Introduction

Charles Pontonnier charles Pontonnier charles.pontonnier@ens-rennes.fr

https://github.com/cpontonn/2SEP

Télécharger, ouvrir et exécuter

[Pouliquen2015]

[Pontonnier2019]

[Chander2022]

- Prévention des blessures/troubles musculosquelettiques
- > Améliorer la performance
- Suivi de la rééducation
- Diagnostic clinique ...

Ergonomie

Obtenir des données biomécaniques à partir du mouvement humain

Obtenir des données biomécaniques à partir du mouvement humain

Intérêts scientifiques

Les équations du mouvement

Quantités d'accélération d'un ensemble de solides = {Efforts connus et inconnus qui agissent sur cet ensemble }

Solide simple

$$m\ddot{x} = F$$

$$H(q)\ddot{q} + C(q,\dot{q})\dot{q} = f_e + RF$$

 $f(q, \dot{q}, \ddot{q})$ Issu de la cinématique inverse

Pesanteur /

Forces de réaction au sol

Efforts musculaires
Efforts ligamentaires
Efforts inter-segmentaires

Modélisation du contrôle

Modélisation musculaire

 $\min f(\mathbf{F})$ F, λ

$$H(q)\ddot{q} + C(q,\dot{q})\dot{q} = f_e + RF + K^t\dot{\lambda}$$

$$h(F) \neq 0$$

Modélisation ostéo-articulaire

Redondance len(F) > len(q)

Personnalisation des modèles

moteur

Modélisation des forces d'interaction

Modélisation de la topologie musculaire

Acteurs du domaine

Académique, Open Source Releases régulières depuis 2007

- + Communauté internationale
- + Equipe support active
- + Applications multiples
- Cœur de simulation limité
- Prise en main complexe

Industriel, licence payante Releases régulières depuis 2006

- + Cœur de simulation performant
- + Développement professionnel
- Applications industrielles
- Code fermé
- Prise en main très complexe

Académique, Open Source
Releases régulières depuis 2019

- + Cœur de simulation performant
- + Prise en main facile
- + Produit local
- Matlab
- Bcp de développements parallèles

15

Données expérimentales: mouvement

Capture opto-électronique

Données expérimentales: mouvement

Markerless

Kinect Azur

2SEP - Musculo

17

Données expérimentales: forces

Capteurs de force

Plateformes de force

Données expérimentales: activité musculaire

Electromyographie

- Activité électrique (ou mécanique) des muscles
- Classiquement voltage entre 2 points de mesure sur le chef musculaire

SENIAM, recommandations pour le placement d'électromyogrammes

Mise à l'echelle des modèles

Géométrique

Longueurs segmentaires, Axes d'articulations

Inertielle

Masse et inertie des segments

Musculaire

Paramètres de génération d'effort des muscles

Mesure de force

Imagerie médicale

20

Capture de mouvement

Verrous d'usage

Editer, assembler des modèles

Logiciels experts, complexes à prendre en main

Dépendance aux entrées

Mise à l'échelle et personnalisation des modèles

Analyse de mouvement par méthode dite de « dynamique inverse » :

Analyse de mouvement par méthode dite de « dynamique inverse » :

Analyse de mouvement par méthode dite de « dynamique inverse » :

Analyse de mouvement par méthode dite de « dynamique inverse » :

Détermination des couples articulaires λ

$$M\ddot{q} + C\dot{q} + Kq + \lambda + E = 0$$

Algorithme récursif de Newton-Euler

$$f_i = f_i^B - f_i^x + \sum_{j \in \mu(i)} f_i$$

Utilisation des plateformes de force

Analyse de mouvement par méthode dite de « dynamique inverse » :

Analyse de mouvement par méthode dite de « dynamique inverse » :

Analyse de mouvement par méthode dite de « dynamique inverse » :

Modélisation biomécanique (rappels)

Modèle musculo-squelettique

Système polyarticulé actionné par des muscles

Description ostéoarticulaire [Kajita2009]

Description musculaire

A partir de l'anatomie

Segment

Solide rigide (indéformable) défini par une géométrie, un ou plusieurs repères et des propriétés inertielles (masse, centre de masse, inertie)

Un Cylindre...

