

NAS 7825 Data Sheet

Version 1.00 August 05 2010 DS-0068

Website www.plxtech.com

Technical Support www.plxtech.com/support

NDA—PLX Technology Proprietary & Confidential

© PLX Technology, Inc. 2010. All Rights Reserved. The information in this document is proprietary and confidential to PLX Technology. No part of this document may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from PLX Technology.

PLX Technology provides this documentation without warranty, term or condition of any kind, either express or implied, including, but not limited to, express and implied warranties of merchantability, fitness for a particular purpose, and non-infringement. While the information contained herein is believed to be accurate, no representations or warranties of accuracy or completeness are made. In no event will PLX Technology be liable for damages arising directly or indirectly from any use of or reliance upon the information contained in this document. PLX Technology may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time.

PLX Technology retains the right to make changes to this product at any time, without notice. Products may have minor variations to this publication, known as errata. PLX Technology assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of PLX Technology products.

PLX Technology and the PLX logo are registered trademarks of PLX Technology, Inc.

All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Document number: DS-0068

Features

- Highly integrated network-attached storage (NAS) system-on-chip (SoC) specifically designed for consumer market
- Dual-core ARM11MP processor architecture with MMLJ
 - ☐ Each core running at 750MHz
- Network coprocessor with TCP/IP acceleration for higher throughput at lower CPU utilization
- Hardware security engine for added security protection
 - AES-128/256-bit based encryption and hashing functions supports for fast secure connection and enhanced protection
- DDR2 SDRAM controller 16-bit interface supports combinations up to 512Mbytes addressable density
- 64Kbyte on-chip SRAM
- 5 channel DMA controller
- 64-bit wide internal processor buses
- Two USB 2.0 host or device controllers
- 1Kbit One-Time Programmable (OTP) eFUSE memory

- Two 10/100/1000 integrated Ethernet MACs with RGMII interface
- Two PCIe interfaces for a variety of applications including IEEE 802.11
- Two integrated SATA 3G host ports with hardware RAID 0 and RAID 1 engines
- Integrated fan tachometer/thermistor controller and Pulse Width Modulation (PWM) outputs
- SPI serial NOR flash, SLC and MLC NAND support
- PCM/TDM interface for connection to voice CODEC/SLAC
- Boot modes:
 - Direct from SATA hard disk (no flash needed)
 - NOR or NAND (SLC/MLC)
- 65nm CMOS process with 1.0V core and 3.3V standard I/O
- 17mm x 17mm 256 pin FBGA (1.0mm ball pitch)
- Highly optimized Linux kernel for high throughput per CPU clock
- Supported file systems: XFS, EXT3, and NTFS

1

Device Overview

The NAS 7825 is a next generation network-attached storage (NAS) system-onchip (SoC). The NAS 7825 delivers a wide array of applications such as media server and automatic backup, combined with easy-to-use software. This makes it ideal for end users who need to store and share their digital information.

The NAS 7825 supports two separate RGMII interfaces for avoiding congestion between ports for high throughput implementations. One application is in the NAS plus router, where one RGMII is the LAN interface and the other is the WAN interface.

The NAS 7825 also supports two PCIe x1 Gen1 interfaces. PCIe is becoming the standard for a variety of applications.

The NAS 7825 supports two hard disks in RAID 0 or RAID 1 configuration. A unique advantage of the NAS 7825 is its support of RAID 0 and RAID 1 in hardware. Hardware support provides higher performance with lower CPU utilization.

The NAS 7825 has an outstanding price/performance ratio with a high level of integration and includes advanced encryption capabilities in hardware. There are two USB 2.0 ports: one acts as a host port, the other can act as a host or device port. These support additional expansion possibilities such as using USB hard disk drives, print server functionality and many other applications. The benefits of the NAS 7825 are:

	ore ARM11MP processor architecture, with each core running at z clock speed:
	Dual core architecture enables development of custom applications for differentiation without impacting basic NAS functionality
	Dual core provides superior multi-application/client processing capabilities
	Each core can be dedicated to specific applications or share application processing
	Dual, independent 32K I-cache and D-cache are more resilient to pollution by multiple applications
	Improved performance/power ratio compared to higher clock processors
Advanc	ced security features:
	Hardware-based encryption engine with AES 128/256 bit with SHA-1 SHA-2 hashing functions
	Digital Transmission Content Protection over Internet Protocol (DTCP/IP)—(product family option) provides added security to copy protected content to other trusted devices within the home
-	memory density support, up to 512Mbytes, for supporting sed applications

