PROJECTE D'EINES DE DISSENY: DISSENY D'UN MALETER

JORDI COMAS RODRÍGUEZ I ELENA SANS GUÀRDIA

OBJECTIUS:

- Els objectius del nostre projecte és dissenyar e implementar un sistema digital que controli i accioni integrament el funcionament d'una porta d'un maleter.
- Aquesta porta té les següents funcions:
- Obrir-se de forma automàtica amb l'ajuda d'un sensor de proximitat o amb els botons corresponents.
 - Accionar la calefacció dels vidres del darrera.

FUNCIONALITAT:

- Fent un estudi general del problema ja es pot determinar més o menys què necessitarem per implementar-ho
 - Inputs: 2 botons i un sensor del peu (accionar calefacció o maleter)
 - Outputs: Motor Maleter, Resistència Calefactable
- Sistema de control: Micro Controlador (necessitem quelcom que controli el sistema)
- Parts de control de potència i protecció (regular sistemes d'alimentació segons el component i sistemes de protecció en els outputs i el micro)

DIAGRAMA:

- Línies vermelles:Potència
- Línies Negres:Digitals
- Línies Blaves: busi2c (5V o 3.3V)
- Línea Lila: busCAN

COMPONENTS:

COMPONENTS	NOM	CONSUM	FUNCIONALITAT
Motor	HG37-200-AA-00	V = 12V I = 1A	Motor que puja i baixa maleter
Shunt	Vishay-WSR-2-0.1	$R = 0.1\Omega$	Resistència per detectar variació de la corrent del motor
Buffer	<u>LM358</u>	Vin = [3-32]V	Connexionat paral.lel shunt, avisa micro de la pujada de corrent
DC/DC Buck converter	<u>R-786.5-0.5</u>	Vout = 6.5 V, lout=0,5A	Ajuda a baixar tensió per a que el regulador no es mengi tanta caiguda
Regulador 1	<u>LM7805</u>	Vout =5 $V Imax=1,5A$	Reguls de 6.5V a 5V.
Micro Controlador	PIC18F448	V = 5V I = [100-200]mA	Controlar sistema
Transceiver	MCP2551		Converteix les dades del micro en un bus CAN
Sensor Peu	HC-SR04	V = 5V $I = 15mA$	Detecta el peu per sota del maleter per accionar el motor

COMPONENTS:

COMPONENTS	NOM	CONSUM	FUNCIONALITAT
Regulador 2	AMS1117-3.3	Vin = [4.3-12]V	El sensor hall treballa a 3.3V i necessitem un altre regulador
Adaptador de nivell bidireccional	TXB0108	loutmàx = 30mA	Passa de un bus de dades i2c generat amb 5V a un amb 3.3V totalment equivalent i al revés.
Sensor Hall	MMC5883MA	V = 3.3V I = 4.7mA	Detecta final de carrera del motor del maleter
Resistència Calefactable	PTC 12V-50W	V = 12V P = 50W	Resistència per la calefacció del vidre del darrere
Mosfet	IRLZ34N		Components principals del pont H
Relé	MCP2551-I-P		Controla i permet el pas a la resistència calefactable

ESQUEMÀTIC COMPLET

ETAPA CONVERSORA:

És l'etapa que regula l'entrada d'alimentació del micro

PROGRAMACIÓ DEL XIP

BUS CAN

Transceiver del bus can i connector de sortida

MOTOR: PONT H I SHUNT

RELÉ I CALEFACCIÓ

SENSOR HALL

Sensor necessari per detectar el final de carrera

VV+VV+

Port C per al programador

definir IN-OUT i les condicion

SORTIDA SENSOR PROXIMITAT I BUS USART

