Лекция 4 Обучение с подкреплением

Никита Юдин, iudin.ne@phystech.edu

Московский физико-технический институт Физтех-школа прикладной математики и информатики

28 февраля 2024

- Начали работать в условиях отсутствия полной информации о среде и решили применять *model-free* методы.
- При этом на среду сохранялись условия $|S| \ll \infty$ и $|A| \ll \infty$.
- Поняли, что оценивать Q-функцию можно несколькими способами: Monte Carlo / Temporal Difference / Q-learning.
- Получили, что для сходимости этих алгоритмов необходимо, чтобы была возможность полного исследования среды, т.е. $\forall s, a \implies \pi(a, s) > 0$.
- Решением проблемы исследования может послужить ε —greedy алгоритм.

$$Q_{k+1}^{\pi}(s,a) \leftarrow Q_k^{\pi}(s,a) + \alpha_k(y(s,a) - Q_k^{\pi}(s,a))$$

Temporal Difference

- $y(s, a) := r + \gamma Q_k^{\pi}(s', a')$
- Обновление происходит после каждого шага.
- Медленное распространение награды (посещает по паре состояний).

Monte Carlo

- $y(s,a) := r + \gamma r' + \gamma^2 r'' + \dots$
- Обновление происходит в конце эпизода.
- Быстрое распространение награды (посещает несколько состояний в эпизоде).

Temporal Difference

- Маленькая дисперсия.
- Смещенная оценка.

Monte Carlo

- Большая дисперсия.
- Несмещенная оценка.

Q-learning

Идея такая же как в Value Iteration — давайте улучшать нашу оценку Q-функции с помощью TD и тут же улучшать нашу политику:

$$\begin{split} Q_{k+1}^{\pi}(s, a) &\leftarrow Q_{k}^{\pi}(s, a) + \alpha_{k} \left(r + \gamma Q_{k}^{\pi}(s', a') - Q_{k}^{\pi}(s, a) \right) = \\ &= Q_{k}^{\pi}(s, a) + \alpha_{k} (r + \gamma Q_{k}^{\pi}(s', \pi_{k}(s')) - Q_{k}^{\pi}(s, a)) = \\ &= Q_{k}^{\pi}(s, a) + \alpha_{k} (r + \gamma Q_{k}^{\pi}(s', arg \max_{a'} Q_{k}^{\pi}(s', a')) - Q_{k}^{\pi}(s, a)) = \\ &= Q_{k}^{\pi}(s, a) + \alpha_{k} (r + \gamma \max_{a'} Q_{k}^{\pi}(s', a') - Q_{k}^{\pi}(s, a)). \end{split}$$

Состояний теперь много

Постановка задачи

Теперь в задаче удалим ограничение на множество состояний среды $|S| \ll \infty$.

Пример

Примером таких задач могут послужить игры ATARI (benchmark RL алгоритмов).

Препроцессинг состояний на практике

Action selection frequency

- Framestack
- Frameskip
- MaxAndSkip
- Sticky actions

Atari-specific preprocessing

- EpisodicLife
- FireReset

Standart Tricks

- Crop Image
- Rescale (84 × 84)
- Grayscale

Reward preprocessing

• Clip reward to $\{-1,0,1\}$

Состояний теперь много

Проблема

Так как теперь множество состоянии есть непрерывная величина, то Q-learning теперь применять нельзя, так как Q-функция не может быть описана таблицей.

Решение

Deep Q-learning: давайте искать оптимальную $Q^*(s,a)$ в виде нейронной сети!

Возможные имплементации DQN

Первый вариант

Второй вариант

$$\mathsf{Q}\text{-Net} := \mathsf{Q}(\mathsf{s},\mathsf{a}) \in \mathbb{R}$$

$$\mathsf{Q}\text{-Net} := (\mathit{Q}(\mathit{s}, \mathit{a}_1), \ldots, \mathit{Q}(\mathit{s}, \mathit{a}_A)) \in \mathbb{R}^A$$

Вопрос

Что лучше использовать и почему?

Ответ

Если $|A| \ll \infty$, то удобнее воспользоваться вторым вариантом, поскольку так удобнее брать arg max.

Архитектура

Не стоит использовать

- max pooling ведет к инвариантности сети относительно сдвигов объектов
- batch norm см. drop out
- drop out train и test стадии не отличимы для алгортма

Задача регрессии

Пусть s,a — входные данные, $f \in \mathbb{R}$ — искомые значения, которые в идеале хочется брать из уравнения Беллмана:

$$f(s,a) := r(s,a) + \gamma \mathbb{E}_{s'} \max_{a'} Q^*(s',a',\theta_k)$$

где θ_k — параметры сети.