Repère associé $R_S(O_S, \vec{x}_S, \vec{y}_S, \vec{z}_S)$

Paramètres géométriques l_S , r_S

Paramètres inertiels

 C_S centre de masse du solide m_S masse du solide

$$\bar{\bar{I}}(C_S,S) = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix} \text{Matrice d'inertie du solide définie au centre de masse exprimée dans la base associée au solide }_{(\vec{x}_S,\vec{y}_S,\vec{z}_S)}$$

Pour un cylindre

$$\bar{I}(C_S, S) = m_S \begin{bmatrix} \frac{r_S^2}{4} + \frac{l_S^2}{12} & 0 & 0 \\ 0 & \frac{r_S^2}{4} + \frac{l_S^2}{12} & 0 \\ 0 & 0 & \frac{r_S^2}{2} \end{bmatrix}_{(\vec{x}_S, \vec{y}_S, \vec{z}_S)}$$

La plupart des segments corporels...

- Ont une forme allongée
- Peuvent être approximés par une géométrie simple
- Ont des propriétés inertielles que l'on peut supposer homogènes

Articulation

Liaison mécanique entre deux solides rigides autorisant une mobilité définie par des degrés de liberté. Elle est définie par un torseur cinématique résumant ses degrés de liberté

La liaison entre S_1 et S_2 est une liaison pivot

Elle permet la mobilité de S_2 par rapport à S_1 en autorisant une rotation autour de \vec{z}_1 : un degré de liberté que l'on peut ici appeler q_1 (angle articulaire)

Le torseur cinématique de S_2 par rapport à S_1 peut s'écrire en O_2 (appartenant à l'axe de rotation)

$$\{V(S_2/S_1)\} = \left\{ \begin{matrix} \dot{q}_1 \vec{z}_1 \\ \vec{0} \end{matrix} \right\}_{o_2} = \left\{ \begin{matrix} 0 & 0 \\ 0 & 0 \\ \dot{q}_1 & 0 \end{matrix} \right\}_{O_2}$$

Quelles articulations dans le corps humain?

La plupart des articulations...

- Peuvent être décomposées en plusieurs liaisons simples
- Peuvent être approximées par des liaisons pivot

Notion de base

• Les solides ne bougent pas librement dans l'espace...

On fixe le premier solide de la chaine

Objectif visé -> éléments à modéliser

Objectif visé -> Choix de modélisation

Choix des segments et des articulations

- -analyse de la structure osseuse
- -analyse des mobilités fonctionnelles

Analyses Macro (marche, course, saut...)

->rarement de détail (orteils, os sésamoïdes, os plats...)

Analyses 2D

-> ok en première approche pour les mouvements avec une direction principale (course, saut en longueur,...)

Modèle biomécanique simple membres inférieurs

Quelques éléments anthropométriques

Tables anthropométriques

Dempster, W. T. "Space Requirements of the Seated Operator," WADC-TR-55-159, Wright Patterson Air Force Base, 1955.

Dempster, W. T., W. C. Gabel, and W. J. L. Felts. "The Anthropometry of Manual Work Space for the Seated Subjects," Am. J. Phys. Anthrop. 17:289–317, 1959.

Winter, D. A. (2009). *Biomechanics and motor control of human movement*. John Wiley & Sons.

2SEP - Musculo

Tables inertielles

Journal of Biomechanics

Volume 29, Issue 9, September 1996, Pages 1223-1230

JOURNAL OF BIOMECHANICS

Journal of Biomechanics 40 (2007) 543-553

www.elsevier.com/locate/jbiomech www.JBiomech.com

Technical note

Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters

Paolo de Leva *

Adjustments to McConville et al. and Young et al. body segment inertial parameters

R. Dumas*, L. Chèze, J.-P. Verriest

Laboratoire de Biomécanique et Modélisation Humaine, Université Claude Bernard Lyon 1 – INRETS, Bâtiment Omega, 43 Boulevard du 11 novembre 1918, 69 622 Villeurbanne cedex, France

Accepted 21 February 2006

Mise en œuvre (Dumas et al. 2006)

Quelles conventions de repérage ?

Plans et axes anatomiques

Définitions anatomiques

Repérage et paramétrage

0021-9290(95)00017-8

ISB RECOMMENDATIONS FOR STANDARDIZATION IN THE REPORTING OF KINEMATIC DATA

Ge Wu and Peter R. Cavanagh

The Center for Locomotion Studies, Penn State University, University Park, PA 16802, U.S.A.