- Flexible boot options:
 - Boot directly from the HDD:

Lowest cost option

Mac addresses can be programmed in chip One-Time

Programmable (OTP) memory

Redundant images and fully robust in-field upgrades

Boot from serial flash and hard disk:

U-Boot or U-Boot plus simple kernel in flash

Secure boot from flash and hard disk:

> Code is CRC checksummed (256b AES) and encrypted with 128b AES

JTAG and other interfaces disabled

Nand flash

Holds U-Boot, kernel and rootfs (application system software)

Usage Models

The NAS 7825 has various usage models, including:

- Standalone NAS
- Converged NAS plus router
- Companion chip in PVR/DVR
- Companion chip in set-top box

Figure 1 NAS 7825 Router or Gateway Usage Model

LAN

Other media server appliances such as internet radio

Figure 1 and Figure 2 show some possible usage models for the NAS 7825.

Single Memory DDR2 SDRAM Ethernet Switch

Figure 2 NAS 7825 Set-top Box or DVR Usage Model

Power Consumption

The following table gives typical and maximum power consumption figures for the NAS 7825 running a NAS application under Linux.

Supply rail	Standby (m)	andby (mW)		Active (mW)	
	Тур	Max	Тур	Max	
1.0V core + PLLs	100	158	480	1422	1
3.3V I/O	33	74	170	186	2
1.8V DDRAM I/O	18	20	176	194	3
PHYs (3.3V and 2.5V)	6	9	365	392	
Total	224	224	1097	2101	4,5,6

Notes:

- 1 750MHz ARM operation.
- 2 Standby can be reduced further by turning off clocks but the above assumes wake-on-LAN is required, so RGMII I/O cannot be shut down.
- 3 For Standby, the DDRAM is in self-refresh or is left unrefreshed while the DDR PHY is disabled; all clocks are stopped.
- 4 Measurements for typical silicon, nominal supply voltages, 25°C.
- 5 Measurements for slow silicon, maximum supply voltages, 60°C ambient.
- The following table gives the power specification for each supply rail for power supply design.

The following table gives NAS 7825 power supply specification details.

Rail	Maximum power supply (mW)	Notes
VDD10 XTAL_VDD10 HCSL_VDD10	1800	
VDD33 XTAL_VDD33	400	
VDD18	200	
USB_VDD10	50	
USB_VDD25	50	
USB_VDD33	100	
SATA_VDD10	50	
SATA_VDD25	100	
PCIE_VDD10	50	
PCIE_VDD25	100	
HCSL_VDD33	150	
OTP_VDD25	500	During fuse programming only
PLLA_VDDD10 PLLB_VDDD10 PLLA_VDDA10 PLLB_VDDA10	50	

Operating Conditions

Table 1 details the maximum ratings for the device.

Table 1 Absolute Maximum Device Ratings									
Symbol	Parameter	Rating	Max	Units					
V_{DD}	DC supply voltage	1.0V	1.2	V					
V _{IN}	DC input voltage	1.8V input buffer 3.3V input buffer 3.3V interface/5V tolerant input buffer	2.2 5.25 5.25	V					
V _{OUT}	DC output voltage	1.8V output buffer 3.3V output buffer 3.3V interface/5V tolerant output buffer	2.2 3.6 3.6	V					
T _{STG}	Storage temperature	Storage temperature	-65 150	°C					

Table 2 details the required operating conditions for the device.

