Završni ispit iz predmeta "Elektronika 2"

07.02.2019.

Zadatak 1 – 8 bodova

Za pojačalo na slici zadano je:

$$U_{CC} = 15 \text{ V}$$
, $R_g = 1 \text{ k}\Omega$,

$$C_B = 2 \,\mu\text{F}, R_1 = 400 \,\text{k}\Omega,$$

$$R_2 = 100 \text{ k}\Omega$$
, $R_E = 500 \Omega$,

$$C_E = 100 \,\mu\text{F}$$
 $R_T = 2 \,\text{k}\Omega$ i

 $C_T = 15 \text{ pF}$. Parametri

tranzistora su $\beta \approx h_{fe} = 100$,

$$U_{\gamma} = 0.7 \text{ V}, \ r_{bb'} = 50 \ \Omega,$$

$$C_{b'e} = 40 \text{ pF i } C_{b'c} = 2 \text{ pF}.$$

Zanemariti porast struje

kolektora s naponom u_{CE} normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

- a) Izračunati statičku radnu točku (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu (1 bod).
- c) Izračunati pojačanje $A_{Vg} = U_{iz}/U_g$ na srednjim frekvencijama (2 boda).
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Vg} (3 boda).

Zadatak 2 – 8 bodova

Za pojačalo na slici zadano je $U_{CC}=15~{\rm V}$, $R_C=5~{\rm k}\Omega$, $R_B=100~{\rm k}\Omega$, $R_E=3~{\rm k}\Omega$ i $R_T=200~\Omega$. Parametri tranzistora su $\beta_1\approx h_{fe_1}=100$, $\beta_2\approx h_{fe_2}=100$ i $U_\gamma=0,7~{\rm V}$. Zanemariti serijski otpor baze $r_{bb'}$ i porast struja kolektora s naponima u_{CE} u normalnom aktivnom području. Naponski ekvivalent

- R_{B} R_{C} R_{E} R_{E} R_{C} R_{E} R_{C} R_{E} R_{C} R_{E} R_{C} R_{C
- a) Izračunati statičku radnu točku (2 boda).

temperature $U_T = 25 \,\mathrm{mV}$.

- b) Odrediti tip povratne veze i nacrtati A-granu pojačala za mali signal uzevši u obzir opterećenje β -grane (1 bod).
- c) Odrediti pojačanje A-grane (2 boda).
- d) Odrediti koeficijent povratne veze β (1 bod).

e) Odrediti pojačanja $A_{Vf} = u_{iz}/u_{ul}$ i $A_{If} = i_{iz}/i_{ul}$ (2 boda).

Zadatak 3 – 7 bodova

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze su

$$A(j\omega) = \frac{-10^4 (1 + j\omega/10^5)}{(1 + j\omega/10^4)(1 + j\omega/10^6)^2}, \qquad \beta(j\omega) = \frac{\beta_0}{1 + j\omega/10^6},$$

Grafičkim postupkom crtanjem Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O.=45^{\circ}$. Koliko je pri tome amplitudno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram – 4 boda, određivanje β_0 – 2 boda, A.O. – 1 bod)

Zadatak 4 – 7 bodova

Za pojačalo na slici napon napajanja $U_{DD}=3,3~{
m V}$. Parametri tranzistora su $K_n'=200~{
m \mu A/V}^2$,

$$K'_p = -70 \,\mu\text{A/V}^2$$
, $U_{GS0n} = -U_{GS0p} = 0.6 \,\text{V}$, $\lambda_n = 0.02 \,\text{V}^{-1}$ i $\lambda_p = -0.01 \,\text{V}^{-1}$. Dimenzije kanala tranzistora T_1 su $W_1/L_1 = 3$, a tranzistora T_2 i T_3 su $W_2/L_2 = W_3/L_3 = 10$.

- a) Kolike moraju biti statičke struje tranzistora da se postigne naponsko pojačanje pojačala $A_V = u_{iz} / u_{ul} = -150$? Pri izračunavanju statičkih struja zanemariti modulacije dužina kanala. (4 boda).
- b) Odrediti omjer širine i dužine kanala W/L tranzistora T_4 koji će osigurati te struje. (3 boda).

Popis složenijih formula:

$$i_{D} = \frac{K}{2} (u_{GS} - U_{GS0})^{2} (1 + \lambda u_{DS}) = \frac{K'}{2} \frac{W}{L} (u_{GS} - U_{GS0})^{2} (1 + \lambda u_{DS})$$