Data Mining

Predictive Modelling Linear classification models

Raquel Sebastião

Departamento de Eletrónica, Telecomunicações e Informática

Universidade de Aveiro

raquel.sebastiao@ua.pt

Contents

- Predictive modelling
- Linear classification models
- Iterative optimization
- Summary

Predictive problems

Classification problems

Id	Sepal length	Sepal width	Petal length	Petal width	Туре	
1	5.1	3.5	1.4	0.2	setosa	
2	4.9	3	1.4	0.2	setosa	
51	7	3.2	4.7	1.4	versicolor	
101	6.3	3.3	6	2.5	virginica	
102	5.8	2.7	5.1	1.9	virginica	

Target: class label (nominal var.)

Regression problems

Id	MSSubCl ass	LotArea	LotConfig	Neighbor hood	Condition1	()	YearBuilt	Exterior 1st	SalePrice
1	60	8450	Inside	CollgCr	Norm	()	2003	VinylSc	208500
67	70	9550	Corner	Crawfor	Norm	()	1915	Wd Sdn	140000
106	50	14115	Inside	Mitchel	Norm	()	1993	VinylSc	143000
208	60	10382	Corner	NWAmes	PosN	()	1973	HdBoard	200000
386	50	6120	Inside	OldTown	Artery	()	1931	BrkFace	129900

Target: numeric (numerical var.)

Predictive problems

Classification vs Regression

- Classification assigns input vector \mathbf{x} to one of \mathbf{k} discrete classes $\mathbf{C}_{\mathbf{k}}$, \mathbf{k} = 1, . . . , \mathbf{K}
 - Common classification scenario: classes considered disjoint
 - Each input assigned to only one class
 - Input space is thereby divided into decision region

- Regression assigns input vector x to one or more continuous target variables t
 - Linear regression has simple analytical and computational properties

Classification: problem definition

Setting

- Given a training data set $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$, where each object is represented by a D+1–tuple: (D-dim) feature vector $\mathbf{x}_i \in \mathbb{R}^D$ and the corresponding label $\mathbf{y}_i \in \mathbf{Y}$
- There is an **unknown** function: Y = f(X)

Goal

Learn the model that yields the best approximation of the unknown function fF()

Approach

- Assume a functional form $h_{\theta}(x)$ for the unknown function F(), where θ are a set of parameters
- Assume a preference criterion over the space $\boldsymbol{\theta}$ of possible parameterizations of h()
- Search for the "best" h_{θ} (according to the criterion and the data set)

Classification: learn/build a prediction model

Given a training set $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$:

- $(\mathbf{x}_i, \omega_{c_i})$ the label is **symbolic** or **categorical** (ex.: binary {malignant, benign})
- (\mathbf{x}_i, t_i) label is **numerical** (ex.: binary $\{-1, 1\}$, multiclass $\{0, 1, 2\}$))

Learning/Training phase

find the "best" approximation to F, h_θ

Testing phase: Given a test set (data not included in the training set)

Study the performance of the model

Usually, the available data set is divided into training and test sets

Classification: decision surfaces

Classification: decision surfaces

Prediction Models – approaches

Geometric approaches

- Distance-based: kNN
- Linear models: Fisher's linear discriminant, perceptron, logistic regression, SVM (w. linear kernel)

Probabilistic approaches

naive Bayes, logistic regression

Logical approaches

classification or regression trees, rules

Optimization approaches

neural networks, SVM

Sets of models (ensembles)

random forests, adaBoost

Contents

- Predictive modelling
- Linear classification models
 - Discriminant Functions
 - Least squares for classification
 - Fisher's Linear Discriminant (LDA)
 - Perceptron
 - Logistic Regression
 - Comparison
- Iterative optimization
- Summary

Linear classification models

Decision surfaces are linear functions of input x

• Defined by (D-1)-dim hyperplanes within D-dim input space

3-class problem
3-D feature vector

A plane is 2-D surface in 3-D space

3-class problem 2-D feature vector

Straight line is 1-D decision boundary in 2-D space

 Data sets whose classes can be separated exactly by linear decision surfaces are said to be linearly separable

Linear classification models

Discriminant functions

- map feature vector x directly into decisons
- probabilities play no role
 - Least Squares for classification
 - Fisher's linear discriminant
 - Perceptron

Probabilistic approaches

- The inference and decision are taken in separated stages
 - Logistic regression (discriminative model)

Support Vector Machines (linear SVM)

