

GC634-2

9/17/01

Bron et al

FIGURES

-Fig. 1.

A

TatA (Eco)	M- GGISI WQELITIAVIVVHLGFKKKLG-----	26
TatE (Eco)	M-GEISITKLLVVAALWVILFGTKKLR-----	26
TatAy (Bsu)	--- PIGPCSLAVIAITVAVIPICPKKLP-----	25
TatAd (Bsu)	MFSNIGTPGCLLTFVIAIPICPSSKLP-----	27
TatAc (Bsu)	M- ELSFTKILVILFVGFLVCPDKLP-----	25
TatB (Eco)	ME- DIGESELLIIVELIICDYLICBQRLPVAVKTVAAGWIRALRSLATTVQNELTQELKLQ	49
	*	
TatA (Eco)	-----SIGSDLGASIKGFKKKAMSDE-----PKQDKTSQDADFTAKTI	64
TatE (Eco)	-----TLGGLGAAIKGFKKKAMNDDE-----A-AAKGADVDLQAELK	63
TatAy (Bsu)	-----ELGKAAGDTLREFKNATKGLT-----SDEEEKKKKEDQ-----	57
TatAd (Bsu)	-----EIGRAAKRTLLEFKSATKSLV-----SGDEKEEKSAELTAVK-	64
TatAc (Bsu)	-----ALGRAAGKALSEFKQATSGLT-----QDIRKNDSEN-----K-	57
TatB (Eco)	EFQDSLKKVEKASLTNLTPELKASMDELRQAAESMKRSYVANDPEKASDEAHTIHNP	114
	-----*	
TatA (Eco)	ADKOQADTNQE-----QAKTEDAKRHDKEQV	89
TatE (Eco)	SHKE-----	67
TatAy (Bsu)	-----	57
TatAd (Bsu)	-----QDKNAG	70
TatAc (Bsu)	-----EDKQM-	62
TatB (Eco)	VVKDNEAAHEGVTPAAAQTQASSPEQKPETTPEPVVKPAADAEPKTAAPSPSSSDKP	171

B

GC634-2

9/17/01

Bron et al

Fig. 2.

A *B. subtilis***B *E. coli***

GC634-2

9/17/01

Bron et al

Fig. 3.

A *B. subtilis* 168**B** *B. subtilis* Δ *tatCd***C** *B. subtilis* Δ *tatCy*

GC634-2

9/17/01

Bron et al

Fig. 4.

GC634-2
Bron *et al.*
9/17/01

Fig. 5.

168

 $\Delta tatCd-\Delta tatCy$

GC 634-2
Bron et al
9/17/01

FIGURE 6

Tat-dependent secretion of the *B. subtilis* lipase LipA. *B. subtilis* 168 (parental strain), *B. subtilis* Δ tatCd, *B. subtilis* Δ tatCy, or *B. subtilis* Δ tatCd- Δ tatCy were grown in TY-medium to end-exponential growth phase. To study the secretion of LipA, *B. subtilis* cells were separated from the growth medium by centrifugation. Proteins in the growth medium were concentrated 20-fold upon precipitation with trichloroacetic acid, and samples for polyacrylamide gel electrophoresis (SDS-PAGE) were prepared. Secreted LipA in the growth medium was visualized by SDS-PAGE and Western blotting, using LipA-specific antibodies.

Gd 634-2
Bron et al
9/17/01

FIGURE 7

Predicted twin-arginine (RR-)signal peptides of *B. subtilis*¹

Protein	N	h	RR-Motif	H	h	C
AlbB	1	0.1	RRILL	27	2.0	AIA
AmyX TM	9	-0.8	RRSFE	15	1.1	-
AppB TM	8	0.5	RRTLM	19	2.3	-
LipA	7	-1.1	RRIIA	19	1.2	AKA
OppB TM	8	-0.6	RRLVY	24	2.0	-
PbpX	2	-2.2	RRRKL	14	2.9	WNA
PhoD	3	-1.3	RRKFI	17	0.9	VGA
QcrA TM	1	-1.1	RRQFL	19	1.3	-
TlpA TM	1	-0.8	RRLII	21	2.4	-
WapA ^W	1	-3.0	RRNFK	18	2.3	VLA
WprA	8	-1.7	RRKFS	20	1.9	AAA
YceA TM	1	-0.4	RRAFL	21	2.2	-
YesM TM	1	-1.5	RRMKI	20	2.4	QYA
YesW	1	-1.3	RRSCL	19	2.0	VKA
YfkN TM	1	-1.2	RRTHV	17	1.7	IHA
YkpC	8	-1.0	RRVAI	17	2.3	SLA
YkuE	1	-1.3	RRQFL	17	1.0	GYA
YmaC	7	0.0	RRFLL	15	2.4	YSL
YubF TM	9	-2.7	RRNTV	23	2.0	-
YuiC	8	0.2	RRLLM	20	1.9	IEA
YvhJ TM	2	-1.7	RRKIL	18	2.5	-
YwbN	1	-1.8	RRDIL	23	1.4	QTA

¹ The listed signal peptides contain, in addition to the twin-arginines, at least one other residue of the consensus sequence (R-R-X-Φ-Φ; printed in bold). The number of residues in the N- and H-domains of each signal peptide, and the average hydrophobicity (h) of each of these domains, as determined by the algorithms of Kyte and Doolittle (Kyte, J., and R. F. Doolittle [1982] A simple method for displaying the hydropathic character of a protein. *J. Mol. Biol.* 157:105-32), are indicated. Furthermore, the RR-motifs in the N-domain, and SPase I recognition sites in the C-domain (*ie.* positions -3 to -1 relative to the predicted SPase cleavage site) are shown. Proteins lacking a (putative) SPase I cleavage site, some of which contain additional transmembrane domains, are indicated with "TM". One protein containing cell wall binding repeats is indicated with "W".

GCL34-2
Bron et al
9/17/01

A

66 kDa →

46 kDa →

B

prePhoD →

SecB →

Proteinase K - + +

Triton X-100 - - +

Figure 8

Figure 9

A

B

$\text{SP}_{\text{PhoD}}\text{-LacZ}$ →
LacZ →

SecB →

Proteinase K
Triton X-100

- + +
- - +

- + +
- - +

GC 634-2
Bron et al

Figure 10

9/17/01

Figure 11

Bron et al
GC 634-2
9/17/01

Figure 12

GCB34-2
Bron et al
9/17/01

SP_{PhoD}-LacZ →

SecB →

Proteinase K

- + +

Triton X-100

- - +

Figure 13

GC 634-2
Bron et al
9/17/01

Figure 14
Homologs in *B. alcalophilus*

TatA

**MGGLSVGSVVLIALVALLIFGPKKLPELGKAAGSTLREFKNATK
GLADDDDDTKSTNVQKEKA**

TatC

**MTMMTPNQQTSKKKRKGRKGRVPMQDMSIMDHAEELRRRIF
VVLAFFIVALIGGFFLAVPVITFLQNSPQAADMPFNAFRLTDPLRV
YMNFAVITALVLIIPVILYQLWAFVSPGLKENEQKATLAYIPIAFL
LFLAGIAFSYFILLPFVISFMGQMADRLEINEMYGINEYFSFLFQL
TIPFGLLFQLPVVVMFLTRLGVVTPTFLRKIRKYAYFALLVIAGII
TPPELTSHLFVTVPMLILYEISITISAITYRKYHGTTDHNGQESAK**