AVL Trees

Advanced Data Structre

12/11/2020 1

Binary Search Tree - Best Time

- All BST operations are O(h), where d is tree height
- minimum h is $h = \lfloor \log_2 N \rfloor$ for a binary tree with N nodes
 - > What is the best case tree?

2

- > What is the worst case tree?
- So, best case running time of BST operations is O(log N)

12/11/2020 2

1

Binary Search Tree - Worst Time

Worst case running time is O(N)

What happens when you Insert elements in ascending order?

• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

Problem: Lack of "balance":

• compare depths of left and right subtree

Unbalanced degenerate tree

3

12/11/2020 3

Balanced and unbalanced BST 1 2 3 Is this "balanced"? 12/11/2020 4 4 4

Definition: Balanced Tree

- Trees whose height in the worst case turns out to be O (log N) are known as Balanced trees or height balanced trees Or
- A balanced search tree is one where all the branches from the root have almost the same height.

Balance Factor is a property of node which is used to decide whether the tree is balanced or not

12/11/2020

2

Approaches to balancing trees

- · Don't balance
 - > May end up with some nodes very deep
- · Strict balance
 - > The tree must always be balanced perfectly
- Pretty good balance
 - > Only allow a little out of balance
- · Adjust on access
 - > Self-adjusting

12/11/2020

6

5

6

8

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (heightbalanced trees)

>

- > Splay trees and other self-adjusting trees
- > B-trees and other multiway search trees

12/11/2020

7

Perfect Balance

- Want a complete tree after every operation
 - > tree is full except possibly in the lower right
- · This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree

AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- · Balance factor of a node bf
 - height(left subtree) height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1,0,-1
 - > Store current heights in each node

12/11/2020 9

AVL Tee

If balanceFactor > 1 or < -1 then the tree is unbalanced, and needs 'rearranging' to make it more balanced

12/11/2020 10

10

9

AVL tree

Height of a node

- The height of a leaf is 1. The height of a null pointer is zero.
- ☐ The height of an internal node is the maximum height of its children plus 1

12/11/2020 11

:: Definiton

- An empty binary tree is an AVL tree.
- If non empty tree the binary tree T is an AVL tree if
 - $\rightarrow~{\rm T_L}$ and ${\rm T_R}$ the left and right $~{\rm subtrees}$ of T are also AVL trees.
 - \rightarrow |h(T_L)_ h(T_R) <= 1 where h(T_L) and h(T_R) are the heights of the left and right subtrees.

12/11/2020 13

Calculate the balance factor for given tree

Output

O

13

Height of an

- Suppose we have n nodes in an AVL tree of height h.
 - $\rightarrow n \ge N(h)$ (because N(h) was the minimum)
 - h n ≥ h hence h (relatively well balanced tree!!)
 - \rightarrow h \leq 1.44 log₂n (i.e., Find takes O(logn))

12/11/2020 15

Insert and Rotation in s

- Insert /delete operation may cause balance factor to become 2 or –2 for some node
 - > only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left}-h_{right}) is 2 or −2, adjust tree by *rotation* around the node

12/11/2020 18

18

Types of rotation

12/11/2020 20

Insertions in s

Let the node that needs rebalancing be α .

There are 4 cases:

Outside Cases (require single rotation):

- 1. Insertion into left subtree of left child of α .
- 2. Insertion into right subtree of right child of α . Inside Cases (require double rotation):
- 3. Insertion into right subtree of left child of α .
- 4. Insertion into left subtree of right child of α .

The rebalancing is performed through four separate rotation algorithms.

12/11/2020 21 21

21 2

Exercises

• Build an AVL tree with the following values: 15, 20, 24, 10, 13, 7, 30, 36, 25

46

