Claim: $(\exists m \in N)(\exists n \in N)(\exists m + 5n = 12)$

Proof: By direct proof.

First, we test the equation using different values for m and n.

Note: m & n cannot be 0.

A. Let
$$m = 2$$
 and $n = 1$. Then $3(2) + 5(1) = 11$

B. Let
$$m = 1$$
 and $n = 2$. Then $3(1) + 5(2) = 13$

Check the difference (B - A) to determine the number that can't be reached using natural numbers: 13 - 11 = 2

Check the divisibility of 3 and 5 by 2:

- -3/2 = 1.5
- -5/2 = 2.5

Both the above answers are not natural numbers.

Test above values to determine whether m & n should be 1.5 or 2.5:

Let
$$m = 1.5$$
 and $n = 1.5$. Then $3(1.5) + 5(1.5) = 12$

Let
$$m = 2.5$$
 and $n = 2.5$. Then $3(2.5) + 5(2.5) = 20$

Conclusion: Therefore, natural numbers are insufficient to solve the claim, the claim is false.

Claim: The sum of any five consecutive integers is divisible by 5.

Proof: By induction.

Step 1: Check A(1) by doing some examples.

Let
$$A = n1 + n2 + n3 + n4 + n5$$
.

Let a = (1,2,3,4,5)

-
$$A(a) = 1+2+3+4+5 = 15$$

$$-15/5=5$$

Let b = (10,11,12,13,14)

-
$$A(b) = 10+11+12+13+14 = 60$$

$$-60/5 = 12$$

Both a and b are divisible by 5.

Step 2 (Induction Step): Assume A(1) holds, therefore $(\forall n \in Z)[A(n) => A(n+1)]$.

Let (a+1) = (2,3,4,5,6)

-
$$A(a) = 2+3+4+5 = 20$$

$$-20/5=4$$

Let (b+1) = (11,12,13,14,15)

-
$$A(b) = 11+12+13+14+15 = 65$$

$$-65/5=13$$

Conclusion: Hence, by the principal of mathematical induction, the identity holds for all n. Thus, the claim is true.

Claim: For any integer n, the number $n^2 + n + 1$ is odd. That is $(\forall n \in Z)[n^2 + n + 1 = a \mid a/2 = p/q + r]$.

Proof: by Induction.

Step 1: Check A(1) by doing some examples.

Le n = 3.

Then: (3)2 + 3 + 1 = 13.

Then: 13/2 = [12/2 + 0.5] – Written in the form p/q + r.

Le n = 5.

Then: (4)2 + 4 + 1 = 21.

Then: 21/2 = [20/2 + 0.5] – Written in the form p/q + r.

Step 2 (Induction Step): Assume A(1) holds, therefore $(\forall n \in Z)[A(n) => A(n+1)]$.

Then: $(n+1)^2 + (n+1) + 1$

Then: (n+1)(n+1) + (n+1) + 1

Then: $n^2 + 2n + 1 + n + 1 + 1$

Then: $n^2 + 3n + 3$

Using the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$n = (-3 \pm \sqrt{-3})/2$$

This indicates that n cannot be divided into pairs.

Conclusion: Hence, by mathematical induction, the identity holds for all n. Thus, the claim is true.

Claim: Every odd natural number is of one of the forms 4n + 1 or 4n + 3, where n is an integer.

Proof: by Induction.

Step 1: Check A(1) by doing some examples.

Let n = 1

Let n = 2

- Then: 4(1) + 1 = 5

& Then: 4(2) + 1 = 9

- 5 is odd.

9 is odd.

- Then: 4(1) + 3 = 7

& Then: 4(2) + 3 = 11

- 7 is odd

11 is odd

Using 1 and 3 we can get four consecutive odd numbers (5,7,9,11).

Step 2 (Induction Step): Assume A(1) holds, therefore $(\forall n \in Z)[A(n) \Rightarrow A(n+1)]$.

Then: 4(n+1) + 1

Then: 4n + 4 + 1

Then: 4n + 5

Then (divide by 2 to determine if 5 is divisible evenly):

- -(4n/2) + (5/2)
- 2n + 2.5, thus, 5 is not divisible by two, therefore A(n+1) + 1 remains odd.

Then: 4(n+1) + 3 = 4n + 7

Then (divide by 2 to determine if 7 is divisible evenly):

- Then (4n/2) + (7/2)
- 2n + 3.5: Thus, 7 is not divisible by two, therefore A(n+1) + 3 remains odd.

Conclusion: Hence, by mathematical induction, all odd numbers can be obtained by adding 1 or 3 to 4n.

Claim: Prove that one and only one out of n, n + 2 and n + 4 is divisible by 3, where n is any positive integer.

Proof: by Cases.

Let r = 0, 1, 2,

Let q be the quotient.

Therefore, any number is in the form of 3q, 3q+1 or 3q+2.

Case 1: Let n = 3q

n = 3q = 3(q) is divisible by 3,

n + 2 = 3q + 2 is not divisible by 3.

n + 4 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.

Case 2: if n = 3q + 1

 \Rightarrow n = 3q + 1 is not divisible by 3.

