BROUILLON - N DIVISE $2^N + 1$

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Ce qui nous intéresse	2
2.	Notations utilisées	2
3.	Des résultats basiques	2
4.	Comportement des solutions	3
5.	Structure de l'ensemble des solutions	4
6.	AFFAIRE À SUIVRE	4

Date: 16 Jan. 2024 - 19 Jan. 2024.

1. CE QUI NOUS INTÉRESSE

Nous allons étudier succinctement $S = \{n \in \mathbb{N}^* \text{ tel que } n \mid 2^n + 1\}$ où $n \mid 2^n + 1$ signifie que n divise $2^n + 1$.

2. Notations utilisées

Dans la suite, nous utiliserons les notations suivantes.

- P désigne l'ensemble des nombres premiers.
- $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*$, $v_n(n)$ est la valuation p-adique de n.
- 2 N désigne l'ensemble des nombres naturels pairs.
- $2 \mathbb{N} + 1$ désigne l'ensemble des nombres naturels impairs.
- $\forall (n,m) \in \mathbb{N}^2$, $n \vee m$ désigne le PPCM de n et m.
- $\forall (n,m) \in \mathbb{N}^2$, $n \wedge m$ désigne le PGCD de n et m.

3. Des résultats basiques

Fait 3.1. $1 \in S$.

Démonstration. C'est clair.

Fait 3.2. $S \cap 2 \mathbb{N} = \emptyset$.

Démonstration. Notant n=2k, nous avons $n \in \mathcal{S}$ si, et seulement si, $2^{2k}=1+2kr$ où $r \in \mathbb{N}$; ceci permet de conclure.

Fait 3.3. $S \cap P = \{3\}$.

 $D\acute{e}monstration$. $2^p \equiv -1 \mod p$ implique $2^{2p} \equiv 1 \mod p$ donc l'ordre σ de 2 divise à la fois 2p et p-1, ce qui n'est possible que si $\sigma=2$, d'où $\mathcal{S}\cap\mathbb{P}\subseteq\{3\}$.

Clairement,
$$3 \mid (2^3 + 1)$$
 donc $3 \in \mathcal{S}$, d'où finalement $\mathcal{S} \cap \mathbb{P} = \{3\}$.

Fait 3.4. $\forall k \in \mathbb{N}^*, 3^k \in \mathcal{S}$.

Démonstration. Nous allons raisonner par récurrence. Cette démonstration montre que le fait 3.4 est immédiat à deviner.

Initialisation pour k = 1. Vu avant.

Étape de récurrence. On a les implications logiques suivantes.

$$(3^{k}) \mid \left(2^{(3^{k})} + 1\right)$$

$$\Rightarrow \exists m \in \mathbb{Z} \cdot \left[2^{(3^{k})} + 1 = m \cdot 3^{k}\right]$$

$$\Rightarrow \exists m \in \mathbb{Z} \cdot \left[2^{(3^{k})} = -1 + m \cdot 3^{k}\right]$$

$$\Rightarrow \exists m \in \mathbb{Z} \cdot \left[\left(2^{(3^{k})}\right)^{3} = \left(-1 + m \cdot 3^{k}\right)^{3}\right]$$

$$\Rightarrow \exists m \in \mathbb{Z} \cdot \left[2^{(3^{k+1})} = -1 + 3 \cdot m \cdot 3^{k} - 3 \cdot \left(m \cdot 3^{k}\right)^{2} + \left(m \cdot 3^{k}\right)^{3}\right]$$

$$\Rightarrow 2^{(3^{k+1})} \equiv -1 \mod (3^{k+1})$$
En régumé $2^{k+1} + 2^{(3^{k})} + 1$ implieue $2^{k+1} + 2^{(3^{k+1})} + 1$

En résumé, $3^k \mid 2^{(3^k)} + 1$ implique $3^{k+1} \mid 2^{(3^{k+1})} + 1$.

Conclusion : par récurrence sur $k \in \mathbb{N}^*$, nous savons que $3^k \in \mathcal{S}$.

4. Comportement des solutions

Fait 4.1. $\forall n \in \mathcal{S}, \forall p \in \mathbb{P}, si \ p \mid n \ alors \ pn \in \mathcal{S}$.

Démonstration. $2^n = -1 + kn$, où $k \in \mathbb{Z}$, donne :

$$2^{pn} = (2^{n})^{p}$$

$$= (-1 + kn)^{p}$$

$$= \sum_{i=0}^{p} {p \choose i} (-1)^{p-i} \cdot (kn)^{i}$$

$$= -1 + \sum_{i=1}^{p-1} pc_{i} \cdot (-1)^{p-i} \cdot (kn)^{i} + k^{p} \cdot n^{p}$$

$$= -1 + pn \sum_{i=1}^{p-1} c_{i} \cdot (-1)^{p-i} \cdot k^{i}n^{i-1} + pq \cdot n \cdot k^{p} \cdot n^{p-2}$$

$$p \mid {p \choose i} \text{ si } 0 < i < p$$

$$= pq$$

On obtient finalement $2^{pn} = -1 + pn \cdot r$ avec $r \in \mathbb{Z}$ comme souhaité.

