Data and Algorithms of the Web

Link Analysis Algorithms Page Rank

some slides from: Anand Rajaraman, Jeffrey D. Ullman InfoLab (Stanford University)

Link Analysis Algorithms

- ☐ Page Rank
- Hubs and Authorities
- □ Topic-Specific Page Rank
- Spam Detection Algorithms
- Other interesting topics we won't cover
 - Detecting duplicates and mirrors
 - Mining for communities

□ Web pages are not equally "important"

- Web pages are not equally "important"
- www.bernard.com and www.stanford.edu contain both the term "stanford" but:
 - www.stanford.edu has 23,400 webpages linking to it
 - www.bernard.com has 10 webpages linking to it

- Web pages are not equally "important"
- <u>www.bernard.com</u> and <u>www.stanford.edu</u> contain both the term "stanford" but:
 - www.stanford.edu has 23,400 webpages linking to it
 - www.bernard.com has 10 webpages linking to it
- Are all webpages linking to <u>www.stanford.edu</u> equally important?
 - The webpage of MIT is more "important" than the webpage of a friend of bernard

- Web pages are not equally "important"
- www.bernard.com and www.stanford.edu both contain both the term "stanford" but:
 - www.stanford.edu has 23,400 webpages linking to it
 - www.bernard.com has 10 webpages linking to it
- Are all webpages linking to <u>www.stanford.edu</u> equally important?
 - The webpage of MIT is more "important" than the webpage of a friend of bernard
 - -> Recursive definition of importance

□ The importance of a page P is proportional to the importance of pages Q where Q -> P (predecessors).

- □ The importance of a page P is proportional to the importance of pages Q where Q -> P (predecessors).
- Each page Q votes for its successors. If page Q with importance x has n successors, each succ. P gets x/n votes

- □ The importance of a page P is proportional to the importance of pages Q where Q -> P (predecessors).
- Each page Q votes for its successors. If page Q with importance x has n successors, each succ. P gets x/n votes
- □ Page P's own importance is the sum of the votes of its predecessors Q.

$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - y+a+m = 1
 - y = 2/5, a = 2/5, m = 1/5

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - y+a+m = 1
 - y = 2/5, a = 2/5, m = 1/5
- Gaussian elimination method works for small examples, but we need a better method for large graphs

Matrix M has one row and one column for each web page (n x n, where n is the num of pages)

- Matrix M has one row and one column for each web page (n x n, where n is the num of pages)
- ☐ Suppose page j has k successors
 - If $j \rightarrow i$, then $M_{ij} = 1/k$
 - Else M_{ij}=0

- Matrix M has one row and one column for each web page (n x n, where n is the num of pages)
- ☐ Suppose page j has k successors
 - If $j \rightarrow i$, then $M_{ij} = 1/k$
 - Else M_{ij}=0
- M is a column stochastic matrix
 - Columns sum to 1

- Matrix M has one row and one column for each web page (n x n, where n is the num of pages)
- ☐ Suppose page j has k successors
 - If $j \rightarrow i$, then $M_{ij} = 1/k$
 - Else $M_{ij} = 0$
- M is a column stochastic matrix
 - Columns sum to 1
- □ Let **r** be the rank vector where:
 - \mathbf{r}_{i} is the importance score of page i
 - $|\mathbf{r}| = 1$

Suppose page j links to 3 pages, including i

M

Suppose page j links to 3 pages, including i

Eigenvector formulation

 \Box The system of linear eq. can be written $\mathbf{r} = \mathbf{Mr}$

- So the rank vector is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue...

Definition. The vector \mathbf{x} is an eigenvector of the matrix A with eigenvalue λ (lambda) if the following equation holds: $A\mathbf{x} = \lambda \mathbf{x}$.

	y	a	m
У	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r = Mr$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

$$r = Mr$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration method

☐ Simple iterative scheme (aka relaxation)

- ☐ Simple iterative scheme (aka relaxation)
- Suppose there are N web pages

- ☐ Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- \square Initialize: $\mathbf{r}^0 = [1/N,....,1/N]^T$

- ☐ Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- \square Initialize: $\mathbf{r}^0 = [1/N,....,1/N]^T$
- \square Iterate: $\mathbf{r}^{k+1} = \mathbf{Mr}^k$

- ☐ Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- \square Initialize: $\mathbf{r}^0 = [1/N,....,1/N]^T$
- \square Iterate: $\mathbf{r}^{k+1} = \mathbf{Mr}^k$
- □ Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \varepsilon$
 - $\|\mathbf{x}\|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean

	У	a	m
y	1/2	1/2 0 1/2	0
a	1/2	0	1
m	0	1/2	0

$$y = 1/3$$
 $a = 1/3$
 $m = 1/3$

$$y$$
 1/3 1/3
 $a = 1/3$ 1/2
 m 1/3 1/6

$$y$$
 1/3 1/3 5/12
 $a = 1/3$ 1/2 1/3
 m 1/3 1/6 1/4

$$y$$
 1/3 1/3 5/12 3/8
 $a = 1/3$ 1/2 1/3 11/24
 m 1/3 1/6 1/4 1/6

$$y$$
 1/3 1/3 5/12 3/8
 $a = 1/3$ 1/2 1/3 11/24 ...
 m 1/3 1/6 1/4 1/6

$$y$$
 1/3 1/3 5/12 3/8 2/5 a = 1/3 1/2 1/3 11/24 ... 2/5 m 1/3 1/6 1/4 1/6

- ☐ Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time t+1, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely

- ☐ Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time t+1, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely
- Let **p**(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - p(t) is a probability distribution on pages

- □ Where is the surfer at time t+1?
 - Follows a link uniformly at random
 - p(t+1) = Mp(t)

- □ Where is the surfer at time t+1?
 - Follows a link uniformly at random
 - p(t+1) = Mp(t)
- Suppose the random walk reaches a state such that p(t+1) = Mp(t) = p(t)
 - Then p(t) is called a stationary distribution for the random walk

- □ Where is the surfer at time t+1?
 - Follows a link uniformly at random
 - p(t+1) = Mp(t)
- Suppose the random walk reaches a state such that p(t+1) = Mp(t) = p(t)
 - Then p(t) is called a stationary distribution for the random walk
- \square Our rank vector **r** satisfies **r** = **Mr**
 - So it is a stationary distribution for the random surfer

Stationary distribution

Stationary distribution

Stationary distribution

Stationary distribution

2/5

2/5

1/5

Existence and Uniqueness

A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0.

Spider traps

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

	У	a	m
У	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

y a m
y 1/2 1/2 0
a 1/2 0 0
m 0 1/2 1

Random teleports

Random teleports

☐ The Google solution for spider traps

Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1-β, jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9

Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1-β, jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

y 7/15 7/15 1/15 a 7/15 1/15 1/15 m 1/15 7/15 13/15

$$y$$
 1/3 1/3
 $a = 1/3$ 0.20
 m 1/3 0.47

- Construct the NxN matrix A as follows

- Construct the NxN matrix A as follows
- □ Verify that A is a stochastic matrix

- Construct the NxN matrix A as follows
- □ Verify that **A** is a stochastic matrix
- ☐ The page rank vector **r** is the principal eigenvector of this matrix
 - \blacksquare satisfying $\mathbf{r} = \mathbf{Ar}$

- Construct the NxN matrix A as follows
- Verify that A is a stochastic matrix
- □ The page rank vector r is the principal eigenvector of this matrix
 - \blacksquare satisfying $\mathbf{r} = \mathbf{Ar}$
- Equivalently, r is the stationary distribution of the random walk with teleports

Dead ends

- The description of the PageRank algorithm is essentially complete. Minor problem with "dead ends".
- □ Pages with no outlinks are "dead ends" for the random surfer -> Nowhere to go in the next step.
- □ Our algorithm so far is not well-defined when the number of successors k=0 (we would have 1/0!).

$$y = 1/3$$
 $a = 1/3$
 $m = 1/3$

Dealing with dead-ends

Dealing with dead-ends

- □ Teleport
 - Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Dealing with dead-ends

- □ Teleport
 - Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly
- More efficient: prune and propagate
 - Preprocess the graph to eliminate dead-ends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph

- Key step is matrix-vector multiplication
 - rnew = Arold

- Key step is matrix-vector multiplication
 - rnew = Arold
- Easy if we have enough main memory to hold A, rold, rnew

- Key step is matrix-vector multiplication
 - rnew = Arold
- Easy if we have enough main memory to hold A, rold, rnew
- \square Say N = 1 billion pages
 - Matrix A has N² entries
 - \square 10¹⁸ is a large number!

Rearranging the equation

r = Ar, where

$$\mathbf{r} = \mathbf{Ar}$$
, where $A_{ij} = \beta M_{ij} + (1-\beta)/N$

$$\mathbf{r} = \mathbf{Ar}$$
, where $A_{ij} = \beta M_{ij} + (1-\beta)/N$ $r_i = \sum_{1 \le j \le N} A_{ij} r_j$

$$\begin{aligned} \mathbf{r} &= \mathbf{Ar}, \text{ where} \\ \mathbf{A}_{ij} &= \beta \mathbf{M}_{ij} + (1-\beta)/\mathbf{N} \\ \mathbf{r}_{i} &= \sum_{1 \leq j \leq \mathbf{N}} \mathbf{A}_{ij} \mathbf{r}_{j} \\ \mathbf{r}_{i} &= \sum_{1 \leq j \leq \mathbf{N}} \left[\beta \mathbf{M}_{ij} + (1-\beta)/\mathbf{N} \right] \mathbf{r}_{i} \end{aligned}$$

