Math 135: Homework 6

Michael Pham

Spring 2024

Problems

Problem 4.19		3
Problem 4.20		3
Problem 4.21		3
Problem 4.26		4
Problem 4.27		4
Problem 5.1		5
Problem 5.7		5
Problem 5.9		6
Problem 5.14		-
Problem 5.15		
Problem 5.19		7
Lemma:	Archimedean Property with Rationals	7

4 Natural Numbers

Problem 4.19. Prove that if m is a natural number, and d is a nonzero number, then there exists numbers q and r such that m = (dq) + r, with r < d.

Solution. We will proceed by induction. First, let us construct a set A as follows:

$$A \coloneqq \{ n \in \omega : \exists q \exists r \left[(n = dq + r) \land (r < d) \right] \}.$$

Now, we first look at n=0. We observe that if n=0, then for any d>0, we have 0=0d+0. And we note that 0< d by definition of d. Thus, we see that, indeed, $n \in A$.

Next, suppose that $k \in A$. Then, we look at k^+ . We note that by our induction hypothesis, we have k = dq + r. Then, this means that $k^+ = (dq + r)^+ = dq + r^+$.

Next, we note that r < d by our induction hypothesis, and thus we have that $r^+ < d^+$. If $r^+ < d^+$, then by definition we have that r <= d.

Then there are two cases. In the first one, if r < d, then k^+ satisfy the condition as desired.

On the other hand, r = d, then we have the following:

$$k^{+} = dq + r^{+} = dq + d = d(q+1) + 0.$$

And we see that since d is nonzero, it follows that 0 < d. Thus, we see that indeed, $k^+ \in A$.

Therefore, we conclude that A is an inductive set as desired, and thus our claim holds.

Problem 4.20. Let A be a nonempty subset of ω such that $\bigcup A = A$. Show that $A = \omega$.

Solution. We want to show that A is an inductive subset of ω in order for them to be equal.

First, we observe that because $A \neq \emptyset$, then for any $a \in A$, we see that $0 \in a$. Then, $0 \in \bigcup A = A$. Thus, $0 \in A$ as desired.

Next, suppose that $k \in A$. Then, we look at $k^+ \in A$. We note that by our induction hypothesis, since $k \in A = \bigcup A$, then that means that there exists some $a \in A$ such that $k \in a$.

Then, that means that we have three options for k^+ . First, if $a \in k^+$, we note that this can't happen because then this means that a = k or $a \in k$ by definition of $k^+ = k \cup \{k\}$. If this happened, then we would violate trichotomy.

From here, if $k^+=a$, then we see that $k^+=a\in A$, so $k^+\in A$ as desired. Finally, if $k^+\in a$, then we observe that $k^+\in I$ A=A. Thus, we have A=A too.

Therefore, we see that $k^+ \in A$, and thus A is indeed an inductive subset of ω . Therefore, we conclude that, in fact, $A = \omega$.

Problem 4.21. Show that no natural number is a subset of any of its elements.

Solution. First, we observe that if n=0, then $n=\emptyset$. Then, since there are no elements in n, n can't be a subset of its elements.

Now, suppose that n > 0. Take $m \in n$. Now, suppose for the sake of contradiction that $n \subseteq m$. However, if this is the case, then it follows that $n \in m$. However, this would violate trichotomy then, and thus we conclude that $n \not\subseteq m$.

Problem 4.26. Assume that $n \in \omega$ and $f: n^+ \to \omega$. Show that ran f has a largest element.

Solution. We shall proceed by induction.

To begin with, let us define the set *A* to be as follows:

$$A \coloneqq \left\{n \in \omega: f: n^+ \to \omega, \ \operatorname{ran} f \text{ has a largest element}\right\}$$

First, we observe that for n=0, then $n^+=1=0\cup\{0\}=\emptyset\cup\{\emptyset\}$. Then, we note that $\operatorname{ran} f=\{f(0)\}$ will have only one element, and thus it follows that it has a largest element.

Now, suppose that $k \in A$. Then, we want to show that $k^+ \in A$ as well.

We observe that $(k^+)^+ = k^+ \cup \{k^+\}$. Now, we look at $f: k^+ \cup \{k^+\}$. By our induction hypothesis, $f[k^+]$ contains a largest element K. So, we now have to consider $f(k^+)$.

For $f(k^+)$, we note that there are there cases for it:

- 1. $f(k^+) \in K$. In this case, we see that K is the largest element of ran f.
- 2. $f(k^+) = K$. In this case as well, we see then that K is the largest element of ran f.
- 3. $K \in f(k^+) = K'$. In this case then, we observe that the largest element of ran f will then be K'.

Thus, in all three cases, we see that, indeed, $\operatorname{ran} f$ has a maximum element. Thus, $k^+ \in A$. And therefore, by induction, we conclude that the claim is true.

