Prediction of Mortgage Loan Defaults

- Introduction
 Backgrounds | Project Description
- Data Source
 Data Description | Data Wrangling | Exploratory Data Analysis
- Research Questions

 Primary Question | Supporting Questions
- 4 Methodology
 Modelling | Cross Validation | Tuning Parameters
- 5 Results
 Dataset 1 | Dataset 2
- 6 Conclusions
 Findings | Implications

- Introduction
 Backgrounds | Project Description
 - Data Source
 Data Description | Data Wrangling | Exploratory Data Analysis
 - Research Questions

 Primary Question | Supporting Questions
 - Methodology

 Modelling | Cross Validation | Tuning Parameters
 - 5 Results
 Dataset 1 | Dataset 2
 - 6 Conclusions
 Findings | Implications

1. Introduction

The purpose of this project is to understand the most important drivers of defaults and build classification models to investigate the effects on loan performance

Backgrounds

- ▶ The performance of a mortgage is likely driven by a wide range of factors including borrower information, loan characteristics and macroeconomic effects
- We would like to understand the most important drivers of defaults and predict which borrowers are likely to default at the time of mortgage origination

Project Descriptions

- We have built classification models to investigate the effects on loan performance of at least 12 variables
- ▶ This credit analysis is based on information specific to the mortgage or property, macro-economic variables, variables capturing borrower past credit history, and loan history.

- Introduction
 Backgrounds | Project Description
- Data Source
 Data Description | Data Wrangling | Exploratory Data Analysis
 - Research Questions

 Primary Question | Supporting Questions
 - 4 Methodology
 Modelling | Cross Validation | Tuning Parameters
 - 5 Results
 Dataset 1 | Dataset 2
 - 6 Conclusions
 Findings | Implications

2. Data Source

Data set mortgage is in panel form covering 50,000 residential mortgages over 60 periods, with 23 variables and 622,489 time stamped observations

(Source: http://www.creditriskanalytics.net/datasets-private2.html)

2. Data Source

We wrangled *Dataset 2* – cross sectional dataset of 17 variables (10 selected, 7 wrangled), taking time series elements of the raw panel dataset

- ▶ Wrangled variables reflect change in raw time series variables from origination time to first observation (time **x**) or last observation (time **y**)
- Last observation (time y) gives the outcome on whether the loan defaulted or was repaid
- ▶ The selected variable "orig_time" is a **Control** variable for potential external factors
- ▶ The "neither" (0) observations from the raw data set were removed (reducing the 50,000 mortgages down to **41,736**) then repaid (2) replaced with (0) to create binary default response variable
- We also suggest expected relationship with **Default** (Response), noting **Pos/Neg** means both directions justifiable

EDA was performed on *Dataset 2* starting with summary statistics

_										
	Variables	Count	Mean	Std	min	25%	50%	75%	max	Types
1										
	seasoning_orig_x	41736.0	3.53	5.22	0.00	2.00	2.00	3.00	65.00	int64
Time	orig_time	41736.0	20.02	7.35	-40.00	17.00	21.00	25.00	60.00	int64
	Term_orig	41736.0	117.58	13.61	5.00	120.00	120.00	121.00	201.00	int64
4			•			.				
	balance_orig	41736.0	253827.35	208366.23	0.00	117146.25	196750.00	336000.00	8000000.00	float64
	FICO_orig	41736.0	659.73	72.34	400.00	610.00	661.00	713.00	834.00	int64
Micro-Macro	LTV_orig	41736.0	79.87	9.80	50.10	75.00	80.00	85.00	218.50	float64
	Interest_Rate_orig	41736.0	5.34	3.44	0.00	1.25	6.39	7.74	18.00	float64
Ÿ	hpi_orig	41736.0	195.42	34.52	75.71	179.45	208.86	222.39	226.29	float64
9	uer_time_x	41736.0	4.97	0.56	3.80	4.70	4.70	5.30	9.50	float64
_										<u></u>
•										
	IR_change_orig_y	41736.0	2.02	3.61	-11.88	0.00	0.00	4.50	37.50	float64
Change in	HPI_change_orig_y	41736.0	-5.01	46.20	-79.84	-45.28	-4.04	30.15	149.61	float64
	uer_change_xy	41736.0	1.08	1.94	-0.30	-0.30	0.00	2.50	6.20	float64
_										
•										
	REtype_CO_orig	41736.0	0.07	0.25	0.00	0.00	0.00	0.00	1.00	int64
In diagton	REtype_PU_orig	41736.0	0.12	0.32	0.00	0.00	0.00	0.00	1.00	int64
Indicator	REtype_SF_orig	41736.0	0.62	0.48	0.00	0.00	1.00	1.00	1.00	int64
16	investor_orig	41736.0	0.11	0.32	0.00	0.00	0.00	0.00	1.00	int64
		_							<u>.</u>	
Response	default_time_y	41736.0	0.36	0.48	0.00	0.00	0.00	1.00	1.00	int64
				<u> </u>						

