

Motivation

In der Praxis sind viele Größen nicht bekannt, z.B. Wahrscheinlichkeiten $\mathbb{P}(A)$ eines Ereignisses $A\in\mathcal{F}$ oder von einer Zufallsgröße X sind Verteilungsfunktion F_X , Erwartungswert $\mathbb{E}[X]$ oder Varianz $D^2[X]$ (Abweichung von X und seinem Erwartungswert $\stackrel{\triangle}{=}$ Risikomaß) nicht genau bekannt.

A = Wirfeln liner 6; Bestehen mit 1,0 in der Statistik eine Person über 180cm begegnet ihnen Prüfung; FIX] = fester west, der von X im Mittel realisiert wird als orientierung bei Unsicherneit D^2[x] = Abreichung von E[x] (Risiko maB) Fx hilft Unsicherheit vollständig zu quantifizieren

Motivation

In der Praxis sind viele Größen nicht bekannt, z.B. Wahrscheinlichkeiten $\mathbb{P}(A)$ eines Ereignisses $A \in \mathcal{F}$ oder von einer Zufallsgröße X sind Verteilungsfunktion F_X , Erwartungswert $\mathbb{E}[X]$ oder Varianz $D^2[X]$ (Abweichung von X und seinem Erwartungswert $\stackrel{\triangle}{=}$ Risikomaß) nicht genau bekannt.

Ansatz

Man schätzt die oben genannten Größen basierend auf Beobachtungen. Was sind Beoabachtungen formal gesehen? Wie nutzt man diese um Erkenntnisse zu gewinnen?

Motivation

In der Praxis sind viele Größen nicht bekannt, z.B. Wahrscheinlichkeiten $\mathbb{P}(A)$ eines Ereignisses $A \in \mathcal{F}$ oder von einer Zufallsgröße X sind Verteilungsfunktion F_X , Erwartungswert $\mathbb{E}[X]$ oder Varianz $D^2[X]$ (Abweichung von X und seinem Erwartungswert $\stackrel{\triangle}{=}$ Risikomaß) nicht genau bekannt.

Ansatz

Man schätzt die oben genannten Größen basierend auf Beobachtungen. Was sind Beoabachtungen formal gesehen? Wie nutzt man diese um Erkenntnisse zu gewinnen? Konkrete Beispiele:

(a)
$$X \stackrel{\triangle}{=} Schadenshöhe Auto (Versicherung) -7 Z.B. PPROXIMATIV Exponential - oder Gamma-Vertlikt$$

Motivation

In der Praxis sind viele Größen nicht bekannt, z.B. Wahrscheinlichkeiten $\mathbb{P}(A)$ eines Ereignisses $A \in \mathcal{F}$ oder von einer Zufallsgröße X sind Verteilungsfunktion F_X , Erwartungswert $\mathbb{E}[X]$ oder Varianz $D^2[X]$ (Abweichung von X und seinem Erwartungswert $\stackrel{\triangle}{=}$ Risikomaß) nicht genau bekannt.

Ansatz

Man schätzt die oben genannten Größen basierend auf Beobachtungen. Was sind Beoabachtungen formal gesehen? Wie nutzt man diese um Erkenntnisse zu gewinnen? Konkrete Beispiele:

- (a) $X \stackrel{\wedge}{=}$ Schadenshöhe Auto (Versicherung)
- (b) $X \stackrel{\wedge}{=}$ Anzahl fehlerhafter Teile pro Tag (Firma, die ein Gut produziert)

Motivation

In der Praxis sind viele Größen nicht bekannt, z.B. Wahrscheinlichkeiten $\mathbb{P}(A)$ eines Ereignisses $A \in \mathcal{F}$ oder von einer Zufallsgröße X sind Verteilungsfunktion F_X , Erwartungswert $\mathbb{E}[X]$ oder Varianz $D^2[X]$ (Abweichung von X und seinem Erwartungswert $\stackrel{\triangle}{=}$ Risikomaß) nicht genau bekannt.

Ansatz

Man schätzt die oben genannten Größen basierend auf Beobachtungen. Was sind Beoabachtungen formal gesehen? Wie nutzt man diese um Erkenntnisse zu gewinnen?

- Konkrete Beispiele:
 - (a) $X\stackrel{\wedge}{=}$ Schadenshöhe Auto (Versicherung)
 - (b) $X \stackrel{\wedge}{=}$ Anzahl fehlerhafter Teile pro Tag (Firma, die ein Gut produziert)

Die Versicherung bzw. die Firma können konkret beobachten/messen wie Umfangreich Schäden sind bzw. wie viele fehlerhafte Teile vorliegen.

Motivation

In der Praxis sind viele Größen nicht bekannt, z.B. Wahrscheinlichkeiten $\mathbb{P}(A)$ eines Ereignisses $A \in \mathcal{F}$ oder von einer Zufallsgröße X sind Verteilungsfunktion F_X , Erwartungswert $\mathbb{E}[X]$ oder Varianz $D^2[X]$ (Abweichung von X und seinem Erwartungswert $\stackrel{\triangle}{=}$ Risikomaß) nicht genau bekannt.

