¿Qué características hacen que los tracks de Spotify sean éxitos?

by Laverne Evelyn & Mastrodonato Aldana

Contexto y problema

Contexto comercial

- La cantidad de tracks en Spotify aumento a lo largo de los años.
- · No todos son éxitos o poseen gran popularidad entre la gente.
- Se quiere saber si ciertas características influyen en la popularidad de los mismos.
- Se busca identificar patrones en los tracks más populares.

Problema comercial

¿Existen patrones particulares en los tracks que puedan ser indicativos de éxitos?

Contexto analítico

- Obtuvimos un dataframe con tracks y sus principales características, a través de APIs públicas y de Kaggle.
- Realizamos un análisis exploratorio y la limpieza del mismo.
- Analizamos cómo evoluciono la popularidad a lo largo de los años
- Analizamos cómo afectan ciertas características a la popularidad.

Preguntas de interés

Pregunta principal

¿Existen patrones particulares en los tracks que puedan ser indicativos de éxitos?

Preguntas secundarias

- ¿Qué características de los tracks afectan la popularidad?
- ¿A lo largo de los años aumento la popularidad?
- ¿Cómo afecta la duración de un track en su popularidad?
- ¿Cómo afecta el instrumentalness (si el track contiene palabras habladas o no) en la popularidad?
- ¿Cómo afecta la danceability (que tan adecuado es el track para bailar) en la popularidad?
- ¿Las canciones explícitas son más populares que las canciones no explícitas?
- ¿Existe algún patrón en las canciones más populares en cuanto a las variables acousticness, danceability, instrumentalness, energy y valence?

Análisis exploratorio

¿Qué características de los tracks afectan la popularidad?

- Correlación positiva con popularity: Danceability, explicit, loudness y energy (a medida que aumentan en valor, aumenta la popularidad).
- Correlación negativa con popularity: Acousticness e instrumentalness.

¿A lo largo de los años aumento la popularidad?

- A lo largo de los años la popularidad se ha ido incrementando.
- La popularidad se mantiene consistente a lo largo de las décadas
- Los años 2021 y 2022 presentan un comportamiento sustancialmente diferente a los años anteriores por poseer datos insuficientes, por lo que resulta atípico.

- → Agrupamos los tracks por décadas.
- \rightarrow Excluimos los años anteriores a 1970, ya que no son significativos, y los años 2021 y 2022 por falta de información.

¿Cómo afecta la duración de un track en su popularidad?

- Valores atípicos para la duración en minutos: entre 10 y 30 minutos, se excluyeron del análisis.
- Tendencia a duraciones más cortas: entre 0 y 5 min.
- El promedio de los tracks va disminuyendo a lo largo de las décadas.
- No se puede concluir que la duración de los tracks afecte significativamente a la popularidad.

¿Cómo afecta el instrumentalness y la danceability en la popularidad?

- Tracks más populares → niveles de danzabilidad altos (mayores a 0.5 en general).
- Tracks más populares → instrumentalness menor a 0.25.
- Parecería que hay presencia de outliers pero los valores se encuentran en los rangos normales que pueden tomar las variables.
- Los valores que parecen atípicos, en realidad son los tracks más populares, de los que se busca conocer las características.

Danceability → que tan adecuado es el track para bailar

¿Las canciones explícitas son más populares que las canciones no explícitas?

- Tracks explicítos → Mayor concentración en rangos de popularidad altos (mediana 60/80)
- Tracks no explicítos → Mayor concentración en rangos medios. (Mediana 40/60)

¿Existe algún patrón en las canciones más populares y las menos populares en cuanto a las variables acousticness, danceability, instrumentalness, energy y valence?

Elegimos al azar algunas de las canciones más populares para graficar sus principales características (acousticness, danceability, instumentalness, energy y valence):

- Tusa
- Yo Perreo Sola
- Stuck with U (with Justin Bieber)
- Hasta Que Dios Diga

De los gráficos de radar, se puede observar que los tracks más populares poseen características similares, se puede observar un patrón.

Insights y Recomendaciones

Observaciones y recomendaciones

- A lo largo de los años la popularidad se ha ido incrementando.
- → Agrupamos los tracks por décadas (comportamiento consistente)
- → Excluimos los años anteriores a 1970, ya que no son significativos, y los años 2021 y 2022, por tener poca información/incompleta.
- → Se excluyen los tracks con popularidad 0 (La variable objetivo no puede ser 0).
- Duración → Tendencia a tracks más cortos (entre 0 y 5 min).
- No se puede concluir que la duración de los tracks afecte significativamente a la popularidad.
- Tracks más populares → niveles de danzabilidad altos (mayores a 0.5 en general) e instrumentalness menor a 0.25.
- Tracks explicítos → Mayor concentración en rangos de popularidad altos (mediana 60/80)
- Tracks no explicítos → Mayor concentración en rangos medios (mediana 40/60).
- Tracks más populares → Poseen características similares, se puede observar un patron.

Buscamos realizar un modelo que logre predecir un éxito (nivel de popularidad alto) a partir de las características más relevantes encontradas.

