Couche Liaison de Données & Réseaux Locaux

UE LU3IN033 Réseaux 2020-2021

Prométhée Spathis promethee.spathis@sorbonne-universite.fr

Programme de l'UE LU3IN033

11 Web & DNS	Application	
	Transport	10 TCP (suite) 9 UDP & TCP
8 Routage7 DHCP et NAT6 Paquets IP5 Adresses IP	Réseau	
Liaison	LLC MAC	4 Réseaux d'entreprise 3 Liaison
	Physique	2 Physique

Plan du cours

- Support de transmission
 - point-à-point
 - partagé (à diffusion naturelle) : bus, anneau, étoile
- Topologie
 - physique
 - logique
- Contrôle d'accès
 - accès statique
 - accès dynamique
- Normes IEEE 802
 - 802.3 et Ethernet
 - 802.11 et Wifi
- Contrôle d'erreur
 - Codes de parité : VRC et LRC
 - Codes polynomiaux : CRC

Méthode de contrôle d'accès

UE LU3IN033 Réseaux 2020-2021

Prométhée Spathis promethee.spathis@sorbonne-universite.fr

Types de réseaux

Réseaux point à point

- Chaque lien connecte:
 - deux stations
 - ces stations peuvent être des routeurs
 - elles exécutent un protocole liaison de données en mode point à point :
 - HDLC, PPP
- Topologie adaptée aux réseaux longue distance

Réseaux à diffusion naturelle

- Plusieurs stations partagent un même support de transmission
 - une trame est reçue par toutes les stations connectées au support
- Nécessitent des méthodes de contrôle d'accès au support
- Topologie adaptée aux réseaux locaux

– Exemple : Ethernet, WiFi

Méthodes de contrôle d'accès

- Support de transmission partagé
 - Plusieurs stations sont connectées au même support
 - Les transmissions sont reçues par l'ensemble des stations
 - Une copie suffit à une trame pour être reçue de tous
 - Des transmissions simultanées entraînent des collisions
 - Les collisions brouillent les communications et les rendent inintelligibles

- Méthodes de contrôle d'accès
 - Algorithmes distribués pour partager le support
 - Ces algorithmes déterminent quelle station peut transmettre à un instant donné
 - Contrôler l'accès revient à partager la bande passante parmi toutes les stations (équité)

Topologies physiques courantes des réseaux locaux

Bus

Anneau

Etoile

Arbre

Les méthodes de contrôle d'accès sont conçues en tenant compte de la topologique logique!

8

Topologie physique vs logique

Topologie physique

- La topologie physique décrit l'agencement des nœuds du réseau et les liens les reliant entre eux
 - Position des nœuds
 - Distance entre les nœuds
 - Connectivité

Topologie logique

- La topologie logique décrit les nœuds et liens qu'emprunte une trame
- Exemple : étoile vs bus
 - Si le concentrateur diffuse les données sur toutes ces interfaces :
 - La topologie logique d'une étoile est identique à celle d'un bus

Méthodes de contrôle d'accès

- Les méthodes de contrôle d'accès
 - Algorithmes distribués qui déterminent la (les) station(s) qui peut (peuvent) transmettre à un instant donné
 - Partage de la bande passante parmi toutes les stations du réseau
 - temps passé à transmettre vs temps passé à attendre son tour
 - problème d'équité
 - Elles prennent en compte la topologie logique (et non physique)
- Classification des méthodes de contrôle d'accès
 - accès statique
 - la bande passante est répartie de façon invariante dans le temps
 - accès dynamique
 - la bande passante est allouée à la demande

\$

13

Classification des méthodes de contrôle d'accès

- Accès statique
 - accès multiple à répartition en fréquence
 - accès multiple à répartition dans le temps
- Accès dynamique
 - méthodes d'accès dynamique à allocation déterministe
 - le polling
 - le jeton
 - non adressé
 - adressé
 - méthodes d'accès dynamique à allocation aléatoire
 - Aloha
 - Carrier Sense Multiple Access
 - persistant, non-persistant, p-persistant
 - collision detection: 802.3 Ethernet
 - collision avoidance: 802.11 Wifi

