Simulazione Parallela e Distribuita Introduzione allo Standard IEEE 1516 High Level Architecture (HLA)

Gabriele D'Angelo

gda@cs.unibo.it

http://www.cs.unibo.it/~gdangelo

Dipartimento di Scienze dell'Informazione Università degli Studi di Bologna

Simulazione distribuita

- Nella pratica come costruiamo le simulazioni distribuite?
 - Implementazione degli algoritmi di sincronizzazione?
 - Gestione dei partecipanti?
 - Gestione delle interazioni?
- Approccio "pratico" alla simulazione
- Piattaforma "generica" e non rivolta alle singole esigenze di simulazione
- High Level Architecture (HLA) può essere semplicisticamente vista come un middleware simulativo

Alcuni cenni storici

- Importanza della simulazione distribuita per il settore militare
- Fine della guerra fredda e tagli di bilancio
- Enorme diffusione di Internet
- Riusabilità del software, in questo caso delle simulazioni
- Tecnologia non proprietaria: **standard** IEEE 1516
- Lo standard così come le prime implementazioni prototipali nascono dall'interazione di vari settori:
 - Statale (ministero della difesa USA)
 - Enti di ricerca / Università
 - Privati

Descrizione tecnica (1/4)

- Federato = una simulazione (possiamo immaginarla come un Logical Process)
- **■** Federazione:
 - Runtime Infrastructure (RTI)
 - Federation Object Model (FOM)
 - Un insieme di Federati
- Simulazione per componenti: ogni componente è rappresentata da un federato
- Un Federato può essere descritto anche come "un singolo punto di contatto" con l'RTI

Descrizione tecnica (2/4)

Descrizione tecnica (3/4)

Descrizione tecnica (4/4)

Specifica dello standard IEEE 1516

- Lo standard è formato da vari elementi:
 - un insieme di regole che ogni federato deve rispettare;
 - Object Model Template (OMT)
 - Interface Specification
- E' estremamente importante notare come lo standard **non** si occupi minimamente di implementazioni o di metodologie d'implementazione. L'implementatore del Runtime (RTI), una volta rispettati i vincoli, è libero di strutturare il software a seconda delle proprie esigenze (software o hardware)

Vantaggi

- Possibilità di
 - Comporre
 - Decomporre
 - simulazioni in moduli specializzati
- Il sistema è espandibile, le simulazioni posso essere riutilizzate senza la necessità di capirne la semantica interna
- La tecnologia simulativa è isolata dalla tecnologia implementativa e da quella di rete
- Gestione e amministrazione dell'Intellectual Property. Il tema della proprietà intellettuale assume ruolo anche nella simulazione

Tipologie di servizio offerte dal Runtime

- Gestione della federazione (iscrizione, cancellazione...)
- Gestione delle dichiarazioni (cosa pubblico?)
- Gestione degli oggetti
- Gestione degli attributi (proprietà degli attributi)
- Gestione del tempo (time management)

Time Management

Secondo l'approccio generalista seguito da HLA sono disponibili vari metodi di gestione del tempo, ogni singola federazione determina quello più adatto al suo obiettivo

- Nessuna gestione del tempo
- Approccio ottimistico
- Approccio pessimistico
- Activity scan

Time Management e Federati

Ogni Federato può avere un diverso approccio rispetto alla gestione del tempo:

Time regulating

Time constrained

È facile notare come siano possibili **4** diverse combinazioni, ognuna di queste definisce un ruolo tipicamente diverso all'interno della simulazione.

Runtime Infrastructure (RTI) 1/2

Per creare effettivamente una simulazione HLA è necessario disporre di un Runtime. Al momento **non** esistono implementazioni complete ed Open Source

DMSO RTI

Implementazione direttamente finanziata dal DoD USA, era liberamente utilizzabile (salvo autorizzazione), ora è fuori produzione per facilitare l'interesse commerciale nel settore

■ PITCH

Prima implementazione commerciale ed europea, Java-based

Runtime Infrastructure (RTI) 2/2

MAK RTI

Commerciale, implementa solo una parte dello standard e non è certificata come compatibile

GeorgiaTech RTI (gruppo di ricerca di R. Fujimoto)

La più famosa tra le implementazioni "accademiche", implementa una parte ridotta (< 60%) dello standard ma è possibile ottenere i suoi sorgenti

ARTìS

Simulazione Parallela e Distribuita Introduzione allo Standard IEEE 1516 High Level Architecture (HLA)

Gabriele D'Angelo

gda@cs.unibo.it

http://www.cs.unibo.it/~gdangelo

Dipartimento di Scienze dell'Informazione Università degli Studi di Bologna