Probability Theory II (Fall 2016)

J.P.Kim

Dept. of Statistics

Finally modified at September 19, 2016

Preface & Disclaimer

This note is a summary of the lecture Probability Theory II (326.516) held at Seoul National University, Fall 2016. Lecturer was S.Y.Lee, and the note was summarized by J.P.Kim, who is a Ph.D student. There are few textbooks and references in this course, which are following.

• Probability: Theory and Examples, R.Durrett

Also I referred to following books when I write this note. The list would be updated continuously.

- Probability and Measures, P.Billingsley, 1995.
- Convergence in Probability Measures, P.Billingsley, 1999.
- Lecture notes on Financial Mathematics I & II (in course), Gerald Trutnau, 2015.
- Lecture notes on Topics in Mathematics I (in course), Gerald Trutnau, 2015.
- Lecture notes on Introduction to Stochastic Differential Equations (in course), Gerald Trutnau, 2015.

If you want to correct typo or mistakes, please contact to: joonpyokim@snu.ac.kr

Chapter 1

Central Limit Theorems

In this chapter, we prove Central Limit Theorems in various cases, and find sufficient or necessary conditions to CLT be held.

1.1 i.i.d. case

Following lemma is very useful in our story.

Lemma 1.1.1. Let X be a random variable with $E|X|^n < \infty$ and $\varphi(t) = Ee^{itX}$ be its characteristic function. Then

$$\left| \varphi(t) - \sum_{k=0}^{n} \frac{(it)^k EX^k}{k!} \right| \le E \min\left(\frac{|tX|^{n+1}}{(n+1)!}, \frac{2|tX|^n}{n!} \right).$$

Proof. Note that, by Taylor's theorem, there exists ξ between 0 and x such that

$$e^{ix} = \sum_{k=0}^{n} \frac{(ix)^k}{k!} + \frac{(ix)^{n+1}}{(n+1)!} e^{i\xi},$$

so we can obtain that

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \frac{|x|^{n+1}}{(n+1)!}.$$

Similarly, there exists ξ' between 0 and x such that

$$e^{ix} = \sum_{k=0}^{n-1} \frac{(ix)^k}{k!} + \frac{(ix)^n}{n!} e^{i\xi'} = \sum_{k=0}^n \frac{(ix)^k}{k!} + \frac{(ix)^n}{n!} e^{i\xi'} - \frac{(ix)^n}{n!} e^{ix},$$

so

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \frac{2|x|^n}{n!}$$

holds. Thus, we get

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \min\left(\frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^n}{n!}\right),$$

and put tX into x then we get

$$\left| e^{itX} - \sum_{k=0}^{n} \frac{(itX)^k}{k!} \right| \le \min\left(\frac{|tX|^{n+1}}{(n+1)!}, \frac{2|tX|^n}{n!} \right).$$

Therefore, by Jensen $|EX| \leq E|X|$ we get

$$\left|\varphi(t) - \sum_{k=0}^n \frac{(it)^k EX^k}{k!}\right| \leq E\left|e^{itX} - \sum_{k=0}^n \frac{(it)^k X^k}{k!}\right| \leq E\min\left(\frac{|tX|^{n+1}}{(n+1)!}, \frac{2|tX|^n}{n!}\right).$$

Corollary 1.1.2. For a random variable such that EX = 0 and $EX^2 = \sigma^2$,

$$\varphi(t) = 1 - \frac{t^2 \sigma^2}{2} + o(|t|^2)$$

as $t \approx 0$.

Proof. Note that, if $E|X|^n < \infty$, by LDCT,

$$E \min \left(\frac{|t||X|^{n+1}}{(n+1)!}, \frac{2|X|^n}{n!} \right) \xrightarrow[|t| \to 0]{} 0$$

holds, so

$$E \min\left(\frac{|tX|^{n+1}}{(n+1)!}, \frac{2|tX|^n}{n!}\right) = o(|t|^n)$$

and hence

$$\varphi(t) = \sum_{k=0}^{n} \frac{(it)^k E X^k}{k!} + o(|t|^n).$$

Now consider a special case n=2, then

$$\varphi(t) = 1 - \frac{\sigma^2 t^2}{2} + o(|t|^2)$$

is obtained, because EX = 0.

Theorem 1.1.3 (CLT for i.i.d. case). Let X_1, \dots, X_n be i.i.d. random variables such that $EX_1 = 0$ and $EX_1^2 = \sigma^2 > 0$. Then, for $S_n = X_1 + X_2 + \dots + X_n$,

$$\frac{S_n}{\sigma\sqrt{n}} \xrightarrow[n\to\infty]{d} N(0,1).$$

Proof. Let $\varphi(t) = Ee^{itX_1}$ be a characteristic function of X_1 . Then characteristic function of $\frac{S_n}{\sigma\sqrt{n}}$ is

$$\varphi_{S_n/\sigma\sqrt{n}}(t) = Ee^{it\frac{S_n}{\sigma\sqrt{n}}}$$

$$= \left[\varphi\left(\frac{t}{\sigma\sqrt{n}}\right)\right]^n$$

$$= \left[1 - \frac{t^2}{2n} + o\left(\frac{t^2}{\sigma^2n}\right)\right]^n$$

$$= \left[1 - \frac{t^2}{2n} + o(n^{-1})\right]^n.$$

Note that in here t is fixed, but $\frac{t}{\sigma\sqrt{n}}\approx 0$. Also note that, for a sequence c_n such that $nc_n\xrightarrow[n\to\infty]{}c$,

$$\lim_{n \to \infty} (1 + c_n)^n = e^c$$

holds. Therefore,

$$\varphi_{S_n/\sigma\sqrt{n}}(t) = \left[1 - \frac{t^2}{2n} + o(n^{-1})\right]^n \xrightarrow[n \to \infty]{} e^{-t^2/2},$$

and by Lévy's continuity theorem, we get the conclusion.

