مادة الرياضيات	الملكة المغربية	· ,	
ماده الرياضيات العلوم الرياضية أو ب		ات الوطني الموحد	الإمتحـ
ا المعلق الربي المعادد المادة الابنجاز: أربع ساعسات		هادة البكالوريــــــــــــــــــــــــــــــــــــ	لنيل شر
المعامل: 9:	ونرابرة التربية الوطنية و التعليـــــــــــــــــــــــــــــــــــ	العـــادية 2013	الدورة
	المر <i>كز ا</i> لوطني للتَّقويْبُ والإمتحانات		
<u></u>		التمرين الأول: (3,5 ن)	
	, \mathbb{Z}) حلقة واحدية تبادلية و كاملة \mathbb{Z}	نذکر أن (×, +	
$\forall (x,y) \in \mathbb{Z}^2 \ ; \ x * y = x + y$	y-2: لتركيب الداخلي st المعرف بما يلي	, ———	
Control Control	تبادلي و تجميعي .		<u>0,50 ن</u>
Encel COA SCOI	تقبل عنصر ا محايدا يتم تحديده		<u>0,25 ن</u>
2			<u>0,50 ن</u>
	z-2y+6 : المعرف بـ : $z-2y+6$		
$(\forall x \in \mathbb{Z}) \; ; \; f(x) = x$	$x+2$ من \mathbb{Z} نحو \mathbb{Z} المعرف بما يلي : f		. 0.50
. $(\mathbb{Z}$,T) نحو $(\mathbb{Z}$,T) بين أن التطبيق f تشاكل تقابلي من $(x,y,z)\in\mathbb{Z}^3$; $(x*y)$ T $z=(x$ T $z)*(y$ T $z)$ بين أن $(x,y,z)\in\mathbb{Z}^3$; $(x*y)$ T $z=(x$ T $z)*(y$ T $z)$			<u>0,50 ن</u> 0,25
$V(x,y,z)\in\mathbb{Z}$ بین ان $V(x,y,z)=(x+z)$ الله و واحدیة . $V(x,y,z)\in\mathbb{Z}$ بین ان $V(x,y,z)=(x+z)$ حلقة تبادلیة و واحدیة .			<u>0,25 ن</u> 0,75 ن
	به سبق ال $x=2$ معنی کست الله الله الله الله الله الله الله الل		ن 0,25 <u>0,25</u>
· <i>J</i>		ا بين بن الحلقة بين بن الحلقة	ن 0,25
	سم؟ (علل الجواب)		ق 0,25 0,2 <u>5</u> ن
	Ļ	<u>التمرين الثانى: (3,5 ن)</u>	
	· ·	ليكن a عددا عقد اليكن اليكن a	
	عة ﴾ المعادلة ذات المجهول z :	نعتبر في المجمو	
$(E): 2z^2 - \left(3 + i\sqrt{3}\right)az +$	$-(1+i\sqrt{3})a^2=0$		
	. $\left(-1+i\sqrt{3}\right)^2a^2$: هو (E) معادلة	ا ا ا ا ا ا ا ا ا تحقق أن مميز الد	0,25 ن
		المعادل 🔲 على على المعادل	0,50 ن
	$_{\pi}$ منسوب إلى معلم متعامد ممنظم $(0,ec{u},ec{v})$	ا المستوى العقدي	
. z و $b=ae^{\frac{it}{3}}$	$\frac{\pi}{3}$ و a التي ألحاقها على التوالي : a و B	نعتبر النقط A و	
	$^{-1}(A)$: نضع M و زاويته $rac{\pi}{3}$. نضع		
	و الدوران العكسي للدوران (r)	1 = = =	
EXCEL	A_1 حقي A_1 و B_1 على التوالي		
	OAB متساوي الأضلاع .	ا ا ا ا ا تحقق أن المثلث	0,50 ن

 $b_1 = \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z \quad \text{of } \quad a_1 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z \quad \text{of } \quad a_1 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z \quad \text{of } \quad a_1 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z \quad \text{of } \quad a_1 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z \quad \text{of } \quad a_1 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z \quad \text{of } \quad a_1 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{$

متوازي أضلاع . OA_1MB_1 بين أن الرباعي OA_1MB_1 متوازي أضلاع .

استنتج أن الدالة g قابلة للإشتقاق على اليمين في 2 اليمين في 0.50

$$\lim_{x \to +\infty} \frac{g(x)}{x} = 0$$
 : و أن $\lim_{x \to +\infty} g(x) = +\infty$: بين أن $\lim_{x \to +\infty} g(x) = +\infty$ ين أن $\lim_{x \to +\infty} \frac{g(x)}{x} = 0$

 $(\forall x > 1) \; ; \; g^{'}(x) = \frac{1}{2}h(\sqrt{x}) \; : \;]1 ; +\infty[$ و أن $g^{'}(x) = \frac{1}{2}h(\sqrt{x}) \; : \;]1 ; +\infty[$ و أن $g^{'}(x) = \frac{1}{2}h(\sqrt{x}) \; : \;]1 ; +\infty[$

. g استنتج أن $\frac{1}{2}$: $0 < g'(x) \le \frac{1}{2}$ استنتج أن ناب الدالة y

(8) نشئ المنحنى (8).

Centre
Excel de
RENFORCEMENT et de
COACHING
SCOLAIRE

الجزء الثالث

0,50 ن

<u>0,50 ن</u>

.] $-\infty$; $\ln 2$] نحو $[1;+\infty[$ نحو $k:x\mapsto g(x)-x+1:$ نحو [1

. $1+g(\alpha)=\alpha$: بحيث $]1;+\infty[$ بحيث α من المجال $]0,+\infty[$ بحيث عدد حقيقي وحيد α من المجال [عدد عدد حقيقي وحيد α

$$\left\{ egin{align*} u_{n+1} = 1 + g(u_n) \; ; \; (\forall n \geq 0) \\ 1 \leq u_0 < lpha \end{array}
ight. \; : \; (\forall n \geq 0)$$
 المعرفة بما يلي المعرفة

 $(\forall n \geq 0)$; $1 \leq u_n < \alpha$: بين أن $1 \parallel \parallel 0,50$

بين أن المتتالية $(u_n)_{n\geq 0}$ تزايدية قطعا . $(u_n)_{n\geq 0}$

 $\lim_{n\to\infty}u_n=lpha$: ن المتتالية $(u_n)_{n\geq 0}$ متقاربة . و أن المتتالية ن المتتالية المتتالية عند 0.75

 $(\forall n \geq 0)$; $|u_{n+1} - \alpha| \leq \frac{1}{2} |u_n - \alpha|$: بين أن 2 ال

 $(\forall n \geq 0) \; ; \; |u_n - \alpha| \leq \left(\frac{1}{2}\right)^n \; |u_0 - \alpha| \; : ن 0.50$ بين أن

