Les nombres complexes

1 Définition

La forme algébrique d'unnombre complexe z est de la forme :

$$z = a + ib$$
 avec $(a; b) \in \mathbb{R}^2$

La partie réelle de $z : \mathbf{Re}(z) = a$

La partie imaginaire de $z : \mathbf{Im}(z) = b$

Le module de z: $|\mathbf{z}| = \sqrt{a^2 + b^2}$

2 Conjugué

Le conjugué d'un nombre complexe z est noté : $\bar{z} = a - ib$

Pour tout z complexe, on a : $z\bar{z} = |z|^2$

$$\overline{z+z'} = \bar{z} + \overline{z'} \; ; \quad \overline{z \times z'} = \bar{z} \times \overline{z'} \; ; \quad \overline{\left(\frac{z}{z'}\right)} = \frac{\bar{z}}{\overline{z'}} \; ; \quad \overline{z^n} = (\bar{z})^n \; ; \; z + \overline{z'} = (\bar{z})^n \; ; \; z +$$

 $\bar{z} = 2Re(z)$; $z - \bar{z} = 2Im(z)$

Donc : si z réel alors $z = \bar{z}$; si z imaginaire pur alors $z + \bar{z} = 0$

3 Second degré

E: $az^2 + bz + c = 0$ On a: $\Delta = b^2 - 4ac$, Δ se lit "discriminant". Si:

- $\Delta > 0$, E a 2 racines réelles de la forme : $\frac{-b \pm \sqrt{\Delta}}{2a}$
- $\Delta = 0$, E a 1 seule racine de la forme : $\frac{-b}{2a}$
- $\Delta < 0$, E a 2 racines complexes conjuguées : $\frac{-b \pm i \sqrt{-\Delta}}{2a}$

Forme trigonométrique

La forme trigonométrique et exponentielle d'un nombre complexe z ($z \neq 0$) est de la forme :

$$z = r(\cos\theta + i\sin\theta)$$
 et $z = re^{i\theta}$

Avec :
$$r = |z| = \sqrt{a^2 + b^2}$$
 et $\arg(z) = \theta[2\pi]$

Puis:
$$\cos \theta = \frac{a}{r}$$
 et $\sin \theta = \frac{b}{r}$

On a les relations : $i = e^{i\frac{\pi}{2}}$ et $-1 = e^{i\pi}$

- |zz'| = |z||z'| et $arg(zz') = arg(z) + arg(z')[2\pi]$
- $|z^n| = |z|^n$ et $arg(z^n) = n \times arg(z)[2\pi]$
- $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$ et $arg\left(\frac{z}{z'}\right) = arg(z) arg(z')[2\pi]$
- Formule de Moivre : $z^n = r^n(\cos n\theta + i \sin n\theta) = r^n e^{i \times n\theta}$
- Formule d'Euler : $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$
- Si $z = re^{i\theta}$ alors $\bar{z} = re^{-i\theta}$, $\frac{1}{z} = \frac{1}{r}e^{-i\theta}$

Vecteur, alignement et orthogonalité

Soient les points A, B, C et D, on a :

- $z_{\overrightarrow{AB}} = z_B z_A$ alors $\overrightarrow{AB} = |z_B z_A|$ et $(\overrightarrow{u}, \overrightarrow{AB}) = \arg(z_B z_A)$
- $(\overrightarrow{AB}; \overrightarrow{CD}) = arg\left(\frac{z_D z_C}{z_P z_A}\right)$
- \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires $\Leftrightarrow \frac{z_D z_C}{z_B z_A} \in \mathbb{R}$ \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux $\Leftrightarrow \frac{z_D z_C}{z_B z_A}$ imaginaire pur

PROBABILITES CONDITIONNELLES, LOI BINOMIALE

1 Probabilité

1.1 Généralités

Lors d'une expérience aléatoire :

- L'univers Ω est l'ensemble des issues possibles.
- Un événement A est une partie de l'univers.
- Un événement élémentaire e_i est un événement ne comportant qu'un seul élément.
- L'événement contraire de l'événement A est l'événement noté \overline{A} formé de tous les éléments de Ω n'appartenant pas à A.
- L'événement $A \cap B$ (noté aussi "A et B") est l'événement formé des éléments de Ω appartenant à A et à B.
- L'événement $A \cup B$ (noté aussi "A ou B") est l'événement formé des éléments de Ω appartenant au moins à l'un des événements A ou B.
- Deux événements A et B sont dits incompatibles si $A \cap B = \emptyset$.
- Si $\Omega = \{e_1, e_2, \ldots, e_n\}$ et si à chaque issue e_i on associe un nombre $P(e_i)$ tel que $0 \le P(e_i) \le 1$ et $P(e_1) + P(e_2) + \cdots + P(e_n) = 1$, on dit que l'on a **défini une loi de probabilité sur \Omega.**
- La probabilité d'un événement est la somme des probabilités des **événements élémentaires** qui le constituent.

Pour tous évènements A et B

- $P(\emptyset) = 0, P(\Omega) = 1$
- $0 \le P(A) \le 1$; $P(\bar{A}) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap P) \Rightarrow$ Si A et B sont incompatibles alors $P(A \cup B) = P(A) + P(B)$ Car dans ce cas $P(A \cap P) = 0$.
- Pour une loi équirépartie ou d'équiprobabilité :

$$P(A) = \frac{nbre \ d'$$
éléments de $A}{nbre \ d'$ éléments de $\Omega} = \frac{nbre \ de \ cas \ favorables}{nbre \ de \ cas \ possibles}$

1.2 Variable aléatoire

Une variable aléatoire X définie sur un univers Ω est une fonction qui à chaque issue associe un réel x_i . La probabilité que X prenne la valeur x_i est alors notée $P(X = x_i)$ ou p_i .

