



Hanlin Yu<sup>1</sup>, Arto Klami<sup>1</sup>, Aapo Hyvärinen<sup>1</sup>, Anna Korba<sup>2</sup>, Omar Chehab<sup>2</sup>

1. University of Helsinki, Finland 2. ENSAE, CREST, IP Paris, France





#### **Problem statement**

Given samples from two distributions,  $X_0 \sim p_0$  and  $X_1 \sim p_1$ , estimate the ratio  $\frac{p_1(x)}{p_0(x)}$ .

Algorithm [Choi et al., AISTATS 2022]

- 1. Interpolate samples:  $X_t = \sqrt{1-t^2}X_0(x) + \sqrt{t^2}X_1(x)$ . The law  $p_t(x)$  is implicit.
- 2. Estimate the time score  $\partial_t \log p_t(x)$ .
- 3. Obtain the log ratio through numerical integration:  $\log \frac{p_1(x)}{p_0(x)} = \int_0^1 \partial_t \log p_t(x) dt$

#### **Learning objectives for the time score**

Original regression

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x},t)} \left[ \lambda(t) \left( \partial_t \log \boldsymbol{p}_t(\boldsymbol{x}) - s_{\boldsymbol{\theta}}(\boldsymbol{x},t) \right)^2 \right]$$

not explicit

Integrate by parts TSM

$$\mathcal{L}(\boldsymbol{\theta}) = 2\mathbb{E}_{p_0(\boldsymbol{x})}[s_{\boldsymbol{\theta}}(\boldsymbol{x},0)] - 2\mathbb{E}_{p_1(\boldsymbol{x})}[s_{\boldsymbol{\theta}}(\boldsymbol{x},1)] + \mathbb{E}_{p(t,\boldsymbol{x})}[2\boldsymbol{\partial}_t s_{\boldsymbol{\theta}}(\boldsymbol{x},t) + 2\dot{\lambda}(t)s_{\boldsymbol{\theta}}(\boldsymbol{x},t) + \lambda(t)s_{\boldsymbol{\theta}}(\boldsymbol{x},t)^2]$$
 slow to differentiate

Condition (ours)

CTSM

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x}, \boldsymbol{z}, t)} \left[ \lambda(t) \left( \partial_t \log \boldsymbol{p_t}(\boldsymbol{x} \,|\, \boldsymbol{z}) - s_{\boldsymbol{\theta}}(\boldsymbol{x}, t) \right)^2 \right]$$

explicit

Factorize (ours)

CTSM-v

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x}, \boldsymbol{z}, t)} \left[ \lambda(t) \sum_{i=1}^{D} \left( \partial_{t} \log p_{t}(\boldsymbol{x}^{i} | \boldsymbol{x}^{< i}, \boldsymbol{z}) - s_{\boldsymbol{\theta}}^{i}(\boldsymbol{x}, t) \right)^{2} \right]$$

We also introduce the weighting function  $\lambda(t) \propto 1/|\partial_t \log p_t(\mathbf{x}|\mathbf{z})|$ .

**Theoretical guarantees** (modified): for K integration steps and N samples,

$$\mathbb{E}_{\hat{p}_1} \left\| \log \frac{p_1}{p_0} - \widehat{\log \frac{p_1}{p_0}} \right\|_{L^2(p_1)}^2 \le \frac{1}{2K^2} \mathbb{E}_{p_1(x)} [L(x)^2] + \frac{2}{N} e(\theta^*, \lambda, p_t) + o\left(\frac{1}{N}\right)$$

integral discretization error null if  $t \to \partial_t \log p_t(x)$  constant, i.e. Lipschitz constant L(x) is null

score estimation error null if  $\partial_t \log p_t(x | z) = \partial_t \log p_t(x)$ 

#### **Applications of density-ratio estimation**

#### **Mutual information estimation**

CTSM-v is faster and outperforms others especially in high dimensions.

