Mintapéldák összeadásra:

1. feladat: Végezze el a kijelölt műveletet a következő bináris számokkal: 0011 0111b + 0001 1110b!

megoldás:

0011 0111 b	55 d
+0001 1110 b	30 d
0101 0101 b	85 d

összeadás egy bites számoknál
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 (átvitel)

$$1+0=1$$
, átvitel 0
 $1+1=10$, átvitel 1
 $1+1+1=11$ átvitel 1
 $1+0+1=10$ átvitel 1
 $1+1+1=11$ átvitel 1
 $1+0+1=10$ átvitel 1
 $0+0+1=1$ átvitel 0
 $0+0+0=0$ átvitel 0

Mintapéldák kivonásra:

A módszer ugyanaz lesz, amit a tízes számrendszernél megszokhattunk:

4 feladat: Végezze el a kijelölt műveletet 0011 0111b - 0001 1110b bináris számokkal!

megoldás:

1-0=1,	átvitel 0
1-1=0,	átvitel 0
1-1 = 0	átvitel 0
0-1 = 1	átvitel 1 (a kivonás valójában így néz ki: 10-1=1, és az átvitel ezért keletkezik)
1-1-1=1	átvitel 1
1-1=0	átvitel 0
0-0=0,	átvitel 0
0-0=0,	átvitel 0

kivonás

0 - 0 = 0

0-1=-1 (a különbség 1, átvitel 1)

1 - 0 = 1

1 - 1 = 0

0 - 1 1 átvitellel = 0 az átvitel 1

1 – 1 1 átvitellel = 1 az átvitel 1

Kivonás komplemensképzéssel

A számítógép tervezésekor arra törekedtek, hogy minél kevesebb műveletet kelljen ismernie a számítógép központi egységének.

Az összes műveletet az összeadásra vezették vissza.

Az összeadással elvégzett kivonás elött a negatív számokat speciális formára, komplemenssé kell alakítani.

Példaként nézzük meg a $-168_{(10)}$ -as, azaz a $10101000_{(2)}$ szám átalakítását.

Lépés	Milwelet	Eredmény	
1.	abszolút érték felírása	10101000(2)	A biteket ellenkezőjére váltjuk.
2.	egyes komplemens képzése	01010111(2)	A bitaket enankezoja e vanjuk.

Az egyes komplemens képzésekor problémaként vetődik fel, hogy így a nullára két kód is van:

$$00000000_{(2)} = "+0,$$

 $111111111_{(2)} = "-0 "$

Erre megoldást kínál a kettes komplemens képzés.

Kettes komplemens képzése

Lépés	Milwelet	Eredmény
1.	abszolút érték felírása	101010000
2.	egyes komplemens képzése	01010111(2)
3.	kettes komplemens képzése	

Az egyes komplemenshez 1-et hozzáadunk.

Ezek után nézzünk konkrét példát a bináris kivonásra. Végezzük el a következő műveletet: $184_{(10)} - 100_{(10)}$

Lépés	Miwelet	Eredmény
1.	- 100 ₍₁₀₎ abszolút értékének felírása	01100100(2)
2.	A kettes komplemes meghatározása	10011100(2)
3.	A kivonás elvégzése:	
	184	10111000
	<u>- 100</u>	+ 10011100
	84(10)	101010100(2)

Elhagyjuk a túlcsordult jegyet, ha van, így az eredmény: **010100**

Túlcsordult számjegy.

Mintapéldák szorzásra:

Az osztást és a szorzást csak bináris számokkal tárgyaljuk!

Látható lesz, hogy a kettes számrendszerben elvégzett szorzás a legegyszerűbb műveletek egyike, hiszen vagy egyel vagy nullával kell szoroznunk.

7. feladat: Végezze el a kijelölt műveletet 0011 0111b * 0000 1010b bináris számokkal! A műveletvégzésnél a számok elején található vezető nullákat elhagytuk, hiszen a műveletvégzést nem befolyásolják, csak a részművelet végrehajtási számot növelik.

megoldás:

$$\frac{55 \text{ d}}{55}$$
*10 d
 $\frac{+ 00}{550 \text{ d}}$

Osztás:

A jobbra történő eltolás a kettes számrendszerben a kettő negatív hatványával való szorzás, de ha jobban belegondolunk, ez nem jelent mást, mint osztás egy (10) alakú számmal.

