GAS TURBINE ENGINE FAULT DETECTION

Soodanbek K., Andrey Z., Igor U.

Motivation

Gas Turbine engines are complex units.

Detecting faults allow to:

- Save human lives
- Save money
- Maintain the equipment in a good condition

Approaches

- 1. Data driven
 - Main problem: insufficient amount of labeled data

- 2. Hybrid modeling
 - Resolves the issue

Generated dataset

Physical model of Gas Turbine Engine JT8D: 28 features (23 relevant features), 16 targets (fault cases)

Initial: 64K samples

Final: 144K samples

Dataset in 2D Latent Space

Feature Importance

Skoltech

- HPC pressure ratio
- HPC revolutions per minute
- Pressure after turbine

Comparison of ML models

	Logistic Regression	Random Forest*		XGBoost
Recall	0.51	0.86	0.93	0.64
F1	0.49	0.86	0.93	0.63

^{*}Enlarged dataset

Multilayer Perceptron

Skoltech

Recall	F1	Epoch	
0.96	0.95	93	

Stacking

Structure

XGBoost					
Extra Trees	Extra Trees	Random Forest	Random Forest	XGBoost	XGBoost

	Stacking	
Recall	0.93	
F1	0.93	

FIN.

Skoltech

Thank you for attention!