TD 16: Intégration

Connaître son cours:

- Soit f une fonction continue sur [a, b], positive et non nulle en au moins un point de [a, b]. Alors $\int_a^b f(t) dt > 0$
- Soit f et g deux fonctions continues par morceaux sur [a,b]. Alors, $\left| \int_a^b f(t)g(t) dt \right| \le \left(\int_a^b f(t)^2 dt \right)^{\frac{1}{2}} \times \left(\int_a^b g(t)^2 dt \right)^{\frac{1}{2}}$
- Soit b > a. Calculer $\int_a^b e^t dt$ avec les sommes de Riemann.
- Montrer que l'intégrale d'une fonction impaire sur un segment symétrique par rapport à 0 est nulle.
- Soit f une fonction de classe \mathcal{C}^{n+1} sur I un intervalle réel et $a \in I$. Donner la formule de Taylor avec reste intégral en a.

Propriétés de l'intégrale :

Exercice 1. (*)

Calculer les primitives des fonctions suivantes en précisant le ou les intervalles considérés :

1.
$$\frac{1}{x^3+1}$$
 2. $\frac{x^2}{x^3+1}$ 3. $\frac{1}{x(x^2+1)^2}$

Exercice 2. (*)

Calculer les primitives des fonctions suivantes en précisant le ou les intervalles considérés :

$$1. \ \frac{1}{\cos x}$$
$$\sin^2(x/2)$$

$$3. \ \frac{1}{\cos^4 x + \sin^4 x}$$

$$2. \ \frac{\sin^2(x/2)}{x - \sin x}$$

$$4. \ \frac{\sin x}{\cos(3x)}$$

Exercice 3. (**)

Faire une étude de la fonction

$$f(x) = \int_{-1}^{1} \frac{\sin x}{1 - 2t \cos x + t^2} dt$$

Exercice 4. (**)

Faire une étude de la fonction

$$f(x) = \int_0^1 \operatorname{Max}(x, t) dt$$

Exercice 5. (**)

1. Soit f une application de classe C^1 sur [0,1]telle que $f(1) \neq 0$.

Pour $n \in \mathbb{N}$, on pose $u_n = \int_0^1 t^n f(t) dt$.

Montrer que $\lim_{n\to\infty} u_n = 0$ puis déterminer un équivalent simple de u_n quand n tend vers $+\infty$ (étudier $\lim_{n \to +\infty} nu_n$).

2. Mêmes questions en supposant que f est de classe C^2 sur [0,1] et que f(1) = 0 et $f'(1) \neq 0$.

Exercice 6. (**)/(***) (Lemme de LEBESGUE)

- 1. On suppose que f est une fonction de classe C^1 sur [a,b]. Montrer que $\lim_{\lambda \to +\infty} \int_a^b \sin(\lambda t) f(t) dt = 0.$
- 2. Redémontrer le même résultat en supposant simplement que f est continue par morceaux sur [a,b] (commencer par le cas des fonctions en escaliers).

Exercice 7. (*)

Soit $f, g \in C_m^0([0, 1], \mathbb{R}^+), \forall x \in [0, 1], f(x)g(x) \ge 1$. Montrer que $\left(\int_0^1 f(t) dt\right) \left(\int_0^1 g(t) dt\right) \ge 1$.

Exercice 8. (**)

Soit E l'ensemble des fonctions continues strictement positives sur [a, b].

Soit $\varphi : E \to \mathbb{R}$ $f \mapsto \left(\int_a^b f(t) \, dt \right) \left(\int_a^b \frac{1}{f(t)} \, dt \right)$

- 1. Montrer que $\varphi(E)$ n'est pas majoré.
- 2. Montrer que $\varphi(E)$ est minoré. Trouver $m = \text{Inf}\{\varphi(f), f \in E\}$. Montrer que cette borne infèrieure est atteinte et trouver toutes les f de E telles que $\varphi(f) = m$.

Exercice 9. (**)

Soit f une fonction de classe C^1 sur [0,1] telle que f(0)=0. Montrer que $2\int_0^1 f^2(t)\ dt \le \int_0^1 f'^2(t)\ dt$.

Exercice 10. (**)

Soit f continue sur [0,1] telle que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer que f admet un point fixe.

