TITLE

BACHELOR TERM PROJECT REPORT

Ву

ARYAN SINHA

(19MF3IM03)

Under the supervision of

Prof. J. MAITI

Department of Industrial and Systems Engineering, IIT Kharagpur

Department of Industrial and Systems Engineering
Indian Institute of Technology Kharagpur
West Bengal, India
28th November, 2022

DECLARATION

I certify that

- a. The work contained in this report has been done by me under the guidance of my supervisor.
- b. The work has not been submitted to any other Institute for any degree or diploma.
- c. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute.
- d. Whenever I have used materials (data, theoretical analysis, figures, and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references.

Date: 28th November, 2022 Name: ARYAN SINHA

Place: Kharagpur Roll number: 19MF3IM03

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR KHARAGPUR-721302, INDIA

CERTIFICATE

This is to certify that the project report entitled "Z-number quality index (ZQI) and its application in university laboratory Fire Safety Risk Assessment" submitted by Aryan Sinha (19MF3IM03) to Indian Institute of Technology, Kharagpur towards partial fulfilment of requirements for the award of degree of Dual Bachelor of Technology (Hons.) in Mechanical Engineering is a record of bona fide work carried out by him under my supervision and guidance during Autumn Semester 2022-2023.

Date: 28/11/2022 Prof J Maiti

Place: Kharagpur Department of Industrial and Systems Engineering

Indian Institute of Technology, Kharagpur

Kharagpur, India

CONTENTS

2.	Literature Review
3.	Research Gaps
4.	Methodology
5.	Case Study
6.	Discussion
7.	Conclusion
8.	Reference

1. Introduction

1 Introduction

There are various types of accidents that happens in a university laboratory, many of them involving multiple risks. With an intensive atmosphere of research, there should exist some proper form of management to optimize the service quality and comfortability of their laboratories. Therefore, risk assessment for unsafe behaviour is an important task in the management of university laboratories. To prevent the occurrence of these hazards, deep understanding of risks potential in a laboratory is a necessity. In this paper, we have mainly focused on fire risks and its assessment.

For e.g.- In the chemical laboratory, various risks were identified which could lead to fire in the laboratory. There are various reactions going out in the laboratory which involve flammable chemicals whose involvement could lead to fire. In the electrical laboratory, various components such as wires, resistors, circuit board, power source etc. possesses a threat to the laboratory. For ex. – open wires or wires cut at multiple points, damage components, circuit boards could lead to short circuit and fire. Many of them have been listed down in the questionnaire. Similarly, for laboratories involving flammable gas/oil cylinders, there is a risk involved for the broking of fire in the laboratory.

When characterising risks according to FMEA analysis, some of them have high frequency of occurring, some have high severity, while some have very low detectability. How can we find out which risks are overall more hazardous to us? For this purpose, our project aims at analysing multiple fire risks that occur in different kinds of laboratories and rank them according to the most hazardous one. The process involves Z number quality index values. Z numbers are fuzzy linguistic values consisting of two parts, opinion and reliability of that opinion which consists of values having fuzzy numbers. The opinion part consist of Trapezoidal fuzzy number values and reliability part has the triangular fuzzy number values. These types of numbers have been used to capture more information regarding the risk uncertainty.

2 Literature Review

FMEA methods have been generally used to solve the problems regarding evaluation failure modes. The traditional FMEA comprises of the following process: A group of experts identify various potential risks for some system. Then the frequency/probability of the failure (O), the

severity of the consequences (S), and the chance/probability of the failure going undetected (D) is being calculated, followed by multiplying them together to calculate the risk priority number (RPN). Finally, these RPN are ranked and critical risks are identified. However, there are many shortcomings of the traditional FMEA method that are partially solved by some methods like introduction of factor weights into the RPN calculation, analysis of failure mode relationships and structures, and fuzzy expression and calculation of RPN factors and weights. However, many remaining problems require additional research. For example, the linguistic fuzziness of expert scoring has been extensively studied, but the sampling randomness of expert scoring has not been considered.

