

National University of Modern Languages

Artificial Intelligence - Lab Lab # 11

BSSE - 5 - Morning

Submitted By:

Muhammad Umair - 12093

Submitted To:

Sir Faiq

TASK: Implement support vector machine for the same classification problem

1. Attach the screenshot of the code and output

The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant.

Attribute Information:

- 1. sepal length in cm
- 2. 2. sepal width in cm
- 3. 3. petal length in cm
- 4. 4. petal width in cm
- 5. 5. class:
 - Iris Setosa
 - Iris Versicolour
 - Iris Virginica

4	А	В	С	D	Е
1	sepal_length	sepal_width	petal_length	petal_width	species
2	5.1	3.5	1.4	0.2	setosa
3	5.7	2.8	4.1	1.3	versicolor
4	6.3	3.3	6	2.5	virginica

Code:

print("Muhammad Umair - 12093")

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

from sklearn.model selection import train test split

from sklearn.preprocessing import StandardScaler

from sklearn import svm

data = pd.read_csv(r'E:\NUML\Semester Data\Semester 5\AI\AI Lab\Python Files\iris_data.c sv')

print(data.head())

x=data.drop('species','columns')

#print(x.head())

y=data['species']

#print(Y.head())

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20)

```
scaler = StandardScaler()
scaler.fit(x_train)
x_train=scaler.transform(x_train)
x_test=scaler.transform(x_test)
#print(x_train)
#print(x_test)

from sklearn.svm import SVC
classifier = SVC(kernel='linear', random_state=0)
classifier.fit(x_train, y_train)
y_pred = classifier.predict(x_test)
print(y_pred)

from sklearn.metrics import confusion_matrix, classification_report,accuracy_score
print(classification_report(y_test,y_pred))
print(confusion_matrix(y_test,y_pred))
print("Accuracy:",accuracy_score(y_test, y_pred))
```

Output:

```
Muhammad Umair - 12093
   sepal_length sepal_width petal_length petal_width species
                                                     0.2 setosa
                                      1.4
            5.1
                          3.5
                                                       0.2 setosa
                                                      0.2 setosa
                          3.2
                                         1.3
                                         1.5
            4.6
                          3.1
                                                       0.2 setosa
                                                       0.2
            5.0
                          3.6
                                          1.4
['virginica' 'setosa' 'virginica' 'versicolor' 'setosa' 'versicolor'
 'virginica' 'versicolor' 'versicolor' 'setosa' 'versicolor' 'virginica'
 'setosa' 'setosa' 'setosa' 'virginica' 'virginica' 'setosa' 'virginica' 'versicolor' 'versicolor' 'versicolor' 'virginica'
 'virginica' 'setosa' 'virginica' 'setosa' 'virginica' 'versicolor']

precision recall f1-score support
                    1.00
                              1.00
                                          1.00
      setosa
                                          0.94
                               1.00
  versicolor
                    0.89
                                                       8
   virginica
                    1.00
                               0.92
                                          0.96
                                          0.97
                                                       30
    accuracy
                    0.96
                               0.97
                                          0.97
                                                       30
   macro avg
weighted avg
                    0.97
                                          0.97
                              0.97
[[10 0 0]
 [0 8 0]
 [0 1 11]]
Accuracy: 0.966666666666667
PS E:\NUML\Semester Data\Semester 5\AI\AI Lab\Python Files>
```