## Reproducible science: Module 4

#### Data visualization in Tidyverse: the power of ggplot2

Gbadamassi G.O. Dossa

Xishuangbanna Tropical Botanical Garden, XTBG-CAS

Updated on 2023-11-11 (created on 2021-09-13)

## Acknowledgements

The content of this module are based on materials from:



olivier gimenez's materials

## ggplot2: Introduction

- This package was created by Hadley Whickham check out its book;
- A powerful package for visualizing data;
- The package ggplot2 implements a grammar of graphics;
- Operates on data.frames or tibbles, not vectors like base R;
- Explicitly differentiates between the data and its representation;
- Consists on stacking different layers together, if you have ever worked with GIS, then this notion of layer would be familiar to you.



## The ggplot2 grammar

| Grammar element | What it is                                       |
|-----------------|--------------------------------------------------|
| Data            | The data frame being plotted                     |
| Geometrics      | The geometric shape that will represent the data |
|                 | (e.g., point, boxplot, histogram)                |
| Aesthetics      | The aesthetics of the geometric object           |
|                 | (e.g., color, size, shape)                       |



## ggplot basics

1) The ggplot function and the data argument specify a data frame in the main ggplot function

```
#ggplot(data = df) where df= dataframe or tibble
```

2) The mapping aesthetics, or aes; most importantly, the variable(s) that we want to plot. aes() specify as an embedded argument in the ggplot() function

```
# ggplot(data = df, mapping = aes(x = h5_median, y = h5_index, color
```

3) The geometric objects, or geom; the visual representations specify, after a plus sign +, as an additional function

```
# ggplot(data = df, mapping = aes(x = h5_median, y = h5_index, color
```

## Examples of plots

## Scatter plots: Import data

We will continue using the precedent data on how twitting can predict citations.

```
# Set the url from where to download the data
url<-"https://doi.org/10.1371/journal.pone.0166570.s001"
# name the file to be downloaded and save as destfile object
destfile <- "twitter_cit_data.csv"
# Apply download.file function in R to download from url
download.file(url, destfile)
library(tidyverse)</pre>
```

```
## Warning: package 'tidyverse' was built under R version 4.2.2
## Warning: package 'ggplot2' was built under R version 4.2.2
## Warning: package 'tidyr' was built under R version 4.2.2
## Warning: package 'readr' was built under R version 4.2.2
## Warning: package 'purrr' was built under R version 4.2.2
## Warning: package 'dplyr' was built under R version 4.2.2
```

## Scatter plot: Plotting

```
scatterplot<-citations %>%
  ggplot() +
  aes(x = nbtweets, y = woscitations) +
  geom_point()
```

- Pass in the data frame as your first argument;
- Aesthetics maps the data onto plot characteristics, here x and y axes
- Display the data geometrically as points

## Scatter plot

#### scatterplot



## Scatterplots with colors

Puts all points in same color.

```
scatter_col<-citations %>%
  ggplot() +
  aes(x = nbtweets, y = woscitations) +
  geom_point(color = "red")
scatter_col
```



## Scatterplots with color per species

Gives different color per species.

```
scatter_spcol<-citations %>%
  ggplot() +
  aes(x = nbtweets, y = woscitations, color = journal) +
  geom_point()
scatter_spcol
```



## Scatterplots with shape per journal

Gives different shape per journal. First need to pick few journals. Let's do journal on ecology. Filiter these journals to three: JAE, JAppE, Ecol.

```
## # A tibble: 6 × 12
##
    journal impactfactor pubyear Volume Issue Authors colldate pubdate nb
    <chr>
                    <dbl>
                            <dbl>
                                   <dbl> <chr> <chr> <chr>
                                                                   <chr>
##
## 1 ecology
                    6.16
                            2014
                                     95 12
                                               Maglianes... 3/19/20... 12/1/2...
## 2 ecology
                    6.16
                                               Soinen 3/19/20... 12/1/2...
                            2014
                                     95 12
## 3 ecology
                    6.16
                            2014
                                     95 12
                                               Graham an... 3/19/20... 12/1/2...
## 4 ecology
                    6.16
                            2014
                                     95 11
                                               White et ... 3/19/20... 11/1/2...
## 5 ecology
                    6.16
                            2014
                                     95 11
                                               Einarson ... 3/19/20... 11/1/2...
## 6 ecology
                            2014
                                               Haav and ... 3/19/20... 11/1/2...
                    6.16
                                     95 11
## # i 3 more variables: `Number of users` <dbl>, `Twitter reach` <dbl>,
## # woscitations <dbl>
```

