PEMODELAN KERUNTUHAN BALOK BAJA AKIBAT PAPARAN API MENGGUNAKAN METODE ELEMEN HINGGA

Thilal Syihabuddin, Winda Triwahyuningtyas, dan Krisnamurti

Jurusan Teknik Sipil, Fakultas Teknik, Universitas Jember Email: thsyihab@gmail.com

Abstrak: Pengurangan kekuatan material baja akan terjadi ketika baja terpapar api. Informasi mengenai penurunan kekuatan baja akibat paparan api diperlukan, terutama kemampuannya untuk menahan beban, hal ini dikarenakan defleksi yang cukup besar terjadi pada baja ketika terpapar api. Penelitian ini bertujuan untuk mengembangkan model tiga dimensi menggunakan metode elemen untuk memrediksi kemampuan baja dalam menahan beban pada kondisi paparan api. Beban yang diberikan pada balok baja adalah dalam bentuk beban gravitasi kemudian beban pemanasan menggunakan paparan api nonlinier, dengan paparan api hanya pada fase pemanasan. Hasil defleksi pada balok baja ketika terpapar api yang mencapai suhu 770°C adalah -271,52 mm (pada kondisi 5) dan -261,41 mm (pada kondisi 6). Tingkat kesalahan hasil pemodelan jika dibandingkan dengan data uji adalah 0,85%. Sehingga model yang dikembangkan mampu memprediksi dengan akurat kondisi balok baja ketika terpapar api.

Kata kunci: metode elemen hingga, paparan api nonlinier, lendutan dan kondisi batas

MODELING OF STEEL BEAM COLLAPSE DUE TO FIRE EXPOSURE USING FINITE ELEMENT METHOD

Abstract: Reduction in strength of steel material will occur when the steel is under fire exposure. The information about the decreesing strength of steel due to fire exposure is needed, especially its ability to withstand loads, considering the deflection that occurs in steel when exposed to fire. This study aims to develop a three-dimensional model using the finite element method to predict the ability of steel to withstand the load under fire exposure. The load given to steel beams is in the form of gravity loads then heating loads using nonlinear fire exposure, with the fire exposure just in the heating phase. The deflection due to fire exposure of temperature 770°C is -271.55 mm (condition 5) and -261.41 mm (condition 6), respectively. The error level of the modeling results, when compared with the test data, is 0.85%. So, the developed model is considered capable of accurately predicting the condition of steel beam when exposed to fire.

Keywords: finite element method, nonlinear fire exposure, deflection and boundary condition

PENDAHULUAN

Di Indonesia, penggunaan baja sebagai bahan bangunan meningkat seiring dengan meningkatnya anggaran provek infrastruktur dan relokasi ibu kota. Sebuah bangunan, terutama bangunan dengan struktur baja, harus memiliki ketahanan terhadap paparan api untuk mencegah runtuhnya bangunan. Meskipun keruntuhan struktur baja selama kebakaran jarang terjadi, informasi tentang penurunan kekuatan baja akibat paparan api diperlukan untuk mempertimbangkan kondisi baja setelah api padam dan untuk mengurangi kerugian ekonomi dan sosial ketika kebakaran terjadi pada bangunan baja (Hemmati dan Mahmoud, 2019).

Api umumnya akan mengalami enam yaitu: pengapian, pertumbuhan, flashover, pengembangan api penuh atau pembakaran terus-menerus, peredupan, dan pemadaman api (Drysdale, Kebakaran di area yang luas dan memiliki tingkat pelepasan panas yang tinggi yang dapat mencapai flashover, kemudian api menyebar ke semua bagian bangunan, dikategorikan sebagai paparan api linier. Namun, jika tingkat pelepasan panas akibat kebakaran tidak cukup untuk mencapai flashover, sehingga kebakaran hanya terjadi di lokasi tertentu, maka pemanasan baja di gedung tidak merata, dikategorikan sebagai paparan api non-linear (Hemmati dan Mahmoud, 2019).

