Q2 Report: Imbalanced Data Classification

Author: YANG Rongfeng Date: 2020-05-31

1. The Algorithms Details

In this question, I implement two sampling algorithms in bi-class classification task: SMOTE and SMOTEENN. Then I use random forest to do classification on the resampled dataset.

For classifying the Multi-class datasets, I implement four classifiers which can handle the imbalanced datasets: balanced random forest classifier, RUS boost classifier, easy ensemble classifier and balanced bagging classifier. I will try these four classifiers for each dataset and select the one with best performance for final prediction on the testing set.

Now I will discuss them in detail.

1.1 SMOTE

SMOTE algorithm which is known as Synthetic Minority Over-sampling Technique is a technology to creates artificial data based on similarities in feature space between existing minority classes through the introduction of minority classes that are not replicated that does not lead to loss of information. Introducing new examples is an effective way of changing learner bias and creating more general bias, chiefly in terms of minority classes. The K-NN algorithm is employed for the extrapolation and creation of new minority examples from present imbalances in the minority classes. The K-NN neighbors are selected at random based on the quantity of oversampling that is needed. Adding synthetically generated minority class examples creates more balance within the class distribution.

Figure.1 An example of SMOTE generation

Specifically, for a minority sample x_i using K-NN to calculate k closest samples from x_i by Euclidean distance. Then randomly choose a point from its K nearest neighbors, use the equation to generate new samples:

$$x_{new} = x_i + (\hat{x}_i - x_i) imes \delta$$

where x_i is the point that we randomly choose in x_i 's K nearest neighbors. $\delta \in [0, 1]$ is a random number. In Figure 1, it shows a point generated by SMOTE algorithm.

1.2 SMOTEENN

<u>SMOTEENN</u> is a kind of hybrid methodology that combines SMOTE and ENN (Edited Nearest Neighbors). SMOTE is used to over-sampling and ENN is used for cleaning data. The purpose of SMOTEENN is to balance training data as well as to take out noisy instances. ENN tends to remove a greater number of instances than Tomek links. ENN is employed for the removal of instances in all classes and so any instance which undergoes misclassification from all three Nearest Neighbors will be taken out of the training set.

In Figure 2, we compare different resampling methods: Original, SMOTE and SMOTEEEN. We can clearly see that the SMOTE oversampling cause data overlapping which will make classification more difficult. The SMOTEEN do data cleaning after SMOTE and its classification boundary is more clearly.

Figure 2. Resampling using (a) Original (b) SMOTE (c) SMOTEENN

1.3 Random Oversampling (ROS)

<u>ROS</u> technique operates through the replication of a randomly chosen collection of examples in the minority class to prevent the majority class disproportionately affecting training processes. As random sampling is used, the decision function finds it problematic in distinguishing borders between classes. Thus, although it is a standard method, random oversampling may not be effective in causing large improvements to minority class recognition. Possible problems with over-sampling are that the classifier training time may be increased and overfitting may appear as class imbalance ratios worsen with the duplication of minority class examples.

1.4 Random Forest

<u>Random Forest</u> is an ensemble method which combines predictions from a multiplicity of Decision Tree algorithms to produce predictions that have a higher accuracy than any individual model. RF employs the classification from each tree to make an overall classification. The RF will choose the class of instances presented to it that has the most votes.

1.5 BalancedRandomForestClassifier

<u>BalancedRandomForestClassifier</u> is another ensemble method in which each tree of the forest will be provided a balanced bootstrap sample.

1.6 RUSBoostClassifier

RUSBoostClassifier randomly under-sample the dataset before to perform a boosting iteration.

1.7 EasyEnsembleClassifier

A specific method which uses AdaBoost as learners in the bagging classifier is called <u>EasyEnsemble</u>. The EasyEnsembleClassifier allows to bag AdaBoost learners which are trained on balanced bootstrap samples.

1.8 BalancedBaggingClassifier

In ensemble classifiers, bagging methods build several estimators on different randomly selected subset of data. In scikit-learn, this classifier is named BaggingClassifier. However, this classifier does not allow to balance each subset of data. Therefore, when training on imbalanced data set, this classifier will favor the majority classes.

