# Logical Agents

Informatics 2D: Reasoning and Agents

**Lecture 8** 

Adapted from slides provided by Dr Petros Papapanagiotou



# Knowledge bases



Knowledge base (KB) = set of sentences in a formal language

Declarative approach to building an agent (or other system):

• Tell it what it needs to know

Then it can Ask itself what to do - answers should follow from the KB

Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented

# A simple knowledge-based agent

#### The agent must be able to:

- represent states, actions, etc.
- incorporate new percepts
- update internal representations of the world
- deduce hidden properties of the world
- deduce appropriate actions

```
function KB-AGENT( percept) returns an action

persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence( percept, t))

action \leftarrow Ask(KB, Make-Action-Query(t))

Tell(KB, Make-Action-Sentence( action, t))

t \leftarrow t + 1

return action
```



# Wumpus World



#### Wumpus World



#### Performance measure



Actuators: Left turn, Right turn, Forward, Grab, Shoot, Climb



Environment: 4x4 grid, agent starts in [1,1]



Sensors: Stench, Breeze, Glitter, Bump, Scream

- Squares adjacent to wumpus are smelly
- Squares adjacent to pits are breezy
- Glitter iff gold is in the same square
- When the agent walks into a wall, it will perceive bump
- When the wumpus is killed, it will scream





Observable

Deterministic

Episodic

Static

Discrete

Single-agent



Observable

No - only local perception

Deterministic

Episodic

Static

Discrete

Single-agent



Observable

No - only local perception

Deterministic

Yes - outcomes exactly specified

Episodic

Static

Discrete

Single-agent



Observable

No - only local perception

Deterministic

Yes - outcomes exactly specified

Episodic

No - sequential at the level of actions

Static

Discrete

Single-agent



Observable

No - only local perception

Deterministic

Yes - outcomes exactly specified

Episodic

• No - sequential at the level of actions

Static

Yes - Wumpus and Pits do not move

Discrete

Single-agent



Observable

No - only local perception

Deterministic

Yes - outcomes exactly specified

Episodic

• No - sequential at the level of actions

Static

Yes - Wumpus and Pits do not move

Discrete

Yes

Single-agent



Observable

No - only local perception

Deterministic

Yes - outcomes exactly specified

Episodic

• No - sequential at the level of actions

Static

Yes - Wumpus and Pits do not move

Discrete

Yes

Single-agent

Yes - Wumpus is not moving





















# Logic

# Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics defines the *meaning* of sentences; define truth of a sentence in a world

| e.g., the langua<br>Syntax  | Semantics                                                             |
|-----------------------------|-----------------------------------------------------------------------|
| x+2 ≥ y is a sentence       | $x+2 \ge y$ is true iff the number $x+2$ is no less than the number y |
| x2+y > {} is not a sentence | $x+2 \ge y$ is true in a world where $x = 7$ , $y = 1$                |
|                             | $x+2 \ge y$ is false in a world where $x = 0$ , $y = 6$               |

#### Entailment

Entailment means that one thing follows from another:

$$KB \models \alpha$$

- $\triangleright$  Knowledge base KB entails sentence  $\alpha$  iff  $\alpha$  is true in all worlds where KB is true
  - e.g., x+y = 4 entails 4 = x+y
  - e.g., the KB containing "Celtic won" and "Hearts won" entails "Either Celtic won or Hearts won"
- Entailment is a relationship between sentences (syntax) that is based on semantics

#### Models

- Logicians typically think in terms of models that are formally structured worlds with respect to which truth can be evaluated
- $\triangleright$  We say m is a model of a sentence  $\alpha$  if  $\alpha$  is true in m.
- $ightharpoonup M(\alpha)$  is the set of all models of  $\alpha$ .
- $\triangleright$  KB  $\models \alpha$  iff  $M(KB) \subseteq M(\alpha)$
- > The *stricter* an assertion, the fewer models it has.



