Contents

1	Lim	Limit			
	1.1	Limit	of a function	1	
		1.1.1	Definition	1	
		1.1.2	Property	1	
		1.1.3	One-sided Limit and Existence of a Limit	1	
		1.1.4	Evaluating Limit	2	
		1.1.5	Squeeze Theorem	2	
	1.2	Limit	with Infinities	2	
		1.2.1	Infinite Limits	2	
		1.2.2	Limit at Infinities	3	
		1.2.3	Vertical and Horizontal Asymptotes	3	
	1.3	Contin	nuity	4	
2	Derivatives			4	
3	3 Integrals			4	

1 Limit

1.1 Limit of a function

1.1.1 Definition

Let f be a function defined on an open interval containing a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = L$$

if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon.$$

1.1.2 Property

Let $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, and let c be a constant. Then the following limit properties hold:

- 1. $\lim_{x \to a} [f(x) + g(x)] = L + M$
- 2. $\lim_{x \to a} [f(x) g(x)] = L M$
- $3. \lim_{x \to a} [c \cdot f(x)] = cL$
- 4. $\lim_{x \to a} [f(x) \cdot g(x)] = L \cdot M$
- 5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}, \text{ if } M \neq 0$
- 6. $\lim_{x \to a} [f(x)]^n = L^n$ for any $n \in \mathbb{N}$
- 7. $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$ if $L \ge 0$ for even n

1.1.3 One-sided Limit and Existence of a Limit

Let f(x) be a function defined near x = a.

Left-hand limit: $\lim_{x \to a^{-}} f(x) = L$

if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$0 < a - x < \delta \implies |f(x) - L| < \varepsilon.$$

Right-hand limit:

 $\lim_{x \to a^+} f(x) = L$

if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$0 < x - a < \delta \implies |f(x) - L| < \varepsilon.$$

Existence of Limit

The limit of a function f(x) as x approaches a exists if and only if the left-hand and right-hand limits exist and are equal:

$$\lim_{x \to a} f(x) \text{ exists } \iff \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

1.1.4 Evaluating Limit

- 1. Substitute directly
- 2. Factoring and simplifying
- 3. Multiply by the conjugate of numerator or denominator
- 4. Use graph/table of a given function

1.1.5 Squeeze Theorem

Theorem 1.1 (Squeeze Theorem). Let f(x), g(x), and h(x) be functions defined on an open interval containing a, except possibly at a itself. Suppose that for all x in this interval (with $x \neq a$),

$$f(x) \le g(x) \le h(x),$$

and that

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L.$$

Then,

$$\lim_{x \to a} g(x) = L.$$

For example:

for all $x \neq 0$,

$$-1 \le \sin\left(\frac{1}{x}\right) \le 1.$$

Multiplying all parts by $x^2 \ge 0$, we get

$$-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2.$$

Since

$$\lim_{x \to 0} (-x^2) = 0 = \lim_{x \to 0} x^2,$$

by the Squeeze Theorem,

$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0.$$

1.2 Limit with Infinities

1.2.1 Infinite Limits

If f is a function defined at every number in some open inverval containing a, except possibly at a itself, then

- $\lim_{x\to a} f(x) = \infty$ means that f(x) increases without bound as x approaches a.
- $\lim_{x\to a} f(x) = -\infty$ means that f(x) increases without bound as x approaches a.

Limit Theorems

1. If n is a positive integer, then

(a)
$$\lim_{x \to 0^+} \frac{1}{x^n} = \infty$$

(b)
$$\lim_{x \to 0^-} \frac{1}{x^n} = \begin{cases} \infty & \text{if } n \text{ is even} \\ -\infty & \text{if } n \text{ is odd} \end{cases}$$

2. if the $\lim_{x\to a} f(x) = c, c > 0$, and $\lim_{x\to a} g(x) = 0$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \begin{cases} \infty & \text{if } g(x) \text{ approaches } 0 \text{ through positive values} \\ -\infty & \text{if } g(x) \text{ approaches } 0 \text{ through negative values} \end{cases}$$

3. if the $\lim_{x\to a} f(x) = c, c < 0$, and $\lim_{x\to a} g(x) = 0$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \begin{cases} -\infty & \text{if } g(x) \text{ approaches } 0 \text{ through positive values} \\ \infty & \text{if } g(x) \text{ approaches } 0 \text{ through negative values} \end{cases}$$

1.2.2 Limit at Infinities

Limit at Infinity $(x \to \infty)$

- If f is a function defined at every number in some open inverval (a, ∞) , the $\lim_{x \to \infty} f(x) = L$ means that L is the limit of f(x) as x increases without bound.
- If f is a function defined at every number in some open inverval $(-\infty, a)$, the $\lim_{x \to -\infty} f(x) = L$ means that L is the limit of f(x) as x decreases without bound.

Limit Theorems

If n is a positive integer, then

(a)
$$\lim_{x \to \infty} \frac{1}{x^n} = 0$$

(b)
$$\lim_{x \to -\infty} \frac{1}{x^n} = 0$$

1.2.3 Vertical and Horizontal Asymptotes

Vertical Asymptotes

A function f(x) has a **vertical asymptote** at x = a if at least one of the following holds:

$$\lim_{x \to a^{-}} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^{+}} f(x) = \pm \infty.$$

This means that f(x) grows without bound as x approaches a from the left or the right.

Horizontal Asymptotes

A function f(x) has a **horizontal asymptote** at y = L if:

$$\lim_{x \to \infty} f(x) = L$$
 or $\lim_{x \to -\infty} f(x) = L$.

This means that f(x) approaches the constant value L as x tends to positive or negative infinity.

- 1.3 Continuity
- 2 Derivatives
- 3 Integrals