MÁSTER UNIVERSITARIO EN LÓGICA, COMPUTACIÓN E INTELIGENCIA ARTIFICIAL Aprendizaje Automático

Apellidos:	 		 		•		
Nombre :	 		 		 	 	

Puedes usar el procesador de textos que prefieras. El fichero que entregues debe estar en formato pdf. Queda terminantemente prohibido entregar soluciones a mano.

Ejercicio 1. Sea X un universo y D un conjunto de entrenamiento sobre X. Sean $E^+ = \{x \in X \mid (x,1) \in D\}$ y $E^- = \{x \in X \mid (x,0) \in D\}$. Sea H el conjunto de hipótesis que contiene a todas las hipótesis sobre X. Sea VS el espacio de versiones para $\langle D, H \rangle$. Sea $x_0 \in X$ tal que $x_0 \notin E^+ \cup E^-$ y sea $h \in VS$ tal que $h(x_0) = 0$. Demostrar que existe $h' \in VS$ tal que $h'(x_0) = 1$.

Ejercicio 2. Sea U un universo finito y $C = 2^U$ el conjunto de los objetivos. Sea \mathcal{H} un conjunto de hipótesis sobre U y L un algoritmo de aprendizaje tal que su dominio es $\bigcup_{c \in C} \bigcup_{m \geq 1} \mathcal{S}(m, c)$. Demostrar que si $\mathcal{H} \neq 2^U$, entonces L no es consistente.

Ejercicio 3. Sea $D = \{\langle x_1, c(x_1) \rangle, \dots, \langle x_n, c(x_n) \rangle\}$ un conjunto de entrenamiento para un concepto \mathbb{C} y sea \mathcal{H} un conjunto de hipótesis. Demostrar que el resultado de aplicar el algoritmo de ELIMINACIÓN DE CANDIDATOS es el mismo para cualquier ordenación de los elementos de D.

Ejercicio 4. Aplica los algoritmos de aprendizaje *por enumeración* y *Find-S* para los siguientes problemas de aprendizaje:

■ Problema 1

$$X = \mathbb{R}^{2}$$

$$H = \{h_{n} : X \to \{0, 1\} \mid n \in \mathbb{N} \land h_{n}((x, y)) = 1 \Leftrightarrow x^{2} + y^{2} \leq n^{2}\}$$

$$\mathbf{s} = \{\langle (1, 1), 1 \rangle, \langle (3, 4), 1 \rangle, \langle (2, 2), 1 \rangle, \langle (4, 7), 0 \rangle, \}$$

■ Problema 2

$$X = \mathbb{R}^2$$

 $H = \{h_n \mid n \in \mathbb{N}\} \text{ con } h_0 = \emptyset \text{ y si } n > 1, \text{ entonces}$
 $h_n = \{(x, y) \in X \mid a, b \in \mathbb{N}, a \le x < b, n = \frac{b(b-1)}{2} + a + 1\}$
 $\mathbf{s} = \{\langle (0, 0), 0 \rangle, \langle (3, 4), 1 \rangle, \langle (2, 2), 1 \rangle\}$

Ejercicio 5. En este ejercicio consideraremos $X = \{0,1\}^n$, i.e., X es el conjunto de todas las cadenas de longitud n formadas por ceros y unos.

- 1. ¿Cuantos ejemplos positivos del concepto palíndromo hay en X?
- 2. Sea ω el concepto definido en X de la siguiente manera: $\omega(y) = 1$ si y sólo si y contiene como máximo dos 1's. Prueba que el número de ejemplos positivos de ω es una función cuadrática de n.
- 3. Supongamos que en un problemas de aprendizaje sobre X aplicamos el algoritmo de aprendizaje por enumeración sobre el conjunto de todas las hipótesis y las hipótesis están enumeradas de manera que la que buscamos está en la primera mitad. Si podemos probar un millón de hipótesis por segundo y $X = \{0,1\}^9$, ¿cuánto tiempo llevará encontrar la hipótesis buscada en el peor de los casos?