 $\lim_{n \to \infty} u_n = \alpha$: استنتج مرة ثانية أن (2 الم 0,25

 (\mathbb{Z},T) نحو (\mathbb{Z},\times) نحو f . لكي يكون f تقابلا يكفي أن يحقق ما يلي : $(\forall y \in \mathbb{Z})$, $(\exists ! x \in \mathbb{Z})$; f(x) = yالمجموعة \ مزودة بالقانون * المعرف بما يلى: . \mathbb{Z} يعنى : المعادلة f(x)=y ذات المجهول x تقبل حلا وحيدا في $\forall (x,y) \in \mathbb{Z}^2 ; x * y = x + y - 2$ $f(x) = y \iff x + 2 = y$: ليكن γ عنصرا من المجموعة \mathbb{Z} . لدينا $\mathbb Z$ و y عنصرین من x لأنه إذا كان x و y عنصرين من $\Leftrightarrow x = y - 2 \in \mathbb{Z}$ $(x+y-2) \in \mathbb{Z}$ فإن $(\forall y \in \mathbb{Z})$, $(\exists! x = y - 2 \in \mathbb{Z})$; f(x) = y : الخن لنبرهن على أن * تبادلي : و هذا يعنى أن التطبيق f تقابل من \mathbb{Z} نحو \mathbb{Z} . من أجل ذلك يكفى أن نلاحظ أن القانون + تبادلي في الحلقة (\mathbb{Z},T) نحو (\mathbb{Z},X) نحو (T,\mathbb{Z}) نحو ((T,\mathbb{Z}) . $(\mathbb{Z}, +, \times)$ الواحدية التبادلية $\forall (x, y) \in \mathbb{Z}^2$; x * y = x + y - 2 = y + x - 2 = y * x : إذِن إذن * تبادلي في 🛚 . الكن χ و γ و تلاثة أعداد نسبية ، لدينا من جهة أولى : لنبرهن على أن القانون * تجميعي في " _ $(x * y) \mid z \mid = (x * y)z - 2(x * y) - 2z + 6$ \mathbb{Z} و γ و کا ثلاثة عناصر من χ = (x + y - 2)z - 2(x + y - 2) - 2z + 6(x*y)*z = (x*y)+z-2 = x+y-2+z-2= xz + yz - 4z - 2x - 2y - 2z + 10= x + (y + z - 2) - 2 $(x \mid z) * (y \mid z) = (x \mid z) + (y \mid z) - 2$: و من جهة ثانية لدينا = x + (y * z) - 2= (xz - 2x - 2z + 6) + (yz - 2y - 2z + 6) - 2= x * (y * z)= xz + yz - 4z - 2x - 2y - 2z + 10 $\forall (x,y,z) \in \mathbb{Z}^2$; (x*y)*z=x*(y*z) : إذن $\forall (x,y,z) \in \mathbb{Z}^3$; $(x*y) \mid z = (x \mid z) * (y \mid z)$: نستنتج أن و منه فإن القانون * تجميعي في المجموعة \mathbb{Z} . أي : القانون T توزيعي على * في \mathbb{Z} . ليكن 3 العنصر المحايد للقانون * في المجموعة \mathbb{Z} . $(\forall x \in \mathbb{Z})$; $x * \varepsilon = \varepsilon * x = x$; الذن L(T, *, T) خلقة تبادلية و واحدية $x * \varepsilon = x$: لتحديد قيمة ع ننطلق من التعبير $\varepsilon = 2 \in \mathbb{Z}$: و منه $x + \varepsilon - 2 = x$ زمرة تبادلية $(\mathbb{Z},*)$ T يقبل عنصرا \mathbb{Z} في العنصر المحايد القانون * في \mathbb{Z} . T قانون تجميعي محايدا في 🏿 T توزیعی علی * لكى تكون $(*, \mathbb{Z})$ زمرة تبادلية يكفى أن نبر هن على أن كل عنصر من \mathbb{Z} T تبادلی فی 🏿 يقبل مماثلا من ١ بالقانون * . حصلنا من خلال الأجوبة السابقة على المعلومتين التاليتين: اليكن x عنصرا من $\mathbb Z$. و x' مماثله بالنسبة للقانون x $x*x^{'}=x^{'}*x=2$ إذن : $x*x^{'}=2$ المتساوية التالية : $x*x^{'}=2$ $(*,\mathbb{Z})$ زمرة تبادلية |(1)| و القانون T توزيعي على القانون * (2) (\mathbb{Z}, I) نحو (\mathbb{Z}, \times) نحو الدينا f نحو x' = 4 - x : يعنى x + x' - 2 = 2إذن نستنتج البنية الجبرية للمجموعة (٦, ١٪) انطلاقا من البنية الجبرية $(4-x) \in \mathbb{Z}$: فإن $x \in \mathbb{Z}$ و $x \in \mathbb{Z}$ للمجموعة (X,X) و ذلك عن طريق التطبيق f . و بالتالى : كل عنصر x من $\mathbb Z$ يقبل مماثلاً في $\mathbb Z$ و هو (4-x) . لأنه و كما نعلم: التشاكل التقابلي يُحوِّل البنية الجبرية لمجموعة الأنطلاق خلاصة : لقد حصلنا على المعلومات التالية : إلى مجموعة الوصول. st داخلي و تبادلي و تجميعي في $\mathbb Z$. بما أن الضرب \times تبادلي و تجميعي في (\times, \mathbb{Z}) و يقبل 1 كُعُنصر محايد. * يقبل عنصرا محايدا و هو 2 . T قانون تجميعي في 🛮 (4) فإن : | القانون $_{
m T}$ تبادلى فى $_{
m Z}$ | (3) و • λ عنصر λ من \mathbb{Z} يمتلك مماثلا و هو λ . و T عنصر محايد للقانون f(1)=3إذن : $(*, \mathbb{Z})$ زمرة تبادلية $(\mathbb{Z}, *, \mathsf{T})$ و (2) و (3) و (4) و (5) نستنتج أن حلقة تبادلية و واحدية وحدتها العدد النسبي 3 $f:(\mathbb{Z},\mathsf{x})\;\mapsto\;(\mathbb{Z},\mathsf{I})\;\longrightarrow\;$ نعتبر التطبيق f المعرف بما يلي $x \mapsto f(x) = x + 2$ اليكن x و y عنصرين من المجموعة x . لدينا لكى يكون f تشاكلاً يكفى أن يحقق ما يلى : $x \mid y = 2 \mid \iff xy - 2x - 2y + 6 = 2$ $\forall (x,y) \in \mathbb{Z}^2 \; ; \; f(x \times y) = f(x) \mathsf{T} f(y)$ $\Leftrightarrow xy - 2x - 2y + 4 = 0$ x و y عنصرين من المجموعة x . EXCEL $\Leftrightarrow x(y-2) - 2(y-2) = 0$ $f(x) \mathsf{T} f(y) = (x+2) \mathsf{T} (y+2)$ \Leftrightarrow (y-2)(x-2)=0= (x + 2)(y + 2) - 2(x + 2) - 2(y + 2) + 6 $\Leftrightarrow (y-2) = 0 \quad \text{if} \quad (x-2) = 0$ $= xy - 2 = f(x \times y)$) رمضان 2012 أجوبة امتحان الدورة العادية 2003 من إعداد الأستاذ بدر الدين الفاتحى: (الصفحة: 236

أقترح طريقتين في الجواب.

$$\frac{aff(A) - aff(O)}{aff(B) - aff(O)} = \frac{a - 0}{ae^{\frac{i\pi}{3}} - 0} = e^{\frac{-i\pi}{3}}$$
 ادينا :

$$\begin{cases}
OA = OB \\
(\overrightarrow{OB}, \overrightarrow{OA}) \equiv \frac{-\pi}{3} [2\pi] : \underbrace{\begin{cases}
OA \\
\overrightarrow{OB}
\end{cases}} = 1 \\
(\overrightarrow{\overrightarrow{OB}}, \overrightarrow{\overrightarrow{OA}}) \equiv \frac{-\pi}{3} [2\pi]
\end{cases}$$

$$\begin{cases} \left| \frac{aff(A) - aff(O)}{aff(B) - aff(O)} \right| = 1 \\ \arg\left(\frac{aff(A) - aff(O)}{aff(B) - aff(O)} \right) \equiv \frac{-\pi}{3} \left[2\pi \right] \end{cases}$$

و هذا يعنى أن المثلث OAB متساوي الساقين رأسه O و قياس إحدى زواياه و هي الزاوية \widehat{O} يساوي $^{\circ}60^{\circ}$.

إذن: OAB مثلث متساوي الأضلاع.

الطريقة الثانية:

$$OA = |aff(A) - aff(O)| = |a - 0| = |a|$$
 : لدينا $OB = |aff(B) - aff(O)|$: و لدينا $|aff(B) - aff(O)|$ $|aff(B) - aff(O)|$

$$AB = |aff(B) - aff(A)| = |b - a| - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = |a| \cdot \left| \frac{1}{2} + i \cdot \frac{1}{2} - 1 \right| = |a| \cdot \left| \frac{1}{2} + i \cdot \frac{1}{2} - 1 \right| = |a| \cdot \left| \frac{1}{2} + i \cdot \frac{1}{2} - 1 \right| = |a|$$

 $A \neq B \neq C$ و OA = OB = AB : نستنتج إذن أن إذن OAB مثلث متساوي الأضلاع.

 $r(A_1) = A$: ننطلق من الكتابة $A_1 = r^{-1}(A)$: ننطلق من الكتابة و منه حسب التعريف العقدى للدوران γ نكتب :

$$\left(aff(A)-aff(M)\right)=e^{\frac{i\pi}{3}}\left(aff(A_1)-aff(M)\right)$$

$$(a-z)=e^{rac{i\pi}{3}}(a_1-z)$$
 : يعني $(a-z)=e^{rac{i\pi}{3}}a_1-e^{rac{i\pi}{3}}z$: يعني $e^{rac{i\pi}{3}}a_1=a-z+e^{rac{i\pi}{3}}z$: يعني

$$a_1 = e^{rac{-i\pi}{3}} \left(a - z + e^{rac{i\pi}{3}} z
ight)$$
 يعني :

$$a_1 = e^{\frac{-i\pi}{3}} a - e^{\frac{-i\pi}{3}} z + z$$
 : يعني

$$e^{\frac{-i\pi}{3}} = \cos\left(\frac{-\pi}{3}\right) + i\sin\left(\frac{-\pi}{3}\right)$$
 : من جهة أخرى لدينا $= \cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)$ $= \frac{1}{2} - i\frac{\sqrt{3}}{2}$

الصفحة : 237

. كاملة إذا كانت $(\mathbb{Z},*,\mathsf{T})$ على قواسم للصفر $(\mathbb{Z},*,\mathsf{T})$ ليكن χ قاسما للصفر في

 $\exists \ y \in \mathbb{Z} \setminus \{2\}$; $x \mid y = y \mid x = 2$: $\downarrow \psi$ y = 2) x = 2 : ((4) السؤال 4) أو x = 2إذن لا وجود لأي قاسم للصفر لأن قواسم الصفر إن وجدت يجب أن تخالف العنصر المحايد 2 و بالتالي $(T, *, \mathbb{Z})$ حلقة كاملة .

 $\mathbb{Z}\setminus\{2\}$ عنصر من عنصر من الحلقة الواحدية (T, *, T) جسما إذا كان كل عنصر من یقبل مماثلا (أو مقلوبا) في (T,\mathbb{Z}) .

و لذلك نحدد أو لا الصيغة العامة لمماثل عنصر χ من $\mathbb Z$ بالقانون $\mathbb T$ ایکن γ مماثل χ بالنسبة للقانون γ اذن النكن

$$x \mid y = 3 \iff xy - 2x - 2y + 6 = 3$$

$$\Leftrightarrow xy - 2x - 2y + 3 = 0$$

$$\Leftrightarrow y(x - 2) = (2x - 3)$$

$$\Leftrightarrow y = \left(\frac{2x - 3}{x - 2}\right)$$

و نلاحظ أن الكمية $\left(\frac{2x-3}{x-2}\right)$ ليست دائما عنصرا من \mathbb{Z} .

