Université Batna 2 Département de Mathématiques Année Universitaire 2020/2021

Exercices corrigés séries temporelles

Exercise 1 Observons l'évolution des ventes d'une entreprise sur douze trimestres consécutifs :

	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
$Ann\'{e}e N - 2$	66	96	145	144
$Ann\'{e}e N - 1$	92	131	195	189
Année N	120	167	246	239

Le graphique ci-dessous montre clairement une tendance générale à la hausse représentée par une droite de tendance (ou « trend ») avec des variations au-dessus ou en-dessous de cette tendance en fonction des saisons. Ainsi les premiers et seconds trimestres se situent plutôt endessous de la tendance alors que les troisième et quatrième se situent au-dessus.

A- Détermination d'une série corrigée des variations saisonnières

On définit des coefficients saisonniers par le rapport :

 $\frac{\text{Données observées (ou données brutes)}}{\text{Tendance (ou données ajustées)}}$

Supposons ces coefficients connus a priori (1).

En divisant les données observées par le coefficient du trimestre, on obtient une série corrigée des variations saisonnières.

• APPLICATION AUX DESAISONNALISATIONS.

Soit les coefficients saisonniers suivants :

Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
0,7	0,9	1, 25	1, 15

L'établissement de la série corrigée des variations saisonnières se présenterait ainsi :

Trimestre x	1	2	3	4	5	6	7	8	9	10	11	12
Données observées : y_i	66	96	145	144	92	131	195	189	120	167	246	239
Coefficient saisonnier : C_t	0.7	0.9	1.25	1.15	0.7	0.9	1.25	1.15	0.7	0.9	1.25	1.15
Série corrigée												
des variations saisonnières $y'_i = \frac{y_i}{C_i}$	94	107	116	125	131	146	156	164	171	186	197	208

En reportant cette série corrigée des variations saisonnières sur un graphique, on voit qu'elle présente une évolution beaucoup plus régulière que les données brutes.

En procédant à un ajustement sur cette série, on pourra avoir une prévision de la tendance des ventes et

passer de là aux prévisions par trimestre.

• APPLICATION AUX PREVISIONS.

La droite d'ajustement de y' a pour équation y'=10,095x+84,72. Afin de prévoir les ventes de l'année N+1, donc des trimestres 13,14,15,16, on procédera aux calculs suivants :

Trimestre x	13	14	15	16
Prévision de la tendance $y' = 10,095x + 84,72.$	216	226	236	246
Coefficient saisonnier : C_t	0,7	0,9	1,25	1,15
Prévision des ventes par trimestre : $y = y' \times C_t$	151	203	295	283

B. Détermination de la tendance à partir des moyennes mobiles

Afin d'éliminer l'effet des variations saisonnières, on peut remplacer chaque valeur de la série par une moyenne calculée sur des valeurs représentant un ensemble correspondant à une durée d'une année centrée sur la date de chaque valeur.

Ainsi pour des données trimestrielles, on calculera :

$$y_i' = \frac{\frac{y_{i-2}}{2} + y_{i-1} + y_{i+1} + \frac{y_{i+2}}{2}}{4}$$

En coefficientant y_{i-2} et y_{i+2} par 1/2, chaque trimestre de l'année est représenté dans le calcul avec la même pondération et la valeur calculée est centrée sur la période i.

• APPLICATION A L'EXEMPLE

Trimestre	1	2	3	4	5	6	7	8	9	10	11	12
Données observées : y_i	66	96	145	144	92	131	195	189	120	167	246	239
Moyenne mobile : y_i '			116	124	134	146	155	163	174	187		

Par exemple:

$$y_3' = \frac{\frac{66}{2} + 96 + 145 + 144 + \frac{92}{2}}{4} = 116$$

Les moyennes mobiles ainsi calculées permettent de représenter la tendance.

En ajustant cette tendance, par exemple par la méthode des moindres carrées, on pourra comme précédemment l'utiliser à des fin de prévisions.