Journal of Biomechanics
Volume 35, Issue 4, April 2002, Pages 543-548

FISEVIER

Journal of Biomechanics Volume 38, Issue 5, May 2005, Pages 981-992

Letter to the editor

ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine

Ge Wu ^a \times \boxtimes , Sorin Siegler ^{b, 1}, Paul Allard ^{c, 1}, Chris Kirtley ^{d, 1}, Alberto Leardini ^{e, 1, 2}, Dieter Rosenbaum ^{f, 1}, Mike Whittle ^{g, 1}, Darryl D D'Lima ^{h, 2}, Luca Cristofolini ^{i, 2}, Hartmut Witte ^{j, 2}, Oskar Schmid ^{k, 2}, Ian Stokes ^{l, 3}

ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand

Ge Wu ^a A ¹ M, Frans C.T. van der Helm ^{b, 2}, H.E.J. (DirkJan) Veeger ^{c, d, 2}, Mohsen Makhsous ^{e, 2}, Peter Van Roy ^{f, 2}, Carolyn Anglin ^{g, 2}, Jochem Nagels ^{h, 2}, Andrew R. Karduna ^{i, 2}, Kevin McQuade ^{j, 2}, Xuguang Wang ^{k, 2}, Frederick W. Werner ^{l, 3, 4}, Bryan Buchholz ^{m, 3}

Show more V

Conventions de repérage des segments corporels et de paramétrage des mobilités

Exemples

Liaison gléno-humérale

- **y** longitudinal
- x antéro-postérieur la plupart du temps
- **z** transverse (médio-latéral)

Repérage tibia-fibula & calcaneus

Fil rouge

1 sujet (1m77, 85.5kg, niveau régional)
Mocap en situation controlée
Scaling
Cinématique
Prédiction des efforts au sol
dynamique inverse sous CusToM
3 essais

/ Ime. 0.000000

Sorel, A., Plantard, P., Bideau, N., & Pontonnier, C. (2019). Studying fencing lunge accuracy and response time in uncertain conditions with an innovative simulator. Plos One, 14(7), e0218959.

Morin, P., Muller, A., Pontonnier, C., & Dumont, G. (2021, July). Studying the impact of internal and external forces minimization in a motion-based external forces and moments prediction method: application to fencing lunges. In ISB 2021-XXVIII Congress of the International Society of Biomechanics (p. 1).

Plantard, P., Sorel, A., Bideau, N., & Pontonnier, C. (2017). Motion adaptation in fencing lunges: a pilot study. Computer methods in biomechanics and biomedical engineering, 20(sup1), S161-S162.

Pontonnier, C., Livet, C., Muller, A., Sorel, A., Dumont, G., & Bideau, N. (2019). Ground reaction forces and moments prediction of challenging motions: fencing lunges. Computer methods in biomechanics and biomedical engineering, 22(sup1), S523-S525.

SEP - Musculo

Fil rouge

Fil rouge

128 lunges:	Randomized order
Closed tasks	3 rép x 4 pos init x 2 Ø = 24
Opened tasks	3 rép x 4 pos init x 3 pos finale x 2 \emptyset = 72
Opened/closed tasks	2 rép x 4 pos init x 2 Ø x 2 ouverte/fermée = 32

Objectif du TP

- Etudier la nature des données d'entrée
- Réaliser une analyse cinématique et dynamique du mouvement de fente
- Etudier l'adaptation cinématique du bras armé
- Extraire et évaluer le couple de flexion du genou de la jambe d'appui

Analyse par dynamique inverse

Focus: calibration géométrique

Modèle osteo-articulaire

Repérage des solides aux centres articulaires

Paramétrage articulaire

Paramètres géométriques

- Marqueurs expérimentaux
- Marqueurs du modèle
 - Vecteur des coordonnées articulaires

Pleins d'autres repérages/paramétrages possibles!

