IN THE SPECIFICATION:

Table 1 on page 42 has been amended as follows:

Table 1

Exam.	aryl halide	product	Physical property data
1	4 - bromoto luene	4 - methylphenyl diphenylsulf onium bromide	6.73(2H, d, J=8.54Hz, Ph), 2.48 (3H, s, CH ₃); IR(KBr)(cm ⁻¹)=3069, 3045, 2984, 2359, 1591, 1475, 1446, 1309, 1188, 1155, 1066, 995, 808, 763, 686
2	3 - bromoto luene	3 - methylphenyl diphenylsulf onium bromide	δ=7.87-7.84(4H, m, Ph), 7.82-7.72
3	2 - bromoto luene	2 - methylphenyl diphenylsulf onium bromide	CDCl ₃) $\delta = 7.86 - 7.73(10H, m, Ph)$,
4	1-bromo- 4-tert- butylbe nzene	4 - t e r t - butylphenyld iphenylsulfo nium bromide	[[yeild]] <u>yield</u> : 79%; m.p.: 232.0-233.2°C; ¹ H-NMR(400MHz,

5	4 - cyclohe xylbenz	cyclohexylph enyldiphenyl	[[yeild]] <u>yield</u> : 93%; m.p.: $232.0-233.2^{\circ}C$; $^{1}H-NMR(400MHz, CDCl_{3})$ $\delta=7.85-7.54(12H, m, Ph)$, $7.54-7.51(2H, m, Ph)$, $2.61(1H, dt, J=6.35Hz, J=2.44Hz, CH)$, $1.95-1.81(4H, m, CH_{2})$, $1.76(1H, dddd, J-1.47Hz, J=2.68Hz$, $J=8.00Hz$, $J=13.03Hz$, $CH)$, $1.30-1.19(4H, m, CH_{2})$, $1.25(1H, dddd, J-3.14Hz, J=7.20Hz, J=8.70Hz$, $J=25.64Hz$, CH_{2}); $IR(KBr)(cm^{-1})=3412$, 2924 , 2851 , 2091 , 1585 , 1475 , 1444 , 1410 , 1327 , 1186 , 1111 , 1068 , 1022 , 997 , 835 , 754 ,
6	4 - methoxy	4 - methoxypheny ldiphenylsul f o n i u m bromide	

Table 2 on page 43 has been amended as follows:

Table 2

			Dharada and an ann and an allaha
Exam.	aryl	product	Physical property data
	halide		
7	1-bromo- 3 - methoxyb enzene	methoxypheny ldiphenylsul f o n i u m bromide	J=8.18Hz, Ph), 7.25(1H, d, J=8.18Hz, Ph), 7.21(1H, d, J=8.18Hz, Ph), 3.89(3H, s, CH ₃ O); IR(KBr)(cm ⁻¹)= 3466, 3387, 3084, 3032, 3015, 2976, 2839, 1591, 1483, 1444, 1427, 1286, 1250, 1188, 1072, 1032, 997, 875, 785, 761, 684
8	1-bromo- 2 - butoxybe nzene	butoxyphenyl diphenylsulf o n i u m bromide	Ph), $4.06(2H, t, J=6.34Hz, OCH_2)$, $1.79(2H, dt, J=6.34Hz, J=21.49, CH_2)$, $1.49(2H, dq, J=7.45Hz, J=21.49Hz, CH_2)$, $0.97(3H, t, J=7.45Hz, CH_3)$; $IR(KBr)(cm^{-1})=3483$, 3406 , 3192 , 3080 , 3022 , 2957 , 2874 , 2575 , 1900 , 1767 , 1682 , 1587 , 1475 , 1444 , 1415 , 1309 , 1261 , 1178 , 1120 , 1068 , 1022 , 999 , 964 , 856 , 763 , 688
9	1-bromo- 4-tert- butoxybe nzene	butoxyphenyl	yield: 40%; m.p.: $89.4-95.5^{\circ}C$; $^{1}H-NMR(400MHz, CDCl_{3})$ $\delta=7.86-7.81(6H, m, Ph), 7.74-7.28(6H, m,$

