Cálculo Numérico: Lista de Método de Newton

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

Versão: 20150403

1 Formulário

Sequência

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Critérios de parada

- 1. Número máximo de iterações (passos) k
- 2. Precisão: distância entre duas aproximações consecutivas ε

$$\varepsilon = |x_k - x_{k-1}|$$

3. Precisão: valor absoluto da função ε

$$\varepsilon = |f(x_k)|$$

2 Exercícios

- 1. Encontre uma aproximação para a raiz das funções abaixo, com cada ponto inicial dado. Use o método de Newton até atingir a precisão de $\varepsilon < 10^{-2}$ ou k=4 passos, o que ocorrer primeiro. Identifique na sua resposta a sequência x_k obtida, e use o último x_k como resposta aproximada \bar{x} :
 - (a) f(x) = x, com $x_0 = 1.5$
 - (b) f(x) = x, com $x_0 = 10$
 - (c) $f(x) = x^2 4$, com $x_0 = 5$
 - (d) $f(x) = x^3$, com $x_0 = -3$
 - (e) $f(x) = x^3 1.5x$, com $x_0 = 6$
 - (f) $f(x) = xe^x$, com $x_0 = 1.1$
 - (g) $f(x) = \sin x$, com $x_0 = 1$
- 2. Aplique o critério de parada do valor absoluto da função $(\varepsilon = |f(x)|)$ nos itens do exercício 1, e identifique em que casos serão exigidas menos iterações.
- 3. Determine o erro absoluto e o erro relativo da aproximação \bar{x} encontrada em cada item do exercício 1, considerando que as soluções exatas são:
 - (a) x = 0
 - (b) x = 0
 - (c) x = 2
 - (d) x = 0
 - (e) $x = \sqrt{1.5}$
 - (f) x = 0
 - (g) x = 0

3 Problemas

- 4. (Comparação entre Bissecção e Newton) Entenda como se compara a eficiência entre os métodos da Bissecção e Newton.
 - (a) Estime quantas iterações são necessárias para o Método da Bissecção achar a raiz da função $f(x)=\ln x$ em [0.5,3.5] com precisão $\varepsilon<10^{-2}$
 - (b) Aplique o Método de Newton com valor inicial $x_0=2$ até esta precisão.
 - (c) Compare o número de iterações necessário.
 - (d) (Perspectiva) Qual é a raiz exata desta função no intervalo acima?
- 5. O número π pode ser aproximado usando o método de Newton usando a função $f(x) = \cos x + 1$ e o valor inicial $x_0 = 3.14$. Encontre uma aproximação com precisão de $\varepsilon < 10^{-4}$
- 6. (Conjugação de métodos) Quando não se tem um bom ponto de partida x_0 para se aplicar o Método de Newton, podemos usar algumas iterações do Método da Bissecção para obtê-la. Aplique 2 iterações do Método da Bissecção na função f(x) =