

Flex-rigid: Base materials and their characteristics

Webinar February, 7th 2017

Speaker: Andreas Schilpp

Introduction: Integration of Module Interconnects Benefits through Flex-Rigid Technology

07.02.2017 page 2 www.we-online.de

agenda

1

Ingredients for a Flex-Rigid PCB

2

Standard Flex-rigid Stack-ups

3

 Material characteristics and their effect on applications

Terms and Abbreviations

Bondply

B2B: Board-to-Board

CAF: Conductive Anodic Filament

Cu: Copper

CL: Coverlay

FPC: Flexible Prited Circuit

 IPC: Organisation "Association Connecting Electronics Industries,, www.ipc.org

PI: Polyimide

TPI: Thermoplastic PI (Adhesive)

ZIF: Zero Insertion Force

07.02.2017 page 4 www.we-online.de

Flex/TWINflex® xF-Ri

Top

Flex PCB

ENIG surface finish

ZIF/FPC contact on flex tail

B2B connector on flex tail

Flex with solder carrier

Flex/TWINflex® xF-Ri

Bottom

FR4 rigidiser for ZIF/FPC contact

FR4 solder carrier for flex PCB

FR4 rigidiser for B2B connector

flexible foil Polyimide, copper 2 sides

- copper resp. ENIG surface
- flexible soldermask
- rigid FR4 (stiffener)
- 3M transfer adhesive

samples you will get here!

07.02.2017 page 5 www.we-online.de

Flex-rigid 1F-xRi + FR4 Semiflex

ee WE design rules

Top

Semiflex area

Polyimide flex area

Depth milled contact areas for ZIF/FPC connectors

B2B connector with semiflex area

Flex-rigid 1F-xRi + FR4 Semiflex

Bottom

B2B connector with flex arm

ZIF/FPC contact with flex arm

Solder contacts due to edge plating

flexible foil Polyimide, copper 1 side

- rigid FR4, FR4 prepreg
- · copper resp. ENIG surface
- flexible soldermask
- standard soldermask

samples you will get <u>here</u>!

07.02.2017 page 6 www.we-online.de

Flex-rigid xRi-2F-xRi

Flex-rigid xRi-2F-xRi

Ground/reference layer with Copper removal

- flexible foil Polyimide, copper 2 sides
- rigid FR4, FR4 prepreg
- · copper resp. ENIG surface
- Polyimide coverlay
- standard soldermask

samples you will get here!

07.02.2017 page 7 www.we-online.de

07.02.2017 page 8 www.we-online.de

- flexible foils, copper-clad
- flexible foils with adhesive
- flexible adhesive foils
- rigid cores, copper-clad
- rigid prepregs (adhesive compound)
 - specialty: LowFlow prepreg
- copper foils
- copper plating (barrels and plated layers)
- solder surface (on copper)
- soldermask
 - Standard (almost green)
 - flexibel
- ink for legend
- strain relief out of elastomer

07.02.2017 page 9 www.we-online.de

Ingredients for a Flex-Rigid PCB Production of flexible base materials (1)

Polyimide, single sided copper clad base material adhesiveless, "Casting"

- Polyimide foil thickness: (12,5μm) / 25μm / 50μm Standard / 75μm / 100μm / (....)
- Copper foil thickness: (5μm / 7μm / 9μm) / 12μm / 18μm / 35μm / 70μm

07.02.2017 page 10 www.we-online.de

Ingredients for a Flex-Rigid PCB Production of flexible base materials (2)

Polyimide, double sided copper clad base material adhesiveless (TPI)

- Polyimide foil thickness: (12,5μm) / 25μm / 50μm Standard / 75μm / 100μm / (....)
- Copper foil thickness: (5μm / 7μm / 9μm) / 12μm / 18μm / 35μm / 70μm

07.02.2017 page 11 www.we-online.de

Ingredients for a Flex-Rigid PCB Production of flexible base materials (3)

- Polyimide, double sided copper clad base material adhesiveless: Sputter methode
- (we do not use this kind of material)

- Polyimide foil thickness: (12,5μm) / 25μm / 50μm Standard / 75μm / 100μm / (....)
- Primer
- Copper foil thickness: (5μm / 7μm / 9μm) / 12μm / 18μm

07.02.2017 page 12 www.we-online.de

Ingredients for a Flex-Rigid PCB Production of flexible base materials (4)

