Asymptotics for Hermite-Padé Approximants Associated with the Mittag-Leffler Functions

A. P. Starovoitov^{1,*} and E. P. Kechko^{1,**}

¹Francisk Skorina Gomel State University, Sovetskaya ul. 104, Gomel, 246019 Belarus

Abstract—In this article, under certain restrictions, the convergence rate of type II Hermite—Padé approximants (including nondiagonal ones) for a system $\{ {}_1F_1(1,\gamma;\lambda_jz) \}_{j=1}^k$, consisting of degenerate hypergeometric functions is found, when $\{\lambda_j\}_{j=1}^k$ are different complex numbers, and $\gamma \in \mathbb{C} \setminus \{0,-1,-2,...\}$. Without the indicated restrictions, similar statements were obtained for approximants of the indicated type, provided that the numbers $\{\lambda_j\}_{j=1}^k$ are the roots of the equation $\lambda^k = 1$. The theorems proved in this paper complement and generalize the results obtained earlier by other authors.

2010 Mathematical Subject Classification: 41A20, 41A25

 $\label{lem:keywords} \begin{tabular}{ll} Keywords and phrases: exponential system, hypergeometric functions, Mittag-Leffler functions, Hermite-Pad\'e approximations, asymptotic equality, saddle-point \\ \end{tabular}$

1. INTRODUCTION

Let \mathbb{Z}_+^k be the set of k-dimensional multi-indices (k ordered nonnegative integers). The sum $|m|=m_1+\ldots+m_k$ is an order of the multi-index $\overrightarrow{m}=(m_1,\ldots,m_k)$. Also let us fix $n\in\mathbb{Z}_+^1$, multi-index $\overrightarrow{m}=(m_1,\ldots,m_k)\in\mathbb{Z}_+^k$ and denote $n_j=n+|m|-m_j$ for $j=1,2,\ldots,k$.

Consider the system of entire functions

$$F_{\gamma}^{j}(z) = {}_{1}F_{1}(1,\gamma;\lambda_{j}z) = \sum_{p=0}^{\infty} \frac{\lambda_{j}^{p}}{(\gamma)_{p}} z^{p}, \quad j = 1, 2, \dots, k,$$
(1)

where $\gamma \in \mathbb{C} \setminus \mathbb{Z}_-$, $\mathbb{Z}_- = \{0, -1, -2, ...\}$, $(\gamma)_0 = 1$, $(\gamma)_p = \gamma(\gamma+1) \cdots (\gamma+p-1)$ is the Pochhammer symbol, $\lambda = \{\lambda_j\}_{j=1}^k$ are different nonzero complex numbers (for k=1, we assume that $\lambda_1 = 1$). Series of the form (1) are called hypergeometric series, and their sums are called degenerate hypergeometric functions. Recall (see [1, 2]) that the Mittag-Leffler function is defined by the power series

$$E_{\rho,\beta}(z) = \sum_{p=0}^{\infty} \frac{z^p}{\Gamma(p\,\rho^{-1} + \beta)} \quad (\rho > 0, \, \beta \in \mathbb{C})$$

and is a generalization of the exponential function. Taking into account the well-known equality $(\gamma)_p = \Gamma(p+\gamma)/\Gamma(\gamma)$, where, just as in the previous formula, $\Gamma(z)$ is the gamma function, we can see that the functions (1) are Mittag-Leffler functions. Therefore, the coordinates of a vector function $F_{\gamma}^{\lambda} = \{F_{\gamma}^{1}(z), ..., F_{\gamma}^{k}(z)\}$ are Mittag-Leffler functions. If $\gamma = 1$, then the vector function F_{1}^{λ} is an ordered set of exponentials $\{e^{\lambda_{j}z}\}_{j=1}^{k}$.

