Introduction to Poisson processes with R

Objectives

The aim of this session is to manipulate and illustrate the notions introduced in the lecture on Poisson processes with the R software.

Load the R file **TP-PoissonProcess-etud.R** (to be completed), available on the Moodle page, and fill in the gaps during this session.

1 Homogeneous Poisson processes observed on a fixed window

First, we consider the case of a fixed observation window (and thus a random number of points).

1.1 Simulation

- i. Recall the conditional distribution of the arrival times of a homogeneous Poisson process with rate lambda on an interval [0, Tmax], given the number of points in that interval.
- ii. Write an R function simulPPh1 with arguments lambda and Tmax, which simulates such a process and returns the corresponding arrival times.
- iii. For lambda=2 and Tmax=10, simulate a homogeneous Poisson process and plot both the counting process and the arrival times.
 Indication: you may use the R functions plot() (with the option
 type="s"), points() and lines().

1.2 Maximum likelihood estimator

- i. Write an R function MLE1 which returns the Maximum Likelihood Estimator of a homogeneous Poisson process PPh observed on a fixed window [0,Tmax].
- ii. Apply it on different simulated data. What do you observe?

1.3 Asymptotic behavior of the MLE

In this section, we illustrate the asymptotic behavior 1 , as T goes to $+\infty$, of the MLE $\hat{\lambda}_T$ of the rate λ of a homogeneous Poisson process on [0,T].

1.3.1 Strong LLN-type result

First let us illustrate the almost-sure convergence :

$$\hat{\lambda}_T \xrightarrow[T \to +\infty]{a.s.} \lambda. \tag{1}$$

Note that in the lecture, we considered a weak LLN-type result since we only proved the convergence in probability. To illustrate (1):

- i. Fix a rate lambda=2 and a sequence of Tmax that tends to $+\infty$, say Tillustr=1:500.
- ii. For each Tmax in Tillustr, simulate a homogeneous Poisson process with rate lambda on [0,Tmax], and compute the MLE.
- iii. Plot the obtained values for the MLE as a function of Tmax.

What do you observe?

^{1.} LLN refers to "Law of Large Numbers" and CLT stands for "Central Limit Theorem".

1.3.2 CLT-type result

We now illustrate the following result:

$$\sqrt{T}(\hat{\lambda}_T - \lambda) \xrightarrow[T \to +\infty]{\mathcal{L}} \mathcal{N}(0, \lambda). \tag{2}$$

To do so, fix lambda=2 and do the following for different values of Tmax.

- i. Fix the number of simulations K=1000 and create a vector of size K: Z=rep(0,K).
- ii. Store in Z a K-sample with same distribution as $\sqrt{T}(\hat{\lambda}_T \lambda)$:

```
for(k in 1:K)
{
   pph=simulPPh1(lambda,Tmax)
   mle=MLE1(pph,Tmax)
   Z[k]=sqrt(Tmax)*(mle-lambda)
}
```

iii. With the density function: Plot the histogram of the sample \mathbb{Z} (which approximates the density of the \mathbb{Z}_k 's), and compare it with the density of the limit distribution $\mathcal{N}(0,\lambda)$:

What do you observe when Tmax equals 1, 10, 100 and 500?

iv. With the cdf: Plot the empirical cumulative distribution function of \mathbb{Z} , and compare it with the cumulative distribution function of a $\mathcal{N}(0,\lambda)$:

What do you observe when Tmax equals 1, 10, 100 and 500?

1.4 Statistical inference: hypothesis testing

Consider a given rate $\lambda_0>0$ to test. Given the observation of a homogeneous Poisson process with (unknown "true") rate λ observed on a fixed window [0,T], we aim at testing

$$\mathcal{H}_0: \lambda = \lambda_0$$
 against $\mathcal{H}_1: \lambda \neq \lambda_0$.

