APPLICATION OF COMPUTATIONAL METHODS TO STUDY THE SELECTION OF AUTHENTIC AND CRYPTIC SPLICE SITES

A Project Report
Presented to
Dr. Sami Khuri
Department of Computer Science
San Jose State University

In Partial Fulfillment of the Requirements for the Class $CS\ 298$

Ву

Tapomay Dey

 ${\rm April}\ 2017$

ABSTRACT

This report explains the significance of the process of splice site selection during the translation of pre-mRNA into proteins. This sets the premise for a very interesting and highly valuable problem of putative splice site detection. Our eventual goal is to better understand the mechanism by which cryptic splice sites are activated in presence of mutations at authentic splice sites. We try to address the research question whether we can predict putative splice sites using probabilistic models. This report explains the following three important machine learning algorithms: Decision trees, Random Forests, and Hidden Markov Models. The report also touches very lightly on recent advances in application of evolutionary algorithms to the general problem of splice site detection. The last section presents a hypothetical and intuitive analogy of how one may model the same problem using Convolutional Neural Network, a variant of Artificial Neural Network that is highly accurate in image recognition.

Contents

1	MC	OTIVATION	1
2	PR	OBLEM STATEMENT	3
3	$\mathbf{D}\mathbf{A}'$	TA SPECIFICATIONS	3
	3.1	5' SPLICE SITES	3
	3.2	AUTHENTIC 5' SPLICE SITE	4
	3.3	CRYPTIC 5' SPLICE SITE	6
	3.4	3' SPLICE SITE	7
	3.5	AUTHENTIC 3' SPLICE SITE	8
	3.6	CRYPTIC 3' SPLICE SITE	10
	3.7	NEIGHBORING 5' SPLICE SITE	11
4	Alg	gorithm selection	12
4	Alg 4.1	gorithm selection BACKGROUND ON GENETIC ALGORITHMS	
4	Ü		
4	4.1	BACKGROUND ON GENETIC ALGORITHMS	13
4	4.1	BACKGROUND ON GENETIC ALGORITHMS	13 17 17
4	4.1	BACKGROUND ON GENETIC ALGORITHMS	13 17 17 17
4	4.1	BACKGROUND ON GENETIC ALGORITHMS	13 17 17 17 18
4	4.1	BACKGROUND ON GENETIC ALGORITHMS	13 17 17 17 18
4	4.1 4.2	BACKGROUND ON GENETIC ALGORITHMS	13 17 17 17 18 18
4	4.1 4.2	BACKGROUND ON GENETIC ALGORITHMS SELECTION STRATEGIES 4.2.1 ROULETTE WHEEL 4.2.2 RANKED SELECTION 4.2.3 TOURNAMENT SELECTION 4.2.4 ELITIST STRATEGY REPLACEMENT STRATEGIES	13 17 17 17 18 18 18

		4.3.4	REPLACEMENT STRATEGY: OTHER VARIATIONS	19
		4.3.5	MOST COMMON PRACTICAL REPLACEMENT STR	RATE-
			GIES	20
	4.4	MUTA	ATION	20
	4.5	CROS	SOVER	21
5	RES	SULTS	3	23
	5.1	SELE	CTION: ROULETTEWHEEL; CROSSOVER: CROSSOV	ER-
		1P .		23
	5.2	SELE	CTION: ROULETTEWHEEL; CROSSOVER: CROSSOV	ER-
		2P .		32
	5.3	SELE	CTION: TOURNAMENT; CROSSOVER: CROSSOVER-	
		1P .		41
	5.4	SELE	CTION: ROULETTEWHEEL; CROSSOVER: CROSSOV	ER-
		UNIF	ORM	50
	5.5	SELEC	CTION: RANKED: CROSSOVER: CROSSOVER-1P	59

1 MOTIVATION

The eukaryotic genome consists of many genes. Transcription and translation are some of the important processes in the gene expression pathways. Transcription involves generation of messenger RNA (mRNA) from premessenger RNA (pre-mRNA). Both mRNA and pre-mRNA are sequences of nucleotides. The pre-mRNA is divided into nucleotide regions called Introns and Exons. An Exon-Intron boundary is called a 5' splice site and an Intron-Exon boundary is called a 3' splice spite. As per recent knowledge, the Introns are discarded and the Exons are stitched together to form the mRNA.

The mRNA is the exact coding sequence (CDS) that is translated into proteins. Proteins comprise of sequences made from various combinations of twenty possible amino acids. Each of the twenty amino acids can be mapped to multiple nucleotide triplets (codons) from the mRNA. One of the first publications of these mappings was by Crick in The Origin of the Genetic Code [298.crick1]. The exact sequence of amino acids dictates the structural properties of the protein molecule. The structure and composition of a protein molecule influence the physical and chemical properties exhibited by the protein. These properties have been documented in the Wikipedia page on Amino Acids [297.25].

The proteins are responsible for various biological functions and traits of a eukaryotic organism. The splicing of pre-mRNA at 5' and 3' splice sites must be accurate in order to form the protein molecules that are required

Figure 1: Protein synthesis

for satisfying the normally known functions of a healthy organism.

Mutations in the DNA can lead to one of many possible disruptions in the selection of 5' or 3' splice sites. An obviously devastating disruption is a frame shift while extracting codons from the mRNA to form amino acid molecules. This may lead to a severely deficient expression of an important protein due to early detection of stop codons. In many cases, this leads to undesired consequences like fatal diseases. As per recent estimates, it is known that up to 50% of disease-causing mutations disrupt splicing.

The splice sites that are selected due to mis-splicing are called cryptic splice sites. However, there are multiple nucleotide subsequences in the pre-mRNA that contain candidate splice sites. Consequently, it is of crucial importance to understand the reasons behind the cryptic splice site selection by the spliceosome.

2 PROBLEM STATEMENT

To study the selection of splice sites by the spliceosome, three data sets were built, consisting of authentic, cryptic, and neighboring 5' splice sites. The data sets comprise of thousands of 9-mers: sequences that are 9 bases long. Authentic and cryptic splice sites are extracted from public datasets. The neighboring splice site 9-mers are extracted from 100 base-pairs downstream and 100 base-pairs upstream of each cryptic splice site.

The primary goal is to build probabilistic models for each data set and quantitatively compare their similarities. The primary hypothesis is that the authentic and cryptic splice sites are inherently different. The secondary hypothesis is that the neighboring splice sites are more dissimilar than both authentic and cryptic splice sites. This should help us understand the behavior of a spliceosome when it chooses cryptic splice sites and discards neighboring splice sites when the authentic splice site has been altered.

3 DATA SPECIFICATIONS

3.1 5' SPLICE SITES

The 5' splice sites are extracted based on the location of the invariant GT dinucleotide. The authentic splice sites are extracted from the Homo Sapiens Splice Sites database (HS3D) [298.ref: http://www.sci.unisannio.it/docenti/rampone/]. The cryptic splice sites and neighboring splice sites are extracted from the DBASS5 database[298.ref]

Figure 2: 5' Splice Site

3.2 AUTHENTIC 5' SPLICE SITE

HS3D offers the following files listed in [ref: Fig. hs3d_download] for download:

Downloads	
False sequences are splitted in 3 + 4	4 files. A Dos/Win merging utility is included
exons.zip	Exon sequences.
introns.zip	Intron sequences.
El_true.zip	Exon-Intron true splice sites and infos.
IE_true.zip	Intron-Exon true splice sites and infos.
El_false_1.zip	Exon-Intron false splice sites (Part 1), infos, and merging utility.
El_false_2.zip	Exon-Intron false splice sites (Part 2).
EI_false_3.zip	Exon-Intron false splice sites (Part 3).
IE_false_1.zip	Intron-Exon false splice sites (Part 1), infos, and merging utility.
IE_false_2.zip	Intron-Exon false splice sites (Part 2).
IE_false_3.zip	Intron-Exon false splice sites (Part 3).
IE_false_4.zip	Intron-Exon false splice sites (Part 4).
statistics.zip	Statistics.

Figure 3: HS3D downloads page

Since 5' splice sites occur at the Exon-Intron boundary, the file EI_true.zip

is relevant for Authentic 5' splice sites. The data is provided as an 'seq' file with 140 nucleotides in each line. Manually observing all the sequences reveals that the 5' consensus GT dinucleotide that marks the start of the Intron is at position 71-72 in each sequence. The desired 5' splice site 9-mer comprises of the last 3 nucleotides from the Exon, the GT dinucleotide from the start of Intron and the 4 nucleotides following it.

Following is a sample of 9-mers extracted from the dataset:

Table 1: Input sequence lines from file EI true.seq

AB000381 (1,2,2): CTCCTCTTTGCCTTACTCCTAGCCATGGAGCTC CCATTGGTGGCAGCCAGTGCCACCATGCGCGCTC**AGTGTAAGT** ATCATTCCCTCTCACTGTCCTGGAGAGGACGAGAATTCCACCT GGGGTGCTGGGGGTCACTGGG

AB000381 (2,3,3): AATGACTTCAACTGTCCCAACATTAGAGTATGT
CCGTATCATATTAGGCGCTGTATGACAATCTCCA**TTCGTAAGT**ACCTCTTGGTCATTTGGACACATTGTAGATTAGTCCCCTACCT
GGGTAGTTTCTGGGGCCAGGG

AB002059 (3,1,1): TGACCAGGAACTGGCGGGTGGGCGCCCTGCAGA GGCTGCTGCAGTTTGGGATCGTGGTCTATGTGGT**AGGGTAAGA** GAGAAGAGCTTTTGGCCAGGCTGGAGGGGCAAGGGAAGAGGTG GGGGGTGGGGCTTGGTCCTGC

AB002059 (4,2,2): TTCCGTCACTCAGATCAAGGAGCTTGGAAACCG
GCTGTGGGATGTGGCCGACTTCGTGAAGCCACCT**CAGGTGGG**GCCCTGATGTTGCTGACGGGGGCGCAAGTCCTTTCCCCACTGA
CAGCCTGAACACCCGCCATGC

Table 2: 9-mers extracted from the sequences in Table 1

AGT**GT**AAGT TTC**GT**AAGT

AGGGTAAGA

CAGGTGGGG

Total authentic 5' splice site 9-mers extracted: 2796

3.3 CRYPTIC 5' SPLICE SITE

The cryptic 5' splice sites are collected from the DBASS5 database portal [298.ref: http://www.dbass.org.uk/DBASS5] by crawling all available splice details page. The splice site details page contains the nucleotide sequence with the context of the mutation that alters the splicing location. The mutation is indicated in the sequence with a greater than symbol.

For e.g: (G>A) means G is replaced by A

The cryptic splice sites are denoted by the slash symbol.

Consider the following nucleotide sequence extracted from the first record.

