COUNTING MAGMA EQUATIONS

1. The formula

The symbol \diamond will be used for the binary operation of magma equations. The order of a magma term is the number of occurrences of \diamond in the term. Thus the order of $(x\diamond y)\diamond(x\diamond z)$ is 3. There is an obvious mapping from terms of order n to plane binary trees of order n. (Additionally the leaves can be naturally labelled by the variables in the term to make the mapping a bijection.) Let

$$T(n) = \frac{1}{n+1} \cdot \binom{2n}{n} .$$

This counts the number of plane binary trees of order n.

The order of a magma equation is the sum of the orders of the two sides. Thus the order of $(x \diamond y) \diamond (x \diamond z) \approx z \diamond (x \diamond x)$ is 5. The equation $(v \diamond w) \diamond (v \diamond u) \approx u \diamond (v \diamond v)$ obtained by relabelling the variables is considered to be "the same" as the previous equation as far as counting is concerned, as is the equation $z \diamond (x \diamond x) \approx (x \diamond y) \diamond (x \diamond z)$ obtained by switching the two terms.

The Stirling numbers $\binom{n}{m}$ of the second kind count the number of ways to partition a set of n elements into m non-empty subsets.

The number of bijections β of a set of n elements to itself is n!. The number of involutions β (that is, $\beta = \beta^{-1}$) is given by

$$\mathsf{Invol}(n) = \sum_{0 \le k \le \lfloor n/2 \rfloor} \binom{n}{2k} (2k-1)!!.$$

For non-negative integers a_1, a_2 let $E(a_1, a_2)$ be the number of magma equations $t_1 \approx t_2$ with t_i of order a_i , counting up to relabelling, up to switching terms, and only allowing the equation $x \approx x$ of the form $t \approx t$. Then the following holds:

Date: April 23, 2025.

•
$$E(0,0) = 2$$
.

• If
$$a_1 \neq a_2$$
:

$$E(a_1, a_2) = T(a_1) \cdot T(a_2) \cdot \sum_{\substack{1 \le p_i \le a_i + 1 \\ 0 \le s \le \min(p_1, p_2)}} {a_1 + 1 \brace p_1} \left\{ a_2 + 1 \brace p_2 \right\} {p_1 \choose s} {p_2 \choose s} s! .$$

• If
$$a_1 = a_2 = a > 0$$
:

$$\begin{split} E(a,a) &= \frac{1}{2} T(a)^2 \cdot \sum_{\substack{1 \leqslant p_1, p_2 \leqslant a+1 \\ 0 \leqslant s \leqslant \min(p_1, p_2)}} \binom{a+1}{p_1} \binom{a+1}{p_2} \binom{p_1}{s} \binom{p_2}{s} s! \\ &+ \frac{1}{2} T(a) \cdot \sum_{\substack{1 \leqslant p \leqslant a+1 \\ 0 \leqslant s \leqslant p}} \binom{a+1}{p} \binom{p}{s} \text{Invol}(s) \\ &- T(a) \cdot \sum_{\substack{1 \leqslant p \leqslant a+1 \\ 0 \leqslant s \leqslant p}} \binom{a+1}{p} \,. \end{split}$$

Let $\mathsf{Eqns}(n)$ be the number of magma equations of order n (under the given constraints). Then

$$\mathsf{Eqns}(n) = \sum_{0 \le a \le \lfloor n/2 \rfloor} E(a, n - a).$$

Let Eqns*(n) be the number of magma equations of order $\leq n$. Then

$$\mathsf{Eqns}^{\star}(n) = \sum_{0 \leqslant k \leqslant n} \mathsf{Eqns}(k).$$

Maple calculations for $E(a_1, a_2)$ with $0 \le a_1 \le 2$, $0 \le a_2 \le 5$, and for Eqns(n), Eqns $^*(n)$ with $0 \le n \le 5$:

							n	Eqns(n)	$Eqns^{\star}(n)$
E	<u> </u>	1	2	3	1	5	0	2	2
$\frac{L}{0}$	2	$\frac{1}{5}$	$\frac{2}{30}$	$\frac{3}{260}$	2842	36834	1	5	7
1			104			173880	2	39	46
1		9	-0-	1015	12278		3	364	410
2			427	8770	115920	1776348	4	4284	4694
							5	57882	62576

2. The Proof

A frame φ is a 7-tuple $(T_1, \pi_1, S_1, \beta, T_2, \pi_2, S_2)$ where

- the T_i are plane binary trees,
- π_i is a partition of the set $\{1, \ldots, a_i + 1\}$ where a_i is the order of T_i which is $(|T_i| 1)/2$,
- S_i is a subset of $\{1, \ldots, p_i\}$ where $p_i = |\pi_i|$, the number of blocks in π_i ,
- $|S_1| = |S_2|$, and
- $\beta: S_1 \to S_2$ is a bijection.

