Midterm Project of Machine Vision

EAN-13 Barcode

Prof. Chi-Cheng Cheng
Dept. of Mechanical and Electro-Mechanical Engineering
National Sun Yat-Sen University

Background

- O International Article Numbering Association (EAN) in Europe (originally European Article Number)
- UPC-A bar code standard can only be used in US and Canada. (UPC = Universal Product Codes)
- The UCC (Uniform Code Council) announced that as of January 1, 2005, all bar codes systems in the US and Canada must be able to handle EAN-13 bar codes for international compatibility.

Difference between UPC-A and EAN-13

12 digits: 1-5-5-1

UPC-A

13 digits: 1-6-6-0 12 data & 1 check

EAN-13

Encoding the symbol

1: "dark" or "bar"

0: "light" or "space"

11: double-wide bar

0: single-wide space

1: single-wide bar

Codes of EAN-13

Left-hand guard 101

Center guard 01010

right-hand guard 101

3 + 6*7 + 5 + 6*7 + 3 = 95 areas Each number consists of 7 areas

Structure of EAN-13

First two or three digits

Number system

```
00-13: USA & Canada 20-29: In-Store Functions 30-37: France
40-44: Germany 45: Japan (also 49) 46: Russian Federation
471: Taiwan 474: Estonia 475: Latvia
477: Lithuania 479: Sri Lanka 480: Philippines
482: Ukraine 484: Moldova 485: Armenia
486: Georgia 487: Kazakhstan 489: Hong Kong
49: Japan (JAN-13) 50: United Kingdom 520: Greece
528: Lebanon 529: Cyprus 531: Macedonia
535: Malta 539: Ireland 54: Belgium & Luxembourg
560: Portugal 569: Iceland 57: Denmark
590: Poland 594: Romania 599: Hungary
600 & 601: South Africa 609: Mauritius 611: Morocco
613: Algeria 619: Tunisia 622: Egypt
625: Jordan 626: Iran 64: Finland
690-692: China 70: Norway 729: Israel
73: Sweden 740: Guatemala 741: El Salvador
742: Honduras 743: Nicaragua 744: Costa Rica
746: Dominican Republic 750: Mexico 759: Venezuela
76. Switzerland 770. Colombia 773. Uruguay
```

The checksum digit

- 1. Consider the right most digit to be in an "odd" position and assign odd/even to each digit moving from right to left.
- 2. Sum the digits in all odd positions and multiply the result by 3.

$$(0+1+3+3+1+5)*3=39$$

3. Sum the digits in all even positions.

$$3+1+1+0+0+7=12$$

4. Sum the totals calculated in steps 2 and 3.

- 39 + 12 = 51
- 5. The check digit is the number, which added to the totals calculated in step 4, result in a number evenly divisible by 10. 51 + (9) = 60
- 6. If the sum calculated in step 4 is evenly divisible by 10, the check digit is "0".

Parity encoding table

1st digit	2 nd digit	3 rd digit	4 th digit	5 th digit	6 th digit	7 th digit
0	Odd	Odd	Odd	Odd	Odd	Odd
1	Odd	Odd	Even	Odd	Even	Even
2	Odd	Odd	Even	Even	Odd	Even
3	Odd	Odd	Even	Even	Even	Odd
4	Odd	Even	Odd	Odd	Even	Even
5	Odd	Even	Even	Odd	Odd	Even
6	Odd	Even	Even	Even	Odd	Odd
7	Odd	Even	Odd	Even	Odd	Even
8	Odd	Even	Odd	Even	Even	Odd
9	Odd	Even	Even	Odd	Even	Odd

7

5: Odd

0: Even

1: Odd

0: Even

3: Odd

1: Even

Character set encoding table

Digit	Left-	hand	Dialethand	-
	Odd parity	Even parity	Right-hand	7 5: 0110001 (Odd)
0	0001101	0100111	1110010	0: 0100111 (Even)
1	0011001	0110011	1100110	1: 0011001 (Odd)
2	0010011	0011011	1101100	0: 0100111 (Even) 3: 0111101 (Odd)
3	0111101	0100001	1000010	1: 0110011 (Even)
4	0100011	0011101	1011100	
5	0110001	0111001	1001110	3: 1000010 1: 1100110
6	0101111	0000101	1010000	1: 1100110
7	0111011	0010001	1000100	3: 1000010
8	0110111	0001001	1001000	0: 1110010
9	0001011	0010111	1110100	9: 1110100

Midterm project: An image barcode reader

- 1. The image barcode reader should be able to "read" a full EAN-13 barcode shown on a gray scale image.
- 2. The input is an EAN-13 barcode and the output is a 13-digit number that stands for the barcode.
- 3. Assume the optical axis of the camera is always perpendicular to the plane where the barcode is located.
- 4. Do not bother to recognize those small numbers inside the barcode.
- 5. Notice that both orientation and size of the barcode are not known in advance.
- 6. Good luck.