INTRODUCTION

TO

LINEAR

ALGEBRA

Fifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

math.mit.edu/linearalgebra

web.mit.edu/18.06

video lectures: ocw.mit.edu

math.mit.edu/~gs

www.wellesleycambridge.com

email: linearalgebrabook@gmail.com

Wellesley - Cambridge Press

Box 812060

Wellesley, Massachusetts 02482

Problem Set 5.1, page 254

- **1** $\det(2A) = 2^4 \det A = 8$; $\det(-A) = (-1)^4 \det A = \frac{1}{2}$; $\det(A^2) = \frac{1}{4}$; $\det(A^{-1}) = 2$.
- **2** $\det(\frac{1}{2}A) = (\frac{1}{2})^3 \det A = -\frac{1}{8}$ and $\det(-A) = (-1)^3 \det A = 1$; $\det(A^2) = 1$; $\det(A^{-1}) = -1$.
- **3** (a) False: det(I + I) is not 1 + 1 (except when n = 1) (b) True: The product rule extends to ABC (use it twice) (c) False: det(4A) is $4^n det A$
 - (d) False: $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $AB BA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is invertible.
- **4** Exchange rows 1 and 3 to show $|J_3| = -1$. Exchange rows 1 and 4, then rows 2 and 3 to show $|J_4| = 1$.
- 5 $|J_5| = 1$ by exchanging row 1 with 5 and row 2 with 4. $|J_6| = -1$, $|J_7| = -1$. Determinants 1, 1, -1, -1 repeat in cycles of length 4 so the determinant of J_{101} is +1.
- **6** To prove Rule 6, multiply the zero row by t=2. The determinant is multiplied by 2 (Rule 3) but the matrix is the same. So $2 \det(A) = \det(A)$ and $\det(A) = 0$.
- 7 $\det(Q)=1$ for rotation and $\det(Q)=1-2\sin^2\theta-2\cos^2\theta=-1$ for reflection.
- **8** $Q^{\mathrm{T}}Q=I\Rightarrow |Q^{\mathrm{T}}|\,|Q|=|Q|^2=1\Rightarrow |Q|=\pm 1;\;Q^n$ stays orthogonal so its determinant can't blow up as $n\to\infty$.
- **9** $\det A = 1$ from two row exchanges . $\det B = 2$ (subtract rows 1 and 2 from row 3, then columns 1 and 2 from column 3). $\det C = 0$ (equal rows) even though C = A + B!
- **10** If the entries in every row add to zero, then (1, 1, ..., 1) is in the nullspace: singular A has $\det = 0$. (The columns add to the zero column so they are linearly dependent.) If every row adds to one, then rows of A I add to zero (not necessarily $\det A = 1$).
- **11** $CD = -DC \Rightarrow \det CD = (-1)^n \det DC$ and not just $-\det DC$. If n is even then $\det CD = \det DC$ and we can have an invertible CD.
- **12** $\det(A^{-1})$ divides twice by ad-bc (once for each row). This gives $\det A^{-1}=\frac{ad-bc}{(ad-bc)^2}=\frac{1}{ad-bc}$.

- **13** Pivots 1, 1, 1 give determinant = 1; pivots 1, -2, -3/2 give determinant = 3.
- **14** det(A) = 36 and the 4 by 4 second difference matrix has det = 5.
- **15** The first determinant is **0**, the second is $1 2t^2 + t^4 = (1 t^2)^2$.
- **16** A singular rank one matrix has determinant = 0. The skew-symmetric K also has $\det K = 0$ (see #17): a skew-symmetric matrix K of odd order 3.
- **17** Any 3 by 3 skew-symmetric K has $\det(K^{\mathrm{T}}) = \det(-K) = (-1)^3 \det(K)$. This is $-\det(K)$. But always $\det(K^{\mathrm{T}}) = \det(K)$. So we must have $\det(K) = 0$ for 3 by 3.
- 18 $\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 0 & b a & b^2 a^2 \\ 0 & c a & c^2 a^2 \end{vmatrix} = \begin{vmatrix} b a & b^2 a^2 \\ c a & c^2 a^2 \end{vmatrix}$ (to reach 2 by 2, eliminate a and a^2 in row 1 by column operations)—subtract a and a^2 times column 1 from columns 2 and 3. Factor out b a and c a from the 2 by 2: $(b a)(c a)\begin{vmatrix} 1 & b + a \\ 1 & c + a \end{vmatrix} = (b a)(c a)(c b)$.
- **19** For triangular matrices, just multiply the diagonal entries: $\det(U) = 6$, $\det(U^{-1}) = \frac{1}{6}$, and $\det(U^2) = 36$. 2 by 2 matrix: $\det(U) = ad$, $\det(U^2) = a^2d^2$. If $ad \neq 0$ then $\det(U^{-1}) = 1/ad$.
- **20** det $\begin{bmatrix} a-Lc & b-Ld \\ c-\ell a & d-\ell b \end{bmatrix}$ reduces to $(ad-bc)(1-L\ell)$. The determinant changes if you do two row operations at once.
- **21** We can exchange rows using the three elimination steps in the problem, followed by multiplying row 1 by -1. So Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5, they also give Rule 2.)
- **22** $\det(A) = 3$, $\det(A^{-1}) = \frac{1}{3}$, $\det(A \lambda I) = \lambda^2 4\lambda + 3$. The numbers $\lambda = 1$ and $\lambda = 3$ give $\det(A \lambda I) = 0$. The (singular!) matrices are

