Statistical Learning – week 3.2

Joris Bierkens

Delft University of Technology, The Netherlands

22 February 2024

Outline

Curse of dimensionality

1 Linear regression

Ordinary least squares Ridge regression LASSO

Assignments

- There will be four assignments in total
- These will consist of exercises and problems given after class
- Assignment deadlines are indicated on Brightspace
- Work together (meet up!) in groups of two or three
- Self-enroll in groups on Brightspace
- In your work:
 - clearly show your intermediate steps,
 - motivate your answer,
 - be to the point.
- Prepare clearly legible handwritten work (scanned, e.g. using CamScanner) or LaTEX.
- Submit using Brightspace by the deadline as a single PDF.
- Not adhering to these guidelines will result in a reduced grade.

Recap learning objectives lecture 3.1

- Key distinctions: supervised vs unsupervised learning, regression vs classification (G)
- k-nearest neighbours as a simple example of supervised learning
- Probabilistic setting of supervised learning, population model (G)
- Loss functions and risk, residual sum of squares, Bayes estimator
 (G)
- Mean squared error, bias-variance trade-off (G)
- The use of training- and test-set to estimate risk (G)
- \Rightarrow Curse of dimensionality (G)

Curse of dimensionality

A local method (e.g., k-nearest neighbours) works well if any new input x has many observations x_1, \ldots, x_n in its vicinity.

Example: uniformly distributed points in a hypercube

- Suppose inputs x_1, \ldots, x_n have uniform distribution in the hypercube $[0,1]^p$.
- How many points will lie in the sub-hypercube $[0,0.1]^p$?
- Answer: approximately $n \times (0.1)^p$.
- In order to maintain a fixed ratio of points in any sub-hypercube for growing p, we require n to grow exponentially in p!

Curse of dimensionality: reliable statistical inference becomes increasingly difficult in high dimensions

Function families and regularization

What happens when we minimize empirical risk over all possible functions *f*? overfitting

Possible approaches

1 Constrained minimization: choose a suitable family of candidate functions $\mathcal{F} \subset \{f : \mathcal{X} \to \mathcal{A}\}.$

We say that $\ensuremath{\mathcal{F}}$ is a parametric family of functions if it allows the parametrization

$$\mathcal{F} = \{ f_{\theta} : \theta \in \Theta \},$$

where $\Theta \subset \mathbb{R}^p$.

2 Adding a penalty for model complexity: regularization.

As we will see this lecture, this is closely related to constrained optimization.

3 Following a Bayesian approach: will be topic of later lectures.

Linear regression model

- inputs $x_1, \ldots, x_n \in \mathbb{R}^p$; outputs $y_1, \ldots, y_n \in \mathbb{R}$.
- in linear regression we consider function estimators of the form $f: x \mapsto x^T \beta$, so

$$f \in \mathcal{F} = \{ \mathbf{x}^T \boldsymbol{\beta} : \boldsymbol{\beta} \in \mathbb{R}^p \}.$$

- the parameter vector $\boldsymbol{\beta} \in \mathbb{R}^p$ is called the vector of regression coefficients.
- often we add an intercept and consider

$$\mathcal{F} = \{\beta_0 + \boldsymbol{x}^T \boldsymbol{\beta} : \boldsymbol{\beta}_0 \in \mathbb{R}, \boldsymbol{\beta} \in \mathbb{R}^p\}$$

• equivalent to take $x_{i,0}=1$ in the (p+1)-dimensional input vectors

$$x_i = (1, x_{i,1}, \ldots, x_{i,p}), \quad i = 1, \ldots, n,$$

with extended regression coefficient vector

$$\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p).$$

Linear regression: ordinary least squares

- matrix notation $\mathbf{X} = (x_{ij})$, the *j*th component of the *i*th input vector
- X is called the design matrix
- residual sum of squares for observations (y_i)

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - x_i^T \boldsymbol{\beta})^2 = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2.$$

• if rank X = p then the RSS is minimized by \checkmark

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

- this is known as the ordinary least squares (OLS) estimator.
- what if rank X < p?</p>
 - For example, when n < p,
 - or in case of collinearity (dependence between inputs).

