IEOR 4404 Simulation

Fall 2024

Homework 4

Instructor: Henry Lam

Problem 1 Let G be a cumulative distribution function and suppose that for constants a < b, we wish to generate a random variable X with cumulative distribution function

$$F(x) = \frac{G(x) - G(a)}{G(b) - G(a)}, \quad a \le x \le b.$$

- (a) If random variable Y has cumulative distribution function G, then given what information is F the conditional distribution of Y? Prove your claim.
- (b) Show that an acceptance-rejection method to generate X in this case is to generate a random variable Y having cumulative distribution function G and then accept it if it lies between a and b.

Problem 2 Derive an acceptance-rejection method to generate (X,Y) with joint density function

$$f(x,y) = \frac{1}{K} \exp(-x^2 - y^2 + x \sin(xy)),$$

where K is a normalizing constant. Implement your method in a computer to generate 100 pairs of (X,Y), and plot the distributions of X and Y respectively.

Problem 3 Derive a procedure to sample uniformly from the region

$$A = \left\{ (x, y) : x \in [-1, 1], |y| \le |x|^{-1/2} \right\}.$$

Implement your procedure in a computer to generate 100 pairs of (X, Y), and plot their positions on a two-dimensional plane to check that they indeed appear uniformly distributed over the region A.

Problem 4 Consider the discrete random variable X where

$$\mathbb{P}(X=j) = \left(\frac{1}{2}\right)^{j+1} + \left(\frac{1}{2}\right) \frac{2^{j-1}}{3^j}, j = 1, 2, \dots$$

which appears in HW2 Problem 3. Instead of using the inverse transform method as there, now present a composition method to generate X. Then implement your procedure in a computer to generate 100 copies of X, and plot their distribution.

Problem 4 Present a method to generate a random variable X having cumulative distribution function

$$F(x) = \int_0^\infty x^y e^{-y} dy, 0 \le x \le 1.$$

Implement your procedure in a computer to generate 100 copies of X, and plot their distribution.

Alexandre Duhamel afd 2153 MSOR																						
							Н	M	4	:	5:/	TMA	لما	iar								
						_		00														
	0.																					
	Trot	Rem 1	:																			
	a.)	Ιĝ	y R	03 C	ag 6	, K	m f	er a	£ 2c	٤6:												
		Ľ			Ľ																	
		P	(a 4	76	z a	474	6) =	P(م ذ ٢	162	Na:	4466) .	PC	مذبا	(یر ک		6(2	- د	(a)	: F	(se)
										P(a	275	6)		Pa	67	s b)		G(6)	- 6	(a)		
		c (()			I.I.		1. 1			v		10 L	W /	r /1							
		20 1	(32)	n 23	i Con	nditio	nel.	dist	žbuli	m of	7,	given	hat	7 &	a,6.	•						
	6)	The	acar	tance	- ~	ection	met	had .	he	LS:												
			1. 6	lmra.	br A	N 6	(z)															
			2.	Accept	Y i	عانه كا	LS in	n [a	17	, st	ww:	Se n	ecat	de	1.							
				,																		
		11.			01-00	le. \	L		R					v l		. ماه . ه			-4		10 'm	
						د به ا																
		La.	, 1.	So U	e ge	merat	101	COm	ditto	and a	n La	,61	نقالها)	dk 23	X :	TLA	: 7	2	A 5	756)	: F(<i>BL</i>] /
	Pro	lm.	<u>2 : </u>																			
		lek.	s ta		A (%.	y) =	1	-22	- y 2	and	del	-ma 4	h (ze. u) : 0	<u>-z¹ -</u>	y 2 + :	e Sim	æg) (o Kac	k fex	w) = {	(G,S)
		Ue (1.		0	ð,	211						0							7	0' -	K
		V/ 1	AMUX .						ler 2	=41(
			~		0 4				-22.	42	a Non C	1										
			C = 1	max	9(24	a) =	211	Max	e		_											
											6.			V						(1,1		
		TBL A	RM.	LS:	F Gen	verak	(X,	y) N	م(ید	y)			g(U,) g(U,)		M ₂)	Comp	from		r (60	rdima	ಪ	
						nerale			_	·						So	Х, У	w C	(4)			
						u		_		- K ¹		KsIn (XY)	-	2° - Y	+ K sk	(XY)					
					1 -4		č	(אא)		<u>श्र</u>	-Xt.	72										
							1		ارب درو			ŧ,	-22		-4	-	0.000		- 8%		101	-3
		gr.	yr:	80	Z. y)	0.72 =	277	٥	2.0	do	= 1	er Ja	6.	day, s	81	-4	217	_	aT .	///	JT'(0	.1/
								11/6														

```
def q(x, y):
    return (1 / (2 * np.pi)) * np.exp(-0.5 * (x**2 + y**2))
def box muller():
    U1 = np.random.uniform(0, 1)
    U2 = np.random.uniform(0, 1)
    Z1 = np.sqrt(-2 * np.log(U1)) * np.cos(2 * np.pi * U2)
    Z2 = np.sqrt(-2 * np.log(U1)) * np.sin(2 * np.pi * U2)
    return Z1, Z2
                                                         Distribution of X (Box-Muller)
def generate samples(num samples):
    samples = []
    C = 2 * np.pi
                                                0.5
                                                0.4
    while len(samples) < num samples:</pre>
         X, Y = box_muller()
                                                0.3
                                                0.2
         U = np.random.uniform(0, 1)
                                                0.1
                                                       -1.5
                                                          -1.0
                                                             -0.5 0.0
         if U <= h(X, Y) / (C * g(X, Y)):
             samples.append((X, Y))
                                                         Distribution of Y (Box-Muller)
                                                0.6
    return np.array(samples)
# Generate 100 pairs (X, Y)
                                                0.4
                                                Densit
0.0
num_samples = 100
samples = generate samples(num samples)
# Extract X and Y values
                                                0.1
X samples = samples[:, 0]
                                                0.0
                                                           -0.5
                                                               0.0
Y samples = samples[:, 1]
# Plot the histogram of X samples
plt.hist(X samples, bins=20, density=True, edgecolor='black', alpha=0.7)
plt.title('Distribution of X (Box-Muller)')
plt.xlabel('X')
plt.ylabel('Density')
plt.show()
# Plot the histogram of Y samples
plt.hist(Y_samples, bins=20, density=True, edgecolor='black', alpha=0.7)
plt.title('Distribution of Y (Box-Muller)')
plt.xlabel('Y')
plt.ylabel('Density')
plt.show()
```

