Problem 1.1)

Convert the following to polar form:

(a)
$$z = -j10$$

 $z = 10e^{j-\frac{\pi}{2}}$

(b)
$$z = 5$$
 $z = 5e^{j0}$

(c)
$$z = (-5, 5)$$

 $z = 5\sqrt{2}e^{j2.356}$

(d)
$$z = -1 + j$$

 $z = \sqrt{2}e^{j2.356}$

(e)
$$z = 1 - j\frac{1}{\sqrt{3}}$$

 $z = 1.155e^{-j0.524}$

(f)
$$z = -2$$

 $z = 2e^{j\pi}$

Problem 1.2)

Convert the following to rectangular form:

(a)
$$z = 2e^{j(\frac{3\pi}{4})}$$

 $z = -\sqrt{2} + j\sqrt{2}$

(b)
$$z = 5e^{-j(\frac{\pi}{2})}$$
 $z = -j5$

(c)
$$z = 4 \angle \frac{\pi}{6}$$

 $z = 3.464 + j2$

(d)
$$z = 3 \angle -4.5\pi$$

 $z = -j3$

Problem 1.3)

Evaluate the following and give the answer in both rectangular and polar form.

$$z_1 = 3 - j3 = 3\sqrt{2} \angle -\frac{\pi}{4}$$

 $z_2 = e^{j(\frac{3\pi}{4})} = -\frac{\sqrt{2}}{2} \angle \frac{\sqrt{2}}{2}$

(a) Conjugate:
$$z_1^*$$

= $3 + j3 = 3\sqrt{2}e^{j\frac{\pi}{4}}$

(b)
$$jz_2$$

= $1 \angle -\frac{3\pi}{4} = 2.56e^{-j1.17}$

(c)
$$\frac{z_2}{z_1}$$

= $\sqrt{2} \angle \frac{\pi}{4} = 1.62e^{j0.51}$

(d)
$$z_2^2$$

= $1 \angle -\frac{\pi}{2} = 1.862e^{-j}$

(e)
$$\mathbf{z}_1^{-1} = \frac{1}{z_1}$$

= $\frac{\sqrt{2}}{6} \angle \frac{\pi}{4} = 0.82e^{j1.28}$

(f)
$$z_1 z_2$$

= $\frac{\sqrt{2}}{2} \angle -\frac{\pi}{4} = 1.057e^{-j0.84}$

(g)
$$z_1 + z_2^*$$

= $\frac{\sqrt{2}}{2} \angle \frac{3\pi}{4} = 2.46e^{j1.28}$

(h)
$$|z_2|^2 = z_2 z_2^*$$

= $1 \angle \frac{\pi}{2} = 1.86e^j$

(i)
$$z_2 + z_2^*$$

Problem 1.4)

(a)
$$\left(A\frac{\sqrt{3}}{2} + jA\frac{1}{2}\right) \to A\frac{\sqrt{3}}{2}$$

(b)
$$\left(-A\frac{1}{2}-j\frac{\sqrt{3}}{2}\right)$$

(c)
$$(3\cos(\phi) + j3\sin(\phi)) \rightarrow -3\sin(\phi)$$

(d)
$$\sqrt{\left(-\alpha\sqrt{3}^2\right) + (\alpha^2)} e^{\arctan\left(\frac{\alpha}{-\alpha\sqrt{3}}\right)}$$

(e)
$$\frac{A}{\left(Acos\left(\frac{2\pi}{3}\right) - Asin\left(\frac{2\pi}{3}\right)\right)}$$

Problem 1.5)

(a)
=
$$\left(1 \angle -\frac{\pi}{4}\right) + \left(1 \angle \frac{\pi}{4}\right) = \sqrt{2} \angle 0^{\circ}$$

(b)
=
$$(1 \angle 0) + \left(1 \angle -\frac{3\pi}{2}\right) + \left(1 \angle \frac{3\pi}{2}\right) = 0$$

(c)

Problem 1.6)

$$A = 75$$

$$\omega_0 = \frac{\pi}{2} = \frac{2\pi}{T}$$

$$f_0 = \frac{1}{4} = \frac{1}{T}$$

$$t_d = 3$$

$$\phi = -(t_d)(\omega_0) = -\frac{3\pi}{2}$$