PSALTer results panel

 $\mathcal{S} = \iiint (\mathcal{R}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} + \frac{1}{3} t_{\frac{1}{2}} (3 \ \mathcal{R}^{\alpha_{i}}_{\ \alpha} \ \mathcal{R}^{\theta}_{i} - 6 \ \mathcal{R}^{\theta}_{\alpha} \ \partial_{i} f^{\alpha_{i}} + 6 \ \mathcal{R}^{\theta}_{i} \ \partial_{i} f^{\alpha_{i}} - 3 \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + 2 \ \mathcal{R}_{i\theta\alpha} \ \partial_{\theta} f^{\alpha_{i}} - 2 \partial_{\alpha} f_{i\theta} \partial_{\theta} f^{\alpha_{i}} - 2 \partial_{\alpha} f_{i\theta} \partial_{\theta} f^{\alpha_{i}} + 2 \partial_{\theta} f_{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + 2 \partial_{\theta} f_{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + 2 \partial_{\theta} f_{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + 2 \partial_{\theta} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} - 2 \partial_{\alpha} f_{i\theta} \partial_{\theta} f^{\alpha_{i}} + 2 \partial_{\theta} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + 2 \partial_{\theta} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}$

Wave operator

_	${}^{0^+}\mathcal{F}^{\parallel}$	$0.^+f^{\parallel}$	$0.^{T}f^{\perp}$	${}^{0}\mathcal{A}^{\parallel}$	_									
^{0,+} <i>Я</i> ∥†	-t. 1	$i\sqrt{2}kt_1$	0	0										
^{0,+} f †	$-i\sqrt{2} kt$	$-2k^{2}t$.	0	0										
0, ⁺ f [⊥] †	0	0	0	0										
^{0⁻} Æ [∥] †	0	0	0	0	$^{1^{+}}\mathcal{H}^{\parallel}{}_{lphaeta}$	$^{1^+}\mathcal{F}^{\perp}_{lphaeta}$	$1.^+ f^{\parallel}{}_{\alpha\beta}$	${}^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{H}_{\alpha}^{\perp}$	f_{α}^{\parallel}	$\frac{1}{2}f^{\perp}_{\alpha}$			
				$^{1.^{+}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$	$k^2 r_{.5} + \frac{t_{.5}}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{i k t}{3 \sqrt{2}}$	0	0	0	0			
				$^{1.^{+}}\mathcal{A}^{\scriptscriptstyle \perp}\dagger^{^{lphaeta}}$	$-\frac{t_1}{3\sqrt{2}}$	$\frac{t}{3}$	$\frac{i kt}{3}$	0	0	0	0			
				$1.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt.}{3 \sqrt{2}}$	$-\frac{1}{3} ikt.$	$\frac{k^2 t_1}{3}$	0	0	0	0			
				$\mathcal{A}^{\parallel} + \alpha$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	ikt. 1			
				$^{1}\mathcal{H}^{\perp}\dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0			
				$\frac{1}{2}f^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$^{1}f^{\perp}\dagger^{\alpha}$	0	0	0	-īkt. 1	0	0	0	$^{2,+}\mathcal{H}^{\parallel}_{\alpha\beta}$	$2.^{+}f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\mathcal{A}^{\parallel}$ † $^{\alpha\beta}$	t. 1/2	$-\frac{ikt.}{\sqrt{2}}$	0
											$2^+ f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	$k^2 t$.	0
											$2^{-}\mathcal{A}^{\parallel} \dagger^{\alpha\beta\chi}$	0	0	$\frac{t}{2}$

Saturated propagator

	${}^{0^+}\sigma^{\parallel}$	0,+ _T	$0.^+ \tau^{\perp}$	$0^{-}\sigma^{\parallel}$										
^{0,+} σ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t}$	0	0										
^{0,+} τ †	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	$-\frac{2 k^2}{(1+2 k^2)^2 t}$	0	0										
$0.^+\tau^{\perp}$ †	0	0	0	0										
⁰⁻ σ †	0	0	0	0	$^{1^+}\sigma^{\parallel}{}_{lphaeta}$	$\overset{1}{\cdot} \overset{+}{\sigma}{}^{\scriptscriptstyle \perp}{}_{\alpha\beta}$	$\overset{1,^{+}}{\cdot}\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$^{1}\sigma^{\perp}_{\alpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	$1 \bar{\tau}_{\alpha}$			
·				$^{1^{+}}\sigma^{\parallel}$ lphaeta	$\frac{1}{k^2 r_{.5}}$			0	0	0	0			
				$1.^+\sigma^{\perp}$ † $^{\alpha\beta}$	$\frac{1}{\sqrt{2} \; (k^2 r_{.5} + k^4 r_{.5})}$	$\frac{6 k^2 r. + t.}{2 (k+k^3)^2 r. t.}$	$\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_1t_1}$	0	0	0	0			
				$1.^+ \tau^{\parallel} + ^{\alpha\beta}$	$-\frac{i}{\sqrt{2} (kr_5 + k^3 r_5)}$	$-\frac{i\left(6k^{2}r.+t.\right)}{2k\left(1+k^{2}\right)^{2}r.t.}_{5\ 1}$	$\frac{6 k^2 r. + t.}{2 (1+k^2)^2 r. t.}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$			
				$\frac{1}{2}\sigma^{\perp}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 r + t}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2rt.)}{(t.+2k^2t.)^2}$			
				$1^{-}\tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{2}\tau^{\perp} \uparrow^{\alpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i \sqrt{2} k (2 k^2 rt.)}{(t.+2 k^2 t.)^2}$	0	$\frac{-4 k^4 r. + 2 k^2 t.}{(t. + 2 k^2 t.)^2}$	2. ⁺ σ αβ	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
				•							$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_{.1}}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t.}$	0
											$^{2^{+}}\tau^{\parallel}\uparrow^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t.}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	0
											$2 \sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{2}{t}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^{\cdot} \sigma^{\parallel} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{lpha\beta\chi} == 0$	1
0.+ r. == 0	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1
$-2 \bar{i} k^{0,+} \sigma^{\parallel} + {}^{0,+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$2 i k 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1·τ" == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k 1^+_{\cdot \sigma} \sigma^{\perp \alpha \beta} + 1^+_{\cdot \tau} \eta^{\alpha \beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + 2\partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$-2 i k 2^{+}_{\cdot} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}_{}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+3\partial_{\delta$	5
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi} \partial_{\alpha} \partial^{\beta} \partial^{\delta} \partial_{\alpha} \partial^{\delta} \partial^{\delta$	
Total expected gauge g	enerators:	17

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$\left \frac{9}{\frac{r}{5}} + \frac{2p^2}{\frac{t}{5}} + \frac{2r \cdot p^4}{\frac{t}{5}^2} > 0 \right $
Polarisations:	2

Unitarity conditions

 $r_{.5} > 0 \&\& (t_{.1} < 0 || t_{.1} > 0)$