Chapitre 2 - Généralités sur les fonctions

Compétence : Utiliser l'expression algébrique d'une fonction

Exercice 1: Définition

On définit la fonction suivante :

$$f: [-3; 10] \to \mathbb{R}$$
$$x \mapsto x^2 + 4x + 2$$

1. Quel est le nom de la fonction?

Il s'agit de la fonction f.

2. Quel est son ensemble de définition?

L'ensemble de définition de la fonction f est $D_f = [-3; 10]$

3. Comment s'appelle x ?

x est un antécédent de f(x) par la fonction f.

4. Comment s'appelle f(x)?

f(x) est l'image de x par la fonction f.

Exercice 2 : Grandeur et fonction

En physique et en chimie, on rencontre souvent des formules littérales qui traduisent une relation entre plusieurs grandeurs numériques.

Dans chacun des cas suivants, donner une phrase de la forme : « La grandeur ... est exprimée en fonction de ... ».

a) $v = \frac{d}{t}$	a) $v=rac{d}{t}$ La grandeur v (vitesse) est exprimée en fonction de t (temps).					
b) $U = RI$	La grandeur U (tension) est exprimée en fonction de I (intensité)					
c) $P = UI$ La grandeur P (puissance) est exprimée en fonction de I (intensité) et U (tention)						
d) $P = mg$ La grandeur P (poids) est exprimée en fonction de m (masse)						
e) $E = \frac{1}{2}mv^2$	La grandeur E (énergie cinétique) est exprimée en fonction de $m{m}$ (masse) et $m{v}$ (vitesse)					

Exercice 3: Expression algébrique

Déterminer l'expression algébrique de l'image du réel x par la fonction définie par la phrase :

1. A tout réel, on associe le carré du quotient de la somme de ce réel et de 2 par le carré de 4.

$$f(x) = \left(\frac{x+2}{4^2}\right)^2$$

2. A tout réel, on associe le quotient de la différence de ce réel et de 6 par le produit de 4 et de ce réel.

$$f(x) = \frac{x - 6}{4x}$$

 $f(x) = \frac{x-6}{4x}$ 3. A tout réel, on associe le produit de la différence de ce réel et de 1 par le carré de la somme de 4 et de ce réel.

$$f(x) = (x-1)(4+x)^2$$

Exercice 4 : Images et antécédents

1. Calculer l'image de 27 par $f: x \mapsto -\frac{2}{3}x + 1$.

$$f(27) = -\frac{2}{3} \times 27 + 1 = -2 \times 9 + 1 = -18 + 1 = -17$$
2. Calculer l'image de 3 par la fonction f définie par $f(x) = \sqrt{x^2 + 4^2}$.

$$f(3) = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

3. Calculer l'image de $-\sqrt{2}$ par $f: x \mapsto -2x^2 + 1$.

$$f(-\sqrt{2}) = -2(-\sqrt{2})^2 + 1 = -2 \times 2 + 1 = -4 + 1 = -3$$
4. Déterminer l'antécédent de 123 par $f: x \mapsto 7x + 39$

Cela revient à résoudre l'équation f(x) = 123 c'est-à-dire 7x + 39 = 123

$$7x + 39 = 123 \Leftrightarrow 7x = 123 - 39 \Leftrightarrow 7x = 84 \Leftrightarrow x = \frac{84}{7} \Leftrightarrow x = 12.$$

Ainsi l'antécédent de 123 par f est 12. Cela s'écrit aussi $S = \{12\}$.

5. Déterminer l'antécédent de 9 par la fonction f définie par f(x) = 1.5(x-2).

Cela revient à résoudre l'équation f(x) = 9 c'est-à-dire 1, 5(x-2) = 9

$$1,5(x-2)=9\Leftrightarrow (x-2)=\frac{9}{15}\Leftrightarrow x-2=6\Leftrightarrow x=8$$

Ainsi l'antécédent de 9 par f est 8. Cela s'écrit aussi $S = \{8\}$.

