Al-Based Plant Disease Detection System

Using Convolutional Neural Networks (CNNs)

Introduction

Plant diseases affect agricultural productivity, causing food shortages and financial losses. Traditional detection relies on expert inspection, which is slow and error-prone. This project introduces an AI-based solution using CNNs to detect plant diseases from leaf images.

Objectives

- To develop an automated system for plant disease identification
- To reduce dependency on human experts
- To provide early detection and prevent large-scale crop damage
- To make disease detection accessible and cost-effective for farmers

Problem Statement

- Plant diseases cause major losses in agriculture
- Traditional inspection is slow and dependent on experts
- Experts are not always available in rural areas
- Manual inspection is errorprone and costly
- Delays in detection cause extensive damage

Project Solution

The system uses a CNN to analyze leaf images and identify plant diseases. Users upload an image, and the system quickly returns the predicted disease class. No expert intervention is required.

Benefits

Fast detection (seconds vs. days)

- Cost-effective (no expert needed)
- Accessible via smartphones and computers
- High accuracy with Al
- Early disease prevention
- Scalable to global usage

Dataset Description

- Source: Kaggle 'New Plant Diseases Dataset' by vaporous
- 87,000 images across38 classes
- Includes healthy and diseased leaves
- Structured in folders per class
- Format: JPEG

Reason for Dataset Selection

Large size supports deep learning

Rich diversity of plant species and diseases

Publicly available and widely used

• Supports reproducibility and benchmarking

Methodology: Algorithm Used

A Convolutional Neural Network (CNN) is used for image classification. CNNs are effective for extracting visual features and identifying disease patterns automatically.

CNN Architecture Overview

- Multiple Convolutional Layers with ReLU activation
- Pooling Layers for dimensionality reduction
- Dropout Layers to prevent overfitting
- Final Dense Layer with SoftMax for classification

Why CNN?

Automatically learns features from images

Ideal for large image datasets

Regularization techniques reduce overfitting

• Proven success in various detection tasks

Model Evaluation Metrics

tric	Precision	Recall	F1-Score
	-	_	0.98
e	0.98	0.98	0.98
rage	0.98	0.98	0.98

Precision: 0.98

• Recall: 0.98

• F1-Score: 0.98

Total SamplesTested: 1401

High reliability across classes

Class-wise Performance

- Apple Scab: Precision0.99, Recall 0.96
- Corn Healthy: Precision 0.99, Recall 1.00
- Peach Healthy: Precision 0.97, Recall 0.99

Class	Precision	Recall	F1-Score	Support
Apple — Apple Scab Corn (Maize) Healthy Peach — Healthy	0.99	0.96 1.00	0.98	504 465 432

Training Graphs Summary

- Training Accuracy: Increased to 98%
- Training Loss:Decreased smoothly
- Indicates effective and stable learning

Using uploaded file: th (3) (1).jpg

1/1 ______ 1s 550ms/step

Predicted Class: Apple__Apple_scab

Predicted: Apple__Apple_scab

Visual Testing

 Model tested on unseen leaf images and successfully identified diseases.
 Demonstrates generalization and realworld applicability.

Simulation Results

- Software: Python, TensorFlow, Keras
- Optimized using Adam optimizer
- Learning Rate: 0.001,Epochs: 20, Batch Size: 32
- Input Image Size: 224x224

Conclusion

CNN-based plant disease detection system provides accurate, fast, and accessible diagnosis. It reduces dependency on experts, prevents largescale damage, and fits well in smart farming frameworks.

Future Scope

- Expand dataset to include more plant types
- Add environmental data for better prediction
- Integrate with IoT and real-time monitoring
- Multilingual support for wider accessibility