МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям обнаружения ошибок

Студент гр. 7304	Коп	иманов Н.А.
Преподаватель	Еф	ремов М.А.

Санкт-Петербург 2021

Формулировка задания

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1)–ой и i–ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
 - а. равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - b. экспоненциальным законом распределения: W(y) = b*exp(-b*y), y>=0, с параметром b=0.1 и соответственно $m_{\rm эксп}=s_{\rm эксп}=1/b=10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = -ln(t)/b
 - с. релеевским законом распределения: $W(y) = (y/c^2)*exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{pen}=c*sqrt(\pi/2), s_{pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками $_{\text{упорядочить}}$ по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%,

80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если В>n, оценить значения средних времен Xj , j=n+1,n+2..., n+k до обнаружения k<= 5 следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

1. Равномерный закон распределения

а.
$$100 \%$$
 при $n = 30$

1	2	3	4	5	6	7	8	9	10
0.184	0.648	1.327	5.011	5.878	7.066	7.996	8.357	10.486	10.719
11	12	13	14	15	16	17	18	19	20
10.850	10.970	11.400	11.536	11.753	11.905	12.027	12.347	12.481	12.878
21	22	23	24	25	26	27	28	29	30
13.851	14.131	14.356	14.957	15.925	16.190	17.589	17.643	18.670	19.876

Проверка существования максимума:

$$A > \frac{n+1}{2} = 15.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 19.136$$

$$19.136 > 15.5$$

Найдем m >= n + 1

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
$$g_n(m, A) = \frac{n}{m-A}$$

m	31	32	33	34	35	36	37	38	39	40
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725	1.609	1.510	1.425
g	2.529	2.332	2.164	2.018	1.891	1.779	1.679	1.590	1.510	1.438
f - g	1.466	0.695	0.395	0.237	0.144	0.085	0.045	0.018	0.000	0.013

Минимум при
$$m = 39$$
, $B = 39 - 1 = 38$

Минимум при m = 39, B = 39 – 1 = 38
$$K = \frac{n}{\sum_{i=1}^{n} (\mathbb{B}_{i}+1)*X_{i}} = \frac{n}{(\mathbb{B}_{1})*\sum_{i=1}^{n} *X_{i}-\sum_{i=1}^{n} i*X_{i}} = 0.004455$$

Среднее время X₊₁

$$\hat{\chi}_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{R}(B-n)}$$

i	31	32	33	34	35	36	37	38
X	28.059	32.067	37.412	44.894	56.118	74.824	112.235	224.471

Время до полного завершения тестирования: 610.08

Полное время тестирования: 949.087

b. 80 % при n = 24

1	2	3	4	5	6	7	8	9	10
0.708	1.566	2.632	2.893	3.827	4.151	4.418	4.814	5.257	6.269
11	12	13	14	15	16	17	18	19	20
6.323	7.749	9.545	10.467	10.967	12.624	13.794	13.997	15.516	16.390
21	22	23	24						
16.618	16.851	19.504	19.588						

Проверка существования максимума:

$$A > \frac{n+1}{2} = 12.5$$

$$A = \frac{\sum_{i=1}^{n} {i * X_i}}{\sum_{i=1}^{n} X_i} = 16.752$$

$$16.752 > 12.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
$$g_n(m, A) = \frac{n}{m-A}$$

m	25	26	27	28
f	3.776	2.816	2.354	2.058
g	2.910	2.595	2.342	2.134

$$|\mathbf{f} - \mathbf{g}|$$
 0.866 0.221 0.012 0.076

Минимум при m = 27, B = 27 - 1 = 26

$$K = \frac{n}{\sum_{i=1}^{n} (\mathbb{B}_{i}+1) * X_{i}} = \frac{n}{(\mathbb{B}_{1}) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.010342$$

Среднее время X₊₁

$$\hat{\chi}_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{X}(B-n)}$$
i 31 32
$$\hat{\chi} = 48.349 | 96.698$$

Время до полного завершения тестирования: 145.046

Полное время тестирования: 371.514

с. 60 % при n = 18

1	2	3	4	5	6	7	8	9	10
1.002	1.162	1.257	2.619	2.721	3.760	9.988	11.263	12.410	13.045
11	12	13	14	15	16	17	18		

Проверка существования максимума:

$$A > \frac{n+1}{2} = 9.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.633$$

$$12.633 > 9.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
$$g_n(m, A) = \frac{n}{m-A}$$

m	19	20	21	22
f	3.495	2.548	2.098	1.812
g	2.827	2.443	2.151	1.922
f – g	0.668	0.104	0.054	0.110

Минимум при m = 21, B = 21 - 1 = 20

$$K = \frac{n}{\sum_{i=1}^{n} (\mathbb{B}_{i}+1) * X_{i}} = \frac{n}{(\mathbb{B}_{1}) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.010995$$

