Il numero d'ossidazione e Nomenclatura

La valenza e il numero di ossidazione

Per assegnare i nomi e scrivere le formule corrette dei composti possiamo far ricorso alla valenza degli elementi che si sono combinati.

La valenza di un atomo corrisponde al numero di legami che esso è in grado di formare.

La nomenclatura chimica è regolamentata da un'associazione internazionale: la **IUPAC** (*International Union of Pure and Applied Chemistry*):

Ancora oggi, però, viene utilizzata spesso la nomenclatura tradizionale.

Valenza: Termine obsoleto per indicare il numero di altri elementi che un elemento può legare.

Valenza ionica: Termine usato per identificare la carica che uno ione può assumere.

Numero di ossidazione

Oggi si preferisce parlare di numero o grado di ossidazione. Il numero o grado di ossidazione si può definire come:

"La carica che assumerebbe un elemento in un composto, se si attribuissero gli elettroni di legame all'elemento più elettronegativo".

La carica che l'elemento "assume", si determina dal confronto con la configurazione elettronica esterna dell'elemento nel suo stato fondamentale

Il numero di ossidazione

Il numero di ossidazione è una carica positiva o negativa che viene attribuita formalmente a ciascun elemento in un composto.

Esso viene determinato dal numero di elettroni in più o in meno rispetto all'atomo neutro quando gli elettroni di legame sono attribuiti all'elemento più elettronegativo

REGOLE PER IL CALCOLO DEI NUMERI DI OSSIDAZIONE

 Tutte le sostanze allo stato elementare hanno numero di ossidazione zero.

Per esempio O_2 , Fe, H_2 , O_3

2) Negli ioni monoatomici gli elementi hanno numero di ossidazione uguale alla carica ionica.

Per esempio -1 per Cl⁻, +2 per Ca²⁺

3) Alcuni elementi mantengono costante il loro numero di ossidazione in tutti i composti che formano, mentre altri lo variano da un composto all'altro.

In particolare:

L'idrogeno nei composti ha sempre numero di ossidazione +1 (-1 negli idruri)

L'ossigeno nei composti ha sempre numero di ossidazione -2 (-1 nei perossidi)

1. In un legame covalente gli elettroni condivisi sono formalmente attribuiti all'atomo più elettronegativo.

Esempio: in PCl₃, il fosforo forma tre legami con il cloro, più elettronegativo, il fosforo ha n.o. +3 e il cloro ha n.o. -1.

2. Gli atomi nelle sostanze elementari hanno sempre numero di ossidazione zero.

Esempio: il ferro in Fe, il cloro in Cl₂, lo zolfo in S₈ hanno tutti n.o. uguale a zero.

3. Gli ioni monoatomici hanno numero di ossidazione coincidente con la carica elettrica dello ione.

Esempio: il ferro in Fe^{3+} ha n.o. +3; il sodio in NaCl (Na⁺Cl⁻) ha n.o. +1; il magnesio in MgO (Mg²⁺O²⁻) ha n.o. +2.

4. Il numero di ossidazione dell'ossigeno nei composti è −2. Eccezioni: nei perossidi, in cui vale −1, e quando è legato al fluoro, in cui è +2.

Esempio: in H₂O l'ossigeno ha n.o. -2; in H₂O₂ ha n.o. -1; in OF₂, l'ossigeno ha n.o. +2.

5. Il numero di ossidazione dell'idrogeno nei composti è +1. Fanno eccezione i casi in cui H è combinato con un metallo, nel qual caso ha n.o. uguale a -1.

Esempio: l'idrogeno in HCl ha n.o. +1, in LiH ha n.o. -1 (in questo caso l'idrogeno è scritto a destra nella formula).

6. In una molecola o in un composto ionico la somma dei numeri di ossidazione di tutti gli atomi presenti deve essere zero.

Esempio: in PbO₂ i due atomi di ossigeno (con n.o. –2) danno –4; perché il totale sia zero, il piombo deve avere n.o. +4.

7. In uno ione poliatomico la somma dei numeri di ossidazione di tutti gli atomi presenti deve equivalere alla carica dello ione.

Esempio: in SO_4^{2-} i n.o. dei 4 atomi di ossigeno danno –8; perché la carica dello ione risulti 2–, lo zolfo deve avere n.o. +6.

Riassumendo...

