东南大学 2006-2007 学年第二学期《高等数学(上)》 期中考试试卷

课程名称_	高等数学 A、	В期中	考试学期	月 06-0	7-2	得分	
适用专业	工科类	考试?	形式	闭卷	考试 —	时间长度	120 分钟
一.填空题(前	竹四题每题4分,	第5题8分	,满分 24	分)			
1. 函数 f(x)	$=\frac{\sin x}{\left x\right (x-1)}$ 的全	部间断点分	·别是	_,它们的	力类型依	次分别为	;
2. 己知 $\lim_{x\to\infty}$	$\frac{x^2+1}{x+1}-ax-b$	= 0 ,则 <i>a</i> =	, b	=	;		
3. 没 y = arct	tan f(x),其中	f(x) 为可得	数函数,则	微分 <i>dy</i> =_		;	
4. 设 f(x) =	$\begin{cases} ax + b, x > 1 \\ x^3, & x \le 1 \end{cases}$	若 f(x) 在	x = 1 处可	导,则 <i>a=</i>	:	, b=	;;
5. 举出符合名	各题要求的一例,	并将其填写	百在横线上				
	处不连续,但当					_,	
	处连续,但在x			/- <i> (</i>)			
(3) 在 x = 0	处导数为0 ,但	l x = 0 不为	极值点的连	续函数有		_•	
(4) 属于" <mark>0</mark> 0	"或" <mark>—</mark> "未定型, ∞	且存在有阿	艮极限,但	极限不能	用洛必達	达法则求得]
的有	·						
二.单项选择题	厦(每题4分,满	持分 12 分)					
1. 设 f(x) 是	:单调增函数, g	(x) 是单调源	域函数,且	复合函数,	f(f(x))), f(g(x)))),
g(f(x)),g(g(x)) 都有意义,	则下列函数	数组中全为	单调减函	数的是	[]	
$(A) \ f(f(x))$	(f(g(x)))	(B	g(f(x)))),g(g(x))		
(C) $f(g(x))$), g(f(x))	(D	g(g(x))	, f(f(x)))		
2. $\exists x \rightarrow 0$	讨, 若 y = ln(1	+x)-ax-	bx ² 是比	x ² 更高阶	的无穷。	小,则[1
(A) $a = 1, b =$	$\frac{1}{2} (B) a = 1, b$	$=-\frac{1}{2} \qquad (6$	C) $a = -1$,	$b=\frac{1}{2} (a$	D) a =	-1, b = -	1/2

3. 下面四个论述中正确的是

[]

- (A)若 $x_n \ge 0$ $(n=1,2,\cdots)$,且数列 $\{x_n\}$ 单调递减,则数列 $\{x_n\}$ 收敛,且其极限 a>0
- (B)若 $x_n > 0(n = 1, 2, \dots)$, 且数列 $\{x_n\}$ 收敛, 则其极限a > 0
- (C)若 $\lim_{n\to\infty} x_n = a \ge 0$,则 $x_n \ge 0$ $(n = 1, 2, \dots)$

三.计算题(每题7分,满分35分)

1.
$$\lim_{x \to 0} \frac{x - \sin x}{(1 - \cos x) \ln(1 + x)}$$

解:

$$2. \quad \lim_{x\to\infty} \left(\frac{x-2}{x+1}\right)^{2x-1}$$

解:

解:

4. 设
$$y = x^2 e^{3x}$$
, 求 $y^{(10)}(x)$.

解:

5. 设 y = y(x) 是由方程 $x^2 + y^2 - ye^{xy} = 2$ 所确定的隐函数,求曲线 y = y(x) 在点 (0,2) 处的切线方程.

解:

四. (8分) 设
$$x_0 = \sqrt{2}$$
 , $x_n = \sqrt{2} + \frac{x_{n-1}-1}{\sqrt{2} + x_{n-1}}$, $(n=1,2,\cdots)$,证明数列 $\{x_n\}$ 收敛并求极限.

