Chapter7:Quaternion

1) **Definition**

A quaternion is a super set of the complex numbers. We write quaternion $q=[a, x, y, z]=a+x\vec{i}+y\vec{j}+z\vec{k}=a+\vec{v}=[a, \vec{v}], \text{ where } \vec{v}=(x,y,z) \text{ is the vector part}$ and \mathbf{a} is the real part of the quaternion with $\vec{i}^2=\vec{i}\vec{i}=-1$, $\vec{j}^2=\vec{j}\vec{j}=-1$, $\vec{k}^2=\vec{k}\vec{k}=-1$, $\vec{i}\vec{j}\vec{k}=-1$ and $\vec{i}\vec{j}=\vec{i}\times\vec{j}=\vec{k}$, $\vec{j}\vec{k}=\vec{j}\times\vec{k}=\vec{i}$, $\vec{k}\vec{i}=\vec{k}\times\vec{i}=\vec{j}$.

Example 1.1: Find the real part and vector part of the quaternion q=[5,3,1,7]

Answer: real part a=5 and vector part $\vec{v} = (3,1,7)$

Example 1.2: Write the quaternion with real part 5 and vector part $\vec{v}(2,6,-4)$.

Answer: q=[5,2,6,-4] or $q=5+2\vec{i}+6\vec{j}-4\vec{k}$ or $q=5+\vec{v}$ or $q=[5,\vec{v}]$ with $\vec{v}=(2,6,-4)$

Example 1.3: Write the quaternion with real part 10 and vector part $\vec{v}(1,2,3)$.

Answer: q=[10,1,2,3] or $q=10+\vec{i}+2\vec{j}+3\vec{k}$ or $q=10+\vec{v}$ or $q=[10,\vec{v}]$ with $\vec{v}=(1,2,3)$

TODO→ Go to activity and solve questions 1.1, 1.2 and 1.3

2) Norm of a quaternion and normalized quaternion

The **norm** of a quaternion q=[a, x, y, z] is $N(q)=a^2+x^2+y^2+z^2$. That is $N(q)=q\cdot \tilde{q}$, and we denote the **length or magnitude** of q to be $L(q)=\sqrt{N(q)}=\sqrt{a^2+x^2+y^2+z^2}$. Note that L(q) and N(q) are different term

Example 2.1: Calculate the norm of the quaternion q=[1,0,2,-3]

Answer: $N(q) = 1^2 + 0^2 + 2^2 + (-3)^2 = 1 + 0 + 4 + 9 = 14$

Example 2.2: Calculate the length of the quaternion q=[1,0,1,-1]

Answer: N(q) = $1^2 + 0^2 + 1^2 + (-1)^2 = 1 + 0 + 1 + 1 = 3$ and L(q)= $\sqrt{N(q)} = \sqrt{3}$

Example 2.3: Calculate the length of the quaternion q=[1,0,2,2]

Answer: $N(q) = 1^2 + 0^2 + 2^2 + 2^2 = 1 + 0 + 4 + 4 = 9$ and $L(q) = \sqrt{N(q)} = \sqrt{9} = 3$

TODO→ Go to activity and solve question 2

Normalizing a quaternion

If N(q) $\neq 0$ then the normalized quaternion of q is $q_n = \frac{q}{\sqrt{N(q)}} = \frac{q}{L(q)}$

Example 2.4: Normalize the quaternion q=[2,0,2,-1]

Answer: N(q) = $2^2 + 0^2 + 2^2 + (-1)^2 = 4 + 4 + 1 = 9$ and L(q)= $\sqrt{N(q)} = \sqrt{9} = 3$ So $q_n = \frac{q}{\sqrt{N(q)}} = \frac{q}{L(q)} = = \frac{q}{3} = \left[\frac{2}{3}, 0, \frac{2}{3}, \frac{-1}{3}\right]$

Example 2.5: Normalize the quaternion q=[1,1,2,-1]

Answer: N(q) = 1² + 1² + 2² + (-1)² = 1+1+4+1=7 and L(q)= $\sqrt{N(q)} = \sqrt{7}$ So $q_n = \frac{q}{\sqrt{N(q)}} = \frac{q}{L(q)} = = \frac{q}{\sqrt{7}} = \left[\frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}, \frac{2}{\sqrt{7}}, \frac{-1}{\sqrt{7}}\right]$

TODO→ Go to activity and solve question 3

3) Conjugate of a quaternion

The conjugate of q=[a, x, y, z] is $\tilde{q}=[a, -x, -y, -z]$.