Aplicación de algoritmos de ML

Aplicación de modelos de ML – Resumen de Resultados

A continuación, se presenta un resumen de los modelos que se probaron, con los diferentes parámetros y los % de train/test empleados, junto con los resultados obtenidos

ID	Modelo	Profundidad árboles	%Train/%Test	# Variables	Accuracy	roc_auc_score	Clase	Precision	Recall	F1 Score
1	Random forest	Default (random_state=1)	70/30	12	0,6646	0,7157	0 (no éxito)	0,6700	0,7100	0,6900
							1 (éxito)	0,6561	0,6083	0,6313
2	Random forest	Default (random_state=1)	70/30	5 principales	0,6135	0,6523	0 (no éxito)	0,6300	0,6600	0,6400
				(PCA)			1 (éxito)	0,5969	0,5578	0,5767
3	Random forest	Default (random_state=1)	80/20	12	0,6739	0,7241	0 (no éxito)	0,6800	0,7300	0,7000
							1 (éxito)	0,6662	0,6128	0,6384
4	Random forest	Default (random_state=1)	80/20	5 principales	0,6273	0,6650	0 (no éxito)	0,6400	0,6600	0,6500
				(PCA)			1 (éxito)	0,6065	0,5885	0,5974
5	Random forest	Default (random_state=1)	90/10	12	0,6899	0,7457	0 (no éxito)	0,6900	0,7400	0,7100
							1 (éxito)	0,6868	0,6363	0,6606
6	Random forest	Default (random_state=1)	90/10	5 principales	0,6318	0,6741	0 (no éxito)	0,6400	0,6700	0,6600
				(PCA)			1 (éxito)	0,6175	0,5872	0,6020
7	Random forest	Ajuste de parámetros	90/10	12	0,6712	0,7300	0 (no éxito)	0,6600	0,7600	0,7100
							1 (éxito)	0,6815	0,5758	0,6242
8	SVM	Default (random_state=1)	70/30	12	0,5567	0,6316	0 (no éxito)	0,5500	0,9600	0,7000
							1 (éxito)	0,7117	0,0978	0,1720
9	SVM	Default (random_state=1)	80/20	12	0,5349	0,6302	0 (no éxito)	0,5300	0,9800	0,6900
							1 (éxito)	0,6340	0,0300	0,0573
10	SVM	Default (random_state=1)	90/10	12	0,5354	0,6291	0 (no éxito)	0,5300	0,9900	0,6900
							1 (éxito)	0,6900	0,0298	0,0572
11	XGBClassifier	random_state=7	70/30	12	0,6416	0,6933	0 (no éxito)	0,6500	0,7000	0,6800
							1 (éxito)	0,6318	0,5715	0,6001
12	XGBClassifier	random_state=7	90/10	12	0,6324	0,6788	0 (no éxito)	0,6300	0,7200	0,6700
							1 (éxito)	0,6305	0,5357	0,5793
13	GradientBoostin	random_state=7	70/30	12	0,6422	0,6921	0 (no éxito)	0,6500	0,7100	0,6800
							1 (éxito)	0,6330	0,5710	0,6004

	precision	recall	f1-score	support
0	0.87	0.70	0.78	1265
1	0.73	0.89	0.80	1141
accuracy			0.79	2406
macro avg	0.80	0.79	0.79	2406
weighted avg	0.80	0.79	0.79	2406

Modelo elegido

- De todos los modelos de clasificación, el que obtuvo las mejores métricas fue el random forest, con los parámetros en default (random_state=1), entrenando 90%/10% y con la totalidad de las 12 variables.
- Luego, creamos una variable sintética que cuente la cantidad de hits que tienen los artistas para poder mejorar el rendimiento del modelo. Entendemos que ciertos artistas tienen más popularidad que otros y esto podría ser una variable explicativa.
- A continuación, se presentan los resultados del modelo elegido.

Conclusiones finales

- Utilizamos la última década (años 2010 a 2020) por su significatividad junto con las variables más relevantes obtenidas del EDA.
- Entrenamos varios modelos de ML → Random Forest, SVM, XGBClassifier y GradientBoost. A su vez, diferentes parámetros y % de train/test.
- Mejores métricas → Random forest, parámetros en default (random_state=1), 90%/10% y 12 variables.
- <u>Creamos nueva variable</u> → Cantidad de hits por artistas para poder mejorar el rendimiento del modelo.
- <u>Modelo final</u> → Random forest con la nueva variable mejoró significativamente.
- Accuracy: 78,72%, ROC: 86,98%, Precisión: 73% (éxito) y 87% (no éxito), f1 score: 80% (éxito) y 78% (no éxito)
- La variable 'cant de hits' explica gran parte del modelo como habíamos supuesto.
- <u>PCA con 5 primeros componentes</u> → Accuracy 64,46%, más bajo de lo que obtuvimos anteriormente.
- Métodos de Cross Validation → Máximo accuracy 76,85%, más bajo que el obtenido en el random forest realizado anteriormente.
- Mejores parámetros del Cross Validation y quitando las variables categóricas →
 Accuracy de 76,47%, ROC de 85,71% y tanto la precisión como el f1 score para
 éxitos disminuyen respecto al modelo anterior.
- Mejor modelo → Random forest con random_state=1, parámetros en default y 13 variables.