Teoria de la Computació

Tema 7: Indecidibilitat, no semidecidibilitat, no computabilitat.

Teoria:

- Vídeos 32, 33 i 34.
- Llibre M. Sipser, "Introduction to the Theory of Computation": Section 4.2 Undecidability, Chapter 5. Reducibility.

Exercicis per a l'avaluació contínua:

- Clasifica como decidibles, no decidibles pero semidecidibles, o no semidecidibles, los siguientes conjuntos.
 - (a) $\{p|\mathcal{L}_p \text{ es finito}\}.$
 - (b) $\{p|\mathcal{L}_p \text{ es infinito}\}.$
 - (c) $\{p|M_p(p)=p\}.$
 - (d) $\{p | \exists y : M_y(p) = p\}.$
 - (e) $\{p \mid |Dom(\varphi_p)| \ge 10\}.$
 - (f) $\{p \mid |\text{Dom}(\varphi_p)| \ge 0\}.$
 - (g) $\{p \mid |\text{Im}(\varphi_p)| \ge 10\}.$
 - (h) $\{p \mid |\text{Im}(\varphi_p)| \ge 0\}.$
 - (i) $\{p \mid |\operatorname{Im}(\varphi_p)| < |\operatorname{Dom}(\varphi_p)| < \infty\}.$
 - (j) $\{p \mid |\operatorname{Dom}(\varphi_p)| < |\operatorname{Im}(\varphi_p)| < \infty\}.$
 - (k) $\{p|\varphi_p \text{ es inyectiva y total}\}.$
 - (1) $\{p|\varphi_p \text{ es exhaustiva y total}\}.$
 - (m) $\{p|\varphi_p \text{ es creciente y total}\}.$
 - (n) $\{p|\varphi_p \text{ es total y estrictamente decreciente}\}.$
 - (o) $\{p|\varphi_p \text{ es inyectiva parcial}\}.$
 - (p) $\{p|\varphi_p \text{ es exhaustiva parcial}\}.$
 - (q) $\{p|\varphi_p \text{ es creciente parcial}\}.$
 - (r) $\{p|\varphi_p \text{ es estríctamente decreciente parcial}\}.$
- 2. Clasifica como decidibles, no decidibles pero semidecidibles, o no semidecidibles, los siguientes conjuntos.
 - (a) $\{\langle p,q\rangle|\forall z: ((M_p(z)\downarrow \land M_q(z)\uparrow)\lor (M_p(z)\uparrow \land M_q(z)\downarrow))\}.$
 - (b) $\{\langle p, z \rangle | \exists y : M_p(y) = z \}.$
 - (c) $\{\langle p, z \rangle | \exists y : M_p(y) \neq z \}.$
 - (d) $\{p \mid \mathcal{L}_p \text{ es incontextual}\}.$

```
(e) \{p \mid \mathcal{L}_p \text{ no es incontextual}\}.
```

