Mathematics Department

Course: ATMAA

Topic Title: Growth & Decay in Sequences

Test 1

Student Name:	Answers

Special Instructions: Calculator Free

Time Allowed: 40 mins

Formula Sheet Allowed

Marks: / 35

46

Question 1.

Find the:

(2, 2, 1:5 marks)

Consider the sequence:

a) recursive rule for this sequence.

b) rule for the n^{th} term of this sequence.

Tn =
$$a+(n-1)d$$
.

= $18+(n-1)7$

= $18+7n-7$.

Tn = $7n+11$ V

c) 50^{th} term of this sequence.

$$T_{50} = 7(50) + 11$$

$$= 361 \quad \checkmark$$

Question 2.

(1, 1, 1: 3 marks)

Find the first 5 terms of the sequences given by the following recursive definitions.

a)
$$T_{n+1} = T_n - 3$$
, $T_1 = 78$
 $78, 75, 72, 69, 66$

b)
$$T_n = 2T_{n-1} - 6$$
, $T_1 = 3$

$$3,0,-6,-18,-42$$
 = -6
 V $\tau_4=2(-6)-6$
= -18

$$76 = 2(-18) - 6$$

$$= -36 - 6$$

$$= -142$$

c)
$$T_{n+1} = T_n + T_{n-1}$$
, $T_1 = 2$, $T_2 = 3$

Question 3.

(2, 2: 4 marks)

Consider the sequence:

a) Find the recursive rule for this sequence.

5

b) Given the n^{th} term is $T_n = a \times b^{n-1}$, find a and b.

Question 4.

(1, 1, 1: 3 marks)

For each of the following first order recurrence relations determine if they have a long term:

- (i) increasing
- (ii) decreasing or
- (iii) steady state solution

(a)
$$T_{n+1} = 0.2T_n + 2$$
, $T_1 = 10$ Steady State

(b)
$$T_{n+1} = 3T_n + 1$$
, $T_1 = 2$ (notes in

(c)
$$T_{n+1} = 2.2T_n - 3$$
, $T_1 = -1$ Decreasing

The eighth term and twelfth term of an arithmetic sequence are 24 and 40 respectively.

a) Find the recursive rule for the sequence.

b) Find the fifth term

$$Tn = -4 + (n-1) + T_5 = 4(5) - 8$$

= -4 + 4n - 4 = 12.

Question 6.

(2, 2: 4 marks)

The n^{th} term of a geometric sequence is described by the rule $T(n) = 4 \times 2^n$, where $n = 1, 2, 3, 4, 5 \dots$

a) Find the first 5 terms of the sequence.

$$T_1 = L_{XQ}$$
 $T_4 = 64$
 $T_2 = L_{XQ}$ $T_5 = 128$ V
 $= 16$
 $T_3 = L_{XQ}$
 $= 32$

b) State the recursive rule for this sequence.

$$Tn+1=2Tn$$
, $T_1=8$.

A wedding photographer is quoting the following price for producing a wedding album for the newlyweds: A fixed minimum cost of \$150, with 80 photos in a hard-backed album. Further photos may also be added in lots of 10 photos at \$0.70 per photo, up to a maximum of 200 photos.

He wants to set up a table below, showing:

- \bullet the type of album where T is the basic album, with 80 photos at a cost of \$150
- the number of photos in each of the possible album sizes
- the cost in dollars of each of the different albums.
- a) Complete each of the blank cells of the table.

		4_
0.70	× ()	= 7.00
		1

Type	T ₁	T ₂	T ₃	T ₄	T ₅	T _n
Number of pictures	80	9:0	100	110	120.	200
\$ cost of album	\$150	157	164	171	173	234

/

(200=10~+70.) V

b) Write a rule that will calculate the number of pictures in album type = T_n .

c) Write a rule that will calculate the cost of album type = $\mathcal{C}_{n.}$

 $77 Cn = a_{7}(n-1)dV$ = 150 + 7n-7 V Cn = 143 + 7n