

## Université d'Ottawa · University of Ottawa

## Faculté de Génie - Faculty of Engineering ITI1100C Digital Systems I –Assignment 2 Solution

| 1) | Obtain the truth table of the followir | g functions, and expres | s each function in sum of minters | ns and product of maxterms form |
|----|----------------------------------------|-------------------------|-----------------------------------|---------------------------------|
|----|----------------------------------------|-------------------------|-----------------------------------|---------------------------------|

```
(a) F = (b + cd)(c + bd) bc + bd + cd + bcd = \Sigma(3, 5, 6, 7, 11, 14, 15)

F' = \Sigma(0, 1, 2, 4, 8, 9, 10, 12, 13)

F = \Pi(0, 1, 2, 4, 8, 9, 10, 12, 13)
```

| a b c d | F |
|---------|---|
| 0000    | 0 |
| 0001    | 0 |
| 0010    | 0 |
| 0011    | 1 |
| 0100    | 0 |
| 0101    | 1 |
| 0110    | 1 |
| 0 1 1 1 | 1 |
| 1000    | 0 |
| 1001    | 0 |
| 1010    | 0 |
| 1011    | 1 |
| 1100    | 0 |
| 1101    | 1 |
| 1110    | 1 |
| 1111    | 1 |
|         |   |

(b) 
$$(cd + b'c + bd')(b + d) = bcd + bd' + cd + b'cd = cd + bd'$$
  
=  $\Sigma$  (3, 4, 7, 11, 12,14, 15)  
=  $\Pi$  (0, 1, 2, 5, 6, 8, 9, 10, 13)

| a b c d | F |
|---------|---|
| 0000    | 0 |
| 0001    | 0 |
| 0010    | 0 |
| 0011    | 1 |
| 0100    | 1 |
| 0101    | 0 |
| 0110    | 0 |
| 0111    | 1 |
| 1000    | 0 |
| 1001    | 0 |
| 1010    | 0 |
| 1011    | 1 |
| 1100    | 1 |
| 1101    | 0 |
| 1110    | 1 |
| 1111    | 1 |

(c) 
$$(c' + d)(b + c') = bc' + c' + bd + c'd = (c' + bd)$$
  
=  $\Sigma(0, 1, 4, 5, 7, 8, 12, 13, 15)$   
 $F = \Pi(2, 3, 6, 9, 10, 11, 14)$ 

(d) 
$$bd' + acd' + ab'c + a'c' = \Sigma (0, 1, 4, 5, 10, 11, 14)$$
  
 $F' = \Sigma (2, 3, 6, 7, 8, 9, 12, 13, 15)$   
 $F = \Pi (02, 3, 6, 7, 8, 12, 13, 15)$ 

| a b c d      | F |
|--------------|---|
| 0000         | 1 |
| 0001         | 1 |
| 0010         | 0 |
| 0011         | 0 |
| $0\ 1\ 0\ 0$ | 1 |
| 0101         | 1 |
| 0110         | 0 |
| 0111         | 0 |
| 1000         | 0 |
| 1001         | 0 |
| 1010         | 1 |
| 1011         | 1 |
| 1100         | 1 |
| 1 1 0 1      | 0 |
| 1110         | 1 |
| 1111         | 0 |
|              |   |

2) Convert each of the following to the other canonical form:

(a) 
$$F(x, y, z) = \Sigma(1, 3, 5) = \Pi(0, 2, 4, 6, 7)$$

**(b)** 
$$F(A, B, C, D) = \Pi(3, 5, 8, 11) = \Sigma(0, 1, 2, 4, 6, 7, 9, 10, 12, 13, 14, 15)$$

3) Write Boolean expressions and construct the truth tables describing the outputs of the circuits described by the logic diagrams in the following figures.



