DETECTION AND PREDICTION OF LUNG CANCER CELLS

Presented by:

Rohan Tuli

Mentors:

Dr Dhirendra Mishra (Academic)
Dr Nagachetan Bangalore (External)

Radiological Assistance:

Dr Nilesh Haran

Contents

Introduction

Lung cancer is one of the most life-threatening cancers in the world. It is the leading cancer killer in both men and women worldwide and has one of the highest mortality rate among all other types of cancer.

One of the major reasons why this cancer is so detrimental is because it is extremely hard to diagnose in early stages.

It may take a couple of years for the malignant tumor to grow, and this disease does not exhibit any specific symptoms in early stages.

Our project is mainly concerned with the 'Analysis of Malignant Tumours for Lung Cancer patients', expediting the early detection of lung cancer being the objective which is to be achieved.

Problem Definition

Analysis of Malignant Tumours for Lung Cancer Patients

Objective: Detection of Malignant Tumour

We have used computer aided diagnosis techniques like image processing and machine learning for the development of an outline process for extraction and detection of lung tumours, thus supplementing and humanizing the physician's ability to spot abnormalities.

SCOPE DESCRIPTION

Explore existing strategies, research methodologies & limitations.

Augmenting current medical services for diagnosing & treating lung cancer.

Scope

The entire project revolves around the idea of detection of malignant tumour and the analysis of cancer progression for early diagnosis and prognosis of lung cancer for facilitating effective and accurate decision making.

Effective and early cancer prognosis after the cancer has been diagnosed promises an increase in the survival rate among the lung cancer patients.

We have explored lung CT scan DICOM images as our raw input data set. The necessary and relevant data pre-processing techniques have been applied on the data set in order to make it suitable for further processing.

Texture feature analysis has been carried out, as early evidence suggested that texture analysis has the potential to augment diagnosis and characterization as well as improve tumor staging and therapy response assessment in oncological practice.

We have automated the entire process under the expertise of a radiologist in order to deliver an efficient and robust model.

Literature Review

Makaju et al., 2018

This paper revolves around reviewing methods related to detection of cancerous nodules and proposing their own method in order to increase accuracy and efficiency.

Ganeshan & Miles, 2013

The authors are mainly focusing on heterogeneity and how it can be used to detect cancerous cells from biomarker images. The authors have shown that CT texture analysis has the potential to be a useful adjunct in clinical oncologic imaging, providing important information about tumour characterization, prognosis and treatment prediction and response.

Ng et al., 2013

According to this paper, it has been mentioned that tumour heterogeneity plays an important role in prognosis as high intra-tumoural heterogeneity may be associated with higher tumour grades. The authors have used CT (Computed Tomography) images to extract Entropy (E) and Uniformity (U).

Ganeshan et al., 2012

The authors objective was to establish the potential for tumour heterogeneity in non-small cell lung cancer (NSCLC) as assessed by CT texture analysis (CTTA) to provide an independent marker of survival for patients with NSCLC.

Literature Review

Dilpreet & Yadwinder, 2014

The authors have explored, discussed and listed advantages and disadvantages of several segmentation techniques. The authors have suggested that the methods discussed could be applied in various fields of medical imaging & satellite imaging.

Sharma et al., 2010

The author's motive is to discuss the problems encountered in segmentation of CT images. And also implying the relative merits and limitations of methods currently available.

Planckt & Mueller, 1977

The authors presented methods for edge segmentation of satellite images. The authors used Sobel, Prewitt, Roberts, Canny & Laplacian operators. Prewitt was found to be best technique for edge detection.

Lin et al., 2000

The authors have discussed "The unseeded region growing (URG) algorithm" which is a derivative of seeded region

Literature Review

Wang, n.d.

The authors have elucidated that unlike region growing, fast scanning algorithm do not need seed point. The result is as good as that of region growing method but the running time is much less. The overall output is less optimized then region growing method but time taken is substantially less.

Mohanaiah et al., 2013

The authors have defined Gray Level Co-Occurrence Matrix (GLCM) method for extracting four statistical texture parameters. These features are useful in motion estimation of videos and in real time pattern recognition applications like Military & Medical Applications.

Zayed & Elnemr, 2015

The authors have presented an evaluation of the Haralick texture features that can be used in order to detect and differentiate abnormalities within the lungs for cancer. While the results given by the author are promising, there is further work that can be done in detecting abnormalities.

Kourou et al., 2015

The authors have discussed about ML methods for cancer prediction and prognosis. The authors suggest that the integration of multidimensional heterogeneous data combined with the application of different techniques for feature selection and classification can provide promising tools for inference in the cancer domain.

Architecture and Design

UML Diagrams

Use Case Diagram

UML Diagrams

Sequence Diagram

Implementation

Modules Implemented

Preprocessing

Segmentation

Texture Feature Extraction

Artificial Intelligence

Database Creation

True Class

False Class

True True Class

14

False False

Class

Preprocessing

Normalization

Binarization

Gaussian Blur

Difference of Gaussian

Median Blur

K - Means

Segmentation

Unseeded Region Growing Segmentation

Watershed

Segmentation

Segmentation by threshol **Segmentation**

Texture Feature Extraction

Texture features are computed from the statistical distribution of observed combinations of intensities at specified positions relative to each other

cooccurrence Matrix (GLCM)

- Method of extracting relevant second order statistical texture features
- Statistical features such as Contrast, Correlation, Homogeneity, Energy, Entropy, Dissimilarity & Angular Second Moment are calculated over a range of distances and angles

Customized GLCM

- Based on the concept of GLCM with the advantage of discarding undesirable background values
- Considers only the foreground for Texture Feature calculation

Artificial Intelligence Methodology

Machine Learning Methodology

Туре	Model	Method		Confus	Precision	Recall	f1 score			
туре	iviodei	Metriou	True positive True negati		False positive	False negative	Precision	Recail	11 30016	
	Logistic Regression	-	869	610	88	176	0.84	0.85	0.85	
	Decision Trees	Entropy	1036 685		13	9	0.99	0.99	0.99	
Testing		Gini Index	1026	689	9	19	0.98	0.98	0.98	
	Random Forest	Entropy	1029	669	29	16	0.97	0.97	0.97	
		Gini Index	1030	660	38	15	0.97	0.97	0.97	

Legends							
Colour	Hierarchy						
Blue	Highest accuracy						
Yellow	Lowest accuracy						

Summary of Machine Learning Models

Deep Learning Methodology

Туре	Model	Number of	Number of neurons in hidden layer				Mo	Model		Confusion matrix				Precision	Recall	f1 score
Туре	Iviouei	hidden	h1	h2	h3	h4	Accuracy	Loss	Batch size	True positive	True negative	False positive	False negative	Precision	Recail	11 score
	1	1	8	-	-	-	0.844	-	-	792	545	247	0	0.88	0.84	0.84
1	2	1	6	-	-	-	0.9311	0.1502	5	766	451	72	18	0.94	0.92	0.93
1	2	1	6	-	-	-	0.9327	0.1436	12	760	459	64	24	0.94	0.92	0.93
1	3	1	128	-	-	-	0.9273	0.1386	5	746	466	57	38	0.93	0.92	0.92
1	3	1	128	-	-	-	0.9396	0.1231	12	764	464	59	20	0.94	0.93	0.94
1	4	2	128	256	-	-	0.9265	0.1352	5	763	448	75	21	0.93	0.91	0.92
Testing	4	2	128	256	-		0.9503	0.1052	12	766	476	47	18	0.95	0.95	0.95
1	5	2	256	512	-		0.9288	0.1434	5	774	440	83	10	0.94	0.91	0.92
1	5	2	256	512	-	-	0.9526	0.0984	12	761	484	39	23	0.95	0.95	0.95
1	6	3	256	512	1024	-	0.899	0.2062	5	719	456	67	65	0.89	0.89	0.89
1	6	3	256	512	1024	-	0.9434	0.1025	12	759	474	49	25	0.94	0.94	0.94
	7	4	128	512	1024	2048	0.9036	0.161	5	784	397	126	0	0.93	0.88	0.89
	7	4	128	512	1024	2048	0.9166	0.1413	12	725	473	50	59	0.91	0.91	0.91

