Joe Tran Assignment

Question 1. We define two operations \boxplus and \boxtimes on \mathbb{Z} as

$$a \boxplus b = a + b - 1$$
$$a \boxtimes b = ab - a - b + 2$$

for $a, b \in \mathbb{Z}$.

- (a) Show that \mathbb{Z} together with addition \boxplus and multiplication \boxtimes is a ring.
- (b) Determine if this ring is
 - (i) A commutative ring
 - (ii) A ring with identity
 - (iii) An integral domain.
 - (iv) A field.

Solution. (a) To see that $(\mathbb{Z}, \boxplus, \boxtimes)$ is a ring, we verify the six properties of a ring.

(i) (Associativity Over \boxplus) Let $x, y, z \in \mathbb{Z}$ be arbitrary. We show that

$$(x \boxplus y) \boxplus z = x \boxplus (y \boxplus z)$$

Using the properties of the usual addition on \mathbb{Z} ,

$$(x \boxplus y) \boxplus z = (x + y - 1) \boxplus z$$

$$= (x + y - 1) + z - 1$$

$$= x + y - 1 + z - 1$$

$$= x + y + z - 1 - 1$$

$$= x + (y + z - 1) - 1$$

$$= x + (y \boxplus z) - 1$$

$$= x \boxplus (y \boxplus z)$$

(ii) (Identity Over \boxplus) We claim that the identity over \boxplus is $1 \in \mathbb{Z}$ because for any $x \in \mathbb{Z}$,

$$x \boxplus 1 = x + 1 - 1 = x$$

and

$$1 \boxplus x = 1 + x - 1 = x$$

(iii) (Inverse Over \boxplus) We first find the inverse element over \boxplus . Let $x \in \mathbb{Z}$ be arbitrary. Then there exists an element $y \in \mathbb{Z}$ such that $x \boxplus y = 1$. Then

$$x \boxplus y = 1$$
$$x + y - 1 = 1$$
$$y = 2 - x$$

So the inverse element over \boxplus is $2-x \in \mathbb{Z}$. Furthermore,

$$x \boxplus (2-x) = x + (2-x) - 1 = x + 2 - x - 1 = 1$$

and

$$(2-x) \boxplus x = (2-x) + x - 1 = 2 - x + x - 1 = 1$$

(iv) (Abelian Over \boxplus) Let $x, y \in \mathbb{Z}$ be arbitrary. We show that

$$x \boxplus y = y \boxplus x$$

Indeed,

$$x \boxplus y = x + y - 1 = y + x - 1 = y \boxplus x$$

(v) (Associativity Over \boxtimes) Let $x,y,z\in\mathbb{Z}$ be arbitrary. Then we show that

$$(x \boxtimes y) \boxtimes z = x \boxtimes (y \boxtimes z)$$

Indeed,

$$(x \boxtimes y) \boxtimes z = (xy - x - y + 2) \boxtimes z$$

$$= (xy - x - y + 2)z - (xy - x - y + 2) - z + 2$$

$$= xyz - xz - yz + 2z - xy + x + y - 2 - z + 2$$

$$= xyz - xy - xz + x - yz + y + z - 2 + 2$$

$$= xyz - xy - xz + 2x - x - yz + y + z - 2 + 2$$

$$= x(yz - y - z + 2) - x - (yz - y - z + 2) + 2$$

$$= x \boxtimes (yz - y - z + 2)$$

$$= x \boxtimes (y \boxtimes z)$$

as required.

