

Outline

- Mean and covariance.
- Maximum likelihood, negative log likelihood.
- Gaussian Mixture Model (GMM).
- Expectation Maximization (EM) method.
 - EM regularization.
- EM vs. *k*-means.
- Anomaly Detection using GMM and regularization.
- Other Anomaly Detection Issues.
 - Add predictors to separate outliers.
 - Make predictors become Gaussian.

References

Matlab

- https://www.mathworks.com/help/stats/fitgmdist.html
- https://www.mathworks.com/examples/search?q=fitgmdist

sklearn

- http://scikit-learn.org/stable/modules/mixture.html
- http://scikit-learn.org/0.15/auto_examples/mixture/plot_gmm_classifier.html
- http://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html

General Steps in *k*-means and GMM

General Steps	k-means	GMM
1. initialization	pick random k points as centers C_g of each group g	set k random μ_g and \varSigma_g for each group g
2. group assignment	assign each point to the closest center C_g	assign each point to a group ${\it g}$ with max probability computed against each $\mu_{\it g}$ and $\Sigma_{\it g}$
3. computation	re-compute C_g for k new groups based on the new assignment	re-compute μ_g and Σ_g for k new groups based on the new assignment
4. iterations	go back to step 2	go back to step 2

GMM vs. k-means

kmeans

with
Regularization

EM vs. K-means

- Similar to *K*-means.
 - Depends on starting components.
 - Keep changing means (centers).
- Different from *K*-means.
 - Soft clustering → assign each point to a Gaussian component w/ probability.
 - One data point can belong to multiple components w/ probability.
 - Keep changing means (centers) and variance (or covariance).
 - K-means fail if non-sephere clusters center at the same locations.

Maximum Likelihood

- How do we decide best cluster? maximize the *joined probability* of all points.
 - In other words, maximize the multiplications of probabilities from all points.
 - maximize $L = \prod_{i=1}^{m} P_i$ (multiplications of probabilities from all points) ("+", bigger ≈ 1 , better)
 - Difficult to solve (chain rule), but we know $log(a \times b) = log(a) + log(b)$.
 - = $\underbrace{\text{maximize}}_{log-liklihood} \log(L) = \log(\prod_{i=1}^{m} P_i) = \sum_{i=1}^{m} \log(P_i)$ ("-", bigger ≈ 0 , better)
 - NOTE: $0 \le P \le 1 \implies -\infty \le \log(P) \le 0$.
 - Same as to minimize negative log likelihood.

("+", smaller ≈ 0 , better)

Maximize Log-Likelihood = Minimize Negative Log-Likelihood

■ Maximize *joined probability* → Maximize Log Likelihood → Minimize Negative Log Likelihood.

Gaussian Mixture Model (GMM)

- GMM is a probabilistic model that assumes data points were generated from...
 - A mixture of a finite # of latent Gaussian distributions (components).
 - Each component has unknown parameters μ and Σ (covariance).
 - Mixture models $\approx k$ -means clustering (*centers*) w/ additional covariance of data.
- *Expectation-maximization* (EM) fits mixture of *k* Gaussian models to data.
 - i.e. to estimate μ and Σ of each Gaussian model.

Iterate *E* and *M* until Convergence

- **Randomly** set $\mu_a \& \Sigma_g$ to all GMM components.
- Expectation: compute PDF of point x to all GMMs, & re-label x to GMM g based on max posterior probability. (i.e. does point x likely belong GMM_g ?)
 - **normpdf** (x, μ, σ) **posterior** (GMM_Model, x)
- Maximization: adjust parameters μ_g & Σ_g to minimize NLL (based on probability weights).

EM Iteration 1:26 (PDF)

- **Assume** 2 GMMS (i.e. clusters).
 - Initialize $\mu_R = 0.5$, $\Sigma_R = 0.5$, $\mu_R = 1.5$, $\Sigma_R = 0.5$

GMM = fitgmdist(data, K, 'Start', S, 'RegularizationValue', 1);
% GMM.NlogL;
[idx, NLL, PostP, logpdf] = cluster(GMM, data);

EM Iteration 1 : 26 (Posterior Probability)

Converge at about 34 iterations

Negative Log Likelihood, After 26 Iterations

poste	rior probabi:	lity	
1 =	0.99762	0.0023752,	0
4 =	0.98572	0.014284,	0
8 =	0.77103	0.22897,	0
10 =	0.36396	0.63604,	0
16 =	8.3009e-05	0.99992,	1
18 =	0.00098233	0.99902,	0
19 =	2.259e-05	0.99998,	1
20 =	5.8842e-06	0.99999,	1
21 =	1.4671e-06	1,	1
23 =	7.9998e-08	1,	1

EM Iteration with Different Initial μ and Σ (2)

EM Iteration with Different Initial μ and Σ (3)

EM Iteration with Different Initial μ and Σ (1)

© Copyright 2018 by Chih Lai, University of St. Thomas

GMM vs. k-means

EM vs. K-means

- Similar to *K*-means.
 - Depends on starting components.
 - Objective is not convex → may find local minimum when converge.
 - Convergence is defined as no change or small change on *NLL*.
- Different from *K*-means.
 - Soft clustering → assign each point to a Gaussian component w/ probability.
 - One data point can belong to multiple components w/ probability.
 - Keep changing means (centers) and variance (or covariance).
 - K-means fail if non-sephere clusters center at the same locations.