Problem 4.27. Assume that A is a set, G is a function, and f_1 and f_2 map ω into A. Further assume that for each n in ω , both $f_1 \upharpoonright n$ and $f_2 \upharpoonright n$ belong to dom G and

$$f_1(n) = G(f_1 \upharpoonright n) \land f_2(n) = G(f_2 \upharpoonright n).$$

Show that $f_1 = f_2$.

Solution. In order for $f_1 = f_2$, we require that for all $n \in \omega$, we have that $f_1(n) = f_2(n)$. So, we will proceed by induction.

Let us define a set A to be as follows:

$$A := \{ n \in \omega : f_1(n) = f_2(n) \}.$$

Now, we first show that $0 \in A$. To do this, we observe that $f_1(0) = G(f_1 \upharpoonright 0)$. However, we note that $0 = \emptyset$. Then, by definition of \upharpoonright , we have that $f_1 \upharpoonright 0 = \{\langle u,v \rangle : \langle u,v \rangle \in f_1 \land u \in \emptyset\}$. Then, we see that in fact, $f_1 \upharpoonright 0 = \emptyset$. The same applies to $f_2(0)$.

Then, with this in mind, we see that $f_1(0) = G(f_1 \upharpoonright 0) = G(\emptyset) = G(f_2 \upharpoonright 0) = f_2(0)$. Thus, $0 \in A$.

Next, suppose $k \in A$. Then, we look at k^+ .

We note that $f_1(k^+) = f_1(k \cup \{k\}) = G(f_1 \upharpoonright (k \cup \{k\})) = G(f_1 \upharpoonright k) \cup G(f_1 \upharpoonright \{k\}).$

Similarly, $f_2(k^+) = f_2(k \cup \{k\}) = G(f_2 \upharpoonright (k \cup \{k\})) = G(f_2 \upharpoonright k) \cup G(f_2 \upharpoonright \{k\}).$

By our induction hypothesis, we observe that $f_1(k) = G(f_1 \upharpoonright k) = G(f_2 \upharpoonright k) = f_2(k)$.

Furthermore, we note that $G(f_1 \upharpoonright \{k\}) = f_1(\{k\}) = \langle k, f_1(k) \rangle$, and $G(f_2 \upharpoonright \{k\}) = f_2(\{k\}) = \langle k, f_2(k) \rangle$. And by our induction hypothesis, we have that $\langle k, f_1(k) \rangle = \langle k, f_2(k) \rangle$. So, $G(f_1 \upharpoonright \{k\}) = G(f_2 \upharpoonright \{k\})$.

Putting this all together then, we see that $f_1(k^+) = G(f_1 \upharpoonright k) \cup G(f_1 \upharpoonright \{k\}) = G(f_2 \upharpoonright k) \cup G(f_2 \upharpoonright \{k\}) = f_2(k^+)$.

Thus, we conclude that $k^+ \in A$, and thus A is inductive. Therefore, we see that, indeed, $f_1 = f_2$ as desired.

5 Construction of the Real Numbers

Problem 5.1. Is there a function $F: \mathbb{Z} \to \mathbb{Z}$ satisfying the equation

$$F\left(\left[\langle m,n\rangle\right]\right)=\left[\langle m+n,n\rangle\right]?$$

Solution. No.

For our counterexample, let us first define the following function:

$$G:(\omega\times\omega)\to(\omega\times\omega):\langle m,n\rangle\mapsto\langle m+n,n\rangle$$

Then, if we show that G isn't compatible with \sim , then such a function F as described above won't exist.

So, let us look at $\langle 1,0 \rangle$ and $\langle 3,2 \rangle$. First, we see that $\langle 1,0 \rangle \sim \langle 3,2 \rangle$. However, $G(\langle 1,0 \rangle) = \langle 1+0,0 \rangle = \langle 1,0 \rangle \not\sim \langle 5,2 \rangle = \langle 3+2,2 \rangle = G(\langle 3,2 \rangle)$.

Thus, we see that G is not compatible with \sim , and thus F does not exist.

Problem 5.7. Show that
$$a \cdot_Z (-b) = (-a) \cdot_Z b = -(a \cdot_Z b)$$
.

Solution. First, let $a = [\langle m, n \rangle]$ and $b = [\langle p, q \rangle]$.

Then, we observe the following:

$$\begin{aligned} a \cdot_Z (-b) &= \left[\langle m, n \rangle \right] \cdot_Z \left[\langle q, p \rangle \right] \\ &= \left[\langle mq + np, mp + nq \rangle \right] \\ (-a) \cdot_Z b &= \left[\langle n, m \rangle \right] \cdot_Z \left[\langle p, q \rangle \right] \\ &= \left[\langle np + mq, nq + mp \rangle \right] \\ &= \left[\langle mq + np, mp + nq \rangle \right] \end{aligned}$$

So, we see that $a \cdot_Z (-b) = (-a) \cdot_Z b$. Next, we observe the following:

$$\begin{aligned} a \cdot_Z b + a \cdot_Z (-b) &= [\langle m, n \rangle] \cdot_Z [\langle p, q \rangle] + [\langle mq + np, mp + nq \rangle] \\ &= [\langle mp + nq, mq + np \rangle] + [\langle mq + np, mp + nq \rangle] \\ &= [\langle mp + nq + mq + np, mq + np + mp + nq \rangle] \\ &= 0_Z \end{aligned}$$

Thus, we see that $a \cdot_Z (-b)$ is the unique additive inverse of $a \cdot_Z b$. So, $a \cdot_Z (-b) = -(a \cdot_Z b)$ as desired.