Проблема

Так же как и в табличном Q-обучении матожидание по s' берется из неизвестного (в общем случае) нам распределения. Нужно «обходить» эту операцию. Построим оптимизационную задачу, вычислим градиент и поймем, где можно выполнить приближение.

Задача регрессии

Пусть s,a — входные данные, $f\in\mathbb{R}$ — искомые значения, которые в идеале хочется брать из уравнения Беллмана:

$$f(s,a) := r(s,a) + \gamma \mathbb{E}_{s'} \max_{a'} Q^*(s',a',\theta_k)$$

Функция потерь — MSE Loss function: $(f-y_{\rm pred})^2/2$. Итого задача оптимизации:

$$\frac{1}{2}\mathbb{E}_{(s,a,f)}(f-Q^*(s,a,\theta_{k+1}))^2 \to \min_{\theta_{k+1}}$$

Данная задача на самом деле и является Q-обучением.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かくの

Вычисление градиента

направление увеличения значения Q

$$abla_{ heta} rac{1}{2} (f - Q^*(s, a, heta))^2 = \underbrace{(f - Q^*(s, a, heta))}_{ ext{скаляр со знаком}}
abla_{ heta}
abla_{ heta}
abla_{ heta}
= \left(r + \gamma \underline{\mathbb{E}_{s'}} \max_{a'} Q^*(s', a', heta_k) - Q^*(s, a, heta)
ight)
abla_{ heta} Q^*(s, a, heta)
pprox$$

$$\approx \left(r + \gamma \max_{a'} Q^*(\underline{s'}, a', \theta_k) - Q^*(s, a, \theta)\right) \nabla_{\theta} Q^*(s, a, \theta),$$

где $s' \sim p(s'|s,a)$, то есть приближаем математическое ожидание по одному семплу. Первая скобка полученного есть и в алгоритме Q-обучения.

28 февраля 2024

Итоговая задача регрессии

Если s,a — входные данные, $y\in\mathbb{R}$ — наблюдаемые значения, которые будут получаться как несмещ. оценка f :

$$y(s,a) := r(s,a) + \gamma \max_{a'} Q^*(s',a',\theta_k)$$

Где $s' \sim p(s'|s,a)$.

Вывод

С помощью приближения уравнения Беллмана семплированием мы получил задачу, которая является уже изученным Q-learning, только вместо таблицы приближаем искомое Q^* нейросетью.

Итого мы поняли, что будем решать задачу с целевыми значениями $y: \mathbb{E}_{s'} y = f(s,a)$. Почему алгоритм сойдется к f?

Теорема

Пусть $Q_{\theta_{k+1}}(s,a)$ — достаточно ёмкая модель, выборка неограниченно большая, а оптимизатор идеальный. Тогда решением задачи регрессии выше будет:

$$Q_{\theta_{k+1}}(s,a) = r(s,a) + \gamma \mathbb{E}_{s'} \max_{a'} Q_{\theta_k}(s',a').$$

Доказательство

Найдем оптимальное значение $Q_{\theta_{k+1}}(s,a)$ для позиции (s,a), которое минимизирует MSE:

$$\frac{1}{2}\mathbb{E}_{s'}(y(s,a)-Q_{\theta_{k+1}}(s,a))^2.$$

Вспоминаем как мы брали градиент и строили его несмещенную оценку, приравниваем несмещенную оценку градиента (а значит, в среднем, и сам градиент) к нулю откуда получаем:

$$Q_{\theta_{k+1}}(s,a) = r(s,a) + \gamma \mathbb{E}_{s'} \max_{a'} Q_{\theta_k}(s',a').$$

Замечание

Построенная и обоснованная задача регрессии на самом деле является не очень типичной для машинного обучения: наши целевые значения зависят от аппроксимирющей функции с фиксированными весами: $y(s,a):=r(s,a)+\gamma\max_{a'}Q^*(s',a',\theta_k) \text{ (градиенты в целевые значния не текут!)}.$

Схема обучения: один шаг простой итерации

- 1. Фиксируются веса θ_k , вычисляются целевые значения y_k .
- 2. Модель $Q^*(s, a, \theta)$ обучается на эти целевые значения.
- 3. Меняются веса $\theta_k o \theta_{k+1}$, вычисляются новые целевые значения y_{k+1} .