Mathematical intermezzo: Moore-Penrose inverse

- the (compact) singular value decomposition of $X \in \mathbb{R}^{n \times p}$ is given by $X = UDV^T$, where
 - $\boldsymbol{U} \in \mathbb{R}^{n \times r}$, $\boldsymbol{V} \in \mathbb{R}^{p \times r}$, both with orthonormal columns;
 - $D = \text{diag}(d_1, \dots, d_r)$ has $r \leq \min(p, n)$ positive diagonal elements $d_1 \geq \dots \geq d_r > 0$: the non-zero singular values of X.
- the Moore-Penrose inverse is given by

$$\mathbf{X}^+ = \mathbf{V}\mathbf{D}^{-1}\mathbf{U}^T \in \mathbb{R}^{n \times p},$$

ullet for $oldsymbol{y} \in \mathbb{R}^n$, the vector $\hat{oldsymbol{eta}} = oldsymbol{X}^+ oldsymbol{y}$ solves the problem

minimize
$$\|\boldsymbol{\beta}\|$$
 subject to $\boldsymbol{\beta} \in \arg\min \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2$.

- Exercise:
 - (a) If r = p, then $X^+ = (X^T X)^{-1} X^T$;
 - (b) If r = n, then $X^+ = X^T (XX^T)^{-1}$.

Linear regression: OLS estimator in terms of SVD

- design matrix $\boldsymbol{X} \in \mathbb{R}^{n \times p}$.
- let $r := \operatorname{rank}(\boldsymbol{X})$. What if r < p?
- write u_k for the columns of U, v_k for the columns of V.
- minimizers of $RSS(\beta)$ are given by

$$\hat{oldsymbol{eta}} = \sum_{k=1}^r d_k^{-1} oldsymbol{v}_k oldsymbol{u}_k^T oldsymbol{y} + oldsymbol{\eta}, \quad oldsymbol{\eta} \in \ker(oldsymbol{X}).$$

• the minimum-norm solution $\hat{m{eta}} = m{X}^+ m{y}$ (with $m{\eta} = 0$) solves the problem

$$\min \|\beta\|$$
 subject to $\beta \in \arg \min \mathrm{RSS}(\beta)$.

• in practice: expect numerical issues and high variance for 'large' p.

Linear regression: OLS bias and variance

Now assume that data are generated according to the (population) model

$$y_i = \mathbf{x}_i^T \boldsymbol{\beta}_0 + \varepsilon_i, \quad i = 1, \dots, n,$$

where ε has zero mean and finite variance σ^2 , and β_0 is the 'true' parameter.

- if rank X = p, then the OLS estimator for β is given by $\hat{\beta} = (X^T X)^{-1} X^T y$
- consider inputs $x_1, x_2, ..., x_n$ to be deterministic; outcomes $y_1, ..., y_n$ are random.
- $\mathbb{E}\left[\hat{eta}\right] \stackrel{\mathscr{I}}{=} eta_0$: \hat{eta} is an unbiased estimator for eta_0 .
- Cov $\left(\hat{\boldsymbol{\beta}}\right) \stackrel{\mathscr{I}}{=} \sigma^2 \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1}$.

Linear regression : MSE for f(x)

- prediction of $f(\mathbf{x}) = \mathbf{x}^T \beta_0$ using $\hat{f}(\mathbf{x}) = \mathbf{x}^T \hat{\beta}$.
- consider inputs (x_1, \ldots, x_n, x) to be fixed and known.

Mean Squared Error

$$\mathbb{E}\left[\hat{f}(\mathbf{x})\right] = \mathbb{E}\left[\mathbf{x}^{T}\hat{\boldsymbol{\beta}}\right] = \mathbf{x}^{T}\boldsymbol{\beta}_{0} = f(\mathbf{x}),$$

$$\operatorname{Var}\left(\hat{f}(\mathbf{x})\right) = \sigma^{2}\mathbf{x}^{T}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{x};$$

therefore

$$MSE(\hat{f}(\mathbf{x}); f(\mathbf{x})) = \mathbb{E}\left[\left(\hat{f}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$
$$= \sigma^{2} \mathbf{x}^{T} \left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{x}.$$

Linear regression: Expected Prediction Error

$$MSE(\hat{f}(\mathbf{x}); f(\mathbf{x})) = \sigma^2 \mathbf{x}^T \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{x}.$$

- estimator $\hat{f}(\mathbf{x}) = \hat{f}(\mathbf{x}; D_n)$ where $D_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
- let y be new (random) observation associated with input x.
- recall the Expected Prediction Error,

$$\begin{aligned} & \text{EPE}[\hat{f}](\boldsymbol{x}; \boldsymbol{x}_1, \dots, \boldsymbol{x}_n) = \mathbb{E}_{\boldsymbol{x}, y} \mathbb{E}_{D_n} \left[(y - \hat{f}(\boldsymbol{x}))^2 \mid \boldsymbol{x}, \boldsymbol{x}_1, \dots, \boldsymbol{x}_n \right] \\ & = \text{MSE}(\hat{f}(\boldsymbol{x}); f(\boldsymbol{x})) + \text{noise} = \sigma^2 \left(1 + \boldsymbol{x}^T \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{x} \right). \end{aligned}$$

