Equality constrained quadratic programming problem

General problem

min
$$f(x) = \frac{1}{2} x^{T}Qx + c^{T}x$$

s.t. $Ax = b$

- Q symmetric positive semidefinite matrix of dimension nxn
- c, x vectors of dimension nx1
- A full rank matrix of dimension mxn
- b vector of dimension mx1

KKT conditions at a minimum x*:

$$Qx^* + A^T \lambda^* = -c$$
$$Ax^* = b$$

We can introduce the matrix K and the vectors w*, d

$$K = \begin{bmatrix} Q & A^T \\ A & 0 \end{bmatrix} \qquad w^* = \begin{bmatrix} x^* \\ \lambda^* \end{bmatrix} \qquad d = \begin{bmatrix} -c \\ b \end{bmatrix}$$

and rewrite KKT conditions to QP obtaining the linear system Kw* = d

Constrained problem

Considered problem and its constraints

Problem 2

$$\min_{x \in \mathbb{R}^n} \qquad \sum_{i=1}^n x_i^2 - \sum_{i=1}^{n-1} x_i x_{i+1} + \sum_{i=1}^n x_i$$
 s.t. the sum $x_1 + x_{1+K} + x_{1+2K} + \dots$ should be 1 the sum $x_2 + x_{2+K} + x_{2+2K} + \dots$ should be 1
$$\vdots$$
 the sum $x_K + x_{2K} + x_{3K} + \dots$ should be 1
$$\mathbb{Q} = \operatorname{diag}(2) + \operatorname{upper_diag}(-1) + \operatorname{lower_diag}(-1), \text{ everything else 0}$$

$$\mathbb{Q} = \operatorname{diag}(2) + \operatorname{upper_diag}(-1) + \operatorname{lower_diag}(-1), \text{ everything else 0}$$

$$\mathbb{Q} = \operatorname{diag}(2) + \operatorname{upper_diag}(-1) + \operatorname{lower_diag}(-1), \text{ everything else 0}$$

A = [diag(1) every K columns]

Methods used

Presentation of the methods used to solve the problem

FULL SYSTEM FACTORIZATION

- $K = LDL^T/LU$
- fill-in problem

SCHUR-COMPLEMENT APPROACH

- \bullet **Q**=AQ⁻¹A^T
- Generally more efficient

GMRES

- Iterative solver
- Kw* = d

NULL-SPACE METHOD

- Null-space matrix Z
- Computationally expensive

- Elapsed time
- How close we are to the solution:
 - \circ KKT_gradL_norm = $||Qx^* + A^T\lambda + c||$
- How well we respected the constraints:
 - \circ KKT_eq_norm = $||Ax^* b||$
- Value of the function in x*

Disclaimer

If $n=10^5$ the matrix is sparse, thus results obtained are not completely comparable with $n=10^4$.

```
 \begin{bmatrix} X & X & X & \cdot & \cdot & \cdot & \cdot & \cdot \\ X & X & \cdot & X & X & \cdot & \cdot & \cdot \\ X & \cdot & X & \cdot & X & \cdot & \cdot & \cdot \\ \cdot & X & \cdot & X & \cdot & X & \cdot & \cdot \\ \cdot & X & X & \cdot & X & X & X & \cdot \\ \cdot & \cdot & X & X & X & X & \cdot & \cdot \\ \cdot & \cdot & \cdot & X & X & X & X & \cdot \\ \cdot & \cdot & \cdot & \cdot & X & X & X & \cdot \end{bmatrix}
```

11

FULL SYSTEM FACTORIZATION

- Symmetric factorization
 K=LDL^T/LU
- Fill-in problem if n+m is very large and K sparse

Fill-in phenomenon

Matrix A Matrices L, U

"

GMRES

- Iterative solver
- Linearly increasing cost per iterations
 - Solve the system Kw*=d
 - Parameters used:

$$tol = 10^{-6}$$

$$maxit = 200$$

GMRES results: elapsed time

GMRES results: KKT_GradL_norm

GMRES results: KKT_EQ_norm

GMRES results: f(x*)

66

SCHUR-COMPLEMENT APPROACH

- Q symmetric positive semi-definite
 - A full rank
 - Efficient method
 - $Q_{Schur} = AQ^{-1}A^{T}$

SCHUR results: elapsed time

SCHUR results: KKT_GradL_norm

SCHUR results: KKT_EQ_norm

SCHUR results: f(x*)

46

NULL-SPACE METHOD

- Does not require non-singularity of Q
- A is a full-rank matrix
- Z has dimension nx(n-m)
- Z^TQZ is positive definite

NULL-SPACE results: elapsed time

NULL-SPACE results: KKT_gradL_norm

NULL-SPACE results: KKT_EQ_norm

NULL-SPACE results: f(x*)

Conclusions

Final considerations and evaluations of the methods in this particular problem

Elapsed time comparison

Conclusions

GMRES

- Lots of iterations
- Lots of computational time to reach high precision

SCHUR

- Computationally efficient
- Fast
- Not completely precise when n is large

NULL-SPACE

- Generally efficient
- Precise
- Can be expensive for some matrix Z

There's not a method always better, it highly depends on the problem faced and the constraints it has to satisfy.

Team Presentation

Florentin-Cristian Udrea
S319029

Sara Rosato S317547

Thanks for the attention!