Схема обучения: один шаг простой итерации

- 1. Фиксируются веса θ_k , вычисляются целевые значения y_k .
- 2. Модель $Q^*(s, a, \theta)$ обучается на эти целевые значения.
- 3. Меняются веса $heta_k o heta_{k+1}$, вычисляются новые целевые значения y_{k+1} .

Проблема

Переход со второго пункта на третий пункт обманчиво прост. Доколе нам обучать сетку с фиксированными таргетами? Как понять, что пора обновить веса сетки и пересчитать целевые значения?

Возможные варианты

1. *SGD*: Можно пересчитывать целевые значения после каждого градиентного шага обучения.

Недостаток

Подход не стабилен. Градиентный шаг может немного «поломать» модель, ведь SGD улучшает модель лишь в среднем, но не гарантирует этого на каждом шаге.

2. До сходимости: будем обучаться, пока веса модели не перестанут значимо меняться.

Недостаток

Ждать сходимости слишком долго.

Возможны варианты

3. Что-то между. Предлагается выполнять условно 100-1000 итераций градиентного обучения сети прежде, чем менять целевые значения.

Декорреляция семплов

Заметим

Обучать DQN мы будем по батчам, но есть нюанс: при последовательной игре четверки (s, a, r, s') часто очень коррелированы, что ломает обучение сети.

Декорреляция семплов

Пути решения

- 1. Запуск параллельных агентов.
- 2. Буфер реплеев.

Target Network

Имплементация

Предложенный алгоритм фиксации целевых значений и последующего градиентного спуска реализован с помощью $Target\ Net$, генерирующая целевые значения, на которых несколько итераций обучается $Deep\ Q-Network$, после чего все веса DQN копируются в $Target\ Net$ и так далее.

Замечание

Веса *Target Net* часто обозначаются за θ^- .

Замечание

Полученный результат всё так же является model-free off-policy алгоритмом, в котором всё так же необходим exploration.

Финальная схема Deep Q-learning

Инициализируем $Q^*(s, a, \theta)$ произвольно, $\theta^- := \theta, \mathcal{D} = \emptyset$; Получаем s_0 : for k = 0, 1, 2, ...

- 1. Выбрать действие $a_k \sim \varepsilon \operatorname{greedy}(Q^*(s_k, a, \theta));$
- 2. Пронаблюдать r_k , s_{k+1} , done $_{k+1}$ и сохранить $(s_k, a_k, r_k, s_{k+1}, \mathsf{done}_{k+1})$ в \mathcal{D} , done $_{k+1} := \mathbb{1}_{\{s_{k+1} \text{ терминальное}\}};$
- 3. Засэмплировать батч $\mathbb{T} = \left\{ (s_{i_j}, a_{i_j}, r_{i_j}, s_{i_j+1}, \mathsf{done}_{i_j+1}) \right\}_{i=1}^B$ из \mathcal{D} ;
- 4. $y_j := r_{i_j} + \gamma (1 \mathsf{done}_{i_j+1}) \max_{a'} Q^*(s_{i_j+1}, a', \theta^-);$
- 5. Совершить шаг градиентного спуска:

$$\theta \leftarrow \theta - \frac{\alpha_k}{2B} \sum_{i=1}^B \nabla_{\theta} (Q^*(s_{i_j}, a_{i_j}, \theta) - y_j)^2$$
, α_k согласно Robbins-Monro;

24 / 40

6. Обновляем Target Net, если $k \mod K = 0 : \theta^- \leftarrow \theta$.

Никита Юдин (МФТИ) Лекция 28 февраля 2024

Зачем вообще что-то модифицировать?

Проблема

Выученная функция склонна к переоцениванию будущей награды, то есть Q-функция начинает неограниченно расти. Эта проблема называется overestimation bias.

Почему это происходит?

Это возникает из-за оператора максимума в формуле построения целевых значений:

$$y(\mathbb{T}) = r + \gamma \max_{a'} Q_{\theta^-}(s', a').$$

Зачем вообще что-то модифицировать?

Природа overestimation

При обучении сетки ошибка появляется из-за неточности аппроксимации и случайной шумовой ошибки, но функции тах это индифферентно — он всегда выбирает лучшее, поэтому случайно или аппроксимационно завышенные оценки будут накапливаться.

Зачем вообще что-то модифицировать?