Symbol	Parameter	Rating	Min	Max	Unit
V _{DD}	DC supply voltage	1.0V core (recommended 1.025V) 3.3V I/O 1.8V DDR I/O 2.5V PHY I/O	0.95 3.14 1.7 2.325	1.1 3.46 1.9 2.75	V
V _{IN}	DC input voltage	1.8V input buffer 3.3V input buffer 3.3V interface/5V tolerant input buffer		1.9 3.46 5.25	V
V _{OUT}	DC output voltage	1.8V output buffer 3.3V output buffer 3.3V interface/5V tolerant output buffer		1.9 3.46 3.46	V
T _A	Ambient temperature ra	0	60	°C	

Thermal Data

Thermal resistance (junction to ambient) θ_{Ja} = 20.0°C/W in still air.

Maximum junction temperature $T_{Jmax} = 110^{\circ}C$.

Pinout and Package Information

The NAS 7825 is supplied as a 256 pin FBGA package.

Figure 3 shows the NAS 7825 pin layout.

Figure 3 NAS 7825 Pin Layout Top View

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Α	ETHA_ TDX3	ETHA_ TXCTL	ETHA_ RXD0	ETHA_ RXD1	ETHA_ RXCLKI	MF_A11	USBA_DP	RESET_N	USBB_DP	NC	HCSL_ REFCLKAM	HCSL_ REFCLKCM	MF_B0	MF_B3	MF_B5	MF_B6
В	ETHB_ RXD0	CLKI_ 125M	ETHA_ TXD1	ETHA_ TXD2	ETHA_ RXCTL	MF_A10	USBA_ DM	HIGHZ_N	USBB_DM	NC	HCSL_ REFCLKAP	HCSL_ REFCLKCP	MF_B1	MF_B4	XTAL_ VDD10	XTAL_O
С	ETHB_ RXD1	ETHB_ RXD2	ETHA_ TXCLKO	ETHA_ TXD0	ETHA_ RXD3	MF_A9	USBA_ XTALI	JTAG_EN	USB_ VSSD	VSS	HCSL_ VDD33	HCSL_ REXT	MF_B2	VSS	XTAL_ VDD33	XTAL_I
D	ETHB_ TXD1	ETHB_ TXD3	ETHB_ RXD3	ETHB_ RXCTL	ETHA_ RXD2	MF_A8	USBA_ REXT	USB_ VDD33	USBB_ REXT	HCSL_ VDD10	VSS	VSS	VDD33	CLKO_ 25M	SATAB_ TXM	SATAB_ TXP
E	ETHB_ TXD0	ETHB_ TXD2	ETHB_T XCTL	ETHB_ RXCLKI	VDD10	VDD33	VDD10	USB_ VDD25	USB_ VDD10	VDD10	VDD33	PLLB_ VDDD10	PLLB_ VSSA	PLLB_ VDDA10	SATAB_ RXP	SATAB_ RXM
F	MF_A6	MF_A7	ETHB_ TXCLKO	MF_A5	VDD33	VSS	VSS	VSS	USB_ VSSA	VSS	VSS	VDD10	SATA_ REXT	PLLB_ VSSD	SATAA_ RXM	SATAA_ RXP
G	MF_A1	MF_A2	MF_A3	OTP_ VDD25	MF_A4	VSS	VSS	VSS	VSS	VSS	VSS	VSS	SATA_ VDD10	SATA_ VDD25	SATAA_ TXP	SATAA_ TXM
Н	DDRAM_ DQ8	DDRAM_ DQ14	DDRAM_ DQ9	MF_A0	VDD10	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VDD33	MF_B9	MF_B7	MF_B8
J	DDRAM_ DQSN1	DDRAM_ DQSP1	DDRAM_ VREF	DDRAM_ DQ15	VDD18	VSS	VSS	VSS	VSS	VSS	VSS	VDD10	MF_B10	PCIE_ REXT	PCIE_ REFCLKIP	PCIE_ REFCLKIM
K	DDRAM_ DM1	DDRAM_ DQ10	DDRAM_ DQ11	DDRAM_ GATEO	VDD10	VSS	VSS	VSS	VSS	VSS	VSS	VSS	PCIE_ VDD10	VSS	PCIEB_ TXP	PCIEB_ TXM
L	DDRAM_ DQ13	DDRAM_ DQ12	DDRAM_ DQ6	DDRAM_ GATEI	VDD18	VSS	VSS	VSS	VSS	VSS	VSS	VDD10	PCIE_ VDD25	VSS	PCIEB_ RXM	PCIEB_ RXP
M	DDRAM_ DQ7	DDRAM_ DQ1	DDRAM_ DQ0	DDRAM_ DQ2	VSS	VDD18	VDD10	VDD18	VDD10	VDD33	VDD10	VDD33	PLLA_ VDDD10	PLLA_ VDDA10	PCIEA_ RXP	PCIEA_ RXM
N	DDRAM_ DQSN0	DDRAM_ DM0	DDRAM_ DQ3	DDRAM_ WEN	DDRAM_ BA2	DDRAM_ A10	DDRAM_ A3	DDRAM_ A7	MF_B15	MF_B11	MF_A28	MF_A24	PLLA_ VSSD	PLLA_ VSSA	PCIEA_ TXM	PCIEA_ TXP
Р	DDRAM_ DQSP0	DDRAM_ DQ4	DDRAM_ RASN	DDRAM_ CASN	DDRAM_ A0	DDRAM_ A4	DDRAM_ A8	DDRAM_ A13	MF_B16	MF_B12	MF_A29	MF_A25	MF_A21	MF_A14	MF_A13	MF_A12
R	DDRAM_ DQ5	DDRAM_ ODT0	DDRAM_ CKE	DDRAM_ BA1	DDRAM_ A2	DDRAM_ A6	DDRAM_ A11	DDRAM_ A12	MF_B17	MF_B13	MF_A30	MF_A26	MF_A22	MF_A19	MF_A16	MF_A15
T	DDRAM_ CK	DDRAM_ CKN	DDRAM_ CSN0	DDRAM_ BA0	DDRAM_ A1	DDRAM_ A5	DDRAM_ A9	DDRAM_ ODT1	DDRAM_ CSN1	MF_B14	MF_A31	MF_A27	MF_A23	MF_A20	MF_A18	MF_A17

