Enseignant : Abdessattar Lafi Section : Licence GLSI

Série N° 01 : Algèbre

A. U: 2019-2020

Exercice 1

Déterminer le polynôme réel unitaire de degré 4 tel que 1-i est une racine simple et 2 est une racine double.

Exercice 2

Déterminer le quotient et le reste de la division euclidienne de A par B dans les cas suivants.

1)
$$A = X^4 - X^3 + 3X^2 + 1$$
 et $B = X^2 + 3X + 1$.

2)
$$A = X^5 + 2X^3 - 3X - 2$$
 et $B = X^3 + X + 1$.

3)
$$A = 6X^5 - 7X^4 + 1$$
 et $B = (X - 1)^2$.

4)
$$A = X^5 - 2X^3 + 4X^2 - 8X + 11$$
 et $B = X^3 - 3X + 2$.

Exercice 3

Soient $P(X) = X^3 - 5X^2 + 8X - 4$ et $Q(X) = X^5 - 5X^4 + 7X^3 - 2X^2 + 4X - 8$

- 1) Déterminer les ordres de multiplicité de la racine 2 des polynômes P(X) et Q(X).
- 2) Déduire les factorisations de P(X) et Q(X) dans $\mathbb{R}[X]$.

Exercice 4

Effectuer la division de $A = X^6 - 2X^4 + X^3 + 1$ par $B = X^3 + X^2 + 1$:

- 1) Suivant les puissances décroissantes.
- 2) A l'ordre 4 (c'est à dire tel que le reste soit divisible par X^5) suivant les puissances croissantes.

Exercice 5

Factoriser les polynômes suivants dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$.

$$P_1 = X^2 - 1,$$
 $P_2 = X^2 + 1,$ $P_3 = X^2 + 2X - 3,$

$$P_4 = X^4 + 2X^2 - 3$$
, $P_5 = X^4 + 1$, $P_6 = X^4 - 1$,

$$P_7 = X^8 - 2X^4 + 1$$
, $P_8 = X^3 - X^2 + 2X - 2$, $P_9 = X^4 - 2X^3 + X - 2$.