Reference Frames

- Up until now, we have considered physical vectors without coordinate systems or reference frames; however, we must define **reference frames** in order to perform computations with vectors
- Reference frames describe the **position** and **orientation** of an object in space (as well as its kinematics and dynamics), through a set of basis vectors (linearly independent subset that spans the vector space)
- Typically, reference frames (denoted with an \mathcal{F}) are defined by a set of dextral (right-handed) and orthonormal (mutuallyperpendicular unit) unit vectors, i.e.,

Dextral

Orthonormal

$$\hat{\mathbf{x}}_1 \times \hat{\mathbf{y}}_1 = \hat{\mathbf{z}}_1$$

$$\hat{\mathbf{x}}_1 \cdot \hat{\mathbf{x}}_1 = \hat{\mathbf{y}}_1 \cdot \hat{\mathbf{y}}_1 = \hat{\mathbf{z}}_1 \cdot \hat{\mathbf{z}}_1 = 1$$

$$\hat{\mathbf{y}}_1 \times \hat{\mathbf{z}}_1 = \hat{\mathbf{x}}_1$$

$$\hat{\mathbf{y}}_1 \times \hat{\mathbf{z}}_1 = \hat{\mathbf{x}}_1 \qquad \qquad \hat{\mathbf{x}}_1 \cdot \hat{\mathbf{y}}_1 = \hat{\mathbf{x}}_1 \cdot \hat{\mathbf{z}}_1 = \hat{\mathbf{y}}_1 \cdot \hat{\mathbf{z}}_1 = 0$$

$$\hat{\mathbf{z}}_1 \times \hat{\mathbf{x}}_1 = \hat{\mathbf{y}}_1$$

1-2-3 subscript notation for cartesian coordinate system

x-y-z variable notation for cartesian coordinate system

What is an inertial reference frame?

A reference frame is an inertial frame of reference if Newton's laws hold.

Newton's First Law: "Every object persists in its state of rest or uniform motion in a straight line

unless it is compelled to change that state by forces impressed on it."

A property of an inertial frame is that any frame that is <u>stationary or moving with constant velocity (but not rotating) with</u>
 respect to an inertial frame is also inertial (since acceleration with respect to those frames is the same)

In orbital mechanics there are many important reference frames, we will define a few common frames:

- · Heliocentric-Ecliptic frame
- Geocentric-Equatorial or Earth-Centred Inertial (ECI) frame
- Perifocal frame
- Orbiting frame
- Body-fixed frame

Equinox: numbers of hours of daylight and darkness are equal Solstice: longest or shortest period of daylight

Vernal Equinox Line (Υ)

solstice

Winter

equinox

Autumn

Spring

Reference Frames

Heliocentric-Ecliptic Frame (\mathcal{F}_{H})

- Origin, $O_{\rm H}$, at Sun's center of mass
- $\hat{\mathbf{h}}_1$ in the direction of the vernal equinox (Y)
- $\hat{\mathbf{h}}_3$ normal to the ecliptic plane
- $\hat{\mathbf{h}}_2$ completes the right-hand rule

What is the **ecliptic**?

The plane of Earth's orbit around the Sun

Summer

Technically, **ECI is not inertial**, since Earth's center of mass accelerates in its orbit; however, the movement w.r.t. the Sun is slow enough to be **considered inertial for all practical purposes**

Reference Frames

Geocentric-Equatorial or Earth-Centred Inertial (ECI) frame (\mathcal{F}_{G})

- Origin, O_G, at Earth's center of mass
- ĝ₁ in the direction of the vernal equinox (Υ)
- ĝ₃ towards Earth's north pole
- ĝ₂ completes the right-hand rule
- The plane completed by $\hat{\mathbf{g}}_1$ and $\hat{\mathbf{g}}_2$ is on the equator
- Often, ECI frame will be represented using $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$

The Earth-Centred Earth-Fixed (ECEF) frame (\mathcal{F}_E)

