Approximate Inference in Latent Variable Models based on NNs

Pablo M. Olmos, olmos@tsc.uc3m.es

October 3, 2017

uc3m Universidad Carlos III de Madrid

Keywords today:

- Latent Variable Models
- Variational Inference
- Neural Networks
- Stochastic Gradient Descend

Index

- Variational Autoencoders (VAEs)
 - VAE Generative Model
 - VAE Objective Function
 - VAE Stochastic Optimization
- 2 Some recent applications of VAEs
- Beyond the standard VAE generative model
 - Normalizing flows
 - Adversarial networks and Implicit Variational Inference

Index

- Variational Autoencoders (VAEs)
 - VAE Generative Model
 - VAE Objective Function
 - VAE Stochastic Optimization
- 2 Some recent applications of VAEs
- Beyond the standard VAE generative model
 - Normalizing flows
 - Adversarial networks and Implicit Variational Inference

Fitting a distribution using VAEs: Generative Model

Consider a set of i.i.d observations $\mathbf{x}^{(i)} \in \mathbb{R}^d$, $i = 1, \dots, N$. Let $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$.

Generative Model using a Latent Space

$$p_{\theta}(x) = \int p_{\theta}(x|z)p(z)dz$$

Fitting a distribution using VAEs: Generative Model

Consider a set of i.i.d observations $\mathbf{x}^{(i)} \in \mathbb{R}^d$, $i = 1, \dots, N$. Let $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$.

Generative Model using a Latent Space

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

- $z \sim \mathcal{N}(\mathbf{0}, I_k)$ $(k \leq d)$ (low-dimensional embedding)
- $\mathbf{x}|\mathbf{z} \sim \mathcal{N}(\mu_{\boldsymbol{\theta}}(\mathbf{z}), \operatorname{diag}(\sigma_{\boldsymbol{\theta}}(\mathbf{z})))$
- $\mu_{\theta}(\mathbf{z})$ and $\log(\sigma_{\theta}(\mathbf{z}))$ are the outputs of a NN $\mathbb{R}^k \to \mathbb{R}^d$ with parameter vector $\boldsymbol{\theta}$ (Decoding network).

D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes., https://arxiv.org/pdf/1312.6114.pdf

Index

- Variational Autoencoders (VAEs)
 - VAE Generative Model
 - VAE Objective Function
 - VAE Stochastic Optimization
- 2 Some recent applications of VAEs
- Beyond the standard VAE generative model
 - Normalizing flows
 - Adversarial networks and Implicit Variational Inference

Fitting a distribution using VAEs: ML objective

$$p_{\theta}(x) = \int p_{\theta}(x|z)p(z)dz$$

ML estimation (in general intractable)

$$egin{aligned} oldsymbol{ heta}^* &= rg \max_{oldsymbol{ heta} \in \Omega} rac{1}{N} \sum_{i=1}^N \log p_{oldsymbol{ heta}}(oldsymbol{x}^{(i)}) \ &pprox rg \max_{oldsymbol{ heta} \in \Omega} \int p^*(oldsymbol{x}) \log p_{oldsymbol{ heta}}(oldsymbol{x}) doldsymbol{x} \ &= rg \min_{oldsymbol{ heta} \in \Omega} \operatorname{KL}\left(p^*(oldsymbol{x})||p_{oldsymbol{ heta}}(oldsymbol{x})
ight) \end{aligned}$$

Fitting a distribution using VAEs: Variational objective

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

Consider any approximation
$$q(z)$$
 to $p_{\theta}(z|x) \propto p_{\theta}(x|z)p(z)$

Fitting a distribution using VAEs: Variational objective

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

Consider **any** approximation q(z) to $p_{\theta}(z|x) \propto p_{\theta}(x|z)p(z)$

$$\log p_{\theta}(\mathbf{x}) = \mathsf{KL}\left(q(\mathbf{z})||p_{\theta}(\mathbf{z}|\mathbf{x})\right) + \mathcal{L}(\mathbf{x}, \theta)$$

where

$$\mathcal{L}(\mathbf{x}, \mathbf{\theta}) = \int q(\mathbf{z}) \log \frac{p_{\mathbf{\theta}}(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z} = \mathbb{E}_{q(\mathbf{z})} [\log p_{\mathbf{\theta}}(\mathbf{x}|\mathbf{z})] - \mathsf{KL}(q(\mathbf{z})||p(\mathbf{z}))$$

is the Evidence Lower Bound (ELBO).

We will optimize $\mathcal{L}(\mathbf{x}, \theta)$ w.r.t. θ But first we need to select a variational family for $q(\mathbf{z})$.

