Теория типов

О курсе

Краткое содержание вступительного занятия

- 1. История вопроса: что вообще изучает теория типов, типы в математике, типы в лямбда-исчислении. Краткое повторение материала, знание которого ожидается от участников.
- 2. Содержание текущего курса: изоморфизм Карри-Ховарда и его применение в программировании и математике
- 3. Особенности преподавания.

Типы в теории множеств

- ▶ Парадокс Рассела: $\{x \mid x \notin x\}$. Законна ли эта запись? $a \in b$ ожидаем, что слева элемент, а справа множество.
- lacktriangle Давайте запретим. Например, введём тип множества: \varnothing^0 , $\{x^n,y^n,z^n\}^{n+1}$ и т.п.
- В. Russel, А. Whitehead, Ramified type theory, 1908 (разветвлённая теория типов). Все объекты получают тип и порядок. Формулы m+1 порядка работают с объектами, задаваемыми формулами m порядка:

$$^{m+1}F^n: {}^mP^n \to {}^mQ^n$$

▶ По силе примерно Р.Т.Т. соответствует аксиоматике Цермело-Френкеля, но неудобна. В ZF можно приписать множествам схожую типу характеристику («ранг»), сложностью выражений можно управлять, например, средствами аксиомы конструктивности.

Лямбда-исчисление: история возникновения

• Готлоб Фреге, 1893 год, «карринг». Двуместную функцию a+b можно представить как композицию двух одноместных функций:

$$f(a) = \lambda x.a + x$$
 $a + b = f(a)(b)$

▶ Моисей Шейнфинкель, 1924, комбинаторы:

$$Kab = a$$
 $Sabc = ac(bc)$

Алонзо Чёрч, 1932, лямбда-исчисление:

$$(\lambda x.M) = M[x := N]$$

- Алонзо Чёрч, 1932, 1934: В λ -исчислении арифметика выражается естественно. Попробуем λ -исчисление расширить до логики?
- ► С.Клини и Б.Россер, 1935, противоречие (модификация парадокса Ришара).

Лямбда-исчисление как логический язык

«Анахроническое» изложение, пересказ современным языком: следуем J. Barkley Rosser: Highlights of the history of the Lambda-Calculus

- В лямбда-исчисление введём логический символ \rightarrow . Формулы исчисления будем считать логическими высказываниями. Добавим логические аксиомы. Ожидаем такое: $\vdash 0+1=1$
- Получение противоречия: определим минимальные требования к исчислению.
 Очевидно, хотя бы следующее мы должны уметь доказывать:
 - $1 \vdash A \rightarrow A$
 - $2. \vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$
 - 3. Если $\vdash A$ и $\vdash A \rightarrow B$, то $\vdash B$.
- Менее очевидное: $\vdash A \to B$, если $A =_{\beta} B$. Мотивация: если $0+1=_{\beta} 1$, то X(0+1) всегда можно заменить на X(1) (равенство по Лейбницу).

Лямбда-исчисление как логический язык

«Анахроническое» изложение, пересказ современным языком: следуем J. Barkley Rosser: Highlights of the history of the Lambda-Calculus

- В лямбда-исчисление введём логический символ \rightarrow . Формулы исчисления будем считать логическими высказываниями. Добавим логические аксиомы. Ожидаем такое: $\vdash 0+1=1$
- Получение противоречия: определим минимальные требования к исчислению.
 Очевидно, хотя бы следующее мы должны уметь доказывать:
 - $1 \vdash A \rightarrow A$
 - $2. \vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$
 - 3. Если $\vdash A$ и $\vdash A \rightarrow B$, то $\vdash B$.
- Менее очевидное: $\vdash A \to B$, если $A =_{\beta} B$. Мотивация: если $0+1=_{\beta} 1$, то X(0+1) всегда можно заменить на X(1) (равенство по Лейбницу). $1=0.5\cdot 2$ влечёт $\sin 1=\sin(0.5\cdot 2)$, а как иначе?

