Candidate	Centre	Candidate
Name	Number	Number
		2

GCE AS/A level

1091/01

CHEMISTRY CH1

A.M. THURSDAY, 13 January 2011 $1\frac{1}{2}$ hours

_	EXAMIN USE ONL	
Section	Question	Mark
A	1-5	
В	6	
	7	
	8	
	9	
	10	
TOTAL	MARK	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- copy of the **Periodic Table** supplied by WJEC. Refer to it for any **relative atomic masses** you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between Section A (10 marks) and Section B (70 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

You are reminded that marking will take into account the Quality of Written Communication used in all written answers.

Page 19 may be used for rough work.

SECTION A

Answer all questions in the spaces provided.

1.		nserting arrows iguration of a c			s, complete	the box	es below	to show 1	the elec	etronic [1]
15	S	2s	2p	3s	3p			3d		4s
2.	(a)	Calculate the	molar mass	, in gmol ⁻¹	, of calcium	sulfate (dihydrate	c, CaSO ₄ .2	H ₂ O.	[1]
	(b)	Calculate the	percentage (of water, b	y mass, in ca	lcium su	ılfate dih	ydrate.		[1]
3.	Ions	of two isotopes	of the meta $\frac{7}{3}$ Li		are shown be	·low.				
	State	which one of the	2		ts is correct					[1]
	A B C D	The electron a The ⁷ Li ⁺ ion v The ⁷ Li ⁺ ion v Both of these	arrangement will have mo	t of both tore protons	hese Li ⁺ ions in its nucleu than the ⁶ Li ⁺	is than to	he ⁶ Li ⁺ i a mass sp		er.	

4. Complete the diagram below to show how radiation is affected by an electric field and by materials of different thickness. [3]

5. A compound of carbon, hydrogen and oxygen has a relative molecular mass of 180. The percentage composition by mass is C 40.0%; H 6.70%; O 53.3%.

(a)	Calculate the empirical formula of this compound.	[2]
(b)	Determine the molecular formula of this compound.	[1]

Section A Total [10]

SECTION B

Answer all questions in the spaces provided.

- 6. Potassium metal was discovered in 1807 by the British chemist Sir Humphrey Davy. Its name derives from the word 'potash' since potassium was isolated by the electrolysis of molten caustic potash, KOH.
 - (a) The mass spectrum of a naturally occurring sample of potassium gave the following results.

Isotope	% abundance
³⁹ K	93.26
⁴⁰ K	0.012
⁴¹ K	6.730

These results can be used to determine the relative atomic mass of the potassium sample.

	Explain the term relative atomic mass.	[2
(ii)	Calculate the relative atomic mass of the potassium sample, giving you four significant figures.	ır answer [/
mass	mass spectrum which provided these results was produced by potassiums spectrometer.	
		m ions in

(c)		assium-40, $^{40}_{19}$ K, is a $.25 \times 10^9$ years.	radioactive isotope that decay	s by β -emission and has a half-life
	(i)	Write an equation β-particle.	n for the process by which a po	tassium-40 isotope emits a [2]
	(ii)	Calculate how los		of the isotope to decay to $\frac{1}{8}$ th of [1]
(d)		first and second is below.	onisation energies of potassiu	ım and sodium are shown in the
			1 st ionisation energy / kJ mol ⁻¹	2 nd ionisation energy / kJ mol ⁻¹
	Ţ	ootassium	419	3051
		sodium	496	4562
	(i) 	Explain the term	molar first ionisation energy.	[2]
	(ii)	Explain why I potassium l	nas a lower first ionisation ene	rgy than sodium, [2]
		II there is a la potassium.	rge difference between the first	and second ionisation energies of [2]

Total [15]

Turn over.

1091

			2HCl(aq)	arbonate and							H ₂ O(l	
(a)	Give	an obser	vation that	Eurig makes	s during	this rea	action	1.				[1]
(b)			e of appara	atus that he	could 1	ise to c	collec	t and	mea	asure	the vo	olume o
(c)				than measur								ed at se
(d)	(i)	Calculat	te the numb	per of moles	of hydro	ochlori	e acid	used	in th	nis re	action.	[1]
	(ii)		te the mini s amount o	mum mass of acid.	of calci	um car	bona	te nee	eded	to r	eact co	mpletely [2]
	(iii)	Calculat (1 mole	te the volun	ne of carbon	ı dioxide pies 24 d	e gas the	at wo	uld be	e pro	duce	d at 25	°C. [2]
	(iii)	Calculat (1 mole	te the volun	ne of carbon	dioxide	e gas th	at wo	uld be	e pro	oduce	d at 25	°C. [2]

(e) Eurig repeats the experiment starting with a greater mass of calcium carbonate. He follows the rate of the reaction for 3 minutes.