• APPLICATION AUX COEFFICIENTS SAISONNIERS

Trimestre	1	2	3	4	5	6	7	8	9	10	11	12
Données observées : y_i	66	96	145	144	92	131	195	189	120	167	246	239
Moyenne mobile : y i			116	124	134	146	155	163	174	187		
Coefficients saisonniers: $\frac{y_i}{y_i}$			1.25	1.16	0.69	0.90	1.26	1.16	0.69	0.98		

On peut rapprocher les coefficients saisonniers relatifs à un même trimestre sur plusieurs années afin de déterminer les valeurs retenues définitivement.

On retiendra pour chaque trimestre la moyenne des valeurs trouvées en procédant à une approximation éventuelle pour que la somme des valeurs soit bien égale à 4

	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
Année $N-2$			1,25	1,16
. Année $N-1$	0,69	0,90	1,26	1,16
Année N	0,69	0,89		
Valeur retenue	0,69	0,90	1,25	1, 16

Exercise 2 L'entreprise CAROT vous fournit les informations suivantes relatives à ses ventes au cours des périodes 1 à 7.

x_i	y_i
1	120
2	155
3	182
4	202
5	220
6	235
7	240

Solution Calcul des paramètres a et b de l'équation d'ajustement par la méthode des moindres carrés :

Calcul de \bar{x} et de \bar{y}

x_i	y_i	$X_i = x_i - \bar{x}$	$Y_i = y_i - \bar{y}$	X_iY_i	X_i^2
1	120	-3	-73,42	220, 26	9
2	155	-2	-38,42	76,84	4
3	182	-1	-11,42	11,42	1
4	202	0	8.5	0	0
5	220	1	26,58	26,58	1
6	235	2	41,58	83, 16	4
7	7240	3	46,58	139,74	9
$\sum x_i = 28$	$\sum y_i = 1354$	0	0,06	$\sum X_i Y_i = 558$	$\sum X_i^2 = 28$

- 1. D'où Soit une droite d'ajustement (la tendance) :
- 2. La prévision pour la période 8 est :

$$y = 19,93x + 113,71$$

$$y_8 = 19,93(8) + 113,71 = 273,15$$

Les Moyennes MobILes

La méthode des moyennes mobiles est une technique de lissage des données. Son principe est de substituer une série de valeurs observées par leur moyenne. Cette moyenne est calculée en prenant par exemple, trois valeurs (nous dirons qu'il s'agit de moyennes mobiles d'ordre 3), quatre valeurs (moyennes mobiles d'ordre 4), etc. Illustrons le principe de cette méthode grâce à l'exemple suivant :

x_i	y_i
x_1	y_1
x_2	y_2
x3	y_3
x_4	y_4
x_5	y_5
x_6	y_6
x_7	y_7
x_8	y_8
x_9	y_9
_	

Les moyennes mobiles d'ordre 3 notées MM3 sont calculées de la manière suivante :

	x_i	MM3
x_1		
x_2		$\frac{y_1 + y_2 + y_3}{3}$
x3		$\frac{y_2 + y_3 + y_4}{3}$
x_4		$\frac{y_3 + y_4 + y_5}{3}$
x_5		$\frac{y_4 + y_5 + y_6}{3}$
x_6		$\frac{y_5 + y_6 + y_7}{3}$
x_7		$\frac{y_6 + y_7 + y_8}{3}$
x_8		$\frac{y_7 + y_8 + y_9}{3}$
x_9		

 $\textbf{Exercise 3} \ \textit{Soit le chiffre d'affaires réalisé par l'entreprise Mail}$

Trimestres	T_1	T_2	T_3	T_4
Année 1	100	125	135	110
Année 2	105	135	150	125
Année 3	115	160	175	140
Année 4	120	165	180	150

On vous demande de calculer :

- 1. Les moyennes mobiles d'ordre $4 \ (MM4)$.
- 2. De représenter les données brutes et les moyennes mobiles sur un même graphique

Solution Calcul des moyennes mobiles :

