Branden Fitelson

Philosophy 12A Notes

#### Announcements & Such

- · Steel Pulse.
- Administrative Stuff
  - HW #4 resubs are still being graded. Stay tuned...
  - HW #5 resubmission is due today (follow models on handout).
  - HW #6 is posted. Final HW assignment! LMPL Proofs.
  - From now on, my office hours are: 4-6pm Tuesdays.
- Today: Chapter 6 Natural Deductions in LMPL
  - Introduction and Elimination rules for the quantifiers.
  - Sequents and Theorems (SI/TI) for the quantifiers.
  - Lots of proofs in LMPL!
- **Next**: Two-Place predicates (*i.e.*, *binary relations*) "L2PL".

CHAPTER 6 UCB Philosophy 04/22/10

Branden Fitelson Philosophy 12A Notes

## The Rule of ∃-Introduction

**Rule of**  $\exists$ **-Introduction**: For any sentence  $\phi \tau$ , if  $\phi \tau$  has been inferred at line j in a proof, then at line k we may infer  $(\exists v) \phi v$ , labeling the line j ∃I' and writing on its left the numbers that occur on the left of j.

$$a_1, \dots, a_n$$
 (j)  $\phi \tau$   

$$\vdots$$

$$a_1, \dots, a_n$$
 (k)  $(\exists v) \phi v$  j  $\exists I$ 

Where  $\lceil (\exists v) \phi v \rceil$  is obtained syntactically from  $\phi \tau$  by:

- Replacing *one or more occurrences* of  $\tau$  in  $\phi \tau$  by a *single* variable  $\nu$ .
- Note: the variable  $\nu$  must not already occur in the expression  $\phi \tau$ . [This prevents double-binding, e.g.,  $(\exists x)(\exists x)(\exists x)(Fx \& Gx)$ '.]
- And, finally, prefixing the quantifier  $(\exists v)$  in front of the resulting expression (which may now have both  $\tau$  's and  $\tau$ 's occurring in it).

Branden Fitelson Philosophy 12A Notes

#### Natural Deduction Proofs in LMPL

- The natural deduction rules for LMPL will *include* the rules for LSL that we already know (viz., Ass., &E, &I,  $\neg$ E,  $\neg$ I,  $\sim$ E,  $\sim$ I, DN,  $\vee$ E,  $\vee$ I, Df.).
- Plus, we will be *adding* 4 new rules. We will need both introduction and elimination rules for each of the two quantifiers ( $\exists I, \exists E, \forall I, \forall E$ ).
- As in LSL, the system will be sound and complete (140A!). That is,  $\vdash$  will apply to the same sequents that  $\models$  does in our semantics for LMPL.
- We begin with the simplest: the introduction rule for  $\exists$  ( $\exists$ I). Intuitively, if we have proved  $\phi \tau$  for some individual constant  $\tau$ , then we may infer that  $\phi$  is true of *something* (e.g., that  $(\exists x)\phi x$ ).
- E.g., if we've proved 'Pa & Qa', we may validly infer ' $(\exists x)(Px \& Qx)$ '.
- We may also infer ' $(\exists x)(Pa \& Qx)$ ' and ' $(\exists x)(Px \& Qa)$ ' from 'Pa & Qa'.
- These (and similar) considerations lead us to the ∃I rule ...

UCB Philosophy CHAPTER 6 04/22/10

Branden Fitelson

Philosophy 12A Notes

2

## The Rule of ∀-Elimination

**Rule of**  $\forall$ -Elimination: For any sentence  $\lceil (\forall v) \phi v \rceil$  and constant  $\tau$ , if  $(\forall v) \phi v$  has been inferred at a line j, then at line k we may infer  $\phi \tau$ , labeling the line 'j ∀E' and writing on its left the numbers that appear on the left of j.

$$a_1,...,a_n$$
 (j)  $(\forall \nu)\phi \nu$   

$$\vdots$$

$$a_1,...,a_n$$
 (k)  $\phi \tau$  j  $\forall E$ 

Where  $\phi \tau$  is obtained syntactically from  $(\forall v) \phi v^{\dagger}$  by:

