FCC Part 15 TEST REPORT

For

Bluetooth Speakerphone

Model Name: KBT-520, KBT-521, KBT-530, KBT-531, KBT-540, KBT-550, KBT-551, KBT-560, KBT-561, KBT-580, KBT-581

Brand Name: Komkia

FCC ID: WQ9KBT-520

Report No.: GZAGC306080945E6

Date of Issue: Sep.24, 2008

Prepared For

Shenzhen Komkia Technology Co., Ltd.

3/F, Building 5, Haosan Linpokeng Industrial Park, Shajing Town,

Baoan District, Shenzhen City, China

Tel: 86-755-33806316

Fax: 86-755-33806315

Prepared By

Shenzhen Attestation of Global Compliance Science & Technology Co., Ltd.

2F, No.2 Building, ChaXi SanWei Industrial Zone, GuShu Community,

XiXiang Street, Bao'An, ShenZhen, China

Tel: 86-755-2974 2358

Fax: 86-755-2600 8484

VERIFICATION OF COMPLIANCE

Applicant:	Shenzhen Komkia Technology Co., Ltd. 3/F, Building 5, Haosan Linpokeng Industrial Park, Shajing Town, Baoan Dis Shenzhen City, China					
Shenzhen Komkia Technology Co., Ltd. Manufacturer Shenzhen Komkia Technology Co., Ltd. 3/F, Building 5, Haosan Linpokeng Industrial Park, Shajing Town, Ba Shenzhen City, China						
Product Description:	Bluetooth Speakerphone					
Brand Name:	Komkia					
Model Number:	KBT-520, KBT-521, KBT-530, KBT-531, KBT-540, KBT-550, KBT-551, KBT-560, KBT-561, KBT-580, KBT-581					
Model Difference:	All the same except exterior appearance					
FCC ID	WQ9KBT-520					
Report Number:	GZAGC306080945E6					
Date of Test:	Sep.18, 2008-Sep.23, 2008					

WE HEREBY CERTIFY THAT:

The above equipment was tested by **Shenzhen Attestation of Global Compliance Science & Technology Co., Ltd.** The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Tested By:

Tony Tian Sep.24, 2008

Checked By:

Randy He

Sep.24, 2008

Authorized By

King Zhang Sep.24, 2008

TABLE OF CONTENTS

1. GEN	NERAL INFORMATION	4
1.1	PRODUCT DESCRIPTION	4
1.2	RELATED SUBMITTAL(S) / GRANT (S)	4
1.3	TEST METHODOLOGY	4
1.4	TEST FACILITY	
1.5	SPECIAL ACCESSORIES	
1.6	EQUIPMENT MODIFICATIONS	4
2. SYS	STEM TEST CONFIGURATION	5
2.1	CONFIGURATION OF TESTED SYSTEM	5
2.2	EQUIPMENT USED IN TESTED SYSTEM	5
3. SUN	MMARY OF TEST RESULTS	6
4. DES	SCRIPTION OF TEST MODES	6
5. CON	NDUCTION EMISSIONS	7
5.1	MEASUREMENT PROCEDURE:	7
5.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	7
5.3	MEASUREMENT EQUIPMENT USED:	7
5.4	LIMITS AND MEASUREMENT RESULT:	8
6. MAX	XIMUM OUTPUT POWER	9
6.1	MEASUREMENT PROCEDURE:	9
6.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	9
6.3	MEASUREMENT EQUIPMENT USED:	.11
6.4	LIMITS AND MEASUREMENT RESULT:	
7. 20 C	DB BANDWIDTH	.14
7.1	MEASUREMENT PROCEDURE	.14
7.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	.14
7.3	MEASUREMENT EQUIPMENT USED:	
7.4	LIMITS AND MEASUREMENT RESULTS:	.14
8. MAX	XIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	.16
8.1	MEASUREMENT PROCEDURE:	.16
8.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	.16
8.3	MEASUREMENT EQUIPMENT USED:	
8.4	LIMITS AND MEASUREMENT RESULT:	.16
9. OUT	Γ OF BAND EMISSION	.19
9.1	MEASUREMENT PROCEDURE:	
9.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	.19
93	MEASUREMENT FOUIPMENT USED:	19