URL: http://www.dbass.org.uk/DBASS5/viewsplicesite.aspx?id=627 (last retrieved: 04/23/2017)

GGCTCTTTTT CCAGCAACTT GGAGAGCGGC TGGGCCTGGT TGGCCACAGC CCCAGTTCTG CCAGCCTGAA CTTCCTCCAT GCCCTGGAGG TCATGTTCAA CAGCTCATGT ATCCACCGTC TCATGCCCAG GAGCCTGTCT CGCTGGACCA GCCCCAAG/G TGTGGAAGGA GCACTTTGAG GCCTGGGACT GCATCTTCCA $\operatorname{GTAC}(\mathbf{G} > \mathbf{A})$ g tgaggccagg gacccgggca gtgctatggg gaagggacac catgggggcc caatttetee eteteeacea eeeagtgggg aatggaggee acagggaggg gteggggatt eeteaccttc ctgccaggga gattggtgcg aggctggggc tggtcgggc tgatccggag aatttgggat agacttgggt gtcggggcag tctgggcagg aggaggacac gagagcaggg tgaaggatgt ctcccagcac caaagtctga gggctgcctc ccgctccccg

We can observe from other details on the page that:

- Capital nucleotide symbols indicate the trailing part of the Exon
- Small nucleotide symbols indicate the leading part of the Intron
- Mutation is marked as : (G>A)
- Cryptic splice site is marked as: "GCCCCAAG/G TGTGGAAGG"

The cryptic 5' splice site 9-mer extracted from the above sequence is: AAG-GTGTGG

Total cryptic 5' splice site 9-mers extracted: 539

3.4 3' SPLICE SITE

The 3' splice sites are extracted based on the location of the invariant AG dinucleotide and its preceding Yn consensus were Y is a Pyridine. The

authentic splice sites are extracted from the Homo Sapiens Splice Sites database (HS3D) [298.ref: http://www.sci.unisannio.it/docenti/rampone/]. The cryptic splice sites and neighboring splice sites are extracted from the DBASS3 database[298.ref]

Figure 4: 3' Splice Site

3.5 AUTHENTIC 3' SPLICE SITE

Since 3' splice sites occur at the Intron-Exon boundary, the file IE_true.zip is relevant for Authentic 3' splice sites. This data is also provided as an 'seq' file with 140 nucleotides in each line. Manually observing all the sequences reveals that the 3' consensus AG dinucleotide that marks the end of the Exon is at position 69-70 in each sequence. The desired 3' splice site 13-mer comprises of the last 12 nucleotides from positions 59-70 at the end of the Exon, and one nucleotide from the start of the Intron.

Following is a sample of 13-mers extracted from the dataset:

Table 3: Input sequence lines from IE_true.seq

Table 4: 13-mers extracted from the sequences in Table 3

CCTTCCCTTCAGG

CTCCCCTCTAGG

TTCTTTTTTTAGG

TCTCCTCCCAGG

CTTGCCTCCTAGG

Total authentic 3' splice site 13-mers extracted : 2880

3.6 CRYPTIC 3' SPLICE SITE

The cryptic 3' splice sites are collected from the DBASS3 database portal [298.ref: http://www.dbass.org.uk/DBASS3] by crawling all available splice details page. The fields on the DBASS3 splice site details pages are similar to the ones on the DBASS5 pages.

The desired 13-mer comprises of:

- 10 nucleotides before the ag dinucleotide from the Intron
- the ag dinucleotide at the splice site marker from the Intron
- one nucleotide after the splice site marker from the Exon

Consider the following nucleotide sequence extracted from a record at URL: http://www.dbass.org.uk/DBASS3/viewsplicesite.aspx?id=52 (last retrieved: 04/23/2017)

gtaagggccg ggggcatttt ttctttctta aaaaaatttt tttttaagag atgggttctt gctatgetge ceaggetggt ettaaattee tagteteaaa tgateeteec aceteageet eaagtgtgag ccacctttgg ggcatcccca atccaggtcc ctggaagctc ttgggggggc atatctggtg gggagaaagc aggggttggg gaggccgaag aaggtcaggc cctcagctgc cttcatcag/ ttcccaccct GTGTCTAGGA ccag/cccc (a>g)(c>g) ctcctcctgc agACAAGCTG ACTACCCGGA CCTGTCCTTG GGAGACTACT CCCTGCTCTG GAAAGCCCAC AAGAAGCTCA CCCGCTCAGC CCTGCTGCTG GGCATCCGTG ACTCCATGGA GCCAGTGGTG GAGCAGCTGA CCCAGGAGTT CTGTGAGgta

11

We can observe from other details on the page that:

• Capital nucleotide symbols indicate the leading part of the Exon

• Small nucleotide symbols indicate the trailing part of the Intron

• Mutations are marked as: (a>g) and (c>g) Cryptic splice sites are

marked as: "cagetge etteateag/ tteccaecet ceag/ecce"

There are two cryptic 3' splice site 9-mers extracted from the above sequence.

They are: "tgccttcatcagt" and "cccaccctccagc"

Total cryptic 3' splice site 13-mers extracted: 306

3.7 NEIGHBORING 5' SPLICE SITE

The putative splice sites around the known cryptic splice sites are called

as neighboring splice sites. These are the putative splice sites that were not

selected for splicing by the spliceosome in the event of a mutation. Using the

nucleotide sequences extracted from the DBASS5 splice site details pages.

The 100 base-pairs upstream and 100 base-pairs downstream of the splice

site are parsed to look for the GT dinucleotide. All such occurrences are

captured in the neighboring 5' splice site dataset in the form of 9-mers with

the GT dinucleotide as the 4th and 5th bases.

Total neighboring 5' splice site 9-mers extracted: 2213

4 Algorithm selection

In case of 5' splice sites, we can model the problem statement as a search problem. The spliceosome binds to a specific subset of the entire 9-mer search space. The cardinality of each position in the 9-mer is four (equivalent to A, C, G, and T), and the positions 4 and 5 are always occupied by the GT di-nucleotide. Hence, the size of the search space is $4^7 = 16384$. This search space comprises of the authentic, cryptic, and neighboring splice sites. An important goal is to study the statistical properties of the known samples from these three categories of splice sites and prove that they are inherently different.

Evolutionary Algorithms (EAs) are applicable to problems that have no known classical optimization methods [handbook]. If a traditional method is applicable to solve a problem, then EA should not be used since traditional methods are more efficient in such a case. Since we do not understand the choices of a spliceosome completely, EAs are suitable for this problem. The section [Methods] describes a Genetic Algorithm based approach.

Three primary forms of EA:

- Evolutionary Programming
- Genetic Algorithms
- Evolutionary Strategies

Some of the early significant contributors to EA:

• Friedberg(1958)

- Fraser(1957)
- Bremermann(1962)
- Box and Draper(1969): Evolutionary Operation
- Spendley(1962)
- Fogel(1966): Evolutionary Programming
- Holland(1967): Genetic Algorithms
- Rechenberg(1965): Evolutionary Strategies

Some of the initial conferences on EA:

- Schwefel and Manner(1991): Int'l workshop
- Belew and Booker(1991): ICGA'91
- Fogel and Atmar(1992): EP'92
- \bullet Manner and Manderick (1992): PPSN'92

4.1 BACKGROUND ON GENETIC ALGORITHMS

Genetic Algorithms were first proposed and analyzed by John Holland (1975). Genetic Algorithms are a type of EA that deal with search and optimization based on a fitness function. It follows the philosophy of survival of the fittest. It uses the mechanisms of natural biological selection and genetics.

Genetic algorithms follow a generic domain agnostic framework. Hence, it has the advantage of being applicable to many problems. Some of the features that initially separated GA from other evolutionary approaches are:

- Bitstring representation
- Proportional selection
- Crossover

Although, the representation and selection methods have advanced significantly, there is still a large emphasis on the crossover operation. Crossover is known to give GAs a distinctive advantage over other methods[handbook]. General Terminology:

- Population: A collection of individuals of size m
- Individual: A single string of size m that is part of the population

Figure 5: Population and Individuals

Biological terminology:

- Generation: equivalent to a population
- Chromosome: equivalent to an individual
- Gene: Each of the n positions in a chromosome is called a gene. It can be

treated as a variable and can take values from a fixed set of alleles

- Allele: A fixed set of values that can be taken by a gene

Figure 6: Chromosome, Gene, and Alleles

Figure 7 shows a generic algorithmic framework for domain agnostic genetic algorithms. The selection strategy, fitness operator, crossover operator, and recombination strategy are customizable according to a need. The framework makes no assumptions about the initial population or the operators.

Figure 7: An algorithmic framework for genetic algorithms

The two phases that can be used to introduce bias:

- Selection strategy
- Recombination / replacement strategy

4.2 SELECTION STRATEGIES

Selection strategy is responsible for selecting individuals from a population for mating.

4.2.1 ROULETTE WHEEL

Total the fitness value of all individuals in the parent population; Calculate probability of each individual as the ratio of its fitness to total fitness. This strategy may lead to weak selection pressure.

Selection pressure is governed by the differences in selection probabilities of individuals. If the differences are too small then the selection pressure is low. The workaround for low selection pressure is to scale the fitness probabilities with respect to the worst fitness. However, this leads to excessive selection pressure. The best individual may take over the entire population within a few iterations.

4.2.2 RANKED SELECTION

The workaround for excessive selection pressure is to use ranked selection.

The parent population is sorted by fitness. Probability of selection is a linear function of the ranks sorted by fitness.

4.2.3 TOURNAMENT SELECTION

A small subset of the parent population is selected at random and the individual with best fitness is chosen for mating. This is repeated m times. The selection pressure can be controlled by adjusting the set size.

4.2.4 ELITIST STRATEGY

This is more of a strategy post selection. All but one of the child population after selection are chosen. The best individual from the parent population is added to the child population.

4.3 REPLACEMENT STRATEGIES

A child population is generated from the parent population P(t) using selection, crossover, and mutation operations. A suitable replacement strategy is required to form the population for the next generation P(t+1) using candidate individuals from both the parent and child populations.

Some of the notable GA implementations that implement complex replacement strategies are:

- Whitleys GENITOR
- Syswerda's steady-state GA
- Eshelman's CHC
- Mühlenbein's breeder GA

4.3.1 REPLACEMENT STRATEGY ABSTRACTIONS

Let us assume:

- μ : parent population
- λ : child population

4.3.2
$$(\mu + \lambda)$$
 ES

The μ parents and λ children are merged and the best μ individuals are chosen to form the new parent population.

4.3.3
$$(\mu, \lambda)$$
 ES

The μ parents produce λ offsprings such that $\lambda > \mu$. The best μ offsprings out of the λ offsprings are chosen to form the new parent population.

4.3.4 REPLACEMENT STRATEGY: OTHER VARIATIONS

Two other degrees of variation in a replacement strategy:

• Number of matings per iteration:

Whether the GA produces one or two versus many (μ) offsprings in each iteration; De Jong and Sarma (1993) claim that the main difference between variations in number of allowed matings is that a strategy with fewer matings leads to higher variance in performance.

• Whether the replacement strategy is biased or not:

In case of an unbiased replacement strategy, if all the parents are replaced by the children, then we risk losing good individuals from the parent population for good. An advantage of this strategy is that the algorithm may wander out of a local minimum.

4.3.5 MOST COMMON PRACTICAL REPLACEMENT STRATEGIES

[goldberg]

• Delete All:

All the child population replaces the entire current population

• Steady-state:

Only n members of the current population are replaced by members from the child population; The quantity n and the strategy for removal are parametrized

• Steady-state-no-duplicates:

Same as the Steady-state strategy except that the algorithm checks for duplicates while introducing chromosomes from the child population into the current population

4.4 MUTATION

Mutation is the mechanism for producing variations by randomly replacing one allele with another. A commonly used rate of mutation is one over length of the string.

4.5 CROSSOVER

Crossover combines features from two highly fit individuals. The individuals maybe highly fit due to different reasons. However, we do not know which features account for the high fitness. Hence, the features are combined at random.

