Pre-Calculus 11

6.2 Absolute Value Functions

Created by Yi-Chen Lin

June 17, 2025

Graphing the Absolute Value of a Function

Key Idea

When graphing y = |f(x)|, any point with a negative y-coordinate is reflected above the x-axis. Points with positive y-coordinates remain unchanged.

Example:
$$y = x - 2$$
 and $y = |x - 2|$

Example: Linear Function and Its Absolute Value

Original:
$$y = x - 2$$

Piecewise:

$$y = \begin{cases} x - 2, & x \ge 2 \\ -(x - 2), & x < 2 \end{cases}$$

Absolute Value: y = |x - 2|

Steps to Find Piecewise Function for |Parabola|

How to Write the Piecewise Function

- **1 Find the** *x*-**intercepts** of the parabola by setting y = 0 and solving for *x*. Use these intercepts to split the domain into (Left, Middle, Right).
- Write the equation inside the absolute value for each domain interval, without the absolute value sign.
- **3 Graph the parabola** and indicate which parts are below the *x*-axis (these will be flipped up).
- For the part(s) that were flipped, place a negative sign in front of the entire equation (with brackets) for those intervals.

Example: Parabola and Its Absolute Value

Reflecting Below the X-axis

To graph y = |f(x)| for a parabola, reflect any part below the x-axis upward.

Explanation

Blue dashed: Original part be-

low x-axis

Blue solid: Reflected upward

Red: Original part above *x*-axis

(unchanged)

Created by Yi-Chen Lin

Pre-Calculus 11

June 17, 2025

Example: Quadratic Function and Its Absolute Value

Original:
$$y = x^2 - 3$$

Piecewise:

$$y = \begin{cases} x^2 - 3, & |x| \ge \sqrt{3} \\ -(x^2 - 3), & |x| < \sqrt{3} \end{cases}$$

Absolute Value: $y = |x^2 - 3|$

Example: Cubic Function and Its Absolute Value

Original:
$$y = x^3 - 2x$$

Piecewise:

$$y = \begin{cases} x^3 - 2x, & x^3 - 2x \ge 0 \\ -(x^3 - 2x), & x^3 - 2x < 0 \end{cases}$$

Absolute Value:

$$y = |x^3 - 2x|$$

Practice: Graph and Analyze

Practice

Graph $y = |x^2 - 4|$ and:

- ① Determine the x- and y-intercepts
- 2 State the domain and range
- Write the piecewise function

Multiple Choice: Piecewise Function

Which is the correct piecewise function for *y*

①
$$y = x^2 - 4$$
 for $x \le -2$ or $x \ge 2$; $y = -(x^2 - 4)$ for $-2 < x < 2$

②
$$y = x^2 - 4$$
 for $x < 0$; $y = -(x^2 - 4)$ for $x \ge 0$

3
$$y = x^2 - 4$$
 for $x > 0$; $y = -(x^2 - 4)$ for $x \le 0$

Practice 1

Graph y = |x + 1|.

Practice 2

Graph y = |-2x + 3|.

Practice 3

Graph $y = |x^2 - 2|$.

Practice 4

Graph
$$y = |-x^2 + 4|$$
.

Practice 5

Graph $y = |x^2 - 4x + 3|$.