Среднее время Х+1

$$\hat{\chi}_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{R}(B-n)}$$
i 19 20 1 19 20 19 20 19 20 19 20 20 20 20 3 3 45.477 90.954

Время до полного завершения тестирования: 136.432

Полное время тестирования: 332.112

2. Экспоненциальный закон распределения

1	2	3	4	5	6	7	8	9	10
0.386	1.610	1.639	2.273	2.423	3.340	3.952	6.698	6.703	7.003
11	12	13	14	15	16	17	18	19	20
7.227	9.353	9.422	9.514	10.249	10.368	11.830	12.785	14.103	15.706
21	22	23	24	25	26	27	28	29	30
15.791	16.402	16.677	17.028	22.811	25.593	26.834	29.984	34.657	34.834

Проверка существования максимума:

$$A > \frac{n+1}{2} = 15.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 21.633$$
$$21.633 > 15.5$$

Найдем m >= n + 1

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
$$g_n(m, A) = \frac{n}{m-A}$$

m	31	32	33	34
f	3.995	3.027	2.558	2.255
g	3.203	2.894	2.639	2.426
f - g	0.792	0.133	0.081	0.170

Минимум при m = 33, B = 33 - 1 = 32

$$K = \frac{n}{\sum_{i=1}^{n} (\mathbb{B}^{1}+1) * X_{i}} = \frac{n}{(\mathbb{B}^{1}) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.006816$$

Среднее время X₊₁

$$\hat{\chi}_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{R}B-n}$$

i	31	32
Ŷ X	73.353	146.706

Время до полного завершения тестирования: 220.059

Полное время тестирования: 607.254

b. 80 % при n = 24

1	2	3	4	5	6	7	8	9	10
0.105	0.333	0.515	1.042	1.407	2.718	2.853	3.602	5.084	5.552
4.4	4.0	4.0	4.4	4 -	4.7	4 -	4.0	4.0	• •
11	12	13	14	15	16	17	18	19	20

21	22	23	24			
24.503	31.358	34.233	34.856			

Проверка существования максимума:

$$A > \frac{n+1}{2} = 12.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 18.665$$

$$18.665 > 12.5$$

Найдем m >= n + 1

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
$$g_n(m,A) = \frac{n}{m-A}$$

m	25	26
f	3.776	2.816
g	3.788	3.272
f – g	0.012	0.456

Минимум при m = 25, B = 25 – 1 = 24
$$K = \frac{n}{\sum_{i=1}^{n} (\text{Вi+1})*X_i} = \frac{n}{(\text{ВI})*\sum_{i=1}^{n} *X_i - \sum_{i=1}^{n} i *X_i} = 0.014552$$

Среднее время Х+1

$$\hat{X}_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{X}(B-n)}$$

$$\frac{\mathbf{i}}{\hat{X}}$$

Время до полного завершения тестирования: 0

Полное время тестирования: 260.341

с. 60 % при n = 18

1	2	3	4	5	6	7	8	9	10
0.191	0.868	1.162	1.183	1.517	2.444	2.466	2.467	2.480	3.363
11	12	13	14	15	16	17	18		
4.016	6.291	7.278	10.240	10.905	11.263	15.856	19.672		

Проверка существования максимума:

$$A > \frac{n+1}{2} = 9.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 13.992$$

$$13.992 > 9.5$$

Найдем m >= n + 1

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
$$g_n(m, A) = \frac{n}{m-A}$$

m	19	20
f	3.495	2.548
g	3.594	2.996
f – g	0.099	0.448

Минимум при m = 19, B = 19 – 1 = 18
$$K = \frac{n}{\sum_{i=1}^{n} (\mathbb{B}_1 + 1) * X_i} = \frac{n}{(\mathbb{B}_1) * \sum_{i=1}^{n} * X_i - \sum_{i=1}^{n} i * X_i} = 0.034671$$

Среднее время Х+1

$$\hat{X}_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{X}(B-n)}$$

$$\frac{\mathbf{i}}{\hat{X}}$$

Время до полного завершения тестирования: 0

Полное время тестирования: 103.662

3. Релеевский закон распределения

а. 100 % при n = 30

1	2	3	4	5	6	7	8	9	10
1.193	1.526	3.579	4.404	5.061	5.381	6.572	6.743	6.841	7.145
11	12	13	14	15	16	17	18	19	20
7.232	7.238	7.272	7.422	7.672	8.250	8.779	8.933	10.000	11.575
21	22	23	24	25	26	27	28	29	30
12.277	12.443	12.574	13.753	13.788	14.588	15.439	17.254	20.158	21.544

