МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Лабораторная работа №4

По курсу «Численные методы»

Решение задачи Коши

Вариант №2

Работу выполнил: студент 3 курса 7 группы **Шатерник Артём** Преподаватель: **Будник А. М**.

1. Постановка задачи.

Требуется найти приближённое решение задачи Коши

$$y' = \frac{y^2 \ln x - y}{x}, x \in [1,2]$$
$$y(1) = 1$$

на сетке из 10 узлов применяя следующие методы:

- Неявный метод Эйлера. Для его реализации использовать алгоритм Ньютона.
- Метод Рунге-Кутта при $A_0=0.5,\ A_1=0.5,\ a_1=1,\ \beta_{10}=1.$
- Экстраполяционный метод Адамса 3-го порядка с началом таблицы, построенным по соответствующему методу последовательного повышения порядка точности.

2. Алгоритм решения.

Построим сетку из 10 узлов. Шагом в таком случае будет $h=0.1\,$ и мы получим узлы:

$$[1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0].$$

Неявный метод Эйлера.

В общем виде от задаётся формулой:

$$y_{j+1} = y_j + h f(x_{j+1}, y_{j+1}).$$

Для его разрешения будем использовать метод Ньютона, который в будет задан следующими формулами:

$$F(y_{j+1}) = y_{j+1} - y_j - h f(x_{j+1}, y_{j+1}) = 0,$$

$$F'(y_{j+1}^k) = 1 - h \frac{\partial f}{\partial y}(x_{j+1}, y_{j+1}^k),$$

$$y_{j+1}^{k+1} = y_{j+1}^k - \frac{F(y_{j+1}^k)}{F'(y_{j+1}^k)}, \quad y_{j+1}^0 = y_j.$$

В качестве условия остановки процесса возьмём следующее:

$$\left| y_{j+1}^{k+1} - y_{j+1}^k \right| \le h^3.$$

При этом в данном случае функций и её производная будут иметь вид:

$$f(x,y) = \frac{y^2 \ln x - y}{x},$$
$$\frac{\partial f}{\partial y}(x,y) = \frac{2y * \ln(x) - 1}{x}.$$

Метод Рунге-Кутта.

При данных в условии значениях параметров мы получаем метод второго порядка, который задаётся следующими формулами:

$$\begin{cases} y_{j+1} = y_j + \frac{1}{2}(\varphi_0 + \varphi_1), \\ \varphi_0 = hf_j, \\ \varphi_1 = hf\left(x_j + \frac{1}{2}h, y_j + \frac{1}{2}\varphi_0\right). \end{cases}$$

Экстраполяционный метод Адамса 3-го порядка.

Он задаётся следующими формулами:

$$y_{j+1} = y_j + \frac{h}{12} (23f_j - 16f_{j-1} + 5f_{j-2}), \qquad j = \overline{2, N-1}.$$

Для его построения требуется найти так называемое начало таблицы, в данном случае значения f_{j-1} , f_{j-2} . Их будем искать методом последовательного повышения порядка точности 3-го порядка точности, который имеет вид:

$$\begin{cases} y_{j+\frac{1}{3}} = y_j + \frac{h}{3}f_j \\ y_{j+\frac{2}{3}} = y_j + \frac{2h}{3}f_{j+\frac{1}{3}} & j = 1,2 \\ y_{j+1} = y_j + \frac{h}{4}\left(f_j + 3f_{j+\frac{2}{3}}\right) \end{cases}$$

