Chapter 2

8 / 1 / 2024

The Peano Axioms (God help us)

The natural numbers are the elements of the set $N := \{0, 1, 2, 3, 4, \dots\}$

The Axioms

- 1. 0 is a natural number
- 2. if n is a natural number, then n + + is also a natural number
- 3. $\forall n \in \mathbb{N}, n + + \neq 0$
- 4. $\forall n, m \in \mathbb{N}, n + + = m + + \rightarrow n = m$
- 5. *Induction:* P(n) is a property of a natural number n, $P(0) \land P(n++) \rightarrow P(n)$ is true for all $n \in N$

Induction

At least while we only look at the natural numbers, proving P(0), assuming $P(n) \forall n \in N$ and proving P(n++) proves P(n).

From what I get, we can do this because once $P(0) \land P(n++)$, P(0++indefinite times) becomes true.

Recursive definitions

Recursive definitions generate a sequence based on a function. An initial value, a_0 is defined, and the rest of the sequence is defined as $a_{n++} := f(a_n)$. Each element of the sequence will now have a unique value, which in turn produces a unique value, the output of f for the next element of the sequence.

Addition

- Only for $N \to N$, obviously.

$$m \in N$$

 $0 + m := m$

Assume inductively that $n + m, n \in N$ is defined.

We now define (n + +) + m := (n + m) + +We can now recursively "count".

Note that 3 + 5 involves counting 5 times, while 5 + 3 involves counting 3 times.

Lemma 2.2.2 $\forall n \in \mathbb{N} n + 0 = n$

We cannot just prove this from the definition of addition, as its in reverse.

Proof:

We use induction.

Base case: 0 + 0 = 0, we *can* get this one by definition.

We now suppose inductively that n + 0 = n.

By definition. n+++0=(n+0)++, which =n++ since we have assumed inductively that (n+0)=n.

This concludes the proof.

Lemma 2.2.3 $\forall n, m \in \mathbb{N}, n + (m + +) = (n + m) + +$

Proof:

We keep m fixed.

Consider n = 0, $\rightarrow 0 + (m + +) = (0 + m) + +$. We know this is true by definition.

We assume what we are trying to prove is true. Now we must show that (n++)+(m++)=((n++)+m)++.

By definition of addition we have that the left side is (n + (m++)) + +. By the inductive hypothesis we have assumed that this = ((n + m) + +) + +.

The right side then becomes (n+m)++++, which = ((n+m)++)++. This concludes the induction.

Proposition 2.2.4 $\forall n, m \in \mathbb{N}, n + m = m + n$ (Conmutativity)

Proof:

We keep m fixed. This lets us prove the base case (0 + m = m + 0) by definition. We now suppose that n + m = m + n and have to prove (n + +) + m = m + (n + +).

Left side By definition of addition we get (n + +) + m = (n + m) + +.

Right side By Lemna 2.2.3, we get m + (n + +) = (m + n) + +, but by our previous assumption, n + m = m + n and $\therefore ((m + n) + +) = (n + m) + +$

Proposition 2.2.5 $\forall a, b, c \in \mathbb{N}, (a+b)+c=a+(b+c)$ (Asociativity)

Proof: Exercise 2.2.1

Hint: Modify proofs of 2.2.2, 2.2.3 & 2.2.4

something something inductive assumption \rightarrow both sides = (a + b + c) + +

Let us induct on a.

Base case: a = 0

$$a = 0 \rightarrow \underline{(0+b)} + c = 0 + (b+c)$$

By definition of addition: $b + c = b + c \square$

Induction: Assume (a + b) + c = a + (b + c)

Prove: (a++b)+c=a++(b+c) By definition of addition: (a+b)++c=a++(b+c) Same thing: (a+b)++c=(a+(b+c))++ One more time: ((a+b)+c)++=(a+(b+c))++

We have already assumed associativity. (a+b+c)++=(a+b+c)++

Proposition 2.2.6 (Cancellation law)

Let $a, b, c \in \mathbb{N} \ni a + b = a + c$. $\Rightarrow b = c$

· We don't have subtraction

· But this does the job and also helps define the integers later

Proof

We induct on a.

Base case: a = 0

 $a = 0 \rightarrow 0 + b = 0 + c$

By definition of addition:

Induction: Assume $a + b = a + c \rightarrow b = c$

Prove: (a++) + b = (a++) + c

By definition of addition: (a + b) + + = (a + c) + +

By Axiom 4: (a + b) = (a + c)

We assume cancelation $b = c \square$

Definition 2.2.7 (Positive natural numbers)

 $n \in \mathbb{N} \iff n \neq 0$

Proposition 2.2.8

$$a \in \mathbb{N} \ \land \ b \in \mathbb{N} \rightarrow (a+b) \in \mathbb{N}$$

Proof:

We induct on b.