Fitting a distribution using VAEs: Variational objective (II)

$$p_{\theta}(x) = \int p_{\theta}(x|z)p(z)dz$$

The Inference Network or Encoding Network

$$p_{m{ heta}}(\mathbf{z}|\mathbf{x}) pprox q_{m{\eta},\mathbf{x}}(\mathbf{z}) = \mathcal{N}(\mu_{m{\eta}}(\mathbf{x}), \mathsf{diag}(\sigma_{m{\eta}}(\mathbf{x})))$$

where $\mu_{\eta}(\mathbf{x})$ and $\log(\sigma_{\eta}(\mathbf{x}))$ are the outputs of a NN $\mathbb{R}^d \to \mathbb{R}^k$ with parameter vector η .

Fitting a distribution using VAEs: Variational objective (II)

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

The Inference Network or Encoding Network

$$p_{m{ heta}}(m{z}|m{x}) pprox q_{m{\eta},m{x}}(m{z}) = \mathcal{N}(\mu_{m{\eta}}(m{x}), \mathsf{diag}(\sigma_{m{\eta}}(m{x})))$$

where $\mu_{\eta}(\mathbf{x})$ and $\log(\sigma_{\eta}(\mathbf{x}))$ are the outputs of a NN $\mathbb{R}^d \to \mathbb{R}^k$ with parameter vector η .

The VAE optimization problem

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \boldsymbol{z}) \right] - \mathsf{KL} \left(q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z}) || p(\boldsymbol{z}) \right) \right)$$

Index

- Variational Autoencoders (VAEs)
 - VAE Generative Model
 - VAE Objective Function
 - VAE Stochastic Optimization
- 2 Some recent applications of VAEs
- Beyond the standard VAE generative model
 - Normalizing flows
 - Adversarial networks and Implicit Variational Inference

Fitting a distribution using VAEs: Stochastic Optimization

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\mathbf{z})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \mathbf{z}) \right] - \mathsf{KL} \left(q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\mathbf{z}) || p(\mathbf{z}) \right) \right)$$

Recall that $p(z) = \mathcal{N}(0, I)$ and $q_{n,x}(z) = \mathcal{N}(\mu_n(x), \text{diag}(\sigma_n(x)))$, thus

$$\mathsf{KL}\left(q_{\boldsymbol{\eta},\mathbf{x}}(\boldsymbol{z})||p(\boldsymbol{z})\right) = \frac{1}{2}\left(-k + \sum_{j=1}^k \sigma_{\boldsymbol{\eta},j}(\boldsymbol{x}) - \log \sigma_{\boldsymbol{\eta},j}(\boldsymbol{x}) + \mu_{\boldsymbol{\eta},j}^2\right)$$

$$ightarrow$$
 Differentiable w.r.t. η

Fitting a distribution using VAEs: Stochastic Optimization

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \boldsymbol{x}^{(i)}}(\boldsymbol{z})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}) \right] - \mathsf{KL} \left(q_{\boldsymbol{\eta}, \boldsymbol{x}^{(i)}}(\boldsymbol{z}) || p(\boldsymbol{z}) \right) \right)$$

Recall that $p(z) = \mathcal{N}(\mathbf{0}, I)$ and $q_{\eta,x}(z) = \mathcal{N}(\mu_{\eta}(x), \text{diag}(\sigma_{\eta}(x)))$, thus

$$\begin{aligned} \mathsf{KL}\left(q_{\boldsymbol{\eta},\mathbf{x}}(\mathbf{z})||p(\mathbf{z})\right) &= \frac{1}{2}\left(-k + \sum_{j=1}^{k} \sigma_{\boldsymbol{\eta},j}(\mathbf{x}) - \log \sigma_{\boldsymbol{\eta},j}(\mathbf{x}) + \mu_{\boldsymbol{\eta},j}^{2}\right) \\ &\to \mathsf{Differentiable} \; \mathsf{w.r.t.} \;\; \boldsymbol{\eta} \end{aligned}$$

Unbiased gradient estimator

$$abla_{oldsymbol{\eta}} \left(rac{1}{N} \sum_{i=1}^{N} \mathsf{KL}\left(q_{oldsymbol{\eta}, \mathbf{x}^{(i)}}(\mathbf{z}) || p(\mathbf{z})
ight)
ight) pprox
abla_{oldsymbol{\eta}} \left(rac{1}{M} \sum_{i=1}^{N} \mathsf{KL}\left(q_{oldsymbol{\eta}, \mathbf{x}^{(i)}}(\mathbf{z}) || p(\mathbf{z})
ight)
ight)$$

where \mathcal{M} represents a M-sized minibatch of data sampled at random from \mathcal{D} (M << N).

