МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРСИТЕТ ІНСТИТУТ КОМП'ЮТЕРНИХ СИСТЕМ КАФЕДРА ІНФОРМАЦІЙНИХ СИСТЕМ

Лабораторна робота №10 з дисципліни "Операційні системи"

Тема «Керування процесами-транзакціями в базах даних. Частина 2»

Виконав:

Голованчук Н.Ю.

Перевірили:

Блажко О.А

Дрозд М.О.

Олеса 2021

Мета роботи: дослідити поведінку процесів-транзакцій в базах даних та засоби керуванням ними через механізм блокування з використанням сучасних систем керування базами даних.

Хід роботи:

- 1. Перелік завдань до лабораторної роботи
- 2. Результатами виконання пунктів завдань
- 3. Висновки

Перелік завдань до лабораторної роботи:

Завдання 1. Аналіз роботи багато версійного протоколу

Підготуйте чотири транзакції за прикладом з рисунку 2:

- Т1 отримання номеру транзакції, внесення нового рядка в таблицю та перегляд вмісту таблиці;
- Т2 постійний перегляд вмісту таблиці
- T3 видалення рядку з наступною відміною цієї операції;
- T4 зміна значення однієї з колонок рядка.

В операцію читання рядка таблиці додайте системні колонки хтіп, хтах. На кожному кроці виконання транзакції переглядайте значення колонок хтіп, хтах. та зробіть відповідні висновки.

Завдання 2. Аналіз стану транзакцій на різних рівнях багаторівневого блокування

Виконайте послідовно в двох терміналах наступні комбінації блокувань таблиці:

IX-IS, SIX-IX, SIX-IS. Надайте висновки про сумісність блокувань.

Для кожної комбінації блокувань перед завершенням 1-ї транзакції (яка розпочалася раніше) в додатковому терміналі через команду psql отримайте данні про стан транзакцій (таблиця pg locs).

Завдання 3. Керування квазіпаралельним виконанням транзакцій на різних рівнях ізоляції транзакцій

Підготуйте транзакції, які було створено у завданні 3.1 рішення попередньої лабораторної роботи, а саме, створіть дві транзакції, кожна з яких повинна включати такі операції:

- операція читання першого рядку таблиці;
- операція редагування однієї із змінних таблиці в першому рядку;
- повторна операція читання першого рядку таблиці;
- операція фіксації всіх змін.
 - 1.1 Виконайте роботу транзакцій при умові їх роботи на рівні ізоляції READ COMMITED. Проаналізуйте реакцію СКБД на операцію UPDATE 2-ї транзакції (яка виконується пізніше) та дайте свої висновки.
- 1.2 Повторіть роботу транзакцій при умові їх роботи на рівні ізоляції REPEATABLE READ. Проаналізуйте реакцію СКБД на операцію UPDATE 2 ї транзакції (яка виконується пізніше) та дайте свої висновки.

1.3 Повторіть роботу транзакцій при умові їх роботи на рівні ізоляції SERIALIZABLE. Проаналізуйте реакцію СКБД на операцію UPDATE 2-ї транзакції (яка виконується пізніше) та дайте свої висновки.

Завдання 4. Керування квазіпаралельним виконанням транзакцій при наявності тупикових ситуацій.

- 4.1 Виконайте модифікацію транзакцій так, щоб вони призводили до тупикової ситуації.
- 4.2 Виконайте дві модифіковані транзакції. Проаналізуйте реакцію СКБД на операцію UPDATE 2-ї транзакції (яка виконується пізніше) та яка призвела до тупику. Дайте свої висновки з урахуванням:
- ідентифікаторів процесів
- номерів транзакцій.

Результати виконання завдань:

Завдання 1. Аналіз роботи багато версійного протоколу Транзакції

1 ma 2:

Поки зміни у 1 транзакції не зафіксовано, транзакція 2 не реагує на зміни, виконані в 1 транзакції. Після фіксації змін у 1 транзакції, 2 транзакція може обробляти змінену інформацію. Як підсумок, ми бачимо, що у таблицю додається новий рядок, з хтіп = 3483, хтах = 0.

Транзакції 3 та 2:

Ми бачимо, що після видалення 3 рядку та відміни операції хтах рядку набуває значення 3486. Це означає, що над 3 рядком здійснювалася операція під номером 3486.

Транзакції 4 та 2:

Значення хтах Зрядку, над яким виконувалась операція, змінилось на 3489, після фіксації цих змін хтіп перейняло значення 3489, а хтах = 0, яке показує, що поточне значення було створено транзакцією з номером 3489, але поки немає нових версії, створених іншими транзакціями.