<u>BalancedBaggingClassifier</u> allows to resample each subset of data before to train each estimator of the ensemble. In short, it combines the output of an EasyEnsemble sampler with an ensemble of classifiers (i.e. BaggingClassifier). Therefore, BalancedBaggingClassifier takes the same parameters than the scikit-learn BaggingClassifier. Additionally, there is two additional parameters, sampling strategy and replacement to control the behaviour of the random under-sampler.

2. Bi-class Datasets

2.1 v_train.csv

I use **SMOTE** algorithm to oversample the original data.

```
smote = SMOTE(random_state=0)
X_smote, y_smote = smote.fit_sample(X, y)
```

Then the Random Forest Classifier is used to do classification.

```
rf = RandomForestClassifier(n_estimators=5, random_state=0, max_depth=2)
```

Split the training set by 20% for validation and 80% for training. The evaluation result on the validation set is shown below:

Random Forest	evalute on v			
	precision	recall	f1-score	support
negative	0.94	0.92	0.93	161
positive	0.93	0.95	0.94	186
accuracy			0.94	347
macro avg	0.94	0.94	0.94	347
weighted avg	0.94	0.94	0.94	347

2.2 p_train.csv

I use a **SMOTEEEN** to resample the dataset.

```
sme = SMOTEENN(random_state=27)
X_sme, y_sme = sme.fit_resample(X, y)
```

Also split validation for evaluation and use Random Forest Classifier to predict as Section 1.1. The evaluation result:

Random Forest	evalute on			
	precision	recall	f1-score	support
negative	0.90	0.85	0.88	41
positive	0.89	0.93	0.91	55
accuracy			0.90	96
macro avg	0.90	0.89	0.89	96
weighted avg	0.90	0.90	0.90	96

3. Multi-class Datasets

To classify three multi-class datasets, I try four different ensemble methods provided by imblearn for each dataset and select the one with best performance for final prediction on the testing set.

- BalancedRandomForestClassifier
- RUSBoostClassifier
- EasyEnsembleClassifier
- BalancedBaggingClassifier

3.1 y_train.csv

The categories distribution of y_train.csv

Try four different imbalanced classifier models

The performance comparison. Use RUSBoost Classifier to predict on testing set.