Fitting a distribution using VAEs: Stochastic Optimization (II)

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \boldsymbol{x}^{(i)}}(\boldsymbol{z})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}) \right] - \mathsf{KL}\left(q_{\boldsymbol{\eta}, \boldsymbol{x}^{(i)}}(\boldsymbol{z}) || p(\boldsymbol{z}) \right) \right)$$

We also need unbiased gradient estimates for

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{q_{\eta, \mathbf{x}^{(i)}}(\mathbf{z})} \left[\log p_{\theta}(\mathbf{x}^{(i)} | \mathbf{z}) \right]$$

Fitting a distribution using VAEs: Stochastic Optimization (II)

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}) \right] - \mathsf{KL}\left(q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z}) || p(\boldsymbol{z})\right) \right)$$

We also need unbiased gradient estimates for

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{q_{\eta, \mathbf{x}^{(i)}}(\mathbf{z})} \left[\log p_{\theta}(\mathbf{x}^{(i)} | \mathbf{z}) \right]$$

We use a Monte Carlo sampling estimator

$$\mathbb{E}_{q_{\eta,\mathbf{x}^{(i)}}(\mathbf{z})}\left[\log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z})\right] \approx \frac{1}{S} \sum_{s=1}^{S} \log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}^{i,s})$$

where $\mathbf{z}^{(s,i)}$, $s=1,\ldots,S$ are i.i.d. samples from $q_{\eta,\mathbf{x}^{(i)}}(\mathbf{z})$.

We typically use a **single** sample, i.e., S=1 (huge estimator variance, but cheap computation).

Fitting a distribution using VAEs: Stochastic Optimization (III)

If $\mathbf{z}^{(s,i)}$ are i.i.d. samples from $q_{\eta,\mathbf{x}^{(i)}}(\mathbf{z}) = \mathcal{N}(\mu_{\eta}(\mathbf{x}^{(i)}), \operatorname{diag}(\sigma_{\eta}(\mathbf{x}^{(i)})))$

$$\frac{1}{S} \sum_{i=1}^{S} \log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}^{i,s}) \rightarrow \text{how do we compute gradients w.r.t. } \boldsymbol{\eta}?$$

Fitting a distribution using VAEs: Stochastic Optimization (III)

If $\mathbf{z}^{(s,i)}$ are i.i.d. samples from $q_{\eta,\mathbf{x}^{(i)}}(\mathbf{z}) = \mathcal{N}(\mu_{\eta}(\mathbf{x}^{(i)}), \operatorname{diag}(\sigma_{\eta}(\mathbf{x}^{(i)})))$

$$\frac{1}{S} \sum_{s=1}^{S} \log p_{\theta}(\mathbf{x}^{(i)} | \mathbf{z}^{i,s}) \rightarrow \text{how do we compute gradients w.r.t. } \boldsymbol{\eta}?$$

Reparameterization Trick

Express each sample $\mathbf{z}^{(s,i)}$ as a deterministic function of $\mathbf{x}^{(i)}$ and some noise vector $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ that is independent of $\boldsymbol{\eta}$. For a Gaussian distribution we have

$$\mathbf{z}^{(s,i)} = f_{\boldsymbol{\eta}}(\mathbf{x}^{(i)}, \epsilon) = \mu_{\boldsymbol{\eta}}(\mathbf{x}^{(i)}) + \sqrt{\sigma_{\boldsymbol{\eta}}(\mathbf{x}^{(i)})} \cdot \epsilon$$

Fitting a distribution using VAEs: Stochastic Optimization (III)

If $\mathbf{z}^{(s,i)}$ are i.i.d. samples from $q_{\eta,\mathbf{x}^{(i)}}(\mathbf{z}) = \mathcal{N}(\mu_{\eta}(\mathbf{x}^{(i)}), \operatorname{diag}(\sigma_{\eta}(\mathbf{x}^{(i)})))$

$$\frac{1}{S} \sum_{s=1}^{S} \log p_{\theta}(\mathbf{x}^{(i)} | \mathbf{z}^{i,s}) \rightarrow \text{how do we compute gradients w.r.t. } \boldsymbol{\eta}?$$

Reparameterization Trick

Express each sample $\mathbf{z}^{(s,i)}$ as a deterministic function of $\mathbf{x}^{(i)}$ and some noise vector $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ that is independent of $\boldsymbol{\eta}$. For a Gaussian distribution we have

$$\mathbf{z}^{(s,i)} = f_{\eta}(\mathbf{x}^{(i)}, \epsilon) = \mu_{\eta}(\mathbf{x}^{(i)}) + \sqrt{\sigma_{\eta}(\mathbf{x}^{(i)})} \cdot \epsilon$$

Putting all together...

$$\mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\mathbf{z})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \mathbf{z}) \right] = \mathbb{E}_{\epsilon} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | f_{\boldsymbol{\eta}}(\epsilon, \mathbf{x}^{(i)})) \right] \approx \frac{1}{S} \sum_{s=1}^{S} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | f_{\boldsymbol{\eta}}(\epsilon^{s,i}, \mathbf{x}^{(i)}))$$

where $\epsilon^{s,i}$, $s=1,\ldots,S$ are i.i.d. samples from $\mathcal{N}(\mathbf{0},\mathbf{I})$.

