2019 年普通高等院校招生全国统一考试

文科数学

本试卷共5页. 考试结束后,将本试卷和答题卡一并收回.

注意事项:	1.	答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形
		码区域内.

- 2. 选择题必修使用 2B 铅笔填涂; 非选择题必须使用 0.5 毫米黑色字迹的签字笔 书写,字体工整、笔迹清楚.
- 3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答 案无效;在草稿纸、试卷上答题无效.
- 4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.

	5. 保持卡面	清洁,不要折叠、不要	弄破、弄皱,不准使用流	余改液、修正液、刮纸刀.
_	、选择题:本大题共1	2 小题,每小题 5 分,	共 60 分. 在每小题给	出的四个选项中,只有一
	项是符合题目要求	的.		
1.	已知集合 $A = \{x \in I$	$\mathbf{R}\mid x>-1\}\text{, }B=\{x\in$	$\mathbf{R} \mid x < 2$ },则 $A \cap B =$	=
	A. $(-1, +\infty)$		B. $(-\infty,2)$	
	C. $(-1, -2)$		D. Ø	
2.	设 $z = i(2+i)$,则 \overline{z}	=		
	A. $1 + 2i$	B. $-1 + 2i$	C. $1 - 2i$	D. $-1-2i$
3.	已知向量 $\boldsymbol{a} = (2,3t)$	$\mathbf{b} = (3, 2), \mathbb{M} \mathbf{a} - \mathbf{b}$	=	
	A. $\sqrt{2}$	B. 2	C. $5\sqrt{2}$	D. 50
4.	生物实验室有 5 只经	兔子,其中3只测量过	某项指标, 若从这 5	只兔子中随机取出 3 只
	恰好有 2 只测量过证	亥指标的概率为		
	A. $\frac{2}{3}$	B. $\frac{3}{5}$	C. $\frac{2}{5}$	D. $\frac{1}{5}$
5.	在"一带一路"知识标	验测后,甲、乙、丙三人	对成绩进行预测:	
	田 我的武绩比了宣			

甲: 我的成绩比乙高.

乙: 丙的成绩比我和甲的都高.

丙:我的成绩比乙高.

	A. 甲、乙、丙	B. 乙、甲、丙	C. 丙、乙、甲	D. 甲、丙、乙
6.	设函数 $f(x)$ 为奇函	数,且当 $x \ge 0$ 时, $f(x)$	$e(x) = e^x - 1$,则当 $x < 0$	0时, $f(x) =$
	A. $e^{-x} - 1$	B. $e^{-x} + 1$	C. $-e^{-x} - 1$	D. $-e^{-x} + 1$
7.	设 α , β 是两个平面,	则 $\alpha // \beta$ 的充要条件是	른	
	A. α 内有无数条直约	桟与β平行	B. α 内有两条相交直	直线与 β 平行
	C. α , β 平行于同一条	条直线	D. α,β 垂直于同一 ³	平面
8.	若 $x_1=\frac{\pi}{4}$, $x_2=\frac{3\pi}{4}$	是函数 $f(x) = \sin \omega$	$x(\omega > 0)$ 两个相邻的	极值点,则 $\omega =$
	A. 2	B. $\frac{3}{2}$	C. 1	D. $\frac{1}{2}$
9.	若抛物线 $y^2 = 2px(p)$	>0) 的焦点是椭圆。	$\frac{x^2}{3p} + \frac{y^2}{p} = 1$ 的一个	焦点,则 $p=$
	A. 2	B. 3	C. 4	D. 8
10.	曲线 $y = 2\sin x + \cos x$	$\mathbf{s}x$ 在 $(\pi,1)$ 处的切线	 方程为	
	A. $x - y - \pi - 1 = 0$		B. $2x - y - 2\pi - 1 =$	= 0
	C. $2x + y - 2\pi + 1 =$	0	D. $x + y - \pi + 1 = 0$	
11.	已知 $\alpha \in \left(0, \frac{\pi}{2}\right)$,且	$2\sin 2\alpha = \cos 2\alpha + 1,$	则 $\sin \alpha =$	
	A. $\frac{1}{5}$	$B.\ \frac{\sqrt{5}}{5}$	$C.\ \frac{\sqrt{3}}{3}$	D. $\frac{2\sqrt{5}}{5}$
12.	设 F 为双曲线 C: -	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0),$	b>0) 的右焦点, O 为	n坐标原点,以 OF 为直
	径的圆与圆 $x^2 + y^2 =$	$=a^2$ 交于 P,Q 两点.	若 $ PQ = OF $,则	C 的离心率为
	A. $\sqrt{2}$	B. $\sqrt{3}$	C. 2	D. $\sqrt{5}$
=	.填空题:本题共4小是	题 ,每小题 5 分,共 20	分.	
		$\begin{cases} 2x + 3y - 6 \geqslant \end{cases}$	0,	
13.	若变量 x,y 满足约束	更条件 $ \begin{cases} 2x + 3y - 6 \geqslant \\ x + y - 3 \leqslant 0, \\ y - 2 \leqslant 0, \end{cases} $	则 $z = 3x - y$ 的量	最大值是
		$y-2 \leqslant 0$,		
				车中,有10个车次的正
	点率为 0.97, 有 20 个	车次的正点率为 0.9	8,有 10 个车次的正点	点率为 0.99,则经停该站
	高铁列车所有车次的	平均正点率的估计值	为	