Types of crossover:

- One-point crossover
- Two-point crossover
- K-point crossover
- Uniform crossover
- Uniform order-based crossover
- Order-based crossover
- Partially matched crossover (PMX)
- Cycle crossover (CX)

For more details on each type of crossover, refer to how they are used with 9-mer data in section [modeling]

Figure 8: Simple GA with one-point crossover, roulette wheel selection, and delete all strategy

For more details, refer how they are used with 9-mer data in section [modeling]

5 RESULTS

5.0.1 SELECTION: ROULETTEWHEEL; CROSSOVER: 1P

Table 5: SELECTION: ROULETTEWHEEL; CROSSOVER: 1P: AUTH - fitness

				AU	TH ·	- fitness						
AUTH-10		AUTH-10		AUTH-10		AUTH-20		AUTH-20		AUTH-20		
m = 10, gc =	10	m = 10, gc = 1	.00	m = 10, gc = 1	000	$m=20,\mathrm{gc}=$	10	m = 20, gc = 1	.00	m = 20, gc = 1000		
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
2.44696259563	5	4.07365609667	1	8.87392314571	1	5.79933834278	1	9.3527307645	1	8.73732551258	1	
1.92008221246	6	12.2210312445	2	8.51927858146	1	3.08701682692	1	3.08701682692	1	7.88536025855	2	
6.3977646909	2	3.37480548331	1	12.0726710032	3	6.16785155949	1	12.0726710032	1	5.14150459202	1	
2.85183604711	3	3.18788054973	1	10.5456991956	1	5.39651577265	1	4.70807187543	1	12.2210312445	4	
2.68960715337	1	3.16492465742	1	4.38747581522	1	5.86208300853	3	4.70639853102	1	8.25506598443	1	
4.30430033632	14	6.73821839088	1	11.3364545128	3	4.19279258379	1	4.44513898053	1	10.8659575928	1	
2.48213032123	1	3.4628401255	1	10.3718682668	2	6.49623690747	1	3.65725305537	1	8.73067864189	1	
1.59514572468	1	7.68456850249	1	6.85281522978	1	4.0325690429	4	4.1761422796	2	5.18733364747	1	
$\hat{f} = 3.33780590$	734	$\hat{f} = 6.86924410$	51	$\hat{f} = 10.48103890$	661	$\hat{\mathrm{f}} = 4.537827535$	517	$\hat{f} = 5.690773053$	357	$\hat{f} = 8.20127788085$		

Table 6: SELECTION: ROULETTEWHEEL; CROSSOVER: 1P: AUTH - self

	AUTH - self											
A	UTH-10	Α	AUTH-10		AUTH-10	A	AUTH-20	A	AUTH-20	I	AUTH-20	
m =	$10,\mathrm{gc}=10$	m =	$10,\mathrm{gc}=100$	m = 10, gc = 1000		m =	$20,\mathrm{gc}=10$	m =	$20,\mathrm{gc}=100$	m = 20, gc = 1000		
$f(\bar{x})$	$f(\bar{x})$ N $f(\bar{x})$ N		N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
0.0	94	0.0	47	0.0	7	0.0	87	0.0	73	0.0	34	
0.2	2	1.0	2	1.0	22	0.15	1	0.25	2	0.25	3	
0.1	4	0.2	7	0.8	9	0.1	1	0.05	17	0.15	2	
		0.8	3	0.4	6	0.05	11	0.2	1	0.55	1	
		0.4	5	0.2	7			0.9	1	0.4	3	
		0.6	1	0.3	4			0.15	1	1.0	2	
	0.3 4		4	0.6	9			0.1	1	0.2	4	
	0.1 23				16			0.65	1	0.85	1	
f	$\hat{f} = 0.008$ $\hat{f} = 6.8692441051$				10.4810389661	$\hat{\mathrm{f}}=4$.53782753517	$\hat{\mathbf{f}} = 5$.69077305357	$\hat{f} = 8.20127788085$		

 ${\it Table 7: SELECTION: ROULETTEWHEEL; CROSSOVER: 1P: AUTH-compete} \\$

					AUTH	- comp	ete					
A	UTH-10	A	UTH-10		AUTH-10	A	AUTH-20	A	AUTH-20	AUTH-20		
m =	$10,\mathrm{gc}=10$	m =	$10, \mathrm{gc} = 100$	m = 10, gc = 1000		m = 20, gc = 10		m =	$20, \mathrm{gc} = 100$	m = 20, gc = 1000		
$f(\bar{x})$	$f(\bar{x})$ N $f(\bar{x})$ N		N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
1.0	98	0.5	1	0.5	6	1.0	96	0.75	1	0.75	2	
0.9	2	1.0	65	1.0	28	0.95	4	1.0	79	1.0	57	
		0.8	8	0.8	10			0.8	2	0.6	1	
		0.2	2	0.2	3			0.55	1	0.55	1	
		0.6	2	0.4	8			0.85	3	0.5	1	
		0.3	1	0.6	3			0.9	1	0.8	2	
	0.4		1	0.3	6			0.95	13	0.9	5	
		0.9	19	0.1	3					0.85	3	
f	$\hat{f} = 0.998$ $\hat{f} = 6.8692441051$				10.4810389661	$\hat{\mathrm{f}}=4$.53782753517	$\hat{f} = 5$.69077305357	$\hat{f} = 8.20127788085$		

Table 8: SELECTION: ROULETTEWHEEL; CROSSOVER: 1P: CSS - fitness

				(CSS -	fitness						
CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20		
m = 10, gc =	10	m = 10, gc = 1	.00	m = 10, gc = 1	000	$m=20,\mathrm{gc}=$	10	m = 20, gc = 3	100	m = 20, gc = 1000		
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$ N		$f(\bar{x})$	N	
6.01255512425	1	7.61063387869	1	9.69587519887	3	5.88844920746	1	9.52939876679	3	9.69587519887	1	
6.93388081012	2	9.07434857375	1	7.84103825751	1	9.69587519887	3	9.69587519887	4	8.49563890486	1	
5.06107474143	1	7.67762193286	2	8.88053141109	1	7.54206517862	1	8.49563890486	1	10.2745848678	6	
7.95772985206	1	8.31388111948	1	9.67078985187	1	6.35914854061	1	10.2745848678	2	9.67078985187	1	
4.39418891847	1	8.34064125018	1	9.6789085118	2	8.77972422343	1	8.36572659718	15	9.6789085118	2	
4.29151014823	3	5.37510125884	2	9.17550294324	2	6.45058923729	1	8.06053333099	1	10.0789877877	2	
7.13489156108	1	8.22306862649	1	8.38772886717	1	8.36572659718	32	9.83010359059	1	9.9796133356	1	
7.85805135572	1	6.26616688729	2	8.94443626606	2	8.64946473391	1	8.94443626606	1	10.5699741403 12		
$\hat{f} = 5.70399986$	525	$\hat{f} = 7.232401335$	523	$\hat{f} = 9.429487689$	982	$\hat{f} = 7.95907950$	201	$\hat{f} = 9.06315364$	983	$\hat{f} = 10.2463409295$		

Table 9: SELECTION: ROULETTEWHEEL; CROSSOVER: 1P: CSS - self

					CSS	5 - self	,					
	CSS-10		CSS-10		CSS-10		CSS-20		CSS-20	CSS-20		
m =	$10,\mathrm{gc}=10$	m =	$10, \mathrm{gc} = 100$	m = 10, gc = 1000		$m=20,\mathrm{gc}=10$		m = 20, gc = 100		m = 20, gc = 1000		
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
0.0	86	0.0	58	0.0	25	0.0	55	0.0	28	0.25	12	
0.3	1	0.5	2	0.5	4	0.25	1	0.25	2	0.0	8	
0.2	1	0.2	8	0.8	6	0.2	1	0.2	6	0.6	2	
0.1	12	0.4	3	0.2	20	0.05	32	0.05	25	0.1	14	
		0.8	1	0.4	5	0.15	3	0.4	2	0.2	13	
		0.3	3	0.6	3	0.1	7	0.3	3	0.4	3	
		0.1	24	0.3	9	0.35	1	0.15	11	0.3	6	
	0.7			0.1	20			0.1 16		0.15	10	
f	$\hat{f} = 0.017$ $\hat{f} = 7.2324013352$			$\hat{\mathrm{f}}=9$	9.42948768982	$\hat{\mathrm{f}}=7$.95907950201	$\hat{f} = 9$.06315364983	$\hat{f} = 10.2463409295$		

Table 10: SELECTION: ROULETTEWHEEL; CROSSOVER: 1P: CSS - compete

					CSS -	compe	te					
	CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20	
m =	$10,\mathrm{gc}=10$	m =	$10,\mathrm{gc}=100$	m = 10, gc = 1000		m = 20, gc = 10		m =	$20,\mathrm{gc} = 100$	m = 20, gc = 1000		
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
0.5	1	0.5	6	0.0	11	0.5	1	0.75	7	0.5	10	
1.0	76	1.0	35	1.0	6	1.0	16	0.5	1	0.25	1	
0.4	2	0.1	1	0.1	10	0.6	3	0.85	10	0.0	1	
0.8	3	0.8	10	0.2	9	0.8	4	0.55	8	0.05	1	
0.6	3	0.2	1	0.4	9	0.75	3	0.8	16	0.4	7	
0.9	14	0.3	1	0.6	7	0.9	17	0.4	1	0.1	2	
0.7	1	0.6	7	0.3	9	0.85	14	0.65	4	0.8	5	
		0.4	2	0.8	11	0.45	2	0.6	6	0.85	7	
f	$\hat{f} = 0.948$ $\hat{f} = 7.2324013352$			$\hat{\mathbf{f}} = 9$	9.42948768982	$\hat{\mathrm{f}}=7$.95907950201	$\hat{f} = 9$.06315364983	$\hat{f} = 10.2463409295$		

 ${\bf Table~11:~SELECTION:~ROULETTEWHEEL;~CROSSOVER:~1P:~NEIGHBOR~-~fitness}$

				NEIG	HBC	OR - fitness						
NEIGHBOR-1	10	NEIGHBOR-1	.0	NEIGHBOR-	10	NEIGHBOR-	20	NEIGHBOR-2	20	NEIGHBOR-20		
$m=10,\mathrm{gc}=$	10	m = 10, gc = 1	.00	m = 10, gc = 1	000	$m=20,\mathrm{gc}=$	10	m = 20, gc = 1	.00	m = 20, gc = 1000		
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
5.49844646614	3	5.27731324973	1	5.82376009701	1	4.92154421735	1	6.01504565681	1	6.01504565681	1	
5.36472750125	1	5.78312685289	1	6.01504565681	2	5.95945683355	1	5.95663930688	9	6.25117399409	8	
5.21417046389	1	5.60926249419	1	6.25117399409	2	6.01504565681	1	6.02739050972	1	6.02739050972	1	
5.06541634857	1	5.47769551648	1	5.99050697525	2	5.95663930688	18	5.68210427524	1	6.12201246765	3	
4.71345998518	3	5.52221686468	1	6.27825912909	3	6.25117399409	1	6.00705151255	2	5.99379403939	2	
4.61314013479	1	5.49032981339	1	6.00705151255	1	5.57971613174	2	5.63356649806	1	6.16423472629	8	
5.42231762095	1	5.56181725761	1	5.94218449511	3	5.19968942904	1	6.20414671515	1	6.27825912909	5	
5.07540706862	2	5.07036218296	1	6.12201246765	1	5.78361324836	1	5.84016785353	2	6.08767526181	1	
$\hat{f} = 5.02975127$	76	$\hat{f} = 5.484335857$	769	$\hat{f} = 6.075356483$	258	$\hat{f} = 5.79430011$	183	$\hat{f} = 5.979533317$	797	$\hat{f} = 6.22919471216$		

Table 12: SELECTION: ROULETTEWHEEL; CROSSOVER: 1P: NEIGHBOR - self

	NEIGHBOR - self												
NEI	GHBOR-10	NE	GHBOR-10	NE	IGHBOR-10	NEI	GHBOR-20	NEI	GHBOR-20	NEIGHBOR-20			
m = 10, gc = 10 $m = 10, gc = 10$		$10,\mathrm{gc}=100$	m = 10, gc = 1000		m =	$20,{ m gc}=10$	m =	$20, \mathrm{gc} = 100$	m = 20, gc = 1000				
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N		
0.0	45	0.0	51	0.5	11	0.0	18	0.0	13	0.0	10		
0.5	3	0.5	6	0.0	36	0.25	3	0.25	6	0.25	16		
0.4	4	0.2	16	0.2	9	0.05	22	0.2	8	0.2	12		
0.2	16	0.4	2	0.4	5	0.2	10	0.05	20	0.1	18		
0.8	2	0.3	5	1.0	1	0.3	2	0.4	2	0.55	2		
0.3	4	0.1	20	0.8	2	0.15	20	0.15	14	0.3	7		
0.1	26			0.3	13	0.1	24	0.3	3	0.15	9		
					1	0.35	1	0.1	27	0.05	12		
f	$\hat{f} = 0.117$ $\hat{f} = 5.48433585769$			$\hat{\mathbf{f}} = 6$	5.07535648258	$\hat{\mathrm{f}} = 5$.79430011183	$\hat{f} = 5$	97953331797	$\hat{\mathbf{f}} = 6.22919471216$			