 $1. \ Si \ on \ choisit \ une \ périodicité \ d'ordre \ 4, \ on \ obtient \ les \ valeurs \ ajustées \ suivantes :$

Rang du trimestre x_i	Chiffre d'affaires y_i en \in	Moyennes mobiles d'ordre 4 (MM4)
1	100	_
2	125	_
3	135	117,5
4	110	118,75
5	105	121, 25
6	135	125
7	150	128, 75
8	125	131, 2
9	115	137,5
10	160	143,75
11	175	147,5
12	140	148, 75
13	120	150
14	165	151, 25
15	180	_
16	150	-

Représentation des données ajustées :

Solution 4 1.

Exercise 5 On se donne les livraisons trimestrielles d'essence en super sans plomb 98 (en millions de m^3) dans un hypermarchéde la région pendant pendant quatre années :

Années / Trimestres	1	2	3	4
1997	1050	1300	1500	1300
1998	1050	1400	1750	1350
1999	1100	1550	1850	1450
2000	1150	1700	2000	1550

Solution Ajustement linéaire par la méthode des moindes carrés

Recherchons l'équation de régression de Y_t dans le cadre de l'exemple . On utilisera donc le tableau de valeurs de la page suivante où t_i représente le rang d'un trimestre et $Y_t(i)$ la livraison d'essence correspondante : On récupère les valeurs suivant

Rang	t_i	$Y(t)_i$	t_i^2	$Y(t)^2$	$Y(t)_i \times t_i$
1	1	1050	1	102500	1050
2	2	1300	4	1690000	2600
3	3	1500	9	2250000	4500
4	4	1300	16	1690000	5200
5	5	1050	25	1102500	5250
6	6	1400	36	1960000	840
7	7	1750	49	3062500	12250
8	8	1350	64	1822500	10800
9	9	1100	81	1210000	9900
10	10	1550	100	2402500	15500
11	11	1850	121	3422500	20350
12	12	1450	144	2102500	17400
13	13	1150	169	1322500	14950
14	14	1700	196	2890000	23800
15	15	2000	225	4000000	30000
16	16	1550	256	2402500	24800
Total	136	23050	1496	34432500	206750

1.
$$\bar{t} = \frac{136}{16} = 8.5$$

2.
$$X(t) = \frac{23050}{16} = 1440;625$$

3.
$$V(t) = \frac{1496}{16} - (8.5)^2 = 21.25$$

4.
$$V(Y(t)) = \frac{34432500}{16} - (1440.625)^2 = 76630;859$$

5.
$$Cov(t.Y(t)) = \frac{206750}{16} - (8.5 \times 1440.625) = 676.562$$

$$a = \frac{Cov(t; X(t))}{V(t)}$$
$$b = \bar{Y}(t) - a\bar{t}$$

soit

$$a = \frac{676.5625}{21.25} = 31.838$$

et

$$b = 1440.625 - 31.838 \times 8.5 = 1170.002$$

Finalement, la droite admet pour équation

$$Y(t) = 31.838t + 1170.002$$

Correction des variations saisonnières (Le modèle multiplicatif $Yt = Tt \times St$)

t	1	2	3	4	5	6	7	8
Y_t	1050	1300	1500	1300	1050	1400	1750	1350
T_t	1201.84	1233.68	1265.52	1297.35	1329.19	1361.03	1392.87	1424.71
$s_t = \frac{Y_t}{T_t}$	0.87	1.05	1.19	1.00	0.79	1.03	1.26	0.95
t	9	10	11	12	13	14	15	16
Y_t	1100	1550	1850	1450	1150	1700	2000	1550
T_t	1456.54	1488.38	1520.22	1552.06	1583.90	1615.73	1647.57	1679.41
$s_t = \frac{Y_t}{T_t}$	0.76	1.04	1.22	0.93	0.73	1.05	1.21	0.92