$$\begin{aligned} \mathbf{r} &= \mathbf{Ar}, \text{ where} \\ \mathbf{A}_{ij} &= \beta \mathbf{M}_{ij} + (1-\beta)/\mathbf{N} \\ \mathbf{r}_{i} &= \sum_{1 \leq j \leq \mathbf{N}} \mathbf{A}_{ij} \mathbf{r}_{j} \\ \mathbf{r}_{i} &= \sum_{1 \leq j \leq \mathbf{N}} \left[\beta \mathbf{M}_{ij} + (1-\beta)/\mathbf{N} \right] \mathbf{r}_{j} \\ &= \beta \sum_{1 \leq i \leq \mathbf{N}} \mathbf{M}_{ij} \mathbf{r}_{i} + (1-\beta)/\mathbf{N} \sum_{1 \leq i \leq \mathbf{N}} \mathbf{r}_{i} \end{aligned}$$

```
\begin{split} & \mathbf{r} = \mathbf{Ar}, \text{ where} \\ & A_{ij} = \beta M_{ij} + (1-\beta)/N \\ & r_i = \sum_{1 \leq j \leq N} A_{ij} \, r_j \\ & r_i = \sum_{1 \leq j \leq N} \left[ \beta M_{ij} + (1-\beta)/N \right] \, r_j \\ & = \beta \sum_{1 \leq j \leq N} M_{ij} \, r_j + (1-\beta)/N \, \sum_{1 \leq j \leq N} r_j \\ & = \beta \sum_{1 \leq i \leq N} M_{ij} \, r_j + (1-\beta)/N, \, \text{since} \, |\mathbf{r}| = 1 \end{split}
```

```
\mathbf{r} = \mathbf{Ar}, where
A_{ii} = \beta M_{ii} + (1-\beta)/N
r_i = \sum_{1 \le i \le N} A_{ii} r_i
r_i = \sum_{1 < i < N} [\beta M_{ij} + (1-\beta)/N] r_i
    = \beta \sum_{1 < i < N} M_{ii} r_i + (1-\beta)/N \sum_{1 < i < N} r_i
    = \beta \sum_{1 \le i \le N} M_{ij} r_i + (1-\beta)/N, since |r| = 1
\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_{N}
```

```
\mathbf{r} = \mathbf{Ar}, where
A_{ii} = \beta M_{ii} + (1-\beta)/N
r_i = \sum_{1 \le i \le N} A_{ii} r_i
r_{i} = \sum_{1 < i < N} [\beta M_{ii} + (1-\beta)/N] r_{i}
    = \beta \sum_{1 < i < N} M_{ii} r_i + (1-\beta)/N \sum_{1 < i < N} r_i
    = \beta \sum_{1 \le i \le N} M_{ii} r_i + (1-\beta)/N, since |\mathbf{r}| = 1
\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_{N}
where [x]_N is a vector with N entries equal to x
```

- We can rearrange the page rank equation:
 - $\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_{N}$
 - $[(1-β)/N]_N$ is an N-vector with all entries (1-β)/N

- We can rearrange the page rank equation:
 - $\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_{N}$
 - $[(1-β)/N]_N$ is an N-vector with all entries (1-β)/N
- M is a sparse matrix!
 - 10 links per node, approx 10N entries

- We can rearrange the page rank equation:
 - $\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_{N}$
 - $[(1-β)/N]_N$ is an N-vector with all entries (1-β)/N
- M is a sparse matrix!
 - 10 links per node, approx 10N entries
- ☐ So in each iteration, we need to:
 - Compute r^{new} = βMr^{old}
 - Add a constant value $(1-\beta)/N$ to each entry in \mathbf{r}^{new}

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - \blacksquare say 10N, or 4*10*1 billion = 40GB
 - still won't fit in memory, but will fit on disk

source node	dest. node	probability
-------------	------------	-------------

0	1	1/4
0	5	1/4
2	17	1/12

□ Remove iteratively dead ends from G

- Remove iteratively dead ends from G
- □ Build stochastic matrix M_G (M for short)

- Remove iteratively dead ends from G
- □ Build stochastic matrix M_G (M for short)
- \square Initialize: $\mathbf{r}^0 = [1/N,....,1/N]^T$

- Remove iteratively dead ends from G
- Build stochastic matrix M_G (M for short)
- \square Initialize: $\mathbf{r}^0 = [1/N,....,1/N]^T$
- Iterate:
 - $\mathbf{r^{k+1}} = \beta \mathbf{Mr^k} + [(1-\beta)/N]_N$
 - Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \epsilon$