العنصر \mathbb{Z} مثلا هو مماثل 1 بالنسبة لـ \mathbb{Z} ر العنصر $\mathbb{Z} \in \mathbb{Z}$ مثلا هو مماثل 3 بالنسبة لـ 1

الكن العنصر $\mathbb{Z} \not\equiv \frac{11}{5}$ هو مماثل 7 بالنسبة للقانون \mathbb{Z} . \mathbb{Z} ان نوجد عناصر من \mathbb{Z} لا تقبل مماثلا في \mathbb{Z} بالنسبة ل

و بالتالي فالحلقة $(T, *, \mathbb{Z})$ ليست جسما .

$\Delta = a^2(3+i\sqrt{3})^2 - 8a^2(1+i\sqrt{3})$ دينا من جهة أولى:

$$\Delta = a^{2}(3 + i\sqrt{3}) - 8a^{2}(1 + i\sqrt{3}) = 0$$

$$= a^{2}(6 + 6i\sqrt{3}) - 8a^{2}(1 + i\sqrt{3})$$

$$= 6a^{2}(1 + i\sqrt{3}) - 8a^{2}(1 + i\sqrt{3})$$

$$= -2a^{2}(1 + i\sqrt{3})$$
(1)

$$a^{2}(-1+i\sqrt{3})^{2} = a^{2}(1-3-2i\sqrt{3})$$
 : و من جهة ثانية لدينا $= a^{2}(-2-2i\sqrt{3})$ $= -2a^{2}(1+i\sqrt{3})$ (2)

 $\Delta = a^2 \left(-1 + i\sqrt{3} \right)^2$: نستنتج إذن من (1) و (2) أن

 $\Delta = a^2(-1+i\sqrt{3})^2$: لدينا

اِذِن : المعادلة (E) تقبل حلين عقديين Z_2 و عرفين بما يلي :

$$z_{1} = \frac{(3+i\sqrt{3})a - (-1+i\sqrt{3})a}{4}$$
$$= \frac{3a+i\sqrt{3}a+a-i\sqrt{3}a}{4} = \frac{4a}{a} = a$$

$$|z_2| = \frac{(3+i\sqrt{3})a + (-1+i\sqrt{3})a}{4}$$

$$= \frac{3a + i\sqrt{3}a - a + i\sqrt{3}a}{4} = \frac{2a + 2i\sqrt{3}a}{4} = \frac{a(1 + i\sqrt{3})}{2}$$

$$= \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(1 - \frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z$$

$$= \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z$$

. $r(B)=B_1$ و بنفس الطريقة ننطلق من الكتابة إذن حسب التعريف العقدي للدوران r نكتب :

$$\left(aff(B_1) - aff(M)\right) = e^{\frac{i\pi}{3}} \left(aff(B) - aff(M)\right)$$

$$e^{\frac{2i\pi}{3}} = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$$

$$= \cos\left(\pi - \frac{\pi}{3}\right) + i\sin\left(\pi - \frac{\pi}{3}\right)$$

$$= -\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$$

$$e^{\frac{i\pi}{3}} = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 و نضيف كذلك :

: إذن بالرجوع إلى آخر تعبير لـِ b_1 نَكتب

$$b_{1} = ae^{\frac{2i\pi}{3}} - e^{\frac{i\pi}{3}}z + z = ae^{\frac{2i\pi}{3}} + \left(1 - e^{\frac{i\pi}{3}}\right)z$$

$$= \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right)a + \left(1 - \frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z$$

$$= \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z$$

بصفة عامة ، لكي نبر هن على أن رباعيا ما متوازي أضلاع ، توجد عدة طرق من بينها : القطران لهما نفس المنتصف و صيغة التوازي و الصيغة المتجهية و صيغة التقايس . لكن أرى أن أسهل طريقة في هذا السؤال هي أن نبر هن أن كل ضلعين متقابلين متقايسان . لأن المسافة في المستوى العقدي ما هي إلا معيار لعدد عقدي .

$$B_1$$
 M $OB_1 = A_1M$ و $OA_1 = B_1M$: لنبر هن أن $OA_1 = |aff(A_1) - aff(O)| = |a_1|$: لدينا $B_1M = |aff(M) - aff(B_1)| = |z - b_1|$ $= \left|z - \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right)a - \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z\right|$ $= \left|\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(1 - \frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z\right|$ $= \left|\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z\right| = |a_1|$ $|A_1|$ $|A_2|$ $|A_3|$ $|A_4|$ $|A_4|$

 $OB_1 = |aff(B_1) - aff(O)| = |b_1|$: و بنفس الطريقة لدينا $A_1M_1 = |aff(M) - aff(A_1)| = |z - a_1|$: و لدينا كذلك : $= \left| z - \left(\frac{1}{2} - i \frac{\sqrt{3}}{2} \right) a - \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) z \right|$ $= \left| \left(\frac{-1}{2} + i \frac{\sqrt{3}}{2} \right) a + \left(1 - \frac{1}{2} - i \frac{\sqrt{3}}{2} \right) z \right|$ $\left| = \left| \left(\frac{-1}{2} + i \frac{\sqrt{3}}{2} \right) a + \left(\frac{1}{2} - i \frac{\sqrt{3}}{2} \right) z \right| = |b_1|$ $(2) \overline{OB_1 = A_1 M} : \dot{\psi}$ اذِن

 $OA_{1}MB_{1}$ من (1) و (2) نستنتج أن كل ضلعين متقابلين في الرباعي متوازي أضلاع OA_1MB_1 : متوازي أضلاع

أقترح طريقتين في الجواب .

<u>الطريقة الأولى :</u>

 $rac{b}{a}=e^{rac{i\pi}{3}}$: لدينا $b=ae^{rac{i\pi}{3}}$

$$\left(\frac{b}{a}\right)^3=-1$$
 : يعني $\left(\frac{b}{a}\right)^3=\left(e^{\frac{i\pi}{3}}\right)^3=e^{i\pi}=-1$: و منه : $\left(\frac{b}{a}\right)^2=-\left(\frac{a}{b}\right)$ يعني : $\left(\frac{b}{a}\right)^2 imes\left(\frac{b}{a}\right)=-1$: و منه :

$$e^{rac{2i\pi}{3}}=-\left(rac{a}{b}
ight)$$
: اِذْن $e^{rac{2i\pi}{3}}=\left(e^{rac{i\pi}{3}}
ight)^2=\left(rac{b}{a}
ight)^2=-\left(rac{a}{b}
ight)$: و منه

نوظف بعد ذلك هذه المتساوية فيما سيأتي :

$$\begin{cases} (a-z)=e^{rac{i\pi}{3}}(a_1-z) & ext{i.i.} \\ (b_1-z)=e^{rac{i\pi}{3}}(b-z) & ext{i.i.} \end{cases} \quad \begin{cases} r(A_1)=A & ext{i.i.} \\ r(B)=B_1 & ext{i.i.} \end{cases}$$
 $\begin{cases} (z-a_1)=e^{rac{i\pi}{3}}(z-a) & ext{i.i.} \\ (z-b_1)=e^{rac{i\pi}{3}}(z-b) & ext{i.i.} \end{cases}$

$$\left(\frac{z-b_1}{z-a_1}\right) = \left(\frac{e^{\frac{i\pi}{3}}}{e^{\frac{-i\pi}{3}}}\right) \left(\frac{z-b}{z-a}\right) : \varphi^{\dagger}$$

$$\left| \left(\frac{z - b_1}{z - a_1} \right) = \frac{-a}{b} \left(\frac{z - b}{z - a} \right) \right|$$
 : يعني

 $r(B)=B_1$ و $r(A_1)=A$ و استعمال المعطيين

EXCEL

و هذا ما سوف أعرضه الآن كطريقة أخرى للجواب .

الطريقة الثانية:

$$rac{a}{b}=e^{rac{-i\pi}{3}}$$
 ي $rac{b}{a}=e^{rac{i\pi}{3}}$: النبنا $b=ae^{rac{i\pi}{3}}$: النبنا

و من هاتين الكتابتين نستنتج ما يلي :

الصفحة: 238

لنبين أن التكافؤ التالي صحيح .

A و B و O و M نقط متداورة \Longrightarrow A_1 و A و B و A نقط مستقيمية

$$A_0$$
 و B_0 و B_1 و B_1

$$\Leftrightarrow \frac{-a}{b} \left(\frac{z-b}{z-a} \right) \in \mathbb{R}$$

$$\iff \frac{a}{b} \left(\frac{z}{z - a} \right) \in \mathbb{R}$$

$$\iff \ \frac{a}{b} \left(\frac{z-b}{z-a} \right) \, \epsilon \, \mathbb{R}$$

$$\iff \ \, \left(\frac{0-a}{0-b}\right)\times \left(\frac{z-b}{z-a}\right)\,\epsilon\;\mathbb{R}$$

و B و B و B نقط متداورة A

 $3^n-2^n=0$ [n] : ليكن عددا صحيحا طبيعيا أكبر قطعا من 1 بحيث عددا صحيحا طبيعيا (3^n-2^n) يقسم n : إذن

 $(1) \Rightarrow (\exists m \in \mathbb{N}) ; 3^n - 2^n = mn$: و منه . n أصىغر قاسم أولى موجب للعدد

 $(2) \rightarrow (\exists s \in \mathbb{N}) ; n = ps$: إذن

 $3^n - 2^n = ms p$: من (1) و

 $(3) woheadrightarrow 3^n - 2^n \equiv 0[p]$: يعني $(3^n - 2^n)$ يقسم $(3^n - 2^n)$ p=3 و p=2 کلکی نبر هن علی أن $p \geq 5$ یکفی أن نُفنّد العبارتین p=3 و

p=2 نفترض أن

 $3^n - 2^n \equiv 0 [p]$: (3) لدينا حسب النتيجة

 $(4) \implies 3^n - 2^n \equiv 0$ [2] : إذن حسب الافتراض

 $(5) woheadrightarrow 2^n \equiv 0$ و نعلم أنه كيفما كان $n \in \mathbb{N}$ لدينا :

