Class Introduction and Overview; Review of Regression and Measurement; Introduction to R and the lavaan Package

PSQF 6249: Structural Equation Modeling Lecture #1 – August 27, 2025

Homework using Your Own Data

- HW 1, 3, and 5 will require individual-specific item-level data
 - At least 6 items thought to measure one latent trait or
 8 items thought to measure 2 latent traits
 - Any response format (ordinal, slider, RT, etc)
 - > No sample size requirement, but ideally >100 respondents
 - Preferable source: data from your own research area that you care about and want to do something with anyway
 - Otherwise: any publicly-available data you can find, such as through the <u>International Personality Item Pool</u>; archives at <u>ICPSR</u>, <u>Berkley</u>, or <u>Harvard</u>; <u>Healthy Minds Data</u>; or <u>Early Childhood Data</u>

Our Other Responsibilities

- My job (besides providing materials and assignments):
 - Answer questions via email, in individual meetings, or in group-based zoom office hours—you can each work on homework during office hours and get (near) immediate assistance (and then keep working)
 - Email me first (but you can follow up with the TAs if they help you)
- Your job (in descending order of timely importance):
 - > Ask questions—preferably in class, but any time is better than none
 - Frequently review the class material, focusing on mastering the vocabulary (words and symbols), logic, and procedural skills
 - Don't wait until the last minute to start homework, and don't be afraid to ask for help if you get stuck on one thing for more than 15 minutes
 - Please email me a screenshot of your code+error so I can respond easily
 - > **Do the readings** for a broader perspective and additional examples (best after lecture; readings are for the whole unit, not just that day)
 - Practice using the software to implement the techniques you are learning on data you care about—this will help you so much more!

Class-Sponsored Statistical Software

I will show examples using Mplus (currently v. 8.10)

- Mplus is expensive to purchase, but it is available for free to course participants through the Ulowa Virtual Desktop
- > Mplus is expensive to purchase, but it is available for free to course participants through the Ulowa Virtual Desktop
- > Also, Mplus syntax is (relatively) easy to follow and replicate
- > But...I will mostly us R (and the lavaan package)

That being said, Mplus is not the only option:

- > R program lavaan can estimate some of the models covered, and can be used for some homework (canned or your own data)
- > STATA SEM or GSEM can be used to analyze your own data, but cannot be used for all homework (different missing data routines)
- > SAS CALIS and SPSS AMOS can only do models for continuous responses (as far as I know), so these won't work for our purposes

Today's Class

- Introduction and overview of the course
 - > Syllabus information
- Review of prerequisites needed in this course
 - > Linear Models: Analysis of Variance (ANOVA)/Regression
 - > Concepts from Construct Measurement
 - > Why use SEM?

Introduction to R

- > How R and R Studio work
- > The lavaan package
- > How to use syntax starter files for class
- Where to put your syntax for homework/project/your own analyses

Key Questions for Today's Lecture

1. What is Structural Equation Modeling (SEM)?

2. How does SEMs differ from linear models?

3. What other models/methods are SEMs related to?

4. Why use SEM?

Today's Data Set

 To introduce and motivate SEM, and to review some prerequisites, we will make use of an example data set

 Data come from a (simulated) sample of 150 participants who provided self-reports of a happiness scale and their marital status

- Participant responded one survey:
 - > 5-item happiness survey (each item used roughly a 5-point Likert scale)
 - > 1-item marital status question (are you married? Yes/No)
- The researchers were interested in the effects of marital status on happiness

Storing Data: CSV Files

- Although the data for today are simulated from within R and this step is unnecessary, I saved the data to a file (available online) to show you how to export data from R and how to import data into R
 - Note the variables are not integers (more on that later in the semester)
 - > More on data import/export in R later in this lecture
- The file "sem15psqf6249_lecture01.csv" is a commadelimited file which has the following characteristics:
 - > It is a plain ASCII text file (can be opened in any text editing program)
 - Each row represents one observation
 - > Each variable is separated by commas

 I prefer comma-delimited files as Microsoft Excel opens them by default when double clicked

Comma-Delimited File Example: sem15pre906_lecture01.csv

In Excel:

In textpad:

```
"married", "happiness_sumscore", "X1", "X2", "X3", "X4", "X5", "id"

1,10.5231832834812,2.40064882043704,3.62582658284954,4.49670788019466,3.27298246417364,3.85544574026294,"1"

0,9.20672205429465,2.6602340824522,3.82260804121246,2.72387993062999,2.02941130257217,3.44906263758752,"2"

1,9.85009264509685,2.89808122777778,2.50722330594268,4.4447881113764,1.49752920034449,4.55579165083162,"3"

0,9.5922728439898,2.64516042325382,3.09644388873738,3.8506685219986,5.07164072684963,2.45283711008061,"4"

0,6.6632278106384,2.72627566251562,2.17104926157036,1.76590288655242,1.68781204967547,1.15791209450522,"5"

0,6.02309199433131,0.8798902461844,3.16954830961018,1.97365343853673,2.30982884500968,2.85316716317116,"6"

1,7.20640323945185,4.17363897151656,1.15698176288563,1.87578250504966,1.83130191328153,2.23226510144894,"7"

1,10.3215420501241,2.61862547732736,3.69403431314022,4.00888225965652,2.88186735297125,2.01380963101838"8"

0,7.8586950140758,1.42293485988317,2.68884865283425,3.74691150135837,4.20570686297511,4.34466595635643,"9"

1,11.9138068119104,3.7389620438709,2.77281993294049,5.4020488509902,3.47578933304646,2.73946571794411,"10"

1,5.533332203772,1.68690347148075,2.70433916695298,1.14208956533828,4.03228411696483,4.40844671299883,"11"
```

