Лабораторная работа №1.2.3 Определение моментов инерции твердых тел с помощью трифилярного подвеса

Гёлецян А.Г.

22 июля 2022 г.

1 Введение

Для измерения моментов инерции сложных тел экспериментальным путем можно воспользоватся трифилярным подвесом. Методом несложных вычислении можно найти зависимость периода подвеса от массы и момента инерции иследуемого тела (1). Воспользуемся этой зависимостью для проведения ряда экспериментов, связанных с проверкой теоретической модели.

$$I = kmT^2, k = \frac{gRr}{4\pi^2 z_0} \tag{1}$$

2 Ход работы

2.1 Опыт с 2мя фигурами

Для начала проверим для каких углов приближение с использованием малости угла оправдана. Несколько измерении показали, что при амплитудах меньше 10° период не зависит от амплитуды. Соответственно будем придерживатся таких амплитуд.

Измерим параметры установки для подсчета коэффицента k в формуле (1)

$$R = (114.6 \pm 0.5)$$
mm
 $r = (30.5 \pm 0.5)$ mm
 $m = (983.2 \pm 0.5)$ r
 $z_0 = (2.14 \pm 0.01)$ m

Из таблиц имеем значение $g=(9,8155\pm0.0005){\rm mc^{-2}}$ для Москвы. Погрешность k считаем по формуле

$$\sigma_k = k\sqrt{\left(\frac{\Delta g}{g}\right)^2 + \left(\frac{\Delta r}{r}\right)^2 + \left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta z_0}{z_0}\right)^2}$$

Подставляя данные получаем

$$k = (4.06 \pm 0.07)10^{-4} \text{m}^2 \text{c}^{-2}$$

Начнем измерения измерением момента инерции ненагруженной платформы.

No	N	t, c	Т, с
1	10	44.052	4.4052
2	10	44.003	4.4003
3	10	44.005	4.4005
4	10	43.940	4.3940
5	11	48.353	4.3957

Среднее значение $\bar{T}=4.399$ Случайная погрешность $\sigma_T=0.002\mathrm{c}\to T=(4.399\pm0.002)\mathrm{c}.$ Отсюда

$$I_{\text{пф}} = kmT^2 = (7.7 \pm 0.1)_{\text{ГМ}}^2$$

. Погрешность считалось по формуле

$$\Delta I = I \sqrt{\left(\frac{\Delta k}{k}\right)^2 + \left(\frac{\Delta m}{m}\right)^2 + \left(2\frac{\Delta T}{T}\right)^2}$$

Теперь проведем аналогичный опыт, где измерим момент инерции металличесеого кольца с характеристиками

$$m_{ ext{кол}} = (981.7 \pm 0.5)$$
г $r_{ ext{внеш}} = (8.45 \pm 0.05)$ см $r_{ ext{внут}} = (7.90 \pm 0.05)$ см

No	N	t, c	Т, с
1	10	42.459	4.2459
2	10	42.428	4.2428
3	10	42.426	4.2426
4	10	42.385	4.2385

Из этих данных, аналогично для ненагруженной платформы находим все интересующее.

$$T = (4.242 \pm 0.002) \mathrm{c}$$
 $I_{\text{пф+кол}} = (14.4 \pm 0.2) \mathrm{гм}^2$ $I_{\text{кол}} = (6.7 \pm 0.3) \mathrm{гм}^2$

Теоретической формулой для кольца получаем

$$I_{\mathrm{kol}}^{\mathrm{Teop}} = m_{\mathrm{kol}} \frac{r_{\mathrm{BHeii}}^2 + r_{\mathrm{BHyt}}^2}{2} = (6.57 \pm 0.05) \mathrm{fm}^2$$

Как видим в пределах погрешности теория соответствует эксперименту.