return np.exp(-x**2 - y**2 + x * np.sin(x * y))

def h(x, y):

```
Problem 3:
                We have A: 1(x,y), ze [[-4,1], |y| { |z| | 1/2 }
                We first sample X ~ Unif (-1, 1) = 2 Unif (0, 1) - 1
                                                                 Vail (a, b): (b-a) Unif (01) + a
                Thin sample YN Unig (-fix), fix) where fix) = 12 - 10
                              =2f(2) Unif(0,1) - f(2)
def sample from A(num samples):
    samples = []
    for _ in range(num_samples):
         U1 = np.random.uniform(0, 1)
         X = -1 + 2 * U1
         if X == 0:
             Y = 0 # Avoid division by zero if X = 0...
         else:
             bound = np.abs(X)**(-1/2)
             U2 = np.random.uniform(0, 1)
                                                    Uniformly Distributed Samples from Region A (Using Unif(0,1))
             Y = -bound + 2 * bound * U2
         samples.append((X, Y))
    return np.array(samples)
                                                   0.0
# Generate 100 samples from the region A
                                                  -0.5
num samples = 100
samples = sample_from_A(num_samples)
                                                  -1.5
# Extract X and Y values for plotting
                                                           -0.50
                                                               -0.25
                                                                    0.00
X samples = samples[:, 0]
Y_samples = samples[:, 1]
# Plot the sampled (X, Y) pairs on a 2D plane
plt.scatter(X_samples, Y_samples, color='blue', alpha=0.7, edgecolor='black')
plt.title('Uniformly Distributed Samples from Region A (Using Unif(0,1))')
plt.xlabel('X')
plt.ylabel('Y')
plt.xlim(-1, 1)
plt.ylim(-2, 2)
plt.grid(True)
plt.show()
```

```
Postlem 4:
              We can appoint P(X=1) = something + something elx
                                   = 1 P(x=1) + 1 P(x=1) when (P(x=1) = (1))
                                                              P. (x=5) = 26"
              We can see it as a Becorallia RV Y, where Y = 50 Las
def generate_X(num_samples):
    samples = []
    for _ in range(num_samples):
        # Step 1: Generate a Bernoulli random variable with probabilit
        bernoulli = np.random.uniform(0, 1)
        if bernoulli <= 0.5:
             # Step 2: Use P 1 component (geometric-like distribution w-
             while np.random.uniform(0, 1) > 0.5:
                 X += 1
        else:
             # Step 2: Use P 2 component (with P(X=j) = 2^{(j-1)} / 3^{j})
             U = np.random.uniform(0, 1)
             X = 1
             P = 1/3 # Initial probability for X = 1
             while U > P:
                                                         Generated Samples of X using Composition Method
                 X += 1
                 P += (2 ** (X - 1)) / (3 ** X)
                                                     25
        samples.append(X)
                                                    <u>ک</u> 20
                                                    ₽
15
    return np.array(samples)
                                                     10
# Generate 100 samples of Gib
num samples = 100
samples_X = generate_X(num_samples)
# Plot the distribution of the generated samples
plt.hist(samples_X, bins=range(1, max(samples_X)+2), edgecolor='k', al-
plt.title('Generated Samples of X using Composition Method')
plt.xlabel('X')
plt.ylabel('Frequency')
plt.show()
```

```
This was my original approach to get 2 fee RV but taking a lessor to decem't mater the div result in I would take to understand discuss why his down't work food and approach to get 2 fee RV food take to understand discuss why his down't work but taking a genething else and approach to generate the contains of the con
```

```
for _ in range(num_samples):
    # Step 1: Generate a Bernoulli random variable with probable
bernoulli = np.random.uniform(0, 1)
```

