SEQUENCE LISTING

<110> SALON, JOHN A LAZ, THOMAS M NAGORNY, RAISA WILSON, AMY E
<120> DNA ENCODING A HUMAN MELANIN CONCENTRATING HORMONE RECEPTOR (MCH1) AND USES THEREOF
<130> 1795/57453-A-PCT-US
<140> 09/885,478 <141> 2001-06-20
<150> PCT/US99/31169 <151> 1999-12-30
<160> 28
<170> PatentIn version 3.1
<210> 1 <211> 1269 <212> DNA <213> HOMO SAPIENS
<400> 1 atgtcagtgg gagccatgaa gaagggagtg gggagggcag ttgggcttgg aggcggcagc 60
ggctgccagg ctacggagga agaccccctt cccgactgcg gggcttgcgc tccgggacaa 120
ggtggcaggc gctggaggct gccgcagcct gcgtgggtgg aggggagctc agctcggttg 180
tgggagcagg cgaccggcac tggctggatg gacctggaag cctcgctgct gcccactggt 240
cccaatgcca gcaacacctc tgatggcccc gataacctca cttcagcagg atcacctcct 300
cgcacgggga gcatctccta catcaacatc atcatgcctt cggtgttcgg caccatctgc 360
ctcctgggca tcatcgggaa ctccacggtc atcttcgcgg tcgtgaagaa gtccaagctg 420
cactggtgca acaacgtccc cgacatette atcateaace teteggtagt agateteete 480
tttctcctgg gcatgccctt catgatccac cagctcatgg gcaatggggt gtggcacttt 540
ggggagacca tgtgcaccct catcacggcc atggatgcca atagtcagtt caccagcacc 600
tacatcctga ccgccatggc cattgaccgc tacctggcca ctgtccaccc catctcttcc 660
acgaagttcc ggaagccctc tgtggccacc ctggtgatct gcctcctgtg ggccctctcc 720
ttcatcagca tcacccctgt gtggctgtat gccagactca tccccttccc aggaggtgca 780
gtgggctgcg gcatacgcct gcccaaccca gacactgacc tctactggtt caccctgtac 840
cagtttttcc tggcctttgc cctgcctttt gtggtcatca cagccgcata cgtgaggatc 900
ctgcagcgca tgacgtcctc agtggccccc gcctcccagc gcagcatccg gctgcggaca 960
aagagggtga ceegcacage categeeate tgtetggtet tetttgtgtg etgggeacee 1020
tactatgtgc tacagctgac ccagttgtcc atcagccycc cgaccctcac ctttgtctac 1080

ttatacaatg cggccatcag cttgggctat gccaacagct gcctcaaccc ctttgtgt	ac 1140
atcgtgctct gtgagacgtt ccgcaaacgc ttggtcctgt cggtgaagcc tgcagccc	ag 1200
gggcagcttc gcgctgtcag caacgctcag acggctgacg aggagaggac agaaagca.	aa 1260
ggcacctga	1269
<210> 2 <211> 422 <212> PRT <213> HOMO SAPIENS	
<400> 2	
Met Ser Val Gly Ala Met Lys Lys Gly Val Gly Arg Ala Val Gly Leu 1 5 10 15	
Gly Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asp 20 25 30	
Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro 35 40 45	
Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala 50 55 60	
Thr Gly Thr Gly Trp Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly 70 75 80	
Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala 85 90 95	
Gly Ser Pro Pro Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met 100 105 110	
Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser 115 120 125	
Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn 130 135 140	
Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu 145 150 155 160	
Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly 165 170 175	
Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp 180 185 190	

Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile 200 Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser 225 235 230 Phe Ile Ser Ile Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr 265 Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr 310 315 Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser 345 Arg Pro Thr Leu Thr Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln 390 385 395 Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg 410 Thr Glu Ser Lys Gly Thr <210> 3

```
<211> 1214
<212>
       DNA
      RATTUS NORVEGICUS
<213>
quaggegace tgcacegget geatggatet geaaaceteg ttgetgteea etggeeceaa
                                                                       60
tgccagcaac atctccgatg gccaggataa tctcacattg ccggggtcac ctcctcgcac
                                                                      120
agggagtgtc tcctacatca acatcattat gccttccgtg tttggtacca tctgtctcct
                                                                      180
gggcatcgtg ggaaactcca cggtcatctt tgctgtggtg aagaagtcca agctacactg
                                                                      240
gtgcagcaac gtccccgaca tcttcatcat caacctctct gtggtggatc tgctcttcct
                                                                      300
gctgggcatg cctttcatga tccaccagct catggggaac ggcgtctggc actttgggga
                                                                      360
aaccatgtgc accctcatca cagccatgga cgccaacagt cagttcacta gcacctacat
                                                                      420
cctgactgcc atgaccattg accgctactt ggccaccgtc caccccatct cctccaccaa
                                                                      480
                                                                      540
gttccggaag ccctccatgg ccaccctggt gatctgcctc ctgtgggcgc tctccttcat
                                                                      600
cagtateace cetqtgtggc tetacqccag getcattece tteccagggg gtgctgtggg
ctgtggcatc cgcctgccaa acccggacac tgacctctac tggttcactc tgtaccagtt
                                                                      660
tttcctggcc tttgcccttc cgtttgtggt cattaccgcc gcatacgtga aaatactaca
                                                                      720
gegeatgacg tetteggtgg ceccageete ecaacgeage ateeggette ggacaaagag
                                                                      780
ggtgacccgc acggccattg ccatctgtct ggtcttcttt gtgtgctggg caccctacta
                                                                      840
tqtqctqcaq ctqacccaqc tqtccatcaq ccqcccqacc ctcacqtttq tctacttqta
                                                                      900
caacgcggcc atcagcttgg gctatgctaa cagctgcctg aacccctttg tgtacatagt
                                                                      960
gctctgtgag acctttcgaa aacgcttggt gttgtcagtg aagcctgcag cccaggggca
                                                                     1020
gctccgcacg gtcagcaacg ctcagacagc tgatgaggag aggacagaaa gcaaaggcac
                                                                     1080
ctgacaattc cccagtcgcc tccaagtcag gccaccccat caaaccgtgg ggagagatac
                                                                     1140
tgagattaaa cccaaggcta ccctgggaga atgcagaggc tggaggctgg gggcttgtag
                                                                     1200
caaccacatt ccac
                                                                     1214
<210>
      4
      353
<211>
<212>
      PRT
```

<213> RATTUS NORVEGICUS

<400>

Met Asp Leu Gln Thr Ser Leu Leu Ser Thr Gly Pro Asn Ala Ser Asn

Ile Ser Asp Gly Gln Asp Asn Leu Thr Leu Pro Gly Ser Pro Pro Arg 20

Thr Gly Ser Val Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Val Gly Asn Ser Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Ser Asn Val Pro Asp Ile 75 70 Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met 90 Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly 105 Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Thr Ile Asp Arg Tyr Leu Ala 135 Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Met Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr 170 1.65 Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe 195 Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile 210 Thr Ala Ala Tyr Val Lys Ile Leu Gln Arg Met Thr Ser Ser Val Ala 225 Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg 250 Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr

Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr 275 280 285

```
Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser
                        295
Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys
Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Thr
                                     330
                325
Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly
                                345
            340
Thr
<210> 5
<211> 26
<212> DNA
<213> ARTIFICIAL SEQUENCE
<220>
<223> PRIMER
<400> 5
                                                                        26
gggaactcca cggtcatctt cgcggt
<210> 6
<211> 26
<212> DNA
<213> ARTIFICIAL SEQUENCE
<220>
<223> PRIMER
<400> 6
                                                                        26
tagcggtcaa tggccatggc ggtcag
<210> 7
<211> 45
<212> DNA
<213> ARTIFICIAL SEQUENCE
<220>
<223> PROBE
                                                                        45
ctcctgggca tgcccttcat gatccaccag ctcatgggca atggg
<210> 8
<211> 25
<212> DNA
<213> ARTIFICIAL SEQUENCE
```

