Assignment 4+Smoothing (SNLP Tutorial 5)

Vilém Zouhar, Awantee Deshpande, Julius Steuer

25th, 27th May 2021

Assignment 4

- Exercise 1: Huffman encoding
- Exercise 2: Conditional entropy of DNA
- Bonus: Huffman encoding adaptations

OOV words

Corpus

- Train set:
- Test set:

Accumulate counts

- 6
 5
 3
 2
 4
 2
 2
 - 2 1

OOV words

- What about \$\forall \text{ and } \forall ?
- OOV rate: 2/6 = 33%
- Solutions? character-level, subword units

Smoothing

- Words present in vocabulary, but have ~0 probabilities
- Words present in vocabulary, but have unseen context

Solution: Assign probability mass from frequent events to infrequent events (Smoothing/Discounting)

• Will cover different smoothing methods over the next few tutorials

Additive smoothing (add- α -smoothing)

Unigrams Add zero counts to frequency table **6** ≥ 5 **3** ≥ 2 **9** 0 ullet Increase all counts by lpha=16+1 > 5+1 3+1 2+1 0+1 \$ 0+1 • Divide by N = 22

Perplexity

- Relative frequencies on test corpus:

• PP = $2^{(0.33 \cdot 0.32 + 0.27 \cdot 0.17 + 0.18 \cdot 0.17 + 0.13 \cdot 0.17 + 2 \cdot (0.05 \cdot 0.08))} = 1.4$

Additive smoothing: Bigrams

Recall the additive smoothing formula for unigrams:

$$p_{smoothed}(w_i) = \frac{C(w_i) + \alpha}{N + \alpha |V|}$$
 (1)

• What is *N*? What is *V*?

Remember from Assignment 2 that:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$
(2)

- Smoothen the bigram count: $C(w_{i-1}, w_i) \rightarrow C(w_{i-1}, w_i) + \alpha$
- Normalization: $p_{smoothed}(w_i|w_{i-1}) = \frac{C(w_{i-1},w_i) + \alpha}{?}$

Additive smoothing: Bigrams

Additive smoothing: Bigrams: bigram counts

• Collect bigram counts & condtional probabilities for history A

Bigram	$C(w_i, w_{i-1})$	$C(w_{i-1})$	$\frac{C(w_{i-1},w_i)}{C(w_{i-1})}$
AE	3	6	1/2
AA	2	6	1/3
AB	1	6	1/6

Additive smoothing: Bigrams: add alpha

• We encounter an unknown bigram AF

Bigram	$C_{\alpha}(w_{i-1},w_i)$	$C(w_{i-1})$	$\frac{C_{\alpha}(w_{i-1},w_i)}{C(w_{i-1})}$
AE	3+1	6	4/6
AA	2+1	6	3/6
AB	1 + 1	6	2/6
ightarrow AF	0+1	6	1/6

- Not a probability distribution!
- Solution: We need to adjust the divisor a tiny bit. But how tiny?

Additive smoothing: Bigrams: normalization

- add $\alpha \cdot 4$ to history count!
- Pretend that we have seen the history |V| = 4 times more.

Bigram	$C_{\alpha}(w_{i-1}) + \alpha V $	$rac{C_{lpha}ig(w_{i-1},w_iig)}{Cig(w_{i-1}ig)+lpha V }$
AE	6 + 4	4/10
AA	6 + 4	3/10
AB	6 + 4	2/10
\rightarrow AF	6 + 4	1/10

• Now the probabilities sum up to 1: 4/10 + 3/10 + 2/10 + 1/10 = 1

Additive smoothing: Bigrams: normalization

- We encounter another n-gram AD
- What is |V| now?

Bigram	$C_{\alpha}(w_{i-1}) + \alpha V $	$rac{C_{lpha}(w_{i-1},w_i)}{C(w_{i-1})+lpha V }$
AE	6 + 5	4/11
AA	6 + 5	3/11
AB	6 + 5	2/11
ightarrow AF	6 + 5	1/11
ightarrow AD	6 + 5	1/11

- *C*(*A*) is constant, unsmoothed count
- Probabilities sum up to 1: 4/11 + 3/11 + 2/11 + 1/11 + 1/11 = 1

Additive smoothing: Bigrams: general case

• General formula for smoothed bigram Probabilities:

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha|V|}$$
(3)

- What is V?
- |V| = Number of bigram types starting with w_{i-1}

$$p(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V_{(w_{i-1}, \bullet)}|}$$
(4)

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(5)

Additive smoothing: Bigrams: general case

• For n-grams of length *n*:

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha |V_{(w_{i-n+1}:w_{i-1},\bullet)}|}$$
(6)

- ullet We already know the shared (train + test) vocabulary V
- $V_{(A,\bullet)}$ is then $AA, AB, AC, AD, AE, AF \Rightarrow |V_{(A,\bullet)}| = 6 = |V|$
- We find that the formula we found is identical to the one on the lecture slides!

$$p(w_i|w_{i-1}:w_{i-n+1}) = \frac{C(w_{i-n+1}:w_i) + \alpha}{C(w_{i-n+1}:w_{i-1}) + \alpha|V|}$$
(7)

Backing-off

MARY HAD A LITTLE LAMB

- Consider the bigram (LITTLE MARY)
- Consider the trigram (HAD A LAMB)

For a trigram $P(w_3|w_2, w_1)$, use probability of bigram $P(w_3|w_2)$, else back-off to unigram probability $P(w_3)$.

Will be covered in more detail in further tutorials.

Count Trees

Source:https://www.w3.org/TR/ngram-spec/

Assignment 5

- Exercise 1: OOV Words
- Exercise 2: Additive smoothing
- Exercise 3: Perplexity, infinite smoothing, interpolation
- Bonus: Other language models

Resources

- UdS SNLP Class: https://teaching.lsv.uni-saarland.de/snlp/
- Additive smoothing: https://en.wikipedia.org/wiki/Additive_smoothing
- on-gram count trees: http://ssli.ee.washington.edu/WS07/notes/ngrams.pdf
- n-gram models: https://web.stanford.edu/~jurafsky/slp3/3.pdf