(vi) (Distributive Property) Let $x, y, z \in \mathbb{Z}$ be arbitrary. Then we show that

$$x \boxtimes (y \boxplus z) = (x \boxtimes y) \boxplus (x \boxtimes z)$$

and

$$(x \boxplus y) \boxtimes z = (x \boxtimes z) \boxplus (y \boxtimes z)$$

Indeed,

$$x \boxtimes (y \boxplus z) = x \boxtimes (y+z-1)$$

$$= x(y+z-1) - x(y+z-1) + 2$$

$$= xy + xz - x - x - y - z + 1 + 2$$

$$= xy + xz - x - x - y - z + 2 - 1 + 2$$

$$= (xy - x - y + 2) + (xz - x - z + 2) - 1$$

$$= (x \boxtimes y) + (x \boxtimes z) - 1$$

$$= (x \boxtimes y) \boxplus (x \boxtimes z)$$

and similarly,

$$(x \boxtimes y) \boxtimes z = (x+y-1) \boxtimes z$$

$$= (x+y-1)z - (x+y-1) - z + 2$$

$$= xz + yz - z - x - y + 1 - z + 2$$

$$= xz + yz - z - x - y + 2 - 1 - z + 2$$

$$= (xz - x - z + 2) + (yz - y - z + 2) - 1$$

$$= (x \boxtimes z) + (y \boxtimes z) - 1$$

$$= (x \boxtimes z) \boxplus (y \boxtimes z)$$

Therefore, we have show that $(\mathbb{Z}, \boxplus, \boxtimes)$ is a ring.

(b) (i) We claim that $(\mathbb{Z}, \boxplus, \boxtimes)$ is a commutative ring. Let $x, y \in \mathbb{Z}$ be arbitrary. Then we show that

$$x \boxtimes y = y \boxtimes x$$

Indeed,

$$x \boxtimes y = xy - x - y + 2 = yx - y - x + 2 = y \boxtimes x$$

Therefore, $(\mathbb{Z}, \boxplus, \boxtimes)$ is a commutative ring.

(ii) We claim that $(\mathbb{Z}, \boxplus, \boxtimes)$ is a ring with identity. To see this, let $x \in \mathbb{Z}$ be arbitrary. Then if such a $y \in \mathbb{Z}$ exists such that $x \boxtimes y = y \boxtimes x = x$, then

$$x \boxtimes y = x$$

$$xy - x - y + 2 = x$$

$$xy - 2x - y + 2 = 0$$

$$x(y - 2) - (y - 2) = 0$$

$$(x - 1)(y - 2) = 0$$

So from the above equation, we have that y=2 is the identity over \boxtimes . Then observe that $2 \neq 0$, and for any $x \in \mathbb{Z}$,

$$x\boxtimes 2 = x2 - x - 2 + 2 = x$$

and

$$2\boxtimes x = 2x - 2 - x + 2 = x$$

as desired.

(iii) We claim that $(\mathbb{Z}, \boxplus, \boxtimes)$ is an integral domain. To see this, note that from (i) and (ii) it is a commutative ring with identity. Assume that for $x, y \in \mathbb{Z}$ such that $x \boxtimes y = 0$. Then

$$x\boxtimes y=xy-x-y+2=0$$

But then the equation above can be expressed as $y=\frac{x-2}{x-1}$ with $x\neq 1$, in which by some brief analysis, has a zero at x=2, which would then yield that y=0. So we have that $x\neq 2$ but y=0. On the other hand, we can also express the equation as $x=\frac{y-2}{y-1}$ with $y\neq 1$, and similarly, we would obtain that x=0 but $2\neq 0$. Therefore, we have shown that either x=0 or y=0.

(iv) We claim that $(\mathbb{Z}, \boxplus, \boxtimes)$ is a not a field. To see this, note that from (i) and (ii), it is a commutative ring with identity. To show that $(\mathbb{Z}, \boxplus, \boxtimes)$ is a field, we need to show that it is a division ring. So let $x \neq 0 \in \mathbb{Z}$ be arbitrary. Then we seek a $y \in \mathbb{Z}$ so that $x \boxtimes y = y \boxtimes x = 2$ (because 2 is the identity over \boxtimes). Then solving for y,

$$xy - x - y + 2 = 2$$

$$xy - x - y = 0$$

$$y(x - 1) = x$$

$$y = \frac{x}{x - 1}$$

However, note that by taking x = 3, we obtain that $y = \frac{3}{2} \notin \mathbb{Z}$, which is absurd. Therefore, $(\mathbb{Z}, \mathbb{H}, \boxtimes)$ cannot be a field.