$$A - I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } A - 3I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

Note to instructor: You could explain that this is the reason determinants come before eigenvalues. Identify $\lambda=1$ and $\lambda=3$ as the eigenvalues of A.

- **23** $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$ has $\det(A) = 10$, $A^2 = \begin{bmatrix} 18 & 7 \\ 14 & 11 \end{bmatrix}$, $\det(A^2) = 100$, $A^{-1} = \frac{1}{10} \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$ has $\det \frac{1}{10}$. $\det(A \lambda I) = \lambda^2 7\lambda + 10 = 0$ when $\lambda = \mathbf{2}$ or 5; those are eigenvalues.
- **24** Here A = LU with $\det(L) = 1$ and $\det(U) = -6 = \text{product of pivots}$, so also $\det(A) = -6$. $\det(U^{-1}L^{-1}) = -\frac{1}{6} = 1/\det(A)$ and $\det(U^{-1}L^{-1}A)$ is $\det I = 1$.
- **25** When the i, j entry is ij, row 2 = 2 times row 1 so $\det A = 0$.
- **26** When the ij entry is i+j, row 3 row 2 = row 2 row 1 so A is singular: $\det A = 0$.
- **27** det A = abc, det B = -abcd, det C = a(b a)(c b) by doing elimination.
- **28** (a) True : $\det(AB) = \det(A) \det(B) = 0$ (b) False : A row exchange gives $-\det =$ product of pivots. (c) False : A = 2I and B = I have A B = I but the determinants have $2^n 1 \neq 1$ (d) True : $\det(AB) = \det(A) \det(B) = \det(BA)$.
- **29** A is rectangular so $\det(A^{T}A) \neq (\det A^{T})(\det A)$: these determinants are not defined. In fact if A is tall and thin (m > n), then $\det(A^{T}A)$ adds up $|\det B|^2$ where the B's are all the n by n submatrices of A.
- **30** Derivatives of $f = \ln(ad bc)$:

$$\begin{bmatrix} \partial f/\partial a & \partial f/\partial c \\ \partial f/\partial b & \partial f/\partial d \end{bmatrix} = \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = A^{-1}.$$

31 The Hilbert determinants are 1, 8×10^{-2} , 4.6×10^{-4} , 1.6×10^{-7} , 3.7×10^{-12} , 5.4×10^{-18} , 4.8×10^{-25} , 2.7×10^{-33} , 9.7×10^{-43} , 2.2×10^{-53} . Pivots are ratios of determinants so the 10th pivot is near 10^{-10} . The Hilbert matrix is numerically difficult (*ill-conditioned*). Please see the Figure 7.1 and Section 8.3.

33 I now know that maximizing the determinant for 1, -1 matrices is **Hadamard's problem** (1893): see Brenner in American Math. Monthly volume 79 (1972) 626-630. Neil Sloane's wonderful On-Line Encyclopedia of Integer Sequences (**research.att.com**/ \sim **njas**) includes the solution for small n (and more references) when the problem is changed to 0, 1 matrices. That sequence A003432 starts from n=0 with 1, 1, 1, 2, 3, 5, 9. Then the 1, -1 maximum for size n is 2^{n-1} times the 0, 1 maximum for size n-1 (so (32)(5)=160 for n=6 in sequence A003433).