Exercice 11. (**)

Déterminer les limites quand n tend vers $+\infty$ de

1.
$$u_n = \frac{1}{n!} \int_0^1 \operatorname{Arcsin}^n(x) dx$$

2.
$$v_n = \int_0^1 \frac{x^n}{1+x} \, dx$$

Exercice 12. (**)

- 1. Démontrer que la fonction sin est lipschitzienne sur \mathbb{R} .
- 2. Soit $f:[a,b]\to\mathbb{R}$ continue. Démontrer que la fonction $F:\mathbb{R}\to\mathbb{R}$ définie par

$$F(x) = \int_{a}^{b} f(t)\sin(xt)dt$$
 est lipschitzienne.

Exercice 13. (**)

Soit f une fonction de classe C^1 sur [a, b] telle que f(a) = f(b) = 0 et soit $M = \sup\{|f'(x)|, x \in [a, b]\}$. Montrer que $\left| \int_a^b f(x) dx \right| \le M \frac{(b-a)^2}{4}$.

Exercice 14. (**)

Déterminer les fonctions f continues sur [0,1] vérifiant $\left| \int_0^1 f(t) \ dt \right| = \int_0^1 |f(t)| \ dt$.

Exercice 15. (**)

— Déterminer

$$\lim_{x \to 1} \int_{x}^{x^{2}} \frac{dt}{\ln t}$$

— Faire une étude complète de

$$F(x) = \int_{x}^{x^2} \frac{dt}{\ln t}$$

Exercice 16. (**)

Soit $f:[a,b] \to \mathbb{R}$ continue telle que, pour tout couple $(\alpha,\beta) \in [a,b]^2$, on a

$$\int_{\alpha}^{\beta} f(x)dx = 0$$

Montrer que f = 0.

Exercice 17. (***) (Cesaro pour les intégrales)

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction continue admettant une limite finie a en $+\infty$.

Montrer que

$$\frac{1}{x} \int_0^x f(t)dt \to a \quad \text{quand} \quad x \to +\infty.$$

Exercice 18. (***)

Soient f et g deux fonctions continues et strictement positives sur [a,b]. Pour n entier naturel non nul donné, on pose $u_n = \left(\int_a^b (f(x))^n g(x) \, dx\right)^{1/n}$. Montrer que la suite (u_n) converge et déterminer sa limite (commencer par le cas g = 1).

Sommes de Riemann:

Exercice 19. (**)

Calculer la limite des suites suivantes :

1.
$$u_n = \frac{1}{n} \left(\sin \left(\frac{\pi}{n} \right) + \sin \left(\frac{2\pi}{n} \right) + \dots + \sin \left(\frac{n\pi}{n} \right) \right)$$

2.
$$u_n = \sqrt[n]{\left(1 + \left(\frac{1}{n}\right)^2\right) \left(1 + \left(\frac{2}{n}\right)^2\right) \dots \left(1 + \left(\frac{n}{n}\right)^2\right)}$$

Exercice 20. (**)

Déterminer la limite de $v_n = \frac{1}{n} \prod_{k=1}^n (k+n)^{1/n}$.

Exercice 21. (**)

Donner les limites de

1.
$$\frac{1}{n^3} \sum_{k=1}^{n} k^2 \sin \frac{k\pi}{n}$$
 3. $\frac{1}{n\sqrt{n}} \sum_{k=1}^{n} E(\sqrt{k})$

3.
$$\frac{1}{n\sqrt{n}}\sum_{k=1}^{n}E(\sqrt{k})$$

2.
$$\sum_{k=1}^{n} \frac{n+k}{n^2+k}$$

Exercice 22. (***) (Inégalité de Jensen)

Soit $f:[a,b]\to\mathbb{R}$ continue et $g:\mathbb{R}\to\mathbb{R}$ continue et convexe. Démontrer que

$$g\left(\frac{1}{b-a}\int_{a}^{b}f(t)dt\right) \leq \frac{1}{b-a}\int_{a}^{b}g(f(t))dt.$$

Exercice 23. (**)

Soit

$$I_n = \int_0^1 \frac{x^n}{1+x} dx$$

- 1. En majorant la fonction intégrée, montrer que $\lim_{n\to+\infty} I_n = 0$.
- 2. Calculer $I_n + I_{n+1}$.
- 3. Déterminer

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \right)$$

Exercice 24. (**)

Étudier la suite

$$u_n = \sum_{k=1}^n \sin \frac{k}{n}$$

Exercice 25. (***)

Partie principale quand n tend vers $+\infty$ de

$$u_n = \sum_{k=1}^n \sin \frac{1}{(n+k)^2}$$