Table 13: SELECTION: ROULETTEWHEEL; CROSSOVER: 1P: NEIGHBOR - com-

pete

pere	ete											
					NEIGHBO	R - coi	mpete					
NEI	GHBOR-10	NE	IGHBOR-10	NE	IGHBOR-10	NEI	GHBOR-20	NEI	GHBOR-20	NE	IGHBOR-20	
m =	m = 10, gc = 10 $m = 10, gc = 100$		$10, \mathrm{gc} = 100$	m = 10, gc = 1000		m = 20, gc = 10		m =	$20, \mathrm{gc} = 100$	m = 20, gc = 1000		
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
0.5	4	0.5	2	0.5	2	0.75	1	0.75	5	0.75	2	
1.0	50	1.0	73	1.0	81	1.0	34	1.0	46	1.0	62	
0.4	1	0.1	2	0.2	1	0.8	5	0.6	2	0.8	2	
0.8	8	0.8	4	0.8	5	0.55	2	0.8	1	0.85	3	
0.3	1	0.6	1	0.6	1	0.6	1	0.5	1	0.6	1	
0.6	6	0.3	2	0.9	7	0.85	13	0.65	1	0.9	13	
0.9	24	0.4	2	0.7	3	0.9	13	0.85	11	0.7	2	
0.7	6	0.9	8			0.7	1	0.4	1	0.95 15		
f	$\hat{\mathbf{f}} = 0.885$ $\hat{\mathbf{f}} = 5.48433585769$			$\hat{f} = 0$	5.07535648258	$\hat{f} = 5$.79430011183	$\hat{f} = 5$.	97953331797	$\hat{\mathbf{f}} = 6.22919471216$		

5.0.2 SELECTION: ROULETTEWHEEL; CROSSOVER: 2P

Table 14: SELECTION: ROULETTEWHEEL; CROSSOVER: 2P: AUTH - fitness

				AU	TH -	- fitness					
AUTH-10		AUTH-10		AUTH-10		AUTH-20		AUTH-20		AUTH-20	
m = 10, gc = 1	10	m = 10, gc = 1	.00	m = 10, gc = 1	000	$m=20,\mathrm{gc}=$	10	m = 20, gc = 1	.00	m = 20, gc = 1	.000
$f(\bar{x})$	N	$f(\bar{x})$ N		$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
1.44945001967	1	3.53080273802	1	8.33478737538	1	4.42203569975		4.3299407996	1	4.66660311445	1
-4.41161345169	1	1.28312159311	1	6.82878899602	1	2.743056542	1	3.35386563141	1	12.2210312445	1
1.29523025119	1	3.63591673208	1	8.87392314571	1	5.258389012	1	3.45897962548 1		5.72631458771	1
-1.32127987223	3	3.23995403438	1	8.26274399928	1	1.73114884531 1		3.76818565289	1	6.74545294403	1
-2.03351972147	1	3.10912043884	1	12.2210312445	8	3.38830424802 1		4.45939457023		10.3718682668	1
-3.98361132053	1	10.7603458146	1	12.0726710032	5	3.86897684702	1	5.53814518402		5.17728622017	1
-2.0833403787	1	1.88036781386	1	5.85147432848	1	1.37521649326	1	5.98737730054	1	7.1874505074	1
-2.28942247691	8942247691 1 2.21169675493 1		1	4.20245783578	1	3.39891292807	1	3.09386929289	1	6.03125392636	1
$\hat{f} = -2.08579103648$ $\hat{f} = 3.22353570156$		156	$\hat{f} = 9.314201558$	567	$\hat{f} = 3.722672237$	701	$\hat{f} = 4.779980420$)22	$\hat{f} = 7.81965739085$		

Table 15: SELECTION: ROULETTEWHEEL; CROSSOVER: 2P: AUTH - self

					AUT	H - seli	f				
A	UTH-10	A	AUTH-10		AUTH-10	A	AUTH-20	A	AUTH-20	1	AUTH-20
m =	$10, \mathrm{gc} = 10$	m =	$10, \mathrm{gc} = 100$	m =	$10, \mathrm{gc} = 1000$	m =	$20,\mathrm{gc}=10$	m =	$20,\mathrm{gc}=100$	m =	$20, \mathrm{gc} = 1000$
$f(\bar{x})$	N	$f(\bar{x})$ N		$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	98	0.0 89		0.5	8	0.0	87	0.0	80	0.0	43
0.2	1	0.9	0.9 2		15	0.05	13	0.3	1	0.75	2
0.1	1	0.6	0.6		2			0.05	19	0.3	2
		0.1	8	0.1	16					0.1	7
				1.0	13					0.55	4
				0.2	13					0.4	1
					7					0.85	2
				0.6 7						0.15	3
f	$\hat{f} = 0.003$ $\hat{f} = 3.22353570156$		$\hat{\mathbf{f}} = \mathbf{S}$	9.31420155567	$\hat{f} = 3.72267223701$		$\hat{\mathrm{f}}=4$.77998042022	$\hat{f} = 7.81965739085$		

 ${\bf Table~16:~SELECTION:~ROULETTEWHEEL;~CROSSOVER:~2P:~AUTH~-~compete}$

					AUTH -	- comp	ete				_
A	UTH-10	A	AUTH-10		AUTH-10	A	AUTH-20	A	AUTH-20	1	AUTH-20
m =	$10, \mathrm{gc} = 10$	m = 10, gc = 100		m = 10, gc = 1000		m =	$20,\mathrm{gc}=10$	m =	$20,\mathrm{gc}=100$	m =	$20,\mathrm{gc}=1000$
$f(\bar{x})$	N	$f(\bar{x})$ N		$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
1.0	100	1.0	1.0 90		6	1.0	93	1.0	94	0.5	3
		0.9	0.9 8		36	0.95	7	0.9	1	1.0	62
		0.4	1	0.4	4			0.95	5	0.6	3
		0.8	1	0.2	4					0.55	2
				0.1	1					0.8	3
				0.3	3					0.3	1
					5					0.85	4
				0.8 9						0.45	1
	$\hat{f} = 1.0$ $\hat{f} = 3.22353570156$		$\hat{\mathbf{f}} = 9$	9.31420155567	$\hat{\mathrm{f}}=3$.72267223701	$\hat{\mathrm{f}}=4$.77998042022	$\hat{f} = 7.81965739085$		

Table 17: SELECTION: ROULETTEWHEEL; CROSSOVER: 2P: CSS - fitness

				C	SS -	fitness					
CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20	
m = 10, gc = 1	10	m = 10, gc = 1	.00	m = 10, gc = 1	000	$m=20,\mathrm{gc}=$	10	m = 20, gc = 1	.00	m = 20, gc = 1	.000
$f(\bar{x})$	N	$f(\bar{x})$ N		$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
4.952646288	1	4.78262282394 1		9.9796133356	1	4.66302267254	1	3.80272221583	1	9.9796133356	2
8.58264055209	4055209 1 9.69587519887 1		1	8.27497200576	1	2.55287456969 1		8.32916247278 1		10.2745848678	1
7.57431321899	1	2.34157158049	1	8.77972422343 1		3.91372068899	1	9.69587519887	2	9.67078985187	1
7.25021416905	1	7.46674349955	2	8.64946473391		4.58493854317	1	6.60792591146	1	8.95971761937	1
8.38772886717	3	5.39206794591	1	9.6789085118	2	6.60792591146	1	8.68188671826	3	10.0789877877	1
3.22150783449	1	10.2745848678	1	10.0789877877	1	4.73511984277	1	7.82306913017	1	9.69587519887	1
10.5699741403	2	9.6789085118	1	8.94443626606	2	7.61063387869	1	8.20618171905	1	10.5699741403	17
5.74405966619	1	8.38772886717	2	10.5699741403	6	5.73782781	2	8.77972422343	1	10.704202532 20	
$\hat{f} = 7.207480388$	377	$\hat{f} = 7.935788702$	216	$\hat{f} = 9.55567292$	27	$\hat{f} = 5.679796793$	301	$\hat{f} = 8.071068222$	211	$\hat{f} = 10.1791798$	429

Table 18: SELECTION: ROULETTEWHEEL; CROSSOVER: 2P: CSS - self

					CSS	s - self						
	CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20	
m =	$10,\mathrm{gc}=10$	gc = 10 $m = 10, gc = 100$		m = 10, gc = 1000		m =	$20,\mathrm{gc}=10$	m =	$20,\mathrm{gc} = 100$	m =	$20,\mathrm{gc}=1000$	
$f(\bar{x})$	N	$f(\bar{x})$ N		$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
0.0	77	0.0	48	0.0	24	0.0	77	0.25	3	0.0	13	
0.7	1	0.5	2	0.5	5	0.35	1	0.0	40	0.25	10	
0.2	7	0.1	25	0.2	11	0.1	6	0.05	21	0.3	1	
0.1	12	0.2	10	0.4	4	0.05	14	0.55	1	0.1	10	
0.4	3	1.0	1	1.0	2	0.25	2	0.2	3	0.05	7	
		0.8	1	0.8	2			0.3	3	0.4	4	
		0.6	0.6 2		7			0.15	9	0.6	4	
		0.3	5	0.3	16			0.1	16	0.15	10	
f	$\hat{f} = 0.045 \qquad \hat{f} = 7.93578870216$.93578870216	$\hat{f} =$	9.5556729227	$\hat{f} = 5$.67979679301	$\hat{f} = 8$.07106822211	$\hat{f} = 10.1791798429$		

 ${\bf Table\ 19:\ SELECTION:\ ROULETTEWHEEL;\ CROSSOVER:\ 2P:\ CSS\ -\ compete}$

					CSS -	compe	te				_
	CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20
m =	$10,\mathrm{gc}=10$	m =	$10, \mathrm{gc} = 100$	m =	$10, \mathrm{gc} = 1000$	m =	$20,{ m gc}=10$	m =	$20, \mathrm{gc} = 100$	m =	$20,\mathrm{gc}=1000$
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.5	2	0.0	5	0.0	11	0.75	1	0.5	2	0.75	4
1.0	58	1.0	1.0 34		7	1.0	62	1.0	19	0.5	8
0.8	8	0.1	3	0.8	11	0.4	1	0.85	6	0.0	1
0.4	4	0.8	13	0.1 9		0.85	4	0.8	10	0.85	3
0.3	3	0.2	4	1.0	2	0.9	7	0.4	2	0.55	4
0.6	2	0.3	2	0.4	8	0.95	24	0.55	3	0.2	4
0.2	2	0.6	0.6 10		8	0.7	1	0.9	10	1.0	1
0.9	18	0.4	4	0.6	13			0.6	1	0.65	7
f	$\hat{f} = 0.878 \qquad \hat{f} = 7.93578870216$		$\hat{f} = 9.5556729227$		$\hat{f} = 5.67979679301$		$\hat{\mathrm{f}}=8$.07106822211	$\hat{f} = 10.1791798429$		