Osztásnál alapvetően két esetet különböztetünk meg, a maradék nélküli és a maradékos osztást, lássunk most mindkettőre példát:

8. feladat: Végezze el a kijelölt műveletet 0011 0110b : 0000 0010b

megoldás:

ell: 54 d : 2d = 27d

9. feladat: Végezze el a kijelölt műveletet 0011 0111b : 0000 0100b !

megoldás:

0011 0111b : 0000 0100b = 0000 1101b maradék 11b (3d)

Általában az osztást ugyanúgy végezzük, mint a 10-es számrendszerben: balról jobbra haladva veszünk először annyi jegyet, amennyiben már lealább egyszer megvan (itt most ez azt jelenti, hogy nagyobb nála) és elosztjuk maradékosan, visszaszorzunk, kivonjuk (binárisan), majd vesszük a következő jegyet és ezt folytatjuk az utolsó jegyig.

	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М	N	0	Р	Q	R
1																		
2	1	0	1	1	0		:	1	1	=	1	1	1	mara	dékos	osztás	eredm	énye
3	-	1	1															
4		1	0	1														
5		-	1	1														
6			1	0	0													
7			-	1	1													
8					1	marac	dék											
9																		
10																		

Tört számok binárisan

 Kettes számrendszerben ábrázolt törtek értéke:

```
0,1011_{(2)} = ?
A "kettedes" vessző/pont utáni helyiértékek 2-nek a negatív hatványai. Vagyis: 0,1011_{(2)} = 2^{-1} + 2^{-3} + 2^{-4} = 0,5 + 0,125 + 0,0625 = 0,6875
```

- Tizedes tört átváltása bináris törtté (kettővel osztások helyett kettővel szorzásokkal!)
- A számot (tehát az eredeti szám törtrészét!) szorozzuk 2-vel!
- A keletkezett szám egész részét (úgy ahogy az egészek átváltásakor a maradékokat) írjuk ki!
- A keletkezett szám törtrészével(!!!) folytassuk a műveletet, míg a törtrész 0 nem lesz, vagy míg el nem érjük a kellő számú "kettedes"-jegyet!
- Az egész részeket fentről lefelé kell a "kettedes" vessző után írni.

Tört számok binárisan

Írjuk fel a 0,6875 számot binárisan!

$$0,6875 * 2 = 1,375$$

$$1,375$$
 $0,375 * 2 = 0,75$

$$0.75$$
 $0.75 * 2 = 1.5$

$$1,5$$
 $0,5 * 2 = 1,0$

$$1,0$$
 $0*2=0$

Tehát: $0,6875 = 0,1011_{(2)}$

0,6875

Ennek az egész része 1.

Ennek az egész része 0.

Ennek az egész része 1.

Ennek az egész része 1.

Itt vége az osztásnak.

Hexadecimális összeadástábla

+	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Ε	F
0	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Ε	F
1	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F	10
2	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F	10	11
3	3	4	5	6	7	8	9	Α	В	С	D	Ε	F	10	11	12
4	4	5	6	7	8	9	Α	В	С	D	Ε	F	10	11	12	13
5	5	6	7	8	9	Α	В	С	D	E	F	10	11	12	13	14
6	6	7	8	9	Α	В	С	D	Ε	F	10	11	12	13	14	15
7	7	8	9	Α	В	С	D	E	F	10	11	12	13	14	15	16
8	8	9	Α	В	С	D	Ε	F	10	11	12	13	14	15	16	17
9	9	Α	В	C	D	Ε	F	10	11	12	13	14	15	16	17	18
Α	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17	18	19
В	В	C	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A
С	С	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	18
D	D	Ε	F	10	11	12	13	14	15	16	17	18	19	1A	18	10
E	E	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
F	F	10	11	12	13	14	15	16	17	18	19	1A	18	10	1D	1E

Hexadecimális számok összeadása

- Számoljuk ki: (B A 3)₁₆ + (5 D E)₁₆
- 3+E=11 leírjuk az 1-et, átvitel (marad) 1
- A+D=17 és volt 1 átvitel, az összesen 18, leírjuk a 8-at és maradt 1 átvitel
- B+5=10 és volt 1 átvitel, az összesen 11, leírjuk a 11-et.
- Tehát az eredmény 1181.

