Coarsening at random

Anders Munch

June 7, 2023

Ideal experiment and observed data

```
Consider an "ideal" statistical problem (\mathcal{Q},\theta), \theta \text{ scientifically meaningful parameter} Q\in\mathcal{Q} distribution from which we wished we had data
```

Ideal experiment and observed data

Consider an "ideal" statistical problem (Q, θ) ,

 θ scientifically meaningful parameter

 $Q \in \mathcal{Q}$ distribution from which we wished we had data

Example (ideal data)

- $\circ \ (X,Y) \sim Q \ \mathsf{and} \ \theta(Q) = \mathbb{E}_Q[Y]$
- \circ $T \sim Q$ and $heta(Q) = \mathbb{E}_Q\left[\mathbb{1}\{T>t\}
 ight]$
- \circ $(W,Y(0),Y(1))\sim Q$ and $heta(Q)=\mathbb{E}_Q\left[Y(0)-Y(1)
 ight]$

Ideal experiment and observed data

Consider an "ideal" statistical problem (Q, θ) ,

- θ scientifically meaningful parameter
- $Q \in \mathcal{Q}$ distribution from which we wished we had data

Example (ideal data)

- \circ $(X,Y) \sim Q$ and $\theta(Q) = \mathbb{E}_Q[Y]$
- \circ $T \sim Q$ and $\theta(Q) = \mathbb{E}_Q [\mathbb{1}\{T > t\}]$
- \circ $(W,Y(0),Y(1))\sim Q$ and $heta(Q)=\mathbb{E}_Q\left[Y(0)-Y(1)
 ight]$

Example (observed data)

Unfortunately, we only have data available from a "corrupted sample":

- \circ (X, R, RY) where R is a binary indicator of missing data
- \circ $(ilde{T}, \Delta)$ where $ilde{T} = T \wedge C$ and $\Delta = \mathbb{1}\{T \leq C\}$ for a censoring time C
- \circ (W,A,Y) where Y=AY(1)+(1-A)Y(0)

Coarsened data

Data with loss of information can in many cases be describe as a *coarsened* version of ideal or full data. We imagine that the full data is drawn from some unknown $Q \in \mathcal{Q}$ and then some (unknown) coarsening mechanism $G \in \mathcal{G}$ determines what we get to see.

Coarsened data

Data with loss of information can in many cases be describe as a *coarsened* version of ideal or full data. We imagine that the full data is drawn from some unknown $Q \in \mathcal{Q}$ and then some (unknown) coarsening mechanism $G \in \mathcal{G}$ determines what we get to see.

$$Z \sim Q$$
 and $\mathcal{C} \sim G \longmapsto O \sim P_{Q,G}$

Example (coarsening)

- o Draw $(X,Y) \sim Q$ and $R \sim G \longmapsto (X,R,RY) \sim P_{Q,G}$
- \circ Draw $T \sim Q$ and $C \sim G \longmapsto (ilde{T}, \Delta) \sim P_{Q,G}$
- o Draw $(W,Y(0),Y(1))\sim Q$ and $A\sim G\longmapsto (W,A,Y)\sim P_{Q,G}$

Coarsened data

Data with loss of information can in many cases be describe as a *coarsened* version of ideal or full data. We imagine that the full data is drawn from some unknown $Q \in \mathcal{Q}$ and then some (unknown) coarsening mechanism $G \in \mathcal{G}$ determines what we get to see.

$$Z \sim Q$$
 and $\mathcal{C} \sim G \longmapsto O \sim P_{Q,G}$

Example (coarsening)

- o Draw $(X,Y) \sim Q$ and $R \sim G \longmapsto (X,R,RY) \sim P_{Q,G}$
- \circ Draw $T \sim Q$ and $C \sim G \longmapsto (ilde{T}, \Delta) \sim P_{Q,G}$
- o Draw $(W,Y(0),Y(1))\sim Q$ and $A\sim G\longmapsto (W,A,Y)\sim P_{Q,G}$

The term *coarsening* refers to that we only get to see a "coarse-grained" version of the data which is less informative than the original "fine-grained" data.

Target parameter – in the target population!

Target parameter – in the target population!

D. WHITNEY, A. SHOJAIE AND M. CARONE

Figure from Whitney et al. [2019].

Identifiability - coarsening at random

To do estimation and inference we need to transform the problem (\mathcal{Q}, θ) into a problem concerning the observed data (\mathcal{P}, Ψ) , where $\{P_{\mathcal{Q}, \mathcal{G}} : \mathcal{Q} \in \mathcal{Q}, \mathcal{G} \in \mathcal{G}\}$.

First step is to *identify* our target parameter θ , i.e., write

$$\Psi(P_{Q,G}) = \theta(Q)$$
 for all Q and G .

Identifiability - coarsening at random

To do estimation and inference we need to transform the problem (\mathcal{Q}, θ) into a problem concerning the observed data (\mathcal{P}, Ψ) , where $\{P_{\mathcal{Q}, G} : \mathcal{Q} \in \mathcal{Q}, G \in \mathcal{G}\}$.

First step is to *identify* our target parameter θ , i.e., write

$$\Psi(P_{Q,G}) = \theta(Q)$$
 for all Q and G .

