Sentiment Analysis: Ordinal Logistic Regression

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Motivation: Rating Prediction

- Input: An opinionated text document d
- Output: Discrete rating $\mathbf{r} \in \{1, 2, ..., k\}$
- Using regular text categorization techniques
 - Doesn't consider the order and dependency of the categories
 - The features distinguishing r=2 from r=1 may be the same as those distinguishing r=k from r=k-1 (e.g., positive words generally suggest a higher rating)
- Solution: Add order to a classifier (e.g., ordinal logistic regression)

Logistic Regression for Binary Sentiment Classification

Binary Response Variable: $Y \in \{0,1\}$ Predictors: $X = (x_1, x_2, ..., x_M), x_i \in \Re$

$$Y = \begin{cases} 1 & X \text{ is POSITIVE} \\ 0 & X \text{ is NEGATIVE} \end{cases}$$

$$\log \frac{p(Y=1 \,|\, X)}{p(Y=0 \,|\, X)} = \log \frac{p(Y=1 \,|\, X)}{1-p(Y=1 \,|\, X)} = \beta_0 + \sum\nolimits_{i=1}^{M} x_i \beta_i \quad \beta_i \in \Re$$

$$p(Y = 1 \mid X) = \frac{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i}}{e^{\beta_0 + \sum_{i=1}^{M} x_i \beta_i} + 1}$$

Logistic Regression for Multi-Level Ratings

$$Y_{j} = \begin{cases} 1 & \text{rating is } j \text{ or above} \\ 0 & \text{rating is lower than } j \end{cases}$$

Predictors: $X = (x_1, x_2, ..., x_M), x_i \in \Re$

Rating: $r \in \{1, 2, ..., k\}$

$$p(r \ge j \mid X) = \frac{e^{\alpha_j + \sum_{i=1}^{M} x_i \beta_{ji}}}{e^{\alpha_j + \sum_{i=1}^{M} x_i \beta_{ji}} + 1}$$

Rating Prediction with Multiple Logistic Regression Classifiers

Text Object: $X = (x_1, x_2, ..., x_M), x_i \in \Re$

Rating: $r \in \{1, 2, ..., k\}$

After training k-1 **Logistic Regression Classifiers**

$$p(r \geq j \mid X) = \frac{e^{\alpha_j + \sum_{i=1}^M x_i \beta_{ji}}}{e^{\alpha_j + \sum_{i=1}^M x_i \beta_{ji}} + 1}$$

5

Problems with k-1 Independent Classifiers?

$$log\frac{p(\boldsymbol{Y}_{j}=1\,|\,\boldsymbol{X})}{p(\boldsymbol{Y}_{j}=0\,|\,\boldsymbol{X})} = log\frac{p(r\geq j\,|\,\boldsymbol{X})}{1-p(r\geq j\,|\,\boldsymbol{X})} = \alpha_{j} + \sum\nolimits_{i=1}^{M} x_{i}\beta_{ji} \hspace{0.5cm} \beta_{ji} \in \mathfrak{R}$$

$$p(r \ge j \mid X) = \frac{e^{\alpha_j + \sum_{i=1}^{M} x_i \beta_{ji}}}{e^{\alpha_j + \sum_{i=1}^{M} x_i \beta_{ji}} + 1}$$

How many parameters are there in total? (k-1)*(M+1)

The k-1 classification problems are dependent. The positive/negative features tend to be similar!

6

Ordinal Logistic Regression 发展尽义格

Key Idea: $\forall i = 1, ..., M, \forall j = 3, ..., k, \beta_{ii} = \beta_{i-1i}$

→ Share training data → Reduce # of parameters

Ordinal Logistic Regression: Rating Prediction