- Deleting the quantifier prefix  $(\forall v)$ .
- Replacing *every occurrence* of  $\nu$  in the open sentence  $\phi\nu$  by *one and the same* constant  $\tau$ . [This prevents fallacies, e.g.,  $(\forall x)(Fx \& Gx) \not\vdash Fa \& Gb$ .]
- Note: since '∀' means *everything*, there are *no* restrictions on *which* individual constant may be used in an application of  $\forall E$ .

UCB Philosophy CHAPTER 6 04/22/10

UCB Philosophy

CHAPTER 6

04/22/10

3

Branden Fitelson Philosophy 12A Notes 5

## **An Example Proof Involving Both ∃I and ∀E**

Let's prove that  $(\forall x)(Fx \to Gx), Fa \vdash (\exists x)(\sim Gx \to Hx).$ 

| 1     | (1)  | $(\forall x)(Fx\rightarrow Gx)$      | Premise    |
|-------|------|--------------------------------------|------------|
| 2     | (2)  | Fa                                   | Premise    |
| 3     | (3)  | ~Ga                                  | Assumption |
| 4     | (4)  | ~Ha                                  | Assumption |
| 1     | (5)  | Fa→Ga                                | 1 ∀E       |
| 1,2   | (6)  | Ga                                   | 5,2 →E     |
| 1,2,3 | (7)  | Λ                                    | 3,6 ~E     |
| 1,2,3 | (8)  | ~~Ha                                 | 4,7 ~I     |
| 1,2,3 | (9)  | На                                   | 8 DN       |
| 1,2   | (10) | ~Ga→Ha                               | 3,9 →I     |
| 1,2   | (11) | $(\exists x)(\sim Gx\rightarrow Hx)$ | 10 JI      |

• This example illustrates a typical pattern in quantificational proofs: quantifiers are removed from the premises using elimination rules, sentential (*viz.*, LSL) rules are applied, and then quantifiers are reintroduced using introduction rules to obtain the conclusion.

UCB Philosophy Chapter 6 04/22/10

Philosophy 12A Notes

7

04/22/10

Branden Fitelson

UCB Philosophy

## The Rule of ∀-Introduction: II

- We can legitimately infer ' $(\forall x)Gx$ ' at line 6 of this proof, because our inference to 'Gb' is *generalizable i.e.*, we could have deduced  ${}^{r}G\tau$ , for *any* individual constant  $\tau$  using *exactly parallel* reasoning.
- However, consider the following *il*legitimate "∀-Introduction" step:

| 1   | (1) | $(\forall x)(Fx\rightarrow Gx)$ | Premise      |      |
|-----|-----|---------------------------------|--------------|------|
| 2   | (2) | Fb                              | Premise      |      |
| 1   | (3) | Fb→Gb                           | 1 <b>∀</b> E |      |
| 1,2 | (4) | Gb                              | 2,3 →E       |      |
| 1,2 | (5) | (∀x)Gx                          | 4 VI         | NO!! |

- This is *not* a valid inference, since  $(\forall x)(Fx \rightarrow Gx), Fb \not\models (\forall x)Gx!$
- So, what went wrong? The problem is that the inference to 'Gb' at (4) is *not* generalizable. We can *not* deduce " $G\tau$ " for *any*  $\tau$  from the premises ' $(\forall x)(Fx \rightarrow Gx)$ ' and 'Fb'. We can *only* infer 'Gb'.