- i. Construct a test of \mathcal{H}_0 against \mathcal{H}_1 , and express the corresponding p-value in terms of the standard gaussian cdf.
- ii. Write an R function test1, with arguments the observed homogeneous Poisson process PPh, the observation time Tmax and the rate lambda0 to test, and which returns the p-value of the test constructed in the previous question.
- iii. To validate this test on simulated data, we estimate for different values of λ , the probability (or proportion)

$$p(\lambda) = \mathbb{P}_{\lambda}(\text{reject }\mathcal{H}_0).$$

In particular, if λ satisfies \mathcal{H}_0 (i.e. $\lambda = \lambda_0$), then $p(\lambda)$ is the size of the test, and otherwise, it is the power of the test against the alternative λ .

The R function plot.level.power1 in the file **TP-PoissonProcessetud.R** plots for different values of the rate λ (in TrueLambda) confidence intervals for the proportion $p(\lambda)$.

Now, fix alpha=0.05, nsimu=1000 and let lambda0=2 and TrueLambda=c(2,2.2,2.5,3).

Apply this function for Tmax = 1, 10, 100 and 500. Understand and comment the obtained graphs.

Homogeneous Poisson processes with 2.4 Statistical inference : confidence intervals fixed number of points

Second, we consider the case of a fixed number of points (and thus a random observation window).

Simulation 2.1

- i. Recall the distribution of the interarrival times of a homogeneous Poisson process with rate lambda.
- ii. Write an R function simulPPh2 with arguments the rate lambda and the number of points n, which simulates such a process and returns the corresponding arrival times.
- iii. As in the "fixed window" case, fix lambda=2 and n=20, simulate a homogeneous Poisson process and plot both the counting process and the arrival times.

Maximum likelihood estimator

- i. Write an R function MLE2 which returns the maximum likelihood estimator of the rate of a homogeneous Poisson process PPh observed up to the nth point.
- ii. Apply it on different simulated data. What do you observe?

Asymptotic behavior of the MLE

As in section 1.3, illustrate the asymptotic behavior of the MLE $\hat{\lambda}_n$ of a homogeneous Poisson process with rate λ observed up to the nth point as n goes to $+\infty$, that is

i. (Strong) LLN-type result:

$$\hat{\lambda}_n \xrightarrow[n \to +\infty]{a.s.} \lambda.$$

ii. CLT-type result:

$$\sqrt{n}(\hat{\lambda}_n - \lambda) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0, \lambda^2).$$

- i. Recall both asymptotic and non-asymptotic confidence intervals for the (unknown) rate lambda of a homogeneous Poisson process PPh observed up to the nth point.
- ii. Write an R function with arguments PPh, alpha=0.05 and a boolean asymptotic, and which, depending on the value of asymptotic (TRUE or FALSE), returns the corresponding confidence interval for lambda.
- iii. A for the testing problem, we want to validate the confidence intervals on simulated data.

To do so, illustrate, in both asymptotic and non-asymptotic cases, the fact that the proportion of times the rate belongs to the obtained confidence interval is larger than the fixed confidence level 1-alpha.

You may fix lambda=2, and consider n=10 or n=100.

Inhomogeneous Poisson processes

We now aim at simulating inhomogeneous Poisson processes with given intensity function, on a given interval.

- i. Recall the thinning algorithm. In particular, when does it apply?
- ii. Write an R function simulPPi with arguments the intensity function lambda_fct, Tmax and an upper bound M, which simulates an inhomogeneous Poisson processes with intensity function lambda fct () on [0, Tmax], and returns the corresponding arrival times.
- iii. Simulate and represent inhomogeneous Poisson processes on $\left[0,10\right]$ with intensity functions:
 - $\lambda_1: t \mapsto 2 \times \mathbb{1}_{[0,7]}(t) + 8 \times \mathbb{1}_{[8,10]}(t)$.
 - $\lambda_2: t \mapsto 2t$.
 - $\lambda_3: t \mapsto \dots$