 $3^n-2^n+2^n\equiv 0\ [2]$: نجمع المتوافقتين (4) و (5) طرفا بطرف

 $3 imes3^{n-1}$ يعنى : [2] $0\equiv 3^n$ و منه : [2] يقسم 3^n

(7) $(\forall n \in \mathbb{N}^*)$; $2 \land 3^{n-1} = 1$ فإن $2 \land 3 = 1$: بما أن

من (6) و (7) نستنتج إذن حسب (*Gauss*) أن : 2 يقسم 3 (**6**)

 $p \neq 2$: إذن $\frac{p}{p} \neq 2$ p=3 نفترض أن

 $3^n - 2^n \equiv 0$ [p] : (3) لدينا حسب النتيجة

 $(8) \rightarrow 3^n - 2^n \equiv 0$ [3] : إذن حسب الافتراض نكتب

 $(9) \Rightarrow (\forall n \in \mathbb{N}) ; -3^n \equiv 0 [3]$: و نعلم أن

 $3^n - 2^n - 3^n \equiv 0$ [3] نجمع المتوافقتين (8) و (9) طرفا بطرف: $2^n \equiv 0$ [3] : أي $-2^n \equiv 0$ [3] يعنى

 $(\mathbf{10}) woheadrightarrow 2 imes 2^{n-1}$ يعني : 3 يقسم 2^n و منه : 3 يقسم

(11)-» $(\forall n \in \mathbb{N}^*)$; $2^{n-1} \wedge 3 = 1$: فإن $2 \wedge 3 = 1$: بما أن

من (10) و (11) نستنج حسب Gauss أن : 3 يقسم 2

 $p \neq 3$: إذن يناقض واضح واضح

خلاصة السؤال أ):

أذا كان n عددا صحيحا طبيعيا أكبر قطعا من n

و يحقق $[n] = 3^n - 2^n$ و كان p أصغر قواسمه الأولية الموجبة $p \geq 5$ فإن $3^n - 2^n \equiv 0 \ [p]$ و

$$\left(\frac{b}{a}\right)^3=\left(e^{\frac{i\pi}{3}}\right)^3=e^{i\pi}=-1$$
 : إذن $\frac{b}{a}=e^{\frac{i\pi}{3}}$: الذن $\left(\frac{b}{a}\right)^3=-1$: إذن ا

و من هذه النتيجة نكتب :
$$\left(\frac{b}{a}\right)^2 imes \left(\frac{b}{a}\right) = -1$$
 : و من هذه النتيجة نكتب : $\left(\frac{b}{a}\right)^2 = -\left(\frac{a}{b}\right)$: يعني : $\left(\frac{b}{a}\right)^2 = -\left(\frac{a}{b}\right)$

نحن الآن مُسَلحون بمتساويتين ثمينتين:

(1)
$$\left[\frac{a}{b} + \frac{b}{a} = 1\right]$$
 $\qquad \qquad \left[\left(\frac{b}{a}\right)^2 = -\left(\frac{a}{b}\right)\right]$ (2)

ننطلق إذن من نتيجتي السؤال 2) أ) و نوظف المتساوية (1) :

$$\begin{cases} a_1 = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z \\ b_1 = \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z \\ \Leftrightarrow \begin{cases} a_1 = e^{\frac{-i\pi}{3}}a + e^{\frac{i\pi}{3}}z \\ b_1 = -e^{\frac{-i\pi}{3}}a + e^{\frac{-i\pi}{3}}z \end{cases} \\ \Leftrightarrow \begin{cases} a_1 = \left(\frac{a}{b}\right)a + \left(\frac{b}{a}\right)z \\ b_1 = -\left(\frac{a}{b}\right)a + \left(\frac{a}{b}\right)z \end{cases} \\ \Leftrightarrow \begin{cases} a_1 = \frac{a^2}{b} + \frac{bz}{a} \\ b_1 = \frac{-a^2}{b} + \frac{az}{b} \end{cases} \\ \Leftrightarrow \begin{cases} z - a_1 = z - \frac{a^2}{b} - \frac{bz}{a} \\ z - b_1 = z + \frac{a^2}{b} - \frac{az}{b} \end{cases} \\ \Leftrightarrow \begin{cases} z - a_1 = \frac{-a^2}{b} + \left(1 - \frac{b}{a}\right)z \\ z - b_1 = \frac{a^2}{b} + \left(1 - \frac{a}{b}\right)z \end{cases} \end{cases}$$

$$\Leftrightarrow \begin{cases} z - a_1 = \frac{-a^2}{b} + \left(\frac{a}{b}\right)z \\ z - b_1 = \frac{a^2}{b} + \left(\frac{b}{a}\right)z \end{cases}$$

$$\Leftrightarrow \frac{z - b_1}{z - a_1} = \frac{\frac{a^2}{b} + \frac{bz}{a}}{\frac{-a^2}{b} + \frac{az}{b}} = \frac{\left(\frac{a}{b}\right)\left(a + \left(\frac{b}{a}\right)^2 z\right)}{\left(\frac{a}{b}\right)(z - a)} = \frac{a - \frac{a}{b}z}{z - a}$$

$$= \frac{\left(\frac{-a}{b}\right)(-b + z)}{(z - a)} = \frac{-a}{b}\left(\frac{z - b}{z - a}\right)$$

$$\left(\frac{z - b_1}{z - a_1}\right) = \frac{-a}{b}\left(\frac{z - b}{z - a}\right) : \text{ whill } z$$

الصفحة : 239

 $p \wedge 2 = 1$: نعلم أن p عدد أولي و يخالف العدد الأولى 2 إذن $p \wedge 2 = 1$ و منه حسب Fermat $p \wedge 2 = 1$ و منه حسب الماء ترتب مدر أولى أن النوال بريادًا و الأولى 2 أول منه مدر أولى $p \wedge 2 = 1$ و منه حسب الماء ترتب مدر أولى أن النوال بريادًا و الأولى 2 أولى الماء ا

 $p \wedge 3 = 1$: إذن وبنفس الطريقة p عدد أولي يُخالف العدد الأولي 3 إذن $p \wedge 3 = 1$ و منه حسب $p \wedge 3 = 1$ و منه حسب $p \wedge 3 = 1$

يكفي أن نبرهن على أن $n \wedge (p-1) = 1$ ثم نستعمل Bezout . في البداية وجب التذكير بخاصية قوية و مهمة تربط بين مفهوم التفكيك إلى جداء عوامل أولية و مفهوم القاسم المشترك الأكبر . و سوف أُذكَر بها باستعمال أمثلة فقط دون الخوض في متاهات الرموز الرياضية.

لاحظ الأمثلة التالية:

 $(2^{3} \times 5^{4} \times 7^{6}) \wedge (2^{1} \times 5^{6} \times 7^{3} \times 11^{2}) = (2^{1} \times 5^{4} \times 7^{3})$ $(2^{5} \times 7^{8}) \wedge (3^{4} \times 11^{6}) = 1$

 $(2^{7} \times 3^{4} \times 13) \wedge (13 \times 11^{4}) = 13$ $(13^{5} \times 2^{7} \times 3^{2}) \wedge (5^{5} \times 7 \times 11^{2}) = 1$

 $p^{\alpha_1} \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times \dots \times p_i^{\alpha_i}$ بالعودة إلى السؤال ج) : ليكن $p < p_2 < \dots < p_i$ تفكيك العدد p_i إلى جداء عوامل أولية بحيث $q^{r_1} \times q_2^{r_2} \times q_3^{r_3} \times \dots \times q_j^{r_j}$ و ليكن $q^{r_1} \times q_2^{r_2} \times q_3^{r_3} \times \dots \times q_j^{r_j}$ تفكيك العدد $q < q_2 < \dots < q_j$ إلى جداء عوامل أولية بحيث $q < q_1 < q_2 < \dots < q_j$ و بما أن $q < q_1 < q_2 < \dots < q_j < p_1$ فإن $q < q_1 < q_2 < \dots < q_j < p_1$ فإن $q < q_1 < q_2 < \dots < q_j$ خواد الأولية $q < q_1 < q_2 < \dots < q_j$ نلحظ أن الأعداد الأولية $q < q_1 < q_2 < \dots < q_j$ $q < q_1 < q_2 < \dots < q_j$ نام نام $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$ بين $q < q_1 < q_2 < \dots < q_j$

(*)
$$\Rightarrow$$

$$\begin{vmatrix} a \land b = 1 \\ \hline a \land (p-1) = 1 \\ n \land b = 1 \\ n \land (p-1) = 1 \end{vmatrix}$$

ليكن r و q على التوالي باقي و خارج القسمة الأقليدية لـ a على q على (p-1) .

 $\left\{ egin{array}{ll} (q,r) \in \mathbb{Z} imes \mathbb{N} \ a = q(p-1) + r & :$ يعني $0 \leq r < p-1 \end{array}
ight.$

ملحظة 2 : قبل أن نجيب على السؤال د) لاحظ أنه بإمكاننا أن r>0 و سوف نحتاج هذه النتيجة فيما سيأتى .

