Apellidos, Nombre:		
DNI :		

Examen PED abril 2016 Modalidad 0

Normas:

- Tiempo para efectuar el test: 20 minutos.
- Una pregunta mal contestada elimina una correcta.
- Las soluciones al examen se dejarán en el campus virtual.
- Una vez empezado el examen no se puede salir del aula hasta finalizarlo.
- En la hoja de contestaciones el verdadero se corresponderá con la A, y el falso con la B.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\mathbf{V}	F		
En la especificación algebraica, una operación es una función que toma como parámetros			1	F
(entrada) uno o más valores de diversos tipos, y produce como resultado un solo valor de otro				
tipo.				
Las ecuaciones (vistas en clase) que permiten realizar la multiplicación de números naturales			2	V
son las siguientes:				
VAR x, y: natural;				
mult(cero, x) = cero				
mult(x, cero) = cero				
mult(suc(y), x) = suma(mult(y, x), x)				
En la especificación algebraica, para el tratamiento de errores se añade una constate a la			3	V
signatura que modeliza un valor de error, por ejemplo error _{nat} \rightarrow natural.				
En C++, si se declara un objeto a (p. ej. TPoro a;) cuando la variable a se sale de ámbito			4	V
entonces se invoca automáticamente al destructor de ese objeto.				
Las ecuaciones (vistas en clase) para la operación <i>recu</i> de un vector son las siguientes:			5	F
recu(crear(), i) = error()				
recu(asig(v, i, x), j)				
si(i == j) entonces j				
si no recu(v, j) fsi			_	T 7
La complejidad temporal de la operación desapilar (vista en clase) utilizando vectores (con un		Ч	6	V
índice que indica la cima de la pila) o utilizando listas enlazadas es la misma.			7	Б
La complejidad temporal del siguiente fragmento de código es O(n²)	u	Ч	/	F
int i, j, n, sum; $f_{in}(i = A, i < n, i+1)$				
for $(i = 4; i < n; i++)$ { for $(j = i-3, sum = a[i-4]; j <= i; j++) sum += a[j];$				
cout << "La suma del subarray" << $i-4$ << "es" << sum << endl; }				
En las colas circulares enlazadas vistas en clase, las operaciones <i>encolar</i> y <i>desencolar</i> tienen			8	V
			o	V
complejidad temporal Θ(1).			Q	V
Las ecuaciones (vistas en clase) para la operación <i>desencolar</i> son las siguientes:			7	V
desencolar(crear()) = crear() si esvacia(c) entonces				
desencolar(encolar(c, x)) = crear()				
si no desencolar(encolar(e, x)) = $\frac{1}{2}$				
encolar(desencolar(c), x)				
Es posible reconstruir un único árbol binario de búsqueda a partir de un recorrido en preorden.			10	V
Un camino en un árbol es una secuencia a ₁ ,, a _s de árboles tal que para todo	_	_	11	F
$i \in \{1,, s-1\}, a_i$ es subárbol de a_{i+1} .				
A los árboles generales también se les llama árboles multicamino de búsqueda.			12	F
La semántica de la operación quita_hojas que actúa sobre un árbol binario y devuelve el árbol			13	F
binario original sin sus hojas es la siguiente:				
VAR i, d: arbin; x: item;				
quita_hojas(crea_arbin()) = crea_arbin()				
quita_hojas(enraizar(crea_arbin(), x, crea_arbin()) =				
enraizar(crea_arbin(), x, crea_arbin()				
quita_hojas(enraizar(i, x, d)) =				
enraizar(quita_hojas(i), x, quita_hojas(d))				
Profundidad de un subárbol es la longitud del único camino desde la raíz a dicho subárbol.			14	V