代数幾何まとめノート

Fefr

2024年5月22日

目次

第1章	Scheme	5
1.1	Zariski Topology	5
1.2	Algebraic Sets	5
1.3	Sheaves	5
第2章	極限	g

Scheme

第1章

1.1 Zariski Topology

atodekakuyo

1.2 Algebraic Sets

atodekakuyo

1.3 Sheaves

Definition 1.3.1. X を位相空間とする。X 上の (Pーベル群の) **前層** (presheaf) F とは 次のデータ

- Uを任意のXの開集合に対して $\mathcal{F}(U)$ はアーベル群。
- 制限写像 (restriction map) と言われる群準同型 $\rho_{U,V}:\mathcal{F}(U)\to\mathcal{F}(V)$ が任意の開集合 $V\subset U$ に対して存在する。

そして次の条件を満たす。

- (1) $\mathcal{F}(\emptyset) = 0$
- (2) $\rho_{U,U} = \mathrm{id}_{\mathcal{F}(U)}$
- (3) 任意の開集合 $W \subset V \subset U$ に対して $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$ となる。

6 第 1. SCHEME

 $s \in \mathcal{F}(U)$ を U 上の \mathcal{F} の切断 (section) という。また、 $\rho_{U,V}(s) \in \mathcal{F}(V)$ を $s|_V$ と書いて s の V への制限という。

Definition 1.3.2. 前層 \mathcal{F} が層 (sheaf) とは次の条件を満たすことをいう。

- (4) (Uniqueness) U を X の開集合とし $\{U_i\}_i$ をその開被覆とする。 $s \in \mathcal{F}(U)$ が任意 の i に対して $s|_{U_i}=0$ ならば s=0
- (5) (Glueing local sections) 上の状況で、 $s_i \in \mathcal{F}(U_i)$ が $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ を満たすならば、 $s|_{U_i} = s_i$ を満たす $s \in \mathcal{F}(U)$ が存在する。

Remark . \mathcal{B} を位相空間 X の開基で有限交叉で閉じているものとする。(つまり任意の $U, V \in \mathcal{B}$ に対して $U \cap V \in \mathcal{B}$. e.g. Spec A の開基 $\{D(f)\}_f$) このとき \mathcal{B} -前層 (\mathcal{B} -presheaf) \mathcal{F}_0 とは

- $U \in \mathcal{B}$ に対して $\mathcal{F}_0(U)$ はアーベル群。
- $V \subset U \in \mathcal{B}$ に対して群準同型 $\rho_{U,V} : \mathcal{F}_0(U) \to \mathcal{F}_0(V)$ が定まる。

としたもの。

 \mathcal{B} -層 (\mathcal{B} -sheaf) \mathcal{F}_0 から X 上の層 \mathcal{F} を作ることができる。

位相空間 X の任意の開集合 U をとり、 $\{U_i\}_i$ をその開被覆とする。 $(U_i \in \mathcal{B})$

$$\mathcal{F}(U) := \left\{ (s_i)_i \in \prod_i \mathcal{F}_0(U_i) \mid$$
 任意の i, j に対して $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \right\}$

と定義する。するとこれは開被覆によらない。実際 $\mathcal{F}(U)_{U_i}$ を開被覆 $\{U_i\}_i$ による $\mathcal{F}(U)$ とし、 $\{V_j\}_j$ を別の開被覆とすると、 $\{U_i\cap V_j\}_{i,j}$ はこれら 2 つの細分である。 $\mathcal{F}(U)_{U_i}\to\mathcal{F}(U)_{U_i\cap V_j}$ なる群準同型を $(s_i)_i\mapsto (s_i|_{U_i\cap V_j})_{i,j}$ で定義できる。実際