Example 3.1: Find the conjugate of q=[2,3,-5,7]

Answer $\Rightarrow \tilde{q} = [2, -3, 5, -7]$.

Example 3.2: Find the conjugate of q=[-2,5,9,-1]

Answer → $\tilde{q} = [-2, -5, -9, 1]$.

Example 3.3: Find the conjugate of q=[-3,-10,6,-4] Answer $\Rightarrow \tilde{q}$ =[-3,10,-6,4].

TODO → Go to activity and solve question 4

4) Inverse of a quaternion

Given a quaternion q=[a, x, y, z] such as $N(q) \neq 0$, then its inverse is $q^{-1} = \frac{\tilde{q}}{N(q)}$

Example 4.1: Find the inverse of q=[1,0,-1,1]

Answer
$$\rightarrow$$
 N(q)=3, \tilde{q} =[1, 0, 1, -1], $q^{-1} = \frac{\tilde{q}}{N(q)} = \frac{\tilde{q}}{3} = \left[\frac{1}{3}, 0, \frac{1}{3}, -\frac{1}{3}\right]$

Example 4.2: Find the inverse of q=[1,2,2,1]

Answer
$$\rightarrow$$
 N(q)=10, \tilde{q} =[1, -2, -2, -1], $q^{-1} = \frac{\tilde{q}}{N(q)} = \frac{\tilde{q}}{10} = \left[\frac{1}{10}, \frac{-2}{10}, \frac{-2}{10}, \frac{-1}{10}\right] = \left[\frac{1}{10}, \frac{-1}{5}, \frac{-1}{5}, \frac{-1}{10}\right]$

TODO → Go to activity and solve questions 5 and 6

5) Quaternion Algebra

We consider here two quaternion $q_1 = [a_1, x_1, y_1, z_1]$ and $q_2 = [a_2, x_2, y_2, z_2]$.

a) the dot product of two quaternions

The dot product of q_1 and q_2 is $q_1 \bullet q_2 = [a_1, x_1, y_1, z_1] \bullet [a_2, x_2, y_2, z_2] = a_1 a_2 + x_1 x_2 + y_1 y_2 + z_1 z_2$. Note that $q_1 \bullet q_2 = q_2 \bullet q_1$ (commutative)

Example 5.a.1: Calculate $q_1 \bullet q_2$ and $q_3 \bullet q_2$.

if
$$q_1 = [2,1,0,-1]$$
, $q_2 = [3,1,-2,1]$, and $q_3 = [2,0,-3,1]$

Answer:
$$q_1 \bullet q_2 = [2,1,0,-1] \bullet [3,1,-2,1] = (2)(3) + (1)(1) + (0)(-2) + (-1)(1) = 6$$

 $q_3 \bullet q_2 = [2,0,-3,1] \bullet [3,1,-2,1] = (2)(3) + (0)(1) + (-3)(-2) + (1)(1) = 1$

TODO→ Go to activity and solve questions 7 and 8

b) Addition of two quaternion

 $q_1 + q_2 = q_2 + q_1 = [a_1, x_1, y_1, z_1] + [a_2, x_2, y_2, z_2] = [a_1 + a_2, x_1 + x_2, y_1 + y_2, z_1 + z_2]$

Example 5.b.1: Calculate $q_1 + q_2$ if $q_1 = [2,1,0,-1]$ and $q_2 = [3,1,-2,1]$

Answer: $q_1 + q_2 = [2,1,0,-1] + [3,1,-2,1] = [5,2,-2,0]$

Example-5.b.2: Calculate $q_1 + q_2$ if $q_1 = [2,1,0,-1]$ and $q_2 = [3,1,-2,1]$

Answer: $3q_1 - 2q_2 = 3[2,1,0,-1] - 2[3,1,-2,1] = [0,1,4,-5]$

TODO→ Go to activity and solve question 9.1 and 9.2

c) Multiplication of two quaternions

The multiplication of q_1 and q_2 is:

$$q_1q_2 = [a_1, x_1, y_1, z_1][a_2, x_2, y_2, z_2] = [a_1, \vec{v}_1][a_2, \vec{v}_2] = [a_1a_2 - \vec{v}_1 \bullet \vec{v}_2, a_1\vec{v}_2 + a_2\vec{v}_1 + \vec{v}_1 \times \vec{v}_2],$$

where $\vec{v}_1 = (x_1, y_1, z_1)$ and $\vec{v}_2 = (x_2, y_2, z_2)$.note that $q_1q_2 \neq q_2q_1$.

