1 Fitting data to linear equa	fions.
Suppose the data is output $x_1 x_2 x_3 = = = = = = = = = $	
There are m data points x_1^m, x_2^m, x_3^m, y^m is the lapoint.	ust
The model is $y = a_1x_1 + a_2x_2 + a_3x_3 + C$	
In Aar = yr identify A , ar and yr Winner: Apr Tibyan.	Tul 7
$\begin{bmatrix} x_1^1 & x_2^1 & x_3^1 & 1 \\ x_1^2 & x_2^2 & x_3^2 & 1 \\ \vdots & & & & & \\ x_1^m & x_2^m & x_3^m & 1 \end{bmatrix} = \begin{bmatrix} x_1^1 & x_2^1 & x_3^1 & 1 \\ a_2 & a_3 & a_3 \\ \vdots & & & \\ x_1^m & x_2^m & x_3^m & 1 \end{bmatrix}$	2 2 2
i/p data parametery	OIP data

Scanned by CamScanner

Construct the notation making.

RIO), when RIO) multiplies a vector it rotales it counter-clockwise by angle O.

A 2D rector

$$A\begin{pmatrix} a \\ b \end{pmatrix} = a A\begin{pmatrix} b \\ c \end{pmatrix} + b A\begin{pmatrix} c \\ c \end{pmatrix}$$

known = if known

$$\frac{1}{(0,1)} = \frac{(0,1)}{(0,1)} = \frac{(0,1)}{(0,1)$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} \end{bmatrix} = \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} \end{bmatrix} = \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} \end{bmatrix} = \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix}$$

Hence the rotation matrix

R(0) = [coso - sind]

sind coso

Projection along 0= constant line. Find the matrix by considering the effect on unit vectors.

Atre

Scanned by CamScanner

The projection matrix is.

P = [costo coso sino]

Cososino sino] Do polynomial fit to the given given m data points. $(x_4, y_1), (x_2, y_2), \dots, (x_m, y_m),$ Fit the polynomial $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + 0$ the data. Let us convert this nonlinear problem to a linear problem. $x=x_1$ $x_2=x_2$ y $x_2=x_3$. $x_0=1$. Create the fire dimensional data throad a' a^{5} a^{9} $\propto \propto^2 \propto^3 \quad \forall \quad \int m \quad \text{such}$

Write the corresponding linear equation Aar = yr Identify A, at and yt $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ $= Q_0 \times_0 + Q_1 \times_1 + Q_2 \times_2 + Q_3 \times_3.$ m data points, give m equations Which can be written (with 50=1) as. $\frac{1}{1} \propto_1^1 \propto_2^1 \propto_3^1$ Input data Unknown OIP data parametus Nonsingula 7 invertible The best fit solution is. · L L (4 L) A = 14 The fit parameters à are found from (ATA) à 9= ATYT

Scanned by CamScanner

Remember the matrix

A is mxn where m is the number of data points and n number of parameters.

A: Not square, not invertible.

ATA: Is square