Contents

- Predictive modelling
- Linear classification models
 - Discriminant Functions
 - Least squares for classification
 - Fisher's Linear Discriminant (LDA)
 - Perceptron
 - Logistic Regression
 - Comparison
- Iterative optimization
- Summary

Linear discriminant functions

A discriminant function assigns the D-dim feature vector

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & ... \mathbf{x}_D \end{bmatrix}^T \in \mathbb{R}^D$$
 to one of the k classes denoted by \mathbf{C}_k

Linear discriminant functions

$$g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

 $g(\mathbf{x})$ is linear combination of feature vector \mathbf{x}

•
$$w_0$$
 is the **bias** (threshold = - bias = - w_0)

Linear discriminant functions: 2-class

Linear discriminant functions

$$g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

- **w** is the **weighted vector** ($\mathbf{w} = \begin{bmatrix} w_1 & w_2 & \dots & w_D \end{bmatrix}^T$)
- w_0 is the **bias** (threshold = bias = w_0)
- Decision surface: $g(\mathbf{x}) = 0$
 - (D-1)-dimensional hyperplane within the D-dimensional feature vector
- Classification

$$g(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0 \Rightarrow \begin{cases} g(\mathbf{x}) \ge \mathbf{0}, \ \mathbf{x} \in C_1 \\ g(\mathbf{x}) < \mathbf{0}, \ \mathbf{x} \in C_2 \end{cases}$$

Linear discriminant functions: 2-class

Classification

$$g(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0 \Rightarrow \begin{cases} y(\mathbf{x}) > \mathbf{0}, \ \mathbf{x} \in C_1 \\ y(\mathbf{x}) < \mathbf{0}, \ \mathbf{x} \in C_2 \end{cases}$$

Decision surface: $g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$

- orientation in space is given by its normal w (w ⊥ decision boundary)
- **position** in space is given by its distance $\frac{w_0}{\|\mathbf{w}\|}$ to the origin
- Distance of an object \mathbf{x}_a (with label t) to the decision surface $\frac{tg(\mathbf{X})}{\|\mathbf{w}\|}$

Linear discriminant functions: multi-class

Two approaches

- Using several two-class classifiers
 - But leads to serious difficulties
- Use k linear discriminant functions

Linear discriminant functions: learning w

Linear discriminant function

$$g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

Given a training data set (x, y)

- (D-dim) feature vector $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots x_D \end{bmatrix}^T \in \mathbb{R}^D$
- corresponding label $g(\mathbf{x}) \in \mathbf{Y}$

How to learn w???

- Least Squares for classification
- Fisher's Linear Discriminant
- Perceptrons

Contents

- Predictive modelling
- Linear classification models
 - Discriminant Functions
 - Least squares for classification
 - Fisher's Linear Discriminant (LDA)
 - Perceptron
 - Logistic Regression
 - Comparison
- Iterative optimization
- Summary

Least squares for classification

Linear discriminant function

$$g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

Pure geometric-based model

- least squares
- logistic regression

Goal:

- make the model predictions as close as possible to a set of target values
- Find parameters w that minimizes the Sum of Square Error (or maximizing the likelihood function under conditional Gaussian distribution)
- Highly sensitive to outliers

Contents

- Predictive modelling
- Linear classification models
 - Discriminant Functions
 - Least squares for classification
 - Fisher's Linear Discriminant (LDA)
 - Perceptron
 - Logistic Regression
 - Comparison
- Iterative optimization
- Summary

Fisher's linear discriminant

Linear discriminant function

$$g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

Basic idea:

- View classification in terms of dimensionality reduction
 - Project D-dim feature vector x into 1-dim using w^Tx
- The goal is to find w (direction) to project the data such that:
 - It maximizes the distance between the means of each class (maximizes separability among class)
 - It minimizes the variance within each class

Linear classifier

• Place threshold on $g(\mathbf{x})$ to classify $y \geq w_0$ as \mathbf{C}_1 and otherwise \mathbf{C}_2

Fisher's linear discriminant

Linear discriminant function

$$g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

The goal is to find w (direction) to project the data such that:

- It maximizes the distance between the means of each class (maximizes separability among class)
- It minimizes the variance within each class

Example: consider the data as belonging to three classes and projected into two

directions

• (c) is the best solution: large distance between classes and small variance within classes

Fisher's linear discriminant

$$g(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$$

The goal is to find directions to project the data such that:

- Large distance between classes
- Small variance within class

Example: Suppose we have 2 classes and 2-dimensional samples

find projection to a line s.t. samples from different classes are well separated

Fisher's linear discriminant: 2-class problems

Suppose we have 2 classes and 2-dimensional samples X_1, X_2, \ldots, X_N :

- N₁ samples come from class 1
- N₂ samples come from class 2

Basic ideia: Project all samples on a line s.t. different classes are well separated

Let the line direction be given by unit vector W

- w^Tx_i is the distance of projection of x_i from the origin
- Thus $\mathbf{Z}_i = \mathbf{W}^T \mathbf{X}_i$ is the projection of \mathbf{X}_i into a one dimensional subspace

• The projection of \mathbf{x}_i into a one dimensional subspace with direction \mathbf{w} is given by $\mathbf{z}_i = \mathbf{w}^T \mathbf{x}_i$

How to measure separation between projections of different classes?

- Consider that μ_1 and μ_2 are the means of class 1 and 2 (in the original space)
- Let $\tilde{\mu}_1$ and $\tilde{\mu}_2$ be the means of projections of classes 1 and 2
- thus $|\tilde{\mu}_1 \tilde{\mu}_2|$ seems like a good measure:

$$ilde{\mu}_c = rac{1}{N_c} \sum_{i \in \omega_c} \mathbf{W}^{\! \mathsf{T}} \mathbf{X}_i = \mathbf{W}^{\! \mathsf{T}} (rac{1}{N_c} \sum_{i \in \omega_c} \mathbf{X}_i) = \mathbf{W}^{\! \mathsf{T}} \mu_c$$

where N_{c} is the number of samples of class ω_{c} (c=1,2)

How good is $|\tilde{\mu}_1 - \tilde{\mu}_2|$ as a measure of separation?

- The larger $|\tilde{\mu}_1 \tilde{\mu}_2|$ the better is the expected separation
- Consider the two directions for projecting the following data:

$$- \mathbf{w} = (0,1)$$

$$- \mathbf{w} = (1,0)$$

 The distance between the means of the projected data is higher in the horizontal axes ⇒ Large distance between classes

However the vertical axes is a better line to project attending the class separability

How good is $|\tilde{\mu}_1 - \tilde{\mu}_2|$ as a measure of separation?

• Problem: $|\tilde{\mu}_1 - \tilde{\mu}_2|$ does not consider the variance of the classes!!!

Ideally, the projected classes have both faraway means and small variances!!

Problem: $|\tilde{\mu}_1 - \tilde{\mu}_2|$ does not consider the variance of the classes!!!

Thus, $|\tilde{\mu}_1 - \tilde{\mu}_2|$ needs to be normalized by a factor proportional to variance¹

Fisher Solution: normalize $| ilde{\mu}_1$ - $ilde{\mu}_2|$ by scatters

- Consider the projected samples: $\mathbf{z}_i = \mathbf{w}^T \mathbf{x}_i$
- Scatters (sample variance multiplied by N) for projected samples:

-
$$ilde{\mathbf{s}}_1 = \sum_{\mathbf{z}_i \in \mathcal{C}_1} (\mathbf{z}_i - ilde{\mu}_1)^2$$

-
$$ilde{\mathbf{s}}_2 = \sum_{\mathbf{z}_i \in \mathcal{C}_2} (\mathbf{z}_i - ilde{\mu}_2)^2$$

• The optimal solution can be achieved by the maximization, w.r.t w, of:

$$J(\mathbf{W}) = rac{(ilde{oldsymbol{\mu}}_1 - ilde{oldsymbol{\mu}}_2)^2}{ ilde{oldsymbol{s}}_1 + ilde{oldsymbol{s}}_2}$$

Closed-form optimal solution

The optimal **w** should be such that

- $(\tilde{\mu}_1 \tilde{\mu}_2)^2$: large
- \tilde{s}_1 ; \tilde{s}_2 : both small

¹scatter measures the same thing as variance, the spread of data around the mean

The optimal solution can be achieved by the maximization, w.r.t w, of:

$$J(\mathbf{W}) = rac{(ilde{oldsymbol{\mu}}_1 - ilde{oldsymbol{\mu}}_2)^2}{ ilde{oldsymbol{arepsilon}}_1 + ilde{oldsymbol{arepsilon}}_2}$$

- express J explicitly as a function of w and maximize it
 - straightforward but need linear algebra and calculus
 - (...)