Boxplots show differences between the *Repaid* (default=0) and *Default* (default=1) groups for *hpi_orig* in particular then possibly *FICO_orig* and *Interest_Rate_orig*

Uer_time_x also likely important... "Change in" variables show strong explanatory potential (particularly *HPI_change* & *uer_change*), while Indicator variables appear to yield limited information

2. Data Source

We demonstrate the correlation of 17 variables through a heatmap and validate previous relationship expectation between response and independent variables

- Introduction

 Backgrounds | Project Description
- Data Source
 Data Description | Data Wrangling | Exploratory Data Analysis
- Research Questions

 Primary Question | Supporting Questions
 - 4 Methodology
 Modelling | Cross Validation | Tuning Parameters
 - 5 Results
 Dataset 1 | Dataset 2
 - 6 Conclusions
 Findings | Implications

We expect to answer the following scientific questions through the framework of our analysis

- Introduction
 Backgrounds | Project Description
- Data Source
 Data Description | Data Wrangling | Exploratory Data Analysis
- Research Questions

 Primary Question | Supporting Questions
- Methodology

 Modelling | Cross Validation | Tuning Parameters
 - 5 Results
 Dataset 1 | Dataset 2
 - 6 Conclusions
 Findings | Implications

4. Methodology

We utilise both subset *Dataset 1* and *Dataset 2* to perform analytical methods to observe effect of newly created predictors and answer the research questions

▶ Dataset 1 is a subset of Dataset 2 to test for the predictive power of modelling without the macroeconomic related "change in" variables, noting these variables would require forecasting of future values when being used for prediction in the real world, introducing additional variance

We have built eight classification models suggested below, which will be tuned further

Decision Trees

- Progressively split data based on values of key features (at nodes) until and an endpoint (leaf) is reached
- Leaf provides the class of the datapoint

Random Forest

- Machine learning technique that simulates large number of decision trees during training
- Output is the class selected by most trees

Boosting

- Similar to random forest in producing many decision trees
- Additional step of using learnings from one tree in growing the next through accounting for the error prediction of the previous tree

Logistic Regression

- Models log odds as a linear function of X variables
- Log odds translated into probabilities for classification relative to determined threshold
- Makes no assumptions on probability distribution of predictors

Linear Discriminant Analysis (LDA)

- Finds linear combinations of features that best separate classes in a data set
- Relies on predictor variables being normally distributed and classes having common variance, estimated by withinsample covariance

Quadratic Discriminant Analysis (QDA)

- Operates similarly to LDA but is more flexible given variance is estimated by the sample covariance of each class
- Again, assumes X variables are normally distributed

Naïve Bayes

- Conditional probability classification model that (naively) assumes independence between X variables
- Often performs well in real world despite the above
- Also relies on X variables being normally distributed

K-th Nearest Neighbor (KNN)

- Non-parametric supervised learning technique (no assumptions on distributions or variances of features)
- Simply classifies a new datapoint based on distance from its k closest datapoints

Tree-based / Ensemble models

Linear models

Probabilistic / Neighbor-base models

4. Methodology

After building models, we are to perform Cross Validation and Tuning Parameters to enhance modeling performances

Process	Methods
Cross Validation	 With exception of the tree-based models, models are cross validated using 100 iterations of Monte Carlo Cross Validation Within each iteration, data is split 80% training to 20% test Due to random forest and boosting being computationally expensive, 10-fold cross validation is performed on these models
Variable Selection & Threshold Probability	 Variables have been selected using domain knowledge. For logistic regression, a subset of variables have been refined using stepwise regression Parametric models may require further transformations of independent variables (e.g. log transformation) to satisfy assumed distributions For models requiring specification of threshold probability for classification, the proportion of defaults in the training set (~36%) has been taken on base models Other levels of threshold probability to be iterated through for tuning
Tuning Parameters (Random Forest)	 ▶ 10 iterations of each parameter will be allowed for in the following values: - Number of trees (ntree): 100, 200,, 900, 1000 - Number of variables randomly sampled as candidates at each split (mtry): 1, 2,, 9, 10 - Minimum size of terminal nodes (nodesize): 1, 2,, 9, 10
Tuning Parameters (Boosting)	 ▶ 10 iterations of each parameter will be allowed for in the following values: - Number of trees (ntrees): 100, 200,, 900, 1000 - Learning rate (shrinkage): 0.01, 0.02,, 0.09, 0.1 - Maximum depth of each tree (interaction.depth): 1, 2,, 9, 10