Example 5.c.1 : If $q_1 = [2,1,0,1]$ and $q_2 = [3,1,2,1]$ calculate q_1q_2

Using
$$q_1q_2 = [a_1, \vec{v}_1][a_2, \vec{v}_2] = [a_1a_2 - \vec{v}_1 \bullet \vec{v}_2, a_1\vec{v}_2 + a_2\vec{v}_1 + \vec{v}_1 \times \vec{v}_2]$$

with
$$a_1=2$$
, $\vec{v}_1=(1,0,1)$, $a_2=3$, $\vec{v}_2=(1,2,1)$ we have:

$$q_1q_2 = [2, \vec{v}_1][3, \vec{v}_2] = [(2)(3) - \vec{v}_1 \cdot \vec{v}_2, 2\vec{v}_2 + 3\vec{v}_1 + \vec{v}_1 \times \vec{v}_2],$$

$$q_1q_2 = [6 - \vec{v_1} \bullet \vec{v_2} , 2\vec{v_2} + 3\vec{v_1} + \vec{v_1} \times \vec{v_2}], 3\vec{v_1} = 3(1,0,1) = (3,0,3) , 2\vec{v_2} = 2(1,2,1) = (2,4,2)$$

$$\vec{v}_1 \cdot \vec{v}_2 = (1,0,1) \cdot (1,2,1) = (1) \cdot (1) + (0) \cdot (2) + (1) \cdot (1) = 2$$

$$\vec{v}_1 \times \vec{v}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 1 \\ 1 & 2 & 1 \\ + & - & + \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} \vec{k} =$$

$$(0-2)\vec{i} - (1-1)\vec{j} + (2-0)\vec{k} = -2\vec{i} + 2\vec{k} = (-2,0,2)$$

$$q_1q_2 = [6 - \vec{v_1} \cdot \vec{v_2}, 2\vec{v_2} + 3\vec{v_1} + \vec{v_1} \times \vec{v_2}] = [6 - 2, (2, 4, 2) + (3, 0, 3) + (-2, 0, 2)] = [4, 3, 4, 7]$$

Example 5.c.2: If $q_1 = [5,1,1,3]$ and $q_2 = [2,2,0,1]$ calculate q_1q_2

Using
$$q_1q_2 = [a_1, \vec{v}_1][a_2, \vec{v}_2] = [a_1a_2 - \vec{v}_1 \bullet \vec{v}_2, a_1\vec{v}_2 + a_2\vec{v}_1 + \vec{v}_1 \times \vec{v}_2]$$

with
$$a_1=5$$
, $\vec{v}_1=(1,1,3)$, $a_2=2$, $\vec{v}_2=(2,0,1)$ we have:

$$q_1q_2 = [5, \vec{v}_1][2, \vec{v}_2] = [(5)(2) - \vec{v}_1 \cdot \vec{v}_2, 5\vec{v}_2 + 2\vec{v}_1 + \vec{v}_1 \times \vec{v}_2],$$

$$q_1q_2 = [10 - \vec{v_1} \cdot \vec{v_2}, 5\vec{v_2} + 2\vec{v_1} + \vec{v_1} \times \vec{v_2}], 2\vec{v_1} = 2(1,1,3) = (2,2,6), 5\vec{v_2} = 5(2,0,1) = (10,0,5)$$

$$\vec{v}_1 \cdot \vec{v}_2 = (1, 1, 3) \cdot (2, 0, 1) = (1) \cdot (2) + (1) \cdot (0) + (3) \cdot (1) = 5$$

$$\vec{v}_1 \times \vec{v}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 3 \\ 2 & 0 & 1 \\ + & - & + \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} \vec{k} =$$

=
$$(1-0)\vec{i} - (1-6)\vec{j} + (0-2)\vec{k} = \vec{i} + 5\vec{j} - 2\vec{k} = (1,5,-2)$$
, finally

$$q_1q_2 = [10 - \vec{v_1} \cdot \vec{v_2}, 5\vec{v_2} + 2\vec{v_1} + \vec{v_1} \times \vec{v_2}] = [10 - 5, (10, 0, 5) + (2, 2, 6) + (1, 5, -2)] = [5, (13, 7, 9)]$$