Balanced Rand	dom Forest e	valute on	validation	set	RUSBoost Clas	sifier evalu	te on val	idation se	t
barancea kan	precision		f1-score	support		precision	recall	f1-score	support
	precision	100011	11-30010	3uppor c					
CYT	0.49	0.57	0.53	109	CYT	0.44	0.35	0.39	88
ERL	0.50	1.00	0.67	2	ERL	0.50	1.00	0.67	1
EXC	0.33	0.57	0.42	7	EXC	0.42	0.56	0.48	9
ME1	0.50	0.44	0.42	9	ME1	0.50	0.50	0.50	8
ME2	0.21	0.33	0.26	9	ME2	0.00	0.00	0.00	6
ME3	0.44	0.84	0.58	25	ME3	0.76	0.76	0.76	29
MIT	0.47	0.16	0.24	44	MIT	0.31	0.42	0.36	43
NUC	0.47	0.10	0.18	68	NUC	0.59	0.39	0.47	89
POX	0.42	0.75	0.10	4	POX	0.67	0.40	0.50	5
				-	VAC	0.03	0.33	0.05	3
VAC	0.08	0.25	0.12	4	*****	0.03	0.55	0.05	
255112251			0.41	281	accuracy			0.42	281
accuracy macro avg	0.36	0.50	0.37	281	macro avg	0.42	0.47	0.42	281
weighted avg	0.44	0.41	0.38	281	weighted avg	0.49	0.42	0.45	281
weighted avg	0.44	0.41	0.38	281	weighted avg	0.45	0.42	0.43	201
Easy Ensemble	Classifier		n volidatio		Balanced Bagg	dna Classifi	on ovalut	o on valid	
		evalute o	n valluatio	on set	paranced pagg	Tud Crassiii	er evalut	e on variu	ation set
•	precision		f1-score		paranced pagg	precision		f1-score	
Í					paranced page				
CYT					CYT				
CYT ERL	precision	recall	f1-score	support		precision	recall	f1-score	support
	precision 0.55	recall 0.43	f1-score 0.48	support 92	CYT	precision 0.44	recall 0.36	f1-score 0.40	support 83
ERL	precision 0.55 0.33	0.43 1.00	f1-score 0.48 0.50	support 92 1	CYT ERL	precision 0.44 0.67	0.36 1.00	f1-score 0.40 0.80	support 83 2
ERL EXC	precision 0.55 0.33 0.42	0.43 1.00 1.00	f1-score 0.48 0.50 0.59	support 92 1 5	CYT ERL EXC	precision 0.44 0.67 0.41	0.36 1.00 0.70	f1-score 0.40 0.80 0.52	support 83 2 10
ERL EXC ME1	precision 0.55 0.33 0.42 0.25	0.43 1.00 1.00 0.33	f1-score 0.48 0.50 0.59 0.29	92 1 5 3	CYT ERL EXC ME1	precision 0.44 0.67 0.41 0.62	0.36 1.00 0.70 0.83	f1-score 0.40 0.80 0.52 0.71	83 2 10 6
ERL EXC ME1 ME2	0.55 0.33 0.42 0.25 0.43	0.43 1.00 1.00 0.33 0.50	f1-score 0.48 0.50 0.59 0.29 0.46	92 1 5 3	CYT ERL EXC ME1 ME2	0.44 0.67 0.41 0.62 0.17	0.36 1.00 0.70 0.83 0.38	0.40 0.80 0.52 0.71 0.23	83 2 10 6 8
ERL EXC ME1 ME2 ME3	0.55 0.33 0.42 0.25 0.43 0.68	0.43 1.00 1.00 0.33 0.50 0.62	f1-score 0.48 0.50 0.59 0.29 0.46 0.65	92 1 5 3 12 24	CYT ERL EXC ME1 ME2 ME3	0.44 0.67 0.41 0.62 0.17 0.68	0.36 1.00 0.70 0.83 0.38 0.83	f1-score 0.40 0.80 0.52 0.71 0.23 0.75	83 2 10 6 8 30