^{*} E-mail: svoitov@gsu.by

Rational fractions

$$\pi_{n,\vec{m}}^{j}(z) = \pi_{n,\vec{m}}^{j}(z; F_{\gamma}^{\lambda}) = \frac{P_{n,\vec{m}}^{j}(z)}{Q_{n,\vec{m}}(z)}, \ j = 1, 2, \dots, k,$$

are called type (n, \overrightarrow{m}) Hermite-Padé approximants for the system F_{γ}^{λ} , where algebraic polynomials $Q_{n,\overrightarrow{m}}(z) = Q_{n,\overrightarrow{m}}(z; F_{\gamma}^{\lambda}), \ P_{n,\overrightarrow{m}}^{j}(z) = P_{n,\overrightarrow{m}}^{j}(z; F_{\gamma}^{\lambda}), \ \deg Q_{n,\overrightarrow{m}} \leqslant |m|, \ \deg P_{n,\overrightarrow{m}}^{j} \leqslant n_{j}$ satisfy the conditions

$$R_{n,\overrightarrow{m}}^{j}(z) = R_{n,\overrightarrow{m}}^{j}(z; F_{\gamma}^{\lambda}) = Q_{n,\overrightarrow{m}}(z) F_{\gamma}^{j}(z) - P_{n,\overrightarrow{m}}^{j}(z) = A_{j}z^{n+|m|+1} + \dots$$

 $Q_{n,\overrightarrow{m}}, P_{n,\overrightarrow{m}}^{j}$ are called [3] type II Hermite – Padé polynomials for the system F_{γ}^{λ} . For the first time these polynomials appeared in Hermite's work [4] for the system of exponents F_{1}^{λ} in the form of integrals, which are called Hermite's integrals. The decisive role of these integrals in the proof of the transcendence of the numbers e, π is well known (see [5]).

For k=1 (in this case $\overrightarrow{m}=m_1=m$, and $\pi_{n,m}(z;F_{\gamma}^1):=\pi_{n,\overrightarrow{m}}^1(z)$ are called $Pad\acute{e}$ approximants of function F_{γ}^1) explicit expressions for the remainder function $R_{n,m}(z):=R_{n,\overrightarrow{m}}^1(z;F_{\gamma}^1)$ and the denominator $Q_m(z;F_{\gamma}^1)$ were found by H. van Rossum [6]: namely, for $n \geq m-1$

$$Q_m(z; F_{\gamma}^1) = {}_{1}F_1(-m, -n - m - \gamma + 1; -z),$$

$$R_{n,m}(z; F_{\gamma}^{1}) = \frac{(-1)^{m} m! \ (\gamma)_{n} \ z^{n+m+1}}{(\gamma)_{n+m} \ (\gamma)_{n+m+1}} \ {}_{1}F_{1}(m+1, n+m+\gamma+1; z).$$
 (2)

Recall that

$$_1F_1(\alpha,\beta;z) = \sum_{p=0}^{\infty} \frac{(\alpha)_p}{(\beta)_p} \frac{z^p}{p!}.$$

For the system F_{λ}^{γ} , analogues of Hermite's representations were obtained by A.I. Aptekarev [7]: namely, for $n \ge m_j - 1^1$ and j = 1, 2, ..., k,

$$Q_{n,\overrightarrow{m}}(z; F_{\gamma}^{\lambda}) = \frac{z^{n+|m|+\gamma}}{\Gamma(n+|m|+\gamma)} \int_{0}^{+\infty} T(x) e^{-zx} dx,$$

$$R_{n,\overrightarrow{m}}^{j}(z; F_{\gamma}^{\lambda}) = \frac{e^{\lambda_{j}z} z^{n+|m|+1}}{\lambda_{j}^{\gamma-1}(\gamma)_{n+|m|}} \int_{0}^{\lambda_{j}} T(x) e^{-zx} dx, \qquad (3)$$

where $T(x) = x^{n+\gamma-1} \prod_{\nu=1}^k (x-\lambda_{\nu})^{m_{\nu}}$. In the integral, which defines the remainder function $R_{n,\overrightarrow{m}}^j$, we integrate along an arbitrary curve connecting the points 0 and λ_j . Henceforth, for complex numbers w and τ we assume that $w^{\tau} = e^{\tau \ln w}$, with a single-valued branch of the logarithm defined by the equality $\ln w = \ln |w| + i \arg_0 w$, $\arg_0 w \in (-\pi, \pi]$. In [7], the following asymptotic equality was proved: if $n + |m| \to +\infty$, then

$$Q_{n,\overrightarrow{m}}(z; F_{\gamma}^{\lambda}) = \exp\left\{-\frac{\sum_{i=1}^{k} \lambda_i m_i}{n + |m| + \gamma - 1} z\right\} (1 + o(1)). \tag{4}$$

In (4), as in other similar equalities, we assume that the estimate o(1) is uniform with respect to z on compact sets in \mathbb{C} .

