Division: ID#: Name:

いくつかの定義:

• 一般に命題 $P \setminus Q$ に対して、 $P \oplus Q = (P \vee Q) \wedge (\neg (P \wedge Q))$ と定義する。

• 一般に集合 X の部分集合全体を P(X) で表す。空集合を \emptyset で表すと、 $\emptyset \in P(X)$ である。 $A,B \in P(X)$ に対して $A \times B = \{(a,b) \mid (a \in A) \land (b \in B)\}$ とする。 $A \times B \subset X \times X$ である。

復習: 以下は言葉の定義を確認するためのものであり、定義として書いているものでは ありません。

• N は自然数全体の集合、Z は整数全体の集合、R は実数全体の集合を表す。

- 集合 A の濃度(基数)を |A| で表す。
- 演算 \circ が定義された集合 A は \circ に関して結合法則が成り立ち、単位元を持ち、A の各元に逆元が存在する時、 (A, \circ) は群をなすという。
- 演算 + と・が定義された集合 R が、+ に関して可換群となり、・に関しては結合 法則を満たし、単位元をもち、左右分配法則を持つとする。さらに、+ に関する単位元と・に関する単位元が相異なる時、 $(R,+,\cdot)$ を単位元を持つ環という。
- 1. (a) P, Q を命題とするとき、 $P \oplus Q$ の真理表を作れ。(答のみ)
 - (b) P, Q, R を命題とするとき、次の式が成立するかどうか決定せよ。

$$(P \oplus Q) \wedge R \equiv (P \wedge R) \oplus (Q \wedge R)$$

P	Q	$P \oplus Q$
T	T	
T	F	
F	T	
F	F	

P	Q	R	(P	\oplus	Q)	\wedge	R	(P	\wedge	R)	\oplus	(Q	\wedge	R)
T	T	T												
T	T	F												
T	F	T												
T	F	F												
F	T	T												
F	T	F												
F	F	T												
F	F	F												

Final 2004: Page 2/6

Division: ID#: Name:

2. X を集合 A,B,C,D をその部分集合とする。このとき次のそれぞれの式が常に成立すれば証明し、常には成り立たない場合は反例(成り立たない例)を書け。その場合は成り立たないことも説明すること。

(a)
$$(A \times B) \setminus (C \times D) \subset ((A \setminus C) \times B) \cup (A \times (B \setminus D))$$

(b)
$$(A \times B) \setminus (C \times D) \supset ((A \setminus C) \times B) \cup (A \times (B \setminus D))$$

3. f を集合 X から集合 Y への写像。A を X の部分集合、B を Y の部分集合とする。このとき次のそれぞれの式が常に成立すれば証明し、常には成り立たない場合は反例(成り立たない例)を書け。その場合は成り立たないことも説明すること。

(a)
$$f^{-1}(B \cup f(A)) \subset f^{-1}(B) \cup A$$

(b)
$$f^{-1}(B \cup f(A)) \supset f^{-1}(B) \cup A$$

Final 2004: Page 3/6

Division: ID#: Name:

4. f を集合 X から集合 Y への写像、g を集合 Y から 集合 Z への写像とする。h を X から Z の写像で $x \in X$ に対して h(x) = g(f(x)) と定義したものとする。この とき、以下が成立すれば証明し、つねには成立しない時は反例をあげよ。

(a) f および g が単射ならば、h も単射である。

(b) h が単射ならば f は単射である。

(c) h が単射ならば g は単射である。

5. X を集合とするとき、X から P(X) への全射は存在しないことを背理法で証明するため、 $f: X \to P(X)$ なる全射があるとする。 $A = \{a \in X \mid a \not\in f(a)\}$ とすると $A \in P(X)$ であるが、f(x) = A となる $x \in X$ は存在しないことを丁寧に説明せよ。

Final 2004: Page 4/6

Division: ID#: Name:

- 6. 集合の濃度に関する以下の問いに答えよ。
 - (a) 一般に集合 A, B について |A| = |B| であることの定義をのべよ。また、高々可算な集合とはどのような集合を意味するか述べよ。

(b) $A=B\cup C$ かつ $B\cap C=\emptyset$ で $|B|=|\mathbf{N}|$ かつ C が高々可算な集合ならば $|A|=|\mathbf{N}|$ であることを証明せよ。

(c) $A=B\cup C$ かつ $B\cap C=\emptyset$ で $\mathbf{N}\subset B$ かつ C が高々可算な集合ならば |A|=|B| であることを証明せよ。

(d) |N| = |Z| を証明せよ。

Final 2004 : Page 5 / 6

Division:	ID#:	Name:
DIVISIOII:	1D#	rame:

7. (a) 一般に集合 A,B において $|A| \leq |B|$ であることの定義をのべ、 $|\mathbf{R}| \leq |\mathbf{N} \times \mathbf{R}|$ であることを証明せよ。

(b) $|\mathbf{R}| \ge |\mathbf{N} \times \mathbf{R}|$ であることを証明せよ。

- 8. $(R,+,\cdot)$ を単位元をもつ環とする。また、加法 + に関する単位元を 0 で、乗法 · に関する単位元を 1 で表すとする。 $a\in R$ のとき a の加法 + に関する逆元を -a で表すものとする。このとき、以下を証明せよ。式の変形におていは、理由も述べること。
 - (a) すべての $a \in R$ に対して $a \cdot 0 = 0$ 。

(b) すべての $a \in R$ に対して $(-1) \cdot a = -a_{\circ}$

Final 2004 : Page 6 / 6

Division: ID#: Name:

9. $a, b \in \mathbb{N}$ とする。

(a) a,b の最小公倍数の定義を書け。以下 a,b の最小公倍数を $a \circ b$ で表すことにする。次の命題が真かどうか判定せよ。

$$(\exists e \in \mathbf{N})(\forall a \in \mathbf{N})[e \circ a = a \circ e = a]$$

(b) (N, \circ) は結合法則を満たすか、単位元はあるか、各元に対して逆元があるかを判定せよ。

Message 欄: 「ホームページ掲載不可」の場合は明記のこと

- (1) この授業について。特に改善点について。
- (2) ICU の教育一般について。特に改善点について。