Опр(централизатор)

$$Z(\rho) = \{e : \mathcal{M} > \twoheadrightarrow \mathcal{M} | \rho \circ e = e \circ \rho\}$$
 - централизатор ρ

ОПР (Множество sub)

$$w \in \Sigma^*$$
, to $sub(w) = \{v \in \Sigma^* | w \ \rho \ v\} \backslash w$

ОПР (Содержание слова)

Содержание слова $w \in \Sigma^*$ это $S(w) = \{a \in \Sigma | |w|_a > 0\}$

Предложение(Главная часть билета)

Предположение (о Sub): $|\mathbf{w}| \ge 3$ $\mathrm{Sub}(\mathbf{w}) = \mathrm{Sub}(\mathbf{v}) \Rightarrow w = v$

Рис. 1: alt text

Почему важно, что $|w| \ge 3$

•
$$sub(ab) = \{a, b\} = sub(ba), ab \neq ba$$

Д-ВО

Сначала разберём случай, когда |w|=3

в таком случае можно разделить все слова на 3 кучки по размеру содержания

$$|S(w)| = 1$$

Тогда
$$S(w) = \{a\}, w = a^3, sub(a^3) = \{a^2\}$$

• у если
$$sub(v) = \{a^2\}$$
, то $S(v) = \{a\}, |v| = 3 \Rightarrow v = a^3 = w$

$$|S(w)| = 2$$
, T.e $S(w) = \{a, b\}$

пусть:
$$|w|_a = 2, |w|_b = 1$$

тогда
$$w= egin{cases} a^2b \\ aba \\ ba^2 \end{cases} \Rightarrow sub(w) = egin{cases} \{a^2,ab\} \\ \{a^2,ab,ba\} \\ \{a^2,ba\} \end{cases}$$

если
$$sub(v) \in \{\{a^2, ab\}, \{a^2, ab, ba\}, \{a^2, ba\}\} \Rightarrow$$

$$S(v) = \{a, b\}, |v|_a = 2, |v|_b = 1 \text{ T.e } v \in a^2b, aba, ba^2$$

• У всех слов разные сабы, что значит, что sub(v) однозначно определяет v

$$|S(w)| = 3$$
, T.e $S(w) = \{a, b, c\}$

т.е w - анаграмма abc

$$sub(abc) = \{ab, ac, bc\}$$

Б.О.О
$$sub(v) = \{xy, xz, yz\} \Rightarrow S(v) = \{x, y, z\}, |v| = 3$$
, т.е v - тоже анаграма хух

sub(v) задаёт порядок следования:

- х стоит раньше у и z
- у стоит раьньше z

 $\Rightarrow sub(v)$ - однозначно задаёт слово v

Если $|w| \ge 4$, |S(w)| > 1

w - может начинаться с 2 одинаковых букв, либо не начинается

1. B.O.O
$$w = a^2w'$$

$$sub(w) = \{aw', \{a^2x | w'\rho x\}\}\$$

если
$$sub(v) = \{aw', \{a^2x|w'\rho x\}\} \Rightarrow v = a^2w'$$

- aw' слово с наименьшим числом букв а в начале среди sub(v)
- \bullet у слов вида $\{a^2x|w'\rho\ x\}$ букв а в начале больше на 1

• по словам вида $\{a^2x|w'\rho\ x\}$, сможем однозначно найти слово aw', по которому легко востанавливается v(просто в начало а приписываем) \Rightarrow v=w

Получается, что по sub(v) можем однозначно восстановить v

1. B.O.O
$$w = abw'; |sub(w)| \ge 2$$

Если |sub(w)| > 2,

- \bullet то в sub(w) $\exists !$ слово, начинающиеся на b слово bw'. Все остальные слова начинаются на a.
- Т.к |sub(w)| > 2, то слов, начинающихся на а, больше одного
- глядя на их кол-во слов, начинающихся с а узнаём какая первая буква. Глядя на слово bw' узнаём все остальные буквы

Получается, что однозначно восстанавливаем у

Если $|sub(w)| = 2 \Rightarrow sub(w) = \{bw', aw'\} \Rightarrow w' = b^{|w|-2}$

- Если бы была третья буква, то могли бы её вычеркнуть, и получили бы новое слово
- Если бы в w' была бы а, то могли бы её вычеркнуть и получить
 - если $w' = uav(u, v \in \Sigma^k)$, то $abuv \in sub(w)$: $abuv \neq buav$ (очевидно) и $abuv \neq auav$, иначе бы получили, что bu = ua, причем у нас только буквы а и b.
 - т.е bu'=bu'a и тд по индукции получаем, что $u=b^{k-1}$, но тогда $b^k \neq b^{k-1}a$ \bigotimes

получаем, что $|w| = b^{|w|-2}$

 $sub(w) = \{b^{|w|-1}, ab^{|w|-2}\}$

sub однозначно задаёт слово $\mathbf{v}=ab^{|w|-1}$

Если $|S(w)| = 1, |w| \ge 4$

тогда $sub(w) = \{a^{|w|-1}\}$

однозначно восстанавливаем $\mathbf{v}=a^{|w|}$