Banyak studi secara eksperimental maupun numerik mengenai baja struktural untuk mengukur keruntuhannya saat terjadi kebakaran. Hemmati dan Mahmoud (2019) telah melakukan penelitian pengembangan rumusan matematis untuk mencari beban maksimum pada bangunan kondisi suhu tinggi karena api local, dengan membanding secara pemodelan analitis hasil menggunakan MATLAB dan ABAOUS 6.14. Gillie (2009) telah melaporkan hasil pemodelan yang dilakukan dengan program ABAQUS dengan kondisi paparan api dari pemanasan sampai pemadaman api. Marx (2018) melakukan ekperimen pada sistem lantai pada novel cellular beam untuk menentukan tingkat kesalaham model elemen hingga pada program ABAQUS, yang hasilnya model abagus dinyatakan

memiliki nilai korelasi yang baik. Iqbal dan Harichandran (2010) memprediksi kapasitas lentur struktur ketika ada api kemudian kapasitas lentur dianalisis menggunakan AISC. Zhang et al. (2014) melakukan penelitian tentang pengaruh api lokal dan gradasi suhu terhadap perilaku baja WF pada lokal kondisi paparan api ISO834 dibandingkan dengan distribusi suhu merata sepanjang bentang. Li dan Guo (2008) melakukan eksperimen laboratorium mengenai karakteristik baja apabila terpapar api dalam kondisi terkekang secara aksial yang terkekang secara menunjukan adanya peningkatan deformasi yang lebih kecil bila dibandingkan dengan pada kondisi terisolasi. Penelitian sebelumnya belum mengungkapkan variasi pemodelan pada beberapa kondisi batas.

Penelitian ini membahas mengenai pemodelan sebuah balok baja yang terpapar api, dengan data uji yang digunakan diambil dari penelitian oleh Li dan Guo (2008) dengan model disimulasikan menggunakan berbagai kondisi batas. Setelah itu, diambil hasil lendutan dari kondisi batas yang paling sesuai dengan penelitian yang dilakukan oleh Li dan Guo (2008).

MATERI DAN METODE Model

Penelitian ini menngunakan program bantu elemen hingga sebagai media untuk memodelkan sebuah balok baja ketika terpapar api hingga mencapai suhu tinggi. Model balok mengacu pada data uji yang didapat oleh Li dan Guo (2008) yaitu baja profil WF 250.250.8.12 dengan bentang 4.5 meter tanpa ada baja tambahan untuk pembebanan maupun sambungan kolom, tegangan leleh (Fy) 271 MPa, sedangkan data lain yang tidak tertera dianggap sama dengan baja pada umumnya yaitu Modulus Young (E) sebesar 200 GPa dan Berat jenis 7850 Kg/m³ serta ekspansi termal dengan nilai 1.4 x 10-5/°C. Nilai Material Baja yang diasumsikan telah digunakan pada penelitian Kloos dan Walls (2019). Nilai koefisien penurunan disesuaikan dengan SNI-03-1729-2015 (Badan Standardisasi Nasional, 2015). Nilai penurunan (Fy) dan (E) dihitung berturut-turut dengan persamaan (1) dan (2)

$$k_y = F_y (T)/F_y \tag{1}$$

$$k_E = E(T)/E \tag{2}$$

dimana nilai k_y dan k_E masing-masing adalah koeffisien penurunan (Fy) dan (E). Sementara itu, Nilai F_y (T) dan E (T) adalah nilai (Fy) dan (E) yang menurun setelah peningkatan suhu akibat paparan api.

Balok Baja diberikan beban berupa beban gravitasi dan paparan api. Beban gravitasi diberikan berupa beban terpusat yang terletak pada satu garis di sepertiga dan dua pertiga bentang dengan total beban pada tiap garis 130 KN, sedangkan paparan api diberikan menggunakan fitur *Predefined Field Temperature* dengan nilai peningkatan suhu sesuai dengan Li dan Guo (2008), *Predefined Field Tempertaure* telah digunakan pada penelitian sebelumnya (Najafi dan Wang, 2017; Kloos dan Walls, 2019) dan terbukti valid.

