Sztuczna Inteligencja

Soma Dutta

Wydział Matematyki i Informatyki, UWM w Olsztynie soma.dutta@matman.uwm.edu.pl

Wykład - 8: Rachunek zdań

Semestr letni 2022

Podsumowanie

Logika ma dwa aspekty: Reprezentacja wiedzy i wnioskowanie.

- Wiedza jest reprezentowana przez język formalny i odnosi się do niektórych faktów na temat świata.
 - Składnia logiki: Dotyczy zasad formowania zdań
 - Semantyka logiki: Łączy symboliczną reprezentację zdań z prawdziwymi faktami, przypisując każdemu zdaniu wartość prawda lub fałsz w określonym modelu.
- Proces wnioskowania ma również dwa aspekty.
 - Nonsekwencja składniowa (\vdash_i): Wnioskowanie po zastosowaniu pewnej metody dowodowej, która pociąga za sobą zdanie α ze zbioru zdań KB.
 - Konsekwencja semantyczna (⊨): Zbiór zdań KB pociąga zdanie α jako konsekwencja, jeśli dowolne przypisanie lub model, który sprawia, że każde zdanie KB jest prawdziwe, czyni α również prawdziwym.

Wnioskowanie poprzez sprawdzenie modeli

Przykład:

- ▶ Niech KB = $\{p, p \Rightarrow q \land r, q\}$ oraz $\alpha = r$.
- Chcielibyśmy sprawdzić, czy $KB \models \alpha$.

przypisanie	р	q	r	р	$\mathbf{p}\Rightarrow\mathbf{q}\wedge\mathbf{r}$	q	r
<i>v</i> ₁	0	0	0	0	1	0	0
<i>V</i> ₂	0	0	1	0	1	0	1
<i>V</i> 3	0	1	0	0	1	1	0
<i>V</i> ₄	0	1	1	0	1	1	1
<i>V</i> ₅	1	0	0	1	0	0	0
<i>v</i> ₆	1	0	1	1	0	0	1
V ₇	1	1	0	1	0	1	0
<i>V</i> 8	1	1	1	1	1	1	1

- ► $M(KB) = \{v_8\}$, a $M(r) = \{v_2, v_4, v_6, v_8\}$. To potwierdza $M(KB) \subseteq M(r)$.
- ▶ Więc $KB \models r$.

Wracając do przykładu świata Wumpus

KB = reguły świata Wumpusa + obserwacje

 $lpha_{ extsf{1}}$ = "[1,2] jest bezpieczny", $KB \models lpha_{ extsf{1}}$, dowód przez <u>sprawdzenie modeli</u>

Wnioskowanie przez wyliczanie

Wyliczanie wszystkich modeli w głąb jest poprawne i pełne

```
function TT-ENTAILS(KB, α) returns true or false
   symbols \leftarrow a list of the proposition symbols in KB and \alpha
   return TT-CHECK-ALL(KB, α, symbols, [])
end function
function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
   if EMPTY(symbols) then
      if PL-TRUE(KB.model) then
         return PL-TRUE(α, model)
      else
          return true
      end if
      P \leftarrow \mathsf{FIRST}(symbols):
      rest ← REST(symbols)
      return TT-CHECK-ALL(KB, α, rest, EXTEND(P, true, model)) and
             TT-CHECK-ALL(KB, α, rest, EXTEND(P, false, model))
   end if
end function
```

 $O(2^n)$ dla n symboli; problem jest co-NP-zupełny

Tautologie i spełnialność

▶ Zdanie jest tautologią (tautology), jeśli jest prawdziwe w każdym przypisaniu. Na przykład $p \Rightarrow (q \Rightarrow p)$.

przypisanie	р	q	$p \Rightarrow (q \Rightarrow p)$
v_1	0	0	$0 \Rightarrow (0 \Rightarrow 0) = 1$
<i>V</i> ₂	0	1	$0 \Rightarrow (1 \Rightarrow 0) = 1$
V ₃	1	0	$1 \Rightarrow (0 \Rightarrow 1) = 1$
V ₄	1	1	$1 \Rightarrow (1 \Rightarrow 1) = 1$

