LinearSVMs_demo

November 30, 2020

1 Demo: Linear hard-margin SVM

```
[280]: import numpy as np
  import matplotlib.pyplot as plt
  import cvxopt
  from cvxopt import matrix
  from cvxopt import solvers as cvx_solver
  from sklearn.metrics import f1_score
  from sklearn.metrics import accuracy_score
```

1.1 Generating test data


```
[283]: print("Size of training data points: ", np.shape(X))
print("Size of training data labels: ", np.shape(y))
```

Size of training data points: (400, 2) Size of training data labels: (400,)

1.2 Building our own classifier

```
[284]: import qpsolvers import numpy.matlib
```

```
def train(X,y):
    # dimensions of the training data
    nsamples = np.shape(X)[0]
    ndims = np.shape(X)[1]

# constructing the quadratic cost matrix
P = np.zeros((ndims+1,ndims+1))
P[0:ndims,0:ndims] = np.eye(ndims)
P = P + np.eye(ndims+1)*1e-3
    print(P)
# constructing the quadratic cost vector
q = np.zeros(ndims+1)
```

```
# constructing the linear inequality matrix
    G = np.zeros((nsamples,ndims+1))
    G[:,0:ndims] = np.multiply(np.array(np.matlib.repmat(y,ndims,1)).T,X)
    G[:,ndims] = y
    G = -G
    print(G)
    # constructing the linear inequality vector
   h = -np.ones((nsamples, 1))[:, 0]
    # solving the quadratic optimization problem
    z = qpsolvers.solve_qp(P, q, G, h)
    w = z[0:ndims]
    b = z[ndims]
    return w, b
def classify(w,b,X):
    nsamples = np.shape(X)[0]
   ndims = np.shape(X)[1]
   print(w)
    # signed distance
    r = np.matmul(w, X.T) + b
    return r/abs(r)
```

1.2.1 Training the classifier

```
[286]: w,b = train(X,y)
     [[1.001e+00 0.000e+00 0.000e+00]
      [0.000e+00 1.001e+00 0.000e+00]
      [0.000e+00 0.000e+00 1.000e-03]]
      [[ -4.072352
                  -17.28075349 -1.
                                          ]
      [ -2.69027176 -17.39407307 -1.
                                          1
      [ -2.88036776 -18.92487972 -1.
                                          1
      [ 14.31724371 18.94818693 1.
                                          ]
      ]
      [ 15.52057954 20.17687154 1.
                                          ]]
[287]: print("Classification hyperplane defined by")
      print("w: ", w)
      print("b: ", b)
```

Classification hyperplane defined by

```
w: [-0.26838952 -0.03937911]
     b: 3.014885252233555
[288]:
         nsamples = np.shape(X)[0]
         ndims = np.shape(X)[1]
         G = np.zeros((nsamples,ndims+1))
         print(G.shape)
         G[:,0:ndims] = np.multiply(np.array(np.matlib.repmat(y,ndims,1)).T,X)
         print(G)
         G[:,ndims] = y
         G = -G
         print(G)
     (400, 3)
     [[ 4.072352
                    17.28075349
                                 0.
                                          1
      [ 2.69027176 17.39407307
                                          1
                                 0.
      [ 2.88036776 18.92487972
                                          1
                                 0.
      [-14.31724371 -18.94818693
                                          1
                                 0.
                                          1
      [-14.21610718 -19.13644022
                                 0.
                                          ]]
      [-15.52057954 -20.17687154
                                 0.
     [[ -4.072352
                  -17.28075349 -1.
                                          1
      [ -2.69027176 -17.39407307 -1.
                                          1
      [ -2.88036776 -18.92487972 -1.
                                          1
      1
                                          1
      1.
      [ 15.52057954 20.17687154
                                          11
                                 1.
```

1.2.2 Classification result

```
plt.ylabel("Size")
plt.show()
```

[-0.26838952 -0.03937911]

1.3 But what about non-linearly-separable data?

1.3.1 Can the hard-margin classifier handle this case?

No, Hard Margin classifier cann't handle this case

```
[292]: len(y)
[292]: 400
```