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_b \mathbf{w}}{\mathbf{w}^T \mathbf{S}_w \mathbf{w}}$$

- S_b is the between class scatter matrix
- S_w is the within class scatter matrix
- Thus, supposing \mathbf{S}_w non-singular, the maximum is equivalent to the largest eigenvector \mathbf{w}_1 of $\mathbf{S}_w^{-1}\mathbf{S}_b$: $\mathbf{S}_w^{-1}\mathbf{S}_b\mathbf{w}_1 = \lambda_1\mathbf{w}_1$
- Moreover, noting that ${f S}_b$ is in the same direction as $(ilde{m \mu}_1- ilde{m \mu}_2)$, and multiplying by ${f S}_{\sf w}^{-1}$:

$$\mathbf{w} \propto \mathbf{S}_{\mathrm{w}}^{-1} (ilde{\mu}_1 - ilde{\mu}_2)$$

- (a) direction to project is parallel to the vector of the difference between means. Classes overlap
- (b) optimal direction (Fisher's solution): accounts for the difference between means and variance minimization. Classes do not overlap

- A variant for C=2 classes
 - with both classes equiprobable (the same number of elements of each class in the data set)
 - avoids eigendecompositions

The main steps are

1. Compute class means: given N_c elements in each class

$$\mu_c = \frac{1}{N_c} \sum_{i \in \omega_c} \mathbf{x}_i, \qquad c = 1, 2$$

- 2. Compute within-class scatter matrix: $S_W = S_1 + S_2$
 - The matrices S_1 and S_2 are computed with data of class ω_1 and ω_2 , respectively.
- 3. The direction to project the data is $\mathbf{w} = \mathbf{S}_{\mathsf{W}}^{-1}(\boldsymbol{\mu}_2 \boldsymbol{\mu}_1)$
- 4. Project data: $y_k = \mathbf{w}^T \mathbf{x}_k$, k = 1, 2 ... N

Decision rule: projecting the mean point of the means of two classes

$$p = 0.5\mathbf{w}^{\mathsf{T}}(\boldsymbol{\mu}_2 + \boldsymbol{\mu}_1)$$

p is the threshold used to identify the projections y_k of each class.

• $y_k > p$ belongs to class ω_1 otherwise belongs ω_2

Re-writing by incorporating the projection calculation and b=-p

$$g(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b \Rightarrow \left\{ \begin{array}{ll} g(\mathbf{x}) > 0 & \mathbf{x} \in \omega_1 \\ g(\mathbf{x}) < 0 & \mathbf{x} \in \omega_2 \end{array} \right.$$

The linear discriminant function: decision is taken with an weighted sum of the feature values

Fisher's linear discriminant: learning w algebraic approach

Given a training set: $(\mathbf{x}_k, \mathbf{y}_k), k = 1 \dots N$, the following system of equations

$$\begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1D} \\ 1 & x_{21} & x_{22} & \dots & x_{2D} \\ 1 & x_{31} & x_{32} & \dots & x_{3D} \\ 1 & & & & & \\ 1 & x_{N1} & x_{N2} & \dots & x_{ND} \end{bmatrix} \begin{bmatrix} w_0 \equiv b \\ w_1 \\ \vdots \\ w_D \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_K \end{bmatrix} \Leftrightarrow \mathbf{Xw} = \mathbf{y}$$

where

- The kth row of **X** has $[1 \mathbf{x}_k^T]$
- The kth row of vector \mathbf{y} has y_k the value that the model should predict with \mathbf{x}_k
- The unknown w: the vector of parameters of the model

System of equations: more equations than variables? \Rightarrow Minimizing least squares

Fisher's linear discriminant: learning w algebraic approach

$$Xw = y$$

Multiplying both members by \mathbf{X}^{T2}

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y} \Rightarrow \mathbf{R}_{\mathsf{xx}}\mathbf{w} = \mathbf{r}_{\mathsf{xy}}$$

The solution is

$$\mathbf{w} = \mathbf{R}_{xx}^{-1} \mathbf{r}_{xy}$$

- \mathbf{R}_{xx} is the correlation matrix (of augmented data vector $\begin{bmatrix} 1 & \mathbf{x}_k \end{bmatrix}$)
- The pseudo-inverse of \mathbf{R}_{xx} can substitute the inverse.