▶ Zdanie jest spełnialne (satisfiable), zwane także niesprzecznym, jeśli istnieje co najmniej jedno przypisanie, w którym jest prawdziwe. Na przykład $p \Rightarrow (p \land q)$.

przypisanie	р	q	$p \Rightarrow (p \land q)$
v_1	0	0	$0 \Rightarrow 0 = 1$
<i>V</i> ₂	0	1	$0 \Rightarrow 0 = 1$
<i>V</i> 3	1	0	$1 \Rightarrow 0 = 0$
<i>V</i> ₄	1	1	$1 \Rightarrow 1 = 1$

➤ Zbiór zdań uważa się za spełnialny, jeśli istnieje przypisanie, zgodnie z którym każde zdanie zbioru jest prawdziwe.

Logiczna równoważność

Dwa zdania są logicznie równoważne, jeśli mają taką samą wartość w ramach dowolnego przypisania; tzn., $\alpha \equiv \beta$ wtedy i tylko wtedy gdy $\alpha \models \beta$ oraz $\beta \models \alpha$. Na przykład $p \Rightarrow q \equiv \neg p \lor q$.

przypisanie	р	q	$p \Rightarrow q$	$\neg p \lor q$
v_1	0	0	1	$(0 \lor 1) = 1$
<i>V</i> ₂	0	1	1	$ \mid (1 \vee 1) = 1 \mid$
V ₃	1	0	0	$(0 \lor 0) = 0$
V ₄	1	1	1	$(0 \lor 1) = 1$

Kolejne zdania są logicznie równoważne.

- $\qquad \qquad \alpha \wedge \beta \equiv \beta \wedge \alpha \quad || \quad \quad \alpha \vee \beta \equiv \beta \vee \alpha \quad \text{(Commutativity)}$
- $\qquad \qquad \alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma \qquad || \qquad \alpha \vee (\beta \vee \gamma) \equiv (\alpha \vee \beta) \vee \gamma \qquad \text{(Associativity)}$

- $\qquad \qquad \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad || \quad \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{(De Morgan)}$
- $\qquad \qquad \alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma) \qquad || \qquad \alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma) \qquad \text{(Distributivity)}$

Związek między spełnialnością a konsekwencją semantyczną

- ▶ Zdanie α jest niespełnialne wtedy i tylko wtedy, gdy $\neg \alpha$ jest tautologią.
- Spełnialność jest związana z wnioskowaniem przez sprowadzanie do sprzeczności:

 $KB \models \alpha$ wtedy i tylko wtedy gdy $(KB \land \neg \alpha)$ jest niespełnialne.

- ▶ Załóżmy, że $KB = \{\beta\}$. Więc $\beta \models \alpha$ wtedy i tylko wtedy gdy $(\beta \land \neg \alpha)$ jest niespełnialne.
- $\beta \wedge \neg \alpha \equiv \neg \neg \beta \wedge \neg \alpha \quad \text{(double negation)}$ $\equiv \neg (\neg \beta \vee \alpha) \quad \text{(De Morgan Law)}$
- ▶ $\neg(\neg\beta \lor \alpha)$ jest niespełnialne wtedy i tylko wtedy gdy $(\neg\beta \lor \alpha)$ jest tautologią, tzn., $\beta \Rightarrow \alpha$ jest tautologią.
- ► Tak więc, $\beta \models \alpha$ wtedy i tylko wtedy gdy $(\beta \Rightarrow \alpha)$ jest tautologią.

SAT-problem

- ▶ Udowodnienie α z założenia β poprzez sprawdzenie niespełnienia $(\beta \land \neg \alpha)$ odpowiada dokładnie standardowa matematyczna technika reductio ad absurdum (dosłownie 'sprowadzenie do sprzeczności').
- Problem określania spełnienia zdań w rachunku zdań znany jako SAT problem - jest pierwszym problemem, który okazał się NP-zupełny.