CHAPTER 6

Branden Fitelson Philosophy 12A Notes 6

#### The Rule of ∀-Introduction: Some Background

- It is useful to think of a universal claim  $\lceil (\forall v) \phi v \rceil$  as a *conjunction* which asserts that the predicate expression  $\phi$  is satisfied by *all objects* in the domain of discourse (*i.e.*, the conjunction  $\lceil \phi a \& (\phi b \& (\phi c \& ...)) \rceil$  is true).
- So, in order to be able to *introduce* the universal quantifier (*i.e.*, to *legitimately infer*  $(\forall v)\phi v$  in a proof), we must be in a position to prove  $\phi \tau$ , for *anv* individual constant  $\tau$ . This is called *generalizable reasoning*.
- Consider the following *legitimate* introduction of a universal claim:

Problem is:  $(\forall x)(Fx \rightarrow Gx)$ ,  $(\forall x)Fx \vdash (\forall x)Gx$ 

| 1   | (1) | $(\forall x)(Fx\rightarrow Gx)$ | Premise      |
|-----|-----|---------------------------------|--------------|
| 2   | (2) | (∀x)Fx                          | Premise      |
| 1   | (3) | Fa→Ga                           | 1 ∀E         |
| 2   | (4) | Fa                              | 2 <b>∀</b> E |
| 1,2 | (5) | Ga                              | 3,4 →E       |
| 1,2 | (6) | (∀x)Gx                          | 2 AI         |

UCB Philosophy Chapter 6 04/22/10

Branden Fitelson Philosophy 12A Notes 8

## The Rule of ∀-Introduction: III

**Rule of**  $\forall$ **-Introduction**: For any sentence  $\phi\tau$ , if  $\phi\tau$  has been inferred at a line j, then *provided that*  $\tau$  *does not occur in any premise or assumption whose line number is on the left at line* j, we may infer  $\lceil(\forall v)\phi v\rceil$  at line k, labeling the line 'j  $\forall$ l' and writing on its left the same numbers as occur on the left at line j.

$$a_1,..., a_n$$
 (j)  $\phi \tau$   
 $\vdots$   
 $a_1,..., a_n$  (k)  $(\forall v)\phi v$  j  $\forall I$ 

Where  $\lceil (\forall v) \phi v \rceil$  is obtained by:

- Replacing *every* occurrence of  $\tau$  in  $\phi \tau$  with  $\nu$  and prefixing  $\lceil (\forall \nu) \rceil$ . [Again, 'every' prevents *fallacies*, *e.g.*,  $(\forall x)(Fx \to Gx) \not\vdash (\forall x)(\forall y)(Fx \to Gy)$ .]
- $\tau$  *does not occur in* any of the formulae  $a_1, \ldots, a_n$ . [ensures *generalizability*]
- $\nu$  *does not occur in*  $\phi \tau$ . [prevents *double-binding*]

UCB Philosophy Chapter 6 04/22/10

Branden Fitelson Philosophy 12A Notes 9

## The Rule of ∀-Introduction: Four Examples

- Here are four examples of LMPL sequents involving the three quantifier rules we've learned so far (∃I, ∀E, and ∀I).
- (1)  $(\forall x)(Fx \rightarrow Gx) \vdash (\forall x)Fx \rightarrow (\forall x)Gx$
- $(2) \sim (\exists x) (Fx \& Gx) \vdash (\forall x) (Fx \to \sim Gx)$
- (3)  $\sim (\forall x)Fx \vdash (\exists x) \sim Fx$
- $(4) \ (\forall x)[Fx \to (\forall y)Gy] \vdash (\forall x)(\forall y)(Fx \to Gy)$

UCB Philosophy Chapter 6 04/22/10







Branden Fitelson Philosophy 12A Notes 13

Proof of (4)

Problem is:  $(\forall x)(\mathsf{F}x \rightarrow (\forall y)\mathsf{G}y) \vdash (\forall x)(\forall y)(\mathsf{F}x \rightarrow \mathsf{G}y)$ 

(1)  $(\forall x)(Fx \rightarrow (\forall v)Gv)$ Premise 2 (2) Fa Assumption (3)  $Fa \rightarrow (\forall y)Gy$ 1 ∀E 1,2 3,2 →E (4) (∀y)Gy 1,2 (5) Gb 4 ∀E 2.5 → (6) Fa→Gb (7) (∀y)(Fa→Gy) 6 AI (8)  $(\forall x)(\forall y)(Fx \rightarrow Gy)$ 7 VI

