# Lecture 3: Discrete Random Variables

**Professor Ilias Bilionis** 

#### Expectation of a discrete random variable



#### Expectation of a random variable

The expectation of a random variable is:

$$\mathbb{E}[X] := \sum_{x} x p(x)$$

- You can think of the expectation as the value of the random variable that one should "expect" to get.
- However, take this interpretation with a grain of salt because it may be a value that the random variable has a zero probability of getting...



#### Properties of the expectation

• For any function g(x):

$$\mathbb{E}[g(X)] = \sum_{x} g(x)p(x)$$



## Properties of the expectation

Take any constant c:

$$\mathbb{E}[X+c] = \mathbb{E}[X] + c$$

$$\mathbb{E}[X+c] = \sum_{x} (x+c) p(x) = \sum_{x} x p(x) + \sum_{x} c p(x)$$

$$= \mathbb{E}[X] + C \cdot \sum_{x} p(x)$$



## Properties of the expectation

• For any  $\lambda$  real number:

$$\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$$

$$\mathbb{E}[\lambda X] = \sum_{x} \lambda^{x} P(x) = \lambda \cdot \sum_{x} x$$