. r>0 أو $r\geq 0$ لدينا

a=q(p-1) : نفترض أن r=0 إذن

 $a \wedge (p-1) = (p-1)$ يعني : (p-1) يعني (p-1) يعني : (p-1) = 1 يعني : p = 2 . و هذا تناقض لأن $p \ge 3$

0 < r < (p-1) : إذن

نعود إذن ، بعد هذه الجولة المرحة مع r ، إلى السؤال د) . a=q(p-1)+r : نظلق من التعبير التالي : n نضرب طرفي هذه المتساوية في العدد n نحصل على :

an = qn(p-1) + rn يعني rn = an - qn(p-1) يعني an = 1 + b(p-1) : (12)

: نُعَوِّض an بالتعبير an بالتعبير an نُعَوِّض an

rn = 1 + b(p-1) - qn(p-1)

rn=1+(b-qn)(p-1) : نضع : k=(b-qn) ! بذن : k=(b-qn) : نضع و لإتمام الجواب يكفى أن نُبر هن أن $k \in \mathbb{N}^*$

 $k \in \mathbb{Z}$: اخن $(b,q,n) \in \mathbb{Z}^3$: لدينا

 $m{k} > 0$ و نَفْصل هنا بين ثلاث حالات و هي : $m{k} = m{0}$ أو $m{k} < 0$ أو $m{b} = q n$: نفترض أن : $m{k} = m{0}$ إذن

rn = 1 : (13) و منه حسب النتيجة n = 1 : أي n = 1 يقسم n = 1

 $(\star) woheadrightarrow k
eq 0 : إذن <math>n > 1$ و هذا تناقض لأن n > 1

b < qn : إذن k < 0

: نجد (p-1) نجد السالب قطعا (p-1) نجد المثاوتة في العدد السالب قطعا -b(p-1) > -qn(p-1)

: نُضيف إلى كلا الطرفين الكمية an نجد an - b(p-1) > an - qn(p-1)

(14) \Rightarrow 1 > rn : باستعمال النتيجتين (12) و (13) نجد : rn

(15) $\rightarrow r > r : اذن <math>r > 1$ و لدينا r > 0

من (14) و (15) نستنتج أن : r > r > r يعني : r > r العدد الصحيح الطبيعي الوحيد الأصغر من 1 هو الصفر .

. r=0 و هذا تناقض لأن $r\neq 0$ حسب الملاحظة 2

 $k \in \mathbb{N}^*$: يعني k>0 إذن

خلاصة السؤال د) : رأينا في هذا السؤال أنه إذا كان r و q على التوالي باقي و خارج القسمة الأقليدية للعدد a على العدد (p-1) فإنه يوجد عدد صحيح طبيعي غير منعدم k بحيث : rn = 1 + k(p-1) : أو بتعبير جميل : $\exists k \in \mathbb{N}^*$) ; rn = 1 + k(p-1)

باستعمال البرهان بالخلف ، نفترض وجود عدد صحیح طبیعی n أكبر قطعا من 1 و يحقق : n n أصغر قاسم قطعا من 1 و يحقق : n أولى موجب للعدد n .

 $\{2^{p-1} \equiv 1 \ [p]$ ننطلق من النتيجتين : ننطلق من النتيجتين : ننطلق عن النتيجتين : ننطلق من النتيجتين : ننطلق النتيجتين : ننطلق من النتيجتين : ننطلق من النتيجتين : ننطلق من النتيجتين : ننطلق من النتيجتين : ننطلق النتيجت

 $\left\{egin{aligned} 2^{k(p-1)} &\equiv 1 \ [p] \ 3^{k(p-1)} &\equiv 1 \ [p] \end{aligned}
ight.$ فإن : $(k\epsilon\mathbb{N}^*)$: بما أن

 $\begin{cases} -2 \times 2^{k(p-1)} \equiv -2 \ [p] \\ 3 \times 3^{k(p-1)} \equiv 3 \ [p] \end{cases}$: و منه

 $\begin{cases} -2^{1+k(p-1)} \equiv -2 \ [p] \\ 3^{1+k(p-1)} \equiv 3 \ [p] \end{cases}$: يعني

الصفحة : 240

 $\left\{ egin{align*} -2^{rn} \equiv -2 \ [p] \ 3^{rn} \equiv 3 \ [p] \end{array}
ight.$: نكتب ناستعمال النتيجة (16) نكتب

 $(17) woheadrightarrow 3^{rn}-2^{rn}\equiv 1\,[p]$: نجمع هاتین المتوافقتین طرفا بطرف نجد

 $3^n - 2^n \equiv 0$ [p] : (3) و لدينا حسب النتيجة

 $3^n \equiv 2^n [p]$: إذن

 $3^{rn} \equiv 2^{rn} [p]$: فإن $(r \in \mathbb{N}^*)$ فإن $(18) \Rightarrow 2^{rn} - 3^{rn} \equiv 0 [p]$: e ais

نجمع المتوافقتين (17) و (18) طرفا بطرف نجد:

$$3^{rn} - 2^{rn} + 2^{rn} - 3^{rn} \equiv 1 + 0 [p]$$

EXCUEL

 $p: \mathbb{P} = 0$ يعنى كذلك $p: \mathbb{P} = 0$ أي يعنى $p: \mathbb{P} = 0$ يقسم و منه p=1 لأن العدد الصحيح الطبيعي الوحيد الذي يقسم p=1 هو p=1. $\mathbb{N}^*\setminus\{1\}$ و هذا تناقض لأن $p\geq 5$ إذن $p\geq 5$ و هذا

خلاصة التمرين بأكمله:

$$\forall n \in \mathbb{N}^* \setminus \{1\} ; \ 3^n - 2^n \not\equiv 0 [n]$$

$$\varphi(x) = x \ln x$$
 : نضع

$$\lim_{x \to 1^{+}} h(x) = \lim_{x \to 1^{+}} \left(\frac{x - 1}{x \ln x} \right) = \lim_{x \to 1^{+}} \frac{1}{\left(\frac{x \ln x}{x - 1} \right)}$$

$$= \lim_{x \to 1^{+}} \frac{1}{\left(\frac{x \ln x - 1 \ln 1}{x - 1} \right)} = \lim_{x \to 1^{+}} \frac{1}{\left(\frac{\varphi(x) - \varphi(1)}{x - 1} \right)}$$

$$= \frac{1}{\lim_{x \to 1^{+}} \left(\frac{\varphi(x) - \varphi(1)}{x - 1} \right)} = \frac{1}{\varphi'_{d}(1)}$$

: بما يلي $[0;+\infty]$ المعرفة على المجال $[0;+\infty]$ بما يلي

$$v(x) = \ln x - x + 1$$

.]0; $+\infty$ [المجال على المجال]. لدينا v عبارة عن تشكيلة منسجمة من الدوال المتصلة و القابلة للإشتقاق . $]0;+\infty[$ على المجال $]0;+\infty[$. إذن v . $]0;+\infty[$

 $v'(x) = \frac{1}{x} - 1 = \frac{1 - x}{x}$: e Levil 2

 $v^{'}(x)=0$: فإن x=1 $v^{'}(x) < 0$: فإن x > 1

 $v^{'}(x) > 0$: فإن x < 1 : إذا كان

$$\lim_{x \to 0^+} v(x) = \lim_{x \to 0^+} (\ln x - x + 1)$$

$$= \ln(0^+) - 0 + 1 = -\infty - 0 + 1 = -\infty$$

$$\lim_{x \to +\infty} v(x) = \lim_{x \to +\infty} (\ln x - x + 1)$$

$$= \lim_{x \to +\infty} x \left(\frac{\ln x}{x} - 1 + \frac{1}{x} \right)$$

$$= (+\infty)(0 - 1 + 0) = -\infty$$

: يان جدول تغيرات الدالة v كما يلى

نلاحظ من خلال هذا الجدول أن الدالة 1 :

- . $]0; +\infty[$ متصلة على المجال
 - تزايدية على المجال [1;0] .
- تتاقصية على المجال]∞+ [1;
 - v(1) = -2 •

 $[0; +\infty]$ على المجال $[0; +\infty]$.

 $\forall x \in]0; +\infty[$; $v(x) \leq -2 < 0$ يعنى

 $\forall x \in]0; +\infty[; v(x) < 0]$ يعنى

 $\forall x \in]0; +\infty[; \ln x - x + 1 < 0]$ يعنى

 $\forall x \in]0; +\infty[$; $\ln x < x-1$ يعنى

 $[1; +\infty[\subset]0; +\infty[$ و بما أن : $]\infty+$

إذن:

 $\forall \ x \in]1; +\infty[\ ; \ \ln x < x-1 \ \]$ فإن

 $h(x) = \frac{x-1}{x \ln x}$: ليكن x عنصرا من المجال]1; + ∞ [ليكن عنصرا من المجال

$$h'(x) = \frac{x \ln x - (x - 1)(\ln x + 1)}{(x \ln x)^2}$$

$$= \frac{x \ln x - (x \ln x + x - \ln x - 1)}{(x \ln x)^2}$$

$$= \frac{\ln x - x + 1}{(x \ln x)^2}$$

$$(\forall x > 1)$$
 ; $(\ln x - x + 1) < 0$: و نعلم أن : $(\forall x > 1)$; $(x \ln x)^2 > 0$: و كذلك : $(\forall x > 1)$; $\frac{\ln x - x + 1}{(x \ln x)^2} < 0$: يغنى : $(\forall x > 1)$; $h'(x) < 0$: يعنى :