Base case: b = 0

$$b = 0 \longrightarrow a + 0 = a$$
$$a \in \mathbb{N} \qquad \Box$$

Induction: Assume $a \in \mathbb{N} \land b \in \mathbb{N} \rightarrow (a+b) \in \mathbb{N}$

Prove: $a + (b + +) \in \mathbb{N}$

By Lemna 2.2.3 a + (b + +) = (a + b) + +

By Axiom 3: $(a + b) + + \neq 0$

Corollary 2.2.9

$${a,b} \in \mathbb{N} \land a+b=0 \rightarrow a=0 \land b=0$$

Proof

If a or $b \neq 0$ (are positive), by Proposition 2.2.8 (and conmutativity) $a+b \in \mathbb{N}$, by contradiction, a, b = 0.

Lemma 2.2.10

$$a \in \mathbb{N} \to \exists | b \in \mathbb{N} \text{ s.t. } (b++) = a$$

Proof: Exercise 2.2.2

Hint: Use indiction. (The induction hypotesis is not actually used, but that doesn't undermine the validity of the argument)

We induct on b.

Base case: b = 0

$$b = 0 \rightarrow 0 + + = 1 \rightarrow a = 1$$

By Axiom 3: $a \in \mathbb{N} \square$

Induction: Assume $a \in \mathbb{N}$

Prove:
$$(b++)++=a \rightarrow a \in \mathbb{N}$$

By Axiom 3:
$$(b++), (b++)++\neq 0 \to (b++)++\in \mathbb{N} \to a \in \mathbb{N} \square???????$$

Definition 2.2.1: Ordering of ℕ

$$n \ge m \iff \exists a \ s.t. \ n = m + a$$

$$n > m \iff n \ge m \land n \ne m$$

Proposition 2.2.12: (Basic properties of the natural nubers)

(a).
$$x \ge x$$

Def. Addition:
$$x + 0 = x$$

$$\therefore a = 0 \rightarrow x \ge x$$

(b).
$$a \ge b \land b \ge c \rightarrow a \ge c$$

$$a = b + n_1; b = c + n_2$$

$$a=c+n_1+n_2$$

(c).
$$a \ge b \land b \ge a \rightarrow a = b$$

$$a = b + n_1; \ b = a + n_2$$

$$a = a + n_2 + n_1$$

Asso. & Def. Addition: $a + 0 = a + (n_2 + n_1)$

Cancelation law: $(n_2 + n_1) = 0$ Collary 2.2.9: $n_1, n_2 = 0$

Def. Addition: $a = b + 0 \rightarrow a = b$

(d).
$$a \ge b \iff a + c \ge b + c$$

$$a+c \ge b+c \rightarrow a+c=b+c+n_1$$

Cancellation law: $a = b + n_1 :: a \ge b$???

(e).
$$a < b \iff a + + \le b$$

$$a++ \geq b \rightarrow a++ + n_1 = b$$

Def. Addition: a + + = a + 1

 $n_2 = n_1 + 1 \rightarrow a + n_2 = b$

Def > 1 $n_2 > 0$

a < b

(f). $a < b \iff b = a + d \land d \in \mathbb{N}+$

Proposition 2.2.12 e: $a + + \le b$ Def. Addition $a+1 \leq b$ Def. < $a + 1 + n_1 = b$ Def. Addition $a + (n_1 + +) = b$ Axiom 2.3 $(n_1 + +) \neq 0$ Def. Positive n_1 is positive

Proposition 2.2.13: Trichotomy of order for natural numbers

$$a, b \in \mathbb{N} \rightarrow (a < b \lor a = b \lor a > b)$$

1. $a = 0 \rightarrow a \le b \ \forall b \ (why?)$ Induction.

$$b = 0$$
 $0+0=b$
 $b++$ $0+n_1=b++$
 $\forall b++, n_1=b++$ or something like that

2. $a > b \rightarrow a + + > b \text{ (why?)}$

Proposition 2.2.12 f: $a = b + n_1, n_1$ is positive Axiom 2.4: $a + + = (b + n_1) + +$ $a + + = b + (n_1 + +)$ $n_1 + + i \cdot n_2 = n_3$ Associativiy Axiom 2.3:

Proposition 2.2.12 f: a + + > b

3. $a = b \rightarrow a + + > b \text{ (why?)}$

Def. Addition: a++=b++=a+1

Proposition 2.2.14: Strong principle of induction Let m_0 be some natural number and P(m) be a property of an arbetrary natural number m. Suppose that $\forall m \geq m_0 : P(m') \ \forall \ m_0 \leq m' < m \rightarrow P(m)$. It can then be concluded that $P(m) \forall m \geq m_0$.

Proof: Let Q(n) be the property that $P(m) \forall m_0 \le m < n$. The hypothesis can now be re-written as: $Q(n) \rightarrow P(n)$.

> Base case: n = 0Im not proving this:

∄m s.t. $m_0 ≤ m < 0$

Assume $Q(n) \rightarrow P(n)$. **Prove** Q(n++)

 $Q(n) \wedge P(n) \rightarrow$ $P(m) \ \forall \ m_0 \leq m \leq n$ Proposition 2.2.12 e: $P(m) \ \forall \ m_0 \leq m < n + +$

Def. Q(n)Q(n++)