

物理化学实验报告

题目: 氢氧化铁溶胶的制备及其性质研究

姓名:王子宸学号:2100011873组别:周四 19 组 8 号实验日期:2023 年 11 月 30 日温度:17.0 °C大气压强:102.1 kPa

摘 要 本实验采用水解法和凝结法制备了 $Fe(OH)_3$ 溶胶,并通过热渗析法进行纯化。实验中,对新制备的溶胶进行了 191 min 的热渗析处理,使其电导率降至 $170.5~\mu\text{S/cm}$ 。同时,也使用了前期同学纯化好的溶胶(电导率为 $37.8~\mu\text{S/cm}$)进行电泳实验和聚沉实验。通过电泳法测定了经过纯化处理后的溶胶 ζ 电势为 $(59\pm5)~\text{mV}$ 。实验误差主要来源于电迁移速率和电极间距离的测量。本实验总结了各种误差源,并提出了一些改进的实验方法,为更准确地测定溶胶的电动电势提供了实验基础。

关键词 物理化学实验; 氢氧化铁溶胶; 热渗析; 电导; 溶胶电泳; ζ 电势

1 引言

1.1 实验目的与原理

国 1 1人以口关独的目的一人原理(1)

Fig. 1 Preview Report No.1: Purpose and Principle of the Experiment

图 2 预习报告实验的目的与原理(2)

Fig. 2 Preview Report No.2: Purpose and Principle of the Experiment

2 实验内容⁽¹⁾

2.1 仪器与药品

2.2 仪器与药品

10% FeCl₃ 溶液, 0.01 mol/L AgNO₃ 溶液, 0.1 mol/L KSCN 溶液, 0.04 mol/L 和 0.1 mol/L KCl 溶液, 0.002 mol/L K₂SO₄ 溶液, 0.001 mol/L K₃[Fe(CN)₆] 溶液。

滴管,单口烧瓶,烧杯,试管,5 mL 量筒,透析袋及其夹子。

电加热套,电磁搅拌器,电导率仪,U形电泳管,稳压电泳仪,铂电极,水浴锅,秒表。

2.3 实验步骤与条件

2.3.1 Fe(OH)3 溶胶的制备

在 250 mL 的洁净单口烧瓶中加入 100 mL 去离子水和搅拌磁子。将烧瓶加热至水沸腾。在持续搅拌的同时,缓慢滴加 5.0 mL 的 10% FeCl₃ 溶液。滴加完成后,继续保持微沸状态并搅拌 5 min,得到红棕色的氢氧化铁溶胶。注意,此过程中不应补加水。

2.3.2 Fe(OH)₃ 溶胶的纯化

先将透析袋剪裁成适当大小,并在去离子水中浸泡至变软。封闭透析袋一端,加入去离子水测试是否有漏液,并将其浸泡在去离子水中备用。

将制备好的氢氧化铁溶胶倒入透析袋中,并密封另一端,检查是否漏液。将封闭好的透析袋放入装有预热去离子水 ($60 \sim 80^{\circ}$ C) 的 1000 mL 烧杯中,并在电磁搅拌下进行透析,尽量使透析袋转动以提高透析效率。

透析开始的一个小时内,每 30 min 更换一次热水。使用 KSCN 溶液检测 Fe^{3+} 离子,AgNO₃ 溶液检测 Cl^- 离子,直至 Cl^- 离子浓度低于检测限。之后,用电导率仪监测透析速率,当电导率变化减缓时更换新的去离子水,直至透析液电导率低于 $30~\mu\text{S}/\text{cm}$ 。最后,用电导率仪测量溶胶的电导率,确保其低于 $200~\mu\text{S}/\text{cm}$ 。

将透析好的溶胶放入新换的去离子水中的烧杯内,并贴上标有电导值、姓名、学号的标签。用保鲜膜密封烧杯口,并将其放置于指定位置,供下周实验使用。

2.4 溶胶电泳实验

配制电导值与溶胶相同的 KCl 溶液作为辅助液。使用电导率仪测量得到溶胶与辅助液电导率均为 $37.8~\mu\text{S/cm}$ 。

电泳管应彻底清洗并确保其内壁无水珠附着。先用去离子水清洗 3 次,随后使用少量溶胶润洗 2 次。将电泳管垂直固定在支架上,并从中心部分倒入溶胶,直至液面接近 4 cm 的刻度。