To reduce the 1, -1 problem from 6 by 6 to the 0, 1 problem for 5 by 5, multiply the six rows by ± 1 to put +1 in column 1. Then subtract row 1 from rows 2 to 6 to get a 5 by 5 submatrix S with entries -2 and 0. Then divide S by -2.

Here is an advanced MATLAB code that finds a 1, -1 matrix with largest $\det A = 48$ for n = 5:

```
n=5; p=(n-1)^2; A0=\mathsf{ones}(n); \mathsf{maxdet}=0; for k=0:2^p-1 Asub = \mathsf{rem}(\mathsf{floor}(k.*2.^(-p+1:0)),2); A=A0; A(2:n,2:n)=1-2* \mathsf{reshape}(\mathsf{Asub}, n-1,n-1); if \mathsf{abs}(\mathsf{det}(A)) > \mathsf{maxdet}, \mathsf{maxdet}=\mathsf{abs}(\mathsf{det}(A)); \mathsf{max}A=A; end end
```

34 Reduce B by row operations to [row 3; row 2; row 1]. Then $\det B = -6$ (odd permutation from the order of the rows in A).

Problem Set 5.2, page 266

- 1 det A = 1 + 18 + 12 9 4 6 = 12, the rows of A are independent; det B = 0, row 1 + row 2 = row 3 so the rows of B are linearly dependent; det C = -1, so C has independent rows (det C has one term, an odd permutation).
- **2** det A=-2, independent; det B=0, dependent; det C=-1, independent but det D=0 because its submatrix B has dependent rows.
- 3 The problem suggests 3 ways to see that det A = 0: All cofactors of row 1 are zero.
 A has rank ≤ 2. Each of the 6 terms in det A is zero. Notice also that column 2 has no pivot.
- 4 $a_{11}a_{23}a_{32}a_{44}$ gives -1, because the terms $a_{23}a_{32}$ have columns 2 and 3 in reverse order. $a_{14}a_{23}a_{32}a_{41}$ which has 2 row exchanges gives +1, det A=1-1=0. Using the same entries but now taken from B, det $B=2\cdot4\cdot4\cdot2-1\cdot4\cdot4\cdot1=64-16=48$.
- **5** Four zeros in the same row guarantee $\det = 0$ (and also four zeros in the same column). A = I has 12 zeros (this is the maximum with $\det \neq 0$).
- **6** (a) If $a_{11} = a_{22} = a_{33} = 0$ then 4 terms will be zeros (b) 15 terms must be zero. Effectively we are counting the permutations that make everyone move; 2, 3, 1 and 3, 1, 2 for n = 3 mean that the other 4 permutations take a term from the diagonal of A; so those terms are 0 when the diagonal is all zeros.
- 7 5!/2 = 60 permutation matrices (half of 5! = 120 permutations) have $\det = +1$. Move row 5 of I to the top; then starting from (5, 1, 2, 3, 4) elimination will do four row exchanges on P.
- 8 If det $A \neq 0$, then certainly some term $a_{1\alpha}a_{2\beta}\cdots a_{n\omega}$ in the big formula is not zero! Move rows $1, 2, \ldots, n$ into rows $\alpha, \beta, \ldots, \omega$. Then all these nonzero a's will be on the main diagonal.

9 The big formula has six terms all ± 1 : say q are -1 and 6-q are 1. Then $\det A = -q+6-q = \text{even}$ (so $\det A = 5$ is impossible). Also $\det A = 6$ is impossible. All 3 even permutations like $a_{11}a_{22}a_{33}$ would have to give +1 (so an even number of -1's in the matrix). But all 3 odd permutations like $a_{11}a_{23}a_{32}$ would have to give -1 (so an odd number of -1's in the matrix). We can't have it both ways, so $\det A = 4$ is best possible and not hard to arrange: put -1's on the main diagonal.

10 The 4!/2=12 even permutations are (1,2,3,4),(2,1,4,3),(3,1,4,2),(4,3,2,1), and 8 P's with one number in place and even permutation of the other three numbers: examples are 1,3,4,2 and 1,4,2,3.

 $\det(I + P_{\text{even}})$ is always 16 or 4 or 0 (16 comes from I + I).