- Will EM = K-means if we set variance = 0?
 - K-means is viewed as a special case of GMM.

GMM Regularization

- Add a regularization number (≥ 0) (default 0) to the diagonal of covariance Σ .
 - Increase covariance in exchange for smaller estimation errors and **better stability**.
 - PDF spread out more smoothly.
 - Also improve "convergence" rates.

GMM Regularization

- Add a regularization number (≥ 0) (default 0) to the diagonal of covariance matrices.
 - Increase covariance in exchange for smaller estimation errors and **better stability**.

Anomaly Detection in GMM

- Compute $PDF(\mu_{\sigma})$ against a GMM g.
- Compute $PDF(new_x)$ against a GMM g
- Compute the ratio of above two.

Data Point = 0.5	2	Regulariz	ation = 0
P = 0.0000 0.9868	0.0132	0.0000	0.0032
Data Point = 1.0	2.5	0.0000	0.4704
P = 0.0000 0.9999	0.0001	0.0000	0.4794
Data Point = 1.5	1.5		
P = 0.0000 0.0029	0.9965	0.0005	0.4312
Data Point = 5 5			
P = 1.0000 0.0000	0.0000	0.0000	0.0000

Anomaly Detection in GMM w/ Regularization = 0.03

Data Point = 0.5	2	Regularization = 0	
P = 0.0000 0.9868	0.0132	0.0000	0.0032
Data Point = 1.0	2.5		
P = 0.0000 0.9999	0.0001	0.0000	0.4794
Data Point = 1.5	1.5		
P = 0.0000 0.0029	0.9965	0.0005	0.4312
Data Point = 5 5			
P = 1.0000 0.0000	0.0000	0.0000	0.0000

Data Point = 0.5	2	Regi	ılarization = 0.03
P = 0.0000 0.8420	0.1580	0.0000	0.0149
Data Point = 1.0	2.5		
P = 0.0006 0.9907	0.0087	0.0000	0.3273
Data Point = 1.5	1.5		
P = 0.0007 0.0104	0.9861	0.0028	0.2897
Data Point = 5 5			
P = 1.0000 0.0000	0.0000	0.0000	0.0000

No Regularization

- Raw data
 - Center1 [3, 2]
 - Center2 [2, 3]

with Regularization

- Raw data
 - Center1 [3, 2]
 - Center2 [2, 3]

No Regularization

- Raw data
 - Center1 [12, 8]
 - Center2 [2, 3]

with
Regularization

- Raw data
 - Center1 [12, 8]
 - Center2 [2, 3]

Code for GMM on Overlapping Groups (most code for plotting)

```
%% generate overlapping data
                        % for reproducibility
rng default
mu = [12, 8];
                        % covariance matrix
sigma = [8, 3; 3, 4];
r1 = mvnrnd(mu, sigma, 30); % random data 1
mu = [2,3];
sigma = [30, 12; 12, 15]; % covariance matrix
r2 = mvnrnd(mu, sigma, 30); % random data 2
t = [r1; r2];
                        % merge to 1 dataset
%% k-means
[cidx, cen] = kmeans(t, 2);
%% plot k-means
figure, subplot(2,2,3),
gscatter(t(:,1), t(:,2), cidx, 'br')
hold on, plot(cen(:,1), cen(:,2), 'k*'), grid on
xlim([-11 23]), vlim([-11 23]), title('\bf kmeans')
```

```
%% create GMM
GMM = fitgmdist(t, 2);
%% create clusters based on GMM
[idx, nlogl, P, logpdf] = cluster(GMM, t, 'RegularizationValue', 0);
%% plot GMM
subplot(2,2,4), gscatter(t(:,1), t(:,2), idx); hold on
ezcontour(@(x,y)pdf(GMM, [x y]), [-11 23], [-11 23]);
plot(GMM.mu(:,1), GMM.mu(:,2), 'k*'), title('\bf GMM')
xlabel("), ylabel("), grid on, hold off
subplot(2,2,1), plot(r1(:,1), r1(:,2), 'or'), hold on
plot(r2(:,1), r2(:,2), '+b'),
plot_gaussian_ellipsoid(GMM.mu(2,:), GMM.Sigma(:,:,2));
xlim([-11 23]), ylim([-11 23])
plot_gaussian_ellipsoid(GMM.mu(1,:), GMM.Sigma(:,:,1));
xlim([-11 23]), ylim([-11 23]), grid on
plot(GMM.mu(:,1), GMM.mu(:,2), 'k*'), hold off
title('covariance area')
%% plot cluster membership (probability)
figure, subplot(2,1,1), plot(P(:,1), 'r'), ylim([0 \ 1.05])
subplot(2,1,2), plot(P(:, 2), 'b'), vlim([0 1.05])
```

EM Summary

- Clusters are assigned by selecting GMMs to maximize the posterior probability.
 - or minimize *NLL*.
- An iterative algorithm that converges to a <u>local</u> optimum.
- GMM clustering is referred to as a soft clustering method.
 - Posterior *Prob*. Of each point indicates membership of each point in each cluster.
- \blacksquare μ and Σ of each GMM represent clusters.