Méthodes d'accès statique

répartition en fréquence

fréquences

- La bande passante est divisée en sousbande
 - une sous-bande allouée par station
 - toutes les stations peuvent transmettre simultanément
- Méthode peu efficace si stations inactives
- Redécoupage de la BP si ajout ou retrait de stations

répartition dans le temps

- Le temps est divisé en intervalles de temps (time slots)
 - les stations émettent à tour de rôle dans le même ordre
- Méthode peu efficace si stations
- Redécoupage du temps si ajout ou retrait de stations

Méthodes d'accès statique vs dynamique

- Les méthodes d'accès statique sont adaptées si :
 - le nombre de stations actives est :
 - réduit
 - fixe
 - connu à l'avance
 - les trafics sont prévisibles et à débits constants
- Les méthodes d'accès statique ne sont pas adaptées si :
 - le nombre de stations actives varie dans le temps
 - les stations génèrent un trafic sporadique
 - c'est le cas des réseaux informatiques (de données)
- Nécessité de méthodes qui permettent l'allocation dynamique de la bande passante
 - allocation en fonction des demandes immédiates

- Méthodes d'accès dynamique à allocation déterministe
 - le polling
 - le jeton
 - non adressé
 - adressé
- Méthodes d'accès dynamique à allocation aléatoire
 - Aloha
 - Carrier Sense Multiple Access

Le polling (1)

17

- Polling
 - Méthode centralisée :
 - Station primaire : maître
 - Stations secondaires : esclaves
 - Le maître interroge (poll) les esclaves à tour de rôle
 - Les esclaves répondent :
 - positivement avec les données à transmettre le cas échéant
 - négativement sinon
- Deux variantes du polling selon l'ordre du polling
 - Roll-call polling (Bluetooth)
 - topologie logique : étoile
 - Hub polling
 - topologie logique : anneau

Le polling (2)

19

Le jeton

- Méthode distribuée
 - Pas de station maître (primaire)
- Le jeton est une trame spéciale
 - une seule copie sur le réseau
 - deux états possibles :
 - libre
 - occupé
- Topologies logiques concernées :
 - Anneau : jeton non adressé
 - sens de circulation naturel
 - Bus : jeton adressé
 - chaque station connaît
 - son prédécesseur
 - son successeur
 - le jeton est passé de successeur en successeur

Jeton adressé

Le jeton non adressé

- Une station qui désire transmettre
 - attend de recevoir le jeton à l'état libre
 - change l'état du jeton à l'état occupé
 - accole le jeton à sa trame de données
 - les trames de données contiennent :
 - l'adresse de la source
 - l'adresse de la destination
 - un bit d'acquittement initialement non positionné
- Les stations inspectent :
 - l'état du jeton
 - si occupé :
 - si l'adresse destination est la sienne :
 - » elle prélève une copie de la trame
 - » elle change le bit d'acquittement
 - » passe la trame initiale au voisin suivant
 - si l'adresse source est la sienne :
 - » elle retire la trame et libère le jeton état libre
 - si libre :
 - elle transmet si elle le désire

Méthodes d'accès dynamique à allocation aléatoire (1)

- une station émet dès lors qu'elle le souhaite
- en cas de collision, la station réémettra sa trame au terme d'un délai aléatoire
- au bout de N collisions successives, la station abandonne
- Efficacité : 18%
 - rapport = nombre de transmissions en succès / nombre total de transmissions

Slotted Aloha

- le temps est découpé en intervalles temps
 - durée de transmission d'une trame
- les stations ne peuvent émettre qu'en début d'intervalle

• Efficacité: 36%

Méthodes d'accès dynamique à allocation aléatoire (2)

Carrier Sense Multiple Access

- CSMA reprend le Pure Aloha
 - avec une "écoute" du canal avant d'émettre : la station n'émet que si le canal est libre
- Plusieurs variantes selon la décision prise par la station émettrice si le canal occupé :
 - CSMA persistant
 - écoute persistante du canal
 - dès qu'il devient libre, émettre
 - CSMA non persistant
 - faire une nouvelle tentative au bout d'un temps aléatoire
 - CSMA p-persistant
 - écoute persistante du canal
 - dès qu'il devient libre,
 - avec une probabilité p, émettre
 - avec une probabilité (1-p), attendre un délai et aller en 1