Table 3 details the pin allocations for the device. In Table 3, Type format is [(W)X] where the following conventions apply:

W—Suppl	у	X—Type		
3V3+	5V tolerant 3.3V	1	Input	
_	3.3V	0	Output	
1V8_	1.8V SSTL-18 (for DDR2)	В	Bidirectional	
		А	Analog	
		Р	Power	

Table 3 NAS 7825 Pin Allocati Pin	No.	Туре	Name	Description	
FIII	Bits		Ivairie	Description	
Clocks, Reset and Mode (6 pin	s)		-1		
B16	1	0	XTAL_O	Reference clock output. Crystal oscillator output	
C16	1	I	XTAL_I	25MHz reference clock input; either crystal oscillator or external clock	
B8	1	I	HIGHZ_N	Force all inputs to high impedance	
C8	1	I	JTAG_EN	Enable JTAG	
A8	1	I	RESET_N	Reset input	
D14	1	0	CLKO_25M	25MHz reference clock out	
Ethernet A Interface (13 pins)	Note:	Multi-func	tion I/O pins are needed	d for MDIO pins	
A2	1	0	ETHA_TXCTL	Transmit combined enable and error	
A1, B4, B3, C4	4	0	ETHA_TXD[3:0]	Transmit data @ 125MHz (1Gbps), 25MHz (100Mbps), 5MHz (10Mbps)	
C3	1	0	ETHA _TXCLKO	Transmit clock	
B5	1	I	ETHA _RXCTL	Receive combined data valid and error	
C5, D5, A4, A3	4	I	ETHA _RXD[3:0]	Receive data @ 125MHz (1Gbps)), 25MHz (100Mbps), 5MHz (10Mbps)	
A5	1	I	ETHA _RXCLKI	Receive clock	
B2	1	I	CLKI_125M	Reference clock in 125MHz	
Ethernet B Interface (12 pins)	Note:	Multi-func	tion I/O pins are needed	d for MDIO pins	
E3	1	0	ETHB_TXCTL	Transmit combined enable and error	
D2, E2, D1, E1	4	0	ETHB _TXD[3:0]	Transmit data @ 125MHz (1Gbps), 25MHz (100Mbps), 5MHz (10Mbps)	
F3	1	0	ETHB _TXCLKO	Transmit clock	
D4	1	I	ETHB _RXCTL	Receive combined data valid and error	
D3, C2, C1, B1	4	I	ETHB _RXD[3:0]	Receive data @ 125MHz (1Gbps)), 25MHz (100Mbps), 5MHz (10Mbps)	
E4	1	I	ETHB _RXCLKI	Receive clock	
SDRAM (51 pins)	-		•		
T1	1	1V8_O	DDRAM _CK	Differential clock (non-inverted)	
T2	1	1V8_O	DDRAM _CKN	Differential clock (inverted)	
R3	1	1V8_O	DDRAM _CKE	Clock enable	
T9, T3	2	1V8_O	DDRAM _CSN[1:0]	Chip selects	
P3	1	1V8_O	DDRAM _RASN	Read address strobe	
P4	1	1V8_O	DDRAM _CASN	Column address strobe	
N4	1	1V8_O	DDRAM _WEN	Write enable	
N5, R4, T4	3	1V8_O	DDRAM _BA[2:0]	Bank address	
P8, R8, R7, N6, T7, P7, N8, R6, T6, P6, N7, R5, T5, P5	14	1V8_O	DDRAM_A[13:0]	Address	
T8, R2	2	1V8_O	DDRAM _ODT[1:0]	On-die termination control to SDRAM	

