Aufgabe 1.

- 1. Bestimmen Sie für jede Primzahl p eine p-Sylowuntergruppe von S_4 .
- 2. Es sei p prim. Geben Sie eine p-Sylowuntergruppe von $B_n(\mathbb{F}_p)$, der Gruppe der invertierbaren oberen $(n \times n)$ -Matrizen mit Einträgen in \mathbb{F}_p , an.

Aufgabe 2.

Zeigen Sie, dass jede Gruppe der Ordnung 231 mindestens zwei echte, nicht-triviale Normalteiler enthält.

Aufgabe 3.

Es sei p prim, G eine endliche Gruppe und n_p die Anzahl der p-Sylowuntergruppen von G. Es sei $|G| = p^r m$ mit $p \nmid m$, wobei $r \geq 1$, $m \geq 2$ gelte, und die Gruppe G sei zudem einfach, d.h. G und $\{1\}$ seien die einzigen beiden Normalteiler von G. Zeigen Sie, dass $n_p \geq p+1$ gilt.

Aufgabe 4.

Bestimmen Sie alle abelschen Gruppen der Ordnung 8 bis auf Isomorphie.

Aufgabe 5.

Zeigen Sie, dass jeder endliche Integritätsbereich ein Körper ist. (*Hinweis*: Betrachten Sie für $r \in R$ die Abbildung $R \to R$, $x \mapsto rx$.)

Aufgabe 6.

Es sei R ein kommutativer Ring.

1. Es sei $I \subseteq R$ ein Ideal. Zeigen Sie, dass

$$I[t] := \left\{ \sum_{i=0}^{n} a_i t^i \in R[t] \,\middle|\, a_i \in I \text{ für alle } i \right\}$$

ein Ideal in R[t] ist, so dass $R[t]/I[t] \cong (R/I)[t]$ gilt.

- 2. Entscheiden Sie, ob $P[t] \unlhd R[t]$ prim ist, wenn $P \unlhd R$ prim ist.
- 3. Entscheiden Sie, ob $M[t] \subseteq R[t]$ maximal ist, wenn $M \subseteq R$ maximal ist.

Aufgabe 7.

Es sei R ein kommutativer Ring und es gebe ein n > 1, so dass $x^n = x$ für alle $x \in R$ gilt. Zeigen Sie, dass jedes Primideal $P \subseteq R$ bereits maximal ist.

Lösungen

Lösung 7.

Der Quotientenring R/P ist ein Integritätsbereich, da P prim ist. Die Maximalität von M ist äquivalent dazu, dass R/P bereits ein Körper ist. Hierfür ist noch zu zeigen, dass jedes $x \in R/P$ mit $x \neq 0$ eine Einheit ist. Dabei gibt es nach Annahme ein n > 1 mit $x^n = x$. Da $x \neq 0$ gilt, und R/P ein Integritätsbereich ist, lässt sich diese Gleichung durch x kürzen; es gilt nämlich

$$x^{n} = x \iff x^{n} - x = 0 \iff x(x^{n-1} - 1) = 0 \iff x^{n-1} - 1 = 0 \iff x^{n-1} = 1.$$

Da n>1 gilt, lässt sich $x^{n-1}=1$ zu $x\cdot x^{n-2}=1$ umschreiben. Es ist also x eine Einheit mit $1/x=x^{n-2}$.