9.4	LIMITS AND MEASUREMENT RESULT:	19
10. NU	MBER OF HOPPING FREQUENCY	26
10.1	MEASUREMENT PROCEDURE	26
10.2	TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	26
10.3	MEASUREMENT EQUIPMENT USED	26
10.4	LIMITS AND MEASUREMENT RESULT:	26
11. TIM	IE OF OCCUPANCY (DWELL TIME)	29
11.1	MEASUREMENT PROCEDURE	29
11.2	TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	29
11.3	MEASUREMENT EQUIPMENT USED	29
11.4	LIMITS AND MEASUREMENT RESULT	29
12. FRI	EQUENCY SEPARATION	32
12.1	MEASUREMENT PROCEDURE	32
12.2	TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	32
12.3	MEASUREMENT EQUIPMENT USED	32
12.4	LIMITS AND MEASUREMENT RESULT	32
APPEN	NDIX 1	33
PHOTO	OGRAPHS OF SET UP	33
APPEN	NDIX 2	35
PHOTO	OGRAPHS OF EUT	35

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a short range, lower power; **Bluetooth Speakerphone** designed as an "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following:

Operation Frequency	2.402 GHz to 2.480 GHz
Rated Output Power	-1.11 dBm
Modulation	FHSS
Number of channels	79
Antenna Designation	Integrated Antenna with Maximum 2 dBi
Power Supply	DC 3.7V Power by Battery

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: **WQ9KBT-520** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

1.3 TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2003). Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4 TEST FACILITY

All measurement facilities used to collect the measurement data are located at World Standardization Certification & Testing Co., Ltd. 1-2/F, Dachong Keji Building, No.28 of Tonggu Road, Nanshan District, Shenzhen, China

FCC Registration Number: 989301

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2. SYSTEM TEST CONFIGURATION

2.1 CONFIGURATION OF TESTED SYSTEM

2.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.
1	Bluetooth Speakerphone	Bluedio	KBT-520	WQ9KBT-520	
2					
3					

3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.207	Conduction Emission	N/A
§15.209	Radiated Emission	Compliant
§15.247	Maximum Output Power	Compliant
§15.247	20 dB Bandwidth	Compliant
§15.247	Band Edges	Compliant
§15.247	Spurious Emission	Compliant
§15.247	Frequency Separation	Compliant
§15.247	Number of Hopping Frequency	Compliant
§15.247	Time of Occupancy	Compliant
§15.247	Peak Power Density	Compliant

4. DESCRIPTION OF TEST MODES

- 1. The EUT has been set to operate continuously on the lowest, the middle and the highest operation frequency individually.
- 2. The EUT stays in continuous transmitting mode on the operation frequency being set.
- 3. The EUT is tested in charging mode.

5. CONDUCTION EMISSIONS

5.1 MEASUREMENT PROCEDURE:

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

5.3 MEASUREMENT EQUIPMENT USED:

CONDUCTED EMISSION TEST SITE							
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.		
EMI TEST RECEIVER	HP	8546A/8546 0A	3625A00349 3448A00325	2007/10	2009/08		
LISN	AFJ	LS16	16010222119	2007/04	2009/04		

F 4	LIBAITO	AND	B 4 E A		AFAIT	DECLUIT.
ວ.4	LIMITS	AND	IVI E A	SUKE	NENI	RESULT:

N/A

6. MAXIMUM OUTPUT POWER

MEASUREMENT PROCEDURE:

CONDUCTED METHOD

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Set SPA Centre Frequency = Operation Frequency, RBW= 1 MHz, VBW= 1 MHz.
- 5. Set SPA Trace 1 Max hold, then View.

