Calculus and Differential Equations

Queensland University of Technology

Dr Vivien Challis 2021, Semester 2

Tarang Janawalkar

Contents

C	ontents	1		
1	Integration Techniques 1.1 Table of Derivatives 1.2 Trigonometric Identities 1.2.1 Pythagorean Identities 1.2.2 Double-Angle Identities 1.2.3 Power Reducing Identities 1.4 Integration by Parts 1.5 Integration by Substitution 1.6 Trigonometric Substitutions	2 3 3 3 4 4 4 4 4		
2	Limits, Continuity and Differentiability	5		
4	2.1 Limits	5 5 5		
3	Definite Integrals	6		
	3.1 Riemann Sums	6 6 8		
4	Taylor and Maclaurin Series	9		
-	4.1 Infinite Series	9 9 10 10		
5	Multivariable Calculus	11		
9	5.1 Multivariable Functions 5.2 Level Curves 5.3 Limits and Continuity 5.4 Partial Derivatives 5.5 The Gradient Vector 5.6 Multivariable Chain Rule	11 11 11 11 12 12		
6	Double and Triple Integrals	13		
7	Vector-Valued Functions			
8	First-Order Differential Equations	15		
q	Second-Order Differential Equations			

1 Integration Techniques

1.1 Table of Derivatives

Let f(x) be a function, and $a \in \mathbb{R}$ be a constant.

f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
x^a	$\frac{dx}{ax^{a-1}}$	a	0
$\frac{x}{\sqrt{x}}$	1	x	$\frac{1}{du}$ $\frac{dv}{dv}$
a^x	$ \frac{\overline{2\sqrt{x}}}{\ln(a)a^x} $	$a_1 u(x) \pm a_2 v(x)$	$a_1 \frac{\mathrm{d}u}{\mathrm{d}x} \pm a_2 \frac{\mathrm{d}v}{\mathrm{d}x}$
\mathbf{e}^x	\mathbf{e}^x	u(x)v(x)	$\frac{\mathrm{d}u}{\mathrm{d}x}v + u\frac{\mathrm{d}v}{\mathrm{d}x}$
$\log_a x,\ a\in\mathbb{R}\backslash\left\{0\right\}$	$\frac{1}{a \ln x}$	u(x)	$\frac{\frac{\mathrm{d}u}{\mathrm{d}x}v - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v(x)^2}$
$\ln x$	$\frac{1}{2}$	$\overline{v(x)}$	
	<u> </u>	u(v(x))	$\frac{\mathrm{d}u}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}$

		f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	$\arcsin(ax)$	$\frac{a}{\sqrt{1-a^2x^2}}$
$\sin(ax)$	$a\cos(ax)$	$\arccos\left(ax\right)$	$-\frac{a}{\sqrt{1-a^2x^2}}$
$\cos(ax)$ $\tan(ax)$	$-a\sin\left(ax\right)$ $a\sec^{2}\left(ax\right)$	$\arctan\left(ax\right)$	$\frac{a}{1+a^2x^2}$
$\cot\left(ax\right)$	$-a\csc^{2}\left(ax\right)$	$\operatorname{arccot}\left(ax\right)$	$-\frac{a}{1+a^2x^2}$
$\sec(ax)$ $\csc(ax)$	$a \sec(ax) \tan(ax)$ $-a \csc(ax) \cot(ax)$	$\operatorname{arcsec}\left(ax\right)$	$\frac{1}{x\sqrt{a^2x^2-1}}$
	<u> </u>	$\operatorname{arccsc}\left(ax\right)$	$-\frac{1}{x\sqrt{a^2x^2-1}}$

f	$\frac{\mathrm{d}f}{\mathrm{d}x}$				
$\sinh(ax)$	$\frac{1}{a\cosh(ax)}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\cosh\left(ax\right)$	$a \sinh(ax)$	arcsinh(ax)	$\frac{a}{\sqrt{1+a^2x^2}}$	$\mathrm{arccoth}(ax)$	$\frac{a}{1 - a^2 x^2}$
$\tanh\left(ax\right)$	$a \operatorname{sech}^{2}(ax)$	$\operatorname{arccosh}(ax)$	a	$\operatorname{arcsech}\left(ax\right)$	1
$\coth{(ax)}$	$-a\operatorname{csch}^{2}\left(ax\right)$	arccosii (aa)	$\sqrt{1-a^2x^2}$, ,	$a\left(1+ax\right)\sqrt{\frac{1-ax}{1+ax}}$
$\mathrm{sech}(ax)$	$-a\operatorname{sech}(ax)\tan(ax)$	$\operatorname{arctanh}\left(ax\right)$	$\frac{a}{1-a^2x^2}$	$\mathrm{arccsch}(ax)$	$-\frac{1}{ax^2\sqrt{1+\frac{1}{a^2x^2}}}$
$\cosh{(ax)}$	$-a \operatorname{csch}(ax) \cot(ax)$		<u> </u>		$\frac{au}{a^2x^2}$

