Midterm study guide

Nick Graetz October 24, 2017

Single decrement life table

Cohort

x = age

 $l_x = \text{survivors at exact age x}$

 $_n d_x = \text{deaths between age x and x} + \text{n}$

 $_nq_x$ = probability of dying between age x and x + n

 $_{n}p_{x}$ = probability of surviving from age x to x + n

 $_{n}L_{x}$ = person-years lived between age x and x + n

 $T_x = \text{total person-years lived after exact age x}$

 e_x^0 = average years of life lived after exact age x (in this case, since birth)

 $_{n}m_{x}$ = mortality rate between ages x and x + n

 $_{n}m_{x}$ to $_{n}q_{x}$ conversion:

$$_{n}q_{x} = \frac{n *_{n}m_{x}}{1 + (n - {_{n}a_{x}}) *_{n}m_{x}}$$

• In a real cohort, na_x is known: average person-years lived by individuals who died between ages x and

Period (synthetic cohort)

- Based on data for a specific period, ${}_nM_x=\frac{{}_nD_x}{{}_nN_x}$ Only need to assume one paramter to make conversion from ${}_nm_x$ to ${}_nq_x$: ${}_na_x=\frac{n}{2}$, usually 2.5
- Other methods: borrow from another population, graduation/iteration techniques, assume rate constant
- 1. Assumption 1: ${}_{n}M_{x} = {}_{n}m_{x}$, assume that a hypothetical cohort is to experience an observed set of period age-specific deaths rates.
- 2. Assumption 2: we have to make an estimate of na_x , usually $\frac{n}{2}$. At the open-ended age group, $_{n}a_{x}=\frac{1}{_{n}m_{x}}.$
- 3. Conversion: ${}_{n}q_{x} = \frac{n*_{n}m_{x}}{1+(n-{}_{n}a_{x})*_{n}m_{x}}$
- If we make the assumption that the age-specific death rate is constant from x to x + n, no na_x is required.
- $\bullet \quad {}_np_x = 1 {}_nq_x = e^{-n *_n m_x}$
- 4. $_{n}p_{x}=1-_{n}q_{x}$
- 5. $l_{x+n} = l_x *_n p_x$
- 6. $_n d_x = l_x l_{x+n}$

7.
$$_{n}L_{x} = n * l_{x+n} + _{n}a_{x} * _{n}d_{x}$$

8.
$$T_x = \sum_{a=x}^{\infty} {}_n L_a$$

9.
$$e_x^0 = \frac{T_x}{l_x}$$

Stationary population interpretation

Conditions (results of these conditions is that age structure is constant):

- Constant annual number of births
- Constant mortality
- Zero migration

 $_{n}L_{x}=\mathrm{PY}$ lived between age x and x + n in a calendar year AND cohort AND number of people between age x and x + n at any given time

 $T_0 = \text{total population size}$

$$CBR = CDR = \frac{1}{e_0^0}$$

 $e_0^0=$ mean age at death Death rate above age x = $\frac{l_x}{T_x}=\frac{1}{e_x^0}$

Mortality as a continuous process

The force of mortality is the derivative of the mortality rate: $\mu_x = \lim_{n\to 0} {}_n m_x$ If μ_x is constant, you don't have to make any assumption about ${}_na_x$:

$$1. \ \mu_x = {}_n m_x = {}_n M_x$$

2.
$$l_{x+n} = l_x * e^{-n*\mu_x}$$

$$3. \ _n p_x = e^{-n *_n m_x}$$

4.
$$_{n}q_{x}=1-_{n}p_{x}$$

Multiple decrement life tables

Cohort

 $_{n}d_{x}^{i}$ = number of decrements from cause i between ages x and x + n

 $_{n}q_{x}^{i}=\frac{_{n}d_{x}^{i}}{l_{x}}=$ probability of decrement from cause i between ages x and x + n

 $_n m_x^i = \frac{_n d_x^i}{_n L_x} = {\rm rate}$ of decrement from cause i between ages x and x + n

$$l_x^i = \sum_{a=x}^{\infty} {}_n d_a^i$$

$$\sum_{i \ n} m_x^i =_n m_x$$

$$\sum_{i n} q_x^i =_n q_x$$

Period (synthetic cohort)

 $_{n}m_{x}^{i}$ to $_{n}q_{x}^{i}$ conversion:

$$_{n}q_{x}^{i}=\frac{n\ast _{n}m_{x}^{i}}{1+\left(n-_{n}a_{x}\right) \ast _{n}m_{x}}$$

$$_{n}q_{x}^{i} = \frac{n *_{n}m_{x}^{i}}{1 + (n - _{n}a_{x}) * (_{n}m_{x}^{i} + _{n}m_{x}^{-i})}$$

 $_{n}q_{x}^{i}$ is referred to as a "dependent probability" because if the mortality rates increase from other causes besides i $(_{n}m_{x}^{-i})$ between ages x and x + n, the probability of exiting from cause i will be lower (people who may have exited from cause i are exiting from other causes at higher rates).

Given the master life table ${}_{n}q_{x}^{i}$, total deaths $({}_{n}D_{x})$, and deaths from cause i $({}_{n}D_{x}^{i})$:

- 1. ${}_{n}q_{x}^{i} = {}_{n}q_{x} * \frac{{}_{n}D_{x}^{i}}{{}_{n}D_{x}}$ (if μ_{x} is given, use conversion above)
- $2. \ _n d_x^i = {}_n q_x^i * l_x$
- 3. $l_x^i = \sum_{a=x}^{\infty} {}_n d_a^i$
- 4. $\frac{l_x^i}{l_x}$ = probability that someone aged x will eventually exit from cause i

Given master nd_x , total deaths (nD_x) , and deaths from cause i (nD_x^i) :

Associated single decrement life table (ASDLT)

 $_{n}^{*}p_{x}^{i}$ = probability of surviving from age x to x + n where only cause i is operating. You must make an assumption about μ_{i} :

1. μ_i is constant between x and x + n:

$$_{n}^{*}\mathbf{p}_{x}^{i}=e^{-n*_{n}M_{x}^{i}}$$

2. Assume μ_i is proportional to μ between x and x + n.

$$_{n}^{*}\mathbf{p}_{x}^{i} = _{n}p_{x}^{R^{i}}$$
 where $R^{i} = \frac{_{n}D_{x}^{i}}{_{n}D_{x}}$

$$^{\ast}\mathbf{l}_{x+n}^{i}=^{\ast}\mathbf{l}_{x}^{i}\ast_{n}^{\ast}\mathbf{p}_{x}^{i}$$