**Likelihood estimation** (in bits per dimension, BPD). We use

$$\log p_1(\mathbf{x}) = \underbrace{\log p_0(\mathbf{x})}_{Known} + \int_0^1 \underbrace{\partial_t \log p_t(\mathbf{x}) dt}_{Estimated}$$

Sample generation. We convert the estimated time scores into space scores and plug them into popular score-based samplers.

$$\nabla \log p_t(\mathbf{x}) = \nabla \left( \underbrace{\log p_0(\mathbf{x})}_{Known} + \int_0^t \partial_s \underbrace{\log p_s(\mathbf{x})}_{Estimated} \right)$$



| Space        | Methods | Approx. BPD | Time per step |
|--------------|---------|-------------|---------------|
| Latent space | TSM     | 1.30        | 347 ms        |
|              | Ours    | 1.26        | 58 ms         |
| Pixel space  | TSM     | unstable    | 1103 ms       |
|              | Ours    | 1.03        | 142 ms        |

Annealed Langevin sampler



Probability flow ODE sampler



Theoretical guarantees: for K integration steps and N samples,

$$\mathbb{E}_{\hat{p}_{1}}[\mathrm{KL}(p_{1},\hat{p}_{1})^{2}] \leq \frac{1}{2 \kappa^{2}} \mathbb{E}_{p_{1}(x)}[L(x)^{2}] + \frac{2}{N} e(\theta^{*},\lambda,p) +$$

integral discretization error null if  $\partial_t \log p_t(\mathbf{x})$  constant wrt t

score estimation error null if  $\partial_t \log p_t(\mathbf{x} | \mathbf{z}) = \partial_t \log p_t(\mathbf{x})$ 

## NCE

|              | Binary | Multi-class | Continuous |
|--------------|--------|-------------|------------|
| NCE          | Yes    | No          | No         |
| TRE          | No     | Consecutive | No         |
| DRE-infinity | No     | Consecutive | Yes        |
| Michael      | No     | Full        | No         |
| Hanlin       | No     | Full        | Yes        |

The literature suggests that multi-class (full) and continuous would be the thing to aim for.

## CNCE

|        | Binary | Multi-class | Continuous |
|--------|--------|-------------|------------|
| CNCE   | Yes    | No          | No         |
| No-one | No     | Consecutive | No         |
| No-one | No     | Consecutive | Yes        |
| Us     | No     | Full        | No         |
| Us     | No     | Full        | Yes        |

$$p(Y=1 \mid x) = \frac{p_1(x)}{p_0(x) + p_1(x)} = \frac{1}{1 + \frac{p_0}{p_1}(x)}$$

$$p(Y = k \mid x) = \frac{p_k(x)}{\sum_{j=1}^{M} p_j(x)} = \frac{1}{1 + \sum_{j \neq k}^{M} \frac{p_j}{p_k}(x)}$$

$$= \frac{1}{1 + \sum_{j \neq k}^{M} \frac{\frac{p_j}{p_1}(x)}{\frac{p_k}{p_1}(x)}}$$

Similar to mean flow Similar to flow map

$$\log \frac{p(x',t')}{p(x,t)} = \log \frac{p(x'|t')}{p(x|t)} = \log \frac{p(x_{t'})}{p(x_t)} = -\int_t^{t'} \nabla \cdot v(s) \, ds$$

# OLDER VERSIONS

 $\mathcal{L}_{\text{TSM}}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x},t)} \big[ \lambda(t) \| \partial_t \log p_t(\boldsymbol{x}) - s_{\boldsymbol{\theta}}(\boldsymbol{x},t) \|^2 \big]$ 

Hard to compute.

 $\mathcal{L}_{\text{CTSM}}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x}, \boldsymbol{z}, t)} \left[ \lambda(t) \| \underline{\partial_t \log p_t(\boldsymbol{x} \,|\, \boldsymbol{z})} - s_{\boldsymbol{\theta}}(\boldsymbol{x}, t) \|^2 \right]$ 

Easy to compute.

## Possible sellings points / research directions

- 1. Link between multi-class NCE variants and modern papers (mean flows, flow map matching) that parameterize the jump between any two times t, t'. Link with ST-NCE.
- 2. Focusing the "spatial" part of ST-NCE.

