# Exploring Lexical Semantics with Word Embeddings

#### Aniello De Santo

aniellodesanto.github.io aniello.desanto@stonybrook.edu

> San Jose State Feb 6, 2020



### Word Meanings

► What is a word meaning?

### Word Meanings

► What is a word meaning?

### Example: Dictionary Approach

### dog

- is a mammal,
- descended from wolf,
- is commonly a pet,
- subtypes are poodle, bulldog, . . .
- has fur,
- **▶** ...

#### **Wordnet**



### Why the Dictionary Approach is Problematic

- Such dictionaries have been tried for computers.
  - e.g. WordNet
- They must be created by hand, which is a big problem:
  - expensive
  - only available for some languages
  - many new words missing
- We need dictionaries that can be generated automatically.

### Meaning as Word Use

► The philosopher **Ludwig Wittgenstein** said that a word's meaning is its use.

#### Computational Counterpart

A word's meaning is given by how often it occurs together with other words.



**Step 1:** Record in how many sentences words occur together

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   |     |      |     |
| cat  |     | -   |      |     |
| bark |     |     | -    |     |
| run  |     |     |      | -   |

**Step 1:** Record in how many sentences words occur together

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   |      |     |
| cat  |     | -   |      |     |
| bark |     |     | -    |     |
| run  |     |     |      | -   |

**Step 1:** Record in how many sentences words occur together

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    |     |
| cat  |     | -   |      |     |
| bark |     |     | -    |     |
| run  |     |     |      | -   |

**Step 1:** Record in how many sentences words occur together

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    | 1   |
| cat  |     | -   |      |     |
| bark |     |     | -    |     |
| run  |     |     |      | -   |

**Step 1:** Record in how many sentences words occur together

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    | 1   |
| cat  | 2   | -   |      |     |
| bark |     |     | -    |     |
| run  |     |     |      | -   |

**Step 1:** Record in how many sentences words occur together

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    | 1   |
| cat  | 2   | -   | 1    |     |
| bark |     |     | -    |     |
| run  |     |     |      | -   |

**Step 1:** Record in how many sentences words occur together

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    | 1   |
| cat  | 2   | -   | 1    | 2   |
| bark |     |     | -    |     |
| run  |     |     |      | -   |

**Step 1:** Record in how many sentences words occur together

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    | 1   |
| cat  | 2   | -   | 1    | 2   |
| bark | 2   |     | -    |     |
| run  |     |     |      | -   |

**Step 1:** Record in how many sentences words occur together

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    | 1   |
| cat  | 2   | -   | 1    | 2   |
| bark | 2   | 1   | -    |     |
| run  |     |     |      | -   |

**Step 1:** Record in how many sentences words **occur together** 

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    | 1   |
| cat  | 2   | -   | 1    | 2   |
| bark | 2   | 1   | -    | 0   |
| run  |     |     |      | -   |

**Step 1:** Record in how many sentences words **occur together** 

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    | 1   |
| cat  | 2   | -   | 1    | 2   |
| bark | 2   | 1   | -    | 0   |
| run  | 1   |     |      | -   |

**Step 1:** Record in how many sentences words **occur together** 

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    | 1   |
| cat  | 2   | -   | 1    | 2   |
| bark | 2   | 1   | -    | 0   |
| run  | 1   | 2   |      | -   |

**Step 1:** Record in how many sentences words occur together

#### Example

|      | dog | cat | bark | run |
|------|-----|-----|------|-----|
| dog  | -   | 2   | 2    | 1   |
| cat  | 2   | -   | 1    | 2   |
| bark | 2   | 1   | -    | 0   |
| run  | 1   | 2   | 0    | -   |

### From Vectors to Vector Spaces

**Step 2:** Construct an n-dimensional vector space. n is given by the number of word types in the text



### Problems?

### Conceptual Concerns

Is word meaning really just a bunch of numbers?

### ► (More) Practical Concerns

- In a real-word model, the vector space will have thousands of dimensions (thousands of unique words)
- most of the words in the vocabulary will not co-occur in the same sentence (or document!)
  - ⇒ results in vectors with mostly empty (zeros) slots.
- ► Will similar words have similar vectors?