Legends								
Colour	Hierarchy							
Blue	Highest accuracy							
Yellow	Lowest accuracy							
Green	Notable values							

Summary of Deep Learning Models (Models 2 - 7 have been implemented using Tensorflow)

Deep Learning Methodology

Туре	Model	Number of	Number of	Nur	nber of neuro	ns in hidden l	ayer	Model		Batch size	Confusion matrix				Precision	Recall	f1 score				
		hidden	dropout	h1	h2	h3	h4	Accuracy	Loss	Datch Size	True positive	True negative	False positive	False negative	riecision	Recall	11 score				
	1	1	2	6	-	ı	-	0.7324	0.5735	6	82	74	29	28	0.73	0.73	0.73				
		1		6	-	-	-	0.77	0.549	2	84	80	23	26	0.77	0.77	0.77				
	,	1	2	128	1-	-	-	0.7277	0.5329	6	86	69	34	24	0.73	0.73	0.73				
		1	2	128	-	1	-	0.6995	0.5518	2	83	66	37	27	0.7	0.7	0.7				
	3	2	2	128	256	-	-	0.7371	0.5441	6	79	78	25	31	0.74	0.74	0.74				
Testing		2	3	128	256	-	-	0.6854	0.6011	2	81	65	38	29	0.69	0.68	0.68				
resting	,	2	2	256	512	-	-	0.831	0.4123	6	84	93	10	26	0.84	0.83	0.83				
	4		3	256	512	-	12	0.8357	0.4287	2	92	86	17	18	0.84	0.84	0.84				
	_	3	2	2	2	2	4	256	512	1024	-	0.7136	0.5463	6	69	83	20	41	0.72	0.72	0.71
	3		4	256	512	1024	-	0.6948	0.584	2	90	58	45	45	0.71	0.69	0.69				
	6	4	4	-	128	512	1024	2048	0.7371	0.5466	6	90	67	36	20	0.74	0.73	0.73			
	Ö		3	128	512	1024	2048	0.7324	0.5793	2	83	73	30	27	0.73	0.73	0.73				

Legends								
Colour	Hierarchy							
Blue	Highest accuracy							
Yellow	Lowest accuracy							
Green	Notable values							

Summary of Deep Learning Models with Dropout (p = 0.5) (Models 2 - 7 have been implemented using Tensorflow)

DEMONSTRATION

Project Highlights

Automated lung cancer detection model has been developed which involves minimal human interaction

Extensive research has been conducted into unifying a single work flow, incorporating image processing, texture feature analysis and artificial intelligence

A custom module has been developed for texture feature extraction based on the Gray-Level Co-Occurrence Matrix (GLCM) texture feature extraction methodology in which only the foreground has been considered for the retrieval of statistical texture features

The prediction results of the developed model have been verified by Dr. Nilesh Haran (MBBS, MD in Radio-Oncology)

Societal and Practical Implications

Our objective is to develop a cost efficient and accurate pipeline of early detection of cancerous tumour.

We aim at incorporating texture analysis using an AI model into routine clinical workflow.

A well-trained AI model will result in an efficient and robust model. Eliminating human error and assisting the appropriate person.

Conclusion and Future Scope

We have found CT Texture Analysis (CTTA) methodology promising, which makes use of Haralick texture features to provide crucial statistical information

Although several classifiers were created, only a few of them gave us usable results thus, motivating us to explore further concepts which are robust to outliers and efficient at detecting anomalies leading us to achieve near ideal results

Devise and implement an algorithm which successfully detects the spread, diagnosis the stage and predicts the direction and rate of the cancer spread

Extend our research for detecting cancerous tumors in other organs such as breast, brain, etc

THANK YOU!