CH 6- Greatest Common Divisor

Luke Lu • 2025-10-01

Theorem BBD

Info - Bound By Divisibility

 $\forall a, b \in \mathbb{Z}$, if $b \mid a$ and $a \neq 0$, then $b \leq |a|$

Division Algorithm

 $\forall a \in \mathbb{Z}, b \text{ in positive integers}, \exists a \text{ unique integers } q \text{ and } r \text{ s.t. } a = qb + r \text{ where } 0 \le r < b$

Greatest Common Divisor

Let a and b be integer. An integer c is called a **common divisor** of a and b if $c \mid a$ and $c \mid b$

If a and b are not both zero, an integer d > 0 is the **greatest common divisor** of a and be written $d = \gcd(a, b)$, when

- 1. d is a common divisor of a and b
- 2. \forall integers c, if c is a common divisor of a and b, then $c \leq d$

If a and b are both zero, we define gcd(a, b) = gcd(0, 0) = 0

 \triangle Warning — Let $a \in \mathbb{Z}$ then

- 1. gcd(a, a) = |a|
- 2. gcd(0, a) = |a|

Example:

Let $a, b \in \mathbb{Z}$, prove that gcd(3a + b, a) = gcd(a, b)

Proof

Let $a, b \in \mathbb{Z}$, let $c = \gcd(3a + b, a)$ and $d = \gcd(a, b)$.

1. Suppose a, b are not both 0:

Note that 3a + b and a are not both 0 as well.

Then $c \mid (3a+b), c \mid a$ and $\forall k \in \mathbb{Z}$ if k is a common divisor of 3a+b and a, then $k \leq c, c > 0$

Similarly, $d \mid a, d \mid b$, and $\forall l \in \mathbb{Z}$ if l is a common divisor of a and b then $l \leq d, d > 0$

Notice that since $d \mid a$ and $d \mid b$, by DIC, $d \mid (3a + b)$.

This tells us that d is a common divisor of 3a + b and a. By definition, $d \le c$.

Since $c \mid (3a+b)$ and $c \mid a$, then by DIC, $c \mid ((3a+b)+(-3a))=c \mid b$.

Thus c is a common divisor of a and b. By definition, $c \leq d$

Since $c \leq d$ and $d \leq c \Longrightarrow c = d \Longrightarrow \gcd(3a+b,a) = \gcd(a,b)$

2. Suppose a=b=0 then $\gcd(3a+b,a)=\gcd(a,b)=\gcd(0,0)=0$

 $\mathbf{Info} - \mathbf{GCD}$ with Remainders

 $\forall a,b,q,r \in \mathbb{Z}, \text{if } a = qb + r \text{ then } \gcd(a,b) = \gcd(b,r)$