Chapter 1

Reminders on matrix topology

On multiple occasions, we will have to examine the convergence of a sequence of vectors or matrices. This is why this chapter will

1.1 Vector and matrix norms

Given an integer $n \geq 0$, we recall that a norm over \mathbb{C}^n is an application $|\cdot|_* : \mathbb{C}^n \to \mathbb{R}_+$ satisfying: for all $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{C}^n$ and all $\lambda \in \mathbb{C}$

- $\bullet |\mathbf{v}|_* = 0 \Rightarrow \mathbf{v} = 0$
- $\bullet ||v+w|_* \leq |v|_* + |w|_*$
- $|\lambda \boldsymbol{v}|_* = |\lambda| |\boldsymbol{v}|_*$

In the case of the space $V = \mathbb{C}^n$, let us mention three classical norms. Given a vector $\mathbf{u} = (u_j)_{j=1}^n \in \mathbb{C}^n$, we define

$$|\mathbf{u}|_1 := \sum_{j=1}^n |u_j|$$

 $|\mathbf{u}|_2 := (\sum_{j=1}^n |u_j|^2)^{1/2}$
 $|\mathbf{u}|_{\infty} := \sup_{j=1...n} |u_j|$

It can be easily verified that each of these three applications is indeed a norm. Besides, let us point that $|\cdot|_2$ is the norm naturally attached to the scalar product $(\boldsymbol{u}, \boldsymbol{v}) \mapsto \boldsymbol{u}^\top \overline{\boldsymbol{v}}$ over \mathbb{C}^n . Let us recall that these norms are equivalent as \mathbb{C}^n is a finite dimensional space: we have $|\boldsymbol{u}|_1 \leq \sqrt{n}|\boldsymbol{u}|_2 \leq n|\boldsymbol{u}|_\infty \leq n|\boldsymbol{u}|_1$ for all $\boldsymbol{u} \in \mathbb{C}^n$. The choice of a norm $|\cdot|_*$ over \mathbb{C}^n induces a norm over $\mathbb{C}^{n \times n}$ defined by

$$\|\mathbf{A}\|_* := \sup_{\boldsymbol{u} \in \mathbb{C}^n \setminus \{0\}} \frac{|\mathbf{A}\boldsymbol{u}|_*}{|\boldsymbol{u}|_*} \quad \text{for } \mathbf{A} \in \mathbb{C}^{n \times n}.$$
 (1.1)

A norm over $\mathbb{C}^{n\times n}$ taking the form above is said to be subordinated. Subordinated norms possess the following elementary property.

Lemme 1.1.

 $\textit{If } \parallel \parallel_* \textit{ is a subordinated norm over } \mathbb{C}^{n\times n} \textit{ then } \parallel A^k \parallel_* \leq \parallel A \parallel_*^k \textit{ for all } A \in \mathbb{C}^{n\times n}, k \geq 0.$

In the following we will denote $\|\cdot\|_1$ the norm subordinated to $|\cdot|_1$. Similarly we will denote $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$. There exist matrix norms that are not subordinated. Here is an example. Given a matrix $A = (a_{j,k}) \in \mathbb{C}^{n \times n}$, let $\operatorname{tr}(A) := \sum_{j=1}^n a_{j,j}$ refer to its trace. In addition, we shall denote $A^* := (\overline{A})^{\top}$ its adjoint i.e. its hermitian transpose. Then the application $(A, B) \mapsto \operatorname{tr}(B^*A)$ provides a scalar product over $\mathbb{C}^{n \times n}$. The norm associated to this scalar product, called the Frobenius norm,

$$\|\mathbf{A}\|_{\mathrm{F}} := \sqrt{\operatorname{tr}(\mathbf{A}^*\mathbf{A})} = \sum_{j=1}^n \sum_{k=1}^n |a_{j,k}|^2$$

is not subordinated. Indeed if it was, one would necessarily have $\|\mathrm{Id}\|_* = 1$. However in the case of the Frobenius norm, a direct calculation shows that $\|\mathrm{Id}\|_F = \sqrt{n}$.

Proposition 1.2.