.]1; $+\infty$ الدالة h تناقصية قطعا على المجال الدالة أي

) رمضان 2013

الصفحة: 241

أجوبة امتحان الدورة العادية 2013 من إعداد الأستاذ بدر الدين الفاتحى: (

x ايكن χ عنصرا من المجال χ

$$g(x) - \ln 2 = \int_{x}^{x^{2}} \frac{1}{\sqrt{t} \ln t} dt - \int_{x}^{x^{2}} \frac{1}{t \ln t} dt$$

$$= \int_{x}^{x^{2}} \left(\frac{1}{\sqrt{t} \ln t} - \frac{1}{t \ln t}\right) dt$$

$$= \int_{x}^{x^{2}} \left(\frac{\sqrt{t}}{t \ln t} - \frac{1}{t \ln t}\right) dt$$

$$= \int_{x}^{x^{2}} \left(\frac{\sqrt{t} - 1}{t \ln t}\right) dt$$

$$= \int_{x}^{x^{2}} \left(\frac{\sqrt{t} - 1}{t \ln t}\right) dt$$

 $\sqrt{t}=u$: باستعمال تقنية تغيير المتغير نضع $dt=2u\ du$ يعني يا $\frac{du}{dt}=\frac{1}{2\sqrt{t}}$

- $u = \sqrt{x}$: فإن t = x إذا كان
- u=x : فإن $t=x^2$ إذا كان

إذن آخر تكامل حصلنا عليه يصبح:

$$\int_{x}^{x^{2}} \left(\frac{\sqrt{t} - 1}{t \ln t} \right) dt = \int_{\sqrt{x}}^{x} \left(\frac{u - 1}{u^{2} \ln(u^{2})} \right) (2u \, du)$$

$$= \int_{\sqrt{x}}^{x} \left(\frac{u - 1}{2u^{2} \ln u} \right) (2u \, du)$$

$$= \int_{\sqrt{x}}^{x} \left(\frac{u - 1}{u \ln u} \right) du$$

$$(\forall x > 1)$$
 ; $g(x) - \ln 2 = \int_{\sqrt{x}}^{x} \left(\frac{1}{u \ln u}\right) du$: اذن

Remarque : u et t sont des paramètres d'intégration qu'on peut schématiser comme des espaces mémoires temporels

. $t \in [\sqrt{x}; x]$ و ليكن x > 1

. [1; $+\infty$ [الدينا الدالة f تناقصية على المجال

. x>1 لأن أوصية على المجال $[\sqrt{x};x]$ لأن المجال

 $h(x) \leq h(t) \leq h\left(\sqrt{x}\right)$: فإن $\sqrt{x} \leq t \leq x$: بما أن

$$h(x) \le \left(\frac{t-1}{t \ln t}\right) \le h(\sqrt{x})$$
 : يعني

$$\int_{\sqrt{x}}^{x} h(x) dt \le \int_{\sqrt{x}}^{x} \left(\frac{t-1}{t \ln t}\right) dt \le \int_{\sqrt{x}}^{x} h(\sqrt{x}) dt \quad \vdots$$
 إذن

$$h(x) \int_{\sqrt{x}}^{x} 1 dt \le \int_{\sqrt{x}}^{x} \left(\frac{t-1}{t \ln t}\right) dt \le h(\sqrt{x}) \int_{\sqrt{x}}^{x} 1 dt$$
 : يعني

$$h(x) [t]_{\sqrt{x}}^x \le \int_{-\infty}^x \left(\frac{t-1}{t \ln t}\right) dt \le h(\sqrt{x}) [t]_{\sqrt{x}}^x$$
 : يعني

$$h(x)(x-\sqrt{x}) \le \int_{t/x}^{x} (\frac{t-1}{t \ln t}) dt \le h(\sqrt{x})(x-\sqrt{x})$$
 : يعني

و بالتالي حسب نتيجة السؤال ج) ($\forall x > 1$) نكتب :

(*)
$$h(x)(x - \sqrt{x}) \le g(x) - \ln 2 \le h(\sqrt{x})(x - \sqrt{x})$$

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \left(\frac{x-1}{x \ln x} \right) = \lim_{x \to +\infty} \left(\frac{x}{x \ln x} \right) - \left(\frac{1}{x \ln x} \right)$$

$$= \lim_{x \to +\infty} \left(\frac{1}{\ln x} \right) - \left(\frac{1}{x \ln x} \right) = \left(\frac{1}{+\infty} \right) - \left(\frac{1}{+\infty} \right) = 0$$

ألخص النتائج المتعلقة بالدالة h في الجدول التالي:

•—•(((((())))))))))••••••

نلاحظ حسب جدول تغيرات الدالة h أن الدالة h متصلة و تناقصية قطعا على المجال $1; +\infty$ بحيث :

$$h([1; +\infty[) =]\lim_{x \to +\infty} h(x) ; h(1)] =]0;1]$$

[0;1] نحو المجال [0;1] نحو المجال [0;1] نحو المجال [0;1] $\forall x \in [1;+\infty[\ ;\ \exists!\ y \in]0;1]:\ y=h(x)$ أو بتعبير آخر $[0;1]:\ \forall x \in [1;+\infty[\ ;\ \exists!\ h(x) \in]0;1]$ يعنى $[0,1]:\ \forall x \in [1;+\infty[\ ;\ \exists!\ h(x) \in]0;1]$

ليكن χ عنصرا من المجال]0; $+\infty$. ليكن χ البداية أن $t \ln t$ أن $t \ln t$ أن $t \ln t$ أثناء الحساب .

$$\int_{x}^{x^{2}} \frac{1}{t \ln t} dt = \int_{x}^{x^{2}} \left(\frac{1 + \ln t - \ln t}{t \ln t}\right) dt$$

$$= \int_{x}^{x^{2}} \left(\frac{1 + \ln t}{t \ln t}\right) dt - \int_{x}^{x^{2}} \left(\frac{1}{t}\right) dt$$

$$= \int_{x}^{x^{2}} \frac{(t \ln t)'}{t \ln t} dt - \int_{x}^{x^{2}} \frac{1}{t} dt$$

$$= \left[\ln(t \ln t)\right]_{x}^{x^{2}} - \left[\ln t\right]_{x}^{x^{2}}$$

$$= \left(\ln(x^{2} \ln(x^{2})) - \ln(x \ln x)\right) - \left(\ln(x^{2}) - \ln x\right)$$

$$= \ln\left(\frac{x^{2} \ln(x^{2})}{x \ln x}\right) - \ln\left(\frac{x^{2}}{x}\right) = \ln\left(\frac{2x^{2} \ln(x)}{x \ln x}\right) - \ln(x)$$

$$= \ln(2x) - \ln(x) = \ln\left(\frac{2x}{x}\right) = \ln 2$$

$$(\forall x > 1) \; ; \; \int_{x}^{x^{2}} \frac{1}{t \ln t} dt = \ln 2 \quad : \leq 1$$

نحصل إذن على الوضعية التالية:

 $\lim_{x \to +\infty} g(x) = +\infty$: إذن حسب خاصية الترتيب و النهايات نستنتج أن $\frac{g(x)}{x}$ بطانسبة لنهاية $\frac{g(x)}{x}$ بجوار ∞ + ننطلق من التأطير الثمين المحصل عليه في السؤال 2) أ) كما سوف نستعمل أثناء الحساب النهاية المحصل عليها سابقا و هي $\lim_{x \to +\infty} h(x) = 0$. لدينا :

$$(x - \sqrt{x})h(x) + \ln 2 \le g(x) \le (x - \sqrt{x})h(\sqrt{x}) + \ln 2$$

نضرب طرفي هذا التأطير في العدد الموجب قطعا $\frac{1}{x}$ نجد :

$$\left(\frac{x-\sqrt{x}}{x}\right)h(x) + \frac{\ln x}{x} \le \frac{g(x)}{x} \le \left(\frac{x-\sqrt{x}}{x}\right)h(\sqrt{x}) + \frac{\ln 2}{x}$$

ثم نحسب نهایتی طرفی هذا التأطیر بجوار $\infty+$ نحصل علی :

$$\lim_{x \to +\infty} \left(\frac{x - \sqrt{x}}{x} \right) h(x) + \frac{\ln 2}{x}$$

$$= \lim_{x \to +\infty} \left(1 - \frac{1}{\sqrt{x}} \right) h(x) + \frac{\ln 2}{x}$$

$$= \left(1 - \frac{1}{\sqrt{+\infty}} \right) (0) + \frac{\ln 2}{+\infty} = (1 - 0)(0) + 0 = 0$$

$$\lim_{x \to +\infty} \left(\frac{x - \sqrt{x}}{x} \right) h(\sqrt{x}) + \frac{\ln 2}{x}$$

$$= \lim_{x \to +\infty} \left(1 - \frac{1}{\sqrt{x}} \right) h(\sqrt{x}) + \frac{\ln 2}{\left(\sqrt{x}\right)^2}$$

$$= \lim_{t \to +\infty} \left(1 - \frac{1}{t} \right) h(t) + \frac{\ln 2}{t^2}$$

$$= \left(1 - \frac{1}{+\infty} \right) (0) + \frac{\ln 2}{(+\infty)^2} = 0$$

نحصل إذن على الوضعية التالية:

$$\underbrace{\left(\frac{x - \sqrt{x}}{x}\right)h(x) + \frac{\ln x}{x}}_{x \to +\infty} \le \underbrace{\frac{g(x)}{x}}_{x} \le \underbrace{\left(\frac{x - \sqrt{x}}{x}\right)h(\sqrt{x}) + \frac{\ln 2}{x}}_{x \to +\infty}$$

 $\lim_{x\to +\infty} \frac{g(x)}{x} = 0 : \text{ in the prime in the prime of } x = 0$