• Similar to \mathcal{F}_G , but the 1-axis rotates with Earth (i.e., rotating frame)

Perifocal Frame (\mathcal{F}_{P})

- Defined for an arbitrary orbit
- Origin, O_P , at the center of mass of the primary body (focus point)
- $\hat{\mathbf{p}}_1$ towards the orbit's periapsis (parallel to the eccentricity vector, $\vec{\mathbf{e}}$)
- $\hat{\mathbf{p}}_3$ normal to the orbit's plane (parallel to $\vec{\mathbf{h}}$)
- $\widehat{\mathbf{p}}_2$ completes the right-hand rule (along p)
- The axes $\widehat{\mathbf{p}}_1$ and $\widehat{\mathbf{p}}_2$ are in the orbital plane of the object
- Often, \$\mathcal{F}_P\$ will be represented using \$\hat{\hat{p}}\$, \$\hat{\hat{q}}\$ and \$\hat{\walkfit}\$

 $\hat{\mathbf{p}}_2$

spacecraft

Orbiting Frame (\mathcal{F}_0)

- Defined for an arbitrary orbit
- Origin, O_O, at the center of mass of the primary body (focus point)
- $\widehat{\mathbf{o}}_1$ towards the orbiting body
- $\hat{\mathbf{o}}_3$ normal to the orbit's plane (parallel to $\vec{\mathbf{h}}$)
- $\widehat{\mathbf{o}}_2$ completes the right-hand rule
- The axes $\widehat{\mathbf{o}}_1$ and $\widehat{\mathbf{o}}_2$ are in the orbital plane of the object
- Similar to \mathcal{F}_{P} , but the 1-axis rotates with orbiting body (i.e., rotating frame)

Body-Fixed Frame (\mathcal{F}_{B})

- Defined for an arbitrary body (e.g., spacecraft)
- Origin, $O_{\rm B}$, at the center of mass of the body
- $\hat{\mathbf{b}}_1$, $\hat{\mathbf{b}}_2$, $\hat{\mathbf{b}}_3$ are selected such that they point towards a fixed point on the body
- For example, along the spacecraft's principal axes that form a frame in which the moment of inertia matrix, I, is diagonal

(Earth Vector Graphic by WebDesignHot)

Intermediate Principal Axis

Generally, spacecraft dynamics uses multiple reference frames

- Usually, want the orientation of a spacecraft
- For spacecraft, we call the orientation the attitude

As a result, we need to know how to do the following:

- 1. Describe the orientation of one reference frame with respect to another
- 2. Transform coordinates of a vector from one reference frame to another

We've seen that the same vector can be represented in multiple frames:

$$\vec{\mathbf{v}} = \overrightarrow{\boldsymbol{\mathcal{F}}}_1^{\mathrm{T}} \mathbf{v}_1 = \overrightarrow{\boldsymbol{\mathcal{F}}}_2^{\mathrm{T}} \mathbf{v}_2$$

Now, let's transform the coordinates of vector $\vec{\mathbf{v}}$ from one frame to another

• Represent $\vec{\mathbf{v}}$ in \mathcal{F}_2 and \mathcal{F}_1

$$\vec{\mathbf{v}} = \vec{\boldsymbol{\mathcal{F}}}_2^{\mathrm{T}} \mathbf{v}_2 = \vec{\boldsymbol{\mathcal{F}}}_1^{\mathrm{T}} \mathbf{v}_1$$