Fitting a distribution using VAEs: the algorithm

Algorithm 1 The Variational Autoencoder (S=1)

- 1: $\theta \leftarrow \theta_0$, $\eta \leftarrow \eta_0$
- 2: ℓ ← 0
- 3: **while** not converged **do**
- 4: Sample minibatch $\{ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(M)} \}$ from \mathcal{D}
- 5: Sample $\{\epsilon^1, \dots, \epsilon^M\}$ from $p(\epsilon) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 6: Compute noisy gradients:

$$\boldsymbol{g}_{\boldsymbol{\theta}}, \boldsymbol{g}_{\boldsymbol{\eta}} \leftarrow \frac{1}{M} \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | f_{\boldsymbol{\eta}}(\epsilon^{i}, \boldsymbol{x}^{(i)})) - \mathsf{KL}\left(q_{\boldsymbol{\eta}, \boldsymbol{x}^{(i)}}(\boldsymbol{z}) || p(\boldsymbol{z})\right) \right]$$

7: Perform SGD-updates:

$$egin{aligned} oldsymbol{ heta}_{\ell+1} \leftarrow oldsymbol{ heta}_{\ell+1} + h_{\ell} oldsymbol{g}_{oldsymbol{ heta}} \ oldsymbol{\eta}_{\ell+1} \leftarrow oldsymbol{\eta}_{\ell+1} + h_{\ell} oldsymbol{\eta}_{oldsymbol{ heta}} \end{aligned}$$

- 8: $\ell \leftarrow \ell + 1$
- 9: end while

Index

- Variational Autoencoders (VAEs)
 - VAE Generative Model
 - VAE Objective Function
 - VAE Stochastic Optimization
- 2 Some recent applications of VAEs
- Beyond the standard VAE generative model
 - Normalizing flows
 - Adversarial networks and Implicit Variational Inference

- Approximate Inference with Amortised MCMC https://arxiv.org/pdf/1702.08343.pdf
- Autoencoding Variational Inference for Topic Models https://arxiv.org/pdf/1703.01488.pdf
- Improved Variational Autoencoders for Text Modeling using Dilated Convolutions
 http://proceedings.mlr.press/v70/yang17d/yang17d.pdf
- Variational Sequential Monte Carlo
 https://arxiv.org/pdf/1705.11140.pdf
- Stick Breaking Variational Autoencoders https://arxiv.org/pdf/1605.06197.pdf
- https://arxiv.org/pdf/1605.0619/.pdf
 AutoGP: Exploring the Capabilities and Limitations of Gaussian Process

Models http://arxiv.org/abs/1610.05392

Index

- Variational Autoencoders (VAEs)
 - VAE Generative Model
 - VAE Objective Function
 - VAE Stochastic Optimization
- 2 Some recent applications of VAEs
- 3 Beyond the standard VAE generative model
 - Normalizing flows
 - Adversarial networks and Implicit Variational Inference

$$p_{ heta}(\mathbf{x}) = \int p_{ heta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$
 $p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I}_k)$
 $p_{ heta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mu_{ heta}(\mathbf{z}), \operatorname{diag}(\sigma_{ heta}(\mathbf{z})))$
 $p_{ heta}(\mathbf{z}|\mathbf{x}) pprox q_{\eta,\mathbf{x}}(\mathbf{z}) = \mathcal{N}(\mu_{\eta}(\mathbf{x}), \operatorname{diag}(\sigma_{\eta}(\mathbf{x})))$

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}) \right] - \mathsf{KL} \left(q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z}) || p(\boldsymbol{z}) \right) \right)$$

$$egin{aligned} p_{m{ heta}}(m{x}) &= \int p_{m{ heta}}(m{x}|m{z})p(m{z})dm{z} \ p(m{z}) &= \mathcal{N}(m{0},m{I}_k) \ p_{m{ heta}}(m{x}|m{z}) &= \mathcal{N}(\mu_{m{ heta}}(m{z}), \mathrm{diag}(\sigma_{m{ heta}}(m{z}))) \ p_{m{ heta}}(m{z}|m{x}) &pprox q_{m{\eta},m{x}}(m{z}) &= \mathcal{N}(\mu_{m{\eta}}(m{x}), \mathrm{diag}(\sigma_{m{\eta}}(m{x}))) \end{aligned}$$

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}) \right] - \mathsf{KL} \left(q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z}) || p(\boldsymbol{z}) \right) \right)$$

Some critical assumptions (among many others)

- Unimodal posterior approximation.
- $p_{\theta}(x|z)$ is known.
- I can find a valid reconstruction $p_{\theta}(x|z)$ model.
- Prior too simple? It does not enforce interpretability in the latent space.
 - ...

$$egin{aligned} p_{m{ heta}}(m{x}) &= \int p_{m{ heta}}(m{x}|m{z})p(m{z})dm{z} \ p(m{z}) &= \mathcal{N}(m{0},m{I}_k) \ p_{m{ heta}}(m{x}|m{z}) &= \mathcal{N}(\mu_{m{ heta}}(m{z}), \mathrm{diag}(\sigma_{m{ heta}}(m{z}))) \ p_{m{ heta}}(m{z}|m{x}) &pprox q_{m{\eta},m{x}}(m{z}) &= \mathcal{N}(\mu_{m{\eta}}(m{x}), \mathrm{diag}(\sigma_{m{\eta}}(m{x}))) \end{aligned}$$

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}) \right] - \mathsf{KL} \left(q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z}) || p(\boldsymbol{z}) \right) \right)$$

Some critical assumptions (among many others)

- Unimodal posterior approximation.
- $p_{\theta}(x|z)$ is known.
- I can find a valid reconstruction $p_{\theta}(x|z)$ model.
- Prior too simple? It does not enforce interpretability in the latent space.
- ...