Regola	Esempio
 Gli atomi nelle sostanze elementari hanno sempre nume- ro di ossidazione zero. 	In Cl_2 il n.o. del cloro è zero. In S_8 lo zolfo ha n.o. zero.
 Il numero di ossidazione dell'ossigeno è -2, tranne nei perossidi, in cui vale -1 e quando è legato al fluoro, in cui è +2. 	In Na $_2$ O, H $_2$ O, MgO, Al $_2$ O $_3$, l'ossigeno ha n.o. -2 . Nei perossidi di idrogeno e di sodio (per esempio, H $_2$ O $_2$ e Na $_2$ O $_2$) ha n.o. -1 . In F $_2$ O, l'ossigeno ha n.o. $+2$.
 Il numero di ossidazione dell'idrogeno è +1, fanno ecce- zione i casi in cui H è combinato con un metallo, nel qual caso ha n.o1. 	In H_2O , HCI , H_2SO_3 , HF , NH_3 , PH_3 , CH_4 , l'idrogeno ha n.o. $+1$. Negli idruri dei metalli, come LiH, CuH, l'idrogeno ha n.o. -1 (notiamo che H è posto a destra nella formula).
4. Gli ioni monoatomici hanno numero di ossidazione coincidente con la carica elettrica.	II ferro in Fe $^{3+}$ ha n.o. $+3$. II sodio in NaCl (Na $^+$ Cl $^-$) ha n.o. $+1$. II magnesio in MgO (Mg $^{2+}$ O $^{2-}$) ha n.o. $+2$.
5. In uno ione poliatomico la somma dei numeri di ossidazio- ne deve equivalere alla carica dello ione.	In OH $^-$ l'ossigeno ha n.o. -2 e l'idrogeno ha n.o. $+1$. La somma dà -1 . In SO $_4^{2-}$ i 4 atomi di ossigeno danno -8 . Perché avanzi -2 allo ione, lo zolfo deve avere n.o. $+6$. In Cr $_2$ O $_7^{2-}$ i 7 atomi di ossigeno danno -14 ; perché restino due cariche negative i due atomi di cromo devono avere $+12$, quindi $+6$ ciascuno.
6. In una molecola o in un composto ionico la somma dei numeri di ossidazione deve essere zero.	In H_2O ogni idrogeno ha n.o. $+1$ e l'ossigeno ha n.o. -2 , quindi $+1$ $+1$ -2 $=$ 0. In PbO_2 i due atomi di ossigeno (con n.o. -2) danno -4 ; perché il totale sia zero, il piombo deve avere n.o. $+4$.
7. In un legame covalente gli elettroni condivisi sono formal- mente attribuiti all'atomo più elettronegativo.	In PCl_3 il fosforo forma tre legami con il più elettronegativo cloro. Quindi il fosforo ha n.o. $+3$ e il cloro ha n.o. -1 .

Principali numeri di ossidazione di alcuni elementi

+1																			
3 Li +1	4 Be +2									5 B	+3	6 C	-4 +2 +4	7 N	-3 +2 +3 +5	8	-2	9 F	-1
11 Na +1	12 Mg +2									13 Al	+3	14 Si	+4	15 P	_		-2 +4 +6	17 CI	-1 +1 +3 +5 +7
19 K +1	20 Ca +2	24 Cr	25 +3 +6 Mn +4 +6 +7	26 Fe +3	27 Co +3	28 Ni +	29 Cu	+1	30 Zn +2					33 As	-3 +3 +5			35 B r	
	38 Sr +2						47 Ag		48 Cd +2			50 Sn	+2+4					53 I	-1 +1 +5 +7
	56 Ba +2						79 Au	+1	80 Hg +			82 Pb	+2 +4	83 Bi	+3 +5				
	88 Ra +2				1	I.				1									- 1

Per gli atomi che appartengono ad alcuni gruppi il numero di ossidazione corrisponde al numero romano del gruppo di appartenenza.

Metallo	lone
argento	Ag ⁺
cromo	Cr ²⁺ ; Cr ³⁺
cobalto	Co ²⁺ ; Co ³⁺
ferro	Fe ²⁺ ; Fe ³⁺
manganese	Mn ²⁺ ; Mn ³⁺
mercurio	Hg ²⁺ ; Hg ₂ ²⁺
nichel	Ni ²⁺
oro	Au ⁺ ; Au ³⁺
rame	Cu ⁺ ; Cu ²⁺
zinco	Zn ²⁺

Gli elementi di transizione, nei composti ionici, presentano invece numeri di ossidazione variabili e formano cationi con un numero di cariche diverse, non riconducibili alla loro posizione nella tavola periodica.