Calibration géométrique

Calibrer les longueurs de segments, les positions des marqueurs, les axes de rotation

A partir d'imagerie

Kainz et al., 2016

A partir de modèles cadavériques

Carbone et al., 2015

Horsmann et al., 2007

A partir de capture de mouvement Mise à l'échelle individuelle des segments

Sur une unique pose

Delp et al. 2007 Ding et al. 2019; Nolte et al. 2020

Mise à l'échelle par optimisation

Sur <u>plusieurs poses</u>

Van den Bogert et al. 1994 Andersen et al. 2010; Lund et al. 2015

Minimisation des distances entre les marqueurs des modèles et les marqueurs expérimentaux

Limite les erreurs dues aux placements de marqueurs et aux artefacts de tissus mous

CusToM, Mullet et al.., 2019

Focus: optimisation cinématique multicorps

Modèle osteo-articulaire

Repérage des solides aux centres articulaires

Paramétrage articulaire

Paramètres géométriques

- Marqueurs expérimentaux
- Marqueurs du modèle
 - Vecteur des coordonnées articulaires

Pleins d'autres repérages/paramétrages possibles!

$$\min_{\boldsymbol{q} \in Q} \sum_{i=1}^{m} (|\boldsymbol{x}_{exp}^{i}) - (\boldsymbol{x}_{mod}^{i}(\boldsymbol{q})|)^{2}$$

tel que
$$h(q) = 0$$

$$\min_{\boldsymbol{q} \in Q} \sum_{i=1}^{m} (|\boldsymbol{x}_{exp}^{i}) - (\boldsymbol{x}_{mod}^{i}(\boldsymbol{q})|)^{2}$$

tel que
$$h(q) = 0$$

$$\min_{\boldsymbol{q} \in Q} \sum_{i=1}^{m} (|\boldsymbol{x}_{exp}^{i}) - (\boldsymbol{x}_{mod}^{i}(\boldsymbol{q})|)^{2}$$

tel que
$$h(q) = 0$$

$$\min_{\boldsymbol{q} \in Q} \sum_{i=1}^m \|\boldsymbol{x}_{exp}^i - \boldsymbol{x}_{mod}^i(\boldsymbol{q})\|^2$$
 tel que $\boldsymbol{h}(\boldsymbol{q}) = \boldsymbol{0}$

Avec un algorithme d'optimisation adapté (SQP, Levenberg-Marquardt)

De nombreuses méthodes concurrentes (estimateur type Kalman étendu, machine learning...)

2SEP - Musculo

65

Begon, M., Andersen, M. S., & Dumas, R. (2018). Multibody kinematics optimization for the estimation of upper and lower limb human joint kinematics: a systematized methodological review. Journal of biomechanical engineering, 140(3), 030801.

Bonnet, V., Richard, V., Camomilla, V., Venture, G., Cappozzo, A., & Dumas, R. (2017). Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model. *Journal of biomechanics*, 62, 148-155.

Fohanno, V., Begon, M., Lacouture, P., & Colloud, F. (2014). Estimating joint kinematics of a whole body chain model with closed-loop constraints. *Multibody System Dynamics*, *31*(4), 433-449.

Livet, C., Rouvier, T., Sauret, C., Pillet, H., Dumont, G., & Pontonnier, C. (2022). A penalty method for constrained Multibody kinematics optimisation using a Levenberg-Marquardt algorithm. *Computer Methods in Biomechanics and Biomedical Engineering*.

Dynamique inverse

- Calcul des couples articulaires
- Classiquement algorithme de Newton-Euler

$$f_i = f_i^B - f_i^x + \sum_{j \in \mu(i)} f_i$$

Mesure des forces de réaction

Focus: Algorithme de Newton-Euler

Dynamique d'un système de solides rigides polyarticulés (sans contrainte)

Soit un système de n_b solides polyarticulés avec n_q liaisons

Paramètres inertiels (m_i, CoM_i, I_i)

Quantités d'accélération

Equilibre d'un solide S

Equilibre d'une chaine de solides

Equilibre d'une chaine de solides

Newton-Euler

Newton-Euler

Newton-Euler

Featherstone, R. (2014). Rigid body dynamics algorithms. Springer.

Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. J. (2007). Model-based estimation of muscle forces exerted during movements. *Clinical biomechanics*, *22*(2), 131-154.

Van Den Bogert, A. J., & Su, A. (2008). A weighted least squares method for inverse dynamic analysis. *Computer methods in biomechanics and biomedical engineering*, 11(1), 3-9.