Index

- Variational Autoencoders (VAEs)
 - VAE Generative Model
 - VAE Objective Function
 - VAE Stochastic Optimization
- 2 Some recent applications of VAEs
- 3 Beyond the standard VAE generative model
 - Normalizing flows
 - Adversarial networks and Implicit Variational Inference

Normalizing flows

Let $\mathbf{z} \sim q_{\eta,\mathbf{x}}(\mathbf{z})$, where $q_{\eta,\mathbf{x}}(\mathbf{z}) = \mathcal{N}(\mu_{\eta}(\mathbf{x}), \operatorname{diag}(\sigma_{\eta}(\mathbf{x})))$. Given an invertible, smooth mapping $g: \mathbb{R}^k \to \mathbb{R}^k$, the random variable $\mathbf{z}' = g(\mathbf{z})$ has a distribution

$$q(\mathbf{z}') = q_{oldsymbol{\eta},\mathbf{x}}(\mathbf{z}) \left| \det rac{\partial g^{-1}}{\partial \mathbf{z}'}
ight| = q_{oldsymbol{\eta},\mathbf{x}}(\mathbf{z}) \left| \det rac{\partial g}{\partial \mathbf{z}}
ight|^{-1}$$

which in general is not unimodal.

D. Jimenez Rezende and S. Mohamed, Variational Inference with Normalizing Flows., $\label{eq:homogeneous} https://arxiv.org/pdf/1505.05770.pdf$

Normalizing flows

Let $\mathbf{z} \sim q_{\eta,\mathbf{x}}(\mathbf{z})$, where $q_{\eta,\mathbf{x}}(\mathbf{z}) = \mathcal{N}(\mu_{\eta}(\mathbf{x}), \operatorname{diag}(\sigma_{\eta}(\mathbf{x})))$. Given an invertible, smooth mapping $g: \mathbb{R}^k \to \mathbb{R}^k$, the random variable $\mathbf{z}' = g(\mathbf{z})$ has a distribution

$$q(\mathbf{z}') = q_{oldsymbol{\eta},\mathbf{x}}(\mathbf{z}) \left| \det rac{\partial g^{-1}}{\partial \mathbf{z}'}
ight| = q_{oldsymbol{\eta},\mathbf{x}}(\mathbf{z}) \left| \det rac{\partial g}{\partial \mathbf{z}}
ight|^{-1}$$

which in general is not unimodal.

We can construct arbitrarily complex densities by composing several simple maps and applying this result.

$$\mathbf{z}_T = g_T \circ g_{T-1} \circ g_{T-2} \dots \circ g_1(\mathbf{z}), \quad \mathbf{z} \sim q_{\eta, \mathbf{x}}(\mathbf{z})$$

$$\log q_{\eta, \mathbf{x}, T}(\mathbf{z}_T) = \log q_{\eta, \mathbf{x}}(\mathbf{z}) - \sum_{t=1}^T \log \left| \det \frac{\partial g_t}{\partial \mathbf{z}_{t-1}} \right|,$$

where z_t is the output of the *normalizing flow* after the *t*-th transformation.

D. Jimenez Rezende and S. Mohamed, Variational Inference with Normalizing Flows., $\label{eq:https://arxiv.org/pdf/1505.05770.pdf} \end{subarray}$

Normalizing flows (II)

Figure 1. Effect of normalizing flow on two distributions.

D. Jimenez Rezende and S. Mohamed, Variational Inference with Normalizing Flows., https://arxiv.org/pdf/1505.05770.pdf

Normalizing flows (III)

$$p_{m{ heta}}(\mathbf{x}) = \int p_{m{ heta}}(\mathbf{x}|\mathbf{z}_T)p(\mathbf{z}_T)d\mathbf{z}$$
 $p(\mathbf{z}_T) = \mathcal{N}(\mathbf{0}, \mathbf{I}_k)$ $p_{m{ heta}}(\mathbf{x}|\mathbf{z}_T) = \mathcal{N}(\mu_{m{ heta}}(\mathbf{z}_T), \mathrm{diag}(\sigma_{m{ heta}}(\mathbf{z}_T)))$ $p_{m{ heta}}(\mathbf{z}|\mathbf{x}) pprox q_{\mathbf{x},T}(\mathbf{z}_T)$