He takes a number of measurements which include 150 cm³ of carbon dioxide at 1 minute and 200 cm³ at 2 minutes, when the reaction finishes.

(i) Sketch a curve on the grid below to show these results. Label this graph A. [1]

(ii) On the same grid sketch the graph that would be obtained if the experiment were repeated using hydrochloric acid of half the original concentration, keeping all other factors the same. Label this graph **B**. [2]

(iii)	Explain,	using	simple	collision	theory,	why	the	rates	of	these	two	reactions	are
	different.		-										[2]

(1091-01) **Turn over.**

Examiner only

(f) With the aid of an energy distribution curve diagram, explain why raising the temperature by a small amount causes the rate of a chemical reaction to increase by a large amount.

Total [17]

BLANK PAGE

(1091-01) **Turn over.**

8. (a) During the last 200 years, the average temperature of the Earth has risen. One hypothesis put forward by many scientists is that this is due to increased concentrations of carbon dioxide and other greenhouse gases in the atmosphere.

The table below shows the concentration of carbon dioxide in the atmosphere at 50 year intervals since 1800.

			Year		
	1800	1850	1900	1950	2000
Concentration of carbon dioxide in the atmosphere / % by volume	0.0282	0.0288	0.0297	0.0310	0.0368

The following graph based on data from NASA research, shows the annual global temperature relative to the average temperature between 1951 and 1980.

Global Temperature

(i)	Explain how these two sets of data led many scientists to this hypothesis. [2] QWC [1]
(ii)	Suggest why the data does not convince all scientists that this hypothesis is true.[1]
(iii)	Suggest two reasons why the uncertainty is greater in the period 1880-1900 than the period 1940-1960. [2]
(iv)	Give two reasons for the changing amounts of carbon dioxide in the atmosphere after 1900. [2]

	izzy drinks, carbon dioxide is dissolved in water under pressure sure is released the 'fizz' appears.	e and whe
In a	bottle of fizzy drink, the following chemical equilibrium exists:	
	$CO_2(g)$ \longleftrightarrow $CO_2(aq)$	
(i)	Chemical equilibria are often described as dynamic equilibria. Explain the term <i>dynamic equilibrium</i> .	
(ii)	When the top is removed from a bottle of fizzy drink it goes 'fla of the dissolved carbon dioxide comes out of solution. Explain why this happens in terms of chemical equilibria.	t' because 1
(ii)	of the dissolved carbon dioxide comes out of solution.	
(ii)	of the dissolved carbon dioxide comes out of solution.	

			increasin	g frequency			→		
(i) I	Label the line	of lowest er	nergy on the	diagram.				[1]
(ii		Explain why pectrum.	the lines be	come closer	together	r at the hi	igh freque	ency end	of the [1]

	$CH_4(g)$ + $H_2O(g)$ \longleftrightarrow $CO(g)$ + $3H_2(g)$ $\Delta H = 206 \text{ kJ mo}$	1^{-1}
(i)	State Le Chatelier's Principle.]
(ii)	Giving your reasons, state how the equilibrium yield of hydrogen is affected all, by	, if
	I increasing the temperature at constant pressure,	[2
	II increasing the pressure at constant temperature.	[2
(iii)	Calculate the atom economy of hydrogen production in the above reaction.	[2

Examiner only

(c) Another way of producing hydrogen is from reforming natural gas.

Use the values in the table below to calculate the enthalpy change for the above reaction. [2]

Bond	Average bond enthalpy/kJmol ⁻¹
C = C	612
C — H	412
H — H	436

Total [11]

Total [11]

(1091-01)

10. Lisa was asked to measure the molar enthalpy change for the reaction between magnesium and copper(II) sulfate solution.

$$Mg(s) + CuSO_4(aq) \longrightarrow MgSO_4(aq) + Cu(s)$$

She was told to use the following method.

- Weigh out about 0.90 g of powdered magnesium.
- Accurately measure 50.0 cm³ of copper(II) sulfate solution of concentration 0.500 mol dm⁻³ into a polystyrene cup (placed in another polystyrene cup to provide insulation).
- Place a 0.2 °C graduated thermometer in the solution and measure its temperature every half-minute, stirring the solution before reading the temperature.
- At the third minute add 0.90 g of powdered magnesium, but do not record the temperature.
- Stir the mixture thoroughly, then record the temperature after three and a half minutes.
- Continue stirring and record the temperature at half-minute intervals for a further four minutes.

Lisa's results are shown on the graph below.

