非寿险一年期准 备金风险的度量 研究

刘乐平,高额

一年期准备金质 险

直观实行

描述工具, CDF

度量 CDR 波动性

CDR 的波动性: 贝叶斯对数正态 模型

贝叶斯对数正态模 ^刑

估计 CDR 的 MSEP

模拟 CDR 的预测分

安证研究

数据来源

数值结果

非寿险一年期准备金风险的度量研究

刘乐平 高磊

天津财经大学统计系

2014年7月16日

十州田甘立/ 哈

直观实例

HATE O

府景 CDD 被动

CDR 的波动性

贝叶斯对数正态 模型

贝叶斯对数正态相型 型

估计 CDR 的 MSEP

模拟 CDR 的预测分

实证研究

数据来源

数值结果

1 一年期准备金风险

2 CDR 的波动性: 贝叶斯对数正态模型

3 实证研究

- 1 一年期准备金风险
 - ■直观实例
 - 描述工具: CDR
 - 度量 CDR 波动性

随机性准备金评估: 度量最终赔款的不确定性

非寿险一年期准 备金风险的度量 研究

刘乐平,高磊

一年期准备金瓦

直观实例

描述工具: CDR 度量 CDR 波动性

CDR 的波动性: 贝叶斯对数正差模型

贝叶斯对数正态模型 型

MSEP 模拟 CDR 的预测分

失证切九

数据来源

- 未决赔款的预测均方误差 (Mack,1993))⇒
- 未决赔款的预测分布 (England,1999, 2002, 2006)⇒
- 随机性准备金评估模型 (Wüthrich & Merz,2008; 张连增,2008)

一年期准备金风险:一个直观实例

非寿险一年期准 备金风险的度量 研究

刘乐平, 高磊

一年期准备金区

直观实例

描述工具: CDR

CDR 的波动性 贝叶斯对数正态

贝叶斯对数正态核 ^{III}

估计 CDR 的 MSEP

模拟 CDR 的预测分

实证研究

数据来源

数值结果

一年时段内的索赔进展结果 (来源: Robbin,2012)

							_
(1) 0	(2) ₽	(3) 0	(4) ₽	(5) ₽	(6) ₽	(7) ₽	ŀ
未决赔款	当年增量赔款。			未决赔款	未决赔款	年初估计与回	ŀ
准备金(年	情景。	概率。	赔款。	准备金(年	回溯估计:	溯估计差距	l,
初)。	IF AK*	191.4	75D 75/C+*	末)。	(4) + (5)	(1) - (5) 0	ľ
¥100e	Α÷	25%	5₽	70₽	75₽	250	o
¥100₽	Bο	25%	15₽	800	950	50	0
¥100¢	C _e	25‰	20₽	85∉	105∉	-5₽	P
¥100₽	Dο	25%₽	30₽	95₽	125₽	-25∘	o
					标准差。	180	0
							'n.

一年期准备金风险描述工具:索赔进展结果(CDR)

非寿险一年期准 备金风险的度量 研究

引乐平, 高磊

一年期准备金网

度量 CDR 波动性

CDR 的波动性: 贝叶斯对数正差 植刑

贝叶斯对数正态相 ^{#10}

估计 CDR 的 MSEP

模拟 CDR 的预测分布

实证研究

数据来源

改值结果

事故年	进展年 j					
i	0 j J					
0						
:	D_{I+1}					
i						
:						
I						

 $CDR = R^0 - C' - R^1$ "年末义务" (Felice & Morconi, 2006);

"索赔进展结果" (Merz & Wüthrich, 2007)

"一年流量结果" (Ohlsson & Lauzeningks, 2009);

"一年恶化"(Robert,2013)。

CDR 的预测均方误差与预测分布

非寿险一年期准 备金风险的度量

$$\begin{split} \mathit{msep}_{\mathit{CDR}_I(J+1)|D_I} &= E[(\mathit{CDR}_I(J+1)-0)^2|D_J] \\ \\ &= \mathit{Var}(\mathit{CDR}_I(J+1)|D_J) \end{split}$$

$$= \mathit{Var}(E[P_{I,J}|D_{J+1}]|D_J)$$

CDR 的波动性: 贝叶斯对数正态

2 CDR 的波动性: 贝叶斯对数正态模型

- 贝叶斯对数正态模型
- 估计 CDR 的 MSEP
- 模拟 CDR 的预测分布

准备金评估: 贝叶斯对数正态模型

非寿险一年期准 备金风险的度量 研究

刘乐平, 高磊

一年期准备金风 "^

-

描述工具: CDR

CDR 的波动性: 贝叶斯对数正态

贝叶斯对数正态模 ^刑

估计 CDR 的 MSEP

布

实证研究

数据来源

数值结果

贝叶斯对数正态模型 (Hertig,1985; Gogol,1993):

■ 累计赔款进展因子对数化后服 从正态分布:

$$\varepsilon_{i,j} = \log \left(\frac{P_{i,j}}{P_{i,j-1}} \right) \sim N(\Phi_j, \sigma_j^2)$$

■ 均值向量相互独立,并且有各 自的先验分布:

$$\Phi_j \sim N(\phi_j, s_j^2)$$

CDR 预测均方误差的估计

备金风险的度量

$$\begin{split} \mathit{msep}_{\mathit{CDR}_{I}(J+1)|D_{I}} &= \mathit{Var}(E[P_{i,J}|D_{J+1}]|D_{J}) \, \circ \\ \\ &= E[E[P_{i,J}|D_{J+1}]^{2} \, |D_{J}] - E[E[P_{i,J}|D_{J+1}]|D_{J}]^{2} \, \circ \\ \\ &= E[E[P_{i,J}|D_{J+1}]^{2} \, |D_{J}] - E[P_{i,J}|D_{J}]^{2} \end{split}$$

CDR 预测分布的随机模拟

非寿险一年期准 备金风险的度量

■ Re-reserving(Ohlsson & Lauzeningks, 2009)

$$CDR = R^0 - C' - R^1$$

.