 ${\bf Table~20:~SELECTION:~ROULETTEWHEEL;~CROSSOVER:~2P:~NEIGHBOR~-~fitness}$

				NEIGI	нво	R - fitness					
NEIGHBOR-1	10	NEIGHBOR-	10	NEIGHBOR-	10	NEIGHBOR-2	20	NEIGHBOR-2	20	NEIGHBOR-	20
$m=10,\mathrm{gc}=$	10	m = 10, gc = 1	100	m = 10, gc = 1	000	$m=20,\mathrm{gc}=1$	10	m = 20, gc = 1	.00	m = 20, gc = 1	000
$f(\bar{x})$	N	$f(\bar{x})$ N		$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
6.01504565681	33	6.01504565681	28	5.70853043487	1	4.96955490236	1	5.82722354001	1	6.01504565681	4
5.05598356359	1	5.30944921891	5.30944921891 1		6	5.65443234127	1	5.86477709631	1	5.95663930688	1
5.39562275429	1	5.54439547675	1	6.25117399409	2	5.60435111219 2		6.01504565681	2	6.25117399409	5
5.79341177264	1	5.96985642908	1	5.99050697525	1	5.40522012898	1	5.95663930688	1	6.12295556583	2
5.94218449511	1	5.01030494217	1	6.02739050972	2	5.67479071909	1	5.4260859722	1	6.1156969491	2
5.05622439774	1	5.75706821205	1	6.1156969491	2	4.97204031521	1	6.02739050972		6.12201246765	1
4.74520318715	1	5.72224861731	1	6.12201246765	4	5.13109795743	1	5.96985642908	1	6.29971177127	7
4.73777636364	1.73777636364 1 5.7703557752		1	6.29971177127	5	5.44050043301	1	6.1156969491	5	6.27825912909	4
$\hat{f} = 5.63882677$	36	$\hat{\mathbf{f}} = 5.81454157$	178	$\hat{f} = 6.074572779$	966	$\hat{f} = 5.440974637$	707	$\hat{f} = 5.79570838$	66	$\hat{f} = 6.18488618$	708

Table 21: SELECTION: ROULETTEWHEEL; CROSSOVER: 2P: NEIGHBOR - self

					NEIGHI	3OR - 8	self				
NEI	GHBOR-10	NEI	GHBOR-10	NE	IGHBOR-10	NEI	GHBOR-20	NEI	GHBOR-20	NE	IGHBOR-20
m =	$10,\mathrm{gc}=10$	m =	$10,\mathrm{gc}=100$	m =	$10, \mathrm{gc} = 1000$	m =	$20,\mathrm{gc}=10$	m = 3	$20, \mathrm{gc} = 100$	m =	$20, \mathrm{gc} = 1000$
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	22	0.0	31	0.0	23	0.25	5	0.0	18	0.25	9
0.5	2	0.5	2	0.5	7	0.0	16	0.25	7	0.0	6
0.2	27	0.1	20	0.1	26	0.2	17	0.2	12	0.6	3
0.4	5	0.4	10	0.2	16	0.05	21	0.4	4	0.2	18
0.3	16	0.6	2	1.0	1	0.4	1	0.05	17	0.1	21
0.6	1	0.3	12	0.8	3	0.3	7	0.3	3	0.4	5
0.1	27	0.2	23	0.3	8	0.15	15	0.15	17	0.15	13
				0.6	4	0.1	18	0.1	20	0.3	6
f	$\hat{f} = 0.165$ $\hat{f} = 5.81454157178$		$\hat{\mathbf{f}} = 6$	5.07457277966	$\hat{f} = 5.44097463707$		$\hat{\mathbf{f}} = 5$.7957083866	$\hat{f} = 6.18488618708$		

 ${\bf Table~22:~SELECTION:~ROULETTEWHEEL;~CROSSOVER:~2P:~NEIGHBOR~-~com-}$

pete

1					NEIGHBO	R - cor	npete				
NEI	GHBOR-10	NEI	IGHBOR-10	NE	IGHBOR-10	NEI	GHBOR-20	NEI	GHBOR-20	NEI	GHBOR-20
m =	$10,\mathrm{gc}=10$	m =	$10,\mathrm{gc}=100$	m =	$10, \mathrm{gc} = 1000$	m =	$20,\mathrm{gc}=10$	m = 3	$20,\mathrm{gc}=100$	m = 3	$20,\mathrm{gc}=1000$
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.7	3	0.5	1	0.5	2	0.75	1	0.5	1	0.7	1
0.9	25	1.0	1.0 74		83	1.0	68	1.0	77	1.0	58
0.6	2	0.8	7	0.8	2	0.65	1	0.8	2	0.8	3
0.8	4	0.6	3	0.2	1	0.85	1	0.6	1	0.85	4
1.0	66	0.9	13	0.6	1	0.9	10	0.9	9	0.45	1
		0.7	2	0.9	10	0.95	18	0.95	8	0.9	9
					1	0.7	1	0.7	2	0.95	23
										0.35 1	
Î	$\hat{\mathbf{f}} = 0.95$ $\hat{\mathbf{f}} = 5.81454157178$			$\hat{\mathbf{f}} = 0$	5.07457277966	$\hat{f} = 5$.44097463707	$\hat{\mathbf{f}} = 5$.7957083866	$\hat{f} = 6.18488618708$	

5.0.3 SELECTION: TOURNAMENT; CROSSOVER: 1P

Table 23: SELECTION: TOURNAMENT; CROSSOVER: 1P: AUTH - fitness

				I	AUTH	- fitness					
AUTH-10		AUTH-10		AUTH-10		AUTH-20		AUTH-20		AUTH-20	
m = 10, gc = 1	10	m = 10, gc = 1	100	m = 10, gc = 1	1000	$m=20,\mathrm{gc}=$	10	$m=20,\mathrm{gc}=$	100	m = 20, gc = 1	1000
$f(\bar{x})$	N	$f(\bar{x})$ N		$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
8.34539605543	3	12.3250173999 3		12.6915281645	100	11.3792029759	1	12.6915281645	100	12.6915281645	100
7.66579668057	1	8.74072606919 1				11.7029652773	6				
8.00116101706	1	12.6915281645	94			11.7457137404	3				
9.07360366759	1	11.7061602386	1			12.2210312445 1					
5.75306883171	1	10.6650559531	1			12.0726710032	6				
6.64726171461	1					10.5456991956	2				
6.34774309328	1					12.6915281645	28				
6.67341256825	57341256825 1					11.0161961156	5				
$\hat{f} = 7.119783347$	731	$\hat{f} = 12.6109064$	192	$\hat{f} = 12.6915281$	645	$\hat{f} = 11.9001459$	568	$\hat{f} = 12.6915281$.645	$\hat{\mathrm{f}} = 12.6915281$.645

Table 24: SELECTION: TOURNAMENT; CROSSOVER: 1P: AUTH - self

					AUT	H - seli	f					
A	UTH-10	I	AUTH-10		AUTH-10	A	AUTH-20	1	AUTH-20		AUTH-20	
m =	$10, \mathrm{gc} = 10$	m =	$10, \mathrm{gc} = 100$	m = 10, gc = 1000		m =	$20,{ m gc}=10$	m =	$20,\mathrm{gc}=100$	m =	$20, \mathrm{gc} = 1000$	
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
0.0	49	1.0	100	1.0	100	0.25	1	1.0	100	1.0	100	
1.0	11					1.0	78					
0.1	15					0.1	1					
0.8	2					0.15	1					
0.6	2					0.85	1					
0.3	1					0.9	5					
0.2	8						13					
0.9	6											
f	= 0.258	$\hat{f} = 12.6109064192$		$\hat{f} = 1$	2.6915281645	$\hat{f} = 1$	1.9001459568	$\hat{f} = 1$	2.6915281645	$\hat{f} = 12.6915281645$		

Table 25: SELECTION: TOURNAMENT; CROSSOVER: 1P: AUTH - compete

					AUTH -	- comp	ete				
A	UTH-10	A	AUTH-10	AUTH-10		AUTH-20		A	UTH-20	1	AUTH-20
m =	m = 10, gc = 10 $m = 10, gc = 100$		m = 10, gc = 1000		m = 20, gc = 10		m =	$20, \mathrm{gc} = 100$	m =	$20, \mathrm{gc} = 1000$	
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.5	2	0.5	1	0.5	1	0.25	6	0.25	2	0.5	2
1.0	65	0.0	5	0.1	31	0.75	3	0.5	1	0.25	4
0.8	8	0.1	30	0.8	9	0.6	2	0.6	1	0.85	16
0.4	2	0.8	4	0.3	1	0.2	5	0.05	17	0.05	19
0.2	1	1.0	2	0.6	2	0.05	15	0.1	16	0.8	13
0.6	5	0.6	3	0.2	1	1.0	3	0.8	4	0.2	3
0.1	4	0.4	1	0.9	49	0.8	3	0.85	17	0.55	2
0.9	12	0.9	48	0.7	6	0.9	2	0.3	3	0.3	2
f	$\hat{\mathbf{f}} = 0.883$ $\hat{\mathbf{f}} = 12.6109064192$		2.6109064192	$\hat{f} = 12.6915281645$		$\hat{f} = 11.9001459568$		$\hat{\mathbf{f}} = 1$	2.6915281645	$\hat{\mathbf{f}} = 1$	2.6915281645

Table 26: SELECTION: TOURNAMENT; CROSSOVER: 1P: CSS - fitness

					CSS -	fitness					
CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20	
m = 10, gc =	10	m = 10, gc = 1	100	m = 10, gc =	1000	$m=20,\mathrm{gc}=$	10	$m=20,\mathrm{gc}=$	100	m=20,gc=	1000
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
7.06666422361	1	9.60512060745	1	10.704202532	100	10.2898662211	1	10.704202532	100	10.704202532	100
8.27497200576	1	8.28362684915	2			9.48862698309	3				
9.07434857375	2	9.37405393028	1			9.9796133356	13				
7.22113994239	1	10.4240946128	4			10.5546927869	3				
7.13489156108	1	10.704202532	92			8.92483882873	1				
6.47375542131	1					10.2745848678	1				
8.64946473391	1					9.84538494389	1				
7.48165042425	1					10.704202532	48				
$\hat{f} = 7.14778545$	22	$\hat{f} = 10.62029439$	963	$\hat{f} = 10.704202$	2532	$\hat{f} = 10.35821043$	342	$\hat{f} = 10.704202$	2532	$\hat{f} = 10.704202$	2532

Table 27: SELECTION: TOURNAMENT; CROSSOVER: 1P: CSS - self

					CSS	- self	,				
	CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20
m =	$10, \mathrm{gc} = 10$	m =	$10,\mathrm{gc}=100$	m = 10, gc = 1000		m =	$20,\mathrm{gc}=10$	m =	$20, \mathrm{gc} = 100$	m =	$20, \mathrm{gc} = 1000$
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	69	1.0	97	1.0	100	0.7	7	1.0	100	1.0	100
0.1	13	0.1	1			1.0	12				
0.2	4	0.4	2			0.5	3				
0.6	1					0.1	5				
0.3	4					0.3	4				
0.4	1					0.8	5				
0.9	4					0.05	3				
0.7	4					0.2	3				
f	= 0.107	$\hat{f} = 1$	0.6202943963	$\hat{\mathbf{f}} = \mathbf{f}$	10.704202532	$\hat{f} = 1$	0.3582104342	$\hat{f} = 1$	0.704202532	$\hat{\mathbf{f}} =$	10.704202532

Table 28: SELECTION: TOURNAMENT; CROSSOVER: 1P: CSS - compete

					CSS -	compet	e				
	CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20
m =	$10,\mathrm{gc}=10$	$0 \mid m = 10, gc = 100$		m = 10, gc = 1000		m =	$20,\mathrm{gc}=10$	m =	$20,\mathrm{gc} = 100$	m =	$20,\mathrm{gc}=1000$
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	8	0.0	100	0.0	100	0.0	76	0.0	100	0.0	100
1.0	42					0.5	1				
0.1	11					0.05	8				
0.8	4					0.55	1				
0.4	1					0.1	3				
0.6	2					0.15	1				
0.3	1					0.3	1				
0.2	2					0.2	2				
f	= 0.733	$\hat{f} = 1$	0.6202943963	$\hat{\mathbf{f}} =$	10.704202532	$\hat{f} = 1$	0.3582104342	$\hat{f} = 1$	0.704202532	$\hat{\mathbf{f}} =$	10.704202532