3. Листинг программы.

```
import math
import numpy as np
def func(x, y):
    return (y**2 * math.log(x) - y) / x
def func der(x, y):
    return (2 * y * math.log(x) - 1) / x
x0, y0 = 1, 1
a, b = 1, 2
N = 10
h = (b - a) / N
split = [a + h * i for i in range(N + 1)]
print(f"Pasбиение:\n{split}")
# Реальное решение
def func res(x):
    return 1 / (math.log(x) + 1)
real res = []
for \overline{i} in split:
    real_res.append(func_res(i))
    print(f"x = {round(i, 2)}, y = {func res(i)}")
```

```
# Неявный метод Эйлера
# Метод Ньютона для разрешения
def newton method(x0, y0, f, f der, h):
    y new = y0
    while True:
        F = y new - y0 - h * f(x0 + h, y new)
        F der = 1 - h * f der(x0 + h, y new)
        y next = y new - F / F der
        if abs(y new - y next) \le h**3:
            return y_next
        y_new = y_next
def euler method(split, f, df, y0):
   h = (split[1] - split[0])
   y new = y0
    y res = [y0]
    for i in range(len(split) - 1):
        y new = newton method(split[i], y new, f, df, h)
        y_res.append(y_new)
    return y_res
res euler = euler method(split, func, func der, y0)
for t, y in zip(split, res euler):
   print(f"x = \{t:.1f\}, y = \{y:.6f\}")
for i in range(len(res euler)):
    print(f"{abs(real_res[i] - res_euler[i]):.6e}")
# Метод Рунге-Кутта
def runge kutt(split, f, y0):
   h = (split[1] - split[0])
   y new = y0
   y res = [y0]
    for i in range(len(split) - 1):
        p1 = h * f(split[i], y_new)
        p2 = h * f(split[i] + h, y_new + p1)
        y \text{ new} = y \text{ new} + 0.5 * (p1 + p2)
        y_res.append(y_new)
    return y_res
res_runge_kutt = runge_kutt(split, func, y0)
for t, y in zip(split, res runge kutt):
   print(f"x = \{t:.1f\}, y = \{y:.6f\}")
for i in range(len(res runge kutt)):
    print(f"{abs(real_res[i] - res_runge_kutt[i]):.6e}")
# Экстраполяционный метод Адамса 3-го порядка
def inc order(x, y, f, h):
   y13 = y + 1 / 3 * h * f(x , y)
   y23 = y + 2 / 3 * h * f(x + h / 3, y13)
    y res = y + h / 4 * (f(x, y) + 3 * f(x + h * 2 / 3, y23))
    return y res
```

```
def adams method(split, f, y0):
   h = split[1] - split[0]
   y_res = [y0]
   y_res.append(inc_order(split[0], y_res[0], f, h))
   y res.append(inc order(split[1], y res[1], f, h))
    for i in range(2, len(split) - 1):
        y res.append(y res[i] + h / 12 * (23 * f(split[i], y res[i]) -
                                           16 * f(split[i - 1], y_res[i - 1]) +
5 * f(split[i - 2], y res[i - 2])))
    return y_res
res adams = adams method(split, func, y0)
for t, y in zip(split, res adams):
   print(f"x = \{t:.1f\}, y = \{y:.6f\}")
# Невязки
for i in range(len(res adams)):
   print(f"{abs(real res[i] - res adams[i]):.6e}")
```

4. Результат и его анализ.

В качестве эталонного решения будем использовать решение, полученное с помощью Wolfram Alpha:

$$y = \frac{1}{\ln(x) + 1}.$$

Решения в узлах:

цения в узнах:				
Точное решение	Эйлер	Рунге-Кутт 2 порядка	Адамс 3 порядка	
1.000000	1.000000	1.000000	1.000000	
0.912983	0.923440	0.912600	0.912940	
0.845794	0.862847	0.845178	0.845732	
0.792164	0.813621	0.791401	0.790843	
0.748239	0.772775	0.747378	0.746346	
0.711508	0.738290	0.710581	0.709272	
0.680270	0.708749	0.679296	0.677848	
0.653327	0.683131	0.652319	0.650798	
0.629808	0.660680	0.628774	0.627217	
0.609068	0.640825	0.608015	0.606440	
0.590616	0.623126	0.589547	0.587966	

Невязки в узлах:

	-	
Эйлер	Рунге-Кутт 2 порядка	Адамс 3 порядка
0.000000e+00	0.000000e+00	0.000000e+00
1.045618e-02	3.833324e-04	4.346047e-05
1.705365e-02	6.159653e-04	6.124054e-05
2.145662e-02	7.635166e-04	1.321260e-03
2.453675e-02	8.607882e-04	1.892705e-03
2.678155e-02	9.271712e-04	2.236644e-03
2.847846e-02	9.739510e-04	2.422140e-03
2.980452e-02	1.007947e-03	2.528343e-03
3.087280e-02	1.033416e-03	2.590199e-03
3.175782e-02	1.053089e-03	2.627134e-03
3.250997e-02	1.068760e-03	2.649764e-03

• Неявный метод Эйлера.

Он имеет локальную погрешность 2 порядка, все невязки также имеют второй порядок, что соответствует теории при $h=0.1 \rightarrow h^2=1.0e-02$. При этом даже на последних узлах погрешность не успела накопиться, чтобы превзойти 10^{-2} .

• Метод Рунге-Кутта 2 порядка.

Он имеет локальную погрешность 3 порядка. В начале он давал более точные значения, но потом погрешность накопилась и стала как раз 3 порядка.

• Метод Адамса 3 порядка.

Второй и третий узел был найден с помощью метода ПППТ 3 порядка, они имеют невязки порядка 10^{-5} , что соответствует точности метода. Остальные узлы были найдены уже методом Адамса, он имеет локальную погрешность 4 порядка и глобальную погрешность 3 порядка, а также является многошаговым. Все невязки на этих узлах имеют порядок 10^{-3} , что соответствует глобальной погрешности метода. Ожидалось, что значения, полученные этим методом, будут иметь наилучшую точность, однако он дал такую же точность, как метод 2 порядка, (хотя точность всё ещё соответствует теории), это может быть связанно с самим видом функции f(x,y).