接着,使用滴管交替向电泳管的两端沿管壁缓慢滴加辅助液,直至液面高度达到 8 ~ 9 cm 的刻度。初始阶段滴加速度应较慢,以防止液面振荡和界面模糊。若出现振荡,应暂停并等待液面稳定后再继续添加。液面较高时,可适度加快滴加速度。

将电极分别插入电泳仪的"+"和"-"插孔,并开启电泳仪预热。然后,将电极放入装有辅助液的烧杯中,调节电压至 100 ± 5 V。之后,断开电路,将电极小心插入电泳管中,大约位于液面下 1 cm,确保正极在左侧管中,负极在右侧管中。记录下电极位置和初始界面位置。

实验开始后,每隔 1 min 记录正极和负极的界面位置,至少测量 6 组数据。同时观察并记录界面状态以及电极表面的变化。实验结束后,关闭电源,并使用软尺测量电极间的实际距离,重复测量 3 次后取平均值,用以计算电动电势。

3 实验结果

3.1 Fe(OH); 溶液的热透析纯化

记录 $Fe(OH)_3$ 溶液的热透析纯化过程的时间,并使用 KSCN 检测 Fe^{3+} ,使用 $AgNO_3$ 检测 Cl^- ,当离子基本无法检出时,记录透析液的电导,最终测定溶胶的电导。其中,"+"表

示检出该离子、"-"表示未检出该离子。

表 1 Fe(OH)₃ 溶胶透析过程表 Table 1 Table of Dialysis Process for Fe(OH)₃ Sol

编号	透析时长 t / min	Fe ³⁺ 检测	Cl ⁻ 检测	透析液电导 / μ S·cm $^{-1}$	溶胶电导 / μS·cm ⁻¹
1	11	+	+		
2	13	+	+		
3	15	-	+		
4	15	-	+		
5	15	-	+		
6	19	-	+		
7	16	-	-	231.2	
8	30	-	-	70.7	
9	30	-	-	22.8	
10	15	-	-	8.9	170.5

3.2 电极间距测量

用软尺沿电泳管的中心线测量两电极间的距离 l, 重复测量三次, 结果如表 2 所示。

表 2 两电极间距离测量数据

Table 2 Measurement Data of Distance Between Two Electrodes

编号	1	2	3	
l/cm	22.50	22.20	22.75	

根据表 2,使用 numpy 求得其均值与标准差为

$$\bar{l} = 22.48, \ \sigma_l = 0.22$$

 $\therefore l = (22.48 \pm 0.22) \text{cm}$

3.3 溶胶电泳实验结果

在 $Fe(OH)_3$ 溶胶电泳实验过程中,记录正负两极的界面位置随时间的变化,结果如表 3 所示,其中 t 为电泳实验进行的时间,h(-)、 $\Delta h(-)$ 为溶胶在负极界面位置与移动距离,h(+)、 $\Delta h(+)$ 为溶胶在正极极界面位置与移动距离。

在 Fe(OH)₃ 溶胶电泳实验进行过程中,由于氢氧化铁胶粒带正电,向负极迁移,与观察到的形管负极一侧上升,正极一侧下降相吻合。观察界面状态以及电极表面的变化。随着电泳实验的进行,两侧电极表面有少量气泡产生,右侧比左侧产生的气泡更多;左侧正极界面在下降过程中越来越模糊,这是因为正极发生氧化反应析出氧气,生成 H⁺ 将溶胶逐

表 3 Fe(OH)3 溶胶电泳界面迁移距离的计算结果

Table 3 Calculation Result of Migration Distance of Fe(OH)₃ Sol Electrophoresis Interface

t/s	$h_{(-)}/\mathrm{cm}$	$\Delta h_{(-)}/{ m cm}$	$h_{(+)}/\mathrm{cm}$	$\Delta h_{(+)}/{ m cm}$
0	3.95	0.00	3.90	0.00
59	4.04	0.09	3.79	0.11
116	4.14	0.19	3.69	0.21
179	4.22	0.27	3.58	0.32
248	4.33	0.38	3.43	0.47
319	4.47	0.52	3.43	0.47
383	4.61	0.66	3.23	0.67
433	4.66	0.71	3.01	0.89
503	4.74	0.79	3.10	0.80
571	4.93	0.98	2.84	1.06