Сделаем все то же самое для диска с параметрами

$$m_{
m диск} = (580.6 \pm 0.5)$$
г $r_{
m дисk} = (5.75 \pm 0.01)$ см

No	N	t, c	Т, с
1	10	39.254	3.9254
2	10	39.221	3.9221
3	10	39.203	3.9203
4	10	39.189	3.9189

Из этих данных получаем

$$T = (3.922 \pm 0.002) \mathrm{c}$$
 $I_{\Pi \Phi + \Pi \Pi \mathrm{ck}} = (9.8 \pm 0.2) \Gamma \mathrm{m}^2$ $I_{\Pi \Pi \mathrm{ck}} = (2.1 \pm 0.3) \Gamma \mathrm{m}^2$

Теоретически получаем

$$I_{
m диск}^{
m reop} = m_{
m дисk} r_{
m дисk}^2 = (1.920 \pm 0.007) {
m гm}^2$$

Как видим в пределах погрешности теория соответствует эксперименту.

Когда оба тела на платформе.

No	N	t, c	Т, с
1	10	39.750	3.9750
2	10	39.873	3.9873
3	10	39.964	3.9964
4	10	39.773	3.9773

$$T=(3.984\pm0.006)\mathrm{c}$$

$$I_{\mathrm{п} \varphi+\mathrm{o} 6 \mathrm{III}}=(16.4\pm0.3)\mathrm{гm}^2$$

$$I_{\mathrm{o} 6 \mathrm{III}}=(8.7\pm0.4)\mathrm{гm}^2 I_{\mathrm{диск}}+I_{\mathrm{кол}}=(8.8\pm0.6)\mathrm{гm}^2$$

Как видим в пределах погрешности момент инерции аддитивен.

2.2 Опыт с разрезанным диском

Опыт описывать не смысла, сразу приведу данные.

h, см	Т, с	σ_T , c
0.0	3.07	0.06
0.5	3.08	0.05
1.0	3.11	0.03
1.5	3.13	0.01
2.0	3.16	0.01
2.5	3.21	0.02
3.0	3.28	0.03
3.5	3.35	0.02
4.0	3.43	0.03
4.5	3.53	0.02
5.0	3.63	0.03
5.5	3.72	0.03
6.0	3.85	0.01
6.5	3.97	0.02
7.0	4.09	0.02
7.5	4.22	0.02

Ошибка $h \approx 0.1$ см. Теория предсказывает что (здесь m и I это масса и момент инерции платформы, M и R это масса и радиус диска соответственно

$$k(m+M)T^{2} = \frac{MR^{2}}{2} + Mh^{2} + I$$
 (2)

Нарисуем график $T^2(h^2)$ и сделаем выводы

Формула прямой полученный методом МНК.

$$T^2 = (0.149 \pm 0.001)c^2 \text{cm}^{-2} h^2 + (9.42 \pm 0.03)c^2$$

В соответствии с (2) получаем что

$$\frac{M}{k(m+M)} = (0.149 \pm 0.001)c^{2}cm^{-2} = \alpha$$

$$\frac{\frac{MR^{2}}{2} + I}{k(m+M)} = (9.42 \pm 0.03)c^{2} = \beta$$

$$M = \frac{km\alpha}{1 - k\alpha}$$

$$\Delta M = M\sqrt{\left(\frac{\Delta k}{k}\right)^2 + \left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta \alpha}{\alpha(1 - k\alpha)}\right)^2}$$

$$M = (1500 \pm 40)\Gamma$$

Найдем так же момент инерции диска

$$I_{\rm диск} = \beta k(m+M) - I$$

$$\Delta I_{\rm диск} = \sqrt{(\Delta I)^2 + (k(m+M)\Delta\beta)^2 + (\beta(m+M)\Delta k)^2 + (\beta k\Delta m))^2 + (\beta k\Delta m))^2}$$

$$I_{\rm диск} = (1.8 \pm 0.2) \text{гм}^2$$

Рис. 1: График зависимости $T^2(h^2)$