Normalizing flows (III)

$$egin{aligned} p_{m{ heta}}(m{x}) &= \int p_{m{ heta}}(m{x}|m{z}_{T})p(m{z}_{T})dm{z} \ p(m{z}_{T}) &= \mathcal{N}(m{0},m{I}_{k}) \ p_{m{ heta}}(m{x}|m{z}_{T}) &= \mathcal{N}(\mu_{m{ heta}}(m{z}_{T}), \mathrm{diag}(\sigma_{m{ heta}}(m{z}_{T}))) \ p_{m{ heta}}(m{z}|m{x}) &pprox q_{m{x},T}(m{z}_{T}) \end{aligned}$$

SGD optimization is run using the following expression for the ELBO:

$$\begin{split} &\log p_{\theta}(\mathbf{x}) \\ &\geq \mathbb{E}_{q_{\eta, \mathbf{x}, \mathcal{T}}(\mathbf{z}_{\mathcal{T}})} \left[\log(p_{\theta}(\mathbf{x}|\mathbf{z}_{\mathcal{T}})p(\mathbf{z}_{\mathcal{T}})) - \log q_{\eta, \mathbf{x}, \mathcal{T}}(\mathbf{z}_{\mathcal{T}}) \right] \\ &= \mathbb{E}_{q_{\eta, \mathbf{x}}(\mathbf{z})} \left[\log(p_{\theta}(\mathbf{x}|\mathbf{z}_{\mathcal{T}})p(\mathbf{z}_{\mathcal{T}})) - \log q_{\eta, \mathbf{x}, \mathcal{T}}(\mathbf{z}_{\mathcal{T}}) \right] \\ &= \mathbb{E}_{q_{\eta, \mathbf{x}}(\mathbf{z})} \left[\log(p_{\theta}(\mathbf{x}|\mathbf{z}_{\mathcal{T}})p(\mathbf{z}_{\mathcal{T}})) - \log q_{\eta, \mathbf{x}}(\mathbf{z}) \right] + \mathbb{E}_{q_{\eta, \mathbf{x}}(\mathbf{z})} \left[\sum_{t=1}^{T} \log \left| \det \frac{\partial g_{t}}{\partial \mathbf{z}_{t-1}} \right| \right] \end{split}$$

Index

- Variational Autoencoders (VAEs)
 - VAE Generative Model
 - VAE Objective Function
 - VAE Stochastic Optimization
- 2 Some recent applications of VAEs
- 3 Beyond the standard VAE generative model
 - Normalizing flows
 - Adversarial networks and Implicit Variational Inference

$$egin{aligned} p_{ heta}(oldsymbol{x}) &= \int p_{ heta}(oldsymbol{x}|oldsymbol{z}) p(oldsymbol{z}) doldsymbol{z} \ p(oldsymbol{z}) &= \mathcal{N}(oldsymbol{0}, oldsymbol{I}_k) \ p_{ heta}(oldsymbol{z}|oldsymbol{z}) &= \mathcal{N}(\mu_{ heta}(oldsymbol{z}), \operatorname{diag}(\sigma_{ heta}(oldsymbol{z}))) \ p_{ heta}(oldsymbol{z}|oldsymbol{x}) &pprox q_{oldsymbol{\eta}, oldsymbol{x}}(oldsymbol{z}) &= \mathcal{N}(\mu_{oldsymbol{\eta}}(oldsymbol{x}), \operatorname{diag}(\sigma_{oldsymbol{\eta}}(oldsymbol{x}))) \end{aligned}$$

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}) \right] - \mathsf{KL} \left(q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z}) || p(\boldsymbol{z}) \right) \right)$$

Some critical assumptions (among many others)

- Unimodal posterior approximation.
- $p_{\theta}(x|z)$ is known.
- I can find a valid reconstruction $p_{\theta}(\mathbf{x}|\mathbf{z})$ model.
- Prior too simple? It does not enforce interpretability in the latent space.
 - ...

Implicit posterior distribution

$$\begin{split} p_{\theta}(\mathbf{x}) &= \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z} \\ p(\mathbf{z}) &= \mathcal{N}(\mathbf{0}, \mathbf{I}_k) \\ p_{\theta}(\mathbf{x}|\mathbf{z}) &= \mathcal{N}(\mu_{\theta}(\mathbf{z}), \operatorname{diag}(\sigma_{\theta}(\mathbf{z}))) \\ p_{\theta}(\mathbf{z}|\mathbf{x}) &\approx q_{\eta,\mathbf{x}}(\mathbf{z}) = f_{\eta}(\mathbf{x}, \epsilon) \to \operatorname{We \ can \ only \ sample \ from \ it} \end{split}$$

$$\begin{split} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) &= \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}) \right] - \mathsf{KL} \left(q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z}) || p(\boldsymbol{z}) \right) \right) \\ &= \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log(p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}) p(\boldsymbol{z})) - \log(q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})) \right] \right) \end{split}$$

 $q_{oldsymbol{\eta}, \mathbf{z}^{(i)}}(\mathbf{z})$ cannot appear explicitly in the objective function!