Logiczna konsekwencja przy użyciu metody dowodu

Zastosowanie reguł wnioskowania

- ► W metodzie dowodowej przyjmuje się pewną początkową wiedzę przedstawioną w zdaniach bez kwestionowania ich dowodu.
- Zbiór reguł, często nazywanych regułami wnioskowania, jest również ustalany na początku.
- Zadaniem jest poprawne generowanie nowych zdań ze starych za pomocą reguł.
- Dowód to łańcuch zdań, który prowadzi do pożądanego celu, w którym każde zdanie w łańcuchu jest albo zdaniem już udowodnionem, albo otrzymane jako konsekwencja przy użyciu reguły.

Reguły wnioskowania

Reguly wnioskowania: $\frac{\alpha_1,...,\alpha_n}{\beta}$

Reguła jest poprawna, jeśli β jest prawdziwa w każdej interpretacji, w której prawdziwe są α_1,\ldots,α_n .

Przykłady poprawnych reguł wnioskowania

Reguła <u>odrywania</u> (modus ponens): $\frac{\alpha, \quad \alpha \Rightarrow \beta}{\beta}$

Reguła <u>eliminacji koniunkcji</u>: $\frac{\alpha_1 \wedge ... \wedge \alpha_n}{\alpha_i}$

Reguła wprowadzenia koniunkcji: $\frac{\alpha_1,...,\alpha_n}{\alpha_1 \wedge ... \wedge \alpha_n}$

Reguła <u>rezolucji</u>: $\frac{\alpha \lor \beta, \quad \neg \beta \lor \gamma}{\alpha \lor \gamma}$

Reguły z logicznej równoważności

$$\frac{\neg(\alpha \land \beta)}{\neg \alpha \lor \neg \beta}$$

(Reguła kontrapozycji)

(Regula De Morgana)

Świat Wumpusa: wnioskowanie za pomocą reguł

Reprezentacja KB

- $ightharpoonup R_1$: $\neg P_{1,1}$ $(P_{x,y} \text{ oznacza w polu } [x, y] \text{ jest dół}))$
- ▶ R_2 : $B_{1,1} \Leftrightarrow P_{2,1} \lor P_{1,2}$ ($B_{x,y}$ oznacza w polu [x, y] jest bryza)
- $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
- ► R_4 : ¬ $B_{1.1}$.
- $ightharpoonup R_5$: $B_{2,1}$.

Świat Wumpusa: wnioskowanie za pomocą reguł

- (1) $(B_{1,1} \Rightarrow (P_{2,1} \vee P_{1,2})) \wedge ((P_{2,1} \vee P_{1,2}) \Rightarrow B_{1,1})$ (Regula R_2)
- (2) $((P_{2,1} \lor P_{1,2}) \Rightarrow B_{1,1})$ (Reguła eliminacji koniunkcji) Nazwijmy tę nową wiedzę jako R_6 .
- (3) $\neg B_{1,1} \Rightarrow \neg (P_{2,1} \lor P_{1,2})$ (Reguła kontrapozycji) Nazwijmy tę nową wiedzę jako R_7 .
- (4) $\neg B_{1,1}$ (Regula R_4)
- (5) $\neg (P_{2,1} \lor P_{1,2})$ (Reguła odrywania (4, 3)) Nazwijmy tę nową wiedzę jako R_8 .
- (6) $\neg P_{2,1} \land \neg P_{1,2}$ (Reguła De Morgana) Nazwijmy tę nową wiedzę jako R_9 .
- (7) $\neg P_{1,2}$ (Reguła eliminacji koniunkcji) Nazwijmy tę nową wiedzę jako R_{10} .

Tak więc, z zastosowaniem reguł zostało udowodnione: $KB \vdash \neg P_{1,2}$.