Ansatz

Man schätzt die oben genannten Größen basierend auf Beobachtungen. Was sind Beoabachtungen formal gesehen? Wie nutzt man diese um Erkenntnisse zu gewinnen?

- Konkrete Beispiele:
 - (a) $X \stackrel{\wedge}{=}$ Schadenshöhe Auto (Versicherung)
 - (b) $X \stackrel{\wedge}{=}$ Anzahl fehlerhafter Teile pro Tag (Firma, die ein Gut produziert)

Die Versicherung bzw. die Firma können konkret beobachten/messen wie Umfangreich Schäden sind bzw. wie viele fehlerhafte Teile vorliegen.

Dies wird genutzt, um Aussagen über Verteilungsfunktion F, Erwartungswert $\mathbb{E}[X]$ und Varianz $D^2[X]$ zu treffen. Diese Kenngrößen helfen bei der Planung und bei Vorhersagen.

Was sind Beobachtungen im mathematischen Sinne?

Was sind Beobachtungen im mathematischen Sinne?

lacksquare Zufallsgrößen $X_1,...,X_n$ welche unabhängig sind, mit Verteilungsfunktion F heißen unabhängige Beobachtungen einer Zufallsgröße X bzw. eines zugrundeliegenden Ereignisses A.

Was sind Beobachtungen im mathematischen Sinne?

- Zufallsgrößen $X_1, ..., X_n$ welche unabhängig sind, mit Verteilungsfunktion F heißen unabhängige Beobachtungen einer Zufallsgröße X bzw. eines zugrundeliegenden Ereignisses A.
- Dazugehörige Realisierungen $x_1,...,x_n\in\mathbb{R}^1$, d.h. für $i=1,...,n:X_i(\omega)=x_i$ (festes $\omega\in\Omega$) heißen **konkrete unabhängige** Beobachtungen von X.

Wonn Sind Beabachtung unabhängig ? (1) Ziehen mit Zurücklegen -> Keine Einfluss auf Grund gesamtheit nehmen jedes Element der Grundgesumtheit muss gleiche WKt haben in bie Stickprobe zu gelangen (Telefon umfrage) Kein Clustering -> Ticket Kontrolle (2) -> vicht alle in eines Straßenbulen kontrollieren - Finfluss Les i-te Zieheng auf (1+1)-te Ziehung

Was sind Beobachtungen im mathematischen Sinne?

- Zufallsgrößen $X_1,...,X_n$ welche unabhängig sind, mit Verteilungsfunktion F heißen unabhängige Beobachtungen einer Zufallsgröße X bzw. eines zugrundeliegenden Ereignisses A.
- Dazugehörige Realisierungen $x_1,...,x_n \in \mathbb{R}^1$, d.h. für $i=1,...,n:X_i(\omega)=x_i$ (festes $\omega \in \Omega$) heißen **konkrete unabhängige** Beobachtungen von X.

Beispiel 0.1 (Versicherung)

Schadenshöhe X soll n-mal beobachtet werden, also Schaden von n Unfällen sollen gemessen werden: Die Beobachtungen $X_1, ..., X_n$ sind zufällig, da ich vorab nicht weiß, wie groß ein Schaden sein wird. Sind die n Unfälle nun eingetreten, so habe ich konkrete Werte $x_1, ..., x_n$ messen können.

Was sind Beobachtungen im mathematischen Sinne?

- Zufallsgrößen $X_1, ..., X_n$ welche unabhängig sind, mit Verteilungsfunktion F heißen unabhängige Beobachtungen einer Zufallsgröße X bzw. eines zugrundeliegenden Ereignisses A.
- Dazugehörige Realisierungen $x_1,...,x_n\in\mathbb{R}^1$, d.h. für $i=1,...,n:X_i(\omega)=x_i$ (festes $\omega\in\Omega$) heißen **konkrete unabhängige** Beobachtungen von X.

Beispiel 0.1 (Versicherung)

Schadenshöhe X soll n-mal beobachtet werden, also Schaden von n Unfällen sollen gemessen werden: Die Beobachtungen $X_1,...,X_n$ sind zufällig, da ich vorab nicht weiß, wie groß ein Schaden sein wird. Sind die n Unfälle nun eingetreten, so habe ich konkrete Werte $x_1,...,x_n$ messen können.

Im Folgenden kann man $X_1,...,X_n$ als Zufallsgrößen verstehen, die im Spezialfall Beobachtungen einer Zufallsgröße X repräsentieren.

Wir skizzieren weitere praktische Beispiele.

Beispiel 0.2 (Glücksspiel)

Eine verbogene Münze (nicht unbedingt fair) wird geworfen. Es kommt zu einer Auszahlung ($\stackrel{\triangle}{=}$ Zufallsgröße X) basierend auf:

- "Kopf" \rightarrow Spieler gewinnt 2 Euro,
- "Zahl" \rightarrow Spieler verliert 1 Euro.

Wir skizzieren weitere praktische Beispiele.