Méthodes d'accès dynamique à allocation aléatoire (3)

Carrier Sense Multiple Access / Collision Detection

- CSMA/CD est
 - la méthode utilisée par Ethernet
 - standardisée par la norme IEEE 802.3
- CSMA/CD reprend les principes du CSMA
 - une station qui émet, continue à écouter le canal pendant sa transmission
 - elle détecte les collisions en comparant le signal émis à celui qu'elle reçoit
 - utilisation d'un transceiver : transmitter-receiver
 - en cas de collision, chaque station impliquée déroule un algorithme de reprise
 - utilisation de temps d'attente aléatoire pour réduire les risques de nouvelles collisions

- Une collision est détectée en comparant le signal émis et le signal reçu
 - S1 et S2 terminent leur transmission avant de recevoir le signal brouillé
 - Collision non détectée

S3 -

S3

25

Détection des collisions

- Une collision est détectée en comparant le signal émis et le signal reçu
 - S1 et S2 doivent transmettre suffisamment longtemps pour recevoir le signal brouillé en cas de collision

Une collision est détectée en comparant le signal émis et le signal reçu

- S1 et S2 doivent transmettre suffisamment longtemps pour recevoir le signal brouillé en cas de collision
- Quelle est la durée min de transmission idéale ?

27

Détection des collisions

• Période de vulnérabilité (tp)

S3

- Durée qui s'écoule après le début d'une transmission et durant laquelle une autre transmission entraînera une collision
- Échec des deux transmissions

\$3 ----

- Fenêtre de collision $(t_t \ge 2. t_p)$
 - Durée qui s'écoule entre le début d'une transmission et l'instant au delà duquel une transmission sera en succès

29

Détection des collisions

- Une collision est détectée en comparant le signal émis et le signal reçu
 - S3 ne transmet pas et ne peut donc interpréter le signal reçu comme résultant d'une collision

- Jam sequence
 - Signal émis afin d'informer toutes les stations (y compris celles qui n'étaient pas en transmission) d'une collision

CSMA/CD: définitions

- Période de vulnérabilité
 - intervalle de temps pendant lequel une station éloignée peut détecter (à tort) le canal libre et transmettre
 - égale au maximum au temps de propagation entre les 2 stations les plus éloignées sur le support
- Fenêtre de collision (time-slot)
 - délai maximum qui s'écoule avant qu'une station en cours de transmission détecte une collision
 - délai au bout duquel une station est certaine d'avoir réussi sa transmission
 - égale à deux fois le temps de propagation d'un signal sur le support
- Séquence de brouillage (jam sequence)
 - séquence de brouillage envoyée par une station dès qu'elle détecte une collision, afin d'en informer toutes les stations du réseau
- Délai inter-trame (interframe gap)
 - silence minimum entre 2 trames successives
 - permet à toutes les autres stations de transmettre à leur tour
 - partage équitable de la bande passante

CSMA/CD: procédures

- 1. Transmission d'une trame pour la première fois :
 - le support est occupée
 - attendre qu'il le devienne
 - le support est libre
 - commencer à transmettre en continuant à écouter le support
 - si collision détectée : procédure de résolution de collision (2)
 - pas de collision : remettre à 0 le compteur de retransmissions et terminer la transmission
- 2. Résolution de collision :
 - transmission d'une signal de brouillage (jam signal)
 - incrémenter le compteur de retransmission
 - si le nombre maximal de retransmission est atteint
 - abandon de la transmission
 - sinon
 - calculer la durée du retrait aléatoire en fonction du nombre de collisions
 - attendre pour cette durée avant d'aller à la procédure de transmission (1)

55

Retrait exponentiel

- Algorithme de calcul du délai aléatoire d'attente
 - détermine D, l'instant de retransmission d'une trame qui a subi une ou plusieurs collisions
- Calcul de l'intervalle dans lequel la valeur de *D* est tirée aléatoirement
 - l'intervalle croît avec n le nombre de collisions subjes
 - des collisions successives indiquent que le réseau est chargée
 - éviter de mettre de l'huile sur le feu
- Lorsque n atteint 16, il y a abandon de la transmission