UCB Philosophy Chapter 6 04/22/10

Branden Fitelson Philosophy 12A Notes 14

# The Rule of ∃-Elimination: Some Background

- It is useful to think of an existential claim  $\lceil (\exists v) \phi v \rceil$  as a *disjunction* which asserts that the predicate expression  $\phi$  is satisfied by *at least one* object in the domain (*i.e.*, that the disjunction  $\lceil \phi a \lor (\phi b \lor (\phi c \lor ...)) \rceil$  is true).
- In this way, we would expect the elimination rule for ∃ to be similar to the elimination rule for ∨. That is, we'd expect the ∃E rule to be similar to the ∨E rule. Indeed, this is the case. It's best to start with a simple example.
- Consider the following *legitimate* elimination of an existential claim:

Problem is:  $(\exists x)(Fx\&Gx) + (\exists x)Fx$ 

| (1) (∃x)( | Fx&Gx) Premise                  |
|-----------|---------------------------------|
| (2) Fa&G  | a Assumption                    |
| (3) Fa    | 2 &E                            |
| (4) (∃x)F | E C x                           |
| (5) (3x)F | x 1,2,4 ∃E                      |
|           | (2) Fa&G<br>(3) Fa<br>(4) (3x)F |

UCB Philosophy Chapter 6 04/22/10

Branden Fitelson Philosophy 12A Notes 15

## The Rule of ∃-Elimination: II

- To derive a sentence using the  $\exists E$  rule (with some existential sentence  $\lceil (\exists v) \phi v \rceil$ ), we must first *assume* an *instance*  $\phi \tau$  of  $\lceil (\exists v) \phi v \rceil$ .
- If we can deduce from this assumed instance  $\phi \tau$  *using generalizable reasoning* then we may infer *outright*.
- It is because our reasoning from the *instance*  $\phi \tau$  of  $\lceil (\exists v) \phi v \rceil$  to *does not depend on our choice of constant*  $\tau$  (*i.e.*, that our reasoning from  $\phi \tau$  to is *generalizable*) that makes this inference valid.
- When our reasoning is generalizable in this sense, it's as if we are showing that can be deduced from *any* instance  $\phi \tau$  of  $(\exists v) \phi v$ .
- As such, this is just like showing that can be deduced from *any disjunct* of the disjunction  ${}^{r}\phi a \vee (\phi b \vee (\phi c \vee \ldots))^{r}$ . And, this is just like  $\vee$ E reasoning (except that  $\exists$ E only requires *one* assumption).

Branden Fitelson Philosophy 12A Notes 16

## The Rule of ∃-Elimination: III

• Here's an *il*legitimate "∃-Elimination" step:

(1)  $(\exists x)Fx$ Premise (2) Ga Premise (3) Fa Assumption 2,3 (4) Fa&Ga 2,3 &1 2,3  $(\exists x)(Fx\&Gx)$ 4 3I  $(\exists x)(Fx\&Gx)$ 1,3,5 3E NOII

- This is *not* a valid inference:  $(\exists x)Fx$ ,  $Ga \not\models (\exists x)(Fx \& Gx)!$
- So, what went wrong here? The problem is that the inference to  $(\exists x)(Fx \& Gx)$  at line (5) does *not* use *generalizable* reasoning.
- We can *not* legitimately infer ' $(\exists x)(Fx \& Gx)$ ' at line (5) from an *arbitrary instance*  $\ulcorner F\tau \urcorner$  of ' $(\exists x)Fx$ '. We *must* assume 'Fa' in *particular* at line (3) in order to deduce ' $(\exists x)(Fx \& Gx)$ ' at line (5).