Table 1: Derivatives of Elementary Functions

1.2 Trigonometric Identities

1.2.1 Pythagorean Identities

$$\sin^2(x) + \cos^2(x) = 1$$

Dividing by either the sine or cosine function gives:

$$\tan^2(x) + 1 = \sec^2(x)$$

 $1 + \cot^2(x) = \csc^2(x)$

1.2.2 Double-Angle Identities

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\csc(2x) = \frac{\sec(x)\csc(x)}{2}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

$$\sec(2x) = \frac{\sec^2(x)\csc^2(x)}{\csc^2(x) - \sec^2(x)}$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

$$\cot(2x) = \frac{\cot^2(x) - 1}{2\cot(x)}$$

1.2.3 Power Reducing Identities

$$\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$

$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

$$\sec^{2}(x) = \frac{2}{1 + \cos(2x)}$$

$$\tan^{2}(x) = \frac{1 - \cos(2x)}{1 + \cos(2x)}$$

$$\cot^{2}(x) = \frac{1 + \cos(2x)}{1 - \cos(2x)}$$

1.3 Partial Fractions

Definition 1.3.1 (Partial Fraction Decomposition). **Partial fraction decomposition** is a method where a rational function $\frac{P(x)}{Q(x)}$ is rewritten as a sum of fraction.

Factor in denominator	Term in partial fraction decomposition
ax + b	$\frac{A}{ax+b}$
$(ax+b)^k, k \in \mathbb{N}$	$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}$
$ax^2 + bx + c$	$\frac{A}{ax^2 + bx + c}$
$\left(ax^2 + bx + c\right)^k, \ k \in \mathbb{N}$	$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}$

Table 2: Partial Fraction Forms

1.4 Integration by Parts

Theorem 1.4.1.

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

1.5 Integration by Substitution

Theorem 1.5.1.

$$\int f(g\left(x\right))\frac{\mathrm{d}g(x)}{\mathrm{d}x}\,\mathrm{d}x = \int f(u)\,\mathrm{d}u\,,\; where\; u = g(x)$$

1.6 Trigonometric Substitutions

Form	Substitution	Result	Domain
$\left(a^2 - b^2 x^2\right)^n$	$x = \frac{a}{b}\sin\left(\theta\right)$	$a^2\cos^2\left(\theta\right)$	$ heta \in \left[-rac{\pi}{2}, \ rac{\pi}{2} ight]$
$\left(a^2 + b^2 x^2\right)^n$	$x = \frac{a}{b}\tan(\theta)$	$a^2\sec^2\left(\theta\right)$	$ heta\in\left(-rac{\pi}{2},\ rac{\pi}{2} ight)$
$\left(b^2x^2-a^2\right)^n$	$x = \frac{a}{b}\sec(\theta)$	$a^2 \tan^2 \left(\theta\right)$	$\theta \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$

Table 3: Trigonometric substitutions for various forms.

2 Limits, Continuity and Differentiability

2.1 Limits

Theorem 2.1.1 (Limits). $\lim_{x\to x_0} f(x)$ exists if and only if $\lim_{x\to x_0^+} f(x)$ and $\lim_{x\to x_0^-} f(x)$ exist and are equal.

Definition 2.1.1 (Finite limits using the ε - δ definition).

$$\lim_{x\to x_0} f(x) = L \iff \forall \varepsilon > 0: \exists \delta > 0: \forall x \in I: 0 < |x-x_0| < \delta \implies |f(x)-L| < \varepsilon$$

 $\begin{array}{l} \textbf{Theorem 2.1.2 (L'Hôpital's Rule).} \ \ \textit{For two differentiable functions} \ f(x) \ \textit{and} \ g(x). \ \ \textit{If} \ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \lim_{x \to x_0} g(x) = \pm \infty, \ \ \textit{then} \ \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}. \end{array}$

2.2 Continuity

Theorem 2.2.1 (Continuity at a Point). f(x) is continuous at c iff $\lim_{x\to c} f(x) = f(c)$.

Theorem 2.2.2 (Continuity over an Interval). f(x) is continuous on I if f(x) is continuous for all $x \in I$.

- f(x) is continuous on I:(a,b) if it is continuous for all $x \in I$.
- f(x) is continuous on I : [a, b] if it is continuous for all $x \in I$, but only right continuous at a and left continuous at b.

If f(x) is continuous on $(-\infty, \infty)$, f(x) is continuous everywhere.

Theorem 2.2.3 (Intermediate Value Theorem). If f(x) is continuous on I : [a, b] and c is any number between f(a) and f(b), inclusive, then there exists an $x \in I$ such that f(x) = c.