Notons au passage que ce qui précède et le fait 3.3 donnent un exemple de preuve par récurrence où l'initialisation est essentielle car nous avons : $\forall p \in \mathbb{P}$, $p^k \mid 2^{(p^k)} + 1$ implique $p^{k+1} \mid 2^{(p^{k+1})} + 1$.

Fait 4.2.
$$\forall (n,m) \in \mathcal{S}^2, n \vee m \in \mathcal{S}$$
.

 $D\'{e}monstration$. Nous avons $r \in \mathbb{N}$ tel que $n \vee m = nr$. Rappelons que d'après le fait 3.2, aucun des entiers considérés ne peut être pair.

Posons $d=2^n$. Comme $r \in 2\mathbb{N}+1$, nous avons :

$$2^{nr} + 1$$
= 1 - (-d)^r $r \in 2\mathbb{N} + 1$
= (1 + d) (1 + (-d) + \cdots + (-d)^{r-1})

Comme $n \mid 2^n+1$, nous savons que $n \mid 2^{nr}+1$, i.e. $n \mid 2^{n\vee m}+1$. Par symétrie des rôles, nous avons aussi $m \mid 2^{n\vee m}+1$. Finalement, $n \vee m \in \mathcal{S}$.

Notons que la preuve précédente donne une démonstration alternative du fait 4.1 qui est valable pour tout diviseur p non trivial, premier ou non, de $n \in \mathcal{S}$. En effet, partons de nouveau de $2^{np} + 1 = (1+d)(1+(-d)+\cdots+(-d)^{p-1})$ où $d=2^n$. Comme $p \mid n \mid 2^n+1$, nous avons modulo p:

$$1 + (-d) + \dots + (-d)^{p-1}$$

$$\equiv 1 + 1 + \dots + 1^{p-1}$$

$$\equiv p$$

$$d \equiv 2^n \equiv -1 \mod p$$

 $\equiv 0$

= 0

Finalement, $n \mid 2^n + 1$ et $p \mid (1 + (-d) + \cdots + (-d)^{p-1})$ de sorte que $np \mid 2^{np} + 1$.

Fait 4.3. $\forall (n,m) \in \mathcal{S}^2, nm \in \mathcal{S}$.

 $D\'{e}monstration$. Nous avons $n=\prod_{p|n}p^{v_p(n)}$ et $m=\prod_{p|m}p^{v_p(m)}$ où les produits sont finis. Les faits suivants permettent de conclure.

•
$$n \vee m = \prod_{p|m} p^{\max(v_p(n); v_p(m))}$$

- Si $\max(v_p(n); v_p(m)) < v_p(n) + v_p(m)$, alors le fait 4.1 donne que $p^{\delta} \cdot (n \vee m) \in \mathcal{S}$ où $\delta = v_p(n) + v_p(m) \max(v_p(n); v_p(m))$.
- En répétant l'opération précédente autant de fois que nécessaire, on arrive à obtenir que $nm \in \mathcal{S}$.

Fait 4.4. $\forall (n,m) \in \mathcal{S}^2, n \wedge m \in \mathcal{S}$.

Démonstration. Cela découle directement des faits 4.2 et 4.3.

Fait 4.5. $\forall n \in \mathcal{S}, 2^n + 1 \in \mathcal{S}$.

Démonstration. Le principe est similaire à la preuve du fait 4.2. Notant $M=2^n+1=nk$ et $d=2^n$, nous avons :

$$2^{M} + 1 = 2^{nk} + 1$$

$$= (1+d) (1 + (-d) + \dots + (-d)^{k-1})$$

$$= M (1 + (-d) + \dots + (-d)^{k-1})$$

5. STRUCTURE DE L'ENSEMBLE DES SOLUTIONS

Un ensemble \mathcal{T} est appelé treillis s'il vérifie les conditions suivantes.

- $(\mathcal{T}; \leq)$ est un ensemble ordonné.
- $\forall (a;b) \in \mathcal{T}^2$, l'ensemble $\{a;b\}$ possède une borne inférieure et une borne supérieure.

Fait 5.1. La relation de divisibilité ordonne l'ensemble S via $n \leq m$ si, et seulement si, $n \mid m$. Muni de cet ordre, S est un treillis.

Démonstration. Voir les faits 4.2 et 4.4.

Nous allons nous intéresser naturellement aux éléments minimaux de (S; |).

6. AFFAIRE À SUIVRE...