THE GENERAL LINEAR MODEL

The General Linear Model

 The general linear model incorporates many different labels of analyses under one unifying umbrella:

	Categorical Xs	Continuous Xs	Both Types of Xs
Univariate Y	ANOVA	Regression	ANCOVA
Multivariate Ys	MANOVA	Multivariate Regression	MANCOVA

- The typical assumption is that error is normally distributed meaning that the data are conditionally normally distributed
- Models for non-normal outcomes (e.g., dichotomous, categorical, count)
 fall under the *Generalized* Linear Model, of which the GLM is a special case
 (i.e., for when model residuals can be assumed to be normally distributed)

General Linear Models: Conditional Normality

$$Y_p = \beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p + e_p$$

Model for the Means (Predicted Values):

- Each person's expected (predicted) outcome is a function of his/her values on x and z (and their interaction)
- y, x, and z are each measured only once per person (p subscript)

Model for the Variance:

- $e_p \sim N(0, \sigma_e^2) \rightarrow$ **ONE** residual (unexplained) deviation
- e_p has a mean of 0 with some estimated constant variance σ_e^2 , is normally distributed, is unrelated to x and z, and is unrelated across people (across all observations, just people here)

Building a Linear Model for Predicting a Person's Happiness

- We will now build a linear model for predicting a person's happiness, using marital status as the predictor
- We will use the total score of the 5-item happiness scale as our dependent variable (happiness_sumscore)
- We will code marital status with a 1 if a person is married and a 0 if they are not married
 - Called reference or dummy coding
- Our beginning model is that of an empty model no predictors for happiness (an unconditional model)

Our ending model adds the marital status predictor

Model 0: The Empty Model

• Linear model: $Y_p = \beta_0 + e_p$ where $e_p \sim N(0, \sigma_e^2)$

Estimated Parameters (from lavaan output on html page):

```
Estimate Std.err Z-value P(>|z|)
> \beta_0 = 8.813 (0.154)
                                  Intercepts:
                                       happnss smscr
                                                         8.813
                                ##
                                                                  0.154
                                                                           57.408
                                                                                     0.000
                                ##
                                ## Variances:
                                       happnss smscr
                                                         3.535
                                                                  0.408
                                                                            8.660
                                                                                     0.000
\sigma_{\rho}^2 = 3.535 (0.408)
```

Notes on Empty Models

#compare output to sample statistics:

- As there are no predictors in the model, each person's predicted value is given by the intercept
- The intercept happens to be equal to the overall mean of the dependent variable:

```
mean(data02$happiness_sumscore)
## [1] 8.813357
```

 At a glance, the estimated residual variance is not quite equal to the sample variance:

```
#variance is not quite (lavaan is ML (divides by N)/var() function is unbiased (divides by N-1))
var(data02$happiness_sumscore)
```

```
## [1] 3.559059
```

Re-examining the Concept of Variance

- Variability is a central concept in advanced statistics
 - > In multivariate statistics and SEM, covariance is also central
- Two formulas for the variance (about equal when N is big):

$$S_Y^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_p - \overline{Y})^2$$
 Unbiased or "sample"

$$S_Y^2 = \frac{1}{N} \sum_{p=1}^{N} (Y_p - \bar{Y})^2$$
 Biased/ML or "population"

Here: p = person; 1 = variable number one

 Lavaan uses maximum likelihood to estimate parameters, so it's variance is the ML version

Variance/SD as a More General Statistical Concept

- Variance (and the standard deviation) is a concept that is applied across statistics – not just for data
 - > Statistical parameters have variance
 - \succ e.g. The sample mean \overline{Y} has a "standard error" (SE) of $S_{\overline{Y}}=\frac{S_Y}{\sqrt{N}}$
- The standard error is another name for standard deviation
 - So "standard error of the mean" is equivalent to "standard deviation of the mean"
 - > Usually "error" refers to parameters; "deviation" refers to data
 - > Variance of the mean would be $S_{\overline{Y}}^2 = \frac{S_Y^2}{N}$
- More generally, variance = error
 - You can think about the SE of the mean as telling you how far off the mean is for describing the data

Lavaan's Variance Estimate, Revisited

Recall the variance estimate

```
## Variances:
## happnss_smscr 3.535 0.408 8.660 0.000
```