## Scatterplots with shape per journal

Gives different shape per journal.

```
scatter_ecol<-citations_ecology %>%
  ggplot() +
  aes(x = nbtweets, y = woscitations, shape = journal) +
  geom_point(size=2)
scatter_ecol
```



## Scatterplots with lines not points

By now, you would guess this requires change in geom, so this should intuitively geom\_line.

```
scatter_line<-citations_ecology %>%
  ggplot() +
  aes(x = nbtweets, y = woscitations) +
  geom_line() +
  scale_x_log10()
scatter_line
```



## Scatterplots with sorting then add line

```
scatter_line2<-citations_ecology %>%
  arrange(woscitations) %>%
  ggplot() +
  aes(x = nbtweets, y = woscitations) +
  geom_line() +
  scale_x_log10()
scatter_line2
```



## Scatterplots with line and points

```
scatter_line3<-citations_ecology %>%
  arrange(woscitations) %>%
  ggplot() +
  aes(x = nbtweets, y = woscitations) +
  geom_line() +
  geom_point() +
  scale_x_log10()
scatter_line3
```



## Scatterplots with trend line

```
scatter_line4<-citations_ecology %>%
  arrange(woscitations) %>%
  ggplot() +
  aes(x = nbtweets, y = woscitations) +
  geom_point() +
  geom_smooth(method = "lm") +
  scale_x_log10()
scatter_line4
```



## Scatterplots with smoother

```
scatter_line5<-citations_ecology %>%
  arrange(woscitations) %>%
  ggplot() +
  aes(x = nbtweets, y = woscitations) +
  geom_point() +
  geom_smooth() +
  scale_x_log10()
scatter_line5
```



#### aes or not aes?

Before continuing to other type of plots, let break to see what we mean by aes().

- If we are to establish a link between the values of a variable and a graphical feature, ie a mapping, then we need an aes().
- Otherwise, the graphical feature is modified irrespective of the data, then we do not need an aes().

## Histograms

When you only provide x in the aes(), then ggplot will render a histogram.

```
histo<-citations_ecology %>%
   ggplot() +
   aes(x = nbtweets) +
   geom_histogram()
histo
```



## Histograms with bars in colors

```
histo2<-citations_ecology %>%
  ggplot() +
  aes(x = nbtweets) +
  geom_histogram(fill = "orange")
histo2
```



## Histograms with bars filled and contour colors

```
histo3<-citations_ecology %>%
  ggplot() +
  aes(x = nbtweets) +
  geom_histogram(fill = "orange", color="orange")
histo3
```



### Histograms with labels and title



# Histograms but group this by specific variable

Here we want to have the histogram by journal.



# Histograms but group this by specific variable

Here we want to have the histogram by journal.



## **Boxplots**

Intuitively by now, you would guess this would have something like geom\_boxplot(). Also, please keep in mind that we would not give x values for the aes(), but only y values.

```
boxpl<-citations_ecology %>%
  ggplot() +
  aes(x = "", y = nbtweets) +
  geom_boxplot(fill="green") +
  scale_y_log10()
boxpl
```



## Some other manipulations

## **Boxplots**

```
citations_ecology %>%
  ggplot() +
  aes(x = "", y = nbtweets) +
  geom_boxplot() +
  scale_y_log10()
```



## **Boxplots with colors**

```
citations_ecology %>%
  ggplot() +
  aes(x = "", y = nbtweets) +
  geom_boxplot(fill = "green") +
  scale_y_log10()
```



## Boxplots with colors by species

```
citations_ecology %>%
  ggplot() +
  aes(x = journal, y = nbtweets, fill = journal) +
  geom_boxplot() +
  scale_y_log10()
```



