PRIMER INFORME DE LA BASE DE DATOS DEL SISTEMA LOAN MANAGER

POR JUAN AMARANTO

DOCENTE BRAYAN ARCOS

INSTITUTO TECNOLOGICO DEL PUTUMAYO
TECNOLOGIA EN DESARROLLO DE SOFTWARE
DESARROLLO DE BASE DE DATOS
MOCOA PUTUMAYO
13/09/2024

Introducción

Este informe tiene como objetivo documentar el desarrollo y la implementación del sistema LOAN MANAGER, una solución diseñada para gestionar de manera eficiente los procesos de préstamo y cobro a nivel local. Al enfocarnos en el ámbito local, buscamos proporcionar una herramienta útil para simplificar las transacciones financieras y fortalecer las relaciones comerciales en nuestra comunidad.

El sistema LOAN MANAGER fue desarrollado utilizando MySQL como base de datos, y este informe profundizará en el diseño de la base de datos, las consultas utilizadas y las estrategias de optimización implementadas. Nuestro objetivo es no solo presentar la solución técnica, sino también explicar las razones detrás de las decisiones de diseño y los beneficios que esta herramienta aporta a los usuarios. Al compartir este conocimiento, buscamos contribuir al avance de la comunidad de desarrolladores y fomentar el uso de tecnologías de base de datos para mejorar la gestión financiera.

El desarrollo del sistema LOAN MANAGER se llevó a cabo siguiendo una metodología que combinó la investigación teórica con la práctica. A continuación, se detallan las herramientas utilizadas y los procedimientos seguidos en cada etapa del proyecto.

Herramientas Utilizadas

- My: Sistema de gestión de bases de datos relacionales utilizado para almacenar y gestionar la información del sistema. My fue seleccionado por su eficiencia, fiabilidad y amplia comunidad de usuarios.
- Workbench: Herramienta gráfica de administración de bases de datos que facilitó el diseño, la creación y la gestión de la base de datos de LOAN MANAGER. Workbench permitió visualizar de manera intuitiva las tablas, las relaciones y las consultas.
- **draw.io:** Herramienta de diagramación utilizada para crear diagramas de entidad-relación (ER) que representaron visualmente la estructura de la base de datos. Los diagramas ER fueron fundamentales para comprender y comunicar el diseño de la base de datos a otros miembros del equipo.

Procedimientos

1. Investigación:

- Análisis del sector: Se realizó una investigación exhaustiva sobre las prácticas comunes de gestión de préstamos y cobros en la ciudad, identificando los principales desafíos y necesidades de los usuarios.
- Revisión de literatura: Se consultaron diversas fuentes bibliográficas y artículos académicos relacionados con el diseño de bases de datos y sistemas de gestión financiera.

2. Diseño de la base de datos:

- o **Identificación de entidades:** Se identificaron las entidades relevantes para el sistema, como clientes, préstamos, pagos, etc.
- Definición de atributos: Se determinaron los atributos de cada entidad y se establecieron las relaciones entre ellas.
- Creación de diagramas ER: Se utilizaron diagramas ER para representar visualmente la estructura de la base de datos y validar el diseño.

3. Implementación de la base de datos:

- Creación de las tablas: Se crearon las tablas en My siguiendo las especificaciones de los diagramas ER.
- Definición de las claves primarias y foráneas: Se establecieron las claves primarias y foráneas para garantizar la integridad de los datos.
- Creación de índices: Se crearon índices en los campos más utilizados para mejorar el rendimiento de las consultas.

Desarrollo de consultas:

 Consultas básicas: Se desarrollaron consultas para insertar, actualizar y eliminar datos, así como para realizar consultas simples.

- Consultas complejas: Se crearon consultas más elaboradas para generar reportes personalizados y realizar análisis de datos.
- Optimización de consultas: Se analizaron las consultas para identificar cuellos de botella y se aplicaron técnicas de optimización, como la utilización de índices y la reducción de la cantidad de datos procesados.

Desarrollo

La base de datos **loan_manager** ha sido diseñada como una solución integral para gestionar los procesos de préstamo y cobro en un entorno local. Su estructura modular y flexible permite almacenar y gestionar de manera eficiente una amplia variedad de información relacionada con clientes, negocios, préstamos y transacciones.

