DUMMIT-FOOTE EXERCISES

- 1. Chapter 1: Introduction to Groups
- 1.1. Basic Axioms and Examples.
 - 2. Chapter 2: Subgroups
 - 3. Chapter 3: Quotient Groups and Homomorphisms
 - 4. CHAPTER 4: GROUP ACTIONS
 - 5. Chapter 5: Direct and Semidirect Products and Abelian Groups
 - 6. CHAPTER 6: FURTHER TOPICS IN GROUP THEORY
 - 7. CHAPTER 7: INTRODUCTION TO RINGS
 - 8. Chapter 8: Euclidean Domains, Principal Ideal Domains, and Unique Factorization Domains
 - 9. CHAPTER 9: POLYNOMIAL RINGS
 - 10. Chapter 10: Introduction to Module Theory
 - 11. CHAPTER 11: VECTOR SPACES
 - 12. CHAPTER 12: MODULE THEORY OVER PRINCIPAL IDEAL DOMAINS
 - 13. Chapter 13: Field Theory
 - 14. Chapter 14; Galois Theory
 - 15. CHAPTER 15: COMMUTATIVE RINGS AND ALGEBRAIC GEOMETRY
- 16. Chapter 16: Artinian Rings, Discrete Valuation Rings, and Dedekind Domains
- 17. CHAPTER 17: INTRODUCTION TO HOMOLOGICAL ALGEBRA AND GROUP COHOMOLOGY
 - 18. Chapter 18: Representation Theory and Character Theory
- 18.1. Linear Actions and Modules over Group Rings.
- 18.2. Wedderburn's Theorem and Some Consequeces.

Date: January 6, 2025.

18.3. Character Theory and the Orthogonality Relations.

Problem 18.3.1. *Prove that* $\operatorname{tr} AB = \operatorname{tr} BA$ *for* $n \times n$ *matrices* A *and* B *with entries from any commutative ring.*

Problem 18.3.2.

Problem 18.3.3.

Problem 18.3.4.

Problem 18.3.5.

Problem 18.3.6. Let G be a finite group. Let $\phi: G \to GL(V)$ be a representation with character ψ over \mathbb{C} . Let W be the subspace $\{v \in V \mid \phi(g)(v) = v \text{ for all } g \in G\}$ of V fixed pointwise by all elements of G. Prove that $\dim W = (\psi, \chi_1)$, where χ_1 is the principal character of G.

19. Chapter 19: Examples and Applications of Character Theory