Lab Assignment 3

Implementing Routing Algorithms (Due: Wednesday May 08, 2019)

1. Overview

In this programming assignment, you will be implementing Link-State-Routing Algorithm & Distance Vector Algorithm with either C or C++.

1.1 Input File

- Test input file will be randomly generated when your program will be tested.
- Test input file format: represent current status of entire network
 - o Test input file contains link information and cost of between link
 - C[i][j] = n if there is direct link from node i to node j, where $0 \le n < 100$ = 1073741824 (=2^30) otherwise
 - o The first line of test input file has the total number of node in the network
 - o Following each line contains link cost between i and j.
- Sample test input file:

Figure 1: Example Network Topology

Sample test the input file of Figure 1 will be as follows:

6	
110	
1 2 2	
1 3 1	
1 4 5	

```
1 5 1073741824
1 6 1073741824
2 1 2
220
232
243
2 5 1073741824
2 6 1073741824
3 1 1
322
330
3 4 3
351
3 6 1073741824
415
423
433
440
451
465
5 1 1073741824
5 2 1073741824
5 3 1
5 4 1
5 5 0
562
6 1 1073741824
6 2 1073741824
6 3 1073741824
645
652
660
```

1.2. Your program input arguments

Your program should be able to take two inputs as follows:

```
Unixprompt> mylinkstate <test-input-file> <node i> <flag>
```

```
Where: <test-input-file> : test input file name
  <node i> : compute the least-cost paths from <node i> to all possible destination
  <flag> : 1 – display immediate table for each iteration
      0 – Otherwise (default)
```

2. Output

2.1 Immediate result

Should be able to display immediate result for each iteration in a tabular like format: (please refer to table in the class lecture note of chapter 5-1 at page 16~18) if the instructor wants to verify the correctness of your program. (when flag value is 1)

2.2 Final result

Your final must display following two items:

- 1) Forwarding table for the given <node i> (Refer the table in chapter 5 at page 17-19 & 27-29)
- 2) Total execution time in *ms* (millisecond) from reading test input files to the completion of computing the least-cost path from the given <node i>

2.3 Program testing

- 1) Your program should run on csegrid without any problems
- 2) You can assume that the maximum number of node is 100

3. Grading

The maximum possible point for the assignment is 30. This programming assignment will be graded by following criteria.

- Completeness: 25 points
 - o If your program for link-state routing algorithm works correctly, you will get 15 points
 - If your program for distance vector routing algorithm works correctly, you will get 10 points
- Completeness of submission: 5 points

4. How to submit

Please do the followings when you submit your programming assignment.

- Create a tar file that contains your written source code, makefile and readme. <u>DO</u> NOT INCLUDE EXECUTABLES AND OBJECT FILES.
- Please use the following convention when you create a tar file
 - o First 3 letters of your last name + last 4 digits of your student ID
 - o e.g.: If a student name is "Bill Clinton" and his ID is 999-34-5678, then his tar file name is "cli5678.tar".
- Once you create the tar file, and upload it to class Canvas by Wednesday, May 01, 2019 by 9 pm.