Variasi Kondisi Batas

Beberapa jenis kondisi batas diberikan pada perletakan. Kondisi batas pada perletakan dibatasi menggunakan *Coupling Kinematic Constraint* di *Reference Point* seperti yang diilustrasikan pada Gambar 1. Variasi kondisi batas yang digunakan adalah tumpuan sendi-roll dan tumpuan sederhana dengan detail kondisi batas yang diberikan pada tabel 1, dengan U₁ adalah tahanan horizontal; U₂ adalah tahanan vertikal; U₃ adalah tahanan aksial; UR₁ adalah tahanan torsi.

Tabel 1 Kondisi Batas yang diberikan

Model	Kiri	Kanan	Tumpuan
1	$U_1 = U_2 = U_3 = 0$	$U_2 = 0$	Sendi-roll
2	$U_1 = U_2 = U_3 = 0$	$U_2 = U_3 = 0$	Sederhana
3	$U_2 = 0$	$U_1 = U_2 = U_3 = 0$	Roll-sendi
4	$U_2 = 0$	$U_1=U_2=U_3=UR_1$ =0	Sederhana
5	$U_2 = U_3 = 0$	$U_1=U_2=U_3=UR_1$ =0	Sederhana
6	$U_1 = U_2 = U_3 = UR$	U ₂ =0 dan diubah	Sederhana
	1=0	saat pemanasan U ₂ =U ₃ =0	

Gambar 1 Coupling Kinematic Constraint pada Reference Point

Selain kondisi batas pada perletakan, diberikan kondisi batas setiap 1,5 meter berupa *stiffeners*. Stiffner diberikan untuk menahan tekuk torsi lateral (LTB) sehingga tidak terjadi puntir pada hasil pemodelan. Ilustrasi penempatan Stiffner dapat dilihat pada Gambar 2.

Gambar 2. Kondisi Batas Stiffeners

Mesh dan Elemen

Tipe elemen menggunakan Solid. 8 node Linear Brick (C3D8). Elemen ini dipilih, karena menghasilkan lendutan yang mirip dengan data uji, meskipun tidak dapat digunakan untuk menghitung geser. Sedangkan, mesh yang digunakan berukuran 50 mm.

HASIL DAN PEMBAHASAN Diskusi

Gambar 3 menunjukan perbandingan besar lendutan balok baja pada beberapa variasi kondisi batas (seperti pada tabel 1) ketika terpapar api menggunakan program bantu elemen hingga. Lendutan terbesar terjadi pada perletakan sendiroll dengan nilai paling jauh dari data uji, sedangkan nilai paling mirip dengan data uji pada perletakan sederhana. Lendutan yang diambil ialah lendutan vertikal pada satu titik di tengah bentang balok pada *flange* bagian bawah.

Gambar 3 Lendutan dari Hasil Pemodelan dengan Variasi Kondisi Bata

Dari Gambar 3, jika diambil nilai lendutan tiap menit, maka diperoleh peningkatan lendutan seperti pada Gambar 4. Gambar 4 menunjukkan bahwa semakin banyak jumlah gaya reaksi yang dibatasi pada kondisi batas perletakan, semakin kecil lendutan yang terjadi. Dua gaya reaksi yang paling berpengaruh ialah tahanan aksial dan tahanan torsi.

Gambar 4. Grafik Perbandingan Nilai Lendutan

Gambar 4 menunjukkan bahwa tahanan aksial pada balok akan menjadikan lendutan yang terjadi semakin kecil. Lendutan terbesar terjadi pada model kondisi 1 dan kondisi 3 sedangkan lendutan terkecil pada model dengan kondisi 6. Lendutan yang terjadi pada kondisi batas (1) sampai dengan (6) memiliki kemiripan yaitu tingkat penurunan lendutan yang terjadi pada waktu 16 sampai 17 menit, kecuali kondisi batas (2) yang mengalami penigkatan tingkat lendutan lagi. Pada waktu kemungkinan terjadi caternary action yang menyebabkan tingkat lendutan pada balok baja menurun (Li dan Guo, 2008). Caternary action merupakan sifat baja untuk bertahan dari beban luar dengan memanfaatkan kekakuan (rigid) baja. Semakin kaku baja dan semakin besar tegangan aksial yang muncul, maka caternary action akan terlihat lebih jelas dan balok baja akan semakin tahan terhadap paparan api, akan tetapi daya dukung momen ultimate pada tengah bentang akan mencapai batas (Chen et al., 2019)

