波

2020年度物理基礎長倉クラス12月~

授業資料はこちら

この単元の目的

- 静止画から、現象をイメージできるようになろう!
 - o 今までは、運動している物体だけに注目すれば良かったが、波の単元では、動き全体に注目する必要がある。幅広い視野が必要。
- 目に見えない波を想像する。
 - o 音や光なども波だが、本当か?

No.7 定常波と共振

プラスチックバネを振ろう!

頌栄女子学院中学高等学校 北原先生 作図

実験結果

重ね合わせと共振

シミュレーションサイト

共振と共鳴

● ある特定のリズムで揺らしたときに大きく揺れる現象を、共振(音の場合は共鳴)と呼ぶ。

アルミ板の共振実験

動画

グラスの共振実験

動画

橋の共振

動画

参考

- グラスの共振
- タコマナローズ橋の崩壊

No.8 弦の振動実験

前回やったこと

- 入射波と反射波が重なり合うと、定常波ができる。
- 実際にやってみると、ちょうど良い振動数のときにしか定常波はできない。
 - o 手元でも波は反射しているので、2つ以上の波が重なっている!
 - o 行って戻って行って戻って…の全てがちょうどよく重なるとき、定常波は大きくなる。

--

参考 定常波

__

前回やったこと(続き)

- ある特定のリズムで揺らしたときに大きく揺れる現象を、共振(音の場合は共鳴)と呼ぶ。
 - ο グラスの共振
 - タコマナローズ橋の崩壊

今日やること

弦の共振条件を探る!

使うもの

- スピーカー
- アンプ(長倉の手作り)→壊れやすいから引っ張らないで...
- iPhone
- Function Genelator アプリ

実験の状況の説明

実験道具は、全てセットアップ済み

--

参考 実験の様子

実験についてアドバイス

- スピーカーと糸は、軽く触れるように。
- まず、ピンクの弦から実験すること。

- 初めは、36~42Hzくらいで、2倍振動をみてみよう。
- +- 1Hz で微調整
- 表を埋めるのは、次回。まずは実験結果をまとめる!

No.9 弦の共振

思い出そう。

頌栄女子学院中学高等学校 北原先生 作図

No.10 音と波

スピーカーと火

No.11 楽器の物理学

実験 気柱の音の大きさ

実験 気柱の端っこで何が起きているか

楽器と共鳴

ナチュラルホルン

"ホルンのテクニック"(G. ミュラー著, 石井信生訳)(音楽の友社)

ナチュラルホルン

• 管の長さを変えることはできない。右手で微調整はするけど、主に倍振動を行ったり来たりしながら音楽を奏でる。

楽器と共鳴②

モダンホルン

楽器と共鳴③

管の長さを変えると、固有振動数もかわる。

演奏の様子

閉管の共鳴

フルート

口側の端は、閉じている→固定端

閉管楽器

図は"楽器の科学"(柳田益造編, サイエンス・アイ新書, ソフトバンク・クリエイティブ, 2013, 東京)

音響物理学