渐溶解;而右侧界面在上升过程中越来越清晰,且产生少量粉黄色模糊状沉淀,这是因为负极发生还原反应析出氢气,生成 OH⁻与溶胶反应形成 Fe(OH),沉淀。

使用 python matplotlab,将表 3 的数据作图,使用 python scipy.stats.lingress 将界面移动 距离与电泳时间做线性回归,如图 3,线性回归的结果如表 4。

表 4 电极迁移距离与电泳时间的线性回归结果

Table 4 Linear Regression Results of Electrode Migration Distance and Electrophoresis Time

电极	$v/\mathrm{cm}\cdot\mathrm{s}^{-1}$	$\sigma_v/{ m cm\cdot s^{-1}}$	b/cm	$\sigma_b/{ m cm}$	R^2
(-)	0.00168	0.00004	-0.01275	0.00003	
(+)	0.00179	0.00012	-0.00197	0.00007	

由图 4 可以发现,由于负极界面清晰易于观察,其拟合线性程度很好,而正极由于溶胶溶解界面难以观察,线性程度远不如负极的结果。计算两侧界面迁移的平均速度

$$v = \frac{v(-) + v(+)}{2} = 0.00172 \text{ cm} \cdot \text{s}^{-1}$$

界面迁移速度的不确定度

$$\sigma_v = \sqrt{\sigma_{v(-)}^2 + \sigma_{v(+)}^2} = 0.00012 \text{ cm} \cdot \text{s}^{-1}$$

3.4 溶胶电动电势的计算

使用以下公式计算 Fe(OH),溶胶的电动电势 ζ ,:

$$\zeta = \frac{\eta v l}{\varphi \varepsilon_r \varepsilon_0}$$

图 3 Fe(OH)3 溶胶电泳时间界面迁移距离关系图

Fig. 3 Relat. Graph of Interface Migration Distance over Time in Electrophoresis of Fe(OH)₃ Sol

其中,两电极间距离 $l=(22.48\pm0.22)$ cm,界面迁移的平均速度 $v=(0.00172\pm0.00012)$ cm·s⁻¹,两电极间的电势差 $\varphi=(100\pm1)$ V。根据 *CRC Handbook of Chemistry and Physics* ⁽²⁾ 真空介电常数 $\varepsilon_0=8.8542\times10^{-12}\,\mathrm{F\cdot m^{-1}}$,在 20°C 时水的相对介电常数 $\varepsilon_r=80.10$ 。依据《物理化学实验 (第四版)》附录表 D.4-15 ⁽³⁾,当 t=17°C 时水的黏度 $\eta=1.083\,\mathrm{mPa\cdot s}$,考虑温度存在 ±1°C 的波动,根据书中数据假定 $\sigma_\eta=0.004\,\mathrm{mPa\cdot s}$, $\sigma_{\varepsilon_r}=0.03$ 。

首先计算得到溶胶电动电势:

$$\zeta = \frac{1.083 \times 10^{-3} \, \mathrm{Pa} \cdot \mathrm{s} \times 0.00172 \, \mathrm{m/s} \times 0.2248 \, \mathrm{m}}{100 \, \mathrm{V} \times 80.10 \times 8.8542 \times 10^{-12} \, \mathrm{F/m}} = 0.05904 \, \mathrm{V}$$

求出其不确定度:

$$\begin{split} \sigma_{\zeta} &= \zeta \sqrt{\left(\frac{\sigma_{\eta}}{\eta}\right)^{2} + \left(\frac{\sigma_{v}}{v}\right)^{2} + \left(\frac{\sigma_{l}}{l}\right)^{2} + \left(\frac{\sigma_{\varphi}}{\varphi}\right)^{2} + \left(\frac{\sigma_{\varepsilon_{r}}}{\varepsilon_{r}}\right)^{2}} \\ &= 0.05904 \sqrt{\left(\frac{0.003 \times 10^{-3}}{1.083 \times 10^{-3}}\right)^{2} + \left(\frac{0.00012}{0.00172}\right)^{2} + \left(\frac{0.0022}{0.2248}\right)^{2} + \left(\frac{1}{100}\right)^{2} + \left(\frac{0.03}{80.10}\right)^{2}} \\ &= 0.0047 \text{ V} \end{split}$$