In cases when k=1 by De Bruin [9] and k>1 by A.I. Aptekarev [7] it was shown that the fractions $\pi^j_{n,\overrightarrow{m}}(z;F^\lambda_\gamma)$ converge to $F^j_\gamma(z)$ uniformly on compact sets in $\mathbb C$ as $n\geqslant m_j-1$

¹ For the necessary conditions of $n \ge m_j - 1$ see [8]. Further, for $\gamma \ne 1$, we assume their fulfillment.

and $j=1,2,\ldots,k$, or as $n+|m|\to\infty$, respectively. The problem of describing the rate of this convergence is of current interest [8, 10–18].

In [11], the rate of convergence of Padé approximants $\pi_{n,m}(z; F_{\gamma}^1)$ was established: for $n \ge m-1$ and $n+m \to \infty$,

$$F_{\gamma}^{1}(z) - \pi_{n,m}(z; F_{\gamma}^{1}) = (-1)^{m} \frac{m! (\gamma)_{n} e^{2mz/(n+m)}}{(\gamma)_{n+m} (\gamma)_{n+m+1}} z^{n+m+1} (1 + o(1)).$$
 (5)

From the equalities (4), (5) and the identity (2) it follows that

$$_{1}F_{1}(m+1, n+m+\gamma+1; z) = \exp\left\{\frac{mz}{n+m}\right\} (1+o(1))$$
 (6)

as $n+m\to\infty$. In case k>1, the available results on the rate of convergence of Hermite–Padé approximants pertain mainly to the diagonal case and are obtained under the condition that the numbers $\{\lambda_j\}_{j=1}^k$ are real, and $\gamma=1$. Essentially, the only method in such studies is the saddle-point method. For complex numbers $\{\lambda_j\}_{j=1}^k$ and in the nondiagonal case, the use of the saddle-point method is extremely difficult. In such a situation, in [8], a new method that is based on the Taylor theorem and heuristic considerations underlying the Laplace and saddle-point methods was applied.

In this article, we prove a multidimensional analogue of Theorem 4 from [8], in which the case k=2 was considered. When proving we use the methods of this paper and the analogue of van Rossum's identity established by us. Besides, under certain conditions on \overrightarrow{m} and λ the main restriction $\lim_{n\to\infty} m(n)/\sqrt{n}=0$ of Theorem 4 can be removed.

Also we note the paper by H. Stahl [3], in which for k = 2, $\lambda_1 = -1$, $\lambda_2 = 1$ the rate of convergence of "rescaled" diagonal Hermite–Padé approximants was established using the method of the matrix Riemann–Hilbert problem. With the rescaling of variable $z = n\zeta$, the zeros and poles of such rational approximants fill some curves in the complex plane \mathbb{C}_{ζ} . Today, the questions related to the description of these curves and the asymptotics of the rescaled approximants attract considerable interest of specialists (see, for example, [12–14]).

2. MAIN RESULT:
$$|m| = o(\sqrt{n}), \ \lambda = \{\lambda_j\}_{j=1}^k \subset \mathbb{C}$$

Theorem 1. Let $n \in \mathbb{Z}_+^1$, $\overrightarrow{m} = (m_1, \dots, m_k) \in \mathbb{Z}_+^k$, $\{\lambda_j\}_{j=1}^k$ be different nonzero complex numbers and $n \geqslant m_j - 1$, j = 1, 2, ..., k. If $\lim_{n \to \infty} m(n) / \sqrt{n} = 0$, then uniformly with respect to all \overrightarrow{m} , for which $0 \leqslant |m| \leqslant m(n)$,

$$F_{\gamma}^{j}(z) - \pi_{n,\vec{m}}^{j}(z; F_{\gamma}^{\lambda}) =$$

$$= (-1)^{|m|} \lambda_{j}^{n+m_{j}+1} \Omega_{j}(k) \frac{m_{j}! (\gamma)_{n} z^{n+|m|+1}}{(\gamma)_{n+|m|} (\gamma)_{n+m_{j}+1}} (1 + o(1)),$$

as
$$n \to +\infty$$
, where $\Omega_j(1) = 1$, $\Omega_j(k) = \prod_{\substack{\nu=1 \ \nu \neq j}}^k (\lambda_{\nu} - \lambda_j)^{m_{\nu}}$, if $k > 1$.