I numeri di ossidazione degli elementi

Capitolo 5 CLASSI, FORMULE E NOMI DEI COMPOSTI

Elemento	Simbolo	Numeri di ossidazione
afnio	Hf	+4
alluminio	AI	+3
americio	Am	+3, +4, +5, +6
antimonio	Sb	-3, +3, +5
argento	Ag	+1
arsenico	As	-3, +3, +5
astato	At	-1, +1, +3, +5, +7
attinio	Ac	+3
azoto	Ν	-3, +2, +3, +4, +5
bario	Ba	+2
berillio	Be	+2
berkelio	Bk	+3, +4
bismuto	Bi	+3, +5
boro	В	+3
bromo	Br	-1, +1, +5
cadmio	Cd	+2
calcio	Ca	+2
californio	Cf	+3
carbonio	С	-4, +2, +4
cerio	Ce	+3, +4
cesio	Cs	+1
cloro	CI	-1, +1, +3, +5, +7
cobalto	Co	+2, +3
cromo	Cr	+2, +3, +6
curio	Cm	+3
disprosio	Dy	+3
einsteinio	Es	+3
erbio	Er	+3
europio	Eu	+2, +3
fermio	Fm	+3
ferro	Fe	+2, +3
fluoro	F	-1

Elemento	Simbolo	Numeri di ossidazione
fosforo	P	-3, +3, +5
francio	Fr	+1
gadolinio	Gd	+3
gallio	Ga	+3
germanio	Ge	+2, +4
idrogeno	н	-1, +1
indio	In	+3
iodio	1	-1, +1, +5, +7
iridio	Ir	+3, +4
itterbio	Yb	+2, +3
ittrio	Y	+3
lantanio	La	+3
litio	Li	+1
lutezio	Lu	+3
magnesio	Mg	+2
manganese	Mn	+2, +3, +4, +6, +7
mendelevio	Md	+2, +3
mercurio	Hg	+1, +2
molibdeno	Mo	+6
neodimio	Nd	+3
nettunio	Np	+3, +4, +5, +6
nichel	Ni	+2, +3
niobio	Nb	+3, +5
nobelio	No	+2, +3
olmio	Но	+3
oro	Au	+1, +3
osmio	Os	+3, +4
ossigeno	0	-1, -2
palladio	Pd	+2, +4
piombo	Pb	+2, +4
platino	Pt	+2, +4
plutonio	Pu	+3, +4, +5, +6

Elemento	Simbolo	Numeri di ossidazione
polonio	Po	+2, +4
potassio	K	+1
praseodimio	Pr	+3
promezio	Pm	+3
protoattinio	Pa	+4, +5
radio	Ra	+2
rame	Cu	+1, +2
renio	Re	+4, +6, +7
rodio	Rh	+3
rubidio	Rb	+1
rutenio	Ru	+3
samario	Sm	+2, +3
scandio	Sc	+3
selenio	Se	-2, +4, +6
silicio	Si	-4, +4
sodio	Na	+1
stagno	Sn	+2, +4
stronzio	Sr	+2
tallio	TI	+1, +3
tantalio	Ta	+5
tecnezio	Тс	+4, +6, +7
tellurio	Te	-2, +4, +6
terbio	Tb	+3
titanio	Ti	+2, +3, +4
torio	Th	+4
tulio	Tm	+3
tungsteno	W	+6
uranio	U	+3, +4, +5, +6
vanadio	V	+2, +3, +4, +5
zinco	Zn	+2
zirconio	Zr	+4
zolfo	s	-2, +4, +6

ESERCIZI

Calcolare i numeri di ossidazione degli elementi nei seguenti ossiacidi e indicare il nome del composto

	2000a - R <u>e</u> nga <u>al</u> a
a)	H ₂ SO ₄
α	$H \rightarrow I I$.
u	112001

- c) HNO₃
- d) HNO₂
- e) H₂CO₃
- f) H₃PO₄
- g) H₃BO₃

Risposte:

n.o.
$$C = +4$$
 acido carbonico

Prova tu...