Pin	No. Bits	Туре	Name	Description
J2, P1	2	1V8_B	DDRAM _DQSP[1:0]	Data in/out strobes (non-inverted)
J1, N1	2	1V8_B	DDRAM _DQSN[1:0]	Data in/out strobes (inverted)
K1, N2	2	1V8_O	DDRAM _DM[1:0]	Data mask
J4, H2, L1, L2, K3, K2, H3, H1, M1, L3, R1, P2, N3, M4, M2, M3	16	1V8_B	DDRAM _DQ[15:0]	Data input/output
J3	1	А	DDRAM _VREF	Voltage reference (0.9V) for SSTL-18
K4	1	1V8_O	DDRAM _GATEO	Loop back to MEM_GATEI. For DQS cleaning
L4	1	1V8_I	DDRAM _GATEI	Loop back from MEM_GATEO. For DQS cleaning
SATA Port A (5 pins)	1		1	
F13	1	А	SATA_REXT	External 191 Ω ±1% reference resistor
G15	1	AO	SATAA _TXP	Transmit differential data (+); differential outputs to the PHY. Terminals transmit NRZ data at 1.5 or 3.0Gbps
G16	1	AO	SATAA _TXM	Transmit differential data (-); differential outputs to the PHY. Terminals transmit NRZ data at 1.5 or 3.0Gbps
F15	1	Al	SATAA _RXM	Receive differential data (-); differential inputs to the PHY. Terminals receive NRZ data at 1.5 or 3.0Gbps
F16	1	Al	SATAA _RXP	Receive differential data (+); differential inputs to the PHY. Terminals receive NRZ data at 1.5 or 3.0Gbps
SATA Port B (4 pins)		•	-	
E15	1	Al	SATAB_RXP	Receive differential data (+); differential inputs to the PHY. Terminals receive NRZ data at 1.5 or 3.0Gbps
E16	1	Al	SATAB _RXM	Receive differential data (); differential inputs to the PHY. Terminals receive NRZ data at 1.5 or 3.0Gbps
D15	1	AO	SATAB _TXM	Transmit differential data (); differential outputs to the PHY. Terminals transmit NRZ data at 1.5 or 3.0Gbps
D16	1	AO	SATAB_TXP	Transmit differential data (+); differential outputs to the PHY. Terminals transmit NRZ data at 1.5 or 3.0Gbps
PCle Port A (7 pins)				
J14	1	А	PCIE_REXT	External 191 Ω ±1% reference resistor
J15	1	Al	PCIE_REFCLKIP	HCSL reference clock input
J16	1	Al	PCIE_REFCLKIM	HCSL reference clock input
N16	1	AO	PCIEA _TXP	Transmit differential data (+)
N15	1	AO	PCIEA _TXM	Transmit differential data (-)
M16	1	Al	PCIEA _RXM	Receive differential data (-)
M15	1	Al	PCIEA _RXP	Receive differential data (+)
PCIe Port B (4 pins)				
K15	1	AO	PCIEB _TXP	Transmit differential data (+)
K16	1	AO	PCIEB _TXM	Transmit differential data (-)
L15	1	Al	PCIEB _RXM	Receive differential data (-)