Before proceeding to the proof of Theorem 1, we note, that under the assumptions made in it, from (4) it follows that $Q_{n,\overrightarrow{m}}(z)=(1+o(1))$ for $n+|m|\to\infty$. Therefore, it is sufficient to find the asymptotics of the functions $R_{n,\overrightarrow{m}}^{j}$. First, we prove an analogue of the van Rossum identity (2) for k>1.

Theorem 2. For any $k \ge 1$ and j = 1, 2, ..., k

$$R_{n,\overrightarrow{m}}^{j}(z; F_{\gamma}^{\lambda}) = (-1)^{|m|} \lambda_{j}^{n+m_{j}+1} \Omega_{j}(k) \frac{\Gamma(n+\gamma) z^{n+|m|+1}}{(\gamma)_{n+|m|}} \times \sum_{l=0}^{|m|-m_{j}} a_{l} \frac{(m_{j}+l)!}{\Gamma(n+m_{j}+l+\gamma+1)!} {}_{1}F_{1}(m_{j}+l+1, n+m_{j}+l+\gamma+1; \lambda_{j}z),$$
(7)

LOBACHEVSKII JOURNAL OF MATHEMATICS

where $a_0 = 1$ and for $l \geqslant 1$

$$a_{l} = \sum_{\substack{t_{1} + \dots + t_{k} - t_{j} = l \\ t_{\nu} \ge 0}} \left\{ \prod_{\substack{\nu = 1 \\ \nu \ne j}}^{k} C_{m_{\nu}}^{t_{\nu}} \left(\frac{\lambda_{j}}{\lambda_{\nu} - \lambda_{j}} \right)^{t_{\nu}} \right\}.$$
(8)

Proof. For k = 1 equalities (2) and (7) coincide. Therefore, further we assume that k > 1. In the integral (3), which defines the remainder function, we change the variable $x = \lambda_j t$ and obtain

$$R_{n,\overrightarrow{m}}^{j}(z) = \lambda_{j}^{n+m_{j}+1} \frac{z^{n+|m|+1}}{(\gamma)_{n+|m|}} \int_{0}^{1} t^{n+\gamma-1} (t-1)^{m_{j}} \prod_{\substack{\nu=1\\\nu\neq j}}^{k} (\lambda_{j}t - \lambda_{\nu})^{m_{\nu}} e^{\lambda_{j}(1-t)z} dt.$$
 (9)

The integral in (9) we denote by $I_i(z)$.

In this integral we substitute u = 1 - t and then factor out $\Omega_i(k)$. Then

$$I_{j}(z) = (-1)^{|m|} \Omega_{j}(k) \int_{0}^{1} (1-u)^{n+\gamma-1} u^{m_{j}} \prod_{\substack{\nu=1\\\nu\neq j}}^{k} \left(1 + \frac{\lambda_{j} u}{\lambda_{\nu} - \lambda_{j}}\right)^{m_{\nu}} e^{\lambda_{j} u z} du.$$
 (10)

Denote the integral in (10) by $J_j(z)$. Applying the binomial theorem and using a well-known identity (see, for example, [7])

$$\prod_{\substack{\nu=1\\\nu\neq j}}^{k} \left\{ \sum_{t_{\nu}=0}^{m_{\nu}} C_{m_{\nu}}^{t_{\nu}} \left(\frac{\lambda_{j} u}{\lambda_{\nu} - \lambda_{j}} \right)^{t_{\nu}} \right\} = \sum_{l=0}^{|m|-m_{j}} a_{l} u^{l}, \tag{11}$$

the integral $J_j(z)$ can be represented as

$$J_{j}(z) = \int_{0}^{1} (1-u)^{n+\gamma-1} u^{m_{j}} \left\{ \sum_{l=0}^{|m|-m_{j}} a_{l} u^{l} \right\} \sum_{p=0}^{\infty} \frac{(\lambda_{j} z)^{p}}{p!} u^{p} du =$$

$$= \sum_{l=0}^{|m|-m_{j}} a_{l} \left\{ \sum_{p=0}^{\infty} B(m_{j} + p + l + 1; n + \gamma) \frac{(\lambda_{j} z)^{p}}{p!} \right\} =$$

$$= \Gamma(n+\gamma) \sum_{l=0}^{|m|-m_{j}} a_{l} \frac{(m_{j} + l)!}{\Gamma(n+m_{j} + l + \gamma + 1)} {}_{1}F_{1}(m_{j} + l + 1, n + m_{j} + l + \gamma + 1; \lambda_{j} z).$$

