CS182 Spring 2016: Homework 4

Due date: Friday, March 4, 2016 (before class).

- 1. Prove that $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countably infinite.
- 2. Consider the set $\mathbb R$ consisting of all real numbers. Give an example of a subset S of $\mathbb R$ with $S \neq \mathbb R$ such that:
 - (a) S is countably infinite
 - (b) S is finite
 - (c) S is uncountably infinite
- 3. Let B be the set of all possible bit strings. That is, $B = \{b_0b_1 \dots b_n \mid n \in \mathbb{Z}^+ \cup \{0\} \text{ and } b_i \in \{0,1\}\}$. Show that B is countably infinite.
- 4. For each of the following sets, state the cardinality (finite, countably infinite, or uncountably infinite) (you do not need to justify your answer):
 - (a) The set $\mathbb{R} \mathbb{Q}$
 - (b) The set $\mathbb{Z} \cap \mathbb{Q}$
 - (c) The set $\mathcal{P}(\mathbb{Z})$
 - (d) The set $\mathbb{Z} \cap \{r \mid r \in \mathbb{R}, 0 \le r \le 1\}$
- 5. List the next 5 terms in each of the following sequences:
 - (a) $a_0 = 7$, $a_n = 2 * a_{n-1} 5$
 - (b) $b_0 = 1$, $b_1 = 2$, $b_n = 2 * b_{n-1} + b_{n-2}$
 - (c) $c_0 = 2$, $c_n = (c_{n-1})^n$
 - (d) $a_0 = 2$, $a_1 = 3$, $a_n = \frac{a_{n-1}}{a_{n-2}}$
- 6. Evaluate the following sums (note: page 166 in the book can be helpful for these):
 - (a) $\sum_{i=1}^{m} i^2 + i$
 - (b) $\sum_{j=17}^{n} 6j^2$
 - (c) $\sum_{k=20}^{\infty} \left(\frac{1}{2}\right)^k$
 - (d) $\sum_{h=10}^{20} h^3 2h^2$
- 7. Find a solution to each of these recurrence relations with their given initial conditions:

1

CS182 Spring 2016: Homework 4

(a)
$$a_n = -a_{n-1}, a_0 = 6$$

(b)
$$a_n = (n+1)a_{n-1}, a_0 = 2$$

(c)
$$a_n = a_{n-1} - n$$
, $a_0 = 3$

8. Let
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 4 & -1 \end{bmatrix}$$
 and let $\mathbf{B} = \begin{bmatrix} 2 & 3 \\ -2 & 5 \\ -1 & 7 \end{bmatrix}$

- (a) What is the size of **A**?
- (b) What is the size of **B**?
- (c) What is $\mathbf{A}^T + \mathbf{B}$?
- (d) What is AB?
- (e) What is **BA**?