Modeling Performances

- Introduction

 Backgrounds | Project Description
- Data Source
 Data Description | Data Wrangling | Exploratory Data Analysis
- Research Questions

 Primary Question | Supporting Questions
- 4 Methodology
 Modelling | Cross Validation | Tuning Parameters
- 5 Preliminary Results
 Dataset 1 | Dataset 2
 - 6 Conclusions
 Findings | Implications

In models using *Dataset 1* (12 predictors, without any "change in" variables), we found that testing errors are generally moderately high, with Boosting showing the lowest test error value

Single Decision Tree

- ► Test Error = 0.2773
- Tree pruning was conducted with optimal complexity parameter (cp) value of 0.01
- orig_time or loan origination time was the key variable

Random Forest

- ▶ Test Error = 0.2651
- Optimal values for mtry was 3, which was the same as the default value that R calculates
- FICO_orig and balance_orig were the two most important predictors., i.e. the FICO score and loan balance at origination.

Boosting

- Test Error = 0.2587
- Learning rate was set to 0.05 and number of trees to 5000.
- orig_time was the key variable
- Further parameter tuning too computationally expensive at time of presentation production

Logistic Regression

- ▶ Test Error = 0.2949
- Stepwise Logistic Regression was also conducted, but it produced the same optimal model in terms of test error

LDA

- Test Error = 0.3011
- Columns had to be converted back to numerical values instead of factors

QDA

- Test Error = 0.3248
- Columns had to be converted back to numerical values instead of factors

Naïve Bayes

- ▶ Test Error = 0.3355
- While tuning of the Laplace smoother is possible, it has not been attempted at this stage

KNN

- ▶ Test Error = 0.3670
- KNN with CV for k values of 1-15 was attempted, with k=15 producing the lowest test error

Tree-based / Ensemble models

Linear models

Probabilistic / Neighbor-based models

In Single Decision Tree modelling, the first two nodes are divided from the orig_time, highlighting the importance of this variable to Dataset 1

▶ The interpretation of control variable orig_time will be discussed in under Conclusions (section 6)

^{*}Results are preliminary and subject to further cross validation and tuning

In Random Forest modelling using *Dataset 1*, *FICO_orig* and *balance_orig* are the most important predictors

In Gradient Boosting modelling using *Dataset 1*, *orig_time* is the most important predictor, with *balance_orig* and *FICO_orig* also of importance

	var <chr></chr>	rel.inf <dbl></dbl>
orig_time	orig_time	22.3824792
balance_orig	balance_orig	16.5357246
FICO_orig	FICO_orig	15.8755718
hpi_orig	hpi_orig	10.7199370
Interest_Rate_orig	Interest_Rate_orig	10.6748320
LTV_orig	LTV_orig	10.3636928
uer_time_x	uer_time_x	6.0150319
term	term	5.3063772
investor_orig	investor_orig	0.8336410
REtype_SF_orig	REtype_SF_orig	0.5160390

In the second round of modelling using *Dataset 2* (16 predictors, including "change in" variables), we found improved model outcomes overall and Boosting again the top performer

Single Decision Tree

- ▶ Test Error = 0.2308
- Tree pruning was conducted with optimal complexity parameter (cp) value of 0.01
- ▶ HPI_change_orig_y or change in HPI was the key variable

Random Forest

- Initial Test Error = 0.2115, Tuned Test Error = 0.2103
- Optimal values for mtry=2, and ntree=500 were found through tuning
- HPI_change_orig_y or change in HPI was the most important predictor by far

Boosting

- ▶ Initial Test Error = 0.2115, Tuned Test Error = 0.2086
- Learning rate (shrinkage) parameter values of 0.3, 0.1, 0.05, 0.01, 0.005 were attempted, with 0.05 performing the best and number of iterations = 2124. Other parameter tuning pending final report
- ► HPI_change_orig_y was again the most important variable

Logistic Regression

- ▶ Test Error = 0.2378
- Stepwise Logistic Regression was also conducted, but the test error turned out slightly higher than the default model.

LDA

- ▶ Test Error = 0.2375
- Columns had to be converted back to numerical values instead of factors.

QDA

- Test Error = 0.2335
- Columns had to be converted back to numerical values instead of factors.

Naïve Bayes

- Test Error = 0.2781
- While tuning of the Laplace smoother is possible, it was not attempted.

KNN

- ▶ Test Error = 0.3173
- KNN with CV for k values of 1-15 was attempted, with k=5 producing the lowest test error.