 ${\bf Table~29:~SELECTION:~TOURNAMENT;~CROSSOVER:~1P:~NEIGHBOR~-~fitness}$

				NE	IGHB	OR - fitness					
NEIGHBOR-1	.0	NEIGHBOR-	10	NEIGHBOR-	10	NEIGHBOR-	20	NEIGHBOR-	20	NEIGHBOR-	-20
m = 10, gc = 1	10	m = 10, gc = 3	100	m = 10, gc = 1	1000	$m=20,\mathrm{gc}=$	10	$m=20,\mathrm{gc}=$	100	m = 20, gc = 1	1000
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
5.31462144527	1	6.01504565681	5	6.36764544744	100	6.31910767025	3	6.36764544744	100	6.36764544744	100
5.15802431665 3		6.17055024483	2			6.07066370968	1				
5.70853043487	2	6.12201246765	1			6.29971177127	5				
5.89920584751	4	6.36764544744	86			6.15560893797	7				
5.54242135863	1	6.20414671515	1			6.20414671515	9				
5.555813335	2	6.31910767025	5			6.36764544744	49				
5.15112271299	2					5.8063576968	1				
6.00705151255	1					6.09211635186	1				
$\hat{f} = 5.630919837$	796	$\hat{f} = 6.33955534$	787	$\hat{f} = 6.36764544$	1744	$\hat{f} = 6.278386203$	372	$\hat{f} = 6.36764544$	744	$\hat{\mathbf{f}} = 6.36764544$	1744

Table 30: SELECTION: TOURNAMENT; CROSSOVER: 1P: NEIGHBOR - self

					NEIGHI	BOR -	self				
NEI	GHBOR-10	NEI	GHBOR-10	NE	IGHBOR-10	NEI	GHBOR-20	NEI	GHBOR-20	NE	IGHBOR-20
m =	m = 10, gc = 10 $m = 10, gc = 100$		$10, \mathrm{gc} = 100$	m = 10, gc = 1000		m =	$20,\mathrm{gc}=10$	m =	$20, \mathrm{gc} = 100$	m =	$20, \mathrm{gc} = 1000$
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	55	0.5	3	0.5	2	0.75	2	0.25	4	0.95	7
0.5	3	0.0	2	0.1	47	0.9	5	0.75	1	0.65	4
0.1	16	0.1	52	0.4	3	0.0	2	0.85	3	0.1	3
0.8	3	0.8	1	0.8	1	0.1	4	0.4	3	0.85	4
0.4	3	1.0	4	0.3	6	0.15	10	0.2	4	0.4	5
0.3	4	0.4	1	0.2	4	0.55	5	0.05	1	0.55	8
0.6	2	0.6	1	0.9	35	0.2	5	0.15	14	0.8	3
0.2	10	0.3	2	0.7	2	1.0	2	0.3	3	0.3	3
f	= 0.145	$\hat{f} = 6$.33955534787	$\hat{\mathbf{f}} = 6$	3.36764544744	$\hat{f} = 6$.27838620372	$\hat{\mathbf{f}} = 6.$	36764544744	$\hat{\mathbf{f}} = 6$	3.36764544744

Table 31: SELECTION: TOURNAMENT; CROSSOVER: 1P: NEIGHBOR - compete

					NEIGHBO						r
							_				
NEI	GHBOR-10	NE	IGHBOR-10	NEIGHBOR-10		NEI	GHBOR-20	NEI	GHBOR-20	NE.	IGHBOR-20
m =	10, gc = 10 $m = 10, gc = 100$		m = 10, gc = 1000		m = 20, gc = 10		m =	$20, \mathrm{gc} = 100$	m =	$20, \mathrm{gc} = 1000$	
$f(\bar{x})$	N	$f(\bar{x})$	$f(\bar{x})$ N		N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
1.0	93	0.5	1	1.0	95	0.75	2	1.0	72	0.5	1
0.9	3	1.0	86	0.9	0.9 5		50	0.9	6	1.0	54
0.8	3	0.9	12			0.8	5	0.85	1	0.8	3
0.7	1	0.1	1			0.6	1	0.95	21	0.85	1
						0.85	2			0.9	5
						0.9	9			0.95	35
						0.95	30			0.7	1
						0.5	1				
f	= 0.988	$\hat{\mathbf{f}} = 6$.33955534787	$\hat{\mathbf{f}} = 6$	3.36764544744	$\hat{\mathbf{f}} = 6$.27838620372	$\hat{\mathbf{f}} = 6$.36764544744	$\hat{\mathbf{f}} = 6$	3.36764544744

5.0.4 SELECTION: ROULETTEWHEEL; CROSSOVER: UNIFORM

Table 32: SELECTION: ROULETTEWHEEL; CROSSOVER: UNIFORM: AUTH - fit-

ness											
				AU	ТН	- fitness					
AUTH-10		AUTH-10		AUTH-10		AUTH-20		AUTH-20		AUTH-20	
m = 10, gc =	10	m = 10, gc = 1	.00	m = 10, gc = 1	000	$m=20,\mathrm{gc}=$	10	m = 20, gc = 1	.00	$m=20,\mathrm{gc}=1$.000
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
7.42840088059			3	8.4937562967	1	10.5456991956 3		10.6242146635	1	12.2210312445	14
11.7457137404	1	8.26274399928	1	8.87392314571	1	8.31012452936 12		12.6915281645	5	12.0726710032	4
7.79491164514	19	12.2210312445	4	9.65224938583	1	7.19011507326	1	10.1951027445	1	9.98545657824	2
10.0703816915	27	8.33784490944 1		12.2210312445	12	9.11444495717	1	8.27743727262	1	11.0161961156	3
8.27022914919	2	10.5456991956	6	12.0726710032	4	5.51478302438	2	10.5456991956	1	11.3364545128	2
8.56378896258	1	9.70387092699	1	7.67739871562	1	8.97911522417	1	10.3973389543	1	9.57570187182	2
8.74072606919	1	6.64726171461	1	10.5456991956	3	7.89199222366	1	9.98545657824	1	10.7571508533	1
6.11957959626	.11957959626 11 7.06539402031				3 10.3973389543 1		8	9.20855842333 1		11.6021740832	1
$\hat{f} = 8.315841098$	505	$\hat{f} = 9.874377692$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\hat{f} = 10.1099320$	34	$\hat{f} = 11.4901315591$			

Table 33: SELECTION: ROULETTEWHEEL; CROSSOVER: UNIFORM: AUTH - self

					AUT	H - self					
A	UTH-10	I	AUTH-10		AUTH-10	A	AUTH-20	A	UTH-20	1	AUTH-20
m =	m = 10, gc = 10 $m = 10, gc = 100$		$10,\mathrm{gc}=100$	m = 10, gc = 1000		m =	$20,\mathrm{gc}=10$	m = 1	$20, \mathrm{gc} = 100$	m =	$20, \mathrm{gc} = 1000$
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	45	0.5	11	0.0	2	0.0	37	0.25	9	0.75	5
0.5	2	0.0	12	1.0	24	0.25	2	0.0	7	0.15	5
0.4	4	0.4	9	0.1	19	0.05	38	0.15	5	0.0	3
0.2	9	0.2	9	0.8	7	0.1	11	0.1	13	0.85	5
1.0	1	1.0	8	0.4	1	0.15	6	0.4	7	0.8	4
0.6	1	0.8	7	0.3	6	0.3	1	1.0	2	0.05	9
0.3	5	0.3	5	0.6	5	0.2	4	0.05	18	1.0	5
0.1	32	0.6	4	0.2	13	0.35	1	0.6	4	0.1	8
f	= 0.116	$\hat{\mathbf{f}} = 9$.87437769253	$\hat{\mathbf{f}} = 1$	11.0479556505	$\hat{\mathbf{f}} = 8$.12621934718	$\hat{\mathbf{f}} = 1$	0.109932034	$\hat{\mathbf{f}} = 1$	1.4901315591

	ALIGNI										
					AUTH -	compe	ete				
A	UTH-10	I	AUTH-10	AUTH-10		A	AUTH-20	A	UTH-20	1	AUTH-20
m =	m = 10, gc = 10 $m = 10, gc = 100$		m = 10, gc = 1000		m = 20, gc = 10		m = 3	$20,\mathrm{gc}=100$	m =	$20,\mathrm{gc}=1000$	
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.5	1	0.5	2	0.5	5	1.0	85	0.5	3	0.75	4
1.0	69	1.0	1.0 50		37	0.9	4	1.0	41	0.5	4
0.4	1	0.4			7	0.95	11	0.6	3	0.6	4
0.8	5	0.8	10	0.1	3			0.8	8	0.8	4
0.6	2	0.2	1	0.2	2			0.75	3	0.55	5
0.9	17	0.3	1	0.3	3			0.2	1	1.0	15
0.7	5	0.6	5	0.6	3			0.55	3	0.85	12
		0.1	1	0.4	5			0.9	6	0.3	4
f	= 0.939	$\hat{\mathrm{f}}=9$.87437769253	$\hat{\mathbf{f}} = 1$	1.0479556505	$\hat{f} = 8$.12621934718	$\hat{f} = 1$	0.109932034	$\hat{\mathrm{f}}=1$	1.4901315591

 ${\bf Table~35:~SELECTION:~ROULETTEWHEEL;~CROSSOVER:~UNIFORM:~CSS-fitness}$

				С	SS -	fitness					
CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20	
m = 10, gc = 1	10	m = 10, gc = 1	.00	m = 10, gc = 1	000	$m=20,\mathrm{gc}=$	10	m = 20, gc = 1	.00	m = 20, gc = 1	.000
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
6.01255512425	1	9.32501268826	1	8.60295965857	1	6.53051567145	1	6.66474406316	1	9.52939876679	1
5.78583717564 1		7.38390637731 1		9.9796133356 2		6.56659391297	6.56659391297 1		1	9.9796133356	3
7.37943555998	3	9.9796133356	1	8.27497200576	1	6.03325154351 1		7.97240451198	1	10.2745848678	1
4.62413268101	1	7.37943555998	1	8.18444733246	1	8.32104381285	1	7.67399171532	1	9.67078985187	3
7.18101621448	1	2.50871158975	1	7.67399171532	1	6.73169662376	1	7.99123386902	1	9.6789085118	4
10.2898662211	1	7.95772985206	1	7.34165486574	1	7.09891226398	1	7.9133357327	1	9.83010359059	1
6.30307921181	1	5.80118564663	1	8.81197226379	1	7.61063387869	1	8.36572659718	1	9.69587519887	6
8.38772886717	1	8.38772886717	1	9.93310826026	2	7.46674349955	1	8.64946473391	1	10.5699741403	14
$\hat{f} = 6.293852453$	368	$\hat{f} = 7.53120390$	67	$\hat{f} = 9.50671374$	152	$\hat{f} = 7.167578326$	373	$\hat{f} = 8.64348123'$	772	$\hat{f} = 10.1070753$	981

Table 36: SELECTION: ROULETTEWHEEL; CROSSOVER: UNIFORM: CSS - self

					CSS	S - self					
	CSS-10		CSS-10	CSS-10			CSS-20		CSS-20		CSS-20
m =	m = 10, gc = 10 $m = 10, gc = 100$		$10, \mathrm{gc} = 100$	m = 10, gc = 1000		m =	$20,\mathrm{gc}=10$	m =	$20, \mathrm{gc} = 100$	m =	$20,\mathrm{gc}=1000$
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	82	0.0	62	0.5	7	0.0	51	0.0	30	0.5	6
0.5	1	0.5	1	0.0	26	0.25	4	0.25	5	0.0	11
0.2	1	0.8	1	0.2	12	0.2	3	0.6	1	0.85	1
0.4	1	0.2	4	0.1	16	0.05	19	0.05	24	0.8	5
0.3	1	0.4	2	1.0	3	0.4	1	0.4	2	0.05	13
0.1	14	0.3	2	0.4	5	0.3	1	0.1	12	1.0	1
		0.1	25	0.6	4	0.15	6	0.3	1	0.55	2
		0.9	1	0.3	11	0.1	13	0.15	11	0.3	4
f	= 0.028	$\hat{\mathbf{f}} = 7$	7.5312039067	$\hat{\mathbf{f}} = 9$	9.50671374152	$\hat{\mathrm{f}}=7$.16757832673	$\hat{f} = 8$.64348123772	$\hat{\mathrm{f}}=1$	0.1070753981

