

Data Partitioning Strategies for Graph Workloads on Heterogeneous Clusters

Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, Lizy K. John The University of Texas at Austin mlebeane@utexas.edu

Motivation

- Heterogeneity is pervasive in modern data centers [][]
- Graph analytics are a pervasive workload in the data center []
 - Many frameworks available to efficiently and easily perform graph analytics [][][][]
- Most frameworks are not equipped to deal with heterogeneity in the data center

Background

- All work performed on PowerGraph[] framework
- Three relevant graph partitioning topics:
 - Online vs. Offline Partitioning
 - Vertex vs. Edge Cut
 - Gather/Apply/Scatter

Online vs. Offline Partitioning

Background

Vertex vs. Edge Cut

Gather/Apply/Scatter

Workload Skew in Heterogeneous Data Centers

Skewed Data Partitioning

Heterogeneous Graph Analytics

- Local node computation time dependent on data distribution
- To properly balance work, we need:
 - Estimation of each node's computational capacity
 - Partitioning algorithms that account for skewed computational capacity

Heterogeneous Computation Capacity

- Computation capacity is complex
- Dependent on many factors:
 - Hardware of the node
 - Nature of the graph
 - Nature of the algorithm
 - Communication patterns
- Can we determine a simple, static estimate?

Skew Factor Calculation

Name	HW Threads	Memory	Network	Thread Skew Factor	Memory Skew Factor
c4.xlarge	4	7.5 GB	100 Mbps to 1.86 Gbps	1	1
c4.2xlarge	8	15 GB	100 Mbps to 1.86 Gbps	3	2
c4.4xlarge	16	30 GB	100 Mbps to 1.86 Gbps	7	4
c4.8xlarge	36	60 GB	up to 8.86 Gbps	17	8

- Static estimate of node computational capacity could be based on:
 - Threads: Logical compute threads on node (default N 2)
 - Memory: Physical memory assigned to a node
 - Profiling: Local throughput of graph subset and algorithm
- We will refer to the estimated ratios of computation capacity as the skew factor of the heterogeneous data center

Heterogeneous Partitioning Algorithm

 Online partitioning algorithms must be modified to support skew factor

Easy to modify current online partitioning algorithms

 We have modified 5 popular algorithms from multiple sources

Problem Formulation

- Statically estimated based on:
 - Threads: Logical compute threads on node (default N 2)
 - Memory: Physical memory assigned to a node
 - Profiling: Local throughput of graph subset and algorithm

Statically estimated based on:

Random Skewed Partitioner

Random assignment of edges to nodes

Greedy Skewed Partitioner

- Greedy decision using current distribution of edges
 - Either locally or coordinated

Grid Skewed Partitioner

- Greedy decision using current distribution of edges
 - Either locally or coordinated

Hybrid Skewed Partitioner

Random assignment of edges/verticies to nodes based on degree

Ginger Skewed Partitioner

Random assignment of edges/verticies to nodes based on degree

Experimental Setup

Algorithms

- Graph: PageRank (PR), Connected Components (CC), Triangle Count (TC)
- Matrix: Stochastic Gradient Descent (SGD), Alternating Least Squares (ALS)

Data Sets

Name	Vertices	Edges	Size (Uncompressed)	Туре	Algorithms
amazon	403,394	3,384,388	46MB	Directed Graph	PR,CC,TC
citation	3,774,768,NA	16,518,948	268MB	Directed Graph	PR,CC,TC
netflix	NA	NA	100MB	Sparse Matrix	ALS,SGD
road-map	1,379,917	1,921,660	84MB	Undirected Graph	PR,CC,TC
social-network	4,847,571	68,993,773	1.1GB	Directed Graph	PR,CC,TC
twitter	41,000,000	1,400,000,000	25GB	Directed Graph	PR,CC,TC
wiki	2,394,385	5,021,410	64MB	Directed Graph	PR,CC,TC

Experimental Setup

Data Center

- Graph: PageRank (PR), Connected Components (CC), Triangle Count (TC)
- Matrix: Stochastic Gradient Descent (SGD), Alternating Least Squares (ALS)

Skew Factor

Results use Thread Based Skew Factor

Pagerank

Connected Components

Triangle Count

Alternating Least Squares

Data distribution

Ideal distribution 17-7-3-1

Results

Skewed approach generally decreases network communication

Results

Data Ingress Time

Scale-out Results

- Extremely large Twitter graph
- No benefits after 36 nodes

Configuration Name	C4.2xlarge	C4.4xlarge	C4.8xlarge
Config 1	12	8	4
Config 2	8	8	8
Config 3	4	8	12
Config 4	3	5	16

Future Work

- Incorporate better network model
- Profile based partitioning scheme
 - How do we sample graph inputs?

Conclusion

- Simple, static throughput estimation can greatly improve performance
- We modify 5 existing on-line graph partitioning strategies for heterogeneous environments
- Our modified algorithms improve runtime by as much as 64% and on average 32% on Amazon EC2
- We show that our strategies also work up to 48 nodes, achieving 18% performance improvement on scale-out

Thank You!

References

[1] S. Garg, S. Sundaram, and H. D. Patel. Robust heterogeneous data center design: A principled approach. *SIGMETRICS Perform. Eval. Rev.*, 39(3):28–30, Dec. 2011.

[2] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee, and L. Niccolini. An energy case for hybrid datacenters. *SIGOPS Oper. Syst. Rev.*, 4(1):76–80, Mar. 2010.

[1] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed graph-parallel computation on natural graphs. In *OSDI*, pages 17–30. USENIX Association, 2012.