11
$$C = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
. $D = \begin{bmatrix} 0 & 42 & -35 \\ 0 & -21 & 14 \\ -3 & 6 & -3 \end{bmatrix}$. $\det B = 1(0) + 2(42) + 3(-35) = -21$. Puzzle: $\det D = 441 = (-21)^2$. Why is $\det(\operatorname{cofactor\ matrix}) = (\det \operatorname{matrix})^{n-1}$?

12
$$C = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
 and $AC^{\mathrm{T}} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$. Therefore $A^{-1} = \frac{1}{4}C^{\mathrm{T}} = C^{\mathrm{T}}/\det A$.

- **13** (a) $C_1 = 0$, $C_2 = -1$, $C_3 = 0$, $C_4 = 1$ (b) $C_n = -C_{n-2}$ by cofactors of row 1 then cofactors of column 1. Therefore $C_{10} = -C_8 = C_6 = -C_4 = C_2 = -1$.
- 14 For the matrices in Problem 13 to produce nonzeros in the big formula, we must choose 1's from column 2 then column 1, column 4 then column 3,and so on. Therefore n must be even to have $\det \neq 0$. The number of row exchanges is n/2 so the overall determinant is $C_n = (-1)^{n/2}$.
- **15** The 1,1 cofactor of the n by n matrix is E_{n-1} . The 1,2 cofactor has a single 1 in its first column, with cofactor E_{n-2} : sign gives $-E_{n-2}$. So $E_n = E_{n-1} E_{n-2}$. Then E_1 to E_6 is 1, 0, -1, -1, 0, 1 and this cycle of six will repeat: $E_{100} = E_4 = -1$.
- 16 The 1,1 cofactor of the n by n matrix is F_{n-1} . The 1,2 cofactor has a 1 in column 1, with cofactor F_{n-2} . Multiply by $(-1)^{1+2}$ and also (-1) from the 1,2 entry to find $F_n = F_{n-1} + F_{n-2}$. So these determinants are Fibonacci numbers.

| 17 Use collectors along row 4 instead of row 1 (last row instead of lifst). $|B_4| = 2 \det \begin{bmatrix} 1 & -1 \\ -1 & 2 & -1 \\ -1 & 2 \end{bmatrix} + \det \begin{bmatrix} 1 & -1 \\ -1 & 2 \\ -1 & -1 \end{bmatrix} = 2|B_3| - \det \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}.$ So $|B_4| = 2|B_3| - |B_2|$.

- **18** Rule 3 (linearity in row 1) gives $|B_n| = |A_n| |A_{n-1}| = (n+1) n = 1$.
- 19 Since x, x^2 , x^3 are all in the same row, they never multiply each other in $\det V_4$. The determinant is zero at x=a or b or c because of equal rows! So $\det V$ has factors (x-a)(x-b)(x-c). Multiply by the cofactor V_3 . The Vandermonde matrix $V_{ij}=(x_i)^{j-1}$ is for fitting a polynomial p(x)=b at the points x_i . It has $\det V=$ product of all x_k-x_m for k>m.
- **20** $G_2 = -1$, $G_3 = 2$, $G_4 = -3$, and $G_n = (-1)^{n-1}(n-1)$. One way to reach that G_n is to multiply the n eigenvalues $-1, -1, \ldots, -1, n-1$ of the matrix. Is there a good choice of row operations to produce this determinant G_n ?
- **21** $S_1=3, S_2=8, S_3=21$. The rule looks like every second number in Fibonacci's sequence ... $3, 5, 8, 13, 21, 34, 55, \ldots$ so the guess is $S_4=55$. Following the solution to Problem 30 with 3's instead of 2's on the diagonal confirms $S_4=81+1-9-9-9=55$. Problem 32 directly proves $S_n=F_{2n+2}$.
- 22 Changing 3 to 2 in the corner reduces the determinant F_{2n+2} by 1 times the cofactor of that corner entry. This cofactor is the determinant of S_{n-1} (one size smaller) which is F_{2n} . Therefore changing 3 to 2 changes the determinant to $F_{2n+2} F_{2n}$ which is Fibonacci's F_{2n+1} .
- 23 (a) If we choose an entry from B we must choose an entry from the zero block; result zero. This leaves entries from A times entries from D leading to $(\det A)(\det D)$ (b) and (c) Take $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. See #25.
- **24** (a) All the lower triangular blocks L_k have 1's on the diagonal and $\det = 1$. Then use $A_k = L_k U_k$ to find $\det U_k = \det A_k = 2, 6, -6$ for k = 1, 2, 3

(b) Equation (3) in this section gives the kth pivot as $\det A_k / \det A_{k-1}$. So $\det A_k = 5, 6, 7$ gives pivot $d_k = 5/1, 6/5, 7/6$.