<220>

<223>	PRIMER	
<400> cttctac	8 ggcc tgtacggaag tgtta	25
<210><211><211><212><213>		
<220> <223>	PRIMER	
<400> gttgtg	9 gttt gtccaaactc atcaatg	27
<210> <211> <212> <213>		
<220> <223>	PRIMER	
<400> cgcgga	10 tcca ttatgtctgc actccgaagg aaatttg	37
<210> <211> <212> <213>	11 38 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400> cgcgaa	11 ttct tatgtgaagc gatcagagtt catttttc	38
<210><211><211><212><213>	12 34 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400> gcggga	12 tccg ctatggctgg tgattctagg aatg	34
<210><211><211><212><213>		
<220> <223>	PRIMER	
<400>	13	

ccggaattcc cctcacaccg agcccctgg									
<210> 14 <211> 20 <212> DNA <213> ARTIFICI	AL SEQUENCE								
<220> <223> PRIMER									
<400> 14 tcagctcggt tgtg	ggagca			20					
<210> 15 <211> 18 <212> DNA <213> ARTIFICI	AL SEQUENCE								
<220> <223> PRIMER									
<400> 15 cttggacttc ttca	cgac			18					
<210> 16 <211> 100 <212> PRT <213> ARTIFICI	AL SEQUENCE								
<220> <223> MUTATION	CLONE								
<400> 16									
Met Ser Val Gly 1	Ala Met Lys 5	Lys Gly Val 10	Gly Thr Ala Val	Gly Leu 15					
Gly Gly Gly Ser 20	Gly Cys Gln	Ala Thr Glu 25	Glu Asp Pro Leu 30	Pro Asp					
Cys Gly Ala Cys 35	Ala Pro Gly	Gln Gly Gly 40	Arg Arg Trp Arg 45	Leu Pro					
Gln Pro Ala Trp 50	Val Glu Gly 55	Ser Ser Ala	Arg Leu Trp Glu 60	Gln Ala					
Thr Gly Thr Gly 65	Trp Ala Asp 70	Leu Glu Ala	Ser Leu Leu Pro 75	Thr Gly 80					
Pro Asn Ala Ser	Asn Thr Ser 85	Asp Gly Pro 90	Asp Asn Leu Thr	Ser Ala 95					
Gly Ser Pro Pro									

Page 8

<210> 17 <211> 100 <212> PRT <213> ART		AL SI	EQUEI	NCE											
<220> <223> MUT	TATION	CLO	NE												
<400> 17															
Met Ser Va 1	al Gly	Ala 5	Ala	Lys	Lys	Gly	Val 10	Gly	Arg	Ala	Val	Gly 15	Leu		
Gly Gly Gl	y Ser 20	Gly	Cys	Gln	Ala	Thr 25	Glu	Glu	Asp	Pro	Leu 30	Pro	Asp		
Cys Gly Al		Ala	Pro	Gly	Gln 40	Gly	Gly	Arg	Arg	Trp 45	Arg	Leu	Pro		
Gln Pro Al 50	a Trp	Val	Glu	Gly 55	Ser	Ser	Ala	Arg	Leu 60	Trp	Glu	Gln	Ala		
Thr Gly Th	ır Gly	Trp	Ala 70	Asp	Leu	Glu	Ala	Ser 75	Leu	Leu	Pro	Thr	Gly 80		
Pro Asn Al	a Ser	Asn 85	Thr	Ser	Asp	Gly	Pro 90	Asp	Asn	Leu	Thr	Ser 95	Ala		
Gly Ser Pr	o Pro 100														
<210> 18 <211> 31 <212> DNA <213> ART	'IFICI	AL SE	EQUEN	NCE											
<220> <223> PRIMER															
<400> 18 cggcactggc	: tggg	cggad	cc to	ggaag	geete	c g									31
<210> 19 <211> 31 <212> DNA <213> ART	IFICIA	AL SE	EQUE1	ICE											
<220> <223> PRI	MER														
<400> 19	aggt.	2222		, a a a a	r+ a c c										21

Page 9

<210><211><211><212><213>	20 32 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400> atgtca	20 gtgg gagccgcgaa gaagggagtg gg	32
<210> <211> <212> <213>	21 32 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400> cccact	21 ccct tcttcgcggc tcccactgac at	32
<210><211><211><212><213>	22 33 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400> taatgt	22 gtct aggtggcgtc agtgggagcc atg	33
<210><211><212><212><213>	23 33 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400> catggc	23 toco actgaogeca cetagacaca tta	33
<210><211><211><212><213>	24 37 DNA ARTIFICIAL SEQUENCE	
<220> <223>	PRIMER	
<400> tgacac	24 taag cttcactggc tggatggacc tggaagc	37
<210> <211>	25 24	

