CS 294/194-280: Advanced Large Language Model Agents

Teaching Staff

- Instructor: Prof. Dawn Song
- (guest) Co-instructors: Dr. Xinyun Chen, Dr. Kaiyu Yang
- Head TA: Alex Pan
- Readers: Tara Pande, Ashwin Dara, Jason Yan

Fall 2024: broad coverage of topics about LLM agents

Large Language Model Agents MOOC

Fall 2024: LLM Agents MOOC Hackathon Overview

- **Participation**: Close to 3000 developers and AI enthusiasts from around the globe
- **Five Tracks**:
 - Applications: Build cutting-edge LLM agents
 - Benchmarks: Create innovative AI agent evaluation benchmarks
 - Fundamentals: Strengthen core agent capabilities
 - Safety: Address critical safety challenges in AI
 - Decentralized & Multi-Agents: Push the boundaries of multi-agent systems
- **Sponsorship**: Supported by industry leaders such as OpenAI, Google, AMD, Intel, and Amazon with more than \$200,000 in prizes and resources.
- Hackathon winners to be announced very soon

Partners & Sponsors

LLM agents: enabling LLMs to interact with the environment

Why empowering LLMs with the agent framework

- Solving real-world tasks typically involves a trial-and-error process
- Leveraging external tools and retrieving from external knowledge expand LLM's capabilities
- Agent workflow facilitates complex tasks
 - Task decomposition
 - Allocation of subtasks to specialized modules
 - Division of labor for project collaboration
 - Multi-agent generation inspires better responses

LLM agents transformed various applications

Code generation

Cursor, GitHub Copilot, Devin, Google Jules...

Personal assistant

Google Astra, OpenAI GPT-40,...

Computer use

Anthropic Claude, Google Jarvis, OpenAl Operator

Robotics

Figure AI, Tesla Optimus, NVIDIA GROOT...

- Education
- Law
- Finance
- Healthcare
- Cybersecurity

. . .

Recent rapid progress of reasoning models

• Sep 2024: OpenAl o1

Dec 2024: Gemini 2.0 Flash Thinking, OpenAI o3

• Jan 2025: DeepSeek-R1, Kimi k1.5

Progress from Gemini Thinking 1219 -> 0121

Impressive performance on competitive math and coding

Google DeepMind AlphaProof and AlphaGeometry 2 achieve silver-medal performance in IMO 2024

OpenAI o3 is ranked top 200 in Codeforces competitive programming contests

Topics covered in this course

- Fundamental reasoning techniques
 - Inference-time techniques
 - Training techniques
 - · Search and planning
- LLMs for software engineering
 - Code generation
 - Code verification
 - Web applications
- LLMs for mathematics
 - Fundamental training techniques
 - Autoformalization and theorem proving
- Agentic workflows, real-world applications
- Safety and ethics

Course Work

- Weekly reading assignments & take-home quizzes
 - Due midnight PT Sunday before the next Monday's lecture
- 1 hands-on lab (released later in the semester)
- Semester-long course project
 - Applications Track
 - Research Track

Grading

lecture attendance & weekly readings/quizzes

+

- 1 unit: article about the topic of a lecture (at least 2 pages)
- 2 units: lab + project (implementation not required)
- 3 units: lab + project with implementation
- 4 units: lab + project with significant implementation and end-to-end demo

Grading

	1 unit	2 units	3/4 units
Participation	40%	16%	8%
Reading Summaries & Q/A	10%	4%	2%
Quizzes	10%	4%	2%
Article	40%		
Lab		16%	8%
Project			
Proposal		10%	10%
Milestone 1		10%	10%
Milestone 2		10%	10%
Presentation		15%	15%
Report		15%	15%
Implementation			20%

Class Project

Applications Track:

- 3-4 students per group
- Focus on applied use cases of LLMs
- Does not necessarily need to contribute novel research

Research Track:

- 2-3 students per group
- Conduct novel research under the supervision of postdocs and graduate students
- Goal of publishing in a workshop or conference
- Students must apply to participate via a forthcoming Google Form

Timeline

	Released	Due
Project group formation	1/27	2/17
Project proposal	2/3	2/17
Project milestone #1	2/17	3/24
Project milestone #2	3/24	4/28
Lab	3/31	4/28
Project final presentation	4/28	5/9
Project final poster	4/28	5/9
Project final report	4/28	5/16

Course Website

https://rdi.berkeley.edu/adv-llm-agents/