ERL EXC ME1 ME2 ME3 MIT	0.55 0.33 0.42 0.25 0.43 0.68 0.40	necall 0.43 1.00 1.00 0.33 0.50 0.62 0.44	f1-score 0.48 0.50 0.59 0.29 0.46 0.65 0.42	92 1 5 3 12 24 54	CYT ERL EXC ME1 ME2 ME3 MIT NUC	0.44 0.67 0.41 0.62 0.17 0.68 0.59 0.47	0.36 1.00 0.70 0.83 0.38 0.83 0.47	f1-score 0.40 0.80 0.52 0.71 0.23 0.75 0.52 0.36	83 2 10 6 8 30 47 82
ERL EXC ME1 ME2 ME3 MIT NUC	0.55 0.33 0.42 0.25 0.43 0.68 0.40	0.43 1.00 1.00 0.33 0.50 0.62 0.44	f1-score 0.48 0.50 0.59 0.29 0.46 0.65 0.42 0.42	92 1 5 3 12 24 54 79	CYT ERL EXC ME1 ME2 ME3 MIT NUC POX	0.44 0.67 0.41 0.62 0.17 0.68 0.59 0.47 0.20	0.36 1.00 0.70 0.83 0.38 0.83 0.47 0.29	f1-score 0.40 0.80 0.52 0.71 0.23 0.75 0.52 0.36 0.32	83 2 10 6 8 30 47 82 4
ERL EXC ME1 ME2 ME3 MIT NUC POX	0.55 0.33 0.42 0.25 0.43 0.68 0.40 0.61	0.43 1.00 1.00 0.33 0.50 0.62 0.44 0.32	f1-score 0.48 0.50 0.59 0.29 0.46 0.65 0.42 0.42 0.22	92 1 5 3 12 24 54 79 6	CYT ERL EXC ME1 ME2 ME3 MIT NUC	0.44 0.67 0.41 0.62 0.17 0.68 0.59 0.47	0.36 1.00 0.70 0.83 0.38 0.83 0.47	f1-score 0.40 0.80 0.52 0.71 0.23 0.75 0.52 0.36	83 2 10 6 8 30 47 82
ERL EXC ME1 ME2 ME3 MIT NUC POX	0.55 0.33 0.42 0.25 0.43 0.68 0.40 0.61	0.43 1.00 1.00 0.33 0.50 0.62 0.44 0.32	f1-score 0.48 0.50 0.59 0.29 0.46 0.65 0.42 0.42 0.22	92 1 5 3 12 24 54 79 6	CYT ERL EXC ME1 ME2 ME3 MIT NUC POX VAC	0.44 0.67 0.41 0.62 0.17 0.68 0.59 0.47 0.20	0.36 1.00 0.70 0.83 0.38 0.83 0.47 0.29	f1-score 0.40 0.80 0.52 0.71 0.23 0.75 0.52 0.36 0.32	83 2 10 6 8 30 47 82 4
ERL EXC ME1 ME2 ME3 MIT NUC POX VAC	0.55 0.33 0.42 0.25 0.43 0.68 0.40 0.61	0.43 1.00 1.00 0.33 0.50 0.62 0.44 0.32	f1-score 0.48 0.50 0.59 0.29 0.46 0.65 0.42 0.42 0.22 0.04	92 1 5 3 12 24 54 79 6	CYT ERL EXC ME1 ME2 ME3 MIT NUC POX VAC	precision 0.44 0.67 0.41 0.62 0.17 0.68 0.59 0.47 0.20 0.04	0.36 1.00 0.70 0.83 0.38 0.47 0.29 0.75	f1-score 0.40 0.80 0.52 0.71 0.23 0.75 0.52 0.36 0.32 0.06	83 2 10 6 8 30 47 82 4 9
ERL EXC ME1 ME2 ME3 MIT NUC POX VAC	precision 0.55 0.33 0.42 0.25 0.43 0.68 0.40 0.61 0.33 0.02	recall 0.43 1.00 1.00 0.33 0.50 0.62 0.44 0.32 0.17 0.20	f1-score 0.48 0.50 0.59 0.29 0.46 0.65 0.42 0.42 0.22 0.04	92 1 5 3 12 24 54 79 6 5	CYT ERL EXC ME1 ME2 ME3 MIT NUC POX VAC	0.44 0.67 0.41 0.62 0.17 0.68 0.59 0.47 0.20	0.36 1.00 0.70 0.83 0.38 0.83 0.47 0.29	f1-score 0.40 0.80 0.52 0.71 0.23 0.75 0.52 0.36 0.32 0.06	83 2 10 6 8 30 47 82 4 9