Формальное утверждение

Пусть s' фиксировано, $Q^*(s',a')$ — истинная Q-функция, а $Q(s',a') \approx Q^*(s',a')$ — её приближение:

$$Q(s',a') = Q^*(s',a') + \varepsilon(a'),$$

где $P(\varepsilon(a')>0)=P(\varepsilon(a')<0)=0.5$ и этот шум не зависит от выбора a' в вероятностном смысле. Тогда:

$$P(\max_{a'} Q(s', a') > \max_{a'} Q^*(s', a')) > 0.5.$$

Action decoupling

Отделение выбора действия от оценки

$$\max_{a'} Q^*(s', a') = \overbrace{Q^*(s', \operatorname{arg\,max} Q^*(s', a'))}^{\operatorname{action evaluation}}$$

Возможные улучшения

Name	Networks	Targets
Double*	Q_1	$y_1 = r + \gamma Q_2(s', \operatorname{argmax} Q_1(s', a'))$
Q-learning	Q_2	$y_2 = r + \gamma Q_1(s', rg \max_{a'} Q_2(s', a'))$
Double Q-learning	Q Q_ — TN	$y = r + \gamma Q_{-}(s', rg \max_{a'} Q(s', a'))$
Twin	Q_1	$y_1 = r + \gamma \min_{i=1,2} Q_i(s', \operatorname{argmax} Q_1(s', a'))$
Q-learning	Q_2	$y_2 = r + \gamma \min_{i=1,2} Q_i(s', \arg \max_{a'} Q_2(s', a'))$

Prioritized Experience Replay

Проблема

В буфере реплеев чаще всего оказываются тривиальные случаи, когда агент сделал шаг и не получил никакой награды, что плохо влияет на обучение, с другой стороны случаи с наградой довольно редки, а они на начальных порах дают агенту намеки, где искать улучшение.

Решение

Семплировать повторы из буфера будем не равномерно, а приоритезировано с помощью весов семплирования:

$$P(\mathbb{T}) \propto |y(\mathbb{T}) - Q^*(s, a, \theta)|^{\alpha}.$$

Prioritized Experience Replay

Недостаток

После неконтролируемой замены равномерного семплирования на какое-то другое, могло случиться так, что для наших переходов $s' \not\sim p(s'|s,a)$. Иными словами, приоритизированное семплирование приводит к *смещению*.

Утешение

Этот эффект не так страшен поначалу обучения, когда распределение, из которого приходят состояния, всё равно скорее всего не сильно разнообразно. Более существенно нивелировать этот эффект по ходу обучения, в противном случае процесс обучения может полностью дестабилизироваться или где-нибудь застрять.

Prioritized Experience Replay

Проблема: много тривиальных обновлений.

Цель: распространить подкрепление (награду) из будущего в прошлое. Сэмплирование с приоритетами из буфера:

$$P(\mathbb{T}) \propto |y(\mathbb{T}) - Q(s, a, \theta)|^{\alpha}$$
.

Проблемы? Теперь $s' \not\sim p(s' \mid s, a)$.

32 / 40

$$\mathbb{E}_{\mathbb{T} \sim \mathrm{Uniform}} \, \mathsf{Loss}(\mathbb{T}) \approx \mathbb{E}_{\mathbb{T} \sim \mathsf{P}(\mathbb{T})} \underbrace{\left(\frac{1}{\mathsf{P}(\mathbb{T})}\right)^{\beta(t)}}_{\mathsf{Rec}} \, \mathsf{Loss}(\mathbb{T}),$$

где для $\beta(t)$ выполняется отжиг от 0 (смещённая оценка) до 1 (несмещённая оценка):

Использование SumTree:

- листья значения приоритета сэмплирования;
- каждый узел сумма двух детей;

Буферизация:

- сэмплировать из $P(\mathbb{T})$ с помощью равномерного распределения на [0, $\sum P(T)$]; • обновление параметров;
- пересчёт приоритетов только для
- текущего батча;
 обновить узлы SumTree;

Сложность: $O(\log N)$, где N размер буфера.

Использование SumTree:

- листья значения приоритета сэмплирования;
- каждый узел сумма двух детей;

Буферизация:

- ullet сэмплировать из $\mathsf{P}(\mathbb{T})$ с помощью равномерного распределения на $[0, \sum P(\mathbb{T})];$
- обновление параметров;
- пересчёт приоритетов только для текущего батча;
 • обновить узлы SumTree;

Сложность: $O(\log N)$, где N размер буфера.

