夾捲案 3 分析參考

從事輸送帶偏移調整作業遭捲入致死災害調查分析報告

重要提醒:本分析報告是基於所提供案例的有限資訊,並結合事故調查的專業方法論 進行。部分內容為根據邏輯與經驗所做的合理推斷,並會明確標示為(推斷)。一場實際、完整的事故調查,需要更詳盡的現場勘查、人員訪談與物證檢驗來支持所有結 論。

事故基本資料

• 行業分類: 預拌混凝土製造業

• **災害類型**: 被夾、被捲

媒介物: 輸送帶

• **罹災情形**: 死亡1人

• **事故時間**: 114 年 1 月 15 日 · 介於 9 時許至 13 時 43 分之間

• 事故地點: 廠內上傾斜輸送帶尾輪處

事故摘要: 114年1月15日9時許,勞工潘員發現廠內輸送帶因皮帶偏移導致砂石漏料,便獨自前往尾輪處進行調整作業。至13時43分許,廠長發現潘員時,其右手已被捲入仍在運轉中的輸送帶皮帶與尾輪轉軸之間。同事緊急關閉電源並通報119,但救護人員到場時,潘員已死亡。

一. 事件成因分析圖 (ECFC)

此圖將事故發生的事件及相關條件按時間順序,由左至右呈現,以視覺化方式釐清因 果關係。

二. 時間序列表

此表以表格形式記錄事故發生的先後順序和相關條件,為後續分析奠定基礎。

日期/時間	事件描述	事	主(P)/	相關條件 1 (直	相關條件 2 (條件 1 的背景或前
		實/	次(S)事	接條件)	提)
		推	件軸		
		<u> 22</u>			
114/01/15	勞工潘員發現輸送帶皮	事	Р	1. 於運轉中的	1. 未建立或未落實維修作業必
9:00 許	帶偏移, 獨自前往尾輪	實		危險機械旁進	須「停機、斷電、上鎖
	處調整 ·			行維修 ·	(LOTO)」的標準作業程序
				2. 單獨作業。	(SOP)。(推斷)
					2. 缺乏單獨從事高風險維修作
					業的管制規定。(推斷)
114/01/15	潘員在調整皮帶過程	事	Р	身體部位(手)	1. 輸送帶尾輪轉動部分未設置
9:00-13:43	中·其右手被捲入皮帶	實		靠近並接觸運	護罩或護圍。(推斷)
	與尾輪轉軸之間。			轉中的捲入	2. 調整皮帶的動作本身具有高
				點。	度不確定性與危險性。
114/01/15	廠長要找潘員詢問漏料	事	Р	事故發生至發	1. 缺乏對高風險維修作業的監
13:43 許	處理情形時,才發現他	實		現已延遲數小	護或巡檢機制。
	受困於輸送帶。			時。	2. 潘員未告知他人其作業地點
					與內容。(推斷)
114/01/15	同事關閉輸送帶電源,	事	Р	人員受困於運	救援行動已無法挽回生命,顯
13:43 許	並通報 119 · 救護人員	實		轉中的機具,	示傷害在被發現前就已致命。
後	到場時發現潘員已死			傷害持續發	
	亡。			生。	

三. 為何樹分析 (Why-Tree)

本分析從最終的傷害事件開始,透過不斷追問「為什麼」來探究事件的根本原因。

四. 屏障分析 (Barrier Analysis)

本分析旨在識別應有但失效、缺失或不足的屏障,導致危害接觸到目標。

• 危害: 機械能 (運轉中的輸送帶與尾輪轉軸所形成的捲夾動能)

