

Professora: Aline de Oliveira

Contagem, 2020

Modelo da constituição da matéria em acordo com as leis ponderais.

Toda e qualquer tipo de matéria é formada por partículas indivisíveis, chamadas de **átomos**.

Princípios da teoria atômica de Dalton

- 1. A matéria é formada por átomos, **partículas maciças e indivisíveis** que não podem ser criadas nem destruídas;
- Existem vários tipos de átomos, sendo que cada um deles constitui um elemento químico;
- 3. Uma substância qualquer é resultado de uma combinação específica de átomos de um ou mais elementos químicos. Em uma reação química, os **átomos se rearranjam** e formam novos compostos.

Ilustração dos princípios da teoria atômica de Dalton

Cada elemento químico recebe um nome e uma abreviação, chamada de Símbolo;

Símbolos dos elementos químicos:

- Possuem uma ou duas letras (Carbono C; Nitrogênio N; Níquel Ni).
- As letras utilizadas são proveniente dos nomes dos elementos em latim (Exemplo: Prata $Ag \rightarrow Argentum$; Mercúrio $Hg \rightarrow Hydrargyrum$).
- A primeira letra do símbolo deve ser representada em maiúsculo. A segunda letra, quando houver, deve ser representada em minúsculo.
- Existem um pouco mais do que **100 elementos** químicos que podem se combinar para formar todas as substâncias químicas que conhecemos;
- As substâncias são representadas por uma **fórmula** que indica os elementos que a constituem e suas proporções;
- As combinações de átomos formam as moléculas ou aglomerados de íons.

Substância	Representação	Fórmula
Hidrogênio	HH	H_2
Oxigênio	0 0	O_2
Ozônio	0 0	O_3
Sal comum	Na Cl	NaCl
Água	HOH	H ₂ O

Classificação as substâncias

Substâncias simples

São formadas por átomos de um mesmo elemento químico. Exemplos: H_2 , O_2 , S_8 e He.

Substâncias compostas (compostos químicos)

São formadas por átomos (ou íons) de elementos químicos diferentes. Exemplos: H_2O , CO_2 , NaCl e C_2H_6O

Explicando as misturas

- Substâncias puras são constituídas por um só tipo de molécula ou aglomerado iônico;
- Misturas homogêneas: consiste em moléculas (ou espécies químicas) diferentes misturadas. Exemplo: ar atmosférico (21 % O_2 , 78 % N_2 e 1 % de outros gases); álcool 70 % (70 % etanol e 30 % água).

Substâncias puras X misturas

Substância pura Uma substância simples

Substância pura Uma substância composta

Substância pura Uma substância composta

Mistura Duas substâncias simples

Mistura Duas substâncias, uma simples e outra composta

Mistura Quatro substâncias, duas simples e duas compostas

Explicando as transformações dos materiais

As transformações físicas

As transformações físicas ou fenômenos físicos não modificam a natureza do material. Os átomos, íons ou moléculas não são alterados; eles são apenas agitados, desarrumados, reordenados etc.

Mudanças de estado físico

+ Calor	+ Calor

	Sólido	Líquido	Gasoso
Observação	Volume e forma constantes	Volume constante e forma variável	Volume e forma variável
Explicação	As partículas permanecem em posições fixas formando um retículo cristalino	As partículas se movimentam com certa liberdade	As partículas se movimentam em todas as direções, com alta velocidade e grande liberdade

Explicando as transformações dos materiais

As transformações químicas

Nas transformações químicas, as moléculas iniciais (reagentes) são quebradas, e seus átomos se <mark>reagrupam</mark> para formar as novas moléculas (**produtos** da reação).

Para representar uma transformação química, os químicos usam uma escrita especial denominada **equação química**. Assim, para indicar a queima do álcool escreve-se:

$$C_2H_6O(I) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $\acute{A}lcool \quad Oxig\hat{e}nio \quad G\acute{a}s \qquad \acute{A}gua$

$$carb\hat{o}nico$$

ESTADO INICIAL (situação antes da reação) (situação após a reação) Reagentes

ESTADO FINAL **Produtos**

Explicando as transformações dos materiais

Alguns sinais de que ocorreram transformações químicas são:

- Liberação de energia;
- Liberação de gases;
- Mudança de cor;
- Formação de um precipitado (sólido).

Observação importante

Misturar

Fe (cinza) + S (amarelo) Por imantação separa-se o Fe

Reagir

Fe (cinza) + S (amarelo) + calor Forma-se FeS (sulfeto ferroso) não magnético