Step 2: Use P_1 component (geometric-like distribution

if bernoulli <= 2/3:

plt.ylabel('Frequency')

plt.show()

x += 1
samples.append(X)
return np.array(samples)

Generate 100 samples of X
num_samples = 100
samples_X = generate_X(num_samples)
Generated Samples of X
of X

Plot the distribution of the generated samples
plt.hist(samples_X, bins=range(1, max(samples_X)+2), edgecolor='k',
plt.title('Generated Samples of X using Composition Method')
plt.xlabel('X')

```
Roblem 5:
                                           let's use the continuous mexture: F(x) = P(x & x) = P(y & x) f. (t) dt
                                          We have: F(x) = 28 = 8 dy where & P(Yz & 20) = set
                                                                                                                                 f. (t) = e-t so TN Exp(1)
                                          To general T: F(t) = \( \begin{align*} \begin{align
                                          F(T) = U - 1-e-T = U -> T = -ln(1-U) -> T= -ln(U) where U => Unif (0,1)
                                           To general: YE + F(YE) = U - 2 = U" Where U ~ Unit (0,1)
                                           Alegeithon: 1. Generale TN Exp(1) as T=-ln(U) where UN Unif(0,1)
                                                                         2. Given T . t. gomerate Y. as Y. = V " where V N Unit (0,1)
# Generate T ~ Exp(1)
def generate_T():
           U = np.random.uniform(0, 1)
           return -np.log(U)
                                                                                                                                                 Generated Samples of Y_t using For Loop
# Generate P(Y_t \le x) = x^T
def generate_Y_t():
                                                                                                                        20
           T = generate_T()
           U = np.random.uniform(0, 1)
           Y_t = U**(1/T)
                                                                                                                        15
           return Y_t
# Function to generate multiple Y_t san
def generate_Y_t_samples(num_samples):
           samples = []
           for _ in range(num_samples):
                                                                                                                          5
                       Y_t = generate_Y_t()
                       samples.append(Y t)
           return np.array(samples)
                                                                                                                                                                             0.4
# Set number of samples
num samples = 100
Y_t_samples = generate_Y_t_samples(num_samples)
# Plot the histogram of the generated Y_t values
plt.hist(Y_t_samples, bins=20, edgecolor='k', alpha=0.7)
plt.title('Generated Samples of Y_t using For Loop')
plt.xlabel('Y t')
plt.ylabel('Frequency')
plt.show()
```

```
Tust research as I didn't see P(X \le x) = \int_0^\infty P(Y_t \le x) f_T(t) dt at first
I thought of approximation F(x) by computing many of its values, then inverse it by interpolation. I'm not seen of it works but the graphs both similar (complety the some for n = 10000) !
                Problem 5:
                  Le have F(x) = ( x7e-7 dy = ( x7 (1e-14) dy = ( x7g(y) dy
                  We want to inverse F so that we can have se
                  We will start by computing numerically F(x) for various values of 2 . (0,1)
                  We then we an interpolation to some: F(x) = U => x = F-1(U) when U ~ Unit (0,1)
def F(x):
     result, \_ = quad(lambda y: x**y * np.exp(-y), 0, np.inf)
     return result
# Precompute F(x) for a range of x values (0 to 1)
x vals = np.linspace(0, 1, 100)
                                                                              CDF F(x)
F_{\text{vals}} = np.array([F(x) for x in x_vals])
\# Plot F(x) to visualize its shape
plt.plot(x_vals, F_vals)
plt.title('CDF F(x)')
                        can be done by hand 0.6-
(x-2,)

if linear as: y=y,+ y=31

22-244
plt.xlabel('x')
plt.ylabel('F(x)')
plt.show()
# NumPy for linear interpolation of F(x)
def numpy_interpolate(F_vals, x_vals, U):
     return np.interp(U, F_vals, x_vals)
# Generate X using inverse transform sampling
def generate X(num samples):
     X \text{ samples} = []
                                                                    Generated Samples of X using NumPy Interpolation
                                                              20.0
     for _ in range(num_samples):
          # Generate U ~ Unif(0, 1)
          U = np.random.uniform(0, 1)
                                                             12.5
          # Find X using the interpolated CDF
                                                             10.0
          X = numpy_interpolate(F_vals, x_vals, U)
          X_samples.append(X)
     return np.array(X samples)
# Generate 100 samples of X
num_samples = 100
samples_X = generate_X(num_samples)
# Plot the distribution of the generated samples
plt.hist(samples_X, bins=20, edgecolor='k', alpha=0.7)
plt.title('Generated Samples of X using NumPy Interpolation')
plt.xlabel('X')
plt.ylabel('Frequency')
plt.show()
```