

高等数学下期末模拟试题(二)

一、填空(3分×5=15分)

- 1. 函数 $u = 2xy z^2$ 在点 (2,-1,1) 处沿 $\vec{l} = (1,2,-2)$ 的方向导数是 ______
- 2. 级数 $\sum_{n=2}^{\infty} \frac{\ln n}{2^n} (x+1)^n$ 的收敛域是______
- 3.曲面 $z=x^2+y^2-1$ 在点 $M_0(2,1,4)$ 处的切平面方程为______
- 4. 设L 是从点O(0,0,0) 到A(1,2,2) 的直线段,则线积分 $\int_{L} x e^{yz} ds =$ _______

二、计算题(6分×3=18分)

- 1. 设函数 u = f(x, y, z), f 有二阶连续偏导, $z = e^x \sin y$, 求 $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x \partial y}$.
- 2. 计算 $\oint_C -y^2 dx + x dy + z^2 dz$, 其中曲线 C 是平面 y + z = 4 与柱面 $x^2 + y^2 = 2y$ 的交线, 且从 z 轴正向往下看是逆时针方向.
- 3. 计算曲面积分 $\iint_{\Sigma} (x^2 + y^2) dS$, 其中 Σ 是 $z = \sqrt{x^2 + y^2}$, $0 \le z \le 2$ 部分.
- 三、计算题(7分×3=21分)
 - 1. 求曲面 $z = x^2 + y^2$ 与圆锥面 $z = 2 \sqrt{x^2 + y^2}$ 所围空间区域 Ω 的体积.
 - $2. 求 \sum_{n=0}^{\infty} \frac{(2n+1)x^{2n}}{n!}$ 的和函数 S(x).
 - 3. 计算∭($2\sin y + z$)dV, 其中 $\Omega: x^2 + y^2 + z^2 \le 2z, z \ge \sqrt{x^2 + y^2}$.

四、解答题(8分×3=24分)

1. 计算
$$I = \int_{L} \frac{-y dx + x dy}{x^2 + y^2}$$
,其中 L 为
$$\begin{cases} x = t - \sin t - \pi \\ y = 1 - \cos t \end{cases}$$
 上从 $t = 0$ 到 $t = 2\pi$ 的弧段.

2. 求椭圆
$$\begin{cases} 5x^2 - 6xy + 5y^2 = 4 \\ z = 0 \end{cases}$$
上的点到 $M(0,0,2)$ 的最长距离和最短距离.

3. 求向量场
$$\vec{A} = (2x + z, y^2, z)$$
 通过 $\Sigma : z = x^2 + y^2 (0 \le z \le 1)$ 下侧的通量.

4. 将函数
$$f(x) = \sin \frac{x}{2} (-\pi \le x \le \pi)$$
 展开成傅里叶级数.

五. (8分) 将
$$f(x) = (1+x)\ln(1+x)$$
 展成 x 的幂级数, 并求 $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(n-1)}$ 的和.

六. (6分) 设平面区域
$$D = \{(x,y) | 0 \le x \le \pi, 0 \le y \le \pi\}$$
, L为D的正向边界. 证明: $\oint x e^{\sin y} dy - y e^{-\sin x} dx \ge \frac{5}{2}\pi^2$.