Here and further, B(u; v) is the Euler beta function. The last equality, together with (9) and (10), implies (7). Theorem 2 is proved.

Now we proceed to the proof of Theorem 1. Denote the sum in (7) by $H_j(z)$. We factor out the first term of this sum and obtain:

$$H_{j}(z) = \frac{m_{j}!}{\Gamma(n+m_{j}+\gamma+1)} {}_{1}F_{1}(m_{j}+1,n+m_{j}+\gamma+1;\lambda_{j}z) \left\{ 1 + \sum_{l=1}^{|m|-m_{j}} a_{l} \frac{(m_{j}+l)!}{\Gamma(n+m_{j}+l+\gamma+1)} \frac{\Gamma(n+m_{j}+\gamma+1)}{m_{j}!} \frac{{}_{1}F_{1}(m_{j}+l+1,n+m_{j}+l+\gamma+1;\lambda_{j}z)}{{}_{1}F_{1}(m_{j}+1,n+m_{j}+\gamma+1;\lambda_{j}z)} \right\}.$$

From (6) it follows that the ratio of two hypergeometric functions on the right-hand side of the last equality converges to 1 uniformly on compact sets in \mathbb{C} as $n \to \infty$. Therefore, for sufficiently large

n, the absolute value of the second term of sum in the braces in the previous equality does not exceed

$$2\sum_{l=1}^{|m|-m_j} a_l^* \frac{m_j+1}{n+m_j+\gamma_1+1} \frac{m_j+2}{n+m_j+\gamma_1+2} \cdots \frac{m_j+l}{n+m_j+\gamma_1+l} \le$$

$$\le 2 \left\{ \sum_{l=0}^{|m|-m_j} a_l^* \left(\frac{|m|}{n+|m|+\gamma_1} \right)^l - 1 \right\},$$

where γ_1 is the real part of γ , a_l^* is defined in the same way as a_l , with the only difference being that in (8) instead of $\lambda_j/(\lambda_\nu-\lambda_j)$ should take $|\lambda_j|/|\lambda_\nu-\lambda_j|$. When proving the last inequality, we used the fact that function $\varphi(t)=(m_j+t)/(n+m_j+1+t)$ is monotonically increasing for $t\geqslant 1$, and the well-known equality $\Gamma(z+1)=z\Gamma(z)$. Now, applying the identity (11) one more time with $\lambda_j/(\lambda_\nu-\lambda_j)$ replaced by $|\lambda_j|/|\lambda_\nu-\lambda_j|$, we obtain

$$\sum_{l=0}^{|m|-m_j} a_l^* \left(\frac{|m|}{n+|m|+\gamma_1} \right)^l = \prod_{\substack{\nu=1\\\nu\neq j}}^k \left(1 + \frac{|\lambda_j|}{|\lambda_\nu - \lambda_j|} \frac{|m|}{n+|m|+\gamma_1} \right)^{m_\nu}.$$

It remains to note that, since $\lim_{n\to\infty} |m|/\sqrt{n} = 0$, the right-hand side of the last equality tends to 1 as $n\to\infty$. Theorem 1 is proved.