Czy dowodzenie z zastosowaniem reguł jest pełne?

- Przede wszystkim, reguły wnioskowania stosowane są poprawne. Równiez musimy mieć pełny algorytm wnioskowania, który ich używa.
- Możemy zastosować dowolny z algorytmów przeszukiwania omówionych wcześniej, znaleźć sekwencję kroków, która stanowi dowód.
 - Stan początkowy to opis KB.
 - Funkcję Action definiuje się za pomocą reguł. Zbiór działań składa się ze wszystkich reguł wnioskowania stosowanych do wszystkich zdań, które pasują do górnej połowy reguły wnioskowania.
 - Result jest zdefinowany przez dodanie zdania w dolnej części wnioskowania reguły.
 - Stan celu to zdanie, które chcemy udowodnić.
- Problem polega na tym, że jeśli dany zbiór reguł jest nieodpowiedni, algorytm może nie osiągnąć stanu celu, czyli zdania, które chcemy udowodnić.

Reguła rezolucji

- Reguła rezolucji jest taką regułą wnioskowania, która daje pełność algorytmu wnioskowania w połączeniu z dowolnym kompletnym algorytmem wyszukiwania.
- Wróćmy do przykładu Wumpusa: agent powrócił z pola [2, 1] do [1, 1] i idzie do [1, 2].

- R₁₁: ¬B_{1,2}
- $R_{12} \colon B_{1,2} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$
- Stosując tę samą metodę dowodów co poprzednio, możemy udowodnić R_{13} : $\neg P_{2,2}$ i R_{14} : $\neg P_{1,3}$.
- $ightharpoonup B_{2,1} \Rightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$ (z R_3 po użyciu reguła eliminacji koniunkcji)
- $P_{1,1} \vee P_{2,2} \vee P_{3,1}$ (Regula odrywania zastosowana do R_5)
- P_{2,2} ∨ P_{3,1} (Reguła rezolucji zastosowana do R₁)
- ▶ P_{3,1} (Reguła rezolucji zastosowana do R₁₃)

Reguła rezolucji

 Ostatnie dwa kroki to zastosowanie reguły rezolucji jednostkowej (unit resolution rule), która jest następująca.

$$\frac{I_1 \vee I_2 \vee \ldots \vee I_m \quad m}{I_1 \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_m}$$

gdzie każdy l_j i m jest literałem (literals) (tzn., symbolem zdania atomowego, albo jego negacją), a l_i i m są literałami uzupełniającymi się (complementary literals) (tzn. jeden jest negacją drugiego).

- Skończona liczba literałów połączona przez alternatywę nazywa się klauzulą (clause).
- Uogólniona forma powyższej reguły jest następująca.

$$\frac{l_1 \vee l_2 \vee \ldots \vee l_m}{\vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_m \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots m_n}$$

gdzie l_i i m_i są literałami uzupełniającymi się.

CNF

- ▶ Sama reguła rezolucji uzasadnia, że jest poprawna. Co więcej, stanowi podstawę rodziny pełnych procedur wnioskowania. Weryfikator twierdzeń oparty na rezolucji może, dla dowolnych zdań α i β w rachunku zdań, rozstrzygać, czy $\alpha \models \beta$.
- Wydaje się, że reguła rezolucji ma zastosowanie tylko do klauzul (czyli alternatywy literałów) dotyczący tylko baz wiedzy i zapytań składających się z klauzul. Jak więc może prowadzić do pełnej procedury wnioskowania dla całego rachunku zdań?
- Odpowiedzią jest: każde zdanie rachunku zdań jest logicznie równoważne koniunkcji klauzul. Zdanie wyrażone w postaci koniunkcji klauzul nazywamy Koniunkcyjną Postacią Normalną (Conjunctive Normal Form) lub CNF.

