

NumProg WS 20/21: Tutorübung 09

- 1. Differentialgleichungen, Anfangswertproblem & Separation der Variablen
- 2. Einschrittverfahren
 - i. Explizites Euler-Verfahren
 - ii. Heun-Verfahren
 - iii. Runge-Kutta-Verfahren
- 3. Implizites Euler-Verfahren (Rückwärts-Euler)

Differentialgleichungen

Wir betrachten erstmal nur "gewöhnliche" Differentialgleichungen, auch genannt **ODEs** ("ordinary differential equation").

Diese beschreiben eine Funktion durch ihre Ableitung:

$$y'(t) = \varphi(y, t)$$

Die Lösung eines solchen Systems ist am Ende die Funktion y(t).

Differentialgleichungen

Wir betrachten erstmal nur "gewöhnliche" Differentialgleichungen, auch genannt **ODEs** ("ordinary differential equation").

Diese beschreiben eine Funktion durch ihre Ableitung:

$$y'(t) = \varphi(y, t)$$

Die Lösung eines solchen Systems ist am Ende die Funktion y(t).

→ Wie löst man nun ODEs?

Separation der Variablen

Schritt

Beispiel: y'(t) = y(t)

- 1. System in Leibniz-Notation umschreiben
- 2. Separieren
- 3. Integrieren
- 4. Integrale lösen
- 5. Nach *y* auflösen

	Schritt	Beispiel: $y'(t) = y(t)$
1.	System in Leibniz-Notation umschreiben	$\frac{dy}{dt} = y$

- 2. Separieren
- 3. Integrieren
- 4. Integrale lösen
- 5. Nach y auflösen

	Schritt	Beispiel: $y'(t) = y(t)$
1.	System in Leibniz-Notation umschreiben	$\frac{dy}{dt} = y$
2.	Separieren	$\frac{dy}{y} = dt$

- 3. Integrieren
- 4. Integrale lösen
- 5. Nach y auflösen

	Schritt	Beispiel: $y'(t) = y(t)$
1.	System in Leibniz-Notation umschreiben	$\frac{dy}{dt} = y$
2.	Separieren	$\frac{dy}{y} = dt$
3.	Integrieren	$\int_{y_0}^{y} \frac{1}{\eta} d\eta = \int_{t_0}^{t} d\tau$

- 4. Integrale lösen
- 5. Nach y auflösen

Separation der Variablen

Sc	L		:	4	1
->1	n	r	ı	T	Т
				L	L

- 1. System in Leibniz-Notation umschreiben
- 2. Separieren
- 3. Integrieren
- 4. Integrale lösen
- 5. Nach *y* auflösen

Beispiel: y'(t) = y(t)

$$\frac{dy}{dt} = y$$

$$\frac{dy}{y} = dt$$

$$\int_{y_0}^{y} \frac{1}{\eta} d\eta = \int_{t_0}^{t} d\tau$$

$$\ln\left|\frac{y}{y_0}\right| = t - t_0$$

Sc	h	ri	++
J.			L.L

- 1. System in Leibniz-Notation umschreiben
- 2. Separieren
- 3. Integrieren
- 4. Integrale lösen
- 5. Nach y auflösen
- $\rightarrow t_0 := \text{(meistens) Startzeitpunkt}$
 - $y_0 :=$ Startwert der Funktion im Zeitpunkt t_0

Beispiel:
$$y'(t) = y(t)$$

$$\frac{dy}{dt} = y$$

$$\frac{dy}{y} = dt$$

$$\int_{y_0}^{y} \frac{1}{\eta} d\eta = \int_{t_0}^{t} d\tau$$

$$\ln \left| \frac{y}{y_0} \right| = t - t_0$$

$$y = \pm y_0 \cdot e^{t - t_0}$$

Explizierte Einschrittverfahren

Mithilfe von (expliziten) **Einschrittverfahren** können wir ODEs **schrittweise annähern**. Dabei stellt δt die Schrittweite in der Zeit t dar. Durch ein **graphisches Verständnis** sehen wir, warum die Ableitungen so wichtig sind:

Explizierte Einschrittverfahren

Mithilfe von (expliziten) Einschrittverfahren können wir ODEs schrittweise annähern.

Dabei stellt δt die Schrittweite in der Zeit t dar. Durch ein **graphisches Verständnis** sehen wir, warum die Ableitungen so wichtig sind:

Wir können durch ein ODE ohne Probleme an jedem Punkt die Ableitung berechnen und sie in ein sogenanntes **Richtungsfeld** (siehe links) eintragen.

Dadurch entsteht eine Art "Strom", der auf die Stammfunktion schließen lässt.

Beispielfunkion für dieses Richtungsfeld: $y'(t) = t^2 + y(t)$

Expliziertes Euler-Verfahren

1. Ordnung

Hier wird die Steigung im aktuellen Punkt t_k benutzt, um die nächste Annäherung y_{k+1} zu berechnen.

$$t_k = t_0 + k \cdot \delta t$$
$$y_{k+1} = y_k + \delta t \cdot f(t_k, y_k)$$

Wobei $f(t_k, y_k)$ die Ableitung am Punkt t_k mit Hilfe von y_k beschreibt.

Verfahren von Heun

2. Ordnung

Erinnert ihr euch noch an die Trapenzregel bei der Quadratur?

Hier machen wir etwas Ähnliches: Wir nehmen uns noch eine weitere Steigung zu unserer aktuellen dazu und berechnen daraus den Mittelwert.

$$t_k = t_0 + k \cdot \delta t$$

$$y_{k+1} = y_k + \frac{\delta t}{2} \cdot \left(f(t_k, y_k) + f(t_{k+1}, y_k + \delta t \cdot f(t_k, y_k)) \right)$$

Wobei $f(t_k, y_k)$ die Ableitung am Punkt t_k mit Hilfe von y_k beschreibt.

Klassisches Runge-Kutta-Verfahren

4. Ordnung

Ähnlich wie damals von Trapez zu Simpsonregel: Wir benutzen weitere Steigungen als Stützpunkte, um eine bessere Annäherung zu erhalten.

$$t_{k} = t_{0} + k \cdot \delta t$$

$$y_{k+1} = y_{k} + \frac{\delta t}{6} \cdot (T_{1} + 2T_{2} + 2T_{3} + T_{4})$$

$$T_{1} = f(t_{k}, y_{k})$$

$$T_{2} = f\left(t_{k} + \frac{\delta t}{2}, y_{k} + \frac{\delta t}{2}T_{1}\right)$$

$$T_{3} = f\left(t_{k} + \frac{\delta t}{2}, y_{k} + \frac{\delta t}{2}T_{2}\right)$$

$$T_{4} = f(t_{k+1}, y_{k} + \delta tT_{3})$$

Wobei $f(t_k, y_k)$ die Ableitung am Punkt t_k mit Hilfe von y_k beschreibt.

Implizites Euler-Verfahren

1. Ordnung

Hier benutzen wir die Steigung im nächsten Schritt, um die aktuelle Iteration zu berechnen (deswegen auch Rückwärts-Euler)

$$t_k = t_0 + k \cdot \delta t$$
$$y_{k+1} = y_k + \delta t \cdot f(t_{k+1}, y_{k+1})$$

Das können wir umstellen, um daraus ein Nullstellenproblem zu machen:

$$0 = \delta t \cdot f(t_{k+1}, y_{k+1}) - y_{k+1} + y_k$$

Dann muss nur noch nach y_{k+1} mit Hilfe von z.B. pq-Formel aufgelöst werden.