$$\overrightarrow{\mathcal{F}}_{2} \cdot \overrightarrow{\mathcal{F}}_{2}^{T} \mathbf{v}_{2} = \overrightarrow{\mathcal{F}}_{2} \cdot \overrightarrow{\mathcal{F}}_{1}^{T} \mathbf{v}_{1} \implies \mathbf{v}_{2} = \overrightarrow{\mathcal{F}}_{2} \cdot \overrightarrow{\mathcal{F}}_{1}^{T} \mathbf{v}_{1} = \begin{bmatrix} \hat{\mathbf{x}}_{2} \\ \hat{\mathbf{y}}_{2} \\ \hat{\mathbf{z}}_{2} \end{bmatrix} [\hat{\mathbf{x}}_{1} \quad \hat{\mathbf{y}}_{1} \quad \hat{\mathbf{z}}_{1}] \ \mathbf{v}_{1} = \begin{bmatrix} \hat{\mathbf{x}}_{2} \cdot \hat{\mathbf{x}}_{1} & \hat{\mathbf{x}}_{2} \cdot \hat{\mathbf{y}}_{1} & \hat{\mathbf{x}}_{2} \cdot \hat{\mathbf{z}}_{1} \\ \hat{\mathbf{y}}_{2} \cdot \hat{\mathbf{x}}_{1} & \hat{\mathbf{y}}_{2} \cdot \hat{\mathbf{y}}_{1} & \hat{\mathbf{y}}_{2} \cdot \hat{\mathbf{z}}_{1} \\ \hat{\mathbf{z}}_{2} \cdot \hat{\mathbf{x}}_{1} & \hat{\mathbf{z}}_{2} \cdot \hat{\mathbf{y}}_{1} & \hat{\mathbf{z}}_{2} \cdot \hat{\mathbf{z}}_{1} \end{bmatrix} \mathbf{v}_{1}$$

$$\mathbf{v}_2 = \mathbf{C}_{21} \mathbf{v}_1$$

Definition: A <u>rotation matrix</u> describes the transformation from one frame (\mathcal{F}_1) to another (\mathcal{F}_2) , and is defined as:

$$\mathbf{C}_{21} \equiv \overrightarrow{\boldsymbol{\mathcal{F}}}_2 \cdot \overrightarrow{\boldsymbol{\mathcal{F}}}_1^{\mathrm{T}} = \begin{bmatrix} \widehat{\mathbf{x}}_2 \cdot \widehat{\mathbf{x}}_1 & \widehat{\mathbf{x}}_2 \cdot \widehat{\mathbf{y}}_1 & \widehat{\mathbf{x}}_2 \cdot \widehat{\mathbf{z}}_1 \\ \widehat{\mathbf{y}}_2 \cdot \widehat{\mathbf{x}}_1 & \widehat{\mathbf{y}}_2 \cdot \widehat{\mathbf{y}}_1 & \widehat{\mathbf{y}}_2 \cdot \widehat{\mathbf{z}}_1 \\ \widehat{\mathbf{z}}_2 \cdot \widehat{\mathbf{x}}_1 & \widehat{\mathbf{z}}_2 \cdot \widehat{\mathbf{y}}_1 & \widehat{\mathbf{z}}_2 \cdot \widehat{\mathbf{z}}_1 \end{bmatrix} = \begin{bmatrix} \cos \theta_{11} & \cos \theta_{12} & \cos \theta_{13} \\ \cos \theta_{21} & \cos \theta_{22} & \cos \theta_{23} \\ \cos \theta_{31} & \cos \theta_{32} & \cos \theta_{33} \end{bmatrix} \leftarrow \text{Also called a "direction cosine matrix"}$$

$$(i \text{ and } j \text{ represent the 1-2-3 axes}$$

$$\text{for } \mathcal{F}_2 \text{ and } \mathcal{F}_1, \text{ respectively})$$

Additional notes about the rotation matrix:

$$\mathbf{C}_{21} \equiv \overrightarrow{\mathcal{F}}_{2} \cdot \overrightarrow{\mathcal{F}}_{1}^{T} = \begin{bmatrix} \hat{\mathbf{x}}_{2} \cdot \hat{\mathbf{x}}_{1} & \hat{\mathbf{x}}_{2} \cdot \hat{\mathbf{y}}_{1} & \hat{\mathbf{x}}_{2} \cdot \hat{\mathbf{z}}_{1} \\ \hat{\mathbf{y}}_{2} \cdot \hat{\mathbf{x}}_{1} & \hat{\mathbf{y}}_{2} \cdot \hat{\mathbf{y}}_{1} & \hat{\mathbf{y}}_{2} \cdot \hat{\mathbf{z}}_{1} \\ \hat{\mathbf{z}}_{2} \cdot \hat{\mathbf{x}}_{1} & \hat{\mathbf{z}}_{2} \cdot \hat{\mathbf{y}}_{1} & \hat{\mathbf{z}}_{2} \cdot \hat{\mathbf{z}}_{1} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1,2} & \mathbf{y}_{1,2} & \mathbf{z}_{1,2} \end{bmatrix}$$

Recall:

 So, the rotation matrix is simply the basis vectors of F₁ expressed in F₂

$$\mathbf{x}_{1,2} = \begin{bmatrix} \hat{\mathbf{x}}_1 \cdot \hat{\mathbf{x}}_2 \\ \hat{\mathbf{x}}_1 \cdot \hat{\mathbf{y}}_2 \\ \hat{\mathbf{x}}_1 \cdot \hat{\mathbf{z}}_2 \end{bmatrix}, \qquad \mathbf{y}_{1,2} = \begin{bmatrix} \hat{\mathbf{y}}_1 \cdot \hat{\mathbf{x}}_2 \\ \hat{\mathbf{y}}_1 \cdot \hat{\mathbf{y}}_2 \\ \hat{\mathbf{y}}_1 \cdot \hat{\mathbf{z}}_2 \end{bmatrix}, \qquad \mathbf{z}_{1,2} = \begin{bmatrix} \hat{\mathbf{z}}_1 \cdot \hat{\mathbf{x}}_2 \\ \hat{\mathbf{z}}_1 \cdot \hat{\mathbf{y}}_2 \\ \hat{\mathbf{z}}_1 \cdot \hat{\mathbf{z}}_2 \end{bmatrix}$$

The rotation matrix also has a number of **useful properties**:

- It is invertible, i.e., C₂₁⁻¹
- It is orthogonal, i.e., its inverse is equal to its transpose, $C_{21}^{-1} = C_{21}^{T}$

$$\mathbf{C}_{12} = \mathbf{C}_{21}^{-1} = \mathbf{C}_{21}^{\mathrm{T}}$$

$$\mathbf{C}_{21}\mathbf{C}_{21}^{-1} = \mathbf{C}_{21}\mathbf{C}_{21}^{\mathrm{T}} = \mathbf{1}$$

 $\begin{aligned} \mathbf{v}_1 &= \mathbf{C}_{12} \mathbf{v}_2, & \mathbf{v}_2 &= \mathbf{C}_{21} \mathbf{v}_1 \\ \end{aligned}$ and,

Given all of this, we can now say:

$$\overrightarrow{\mathcal{F}}_1 = \mathbf{C}_{12} \overrightarrow{\mathcal{F}}_2 \qquad \qquad \overrightarrow{\mathcal{F}}_1^{\mathrm{T}} = \overrightarrow{\mathcal{F}}_2^{\mathrm{T}} \mathbf{C}_{21}$$

[for proofs see de Ruiter, p.13-14]

Multiple Reference Frames

Consider three reference frames: $\vec{\mathbf{v}} = \overrightarrow{\mathcal{F}}_A^T \mathbf{v}_A = \overrightarrow{\mathcal{F}}_B^T \mathbf{v}_B = \overrightarrow{\mathcal{F}}_C^T \mathbf{v}_C$

