STANISLAS Exercices

Suites & Séries de fonctions Chapitre VIII

PSI

2021 - 2022

I. Suites de fonctions

Indications pour l'exercice 1.

- **1.** La convergence simple est aisée à obtenir. Une étude de $||f||_{\infty}$ permet ensuite de montrer la convergence uniforme.
- **2.** La convergence simple est aisée à obtenir. Une étude de $\|f\|_{\infty}$ permet de montrer qu'il y a convergence uniforme sur \mathbb{R}_+ si et seulement si a>3. Par ailleurs, on montre qu'il y a convergence uniforme sur tout intervalle de la forme $[b,+\infty[$ dès que b>0.
- **3.** La convergence simple est aisée à obtenir. Par une simple majoration, on montre ensuite la convergence uniforme sur tout intervalle de la forme $[a, +\infty[$ dès que a > 0.

L'étude de $(f(\pi/2n))_{n\in\mathbb{N}^*}$ permet de montrer qu'il n'y a pas de convergence uniforme sur \mathbb{R}_+ .

- **4.** On montre qu'il y a convergence simple si et seulement si $x \leq 0$. On montre la convergence uniforme sur $]-\infty,a]$ dès que a<0. L'étude de la continuité montre qu'il n'y a pas convergence uniforme sur \mathbb{R}_- .
- **5.** On montre à l'aide de développements limités que $f_n(x) = \sin\left(\frac{2n\pi x}{8n^2\pi^2} + o(1/n^2)\right)$, ce qui assure la convergence simple. En choisissant x_n judicieusement, on montre que $(f_n(x_n))$ est constante égale à 1 et que la convergence n'est donc pas uniforme sur \mathbb{R} . En considérant $[a,b] \subset \mathbb{R}$, on montre que $\|\|\cdot\|_{\infty,[a,b]} f_n$ converge vers 0 et donc la convergence uniforme sur tout segment de \mathbb{R} .
- **6.** On montre aisément la convergence simple. On montre ensuite l'encadrement $0 \le e^{-x} f_n(x) \le e^{-x}(1 e^{-x^2/2n})$ qui permet de montrer la convergence uniforme.

Indications pour l'exercice 2. La convergence simple est aisée. L'étude de $(f_n(n\pi))$ permet de montrer qu'il n'y a pas de convergence uniforme sur \mathbb{R} .

Indications pour l'exercice 3.

- 1. En distinguant ce qui se passe en 0, on montre la convergence simple vers une fonction u.
- **2.** Pour des raisons de régularité, ou par l'étude de $(u_n(1/\sqrt{n}))$, on montre qu'il n'y a pas de convergence uniforme sur \mathbb{R} . On montre la majoration $|u_n(x) u(x)| \leq \frac{n+2}{n+1} e^{-na^2}$ pour montrer la convergence uniforme sur $[a, +\infty[$.

Indications pour l'exercice 4.

- 1. Il suffit d'appliquer les définitions.
- **2.** On remarque que $1 + xy \le 1 + |xy| \le 1 + \max\{x,y\}^2$. On peut alors utiliser le fait que $1 + \min\{x,y\}^2 \ge 1$.
- **3.** On majore $|g_n(x) g(x)| \leq ||f_n f||_{\infty}$ en utilisant l'inégalité de la question précédente.

Indications pour l'exercice 5.

- **1.** On montre que $d_{n+1} = 2d_n$.
- **2.** On montre que $\sqrt{x} P_{n+1}(x) = (\sqrt{x} P_n(x)) \left[1 \frac{\sqrt{x} + P_n(x)}{2}\right]$. Ainsi, $P_n(x) \leq \sqrt{x}$ et $P_{n+1}(x) \geq P_n(x)$. On montre alors que $(P_n(x))$ est convergente vers \sqrt{x} .
- 3. On montre par récurrence que

$$0 \leqslant \sqrt{x} - P_n(x) \leqslant \sqrt{x} \left(1 - \frac{\sqrt{x}}{2}\right)^n \leqslant \frac{\sqrt{x}}{1 + n\frac{\sqrt{x}}{2}}$$

4. En majorant le dernier membre par $\frac{2}{n}$, on montre la convergence uniforme sur [0,1].

Indications pour l'exercice 6.

- 1. Penser aux polynômes d'interpolation de Lagrange.
- 2. Utiliser la convergence simple et le fait que la somme soit finie.
- **3.** Si $[a,b] \subset \mathbb{R}$, utiliser la norme infinie de L_k sur [a,b].

Indications pour l'exercice 7.

Chapitre 8 PSI

- 1. Reconnaître une loi uniforme.
- **2.** Montrer que $\{Z_n \leq x\} = \bigcap_{k=1}^n \{X_k \leq x\}$ puis utiliser l'indépendance des lancers.
- **3.** Distinguer les cas x < 6 et $x \ge 6$ pour montrer la convergence simple. L'étude de $||F_n F||_{\infty}$ permet de montrer la convergence uniforme (ne pas hésiter à recourir à une représentation graphique).
- **4.** On montre que $F_{Y_n}(x) = 1 (1 F_{X_1}(x))^n$. Les convergences ont lieu comme dans la question précédente.

Indications pour l'exercice 8.

- **1.** Calculer $|G'_n|$.
- 2. Appliquer l'inégalité des accroissements finis.
- 3. Utiliser la convergence uniforme établie grâce à la question précédente.
- **4.** On montre que $|I_n(x) x| \leq \frac{e}{n}$ ce qui permet de montrer la convergence uniforme sur [0,1].

Indications pour l'exercice 9.