# Entailment in the wumpus world



Possible models for KB assuming only pits
 3 Boolean choices → 8 possible models









*KB* = wumpus-world rules + observations





*KB* = wumpus-world rules + observations

 $\alpha_1 = "[1,2] \text{ has no pit"}$ 

 $KB \models \alpha_1$ , proved by model checking

 $\circ$  In every model where KB is true,  $\alpha_1$  is also true



*KB* = wumpus-world rules + observations





KB = wumpus-world rules + observations

 $\alpha_2 = "[2,2] \text{ has no pit"}$ 

 $KB \not\models \alpha_{2}$ , cannot be proved by model checking

 $\circ$  In some models in which KB is true,  $\alpha_2$  is false

#### Inference

 $KB \vdash_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by inference procedure } i$ 

#### Soundness

• i is sound if whenever  $KB \vdash_i \alpha$ , it is also true that  $KB \models \alpha$ 

#### Completeness

• *i* is complete if whenever  $KB \models \alpha$ , it is also true that  $KB \vdash_i \alpha$ 

#### Symbolic approach Subsymbolic approach **Logic-based Approach** Knowledge Neuro-symbolic Representation Computation Logic as constraint Differentiable reasoning Reasoning Neural probabilistic LP Verification

https://miro.medium.com/max/1400/1\*IFbqqQ5UsCtmRrowjthNuA.png



https://miro.medium.com/max/1400/1\*IFbqqQ5UsCtmRrowjthNuA.png

### Propositional logic





### Propositional logic



THE SCROLL OF TRUTH!

# Propositional logic: Syntax

Propositional logic is the simplest logic - illustrates basic ideas

 $\circ$  The proposition symbols  $P_1$ , Q; or True, False etc. are atomic sentences

∘ If S is a sentence, ¬S is a sentence

[negation]

• If  $S_1$  and  $S_2$  are sentences,  $S_1 \wedge S_2$  is a sentence

[conjunction]

 $\circ$  If  $S_1$  and  $S_2$  are sentences,  $S_1 \vee S_2$  is a sentence

[disjunction]

• If  $S_1$  and  $S_2$  are sentences,  $S_1 \Rightarrow S_2$  is a sentence

[implication]

 $\circ$  If  $S_1$  and  $S_2$  are sentences,  $S_1 \Leftrightarrow S_2$  is a sentence

[biconditional]

#### Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

e.g., 
$$P_{1,2}$$
=false  $P_{2,2}$ =true  $P_{3,1}$ =false

- With these symbols, 8 possible models
  - can be enumerated automatically!

#### Propositional logic: Semantics

 $\triangleright$  Rules for evaluating truth with respect to a model m:

```
¬S is true iff S is false

S1 ∧ S2 is true iff S1 is true and S2 is true

S1 ∨ S2 is true iff S1 is true or S2 is true

S1 ⇒ S2 is true iff S1 is false or S2 is true

i.e., is false iff S1 is true and S2 is false

S1 ⇔ S2 is true iff S1 ⇒ S2 is true and S2 ⇒ S1 is true
```

Simple recursive process evaluates an arbitrary sentence:

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$ 

| P     | Q     | $\neg P$ | $P \wedge Q$ | $P \lor Q$ | $P \Rightarrow Q$ | $P \Leftrightarrow Q$ |
|-------|-------|----------|--------------|------------|-------------------|-----------------------|
| false | false | true     | false        | false      | true              | true                  |
| false | true  | true     | false        | true       | true              | false                 |
| true  | false | false    | false        | true       | false             | false                 |
| true  | true  | false    | true         | true       | true              | true                  |

# Truth tables for connectives

# Wumpus world sentences

- $\triangleright$  Let  $P_{i,j}$  be true if there is a pit in [i, j].
- $\triangleright$  Let  $B_{i,j}$  be true if there is a breeze in [i, j].

$$\neg P_{1,1} \quad \neg B_{1,1} \quad B_{2,1}$$

> "Pits cause breezes in adjacent squares" B<sub>1,1</sub> ⇔ (P<sub>1,2</sub> ∨ P<sub>2,1</sub>) B<sub>2,1</sub> ⇔ (P<sub>1,1</sub> ∨ P<sub>2,2</sub> ∨ P<sub>3,1</sub>)