: نجد $\left(\frac{1}{x-1}\right)$ نجد الموجب قطعا نجد (*) نجد نضرب أطراف التأطير

$$\left(\frac{x-\sqrt{x}}{x-1}\right)h(x) \le \frac{g(x)-\ln 2}{x-1} \le \left(\frac{x-\sqrt{x}}{x-1}\right)h(\sqrt{x})$$

بعد ذلك نحسب نهايتي طرفي هذا التأطير على يمين 1 نجد:

$$\lim_{x \to 1^{+}} \left(\frac{x - \sqrt{x}}{x - 1} \right) h(x) = \lim_{x \to 1^{+}} \frac{\sqrt{x} \left(\sqrt{x} - 1 \right)}{\left(\sqrt{x} - 1 \right) \left(\sqrt{x} + 1 \right)} h(x)$$

$$= \lim_{x \to 1^{+}} \left(\frac{\sqrt{x}}{\sqrt{x} + 1} \right) h(x) = \left(\frac{\sqrt{1}}{\sqrt{1} + 1} \right) h(1) = \frac{1}{2}$$

$$\lim_{x \to 1^{+}} \left(\frac{x - \sqrt{x}}{x - 1} \right) h(\sqrt{x}) = \lim_{x \to 1^{+}} \left(\frac{\sqrt{x}}{\sqrt{x} + 1} \right) h(\sqrt{x})$$

$$= \left(\frac{\sqrt{1}}{\sqrt{1} + 1} \right) h(\sqrt{1}) = \frac{1}{2}$$

نحصل إذن على الوضعية التالية:

$$\underbrace{\left(\frac{x-\sqrt{x}}{x-1}\right)h(x)}_{x} \le \underbrace{\frac{g(x)-\ln 2}{x-1}}_{x} \le \underbrace{\left(\frac{x-\sqrt{x}}{x-1}\right)h(\sqrt{x})}_{x}$$

$$\lim_{x \to 1^+} \left(\frac{g(x) - g(1)}{x - 1} \right) = \frac{1}{2} \quad :$$
و بالنالي :

. $g_d^{'}(1)=rac{1}{2}$ و و اليمين في 1 و أي أن الدالة g

لدينا حسب التأطير الوارد في السؤال 2) أ):

$$(\forall x>1)$$
 ; $g(x)\geq h(x)\big(x-\sqrt{x}\big)+\ln 2$ $+\infty$ بجوار $(x-\sqrt{x})h(x)+\ln 2$ بجوار

$$\lim_{x \to +\infty} (x - \sqrt{x})h(x) + \ln 2 = \lim_{x \to +\infty} \frac{(x - \sqrt{x})(x - 1)}{x \ln x} + \ln 2$$

$$= \lim_{x \to +\infty} \frac{\left(1 - \frac{1}{\sqrt{x}}\right)(x - 1)}{x \ln x} + \ln 2$$

$$= \lim_{x \to +\infty} \left(\frac{x}{\ln x}\right) \left(1 - \frac{1}{\sqrt{x}}\right) \left(\frac{x - 1}{x}\right) + \ln 2$$

$$= \lim_{x \to +\infty} \left(\frac{1}{\ln x}\right) \left(1 - \frac{1}{\sqrt{x}}\right) \left(1 - \frac{1}{x}\right) + \ln 2$$

$$= \lim_{x \to +\infty} \left(\frac{1}{0^+}\right) \left(1 - \frac{1}{\sqrt{+\infty}}\right) \left(1 - \frac{1}{+\infty}\right) + \ln 2$$

$$= \lim_{x \to +\infty} (+\infty)(1 - 0)(1 - 0) + \ln 2$$

$$= (+\infty)(1)(1) + \ln 2 = +\infty$$

a في البداية بما يلي : إذا كانت f دالة متصلة على مجال I و كان I عنصرا من المجال I فإن f تقبل عدة دو ال أصلية على المجال I و بالخصوص تقبل دالة أصلية I التي تنعدم في I و تحقق :

$$\begin{cases} F(a) = 0 \\ F'(x) = f(x) \end{cases} \quad g \quad \begin{cases} F: I & \mapsto & \mathbb{R} \\ x & \mapsto & \int_{a}^{x} f(t) \, dt \end{cases}$$

انتهى التذكير

.]1; $+\infty$ [المجال من المجال a

- نعتبر الدالة العددية u المعرفة على المجال $[0,+\infty]$ بما يلى

$$u(x) = \frac{1}{\sqrt{x} \ln x}$$

 $1; +\infty$ نلاحظ أن u دالة متصلة على u ذلك حسب المبر هنات العامة للاتصال .

إذن : u تقبل عدة دوال أصلية على]0+1 و بالخصوص u تقبل دالة أصلية v التي تنعدم في a و معرفة بما يلي :

$$\begin{cases} v(a) = 0 \\ v'(x) = u(x) \end{cases} \quad g \quad \begin{cases} v:]1; +\infty[& \mapsto & \mathbb{R} \\ x & \mapsto & \int_{a}^{x} u(t) dt \end{cases}$$

: نكتب g نكتب يالرجوع إلى تعريف الدالة

$$g(x) = \int_{x}^{x^{2}} \frac{1}{\sqrt{t \ln t}} dt \; ; \; x > 1$$

$$= \int_{x}^{a} \frac{1}{\sqrt{t \ln t}} dt + \int_{a}^{x^{2}} \frac{1}{\sqrt{t \ln t}} dt$$

$$= \int_{a}^{x^{2}} \frac{1}{\sqrt{t \ln t}} dt - \int_{a}^{x} \frac{1}{\sqrt{t \ln t}} dt$$

$$= v(x^{2}) - v(x)$$

 $g(x)=v(x^2)-v(x)\;;\;\;x>1\;:$ نحصل إذن على العلاقة التالية : $x\to x$ و $v\to x$ نستطيع القول ، باستعمال المبر هنات العامة لاشتقاق مركب دالتين ، أن g قابلة للإشتقاق على المجال $[0,+\infty]$.

$$(\forall x > 1) ; g'(x) = (v(x^{2}) - v(x))$$

$$= 2x v'(x^{2}) - v'(x)$$

$$= 2x u(x^{2}) - u(x)$$

$$= \frac{2x}{\sqrt{x^{2}} \ln(x^{2})} - \frac{1}{\sqrt{x} \ln x} = \frac{2x}{2x \ln x} - \frac{1}{\sqrt{x} \ln x}$$

$$= \frac{x}{x \ln x} - \frac{\sqrt{x}}{x \ln x} = \frac{x - \sqrt{x}}{x \ln x} = \frac{\sqrt{x}(\sqrt{x} - 1)}{(\sqrt{x})^{2} \ln(\sqrt{x}^{2})}$$

$$= \frac{1}{2} \left(\frac{\sqrt{x} - 1}{\sqrt{x} \ln \sqrt{x}}\right) = \frac{1}{2} h(\sqrt{x})$$

$$(\forall x > 1) \; ; \; g'(x) = \frac{1}{2} h(\sqrt{x})$$
 : و بالنالي

لدينا حسب نتيجة السؤال 2) ب) من الجزء الأول:

$$(\forall x \geq 1) \ ; \ 0 < h(x) \leq 1$$

$$x \ge 1 \implies \sqrt{x} \ge 1$$
 : نلاحظ أن

$$(\forall x \ge 1)$$
 ; $0 < h(\sqrt{x}) \le 1$: الذن

$$(\forall x \ge 1)$$
 ; $0 < \frac{1}{2}h(\sqrt{x}) \le \frac{1}{2}$: و منه

$$(\forall x \ge 1) \; ; \; 0 < g'(x) \le \frac{1}{2}$$
 : يعني

و من هذه الكتابة نستنتج أن
$$g$$
 دالة تزايدية قطعا على المجال $]0;+\infty[$. و لإنشاء جدول تغيرات g نستدعي النتائج التي حصلنا عليها من قبل و هي :

$$]1;+\infty[$$
 معرفة و متصلة على g

$$]1;+\infty$$
تزايدية قطعا على g

$$\lim_{x \to +\infty} g(x) = +\infty \blacksquare$$

$$\lim_{x \to 1^+} g(x) = g(1) = \ln 2 \blacksquare$$

<u></u>

: نرسم إذن جدول تغيرات g كما يلي

. $]1;+\infty[$ ليكن x عنصرا من المجال k(x)=g(x)-x+1 : لدينا

 $[1;+\infty]$ بما أن [a] قابلة للإشتقاق على المجال

 $k^{'}(x)=g^{'}(x)-1$: و لدينا k : $1;+\infty$ على على 0 على 0 على 0 البنا حسب نتيجة السؤال 0 ب) من الجزء الثانى 0

 $(\forall x \ge 1) \; ; \; 0 < g'(x) \le \frac{1}{2}$

لدينا $(u_n)_{n\geq 0}$ متتالية تزايدية قطعا

و بما أنها مكبورة بالعدد lpha (لأن lpha < lpha) با) هما أنها مكبورة بالعدد lpha

 $1+g(\ell)=\ell$: فإنها متقاربة و نهايتها ℓ تحقق

. α و رأينا أن هذه المعادلة تقبل حلا وحيدا في المجال $\infty+1$ و هو

 $\ell = \lim_{n \to \infty} (u_n) = \alpha$: إذن

نعتبر الدالة العددية ψ المعرفة على المجال $]\infty+;1[$ بما يلي : $\psi(x)=1+g(x)$. $]1;+\infty[$ المجال $]0;+\infty[$. $]1;+\infty[$.