Sr	Title of the Research Paper	Issues Addressed
No.		
1	A pattern of fire risk	In the paper, we figured out the general fire risks
	assessment and emergency	involved in the laboratory and use it to prepare the
	management in educational	questionnaire.
	center laboratories	
2	Application of Risk	This paper listed out some general risks which were
	Identification, Risk Analysis,	involved in some laboratories and their Frequency,
	and Risk Assessment in	Severity and Detectability values. It helped us to
	the University Laboratory	figure out some general risks which could cause fire.
3	The Risk Priority Number	In the paper, we studied about RPN calculation.
	Evaluation of FMEA Analysis	Fuzzy Beta-Binomial Approach has been followed
	Based on Random	for SOD Ranking evaluation. This method gave
	Uncertainty and Fuzzy	different results than traditional FMEA because it
	Uncertainty	considered Fuzzy uncertainty and random uncertainty
		also while evaluating the O, S, D for each failure
		mode.
4	Ranking of Z-numbers Based	In the paper, we studied about Z-numbers, how to
	on the Developed	formulate fuzzy numbers in form of a Z-number and
	Golden Rule Representative	how to find fuzzy probability distributions for each Z-
	Value	number
5	Fuzzy Numbers in Cost Range	In the paper, we studied about Fuzzy numbers, how
	Estimating	to find the defuzzified value for them, their mean and
		variance for the corresponding probability

	distributions, Fuzziness and Ambiguity Measures and
	ultimately their fuzzy number quality Index.

3 Research Gaps

- All these papers do not take into account the random uncertainty and the fuzzy uncertainty.
- We calculated the fuzzy probability distribution to take into account of these.
- There is dearth of literature in university laboratory risk assessment in Indian context.
- Risk assessment information reliability has not been captured in university laboratory risk assessment.

4 Methodology

The methodology for developing Z-quality index is shown in Figure**.

Further, the overall methodology for fire safety risk evaluation is shown in Figure**.

4.1 Stepwise procedure

For collecting the data regarding the fire safety risks, a detailed questionnaire is prepared. From the questionnaire, we have our input data in the form of Z-number. The input data consists of Frequency(O), Severity(S) and Detectability(D) values of opinion(A) and confidence(B) for 25 failure modes. These particular values are of fuzzy number format. The opinion(A) column has values in the trapezoidal fuzzy number form while confidence(B) has triangular fuzzy number form. We have to find out the FNQI (fuzzy number quality index) of these numbers and the Quality Index for fuzzy probability distribution of the Z-numbers as the output. These fuzzy numbers for opinion (A) and confidence (B) are in general represented as a four element notation (a,b,c,d).

4.1.1 Fuzzy number quality index (FNQI)

The FNQI of a fuzzy number can be calculated as-

$$FNQI = [W_FF(A) + W_{AG}AG(A)] / [W_F + W_{AG}]$$

Where F(A) and AG(A) are the fuzziness and ambiguity measures of fuzzy number A respectively and W_F and W_{AG} are the weights of the fuzziness measure and ambiguity measure, respectively. In this paper, equal weights are assumed for both measures, so W_F and W_{AG} becomes equal, therefore the formula for FNQI reduces to –

$$FNOI = [F(A) + AG(A)] / 2$$

4.1.1.1 Fuzziness and ambiguity measures

Since for the calculation of FNQI, fuzziness(F(A)) and ambiguity measures (AG(A)) are required, the equations for calculating them are –

For a given fuzzy set Ax, the measure of fuzziness, FA, is obtained using the following

$$F(A) = \sum_{x \in X} (1 - |2A(x) - 1|)$$

equation:

Upon simplification, for the given fuzzy numbers, it can be reduced to –

$$F(A) = (b + d - a - c) / 2$$

AG can be considered as a global spread of the fuzzy number, therefore for the ambiguity measure calculation, we use the following equations –

1. For a trapezoidal fuzzy number, A (a, b, c, d):

$$AG = (c - b)/2 + [(d - c) + (b - a)]/6$$

2. For a triangular fuzzy number, A (a, b, b, c):

$$AG = [(c - b) + (b - a)]/6$$

Hence, we can easily calculate the FNQI for any fuzzy number.