证:

五. (8分) 证明: $\exists x \ge 0$ 时, 有

$$(1+x)^2 (2 \ln(1+x) - 1) + 1 \ge 4x \arctan x - 2 \ln(1+x^2)$$
.

证:

六. (7分) 设函数 f(x) 在区间[0,1] 上连续,在(0,1) 内可导,f(0)=0 ,试证:存在一点

$$\xi \in (0,1)$$
,使得

$$\frac{3f(\xi)}{1-\xi} = f'(\xi)$$

证:

七. (6分) 设 $f_n(x) = \frac{1}{n+1}x - \arctan x$ (其中 n 为正整数),

- (1) 证明: $f_n(x)$ 在 $(0,+\infty)$ 内有唯一的零点,即存在唯一的 $x_n \in (0,+\infty)$,使 $f_n(x_n) = 0$;
- (2) 计算极限 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$.

证:

06-07-2 高等数学(A,B)期中试卷参考答案

- 一.填空题(前四题每题 4 分, 第 5 题 8 分, 满分 24 分)
- **1.** 0,1, <u>跳跃间断点, 无穷间断点</u>; **2.** a = 1, b = -1;
- 3. $dy = \frac{f'(x)}{1 + f^2(x)} dx$; 4. a = 3, b = -2;
- 5. (1) $\underline{y} = |\operatorname{sgn} x|$, (2) $\underline{y} = |x|$, (3) $\underline{y} = x^3$, (4) $\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\ln(1+x)}$.
- 二.单项选择题(每题 4 分,满分 12 分)
- 1. C 2. B 3. D
- 三.计算题 (每题 7分,满分 35分)
- 1. **AP**: $\lim_{x \to 0} \frac{x \sin x}{(1 \cos x) \ln(1 + x)} = \lim_{x \to 0} \frac{\frac{1}{6}x^3}{\frac{1}{4}x^3} = \frac{1}{3}$
- **2. AF:** $\lim_{x \to \infty} \left(\frac{x-2}{x+1} \right)^{2x-1} = \lim_{x \to \infty} \left(1 \frac{3}{x+1} \right)^{-\frac{x+1}{3} \left(\frac{3(2x-1)}{x+1} \right)} = e^{-3 \lim_{x \to \infty} \frac{2x-1}{x+1}} = e^{-6}$
- 3. #: $\frac{dy}{dx}\Big|_{t-1} = \frac{\frac{2t}{1+t^2}}{1+\frac{1}{1+t^2}}\Big|_{t-1} = \frac{2t}{2+t^2}\Big|_{t-1} = \frac{2}{3}$ $\frac{d^2y}{dx^2}\Big|_{t-1} = \frac{2(2-t^2)(1+t^2)}{(2+t^2)^3}\Big|_{t-1} = \frac{4}{27}$
- **4.** Provided HTML $y^{(10)}(x) = 3^{10} x^2 e^{3x} + 3^9 20 x e^{3x} + 3^{10} 10 e^{3x} = 3^9 (3x^2 + 20x + 30) e^{3x}$
- **5.解:** 对方程关于 x 求导得: $2x + 2yy' y'e^{xy} ye^{xy}(y + xy') = 0$,将 x = 0,y = 2 代入得
- $y'(0) = \frac{4}{3}$, 于是所求切线方程为 $y 2 = \frac{4}{3}x$, 即 4x 3y + 6 = 0.
- 四. (8分) 证: $x_n = (1 + \sqrt{2}) \left(1 \frac{1}{\sqrt{2} + x_{n-1}} \right) < 1 + \sqrt{2}, (n = 1, 2, \dots), \{x_n\}$ 有上界。
- $x_{n+1} x_n = \frac{\left(1 + \sqrt{2}\right)(x_n x_{n-1})}{\left(\sqrt{2} + x_{n-1}\right)\left(\sqrt{2} + x_n\right)} > 0 \text{ , 由归纳法得: } \{x_n\} 单调递增,$