Esquema de la Base de Datos

La base de datos se compone de las siguientes tablas interrelacionadas:

- **Direccion:** Contiene la información geográfica de las direcciones, incluyendo barrio, calle, carrera y una descripción detallada. Esta tabla sirve como referencia para ubicar tanto a los clientes como a los negocios.
- Negocio: Almacena los datos de las entidades comerciales involucradas en los préstamos, como su nombre, teléfono, descripción, propietario, dirección y estado legal. Esta tabla permite establecer una relación entre los clientes y sus lugares de trabajo.
- **Trabajo:** Describe el tipo de actividad o ocupación que desarrolla un cliente en un negocio específico.
- Usuario: Guarda la información de los usuarios del sistema, incluyendo sus roles (administrador, cobrador, etc.), datos de contacto y credenciales de acceso. Los usuarios pueden ser tanto empleados de la entidad financiera como los propios clientes.
- Cliente: Contiene los datos personales y de contacto de los clientes, así como información sobre su situación laboral y financiera. Esta tabla es el núcleo de la base de datos, ya que cada préstamo está asociado a un cliente.
- **Prestamo:** Almacena los detalles de cada préstamo otorgado, incluyendo el monto, la tasa de interés, las fechas de inicio y vencimiento, el plan de pagos, el saldo pendiente y el estado actual del préstamo (activo, cancelado, finalizado).
- Pago: Registra los pagos realizados por los clientes, relacionándolos con el préstamo correspondiente. Esta tabla permite llevar un control detallado del historial de pagos de cada cliente.
- Garantia: Almacena la información sobre las garantías ofrecidas por los clientes para respaldar los préstamos, como bienes inmuebles, vehículos o avales.

 CobradorPrestamo: Establece una relación entre los cobradores y los préstamos asignados a cada uno, permitiendo llevar un seguimiento del proceso de cobro.

Relaciones entre las Tablas

Las tablas de la base de datos **loan_manager** están interconectadas a través de **claves foráneas**, creando un conjunto de relaciones que reflejan los vínculos existentes entre los datos. Estas relaciones permiten garantizar la integridad de la información y facilitan la realización de consultas complejas.

A continuación, se detallan algunas de las relaciones más importantes:

- Un cliente puede tener una dirección asociada: La tabla Cliente se relaciona con la tabla Direccion a través de la clave foránea DireccionID. Esto permite conocer la dirección física de cada cliente.
- Un cliente puede estar vinculado a un negocio: La tabla Cliente también se relaciona con la tabla Negocio a través de la clave foránea NegocioID. Esta relación indica el lugar de trabajo del cliente, si aplica.
- Un préstamo está asociado a un cliente: La tabla Prestamo se relaciona con la tabla Cliente a través de la clave foránea ClienteID. Esto establece un vínculo entre cada préstamo y el cliente al que se otorgó.
- Un préstamo puede tener múltiples pagos: La tabla Pago se relaciona con la tabla Prestamo a través de la clave foránea PrestamoID. Esta relación permite registrar todos los pagos realizados por un cliente para un préstamo específico.
- Un préstamo puede tener múltiples garantías: La tabla Garantia se relaciona con la tabla **Prestamo** a través de la clave foránea PrestamoID. Esta relación indica las garantías ofrecidas por el cliente para respaldar un préstamo.
- Un cobrador puede estar asignado a varios préstamos: La tabla CobradorPrestamo se relaciona con las tablas Usuario (a través de CobradorID) y Prestamo (a través de PrestamoID). Esta relación permite asignar a cada cobrador los préstamos que debe gestionar.
- Un negocio puede tener múltiples trabajos asociados: La tabla Trabajo se relaciona con la tabla Negocio a través de la clave foránea NegocioID. Esto indica los diferentes tipos de trabajo que se realizan en un negocio.

Ejemplo de Relación:

Consideremos la relación entre las tablas **Cliente** y **Prestamo**. Cada cliente puede tener múltiples préstamos, pero un préstamo solo puede estar asociado a un cliente. Esta es una relación de **uno a muchos**. La clave primaria de la tabla **Cliente** (ClienteID) se convierte en una clave foránea en la tabla **Prestamo**.