esempi calcolo numero ox

 NH_3 $Co(OH)_3$

 H_2O PbO₂

 H_2SO_3 H_2

 Cl_2O CaB

 $CaBr_2$

 CO_3^{2-} $CrCl_3$

 $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ $\operatorname{Fe}_2\operatorname{O}_3$

NaI CuO

Na₂S CO

 SO_3

 HNO_3 Cl_2O_7

NaOH

Scrivere le formule più semplici

Una **formula chimica** è un insieme di simboli e indici numerici. I simboli ci comunicano gli elementi coinvolti, mentre gli indici specificano il numero di atomi per ciascun elemento.

I numeri di ossidazione permettono di scrivere le formule dei **composti binari**, formati da soli due elementi.

Scrivere le formule più semplici

Nella formula di un composto binario:

Si scrive per primo l'elemento con il n.o. più positivo, che nella freccia è più a sinistra.

Se gli elementi hanno lo stesso numero di ossidazione in valore assoluto, non si riporta l'indice numerico.

Scrivere le formule più semplici

Se i numeri di ossidazione sono diversi:

1. Si scrivono i simboli nell'ordine corretto con i rispettivi n.o.

2. Il n.o. del metallo diventa l'indice del non metallo e viceversa.

3. Se i due indici hanno un divisore comune, generalmente si semplifica.

LA NOMENCLATURA CHIMICA

Esistono diversi sistemi di nomenclatura:

- tradizionale → spesso ambigua, è basata sulla divisione tra metalli e non metalli
- secondo la notazione di Stock → più chiara, indica i n.o. tra parentesi in numeri romani
- IUPAC → chiara e immediata, consente di evidenziare la relazione fra il nome di un composto e la sua formula chimica.

La nomenclatura chimica

Ai fini della nomenclatura, è conveniente raggruppare i composti inorganici in composti binari e composti ternari.

	Classe		Tipo di elementi	Struttura della formula	Esempio
Composti	ossidi basici		metallo, ossigeno	Me O	CaO
binari	ossidi acidi (o anidridi)		non metallo, ossigeno	nonMe O	SO ₂
	idruri	metallici	metallo, idrogeno	Me H	LiH
		covalenti (o non metallici)	non metallo (esclusi alogeni e zolfo), idrogeno	nonMe H	NH ₃
	idracidi		idrogeno, non metallo (solo alogeni e zolfo)	H nonMe	HCI
	sali binari	di idracidi	metallo, non metallo	Me nonMe	KBr
Composti	idrossidi		metallo, ossigeno, idrogeno	Me OH	NaOH
ternari	ossiacidi		idrogeno, non metallo, ossigeno	H nonMe O	HNO ₃
	sali ternari	di ossiacidi	metallo, non metallo, ossigeno	Me nonMe O	CaSO ₄

La nomenclatura chimica

Principali relazioni tra classi di composti.

I composti Binari

Formati da solo due elementi

I composti Ternari

formati da 3 elementi.

composti ternari

La nomenclatura chimica

CLASSIFICARE UN COMPOSTO

Composti binari dell'ossigeno

- Nomenclatura IUPAC: si usa il nome «ossido di» seguito dal nome dell'altro elemento.
 Per indicare il numero di atomi di ciascun elemento si usano i prefissi di-, tri-, tetra- ecc.
- Nomenclatura tradizionale: distingue gli ossidi dei metalli, ossidi basici, da quelli dei non metalli, ossidi acidi (anidridi).

Gli ossidi basici sono costituiti da ossigeno e un metallo.

Nomenclatura tradizionale: si aggiunge il suffisso **-ico** (n.o. minore) o **-oso** (n.o. maggiore).

La formazione degli ossidi acidi (anidridi) non metallo

Gli ossidi acidi sono costituiti da ossigeno e un non metallo.

Nomenclatura tradizionale: si utilizza il nome anidride.

non metallo + O₂
OSSIDO ACIDO (ANIDRIDE)

Se il non metallo ha più di due numeri di ossidazione, si aggiunge il prefisso **ipo-** e il suffisso **-osa** (n.o. più basso), e il prefisso **per-** e il suffisso **-ica** (n.o. più alto).