فإن ψ قابلة للإشتقاق على المجال]0+;1 . و منه ψ قابلة للإشتقاق على أي مجال يوجد ضمن [0+;1] .

 $((\forall n \geq 0) \; ; \; 1 \leq u_n < \alpha \; :)$ و ذلك لأن (TAF) إذن بتطبيق مبر هنة التزايدات المنتهية

 $]1; +\infty[$ نختار المجال $[u_n; \alpha]$ الذي يوجد ضمن

: على الدالة ψ في المجال $[u_n \; ; \alpha]$ نجد

$$\exists\; c\; \epsilon\;]u_n; \alpha[\; ;\; rac{\psi(u_n)-\psi(lpha)}{u_n-lpha}=\psi^{'}(c)$$
 لدينا
$$\begin{cases} \psi(u_n)=1+g(u_n)=u_{n+1} \\ \psi(lpha)=1+g(lpha)=lpha \end{cases}$$

 $\exists \ c \in]u_n; \alpha[\ ; \ \frac{u_{n+1}-\alpha}{u_n-\alpha}=\psi^{'}(c)$: إذن

$$(*)$$
 $\exists \; c \; \epsilon \;]u_n; \alpha[\; ; \; \left| rac{u_{n+1} - lpha}{u_n - lpha}
ight| = |\psi^{'}(c)| \;\;\; : يعني$

 $c \in]u_n; lpha[$ و $\psi^{'}(c) = g^{'}(c)$: لدينا

 $c \geq 1$: أي $1 \leq u_n < c < \alpha$: إذن

 $0 < g'(c) \le \frac{1}{2}$: و منه حسب نتيجة السؤال 3) ب) من الجزء الثاني

 $|\psi^{'}(c)| = |g^{'}(c)| \le \frac{1}{2}$: الخن

 $|\psi'(c)| \leq \frac{1}{2}$:

إذن باستعمال الكتابتين (*) و (**) نكتب :

$$(\forall n \geq 0)$$
 ; $\left| \frac{u_{n+1} - \alpha}{u_n - \alpha} \right| \leq \frac{1}{2}$ $(\forall n \geq 0)$; $|u_{n+1} - \alpha| \leq \frac{1}{2} |u_n - \alpha|$ يعني :

 $(\forall x \geq 1) \; ; \; 0 < g^{'}(x) \leq \frac{1}{2} < 1 \; :$ يغني $(\forall x \geq 1) \; ; \; g^{'}(x) < 1 \; :$ ي منه $(\forall x \geq 1) \; ; \; g^{'}(x) - 1 < 0 \; :$ $(\forall x \geq 1) \; ; \; k^{'}(x) < 0 \; :$

و هذا يعني أن الدالة k تناقصية قطعا على المجال $+\infty$. [1; $+\infty$] . إذن k تقابل من المجال $+\infty$] نحو صورته بالدالة $+\infty$

 $k([1; +\infty[) = \lim_{x \to +\infty} k(x) ; k(1)]$ لاينا (عرب)

 $\lim_{x \to +\infty} k(x) = \lim_{x \to +\infty} (g(x) - x + 1) = \lim_{x \to +\infty} \left(\frac{g(x)}{x} - 1 + \frac{1}{x} \right)$ $= \left(0 - 1 + \frac{1}{+\infty} \right) (+\infty) = (-1)(+\infty) = -\infty$

.] $-\infty$; ln 2] نحو المجال اk : و بالتالي k يقابل من المجال المجال

 $0 \in]-\infty; \ln 2]$ لدينا : $0 \in]-\infty; \ln 2$ لدينا : $0 \in [1; +\infty[$; $0 \in]-\infty; \ln 2$ لدينا : $0 \in [1; +\infty[$; $0 \in]-\infty; \ln 2$ لدينا : $0 \in [1; +\infty[$; $0 \in]-\infty; \ln 2$ لدينا : $0 \in [1; +\infty[$; $0 \in]-\infty; \ln 2$ لدينا : $0 \in [1; +\infty[$] $0 \in [1$

: التالية (P_n) التالية ، نعتبر العبارة

 $(P_n): \, (\forall n \geq 0) \, \, ; \, \, 1 \leq u_n < \alpha$

 $1 \leq u_0 < lpha$: من أجل n=0 لدينا حسب المعطيات n=0 بن أجل (P_0) صحيحة .

 $1 \leq u_n < \alpha$: ليكن $n \in \mathbb{N}$ و نفترض أن

: على هذا التأطير الدالة التزايدية قطعا g نحصل على أ

 $g(1) \le g(u_n) < g(\alpha)$

 $g(1)+1 \leq g(u_n)+1 \leq g(\alpha)+1$ ثم نضيف 1 لكل طرف $1 < \ln 2 + 1 \leq u_{n+1} < \alpha$ نضيف 1 النتائج السابقة نكتب وإذن : باستعمال النتائج السابقة نكتب

. يعني $lpha \leq u_{n+1} < 1$ إذن العبارة $P_{n+1} < lpha$

 $\{\ (P_0)\ est\ vraie$: حصلنا إذن على الوضعية التالية $(P_n)\ implique\ (P_{n+1})\ ;\ \ \forall n\geq 0$

 (P_n) est toujours vraie : و بالتالي حسب مبدأ الترجع $\forall n \geq 0$; $1 \leq u_n < \alpha$ أي :

 $(\forall n \geq 0) \; ; \; u_n < \alpha \; : لينا حسب آخر نتيجة نيجة لينا حسب آخر نتيجة قطعا <math>k$ على هذه المتفاوتة نجد

 $(\forall n \ge 0)$; $k(u_n) > k(\alpha)$

 $(orall n \geq 0)$; $k(u_n) > 0$: فإن k(lpha) = 0 : و بما أن

 $(\forall n \geq 0)$; $g(u_n) - u_n + 1 > 0$: يعني

 $(\forall n \geq 0)$; $1 + g(u_n) > u_n$: يعني

 $(\forall n \ge 0)$; $u_{n+1} > u_n$: و منه

. و من هذه الكتابة نستنتج أن المتتالية $(u_n)_{n\geq 0}$ تزايدية قطعا

 $(\forall n \ge 0) \; ; \; |u_{n+1} - \alpha| \le \frac{1}{2} |u_n - \alpha| \; :$ لينا $|u_n-lpha| \le rac{1}{2} \, |u_{n-1}-lpha| \, : n \to n$ بنجد (n+1) الجن بتغییر $\leq \frac{1}{2} \frac{1}{2} |u_{n-2} - \alpha|$ $\leq \frac{1}{2} \, \frac{1}{2} \, \frac{1}{2} \, |u_{n-3} - \alpha|$ $\downarrow \qquad \vdots \qquad \vdots \\
\leq \left(\frac{1}{2}\right)^n |u_{n-n} - \alpha|$

 $(\forall n \ge 0) \; ; \; |u_n - \alpha| \le \left(\frac{1}{2}\right)^n \; |u_0 - \alpha| \; : \; |u_n - \alpha| \; |u_$

و يمكن كذلك استعمال البرهان بالترجع.

 $(\forall n\geq 0)\; ;\; |u_n-lpha|\leq \left(rac{1}{2}
ight)^n|u_0-lpha|\; :$ لنبر هن بالترجع على أن $|u_0-\alpha| \leq \left(\frac{1}{2}\right)^0 |u_0-\alpha|$: من أجل n=0 لدينا n=0

بن الخاصية صحيحة من أجل n=0 . n=0 إذن الخاصية صحيحة من أجل $u_n-lpha|\leq \left(rac{1}{2}
ight)^n|u_0-lpha|$. يكن $n\epsilon\mathbb{N}$

: نضر ب طرفي هذه المتفاوتة في العدد الموجب
$$\frac{1}{2}$$
 نجد (
$$\forall n\geq 0) \ ; \ \frac{1}{2}|u_n-\alpha|\leq \left(\frac{1}{2}\right)^{n+1} \ |u_0-\alpha|$$

 $(\forall n \geq 0)$; $|u_{n+1} - \alpha| \leq \frac{1}{2}|u_n - \alpha|$: بما أن

 $(\forall n \ge 0)$; $|u_{n+1} - \alpha| \le \left(\frac{1}{2}\right)^n |u_0 - \alpha|$: فإن و هذا يعنى أن العبارة صحيحة من أجل (n+1) .

و بالتالي حسب مبدأ الترجع:

$$(\forall n \ge 0)$$
; $|u_n - \alpha| \le \left(\frac{1}{2}\right)^n |u_0 - \alpha|$

. 1 متتالية هندسية أساسها عدد موجب قطعا و أصغر من

 $\lim_{n \to \infty} \left(\frac{1}{2}\right)^n |u_0 - \alpha| = 0 : \lim_{n \to \infty} \left(\frac{1}{2}\right)^n = 0$ إذن :

صل إذن على الوضعية التالية:

$$(\forall n \ge 0) ; |u_n - \alpha| \le \left(\frac{1}{2}\right)^n |u_0 - \alpha|$$

أو بتعبير واضح نحصل على الوضعية التالية:

$$(\forall n \ge 0) ; \underbrace{-\left(\frac{1}{2}\right)^n |u_0 - \alpha|}_{\mathbf{0}} \le (u_n - \alpha) \le \underbrace{\left(\frac{1}{2}\right)^n |u_0 - \alpha|}_{\mathbf{0}}$$

 $\lim(u_n-lpha)=0$: ف بالتالي حسب مصاديق تقارب المتتاليات نستنتج أن

 $\lim_{n \to \infty} u_n = \alpha \quad : \dot{\mathbb{I}}$