1.3.2 Soft Margin SVM classifier

```
[294]: def train_soft(X,y,C):
    #Initializing values and computing H. Note the 1. to force to float type
    m,n = X.shape
    y = y.reshape(-1,1) * 1.
    #print(y)
    X_dash = y * X
    #print(X_dash)
    H = np.dot(X_dash , X_dash.T) * 1.

#Converting into cvxopt format
    P = matrix(H)
    #print(P)
    q = matrix(-np.ones((m, 1)))
    G = matrix(np.vstack((np.eye(m)*-1,np.eye(m))))
```

```
h = matrix(np.hstack((np.zeros(m), np.ones(m) * C)))
    A = matrix(y.reshape(1, -1))
    b = matrix(np.zeros(1))
    #Run solver
    sol = cvx_solver.qp(P, q, G, h, A, b)
    # Lagrange multipliers
    a =np.array(sol['x'])
    # Support vectors have non zero lagrange multipliers
    # Weight vector
    w = ((y * a).T @ X).reshape(-1,1)
    # Intercept
    S = (a > 1e-6).flatten()
    b = y[S] - np.dot(X[S], w)
    return w,b.mean()
def classify(w,b,X):
    nsamples = np.shape(X)[0]
    ndims = np.shape(X)[1]
    #print(w.flatten())
    w=w.flatten()
    # signed distance
    r = np.dot(w, X.T) + b
    #print(r)
    return r/abs(r)
```

```
[295]: w,b = train_soft(X,np.array(y),1000.1)
y_pred = classify(np.array(w),b,X)
print("Accuracy:",accuracy_score(y,y_pred))
```

Accuracy: 0.9525

```
plt.scatter(salmon[:,0],salmon[:,1])
plt.scatter(seabass[:,0],seabass[:,1])
plt.legend(["Salmon", "Sea bass"])
plt.xlabel("Lightness")
plt.ylabel("Size")
plt.show()
```



```
[298]: #'target_names': array(['setosa', 'versicolor', 'virginica']
       data1
[298]:
            sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
                           5.1
                                               3.5
                                                                   1.4
                                                                                      0.2
       0
                           4.9
                                                                                      0.2
       1
                                               3.0
                                                                   1.4
       2
                           4.7
                                                                                      0.2
                                               3.2
                                                                   1.3
       3
                           4.6
                                               3.1
                                                                                      0.2
                                                                   1.5
       4
                           5.0
                                               3.6
                                                                   1.4
                                                                                      0.2
       . .
                           . . .
                                               . . .
                                                                   . . .
                                                                                       . . .
                           6.7
                                                                   5.2
                                                                                      2.3
       145
                                               3.0
       146
                           6.3
                                               2.5
                                                                   5.0
                                                                                      1.9
       147
                           6.5
                                                                   5.2
                                                                                      2.0
                                               3.0
                           6.2
                                                                   5.4
                                                                                      2.3
       148
                                               3.4
       149
                           5.9
                                               3.0
                                                                   5.1
                                                                                      1.8
            target
               0.0
       0
       1
                0.0
       2
                0.0
       3
               0.0
       4
               0.0
                . . .
       145
                2.0
       146
                2.0
       147
                2.0
       148
                2.0
       149
               2.0
       [150 rows x 5 columns]
[299]: #Setosa=-1 and Non Setosa=1
       data2=data1.replace({'target': {2:1,0:-1}})
       y=data2['target']
       data3=data2.drop(['target',], axis=1)
       X=np.array(data3)
       у
[299]: 0
             -1.0
       1
             -1.0
       2
             -1.0
       3
             -1.0
       4
             -1.0
              . . .
       145
              1.0
              1.0
       146
              1.0
       147
```

```
148
             1.0
      149
             1.0
      Name: target, Length: 150, dtype: float64
[300]: from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30,__
        →random_state=1, stratify=y)
[301]: import math
      C_list=[0.1,0.5,1,5,10,100]
      F_score_list=[]
      for C in C_list:
          w,b = train_soft(np.array(X_train),np.array(y_train),C)
           #print(w)
          #print(b)
          y_pred = classify(np.array(w),b,np.array(X_test))
           #print("Accuracy:",accuracy_score(y_test,y_pred))
          Accuracy_score=f1_score(y_test, y_pred)
          print('C value',C, " Accuracy:",accuracy_score(y_test,y_pred), '__
        →Accuracy(F-score)', Accuracy_score)
           #print(Accuracy_score)
          F_score_list.append(Accuracy_score)
      plt.plot([str(x) for x in C_list],F_score_list)
      plt.xlabel('C value')
      plt.ylabel('Accuracy(F-Score)')
      plt.show()
      C value 0.1 Accuracy: 1.0 Accuracy(F-score) 1.0
      C value 0.5 Accuracy: 1.0 Accuracy(F-score) 1.0
      C value 1 Accuracy: 1.0 Accuracy(F-score) 1.0
      C value 5 Accuracy: 1.0 Accuracy(F-score) 1.0
      C value 10 Accuracy: 1.0 Accuracy(F-score) 1.0
      C value 100 Accuracy: 1.0 Accuracy(F-score) 1.0
```



```
[302]: from sklearn.metrics import classification_report
       from sklearn.metrics import confusion_matrix
       import itertools
       #best C parameter linear SVM model
       w,b = train_soft(np.array(X_train),np.array(y_train),C=0.1)
       y_pred = classify(np.array(w),b,np.array(X_test))
       # Generate a classification report
       cm_plot_labels = ['Setosa', 'non Setosa']
       # For this to work we need y_pred as binary labels not as probabilities
       #y_pred_binary = np.where(predictions > 0.5, 1, 0)
       report = classification_report(y_test, y_pred, target_names=cm_plot_labels)
       print(report)
       def plot_confusion_matrix(cm, classes,
                                 normalize=False,
                                 title='Confusion matrix',
                                 cmap=plt.cm.Blues):
           This function prints and plots the confusion matrix.
           Normalization can be applied by setting `normalize=True`.
           if normalize:
               cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
               print("Normalized confusion matrix")
```

```
else:
        print('Confusion matrix, without normalization')
    print(cm)
   plt.imshow(cm, interpolation='nearest', cmap=cmap)
   plt.title(title)
   plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")
    plt.ylabel('True label')
   plt.xlabel('Predicted label')
    plt.tight_layout()
# argmax returns the index of the max value in a row
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(cm, cm_plot_labels, title='Confusion Matrix')
```