由此可得, 测算得到的电动电势为 $\zeta = (59 \pm 5) \text{mV}$

4 结果与讨论

4.1 误差分析

根据计算,各个参数的相对误差如下:

$$\frac{\sigma_{\eta}}{\eta} = \frac{0.004 \times 10^{-3}}{1.083 \times 10^{-3}} \times 100\% = 0.369\%$$

$$\frac{\sigma_{v}}{v} = \frac{0.00012}{0.00172} \times 100\% = 6.977\%$$

$$\frac{\sigma_{l}}{l} = \frac{0.0022}{0.2248} \times 100\% = 0.979\%$$

$$\frac{\sigma_{\varphi}}{\varphi} = \frac{1}{100} \times 100\% = 1.000\%$$

$$\frac{\sigma_{\varepsilon_{r}}}{\varepsilon_{r}} = \frac{0.03}{80.10} \times 100\% = 0.037\%$$

电动电势(的相对偏差为:

$$\frac{\sigma_{\zeta}}{\zeta} = \frac{0.0047}{0.05904} \times 100\% = 7.125\%$$

由此可以看到,最主要的误差来源是界面迁移的平均速度 v 的测量,其次是两电极间距离 l 的测量与电泳仪电动电势 φ 。这表明在实验设计和测量中,应特别注意这几个参数尤其是界面迁移的平均速度 v 的精确度,以减少电动电势测量的总体误差。

电迁移速率的测量误差分为两部分:

- 1. 线性拟合中斜率的不确定度: 在溶胶电泳法中, 斜率的不确定度是电动电势 (ζ) 测量的关键因素。主要的影响因素包括:
 - (a) 界面位置的读数误差:在电泳实验中,观测并记录溶胶和辅助液之间的界面位置 是关键步骤。由于溶胶溶液和辅助液的密度差异较小,界面往往不易明晰地观测 到。特别是在正极区,由于溶胶会发生溶解,界面变得越来越模糊,从而增加了 读数误差。尽管选择较为清晰的负极区域进行观测,但仍然存在显著的误差。
 - (b) 时间的读数误差: 在测量电泳过程中,精确记录胶粒在电场中迁移的时间对于确定 ζ 电势至关重要。时间的测量误差,无论是由于实验操作还是计时器的准确性问题,都会对最终的 ζ 电势测量造成影响。

因此,在进行溶胶电泳法测量时,需要尽可能减少界面位置和时间读数的误差,以提高 *(* 电势测量的准确性和可靠性。

- 2. 电泳法本身带来不确定度: 在溶胶电泳法测量电动电势 (ζ) 时,实验条件的变化和溶胶的特性都可能导致结果的差异。主要的影响因素包括⁽⁴⁾:
 - (a) 实验条件的变异性:实验中的各种条件,如溶胶浓度、陈化时间、外加电压和电泳时间,都对 ζ 电势的测量有显著影响。这些条件在教学实验中往往未能明确控制,导致实验结果的不一致性。由于这些因素很多是未知的,它们对误差的贡献虽然可能很大,但难以精确估计。
 - (b) 胶体制备过程的差异: ζ 电势与胶体的粒径、酸度、浓度等因素密切相关。胶体制备过程的微小差异可能对这些参数产生显著影响,从而导致不同样品间的 ζ 电势值存在差异。每组实验样品的特性可能有所不同,进而影响实验结果的一致性。