Tree-based / Ensemble models

Linear models

Probabilistic / Neighbor-based models

In Single Decision Tree modelling using Dataset 2, the first and third nodes are divided on HPI_change_orig_y, FICO_orig also important

In Random Forest modelling HPI_change_orig_y is the most important predictor by far to Dataset 2, followed by uer_change_xy and FICO_orig

5. Results

In Gradient Boosting modelling using *Dataset 2*, *HPI_change_orig_y* is again the most important predictor by a substantial margin, followed by *FICO_orig* and *balance_orig*

Variable Importance of Boosting (Dataset 2)					
	var <chr></chr>	rel.inf <dbl></dbl>			
HPI_change_orig_y	HPI_change_orig_y	39.7311245			
FICO_orig	FICO_orig	12.1817687			
balance_orig	balance_orig	9.5086875			
Interest_Rate_orig	Interest_Rate_orig	6.8440288			
LTV_orig	LTV_orig	6.6726356			
IR_change_orig_y	IR_change_orig_y	6.6163561			
uer_change_xy	uer_change_xy	6.5549772			
uer_time_x	uer_time_x	2.6314375			
orig_time	orig_time	2.4996181			
seasoning_orig_x	seasoning_orig_x	2.1814978			

^{*}Results are preliminary and subject to further cross validation and tuning

- Introduction
 Backgrounds | Project Description
- Data Source
 Data Description | Data Wrangling | Exploratory Data Analysis
- Research Questions

 Primary Question | Supporting Questions
- Methodology

 Modelling | Cross Validation | Tuning Parameters
- 5 Results
 Dataset 1 | Dataset 2
- 6 Conclusions
 Findings | Implications

6. Conclusions*

Modelling using the additional variables in *Dataset 2* outperformed *Dataset 1*, with Boosting using Dataset 2 achieving the least test error value

Dataset 1					
(12 predictors)					
Dataset 2					
(16 predictors)					

Single Decision Tree	Random Forest	Boosting	Logistic Regression	LDA	QDA	Naïve Bayes	KNN
0.2773	0.2651	0.2587	0.2949	0.3011	0.3248	0.3355	0.3670
0.2308	0.2103	0.2086	0.2378	0.2375	0.2335	0.2781	0.3173

Observations

- ▶ For both datasets, Boosting performed best in terms of the classification error on the testing set; Random Forest was the second best in both cases
- Dataset 2 with four additional predictors resulted in lower test error for all eight models. This means that the inclusion of change variables was likely useful for capturing more information with predictive power
- ▶ The *change in the House Price Index* from Dataset 2 was the most important variable for all tree-based models
- ► For *Dataset 1*, *Loan Origination time* was consistently important (but not always the most important)

Interpretation

- ▶ Because orig_time was highly correlated with HPI_change_orig_y (-0.74) and HPI_orig (0.92), it is possible that it is capturing similar macroeconomic information, making it an important variable to Dataset 1. Yet, it is evident that the change in HPI during the life of the loan carries additional information given its importance in modelling Dataset 2.
- ▶ Despite the boost in performance for all models using the additional variables in *Dataset 2*, when making predictions in the real world, the future change in HPI will be a (potentially unreliable) forecast such that actual performance will likely suffer higher variance
- ▶ Reliance on Loan Origination time in Dataset 1 for future prediction would also require caution as it will involve extrapolating into the future. This variable was included to control for historical factors. A scenario without this variable will be included in the final report.

Answering our research questions through data mining

Scientific Questions **Primary** What variables can be used in predicting mortgage defaults and what classification models Question provide the best prediction? **Supporting** ▶ How does the economic environment, or change in macro-environment over time, impact mortgage **Question 1** performance? **Supporting** ▶ Can accurate default predictions be achieved without expectations of a future change in the Question 2 macro-economic environment? **Supporting** To what extent does additional loan and borrower information assist in identifying potential defaults? **Question 3**

Answers

- ▶ Most of our variables selected through domain knowledge added some predictive power to the modelling, but the key variable was change in house price index, followed by credit score (FICO score) and loan balance at origination
- ▶ With change in house price index the most important variable by far, change in macro-environment over time is the key determinant in mortgage performance. We see this variable as a macro proxy given unemployment rate at origination was not available in the dataset (only unemployment rate at each time observation)
- ▶ Circa 1 in 4 predictions on *Dataset1* were incorrect (and these predictions benefited from inclusion of *orig_time*). We expect that a bank would like higher accuracy than this. Nonetheless a number of variables that do not rely on foresight (eg FICO score, loan balance, LTV) proved useful in constructing a base model.
- Models with more variables (*Dataset 2*) performed better, though this was due to the change in macro variables per above. Incremental loan and borrower information such as the *REtype* variables actually yielded limited value. We suspect however that more variables would be available to a bank such that a clear answer cannot be provided to this question based on our dataset.

^{*}Conclusions are preliminary and subject to further model cross validation and tuning

The End of The Presentation