Hexadecimális szorzótábla

Table for Hexadecimal Multiplication

X	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
2	0	2	4	6	8	Α	C	ш	10	12	14	16	18	1A	10	1E
3	0	3	6	9	C	F	12	15	18	18	1E	21	24	27	2A	2D
4	0	4	8	U	10	14	18	10	20	24	28	2C	30	34	38	3C
5	0	5	A	F	14	19	1E	23	28	2D	32	37	3C	41	46	48
6	0	6	U	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	0	7	Е	15	10	23	2A	31	38	3F	46	4D	54	5B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	18	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
Α	0	A	14	1E	28	32	3C	46	50	5A	64	6E	78	82	80	96
В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
С	0	C	18	24	30	3C	48	54	60	6C	78	84	90	90	A8	B4
D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	90	A9	B6	C3
E	0	E	10	2A	38	46	54	62	70	7E	80	9A	A8	B6	C4	D2
F	0	F	1E	2D	3C	4B	5A	69	78	87	96	A5	84	C	D2	E1

Hexadecimális számok szorzása

- Számoljuk ki: 1A8 * AF
- F*8 = 78, leírjuk a 8-at, átvitel 7
- F*A=96, és maradt 7, az összesen (hexaban összeadva)
 9D, leírjuk a D-t és marad 9.
- F*1=F és maradt 9, az összesen 18
- Az F-vel szorzás ereménye: 18D7
- A*8= 50, leírjuk a o-t, maradt 5
- A*A=64, maradt 5, az összesen (hexaban összeadva) 69, leírjuk a g-t, maradt 6
- A*1=A és maradt 6, az összesen (hexaban összeadva) 10
- Az A-val szorzás eredménye: 1090
- 18D7 +1090
- = 121D7 (hexaban kellett összeadni)

Kódolási feladatok

Írjuk le a teljes nevünket ASCII kódban!

Írjuk le a kedvenc gyümölcsünk nevét bináris kódban!

- Írjuk le az utca nevét, ahol lakunk decimális kódban!
- Írjuk le a kedvenc filmünk nevét hexadecimális kódban!
- Adjuk oda a szomszédunknak, aki próbálja megfejteni!

ASCII kódtáblázat

0		30	A	60	<	90	Z	120	х	150	ľ	180	4	210	Ď	240	
1	0	31	•	61	=	91	[121	У	151	Ś	181	Á	211	Ë	241	"
2	•	32		62	>	92	١	122	z	152	Ś	182	Â	212	ď	242	24
3	٧	33	ı	63	?	93	1	123	{	153	Ö	183	Ě	213	Ň	243	·
4	٠	34		64	@	94	٨	124		154	Ü	184	ş	214	ĺ	244	•
5	٠	35	#	65	Α	95		125	}	155	Ť	185	4	215	î	245	§
6	٠	36	\$	66	В	96	,	126	~	156	ť	186		216	ě	246	÷
7	•	37	%	67	С	97	а	127	۵	157	Ł	187	٦	217		247	
8		38	&	68	D	98	b	128	Ç	158	×	188	Ţ	218	Г	248	0
9	0	39	0	69	Ε	99	С	129	ü	159	č	189	Ż	219		249	
10	0	40	(70	F	100	d	130	é	160	á	190	ż	220	-	250	
11	8	41)	71	G	101	е	131	â	161	í	191	٦	221	Ţ	251	ű
12	9	42	*	72	Н	102	f	132	ä	162	ó	192	L	222	Ů	252	Ř
13	1	43	+	73	1	103	g	133	ů	163	ú	193		223		253	ř
14	ü	44	,	74	J	104	h	134	ć	164	Ą	194	Т	224	Ó	254	
15	Ţ.	45	-	75	K	105	i	135	ç	165	ą	195	+	225	ß	255	
16	•	46	- 6	76	L	106	j	136	ł	166	Ž	196	-	226	Ô		
17	◀	47	alt	77	M	107	k	137	ë	167	ž	197	+	227	Ń		
18	1	48	0	78	Ν	108	1	138	Ő	168	Ę	198	Ă	228	ń		
19		49	1	79	0	109	m	139	ő	169	ę	199	ă	229	ň		
20	1	50	2	80	Р	110	n	140	î	170	7	200	L	230	Š		
21	§	51	3	81	Q	111	0	141	Ź	171	ź	201	F	231	š		
22	2.—	52	4	82	R	112	р	142	Ä	172	Č	202	工	232	Ŕ		
23	1	53	5	83	S	113	q	143	Ć	173	ş	203	٦F	233	Ú		
24	1	54	6	84	Т	114	r	144	É	174	«	204	ŀ	234	ŕ	10	
25	+	55	7	85	U	115	s	145	Ĺ	175	»	205	=	235	Ű		
26	\rightarrow	56	8	86	V	116	t	146	ĺ	176	**	206	#	236	ý	6 5	
27	←	57	9	87	W	117	u	147	ô	177	10000 10000 10000	207	¤	237	Ý		
28	L	58		88	Х	118	٧	148	ö	178		208	đ	238	ţ		
29	\leftrightarrow	59	;	89	Υ	119	w	149	Ľ	179		209	Ð	239	199		

