ITMO

Development of Approach to Reranking Language Model Responses using Knowledge Graphs in Accordance with Factual Correctness

Scientific supervisor:
Mariya Khodorchenko, PhD
Student:
Ekaterina Tsaplina, J4233c

Formulation of the problem

The central challenge:

LLMs in QA systems suffer from: lack of actual knowledge, hallucinations, recognition of complex terms and jargonisms, similarity of documents on narrow topics. As a consequence, answers are not always complete and relevant to the question.

Goal:

To improve the quality of LLM responses by reranking based on facts from knowledge graphs (KGs).

Practical relevance:

To refine the user experience of QA systems.

Objectives:

- Preparation of data for the experiment: generation of questions for dataset texts, text processing, preparation of ontologies.
- Development of Approach to Reranking Language Model Responses using Knowledge Graphs in Accordance with Factual Correctness.
- Construction of two pipelines for comparison: RAG and RAG+KG reranking.

LLM & RAG	Knowledge Graphs (KGs)
Cons:	Pros:
 Vector similarity is not transitive 	Structural knowledge
 Lots of context vs details: a problem of text 	• Accuracy
chunking strategy	Interpretability
 Lack of accuracy in search for complex topics 	Domain-specific knowledge
 Hallucinations are not completely avoided 	Evolving knowledge
Pros:	Cons:
General knowledge	 Incompleteness
Language processing	 Lacking language understanding
Generalizability	Non-triviality of the design

The complementary nature of RAG and KGs

Knowledge Graphs has been cited as one of the most impactful technology to be relevant in coming years 1

¹ Gartner, Impact Radar for Generative AI, 2024

Methodology: Overall pipeline

- The key idea is to use KG in order to rerank the answers of the RAG model
- First, 3 responses are received from the RAG model, then the reranking with KG is performed
- If the most significant answers of two models (RAG model and RAG+KG) differ, they are compared by the measure of relevance to the query

Overall pipeline of the algorithm

Methodology: Step 1 - KG generation

Text processing and storing procedure

Methodology: Step 2 - RAG-based model

- RAG retriever provides the context for LLM
- The generated responses have probabilities assigned to them by Beam Search
- The model outputs the response with the highest probability

Methodology: Step 3 - RAG+KG-reranking model

- The KG retriever extracts triplets from query
- The cosine similarity between vectorized facts and responses (from RAG-based model) is calculated
- The responses are reranked by similarity measure with facts

Experiment design

- The two models RAG-based and RAG+KG rerank model are compared
- Get 3 answers to each question using RAG
- Filter the answers and leave only those cases where reranking makes sense i.e.
 3 not the same answers to 1 question
- Reranking answers by KG
- Counting statistics: the most important thing is how many times the reranking occurred, and then in how many of those cases the RAG or RAG+KG Rerank is better.
- Repeat for all domains (computer, nature, movie, GOST)

Experiments: Results of KGs generation

The **first stage** of experiments was **selection** of a **model** (base, fine-tuned or fine-tuned with post-processing).

From the diagram we can conclude that the **fine-tuning** had a **positive effect** in **comparison** with **base**

The **post-processing** of **triplets** after fine-tuning **improved precision** and slightly **reduced recall**, which is expected, since postprocessing is filtering

Experiments: Overall results

In the **majority of cases (2/3)** reranking did not actually take place.

The chart shows the percentage of cases where reranking took place and which model performed better: either RAG (green) or RAG+KG rerank (purple).

The table shows the **complexity** of **domains.**

Value added from KG reranking: nature - 13.5%, GOST - 42.5% compared to the average between movie and computer (41.5%)

Conclusions

In this work the **KG reranking** was implemented in attempts to **improve** the **responses** of **LLM**. It was discovered that:

- LLM pre-training and triplet post-processing is important for knowledge graph construction.
- In more than half of the cases, no reranking was performed because the RAG performed well.
- Thus, although RAG is a powerful tool, combining it with knowledge graphs helps to improve the quality of answers in complex and semantically confusing texts:
 - a. Knowledge graphs capture rich relationships between objects, **providing more accurate** reasoning.
 - b. The **RAG+KG reranking** approach works best for documents with **clear relations and complex terms**, while basic RAG works best for simpler contexts.
 - c. **Added value from KG reranking**: **nature 14%**, cases mentioning "complex terms" geo-coordinates.
 - d. Added value from KG reranking: GOST 43%, knowledge graphs corrected RAG errors according to real facts.

