вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Първо контролно по Изчислимост и сложност (упр.) 12.11.2016 г.

 ${\bf 3aд.}~{\bf 1.}~$ За всяка крайна функция $f:\mathbb{N}\to\mathbb{N},$ дефинираме нейния код Г $f^{\, \gamma}$ като

$$\lceil f \rceil = \prod_{x \in Dom(f)} p_x^{f(x)+1} - 1,$$

където p_i е i-тото просто число. Например, $\lceil \emptyset^{(1)} \rceil = 0$, а ако функцията f е дефинирана като f(1) = 0, f(2) = 1, и $\neg !f(x)$ за $x \neq 1, 2$, то $\lceil f \rceil = 74$. Докажете, че следните предикати имат примитивно рекурсивни характеристични функции:

- а) $Inj(v) \iff v = \lceil f \rceil \& f$ е инективна.
- $\mathsf{G}) \ \ Sub(u,v) \ \iff \ u = \lceil f \rceil \ \& \ v = \lceil g \rceil \ \& \ f \subseteq g.$
- $\mathrm{B})\ Cap(u,v) \iff u = \lceil f \rceil \ \& \ v = \lceil g \rceil \ \& \ f \cap g = \emptyset.$

Зад. 2. Докажете, че съществува единствена функция g, за която е в сила системата от равенства:

Докажете, че тази функция е примитивно рекурсивна.

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Първо контролно по Изчислимост и сложност (упр.) 12.11.2016 г.

 ${\bf 3aд.}\ {\bf 1.}\ \ 3a$ всяка крайна функция $f:\mathbb{N}\to\mathbb{N},$ дефинираме нейния код Г $f^{\, \gamma}$ като

$$\lceil f \rceil = \prod_{x \in Dom(f)} p_x^{f(x)+1} - 1,$$

където p_i е i-тото просто число. Например, $\lceil \emptyset^{(1)} \rceil = 0$, а ако функцията f е дефинирана като f(1) = 0, f(2) = 1, и $\neg!f(x)$ за $x \neq 1, 2$, то $\lceil f \rceil = 74$. Докажете, че следните предикати имат примитивно рекурсивни характеристични функции:

- а) $Inj(v) \iff v = \lceil f \rceil \ \& \ f$ е инективна.
- $\mathsf{6)} \ \ Sub(u,v) \ \iff \ u = \lceil f \rceil \ \& \ v = \lceil g \rceil \ \& \ f \subseteq g.$
- $\text{B)} \quad Cap(u,v) \iff u = \lceil f \rceil \ \& \ v = \lceil g \rceil \ \& \ f \cap g = \emptyset.$

Зад. 2. Докажете, че съществува единствена функция g, за която е в сила системата от равенства:

$$\begin{array}{ccccc} g(0,x) & = & 2^{x} \\ g(n+1,x) & = & g(n,g(n,x)) \end{array}$$

Докажете, че тази функция е примитивно рекурсивна.

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Първо контролно по Изчислимост и сложност (упр.) 12.11.2016 г.

 ${\bf 3}$ ад. 1. За всяка крайна функция $f:\mathbb{N}\to\mathbb{N},$ дефинираме нейния код Г $f^{\, \gamma}$ като

$$\lceil f \rceil = \prod_{x \in Dom(f)} p_x^{f(x)+1} - 1,$$

където p_i е i-тото просто число. Например, $\lceil \emptyset^{(1)} \rceil = 0$, а ако функцията f е дефинирана като f(1) = 0, f(2) = 1, и $\neg!f(x)$ за $x \neq 1, 2$, то $\lceil f \rceil = 74$. Докажете, че следните предикати имат примитивно рекурсивни характеристични функции:

- а) $Inj(v) \iff v = \lceil f \rceil \& f$ е инективна.
- $\mathsf{G}) \ Sub(u,v) \ \Longleftrightarrow \ u = \lceil f \rceil \ \& \ v = \lceil g \rceil \ \& \ f \subseteq g.$
- B) $Cap(u, v) \iff u = \lceil f \rceil \& v = \lceil g \rceil \& f \cap g = \emptyset.$

Зад. 2. Докажете, че съществува единствена функция g, за която е в сила системата от равенства:

Докажете, че тази функция е примитивно рекурсивна.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Първо контролно по Изчислимост и сложност (упр.) 12.11.2016 г.

