
 with tf.GradientTape() as tape:
   y pred = model(x)
   loss = loss fn(y pred, y)
  grads = tape.gradient(loss, params)
 opt.apply gradients(zip(grads, params))
```

Object-oriented API: build the model as a stack of layers

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import InputLayer, Dense
N, Din, H, Dout = 16, 1000, 10, 10
model = Sequential()
model.add(InputLayer(input shape=(Din,)))
model.add(Dense(units=H, activation='relu'))
model.add(Dense(units=Dout))
params = model.trainable variables
loss fn = tf.keras.losses.MeanSquaredError()
opt = tf.keras.optimizers.SGD(learning rate=1e-6)
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
for t in range(1000):
  with tf.GradientTape() as tape:
    y pred = model(x)
    loss = loss_fn(y_pred, y)
  grads = tape.gradient(loss, params)
  opt.apply gradients(zip(grads, params))
```

Keras gives you common loss functions and optimization algorithms

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import InputLayer, Dense
N, Din, H, Dout = 16, 1000, 10, 10
model = Sequential()
model.add(InputLayer(input shape=(Din,)))
model.add(Dense(units=H, activation='relu'))
model.add(Dense(units=Dout))
params = model.trainable variables
loss fn = tf.keras.losses.MeanSquaredError()
opt = tf.keras.optimizers.SGD(learning rate=1e-6)
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
for t in range(1000):
  with tf.GradientTape() as tape:
    y pred = model(x)
    loss = loss fn(y pred, y)
  grads = tape.gradient(loss, params)
  opt.apply gradients(zip(grads, params))
```

Forward pass:

Compute loss, build graph

Backward pass: compute gradients

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import InputLayer, Dense
N, Din, H, Dout = 16, 1000, 10, 10
model = Sequential()
model.add(InputLayer(input shape=(Din,)))
model.add(Dense(units=H, activation='relu'))
model.add(Dense(units=Dout))
params = model.trainable variables
loss fn = tf.keras.losses.MeanSquaredError()
opt = tf.keras.optimizers.SGD(learning rate=1e-6)
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
for t in range(1000):
  with tf.GradientTape() as tape:
    y pred = model(x)
    loss = loss fn(y pred, y)
  grads = tape.gradient(loss, params)
  opt.apply gradients(zip(grads, params))
```

Optimizer object updates parameters

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import InputLayer, Dense
N, Din, H, Dout = 16, 1000, 10, 10
model = Sequential()
model.add(InputLayer(input shape=(Din,)))
model.add(Dense(units=H, activation='relu'))
model.add(Dense(units=Dout))
params = model.trainable variables
loss fn = tf.keras.losses.MeanSquaredError()
opt = tf.keras.optimizers.SGD(learning rate=1e-6)
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
for t in range(1000):
 with tf.GradientTape() as tape:
   y pred = model(x)
    loss = loss fn(y pred, y)
  grads = tape.gradient(loss, params)
  opt.apply gradients(zip(grads, params))
```

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import InputLayer, Dense
N, Din, H, Dout = 16, 1000, 10, 10
model = Sequential()
model.add(InputLayer(input shape=(Din,)))
model.add(Dense(units=H, activation='relu'))
model.add(Dense(units=Dout))
params = model.trainable variables
loss fn = tf.keras.losses.MeanSquaredError()
opt = tf.keras.optimizers.SGD(learning rate=1e-6)
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
def step():
 y pred = model(x)
  loss = loss fn(y pred, y)
  return loss
```

Define a function — that returns the loss

```
for t in range(1000):
   opt.minimize(step, params)
```

Optimizer computes gradients and updates parameters

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import InputLayer, Dense
N, Din, H, Dout = 16, 1000, 10, 10
model = Sequential()
model.add(InputLayer(input shape=(Din,)))
model.add(Dense(units=H, activation='relu'))
model.add(Dense(units=Dout))
params = model.trainable variables
loss fn = tf.keras.losses.MeanSquaredError()
opt = tf.keras.optimizers.SGD(learning rate=1e-6)
x = tf.random.normal((N, Din))
y = tf.random.normal((N, Dout))
def step():
 y pred = model(x)
  loss = loss fn(y pred, y)
  return loss
for t in range(1000):
  opt.minimize(step, params)
```

Justin Johnson Lecture 8 - 128 October 2, 2019

TensorBoard

Add logging to code to record loss, stats, etc Run server and get pretty graphs!

Also works with PyTorch: torch.utils.tensorboard

Justin Johnson Lecture 8 - 130 October 2, 2019

PyTorch vs TensorFlow

PyTorch

- My personal favorite
- Clean, imperative API
- Easy dynamic graphs for debugging
- JIT allows static graphs for production
- Cannot use TPUs
- Not easy to deploy on mobile

TensorFlow 1.0

- Static graphs by default
- Can be confusing to debug
- API a bit messy

TensorFlow 2.0

- Dynamic by default
- Standardized on Keras API
- Just came out, no consensus yet

Summary: Hardware

CPU

GPU

TPU

Summary: Software

Static Graphs vs **Dynamic Graphs**

PyTorch vs TensorFlow

Next time: Training Neural Networks