A Deep Dive into Random Forests

By: Ari Silburt

Random Forests May Seem Scary...

But They're Actually Not Too Bad!

Plan

- Decision Tree
- Random Forests (+ Bagging)
- Optimization (Gini Criterion, Regularization)
- Closing Notes

Decision Tree

Decision Tree

Example: Should We Play Tennis?

Play Tennis	Outlook	Temperature	Humidity	Windy
No	Sunny	Hot	High	No
No	Sunny	Hot	High	Yes
Yes	Overcast	Hot	High	No
Yes	Rainy	Mild	High	No
Yes	Rainy	Cold	Normal	No

- If temperature is not hot
 - Play
- If outlook is overcast
 - Play tennis
- Otherwise
 - Don't play tennis

Decision Tree

Properties

- Feature can show up more than once in different branches (e.g. windy).
- Node can have both a branch and leaf stemming from it.

Decision Tree – Pros and Cons

Pros:

- Non-linear decision boundaries
- Easy to interpret
- Numerical & Categorical Data

Decision Tree – Pros and Cons

Cons:

- Easy to Overfit
- High Variance (i.e. unstable).

Random Forests

- We can guess that a Random Forest = many decision trees. But how?
- Many copies of the exact same tree is useless...

OK, so we want some tree variation, but how...

- We want tree variation, but how...
- Vary trees such that overall variance is reduced:

- We want tree variation, but how...
- Vary trees such that overall variance is reduced:
- STATS101:

Given a set of independent, uncorrelated observations

 Z_1, Z_2, \dots, Z_n each with variance σ^2 , the variance of Z is $\frac{\sigma^2}{n}$.

- We want tree variation, but how...
- Vary trees such that overall variance is reduced:
- STATS101:

Given a set of independent, uncorrelated observations

 Z_1, Z_2, \dots, Z_n each with variance σ^2 , the variance of Z is $\frac{\sigma^2}{n}$.

This is why a forest of identical trees is useless.

- We want tree variation, but how...
- Vary trees such that overall variance is reduced:
- STATS101:

Given a set of independent, uncorrelated observations

 Z_1, Z_2, \dots, Z_n each with variance σ^2 , the variance of Z is $\frac{\sigma^2}{n}$.

This is why a forest of identical trees is useless.

This is why ensembling many models together always improves results.

Random Forests – Randomize Data

 Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D

Bagging

- Create k bootstrap samples D_1, \ldots, D_k
- Train distinct classifier on each D_i
- Classify new instance by majority vote / average

Random Forests – Randomize Data

Random Forests – Randomize Features

Random Forests – Intuition Check

What happens if you assign more/less data per tree?

• What happens if you select more/less of the total features per tree:

Random Forests – Intuition Check

What happens if you assign more/less data per tree?

Less: Trees more uncorrelated, but at some point too little data hurts training.

More: Trees become more correlated, training of each tree improved.

• What happens if you select more/less of the total features per tree:

Less: Trees more uncorrelated, but at some point many trees become "dead", i.e. fitting entire trees on unimportant features.

More: Trees become more correlated, training of each tree improved.

Tree/Model Optimization

Tree Optimization – Greedy Criterion

- Trees grown according to what the local best option is.
- Criterion: Gini, Information Gain.

Short Aside - Greedy Algorithm Example

Example: Find largest path.

Tree Optimization – Greedy Criterion

• Note: The criterion governing tree growth is *different* than your global cost function (e.g. precision-recall, accuracy, etc.), which determines how well your entire model is doing.

Tree Optimization – Gini Impurity

"Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled according to the distribution of labels in the subset."

$$G = 1 - \sum_{i=0}^{N_{class}} {\binom{N_i}{T}}^2$$

G = Gini Impurity of node $N_{class} = total number of classes in node$ $N_i = Number of items in node from class i in sample$

T = Total samples in node

Tree Optimization – Gini Impurity Example

Splits decided such that the gini impurity is minimized

Model Optimization – Regularization

- Main complexity
 parameter is
 max_depth of the tree.
- Deep trees can split the data up more, leading to overfitting.

Model Optimization – Regularization

Great Demo

https://cs.stanford.edu/people/karpathy/svmjs/demo/demoforest.html

Final Nice Attributes - Proof Left as an Exercise to the Student;)

- Get Out Of Bag (OOB) error rate for free, which is equivalent to leaveone-out cross validation.
- In theory, Random Forest cannot overfit on the number of trees, i.e. you can't have too many trees, it's just more expensive to train more.
- Deals with missing values through "surrogate splits".
- Efficiently ignores redundant/irrelevant variables.

The End

Links

- https://www2.isye.gatech.edu/~tzhao80/Lectures/Lecture-6.pdf
- http://scikit-learn.org/stable/modules/tree.html
- https://stackoverflow.com/questions/20224526/how-to-extract-the-decision-rules-from-scikit-learn-decision-tree
- http://www.utdallas.edu/~nrr150130/cs7301/2016fa/lects/Lecture_1 0 Ensemble.pdf
- http://www2.stat.duke.edu/~rcs46/lectures 2017/08-trees/08-treeadvanced.pdf