

A Level · OCR · Physics

Multiple Choice Questions

Electromagnetic Induction

Magnetic Flux / Magnetic Flux Linkage / Faraday's & Lenz's Laws / Calculating Induced E.m.f / A.C Generator / Transformers

Scan here to return to the course

or visit savemyexams.com

Total Marks

1 A flat coil has 200 turns and a cross-sectional area of 1.20×10^{-4} m².

The coil is placed horizontally in a uniform magnetic field. The magnetic flux density is 0.050 T. The magnetic field is at an angle of 30.0° to the vertical.

What is the magnetic flux linkage for this coil?

- **A.** 3.00×10^{-6} Wb turns
- **B.** 5.20×10^{-6} Wb turns
- **C.** 6.00×10^{-4} Wb turns
- **D.** 1.04×10^{-3} Wb turns

(1 mark)

2 Faraday's law of electromagnetic induction is written below with **two** terms missing.

The induced in a circuit is directly proportional to the rate of change of magnetic flux

What are the **two** missing terms?

- **A.** current, density
- **B.** current, linkage
- **C.** electromotive force, density
- **D.** electromotive force, linkage

(1 mark)

3 A coil with 500 turns is placed in a uniform magnetic field. The average cross-sectional area of the coil is 3.0×10^{-4} m².

The magnetic flux through the plane of the coil is reduced from 1.8×10^{-4} Wb to zero in a time t. The average electromotive force (e.m.f.) induced across the ends of the coil is 0.75 ٧.

What is the value of *t*?

A.
$$3.6 \times 10^{-5}$$
 s

B.
$$2.4 \times 10^{-4}$$
 s

(1 mark)

4 The number of turns on the coils of four ideal iron-cored transformers A, B, C and D are shown in the table below.

Transformer	Number of turns on the secondary coil	Number of turns on the primary coil
А	100	100
В	50	200
С	200	50
D	500	100

Each transformer is connected in turn to an alternating 240 V supply.

Which transformer will give the largest output current?

(1 mark)