- now consider (x_1, \ldots, x_n, x) to be random as well.
- assume $\mathbb{E}[xx^T]$ is non-singular.

$$\mathrm{EPE}(\hat{f}) = \mathbb{E}_{(\boldsymbol{x},y)} \mathbb{E}_{D_n} \left[(y - \hat{f}(\boldsymbol{x}))^2 \right] \sim \sigma^2 \left(1 + \frac{p}{n} \right) \quad (n \to \infty).$$

The Gauss-Markov theorem

In the linear regression model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}_0 + \boldsymbol{\varepsilon}$$

assume
$$\mathbb{E}[arepsilon] = \mathbf{0}$$
 and $\mathsf{Cov}(arepsilon) = \mathbf{\emph{I}}_{n}$

Notation

Suppose $P, Q \in \mathbb{R}^{p \times p}$ are symmetric. We write $P \succeq Q$ if P - Q is positive semidefinite, i.e.,

$$a^T(P-Q)a \ge 0$$
 for all $a \in \mathbb{R}^p$.

Gauss-Markov theorem

Let $\hat{\beta}$ denote any unbiased linear estimator: $\mathbb{E}\hat{\beta} = \beta_0$, with $\hat{\beta} = Ay$. Then $Cov(\hat{\beta}) \succeq Cov(\hat{\beta}_{OLS})$ where $\hat{\beta}_{OLS}$ is the ordinary least squares estimator.

Does this mean that the OLS-estimator gives the smallest possible MSE?

Crash course: Lagrange multipliers (1/2)

[B06], Appendix E

Constrained minimization with equality constraints

$$egin{array}{ll} & ext{min} & f(x), & f:\mathbb{R}^d
ightarrow \mathbb{R} & (*) \ & ext{subject to (s.t.)} & oldsymbol{g}(x) = oldsymbol{0} & oldsymbol{g}:\mathbb{R}^d
ightarrow \mathbb{R}^k. \end{array}$$

- Consider k = 1, for simplicity
- At any point x on the hypersurface g(x) = 0, $\nabla g(x)$ is orthogonal to the hypersurface.
- At any local optimum x, $\nabla f(x)$ is orthogonal to the hypersurface.

Theorem

A necessary condition for $x_* \in \mathbb{R}^d$ to be a minimum of (*) is that there is a $\lambda^* \in \mathbb{R}^k$ such that (x^*, λ^*) is a stationary point of the Lagrangian

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) := f(\mathbf{x}) + \boldsymbol{\lambda}^T \mathbf{g}(\mathbf{x}).$$

Crash course: Lagrange multipliers (2/2)

Example

min
$$x_1^2 + x_2^2$$

s.t. $x_1 + x_2 = 1$.

$$\mathcal{L}(x,\lambda) = x_1^2 + x_2^2 + \lambda(x_1 + x_2 - 1).$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = \begin{bmatrix} 2x_1 + \lambda \\ 2x_2 + \lambda \end{bmatrix} = 0.$$

$$x_1 = -\lambda/2, \quad x_2 = -\lambda/2$$

$$\nabla_{\lambda}\mathcal{L}(\boldsymbol{x},\lambda)=x_1+x_2-1=0.$$

$$\lambda = -1$$
, $x_1 = 1/2$, $x_2 = 1/2$.

Ridge regression

- consider situation with large p.
- partial explanation for high MSE: no penalty for large values of $\hat{\beta}_i$.
- solution: shrink coefficients of $\hat{\beta}$ by introducing a penalty term.
- example of regularization

Ridge regression

In the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, the ridge regression objective function is

$$R(\beta) = \underbrace{\|\mathbf{y} - \mathbf{X}\beta\|^2}_{\mathrm{RSS}(\beta)} + \underbrace{\lambda \|\beta\|^2}_{\mathrm{penalty}}, \quad \lambda > 0.$$

The ridge estimator for β is given by the minimizer,

$$\hat{\boldsymbol{\beta}}_{\mathrm{ridge}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

Alternative problem formulation:

$$\min_{\boldsymbol{\beta}} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|^2 \quad \text{s.t.} \quad \| \boldsymbol{\beta} \|^2 \leq t.$$

Ridge regression as a shrinkage method

recall the singular value decomposition $X = UDV^T$.