Polyimide, single sided copper clad base material with adhesive

- Polyimide foil thickness: (12,5μm) / 25μm / 50μm Standard / 75μm / 100μm / (....)
- Adhesive thickness: typical 13µm / 20µm / 25µm
 - Acrylc glue (since 1970's) or Epoxy
- Copper foil thickness: (5μm / 7μm / 9μm) / 12μm / 18μm / 35μm / 70μm
- Paper instead of copper foil → Coverlay (Polyimide + adhesive on one side)
- Paper instead of copper foil and Polyimide → pure adhesive foil (i.e. LF0100)

07.02.2017 page 13 www.we-online.de

Ingredients for a Flex-Rigid PCB Production of flexible base materials (5)

Polyimide, double sided copper clad base material with adhesive

- Polyimide foil thickness: (12,5μm) / 25μm / 50μm Standard / 75μm / 100μm / (....)
- Adhesive thickness: typical 13µm / 20µm / 25µm
 - Acrylc glue (since 1970's) or Epoxy
- Copper foil thickness: (5μm / 7μm / 9μm) / 12μm / 18μm / 35μm / 70μm

Paper instead of copper foil → Bondply (Polyimide with adhesive on both sides)

07.02.2017 page14 www.we-online.de

Ingredients for a Flex-Rigid PCB Rigid Base material (1)

- Spezification according IPC-4101
- Ingredients:
 - resin: Epoxy, Polyimid, ...
 - hardener
 - fillers
 - carrier: paper or glas
 - copper foil

07.02.2017 page 15 www.we-online.de

Ingredients for a Flex-Rigid PCB Rigid Base material (2)

- woven glass as carrier
 - worp and weft direction
 - spread glass constructions

- specification: IPC-4412

Quellen: NanYa

07.02.2017 page16 www.we-online.de

Ingredients for a Flex-Rigid PCB Copper foils

- Thickness derived from surface weight oz/ft²
 - 1 oz/ft² = 305g/m² = 35 μ m Dicke
- Copper quality acc. IPC-4562
 - electro plated (ED)
 - rolled copper RA-Quality
 - new: rolled copper HA-Quality
- rough treatment side facing the base meterial

		c		Maximum Strain Range (%) / Minimum Bend Diameter (μm [mil]) Accommodated by 1 oz. (CIT) Foll ¹					
_	G			Flex to Install		Continuous Flexing	Flex to Install		Continuous Flexing
T Y P	R A D	A		Single Bend	Low Cycle Fatigue ²	High Cycle Fatigue ²	Single Bend	Low Cycle Fatigue ²	High Cycle Fatigue ²
E	Ē	s	Handling	At Room Temperature At Elevated Temperature (18				0°C [356°F]) ³	
E	1	All	Good	Not recommended for applications requiring foil flexing or bending					
Е	2	All	Good	30/84 [3.31]	7.1/965 [37.99]	0.19/37,338 [1470]	Not applicable		
E	3	All	Good	20/142 [5.59]	5.3/1320 [51.968]	0.18/39,624 [1560]	15/201 [7.913]	4.2/1600 [62.992]	0.17/40,894 [1610]
E	4	All	Caution ⁸	50/36 [1.41]	10.3/660 [25.98]	0.28/25,400 [1000]	41/51 [2.01]	7.7/889 [35]	0.21/33,655 [1325]
W	54	All	Good	30/84 [3.31]	7.5/914 [35.98]	0.32/22,098 [870]	15/201 [7.913]	4.2/1600 [62.992]	0.17/40,894 [1610]
W	5 ⁵	All	Good	65/20 [0.787]	13.1/508 [20]	0.32/22,098 [870]	TBD	TBD	TBD
W	6 ⁶	All							
W	7	All	Caution ⁸	65/20 [0.787]	12.5/533 [20.98]	0.32/22,098 [870]	45/43 [1.69]	9.5/711 [27.99]	0.20/34,798 [1370]
E	8 ⁷	All	Good	25/102 [4.0157]	6.2/1118 [44.0157]	0.15/48,006 [1890]	TBD	TBD	TBD
Е	9	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Е	10	All	Good	41/51 [2.0079]	8.9/762 [30]	0.31/22,860 [900]	32/76 [2.99]	6.8/1016 [40]	0.22/33,020 [1300]
Е	11	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD

Table A1 Application Guide for Copper Foli

1. Larger maximum strain range and smaller minimum bend diameter values indicate superior performance for a given strain mode

Low cycle fatigue < 500 cycles-to-failure. High cycle fatigue > 10⁴ cycles-to-failure. The values given here have been calculated for 20 and 10⁵ fatigue cycles for low- and high-cycle fatigue, respectively. For the calculations the minimum mechancial properties for 34 μm [1.34 mil] copper foil given in the respective slash sheets have been used. Typical property values can be considerably higher. (See IPC-TR-484.)