NCE has in very recent years benefitted from a lot of modernization (TRE, DRE-infinity, Srivastava). Applying this modernization to CNCE is very unexplored yet!!

Presumably, binary CNCE estimates decently the EBM on the data manifold, but maybe the multiclass estimates the EBM much better *outside* of the data manifold. This OOD is of interest to many (Yilun, Florentin).

Psychologically, people love scores. The link between CNCE and **space score** matching seems very under-explored yet.

More generally, solving OOD estimating of the space score is very relevant now for composing EBMs.

### 3. ST-NCE.





Hanlin Yu<sup>1</sup>, Arto Klami<sup>1</sup>, Aapo Hyvärinen<sup>1</sup>, Anna Korba<sup>2</sup>, Omar Chehab<sup>2</sup>

1 University of Helsinki, Finland 2. ENSAE, CREST, IP Paris, France





#### **Problem statement**

We have samples from two distributions,  $X_0 \sim p_0$  and  $X_1 \sim p_1$  and want to estimate their density ratio  $\frac{p_1(x)}{p_0(x)}$  [1][2][3].

#### Time Score Matching (TSM) [3]

- 1. Interpolate samples:  $X_t = \sqrt{1-t^2}X_0(x) + \sqrt{t^2}X_1(x)$ . Its probability law  $p_t(x)$  is implicit.
- 2. Estimate the time score  $\partial_t \log p_t(\mathbf{x})$ .
- 3. Obtain the log ratio through numerical integration:  $\log \frac{p_1(x)}{p_0(x)} = \int_0^1 \partial_t \log p_t(x) dt$

Step 2 is currently **slow**: it involves minimizing a loss with higher order gradients (against time and parameters). Can we obtain a faster variant?

#### References

- 1. Gutmann, M.U. and Hyvärinen, A. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics, JMLR 2012
- 2. Rhodes, B., Xu., K. and Gutmann, M.U., Telescoping Density-Ratio Estimation, NeurIPS 2020
- 3. Choi, K., Meng, C., Song, Y., and Ermon, S., Density ratio estimation via infinitesimal classification, AISTATS 2022
- 4. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Eamon, S., and Poole, B., Score-based generative modeling through stochastic differential equations, ICLR 2021
- 5. Lipman, Y., Chen, R. T.Q., Ben-Hamu, H., Nickel, M., and Le, M., Flow matching for generative modeling, ICLR 2023

#### **Conditional Time Score Matching (CTSM)**

We propose a cheaper version of step 2, using a conditioning variable z to make the intermediate  $p_t(x \mid z)$  known in closed-form, similar to diffusion [4] and flow matching [5]:  $\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(x,z,t)} \left[ \lambda(t) \left( \partial_t \log p_t(x \mid z) - s_{\boldsymbol{\theta}}(x,t) \right)^2 \right], \quad \lambda(t) \text{ are positive weights.}$ 

We also propose an efficient, **vectorized** version of this loss (CTSM-v), using instead vector of  $\partial_t \log p_t(x^i | x^{< i}, z)$ , as well as **theoretical guarantees** on the estimation errors.

#### **Mutual information estimation**

Can be reframed as a density ratio estimation problem. CTSM-v is faster and outperforms others especially in high dimensions.



#### **MNIST**

Likelihood estimation (in bits per dimension, BPD). Our method is faster and more accurate, achieving good results without relying on pre-trained normalizing flows. Sample generation. Our trained score network generates reasonable samples using popular diffusion-based samplers with ambient space scores induced by time scores..

| Space   | Methods | Approx. BPD | Time per step |
|---------|---------|-------------|---------------|
| Latent  | TSM     | 1.30        | 347 ms        |
|         | Ours    | 1.26        | 58 ms         |
| Ambient | TSM     | unstable    | 1103 ms       |
|         | Ours    | 1.03        | 142 ms        |









Hanlin Yu<sup>1</sup>, Arto Klami<sup>1</sup>, Aapo Hyvärinen<sup>1</sup>, Anna Korba<sup>2</sup>, Omar Chehab<sup>2</sup>

1 University of Helsinki, Finland 2. ENSAE, CREST, IP Paris, France





#### **Problem statement**

We have samples from two distributions,  $X_0 \sim p_0$  and  $X_1 \sim p_1$  and want to estimate their density ratio  $\frac{p_1(x)}{p_0(x)}$ .

