

Hotel Booking Demand Prediction

Section C Team #61

Anoohya Gaddam, Collin LaButte, Maggie Guo, Steven He, Wei-Ting (Katherine) Chang

Business Understanding

Business Problem

- Cancellations lead to revenue loss, poor utilization, and operational efficiency problems
- In the dataset, 37%were canceled before the arrival date accounting for 16 M euros of lost revenue

Data Mining Solution

Predict whether a customer will cancel the hotel booking or not

Business Value

Increase efficiency and profit by overbooking

Data Understanding

- The dataset contains hotel bookings from various countries between 2015 2017
- Features/Attributes
 - o Demographics: country, customer type, adults, children, babies,...
 - o Booking Information: lead time, arrival date week number, previous cancellations, previous bookings not canceled, booking changes, ADR(Average Daily Rate),...
 - Services: meal, market segment, distribution channel, ...
 - Hotel type: hotel
- Target
 - o is_canceled (0/1)

Data Visualization

Booking count and cancellation percentage by Hotel Type

- More bookings in a city hotel when compared to the resort, cancellation percentage is also higher.
- P Resort hotels: customers usually planned in advanced for traveling purpose and has lower possibilities to cancel

Data Visualization

 Repeated guests are less likely to cancel the bookings. This might be because the customers are loyal, or they might be frequent visitors for work purposes

Data Visualization

• Hotel's average daily rate didn't significantly affect the cancellation action.

Modeling

- Binary prediction: Utilize supervised learning models for classification purpose
- Cross-validation: K-fold cross-validation
- The performance metrics: OOS Accuracy

Model	OOS Accuracy		
Logistic Regression	81.43%		
SVM	82.84%		
Classification Tree	80.30%		
XGBoost	84.09%		

• Prediction Result: 84.378%

K-means Clustering

	is_ canceled	lead_time	arrival_date_day _of_month	adults	children	babies	is_repeated_ guest	adr
1	0.348	43.285	16.159	<mark>2.020</mark>	0.278	0.012	0.011	166.994
2	0.249	31.320	15.562	1.718	0.043	0.007	<mark>0.0642</mark>	<mark>75.273</mark>
3	<mark>0.451</mark>	<mark>160.728</mark>	16.040	1.911	0.096	0.007	0.004	103.189
4	<mark>0.644</mark>	<mark>326.526</mark>	15.488	1.945	0.047	0.003	0.015	85.041

Deployment

- The results from the data mining should be used to predict whether the customer cancel the booking or not
- By calculating the percentage of booking rate minus the cancellation, the hotels would be able to release certain percentage of rooms for overbooking
- Mitigate the risk of overbooking problems by setting conservative overbooking thresholds and partnering with other local hotels

