1. Let function f be defined by the polynomial below:

$$f(x) = -8x^4 - 3x^3 - 9x^2 - 2x + 7$$

Draw lines that match each function reflection with its polynomial:

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	$\frac{f(x)}{8}$	g(x)	h(x)
1	8	7	6
2	3	1	4
3	6	9	7
4	7	5	3
5	1	3	9
6	9	4	8
7	4	2	5
8	5	6	2
9	2	8	1

3. Evaluate f(6).

$$f(6) = 9$$

4. Evaluate $g^{-1}(7)$.

$$g^{-1}(7) = 1$$

5. Assuming h is an **odd** function, evaluate h(-3).

If function h is odd, then

$$h(-3) = -7$$

6. Assuming g is an **even** function, evaluate g(-8).

If function g is even, then

$$g(-8) = 6$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^3 + 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^3 + 1$$
$$p(-x) = x^3 + 1$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^3 + 1)$$

 $-p(-x) = -x^3 - 1$

c. Is polynomial p even, odd, or neither?

neither

d. Explain how you know the answer to part c.

We see that p(x) is not equivalent to either p(-x) or -p(-x), so p is neither even nor odd.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x+6}{2}$$

a. Evaluate f(8).

step 1: add 6 step 2: divide by 2

$$f(8) = \frac{(8) + 6}{2}$$
$$f(8) = 7$$

b. Evaluate $f^{-1}(35)$.

step 1: multiply by 2 step 2: subtract 6

$$f^{-1}(x) = 2x - 6$$

$$f^{-1}(35) = 2(35) - 6$$

$$f^{-1}(35) = 64$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(2).

$$b(2) = 5$$

b. Evaluate $b^{-1}(6)$.

$$b^{-1}(6) = 3$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-3	3	-3	3
-1	5	-5	5	-5
0	0	0	0	0
1	5	-5	5	-5
2	-3	3	-3	3

b. Is function f even, odd, or neither?

even

c. How do you know the answer to part b?

Function f is even because column f(-x) matches column f(x) exactly.