TÉCNICO EM REDES DE COMPUTADORES ELETROELETRÔNICA APLICADA

SITUAÇÃO DE APRENDIZAGEM 3 ATIVIDADE 1

Nome do aluno: Cássio de Albuquerque

Título da situação de aprendizagem: Lógica do computador

Prezado participante!

Quando utilizamos os computadores não nos damos conta da infinidade de operações que são executadas pela CPU e seus circuitos. Pois saiba que boa parte destas operações é baseada nos princípios da eletrônica digital.

Um circuito lógico é uma combinação de operações lógicas, sendo que seu funcionamento é sumarizado em uma tabela da verdade.

Sua tarefa é determinar a tabela da verdade dos circuitos lógicos que seguem. As variáveis lógicas **A**, **B** e **C** são as entradas, e **S**, a saída.

Resumo:

Trata-se de lógica de primeira ordem que utiliza preposições e conectivos. No presente caso usaremos o conectivo "OU"(OR), "E"(AND) e o "~"(NÃO). O número de linhas da tabela segue uma regra simples: como estamos falando de lógica booleana a base é 2, ou seja, binária, e o número de linhas é uma potência conforme o número de preposições.

Exemplo:

Para construirmos uma tabela com 2 proposições binárias teremos 2²= 4, ou seja, 4 linhas.

Para construirmos uma tabela com 3 proposições binárias teremos 2³= 8, ou seja, 8 linhas.

A regra do "E"

Seguindo a regra do "E", uma expressão assume o valor verdadeiro, somente se as duas proposições são verdadeiras.

Α	В	A /\ B
V	V	V
V	F	F
F	V	F
F	F	F

A regra do "OU"

Na regra do "OU", para uma expressão ter valor verdadeiro, basta que uma delas seja verdadeira:

Α	В	A \/ B
V	V	V
V	F	V
F	V	V
F	F	F

A regra do "OU" EXCLUSIVO

Pelo "OU EXCLUSIVO", uma sentença só poderá ser verdadeira, quando somente uma for verdadeira:

A	В	<u>A\/ B</u>
V	V	F
V	F	V

F	V	V
F	F	F

Ainda há a regra do "SE" condicional, mas não é necessário para esse exercício.

Respostas:

Tabelas:

1.1

Α	В	A + B	S=(A+B).B
0	0	0	0
0	1	1	1
1	0	1	0
1	1	1	1

1.2

(Por questões de digitação, adotei o símbolo negativo para demonstrar a inversão da expressão (A+B). Para representar a operação de "OU EXCLUSIVO" utilizei o símbolo V(ou) sublinhado.)

Α	В	С	A+B	-(A + B)	<u>S= - (A+B)VC</u>
0	0	0	0	1	1
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	0	0
1	1	1	1	0	1

1.3

Α	В	С	-(A)	- (-A . B)	B + C	-(-A.B)+(B+C)	S =-[(- A . B) + (B+ C)]
0	0	0	1	1	0	1	0
0	0	1	1	1	1	1	0
0	1	0	1	0	1	1	0
0	1	1	1	0	1	1	0
1	0	0	0	1	0	1	0
1	0	1	0	1	1	1	0
1	1	0	0	1	1	1	0
1	1	1	0	1	1	1	0