**Teorema**:  $L_1, L_2 \subseteq \Sigma^*$  y existe la reducción  $L_1 \alpha L_2$ , si  $L_2 \in R \Rightarrow L_1 \in R$ .

Dem.:  $L_2 \in R \Rightarrow$  existe una máquina de Turing  $M_2$  tq  $L_2 = L(M_2)$  y  $M_2$  siempre se detiene. Se construye  $M_1$  que hace:

- 1) Simula M<sub>f</sub> sobre w y obtiene f(w)
- 2) Simula M<sub>2</sub> sobre f(w) y acepta sii M<sub>2</sub> acepta

Por lo tanto,  $L_1 = L(M_1)$ 

b)  $\c M_1$  se detiene siempre? Sí, pues  $M_f$  y  $M_2$  se detienen siempre por hipótesis.

De a) y b)  $L_1 \in R$ .

**Teorema**: Sean  $L_1$ ,  $L_2 \subseteq \sum^* y$  la reducción  $L_1 \alpha L_2$ , se cumple que  $L_2 \in RE \Rightarrow L_1 \in RE$ .

Se demuestra de manera similar a la demostración del teorema anterior.

**Corolario**: Sean  $L_1$ ,  $L_2 \subseteq \sum^* y$  la reducción  $L_1 \alpha L_2$ , se cumplen que:

$$\left.\begin{array}{l} Si\;L_1\not\in R\Rightarrow L_2\not\in R\\ \\ Si\;L_1\not\in RE\Rightarrow L_2\not\in RE \end{array}\right\} \qquad \text{Por las contrarrecíprocas}$$

Ejercicio: sea el lenguaje Halting Problem

 $HP = \{(\langle M \rangle, w) \text{ tq } M \text{ se detiene con input } w\}$ demostrar que  $HP \in (RE-R)$ .

## I) $HP \in RE$ .

Se construye una MT  $M_{HP}$  tq  $L(M_{HP})$  = HP.  $M_{HP}$  chequea sintácticamente la entrada (<M>, w), si es un par inválido para en  $q_R$ , si es un par válido pero <M> es un código de MT inválido para en  $q_A$ , si ambos son válidos simula M sobre w, si M para (en  $q_A$  o en  $q_R$ )  $M_{HP}$  para en  $q_A$ , si M no para,  $M_{HP}$  no para.



II) HP  $\notin$  R.

Se puede probar que existe la reducción  $L_u \alpha HP$ , y como  $L_u \notin R$  será cierto  $HP \notin R$ .

Dem. Sea la siguiente máquina de Turing  $M_{\rm f}$  que computa la función f de reducibilidad

$$M_f((,w))=(,w)$$

M<sub>f</sub> trabaja de la siguiente manera:

Si <M> no es un código válido de MT o (<M>,w) no es un par válido borra la cinta (deja  $\lambda$  como salida), de lo contrario busca en las quíntuplas de <M> el estado  $q_R$  y lo reemplaza por un nuevo estado  $q_R$ . Luego agrega las quíntuplas (q,0,q,0,S); (q,1,q,1,S); (q,B,q,B,S) para hacerla loopear. Es decir que la máquina construida por  $M_f$  loopea cuando M para en  $q_R$ .

Hay que demostrar que  $M_{\rm f}$  es una máquina que computa la función de reducibilidad

1) f es computable pues  $M_f$  siempre se detiene pues la entrada es finita y luego de recorrerla agrega un número finito de quíntuplas y se detiene.

2)  $(\langle M \rangle, w) \in L_u \Leftrightarrow (\langle M' \rangle, w) \in HP$ ?

a) si  $(<M>,w)\in L_u \Rightarrow M$  acepta  $w\Rightarrow M$  para en  $q_A.\Rightarrow M'$  para en  $q_A\Rightarrow M'$  se detiene con input  $w\Rightarrow (<M'>,w)\in HP$ 

b) si  $(\langle M \rangle, w) \notin L_u \Rightarrow$ 

i) Si <M> no es un cód. válido o (<M>,w) no es un par válido  $\Rightarrow$  (<M'>,w) =  $\lambda \Rightarrow$  (<M'>,w)  $\notin$ HP

## o bien

ii) M rechaza  $w \Rightarrow M$  loopea o para en  $q_R$  con input  $w \Rightarrow M'$  loopea con input  $w \Rightarrow (\langle M' \rangle, w) \notin HP$ 

Por a) y b) se tiene que  $(<M>,w)\in L_u \Leftrightarrow (<M'>,w)\in HP$ dónde (<M'>,w) es  $M_f((<M>,w))$ 

de 1) y 2) se tiene que  $M_f$  computa la función de reducibilidad buscada y por lo tanto queda demostrado que  $L_u$   $\alpha$  HP.

