Linear inequality representation of convex domains

Computational Intelligence, Lecture 7

by Sergei Savin

Fall 2020

Content

- Convex polytopes
- Half-spaces
 - Definition
 - Construction. Simple case
 - Construction. General case
 - Combination
 - Formal description via inequalities
- Linear approximation of convex regions
- Homework

Convex polytopes

Before defining what a convex polytope is, let us look at examples:

Definition

We can define half-space as a set of all points \mathbf{x} , such that $\mathbf{a}^{\top}\mathbf{x} \leq b$. It has a very clear geometric interpretation. In the following image, the filled space is **not** in the half space.

Construction. Simple case

Consider half-space that passes through the origin, and defined by its normal vector \mathbf{n} :

It is easy to see that this half-space can be defined as "all vectors \mathbf{x} , such that $\mathbf{n} \cdot \mathbf{x} \leq 0$ ", which is the same as using \mathbf{n} instead of \mathbf{a} in our original definition, setting b = 0.

Construction. General case

In the general case there is some distance between the boundary of the half-space and the origin, let's say d.

The same way we see, that the half space can be defined as "all vectors \mathbf{x} , such that $\mathbf{n} \cdot \mathbf{x} \leq d$ ". This is the same as making $\mathbf{a} = \mathbf{n}$ and b = d in our original definition. However, if \mathbf{a} is not a unit vector, $b = d||\mathbf{a}||$.

Combination

We can define a region of space as an *intersection* of half-spaces $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i$:

Resulting region will be easily described as $\begin{vmatrix} \mathbf{a}_1^{\mathsf{T}} \\ \dots \\ \mathbf{x}^{\mathsf{T}} \end{vmatrix} \mathbf{x} \leq \begin{vmatrix} b_1 \\ \dots \\ 1 \end{vmatrix}$

$$\begin{bmatrix} \mathbf{a}_1^\top \\ \dots \\ \mathbf{a}_k^\top \end{bmatrix} \mathbf{x} \le \begin{bmatrix} b_1 \\ \dots \\ b_k \end{bmatrix}$$

Formal description via inequalities

The last result allows us to write any convex polytope as a matrix inequality:

$$\mathbf{A}\mathbf{x} \le \mathbf{b} \tag{1}$$

And conversely, any matrix inequality (1) represents either an empty set or a convex polytope.

Linear approximation of convex regions

Some convex regions can be easily approximated using polytopes.

Which allows to represent constraints on \mathbf{x} to belong in such a region as a matrix inequality

Homework

Represent in matrix inequality form the following figures:

- Equilateral triangle
- A square
- Parallelepiped
- Trapezoid

Lecture slides are available via Moodle.

 $\label{thm:com_sol} You \ can \ help \ improve \ these \ slides \ at: github.com/SergeiSa/Computational-Intelligence-Slides-Fall-2020$

Check Moodle for additional links, videos, textbook suggestions.