undefined

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

End Semester Examination – Summer 2019

Course: B. Tech in CE/CS/CS&E

Semester: III

Subject Name: Discrete Mathematics

Subject Code: BTCOC302

Max. Marks: 60

Date: 29 / 05 / 2019

Duration: 3 Hrs.

Instructions to the Students:

1. Solve ANY FIVE questions out of the following.

- The level question/expected answer as per OBE or the Course Outcome (CO) on which the *question is based is mentioned in () in front of the question.*
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

(Level/ Marks

CO)

Q.1 Solve Any Three of the following.

A) Among integers 1 to 1000,

Application

- i. How many of them are not divisible by 3 nor by 5 nor by 7?
- ii. How many are not divisible by 5 or 7 but divisible by 3?
- B) Among integers 1 to 300,

Application

- i. How many of them are not divisible by 3 nor by 5 nor by 7?
- ii. How many of them are divisible by 3 but not by 5, nor by 7?
- C i. Obtain the Conjunctive Normal Form of $(p \land q) \lor (\neg p \land q \land r)$

understand

- ii. Obtain the Disjunctive Normal Form of $\sim (p \rightarrow (q \land r))$
- D) Transcribe the following into logical notation. Let the universe of discourse be the real numbers.
 - i. For any value of x, x^2 is non-negative.
 - ii. For every value of x, there is some value of y such that $x \cdot y = 1$.
 - iii. There are positive values of x and y such that $x \cdot y \ge 0$.
 - iv. There is a value of x such that if y is positive, then x + y is negative.

Q.2 Solve Any Two of the following.

A) $X = \{2, 3, 6, 12, 24, 36\}$ R on $X = \{(x, y) \in R, x \text{ divides } y\}$

Synthesis

- (a) Construct Hasse diagram.
- (b) Find maximal and minimal element?
- (c) Is poset a lattice? Justify.
- B) Given $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Let R be the following relation from A to B: understand

undefined

 $R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}\$

- (a) Determine the matrix of the relation.
- (b) Find the inverse relation R⁻¹ of R.
- (c) Determine the domain and range of R.
- C) Given: $A = \{1, 2, 3, 4\}$. Consider the following relation in A:

understand

6

 $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$

- (a) Draw its directed graph.
- (b) Is R (i) reflexive, (ii) symmetric, (iii) transitive, or (iv) antisymmetric?
- (c) Find $R^2 = R \circ R$.

Q.3 Solve the following.

- A) Consider the second-order homogeneous recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with the initial Application conditions $a_0 = 2$, and $a_1 = 7$,
 - (a) Find the next three terms of the sequence.
 - (b) Find the general solution.
 - (c) Find the unique solution with the given initial conditions.
- B) Solve the following recurrence

Understand

 $t_n = 6t_{n-1} - 11t_{n-2} + 6t_{n-3}$

with initial conditions

$$t_0 = 1$$
, $t_1 = 5$, and $t_2 = 15$

Q.4 Solve Any Two of the following.

A) Define the isomorphic graph. Are the following graphs shown in fig. (a) and (b) isomorphic? Understand

B) (a) Draw the graph K_{2.5}. Understand

6

undefined

- (b) Define the following terms:
 - (i) Planar Graph
- (ii) Bipartite Graph
- (iii) Complete graph
- (c) Draw the 2-regular graph with 5 vertices.
- C) Write the Euler's Formula. Prove that in planar graph G with p vertices and q edges, where Knowledge $p \ge 3$ then $q \ge 3p - 6$.

Q.5 Solve the following.

A) Use Prim's algorithm to find a minimum a spanning tree in the graph shown in Figure given below.

B) Construct a Binary Search Tree by inserting the following sequence of numbers:

Application

Understand

6

6

6

10, 12, 5, 4, 20, 8, 7, 15, 13.

Also Find Preorder, Inorder and Postorder traversal of Binary Search Tree.

Q.6 Solve the following.

A) Define the following terminology:

Knowledge

- (i) Identity Element
- (ii) Monoid
- (iii) Group
- (iv) Algebraic System

- (v) Ring
- (vi) Inverse Element
- B) Consider the group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7.

- Understand

- (a) Find the multiplication table of G.
- (b) Find the 2⁻¹, 3⁻¹, 6⁻¹.
- (c) Find the orders and subgroups generated by 2 and 3.

*** End ***