 $Como\ L_u\not\in R\Rightarrow HP\not\in R$ 

De I) y II)  $HP \in (RE-R)$ .

<u>Ejercicio</u>: Probar que  $L_{\Sigma^*} = \{ \langle M \rangle / L(M) = \Sigma^* \}$  no es recursivo.

Mostraremos que existe una reducción  $L_u \alpha L_{\Sigma^*}$ 

Hay que encontrar una función total computable tal que

$$(,w)\in L_u \Leftrightarrow f(,w)\in L_{\Sigma^*}$$

Sea  $M_f$  la máquina de Turing que computa la función f (<M>,w) = <M'> y trabaja de la siguiente manera:

Si (<M>,w) no es un par válido o <M> no es un código de MT válido,  $M_f$  borra la cinta (deja  $\lambda$  como salida), de lo contrario  $M_f$  construye <M'> escribiendo las quíntuplas necesarias para que M' borre la entrada y escriba w en la cinta, posicione el cabezal y simule M sobre w. Así M' para en  $q_A$  para cualquier input  $\Leftrightarrow$  M acepta w

- 1) f((<M>,w)) es computable? Claramente sí, pues  $M_f$  para luego de realizar una cantidad finita de acciones.
- 2)  $(<M>,w)\in L_u \Leftrightarrow <M'>\in L_{\Sigma^*}$ ?
  - a) Sea  $(\langle M \rangle, w) \in L_u \Rightarrow M$  para en  $q_A$  con input  $w \Rightarrow M'$  para en  $q_A$  con cualquier input  $\Rightarrow \langle M' \rangle \in L_{\Sigma^*}$
  - b) Sea ( $\langle M \rangle$ , w)  $\notin L_n \Rightarrow$

$$\begin{cases} i. \ Si \ (<\!M\!>,\!w) \ no \ es \ un \ par \ v\'alido \ o <\!M\!> \ no \ es \ un \ c\'odigo \ de \\ MT \ v\'alido \Rightarrow <\!M'\!> \ = \ \lambda \Rightarrow <\!M'\!> \ \not\in \ L_{\Sigma^*} \\ ii. \ M \ rechaza \ w \Rightarrow M' \ rechaza \ todo \ input \Rightarrow <\!M'\!> \ \not\in \ L_{\Sigma^*} \end{cases}$$

De a) y b) se tiene que  $(<M>,w)\in L_u \Leftrightarrow <M'>\in L_{\Sigma^*}$ 

De 1) y 2) se tiene que  $L_u \alpha L_{\Sigma^*}$ 

Por lo tanto  $L_{\Sigma^*} \notin a R$  (porque  $L_u \notin a R$ )

Nota: Puede demostrarse también que existe una reducción  $\overline{L}_u$   $\alpha$   $L_{\Sigma^*}$  y como  $\overline{L}_u \not\in RE$  se tiene que  $L_{\Sigma^*} \not\in a$  RE

**Para practicar**. Demostrar que existe una reducción de 
$$\overline{L}_u \alpha L_{\varnothing}$$
 con  $L_{\varnothing} = \{  / L(M) = \varnothing \}$ 

## **Teorema**. $L_{EO} = \{(\langle M_1 \rangle, \langle M_2 \rangle) / L(M_1) = L(M_2)\} \notin RE$

Prueba:  $L_{\Sigma^*} \alpha L_{EQ}$ 

La función f de reducibilidad que computa  $M_f$  es

 $f(<\!\!M\!\!>)=(<\!\!M\!\!>,<\!\!M_{\Sigma^*}\!\!>)$  Siendo  $<\!\!M_{\Sigma^*}\!\!>$  el código de una máquina de Turing que acepta  $\Sigma^*$ 

Por ejemplo la  $\delta$  de transición de  $M_{\Sigma^*}$  puede ser la siguiente:

$$\delta(q_0,0)=(q_A,0,S); \delta(q_0,1)=(q_A,1,S); \delta(q_0,B)=(q_A,B,S)$$

Claramente  $M_f$  se detiene, por lo tanto f es computable

Además:

$$<\!\!M\!\!>\in L_{\Sigma^*} \Leftrightarrow L(M) = \Sigma^* \Leftrightarrow L(M) = L(M_{\Sigma^*}) \Leftrightarrow (<\!\!M\!\!>,<\!\!M_{\Sigma^*}\!\!>) \in L_{EQ}$$