- 1. a) Utiliser des intégrations par parties.
 - b) Utiliser une récurrence et des intégrations par parties.
 - c) Utiliser la question précédente et une récurrence.
- **2. a)** Utiliser une récurrence en revenant à la définition de (f_n) .
- **b)** Utiliser les théorèmes de croissances comparées pour montrer les convergences simple et uniforme sur tout segment.
- **3.** Noter par l'absurde $\pi^2 = \frac{p}{q}$. On montre en utilisant les questions précédentes que $\left|\pi P_n(\pi^2)\right| \leqslant \frac{\pi^n}{2^n(n!)}$. Ensuite, $(q^{2n}p\left|P_n(\pi^2)\right|)$ est une suite d'entiers qui tend vers 0 donc est stationnaire. On obtiendrait alors $f_n(\pi) = 0$, ce qui est impossible.

Indications pour l'exercice 10.

- 1. Penser à l'espérance et aux lois binomiales.
- **2.** Décomposer l'espérance en utilisant les indicatrices des événements $\{|S_n/n-x|<\delta\}$ et $\{|S_n/n-x|\geqslant\delta\}$.

On utilise ensuite le caractère lipschitzien d'une part et la continuité de f en x d'autre part.

3. Penser à l'inégalité de Bienaymé-Tchebychev. □

II. Séries de fonctions

Indications pour l'exercice 11.

- **1.** On montre que la série converge uniquement sur $]0, +\infty[$.
- **2.** En utilisant la monotonie des fonctions, on montre la convergence normale sur tout intervalle de la forme $[a, +\infty[$ dès que a > 0.
- **3.** On commence par montrer la décroissance de F.

Le théorème de la double limite permet de montrer la limite de F en $+\infty$.

En 0, on montre que $F(x) \ge \sum_{k=0}^{N} \ln(1 + e^{-nx})$ puis on passe à la limite lorsque $x \to 0$.

Indications pour l'exercice 12.

- 1. La convergence normale permet de conclure.
- **2.** Penser à la formule d'Euler puis à la linéarité de la somme des séries convergentes.
- 3. La convergence normale permet d'intervertir somme et intégrale. \Box

Indications pour l'exercice 13.

- **1.** Si $x \le 0$, utiliser la divergence grossière. Si x > 0, utiliser le théorème des séries alternées.
- **2.** Utiliser les sommes partielles pour montrer que $F(x) = (1 \frac{1}{2^{x-1}}) \zeta(x)$.
- 3. Utiliser une comparaison séries / intégrale.
- **4.** Utiliser le théorème des séries alternées pour obtenir que $1 2^{-x} \le F(x) \le 1$.

Indications pour l'exercice 14.

- 1. Commencer par restreindre le domaine d'étude à $[-\pi/2, \pi/2]$. Montrer ensuite la convergence simple vers une fonction F en distinguant les cas $x \in \{-\pi/2, \pi/2\}$.
- **2.** Montrer que F n'est pas continue et en déduire qu'il n'y a pas de convergence uniforme.

Chapitre 8 PSI

3. Une étude de maximum permet de montrer la convergence normale sur [0,a] et sur [-a,0] dès que $-\pi/2 < a < \pi/2$.

4. Utiliser le reste des sommes géométriques pour montrer qu'il n'y a pas convergence uniforme sur $[-\pi/2, \pi/2]$.

Indications pour l'exercice 15.

- **1.** La fonction est définie sur $]-1,+\infty[$. On prouver alors qu'il y a convergence simple en effectuant un développement limité.
- **2.** En utilisant le théorème des séries alternées, on montre la convergence uniforme de $\sum f'_n$ puis le caractère \mathscr{C}^1 de f.
- 3. En écrivant $f(x) = -\ln(1+x) + \sum_{n=2}^{+\infty} (-1)^n \ln(1+x/n)$, on montre que la série converge uniformément sur $[-1, +\infty[$. On utilise alors le théorème de la double limite sur cette série pour montrer que $f(x) \sim_{-1^+} -\ln(1+x)$.
- **4.** En utilisant des sommes partielles et en montrant la convergence de suites d'intégrales, on montre que $f'(x) = -\int_0^1 \frac{t^x}{1+t} dt$.

Indications pour l'exercice 16.

- **1.** En discutant le signe de a(n), on montre que le domaine de définition est \mathbb{R}_+^* et qu'il y a convergence normale sur tout segment de la forme $[a, +\infty[$ dès que a > 0.
- **2.** Montrer que a est minorée par une valeur α et que $J=\{n\in\mathbb{N}: a(n)=\alpha\}$ est fini. Utiliser ensuite le théorème de la double limite pour montrer ensuite que $f(t)\sim |J|\,\mathrm{e}^{-\alpha t}$.
- $\bf 3.$ Comme b>0,utiliser une technique de comparaison série / intégrale puis, en utilisant la convergence d'intégrales généralisées que

$$f(t) \sim_0 \frac{1}{bt^{1/b}} \int_0^{+\infty} u^{1/b-1} e^{-u} du$$

Indications pour l'exercice 17.

1. Une majoration d'arctangente permet de montrer la convergence normale puis le caractère \mathscr{C}^1 de S.

2. On pourra remarquer que $t \mapsto \frac{\arctan(t)}{t^2}$ est décroissante puis utiliser une comparaison série / intégrale.

III. Avec Python

Indications pour l'exercice 18.

1. Penser aux racines de l'unité pour montrer que $D = \mathbb{R} \setminus \{1\}$. On montre ensuite que E = D.

2.

3. On conjecture une convergence uniforme sur $]-\infty,a]$ et sur $[b,+\infty[$ pour tout a<-1 et b>-1.

L'étude des variations de f permet de montrer la convergence normale sur tout segment inclus dans]-1,1].

Pour x > 1, l'étude des variations de $f_n - f$ permet de montrer les convergences uniformes sur $[a, +\infty[$.