Can be solved using probabilistic classification [1][2][3].

#### Time Score Matching (TSM) [3]

- 1. Interpolate samples:  $X_t = \sqrt{1 t^2} X_0(x) + t X_1(x)$ . Its probability law  $p_t(x)$  is *implicit*.
- 2. Estimate the time score  $\partial_t \log p_t(x) \approx s_\theta(x,t)$  using the TSM loss:  $\mathscr{L}(\boldsymbol{\theta}) = 2\mathbb{E}_{p_0(x)}[s_{\boldsymbol{\theta}}(x,0)] 2\mathbb{E}_{p_1(x)}[s_{\boldsymbol{\theta}}(x,1)] + \mathbb{E}_{p(t,x)}[2\partial_t s_{\boldsymbol{\theta}}(x,t) + 2\dot{\lambda}(t)s_{\boldsymbol{\theta}}(x,t) + \lambda(t)s_{\boldsymbol{\theta}}(x,t)^2],$  Where  $\lambda(t)$  are positive weights.
- 3. Obtain the ratio through numerical integration:  $\frac{p_1(x)}{p_0(x)} = \exp\left(\int_0^1 s_{\theta}(x, t) dt\right)$

Step 2 involves **higher order gradients** and thus is expensive. Can we obtain a cheaper variant with higher accuracies?

#### References

- 1. Gutmann, M.U. and Hyvärinen, A. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics, JMLR 2012
- 2. Rhodes, B., Xu., K. and Gutmann, M.U., Telescoping Density-Ratio Estimation, NeurlPS 2020
- 3. Choi, K., Meng, C., Song, Y., and Ermon, S., Density ratio estimation via infinitesimal classification, AISTATS 2022
- 4. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Eamon, S., and Poole, B., Score-based generative modeling through stochastic differential equations, ICLR 2021
- 5. Lipman, Y., Chen, R. T.Q., Ben-Hamu, H., Nickel, M., and Le, M., Flow matching for generative modeling, ICLR 2023

#### **Conditional Time Score Matching (CTSM)**

We propose a cheaper version of step 2. The idea is to introduce a conditioning variable z to make the intermediate  $p_t(x \mid z)$  known in closed-form, similar to diffusion [4] and flow matching [5]:

$$\mathscr{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x}, \boldsymbol{z}, t)} [\lambda(t) (\partial_t \log p_t(\boldsymbol{x} | \boldsymbol{z}) - s_{\boldsymbol{\theta}}(\boldsymbol{x}, t))^2].$$

We also propose an efficient, **vectorized** version of this loss (CTSM-v), using instead vector of  $\partial_t \log p_t(x^i | x^{< i}, z)$ , as well as **theoretical guarantees**.

#### **Mutual information estimation**

Can be reframed as a density ratio estimation problem. CTSM-v is faster and outperforms others especially in high dimensions.



#### **MNIST**

Likelihood estimation (BPD, lower is better). Our method is faster and more accurate, achieving good results without relying on pre-trained normalizing flows.

Sample generation. Our trained score network generates reasonable samples using popular diffusion-based samplers with ambient space scores.

| Space   | Methods | Approx. BPD | Time per step |
|---------|---------|-------------|---------------|
| Latent  | TSM     | 1.30        | 347 ms        |
|         | Ours    | 1.26        | 58 ms         |
| Ambient | TSM     | unstable    | 1103 ms       |
|         | Ours    | 1.03        | 142 ms        |









Hanlin Yu<sup>1</sup>, Arto Klami<sup>1</sup>, Aapo Hyvärinen<sup>1</sup>, Anna Korba<sup>2</sup>, Omar Chehab<sup>2</sup>

1. University of Helsinki, Finland 2. ENSAE, CREST, IP Paris, France





#### **Problem statement**

Given samples from two distributions,  $X_0 \sim p_0$  and  $X_1 \sim p_1$ , estimate their density ratio  $\frac{p_1(x)}{p_0(x)}$ .