Feladatok összeadásra

Adja össze a következő bináris számokat:

1	101011	+	1111
2	101000	+	101
3	1111001	+	1011
4	101010	+	10101
5	1111	+	01

Adja össze a következő oktális számokat:

6	777	+	1
7	2356	+	44
8	100	+	44
9	167	+	167
10	111	+	722

Adja össze a következő hexadecimális számokat:

11	ABCD	+	1111
12	100	+	1B
13	15B2	+	C4F
14	333	+	DDD
15	1A2B3C	+	68F

Megoldások összeadásra

Megoldások:

$\overline{}$					
1	101011	+	1111	=	111010
2	101000	+	101	=	101101
3	1111001	+	1011	=	10000100
4	101010	+	10101	=	111111
5	1111	+	01	=	10000
6	777	+	1	=	1000
7	2356	+	44	=	2422
8	100	+	44	=	144
9	167	+	167	=	356
10	111	+	722	=	1033
11	ABCD	+	1111	=	BCDE
12	100	+	1B	=	11B
13	15B2	+	C4F	=	2201
14	333	+	DDD	=	1110
15	1A2B3C	+	68F	=	1A31CB

Feladatok kivonásra

Határozza meg a következő bináris számok különbségét:

1	11111	-	1111
2	110011	-	1010
3	101010	-	10101
4	100000	-	1
5	111000	-	1011

Határozza meg a következő oktális számok különbségét:

6	1000	-	100
7	1574	•	456
8	123	-	55
9	564	-	12
10	455	-	366

Határozza meg a következő hexadecimális számok különbségét:

11	ABC	-	999
12	FFDD	•	AAAA
13	4E5D	-	147
14	EE9	•	94
15	100	ı	1

Megoldások kivonásra

Megoldások:

1	11111	-	1111	=	10000
2	110011	-	1010	=	101101
3	101010	-	10101	=	10101
4	100000	-	1	=	11111
5	111000	-	1011	=	101101
6	1000	ı	100	=	700
7	1574	ı	456	=	1116
8	123	-	55	=	46
9	564	ı	12	=	552
10	455	-	366	=	67
11	ABC	-	999	=	123
12	FFDD	-	AAAA	=	5544
13	4E5D	-	147	=	4D19
14	EE9	-	94	=	E55
15	100	-	1	=	FF

Feladatok szorzásra, osztásra

Végezze el a kijelölt szorzásokat:

1	11011	*	10
2	11111	*	10000
3	1001101	*	101
4	10110	*	110
5	1111	*	11

Végezze el a kijelölt osztásokat:

6	11001000	:	100
7	11110	:	10
8	1101001	:	101
9	1010111	:	111
10	1010111	:	1

Megoldások szorzásra, osztásra

Megoldások:

	8				
1	11011	*	10	=	110110
2	11111	*	10000	=	111110000
3	1001101	*	101	=	110000001
4	10110	*	110	=	10000100
5	1111	*	11	=	101101
6	11001000	:	100	=	110010
7	11110	:	10	=	1111
8	1101001	:	101	=	10101
9	1010111	:	111		1100 maradék 11
10	1010111	:	1	=	1010111

Feladatok

Végezze el az alábbi átalakításokat!

1.
$$2010_{10} = \frac{?}{8}$$

2.
$$2010_{10} = ?_2$$

3.
$$2010_{10} = ?_{16}$$

4.
$$111010011_2 = ?_{10}$$

5.
$$2010_8 = ?_{10}$$

6.
$$2010_{16} = ?_{10}$$

7.
$$111010011_2 = \frac{?}{8}$$

8.
$$2010_8 = ?_2$$

9.
$$2010_{\underline{16}} = ?_{\underline{8}}$$

Végezze el az alábbi átalakításokat!

1.
$$1011010011_{\underline{2}} = ?_{\underline{10}}$$

2.
$$1011010011_2 = \frac{2}{8}$$

3.
$$1011010011_2 = ?_{16}$$

4.
$$E3A_{16} = ?_{10}$$

5.
$$E3A_{16} = ?_{8}$$

6.
$$E3A_{16} = ?_2$$

7.
$$732_8 = ?_{10}$$

8.
$$732_8 = ?_{16}$$

a) Fixpontos ábrázolás

Ez a számok műveletvégzésre alkalmas formában történő tárolására szolgál.