$$\begin{aligned} \mathbf{v}_{\text{C}} &= \overrightarrow{\boldsymbol{\mathcal{F}}}_{\text{C}} \cdot \overrightarrow{\boldsymbol{\mathcal{F}}}_{\text{B}}^{\text{T}} \mathbf{v}_{\text{B}} = \boldsymbol{C}_{\text{CB}} \mathbf{v}_{\text{B}} \\ \mathbf{v}_{\text{B}} &= \overrightarrow{\boldsymbol{\mathcal{F}}}_{\text{B}} \cdot \overrightarrow{\boldsymbol{\mathcal{F}}}_{\text{A}}^{\text{T}} \mathbf{v}_{\text{A}} = \boldsymbol{C}_{\text{BA}} \mathbf{v}_{\text{A}} \end{aligned}$$

$$\mathbf{v}_{\mathsf{C}} = \overrightarrow{\boldsymbol{\mathcal{F}}}_{\mathsf{C}} \cdot \overrightarrow{\boldsymbol{\mathcal{F}}}_{\mathsf{A}}^{\mathsf{T}} \mathbf{v}_{\mathsf{A}} = \mathbf{C}_{\mathsf{CA}} \mathbf{v}_{\mathsf{A}}$$

We can combine to find: $v_{\text{C}} = c_{\text{CB}}c_{\text{BA}}v_{\text{A}}$

Successive rotations of multiple frames can simply be represented by multiplication of the rotation matrices involved:

$$\mathbf{C}_{\mathrm{CA}} = \mathbf{C}_{\mathrm{CB}}\mathbf{C}_{\mathrm{BA}}$$

Principal rotation matrices

Principal Rotations

Principal rotation matrices describe the change of frame obtained by rotating a frame about only one of its coordinate axes

$$\mathbf{C}_1 \equiv \mathbf{C}_{\mathrm{BA}_1} = \overrightarrow{\mathbf{F}}_{\mathrm{B}} \cdot \overrightarrow{\mathbf{F}}_{\mathrm{A}}^{\mathrm{T}} = \begin{bmatrix} \hat{\mathbf{b}}_{1} & \hat{\mathbf{a}}_{1}^{\mathrm{T}} & \hat{\mathbf{b}}_{1} & \hat{\mathbf{a}}_{2}^{\mathrm{T}} & \hat{\mathbf{b}}_{1} & \hat{\mathbf{a}}_{3}^{\mathrm{T}} \\ \hat{\mathbf{b}}_{2} \cdot \hat{\mathbf{a}}_{1}^{\mathrm{T}} & \hat{\mathbf{b}}_{2} \cdot \hat{\mathbf{a}}_{2} & \hat{\mathbf{b}}_{2} \cdot \hat{\mathbf{a}}_{3} \\ \hat{\mathbf{b}}_{3} \cdot \hat{\mathbf{a}}_{1}^{\mathrm{T}} & \hat{\mathbf{b}}_{3} \cdot \hat{\mathbf{a}}_{2} & \hat{\mathbf{b}}_{3} \cdot \hat{\mathbf{a}}_{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}$$

For example, if \mathcal{F}_B is found by rotating \mathcal{F}_A about its 1-axis

Principal Rotations

Principal rotation matrices describe the change of frames obtained by rotating a frame about only one of its coordinate axes

$$\mathbf{C}_1(\theta) \equiv \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \quad \mathbf{C}_2(\theta) \equiv \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} \quad \mathbf{C}_3(\theta) \equiv \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}_3(\theta) \equiv \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Clarkson

[Curtis, Ch. 4]

General Rotations

Let's now consider representations of general rotations, let's start with Euler's Theorem (obtained in 1775):

Euler's Theorem: The most general motion of a rigid body with one point fixed is a rotation about an axis through that point.