The frame $\Phi(t_1 \approx t_2)$ of a magma equation $t_1 \approx t_2$ is defined as follows:

- T_i is the plane binary tree associated with t_i .
- The variables of t_i have locations $1, \ldots, a_i + 1$, counting from the left.
- π_i is the partition of the set $\{1, \ldots, a_i + 1\}$ defined by: j and k are in the same block of π_i iff the variables of t_i at the locations j and k are the same.

The variable associated to a block of π_i is the variable at all the locations in the block.

- Number the blocks of π_i by $1, \ldots, p_i$ such that for $1 \leq j < k \leq p_i$ the least member of the jth block is less than the least member of the kth block.
- S_i is the set of block numbers from $\{1, \ldots, p_i\}$ whose associated variables in t_i appear on both sides of the equation.
- For $j \in S_1$, $\beta(j)$ is the number of the block in S_2 whose associated variable is the same as that associated to block number j in S_1 .

FACT: Two magma equations $t_1 \approx t_2$ and $t'_1 \approx t'_2$ are the same up to a relabelling of the variables iff their frames are equal.

FACT: Every frame φ is the frame of a magma equation.

These facts allow us to compute the number of magma equations up to a relabelling of the variables by counting frames.

Let $\Phi(a_1, a_2)$ be the collection of frames with the order of T_i equal a_i . Then, up to relabelling, the number of magma equations $t_1 \approx t_2$

with order $(t_i) = a_i$ is $|\Phi(a_1, a_2)|$, which is

(1)
$$T(a_1) \cdot T(a_2) \cdot \sum_{\substack{1 \leq p_1 \leq a_1+1\\1 \leq p_2 \leq a_2+1\\0 \leq s \leq \min(p_1, p_2)}} {a_1+1 \choose p_1} {a_2+1 \choose p_2} {p_1 \choose s} {p_2 \choose s} s!$$
.

Counting equations up to relabelling and symmetry means that one treats $t_1 \approx t_2$ and $t_2 \approx t_1$ as a single equation. This means that when their frames are different only one frame is counted. To accomplish this when counting all equations of order n (that is, when $a_1 + a_2 = n$) the first step is simply to count only one of $\Phi(a_1, a_2)$ and $\Phi(a_2, a_1)$ when $a_1 \neq a_2$, say only count $\Phi(a_1, a_2)$ when $a_1 < a_2$.

The case $a_1 = a_2 = a$, which only occurs when n is even, requires more consideration since the frames of $t_1 \approx t_2$ and $t_2 \approx t_1$ are both in $\Phi(a, a)$, and sometimes they are the same, sometimes they are distinct. Given

$$\Phi(t_1 \approx t_2) = (T_1, \pi_1, S_1, \beta, T_2, \pi_2, S_2)$$

one has

$$\Phi(t_2 \approx t_1) = (T_2, \pi_2, S_2, \beta^{-1}, T_1, \pi_1, S_1).$$

The two equations have the same frame iff

$$T_1 = T_2, \ \pi_1 = \pi_2, \ S_1 = S_2, \ \beta = \beta^{-1}.$$

This means β is an involution. This leads to the count, up to relabelling and symmetry, of equations with frames in $\Phi(a, a)$ being

$$\frac{1}{2}T(a)^{2} \cdot \sum_{\substack{1 \leq p_{1}, p_{2} \leq a+1\\0 \leq s \leq \min(p_{1}, p_{2})}} {a+1 \brace p_{1}} {a+1 \brace p_{2}} {a+1 \brace s} {p_{1} \brack s} {p_{2} \brack s} s!$$

$$+ \frac{1}{2}T(a) \cdot \sum_{\substack{1 \le p \le a+1 \\ 0 \le s \le p}} \binom{a+1}{p} \binom{p}{s} \operatorname{Invol}(s) \ .$$

To avoid trivial equations $t \approx t$, from this one needs to subtract

$$T(a) \cdot \sum_{1 \le p \le a+1} \begin{Bmatrix} a+1 \\ p \end{Bmatrix}$$
.

To then include one trivial equation in the count, namely $x \approx x$, only use this subtraction for a > 0.