Backoff (D);

n : nombre total de
collisions déjà subies par
la trame
k = min(n, 10)
tirage d'une variable
aléatoire M telle que
0 <= M < 2^k
D = M * time-slot
return (D)

Normalisation IEEE des LAN

Définition IEEE d'un LAN

« A datacomm system allowing a number of independent devices to communicate directly with each other, within a moderately sized geographic area over a physical communications channel of moderate data rates »

OSI vs IEEE

La couche liaison de données selon l'IEEE

- 2 sous-couches
 - LLC Logical link control
 - MAC Medium access control
- Logical Link Control
 - fournit la plupart des fonctions de la couche liaison de données
 - contrôles d'erreur et de flux
- Medium Access Control
 - définit la méthode de contrôle d'accès au support
 - évite les collisions
 - partage équitablement la BP

37

Les normes IEEE 802.*

Réseau										
LLC	802.2 LLC									
MAC	802.3 CSMA/CD			802.11 CSMA/CA (Wifi)				802.5 Token Ring		
PHY	802.3 (10Base5)	802.3a (10Base2)	802.3b (10BROAD36)		802.11 (DSSS/FHSS)	802.3b (HR-DSSS)	802.3g (ERP-OFDM)			

Encapsulation IEEE

40

802.3 vs Ethernet

Trame Ethernet

- Champ Préambule
- Champs Adresse source et destination
 - adresse MAC codée sur 48 bits (6 octects)
 - notation hexadécimale : F0:18:98:59:AE:32
 - les 3 premiers octets indiquent quel est le constructeur (F0:18:98 : Apple)
- Champ Type
 - paquet IPv4 : 0x0800, message ARP : 0x0806, ...
- Champ Données
 - la taille des données est comprise entre 46 et 1500 octets
 - utilisation de bits de bourrage pour compléter les données si nécessaire
- Champ CRC (Cyclic redundancy check)
 - Code générateur :

$$X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$$

Exemple de trace

- Trame Ethernet donnée sans préambule ni CRC
- Adresse MAC destination: 08:00:20:87:B0:44
- Adresse MAC source: 08:00:11:08:C0:63
- Type : 0x0800 → entête encapsulé suivante : paquet IP

IEEE 802.11 Wireless LANs (Wi-Fi)

- 802.11 : CSMA/CA
 - CSMA : écoute du support
 - CA: évitement de collisions
- Ecouter le support :
 - pour ne pas empiéter sur une transmission en cours
- Eviter les collisions :
 - la détection des collisions est difficile voir impossible en sans fil :
 - affaiblissement du signal (fading)
 - problème du terminal caché

- utilisation des ACK
 - détection et retransmissions des trames en collision

Temporisateurs et priorités

- SIFS (Short Inter Frame Spacing) 10
 - La plus haute priorité : ACK
- DIFS (DCF, Distributed Coordination Function IFS)
 - La plus basse priorité : données

CSMA/CA

- Source 802.11
 - 1. Si le support est libre :
 - attendre DIFS
 - envoyer la trame
 - 2. Si le support est ou devient occupé:
 - attendre que le support soit libre
 - démarrer un temporisateur (random backoff timer)
 - décrémenter le temporisateur uniquement lorsque le support est libre (mis en pause sinon)
 - transmettre à expiration du temporisateur
 - Si pas d'ACK,
 - augmenter l'intervalle de tirage des valeurs du temporisateur
- Récepteur 802.11
 - Si la trame est reçue sans erreur :
 - attendre in SIFS
 - envoyer un ACK

46

Algorithme de backoff exponentiel

- DAA= CW* random(0,CW)*SlotTime
 - random(0,CW) est une variable aléatoire uniforme comprise entre 0 et CW-1
 - CW est la taille de la fenêtre de contention,
 - CW = [CWmin, CWmax]
- Lors de la première tentative de transmission :
 - -CW = CWmin
- En cas de collision :
 - CW est doublée jusqu'à ce que CW atteigne CWmax.
- Exemple wifi:
 - SlotTime= 20 μs
 - CWmin= 31
 - CWmax=1023