Elemento	n.o.	Formula	Nome tradizionale
В	+3	B ₂ O ₃	anidride borica
S	+4	SO ₂	anidride solfor osa
	+6	SO ₃	anidride solfor ica
Cl	+1	Cl ₂ O	anidride ipo clor osa
	+3	Cl ₂ O ₃	anidride clor osa
	+5	Cl ₂ O ₅	anidride clor ica
	+7	Cl ₂ O ₇	anidride per clor ica

I perossidi sono ossidi che contengono due atomi di ossigeno legati tra loro, ciascuno dei quali ha numero di ossidazione –1.

Sia la **nomenclatura IUPAC** che quella **tradizionale** utilizzano il termine «**perossido**» seguito dal nome dell'altro elemento.

L'atomo di ossigeno in più tende facilmente a essere rilasciato, come accade nell'acqua ossigenata (H_2O_2) .

La nomenclatura dei composti binari senza ossigeno

 Nomenclatura IUPAC: si aggiunge il suffisso -uro alla radice dell'elemento scritto a destra. Segue il nome dell'altro elemento, separato da «di». Per indicare il numero di atomi di ciascun elemento si usano i prefissi di-, tri-, tetra- ecc.

Prefisso	Indice
mono-*	1
di-	2
tri-	3
tetra-	4
penta-	5
esa-	6
epta-	7
otta-	8
nona-	9
deca-	10

trisolfuro di dialluminio

 Al_2S_3

Elemento	Radice del nome
idrogeno	idr-
fluoro	fluor-
cloro	clor-
bromo	brom-
iodio	iod-
zolfo	solf-
selenio	seleni-
azoto	nitr-
fosforo	fosf-
carbonio	carb-
silicio	silici-
boro	bor-

Composti binari senza ossigeno

Gli idracidi sono composti da idrogeno e un alogeno oppure zolfo.

Hanno *carattere acido*, dunque in soluzione acquosa le loro molecole liberano ioni H⁺ e anioni.

Nomenclatura tradizionale: si usa il nome **acido** seguito dal nome del non metallo con il suffisso **-idrico**.

Formula	Nome IUPAC	Nome tradizionale
HF	fluoruro di idrogeno	acido fluoridrico
HCI	clor uro di idrogeno	acido clor idrico
HCN	cian uro di idrogeno	acido cian idrico

Composti binari senza ossigeno

Gli **idruri metallici** sono composti da idrogeno e metalli del I e II gruppo.

Gli **idruri covalenti** sono composti da idrogeno e semimetalli o non metalli (gruppi IV, V, VI).

Per molti idruri la IUPAC consente l'uso del **nome comune**.

Formula	Nome comune	
CH ₄	metano	
SiH ₄	silano	
NH ₃	ammoniaca	
PH ₃	fosfina	
AsH ₃	arsina	

Composti binari senza ossigeno

La formazione dei sali binari

metallo + non metallo

SALE BINARIO

idrossido + idracido

SALE BINARIO

I **sali binari** sono composti da un metallo e un non metallo.

Nomenclatura tradizionale: per distinguere due sali che si differenziano solo per il n.o. del catione metallico, si usano i suffissi **-oso** (n.o. minore) e **-ico** (n.o. maggiore).

Elemento	Numero di ossidazione	Formula	Nome tradizionale	Nome secondo Stock	Nome IUPAC
Fe	+2 +3	FeCl ₂ FeCl ₃	cloruro ferroso cloruro ferrico	cloruro di ferro(II) cloruro di ferro(III)	dicloruro di ferro tricloruro di ferro
Al	+3	Al ₂ S ₃	solfuro di alluminio	solfuro di alluminio	trisolfuro di dialluminio

Gli idrossidi

Gli **idrossidi** si possono ottenere facendo reagire gli **ossidi basici** con l'acqua.

In soluzione acquosa le loro molecole producono ioni OH-.

Nella formula, il simbolo del metallo precede il gruppo OH⁻, chiamato **ione idrossido** o **ossidrile**.

$$MgO_{(s)} + H_2O_{(l)} \rightarrow Mg(OH)_{2(aq)}$$

- **Nomenclatura IUPAC**: si usa il nome «**idrossido di**» preceduto, se necessario, dal prefisso che indica il numero di gruppi OH⁻ e seguito dal nome del catione.
- Nomenclatura tradizionale: si aggiunge il suffisso –ico (n.o. minore) o -oso (n.o. maggiore).