### Get rid of the ticks on x axis

```
citations_ecology %>%
  ggplot() +
  aes(x = journal, y = nbtweets, fill = journal) +
  geom_boxplot() +
  scale_y_log10() +
  theme(axis.text.x = element_blank()) +
  labs(x = "")
```



## Boxplots, user-specified colors by species

```
citations_ecology %>%
  ggplot() +
  aes(x = journal, y = nbtweets, fill = journal) +
  geom_boxplot() +
  scale_y_log10() +
  scale_fill_manual(
    values = c("red", "blue", "purple")) +
  theme(axis.text.x = element_blank()) +
  labs(x = "")
```



## Boxplots, change legend settings

```
citations_ecology %>%
  ggplot() +
  aes(x = journal, y = nbtweets, fill = journal) +
  geom_boxplot() +
  scale_y_log10() +
  scale_fill_manual(
    values = c("red", "blue", "purple"),
    name = "Journal name",
    labels = c("Ecology", "J Animal Ecology", "J Applied Ecology")) +
  theme(axis.text.x = element_blank()) +
  labs(x = "")
```



## Ugly bar plots

```
citations %>%
  count(journal) %>%
  ggplot() +
  aes(x = journal, y = n) +
  geom_col()
```



## Idem, with flipping

```
citations %>%
  count(journal) %>%
  ggplot() +
  aes(x = n, y = journal) +
  geom_col()
```



## Idem, with factors reordering and flipping

```
citations %>%
  count(journal) %>%
  ggplot() +
  aes(x = n, y = fct_reorder(journal, n)) +
  geom_col()
```



## Further cleaning

```
citations %>%
  count(journal) %>%
  ggplot() +
  aes(x = n, y = fct_reorder(journal, n)) +
  geom_col() +
  labs(x = "counts", y = "")
```



# More about how to (tidy) work with factors

- Be the boss of your factors and
- forcats, forcats, vous avez dit forcats?.

# Density plots

```
citations_ecology %>%
  ggplot() +
  aes(x = nbtweets, fill = journal) +
  geom_density() +
  scale_x_log10()
```



## Density plots, control transparency

```
citations_ecology %>%
  ggplot() +
  aes(x = nbtweets, fill = journal) +
  geom_density(alpha = 0.5) +
  scale_x_log10()
```



# Change default background

```
# `B & W theme`
citations_ecology %>%
  ggplot() +
  aes(x = nbtweets, fill = journal) +
  geom_density(alpha = 0.5) +
  scale_x_log10() +
  theme_bw()
```



# Change default background theme

```
# `classic theme`
citations_ecology %>%
  ggplot() +
  aes(x = nbtweets, fill = journal) +
  geom_density(alpha = 0.5) +
  scale_x_log10() +
  theme_classic()
```



# Change default background theme

```
# `dark theme`
citations_ecology %>%
  ggplot() +
  aes(x = nbtweets, fill = journal) +
  geom_density(alpha = 0.5) +
  scale_x_log10() +
  theme_dark()
```



## More on data visualisation with ggplot2

- Portfolio of ggplot2 plots
- Cedric Scherer's portfolio of data visualizations
- Top ggplot2 visualizations
- Interactive ggplot2 visualizations



# To dive deeper in data visualisation with the tidyverse

- Learn the tidyverse: books, workshops and online courses
- R for Data Science and Advanced R
- Fundamentals of Data visualization
- Data Visualization: A practical introduction
- Tidy Tuesdays videos by D. Robinson
- Material of the 2-day workshop Data Science in the tidyverse held at the RStudio 2019 conference
- Material of the stat545 course on Data wrangling, exploration, and analysis with R at the University of British Columbia

#### The RStudio Cheat Sheets





#### The RStudio Cheat Sheets



# Thank you for listening!

Any questions now or email me at <a href="mailto:dossa@xtbg.org.cn">dossa@xtbg.org.cn</a>

Slides created via the R package xaringan.

The chakra comes from remark.js, knitr, and R Markdown.