RADIATED METHOD According to ANSI C63.4:2003

TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

CONDUCTED METHOD

RADIATED METHOD RADIATED MISSION TEST SETUP BELOW 1000MHz

RADIATED EMISSION TEST SETUP UP ABOVE 1000MHz

MEASUREMENT EQUIPMENT USED:

3M ANECHOIC CHAMBER RADIATION TEST SITE								
EQUIPMENT TYPE	LAST CAL.	CAL DUE.						
EMI Test Receiver	R&S	ESCS30	100343	04/16/2008	04/15/2009			
AMPLIFIER	HP	HP8447E	2945A02715	04/16/2008	04/15/2009			
ANTENNA	Sunol Sciences Corp.	JB3	A021907	04/16/2008	04/15/2009			
ANTENNA	Sunol Sciences Corp.	JB3	A021907	04/16/2008	04/15/2009			
Spectrum Analyzer	Agilent	E4440A	US41421290	04/16/2008	04/15/2009			

LIMITS AND MEASUREMENT RESULT:

LIMITS AND MEASUREMENT RESULT								
Applicable			Measurement Res	sult				
Limits	Frequency	EIRP (dBm)	Conducted (dBm)	Criteria				
30 dBm	2.402GHz	-3.07	-1.11	PASS				
30 dBm	2.441GHz	-3.57	-1.91	PASS				
30 dBm	2.480GHz	-4.13	-2.16	PASS				

TEST PLOT OF BOTTOM CHANNEL

TEST PLOT OF MIDDLE CHANNEL

TEST PLOT OF TOP CHANNEL

7. 20 DB BANDWIDTH

MEASUREMENT PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW= 100 KHz.
- 4. Set SPA Trace 1 Max hold, then View.

TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The Same as described in Section 6.2

MEASUREMENT EQUIPMENT USED:

The same as described in Section 6.3

LIMITS AND MEASUREMENT RESULTS:

LIMITS AND MEASUREMENT RESULT						
Applicable Limits		Measurement Result				
Applicable Limits	Test Da	Criteria				
	Bottom Channel	1.014	PASS			
	Middle Channel	1.014	PASS			
	Top Channel	0.998	PASS			

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR TOP CHANNEL

8. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

MEASUREMENT PROCEDURE:

- (1). The EUT was placed on a turn table which is 0.8m above ground plane.
- (2). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (3), Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (4). Set SPA Centre Frequency = Operation Frequency, RBW= 3 KHz, VBW= 10 KHz., Sweep time= Auto
- (5). Set SPA Trace 1 Max hold, then View.

TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

MEASUREMENT EQUIPMENT USED:

SHIELDING ROOM							
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.		
Spectrum Analyzer	Agilent	E4440A	US41421290	04/16/2007	04/15/2009		

LIMITS AND MEASUREMENT RESULT:

LIMITS AND MEASUREMENT RESULT				
Applicable Limite		Measurement Result		
Applicable Limits	Test Data (d	Test Data (dBm/3KHz)		
	Bottom Channel	-12.42	PASS	
8 dBm / 3KHz	Middle Channel	-12.88	PASS	
	Top Channel	-13.82	PASS	

Report No.:GZAGC306080945E6 Page 16 of 37

TEST PLOT OF SPECTRAL DENSITY - BOTTOM CHANNEL

TEST PLOT OF SPECTRAL DENSITY - MIDDLE CHANNEL

TEST PLOT OF SPECTRAL DENSITY - TOP CHANNEL

9. OUT OF BAND EMISSION

MEASUREMENT PROCEDURE:

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW= 100 KHz.
- 4. Set SPA Trace 1 Max hold, then View.

TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The Same as described in section 6.2

MEASUREMENT EQUIPMENT USED:

The Same as described in section 6.3

LIMITS AND MEASUREMENT RESULT:

LIMITS AND MEASUREMENT RESULT			
Applicable Limits	Measurement Result		
Applicable Littles	Test Data	Criteria	
In any 100 KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS	
100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit	PASS	

Report No.:GZAGC306080945E6

TEST PLOT OF BAND ELDG FOR BOTTOM CHANNEL

TEST PLOT OF BAND ELDG FOR TOP CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS FOR BOTTOM CHANNEL - 1

TEST PLOT OF OUT OF BAND EMISSIONS FOR BOTTOM CHANNEL - 2

TEST PLOT OF OUT OF BAND EMISSIONS FOR MIDDLE CHANNEL - 1

TEST PLOT OF OUT OF BAND EMISSIONS FOR MIDDLE CHANNEL - 2

TEST PLOT OF OUT OF BAND EMISSIONS FOR TOP CHANNEL - 1

TEST PLOT OF OUT OF BAND EMISSIONS FOR TOP CHANNEL - 2

RADIATED EMISSION TEST RESULT:

Emission	Emission for Bottom/Middle/Top Channel Below 1GHz Charging mode & Transmitting					
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Memo
MHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	MEITIO
	H/V					*
	H/V					*
	H/V					*
	H/V					*

	Band Edge Emission for Bottom Channel					
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Memo
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	IVIEITIO
2.386	Н	42.19	38.28	74	54	*
2.400	Н	53.39	48.89	74	54	*
2.386	V	47.09	36.02	74	54	*
2.400	V	53.36	47.47	74	54	*

	Band Edge Emission for Top Channel					
		Band Edge E	mission for Top	Channel		
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Memo
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	MEITIO
2.483	Н	51.87	47.76	74	54	*
2.484	Н	50.27	45.53	74	54	*
2.496	Н	47.67	39.09	74	54	*
2.483	V	50.36	44.61	74	54	*
2.484	V	49.82	43.17	74	54	*
2.496	V	42.28	34.29	74	54	*

	Restricted Band Emission for Bottom Channel					
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Memo
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	IVIEITIO
4.81	Н	56.13	44.18	74	54	*
4.81	V	55.22	43.24	74	54	*
Above	Н			74	54	*
4.81 GHz	V			74	54	*

	Restricted Band Emission for Middle Channel					
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Memo
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	Memo
4.88	Н	52.16	42.03	74	54	*
4.88	V	53.37	41.16	74	54	*
Above	Н			74	54	*
4.88 GHz	V			74	54	*

	Restricted Band Emission for Top Channel					
Frequency	Antenna Pol.	Field Strength	Field Strength	Limit (PK)	Limit (AV)	Memo
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	Memo
4.95	Н	55.49	43.69	74	54	*
4.95	V	53.27	41.66	74	54	*
Above	Н			74	54	*
4.95GHz	V			74	54	*

Note: "--" Indicated the test value is much lower to limit.

10. NUMBER OF HOPPING FREQUENCY

MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer Start = 2.4GHz Stop = 2.4835GHz, Sweep = Auto
- 4. Set the Spectrum Analyzer as RBW = VBW = 330 KHz

TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

MEASUREMENT EQUIPMENT USED

The Same as described in section 6.3

LIMITS AND MEASUREMENT RESULT:

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS-2

TEST PLOT FOR NO. OF TOTAL CHANNELS-3

TEST PLOT FOR NO. OF TOTAL CHANNELS-4

11. TIME OF OCCUPANCY (DWELL TIME)

MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- 3. Set center frequency of spectrum analyzer = Operating frequency
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0 Hz,

TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

LIMITS AND MEASUREMENT RESULT

The dwell time = Time Slot Length * Hop Rate / Number of Hopping Channels * 0.4 * 79

L-CH:

DH1 Time Slot = 0.377 (ms) * (1600/(2*79))*31.6 = 120.6 (ms)

M-CH:

DH1 Time Slot = 0.388 (ms) * (1600/(2*79))*31.6 = 124.2 (ms)

H-CH:

DH1 Time Slot = 0.377 (ms) * (1600/(2*79))*31.6 = 120.6 (ms)

DWELL TIME TEST PLOT OF BOTTOM CHANNEL

DWELL TIME TEST PLOT OF MIDDLE CHANNEL

DWELL TIME TEST PLOT OF TOP CHANNEL

12. FREQUENCY SEPARATION MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- 3. Set center frequency of spectrum analyzer = Middle of Operating frequency
- 4. Set the spectrum analyzer as RBW, VBW=330KHz, Span = 6 MHz,

TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

LIMITS AND MEASUREMENT RESULT

CHANNEL SEPARATION	LIMIT	RESULT
KHz	KHz	Pass
1000	>=25 KHz or 2/3 20 dB BW	F d 5 5

TEST PLOT FOR FREQUENCY SEPARATION

APPENDIX 1

PHOTOGRAPHS OF SETUP

APPENDIX 2

PHOTOGRAPHS OF EUT

BOTTOM VIEW OF EUT

INTERNAL VIEW OF SAMPLE – 1

INTERNAL VIEW OF SAMPLE – 2

----END OF REPORT----