3. The values for elevated temperature applications should primarily be used for qualitative purposes, since unproven assumptions were nec-

Standard Profile

Standard Profile

Standard Profile

Very Low Profile

07.02.2017 page17 www.we-online.de

Ingredients for a Flex-Rigid PCB Rigid Base material (3)

vertical impregnation system

Source: VDE/BDI3711, Blatt 2

07.02.2017 page18 www.we-online.de

Ingredients for a Flex-Rigid PCB Rigid Base material (4)

- 1. impregnation
- 2. prepreg cutting, copper foil lay-up
- 3. copper lamination
- 4. final cutting

07.02.2017 page19 www.we-online.de

agenda

1

Ingredients for a Flex-Rigid PCB

2

Standard Flex-rigid Stack-ups

3

 Material characteristics and their effect on applications

07.02.2017 page 20 www.we-online.de

Standard stack-ups Flex-rigid

Modifications:

- flex inside / outside
- thickness of flexible materialPolyimide
- adhesiveless / with adhesive
- quality rigid base material
- copper quality and thickness
- flexible soldermask or coverlay
- coverlay partially / full size
- total thickness of pcb
- solder surface

07.02.2017 page 21 www.we-online.com

Standard stack-ups Flex-rigid (2)

1F-xRi – for all stack-ups ≥ 4 layers microvias 1-x-1 could be added

xRi-2F-xRi - for all stack-ups ≥ 6 layers microvias 1-x-1 could be added

07.02.2017 page 22 www.we-online.de

Standard stack-ups Flex-rigid (3)

- Base materials
 - rigid: FR4 Tg ≥150°C, halogen free, filled- standard thicknesses
 - flex: Polyimide Tg >> 200°C, adhesiveless
 typical 25μm / 50μm thick(...up to 150μm)
 - standard solder mask, flexible solder mask, Polyimide coverlay
- Stack-up plans
 - example:

μVia capable

07.02.2017 page 23 www.we-online.de

agenda

1

Ingredients for a Flex-Rigid PCB

2

Standard Flex-rigid Stack-ups

3

 Material characteristics and their effect on applications

07.02.2017 page 24 www.we-online.de

Material characteristics and their effect on applications (1)

- resin system
 - dielectric properties
- ration resin : carrier
 - dielectric properties
- resin + hardener + fillers:
 - temperature stability (→ PI)
 - soldering
 - performance, application
 - thermal expansion behavior CTE
 - thermal conductivity

07.02.2017 page 25 www.we-online.de

Material characteristics and their effect on applications(2)

- adhesive
 - general weak point in a compound
 - thermal expansion in z-axis
 - capability for UL listing
 - impact on tracking index CTI
- solder mask Coverlay
 - dielectric strength
 - abrasion resistance
 - buckling resistance

Eigenschaftsmodifikation durch Zugabe von Füll- und Verstärkungsstoffen

Source: Dr. Seidel, Siemens

07.02.2017 pagee 26 www.we-online.de

Material characteristics and their effect on applications (3)

- copper treatment
 - adhesion on base material
 - fine line capability
 - suitable for high frequencies
- copper quality
 - robustness in dynamical bending and buckling
- carrier
 - dimensional stability → registration
 → annular ring
 - glass matrix: HR characteristics, CAF

Dicke	Treatment	tseite (R _z)	Shiny-Seite (R,)		
μm	HTE (µm)	VLP (µm)	HTE und VLP (µm)		
18	6,5 - 8,5	3,5 - 4,5	0,2 - 0,35		
35	7,0 - 9,0	3,5 - 5,0	0,2 - 0,35		
70	8,0 - 10,5	3,5 - 5,0	0,2 - 0,35		

Source: Isola

07.02.2017 page 27 www.we-online.de

Summary

- there is an incredible variety in materials used for flex and flex-rigid technology and in their combinations
- standardisation is important to meet quality and cost targets

- specification of materials and stack-ups has to be fixed in an early phase of a project
- based on the specification of the entire project ("mission profile")
- Please contact us as soon as possible!

07.02.2017 page 28 www.we-online.de

Thank you for your attention

The webinar was presented by

07.02.2017 www.we-online.com