Question 2. Let $\mathbb{Z}_n[i] = \{a + ib : a, b \in \mathbb{Z}_n, i^2 = -1\}$ denote the Gaussian integers modulo n.

- (a) Generate the multiplication table of $\mathbb{Z}_n[i]$ for n=2,3,...,7. (Use computer. Submit the tables for only n=2,3.)
- (b) Determine all integers $n \geq 2$ for which $\mathbb{Z}_n[i]$ is an integral domain, hence, a field. (Hint: Fermat's theorem on the sum of squares. You may assume that $a^2 + b^2 = 0 \mod p$ implies $a = b = 0 \mod p$.)

Solution. (a) We have the following tables generated for n=2 and n=3 as follows:

•2	0	1	i	1+i	
0	0	0	0	0	
1	0	1	i	1+i	
i	0	i	1	1+i	
1+i	0	1+i	1+i	0	

.3	0	1	2	i	2i	1+i	1+2i	2+i	2+2i
0	0	0	0	0	0	0	0	0	0
1	0	1	2	i	2i	1+i	1+2i	2+i	2+2i
2	0	2	1	2i	i	2+2i	2+i	1+2i	1+i
i	0	i	2i	2	1	2+i	1+i	2+2i	1+2i
2i	0	2i	i	1	2	1+2i	2+2i	1+i	2+i
1+i	0	1+i	2+2i	2+i	1+2i	2i	2	1	i
1+2i	0	1+2i	2+i	1+i	2+2i	2	i	2i	1
2+i	0	2+i	1+2i	2+2i	1+i	1	2i	i	2
2+2i	0	2+2i	1+i	1+2i	2+i	i	1	2	2i

(b) We will break down the proof into three cases.

Case 1: (If n is an even integer) First consider the case when n=2. We claim that $\mathbb{Z}_2[i]$ is not an integral domain. To see this, let us take $a=b=1+i\in\mathbb{Z}_2[i]$ such that $(1+i)^2=0$. However, $1+i\neq 0$, so $\mathbb{Z}_2[i]$ cannot be an integral domain. Recall that \mathbb{Z}_p is an integral domain if and only if p is prime. Now if n=2k for some integer $k\in\mathbb{Z}$, then note that \mathbb{Z}_{2k} would not be an integral domain as well, because 2k is a composite number, and therefore, \mathbb{Z}_{2k} cannot be an integral domain. Furthermore, because $\mathbb{Z}_{2k}\subset\mathbb{Z}_{2k}[i]$, then $\mathbb{Z}_{2k}[i]$ cannot be an integral domain as well.

Case 2: (If p = 4k + 1 is a prime for some $k \in \mathbb{Z}$) Using Fermat's Theorem of Sum of Squares, then for integers $a, b \in \mathbb{Z}_p$,

$$a^{2} + b^{2} = p$$
$$a^{2} + b^{2} = p$$
$$(a+ib)(a-ib) = p$$

So then this implies that both a + ib and a - ib are zero divisors in $\mathbb{Z}_p[i]$, and thus, $\mathbb{Z}_p[i]$, where p = 4k + 1 for some integer k, cannot be an integral domain.