- **25** Problem 23 gives $\det \begin{bmatrix} I & 0 \\ -CA^{-1} & I \end{bmatrix} = 1$ and $\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = |A|$ times $|D CA^{-1}B|$. By the product rule this is $|AD ACA^{-1}B|$. If AC = CA this is $|AD CAA^{-1}B| = \det(AD CB)$.
- 26 If A is a row and B is a column then $\det M = \det AB = \det AB = \det AB$ and B. If A is a column and B is a row then AB has rank 1 and $\det M = \det AB = 0$ (unless m = n = 1). This block matrix M is invertible when AB is invertible which certainly requires $m \leq n$.
- **27** (a) det $A = a_{11}C_{11} + \cdots + a_{1n}C_{1n}$. Derivative with respect to $a_{11} = \text{cofactor } C_{11}$.
- **28** Row 1 2 row 2 +row 3 = 0 so this matrix is singular and $\det A$ is zero.
- **29** There are five nonzero products, all 1's with a plus or minus sign. Here are the (row, column) numbers and the signs: +(1,1)(2,2)(3,3)(4,4) + (1,2)(2,1)(3,4)(4,3) (1,2)(2,1)(3,3)(4,4) (1,1)(2,2)(3,4)(4,3) (1,1)(2,3)(3,2)(4,4). Total -1.
- **30** The 5 products in solution 29 change to 16 + 1 4 4 4 since A has 2's and -1's:

$$(2)(2)(2)(2) + (-1)(-1)(-1)(-1) - (-1)(-1)(2)(2) - (2)(2)(-1)(-1) - (2)(-1)(-1)(2) = \mathbf{5} = \mathbf{n} + \mathbf{1}.$$

31 det P=-1 because the cofactor of $P_{14}=1$ in row one has sign $(-1)^{1+4}$. The big formula for det P has only one term $(1\cdot 1\cdot 1\cdot 1)$ with minus sign because three exchanges take 4,1,2,3 into 1,2,3,4; det $(P^2)=(\det P)(\det P)=+1$ so

$$\det \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} = \det \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ is not right.}$$

32 The problem is to show that $F_{2n+2} = 3F_{2n} - F_{2n-2}$. Keep using Fibonacci's rule:

$$F_{2n+2} = F_{2n+1} + F_{2n} = F_{2n} + F_{2n-1} + F_{2n} = 2F_{2n} + (F_{2n} - F_{2n-2}) = 3F_{2n} - F_{2n-2}$$

- **33** The difference from 20 to 19 multiplies its 3 by 3 cofactor = 1: then det drops by 1.
- **34** (a) The last three rows must be dependent because only 2 columns are nonzero
 - (b) In each of the 120 terms: Choices from the last 3 rows must use 3 different columns; at least one of those choices will be zero.
- **35** Subtracting 1 from the n, n entry subtracts its cofactor C_{nn} from the determinant. That cofactor is $C_{nn} = 1$ (smaller Pascal matrix). Subtracting 1 from 1 leaves 0.