On calcule ensuite les coefficients saisonniers

$$Cof f_1 = C_1 = \frac{1}{4} (s_1 + s_5 + s_9 + s_{13}) = \frac{1}{4} (0.87 + 0.79 + 0.76 + 0.73) = 0.79$$

$$Cof f_2 = C_2 = \frac{1}{4} (s_2 + s_6 + s_{10} + s_{14}) = \frac{1}{4} (1.05 + 1.03 + 1.04 + 1.05) = 1.04$$

$$Cof f_3 = C_3 = \frac{1}{4} (s_3 + s_7 + s_{11} + s_{15}) = \frac{1}{4} (1.19 + 1.26 + 1.22 + 1.21) = 1.22$$

$$Cof f_4 = C_4 = \frac{1}{4} (s_4 + s_8 + s_{12} + s_{16}) = \frac{1}{4} (1.00 + 0.95 + 0.93 + 0.92) = 0.95$$

Comme $\bar{C} = \frac{1}{4} (C_1 + C_2 + C_3 + C_4) = \frac{1}{4} (0.79 + 1.04 + 1.22 + 0.95) = 1$. le modèle est bien choisi. On se sert ensuite des coefficients saisonniers pour désaisonnaliser la série. On obtient le tableau suivant (Série désaisonnalisée):

t	1	2	3	4	5	6	7	8
Y_t	1050	1300	1500	1300	1050	1400	1750	1350
Y_t^{\star}	1329.11	1250	1229.51	1368.42	1329.11	1346.15	1434.43	1421.05
t	9	10	11	12	13	14	15	16
Y_t	1100	1550	1850	1450	1150	1700	2000	1550
Y_t^{\star}	1392.41	1490.38	1516.39	1526.32	1455.70	1634.62	1639.34	1631.58

Voici pour terminer les représentations graphiques de la série originale, de la droite de régression et de la série désaisonnalisée
la serie desaisonnansee

Remark 6 (Le modéle multiplicatif) On a

$$Y_t = T_t \times S_t$$

- On détermine la tendance T_t par la droite de régression ou par la méthode des moyennes mobiles,
- pour chaque t, on calcule le rapport $s_t = \frac{Y_t}{T_t}$ appelé rapport à la tendance,
- on calcule les moyennes des rapports s_t correspondant à une même saison et on obtient ainsi les coefficients saisonniers C_j où j est l'indice relatif à la saison. Si les rapports à la tendance ne sontpas égaux, cela est dû à une influence accidentelle,
- on calcule la moyenne \bar{C} des coefficients saisonniers. Si le modèle est bien choisi, la moyenne \bar{C} doit être proche de 1. Dans le cas contraire,
 - on calcule les corrections $s_j^{\bigstar} = \frac{\hat{C}_j}{\bar{C}}$

qui vérifient dorénavant la propriété

$$\frac{1}{n}\sum s_j^{\bigstar} = 1$$

oû n est le nombre de coefficients saisonniers.

- On calcule enfin la série désaisonnalisée ou (série corrigée des variations saisonnières)

$$\left(t; Y_t^{\bigstar} = \frac{Y_t}{s_j^{\bigstar}}\right)$$

Correction des variations saisonnières (Le modèle additif Xt = Tt + St)

Example 7 (cas additif) Considérons la série statistique des chiffres d'affaires trimestriels (en milliers d'euros) d'une entreprise.

Trimestre	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Chiffre d'affaires	120	181	71	119	128	190	73	124	140	196	84	133	145	206	96	142

Le modèle de la série statistique est bien additif, pour s'en convaincre, il suffit d'employer la méthode de la bande et de constater que la droite qui passe par les maxima et celle qui passe par les minima sont parallèles Calculons les moyennes mobiles T_t d'ordre 4 (puisque nous sommes en présence d'une série dont la périodicité est de 4 trimestres). Ensuite nous d'eterminons les différences saisonnières $d_t = Y_t - T_t$, c'est-à-dire les différences entre les valeurs de la série statistique de départ et les valeurs des moyennes mobiles correspondantes. Ces différences vont nous servir pour obtenir les coefficients saisonniers non corrigés trimestriels