Pin	No. Bits	Type	Name	Description	
L16	1	AI	PCIEB _RXP	Receive differential data (+)	
HCSL Reference Clocks (7 pi	us)], "	T OILD _TOT	resolve dinordinar data (1)	
C12	1	Α	HCSL_REXT	External 475 Ω ±1% reference resistor	
A11, B11	2	AO	HCSL_ REFCLKA[M/P]	100MHz HCSL differential reference clock output. Intended for PCIEA endpoint	
A12, B12	2	AO	HCSL_ REFCLKC[M/P]	100MHz HCSL differential reference clock output. Intended for loopback to PCIE_REFCLKI[M/P]	
USB 2.0 Port A (4 pins)		1	1		
A7	1	3V3+B	USBA_DP	Differential data 480Mbps (+)	
B7	1	3V3+B	USBA_DM	Differential data 480Mbps (-)	
D7	1	А	USBA_REXT	External 43.2 Ω ±1% reference resistor	
C7	1	I	USBA_XTALI	Alternative 12MHz clock (Note that 12MHz can be generated internally)	
USB2.0 Port B (3 pins)		1			
A9	1	3V3+B	USBB_DP	Differential data 480Mbps (+)	
В9	1	3V3+B	USBB _DM	Differential data 480Mbps(-)	
D9	1	А	USBB_REXT	External 43.2 Ω ±1% reference resistor	
Multi-function I/O (50 pins)	.1	1	1		
T11, R11, P11, N11, T12, R12, P12, N12, T13, R13, P13, T14, R14, T15, T16, R15, R16, P14, P15, P16, A6, B6, C6, D6, F2, F1, F4, G5, G3, G2, G1, H4	32	В	MF_A[31:0]	Multi-function I/O pins. Uses depend on pin multiplexing, including general purpose I/O, UART, PWM and static memory bus interface signals	
R9, P9, N9, T10, R10, R10, P10, N10, J13, H14, H16, H15, A16, A15, B14, A14, C13, B13, A13	18	В	MF_B[17:0]	Multi-function I/O pins. Uses depend on pin multiplexing, including general purpose I/O, UART, PWM and static memory bus interface signals	
Power and Ground (83 pins)					
C10, C14, D11, D12, F6, F7, F8, F10, F11, G6, G7, G8, G9, G10, G11, G12, H6, H7, H8, H9, H10, H11, H12, J6, J7, J8, J9, J10, J11, K6, K7, K8, K9, K10, K11, K12, K14, L6, L7, L8, L9, L10, L11, L14, M5	45	P	VSS	Ground	
J5, L5, M6, M8	4	Р	VDD18	1.8V SDRAM interface supply	
M14, M13	2	Р	PLLA_VDD[A/D]10	System PLL 1.0V supply (analog and digital)	
N14, N13	2	Р	PLLA_VSS[A/D]	System PLL ground	
E12, E14	2	Р	PLLB_VDD[A/D]10	Secondary PLL 1.0V supply (analog and digital)	
E13, F14	2	Р	PLLB_VSS[A/D]	Secondary PLL ground (analog and digital)	
E5, E7, E10, F12, H5, J12, K5, L12, M7, M9, M11	12	Р	VDD10	1.0V supply	

