1. (1 pt) En el circuit de la figura la lectura de l'amperímetre A_1 és $100 \, mA$ i la lectura de l'amperímetre A_3 , $15 \, mA$. Quina serà la lectura dels altres amperímetres?

Sabent la intensitat total (que marca A_1) i la que marca A_3 en una branca de la derivació és immediat veure que la lectura de A_2 serà

$$100 - 15 = 85 \, mA$$

i que A_4 marca senzillament el mateix que A_1 , és a dir $100\,mA$.

2. (2 pts) Sabent que l'amperímetre de la figura indica 1, 5 mA; calculeu la caiguda de tensió entre els punts A i B.

Calculem les intensitats a cada branca de la derivació

$$I_1 = 1, 5 \cdot 10^{-3} \cdot \frac{9}{9 + (2+1)} = 1,125 \cdot 10^{-3} A$$

$$I_1 = 1, 5 \cdot 10^{-3} \cdot \frac{2+1}{9+(2+1)} = 3,75 \cdot 10^{-4} A$$

Ara podem calcular la caiguda de tensió entre els punts A i B, per exemple, en la resistència de $9\,\Omega$ (a les dues branques val el mateix)

$$V_{9\Omega} = I_2 \cdot 9 = 3,375 \cdot 10^{-3} V$$

3. (1.5 pts) De la figura següent sabem que la caiguda de tensió entre els punts A i B és de $40\,V$, quina intensitat circula per cada una de les resistències?

Aplicant la llei d'Ohm a les resistències de $4\,\Omega$ i $8\,\Omega$

$$40 = I_{4\Omega} \cdot 4 \to I_{4\Omega} = \frac{40}{4} = 10 A$$

$$40 = I_{8\Omega} \cdot 8 \to I_{8\Omega} = \frac{40}{8} = 5 A$$

aquestes dues intensitats se sumen a la derivació i per tant, per la resistència de $3\,\Omega$ passen

$$I_{3\Omega} = 10 + 5 = 15 A$$

4. (5.5 pts) Calculeu la caiguda de tensió en cada resistència.

(Heu de refer el circuit a cada pas al fer col·lapsar les resistències i heu d'etiquetar amb lletres les intensitats que circulin per cada branca.)

Trobem la resistència equivalent començant, per exemple, per \mathbb{R}_3 i \mathbb{R}_4 que es troben en sèrie

$$R_3 + R_4 = 24 \Omega$$

ara, aquesta en paral·lel amb R_2

$$R_2//(R_3 + R_4) = \frac{24 \cdot 8}{24 + 8} = 6\,\Omega$$

aquesta en sèrie amb R_1 ,

$$R_1 + R_2 / / (R_3 + R_4) = 18 + 6 = 24 \Omega$$

Ara calculem R_6 i R_7 en paral·lel

$$R_6//R_7 = \frac{6 \cdot 3}{6+3} = 2\,\Omega$$

i aquesta en sèrie amb R_5

$$R_6//R_7 + R_5 = 2 + 38 = 40 \,\Omega$$

Finalment, l'associació en paral·lel final serà

$$\left(R_1 + R_2 / / (R_3 + R_4)\right) \left(R_6 / / R_7 + R_5\right) = \frac{14 \cdot 40}{24 + 40} = 15 \,\Omega$$

La intensitat total que passa pel circuit serà llavors,

$$V = IR \rightarrow I = \frac{V}{R} = \frac{600}{15} = 40 A$$

Ara, les intensitats a les derivacions seran

$$I_1 = 40 \cdot \frac{40}{40 + 24} = 25 A;$$
 $I_2 = 40 \cdot \frac{24}{40 + 24} = 15 A$
 $I_3 = 25 \cdot \frac{24}{24 + 8} = 18,75 A;$ $I_4 = 25 \cdot \frac{8}{24 + 8} = 6,25 A$
 $I_5 = 15 \cdot \frac{6}{3 + 6} = 10 A;$ $I_6 = 15 \cdot \frac{3}{3 + 6} = 5 A$

i les caigudes de tensió a les resistències

$$V_{R_1} = I_1 R_1 = 25 \cdot 18 = 450 \, V; \quad V_{R_2} = I_3 R_2 = 18,75 \cdot 8 = 150 \, V$$

$$V_{R_3} = I_4 R_3 = 6,25 \cdot 10 = 62,5 \, V; \quad V_{R_4} = I_4 R_4 = 6,25 \cdot 14 = 87,5 \, V$$

$$V_{R_5} = I_2 R_5 = 15 \cdot 38 = 570 \, V; \quad V_{R_6} = I_5 R_6 = 10 \cdot 3 = 30 \, V$$

$$V_{R_7} = I_6 R_7 = 5 \cdot 6 = 30 \, V$$