24

<212 <213		DNA ARTII	FICIA	AL SI	EQUE	VCE									
<220 <223		PRIMI	ΞR												
<400> 25 gcccaggaga aagaggagat ctac															
<210> 26 <211> 422 <212> PRT <213> ARTIFICIAL SEQUENCE															
<220> <223> MUTATED MCH RECEPTOR															
<400> 26															
Met 1	Ser	Val	Gly	Ala 5	Met	Lys	Lys	Gly	Val 10	Gly	Arg	Ala	Val	Gly 15	Leu
Gly	Gly	Gly	Ser 20	Gly	Cys	Gln	Ala	Thr 25	Glu	Glu	Asp	Pro	Leu 30	Pro	Asp
Cys	Gly	Ala 35	Cys	Ala	Pro	Gly	Gln 40	Gly	Gly	Arg	Arg	Trp 45	Arg	Leu	Pro
Gln	Pro 50	Ala	Trp	Val	Glu	Gly 55	Ser	Ser	Ala	Arg	Leu 60	Trp	Glu	Gln	Ala
Thr 65	Gly	Thr	Gly	Trp	Ala 70	Asp	Leu	Glu	Ala	Ser 75	Leu	Leu	Pro	Thr	Gly 80
Pro	Asn	Ala	Ser	Asn 85	Thr	Ser	Asp	Gly	Pro 90	Asp	Asn	Leu	Thr	Ser 95	Ala
Gly	Ser	Pro	Pro 100	Arg	Thr	Gly	Ser	Ile 105	Ser	Tyr	Ile	Asn	Ile 110	Ile	Met
Pro	Ser	Val 115	Phe	Gly	Thr	Ile	Cys 120	Leu	Leu	Gly	Ile	Ile 125	Gly	Asn	Ser
Thr	Val 130	Ile	Phe	Ala	Val	Val 135	Lys	Lys	Ser	Lys	Leu 140	His	Trp	Cys	Asn
Asn 145	Val	Pro	Asp	Ile	Phe 150	Ile	Ile	Asn	Leu	Ser 155	Val	Val	Asp	Leu	Leu 160
Phe	Leu	Leu	Gly	Met 165	Pro	Phe	Met	Ile	His 170	Gln	Leu	Met	Gly	Asn 175	Gly

Page 11

Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp 185 180 Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile 200 Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser 230 235 Phe Ile Ser Ile Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu 275 280 Pro Phe Val Val Ile Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val 325 330 Cys Trp Ala Pro Tyr Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys 370 375 380 Glu Thr Phe Arg Lys Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln 385 390 395 400 Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly Thr

Page 12

420

<210> 27 <211> 422 <212> PRT <213> ARTIFICIAL SEQUENCE <220> <223> MUTATED MCH RECEPTOR <400> 27 Met Ser Val Gly Ala Ala Lys Lys Gly Val Gly Arg Ala Val Gly Leu Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asp Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala Thr Gly Thr Gly Trp Ala Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala 90 Gly Ser Pro Pro Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met 100 105 Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser 115 Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu 145 150 155 Phe Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp 185

205

Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile

195

Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg 210 215 Lys Pro Ser Val Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser 230 Phe Ile Ser Ile Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr 260 265 Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu 280 Pro Phe Val Val Ile Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr 305 310 315 Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu 360 Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg 405 410 415 Thr Glu Ser Lys Gly Thr

420

<210> 28

<211> 353

<212> PRT <213> ARTIFICIAL SEQUENCE

<220>

<223> MUTATED MCH RECEPTOR

<400> 28

Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala Gly Ser Pro Pro Arg 20 25 30

Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly 35 40 45

Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe Ala 50 60

Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp Ile 65 70 75 80

Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met 85 90 95

Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly 100 105 110

Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe 115 120 125

Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala 130 135 140

Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala 145 150 155 160

Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr 165 170 175

Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val 180 185 190

Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe 195 200

Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile 210 220

Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala 225 230 235 240

Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg 245 250 255

Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr $260 \hspace{1.5cm} 265 \hspace{1.5cm} 270 \hspace{1.5cm}$

Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr 275 280 285

Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser 290 295 300

Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys 305 310 315 320

Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$

Thr