Ridge regression in terms of SVD

$$\hat{\boldsymbol{\beta}}_{\text{ridge}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$
$$= \boldsymbol{V} (\boldsymbol{D}^T \boldsymbol{D} + \lambda \boldsymbol{I}_r)^{-1} \boldsymbol{D}^T \boldsymbol{U}^T \boldsymbol{y}.$$

the fitted vector of outcomes is

$$egin{aligned} m{X} \hat{m{eta}}_{ ext{ridge}} &= m{U} m{D} (m{D}^T m{D} + \lambda m{I}_r)^{-1} m{D}^T m{U}^T m{y} \ &= \sum_{i=1}^r rac{d_j^2}{d_j^2 + \lambda} m{u}_j m{u}_j^T m{y}. \end{aligned}$$

 $\hat{\beta}_{Olip} = (VD^{2}V^{2} + VMD^{2})^{-1}X^{2}y$ 由于V #12:201 、 RR[FIGS.W F UP! WERRIS 分析: $\hat{\mathbf{y}}_{Olip}^{A} = V(D^{2} + M)^{-1}V^{T}X^{2}y$ 所定使用器符合:38 $X - UDV^{T}$ 、 RR(28 $X^{2} - VDU^{T}$ 、 設定、 $\hat{\beta}_{Olip} = V(D^{2} + M)^{-1}V^{T}VDU^{T}y$ 由于 $V^{T}V - I$ 、 ご認定か: $\hat{\beta}_{Olip} = V(D^{2} + M)^{-1}DU^{T}y$

 $X^TX = (UDV^T)^T(UDV^T) = VD^TU^TUDV^T = VD^2V^T$ 現在,我们可以用这个表达式來替除給自己綜件的 X^TX : $\hat{\beta}_{abm} = (VD^2V^T + \lambda L)^{-1}X^Tu$

注意到绘図日中 λI_s 可以表示为 $V\lambda IV^T$ 因为 $VV^T=I_s$ 于是,我们得到:

 \rightarrow ridge regression shrinks the directions with small singular values d_j^2 relatively more

MSE of ridge regression

The MSE of ridge regression can be explicitly computed (exercise) to be

$$\begin{split} & \mathrm{MSE}(\hat{\boldsymbol{\beta}}_{\mathrm{ridge}}; \boldsymbol{\beta}_0) \\ &= \lambda^2 (\boldsymbol{\beta}_0)^T \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_p \right)^{-2} \boldsymbol{\beta}_0 + \sigma^2 \operatorname{tr} \left[\boldsymbol{X}^T \boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_p \right)^{-2} \right]. \end{split}$$

Example

Assume for simplicity $\boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{I_p}$. Then

$$MSE(\hat{\beta}_{ridge}) = \frac{\lambda^2 \|\beta_0\|^2 + p\sigma^2}{(1+\lambda)^2},$$

minimized at $\lambda = p\sigma^2/\|\beta_0\|^2$.

In this plot $p=1, \sigma^2=1, \|oldsymbol{eta}_0\|=1$

Variable selection and the LASSO

- ridge regression: penalty term $\|\beta\|^2$ shrinks every parameter.
- can we recover a sparse coefficient vector?
- the penalty function $\|m{\beta}\|_0:=\sum_{j=1}^p\mathbb{1}_{eta_j
 eq 0}$ counts the number of non-zero parameters.
- problem: the optimization problem

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_0$$

- is non-convex
- requires systematically checking all combinations of non-zero β_j : combinatorial problem.
- alternative: the LASSO¹ optimization problem

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda \underbrace{\|\boldsymbol{\beta}\|_1}_{=\sum_{i=1}^p |\beta_i|}.$$

¹Least Absolute Shrinkage and Selection Operator

The LASSO

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

- convex optimization target: enables efficient computation
- alternative formulation

$$\min_{oldsymbol{eta}} \| {oldsymbol{y}} - {oldsymbol{X}} {oldsymbol{eta}} \|^2 \quad ext{subject to} \quad \| {oldsymbol{eta}} \|_1 \leq t.$$

yields sparse estimators

Ridge vs LASSO

Ridge regression

LASSO

suppose
$$\boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{I}_p$$
:

$$\hat{\beta}_i$$

$$\operatorname{sgn}(\hat{eta}_j)(|\hat{eta}_j|-\lambda)_+$$

Ridge vs LASSO

$$s = rac{t}{\|\hat{oldsymbol{eta}}_{ ext{OLS}}\|_1}$$

Learning objectives lecture 3.2

- Parametric models (G)
- The linear regression model and the least squares estimator
- Linear regression in the over-parametrized case; Moore-Penrose inverse
- The Gauss-Markov theorem
- Refresher: Lagrange Multipliers (G)
- Regularized linear regression: ridge regression and the LASSO

Assignment and exercises

- First part of Assignment 1 is available on Brightspace (under Content - week 3.2)
- Exercises in lecture notes:
 - 1.8, 1.15 1.17, 1.19, 1.22, 1.24
 - 3.7, 3.12, 3.17 3.19