(a) 
$$y = a(bcd)'e = a(b' + c' + d')e$$

y = a(b' + c' + d')e = ab'e + ac'e + ad'e=  $\Sigma$ (17, 19, 21, 23, 25, 27, 29)

| a bcde | У | a bcde | у |
|--------|---|--------|---|
|        |   |        |   |
| 0 0000 | 0 | 1 0000 | 0 |
| 0 0001 | 0 | 1 0001 | 1 |
| 0 0010 | 0 | 1 0010 | 0 |
| 0 0011 | 0 | 1 0011 | 1 |
| 0 0100 | 0 | 1 0100 | 0 |
| 0 0101 | 0 | 1 0101 | 1 |
| 0 0110 | 0 | 1 0110 | 0 |
| 0 0111 | 0 | 1 0111 | 1 |
|        | 0 |        | 0 |
| 0 1000 | 0 | 1 1000 | 0 |
| 0 1001 | 0 | 1 1001 | 1 |
| 0 1010 | 0 | 1 1010 | 0 |
| 0 1011 | 0 | 1 1011 | 1 |
| 0 1100 | 0 | 1 1100 | 0 |
| 0 1101 | 0 | 1 1101 | 1 |
| 0 1110 | 0 | 1 1110 | 0 |
| 0 1111 | 0 | 1 1111 | 0 |
|        |   |        | 1 |

**(b)** 
$$y_1 = a \oplus (c + d + e) = a'(c + d + e) + a(c'd'e') = a'c + a'd + a'e + ac'd'e'$$

$$y_2 = b'(c + d + e)f = b'cf + b'df + b'ef$$

$$y_1 = a (c + d + e) = a'(c + d + e) + a(c'd'e') = a'c + a'd + a'e + ac'd'e'$$

$$y_2 = b'(c + d + e)f = b'cf + b'df + b'ef$$

4) Simplify the following Boolean expressions to a minimum number of literals:

(a) 
$$ABC + A'B + ABC' = AB + A'B = B$$

**(b)** 
$$x'yz + xz = (x'y + x)z = z(x + x')(x + y) = z(x + y)$$

(c) 
$$(x + y)'(x' + y') = x'y'(x' + y') = x'y'$$

(d) 
$$xy + x(wz + wz') = x(y + wz + wz') = x(w + y)$$

(e) 
$$(BC' + A'D)(AB' + CD') = BC'AB' + BC'CD' + A'DAB' + A'DCD' = 0$$

(f) 
$$(a'+c')(a+b'+c') = a'a + a'b' + a'c' + c'a + c'b' + c'c' = a'b' + a'c' + ac' + b'c' = c' + b'(a'+c')$$
  
=  $c' + b'c' + a'b' = c' + a'b'$ 

5) Find the complement of the following expressions:

(a) 
$$F' = (xy' + x'y)' = (xy')'(x'y)' = (x' + y)(x + y') = xy + x'y'$$

**(b)** 
$$F' = [(a+c)(a+b')(a'+b+c')]' = (a+c)' + (a+b')' + (a'+b+c')' = a'c' + a'b + ab'c$$

(c) 
$$F' = [z + z'(v'w + xy)]' = z'[z'(v'w + xy)]' = z'[z'v'w + xyz']'$$
  
 $= z'[(z'v'w)'(xyz')'] = z'[(z + v + w') + (x' + y' + z)]$   
 $= z'z + z'v + z'w' + z'x' + z'y' + z'z = z'(v + w' + x' + y')$ 

6) Given the Boolean functions  $F_1$  and  $F_2$ , show that:

(a) 
$$F_1 + F_2 = \sum m_{1i} + \sum m_{2i} = \sum (m_{1i} + m_{2i})$$

**(b)** 
$$F1$$
  $F2 = \sum m_i \sum m_j$  where  $m_i$   $m_j = 0$  if  $i \neq j$  and  $m_i$   $m_j = 1$  if  $i = j$ 

7) Implement the Boolean function F = xy + x'y' + y'z

(a)



**(b)** 



(c)



(d)





8) Simplify the following Boolean functions  $T_1$  and  $T_2$  to a minimum number of literals:

(a) 
$$T_1 = A'B'C' + A'B'C + A'BC' = A'B'(C' + C) + A'C'(B' + B) = A'B' + A'C' = A'(B' + C')$$

(b) 
$$T_2 = T_1' = A'BC + AB'C' + AB'C + ABC' + ABC$$
  
=  $BC(A' + A) + AB'(C' + C) + AB(C' + C)$   
=  $BC + AB' + AB = BC + A(B' + B) = A + BC$ 

$$\sum (3,5,6,7) = \Pi(0,1,2,4)$$

$$T_{1} = A'B'C' + A'B'C + A'BC'$$

$$A'B' \qquad A'C'$$

$$T_{1} = A'B' \ A'C' = A'(B' + C')$$

$$BC$$

$$T_2 = AC' + BC + AC = A + BC$$

9) Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

| Gate       |       | NAND<br>(Positive logic) |        | NOR<br>(Negative logic |    |
|------------|-------|--------------------------|--------|------------------------|----|
|            |       | (1 0011110               | 10810) | (1 togutive logic      |    |
| ху         | x y z |                          | z      | ху                     | z  |
| LL         | н     | 0 0                      | 1      | 1 1                    | 0  |
| LH         | Н     | 0 1                      | 1      | 10                     | 0  |
| $_{ m HL}$ | Н     | 10                       | 1      | 0 1                    | 0  |
| нн         | L     | 1 1                      | 0      | 0 0                    | 1  |
|            |       | NO                       | R      | NAN                    | ID |
| Gate       |       | (Positive                | logic) | (Negative logic        |    |
| ху         | z     | ху                       | z      | ху                     | z  |
| LL         | Н     | 0 0                      | 1      | 1 1                    | 0  |
| LH         | L     | 0 1                      | 0      | 10                     | 1  |
| HL         | L     | 10                       | 0      | 0 1                    | 1  |
| HH         | L     | 1 1                      | 0      | 0 0                    | 1  |

 $y_1 = \Sigma$  (2, 3, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35)

 $y_2 = \Sigma (3, 7, 9, 13, 15, 35, 39, 41, 43, 45, 47, 51, 55)$ 

| ab cdef | $y_1 y_2$ |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 00 0000 |           | 01 0000 |           | 10,0000 | 1 0       | 11 0000 |           |
| 00 0000 | 0 0       | 01 0000 | 0 0       | 10 0000 | 1 0       | 11 0000 | 0 0       |
| 00 0001 | 0 0       | 01 0001 | 0 0       | 10 0001 | 1 0       | 11 0001 | 0 0       |
| 00 0010 | 1 0       | 01 0010 | 1 0       | 10 0010 | 1 0       | 11 0010 | 0 0       |
| 00 0011 | 1 1       | 01 0011 | 1 0       | 10 0011 | 1 1       | 11 0011 | 0 1       |
| 00 0100 | 0 0       | 01 0100 | 0 0       | 10 0100 | 0 0       | 11 0100 | 0 0       |
| 00 0101 | 0 0       | 01 0101 | 0 0       | 10 0101 | 0 0       | 11 0101 | 0 0       |
| 00 0110 | 1 0       | 01 0110 | 1 0       | 10 0110 | 0 0       | 11 0110 | 0 0       |
| 00 0111 | 1 1       | 01 0111 | 1 0       | 10 0111 | 0 1       | 11 0111 | 0 1       |
|         |           |         |           |         |           |         |           |
| 00 1000 | 1 0       | 01 1000 | 1 0       | 10 1000 | 0 0       | 11 1000 | 0 0       |
| 00 1001 | 1 1       | 01 1001 | 1 0       | 10 1001 | 0 1       | 11 1001 | 0 0       |
| 00 1010 | 1 0       | 01 1010 | 1 0       | 10 1010 | 0 0       | 11 1010 | 0 0       |
| 00 1011 | 1 0       | 01 1011 | 1 0       | 10 1011 | 0 1       | 11 1011 | 0 0       |
| 00 1100 | 1 0       | 01 1100 | 1 0       | 10 1100 | 0 0       | 11 1100 | 0 0       |
| 00 1101 | 1 1       | 01 1101 | 1 0       | 10 1101 | 0 1       | 11 1101 | 0 0       |
| 00 1110 | 1 0       | 01 1110 | 1 0       | 10 1110 | 0 0       | 11 1110 | 0 0       |
| 00 1111 | 1 1       | 01 1111 | 1 0       | 10 1111 | 0 1       | 11 1111 | 0 0       |

10) Determine whether the following Boolean equation is true or false.

$$x'y' + x'z + x'z' = x'z' + y'z' + x'z$$

→ The solution is not provided in the manual.