Mes cours en vidéo https://youtu.be/VThk5yo-zOo

Cinématique inverse

Focus: Prédiction des forces de réaction

Modèle de contact

Points anatomiques définis sur le pied comme des « points de contact »

On limite la force max par point de contact

On définit des seuils pour la détection du contact (position et vitesse)

Généralisable à toutes les parties du corps potentiellement en contact

Méthode

$$\min_{\boldsymbol{f_e}} \sum_{i=1}^{2N_f} \|\boldsymbol{F_i}\|^2$$

On minimise la somme de la norme des forces au carré en chaque point de contact

s. t.
$$\begin{cases} M_S(q)\ddot{q} + C_S(q,\dot{q}) + G_S(q) + f_e = \mathbf{0} \\ \forall i \in [1,2(N_f + N_h)], \mathbf{F}_i < \mathbf{F}_{imax} \end{cases}$$
 En respectant l'équilibre dynamique et les forces maximales disponibles p

et les forces maximales disponibles par point de contact

Des méthodes concurrentes (machine learning, répartitions analytiques)

Méthodes « aidées » (semelles de pression etc...)

Encore mieux

Demestre, L., Morin, P., May, F., Bideau, N., Nicolas, G., Pontonnier, C., & Dumont, G. (2022). Motion-based ground reaction forces and moments prediction method for interaction with a moving and/or non-horizontal structure. *Journal of Biomechanical Engineering*.

Prédiction des forces de réaction

R. Fluit, M. S. Andersen, S. Kolk, N. Verdonschot, and H. F. Koopman, "Prediction of ground reaction forces and moments during various activities of daily living," Journal of biomechanics vol. 47, no. 10, pp. 2321–2329, 2014

S. Skals, M. K. Jung, M. Damsgaard, and M. S. Andersen, "Prediction of ground reaction forces and moments during sports-related movements," Multibody system dynamics, vol. 39, no. 3,pp. 175–195, 2017

Muller, A., Pontonnier, C., & Dumont, G. (2019). Motion-based prediction of hands and feet contact efforts during asymmetric handling tasks. *IEEE Transactions on Biomedical Engineering*, 67(2), 344-352.

Muller, A., Pontonnier, C., Robert-Lachaine, X., Dumont, G., & Plamondon, A. (2020). Motion-based prediction of external forces and moments and back loading during manual material handling tasks. *Applied ergonomics*, 82, 102935.

Demestre, L., Morin, P., May, F., Bideau, N., Nicolas, G., Pontonnier, C., & Dumont, G. (2022). Motion-based ground reaction forces and moments prediction method for interaction with a moving and/or non-horizontal structure. *Journal of Biomechanical Engineering*.

Focus: Estimation des efforts musculaires

Système musculotendineux

- Tissu tendineux passif
- Tissu musculaire actif

d'après Benjamin Cummings (2001)

Sarcomère

Les ions calcium désinhibent l'interaction actinemyosine

La force active (longueur) est générée par les ponts d'union actine-myosine

La force passive est générée par l'allongement de la titine

La force active (vitesse) est générée par la difference entre la Vitesse de contraction du sarcomere et le taux de creation des ponts d'union actine-myosine

Muscle strié squelettique

Les sarcomères sont assemblés en série (myofibrilles) et en parallèle -> comportement similaire à l'échelle du muscle

La force active (longueur) est générée par les ponts d'union actine-myosine

Sarcomere length La force passive est générée par l'allongement de la titine

La force active (vitesse) est générée par la difference entre la Vitesse de contraction du sarcomere et le taux de creation des ponts d'union actine-myosine

Modèle musculaire

Modèle de génération d'effort

$$F_{m,j} = \left[f_p\left(\overline{l}_{m,j}\right) + f_a\left(a_j, \overline{l}_{m,j}, \dot{\overline{l}}_{m,j}\right) \right] F_{o,j}$$

Loi visco-élastique

Modèle musculaire

Dynamique d'activation

$$\dot{e}_j = (u_j - e_j)/\tau_{ne}$$

$$\dot{a}_j = \begin{cases} (e_j - a_j)/\tau_{act} &, e_j \ge a_j \\ \\ (e_j - a_j)/\tau_{deact} &, e_j < a_j \end{cases}$$

Géométrie musculaire

[Puchaud 2020] [Livet 2022] [Rouvier 2023]

Modélisation du chemin musculaire

Les muscles sont divisés en chefs artificiels (indépendamment de leurs chefs anatomiques)
Chaque chef est défini par une origine, une insertion et des éléments de chemin représentant les obstacles (os, tissus mous, volume du muscle)

Musculo

[Gatti2009]

Objets de contournement (wraps)

Problème du plus court chemin contournant un ou plusieurs obstacles Méthodes discrètes + rapides, obstacles multiples, applicables directement aux meshes - discontinu (dérivation), mise à l'échelle Méthodes explicites + dérivées continues - géométries simples, obstacles multiples, mise à l'échelle Quid de la mise à l'échelle ?