Density Ratio Estimation using a time score [Choi et al., AISTATS 2022]

- 1. Interpolate samples:  $X_t = \sqrt{1-t^2}X_0(x) + \sqrt{t^2}X_1(x)$ . Its probability law  $p_t(x)$  is implicit.
- 2. Estimate the time score  $\partial_t \log p_t(\mathbf{x})$ .
- 3. Obtain the log ratio through numerical integration:  $\log \frac{p_1(x)}{p_0(x)} = \int_0^1 \partial_t \log p_t(x) dt$

Our loss for learning the time score using positive weights  $\lambda(t)$ 

Classical regression loss (Choi et al.)

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x},t)} [\lambda(t) || \partial_t \log p_t(\boldsymbol{x}) - s_t(\boldsymbol{x}; \boldsymbol{\theta}) ||^2]$$

Integration by parts (Choi et al.)

$$\mathcal{L}(\boldsymbol{\theta}) = 2\mathbb{E}_{p_0(\boldsymbol{x})}[s_{\boldsymbol{\theta}}(\boldsymbol{x}, 0)] - 2\mathbb{E}_{p_1(\boldsymbol{x})}[s_{\boldsymbol{\theta}}(\boldsymbol{x}, 1)]$$
$$+ \mathbb{E}_{p(t, \boldsymbol{x})}[2\partial_t s_{\boldsymbol{\theta}}(\boldsymbol{x}, t) + 2\dot{\lambda}(t)s_{\boldsymbol{\theta}}(\boldsymbol{x}, t) + \lambda(t)s_{\boldsymbol{\theta}}(\boldsymbol{x}, t)^2]$$

Conditioning variable (**ours**): like diffusion / flow  $\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x},\boldsymbol{z},t)} \big[ \lambda(t) \| \partial_t \log p_t(\boldsymbol{x} \,|\, \boldsymbol{z}) - s_{\boldsymbol{\theta}}(\boldsymbol{x},t) \|^2 \big]$ 

No explicit formula for  $p_t(x)$ .

The loss gradient computes  $\partial_{\theta}\partial_{t}s_{\theta}(x,t)$  which is slow.

Conditioning variable z makes  $p_t(x \mid z)$  known in closed-form.

#### **Efficient implementation of our loss**

**Reweigh** the loss:  $\lambda(t) \propto 1/\|\partial_t \log p_t(x|z)\|$ 

**Vectorize** the loss: replace  $\partial_t \log p_t(x \mid z) \in \mathbb{R}$  by the vector of  $\partial_t \log p_t(x^i \mid x^{< i}, z)$ 

Our theoretical guarantees control the expected error as time discretization steps and number of samples increase.

 $\mathbb{E}_{\hat{p}_1}[\mathrm{KL}(p_1, \hat{p}_1)^2] \leq \frac{1}{2K^2} \mathbb{E}_{p_1(x)}[L(x)^2] + \frac{2}{N} e(\theta^*, \lambda, p) + o(\frac{1}{N})$ 

Applications of density-ratio estimation

Mutual information estimation

CTSM-v is faster and outperforms others especially in high dimensions.



**Likelihood estimation** (in bits per dimension, BPD). Higher likelihoods and faster training directly in pixel space.

Sample generation. We convert the estimated time scores  $\partial_t \log p_t(x)$  into space scores  $\nabla \log p_t(x)$  and plug them into popular score-based samplers.

| Space   | Methods | Approx. BPD | Time per step |
|---------|---------|-------------|---------------|
| Latent  | TSM     | 1.30        | 347 ms        |
|         | Ours    | 1.26        | 58 ms         |
| Ambient | TSM     | unstable    | 1103 ms       |
|         | Ours    | 1.03        | 142 ms        |

Annealed Langevin sampler



PF-ODE sampler