 \Rightarrow n + 2 = 3q + 1 + 2 = 3q + 3 = 3(q + 1) is divisible by 3.

 \Rightarrow n + 4 = 3q + 1 + 4 = 3q + 5 = 3(q + 1) + 2 is not divisible by 3.

Case 3: if n = 3q + 2

n = 3q + 2 is not divisible by 3.

n + 2 = 3q + 2 + 2 = 3q + 4 = 3(q + 1) + 1 is not divisible by 3.

n + 4 = 3q + 2 + 4 = 3q + 6 = 3(q + 2) is divisible by 3.

Conclusion: Hence, by proof by cases, the identity holds for one and only one.

Claim: The only prime triple (i.e. three primes, each 2 from the next) is 3, 5, 7.

Proof: by Cases and Contradiction.

Let n, n + 2, n + 4 be three natural numbers that come one after the other.

If it happens that 3 does not divide n.

- Then: n = 3q + 1 or n = 3q + 2, for some q.
- Case 1 (3q + 1): n + 2 = 3q + 3, thus 3 divides n.
- Case 2 (3q + 2): n + 4 = 3q + 6, thus 3 divides n.

The fact that 3 divides two of the three numbers, means they cannot all be prime numbers.

Conclusion: Therefore, by proof by cases and contradiction, 3,5,7 are the only prime numbers evenly distributed.

Claim: For any natural number n, $2 + 2^2 + 2^3 + ... + 2^n = 2^{n+1} - 2$.

Proof: by Induction.

Step 1:

Let
$$n = 4$$
, then $2 + 2^2 + 2^3 + 2^4 = 2^{4+1} - 2 = 30$.

Let
$$n = 5$$
, then $2 + 2^2 + 2^3 + 2^4 + 2^5 = 2^{5+1} - 2 = 62$.

Step 2 (Induction Step): Assume A(1) holds, therefore $(\forall n \in \mathbb{Z})[A(n) => A(n+1)]$.

We add 2^{n+1} to both sides for A(n+1).

Then: $2 + 2^2 + 2^3 + \ldots + 2^n + 2^{n+1} = 2^{n+1} - 2 + 2^{n+1}$.

Then: LHS = $2*2^{n+1} - 2$.

Then: LHS = 2^{n+1} -2.

Conclusion: Hence, by the mathematical principal of induction, the identity holds for any natural number n.

Claim:

Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

Proof: by arbitrary number.

Let \mathcal{E} be an arbitrary number > 0.

We know that for a sequence $[\{a_n\}_{n=1}^{\infty}]$ tends to the limit [a] as $n \to \infty$.

Formally: $(\forall \xi \ge 0)(\exists n \in N)(\forall m \ge n)[|a_m - a| \le \xi].$

Then: If we transform the sequence $[\{a_n\}_{n=1}^{\infty}]$ and the limit [a] by any fixed number M > 0, the difference $|M^*am - M^*a|$ is still $< \xi$.

Formally: $(\forall \xi > 0)(\exists n \in N)(\forall m \ge n)[|Ma_m - Ma| < \xi].$

Therefore: $[\{M^*a_n\}_{n=1}^{\infty}]$ tends to the limit $[M^*a]$ as $n \to \infty$.

Conclusion: Hence, for an arbitrary number $\varepsilon > 0$, the sequence $[\{Ma_n\}_{n=1}^{\infty}]$ tends to the limit ML as $n \to \infty$.

Claim:

Given an infinite collection $A_n, n = 1, 2, ...$ of intervals of the real line, their intersection is defined to be

$$\bigcap_{n=1}^{\infty} A_n = \{x \mid (\forall n)(x \in A_n)\}\$$

Give an example of a family of intervals $A_n, n = 1, 2, ...$, such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1}^{\infty} A_n = \emptyset$. Prove that your example has the stated property.

Proof:

Let $A_n = (0, 1/m)$

If m = 1, then $A_1 = (0, 1)$

Then: $[\bigcap_{n=1}^{\infty} A_n] \subset A_1$.

Therefore, any element of the above intersect should be an element within (0, 1).

However, if $x \in (0, 1)$ then there exists a number m such that 1/m < x.

Then: $x \in A_n$, thus $x \in [\bigcap_{n=1}^{\infty} A_n]$

Conclusion: Hence, $[\bigcap_{n=1}^{\infty} A_n] = \{ \}.$

Claim:

Give an example of a family of intervals $A_n, n = 1, 2, ...$, such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1}^{\infty} A_n$ consists of a single real number. Prove that your example has the stated property.

Proof:

Let
$$A_n = (-1/m, 0]$$

If
$$m = 1$$
, then $A_1 = (-1, 0]$

Then:
$$[\bigcap_{n=1}^{\infty} A_n] \subset A_1$$
.

Therefore, any element of the above intersect should be an element within (-1, 0].

However, if $x \in (-1, 0]$ then there exists a number m such that x < -1/m < x.

Then:
$$x \in A_n$$
, thus $x \in [\bigcap_{n=1}^{\infty} A_n]$

Conclusion: Hence, $[\bigcap_{n=1}^{\infty} A_n] = \{0\}.$