Завдання 2. Аналіз стану транзакцій на різних рівнях багаторівневого блокування

Комбінації блокувань IX-IS:

```
@ 91,219,60,189 - PuTTY
                                                                                                                                                    @ 91.219.60.189 - PuTTY
golovanchuk_mikola991.219.60.189's password:
                                                                                                                                                  login as: golovanchuk_mikola
golovanchuk_mikola991.219.60.189's password:
Last login: Thu May 6 01:45:28 2021 from 188.163.103.236
-bash-4.20 psq1
psq1 (9.5.25)
Type "help" for help.
Last login: Thu May

-bash-4.2$ psql

psql (9.5.25)

Type "help" for help.
                                    6 00:35:57 2021 from 188.163.103.236
golovanchuk_mikola START TRANSACTION;
                                                                                                                                                   golovanchuk_mikola START TRANSACTION;
START TRANSACTION
golovanchuk_mikolalock table depaartment in row exclusive mode;
                                                                                                                                                  golovanchuk_mikola lock table depaartment in row share mode;
LOCK TABLE
LOCK TABLE
golovanchuk_mikola select relation,locktype,virtualtransaction,pid,mode,granted fr
om pg_locks where locktype = 'relation';
relation | locktype | virtualtransaction | pid | mode | granted
                                                                                                                                                   golovanchuk_mikola COMMIT;
COMMIT
golovanchuk_mikola
      16837 | relation | 7/25115

11673 | relation | 6/85231

16837 | relation | 6/85231

16835 | relation | 9/26855

16835 | relation | 9/26855

11673 | relation | 4/141056
                                                                           | 2388 | RowShareLock
| 2345 | AccessShareLock
                                                                                2345 | RowExclusiveLock | t
                                                                         | 14260 | AccessShareLock
                                                                          | 14260 | RowExclusiveLock |
| 24586 | AccessShareLock |
golovanchuk_mikola COMMIT;
```

Блокування IX та IS сумісні. Підтвердження цьому можна знати в таблиці pg_locs, оскільки стан блокування для процесу 2388 дорівнює t - операцію блокування виконано;

Комбінації блокувань SIX-IS:

Блокування SIX та IX не сумісні. Підтвердження цьому можна знати в таблиці pg_locs, оскільки стан блокування для процесу 4342 дорівнює f - операція блокування чекає через несумісність з іншими вже виконаними операціями блокування.

Комбінації блокувань SIX-IS:

Блокування SIX та IS сумісні. Підтвердження цьому можна знати в таблиці pg_locs , оскільки стан блокування для процесу 5523 дорівнює t - операцію блокування виконано;

Завдання 3. Керування квазіпаралельним виконанням транзакцій на різних рівнях ізоляції транзакцій *Рівень ізоляції READ COMMITED*:

Виконуючи операцію UPDATE 2-ї транзакції, транзакція переходить в режим очікування.. Тільки після того, як 1-ша транзакція виконає операцію COMMIT, 2-га транзакція побачить зміни

Рівнень ізоляції REPEATABLE READ:

Виконуючи операцію UPDATE 2-ї транзакції, транзакція переходить в режим очікування, після завершення 1-ї транзакції повідомляє про помилку та завершує транзакцію без зміни даних. Це через те, що 2-га транзакція не побачить зміни, яка виконала 1-ша транзакція навіть після виконання операції СОММІТ.

Рівнень ізоляції SERIALIZABLE:

Можемо помітити, що після виконання операції UPDATE у 2-ій транзакції, транзакцію буде переведено в режим очікування, а вже після завершення 1-ї транзакції, ми отримаємо повідомлення про помилку, при цьому Т2 буде завершена без змін. Це через те, що на такому рівні ізоляції заборонено виконувати паралельно зміни одних даних.

Завдання 4. Керування квазіпаралельним виконанням транзакцій при наявності тупикових ситуацій.

Виконаємо модифікацію транзакцій так, щоб вони призводили до тупикової ситуації.

При виконанні операції UPDATE 2-ї транзакції, було отримано повідомлення про помилку, через виникнення тупикової ситуації. СКБД примусово скасувала 2-гу транзакцію, команда якої привела до тупикової ситуації, а 1 шу транзакція зберегла.

Висновок: Під час виконання лабораторної роботи було досліджено поведінку процесів-транзакцій в базах даних та засоби керуванням ними через механізм блокування з використанням сучасних систем керування базами даних. Найскладнішим було завдання з аналізу роботи багато версійного протоколу.