3. MAIN RESULT: $\lambda = \{\lambda_j\}_{j=1}^k$ ARE THE ROOTS OF THE EQUATION $z^k = 1$

In the statement of Theorem 1 we have significant constraints on the growth of the multi-index order: $|m| = o(\sqrt{n})$ as $n \to \infty$. Consider one particular case when these restrictions can be removed. Let $\{\lambda_j\}_{j=1}^k$ be the roots of the equation $z^k = 1$, i.e.

$$\lambda_j = e^{i\frac{2\pi(j-1)}{k}}, \quad j = 1, 2, \dots, k,$$
 (12)

where i is the imaginary unit. Note, that for every j = 1, 2, ..., k

$$\lambda_j \prod_{\substack{\nu=1\\\nu\neq j}}^k (\lambda_\nu - \lambda_j) = \prod_{\nu=2}^k (\lambda_\nu - 1) = (-1)^{k-1} k.$$
 (13)

Equalities (13) can be easily proved if in the both sides of identity

$$\frac{z^k - \lambda_j^k}{z - \lambda_j} = \prod_{\substack{\nu=1\\\nu \neq j}}^k (z - \lambda_\nu)$$

we pass to the limit as $z \to \lambda_i$.

Consider the system of functions F_{γ}^{λ} , where $\lambda = \{\lambda_j\}_{j=1}^k$ and λ_j are defined by the equalities (12). In [8], in the diagonal case, when $n = m_1 = \ldots = m_k$, the following asymptotic equalities were obtained using the saddle-point method: for k > 1 and j = 1, 2, ..., k

$$F_{\gamma}^{j}(z) - \pi_{n,\overrightarrow{m}}^{j}(z; F_{\gamma}^{\lambda}) =$$

$$= (-1)^{n} \lambda_{j}^{n+1} \left(\frac{1}{\sqrt[k]{k+1}}\right)^{\gamma-1} G_{k}(n) \frac{z^{n+kn+1}}{(\gamma)_{n+kn}} e^{\lambda_{j} \left(1 - \sqrt[k]{1/(k+1)}\right)z} (1 + o(1)), \tag{14}$$

where

$$G_k(n) := \sqrt{\frac{2\pi}{n\sqrt[k]{(k+1)^{k+2}}}} \left(\frac{k}{\sqrt[k]{(k+1)^{k+1}}}\right)^n.$$

LOBACHEVSKII JOURNAL OF MATHEMATICS

Theorem 3. Let $\gamma \in \mathbb{R} \setminus \mathbb{Z}_-$, $m_1 = \ldots = m_k = m$, and $n \in \mathbb{Z}_+^1$. Then for any $k \geqslant 1$ and $j = 1, 2, \ldots, k$

$$F_{\gamma}^{j}(z) - \pi_{n,\overrightarrow{m}}^{j}(z; F_{\gamma}^{\lambda}) = (-1)^{m} \lambda_{j}^{n+1} \times \frac{1}{k} B\left(m+1; \frac{n+\gamma}{k}\right) \frac{z^{n+km+1}}{(\gamma)_{n+km}} e^{\lambda_{j} \left(1 - \sqrt[k]{n/(n+km)}\right) z} e^{(m\sum_{\nu=1}^{k} \lambda_{\nu})z/(n+km)} (1+o(1))$$
(15)

as $n+m\to\infty$.

Proof. For k=1 the asymptotic equality (15) coincides with (5). Therefore, further we assume that k>1. In this case $\sum_{j=1}^k \lambda_j = 0$ and from (4) it follows that $Q_{n,\overrightarrow{m}}(z) = 1 + o(1)$ as $n+m \to \infty$. It is necessary to find the asymptotic of the remainder function

$$R_{n,\vec{m}}^{j}(z) = (-1)^{m} \frac{e^{\lambda_{j}z} z^{n+km+1}}{\lambda_{j}^{\gamma-1}(\gamma)_{n+km}} \int_{0}^{\lambda_{j}} x^{n+\gamma-1} (1-x^{k})^{m} e^{-zx} dx.$$
 (16)

Denote the integral in (16) by $I_j(z)$. Using substitution $x = \lambda_j u$ in this integral, we obtain

$$I_{j}(z) = \lambda_{j}^{n+\gamma} \int_{0}^{1} u^{n+\gamma-1} (1 - u^{k})^{m} e^{-\lambda_{j} u z} du.$$
 (17)

Consider the integrals

$$J_p = \int_0^1 (1 - u^k)^m u^{n+p+\gamma-1} du, \quad p = 0, 1, 2, \dots.$$

It is easy to notice that

$$J_p = \frac{1}{k} \int_0^1 (1 - u^k)^m (u^k)^{\frac{n - k + p + \gamma}{k}} du^k = \frac{1}{k} B\left(m + 1; \frac{n + p + \gamma}{k}\right). \tag{18}$$

Now, we find u_0 from the equality $J_1 - u_0 J_0 = 0$. Expressing the Euler beta function in terms of the gamma function and using the Stirling formula, we obtain that

$$u_0 = \frac{J_1}{J_0} = \sqrt[k]{\frac{n}{n+km}} (1 + o(1))$$

as $n+m\to\infty$. In particular, from this it follows, that for sufficiently large n+m we have $u_0\in(0,1)$.