3.2 e_train.csv

The categories distribution of e_train.csv

```
Counter({'cp': 143,
    'im': 77,
    'imS': 2,
    'imL': 2,
    'imU': 35,
    'om': 20,
    'omL': 5,
    'pp': 19})
```

Try four different imbalanced classifier models

Compare the performance of four classifier and use Balanced Bagging Classifier to predect on testing set.

Balanced Rando	om Forest ev	alidation	set	RUSBoost Class	sifier evalut	e on val	idation set		
	precision	recall	f1-score	support		precision	recall	f1-score	support
ср	1.00	0.14	0.25	76	ср	0.66	0.95	0.78	22
im	0.82	0.84	0.83	38	im	1.00	0.11	0.19	19
imL	0.00	0.00	0.00	0	imL	0.00	0.00	0.00	0
imS	0.00	0.00	0.00	1	imS	0.07	1.00	0.12	1
imU	0.75	0.35	0.48	17	imU	0.50	0.12	0.20	8
om	0.36	1.00	0.53	8	om	1.00	0.20	0.33	5
omL	0.00	0.00	0.00	4	omL	1.00	1.00	1.00	1
pp	0.06	0.50	0.11	8	pp	0.71	1.00	0.83	5
accuracy			0.40	152	accuracy			0.52	61
macro avg	0.37	0.35	0.28	152	macro avg	0.62	0.55	0.43	61
weighted avg	0.81	0.40	0.42	152	weighted avg	0.77	0.52	0.48	61
Easy Ensemble	Classifier	evalute o	n validati	ion set	Balanced Bagg	ing Classifi	er evalut	te on valid	ation set
Easy Ensemble	Classifier precision		n validati f1-score		Balanced Bagg	ing Classifi precision		te on valid f1-score	ation set support
Easy Ensemble					Balanced Bagg	, ,			
Easy Ensemble					Balanced Bagg	, ,			
·	precision	recall	f1-score	support		precision	recall	f1-score	support
ср	precision 0.96	recall 0.77	f1-score 0.85	support 30	ср	precision 0.88	recall 0.96	f1-score 0.92	support 23
cp	precision 0.96 0.57	0.77 0.53	f1-score 0.85 0.55	support 30 15	cp	precision 0.88 1.00	recall 0.96 0.41	f1-score 0.92 0.58	support 23 22
cp im imL	0.96 0.57 0.00	0.77 0.53 0.00	f1-score 0.85 0.55 0.00	support 30 15 0	cp im imL	precision 0.88 1.00 0.00	0.96 0.41 0.00	f1-score 0.92 0.58 0.00	support 23 22 1
cp im imL imS	0.96 0.57 0.00 0.00	0.77 0.53 0.00 0.00	f1-score 0.85 0.55 0.00 0.00	30 15 0	cp im imL imS	precision 0.88 1.00 0.00 0.25	0.96 0.41 0.00 1.00	f1-score 0.92 0.58 0.00 0.40	23 22 1 1
cp im imL imS imU	0.96 0.57 0.00 0.00 0.12	0.77 0.53 0.00 0.00 0.10	f1-score 0.85 0.55 0.00 0.00 0.11	30 15 0 0	cp im imL imS imU	0.88 1.00 0.00 0.25 0.40	0.96 0.41 0.00 1.00 0.50	0.92 0.58 0.00 0.40 0.44	23 22 1 1 4
cp im imL imS imU om	0.96 0.57 0.00 0.00 0.12 0.25	0.77 0.53 0.00 0.00 0.10 0.50	f1-score 0.85 0.55 0.00 0.00 0.11 0.33	30 15 0 0 10 2	cp im imL imS imU om	0.88 1.00 0.00 0.25 0.40	0.96 0.41 0.00 1.00 0.50 0.75	f1-score 0.92 0.58 0.00 0.40 0.44 0.86	23 22 1 1 4
cp imL imS imU om	0.96 0.57 0.00 0.00 0.12 0.25 1.00	recall 0.77 0.53 0.00 0.00 0.10 0.50 0.50	f1-score 0.85 0.55 0.00 0.00 0.11 0.33 0.67	30 15 0 0 10 2 2	cp im imL imS imU om	0.88 1.00 0.00 0.25 0.40 1.00	0.96 0.41 0.00 1.00 0.50 0.75 1.00	f1-score 0.92 0.58 0.00 0.40 0.44 0.86 0.67	23 22 1 1 4 4
cp imL imS imU om	0.96 0.57 0.00 0.00 0.12 0.25 1.00	recall 0.77 0.53 0.00 0.00 0.10 0.50 0.50	f1-score 0.85 0.55 0.00 0.00 0.11 0.33 0.67	30 15 0 0 10 2 2	cp im imL imS imU om	0.88 1.00 0.00 0.25 0.40 1.00	0.96 0.41 0.00 1.00 0.50 0.75 1.00	f1-score 0.92 0.58 0.00 0.40 0.44 0.86 0.67	23 22 1 1 4 4
cp im imL imS imU om omL	0.96 0.57 0.00 0.00 0.12 0.25 1.00	recall 0.77 0.53 0.00 0.00 0.10 0.50 0.50	f1-score 0.85 0.55 0.00 0.00 0.11 0.33 0.67 0.00	30 15 0 10 2 2 2	cp im imL imS imU om	0.88 1.00 0.00 0.25 0.40 1.00	0.96 0.41 0.00 1.00 0.50 0.75 1.00	f1-score 0.92 0.58 0.00 0.40 0.44 0.86 0.67 0.67	23 22 1 1 4 4 1 5
cp im imL imS imU omL pp	precision 0.96 0.57 0.00 0.00 0.12 0.25 1.00 0.00	0.77 0.53 0.00 0.00 0.10 0.50 0.50 0.00	f1-score 0.85 0.55 0.00 0.01 0.33 0.67 0.00 0.56	30 15 0 0 10 2 2 2 2	cp im imL imS imU om omL pp	0.88 1.00 0.00 0.25 0.40 1.00 0.50 0.50	0.96 0.41 0.00 1.00 0.50 0.75 1.00	f1-score 0.92 0.58 0.00 0.40 0.44 0.86 0.67 0.67	23 22 1 1 4 4 1 5