Scholz, A. (2016). Fast differential-geometric methods for continuous muscle wrapping over multiple general surfaces (Doctoral dissertation, Duisburg, Essen, 2016).

Points de passage systématiques

[Livet et al. 2022]

Chemin musculaire générique et systématique sans obstacle

Influence du modèle ostéoarticulaire : 2 points de passage par articulation

Livet, C., Rouvier, T., Dumont, G., & Pontonnier, C. (2022). An Automatic and Simplified Approach to Muscle Path Modeling. *Journal of Biomechanical Engineering*, 144(1), 014502.

Résolution

Redondance musculaire

Minimiser une fonction de cout représentant un principe moteur

$$\min f(F) \xrightarrow{\text{classiquement}} f(F) = \sum_{n} \left(\frac{F_{m_i}}{F_{max_i}}\right)^p$$
 s.t. $\pmb{\tau} = \pmb{R}\pmb{F}$
$$F_{min_i} < F_{m_i} < F_{max_i}$$

Plus p est grand, plus les muscles agissent en synergie Plus p est petit, plus les muscles les plus puissants sont recrutés en priorité

Critères pour le choix de la fonction de coût

- Pas de consensus sur la fonction la mieux adaptée
- L'existence d'un critère (« vrai ») unique pour différentes tâches reste une question ouverte en analyse du mouvement humain
- Critère acceptable → reflet de la stratégie du SNC

101

Critère polynomial

• Plusieurs tentatives de calculer les forces musculaires à l'aide de fonction de coût polynomiales :

$$G(\mathbf{f}^{(\mathbf{M})}) = \sum_{i=1}^{n^{(\mathbf{M})}} \left(\frac{f_i^{(\mathbf{M})}}{N_i}\right)^p$$

G dépend de la force musculaire et pas de la réaction

Les grands muscles travaillent plus que les petits

Ni facteurs de normalisation : ex : PCSA, limite de force musculaire Fmax, etc.

- (Rohrle et al., 1984); (Crowinshield et al., 1978) : p=1
 - → Minimisation de la somme des forces musculaires
- (Pedotti et al., 1978); (Herzog, 1987), (Happee, 1994) : p=2
 - → Minimisation de la somme des contraintes musculaires
- (Crowinshield et Brand, 1981): p=3

Les critères polynomiaux sont nécessitent des contraintes supplémentaires sur les forces musculaires pour éviter d'avoir des valeurs au-delà des limites physiologiques

→ Ces contraintes induisent des variation brutales des forces musculaires calculées

Critères polynomiaux

→ Nécessité de contraintes supplémentaires sur les forces musculaires pour éviter d'avoir des valeurs audelà des limites physiologiques

Estimation des efforts musculaires

Rasmussen, J., Damsgaard, M., & Voigt, M. (2001). Muscle recruitment by the min/max criterion—a comparative numerical study. *Journal of biomechanics*, *34*(3), 409-415.

Buchanan, T. S., Lloyd, D. G., Manal, K., & Besier, T. F. (2004). Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. *Journal of applied biomechanics*, *20*(4), 367.

Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. J. (2007). Model-based estimation of muscle forces exerted during movements. *Clinical biomechanics*, 22(2), 131-154.

Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J., & Delp, S. L. (2018). Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. *Journal of biomechanics*, 81, 1-11.

Muller, A., Pontonnier, C., & Dumont, G. (2018). The MuslC method: a fast and quasi-optimal solution to the muscle forces estimation problem. *Computer methods in biomechanics and biomedical engineering*, 21(2), 149-160.

Dao, T. T. (2019). From deep learning to transfer learning for the prediction of skeletal muscle forces. *Medical & biological engineering & computing*, *57*(5), 1049-1058.

Conclusions

Une présentation riche et solide

De nombreux outils existants et exploitables

De nombreux challenges à relever:

- Nouveaux outils de capture
- Mise à l'échelle des modèles
- Sortir du laboratoire
- Accélérer les process
- Exploiter l'interaction avec l'environnement/le matériel (cosimulation)
- Valider...

Mise en pratique: analyses de fentes en escrime