Использование SumTree:

- листья значения приоритета сэмплирования;
- каждый узел сумма двух детей;

Буферизация:

- сэмплировать из $P(\mathbb{T})$ с помощью равномерного распределения на $[0, \sum P(\mathbb{T})];$
- обновление параметров;
- пересчёт приоритетов только для текущего батча;
- обновить узлы SumTree;

Сложность: $O(\log N)$, где N размер буфера.

Использование SumTree:

- листья значения приоритета сэмплирования;
- каждый узел сумма двух детей;

Буферизация:

- ullet сэмплировать из $\mathsf{P}(\mathbb{T})$ с помощью равномерного распределения на $[0, \sum P(\mathbb{T})]$:
- обновление параметров;
- пересчёт приоритетов только для текущего батча; • обновить узлы SumTree;

Сложность: $O(\log N)$, где N размер буфера.

Лекция

Использование SumTree:

- листья значения приоритета сэмплирования;
- каждый узел сумма двух детей;

Буферизация:

- ullet сэмплировать из $\mathsf{P}(\mathbb{T})$ с помощью равномерного распределения на $[0, \sum P(\mathbb{T})]$:
- обновление параметров;
- пересчёт приоритетов только для текущего батча; • обновить узлы SumTree;

Сложность: $O(\log N)$, где N размер буфера.

Лекция

Использование SumTree:

- листья значения приоритета сэмплирования;
- каждый узел сумма двух детей;

Буферизация:

- ullet сэмплировать из $\mathsf{P}(\mathbb{T})$ с помощью равномерного распределения на $[0, \sum P(\mathbb{T})]$:
- обновление параметров;
- пересчёт приоритетов только для текущего батча; • обновить узлы SumTree;

Сложность: $O(\log N)$, где N размер буфера.

Использование SumTree:

- листья значения приоритета сэмплирования;
- каждый узел сумма двух детей;

Буферизация:

- ullet сэмплировать из $\mathsf{P}(\mathbb{T})$ с помощью равномерного распределения на $[0, \sum P(\mathbb{T})]$:
- обновление параметров;
- пересчёт приоритетов только для текущего батча;
 • обновить узлы SumTree;

Сложность: $O(\log N)$, где N размер буфера.

Noisy Networks

Проблема: ε -жадная стратегия наивна:

- неудобный гиперпараметр;
- exploration вне зависимости от состояния.

Решение: добавить шум на веса:

$$w \coloneqq \mu + \sigma \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, 1).$$

- ✓ нет гиперпараметров;
- √ зависит от состояния (не интерпретируемо);
- × дорогое вычисление 🗼 📵 🤊 🤉

Distributional RL

Dueling DQN

Проблема: оценка пары состояние-действие требует знание о всеx действиях.

$$Q^*(s,a) \coloneqq V^*(s) + \underbrace{A^*(s,a)}_{\text{не произвольный}}$$
Аппроксимация Q -функции через уравнение Беллмана относительно V -функции.

Partially Observable MDP

Проблема: есть доступ только к наблюдениям:

$$o_t \sim p(\cdot \mid s_t).$$

Теория: смотри <u>PoMDP</u> (частично наблюдаемые MDP); Практика: с помощью сети LSTM.

Multi-step DQN

Проблема: отложенные награды + ошибки вычисления.

$$y \coloneqq \underbrace{r + \gamma r' + \gamma^2 r'' + \dots}_{pprox «$$
оптимальное поведение»? $+ \gamma^N \max_{a^{(N)}} Q(s^{(N)}, a^{(N)}).$

Внимание!

- ✓ может значительно помочь;
- × в теории не для off-policy.

Практика: хранить в буфере кортежи вида как справа.

$$\left(s, a, \sum_{n=0}^{N-1} \gamma^n r^{(n)}, s^{(N)}, \bigvee_{n=1}^{N} \operatorname{done}_n\right)$$

Передний край науки и индустрии

Rainbow DQN (2017)

- Double DQNBydep c
- приоритетами
 Multi-step DQN
 - Noisy NetsDueling DQN
- Distributional RL

(в следующий раз)

R2D2 (2018)

- Double DQNБуфер с
- приоритетами
 Multi-step DQN
 + LSTM
 + Массовая

параллелизация

Agent 57 (2020)

- Double DQN
 Bydep c
- Буфер с
- приоритетамиMulti-step DQN
 - LSTM
 - Массовая

параллелизация

- + Retrace + Внутренняя
 - мотивация
 - мотивация Управление

гиперпараметрами

Источники:

- Playing Atari with Deep Reinforcement Learning (2013);
- Ссылки на модификации DQN перечислены на предыдущем слайде.