1.2 Double arrays

Definition 1.2.1 (Lindeberg's condition). Let $\{X_{nk}: k=1,2,\cdots,r_n\}$ be a double array of r.v.'s where $r_n \to \infty$ with

- 1. $X_{n1}, X_{n2}, \cdots, X_{nr_n}$ are independent.
- 2. $EX_{nk} = 0$ for $k = 1, 2, \dots, r_n$.
- 3. $EX_{nk}^2 < \infty$.

Then $\{X_{nk}\}$ is said to satisfy Lindeberg's condition if

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{|X_{nk}| \ge \epsilon s_n} X_{nk}^2 d\mathbb{P} = 0 \ \forall \epsilon > 0$$

where $s_n^2 = \sigma_{n1}^2 + \dots + \sigma_{nr_n}^2 = Var(X_{n1} + \dots + X_{nr_n})$ and $Var(X_{nk}) = \sigma_{nk}^2$.

Theorem 1.2.2. Let $S_n = X_{n1} + \cdots + X_{nr_n}$, where notations are those of definition 1.2.1. Then under Lindeberg's condition,

$$\frac{S_n}{s_n} \xrightarrow[n \to \infty]{d} N(0,1).$$

Remark 1.2.3. Note that 2nd assumption in Lindeberg's condition is just for convenience. Also, this theorem and Lindeberg condition say that tail behavior (when $|X_{nk}| \ge \epsilon s_n$) of random variables are important for central convergence. If the distribution of r.v.'s has heavy tail and so X_{nk} can have extreme values, summation may not cancel out extreme effects.

Proof. WLOG we assume $s_n^2 = 1$. Put $\varphi_n(t) = Ee^{itS_n}$ and $\varphi_{nk}(t) = Ee^{itX_{nk}}$, then

$$\varphi_n(t) = \prod_{k=1}^{r_n} \varphi_{nk}(t)$$

holds. Now our goal is to show that:

Claim.
$$\varphi_n(t) \to e^{-t^2/2}$$

Note that for two sequences w_i and z_i of complex numbers, if $|w_i|, |z_i| \leq 1$, then

$$\left| \prod_{i=1}^{m} w_i - \prod_{i=1}^{m} z_i \right| \le \sum_{i=1}^{m} |w_i - z_i|$$

by induction on m. Thus,

$$\begin{aligned} |\varphi_n(t) - e^{-t^2/2}| &\stackrel{s_n^2 = 1}{=} \left| \varphi_n(t) - e^{-\frac{t^2}{2} \sum_{k=1}^{r_n} \sigma_{nk}^2} \right| \\ &= \left| \prod_{k=1}^{r_n} \varphi_{nk}(t) - \prod_{k=1}^{r_n} e^{-\frac{t^2}{2} \sigma_{nk}^2} \right| \\ &\leq \sum_{k=1}^{r_n} \left| \varphi_{nk}(t) - e^{-\frac{t^2}{2} \sigma_{nk}^2} \right| \\ &\leq \underbrace{\sum_{k=1}^{r_n} \left| \varphi_{nk}(t) - \left(1 - \frac{t^2}{2} \sigma_{nk}^2 \right) \right|}_{-:A} + \underbrace{\sum_{k=1}^{r_n} \left| 1 - \frac{t^2}{2} \sigma_{nk}^2 - e^{-\frac{t^2}{2} \sigma_{nk}^2} \right|}_{-:B} \end{aligned}$$

holds. Now by lemma 1.1.1,

$$\left| \varphi_{nk}(t) - \left(1 - \frac{t^2}{2} \sigma_{nk}^2 \right) \right| \le E \min(|tX_{nk}|^3, |tX_{nk}|^2)$$

holds, so

$$A_{n} \leq \sum_{k=1}^{r_{n}} E \min\left(|tX_{nk}|^{3}, |tX_{nk}|^{2}\right)$$

$$= \sum_{k=1}^{r_{n}} \int \min\left(|tX_{nk}|^{3}, |tX_{nk}|^{2}\right) d\mathbb{P}$$

$$\leq \sum_{k=1}^{r_{n}} \int_{|X_{nk}| < \epsilon} |tX_{nk}|^{3} d\mathbb{P} + \sum_{k=1}^{r_{n}} \int_{|X_{nk}| \ge \epsilon} |tX_{nk}|^{2} d\mathbb{P}$$

$$\leq \sum_{k=1}^{r_{n}} \int |t|^{3} \epsilon |X_{nk}|^{2} d\mathbb{P} + \sum_{k=1}^{r_{n}} \int_{|X_{nk}| \ge \epsilon s_{n}} |tX_{nk}|^{2} d\mathbb{P}$$