Discriminative Classifiers for log-likelihood ratio estimation

Consider the following two joint distributions:

$$\left\{\begin{array}{ll} q_{\eta,x}(\mathbf{z})p^*(\mathbf{x}) \\ p(\mathbf{z})p^*(\mathbf{x}) \end{array} \right. \to p^*(\mathbf{x}) \text{ is the real distribution of the data}.$$

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert. The elements of statistical learning, volume 1. Springer series in statistics Springer, Berlin, 2001

Discriminative Classifiers for log-likelihood ratio estimation

Consider the following two joint distributions:

$$\left\{\begin{array}{ll} q_{\eta,x}(\mathbf{z})p^*(\mathbf{x}) \\ p(\mathbf{z})p^*(\mathbf{x}) \end{array} \right. \to p^*(\mathbf{x}) \text{ is the real distribution of the data}.$$

Let T(z,x) be a classifier network that is trained to discriminate between samples coming from either $q_{\eta,x}(z)p^*(x)$ (+1 class), or $p(z)p^*(x)$ (0 class). Given a (z',x') sample

$$\mathbb{P}\left((\mathbf{z}',\mathbf{x}')\text{is drawn from }p(\mathbf{z})p^*(\mathbf{x})\right) = \frac{1}{1+\mathrm{e}^{-T(\mathbf{z}',\mathbf{x}')}} \triangleq \mathrm{sigm}(T(\mathbf{z}',\mathbf{x}'))$$

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert. The elements of statistical learning, volume $1.\,$ Springer series in statistics Springer, Berlin, 2001

Discriminative Classifiers for log-likelihood ratio estimation (II)

The optimal discriminator $T^*(z,x)$ according to the cross entropy loss function

is

$$\arg\max_{T(z,x)}\mathbb{E}_{q_{\eta,x}(z)p^*(x)}\left[\log\mathrm{sigm}(T(z,x))\right]+\mathbb{E}_{p(z)p^*(x)}\left[\log(1-\mathrm{sigm}(T(z,x)))\right]$$

 $T^*(\mathbf{z}, \mathbf{x}) = \log \frac{q_{\eta, \mathbf{x}}(\mathbf{z})}{p(\mathbf{z})}$

Discriminative Classifiers for log-likelihood ratio estimation (II)

is

The optimal discriminator $T^*(z,x)$ according to the cross entropy loss function $\max_{T(z,x)} \mathbb{E}_{q_{\eta,x}(z)p^*(x)} \left[\log \operatorname{sigm}(T(z,x))\right] + \mathbb{E}_{p(z)p^*(x)} \left[\log (1-\operatorname{sigm}(T(z,x)))\right]$

$$T^*(z,x) = \log \frac{q_{\eta,x}(z)}{p(z)}$$

In practice, we approximate $T^*(z,x)$ using a deep NN with parameters ψ that is trained using samples of both distributions:

$$\psi^* = \arg\max_{\psi} \sum_{i=1}^N \frac{1}{2} \log \operatorname{sigm}(\mathcal{T}(\boldsymbol{x}^{(i)}, \boldsymbol{z}^{(i)})) + \frac{1}{2} \log(1 - \operatorname{sigm}(\mathcal{T}(\boldsymbol{x}^{(i)}, \tilde{\boldsymbol{z}}^{(i)})))$$

where $(\mathbf{x}^{(i)}, \mathbf{z}^{(i)})$, $i=1,\ldots,N$ are i.i.d. samples from $q_{\eta,x}(\mathbf{z})p^*(\mathbf{x})$ and $(\mathbf{x}^{(i)}, \mathbf{z}^{(i)})$, $i=1,\ldots,N$ are i.i.d. samples from $p(\mathbf{z})p^*(\mathbf{x})$.

The aversarial VAE with implicit posterior approximation

$$\begin{split} p_{\theta}(\mathbf{x}) &= \int p_{\theta}(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z} \\ p(\mathbf{z}) &= \mathcal{N}(\mathbf{0}, \mathbf{I}_k) \\ p_{\theta}(\mathbf{x}|\mathbf{z}) &= \mathcal{N}(\mu_{\theta}(\mathbf{z}), \operatorname{diag}(\sigma_{\theta}(\mathbf{z}))) \\ p_{\theta}(\mathbf{z}|\mathbf{x}) &\approx q_{\eta, \mathbf{x}}(\mathbf{z}) = f_{\eta}(\mathbf{x}, \epsilon) \to \operatorname{We can only sample from it} \end{split}$$

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \boldsymbol{x}^{(i)}}(\boldsymbol{z})} \left[\log(p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}|\boldsymbol{z})) + \log(\frac{p(\boldsymbol{z})}{q_{\boldsymbol{\eta}, \boldsymbol{x}^{(i)}}(\boldsymbol{z})}) \right] \right)$$