That is $q_1q_2 = [5, 13, 7, 9]$

TODO→ Go to activity and solve questions 10.1 and 10.2

6) Unit quaternion and Rotation Quaternion

A special unit quaternion is $q=[1,0,0,0]=[1, \vec{o}]$ (identity quaternion). A normalized quaternion is a quaternion whose norm is 1 Note that $q \tilde{q} = [1,0,0,0]$

A rotation of θ degree about any arbitrary axis of rotation spanned by a vector \hat{v} is represented in matrix form by the Rodriguez formula :

 $R_{\hat{v}}(\theta) = I + \sin(\theta) \cdot Skew(\hat{v}) + (1 - \cos(\theta)) \cdot Skew^2(\hat{v})$. I=identity matrix

The quaternion representation of this matrix is:

$$q = \left[\cos\left(\frac{\theta}{2}\right), \hat{v} \cdot \sin\left(\frac{\theta}{2}\right)\right] = \cos\left(\frac{\theta}{2}\right) + v_x \cdot \sin\left(\frac{\theta}{2}\right)\vec{i} + v_y \cdot \sin\left(\frac{\theta}{2}\right)\vec{j} + v_z \cdot \sin\left(\frac{\theta}{2}\right)\vec{k}$$
where $\hat{v} = \frac{\vec{v}}{\|\vec{v}\|}$

Example 6.1: write the quaternion of a rotation of $\theta = 90$ about the vector $\vec{v} = (1,1,1)$

Answer
$$\Rightarrow$$
: $\hat{v} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{(1,0,1)}{\sqrt{2}} = (\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$, $\frac{\theta}{2} = 45$ $\Rightarrow \sin(\frac{\theta}{2}) = \cos(\frac{\theta}{2}) = \frac{\sqrt{2}}{2}$
So $q = [\cos(45), \hat{v}\sin(45)] = \left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)\right] = \left[\frac{\sqrt{2}}{2}, \frac{1}{2}, 0, \frac{1}{2}\right]$

Example 6.2: write the quaternion of a rotation of $\theta = 60$ about the z-axis Answer:

The direction of the z-axis is $\vec{v} = \hat{k} = (0,0,1)$ which is normalized, $\hat{v} = (0,0,1)$

$$\frac{\theta}{2} = \frac{60}{2} = 30 \text{ and } \hat{v} = (0,0,1) \text{ with } \cos(30) = \frac{\sqrt{3}}{2}, \sin(30) = \frac{1}{2} \text{ we have :}$$

$$q = \left[\cos(30), \hat{v}\sin(30)\right] = \left[\frac{\sqrt{3}}{2}, \frac{1}{2}\hat{v}\right] = \left[\frac{\sqrt{3}}{2}, \frac{1}{2}(0,0,1)\right] = \left[\frac{\sqrt{3}}{2}, 0, 0, \frac{1}{2}\right]$$

Example 6.3: write the quaternion of a rotation of $\theta = 180$ about the vector $\vec{v} = (1, 2, 2)$

Answer:

$$\frac{\theta}{2} = \frac{180}{2} = 90 \quad \vec{v} = (1, 2, 2) \text{ is not normalized, so get} \quad \hat{v} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{(1, 2, 2)}{3} = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$

$$\cos(90) = 0, \quad \sin(90) = 1 \quad \text{in} \quad q = \left[\cos\left(\frac{\theta}{2}\right), \hat{v}\sin\left(\frac{\theta}{2}\right)\right] = \left[\cos(90), \hat{v}\sin(90)\right] \text{ leads to}$$

$$q = [0,(1)\hat{v}] = \left[0,\left(\frac{1}{3},\frac{2}{3},\frac{2}{3}\right)\right] = \left[0,\frac{1}{3},\frac{2}{3},\frac{2}{3}\right]$$

Note: The inverse of a unit or rotation quaternion q is $q^{-1} = \frac{q}{N(q)} = \tilde{q}$ since N(q)=1

TODO Go to activity and solve questions 11.1, 11.2, and 11.3

7) Angle between two Normalized (rotation) quaternion

If q_1 and q_2 are two **normalized quaternions**, then the angle between them is such that

$$q_1 \bullet q_2 = \sqrt{N(q_1)} \bullet \sqrt{N(q_2)} \bullet \cos \theta \implies \theta = \cos^{-1} \left(\frac{q_1 \bullet q_2}{\sqrt{N(q_1)} \bullet \sqrt{N(q_2)}} \right) = \cos^{-1} (q_1 \bullet q_2)$$

since q_1 and q_2 are two **normalized quaternions making** $N(q_1) = N(q_2) = 1$