4.1.2 Z-number

A Z-number, Z = (A, B) is an ordered pair of fuzzy numbers related to the real-valued uncertainty variable X. These variables are frequency(O), severity(S) and detectability(D). 'A' is the fuzzy constraint on X, and 'B' is a measure of the reliability of A. We regard the following discrete Z-number as discrete analogues of continuous Z-number Z = (A, B).

$$((\mu_A(x_1)/x_1 + \mu_A(x_2)/x_2 + ... + \mu_A(x_n)/x_n), (\mu_B(b_1)/b_1 + \mu_B(b_2)/b_2 + ... + \mu_B(b_m)/b_m))$$

4.1.2.1 Hidden probability Distribution

To calculate the hidden probability distribution, we use a maximum entropy optimization model, which is shown below-

$$\begin{aligned} \text{Max } H(x) &= - \sum p_X(x_i) log_2 p_X(x_i) \\ \text{s.t-} \\ &\sum \mu_A(x_i) \cdot p_X(x_i) = b_j \\ p_X(x_1) + p_X(x_2) + ... + p_X(x_n) = 1 \\ &0 \leq p_X(x_i) \leq 1 \\ &\sum x_i p_X(x_i) = \sum x_i \mu_A(x_i) / \sum \mu_A(x_i) \end{aligned}$$

Through this optimisation model, we can plot the hidden probability distribution for each Z-number.

4.1.2.2 Fuzzy probability distribution

The fuzzy probability distribution of the Z-number is defined as the product of the membership function of the A component and the hidden probability distribution, as follows

$$FPD_{j} = \frac{\mu_{A}(x_{1})p_{X}^{j}(x_{1})}{x_{1}} + \frac{\mu_{A}(x_{2})p_{X}^{j}(x_{2})}{x_{2}} + \dots, + \frac{\mu_{A}(x_{n})p_{X}^{j}(x_{n})}{x_{n}}$$

This represents the fuzzy probability distribution of a Z-number.

4.1.2.3 Quality Index for Fuzzy probability distribution

To calculate the Quality Index for Fuzzy probability distribution, we use the following algorithm-

Input: some probability distributions, p_1, p_2, \dots, p_n

$$\begin{split} d\left(p_{i}, p_{j}\right) &= \sqrt{\frac{1}{2}(\overrightarrow{p_{i}} - \overrightarrow{p_{j}})^{T}(\overrightarrow{p_{i}} - \overrightarrow{p_{j}})} \\ sim\left(p_{i}, p_{j}\right) &= 1 - d\left(p_{i}, p_{j}\right) \\ sup\left(p_{i}\right) &= \sum_{j=1, j \neq i}^{n} sim\left(p_{i}, p_{j}\right) \\ crd\left(p_{i}\right) &= \frac{sup\left(p_{i}\right)}{\sum_{i=1}^{n} sup\left(p_{i}\right)} \\ \|p_{i}\|^{2} &= \sum_{j=1}^{n} \left(p_{ij}\right)^{2} \\ Qu\left(p_{i}\right) &= e^{crd\left(p_{i}\right)*} \|p_{i}\|^{2} \end{split}$$

Here, Qu represents the Quality Index for a probability distribution.

4.1.2.4 Quality Index of Z-number

The overall Quality Index for a Z-number can be calculated as-

$$QI = \frac{\left(\frac{QI(A) + Qu}{2}\right) + Q(B)}{2}$$

Where QI(A), QI(B) and Qu represents Quality Index of A part and B part of the Z-number and Qu represents the Quality Index of the probability distribution of that Z-number.

5 Case Study

To demonstrate the applicability of the proposed methodology, fire related risks from a leading industry is considered. A detailed questionnaire is prepared to collect data from a team of experts from the same industry. The screenshot of the data is shown below (see Table**).