Pozitív és negatív egész számok ábrázolására. A negatív számokat a már ismertetett kettes komplemens szerint értelmezik a gépek.

Törtrésszel rendelkező számokat is ábrázolhatunk, de ekkor a törtet jelző pont csak logikailag létezik, a számítógép nem "teszi ki", helyét nem változtatja. Nyomtatásnál az elhelyezéséről a programozónak kell gondoskodnia.

- az ábrázolható tartomány kicsi: 2 Byte-on a legnagyobb 32.767, a legkisebb -32.768
- a számok pontossága erősen korlátozott: ha egész számot ábrázol 7/4 =1 és a 4 /4=1

b) Lebegőpontos számábrázolás

A fixpontos hátrányait kiküszöbölő, a számok hatványkitevős (matematikában használt normál alakhoz hasonlatos) felírásán alapuló számábrázolás.

Például:

$$175_{(10)} = 0.175 * 10^3 10110011_{(2)} = 0.10110011 * 28$$

 $0.375_{(10)} = 0.375 * 10^0 0.011_{(2)} = 0.11 * 2-1$

b) Lebegőpontos számábrázolás

```
Általánosan felírva: A = M * p<sup>k</sup>
A = az eredeti szám
```

M = az együttható,

ennek a tört része az ún. mantissza

p = a hatvány alapja

k = a hatvány kitevője, az ún. <u>karakterisztika</u>

Ebből észrevehetjük, hogy néhány elem minden szám esetén ismétlődik, ezért ezeket a számítógépen nem kell külön ábrázolni.

27

b) Lebegőpontos számábrázolás

Mi hagyható el?

Mi az ami megmarad?

- 0 és a pont (.)
- a hatvány alapją
- mantissza ill. a mantissza előjele
- karakterisztika ill. a karakterisztika előjele

Például:
$$175_{(10)} = 0.175 * 10^3$$

$$10110011_{(2)} = 0.10110011 * 2^{8}$$

$$0.375_{(10)} = 0.375 * 10^{0}$$

$$0.011_{(2)} = 0.11 * 2^{-1}$$

b.) Lebegőpontos számábrázolás

A számokat 6 bájtos valós típusú mennyiségként ábrázoljuk

```
A mantissza egészrésze

23 | 1 (23÷2= 11 marad: 1)

11 | 1 (11÷2= 5 marad: 1)

5 | 1 (5÷2= 2 marad: 1)

2 | 0 (2÷2= 1 marad: 0)

1 | 1 (1÷2= 0 marad: 1)

0
```

A mantissza törtrésze

```
0,1875 | 0 (0,1875×2= 0,375)

0,375 | 0 (0,375 ×2= 0,75)

0,75 | 1 (0,75 ×2= 1,5)

0,5 | 1 (0,5 ×2= 1,0)

0
```

 $X=m*2^k$ ahol 0,5 <= |m| <=1

Mantissza: m valós szám Karakterisztika: k egész szám

b.) Lebegőpontos számábrázolás

A számokat 6 bájtos valós típusú mennyiségként ábrázoljuk

$$X=m*2^k$$
 ahol 0,5 <= $|m| <= 1$

$$|m| = 10111.0011$$

$$|m| = .101110011$$

$$|m| = 0.101110011$$

k = 5 Normálás 0.1xxxx A pontot 5 lépéssel balra tettük

b.) Lebegőpontos számábrázolásA mantissza előjele

$$|m| = .101110011$$

Ha a mantissza negatív, akkor legyen 1 különben legyen 0

$$X=m*2^k$$
 ahol $0,5 <= |m| <= 1$

Mantissza: m valós szám Karakterisztika: k egész szám

Mivel itt mindig 1 állna, ezért ezt a bitet ruházzuk fel a mantissza előjelének jelentésével

$$|m| = 0.101110011$$

 $k = 5$

b.) Lebegőpontos számábrázolás A karakterisztika (kitevő) előjele

A karakterisztikát az ábrázolt legkisebb szám abszolút értékével megnöveljük, azaz hozzá adunk |-128|=128-at, majd átváltjuk 2-es számrendszerbe.