 $\alpha_1 = "[1,2] \text{ has no pit" ????}$ 

| B <sub>1,1</sub> | B <sub>2,1</sub> | P <sub>1,1</sub> | P <sub>1,2</sub> | P <sub>2,1</sub> | $P_{2,2}$ | P <sub>3,1</sub> | KB    | $\alpha_1$ |
|------------------|------------------|------------------|------------------|------------------|-----------|------------------|-------|------------|
| false            | false            | false            | false            | false            | false     | false            | false | true       |
| false            | false            | false            | false            | false            | false     | true             | false | true       |
| :                | :                | :                | :                | :                | :         | :                | ÷     | :          |
| true             | true             | false            | false            | false            | false     | false            | false | true       |
| false            | true             | false            | false            | false            | false     | true             | true  | true       |
| false            | true             | false            | false            | false            | true      | false            | true  | true       |
| false            | true             | false            | false            | false            | true      | true             | true  | true       |
| false            | true             | false            | false            | true             | false     | false            | false | true       |
| :                | :                | :                | :                | :                | :         | :                | :     | :          |
| true             | true             | true             | true             | true             | true      | true             | false | false      |

#### Truth tables for inference

```
function TT-ENTAILS?(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
          \alpha, the query, a sentence in propositional logic
  symbols \leftarrow a list of the proposition symbols in KB and \alpha
  return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
  if EMPTY?(symbols) then
      if PL-True?(KB, model) then return PL-True?(\alpha, model)
      else return true // when KB is false, always return true
  else do
      P \leftarrow \text{First}(symbols)
      rest \leftarrow REST(symbols)
      return (TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = true\})
              and
              TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false \}))
```

# Inference by enumeration

- Depth-first enumeration of all models is sound and complete
- > PL-TRUE?
  - returns true if a sentence holds in a model
- For *n* symbols
  - Time complexity is  $O(2^n)$
  - Space complexity is O(n)

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \qquad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \qquad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \qquad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \qquad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \qquad \text{double-negation elimination} \\ (\alpha \rightarrow \beta) \equiv (\neg \beta \rightarrow \neg \alpha) \qquad \text{contraposition} \\ (\alpha \rightarrow \beta) \equiv (\neg \alpha \vee \beta) \qquad \text{implication elimination} \\ (\alpha \leftrightarrow \beta) \equiv ((\alpha \rightarrow \beta) \wedge (\beta \rightarrow \alpha)) \qquad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \qquad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \qquad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \qquad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \qquad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}$$

# Logical equivalence

Two sentences are logically equivalent iff true in the same models:

$$\alpha \equiv \beta$$
 iff  $\alpha \models \beta$  and  $\beta \models \alpha$ 

# Validity and Satisfiability

#### A sentence is **valid** if it is true in all models

• true,  $A \lor \neg A$ ,  $A \Rightarrow A$ ,  $(A \land (A \Rightarrow B)) \Rightarrow B$ 

#### Validity is connected to inference via the **Deduction Theorem**

•  $KB \models \alpha$  if and only if  $(KB \Rightarrow \alpha)$  is valid

#### A sentence is **satisfiable** if it is true in *some model*

• e.g., A v B, C

#### A sentence is **unsatisfiable** if it is true in *no models*

• e.g., A∧¬A

#### Satisfiability is connected to inference via the following:

- $KB \models \alpha$  if and only if  $(KB \land \neg \alpha)$  is unsatisfiable
- prove  $\alpha$  by reductio ad absurdum

#### Propositional Theorem Proving

#### APPLICATION OF INFERENCE RULES

- Legitimate (sound) generation of new sentences from old
- **Proof** = a sequence of inference rule applications
  - Can use inference rules as operators in a standard search algorithm!
- Typically require transformation of sentences into a **normal form**
- Example: resolution

#### MODEL CHECKING

- truth table enumeration
  - (always exponential in *n*)
- improved backtracking
  - e.g., DPLL
- heuristic search in model space
  - (sound but incomplete)
  - e.g., min-conflicts-like hill-climbing algorithms

#### Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
  - syntax: formal structure of sentences
  - semantics: truth of sentences wrt models
  - entailment: necessary truth of one sentence given another
  - inference: deriving sentences from other sentences
  - soundness: derivations produce only entailed sentences
  - completeness: derivations can produce all entailed sentences