²The first column of the data matrix has only ones

Fisher's linear discriminant: learning w Toy example 2D

Given the data set

	A_1	A_2	$label \equiv d$
$\mathbf{x}_1^{\scriptscriptstyle T}$	-1	1	1
\mathbf{X}_2^\intercal	1	-1	1
\mathbf{X}_3^\intercal	-1	-1	1
\mathbf{x}_4^{\intercal}	1	1	-1

The solution of the system of equations is

$$\mathbf{w} = \begin{pmatrix} w_0 \equiv b \\ w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 0.5 \\ -0.5 \\ -0.5 \end{pmatrix}$$

Fisher's linear discriminant: learning w Toy example 2D

The decision surface (green line) divides the feature space into two regions

The parameters of the classifier are

•
$$\mathbf{w} = [-0.5 \quad -0.5]^{\mathsf{T}} \text{ and } b = 0.5$$

The equation of green line is

$$0.5 - 0.5\mathbf{x}_1 - 0.5\mathbf{x}_2 = 0$$

$$\Rightarrow \mathbf{x}_2 = 1 - \mathbf{x}_1$$

The decision rule is

$$\mathbf{y} = \begin{bmatrix} -0.5 & -0.5 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \mathbf{b} = -0.5\mathbf{x}_1 - 0.5\mathbf{x}_2 + 0.5 \Rightarrow \begin{cases} \mathbf{y} > 0 & \text{Region } \Re_1 \\ \mathbf{y} < 0 & \text{Region } \Re_2 \end{cases}$$

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA)

- linear model for multiclass classification (generalization of Fisher's linear disc.)
- dimensionality reduction

Binary classification

• compute w of g(x)

Decision:

• Given a new object \mathbf{z} , compute $g(\mathbf{z}) = \mathbf{w}^{\mathsf{T}}\mathbf{z} + w_0 \Rightarrow \begin{cases} g(\mathbf{x}) \geq \mathbf{0}, \ \mathbf{x} \in \mathsf{C}_1 \\ g(\mathbf{x}) < \mathbf{0}, \ \mathbf{x} \in \mathsf{C}_2 \end{cases}$

Multi-class classification

- compute the parameters of C functions $g_c(\mathbf{x}) = \mathbf{w}_c^T \mathbf{x} + b_c$, c = 1,..., CDecision:
 - Given a new object $\mathbf{z} : \mathbf{z} \in C_c : g_c(\mathbf{z}) > g_j(\mathbf{z}), \forall j \neq c$

Linear discriminant analysis: learning w multiclass

The solution is based on the definition

Within class scatter matrices

$$\mathbf{S}_W = \sum_{c=1}^{C} \mathbf{S}_c$$

where S_c is the scatter matrix computed with the data belonging to c-class

Between class scatter matrices

$$\mathbf{S}_{B} = \sum_{c=1}^{C} N_{c} \mathbf{S}_{m_{c}}$$

where N_c is the number of objects in class c and

$$\mathbf{S}_{m_c} = (\boldsymbol{\mu}_c - \boldsymbol{\mu})(\boldsymbol{\mu}_c - \boldsymbol{\mu})^\mathsf{T}$$

with μ is the global mean vector and μ_c is the mean vector of the data belonging to class c

Linear discriminant analysis: learning w multiclass

• The C-1 optimal directions are computed with the eigendecomposition of

$$\mathbf{S}_{\mathsf{T}} = \mathbf{S}_{\mathsf{w}}^{-1} \mathbf{S}_{\mathsf{B}}$$

- The matrix **S**_W should be invertible. For high-dimensional and sparse data it might be a drawback.
- The S_T is not symmetric it might have non-real eigenvalues.
- The generalized eigendecomposition of (S_w, S_B) is an alternative solution.

The chosen (C-1) eigenvectors form the columns of the projection model w

The new representation (reduced dimension)

$$P = Xw$$

is formed by (C-1) features

Fisher's and LDA

FLF and LDA assumptions on data:

- normal or Gaussian distribution
- classes with identical covariance matrices
 - However, it performs quite well when assumptions are violated → optimized

FLF and LDA

 fails when the discriminatory information is not in the mean, but rather in the variance of the data

Contents

- Predictive modelling
- Linear classification models
 - Discriminant Functions
 - Least squares for classification
 - Fisher's Linear Discriminant (LDA)
 - Perceptron
 - Logistic Regression
 - Comparison
- Iterative optimization
- Summary

Perceptron

Proposed by Rosenblatt (1958)

Psychological Review Vol. 65, No. 6, 1958 PERCEPTRON: A PROBABILISTIC MODEL FOR INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN 1 F. ROSENBLATT

Cornell Aeronautical Laboratory

- introduced the notion of perceptron networks
- correspond to a 2-class model
- Perceptrons are the simplest ANN:
 - Only one input layer
 - Only one output layer
- Learn linear decision boundaries
- **Binary** problems

Perceptron

The processing steps:

Weighted sum of the inputs:

$$a = \sum_{d} w_d x_d + w_0 = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

• $f(\cdot)$ activation function: step function

$$g(\mathbf{x}) = f(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0) = f(a) = \begin{cases} +1, & a > 0 \\ -1, & \text{otherwise} \end{cases}$$

• Output: f(a) - allows to assign a $class \in \{-1,1\}$ to feature vector \mathbf{x}

$$g(\mathbf{x}) = f(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

Algorithm

Algorithm 18.1 (The online perceptron algorithm).

- Initialization
 - $\theta^{(0)} = 0$.
 - Select μ ; usually it is set equal to one.
 - i = 0.
- Repeat; Each iteration corresponds to an epoch.
 - counter = 0; Counts the number of updates per epoch.
 - For n = 1, 2, ..., N, Do; For each epoch, all samples are presented.
 - If $(y_n x_n^T \theta^{(i-1)} \le 0)$ Then
 - i = i + 1
 - $\bullet \quad \theta^{(i)} = \theta^{(i-1)} + \mu y_n x_n$
 - counter=counter+1
 - End For
- Until counter=0
- It only updates weights¹ when misclassification occurs

 1 $W \equiv \theta$, training set $(\mathbf{x}_{i}, \mathbf{y}_{i})$, i iteration (epoch), μ learning rate

• The decision surface is orthogonal 1 to $heta=[heta_1 \ heta_2]^T$,

At each iteration, only updates weights when misclassification occurs

- Assuming that x is misclassified
 - The weight vector moves towards x

 1 $heta_{0} \equiv b = 0$, the decision lines crosses the origin of the feature space

Perceptron convergence theorem

- if there exists an exact solution (i.e., if the training data set is linearly separable)
 - perceptron learning algorithm is guaranteed to find an exact solution in a finite number of steps
 - # steps to convergence could still be substantial
- Limitations of the Perceptron learning algorithm
 - It only stops when all exemples are learned
 - Not applicable in real applications
 - Limitation of the weight updating rule
 - It does not guarantee to reduce the total error function at each stage

If data is not linearly separable, the perceptron learning algorithm will never converge

→ Alternative: optimization of the error

Perceptron criterion associates zero error with any input correctly classified

- \mathbf{x}_n in \mathbf{C}_1 ($\mathbf{y}_n = +1$): add to \mathbf{w}
- \mathbf{x}_n in \mathbf{C}_2 (\mathbf{y}_n =-1): subtract from \mathbf{w}
- For each misclassified sample, it tries to minimize

$$E_p(\mathbf{w}) = -\sum_{m \in M} \mathbf{w}^T \mathbf{x}_m y_n = \sum_{m \in M} E_n(\mathbf{w})$$

- M: set of all misclassified samples
- Gradient Descent (GD)
 - Weight update formula: for each misclassified x_m

$$\mathbf{w}^{(i)} = \mathbf{w}^{(i-1)} - \lambda E_n(\mathbf{w}) = \mathbf{w}^{(i-1)} + \lambda (y_n \mathbf{x}_n)$$

GD for Perceptron criterion

Pattern Recognition and Machine Learning, C. Bishop, *Springer*, 2007

Perceptron: limitations

- Perceptron only works for 2 classes
- If dataset is not linearly separable, the perceptron algorithm will not converge
- Based on linear combination of fixed basis functions
- Different solutions depending on the initialization of w
- Online algorithm: decision boundary depends on the order of the learning examples
 - Also, the order in which data is presented in GD affects the decision boundaries

Extending the Perceptron ...

Perception: precursor for Neural Networks!

Extending Perceptron: connecting units together into multilayer Neural Networks!

Contents

- Predictive modelling
- Linear classification models
 - Discriminant Functions
 - Least squares for classification
 - Fisher's Linear Discriminant (LDA)
 - Perceptron
 - Logistic Regression
 - Comparison
- Iterative optimization
- Summary

Logistic Regression: a generalized linear model

- Probabilistic discriminative linear model for binary classification
- Key Idea: Turn linear predictions into probabilities
 - The goal is to calculate a score
- Sigmoid function to define the conditional probability of $y \in \omega_1$

•
$$P(y \in \omega_1 | \mathbf{x}) = \frac{1}{1 + \exp(-y)'}$$
 $y = \mathbf{w}^\mathsf{T} \mathbf{x} + b$

- Projects $(-\infty, +\infty)$ to [0, 1]
- Decision rule
 - $y \in \omega_1$ if $P(y \in \omega_1 | \mathbf{x}) > 0.5$
 - $y \in \omega_2$ if $P(y \in \omega_2 | \mathbf{x}) > 0.5$

Smoother than linear probability model

Logistic Regression

Key Idea: Turn linear predictions into probabilities

 $S(x) = \frac{1}{1 + e^{-x}}$

- The goal is to calculate a score
- Decision rule
 - $y \in \omega_1$ if $P(y \in \omega_1 | \mathbf{x}) > 0.5$
 - $y \in \omega_2$ if $P(y \in \omega_2 | \mathbf{x}) > 0.5$ $y = \mathbf{w}^\mathsf{T} \mathbf{x} + b$

- Probabilistic discriminative linear model for binary classification
 - Learns the PMF of the output label given the input, i.e., $p(y \in \omega_k | \mathbf{x})$, k = 1,2
 - Does not model inputs \mathbf{x} (only relationship between \mathbf{x} and \mathbf{y})
 - $P(y \in \omega_1 | \mathbf{x})$ are nonlinear functions with a linear function of \mathbf{x} as input
 - **Linear** relation with the parameters (\mathbf{w}, \mathbf{b}) of the classifier $g(\mathbf{x})$ despite the non-linear scoring function

Logistic Regression

- Very large positive $\mathbf{w}^\mathsf{T}\mathbf{x}$ means $p(y=1|\mathbf{x})$ close to 1
- Very large negative $\mathbf{w}^\mathsf{T}\mathbf{x}$ means $p(y=0|\mathbf{w})$ close to 1
- At decision boundary, $\mathbf{w}^\mathsf{T}\mathbf{x} = 0$ implies $p(y = 1|\mathbf{x}) = p(y = 0)$

The logit function gives the logarithm of the probability of one class divided by the probability of the other class

$$logit(P(y \in \omega_1 | \mathbf{x})) = ln\left(\frac{P(y \in \omega_1 | \mathbf{x})}{1 - P(y \in \omega_1 | \mathbf{x})}\right) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$

- It is the log of the odds ratio
- It links the probability to the predictor variables
- Extension Multiclass Logistic Regression (aka Softmax)

Logistic Regression: learning w

Given the training data set $\chi = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$, where $y_n \in \{0,1\}$ are the values to assigned to the class labels

Likelihood function*:

$$L(\mathbf{w}, b | \mathbf{\chi}) = \prod_{n=1}^{N} P(y_n | \mathbf{x}) = \prod_{n=1}^{N} p_n^{y_n} (1 - p_n)^{1 - y_n}$$

where the probability of \mathbf{x}_n belonging to the class with label:

$$y_n = 1 \text{ is } p_n = \frac{\exp(w^T X_n)}{1 + \exp(w^T X_n)}$$
 $y_n = 0 \text{ is } 1 - p_n = 1 - \frac{\exp(w^T X_n)}{1 + \exp(w^T X_n)}$

• The likelihood measures the **goodness of fit** of a statistical model to a sample of data for given values of the parameters (**w**, **b**)

^{*}Bernoulli distribution

Logistic Regression: learning w

Cost function

• The log-likelihood $J() = -\log(L())$

$$E = J(\mathbf{W}) = -\sum_{n=1}^{N} (y_n log(p_n) + (1 - y_n) log(1 - p_n))$$

- No closed form solution
 - Iterative optimization methods are need to minimized the cost function
 - gradient descendente

The parameter updating values* are

$$\Delta w^d = -\lambda \frac{\partial E}{\partial w_i} = \lambda \sum_{n=1}^{N} \left(\frac{y_n}{p_n} - \frac{1 - y_n}{1 - p_n} \right) p_n (1 - p_n) x_n^d$$

* Note that $x_n^d \equiv \langle x_d \rangle_n$, $w^d \equiv w_d$, bias $b \equiv w_0$, $x_0 = 1$

Logistic Regression

Contents

- Predictive modelling
- Linear classification models
 - Discriminant Functions
 - Least squares for classification
 - Fisher's Linear Discriminant (LDA)
 - Perceptron
 - Logistic Regression
 - Comparison
- Iterative optimization
- Summary

