TRAINING SET 1, FYS3140 spring 2020

Problem T1.1 (Refreshing some basics: Euler's formula, powers and roots)

- a) Express the number $\sqrt{2}e^{5i\pi/4}$ in x+iy form.
- b) Express the number $\frac{(1+i)^{48}}{(\sqrt{3}-i)^{25}}$ in x+iy form.
- c) Express the number $\frac{\exp(1+3\pi i)}{\exp(-1+i\pi/2)}$ in x+iy form.
- d) Find all values of the root $(8i\sqrt{3} 8)^{1/4}$.
- e) Show that the sum of the three cube roots of 8 is zero. Then show that the sum of the n nth roots of any complex number is zero.
- f) Find all roots of $i^{1/3}$ in polar form
- g) Find the two roots w_1 and w_2 of $\sqrt{2+2i\sqrt{3}}$ in polar form. Then write them in x+iy form and show that $w_2=-w_1$ as expected.

Problem T1.2 (Complex power series)

- a) Find the disk of convergence for $\sum_{n=0}^{\infty} n(n+1)(z-2i)^n$
- b) [Example from lecture] Write down the power series representation of the complex exponential function e^z and show that its disk of convergence is the entire complex plane.

Problem T1.3 (Elementary functions)

In a) and b), use the definitions of $\sin z$, $\cos z$, $\sinh z$, and $\cosh z$ in terms of exponential functions to show that

- a) $\sin 2z = 2\sin z \cos z$.
- b) $\cosh^2 z \sinh^2 z = 1$.
- c) Use a series you know to show that $\sum_{n=0}^{\infty} \frac{(1+i\pi)^n}{n!} = -e^{-i\pi}$