Nome completo _______ Número

COMPUTAÇÃO GRÁFICA E INTERFACES

LEI/FCT/UNL — Ano Lectivo 2010/11 EXAME da ÉPOCA NORMAL — 11.01.06

Atenção: Responda no próprio enunciado, que entregará. Em caso de engano, e se o espaço para a resposta já não for suficiente, poderá usar o verso das folhas desde que feitas as devidas referências.

Não desagrafe as folhas! A prova de exame, com duração de 2H, é sem consulta.

1. (4 valores)

É dado o polígono P=[A,B,C,D,E,F,G,H,I,J], ao qual irá ser aplicado o algoritmo de recorte de Sutherland-Hodgman no polígono Q=[1,2,3,4]. As convenções quanto à orientação dos eixos cartesianos são as mesmas que se usaram nas aulas teóricas.

<u>Não renomeie</u> pontos que já estejam identificados na Figura!

- a) Quantas arestas irá ter o polígono, denotado por P', que será o resultado final do recorte de P em Q? _____
- b) Escreva o resultado obtido ao terminar a primeira fase de processamento do recorte de P, admitindo que a ordem dessas fases é a seguinte: Clip Top \rightarrow Clip Right \rightarrow Clip Bottom \rightarrow Clip Left

Indique qual será, no final do processamento, a especificação do polígono ${\tt P}$ ' :

D'	2/7
Ρησ	///

Nome	Número
wome	Numero

c)	Na figura dada, pinte as regiões que ficariam preenchidas pela aplicação do algoritmo de FILL AREA (par-ímpar) ao polígono ${\tt P}$ '.
d)	Suponha que se vai aplicar o algoritmo de Cohen-Sutherland a todas as arestas do polígono ₱ e que a ordem das fases de tratamento é a mesma (Top → Right → Bottom → Left). Quais as arestas de ₱ que serão tratadas por este algoritmo recorrendo ao cálculo do maior
	número efectivo de intersecções?
	Qual é esse número? E que arestas de P poderá o algoritmo tratar sem ter necessidade
	de efectuar intersecções? Com base
	na resposta, justifique uma das vantagens que é usualmente apontada ao algoritmo de Cohen-
	Sutherland comparativamente ao de Cyrus-Beck (Liang-Barsky):

2. (3 valores)

Uma janela encontra-se definida, em coordenadas do mundo real (WC), por $x_1 \le x \le x_2$ e $y_1 \le y \le y_2$ e deverá ser totalmente mapeada, sem distorção, num determinado visor de um ecrã com largura w e altura h, expressas em pixels. A origem do sistema de coordenadas localiza-se no canto superior esquerdo do ecrã, como é característica deste tipo de equipamentos.

a) Exprima matematicamente a relação adicional que os dados terão de satisfazer entre si para que a imagem possa aparecer encostada ao canto superior direito do ecrã e tendo exactamente metade da altura do mesmo:

b) Especifique, na situação da alínea a), a necessária transformação de enquadramento janela—visor por uma matriz M (para usar na forma P'=M.P) deduzida e apresentada em termos da mais simples composição de transformações geométricas elementares (S, R, ou T) em 2D, com a instanciação apropriada de todos os parâmetros.

3. (4 valores)

- a) Para cada uma das sub-alíneas seguintes, tendo em conta as restrições particulares aí indicadas, esboce na figura acima uma <u>curva cúbica</u> B-spline que seja fechada e apresente a maior suavidade (*smoothness*) possível, identificando claramente todos os <u>troços</u> constituintes. Para cada troço i, escreva o <u>vector de geometria</u> G_i que lhe corresponda.
- a.1) Tome os vértices do triângulo ABC, <u>e só esses</u>, como pontos de controlo, devendo ter todos eles um grau de multiplicidade igual a **2**. Vectores de geometria:

a.2) Como pontos de controlo, para além dos vértices do triângulo DEF, use também um ponto adicional, à sua escolha, desde que ele se localize num dos lados desse triângulo, de modo a gerar-se uma curva com uma auto-intersecção e simetria em relação a um eixo. Vectores de geometria:

b) Qual das duas curvas anteriores apresenta maior suavidade, a.1) ou a.2)? Justifique
a resposta com base nas classes de continuidade paramétrica e geométrica dessas curvas:
4. (2,5 valores)
Escolha três algoritmos, de entre todos os que foram leccionados na disciplina, em que se verifique
nítida vantagem no uso de triângulos como primitiva gráfica. Justifique cada uma das escolhas.
Identificação do Algoritmo 1:
,
Justificação:
Identificação do Algoritmo 2:
Tuonumeuşuo uo riigonimo 21
Justificação:
Identificação do Algoritmo 3:
identificação do Aigoritmo 5.
Justificação:

5. (4 valores)

Figura 1: Cone X3D

A Figura 1 foi retirada da especificação oficial de X3D e mostra a primitiva cone. Os respectivos valores por omissão são bottomRadius=1 e height=2. Na resolução das alíneas que se seguem, estes valores <u>não devem ser alterados nos campos do nó Cone</u>. De notar que, caso haja operações numéricas envolvidas na resolução, não será necessário efectuá-las, bastando indicá-las.

Nome

a)	Apesar dalgumas evidentes faltas de rigor no desenho da Figura 1 (por exemplo, com relação a partes ocultas), em que tipo de projecção paralela poderíamos enquadrar essa imagem Poderia ser uma
	Projecção de Gabinete? Porquê?

b) Na Figura 2 pode ver-se um conjunto de 3 mós cónicas de um lagar de azeite. Pretende-se fazer uma animação por computador para a simulação do funcionamento deste sistema de moagem, mas apenas com <u>duas</u> mós, diametralmente opostas, como se mostra no alçado principal que constitui a Figura 3. Os cones giram em torno dos respectivos eixos, à mesma velocidade, fazendo com que o conjunto rode em torno do eixo central. A geratriz de cada cone mede 2 unidades, encontrando-se os vértices na origem do sistema de coordenadas.

Figura 3: Conjunto de duas mós cónicas

b.1) Apresente, no formalismo utilizado nas aulas teóricas, <u>um único</u> Grafo de Cena para a especificação completa do sistema de 2 mós atrás descrito, incluindo eventuais variáveis da animação, e usando como primitivas os cones X3D com os parâmetros por omissão. No caso de existirem soluções alternativas, opte pela que origine o <u>menor</u> número de nós quando programada em X3D.

Dá~	6/7
Pag.	0//

b.2) Apresente a resposta à alínea b.1) na forma de <u>Grafo de Cena orientado para X3D</u>, seguindo a convenção adoptada nas aulas teóricas. O número de nós do grafo deverá ser o <u>menor</u> possível. Recorda-se que, em X3D, a <u>ordem de execução</u> das transformações geométricas num nó Transform é S-R-T.

7

Nome ______ Número _____

6.	(2,5 valores)				
a)	Uma imagem monocromática (usualmente designada por "imagem a preto e branco") pode ser				
	caracterizada por um só atributo psicológico da cor. Qual? A que componentes corresponderá, nos modelos HSV e HLS? Com qual destes modelos (HSV e HLS) a imagem monocromática seria mais fielmente represen-				
					tada usando-se só tais componentes? Justifique:
b)	De entre os modelos de cor apresentados na disciplina, refira um em que o vermelho puro possa				
	ser obtido à custa da combinação de duas outras cores: Diga quais são				
	essas cores, justificando-as com base na teoria da decomposição da luz:				
c)	Segundo o modelo de reflexão difusa (I r, g, b = I pr, g, b Kdr, g, b COS θ), seria possível que um objecto amarelo (1,1,0) pudesse ser percepcionado como vermelho puro?				
In	stifique:				
	strique.				