Besarnya lendutan yang terjadi juga dipengaruhi oleh berubahnya sifat baja dari elastis menjadi plastis. Mengingat ketika baja sudah menjadi plastis, baja tidak akan dapat kembali seperti semula. Contoh plastisitas pada model baja dapat dilihat pada Gambar 5, yang mengambarkan bagian baja yang menjadi plastis pada kondisi batas (5) dan (6).

(b) Kondisi Batas (6)

Gambar 5. Bagian baja yang berubah menjadi plastis

Gambar 6 dan Gambar 7 menunjukan perbandingan dari Hasil Pemodelan kondisi batas (5), (6) dengan data uji (Li dan Guo, 2008). Hasil Pemodelan dan data uji menunjukan kesamaan bentuk, meskipun terdapat kencenderungan arah kanan dan kiri lendutan berubah seiring dengan berubahnya kondisi batas.

Gambar 6. Perbandingan Hasil Pemodelan dengan Data Uji kondisi batas 5 (Li dan Guo, 2008)

Gambar 7. Perbandingan Hasil Pemodelan dengan Data Uji kondisi batas 6 (Li dan Guo, 2008)

Dari Gambar 6 dan Gambar 7, jika nilai lendutan diambil tiap menit, maka bentuk lendutan diperoleh seperti gambar 8. Gambar 8 Menunjukkan perbandingan lendutan dari model, data uji serta proses setiap menit setelah setelah terpapar api. Meskipun, dalam menit ke-10 hingga menit ke-16 terdapat perbedaan yang cukup signifikan untuk pemodelan kondisi batas (5), pada akhirnya nilai lendutan mencapai angka yang hampir sama.

Lendutan yang terjadi pada model sudah melebihi lendutan izin maksimal yang disyaratkan pada SNI – 03 – 1729 -2002 dengan nilai lendutan izin untuk bentang 4.5 meter adalah 18,75 mm, pada menit ke-7, dengan nilai lendutan -20.23 mm untuk kondisi batas (5) dan -25.98 mm pada

Gambar 8. Perbandingan Hasil Lendutan Pemodelan dan Data uji

Validasi

Validasi dilakukan menggunakan data uji lendutan pada penelitian Li dan Guo, (2008). Hasil pemodelan menunjukan kondisi batas (5) dan (6) mempunyai nilai lendutan yang mirip dengan data uji. Hasil validasi pemodelan memiliki nilai kesalahan masing-masing 0.85 % dan -2.91 % antara hasil dari pemodelan dan data uji masing-masing untuk Kondisi batas (5) dan (6), dengan nilai perbedaan tersebut maka pemodelan ini dapat dinyatakan sesuai dengan data uji.

Tekuk Lokal

Tekuk lokal terjadi di area yang secara langsung diberi beban setelah balok baja terpapar api. Area di mana tekukan lokal terjadi akan mengalami penurunan kekuatan, tetapi itu tidak terlalu menjadi masalah karena kehadiran tekukan global, yang mempengaruhi seluruh gaya reaksi pada balok. Pada suhu ruangan, keberadaan tekuk lokal dipengaruhi oleh kelangsingan baja profil. Hal ini juga berlaku juga pada saat balok baja terpapar api pada suhu tinggi. Mengingat, pada penelitian ini tekuk lokal mulai terjadi saat baja terpapar oleh api, maka besarnya Lendutan pada daerah tekuk lokal lebih tinggi dari lendutan di tengah bentang yaitu dengan nilai lendutan di akhir pemodelan -302.86 mm. Nilai Lendutan tersebut terjadi pada *flange* dan web yang terindikasi mengalami tekuk local. Sehingga, tidak diketahui mana yang mengalami tekuk lokal terlebih dahulu.