Gli ossiacidi

La formazione degli ossiacidi

anidride + H₂O

OSSIACIDO

Gli **ossiacidi** si possono ottenere facendo reagire gli **ossidi acidi** con l'acqua. In soluzione acquosa le loro molecole

producono ioni H+.

La loro formula inizia sempre con l'idrogeno, a cui segue il non metallo e poi l'ossigeno.

anidride solforosa

$$^{+4}$$
 $SO_{2(g)} + H_2O_{(l)} \rightarrow H_2SO_{3(l)}$ $^{+6}$ $SO_{3(g)} + H_2O_{(l)} \rightarrow H_2SO_{4(l)}$

acido solforoso

acido solforico

anidride solforica

Gli ossiacidi

- Nomenclatura IUPAC: il nome comincia con «acido», segue il nome del non metallo con il prefisso osso-, a cui si antepone il corrispondente prefisso numerico indicante gli atomi di ossigeno, e la desinenza -ico, quindi il suo numero di ossidazione posto tra parentesi.
- **Nomenclatura tradizionale**: si aggiunge il prefisso **ipo-** e il suffisso **-oso** (n.o. più basso), e il prefisso **per-** e il suffisso **-ico** (n.o. più alto) al nome del non metallo.

Tutti gli acidi che contengono più di un atomo di idrogeno sono detti acidi poliprotici.

Formula	n.o. del non metallo	Nome tradizionale	Nome IUPAC
H ₂ SO ₃	+4	acido solforoso	acido triossosolforico(IV)
H ₂ SO ₄	+6	acido solforico	acido tetraossosolforico(VI)
HNO ₂	+3	acido nitroso	acido diossonitrico(III)
HNO ₃	+5	acido nitrico	acido triossonitrico(V)
H ₂ CO ₃	+4	acido carbonico	acido triossocarbonico(IV)
H ₃ PO ₃	+3	acido fosforoso	acido triossofosforico(III)
H ₃ PO ₄	+5	acido fosforico	acido tetraossofosforico(V)
HCIO	+1	acido ipocloroso	acido ossoclorico(I)
HCIO ₂	+3	acido cloroso	acido diossoclorico(III)
HCIO ₃	+5	acido clorico	acido triossoclorico(V)
HCIO ₄	+7	acido perclorico	acido tetraossoclorico(VII)

La nomenclatura ossiacidi con più di due n° ossidazione

Nomenclatura degli ossiacidi

• IUPAC:

acido + non metallo con desinenza riferita al n.o. posto fra parentesi;

tradizionale:

acido + non metallo con suffisso relativo al n.o.

I suffissi ipo ...oso; ...ico; per ...ico

sono riferiti, in modo crescente, ai diversi n.o. del non metallo.

I poliacidi si formano per combinazione di un ossido acido e 1, 2 o 3 molecole d'acqua e

prendono rispettivamente i prefissi meta-, piro- e orto-.

Derivazione	Formula dell'acido	Nome dell'acido
$P_2O_3 + 1H_2O$	HPO ₂	acido metafosforoso
$P_2O_3 + 2H_2O$	H ₄ P ₂ O ₅	acido pirofosforoso
$P_2O_3 + 3H_2O$	H ₃ PO ₃	acido ortofosforoso
$B_2O_3 + 1H_2O$	HBO ₂	acido metaborico
$B_2O_3 + 3H_2O$	H ₃ BO ₃	acido ortoborico
SiO ₂ + 1H ₂ O	H ₂ SiO ₃	acido metasilicico
SiO ₂ + 2H ₂ O	H ₄ SiO ₄	acido orto silicico (è un'eccezione, perché dovrebbe chiamarsi pirosilicico)

I sali ternari

I **sali ternari** comprendono una parte metallica, che si scrive per prima, una non metallica e, infine, l'ossigeno.