6. Déterminer l'antécédent de $\frac{7}{3}$ par $f: x \mapsto -\frac{2}{3}x + 1$.

Cela revient à résoudre l'équation
$$f(x) = \frac{7}{3}$$
 c'est-à-dire $-\frac{2}{3}x + 1 = \frac{7}{3}$ $-\frac{2}{3}x + 1 = \frac{7}{3} \Leftrightarrow -2x + 3 = 7$ (on multiplie par 3) $\Leftrightarrow -2x = 4 \Leftrightarrow x = -2$

Ainsi l'antécédent de
$$\frac{7}{2}$$
 par f est -2 . Cela s'écrit aussi $S = \{-2\}$.

Exercice 5 : Images et antécédents

Soit f la fonction définie sur \mathbb{R} par : $f(x) = 2x^2 - x - 6$

1. Quelles sont les images par f de $0, \frac{1}{3}$ et $2\sqrt{3}$?

$$f(0) = 2 \times 0^{2} - 0 - 6$$

$$= -6$$

$$f\left(\frac{1}{3}\right) = 2 \times \left(\frac{1}{3}\right)^{2} - \frac{1}{3} - 6$$

$$= 2 \times \frac{1}{9} - \frac{3}{9} - \frac{54}{9}$$

$$= -\frac{55}{9}$$

$$f(2\sqrt{3}) = 2 \times (2\sqrt{3})^{2} - 2\sqrt{3} - 6$$

$$= 2 \times 4 \times 3 - 2\sqrt{3} - 6$$

$$= 18 - 2\sqrt{3}$$

2. Déterminer f(-1).

$$f(-1) = 2 \times (-1)^2 - (-1) - 6$$

= 2 + 1 - 6
= -3

3. Quels sont les éventuels antécédents par f de -6?

Cela revient à résoudre l'équation f(x) = -6 c'est-à-dire $2x^2 - x - 6 = -6$

$$2x^2 - x - 6 = -6 \Leftrightarrow 2x^2 - x = 0 \Leftrightarrow x(2x - 1) = 0 \Leftrightarrow x = 0 \text{ ou } 2x - 1 = 0 \Leftrightarrow x = 0 \text{ ou } x = \frac{1}{2}$$

(Un produit de facteurs est nul si et seulement si un des facteurs est nul).

Ainsi les antécédents de -6 par f sont 0 et $\frac{1}{2}$. Cela s'écrit aussi $S = \left\{0; \frac{1}{2}\right\}$.

4. a. Montrer que f(x) = (2x + 3)(x - 2)

$$(2x+3)(x-2) = 2x^2 - 4x + 3x - 6 = 2x^2 - x - 6 = f(x)$$

b. En déduire les éventuels antécédents par f de 0.

Cela revient à résoudre l'équation f(x) = 0 c'est-à-dire (2x + 3)(x - 2) = 0 (d'après 4a.)

$$(2x+3)(x-2) = 0 \Leftrightarrow 2x+3 = 0 \text{ ou } x-2 = 0 \Leftrightarrow x = -\frac{3}{2} \text{ ou } x = 2$$

(Un produit de facteurs est nul si et seulement si un des facteurs est nul).

Ainsi les antécédents de 0 par f sont $-\frac{3}{2}$ et 2. Cela s'écrit aussi $S = \left\{-\frac{3}{2}; 2\right\}$.

Soit f la fonction définie sur $\mathbb{R} - \{1\}$ par : $f(x) = \frac{3x}{x-1}$

1. Pourquoi $D_f = \mathbb{R} - \{1\}$?

f est définie si et seulement si $x - 1 \neq 0$

 $x \neq 1$ (c'est un abus de langage qu'on autorisera ici).

Ainsi $D_f=\mathbb{R}-\{1\}$

2. Calculer les images par f de $\frac{4}{3}$ et 0.

$$f\left(\frac{4}{3}\right) = \frac{3 \times \frac{4}{3}}{\frac{4}{3} - 1} = \frac{4}{\frac{1}{3}} = 4 \times 3 = 12$$

$$f(0) = \frac{3 \times 0}{0 - 1} = 0$$

3. Déterminer les éventuels antécédents par f de 0 et de $\frac{4}{3}$.

Cela revient à résoudre
$$f(x) = 0$$

$$\frac{3x}{x-1} = 0 \Leftrightarrow 3x = 0 \Leftrightarrow x = 0$$
Cela revient à résoudre $f(x) = \frac{4}{3}$

$$\frac{3x}{x-1} = \frac{4}{3} \Leftrightarrow 4(x-1) = 3 \times 3x \Leftrightarrow 4x - 4 = 9x \Leftrightarrow -5x = 4 \Leftrightarrow x = -\frac{4}{5}$$

Exercice 6: Modélisation

Soit ABCD un rectangle tel que AB = 8 et AD = 6.