F. Huszár, Variational Inference using Implicit Distributions.

L. Mescheder, S. Nowozin, and A. Geiger, Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks.

The aversarial VAE with implicit posterior approximation

$$\begin{split} p_{\theta}(\mathbf{x}) &= \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z} \\ p(\mathbf{z}) &= \mathcal{N}(\mathbf{0}, \mathbf{I}_k) \\ p_{\theta}(\mathbf{x}|\mathbf{z}) &= \mathcal{N}(\mu_{\theta}(\mathbf{z}), \operatorname{diag}(\sigma_{\theta}(\mathbf{z}))) \\ p_{\theta}(\mathbf{z}|\mathbf{x}) &\approx q_{\eta,x}(\mathbf{z}) = f_{\eta}(\mathbf{x}, \epsilon) \to \operatorname{We can only sample from it} \end{split}$$

$$\begin{split} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) &= \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log(p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}|\boldsymbol{z})) + \log(\frac{p(\boldsymbol{z})}{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})}) \right] \right) \\ &= \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log(p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}|\boldsymbol{z})) - T_{\boldsymbol{\psi}^*}(\boldsymbol{z}, \boldsymbol{x}^{(i)}) \right] \right) \end{split}$$

F. Huszár, Variational Inference using Implicit Distributions.

L. Mescheder , S. Nowozin, and A. Geiger, Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks.

The aversarial VAE with implicit posterior approximation

L. Mescheder, S. Nowozin, and A. Geiger, Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks.

The adversarial VAE with implicit likelihood distribution

$$p_{m{ heta}}(m{x}) = \int p_{m{ heta}}(m{x}|m{z})p(m{z})dm{z}$$
 $p(m{z}) = \mathcal{N}(m{0},m{I}_k)$ $p_{m{ heta}}(m{x}|m{z}) = f_{m{ heta}}(m{x},\epsilon) o ext{We can only sample from it}$ $p_{m{ heta}}(m{z}|m{x}) pprox q_{m{\eta},m{x}}(m{z}) = \mathcal{N}(\mu_{m{\eta}}(m{x}), ext{diag}(\sigma_{m{\eta}}(m{x})))$

$$\max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) = \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \boldsymbol{x}^{(i)}}(\boldsymbol{z})} \left[\log(p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}|\boldsymbol{z})) + \log(\frac{p(\boldsymbol{z})}{q_{\boldsymbol{\eta}, \boldsymbol{x}^{(i)}}(\boldsymbol{z})}) \right] \right)$$

The adversarial VAE with implicit likelihood distribution

$$p_{m{ heta}}(\mathbf{x}) = \int p_{m{ heta}}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$
 $p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I}_k)$ $p_{m{ heta}}(\mathbf{x}|\mathbf{z}) = f_{m{ heta}}(\mathbf{x}, \epsilon) o ext{We can only sample from it}$ $p_{m{ heta}}(\mathbf{z}|\mathbf{x}) pprox q_{m{ heta},\mathbf{x}}(\mathbf{z}) = \mathcal{N}(\mu_{m{ heta}}(\mathbf{x}), ext{diag}(\sigma_{m{ heta}}(\mathbf{x})))$

$$\begin{aligned} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\eta}) &= \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log(p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}|\boldsymbol{z})) + \log(\frac{p(\boldsymbol{z})}{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})}) \right] \right) \\ &= \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[\log(\frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}|\boldsymbol{z})p(\boldsymbol{z})}{p^{*}(\boldsymbol{x})q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})}) \right] \right) \\ &= \frac{1}{N} \max_{\boldsymbol{\theta}, \boldsymbol{\eta}} \left(\sum_{i=1}^{N} \mathbb{E}_{q_{\boldsymbol{\eta}, \mathbf{x}^{(i)}}(\boldsymbol{z})} \left[-T_{\boldsymbol{\psi}^{*}}(\boldsymbol{z}, \boldsymbol{x}^{(i)}) \right] \right) \end{aligned}$$

F. Huszár, Variational Inference using Implicit Distributions.

Algorithm		IMPLICIT		
	$p_{\theta}(z)$	$p_{\theta}(x z)$	$q_{\psi}(z x)$	V 1
VAE (KINGMA & WELLING, 2014)				/
NF (REZENDE & MOHAMED, 2015)				'
PC-ADV, ALGORITHM 1				
$AFFGAN^{\dagger}$ (Sønderby et al., 2017)	I		✓	\
AVB (MESCHEDER ET AL., 2017)				
OPVI (RANGANATH ET AL., 2016)	I		\checkmark	√
PC-DEN, ALGORITHM 3	I		\checkmark	√
JC-ADV, ALGORITHM 2	I	I	\checkmark	√
JC-DEN	I	I	\checkmark	✓
JC-ADV-RMD [‡]	✓	✓	\checkmark	✓
AAE (MAKHZANI ET AL., 2016)	I		√	
DEEPSIM (Dosovitskiy & Brox, 2016)	I		\checkmark	
ALI (DUMOULIN ET AL., 2017)		✓	\checkmark	
BIGAN (DONAHUE ET AL., 2017)	V			

F. Huszár, Variational Inference using Implicit Distributions.