10	4 - methylth iobenzen	methylthioph enyldiphenyl sulfonium	yield: 83%; m.p.: $160.8-161.8^{\circ}C$; $^{1}H-NMR(400MHz, CDCl_{3})$ $\delta=7.86-7.78(6H, m, Ph), 7.76-7.69(6H, m, Ph), 7.48(2H, d, J=8.54Hz, Ph), 2.53(3H, s, CH3S); IR(KBr)(cm-1)=3447, 3045, 2990, 2943, 1566, 1547, 1475, 1441, 1402, 1313,$
			1201, 1178, 1099, 1062, 997, 825, 804, 761, 748, 682
	2,4,6- trimethy	trimethylphe nyldiphenyls	yield: 23%; m.p.: 202.0-202.6°C; 1 H-NMR(400MHz, CDCl ₃) δ =7.80-7.76(6H, m, Ph), 7.70-7.68(4H, m, Ph), 7.23(2H, s, Ph), 2.43(3H, s, CH ₃), 2.36(6H, s, CH ₃); IR(KBr)(cm ⁻¹)= 3449, 3387, 3057, 2991, 1597, 1572, 1471, 1446, 1385, 1300, $\frac{11}{1172}$, $\frac{1172}{1039}$, $\frac{11}{997}$, $\frac{1172}{997}$, $\frac{11}{997}$, $$

Table 4 on page 45 has been amended as follows:

Table 4

Exam.	aryl halide	product	Physical property data
17	bis (4- methylph enyl)sul	bis (4 - methylphen yl)phenyls ulfonium bromide	yield: 90%; m.p.: 207.8-208.9°C; 1 H-NMR(400MHz, CDCl ₃) δ =7.78(2H, d, J=7.81Hz, Ph), 7.73-7.68(7H, m, Ph), 7.48(4H, d, J=8.55Hz, Ph), 2.45(6H, S, CH ₃); IR(KBr)(cm ⁻¹)= 3617, 3065, 3003, 2955, 1589, 1491, 1443, 1402, 1315, 1290, 1186, 1124, 1068, 1014, 825, 806, 760, 688

18	methoxyp	bis (4 - methoxyphe nyl)phenyl sulfonium bromide	substance; ${}^{1}\text{H-NMR}(400\text{MHz, CDCl}_{3})$ δ =7.81(4H, d, J=8.79Hz, Ph), 7.72-
19	tert- butylphe	bis(4-tert-butylpheny 1)phenylsu 1 f o n i u m bromide	yield: 91%; m.p.: 245.6-245.9°C; 1 H-NMR(400MHz, CDCl ₃) δ =7.86-7.82(6H, m, Ph), 7.76-7.71(7H, m,
20	trifluor omethylp henyl)su	b i s (4 - trifluorom ethylpheny l)phenylsulfonium bromide	yield: 39%; m.p.: 283.9-284.8°C; 1 H-NMR(400MHz, CDCl ₃) δ =7.87-
21	fluoroph	bis (4-fluorophen yl)phenyls ulfonium bromide	1 H-NMR(400MHz, CDCl ₃) δ =8.13-8.09(4H, m, Ph), 7.89-7.86(2H, m,

22	i i		yield: 66%; m.p.: 179.3-180.4°C;
İ	chloroph	chlorophen	1 H-NMR(400MHz, CDCl3) δ =8.02-
	enyl)sul	yl)phenyls	7.98(3H, m, Ph), 7.92-7.76(2H, m,
	foxide	ulfonium	Ph), 7.75-7.65(8H, m, Ph);
l		bromide	$IR(KBr)(cm^{-1}) = 3069, 2984, 1570,$
			1475, 1446, 1394, 1309, 1157,
			1039, 1064, 997, 829, 769, 746,
			686
23	bis (4 -	b i s (4 -	yield: 69%; m.p.: 252.6-253.0°C;
23		b i s (4 - hydroxyphe	yield: 69%; m.p.: 252.6-253.0°C; [‡] H NMR(400MHz, CDC13) δ=7.80
23	hydroxyp	` '	† _{H NMR (400MHz, CDC13) δ=7.80}
23	hydroxyp henyl)su	hydroxyphe	[‡] H NMR (400MHz, CDC13) δ=7.80 7.70 (3H, m, Ph), 7.64-7.62 (6H, m,
23	hydroxyp henyl)su	hydroxyphe nyl)phenyl	[‡] H NMR (400MHz, CDC13) δ=7.80 7.70 (3H, m, Ph), 7.64-7.62 (6H, m,
23	hydroxyp henyl)su	hydroxyphe nyl)phenyl sulfonium	[†] H NMR(400MHz, CDC13) δ=7.80 7.70(3H, m, Ph), 7.64-7.62(6H, m, Ph), 7.13-7.10(4H, m, Ph), 3.30
23	hydroxyp henyl)su	hydroxyphe nyl)phenyl sulfonium	[±] H NMR (400MHz, CDC13) δ=7.80 7.70 (3H, m, Ph), 7.64-7.62 (6H, m, Ph), 7.13-7.10 (4H, m, Ph), 3.30-3.29 (2H, brd, OH); IR (KBr) (cm ⁻¹)=