12

Himanske Raj AIDS-82 '076

LAB MANUAL: EXPERIMENT 2

Aim: To verify Lambert-Beer's law using a given solution of potassium dichromate at the wavelength of its maximum absorption (λ_{max}) and consequent determination of the unknown concentration of a solution of potassium dichromate.

Theory:

The Beer-Lambert law states that the absorbance of a solution is directly proportional to the concentration of the absorbing species in the solution and the path length. Thus, for a fixed path length (cuvette length), UV/Vis spectroscopy can be used to determine the concentration of the absorber in a solution. The absorbance changes with concentration. Thus, a higher concentration of the colored solution absorbs more light (and transmits less) than a solution of lower concentration.

$$log(I_o/I_t) = A = \epsilon c l$$

According to Beer-Lambert law,

 $log(I_o/I_t)=A=\epsilon cl$ where I_o and I_t are the incident and transmitted intensities,

A = absorbance and ϵ is a constant i.e. absorptivity (also called the extinction coefficient).

If the concentration is measured in molL⁻¹, the absorptivity is called molar absorptivity. A= ϵ cl. At constant length A ∞ c

Working principle of spectrophotometer

Spectrophotometer

Cuvette

Requirements:

spectrophotometer, cuvette, six test tubes, Measuring cylinder, 10 mL pipette, $0.001M~K_2Cr_2O_7$ solution, distilled water, test tube rack, and tissues (preferably lint-free).

Procedure & observation table:

Step 1: To record the absorbance of $K_2Cr_2O_7$ solution at different wavelengths to determine the light wavelength for its maximum absorption (λ_{max}):

- (a) Prepare 200 mL of 0.001M K₂Cr₂O₇ (Molecular weight 294.18 gm/mol) solution in distilled water.
- (b) Label five clean, dry, test tubes 1-5.
- (c) Use a 10 mL pipette to prepare five standard solutions according to Table 1.
- (d) Thoroughly mix each solution.
- (e) Calibrate the spectrophotometer with respect to the blank solution i.e. distilled water.
- (f) Fill the first one of the prepared solutions (1-5) up to a certain level in the cuvette of the spectrophotometer.
- (g) Record the absorbance of the respective solution at different wavelengths as mentioned in Table 2.
- (h) Plot the absorbance data in the graph paper with respect to the wavelength and calculate the light wavelength for its maximum absorption (λ_{max}) in $K_2Cr_2O_7$.

Table 1:

Test-tube	0.001M K ₂ Cr ₂ O ₇ (mL)	Distilled water (mL)	Concentration (M)
1	1	9	1 x 16-4
2	2	8	2 x 10-4
3	3	7	3 x 16-4
4	4	6	4 x 10-4
5	5	5	5 x 10-4

Table 2: The solution of the No. the test tube was chosen for the determination of the light wavelength for its maximum absorption (λ_{max}).

Entry	Wavelength (λ in nm)	Absorbance
1	325	0.799
2	350	1.386
3	375	2.168
4	400	0.946
5	415	0.329
-6-		

Step 2: To record the absorbance of different concentrations of solutions at the specified λ_{max} :

- (a) Set the operating wavelength of the spectrophotometer in the range of absorption maxima of aqueous $K_2Cr_2O_7$ solution (λ_{max}).
- (b) Calibrate the spectrophotometer with respect to water as the blank.
- (c) Fill each of the solutions up to a certain level in the cuvette of the spectrophotometer.
- (d) Record the absorbance of the respective solutions as stated in Table 3.
- (e) Plot the absorbance data in the graph paper with respect to the concentration which should be a straight line passing through the origin.

Table 3:

Entry	Test-tube	Absorbance
1	1	1.014
2	2	1.830
3	3	2.168
4	4	2.738
5	5	2.806