1 Kompleksna dinamika

Kompleksno ravnino lahko kompaktificiramo z eno točko, kar nam da **Riemannovo sfero** $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.

Slika Riemann

Holomorfne razširitve f na \hat{C} (če obstaja) v okolici $z=\infty$ obravnavamo s pomočjo konjugacije s preslikavo $z\mapsto \frac{1}{z}$. Pravimo, da je f(z) holomorfna v $z=\infty$, tedaj, ko je $f(\frac{1}{z})$ holomorfna v okolici z=0.

Primer 1. i) $f(z) = \frac{1}{z-1} \Longrightarrow$

$$f(\frac{1}{z}) = \frac{1}{\frac{1}{z} - 1} = \frac{z}{1 - z} = z + z^2 + z^3 + \dots$$

z=0 je ničla prve stopnje za $f(\frac{1}{z}),$ zato je $z=\infty$ ničla prve stopnje za f.

 $f(1) = \infty \Longrightarrow$

$$\frac{1}{f(z)} = z - 1$$

tj. z=1 je ničla prve stopnje za $\frac{1}{f(z)}$, zato je tudi pol prve stopnje za f.

ii) $f(z) = z^2 + 1$

$$f(\infty) = \infty \Longrightarrow \frac{1}{f(\frac{1}{z})} = \frac{1}{\frac{1}{z^2} + 1} = \frac{z^2}{1 + z^2} = z^2 + z^4 + \dots$$

 $z = \infty$ je pol 2 stopnje.

iii) $f(z) = e^z = e^x(\cos y + i \sin y)$. Razširitev ni možna, saj za $x \to -\infty$ velja $|f(z)| \to 0$, ter za $x \to \infty$ velja $|f(z)| \to \infty$.

Izrek 1. Funkcija $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ je holomorfna natanko tedaj, ko je razširitev racionalne funkcije ali $f \equiv \infty$.

Dokaz: (⇐⇒): sledi iz primerov, dodaj. (⇒⇒):

- i) če $f\in\mathcal{O}(\mathbb{C})$ nima polov in $f(\infty)\neq\infty$ je po Liouvillovem izreku konstantna.
- ii) če ima f na $\mathbb C$ neskončno mnogo polov, potem zaradi diskretnosti, obstaja zaporedje le teh, ki gre proti ∞ .

 wop wop

Posledično bo tudi $f(\infty) = \infty$ zaradi zveznosti in $f \equiv \infty$ zaradi principa identičnosti.

iii) Če ima f le končno mnogo polov, ima po podobnem argumentu, kot pri ii) tudi kočno ničel. Potem vzamemo R, iracionalno funkcijo z istimi ničlami in poli. Po i) je $\frac{f}{R}$ konstantna.

Povzetek: takoj, ko ima f neskočno ničel ali polov oz. kako bistveno singularnost, je nemoreš obravnavati \hat{C} oz. ni holomorfna.

1.1 Fatoujeva in Juliajeva množica

 $f(z)=z^2$ oz. v polarnih koordinatah $re^{i\phi}\mapsto r^2e^{i2\phi}$.

$$|z| > 1$$
: $\lim_{n \to \infty} |f^n(z)| = \lim_{n \to \infty} r^{2n} = \infty$

$$|z| < 1$$
: $\lim_{n \to \infty} |f^n(z)| = \lim_{n \to \infty} r^{2n} = 0$

|z|=1: f "deluje kot" doubling map Din je kaotična. Poleg tega pa ima vsaka točka v okolici tudi točki, ki gresta proti0oz. ∞

Sklep: kompleksna ravnina oz. Riemannova sfera razpade na dve disjunktni množici. **Fatoujeva**, kjer je obnašanje f^n "predvidljivo" in **Juliajevo**, kjer je obnašanje f^n kaotično

$$\mathcal{F}_f = \hat{\mathbb{C}}/\partial \mathbb{D}$$
$$\mathcal{J}_f = \partial \mathbb{D}.$$

Za formalno definicijo teh dve množic rabimo koncept normalnih družin.

Definicija 1. Zaporedje $(f_n)_{n\in\mathbb{N}}\subset\mathcal{O}(D)$ za $D\subseteq\mathbb{C}$, konvergira k $f\in\mathcal{O}(D)$ enakomerno po kompaktih na D, če $\forall\epsilon>0$ in $\forall K^{komp}$. $\subset D$ $\exists n_0\in\mathbb{N}$: $\forall n\geq n_0$ in $z\in K$, velja $|f_n(z)-f(z)|<\epsilon$.

Primer 2. $f_n(z) = z^n$ na \mathbb{D} .

Limita po točkah je enaka f(z)=0. Izberemo poljuben kompakt $K\subset \mathbb{D}$ Zanj obstaja $r=r(K)\in [0,1),\ da\ je\ K\subseteq \mathbb{D}(0,r)$ Ker je $r<1,\ lahko\ naredimo\ oceno\ \forall z\in K:$

$$|f_n(z) - f(z)| = |z^n| \le r^n \xrightarrow{n \to \infty} 0.$$

tj. $\forall \epsilon > 0$ obstaja $n_0 \in \mathbb{N}$, da je za $n \geq n_0$: $|f_n(z) - f(z)| < \epsilon$. Seveda pa enakomerna konvergenca na celem \mathbb{D} v tem primeru ne obstaja.

Izrek 2. Naj bo $(f_n)_{n\in\mathbb{N}}\subset\mathcal{O}(D),\ D\subseteq\mathbb{C},\ zaporedje\ ki\ konvergira\ f_n\to f$ enakomerno po kompaktih. Potem je tudi $f\in\mathcal{O}(D)$ holomorfna.

Definicija 2. Družina $\mathcal{F} \subset \mathcal{O}(D)$, $D \subseteq \hat{C}$ je **normalna na** D, če za vsako zaporedje $(f_n)_{n \in \mathbb{N}} \subset \mathcal{F}$ obstaja podzaporedje, ki konvergira enakomerno po kompaktih k neki $f \in \mathcal{O}(D)$ ali k $f \equiv \infty$.

Opomba 1. • Normalne družine so analog kompaktnih množic v $\mathcal{O}(D) \cup \{f \equiv \infty\}.$

- Normalnost se študira tudi v drugih razredih funkcij, v katerih pa se običajno ne dodaja $f \equiv \infty$.
- Zadostnim oz. ekvivaletnim pogojem se reče Arzela Ascolijevi izreki. Npr. za družino $\mathcal{F} \subset C([a,b])$ velja, da je normalna, če je:
 - i) enakomerno omejena tj. $\exists M > 0 : |f(x)| \leq M \ \forall x \in [a,b] \ in \ \forall f \in \mathcal{F}.$

- ii) je enakomerno enakozvezna tj. $\forall \epsilon > 0$. $\exists \delta > 0 : |x y| < \delta \Longrightarrow |f(x) f(y)| < \epsilon \ \forall x, y \in [a, b] \ in \ \forall f \in \mathcal{F}$.
- iii) Pri holomorfnih funkcijah ii) sledi iz i) zaradi Cauchyjeve integracijske formule. Zaradi kompaktnosti Ĉ je dovolj celo lokalna omejenost. Zato se Arzela-Ascolijev izrek navadn prenese na Montelova izreka:

Izrek 3 (Prvi Montelov izrek). $\mathcal{F} \subset \mathcal{O}(D)$, $D \subseteq \hat{C}$ je normalna, če je lokalno enakomerno omejena tj. $\forall z \in D$. $\exists z \in U \subset D$ in M > 0, da je $|f(w)| \leq M \ \forall w \in U$ in $\forall f \in \mathcal{F}$.

Definicija 3. Naj bo $f \in \mathcal{O}(D)$, $D \subseteq \hat{\mathbb{C}}$. Njena **Fatoujeva množica** \mathcal{F}_f je definirana kot množica točk $z \in D$, za katere obstaja okolica $U \subset D$, da je družica $\{f^n \mid n \in \mathbb{N}\}$ normalna na U. Njena **Juliajeva množica** pa je definirana kot komplement $\mathcal{J}_f = D/\mathcal{F}_f$.