To determine the asymptotic behaviour of the integral $I_j(z)$, we expand the function $\exp\{-\lambda_j uz\}$ in the Taylor series in a neighborhood of u_0 . Then

$$e^{-\lambda_j uz} = e^{-\lambda_j u_0 z} e^{-\lambda_j z(u-u_0)} = e^{-\lambda_j u_0 z} \{1 - \lambda_j z(u-u_0) + \rho_u(z)\},$$

where for |z| < L and $u \in [0, 1]$

$$|\rho_u(z)| \leq |\lambda_j|^2 |u - u_0|^2 \left\{ \frac{L^2}{2!} + \ldots + \frac{L^n}{n!} + \ldots \right\} \leq L_1 |u - u_0|^2.$$

Here and further, L, L_1 are absolute constants. Taking into account the choice of u_0 , (17) and (18), we get

$$I_{j}(z) = \lambda_{j}^{n+\gamma} e^{-\lambda_{j} u_{0} z} \left\{ \int_{0}^{1} (1 - u^{k})^{m} u^{n+\gamma-1} du + \int_{0}^{1} (1 - u^{k})^{m} u^{n+\gamma-1} \rho_{u}(z) du \right\} =$$

$$= \lambda_{j}^{n+\gamma} e^{-\lambda_{j} u_{0} z} \left\{ \frac{1}{k} B\left(m+1; \frac{n+\gamma}{k}\right) + A_{\rho}(z) \right\},$$

where

$$|A_{\rho}(z)| \leq L_{1} \int_{0}^{1} (1 - u^{k})^{m} u^{n+\gamma-1} (u - u_{0})^{2} du = L_{1} \int_{0}^{1} (1 - u^{k})^{m} u^{n+\gamma-1} (u^{2} - uu_{0}) du =$$

$$= L_{1} \left(\frac{J_{2}}{J_{0}} - \left(\frac{J_{1}}{J_{0}} \right)^{2} \right) J_{0}.$$

When proving we used the representation $(u - u_0)^2 = (u^2 - uu_0) - u_0(u - u_0)$ and the equality $J_1 - u_0 J_0 = 0$. Applying the equality (18), and then expressing the Euler beta functions in terms of the gamma functions and using the Stirling formula, we obtain:

$$\frac{J_2}{J_0} \sim \left(\frac{n-k+\gamma+2}{n+km+\gamma+2}\right)^{2/k}, \ \left(\frac{J_1}{J_0}\right)^2 \sim \left(\frac{n-k+\gamma+1}{n+km+\gamma+1}\right)^{2/k}$$

as $n+m\to\infty$. From these asymptotic equalities and the previous inequality for $n+m\to\infty$, we have

$$I_j(z) = \lambda_j^{n+\gamma} e^{-\lambda_j u_0 z} \frac{1}{k} B(m+1; \frac{n+\gamma}{k}) (1+o(1)).$$

Therefore, the asymptotic equality (15) follows from (16). Theorem 3 is proved.

In conclusion, we make two remarks.

For $n \to \infty$

$$\frac{1}{k}B\left(n+1;\frac{n+\gamma}{k}\right) \sim \left(\frac{1}{\sqrt[k]{k+1}}\right)^{\gamma-1}G_k(n).$$

Therefore, if m = n, then the asymptotic equalities (14) and (15) coincide. Thus, Theorem 1 of [8] is a corollary of Theorem 3. Note that these theorems are proved using completely different methods.

Moreover, we can easily show, that if $m = o(\sqrt{n})$, then for $n \to \infty$

$$\frac{1}{k}B\left(m+1;\frac{n+\gamma}{k}\right) \sim k^{m}\frac{m!(\gamma)_{n}}{(\gamma)_{n+m+1}}.$$
(19)

Taking into account the equalities (13), for $m_1 = \ldots = m_k = m$ we obtain, that

$$(-1)^{|m|} \lambda_j^{n+m_j+1} \prod_{\substack{\nu=1\\\nu\neq j}}^k (\lambda_\nu - \lambda_j)^{m_\nu} = (-1)^m \lambda_j^{n+1} k^m.$$

Therefore, with the corresponding parameters m_j and $\gamma \in \mathbb{R} \setminus \mathbb{Z}_-$, the Theorems 1 and 3 are consistent. Also we note, that if the condition $m = o(\sqrt{n})$ as $n \to \infty$ is not satisfied, then the equivalence in (19) is broken. It means, that the condition $m = o(\sqrt{n})$ in the Theorem 1 is necessary.

REFERENCES

- 1. G. Mittag-Leffler, "Sur la nouvelle fonction $E_{\alpha}(x)$," C.R. Akad. Sci. 137, 554–558 (1903).
- 2. M. M. Dzhrbashyan, Integral Transforms and Representations of Functions in the Complex Domain (Nauka, Moscow, 1966) [in Russian].
- 3. H. Stahl, "Asymptotics for quadratic Hermite-Padé polynomials associated with the exponential function," Electron. Trans. Num. Anal. 14, 195–222 (2002).
- 4. C. Hermite, "Sur la fonction exponentielle," C. R. Acad. Sci. 77, 18–293 (1873).
- 5. F. Klein, Elementary Mathematics from a Higher Standpoint. Vol. 1: Arithmetic, Algebra, Analysis (Springer, Berlin, 2016).
- 6. H. Van Rossum, "Systems of orthogonal and quasi orthogonal polynomials connected with the Padé table I, II and III," Nederl. Akad. Wetensch., Ser. A. 58, 517–534, 675–682 (1955).
- 7. A. I. Aptekarev, "Padé approximations for the system $\{{}_1F_1(1,c;\lambda_iz)\}_{i=1}^k$," Moscow Univ. Math. Bull. **36** (2), 73–76 (1981).

- 8. A. P. Starovoitov, "Hermite—Padé approximants of the Mittag-Leffler functions," Proc. Steklov Inst. Math. 301, 228–244 (2018).
- 9. M. G. De Bruin, "Convergence of the Padé table for ${}_1F_1(1;c;x)$," Nederl. Akad. Wetensch., Ser. A. **79**, 408–418 (1976).
- 10. D. Braess, "On the conjecture of Meinardus on rational approximation of e^x , II," J. Approx. Theory. **40** (4), 375–379 (1984).
- 11. A. P. Starovoitov and N. A. Starovoitova, "Padé approximants of the Mittag-Leffler functions," Sb. Mat. 198 (7), 1011–1023 (2007).
- 12. A. B. J. Kuijlaars, H. Stahl, W. Van Assche and F. Wielonsky, "Type II Hermite–Padé approximation to the exponential function," J. Comput. Appl. Math. **207** (2), 227–244 (2007).
- 13. A. B. J. Kuijlaars, W. Van Assche and F. Wielonsky, "Quadratic Hermite-Padé approximation to the exponential function: A Riemann-Hilbert approach," Constr. Approx. 21 (3), 351-412 (2005).
- 14. H. Stahl, "Asymptotic distributions of zeros of quadratic Hermite-Padé polynomials associated with the exponential function," Constr. Approx. 23 (2), 121–164 (2006).
- 15. A. P. Starovoitov, "Hermitian approximation of two exponents," Izv. Saratov. Univ. (N.S.), Ser. Math. Mech. Inform. 13 (1(2)), 87–91 (2013).
- 16. A. P. Starovoitov, "The asymptotic form of the Hermite-Padé approximations for a system of Mittag-Leffler functions," Russ. Math. (Iz. VUZ) **58** (9), 49–56 (2014).
- 17. A. V. Astafyeva and A. P. Starovoitov, "Hermite-Padé approximation of exponential functions," Sb. Mat. **207** (6), 769–791 (2016).
- 18. A. P. Starovoitov and E. P. Kechko, "On some properties of Hermite-Padé approximants to an exponential system," Proc. Steklov Inst. Math. 298, 317–333 (2017).