因此,在分析电泳法测量结果时,需要考虑这些因素对 ζ 电势测量的潜在影响。为减少误差,建议在实验设计和执行过程中对这些变量进行严格控制和记录。

4.2 思考题

4.2.1 为什么加入 FeCl₃ 的速度不宜太快

在制备 $Fe(OH)_3$ 胶体时,向热水中加入 $FeCl_3$ 的速度不宜太快,主要是因为快速加入会导致 $FeCl_3$ 在水中局部浓度过高,从而迅速形成大量的 $Fe(OH)_3$ 沉淀,而不是形成稳定的胶体颗粒。这是因为 $FeCl_3$ 水解生成 $Fe(OH)_3$ 的反应如下:

$$FeCl_3 + 3H_2O \longrightarrow Fe(OH)_3 + 3HCl$$

如果 FeCl₃ 加得太快,会在局部区域迅速达到过饱和状态,导致 Fe(OH)₃ 快速沉淀,无法形成较为均匀分散的胶体粒子。因此,为了获得较为均一和稳定的 Fe(OH)₃ 胶体,应该缓慢并持续地向热水中加入 FeCl₃ 溶液。

4.2.2 电泳时正负极现象的详细解释

在正极发生氧化反应,在负极发生还原反应,即对应着水的电解反应的半反应:

$$2 H_2O - 4 e^- \longrightarrow O_2 + 4 H^+$$

 $2 H_2O + 2 e^- \longrightarrow H_2 + 2 OH^-$

正极反应产生的 H⁺ 将 Fe(OH)₃ 溶胶溶解,导致界面模糊; 负极反应产生的 OH⁻ 将 Fe(OH)₃ 溶胶中带正电的溶胶离子沉淀,使得界面清晰的同时,会产生少量的絮状沉淀。

4.3 实验的改进

在本实验中的操作流程有着很大的改进空间。改进旨在简化操作流程,减少实验时间, 提高粒径的重复性和实验的准确性。

- 1. 溶胶的制备: 传统的快速水解法简单但需要繁琐的渗析纯化,而胶溶法⁽⁵⁾ 降低了电导率,便于电泳实验和纯化处理,同时改善了粒径重复性和实验条件的控制。
- 2. 溶胶的纯化:传统的热渗析法耗时长,需要频繁换水。为了优化纯化过程,可以使用酸/碱离子交换树脂法⁽⁶⁾。这种方法采用混合离子交换树脂(强酸、强碱型 1:1)替代传统半透膜渗析,分为共同搅动法和树脂静止、凝胶流动两种方式。在共同搅动法中,将树脂倒入凝胶中,在磁力搅拌器下搅动,并实时监测电导率变化,直至满足电泳实验要求。这种方法操作简便、成本低廉,且不需要特定的仪器设备,非常适合教学实验。
- 3. 获得清晰的界面:为了提高界面读数的精度,提出了改进方案,如使用更精细的注射器喷洒溶液。

4.4 结论

本实验采用水解法和凝结法制备了 $Fe(OH)_3$ 溶胶,并通过热渗析法进行纯化。实验中,对新制备的溶胶进行了 191 min 的热渗析处理,使其电导率降至 $170.5~\mu S/cm$ 。同时,也使用了前期同学纯化好的溶胶(电导率为 $37.8~\mu S/cm$)进行电泳实验和聚沉实验。通过电泳法测定了经过纯化处理后的溶胶 ζ 电势为 $(59\pm5)~mV$ 。实验误差主要来源于电迁移速率的测量。本实验总结了各种误差源,并对实验方法提出了改进,如可以使用一种特殊的胶溶法 (5) 制备溶胶、使用酸/碱离子交换树脂法 (6) 纯化溶胶,使用注射器喷洒溶液的方法在电泳前获得清晰的辅助液-溶胶界面,为更准确地测定溶胶的电动电势提供了实验基础。

参考文献

- [1] 北京大学化学学院物理化学实验教学组 物理化学实验, 4th ed.; 北京大学出版社: 北京, 2002; p 5.
- [2] Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics; CRC Press, 2016.
- [3] 北京大学化学与分子工程学院物理化学教研组物理化学实验,第4版 ed.;北京大学出版社:北京,2002.

- [4] 董家新; 谢晓莉; 陈静界面电泳法测胶体电动电势实验改进. 实验技术与管理 **2013**, *30*, 33–35,39.
- [5] 阮秀琴; 尹家卉氢氧化铁胶体制备与性质实验的改进. 化学教育 2015, 36, 29-31.
- [6] 范文琴; 周晓慧 Fe(OH)₃ 溶胶制备及其纯化新方法. 大连交通大学学报 **2009**, *30*, 38–40,52.