	precision	recall	f1-score	support
Setosa	1.00	1.00	1.00	15
non Setosa	1.00	1.00	1.00	30
accuracy			1.00	45
macro avg	1.00	1.00	1.00	45
weighted avg	1.00	1.00	1.00	45

Confusion matrix, without normalization [[15 0] [0 30]]


```
[304]: #'versicolor=-1', 'non versicolor=1'
      data2=data1.replace({'target': {1:-1,0:1,2:1}})
      y=data2['target']
      data3=data2.drop(['target',], axis=1)
      X=np.array(data3)
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30,__
        →random_state=1, stratify=y)
[305]: C_list=[0.0001,0.001,0.01,0.1,0.5,1,5,10.1,100.1,1000.1]
      F_score_list=[]
      for C in C_list:
          w,b = train_soft(np.array(X_train),np.array(y_train),C)
          y_pred = classify(np.array(w),b,np.array(X_test))
          Accuracy_score=f1_score(y_test, y_pred)
          print('C value',C, " Accuracy:",accuracy_score(y_test,y_pred), '__
       →Accuracy(F-score)', Accuracy_score)
          F_score_list.append(Accuracy_score)
      plt.plot([str(x) for x in C_list],F_score_list)
      plt.xlabel('C value')
      plt.ylabel('Accuracy(F-Score)')
      plt.show()
```

C value 0.0001 Accuracy: 0.66666666666666 Accuracy(F-score) 0.8 C value 0.001 Accuracy: 0.666666666666666666 Accuracy(F-score) 0.8


```
[306]: from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    import itertools
    #best C parameter linear SVM model
    w,b = train_soft(np.array(X_train),np.array(y_train),C=0.01)
    y_pred = classify(np.array(w),b,np.array(X_test))
    # Generate a classification report
    cm_plot_labels = ['versicolor', 'non versicolor']
    # For this to work we need y_pred as binary labels not as probabilities
    #y_pred_binary = np.where(predictions > 0.5, 1, 0)

report = classification_report(y_test, y_pred, target_names=cm_plot_labels)

print(report)
```

```
# argmax returns the index of the max value in a row
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(cm, cm_plot_labels, title='Confusion Matrix')
```

	precision	recall	f1-score	support
versicolor non versicolor	0.80 0.72	0.27 0.97	0.40 0.83	15 30
accuracy macro avg weighted avg	0.76 0.75	0.62 0.73	0.73 0.61 0.69	45 45 45

Confusion matrix, without normalization [[4 11] [1 29]]

2 Excercise 3: To make a multi-class classifierwe could simply make a one vs the rest classification for all the classes. E.g. for four classes: 1 vs 2-3-4, then 2 vs 1-3-4 then 3 vs 1-2-4 and finally 4 vs 1-2-3.