$$= \sum_{k=1}^{r_{n}} |t|^{3} \epsilon \sigma_{nk}^{2} + \sum_{k=1}^{r_{n}} \int_{|X_{nk}| \ge \epsilon s_{n}} |tX_{nk}|^{2} d\mathbb{P}$$

$$= \sum_{k=1}^{r_{n}} |t|^{3} \epsilon \sigma_{nk}^{2} + \sum_{k=1}^{r_{n}} \int_{|X_{nk}| \ge \epsilon s_{n}} |tX_{nk}|^{2} d\mathbb{P}$$

$$= \sum_{k=1}^{r_{n}} |t|^{3} \epsilon \sigma_{nk}^{2} + \sum_{k=1}^{r_{n}} \int_{|X_{nk}| \ge \epsilon s_{n}} |tX_{nk}|^{2} d\mathbb{P}$$

$$= \sum_{k=1}^{r_{n}} |t|^{3} \epsilon \sigma_{nk}^{2} + \sum_{k=1}^{r_{n}} \int_{|X_{nk}| \ge \epsilon s_{n}} |tX_{nk}|^{2} d\mathbb{P}$$

$$= \sum_{k=1}^{r_{n}} |t|^{3} \epsilon \sigma_{nk}^{2} + \sum_{k=1}^{r_{n}} \int_{|X_{nk}| \ge \epsilon s_{n}} |tX_{nk}|^{2} d\mathbb{P}$$

$$= \sum_{k=1}^{r_{n}} |t|^{3} \epsilon \sigma_{nk}^{2} + \sum_{k=1}^{r_{n}} \int_{|X_{nk}| \ge \epsilon s_{n}} |tX_{nk}|^{2} d\mathbb{P}$$

$$= \sum_{k=1}^{r_{n}} |t|^{3} \epsilon \sigma_{nk}^{2} + \sum_{k=1}^{r_{n}} \int_{|X_{nk}| \ge \epsilon s_{n}} |tX_{nk}|^{2} d\mathbb{P}$$

holds for sufficiently small $\epsilon > 0$. Letting $\epsilon \searrow 0$ we get $A_n \xrightarrow[n \to \infty]{} 0$ (For (*), see next remark). Next, note that,

$$\begin{split} \sigma_{nk}^2 &= \int_{|X_{nk}| < \epsilon} X_{nk}^2 d\mathbb{P} + \int_{|X_{nk}| \ge \epsilon} X_{nk}^2 d\mathbb{P} \\ &\leq \epsilon^2 + \int_{|X_{nk}| \ge \epsilon} X_{nk}^2 d\mathbb{P} \end{split}$$

so

$$\max_{1 \le k \le r_n} \sigma_{nk}^2 \le \epsilon^2 + \underbrace{\sum_{k=1}^{r_n} \int_{|X_{nk}| \ge \epsilon} X_{nk}^2 d\mathbb{P}}_{0}$$

holds. It implies that,

$$\frac{\max_k \sigma_{nk}^2}{s_n^2} \xrightarrow[n \to \infty]{} 0. \tag{1.1}$$

Now note that $\exists K > 0$ such that $|e^x - (1+x)| \le K|x|^2$ if $|x| \le 1$ (For this, see next remark). Thus

$$B_n \le K \sum_{k=1}^{r_n} \left(\frac{t^2}{2} \sigma_{nk}^2\right)^2$$

$$= K \cdot \frac{t^4}{4} \sum_{k=1}^{r_n} \sigma_{nk}^4$$

$$\le K \cdot \frac{t^4}{4} \max_{1 \le k' \le r_n} \sigma_{nk'}^2 \sum_{k=1}^{r_n} \sigma_{nk}^2$$

$$= K \cdot \frac{t^4}{4} \max_{1 \le k' \le r_n} \sigma_{nk'}^2 \xrightarrow[n \to \infty]{} 0$$

holds, and it implies the conclusion.

Remark 1.2.4.

(a) In (*), following fact is used. Note that $\min(|x|^3, |x|^2) = |x|^3$ if |x| < 1, and $= |x|^2$ otherwise. Thus if $\epsilon < 1/t$, we get

$$|tx|^3 I(|x| < \epsilon) + |tx|^2 I(|x| \ge \epsilon) \ge \min(|tx|^3, |tx|^2).$$

For this, see figure 1.1.

(b) Note that $\frac{|e^x - (1+x)|}{|x^2|}$ converges as $|x| \to 0$, so

$$\left\{ \frac{|e^x - (1+x)|}{|x^2|} : |x| \le 1 \right\}$$

is a bounded set. Thus there exists K > 0 such that $|e^x - (1+x)| \le K|x|^2$ if $|x| \le 1$.

Figure 1.1: The graph of $\min(|tx|^3, |tx|^2)$.

Definition 1.2.5 (Lyapunov's condition). Let $\{X_{nk}\}$ be a double array such that X_{n1}, \dots, X_{nr_n} are independent. $\{X_{nk}\}$ satisfies Lyapunov condition if for some $\delta > 0$,

- (a) $EX_{nk} = 0$
- (b) $E|X_{nk}|^{2+\delta} < \infty$
- (c) $\lim_{n \to \infty} \sum_{k=1}^{r_n} \frac{E|X_{nk}|^{2+\delta}}{s_n^{2+\delta}} = 0.$

Proposition 1.2.6. Lyapunov condition implies Lindeberg condition.

