

Collector Field and Energy Demands

Learning outcomes

- Understand the main parameters for characterizing energy demands and their influence on the collector field performance/design
- Understand the influence of different variables (e.g. orientation, tilt mass flow,...) on the collector field performance/outcome
- Understand the main differences of different flow regimes in the collector field
- Get to know basic control strategies for the solar loop in solar thermal systems
- Understand main hydraulic "tools" promoting correct system behaviour

Outline

- Energy demands: characterization
- Performance of collector field:
 - Incident Radiation
 - Collector temperature
 - Operation strategies: mass flow
 - Control strategies
 - Pressure losses
 - Stagnation behaviour

Characterizing energy demands

Example: DHW + SH demands

- Seasonal (and daily!) variation/pattern

Supply (desired) temperatures(T_{demand})

- Return temperatures (from demand, $T_{in,sto}$)

Characterizing energy demands

Example: DHW + SH demands

Space heating (SH)	Domestic hot water (DHW)
Large seasonal variation	All year round constant, small seasonal variation
Continuous daily profile	Daily profile with short high-power peaks
Low temperature applications (30-50°C) depending on emission system	High delivery temperature (45-60°C)
High return temperatures (25-35°C)	Low return temperatures (4-20°C)

Outline

- Energy demands: characterization
- Performance of collector field:
 - Incident Radiation
 - Collector temperature
 - Operation strategies: mass flow
 - Control strategies
 - Pressure losses
 - Stagnation behaviour

Collector loop Performance

Source: Corradini et al., 2014

Collector loop Performance

Source: Corradini et al., 2014

→ Ambient temperature

Incident radiation Tilt of the collector field

Incident radiation tilted plane

Tilt angle

90°

30°

60°

0°

Incident radiation Tilt of the collector field

Incident radiation

Orientation and tilt of the collector field

Solar resource [kWhm⁻²a⁻¹]

(1)

Source: Heimrath, 2004

c Stockholm

d Carpentras

Incident radiation Orientation and tilt of the collector field

Maximizing collector energy yield: demand specific!!

Example: Combi-system (DHW+SH) in Würzburg (GER)

Source: Corradini et al., 2014

Outline

- Energy demands: characterization
- Performance of collector field:
 - Incident Radiation
 - Collector temperature
 - Operation strategies: mass flow
 - Control strategies
 - Pressure losses
 - Stagnation behaviour

Operation strategies
Collector loop

To demand Average temperature collector (field) = f (inlet, outlet, mass flow) $\mathsf{T}_{\mathsf{in},\mathsf{sto}}$ l oll p.flui Return from

demand

Collector loop

1 oll p.flui

High flow systems: 30 -70 lh⁻¹m⁻²; $\Delta T_{coll} \approx 8-15$ K

Low flow systems: 8 -18 lh⁻¹m⁻², $\Delta T_{coll} \approx 40$ -55 K

Collector loop

l oli p,flui

High flow systems: 30 -70 lh⁻¹m⁻²; $\Delta T_{coll} \approx 8-15$ K

Low flow systems: 8 -18 lh⁻¹m⁻², $\Delta T_{coll} \approx 40$ -55 K

Collector loop

l oli p,flui

High flow systems: 30 -70 lh⁻¹m⁻²; $\Delta T_{coll} \approx 8-15$ K

Typically used for DHW production in small systems (single family houses)

High efficiency of collector field (low ΔT_{coll})

Slow warming up of storage (pre-heating)

Low flow systems: 8 -18 lh⁻¹m⁻², $\Delta T_{coll} \approx 40-55$ K

Worst collector efficiency (high ΔT_{coll})

End-use temperature given by solar loop (not pre-heating) -> less auxiliary energy required

Collector loop

l oli p,flui

High flow systems: 30 -70 lh⁻¹m⁻²; $\Delta T_{coll} \approx 8-15$ K

Low flow systems: 8 -18 lh⁻¹m⁻², $\Delta T_{coll} \approx 40-55$ K

Collector loop

High flow systems: 30 -70 lh⁻¹m⁻²; $\Delta T_{coll} \approx 8-15$ K

Typically used for DHW production in small systems (single family houses)

High efficiency of collector field (low ΔT_{coll})

Slow warming up of storage (pre-heating)

Low flow systems: 8 -18 lh⁻¹m⁻², $\Delta T_{coll} \approx 40-55$ K

Worst collector efficiency (high ΔT_{coll})

End-use temperature given by solar loop (not pre-heating) -> less auxiliary energy required

Matched flow systems: variable 8-70 lh⁻¹m⁻², $\Delta T_{coll} \approx 8$ - 55 K constant $T_{out,coll}$ as a function of G, $T_{storage}$, Q_{demand} High/Low flow operation