• If we take the sample (N-1) variance, multiply by N-1, then divide by N, we will get this estimated ML value

```
#variance is not quite (lavaan is ML (divides by M)/var() function is unbiased (divides by N-1))
var(data02$happiness_sumscore)

## [1] 3.559059

#convert unbiased (N-1) variance to N version and get the same result:
(var(data02$happiness_sumscore)*(dim(data02)[1]-1))/(dim(data02)[1])

## [1] 3.535332
```

Model 1: Predicting Happiness from Marital Status

• Linear model: $Y_p = \beta_0 + \beta_1 Married_p + e_p$ where $e_p \sim N(0, \sigma_e^2)$

· Estimated Parameters (from lavaan output on html page):

$$> \beta_0 = 8.471 (0.205)$$

$$\beta_1 = 0.744 (0.302)$$

$$\sigma_e^2 = 3.398 (0.392)$$

```
Estimate Std.err Z-value P(>|z|)
## Regressions:
    happiness sumscore ~
                  0.744 0.302
##
      married
                                       2.462
                                                0.014
## Intercepts:
      happnss smscr
                    8.471 0.205
                                     41.360
                                                0.000
## Variances:
      happnss smscr
                       3.398 0.392
                                        8.660
                                                0.000
```

Model 1: Parameter Interpretation

- Linear model: $Y_p = \beta_0 + \beta_1 Married_p + e_p$ where $e_p \sim N(0, \sigma_e^2)$
- Marital status was coded 0/1 using what is called reference or dummy coding:
 - > Intercept becomes mean of the "reference" group (the 0 group)
 - > Slopes become the difference in the means between reference and nonreference groups
 - > For C categories, C-1 predictors are created
- $\beta_0 = 8.471 (0.205)$
 - > Predicted value of happiness when all predictors are equal to zero
 - \triangleright Mean happiness value for people who are not married ($Married_p=0$)

Model 1: Parameter Interpretation

- Linear model: $Y_p = \beta_0 + \beta_1 Married_p + e_p$ where $e_p \sim N(0, \sigma_e^2)$
- Marital status was coded 0/1 using what is called reference or dummy coding:
 - Intercept becomes mean of the "reference" group (the 0 group)
 - Slopes become the difference in the means between reference and nonreference groups
 - > For C categories, C-1 predictors are created
- $\beta_1 = 0.744 (0.302)$
 - > Change in predicted value of happiness for one-unit change in *Married*
 - > Because Married is a coded variable, this slope is the <u>difference</u> in happiness between those who are married ($Married_p=1$) and those who are not ($Married_p=0$)
 - Married people report higher happiness (.744 units higher)

More on Categorical Predictors

Marital status was coded as 1=married and 0=non-married

- What about the opposite?
- All coding choices can be recovered from the model:
 - > Predicted happiness for married persons (mean happiness for married=1):

$$Y_p = \beta_0 + \beta_1 = 8.471 + .744 = 9.215$$

> Predicted happiness for non-married persons:

$$Y_p = \beta_0 = 8.471$$

• What would β_0 and β_1 be if we coded NonMarried= 1?

Hypothesis Tests for Parameters

 To determine if the regression slope is significantly different from zero, we must use a hypothesis test:

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

- From your previous statistics courses you may have found this an ANOVA table: sums of squares – F-test
- Because we are using ML, however, ANOVA tables aren't directly given
- Instead, we can use what is called a "Wald" test:

$$Z = \frac{\beta_1}{se(\beta_1)} = \frac{.744}{.302} = 2.462$$
Regressions:
happiness_sumscore ~
married 0.744 0.302 2.462 0.014

Finally, Interpreting the Residual Variance

- There appears to be a significant difference in happiness between married and non-married people
 - > We can now describe how much variance marital status explained by comparing our empty model and predictor model variance estimates
- From the empty model (Model 0): $\sigma_e^2 = 3.535 \ (0.408)$
- From the predictor model (Model 1): $\sigma_e^2 = 3.398 \ (0.392)$

• We can calculate the proportion reduction in variance (called R²):

$$R^2 = \frac{3.535 - 3.398}{3.535} = .039$$

Standardized Coefficients

- The scale of the (unstandardized) slope coefficients is given in terms of UNITS of Y (SD Y) per UNITS of X (SD X)
 - \triangleright Y goes up β_1 UNITS of Y for every 1 UNIT of X
 - Happiness (Y) goes up .744 units (where 1 unit is SD = $\sqrt{3.535}$ = 1.88 score points) for every 1 unit of marital status (where 1 unit is SD = .497)*
 - Not typically computed like this for coded variables
 - If the UNITS of X differ for the various IVs in a model, it can be hard to compare relative strengths of coefficients
- Standardized coefficients are the coefficients that would be obtained if Y and X were standardized:
 - Standardized = variance of 1 (i.e. z-scores used for analysis)

 Standardized coefficients are useful for comparing the relative effects of each IV in the model

Computing our Standardized Coefficients

Our standardized estimates are:

#display standardized parameter output

```
standardizedSolution(model01.fit)
```

```
## 1 happiness_sumscore ~ married 0.197 0.080 2.462 0.014
## 2 happiness_sumscore ~~ happiness_sumscore 0.961 0.111 8.660 0.000
```