3.3 a_train.csv

The categories distribution of a_train.csv

```
Counter({15: 103,
        7: 383,
        9: 669,
        10: 617,
        8: 553,
        20: 26,
        16: 67,
        19: 32,
        14: 126,
        11: 464,
        12: 264,
        18: 42,
        13: 200,
        5: 115,
        4: 56,
        6: 255,
        21: 14,
        17: 58,
        22: 6,
        1: 1,
        3: 15,
        26: 1,
        23: 9,
        29: 1,
        2: 1,
        27: 2,
        25: 1,
        24: 2})
```

Because the data has some outliers like label= 1, 26, 2, I have tried some outlier detection method like isolation tree. However, the prediction result is still not good and many normal data are recognized as outliers. Hence, I just use random oversampling method to balance data and then use four classifiers that have been mentioned in the front.

```
ros = RandomOverSampler(random_state=0)
X_ros, y_ros = ros.fit_sample(X, y)
```

The evaluation results on validation set and we find that the Balanced Bagging Classifier performs the best. Hence, we choose it to predict on testing dataset.

Balanced Rand	dom Forest e	valute on	validation	set	RUSBoost Clas	sifier evalu	te on val	idation set	t
	precision	recall	f1-score	support		precision	recall	f1-score	support
1	1.00	1.00	1.00	123	1	1 00	1 00	1.00	125
2		1.00	0.89	141	1	1.00	1.00	1.00	135
					2	0.00	0.00	0.00	147
3		0.87	0.50	127	3	0.00	0.00	0.00	153
4	0.18	0.08	0.11	137	4	0.00	0.00	0.00	122
5		0.02	0.04	135	5	0.00	0.00	0.00	121
6	0.00	0.00	0.00	129	6	0.00	0.00	0.00	145
7		0.00	0.00	145	7	0.06	0.43	0.11	118
8	0.00	0.00	0.00	142	8	0.20	0.25	0.23	130
9	0.00	0.00	0.00	121	9	0.00	0.00	0.00	138
10	0.05	0.01	0.01	136	10	0.00	0.00	0.00	120
11	0.00	0.00	0.00	125	11	0.00	0.00	0.00	133
12	0.00	0.00	0.00	144	12	0.00	0.00	0.00	141
13	0.00	0.00	0.00	126	13	0.00	0.00	0.00	124
14	0.00	0.00	0.00	143	14	0.00	0.00	0.00	131
15	0.00	0.00	0.00	134	15	0.07	0.85	0.14	135
16	0.00	0.00	0.00	146	16	0.00	0.00	0.00	128
17	0.00	0.00	0.00	133	17	0.00	0.00	0.00	137
18	0.00	0.00	0.00	110	18	0.00	0.00	0.00	142
19	0.00	0.00	0.00	131	19	0.00	0.00	0.00	156
20	0.00	0.00	0.00	131	20	0.00	0.00	0.00	134
21	0.04	1.00	0.08	126	21	0.18	0.33	0.23	129
22		0.00	0.00	137	22	0.00	0.00	0.00	116
23	0.00	0.00	0.00	125	23	0.00	0.00	0.00	119
24	0.00	0.00	0.00	148	24	0.00	0.00	0.00	129
25		0.00	0.00	136	25	0.33	1.00	0.49	144
26		0.00	0.00	146	26	0.44	1.00	0.61	130
27		0.00	0.00	134	27	0.00	0.00	0.00	147
29		0.00	0.00	136	29	0.00	0.00	0.00	143
29	0.00	0.00	0.00	130	29	0.00	0.00	0.00	143
accuracy			0.14	3747	accuracy			0.17	3747
macro avg	0.09	0.14	0.09	3747	macro avg	0.08	0.17	0.10	3747
weighted avg	0.09	0.14	0.09	3747	weighted avg	0.08	0.17	0.10	3747

