

Hierarchical Multi-Level Spending Classification

Riccardo Ricci | SIADS 699 Capstone Project | University of Michigan | github.com/Rick0701/Hierarchical_Multi_Level_Spending_Classification

Background

- Spending classification can be tedious, expensive and sometimes even difficult to apply for workers in procurement areas;
- Making mistakes can cause inefficiencies in resource allocation impacting business operations. Implementing this task with an automatic solution such as ML can be extremely beneficial for the client.

Problem Statement

- Goal: predict Purchase Orders (PO) spending categories at four hierarchical levels;
- Challenges:
- many labels to assign at different hierarchical levels with greater complexity going down the tree;
- Short PO descriptions (avg 3 tokens);
- Ambiguous labels in training data due to wrong users imputation in source system. Test set certified by users but unbalanced (see to the right) \rightarrow ground truth

Level	Number of Categories	Accuracy Baseline		
Level1	3	0.95		
Level2	20	0.80		
Level3	104	0.70		
Level4	573	0.65		

Methodology

- Multi-step machine learning models that integrate previous predictions made at higher levels;
- Classifiers (scikit learn library):
- Decision Tree
- Random Forest
- Gradient Boosting
- Feature Engineering (see below)
- NLP, One-hot encoding with minimum frequency.

Feature	Description	Data Manipulations			
Purchase Orders descriptions (see Figure 2)	Description of a PO, mostly short sentences and sometimes only composed by numbers or dates.	> Removal of stopwords, applied			
Suppliers; Purchasing Organization, Purchasing Group, Company	 Suppliers: companies delivering a commodity or product; Purchasing organization, or group or company asking for that product or commodity 	 One-hot encoding; Minimum frequency is applied to remove uninformative features. This helps to make the model less complexing reducing overfitting: Suppliers: at least 10 PO; Purchasing Organization: 10 PO; Purchasing Group: 10 PO; Company: 20 PO. 			

Results

NLP on PO Description

• Transport, and its related bigram transport

• **SVD** for latent semantic analysis helps

descriptions are highly domain-specific;

TF-IDF with lemmatization performs similarly

to TF-IDF with stemming, but stemming is

preferred due to lower computational

discriminative power for this category;

increasing computational cost;

requirements.

guarulho are the most used words and

representative of the SC category signaling a

Train vs Test sets

- Supply Chain (SC) category underrepresented in the test set. General Procurement and Technical Procurement proportions swapped;
- category distributions suggests that a model trained on the original data may face *overfitting* when applied to unseen data unless covariate shift adaptation techniques are employed.

transport campobom anvisa fee cut 2r

reducing the feature space and lowers overfitting risk but results in dense vectors, Pre-trained Word2Vec (Google News) does not improve performance, likely because PO

Ambiguity

classification depth increases (from L1 to L4), the ambiguity score distribution shifts toward greater values → higher ambiguity and reduced discriminatory power.

	Level 1		Level 2		Level 3		Level 4	
	Macro- Avg	Weighte d - Avg						
Decision Tree	0.87	0.97	0.65	0.77	0.67	0.71	0.53	0.70
Random Forest n_est= 10	0.88	0.97	0.70	0.79	0.58	0.74	0.55	0.72
Gradient Boosting n_est= 500	0.72	0.94	0.56	0.63	n.a. (1)	n.a (1)	n.a. (1)	n.a. (1)

(1) The model was not able to conclude in reasonable time due high computational requirements

Discussion

- Well-performed NLP is necessary for satisfactory performance of downstream tasks like classification:
- Sometimes custom regex is necessary to capture domain-specific syntax;
- SVD can reduce the feature space but at the expense of computational requirements (dense vectors).
- Old-fashioned classifiers like Random Forest can still provide **solid results** and more importantly provide demonstrable results to a non-technical audience;
- Develop a new easy-to-understand metric: **Ambiguity** Score which can communicate to non-technical audience why a model is not performing well for some categories;
- Develop a framework for multi-level ML i.e. integrating prediction of categories at leve i-1 to predict categories at level i;
- Poor balance between training and test data and ambiguous labels of training data → the most important asset in any machine learning project is the data itself - its quality, representativeness, and balance largely determine the success or failure of the model. **No algorithmic sophistication can** compensate for poor-quality data;
- Model predictions risk amplifying existing labeling errors and biases due to incomplete and subjective training data, highlighting the need for careful human oversight.

Future Work

- Translation of Untranslated Tokens (e.g. transport guarulho);
- Train domain-specific Word2Vec models on the internal corpus of PO descriptions to capture idiosyncrasies;
- Separate models for different categories (only if labeled data is correct in the training data).

QR Code

project