Tehát ha k=5, akkor k:=5+128=133 $X=m*2^k$ ahol $0,5 \le |m| \le 1$

Mantissza: m valós szám

Karakterisztika: k egész szám

Ezt az alakot nevezzük 128-cal eltolt nullpontú ábrázolásnak

b.) Lebegőpontos számábrázolás

A karakterisztika (kitevő) előjele

 $X=m*2^k$ ahol 0,5 <= |m| <=1

```
A karakterisztika
                                             Mantissza: m valós szám
133 \ 1 \ (133 \div 2 = 66 \ \text{marad}:
                                             Karakterisztika: k egész szám
66
      0 ( 66 \div 2 = 33 \text{ marad}:
33
     1 ( 33÷2= 16 marad: 1)
      0 ( 16 \div 2 = 8 \text{ marad: } 0)
16
      0 (8 \div 2 = 4 \text{ marad: } 0)
8
4
      0 ( 4 \div 2 = 2 \text{ marad: } 0)
                                       k=10000101
2
      0 ( 2 \div 2 = 1 \text{ marad: } 0)
1
      1 ( 1 \div 2 = 0 marad: 1)
0
```

A 6 bájtos normált ábrázolás eddigiek ismeretében:

fx											
	А	В	С	D	Е	F					
1	-23.1875	lebegőpon	ebegőpontos ábrázolása 6 bájton								
2	10111001	10000000	00000000	00000000	00000000	10000101					
3	balról jobbra kitöltjül	k a kapott bináris sz	ám jegyeivel és a r	naradék helyekre 0-	t teszünk	k + 128 binárisan					
4	Első jegyet nem vál	toztatjuk, mert nega	tív szám volt, külör	nben 0-ra kellene a l	egvégén átállítani.						

Ábrázolható tartomány:

konvenció (megállapodás): 0:= {k=-128, mantissza=tetszőleges}

A legkisebb pozitív valós szám: $0.5 * 2^{-127} \approx 2,938*10^{-39}$

Példa negatív szám ábrázolására (első bit 1 marad)

⊿ A	В С [E	F	G	Н	I	J	K	L	М	N
	g 6 bájton az alábbi sz	zámokat									
2											
1.	-6,625	- 6 kettes számrendsz			6		3	6			
1	negatív szám		-110		3		1	2			
5					1	_	0	0			
5					0	2	0	0	ide nem íru	nk semmit	
7		0,625 kettes számrend					_		_		
3			0,101			0,625	2	1,250	1		
9						0,250	2	0,500	0		
0		- 6,625 kettes számre	1			0,500	2	1,000			
1			-110,101			0,000	2	0,000	0		
2											
3				1 1,							
4		mantissza	alap	karakterisztika	9				lebegőpont		
5		-0,110101	2	3		mert	-110,101	=	-0,110101	* 2^3	
6											
7		tehát k= 3	Da biodoicos			424			400		
8		utolsó bájt: +3+128 = 1	131 binarisan			131	2	65			
9						65	2	32		1	
0						32	2	16			
1						16	2	8		0	
2						8	2	4	_	0	
3						4	2	2		0	
4						2	2	1		0_	
5 6						0	2	0		ide nem írun	k sammi
7		utolsó bájt	10000011			U	2	U	U	ide nem irun	k semmi
8		utoiso bajt	10000011								
9		11010100	00000000	00000000	00000000	00000000	10000011				
0		negatív szám	voit, ezert	az első s	zámjegy	et nem vá	itoztatjuk	meg:			
1		- 6,625 6 bájtos ábráz	olása tehát								
2		11010100	00000000	00000000	00000000	00000000	10000011				
3		11010100	00000000	00000000	00000000	00000000	10000011				

Példa pozitív szám ábrázolására (első bit 0 lesz)

_ A	В	C	D E	F	G	Н	1	J	K	L	M	N
36 2.		123,375	123 kettes számrends	zerben		123	2	61	122	. 1		
37		pozitív szám		1111011		61	. 2	30	60	1		
38						30	2	15	30	C)	
39						15	2	7	14	. 1		
40						7	2	3	6	1		
41						3	2	1	2	1		
42						1	. 2	0	0	1		
43						C	2	0	0	ide nem íru	ınk semmit	
44												
45			0,375 kettes számren	dszerben			0,37500	2	0,75	C)	
46				0,011			0,75000	2	1,5	1		
47							0,50000	2	1	. 1		
48							0,00000	2	0	C)	
49												
50			123,375 kettes számr	endszerben								
51				1111011,011								
52												
53			mantissza	alap	karakterisztil	ka				lebegőpon	tos alak	
54			0,111101101	1 2	. 7	,	mert	1111011,011	=	0,1111011		
55												
56			tehát k= 7									
57			utolsó bájt: +7+128 =	135 binárisan			135	2	67	134	1	
58							67	2	33	66	1	
59							33	2	16	32	1	
60							16	2	8	16	0)
61							8	2	4		0)
62							4	2	2	. 4	0)
63							2	2	1	. 2	0)
64							1	2	0	C	1	
65							0	2	0	0	ide nem íru	ınk semmit
66			utolsó bájt	10000111								
67												
68			11110110	110000000	00000000	00000000	00000000	10000111				
69			pozitív szán	n volt, ezé	rt az els	ső szám	jegyet 0-r	a változta	atjuk			
70			123,375 6 ba						-			
71			01110110	110000000	00000000	00000000	00000000	10000444				
72			01110110	110000000	00000000	00000000	00000000	10000111				

