DevOps는 알겠는데 MLops는 또 뭐야?

40분 뒤에 여러분이 모르면 맛이나죠(?)

제가

본 자료는 아래의 자료를 기반으로 만들었습니다.

Project with Data science

이거 너무 간략한거 아니냐고

그게 실제론 말이죠

Model Development

Model Serving

그게 실제론 말이죠

- Model Development
- Model Serving

작은 조직의 프로젝트라면

신경써야 할 모델의 수가 그다지 많지 않습니다.

작은 조직의 프로젝트라면

데이터 사이언티스트(모델러)의 수가 적기 때문에 모델링 협업에 특별히 문제가 없습니다.

작은 조직의 프로젝트라면

워크플로우의 수가 적기 때문에 각 단계를 각각 별도의 방법으로 트레킹을 해도 무방하다.

하지만

규모가 커지면 이야기가 달라진다

데이터 플로우의 복잡성 증가

- 많은 데이터 워크플로우의 수
- 표준화된 추적없이 데이터가 수정됨
- 규모가 커질수록 플로우와 스케줄링의 복잡성을 관리하는 것은 불가능해짐

각자 선호하는 툴은 다 다릅니다.

까다로워지는 모델 서빙

• 각자 다른 버전의 모델이 각자 다른 환경에서 실행

 점점 더 모델 배포와 버전 되돌리는 것이 복잡해짐

따라서 까다로워지는 track back

우리같은 엔지니어는 굳이 논문같은거 안보고도 모델이 잘못됐다는 걸 알 수 있습니다.

데이터 파이프라인에 벌래같은 거 키우니까 데이터가 잘못 들어와서 모델이 뻑나는 거잖아

DATA engineer

그래서 전 뭐하는데요?

ML engineer

DATA scientist

어....그러니까 음....

전부다?!

ML engineer 는 데이터 파이프라인, 모델의 개발 그리고 서빙까지 신경써야 합니다.

ML-OPS

결국 해결해야하는 것은 두가지입니다.

- Reproducibility
- Orchestration

Reproducibility

를 위해서는 이것들을 해결해야 합니다.

- 버그나 에러가 났을때 trace가 가능해야 함
- 결과로 이어지는 단계의 투명성
- 컴포넌트 모듈화 -> 재사용성
- 여러 라이브러리와 프레임워크를 지원하는 추상화
- 버전 롤백될때 재현성이 유지되며 견고해야 함

We can abstract our entire pipeline and data flows

어떻게 하면 이 문제를 해결할까?

어떻게 하면 이 문제를 해결할까?

ModelDB Architecture & Design Decisions

1. Support for diverse languages and environments 어떻게 하면 이 문제를 해결할까?

Model Description Script

Orchestration

일반 웹 CI/CD/모니터링 하고 비슷하다고 생각할 수 있는데

좀 다릅니다.

모니터링

소프트웨어 모니터링 외에

- 모델 퀄리티
- 데이터의 분포
- 데이터의 형태

WE CAN STOP PRAYING TO THE DEMO GODS

결국 기도메타

COMPUTATIONAL RESOURCE ALLOCATION

THIS IS A HARD PROBLEM

오케스트레이션 레벨에서 리소스 추상화

- An ETL framework
- A HDFS-based service
- A Kubernetes cluster
- Any distibuted framework!

MLEAP

SELDON-CORE

SELDON-CORE

1. Package

Create REST or gRPC dockerized microservice.

2. Describe Deployment

Create/update Kubernetes resource manifest for deployment graph.

3. Deploy

Manage and analyze the performance of live deployments.

STRONG FOCUS ON MODEL

ORCHESTRATION

2. Seldon Deploy

(UI, Collaboration, Control, Audit)

MAB (Multi-Arm Bandits)

Outlier Detection

Explanation

Bias Detection

1. Seldon Core

(runtime ML graph engine)

Microservices - Istio service mesh (optional)

TACKLING THE CI/CD CHALLENGE

이게 다 귀찮으시면

MLflow

kubeflow

Backend Al

Н

네....