Math 501 Homework (§5.4 Uniform Continuity)

Problem 1. Let $g(x) = \sqrt{x}$ on I = [0, 2]

Solution. 1. For a given $\epsilon > 0$, we pick $\delta = \epsilon \sqrt{2}$ and $x,y \in I$ for which $|x-y| < \delta$. We now have that

$$|g(x) - g(y)| = |\sqrt{x} - \sqrt{y}|$$

$$= |\frac{x - y}{\sqrt{x} + \sqrt{y}}|$$

$$= \frac{|x - y|}{\sqrt{x} + \sqrt{y}}$$

$$= \frac{\delta}{2\sqrt{2}} = \epsilon$$

2. For all $x \in I$ there is no number K > 0 such that $|g(x)| = \sqrt{x} \le K|x|$. This is because as $x \to 0$ the slope $\frac{1}{\sqrt{x}}$ gets asymptotically larger and larger and cannot be contained by any K > 0.