Proof.

$$\begin{split} \sum_{k=1}^{r_n} \frac{1}{s_n^2} \int_{|X_{nk}| \ge \epsilon s_n} 1 \cdot X_{nk}^2 d\mathbb{P} &\leq \sum_{k=1}^{r_n} \frac{1}{s_n^2} \int_{|X_{nk}| \ge \epsilon s_n} \left(\frac{|X_{nk}|}{\epsilon s_n} \right)^{\delta} \cdot X_{nk}^2 d\mathbb{P} \\ &= \sum_{k=1}^{r_n} \frac{1}{s_n^{2+\delta}} \int_{|X_{nk}| \ge \epsilon s_n} \frac{|X_{nk}|^{2+\delta}}{\epsilon^{\delta}} d\mathbb{P} \\ &\leq \sum_{k=1}^{r_n} \frac{E|X_{nk}|^{2+\delta}}{s_n^{2+\delta}} \frac{1}{\epsilon^{\delta}} \xrightarrow[n \to \infty]{\text{Lyapunov}} 0. \end{split}$$

We showed that Lindeberg condition implies CLT. However, next example says that converse does not hold.

Example 1.2.7. Let $\sigma_1^2 > 0$ be a real number and $\sigma_n^2 = \sigma_1^2 + \cdots + \sigma_{n-1}^2$ for $n = 2, 3, \cdots$. Let $X_n \sim N(0, \sigma_n^2)$, and note that $s_n^2 = \sigma_1^2 + \cdots + \sigma_n^2 = 2\sigma_n^2$. Then

$$\frac{X_1 + \dots + X_n}{s_n} \sim N(0, 1)$$

so CLT holds. But for $Z \sim N(0,1)$,

$$\frac{1}{s_n^2} \sum_{k=1}^n \int_{|X_k| > \epsilon s_n} X_k^2 d\mathbb{P} \ge \int_{|X_k| > \epsilon s_n} \left(\frac{X_n}{s_n}\right)^2 d\mathbb{P}$$

$$= \int_{|X_n| / \sigma_n > \sqrt{2}\epsilon} \frac{1}{2} \left(\frac{X_n}{\sigma_n}\right)^2$$

$$= \frac{1}{2} E[Z^2 I(Z > \sqrt{2}\epsilon)]$$

so Lindeberg condition does not hold.

Now our interest is: what is an equivalent condition for CLT? Fortunately, following Feller's theorem is well known.

Theorem 1.2.8 (Feller's theorem). Lindeberg condition $\Leftrightarrow CLT + \left[\frac{\max_{1 \leq k \leq r_n} \sigma_{nk}^2}{s_n^2} \xrightarrow[n \to \infty]{} 0\right].$

Proof. \Rightarrow part was already done. To show \Leftarrow part, WLOG $s_n^2=1$. By the CLT,

$$\prod_{k=1}^{r_n} \varphi_{nk}(t) \xrightarrow[n \to \infty]{} e^{-t^2/2}$$

holds, where $\varphi_{nk}(t)=Ee^{itX_{nk}}$. Recall that: since $EX_{nk}=0$ and $EX_{nk}^2=\sigma_{nk}^2$, by lemma 1.1.1,

$$|\varphi_{nk}(t) - 1| \le t^2 \sigma_{nk}^2$$

holds, so

$$\max_{1 \le k \le r_n} |\varphi_{nk}(t) - 1| \le \max_{1 \le k \le r_n} t^2 \sigma_{nk}^2 \xrightarrow[n \to \infty]{} 0$$

is obtained. Meanwhile, note that

$$|e^z - 1 - z| \le K|z|^2 \ \forall z \ s.t. \ |z| \le 2$$

holds for some K. Hence, we get

$$\begin{split} \sum_{k=1}^{r_n} \left| e^{\varphi_{nk}(t) - 1} - 1 + 1 - \varphi_{nk}(t) \right| &\leq K \sum_{k=1}^{r_n} |\varphi_{nk}(t) - 1|^2 \\ &\leq K \max_{1 \leq k \leq r_n} |\varphi_{nk}(t) - 1| \underbrace{\sum_{k'=1}^{r_n} |\varphi_{nk'}(t) - 1|}_{\leq t^2} \\ &\leq K t^4 \max_{1 \leq k \leq r_n} \sigma_{nk}^2 \xrightarrow[n \to \infty]{} 0. \end{split}$$

Now since $|e^z| = e^{\mathcal{R}ez} \le e^{|z|}$,

$$\left| e^{\varphi_{nk}(t)-1} \right| \le e^{-1} e^{|\varphi_{nk}(t)|} < 1$$

holds, so by lemma,

$$\left| e^{\sum_{k=1}^{r_n} (\varphi_{nk}(t) - 1)} - \prod_{k=1}^{r_n} \varphi_{nk}(t) \right| \le \sum_{k=1}^{r_n} \left| e^{\varphi_{nk}(t) - 1} - \varphi_{nk}(t) \right| \xrightarrow[n \to \infty]{} 0$$

is obtained. Thus by CLT, we get

$$e^{\sum_{k=1}^{r_n}(\varphi_{nk}(t)-1)} \xrightarrow[n\to\infty]{} e^{-t^2/2},$$

which implies

$$\left| e^{\sum_{k=1}^{r_n} (\varphi_{nk}(t) - 1)} \right| \xrightarrow[n \to \infty]{} \left| e^{-t^2/2} \right| = e^{-t^2/2}.$$