Problem Set 5.3, page 283

- **1** (a) $|A| = \begin{vmatrix} 2 & 5 \\ 1 & 4 \end{vmatrix} = 3$, $|B_1| = \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix} = 6$, $|B_2| = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3$ so $x_1 = -6/3 = -2$ and $x_2 = 3/3 = 1$ (b) |A| = 4, $|B_1| = 3$, $|B_2| = 2$, $|B_3| = 1$. Therefore $x_1 = 3/4$ and $x_2 = -1/2$ and $x_3 = 1/4$.
- **2** (a) $y = \begin{vmatrix} a & 1 \\ c & 0 \end{vmatrix} / \begin{vmatrix} a & b \\ c & d \end{vmatrix} = c/(ad bc)$ (b) $y = \det B_2 / \det A = (fg id)/D$. That is because B_2 with (1,0,0) in column 2 has $\det B_2 = fg id$.
- **3** (a) $x_1 = 3/0$ and $x_2 = -2/0$: no solution (b) $x_1 = x_2 = 0/0$: undetermined.
- **4** (a) $x_1 = \det([\mathbf{b} \ \mathbf{a}_2 \ \mathbf{a}_3]) / \det A$, if $\det A \neq 0$. This is $|B_1|/|A|$.
 - (b) The determinant is linear in its first column so $|x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 \mathbf{a}_2 \mathbf{a}_3|$ splits into $x_1 |\mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3| + x_2 |\mathbf{a}_2 \mathbf{a}_3| + x_3 |\mathbf{a}_3 \mathbf{a}_2 \mathbf{a}_3|$. The last two determinants are zero because of repeated columns, leaving $x_1 |\mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3|$ which is $x_1 \det A$.
- **5** If the first column in A is also the right side b then $\det A = \det B_1$. Both B_2 and B_3 are singular since a column is repeated. Therefore $x_1 = |B_1|/|A| = 1$ and $x_2 = x_3 = 0$.

6 (a)
$$\begin{bmatrix} 1 & -\frac{2}{3} & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & -\frac{7}{3} & 1 \end{bmatrix}$$
 (b)
$$\frac{1}{4} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
 An invertible symmetric matrix has a symmetric inverse.

- 7 If all cofactors = 0 then A^{-1} would be the zero matrix if it existed; cannot exist. (And also, the cofactor formula gives $\det A = 0$.) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ has no zero cofactors but it is not invertible.
- **8** $C = \begin{bmatrix} 6 & -3 & 0 \\ 3 & 1 & -1 \\ -6 & 2 & 1 \end{bmatrix}$ and $AC^{\mathrm{T}} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. This is $(\det A)I$ and $\det A = 3$. The 1, 3 cofactor of A is 0. Then $C_{31} = 4$ or 100: no change.
- **9** If we know the cofactors and $\det A = 1$, then $C^{\mathrm{T}} = A^{-1}$ and also $\det A^{-1} = 1$. Now A is the inverse of C^{T} , so A can be found from the cofactor matrix for C.
- **10** Take the determinant of $AC^{\mathrm{T}} = (\det A)I$. The left side gives $\det AC^{\mathrm{T}} = (\det A)(\det C)$ while the right side gives $(\det A)^n$. Divide by $\det A$ to reach $\det C = (\det A)^{n-1}$.
- 11 The cofactors of A are integers. Division by $\det A = \pm 1$ gives integer entries in A^{-1} .
- 12 Both $\det A$ and $\det A^{-1}$ are integers since the matrices contain only integers. But $\det A^{-1} = 1/\det A$ so $\det A$ must be 1 or -1.
- 13 $A = \begin{bmatrix} 0 & 1 & 3 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ has cofactor matrix $C = \begin{bmatrix} -1 & 2 & 1 \\ 3 & -6 & 2 \\ 1 & 3 & -1 \end{bmatrix}$ and $A^{-1} = \frac{1}{5}C^{T}$. 14 (a) Lower triangular L has cofactors $C_{21} = C_{31} = C_{32} = 0$ (b) $C_{12} = C_{21}$,
- $C_{31} = C_{13}, C_{32} = C_{23} \; {
 m make} \; S^{-1} \; {
 m symmetric.}$ (c) Orthogonal Q has cofactor matrix $C = (\det Q)(Q^{-1})^{\mathrm{T}} = \pm Q$ also orthogonal. Note $\det Q = 1$ or -1.
- **15** For n = 5, C contains 25 cofactors and each 4 by 4 cofactor has 24 terms. Each term needs 3 multiplications: total 1800 multiplications vs.125 for Gauss-Jordan.
- **16** (a) Area $\begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} = 10$ (b) and (c) Area 10/2 = 5, these triangles are half of the parallelogram in (a).
- 17 Volume = $\begin{vmatrix} 3 & 1 & 1 \\ 1 & 3 & 3 \\ 1 & 1 & 3 \end{vmatrix}$ = 20. Area of faces = $\begin{vmatrix} i & j & k \\ 3 & 1 & 1 \\ 1 & 3 & 1 \end{vmatrix}$ = $\begin{vmatrix} -2i 2j + 8k \\ \text{length} = 6\sqrt{2} \end{vmatrix}$ 18 (a) Area $\frac{1}{2} \begin{vmatrix} 2 & 1 & 1 \\ 3 & 4 & 1 \\ 0 & 5 & 1 \end{vmatrix}$ = 5 (b) 5 + new triangle area $\frac{1}{2} \begin{vmatrix} 2 & 1 & 1 \\ 0 & 5 & 1 \\ -1 & 0 & 1 \end{vmatrix}$ = 5 + 7 = 12.
- **19** $\begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} = 4 = \begin{vmatrix} 2 & 2 \\ 1 & 3 \end{vmatrix}$ because the transpose has the same determinant. See #22