Table**: Data collection for fire safety risks

_	Fire Risks/			Severity(S)		Detectability(D)			
	Failure modes				rence (O)				6.1
				opinion		opinion	confidence	opinion	confidence
1	Absence of fire	Improper design of	Fire control could	L	Н	Н	MH	VH	VH
_	Extinguisher	the laboratory	not be possible		• • • • •				
2	No proper	No proper	Fire control could	Н	MH	VH	MH	VH	Н
	working of Fire	maintenance of the	not be possible						
	Extinguisher	laboratory				101	>#1	101	201
3	No Exhaust	Improper design of	No control on	VL	Н	VH	VH	VH	VH
		laboratory	smoke due to fire						
			leading to life						
			threatening effects						
	Morking	The aubaust would	on people No control on	Н	MH	VH	M	VL	Н
4	Working	The exhaust would		н	IVIH	VH	IVI	VL	н
_	exhaust failure Blocked	be a defective piece	smoke due to fire	ML	Н	Н	Н	MH	Н
5		No proper maintenance of the	No control on	IVIL	П	п	п	IVIT	п
	windows		smoke due to fire						
_	Flancas dela Can	Laboratory	Diagonia de la la la	M	MH	Н	ML	L	VH
6	Flammable Gas	No proper checking	Blast in the lab	IVI	IVIH	н	IVIL	L	VH
	Cylinders' Pipes	of the components	causing fire						
7	broken/blocked Flammable Gas	laboratory	The leaders of and	Н	MH	VH	ML	VH	VH
/	Cylinders' Pipes	No proper checking	The leakage of gas	"	IVITI	VΠ	IVIL	VΠ	VΠ
		of the components laboratory	from pipes can cause fire in the lab						
8	Leakage Flammable Oil	No proper checking	Blast in the lab	М	MH	Н	Н	M	M
ō	tanks' pipelines	of the components	causing fire	IVI	IVITI	п	П	IVI	IVI
	broken/blocked	laboratory	causing lire						
	brokerij blocked	laboratory							
9	Flammable Oil	No proper checking	The leakage of oil	Н	Н	VH	Н	VH	VH
J	tanks' pipelines	of the components	can cause fire in the	"	"	V11	"	VIII	VIII
	Leakage	laboratory	lab						
10	Damaged	No proper	Injury risk while	ML	MH	VH	MH	VL	Н
10	Bunsen burner	maintenance of the	using it						
		laboratory							
11	Corroded	No proper	Gas leakage could	MH	Н	VH	Н	VH	VH
	pipeline of	maintenance of the	take place that can						
	Bunsen burner	laboratory	cause fire in the lab						
12	Improper	Improper	These flammable	Н	MH	Н	М	Н	МН
	storage of	management	substances can						
	Flammable	system within the	cause fire when in						
	substance	laboratory	contact with ignition						
	5.1		source						
13	Release of	The reactions	Release of	VL	VH	VH	MH	VH	VH
	Flammable chemical fumes	involving such chemicals were not	flammable chemical						
	cnemical fumes	taken place in a	fumes coming in						
		controlled	contact with ignition source can cause						
		environment	fire						
14	Runaway	Experiment was	A runaway chemical	ML	MH	VH	MH	VL	Н
_ 1	chemical chain	done without	reaction can cause						
	Reaction	proper	damage to the						
		precautionary	people performing						
		measures	experiment						
15	Overuse of	Number of	Machine can catch	VL	Н	VH	МН	VH	VH
	power-supply	machines could be	fire and blasts could						
	machines	less than required	also happen		1				

machines

less than required

also happen

16	Using too old	Improper	The parts could	Н	VH	VH	MH	VL	Н
	machines	maintenance of the	easily catch fire and						
		laboratory	blasts could happen						
17	Emergency exit	No proper	People can get	Н	Н	Н	Н	MH	Н
	locked	maintenance of the	trapped within the						
		laboratory	lab						
18	Emergency exit	Improper design of	No escape of people	М	MH	Н	Н	L	M
	unavailable	the fire-escape	from the laboratory,						
		system during	could lead to life						
		designing of the lab	threatening results						
19	Emergency exit	No proper	People would have	MH	MH	VH	Н	VH	VH
	pathway	maintenance of the	no time to clear the						
	already blocked	laboratory	way, leading to						
			trapping within the						
			lab						
20	Emergency exit	Improper design of	No information for	L	МН	Н	VH	L	M
	direction-	the fire-escape	the people about						
	signage	system during	where to escape						
	instructions not	designing of the lab							
	available								
21	Emergency	No proper	People could not be	Н	VH	VH	Н	VH	VH
	alarm not	maintenance of the	aware that a fire						
	working	laboratory	had broken in the						
			lab						
22	Open Electric	No proper checking	While working in the	М	Н	VH	MH	VL	Н
	wires	of the	electrical lab, short						
		Laboratory	circuit may take						
		components	place leading to fire						
23	Damaged	No proper	Short circuit may	Н	MH	VH	Н	VH	VH
	circuit board	maintenance of the	take place leading to						
		Laboratory	fire in the lab						
		components							
24	Proper data of	No proper	The electrical	Н	МН	VL	М	Н	МН
1	·					1		1	