On place E sur [AD] et on appelle F le point d'intersection de la parallèle à (BD) passant par E et du segment [AB].

1. Quelles valeurs la longueur AE peut-elle prendre ?

 $E \in [AD]$ et AD = 6 ainsi $AE \le 6$. De plus une longueur est toujours positive ainsi $AE \ge 0$. Donc $AE \in [0; 6]$

- 2. Exprimer, en fonction de AE:
 - a. la longueur ED et la longueur AF

$$ED = AD - AE$$

$$ED = 6 - AE$$

$$Utilisons le théorème de Thales dans le triangle ABD :
$$A \in (ED), A \in (FB) \text{ et } (EF) /\!\!/ (BD) \text{ ainsi}:$$

$$\frac{AE}{AD} = \frac{AF}{AB} \left(= \frac{EF}{DB} \right)$$

$$\frac{AE}{6} = \frac{AF}{8}$$

$$AF = \frac{8}{6}AE$$

$$AF = \frac{4}{3}AE$$$$

b. l'aire du triangle AEF.

$$AEF$$
 est un triangle rectangle ainsi $A(AEF) = \frac{AE \times AF}{2} = \frac{AE \times \frac{4}{3}AE}{2} = \frac{2}{3}AE^2$

3. Que se passet-il si AE = 4?

$$ED = 6 - 4 = 2$$
 $AF = \frac{4}{3} \times 4 = \frac{16}{3}$ $A(AEF) = \frac{2}{3} \times 4^2 = \frac{32}{3}$

Exercice 7: Modélisation

Soit ABCD un rectangle tel que AB = 6 et AD = 4.

On place E sur [AD] et on appelle F le point d'intersection de la parallèle à (CD) passant par E et du segment [BC].

1. Quelles valeurs la longueur *ED* peut-elle prendre ?

 $E \in [AD]$ et AD = 4 ainsi $AE \le 4$. De plus une longueur est toujours positive ainsi $AE \ge 0$. Donc $AE \in [0;4]$

- 2. Exprimer, en fonction de ED:
 - a. les longueurs BF, EI et IF;

$$BF = AE$$

$$= AD - ED$$

$$= 4 - ED$$

$$Utilisons le théorème de Thales dans le triangle ABD :
$$D \in (EA), D \in (IB) \text{ et } (EI) /\!/ (AB) \text{ ainsi}:$$

$$ED = \frac{EI}{AB} =$$$$

b. l'aire de la surface jaune.

$$S = A(EID) + A(IBF)$$

$$= \frac{ED \times EI}{2} + \frac{IF \times BF}{2}$$

$$= \frac{ED \times \frac{3}{2}ED}{2} + \frac{\left(6 - \frac{3}{2}ED\right) \times (4 - ED)}{2}$$

$$= \frac{\frac{3}{2}ED^{2}}{2} + \frac{24 - 6ED - 6ED + \frac{3}{2}ED^{2}}{2}$$

$$= \frac{3ED^{2} - 12ED + 24}{2}$$

$$= \frac{3}{2}ED^{2} - 6ED + 12$$

3. Que se passe-t-il si $\overline{ED} = 1$.

$$BF = 4 - 1 = 3$$
 $EI = \frac{3}{2} \times 1 = \frac{3}{2}$ $IF = 6 - \frac{3}{2} \times 1 = \frac{9}{2}$ $S = \frac{3}{2} \times 1^2 - 6 \times 1 + 12 = \frac{15}{2}$

Compétence : Utiliser un tableau de valeurs

Exercice 8: Utiliser un tableau de valeurs

On définit la fonction f par le tableau suivant :

х	-2	-1	0	1	2
f(x)	0	2	1	4	-1

1. Quel est l'ensemble de définition de la fonction f ?

$$D_f = [-2; 2]$$

2. Quelles sont les images par f de -1, 0 et de 2?

$$f(-1) = 2$$

$$f(0) = 1$$

$$f(2) = -1$$

3. Quels sont les éventuels antécédents de 1?

f(0) = 1 ainsi 0 est l'antécédent de 1 par f.