### Word Embedding Methods

| Method   | Paper                       |
|----------|-----------------------------|
| LSA      | Landauer & Dumais (1997)    |
| Word2Vec | Mikolov et al. (2013)       |
| ELMo     | Peters et al. (2018)        |
| BERT     | Devlin et al. (2019, arxiv) |

#### Word2Vec

- Word2Vec is predictive model for learning word embeddings from raw text
- a shallow, two-layer neural networks trained to reconstruct linguistic contexts of words
- words that share common contexts in the corpus are located in close proximity to one another in the space

### Word Embedding Methods

| Method   | Paper                       |
|----------|-----------------------------|
| LSA      | Landauer & Dumais (1997)    |
| Word2Vec | Mikolov et al. (2013)       |
| ELMo     | Peters et al. (2018)        |
| BERT     | Devlin et al. (2019, arxiv) |

#### Word2Vec

- Word2Vec is predictive model for learning word embeddings from raw text
- a shallow, two-layer neural networks trained to reconstruct linguistic contexts of words
- words that share common contexts in the corpus are located in close proximity to one another in the space

### A Quick Excursus: The Perceptron

### The Perceptron: A Mini-Version of a Neural Network

- input layer: neurons that are sensitive to input
- output layer: neurons that represent output values
- **connections:** weighted links between input and output layer
- most activated output neuron represents decision



### Perceptron Activation for Hi Dear



### Perceptron Activation for Hi Dear Emily



### Back to Word2Vec

- ► A NN trained to reconstruct linguistic contexts of words
- ► Two learning algorithms:
  - ► the Continuous Bag-of-Words (CBOW)
  - the Skip-Gram model



### Back to Word2Vec

- ► A NN trained to reconstruct linguistic contexts of words
- ► Two learning algorithms:
  - ► the Continuous Bag-of-Words (CBOW)
  - the Skip-Gram model



### Back to Word2Vec

- A NN trained to reconstruct linguistic contexts of words
- ► Two learning algorithms:
  - the Continuous Bag-of-Words (CBOW)
  - the Skip-Gram model: predict context based on target word.



### The Skip-Gram Model: Architecture



### The Skip-Gram Model: Predicting Context

Skip-Gram: predict context based on target word.



### Let's try it together!



shorturl.at/ADPSX

### Some Recent Applications

- Web Search
  - construct meaning vector for every website
  - rank websites by vector similarity
- ► Ad Sense
  - associate every ad with a vector
  - pick ad that most closely matches website vector

#### Possible Concerns

Watch out for intrinsic biases!

### The Danger of Corpora



MICROSOFT | WEB | TL;OR |

## Twitter taught Microsoft's AI chatbot to be a racist asshole in less than a day

By James Vincent | Mar 24, 2016, 6:43am EDT Via The Guardian | Source TayandYou (Twitter)







#### Is This Realistic?

- Possible Concerns
  - Is word meaning really just a bunch of numbers?
- But this might actually capture something psychologically real!

#### Psycholinguistic Experiments

- Word association tasks (Rubistein et al. 2015)
- ► ERP measures of context appropriateness (Broderik et al. 2018, Ettinger et al. 2016)
- Priming effects (Gunther et al. 2016)
  - Check it out: Masked priming effects!

### Is This Realistic? [cont.]

- For word meaning, the approach seems to work.
- ▶ But what about sentence/text meaning?

### Example

The following two sentences receive the same vector:

- (1) a. Dog bites man!
  - b. Man bites dog!

# Is This Realistic? [cont.]

Meaning is not just about lexical representations.



# Is This Realistic? [cont.]

Meaning is not just about lexical representations.

#### You can't:

- [eat a dumpling] [wearing a tuxedo]
- eat a [dumpling wearing a tuxedo]



# TL/DR

#### Word embeddings

- A computational implementation of a distributional semantics!
- useful in a variety of applications
  - Ad-sense, stylistic analysis
  - part-of-speech tagging, parsing, machine translation
- source of theoretical insights
  - diachronic change, semantic shifts, predictive processing, etc.
  - control for semantic similarity in psycholinguistic experiments
- cognitive parallels?

# TL/DR

#### Word embeddings

- ► A computational implementation of a distributional semantics!
- useful in a variety of applications
  - Ad-sense, stylistic analysis
  - part-of-speech tagging, parsing, machine translation
- source of theoretical insights
  - diachronic change, semantic shifts, predictive processing, etc.
  - control for semantic similarity in psycholinguistic experiments
- cognitive parallels?

But: Meaning is more complex than simple distributional information!