Pin	No.	Туре	Name	Description
	Bits			
M10, M12, D13, E6, E11, F5, H13	7	Р	VDD33	3.3V supply
G4	1	Р	OTP_VDD25	OTP 2.5V supply
G13	1	Р	SATA_VDD10	SATA 1.0V supply
G14	1	Р	SATA_VDD25	SATA 2.5V supply
F9, C9	2	Р	USB_VSS[A/D]	USB ground
E9	1	Р	USB_VDD10	USB 1.0V supply
D8	1	Р	USB_VDD33	USB 3.3V supply
E8	1	Р	USB_VDD25	USB 2.5V supply
L13	1	Р	VDD25	2.5V supply
B15	1	Р	XTAL_VDD10	1.0V supply
C15	1	Р	XTAL_VDD33	3.3V supply
K13	1	Р	PCIE_VDD10	PCIe 1.0V supply
L13	1	Р	PCIE_VDD25	PCIe 2.5V supply
D10	1	Р	HCSL_VDD10	HCSL buffer 1.0V supply
C11	1	Р	HCSL_VDD33	HCSL buffer 3.3V supply
G4	1	Р	OTP_VDD25	OTP 2.5V supply
Not Connected (2 pins)			•	
A10, B10	2		NC	These pins must not be connected

Figure 4 shows the package for the NAS 7825.

Figure 4 NAS 7825 Package

The following table explains the symbols used in Figure 4.

Item		Symbol	Dimensions
Body size	Х	D	17.000
	Υ	Е	17.000
Ball pitch	Х	eD	1.000
	Υ	еE	1.000
Total thickness		А	1.810 ±0.190
Mold thickness		A3	0.850 Ref.
Substrate thickness		A2	0.560 Ref.
Ball diameter			0.500
Stand off		A1	0.300 ~ 0.500
Ball width		b	0.400 ~ 0.600
Mold area	Х	М	15.000
	Υ	N	15.000
H/S exposed size		Р	10.000 ~ 11.000
H/S coplanarity		Q	0.100
H/S shift with substrate edge		R	0.300
H/S shift with mold area		S	0.555
Chamfer		CA	1.21 Ref.
Package edge tolerance		aaa	0.200
Substrate flatness		bbb	0.250
Mold flatness		ССС	0.350
Coplanarity		ddd	0.200
Ball offset (package)		eee	0.250
Ball offset (ball)		fff	0.100
Ball count		n	256
Edge ball center to center	Χ	D1	15.000
	Υ	E1	15.000

DDR2 Choices and Constraints

This section gives an overview of our recommendations and gives notice of constraints when designing DDR2 memory combinations with the NAS 7825.

Use a single DDR2 device where possible, because the DDR interface has tight timing requirements and the loading on the interface signals is reduced when using a single device compared to two devices.

Use 8 bit wide DDR2 devices when using two DDR2 devices, in preference to two 16 bit wide devices. This is because the two 8 bit wide devices have a single DDR2 load on the data bus, which improves the DDR2 interface timings.

The following table gives all DDR2 device combinations that provide specific total system memory requirements. The **Preference** column indicates the recommended combinations for the different total memory sizes.

Memory Size MBytes	Memory Organisation	No. of Devices	Preference	Notes
64	One rank of 512Mb, x16	1	1	
128	One rank of 1Gb, x16	1	1	
256	One rank of 2Gb, x16	1	1	
	2 x one rank of 1Gb, x8	2	2	Needs series and parallel termination with termination regulator
	Two ranks of 1Gb, x16	2	3	Needs series and parallel termination with termination regulator. Requires modified software: contact PLX Technology Sales Support
512	Two ranks of 2Gb, x16	2	1	Needs series and parallel termination with termination regulator. Requires modified software: contact PLX Technology Sales Support

For more information on DDR2 design choices, see GS-0100: *PCB Design Guidelines*.

Ordering Information

The order codes for the NAS 7825 are:

Device only: NAS7825-AABC F

Rapid Development Kit (RDK): NAS7825-AA RDK

Revision Information

The following table documents the revisions of this guide.

Revision	Date	Modification
1.00	August 05 2010	No longer preliminary.
0.60	July 12 2010	Addition of Power Consumption, Thermal Data, DDR2 Choices and Constraints; update to Operating Conditions, Pinout and Package Information
0.50	January 28 2010	Corrected Pinout and Package Information
0.40	January 21 2010	Updates to Features, Pinout and Package Information, Ordering Information
0.20	October 13 2009	First publication (preliminary)

NAS 7825 Data Sheet

This page is intentionally blank