Primer 3. $f(z) = z^2 \Longrightarrow f^n(z) = z^{2^n}$.

 $Za |z| < 1 \text{ konvergira enakomerno po kompaktih na } \mathbb{D} \Longrightarrow \mathbb{D} \subset \mathcal{F}_f.$

 $Za \ |z| > 1 \ konvergira \ enakomerno \ po \ kompaktih \ na \ \hat{C}/\mathbb{D} \Longrightarrow \mathbb{D} \subset \mathcal{F}_f \ k \infty.$ $Dokaz: \ za \ K \subset \hat{C}/\overline{\mathbb{D}} \ obstaja \ r > 1, \ da \ je \ \mathbb{D}(0,r) \cap K = \emptyset, \ oz. \ |z| \ge r \ za \ z \in K.$ Posledično:

$$|f^n(z)| = |z^{2^n}| \ge r^{2^n} \to \infty.$$

tj. $\forall M>0$. $\exists n_0\in\mathbb{N},\ da\ je\ |f^n(z)|>M\ za\ n\geq n_0\ in\ z\in K$. Alternativno bi lahko oravnavali $\frac{1}{f^n(z)}\to 0$ enakomerno po kompaktnih.

Za |z| = 1 normalnost nimamo v nobeni okolici, saj so blizu točke, ki gredo $k \infty$ in take, ki gredo k 0, zato tudi, če bi obstajala limita, ne bi bila zvezna. Sklep: ponovno smo ugotovili, da sta $\mathcal{F}_f = \hat{C}/\partial \mathbb{D}$ in $\mathcal{J}_f = \partial \mathbb{D}$.

Opomba 2.

- Po konstrukciji je \mathcal{F}_f odprta, \mathcal{J}_f pa zaprta, lahko pa sta obe prazni. Primera za to sta:
 - $-f(z)=z+1\Longrightarrow f^n(z)=z+n\longrightarrow\infty$ enakomerno na kompaktih na $\hat{\mathbb{C}}.$ Torej je $\mathcal{J}_f=\emptyset.$
 - Lattesova funkcija $f(z) = \frac{(z^2+1)^2}{4z(z^2-1)}$ ima $\mathcal{J}_f = \hat{C}$ in $\mathcal{F}_f = \emptyset$.
- Za polinome se definiciji \mathcal{J}_f in \mathcal{F}_f poenostavita, kar bomo spoznali kasneje.

Izrek 4. Množici \mathcal{J}_f in \mathcal{F}_f sta naprej in nazaj invariantni tj. $f(\mathcal{J}_f) = f^{-1}(\mathcal{J}_f) = \mathcal{J}_f$ in $f(\mathcal{F}_f) = f^{-1}(\mathcal{F}_f) = \mathcal{F}_f$.

Dokaz: Dovolj je dokazati zvezo le za \mathcal{F}_f . Naj bo $z \in U$, kjer je $U \subset D$, na kateri so iterati normalni. Potem sta tudi množici $f^{-1}(U)$ in f(U) odprti, seveda pa je družina $\{f^n \mid n \in \mathbb{N}\}$ normalna tudi na njih. Od tod sledi:

$$f^{-1}(\mathcal{F}_f) \subseteq \mathcal{F}_f$$
 in $f(\mathcal{F}_f) \subseteq \mathcal{F}_f$.

Na prvo relacijo dodamo f in dobimo:

$$\mathcal{F} \subset f(\mathcal{F}_f)$$
 oz. $\mathcal{F} = f(\mathcal{F})$.

Posledično pa je tudi $\mathcal{F}_f \subseteq f^{-1}(\mathcal{F}_f)$ oz. $\mathcal{F}_f = f^{-1}(\mathcal{F}_f)$.

Povezanim komponentam \mathcal{F}_f pravimo Fatoujeve komponente in se slikajo ena v drugo. Nek primerček.