UCB Philosophy Chapter 6 04/22/10

UCB Philosophy Chapter 6 04/22/10

Branden Fitelson Philosophy 12A Notes 17

#### The Rule of ∃-Elimination: Official Definition

 $\exists$ -Elimination: If  $\lceil (\exists v) \phi v \rceil$  occurs at i depending on  $a_1, \ldots, a_n$ , an instance  $\phi \tau$  of  $\lceil (\exists v) \phi v \rceil$  is *assumed* at j, and is inferred at k depending on  $b_1, \ldots, b_u$ , then at line m we may infer , with label 'i, j, k  $\exists$ E' and dependencies  $\{a_1, \ldots, a_n\} \cup \{b_1, \ldots, b_u\}/j$ :

Provided that *all four* of the following conditions are met:

- $\tau$  (in  $\phi \tau$ ) replaces *every* occurrence of  $\nu$  in  $\phi \nu$ . [avoids fallacies]
- $\tau$  *does not occur in*  $(\exists v) \phi v$ . [generalizability]
- $\tau$  *does not occur in* . [generalizability]
- $\tau$  does not occur in any of  $b_1, \ldots, b_u$ , except (possibly)  $\phi \tau$  itself. [generalizability]

UCB Philosophy Chapter 6 04/22/10

Branden Fitelson Philosophy 12A Notes 18

# The Rule of ∃-Elimination: Nine Examples

• Here are 9 examples of proofs involving all four quantifier rules.

1.  $(\exists x) \sim Fx \vdash \sim (\forall x)Fx$  [p. 200, example 5]

2.  $(\exists x)(Fx \to A) \vdash (\forall x)Fx \to A$  [p. 201, example 6]

3.  $(\forall x)(\forall y)(Gy \rightarrow Fx) \vdash (\forall x)[(\exists y)Gy \rightarrow Fx]$  [p. 203, I. # 19 \(\Rightarrow\)]

4.  $(\exists x)[Fx \rightarrow (\forall y)Gy] \vdash (\exists x)(\forall y)(Fx \rightarrow Gy)$  [p. 203, I. # 20  $\Leftarrow$ ]

5.  $A \vee (\exists x)Fx \vdash (\exists x)(A \vee Fx)$  [p. 203, II. # 2  $\Leftarrow$ ]

6.  $(\exists x)(Fx \& \sim Fx) \vdash (\forall x)(Gx \& \sim Gx)$  [p. 203, I. # 12  $\Rightarrow$ ]

7.  $(\forall x)[Fx \rightarrow (\forall y) \sim Fy] \vdash \sim (\exists x)Fx$  [p. 203, I. # 5]

8.  $(\forall x)(\exists y)(Fx \& Gy) \vdash (\exists y)(\forall x)(Fx \& Gy)$  [p. 201, example 7]

9.  $(\exists y)(\forall x)(Fx \& Gy) \vdash (\forall x)(\exists y)(Fx \& Gy)$  [other direction]

UCB Philosophy Chapter 6 04/22/10

Philosophy 12A Notes

20

Branden Fitelson

Branden Fitelson Philosophy 12A Notes 19

# Proof of (1)

Problem is:  $(\exists x) \sim Fx \vdash \sim (\forall x)Fx$ 

 $(1) (\exists x) \sim Fx$ Premise  $(2) (\forall x)Fx$ Assumption 3 (3) ~Fa Assumption 2 2 **YE** (4) Fa (5) A 3.4 ~E (6) A 1.3.5 JE  $(7) \sim (\forall x) Fx$ 2,6 ~1

UCB Philosophy Chapter 6 04/22/10

Proof of (2) Problem is:  $(\exists x)(Fx \rightarrow A) \vdash (\forall x)Fx \rightarrow A$ Premise  $(1) (\exists x)(Fx \rightarrow A)$ 2 (∀x)Fx Assumption 3 (3) Fa→A Assumption 2 (4) Fa 2 AE 3.4 →E (5) A (6) A 1.3.5 3E  $(7) (\forall x)Fx \rightarrow A$ 2,6 → UCB Philosophy CHAPTER 6 04/22/10













