Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2010/2011

AL210 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 7 - 15 Novembre 2010

Tutore: Matteo Acclavio

www.matematica3.com

Esercizio 1.

Sia A anello e dimostrare che:

- A[x] è un anello (con l'usuale prodotto e somma tra polinomi)
- $M_n(A)$ è un anello (rispetto la somma e il prodotto tra matrici)
- Sia $I \subseteq A$ ideale (dx o sx) allora I[x] e $M_n(I)$ sono ideali (dx o sx) rispettivamente di A[x] e $M_n(A)$.
- Se A è privo di zerodivisori allora lo è anche A[x], ma non è vero per $M_n(A)$.

Esercizio 2.

Siano I e J due ideali di A anello commutativo, dimostrare che:

- IJ, I+J e $I\cap J$ sono ideali di A
- $IJ \subseteq I \cap J$
- $(I \cup J) := \{ \sum \alpha i + \beta j | \alpha, \beta \in A, \ i \in I, \ j \in J \}$ è un ideale
- $I + J = (I \cup J)$
- Se $I + J = A \Rightarrow IJ = I + J$

Si considerino in $(\mathbb{Z}, +, \cdot)$ gli insiemi $n\mathbb{Z} := (n) = \{nz \mid z \in \mathbb{Z}\}:$

- Dimostrare che $n\mathbb{Z}$ è un ideale $\forall n \in \mathbb{Z}$ e che (n) = (-n).
- Determinare $(14) \cap (4)$, $(2) \cap (7)$, (2) + (4), (2) + (7), (2)(7), (7) + (4)

Esercizio 3.

Sia $n \ge 2$ e $n = p_1^{e_1}....p_s^{e_s}$ la sua fattorizzazione in numeri primi. Mostrare che $[a]_n \in Z_n$ è nilpotente se e soltanto se $p_1...p_s$ divide a

Esercizio 4.

Dimostrare che $(\mathcal{P}(S), \cup, \cap)$ è un anello commutativo. Dimostrare inoltre che $\mathcal{P}_f(S) := \{$ sottoinsiemi finiti di $S \}$ è un ideale di $\mathcal{P}(S)$

Esercizio 5.

Un elemento a di un anello si dice idempotente se $a^2 = a$. Sia R è un anello commutativo, unitario e $a \in R$, mostrare che:

- (a) Se a è nilpotente, allora a è uno zero-divisore;
- (b) Se a è idempotente, allora 1 a è idempotente;
- (c) Se a è idempotente (diverso dall'unità), allora a è uno zero-divisore;
- (d) Sia $a \neq 0$, se a è nilpotente, allora a non è idempotente;
- (e) Se a è uno zero-divisore, allora ab è uno zero-divisore $\forall b \in R$;
- (f) Se a, b sono nilpotenti, allora a + b è nilpotente;
- (g) Se a è nilpotente, allora ab è nilpotente, per ogni $b \in R$;
- (h) Se $u \in R$ è invertibile e a è nilpotente, allora u + ab è invertibile, per ogni $b \in R$.

Dedurne che $Nil(R) := \{$ elementi nilpotenti di $R\}$ è un ideale mentre $\mathcal{Z}(R) := \{$ zerodivisori di $R\}$ no.