Easy Ensemble	Classifier	evalute o	n validatio	on set	Balanced Bagg	ing Classifi	er evalut	e on valida	ation set
	precision	recall	f1-score	support		precision	recall	f1-score	support
1	0.00	0.00	0.00	119	1	1.00	1.00	1.00	145
2	0.00	0.00	0.00	144	2	1.00	1.00	1.00	143
3	0.07	0.13	0.09	149	3	1.00	1.00	1.00	134
4	0.34	0.98	0.50	139	4	0.99	1.00	1.00	131
5	0.71	0.11	0.19	139	5	0.92	0.99	0.95	131
6	0.41	0.06	0.10	124	6	0.75	0.96	0.84	129
7	0.00	0.00	0.00	119	7	0.78	0.74	0.76	160
8	0.00	0.00	0.00	151	8	0.52	0.46	0.49	134
9	0.00	0.00	0.00	141	9	0.25	0.24	0.25	125
10	0.00	0.00	0.00	135	10	0.45	0.29	0.35	138
11	0.00	0.00	0.00	139	11	0.64	0.51	0.57	150
12	0.00	0.00	0.00	136	12	0.78	0.80	0.79	131
13	0.00	0.00	0.00	139	13	0.84	0.94	0.89	121
14	0.00	0.00	0.00	118	14	0.92	1.00	0.96	139
15	0.00	0.00	0.00	141	15	0.95	0.96	0.96	136
16	0.00	0.00	0.00	139	16	0.95	1.00	0.97	129
17	0.00	0.00	0.00	125	17	0.97	1.00	0.98	131
18	0.00	0.00	0.00	140	18	0.95	1.00	0.97	124
19	0.00	0.00	0.00	114	19	0.94	1.00	0.97	136
20	0.00	0.00	0.00	129	20	0.98	1.00	0.99	120
21	0.00	0.00	0.00	134	21	0.98	1.00	0.99	128
22	0.00	0.00	0.00	142	22	1.00	1.00	1.00	132
23	0.09	0.12	0.10	139	23	1.00	1.00	1.00	141
24	0.00	0.00	0.00	130	24	1.00	1.00	1.00	120
25	0.00	0.00	0.00	124	25	1.00	1.00	1.00	137
26	0.05	1.00	0.09	139	26	1.00	1.00	1.00	129
27	0.00	0.00	0.00	132	27	1.00	1.00	1.00	138
29	0.00	0.00	0.00	127	29	1.00	1.00	1.00	135
accuracy			0.09	3747	accuracy			0.89	3747
macro avg	0.06	0.09	0.04	3747	macro avg	0.88	0.89	0.88	3747
weighted avg	0.06	0.09	0.04	3747	weighted avg	0.88	0.89	0.88	3747

Reference

- [1] 机器学习之类别不平衡问题 (3)—— 采样方法: https://www.cnblogs.com/massquantity/p/9382710.html
- [2] 不平衡数据集的处理: https://www.cnblogs.com/kamekin/p/9824294.html
- [3] imblearn document: https://imbalanced-learn.org/stable/index.html
- [4] https://books.google.com.ph/books?id=GvKrDwAAQBAJ&pg=PA452&lpg=PA452&dq=sm ote+SMOTEENN&source=bl&ots=uD6yhIQ_cZ&sig=ACfU3U01CuiKc1bOPmQgsOdaMU ekdiozRA&hl=en&sa=X&ved=2ahUKEwiEsIL_mt3pAhXoy4sBHfVDC38Q6AEwD3oECA oQAg#v=onepage&q=smote%20SMOTEENN&f=false