- Here, the interpretation is that married people are .197
 standard deviations higher in happiness than are non-married people (note variance is 1-R²)
 - > We use standardized estimates frequently in SEM
- We get this by (SDs are from previous slide):

$$b_1 = \beta_1 \frac{SD(X)}{SD(Y)} = 0.744 \frac{0.498}{1.88} = .197$$

REVIEW OF MEASUREMENT (RELIABILITY)

Measured Constructs, Reliability, and the GLM

The general linear model (regression/ANOVA combo)
 assumed that <u>all</u> variables were measured without error

- Surveys, questionnaires, and tests are all psychological instruments that are imprecise
 - Adding up scores is a very naïve statistical model so the scores all have measurement error
- Related to the measurement error of a test score is the reliability of a test
 - > The GLM assumes Reliability = 1 for all variables
- In our example so far, our happiness variable was the sum score for a 5-item happiness scale

Latent Traits Need Test Theory

- "Test theory" is an abbreviated expression for:
 - "Theory of Psychological Tests and Measurements"
 - > Or "Psychometric Theory" (even when not used in Psychology)
- Test theory is a general collection of statistical models for evaluating the development and use of instruments
 - > Operationalize practical problems in measurement
 - > Provide answers to practical problems in measurement
 - > So yes, measurement models are indeed statistical models!

• 3 branches of measurement models for latent traits that are inter-related... you likely know one of these already

Classical Test Theory (CTT)

- What you first learned about measurement probably falls under the category of Classical Test Theory (CTT):
 - Writing items and building scales (or "tests")
 - > Item analysis for differentiating "good" from "bad" items
 - > Evaluating dimensionality underlying the items
 - Interpretating scale or test "scores"
 - Evaluating reliability and construct validity

 Big picture: We will view CTT as a model with a restrictive set of assumptions within a more general family of latent trait measurement models

What is a 'latent trait'?

- Latent trait = Unobservable construct ("factor")
 - > Many types of variables: ability, attitude, tendency, etc.
 - > e.g., "Intelligence", "Extroversion", "Depression"
- But how can we measure something unobservable?
 - > Build measurement models by which to represent them!
- Big picture: Latent traits can be measured using observed responses → "items" or "indicators"
 - > A new latent variable is created from the common variance across indicators thought to measure the same construct
 - > But not all constructs should use latent trait measurement models! (e.g., formative vs. reflective indicators)

Differences Among Latent Trait Measurement Models (LTMMs)

- What do we call the latent trait measured by the indicators?
 - \rightarrow Classical Test Theory (CTT) \rightarrow "True Score" (T)
 - \triangleright Confirmatory Factor Analysis (CFA) \rightarrow "Factor Score" (F)
 - > Item Factor Analysis (IFA) \rightarrow "Factor Score" (F)
 - > Item Response Theory (IRT) \rightarrow "Theta" (θ)
- Fundamental difference in approach:
 - > CTT -> unit of analysis is the WHOLE TEST (item sum or mean)
 - Sum = latent trait, so items and persons are inherently tied together → bad
 - Only using the sum requires restrictive assumptions about the items
 - ▶ CFA, IFA, IRT, and other LTMMs → unit of analysis is the ITEM
 - Model of how item response relates to a separately estimated latent trait
 - Provides way of separating item and person properties → good for flexibility
 - Different names of models are used for differing item response formats
 - Provides a framework for testing adequacy of measurement models

Latent Trait Measurement Models (LTMMs)

- Families of latent trait measurement models are labeled differently based on their indicators' response format:
 - ➤ Continuous responses? → Confirmatory Factor Models
 - ➤ Categorical responses? → Item Response Theory or Item Factor Models
 - Measurement models for other response types exist too (like counts), but they don't necessarily have special names (I say "generalized")
- Other relevant, related terms:
 - "Structural Equation Modeling" (SEM) is correlation or regression among the latent traits defined by the measurement models
 - Things that can go wrong in SEM most often reflect problems with the measurement models—that is why we spend most of the semester on this!
 - "Path Analysis" is just regression among observed variables only
 - "Mediation" is just regression with a better marketing campaign
 - > "Moderation" is an interaction term with a better marking campaign

A Brief History of Test Theory...

Motivated by problems in education and psychology

- > Education -> Assessment of academic abilities
- ➤ Psychology → Understand structure of intelligence or personality
- > Piecemeal approach; also barriers from technical presentation
- > Theories developed before availability of computing power, so approximations were developed that could actually be used (with remnants that unfortunately still get used, like alpha and EFA)

1904: Charles Spearman published two seminal papers

- > One showed how to estimate amount of error in test scores
 - Led to classical true score theory (aka, classical test theory)
- > Other showed how to recognize from test data that the tests measure just one psychological attribute in common ("G")

Led to common factor theory (aka, confirmatory factor analysis)

Sum Score = Classical Test Theory: Basics of CTT

In CTT, the <u>test</u> is the unit of analysis:

$$Y_{total} = T + e$$

- > True score T: best estimate of "construct"
- > Error e: mean of zero, uncorrelated with T
- Variance of test scores: $\sigma_Y^2 = \sigma_T^2 + \sigma_e^2$
- Goal is to quantify *reliability* :: proportion of test variance accounted for by true score variance:

$$\rho = \frac{\sigma_T^2}{\sigma_T^2 + \sigma_e^2}$$

- Items assumed exchangeable (they all count the same)
 - > More items means higher reliability, regardless of type