Comparison: Training/Learning in linear approaches

Different algorithms to the binary classification problem

- FDF and LDA: Algebraic approach or optimized criterium
- Perceptron: perceptron learning algorithm or optimized criterium
- Logistic Regression: defining a cost function (based on likelihood)
 and optimization with iterative optimization methods

Optimized criterium for FDF, LDA and Perceptron

- Optimization of the $J(\cdot)$ / error with iterative optimization methods
 - gradient descendent

Comparison: Training/Learning in linear approaches

FDF/LDA:

• fails when the discriminatory information is not in the mean, but rather in the variance of the data

Logistic regression:

- the non-linearity of $f(\cdot)$ gives more flexibility \rightarrow it can limit the effects of outliers
- w can become unstable:
 - If classes are well-separated
 - Data size (#objects) is small

Perceptron:

decision boundary depends on the order of the learning examples

Comparison: Training/Learning in linear approaches

Logistic Regression & Perceptron: only for binary classification

Multiclass logistic regression

FDF/LDA vs Logistic regression:

When the normality assumption of data (approximately) holds, its expected that FDF/LDA outperforms Logistic regression

Perceptron vs Logistic regression:

Perceptron only updates weights when misclassification

Contents

- Predictive modelling
- Linear classification models
- Iterative optimization
- Summary

Iterative optimization methods: Gradient-based learning

- Iterative optimization algorithm for finding the minimum of a function, typically a convex cost/loss function
 - Mostly used when there is no closed form solution (the parameters can not be calculated analytically, e.g., using linear algebra)
 - Used to fit linear classifiers and regressors under convex loss functions
- For a function F(x) at a point **a**, F(x) decreases fastest if we go in the direction of the negative gradient of **a**

$$a_n = a_{n-1} - \lambda \, \nabla F(a_{n-1})$$

When the **gradient** is zero, we arrive at the **local minimum**

Iterative optimization methods: Gradient-based learning

- Cost/loss function $E = J(\mathbf{w})$
- Vector gradient

$$\nabla E = \left(\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_D}\right)$$

each weight is updated according to

$$\Delta w_i = -\lambda \frac{\partial E}{\partial w_i}$$

Linear activation function

The learning rate λ is the step length in negative gradient direction

Non-linear error function

drawback (to live with): the learning can converge to any local minimum

Iterative optimization methods: Batch vs Stochastic Gradient Descent

Global Cost/loss function
$$E = \sum_{n} E^{(n)}$$

The gradient can be estimated with

Batch Gradient Descent: with the total (or average) error in training set E

$$\mathbf{w}^{(i)} = \mathbf{w}^{(i-1)} - \lambda \nabla E$$

- the batch size is the number of samples
- Online/Stochastic Gradient Descent: with the error of a single training example $E^{(n)}$

$$\mathbf{w}^{(i)} = \mathbf{w}^{(i-1)} - \lambda \nabla E^{(n)}$$

• instead of calculating the gradient of the full error function (which involves using the full training set), we update the weights one example at a time

Both are more effective to escape from local minima

Iterative optimization methods: Batch vs Stochastic Gradient Descent

- Batch gradient descent moves directly downhill
- Batch is impractical for large data sets
- SGD takes steps in a noisy direction, but moves downhill on average
- Randomly sampling the training set → SGD converges to Batch solution
- Mixed Strategy: Mini-Batch

stochastic gradient descent

Contents

- Predictive modelling
- Linear classification models
- Iterative optimization
- Summary

Summary

Predictive modelling

- Predictive problems
- Models approaches for classification

Linear classification models

- Discriminant Functions
 - Least squares for classification
 - Fisher's Linear Discriminant (LDA)
 - Perceptron
- Logistic Regression
- Comparison

Iterative optimization

- Batch Gradient Descent
- Stochastic Gradient Descent

Bibliography

Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar, *Pearson*, 2019 (chap 3.1, 3.2, 6.1, 6.6, 6.7)

Data Mining, the Textbook, Charu C. Aggarwal, *Springer*, 2015 (chap 10.2.1.4, 10.5.2, 10.7.1)

Machine Learning: The Art and Science of Algorithms That Make Sense of Data, P. Flach, Cambridge University Press, 2012 (ch 1, 2, 7.1, 7.4)

Pattern Recognition and Machine Learning, C. Bishop, *Springer*, 2007 (ch 4)