No assumptions about $\mathcal{G} \implies \mathsf{game}$ over

For example, if O=(R,RY) and $P(R=0\mid Y>5)>P(R=0\mid Y\le 5)$ we have a biased sample and we cannot learn the coarsening mechanism from the observed data.

Identifiability – coarsening at random

To do estimation and inference we need to transform the problem (\mathcal{Q}, θ) into a problem concerning the observed data (\mathcal{P}, Ψ) , where $\{P_{\mathcal{Q}, \mathcal{G}} : \mathcal{Q} \in \mathcal{Q}, \mathcal{G} \in \mathcal{G}\}$.

First step is to *identify* our target parameter θ , i.e., write

$$\Psi(P_{Q,G}) = \theta(Q)$$
 for all Q and G .

No assumptions about $\mathcal{G} \implies \mathsf{game}$ over

For example, if O=(R,RY) and $P(R=0\mid Y>5)>P(R=0\mid Y\le 5)$ we have a biased sample and we cannot learn the coarsening mechanism from the observed data.

Coarsening at random (CAR)
$$\implies$$
 game on

CAR states that the coarsening mechanism only depends on the observed data. [Heitjan and Rubin, 1991, Gill et al., 1997]

Identifiability – coarsening at random

To do estimation and inference we need to transform the problem (\mathcal{Q}, θ) into a problem concerning the observed data (\mathcal{P}, Ψ) , where $\{P_{\mathcal{Q}, \mathcal{G}} : \mathcal{Q} \in \mathcal{Q}, \mathcal{G} \in \mathcal{G}\}$.

First step is to *identify* our target parameter θ , i.e., write

$$\Psi(P_{Q,G}) = \theta(Q)$$
 for all Q and G .

No assumptions about $\mathcal{G} \implies \mathsf{game}$ over

For example, if O=(R,RY) and $P(R=0\mid Y>5)>P(R=0\mid Y\le 5)$ we have a biased sample and we cannot learn the coarsening mechanism from the observed data.

Coarsening at random (CAR)
$$\implies$$
 game on

CAR states that the coarsening mechanism only depends on the observed data. [Heitjan and Rubin, 1991, Gill et al., 1997]

For example this holds if $R \perp \!\!\! \perp Y \mid X$.

CAR and counterfactual/potential outcomes

Full data $(W, Y(0), Y(1)) \sim Q$ Observed data $(W, A, Y) \sim P_{Q,G}$ with $A \sim G$

CAR and counterfactual/potential outcomes

Full data
$$(W, Y(0), Y(1)) \sim Q$$

Observed data $(W, A, Y) \sim P_{Q,G}$ with $A \sim G$

The assumption of no unmeasured confounding states that

$$A \perp \{Y(0), Y(1)\} \mid W. \tag{*}$$

CAR and counterfactual/potential outcomes

Full data
$$(W, Y(0), Y(1)) \sim Q$$

Observed data $(W, A, Y) \sim P_{Q,G}$ with $A \sim G$

The assumption of no unmeasured confounding states that

$$A \perp \{Y(0), Y(1)\} \mid W. \tag{*}$$

W is observed Y(0), Y(1) are partly unobserved \implies CAR holds when we assume (*)

Efficiency theory under CAR

Nonparametric models stay nonparametric under CAR

CAR is the weakest assumption we can impose to ensure identifiability.

If ${\mathcal Q}$ is nonparametric and we assume nothing about ${\mathcal G}$ except car, then the induced model

$$\mathcal{P} = \{ P_{Q,G} : Q \in \mathcal{Q}, G \in \mathcal{G} \}$$

will also be nonparametric.

Efficiency theory under CAR

Nonparametric models stay nonparametric under CAR

CAR is the weakest assumption we can impose to ensure identifiability.

If $\mathcal Q$ is nonparametric and we assume nothing about $\mathcal G$ except car, then the induced model

$$\mathcal{P} = \{ P_{Q,G} : Q \in \mathcal{Q}, G \in \mathcal{G} \}$$

will also be nonparametric.

Information bounds under CAR

If we known the tangent space and the canonical gradient for the "ideal" statistical problem (\mathcal{Q},θ) , we can in many cases use projections and other Hilbert space techniques to find the tangent space and the canonical gradient for the observed statistical problem (\mathcal{P},Ψ) .

A general methodology for doing this is presented in van der Laan et al. [2003] and Tsiatis [2007].

References

- R. D. Gill, M. J. Laan, and J. M. Robins. Coarsening at random: Characterizations, conjectures, counter-examples. In *Proceedings of the First Seattle Symposium in Biostatistics*, pages 255–294. Springer, 1997.
- D. F. Heitjan and D. B. Rubin. Ignorability and coarse data. *The annals of statistics*, pages 2244–2253, 1991.
- A. Tsiatis. Semiparametric theory and missing data. Springer Science & Business Media, 2007.
- M. J. van der Laan, M. Laan, and J. M. Robins. Unified methods for censored longitudinal data and causality. Springer Science & Business Media, 2003.
- D. Whitney, A. Shojaie, and M. Carone. Comment: Models as (deliberate) approximations. Statistical science: a review journal of the Institute of Mathematical Statistics, 34(4):591, 2019.