成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次

序为

15. $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c. 已知 $b\sin A + a\cos B = 0$, 则 B =_____.

- 三、解答题: 共70分. 解答应写出文字说明、证明过程或演算步骤. 第17~21题为必考题,每个试题考生都必须作答. 第22、23题为选考题,考生根据要求作答.
- (一)必考题:共60分.
- 17.(12分)

如图,长方形 $ABCD-A_1B_1C_1D_1$ 的底面 ABCD 是正方形,点 E 在棱 AA_1 上, $BE\perp EC_1$.

- (1)证明: $BE \perp$ 平面 EB_1C_1 ;
- (2)若 $AE = A_1E$, AB = 3, 求四棱锥 $E BB_1C_1C$ 的体积.

18.(12分)

已知 $\{a_n\}$ 是各项均为正数的等比数列, $a_1=2$, $a_3=2a_2+16$.

- (1)求 $\{a_n\}$ 的通项公式;
- (2)设 $b_n = \log_2 a_n$,求数列 $\{b_n\}$ 的前 n 项和.

19.(12分)

某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业第一季度相对于前一年第一季度产值增长率 y 的频数分布表.

y 的分组	[-0.20,0)	[0,0.20)	[0.20, 0.40)	[0.40, 0.60)	[0.60, 0.80)
企业数	2	24	53	14	7

- (1)分别估计这类企业中产值增长率不低于 40% 的企业比例、产值负增长的企业比例;
- (2) 求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到 0.01)

附: $\sqrt{74} \approx 8.602$

20.(12分)

已知 F_1 , F_2 是椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的两个焦点, P 为 C 上一点, O 为坐标原点.

- (1)若 $\triangle POF_2$ 为等边三角形, 求 C 的离心率;
- (2)如果存在点 P,使得 $PF_1 \perp PF_2$,且 $\triangle F_1 PF_2$ 的面积等于 16,求 b 的值和 a 的取值范围.

21.(12分)

已知函数 $f(x) = (x-1) \ln x - x - 1$. 证明:

- (1)f(x) 存在唯一极值点;
- (2)(x) = 0 有且仅有两个实根,且两个实根互为倒数.

文科数学试题 第4页(共5页)

- (二)选考题: 共 10 分. 请考生再第 22、23 题中任选一题作答. 如果多做,则按所做的第一题计分.
- 22.[选修 4-4:坐标系与参数方程](10 分)

在极坐标系中,O 为极点,点 $M(\rho_0,\theta_0)(\rho_0>0)$ 在曲线 $C:\rho=4\sin\theta$ 上,直线 l 过点 A(4,0) 且与 OM 垂直,垂足为 P.

- (1)当 $\theta_0 = \frac{\pi}{3}$ 时,求 ρ_0 及 l 的极坐标方程;
- (2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.

23. 「选修 4-5: 不等式选讲](10 分)

己知 f(x) = |x - a|x + |x - 2|(x - a).

- (1)当 a = 1 时,求不等式 f(x) < 0 的解集;
- (2)若 $x \in (-\infty, 1)$ 时, f(x) < 0, 求 a 的取值范围.

录入: 河北 宁现丰

张家口 饶强

河南 林木

安徽 贾彬

西安 张龙刚

河北 焦子奇

安徽 史飞

广东 周险峰

山西 廖凯

河南 时涛

绘图: 河北 焦子奇

排版: 浙江 陈晓

严禁用于商业用途,转载请注明作者与出处!

文科数学试题 第5页(共5页)