Je vous laisse le soin de calculer les premiers termes de x_n par vous mêmes. On en déduit la conjecture suivante :

$$x_{n+1} = 2^n$$

Démontrons le par récurrence.

Soit P_n une propriété telle que :

$$P_n: x_{n+1} = 2^n$$

Montrons que cette propriété est vraie pour tout n appartenant à \mathbb{N} .

Initialisation Calculons 2_0 .

$$2^0 = 1 Par convention$$

Il s'agit exactement de x_0 . Ainsi P_n est initialisée.

 $H\acute{e}r\acute{e}dit\acute{e}$ Fixons n dans \mathbb{N} tel que P_n soit vraie. Alors :

$$x_{n+1} = 2^{n}$$

$$\Leftrightarrow x_{n+1} = \sum_{k=0}^{n} x_{k}$$

$$\Leftrightarrow x_{n+2} = \sum_{k=0}^{n} (x_{k}) + x_{n+1}$$

$$\Leftrightarrow x_{n+2} = \sum_{k=0}^{n} (x_{k}) + \sum_{k=0}^{n} (x_{k})$$

$$\Leftrightarrow x_{n+2} = 2 \sum_{k=0}^{n} (x_{k})$$

$$\Leftrightarrow x_{n+2} = 2 \times 2^{n}$$

$$\Leftrightarrow x_{n+2} = 2 \times 2^{n+1}$$

Ainsi P_n est héréditaire.

Comme P_0 est vraie et que P_n est héréditaire, alors, par principe de récurrence, P_n est vraie pour tout n appartenant à \mathbb{N} avec $x_0 = 1$.

Ainsi, nous en déduisons :

$$\forall n \in \mathbb{N}^*, x_n = 2^{n-1}$$

Or nous souhaitons exprimer
$$x_n$$
 pour tout n et nous savons que $x_0=1$.
Alors :
$$\begin{cases} \forall n \in \mathbb{N}^*, \ x_n = 2^{n-1} \\ x_0 = 1 \end{cases}$$