For any matrix $A = (a_{i,k}) \in \mathbb{C}^{n \times n}$, we have

$$\|\mathbf{A}\|_{1} = \sup_{k=1\dots n} \sum_{j=1}^{n} |a_{j,k}|$$
$$\|\mathbf{A}\|_{\infty} = \sup_{j=1\dots n} \sum_{k=1}^{n} |a_{j,k}|$$

Proof:

We start by proving the identity for $\|A\|_1$. Given a vector $\mathbf{u} = (u_k)_{k=1}^n \in \mathbb{C}^n \setminus \{0\}$, applying a simple triangular inequality yields

$$|\mathbf{A}\boldsymbol{u}|_{1} = \sum_{j=1}^{n} \left| \sum_{k=1}^{n} a_{j,k} u_{k} \right| \leq \sum_{j=1}^{n} \sum_{k=1}^{n} |a_{j,k}| |u_{k}|$$

$$\leq \sum_{k=1}^{n} |u_{k}| \left(\sum_{j=1}^{n} |a_{j,k}| \right) \leq |\boldsymbol{u}|_{1} \sup_{k=1...n} \sum_{j=1}^{n} |a_{j,k}|$$

Since this holds for all $\boldsymbol{u} \in \mathbb{C}^n \setminus \{0\}$, dividing the last inequality by $|\boldsymbol{u}|_1$ and taking the supremum with respect to \boldsymbol{u} , we obtain that $\|\mathbf{A}\|_1 \leq \sup_{k=1...n} \sum_{j=1}^n |a_{j,k}|$. To conclude we can construct a $\boldsymbol{u}_{\star} \in \mathbb{C}^n$ such that $|\mathbf{A}\boldsymbol{u}_{\star}|_1/|\boldsymbol{u}_{\star}| = \sup_{k=1...n} \sum_{j=1}^n |a_{j,k}|$. Pick $k_{\star} \in \{1...n\}$ such that $\sup_{k=1...n} \sum_{j=1}^n |a_{j,k}| = \sum_{j=1}^n |a_{j,k_{\star}}|$. It suffices then to define $\boldsymbol{u}_{\star} = (u_k)$ by $u_k = 0$ if $k \neq k_{\star}$ and $u_{k_{\star}} = 1$.

Let us now examine the case of $\|A\|_{\infty}$. Similarly to what precedes, for an arbitrary $u \in \mathbb{C}^n$ we have

$$|\mathbf{A}\boldsymbol{u}|_{\infty} = \sup_{j=1...n} \left| \sum_{k=1}^{n} a_{j,k} u_{k} \right| \le \sup_{j=1...n} \sum_{k=1}^{n} |a_{j,k}| |\boldsymbol{u}|_{\infty}.$$

Again dividing by $|\boldsymbol{u}|_{\infty}$ and taking the supremum of the left hand side with respect to \boldsymbol{u} , we obtain $\|\mathbf{A}\|_{\infty} \leq \sup_{j=1...n} \sum_{k=1}^{n} |a_{j,k}|$. Let us prove that this upper bound is reached. Choose j_{\star} such that $\sum_{k=1}^{n} |a_{j_{\star},k}| = \sup_{j=1...n} \sum_{k=1}^{n} |a_{j,k}|$. We can take $\boldsymbol{u}_{\star} = (u_{k}) \in \mathbb{C}^{n}$ with entries given by $u_{k} = \overline{a}_{j_{\star},k}/|a_{j_{\star},k}|$, and we then obtain $|\mathbf{A}\boldsymbol{u}|_{\infty}/|\boldsymbol{u}|_{\infty} = \sup_{j=1...n} \sum_{k=1}^{n} |a_{j,k}|$.

Given a matrix $A \in \mathbb{C}^{n \times n}$, we denote $\sigma(A)$ the spectrum of A defined as the set of its

eigenvalues $\sigma(A) = \{\lambda \in \mathbb{C}, \text{ Ker}(\lambda Id - A) \neq \{0\}\}$. On the other hand, we will denote $\varrho(A) = \sup\{|\lambda|, \lambda \in \sigma(A)\}$, the spectral radius of the matrix A.

Proposition 1.3.

For any matrix $A = (a_{j,k}) \in \mathbb{C}^{n \times n}$, we have $||A||_2 = \sqrt{\varrho(A^*A)}$

Proof:

Remind that a matrix $U \in \mathbb{C}^n$ is called unitary if and only if $|U\boldsymbol{x}|_2 = |\boldsymbol{x}|_2$ for all $\boldsymbol{x} \in \mathbb{C}^n$. We also recall that $U^{-1} = U^*$ when U is unitary. As the matrix A^*A is symtetric positive, we know that there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ with $\lambda_j \in \sigma(A) \subset \mathbb{R}_+$ such that $A^*A = U^*\Lambda U$. Renumbering if necessary, we can assume that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, so that $\lambda_1 = \varrho(A^*A)$. Given a vector $\boldsymbol{x} \in \mathbb{C}^n$, set $\boldsymbol{y} = U\boldsymbol{x}$ and denote $\boldsymbol{y} = (y_j)_{j=1}^n$ the entries of this vector. Then we have

$$|\mathbf{A}\boldsymbol{x}|_{2}^{2} = \boldsymbol{x}^{*} \mathbf{A}^{*} \mathbf{A} \boldsymbol{x} = (\mathbf{U}\boldsymbol{x})^{*} \mathbf{D}(\mathbf{U}\boldsymbol{x}) = \boldsymbol{y}^{*} \boldsymbol{\Lambda} \boldsymbol{y} = \sum_{j=1}^{n} \lambda_{j} |y_{j}|^{2}$$

$$\leq \lambda_{1} \sum_{j=1}^{n} |y_{j}|^{2} = \lambda_{1} |\boldsymbol{y}|_{2}^{2} = \lambda_{1} |\mathbf{U}\boldsymbol{x}|_{2}^{2} = \varrho(\mathbf{A}^{*}\mathbf{A}) |\boldsymbol{x}|_{2}^{2}.$$

Since this holds for any $\boldsymbol{x} \in \mathbb{C}^n \setminus \{0\}$, we can divide by $|\boldsymbol{x}|_2^2$ and take the supremum. We finally obtain that $\|\mathbf{A}\|_2^2 \leq \varrho(\mathbf{A}^*\mathbf{A})$.

To conclude, let us choose $\mathbf{v} \in \mathbb{C}^n \setminus \{0\}$ as an eigenvector of $\mathbf{A}^*\mathbf{A}$ attached to the eigenvalue λ_1 . Then we have $|\mathbf{A}\mathbf{v}|_2^2 = \mathbf{v}^*\mathbf{A}^*\mathbf{A}\mathbf{v} = \lambda_1|\mathbf{v}|_2^2$, which implies $|\mathbf{A}\mathbf{v}|_2^2/|\mathbf{v}|_2^2 = \varrho(\mathbf{A}^*\mathbf{A})$. This ends the proof.

In the particular case where A is hermitian $A^* = A$ we have $\sqrt{\varrho(A^*A)} = \sqrt{\varrho(A^2)} = \sqrt{\varrho(A)^2} = \varrho(A)$ as $\sigma(A^2) = \{\lambda^2, \ \lambda \in \sigma(A)\}$. We then conclude that $\|A\|_2 = \varrho(A)$ for the particular case of an hermitian matrix.

1.2 Condition number

Although to any norm is attached a condition number, most of the time one considers the so-called "quadratic" condition number attached to the norm $\|\cdot\|_2$. For a matrix $A \in \mathbb{C}^{n \times n}$, it is defined by

$$\operatorname{cond}_2(\mathbf{A}) := \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2. \tag{1.2}$$

This quantity is only meaningful for an invertible matrix i.e. whose kernel is trivial Ker(A) = $\{0\}$. The condition number is systematically greater than 1. Indeed $1 = \|\mathrm{Id}\|_2 = \|\mathrm{A} \cdot \mathrm{A}^{-1}\|_2 \le \|\mathrm{A}\|_2 \|\mathrm{A}^{-1}\|_2 = \mathrm{cond}_2(\mathrm{A})$. On the other hand, applying the remark after Proposition 1.3, we deduce that $\mathrm{cond}_2(\mathrm{A}) = |\lambda_1|/|\lambda_n|$ for an hermitian matrix A, assuming that the eigenvalues are arranged by ascending order $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$. The next proposition shows that the condition number quantifies the sensibility of a linear system with respect to perturbations.

Théorème 1.4.

Consider $A \in \mathbb{C}^{n \times n}$ invertible and $\mathbf{b}, \delta \mathbf{b} \in \mathbb{C}^n$ with $\mathbf{b} \neq 0$. Let $\mathbf{x}, \delta \mathbf{x} \in \mathbb{C}^n$ refer to vectors such that $A\mathbf{x} = \mathbf{b}$ and $A(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$. Then we have

$$\frac{|\delta \boldsymbol{x}|_2}{|\boldsymbol{x}|_2} \leq \operatorname{cond}_2(A) \frac{|\delta \boldsymbol{b}|_2}{|\boldsymbol{b}|_2}.$$

Proof:

We have $A(\boldsymbol{x} + \delta \boldsymbol{x}) = \boldsymbol{b} + A\delta \boldsymbol{x} = \boldsymbol{b} + \delta \boldsymbol{b}$ hence $A\delta \boldsymbol{x} = \delta \boldsymbol{b}$ and thus $\boldsymbol{x} = A^{-1}\delta \boldsymbol{b}$. We then deduce $|\boldsymbol{b}|_2 \le ||A||_2 |\boldsymbol{x}|_2$ on the one hand, and $|\delta \boldsymbol{x}|_2 \le ||A^{-1}||_2 |\delta \boldsymbol{b}|_2$ on the other hand. Multiplying the last two inequalities, and dividing by $|\boldsymbol{x}|_2 |\boldsymbol{b}|_2$, we finally obtain the required inequality.