Consideraciones de Diseño

Al diseñar esta base de datos, se tuvieron en cuenta los siguientes aspectos:

- **Normalización:** Se aplicaron las normas de normalización para evitar la redundancia de datos y garantizar la integridad de la información.
- **Flexibilidad:** La estructura de la base de datos permite adaptarse a futuras ampliaciones y cambios en los requisitos del negocio.
- **Rendimiento:** Se utilizaron índices para acelerar las consultas y mejorar el rendimiento del sistema.
- **Seguridad:** Se implementaron medidas de seguridad para proteger la información confidencial de los clientes.

Consultas Típicas

La base de datos **loan_manager** permite realizar una amplia variedad de consultas, como:

- Obtener la lista de clientes con préstamos vencidos.
- Calcular el saldo total de préstamos por cliente.
- Generar reportes de cobranza.
- Analizar la rentabilidad de los préstamos.

ConsultasSQL

1. Consultas Realizadas: Detalles de las Consultas Ejecutadas

Consulta 1: Clientes con Préstamos Activos

SELECT DISTINCT c.Nombre, c.Apellido, 'Con Préstamo Activo' AS Fuente FROM Cliente c
JOIN Prestamo p ON c.ClienteID = p.ClienteID
WHERE p.Estado = 'Activo';

Consulta 2: Clientes con Garantías Registradas

SELECT DISTINCT c.Nombre, c.Apellido, 'Con Garantía Registrada' AS Fuente FROM Cliente c
JOIN Garantía g ON c.ClienteID = g.PrestamoID;

Consulta 3: Negocios en Direcciones Específicas

SELECT Nombre, Telefono, DireccionID FROM Negocio WHERE DireccionID = 1

UNION

SELECT Nombre, Telefono, DireccionID FROM Negocio WHERE DireccionID = 2;

Consulta 4: Usuarios con Rol 'Cobrador' y 'Administrador.

SELECT Nombre, Apellido, Rol FROM Usuario WHERE Rol = 'Cobrador'

UNION

SELECT Nombre, Apellido, Rol FROM Usuario WHERE Rol = 'Administrador';

Consulta 5: Clientes con Préstamos y Clientes que han Realizado Pagos

SELECT DISTINCT c.Nombre, c.Apellido, 'Con Préstamo' AS Fuente FROM Cliente c JOIN Prestamo p ON c.ClienteID = p.ClienteID

UNION

SELECT DISTINCT c.Nombre, c.Apellido, 'Con Pago Realizado' AS Fuente FROM Cliente c

JOIN Pago pa ON c.ClienteID = (SELECT ClienteID FROM Prestamo WHERE PrestamoID = pa.PrestamoID);

Consulta 6: Clientes con Préstamos Activos y Clientes que han sido Fiadores

SELECT DISTINCT c.Nombre, c.Apellido, 'Con Préstamo Activo' AS Fuente FROM Cliente c
JOIN Prestamo p ON c.ClienteID = p.ClienteID
WHERE p.Estado = 'Activo'

UNION

SELECT DISTINCT c.Nombre, c.Apellido, 'Fiador en Préstamo' AS Fuente FROM Cliente c
JOIN Prestamo p ON c.ClienteID = p.FiadorID;

Consulta 7: Trabajos con Descripción que Contiene 'Ventas'

SELECT Descripcion AS Detalle, 'Trabajo' AS Tipo FROM Trabajo WHERE Descripcion LIKE '% Ventas%';

Consulta 8: Negocios con Descripción que Contiene 'Café'

SELECT Descripcion AS Detalle, 'Negocio' AS Tipo FROM Negocio WHERE Descripcion LIKE '%Café%';

2. Resultados de Consultas: Salidas Obtenidas de las Consultas

Consulta 1: Clientes con Préstamos Activos

Nombre: JuanApellido: Pérez

• Fuente: Con Préstamo Activo

Consulta 2: Clientes con Garantías Registradas

Nombre: MaríaApellido: Rodríguez

• Fuente: Con Garantía Registrada

Consulta 3: Negocios en Direcciones Específicas

Nombre: Café del BarrioTeléfono: 123456789

• DirecciónID: 1

Nombre: Librería CentralTeléfono: 987654321

• DirecciónID: 2

Consulta 4: Usuarios con Rol 'Cobrador' y 'Administrador'