Case 3: (If p = 4k + 3 is a prime for some $k \in \mathbb{Z}$) We claim that $\mathbb{Z}_p[i]$,

where p = 4k + 3 for some $k \in \mathbb{Z}$, is an integral domain. If this were not the case, let us assume that $a + ib \in \mathbb{Z}_p[i]$ is a zero divisor. Then for $c + id \in \mathbb{Z}_p[i]$ such that $c + id \neq 0$, we then have that

$$(a+ib)(c+id) = 0$$

which is in $\mathbb{Z}_p[i]$. So then,

$$(a+ib)(c+id) = (ac-bd) + i(ad+bc) = 0$$

and thus, $(ac - bd) \mod p$ and $(ad + bc) \mod p$, or equivalently:

$$(1) ac - bd \equiv 0 \pmod{p}$$

$$(2) ad + bc \equiv 0 \pmod{p}$$

Because $a + ib \in \mathbb{Z}_p[i]$ is a zero divisor, then at least one of a or b is not zero in \mathbb{Z}_p . Assume, without loss of generality, that $a \neq 0$. Then using (1)

$$ac - bd \equiv 0 \pmod{p}$$

$$ac \equiv bd \pmod{p}$$

$$(ac)a^{-1} \equiv (bd)a^{-1} \pmod{p}$$

$$(aa^{-1})c \equiv bda^{-1} \pmod{p}$$

$$c \equiv bda^{-1} \pmod{p}$$

Then substituting to (2), we obtain

$$ad + bc \equiv 0 \pmod{p}$$
$$ad + b(bda^{-1}) \equiv 0 \pmod{p}$$
$$ad + b^2da^{-1} \equiv 0 \pmod{p}$$

Note that $d \neq 0$ in this case. Otherwise, c + id = 0, which is absurd. Thus, note that

$$ad + b^2 da^{-1} \equiv 0 \pmod{p}$$
$$d(a + b^2 a^{-1}) \equiv 0 \pmod{p}$$
$$a + b^2 a^{-1} \equiv 0 \pmod{p}$$
$$(a + b^2 a^{-1}) a^{-1} \equiv 0 \pmod{p}$$
$$1 + b^2 (a^{-1})^2 \equiv 0 \pmod{p}$$
$$(ba^{-1})^2 \equiv -1 \pmod{p}$$

But then from here, because p = 4k+3 is a prime for some $k \in \mathbb{Z}$, then we note that the last equation $(ba^{-1})^2 \equiv -1 \pmod{p}$ has no solutions, since -1 is not a quadratic residue mod p. Therefore, no such zero divisors exists when p = 4k+3 is a prime for some $k \in \mathbb{Z}$. Furthermore, since we have that $\mathbb{Z}_p \subset \mathbb{Z}_p[i]$ and since \mathbb{Z}_p is a field, then we also obtain that $\mathbb{Z}_p[i]$ is a field.

Question 3. Let R be a ring. Define the *center of* R to be

$$Z(R) = \{ a \in R : ar = ra \text{ for all } r \in R \}$$

Prove that Z(R) is a commutative subring of R.

Solution. To show that $Z(R) \leq R^1$ is a commutative subring, we need to verify the following properties:

- (1) Clearly, $Z(R) \neq \emptyset$ because $0 \in Z(R)$, which implies that $0 \in R$ as well, but satisfies the condition that 0r = r0 = 0, which is true for any $r \in R$.
- (2) Let $a, b \in Z(R)$ be arbitrary. We need to show that $ab \in Z(R)$. Indeed, if $a, b \in Z(R)$, then observe that for any $r \in R$,

$$(ab)r = a(br) = a(rb) = (ar)b = (ra)b = r(ab)$$

by using the associative property of R.

(3) Let $a, b \in Z(R)$ be arbitrary. We need to show that $a - b \in Z(R)$. Indeed, if $a, b \in Z(R)$, then for any $r \in R$,

$$(a-b)r = ar - br = ra - rb = r(a-b)$$

by using the distributive property of the ring R.

(4) Finally, note that Z(R) is commutative by its definition, because for any $a \in R$, ar = ra for any $r \in R$, so Z(R) is commutative.

Therefore, we have shown that Z(R) < R.

¹This notation is similar to saying that H is a subgroup of G, or $H \leq G$. So if S is a subring of R, we will use the notation $S \leq R$.