- **20** The edges of the hypercube have length $\sqrt{1+1+1+1}=2$. The volume $\det H$ is $2^4=16$. (H/2) has orthonormal columns. Then $\det(H/2)=1$ leads again to $\det H=16$ in 4 dimensions.)
- 21 The maximum volume $L_1L_2L_3L_4$ is reached when the edges are orthogonal in ${\bf R}^4$. With entries 1 and -1 all lengths are $\sqrt{4}=2$. The maximum determinant is $2^4=16$, achieved in Problem 20. For a 3 by 3 matrix, $\det A=(\sqrt{3})^3$ can't be achieved by ± 1 . $\rho^2\sin\phi\,d\rho\,d\phi\,d\theta$.
- **22** This question is still waiting for a solution! An 18.06 student showed me how to transform the parallelogram for A to the parallelogram for $A^{\rm T}$, without changing its area. (Edges slide along themselves, so no change in baselength or height or area.)

$$\mathbf{23} \ A^{\mathrm{T}} A = \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}} \\ \boldsymbol{b}^{\mathrm{T}} \\ \boldsymbol{c}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a} & 0 & 0 \\ 0 & \boldsymbol{b}^{\mathrm{T}} \boldsymbol{b} & 0 \\ 0 & 0 & \boldsymbol{c}^{\mathrm{T}} \boldsymbol{c} \end{bmatrix} \text{ has } \begin{cases} \det A^{\mathrm{T}} A & = (\|\boldsymbol{a}\| \|\boldsymbol{b}\| \|\boldsymbol{c}\|)^{2} \\ \det A & = \pm \|\boldsymbol{a}\| \|\boldsymbol{b}\| \|\boldsymbol{c}\| \end{cases}$$

- **24** The box has height 4 and volume = $\det\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 3 & 4 \end{bmatrix} = 4$. $i \times j = k$ and $(k \cdot w) = 4$.
- **25** The *n*-dimensional cube has 2^n corners, $n2^{n-1}$ edges and 2n (n-1)-dimensional faces. Coefficients from $(2+x)^n$ in Worked Example **2.4A**. Cube from 2I has volume 2^n .
- **26** The pyramid has volume $\frac{1}{6}$. The 4-dimensional pyramid has volume $\frac{1}{24}$ (and $\frac{1}{n!}$ in \mathbf{R}^n)
- **27** $x = r \cos \theta, y = r \sin \theta$ give J = r. This is the r in polar area $r dr d\theta$. The columns are orthogonal and their lengths are 1 and r.

$$28 \ J = \begin{vmatrix} \sin \phi \cos \theta & \rho \cos \phi \sin \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\ \cos \phi & -\rho \sin \phi & \theta \end{vmatrix} = \rho^2 \sin \phi.$$
 This Jacobian is needed for triple integrals inside spheres. Those integrals have $\rho^2 \sin \phi \, d\rho \, d\phi \, d\theta.$

29 From
$$x, y$$
 to r, θ : $\begin{vmatrix} \partial r/\partial x & \partial r/\partial y \\ \partial \theta/\partial x & \partial \theta/\partial y \end{vmatrix} = \begin{vmatrix} x/r & y/r \\ -y/r^2 & x/r^2 \end{vmatrix} = \begin{vmatrix} \cos \theta & \sin \theta \\ (-\sin \theta)/r & (\cos \theta)/r \end{vmatrix}$

$$= \frac{1}{r} = \frac{1}{\text{Jacobian in } \mathbf{27}}. \text{ The surprise was that } \frac{dr}{dx} \text{ and } \frac{dx}{dr} \text{ are both } \frac{x}{r}.$$

30 The triangle with corners (0,0), (6,0), (1,4) has area (6)(4)/2 = 12. Rotated by $\theta = 60^{\circ}$ the area is *unchanged*. The determinant of the rotation matrix is

$$J = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \begin{vmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{vmatrix} = 1.$$

31 Base area $||u \times v|| = 10$, height $||w|| \cos \theta = 2$, volume (10)(2) = 20.

32 The volume of the box is det $\begin{vmatrix} 2 & 4 & 0 \\ -1 & 3 & 0 \\ 1 & 2 & 2 \end{vmatrix} = 20$, agreeing with Problem 31.