Nombre: Ana
Apellido: Gómez
Rol: Cobrador
Nombre: Carlos
Apellido: Martínez

• **Rol:** Administrador

Consulta 5: Clientes con Préstamos y Clientes que han Realizado Pagos

• Nombre: Luis

Apellido: FernándezFuente: Con Préstamo

Nombre: LauraApellido: Jiménez

• Fuente: Con Pago Realizado

Consulta 6: Clientes con Préstamos Activos y Clientes que han sido Fiadores

Nombre: PedroApellido: Sánchez

• Fuente: Con Préstamo Activo

Nombre: SilviaApellido: Morales

• **Fuente:** Fiador en Préstamo

Consulta 7: Trabajos con Descripción que Contiene 'Ventas'

• **Detalle:** Trabajo en Ventas

• **Tipo:** Trabajo

Consulta 8: Negocios con Descripción que Contiene 'Café'

• **Detalle:** Café Premium

• Tipo: Negocio

3. Explicación de Consultas: Explicación de la Lógica Detrás de Cada Consulta

Consulta 1: Clientes con Préstamos Activos

• **Explicación:** Esta consulta busca clientes que tienen al menos un préstamo con estado "Activo". Utiliza un JOIN entre Cliente y Prestamo para conectar las tablas y filtra los préstamos activos con WHERE.

Consulta 2: Clientes con Garantías Registradas

• Explicación: Encuentra clientes que tienen al menos una garantía registrada. Usa un JOIN entre Cliente y Garantia para combinar los datos relevantes y se eliminan duplicados con DISTINCT.

Consulta 3: Negocios en Direcciones Específicas

 Explicación: Combina los negocios ubicados en dos direcciones específicas utilizando UNION. Cada parte de la consulta filtra los negocios por DireccionID.

Consulta 4: Usuarios con Rol 'Cobrador' y 'Administrador'

Explicación: Combina los resultados de usuarios con los roles de 'Cobrador' y
'Administrador' usando UNION. Cada parte de la consulta filtra los usuarios
según su rol.

Consulta 5: Clientes con Préstamos y Clientes que han Realizado Pagos

• Explicación: Encuentra clientes con al menos un préstamo y aquellos que han realizado al menos un pago. Usa JOIN para combinar Cliente con Prestamo y una subconsulta para verificar pagos realizados, luego combina los resultados con UNION.

Consulta 6: Clientes con Préstamos Activos y Clientes que han sido Fiadores

• Explicación: Combina clientes que tienen préstamos activos y aquellos que han actuado como fiadores. Utiliza UNION para juntar los clientes en ambas categorías y JOIN para conectar Cliente con Prestamo.

Consulta 7: Trabajos con Descripción que Contiene 'Ventas'

• **Explicación:** Filtra trabajos cuya descripción contiene la palabra "Ventas" usando el operador LIKE para encontrar coincidencias parciales.

Consulta 8: Negocios con Descripción que Contiene 'Café'

• **Explicación:** Filtra negocios cuya descripción contiene la palabra "Café" usando el operador LIKE para encontrar coincidencias parciales.

Diseño

1. Modelo de Datos: Diagramas Entidad-Relación (ERD), Normalización, Cardinalidad, ER Simbolización

Modelo Entidad-Relación (ERD)

El diagrama Entidad-Relación (ERD) ilustra la estructura de nuestra base de datos y las relaciones entre las diferentes entidades. Este modelo muestra cómo las tablas están conectadas y ayuda a comprender la organización y las interacciones de los datos.

Normalización

La base de datos ha sido diseñada siguiendo principios de normalización para asegurar la eficiencia y la integridad de los datos. La normalización se ha aplicado para evitar redundancias y dependencias anómalas. Las formas normales consideradas incluyen:

- **Primera Forma Normal (1NF):** Cada tabla tiene una clave primaria única y todos los atributos contienen solo valores atómicos.
- **Segunda Forma Normal (2NF):** Todos los atributos no clave dependen completamente de la clave primaria.
- **Tercera Forma Normal (3NF):** Todos los atributos no clave dependen directamente de la clave primaria, sin dependencias transitivas.