2.3 Differentiability

Theorem 2.3.1 (Differentiability). f(x) is differentiable at $x = x_0$ iff

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists. When this limit exists, it defines the derivative

$$\left. \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x=x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Theorem 2.3.2. f(x) is differentiable on I if f(x) is differentiable for all $x_0 \in I$.

Theorem 2.3.3. Differentiability implies continuity.

Theorem 2.3.4 (Mean Value Theorem). If f(x) is continuous on I : [a, b] and differentiable on I, then there exists a point $c \in I$ such that

$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=c} = \frac{f(b) - f(a)}{b - a}$$

3 Definite Integrals

Theorem 3.0.1. If f(x) is continuous on an interval I:[a, b], then the net signed area A between the graph of f(x) and the interval I is

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Properties of Definite Integrals

Theorem 3.0.2. Suppose that f(x) and g(x) are continuous on the interval I, with $a, b, c \in I \text{ and } k \in \mathbb{R} \text{ then}$

a)
$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0.$$

b)
$$\int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x.$$

c)
$$\int_a^b kf(x) \, \mathrm{d}x = k \int_a^b f(x) \, \mathrm{d}x.$$

$$d) \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx.$$

$$e) \int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

e)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

3.1Riemann Sums

Theorem 3.1.1. Let A be the area under f(x) on the interval [a, b], then

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^n f(x_k) \Delta x_k$$

where n is the number of rectangles, x_k is the centre of the rectangle k, and Δx_k is the width of the rectangle k. If every rectangle has the same width, then

$$\forall k: \Delta x_k = \frac{b-a}{n}$$

Fundamental Theorem of Calculus

The fundamental theorem of calculus provides a logical connection between infinite series (definite integrals) and antiderivatives (indefinite integrals).

Theorem 3.2.1 (The Fundamental Theorem of Calculus: Part 1). If f(x) is continuous on [a, b] and F is any antiderivative of f on [a, b] then

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

Equivalently

$$\int_a^b \frac{\mathrm{d}}{\mathrm{d}x} F(x) \, \mathrm{d}x = F(b) - F(a) \equiv \left. F(x) \right|_a^b$$

Theorem 3.2.2 (The Fundamental Theorem of Calculus: Part 2). If f(x) is continuous on I then it has an antiderivative on I. In particular, if $a \in I$, then the function F defined by

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

is an antiderivative of f(x). That is,

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = f(x) \equiv \frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \,\mathrm{d}t = f(x)$$

Theorem 3.2.3. Differentiation and integration are inverse operations.

3.3 Taylor and Maclaurin Polynomials

Theorem 3.3.1 (Taylor Polynomials). If f(x) is a n differentiable function at x_0 , then the nth degree Taylor polynomial for f(x) near x_0 , is given by

$$f(x) \approx p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k$$

Theorem 3.3.2 (Maclaurin Polynomials). Evaluating a Taylor polynomial near 0, gives the nth degree Maclaurin polynomial for f(x)

$$f(x) \approx p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$$

Theorem 3.3.3 (Error in Approximation). Let $R_n(x)$ denote the difference between f(x) and its nth Taylor polynomial, that is

$$R_n(x) = f(x) - p_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k = \frac{f^{(n+1)}(s)}{(n+1)!} \left(x - x_0\right)^{n+1}$$

where s is between x_0 and x.

4 Taylor and Maclaurin Series

4.1 Infinite Series

Definition 4.1.1 (Taylor Series). If f(x) has derivatives of all orders at x_0 , then the Taylor series for f(x) about $x = x_0$ is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Definition 4.1.2 (Maclaurin Series). If a Taylor series is centred on $x_0 = 0$, it is called a Maclaurin series, defined by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Definition 4.1.3 (Power Series). Both Taylor and Maclaurin series are examples of **power series**, which are defined as follows

$$\sum_{n=0}^{\infty} c_n \left(x - x_0 \right)^n$$

4.2 Convergence

Theorem 4.2.1 (Convergence of a Taylor Series). The equality

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

holds at a point x iff

$$\begin{split} \lim_{n \to \infty} \left[f(x) - \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \left(x - x_0 \right)^n \right] &= 0 \\ \lim_{n \to \infty} R_n(x) &= 0 \end{split}$$

Definition 4.2.1 (Interval of Convergence). The interval of convergence for a power series is the set of x values for which that series converges.

Definition 4.2.2 (Radius of Convergence). The radius of convergence R is a nonnegative real number or ∞ such that a power series converges if

$$|x - a| < R$$

and diverges if

$$|x-a| > R$$

The behaviour of the power series on the boundary, that is, where |x - a| = R, can be determined by substituting x = R + a for the upper boundary, and x = -R + a for the lower boundary.