Euler Axis-Angle $(\hat{\mathbf{a}}, \phi)$

Consider our two frames again, \mathcal{F}_1 and \mathcal{F}_2 , where \mathcal{F}_2 can be obtained by a single rotation (ϕ) about some unit vector, which we will denote $\hat{\mathbf{a}} = \vec{\mathcal{F}}_1^T \mathbf{a}$ $\mathbf{a} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}^T$

$$\mathbf{a}^{\mathrm{T}}\mathbf{a} = a_1^2 + a_2^2 + a_3^2 \equiv 1$$

We state, without proof, the rotation matrix is given by:

$$\mathbf{C}_{21} = \cos \phi \, \mathbf{1} + (1 - \cos \phi) \mathbf{a} \mathbf{a}^{\mathrm{T}} - \sin \phi \, \mathbf{a}^{\mathrm{X}}$$

Note that the coordinates of a can be expressed in any reference frame, since $\mathbf{C}_{21}\mathbf{a}=\mathbf{a}$

[for proofs see de Ruiter, p.15-20]

Euler Angles (ϕ, θ, ψ)

- One of the most common sets of parameters used to describe rotations, and uses successive principal rotations
- In three-dimensional space, 3 degrees of freedom are required to describe a general rotation

<u>Euler Angles</u>: set of three angles used in conjunction with 3 principal rotation matrices to describe orientation of one reference frame with respect to another

- There are many possible sequences, for example, consider \mathcal{F}_1 and \mathcal{F}_2 using a 3-2-1 attitude sequence:
 - 1. Rotation ψ about the 3-axis $(\hat{\mathbf{z}}_1 = \hat{\mathbf{z}}_i)$
- 2. Rotation θ about the 2-axis $(\hat{\mathbf{y}}_i = \hat{\mathbf{y}}_t)$
- 3. Rotation ϕ about the 1-axis $(\hat{\mathbf{x}}_t = \hat{\mathbf{x}}_2)$

Given these principal rotations, the rotation matrix from \mathcal{F}_1 and \mathcal{F}_2 is naturally given by: $\mathbf{C}_{21}(\phi, \theta, \psi) = \mathbf{C}_1(\phi)\mathbf{C}_2(\theta)\mathbf{C}_3(\psi)$

Euler Angles (cont.)

Expanding on the rotation matrix from before, we see:

$$\mathbf{C}_{21}(\phi,\theta,\psi) = \mathbf{C}_1(\phi)\mathbf{C}_2(\theta)\mathbf{C}_3(\psi)$$

$$=\begin{bmatrix}1&0&0\\0&\cos\phi&\sin\phi\\0&-\sin\phi&\cos\phi\end{bmatrix}\begin{bmatrix}\cos\theta&0&-\sin\theta\\0&1&0\\\sin\theta&0&\cos\theta\end{bmatrix}\begin{bmatrix}\cos\psi&\sin\psi&0\\-\sin\psi&\cos\psi&0\\0&0&1\end{bmatrix}=\begin{bmatrix}c_{\theta}c_{\psi}&c_{\theta}s_{\psi}&-s_{\theta}s_{\psi}&-s_{\theta}s_{\psi}\\s_{\phi}s_{\theta}c_{\psi}-c_{\phi}s_{\psi}&s_{\phi}s_{\theta}s_{\psi}+c_{\phi}c_{\psi}&s_{\phi}c_{\theta}\\c_{\phi}s_{\theta}c_{\psi}+s_{\phi}s_{\psi}&c_{\phi}s_{\theta}s_{\phi}-s_{\phi}c_{\psi}&c_{\phi}c_{\theta}\end{bmatrix}$$

Another common sequence is 3-1-3, i.e.,

- 1. Rotation ψ about the 3-axis $(\hat{\mathbf{z}}_1 = \hat{\mathbf{z}}_i)$
- 2. Rotation γ about the 1-axis $(\hat{\mathbf{x}}_i = \hat{\mathbf{x}}_t)$
- 3. Rotation θ about the 3-axis ($\hat{\mathbf{z}}_t = \hat{\mathbf{z}}_2$)

*where $s_i = \sin i$ and $c_i = \cos j$

 θ = spin angle

Euler Angles (cont.)

