Heuristic Analysis

Problem 1

Init(At(C1, SFO) \(\times \) At(C2, JFK) \(\times \) At(P1, SFO) \(\times \) At(P2, JFK) \(\times \) Cargo(C2) \(\times \) Plane(P1) \(\times \) Plane(P2) \(\times \) Airport(JFK) \(\times \) Airport(SFO)) \(\times \) Goal(At(C1, JFK) \(\times \) At(C2, SFO))

Optimal Plan taken from greedy_best_first_graph_search:

Load(C1, P1, SFO) Load(C2, P2, JFK) Fly(P1, SFO, JFK) Fly(P2, JFK, SFO) Unload(C1, P1, JFK) Unload(C2, P2, SFO)

Table – 1a Non-Heuristic Search Results							
Search Algorithm	Expansions	New	Goal	Plan	Time	Optimal	
		Nodes	Tests	Length	(seconds)		
breadth_first_search	43	180	56	<mark>6</mark>	0.042	Yes	
depth_first_graph_search	12	48	13	<mark>12</mark>	0.014	No	
greedy_best_first_graph_search	7	28	9	<mark>6</mark>	0.007	Yes	

Greedy_best_first_search was the top algorithm here out of the 3 noted above. It had the least number of new nodes and expansion which led to the fastest overall time. Breadth_first_search was the slowest among the 3 but did have an optimal plan length of 6. Even though depth_first_graph_search was faster than breadth_first_search with lower number of expansions and new nodes, it had the least optimal plan of length 12.

Table – 1b Heuristic Search Results								
Search Algorithm	Expansions	New	Goal	Plan	Time	Optimal		
		Nodes	Tests	Length	(seconds)			
A* Search with h_1	55	224	57	6	0.053			
A* Search (ignore	41	170	43	6	0.054			
preconditions)								
A* (level sum)	11	50	13	6	1.224			

Table 1a shows the performance of A* Search with 3 different heuristics. All 3 algorithms found the optimal plan length of 6 with the level sum heuristic being the slowest amongst the 3.

Problem 2

 $Init(At(C1, SFO) \land At(C2, JFK) \land At(C3, ATL)$

 \wedge At(P1, SFO) \wedge At(P2, JFK) \wedge At(P3, ATL)

 \land Cargo(C1) \land Cargo(C2) \land Cargo(C3)

 \land Plane(P1) \land Plane(P2) \land Plane(P3)

 \land Airport(JFK) \land Airport(SFO) \land Airport(ATL))

Goal(At(C1, JFK) \wedge At(C2, SFO) \wedge At(C3, SFO))

Optimal Plan taken from greedy_best_first_graph_search:

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Load(C3, P3, ATL)

Fly(P1, SFO, JFK)

Fly(P2, JFK, SFO)

Fly(P3, ATL, SFO)

Unload(C3, P3, SFO)

Unload(C2, P2, SFO)

Unload(C1, P1, JFK)

Table – 2a Non-Heuristic Search Results							
Search Algorithm	Expansions	New	Goal	Plan	Time	Optimal	
		Nodes	Tests	Length	(seconds)		
breadth_first_search	3401	31049	4672	9	17.744	Yes	
depth_first_graph_search	350	3142	351	<mark>346</mark>	1.872	No	
greedy_best_first_graph_search	550	4950	552	9	1.800	<mark>Yes</mark>	

Greedy_best_first_search was the top algorithm here out of the 3 noted above. It had the optimal plan length and the fastest overall time. Breadth_first_search was the slowest among the 3 but did have an optimal plan length of 9. Even though depth_first_graph_search was faster than breadth_first_search with lower number of expansions and new nodes, it had the least optimal plan of length 346.

Table – 2b Heuristic Search Results								
Search Algorithm	Expansions	New Nodes	Goal Tests	Plan Length	Time (seconds)	Optimal		
A* Search with h_1	4761	43206	4763	9	17.016			
A* Search (ignore preconditions)	1450	13303	1452	9	6.304			
A* (level sum)	86	841	88	9	268.076			

Table 2b shows results for A* search with various heuristics. All 3 heuristics found the optimal plan length but the ignore_preconditions heuristic took 6.3 seconds vs 268.076 seconds for level_sum.

Problem 3

Init(At(C1, SFO) \wedge At(C2, JFK) \wedge At(C3, ATL) \wedge At(C4, ORD)

 Λ At(P1, SFO) Λ At(P2, JFK)

 \land Cargo(C1) \land Cargo(C2) \land Cargo(C3) \land Cargo(C4)

 \land Plane(P1) \land Plane(P2)

 \land Airport(JFK) \land Airport(SFO) \land Airport(ATL) \land Airport(ORD))

Goal(At(C1, JFK) \wedge At(C3, JFK) \wedge At(C2, SFO) \wedge At(C4, SFO))

Optimal Plan taken from breadth_first_search:

Load(C2, P2, JFK)

Load(C1, P1, SFO)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P2, ORD, SFO)

Unload(C2, P2, SFO)

Unload(C4, P2, SFO)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Unload(C1, P1, JFK)

Unload(C3, P1, JFK)

Table – 3a Non-Heuristic Search Results							
Search Algorithm	Expansions	New	Goal	Plan	Time	Optimal	
		Nodes	Tests	Length	(seconds)		
breadth_first_search	14491	128184	17947	<mark>12</mark>	128.279	Yes	
depth_first_graph_search	1948	16253	1949	<mark>1878</mark>	24.475	No	
greedy_best_first_graph_search	4031	35794	4033	<mark>22</mark>	15.589	No	

Breadth_first_search was the only optimal algorithm here. Even though it was the slowest among the 3 with most number of expansions and new nodes, it had the most optimal plan length of 12. Even though Greedy_best_first_search was the fastest amongst the 3 algorithms, it had a non-optimal plan length of 22. Depth first graph search was the worst performing with largest plan length of the 3 algorithms.

Table – 3b Heuristic Search Results								
Search Algorithm	Expansions	New Nodes	Goal Tests	Plan Length	Time (seconds)	Optimal		
A* Search with h_1	17783	155920	17785	12	71.684			
A* Search (ignore preconditions)	5003	44586	5005	12	23.109			
A* (level sum)	323	2983	325	12	1376.118			

All 3 heuristics in Table 3b achieved the optimal plan length. While level_sum heuristic only expanded to 323 vs 5003 for ignore_preconditions, it took far longer with 1376.118 seconds vs 23.109 seconds for ignore_preconditions heuristic.

Conclusion

The best heuristic is really dependent on the trade-off of speed vs memory. If you require the optimal plan with the fastest time and have abundant memory space then ignore_preconditions is the way to go. On the other hand if you have limited amount of memory space and don't care about how long it takes to find the optimal plan then level_sum heuristic is the way to go.

Overall the ignore_precondition heuristic is the best performing algorithm overall as it found the optimal plan length in all instances and at a comparable or faster time than the non-heuristic algorithms.