Sono composti ionici in cui il metallo è il catione e la parte restante (residuo) è l'anione.

$$Mg(OH)_{2(aq)} + H_2SO_{4(aq)} \rightarrow MgSO_{4(aq)} + 2H_2O_{(l)}$$
 idrossido ossiacido sale acqua

La formazione dei sali ternari

idrossido + ossiacido

do idrossido cido + anidride ossido + ossiacido ossido + anidride metallo + ossiacido

SALE TERNARIO + acqua SALE TERNARIO + acqua SALE TERNARIO + acqua SALE TERNARIO

SALE TERNARIO + idrogeno

I sali ternari

- **Nomenclatura IUPAC**: si aggiunge al non metallo il prefisso **osso-**, a cui si antepone il corrispondente prefisso numerico indicante gli atomi di ossigeno, e la desinenza **-ato**, quindi il suo numero di ossidazione posto tra parentesi. Segue il nome del metallo separato da «di».
- **Nomenclatura tradizionale**: se il nome dell'acido termina in -oso, il sale assume il suffisso **-ito**; se il nome dell'acido termina in -ico, il sale assume il suffisso **-ato**.

Formula chimica	Ossiacido	Residuo	n.o. metallo	Nomenclatura IUPAC	Nomenclatura tradizionale
Na ₂ SO ₄	H ₂ SO ₄ acido solforico	SO ₄ ² -solfato	+1	tetraossosolfato(VI) di sodio	solfato di sodio
Na ₂ SO ₃	H ₂ SO ₃ acido solforoso	SO ₃ ² -solfito	+1	triossosolfato(IV) di sodio	solfito di sodio
FeSO ₄	H ₂ SO ₄ acido solforico	SO ₄ ² -solfato	+2	tetraossosolfato(VI) di ferro(II)	solfato ferroso
Fe ₂ (SO ₄) ₃	H ₂ SO ₄ acido solforico	SO ₄ ² -solfato	+3	tetraossosolfato(VI) di ferro(III)	solfato ferrico
Fe ₂ (SO ₃) ₃	H ₂ SO ₃ acido solforoso	SO ₃ - solfito	+3	triossosolfato(IV) di ferro(III)	solfito ferrico
FeSO ₃	H ₂ SO ₃ acido solforoso	SO ₃ ² -solfito	+2	triossosolfato(IV) di ferro(II)	solfito ferroso

Nomenclatura dei sali ternari:

- IUPAC: si sopprime il termine acido, si sostituisce il suffisso ico con il suffisso –ato e si specifica il nome del metallo.
- tradizionale:
 si trasformano i suffissi, ma non i prefissi.

ossiacido	sale
ipooso	ipo <mark>ito</mark>
0S0	OSO
ico	ato
perico	per <mark>ato</mark>

I sali ternari acidi o quaternari

derivano da acidi poliprotici per sostituzione di uno o più idrogeni.

$$NaOH_{(s)}$$
 + $H_2SO_{4(aq)}$ \rightarrow $NaHSO_{4(aq)}$ + $H_2O_{(l)}$
idrossido ossiacido sale acido acqua

- Nomenclatura IUPAC: si sostituisce al prefisso osso- il termine idrogeno, a cui si antepone il corrispondente prefisso numerico indicante gli atomi di idrogeno.
- Nomenclatura tradizionale: si pone il termine «acido» tra il nome dell'anione e quello del catione. Talvolta si antepone il prefisso bi- al nome del sale.

Acido	Idrogeni sostituiti	Residuo (anione)	Catione	Sale acido
H ₂ S	uno	HS-	K ⁺	KHS
H ₂ SO ₄	uno	HSO ₄	Ca ²⁺	Ca(HSO ₄) ₂
H ₂ CO ₃	uno	HCO ₃	Na ⁺	NaHCO₃
H ₃ PO ₄	uno due	H ₂ PO ₄ - HPO ₄ -	K ⁺ K ⁺	KH ₂ PO ₄ K ₂ HPO ₄

Acido	Residui dell'acido	Sale acido	Nome tradizionale	Nome IUPAC
H ₂ CO ₃ acido carbonico	-1H ⁺ → HCO ₃ ⁻ idrogenocarbonato -2H ⁺ → CO ₃ ²⁻ carbonato	NaHCO₃	bicarbonato di sodio o carbonato acido di sodio	idrogenocarbonato di sodio
H₃PO₄ acido fosforico	-1H ⁺ → H ₂ PO ₄ diidrogenofosfato	KH₂PO₄	fosfato biacido di potassio	diidrogenofosfato(V) di potassio
	-2H ⁺ → HPO ₄ ²⁻ idrogenofosfato	Na ₂ HPO ₄	fosfato acido di sodio	idrogenofosfato(V) di disodio