Question 4. An element a is an *idempotent* if $a^2 = a$.

- (a) Prove that the only idempotents in an integral domain are 0 and 1.
- (b) Find a ring with an idempotent that is not equal to 0 nor 1.
- (c) Let R be a commutative ring with characteristic 2. Prove that the set $S = \{a \in R : a^2 = a\}$ is a subring of R.

Solution. (a) Let R be an integral domain, and let $a \in R$. Assume that $a^2 = a$. Then $a^2 - a = 0$, and so by factoring, a(a-1) = 0, so either a = 0 or a - 1 = 0 (thus, a = 1). Therefore, a = 0 and a = 1 are the only idempotents in the integral domain.

(b) Take $\mathbb{Z}_{15} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$. Then we have

Here, we observe that $6^2 = 6$ and $10^2 = 10$ are idempotents in \mathbb{Z}_{15} .

- (c) To show that $S \leq R$, we need to verify the following properties.
- (1) $S \neq \emptyset$ because $0, 1 \in S$ means that $0^2 = 0$ and $1^2 = 1$.
- (2) Let $a, b \in S$ be arbitrary. We need to show that $ab \in S$. If $a, b \in S$, then

$$(ab)^2 = a^2b^2 = ab$$

(3) Let $a, b \in S$ be arbitrary. We need to show that $a + b \in S$ (rather than showing $a - b \in S$). If $a, b \in S$, then $a^2 = a$ and $b^2 = b$. Furthermore, because R has characteristic 2, then 2ab = 0. Therefore,

$$(a+b)^2 = a^2 + 2ab + b^2 = a^2 + b^2 = a + b$$

Therefore, we have shown that $S \leq R$.

- **Question 5.** (a) Let R be a commutative ring with identity. Show that the set of units in R, U(R), is an abelian group under \times_R .
 - (b) Let F be a finite field with n elements. Show that $a^{n-1} = 1$ for all $a \neq 0 \in F$.

Solution. (a) Recall that $U(R) = \{n \in R : \gcd(k, n) = 1\}$. We show that $(U(R), \times_R)$ is an abelian group as follows:

- (1) (Associativity) Since R is a commutative ring with identity, then R is also associative, and therefore, U(R) is also associative, as it is inherited from R.
- (2) (Identity) The element $1 \in U(R)$ because $1 \in R$, so for any $x \in U(R)$

$$1 \times_R a = a \quad a \times_R 1 = a$$

(3) (Inverse) Let $a \in U(R)$ be arbitrary. Then because R is a commutative ring with identity, then there exists an element $b \in R$ such that

$$a \times_R b = b \times_R a = 1$$

so $b \in U(R)$ as well, so an inverse exists.

- (4) (Abelian) Since R is a commutative ring with identity, then U(R) is also an abelian group under \times_R .
- (b) Let $a \neq 0 \in F$ be arbitrary. Since F is a field with n elements, then it is a multiplicative group of order n-1. Then the order of a must be a divisor of n-1. Assume that the order of a is $m \in \mathbb{N}$, then because a is a divisor of n-1, we have $m \mid n-1$, so there exists an integer $b \in \mathbb{N}$ such that bm = n-1, and so

$$a^{n-1} = b^m = (a^m)^b = 1^b = 1$$

So $a^{n-1} = 1$ for every $a \neq 0 \in F$, as desired.

Question 6. Let F be a field and let K be a subset of F with at least two elements. Prove that K is a subfield of F if for any $a, b \in K$, $a - b \in K$ and $ab^{-1} \in K$.