Classical Test Theory, continued

- CTT unit of analysis is the TEST or SCALE (sum/mean of items)
 - Want to quantify how much of observed test score variance is due to "true score" variance versus "error" variance
 - "Error" is a unitary construct in CTT (and error is always bad)
 - > Goal is then to reduce "error" variance as much as possible
 - Standardization of testing conditions (make confounds constants)
 - Aggregation → more items are better (errors should cancel out)
 - > Items are exchangeable; item properties are NOT taken into account in indicating the latent trait of a given person (which is just the sum)
- Followed by generalizability theory to distinguish kinds of error
 - > e.g., item variance, person variance, rater variance, occasion variance
 - Modern analog: mixed-effects (multilevel) models with crossed random effects for each (random) sampling dimension and their interactions

Classical Test Theory, continued

- Brief history of solutions for quantifying reliability:
 - > 1904: Spearman: from alternate forms or test-retest
 - > 1945: Guttman: from the relations between the items within a test (i.e., coefficient alpha)
 - > 1951: Cronbach further developed Guttman's work
 - → "Cronbach's alpha"
 - Called "Guttman-Cronbach alpha" by McDonald (and no one else)
 - Cronbach's work further elaborated into generalizability theory
 - And no, a good alpha doesn't mean anything—stay tuned for why!
 - > 1950: Gulliksen classic text for CTT
 - See also Nunnally's texts from the 1970's-1990's
- More CTT specifics in upcoming classes...
- Next, tracing the other contribution of Spearman...

So...our 5 Happiness Items are Now the Focal Point

 The happiness sum score was just the sum of the 5 happiness items in our data set for each person:

$$Y_p = X_1 + X_2 + X_3 + X_4 + X_5 = \sum_{i=1}^{I} X_i$$

- This brings up discussions of multi-variable statistics:
 - > Correlation and covariance
- The sample correlation matrix of these data are:

```
X3
            X1
                                                           X5
    1.00000000 -0.06354391 0.06019113
                                       0.02107528 0.15239670
x2 -0.06354391
                1.00000000 0.07555098 -0.02271474 0.03080322
    0.06019113
                0.07555098 1.00000000
                                        0.05662233 0.15168240
    0.02107528 -0.02271474 0.05662233
                                       1.00000000 0.16500076
X5
    0.15239670
                0.03080322 0.15168240
                                       0.16500076 1.00000000
```

Correlation of Variables

 The Pearson correlation is often used to describe the association between a pair of variables:

$$r_{Y_1,Y_2} = \frac{\frac{1}{N-1} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_1) (Y_{2p} - \bar{Y}_2)}{S_{Y_1} S_{Y_2}}$$

- The correlation is unitless as it ranges from -1 to 1 for continuous variables, regardless of their variances
 - > Pearson correlation of binary/categorical variables with continuous variables is called a point-biserial (same formula)
 - Pearson correlation of binary/categorical variables with other binary/categorical variables has bounds within -1 and 1

Reliability Measured by Alpha

- For quantitative items (items with a scale although used on categorical items), this is often indexed by Cronbach's Alpha...
 - > Or 'Guttman-Cronbach alpha' (Guttman 1945 > Cronbach 1951)
 - > Another reduced form of alpha for binary items: KR 20
- Alpha is described in multiple ways:
 - > Is the mean of all possible split-half correlations
 - > Is expected correlation with hypothetical alternative form of the same length
 - > Is lower-bound estimate of reliability under assumption that all items are tauequivalent (more about that later)
 - As an index of "internal consistency"
 - Although nothing about the index indicates consistency!

 Alpha, however, is calculated using covariance matrices instead of correlation matrices

Covariance of Variables: Association with Units

 The numerator of the correlation coefficient is the covariance of a pair of variables:

$$S_{Y_1,Y_2} = \frac{1}{N-1} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_1)(Y_{2p} - \bar{Y}_2)$$
 Unbiased or "sample"

$$S_{Y_1,Y_2} = \frac{1}{N} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_1)(Y_{2p} - \bar{Y}_2)$$
 Biased/ML or "population"

- The covariance uses the units of the original variables (but now they are multiples):
- The covariance of a variable with itself is the variance
- The covariance is often used in SEM and multivariate analyses because it ties directly into multivariate distributions

> But...covariance and correlation are easy to switch between

Going from Covariance to Correlation

 If you have the covariance matrix (variances and covariances):

$$r_{Y_1,Y_2} = \frac{S_{Y_1,Y_2}}{S_{Y_1}S_{Y_2}}$$

 If you have the correlation matrix and the standard deviations:

$$S_{Y_1,Y_2} = r_{Y_1,Y_2} S_{Y_1} S_{Y_2}$$

Where Alpha Comes From

First, we need the covariance matrix of all the items

```
X1 X2 X3 X4 X5
X1 1.19557420 -0.07495136 0.06737788 0.02346632 0.16606757
X2 -0.07495136 1.16368298 0.08343611 -0.02495217 0.03311574
X3 0.06737788 0.08343611 1.04807695 0.05902929 0.15475788
X4 0.02346632 -0.02495217 0.05902929 1.03697078 0.16745194
X5 0.16606757 0.03311574 0.15475788 0.16745194 0.99321203
```