 ${\bf Зад.}\ 1.\ \ 3$ а всяка крайна функция $f:\mathbb{N}\to\mathbb{N},$ дефинираме нейния код $\ulcorner f \urcorner$ като

$$\lceil f \rceil = \prod_{x \in Dom(f)} p_x^{f(x)+1} - 1,$$

където p_i е i-тото просто число. Например, $\lceil \emptyset^{(1)} \rceil = 0$, а ако функцията f е дефинирана като f(1) = 0, f(2) = 1, и $\neg!f(x)$ за $x \neq 1, 2$, то $\lceil f \rceil = 74$. Докажете, че следните предикати имат примитивно рекурсивни характеристични функции:

- а) $Inj(v) \iff v = \lceil f \rceil \ \& \ f$ е инективна.
- $\mathsf{G}) \ \ Sub(u,v) \ \iff \ u = \lceil f \rceil \ \& \ v = \lceil g \rceil \ \& \ f \subseteq g.$
- $\text{B)} \quad Cap(u,v) \iff u = \lceil f \rceil \ \& \ v = \lceil g \rceil \ \& \ f \cap g = \emptyset.$

Зад. 2. Докажете, че съществува единствена функция g, за която е в сила системата от равенства:

Докажете, че тази функция е примитивно рекурсивна.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Първо контролно по Изчислимост и сложност (упр.) 12.11.2016 г.

 ${\bf 3aд.}~{\bf 1.}~$ За всяка крайна функция $f:\mathbb{N}\to\mathbb{N},$ дефинираме нейния код $\lceil f\rceil$ като

$$\lceil f \rceil = \prod_{x \in Dom(f)} p_x^{f(x)+1} - 1,$$

където p_i е i-тото просто число. Например, $\lceil \emptyset^{(1)} \rceil = 0$, а ако функцията f е дефинирана като f(1) = 0, f(2) = 1, и $\neg!f(x)$ за $x \neq 1, 2$, то $\lceil f \rceil = 74$. Докажете, че следните предикати имат примитивно рекурсивни характеристични функции:

- а) $Inj(v) \iff v = \lceil f \rceil \ \& \ f$ е инективна.
- $\text{ f) } Sub(u,v) \iff u = \lceil f \rceil \ \& \ v = \lceil g \rceil \ \& \ f \subseteq g.$
- $\text{B)} \quad Cap(u,v) \iff u = \lceil f \rceil \ \& \ v = \lceil g \rceil \ \& \ f \cap g = \emptyset.$

Зад. 2. Докажете, че съществува единствена функция g, за която е в сила системата от равенства:

$$g(0,x) = 2^x$$

 $g(n+1,x) = g(n,g(n,x))$

Докажете, че тази функция е примитивно рекурсивна.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:			•	•	

Първо контролно по Изчислимост и сложност (упр.) 12.11.2016 г.

 ${\bf 3aд.}\ 1.\ \ 3a$ всяка крайна функция $f:\mathbb{N}\to\mathbb{N},$ дефинираме нейния код Г $f^{\, \gamma}$ като

$$\lceil f \rceil = \prod_{x \in Dom(f)} p_x^{f(x)+1} - 1,$$

където p_i е i-тото просто число. Например, $\lceil \emptyset^{(1)} \rceil = 0$, а ако функцията f е дефинирана като f(1) = 0, f(2) = 1, и $\neg!f(x)$ за $x \neq 1, 2$, то $\lceil f \rceil = 74$. Докажете, че следните предикати имат примитивно рекурсивни характеристични функции:

- а) $Inj(v) \iff v = \lceil f \rceil \ \& \ f$ е инективна.
- $\mathsf{G}) \ Sub(u,v) \ \Longleftrightarrow \ u = \lceil f \rceil \ \& \ v = \lceil g \rceil \ \& \ f \subseteq g.$
- B) $Cap(u,v) \iff u = \lceil f \rceil \& v = \lceil g \rceil \& f \cap g = \emptyset.$

Зад. 2. Докажете, че съществува единствена функция g, за която е в сила системата от равенства:

$$g(0,x) = 2^x$$

$$g(n+1,x) = g(n,g(n,x))$$

Докажете, че тази функция е примитивно рекурсивна.