Tutorium: Mo. 08.00-09.30h, M301, Florian Wen Paul Hohersk	eΝ
1. Mengen und Zahlen	
11 Elementare Mengenlehre	
- Mongen begriff	
Det: Eine Menge ist eine Busammen fasson, von unter schedlichen Objebten (Elamente) zu eines Einheit) -
(G. Cantor 1895)	
$A = \{a_1, a_2, a_3\}, a_1 \in A, b \notin A$	
-> Bescheiburg von A durch	
- Auflichen des Elemente A = {1,2,3}	
- Aussaye form A = 2 x: x 187 natriolèche Eahl und x < 4 ?	
Weiter Begriffe	
- leere neuge {}, \$ enthalt leno Elemente	
- Teilmenge ACB: XEA => XEB	LB.
- nomplement Sei BCA Venn-Diaffamon	
$\overline{B} := \{ x \in A : x \notin B \}$	

-Potenzmenje:	P(A):	Mange	allos Te	ilmengen von	A
- goidheit:	A = B			=> xeb (
lux t:	XEA <=>				
Mengenopesation	en			(B)	
Def: Seien A	und B	Mengen	(A)	
• A O B :=			xeb}) B
Schnitman	fe			A	
• AUB :=					()B
Vereiniqu	up menge			A	
• AIB := {	•	\ und ;	×&BZ		-B
trifferenz	wonge			A	
• Ax B := {	(a16):	ae A,	be BZ	B 3 (X, 5)	
Var tesi	schos fro	duht		A] }>×
Berspide A =	q 1,2,33	7	= { 2,3,	ζ Α	
$A \cap B = \{2, 3\}$ $A \cup B = \{1, 2\}$		123			
$A \setminus B = \{ \lambda \}$					

BIA = {44 $A \times B = \{ (1,2), (1,3), (1,4), (2,2), (2,3), ..., (3,4) \}$ $P(A) = \{\phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ Saly (Egensolaften von Mangen) A,B,C seien Mongen 1. AUB = BUA; AB=BRA KammutahVgesele 2 AU (BUC) = (AUB)UC Assoriately geselve An (Bnc) = (AnB) nc 3. An (BUC) = (AnB) U (Anc) Distribution yeselve AU (Bnc) = (AUB) n (AUC) 4. A.B.C.C. Dann gelten die de Morganschen Regeln AUB = AOB Ans = Aus 5. Aus ACB and BCC => ACC Luller sion Beneis t.B. esstes Dishibuhyesek Sei XEAN (BUC) => XEA und (XEB Odes XEC); d.h. xEA und in mindesteus eurs des beiden Mengen B, C; d.h. (xeA und in B) odes (xeA und in C) => XE(AnB) U (Anc)

lungeleelit: Sei XE (AnB) U (AnC). D.L. XEA and in B odes XEA und in C. D.h. XEA und în windertens enos des beiden Mengen B, C. Also XEAn (BUC). Zte de Morgan-Regel mit Venn-Dragrammen Anb = AUB Beispiel Mit den Mengengesetzen hönnen Mengenausdrücke rescriptant wesden $(E_{N}) \cup (E_{N}) \cup (E_{N})$ $= ((2 \sqrt{2} \sqrt{2})) \cup (2 \sqrt{2})$ = \(\) $= (30x) \wedge (30\overline{3})$ ٧ U ك ل