4.3 Convergence Tests

For any power series of the form $\sum_{i=i_0}^{\infty} a_i$.

Alternating Series

Conditions
$$a_i = (-1)^i b_i$$
 or $a_i = (-1)^{i+1} b_i$. $b_i > 0$.
Is $b_{i+1} \leqslant b_i$ & $\lim_{i \to \infty} b_i = 0$?
$$\begin{cases} \text{YES} & \sum a_i \text{ Converges} \\ \text{NO} & \text{Inconclusive} \end{cases}$$

Ratio Test

Is
$$\lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right| < 1$$
? $\begin{cases} \text{YES} & \sum a_i \text{ Converges} \\ \text{NO} & \sum a_i \text{ Diverges} \end{cases}$

The ratio test is in conclusive if $\lim_{i\to\infty}\frac{a_{i+1}}{a_i}=1.$

Table of Maclaurin Series

Function	Series	Interval of Convergence
\mathbf{e}^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$-\infty < x < \infty$
$\sin\left(x\right)$	$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$	$-\infty < x < \infty$
$\cos\left(x\right)$	$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{(2n)!} x^{2n}$	$-\infty < x < \infty$
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n$	-1 < x < 1

Table 4: Maclaurin Series of Common Functions

5 Multivariable Calculus

5.1 Multivariable Functions

Definition 5.1.1. A function is multivariable if its domain consists of several variables. In the reals, these functions are defined

$$f: \mathbb{R}^n \to \mathbb{R}$$

5.2 Level Curves

Definition 5.2.1. Level curves or *contour curves* of a function of two variables is a curve along which the function has constant value.

$$L_{c}\left(f\right)=\left\{ \left(x,\,y\right):f\left(x,\,y\right)=c\right\}$$

The level curves of a function can be determined by substituting z=c, and solving for y.

5.3 Limits and Continuity

Definition 5.3.1 (Finite Limit of Multivariable Functions using the ε - δ Definition).

$$\begin{split} &\lim_{(x_1,\,\ldots,\,x_n)\to(c_1,\,\ldots,\,c_n)} f(x_1,\,\ldots,\,x_n) = L \\ &\iff \forall \varepsilon > 0: \exists \delta > 0: \forall (x_1,\,\ldots,\,x_n) \in I: \\ &0 < |x_1-c_1,\,\ldots,\,x_n-c_n| < \delta \implies |f(x_1,\,\ldots,\,x_n)-L| < \varepsilon \end{split}$$

Theorem 5.3.1 (Limits along Smooth Curves). If $f(x, y) \to L$ as $(x, y) \to (x_0, y_0)$, then $\lim_{(x, y) \to (x_0, y_0)} = L$ along any smooth curve.

Theorem 5.3.2 (Existence of a Limit). If the limit of f(x, y) changes along different smooth curves, then $\lim_{(x, y) \to (x_0, y_0)} does \ not \ exist.$

Theorem 5.3.3 (Continuity of Multivariable Functions). A function $f(x_1, ..., x_n)$ is continuous at $(c_1, ..., c_n)$ iff

$$\lim_{(x_1,\,\dots,\,x_n)\to(c_1,\,\dots,\,c_n)} f(x_1,\,\dots,\,x_n) = f(c_1,\,\dots,\,c_n)$$

Recognising continuous functions:

- A sum, difference or product of continuous functions is continuos.
- A quotient of continuous functions is continuos expect where the denominator is zero.
- A composition of continuous functions is continuos.

5.4 Partial Derivatives

Definition 5.4.1 (Partial Differentiation). The partial derivative of a multivariable function is its derivative with respect to one of those variables, while the others are held constant.

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \; \dots, \; x_{i-1}, \; x_i + h, \; x_{i+1}, \; \dots, \; x_n) - f(x_1, \; \dots, \; x_n)}{h}$$

5.5 The Gradient Vector

Definition 5.5.1. Let ∇ , pronounced "del", denote the vector differential operator defined as follows

$$\nabla = \begin{bmatrix} \partial_{x_1} \\ \partial_{x_2} \\ \vdots \\ \partial_{x_n} \end{bmatrix}$$

5.6 Multivariable Chain Rule

Theorem 5.6.1 (Multivariable Chain Rule). Let $f = f(\boldsymbol{x}(t_1, \, \dots, \, t_n))$ be the composition of f with $\boldsymbol{x} = \begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix}$, then the partial derivative of f with respect to t_i is given by

$$\frac{\partial f}{\partial t_i} = \nabla f \cdot \partial_{t_i} \boldsymbol{x}$$

6 Double and Triple Integrals

7 Vector-Valued Functions

8 First-Order Differential Equations

9 Second-Order Differential Equations