Table 37: SELECTION: ROULETTEWHEEL; CROSSOVER: UNIFORM: CSS - com-

pete

CSS - compete CSS 10													
CSS-10		CSS-10	CSS-10			CSS-20		CSS-20		CSS-20			
$10,{ m gc}=10$	m = 10, gc = 100		m = 10, gc = 1000		m =	$20,\mathrm{gc} = 10$	m =	$20, \mathrm{gc} = 100$	m = 20, gc = 1000				
N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N			
1	0.5	6	0.0	22	0.75	3	0.75	4	0.0	5			
71	1.0	39	0.5	8	1.0	36	1.0	15	0.5	6			
2	0.2	3	0.1	8	0.8	1	0.55	4	0.6	5			
1	0.8	8	0.8	7	0.85	4	0.8	8	0.05	5			
23	0.6	5	1.0	5	0.6	1	0.1	1	0.1	2			
1	0.3	6	0.4	7	0.9	16	0.85	5	0.25	1			
1	0.4	1	0.3	11	0.95	39	0.6	4	0.4	6			
	0.9 25		0.6 4				0.4 2		0.9	5			
$\hat{f} = 0.946$ $\hat{f} = 7.5312039067$				$\hat{ m f} = 9.50671374152$		$\hat{\mathbf{f}} = 7.16757832673$		$\hat{\mathbf{f}} = 8.64348123772$		0.1070753981			
	10, gc = 10 N 1 71 2 1 23 1 1	$ \begin{array}{c cccc} 10, \mathrm{gc} = 10 & \mathrm{m} = \\ \hline N & \mathrm{f}(\bar{x}) \\ \hline 1 & 0.5 \\ 71 & 1.0 \\ 2 & 0.2 \\ 1 & 0.8 \\ 23 & 0.6 \\ 1 & 0.3 \\ 1 & 0.4 \\ 0.9 \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CSS-10 CSS-10 CSS-10 10, gc = 10 m = 10, gc = 100 m = 10, gc = 1000 N $f(\bar{x})$ N $f(\bar{x})$ N 1 0.5 6 0.0 22 71 1.0 39 0.5 8 2 0.2 3 0.1 8 1 0.8 8 0.8 7 23 0.6 5 1.0 5 1 0.3 6 0.4 7 1 0.4 1 0.3 11 0.9 25 0.6 4	CSS-10 CSS-10 CSS-10 10, gc = 10 m = 10, gc = 1000 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 1.0 0.8 0.8 1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6	CSS-10 CSS-10 CSS-10 CSS-20 10, gc = 10 m = 10, gc = 1000 m = 20, gc = 10 N f(\bar{x}) N f(\bar{x}) N 1 0.5 6 0.0 22 0.75 3 71 1.0 39 0.5 8 1.0 36 2 0.2 3 0.1 8 0.8 1 1 0.8 8 0.8 7 0.85 4 23 0.6 5 1.0 5 0.6 1 1 0.3 6 0.4 7 0.9 16 1 0.4 1 0.3 11 0.95 39 0.9 25 0.6 4 4 0 0 0	CSS-10 CSS-10 CSS-10 CSS-20 10, gc = 10 m = 10, gc = 1000 m = 20, gc = 10 m = N f(\bar{x}) N f(\bar{x}) N f(\bar{x}) N f(\bar{x}) 1 0.5 6 0.0 22 0.75 3 0.75 71 1.0 39 0.5 8 1.0 36 1.0 2 0.2 3 0.1 8 0.8 1 0.55 1 0.8 8 0.8 7 0.85 4 0.8 23 0.6 5 1.0 5 0.6 1 0.1 1 0.3 6 0.4 7 0.9 16 0.85 1 0.4 1 0.3 11 0.95 39 0.6 0.9 25 0.6 4 0.4 0.4 0.4	CSS-10 CSS-10 CSS-10 CSS-20 CSS-20 10, gc = 10 m = 10, gc = 1000 m = 20, gc = 10 m = 20, gc = 100 N f(\bar{x}) N f(\bar{x}) N f(\bar{x}) N 1 0.5 6 0.0 22 0.75 3 0.75 4 71 1.0 39 0.5 8 1.0 36 1.0 15 2 0.2 3 0.1 8 0.8 1 0.55 4 1 0.8 8 0.8 7 0.85 4 0.8 8 23 0.6 5 1.0 5 0.6 1 0.1 1 1 0.3 6 0.4 7 0.9 16 0.85 5 1 0.4 1 0.3 11 0.95 39 0.6 4 0.9 25 0.6 4 0.4 0.4 2	CSS-10 CSS-10 CSS-10 CSS-20 CSS-20 10, gc = 10 m = 10, gc = 100 m = 20, gc = 10 m = 20, gc = 100 m = 20, gc = 100 m = $\frac{10}{2}$ N f(\bar{x}) N f(\bar{x}) N f(\bar{x}) N f(\bar{x}) 1 0.5 6 0.0 22 0.75 3 0.75 4 0.0 71 1.0 39 0.5 8 1.0 36 1.0 15 0.5 2 0.2 3 0.1 8 0.8 1 0.55 4 0.6 1 0.8 8 0.8 7 0.85 4 0.8 8 0.05 23 0.6 5 1.0 5 0.6 1 0.1 1 0.1 1 0.3 6 0.4 7 0.9 16 0.85 5 0.25 1 0.4 1 0.3 11 0.95 39			

Table 38: SELECTION: ROULETTEWHEEL; CROSSOVER: UNIFORM: NEIGHBOR

- fitness

- nuness	NEIGHDOD 64													
				NEIG	НВС	R - fitness								
NEIGHBOR-1	10	NEIGHBOR-1	10	NEIGHBOR-1	10	NEIGHBOR-2	20	NEIGHBOR-2	20	NEIGHBOR-	20			
m = 10, gc =	10	m = 10, gc = 1	100	m = 10, gc = 1	000	$m=20,\mathrm{gc}=1$	10	m = 20, gc = 1	.00	m = 20, gc = 1	000			
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N			
4.60285521504	21504 1 5.59356947977 1		1	5.79066468238	1	4.87027216281	1	5.53321457427	1	6.25117399409	4			
5.66888715304	2	5.95663930688 3		5.95663930688	1	5.78619861998	1	5.78312685289	1	6.02739050972	1			
5.95663930688	2	5.4260859722			1	6.12201246765	1	5.2984673925	1	5.78361324836	1			
4.76191285726	2	4.6328921667	1	6.02739050972	1	5.49537469905	2	5.44967272954	1	5.94218449511	1			
4.87251762741	1	5.82794479527	1	5.96985642908	3	4.65773251077	2	5.94218449511	2	6.12201246765	2			
5.70853043487	1	6.16423472629	1	6.00705151255	1	5.53321457427	1	5.56600195587	1	6.11151225085	3			
6.20414671515	1	5.21619459225	1	6.12201246765	3	5.6922722165	2	5.69161042811	1	5.7703557752	1			
5.68637239406	1	6.29971177127	1	6.29971177127	4	5.75091831595	1	5.48495303357	1	5.88279809099	1			
$\hat{f} = 5.316500999$	966	$\hat{f} = 5.582654533$	165	$\hat{f} = 6.08143836296$		$\hat{f} = 5.56515247323$		$\hat{f} = 5.752276367$	762	$\hat{f} = 6.16021246$	739			

Table 39: SELECTION: ROULETTEWHEEL; CROSSOVER: UNIFORM: NEIGHBOR

- self

<u>- ser</u>											
					NEIGH	BOR -	self				
NEI	GHBOR-10	NEI	IGHBOR-10	NE	IGHBOR-10	NEI	GHBOR-20	NEI	GHBOR-20	NE	IGHBOR-20
m =	$10, \mathrm{gc} = 10$	m =	$10, \mathrm{gc} = 100$	m = 10, gc = 1000		m = 20, gc = 10		m = 1	$20, \mathrm{gc} = 100$	m = 20, gc = 1000	
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	20	0.0	37	0.0	31	0.0	11	0.0	14	0.0	14
0.5	4	0.5	4	0.5	8	0.25	13	0.25	8	0.25	6
0.2	26	0.1	17	0.1	20	0.2	15	0.2	9	0.3	5
0.4	8	0.4	6	0.8	4	0.1	17	0.05	20	0.2	13
0.3	14	1.0	1	0.4	6	0.4	3	0.55	4	0.05	16
0.6	5	0.8	3	0.6	2	0.15	15	0.3	8	0.4	4
0.1	22	0.6	4	0.3	7	0.3	7	0.15	11	0.6	2
0.9	1	0.3	10	0.2	15	0.05	13	0.1	13	0.15	7
f	= 0.207	$\hat{f} = 5$.58265453165	$\hat{\mathbf{f}} = 6$	3.08143836296	$\hat{\mathrm{f}} = 5$	56515247323	$\hat{\mathbf{f}} = 5.$	75227636762	$\hat{\mathbf{f}} = 6$.16021246739

Table 40: SELECTION: ROULETTEWHEEL; CROSSOVER: UNIFORM: NEIGHBOR

- compete

					NEIGHBC	R - coi	mpete				
NEI	GHBOR-10	NEI	GHBOR-10	NE	IGHBOR-10	NEI	GHBOR-20	NEI	GHBOR-20	NE	IGHBOR-20
m =	$10,\mathrm{gc}=10$	m =	$10, \mathrm{gc} = 100$	m = 10, gc = 1000		m =	$20,\mathrm{gc}=10$	m =	$20, \mathrm{gc} = 100$	m = 20, gc = 1000	
$f(\bar{x})$	N	$f(\bar{x})$ N $f(\bar{x})$ N		N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
0.5	2	0.5	1	0.5	1	0.75	2	0.5	1	0.5	1
1.0	70	1.0	74	1.0	1.0 87		35	1.0	59	1.0	67
0.8	6	0.2	2	0.8	2	0.8	4	0.55	1	0.85	2
0.4	2	0.8	7	0.6	2	0.55	1	0.8	7	0.55	1
0.9	17	0.6	4	0.9	6	0.85	15	0.65	1	0.8	3
0.7	3	0.1	1	0.7	2	0.9	14	0.6	1	0.65	1
		0.9	10			0.7	3	0.85	2	0.3	3
		0.7	1			0.95	26	0.2	1	0.05	1
Î	$\hat{c} = 0.94$	$\hat{f} = 5$.58265453165	$\hat{\mathbf{f}} = 0$	5.08143836296	$\hat{\mathbf{f}} = 5$.56515247323	$\hat{\mathbf{f}} = 5$.75227636762	$\hat{\mathbf{f}} = 6$	5.16021246739

5.0.5 SELECTION: RANKED; CROSSOVER: 1P

Table 41: SELECTION: RANKED; CROSSOVER: 1P: AUTH - fitness

				AU	TH -	fitness					
AUTH-10		AUTH-10		AUTH-10		AUTH-20		AUTH-20		AUTH-20	
m = 10, gc = 10)	m = 10, gc = 1	.00	m = 10, gc = 1	000	m = 20, gc = 1	0	m = 20, gc = 1	.00	m = 20, gc = 1	.000
$f(\bar{x})$	N	$f(\bar{x})$ N		$f(\bar{x})$	N	$f(\bar{x})$	Ν	$f(\bar{x})$	N	$f(\bar{x})$	N
0.595760763323	1	5.18820190745	1	4.26638652057	1	0.131093219211	1	3.65251684505	1	3.51614763612	1
1.89747727187	1	3.7986965209	1	4.09797956619	3	1.74552945414	1	2.10703567013	1	5.63177332322	1
1.7887291944	1	3.68861007926	1	5.00248625656	1	-1.71088778607	1	2.06572727993	1	4.37187964941	1
-0.0613791792336	1	2.89954664129	1	3.86897684702	1	-0.035235207349	1	2.75852398774	1	4.34697740122	1
-0.655875322664	1	2.79435067156	1	3.63591673208	1	0.364780308731	1	1.31576206748	1	4.01718348792	1
1.83189595561	1	2.15843492028	1	4.30043368616	2	-0.159227549021	1	2.36438661542	1	3.5635281662	1
-0.170127256707	1	2.09285360401	1	3.93775312461	1	-0.930559093786	1	2.95262724123	1	3.66463249849	1
0.990587359444	1	3.10912043884	2	4.52023989069	2	-1.01817189533	1	0.94271899976	2	3.87342181518	1
$\hat{f} = 0.60038211463$	35	$\hat{f} = 2.972448010$)71	$\hat{f} = 4.019567543$	326	$\hat{f} = 0.6437541661$.77	$\hat{f} = 2.114272819$	968	$\hat{f} = 4.04631946$	413