$$\begin{aligned} s_i|_{U_i\cap V_j}\Big|_{(U_i\cap V_j)\cap (U_{i'}\cap V_{j'})} &= s_i\Big|_{(U_i\cap V_j)\cap (U_{i'}\cap V_{j'})} \\ &= s_i|_{U_i\cap U_{i'}}\Big|_{(U_i\cap V_j)\cap (U_{i'}\cap V_{j'})} \\ &= s_{i'}|_{U_i\cap U_{i'}}\Big|_{(U_i\cap V_j)\cap (U_{i'}\cap V_{j'})} & (\because (s_i)_i \in \mathcal{F}(U)_{U_i}) \\ &= s_{i'}\Big|_{(U_i\cap V_j)\cap (U_{i'}\cap V_{j'})} \\ &= s_{i'}|_{U_{i'}\cap V_{j'}}\Big|_{(U_i\cap V_j)\cap (U_{i'}\cap V_{j'})} \end{aligned}$$

より $(s_i|_{U_i\cap V_i})_{i,j}\in\mathcal{F}(U)_{U_i\cap V_i}$

また、 $(s_{ij})_{ij} \in \mathcal{F}(U)_{U_i \cap V_j}$ を取ると、 $(s_{ij})_{ij} = (s_i|_{U_i \cap V_j})$ と出来るので全射 (?????) Kernel を計算すると

$$\begin{aligned} s_i|_{U_i \cap V_j} &= 0 \quad (\forall i, j) \\ s_i|_{U_i} &= s_i = 0 \quad (\forall i) \quad (\because (4)) \end{aligned}$$

よって Kernel が自明なので単射。

Definition 1.3.3. 位相空間 X 上の前層 F と $x \in X$ に対して、x での F の茎 (stalk) F_x という群が定義できる。

$$\mathcal{F}_x = \varinjlim_{U \ni x} \mathcal{F}(U)$$

ただし、U は x の開近傍をすべてを回る。U 上の切断 $s \in \mathcal{F}(U)$ に対して $x \in U$ の茎 \mathcal{F}_x への自然な群準同型の像を s_x と書いて、x での s の芽 (germ) という。

Lemma 1.3.1. $\mathcal F$ を X 上の層とする。 $s,t\in\mathcal F(X)$ が任意の $x\in X$ に対して $s_x=t_x$ ならば s=t

Proof. 差を考えれば t=0 のときを考えればいい。 $s_x=0$ $(\forall x\in X)$ とすると、x の開近傍 U_x があって $s|_{U_x}=0$ となる。 $\{U_x\}_{x\in U_x}$ は X の開被覆なので、s=0 となる。

Definition 1.3.4. X 上の 2 つの前層 F, G とする。**前層の射** α : $F \to G$ とは、X の開集 合 U に対して群準同型 $\alpha(U)$: $F(U) \to G(U)$ があって、任意の開集合の組 $V \subset U$ に対して $\alpha(V) \circ \rho_{U,V}^F = \rho_{U,V}^G \circ \alpha(U)$ を満たすことをいう。

X の任意の開集合 U に対して $\alpha(U)$ が単射ならば α は単射であるという。(全射はうまくいかんっぽい?)

 $\alpha: \mathcal{F} \to \mathcal{G}$ を X 上の前層の射とする。任意の $x \in X$ に対して α から自然に誘導される群準同型 $\alpha_x: \mathcal{F}_x \to \mathcal{G}_x$ で $(\alpha(U)(s))_x = \alpha_x(s_x)$ が X の任意の開集合 $U, s \in \mathcal{F}(U), x \in U$ で成り立つものが取れる。

 α_x が任意の $x \in X$ で全射なら α が全射であるという。

Example 1.3.2. $X = \mathbb{C} \setminus \{0\}$ としFをX上の正則関数がなす層とし、GをX上の双正則関数のなす層とする。今、任意の開集合U と任意の $f \in \mathcal{F}(U)$ に対して $\alpha(U)(f) = \exp(f)$ で定義される層の射 $\alpha: \mathcal{F} \to G$ が全射であることはよく知られている。しかし $\alpha(X): \mathcal{F}(X) \to \mathcal{G}(X)$ は全射ではない。例えば恒等写像は $\exp(f)$ と書けない。