Appendix

Multiple Multivariate Clusters

- Matlab function $\mathbf{mvnrnd}(\mu, \Sigma, \#\mathbf{pts})$
 - Use covariance Σ (not standard deviation σ).

```
mu = [2,3];
                         % symmetric covariance matrix
sigma = [10, 6; 6, 10];
rng default
                         % For reproducibility
r = mvnrnd(mu, sigma, 30);
r2 = r;
            r3 = r;
                         r4 = r;
MoveGap = 30;
figure, plot(r(:,1), r(:,2), '+'),
hold on
r2(:, 1) = r2(:, 1) + MoveGap; plot(r2(:,1), r2(:,2), '+r'),
r3(:, 2) = r3(:, 2) + MoveGap ; plot(r3(:, 1), r3(:, 2), '+k'),
r4 = r4 + MoveGap;
                         % move both axes
plot(r4(:,1), r4(:,2), '+g'),
hold off
```


Multivariate Normal Random Numbers

• Matlab function $\mathbf{mvnrnd}(\mu, \Sigma, \#\mathbf{pts})$

 $\mu = (2, 3)$

```
% for reproducibility
rng default
mu = [2,3];
sigma = [10, 6; 6, 10];  % symmetric WEAK covariance matrix
r = mvnrnd(mu, sigma, 30);
                                   \% \mu, \Sigma (not \sigma), #pts
figure,
subplot(3,1,1), plot(r(:,1), r(:,2), '+'), title('bf weak covariance'), grid on
sigma = [10, 9; 9,10];  % symmetric STRONG covariance matrix
rng default
                       % for reproducibility
r = mvnrnd(mu, sigma, 30);
                                    \% \mu, \Sigma (not \sigma), #pts
subplot(3,1,2), plot(r(:,1), r(:,2), '+'), title('bf strong covariance'), grid on
% x1, x2 \text{ no covariance} = sigma [10, 0; 0, 10];
sigma = [10 \ 10];
rng default
                       % for reproducibility
r = mvnrnd(mu, sigma, 30);
                                    \% \mu, \Sigma (not \sigma), #pts
subplot(3,1,3), plot(r(:,1), r(:,2), '+'), title('bf NO covariance'), grid on
```


Plot Data with 2 Classes

http://stackoverflow.com/questions/9134014/contour-plot-coloured-by-clustering-of-points-matlab

```
rng(5)
% dataset 1
mu = [20 \ 30]; sigma = [5 \ 8; \ 8 \ 15]*10;
r = mvnrnd(mu, sigma, 100);
% dataset 2
mu2 = [2 \ 3]; sigma2 = [3 \ -5; \ -5 \ 11] * 5;
r2 = mvnrnd(mu2, sigma2, 100);
% plot
data = [r; r2];
\mathbf{hx} = \text{figure};
PDF_Plot(r, hx),
hold on
PDF_Plot(r2, hx),
hold off
title('\bf PDF Plot'), xlabel('\bf X1'); ylabel('\bf X2');
```


Chicken and Eggs (example with k = 2)

- Chicken and Eggs
 - Need good μ and Σ to guess each point belongs to which Gaussian component.
 - $\mu_R = 8.2$, $\Sigma_R = 42.2$, $\mu_B = 19.8$, $\Sigma_R = 6.7$
 - Need to know which component each point came from to compute μ and Σ .
- Assume assigning points to wrong components, we can re-estimate new μ and Σ of each component to minimize Negative Log-Likelihood.
 - Expectation (E-step), followed by Maximization (M-step).

$$P(x \mid c) = f(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
Matlab function =
$$\mathbf{normpdf}(\text{data}, \boldsymbol{\mu}, \boldsymbol{\sigma})$$

$$\mathbf{mvnpdf}(\text{data}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\frac{1}{\sqrt{(2\pi)^k |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Posterior Probability

- $P(c \mid x)$ = posterior probability of class c provided instance x. (i.e. Prob. of x belong to class c)
 - http://www.mathworks.com/help/stats/compactclassificationdiscriminant.predict.html
- $P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$ (very similar to the *Naïve Bayes formula*)
 - Very similar to the NB formula, except how $P(x \mid c)$ is calculated.
 - P(x) is a normalization constant. (and it does not need to be actually computed!)
 - $P(c \mid x)$ = the product of • P(c) the prior probability of class c, and $P(x \mid c) = f(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
 - $P(x \mid c)$ the probability of an instance x provided (in) class c.
 - A normal density function in class c w/ mean μ & covariance σ^2 at point x.

■ Maximization: Adjust GMMs (i.e. $\mu_j \& \Sigma_j$) based on weights.

$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

Y-Shape Data

