Cross Product

David Robinson

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$. Then, the **cross product w** is a vector that is orthogonal to both \mathbf{u} and \mathbf{v} .

$$\mathbf{w} = \langle u_2 v_3 - u_3 v_2, -(u_1 v_3 - u_3 v_1), u_1 v_2 - u_2 v_1 \rangle$$

Properties of the Cross Product

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors, and let c be a scalar.

$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$$

$$c(\mathbf{u} \times \mathbf{v}) = (c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v})$$

$$\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = 0$$

$$\mathbf{v} \times \mathbf{v} = \mathbf{0}$$

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$$

Magnitude of the Cross Product

Let **u** and **v** be vectors, and let θ be the angle between them. Then,

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \cdot \|\mathbf{v}\| \cdot \sin \theta$$

Cross Product using Determinant

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be vectors. Then the cross product \mathbf{w} is

$$\mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Area of a Parallelogram

If we locate vectors \mathbf{u} and \mathbf{v} such that they form adjacent sides of a parallelogram, then the area of the parallelogram is given by $\|\mathbf{u} \times \mathbf{v}\|$

The Triple Scalar Product

The **triple scalar product** of vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} is

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Volume of a Parallelepiped

The volume of a parallelepiped with adjacent edges given by the vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} is the absolute value of the triple scalar product

$$V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$$

Torque

Torque, τ , measures the tendency of a force to produce rotation about an axis of rotation. Let \mathbf{r} be a vector with an initial point located on the axis of rotation and with a terminal point located at the point where the force is applied, and let vector \mathbf{F} represent the force. Then torque is equal to the cross product of \mathbf{r} and \mathbf{F} .

$$\tau = \mathbf{r} \times \mathbf{F}$$