• 目標: 罹災者潘員

屏障	屏障	屏障表	屏障失效原因	屏障如何影響事故 (失效的後果)
類型		現 (事		
		故時狀		
		態)		
行政	1. 停機、斷	完全不	未針對維修、保養、調整等作業	最致命的屏障失效 。 允許了危
管理/	電、上鎖掛牌	存在或	建立並強制執行 LOTO 程序。勞	害能量(輸送帶運轉)在維修作業
程序	(LOTO)程序	未執行	工可能為求方便或缺乏認知而未	中持續存在,這是後續所有事件
性			停機。(推斷)	的根本前提。
(最關				
鍵屏				
障)				
工程	2. 尾輪轉動部	完全不	設備在安裝或後續使用中,從未	直接讓作業員的手部暴露於輸送
控制	固定式護罩/護	存在	加裝此基本的物理性防護。	帶的捲入點危害中。若有此屏
	圍	(推斷)		障,即使未停機,手部也無法接
				觸到危險點。
行政	3. 維修作業許	不存在	公司未建立維修前需申請許可的	缺乏一個在事前審查並攔截不安
管理	可制度	或無效	制度。若有許可,就必須檢核	全維修計畫的機制・讓不安全的
		(推斷)	LOTO、作業方法、監護人等,此	臨時起意得以執行。
			作業將不會被批准。	
行政	4. 單人作業安	完全失	允許勞工單獨從事高風險的維修	事故發生後,罹災者無法自救或
管理	全管制	效	作業,且未建立任何監控、定時	求救,也無人能及時發現,導致
			回報或巡檢機制。	救援時間嚴重延遲超過4小時,
				錯失任何可能的救援時機。

五. 變更分析 (Change Analysis)

本分析比較「事故狀況」與一個「理想的無事故狀況」,以識別導致事故的關鍵差異。

因素	事故狀況	先前、理想或未發生事	差異(變更)	效果評估 (此差異對事故的
(Factor)		故狀況 (比較基準)		影響)
HOW (方	在輸送帶**「動	在輸送帶**「靜態」	維修方法由「有	核心技術差異。 此變更將
法/程序)	態」運轉**下,	**(已執行 LOTO)下,由	計畫、安全的」	一個可控的維修作業,轉變

	以手動方式進	兩人以上合作,使用適	變為「臨時、危	為一個高致命風險的動作,
	行皮帶調整。	當工具安全地進行調	險的」。	直接將人員置於失控的危害
		整。		能量之中。
WHO (人	**「單獨」**一	維修作業應指派**「兩	作業人員由「受	移除了事故發生時能夠立即
員/監督)	人進行非例行	人以上」 共同執行・或	監護」變為「完	反應與求援的最重要屏障。
	性的高風險維	至少應有 「監護人員」	全無人監護」。	這是導致發現時間嚴重延遲
	修作業。	**在旁監看。		的直接原因。
WHAT	輸送帶設備處	設備應處於**「無法運	設備安全狀態由	允許了危害能量(輸送帶轉
(設備狀	於**「可運轉/	轉/有物理防護」**的狀	「已確保」變為	動)在人員接近維修時持續存
態)	無任何防護」**	態(透過 LOTO 及護	「未確保」。	在,是事故發生的物理性前
	的狀態。	罩)。		提。

六. 人為失誤分析 (Human Failure Analysis)

本分析探討影響人員行為的深層次原因,而非僅歸咎於個人。

失誤類型	主要不安全行為/失誤	根本原因 (組織與系統層面)
常規性或情境性違	罹災者潘員在輸送帶運轉中	1. 安全程序與文化真空: 公司完全沒有提供維修
規 (Violation)	進行調整作業。	時應遵循的 SOP 與 LOTO 程序·等於是放任員工
	此行為可能是為求快速解決	在面對問題時,只能依賴個人判斷與不安全的「經
	漏料問題,而採取的 情境性	驗法則」來行動。這是一種管理上的完全棄守。
	違規 ;或是過去曾如此便宜	2. 生產壓力凌駕安全: 一發現漏料就立即處理·
	行事,已演變成 常規性違	反映了「維持生產」的急迫性高於「安全停機」的
	規。	要求。這種隱性的組織壓力,會直接鼓勵員工採取
		不安全的捷徑。
知識性錯誤	雇主/現場負責人未能提供安	1. 風險評估的系統性失敗: 管理階層從未對「輸
(Knowledge-based	全的維修程序與監督機制。	送帶維修/調整」這類非例行但高風險的作業進行
Mistake)		危害辨識與風險評估。他們可能不知道 LOTO 的重
		要性.也不知道單獨維修的致命風險。
		2. 安全管理責任與能力不足: 負責人未能履行其
		規劃、指揮、監督安全作業的職責・顯示其本身安
		全知識不足,也未能建立一個基本的安全管理制度
		(如作業許可、LOTO、單人作業管制)。

