Diffusion induced radiation/absorption

Yingru Xu

August 1, 2018

Mission

- ▶ Including the diffusion induced radiation in the Lido framework, and compare with the old Langevin framework (LGV vs. Lido)
- ▶ Additional diffusion-induced absorption process, to reach the correct equilibrium temperature

0. Gluon radiation – HT

1. Improved Langevin

$$dp = -\Gamma p \times dt + \sqrt{dt} \kappa \rho + (-dp_{\text{gluon}})$$
 (1)

2. Gluon emission probability:

$$\frac{dN_{\text{gluon}}}{dxdk_{\perp}^2 dt} = \frac{2\alpha_s P(x)}{\pi k_{\perp}^4} \sin^2\left(\frac{t - t_i}{2\tau_f}\right) \left(\frac{k_{\perp}^3}{k_{\perp}^2 + x^2 M^2}\right)^4 \times \hat{q}_{\text{gluon}}$$
(2)

- 3. $\mathbf{k} = \omega/E_Q$, k_{\perp} is gluon transverse momentum
 - splitting function: $P(x) = (2 2x + x^2)/x * C_F$
 - ▶ gluon formation time $\tau_f = \frac{2xE(1-x)}{k_{\perp}^2 + x^2M^2}$, different from scattering component:

$$\tau_f = \frac{\bar{2}x(1-x)E}{k_\perp^2 + x^2M^2 + (1-x)m_D^2/2}, x = \frac{k+k_z}{E+p_z}$$

- ▶ additional cutoff: $2E(E \pi) > M^2$, $k_0 = xE > \mu \pi T$, $\tau_f > 1/(\pi T)$
- by changing μ , change the final T_{eff}

1. Gluon radition table: LGV vs. Lido

First of all, comparing the effective rate table of $\frac{dN_{\rm gluon}}{dxdk_{\perp}dt}$ with $D_s2\pi T=5$:

- Comparing at different temperature and time-interval
- ▶ Large deviation at small time interval, difference comes from the interpolation
- ► Fix? smaller grid-size; A better interpolation scheme

2. Static medium: $(E_{\text{init}} = 10 \text{ GeV}, t=3 \text{ fm/c})$

▶ rad. only

 \triangleright col. + rad.

ightharpoonup col. + rad. + abp.

4. Approaching equilibrium:

- 1. cutoff: $\mu = 1 \Rightarrow k_0 < \pi T$
 - w/ 1 \rightarrow 2: T_{eff} , T deviation (1%)
 - w/ $1 \rightarrow 2 + 2 \rightarrow 1$: T_{eff}, T deviation (2%)

- 2. cutoff: $\mu = 0.1 \Rightarrow k_0 < 0.1\pi T$
 - \blacktriangleright w/ 1 \rightarrow 2: T_{eff} , T deviation (19%)
 - \blacktriangleright w/ 1 \rightarrow 2 + 2 \rightarrow 1: $T_{\rm eff}$, T deviation (3%)

4. Approaching equilibrium:

- For $k_0 > \pi T$, T_{eff} very similar to T
- ▶ While $k_0 > 0.1\pi T$, gluon absorption process is needed for true equilibrium status.

Some more technique issues need to be fixed/improved:

Comparing the **MAX** $\frac{dN_{\text{gluon}}}{dxdk_{\perp}dt}$ with $D_s2\pi T=5$:

No wonder we have so many failure during the reject sampling!

2. Static medium: rad. $(E_{\text{init}} = 10 \text{ GeV}, t=3 \text{ fm/c})$

2. Static medium: col.+rad. ($E_{\text{init}} = 10 \text{ GeV}$, t=3 fm/c)