Przykład

Rozważajmy następujące zdanie:

```
\begin{array}{l} B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}) \\ \equiv (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}) \\ \equiv (-B_{1,1} \vee (P_{1,2} \vee P_{2,1})) \wedge (-(P_{1,2} \vee P_{2,1}) \vee B_{1,1}) \\ \equiv (-B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge ((-P_{1,2} \vee P_{2,1}) \vee B_{1,1}) \\ \equiv (-B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge ((-P_{1,2} \wedge -P_{2,1}) \vee B_{1,1}) \\ \equiv (-B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (-P_{1,2} \vee B_{1,1}) \wedge (-P_{2,1} \vee B_{1,1}) \end{array} \qquad \begin{array}{c} (\alpha \Rightarrow \beta \equiv \neg \alpha \vee \beta) \\ (-\alpha \vee \beta) \equiv \neg \alpha \wedge \neg \beta) \\ ((\alpha \wedge \beta) \vee \gamma) \equiv (\alpha \vee \gamma) \wedge (\beta \vee \gamma)) \end{array}
```

CNF, DNF

Koniunkcyjna postać normalna (CNF) (ang. conjunctive normal form) - formuła zapisana w postaci koniunkcji klauzul, z których każda jest alternatywą literałów.

 $(I_{11} \lor I_{12} \lor \ldots \lor I_{1k}) \land (I_{21} \lor I_{22} \lor \ldots \lor I_{2s}) \land \ldots (I_{m1} \lor I_{m2} \lor \ldots \lor I_{mn})$ gdzie każdy I_{ij} jest zdaniem atomowym lub jego negacją, i każde wyrażenie z $(I_{11} \lor I_{12} \lor \ldots \lor I_{1k}), \ldots (I_{m1} \lor I_{m2} \lor \ldots \lor I_{mn})$ jest klauzulą.

Dysjunkcyjna postać normalna (DNF) (ang. disjunctive normal form) - formuła zapisana w postaci dysjunkcji (alternatywy) wyrażeń, z których każde jest koniunkcją literałów.

$$(I_{11} \wedge I_{12} \wedge \ldots \wedge I_{1k}) \vee (I_{21} \wedge I_{22} \wedge \ldots \wedge I_{2s}) \vee \ldots (I_{m1} \wedge I_{m2} \wedge \ldots \wedge I_{mn})$$

Algorytm wnioskowania za pomocą reguły rezolucji

- Aby pokazać, że $KB \models \alpha$, pokazujemy, że $(KB \land \neg \alpha)$ jest niespełnialne.
- Najpierw musimy przekonwertować ($KB \land \neg \alpha$) do jego CNF.
- Następnie reguła rezolucji jest stosowana do wynikowych klauzul.
- Każda para, która zawiera dopełniające się literały jest 'rozwiązywana' w celu utworzenia nowej klauzuli, która jest dodawana do zbioru, dopóki taka para jeszcze istnieje.
- Proces trwa, dopóki nie wystąpi jeden z dwóch faktów.
 - Rozwiązywanie dwóch klauzul prowadzi do pustej klauzuli, w którym to przypadku $KB \models \alpha$.
 - Nie ma nowych klauzul, które można by uzyskać przez zastosowanie reguły rezolucji, w takim przypadku KB ⊭ α.

Pseudokod

▶ Załóżmy $KB = R_2 \land R_4 = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} i \alpha = \neg P_{1,2}$

Dowód przez zaprzeczenie, tzn. pokazanie, że $KB \land \neg \alpha$ niespełnialne.

```
function PL-RESOLUTION(KB, \alpha) returns true or false
   clauses ← the set of clauses in the CNF representation of KB \land \neg \alpha
   loop
       new \leftarrow \{\}
       for each Ci, Ci in clauses do
          resolvents \leftarrow PL-RESOLVE(C_i, C_i)
          if resolvents contains the empty clause then
              return true
          end if
           new \leftarrow new \mid | resolvents
       end for
       if new ⊆ clauses then
          return false
       end if
       clauses ← clauses I new
   end loop
end function
```

Pełność reguły rezolucji

Chcemy dowieść, że PL-RESOLUTION jest pełny. Rozważamy, że S to dane zdanie w formie CNF.

