

(c) Interpret the 13 C NMR spectrum. The DEPT 135 spectrum shows all CH and CH $_3$ peaks as positive, and CH $_2$ peaks negative. Identify what kind of carbon each signal corresponds to, and write possible part structures.

Type of C (e.g. sp³ CH₂) and/or part structures (e.g. N-CH₂)

δ 21.0	
δ 27.8	
δ 122.0	
δ 127.0	
δ 138.2	
δ 157.0	
δ 190.3	

(d) What are the three peaks at δ 77?

(e) Assign and analyze the signals between δ 1.9 and 2.2 in the 300 MHz 1 H NMR spectrum. Report multiplicity, coupling constants and part structure you could obtain from each signal.
(f) Analyze the multiplets between δ 5.7 and 6.45. Report multiplicity, coupling constants and part structure you could obtain from each signal (in the standard form: e.g., δ 3.9, tq, J = 12, 4 Hz, 1H) . You may use first-order analysis.
(g) Draw the structure of R-03C . If more than one structure is possible, show them, and circle the one you think fits the data best and give your reasons for choosing it.

Problem R-03C ($C_7H_{10}O$). Determine the structure (or part structure) of R-03C from the 1H NMR, ^{13}C NMR and IR spectra provided.

- (a) DBE ³
- (b) What information can you obtain from the IR spectrum? Give frequency and assignment.

(c) Interpret the ¹³C NMR spectrum. The DEPT 135 spectrum shows all CH and CH₃ peaks as positive, and CH₂ peaks negative. Identify what kind of carbon each signal corresponds to, and write possible part structures.

Type of C (e.g. sp³ CH₂) and/or part structures (e.g. N-CH₂)

(d) What are the three peaks at δ 77? These are the CDCl₃ peaks (C split by D, I = 1)

(e) Assign and analyze the signals between δ 1.9 and 2.2 in the 300 MHz ¹H NMR spectrum. Report multiplicity, coupling constants and part structure you could obtain from each signal.

Two CH₃ groups, each split into a d, J = 1.3 Hz

Chemical shifts suggests CH₃ on double bond or aryl ring

(f) Analyze the multiplets between δ 5.7 and 6.45. Report multiplicity, coupling constants and part structure you could obtain from each signal (in the standard form: e.g., δ 3.9, tq, J = 12, 4 Hz, 1H) . You may use first-order analysis.

 δ 6.40 dd, J = 17.5, 10.4 Hz. A part of ABX (trans and cis vivyl coupling)

δ 6.21 dd, J = 17.5, 1.5 Hz. B part of ABX (trans and gem)

 δ 5,74 dd, J = 10.4, 1.5 Hz. X part of ABX (cis and gem)

$$H_X$$
 H_B

 δ 6.29, septet, J = 2 Hz: vinyl proton split by 6 protons with small J - coupled to both CH₃ groups

(g) Draw the structure of **R-03C**. If more than one structure is possible, show them, and circle the one you think fits the data best and give your reasons for choosing it.

+ 10 other structures