

6 - Mobility Management

Reti Mobili Distribuite

Prof. Antonio Capone

Introduction

- Mobility management allows a terminal to change its point of access to the network:
 - Without changing its address/identifier
 - Keeping sessions active (at application level)
- □ This is not always necessary
 - Application clients do not need to be reached with the same address/identifier
 - They can change address/identifier whenever they need and issue requests to servers as long as session continuity is not a problem

Client mobility

Change IP address Start new sessions

Mobility Management (MM)

- □ If you must be reached by other hosts with your address/identifier:
 - Server applications
- And/or you want your sessions remain active
 - Real time applications
- ☐ Then you need some mobility management support by the network

MM @ Application Layer

- Change address and keep the same application layer identifier
- Manage sessions changing their description when address change
- Examples:
 - Dynamic DNS
 - SIP

MM @ Application Layer

Dynamic DNS

- No session continuity
- Mainly devised for static servers with dynamic IP addresses

MM @ Application Layer

 Both pre-call and mid-call mobility can be provided with session continuity

MM @ routing layer: Link Layer

MM @ routing layer: Link Layer

- Let's take a closer look:
 - Bridging tables have an entry for each MAC address
 - When terminal changes its access point we "just" need to update the corresponding entries in all bridging tables of the network
 - This approach is suitable for LANs
 - It does not scale up to big networks

MM @ routing layer: IP Layer

- □ How to manage mobility at IP layer?
 - IP routing is based on the network address (prefix matching)

MM @ routing layer: IP Layer

□ How to manage mobility at IP layer?

MM @ routing layer: IP Layer

- □ How to manage mobility at IP layer?
 - Can we use the same approach for link layer mobility → per host routes ?

MM @ routing layer: IP Layer

- Per host routes
 - Large routing tables: potentially one entry per mobile host
 - Frequent routing updates that need to be distributed on the whole network
 - Even for a relatively small number of mobile hosts, managing mobility with per host routes would not be easy

MOBILE IP

Mobile IP

- Mobile IP was developed as a means for transparently dealing with problems of mobile users
 - Enables hosts to stay connected to the Internet regardless of their location
 - Enables hosts to be tracked without needing to change their IP address
 - Requires no changes to software of non-mobile hosts/routers
 - Requires addition of some infrastructure
 - Has no geographical limitations
 - Requires no modifications to IP addresses or IP address format
 - Supports security

Mobile IP

- Mobile IP is an Internet Engineering Task Force (IETF) standard communications protocol
- Mobile IP for IPv4 (MIPv4) is described in IETF RFC 3344 and in RFC 4721

Basics

- Mobile IP allows a mobile host to move about without changing its *permanent IP address* (PIP)
- □ Each mobile host has a home agent (HA) on its home network (HN)
- Mobile host establishes a care-of address (COA) when it's away from home

Basics

- Correspondent host is a host that wants to send packets to the mobile host
- Correspondent host sends packets to the mobile host's IP permanent address
- These packets are routed to the mobile host's home network
- □ Home agent forwards IP packets for mobile host to current care-of address
- Mobile host sends packets directly to correspondent, using permanent home IP as source IP

Care-of address

- MHs has two options for the care-of address:
 - Foreign agent care-of address: care-of address can be the address of a foreign agent on the remote network
 - □ home agent *tunnels* packets to the home agent
 - foreign agent delivers packets forwarded from home agent to mobile host
 - Co-located care-of address: care-of can be a temporary, foreign IP address obtained through DHCP
 - home agent tunnels packets directly to the temporary IP address
- In any case, care-of address must be registered with home agent

Foreign agent care-of address

Co-located care-of address

Tunneling

Packet is encapsulated in another IP packet

- Mobility Binding Table
 - Maintained on HA
 - Maps MH's home address with its current COA

Home address	Care-Of Address	Lifetime (s)
124.44.122.78	131.175.21.78	300
124.44.122.49	197.23.62.34	100

- Visitor List
 - Maintained on FA serving an MN
 - Maps MN's home address to its MAC address and HA address

Home address	Home Agent Address	Lifetime (s)
124.44.122.78	124.44.122.1	300
167.34.32.44	167.34.32.254	300

MIPv4 main functions

- Agent discovery
 - HA and FA advertize service availability
 - MHs can send solicitations to discover if an agent is present
- Registration
 - MHs registers their COA at the HA either directly or through the FA
 - Registrations are stored in the tables
- Tunneling
 - Has tunnel datagrams to the COA through the IP-in-IP encapsulation

MIPv4 (RFC 3344)

- Leaves Internet routing fabric unchanged
- Does not assume access points ("base stations") exist everywhere
- □ Simple
- CHs don't need to know about mobility
- Works both for changing domains and network interfaces

MIPv4 Operation (RFC 3344)

- HAs and FAs advertise their availability using agent-advertisement messages
- MHs receive advertisement messages and decide if it is a HA or a FA
- □ If it is its HA and MH is returning to home network, it deregisters previous COA on the HA
- □ If it a new FA, MH requests a COA (either FA COA, or a co-located COA)
- MH registers the COA at the HA possibly via the FA

MIPv4 Operation (RFC 3344)

- □ HA intercepts packets sent to the MH
- □ HA tunnels packets to the COA
- Packets from the MH are sent directly to the CH

Home Agent Operation

Home Agent location

Routing Optimization

- Suboptimal "triangle" routing
 - Packets are sent to HA first and then tunneled to the MH
- Possible Solution:
 - Home agent sends current care-of address to correspondent host
 - Correspondent host caches care-of address
 - Future packets tunneled <u>directly</u> to care-of address

Routing Optimization

Routing Optimization

Problems with MIP

□ "Ingress" filtering

Routers which see packets coming from a direction from which they would not have routed the source address are dropped

124,44,122

Problems with MIP

☐ Security issues:

- Malicious host sends fake registration messages to home agent "on behalf" of the mobile host
- Packets could be forwarded to malicious host or to the bit bucket
- Solution: use secure authentication for registration request/reply
- Several other security issues ...

Mobility in IPv6

- Route Optimization is a fundamental part of Mobile IPv6
 - Mobile IPv4 it is an optional set of extensions that may not be supported by all nodes
- Foreign Agents are not needed in Mobile IPv6
 - MNs can function in any location without the services of any special router in that location
- Security
 - Nodes are expected to employ strong authentication and encryption

Hierarchy in MM

- Registration needed every time MH moves
- Registration adds delay when HA is far away

Hierarchy in MM

