Quadrature formulas

\mathbf{A}

- 1. Find the degree of exactness of the following quadrature formula: $\int_0^1 f(x) dx = \frac{1}{4}f(0) + \frac{3}{4}f(\frac{2}{3}) + R(f)$.
- 2. Let $\int_{-1}^{1} f(x) dx = f(-a) + f(a) + R(f)$, $a \in (0,1]$. Prove that its degree of exactness d is $d \ge 1$ for any $a \in (0,1]$. Find the value of a for which the degree of exactness d is maximum and specify the value of d in this case.
- 3. Find $n \in \mathbb{N}$ such that $\int_1^2 x \ln x \ dx$ is approximated by the repeated trapezium formula with precision $\epsilon = 10^{-5}$.
- 4. Approximate

$$\int_1^3 \frac{x}{x^2 + 4} \ dx$$

using the repeated Simpson formula with n = 2.

В

- 1. Find the degree of exactness of the following quadrature formula: $\int_{-1}^{1} f(x) dx = \frac{2}{3} [f(-1) + f(0) + f(1)] + R(f)$.
- 2. Check if $\int_0^b f(x) dx = \frac{b}{3} \left[2f\left(\frac{b}{4}\right) f\left(\frac{b}{2}\right) + 2f\left(\frac{3b}{4}\right) \right] + R(f)$ has the degree of exactness 3.
- 3. Find $n \in \mathbb{N}$ such that $\int_1^2 x \ln x \, dx$ is approximated by the repeated Simpson formula with precision $\epsilon = 10^{-5}$.
- 4. Approximate

$$\int_1^3 \frac{x}{x^2 + 4} \ dx$$

using the repeated trapezium formula with n = 2.