Math 324: Linear Algebra Section 4.6: Row and Column Spaces

Mckenzie West

Last Updated: December 29, 2023

Last Time.

- Dimension

Today.

- Row and Column Spaces
- Rank of a Matrix

Exercise 1 (review of section 4.5).

Consider the subspace of \mathbb{R}^4 , given by

$$W = \{(a, b, a, b) : a, b \in \mathbb{R}\}.$$

- (a) Find a basis for W.
- (b) Determine the dimension of W.

Definition.

Let A be an $m \times n$ matrix.

- 1. The column space of A, denoted col(A), is the subspace of \mathbb{R}^m that is spanned by the columns of A.
- **2.** the row space of A, denoted row(A), is the subspace of \mathbb{R}^n that is spanned by the rows of A.

Example.

For
$$A = \begin{bmatrix} 8 & -1 & 7 & 0 \\ 0 & -1 & -1 & 3 \\ 0 & -3 & -3 & 9 \end{bmatrix}$$
,

- col(A) is a subspace of \mathbb{R}^3 because each column has 3 entries
- row(A) is a subspace of \mathbb{R}^4 because each row has 4 entries

Theorem 4.13.

If an $m \times n$ matrix A is row-equivalent to an $m \times n$ matrix B, then row(A) = row(B).

Theorem 4.14.

If a matrix A is row-equivalent to a B that is in row-echelon form, then the non-zero rows of B form a basis for row(A).

Exercise 2.

Let
$$A = \begin{bmatrix} 8 & -1 & 7 & 0 \\ 0 & -1 & -1 & 3 \\ 0 & -3 & -3 & 9 \end{bmatrix}$$
.

Find a basis for row(A). What is the dimension of row(A)?

Exercise 3.

Let
$$A = \begin{bmatrix} 8 & -1 & 7 & 0 \\ 0 & -1 & -1 & 3 \\ 0 & -3 & -3 & 9 \end{bmatrix}$$
.

Consider the matrix A^T .

- (a) Convince yourself that $col(A) = row(A^T)$.
- (b) Find a basis for $row(A^T)$ using Theorem 4.14.
- (c) What is a basis for and the dimension of col(A)?

7

Exercise 4.

Find a basis for col(A) and row(A) for

$$A = \begin{bmatrix} 5 & 1 & -9 & -5 & 2 \\ 2 & 8 & 4 & -2 & 9 \\ 3 & -5 & -11 & -3 & -3 \\ -3 & 2 & 8 & 3 & 7 \end{bmatrix}$$

8

Exercise 5.

Find a basis for col(A) and row(A) for

$$A = \begin{bmatrix} 7 & -5 \\ 2 & 7 \\ -2 & 3 \\ 9 & 9 \end{bmatrix}$$

Brain Break.

What one non-essential item do you wish you had more of?

Pepper wants more Barkbox.

Theorem 4.15.

If A is an $m \times n$ matrix, then the row space and the column space of A have the same dimension.

Exercise 6.

Convince yourself of this fact by considering the relationship between dimension of row/column spaces and leading 1's in the reduced row echelon form of A.

Definition.

The rank of a matrix A, denoted rank(A), is the dimension of the row (or column) space of A.

Example.

$$rank(I_n) = n$$

$$rank(O_{m,n}) = 0$$

12

Exercise 7.

Determine

$$\operatorname{rank}\left(\begin{bmatrix} 7 & 9 & -1 \\ 1 & -2 & -2 \\ 4 & 0 & -1 \\ 7 & -3 & -2 \end{bmatrix}\right)$$

Exercise 8.

Give examples of matrices such that

- (a) rank(A + B) < rank(A) and rank(A + B) < rank(B)
- (b) rank(A + B) = rank(A) and rank(A + B) = rank(B)
- (c) rank(A + B) > rank(A) and rank(A + B) > rank(B)

Is it possible for rank(A + B) < rank(A) and rank(A + B) > rank(B)?