33
$$\begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = u_1 \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix}$$
. This is $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$.

- **34** $(\boldsymbol{w} \times \boldsymbol{u}) \cdot \boldsymbol{v} = (\boldsymbol{v} \times \boldsymbol{w}) \cdot \boldsymbol{u} = (\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}$: *Even permutation* of $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ keeps the same determinant. Odd permutations like $(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{v}$ will reverse the sign.
- **35** S=(2,1,-1), area $\|PQ \times PS\| = \|(-2,-2,-1)\| = \sqrt{2^2+2^2+1^2} = 3$. The other four corners of the box can be (0,0,0), (0,0,2), (1,2,2), (1,1,0). The volume of the tilted box with edges along P,Q, and R is $|\det|=1$.
- **36** If (1,1,0), (1,2,1), (x,y,z) are in a plane the volume is det $\begin{bmatrix} x & y & z \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} = x y + z = 0$. The "box" with those edges is flattened to zero height.
- 37 det $\begin{bmatrix} x & y & z \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix} = 7x 5y + z$ will be zero when (x, y, z) is a combination of (2, 3, 1)

and (1,2,3). The plane containing those two vectors has equation 7x - 5y + z = 0. Volume = zero because the 3 box edges out from (0,0,0) lie in a plane.

38 Doubling each row multiplies the volume by 2^n . Then $2 \det A = \det(2A)$ only if n = 1.

- **39** $AC^{\mathrm{T}} = (\det A)I$ gives $(\det A)(\det C) = (\det A)^n$. Then $\det A = (\det C)^{1/3}$ with n = 4. With $\det A^{-1} = 1/\det A$, construct A^{-1} using the cofactors. *Invert to find* A.
- **40** The cofactor formula adds 1 by 1 determinants (which are just entries) *times* their cofactors of size n-1. Jacobi discovered that this formula can be generalized. For n=5, Jacobi multiplied each 2 by 2 determinant from rows 1-2 (with columns a < b) times a 3 by 3 determinant from rows 3-5 (using the remaining columns c < d < e).

The key question is + or - sign (as for cofactors). The product is given a + sign when a, b, c, d, e is an even permutation of 1, 2, 3, 4, 5. This gives the correct determinant +1 for that permutation matrix. More than that, all other P that permute a, b and separately c, d, e will come out with the correct sign when the 2 by 2 determinant for columns a, b multiplies the 3 by 3 determinant for columns c, d, e.

41 The Cauchy-Binet formula gives the determinant of a square matrix AB (and AA^{T} in particular) when the factors A, B are rectangular. For (2 by 3) times (3 by 2) there are 3 products of 2 by 2 determinants from A and B (printed in boldface):

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} g & j \\ h & k \\ i & \ell \end{bmatrix} \qquad \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} g & j \\ h & k \\ i & \ell \end{bmatrix} \qquad \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} g & j \\ h & k \\ i & \ell \end{bmatrix}$$

$$Check \quad A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 7 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 7 \end{bmatrix} \qquad AB = \begin{bmatrix} 14 & 30 \\ 30 & 66 \end{bmatrix}$$

Cauchy-Binet: (4-2)(4-2) + (7-3)(7-3) + (14-12)(14-12) = 24det of AB: (14)(66) - (30)(30) = 24

42 A 5 by 5 tridiagonal matrix has cofactor $C_{11}=4$ by 4 tridiagonal matrix. Cofactor C_{12} has only one nonzero at the top of column 1. That nonzero multiplies its 3 by 3 cofactor which is tridiagonal. So $\det A=a_{11}C_{11}+a_{12}C_{12}=$ tridiagonal determinants of sizes 4 and 3. The number F_n of nonzero terms in $\det A$ follows Fibonacci's rule $F_n=F_{n-1}+F_{n-2}$.