- (f) $\{p | \mathsf{Dom}(\varphi_p) \in \mathsf{Dec}\}.$
- (g) $\{p | \mathsf{Dom}(\varphi_p) \not\in \mathsf{Dec} \}$.
- (h) $\{p| \mathsf{Dom}(\varphi_p) \not\in \mathsf{semi} \mathsf{Dec}\}.$
- (i) $\{p| \operatorname{Im}(\varphi_p) \in \operatorname{Dec} \}$.
- (j) $\{p|\operatorname{Im}(\varphi_p)\not\in\operatorname{Dec}\}.$
- (k) $\{p | \operatorname{Im}(\varphi_p) \in \operatorname{semi} \operatorname{Dec} \}$.
- (1) $\{p|\operatorname{Im}(\varphi_p)\not\in\operatorname{semi}-\operatorname{Dec}\}.$
- (m) $\{p|p \le 100 \land Dom(\varphi_p) \in Dec\}.$
- $(\mathbf{n})\ \{p|p\geq 100 \land \mathtt{Dom}(\varphi_p) \in \mathtt{semi}-\mathtt{Dec}\}.$
- (o) $\{p|\forall y>p:\varphi_y\text{ es biyectiva}\}.$
- (p) $\{p | \forall y$
- (q) $\{p | \exists y > p : \varphi_y \text{ es biyectiva}\}.$
- (r) $\{p | \exists y$
- (s) $\{p|\exists y: \mathsf{Dom}(\varphi_p)\subseteq \mathsf{Dom}(\varphi_y)\}.$
- (t) $\{p|\exists y: \mathrm{Dom}(\varphi_p) \supseteq \mathrm{Dom}(\varphi_y)\}.$
- (u) $\{p| Dom(\varphi_p) \subseteq \dot{2}\}.$
- (v) $\{p|\text{Dom}(\varphi_p) \supseteq \dot{2}\}.$
- 3. Clasifica como decidibles, no decidibles pero semidecidibles, o no semidecidibles, los siguientes conjuntos.
 - (a) $K \times K$.
 - (b) $\bar{K} \times K$.
 - (c) $\bar{K} \times \bar{K}$.
 - (d) $\overline{K} \times K$.
 - (e) $\{x \mid \text{ el decimal 3 aparece } x \text{ veces en el número } \pi\}.$
 - (f) $\{\langle x,y\rangle\mid 0\leq x\leq 9 \land \text{ el decimal }x\text{ aparece }y\text{ veces consecutivas en la secuencia de decimales del número }\pi\}.$
- 4. Demuestra que K no se puede reducir a \bar{K} .
- 5. Demuestra que puede ocurrir que C sea decidible, f computable, y sin embargo f(C) no sea decidible.
- 6. Demuestra que puede ocurrir que C sea decidible, f computable y total, y sin embargo f(C) no sea decidible.
- 7. Demuestra que si C es semidecidible y f es computable, entonces f(C) es semidecidible.
- 8. Para cada una de las siguientes funciones indica si son computables, totales y cuál es su imagen.

(a)
$$f(x) = \begin{cases} 1 & \text{si } \exists n : M_n(x) \downarrow \\ \uparrow & \text{si } \not\exists n : M_n(x) \downarrow \end{cases}$$

(b) $f(x) = \begin{cases} 1 & \text{si } \forall n : M_n(x) \downarrow \\ \uparrow & \text{si } \not\forall n : M_n(x) \downarrow \end{cases}$
(c) $f(x) = \begin{cases} 1 & \text{si } \exists n : M_x(n) \downarrow \\ \uparrow & \text{si } \not\exists n : M_x(n) \downarrow \end{cases}$
(d) $f(x) = \begin{cases} 1 & \text{si } \forall n : M_x(n) \downarrow \\ \uparrow & \text{si } \not\forall n : M_x(n) \downarrow \end{cases}$

9. La función característica de un conjunto C se define como:

$$\chi_C(x) = \begin{cases} 1 & \text{si } x \in C \\ 0 & \text{si } x \notin C \end{cases}$$

Demuestra que C es decidible si y solo si su función característica χ_C es computable.

- 10. Justifica si los siguientes conjuntos de parejas son funciones, y si son funciones computables.
 - (a) φ_3 .
 - (b) $\{\langle x, y \rangle | M_x(x) = y\}.$
 - (c) $\{\langle x, y \rangle | M_x(x) \leq y\}$.
 - (d) $\{\langle x, y \rangle | M_x(x) \ge y\}.$
 - (e) $\{\langle x, y \rangle | M_x(x) = M_y(y) \}.$
 - (f) $\{\langle x,y\rangle|M_x(x) \text{ para en } y \text{ pasos o más}\}.$
 - (g) $\{\langle x,y\rangle|M_x(x) \text{ para en exactamente } y \text{ pasos}\}.$
 - (h) $\{\langle x, 1 \rangle | M_x(x) \downarrow \} \cup \{\langle x, 0 \rangle | M_x(x) \uparrow \}.$
 - (i) $\{\langle x, 1 \rangle | M_x(x) \downarrow \}$.
 - (j) $\{\langle x,0\rangle|M_x(x)\uparrow\}$.
 - (k) $\{\langle x, y \rangle | y = |\{z | M_x(z) \downarrow\}|\}.$