- Définir la loi de probabilité de X, c'est donner (sous forme d'un tableau) la probabilité de chacun des évènements $X=x_i$.
- Espérance mathématique de *X* :

$$E(X) = \sum p_i x_i = p_1 x_1 + \ldots + p_n x_n$$

L'Espérance représente la valeur moyenne que prend X Si on répète un grand nombre de fois l'expérience aléatoire.

• Variance de X:

$$V(X) = \sum p_i x_i^2 - E^2(X) = p_1 x_1^2 + \dots + p_n x_n^2 - E^2(X)$$

• Ecart-type de X: $\sigma(X) = \sqrt{V(X)}$

Exemple: On lance 3 fois de suite un dé. Le joueur gagne 6 euros s'il n'obtient aucun 1 et aucun 2 et il perd 3 euros dans le cas contraire. X, la variable aléatoire égale au gain du joueur, ne peut prendre que les valeurs –3 et 6.

On a:
$$P(X = 6) = \frac{4^3}{6^3} = \frac{8}{27}$$
 et $P(X = -3) = 1 - P(X = 6) = \frac{19}{27}$
 $E(X) = -3 \times \frac{19}{27} + 6 \times \frac{8}{27} = -\frac{1}{3}$
 $V(X) = (-3)^2 \times \frac{19}{27} + (6)^2 \times \frac{8}{27} - \left(-\frac{1}{3}\right)^2 = \frac{152}{9}$
 $\sigma(X) = \sqrt{\frac{152}{9}} = \frac{2\sqrt{38}}{3}$

2 Probabilités conditionnelles

Etant donné deux évènements A et B avec $B \neq \emptyset$ d'un univers Ω . On appelle **probabilité de B sachant A**, le réel noté $P_A(B)$ tel que :

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

On a alors:

$$P(A \cap B) = P(A) \times P_A(B) = P(B) \times P_B(A)$$
 car $A \cap B = B \cap A$

Formule des probabilités totales

Si $A_1, A_2, ..., A_n$ forment une partitions de Ω (2 à 2 incompatibles et leur union forme Ω), alors pour tout événement B, on a :

$$P(B) = P(A_1 \cap B) + \dots + P(A_n \cap B)$$
 ce qui donne
$$P(R) = P(A_1)P \cdot (R) + \dots + P(A_n \cap B) \cdot (R)$$

Représentation par un arbre pondéré

Le cas le plus fréquent correspond à la partition la plus simple de \overline{A} et \overline{A} Si on connait les probabilités de \overline{B} par l'intermédiaire de, \overline{A} et \overline{A} on a l'arbre qui suit :

- Le produit des probabilités inscrites sur chaque branche d'un chemin donne la probabilité de l'intersection des évènements placés sur ce chemin. On a : $P(A) \times P_A(B) = P(A \cap B)$
- La somme des probabilités inscrites sur les branches issues d'un même nœud est égale à 1 (loi des nœuds).

$$P_A(B) + P_A(\overline{B}) = 1$$

• La probabilité d'un événement E est la somme des probabilités des **chemins** qui aboutissent à B.

$$P(B) = P(A)P_A(B) + P(\overline{A})P_{\overline{A}}(B)$$

Exemple : Dans un pays, il y a 2 % de la population contaminée par un virus. On dispose d'un test de dépistage de ce virus qui a les propriétés suivantes

- La probabilité qu'une personne contaminée ait un test positif est de 0,99 (sensibilité dutest).
- La probabilité qu'une personne non contaminée ait un test négatif est de 0,97 (spécificitédu test).

On fait passer un test à une personne choisie au hasard dans cette population. On note V l'événement « la personne est contaminée par le virus » et T l'événement « le test est positif ».

• Quelle est la probabilité que le test soit **positif**

$$P(T) = 0,02 \times 0,99 + 0,98 \times 0,03 = 0,0492$$

• Quelle est la probabilité que la personne soit **contaminée** sachant que le test est positif :

$$P_{\rm T}({\rm V}) = \frac{P({\rm T} \cap {\rm V})}{P({\rm T})} = \frac{0.02 \times 0.99}{0.0492} = 0.4024$$

3 Indépendance de deux événements

Deux événements A et B sont indépendants si et seulement si :

$$P_{A}(B) = P(B)$$
 \Leftrightarrow $P(A \cap B) = P(A) \times P(B)$

4 Loi binomiale

- On appelle épreuve de Bernoulli toute expérience aléatoire ne présentant que deux issues possibles (contraire l'une de l'autre).
- On appelle schéma de Bernoulli toute répétition d'épreuves de Bernoulli identiques et indépendantes.

Étant donné une épreuve de Bernoulli où la probabilité d'obtenir un succès S est p et le schéma de Bernoulli consistant à répéter n fois de manière indépendante cette épreuve.

Si on note X la variable aléatoire qui à chaque issue possible du schéma de Bernoulli asso- cie le nombre de fois où est apparu un succès S, la loi de probabilité de X est appelée loi binomiale de paramètres n et p et est notée B(n; p).

- Probabilité d'obtenir k succès : $P(X = k) = \sum_{k=0}^{n} p^{k} (1 p)^{n-k}$
- Espérance de X : E(X) = np
- Variance et écart-type de X: V(X) = np(1-p); $\sigma(X) = \sqrt{np(1-p)}$