The sum of the item variances is given by:

$$ItemVar(Y) = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2 + \sigma_5^2 = 5.437$$

• The variance of the sum of the items is given by the sum of ALL the item variances and covariances:

$$TotalVar(Y) = \sum_{i=1}^{I} \sum_{j=1}^{J} \sigma_{ij} = 6.747$$

Guttman-Cronbach's Alpha

$$\alpha_{GC} = \frac{I}{I - 1} \cdot \frac{TotalVar(Y) - ItemVar(Y)}{TotalVar(Y)}$$

$$\alpha_{GC} = \frac{5}{5 - 1} \cdot \frac{6.747 - 5.437}{6.747} = 0.243$$

- Numerator reduces to just the covariance among items
 - > Sum of the item variances...
 - $Var(X) + Var(Y) = Var(X) + Var(Y) \rightarrow just the item variances$
 - Variance of total Y (the sum of the items)...
 - $Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) \rightarrow PLUS covariances$
 - > So, if the items are related to each other, the variance of the total Y item sum should be bigger than the sum of the item variances
 - How much bigger depends on how much covariance among the items the primary index of relationship
- Therefore the happiness scale is not perfectly reliable

> Violates the assumption of the GLM/Regression

Confirmatory Factor Analysis (CFA) Models

- Main idea: Build a measurement model of which response indicators should "go together" to measure the same thing
 - CFA = Linear regression model predicting each continuous observed outcomes ("indicators") from latent trait (unobserved) predictor(s)
- Differs from exploratory factor analysis (that is NOT a model):
 - > In CFA *you* impose the number and content of factors
 - > In CFA alternative models are COMPARABLE and TESTABLE
- Uses of confirmatory factor analysis models:
 - Analyze relationships among indicators that have normal, continuous distributions (or "incorrectly" to analyze ordinal response indicators)
 - > Provide separation of persons, items, and occasions (as in any LTMM)

Confirmatory Factor Analysis (CFA)

The CFA unit of analysis is the ITEM (as in any LTMM):

$$y_{is} = \mu_i + \lambda_i F_s + e_{is} \rightarrow \text{both items AND subjects matter}$$

Should look familiar...

- > Observed response for item *i* and subject *s*
 - = intercept of item $i(\mu)$
- $y_{is} = \beta_{0i} + \beta_{1i}x_s + e_{is}$ + subject s's latent trait/factor (F), item-weighted by λ
 - + error (e) of item i and subject s
- **Dimensionality** \rightarrow part of the model (usually 1 latent trait per item)
 - \rightarrow Local Independence $\rightarrow e$ residuals are independent after controlling for factor(s)
 - > The factor is the reason why item responses were correlated in the first place!
 - > If not, you can augment the model to address unintended multidimensionality
- **Linear model** \rightarrow a one-unit change in latent trait/factor F_s creates same increase in the expected response y_{is} along all points of y_{is}
 - > Won't work well for binary or ordinal data... thus, we need another LTMM
- Items can now differ from each other in how much they relate to the latent trait, but a "good item" is assumed equally good for everybody!

A Brief History of Common Factor Theory

- 1900's: Spearman's "G" single-factor models
 - > Development of techniques designed to find a common factor
 - > Led to development of other IQ tests (Stanford-Binet, Wechsler)
- 1930's and 1940's: Thurstone elaborated Spearman's "G" unidimensional model into a "multiple factor" model
 - > Beginnings of exploratory factor analysis to do so
 - Later applied in other personality tests (e.g., MMPI)
- 1940's and 1950's: Guttman's work
 - > Factor analysis and test development is about generalizing from measures we have created to more measures of the same kind
 - > Thus, need to think about measurement structure before-hand

A Brief History of Common Factor Theory

- 1940s: Lawley → rigorous foundation for statistical treatment of common factor analysis
 - > But had to wait for better computers to be able to do it!
- 1952: Lawley → beginnings of confirmatory factor model
 - > Later extended by Howe and Bargmann (1950's)
 - > Further extended by Jöreskog (the King of LISREL in1970's)
- But this linear model pry should not be applied to binary, ordinal, or other not-continuous responses...
 - > Predicted response will go past possible response options
 - > Errors can't be normally distributed with constant variance
- So then what? Item Response Theory to the rescue...
 - > aka, LTMM for generalized response formats

Item Response Theory (IRT) Models

- IRT resulted from combination of ideas from factor analysis and phi-gamma law of psychophysics
 - > When detecting stimuli of varying intensity (e.g., light), the response follows a smooth, S-shaped curve that can be represented by the cumulative normal distribution
 - > That response function also works to model probability of a correct response given (1 to 4) model parameters
- 1950: Lazarsfeld: Introduced "latent structure analysis"
 - → factor analysis for binary item responses
 - > Beginnings of item response theory (which is not a theory per se, but another set of latent trait measurement models)