Лямбда-исчисление как логический язык

«Анахроническое» изложение, пересказ современным языком: следуем J. Barkley Rosser: Highlights of the history of the Lambda-Calculus

- ▶ В лямбда-исчисление введём логический символ \rightarrow . Формулы исчисления будем считать логическими высказываниями. Добавим логические аксиомы. Ожидаем такое: $\vdash 0+1=1$
- Получение противоречия: определим минимальные требования к исчислению.
 Очевидно, хотя бы следующее мы должны уметь доказывать:
 - $1 \vdash A \rightarrow A$
 - $2. \vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$
 - 3. Если $\vdash A$ и $\vdash A \rightarrow B$, то $\vdash B$.
- Менее очевидное: $\vdash A \to B$, если $A =_{\beta} B$. Мотивация: если $0+1=_{\beta} 1$, то X(0+1) всегда можно заменить на X(1) (равенство по Лейбницу). $1=0.5\cdot 2$ влечёт $\sin 1=\sin(0.5\cdot 2)$, а как иначе?
- ▶ Заметим: $0+1 \to_{\beta} 1$, поэтому $\vdash (1=1) \to (0+1=1)$.

Парадокс Карри

$$\Phi_{\alpha} := Y (\lambda x.x \rightarrow \alpha)$$

Редуцируя Φ_{lpha} , получаем:

$$\Phi_{\alpha} \twoheadrightarrow_{\beta} (\lambda x. x \to \alpha) (Y (\lambda x. x \to \alpha)) \twoheadrightarrow_{\beta} \Phi_{\alpha} \to \alpha$$

И доказательство:

1)
$$\Phi_{\alpha} \to (\Phi_{\alpha} \to \alpha)$$
 $(A \to A) \text{ if } \Phi_{\alpha} =_{\beta} \Phi_{\alpha} \to \alpha$

$$2)\ (\Phi_{\alpha} \to \Phi_{\alpha} \to \alpha) \to (\Phi_{\alpha} \to \alpha) \quad \text{ Так как } (A \to (A \to B)) \to (A \to B)$$

3)
$$\Phi_{\alpha} \rightarrow \alpha$$
 MP 1, 2

4)
$$(\Phi_{\alpha} \to \alpha) \to \Phi_{\alpha}$$
 $(A \to A)$ in $\Phi_{\alpha} \to \alpha =_{\beta} \Phi_{\alpha}$

5)
$$\Phi_{\alpha}$$
 MP 3. 4

6)
$$\alpha$$
 MP 5, 3

Парадокс Карри: «Если данное высказывание верно, то луна сделана из зелёного сыра». То есть,

$$\Phi_{\alpha} \leftrightarrow (\Phi_{\alpha} \rightarrow \alpha)$$

Лямбда-исчисление как вычислительная модель

- ▶ Из исчисления А. Чёрч выделил некоторую часть и доказал её непротиворечивость: Church, A. (1935). "A Proof of Freedom from Contradiction." Proceedings of the National Academy of Sciences of the United States of America, 21(5):275–281.
- ► Но затем предложил смотреть на исчисление как на вычислительную модель: Church, A. (1936). "An Unsolvable Problem of Elementary Number Theory." American Journal of Mathematics, 58(2):345–363, 1936.
- ▶ Начала современного понимания теории типов были заложены в этой работе: Church, A. (1940). A formulation of the simple theory of types, Journal of Symbolic Logic 5, pp. 56–68.

Примеры вычислений

$$f^{(n)}(x) = \begin{cases} x, & n = 0\\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n}:=\lambda f.\lambda x.f^{(n)}(x).$ Например, $\overline{3}=\lambda f.\lambda x.f(f(f(x)))$

Пример

Инкремент: Inc := $\lambda n.\lambda f.\lambda x.n f(fx)$

 $IsZero := \lambda n.n (\lambda x.F) T$

Pair a b := $\lambda s.s$ a b. Fst := $\lambda p.p$ T. Snd := $\lambda p.p$ F

 $\textit{Dec} := \lambda \textit{n.Snd} \ (\textit{n} \ (\lambda \textit{p.Pair} \ (\textit{Snd} \ \textit{p}) \ (\textit{Inc} \ (\textit{Snd} \ \textit{p})))) \ (\textit{Pair} \ \overline{0} \ \overline{0})$

 $Y := \lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))$

Пример

Fact $n := Y (\lambda f.\lambda x.(IsZero x) \overline{1} (Mul x (f (Dec x)))) n$

Порядок вычислений

```
Body := \lambda f.\lambda x.(IsZero \ x) \ \overline{1} \ (Mul \ x \ (f \ (Dec \ x))) Fact n := Y \ Body \ n
```

Пример

Рассмотрим Fact $\overline{3} = Y Body \overline{3} \rightarrow_{\beta} Body (Y Body) \overline{3}$