Exercice 9: Utiliser un tableau de valeurs

On définit la fonction g par le tableau suivant :

х	-2,5	-0,5	0	2	5
g(x)	1	- 5	0,5	4	1

1. Quel est l'ensemble de définition de la fonction g ?

$$D_a = [-2, 5; 5]$$

2. Quelles sont les images par g de -2.5; 0 et de 2 ?

$$g(-2,5)=1$$

$$g(0)=0,5$$

$$g(2) = 4$$

3. Quels sont les éventuels antécédents de 1?

$$g(-2,5)=1$$
 et $g(5)=1$ ainsi $-2,5$ et 5 sont les antécédents de 1 par f .

Exercice 10 : Savoir si un point appartient à une courbe.

1. Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{5}{2x+1}$ et C_f sa courbe représentative. Les points A(2;9) et B(0;5) appartiennent-ils à C_f ?

$$f(2) = \frac{5}{2 \times 2 + 1} = 1 \neq y_A$$

$$donc A \notin C_{\epsilon}.$$

$$f(2) = \frac{5}{2 \times 0 + 1} = 5 = y_B$$

 $f(2) = \frac{5}{2 \times 2 + 1} = 1 \neq y_A$ $f(2) = \frac{5}{2 \times 0 + 1} = 5 = y_B$ $\text{donc } A \notin C_f.$ $f(2) = \frac{5}{2 \times 0 + 1} = 5 = y_B$ $\text{donc } B \in C_f.$ 2. Soit g la fonction définie sur \mathbb{R} par $g(x) = x^2 + x - 2$ et C_g sa courbe représentative.

Les points
$$A(\frac{1}{2}; -\frac{5}{4})$$
 et $B(2; 6)$ appartiennent-ils à C_g ?
$$g(\frac{1}{2}) = (\frac{1}{2})^2 + \frac{1}{2} - 2 = \frac{1}{4} + \frac{2}{4} - \frac{8}{4} = -\frac{5}{4} = y_A$$

$$donc $A \in C_f$.
$$g(2) = 2^2 + 2 - 2 = 4 \neq y_B$$

$$donc $B \notin C_f$.$$$$

$$g(2)=2^2+2-2=4 \neq y_B$$

donc $B \notin C_f$.

Compétence : Utiliser la courbe représentative d'une fonction

Exercice 11: Utiliser la courbe représentative d'une fonction

Dans un repère, on donne la courbe représentative d'une fonction f.

1. Quel est l'ensemble de définition de f?

 $D_f = [-5;7]$

2. Compléter le tableau suivant :

х	-5	-4	-3	-1	0	2	4	5	7
f(x)	4	1	0	2	4	6	3	0	3

3. Compléter le tableau suivant :

y	-1	0	1	4	6
Antécédent de y	5, 5	-3 ; 5	-4; -1, 7; 5, 7	-5;0;3,5	2

−4 admet-il des antécédents ? Justifier.

-4 n'admet par d'antécédent par f puisqu'il n'a pas d'intersection en C_f et la droite d'équation y = -4.

Exercice 12: Utiliser la courbe représentative d'une fonction

Alex a mesuré la tension en fonction du temps écoulé aux bornes d'une lampe. Il a obtenu le graphique suivant, donnant la tension (en volts) en fonction du temps (en millisecondes).

1. Quelles devraient être les légendes en abscisses et en ordonnées ?

Abscisse : Le temps (en ms)	Ordonnée : Tension (en V)
2. Quelles est la tension au bout de 2 ms; au	bout de 4 ms ?
$f(2) \approx 75 \mathrm{V}$	$f(4) \approx 20 \text{ V}$

3. Au bout de combien de secondes la tension initiale a-t-elle été divisé par 2; par 3

Au bout de 1 ms la tension passe de 300 à	Au bout de 1, 6 ms la tension passe de 300
150 V (donc divisé par 2).	à 100 V (donc divisé par 3).