Solution. Let $a,b\in K$ be arbitrary. Then we need to show that $a-b\in K$ and $ab^{-1}\in K$ (assuming that $b\neq 0$). First, note that if $a\in K$, then $a-a=0\in K$ and also $-a=0-a\in K$. Then if $a,b\in K$ are arbitrary, then $-b\in K$ as well, and so $a+(-b)=a-b\in K$, as required. Now let $b\in K$ such that $b\neq 0$. Since K contains at least two elements, and because F is a field, then $b\cdot b^{-1}=1\in K$, and also $b^{-1}=1\cdot b^{-1}\in K$ as well. Now let $a,b\in K$ be arbitrary such that $b\neq 0$. Then because $b\neq 0$ and F is a field, then b^{-1} exists in K, and $ab^{-1}\in K$. Therefore, we have shown that $a-b\in K$ and $ab^{-1}\in K$, so $K\leq F$, as required.

Question 7. (a) Let R be a commutative ring with prime characteristic p. Show that for $r, s \in R$,

- (i) $(r+s)^p = r^p + s^p$
- (ii) $(r+s)^{p^m} = r^{p^m} + s^{p^m}$ for all positive integers m.
- (iii) The Frobenius map $x \mapsto x^p$ is a ring homomorphism from R to R.
- (b) Give an example of a ring of characteristic 4 and elements r and s such that $(r+s)^4 \neq r^4 + s^4$.

Solution. (a) We first require the following lemma in order to prove (i).

Claim 1. If
$$p \geq 2$$
 is prime, then $p \mid \binom{p}{k}$ for $0 \leq k \leq p$

Given the claim, for p prime and $r, s \in R$ where R is a commutative ring with prime characteristic, we have by the binomial theorem,

$$(r+s)^{p} = \sum_{k=0}^{p} \binom{p}{k} r^{p-k} s^{k}$$

$$= \binom{p}{0} r^{p} + \sum_{k=1}^{p-1} \binom{p-1}{k} r^{p-k} s^{k} + \binom{p}{p} s^{p}$$

$$= r^{p} + s^{p} + \sum_{k=1}^{p-1} \binom{p}{k} r^{p-k} s^{k}$$

Then, since $p \mid \binom{p}{k}$, then it follows that $p \mid \sum_{k=0}^{p-1} \binom{p}{k} r^{p-k} s^k$, so there exists an integer $m \in \mathbb{Z}$ such that

$$\sum_{k=1}^{p-1} \binom{p}{k} r^{p-k} s^k = mp$$

Furthermore, since R is a commutative ring with characteristic p, then

$$\sum_{k=1}^{p-1} \binom{p}{k} r^{p-k} s^k = 0$$

Hence,

$$(r+s)^p = r^p + s^p$$

as desired.

Now to prove the claim, observe that

$$p(p-1)! = \binom{p}{k} k! (p-k)!$$

which then implies that $p \mid \binom{p}{k} k! (p-k)!$ and furthermore, because p is prime, we have either $p \mid \binom{p}{k}, p \mid k!$, or $p \mid (p-k)!$. However, $p \nmid k!$ and $p \nmid (p-k)!$. To see this, assume otherwise that $p \mid k!$. Since p is prime, then $p \mid i$ for some $1 \le i \le k$. But then $1 \le p \le i$, which is absurd, because $1 \le k \le p$. Similarly, $1 \le (p-k) < p$ so $p \nmid (p-k)!$.

(ii) In a similar manner as in part (i), we use the binomial theorem to see that

$$(r+s)^{p^m} = r^{p^m} + \sum_{k=1}^{p^m-1} {p^m \choose k} r^{p^m-k} s^k + s^{p^m}$$

Now we just need to show that $\sum_{k=1}^{p^m-1} \binom{p^m}{k} r^{p^m-k} s^k = 0$. However, note that $p^m \mid \sum_{k=0}^{p^m-1} \binom{p^m}{k} r^{p^m-k} s^k$ for each $1 \leq k \leq p^m-1$, so each of these coefficients are also divisible by p. Therefore, there is some $n \in \mathbb{Z}$ such that $\sum_{k=0}^{p^m-1} \binom{p^m}{k} r^{p^m-k} s^k = np$, and thus,

$$(r+s)^{p^m} = r^{p^m} + \sum_{k=1}^{p^m-1} \binom{p^m}{k} r^{p^m-k} s^k + s^{p^m}$$
$$= r^{p^m} + np + s^{p^m}$$
$$= r^{p^m} + 0 + s^{p^m}$$
$$= r^{p^m} + s^{p^m}$$

as required.

