Undeci	dable p	roblems	for CFL	2	
Theorem	n: L= {	$G \mid LCC$	1 2 2 mg		
	1S CV	rdccidat	ole, wher	e G 15	a CFG.
	We have	e en l. 20	an ord	leans ve	lelid
_	We have		ode is lable		
	10 11.12	003	v de cano	_	
Valid	Computa	ation H	istories		
	Given M	$1, \alpha$ a	valid c	om putat	างก
	Given M history is s.t (a string	# < 1 # < 2	# ~ #	# 0 t
	s.t C	α_1 is a	n inital	sonfigura	tion
	(2	$\alpha_i \stackrel{1}{\longrightarrow} c$	X C+1		
	3	for som	ej, α_j	îs a	
		halting	configu	ration	
Ena	oding conj	ignration.	ors + w,	W2 W3	Nq
				2 -	-
				1	
			ſ	position tape-	-head

VALCOMPS
$$(M, x) = Set$$
 of all valid computation histories of M on x
 $-\alpha_1 = + x_1 x_2 x_3 ... x_n$
 $-\alpha_1 = + x_1 x_2 x_3 ... x_n$
 $-\alpha_2 = + \alpha_1 \alpha_2 \alpha_3 ... x_n$
 $-\alpha_2 = + \alpha_1 \alpha_2 \alpha_3 ... x_n$
 $-\alpha_3 = + \alpha_1 \alpha_2 \alpha_3 ... x_n$
 $-\alpha_4 = + \alpha_1 \alpha_2 \alpha_3 ... x_n$
 $-\alpha_4 = + \alpha_1 \alpha_2 \alpha_3 ... x_n$
 $-\alpha_4 = + \alpha_4 \alpha_4 \alpha_4 \alpha_5 x_1 x_1 x_2$

if $S(\alpha_1, \alpha_1) = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$
 $S(\alpha_1, \alpha_2) = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$
 $S(\alpha_1, \alpha_2) = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$

Claim: VALCOMPS $(\alpha_1, \alpha_2) = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$

or VALCOMPS $(\alpha_1, \alpha_2) = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$
 $S(\alpha_1, \alpha_2) = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$

or $S(\alpha_1, \alpha_2) = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$
 $S(\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$
 $S(\alpha_$

Theorem: VALCOMPS (M, n) is context-free When is # \alpha, # \alpha # \dag # \dag # \dag # in VALCOMPS (M, 2) ? (i) α, is - the initial configuration of M on α ② Each xi is a string of Symbols
of the form oi or oi and exactly one symbol of has a state below it, & only the leftmost symbol has + on the 3 starte & ends with # 1 tor or appears in one of the xis $6) \propto i \xrightarrow{1} \propto i + i$

A string $\#\alpha_1 \#\alpha_2 \# \cdots \#\alpha_n$ is not in VALCOMPS (M, 2) iff The string is us 1, U L2 U L3 U L4 U L5 Observation: L, Lz, Lz, Ly are all regular $\delta(2,a) = (2',b,L)$ # + a b a a b b # + a b a b b # - - - - 2 - - - - - 2' - - a a a a a a b b b b - - - - - - - - - - $\delta(2,b)=(2,a,L)$ a a a a a a b b b b - - - - - - -8(9, a) = (9, b, R)