Note that

$$|e^z| = \left| e^{\mathcal{R}e(z) + i\mathcal{I}m(z)} \right| = e^{\mathcal{R}e(z)}$$

holds, so it implies that

$$e^{\mathcal{R}e(\sum_{k=1}^{r_n}(\varphi_{nk}(t)-1))} \xrightarrow[n\to\infty]{} e^{-t^2/2},$$

and hence

$$\operatorname{Re}\left(\sum_{k=1}^{r_n}(\varphi_{nk}(t)-1)\right)\xrightarrow[n\to\infty]{}-\frac{t^2}{2}$$

holds. Thus,

$$\mathcal{R}e\left(\sum_{k=1}^{r_n}(\varphi_{nk}(t)-1)\right) + \frac{t^2}{2} = \sum_{k=1}^{r_n}\left(E\cos tX_{nk}-1\right) + \frac{t^2}{2} \xrightarrow[n\to\infty]{} 0.$$

Now, since $EX_{nk}^2 = \sigma_{nk}^2$, and by our assumption, it is equivalent to

$$\sum_{k=1}^{r_n} E\left(\cos t X_{nk} - 1 + \frac{t^2}{2} X_{nk}^2\right) \xrightarrow[n \to \infty]{} 0.$$

Note that for any real number y, $\cos y - 1 + y^2/2 \ge 0$ holds. Therefore,

$$\sum_{k=1}^{r_n} E\left(\cos t X_{nk} - 1 + \frac{t^2}{2} X_{nk}^2\right) \ge \sum_{k=1}^{r_n} E\left(\cos t X_{nk} - 1 + \frac{t^2}{2} X_{nk}^2\right) I(|X_{nk}| \ge \epsilon)$$

$$\ge \sum_{k=1}^{r_n} E\left(\frac{t^2}{2} X_{nk}^2 I(|X_{nk}| \ge \epsilon) - \underbrace{2I(|X_{nk}| \ge \epsilon)}_{\le 2X_{nk}^2 \epsilon^{-2} I(|X_{nk}| \ge \epsilon)}\right)$$

$$\ge \left(\frac{t^2}{2} - \frac{2}{\epsilon^2}\right) \sum_{k=1}^{r_n} EX_{nk}^2 I(|X_{nk}| \ge \epsilon)$$

holds for any arbitrarily given $\epsilon > 0$. Letting t such that $\frac{t^2}{2} - \frac{2}{\epsilon^2} > 0$, we get

$$\sum_{k=1}^{r_n} EX_{nk}^2 I(|X_{nk}| \ge \epsilon).$$

1.3 Poisson convergence

Theorem 1.3.1. For each n, X_{nm} are independent r.v.'s with $P(X_{nm} = 1) = p_{nm}$ and $P(X_{nm} = 0) = 1 - p_{nm}$. Assume that

(i)
$$\sum_{m=1}^{n} p_{nm} \to \lambda \in (0, \infty)$$

(ii)
$$\max_{1 \le m \le n} p_{nm} \xrightarrow[n \to \infty]{} 0$$

Then
$$S_n := X_{n1} + \cdots + X_{nm} \xrightarrow[n \to \infty]{d} Poi(\lambda).$$

Proof. Let $\varphi_{nm}(t) = Ee^{itX_{nm}} = (1 - p_{nm}) + p_{nm}e^{it}$. Then

$$Ee^{itS_n} = \prod_{m=1}^{n} ((1 - p_{nm}) + p_{nm}e^{it}).$$

Note that

$$\left| e^{p_{nm}(e^{it}-1)} \right| = e^{\mathcal{R}e(p_{nm}(e^{it}-1))} = e^{p_{nm}(\cos t - 1)} \le 1$$

and

$$\left| (1 - p_{nm}) + p_{nm}e^{it} \right| \le (1 - p_{nm}) + p_{nm}\left| e^{it} \right| = 1,$$

so we get

$$\left| e^{\sum_{m=1}^{n} p_{nm}(e^{it}-1)} - \prod_{m=1}^{n} \left((1-p_{nm}) + p_{nm}e^{it} \right) \right| \leq \sum_{m=1}^{n} \left| e^{p_{nm}(e^{it}-1)} - \left((1-p_{nm}) + p_{nm}e^{it} \right) \right|$$

$$\leq K \sum_{m=1}^{n} \left(p_{nm} \underbrace{\left| e^{it} - 1 \right|}_{\leq 2} \right)^{2}$$

$$\leq 4K \sum_{m=1}^{n} p_{nm}^{2}$$

$$\leq 4K \underbrace{\sum_{m=1}^{n} p_{nm}^{2}}_{\underset{n \to \infty}{\longrightarrow} 0} \underbrace{\sum_{m=1}^{n} p_{nm}}_{\underset{n \to \infty}{\longrightarrow} \lambda}$$