Вычислять двумя способами:

- 1. Body (Y Body) $\overline{3} \rightarrow_{\beta} Body (Body (Y Body)) \overline{3}$
- 2. $Body\ (Y\ Body)\ \overline{3} = \left[\lambda f.\lambda x.(IsZero\ x)\ \overline{1}\ (Mul\ x\ (f\ (Dec\ x)))\right]\ (Y\ Body)\ \overline{3} \twoheadrightarrow_{\beta} (IsZero\ \overline{3})\ \overline{1}\ (Mul\ \overline{3}\ (Y\ Body\ (Dec\ \overline{3})))$

Ну и дальше (при втором способе):

$$(Mul\ \overline{3}\ (Y\ Body\ (Dec\ \overline{3}))) \xrightarrow{}_{\beta} Mul\ \overline{3}\ (Y\ Body\ \overline{2}) \xrightarrow{}_{\beta} Mul\ \overline{3}\ (Body\ (Y\ Body\ \overline{2})) \xrightarrow{}_{\beta} \dots$$

Теорема Чёрча-Россера гарантирует, что результат будет одинаков, если будет.

Нормальный и аппликативный порядок вычислений

Пример

$$\mathcal{K} := \lambda x. \lambda y. x, \mathcal{I} := \lambda x. x, \Omega := (\lambda x. x x) (\lambda x. x x)$$

Выражение ΚΙΩ можно редуцировать двумя способами:

- 1. $\mathcal{K} \mathcal{I} \Omega =_{\alpha} ((\lambda a. \lambda b. a) \mathcal{I}) \Omega \rightarrow_{\beta} (\lambda b. \mathcal{I}) \Omega \rightarrow_{\beta} \mathcal{I}$
- 2. $\mathcal{K}\mathcal{I}\Omega =_{\alpha} ((\lambda a.\lambda b.a)\mathcal{I})((\lambda x.x \ x)(\lambda x.x \ x)) \rightarrow_{\beta} ((\lambda a.\lambda b.a)\mathcal{I})((\lambda x.x \ x)(\lambda x.x \ x)) \rightarrow_{\beta} \mathcal{K}\mathcal{I}\Omega$

Определение (нормальный порядок редукции)

Pедукция самого левого eta-редекса.

Определение (аппликативный порядок редукции)

Редукция самого левого β -редекса из самых вложенных.

Теорема (Приводится без доказательства)

Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

Нормальный порядок — медленный

Пример

Рассмотрим λ -выражение $(\lambda x.x \times x \times x)(\mathcal{II})$. Попробуем редуцировать его нормальным порядком:

$$(\lambda x. x \times x)(\mathcal{I}\mathcal{I}) \to_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} \mathcal{I}(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} (\mathcal{I}\mathcal{I})(\mathcal{I}\mathcal{I}) \to_{\beta} ...$$

Как мы увидим, в данной ситуации аппликативный порядок редукции оказывается значительно эффективней:

$$(\lambda x.x \times x \times x)(\mathcal{I}\mathcal{I}) \to_{\beta} (\lambda x.x \times x \times x)\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I} \to_{\beta} \mathcal{I}\mathcal{I}$$

Как программировать? Любое значение – замыкание

```
let x = sqrt 256 let x = fun () -> sqrt 256
```

Плюс мемоизация:

```
let x = fun () -> sqrt 256;;
let y = x;;
y () + x () (* вычисляется два раза *)
```

Давайте запоминать результаты!

```
type int-value = Compute of unit -> int | Result of int;;
let compute v = match !v with
    Compute f -> let res = f () in v := Result res; res
    | Result r -> r;;
```

```
let x = ref (Compute (fun () -> sqrt 256));;
let y = x;;
compute y + compute x
```

Ленивые и энергичные вычисления

Энергичные вычисления: аппликативный порядок. Ленивые вычисления: нормальный порядок + мемоизация. If всегда ленив

let fact n = if n > 1 then n * fact (n-1) else 1

Ленивое общение с внешним миром бессмысленно.