1.3 Spectral radius

Proposition 1.5.

For any square matrix $A \in \mathbb{C}^{n \times n}$, there exists an invertible matrix $P \in \mathbb{C}^{n \times n}$ such that PAP^{-1} is upper triangular.

Proof:

We prove this result by recurrence over the dimension n. It obviously holds for n=1. Suppose the result holds for n-1 and let us prove that it still holds for n. Pick an arbitrary square matrix $A \in \mathbb{C}^{n \times n}$. There exists $\lambda \in \mathbb{C}$ and $e_1 \in \mathbb{C}^n \setminus \{0\}$ such that $Ae_1 = \lambda e_1$. We can find linearly independent vectors e_2, \ldots, e_n such that e_1, \ldots, e_n forms a basis of \mathbb{C}^n . For each $k = 2 \ldots n$, there are coefficients α_k and $\beta_{j,k} \in \mathbb{C}$, $j = 2 \ldots n$ such that

$$\mathbf{A}\boldsymbol{e}_{k} = \alpha_{k}\boldsymbol{e}_{1} + \sum_{j=2}^{n} \beta_{j,k}\boldsymbol{e}_{j} \quad k = 2\dots n$$

$$\tag{1.3}$$

Note B = $(B_{j,k}) \in \mathbb{C}^{(n-1)\times(n-1)}$ defined by the coefficients $B_{j,k} = \beta_{j+1,k+1}$, as well as the vector $\boldsymbol{\alpha} := (\alpha_2, \ldots, \alpha_n)^{\top} \in \mathbb{C}^{n-1}$. Let us also define $P := [\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n]$ the matrix associated to basis we have just defined. Writing the matrix representation of (1.3) then leads to

$$P^{-1} \cdot A \cdot P = \begin{bmatrix} \lambda & \boldsymbol{\alpha}^{\top} \\ 0 & B \end{bmatrix}$$
 (1.4)

By recurrence hypothesis, there exists $Q \in \mathbb{C}^{(n-1)\times(n-1)}$ invertible such that $T := Q^{-1}BQ \in \mathbb{C}^{(n-1)\times(n-1)}$ is upper tirangular. Setting $R = \text{diag}(1,Q) \in \mathbb{C}^{n\times n}$, we then obtain

$$(PR)^{-1} \cdot A \cdot (PR) = R^{-1} \cdot (P^{-1}AP) \cdot R = \begin{bmatrix} \lambda & \boldsymbol{\alpha}^{\top} Q \\ 0 & T \end{bmatrix}$$

Note that PR is invertible since both P and R are invertible. As the matrix in the right hand side above is uppoer triangular, the preceding identity exhibits a trigonalisation of the matrix A which concludes the recurrence, and hence the proof. \Box

Proposition 1.6.

For any subordinated matrix norm $\| \|_*$ over $\mathbb{C}^{n\times n}$ we have $\varrho(A) \leq \|A\|_*$, $\forall A \in \mathbb{C}^{n\times n}$. Reciprocally, for any matrix $A \in \mathbb{C}^{n\times n}$ and any $\epsilon > 0$, there exists a subordinated norm $\| \|_*$ over $\mathbb{C}^{n\times n}$ such that

$$\|\mathbf{A}\|_* \le \rho(\mathbf{A}) + \epsilon. \tag{1.5}$$

Proof:

First consider a matrix norm $\| \ \|_*$ over $\mathbb{C}^{n\times n}$ subordinated to the vector norm $| \ |_*$. For a matrix $A \in \mathbb{C}^{n\times n}$, take $\lambda \in \sigma(A)$ such that $|\lambda| = \varrho(A)$, and let $\boldsymbol{x}_0 \in \mathbb{C}^n \setminus \{0\}$ be an eigenvector of A attached to this eigenvalue. Then we have

$$\varrho(\mathbf{A}) = \frac{|\mathbf{A}x_0|_*}{|\mathbf{x}_0|_*} \le \sup_{\mathbf{x} \in \mathbb{C}^n \setminus \{0\}} \frac{|\mathbf{A}\mathbf{x}|_*}{|\mathbf{x}|_*} \le \|\mathbf{A}\|_*$$
(1.6)