十州11日 亩 エノ 哈

直观实例

描述工具: CDF

度量 CDR 波动性

CDR 的波动性: 贝叶斯对数正态 模型

贝叶斯对数正态模

估计 CDR 的

模拟 CDR 的预制

实证研究

数据来源

数值结别

- 3 实证研究
 - ■数据来源
 - ■数值结果

累计赔款数据

非寿险一年期准 备金风险的度量 研究

刘乐平, 高語

一年期准备金月

描述工具: CDR 度量 CDR 波动性

CDR 的波动性 贝叶斯对数正数模型

贝叶斯对数正态 利

估计 CDR 的 MSEP

实证研究

数据来源

数值结果

累积赔款数据(Dahms, 2008)

i/jo	0€	10	2₽	3₽	4∘	5₽	6₽	7₽	80	9.
00	1216632	13470720	17868770	2281606	2656224	29093070	3283388	3587549₽	37544030	3921258
10	798924₽	1051912	1215785	1349939	1655312	1926210	21328330	2287311	2567056	e e
20	1115636	1387387	1930867₽	21770020	2513171₽	29319300	3047368₽	31825110	ē	۵
3₽	1052161₽	1321206	17001320	1971303₽	2298349	26451130	3003425	e	ē	۵
40	808864₽	10295230	1229626	1590338₽	1842662₽	2150351	٥	e	ē	٠
5₽	1016862	1251420	1698052	21051430	2385339₽	٠	ب	e	ē	ب
6₽	948312₽	1108791	1315524	1487577₽	٠	۰	٠	ę	ę	٠
70	917530₽	1082426	1484405	ø	ě	e	ē	e	e	e e
80	1001238	1376124	e	e	٠	e	ې	e	ø	e e
90	841930₽	ø	P	e e	٥	٥	٥	o.	٥	e e

CDR 的预测均方误差

非寿险一年期准

CDR 的预测均方误差 (单位: 千元)

事故年。	贝叶斯对数	Mack 模型(解析)。	
i ₽	解析方法。	模拟方法。	MIACK (英至(肝切))
1∘	86.1929	86.2517	89.4229
2.0	226.4332	227.8708	207.2375
3.0	134.1763	134.8333	122.1339
40	151.2206	150.6056	156.4886
5.0	149.9628	149.3736	137.4372
6₽	107.8908	107.3402	98.5370
7.∘	236.1619	238.5702	226.7806
8.0	315.3016	310.4466	279.0844
9.₀	216.3975	216.9789	225.8500
总计。	1049.2157₽	1037.9711	940.5805

■ Mack 模型下 CDR 预测均方误差推导 (Merz and Wüthrich, 2007, 2008a, 2008b).

CDR 的预测分布

非寿险一年期准 备金风险的度量 研究

1乐平. 高系

一年期准备金原

直观实例

描述工具:CDR

CDR 的波动性: 贝叶斯对数正差模型

贝叶斯对数正态模

估计 CDR 的 MSEP

模拟 CDR 的预测分

实证研究

数据来源

数值结果

CDR的预测分布

CDR 经验分布的统计特征。

最小值。	0.005 分位数。	均值。	标准差。	最大值。	ø
-4324.0849¢	-2667.6315₽	1.9393₽	1037.9711	4064.0134	ę

- Ohlsson E, Lauzeningks J. The one-year non-life insurance risk[J]. Insurance: Mathematics and Economics, 2009, 45(2): 203-208.
- Wüthrich M V, Merz M, Lysenko N. Uncertainty of the claims development result in the chain ladder method[J]. Scandinavian Actuarial Journal, 2009, 2009(1): 63-84.
- Merz M, Wüthrich M V. Paid-incurred chain claims reserving method[J]. Insurance: Mathematics and Economics, 2010, 46(3): 568-579.
- England P. Solvency II: reserving risk, risk margins and technical provisions[C]. Casualty Loss Reserve Seminar, Las Vegas, 2011—09—15.
- Happ S, Merz M, Wüthrich M V. Claims development result in the paid-incurred chain reserving method[J]. Insurance: Mathematics and Economics, 2012, 51(1): 66-72.

非寿险一年期准 备金风险的度量 研究

「乐平、高磊

一年期准备金原 "^

of controls and

HILLS THE AN

度量 CDR 波动

CDR 的波动性: 贝叶斯对数正态 概刑

贝叶斯对数正态模

估计 CDR fi

模拟 CDR 的预测分

实证研究

数据来源

\$6 (A) (4± H

数值结界

谢谢大家!

A/Q?