七. 根本原因分析與矯正改善措施

本章節匯總前述六項分析的結果,旨在明確事故的直接原因與根本原因,並依據控制階層理論,提出能有效防止災害再次發生的系統性改善建議。

(一) 立即原因

• 不安全的狀況 (Unsafe Conditions):

- 1. 輸送帶於調整維修作業期間,仍處於運轉狀態。
- 2. 輸送帶尾輪的皮帶與轉軸之間,存在捲夾點且未設置護罩。(推斷)
- 不安全的行為 (Unsafe Acts):
 - 1. 作業員在未停機的狀況下,以手部調整運轉中的輸送帶皮帶。
 - 2. 單獨一人從事高風險的設備維修、調整作業。

(二) 根本原因

- 1. 未建立維修保養作業之安全管理程序與標準: 這是本次事故最核心的根本原因。公司完全沒有建立維修、保養、調整、清潔等作業前,必須執行的**「停機、斷電、上鎖掛牌(LOTO)」標準作業程序(SOP)**,這是所有後續不安全行為得以發生的系統性根源。
- 2. **設備本質安全的系統性忽視**: 輸送帶尾輪等轉動的危險部位,從未被評估加裝固 定式護罩或護圍。管理階層只關注設備的生產功能,而完全忽略了其潛在的機械 危害與本質安全設計。
- 3. **單獨作業的風險管控完全闕如:**公司未辨識出「單獨從事維修作業」為一項高風險活動,因此也從未建立相關的管制程序,例如禁止單獨維修、派工需有監護人、或建立定時回報/巡檢機制。
- 4. **危害辨識與風險評估的失敗**: 管理階層從未對非例行性的「維修作業」進行系統性的風險評估,因此未能辨識出「未停機維修」與「單獨作業」的致命性組合風險,導致安全管理制度一片空白。

(三) 矯正改善措施建議

- 依據風險控制階層 (消除 > 取代 > 工程控制 > 管理控制 > 個人防護具)·提出以下矯正措施:
- 工程控制/制度層面 (最優先):
 - 1. 全面導入並強制執行「能源隔離/上鎖掛牌(LOTO)」制度: 此為必須立即執行的最優先事項。 應立即制定 LOTO 程序書,採購足夠的鎖頭、掛牌,並對所有維修人員及現場主管進行完整訓練與授權。規定未來任何設備的維修、保養、調整、清潔等作業,一律嚴格執行 LOTO 程序,並由主管在作業前、後進行查核。
 - 2. **立即為所有機械轉動暴露點加裝護罩:**全面盤點廠內所有輸送帶、馬達、 齒輪等轉動部的暴露點,立即設計並安裝固定式護罩或護圍,徹底做到物 理性隔離,從源頭消除接觸危害。

管理控制層面:

- 1. **建立「維修作業許可」與「單獨作業管制」程序**: 規定未來所有非緊急的維修作業,皆須事前申請「維修作業許可單」,單上應詳列作業步驟、LOTO計畫、使用工具及**作業/監護人員**。嚴格禁止單獨從事任何有捲夾之虞的維修作業。
- 2. **修訂作業標準並加強教育訓練:**將 LOTO 程序、護罩檢查等納入標準作業規範,並將本次事故作為活教材,對全體員工進行捲夾危害預防的再訓練,確保所有人都認知到「停機維修」是不可逾越的紅線。
- 3. **落實自動檢查與主管巡檢:** 將 LOTO 程序的執行狀況、護罩的完整性,列入每日自動檢查及主管現場巡檢的重點項目,並留下書面紀錄,確保制度被確實執行。