(iii) Let $\phi: R \to R$ be a mapping defined by $\phi(x) = x^p$, where p is prime. We want to show that ϕ is a ring homomorphism, i.e. for all $x, y \in R$,

$$\phi(x+y) = \phi(x) + \phi(y)$$
 $\phi(xy) = \phi(x)\phi(y)$

To show the addition, observe that

(from (i))
$$\phi(x+y) = (x+y)^p$$
$$= x^p + y^p$$
$$= \phi(x) + \phi(y)$$

To show the multiplication, observe that

(because
$$R$$
 is commutative)
$$\phi(xy) = (xy)^p$$
$$= x^p y^p$$
$$= \phi(x)\phi(y)$$

Therefore, we have shown that ϕ is a ring homomorphism.

Question 8. Let $\phi: R \to S$ be a ring homomorphism. Let $\phi(R) = \{\phi(r) : r \in R\}$. Prove each of the following statements:

- (a) $\phi(0_R) = 0_S$
- (b) $\phi(-b) = -\phi(b)$ for all $b \in R$
- (c) $\phi(R)$ is a subring of S
- (d) If R is a commutative subring, then $\phi(R)$ is a commutative subring.
- (e) Suppose R and S are rings with identities. If ϕ is onto, then $\phi(1_R) = 1_S$.
- (f) If R is a field and $\phi(R) \neq \{0_S\}$ then $\phi(R)$ is a field.

Solution. (a) To show that $\phi(0_R) = 0_S$, observe that

$$\phi(0_R) = \phi(0_R + 0_R)$$
$$= \phi(0_R) + \phi(0_R)$$

Since S is a ring, then $\phi(0_R)$ has an additive inverse, namely $-\phi(0_R)$, and therefore, applying $-\phi(0_R)$ to both sides of the equation yields

$$\phi(0_R) - \phi(0_R) = \phi(0_R) + \phi(0_R) - \phi(0_R)$$
$$0_S = \phi(0_R)$$

as desired.

- (b) Since $0_R = b + (-b)$, then $\phi(0_R) = \phi(b + (-b)) = \phi(b) + \phi(-b)$. Since $\phi(0_R) = 0_S$, then $0_S = \phi(b) + \phi(-b)$, and thus, $\phi(-b) = -\phi(b)$, as required.
 - (c) To show that $\phi(R) \leq S$, we need to verify the three properties:
 - (1) Here, $\phi(R) \neq \emptyset$ because $0_R \in R$, and $\phi(0_R) = 0_S$.
 - (2) Let $\phi(x), \phi(y) \in \phi(R)$ be arbitrary, and hence, $-\phi(y) \in \phi(R)$. Then we show that $\phi(x) \phi(y) \in \phi(R)$. Since ϕ is a homomorphism, then

$$\phi(x + (-y)) = \phi(x) + \phi(-y) = \phi(x) - \phi(y) \in \phi(R)$$

(3) Let $\phi(x), \phi(y) \in \phi(R)$ be arbitrary. Then we show that $\phi(x)\phi(y) \in \phi(R)$. Since ϕ is a homomorphism,

$$\phi(xy) = \phi(x)\phi(y) \in \phi(R)$$

Therefore, we have shown that $\phi(R) \leq S$, as desired.

(d) To show that $\phi(R)$ is a commutative subring, let $x, y \in R$ be arbitrary. Then $\phi(x), \phi(y) \in \phi(R)$, and since R is a commutative subring, and ϕ is a homomorphism,

$$\phi(x)\phi(y) = \phi(xy)$$
$$= \phi(yx)$$
$$= \phi(y)\phi(x)$$

as required.