Table 42: SELECTION: RANKED; CROSSOVER: 1P: AUTH - self

					AUT	H - sel	f				
A	UTH-10	I	AUTH-10		AUTH-10		AUTH-20	A	AUTH-20	1	AUTH-20
m =	= 10, gc = 10 $m = 10, gc = 100$		$10,\mathrm{gc}=100$	m = 10, gc = 1000		m =	$= 20,\mathrm{gc} = 10$	m =	$20,\mathrm{gc} = 100$	m =	$20,\mathrm{gc}=1000$
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	100	0.0			96	0.0	97	0.0	99	0.0	93
		0.1).1 3		1	0.05	3	0.05	1	0.05	7
					3						
	$\hat{\mathrm{f}}=0.0$	$\hat{f} = 2$.97244801071	$\hat{\mathbf{f}} = 4$	1.01956754326	$\hat{f} = 0$.643754166177	$\hat{\mathrm{f}}=2$.11427281968	$\hat{\mathbf{f}} = 4$.04631946413

Table 43: SELECTION: RANKED; CROSSOVER: 1P: AUTH - compete

					AUTH		oete					
A	UTH-10	1	AUTH-10		AUTH-10		AUTH-20	A	AUTH-20	I	AUTH-20	
m =	$10, \mathrm{gc} = 10$ $m = 10, \mathrm{gc} = 100$		m = 10, gc = 1000		m =	= 20, gc = 10	m =	$20, \mathrm{gc} = 100$	m =	20, gc = 1000		
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	
1.0	100	1.0			95	1.0	90	1.0	97	1.0	96	
		0.9	0.9 4		4	0.95	10	0.95	3	0.95	4	
			0.0		1							
	$\hat{\mathrm{f}} = 1.0$ $\hat{\mathrm{f}} = 2.9724480107$		2.97244801071	$\hat{\mathbf{f}} = 4$	4.01956754326	$\hat{\mathbf{f}} = 0$.643754166177	$\hat{\mathrm{f}}=2$.11427281968	$\hat{f} = 4.04631946413$		

Table 44: SELECTION: RANKED; CROSSOVER: 1P: CSS - fitness

					CSS -	fitness					
CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20	
m = 10, gc = 3	10	m = 10, gc = 1	100	m = 10, gc =	1000	$m=20,\mathrm{gc}=$	10	$m=20,\mathrm{gc}=$	100	m=20,gc=	1000
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	$f(\bar{x})$ N		N	$f(\bar{x})$	N
9.32501268826	3	10.5546927869	1	10.704202532	100	7.38390637731	1	10.704202532	100	10.704202532	100
7.07420826788	1	10.704202532	92			9.9796133356	1				
8.60295965857	1	10.4240946128	1			8.27497200576	17				
6.25523426256	2	9.60512060745	1			8.68188671826	1				
7.350051905	3	10.5699741403	4			8.36572659718	1				
7.84103825751	3	9.37405393028	1			9.67078985187	1				
7.78398565325	1					9.6789085118	1				
7.99123386902	1					9.17550294324	1				
$\hat{f} = 7.876521139$	943	$\hat{f} = 10.6702449$	144	$\hat{f} = 10.704202$	2532	$\hat{f} = 8.948065273$	219	$\hat{f} = 10.704202$	532	$\hat{f} = 10.704202$	2532

Table 45: SELECTION: RANKED; CROSSOVER: 1P: CSS - self

					CSS	- self					
	CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20
m =	$10,{ m gc}=10$	m =	$10,\mathrm{gc} = 100$	m =	$10, \mathrm{gc} = 1000$	m =	$20,{ m gc}=10$	m = 1	$20, \mathrm{gc} = 100$	m =	$20, \mathrm{gc} = 1000$
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	44	0.0	1	1.0	100	0.0	10	0.85	1	1.0	100
0.5	3	1.0	87			0.25	5	1.0	87		
0.1	28	0.8	2			0.15	9	0.9	1		
0.4	3	0.2	2			0.05	16	0.6	1		
1.0	1	0.3	1			0.55	3	0.95	10		
0.8	3	0.1	4			0.4	3				
0.3	4	0.9	2			0.45	4				
0.6	6	0.5	1			0.3	7				
Î	$\hat{c} = 0.17$	$\hat{f} = 1$	0.6702449144	$\hat{\mathbf{f}} = \mathbf{f}$	10.704202532	$\hat{f} = 8$.94806527219	$\hat{f} = 1$	0.704202532	$\hat{\mathbf{f}} =$	10.704202532

Table 46: SELECTION: RANKED; CROSSOVER: 1P: CSS - compete

					CSS -	compet	e				
,	CSS-10		CSS-10		CSS-10		CSS-20		CSS-20		CSS-20
m =	$10,{ m gc}=10$	m = 10, gc = 100		m = 10, gc = 1000		m =	$20,{ m gc}=10$	m =	$20,{ m gc}=100$	m = 20, gc = 100	
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	4	0.0	100	0.0	100	0.0	7	0.0	100	0.0	100
0.5	5					0.25	5				
0.1	10					0.85	3				
0.4	7					0.2	7				
1.0	35					0.05	12				
0.6	3					0.4	6				
0.3	9					0.6	2				
0.8	5					0.8	2				
f	= 0.677	$\hat{f} = 1$	0.6702449144	$\hat{f} = \hat{f}$	10.704202532	$\hat{f} = 8$.94806527219	$\hat{f} = 1$	0.704202532	$\hat{f} =$	10.704202532

Table 47: SELECTION: RANKED; CROSSOVER: 1P: NEIGHBOR - fitness

				NEI	GHBC	OR - fitness					
NEIGHBOR-1	10	NEIGHBOR-	10	NEIGHBOR-	10	NEIGHBOR-2	20	NEIGHBOR-	20	NEIGHBOR-	20
m = 10, gc = 3	10	m = 10, gc = 1	100	m = 10, gc = 3	1000	m = 20, gc = 1	10	m = 20, gc = 1	100	m = 20, gc = 3	1000
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
5.86477709631	1	6.36764544744	94	6.36764544744	100	5.57702494247	1	6.36764544744	99	6.36764544744	100
6.01504565681	2	6.31910767025	4			6.01504565681	1	6.31910767025	1		
5.78731155114	1	6.17055024483	1			6.25117399409	2				
5.63334468786	1	6.29971177127	1			5.79341177264	1				
5.85772566229	2					6.08116392648	1				
5.90192275292	1					5.75706821205	3				
5.22471147077	1					6.29971177127	4				
4.92904954885	1					6.16423472629	1				
$\hat{f} = 5.696494751$	189	$\hat{f} = 6.36305364$	756	$\hat{f} = 6.36764544$	1744	$\hat{f} = 6.100617617$	731	$\hat{f} = 6.367160069$	967	$\hat{f} = 6.36764544$	1744

Table 48: SELECTION: RANKED; CROSSOVER: 1P: NEIGHBOR - self

					NEIGHI	BOR -	self				
NEI	GHBOR-10	NEI	GHBOR-10	NE	IGHBOR-10	NEI	GHBOR-20	NEI	GHBOR-20	NE	IGHBOR-20
m =	$10,{ m gc}=10$	m =	$10,\mathrm{gc}=100$	m = 10, gc = 1000		m =	$20,\mathrm{gc}=10$	m =	$20,\mathrm{gc}=100$	m = 20, gc = 1000	
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
0.0	22	0.0	3	0.5	3	0.25	11	0.25	9	0.75	22
1.0	2	1.0	3	0.1	37	0.0	16	0.5	15	0.85	19
0.2	17	0.2	5	0.8	2	0.05	12	0.6	5	0.55	1
0.1	23	0.4	5	0.4	5	0.2	16	0.2	3	0.8	24
0.4	13	0.8	3	0.3	4	0.4	1	0.4	4	0.9	11
0.3	9	0.6	3	0.6	2	0.3	4	0.8	2	0.6	4
0.6	3	0.3	8	0.2	4	0.15	13	0.45	4	0.65	6
0.8	4	0.1	31	0.9	41	0.1	22	0.15	1	0.95	6
f	= 0.251	$\hat{f} = 6$.36305364756	$\hat{f} = 6$	3.36764544744	$\hat{f} = 6$.10061761731	$\hat{f} = 6$.36716006967	$\hat{f} = 6$	5.36764544744

NEIGHBOR - compete											
NEIGHBOR-10		NEIGHBOR-10		NEIGHBOR-10		NEIGHBOR-20		NEIGHBOR-20		NEIGHBOR-20	
$m=10,\mathrm{gc}=10$		m = 10, gc = 100		m = 10, gc = 1000		m = 20, gc = 10		m = 20, gc = 100		m = 20, gc = 1000	
$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N	$f(\bar{x})$	N
1.0	79	1.0	86	1.0	89	0.75	1	0.75	1	0.75	11
0.3	3	0.9	13	0.9	11	1.0	59	1.0	31	0.5	1
0.9	12	0.7	1			0.8	1	0.55	1	0.8	23
0.6	3					0.85	3	0.8	3	0.85	25
0.8	3					0.6	2	0.65	2	0.6	1
						0.9	10	0.85	6	0.9	27
						0.95	23	0.9	13	0.7	3
						0.65	1	0.95	43	0.95	6
$\hat{f} = 0.949$		$\hat{f} = 6.36305364756$		$\hat{f} = 6.36764544744$		$\hat{\mathrm{f}} = 6.10061761731$		$\hat{\mathbf{f}} = 6.36716006967$		$\hat{f} = 6.36764544744$	

Table 49: SELECTION: RANKED; CROSSOVER: 1P: NEIGHBOR - compete

References

- [1] Bright, Р. (2016,Feb 10). Moore's lawreally isArstechnica.deadthis time.Retrieved from http: //arstechnica.com/information-technology/2016/02/ moores-law-really-is-dead-this-time/
- [2] Cormen, T. H. (2009). Introduction to algorithms. MIT press.
- [3] Hammond, K., & Michaelson, G. (Eds.). (2012). Research directions in parallel functional programming. Springer Science & Business Media.
- [4] Jones, M. P., & Hudak, P. (1993). Implicit and explicit parallel programming in Haskell. Disponível por FTP em nebula. systemsz. cs. yale. edu/pub/yale-fp/reports/RR-982. ps. Z (julho de 1999). [Online]. Available: http://cs-www.cs.yale.edu/publications/techreports/tr982.pdf

- [5] Marlow, S. (2012). Parallel and concurrent programming in Haskell.

 In Central European Functional Programming School (pp. 339-401).

 Springer Berlin Heidelberg. [Online]. Available: http://community.

 haskell.org/~simonmar/par-tutorial-cadarache.pdf
- [6] Marlow, S., Newton, R., & Peyton Jones, S. (2011, September). A monad for deterministic parallelism. In ACM SIGPLAN Notices (Vol. 46, No. 12, pp. 71-82). ACM. [Online]. Available: http://community.haskell.org/~simonmar/papers/monad-par.pdf
- [7] Obradovic, D. (1998). Structuring functional programs by using monads. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.3974&rep=rep1&type=pdf
- [8] Steele, G. (2009). The Future is Parallel: What's a Programmer to do? Guy Steele's 2009 lecture on parallelism at M.I.T. [Online]. Available: https://groups.csail.mit.edu/mac/users/gjs/6.945/readings/MITApril2009Steele.pdf