Trames de réservation RTS/CTS

- Une source qui désire émettre des données :
 - envoie un RTS au point d'accès
 - indiquant la durée nécessaire pour transmettre ses données et l'ACK
- Le point d'accès répond :
 - après un SIFS, en broadcastant un CTS
- Après réception du CTS :
 - la source transmet ses données
 - Les autres stations diffèrent leur transmission pour la durée indiquée par le CTS

8

Trames 802.11

Contrôle d'erreur

UE LU3IN033 Réseaux 2020-2021

Prométhée Spathis promethee.spathis@sorbonne-universite.fr

Codes de partité

- Bit de parité
 - parité paire (0) : le nombre de bits à 1 dans le message est pair
 - parité impaire (1) : les nombre de bits à 1 dans le message est impair
- VRC (Vertical redundancy checking)

octets de données

LRC (Longitudinal redundancy checking)

Codes Polynomiaux

- CRC (Cyclic redundant code)
 - Le message a envoyé est converti en polynôme

1 0 1 1 0 1 1 1
$$X^7 \times X^6 \times X^5 \times X^4 \times X^3 \times X^2 \times X^1 \times X^0$$

M(X) = $X^7 + X^5 + X^4 + X^3 + X + 1$

– Emetteur et récepteur se mettent d'accord sur G(X) un polynôme générateur

Exemple:
$$G(X) = X^4 + X + 1$$

- L'émetteur transmet :

$$T(X) = M(X).X^r + R(X)$$
 où r est le degré de $G(X)$

- où R(X) résulte de la division polynomiale de $M(X).X^r$ par G(X)

$$M(X).X^r = Q(X).G(X) + R(X)$$

https://en.wikipedia.org/wiki/ Cyclic_redundancy_check#Polynomial_representations_of_cyclic_redundancy_checks

```
M(X).X^4
                     G(X)
1 1 0 1 0 1 1 0 1 1 0 0 0 0
                   10011
010011
                    1100001010
 10011
  00001
  00000
   00010
   00000
    00101
    00000
      01011
      00000
       10110
       10011
        01010
        00000
          10100
         10011
           01110
           00000
```


Codes Polynomiaux

• Message à envoyer

10111011

$$M(X) = X^7 + X^5 + X^4 + X^3 + X + 1$$

• Code générateur

$$G(X) = X^4 + X + 1$$

• Division polynomiale

$$M(X).X^4 = X^{13} + X^{12} + X^{10} + X^8 + X^7 + X^5 + X^4$$

 $M(X).X^4 = G(X).(X^9 + X^8 + X^3 + X) + (X^3 + X^2 + X)$

• L'émetteur transmet :

$$T(X) = M(X).X^{r} + R(X)$$

$$T(X) = X^{13} + X^{12} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{3} + X^{2} + X$$
1101011011110 où 1110 est le CRC

Le récepteur reçoit T'(X) fait la division polynômiale :

$$T'(X) = G(X).Q'(X) + R'(X)$$

• Si R'(X) = 0 alors pas d'erreur! 54

Conclusion

- Les réseaux locaux utilisent des supports à diffusion naturelle
 - Toutes les stations sont connectées au même support
 - Une copie suffit pour qu'une trame soit reçue par toutes les stations
- Nécessité de contrôler l'accès au support
 - Pour éviter les collisions (contentions d'accès)
 - Pour partager la bande passante équitablement
- Les politiques d'accès dépendent de la topologie logique
 - Bus: CSMA/CD
 - Anneau : jeton non adressé, ...
- Les normes IEEE 802 ont introduit la sous-couche MAC
 - MAC Medium access control : contrôle d'accès
 - LLC Logical link control : contrôles d'erreur et de flux
- La norme 802.3 standardise le CSMA/CD et le format des trames
 - Ethernet est la version commerciale apparue avant sa normalisation par l'IEEE
- La norme 802.11 standardise le CSMA/CA utilisé par le Wifi