Проверка существования максимума:

$$A > \frac{n+1}{2} = 15.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 19.789$$

$$19.789 > 15.5$$

Найдем m >= n + 1

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
$$g_n(m, A) = \frac{n}{m-A}$$

m	31	32	33	34	35	36	37
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725
g	2.676	2.457	2.271	2.111	1.972	1.851	1.743
f – g	1.319	0.570	0.288	0.144	0.063	0.013	0.019

Минимум при m = 36, B = 36 - 1 = 35

$$K = \frac{n}{\sum_{i=1}^{n} (\mathbf{B}_{i}+1) * X_{i}} = \frac{n}{(\mathbf{B}_{1}) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.006456$$

Среднее время Х+1

$$\hat{\chi}_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{R}(B-n)}$$

i	31	32	33	34	35
X	30.977	38.721	51.629	77.443	154.886

Время до полного завершения тестирования: 353.656

Полное время тестирования: 640.292

1	2	3	4	5	6	7	8	9	10
1.814	2.004	2.270	2.501	3.156	5.907	6.108	7.745	9.358	9.815
11	12	13	14	15	16	17	18	19	20
10.252	10.313	11.157	11.488	11.984	12.498	13.526	15.077	15.384	16.395
21	22	23	24						
17.437	17.689	19.999	22.261						

Проверка существования максимума:

$$A > \frac{n+1}{2} = 12.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 16.219$$

$$16.219 > 12.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
$$g_n(m,A) = \frac{n}{m-A}$$

m 2	5 26	27	28	29
-----	------	----	----	----

f	3.776	2.816	2.354	2.058	1.844
g	2.733	2.454	2.226	2.037	1.878
f - g	1.043	0.362	0.128	0.021	0.034

Минимум при m = 28, B = 28 - 1 = 27

$$K = \frac{n}{\sum_{i=1}^{n} (\mathbb{B}_{i}+1) * X_{i}} = \frac{n}{(\mathbb{B}_{1}) * \sum_{i=1}^{n} * X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.007953$$

Среднее время X₊₁

$$\hat{\mathbf{x}}_{n+1} = \frac{1}{\hat{\mathbf{Z}}(t_n)} = \frac{1}{\hat{\mathbf{X}}(\mathbf{B}-n)}$$

$$\mathbf{i} \qquad \mathbf{25} \qquad \mathbf{26} \qquad \mathbf{27}$$

$$\hat{\mathbf{X}} \qquad 41.912 \qquad 62.869 \qquad 125.737$$

Время до полного завершения тестирования: 230.518

Полное время тестирования: 486.656

с.
$$60 \%$$
 при $n = 18$

1	2	3	4	5	6	7	8	9	10
1.922	2.241	3.708	5.362	6.213	6.752	7.031	7.991	9.677	10.020
11	12	13	14	15	16	17	18		
10.723	15.219	15.269	16.783	18.665	18.683	19.630	19.890		

Проверка существования максимума:

$$A > \frac{n+1}{2} = 9.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.339$$

$$12.339 > 9.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$
13

$$g_n(m,A) = \frac{n}{m-A}$$

m	19	20	21	22
f	3.495	2.548	2.098	1.812
g	2.702	2.349	2.078	1.863
f - g	0.793	0.198	0.020	0.051

Минимум при m = 21, B = 21 - 1 = 20

$$K = \frac{n}{\sum_{i=1}^{n} (B-i+1)*X_{i}} = \frac{n}{(B+1)*\sum_{i=1}^{n} *X_{i} - \sum_{i=1}^{n} i*X_{i}} = 0.010615$$

Среднее время Х+1

$$\hat{X}_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{\hat{X}(B-n)}$$

i	19	20
Ŷ X	47.103	94.205

Время до полного завершения тестирования: 141.308

Полное время тестирования: 337.087

4. Результаты

4.1. Оценка первоначального числа ошибок

	Равномерный	Экспоненциальный	Релеевский
n = 30	38	32	35
n = 24	26	24	27
n = 18	20	18	20

4.2. Оценка полного времени проведения тестирования

	Равномерный	Экспоненциальный	Релеевский
n = 30	949.087	607.254	640.292
n = 24	371.514	260.341	486.656

n = 18	332.112	103.662	337.087

4.3. Экспоненциальный закон распределения показывает наилучшие результаты по двум оценкам сразу при любых входных данных, так как по предположению модели Джелински-Моранды время до следующего отказа программы распределено экспоненциально.

Релеевское распределение демонстрирует наихудшие результаты полного времени проведения тестирования при 60% и 80% входных данных, однако в плане оценки первоначального числа ошибок сравнимо с равномерным. При 100% входных данных наихудший результат показывает равномерное распределение по двум оценкам сразу.

Вывод

В ходе выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок.