Cálculo Numérico. Métodos de un paso - Euler - Taylor Práctica 2

Marcela Fabio

23/04/2020

Index

- Idea
- 2 Métodos de un paso
- 3 Euler
- 4 Ejemplo 1
- 6 Errores
- 6 Ejemplo 2

Idea

Queremos obetner la solución aproximada del problema de valor inicial (PVI)

$$\begin{cases} y' = f(t, y), & t_0 \le t \le T \\ y(t_0) = y_0, \end{cases} \tag{1}$$

en los puntos igualmente espaciados $t_j=t_0+jh$, $t_j\in[t_0,T]$ y $h=\frac{T-t_0}{M}$.

Observaciones

- Para j=0 tenemos $t_0=t_0+0h=t_0$ y para j=N, $t_N=t_0+Nh=t_0+N\frac{T-t_0}{N}=T$
- NO obtenemos una aproximación continua y(t).
- (1) debe cumplir hipótesis de existencia y unicidad (*f* continua en *t* y Lipschitz en la variable *y*.)

Recordamos

f(t,y) es Lipschitz en la variable y: existe L > 0 tal que $\forall t$,

Recordamos

f(t,y) es Lipschitz en la variable y: existe L > 0 tal que $\forall t$,

$$|f(t,y)-f(t,\tilde{y})|\leq \frac{L}{|y-\tilde{y}|}$$

Ejemplos:

- $f(t, y) = y \sin(t)$, con $t \in [a, b]$. Entonces $|y \sin(t) (\tilde{y} \sin(t))| = 1 |y \tilde{y}|$ podemos tomar L = 1.
- **1** $f(t,y) = \lambda y$, con $t \in [a,b]$. Entonces, $|\lambda y \lambda \tilde{y}| = |\lambda| |y \tilde{y}|$, podemos tomar $L = |\lambda|$.
- $f(t,y) = t\sin(y)$, con $t \in [-2,1]$. Entonces

$$|t\sin(y) - t\sin(\tilde{y})| = |t| |\sin(y) - \sin(\tilde{y})| = TVM$$

Recordamos

f(t,y) es Lipschitz en la variable y: existe L > 0 tal que $\forall t$,

$$|f(t,y)-f(t,\tilde{y})|\leq \frac{L}{|y-\tilde{y}|}$$

Ejemplos:

- $f(t, y) = y \sin(t)$, con $t \in [a, b]$. Entonces $|y \sin(t) (\tilde{y} \sin(t))| = 1 |y \tilde{y}|$ podemos tomar L = 1.
- **9** $f(t,y) = \lambda y$, con $t \in [a,b]$. Entonces, $|\lambda y \lambda \tilde{y}| = |\lambda| |y \tilde{y}|$, podemos tomar $L = |\lambda|$.
- $f(t,y) = t\sin(y)$, con $t \in [-2,1]$. Entonces

$$|t\sin(y) - t\sin(\tilde{y})| = |t| |\sin(y) - \sin(\tilde{y})| = TVM$$

$$|t| |\cos(\xi)| |y - \tilde{y}| \le 2|y - \tilde{y}|, \quad \xi \text{ entre } y \in \tilde{y}.$$

Podemos tomar L=2.

Métodos de un paso

Los explícitos tienen la forma iterada

$$\begin{cases} y_{j+1} = y_j + h \Phi(t_j, y_j, h) \\ y(t_0) = y_0 \end{cases}$$
 (2)

con
$$j=0,\cdots,N,\ h=\frac{T-t_0}{N}$$

Ejemplos

- Euler: $\Phi(t_j, y_j, h) = f(t_j, y_j)$
- Taylor de segundo orden:

$$\Phi(t_j, y_j, h) = f(t_j, y_j) + \frac{h}{2} \Big(f_t(t_j, y_j) + f_y(t_j, y_j) f(t_j, y_j) \Big)$$

Observaciones

- 1 Euler es Taylor de orden 1
- 2 Podemos usar Taylor de orden *k* pero hay que derivar más.

Euler

El método de Euler es la técnica más sencilla (no la más precisa) que nos sirve para ilustrar otras más avanzadas.

Sabemos por Taylor que si se puede derivar y dos veces

$$y(t_{j+1}) = y(t_j) + (t_{j+1} - t_j)y'(t_j) + \frac{(t_{j+1} - t_j)^2}{2}y''(\xi_j)$$
 ó

$$y(t_{j+1}) = y(t_j) + h f(t_j, y(t_j)) + \underbrace{h \cdot \frac{h}{2} y''(\xi_j)}_{\text{error local}}$$

$$\begin{cases} y_{j+1} = y_j + h f(t_j, y_j) \\ y(t_0) = y_0 \end{cases} \quad con \ j = 0, \dots, N, \ h = \frac{T - t_0}{N}$$

Consideramos para $\lambda \neq 0$ (conocemos su solución: $y(t) = e^{\lambda t}$)

$$\begin{cases} y' = \lambda y, & 0 \le t \le 1 \\ y(0) = 1, \end{cases}$$

En este caso $y_0 = 1$, $f(t, y) = \lambda y$, entonces $y_{j+1} = y_j + h(\lambda y_j)$ paso h = 1/N y puntos 0, h, 2h, \cdots , Nh

$$y_0 = y(0) = 1$$

 $y_1 = y_0 + h\lambda y_0 = y_0(1 + h\lambda) = (1 + h\lambda)$
 $y_2 = y_1 + h\lambda y_1 = y_1(1 + h\lambda) = (1 + h\lambda)^2$
 \vdots
 $y_N = (1 + h\lambda)^N$

como $h=\frac{1}{N}$ tenemos $y(1)\approx y_N=(1+\frac{\lambda}{N})^N o e^{\lambda}$ si $N o \infty.$

Errores

- Error de truncamiento local: en Euler, $\tau_j = \frac{h}{2}y''(\xi_j)$ y en Taylor orden 2, $\tau_j = \frac{h^2}{6}y'''(\xi_j)$
- Error global: es la diferencia entre y(T) y su estimación, partiendo de $y(t_0)$ y paso h.

Teorema

Para el método de un paso asociado a $\Phi(t, y, h)$ Lipschitz en y con constante K,

$$|\Phi(t, y, h) - \Phi(t, \tilde{y}, h)| \le K|y - \tilde{y}|, \quad t \in [t_0, T]$$

se tiene

$$|y(T)-y_N| \leq \frac{ au_{max}}{K} \left(e^{K(T-t_0)}-1\right)$$

donde

$$\tau_{max} = \max |\tau_i|, j = 1, \cdots, N.$$

Sea y(t) solución del siguiente PVI

$$\begin{cases} y' = t\cos(2y^2), & 0 \le t \le 1\\ y(0) = 1, \end{cases}$$

- 1 Probar que $0 \le y(t) \le 2$ en [0, 1].
- 2 Hallar *N* para que el error producido al aproximar y(1) usando Euler de paso $h = \frac{1}{N}$ sea $< 10^{-2}$. e

Para 1):

$$|y(t) - y(0)| = |y(t) - 1| \underset{TVM}{=} |y'(\xi)||t - 0| =$$

 $|\xi \cos(2y^2(\xi))||t| \le |\xi||t| \underset{\xi \in (0,t)}{\le} 1$

Sea y(t) solución del siguiente PVI

$$\begin{cases} y' = t\cos(2y^2), & 0 \le t \le 1\\ y(0) = 1, \end{cases}$$

- 1 Probar que $0 \le y(t) \le 2$ en [0, 1].
- 2 Hallar *N* para que el error producido al aproximar y(1) usando Euler de paso $h = \frac{1}{N}$ sea $< 10^{-2}$. e

Para 1):

$$|y(t) - y(0)| = |y(t) - 1| \underset{TVM}{=} |y'(\xi)||t - 0| =$$

$$|\xi \cos(2y^{2}(\xi))||t| \le |\xi||t| \underset{\xi \in (0,t)}{\le} 1$$

entonces

$$|y(t)-1|\leq 1 \Rightarrow 0\leq y(t)\leq 2$$

Para 2): Debemos hallar K y τ_{max} .

K) Para la constante Lipschitz de
$$\Phi(t, y, h) = f(t, y) = t \cos(2y^2)$$
.
$$|t \cos(2y^2) - t \cos(2\tilde{y}^2)| = |t| |\cos(2y^2) - \cos(2\tilde{y}^2)| = \frac{1}{TVM}$$

$$|t| |\sin(2\xi^2) \, 4\xi |\, |y-\tilde{y}| \leq 4|t| \, |\xi| \, |y-\tilde{y}| \underset{\xi \text{ entre } y,\tilde{y}}{\leq} 8 \, |y-\tilde{y}|,$$

entonces tomamos K = 8.

$$au_{max}$$
) Como $au_j = rac{h}{2} y''(\xi_j)$ y

$$y''(t) = (t\cos(2y^2))' = \cos(2y^2) - t\sin(2y^2)4yt\cos(2y^2),$$

entonces

$$|y''(t)| = |\cos(2y^2)||1 - 4t^2\sin(2y^2)y| \le 1 + |4t^2y| \le 9$$

Para 2): Debemos hallar K y τ_{max} .

K) Para la constante Lipschitz de Φ(
$$t, y, h$$
) = $f(t, y) = t \cos(2y^2)$.
$$|t \cos(2y^2) - t \cos(2\tilde{y}^2)| = |t| |\cos(2y^2) - \cos(2\tilde{y}^2)| \underset{TVM}{=} |t| |\sin(2\xi^2) \, 4\xi| \, |y - \tilde{y}| \le 4|t| \, |\xi| \, |y - \tilde{y}| \le \sup_{\xi \; entre \; y, \tilde{y}} 8 \, |y - \tilde{y}|,$$

entonces tomamos K = 8.

$$au_{max}$$
) Como $au_j = rac{h}{2} y''(\xi_j)$ y

$$y''(t) = (t\cos(2y^2))' = \cos(2y^2) - t\sin(2y^2)4yt\cos(2y^2),$$

entonces

$$|y''(t)| = |\cos(2y^2)||1 - 4t^2\sin(2y^2)y| \le 1 + |4t^2y| \le 0$$

$$| au_j| = rac{h}{2}|y''(\xi_j)| \le rac{9h}{2} \, \Rightarrow \, au_{ extit{max}} \le rac{9h}{2}$$

Armamos la cota de error del teorema

$$|y(1) - y_N| \le \frac{9h/2}{8} \left(e^{8(1-0)} - 1 \right) = \frac{9}{16N} \left(e^8 - 1 \right) \le \frac{617}{N} \le \frac{1}{100}$$

y sale el N.