

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине:

«Методы оптимизации»

на тему:

«Решение задачи линейного программирования двойственным симплекс-методом. Задание 6»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2021

Напоминание из задания 5

Целевая функция:

$$f = -x_1 + x_2 \longrightarrow max$$

Ограничения:

$$\begin{cases}
-x_1 + 2x_2 \ge -1 \\
-2x_1 + x_2 \le 2 \\
3x_1 + x_2 \le 3
\end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

Задание

Каноническая форма прямой задачи

1. Вводим слабые переменные $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$:

$$-x_1 + 2x_2 - y_1 = -1$$

$$-2x_1 + x_2 + y_2 = 2$$

$$3x_1 + x_2 + y_3 = 3$$

2. Делаем правые части равенств положительными:

$$x_1 - 2x_2 + y_1 = 1$$

$$-2x_1 + x_2 + y_2 = 2$$

$$3x_1 + x_2 + y_3 = 3$$

Таким образом, прямая задача сведена к канонической форме.

Формулируем двойственную задачу

Функция цели:

$$\phi = -\lambda_1 + 2\lambda_2 + 3\lambda_3 \longrightarrow \min$$

Ограничения:

$$\lambda_1 - 2\lambda_2 + 3\lambda_3 \ge -1$$
$$-2\lambda_1 + \lambda_2 + \lambda_3 \ge 1$$

$$\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0$$

Дано

Функция цели:

$$\phi = -\lambda_1 + 2\lambda_2 + 3\lambda_3 \longrightarrow \min$$

$$\lambda_1 - 2\lambda_2 + 3\lambda_3 \ge -1$$

$$-2\lambda_1 + \lambda_2 + \lambda_3 \ge 1$$

$$\lambda_1 \geq 0, \lambda_2 \geq 0, \lambda_3 \geq 0$$

Задание

Каноническая форма

Функция цели:

$$\phi = -\lambda_1 + 2\lambda_2 + 3\lambda_3 \longrightarrow min$$

1. Вводим слабые переменные $\xi_1 \ge 0, \xi_2 \ge 0$:

$$\lambda_1 - 2\lambda_2 + 3\lambda_3 - \xi_1 = -1$$

$$-2\lambda_1 + \lambda_2 + \lambda_3 - \xi_2 = 1$$

$$\lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0$$

2. Делаем правые части равенств положительными:

$$-\lambda_1 + 2\lambda_2 - 3\lambda_3 + \xi_1 = 1 -2\lambda_1 + \lambda_2 + \lambda_3 - \xi_2 = 1 \lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0$$

Таким образом, задача сведена к канонической форме.

Отсюда получается:

$$\xi_1 = 1 + \lambda_1 - 2\lambda_2 + 3\lambda_3$$

 $\xi_2 = -1 - 2\lambda_1 + \lambda_2 + \lambda_3$

Базисное решение:

$$\xi_1 = 1, \xi_2 = -1, \lambda_i = 0 \ \forall i = \overline{1,3}$$

которое не удовлетворяет естественным ограничениям:

$$\xi_i \ge 0 \ \forall i = \overline{1,2}$$

и поэтому оно не является допустимым.

Двойственный симлекс-метод

1 итерация

Базисные переменные: ξ_1, ξ_2 .

Свободные переменный: $\lambda_1, \lambda_2, \lambda_3$.

БП	λ_1	λ_2	λ_3	ξ_1	ξ_2	СЧ
ϕ	1 4	<u>-2</u> -2	-3 -2	0 0	0 2	0 -2
ξ_1	-1 -4	2 2	-3 2	1 0	0 -2	1 2
$oldsymbol{\xi}_2$	2 -2	-1 1	-1 <u>1</u>	0 0	1 <u>-1</u>	-1 <u>1</u>
		2	3			

Меняем свободную переменную λ_2 и базисную переменную ξ_2 местами.

$$\lambda_2 \leftrightarrow \xi_2$$

2 итерация

Базисные переменные: ξ_1, λ_2 .

Свободные переменный: $\lambda_1, \lambda_3, \xi_2$.

БП	λ_1	λ_2	λ_3	ξ_1	ξ_2	СЧ
ϕ	$-3 \frac{3}{5}$	0 0	<u>-1</u> -1	$0 \frac{1}{5}$	$-2\frac{2}{5}$	$2 - \frac{1}{5}$
ξ_1	$3 - \frac{3}{5}$	0 0	-5 1	$1 - \frac{1}{5}$	$2 - \frac{2}{5}$	$-1 \frac{1}{5}$
λ_2	$-2 - \frac{3}{5}$	1 0	<u>1</u> 1	$0 - \frac{1}{5}$	-1 $-\frac{2}{5}$	$1_{\frac{1}{5}}$
			$\frac{1}{5}$			

Меняем свободную переменную λ_3 и базисную переменную ξ_1 местами.

$$\lambda_3 \leftrightarrow \xi_1$$

Результаты вычислений

Базисные переменные: λ_2, λ_3 .

Свободные переменный: λ_1, ξ_1, ξ_2 .

БП	λ_1	λ_2	λ_3	ξ_1	ξ_2	СЧ
ϕ	$-\frac{18}{5}$	0	0	$-\frac{1}{5}$	$-\frac{12}{5}$	$\frac{11}{5}$
λ_3	$-\frac{3}{5}$	0	1	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{1}{5}$
λ_2	$-\frac{7}{5}$	1	1	$\frac{1}{5}$	$-\frac{3}{5}$	$\frac{4}{5}$

Таким образом, получается:

$$\phi = \frac{11}{5}$$
 $\lambda_2 = \frac{4}{5}, \lambda_3 = \frac{1}{5}$
 $\lambda_1 = 0, \xi_1 = 0, \xi_2 = 0$

Напоминание из задания 5

• • •

Тогда решение двойственной задачи выглядит следующим образом: $\lambda_1=0, \lambda_2=\frac{4}{5}, \lambda_3=\frac{1}{5}$

Функция цели:
$$\phi = -\lambda_1 + 2\lambda_2 + 3\lambda_3 = \frac{8}{5} + \frac{3}{5} = \frac{11}{5}$$

 \downarrow

$$\phi = \frac{11}{5} = 2.2$$

Ответ: $\lambda_1 = 0, \lambda_2 = \frac{4}{5}, \lambda_3 = \frac{1}{5}, \phi = \frac{11}{5}$