Proposition 1.3.3. $\alpha: \mathcal{F} \to \mathcal{G}$ を X 上の層の射とする。

 α が同型 $\Leftrightarrow \alpha_x$ が同型 $(\forall x \in X)$

極限

第2章

とりあえず、帰納極限だけ述べる。射影極限は双対概念なのでまぁ頑張って。

Definition 2.0.1.(帰納系の定義)

 (Λ, \leq) を順序集合、 \mathscr{C} を圏とする。各 $\lambda \in \Lambda$ に対し、 $X_{\lambda} \in \mathrm{Ob}(\mathscr{C})$ が与えられ、 $\lambda \leq \mu$ に対して射 $\varphi_{\mu,\lambda}: X_{\lambda} \to X_{\mu}$ があって次を満たすとき、 $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ を順系 (direct system) または帰納系 (inductive system) という。しばし $\varphi_{\mu,\lambda}$ を省略して $\{X_{\lambda}\}_{\lambda \in \Lambda}$ や $\{X_{\lambda}\}_{\lambda}$ で表す。

- 任意の $\lambda \in \Lambda$ に他逸して $\varphi_{\lambda,\lambda} = \mathrm{id}_{X_{\lambda}}$
- $\lambda \leq \mu \leq \nu$ なる任意の $\lambda, \mu, \nu \in \Lambda$ に対して $\varphi_{\nu,\lambda} = \varphi_{\nu,\mu} \circ \varphi_{\mu,\lambda}$

Definition 2.0.2.(帰納系の射の定義)

 Λ を順序集合。 $\{X_{\lambda}, \varphi_{\lambda,\mu}\}, \{Y_{\lambda}, \psi_{\lambda,\mu}\}$ を Λ 上の圏 $\mathscr C$ における帰納系とする。このとき $\{X_{\lambda}\}$ から $\{Y_{\lambda}\}$ への射とは $f_{\lambda}: X_{\lambda} \to Y_{\lambda}$ なる射の族 $\{f_{\lambda}\}$ で、任意の $\lambda \leq \mu$ に対して $\psi_{\lambda,\mu} \circ f_{\mu} = f_{\lambda} \circ \varphi_{\lambda,\mu}$ となるものを言う。

Definition 2.0.3. \mathscr{C} を圏とし、 Λ を順序集合とする。 $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ を \mathscr{C} の帰納系とする。このとき $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ の順極限 (direct limit) または帰納的極限 (inductive limit) または帰納極限とは、 \mathscr{C} の対象 $\varinjlim_{\lambda \in \Lambda} X_{\lambda} \in \mathrm{Ob}(\mathscr{C})$ と射の族 $\{\varphi_{\lambda}: X_{\lambda} \to \varinjlim_{\lambda \in \Lambda} X_{\lambda}\}_{\lambda \in \Lambda}$ の組 $\{\varinjlim_{\lambda \in \Lambda} X_{\lambda}, \varphi_{\lambda}\}$ で、次の条件を満たすものをいう。

- $-\lambda \leq \mu$ に対して $\varphi_{\mu} \circ \varphi_{\mu,\lambda} = \varphi_{\lambda}$
- $\lambda \leq \mu \ \text{に対して} \ f_{\mu} \circ \varphi_{\mu,\lambda} = f_{\lambda} \ \text{を満たす任意の射の族} \ \{f_{\lambda}: X_{\lambda} \to Y\}_{\lambda \in \Lambda} \ \text{に対し}$ て、 $f: \lim_{\substack{\lambda \in \Lambda \\ \lambda \in \Lambda}} X_{\lambda} \to Y \ \text{が一意に存在して}$

$$f \circ \varphi_{\lambda} = f_{\lambda} \quad (\forall \lambda \in \Lambda)$$

を満たす。

10 第 2. 極限

 \mathbf{Remark} . 一般の圏では帰納極限や射影極限は存在するとは限らない。しかし、存在するとすれば、同型を除いて一意である。

Proposition 2.0.1. 帰納極限は存在すれば、同型を除いて一意である。

Proof. 証明は後で書く。 ■