Therefore, we have the following:

$$a \cdot_Z (-b) = (-a) \cdot_Z b$$
$$(-a) \cdot_Z b = -(a \cdot_Z b)$$

Putting it together, we have $a \cdot_Z (-b) = (-a) \cdot_Z b = -(a \cdot_Z b)$.

Problem 5.9. Show that for all natural numbers m, n, we have:

$$[\langle m, n \rangle] = E(m) - E(n)$$

Solution. We proceed as follows:

$$\begin{aligned} [\langle m, n \rangle] &= [\langle m, 0 \rangle] +_Z [\langle 0, n \rangle] \\ &= [\langle m, 0 \rangle] - [\langle n, 0 \rangle] \\ &= E(m) - E(n) \end{aligned}$$

Problem 5.14. Show that the ordering of rationals is dense. In other words, between any two rationals, there exists a third one:

$$p <_Q s \implies (\exists r)(p <_Q r <_Q s).$$

Solution. We proceed as follows: first, let $p = [\langle a, b \rangle]$ and $s = [\langle c, d \rangle]$ (with $b, d > 0_Z$).

Now, because $p <_Q s$, we note then that we have $[\langle a,b \rangle] <_Q [\langle c,d \rangle] \iff ad < cb$.

Now, we define r to be as follows:

$$\begin{split} r &\coloneqq (p +_Q s) \div [\langle 2, 1 \rangle] \\ &= [\langle ad + cb, bd \rangle] \div \{\langle 2, 1 \rangle\} \\ &= [\langle ad + cb, bd \rangle] \cdot_Q [\langle 1, 2 \rangle] \\ &= [\langle ad + cb, 2bd \rangle] \end{split}$$

Then, we note that since $b, d > 0_Z$, we have the following:

- 1. adb < cbb, and
- 2. add < cbd.

With these inequalities in mind, we observe the following:

$$\begin{aligned} 2abd &= adb + adb < adb + cbb = b(ad + cb) \\ &\iff [\langle a,b\rangle] <_Q \left[\langle ad + cb, 2bd\rangle\right] \end{aligned}$$

So, we have that $p <_Q r$ as desired.

We also observe the following:

$$\begin{split} d(ad+cb) &= add + cbd < cbd + cbd = 2cbd \\ &\iff \left[\langle ad+cb, 2bd \rangle \right] <_Q \left[\langle c, d \rangle \right] \end{split}$$

So, we have $r <_Q s$ as desired.

Thus, we have shown that indeed, there exists an r that satisfies our claim.

Problem 5.15. Show that $\bigcup A$ is closed downward and has no largest element.

Solution. First, we note that A is the set of real numbers.

Now, by definition, A is the set of all Dedekind cuts x.

So, we first will show that $\bigcup A$ is closed downwards.

To do this, let us look at some $q \in \bigcup A$. We note that for $q \in \bigcup A$, it means that there exists some $x \in A$ such that $q \in x \in A$.

Next, take some r < q. Then, by definition, because x is a Dedekind cut, it is closed downwards, and thus we have that $r \in x$ as well. But if this is the case, it follows then that $r \in \bigcup A$, and so we see that $\bigcup A$ is also closed downwards.

Now, we will show that it has no largest elements.

Let us take some $p \in \bigcup A$. Then, we see that there exists an x such that $p \in x \in A$. But, we note that since x is a Dedekind cut, then by definition, it has no largest member. So, there exists some $q \in x$ such that p < q.

However, we observe that if $q \in x$, then it follows that $q \in \bigcup A$ as well.

This means then that for any $p \in \bigcup A$, we can find some $q \in \bigcup A$ such that p < q; in other words, $\bigcup A$ does not have a largest element.

Problem 5.19. Assume that p is a positive rational number. Show that for any real number x there is a rational number q in x such that

$$p+q \not\in x$$
.

Solution. To prove this, we will introduce the following lemma:

Lemma (Archimedean Property with Rationals). For any positive rational p and any rational q, there exists a natural p such that p > q (this is the Archimedean Property)

Proof. We note that the proof for this lemma was completed in class previously.

Now, we first note that for any real number x, there exists a rational r such that $r \notin x$.

Then, by our lemma, we observe that there exists some integer n such that np > r. We also note then that $np \notin x$.

Then, by the well-ordering of the naturals, there exists a least n such that $np \notin x$. But this means then that $(n-1)p \in x$.

So, let q = (n-1)p and observe that:

$$p + q = p + (n - 1)p$$
$$= p + np - p$$
$$= np \notin x$$

Thus, we have shown that there indeed exists such a q as desired.