$$\leq 4K \underbrace{\sum_{m=1}^{n} p_{nm}^{2}}_{\underset{n \to \infty}{\longrightarrow} 0} \underbrace{\sum_{m=1}^{n} p_{nm}}_{\underset{n \to \infty}{\longrightarrow} \lambda}$$

$$0.$$

In (*), we used $|e^z - 1 - z| \le K|z|^2$ (: $p_{nm}|e^{it} - 1| \le 2p_{nm} \le 2$). Note that

$$e^{\sum_{m=1}^{n} p_{nm}(e^{it}-1)} \xrightarrow[n \to \infty]{} e^{\lambda(e^{it}-1)} = \varphi_Z(t),$$

where $\varphi_Z(t)$ is ch.f of $Poi(\lambda)$, and therefore

$$Ee^{itS_n} = \prod_{m=1}^n \left((1 - p_{nm}) + p_{nm}e^{it} \right) \xrightarrow[n \to \infty]{} \varphi_Z(t),$$

and Lévy continuity theorem ends the proof.

Corollary 1.3.2. Let X_{nm} be independent nonnegative integer valued random variables for $1 \le m \le n$, with

$$P(X_{nm} = 1) = p_{nm}, \ P(X_{nm} \ge 2) = \epsilon_{nm}.$$

Assume that

(i)
$$\sum_{m=1}^{n} p_{nm} \to \lambda \in (0, \infty)$$

(ii)
$$\max_{1 \le m \le n} p_{nm} \xrightarrow[n \to \infty]{} 0$$

(iii)
$$\sum_{m=1}^{n} \epsilon_{nm} \xrightarrow[n \to \infty]{} 0$$

Then
$$S_n := X_{n1} + \cdots + X_{nm} \xrightarrow[n \to \infty]{d} Poi(\lambda)$$
.

Proof. Let $X'_{nm} = I(X_{nm} = 1)$ and $S'_{n} = X'_{n1} + \cdots + X'_{nn}$. Then since $P(X'_{nm} = 1) = p_{nm}$, by previous theorem,

$$S'_n \xrightarrow[n \to \infty]{d} Poi(\lambda)$$

holds. Now, note that

$$P(S_n \neq S'_n) \leq P\left(\bigcup_{m=1}^n (X_{nm} \neq X'_{nm})\right)$$

$$\leq \sum_{m=1}^n P(X_{nm} \neq X'_{nm})$$

$$= \sum_{m=1}^n P(X'_{nm} \geq 2)$$

$$= \sum_{m=1}^n \epsilon_{nm} \xrightarrow[n \to \infty]{} 0.$$

With this, we get

$$P(\underbrace{|S_n - S_n'|}_{\text{integer}} \ge \epsilon) \le P(S_n \ne S_n') \xrightarrow[n \to \infty]{} 0$$

so $S_n - S'_n \xrightarrow[n \to \infty]{P} 0$. Therefore, the assertion holds.

Chapter 2

Martingales

2.1 Hilbert space

Recall that Hilbert space is a "complete inner product space."

Definition 2.1.1. Let E be a \mathbb{C} -vector space. Inner product $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{C}$ is a function satisfies followings.

(i)
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

(ii)
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

(iii)
$$\langle y, x \rangle = \overline{\langle x, y \rangle}$$

(iv)
$$\langle x, x \rangle \ge 0$$
, $\langle x, x \rangle \Leftrightarrow x = 0$

Definition 2.1.2. Let $||x|| = \sqrt{\langle x, x \rangle}$ be the norm.

Proposition 2.1.3. Followings hold.

(a)
$$||x + y|| \le ||x|| + ||y||$$

(b)
$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

(c)
$$2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x - y||^2$$

Theorem 2.1.4 (Projection). Suppose that M is a closed convex subset of Hilbert space E. Then $\forall y \in E, \exists ! w \in M \text{ such that }$

$$||y - w|| = d(y, M) := \inf\{||y - z|| : z \in M\}.$$

We may denote it as $\mathcal{P}_M y = w$.

Proof. Let $d := \inf\{||y - z|| : z \in M\}$. For $n \ge 1, \exists z_n \in M$ such that

$$d \le ||y - z_n|| < d + \frac{1}{n}.$$

Then, since

$$2(\|y + z_n\|^2 + \|y - z_n\|^2) = \|2y - z_n - z_m\|^2 + \|z_n - z_m\|^2,$$

we get

$$||z_n - z_m||^2 = 2||y - z_n||^2 + 2||y + z_n||^2 - 4\left||y - \frac{z_n + z_m}{2}\right||^2$$

$$\leq 2||y - z_n||^2 + 2||y + z_n||^2 - 4d^2 \ (\because M \text{ is convex, and } d \text{ is minimum distance})$$

$$\xrightarrow{m,n \to \infty} 0 \ (\because ||y - z_n||, ||y - z_m|| \to d)$$

and hence $\{z_n\}$ is Cauchy sequence. Since M is Hilbert, $\exists w = \lim_n z_n \in M$, which makes $\|y - w\| = d$. For uniqueness, let $\exists z \in M$ such that $\|y - z\| = d$. Then

$$d^2 \leq \left\| y - \frac{z+w}{2} \right\|^2 = 2 \left\| \frac{y-z}{2} \right\|^2 + 2 \left\| \frac{y-w}{2} \right\|^2 - \left\| \frac{z-w}{2} \right\|^2 = d^2 - \frac{\|z-w\|^2}{4} \leq d^2$$

and therefore we get z = w.