Item Response Theory (IRT) Models

- Linear regression is to confirmatory factor models as to:
 - Logistic regression is to binary IRT models
 - Ordinal/nominal regression is to "polytomous" IRT models
 - > IRT = generalized linear model predicting each categorical observed outcome indicator from latent predictors using link functions
 - > Term "IRT" usually goes with full-information estimation (use all data)
- A "Rasch model" is a restricted version of an IRT model (but don't let any Rasch people hear you saying that)
- Uses of IRT models:
 - *Correctly* analyze categorical indicators (binary, ordinal, or nominal)
 - > Examine sensitivity of measurement across range of latent trait
 - > Provide separation of persons, items, and occasions (as in any LTMM)

Item "Characteristic" Curves

a = Discrimination = slope of 'line' b = Difficulty = location of 'line'

c = Lower Asymptote of 'line'
d = Upper Asymptote of 'line'

Note: Theta ability has a nonlinear relationship to probability of item response, but a linear relationship to its link-transformed mean...

Item Response Theory, continued

- The IRT unit of analysis is the individual ITEM (as in any LLTM) Link $(y_{is}) = a_i(\theta_s b_i) \rightarrow$ both items AND subjects matter
 - Response probability is predicted via a link (transformation) function (usually logit or probit, in which probit is called "ogive" in IRT)
 - > Items and persons are located on the same latent metric
 - > Probability of getting an item right depends (at least) on the subject's ability $(\theta_s = \text{``Theta''})$ and the item's difficulty (b_i) , weighted by its discrimination (a_i) how related the item is to the latent trait)
 - > "Item factor analysis" (IFA) re-arranges IRT model into something that looks more like CFA (and usually uses limited information estimation)
- All items are NOT created equal (not exchangeable)
 - Having items that differ in their properties is a GOOD THING, because you can customize tests for different groups or purposes
 - > Reliability ("information") varies across trait level, and depends specifically on how well the items' difficulty matches subjects' traits

Item Response Theory, continued

- 1952: Lord's seminal paper: Spearman's single-factor model can be applied to dichotomous items
 - Binary responses modeled by normal ogive function ("probit")
 - Later work used easier logit link instead (logit ≈ probit*1.7)
 - Elaborated in 1960s by Birnbaum (and others)
- 1968: Lord & Novick → first CTT text to also include IRT
 - > Well-connected to emerging scholars in both educational testing and psychometric methods... and BOOM...
- 1960: Separate work by Rasch (common 'a' parameter)
 - Restricted IRT model, but with desirable properties if it fits...
 - > ... and a very different philosophical viewpoint (as "the" model)

A Unified View of Test Theory

- Classical test theory can be viewed as a restricted form of the common factor model, but the focus is the TEST...
 - > Originated by Spearman, elaborated by Thurstone, formalized by Lawley, and made practical in software by Jöreskog
- Item response theory (and Rasch) models are common factor models used for binary or ordinal responses...
 - > Developed by Lord, Birnbaum, Rasch, and their students
- Confirmatory factor analysis are common factor models for continuous responses...
 - > Approximation for ordinal data with varying degrees of success
- Latent traits can also be indicated by other kinds of non-normal responses (count, zero-inflated, two-part/hurdle)....
 - > But they don't have special names (I'd call it "generalized SEM")

> Other response data (e.g., eye fixation, RT) can be used, too!

Advantages of LTMM Framework (CFA, IRT, IFA, and beyond)

- Explicit, testable models of dimensionality
- Concrete guidelines for selecting items to build scales
- Assess measurement sensitivity across range of latent trait (i.e., know where the "holes" of imprecision are)
- Provide comparability across persons, items (different forms scales or different scales), and occasions
- Examine comparability across groups or repeated measures
 - ➤ Confirmatory factor analysis → "Measurement invariance"
 - ➤ Item response theory → "Differential item functioning"
- Internal and external evidence for construct validity
- Generalized measurement models can even accommodate different response formats within the same instrument

Disadvantages of LTMM Framework

Primary: Required sample size

- > Casts of 100s for sure, and preferably 1000s
 - Bayesian methods are much more flexible!
- Uses maximum likelihood (limited-info WLSMV estimator in Mplus can also be used for multidimensional IRT models)
 - REML is not available for smaller samples (as it is in MLM software)

Technical difficulties

- > Estimation is harder, especially in multidimensional IRT
- References written in Greek (literally)
 - Except your textbook and selected readings, so please read them!

Misnomers about what LTMM (within SEM) can do...

- > Bad items are still bad items, no matter what model is used
- No, SEM is still not "causal" modeling

MOTIVATING STRUCTURAL EQUATION MODELING

Not 100% Reliable: What's the Big Deal?