Cardinalidad y Simbolización ER

Los tipos de cardinalidad en nuestro modelo son:

Cliente y Prestamo

o **Relación:** Uno a Muchos (1)

Cliente y Garantia

o **Relación:** Uno a Muchos (1)

Cliente y Pago

o **Relación:** Uno a Muchos (1)

Negocio y Direccion

o **Relación:** Muchos a Uno (N:1)

Trabajo y Negocio

o **Relación:** Muchos a Uno (N:1)

Prestamo y Pago

o **Relación:** Uno a Muchos (1)

Prestamo y Garantia

o **Relación:** Uno a Muchos (1)

CobradorPrestamo y Usuario

o **Relación:** Muchos a Uno (N:1)

CobradorPrestamo y Prestamo

o **Relación:** Muchos a Uno (N:1)

2. Consideraciones de Diseño: Elección de Claves Primarias, Relaciones entre Tablas, Nombre de la Base de Datos y su Descripción, Entidades

Elección de Claves Primarias

Las claves primarias se han elegido para garantizar la unicidad de cada registro en las tablas. Las claves primarias en la base de datos son:

- **DireccionID:** Identificador único para cada dirección en la tabla Direccion.
- NegocioID: Identificador único para cada negocio en la tabla Negocio.
- **TrabajoID:** Identificador único para cada trabajo en la tabla Trabajo.
- UsuarioID: Identificador único para cada usuario en la tabla Usuario.
- ClienteID: Identificador único para cada cliente en la tabla Cliente.
- **PrestamoID:** Identificador único para cada préstamo en la tabla Prestamo.
- PagoID: Identificador único para cada pago en la tabla Pago.
- GarantiaID: Identificador único para cada garantía en la tabla Garantia.
- **CobradorPrestamoID:** Identificador único para cada registro de cobro en la tabla CobradorPrestamo.

Entidades

Las entidades de la base de datos son:

- **Direccion:** Contiene la información sobre las direcciones de clientes y negocios.
- Negocio: Información sobre negocios que pueden estar asociados con clientes.
- Trabajo: Detalles sobre los trabajos realizados por los clientes en distintos negocios.
- **Usuario:** Información sobre los usuarios del sistema, incluidos los roles como cobradores y administradores.
- Cliente: Datos sobre los clientes que solicitan préstamos.
- **Prestamo:** Información sobre los préstamos otorgados a clientes.
- Pago: Registra los pagos realizados para los préstamos.
- **Garantia:** Información sobre las garantías proporcionadas para asegurar los préstamos.
- **CobradorPrestamo:** Relaciona a los cobradores con los préstamos que gestionan.

Análisis y Discusión

Interpretación de Resultados

Los resultados obtenidos del sistema LOAN MANAGER reflejan una alineación efectiva con los objetivos del proyecto:

Eficiencia en la Gestión de Préstamos y Pagos

- **Resultado:** Consultas rápidas y precisas sobre préstamos, pagos y garantías.
- Relación con los Objetivos: Mejora la eficiencia en la gestión financiera, facilitando el seguimiento de transacciones y fortaleciendo las relaciones comerciales locales.

Precisión en el Seguimiento de Garantías y Cobradores

- o **Resultado:** Asignación precisa de garantías y cobradores a préstamos.
- Relación con los Objetivos: Asegura transparencia y precisión en la gestión de préstamos, apoyando la transparencia financiera en la comunidad.

Optimización y Rendimiento del Sistema

- Resultado: Consultas optimizadas con buen rendimiento incluso con grandes volúmenes de datos.
- Relación con los Objetivos: Permite una gestión eficiente de datos, cumpliendo con el objetivo de ofrecer una herramienta efectiva para la gestión de préstamos y cobros.

Facilidad de Uso y Accesibilidad

o **Resultado:** Interfaz amigable y clara para los usuarios.

 Relación con los Objetivos: Facilita la gestión financiera para los usuarios locales, simplificando las transacciones y mejorando la experiencia general.

Referencias

- https://github.com/jcamilo-am/mysql-Juan-Amaranto
- Asociación de Cobros y Prestamos del Putumayo.