Table**: The conversion table of Z linguistic terms to Z-numbers is shown above.

equipment may get

overheated and

catch fire

Spread of fire across

whole lab leading to

life-threatening

effects

electrical

components

not printed on

them
25 Delay in calling

fire brigade

maintenance of the

laboratory

Irresponsible

reaction to the

initiation of fire in

the lab

A (opinion)		
Linguistic variable	Trapezoidal Fuzzy number	
Very Low (VL)	(0,0,1,2)	
Low (L)	(1,2,2,3)	
Medium Low (ML)	(2,3,4,5)	
Moderate (M)	(4,5,5,6)	
Medium High (MH)	(5,6,7,8)	
High (H)	(7,8,8,9)	
Very High (VH)	(8,9,10,10)	

VL

VH

VH

Н

VH

VH

B (reliability component)		
Linguistic Variable	Triangular Fuzzy number	
Very Low (VL)	(0,0,0.1)	
Low (L)	(0,0.1,0.3)	
Medium Low (ML)	(0.1,0.3,0.5)	
Medium (M)	(0.3,0.5,0.7)	
Medium High (MH)	(0.5,0.7,0.9)	
High (H)	(0.7,0.9,1)	
Very High (VH)	(0.9,1,1)	

There are 25 FMs whose Z linguistic terms are given for Frequency, Severity and Detectability. These linguistic terms are then converted to Z-numbers, having two fuzzy number's opinion(A), which has values in the trapezoidal fuzzy number form and reliability/confidence(B), which has triangular fuzzy number form.

From the data, the Quality Index is calculated for the A part and the B part of the Z -number by the process as mentioned above. The hidden probability distribution and the fuzzy probability distribution is also calculated. Finally, the overall quality index of a particular Z-number can be obtained using the process mentioned above. The quality index values for each FM are shown below in the table.

Quality Index				
Frequency	Severity	Detectability		
0.966883621	0.947499008	0.295439463		
0.947499008	0.795412242	0.628764673		
0.996435835	0.295439463	0.295439463		
0.947499008	0.79537225	0.996435835		
0.944389644	0.7809011	0.866000137		
0.996789442	0.94399087	0.634328085		
0.947499008	0.792447244	0.295439463		
0.95795795	0.7809011	0.957423029		
0.7809011	0.628764673	0.295439463		
0.910434162	0.795412242	0.996435835		
0.866000137	0.628764673	0.295439463		
0.947499008	0.947346419	0.947499008		
0.665177374	0.795412242	0.295439463		
0.910434162	0.795412242	0.996435835		
0.996435835	0.795412242	0.295439463		
0.44760204	0.795412242	0.996435835		
0.7809011	0.7809011	0.866000137		

0.95795795	0.7809011	0.929351296
0.932532424	0.628764673	0.295439463
0.932127447	0.44760204	0.929351296
0.44760204	0.628764673	0.295439463
0.891540431	0.795412242	0.996435835
0.947499008	0.628764673	0.295439463
0.947499008	0.942041609	0.947499008
0.665177374	0.628764673	0.295439463

These quality index values for frequency, severity and delectability are combined together to obtain the RPN values for each FM. The final RPN values for each FM are shown below.