### Further Readings

- Distributed Representations of Words and Phrases and their Compositionality
- Efficient Estimation of Word Representations in Vector Space
- 3 A Neural Probabilistic Language Model
- 4 A nice series of blog posts by Chris McCormick
- 5 Evaluating distributional models of compositional semantics
- **6** A semi-technical tutorial (some of the pictures in this presentation are from there)
- Exploring the Implications of Biases in Word2Vec
- **8** Debiasing Word Embeddings

**Appendix** 

# Word Embeddings

#### We saw sparse vectors:



- But word vectors can be dense: real numbers in a small number of dimensions
- ► Compress sparse matrices into smaller ones



# Word Embeddings

We saw sparse vectors:



- But word vectors can be dense: real numbers in a small number of dimensions
- ► Compress sparse matrices into smaller ones

# The Skip-Gram Model: Some Details

some math:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

a high-level illustration of the architecture:



Source: A nice technical tutorial

#### W2V: Problems?

#### Will similar words have similar vectors?

- Consider the following sentences:
  - 1 I like watching movies.
  - 2 I enjoy watching movies.
  - 3 I hate watching movie.
- ▶ What is the distance between *like*, *enjoy*, and *hate*?

#### W2V: Problems?

#### Will similar words have similar vectors?

- Consider the following sentences:
  - 1 I like watching movies.
  - 2 I enjoy watching movies.
  - 3 I hate watching movie.
- What is the distance between like, enjoy, and hate?
- How similar are the following sentences?
- I like pancakes.
- 2 Steven enjoys cookies.

## An Observation on Frequencies: Zipf's Law

- Word models care about word frequency.
- ▶ But there is a problem...

#### Zipf's Law

The frequency of a type is inversely proportional to its rank.



#### In Plain English

The most frequent word is

- ▶ 2 times as common as the 2nd most frequent word,
- ▶ 3 times as common as the 3rd most frequent word,
- and so on.

# An Observation on Frequencies: Zipf's Law

- Word models care about word frequency.
- ▶ But there is a problem...

#### Zipf's Law

The frequency of a type is inversely proportional to its rank.



#### In Plain English

The most frequent word is

- ▶ 2 times as common as the 2nd most frequent word,
- 3 times as common as the 3rd most frequent word,
- and so on.

### An Example from...the NBA?



# Visualizing Zipf Distributions



# Zipf's Law is Everywhere...

- ► A distribution is probably Zipfian if
  - there is a long neck: a few types make up the majority of tokens,
  - there is a long tail: most types only have 1 token (hapax legomenon)
- Surprisingly, Zipf's Law shows up in tons of places:
  - size of large cities in a country
  - citations for academic papers
  - frequencies of last names
  - frequencies of weekdays in text

# ...Even in Language!



# Stop Words

- ▶ About 150 words make up 50% of all English texts: the, of, and, a, ...
- ► These are called **stop words**.
- Stop words are not very informative for many applications.
- ► So they are usually discarded after the tokenization step.
- ► Failure to do so can greatly reduce the model's performance.

#### Steps of Word Counting Model (Revised)

- 1 collect corpus
- 2 remove stop words
- 3 tokenize strings
- 4 count tokens for each type

## Stop Words

- ▶ About 150 words make up 50% of all English texts: the, of, and, a, ...
- These are called stop words.
- Stop words are not very informative for many applications.
- ► So they are usually discarded after the tokenization step.
- ► Failure to do so can greatly reduce the model's performance.

#### Steps of Word Counting Model (Revised)

- collect corpus
- 2 remove stop words
- 3 tokenize strings
- 4 count tokens for each type

# Example: A Text Without (Non)-Stop Words

- ▶ Stop words are much less informative than non-stop words.
- Just check the example below.

#### Stop Words only

The having no on the

# Example: A Text Without (Non)-Stop Words

- Stop words are much less informative than non-stop words.
- Just check the example below.

#### Stop Words and Non-Stop Words

The sun shone having no alternative on the nothing new

# Example: A Text Without (Non)-Stop Words

- Stop words are much less informative than non-stop words.
- Just check the example below.

#### Non-Stop Words only

sun shone alternative nothing new

# An Important Consequence of Zipf's Law

- Texts mostly consist of stop words.
- ► Hence it can be difficult to get representative counts for non-stop words.

#### Sparse Data Problem

- Most of the data is not informative.
- You need tons of data to have enough useful data.

# An Important Consequence of Zipf's Law

- Texts mostly consist of stop words.
- ► Hence it can be difficult to get representative counts for non-stop words.

#### Sparse Data Problem

- Most of the data is not informative.
- You need tons of data to have enough useful data.

#### Example

- Most models require corpora with at least a few million sentences.
- Really good models (e.g. Google translate) use billions of data points.