Modelo OSI

Breve Descrição, Utilizações e Desvantagens

PEDRO MARTINS

Contents

1	Mode	Modelos OSI					
	1.1	Physycal Layer	4				
	1.2	Logical Layer	4				
	1.3	Network Layer	5				
	1.4	Tansport Layer	5				
	1.5	Outras Camadas	5				
2	PDUs	, SDus e SAPs	5				
3	Comunicação Peer-to-peer						
4	Sistema Intermédio						
5	A falat de sucesso do modelo OSI						
6	TCP-I	P vs OSI	7				
7	Princ	ípios dos Modelos da Internet	9				

1 Modelos OSI

- A comunicação entre duas entidades distintas exige que:
 - as entidades aceitem regras e protocolos de comunicação
 - Existam regras que sejam standard
 - Todas as entidades reconheçam e apliquem estas regras
- A comunicação deve respeitar algumas funcionalidades:
 - Controlar acessos e a utilização do meio
 - Identificação correta do emissor e do recetor
 - Routing adequado da informação
 - Garantias que a informação é entregue ao destinatário
 - Deteção de erros

7	Application					
6]	Presentation				
5		Session				
4	T	Transport				
3		Network				
2		Logical				
1		Physical				

Figure 1: OSI Model

- OSI: Open Systems Interconnect
- ISO: International Standards Organization

Um sistema possui as segyintes camadas, organizada por funções:

- Transporte de informação através da rede:
 - Transporte
 - Network
 - Logical
 - Physical
- Interação enter as diferentes funcionalidades da rede
 - Application

- Presentation
- Session Vantagens:
- Modular
- Flexivel
- Bem estruturada
- Complexa
- Demasiado overhead causo pelo elevado número de camadas
- Falta de aplicabilidade prática

1.1 Physycal Layer

- Transdutor elétrico: transforma os bits em sinais físicos (elétricos, óticos ou ondas rádio
 - Colocar os sinais físicos no respetivo meio de transmisão
 - Recebe os sinais elétricos do meio de transmissão e
- Sincroniza a informação recebida
 - Independemente do que está a ser transmitido, recebemos sempre "alguma coisa"
 - É preciso detetar se esse sinal corresponde a ruído ou informação
- Define o tamanho máximo dos pacotes e os conectores
- Impõe as restrições físicas ao sistema
- Em larga escala, é o fator mais importante do custo

Bitrate do Wifi:

- Depende da norma (wifi standards)
- da potência do sinal
- Usa OFDM
- Usa bits de controlo para identificar o início e o fim das mensagens
- RS232 é banda base
- SFD: Start Frame Delimitr
- Preamble: Saber a que velocidade estou:
 - Envio uma sequência de relógio e usando uma PLL faço a extração do relógio e sincronizo

1.2 Logical Layer

- Assegura que existe uma partilha justa dos recursos pelas diferentes estações
- Identifica as entidades envolvidas
- Direciona a infromação entre as máquinas das rede
- Serve de interface com a Network Layer

1.3 Network Layer

- Network identification: Permite identificar diferentes máquinas em diferentes domínios lógicos
- Interliga diferentes redes
- Define caminhos de interligação entre diferentes redes
- Reencaminha pacotes entre diferentes redes

1.4 Tansport Layer

- Assegura a ligação entre dois pontos da rede
- Pode ser usada para estabelecer uma conexão
- É nesta camada que são efetuadas as ligações ponto a ponto
- Garante certas funcionalidades da conexão
 - e.g.: packet reordering
- Controla o uso da rede de forma eficiente e.g.: previne a congestão da rede

1.5 Outras Camadas

- Sessions
 - Estabelece a relação de sessões entre conexões partilhadas pela mesma funcionalidade
- Presentation
 - Encripação
 - Segurança
 - Confidencialidade
- · Application
 - A Aplicação/funcionalidade que requer a comunicação

2 PDUs, SDus e SAPs

- · Cada camada funciona adicionando um header à mensagem
 - Causa grande overhead
- Cada camada transporta um pacote de dados da camada acima e usa os recursos de comunicação da camda abaixo
- Cada camada comunica logicamente com a mesma layer no recetor
- PDUs: Protocol Data Unit
- SDU: Service Data Unit
- SAP: Service Access Point

3 Comunicação Peer-to-peer

Figure 2: Comunicação logica entre camadas

4 Sistema Intermédio

5 A falat de sucesso do modelo OSI

- Os protocolos demoraram demasiado tempo para serem concluídos
- Foi difícil obter uma cópia dos documentos que descrevem os protocolos
- Protocolos difíceis de implementar
 - X.400
 - X.500
 - FTAM
 - CLNP
 - X.25
 - CMIP

Figure 3: Sistema Intermédio

- ES-IS
- IS-IS
- Estrutura demasiado complexa para o equipamento da altura

6 TCP-IP vs OSI

O modelo TCP-IP substituiu o modelo OSI, por ser mais simples, menos complexo e mais abstracto.

- · Vantagens:
 - Menos Níveis:
 - * A Presentation Layer está incluída na Application Layer
 - * A Session Layere a Transport Layer estão fundidas numa única, representando End-to -End
 - Um único nível de Internet (i.e., de redes interconectadas), que é orientado ao connectionless
 - * Simples e mais eficiente
 - O nível sub-network é deixado indefinido de forma propositada. Pode ser:
 - * Uma conexão point-to-point
 - * Uma rede complexa com internal switching

Figure 4: Comparação das camadas do Modelo TCP-IP com as camadas do modelo OSI

- * Na prática é considerado que é uma rede que usa a tecnologia IEEE 802.x
- Focado numa perspectiva end-to-end
 - * A estrutura interna da rede é muito mais simples

					Application
Upper	FTP	Telnet	нттр		Presentation
					Session
Transport	ТСР		UDP		Transport
Internet	IP				Network
Link	Ethernet	packet radio	ponto- a-ponto		Data Link
Physical	Ethernet				Physical

TCP/IP OSI

Figure 5: Comparação entre o modelo TCP/IP e o modelo OSI

7 Princípios dos Modelos da Internet

- · End-to-end
 - Remove a complexidade das camadas inferiores da rede para as camadas superiores da rede
 - Os nós intermédios da rede ficam mais simples
- Simplificação
 - Apenas 5 níveis
- · Conection-less network level
 - Cada pacote possui informação da origem e destino
 - Fácil de implementar sobre o meio físico
- Protocolos flexíveis na camada de transporte
 - TCP
 - UDP
 - cumpriam tudo o que era necessário na altura

Figure 6: Stack TCP/IP