This proves the first part of the proposition. Next consider a matrix $A \in \mathbb{C}^{n \times n}$. We have to propose a subordinated norm satisfying (1.5). According to Proposition 1.5, there exists an invertible matrix $P \in \mathbb{C}^{n \times n}$ such that $T := P^{-1}AP$ is upper triangular,

$$T = \begin{bmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & t_{n,n} \end{bmatrix}.$$

Note that the entries $t_{j,j}, j=1...n$ are the eigenvalues of the matrix A. Given some $\delta>0$ that we shall choose a posteriori, set $D_{\delta}:=\operatorname{diag}(1,\delta,\ldots,\delta^{n-1})$ and define the matrix $T_{\delta}:=D_{\delta}^{-1}P^{-1}APD_{\delta}=(PD_{\delta})^{-1}A(PD_{\delta})=D_{\delta}^{-1}TD_{\delta}$. Examining its values, we see that

$$T_{\delta} = \begin{bmatrix} t_{1,1} & \delta t_{1,2} & \cdots & \delta^{n-1} t_{1,n} \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \delta t_{n-1,n} \\ 0 & \cdots & 0 & t_{n,n} \end{bmatrix}$$

The matrix above decomposes as $T_{\delta} = \Lambda + R_{\delta}$ where $\Lambda = \operatorname{diag}(t_{1,1}, \dots, t_{n,n})$ and R_{δ} is the upper triangular part located strictly above the diagonal. According to Proposition 1.2, we have $\lim_{\delta \to 0} \|R_{\delta}\|_1 = 0$. Given some ϵ , we can choose δ small enought to garantee that $\|R_{\delta}\|_1 \leq \epsilon$. In addition, one readily checks that $\|\Lambda\|_1 = \max_{j=1...n} |t_{j,j}| = \varrho(A)$. With δ chosen as indicated, we obtain $\|T_{\delta}\|_1 \leq \varrho(A) + \epsilon$. Now set $P_{\delta} := PD_{\delta}$ and consider the norm $\|x\|_1 := |P_{\delta}^{-1}x|_1$. With the matrix norm $\|\cdot\|_1$ subordinated to $\|\cdot\|_2$, the matrix A then satisfies

$$\|\mathbf{A}\|_* = \sup_{\boldsymbol{x} \in \mathbb{C}^n \setminus \{0\}} \frac{|\mathbf{A}\boldsymbol{x}|_*}{|\boldsymbol{x}|_*} = \sup_{\boldsymbol{x} \in \mathbb{C}^n \setminus \{0\}} \frac{|\mathbf{P}_{\delta}^{-1} \mathbf{A} \mathbf{P}_{\delta} \boldsymbol{x}|_1}{|\boldsymbol{x}|_1} = \|\mathbf{T}_{\delta}\|_1 \le \varrho(\mathbf{A}) + \epsilon$$

Proposition 1.7.

Given a $A \in \mathbb{C}^{n \times n}$, the following conditions are equivalent:

- i) $\lim_{k\to\infty} A^k = 0$
- ii) $\lim_{k\to\infty} A^k \boldsymbol{x} = 0$ for all $\boldsymbol{x} \in \mathbb{C}^n$
- iii) $\varrho(A) < 1$
- iv) $\|\mathbf{A}\|_{*} < 1$ for at least one subordinated norm $\|\cdot\|_{*}$.

Proof:

The implication $i) \Rightarrow ii$) is obvious. To prove ii) $\Rightarrow iii$), let us establish the contrapositive, assuming that $\varrho(A) \geq 1$. Then there exists $\boldsymbol{x} \in \mathbb{C}^n$ such that $|\boldsymbol{x}|_2 = 1$ and $A\boldsymbol{x} = \lambda \boldsymbol{x}$ for a certain $\lambda \in \mathbb{C}$ satisfying $|\lambda| \geq 1$, and we have $|A^k \boldsymbol{x}|_2 = |\lambda|^k \geq 1$ so $\lim_{k \to \infty} A^k \boldsymbol{x} \neq 0$ and ii) does not hold. The implication iii) $\Rightarrow iv$) is a direct consequence of Proposition 1.6. The implication iv) $\Rightarrow i$) is a direct consequence of Lemma 1.1.