SIMPULAN

Penelitian ini merupakan pemodelan sebuah balok baja dalam kondisi terpapar api. Hasil dari pemodelan dengan program bantu elemen hingga telah dipresentasikan. Kesimpulan dari penilitian ini adalah (a) Kondisi batas yang memiliki tahanan aksial dan momen torsi membuat lendutan yang terjadi pada balok baja semakin kecil, (b) Pemodelan dengan menggunakan program bantu elemen hingga memiliki tingkat kesusuaian yang hampir sama dengan data uji dengan nilai paling mendekati pada pemodelan dengan kondisi batas (5) dengan Hasil validasi pemodelan memiliki nilai kesalahan 0.85 %, (c) Selain menurunya nilai modulus elastisitas, paparan api lokal pada baja juga mengakibatkan penurunan

tegangan leleh, sehingga, beban yang ditumpu oleh baja pada suhu tinggi dapat menjadikan baja dalam kondisi plastis. Ketika baja sudah tidak kuat menahan beban, maka terjadi *Catenary Action* yang merupakan sifat baja untuk bertahan dari beban luar dengan memanfaatkan kekakuan (rigid) material baja.

DAFTAR PUSTAKA

- Badan Standardisasi Nasional (2002) *Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung (SNI-03-1729-2002)*. Jakarta: Badan
 Standardisasi Nasional. Available at:
 www.bsn.go.id.
- Badan Standardisasi Nasional (2015)

 Spesifikasi Untuk Bangunan Gedung
 Baja Struktural (SNI 03-1729-2015).

 Jakarta: Badan Standardisasi
 Nasional. Available at:
 www.bsn.go.id.
- Chen, Xing, Chen, Xiangrong dan Li, G. (2019) 'Practical Design Methods for Fire Resistance of Restrained Cellular Steel Beams', *International Journal of Steel Structures*. Korean Society of Steel Construction, (0123456789). doi: 10.1007/s13296-019-00248-w.
- Drysdale, D. (1999) an introduction to fire dynamics. Thrid. Chichester: Wiley.
- Gillie, M. (2009) 'Analysis of heated structures: Nature and modelling benchmarks', *Fire Safety Journal*, 44(5), pp. 673–680. doi: 10.1016/j.firesaf.2009.01.003.
- Hemmati, M. dan Mahmoud, H. N. (2019)

 'A Framework for Collapse
 Vulnerability Assessment of Steel
 Beams Subjected to Increasing Loads
 and Nonuniform Longitudinal
 Temperature', *Journal of Structural*Engineering, 145(5), p. 04019017.
 doi: 10.1061/(asce)st.1943541x.0002287.
- Iqbal, S. dan Harichandran, R. S. (2010) 'Capacity Reduction and Fire Load Factors for Design of Steel Members Exposed to Fire', *Journal of Structural Engineering*, 136(12), pp. 1554–1562. doi: 10.1061/(asce)st.1943-541x.0000256.
- Kloos, M. dan Walls, R. S. (2019) 'Finite Element Modelling of the Structural Behaviour of a Novel Cellular Beam

- Non-composite Steel Structure in Fire', *International Journal of Steel Structures*. doi: 10.1007/s13296-019-00215-5.
- Li, G. Q. dan Guo, S. X. (2008) 'Experiment on restrained steel beams subjected to heating and cooling', *Journal of Constructional Steel Research*, 64(3), pp. 268–274. doi: 10.1016/j.jcsr.2007.07.007.
- Marx, H. (2018) Thermal behaviour of a novel cellular beam structural system in fire. Stellenbosch University.
- Najafi, M. dan Wang, Y. C. (2017) 'Axially restrained steel beams with web openings at elevated temperatures, part 1: Behaviour and numerical simulation results', *Journal of*

- Constructional Steel Research, 128, pp. 745–761. doi: 10.1016/j.jcsr.2016.10.002.
- Zhang, C., Gross, J.L., McAllister, T.P. dan Gua-Qiang Li (2014) 'Behavior of Unrestrained and Restrained Bare Steel Columns Subjected to Localized Fire', *Journal of Structural Engineering*, 141(10), p. 04014239. doi: 10.1061/(asce)st.1943-541x.0001225.