Theorem 2.1.5. Let $M \subseteq E$ be a closed subspace. Then $\forall y \in E$, $\exists ! w \in M$ and $v \in M^{\perp}$ such that y = w + v, where $M^{\perp} = \{u : \langle u, v \rangle = 0 \ \forall v \in M\}$.

Proof. By previous theorem, there exists $w \in M$ such that ||y - w|| = d(y, M) =: d. Let $z \in M, z \neq 0$. Then for any $\lambda \in \mathbb{C}$,

$$d^{2} \le ||y - (w + \lambda z)||^{2} = ||(y - w) - \lambda z||^{2}$$

holds. Using

$$||x + y||^2 = ||x||^2 + 2\Re e\langle x, y\rangle + ||y||^2,$$

we obtain

$$d^{2} \leq \|(y-w) - \lambda z\|^{2} = \|y-w\|^{2} - 2\mathcal{R}e\bar{\lambda}\langle y-w,z\rangle + |\lambda|^{2}\|z\|^{2}$$

and hence

$$2\mathcal{R}e\bar{\lambda}\langle y-w,z\rangle \le |\lambda|^2||z||^2$$

is obtained. Especially take $\bar{\lambda} = r \overline{\langle y - w, z \rangle}$ for $r \in \mathbb{R}$, and then

$$2r|\langle y-w,z\rangle|^2 \le r^2|\langle y-w,z\rangle|^2||z||^2$$

holds, which implies $\langle y-w,z\rangle=0$. (To show this, assume not, and yield contradiction.) Since z was arbitrary, $y-w\in M^{\perp}$, and then y=w+(y-w) is the desired decomposition. For uniqueness, let y=w+v,w'+v' such that $w,w'\in M$ and $v,v'\in M^{\perp}$. Then

$$w - w' = v' - v$$

holds. Note that $w - w' \in M$ and $v' - v \in M^{\perp}$, and since $M \cap M^{\perp} = \{0\}$, we obtain w = w' and v = v'.

2.2 Conditional Expectation

Now let's go back to the space of random variables.

Theorem 2.2.1. Let $\mathcal{L}^2 = \{X : EX^2 < \infty\}$. Then \mathcal{L}^2 is a Hilbert space with inner product $\langle X, Y \rangle = EXY$.

Proof. It's enough to show completeness. First we need a lemma.

Lemma 2.2.2. If $\{X_n\} \subseteq \mathcal{L}^2$ and $||X_n - X_{n+1}|| \le 2^{-n}$ for any $n = 1, 2, \dots$, then $\exists X \in \mathcal{L}^2$ such that

- (1) $P(X_n \to X \text{ as } n \to \infty) = 1.$
- (2) $||X_n X|| \xrightarrow[n \to \infty]{} 0.$

Proof of lemma. Put $X_0 \equiv 0$. Note

$$E(\sum_{j=1}^{\infty} |X_j - X_{j+1}|) \underset{\text{MCT}}{=} \sum_{j=1}^{\infty} E|X_{j+1} - X_j|$$

$$\leq \sum_{j=1}^{\infty} (E|X_{j+1} - X_j|^2)^{1/2}$$

$$\leq \sum_{j=1}^{\infty} 2^{-j} < \infty.$$

Thus $\sum_{j=1}^{\infty} |X_{j+1} - X_j| < \infty$ (Note that $E|X| < \infty \Rightarrow |X| < \infty$ a.s.), and hence $\sum_{j=1}^{\infty} (X_{j+1} - X_j)$ converges P-a.s.. Let

$$X := X_1 + \sum_{j=1}^{\infty} (X_{j+1} - X_j) = \sum_{j=0}^{\infty} (X_{j+1} - X_j).$$

Then $\lim_n X_n = X$ *P*-a.s. and because

$$||X|| \le \sum_{j=0}^{\infty} ||X_{j+1} - X_j|| < \infty$$

we get $X \in \mathcal{L}^2$. Therefore

$$||X_n - X|| = \left\| \sum_{j=n}^{\infty} (X_{j+1} - X_j) \right\| \le \sum_{j=n}^{\infty} ||X_{j+1} - X_j|| \xrightarrow[n \to \infty]{} 0.$$

□ (Lemma)

Now suppose that $\{X_n\} \subseteq \mathcal{L}^2$ is a Cauchy sequence. Then for any $\epsilon > 0$ there is $N(\epsilon)$ such that

$$n, m \ge N(\epsilon) \Rightarrow ||X_n - X_m|| < \epsilon.$$

Put $k_n = \max(N(2^{-1}), N(2^{-2}), \dots, N(2^{-n})) + 1$. Then $k_n \le k_{n+1}$ for any n, and $k_n, k_{n+1} \ge N(2^{-n})$ so

$$||X_{k_{n+1}} - X_{k_n}|| \le \frac{1}{2^n}.$$

Thus by lemma, there exists $X \in \mathcal{L}^2$ such that $X = \lim_{n \to \infty} X_{k_n}$. To show for general n, note that

$$||X_n - X|| \le \underbrace{||X_n - X_{k_n}||}_{\to 0 \text{ (Cauchy)}} + ||X_{k_n} - X|| \xrightarrow[n \to \infty]{} 0.$$

Theorem 2.2.3. Let $X \in \mathcal{L}^2$ and let

$$\mathcal{L}^2(X) = \{h(X) : h : \mathbb{R} \to \mathbb{R} \text{ is a Borel function and } E[h(X)]^2 < \infty\}.$$

Then $\mathcal{L}^2(X)$ is a closed subspace.