Изоморфизм Карри-Ховарда

Просто типизированное λ -исчисление	Импликативный фрагмент ИИВ
$\Gamma, x : \theta \vdash x : \theta$	$\Gamma, \varphi \vdash \varphi$
$\frac{\Gamma, x : \varphi \vdash P : \psi}{\Gamma \vdash (\lambda \ x. \ P) : \varphi \to \psi}$	$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$
$\frac{\Gamma \vdash P : \varphi \to \psi \qquad \Gamma \vdash Q : \varphi}{\Gamma \vdash PQ : \psi}$	$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$

Просто типизированное λ -исчисление	Импликативный фрагмент ИИВ
Тип	Высказывание
Терм	Доказательство высказывания
Проверка типа	Проверка доказательства на корректность
Обитаемый тип	Доказуемое высказывание

(⇒): изучение языков программирования

- Просто типизрованное исчисление соответствует исчислению высказываний.
 Малая выразительная сила просто-типизированного лямбда исчисления (полиномы).
- Метод: усложняем исчисление смотрим получающийся язык.
- Логика первого порядка: зависимые типы. Какой тип y sprintf?
 sprintf "%d" : int -> string
 sprintf "%d + %d" : int*int -> string
 Например, Идрис позволяет тип выписать.
- Логика второго порядка: генерики.

Программа	a	Доказывает
let id x	= x	$\forall \tau. \tau \rightarrow \tau$

- Классические функциональные языки типовая система Хиндли-Милнера (разрешимый вариант системы F, соответствующей логике второго порядка).
- Алгоритмы вывода типов, анализ и верификация программ используют матлог.

Лямбда-куб Барендрегта

Типовые системы и языки программирования:

Классические и функциональные языки:

 $\lambda_{
ightarrow}$ Классический Паскаль

 λ_{ω} Система F

 λ_ω Haskell, Ocaml

Языки с зависимыми типами данных (обычно около λC): Idris, Coq, Agda, Arend, C++ :).

 (\Leftarrow) : изучение логики и доказательств через написание программ

- ▶ Пер Мартин-Лёф, Intuonistic Type Theory: версии 1972 и 1979.
- ▶ Множество расширений и вариантов.
- ▶ Такие инструменты как Coq, Agda, Lean используют варианты этой теории.
- Мы будем рассматривать некоторую родственную теорию, гомотопическую теорию типов.

Гомотопическая теория типов

Владимир Александрович Воеводский, 1966-2017.

... Математика находится на пороге кризиса, а точнее двух кризисов. Первый связан с отрывом математики «чистой» от математики прикладной. Понятно, что рано или поздно встанет вопрос о том, а почему общество должно платить деньги людям, которые занимаются вещами, не имеющими никаких практических приложений. Второй, менее очевидный, связан с усложнением чистой математики, которое ведет к тому, что, опять же рано или поздно, статьи станут слишком сложными для детальной проверки и начнется процесс накопления незамеченных ошибок ...

Гомотопическая теория типов

- ▶ Центральный вопрос что такое равенство.
- ▶ Классический матлог: это предикат, удовлетворяющий свойствам.
- Однако, свойства обычно слишком общие (класс эквивалентности?).
 Интуитивно хочется большего, равенство не всегда просто эквивалентность.
- Изоморфизм Карри-Ховарда-Воеводского:

Логика	λ -исчисление	Топология
Утверждение	Тип	Пространство
Доказательство	Значение	Точка в пространстве
Предикат $(=)$	Зависимый тип $(=)$	Путь между точками

Реализация: кубическая теория типов, Аренд.

Чем естественно такое определение равенства?

Целые числа — класс эквивалентности пар $\langle a, b \rangle$ при $a, b \in \mathbb{N}_0$, понимаемых как a-b. Точнее: $\langle a, b \rangle \approx \langle c, d \rangle := a + d = b + c$ $\mathbb{Z} := \{\langle a, b \rangle \mid a, b \in \mathbb{N}_0 \}/_{\approx}$ Рассмотрим топологическое пространство с носителем $Z = \{\langle a, b \rangle \mid a, b \in \mathbb{N}_0 \}$ открытыми множествами назовём все диагональные прямые x = y + c и y = x + c.

 $\langle a,b \rangle = \langle c,d \rangle$ эквивалентно существованию пути $\pi:[0,1] \to Z$, что $\pi(0) = \langle a,b \rangle$ и $\pi(1) = \langle c,d \rangle$.

Построение курса

- 1. Аналогично с матлогом, будет разделение на теорию и практику.
- 2. Теория: знание определений, идей, теорем.
- 3. Практика: лабы на доказательства теорем с использованием языка Аренд, возможны дополнительные околокомпиляторные лабы.
- 4. Для закрытия предмета надо набрать баллы практическими заданиями и сдать зачёт/экзамен.