Decision Vension of a problem. Eg: Given a graph G= (V, E), S, t are two nodes in V, and integer k. Is there exists a path from 5 to t of length < k? Deptimization version of the same Problem. Find shortest path from 5 to t for given graph 6 = (V,E) Decision version of Problem P Two Answer > Yes ? Instance Algo for > Yes [Yes Instance / NO instance of Problem P] D15 the given list sorted?

Does there exist HC? L CNP We know PCNP [NPC] -> open Problem
"10 Million \$\$" XENP + YENP is NP-hard

Reduction $1/1 \leq_P 1/2$ We can solve 1/2 in polytime using a polytime algogithm for 172. There exists polytime algorithm A that converts every instance of X of TI to A(A) of TI2 S-t At les-Instance iff A(x) E Yes-Instance NP-hard = Every problem in NP oreduces TENP & TENP hard)-) TI-NP Complete TTEP

TO ENP-Complete => NP = P But WC don't know at this moment any problem satisfying) both properties together

77 is NP-Complete 1) 77 15 NP 2) The for all TENT Cemmal if T, <p T2 and T12 - Po then 1/3 EP It is NP-complete and IT Lemmaz. 16 TT is NP-complete and TIEP Cemma 3 then no NP-complete problem First NP-Complete problem Cook - Levin "CATENPO" Take any TIENP

To prove Y E NP- Complete () YENP) Choose an NP-Complete ProblemX ~ ~ X Epy 7 /s in NP-Complete ES XENPC and XENP, XEPY then 7 Take any WENP

WEPX (-, X is MPC) X 4 p X (8ircn) W Epy (by transitivity) Hence Y ENP-E

SATENPL SAT: Given a CNF Øg does it have a Satisfying truth assignment? CNF: Conjuction of clauses (1162163-Clanses: disjunction of literals G=(X; V 75 VND) literal boolean variable Ni ex Li 1972 (Richard Kamp) proved 21 problems & NAC, using above result 3-5AT: SAT where each clause contains exactly 3 literals. (and each literal corresponds to different variable) \mathcal{E}_{3} : $\emptyset = (\overline{\chi}, V \chi_{2} V \chi_{3}) \Lambda (\chi_{1} V \chi_{2} V \chi_{3})$ Λ $(\overline{\chi}, V\chi_2 V\chi_4)$ (Ø = Yes Instance X, = True X2 = True X3 = False LXy - Folse

35ATENPC 35 AT ENP [35ATENP-hard] Reduce from Some Known problem ENK Thus SAT < 3 SAT SAT - (x, vx, --- vx) e > 4 ((X, V x2 V y) \ (\frac{7}{9} V x3 V y2) \ 3-547) (72 V 24 V 23) 1 === = (ge-z V ne-, V ne) Converted to in polynomial time Satisfiable iff sa tistiable.

=> Ø is satisfiable is satisfiable. Each clause in Ø W. L. O. 6 C= (2, VX2 VN3 V N4 VX5 N N6 VN7) (2, v) = (2, v) + (3, v) + (3, v) $\Lambda(\overline{9}, v_{3}, v_{4}, v_{3}) \Lambda(\overline{9}, v_{2}, v_{3})$ 1 (gg vy v v) True 1 Set 43 = 7 42 = 7 (=) it solistiable then of is satisfiable H. L. Explaination on board

Independent SeHISENTC Docs 6 has Is of Size 7 K 7. IS ENP ISENP-Lard ?? 35AT With K Clows 6 $(\overline{\chi}_1 \vee \chi_2 \vee \chi_3) \wedge (\chi_1 \vee \overline{\chi}_2 \vee \chi_3) \wedge$

Lemma Dis satistiable iff Is of SìZC K. => take any satisfying as signment of -> Select one true literal
from each clause (triagle) Independencel- of size & The (E) let 56 independent set of size Esch D. exactly

exac set all those Giteral's to lone. All Clauses in D Satisfied.

[IS to Clique]																							
Is: Given 6 and K																							
	(n 9 ,	K)							7	>(ے کی	9	KÌ)								
												ر لـ,						a +	- /	<u></u>			
												0									l		
		K				,	,								1	0	_						