(a)		lain why the temperature of the copper(II) sulfate solution was measured for tutes before adding the magnesium.	hree [1]
(b)	(i)	Determine the maximum temperature change by drawing lines of best fit for sets of points and extrapolating both lines to the third minute.	both
		Temperature rise from the graph after extrapolation°C	[2]
	(ii)	Explain why extrapolation gives a more accurate temperature change than use the maximum temperature recorded in the experiment.	ising [1]
(c)	duri (Ass	the temperature rise from the graph to calculate the amount of heat given any this experiment. Some that the density of the solution is $1.00\mathrm{gcm^{-3}}$ and that its specific heat capa $18\mathrm{JK^{-1}g^{-1}})$	
(d)	(i)	Calculate the number of moles of magnesium in 0.90 g.	[1]
	(ii)	Calculate the number of moles of copper(II) sulfate in 50.0 cm ³ of a 0.500 mol dm ⁻³ solution.	[1]
(e)		culate the molar enthalpy change for the reaction between magnesium per(II) sulfate solution.	and [2]
(f)		me a piece of apparatus that Lisa could use to accurately measure 50.0 cm ³ of tion.	the [1]

Exa	mi	ne
О	nl	V

(g)	State why she did not need to accurately weigh the powdered magnesium. [1]
(h)	Explain why it is better to use powdered magnesium rather than a strip of magnesium ribbon. [1]
(i)	The data book value for this molar enthalpy change is $-93.1 \mathrm{kJ}\mathrm{mol}^{-1}$. Express the difference between Lisa's value and this value as a percentage of the data book value. [1] (If you do not have an answer in (e) assume that the molar enthalpy change is $-65 \mathrm{kJ}\mathrm{mol}^{-1}$, although this is not the correct answer.)
(j)	State the main reason for Lisa's low value in this experiment and suggest one change that would improve her result. [2]
	Total [15] Section B Total [70]

(1091-01)

Rough Work

GCE AS/A level

1091/01-A

CHEMISTRY CH1
PERIODIC TABLE

A.M. THURSDAY, 13 January 2011

THE PERIODIC TABLE

								THE LEMODIC INDIC			-1							
	1	7						5	Group				e	4	w	9	7	0
Period	,	s Block					L			ſ								4.00
	10.1 H							±	Key									He Helium
1	Hydrogen 1							A _T	relative	ive		,			p Block	ock		^
2	6.94 Li Lithium 3	9.01 Be Beryllium 4						Symbol Name	1 atomic number	. 05			10.8 B Boron 5	12.0 C Carbon 6	Nitrogen	16.0 O Oxygen 8	19.0 F	20.2 Ne Neon
8	23.0 Na Sodium	24.3 Mg Magnesium					d Block	ock				^	27.0 All Aluminium	Si Silicon	31.0 Phosphorus	32.1 S Sulfur 16	35.5 CI Chlorine 17	40.0 Ar Argon 18
4	39.1 K Potassium 19	40.1 Ca Calcium	45.0 Sc Scandium 21	47.9 Ti Titanium 22	50.9 V Vanadium 23	52.0 Cr Chromium	54.9 Mn Manganese 25	55.8 Fe Iron 26	58.9 Co Cobalt 27	58.7 Ni Nickel 28	63.5 Cu Copper 29	65.4 Zn Zinc 30	69.7 Ga Gallium 31	72.6 Ge Germanium	74.9 As Arsenic 33	79.0 Se Selenium 34	79.9 Br Bromine	83.8 Kr Krypton 36
N	85.5 Rb Rubidium 37	87.6 Sr Strontium	88.9 Y Yttrium 39	91.2 Zr Zirconium	92.9 Nb Niobium 1	95.9 Mo Molybdenum 42	98.9 Tc Technetium	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn Tin 50	Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	131 Xe Xenon 54
9	133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum 57	179 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 Tl Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	(210) Po Polonium 84	(210) At Astatine 85	(222) Ra Radon 86
7	(223) Fr Francium 87	(226) Radium 88	(227) V Ac Actinium 89															
			*							f Bl	f Block							
		►Lan elen	► Lanthanoid elements	Cerium 58	141	144 Nd Neodymium 60	Pm Promethium	Samarium 62	(153) Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	163 Dy Dysprosium 66	Holmium 67	167 Erbium 68	169 Tm Thulium	Yb Ytterbium	175 Lu Lutetium 71	
		►► Actinoid elements	Actinoid elements	232 Th Thorium	(231) Pa Protactinium 91	238 U Uranium 92	(237) Np Neptunium 93	Pu Plutonium 94	(243) Am Americium 95	Cm Curium 96	(245) BK Berkelium 97	(251) Cf Califomium 98	(254) Es Einsteinium 99	(253) Fm Fermium 100	(256) Md Mendelevium 101	(254) No Nobelium 102	(257) Lr Lawrencium 103	