Example 7.1: Calculate the angle between $q_1 = \left| \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 0, -\frac{1}{\sqrt{6}} \right|$ and $q_2 = \left[\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right]$

Answer:
$$q_1 \bullet q_2 = \left[\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 0, -\frac{1}{\sqrt{6}} \right] \cdot \left[\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right] = \frac{1}{\sqrt{6}} + \frac{1}{2\sqrt{6}} - \frac{1}{2\sqrt{6}} = \frac{1}{\sqrt{6}}$$

So
$$\theta = \cos^{-1}(q_1 \bullet q_2) = \cos^{-1}(\frac{1}{\sqrt{6}}) \approx 65.90^{\circ}$$
.

Example 7.2: Calculate the angle between $q_1 = \left[\frac{\sqrt{2}}{2}, \frac{1}{2}, 0, \frac{1}{2}\right]$ and $q_2 \left[\frac{\sqrt{3}}{2}, 0, \frac{1}{2}, 0\right]$

Answer:

$$q_1 \bullet q_2 = \left[\frac{\sqrt{2}}{2}, \frac{1}{2}, 0, \frac{1}{2}\right] \bullet \left[\frac{\sqrt{3}}{2}, 0, \frac{1}{2}, 0\right] = \frac{\sqrt{6}}{4}$$

So
$$\theta = \cos^{-1}(q_1 \bullet q_2) = \cos^{-1}\left(\frac{\sqrt{6}}{4}\right) \approx 52.24$$
.

Example 7.3: Calculate the angle between $q_1 = \left[\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}, 0\right]$ and $q_2 = \left[0, 0, -1, 0\right]$

Answer:

$$q_1 \bullet q_2 = q_1 == \left[\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}, 0\right] \bullet \left[0, 0, -1, 0\right] = -\frac{\sqrt{2}}{2}$$

So $\theta = \cos^{-1}\left(q_1 \bullet q_2\right) = \cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) = 135$

TODO → Go to activity and solve questions 12 and 13

8) Exponential Expression of a Rotation Quaternion

A rotation quaternion $q = \cos\left(\frac{\theta}{2}\right) + \hat{v} \cdot \sin\left(\frac{\theta}{2}\right)$ can be expressed as $q = e^{\frac{\theta}{2}\hat{v}}$ e=2.7

With the angle in radian.

Example 8.1: A quaternion of angle $\theta = 90$ about $\vec{v} = (1, 2, 2)$.

Answer:
$$\theta = 90 \rightarrow \frac{\theta}{2} = 45$$
 and $\hat{v} = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$, $\theta = 90$ is $\frac{\pi}{2}$ radian

So
$$q = \cos\left(\frac{\theta}{2}\right) + \hat{v} \cdot \sin\left(\frac{\theta}{2}\right) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\hat{v}$$
 and $q = e^{\frac{\theta}{2}\hat{v}} = e^{\frac{\pi}{4}\hat{v}}$

9) Quaternion representation of a vector

a. Vector to quaternion

Given a vector $\vec{v} = (x, y, z)$, its quaternion representation is $q_v = [0, \vec{v}] = [0, x, y, z]$

Example 9a.1 : write the quaternion representation of the vector $\mathbf{v}(1,3,-5)$ $\vec{v}=(1,3,-5)$ Answer $\Rightarrow \mathbf{q}=[0,1,3,-5]$

Example 9a.2: write the quaternion representation of the vector $\vec{k} = (0,0,1)$

Answer \rightarrow q=[0,0,0,1]

TODO → Go to activity and solve question 14

b. Rotating a vector by a quaternion

Given a rotation quaternion q=[w , x , y , z] and a vector \vec{v} , the image of \vec{v} (\vec{v}') after a rotation by q is the vector part of $q_{v'} = q[0, \vec{v}]\tilde{q}$

Example: Let the quaternion q represent a 90° rotation of a body about the x-axis. Rotate the vector $\vec{u} = <0, 1, 2>$ by q.

10) Quaternion to rotation matrix transform

The rotation matrix corresponding to the quaternion q = [w, v] = [w, x, y, z] is

$$R = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2wz & 2xz + 2wy \\ 2xy + 2wz & 1 - 2x^2 - 2z^2 & 2yz - 2wx \\ 2xz - 2wy & 2yz + 2wx & 1 - 2x^2 - 2y^2 \end{bmatrix}$$