### Machine Learning for Dynamical Systems

**Course Projects** 

Prof. Dr. Abdulla Ghani <a href="mailto:ghani@tu-berlin.de">ghani@tu-berlin.de</a>

Vikas Yadav v.vadav@tu-berlin.de

Fabio Frohberg frohberg@tu-berlin.de





#### Course Assessment



#### Report: approximately 10-12 pages

To be submitted by 30.09.2024 until 23:59 h

Focus on your project work in a structured way, e.g. problem statement, NN architecture, methodology, results, etc. (You can also show bad results and give possible explanations)

#### Presentation: maximum 10 minutes

To be presented on 16.09.2024

Preliminary results about the project

Plan for the report

### Possible projects



- 1. Modelling flame dynamics with neural network
- 2. Autoencoder for Kolmogorov Flow
- 3. Autoencoder for steady state flame images (convolutional, variational)

# Thermoacoustic instabilities result from heat release rate oscillations



Thermoacoustic instabilities: High amplitude pressure oscillations in 'lean

premixed' combustors











- Prediction requires a coupling between:
- Acoustic model
- Flame model:  $\dot{Q}' = f(u')$



### Premixed methane-air laminar slit burner (equivalence ratio of 0.8) Fully resolved with DNS



### Neural networks trained with result from broadband simulation



Kornilov et al. PROCI (2007) Tathawadekar et al., PROCI (2020)

# Assessment of the trained neural network : Comparison with harmonic forcing



$$F(\omega, |u'|) = \frac{\dot{Q}'(\omega, |u'|)/\overline{\dot{Q}}}{\dot{u}'(\omega, |u'|)/\overline{u}}$$





- Objective: Develop a neural network based model of the flame response
- 3 Training datasets provided for different amplitudes of excitations
- Two approaches possible
  - Recurrent neural network
  - Feedforward NN
- Study of the accuracy of the trained NN depending on the training dataset used
- Study on the impact of the length of the dataset used for training

### Possible projects



- 1. Modelling flame dynamics with neural network
- 2. Autoencoder for Kolmogorov Flow
- 3. Autoencoder for steady state flame images (convolutional, variational)

### Kolmogorov Flow



Kolmogorov flow: 2D Navier Stokes subjected to volume for

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \frac{1}{\text{Re}} \Delta \boldsymbol{u} + \boldsymbol{f}$$

$$\boldsymbol{f} = (\sin k_f y, 0), k_f = 4$$







# Behaviour of the Kolmogorov flow depends on Reynolds number



Re = 20



Re = 30











# Behaviour of the Kolmogorov flow depends on Reynolds number

$$Re = 40$$





Kolmogorov flow evolves from quasi-periodic to turbulent to turbulent with extreme events.

# An application of CNN: Autoencoder for dimensionality reduction

**DMF** 

Autoencoder combined dimensionality reduction with reconstruction Encoder finds the reduced order representation Once trained, the decoder can be removed



- Objective: develop an autoencoder to reduce the dimension of the flow information
- Different datasets at different Reynolds numbers (20, 30 and 40)
- Analyse the difference in complexity depending on the Reynolds number
- Assess the accuracy achievable with different sizes of reduced dimension
- Two different approaches possible:
  - Based on feedforward neural network
  - Based on convolutional neural network
- Comparison with the POD approach

### Possible projects



- 1. Modelling flame dynamics with neural network
- 2. Autoencoder for Kolmogorov Flow
- Autoencoder for steady state flame images (convolutional, variational)

# Steady state images for different input conditions



Premixed methane-air laminar slit burner (varying equivalence ratio, input velocity, input temperature, wall temperature)

Fully resolved with DNS



Train autoencoders with the steady state images

### **DMF**





- Objective: Develop a Autoencoder to reduce the dimension of the flow information
- Different datasets at different input parameters
- Assess the accuracy achievable with different sizes of reduced dimension
- Two different approaches possible:
  - Convolutional autoencoder
  - Variational autoencoder
- Develop second neural network to map input parameters to latent space
- Vary the input parameters to predict the latent space and use this latent space to generate steady state images

### Important points for the Report



Make sure to have proper labels and legends for all figures

Proper formatting of figures

Provide critical reasoning to your findings/figures

Literature survey and include references in the report

Structure the report well

Pay attention to the language (spellings, grammar, etc.)

### Additional project



1. Physics-Informed Neural Network

#### Burgers' equation is a toy-model of turbulence



#### Simplification of the Navier-Stokes equation:

- Neglect the pressure term
- Constant density

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = v \frac{\partial^2 u}{\partial x^2}; v = \frac{0.01}{\pi}$$

Show some nonlinearity (but is not chaotic).

Can exhibit shock-like behaviour  $u(x,0) = -\sin(\pi x)$  u(-1,t) = 0 and u(1,t) = 0



# Kuramoto Sivashinsky models diffusion instabilities in flames



The Kuramoto Sivashinsky (KS) equation models diffusion instabilities in laminar flames

$$\frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^4 u}{\partial x^4} + u \frac{\partial u}{\partial x} = 0$$

With periodic boundary condition  $u(2\pi L, t) = u(0, t)$  and a domain  $x \in [0, 2\pi L]$ 

With initial condition  $u(x,0) = -\sin\left(\frac{x}{2\pi L}\right)$ , L = 6



- Objective is to develop a Physics-Informed Neural Network that can solve the Burgers' and KS equations
  - 2 Cases for Burgers equation
    - $u(x,0) = -\sin(\pi x)$  with u(-1,t) = 0 and u(1,t) = 0;  $v = 0.01/\pi$
    - $u(x,0) = e^{-x^2} \sin(10\pi x)$  with  $u(-\pi,t) = 0$  and  $u(\pi,t) = 0$
  - 1 Case for KS equation
    - You will need to modify the physical loss so that you can impose periodic boundary conditions.
  - Study the complexity of the network necessary to obtain a good approximation depending on the complexity of the equation/real solution