ANSI C adattípusok

Típus	Méret bájtban (minimum)	Határok:
		gész
char	1	-128 - 127
unsigned char	1	0 - 255
int	2	-32768 - 32767
unsigned int	2	0 - 65535
long	4	-2.147.483.647 - 2.147.483.647
unsigned long	4	0 - 4.294.967.295
	Lebe	gőpontos
float	4	±3.4*10 ⁻³⁵ - ±3.4*10 ⁺³⁵ 6-7 decimális jegy pontosság
double	8	±1.7*10-308 - ±1.7*10+308 15-16 decimális jegy pontosság
long double	10	±1.2*10-4032 - ±1.2*10+4032 19 decimális jegypontosság

Adattípusok a Java programozási nyelvben

A Java nyelvben az adattípusoknak két csoportja van: **primitív** és **referencia** típusok. A primitív adattípusok egy egyszerű értéket képesek tárolni: számot, karaktert vagy logikai értéket.

Egészek			
Típus	Leírás	Méret/formátum	
byte	bájt méretű egés	z8-bit kettes komplemens	
short	rövid egész	16-bit kettes komplemens	
int	egész	32-bit kettes komplemens	
long	hosszú egész	64-bit kettes komplemens	

Adattípusok a Java programozási nyelvben

Valós számok

Típus	Leírás	Méret/formátum
float	egyszeres pontosságú lebegőponto	s 32-bit IEEE 754
double	dupla pontosságú lebegőpontos	64-bit IEEE 754

Egyéb típusok

Típus	Leírás	Méret/formátum	
char	karakter	16-bit Unicode karakter	
boolean	logikai értéktrue vagy false		

IEEE 754 standard

single 32 bites, double 64 bites (, extended 80 bites).

típus	előjel	kitevőrész	törtrész
single	1 bit	8 bit 127-többletes	23 bit
double	1 bit	11 bit 1023-többletes	52 bit

single: Ha 0 < a kitevőrész < 255, a szám normalizált. Normalizált tört vezető 1-es bitje nincs ábrázolva!

Normalizált számok (IEEE 754, single)

0 < kitevőrész < 255

kitevőrész = kitevő + 127,

127 többletes.

Lehetséges kitevők: -126, -125, ..., +127.

Közvetlenül a törtrész elé kell képzelni egy *1*-est (**implicit bit**) és a bináris pontot.

```
Az ábrázolt szám: \pm (1 + \text{törtrész}) * 2^{\text{kitevő}}
Pl.: 1 0011 1111 1000 ... 0000<sub>2</sub> = 3F80 0000<sub>16</sub>
0,5 0011 1111 0000 ... 0000<sub>2</sub> = 3F00 0000<sub>16</sub>
-1,5 1011 1111 1100 ... 0000<sub>2</sub> = BFC0 0000<sub>16</sub>
\pm \text{kitevőrész } 1. törtrész
```

Normalizálatlan számok (IEEE 754, single) Ha a kitevőrész = 0

Ilyenkor a kitevő -126 (! nem 127), a bináris pontot implicit 0 előzi meg (nincs ábrázolva). \pm (törtrész) * 2⁻¹²⁶ Az ábrázolt szám: P1.: $2^{-127} = 2^{-126} * 0,100 ... 0000_2 =$ ± kitevőrész 0. törtrész (2⁻¹) $-2^{-149} = -2^{-126} * 0,000 ... 0001_2 =$ $= 1000 \ 0000 \ 0000 \ \dots \ 0001_2 = 8000 \ 0001_{16}$ ± kitevőrész 0. törtrész (2-23)

A legkisebb pozitív (single) normalizált szám:

$$2^{-126} = 2^{-126} * 1,000 ... 0000_2 =$$
 $= 0000 0000 1000 ... 0000_2 = 0080 0000_{16}$
 $\pm \text{ kitev\"or\'esz } 1. \text{ t\"ortr\'esz}$

A legnagyobb pozitív (single) normalizálatlan szám:

$$2^{-126} * 0,111 ... 1111_2 =$$

$$= 0000 0000 0111 ... 1111_2 = 007F FFFF_{16}$$

$$\pm \text{ kitev\"or\'esz } 0. \text{ t\"ortr\'esz}$$

$$\approx 2^{-126}$$

A különbségük csupán 2⁻¹⁴⁹.

