University of Illinois at Chicago Department of Physics

Thermodynamics and Statistical Physics Qualifying Exam

January 5, 2007 9:00am-12:00pm

Full credit can be achieved from completely correct answers to $\frac{4 \text{ questions}}{\text{will be graded}}$. If the student attempts all 5 questions, all of the answers will be graded, and the $\underline{\text{top 4 scores}}$ will be counted towards the exam's total score.

Mathematical Formulae

Notation:

$$\beta = \frac{1}{k_B T}$$
 erfc (z) = $\frac{2}{\sqrt{\pi}} \int_z^{\infty} dx \exp\left(-x^2\right)$ erfc is known as the complimentary error function

Integrals:

$$\int dx \ln x = x \ln x - x$$

$$\int \frac{dx}{x} = \ln x$$

$$\int_{b}^{\infty} dx \exp(-ax^{2}) = \frac{1}{2} \sqrt{\frac{\pi}{a}} \operatorname{erfc}(\sqrt{ab})$$

$$\int_{0}^{a} dx \operatorname{erfc}(x) = \frac{1 - \exp(-a^{2})}{\sqrt{\pi}} + \operatorname{aerfc}(a)$$

Expansions:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots \qquad \text{for} \quad x < 1$$

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$\operatorname{erfc}(\mathbf{x}) = \exp\left(-\mathbf{x}^2\right) \left[\frac{1}{\sqrt{\pi}\mathbf{x}} + \dots\right] \qquad \text{for } \mathbf{x} \to \infty$$

$$\sinh(x) = x + \dots \qquad \qquad \text{for } x \to 0$$

$$\cosh(x) = 1 + \dots \qquad \qquad \text{for } x \to 0$$

- 1. Consider a system consisting of N non-interacting particles each with spin S = 1 in an external magnetic field, H. For H = 0, all of a single particle's spin projections, S_z , are degenerate with energy E = 0.
 - a) Plot the energies of ALL spin projections, S_z , of a single particle as a function of H.
 - b) Calculate the partition function of the system as a function of temperature T and H.
 - c) Compute the average energy, $\langle E \rangle$ of the system. What is the form of $\langle E \rangle$ in the limit $T \to 0$? Briefly explain what this result implies for the spin states of the spins (1-2 sentences maximum). What is the form of $\langle E \rangle$ in the limit $\beta g \mu_B H \ll 1$, where $\beta = 1/k_B T$, g is the gyromagnetic ratio, and μ_B is the Bohr magneton?
 - d) Compute the specific heat of the system in the high temperature limit for constant H.
- 2. Consider a three-dimensional box with sides of length L, as shown below

It contains an ideal gas of non-interacting spin-less particles each with kinetic energy

$$\varepsilon = \frac{m}{2} \overrightarrow{v}^2$$

The temperature of the gas is T, and the particles are uniformly distributed throughout the box.

- a) What is the normalized velocity distribution of the gas?
- b) We now open the front side of the box (the shaded side facing the +x-direction, as shown in the figure) for a given time Δt . Using the result from (a), compute the number of particles that escape from the box in time Δt . To this end, consider these two steps: (i) Divide the box into slices of width dx and compute first the number of particles in a given slice at a distance x from the opening that have escape through the opening in time Δt .
- (ii) In order to find the total number of escaped particles, integrate the result you obtained in (i).
- c) How does the total number of escaped particles depend on Δt in the limit $\Delta t \rightarrow 0$?

3. Suppose one mole of an ideal gas is subjected to the cyclic process shown below (with temperature T_1, T_2 and T_3 in states 1, 2 and 3, respectively)

 $1 \Rightarrow 2$ is a free adiabatic expansion, i.e. an expansion against zero applied pressure (like expanding into a vacuum).

 $2 \Rightarrow 3$ is a constant pressure compression step

 $3 \Rightarrow 1$ is a constant volume heating step

Step $1 \Rightarrow 2$ is irreversible, but steps $2 \Rightarrow 3$ and $3 \Rightarrow 1$ are reversible

- a) What is the change in internal energy, ΔU , for the entire cyclic process $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.
- b) Use the First Law of Thermodynamics to calculate ΔU for the process $1 \Rightarrow 2$.
- c) Use the First Law of Thermodynamics to calculate ΔU for the process $2 \Rightarrow 3$.
- d) Use the First Law of Thermodynamics to calculate ΔU for the process, $3 \Rightarrow 1$.
- e) Using your answers to parts (a) (d), show that the following result is obtained for 1 mole of an ideal gas:

$$C_p - C_V = R$$

where C_{V} is the specific heat for constant volume, C_{p} is the specific heat for constant pressure, and R is the ideal gas constant.

4. Consider a system consisting of M non-interacting molecules at temperature T. Each of these molecules exhibits vibrations with energies

$$E_n = \hbar\omega_0 \left(n + \frac{1}{2}\right)$$
 where $n = 0, 1, 2, 3, \dots$

a) Show that the single particle partition function is given by

$$Z_1 = \frac{1}{2\sinh\left[\frac{\beta\hbar\omega_0}{2}\right]}$$

and compute the partition function, Z_M , for the M molecule system.

- b) Compute the free energy F and the average energy $\langle E \rangle$ the entire system. What is the form of $\langle E \rangle$ at high temperatures?
- c) Compute the entropy S and the specific heat C_V of the system.

- 5. Consider a monoatomic ideal gas.
 - a) What is the internal energy and the equation of state of an ideal gas?
 - b) Compute the entropy of an ideal gas as a function of T and V for constant particle number N starting from

$$dU = TdS - pdV$$

c) Compute the chemical potential of the ideal gas as a function of p and T starting from the Gibbs-Duhem relation

$$SdT - Vdp + Nd\mu = 0$$