Proof. Since subspace is trivial (show $(\alpha h + \beta \tilde{h})(X) \in \mathcal{L}^2(X)$), so closedness is left. Let $\{h_n(X)\}\subseteq \mathcal{L}^2(X)$ be a convergent sequence. Then since it is Cauchy, there is a subsequence $\{k_n\}$ such that

 $||h_{k_n}(X) - h_{k_{n+1}}(X)|| \le 2^{-n}$, so by previous lemma, there exists Y such that

$$Y = \lim_{n \to \infty} h_{k_n}(X).$$

Note that $||Y - h_{k_n}(X)|| \xrightarrow[n \to \infty]{} 0$. ("converge" means that $||Y - h_n(X)|| \xrightarrow[n \to \infty]{} 0$.) Letting

$$M = \{x : -\infty < \liminf_{n \to \infty} h_{k_n}(x) = \limsup_{n \to \infty} h_{k_n}(x) < \infty\}$$

and

$$h(x) := \limsup_{n \to \infty} h_{k_n}(x) I_M(x),$$

we obtain Y = h(X) P-a.s.. Therefore $Y = h(X) \in \mathcal{L}^2(X)$.

Note that since $\mathcal{L}^2(X)$ is closed subspace (subspace is convex!) of \mathcal{L}^2 , there exists a "projection" of $Y \in \mathcal{L}^2$ on $\mathcal{L}^2(X)$, and if we define

$$E(Y|X) = \mathcal{P}_{\mathcal{L}^2(X)}Y,$$

it will satisfy

$$||Y - E(Y|X)|| = \inf_{h(X) \in \mathcal{L}^2(X)} ||Y - h(X)||.$$

Furthermore, since Y - E(Y|X) is orthogonal to h(X), E(Y|X) should satisfy

$$E[(Y - E(Y|X))h(X)] = 0 \ \forall h(X) \in \mathcal{L}^2(X).$$

Also note that such E(Y|X) is unique by previous theorems.

Definition 2.2.4 (Temporary definition). Let $X, Y \in \mathcal{L}^2$. Then E(Y|X) is defined as the only function of X satisfying

$$E[(Y - E(Y|X))h(X)] = 0 \ \forall h(X) \in \mathcal{L}^2(X).$$

Proposition 2.2.5. Followings hold.

- (a) E(c|X) = c for a constant c.
- (b) $E(\alpha Y + \beta Z|X) = \alpha E(Y|X) + \beta E(Z|X)$.
- (c) If EXY = EXEY, E(Y|X) = EY.

(d) If g is bounded, E[g(X)Y|X] = g(X)E[Y|X].

(e)
$$EE(Y|X) = EY$$
.

Proof. Trivial from the definition. Note that in (d), to be well-defined, g(X)Y should be in \mathcal{L}^2 . Verifying this may be difficult for general g. If g is bounded, it is easily checked. (e) can be proved with definition, considering the case $h(X) \equiv 1$.

Note that, in particular we choose $h(X) = I(X \in A)$ for a Borel set A, then definition becomes

$$E(YI(X \in A)) = E(E(Y|X)I(X \in A)),$$

i.e.,

$$\int_{(X\in A)}Yd\mathbb{P}=\int_{(X\in A)}E(Y|X)d\mathbb{P}.$$

Note that since $\sigma(X) = \{(X \in A) : A \in \mathcal{B}(\mathbb{R})\}$, if Z is a $\sigma(X)$ -measurable r.v. such that

$$\int_{(X \in A)} Z d\mathbb{P} = \int_{(X \in A)} E(Y|X) d\mathbb{P},$$

then Z = E(Y|X) P-a.s.. (Note that $\int_B f d\mu = \int_B g d\mu \ \forall B \Rightarrow f = g \ \mu$ -a.e.) Thus if we define conditional expectation using this property, we can omit the assumption that E(Y|X) is in \mathcal{L}^2 . In other words, we can *extend* the definition.

We can also interpret the conditional expectation as Radon-Nikodym derivative.

Theorem 2.2.6 (Radon-Nikodym theorem). Let (Ω, \mathcal{F}) be a measurable space and let μ, ν be σ -finite measures with $\nu \ll \mu$. (It means that $\mu(A) = 0 \Rightarrow \nu(A) = 0$) Then there exists a $(\mu$ -a.e.) nonnegative measurable function f such that

$$\nu(A) = \int_A f d\mu \ \forall A \in \mathcal{F}$$

and denote it as $f = \frac{d\nu}{d\mu}$. f is called **Radon-Nikodym derivative**.

(Modification needed: See Gerald's lecture notes)