t	1	2	3	4	5	6	7	8
Y_t	120	181	71	119	128	190	73	124
T_t	_	_	123,75	125,88	127, 25	128, 13	130, 25	132, 50
d_t	_	_	-52,75	-6,88	0,75	61,88	-57, 25	-8,50
t	9	10	11	12	13	14	15	16
Y_t	140	196	84	133	145	206	96	142
Tt	134,63	137, 13	138,88	140,75	143, 50	146, 13	_	_
$d_t = Y_t - T_t$	5,38	58,88	-54,88	-7,75	1,50	59,88		

Les coefficients saisonniers correspondent aux moyennes des différences saisonnières pour chacun des trimestres. On obtient :

•
$$C_1 = \frac{1}{3}(d_5 + d_9 + d_{13}) = \frac{1}{3}(0.75 + 5.38 + 1.50) = 2.54$$

•
$$C_2 = \frac{1}{3}(d_6 + d_{10} + d_{14}) = \frac{1}{3}(61.88 + 58.88 + 59.88) = 60.21$$

•
$$C_3 = \frac{1}{3}(d_3 + d_7 + d_{11}) = \frac{1}{3}(-52.75 - 57.25 - 54.88) = -54.96$$

•
$$C_4 = \frac{1}{3}(d_4 + d_8 + d_{12}) = \frac{1}{3}(-6.88 - 8.50 - 7.75) = -7.71$$

Nous supposons que la composante saisonnière est strictement périodique. L'effet net de la composante saisonnière sur une période doit être nul car il est repris dans la tendance générale de la série chronologique.

Or ce n'est pas le cas dans cet exemple puisque

$$\bar{C} = \frac{C_1 + C_2 + C_3 + C_4}{4} = \frac{1}{4} (2.54 + 60.21 - 54.96 - 7.71) = 0.02$$

Ceci nous amène donc à rectifier les coefficients saisonniers non corrigés en leur retranchant la moyenne des coefficients saisonniers pour toutes les périodes. On a alors :

$$C_1^{\bigstar} = C_1 - \bar{C} = 2.54 - 0.02 = 2.52$$

$$C_2^{\bigstar} = C_2 - \bar{C} = 60.21 - 0.02 = 60.19$$

$$C_3^{\bigstar} = C_3 - \bar{C} = -54.96 - 0.02 = 54.98$$

$$C_4^{\bigstar} = C_4 - \bar{C} = -7.71 - 0.02 = -7.73$$

Disposant maintenant des coefficients saisonniers corrigés, nous pouvons désaisonnaliser la série chronologique en retranchant à chacune des valeurs initiales de la série la valeur du coefficient saisonnier correspondant.

t	1	2	3	4	5	6	7	8
Y_t	120	181	71	119	128	190	73	124
d_t	117,48	120,81	125,98	126,73	125,48	129,81	127,98	131,73
t	9	10	11	12	13	14	15	16
Yt	140	196	84	133	145	206	96	142
$Y_t^{\bigstar} = Yt - C_t^{\bigstar})$	137,48	135, 81	138, 98	140,73	142, 48	145, 81	150,98	149,73

Remark 8 (Le modéle additif) On a $Y_t = T_t + S_t$. La méthode est analogue à celle du modéle multiplicatif

- 1. on calcule la différence $d_t = Y_t T_t$ au lieu du rapport,
- 2. on obtient les coefficients C_j en calculant les moyennes des différences dt correspondant à une même
- 3. on calcule ensuite la moyenne \bar{C} de ces coefficients C_j . Si le modéèle est bien choisi, la moyenne \bar{C} $doit\ \hat{e}tre\ proche\ de\ 0.$

 $Dans\ le\ cas\ contraire,$

- on calcule les corrections $C_j^{\bigstar} = C_j \bar{C}$ on calcule enfin la série désaisonnalisée $\left(t; Y_t^{\bigstar} = Y_t C_j^{\bigstar}\right)$