故 $\{x_n\}$ 收敛。设 $\lim_{n\to\infty} x_n = a$ (1分) 在递推关系式中令 $n\to\infty$, 得

$$a = (1 + \sqrt{2}) \left(1 - \frac{1}{\sqrt{2} + a}\right), \quad \text{If } a^2 - a - 1 = 0, \quad \text{if } a = \frac{1 \pm \sqrt{5}}{2}, \quad \text{in WRRF性} a \ge \sqrt{2},$$

五.(8分)

证: 设 $f(x) = (1+x)^2 (2 \ln(1+x) - 1) + 1 - 4x \arctan x + 2 \ln(1+x^2)$

$$f'(x) = 4(1+x)\ln(1+x) - 4\arctan x$$
, $f''(x) = 4\ln(1+x) + 4 - \frac{4}{1+x^2} \ge 0$, $x \ge 0$

所以 $f'(x) \ge f'(0) = 0$, $x \ge 0$, 故 $f(x) \ge f(0) = 0$, $x \ge 0$, 原不等式得证。

六. (7分) 证: 设 $F(x) = (1-x)^3 f(x)$, F(x) 在区间[0,1] 上连续, 在(0,1) 内可导, 且

F(0) = F(1) = 0, 由罗尔定理知 $\exists \xi \in (0,1)$, 使得

$$F'(\xi) = (1 - \xi)^2 \left((1 - \xi) f'(\xi) - 3 f(\xi) \right) = 0 , \quad \text{iff} \quad 1 - \xi \neq 0 , \quad \text{iff} \quad \frac{3 f(\xi)}{1 - \xi} = f'(\xi)$$

七. (6分)

$$\underbrace{\text{if:}} \quad (1) \ \ & \ \ g_n(x) = \frac{\arctan x}{x} - \frac{1}{n+1}, \quad x \in (0, +\infty), \quad \lim_{x \to 0^+} g_n(x) = 1 - \frac{1}{n+1} > 0 ,$$

lim
$$g_n(x) = -\frac{1}{n+1} < 0$$
, 故 $\exists 0 < x_1 < x_2 < +\infty$, 使得 $g_n(x_1) > 0$, $g_n(x_2) < 0$,

 $g_n(x)$ 在区间 $[x_1, x_2]$ 上连续, $g_n(x)$ 在 (x_1, x_2) 内至少存在一个零点。

$$g_n'(x) = \frac{\frac{x}{1+x^2} - \arctan x}{x^2}$$
, $\overrightarrow{U}h(x) = \frac{x}{1+x^2} - \arctan x$, $h'(x) = -\frac{2x^2}{(1+x^2)^2} < 0$,

 $x \in (0, +\infty)$, h(x) < h(0) = 0 , x > 0 , 即 $g_n'(x) < 0$, x > 0 , $g_n(x)$ 在 $(0, +\infty)$ 内严格单调递减, $g_n(x)$ 在 $(0, +\infty)$ 内至多存在一个零点。 $g_n(x)$ 在 $(0, +\infty)$ 内存在唯一零点,即 $f_n(x)$ 在

 $(0,+\infty)$ 内存在唯一零点, 记为 $x_{n} \in (0,+\infty)$ 。

(2) 由于
$$\frac{\arctan x_{n+1}}{x_{n+1}} = \frac{1}{n+2} < \frac{1}{n+1} = \frac{\arctan x_n}{x_n}$$
,而 $\frac{\arctan x}{x}$ 严格单调递减,故

$$x_n < x_{n+1}$$
, 所以 $(n+1)\arctan x_1 \le x_n < \frac{\pi}{2}(n+1)$, 得 $\lim_{n \to \infty} x_n = +\infty$,

$$\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \lim_{n\to\infty} \frac{(n+2)\arctan x_{n+1}}{(n+1)\arctan x_n} = 1$$

