Homework 2

Partial Differential Equations, Spring 2023

David Yang

Logan Chapter 1.2, Problem 5

Solve the pure initial value problems in the region $x \in \mathbb{R}$, t > 0.

$$u_t + xtu_x = 0, u(x, 0) = f(x)$$

and

$$u_t + xu_x = e^t$$
, $u(x, 0) = f(x)$.

Part 1. Solve $u_t + xtu_x = 0$, u(x, 0) = f(x) in the region $x \in \mathbb{R}$, t > 0.

Solution. Note that this is a first-order quasi-linear partial differential equation, so we can apply the method of characteristics to solve it.

Setting up the characteristic ODEs, we have that

$$t_{\tau} = 1$$
, $x_{\tau} = xt$, and $U_{\tau} = e^t$

with the initial conditions for $\tau = 0$ as

$$t(\tau = 0) = 0$$
, $x(\tau = 0) = \xi$, and $U(\tau = 0) = f(\xi)$.

Solving the first ODE, we have that

$$t = \tau$$
.

Substituting this into the second ODE, we have that $x_{\tau} = x\tau$ and so $\frac{1}{x}dx = \tau d\tau$. Solving for x, we get that $x = Ce^{\frac{\tau^2}{2}}$.

Since the initial condition tells us that $x(\tau = 0) = \xi$, we know that $C = \xi$, so our general form for x is

$$x = \xi e^{\frac{\tau^2}{2}}.$$

Finally, solving the third ODE gives us

$$U = f(\xi)$$
.

Now, by inverting the coordinate transformation, we can get back to xt coordinates:

$$\xi = xe^{-\frac{t^2}{2}}$$
 and $\tau = t$.

Since $u(x,t)=U(\xi,\tau)=f(\xi)$, where $\xi=xe^{-\frac{t^2}{2}}$ and $\tau=t$, our solution to the original PDE is

$$u(x,t) = f\left(xe^{-\frac{t^2}{2}}\right).$$

Part 2. Solve $u_t + xu_x = e^t$, u(x,0) = f(x) in the region $x \in \mathbb{R}, t > 0$.

Solution. Since this is also a first-order quasi-linear partial differential equation, we can apply the method of characteristics to solve it.

Setting up the characteristic ODEs, we have that

$$t_{\tau} = 1$$
, $x_{\tau} = x$, and $U_{\tau} = e^t$

with the initial conditions for $\tau = 0$ as

$$t(\tau = 0) = 0$$
, $x(\tau = 0) = \xi$, and $U(\tau = 0) = f(\xi)$.

Solving the first ODE with the initial condition, we have that

$$t=\tau$$
.

Solving the second ODE, we have that $x_{\tau} = x$ and so $\frac{1}{x}dx = d\tau$. Solving for x, we get that $x = Ce^{\tau}$. With the given initial condition, we must have that $C = \xi$, and so our general form for x is

$$x = \xi e^{\tau}$$
.

Finally, substituting $t = \tau$ into our third ODE, we get $U_{\tau} = e^{\tau}$. Integrating and solving for U, we get that

$$U = e^{\tau} + C' + f(\xi).$$

Since we are given the initial condition $U(\tau = 0) = f(\xi)$, we must have that C' = -1. Thus, our general form for U is

$$U = e^{\tau} - 1 + f(\xi).$$

Now, by inverting the coordinate transformation, we can get back to xt coordinates:

$$\xi = xe^{-t}$$
 and $\tau = t$.

Since $u(x,t) = U(\xi,\tau) = e^{\tau} - 1 + f(\xi)$, where $\xi = xe^{-t}$ and $\tau = t$, our solution to the original PDE is

$$u(x,t) = (e^t - 1) + f(xe^{-t})$$
.