Problem 1. (10pt) Let $f: A \to \mathbb{R}$ be defined by $f(x) := x^3 - 9x^2 + 23x - 12$, where $A = \{1, 3, 6\}$. Let $g: B \to \mathbb{R}$ be defined by $g(x) = x^2 - 4x + 6$, where

$$B = \{x \in \mathbb{N} \mid x \text{ divides } 6\} \setminus \{x \colon x \text{ is an even prime number}\}$$

Prove that f = g.

Problem 2. (10pt) Recall the absolute value function, f(x) = |x|, is given by

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Considering $f:\mathbb{R}\to\mathbb{R}$, determine the following sets:

- (a) f((-2,1])
- (b) $f(\mathbb{Z})$
- (c) $f^{-1}((-2,1])$
- (d) $f^{-1}(\{-5\})$
- (e) $f^{-1}(\mathbb{Z})$

Problem 3. (10pt) Let $f: \mathbb{Z} \to \mathbb{R}$ be given by $f(n) = 2^n$, and let $g: \mathbb{Z} \to \mathbb{R}$ be given by $g(n) = 100 - 3^n$.

- (a) Compute f(1).
- (b) Compute g(1).
- (c) Compute (fg)(1).
- (d) Compute $(f \circ g)(1)$.
- (e) Find the rule for (fg)(x).

Problem 4. (10pt) Recall that given a function $f: S \to S$, we say that $x \in S$ is a fixed point of f if f(x) = x. Let $S = \mathbb{R}$ and let f be the function given by $x \mapsto x^2 + 4x - 10$. Find the fixed points of f. How does the answer change if $S = \mathbb{N}$?

Problem 5. (10pt) Recall that the image of a function $f: S \to S$ (also called the range) is the set $\operatorname{im} f = \{f(s) \colon s \in S\}$. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{1}{1+x^2}$.

(a) Determine the error in the following 'proof' that im $f = \mathbb{R}$:

We need prove that im $f \subseteq \mathbb{R}$ and $\mathbb{R} \subseteq \operatorname{im} f$. Clearly, $f(x) \in \mathbb{R}$ so that im $f \subseteq \mathbb{R}$. Now let $y \in \mathbb{R}$. Define $x := \sqrt{\frac{1-y}{y}}$. Then

$$f(x) = \frac{1}{1+x^2} = \frac{1}{1+\frac{1-y}{y}} = \frac{1}{\frac{y+1-y}{y}} = \frac{1}{1/y} = y.$$

But then $x \in \mathbb{R}$ and f(x) = y. Therefore, $\mathbb{R} \subseteq \operatorname{im} f$. Because $\operatorname{im} f \subseteq \mathbb{R}$ and $\mathbb{R} \subseteq \operatorname{im} f$, $\operatorname{im} f = \mathbb{R}$.

(b) Determine $\operatorname{im} f$ and prove that your answer is correct.