Beispiel 0.2 (Glücksspiel)

Eine verbogene Münze (nicht unbedingt fair) wird geworfen. Es kommt zu einer Auszahlung ($\stackrel{\triangle}{=}$ Zufallsgröße X) basierend auf:

- "Kopf" → Spieler gewinnt 2 Euro,
- \blacksquare "Zahl" \rightarrow Spieler verliert 1 Euro.

Ist die Teilnahme an diesem Glücksspiel zu empfehlen? Wir beobachten Ausgang des Münzwurf n Mal, der ite Ausgang wird durch X_i beschrieben. Wir interessieren uns für die Wahrscheinlichkeit p für Ereignis "Kopf", $\mathbb{E}[X]$ und $D^2[X]$ um obige Frage beantworten zu können.

Wir skizzieren weitere praktische Beispiele.

Beispiel 0.2 (Glücksspiel)

Eine verbogene Münze (nicht unbedingt fair) wird geworfen. Es kommt zu einer Auszahlung ($\stackrel{\triangle}{=}$ Zufallsgröße X) basierend auf:

- "Kopf" \rightarrow Spieler gewinnt 2 Euro.
- "Zahl" → Spieler verliert 1 Euro.

Ist die Teilnahme an diesem Glücksspiel zu empfehlen? Wir beobachten Ausgang des Münzwurf n Mal, der ite Ausgang wird durch X_i beschrieben. Wir interessieren uns für die Wahrscheinlichkeit p für Ereignis "Kopf", $\mathbb{E}[X]$ und $D^2[X]$ um obige Frage beantworten zu können.

Beispiel 0.3 (Schraubenlänge $\stackrel{\wedge}{=} X$)

In einem Betrieb werden Schrauben mit einer Soll-Länge von 5 cm produziert. Es soll überprüft werden, ob die Maschinen richtig eingestellt sind. Zu diesem Zweck werden aus dem laufenden Produktionsprozess n Schrauben entnommen und vermessen. X_i steht hier für die ite Messung. Kann ich daraus Aussagen über die Dichte von X treffen? Oder dessen Erwartungswert und Varianz annähren? -7 Normal Verteiltes X 965 Vermutung,

Verknüpfung zur Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie als Grundlage

Viele Resultate in der Statistik beruhen auf wichtigen Ergebnissen der

Wahrscheinlichkeitstheorie wie:

- Gesetz der großen Zahlen und Wah. bzw. Verallgemeinelung zentraler Grenzwertsatz. 5 dieser Soitze

Verknüpfung zur Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie als Grundlage

Viele Resultate in der Statistik beruhen auf wichtigen Ergebnissen der Wahrscheinlichkeitstheorie wie:

- Gesetz der großen Zahlen und
- zentraler Grenzwertsatz.

In der mathematischen Statistik benötigen wir zudem wichtige Begriffe der Wahrscheinlichkeitsrechnung, wie zum Beispiel:

- Ereignis und Wahrscheinlichkeit,
- Zufallsvariable und Verteilung,
- Konvergenz von Zufallsgrößen,
- charakteristische Funktionen,
- Erwartungswert und Varianz,
- stochastische Unabhängigkeit.

Verknüpfung zur Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie als Grundlage

Viele Resultate in der Statistik beruhen auf wichtigen Ergebnissen der Wahrscheinlichkeitstheorie wie:

- Gesetz der großen Zahlen und
- zentraler Grenzwertsatz.

In der mathematischen Statistik benötigen wir zudem wichtige Begriffe der Wahrscheinlichkeitsrechnung, wie zum Beispiel:

- Ereignis und Wahrscheinlichkeit,
- Zufallsvariable und Verteilung,
- Konvergenz von Zufallsgrößen,
- charakteristische Funktionen,
- Erwartungswert und Varianz,
- stochastische Unabhängigkeit.

Wir beginnen mit einer Wiederholung bzw. einer Erweiterung bereits bekannter Konzepte/Ergebnisse.

Wah Verteilung: Mx (B) = P (& w: x (w) & B ?) 1 B & B(R) (BildmaB) $f_{x}(x) = M_{x}((-\infty | x])$ Verteilungs funktion: XE R = P(qw: x(w) = x3) Erwortung Swest: $E[X] := \int X(w) dP(w) = \int X du_{X}(X)$ R Letesgue - Integral $= \int X dF_{x}(x)$ Stielties - Integral

 $a = x_0 < x_1 < \dots < x_n = b$ $x_0 < x_1 < \dots < x_n = b$ $x_0 < x_1 < \dots < x_n = b$ $x_0 < x_1 < \dots < x_n < \dots < \dots < x_n < x_n < \dots < x_n < x_n < \dots < x_n < x_n < \dots < x_n < x_$ Def Stieltjes-Integral! $\int_{-\infty}^{\infty} g(x)df_{x}(x) := \lim_{\alpha \to -\infty} \int_{-\infty}^{\infty} g(x)df_{x}(x)$ $= \lim_{\alpha \to -\infty} \int_{-\infty}^{\infty} g(x)df_{x}(x)$