Normalizálatlan számok (IEEE 754, single)

Ha a kitevőrész = 255

Túl nagy számok (túlcsordulás):

- ∞ (végtelen): pl. 1/0,
- NaN (Not a Number): pl. ∞ / ∞

Normalizált	<u>±</u>	0 <kitevőrész<max< th=""><th>bitminta</th></kitevőrész<max<>	bitminta
Nem normalizált	<u>+</u>	0	nem nulla bitminta
Nulla	+	0	0
Végtelen	<u>+</u>	1111	0
Nem szám		1111	nem nulla bitminta

(IEEE 754, single)

A számítógép nem csak - a számrendszereknél ismertetett - matematikai műveletek, hanem logikai műveletek végrehajtására is képes.

A logikában állítások vannak, melyek vagy igazak vagy hamisak. Ennek megfelelően a logikai adatok két értéket vehetnek fel: ha igaz, az értéke 1, ha hamis, az értéke 0. A logikai adatok ábrázolása általában 1Byteon történik:

- 00000001 = logikai igaz
- 00000000 = logikai nem

Ismerkedjünk meg néhány logikai művelettel:

A: Esik az eső

B: Van nálam ernyő

C: Megázom

ÉS (konjunkció): A and B

Esik az eső és van nálam ernyő

VAGY (diszjunkció): B or C

Vagy van nálam ernyő vagy megázom

TAGADÁS (negáció): not B

nincs nálam ernyő

KÖVETKEZTETÉS (implikáció): (A and not B) then C

Ha esik az eső és nincs nálam ernyő, akkor megázom

a) Negálás (NOT)

Olyan művelet, amely során az igazból hamisra, a hamisból igazra váltunk.

A művelet elvégzése után az eredmény akkor igaz, ha az A és B is igaz volt, minden más esetben hamis.

c) VAGY kapcsolat (OR)

A	В	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Az eredmény akkor igaz, ha vagy az A vagy a B is igaz volt, beleértve azt is, amikor mindkettő igaz.

d) KIZÁRÓ VAGY kapcsolat (XOR)

Az eredmény kizárólag akkor igaz, ha vagy A vagy B igaz volt. Ez a kapcsolat kizárja azt az esetet, amikor mindkettő igaz.

A	В	$A \oplus B$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Aritmetikai műveletek

a) Összeadás (1 bites)

Aritmetikai műveletek

b) Összeadás (Teljes összeadó)

Α	В	Átvitel be	Összeg	Átvitel ki
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Adattípusok

Alapkérdés: mit támogat a hardver (milyen utasítások vannak)? Ami nincs (pl. dupla pontosságú egész aritmetika), azt szoftveresen kell megcsinálni.

Numerikus típusok:

- előjel nélküli és előjeles egész számok
 (8, 16, 32, 64 bites).
- lebegőpontos számok (32, 64, néha 128 bites),
- binárisan kódolt decimális számok: decimális aritmetika

Máté: Architektúrák 1. előadás 54

Egyszerű sín alapú számítógép

CPU feladata: a memóriában tárolt program végrehajtása. Részei:

- vezérlőegység, feladata: a program
 - utasításainak beolvasása,
 - az **ALU**, a regiszterek vezérlése,
- aritmetikai-logikai egység (ALU), feladata: az utasítások végrehajtása,
- regiszter készlet, feladata: részeredmények, vezérlő információk tárolása. A legfontosabbak:
 - utasításszámláló
 (Program Counter): PC,
 - utasításregiszter
 (Instruction Register): IR,
- adatút (data path).

Adatút

(data path).

- A regiszter készletből feltöltődik az ALU két bemenő regisztere
- ALU
- Az eredmény az ALU kimenő regiszterébe kerül
- Az ALU kimenő regiszteréből a kijelölt regiszterbe kerül az eredmény

Nem biztos, hogy az **ALU** be- és kimenő regiszterei tényleges regiszterként vannak kialakítva.