Expanding on the rotation matrix from before, we see:

$$\mathbf{C}_{21}(\phi,\theta,\psi) = \mathbf{C}_1(\phi)\mathbf{C}_2(\theta)\mathbf{C}_3(\psi)$$

$$\begin{bmatrix} c_{\theta}c_{\psi} & c_{\theta}s_{\psi} & -s_{\theta} \end{bmatrix}$$

*where $s_i = \sin i$ and $c_i = \cos j$

$$=\begin{bmatrix}1&0&0\\0&\cos\phi&\sin\phi\\0&-\sin\phi&\cos\phi\end{bmatrix}\begin{bmatrix}\cos\theta&0&-\sin\theta\\0&1&0\\\sin\theta&0&\cos\theta\end{bmatrix}\begin{bmatrix}\cos\psi&\sin\psi&0\\-\sin\psi&\cos\psi&0\\0&0&1\end{bmatrix}=\begin{bmatrix}c_{\theta}c_{\psi}&c_{\theta}s_{\psi}&-s_{\theta}s_{\psi}&-s_{\theta}s_{\psi}\\s_{\phi}s_{\theta}c_{\psi}-c_{\phi}s_{\psi}&s_{\phi}s_{\theta}s_{\psi}+c_{\phi}c_{\psi}&s_{\phi}c_{\theta}\\c_{\phi}s_{\theta}c_{\psi}+s_{\phi}s_{\psi}&c_{\phi}s_{\theta}s_{\phi}-s_{\phi}c_{\psi}&c_{\phi}c_{\theta}\end{bmatrix}$$

Another common sequence is 3-1-3, i.e.,

- 1. Rotation ψ about the 3-axis ($\hat{\mathbf{z}}_1 = \hat{\mathbf{z}}_i$)
- 2. Rotation γ about the 1-axis $(\hat{\mathbf{x}}_i = \hat{\mathbf{x}}_t)$
- 3. Rotation θ about the 3-axis ($\hat{\mathbf{z}}_t = \hat{\mathbf{z}}_2$)

Euler Angles (cont.)

The 3-1-3 sequence results in the following rotation matrix: $\mathbf{C}_{21}(\theta, \gamma, \psi) = \mathbf{C}_{3}(\theta)\mathbf{C}_{1}(\gamma)\mathbf{C}_{3}(\psi)$

$$=\begin{bmatrix}c_{\theta}c_{\psi}-s_{\theta}c_{\gamma}s_{\psi} & s_{\psi}c_{\theta}+c_{\gamma}s_{\theta}c_{\psi} & s_{\gamma}s_{\theta}\\-c_{\psi}s_{\theta}-c_{\theta}c_{\gamma}s_{\psi} & -s_{\psi}s_{\theta}+c_{\theta}c_{\gamma}c_{\psi} & s_{\gamma}c_{\theta}\\s_{\psi}s_{\gamma} & -s_{\gamma}c_{\psi} & c_{\gamma}\end{bmatrix}$$

In short, any sequence 1,2,3-axis rotations of Euler angles $(\theta_1, \theta_2, \theta_3)$ can uniquely determine a rotation matrix:

 $\mathbf{C} = \mathbf{C}_{\gamma}(\theta_3)\mathbf{C}_{\beta}(\theta_2)\mathbf{C}_{\alpha}(\theta_1), \text{ as long as the sequence of rotation axes, } \alpha, \beta, \text{ and } \gamma, \text{ satisfy } \alpha \neq \beta \text{ and } \beta \neq \gamma$

 Note, it is important to specify the order of rotations, since rotations do not commute

N.B. Singularities can occur at certain angles,

e.g. if $\theta_2 = 0$ in a 3-1-3 combination

$$\mathbf{C}_{21} = \mathbf{C}_3(\theta_3)\mathbf{C}_3(\theta_1) = \mathbf{C}_3(\theta_3 + \theta_1),$$

which implies the first and third rotations collapse into one, and the attitude cannot be uniquely determined