(e) Let $a = \phi(1_R)$ and let $r \in R$ be such that $\phi(r) = 1_S$ (because ϕ is onto, such an r exists). Then, because ϕ is a homomorphism

$$1_S = \phi(r)$$

$$= \phi(1_R \cdot r)$$

$$= \phi(1_R) \cdot \phi(r)$$

$$= a\phi(r)$$

$$= a \cdot 1_S$$

$$= a$$

Therefore, $a = \phi(1_R) = 1_S$, as required.

(f) Note that because R is a field, then R is a commutative divison ring, so $\phi(R)$ is also commutative from (d). Now assume that $\phi(1) = 0$. Then for $r \in R$,

$$\phi(r) = \phi(r)\phi(1) = 0$$

which is absurd because it would contradict that ϕ is not the zero function. Therefore, $\phi(1) \neq 0$. Now let $\phi(r) \in \phi(R)$ be such that $\phi(r) \neq 0$. Since $\phi(r) \neq 0$, then $r \neq 0$. But then r has an inverse r^{-1} , because R is a field, so then

$$\phi(1) = \phi(r \cdot r^{-1}) = \phi(r)\phi(r^{-1})$$

Therefore, $\phi(r)$ has an inverse in $\phi(R)$, and so $\phi(R)$ is a field.

Question 9. Consider the ring $S = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a,b \in \mathbb{R} \right\}$ with matrix addition and matrix multiplication. Show that $\phi : \mathbb{C} \to S$ given by

$$\phi(a+ib) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

is a ring isomorphism.

Solution. To show that ϕ is a ring isomorphism, we check the following.

- (1) One-to-One: If $\phi(a+ib) = \phi(c+id)$, then $\begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} c & d \\ -d & c \end{bmatrix}$, so a=c and b=d, so a+ib=c+id.
- (2) Onto: Because ϕ is an injection, if $\phi(a+ib) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, then a=0 and b=0 and so ϕ is onto.
- (3) Let $a + ib, c + id \in \mathbb{C}$. Then observe that

$$\phi((a+ib) + (c+id)) = \phi((a+c) + i(b+d))$$

$$= \begin{bmatrix} a+c & b+d \\ -(b+d) & a+c \end{bmatrix}$$

$$= \begin{bmatrix} a & b \\ -b & a \end{bmatrix} + \begin{bmatrix} c & d \\ -d & c \end{bmatrix}$$

$$= \phi(a+ib) + \phi(c+id)$$

Let $a + ib, c + id \in \mathbb{C}$, then observe that

$$\phi((a+ib)(c+id)) = \phi((ac-bd) + i(ad+bc))$$

$$= \begin{bmatrix} ac-bd & ad+bc \\ -(ad+bc) & ac-bd \end{bmatrix}$$

$$= \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} c & d \\ -d & c \end{bmatrix}$$

$$= \phi(a+ib)\phi(c+id)$$

Therefore, we have shown that $\phi: \mathbb{C} \to S$ is a ring isomorphism.

Question 10. Show that $\mathbb{Z}_3[i]$ is ring isomorphic to $\mathbb{Z}_3[x]/\langle x^2+1\rangle$.

Solution. To show that $\mathbb{Z}_3[i] \simeq \mathbb{Z}_3[x]/\langle x^2+1\rangle$, let $\phi: \mathbb{Z}_3[x] \to \mathbb{Z}_3[i]$ be the mapping defined by $\phi(a+bx) = a+bi$. Then

$$\ker(\phi) = \{a + bx : \phi(a + bx) = 0\} = \langle x^2 + 1 \rangle$$

because for any polynomial such that p(i) = 0 has i as a root, and therefore -i because it has integer coefficients and is divisible by $x^2 + 1$ so we can factor and we would obtain the isomorphism as required.