- When the GLM (regression/ANOVA/all other forms) are used with variables that are not measured perfectly, several deleterious things can happen:
 - > The effects may be biased
 - Depends on variable type (i.e., how continuous are your measures)
 - > The standard errors may be biased
 - Happens any time
 - > Therefore...hypothesis tests may not be accurate
- Basically, any conclusions you make can be drawn into question when you have not-100%-reliable variables used
 - > The issue is with just how reliable is reliable enough

The Answer...Don't Use Aggregates - USE SEM

- Structural Equation Modeling seeks to determine the relationship between
 - > Latent constructs only
 - Latent our example: Happiness
 - > Latent and observed constructs
 - From our example: how does marital status factor into the model?
 - > Complex relationships between latent constructs and observed variables
 - More variables needed for our example
 - Includes mediation models
- SEM is a generalization of linear modeling using observed and latent (sometimes called random) variables
 - > I tend to think of SEM as a part of a bigger picture...you will see that SEM people think everything is part of SEM

Path Diagram of Our Regression Example

- A common way of depicting SEMs is with a path diagram ->
 a pictorial representation of the statistical model
 - Observed variables: Squares
 - > Latent variables: Circles
 - > Direct effects: Arrows with one head
 - > Indirect effects: Arrows with two heads
- From our previous
 GLM example

 Here MRR is marital status and hp_ is the happiness sum score

In SEM, We Don't Need a Sum Score

- Variables that are measured with error are represented as "latent" constructs in SEM
 - > The latent variables are estimated directly by the model
 - > Any equations involving latent variables are estimated simultaneously
- A more accurate depiction of our example:

Simultaneous Equations Implied by Path Diagram

$$X_{p1} = \mu_{1} + \lambda_{1}HPP_{p} + e_{p1}$$

$$X_{p2} = \mu_{2} + \lambda_{2}HPP_{p} + e_{p2}$$

$$X_{p3} = \mu_{3} + \lambda_{3}HPP_{p} + e_{p3}$$

$$X_{p4} = \mu_{4} + \lambda_{4}HPP_{p} + e_{p4}$$

$$X_{p5} = \mu_{5} + \lambda_{5}HPP_{p} + e_{p5}$$

$$HPP_{p} = \beta_{0} + \beta_{1}Married_{p} + e_{p}^{HPP}$$

Measurement Models

- Measurement models can be divided into families of models based on response format alone:
 - > In most of this course: continuous variable responses measuring a latent construct:: **Confirmatory Factor Models**
 - Non-continuous variable responses → item response theory (and other names)

- Both of these families fall under a larger framework:
 Generalized Linear Latent and Mixed Models
 - > Provide measurement models for other types of responses
- Other relevant families we will be discussing:
 - > Structural Equation Models :: provides estimates of correlations amongst latent variables in measurement models
 - > Path Analysis :: simultaneous regression among observed variables

Comparing Results for GLM and SEM Analyses

- The results of these two analyses show how SEM can and should be used:
- Recall the standardized coefficient from our GLM analysis:

```
## 1 happiness_sumscore ~ married 0.197 0.080 2.462 0.014
```

Now here is the same coefficient from the SEM analysis:

```
## lhs op rhs est.std se z pvalue
## 6 happiness ~ married 0.272 0.233 1.168 0.243
```

- The GLM β_1 is lower (biased due to unreliable Y)
- The GLM β_1 standard error is lower (result of assuming perfect reliability for Y: more power that you really have)
- The p-value is non-significant

 the conclusion changes

Simultaneous Equations Implied by Path Diagram

SEM is often called Path Analysis with Latent Variables

$$X_{p1} = \mu_{1} + \lambda_{1}HPP_{p} + e_{p1}$$

$$X_{p2} = \mu_{2} + \lambda_{2}HPP_{p} + e_{p2}$$

$$X_{p3} = \mu_{3} + \lambda_{3}HPP_{p} + e_{p3}$$

$$X_{p4} = \mu_{4} + \lambda_{4}HPP_{p} + e_{p4}$$

$$X_{p5} = \mu_{5} + \lambda_{5}HPP_{p} + e_{p5}$$

$$HPP_{p} = \beta_{0} + \beta_{1}Married_{p} + e_{p}^{HPP}$$

The (Really) Big Picture

- Statistical distributions are what drive the process
 - > Each distribution is described by a set of parameters
 - Think of the normal distribution (mean and variance)
- Each of the lines represents model parameters
 - > The statistical distribution of the boxes and circles are described by the model parameters
- Model parameters provide constraints to the statistical distribution parameters
 - Reduce complexity of model
 - > Provide for meaningful inference
- A model is bound by distributions assumed and, hence, the number of possible parameters
 - > We will learn statistics and path models
 - Both are needed to be good at SEM

In-Class Video Demonstration

INTRODUCTION TO R AND R STUDIO

WRAPPING UP AND REFOCUSING

Key Questions for Today's Lecture

1. What is Structural Equation Modeling (SEM)?

2. How does SEMs differ from linear models?

3. What other models/methods are SEMs related to?

4. Why use SEM?

Wrapping Up

 Today we covered the structure of the course, a review of the prerequisites, and an introduction to R and R studio

- First Homework:
 - ➤ Assigned next week (Sept 3) → Due September 9th
- First Reading Assessment:
 - Next week (on Kaplan's Chapter 2)