Exercice 13:

f est une fonction et C_f est sa courbe représentative.

1) Compléter les phrases suivantes :

a) f(2) = 3 signifie que : • 3 est l'image de 2

• 2 est un antécédent de 3

• le point A ($\mathbf{2}$; $\mathbf{3}$) appartient à C_f

b) f(5) = 0 signifie que : • **0** est l'image de **5**

• 5 est un antécédent de 0

• le point B ($\mathbf{5}$; $\mathbf{0}$) appartient à C_f

c) f(1) = f(4) = -2 signifie que : • -2 est l'image de 1 et 4

• 1 et 4 sont antécédents de −2

• les points A(1; -2) et B(4; -2) appartiennent à C_f

d) C_f passe par le point M(-5; 0) signifie que f(-5) = 0

e) Le point N(3;7) appartient à la courbe C_f signifie que f(3)=7

f) C_f coupe l'axe des abscisses aux points d'abscisses -4 et 3 signifie que

Les points A(-4;0) et B(3;0) appartiennent à C_f

g) C_f coupe l'axe des ordonnées au point d'ordonnée 12 signifie que

Le point A(0;12) appartient à C_f

Compétence : Résolution graphique d'équations et inéquations.

Exercice 15 : Equations et inéquations

On donne ci-dessous les courbes des fonctions f et g.

1. Donner l'ensemble de définition des fonctions f et g.

$$D_f = D_g = [-5; 6]$$

2. a) Quelle est l'image de -2 par la fonction f?

$$f(-2) = 2$$

b) Quelle est l'image de 4 par la fonction g ?

$$g(4) = 0$$

c) Quels sont les antécédents de 3 par la fonction f ?

-1 et 4

a) Quels sont les antécédents de 3 par la fonction g?

3. Déterminer les extremums de la fonction f :

Le maximum de la fonction f sur [-5; 6] est 4 atteint en x = 3Le minimum de la fonction f sur [-5; 6] est -3 atteint en x = -5

4. a) Décrire les variations de la fonction g.

La fonction g est décroissante sur [-5; 1] et croissante sur [1; 6]

b) Dresser ci-dessous le tableau de variations de la fonction f :

5. Résoudre graphiquement :

a)
$$f(x) = 0$$
 S = {-**3**; **6**}

b)
$$f(x) = -4$$
 S = {**1**}

c)
$$g(x) = 2$$
 S = $\{-5, 5\}$

d)
$$f(x) = g(x)$$
 S = {-3; 5}

e)
$$f(x) > 2$$
 S = $]-2;5[$

f)
$$f(x) \leq 2$$

g)
$$g(x) < -2$$
 S =] - 2;3[

$$S = 1 - 2 : 3$$

h)
$$a(x) > -4$$

h)
$$g(x) \ge -4$$
 $S =] -\infty; +\infty[= \mathbb{R}$
i) $f(x) \ge g(x)$ $S = [-3; 5]$

i)
$$f(x) > a(x)$$

$$S = [-3:5]$$

i)
$$f(x) < g(x)$$

j)
$$f(x) < g(x)$$
 $S = [-5; -3[\cup]5; 6]$

6. Dresser ci-dessous le tableau de signes de la fonction g.

x	-5	-3	4	6
g(x)	+	Ó	- þ	+

Exercice supplémentaire 16: Equations et inéquations

Dans un repère, on donne la courbe représentative d'une fonction f.

1. Quel est l'ensemble de définition de f?

$$D_f = [-4;4]$$

2. Lire l'image de 2 par f.

$$f(2) = 1$$

Existe-t-il d'autres valeurs qui ont la même image ? Si oui, donner des valeurs approchées.

On trouve aussi que f(-2,7) = 1 ainsi -2,7 a la même image.

3. Déterminer s'ils existent, les antécédents de 0, 2 et 4.

$$-3$$
 est l'antécédent de 0 par f .

-2, 2; 0, 25 et 3, 4 sont les antécédents de 2 par f. (valeurs approchées).

4 n'a pas d'antécédent par f.

4. Résoudre graphiquement l'équation f(x) = 3.

On trace la droite d'équation y=3 et on lit l'abscisse des points d'intersection de cette droite avec C_f . On lit $S=\{-1;4\}$.

