Lecture 3 : Image as input

Create at 2022/06/01

- Lecture 3 : Image as input
 - o <u>為甚麼用了 validation set 還是 overfitting 呢?</u>
 - o 魚與熊掌可以兼得的深度學習,深度學習到底好在哪裡?
 - Why we need deep?
- 上課資源:
 - 1. 為什麼用了驗證集 (validation set) 結果卻還是過擬合(overfitting)了呢?

(https://www.youtube.com/watch?v=xQXh3fSvD1A)

2. 魚與熊掌可以兼得的深度學習 (https://www.youtube.com/watch?v=yXd2D5J0QDU)

為甚麼用了 validation set 還是 overfitting 呢?

● 延伸資料:<u>【機器學習2021】機器學習任務攻略 (https://www.youtube.com/watch?v=WeHM2xpYQpw)</u>

Validation Set

Training Set \mathcal{D}_{train}

$$\mathsf{Model}\,\mathcal{H}_1 \quad h_1^* = arg \min_{h \in \mathcal{H}_1} L(h, \mathcal{D}_{train})$$

$$\mathsf{Model}\,\mathcal{H}_2 \quad h_2^* = arg \min_{h \in \mathcal{H}_2} L(h, \mathcal{D}_{train})$$

$$\mathsf{Model}\,\mathcal{H}_3 \quad h_3^* = arg\, \min_{h \in \mathcal{H}_3} L(h, \mathcal{D}_{train})$$

Validation Set \mathcal{D}_{val}

$$L(h_1^*, \mathcal{D}_{val}) = 0.9$$

$$L(h_2^*,\mathcal{D}_{val})=0.7$$

$$L(h_3^*, \mathcal{D}_{val}) = 0.5$$

Approximation of \mathcal{D}_{all}

- 如何選擇要使用哪一個模型?
 - o 不會用 training data 直接去決定 h_1^*, h_2^*, h_3^* 哪一個比較好
 - o 會在 validation set 上去評估 h_1^*, h_2^*, h_3^* 各別的 Loss
 - o 去看哪一個 function 在 validation set 上得到的 Loss 最低,就會選擇那一個 function 去用在 testing set 上

Training Set \mathcal{D}_{train}

Model \mathcal{H}_1 $h_1^* = arg \min_{h \in \mathcal{H}_1} L(h, \mathcal{D}_{train})$

 $\mathsf{Model}\,\mathcal{H}_2 \quad h_2^* = arg \min_{h \in \mathcal{H}_2} L(h, \mathcal{D}_{train})$

 $\mathsf{Model}\,\mathcal{H}_3 \quad h_3^* = arg\, \min_{h \in \mathcal{H}_3} L(h, \mathcal{D}_{train})$

Validation Set \mathcal{D}_{val} $L(h_1^*, \mathcal{D}_{val}) = 0.9$ $L(h_2^*, \mathcal{D}_{val}) = 0.7$ $L(h_3^*, \mathcal{D}_{val}) = 0.5$

$$\mathcal{H}_{val} = \{h_1^*, h_2^*, h_3^*\} \qquad h^* = arg \min_{h \in \mathcal{H}_{val}} L(h, \mathcal{D}_{val})$$

Using validation set to select model = $\text{considered as } "training" \text{ by } \mathcal{D}_{val}$ Your model is $\mathcal{H}_{val} = \{h_1^*, h_2^*, h_3^*\}$

- 可以看成有一個 model 是 H_{val} · 這個 model 裡面只有 3 個可能的 function h_1^*, h_2^*, h_3^*
- 只是可以選擇的 function 非常的少

Using validation set to select model = $\text{considered as } "training" \text{ by } \mathcal{D}_{val}$ Your model is $\mathcal{H}_{val} = \{h_1^*, h_2^*, h_3^*\}$

$$\begin{split} L\big(h^{train}, \mathcal{D}_{all}\big) - L\big(h^{all}, \mathcal{D}_{all}\big) &\leq \delta \\ P\big(\mathcal{D}_{train} \ is \ \pmb{bad}\big) &\leq |\mathcal{H}| \cdot 2exp(-2N\varepsilon^2) \\ L\big(h^{val}, \mathcal{D}_{all}\big) - L\big(h^{all}, \mathcal{D}_{all}\big) &\leq \delta \\ P\big(\mathcal{D}_{val} \ is \ \pmb{bad}\big) &\leq |\mathcal{H}_{val}| \cdot 2exp(-2N_{val}\varepsilon^2) \\ &\uparrow \\ \text{It is small.} \end{split}$$

為甚麼有了 validation set 還是有可能會 overfitting
如果 |H| 仍然很大,有可能還是有很高的 $P(D_{val}$ is bad)

魚與熊掌可以兼得的深度學習,深度學習到底好在哪裡?

• 有沒有一個 Loss 很低的理想,同時現實跟理想又很接近 • 找到一個 H 很少,同時這個 H 都是精英讓 Loss 很低

Deeper is Better?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

- Network 越深,參數量變多,可以讓理想越來越美好
- 如果資料量夠多,理想跟現實的差距越來越少
- 深度學習需要一個大模型,大模型伴隨著需要大量的資料,如果沒有大量資料就會 overfitting
- 沒有大量資料就不適合用深度學習

Fat + Short v.s. Thin + Tall

• 有一樣的參數量時,哪一個會比較好?

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4	Why?	
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2 🛑	→1 X 3772	22.5
7 X 2k	17.1	→1 X 4634	22.6
		1 X 16k	22.1

- 實驗結果, Layer 加深會比肥胖模型的效果好
- 與其把 network 變胖不如把 network 變高

Why we need deep?

Why we need deep?

Yes, one hidden layer can represent any function.

However, using deep structure is more effective.

雖然 one hidden layer network 可以表示任何 function,但是用一個 deep 的架構往往是會比較有效率的

• E.g., parity check

With multiple layers, we need only O(d) gates.

結構深的運算方式比只有一層的運算方式來的有效率

Analogy - Programming

Don't put everything in your main function.

- 寫程式的時候也是,會分成很多個 module,不會全部寫在同一個 function 裡面
- 避免程式太過攏長,也會用到 deep 的結構

More Analogy

有結構的比較有效率

只有一層的 network

兩層 network

三層 network

- 證明使用 deep 的結構效率較好
- 要產生同一個 function, deep network 使用的參數量較小, 有比較簡單的模型
- shallow network 參數量較大,有比較複雜的模型,而複雜的模型比較容易 overfitting,所以會需要更大量的資料

Thinks more

 Deep networks outperforms shallow ones when the required functions are <u>complex and regular</u>.

Image, speech, etc. have this characteristics.

• Deep is exponentially better than shallow even when $y = x^2$.

當所需的功能複雜且規則時,deep network 的效率優於 shallow network

- 延伸資料:
 - <u>Deep Learning Theory 1-2: Potential of Deep (https://www.youtube.com/watch?v=FN8jclCrqY0)</u>
 - <u>Deep Learning Theory 1-3: Is Deep better than Shallow? (https://www.youtube.com/watch?</u> <u>v=qpuLxXrHQB4)</u>

<u>課程網頁 (https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php)</u>

tags: 2022 李宏毅_機器學習