FMs	RPN
FM1	0.270658376
FM2	0.473869949
FM3	0.08697338
FM4	0.750928412
FM5	0.638653375
FM6	0.596877439
FM7	0.221828646
FM8	0.716219844
FM9	0.14506167
FM10	0.721589416
FM11	0.160869828
FM12	0.850484388
FM13	0.156314132
FM14	0.721589416
FM15	0.2341586
FM16	0.3547592
FM17	0.528092536
FM18	0.695220211
FM19	0.173228992
FM20	0.387745943
FM21	0.083147404
FM22	0.706614674
FM23	0.176009213
FM24	0.845721971
FM25	0.123564611

Finally, the ranking of the FM is obtained by the decreasing order of RPNs.

FM12 > FM24 > FM4 > FM10 > FM14 > FM8 > FM22 > FM18 > FM5 > FM6 > FM17 > FM2 > FM20 > FM16 > FM1 > FM15 > FM7 > FM23 > FM19 > FM11 > FM13 > FM9 > FM25 > FM3 > FM21

6 Discussion

From the chart, 9 FMs among 25 FMs have RPN value above 0.6, they are FM12, FM24, FM4, FM10, FM14, FM8, FM22, FM18 and FM5 and had been categorized as important risks. The risk "Improper storage of Flammable substance" has topped the chart. It means according to the data derived from experts and the methodology used, among all the given risks, this particular risk has the most hazardous potential. This could be because the frequency, severity and detectability of this risk is high. For the prevention of these risk, mitigation strategies should be developed such as proper maintenance of laboratories should take place to control the risks of happening of any accidents.

7 Conclusion

For actually evaluation risk analysis process in the real world, there are at least two types of uncertainties, fuzzy uncertainty and random uncertainty. It is more beneficial to build a

decision model by considering both uncertainties simultaneously for the improvement the validity of the evaluation results. From the traditional methods of FMEA analysis, their studies have not considered these factors. Although the traditional FMEA method has these types of shortcomings, the prioritization of failure risks by calculating RPN is the most common method in the industry because the RPN calculation is simpler and easier to understand than other methods.

This study proposes a method to introduce both random and fuzzy uncertainty into FMEA to calculate RPN. It can be seen from the literature review that scholars have extended FMEA studies by introducing fuzzy uncertainty or random uncertainty into traditional FMEA analysis to compensate for the shortcomings of the traditional approach, but these studies consider either fuzzy or random uncertainty separately and rarely consider both uncertainties simultaneously in a single model. This study also captures risk assessment information reliability by using the concept of Z-numbers that has not been captured in university laboratory risk assessment papers previously. Moreover, these data we consider in the study is obtained for university laboratory risk assessment in Indian context, which is not been considered before. There can be further development in this process. The weights of different criteria can be taken, expert's different weights can be taken. The three risk factors O, S, and D have been calculated on a discrete ordinal scale. However, the multiplication is not meaningful on the ordinal scale, to which MCDM methods such as TOPSIS and DEMATEL can be used. Further, Cost, quality, and other factors may also be added to improve the theoretical basis of the RPN evaluation.

8 References

- Ruolan Cheng, Jianfeng Zhang, Bingyi Kang, IEEE Member "Ranking of Z-numbers
 Based on the Developed Golden Rule Representative Value".
- M. Omidvari, N. Mansouri, J. Nouri "A pattern of fire risk assessment and emergency management in educational center laboratories".
- Ronald J. Willey, Tracy Carter, John Price, Bo Zhang "Instruction of hazard analysis
 of methods for chemical process safety at the university level".
- Ahmed A. Shaheen, Ph.D; Aminah Robinson Fayek; and S. M. AbouRizk "Fuzzy Numbers in Cost Range Estimating".
- Xiaojun Wu and Jing Wu "The Risk Priority Number Evaluation of FMEA Analysis
 Based on Random Uncertainty and Fuzzy Uncertainty", School of Economics and
 Management, Tongji University, Shanghai 200092, China.

- M A Budihardjo "Application of Risk Identification, Risk Analysis, and Risk Assessment in the University Laboratory" o et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 598 012069.
- Melih Yucesan, Muhammet Gul and Erkan Celik" A holistic FMEA approach by fuzzy-based Bayesian network and best–worst method".
- Marc-André Filz, Jonas Ernst Bernhard Langner, Christoph Herrmann, Sebastian Thiede "Data-driven failure mode and effect analysis (FMEA) to enhance maintenance planning".