Remarque : Cela revient à chercher les antécédents de 3 par f.

5. Résoudre l'inéquation $f(x) \le 0$, puis f(x) > 0.

On lit l'abscisse des points de
$$C_f$$
 situés en dessous de la droite d'équation $y=0$ (ici axe des abscisses). $S=[-4;-3]$ pour $f(x)\leq 0$.

On lit l'abscisse des points de C_f situés strictement audessus de la droite d'équation $y=\mathbf{0}$.

$$S =]-3$$
; 4] pour $f(x) > 0$.

Exercice supplémentaire 17 : Equations et inéquations

Dans un repère, on donne la courbe représentative d'une fonction f.

1. Quel est l'ensemble de définition de f ?

$$D_f = [-3;4]$$

2. Déterminer f(2).

$$f(2) = -2$$

3. Lire l'image de -1 par f.

$$f(-1) = 2$$

4. Résoudre f(x) = -3 puis f(x) = 2.

$$S = \{2, 5, 3, 5\}$$
 pour $f(x) = -3$.

 $S = \{-1\}$ pour f(x) = 2.

5. Quels nombres ont pour image -1 par f? Quelle équation a-t-on résolu?

$$f(1,4) = f(4) = -1$$

1, 4 et 4 ont pour image -1 par f.

On a résolu f(x) = -1.

6. Résoudre l'inéquation f(x) < 1 puis $f(x) \ge 1$.

On lit l'abscisse des points de C_f situés strictement en dessous de la droite d'équation y=1.

S =]0, 2; 4] pour <math>f(x) < 1.

On lit l'abscisse des points de C_f situés au-dessus de la droite d'équation y = 1.

$$S = [-3; 0, 2] \text{ pour } f(x) \ge 1.$$

7. Résoudre l'inéquation $f(x) \le 0$.

On lit l'abscisse des points de \mathcal{C}_f situés en dessous de la droite d'équation y=0 (ici axe des abscisses).

$$S = [1; 4] \text{ pour } f(x) \le 0.$$

Exercice supplémentaire 18 : Equations et inéquations

A l'aide du graphique, répondre aux questions suivantes :

1. Résoudre les inéquations f(x) < 3 et g(x) < 3.

On lit l'abscisse des points de \mathcal{C}_f situés strictement en dessous de la droite d'équation y = 3.

 $S = D_f$ pour f(x) < 3.

On lit l'abscisse des points de \mathcal{C}_g situés strictement en dessous de la droite d'équation y = 3.

 $S = D_q$ pour g(x) < 3.

2. Résoudre l'équation f(x) = g(x)

On lit l'abscisse des points d'intersection de C_f avec C_q .

$$S = \{-3; -1; 2; 4, 6\}.$$

3. Résoudre l'inéquation f(x) < g(x)

On lit l'abscisse des points de C_f situés strictement en dessous de C_g .

$$S =]3; -1[\cup]2; 4, 6[.$$

Exercice supplémentaire 19 : Equations et inéquations

A l'aide du graphique, répondre aux questions suivantes :

1. On sait que f(1) = 3. Associer à chaque courbe la fonction correspondante.

On sait que f(1) = 3 ainsi C_f est la courbe bleue et C_g est la courbe rouge.

2. Résoudre les inéquations f(x) < 2 et g(x) < 2.

On lit l'abscisse des points de \mathcal{C}_f situés strictement en dessous de la droite d'équation y = 2.

S =]-3; 0, 5[pour f(x) < 2.

On lit l'abscisse des points de $oldsymbol{\mathcal{C}}_g$ situés strictement en dessous de la droite d'équation y = 2.

 $S = [-3; -1[\cup]1, 7; 2, 3[pour <math>g(x) < 3.$

3. Résoudre l'équation f(x) = g(x).

On lit l'abscisse des points d'intersection de C_f avec C_q .

$$S = \{-1, 5; 0, 8; 3, 5\}.$$

4. Résoudre l'inéquation f(x) < g(x).

On lit l'abscisse des points de C_f situés strictement en dessous de C_q .

 $S =]-1,5; 0,8[\cup]3,5;4[.$