Collector loop

Matched flow systems: variable 8-70 lh⁻¹m⁻², ΔT_{coll} ≈ 8 - 55 K

constant T_{outl} as a function of G, T_{storage} , Q_{demand}

High/Low flow operation

$$\Delta T_{\text{coll-sto}} = T_{\text{out}} - T_{\text{sto}}$$

Pump turned on:

$$\Delta T_{\text{coll-sto}} > \Delta T_{\text{ON}}$$

$$\Delta T_{ON} = 10 \text{ K}$$

Pump turned off:

$$\Delta T_{\text{coll-sto}} < \Delta T_{\text{OFF}}$$

$$\Delta T_{OFF} = 3 K$$

DESIGN: depending on required ΔT_{demand} :

- DHW (+SH): low flow, $\Delta T_{demand} > 30K$

- Only SH: high flow, ΔT_{demand} < 10K

Source: Heimrath, 2004

Example: $A_{coll} = 6 \text{ m}^2$; $G = 800 \text{ W/m}^2$;

- Series: m=10 l/hm 2 ; η_{coll} =0.6

- Parallel: m=30 l/hm $^{2;}$ η_{coll} =0.75

Example: $A_{coll} = 6 \text{ m}^2$; $G = 800 \text{ W/m}^{2}$;

- Series: m=10 l/hm²; η_{coll} =0.6

- Parallel: m=30 l/hm 2 ; η_{coll} =0.75

Outline

- Energy demands: characterization
- Performance of collector field:
 - Incident Radiation
 - Collector temperature
 - Operation strategies: mass flow
 - Control strategies
 - Pressure losses
 - Stagnation behaviour

Pressure losses: hydraulic balance

$$\Delta p = R_{pipes}$$

$$R_{pipes} = \frac{\lambda \rho}{|A|}$$

Collector area [m ²]	Max pressure losses [mbar]
< 50	300
<200	600
500	800

R_{pipe}, hydraulic resistance [Pa/m]

 λ , pipe friction factor (function of the flow type – turbulent, laminar)

V, volumetric flow rate [m³/s]

D, pipe diameter [m]

A, pipe cross section [m²],

Pressure losses: hydraulic balance

Advantageous Hydraulics

Monual temperature resistant

Series (low flow)

Parallel (high flow)

Source: AEE. 2004

Pressure losses: hydraulic balance

Series (low flow)

Advantageous Hydraulics

Parallel (high flow)

Outline

- Energy demands: characterization
- Performance of collector field:
 - Incident Radiation
 - Collector temperature
 - Operation strategies: mass flow
 - Control strategies
 - Pressure losses
 - Stagnation behaviour

Stagnation behaviour Critical system temperatures

- Maximum fluid temperature allowable for circulation pump:110°C
- Max. hot water temperature (storage): 95°C
- Max. temperature for propylene glycol/water mixture (degradation): 105-140°C

Stagnation behaviour Low flow systems

Advantages

- Increased solar fractions (energy savings), 10-25%
- Reduced lime deposits in storage
- Cost reduction:
 - Smaller pipes
 - Smaller pumps
 - Reduced solar collector fluid volume

Disadvantages

- Too high temperatures
- Thermosyphoning during summer nights in collector field

Stagnation behaviour Low flow systems

Possible Solutions to avoid overheating

- Increase collector flow in hot (summer) periods
- Collector flow at nighttime (cooling down) in hot periods
- Drain back systems
- Stop pump in hot periods -> Evaporation of solar collector fluid and expanded volume kept in expansion vessel (Stagnation).

Stagnation behaviour

Drain back systems

- No pressurized circuit: no safety valves, expansion vessel....
- Water as heat transfer medium
- Additional volume for drain back is needed
- Additional control system

Stagnation behaviour

At least one manifold at the bottom to allow liquid (not yet vaporized)

be evacuated!

Source: AEE, 2004

References

- Weselak, Schabbach. 2009. Regenerative Energietechnik. Springer Ed.
- AEE. Fink and Riva, 2004. Solar-supported heating networks in multi-storey residential buildings. Arbeitsgemeinschaft ERNEUERBARE ENERGIE GMBH, Austria
- Heimrath. 2004. Simulation, Optimierung und Vergleich solar-thermischer Anlagen zur Raumwärmeversorgung für Mehr-familienhäuser. PhD Thesis. TU Graz, Austria.
- Corradini et al. 2014. Solarthermie: Technik, Potenziale, Wirtschaftlichkeit und Ökobilanz für solarthermische Systeme in Einfamilienhäusern. Wüstenroth Stiftung (Ed.). 2014.