- Resolution closure: RC(S) jest zbiorem wszystkich klauzul pochodnych poprzez wielokrotne stosowanie reguły rezolucji do klauzul w S lub ich pochodnych.
- Twierdzenie o pełności (completeness theorem) dla rezolucji w rachunku zdań jest nazywane podstawowym (bazowym) twierdzeniem o rezolucji (ground resolution theorem):
- ▶ Jeśli zbiór klauzul *S* jest niespełnialne, wówczas *RC*(*S*) zawiera pustą klauzulę.

Funkcja Boolowska

- ▶ Każde odwzorowanie $f: \{0,1\}^n \mapsto \{0,1\}$ nazywamy funkcja Boolowska.
- ► Funkcje Boolowskie ≈ formuły Boolowskie:
 - ► Kanoniczna postać sumy (DNF), np.

$$f = xy\overline{z} + x\overline{y}z + \overline{x}yz + xyz$$

► Kanoniczna postać iloczynu (CNF), np. $f = (x + y + z)(\overline{x} + y + z)(\overline{x} + y + \overline{z})$

Implikant funkcji boolowskiej f to iloczyn literałów taki, że dla wszystkich wektorów binarnych x=(x1, ..., xn), dla których jest on równy jedności, funkcja f jest równa iedności.

 $t = x_{i_1} \dots x_{i_m} \overline{x_{i_1}} \dots \overline{x_{i_k}}; t$ nazywamy implikantem funkcji f jeśli

$$\forall_{a \in \{0,1\}^n} \quad t(a) = 1 \Rightarrow f(a) = 1$$

<u>Implikantem pierwszym</u> nazywamy taki implikant, który przestaje nim być po usunięciu dowolnego literału.

<u>Kanoniczna postać Blake'a</u>: każdą funkcję Boolowską można przedstawić w postaci sumy wszystkich jej implikantów pierwszych:

$$f = t_1 + t_2 + \ldots + t_n$$

Przykład: Rozważajmy $p \Rightarrow (q \land r)$

model	р	q	r	$p \Rightarrow q \wedge r$
V1	0	0	0	1
V2	0	0	1	1
V3	0	1	0	1
V4	0	1	1	1
V5	1	0	0	0
V6	1	0	1	0
V2 V3 V4 V5 V6 V7	1	1	0	0
V8	1	1	1	1

- $\qquad \qquad \mathsf{CNF} \colon p \Rightarrow (q \land r) \equiv \neg p \lor (q \land r) \equiv (\neg p \lor q) \land (\neg p \lor r)$
- Kanoniczna postać iloczynu (CNF):

$$(\neg p \lor q) \land (\neg p \lor r) \equiv (\neg p \lor q \lor (r \land \neg r)) \land (\neg p \lor (q \land \neg q) \lor r)$$

$$\equiv (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg q \lor r)$$

$$\equiv (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r)$$

$$\equiv (\neg p \lor q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg q \lor r)$$

- Powyższe wyrażenie możemy również napisać jako: $(\overline{p} + q + r).(\overline{p} + q + \overline{r}).(\overline{p} + \overline{q} + r)$
- ► Kanoniczna postać sumy (DNF): Otrzymujemy to skupiając się na 1: $(\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land r) \lor (p \land q \land r)$
- Powyższe wyrażenie możemy również napisać jako: $(\overline{p},\overline{q},\overline{r}) + (\overline{p},\overline{q},r) + (\overline{p},q,r) + (\overline{p},q,r) + (p,q,r)$
- $(\overline{p},\overline{q},\overline{r}), (\overline{p},\overline{q},r), (\overline{p},q,\overline{r}), (\overline{p},q,r), (p,q,r)$ są implikanty.
- (p̄,q̄), (p̄,q), (p,q,r) są pierwsze implikanty.

Dziękuję za uwagę